

THE INTEGRATION OF

DIFFERENT FUNCTIONAL AND

STRUCTURAL PLANT MODELS

Dissertation

For the award of the degree

"Doctor rerum naturalium" (Dr.rer.nat.)

of the Georg-August-Universität Göttingen

Within the doctoral program Environmental Informatics (PEI)

of the Georg-August University School of Science (GAUSS)

submitted by

Qinqin Long

from Chongqing, China,

Göttingen 2019

Thesis Committee

Prof. Dr. Winfried Kurth

(Department Ecoinformatics, Biometrics and Forest Growth, University of Göttingen)

Prof. Dr. Kerstin Wiegand

(Department of Ecosystem Modelling, University of Göttingen)

Members of Examination Board

Prof. Dr. Winfried Kurth

(Department Ecoinformatics, Biometrics and Forest Growth, University of Göttingen)

Prof. Dr. Jochem Evers

(Department of Plant Sciences, Wageningen University & Research)

Further members of the Examination Board

Prof. Dr. Kerstin Wiegand

(Department of Ecosystem Modelling, University of Göttingen)

Prof. Dr. Dieter Hogrefe

(Telematics group, University of Göttingen)

Prof. Dr. Marcus Baum

(Data Fusion group, University of Göttingen)

Prof. Dr. Jens Grabowski

(Software Engineering for Distributed Systems group, University of Göttingen)

Date of the oral examination: May 20, 2019

ACKNOWLEDGEMENTS

I would like to thank:

• Prof. Dr. Winfried Kurth - for his liberal guidance, immense patience,

and bringing me into this special domain of science.

• Dr. Christophe Pradal - for his insightful discussions, support,

comments and indispensable cooperation.

• Dr. Christophe Pradal, Dr. Reinhard Hemmerling and Uwe Mannl - for

their contribution of a prototype of the interface between GroIMP and

OpenAlea

• Dr. Michael Henke, Dr. Ole Kniemeyer - for their basic work, essential

support, comments and precious friendship.

• My father Dehua Long, mother Qiongyuan Song, - for their infinite

love and support.

• My wife Zhihua Gong, - for her infinite love, companionship, care and

support.

• Dr. Evelyne Costes - for her motivating support, insightful comments,

indispensable cooperation, and warm host of my research stays and

project workshop.

• Prof. Dr. Gerhard Buck-Sorlin, Prof. Dr. Paul-Henry Cournede - for

their motivating support, insightful comments, indispensable

cooperation, and the warm host of the project workshops.

• Dr. Vincent Migault, Dr. Benoît Pallas, Dr. Benoît Bayol - for their

helpful support and comments, and indispensable cooperation.

• Dr. Faustino Hilario Chi, Dr. Johannes Merklein, Mr. Aleksi

Tavkhelidze - for being friends and partners in research.

• Ms. Ilona Watteler-Spang, Dr. Reinhold Meyer - for the excellent

administrative and technical support in our department.

• Everyone who I met during my PhD program.

i

TABLE OF CONTENTS

Page

Table of contents i

List of tables iv

List of figures v

List of abbreviations vii

Chapter 1 Introduction 1

1.1 Motivation 1

1.2 Research goal and tasks 3

1.3 Thesis structure 4

1.4 Functional-structural plant modeling overview 5

Chapter 2 FSP modeling: theory and technologies 10

2.1 Functional and structural plant modeling approaches 10

2.2 Basic L-systems 13
2.2.1 Rewriting systems and formal languages 13
2.2.2 L-systems for graphical modeling 19

2.3 L-system extensions for graphic-centric plant modeling 27
2.3.1 Plant topology modeling 27
2.3.2 Plant geometry modeling 31

2.4 L-system extensions for data-centric plant modeling 33
2.4.1 Graphics library 34
2.4.2 FSP data model 37

2.5 Synthesis of technologies and theories 50
2.5.1 Synthesis of different platforms 50
2.5.2 Differences between the platforms 52

Chapter 3 Requirement analysis and technology survey 60

3.1 Complexity and requirement analysis of the integration 61
3.1.1 Software reuse, integration and interoperability 61
3.1.2 The target FSPMs of the project: overview 69
3.1.3 Requirements to achieve the project goal 71

ii

3.2 Technology survey for the integration of different FSPMs 75
3.2.1 Technologies for software integration: overview 76
3.2.2 Conceptual foundation of integration of FSPMs 84

Chapter 4 Design of technologies for the integration 92

4.1 Design of a middleware technology 96
4.1.1 Design of a logical data exchange model 97
4.1.2 Design of a FSP data exchange model 103
4.1.3 Design of a FSPM integrative protocol 105

4.2 Design of a component model 112
4.2.1 Design of a component architecture 114
4.2.2 Design of a standard to define component interfaces 119

4.3 Design of a C/S-ETL based architecture 120
4.3.1 Design of a C/S based sub architecture 122
4.3.2 Design of an ETL based sub architecture 124
4.3.3 The overall integrative architecture 127

Chapter 5 An interface for the integration of the target FSPMs 129

5.1 Design and implementation of the component ClientSideInterface 130
5.1.1 The communication group at client side 131
5.1.2 The ETL group at client side 131

5.2 Design and implementation of the component ServerSideInterface 151
5.2.1 The communication group at server side 151
5.2.2 The ETL group at server side 153

5.3 Distinguishing features of the interface 157

Chapter 6 Applications and enhancements 159

6.1 Geometrical upscaling 159

6.2 The integration of different FSPMs using the interface 169

6.3 The enhancements of GroIMP and the interface 176

6.4 Discussion and conclusions 180

Chapter 7 Appendices 186

7.1 The technical documents of the interface for the integration of target

FSPMs 186
7.1.1 The specification of XEG 186
7.1.2 The package diagram of the ClientSideInterface 190
7.1.3 The package diagram of the ServerSideInterface 191

7.2 The user manual of the interface 192
7.2.1 The installation of the interface 192
7.2.2 The usage of the interface 196

7.3 The source code for the experiments of geometrical upscaling 200

iii

References 204

iv

LIST OF TABLES

Page

Table 2.1 The Chomsky hierarchy outlines each of four types of grammars, the form of its

production rules, the language it generates, the type of corresponding automaton......................... 16
Table 3.1 Comparison of JavaBeans, COM and CORBA [16]. .. 77
Table 3.2 Four levels of interoperability (IOP) [9]. .. 81
Table 5.1 Transform schemes for XEG nodes of GroIMP shape types .. 146

v

LIST OF FIGURES

Page

Figure 2.1 Data centric (upper) and process centric (lower) computer programs 11
Figure 2.2 Data centric (upper) and process centric (lower) FSPMs. ... 12
Figure 2.3 Four derivation steps of a DOL-system. .. 20
Figure 2.4 Relations between formal languages generated by grammars of the Chomsky hierarchy

and the languages generated by L-system grammars [2]. ... 21
Figure 2.5 (a) Turtle commands F, +,− in two dimensions. (b) Graphical interpretation of a string

with fixed rotation angle δ 90 degrees. ... 23
Figure 2.6 Turtle commands in three dimensions ... 24
Figure 2.7 The same dragon curve generated by edge and node rewriting L-systems with n=9,

δ=90 .. 26
Figure 2.8 An axial tree [2] .. 29
Figure 2.9 An example of applying a rule P to the edge S of an initial tree T1. [2] 30
Figure 2.10 An example of representing a tree by a bracketed string [2] 31
Figure 2.11 Examples of vector graphics (left) and raster graphics (right) [6] 34
Figure 2.12 An example of single scaled RGG graph [13] ... 54
Figure 2.13 An example of three-part graph consisting of a scale graph (A), a type graph (B) and

an instanced graph(C) [15] ... 55
Figure 2.14 Encoding plant structure in MTG [12]. ... 56
Figure 2.15 MTG with geometric models linked to each vertex [11] ... 57
Figure 3.1 Component interfaces [1] .. 65
Figure 3.2 Middleware architecture [5] .. 66
Figure 3.3 Approaches for software interoperability [10] ... 76
Figure 3.4 The interoperability framework of EIF version 2.0 draft [3] ... 80
Figure 3.5 Design patterns for enterprise application integration [7] ... 82
Figure 3.6 Web Service architecture [8] ... 87
Figure 3.7 Classical ETL Diagram for Data warehouse ... 89
Figure 3.8 Message Translator EIP (upper), Canonical Data Model EIP (lower)[7] 90
Figure 4.1 Relationships between involved technologies for FSPM integration. 93
Figure 4.2 TCP/IP protocol stack and data encapsulation [4] ... 94
Figure 4.3 Basic elements of an ideal component model [1] .. 96
Figure 4.4 Logical property graph model [17] .. 101
Figure 4.5 Logical rooted graph model [17] ... 102
Figure 4.6 Data exchange graph model (EG) [17] .. 103
Figure 4.7 An example of XEG code representing a plant with a sphere component................... 105
Figure 4.8 Examples of JSON-RPC POST request and response message 106
Figure 4.9 Examples of the FSPM integrative protocol request (upper) and response (lower)

messages. .. 111
Figure 4.10 The UML component diagram for the integration of different FSPMs 113
Figure 4.11 The UML activity diagram for the integration of different FSPMs 118
Figure 4.12 C/S based sub architecture [14] ... 124
Figure 4.13 ETL based sub architecture [14] .. 125
Figure 4.14 Overall architecture framework for the integration of different FSPMs [14] 128
Figure 5.1 Map for fusion of an object of MTG type (top left) and a corresponding object of Scene

type (bottom left) to an XEG (right). The items in the list of the latter object link to the nodes of

former object by Ids. R, T, C are rotation, translation, cylinder objects converted from the list

items. ... 136
Figure 5.2 The division scheme of XEG ... 144

vi

Figure 5.3 Topological map between XEG with multiscale FSP data (left) and RGG graph (right)

 .. 154
Figure 5.4 Topological map between ‘single’ scale XEG (left) and RGG graph (right) 155
Figure 5.5 The instance architecture of the implemented interface for the integration of target

FSPMs .. 157
Figure 6.1 Geometrical upscaling with bounding box for multiple plants at two scales from which

an interactive choice is possible by the panel in the upper-right corner. 164
Figure 6.2 Geometrical upscaling with axis-aligned bounding box. The data originally encoded in

the MTG are loaded into the RGG graph with their original geometry at the additional organ scale

(A) and geometries upscaled to metamer scale (B), growth unit scale (C), and tree scale (D). 166
Figure 6.3 Geometrical upscaling with convex hull. The data originally encoded in the MTG are

loaded into the RGG graph with their original geometry at the additional organ scale (A) and

geometries upscaled to metamer scale (B), growth unit scale (C), and tree scale (D). 168
Figure 6.4 The identical results of the same GroIMP model directly run on GroIMP (left) and

invoked from OpenAlea through a FSPM integrative RPC call (right). 169
Figure 6.5 FSP data in RGG graph (left)/MTG (right) after ETL processed 171
Figure 6.6 The topology of the RGG graph converted from an XEG encoding a small apple tree

from MAppleT shown in 2D on GroIMP ... 172
Figure 6.7 Experiment to test the interface by a GroIMP color-changing model. The arrow points

to show the flow of data between different data models and FSPM. .. 173
Figure 6.8 An example of property upscaling. .. 175
Figure 6.9 GUI for manual import (top) and export (bottom) of XEG ... 178
Figure 6.10 Graphical components (top) of groalea and an example of visual workflow (bottom) to

run a FSPM at server side constructed using the graphic components. .. 179
Figure 6.11 GUI components on GroIMP to launch the integrative server 180
Figure 7.1 The packages/files to be checked out from the trunk of the GroIMP SVN repository 194
Figure 7.2 The packages to be checked out from the FSPM Apple branch of the GroIMP SVN

repository .. 195
Figure 7.3 Adjustment for the created configuration under Eclipse. .. 196
Figure 7.4 The way to run the example workflow MAppleT mtg + scene to XEG...................... 198
Figure 7.5 The example workflow XEG to mtg + scene .. 199

vii

LIST OF ABBREVIATIONS

BFS Breadth-First Search

C/S Client/Server

CSV Comma-Separated Values

DFS Depth-First Search

EAI Enterprise Application Integration

EIP Enterprise Integration Pattern

ETL Extract-Transform-Load

FSP Functional and Structural Plant

groalea The packages of our interface at client/OpenAlea side

GroIMP Growth Grammar-related Interactive Modelling Platform

GUI Graphical User Interface

HTTP HyperText Transfer Protocol

IMP3D The 3D graphics library of GroIMP

IOP Interoperability

JSON JavaScript Object Notation

K.C. IOP Four level interoperability of H. Kubicek and R. Cimander

LOD Level of detail

L-py Python based L-system

MAppleT A functional and structural plant model simulating apple

tree growth

MTG Multiscale Tree Graph

ORB Object Request Broker

viii

PlantGL The 3D graphics library of OpenAlea

RATP Radiation Absorption, Transpiration and Photosynthesis

RGG Relational Growth Grammar

RPC Remote Procedure Call

SOAP Simple Object Access Protocol

TCP Transmission Control Protocol

UDP User Datagram Protocol

WSDL Web Services Description Language

XEG XML based Exchange Graph

XL eXtended L-system language

XML eXtensible Markup Language

1

Chapter 1

INTRODUCTION

1.1 Motivation

In the early 1990s, process-based crop models emerged as a tool to simulate the

development of crops under external (environmental) or internal (biological)

conditions. They link the conditions of plants to their overall structural development

and provide the possibility to predict the rough growth of the plants. However, the

structural or spatial conditions, which play an essential role for plants to maintain

their functional conditions, are not considered. Besides, they assume that the

conditions applied to every part of the plants are homogeneous and no variation

among individual plants and organs is considered. Consequently, they cannot

provide accurate growth where plant organs are in the focus and multiple conditions

of diversity have to be handled. With the development of computer science,

especially the rapid advancement of hardware and software in computer graphics

in recent decades, researchers throughout the world have been developing computer

models to simulate the complex interactions between three dimensional plant

architecture and biological processes that drive plant architecture development in

their temporal and spatial contexts [18-21]. These research projects have led to the

emergence of functional - structural plant models (FSPM). FSPMs are defined as

2

models that couple a set of physiological processes that result in an explicit three

dimensional plant structure, often supplied with a mutual feedback between

physiology and structure [22, 23]. Depending on the application domain, FSPMs

have integrated different physical and physiological processes and vary in the level

of detail considered for the spatial representation of the plant (considering different

hierarchical scales: individual organs, sets of organs or entire plants).

The FSPMs overcome the limitation of process-based crop models by modeling

details in function and structure of plants using the increasing computer power, but

the cost of complexity caused by these details coming with FSPMs can become

prohibitive when they have many processes and depict the plant at relatively fine

scale, e.g., organ scale, especially for large plant systems. In addition, such situation

also results in a large number of parameters, which makes the indispensable

parameter estimation and sensitivity analysis dramatically more difficult as the

modeled processes often depend on each other non-linearly.

To solve these problems, four different research groups, including us, have

initiated the project "Multi-scale functional and structural plant modeling at the

example of apple trees" (i.e. FSPM Apple)[24]. The following introduction is

directly adopted from the proposal of the project [25]. Herein, a research agenda

with two foci was outlined: F1 – "Model development, calibration, analysis, and

corresponding software tools", and F2 – "Case study: Modeling apple tree growth

at organ, branch and whole-tree scale".

F1 is about to bridge the gap of complexity between different plant architectures.

In F1, algorithms for bridging the gap between spatial and temporal scales (spatial:

here organ – branch axis – individual tree – orchard; temporal: hour to year) will be

investigated and tools will be established. Methods for upscaling, downscaling and

maintenance of multiscale plant representations and processes simultaneously will

be developed using open-source modeling platforms.

3

F2 is a case study to bridge the gap of complexity between two different FSPMs.

In F2, an existing empirical, L-system-based model of apple tree growth, MAppleT

[26], to which various genotypes and environmental conditions will be applied.

Meanwhile, by adopting a prototype for an easy specification and stable solution of

differential equations on networks, a xylem and phloem flux model based on

biophysics that simulates water and carbon/sugar transport at the branch and organ

scale will be established. Such a model will in the future be able to assess the quality

of apple fruit under various water conditions. In the end, both lines of work will be

combined in an integrated, multiscale model that simulates apple tree growth driven

by water and carbon/sugar transport.

My PhD research task is mainly about to enable the case study in F2 and to

integrate the MAppleT model and water flux and carbon/sugar transport model. To

achieve this, gaps of complexity between different plant architectures inherent in

the two models also need to be bridged.

1.2 Research goal and tasks

The research goal is to analyze the requirements and understand the complexity

in details, and provide an interface to bridge the gap of complexity caused by the

differences between the mechanistic and empirically-based models, and to allow

the two FSPMs be merged as one FSPM accordingly.

To reach the research goal, precise tasks have been planned:

• Literature review for FSPM and model integration

• Complexity and requirements analysis of the two different models

and their platforms.

• Design of an integrative framework for the interface.

4

• Implementation of the interface with appropriate technologies

according to the designed framework.

• Enhancement of the usability of the interface and the platforms.

• Integration of the FSPMs with the interface and conclusion of the

research

1.3 Thesis structure

Chapter 2

In this chapter, theories and technologies in the area of functional and structural

plant modeling are introduced. The mainstream FSP modeling approach, i.e. L-

systems based modeling systems are discussed in details. This includes the

theoretical root of L-systems and the basic technologies required for an effective L-

system based FSP modeling system. The various technologies required to enhance

the L-systems are also elaborated.

Chapter 3

In this chapter, the theoretical and technical background of the two models and

their platforms are introduced. The complexity and requirements of the integration

are analyzed in details and preconditions for the model integration are determined.

Possible theories and technologies allowing the integration are introduced and

discussed, and specific technology candidates are determined according to the

preconditions.

Chapter 4

In this chapter, the design of a comprehensive framework for the integration of

FSPMs is presented. It includes the design of a middleware technology, a

component model, and an architecture that combines a sub architecture adapted

5

from ETL (Extract, Transform, Load) architecture and a sub architecture adapted

from C/S (Client/Server) architecture.

Chapter 5

In this chapter, the implementation of the interface allowing the integration of

the two target FSPMs is presented. It includes the design and implementation of

ClientSideInterface and ServerSideInterface, which both consists of a

communication group and an ETL group.

Chapter 6

In this chapter, enhancements of the platforms and the interface are presented.

For the interface, both functionality and application enhancements are presented.

These include the enhancements of applicability, performance, and ease of use of

the interface itself, and the enhancements of the application of the interface. For the

platform, enhancements for RGG graph usability are presented. Two algorithms for

geometrical upscaling are developed and applied to the FSP graphs that are

converted from MTGs produced by MAppleT. Several integration applications

using the interface are presented and a discussion is presented to conclude the PhD

research.

1.4 Functional-structural plant modeling overview

Like the development path of modeling in many other areas, functional-

structural plant (FSP) modeling started from a monolithic approach [23]. By this

approach, individual FSPMs are built to cover every objective aspects, including

design of data models and algorithms, and specific software tools using generic

computer technologies. Later, some reusable software components have been

developed by plant scientists as common tools to help them to accelerate the

modeling speed and reduce the duplicative work. However, these tools normally

6

come from the practice of solving particular problems in a specific model creation.

They cannot provide versatility to suit all kinds of modeling problems. Moreover,

these tools are often poorly designed with diverse computer technologies. This

makes them hard to be maintained and be used together as a complete tool-set to

provide comprehensive support for modeling practice. In the last decade, some

teams have started to provide standardized all-in-one platforms providing

comprehensive modeling support with well designed tools that suit various

modeling cases. After the recent years of development, some platforms have

become mature enough. They are widely used in modeling practice and the

mainstream approach of FSP modeling is now platform based. These platforms play

a role for FSP modeling similar to the role of the development kit for application

development, e.g., JDK for Java applications. By providing crucial tools for

describing plant systems, the platform is more of a domain-specific infrastructure

than just a general development kit. Usually such a platform includes a specific

graphics library, a particular modeling formalism built upon a special modeling

language with tailored operators and a FSP data model mostly detailed from a

general data model (e.g. property graph), some useful components such as 3D

viewers and “default” simulators that abstract general functional and structural

processes of plants. By this approach, FSPMs are developed and executed on a

given platform. As the modeling platform hides all computer-related technical

details, plant scientists can thus use the tools provided by the platform transparently

to build an FSPM in much shorter time and focus on their own specialty rather than

on unfamiliar technologies.

In general, the basic methodology that enables and facilitates the FSP modeling

is “encapsulation”. The term encapsulation here similar to its meaning in Object

Oriented Programming, and refers to the hiding of details of processes. Based on

the computer science – biology interdisciplinary nature of FSP modeling [27], the

encapsulation can be categorized into two types.

7

One type is biological encapsulation. This aims at hiding complex biological

processes into components so that people without knowing the underlying

biological mechanism can directly use them in a way like APIs. At the early stage,

the encapsulation was case oriented and happened spontaneously using different

computer technologies (e.g. programming languages, FSP data models), abstracted

biological knowledge at different levels (e.g. general physiological law VS

statistical morphological development patterns based on data measured in a specific

region). The outputs were mostly standalone tools with a single or several

components incorporating different (composite or primitive) data types of

programming languages as FSP data models. These tools were specifically designed

for particular modeling cases, can hardly be reused or combined for supporting

different modeling cases directly. Later on, some teams carried out systematical

encapsulation with a common FSP data model and a set of components abstracting

biological knowledge at coherent levels using coherent computer technologies. The

outputs became modeling platforms with one data model surrounded by a set of

components. The components within a platform thus operate data organized in a

platform owned FSP data model in a way similar to transitions operating data in

databases. With the systematical and coherent design of the platforms, data

operations of the components meet the ACID (Atomicity, Consistency, Isolation,

and Durability) properties and the validity of FSP data can thus be guaranteed. Two

strategies of biological encapsulation are applied in this kind of platforms design.

One is that the components encapsulate biological patterns valid at a specific

temporal/spatial/biological range, e.g. only for specific species. Components

applying this strategy have high agility and low flexibility in terms of biology. They

can be directly used with assignment of parameters, but are only applicable for

specific modeling cases. Another is that the components encapsulate general

biological laws, e.g., Darcy’s law for water transport within plants. Components

applying this strategy have high flexibility and low agility in terms of biology. They

can be applied for all FSP modeling cases, but only after being extended to suit

specific modeling cases.

8

Another type is computational encapsulation. This aims at hiding complex

computational technologies into tools so that people without proficiency in the

underlying technologies can directly use them transparently. As a kind of

computational model, FSPMs are programs developed in specific programming

languages just like all the other computer programs. At the early stage, common

computational tools were used directly in FSP modeling practice, e.g., FSPMs were

developed directly using common programming languages such as C, C++. This

kind of language is not as intuitive as human natural language and needs a relatively

long period to master their grammars. More importantly, these languages are not

specifically designed for plant modeling, it is difficult to build FSPMs directly by

using them, e.g., common programming languages do not provide data models that

directly meet the requirement for describing static plant structure and its dynamic

growth. To facilitate the FSP modeling, platforms with an adaptive layer on top of

the common computational tools to suit FSP modeling have to be established, and

theoretically, two types of platforms are possible. One type is that of visual

programming platforms (such as early version of OpenAlea [28]), which is about

to allow modelers to build FSPMs by manipulating program elements graphically

rather than by specifying them textually. With visual expressions, or spatial

arrangements of graphic symbols, complex syntax of programming languages

becomes transparent, and modelers can concentrate on biological processes/logics

design and implementation. Although visual programming brings convenience to

modelers, it also has some drawbacks. The logics/processes behind each graphic

symbols are predefined with the intention to remain stable, therefore they are with

low flexibility whether from an individual or a collective perspective. Compared to

traditional textual programming, visual programming FSP modeling platforms

provide the possibility to increase the modeling agility but decrease its flexibility

in terms of computer science. In this sense, they are similar to component-based

platforms applying the first strategy of biological encapsulation. However, unlike

the component based platforms, the second strategy is not applicable for the visual

programming route because it is about to generalize the logics/processes behind the

9

graphic symbols and lead into the opposite direction of visual programming. For

this reason, this type of FSP modeling platforms does not actually exist. Another

type of platforms, i.e., the L-system based platforms, better balance the

computational agility and flexibility. Instead of making the grammars of common

programming language completely transparent with graphic symbols, L-system

based platforms provide formal grammars that are more intuitive than grammars of

common programming languages but retain the programming routine, i.e., it is still

up to the modeler to develop logics/processes of FSPMs using formal grammars.

Besides the two types, there are also special types of encapsulation, i.e., the

hybrid encapsulation. This mainly refers to the component-set based visual

programming. This encapsulation increases agility in terms of both biology and

computer science, however it still has the problems of low flexibility. The L-

systems based FSP modeling approach is what the two target FSPMs adopted, and

they are therefore the focus of this thesis.

10

Chapter 2

FSP MODELING: THEORY AND

TECHNOLOGIES

2.1 Functional and structural plant modeling

approaches

The name of functional and structural plant (FSP) modeling clearly defines its

modeling objective, and makes it easy to be distinguished from other modeling

approaches for plants. That is to say, this approach is primarily about to model not

only the structure evolving of tangible modules of plants, but also the performance

of biological functions of these modules. The main characteristics given by the

name are two interactive aspects. One aspect is the interaction between different

tangible modules of plants, which describes how one module depends on another

and vice versa. Another aspect is the interaction between the structure of a module

and its functions, which describes how the structure of a module determines the

performance of its biological functions and how the performance of the functions

affects or feedbacks to the evolving of the structure. This approach is based on the

generally acknowledged truth that the structure of a module is the basis of its

11

function, and the postulate that a plant is a set of discrete modules (e.g. internodes,

blades, fruits) and the set of module types in organisms of one species is finite

regardless of the organism size. Thus, the structure evolution of the plant modules

is the primary modeling aspect and indispensable part of a FSPM, while functional

processes are necessary for being a real FSPM, but they are not an obligation for a

plant model, especially when the structure evolution is based on the statistics on

growth data of plant structures.

A data processing program is a computer program consisting of two basic

components: data and processes. As shown in Figure 2.1, these programs can be

roughly classified into two types: data centric programs and process centric

programs. The data centric program manages data in storage to allow the access and

modification by different processes. A process can be launched and transferred to

storage when it needs to process data. One example is Apache Subversion. The

process centric programs manage processes in storage to allow the data to be input,

processed and output. A data package can be input and transferred to storage when

it needs to be processed. One example is Microsoft Word.

As a data processing program, a FSPM also consists of data and processes as

basic components, and different FSPMs can be divided into two types based on

Figure 2.1 Data centric (upper) and process centric (lower) computer programs

12

which aspect it focuses on: the data centric FSPMs and the process centric FSPMs.

The FSP modeling methods can be divided into the two corresponding types

accordingly.

Figure 2.2 Data centric (upper) and process centric (lower) FSPMs.

13

As Figure 2.2 shows, in data centric FSPMs, the same set of FSP data are

accessed and modified by function and structure processes. The data are both inputs

and outputs of the FSP processes. An optional graphic drawing (or data to graphic)

process can be a part of the FSPM for producing graphic output from the data. The

main purpose of the simulation or the execution of data centric FSPM is to compute

new FSP data. The production of graphic output is an option. When the processed

functional and structural data are accessed and modified by the processes repeatedly,

a recursion that represents plant evolving are formed. In process centric FSPMs,

structure (graphics) and function (data) are accessed by function and structure

processes as inputs and then corresponding results are generated as outputs. The

outputs can be again the inputs for further processing, i.e. recursion. The main

purpose of the simulation of process centric FSPM is to produce the outputs, mainly

the plant graphics. Thus when the graphics are recursively accessed and modified,

process centric FSPM can also be regarded as a special case of data centric FSPM

with graphics in the center, i.e. graphics centric models.

The next sections of this chapter discuss firstly the basic L-systems for general

graphical modeling. Then the two sets of technologies to extend the basic systems

to comprehensive systems with two different directions are introduced. One is the

L-system extension allowing the construction of processes to produce realistic plant

graphics, i.e. extensions for graphic centric plant modeling. Another is the L-system

extension allowing the construction of data models to manage FSP data, i.e.

extension for data centric plant modeling. Both are introduced and discussed.

2.2 Basic L-systems

2.2.1 Rewriting systems and formal languages

Currently there are several different theoretical frameworks allowing the

description of structural evolution of plant modules. The major frameworks are

14

derived from certain rewriting systems. The rewriting systems, or reduction

systems, denote a range of methods to replace sub-terms of a formula with other

terms. A typical rewriting system consists of a set of terms/objects and a set of

relations to transform the objects. The latter are also called rewriting rules. In

general, rewriting systems can be deterministic or non-deterministic. However, the

non-deterministic rewriting systems have more than one rule applicable for an

object, hence they do not provide a deterministic algorithm for transforming one

object to another, but a set of rewriting possibilities.

There are different types of rewriting systems, such as abstract rewriting systems

and term rewriting systems. The one where the theoretical frameworks of structural

modeling are mostly extended from is rewriting systems operating on character

strings, namely string-rewriting systems. Many studies have been carried out on

this type of rewriting systems in the middle of the last century. A linguist, Noam

Chomsky, made great contributions in this area during his study on formal

grammars. He sees languages as formal symbolic systems governed by grammatical

rules of combination and defined languages as the construction of words or strings

that can be generated using transformational grammars [29, 30]. Basic terms in

formal language theory include:

• Alphabet: non-empty finite set of symbols (i.e. letters), denoted by Σ

• Word over an alphabet: finite sequence (i.e. string) of symbols taken

from an alphabet.

• Word length |𝑤| : number of symbols that compose a word, e.g.

|𝑎𝑏𝑐𝑑𝑒| = 5.

• Empty word: the word of length 0, denoted by ϵ, e, λ or ∧.

• Σ*: the set of all words over Σ, * is the Kleene star, meaning a word has

zero or more symbols

15

• Σ+: the set of all non-empty words over Σ, Σ+ = Σ∗\{ϵ} , + means a

word has one or more symbols

• The concatenation of two words 𝑣 = 𝑥1𝑥2 …𝑥𝑛 and 𝑤 = 𝑦1𝑦2 …𝑦𝑚

with 𝑛,𝑚 ≥ 0 is 𝑣 ∘ 𝑤 = 𝑥1𝑥2 …𝑥𝑛𝑦1𝑦2 …𝑦𝑚 , (𝑣 ∘ 𝑤 can be written

as 𝑣𝑤), the resulting word has length |𝑣 ∘ 𝑤| = 𝑛 + 𝑚. If w is the empty

word, the resulting word is the original word 𝑣 ∘ 𝜀 = 𝜀 ∘ 𝑣 = 𝑣.

With the basic terms, the notions of grammar and language are formally defined

and we introduce them here by adapting [31]:

A formal language L is a set of words (i.e. strings) over an alphabet Σ, i.e. 𝐿 ⊆

Σ∗. The set of all words generated by a formal grammar is a generated (formal)

language.

A production rule (or rule, production) is a specification of symbol replacement

that can be recursively applied to produce new symbol sequences that conform to

the syntax of the language and are composed from the language’s alphabet. The

grammar of a formal language, i.e. formal grammar, is a finite set of production

rules which can generate all symbol sequences (or sentences) of the language.

A formal grammar G is typically defined as a 4-tuple G = 〈𝑁, 𝑇, 𝑃, 𝑆〉 , with

components:

• N: a finite set N of nonterminal symbols

• T: a finite set of terminal symbols, with 𝑁 ∩ 𝑇 = ∅

• S: a distinguished symbol S ∈ N that is the start symbol.

• P: a finite irreflexive set of production rules with the form:

𝑃 ⊆ {〈𝛼, 𝛽〉 | 𝛼, 𝛽 ∈ (𝑁 ∪ 𝑇)∗ 𝑎𝑛𝑑 𝛼 ∉ 𝑇∗},

16

the production rule 〈𝛼, 𝛽〉 is often written as 𝛼 → 𝛽.

Over the alphabet Σ = 𝑁 ∪ 𝑇, for words 𝑣, 𝑤 ∈ 𝛴∗:

• 𝑣 is directly derived from 𝑤 (or 𝑤 directly generates 𝑣), i.e. 𝑤 → 𝑣, if

𝑤 = 𝑥𝛼𝑦 and 𝑣 = 𝑥𝛽𝑦 such that 〈𝛼, 𝛽〉 ∈ 𝑃.

• 𝑣 is derived from 𝑤 (or 𝑤 generates 𝑣), i.e. 𝑤 →∗ 𝑣 , if there exist

𝑤0, 𝑤1, …𝑤𝑚 ∈ Σ∗ (𝑚 ≥ 0) such that 𝑤 = 𝑤0, 𝑤𝑚 = 𝑣 and 𝑤𝑖−1 →

𝑤𝑖 for all 𝑚 ≥ 𝑖 ≥ 1.

• →∗ denotes the reflexive transitive closure of →

Then, 𝐿(𝐺) = {𝑤 ∈ 𝑇∗|𝑆 →∗ 𝑤} is the formal language generated by the

grammar G. The set of all formal languages over an alphabet is uncountably infinite,

while the set of grammars generating formal languages over the alphabet with a

Grammar Production

rules

Language Automaton

Type-0 𝛼 → 𝛽
Recursively

enumerable
Turing machine

Type-1 𝛾𝐴𝛿 → 𝛾𝛽𝛿 Context sensitive Linear bounded

Type-2 𝐴 → 𝛽 Context free
Non-deterministic

pushdown

Type-3 𝐴 → 𝛽𝐵, 𝐴 → 𝛽 Regular Finite state

Table 2.1 The Chomsky hierarchy outlines each of four types of grammars, the

form of its production rules, the language it generates, the type of corresponding

automaton.

17

finite sets of production rules is countably infinite. Hence, the set of formal

languages generated by a formal grammar is a strict subset of the set of all formal

languages.

Chomsky categorized formal grammars and their generated formal languages

into a containment hierarchy consisting of four (0 to 3) types of formal grammars

over structure conditions on the production rules of the grammars (c.f. Table 2.1)

[30]. The hierarchy constrains the structure of the production rules in a restricted

set of languages, and the languages types correspond to conditions or the right- and

left sides of the production rules [31].

The type-0 grammars are known as phrase-structure grammars or recursively

enumerable grammars. They are formal grammars without any restrictions on both

sides of the grammar’s production rules. Formally, a grammar (N, T, S, P) is a type-

0 grammar if and only if all production rules are of the form 𝛼 → 𝛽 with 𝛼 ∈

(𝑁 ∪ 𝑇)∗\𝑇∗ and 𝛽 ∈ (𝑁 ∪ 𝑇)∗ . This type includes all formal grammars and

generates recursively enumerable languages that are exactly all recognizable

languages by a Turing machine.

The type-1 grammars are known as context sensitive grammars. They are formal

grammars with production rules that may be surrounded by symbols (terminal,

nonterminal, or empty) as context. Formally, a grammar (N, T, S, P) is a type-1

grammar if and only if all production rules are of the form 𝛾𝐴𝛿 → 𝛾𝛽𝛿 with 𝛾, 𝛿,

𝛽 ∈ (𝑁 ∪ 𝑇)∗, 𝐴 ∈ 𝑁 and 𝛽 ≠ 𝜖; or of the form 𝑆 → 𝜖, in which case S does not

occur on any right hand side of a production rule. Formal grammars of this type

generate context sensitive languages that are exactly all recognizable languages by

a linear bounded automaton.

The type-2 grammars are known as context free grammars. They are type-1

formal grammars with the left side of production rules restricted to nonterminal

symbols and the right side of the production rules restricted to non-empty symbols.

18

Formally, a grammar (N, T, S, P) is a type-2 grammar if and only if all production

rules are of the form 𝐴 → 𝛽 with 𝐴 ∈ 𝑁 and 𝛽 ∈ (𝑁 ∪ 𝑇)∗. Formal grammars of

this type generate the context free languages that are exactly all recognizable

languages by a non-deterministic pushdown automaton. The context free languages,

or more precisely, their subset, the deterministic context-free languages are the

theoretical basis of the phrase structure of most programming languages. This type

of formal grammars perfectly solves the parsing problem and provides the

theoretical basis for the syntax analysis phase of compilation.

The type-3 grammars are known as regular grammars. They are type-2 formal

grammars with the left side of production rules restricted to a single nonterminal

symbol, and the right side of production rules restricted to a single terminal symbol

optionally surrounded by a terminal symbol. Formally, a grammar (N, T, S, P) is a

type-3 grammar if and only if all production rules are of the form 𝐴 → 𝛽𝐵 or 𝐴 →

𝛽 with 𝐴, 𝐵 ∈ 𝑁 and 𝛽 ∈ 𝑇∗, (in this case it is a right linear grammar); or of the

form 𝐴 → 𝐵𝛽 or 𝐴 → 𝛽 with 𝐴, 𝐵 ∈ 𝑁 and 𝛽 ∈ 𝑇∗, (in this case it is a left linear

grammar). The type-3 grammars with either right or left regular rules generate

regular languages that are exactly all recognizable languages by a finite state

automaton. The regular languages can also be generated by regular expressions,

which are commonly used for lexical analysis within the scanning phase of

compilation.

 The incremental constraints from grammars of type 0 to type 4 lead to a

directional inclusion relation between the four sets of languages generated by

corresponding formal grammars: the set of regular languages ⊆ the set of context

free languages ⊆ the set of context sensitive languages ⊆ the set of recursively

enumerable languages.

19

2.2.2 L-systems for graphical modeling

2.2.2.1 DOL-systems

A type of string rewriting systems, the Lindenmayer systems (or L-systems in

short) [32-34], was introduced in the late 1960s. Then [2] summaries formal

definitions for relevant notations of the L-systems, some of those are introduced

here. The simplest class of L-systems is the class of deterministic OL (or DOL in

short) systems. A string DOL system G is an ordered triple 𝐺 = 〈𝑉, 𝜔, 𝑃〉, with

components:

• V: an alphabet, with V* denoting the set of all words over V, and V+

denoting the set of all non-empty words over V, 𝑉+ = 𝑉∗\{ϵ}

• 𝜔: a distinguished symbol 𝜔 ∈ V+ that is the start symbol, called axiom

• P: a finite set of production rules 𝑃 ⊂ 𝑉 × 𝑉∗ with each having the form

〈𝛼, 𝑥〉 or 𝛼 → 𝑥 , such that ∀𝛼 ∈ 𝑉 ∶ ∃𝑥 ∈ 𝑉∗ ∶ (𝛼 → 𝑥) ∈ 𝑃 . The

predecessor and successor denotes the symbol 𝛼 and word 𝑥

respectively.

Over the alphabet V, for word 𝑤 ∈ 𝑉, 𝑤 = 𝛼1 …𝛼𝑚 and 𝑣 ∈ 𝑉∗, 𝑣 = 𝑥1 …𝑥𝑚:

• 𝑣 is directly derived from 𝑤 (or 𝑤 directly generates 𝑣), denoted by

𝑤 ⇒ 𝑣, if and only if 𝛼𝑖 → 𝑥𝑖 for all 𝑖 = 1,…𝑚.

• 𝑣 is derived from 𝑤 (or 𝑤 generates 𝑣), i.e. 𝑤 ⇒∗ 𝑣 , if there exist

𝑤0, 𝑤1, …𝑤𝑛 ∈ 𝑉∗ (𝑛 ≥ 0) such that 𝑤 = 𝑤0, 𝑣 = 𝑤𝑛 and 𝑤𝑖−1 ⇒ 𝑤𝑖

for all 𝑛 ≥ 𝑖 ≥ 1,

• ⇒∗ denotes the reflexive transitive closure of ⇒

20

Then, 𝐿(𝐺) = {𝑤 ∈ 𝑉∗|𝜔 ⇒∗ 𝑤} is the formal language generated by the DOL

L-system G. During each derivation step, all production rules in the set P are applied

in parallel. Generated by a derivation of length n, 𝑤0, 𝑤1, …𝑤𝑛 is called the

developmental sequence of w.

For example, given a string rewriting grammar G with 𝑉 = {𝑎, 𝑏} , 𝜔 = 𝑎

and𝐹 = {𝑎 → 𝑎𝑏, 𝑏 → 𝑎} , the grammar (i.e. DOL system) produces strings as

shown in figure 2.3.

For a DOL-system, a derivation step produces a string/word representing a plant

at a certain growth moment (c.f. Figure 2.3), and a component of the string (i.e. a

symbol) represents a plant module. The neighbor relationship between string

components represents adjacency between plant modules. The continuous

derivation of the system produces a set of strings/words with changed length, which

represents the evolution of the plant over time.

Compared to the rewriting systems, L-systems are outlined by no distinction

between terminal and non-terminal symbols and the parallelization of rule

application at each derivation step. The former difference reflects the fact that one

or more modules or organs of a living body can be dead and lose the ability to

(n: derivation step)

Figure 2.3 Four derivation steps of a DOL-system.

21

proliferate while the other modules or organs can still support the overall function

of the body. Therefore, when using symbols to represent plant modules having

changeable states of nonterminal/terminal, a distinction of symbols must not be

made. The latter difference reflects a general characteristic of plants that modules

of a plant proliferate simultaneously. These differences make the L-systems capable

of modeling evolving plant structure, and changes the formal properties of L-

systems so that L-systems do not fit into the Chomsky hierarchy.

The studies [35] of L-systems show that L-systems can be is divided into 0L (or

OL), 1L and 2L-systems by following the different dependencies in symbol

generation of a derivation, i.e. the transition of a symbol depends on zero neighbors,

left neighbor and left and right neighbors. An L-system is propagating or a POL-

system if there is no production rule producing the empty string 𝜖. It is deterministic

or a DOL-system if there is at most one production rule applicable for every symbol.

As shown in Figure 2.4 [2], the studies [32-37] also reveal the relations between

formal languages generated by grammars of the Chomsky hierarchy and those

Figure 2.4 Relations between formal languages generated by grammars of the

Chomsky hierarchy and the languages generated by L-system grammars [2].

22

generated by L-system grammars. OL-systems generated languages (OL in short)

are not always context free formal grammars, 1L-systems generated languages (1L

in short) are not always context sensitive formal languages.

Although L-systems were accepted as a mathematical theory of plant structure

evolution, the original version has also the obvious defect that they focus on only

on one aspect of the plant structure, the topology (i.e., adjacency between plant

modules), without much attention on the geometric side. Therefore, rather than

realistic graphics, L-systems can only provide diagrammatic sketches of plants. To

make L-systems comprehensive tools for plant structural development modeling,

many different geometric interpretations of the systems were studied and proposed.

A widely accepted one is the interpretation using turtle geometry.

2.2.2.2 Turtle interpretations of strings

Turtle graphics, or turtle geometry, is a variant of vector graphics using a so-

called “turtle” (i.e. a relative cursor) on a Cartesian plane. It is a major component

of Logo, which is a programming language [38, 39] introduced in the late 1960s.

The turtle has three attributes to describe its “current” state including geometrical

position (coordinates) and orientation (or rotation) of a virtual pen. The pen also

has three attributes to describe its current state including colour and the width the

line will be drawn by the pen, and on/off state of the pen. The turtle modifies its

geometric state with commands, e.g. “move forward for 9 step length” and “turn

right by 30 degrees”. Other state variables bound to the pen can also be managed

with the turtle, by setting the pen with on/off state, its colour and width. A full turtle

graphics system requires procedures that consist of commands, control flow of the

commands (e.g. choice or loop) within procedures, and recursion of procedures.

From these features, shapes such as triangles, squares, circles and other composite

figures can be generated.

23

From the 1970s on, different graphical interpretation methods of L-systems were

introduced (c.f. Figure 2.5). One of them is the turtle interpretation [40, 41], which

generates graphics with rigorously defined geometry, such as fractals. Inspired from

the turtle graphics of the Logo language, the basic setting of the turtle interpretation

includes a state variable of the turtle which consist of three attributes x, y, and α.

The first two attributes represent the “current” position of the turtle in two

dimensions, and the last represents its “heading”, i.e., angle or current orientation

of the turtle forwarding. In addition, a set of commands is also included [2]:

‘F’: move forward and draw a line from the current position (x, y) to the new

position (x’, y’) by a step of length d. The state variable of the turtle updates to (x’,

y’, α), with x’ = x + d cos α, y’ = y + d sin α.

‘f’: with effects similar to ‘F’, except no line is drawn.

‘+’ for turning left by angle δ, the state variable of the turtle updates to (x, y,

α’), with α’ = α’ + δ.

 FFF-FF-F-F+F+FF-F-FFF

 (a) (b)

Figure 2.5 (a) Turtle commands F, +,− in two dimensions. (b) Graphical

interpretation of a string with fixed rotation angle δ 90 degrees.

24

‘−’ for turning right by angle δ, the state variable of the turtle updates to (x, y,

α’), with α’ = α’ - δ.

Based on the basic setting, a string can be interpreted as a graphic drawn by the

turtle with given initial turtle state (x0, y0, α0), step length d and angle δ. As a

particular kind of strings that are produced by L-systems, this way of interpretation

surely works. However, the interpretation in this setting is limited to two

dimensions. To allow realistic geometric modeling of plants, further settings to

allow three-dimensional geometric interpretation are needed.

Concepts to allow three-dimensional geometric interpretation [42] have been

introduced by Abelson and diSessa (c.f. Figure 2.6). The key is to describe the

“current” orientation of the turtle in three dimensions. Three vectors are used to

represent components of the orientation on different dimensions: vector H for the

heading direction, vector L for the left direction, and vector U for the up direction.

It is obvious that the three vectors are mutually perpendicular and normalized, and

satisfy the H × L = U equation. With the vectors, a rotation of the turtle updates the

“current” orientation of the turtle state from [H L U] to [H L U] R, where R is a 3×3

matrix. Rotations by angle α about H, L and U are represented by matrices:

Figure 2.6 Turtle commands in three dimensions

25

RU (α) = [
cos 𝛼 sin 𝛼 0

− sin 𝛼 cos 𝛼 0
0 0 1

]

RL (α) = [
cos 𝛼 0 −sin 𝛼

0 1 0
sin 𝛼 0 cos 𝛼

]

RH (α) = [
1 0 0
0 cos 𝛼 − sin 𝛼
0 sin 𝛼 cos 𝛼

]

The commands +, - defined for two dimensional turtle interpretation keep the

same meaning, the matrix RU (α) or RU (- α) is used to compute the new point

(x’, y’, z’) of the turtle state from the current point (x, y, z) for a left or right turn by

angle α of the turtle. In the case when angle α = 180, RU (180) ≡ RU (-180),

therefore the unpaired command | is defined for turning around.

Similarly, the commands & and ˄ are defined for pitch up or down by angle α,

the matrix RL (α) or RL (- α) is used to compute the new point (x’, y’, z’) of the

turtle state from the current point (x, y, z). \ and / are defined for roll left or right by

angle α when the turtle is heading to the H direction, the matrix RH (α) or RH (-

α) is used to compute the new point (x’, y’, z’) of the turtle state from the current

point (x, y, z).

2.2.2.3 Graphical rewriting

To allow a DOL system to be used for graphically representing the biologically

regulated dynamics such as plant structural evolution, figure substitution operations

were introduced [2]. Two modes of applying the operations with turtle

interpretation were discussed, i.e. edge/node rewriting, with terms originating from

graph grammars.

Figure substitution operations capture the recursive structure within figures and

link it to a tiling of a plane. The substitution is the combination of strings rewriting

26

and the turtle interpretation of the strings. Each generated string serves as the input

of both rewriting for the next step and the interpretation to generate graphics. For

the edge or node rewriting modes, the production rule causes the substitution of

figures of new polygons for a polygon edge or polygon node respectively. With the

existing setting of DOL-systems, the former mode is possible but the latter is not.

To enable node rewriting, symbols representing different subfigures are included

into the alphabet of the L-system, and the corresponding subfigures are drawn when

such symbols are encountered during turtle interpretation of strings. To ensure the

correct position and orientation of the drawn subfigure, a pair of contact points Px

and Qx are introduced with a pair of direction vectors 𝑝𝑥⃗⃗⃗⃗ and 𝑞𝑥⃗⃗⃗⃗ . (referred as

entry/exit points and vectors). With these settings, each subfigure x in a subfigure

set X can be correctly appended to the result graphic. During the string

interpretation, when the symbol s representing the subfigure is encountered, it will

be replaced with the subfigure having its entry point Px and vector 𝑝𝑥⃗⃗⃗⃗ aligned with

the current turtle states (i.e. position and rotation). After the placement of the

subfigure, the state of the turtle will be updated, i.e. the current position and

orientation of the turtle will become Qx and 𝑞𝑥⃗⃗⃗⃗ .

Edge rewriting L-system:

alphabet: {𝐹𝑥, 𝐹𝑦}

𝜔:𝐹𝑥, production rules:

𝐹𝑥 → 𝐹𝑥 + 𝐹𝑦 +

𝐹𝑦 → −𝐹𝑥 − 𝐹𝑦

Node rewriting L-system:

alphabet: {𝑥, 𝑦, 𝐹}

𝜔:𝐹𝑥, production rules:

𝑥 → 𝑥 + 𝑦𝐹 +

𝑦 → −𝐹𝑥 − 𝑦

Figure 2.7 The same dragon curve generated by edge and node rewriting L-systems

with n=9, δ=90

27

The graphics generated by the edge and node rewriting systems are not disjoint,

and sometimes an edge rewriting system can be transformed into a node rewriting

system using a pseudo L-system as bridge, namely by introducing a predecessor

containing more than one symbol, so that a substring may be substituted by the

successor of a rule. Figure 2.7 shows the same dragon curve [43] for generated by

edge and node rewriting L-systems with nine derivation steps. The alphabet of the

edge rewriting L-system includes two different symbols representing the same

turtle command “move forward a step by a specific length”, while the alphabet of

the node rewriting L-system uses two symbols representing the “subfigures that are

reduced to single points”. The edge rewriting system shown in the figure can be

rewritten as a pseudo L-system with the non-turtle interpretable symbols x and

y: 𝜔: 𝐹𝑥, 𝑃: {𝐹𝑥 → 𝐹𝑥 + 𝑦𝐹+, 𝑦𝐹 → −𝐹𝑥 − 𝑦𝐹 }. From the pseudo L-system

[40], string rewriting rules from x to x+yF+, and from y to –Fx-y can be found, thus

it can be transformed to the node rewriting system shown in the figure.

2.3 L-system extensions for graphic-centric plant

modeling

Graphic centric plant modeling is about using L-system strings to represent plant

structure. Combining the turtle interpretation of strings, the technical basis of this

modeling method is the graphic rewriting. The plant graphic drawing is based on

the turtle interpretation of the strings.

2.3.1 Plant topology modeling

Compared to the string rewriting L-systems, the graphical rewriting L-systems

have already a certain strength for modeling plant structure graphically. However,

the modeling is still quite limited. On one hand, the generated graphics can only be

linear with all modules in a sequence. On the other hand, the generated graphics is

28

considered as a single structural unit without capability to express different types

of adjacency between graphic components representing plant modules.

In real the world, the structure of plants normally consists of branching structures

with plant modules connected in different topological types, such as trunk or branch

modules. Moreover, each plant module (organ, tissue…) has certain functional

roles, e.g. a blade plays a role in photosynthesis, and an internode plays a role in

water transport. These modules directly or indirectly depend on each other, i.e., it

is only possible to maintain the normal function and structure of a module if the

function and structure of other related modules are normal. Consequently, when

different plant functions are involved, the research is on module (organ, tissue…)

scale and it is more appropriate to graphically represent a complete plant with a

combination of multiple structural units representing plant modules rather than a

single unit.

To express the multi-module composite branching structures, another extension

of L-systems including rooted tree based axial trees [44, 45] and tree OL-systems

was introduced. The rooted tree [46] comes from a mathematical notion from

Graph Theory, where mathematical structures are established to model pairwise

relations between objects. A rooted tree consists of a set of edges and a set of nodes

just like other types of graphs. What makes it special is that it has a tree-like

structure without cycles. In the structure, edges are labeled and directed. A special

node “root” is distinguished and all the other nodes are connected from it by edges

directly or indirectly.

By adding a collection of additional topologic specifications to a rooted tree, a

special type of rooted tree, the axial tree, was introduced to allow the expressiveness

of branching structures in L-systems. As Figure 2.8 [2] shows, in an axial tree, each

node has at most one outgoing straight edge, and all the other non-straight edges

are referred as lateral or side edges. A totally ordered set of straight edges forms

an axis with the condition that the first edge is lateral or originates from the root

29

and no straight edges follow the last edge. An axes and all its sub axis form a branch

or a sub tree. Depending on the level of nesting, an order number is given to the

axis and branch. The axis with first edge originating from the root has order number

0. An axis with first edge being lateral and the source node of this edge belonging

to an axis with order number n has order number n+1. Beside the topological

expressiveness at organ level, the edges in the rooted tree (or different branches in

the axial tree) represent real plant modules in exactly the same way as in L-systems

with simple turtle interpretation. Hence, the axial tree gives L-systems

expressiveness of both topology and geometry at organ level. It is worth noting that

the application of topology or the rooted tree is not the same as it is in Graph theory

or Data models, for example, here they are borrowed for explanation of the

arrangement of graphics, while in Data models they are used for describing the

arrangement of data elements.

Figure 2.8 An axial tree [2]

30

Meanwhile, OL-systems evolved to Tree OL-systems to allow the modeling of

the development of axial trees with branching systems, i.e. rewriting of axial trees.

Similar to the DOL system, a tree OL system G is defined by three components:

𝐺 = 〈𝑉, 0𝜔, 0𝑃〉

V is a set of edge labels and 𝜔 is an initial tree with labels from the set. P denotes

a finite set of tree production rules. Figure 2.9 [2] shows a tree production rule and

its application. With an initial tree T1, a given tree OL-system generates a new tree

T2 after applying the production rules once.

The evolution to tree OL-system alone is not enough, and relevant supporting

measures are also needed, namely specific grammatical settings denote different

topological types. Otherwise, production rules P will only be expressed in a form

similar to the one in Figure 2.5, and the turtle interpretation of a branch will always

need to start from the root. To make up for this deficiency, tree OL-systems were

again extended to bracketed tree OL-systems. New grammatical components,

brackets “[” and “]” were introduced, so that the production rules can distinguish

the edges of a branch. Moreover, this allows the state of turtle at the starting point

Figure 2.9 An example of applying a rule P to the edge S of an initial tree T1. [2]

31

of a branch to be stored in a stack, so when the interpretation of one branch with

order n+1 is finished, the “turtle state” can be used for continuous interpretation of

the axis with order n (where the branch is originating). Figure 2.10 [2] shows the

string representation of an axial tree using the concept of bracket.

2.3.2 Plant geometry modeling

The enrichment by plant topology enables the topological expressiveness of

graphical rewriting L-systems, while the problem of lack of geometry

expressiveness remains, i.e. the graphics generated by production rules are still

nonrealistic compared to plants in nature. This problem is solved by providing

continuous and composite geometry within the graphics.

2.3.2.1 Continuous geometry

One reason for lacking realism is the turtle command F drawing a line segment

with fixed length. The result of this setting is that the length of every plant module

represented by a line segment is the same, even if a plant module is represented by

a group of line segments, the length is still limited to an integer multiple of a fixed

length. Hence, it is impossible to have a plant module with continuous length. Not

to mention the size of the corresponding string will be rather long when a large

plant is addressed. On the other hand, the length should not be fixed when functional

effects are taken into account. That means the length might be computed with a

Figure 2.10 An example of representing a tree by a bracketed string [2]

F[+F][-F[-F]F]F[+F][-F]

32

coefficient that represents the effect of certain functions. To allow an adjustable

geometry (e.g. step length, rotation angle), the L-system symbols (e.g. turtle

commands) associated with parameters, i.e. the paramedic L-systems [2, 47, 48] are

introduced . As the parameters are not fixed values, the computed result, i.e.

adjusted geometry, is continuous.

The turtle interpretation of parametric words is included into the L-systems

accordingly. The principle is to take the first parameter to control the corresponding

turtle state, default values are applied if there is no parameter. The main parametric

symbols include [2]:

‘F(a)’: move forward and draw a line from the current point (x, y, z) to the new

point (x’, y’, z’) by a step of length a. The state variable of the turtle changes to (x’,

y’, z’), where x’ = x + a 𝐻𝑥
⃗⃗ ⃗⃗ , y’ = y + a 𝐻𝑦

⃗⃗⃗⃗ ⃗ , z’ = z + a 𝐻𝑧
⃗⃗ ⃗⃗

‘f(a)’: with effects similar to ‘F(a)’, except no line is drawn.

‘+(a)’ rotating around 𝑈⃗⃗ by an angle of a degrees. Depending on if a is positive

or negative, the turtle is rotated to the left or the right.

‘&(a)’ rotating around 𝐿⃗ by an angle of a degrees. Depending on if a is positive

or negative, the turtle is pitched down or up.

‘/(a)’ rotating around 𝐻⃗⃗ by an angle of a degrees. Depending on if a is positive

or negative, the turtle is rolled to the right or left.

For example a production rule that multiplies the length x of an internode I in

every derivation step by 1.2 can be written as 𝐼(𝑥) → 𝐼(1.2 × 𝑥).

Besides fixed length, all line segments have the same width as well. This

problem can be solved by simply providing different types of line segments with

33

different widths or by using another parameter representing the width of line

segments.

2.3.2.2 Composite geometry

Another reason for lack of realism is that the production rules can only generate

graphics consisting of line segments and no shapes are generated to realistically

represent the real plant modules. The problem is solved by providing a mechanism

similar to the “subfigure” introduced for node rewriting with predefined figures of

polygon shapes [2]. In detail, surfaces are composed bicubic patches defined by

polynomials. Symbols representing different surfaces are included into the L-

system alphabet, and during the interpretation of the strings produced by production

rules, the turtle draws the surface when its symbol preceded by a tilde was detected.

Beside the shape itself, the position and orientation of the surface is determined

similar to that of a subfigure (using contact points and vectors).

2.4 L-system extensions for data-centric plant

modeling

Data centric plant modeling is about using data models (i.e. graphs in the context

of FSPMs) to represent plant structures. Generalizing the L-system production

rules, the technical basis of this modeling method is the graph rewriting. Instead of

turtle interpretation, the plant graphics generation is based on the combine of graph

traversal and turtle interpretation. Compared to graphical centric plant modeling,

the essence of the data centric modeling is organizing FSP data in data model. There

are two main advantages to do so. The primary one is automatic management of the

dependencies between different kinds of data and data of different plant modules.

The secondary one is plants can be modeled by a structure more general than tree,

e.g. a multiscale structure, where a coarse scale node decompose to two

34

successively connected fine scale nodes, is a circle, which cannot be modeled by a

string but a graph data model.

2.4.1 Graphics library

The plant graphical rewriting L-systems with graphic centric extensions enable

realistic graphical modeling of plants, but it has the limitation that the strings are

directly interpreted as graphics, and geometry data are not stored for possible

further usage such as functional processes by considering geometry. To make

geometry data of a plant module reusable, the concept of data structure must be

applied. That means each plant module should be associated to a variable of a

specific graphic type. When relevant data processes are required, access and

modification are all through the variable, and so data are kept available for further

processes after finishing the current process. The key here is to have a suitable

graphic technology to provide data structures for both geometry data management

and precise graphical representation of the geometry.

To allow a graphic data structure, there are actually two different two technical

paths: vector graphics and raster graphics (c.f. Figure 2.11 [6]). Vector graphics

Figure 2.11 Examples of vector graphics (left) and raster graphics (right) [6]

35

[49-54] use mathematical formulas to describe graphics, usually showing things

such as lines, curves, and shapes, which can be defined by vector graphic types.

Raster graphics [52-54] describe graphics as a series of color values, which are then

placed in grid mode as basic unit of a raster graphic, i.e., pixels in 2D and voxels in

3D graphics. Both technologies have capability of managing data and presenting

precise graphics, but the mainstream technical path in the area of FSPM is vector

graphics [2, 12, 40, 44, 55-58]. In fact, compared to raster graphics vector graphics

has some advantages of higher weight.

One advantage is that the controlling and computing of geometry for vector

graphics (through parameters) are more straightforward and accurate. Another

advantage is, regarding storage requirement, that raster graphics has a high demand

as it stores information of the grid for not only target objects that are normally

tangible but also the empty space around them, while vector graphics has a low

demand as it stores only the mathematical formulas and the parameters for target

objects. Additionally, vector graphics has the capability of undistorted scaling while

raster graphics has not.

Above all, the fundamental reason for L-systems to take the vector graphics over

raster graphics lies in the natures of the two technologies. In fact, in the bracketed

tree OL-systems, the turtle command F represents both graphical transformations

and drawing of line segments and other turtle commands represent only graphical

transformations. In the context of including graphical representation of organs, the

line segments are expected to be replaced with graphical shapes, thus the turtle

command F needs to be replaced by different graphical objects. Therefore, it is

logical that each of these graphical objects represents both transformation and

graphical shape. For example, a Cylinder object not only needs to have the

capability to draw a cylinder shape, but also needs to have the capability to change

the turtle state from “start position” to “end position” of the object. Hence, both

capabilities need to be enabled as a part of new L-systems and this can be done for

36

both raster and vector graphics theoretically: Raster graphics drawing can be

enabled by setting up a set of specific raster primitives using certain encoding

technologies, e.g. bitmap, jpg, or png, for raster graphics. While vector graphics

drawing can be enabled by setting up a set of vector primitives using different

generic vector graphic libraries[53], e.g. OpenGL. However, the raster graphics is

discretized and is normally used in visual input (e.g. optical/digital photography or

laser scanning) or visual output (e.g. inkjet/laser printing or CRT/LCD/LED

displaying), while the vector graphics is continuous and is normally used in graphic

computing [52, 54]. The main reason of the division of work comes from the natures

of the two different types of graphics: technologies for input and output are all

discretized sampling based, while technologies for graphic computing are all

continuous geometry based.

In addition to being of vector graphic type, the function as a turtle of an L-system

needs to be guaranteed as well. This includes the definition of the start position and

end position of the turtle for the specific graphic type, the local transformation for

the change of the turtle state, and the method to execute the transformation. The last

two are based on the first definition, and they are not always easy, especially for

non-convex vector shapes (e.g. NURBSSurface). Fortunately, non-convex shaped

organ barely locate at non-terminal position in nature, thus it is not necessary to

define them as turtle actions. In many cases, it is more appropriate to define them

as an independent library of “non-turtled” vector primitives that complements the

library of “turtled” vector primitives rather than having a library that mix them

together.

Besides the turtle command F, other turtle commands, such as “RU”, “RL”, and

“RH” are also needed to be a part of the library as well. It is clear that these types

are just pure turtle commands, they will not be used for representing organs.

In the last decade, some 3D graphics libraries were introduced to make up for

this lack for L-system specific constructions. Due to previously described reasons,

37

these 3D graphics libraries are mostly of vector graphics and consist of a rich set of

well-defined vector primitives that are tailored for FSPM, e.g. IMP3D of the

GroIMP platform. As a part of the L-system, these primitives are not only vector

shapes or transformations but also turtle commands.

The usage of a vector graphics library fulfills the needs of having geometric data

structures and reflects the evolution from graphics to data structure. On one hand,

graphical representation of the geometry is ensured by the inclusion of both shape

and transformation types. To make the usage of the library flexible, the library

includes not only basic transformation types, e.g., Translation, Rotation and

Scaling, but also different transformation matrix types, e.g., Matrix4d, Matrix34d.

On the other hand, the types are essentially data structures for organization of

geometry data. In detail, they are mostly implemented using the class concept of

object orient programming. Different classes represent different graphics types,

which include data fields coded in typed variables and their applicable operations

coded in methods. After including the 3D graphics library, the L-system alphabet

needs to include symbols representing geometric instances while the symbols

representing subfigures can be retained.

2.4.2 FSP data model

2.4.2.1 Notions of data structure & data model

The concepts and notions of data structure [59, 60] and data model [61] are basis

of the data centric plant modeling, they contain the fundamental reason why the

advancement from graphic centric plant modeling to data centric modeling is

necessary for FSP modeling, and why a FSP data structure & data model is in the

center of the modeling. These notions [59-62] are interrelated but different, thus

are much confusing and should be compared and understand first.

38

A data is a symbolic representation of an objective thing. In computer science,

it refers to a sequence of one or more symbols given meaning by specific act(s) of

interpretation.

A data type is a classification of data. It includes a class of data with certain

similarity (e.g. precision), namely a collection of values, and the operations that can

be done on the data. The data type defines the meaning of the data, and the way

values of that type can be stored. Data types of a high level programming language

can be divided into atomic (or primitive) types with indecomposable values, e.g.

integer or boolean, and aggregate (or composite) types with values aggregated (or

compound) in a certain way (i.e. decomposable values), e.g. list or array. An

abstract data type (ADT) defines the blue print of a data type by a mathematical

model with applicable operations.

A value is a data with a given type. The members of a type are the values of that

type. When a data is classified into a type, it becomes a value and can be

manipulated by a program. Data and value can also be distinguished using the data

structure concept (c.f. next page): a data is unstructured and a value is structured,

when a data is structured, it becomes a value. When certain meaning or

interpretation is given to a value, it becomes an information. The meaning or

interpretation is understood as semantics of the information, while the data

structure is understood as syntax of the information.

A literal is the representation of a fixed value in source code. Most programming

languages allows literals of both primitive and composite data types, such as

integers and arrays.

A variable is a symbolic name (an identifier) bound to a storage location holding

a changeable value. It allows the name to be used independent of the value it

represents. The variable can be bound to a value during the compiling or run time.

The symbolic names of variables are a usual way to reference the stored values, and

39

are replaced with the actual storage location of values by compilers or interpreters.

Values in locations change during program execution while locations and names

are fixed. A constant is a special variable with value does not change during

program execution.

A data structure is a specific way of data management, i.e. organization and

storage of data to allow its efficient access and modification. A data structure is the

implementation of one or more abstract data types (i.e. an actual data type), and

consists of a collection of typed data (i.e. values) referred as data elements, the

relations among them, and the functions or operations that can be applied to the

data. The data element is the basic unit of data and is usually considered and

processed in the computer as a whole. Sometimes a data element can consist of

several typed data referred to as data items. Data items are the indivisible minimum

units of a data structure.

According to the abstract description method and the internal storage form, the

data structure can be divided into logical structure and physical structure. The

logical structure describes the logical relations between data elements in a data

structure using an abstract mathematical model. The physical structure, also

known as storage structure or storage image, is a storage representation of a data

structure in primary storage (or main memory) or secondary storage (or external

memory) of a computer.

A data element stored in memory is also called a node, and each data item in a

data element is called a data field. Nodes can be seen as storage structures of data

elements, which are represented by bits in certain memory units. The logical

relations between the data elements are represented in the computer by a sequential,

linked, indexed, or hashed image, in sequential, linked, indexed, or hashed storage

structure.

40

Data elements can be organized in different structures, which can be roughly

divided into four basic types. (1) Set: There is no other relations between data

elements in the structure other than the “belong to the same set” relation. Structures

of this type are usually represented in the computer as hashed images. (2) Linear

structure: There are one-to-one relations between data elements in a structure.

Structures of this type are usually represented in the computer as sequential or

linked images. (3) Tree structure: There are one-to-many relations between data

elements in a structure. Structures of this type are usually represented in the

computer as linked images. (4) Graph or Network structure: There are many-to-

many relations between data elements in a structure. Structures of this type are

usually represented in the computer as linked images.

The data management of a data structure is based on the ability of a computer to

fetch and store data elements in its memory by address. Specifically, data

management for the sequential data structures is based on computing of the address

of data elements with arithmetic operations, while data management for the linked,

indexed, or hashed data structures is based on storing address (i.e. pointer), index,

or hash of the data elements within the structure itself.

The most widely used data structures [60] include:

• Linear data structures, including linear list, linked list, stack, queue and

array, in which one data element has at most one direct successor or

predecessor, i.e., the one-to-one relations are directed.

• Tree data structures, including tree, binary tree, in which one data

element has one direct predecessor but more than one direct successor,

i.e., the tree data structure is hierarchically directed and without cycle.

• Graph data structures, including directed graph and undirected graph, in

which data elements have many-to-many oriented or non-oriented

relations.

41

A data model defines the schema how the elements of data are organized and

interrelated, and how they are related to properties of entities in the real world. It is

a concept from the perspective of application and is occasionally referred to as data

structure from the perspective of technology, especially in the context of computer

languages. A data model can be conceptual, logical or physical [61, 62]. A

conceptual data model gives only general high-level data constructs with no

technical terms. It allows business information to be captured in non-technical way

so that the technical designer can take over the conceptual data model from the

business designer to do further logical design. A logical data model gives detailed

data structure using technical terms, such as tables of the relational data model,

classes of object-oriented data models, or tags of XML based data models. A

physical data model gives the implementation of a logical data model using specific

technical tools such as specific database management systems for relational tables,

specific object-oriented programming languages for classes. Besides the definition

of “How (data elements are organized)”, the term data model sometimes refers to a

set of concepts (e.g. entity, attribute, relation in the ER model) used in constructing

such schema, i.e., “What (is used to do so)”.

Data models precisely describe the objective natural system’s statics, dynamics

and integrity constraints. Thus, a data model normally includes a data structure1 for

static descriptions, data operation for dynamic descriptions and integrity constraints.

There are many types of data models, including:

• Database model, describing how data is managed in database.

• Data structure diagram, describing conceptual data models through

graphical notations that describe entities with their relationships and

relevant constraints.

• Entity-relationship model [63], describing interrelated things of interest

in a specific domain of knowledge. A basic ER model is composed of

42

entity types (which classify the things of interest) and specifies

relationships that can exist between instances of those entity types.

• Generic data model, defining standardized general relation types,

together with the kinds of things that may be related by such a relation

type to facilitate data exchange and integration.

With its logical structure or schema, a data structure is capable of physical

storage image manipulation, while a data model is capable of the real world

expressiveness. As the focus of this thesis is not the computer technology itself but

the application of the technology, the introduction and discussion does not focus on

data structures but data models, and in this section, we discus only the data model

at conceptual level. Different concrete plant data models at logical and physical

level will be introduced and discussed as a part of the design of our architecture for

the integration of different functional and structural plant models. Moreover, this

thesis mainly discusses the “How” aspect of the data model, therefore the first type

(i.e. database model) is in our focus.

The most widely used data models (or, more specifically, database models) [64-

68] include:

• Hierarchical model, in which data is managed in a tree structure. The

data elements are stored as records which are related to one another by

links. It allows one-to-many relationships. A record is a group of

correlated fields, where each retains a single value. The entity type of a

record specifies which fields the record holds. The record and entity type

of a hierarchical model respectively correspond to the row (or tuple) and

table (or relation) in the relational model.

• Network model, which expands upon the hierarchical structure, allowing

many-to-many relationships in a graph structure with the possibility of

43

multiple parents. It operates at a low level of abstraction and lacks easy

traversal over a chain of edges.

• Relational model, in which data is managed into a structure conforming

to first-order predicate logic and set theory, with all data being held in

tuples, which are then grouped and stored into relations, namely two-

dimensional tables.

• Graph model, in which data is managed into a graph structure where one

node may be connected to any other node. Although the structure is the

same as that of the Network model, the Graph model has a clear

separation between the model and the actual implementation and it is

easy to traverse over a chain of edges, which makes semantic queries

with nodes, edges and properties possible. Within the graph structure,

data elements are directly related through relationships (i.e. edges) in the

data store so in many cases they can be retrieved with one operation. The

graph data can be stored differently, for example, “into” relational tables

with an additional level of abstraction, i.e., regarding the tables as nodes

and edges of the graph; or into key-value based structures such as

dictionary or hash; or document based structures such as XML or RDF.

Depending on the degree that the schema constrains data, data models can be

divided into structured and semi-structured data models. The structured data

models have a clear separation between schema information and data. The schemas

fully constrain data and are normally predefined with the intension to keep them

stable. The semi-structured data model is a data model having the schema

information mostly contained within the data, i.e., without predefined schema that

is separate from data. In some cases, schema information is contained within a

predefined “weak” schema (with only a few restrictions) that is separate from data.

Often, the semi-structured data model is referred to as self-describing data model.

In general, the use of structured or semi-structured data models depends on whether

44

the data-modeling object and objective is generic or specific. For example, if the

data modeling object is a student, and the objective is the student registration

management, then the schema can be predefined as precisely as possible. In case of

FSPM, a structured data model is good enough for a specific plant species, while a

semi structured data model as a basic feature of a FSP modeling platform provides

better flexibility for various modeling use cases of different plant species.

2.4.2.2 Modeling of FSP data

2.4.2.2.1 The necessity and requirements

The addition of a graphics library to graphical rewriting L-system solves the

problem of unmanaged geometry data. However, it is still difficult to model the

function of each plant module and the structure – function interaction within and

between organs. The essence of interaction between structure and function of a

plant module is that the computation of new structure takes not only existing

structural data but also existing functional data into account, and vice versa. The

essence of interaction between different plant modules is that the computation of

new FSP data of one plant module takes not only the existing FSP data of itself but

also the existing FSP data of other related plant modules into account.

In graphical rewriting L-systems, literals and variables with primitive data

structures are used as parameters to compute continuous geometry values of a plant

module. Using variables of primitive data structures, functional data of a plant

module can be taken into account for the computation of geometry values.

However, modelers have to manually ensure that the functional data for

computation of geometry values is of the right plant module. Moreover, the

resulting geometry values of the computation of plant modules are literals without

means to reference the stored values to allow further computation of functional data,

i.e. structural feedback to function. Besides that, the two different topology relations

between plant modules are distinguished by the appearance of bracket symbols,

these symbols are interpretable by the turtle for graphic drawing but are not able to

45

take into account (as arguments) the interaction of geometry values and functional

data between two plant modules for computation. The addition of a graphics library

already allows the resulting geometry values to be used for further computation of

functional data. But the other problems still remain unsolved.

The main reason for the defects is the lack of a uniform data model in the system

that manages functional and structural data of a plant module together and the data

of different modules together. This lack causes a separation of functional and

structural data for each plant module, and a separation of the data of one module

from the others. In other words, the problems can be solved only when the L-

systems advance from graphical rewriting to graph rewriting.

On one hand, as the structural data mainly refer to the shape and location of a

plant module, the related data are managed as fields of an instance of a graphic

primitive, which are predefined as a part of the library/L-system and do not depend

on specific modeling cases. In contrast, functional data refer to plant function,

which depends on specific modeling cases, thus it is impossible and not logical to

predefine them as fields of a graphic type. Without a uniform data model, FSP

modelers have to manage the link between functional data and corresponding

structural data of a specific plant module. This makes the modeling of the function

and the interaction between function and structure of a plant module very difficult.

On the other hand, because of the same reason, the structural data include only

the quantitative aspect (i.e. the shape and location, or the turtle state), the qualitative

aspect (i.e. different adjacency between plant modules) is not managed at all.

Actually, the neighbor relationships between modules has been considered in to

axial tree, but that improvement was made only to produce branching graphics.

Although the neighbor relationship in axial tree seems acquirable by string scanning

in theory, it is difficult for modeler in practice. The separation of the model and the

modeling platform is to free the modelers from the complex technical work, so that

they can focus on their areas of expertise. However, such acquisition requires the

46

modeler to be familiar with platform-level technologies and know how to

manipulate L-system string. In fact, the key defect of axial tree is that the

distinguished two different neighbor relationships (lateral or axial) does not

managed by a FSP data model and thus cannot be used for finding out the related

modules by applying the platform level technologies. Theoretically, it is not

possible and also not logical for adjacency to be managed as the fields of an instance

of graphic primitive because they depends on specific modeling cases. Therefore,

FSP modeler have to manage the link between specific adjacency and

corresponding structures representing source and target plant modules. This makes

the modeling of the interaction between function and structure of different organs

very difficult.

Essentially, the FSP data of parametric L-systems with library are literals, or

individually managed constants/variables. This might be suitable for simple

abstract and conceptual FSPM development, but not for high-precision modeling

tasks that include complex details. In order to allow FSPM with accurate details and

to free the modeler from heavy technical work, FSP data models have been designed

and introduced as a part of rewriting systems.

2.4.2.2.2 Conceptions of FSP data model

From the perspective of FSP modeling application, or the point of view of FSP

modeler, a logical data model is needed to bridge the gap between real world plants

and digital plants expressed by a physical data model, while from the technical

perspective of an FSP modeling system, a logical data structure is needed to allow

the data management at storage level by operations at logical level.

The intersection part between the needed logical data model and the logical data

structure is the logical structure of data elements. Through it, real world plants are

physically represented and the relevant storage image is physically managed. Thus,

it is both a data model and a data structure. Nevertheless, we refer to it as FSP data

model because the expected logical structure cares more the expressiveness in the

47

specific domain of FSPM than for the effectiveness of data management, and the

description of the logical structure essentially reflects the underlying structure of

the domain itself, thus it is overall not technology oriented but application oriented.

The FSP data model refers to two levels of data management. One is the data

management at the plant module level. At this level, the same data model should

manage all kinds of data relevant to a plant module. Which include geometry data

and functional data, such as length/width, water pressure or sugar content. Simple

usage of a graphic data structure does not meet the demand. The relation between

the graphic data and functional data is obviously that they belong to the same set,

thus a data structure that simply composes the graphic data structure and functional

data structure is needed. The other sort of data management is that at plant level. At

this level, the same data model should manage all modules of a plant. Which

includes the composite data structure for each plant module, and the topology

relations between plant modules. The logical structure at this level reflects the real

plant structure, and is either a tree or a rooted graph.

Compared to the rooted tree in Bracketed tree OL-systems or Parametric L-

systems, the FSP data model is fundamentally different. The rooted tree is the direct

graphic result produced by L-systems, in which plant modules are represented by

graphics. The FSP data model is a collective data management tool and supposed

to be a part of the rewriting systems. The purpose to have an FSP data model is to

allow effective access and modification of FSP data of each plant module. It

represents plant modules by data elements (or graph nodes if the data model is a

graph), and the adjacency between plant modules by relations between data

elements (or edges if the data model is a graph).

Besides the logical structure of data elements for static descriptions, the basic

definition of a FSP data model should include also data operations for dynamic

descriptions and integrity constraints. For the data operations, functions for access

and modification of data are indispensable. The integration constraints highly

48

depend on the specific technical environment but some are basic, such as the edges

should have existing graph nodes as source/target nodes.

2.4.2.3 Data models in practice

A general data model for vector graphics, called Scene Graph [50, 69-71], is

widely used in graphics editing applications. It allows the arrangement of logical

(and spatial) representations of a graphical scene [72, 73] by vector-based geometry

manipulation. Typically, a scene graph is a data model with a tree structure or a

DAG (Directed Acyclic Graph). In a scene graph having a tree structure, a parent

node has one or more child nodes, and nodes other than the root usually correspond

to geometric objects, such as spline surfaces. In a scene graph, geometric objects

can be iteratively grouped into Layers in linear or hierarchic manner. A linearly

layered scene graph consists of shapes or groups of shapes at the same compositing

level, while a hierarchically layered scene graph consists of nested shapes or groups

of shapes. In a layered scene graph, some processes such as color-fading can be

carried out individually on a layer without side effects to the others. In some FSP

modeling platforms, the layer concept is equivalently used in the form of spatial

scales to represent a plant at different levels of detail/spatial resolution.

The most significant advantage of the scene graph is the combination of logical

and spatial (i.e. topology and geometry for FSPMs) modeling capabilities. In the

scene graph, a logical modeling effect applied to a parent node propagates to every

child node; an action on a collection of graph components is applied to the

components automatically. Mostly, this process is realized by concatenating the

geometrical transformations bound to each group. Through the combination of

transformation propagation and graphics layering, vector graphics can be

manipulated efficiently. There is a special advantage for L-systems using turtle

commands. In fact, the turtle commands and the geometrical transformations in a

scene graph are essentially both graphical operations on a relative or local

coordinate system. Hence, the turtle commands of L-systems can be directly used

49

to represent the geometrical transformations in a scene graph, and the scene graph

can be operated using turtle commands without additional grammatical settings.

However, the scene graph has also some obvious shortcomings for FSP modeling.

It does not distinguish different topological relationships between graph nodes, and

has no means for plant functional property management as well. Besides, there is

an essential topological disadvantage for using the scene graph as FSP data model.

The transformations, equivalent to the turtle commands, are presented in the graph

as topological nodes just like the shapes, but they do not represent any real world

objects (i.e. plant organs). Therefore, it is clear that direct use of a scene graph is

not appropriate and specific adaptions to suit the requirements of FSP modeling are

needed.

On the other hand, another general data model for objects with various

properties, called Property graph [74-77], is widely used in data management

applications. It consists of a set of nodes (also called vertices) and directed edges

(also called arcs). Within a property graph, each node or edge has a unique identifier

and a set of properties of the form of key-value pairs. Besides, each node has a set

of outgoing and incoming edges, and each edge relates to exactly two nodes with a

fixed direction from a source to a target node. Particularly, when two nodes are

connected by multiple edges at the same time, the property graph is a multigraph.

When nodes or edges are tagged with labels, the property graph is called labeled

property graph. The most important characteristic of the property graph is that the

various data of a component or module of an object are regarded as the properties

of the module. Essentially, different kinds of properties of the same module are

organized into a set (i.e. indirectly related), and each set is distinguished as a node

and identified by a unique id. The relations between nodes are regarded as edges,

and can be distinguished by different edge types. The advantage of this data model

is that it clearly defines the relations between both properties and nodes. The

disadvantage is that it is too general to be directly used for a specific domain.

50

2.5 Synthesis of technologies and theories

Different comprehensive L-system based FSP modeling platforms have been

formed by synthesizing the theories and technologies discussed in previous sections

of this chapter in different ways. In this section, the different syntheses are

introduced, and the resulting platforms, especially the research target platforms of

this project (i.e. GroIMP and OpenAlea), are compared in details.

2.5.1 Synthesis of different platforms

The efforts to provide a specialized plant modeling tool started from the research

of Lindenmayer, and continuously evolved by absorbing and synthesizing the

theories and technologies which emerged during the same period. The whole

process so far can be roughly divided into two stages.

The first stage includes the synthesis of research results and theory in the field

of linguistics, including formal languages and Chomsky hierarchy, and in the field

of computer science, including early third-generation programming languages [78]

(3GL) (aka imperative languages) and turtle graphics. The focus on this stage is to

support the plant structural modeling. In the 1990s, the parametric L-system based

platforms (these early modeling tools were often referred to as programs because

of their simplicity but we uniformly call them platforms) were the mainstream.

Typical ones include cpfg [48, 79-81], grogra [56]. The modeling languages

provided by these platforms directly use literals, or individually managed

constants/variables of primitive types to allow FSP data to be manipulated by

functional or structural simulators. The Module is defined as the basic syntactic

construct and structural units correspond to a single or a set of plant organs. Only

rule grammars are allowed for the development of simulators. Line segments are

used to represent the plant modules. These syntheses provide plant graphic

rewriting systems with limited modeling applications, such as computer animation.

51

The second stage includes improvements to the previous synthesis with emerged

technologies in the field of computer science, including the property graph/scene

graph based data models, the advanced third-generation programming languages

(mostly the object oriented languages), and 3D graphics libraries. With these

improvements, the platforms gain the capability for modeling sophisticated

function - structure interactions within and between plant modules.

Precisely, in the early 2000s, the upgrade of cpfg, lfpg [82-84] was introduced

with a special name called L+C given to its modeling language. It is one of the first

systems to adopt the object-oriented technology and supports hybrid grammars

combining L-system syntax borrowed from C++ and original C++ syntax. It does

not provide a vector graphics library but four vector structures to support 3D lines

representing plants. It also does not provide a FSP data model but an object database

to facilitate the manual management of structural and functional data, which has

been added as a shared tool to cpfg. By combining cpfg and lpfg with further shared

tools like editors and 3D surfaces, this resulted in the platform L-studio [85, 86].

In 2008, GroIMP as the upgrade of grogra, including RGG (Relational Growth

Grammar) and its Java implementation XL was introduced [58, 87-92]. It is one of

the first L-system languages to adopt a FSP data model, namely the RGG graph. It

is scene graph based property graph but with a more general structure, i.e. a rooted

graph. For the RGG graph, specific syntax applying data operations to the graph

and ensuring its integrity constraints are defined, and modules of types extended

from the types defined in the IMP-3D library are used as nodes. Therefore, the

nodes are Java objects that contain geometrical fields originally defined in graphical

types (such as “length”) and functional fields defined through type extension (such

as “absorbed light”). Edges are Java objects containing source and target nodes as

data fields. Combining with tools like JEdit as code editor, code file explorer and

3D display, resulted in the platform GroIMP.

52

In 2012, a Python implementation L-py [93-96] with grammar largely borrowed

from cpfg and lpfg was introduced as a supplement to the FSP modeling platform

OpenAlea that was originally introduced in 2008 as a component based modeling

platform [28, 97, 98]. It is one of the first L-system languages to adopt a dynamic

programing language, and just like cpfg and lpfg, its technical basis is the

parametric L-system. To make use of the existing FSP data model of OpenAlea, i.e.

MTG (Multiscale Tree Graph), two-way conversion mechanisms between L-

system strings and MTGs are provided, e.g. primitive mtg2lstring (mtg,

{parameters}) converts a “mtg” object with key-value paired parameters organized

by a Python dictionary. The L-system string was extended from a bracketed string

representing a single-scaled branching system to a string representing a multi-

scaled branching system to enable this mechanism. To make use of the existing

graphics library PlantGL and to control geometry in the specific language

environment, adapted turtle commands are introduced, e.g., a generic primitive @g

(geometry) is provided to allow the modeler to include any graphical objects of

types defined in PlantGL.

2.5.2 Differences between the platforms

In general, the L-system based FSP modeling platforms can be roughly divided

into two categories: graphical rewriting systems and graph rewriting systems. Cpfg,

lpfg and grogra are graphical rewriting systems that combine string rewriting and

turtle interpretation. Each derivation step includes two main sub steps, one is string

rewriting, and another is turtle interpretation of the rewritten string. With graphical

extensions, these systems can produce realistic plant structures. XL contains a

rewriting formalism that generalizes string rewriting to graph rewriting. It provides

RGG graphs as plant data models to algorithmically produce an updated graph from

an original graph. The grammars that can be specified within the XL language are

of a specific type of formal grammar, the graph grammars [99]. A typical graph

grammar includes a set of graph-rewriting rules of the form 𝐿 → 𝑅, where 𝐿 and 𝑅

53

are called pattern and replacement graph respectively. A graph-rewriting rule is

applied to a host graph through two steps: 1. seeking for a match of the pattern

graph in the host graph, 2. replacing the matching part by an instance of the

replacement graph. L-py, on the other hand, is a special rewriting system, which is

based on the combination of string rewriting and turtle interpretation similar to the

graphical rewriting systems cpfg, lpfg and grogra. Although it provides grammars

to allow the bidirectional translation between L-system strings and the data model

MTG, the translation is not mandatory and automatic for each deviation step.

Hence, it is essentially still a graphical rewriting system, but with an option to

manually build a temporary graph rewriting system by the modeler on top of the

platform.

In detail, the differences between L-system based FSP modeling platforms,

particularly between GroIMP and OpenAlea lie in design and implementation of

the platform components, i.e. L-systems based modeling languages, FSP data

model, and the graphics libraries.

The grammar of XL, i.e. RGG, was introduced in 2008 [91] together with the

RGG graph (and IMP-3D graphics library) with the purpose to link the graph with

the grammar to form a graph rewriting system. The language XL thus includes the

constructs not only for rewriting but also for data operations on the graph. The

graphics types (and their extended types) defined in the graphics library are a part

of the alphabet of the RGG. The grammar of L-py is based on the grammars of cpfg

and lpfg, which are essentially string rewriting grammars. The early version of

OpenAlea is a component-based platform allowing FSP modeling by visual

programming [28]. It synthesizes the FSP data model MTG emerged before its

introduction (in 1998 [100]), and the re-engineered graphics library PlantGL in

Python emerged after its introduction (in 2009 [55]). The L-py was however

introduced after this first synthesis, in 2012 [93]. The grammar does not include the

54

constructs for data operations on MTG but for translation of MTG and making use

of PlantGL.

In terms of implementation of grammars, the RGG was implemented to XL in

the Java programming language [101-103], for which variables need to be typed

during coding and the program cannot be changed during execution. The

implemented L-py is based on the Python programming language [104, 105], for

which variables do not need to be typed during coding and the program can be

changed during execution. XL has a rule-styled grammar while L-py has a

statement-styled grammar.

RGG graph has a rooted graph structure that can better suit the needs for

description of a wide variety of plant structures than a tree structure. Its early

version includes three basic types (successor, branch, refinement) of edges to allow

the description of topological relationships between graph nodes, and arbitrary edge

types defined by modelers are allowed for special modeling cases as well (c.f.

Figure 2.12 [13]). All components of the RGG graph, including nodes of both

shapes and transformations, directly correspond to the grammatical symbols of the

Figure 2.12 An example of single scaled RGG graph [13]

55

string describing the graph grammar. The advantage of the direct correspondence

is that it ensures that the modification of strings has intuitive and automatic effects

on the graph, gives GroIMP high modeling interactivity, and essentially ensures the

methodological evolution of string rewriting to graph rewriting. However, there is

also a disadvantage of the setting. In fact, because the transformations appear as

RGG graph nodes just like the shapes, there is no one-to-one relationship between

the graph nodes and real plant modules, and thus the topology of the RGG graph

does not match the topology of the real plant. Besides, this early version of the RGG

graph only support static expression of plants at different scales, did not effectively

consider dynamic modeling of plants at different scales. In 2014, the early version

of the RGG graph was supplemented by introducing multiscale data structure

components and data operations to the graph [15, 106]. Two sub graphs as

metadata/schema were added to form a new version of RGG graph, namely three-

Figure 2.13 An example of three-part graph consisting of a scale graph (A), a type

graph (B) and an instanced graph(C) [15]

56

part-graph, which consist of a sub graph called type graph responsible for the

description of types using at different scales, a sub graph called structure-of-scales

(i.e. scale graph) responsible for the description of scale hierarchies, and the original

graph as instanced graph (c.f. Figure 2.13 [15]). Meanwhile, the relevant

grammatical updates have also been made to the XL modeling language

accordingly, e.g. addition of multiscale grammatical symbols to the RGG alphabet.

The MTG was introduced in 1998 [100] as a method to digitally abstract and

encode the architecture of real world plants (c.f. Figure 2.14 [12]). The design of

the early version of MTG was focus on universality and intuitiveness. It has a

multiscale tree structure without consideration of the shape types and

transformation propagation. Every node in the MTG corresponds to a single or

group of plant modules. The metadata of MTG [107] is included but not present as

a part of the graph. The early version of MTG can only encode the plant skeleton

Figure 2.14 Encoding plant structure in MTG [12].

57

under global coordinates systems because it does not consider 3D graphics types

[12, 100, 108]. The PlantGL library described in 2009 [55] makes MTG suitable to

encode plants realistically with graphics object (c.f. Figure 2.15 [11] of types

defined in this library.

In terms of implementation of graphs, the RGG graph is a scene graph based

property graph, its primary nature is of scene graph. Which means it is of typical

property graph, functional properties (i.e. key-value pairs) of a node cannot be

directly added. In GroIMP, the RGG graph is implemented by a collection of related

Java objects, in which nodes are Java objects of module types extending graphics

types or turtle command types. The addition of functional properties is enabled by

the type extension to modules. The MTG is a property graph based scene graph, its

primary nature is that of a property graph. This means it is a typical property graph,

functional properties of a node can be directly added. In OpenAlea, MTGs are

implemented by a nested Python dictionary[105], in which nodes are entries of the

nested Python dictionary. The functional properties can be added by applying MTG

data operations that correspond the action of adding an entry of a Python dictionary.

The graphic properties of a MTG node normally are not located in the MTG object,

Figure 2.15 MTG with geometric models linked to each vertex [11]

58

but in a special object of Scene type available in PlantGL. So the graphics are not

structured logically, thus the propagation of local transformation of a typical scene

graph does not work. Consequently, every shape object is globally transformed

from the coordinate origin.

The IMP-3D library of GroIMP is designed with all graphics types also graph

node types. Some of them, i.e. the shaded shape types, have also turtled nature. That

means when a shape is put into the RGG graph as a node, the current position of

the turtle state will be changed from the start to the end location of the shape.

Besides objects of the graphics types, RGG graph nodes consist of turtle commands

as well. The alphabet of RGG includes both shaded shape types and turtle

commands. The PlantGL library is designed with all graphics types not being the

MTG node types but its property types, which do not have turtle nature. The

alphabet of the L-py grammar does not include the graphics types but turtle

commands, while the MTG does not include turtle commands but the objects of

graphics types. The turtle commands are related to a local coordinate system while

the graphics types are related to a global coordinate system. These are parts of the

function of two-way conversion between L-system strings and MTGs, e.g.,

MAppleT map transforming turtle commands to the graphics types Translated,

Scaled, and Oriented.

In terms of implementation of graphics libraries, the IMP-3D library [109] is

implemented in Java as a plug-in of GroIMP and mainly defines 3D graphics types

in the package de.grogra.imp3d.objects. This consist of types for RGG nodes that

derive from the same root type de.grogra.graph.impl.Node in the RGG plug-in.

Where all types (including de.grogra.graph.impl.Edge) for RGG graph constructs

are defined. The turtle commands are defined as internal package de.grogra.turtle

of the RGG plug-in, and all the command types are derived from the same root type

de.grogra.graph.impl.Node as well. In this way, the objects of all 3D graphics and

turtle command types or their child types are ensured to be RGG graph nodes.

59

Besides, all 3D graphics shapes derive from another root type

de.grogra.imp3d.objects.Transformation, which is used to update the current

position from the start to the end position of the shape. This ensures the turtled

nature of the graphics shapes in the IMP-3D library. With such implementation, the

application of graphical computing for a RGG graph node is a sequential process.

Equations representing vector graphics types may have multiple equivalent forms

containing different parameters. In the IMP-3D library, this phenomenon is enabled

through the Java overloading mechanism [101-103], i.e. providing multiple

overloaded constructors with different parameters. The re-engineered PlantGL

library [110] was implemented in Python and is defined as an module independent

from modules for MTG and L-py, it consist of types for the scene graph, but not for

the MTG as there is no inheritance relationship similar to the IMP-3D library. In

fact, it is technically impossible to have such inheritance in OpenAlea, as the MTG

is not a graph of objects but a graph of abstract vertices and edges based on nested

Python dictionary with numerical keys as id. Types of shapes and transformations

are both defined in PlantGL as Python classes. Particularly, the transformations take

the shapes as parameters of their constructors to generate the transformed shapes.

Hence, they are derived from the same root type as the types of shapes, and with

such implementation, the application of graphical computing for a MTG node is a

recursive process. In PlantGL, the multiple equivalent forms of vector graphics

equations are abstracted by creating a special function of the form __init__(self,

*args, **kwargs) [105]. There, __init__ is the function for initializing newly

created instances by default, and *args and **kwargs are Python syntax to define

functions with an indefinite number of parameters.

60

Chapter 3

REQUIREMENT ANALYSIS AND

TECHNOLOGY SURVEY

This chapter is mainly a survey of the existing technologies for the integration

of different FSPMs based on requirement analysis. The background knowledge in

the domain of software engineering, namely software reuse, integration and

interoperability are introduced as the basis of the technologies. The requirement

analysis is based on but not limited to the needs of the FSPM Apple project, the

purpose to do so is to allow the design and implementation of the integrative

interface to not only fulfill the requirements of our specific project, but also to

provide a general solution for this type of problem. Here the general solution

includes the technological basis of the integration and specific technologies

designed on top of it. The former aspect is introduced in this chapter and the latter

aspect is introduced in the next chapter. As the purpose of the PhD project is the

construction of a complex FSPM reusing existing FSPMs, we therefore first give

an overview about the software reuse and the integration of different software.

61

3.1 Complexity and requirement analysis of the

integration

As introduced in the first chapter, this PhD project aims at integrating the two

different FSPMs. The intuitive reason for doing this is to avoid duplication of work,

but the root cause is the contradiction between limited resources and near-infinite

modeling complexity. Actually, like all other kinds of models, FSPMs abstract and

simplify only a finite range of plants to a finite extent due to various constraints,

such as the limited available resources. It is practically not possible to model all

physiological and environmental aspects of large complex botanical systems with

many species by a single FSPM. To model complex botanical systems for a wide

range of plants to a considerable extent, the capability of reusing the existing

FSPMs on different platforms is desired. Which leads to the foundations of the

domain of software engineering, and the background knowledge for software reuse,

integration and interoperability.

3.1.1 Software reuse, integration and interoperability

The NATO Software engineering conference in 1968 gave birth to the field of

software engineering [111, 112]. At this meeting, the so-called software crisis,

namely the problem of building software that meets all requirements and guarantees

quality in all aspects (operation, modification, transfer) in a manageable manner,

was first introduced and discussed as the core topic of the conference, and software

reuse was first proposed as a way to overcome the crisis. The software reuse is

about the process of using existing software artifacts to build new software rather

than building them from scratch. The reason it was supposed to be a potentially

powerful way of improving software practice and providing a solution for the

software crisis is that the time and effort required for building software systems can

be obviously reduced by the reuse of existing software.

62

In the following two decades after the conference, many research and practice

activities on software reuse technology were carried out. However, due to various

technical and non-technical factors, the software reuse has not been widely accepted

as a standard practice. In 1992, C.W. Krueger [113] introduced four dimensions

that software reuse technologies might involve, i.e. abstraction, selection,

specialization and integration, and analyzed the reason why the reuse is difficult by

following the dimensions. He found the primary requirement for implementing a

software reuse technology is to provide natural, succinct, high-level abstractions

that describe artifacts in terms of “what” they do rather than “how” they do it. As

the essential dimension, the abstraction of software artifacts is however very

complicated, especially when the artifacts are large and complex ones.

In the 1990s, the maturity of object-oriented methods and technologies provided

powerful technical support for software reuse [112, 114]. In particular, the

development of software component technology has injected new vitality into

software reuse, making its research a hot spot again. It is regarded as a realistic and

feasible way to solve the software crisis and improve production efficiency and

quality of software. At the same time, it has become a solution to avoid duplication

of labor in software development, and to some extent reduce the cost of software

development. The reuse practice based on component technology mainly includes

two types, software composition and software integration [115].

Software composition refers to the process of seamlessly connecting different

software based on a certain software component model, following a specific

software architecture, through a standard interface mechanism, and assembling into

a new software system or software component with certain functional

characteristics. Software composition solved the software crisis to a certain extent.

It is suitable for assembly of components in homogeneous environments, especially

in stand-alone systems. From an application perspective, it is mainly a means to

solve the problem of efficient development and upgrade of software systems. It is

63

the composition of components designed for reuse purposes, which enables a

software reuse in a complete sense. That is, software (component) based application

system construction (development with reuse).

In 1990s, with the development of computer networks, especially the popularity

and application of the Internet, the problem of software reuse in a distributed and

heterogeneous environment emerged. To address the problem, the concept of

software integration [116-118] was introduced. Software integration (also called

software system integration) refers to the process of homogeneously or

heterogeneously connecting and coordinating different existing software (software

components, non-software components or legacy systems) in a distributed

environment, based on a certain architecture, following a specific software

architecture, through a specific infrastructure (integration middleware [119, 120]),

and meeting certain performance requirements (such as real-time and security). It

is suitable for the assembly of components in distributed heterogeneous

environments. From an application perspective, it is mainly a means to solve the

problem of communication and interoperability between legacy systems or island

systems. In the software integration process, in many cases, some non-

componentized legacy systems are involved. Due to historical reasons, these

systems were not designed for reuse purposes at the beginning of the development.

Therefore, in the process of software integration, there is a process of re-

engineering, encapsulating, and building components of legacy systems.

In the development of software engineering, various aspects of software

integration have been discovered in practice. Typical ones include the integration

for two layers of the widespread three-tier architecture, i.e. data/information

integration, the process/business integration [116, 117, 121]. The former is about

passing information back and forth between different software systems, and

assuring that the information is understood by these systems to produce useful

results. The latter is about coordinating processes or workflows between different

64

software systems. That means a workflow can start in system A and continue in

system B, and the flow is meaningful and in line with expectations. Diverse

methods and technologies [118, 122, 123] for the software integration have been

introduced from different perspectives and application fields.

As one of the practice types of software reuse, the technology used in software

integration generally consists of three categories. The main category is undoubtedly

component technology. In addition, technologies that respond to complex situations

in a distributed and heterogeneous environment are also needed. Which mainly

include two categories, i.e. middleware technology (including communication

technology, distributed object computing technology), and software architecture

technology.

Precisely, the component technology refers to the use of software components

for software development. Unlike the process-oriented technology that allows the

reuse of functions and object-oriented technology that allows the reuse of classes,

component technology allows the reuse of program modules with full specific

functionality. Each component provides some interfaces to expose its functions,

through which components from different sources may be assembled to rapidly

build a large application that meets all requirements and guarantees quality in all

aspects (and at a relatively low price). The main characteristics of “components”

are different from ordinary software, such as reusability (common/general),

customizability (setting parameters and attributes), self-containability (relatively

independent with relatively complete functions) and interoperability (multiple

components work together). Process-oriented and object-oriented technology

typically generates two types of software: application-specific executables and API

libraries for general-purpose software development. The former contains various

special specific functions that are required, but must be created from start to finish,

many of which are low-level repetitive work; the latter, although generic, does not

meet the specific needs of specific applications. Component technology provides a

65

third way to combine the reusability of libraries with the customizability of specific

programs, allowing users to customize their own specific applications with reusable

components. Therefore, a component is similar to an “executable program” in some

respects and a “library” in other respects. Essentially, a reusable software

component is an independent executable unit defined by its interfaces that can be

included directly in a software system or referenced as an external service. By

parameterizing operations through interfaces of components, their functionalities

are available for interaction. A component is either a software element or an

external service. In the former case, it has two related interfaces, namely the

‘requires’ (or ‘required’) and ‘provides’ (or ‘provided’) interfaces (c.f. Figure 3.1

[1]) which reflect the functionalities needed by them and supplied to others. In the

latter case, it has only the ‘requires’ interface. A software component conforms to

a component model, which defines the architecture of the component and how to

manipulate it and interact with the other elements.

Middleware in general is a service system between the application system and

the operation system. (c.f. Figure 3.2 [5]). It provides standard programming

interfaces and protocols to allow interoperability on different hardware and

operating systems, and can also dynamically respond to some operational

performance requirements, such as real-time, security. The introduction of

middleware technology in software integration makes it easy to integrate existing

Figure 3.1 Component interfaces [1]

66

software systems and realize the integration of data, service and presentation layers.

It also reflects the openness and scalability of software system development. When

using middleware, it is often a set of middleware integrated to form a platform

(including development platform and running platform), but in this set of

middleware there must be a communication middleware, namely middleware

consisting of platform and communication. This definition limits the use of

middleware only in distributed systems, and distinguishes it from supporting

software and utility software. It can achieve access transparency and location

transparency of resources to distributed software systems, and ensure

interoperability between objects in distributed homogeneous or heterogeneous

environments. Developers are thus able to access and integrate a large number of

software resources, regardless of the tools or languages used by their developers or

Figure 3.2 Middleware architecture [5]

67

development processes. In a narrow sense, middleware is a system that allows

independently developed software that operate on different network platforms to

cooperate with each other. It hides some complexities of building a distributed

software and allows developers to focus on issues at the application level rather

than low level.

In software integration, software architecture is an integrated architecture, which

is the guiding basis for developers of distributed software application systems to

integrate software. A software architecture is the structure of a program/system

component, the relationships between them, and the principles of design and

evolution over time. The following mechanisms and methods are commonly used

to describe software architecture: architecture description languages, architecture

viewpoints, architecture frameworks and architectural patterns. An architecture

framework captures the “conventions, principles and practices for the description

of architectures established within a specific domain of application and/or

community of stakeholders” (ISO/IEC/IEEE 42010). An architectural pattern, or

design pattern, is a general, reusable solution to a commonly occurring problem in

software architecture within a given context. In practice, specific design patterns

have been introduced to enable the EAI (Enterprise Application Integration).

Since the end of the last century, software interoperability has received attention

and is being studied as a major method of achieving software integration [124].

Various architectures enabling software interoperability have been introduced. In

different application areas and practical situations, software interoperability is

endowed with different connotations not only at application level but also at the

standard level [125-127]. Here is an example at the application level: in the

application field of electronic government (eGoverment), the European

Interoperability Framework (EIF) v1.0 [21] under the Interoperable Delivery of

European eGovernment Services to public Administrations, Businesses and

Citizens program (IDABC) was published in 2004 and defined Interoperability as

68

“the ability of information and communication technology (ICT) systems and of the

business processes they support to exchange data and to enable the sharing of

information and knowledge”. While in the area of health care, the Office of the

National Coordinator for Health IT (ONC) of the USA defined it in the Shared

Nationwide Interoperability Roadmap version 1.0 [128] as “the ability of a system

to exchange electronic health information with and use electronic health

information from other systems without special effort on the part of the user”. Here

is an example at the standard level: the ISO/IEC 2382-01:1993 [129] described

interoperability as “The capability to communicate, execute programs, or transfer

data among various functional units in a manner that requires the user to have little

or no knowledge of the unique characteristics of those units”. While the IEEE

Standard Computer Dictionary: A Compilation of IEEE Standard Computer

Glossaries [130] defined the interoperability as “the ability of two or more systems

or components to exchange information and to use the information that has been

exchanged.” Even the same standardization organization gives different standards

for the interoperability at the same application field, e.g. K. Kosanke [126]

compared two ISO standards for software interoperability (ISO 15745 and ISO

16100), with their focus on interoperability within manufacturing applications and

between manufacturing software units, respectively. These definitions are

ambiguous and misleading, some are not even comprehensive, e.g. the definition of

interoperability in ISO/IEC 2382-01:1993 focused on the technical side and did not

consider organizational issues such as the user of a program to be another program.

Moreover, practical aspects of software integration and software interoperability

are very much overlapping, which has led to conflicts and contradictions. Some

people see interoperability as the result of integration [131, 132], while some see it

the other way around [133]. Others [134, 135] argue that an integrated solution not

only allows the subsystems to talk to each other in their current state, but also

provides backward and forward compatibility with future versions of each other.

Nevertheless, interoperability reflects only an immediate form of functionality

between different subsystems, future upgrades or developments or improvements

69

to any of the subsystems can cause interoperability to cease. In brief, the two

concepts are different, and there is no causal relationship between them.

From the perspective of software reuse, the integration of different FSPMs refers

to the means that enable the existing functional and structural data processing

programs to act as one program so that a specific simulation purpose can be

achieved without developing a new complex FSPM that may duplicate the

development work of existing FSPMs. It is obvious that the interoperability

between the FSPMs is the key to the success of the integration. Moreover, FSPMs

are normally designed without consideration of technical upgrades, while the

modeling platforms have potential technical upgrades, developments or

improvements and provide certain downward compatibility just like other software

development tools. The integrated FSPMs can work together for a relatively long

time thanks to such technical stability at model level and downward compatibility

at platform level. Therefore, in this project, we regard software interoperability as

the technical basis to enable software integration, not the other way around.

3.1.2 The target FSPMs of the project: overview

In this project, the target FSPMs to be integrated are MAppleT and a GroIMP

based transport or radiation model. MAppleT [26] is a graphical rewriting based

functional and structural model simulating the growth of apple trees on a stochastic

basis and taking the effects of gravity on branch shape into account. The GroIMP

transport model [136] is a GroIMP based functional and structural model simulating

the water and sugar transport in an apple branch. The GroIMP radiation model [91]

is a GroIMP based functional and structural model simulating the light absorbed by

an object located in a scene. The goal of the integration is to provide a complex

FSPM without duplicative modeling work. The integration here mainly refers to the

process to enable the interaction between apple tree growth and physiological

70

function. Water and sugar transport is our main focus, with light interception as one

of the factors influencing stomatal conductance and thus water flow.

MAppleT models the plant topology and geometry by a mixed approach that

combines stochastics and biomechanics. A hierarchical hidden Markov model is

used to model the development of growth units along both axes and branches, and

a biomechanical model is applied to compute the stem at metamer scale considering

the primary and secondary dynamics and fruit growth within a year. In [26], at a

time interval of one simulated year, the architecture of an apple tree generated by

L-studio is represented as MTG to quantitatively compare the virtual tree with a

real tree. For the creation of organ geometry, the library PlantGL [55] was applied.

The scale hierarchy of an apple tree modeled by MAppleT includes the tree,

axes, GUs (growth units), and metamers with topological connection types

including succession, branching and decomposition.

The GroIMP transport model abstracts the dynamics of two related processes in

an apple tree branch, i.e. water transport in the xylem from root to leaf and sugar

transport in the phloem from leaf to all organs. The former is the basis of

transpiration and the latter is the basis of carbon allocation. This model takes the

branch structure of the apple tree in the form of an RGG graph, and computes the

flux within the branch, i.e. the dynamics of the amount of flux passing each shape

node. The computation is applied to a sequence of RGG graph nodes of shaded

shape type that belong to the same branch. The physical principle followed in this

model is Darcy’s law [136]. The GroIMP radiation model computes the light

amount absorbed by an object placed in a scene with customizable light sources.

This model uses the technology of path tracing for radiation transport, i.e. light rays

emits from a light source are traced to calculate a scattered ray by applying optical

principles., and the Monte Carlo method for tracing diffuse reflection or

transmission, i.e. the new direction is (pseudo-) random. The geometry of the scene,

the optical properties of the objects and light sources are set as parameters to

71

compute the light amount intercepted or absorbed by any object. The computation

of the radiation model thus is applied to each RGG graph node of shaded shape

type.

On one hand, the GroIMP based FSPMs can take both single-scaled and multi-

scaled RGG graphs, with topological connection types including one, two or three

types out of the succession, branching and decomposition. On the other hand, it is

logical that the GroIMP functional models take the role of servers that receive the

modeling interaction requirements from MAppleT, because one plant can have

multiple functions but only one growth algorithm. Thus, the interaction between

MAppleT and the GroIMP FSPMs acts in a way that FSP data generated by

MAppleT is reproduced in an RGG graph with original topology and geometry to

allow the functional computing by the GroIMP models. Obviously, there are

syntactic and semantic gaps which need to be bridged, e.g., the FSP data generated

by MAppleT does not contain data fields for the flux or light, which are needed for

GroIMP FSPMs to perform functional computing.

3.1.3 Requirements to achieve the project goal

From the perspective of software engineering, this PhD project is about the reuse

of two existing FSPMs and the construction of a complex FSPM. On one hand,

almost no FSPM that is expected to be reused was originally designed for reuse

purposes. On the other hand, FSPMs that are expected to be reused are mostly based

on heterogeneous technology environments (e.g. different programming languages,

different platforms) with different aspects of plant abstraction. The reason is that

the same research team often uses the same technical environment to do the same

kind of research, and the reuse of research results of different research teams on

different research directions will enable a more comprehensive understanding of

the research object and will thus be more valuable. Consequently, not software

72

composition but software integration is a major kind of software reuse practice for

FSPMs, and is the focus of this thesis.

The essential mechanism that executes different FSPMs as one program is

obviously the cooperative processing of the functional and structural information

of the same virtual plants. An information exchange between FSPMs is thus

necessary. In order to ensure the information processed by different models are

indeed for the same virtual plants, the exchange of the FSP information between

different FSPMs is indispensable. It is noteworthy that when information is

decoupled from the modeling environments, e.g. XL/L-py, IMP-3D/PlantGL, it will

become data, which is the actual form of exchange. Only when the exchanged data

are recoupled to another modeling environment, the FSP data become information

again. Another notable feature is that the target FSPMs of an integration typically

include a plant structural model and zero or more functional models. In biology, the

basic assumption is that a structure is the basis of its functions; functions of a

structure determine the performance of the structure. Consequently, a single

structural model takes the role of “client” and the multiple functional models take

the role of “servers”.

In detail, the integration involves every aspect of a FSPM. The first is the

modeling platform – model aspect. Although both modeling platform and model are

software programs, they play rather different roles for a FSPM. The modeling

platform provides the technical basis of the FSPM. At platform level, plant

information produced by FSPMs based on the same modeling platform shares the

same syntax and semantics. Hence, these FSPMs can use the same platform-level

integrating infrastructure, i.e., processes for the platform-level interoperability of

information. At model level, both information and simulator of a particular model

have their own specific syntax and semantics, hence every FSPM has its unique

model-level integrating infrastructure, i.e., processes for model-level

interoperability of information and for synergy of simulators. The second is the

73

syntax - semantics aspect. Information involved in FSPMs includes plant and

environmental information. Both consist of data organized in syntactic structures

with given semantics. Data need to be exchanged with relevant semantics to enable

the simulation by the receiving FSPMs. The third is the dependent - independent

aspect. Because plant elements are biologically dependent on and interact with each

other, FSPMs compute the FSP data of one plant element by taking into account

inputs from one or more other plant elements. The plant information produced over

one simulation step thus needs to be exchanged as a complete piece with consistent

semantics in different syntax. In contrast, the different environmental information

is normally considered independent from each other; hence, it does not need to be

exchanged as a complete piece. The fourth is the spatial-temporal aspect. An

execution of FSPM normally simulates particular plant functions at one or more

structural extents (i.e. spatial resolutions/scales) with a specific simulation step

length (i.e. temporal resolutions/scales). The fifth is the topology - geometry aspect.

Being a part of plant information, structural information includes topology and

geometry. In detail, topology denotes the adjacency relationships between a plant

module and its neighbors, whilst geometry denotes the location and orientation of

a shape presenting a plant module, which can be expressed by the geometric

transformation between the plant modules and its parents (local transformation) or

the root (global transformation). The sixth is the internal - external aspect. The FSP

data in plant information captures properties of the plant itself, i.e., internal data. In

contrast, the data in environmental information is external. As FSPMs focus on

small spatial scale modeling, the evolution of internal data is frequently assumed to

have no feedback on the external data, and the same external data is applicable for

all involved virtual plants. The seventh is the non-retroactive - retroactive aspect.

A non-retroactive integration denotes a situation in which the target FSPMs do not

send the updated plant information back to the source FSPM. In contrast, a

retroactive integration describes the case where the target FSPMs send the updated

plant information back to the source FSPM and let the source FSPM take into

account data on updated properties when computing new plant information.

74

Before FSPMs can be integrated, some preparations need to be carried out. One

preparation is for plant properties. Similar to databases where different data fields

characterize different properties of an object, different FSPMs originally organize

data characterizing plant property information in different data field sets. However,

the simulation of integrated FSPMs requires plant information with data fields from

both source and target FSPMs. As the original plant information from the source

FSPM does not match data fields needed by the target FSPM, hence, the data fields

defined in the target FSPMs need to be added to the data field set of the source

FSPMs and data fields need to be adjusted to the types available on platform where

the target FSPM is based. The other preparation is for simulators. Originally,

simulators of an FSPM update plant information by computing new data of a data

field using old data of relevant data fields defined in the FSPM itself. However, to

compute new data of data fields defined in the source FSPMs in case of retroactive

integration, the computation also takes data from data fields defined in the target

FSPMs as inputs. Hence, simulators of the source FSPM need to be adjusted. On

the other hand, the types used to graphically represent plant modules in simulators

of the source FSPMs might be different from those of the target FSPMs, besides of

the structure alignment mentioned in the geometry-topology aspect at the data

model level, adjustments of the simulator of the target FSPM at biology level are

also needed. (e.g. a source FSPM uses a Parallelogram type available in its library

for a leaf, a target FSPM uses a Triangle type for a leaf available in its library, then

a leaf object produced by the source FSPM needs to be represented by, let’s say two

triangle objects which will be incorrectly recognized by the simulator of the target

FSPM as two leaves. To have a correct biological interpretation, the simulator of

the target FSPM needs to use an array of two objects of the Triangle type available

in its library to represent a leaf, and the production rule needs to be changed

accordingly.)

In order to have a standardized technology, we must consider the requirements

of diverse projects, namely the integration of a various number of FSPMs. Here,

75

the integration case of the FSPM Apple project is a special case where only two

FSPMs are involved. When there are more than two FSPMs to be integrated, the

coordination of the execution of different FSPMs becomes necessary. The

coordination has to conform to specific knowledge or settings of experiments, thus

the participation of domain experts is indispensable.

To meet all the requirement aspects and achieve the integration of the two

specific FSPMs, specific middleware has to be developed to enable the required

interoperability. The middleware needs to be modularized as reusable components

and loosely coupled with the FSPMs through “provided” or “required” interfaces

to keep the independence of the FSPMs. However, the middleware obtained can

only be used under the specific conditions of our project. To provide technical

support for all the cases of integration, a set of technologies to support the

integration of different FSPMs is better to be provided first, and then a middleware

that fulfills the specific requirements in our integration case can be developed by

applying these technologies.

3.2 Technology survey for the integration of

different FSPMs

Being a particular kind of software, the technology categories [115] to achieve

software integration, i.e. software component technology, middleware technology,

software architecture, are logically applicable for the integration of different

FSPMs. However, the existing technologies of each category are generalized

standards that do not fully meet the obtained requirements, e.g. many of them are

only applicable for specific languages or platforms. Therefore, the pragmatic

approach is to establish a specific solution with full adaptability to the needs of the

project based on a survey of different existing technologies. In this section, we

firstly survey the existing technologies of each category for software integration,

76

and then we introduce some of them in detail as the conceptual basis for

construction of our specific solution of FSPM integration.

3.2.1 Technologies for software integration: overview

David S. Rosenblum has summarized ten different approaches to achieving

interoperability (abbreviated as D.S.R ten IOP approaches, c.f. Figure 3.3 [10]) with

“form” referring to the representation, communication, packaging semantics from

the perspective of methodology. These approaches mostly embody the roles of

different integration technologies and the logical relationship between them, and

can provide guidance on how to apply specific integration technologies.

1. Change A’s form to B’s form, which is about to a complete rewrite of A or B

using standard architecture-specific frameworks

2. Publish abstraction of A’s form

3. Transform on the fly, through data filters, mediators, scripts and other

externally-imposed controls

4. Negotiate common form

5. Make B multilingual, which is about to make the subsystems capable of

interacting in different forms

6. Provide import/export converters

7. Introduce intermediate form

8. Use wrapper

9. Parallel consistent versions

10. Separate B’s essence from its packaging

Figure 3.3 Approaches for software interoperability [10]

77

In the category of component technology, the existing concrete ones mainly are

technologies supporting the reuse of a component by creating a copy within the new

software system. The typical examples include Common Object Request Broker

Architecture (CORBA), Java Bean & Enterprise Java Bean (EJB), and Component

Object Model (COM) & .NET. Through the comparative Table 3.1 [16], Philip T.

Cox and Baoming Song summarized the characteristics of these technologies, and

found that despite the differences in many aspects, such as the parameterization

mechanism, these technologies have some basic features in common [16], which

include the standards provided for the definition of the interfaces required for

component communication and the message exchange mechanism for the

interoperability between components.

Ian Sommerville found that the situation of the multiple standards has caused

difficulties for components developed using different approaches to work together

[1], e.g., components developed for .NET and J2EE cannot interoperate.

Consequently, the component based software engineering and software reuse is

greatly hindered. Besides, these component technologies are highly complex with

Table 3.1 Comparison of JavaBeans, COM and CORBA [16].

78

steep learning curve. He suggested that component technologies adopt a service-

oriented concept to address these issues. This means to establish standards

supporting the reuse of a component by referring to it as a standalone service that

is external to the software that uses it. The most important service-oriented

component technology is the Web Services technology. As a common means for

cross language/platform software interoperability, the Web Services technology

combines a collection of recognized standards to define software components as

web services over networks, and to allow their communication through XML

messages. These standards usually include Web Services Description Language

(WSDL), Simple Object Access Protocol (SOAP) and Hyper Text Transfer

Protocol (HTTP) respectively.

In the category of middleware technology, the existing concrete solutions mainly

are different models/protocols allowing communication between distributed

software applications or components, including RPC (Remote Procedure Call),

MOM (Message-Oriented Middleware) and ORB (Object Request Broker). The

RPC is a protocol for communication between processes. It allows a program to call

procedures in a different address space (usually on another machine in the network)

without explicitly describing the details of the remote call by the developer. That

is, whether the procedure calls locally or remotely, the calling code is essentially

the same. The MOM allows distributed applications to communicate and exchange

data through messaging mechanisms. The messages are asynchronously stored,

forwarded, transformed and routed. The OBR enables an application’s objects to be

distributed and shared across heterogeneous networks, i.e. interoperability between

objects. All these middleware models make it possible for one software component

to affect the behavior of another component over a network. The difference is that

systems built upon ORB- or RPC-based middleware have components that are

tightly coupled, whereas systems built upon MOM-based middleware have

components that are loosely coupled. In an ORB- or RPC-based system,

communication between components is straightforward and synchronous. That is

79

to say, there is no forwarding intermediary, and the caller must wait for the reply

from the callee before proceeding to the next step. In a MOM-based system, a

message is sent from a source application to a destination application through a

messaging provider that mediates the messaging operation. This means that the

provider manages the message by routing and delivering it. The source application

can continue for further work once it has sent the message, confident that the

provider maintains the message until a destination application receives it. [5].

In the category of software architecture of integration, the existing concrete

software integration architectures mainly are embodied by different architecture

frameworks and design patterns. As introduced previously, the interoperability

enabled software integration is the state-of-art approach, we thus focus on the IOP

architecture frameworks. One of the early IOP architecture frameworks is the four

levels or aspects of software interoperability, including physical, data type,

specification and semantic, introduced in 1997 [124]. Issues for interoperability at

each of the four levels have been studied, e.g. procedure call versus message

passing, systems interface definition, execution intermediaries and data type

compatibility. In the following twenty years, through a large number of practices in

specific application fields, different layered frameworks combined with technical

solutions adapted to the application fields have been introduced.

In the field of eGovernment, which is about providing public services to people

electronically and which involves interactions between heterogeneous roles ranging

from different people to countries, the EIF version 1.0 [21] and version 2.0 draft [3]

was introduced in 2004 and 2009 respectively. It is an IOP architecture framework

for enabling the integration of the eGovernment Services of the member countries

of the EU. The version 1.0 introduces a framework consisting of technical, semantic

and organizational aspects. Despite the suggestion [9] to confine the organizational

interoperability to standards or concepts handling the linkage of business processes

and rename it to business interoperability, the version 2.0 draft kept the

80

organizational layer and added an additional legal layer with a political context

applicable to all four layers (c.f. Figure 3.4 [3]). An architecture framework similar

to EIF version 1.0, i.e. the European Public Administration Network (EPAN), adds

a layer corresponding to contact/support of a structured customer and introduces

the aspect of governance as a cross-cutting issue as an addition to the four layers

(EPAN 2004). In the white paper "Standards for Business", the European

Telecommunications Standardization Institute (ETSI) introduces a new layer

between the layers for technical and semantic IOP, which corresponds to syntactic

IOP (ETSI 2006).

Like the situation for the definition of interoperability, different application

fields will give different interoperability frameworks. Even in the same application

area, the frameworks given by different institutions are not the same. Besides, the

frameworks change over time. As previously introduced, these conflicting and

inconsistent taxonomies have been observed and discussed, but no universal

Figure 3.4 The interoperability framework of EIF version 2.0 draft [3]

81

solution has been provided. In fact, it is understandable that it is not possible to

provide such a static and universal framework to enable software interoperability

because of the high diversity and variability of software development technology.

Thus, it is pragmatic to refer to the existing standards and develop a realistic

framework based on our project needs.

It is easy to see that all the interoperability frameworks include explicitly or

implicitly the syntactic and semantic interoperability, which is about to ensure the

information exchange and consistency in understanding the exchanged information.

From the perspective of layered interoperability frameworks, each layer needs to

have a clear technical solution when a specific interoperability task is faced. The

four levels of interoperability of H. Kubicek and R. Cimander [9] (abbreviated as

K.C. IOP framework, c.f. Table 3.2 [9]), show the solution (and some candidate

Layer of

IOP

Aim Objects Solutions State of

knowledge

Technical IOP Technically

secure data

transfer

Signals Protocols of

data transfer

Fully developed

Syntactic IOP Processing of

received data

data Standardized

data exchange

formats, e.g.

XML

Fully developed

Semantic IOP Processing and

interpretation

of received

data

Information Common

directories, data

keys, ontologies

Theoretically

developed, but

practical

implementation

problems

Organizational

IOP

Automatic

linkage of

processes

among

different

systems

Processes

(workflow)

Architectural

models,

standardized

process

elements (e.g.

SOA with

WSDL, BPML)

Conceptual clarity

still lacking,

vague concepts

with large scope

of interpretation

Table 3.2 Four levels of interoperability (IOP) [9].

82

technologies) for each layer, and the state of knowledge for the solutions. The fact

is that the technical and syntactic interoperability has mature candidate technologies

such as TCP/IP or XML, JSON for the solution, but there are only unstandardized

concepts and methods available for the semantic interoperability, and there is even

a lack of conceptual clarity for organizational interoperability (i.e. the automatic

linkage of processes among different subsystems).

The design patterns, as one of the two major technologies in the category of

software architecture, are intensively discussed based on the integration practice of

enterprise applications. An icon-based pattern language consisting of sixty-five

integration patterns structured into nine categories was introduced to ease the

difficulties of the software integration, especially the high complexity of Enterprise

Application Integration (EAI) [7], which is about to facilitate the integration of

Figure 3.5 Design patterns for enterprise application integration [7]

83

software applications (and hardware) systems across different enterprises. The

patterns were collected from a large number of integration practices and provide

technology-independent design guidance for developers and architects to describe

and develop robust integration. This coherent collection of relevant and proven

patterns forms an icon-based integration pattern language which can be used to

describe the pattern. The EAI is enabled by different messaging EIPs including ten

Channel patterns, fourteen Router patterns, and seven Transformation patterns. The

additional Endpoint patterns, Message Construction Patterns, System Management

Patterns (c.f. Figure 3.5) are also included to describe the produce-consume,

monitoring, pack-unpack of messages. Following the EIPs, the enterprise

application is essentially integrated through message-oriented middleware.

While discussing software integration, we must also note that the aim of software

integration is to construct complex software systems reusing existing software. As

the software is mainly about to process data/information, the integration of different

software will surely bring problems of data/information interoperability, especially

when complex data models are involved. This can be confirmed from the existence

of syntactic and semantic IOP layers in most IOP architecture frameworks. The

formal definition of data integration is to logically or physically combine data from

different sources in different formats or data models into meaningful and valuable

information and providing users/processes with a unified view of them. The method

of data integration bridges the gaps of heterogeneous data formats/models, which

logically has the potential to enable data to be processed collaboratively by

heterogeneous software, i.e. the data integration methods enable the syntactic or

semantic interoperability. Traditionally, data integration can be divided into two

broad categories of methods, namely data warehouses and federated databases.

Database warehousing technology physically integrates and stores data distributed

across different data sources into a single data model and central database so a

single user query can retrieve data from different sources. Typically, a data

warehouse is established through a data pipeline to extract, transform, load (ETL)

84

data in heterogeneous data models into a single data model so data from different

sources become compatible. Federated databases logically integrate data only by

translating user queries into data source queries, i.e. decompose the user query into

subqueries for submission to the relevant constituent databases and compose the

result sets of the subqueries. To deal with the heterogeneous query languages of the

constituent databases, federated database systems typically apply wrappers to the

subqueries to translate them into the appropriate query languages.

3.2.2 Conceptual foundation of integration of FSPMs

Through the survey of these software integration technologies, we become aware

of correlations between these technologies as follows. The layered IOP architecture

frameworks give the overall guidance for software integration while the D.S.R ten

IOP approaches provide conceptual solutions for each necessary integration aspect.

The EIPs embody most of the ten approaches with formal and refined description

in icon-based language, and provide technology-independent design guidance for

the integration process or workflow. The middleware technologies provide support

for the Technical IOP by enabling communication between distributed applications.

The component technologies provide support for the Organizational IOP by

enabling interactions between different software applications. The data integration

technologies provide support for the syntactic and semantic IOP by solving the

heterogeneity of data that exists in different data models.

Taking both the correlations and the high complexity of integration of FSPMs

revealed by the requirement analysis into account, we conclude that a single

technology cannot provide a complete solution for the integration. It is necessary to

have concrete technologies including component and middleware technologies,

ETL pipeline, as well as technology-neutral methods including the ten IOP

approaches and software architectures to provide the overall design guidance for us

to design and implement an integration solution with high quality.

85

Consequently, we determined a list of technologies as the conceptual foundation

of the integration of FSPMs based on previously obtained requirements from the

available technologies for general integration of software. It includes Webservices

technology, RPC middleware model, and K.C. IOP framework, Message Translator

& Canonical Data Model design pattern, and ETL data preparing process. We also

try to rationalize the logical relationship between these technologies following the

D.S.R. ten IOP approaches to make a detailed study of each technology to facilitate

the design of our solution for the integration of FSPMs.

3.2.2.1 Determining the conceptual foundation

As one of the two main types of architecture for software integration, different

IOP architecture frameworks have been considered, and the K.C. IOP framework

is prominent. It clearly distinguishes the levels of interoperability between objects

to be interoperated, i.e. signals, data, information, and processes. Compared to the

other frameworks that have layers with complex technical nature, e.g. the technical

interoperability layer for EIF, this layered structure makes it intuitive and distinct

to identify corresponding candidate technologies for each layer. It provides an

“object oriented” framework for the interoperability of FSPMs. With it, the

correspondence between levels/layers – integrating objects in the framework and

the various aspects obtained from requirement analysis can be easily established.

In detail, two aspects, the syntax – semantics aspect and the non-retroactive –

retroactive aspect, directly correspond to layers of the framework. The former

represents the FSP data and information, and exactly corresponds to the syntactic

and semantic interoperability layers of the framework. The latter represents the

linkage of processes among different FSPMs, i.e. cooperation at the domain

knowledge or semantic level, which corresponds to the layer of organizational

interoperability. The other aspects do not correspond to layers of the framework,

but reflect the intertwined situation of the layers. The modeling platform – model

aspect represents the “vertically” intertwined situation of syntax and semantics of

86

information in FSPMs. As previous analyzed, in this project, the FSP data of all

modules of a plant need to be exchanged together to ensure the topological relations,

which reflect also a biological context of a plant module. Therefore, for FSP data

of a module, the syntactic interoperability has to ensure the data type compatibility.

For data of primary type, most languages have similar sets of data structures, direct

mapping or casting can achieve the compatibility, and straightforward technical

candidates are available in most programming languages and FSP modeling

platforms for this kind of solutions. For the data of composite type, especially for

the graphic primitives defined in graphics libraries as a part of a modeling platform,

it is much more complicated. A graphic type itself has both a syntactic aspect and

a semantic aspect. In most cases, an object-oriented class is used to define such a

type. The syntactic aspect of a graphic type refers to the signature of the class

constructors, i.e. the types, order of parameters and returns. The semantic aspect of

a graphic type refers to the graphical meaning of the name of a constructor (or

class). The dependent – independent aspect, the spatial – temporal aspect, the

topology – geometry aspect and the internal – external aspect represent the

“horizontally” intertwined situation of syntax and semantics of information in

FSPMs. Syntax and semantics of functional and structural information of a plant

module are two interdependent sides of the information, thus they have to be

interoperated simultaneously with all other dependent information. For example,

although the different environmental information might be considered independent

from each other in FSPMs, the environmental information might still need to be

exchanged because there might exist specific dependencies between functional and

structural information of a plant module and environmental information. The

preparations of plant properties and simulators and the coordination of execution of

FSPMs are caused by the independent development of the FSPMs to be integrated.

Hence, they correspond to the layer of organizational interoperability. All the

correspondences between requirements and IOP layers proves the role of K.C. IOP

framework as one of the conceptual foundations of our technology.

87

It is clear that the integration of FSPMs is primarily a type of software

integration, i.e. under heterogeneous technology environments (e.g. different

programming languages, different platforms). Therefore, compared to other

component technologies, the Webservices are fully in line with the requirements

and thus can be determined as one of the conceptual foundations of our technology.

Precisely, a web service makes software applications available over networks using

standard technologies so that they can perform cross-language/platform interaction.

This makes it highly suitable for building distributed integrated FSPM that must

incorporate diverse FSPMs over a network. The standard technologies of

Webservices include Web Service Description Language (WSDL) specifying how

component interfaces should be defined, XML messages formatted with SOAP

protocol to communicate with other applications, through a network protocol like

HTTP [8]. The WSDL is a standard XML format for describing web services, and

is the key to the interoperability of Web service agents. A WSDL file defines a web

Figure 3.6 Web Service architecture [8]

88

service as software component by specifying its component interfaces. Other

software applications can interact with it by writing components to access the

service through the interfaces [137]. The Webservices architecture illustrated by

Figure 3.6 [8] clearly shows the relationships between distributed software

components and their interaction. In detail, a web service is deployed on an

application server responsible for message routing. It interacts with a component of

the client software application and resources or external web services through

SOAP formatted XML messages over standard protocols such as HTTP.

The requirement analysis implies a client-server relationship between structural

and functional FSPMs because a biological structure is assumed as the basis of all

its functions. Consequently, the plant structural model always needs to wait for the

response of the plant functional model for further execution. This indicates that the

RPC middleware technology meets the requirements of the integration of FSPMs

and thus can be determined as another conceptual foundation of our technology. In

detail, RPC enables request-response or client-server communication between

programs over a network without need to understand the lower level protocols. It is

based on certain transport protocols, e.g. TCP or UDP, for carrying

information/data. The process of a RPC program involves five parts: Client, Client

Stub, RPC Runtime, Server Stub, and Server. The Client initiates a RPC by calling

the Client Stub with parameters. The Client Stub packs the parameters into a

message and passes it to RPC Runtime. The RPC Runtime on the client machine

sends the message to the server machine through a communication network. The

RPC Runtime on the server machine passes the received message to the Server

Stub. The Server stub unpacks the parameters from the message, and then calls the

Server procedure. The result replies to the client in the reverse direction. The

simplest RPC system is XML-RPC or JSON-RPC using HTTP to transport the

message carrying the calls (i.e. method name and parameters) encoded in XML or

JSON. Technically, it consists of three parts, including data model (i.e. a set of types

for use in messages), request message structures (i.e. an HTTP request with method

89

name and parameters), response message structures (i.e. an HTTP response with

return values or fault information).

Being a specific type of software integration, IOP of information, i.e. syntactic

and semantic IOP, are essential for the integration of FSPMs. The requirements

indicate that for FSPMs, some specific IOPs, namely the IOPs of plant functional

and structural information (including topology and geometry) are needed, and the

information heterogeneity needs to be solved physically as the complete

information of same plant needs to be transmitted and processed by different

FSPMs. As the typical data warehouse technology that provides this physical

support, the ETL (c.f. Figure 3.7) [138, 139] data pipeline was determined as one

of the conceptual foundations of our technology to support IOP of information.

Precisely, data extraction collects data from various sources. Data transformation

operates data by converting them into a proper storage structure. Data loading

inserts data into the target database (typically a data warehouse). A well designed

ETL system extracts data from different sources, ensures data quality and

consistency, and conforms data so that various sources can be used together for

delivery of data in a uniformed format for the usage of end users. For our project,

Figure 3.7 Classical ETL Diagram for Data warehouse

90

the data preparation process of the ETL pipeline embodies the interoperability of

the FSP information, is thus useful for the integration of different FSPMs.

The requirement analysis also indicates the necessity of an intermediate form

because of the relation between function and structure, which was embodied by the

Canonical Data Model EIP and the approach 7 (Introduce intermediate form) of the

D.S.R. ten IOP approaches. Thus, this is undoubtedly determined as one of the

conceptual foundations of our technology to support the IOP of information. In

addition, we have found that the Canonical Data Model EIP has two opposite ETL

pipelines made up of four Message Translators (c.f. Figure 3.8), which embody the

approach 6 (provide import/export converters) of the D.S.R. ten IOP approaches.

We thus determined the Message Translator EIP and the approach 6 as supplements

to support the IOP of information. Precisely, a message translator [7] is a process

translating the messages exchanged between different enterprise applications. The

transformation can occur at different levels, including data structure, data types,

Figure 3.8 Message Translator EIP (upper), Canonical Data Model EIP (lower)[7]

model EIP (lower)

91

data representation, and transport. A canonical data model [7] is a data model that

is in the simplest form based on a standard integration solution and independent

from any specific application. It provides an additional layer of intermediary

between the various data formats/data models of applications. If a new application

is added, a development for the transformation between the canonical data model

and the individual data formats/data models of the new application is enough, which

is independent from the transformations between the canonical model and

applications within the existing solution. It is a generic intermediate form providing

the integration potential not only for now but also for the future.

92

Chapter 4

DESIGN OF TECHNOLOGIES FOR THE

INTEGRATION

Based on the introduced technologies for software integration, the requirements

for the integration of different FSPMs can be rationalized to following aspects. (1)

FSP data transfer by HTTP message. (2) FSP graph exchange by an intermediate

FSP data model of integrative protocol on top of HTTP. (3) Automatic linkage of

FSPM processes/simulators through ‘provides/requires’ interface of components.

(4) FSP graph conversion between intermediate FSP data model and FSP data

model of target FSPM by Canonical Data Model EIP with embedded Message

Translator EIP that conform to the ETL pipeline and embody the D.S.R. approaches

6 and 7. (5) The preparations for plant properties and simulators of different FSPMs.

(6) The coordination for the execution of different FSPMs. It is clear that none of

the technologies can cover all the aspects. Consequently, the combination of these

technologies is necessary to support the integration of different FSPMs.

In this chapter, we introduce the specific technologies designed for the

integration of different FSPMs based on the determined conceptual foundations.

This includes a component model based on WebServices technology, a network

protocol based on JSON-RPC as middleware technology, and an architecture

93

framework based on the K.C. IOP framework and Canonical Data Model EIP with

embedded Message Translator EIP that conform to the ETL pipeline and embody

the D.S.R. approaches 6 and 7 (c.f. Figure 4.1). .

During the technology survey for the integration of different FSPMs, we have

noticed some confusing situation/ambiguity between the component technology,

middleware technology and software architecture. The situation is that network

protocols are often referred to as middleware. For example ORB provided CORBA

to allow program calls to be made among distributed software components over

network being constantly referred to as middleware, which is actually a feature

based on RPC protocol for communication over network. The fact is that the

essential functionality of a middleware is to integrate components of application

Figure 4.1 Relationships between involved technologies for FSPM integration.

94

software located on the network. The key point is that the middleware provides

services beyond those available from the operation system. According to the

mainstream network model, namely the TCP/IP model, different network protocols

are actually layered hierarchy. A layer serves the layer above it and is served by the

layer below it. Figure 4.2 clearly shows the relationships between layers of different

network entities in a TCP/IP network, which are mainly embodied by recursive data

encapsulation. For example, the segments of the transport layer encapsulate the

message M of the application layer and a header Ht of the transport layer.

Consequently, a protocol is a middleware with regard to the layers lower than its

reference layer. If a new protocol is designed on top of a protocol that is available

from a reference layer, the new protocol is then a middleware with regard to the

current reference layer. However, if the protocol is later standardized and becomes

available from the updated reference layer, then it is a protocol with regard to the

updated reference layer. IETF defines middleware as “those services found above

the transport (i.e. over TCP/IP) layer set of services but below the application

Figure 4.2 TCP/IP protocol stack and data encapsulation [4]

95

environment (i.e., below application-level APIs)” [140] because the support of

protocols at transport (and lower) layer is commonly available in operation systems.

Another situation is that specific IOP tools are often referred to as implementations

of all the three technologies. For example CORBA is referred to not only as

component technology and software architecture, but also as middleware

technology [141]. The fact is that the three technologies are overlapping in terms of

software integration. The component technology supports both software

composition and integration, its focus is the independence and reusability of

software. The middleware technology is most commonly used in distributed

environments to support software integration. Its focus is making complexity

caused by distributed environments (such as communication and interoperability)

transparent. Therefore, as a concrete component technology, i.e. a component

model, the architecture described by CORBA should include the architecture of

components, the standard method exposing ‘requires’ and ‘provides’ interfaces and

allowing the operational interactions between different components, as well as a

protocol to provide the communication service to the interaction over a distributed

environment. With regard to the conceptual foundation of the integration of FSPMs,

the WebServices have the WSDL as standard method to expose ‘requires’ and

‘provides’ interfaces. Its SOAP is a protocol, and is a middleware technology as

well with regard to operation systems.

Based on the survey, we have also noticed that component modes are highly

diverse and can include different combinations of model elements. Table 3.1 clearly

illustrates different model elements provided by JavaBean, COM and CORBA. A

more complete comparison of the component models can be found in [142]. Some

studies have attempted to standardize the component model technology. This

includes the standardization of what a component model should describe by

summarizing it in a comprehensive list of model elements. For example, model

elements have been categorized into six areas, including composition, provided

interfaces, dependencies, instantiation, interactions, and assembly [143]. Ian

96

Sommerville have summarized the basic elements of an ideal component model

with even more elements (c.f. Figure 4.3 [1]). Their studies include also the

standardization of the way to describe a component model. They suggest to describe

a component by three views, including a component diagram as static view that

describes relationships between components, an activity diagram as dynamic view

that describes interactions between components, and a component description with

an appropriate level of details that is related to one of three (conceptual,

specification, or physical) levels of model elaboration. [144]. Based on all these

studies, we conclude that our technology for the FSPMs integration should be a

component model with standardized method to expose interface and component

architecture that abstract the needed components and their relationships. A protocol

for communication as middleware technology should be established first to support

the component model.

4.1 Design of a middleware technology

It is clear that the difference between software composition and integration is

that communication protocols are involved as middleware, which are therefore the

basis of software integration. So, a specific protocol suiting the requirements of

Figure 4.3 Basic elements of an ideal component model [1]

97

FSPMs integration needs to be designed at first. The protocol, as we introduced in

the last chapter, is conceptually based on the JSON-RPC protocol and conforms to

the Canonical Data Model EIP.

To fulfill the primary needs of information interoperability, we have designed a

canonical data model. This is also the key that differentiates our protocol from the

existing JSON-RPC protocol. The design includes data exchange models at both

logical and physical level. The logical data exchange model defines the logical

relations between FSP data elements with simplest abstraction, has high

adaptability for different cases of FSPM integration, can be detailed to the physical

level to suit specific cases. The physical data model implements the logical structure

using s specific serial format to suit the specific needs of our project.

4.1.1 Design of a logical data exchange model

We now introduce the design of a logical data exchange model by adapting our

published article [17]. As a canonical data model at the logical level, the logical

data exchange model is about to design a logical structure that is simple and abstract

enough to enable the data in different FSP data models to be exchanged. Therefore,

it should be a generic structure for FSP data organization.

Being a data model abstracting structure and function of plants, the logical data

exchange model itself can also be created by data modeling based on the analysis

and abstraction of plant structures in the real world. Similar to the other FSP data

model, the focus should be on the structure, as “structure is the basis of function;

function is the performance of structure”. In essence, there are two levels of

requirements for designing a logical data model for abstracting plant structure. The

first is the syntactic level, which is the basic level for every kind of data models and

which refers to how the elements of data may be organized and accessed. As a plant

structure model, some important characteristics of plants need to be taken into

account: (1) plant components normally emerge and grow based on existing

98

components; (2) nutrients reach a component after going through a path consisting

of preceding components that are physically connected; (3) also the amount of

components and interconnections changes constantly during the whole life cycle of

the plant. Because of these characteristics, the elements of plant architectural data

are highly connected and codependent with a high rate of change. This demands a

data model with high efficiency of update such as insertion and deletion of elements

of data.

Apart from the requirements at syntactic level, expressive relationships between

elements of data representing dependencies between plant components are

biologically meaningful. To automatize various types of biological reasoning, the

meaning of the dependencies should also be captured. This leads to the requirement

on the semantic level, and demands a data model capable of capturing the semantics

of the dependencies/relationships between elements of plant architectural data.

In addition, FSPMs distinguish between function and structure of plants and

regard the structure as the basis of the function. Hence, the way organizing elements

of architectural (topological or geometric) data of the expected data model needs to

be syntactically and semantically different from functional elements. In other

words, the architectural data elements are required and the functional data elements

are optional. The functional data elements are attached to the architectural data

elements. The semantic relationships representing adjacency (i.e. biological

dependency) between plant components exist only between architectural data

elements.

Structured data models, such as the relational model, do not meet these

requirements [145]. The reason is that for elements of plant architectural data, these

models are capable of a high efficiency when responding to queries, but have

difficulties to capture the semantics of the dependencies, and suffer from a low

efficiency update. On the other hand, some semi-structured data models do not

distinguish between different elements of data. There is no concept of some

99

elements of data having more precedence, or importance, over other elements, e.g.

properties of a resource are also resources in the Resource Description Framework

(RDF) [146], and thus these kinds of data model do not meet the requirement.

The development of plant data models demonstrates an evolution from specific

architectural models for specific plant structural modeling, via generic architectural

models for structural modeling, to generic FSP data models for FSP modeling. The

MTG and RGG graph are two typical data models that are currently widely used

and accepted as standards for FSP data modeling, and they are the target data

models of our project as well. Hence, the detailed comparative analysis between

MTG and RGG graph is helpful to get a logical data exchange model enabling the

exchange of FSP data between MTG and RGG graph.

From the facts shown in the detailed comparison of the MTG and RGG graph

on both design and implementation introduced in the second chapter, some common

elements were discovered and abstracted. At design level, the two data models in

their current version are both multi-scaled, with the support of three types of

adjacency to abstract the neighboring relationships between modules of real plants.

For the MTG, the within- and inter- scale topology are both rooted trees, while the

overall topology is a rooted graph. For the RGG graph (i.e. three-part-graph),

particularly the instanced graph, the within-, inter- scale, and overall topology are

all rooted graphs. Therefore, the topology of the RGG graph is the more general

and was considered as the topology of the logical data exchange model. At the

implementation level, both MTG and RGG graph are a combination of property

graph and scene graph, but with opposite primary/secondary relationship and other

specific settings, e.g., geometric data elements can only be represented as properties

of graph nodes in the MTG, transformations without other (functional) properties.

Thus the logical data exchange model considers the same combination but with no

primary/secondary relationship and no specific settings. Topologically, a property

graph is a scene graph with properties attached to nodes and edges. For the logical

100

data exchange model that considers only the topology, the abstraction from the

implementation level is thus the “general” or “original” property graph.

The property graph is a type of semi-structured data model distinguishing nodes

and their properties. In these logical models or graphs, nodes and edges are used for

representing the elements of architectural data and relationships respectively. This

makes insertion and deletion of nodes very easy and fast, and ensures a high

efficiency update. Moreover, different types of relationships are defined to

explicitly describe the meanings of the relationships, so the data model becomes a

semantic network and automatic reasoning can be carried out through relationship

paths for computing biological variables. Besides, functional data elements are

optional and attached as properties of a node of the graph. This guarantees that the

architectural data element takes precedence over the functional elements. The

property graph meets all the requirements and suits well for the specific focus of

corresponding methods abstracting plant architecture, except the capability of

multiscale modeling. Consequently, the logical data exchange model should be the

combination of the multi-scaled rooted graph and the property graph, with three

types of adjacency to abstract the neighboring relationships between modules of

real plants. There should also be an unambiguity property for nodes, i.e. id as the

unique identifier of a node, as well as for edges, i.e. id as the unique identifier of an

edge, source id as the id of the node where the edge starts, and target id as the id of

the node where the edge ends. Unlike the MTG and RGG graph, which have their

own specific modeling focus, the designed logical data model does not have a

specific focus, so that it is able to function as a data exchange model adapting all

the logical variants of rooted multi-scaled property graphs.

On one hand, we derived a logical property graph model by specializing the

conceptual property graph with some constraints that exist in both MTG and RGG-

based graph, or by generalizing MTG and RGG-based graph. Figure 4.4 illustrates

two basic types of components, i.e. Nodes and Edges that are directed and labeled

101

with a “Type” denoting the type of relationship between their source and target

nodes. The arrowheads indicate the direction of edges. Both Nodes and Edges have

“Ids” in Arabic or Roman numbers and can be associated with properties, which

are “key: value” pairs in italics. The key refers to the property id and the value is

the property of a particular node or edge. In addition, we added some constraints

for the properties, as illustrated in Figure 4.4 [17], two properties “Name” and

“Type” which are associated to each node, and the “Type” property attached to each

edge that allows a value set including the three standard options (succession,

branch, and decomposition). With the additional semantic features, we enhance the

ability of our data exchange model to adapt to heterogeneous plant architectural

data.

On the other hand, we propose a logical data model of a conceptual data model

“Rooted Graph” [147] [148] with specific constraints. The reason is that we have

observed that many applications have a distinguished node serving as entrance node

Figure 4.4 Logical property graph model [17]

102

to their graphs. Figure 4.5 [17] shows our logical rooted graph that is a directed

graph in which one single node has been distinguished as the root node (illustrated

by a dashed circle). All the other nodes are connected directly or indirectly with the

root node. This root node is a special node that does not correspond to any plant

architectural component in the real world, but represents the whole plant (or the

coarsest scale) for multiscale data.

By combining the logical property graph and the logical rooted graph, setting

the id of the root node as “root_id” with the fixed value “0” and prohibiting having

properties of the root node, we get our targeted logical data model EG (Exchange

Graph), as shown in Figure 4.6 [17].

Figure 4.5 Logical rooted graph model [17]

103

4.1.2 Design of a FSP data exchange model

Based on the EG model, different physical data models can be implemented and

enable plant architectural data exchange between heterogeneous FSPMs. We have

implemented one in XML because it is an effective tool for standardizing the format

of data exchange among various applications, has mature mechanisms for complex

data modeling, such as XML schema and DTD for validation.

In detail, our physical data exchange model, XEG (XML based Exchange

Graph) has been designed by detailing the logical data model. The full definition of

the XEG data model includes its structure, integrity constraints, and applicable

operations which are regarded as the import and export modules of the interfacing

packages on GroIMP and OpenAlea and are introduced in the next chapter.

Imitating the XML-RPC data model that defines a set of general types for use in

general messages, we have defined a set of specific types for use in XEG messages.

Figure 4.6 Data exchange graph model (EG) [17]

104

Using XML elements with different tag names, four XEG elements have been

defined to ensure the rooted graph structure:

• An XML element with tag name “graph” represents an XEG graph. This

is the highest level of the XML structure. The other XML elements are

all nested within it.

• An XML element with tag name “node” or “edge” represents a node or

edge of an XEG. A special XML element with tag name “root” represents

the root node of the XEG.

Using XML elements or attributes, XEG properties have been defined to ensure

the property graph structure:

• An XML element with tag name “property” represents a property of an

XEG node. XML attributes “name” and “value” are assigned to the XML

element to hold the name and value of the property.

• Some XML elements with specific tag names hold XEG nodes’ property

values with complex form as their content, e.g., XML elements with tag

name “rgb” holding the XEG node’s “color” property with RGB form

(i.e., a numerical sequence with three values representing the red, green

and blue component respectively).

• Some XML attributes represent simple properties of XEG nodes, e.g.,

“id” represents the identifier of an XEG node or edge. The “type”

attribute represents the XEG node or edge type. “src_id” and “dest_id”

attributes represent the identifier of the XEG node where an XEG edge

starts or ends, respectively.

105

• An XML element with tag name “type” represents the object oriented

type extension, allowing a hierarchy of types analogous to a class

hierarchy, with inheritance of properties from supertypes to subtypes.

The following XEG code represents a scene with a single green sphere of radius

0.1, possibly representing some plant organs with a functional property

‘p_extended’.

Integrity constraints of the XEG data model mainly include the limited choice

of the edge type (three basic types: successor, branch and decomposition), the

existence and uniqueness of the graph root, the correspondence between “id” of an

XEG node and the “src_id” / “dest_id” of an XEG edge. To ensure the validity of

the XEG, an XML schema including all the structure and constraints has been

defined as XEG schema.

4.1.3 Design of a FSPM integrative protocol

With the designed FSP data exchange model, we can now design the needed

protocol-middleware technology, i.e. the FSPM integrative protocol, by referencing

the JSON-RPC [149, 150].

<graph>

 <root root_id="0"/>

 <type name="A">

<extends name="Sphere"/>

<property name="p_extended" type="float"/>

 </type>

 <node id="1" name="" type="A">

 <property name="radius" value="0.1"/>

 <property name="color">

 <rgb>0.0 1.0 0.0</rgb>

</property>

<property name="p_extened" value="0.1"/>

 </node>

 <edge id="1" src_id="0" dest_id="1" type="successor"/>

</graph>

Figure 4.7 An example of XEG code representing a plant with a sphere component

106

The JSON-RPC refers to the RPC protocol that uses JSON to encode its calls

and the HTTP protocol as transport mechanism, which indicates that it is an

application layer protocol but on top of HTTP. It mainly consists of three specified

parts, including a set of data models for typing of data in the HTTP message body,

the request and response structures for constructing of the HTTP request and

response messages [151]. The data models are data types sharing from JSON,

namely four primitive types (Strings, Numbers, Booleans, and Null) and two

structured types (Objects and Arrays).

The JSON-RPC request structure defines how the method name and its

parameters of a JSON-RPC call are packed as an HTTP request message. The HTTP

response message structure defines how the returning values or error information

of a JSON-RPC call is packed as an HTTP response message. (c.f. Figure 4.8).

By default, the request structure includes:

• A request line with POST as preferred request method

• Request header fields, including at least:

o Content-Type: value must be application/json

Figure 4.8 Examples of JSON-RPC POST request and response message

107

o Content-Length: value must comply to HTTP protocol

specification

o Accept: value must be application/json

• An empty line

• A message body with a single JSON object consisting of four members:

o jsonrpc: A string denoting the version of JSON-RPC protocol.

o method: A string containing the name of the method to be

invoked.

o params: An optional structured value that holds the parameter

values to be used during the invocation of the method.

o id: A client established identifier with String, Number or Null

type.

 The response structure includes:

• A status line with one of five JSON-RPC specified status codes, or a

HTTP specified status code.

• Response header fields, including at least:

o Content-Type: value must be application/json

o Content-Length: value must comply to HTTP protocol

specification

• An empty line

• A message body with a single JSON object consisting of four members:

108

o jsonrpc: A string denoting the version of JSON-RPC protocol.

o result: Value is data generated by the invoked method, required

on success.

o error: A structured value that holds the parameter values to be

used during the invocation of the method, required on error.

o id: An identifier which must be equal to the id of the Request

Object.

We have defined our ‘FSPM integrative RPC’ based on specific assumptions of

the integration of different FSPMs. A FSPM, as introduced previously, is a special

type of program that can be executed independently. It thus always has a ‘main’

method, which takes a FSP data graph and some environment arguments as

parameters. The integration of different FSPMs is about to allow one FSPM to call

the ‘main’ method of another FSPM over networks in a distributed manner. More

specifically in our project, the FSPM for structural simulation has to be integrated

with a FSPM for functional simulation by calling its ‘main’ method. Environmental

data will thus only be used as the parameters of the functional FSPM and will affect

the structural simulation indirectly by the computed functional properties in the

exchange graph received by the structural FSPM. In general, it is hardly true that

identical environment parameters are needed for different FSPMs to be integrated.

It is because of their heterogeneity that they have the value of being integrated. It is

also because of their heterogeneity that their parameters cannot be exactly the same.

With reference to the data models of JSON-RPC, we designed an application

layer protocol on top of HTTP with a smaller set of data models as data types. As

the XEG is added as a new type for an intermediate form of FSP graph in our

protocol, content-type is specified to media type (formerly MIME type) [152]

‘application/x-www-form-urlencoded’ accordingly. This defines the format of the

message body: the keys and values are encoded in key-value pairs separated by ‘&’,

109

with a ‘=’ between the key and the value. On one hand, JSON and XML are the two

most common formats for data exchange, we choose XML as data model format of

the XEG for its mature data modeling mechanisms. On the other hand, JSON has

less verbose syntax, and is quicker to read and write, the syntax of URL encoded

form is even simpler than JSON (e.g. no nested values). The combination of data

model XEG and media type ‘application/x-www-form-urlencoded’ therefore

results in a simple but powerful protocol.

With reference to the request and response structures of JSON-RPC, we

designed our integrative protocol with simplified request and response structures.

Similar to the standard JSON-RPC, a call of our FSPM integrative RPC is

represented by sending a set of key-value pairs to a server. The difference is that

the key-value pairs in our protocol are not formatted in a JSON object but in a URL

encoded form. Moreover, the member of the URL encoded form of the request and

response structure have members ‘model’, ‘main_method’, ‘result_graph’ ‘time’

‘retroactive’ to enable the integration of different FSPMs. The value of the member

‘model’ should be Null when the code of the server FSPM is not available on client

side. When a FSPM integrative RPC call is received, a response with a URL

encoded form with the result in XEG will be sent back to the client. No specific

status codes have been designed at the level of our protocol, and we think the status

code mechanism defined at HTTP level is already enough to ensure the correct

exchange between different FSPMs.

In detail (c.f. Figure 4.9), the data models of the designed protocol includes four

primitive data types sharing from JSON-RPC (i.e. Strings, Numbers, Booleans, and

Null), and one structured type (XEG).

The request structure includes:

• A request line with POST as request method

• Request header fields, including at least:

110

o Content-Type: value must be application/x-www-form-

urlencoded

o Content-Length: value must comply to HTTP protocol

specification

o Accept: value must be application/x-www-form-urlencoded

• An empty line

• A message body consisting of four members:

o model: A string containing the code of the FSPM to be

integrated. If the code is not sent from the callee, the value must

be Null

o main_method: A string containing the name of the ‘main’

method of the FSPM to be integrated.

o graph: An optional structured value that holds the FSP graph (in

XEG) as input of the invocation of the method.

o time: A value of Number type to represent the number of running

steps of the target FSPM. It is the key for time scale alignment

between different FSPMs.

o retroactive: A value of Boolean type to represent the retroactive

setting of the integration.

o id: A client established identifier with String, Number or Null

type.

 The response structure includes:

111

• A status line with a HTTP specified status code.

• Response header fields, including at least:

o Content-Type: value must be application/x-www-form-

urlencoded

o Content-Length: value must comply to HTTP protocol

specification

• An empty line

• A message body consisting of two members:

o result_graph: Value is an FSP graph in XEG generated by the

invoked method, required on success.

o id: An identifier which must be equal to the id of the request.

Figure 4.9 Examples of the FSPM integrative protocol request (upper) and

response (lower) messages.

112

4.2 Design of a component model

To design a component model for the integration of FSPMs, we need to design

at least the component architecture and the standard method to expose the ‘required’

and ‘provided’ interfaces of different FSPMs through the designed middleware, as

they are the two basic elements of a component model. As previously introduced,

the requirements of the integration of different FSPMs include five aspects and the

component model is about to enable the automatic linkage of FSPM

processes/simulators through ‘provided’ or ‘required’ interfaces of software

components in the integration systems. By referring to the relevant conceptual

foundation, i.e. Webservices technology, we designed a standardized component

architecture of the FSPM integration system with language neutral method for

exposing ‘required’ and ‘provided’ interfaces, which effectively fulfill the required

aspects. Beside of the two basic elements, we also provide a detailed component

architecture for the middleware of the integration as a standard to facilitate the

design and development in integration projects.

113

Figure 4.10 The UML component diagram for the integration of different FSPMs

114

4.2.1 Design of a component architecture

We introduce firstly the component architecture designed based on the analysis

of requirements previously introduced and the determined conceptual foundation,

i.e. Webservices technology. Its static view is described by the component diagram

and component description while the dynamic view is described by the activity

diagram.

As the Figure 4.10 shows, the standardized component architecture of the FSPM

integration system includes an integrative middleware (we named it FSPM

integrative interface) that consists of two components: the ClientSideInterface and

the ServerSideInterface. It resides in the middle of the ClientFSPM component and

the ServerFSPM component to enable their integration by providing necessary

interoperability. The component ClientSideInterface requires service from the

component ServerSideInterface for the integration of different FSPMs. The

cardinality ‘[0..1]’ at client side means one server may have zero to one client, and

‘[0..*]’ at server side means one client may have zero to many servers. This is a

design based on the assumption about the possible integration of different FSPMs

scenarios, i.e. one structural model with one or more functional models. The

component ClientSideInterface includes six components, i.e. Client, Message,

Graph, Coordinator, GraphConverter, and ConfManager. The component

ServerSideInterface includes six components, i.e. Server, Message, Graph,

GraphConverter, RetroactiveChecker and ServerFSPMRunner. The components

Message and Client/Server are for message packing/unpacking and transmission.

The components Graph and GraphConverter are for the conversion of FSP data

and information between different FSP data models. The component ConfManager

at client side is about to allow the plant scientists to input the configuration setup

for the integration based on biological knowledge. This might be a list of model

records expressing the order of the model simulation, the name and network address

of the model, its ‘main’ method, the times of its execution, and the names of its

115

characteristic properties (e.g. ‘interceptedLightAmount’). The component

Coordinator at client side is about coordinating the simulation/execution of the

different FSPMs by taking the configuration list set by plant scientists as reference.

By getting relevant member of message body (retroactive) through the provided

interface MessageComponent of component ‘Message’, the component

RetroactiveChecker is for determining if the client graph is needed to be converted

for responding to the client. By getting the relevant members of message body

(model, main_method, time) through the provided interface MessageComponent of

component Message, the component ServerFSPMRunner is about to run the FSPM

on server side through the provided interface MainMethod of the server FSPM. One

remark is that the data flow in the integrated FSPM is mostly two directional. For

example, the ‘message’ interface can be a provided interface of the component

Message when the message is ready for the component Client to send. It can also

be a required interface of the component Message when the response message is

received by the component Client and ready for unpacking. We represent these two

directional interfaces by one single (one directional) interface for the sake of

simplification. Another remark is that the MessageComponent interface in the

component ClientSideInterface includes a ‘two directional’ interface of the

component Graph, a normal provided interface of the component ConfManager

and a normal required interface of the component Coordinator. They refer to

packing or unpacking of an XEG to or from the component Message, packing of

relevant members of message body (i.e. model, main_method, time, and

retroactive) to form the request message, and unpacking of ‘result_graph’ from

response message for the use of the component Coordinator respectively. The

MessageComponent interface in the component ServerSideInterface includes a

‘two directional’ interface of the component Graph, a required interface of the

component ServerFSPMRunner, and a required interface of the component

RetroactiveChecker. It refers to packing or unpacking of an XEG to or from the

component Message, and unpacking of other relevant members of message body

116

(i.e. model, main_method, time, and retroactive) from the component Message

respectively.

The static relationships are embodied by the usage dependency between the

components. At the level of the FSPM integration system, the interface has two

components, ClientSideInterface and ServerSideInterface. The former requires the

FSPM integration service from the latter through the required interface

FSPMIntegration, namely calls of the designed protocol.

• The component ClientFSPM’ depends on the service provided through the

provided interface ClientGraph of the component ClientSideInterface,

• The component ServerFSPM depends on the service provided through the

provided interface ServerGraph of the component ServerSideInterfacde.

• The component ClientSideInterface depends on the service provided

through the provided interface FSPMIntegration of the component

SeverSideInterface

• The component SeverSideInterface depends on the service provided through

the provided interface MainMethod of the component ServerFSPM

• Plant scientists depend on services provided through the provided interface

IntegrativeConfigurationEntry of the component ClientSideInterface and

the provided interface MainMethod of the component ClientFSPM

At the level of integrative middleware, there are usage dependencies within the

component ClientSideInterface and the component ServerSideInterface. In detail,

the usage dependencies within the component ClientSideInterface are:

• The component Graph depends on services provided through the provided

interface Conversion of the component GraphConverter and the provided

117

interface ManageComponent of the component Message (the component

ConfManager also depends on the service through the latter interface).

• The component Coordinator depends on services provided through the

provided interface CoordinativeReference of the component ConfManager

and the provided interface ManageComponent of the component Message.

• The component Client depends on services provided through the provided

interface Location of the component ConfManager and the provided

interface Message of the component Message.

• The component Message depends on the service provided through the

provided interface Coordination of the component Coordinator.

The usage dependencies within the component ServerSideInterface are:

• The component Graph depends on the services provided through the

provided interface Conversion of the component GraphConverter and the

provided interface CheckRetroactive of the component RetroactionChecker

• The component Server depends on the service provided through the

provided interface Message of the component Message.

• The components SeverFSPMRunner, Graph, RetroactionChecker depend

on the service provided through the provided interface MessageComponent

of the component Message

118

Figure 4.11 The UML activity diagram for the integration of different FSPMs

119

The dynamic relationships between components are described by an activity

diagram (c.f. Figure 4.11). In the diagram, the action flow starts from the

RunMainMethod action in the ClientFSPM partition and the

IntegrativeConfigurationEntry action in the ServerSideInterface partition, the

former leads the FSPMSimulation action in the ClientFSPM partition, which then

produces the ClientGraph object in the ServerSideInterface partition. The actions

at the ClientSideInterface partition include IntegrativeConfigurationEntry,

ClientGraphToXEG, GetMessageMembers, GetLocation,

GetCoordinativeReference, PackMessage, SendMessage, ReceiveMessage,

UnpackMessage, Coordinate, XEGToClientGraph, GetClientGraph, the involved

objects are Configuration, ClientGraph, XEG, MessageMembers, Location,

CoordinativeReference, UpdatedMessage, MessageMembers, UpdatedXEG. A

decision is made over the result of the action Coordinate, which effectively

coordinates the simulation of different FSPMs. At the ServerSideInterface partition,

the actions include ReceiveMessage, UnpackMessage, CheckRetroactive,

RunMainMethod, XEGToServerGraph, ServerGraphToXEG, PackMessage,

RespondMessage, the involved objects are Retroactive, MainMethod, XEG,

ServerGraph, UpdatedServerGraph, UpdatedXEG. A decision over the result of

the action CheckRetroactive is made. The action flow ends when the client FSPM

simulation is finished, the UpdateMessage is determined as unexpected, or the

result of the action CheckRetroactive is determined as non-retroactive.

4.2.2 Design of a standard to define component interfaces

Beside the component architecture of the integration system, we introduce also

the other basic element of our component model, namely the standard to define the

interfaces of the components within the integration system based on the relevant

conceptual foundation, i.e. the WSDL provided by WebServices technology. By

analysis of the WSDL, we found that the designed protocol is exactly a standard

way to define the interfaces of the component within the integration system. One

120

remark is that the interfaces are defined for the interactions between FSPMs on top

of the service provided by middleware. It is on the layer of FSPMs that the protocol

provides a standard to define the interfaces of components (i.e. FSPMs). Both

WSDL and our protocol provide a platform-language independent method to allow

the interaction between different FSPMs in a distributed manner. The difference is

mainly in who specifies the interfaces when they are applied. It is the service

provider who specifies the interfaces in the Webservices technology, while it is the

service consumer who specifies the interfaces in our component model.

4.3 Design of a C/S-ETL based architecture

Based on the designed protocol and component model for the integration of

different FSPMs, the aspects of the requirements of the integration of different

FSPMs can be concretized as : (1) FSP graph transfer by HTTP message, (2) FSP

data exchange by XEG as a data model of the designed integrative RPC protocol,

(3) automatic linkage of FSPM processes/simulators by the ‘model’ and

‘main_method’ provided as members of request structures of the designed

integrative RPC protocol, (4) FSP graph conversion between XEG and FSP data

model of the target FSPM, (5) the preparation for properties and coordination of

simulation/execution of FSPMs by the combination of ‘time’, ‘retroactive’

provided as members of request structures of the designed integrative RPC

protocol, the component ConfManager, and the component Coordinator of the

designed component architecture, (6) the preparations for simulators of FSPMs.

On one hand, we found that the aspects 1, 2, 3 and 5 are supported by the

designed integrative RPC protocol/component model, and correspond to the

technical, syntactic, organizational IOP layer of the K.C. IOP framework

respectively. On the other hand, we found that the aspects 4 and 6 are not supported

by the designed protocol and component model, and they do not have a simple one-

to-one correspondence with the layers of the K.C. IOP framework either. This

121

situation suggests that an IOP architecture framework is necessary as a supplement,

and it should be an architecture framework different from the K.C. IOP framework

and adapted to the aspects.

With the determined conceptual foundation, namely the K.C. IOP framework

and Canonical Data Model EIP with embedded Message Translator EIP that

embody the ETL pipeline and the D.S.R approaches 6 and 7, we introduce our

designed architecture framework. The essential reason to have an architecture

framework is clear: the FSPM integrative component model and the middleware-

protocol can only partially fulfill the requirements of the integration of different

FSPMs.

To establish our specific architecture framework, we firstly analyzed the

weaknesses or defects of the K.C. IOP framework for the integration of different

FSPMs in detail. The obvious one is that it does not abstract and reflect all required

aspects of the FSPM integration, such as the preparations. Moreover, the

preparations are literally needed for organizational reason, but the data/information

are involved as objects, which indicate that the IOP layers in the framework overlap

each other for the case of FSPM integration. The biggest weakness of the K.C. IOP

framework is that, although it perfectly abstracts the IOP related aspects with the

four layers, the required aspects of the FSPM integration do not accurately

correspond to each layer. For example, the FSP graph conversion between XEG

and FSP data model involves both the syntactic and semantic IOP. The inconvenient

point here is that the conversion processes are interdependent, it is not appropriate

to divide them into different IOP layers. Based on such a situation, we conclude

that a framework with a layered structure similar to the K.C. IOP framework is not

appropriate. We already know that the Canonical Data Model EIP with embedded

Message Translator EIP that embody the ETL pipeline and D.S.R approaches 6 and

7 convert data from one model to another through an intermediate data model.

Naturally, we come up with the idea of having our integrative architecture

122

framework by combining the component model and the middleware-protocol with

them. This turns out to be a valid idea: the designed FSPM integrative RPC protocol

partially takes the role of the component model and supports the requirement

aspects 1-3 the Canonical Data Model EIP with embedded Message Translator EIP

that embody the ETL pipeline and the D.S.R approaches 6 and 7 support the aspect

4. This combination of these technologies covers all the aspects except the

preparations of simulators of different FSPMs, which cannot be automatized and

are one-time processes. We believe it is appropriate to keep the preparations

outside, and only present the parts that involve the interactive simulation in the

architecture framework. In this way, it can be used directly for the development of

the interface/infrastructure without causing misunderstanding. One remark here is

that the ETL pipeline, the Canonical Data Model EIP with embedded Message

Translator EIP, and the D.S.R approaches 6 and 7 refer to the same essence but

from a different point of view, namely the approach, pattern/architecture (c.f. Figure

4.1). In the following introduction, we simply use the ETL pipeline as their

reference as it explicitly expresses the processes of data and information.

To have the overall integrative architecture framework, two sub architectures are

designed. One is the C/S based sub architecture for the requirement aspects 1-3.

Another is the ETL based architecture for the requirement aspect 4. We now

introduce the framework by adapting our published article [14]

4.3.1 Design of a C/S based sub architecture

The sub architecture abstracts the aspects 1-3. Within the C/S based sub

architecture, a TCP/IP based integrative RPC protocol enables communication and

processes cooperation between different FSPMs respectively. The former is

automatic while the latter is semi-automatic, which means the cooperation between

processes of different FSPMs needs to be ensured by the integrator. For example, a

FSPM for simulating plant light interception might run cooperatively with a FSPM

123

for photosynthesis, not with a FSPM simulating water pressure, because there is a

direct biological relation between the first two. Of cause, multiple-integration might

enable a chain of FSPMs, in which not everyone has biological relations to all

others, but a relation path is needed at least. The C/S based sub architecture only

ensures the “how” aspect, not the “what” aspect. So, all of the “what do cooperate”

related questions (i.e. domain specific questions) need to be answered and ensured

by the integrator before the implementation of the architecture for a specific

integration case of different FSPMs.

The main point of the sub architecture is that it consists of one FSPM for

simulating structural evolution and one or more FSPMs for simulating function.

The reason for this is that a digital plant module representing a real plant organ

cannot have more than one pattern of structural evolution. Theoretically, only

FSPMs that simulate the structural evolution of the same plant module at different

periods or of different plant modules at the same period can be integrated. However,

this kind of integration needs a precise plan in advance as accurate time and space

need to be aligned while FSPMs were spontaneously created in most cases and were

hardly developed with a precise plan for the integration with other specific FSPMs.

On the other hand, there is usually no difference between the temporal and spatial

resolutions at which functions of a plant are simulated at organ level, thus the time

and space (or both) can be coarsely or qualitatively aligned during the integration.

In the sub architecture, the role of client and server was taken by the FSPM

simulating the structural evolution and the FSPMs simulating the functions

respectively, as “structure is the basis of function”. Consequently, multiple servers

in our architecture serve one client, contrary to the common C/S architecture that

has one server for multiple clients (c.f. Figure 4.12 [14]).

124

4.3.2 Design of an ETL based sub architecture

Based on the K.C. IOP framework and the Canonical Data Model EIP with

embedded Message Translator EIP that embody the ETL pipeline and the D.S.R

approaches 6 and 7, we have designed the sub architecture with the ETL pipeline

as its focus. The objective of the sub architecture is to enable the FSP information

IOP. The sub architecture includes two layers of the overall architecture, namely

platform layer and model layer.

The sub architecture includes three data models, the FSP data models of the

source and target FSPMs, and the Physical EG, i.e. the canonical data model XEG,

as intermediate form. Four message translators consisting of different ETL

processes are the main building blocks of the sub architecture, in which the extract

and load processes next to the FSPMs are practically import/export converters (c.f.

Figure 4.13 [14]).

Figure 4.12 C/S based sub architecture [14]

125

To enable the IOP of FSP information at platform level, ETL processes have to

be defined according to the data models and graphics libraries of source and target

FSPMs.

For the extract and load processes at platform level, the intra-scale structure is

mostly concerned because it is defined as the basic part of the FSP data model at

the platform level. Unlike in data warehousing where only data of primitive type

are extracted and loaded, the interoperability of information for the integration of

FSPMs usually requires more extract and loading data of composite type, e.g.,

graphics types.

Figure 4.13 ETL based sub architecture [14]

126

For the transforming process at platform level, several sub processes are

necessary to meet the requirements of the integration. (1) Syntactic and semantic

transformation of topology of data elements, e.g., generation of an edge in the target

graph between corresponding source and destination nodes, and assignment of an

edge type according to the edge type in the source graph, e.g., assignment of the

“refinement” type available in the target FSP data model to generate an edge of the

“decomposition” type in the source graph. Essentially, the topology here concerns

the structure with equivalent systems of scales (spatial resolutions). (2) Semantic

transformation of the geometry of data elements. This may include a sub process

that transforms geometric transformations between local and global. This sub-

process is then essentially converting geometric relationships between nodes and is

based on graph traversal. To avoid double running of graph traversal, this process

is better run with the corresponding extract process. Another sub process performs

syntactic and semantic transformations of shape instances, e.g., transforms a

signature with argument values of “Parallelogram” type to a signature with

argument values of “TriangleSet” type. To allow this sub process, a “dictionary” to

“translate” types from the graphics library used in the source FSPM to types in the

graphics libraries used in the target FSPMs will be necessary.

To enable the IOP of FSP information at model level, ETL processes have to be

defined also for functional information.

The functional information is usually specified in a FSPM using primitive types

(e.g. float or integer). Thus, extract and load processes are not really needed. The

transformation process includes two sub processes. (1) Syntactic and semantic

translation of coded values or derivation of new calculated values for functional or

environmental data fields (e.g., float_ Fahrenheit = (float) (double_ Celsius * 1.8 +

32)). (2) Syntactic and semantic transformation of different systems of scales, for

multiscale structures (e.g., decomposition of a scale with metamers as nodes to a

new scale with elementary geometric objects as nodes) defined in different FSPMs.

127

In most cases, simulators are applied to the finest scale of the multiscale graph.

Thus the received structure needs to be transformed into a new structure with the

finest scale on which the target simulator can be applied. (3) Manual modification

of the semantic definitions in target FSPMs if it is necessary. This includes the

previously introduced preparations for both FSP information and simulators.

4.3.3 The overall integrative architecture

The overall architecture framework for the integration of different FSPMs (c.f.

Figure 4.14 [14]) results from combining the two sub architectures. To be clearer,

we present it with both pairwise view and one-to-many view. With the architecture,

we can see that the ETL processes are the core of the integration. Particularly the

processes at platform level are should be automatized, thus the integration interface

should be the infrastructure that implements these processes.

A. Pairwise view of the architecture.

128

B. One-to-many view of the architecture.

Figure 4.14 Overall architecture framework for the integration of different FSPMs

[14]

129

Chapter 5

AN INTERFACE FOR THE INTEGRATION OF

THE TARGET FSPMS

In this chapter, we introduce an interface for the integration of the two FSPMs

for the FSPM Apple project, namely MAppleT and the GroIMP based water and

sugar transport model, by applying the technologies designed for the integration of

different FSPMs, i.e. the FSPM integrative component model, RPC protocol-

middleware, and the C/S-ETL based architecture. The design of the interface is

focused on the algorithms for IOP of FSP data and information. The implementation

of the interface is focused on the software components that conform to the designed

technologies for the integration of different FSPMs. The former is about the

conception of the ETL processes based on the Breadth-First Search (BFS) algorithm

to bridge the differences at both platform (c.f. 2.5.2) and model level (c.f. 3.1.2).

The latter is mainly about the realization of the integrative RPC protocol and the

component architecture of the integrative middleware/interface based on the two

platforms to allow FSP data transfer, FSP graph exchange, and process linkage and

coordination between the two FSPMs.

130

5.1 Design and implementation of the component

ClientSideInterface

In our designed component architecture of the FSPM integrative interface, the

component ClientSideInterface consists of six components, which can be divided

into a group for communication and interaction between FSPMs and a group for

ETL processing. The former group includes the component Client and the

component Message as implementation of the FSPM integrative protocol for

constructing & sending the integrative simulation request to the server and

receiving & deconstructing the simulated response from the server. As a part of the

component ClientSideInterface, the group should also include the component

ConfManager and the component Coordinator for the preparation for plant

properties and the coordination of execution of FSPMs. We have just implemented

GUI modules for the entry of the name and network address of the model, its ‘main’

method, the number of its executions, and the names of its characteristic properties.

This enables the message to be transferred through HTTP, the members of message

body to be packed, the preparations for plant properties, i.e. adding properties (i.e.

data fields for water and sugar flux and the modification done by MAppleT) to

allow that the results of functional simulation can be stored. In our project, only two

target FSPMs are involved, the coordination for execution of more than two FSPMs

is actually not necessary, and the preparation of simulators of different FSPMs to

allow specific functional properties to affect the structural evolvement of apple tree

has to be achieved manually. The latter group includes the component Graph and

the component GraphConverter for FSP graph conversion between XEG and MTG.

These are the main parts that correspond to the ETL pipeline and are in the focus of

the introduction.

131

5.1.1 The communication group at client side

In the communication group of the component ClientSideInterface, the

component Client is for sending and receiving the HTTP message based on the

specification of the HTTP protocol. The component Message is for request message

construction and response message destruction based on the specification of the

FSPM integrative RPC protocol. In our specific case, we have only one server

FSPM so the component ConfManager for manual entry of configuration

information and FSPM related information (location, name of server FSPM and its

‘main’ method) extraction and the component Coordinator for coordination of the

interaction of different FSPM processes can be simplified to a manual entry for

FSPM related information. The focus of this group is thus the components Client

and Message.

In detail, we have implemented modules that take the combination of IP address

and port number (i.e. Socket) to identify the server FSPM on a specific device, the

‘model’, ‘main_method’, ‘graph’, ‘time’, ‘restorative’ and ‘id’ of the FSPM

integrative protocol members. All these parameters are taken by GUIs from entry

of users except the ‘id’, which is automatically generated. Moreover, a module that

encodes the protocol members into URL form and a module that establishes an

HTTP connection with location, sends the form and necessary headers in a POST

request and waits for response on this connection have been implemented as well.

5.1.2 The ETL group at client side

In the ETL group of the component ClientSideInterface, the components Graph

and GraphConverter are for ETL processes between XEG and MTG. Among the

three processes of ETL, the extract process is driven by a graph traversing algorithm

and the transforming and load processes are carried out according to the extracted

FSP data. The extract process is based on an implemented XEG library in Java and

132

the focus of extract and load processes is to ensure the correctness of the graph

topology. The focus of the transforming processes is to ensure the correctness of

the geometry encoded in the graph nodes. The data of each data field of FSP graphs

need to be extracted, transformed, and loaded according to the modeling platforms

on which the two FSPMs are based, namely OpenAlea and GroIMP. This means

the processes might be applicable for the integration of other FSPMs based on the

two modeling platforms. Beside the topology and geometry, other kinds of data

fields such as colors have been considered as well.

To allow the client side to make the RPC call, we have designed an algorithm to

extract FSP data from an MTG (generated by MAppleT) and load it into an XEG,

and a set of algorithms to transform nodes of OpenAlea types to nodes of GroIMP

types. To allow the client side to process the response of the RPC call from the

server side, we have designed an algorithm to extract FSP data from an XEG and

load it into an MTG, and a set of algorithms to transform nodes of GroIMP types to

nodes of OpenAlea types. Transforming processes between global and local

transformations applied to a shape need to be carried out during an iterative graph

traversal from parents to children, which confirms the correctness of using the BFS

as the algorithm for the extract processes. The implementation of ETL processes at

client side has its focus mainly on the transforming processes of nodes of different

data types. For the MTG to XEG direction, we have divided the nodes into different

categories according to their data types and developed the transforming modules by

applying an implantation template designed for nodes of the same category. For the

MTG to XEG direction, only nodes of types used in MAppleT are processed and

node-transforming modules for these types are implemented following designed

algorithms.

5.1.2.1 Algorithms for ETL processes from MTG to XEG

As previously introduced, the FSP data model MTG of the OpenAlea platform

lets every node in the MTG correspond to a single or group of plant modules.

133

Particularly in MAppleT, the topology of the MTG has four different scales, namely

the tree, axis, growth unit, and metamer scale. All nodes in the MTG might have

biological properties, but only the nodes at metamer scale have graphical properties.

In other words, the metamer scale is the primary scale that MAppleT generates first

and the other scales are generated based on it. Hence, the algorithm of extract and

load needs to have one part for the scales above the metamer scale and one part for

the metamer scale. The former part is just to duplicate the topology of the above-

metamer scales, while the latter part needs to be designed by referring to the details

of MAppleT.

In MAppleT, three 3D shape types (Cylinder, BezierPatch, Sphere) and three

transformation types (Scaled, Oriented, Translated) of the PlantGL library [110]

are used to form the graphical properties (i.e. 3D graphical elements) of a node at

metamer scale. As introduced in section 2.5.2, the manner of applying

transformations to a shape in PlantGL is taking an object of shape or transformation

types as argument to instantiate the object of transformation types. Precisely, there

are three patterns of transformation application, which generate three kinds of

transformed shapes:

• Translated (Oriented (Cylinder)), expresses a transformed cylinder,

namely an object of ‘Cylinder’ type successively transformed by a

rotation and a translation.

• Translated (Oriented (Scaled (Sphere))), expresses a transformed sphere,

namely an object of ‘Sphere’ type successively transformed by a scaling,

a rotation and a translation.

• Translated (Oriented (Scaled (Scaled (BezierPatch)))), expresses a

transformed object of BezierPatch type, namely an object of

‘BezierPatch’ type successively transformed by two scalings, a rotation

and a translation.

134

Based on the three kinds of transformed shapes, MAppleT defines four different

kinds of graphical elements as apple tree modules, which are graphic properties of

nodes at metamer scale of the MTG. They are not managed by the MTG, but by an

object of PlantGL type Scene in a list structure and are globally transformed from

the origin of a global coordinate system:

• The ‘internode’ graphic element that is a transformed cylinder. A node

with this kind of graphic element as property is referred to as ‘internode’

metamer node.

• The ‘leaf’ metamer graphic element that consists of two transformed

objects of Cylinder type as an internode and a petiole, one transformed

object of BezierPatch type as a blade. A node with this kind of graphic

element as property is referred to as ‘leaf’ metamer node.

• The ‘flower’ metamer graphic element that consists of two transformed

objects of Cylinder type as an internode and a petiole, ten transformed

objects of Cylinder type as middle of flower, five transformed objects of

BezierPatch type as petals. A node with this kind of graphic element as

property is referred to as ‘flower’ metamer node.

• The ‘fruit’ metamer graphic element that consists of two transformed

objects of Cylinder type as an internode and a petiole, one transformed

object of BezierPatch type as blade, one transformed object of Sphere

type as fruit. A node with this kind of graphic element is referred to as

‘fruit’ metamer node.

In MAppleT, the metamer scale is the primary and finest scale. Moreover, the

MTG locates the graphic properties outside the graph, in a data structure called

Scene as a type available in PlantGL. It is an object different from the object of

MTG type, and unlike a typical scene graph, graphic objects are managed in this

135

structure with no explicit topological relationships in-between. Our XEG has all

kinds of properties for each node, including graphic shapes and transformations. It

is a rooted graph managing all data fields, between which there should be at least

one topological relationship from the graph root. Consequently, it is necessary to

have an additional scale to load nodes of graphic types extracted from the object of

Scene type. Thus we perform effectively a decomposition of the metamer scale to

a new scale (which we denote as submetamer or organ scale) consisting of

elementary graphic objects as nodes. For each of the four graphic elements, we

designed a specific decomposition scheme:

• ‘internode’ metamer node />Orientation>Translation>Cylinder

• ‘leaf’ metamer node

/>Orientation>Translation>Cylinder[Orientation>Translation>Cylinder

>Scale>Scale>Orientation>Translation>BezierSurface]

• ‘fruit’ metamer node

/>Orientation>Translation>Cylinder[Orientation>Translation>Cylinder

>Scale>Scale>Orientation>Translation>BezierSurface][Scale>Orientat

ion>Translation>Sphere]

• ‘flower’ metamer node

/>Orientation>Translation>Cylinder[Orientation>Translation>Cylinder

][Orientation>Translation>Cylinder][Orientation>Translation>Cylinder

][Orientation>Translation>Cylinder][Orientation>Translation>Cylinder

][Orientation>Translation>Cylinder][Orientation>Translation>Cylinder

][Orientation>Translation>Cylinder][Orientation>Translation>Cylinder

][Orientation>Translation>Cylinder][Scale>Scale>Orientation>Transla

tion>BezierPatch][Scale>Scale>Orientation>Translation>

BezierPatch][Scale>Scale>Orientation>Translation>

BezierPatch][Scale>Scale>Orientation>Translation>

136

BezierPatch][Scale>Scale>Orientation>Translation>

BezierPatch][Orientation>Translation>Cylinder>Scale>Scale>Orientati

on>Translation> BezierPatch]

The algorithm to extract FSP data from data fields of the MTG and load them

into data fields of the XEG by constructing an additional scale (i.e. sub metamer

scale) using the graphic properties of nodes at metamer scale lets the other

properties of nodes at metamer scale unchanged. The topology of the above-

metamer scales remains unchanged as well. Overall, the extract and load processes

from the MTG to the XEG have mainly the purpose to insert all graphic objects

managed by the object of Scene type into the original topology as a new finest scale

(i.e. a fusion of a pair of objects of Scene and MTG types) (c.f. Figure 5.1). Its

essence is topological downscaling.

Figure 5.1 Map for fusion of an object of MTG type (top left) and a corresponding

object of Scene type (bottom left) to an XEG (right). The items in the list of the

latter object link to the nodes of former object by Ids. R, T, C are rotation,

translation, cylinder objects converted from the list items.

137

From the designed C/S-ETL based architecture, we know that the ETL pipeline

from MTG to XEG includes only extract and load processes, which perform

essentially a topology conversion. In practice, we have also included transforming

processes. The reason it that the nodes at the sub metamer scale are designed to be

objects of shape or transformation types, but graphic types of PlantGL and the way

the objects are managed are not compatible with the XEG syntax. The graphic types

of PlantGL require nested graphic objects, i.e. the nodes at the sub metamer scale

must be able to have nodes as properties. This violates the principle of the EG and

thus is not compatible with the XEG syntax. Moreover, the objects of shape and

transformation types are managed in a set, where there are no topological

relationships or edges between the objects, this is also not compatible with the EG’s

property graph nature. To solve the issue, we placed the transforming processes

designed at the server side to the client side. This refers to the transforming

processes from nodes of types available on OpenAlea to nodes of types available

on GroIMP. As only three graphic types are used in MAppleT, putting the

transforming processes on the client side will not cause much substantial impact.

Moreover, putting all processes that are applicable for a specific FSPM together

makes the implementation modular. We thus believe such a practical adjustment is

appropriate.

In this project, there are necessary transforming processes for MTG vertices,

shapes, transformations, and colors. We have treated them differently. (1) The part

of the MTG that is supposed be loaded to the metamer and above-metamer scales

of the XEG are nodes with properties of non-graphic types. They are located in the

object of OpenAlea MTG type textually as entries of a nested Python dictionary.

Hence, they are not typed and it is necessary to assign a data type to them. We have

made a string ‘MtgVertex’ as the type value of these nodes in the XEG. The

properties of the nodes are stored as the properties of the XEG nodes without

effective changes. (2) The part of the MTG supposed be loaded at the sub metamer

scale are graphic object managed by an object of PlantGL Scene type. The managed

138

data include objects of PlantGL types for shape, transformation, color. Actually, the

conversion between nodes of two sets of types available in two graphic libraries is

about the conversion of their properties according to the signatures of their types.

As a graphic type normally has more than one equivalent type signature,

technologies that allow conversion between nodes of types with multiple signatures

are needed. We introduce them later in the next sections. The focus here is about

the algorithms and correspondences between the types used in MAppleT and the

types available in the IMP3D library of GroIMP:

• The first step is to compute the individual transformation matrix applied

to a shape according to the relevant PlantGL type definition.

o Get the transformation matrix of a MTG object od of Oriented

type, which represents a rotation:

𝑂𝑚 = [

𝑃. 𝑥 𝑆. 𝑥 𝑇. 𝑥 0
𝑃. 𝑦 𝑆. 𝑦 𝑇. 𝑦 0
𝑃. 𝑧 𝑆. 𝑧 𝑇. 𝑧 0
0 0 0 1

],

𝑃 = 𝑜𝑑. 𝑝𝑟𝑖𝑚𝑎𝑟𝑦, 𝑆 = 𝑜𝑑. 𝑠𝑒𝑐𝑜𝑛𝑑𝑎𝑟𝑦, 𝑇 = 𝑃 × 𝑆

o Get the transformation matrix of a MTG object td of Translated

type:

𝑇𝑚 = [

1 0 0 𝑇[0]
0 1 0 𝑇[1]
0 0 1 𝑇[2]
0 0 0 1

],

𝑇 = 𝑡𝑑. 𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑖𝑜𝑛

o Get the transformation matrix of a MTG object sd of Scaled type:

139

𝑆𝑚 = [

𝑆[0] 0 0 0
0 𝑆[1] 0 0
0 0 𝑆[2] 0
0 0 0 1

],

𝑆 = 𝑠𝑑. 𝑠𝑐𝑎𝑙𝑒

• The second step is to compute the global transformation matrix Gm

applied to a shape according to the patterns of transformation application

valid for the organ shapes used in MAppleT:

o The transformation matrix applied to a MTG object of Cylinder

type is the result 𝑂𝑚 ∙ 𝑇𝑚

o The transformation matrix applied to a MTG object of Sphere

type is the result 𝑆𝑚 ∙ 𝑂𝑚 ∙ 𝑇𝑚

o The transformation matrix applied to a MTG object of

BezierPatch type is the result 𝑆𝑚1 ∙ 𝑆𝑚2 ∙ 𝑂𝑚 ∙ 𝑇𝑚

• The third step is to compute the local transformation matrix 𝑝2𝑐localm

from location of a parent shape (𝑝𝑎𝑟𝑒𝑛𝑡𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛) to location of a child

shape (𝑐ℎ𝑖𝑙𝑑𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛) using the global transformation matrices

(𝑝𝑎𝑟𝑒𝑛𝑡𝑔𝑙𝑜𝑏𝑎𝑙) and (𝑐ℎ𝑖𝑙𝑑𝑔𝑙𝑜𝑏𝑎𝑙) applied to them:

o 𝑝2𝑐localm = 𝑝𝑎𝑟𝑒𝑛𝑡𝑔𝑙𝑜𝑏𝑎𝑙𝑚
−1 ∙ 𝑐ℎ𝑖𝑙𝑑𝑔𝑙𝑜𝑏𝑎𝑙𝑚

= [

𝑎 𝑏 𝑐 𝑑
𝑒 𝑓 𝑔 ℎ
𝑖 𝑗 𝑘 𝑙
0 0 0 1

] ,

𝑐ℎ𝑖𝑙𝑑𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 = 𝑐ℎ𝑖𝑙𝑑𝑔𝑙𝑜𝑏𝑎𝑙𝑚 ∙ [

0
0
0
1

] ,

140

𝑝𝑎𝑟𝑒𝑛𝑡𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 = 𝑝𝑎𝑟𝑒𝑛𝑡𝑔𝑙𝑜𝑏𝑎𝑙𝑚 ∙ [

0
0
0
1

] .

• The fourth step is to decompose the local transformation matrix to a

sequence of objects of transformation types available in the IMP3D

library according to the shape to which the transformations are applied.

o If the transformation matrix is applied to a MTG object of

Cylinder type, the sequence is ShadedNull object>Translate

object, here the ShadedNull object represents a rotation.

o If the transformation matrix is applied to a MTG object of Sphere

type, the sequence is Scale object>ShadedNull object>Translate

object.

o If the transformation matrix is applied to a MTG object of

BezierPatch type, the sequence is Scale object>Scale

object>ShadedNull object>Translate object.

• The fifth step is to form an XEG node for each transformation object of

a type in PlantGL using an appropriate type in the IMP3D library:

o The object of type Oriented forms an XEG node with type value

‘ShadedNull’, and a property with name ‘transform’ and

value[

𝑎 𝑏 𝑐 0
𝑒 𝑓 𝑔 0
𝑖 𝑗 𝑘 0
0 0 0 1

].

o The object of type Translated forms an XEG node with type

value ‘Translate’, and a property with names ‘translateX’,

‘translateY’ and ‘translateZ’, and their values 0 (c.f. remarks

following later).

141

o The object of type Scaled forms an XEG node with type value

‘Scale’, and a property with names ‘scaleX’, ‘scaleY’ and

‘scaleZ’, and their values 1 (c.f. remarks following later).

• The sixth step is to form an XEG node for each shape object of a type in

PlantGL using an appropriate type in the IMP3D library:

o For a shape cylinder_object of type Cylinder, an XEG node with

type value ‘Cylinder’, a property with name ‘radius’ and value

cylinder_object.radius, a property with name ‘length’ and value

cylinder_object.height.

o For a shape sphere_object of type Sphere, an XEG node with

type value ‘Sphere’, a property with name ‘radius’ and value

sphere_object.radius,

o For a shape bezierPatch_object of type BezierPatch, an XEG

node with type value ‘BezierSurface’, a property with string

‘data’ as name and the float list converted from

bezierpatch_object.ctrlPointMatrix as value, a property with

string ‘dimension’ as name and the dimension number of the

bezierPatch_object.ctrlPointMatrix as value, a property with

string ‘uCount’ as name and bezierpatch_object.Udegree +1 as

value.

One remark is that all graphic transformations in FSPMs are applied to shapes.

Particularly in the FSPM Apple project, the graphic transformations were applied

to 3D shapes that represent real plant modules. The transformation matrix applied

to an XEG node of shape type is to be interpreted relative to its parent node of shape

type. Precisely, it is a matrix describing the transformation from the location of the

reference point of the parent shape node to the location of the reference point of the

child shape node. On the other hand, for the symmetrical shape types (e.g. Cylinder)

142

in the IMP3D library that are commonly used to graphically represent plant

modules, the location of their reference point is normally a ‘starting location’ of

such a shape object. A translation is by default applied to allow the current location

to be updated to the ‘end location’ of the shape during graphical interpretation. On

the other hand, the designed four different decomposition schemes follow the

principle that the topological neighbors are also geometrical neighbors. Thus, if the

translation component of the computed local transformation matrix is not zero, then

it is from the starting location to the ending location of the child shape node. To

avoid the translation to be applied twice when the XEG is imported into GroIMP,

we set it as zero manually. That is reflected by the replacement of d, h, l by ‘0’ in

the transformation matrix of the fifth step. Besides, we use a node of type

ShadedNull to capture the local transformation matrix that excludes the translation

component, and a node of type Scale with values 1 to capture the scales. The reason

we do this instead of decomposing the local transformation matrix that excludes the

translation component into a rotation and a scale is that the BezierSurface has two

applied scales and a rotation, it makes no sense to decompose the local

transformation matrix into two different scales and a rotation. Restoring the

transformation using original types is optional, while ensuring the geometric

correctness is mandatory. As long as the transformation matrix is correct, the

information consistency is guaranteed.

Another remark is that the essence of the node conversion from MTG to XEG is

to find the type correspondence and to establish algorithms to convert properties for

each correspondence. However, one type might have more than one signature with

different combinations of properties that are equivalent with each other. It is

therefore important to find a way to ensure all possible property sets have

correspondences with appropriate property converting algorithms when the node

transformation processes are developed for the integration of all FSPMs based on

the same platforms. Here, the node transformation from MTG to XEG is designed

for the integration of two specific FSPMs. Hence, in the sixth step, we simply

143

established an algorithm to convert the property set of an object of OpenAlea type

actually used in MAppleT to the property set of an object of GroIMP type actually

used in the GroIMP transport model.

5.1.2.2 Algorithms for ETL processes from XEG to MTG

For the opposite direction of data flow at the client side, we designed a set of

algorithms for nodes transforming accompanied by an algorithm for extracting FSP

data from XEG and loading them to MTG. The former includes algorithms to

convert nodes of most commonly used graphic types on GroIMP to graphic types

on OpenAlea. The richness of the algorithms practically enables the transforming

processes of the integration of all FSPMs based on OpenAlea and GroIMP. The

latter includes an algorithm extracting the sub metamer scale and loading them to

an object of PlantGL Scene type, and an algorithm extracting the other scales and

loading them to an object of OpenAlea MTG type. The original objects of OpenAlea

MTG type have a data field ‘id’ with data that links each node at metamer scale to

its graphic properties, namely graphic objects managed by the object of Scene type,

and we keep the id field of nodes at metamer scale. In this way, we guarantee the

validation of separation of graphics to the object of Scene type when data have been

exported back to MTG.

The extract processes for FSP data in XEG include a pre step to divide the XEG

object into an XEG of geometrical structure and an XEG of non-geometrical

structure. The former XEG is to restore the FSP data originating from the object of

PlantGL Scene type. The latter XEG is to restore the FSP data originating from the

object of OpenAlea MTG type. To allow the interface, the division of XEG has to

consider FSP data originating from the simulation of FSPMs based on both

platforms. We have designed a division scheme of two maps to allow the integration

of all FSPMs (c.f. Figure 5.2).

144

A. Map for division of XEG encoding multiscale FSP data

B. Map for division of XEG encoding single scale FSP data

Figure 5.2 The division scheme of XEG

145

Following the map for multiscale FSP data (part A in the Figure 5.2), the nodes

at the scale consisting of geometrical nodes are used to create the geometrical XEG

with the intra scale topology. Moreover, the root of the geometrical XEG will

decompose into all the nodes directly. The other part of the XEG will be used to

create the non-geometrical XEG with topology unchanged.

Following the map for single scale FSP data (part B in the Figure 5.2), the

geometrical XEG is created by a copy of the XEG to be divided. The non-

geometrical XEG will have the finest scale with non-geometrical nodes

corresponding to a group of nodes that consists of one shape node and all its

ancestry transformation nodes until the nearest ancestry shape node in the topology

of the XEG to be divided. Each non-geometrical node will have an id that

corresponds to the order of applying BFS to the finest scale with a group being

regarded as a node. The edges between the groups of nodes are copied to the non-

geometrical XEG. In this way, all structural information is preserved when the

divided XEGs are converted to the objects of MTG and Scene types. Meanwhile,

the structure complies with the way to preserve transformations in OpenAlea and

does not depend on any specific ‘design of metamer’ similar to MAppleT’s four

different kinds of graphical elements as apple tree modules, which are graphic

properties of nodes at the metamer scale of the MTG. The essence of such division

is topological upscaling.

For the geometrical XEG, the extract processes apply a Breadth-first search

(BFS) algorithm. During the transversal, transforming processes for graphic

transformations, shapes, and colors convert from GroIMP types to OpenAlea types.

During the load processes, graphic transformations are applied to shapes and then

the transformed shapes are added to the data structure of an object of PlantGL Scene

type. We have divided the nodes within the geometrical XEG into different

categories according to their data types and handled them differently.

146

XEG node of IMP3D type MTG graphic objects of PlantGL type

Sphere(radius) Sphere(radius), None

Box(length, width, height) Translated(0, 0, z/2, Box(Vector3(length /2, width/2,

height/2)))

Matrix4.translation(Vector3(0, 0, height))

Cone(length, radius) Cone(radius, height=length),

Matrix4.translation(Vector3(0, 0, length))

Cylinder(length, radius) Cylinder(radius, height=length)

Matrix4.translation(Vector3(0, 0, length))

Frustum(length, baseRadius,

topRadius)

Frustum(radius=baseRadius, height=length,

taper=baseRadius/length)

Matrix4.translation(Vector3(0, 0, length))

TextLabel(caption) Text(caption), None

PointCloud(color, points, pointSize) PointSet(pointListpoints, colorListcolor,

width=pointSize), None

Parallelogram(length, width) TriangleSet(pointList, indexList)

pointList=[Vector3(0, 0, 0), Vector3(width, 0, 0),

Vector3(width, 0, length), Vector3(0, 0, length)],

indexList=[(0, 1, 2), (0, 2, 3)], None

Polygon(vertices) TriangleSet(pointListvertices,

indexListvertices), None

BezierSurface(uCount, data,

dimension)

BezierPatch(ctrlPointList (data, dimension)),

None

NURBSCurve(ctrlpoints,

dimension)

If dimension ==2: NurbsCurve2D(ctrlPointList

(ctrlpoints, dimension)),

else: NurbsCurve(ctrlPointList (ctrlpoints,

dimension)), None

NURBSSurface(ctrlpoints, uSize,

vSize, uDegree, vDegree,

dimension)

NurbsPatch(matrixArray(ctrlpoints, uSize, vSize,

dimension), uDegree, vDegree), None

 Table 5.1 Transform schemes for XEG nodes of GroIMP shape types

147

• XEG nodes of normal shape types, including Sphere, TextLabel,

PointCloud, Polygon, BezierSurface, NURBSCurve, NURBSSurface, and

XEG nodes of shape types that apply a default translation from starting

location to ending location of the shapes, including Box, Cone, Cylinder,

and Frustum. For such nodes, corresponding transforming processes take

their properties to create an object of a PlantGL shape type and an object of

PlantGL transformation type (i.e. a matrix instance) that captures the

translation. For nodes of latter types, None is used for the transformation

matrix. As Table 5.1 shows, radius and length of an object of IMP3D

Cylinder type oic are taken to create an object of PlantGL Cylinder type opc

and an object of PlantGL Matrix4 type opm. The values of oic’s properties

are respectively assigned to opc’s properties radius and height, and the

length is applied in the creation of opm as well. In the table the symbol ‘→’is

used to reflect transformations of properties that cannot be expressed in

simple assignments.

• XEG nodes of normal graphic transformation types, including Translate,

Scale, and Rotate, and XEG nodes of types for turtle commands that act as

graphic transformations, including M, RL, RU, RH, RV, RV0, RG, RD, RO,

RP, RN, AdjustLU as well. For such nodes, corresponding transforming

processes take their properties to create a PlantGL transformation matrix.

• XEG nodes of types for a turtle command that act as shapes but take turtle

states as parameters, including F, F0, and M0. For such nodes,

corresponding transforming processes take their properties and relevant

current turtle states (e.g. diameter, length) to create an object of a PlantGL

shape type (i.e. Cylinder) or None (for nodes of type M0) and create a

PlantGL transformation matrix.

• XEG nodes of types for turtle commands that modify states, including V,

Vl, VlAdd, VlMul, VAdd, VMul, L, Ll, LlAdd, LlMul, LAdd, LMul, D, Dl,

148

DlAdd, DlMul, DAdd, DMul, P. For such nodes, corresponding

transforming processes take their properties to modify relevant turtle states.

Particularly for ShadedNull, which is not a turtle command, processes

modify turtle states and create a PlantGL transformation matrix.

To allow the transform processes for the geometrical XEG, an object to store

current turtle states, an object of PlantGL Scene type, and a map to store the current

parent nodes and their global transformation matrix (iterative products of local

transformation matrices produced when applying the BFS) are needed.

In detail, the ETL processes start from the root of the geometrical XEG, which

is not typed, thus no transform process is carried out so that nothing is produced for

loading to the object of PlantGL Scene type, an entry (root:None) is stored in the

map with None as the global transformation matrix GM of the root. Following the

BFS, children nodes of the nodes traversed in the previous step will be traversed as

nodes of the current generation. Corresponding transform processes are carried out

according to the schemes defined in different catalogs. If the transforming result of

an XEG node of the current generation cnd includes a transformation matrix M, its

parent node’s global transformation matrix multiplied by M is stored in the map as

the current node’s global transformation matrix GM. If the result has also a shape,

then the GM is applied to the shape, and the transformed shape is merged in the

object of PlantGL Scene type. Before the next BFS step, an entry of the form (cnd,

GM) is stored in the map. Note that when the operand of a matrix multiplication is

None, it is replaced by an identity matrix.

As L-py does not include the turtle commands as MTG elements, the transform

processes of turtle commands are actually for the execution of the models based on

GroIMP from OpenAlea, which is a special use case of the integrative interface. To

allow a relatively comprehensive usage of turtle commands, we have implemented

the transform processes for most commonly used types of turtle commands and a

turtle state object with all interaction algorithms/patterns originating from GroIMP.

149

One remark concerns the transform processes for nodes of shape types. During

a process, an XEG node is processed according to its type originating from GroIMP.

For most type correspondences, the processes are about to convert the properties to

suit the corresponding OpenAlea type, i.e. a type available in PlantGL. For the types

Parallelogram and Polygon, there are no graphically equivalent types in PlantGL,

thus we have to use alternative types. In our implementation, we used the

TriangleSet type in PlantGL, and the transform processes for nodes of the two types

are based on triangulation algorithms correspondingly. For the type Parallelogram,

we designed a simple algorithm that divides a parallelogram into two head-to-tail

congruent triangles. For the type Polygon, which is a general case, we use a general

algorithm, i.e. the Delaunay triangulation algorithm[153].

Another remark is about the problem that one correspondence of types can have

several equivalent property list/signature correspondences. Unlike the previous

transform processes from MTG to XEG that consider only specific signature

correspondences, the transform processes in this part are supposed to be applicable

for all FSPMs based on GroIMP and OpenAlea. Therefore, we have designed

general algorithms for each type correspondence and implemented them with a

specially designed paradigm available in Python. It combines the *args and

**kwargs Python syntax for defining methods with an indefinite number of

parameters and the object.__getattribute__(self, name) [154] for calling the defined

methods with a given node type.

Besides, it is clear that the algorithm might not restore exactly the transformation

with original types such as Oriented, Translated but with the transformation matrix

type Matrix4. The reason is the same as that given in the first remark in the last

section. Each transform scheme for nodes of types Box, Cone, Cylinder, Frustum

creates not only an object of PlantGL shape type but also an object of PlantGL

transformation matrix type Matrix4 corresponding to the default translation from

starting to ending location of the shape. This effectively ensures the geometry

150

correctness of the transform process from XEG to MTG. To ensure the correctness

of geometrical transformations, the topology at sub metamer scale has been restored

by decomposing the transformation matrix of PlantGL Matrix4 type to the pattern

of applying the transformation to our three types of shapes (c.f. section 5.1.2.1).

The order of the graphic objects to be restored to the object of PlantGL Scene type

has been particularly taken care of (c.f. Figure 5.1).

For the XEG of multiscale structures, the extract processes need to be driven by

a spanning algorithm because at each scale the RGG graph has a general graph

structure while the MTG has a tree structure. The algorithm contains a step to locate

the root of a scale. It starts from the graph root, and then proceeds to the root of the

next finer scale. When such a root is located, a process to carry out a BFS (Depth-

First-Search, DFS could also be used) starts. During this process, a tree structure

using the MTG API is constructed, i.e. a load process while extracting. For each

BFS step, we create corresponding MTG nodes for XEG nodes just traversed and

we create MTG edges for existing edges from the parent node to the current

traversed nodes in the XEG. We create also MTG edges for existing outgoing edges

of decomposition type of XEG nodes just traversed.

It should be emphasized that the geometrical XEG has also a general graph

structure. We do not take the topology into this structure, so the algorithm is simply

the BFS (without creating edges). Besides, as there was no demand in the project,

we have implemented only partially for the map B of the division scheme of XEG

shown in part B of Figure 5.2. The implementation currently allows the geometrical

XEG to be produced, but not the non-geometrical XEG.

Another remark is that the ETL processes for the geometrical and non-

geometrical XEG work cooperatively. This is mainly required by the geometrical

XEGs generated by the simulations of FSPMs based on GroIMP that might have

nodes of extended types. To handle such a situation, the functional properties

obtained through a type extension are added to the nodes at metamer scale of the

151

MTG object produced by the ETL processes for the non-geometrical XEG.

Consequently, the ETL processes for the non-geometrical XEG are executed earlier

than the ETL processes for the geometrical XEG.

5.2 Design and implementation of the component

ServerSideInterface

In our designed component architecture of the FSPM integrative interface, the

component ServerSideInterface consists of six components, which can be divided

into a group for communication and interaction between FSPMs and a group for

ETL processing. The former group includes the component Client and the

component Message as implementation of the FSPM integrative protocol for

receiving & deconstructing the integrative simulation request from the client and

constructing & sending the simulated response to the client. As a part of the

component ServerSideInterface, the group should also include the component

RetroactionChecker and the component SeverFSPMRunner for calling the main

method of the server FSPM and the coordination of retroaction of FSPMs. The latter

group includes the component Graph and the component GraphConverter for FSP

graph conversion between XEG and RGG graph. These are the main parts that

correspond to the ETL pipeline and have been the focus of the introduction.

5.2.1 The communication group at server side

In the communication group of the component ServerSideInterface, the

component Server is for receiving and responding the HTTP messages based on the

specification of the HTTP protocol. The component Message is for request message

destruction and response message construction based on the specification of the

FSPM integrative RPC protocol. In our specific case, the non-retroactive use case

is just for the user to run FSPMs based on GroIMP through the OpenAlea platform,

152

the component RetroactiveChecker is thus just an if-else statement as a part of the

component Graph. For the ServerFSPMRunner, we have implemented a module

using APIs available on GroIMP to get the target FSPM managed by the editor

JEdit, then to compile the FSPM and run its ‘main method’. The focus of this group

is thus on the components Client and Message.

In detail, we have implemented the Master-Slave Pattern to allow simultaneous

requests from multiple clients. The implementation includes a master module as

http request listener and a slave module as http message handler. These correspond

to the components Client and Message respectively. When a request is received, the

master instantiates a slave thread to handle the request, and then resumes listening.

In the meantime, the slave continues its communication with the client. The

implementation is similar to the implementation of the communication group at

client side, but the modules for the components Client and Message at client side

do not have a master-slave relationship, i.e. an instance of a module for the

component Client cannot create an instance of a module for the component

Message. This way ensures sequential execution of FSPMs. By applying the

implementation at server side, the master modules create an HTTP Service bind

with a created slave thread and the Socket (IP address + Port number). The slave

thread takes an initialized graph from the GroIMP current workbench and the

extracted FSPM integrative protocol members ‘model’, ‘main_method’, ‘graph’,

‘time’, ‘restorative’ and ‘id’ to execute the module for the component

ServerFSPMRunner and to reply the generated response message to the client

through the bind Socket. The component ServerFSPMRunner uses the Java

Reflection mechanism applied in GroIMP to get the corresponding method of the

compiled model in the current workbench and iteratively run it using the graph just

converted from the XEG as initial data.

153

5.2.2 The ETL group at server side

In the ETL group of the component ServerSideInterface, the components Graph

and GraphConverter are for ETL processes between XEG and RGG graph. Among

the three processes of ETL, the extract process is driven by the BFS graph-

traversing algorithm and the load process is carried out according to the extracted

FSP data. Similar to the client side, the extract process is based on an implemented

XEG library in Python and the focus of extract and load processes is to ensure the

correctness of the graph topology. As the transform processes for XEG to RGG

graph have been included to the client side and there is no transform process for

RGG graph to XEG at server side, there is actually no transform process on the

server side. However, because of the specific technical setting of the RGG three-

part-graph, we have modified the topology of the XEG to fit this setting when the

extracted topology from the XEG is loaded to the RGG three-part-graph. Similar to

the server side, data of each data field of FSP graphs need to be extracted and loaded

according to the modeling platforms on which the two FSPMs are based, namely

GroIMP and OpenAlea. This means the processes shall be applicable for the

integration of other FSPMs based on the two modeling platforms. Beside the

topology and geometry, other kinds of data fields such as colors have been

considered as well.

To allow the server side to process the request of the RPC call from the client

side, we have designed an algorithm to extract FSP data from an XEG and load it

into an RGG graph. To allow the server side to response the RPC call, we have

designed an algorithm to extract FSP data from an RGG graph (generated by

GroIMP) and load it into an XEG. The implementation of the ETL group at client

side has its focus mainly on the load processes of topology and nodes of the XEG

to the RGG graph and vice versa. In detail, the RGG three-part graph is a pseudo

multiscale graph as a general version of MTG with a general graph at each scale.

Graph operations, such as graph query, can be performed as it is a multiscale graph.

154

However, its actual ‘single’ or multi-scale topology for one or multiple plants does

not comply with standard scaled topology for one or multiple plants because of

GroIMP’s graph setting and rendering mechanism. In fact, the RGG grammars

expect a connection of the graph root to direct neighboring nodes not with

decomposition edges, but with zero or more branch edges and optionally a

successor edge. One plant is topologically connected with others with branch edges.

When the multiscale concept is introduced, a type graph and a scale graph is added

to the original graph to form a three-part graph to allow different scales to be

rendered differently. The root of each scale is connected not only with a node of the

next-coarser scale by a decomposition edge but also with the graph root by a branch

edge. This setting allows the rendering paths of a RGG three-part graph to be

activated and deactivated easily by changing the type of edges from the graph root

to the roots of the scales. Consequently, for loading the XEG topology to the RGG

three-part graph and vice versa, it is necessary to distinguish the case of ‘single’

scale from multiscale. Besides, the RGG graph root can be connected to at most a

successor edge and one or more branch edges according to the specific code of a

GroIMP model because the RGG graph structure is the result of compiling of XL

code, while in our project, the involved FSP data is generated by MAppleT.

Figure 5.3 Topological map between XEG with multiscale FSP data (left) and

RGG graph (right)

155

Therefore, when the FSP data encoded in the XEG is extracted and loaded into the

RGG graph, how the RGG graph root is connected is indeterminate. To address this

issue, we have designed a simplified scheme to map the topology within XEG and

RGG graph. Figure 5.3 shows the map for multiscale topology. In the topology of

an XEG with multiscale FSP data, there are only decomposition edges between

nodes at different scales, while in the topology of a transformed multiscale RGG

graph, there are also branch edges between the graph root and the root of each scale.

Particularly for the nodes at the scale just finer than the graph root (i.e. whole stand

or tree scale), the edges connecting the graph root to them are practically a

replacement of decomposition edges by branch edges. Figure 5.4 shows the map

for ‘single’ scale topology. For a ‘single’ scale XEG, the one or multiple plant cases

are processed differently. The ‘single’ scale RGG graph of multiple plants keeps

Figure 5.4 Topological map between ‘single’ scale XEG (left) and RGG graph

(right)

156

the same correspondence as for the multiscale case, while in the RGG graph for one

plant, the graph root is connected by a successor edge. Maps in the two figures are

bidirectional, which means they describe the ETL pipeline for directions both from

XEG to RGG graph and vice versa. Note that the designed scheme is about to map

the topology of FSP data originating from MAppleT. The FSP data originating from

a GroIMP model simulation can surely be represented with a topology that contains

both successor and branch edges, but when they are transformed through the ETL

pipeline, the resulting topology will comply with the designed scheme. For

example, a typical RGG graph for a single plant with a ‘single’ scale has the form

shown in the bottom right of Figure 5.4. But if the graph root is connected by a

branch edge, the bottom left will be the topology of the resulting XEG, and when

the XEG is converted back to a RGG graph, the bottom right will be the topology

of the resulting RGG graph, which is different from the original topology. The

reason to do so is that the RGG graph is a general graph allowing an arbitrary

configuration yet we need a definite scheme to bridge the gap of topological

difference. Thus, we have designed the scheme that ensures the ‘unchanged’

mapping of topology only for typical usage.

Beside the topological correspondence for the load processes, we have

implemented a mechanism for the property correspondence. The nodes at metamer

and above metamer scales are nodes of non-geometrical types with various

properties. There is a mechanism in GroIMP to declare a Module as a new type that

extends a type existing in GroIMP so that certain new properties can be added, but

there are no data types that directly allow indefinite properties. We have

implemented a new type called PropertyNode with a data field of java.util.List type.

Together with another type called Property, this effectively enables the loading of

nodes of non-geometrical types at metamer and above metamer scales. On the other

hand, as we want the ETL group to be applicable for all FSPMs based on the two

platforms, our implementation of the load process allows RGG graph nodes of

extended types which are obtained from user-declared Modules to be expressed in

157

the XEG (c.f. Figure 4.7), and also XEG nodes with such extended types to be

expressed in the RGG graph. The load processes also provide a solution for the

issue of multiple signatures for the same type: We combine a java list and the java

reflection mechanism [155] to allow various properties to be held temporally and

to be assigned to an object (as RGG graph node) as properties.

5.3 Distinguishing features of the interface

One feature of the interface is the instance of architecture of the implemented

interface, as shown in Figure 5.5. The ETL processes from MTG to XEG at the

Figure 5.5 The instance architecture of the implemented interface for the

integration of target FSPMs

158

client side have a specific implementation that is only applicable for MAppleT, all

the other parts of the interface are applicable for all FSPMs based on

OpenAlea/GroIMP.

Another feature is that the ETL groups at server side are applicable not only for

the integration of the target FSPMs, but also for the invocation of any GroIMP

model from the OpenAlea platform. The role of the integrative FSPM can be shifted

from one model to the other. In other words, FSPMs based on GroIMP can be

client/source and FSPMs based on OpenAlea can be server/target when the

corresponding server and client are further provided.

159

Chapter 6

APPLICATIONS AND ENHANCEMENTS

In this chapter, we introduce the applications of the interface and the

enhancements realized for GroIMP and the interface. The applications include

geometrical upscaling using an XEG with multiscale FSP data converted from an

MTG and the integrative simulation of the target FSPMs of the FSPM Apple

project. The enhancements mainly result from the development of graph query

commands as an addition to the vocabulary of the language XL.

6.1 Geometrical upscaling

After introducing the multiscale concept to the RGG graph, the original single

part graph has been replaced by the three-part graph. The added parts, i.e. the scale

and type graphs clarify the relations between different scales and data types used in

a particular scale [106]. Together with its special multiscale topology mentioned in

the last chapter, rendering of a particular scale becomes possible. On the other hand,

there is a concept called Level of Detail (LOD) [156] in the field of computer

graphics, which is a kind of technique of interactive computer graphics that attempts

to compromise complexity and performance by regulating the amount of detail used

to visually represent the virtual world. The basic idea of LOD is to increase the

160

graphical performance by rendering a scene with a less complex graphical

representation that reduces details for small, distant, or unimportant portions. Many

LOD algorithms have been introduced since the last decade. For us, this approach

has an additional value: FSPMs in principle use graphics to represent plants at organ

level. With the introduction of the multiscale concept, the graphical representation

of plants at organ level is supposed to be distributed to different spatial scales so

that plant functions can be simulated at different spatial resolutions. This can bring

advantages such as simplification of FSPMs using production rules at coarse scales

and higher performance of the computation of functional properties associated with

less complex shapes presenting plant modules. However, there are not much

algorithms established to achieve such purpose. In our project, we have the XEG

converted from the MTG which is produced by a MAppleT simulation that encodes

multiscale plant structures with geometrical objects at the finest scale. We thus take

this opportunity to try to develop LOD algorithms to allow the plant functions to be

simulated at different scales, which we call geometrical upscaling.

The basis of our algorithms is the bounding volume concept, namely using a

closed but simpler volume that completely contains the union of a set of geometrical

objects to improve graphical performance. The common bounding volumes include

bounding box, bounding sphere and convex hull. We have developed two

algorithms of geometrical upscaling using bounding box and convex hull. Applying

the algorithms, a bounding volume of geometrical objects (also nodes) at a finer

scale is computed to represent a node at a coarse scale that directly or indirectly

decomposes into the nodes at the finer scale. In detail, the first step is to perform a

RGG graph query to get all nodes at a coarse scale. These nodes in our case are

non-geometrical nodes and are of PropertyNode type after being loaded to the RGG

graph. The nodes are retrieved by using RGG query syntax. For such a node at a

coarse scale, the nodes into which it decomposes at the sub metamer scale of the

XEG are used to compute a bounding box or a convex hull of a type that extends

both PropertyNode and relevant geometrical types (here we have used MeshNode

161

as the base type.). Then all properties of a node at the coarse scale are duplicated to

the computed bounding box or convex hull. Finally, the corresponding volume

replaces the node at coarse scale through a graph rewriting. In addition to the main

steps, a pre step that creates the type and scale structure is necessary to allow the

scales with different geometry to be visualized in an interactive manner.

The key of the algorithms are the methods to compute the bounding box and

convex hull of a set of geometrical objects of Cylinder, Sphere and BezierSurface

type. The idea of the methods is to get the extreme points of the geometrical objects

of such types at their default positions in the coordinates systems. For the Cylinder,

its default position is defined as the basal circle lying in a plane spanned by the X

and Y-axes, with its center as coordinate origin. Thus, the defined extreme points

are expressed using its parameters, the length l of the cylinder and radius r of the

basal circle, as follows:

(𝑟, 𝑟, 0), (−𝑟, 𝑟, 0), (−𝑟,−𝑟, 0), (𝑟, −𝑟, 0),

(𝑟, 𝑟, 𝑙), (−𝑟, 𝑟, 𝑙), (−𝑟,−𝑟, 𝑙), (𝑟, −𝑟, 𝑙)

For the Sphere, its default position is defined as the center of the sphere being in

the origin of the coordinates. Thus, the defined extreme points are expressed using

its parameter, the radius r of the sphere, as follows:

(𝑟, 𝑟, 𝑟), (𝑟, −𝑟, 𝑟), (−𝑟, 𝑟, 𝑟), (−𝑟, −𝑟, 𝑟),

(𝑟, 𝑟, −𝑟), (𝑟, −𝑟,−𝑟), (−𝑟, 𝑟, −𝑟), (−𝑟, −𝑟,−𝑟)

For the BezierSurface, its control points are directly used as its extreme points,

which are constructed using its parameters data (i.e. a float array of coordinate

components of all control points) and dimension. This leads to a bounding volume

that is just an approximation of the minimal bounding volume.

162

For the algorithm of computing the bounding box and convex hull, we use in

both cases a three dimensional implementation of the Quickhull algorithm [157],

which computes the convex hull of a set of 3D points. We did it in this way for the

following reasons. On one hand, a box can be constructed as a convex hull of eight

extreme points. On the other hand, the issue of default translation where using

directly the IMP3D type Box for computing the bounding box is avoided. One

remark is that the computed bounding box is axis aligned as we compute the

extreme points from the transformed shapes (i.e. shapes with global coordinates).

We have done an experiment with an XEG of made-up structure of two

schematic plants with an organ and a tree scale to test the geometrical upscaling and

the switch of scales with type and scale graphs. This effectively validates the extract

and load processes at server side from XEG to RGG graph for multi-scales/plants

cases. In Figure 6.1, part A shows the RGG graph extracted and loaded from XEG.

Part B shows the result of geometrical upscaling applied to the RGG graph. The

non-geometrical node of ‘PropertyNodeImpl’ type at coarse scale has been replaced

by the geometrical node of ‘PropertyMeshNodeT’ type, which is the bounding box

computed from the corresponding organs at finer scale. Part C shows the result of

adding scale and type graphs after the geometrical upscaling. Those two graphs

makes it is possible to activate and deactivate the rendering of a scale (i.e. to switch

the scales).

163

A. An XEG of two plants with two scales converted into an RGG graph

Non-Geometrical typed

node at tree scale

Geometrical typed

node at tree scale

B. Geometrical upscaling of the RGG graph converted from XEG

164

We then geometrically upscaled an XEG converted from an MTG (c.f. XL code

in section 7.3), which encodes a plant having an additional organ scale and original

metamer, growth unit, tree scales with ‘leaf’ and ‘internode’ metamers, using both

bounding box (c.f. Figure 6.2) and convex hull (c.f. Figure 6.3).

Scale graph

Type graph

Geometrical

typed node

at tree scale

Figure 6.1 Geometrical upscaling with bounding box for multiple plants at two

scales from which an interactive choice is possible by the panel in the upper-

right corner.

C. Geometrically upscaled RGG three-part graph after switching off the tree

scale

165

A. Original Geometry from the RGG graph at organ scale

B. Geometry upscaled from organ to metamer scale

166

C. Geometry upscaled from organ to growth unit (GU) scale

D. Geometry upscaled from organ to tree scale

Figure 6.2 Geometrical upscaling with axis-aligned bounding box. The data

originally encoded in the MTG are loaded into the RGG graph with their original

geometry at the additional organ scale (A) and geometries upscaled to metamer

scale (B), growth unit scale (C), and tree scale (D).

167

A. Original geometry from the RGG graph at organ scale

B. Geometry upscaled from organ to metamer scale

168

C. Geometry upscaled from organ to growth unit (GU) scale scale

D. Geometry upscaled from organ to tree scale

Figure 6.3 Geometrical upscaling with convex hull. The data originally encoded

in the MTG are loaded into the RGG graph with their original geometry at the

additional organ scale (A) and geometries upscaled to metamer scale (B), growth

unit scale (C), and tree scale (D).

169

6.2 The integration of different FSPMs using the

interface

After comprehensive introduction of the integrative middleware, i.e. the

interface, we move to the application. Before we integrated the target FSPMs, we

have performed several experiments which exhibit the practical usage of the

interface and validate its implementations.

Figure 6.4 The identical results of the same GroIMP model directly run on GroIMP

(left) and invoked from OpenAlea through a FSPM integrative RPC call (right).

170

We have firstly tried an experiment to test the interface by applying a simulation

of a GroIMP model at the OpenAlea side, that means to just make a FSPM

integrative RPC call by directly providing all the request members of message body

including the model (i.e. XL code, it is possible also to have the it at server side).

Figure 6.4 shows the graphic views of the simulation results of a GroIMP model.

The right panel shows the graphic view of the simulation ‘executed’ at the

OpenAlea side by making a FSPM integrative RPC call. The graphic view is

identical with the graphic view of the simulation executed directly at the GroIMP

side. Notice that an object of PlantGL TriangleSet type consists of two objects of

PlantGL Triangle type and represents an object of Parallelogram type of IMP3D. It

is also noticeable that the message structure members ‘graph’ and ‘model’ here are

single scaled. Consequently, the experiment validates the implementations for the

communication group at both client and server side, the ETL group at both sides,

especially the transform process at client side including turtle commands and

triangulation of Parallelogram, the extract and load processes at both sides for a

topology of a ‘single’ scaled model and multiple plants.

A. FSP data representing a small apple tree

171

We tried a second experiment to test the interface by applying ETL processes to

three MTGs generated by MAppleT simulations that encode a small apple tree with

only internodes and leaves, a medium apple tree including flowers, and a large apple

tree with apple fruit. Figure 6.5 shows the three virtual apple trees encoded in RGG

Figure 6.5 FSP data in RGG graph (left)/MTG (right) after ETL processed

B. FSP data representing an apple tree with flowers

C. FSP data representing an apple tree with fruits

172

graph and MTG. All three virtual apple trees encoded in RGG graph are loaded

from three XEGs generated by the ETL processes of ClientSideInterface in the

direction of MTG to XEG. The virtual apple tree encoded in MTG at the right side

of part A is the original result from the MAppleT simulation. The other two virtual

apple trees encoded in MTG on the right side of part B and C are converted from

the two corresponding virtual apple trees encoded in RGG graph on the left via

XEGs (through an ETL process from RGG graph to XEG and an ETL process from

XEG to MTG). Figure 6.6 shows partially the topology of the RGG graph converted

from the XEG encoding the small apple tree (the topology embodying the

decomposition scheme of ‘leaf’ metamer nodes M1 and M2 can be directly viewed).

Such an experiment geometrically validates the ETL processes at both client and

server sides.

Figure 6.6 The topology of the RGG graph converted from an XEG encoding a

small apple tree from MAppleT shown in 2D on GroIMP

Nodes at sub metamer scale

Nodes at metamer scale

Nodes at GU

scale

A node at tree scale

Successor edge

Branch edge

Decomposition

edge

173

We tried a third experiment to test the interface by applying a simulation of a

simple GroIMP model through ETL processes. We used a GroIMP model with a

single production rule to change the color of plant modules representing internodes,

then loaded the modified FSP data to XEG and sent them back to

ClientSideInterface. Thus the XEG appears to correctly present the plant structure

with modified color. Figure 6.7 shows that the plant structure is correctly

represented in different MTGs and RGG graphs with modified color. This

experiment approved that the FSP data passed through ETL processes by the

interface can be further processed by a GroIMP model, and the processed results

with updated data can be correctly re-encoded in MTG for MAppleT’s further

simulation. One remark is that the nodes in a RGG graph are initially of a graphic

type without functional properties, which is exactly the case for XEG as it is

converted from MTG. It is necessary to allow the simulated functional properties

Figure 6.7 Experiment to test the interface by a GroIMP color-changing model.

The arrow points to show the flow of data between different data models and

FSPM.

174

to be stored in the RGG graph imported from XEG. We first came up with the

approach to replace an original node by a module type that extends the type of the

original node. This approach complies with the GroIMP method to define a plant

module with functional properties but it brings some inconveniencies. In fact, after

the GroIMP model simulation, the result needs to be converted back to XEG. At its

finest scale, the nodes with functional properties are of extended module types. The

interface converts the nodes to objects of PlantGL types to form an object of

PlantGL Scene type. That means the properties need to be moved and added up to

nodes at metamer scale. Therefore, we think it is appropriate to directly sum up the

values of all properties of nodes at the finest scale that are decomposed from a

metamer node to be summed to the corresponding properties of the metamer node.

Such a process avoids the type extension and is actually a property upscaling. It is

necessary to have such property upscaling for the retroactive simulation because

the simulated result needs to be converted back to MTG which has its properties

carried not by graphic objects but by nodes at metamer or coarser scales. Figure 6.8

shows an example of property upscaling that sums up the property

‘interceptedLightAmount’ from four different nodes (G1, G2, G3 and G4) at growth

unit scale to a node (T1) at tree scale. Notice that this particular method was chosen

because it meets our specific needs. There are various other methods for property

upscaling besides this method.

175

After the experiments, we can now perform a simulation of the integrated FSPM

by using the interface. Through the interface, MAppleT and the GroIMP transport

model were supposed to be integrated as one model that was supposed to be able to

simulate apple tree growth by considering the water and sugar conditions. However,

we have changed the simulation plan for internal reasons. The new plan was to

integrate a GroIMP light model with MAppleT. MAppleT is a stochastic model that

does not take any functional conditions except gravity to compute the structure of

apple trees. An intermediate OpenAlea FSPM that takes light conditions to compute

the photosynthesis is planned to do a pre simulation before that done by MAppleT.

MAppleT then takes over the tree structure with properties of assimilate content

from photosynthesis to play with the size of each plant module. In such a way, the

project can be validated and the concept of the integration of different FSPMs can

be approved as well.

Figure 6.8 An example of property upscaling.

176

A Module that extends the ray tracer based GroIMP type SpotLight is used in the

light model as the type of light source. We set up a particular position for the light,

and varied the light energy (i.e. the power in Watt) and the number of rays. We

want to compare the MAppleT simulated structure by different light energy (same

numbers of rays), and by different numbers of rays (same light energy). The light

model computes the amount of light being absorbed by the plant modules and we

assumed that only green plant modules can intercept light.

So far, we are still working at the simulation of the integrated FSPM through the

interface in cooperation with our French partners.

6.3 The enhancements of GroIMP and the

interface

During the application of the interface, we have found that the RGG three-part

graph lacks possibilities for query in a multiscale manner for the usage in XL

imperative code blocks. We thus developed some query commands to bridge the

difference between the true graph topology and the multiscale topology to allow the

graph to be used as a ‘real’ multiscale graph.

• findParent (Node n): find the parent nodes of the parameter node

• findChildren (Node n): find the children nodes of the parameter node

• findComplex (Node n): find the coarse node that decomposes into the

parameter node

• findComponents (Node n): find the nodes into which the parameter node

decomposes

177

• findFinestComponents (Node n): find the nodes at finest scale that are

accessible by paths of decomposition edges from the parameter node.

• findAllNodesAtSameScale (Node n): find all nodes at the scale that the

parameter node locates

• getScaleNumber (Node n): get the index of the scale where the parameter

node locates. Such index is defined to identify the topological position in

an RGG graph with linearly ordered scales. In other words, such indexing

concept only applies to a specific variant of the RGG graph.

• getRootsAtScale (Int scaleNumber): get the root node at a scale specified

by the parameter scaleNumber

• getNodesAtScale (Int scaleNumber): get all nodes at a scale specified by

the parameter scaleNumber

• getMaxScaleNumber (): get the maximum number of scales for the

current RGG graph.

• getGraphScaleNumber (): get the number of scales for the current RGG

graph. (normally a universal root represents the scale of the whole graph,

with number 0, consequently graphScaleNumber =getMaxScaleNumber

+1)

• getGraphRoot(): get the root node of the current RGG graph

Besides, the ETL components at the server side effectively make the XEG

become a possible data format ideally suited for FSPMs based on GroIMP to

preserve its simulation results and to restart simulation using the preserved results.

Thus, we have developed software modules to allow the manual import and export

of XEG through graphic user interface (GUI, c.f. Figure 6.9). This calls the ETL

processes just like the component ‘Message’ does.

178

To facilitate the usage of the ClientSideInterface (with a given name ‘groalea’

to be integrated as a part of the OpenAlea package), we developed graphical

components to allow different FSPMs to be integrated by the usual way of

OpenAlea, i.e. to form a workflow by drag/drop of the components and connecting

them with edges. Some workflows for the integration case of our projects are also

provided as examples (c.f. Figure 6.10).

Figure 6.9 GUI for manual import (top) and export (bottom) of XEG

179

To facilitate the usage of the ServerSideInterface, a GUI module (c.f. Figure

6.11) to allow the server to be launched has also been provided. After it is launched,

the client can start the integrative simulation for both retroaction and non-

retroaction.

Figure 6.10 Graphical components (top) of groalea and an example of visual

workflow (bottom) to run a FSPM at server side constructed using the graphic

components.

180

6.4 Discussion and conclusions

The designed middleware technology - FSPM integrative RPC protocol, the

component model, and the C/S-ETL based architecture provide a comprehensive

and generic technical framework for the integration of different FSPMs. Its

effectiveness has been approved through the developed interface for our specific

project. This enables the integration of MAppleT with a FSPM based on GroIMP

and further integration of FSPMs based on the two platforms. Hence, we conclude

that our design and developments fully fulfill the objective of the FSPM Apple

project and the PhD tasks. On the other hand, we have also witnessed some collision

for the concept of the integration of different FSPMs. In our project, the objective

is to have an integrated model that simulates growth of an apple tree considering

the water and sugar transport. However, MAppleT itself is a stochastic model that

does not take any functional aspects to compute the growth of apple trees. So to

allow the integration, MAppleT needs to ‘modify’ its core production rules, from

stochastically based to biological function based. In the application, even another

model computing photosynthesis is used to bridge the gap between apple tree

growth and intercepted light. Although the component based structure coming with

the integration enables high flexibility and some of the developed components are

reusable for further integration, such a situation of collision indicates the concept

Figure 6.11 GUI components on GroIMP to launch the integrative server

181

of integration of different FSPMs might be valid in general, but its adaptability to

specific projects needs to be verified beforehand. Moreover, estimations will have

to be made to compare the cost of the integration of different FSPMs with the

alternative of directly enriching the existing FSPMs by adding modules.

Beside of our project, some other project attempting to integrate different FSPMs

have been carried out as well, including the integration of FSPMs based on GroIMP

and PyGMAlion (Plant Growth Modeling Analysis and Identification) [158], the

integration of FSPMs based on OpenAlea and a specific FSPM called RATP

(Radiation Absorption, Transpiration and Photosynthesis) [159], and the integration

of FSPMs based on OpenAlea and the Lignum model [160].

PyGMAlion is a platform that provides assistance to the development of FSPMs,

mainly through model comparison and selection [161], parameter estimation [162],

sensitivity analysis [163], uncertainty analysis [164]. An interface [165] was

established to allow the communication between FSPMs based on GroIMP and

PyGMAlion for sensitivity analysis. The communication is based on an exchange

of data that is managed by a CSV (Comma-Separated Values) based simple data

model, where FSPMs based on GroIMP provide simulation inputs and outputs for

the sensitivity analysis by PyGMAlion. From the point of view of application, the

integration through the interface is not exactly an integrative simulation of plant

growth like the integration through our interface, but about the analysis of the

relationships between specific inputs and outputs of a FSPM. The exchanged data

is not functional and structural plant data, i.e. an instance of an FSP graph, but

values of some specific numerical properties. Thus, no structural (topology and

geometry) alignment is involved. From the point of view of data/information

interoperability, the integration is different from ours. On the other hand, the

integration involves process interoperation with fixed syntax, including the syntax

of run.sh and commands to run a sensitivity analysis algorithm. The user of the

interface determines the semantics, i.e. the meaning of a specific interoperation

182

between an FSPM model and a sensitivity analysis algorithm. Thus, from the point

of view of process interoperability, this integration is similar to ours. Overall, the

integration can be regarded as the non-retroactive case of our case.

RATP is a FSPM for light interception, water consumption, and carbon

allocation of a tree using the Beer Lambert law, transpiration and photosynthesis

models. It has been enclosed as a component provided to the OpenAlea users for

building FSPMs. The model was developed in the end of last century by Fortran 90

language. The tree structure is represented by 3D raster graphics, i.e. an array of 3D

voxels that does not capture explicit neighboring relationships (topology) between

plant modules (functional units). It was enclosed in OpenAlea through the

mechanism of two-way conversion between the 3D array of voxels and MTG. The

essence of such mechanism is to provide the data/information interoperability

between RATP and the other FSPMs by taking the MTG as a canonical data model.

Besides, the mechanism provides Python functions to allow the communication

between RATP and other FSPMs. Thus from the point of view of interoperability

of both data/information and processes, the integration is similar to ours. However,

the canonical data model originated from a specific need with a tree structure with

separated topology and geometry, while the communication is based on some

specific function available on OpenAlea (in Python), which greatly reduces its

adaptability. Thus such mechanism is limited to the usage of enclosing models in

the OpenAlea platform and enabling the integration of FSPMs through OpenAlea.

Lignum is an FSPM developed in the late 1990s and a XML based data format

was included in 2006. The model includes a standard overcast sky based light model

to allow the modeling of the interaction between plant structure (growth) and

functions (light interception and photosynthesis). An interface [166, 167] has been

created to allow the model to be executed under OpenAlea so that the light model

can be compared with the light models available on OpenAlea (e.g. RATP).

Through the interface, the MTG and Lignum XML based data models are

183

interoperable in both directions. This integration is a simplified version of our

integration, which enables the data/information interoperability by direct

conversion without canonical data model as intermediate. Thus, the interface is

dedicated to this specific integration and cannot be reused by other integration

projects. Moreover, the integration does not involve the interoperability of

processes, thus the interface is indeed only for the comparison of the simulation

results of different models, not for a cooperative simulation of different models.

In addition to the integration of FSPMs, OpenAlea has also been enriched by

integrations using wrapper tools such as Boost.Python [168], SWIG (Simplified

Wrapper and Interface Generator) [169] to integrate C/C++ based libraries to

Python based platforms, F2PY [170] to integrate Fortran based libraries to Python

based platforms. A typical example is PlantGL that was originally developed in

C++ and has been integrated [55] to OpenAlea as its basis of geometrical modeling

of plants using the wrapper tool Boost.Python. This kind of integration is the

integration of modeling tools, not of the FSPMs themselves. Unlike the integration

of FSPMs, where the FSPMs are software with comparable functions (FSP data

processing) with comparable technologies applied, the tools have incomparable

functions with incomparable technologies applied (graphics library for 3D

modeling, MTG for multiscale topology modeling). Thus, we have here are actually

general software integrations, or more precisely a software composition. For this, a

general canonical data model is not possible and the integration is limited by the

specific technologies, e.g., wrappers, with an interoperability that is limited to the

technical level.

Through the comparison between the other integrations and ours, we can

conclude that our integration indeed provides a generic solution at both

methodological and technical levels for the integration of a specific type of

software, i.e. different FSPMs. To illustrate the integration capabilities of the

designed techniques and the implemented interface, we compare integration

184

solutions based on our techniques with an example hosted on a single platform, an

FSPM called MuSCA.

MuSCA is a multiscale FSPM to compute carbon allocation at different user

defined spatial scales, allowing the comparison of results and estimation of the

impact of the scale setting [171] . It is a modular model that takes use of some

components on and through OpenAlea, including MTG (with PlantGL) as its data

model and RATP for light interception. Besides, it simulates biomass accumulation

using a carbon flow model that represents the flow as a function of source and sink

inversely related to distance and resistance (friction) in-between. The RATP light

interception model computes the absorbed light amount using 3D voxels/raster

graphics which is less precise than the vector graphics based FSPM such as GroIMP

ray tracer based models, while the carbon flow model considers only the distance

and friction which is less precise than FSPMs based on Munch flow [136, 172].

Consequently, MuSCA can only simulate a less precise biomass accumulation and

provides a rough assessment for different scale settings. If our interface is applied,

the intercepted light amount and biomass accumulation can be more precisely

computed by the integrated FSPMs available on GroIMP.

On the other hand, the designed technologies and the implemented interface have

also some limitations. For the designed technologies, the major one is the lack of

measures to allow simultaneous simulations. In other words, the current design and

implementation allows only a sequential integrative simulation of different FSPMs.

Besides, we designed the component model with an architecture that has the

component ConfManager at client side to allow the plant scientists to input the

configuration setup for the integration based on biological knowledge, without

providing any standard to define the inputs. Both the two limitations are caused by

lack of biological background and high diversity of different FSPMs. We think

some sort of standardized input format to allow the coordination of simulation of

different FSPMs can be a realizable target. For the implemented interface, it

185

certainly has the limitations of the used technologies. Another major limitation for

the interface is that the integrative protocol is not standardized yet, thus it is limited

to the usage of OpenAlea and GroIMP based FSPMs, and it is still a middleware

with regard to FSPMs. This means that the FSPMs based on platforms that are

different from the two need to have a library to support XEG processing before they

can be integrated using the protocol. Such kind of library in different programming

environments can be provided as an alternative way of protocol standardization.

Finally, our interface has the potential to enable a two-way integration of FSPMs

based on GroIMP and OpenAlea. To turn such potential into reality, the client at

GroIMP side, the server at OpenAlea side, and the extension of the implementation

for the map for division of XEG encoding single scale FSP data to allow both

geometrical and non-geometrical XEG to be generated is needed.

186

Chapter 7

APPENDICES

7.1 The technical documents of the interface for

the integration of target FSPMs

7.1.1 The specification of XEG

The data model XEG is specified mainly by an XML schema [173]:

<?xml version="1.0" encoding="utf-8" ?>
<xs:schema elementFormDefault="qualified"
 xmlns:xs="http://www.w3.org/2001/XMLSchema">
 <xs:element name="graph" type="Graph" />
 <xs:complexType name="Graph">
 <xs:sequence minOccurs="0" maxOccurs="unbounded">
 <xs:element name="type" type="Type" minOccurs="0"
maxOccurs="unbounded" />
 <xs:element name="root" type="Root" minOccurs="0" maxOccurs="1" />
 <xs:element name="node" type="Node" minOccurs="0"
maxOccurs="unbounded" />
 <xs:element name="edge" type="Edge" minOccurs="0"
maxOccurs="unbounded" />
 </xs:sequence>
 </xs:complexType>

187

 <xs:complexType name="Edge">
 <xs:attribute name="id" type="id_type" use="optional" />
 <xs:attribute name="src_id" type="id_type" use="required" />
 <xs:attribute name="dest_id" type="id_type" use="required" />
 <xs:attribute name="type" type="xs:string" use="required" />
 </xs:complexType>

 <xs:simpleType name="float_type">
 <xs:restriction base="xs:float" />
 </xs:simpleType>

 <xs:simpleType name="int_type">
 <xs:restriction base="xs:int"/>
 </xs:simpleType>

 <xs:simpleType name="list_of_float_type">
 <xs:list itemType="float_type" />
 </xs:simpleType>

 <xs:simpleType name="list_of_int_type">
 <xs:list itemType="int_type" />
 </xs:simpleType>

 <xs:simpleType name="float4x4_type">
 <xs:restriction base="list_of_float_type">
 <xs:minLength value="16" />
 <xs:maxLength value="16" />
 </xs:restriction>
 </xs:simpleType>

 <xs:simpleType name="matrix_type">
 <xs:annotation>
 <xs:documentation>
 Matrix transformations embody mathematical changes to
 points within a coordinate systems or the coordinate
 system itself. The matrix element contains a 4-by-4
 matrix of floating-point values.
 </xs:documentation>
 </xs:annotation>
 <xs:restriction base="float4x4_type" />
 </xs:simpleType>

 <xs:simpleType name="float3x1_type">
 <xs:restriction base="list_of_float_type">
 <xs:minLength value="3"/>
 <xs:maxLength value="3"/>
 </xs:restriction>
 </xs:simpleType>

188

 <xs:simpleType name="float4x1_type">
 <xs:restriction base="list_of_float_type">
 <xs:minLength value="4"/>
 <xs:maxLength value="4"/>
 </xs:restriction>
 </xs:simpleType>

 <xs:simpleType name="rgb_type">
 <xs:restriction base="float3x1_type"/>
 </xs:simpleType>

 <xs:simpleType name="rgba_type">
 <xs:restriction base="float4x1_type"/>
 </xs:simpleType>

 <xs:simpleType name="list_of_float">
 <xs:restriction base="list_of_float_type"/>
 </xs:simpleType>

 <xs:simpleType name="list_of_int">
 <xs:restriction base="list_of_int_type"/>
 </xs:simpleType>

 <xs:simpleType name="id_type">
 <xs:restriction base="xs:long" />
 </xs:simpleType>

 <xs:complexType name="Node">
 <xs:sequence maxOccurs="unbounded" minOccurs="0">
 <xs:element name="property" type="Property" />
 </xs:sequence>
 <xs:attribute name="id" type="id_type" use="required" />
 <xs:attribute name="type" type="xs:string" use="optional" />
 <xs:attribute name="name" type="xs:string" use="optional" />
 </xs:complexType>

 <xs:complexType name="Property">
 <xs:choice minOccurs="0" maxOccurs="1">
 <xs:element name="matrix" type="matrix_type" />
 <xs:element name="rgb" type="rgb_type" />
 <xs:element name="rgba" type="rgba_type" />
 <xs:element name="list_of_int" type="list_of_int" />
 <xs:element name="list_of_float" type="list_of_float" />
 </xs:choice>
 <xs:attribute name="name" type="xs:string" use="required" />
 <xs:attribute name="value" type="xs:string" use="optional" />
 <xs:attribute name="type" type="xs:string" use="optional" />
 </xs:complexType>

189

 <xs:complexType name="Type">
 <xs:sequence minOccurs="1" maxOccurs="1">
 <xs:element name="extends" type="ExtendsType"
minOccurs="1" maxOccurs="1" />
 <xs:sequence minOccurs="0" maxOccurs="unbounded">
 <xs:element name="implements"
type="ImplementsType" />
 </xs:sequence>
 <xs:sequence maxOccurs="unbounded" minOccurs="0">
 <xs:element name="property" type="Property" />
 </xs:sequence>
 </xs:sequence>
 <xs:attribute name="name" type="xs:string" />
 </xs:complexType>

 <xs:complexType name="ImplementsType">
 <xs:attribute type="xs:string" name="name" />
 </xs:complexType>

 <xs:complexType name="ExtendsType">
 <xs:attribute type="xs:string" name="name" />
 </xs:complexType>

 <xs:complexType name="Root">
 <xs:annotation>
 <xs:documentation>
 Root is an extra node and does NOT refer to an
 existing node in the node array. It is used with its ID
 to model the edges. This node is mapped in GroIMP as an
 object of class Node.
 </xs:documentation>
 </xs:annotation>
 <xs:attribute name="root_id" type="id_type" use="required">
 </xs:attribute>
 </xs:complexType>
</xs:schema>

190

7.1.2 The package diagram of the ClientSideInterface

191

7.1.3 The package diagram of the ServerSideInterface

192

7.2 The user manual of the interface

7.2.1 The installation of the interface

The interface has been developed on top of GroIMP and OpenAlea, as a

middleware between platforms and FSPMs. It consists of two parts, the

ClientSideInterface on top of OpenAlea and the ServerSideInterface on top of

GroIMP. Each part is supposed to be included in the new version of the

corresponding platform. Before that, the two parts of the interface have to be

installed separately, in a developer mode, under Linux (Ubuntu is recommended).

To install the two parts of the interface in developer mode, the pre-condition is to

check out the code of each corresponding platforms.

For ClientSideInterface (named ‘groalea’), the source code of the most recent

version of the OpenAlea platform needs to be checked out from its official

repository. However, the source code of the most recent version did not work

correctly during the project. We have used the source code with three packages

(Openalea-1.2.0.tar.gz, VPlants-1.2.0.tar.gz, Alinea_1_0.tar.gz) of an earlier

version (release 0.9) from this webpage:

(http://openalea.gforge.inria.fr/wiki/doku.php?id=download:source_distribution).

Once the three packages are retrieved to the local operation system, they can be

installed by following the instructions for Ubuntu 12.10 under the section

Compilation from sources at this webpage:

(http://openalea.gforge.inria.fr/wiki/doku.php?id=documentation:user:ubuntu#dep

endencies).

When the three packages of the OpenAlea platform release 0.9 have been

installed correctly, the interface can be installed by following the steps below:

http://openalea.gforge.inria.fr/wiki/doku.php?id=download:source_distribution
http://openalea.gforge.inria.fr/wiki/doku.php?id=documentation:user:ubuntu#dependencies
http://openalea.gforge.inria.fr/wiki/doku.php?id=documentation:user:ubuntu#dependencies

193

1. Clone the remote repository to local using the command

git clone https://github.com/longmanplus/groalea.git

2. Go to the directory of the local package where the setup.py is located.

3. Install groalea using the command

python setup.py install

Or, to contribute on the interface, use the command

python setup.py develop

General instructions for the working on a github project can be found here:

http://virtualplants.github.io/contribute/devel/workflow-github.html#workflow-

github

For the ServerSideInterface, the source code of the most recent version of the

GroIMP platform needs to be checked out from its official repository, on

SourceForge. The IDE Eclipse is recommended. The source code of GroIMP can

be found here: https://sourceforge.net/p/groimp/code/HEAD/tree/ . To install the

platform, all packages except ExchangeGraph, OpenAlea, Graph, RGG need to be

checked out from the trunk using Eclipse (c.f. Figure 7.1). (Note the interface

includes the first two packages. The package Graph has the dupnew method added

to /Graph/src/de/grogra/graph/impl/Node.java for duplication of nodes and

properties of a node, the package RGG has new query methods for multiscale RGG

graphs. They enable geometrical upscaling.)

https://github.com/longmanplus/groalea.git
http://virtualplants.github.io/contribute/devel/workflow-github.html#workflow-github
http://virtualplants.github.io/contribute/devel/workflow-github.html#workflow-github
https://sourceforge.net/p/groimp/code/HEAD/tree/

194

Figure 7.1 The packages/files to be checked out from the trunk of the GroIMP

SVN repository

195

Then, the source code of the interface needs to be checked out from the branch

named FSPM Apple (c.f. Figure 7.2) by firstly selecting the files, then clicking on

the Check Out item on the right-click menu.

Figure 7.2 The packages to be checked out from the FSPM Apple branch of the

GroIMP SVN repository

196

7.2.2 The usage of the interface

There are three scenarios of using the interface: calling FSPMs based on GroIMP

from OpenAlea, integration of the FSPMs, saving simulation results to XEG. These

scenarios involve the usage of groalea under OpenAlea except the last one, which

mainly refers to the scenario for GroIMP (OpenAlea has already the possibility to

save the simulation result in files, i.e. MTG file/.mtg, Scene file/.bgeom).

The usage of groalea under OpenAlea starts by launching OpenAlea by the

command visualea. and launching GroIMP by the following instructions.

Click the Run button on the Eclipse main panel, and click Run Configurations…

on the appeared drop-down menu. Then right click the item Java Application on

the appeared Run Configurations panel, and click the item New on the appeared

menu to create a new configuration.

On the appeared panel on the right side, the configuration just created needs to

be adjusted with a given name as you like, under the tab Main, the Project must be

Platform-Core, Main class must be de.grogra.pf.boot.Main. Under the tab

Arguments, the Program arguments must be --project-tree (c.f. Figure 7.3).

Figure 7.3 Adjustment for the created configuration under Eclipse.

197

Then the GroIMP platform can be launched by clicking Run button to run the

created configuration. On the appeared GroIMP main panel, click OpenGroIMP,

then click the item Start HTTP Server for OpenGroIMP (c.f. Figure 6.11), a

dialogue box Start OpenGroIMP Server will appear to allow the input of a port

number (with pre filled number ‘58070’) . When the port number is provided, the

server can be launched by clicking the button OK in the dialogue box.

To call FSPMs based on GroIMP from OpenAlea, continue with the following

steps:

1. Construct a workflow similar to LSystem in a loop, where axiom.xeg is

an input XEG file, axiom.xl is an input model source code file, ‘run’ is

the name of the ‘main’ method of the input model. Double click the range

box, the range dialogue box with three modifiable value items appears.

Those are start, step, and end values of a ‘for loop’ (c.f. Figure 6.10). The

member of message body ‘time’ is set using the loop values. (Note that

we set the default value of the server host and port to ‘localhost’, i.e.

127.0.0.1, and ‘58070’). The host can be modified by connecting a string

box with given IP value (similar the ‘run’ box) to the red point on the

right side of the box http connection. The default port number is not

supposed to be modified, unless a different port number has been agreed

upon, and the GroIMP side has launched the OpenGroIMP server with

the agreed port number.

2. At the top of the panel Visualea, click on WorkSpace, then click the item

Run to run the simulation of the constructed workflow in the current

workspace.

To run the integrative simulation of the FSPMs, the pre-condition is to have the

.mtg and .bgeom file pairs, or the objects of MTG and Scene types available. The

latter case needs to have MAppleT available as a visual component in OpenAlea to

198

construct a workflow. However, for internal reasons, we currently do not have it

available. Thus, the current possibility is to run the integrative simulation manually

under the former pre-condition.

With the available .mtg and .bgeom file pairs, a workflow similar to the example

workflow MAppleT mtg + scene to XEG (c.f. Figure 7.4) needs to be created. The

box addMTGProperty adds a property with initial value zero to every MTG node

except the root with a given name. The box produceXEGfile generates an XEG file

with a given full name. Conversely, a workflow similar to the example workflow

XEG to mtg + scene (c.f. Figure 7.5) needs to be created. Through the box

xeg2MtgAndScene, an XEG file can be converted to an object of MTG type and

an object of Scene type. The results can be further processed by MAppleT, or

explored (e.g. explored graphically by box plot3D).

Figure 7.4 The way to run the example workflow MAppleT mtg + scene to XEG

199

To allow the generated XEG to be processed by a GroIMP model, it needs to be

imported to the workbench where the model is compiled. Click on Objects on the

main panel of GroIMP, and then click on the item Insert File on the appeared menu.

Then, an XEG can be chosen for importing through the appeared Open File

dialogue box, just click Open, the XEG file will be imported. Then, the GroIMP

model can be run to modify the imported graph. At the end, the graph needs to be

exported to an XEG by clicking on View on the View panel, then click on item

Export on the appeared menu. Then an XEG can be exported to a chosen directory

with a given name through the appeared Export dialogue box. The steps to save

simulation results to XEG are essentially the steps to export an XEG file (c.f. Figure

6.9).

Figure 7.5 The example workflow XEG to mtg + scene

200

7.3 The source code for the experiments of

geometrical upscaling

import de.grogra.ext.exchangegraph.graphnodes.*;

scaleclass ScaleTree;

scaleclass ScaleGU;

scaleclass ScaleMetamer;

scaleclass ScaleOrgan;

module PropertyMeshNodeN extends PropertyMeshNode;

module PropertyMeshNodeGU extends PropertyMeshNode;

module PropertyMeshNodeT extends PropertyMeshNode;

public void geoUpScale2M ()

[

 n:PropertyNodeImpl,

 (!empty((*n /> ShadedNull*))

 && empty((*n /> />ShadedNull*)))

 ==> m:PropertyMeshNodeN

 {//m.dupnew(getMesh(getComponentBasedConvexhull(n, false)), false, null);

 m.dupnew(getMesh(getComponentBasedABBHull(n, true)), false, null);

 m.setNodeProperties(n.getNodeProperties());

 m.setShader(RGBAShader.BLUE);};

]

public void geoUpScale2GU ()

[

 n:PropertyNodeImpl,

 (!empty((*n /> PropertyMeshNodeN*))

 && empty((*n /> /> />ShadedNull*)))

 ==> m:PropertyMeshNodeGU

 {//m.dupnew(getMesh(getComponentBasedConvexhull(n, false)), false, null);

 m.dupnew(getMesh(getComponentBasedABBHull(n, true)), false, null);

 m.setNodeProperties(n.getNodeProperties());

 m.setShader(RGBAShader.BLUE);};

]

201

Remark: the method addScaleTypeGraph has to be executed when all the

upscaling methods have been executed. The source code allows geometrical

upscaling from sub metamer scale to metamer (M), growth unit (GU) and tree (T)

scales using Convexhull or Axis-aligned Bounding Box based on convex hull

(ABBHull). To allow the former, it is necessary to use the green line of each

upscaling method, and comment out the next line. To visually switch the scales

represented by bounding volumes interactively, one needs to click on View on the

View panel, and click the item Scales on the appeared menu (c.f. Figure 6.9). In

the appeared dialogue box, the view of different bounding volumes of scales can

public void geoUpScale2T ()

[

 n:PropertyNodeImpl,

 (!empty((*n /> PropertyMeshNodeGU*))

 && empty((*n /> /> /> />ShadedNull*)))

 ==> m:PropertyMeshNodeT

 {//m.dupnew(getMesh(getComponentBasedConvexhull(n,false)), false, null);

 m.dupnew(getMesh(getComponentBasedABBHull(n, true)), false, null);

 m.setNodeProperties(n.getNodeProperties());

 m.setShader(RGBAShader.BLUE);};

]

public void addScaleTypeGraph()

[

 RGGRoot ==>> ^ [

 /> TypeRoot

 /> {# nt: PropertyMeshNodeT #}

 /> {# ngu: PropertyMeshNodeGU #}

 /> {# m: PropertyMeshNodeN #}

 /> {# tt:Translate ts:Scale tr:ShadedNull

 sc:Cylinder ss:Sphere sn: NURBSSurface #}]

 [/>SRoot

 /> scaleTree:ScaleTree

 /> scaleGU:ScaleGU

 /> scaleM:ScaleMetamer

 /> scaleOrgan:ScaleOrgan],

 scaleTree +> {# nt #},

 scaleGU +> {# ngu #},

 scaleM +> {# m #},

 scaleOrgan +>{# tt ts tr sc ss sn #};

]

202

then be switched by checking or unchecking the corresponding checkboxes (c.f.

Figure 6.2, Figure 6.3). This code computes bounding volumes for different scales

based on the sub metamer scale, i.e., the finest scale, where the geometrical nodes

are located. It is also possible to compute the bounding volumes for a scale

iteratively, based on the next-finer scale. This requires the warranty to ensure the

finer scale has already a geometry. The computed bounding volumes obtained from

the two ways (in both cases, ABBHull and Convex hull) for a given scale are

identical because the extreme points are the same and straight lines connect them.

203

204

REFERENCES

[1] I. Sommerville, Software Engineering. Addison-Wesley Publishing Company, 2011, p.

792.

[2] P. Prusinkiewicz and A. Lindenmayer, The Algorithmic Beauty of Plants. Springer-

Verlag, 1990, p. 228.

[3] IDABC, "Draft document as basis for EIF version 2.0," ed: European Communities,

2008, p. 79.

[4] J. F. Kurose and K. W. Ross, Computer Networking: A Top-Down Approach, 6th ed.

Pearson, 2012, p. 864.

[5] Oracle Corporation. (2010, 12 Dec 2018). Message-Oriented Middleware (MOM).

Available: https://docs.oracle.com/cd/E19316-01/820-6424/aeraq/index.html

[6] M. Jan. (18 Dec 2018). Pixels and voxels, the long answer. Available:

https://medium.com/retronator-magazine/pixels-and-voxels-the-long-answer-

5889ecc18190

[7] G. Hohpe and B. Woolf, Enterprise Integration Patterns: Designing, Building, and

Deploying Messaging Solutions. Addison-Wesley Longman Publishing Co., Inc., 2003, p.

480.

[8] Oracle Corporation. (18 Dec 2018). Introduction to Web Service Technologies. Available:

https://docs.oracle.com/cd/E13224_01/wlw/docs103/guide/webservices/conBasicWebSer

viceTechnologies.html

[9] H. Kubicek and R. Cimander, "Three dimensions of organizational interoperability,"

European Journal of ePractice, vol. 6, pp. 1-12, 2009.

[10] D. S. Rosenblum. (2001, 10 April 2019). Interoperability & Middleware [PDF].

Available: https://www.ics.uci.edu/~taylor/ICS221/slides/interoperability

[11] C. Godin. (2007, 19 Dec 2018). Manipulating plant architecture as Multiscale Tree

Graphs. Available:

http://openalea.gforge.inria.fr/wiki/doku.php?id=documentation:demo:mtg_reconstructio

n

[12] C. Godin, "Representing and encoding plant architecture: A review," Ann. For. Sci., vol.

57, no. 5, pp. 413-438, 2000.

[13] K. Smoleňová. (2010, 10 April 2019). Introduction to rule-based modelling with GroIMP

[PDF]. Available: http://www.sccg.sk/~smolenova/elearning/ks_ecp10.pdf

[14] Q. Long, W. Kurth, C. Pradal, V. Migault, and B. Pallas, "An Architecture for the

Integration of Different Functional and Structural Plant Models," in Proceedings of the

7th International Conference on Informatics, Environment, Energy and Applications,

Beijing, China, 2018, pp. 107-113: ACM.

[15] Y. Ong, K. Streit, M. Henke, and W. Kurth, "An approach to multiscale modelling with

graph grammars," Annals of Botany, vol. 114, no. 4, pp. 813-827, 2014.

[16] P. T. Cox and S. Baoming, "A formal model for component-based software," in

Proceedings IEEE Symposia on Human-Centric Computing Languages and

Environments (Cat. No.01TH8587), 2001, pp. 304-311.

[17] Q. Long and W. Kurth, "A logical data exchange model for adapting different methods

abstracting plant architecture," in 2017 2nd International Conference on Knowledge

Engineering and Applications (ICKEA), 2017, pp. 39-43: IEEE.

[18] C. Godin and H. Sinoquet, "Functional–structural plant modelling," New Phytologist, vol.

166, no. 3, pp. 705-708, 2005.

https://docs.oracle.com/cd/E19316-01/820-6424/aeraq/index.html
https://medium.com/retronator-magazine/pixels-and-voxels-the-long-answer-5889ecc18190
https://medium.com/retronator-magazine/pixels-and-voxels-the-long-answer-5889ecc18190
https://docs.oracle.com/cd/E13224_01/wlw/docs103/guide/webservices/conBasicWebServiceTechnologies.html
https://docs.oracle.com/cd/E13224_01/wlw/docs103/guide/webservices/conBasicWebServiceTechnologies.html
https://www.ics.uci.edu/~taylor/ICS221/slides/interoperability
http://openalea.gforge.inria.fr/wiki/doku.php?id=documentation:demo:mtg_reconstruction
http://openalea.gforge.inria.fr/wiki/doku.php?id=documentation:demo:mtg_reconstruction
http://www.sccg.sk/~smolenova/elearning/ks_ecp10.pdf

205

[19] J. Vos, J. B. Evers, G. H. Buck-Sorlin, A. Bruno, C. Michael, and P. H. De Visser,

"Functional-structural plant modelling: A new paradigm in crop science," Comparative

Biochemistry and Physiology a - Molecular & Integrative Physiology, vol. 153a, no. 2,

pp. S223-S223, Jun 2009.

[20] J. Vos, L. Marcelis, and J. Evers, "Functional-structural plant modelling in crop

production: adding a dimension," Wageningen UR Frontis Series, vol. 22 Functional-

Structural Plant Modelling in Crop Production, pp. 1-12, 2007.

[21] IDABC, "European interoperability framework for pan-European e-government services

v1.0," ed. Luxembourg: European Communities, 2004, p. 26.

[22] G. Buck-Sorlin, "Functional-Structural Plant Modeling," in Encyclopedia of Systems

Biology, W. Dubitzky, O. Wolkenhauer, K.-H. Cho, and H. Yokota, Eds. New York, NY:

Springer, 2013, pp. 778-781.

[23] R. Sievanen, C. Godin, T. D. DeJong, and E. Nikinmaa, "Functional-structural plant

models: a growing paradigm for plant studies," Annals of Botany, vol. 114, no. 4, pp. 599-

603, Sep 2014.

[24] B. Bayol, P. H. Cournède, J. Sainte-Marie, G. Viaud, F. Chi, W. Kurth, Q. Long, J.

Merklein, K. Streit, E. Costes, V. Migault, B. Pallas, G. Buck-Sorlin, M. Poirier-Pocovi,

and C. Pradal, "Multiscale functional-structural plant modelling at the example of apple

trees: Project description," in 2016 IEEE International Conference on Functional-

Structural Plant Growth Modeling, Simulation, Visualization and Applications (FSPMA),

Qingdao, China, 2016, pp. 1-5: IEEE.

[25] W. Kurth, G. Buck-Sorlin, E. Costes, and P.-H. Cournède, "Multiscale functional-

structural plant modelling at the example of apple trees," Unpublished Project Proposal,

2014.

[26] E. Costes, C. Smith, M. Renton, Y. Guédon, P. Prusinkiewicz, and C. Godin, "MAppleT:

simulation of apple tree development using mixed stochastic and biomechanical models,"

Functional Plant Biology, vol. 35, no. 10, pp. 936-950, 2008.

[27] T. M. DeJong, D. Da Silva, J. Vos, and A. J. Escobar-Gutierrez, "Using functional-

structural plant models to study, understand and integrate plant development and

ecophysiology," Annals of Botany, vol. 108, no. 6, pp. 987-989, Oct 2011.

[28] C. Pradal, S. Dufour-Kowalski, F. Boudon, C. Fournier, and C. Godin, "OpenAlea: a

visual programming and component-based software platform for plant modelling,"

Functional Plant Biology, vol. 35, no. 9-10, pp. 751-760, 2008.

[29] N. Chomsky, "Three Models for the Description of Language," IEEE Transactions on

Information Theory, vol. 2, no. 3, pp. 113-124, 1956.

[30] N. Chomsky, "On certain formal properties of grammars," Information and Control, vol.

2, no. 2, pp. 137-167, 1959.

[31] W. Petersen. (2006, 10 April 2019). Introduction to the Theory of Formal Languages

[PDF]. Available: https://user.phil.hhu.de/~petersen/Riga/print_Folien_Riga_NLT.pdf

[32] A. Lindenmayer, "Mathematical Models for Cellular Interactions in Development .I.

Filaments with 1-Sided Inputs," Journal of Theoretical Biology, vol. 18, no. 3, pp. 280-

299, 1968.

[33] A. Lindenmayer, "Mathematical Models for Cellular Interactions in Development .2.

Simple and Branching Filaments with 2-Sided Inputs," Journal of Theoretical Biology,

vol. 18, no. 3, pp. 300-315, 1968.

[34] A. Lindenmayer, "Developmental systems without cellular interactions, their languages

and grammars," Journal of Theoretical Biology, vol. 30, no. 3, pp. 455-484, 1971.

[35] D. van Dalen, "A note on some systems of Lindenmayer," Mathematical Systems Theory,

vol. 5, no. 2, pp. 128-140, 1971.

[36] G. Rozenberg and P. G. Doucet, "On 0L-Languages," Information and Control, vol. 19,

no. 4, pp. 302-318, 1971.

[37] G. T. Herman, "Computing ability of a developmental model for filamentous organisms,"

Journal of Theoretical Biology, vol. 25, no. 3, pp. 421-435, 1969.

https://user.phil.hhu.de/~petersen/Riga/print_Folien_Riga_NLT.pdf

206

[38] W. A. O. Feurzeig, "Programming-Languages as a Conceptual Framework for Teaching

Mathematics. Final Report on the First Fifteen Months of the LOGO Project," Bolt,

Beranek and Newman, Inc., Cambridge, MAR-1889, 1969.

[39] W. Feurzeig and G. Lukas, "LOGO-A Programming Language for Teaching

Mathematics," Educational Technology, vol. 12, no. 3, pp. 39-46, 1972.

[40] P. Prusinkiewicz, "Graphical applications of L-systems," presented at the Proceedings on

Graphics Interface '86/Vision Interface '86, Vancouver, British Columbia, Canada, 1986.

[41] R. Mech, P. Prusinkiewicz, and J. Hanan, "Extensions to the graphical interpretation of L-

systems based on turtle geometry," Unpublished Report, 1997.

[42] H. Abelson and A. A. diSessa, Turtle geometry : the computer as a medium for exploring

mathematics. Cambridge: MIT Press, 1980.

[43] M. Gardner, "Mathematical games: An array of problems that can be solved with

elementary mathematical techniques," Scientific American, vol. 216, no. 3, pp. 124-129,

1967.

[44] A. Lindenmayer and P. Prusinkiewicz, "Developmental Models of Multicellular

Organisms: A Computer Graphics Perspective," in Proceedings of the Interdisciplinary

Workshop on the Synthesis and Simulation of Living Systems (ALIFE '87), Los Alamos,

NM, USA, 1987, pp. 221-250.

[45] P. Prusinkiewicz, A. Lindenmayer, and J. Hanan, "Developmental models of herbaceous

plants for computer imagery purposes," SIGGRAPH Comput. Graph., vol. 22, no. 4, pp.

141-150, 1988.

[46] F. P. Preparata and R. T.-Y. Yeh, Introduction to Discrete Structures for Computer

Science and Engineering. Addison-Wesley Longman Publishing Co., Inc., 1973, p. 354.

[47] A. Lindenmayer, "Adding continuous components to L-systems," in L Systems, G.

Rozenberg and A. Salomaa, Eds. Berlin, Heidelberg: Springer, 1974, pp. 53-68.

[48] J. S. Hanan, "Parametric L-systems and their application to the modelling and

visualization of plants," The University of Regina (Canada), 1992.

[49] A. J. Hanson, "Geometry for n-dimensional graphics," Graphics Gems IV, vol. 443, pp.

149-170, 1994.

[50] P. Schneider and D. H. Eberly, Geometric Tools for Computer Graphics. Elsevier, 2002.

[51] I. E. Sutherland, "Three-dimensional data input by tablet," Proceedings of the IEEE, vol.

62, no. 4, pp. 453-461, 1974.

[52] J. D. Foley, A. Van Dam, S. K. Feiner, J. F. Hughes, and R. L. Phillips, Introduction to

Computer Graphics. Addison-Wesley, Reading, 1994.

[53] D. Hearn, M. P. Baker, and M. P. Baker, Computer Graphics With OpenGL. Pearson

Prentice Hall Upper Saddle River, NJ, 2004.

[54] A. Kaufman, D. Cohen, and R. Yagel, "Volume graphics," Computer, vol. 26, no. 7, pp.

51-64, 1993.

[55] C. Pradal, F. Boudon, C. Nouguier, J. Chopard, and C. Godin, "PlantGL: A Python-based

geometric library for 3D plant modelling at different scales," Graphical Models, vol. 71,

no. 1-6, pp. 1-21, 2009.

[56] W. Kurth, Growth Grammar Interpreter GROGRA 2.4 - A software tool for the 3-

dimensional interpretation of stochastic, sensitive growth grammars in the context of

plant modelling. Göttingen, Germany: Research Center Forest Ecosystems of the

University of Göttingen, vol. B38, 1994, p. 192.

[57] D. Da Silva, F. Boudon, C. Godin, and H. Sinoquet, "Multiscale framework for modeling

and analyzing light interception by trees," Multiscale Modeling & Simulation, vol. 7, no.

2, pp. 910-933, 2008.

[58] O. Kniemeyer, "Rule-based modelling with the XL/GroIMP software," in The Logic of

Artificial Life: Abstracting and Synthesizing the Principles of Living Systems;

Proceedings of the 6th German Workshop on Artificial Life, April 14-16, 2004, Bamberg,

Germany, 2004, p. 56: IOS Press.

207

[59] A. V. Aho, J. E. Hopcroft, and J. Ullman, Data Structures and Algorithms, 1st ed.

Addison-Wesley Longman Publishing Co., Inc., 1983, p. 427.

[60] Y. Weimin and W. Weimin, Data Structure: C Language Edition, 1st ed. Bejing:

Tsinghua University Press, 2002, p. 334.

[61] G. Simsion and G. Witt, Data Modeling Essentials. Morgan Kaufmann Publishers Inc.,

2004, p. 560.

[62] R. Hirschheim, H. K. Klein, and K. Lyytinen, Information systems development and data

modeling: conceptual and philosophical foundations. Cambridge University Press, 1995.

[63] P. P.-S. Chen, "The entity-relationship model--toward a unified view of data," ACM

Trans. Database Syst., vol. 1, no. 1, pp. 9-36, 1976.

[64] S. Shixuan and W. Shan, Introduction to Database Systems, 3th ed. Beijing: Higher

Education Press, 2000, p. 461.

[65] J. D. Ullman, Principles of Database Systems, 2nd ed. New York, NY, USA: W. H.

Freeman & Co., 1983, p. 484.

[66] J. D. Ullman, Principles of Database and Knowledge - Base Systems, Vol. I. New York,

NY, USA: Computer Science Press, Inc., 1988, p. 631.

[67] D. C. Tsichritzis and F. H. Lochovsky, "Hierarchical Data-Base Management: A Survey,"

ACM Comput. Surv., vol. 8, no. 1, pp. 105-123, 1976.

[68] J. P. Fry and E. H. Sibley, "Evolution of Data-Base Management Systems," ACM

Comput. Surv., vol. 8, no. 1, pp. 7-42, 1976.

[69] P. S. Strauss and R. Carey, "An object-oriented 3D graphics toolkit," SIGGRAPH

Comput. Graph., vol. 26, no. 2, pp. 341-349, 1992.

[70] P. S. Strauss, "IRIS Inventor, a 3D graphics toolkit," SIGPLAN Not., vol. 28, no. 10, pp.

192-200, 1993.

[71] J. Rohlf and J. Helman, "IRIS performer: a high performance multiprocessing toolkit for

real-time 3D graphics," in the 21st annual conference on Computer graphics and

interactive techniques, 1994, pp. 381-394, 192262: ACM.

[72] G. Falk, "Interpretation of imperfect line data as a three-dimensional scene," Artificial

Intelligence, vol. 3, pp. 101-144, 1972.

[73] N. Badler and R. Bajcsy, "Three-dimensional representations for computer graphics and

computer vision," in ACM SIGGRAPH Computer Graphics, 1978, vol. 12, no. 3, pp. 153-

160: ACM.

[74] I. Robinson, J. Webber, and E. Eifrem, Graph Databases: New Opportunities for

Connected Data. O'Reilly Media, Inc., 2015, p. 238.

[75] M. A. Rodriguez and P. Neubauer, "Constructions from dots and lines," Bulletin of the

American Society for Information Science and Technology, vol. 36, no. 6, pp. 35-41,

2010.

[76] D. Alocci, J. Mariethoz, O. Horlacher, J. T. Bolleman, M. P. Campbell, and F. Lisacek,

"Property Graph vs RDF Triple Store: A Comparison on Glycan Substructure Search,"

PLOS ONE, vol. 10, no. 12, p. 17, 2015.

[77] J. J. Miller, "Graph database applications and concepts with Neo4j," in Southern

Association for Information Systems Conference, Atlanta, GA, USA, 2013, pp. 135-140.

[78] T. M. Schorsch and D. A. Cook, "Evolutionary Trends of Programming Languages," The

Journal of Defense Software Engineering, pp. 4-9, Feb. 2003.

[79] P. Prusinkiewicz, J. Hanan, and R. Měch, "An L-System-Based Plant Modeling

Language," Berlin, Heidelberg, 2000, pp. 395-410: Springer.

[80] M. James, J. Hanan, and P. Prusinkiewicz, "CPFG version 2.0 user's manual,"

Unpublished User's Manual, 1993.

[81] R. Mech, M. James, M. Hammel, J. Hanan, and P. Prusinkiewicz. (2004, 10 April 2019).

CPFG version 4.0 user’s manual [PDF]. Available:

http://algorithmicbotany.org/lstudio/CPFGman.pdf

http://algorithmicbotany.org/lstudio/CPFGman.pdf

208

[82] R. Karwowski and P. Prusinkiewicz, "Design and Implementation of the L+C Modeling

Language," Electronic Notes in Theoretical Computer Science, vol. 86, no. 2, pp. 134-

152, 2003.

[83] P. Prusinkiewicz and R. Karwowski, "The L+C Plant-Modelling Language," Wageningen

UR Frontis Series, vol. 22 Functional-Structural Plant Modelling in Crop Production, pp.

27-42, 2007.

[84] R. Karwowski and B. Lane. (2006, 10 April 2019). LPFG user’s manual [PDF].

Available: http://algorithmicbotany.org/lstudio/LPFGman.pdf

[85] P. Prusinkiewicz, "Art and Science for Life: Designing and Growing. Virtual Plants with

L-systems," in XXVI International Horticultural Congress: Nursery Crops; Development,

Evaluation, Production and Use, 2004, pp. 15-28: International Society for Horticultural

Science (ISHS), Leuven, Belgium.

[86] R. Karwowski and P. Prusinkiewicz, "The L-system-based plant-modeling environment

L-studio 4.0," in Proceedings of the 4th International Workshop on Functional-Structural

Plant Models, 2004, pp. 403-405: UMR AMAP Montpellier, France.

[87] O. Kniemeyer, G. H. Buck-Sorlin, and W. Kurth, "A graph grammar approach to artificial

life," Artificial Life, vol. 10, no. 4, pp. 413-431, 2004.

[88] W. Kurth, "Specification of morphological models with L-systems and relational growth

grammars," Image–Journal of Interdisciplinary Image Science, vol. 5, no. 1, pp. 50-79,

2007.

[89] R. Hemmerling, O. Kniemeyer, D. Lanwert, W. Kurth, and G. Buck-Sorlin, "The rule-

based language XL and the modelling environment GroIMP illustrated with simulated

tree competition," Functional Plant Biology, vol. 35, no. 10, pp. 739-750, 2008.

[90] O. Kniemeyer, G. Buck-Sorlin, and W. Kurth, "GroIMP as a platform for functional-

structural modelling of plants," Wageningen UR Frontis Series, vol. 22 Functional-

Structural Plant Modelling in Crop Production, pp. 43-52, 2007.

[91] O. Kniemeyer, "Design and implementation of a graph grammar based language for

functional-structural plant modelling," PhD Thesis, Brandenburg University of

Technology, Cottbus, Germany, 2008.

[92] W. Kurth, O. Kniemeyer, and G. Buck-Sorlin, "Relational growth grammars - A graph

rewriting approach to dynamical systems with a dynamical structure," Unconventional

Programming Paradigms, LNCS, vol. 3566, pp. 56-72, 2005.

[93] F. Boudon, C. Pradal, T. Cokelaer, P. Prusinkiewicz, and C. Godin, "L-Py: An L-System

Simulation Framework for Modeling Plant Architecture Development Based on a

Dynamic Language," Frontiers in Plant Science, Methods vol. 3, no. 76, 2012.

[94] F. Boudon, T. Cokelaer, C. Pradal, and C. Godin. (2017, 11 Oct 2018). Lpy User Guide.

Available: https://lpy.readthedocs.io/en/latest/index.html

[95] F. Boudon, T. Cokelaer, C. Pradal, and C. Godin, "L-Py, an open L-systems framework

in Python," in 6th International Workshop on Functional-Structural Plant Models, 2010,

pp. 116-119.

[96] F. Boudon, T. Cokelaer, C. Pradal, and C. Godin. (2017, 10 April 2019). LPy

Documentation [PDF]. Available: https://media.readthedocs.org/pdf/lpy/develop/lpy.pdf

[97] C. Pradal, C. Fournier, P. Valduriez, and S. Cohen-Boulakia, "OpenAlea: scientific

workflows combining data analysis and simulation," in Proceedings of the 27th

International Conference on Scientific and Statistical Database Management, 2015, p.

11: ACM.

[98] C. Pradal, S. Dufour-Kowalski, F. Boudon, and N. Dones, "The architecture of

OpenAlea: A visual programming and component based software for plant modeling," in

5th International Workshop on Functional and Structural Plant Models, Napier, Zealand,

2007, no. 25, pp. 1-4.

[99] G. Rozenberg, Handbook of Graph Grammars and Computing by Graph Transformation.

Worldscientific, 1997.

http://algorithmicbotany.org/lstudio/LPFGman.pdf
https://lpy.readthedocs.io/en/latest/index.html
https://media.readthedocs.org/pdf/lpy/develop/lpy.pdf

209

[100] C. Godin and Y. Caraglio, "A Multiscale Model of Plant Topological Structures," Journal

of Theoretical Biology, vol. 191, no. 1, pp. 1-46, 1998.

[101] K. Arnold, J. Gosling, and D. Holmes, The Java programming language. Addison

Wesley Professional, 2005.

[102] R. Gallardo, S. Hommel, S. Kannan, J. Gordon, and S. B. Zakhour, The Java Tutorial: A

Short Course on the Basics, 6th ed. Addison-Wesley Professional, 2014, p. 864.

[103] Oracle Corporation. (2018, 11 Oct 2018). Java Platform Standard Edition 8

Documentation. Available: https://docs.oracle.com/javase/8/docs/

[104] M. F. Sanner, "Python: a programming language for software integration and

development," J Mol Graph Model, vol. 17, no. 1, pp. 57-61, 1999.

[105] Python Software Foundation. (2018, 11 Oct 2018). Python 2.7.15 documentation.

Available: https://docs.python.org/2/index.html

[106] Y. Ong, "Extension of the Rule-Based Programming Language XL by Concepts for

Multi-Scaled Modelling and Level-of-Detail Visualization," PhD thesis, Georg-August

University School of Science (GAUSS), University of Göttingen, 2015.

[107] T. Cokelaer and C. Pradal. (2013, 11 Oct 2018). Openalea mtg documentation. Available:

http://openalea.gforge.inria.fr/doc/vplants/newmtg/doc/_build/html/contents.html

[108] C. Godin, E. Costes, and H. Sinoquet, "A method for describing plant architecture which

integrates topology and geometry," Annals of Botany, vol. 84, no. 3, pp. 343-357, 1999.

[109] O. Kniemeyer, M. Henke, Y. Ong, R. Hemmerling, and Q. Long. (2017, 11 Oct 2018).

GroIMP Source Code. Available:

https://sourceforge.net/p/groimp/code/HEAD/tree/trunk/

[110] F. Boudon, C. Pradal, and C. Nouguier. (2011, 11 Oct 2018). VPlants PlantGL

documentation. Available:

http://openalea.gforge.inria.fr/doc/vplants/PlantGL/doc/_build/html/contents.html

[111] B. Randell, "Software engineering in 1968," in 4th International Conference on Software

Engineering, Munich, Germany, 1979, pp. 1-10: IEEE Press.

[112] A. Brennecke and R. Keil-Slawik, "History of Software Engineering," in Position Papers

for Dagstuhl Seminar, 1996, vol. 9635.

[113] C. W. Krueger, "Software reuse," ACM Comput. Surv., vol. 24, no. 2, pp. 131-183, 1992.

[114] B. Boehm, "A view of 20th and 21st century software engineering," in 28th international

conference on Software engineering, Shanghai, China, 2006, pp. 12-29, 1134288: ACM.

[115] J. Huang and H.-g. Zhao, "Software Reuse, Software Composition and Software

Integration," (in Chinese), Application Research of Computers, vol. 21, no. 9, pp. 118-

120, 2004.

[116] W. Hasselbring, "Information system integration," Commun. ACM, vol. 43, no. 6, pp. 32-

38, 2000.

[117] I. Foster, C. Kesselman, J. M. Nick, and S. Tuecke, "Grid services for distributed system

integration," Computer, no. 6, pp. 37-46, 2002.

[118] R. Land and I. Crnkovic, "Existing approaches to software integration–and a challenge

for the future," Integration, vol. 40, pp. 58-104, 2004.

[119] P. A. Bernstein, "Middleware: a model for distributed system services," Commun. ACM,

vol. 39, no. 2, pp. 86-98, 1996.

[120] R. E. Schantz and D. C. Schmidt, "Middleware for distributed systems: Evolving the

common structure for network-centric applications," Encyclopedia of Software

Engineering, vol. 1, pp. 1-9, 2001.

[121] R. Klischewski, "Information Integration or Process Integration? How to Achieve

Interoperability in Administration," Berlin, Heidelberg, 2004, pp. 57-65: Springer.

[122] T. J. Mowbray and R. Zahavi, The essential CORBA: systems integration using

distributed objects. Wiley New York, 1995.

[123] Audacia. (10 April 2019). SYSTEMS INTEGRATION APPROACHES [PDF]. Available:

https://www.audacia.co.uk/media/1137/audacia_whitepaper_integration.pdf

https://docs.oracle.com/javase/8/docs/
https://docs.python.org/2/index.html
http://openalea.gforge.inria.fr/doc/vplants/newmtg/doc/_build/html/contents.html
https://sourceforge.net/p/groimp/code/HEAD/tree/trunk/
http://openalea.gforge.inria.fr/doc/vplants/PlantGL/doc/_build/html/contents.html
https://www.audacia.co.uk/media/1137/audacia_whitepaper_integration.pdf

210

[124] C. T. Howie, J. C. Kunz, and K. H. Law, "Software interoperability," Center for

Integrated Facility Engineering, Stanford University117, 1996.

[125] S. Koussouris, F. Lampathaki, and D. Askounis. (2015, 10 April 2019). Interoperability

[PDF]. Available:

http://academics.epu.ntua.gr/LinkClick.aspx?fileticket=curWlwV0WY8=&tabid=385&m

id=2317

[126] K. Kosanke, "ISO Standards for Interoperability: a Comparison," London, 2006, pp. 55-

64: Springer.

[127] J. A. Mykkänen and M. P. Tuomainen, "An evaluation and selection framework for

interoperability standards," Information and Software Technology, vol. 50, no. 3, pp. 176-

197, 2008.

[128] Office of the National Coordinator for Health Information Technology. (2015, 10 April

2019). Connecting health and care for the nation: A shared nationwide interoperability

roadmap (1.0 ed.) [PDF]. Available: https://www.healthit.gov/sites/default/files/hie-

interoperability/nationwide-interoperability-roadmap-final-version-1.0.pdf

[129] ISO/IEC. (1993, 10 April 2019). ISO/IEC 2382-1:1993. Available:

https://www.iso.org/obp/ui/#iso:std:iso-iec:2382:-1:ed-3:v1:en

[130] A. Geraci, IEEE Standard Computer Dictionary: Compilation of IEEE Standard

Computer Glossaries. IEEE Press, 1991, p. 217.

[131] D. Hartzband. (14 Oct 2018). Integration and Interoperability for HIT. Available:

https://www.rchnfoundation.org/?p=755

[132] B. Elvesæter, A. Hahn, A.-J. Berre, and T. Neple, "Towards an Interoperability

Framework for Model-Driven Development of Software Systems," London, 2006, pp.

409-420: Springer.

[133] J. Braa and S. Sahay, Integrated Health Information Architecture: Power to the Users.

Matrix, 2012.

[134] J. Kimber. (2013, 14 Oct 2018). The difference between integration and interoperability.

Available: https://www.securityworldmarket.com/int/News/Comment-of-the-Month/the-

difference-between-integration-and-interoperability#.W8Nrx9UzaiQ

[135] G. Smith. (2018, 14 Oct 2018). Interface, Interoperability, Integration - A Quick Guide.

Available: https://www.cu.net/industrial/blog/integration-interface-interoperability

[136] J. Merklein, M. Poirier-Pocovi, G. H. Buck-Sorlin, W. Kurth, and Q. Long, "A dynamic

model of xylem and phloem flux in an apple branch," presented at the 6th International

Symposium on Plant Growth Modeling, Simulation, Visualization and Applications

(PMA2018), Hefei, China, Nov. 4 - Nov. 8, 2018.

[137] H. Haas. (18 Dec 2018). WSDL 2.0: What's new? Available:

https://www.w3.org/2004/07/xml2004-hh/wsdl20-update.html

[138] V. Panos, "A Survey of Extract–Transform–Load Technology," International Journal of

Data Warehousing and Mining (IJDWM), vol. 5, no. 3, pp. 1-27, 2009.

[139] R. Kimball and J. Caserta, The Data Warehouse ETL Toolkit: Practical Techniques for

Extracting, Cleaning, Conforming, and Delivering Data. John Wiley & Sons, 2011.

[140] B. Aiken, J. Strassner, B. Carpenter, I. Foster, C. Lynch, J. Mambretti, R. Moore, and B.

Teitelbaum. (2000, 22 Feb 2019). Network Policy and Services: A Report of a Workshop

on Middleware. Available: https://tools.ietf.org/html/rfc2768

[141] A. T. Campbell, G. Coulson, and M. E. Kounavis, "Managing complexity: Middleware

explained," IT professional, vol. 1, no. 5, pp. 22-28, 1999.

[142] I. Crnkovic, S. Sentilles, A. Vulgarakis, and M. R. Chaudron, "A classification

framework for software component models," IEEE Transactions on Software

Engineering, vol. 37, no. 5, pp. 593-615, 2011.

[143] M. Müller, M. Balz, and M. Goedicke, "Representing Formal Component Models in

OSGi," Software Engineering, vol. 159, pp. 45-56, 2010.

http://academics.epu.ntua.gr/LinkClick.aspx?fileticket=curWlwV0WY8=&tabid=385&mid=2317
http://academics.epu.ntua.gr/LinkClick.aspx?fileticket=curWlwV0WY8=&tabid=385&mid=2317
https://www.healthit.gov/sites/default/files/hie-interoperability/nationwide-interoperability-roadmap-final-version-1.0.pdf
https://www.healthit.gov/sites/default/files/hie-interoperability/nationwide-interoperability-roadmap-final-version-1.0.pdf
https://www.iso.org/obp/ui/#iso:std:iso-iec:2382:-1:ed-3:v1:en
https://www.rchnfoundation.org/?p=755
https://www.securityworldmarket.com/int/News/Comment-of-the-Month/the-difference-between-integration-and-interoperability#.W8Nrx9UzaiQ
https://www.securityworldmarket.com/int/News/Comment-of-the-Month/the-difference-between-integration-and-interoperability#.W8Nrx9UzaiQ
https://www.cu.net/industrial/blog/integration-interface-interoperability
https://www.w3.org/2004/07/xml2004-hh/wsdl20-update.html
https://tools.ietf.org/html/rfc2768

211

[144] U.S. Department of Defense. (10 April 2019). Component Models [PDF]. Available:

https://dodcio.defense.gov/Portals/0/Documents/DODAF/Vol_1_Sect_7-2-

1_Component_Models.pdf

[145] H. S. Yazdi and J. Lehmann. (2018, 10 April 2019). Property Graph Databases [PDF].

Available: https://sewiki.iai.uni-bonn.de/_media/teaching/lectures/kga/2018/03-

propertygraphdatabases.pdf

[146] World Wide Web Consortium (W3C). (2014, 23 Feb 2019). Resource Description

Framework (RDF). Available: https://www.w3.org/RDF/

[147] D. Zwillinger, CRC standard mathematical tables and formulas, 33rd ed. Boca Raton,

Florida, United States: CRC Press/Chapman and Hall, 2018, p. 858.

[148] F. Harary, "The number of linear, directed, rooted, and connected graphs," Transactions

of the American Mathematical Society, vol. 78, no. 2, pp. 445-463, 1955.

[149] JSON-RPC Working Group. (2013, 10 April 2019). JSON-RPC 2.0 Specification.

Available: https://www.jsonrpc.org/specification

[150] R. Koebler. (2013, 18 Feb 2019). JSON-RPC 2.0 Transport: HTTP. Available:

https://www.simple-is-better.org/json-rpc/transport_http.html

[151] Internet Engineering Task Force (IETF). (2014, 10 April 2019). Hypertext Transfer

Protocol (HTTP/1.1): Semantics and Content. Available:

https://tools.ietf.org/html/rfc7231

[152] Internet Assigned Numbers Authority (IANA). (2019, 18 Feb 2019). Media Types.

Available: https://www.iana.org/assignments/media-types/media-types.xhtml

[153] M. Zou, "An algorithm for triangulating 3D polygons," Washington University in St.

Louis, 2013.

[154] Python Software Foundation. (2019, 12 March 2019). Python 3.7.2 documentation -

getattribute (3.7.2 ed.). Available:

https://docs.python.org/3/reference/datamodel.html?highlight=getattribute#object.__getat

tribute__

[155] Oracle Corporation. (2017, 13 March 2019). The Java™ Tutorials - Getting and Setting

Field Values. Available:

https://docs.oracle.com/javase/tutorial/reflect/member/fieldValues.html

[156] D. Luebke, M. Reddy, J. D. Cohen, A. Varshney, B. Watson, and R. Huebner, Level of

Detail for 3D Graphics. Morgan Kaufmann Publishers Inc., 2003, p. 432.

[157] C. B. Barber, D. P. Dobkin, D. P. Dobkin, and H. Huhdanpaa, "The quickhull algorithm

for convex hulls," ACM Trans. Math. Softw., vol. 22, no. 4, pp. 469-483, 1996.

[158] P. H. Cournède, Y. Chen, Q. Wu, C. Baey, and B. Bayol, "Development and Evaluation

of Plant Growth Models: Methodology and Implementation in the PYGMALION

platform," Mathematical Modelling of Natural Phenomena, vol. 8, no. 4, pp. 112-130,

2013.

[159] H. Sinoquet, X. Le Roux, B. Adam, T. Ameglio, and F. A. Daudet, "RATP: a model for

simulating the spatial distribution of radiation absorption, transpiration and

photosynthesis within canopies: application to an isolated tree crown," Plant, Cell &

Environment, vol. 24, no. 4, pp. 395-406, 2001.

[160] J. Perttunen, R. Sievänen, and E. Nikinmaa, "LIGNUM: a model combining the structure

and the functioning of trees," Ecological Modelling, vol. 108, no. 1, pp. 189-198, 1998.

[161] C. Baey, A. Didier, S. Lemaire, F. Maupas, and P.-H. Cournède, "Parametrization of five

classical plant growth models applied to sugar beet and comparison of their predictive

capacity on root yield and total biomass," Ecological Modelling, vol. 290, pp. 11-20,

2014.

[162] P. H. Cournède, V. Letort, A. Mathieu, M. Z. Kang, S. Lemaire, S. Trevezas, F. Houllier,

and P. de Reffye, "Some Parameter Estimation Issues in Functional-Structural Plant

Modelling," Mathematical Modelling of Natural Phenomena, vol. 6, no. 2, pp. 133-159,

2011.

https://dodcio.defense.gov/Portals/0/Documents/DODAF/Vol_1_Sect_7-2-1_Component_Models.pdf
https://dodcio.defense.gov/Portals/0/Documents/DODAF/Vol_1_Sect_7-2-1_Component_Models.pdf
https://sewiki.iai.uni-bonn.de/_media/teaching/lectures/kga/2018/03-propertygraphdatabases.pdf
https://sewiki.iai.uni-bonn.de/_media/teaching/lectures/kga/2018/03-propertygraphdatabases.pdf
https://www.w3.org/RDF/
https://www.jsonrpc.org/specification
https://www.simple-is-better.org/json-rpc/transport_http.html
https://tools.ietf.org/html/rfc7231
https://www.iana.org/assignments/media-types/media-types.xhtml
https://docs.python.org/3/reference/datamodel.html?highlight=getattribute#object.__getattribute__
https://docs.python.org/3/reference/datamodel.html?highlight=getattribute#object.__getattribute__
https://docs.oracle.com/javase/tutorial/reflect/member/fieldValues.html

212

[163] Q.-L. Wu, P.-H. Cournède, and A. Mathieu, "An efficient computational method for

global sensitivity analysis and its application to tree growth modelling," Reliability

Engineering & System Safety, vol. 107, pp. 35-43, 2012.

[164] Y. Chen and P. Cournede, "Assessment of parameter uncertainty in plant growth model

identification," in 2012 IEEE 4th International Symposium on Plant Growth Modeling,

Simulation, Visualization and Applications, 2012, pp. 85-92.

[165] K. Streit, M. Henke, B. Bayol, P. Cournède, R. Sievänen, and W. Kurth, "Impact of

geometrical traits on light interception in conifers: Analysis using an FSPM for Scots

pine," in 2016 IEEE International Conference on Functional-Structural Plant Growth

Modeling, Simulation, Visualization and Applications (FSPMA), 2016, pp. 194-203.

[166] C. Pradal. (2017, 31 March 2019). OpenAlea / Lignum interface. Available:

https://github.com/openalea/lignum

[167] C. Pradal, "OpenAlea / GroIMP," Unpublished Slides, May 29, 2015.

[168] D. Abrahams and S. Seefeld. (2018, March 31 2019). Boost.Python. Available:

https://www.boost.org/doc/libs/1_69_0/libs/python/doc/html/index.html

[169] SWIG developers. (2018, 31 March 2019). SWIG. Available: http://www.swig.org/

[170] The SciPy community. (2019, 31 March 2019). F2PY Users Guide and Reference

Manual. Available: https://docs.scipy.org/doc/numpy/f2py/

[171] F. Reyes, B. Pallas, C. Pradal, F. Vaggi, D. Zanotelli, M. Tagliavini, D. Gianelle, and E.

Costes, "MuSCA: a multi-scale model to explore carbon allocation in plants," bioRxiv,

2018.

[172] T. Hölttä, T. Vesala, S. Sevanto, M. Perämäki, and E. Nikinmaa, "Modeling xylem and

phloem water flows in trees according to cohesion theory and Münch hypothesis," Trees,

vol. 20, no. 1, pp. 67-78, 2006.

[173] University of Göttingen. (11 April 2019). GroIMP Documentation. Available:

http://wwwuser.gwdg.de/~groimp/grogra.de/documentation/

https://github.com/openalea/lignum
https://www.boost.org/doc/libs/1_69_0/libs/python/doc/html/index.html
http://www.swig.org/
https://docs.scipy.org/doc/numpy/f2py/
http://wwwuser.gwdg.de/~groimp/grogra.de/documentation/

213

	Chapter 1 Introduction
	1.1 Motivation
	1.2 Research goal and tasks
	1.3 Thesis structure
	1.4 Functional-structural plant modeling overview

	Chapter 2 FSP modeling: theory and technologies
	2.1 Functional and structural plant modeling approaches
	2.2 Basic L-systems
	2.2.1 Rewriting systems and formal languages
	2.2.2 L-systems for graphical modeling
	2.2.2.1 DOL-systems
	2.2.2.2 Turtle interpretations of strings
	2.2.2.3 Graphical rewriting

	2.3 L-system extensions for graphic-centric plant modeling
	2.3.1 Plant topology modeling
	2.3.2 Plant geometry modeling
	2.3.2.1 Continuous geometry
	2.3.2.2 Composite geometry

	2.4 L-system extensions for data-centric plant modeling
	2.4.1 Graphics library
	2.4.2 FSP data model
	2.4.2.1 Notions of data structure & data model
	2.4.2.2 Modeling of FSP data
	2.4.2.2.1 The necessity and requirements
	2.4.2.2.2 Conceptions of FSP data model

	2.4.2.3 Data models in practice

	2.5 Synthesis of technologies and theories
	2.5.1 Synthesis of different platforms
	2.5.2 Differences between the platforms

	Chapter 3 Requirement analysis and technology survey
	3.1 Complexity and requirement analysis of the integration
	3.1.1 Software reuse, integration and interoperability
	3.1.2 The target FSPMs of the project: overview
	3.1.3 Requirements to achieve the project goal

	3.2 Technology survey for the integration of different FSPMs
	3.2.1 Technologies for software integration: overview
	3.2.2 Conceptual foundation of integration of FSPMs
	3.2.2.1 Determining the conceptual foundation

	Chapter 4 Design of technologies for the integration
	4.1 Design of a middleware technology
	4.1.1 Design of a logical data exchange model
	4.1.2 Design of a FSP data exchange model
	4.1.3 Design of a FSPM integrative protocol

	4.2 Design of a component model
	4.2.1 Design of a component architecture
	4.2.2 Design of a standard to define component interfaces

	4.3 Design of a C/S-ETL based architecture
	4.3.1 Design of a C/S based sub architecture
	4.3.2 Design of an ETL based sub architecture
	4.3.3 The overall integrative architecture

	Chapter 5 An interface for the integration of the target FSPMs
	5.1 Design and implementation of the component ClientSideInterface
	5.1.1 The communication group at client side
	5.1.2 The ETL group at client side
	5.1.2.1 Algorithms for ETL processes from MTG to XEG
	5.1.2.2 Algorithms for ETL processes from XEG to MTG

	5.2 Design and implementation of the component ServerSideInterface
	5.2.1 The communication group at server side
	5.2.2 The ETL group at server side

	5.3 Distinguishing features of the interface

	Chapter 6 Applications and enhancements
	6.1 Geometrical upscaling
	6.2 The integration of different FSPMs using the interface
	6.3 The enhancements of GroIMP and the interface
	6.4 Discussion and conclusions

	Chapter 7 Appendices
	7.1 The technical documents of the interface for the integration of target FSPMs
	7.1.1 The specification of XEG
	7.1.2 The package diagram of the ClientSideInterface
	7.1.3 The package diagram of the ServerSideInterface

	7.2 The user manual of the interface
	7.2.1 The installation of the interface
	7.2.2 The usage of the interface

	7.3 The source code for the experiments of geometrical upscaling

