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Chapter 1   
 

INTRODUCTION 

1.1 Motivation 

In the early 1990s, process-based crop models emerged as a tool to simulate the 

development of crops under external (environmental) or internal (biological) 

conditions. They link the conditions of plants to their overall structural development 

and provide the possibility to predict the rough growth of the plants. However, the 

structural or spatial conditions, which play an essential role for plants to maintain 

their functional conditions, are not considered. Besides, they assume that the 

conditions applied to every part of the plants are homogeneous and no variation 

among individual plants and organs is considered. Consequently, they cannot 

provide accurate growth where plant organs are in the focus and multiple conditions 

of diversity have to be handled. With the development of computer science, 

especially the rapid advancement of hardware and software in computer graphics 

in recent decades, researchers throughout the world have been developing computer 

models to simulate the complex interactions between three dimensional plant 

architecture and biological processes that drive plant architecture development in 

their temporal and spatial contexts [18-21]. These research projects have led to the 

emergence of functional - structural plant models (FSPM). FSPMs are defined as 
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models that couple a set of physiological processes that result in an explicit three 

dimensional plant structure, often supplied with a mutual feedback between 

physiology and structure [22, 23]. Depending on the application domain, FSPMs 

have integrated different physical and physiological processes and vary in the level 

of detail considered for the spatial representation of the plant (considering different 

hierarchical scales: individual organs, sets of organs or entire plants).  

The FSPMs overcome the limitation of process-based crop models by modeling 

details in function and structure of plants using the increasing computer power, but 

the cost of complexity caused by these details coming with FSPMs can become 

prohibitive when they have many processes and depict the plant at relatively fine 

scale, e.g., organ scale, especially for large plant systems. In addition, such situation 

also results in a large number of parameters, which makes the indispensable 

parameter estimation and sensitivity analysis dramatically more difficult as the 

modeled processes often depend on each other non-linearly.  

To solve these problems, four different research groups, including us, have 

initiated the project "Multi-scale functional and structural plant modeling at the 

example of apple trees" (i.e. FSPM Apple)[24]. The following introduction is 

directly adopted from the proposal of the project [25]. Herein, a research agenda 

with two foci was outlined: F1 – "Model development, calibration, analysis, and 

corresponding software tools", and F2 – "Case study: Modeling apple tree growth 

at organ, branch and whole-tree scale".  

F1 is about to bridge the gap of complexity between different plant architectures. 

In F1, algorithms for bridging the gap between spatial and temporal scales (spatial: 

here organ – branch axis – individual tree – orchard; temporal: hour to year) will be 

investigated and tools will be established. Methods for upscaling, downscaling and 

maintenance of multiscale plant representations and processes simultaneously will 

be developed using open-source modeling platforms. 
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F2 is a case study to bridge the gap of complexity between two different FSPMs. 

In F2, an existing empirical, L-system-based model of apple tree growth, MAppleT 

[26], to which various genotypes and environmental conditions will be applied. 

Meanwhile, by adopting a prototype for an easy specification and stable solution of 

differential equations on networks, a xylem and phloem flux model based on 

biophysics that simulates water and carbon/sugar transport at the branch and organ 

scale will be established. Such a model will in the future be able to assess the quality 

of apple fruit under various water conditions. In the end, both lines of work will be 

combined in an integrated, multiscale model that simulates apple tree growth driven 

by water and carbon/sugar transport. 

My PhD research task is mainly about to enable the case study in F2 and to 

integrate the MAppleT model and water flux and carbon/sugar transport model. To 

achieve this, gaps of complexity between different plant architectures inherent in 

the two models also need to be bridged.  

1.2 Research goal and tasks 

The research goal is to analyze the requirements and understand the complexity 

in details, and provide an interface to bridge the gap of complexity caused by the 

differences between the mechanistic and empirically-based models, and to allow 

the two FSPMs be merged as one FSPM accordingly.   

To reach the research goal, precise tasks have been planned: 

• Literature review for FSPM and model integration 

• Complexity and requirements analysis of the two different models 

and their platforms.   

• Design of an integrative framework for the interface. 
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• Implementation of the interface with appropriate technologies 

according to the designed framework. 

• Enhancement of the usability of the interface and the platforms. 

• Integration of the FSPMs with the interface and conclusion of the 

research 

1.3 Thesis structure 

Chapter 2  

In this chapter, theories and technologies in the area of functional and structural 

plant modeling are introduced. The mainstream FSP modeling approach, i.e. L-

systems based modeling systems are discussed in details. This includes the 

theoretical root of L-systems and the basic technologies required for an effective L-

system based FSP modeling system. The various technologies required to enhance 

the L-systems are also elaborated.  

Chapter 3  

In this chapter, the theoretical and technical background of the two models and 

their platforms are introduced. The complexity and requirements of the integration 

are analyzed in details and preconditions for the model integration are determined. 

Possible theories and technologies allowing the integration are introduced and 

discussed, and specific technology candidates are determined according to the 

preconditions.  

Chapter 4  

In this chapter, the design of a comprehensive framework for the integration of 

FSPMs is presented. It includes the design of a middleware technology, a 

component model, and an architecture that combines a sub architecture adapted 
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from ETL (Extract, Transform, Load) architecture and a sub architecture adapted 

from C/S (Client/Server) architecture. 

Chapter 5  

In this chapter, the implementation of the interface allowing the integration of 

the two target FSPMs is presented. It includes the design and implementation of 

ClientSideInterface and ServerSideInterface, which both consists of a 

communication group and an ETL group.   

Chapter 6  

In this chapter, enhancements of the platforms and the interface are presented. 

For the interface, both functionality and application enhancements are presented. 

These include the enhancements of applicability, performance, and ease of use of 

the interface itself, and the enhancements of the application of the interface. For the 

platform, enhancements for RGG graph usability are presented. Two algorithms for 

geometrical upscaling are developed and applied to the FSP graphs that are 

converted from MTGs produced by MAppleT. Several integration applications 

using the interface are presented and a discussion is presented to conclude the PhD 

research.   

1.4 Functional-structural plant modeling overview 

Like the development path of modeling in many other areas, functional-

structural plant (FSP) modeling started from a monolithic approach [23]. By this 

approach, individual FSPMs are built to cover every objective aspects, including 

design of data models and algorithms, and specific software tools using generic 

computer technologies. Later, some reusable software components have been 

developed by plant scientists as common tools to help them to accelerate the 

modeling speed and reduce the duplicative work. However, these tools normally 
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come from the practice of solving particular problems in a specific model creation. 

They cannot provide versatility to suit all kinds of modeling problems. Moreover, 

these tools are often poorly designed with diverse computer technologies. This 

makes them hard to be maintained and be used together as a complete tool-set to 

provide comprehensive support for modeling practice. In the last decade, some 

teams have started to provide standardized all-in-one platforms providing 

comprehensive modeling support with well designed tools that suit various 

modeling cases. After the recent years of development, some platforms have 

become mature enough. They are widely used in modeling practice and the 

mainstream approach of FSP modeling is now platform based. These platforms play 

a role for FSP modeling similar to the role of the development kit for application 

development, e.g., JDK for Java applications. By providing crucial tools for 

describing plant systems, the platform is more of a domain-specific infrastructure 

than just a general development kit. Usually such a platform includes a specific 

graphics library, a particular modeling formalism built upon a special modeling 

language with tailored operators and a FSP data model mostly detailed from a 

general data model (e.g. property graph), some useful components such as 3D 

viewers and “default” simulators that abstract general functional and structural 

processes of plants. By this approach, FSPMs are developed and executed on a 

given platform. As the modeling platform hides all computer-related technical 

details, plant scientists can thus use the tools provided by the platform transparently 

to build an FSPM in much shorter time and focus on their own specialty rather than 

on unfamiliar technologies.  

In general, the basic methodology that enables and facilitates the FSP modeling 

is “encapsulation”. The term encapsulation here similar to its meaning in Object 

Oriented Programming, and refers to the hiding of details of processes. Based on 

the computer science – biology interdisciplinary nature of FSP modeling [27], the 

encapsulation can be categorized into two types.  
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One type is biological encapsulation. This aims at hiding complex biological 

processes into components so that people without knowing the underlying 

biological mechanism can directly use them in a way like APIs. At the early stage, 

the encapsulation was case oriented and happened spontaneously using different 

computer technologies (e.g. programming languages, FSP data models), abstracted 

biological knowledge at different levels (e.g. general physiological law VS 

statistical morphological development patterns based on data measured in a specific 

region). The outputs were mostly standalone tools with a single or several 

components incorporating different (composite or primitive) data types of 

programming languages as FSP data models. These tools were specifically designed 

for particular modeling cases, can hardly be reused or combined for supporting 

different modeling cases directly. Later on, some teams carried out systematical 

encapsulation with a common FSP data model and a set of components abstracting 

biological knowledge at coherent levels using coherent computer technologies. The 

outputs became modeling platforms with one data model surrounded by a set of 

components. The components within a platform thus operate data organized in a 

platform owned FSP data model in a way similar to transitions operating data in 

databases. With the systematical and coherent design of the platforms, data 

operations of the components meet the ACID (Atomicity, Consistency, Isolation, 

and Durability) properties and the validity of FSP data can thus be guaranteed. Two 

strategies of biological encapsulation are applied in this kind of platforms design. 

One is that the components encapsulate biological patterns valid at a specific 

temporal/spatial/biological range, e.g. only for specific species. Components 

applying this strategy have high agility and low flexibility in terms of biology. They 

can be directly used with assignment of parameters, but are only applicable for 

specific modeling cases. Another is that the components encapsulate general 

biological laws, e.g., Darcy’s law for water transport within plants. Components 

applying this strategy have high flexibility and low agility in terms of biology. They 

can be applied for all FSP modeling cases, but only after being extended to suit 

specific modeling cases.  
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Another type is computational encapsulation. This aims at hiding complex 

computational technologies into tools so that people without proficiency in the 

underlying technologies can directly use them transparently. As a kind of 

computational model, FSPMs are programs developed in specific programming 

languages just like all the other computer programs. At the early stage, common 

computational tools were used directly in FSP modeling practice, e.g., FSPMs were 

developed directly using common programming languages such as C, C++. This 

kind of language is not as intuitive as human natural language and needs a relatively 

long period to master their grammars. More importantly, these languages are not 

specifically designed for plant modeling, it is difficult to build FSPMs directly by 

using them, e.g., common programming languages do not provide data models that 

directly meet the requirement for describing static plant structure and its dynamic 

growth. To facilitate the FSP modeling, platforms with an adaptive layer on top of 

the common computational tools to suit FSP modeling have to be established, and 

theoretically, two types of platforms are possible. One type is that of visual 

programming platforms (such as early version of OpenAlea [28]), which is about 

to allow modelers to build FSPMs by manipulating program elements graphically 

rather than by specifying them textually. With visual expressions, or spatial 

arrangements of graphic symbols, complex syntax of programming languages 

becomes transparent, and modelers can concentrate on biological processes/logics 

design and implementation. Although visual programming brings convenience to 

modelers, it also has some drawbacks. The logics/processes behind each graphic 

symbols are predefined with the intention to remain stable, therefore they are with 

low flexibility whether from an individual or a collective perspective. Compared to 

traditional textual programming, visual programming FSP modeling platforms 

provide the possibility to increase the modeling agility but decrease its flexibility 

in terms of computer science. In this sense, they are similar to component-based 

platforms applying the first strategy of biological encapsulation. However, unlike 

the component based platforms, the second strategy is not applicable for the visual 

programming route because it is about to generalize the logics/processes behind the 
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graphic symbols and lead into the opposite direction of visual programming. For 

this reason, this type of FSP modeling platforms does not actually exist. Another 

type of platforms, i.e., the L-system based platforms, better balance the 

computational agility and flexibility. Instead of making the grammars of common 

programming language completely transparent with graphic symbols, L-system 

based platforms provide formal grammars that are more intuitive than grammars of 

common programming languages but retain the programming routine, i.e., it is still 

up to the modeler to develop logics/processes of FSPMs using formal grammars.  

Besides the two types, there are also special types of encapsulation, i.e., the 

hybrid encapsulation. This mainly refers to the component-set based visual 

programming. This encapsulation increases agility in terms of both biology and 

computer science, however it still has the problems of low flexibility. The L-

systems based FSP modeling approach is what the two target FSPMs adopted, and 

they are therefore the focus of this thesis.  
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Chapter 2   
 

FSP MODELING: THEORY AND 

TECHNOLOGIES 

2.1 Functional and structural plant modeling 

approaches 

The name of functional and structural plant (FSP) modeling clearly defines its 

modeling objective, and makes it easy to be distinguished from other modeling 

approaches for plants. That is to say, this approach is primarily about to model not 

only the structure evolving of tangible modules of plants, but also the performance 

of biological functions of these modules. The main characteristics given by the 

name are two interactive aspects. One aspect is the interaction between different 

tangible modules of plants, which describes how one module depends on another 

and vice versa. Another aspect is the interaction between the structure of a module 

and its functions, which describes how the structure of a module determines the 

performance of its biological functions and how the performance of the functions 

affects or feedbacks to the evolving of the structure. This approach is based on the 

generally acknowledged truth that the structure of a module is the basis of its 
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function, and the postulate that a plant is a set of discrete modules (e.g. internodes, 

blades, fruits) and the set of module types in organisms of one species is finite 

regardless of the organism size. Thus, the structure evolution of the plant modules 

is the primary modeling aspect and indispensable part of a FSPM, while functional 

processes are necessary for being a real FSPM, but they are not an obligation for a 

plant model, especially when the structure evolution is based on the statistics on 

growth data of plant structures. 

A data processing program is a computer program consisting of two basic 

components: data and processes. As shown in Figure 2.1, these programs can be 

roughly classified into two types: data centric programs and process centric 

programs. The data centric program manages data in storage to allow the access and 

modification by different processes. A process can be launched and transferred to 

storage when it needs to process data. One example is Apache Subversion. The 

process centric programs manage processes in storage to allow the data to be input, 

processed and output. A data package can be input and transferred to storage when 

it needs to be processed. One example is Microsoft Word. 

As a data processing program, a FSPM also consists of data and processes as 

basic components, and different FSPMs can be divided into two types based on 

 
 

 

 

 

Figure 2.1 Data centric (upper) and process centric (lower) computer programs 
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which aspect it focuses on: the data centric FSPMs and the process centric FSPMs. 

The FSP modeling methods can be divided into the two corresponding types 

accordingly.  

 
 

 

 

Figure 2.2 Data centric (upper) and process centric (lower) FSPMs. 
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As Figure 2.2 shows, in data centric FSPMs, the same set of FSP data are 

accessed and modified by function and structure processes. The data are both inputs 

and outputs of the FSP processes. An optional graphic drawing (or data to graphic) 

process can be a part of the FSPM for producing graphic output from the data. The 

main purpose of the simulation or the execution of data centric FSPM is to compute 

new FSP data. The production of graphic output is an option. When the processed 

functional and structural data are accessed and modified by the processes repeatedly, 

a recursion that represents plant evolving are formed. In process centric FSPMs, 

structure (graphics) and function (data) are accessed by function and structure 

processes as inputs and then corresponding results are generated as outputs. The 

outputs can be again the inputs for further processing, i.e. recursion. The main 

purpose of the simulation of process centric FSPM is to produce the outputs, mainly 

the plant graphics. Thus when the graphics are recursively accessed and modified, 

process centric FSPM can also be regarded as a special case of data centric FSPM 

with graphics in the center, i.e. graphics centric models.  

The next sections of this chapter discuss firstly the basic L-systems for general 

graphical modeling. Then the two sets of technologies to extend the basic systems 

to comprehensive systems with two different directions are introduced. One is the 

L-system extension allowing the construction of processes to produce realistic plant 

graphics, i.e. extensions for graphic centric plant modeling. Another is the L-system 

extension allowing the construction of data models to manage FSP data, i.e. 

extension for data centric plant modeling. Both are introduced and discussed. 

2.2 Basic L-systems 

2.2.1 Rewriting systems and formal languages 

Currently there are several different theoretical frameworks allowing the 

description of structural evolution of plant modules. The major frameworks are 
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derived from certain rewriting systems. The rewriting systems, or reduction 

systems, denote a range of methods to replace sub-terms of a formula with other 

terms. A typical rewriting system consists of a set of terms/objects and a set of 

relations to transform the objects.  The latter are also called rewriting rules. In 

general, rewriting systems can be deterministic or non-deterministic. However, the 

non-deterministic rewriting systems have more than one rule applicable for an 

object, hence they do not provide a deterministic algorithm for transforming one 

object to another, but a set of rewriting possibilities.   

There are different types of rewriting systems, such as abstract rewriting systems 

and term rewriting systems. The one where the theoretical frameworks of structural 

modeling are mostly extended from is rewriting systems operating on character 

strings, namely string-rewriting systems. Many studies have been carried out on 

this type of rewriting systems in the middle of the last century. A linguist, Noam 

Chomsky, made great contributions in this area during his study on formal 

grammars. He sees languages as formal symbolic systems governed by grammatical 

rules of combination and defined languages as the construction of words or strings 

that can be generated using transformational grammars [29, 30]. Basic terms in 

formal language theory include: 

• Alphabet: non-empty finite set of symbols (i.e. letters), denoted by Σ 

• Word over an alphabet: finite sequence (i.e. string) of symbols taken 

from an alphabet.  

• Word length |𝑤| : number of symbols that compose a word, e.g. 

|𝑎𝑏𝑐𝑑𝑒| = 5.  

• Empty word: the word of length 0, denoted by ϵ, e, λ or ∧.  

• Σ*: the set of all words over Σ, * is the Kleene star, meaning a word has 

zero or more symbols 
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• Σ+: the set of all non-empty words over Σ,  Σ+ = Σ∗\{ϵ} , + means a 

word has one or more symbols  

• The concatenation of two words 𝑣 = 𝑥1𝑥2 …𝑥𝑛  and 𝑤 = 𝑦1𝑦2 …𝑦𝑚 

with 𝑛,𝑚 ≥ 0 is 𝑣 ∘ 𝑤 =  𝑥1𝑥2 …𝑥𝑛𝑦1𝑦2 …𝑦𝑚 , (𝑣 ∘ 𝑤 can be written 

as 𝑣𝑤), the resulting word has length |𝑣 ∘ 𝑤| = 𝑛 + 𝑚.  If w is the empty 

word, the resulting word is the original word 𝑣 ∘ 𝜀 = 𝜀 ∘ 𝑣 = 𝑣.  

With the basic terms, the notions of grammar and language are formally defined 

and we introduce them here by adapting [31]: 

A formal language L is a set of words (i.e. strings) over an alphabet Σ, i.e.  𝐿 ⊆

Σ∗.  The set of all words generated by a formal grammar is a generated (formal) 

language.  

A production rule (or rule, production) is a specification of symbol replacement 

that can be recursively applied to produce new symbol sequences that conform to 

the syntax of the language and are composed from the language’s alphabet. The 

grammar of a formal language, i.e. formal grammar, is a finite set of production 

rules which can generate all symbol sequences (or sentences) of the language. 

A formal grammar G is typically defined as a 4-tuple  G = 〈𝑁, 𝑇, 𝑃, 𝑆〉 , with 

components: 

• N: a finite set N of nonterminal symbols 

• T: a finite set of terminal symbols, with 𝑁 ∩ 𝑇 = ∅ 

• S: a distinguished symbol S ∈ N that is the start symbol. 

• P: a finite irreflexive set of production rules with the form: 

𝑃 ⊆ {〈𝛼, 𝛽〉 | 𝛼, 𝛽 ∈ (𝑁 ∪ 𝑇)∗ 𝑎𝑛𝑑 𝛼 ∉ 𝑇∗}, 
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the production rule 〈𝛼, 𝛽〉 is often written as 𝛼 → 𝛽. 

Over the alphabet Σ = 𝑁 ∪ 𝑇, for words 𝑣, 𝑤 ∈ 𝛴∗: 

• 𝑣 is directly derived from 𝑤 (or 𝑤 directly generates 𝑣), i.e. 𝑤 → 𝑣, if 

𝑤 = 𝑥𝛼𝑦 and 𝑣 = 𝑥𝛽𝑦 such that 〈𝛼, 𝛽〉  ∈ 𝑃.  

• 𝑣  is derived from 𝑤  (or 𝑤  generates 𝑣 ), i.e. 𝑤 →∗ 𝑣 , if there exist 

𝑤0, 𝑤1, …𝑤𝑚 ∈  Σ∗ (𝑚 ≥ 0)  such that  𝑤 = 𝑤0, 𝑤𝑚 = 𝑣  and 𝑤𝑖−1 →

𝑤𝑖 for all 𝑚 ≥ 𝑖 ≥ 1. 

• →∗ denotes the reflexive transitive closure of → 

Then, 𝐿(𝐺) = {𝑤 ∈ 𝑇∗|𝑆 →∗ 𝑤}  is the formal language generated by the 

grammar G. The set of all formal languages over an alphabet is uncountably infinite, 

while the set of grammars generating formal languages over the alphabet with a 

 

Grammar Production 

rules 

Language Automaton 

Type-0 𝛼 → 𝛽 
Recursively 

enumerable 
Turing machine 

Type-1 𝛾𝐴𝛿 → 𝛾𝛽𝛿 Context sensitive Linear bounded 

Type-2 𝐴 → 𝛽 Context free 
Non-deterministic 

pushdown 

Type-3 𝐴 → 𝛽𝐵, 𝐴 → 𝛽 Regular Finite state 

 

Table 2.1 The Chomsky hierarchy outlines each of four types of grammars, the 

form of its production rules, the language it generates, the type of corresponding 

automaton. 
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finite sets of production rules is countably infinite. Hence, the set of formal 

languages generated by a formal grammar is a strict subset of the set of all formal 

languages.  

Chomsky categorized formal grammars and their generated formal languages 

into a containment hierarchy consisting of four (0 to 3) types of formal grammars 

over structure conditions on the production rules of the grammars (c.f. Table 2.1) 

[30]. The hierarchy constrains the structure of the production rules in a restricted 

set of languages, and the languages types correspond to conditions or the right- and 

left sides of the production rules [31].  

The type-0 grammars are known as phrase-structure grammars or recursively 

enumerable grammars. They are formal grammars without any restrictions on both 

sides of the grammar’s production rules. Formally, a grammar (N, T, S, P) is a type-

0 grammar if and only if all production rules are of the form 𝛼 → 𝛽 with  𝛼 ∈

(𝑁 ∪ 𝑇)∗\𝑇∗  and 𝛽 ∈ (𝑁 ∪ 𝑇)∗ . This type includes all formal grammars and 

generates recursively enumerable languages that are exactly all recognizable 

languages by a Turing machine.   

The type-1 grammars are known as context sensitive grammars. They are formal 

grammars with production rules that may be surrounded by symbols (terminal, 

nonterminal, or empty) as context. Formally, a grammar (N, T, S, P) is a type-1 

grammar if and only if all production rules are of the form 𝛾𝐴𝛿 → 𝛾𝛽𝛿 with 𝛾, 𝛿,

𝛽 ∈ (𝑁 ∪ 𝑇)∗, 𝐴 ∈ 𝑁 and 𝛽 ≠ 𝜖; or of the form 𝑆 → 𝜖, in which case S does not 

occur on any right hand side of a production rule. Formal grammars of this type 

generate context sensitive languages that are exactly all recognizable languages by 

a linear bounded automaton. 

The type-2 grammars are known as context free grammars. They are type-1 

formal grammars with the left side of production rules restricted to nonterminal 

symbols and the right side of the production rules restricted to non-empty symbols. 
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Formally, a grammar (N, T, S, P) is a type-2 grammar if and only if all production 

rules are of the form 𝐴 → 𝛽 with  𝐴 ∈ 𝑁 and 𝛽 ∈ (𝑁 ∪ 𝑇)∗. Formal grammars of 

this type generate the context free languages that are exactly all recognizable 

languages by a non-deterministic pushdown automaton. The context free languages, 

or more precisely, their subset, the deterministic context-free languages are the 

theoretical basis of the phrase structure of most programming languages. This type 

of formal grammars perfectly solves the parsing problem and provides the 

theoretical basis for the syntax analysis phase of compilation. 

The type-3 grammars are known as regular grammars. They are type-2 formal 

grammars with the left side of production rules restricted to a single nonterminal 

symbol, and the right side of production rules restricted to a single terminal symbol 

optionally surrounded by a terminal symbol. Formally, a grammar (N, T, S, P) is a 

type-3 grammar if and only if all production rules are of the form 𝐴 → 𝛽𝐵 or 𝐴 →

𝛽 with  𝐴, 𝐵 ∈ 𝑁 and 𝛽 ∈ 𝑇∗, (in this case it is a right linear grammar); or of the 

form 𝐴 → 𝐵𝛽 or 𝐴 → 𝛽 with  𝐴, 𝐵 ∈ 𝑁 and 𝛽 ∈ 𝑇∗, (in this case it is a left linear 

grammar). The type-3 grammars with either right or left regular rules generate 

regular languages that are exactly all recognizable languages by a finite state 

automaton. The regular languages can also be generated by regular expressions, 

which are commonly used for lexical analysis within the scanning phase of 

compilation. 

 The incremental constraints from grammars of type 0 to type 4 lead to a 

directional inclusion relation between the four sets of languages generated by 

corresponding formal grammars: the set of regular languages ⊆ the set of context 

free languages ⊆ the set of context sensitive languages ⊆ the set of recursively 

enumerable languages.    
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2.2.2 L-systems for graphical modeling 

2.2.2.1 DOL-systems 
 

A type of string rewriting systems, the Lindenmayer systems (or L-systems in 

short) [32-34], was introduced in the late 1960s. Then [2] summaries formal 

definitions for relevant notations of the L-systems, some of those are introduced 

here. The simplest class of L-systems is the class of deterministic OL (or DOL in 

short) systems. A string DOL system G is an ordered triple 𝐺 = 〈𝑉, 𝜔, 𝑃〉, with 

components: 

• V: an alphabet, with V* denoting the set of all words over V, and V+ 

denoting the set of all non-empty words over V,  𝑉+ = 𝑉∗\{ϵ}  

• 𝜔: a distinguished symbol 𝜔 ∈ V+ that is the start symbol, called axiom 

• P: a finite set of production rules 𝑃 ⊂ 𝑉 × 𝑉∗ with each having the form 

〈𝛼, 𝑥〉  or  𝛼 → 𝑥 , such that  ∀𝛼 ∈ 𝑉 ∶  ∃𝑥 ∈ 𝑉∗ ∶ (𝛼 → 𝑥) ∈ 𝑃 . The 

predecessor and successor denotes the symbol 𝛼  and word 𝑥 

respectively. 

Over the alphabet V, for word  𝑤 ∈ 𝑉, 𝑤 = 𝛼1 …𝛼𝑚  and 𝑣 ∈ 𝑉∗, 𝑣 = 𝑥1 …𝑥𝑚: 

• 𝑣  is directly derived from 𝑤  (or 𝑤  directly generates 𝑣), denoted by 

𝑤 ⇒ 𝑣, if and only if 𝛼𝑖 → 𝑥𝑖 for all 𝑖 = 1,…𝑚.  

• 𝑣  is derived from 𝑤  (or 𝑤  generates 𝑣 ), i.e. 𝑤 ⇒∗ 𝑣 , if there exist 

𝑤0, 𝑤1, …𝑤𝑛 ∈  𝑉∗ (𝑛 ≥ 0) such that  𝑤 = 𝑤0, 𝑣 = 𝑤𝑛 and 𝑤𝑖−1 ⇒ 𝑤𝑖 

for all 𝑛 ≥ 𝑖 ≥ 1,  

• ⇒∗ denotes the reflexive transitive closure of ⇒ 
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Then, 𝐿(𝐺) = {𝑤 ∈ 𝑉∗|𝜔 ⇒∗ 𝑤} is the formal language generated by the DOL 

L-system G. During each derivation step, all production rules in the set P are applied 

in parallel. Generated by a   derivation of length n, 𝑤0, 𝑤1, …𝑤𝑛 is called the 

developmental sequence of w.   

For example, given a string rewriting grammar G with  𝑉 = {𝑎, 𝑏} ,  𝜔 = 𝑎 

and𝐹 = {𝑎 → 𝑎𝑏, 𝑏 → 𝑎} , the grammar (i.e. DOL system) produces strings as 

shown in figure 2.3. 

For a DOL-system, a derivation step produces a string/word representing a plant 

at a certain growth moment (c.f. Figure 2.3), and a component of the string (i.e. a 

symbol) represents a plant module. The neighbor relationship between string 

components represents adjacency between plant modules. The continuous 

derivation of the system produces a set of strings/words with changed length, which 

represents the evolution of the plant over time.  

Compared to the rewriting systems, L-systems are outlined by no distinction 

between terminal and non-terminal symbols and the parallelization of rule 

application at each derivation step. The former difference reflects the fact that one 

or more modules or organs of a living body can be dead and lose the ability to 

 

(n: derivation step) 

Figure 2.3 Four derivation steps of a DOL-system.  
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proliferate while the other modules or organs can still support the overall function 

of the body. Therefore, when using symbols to represent plant modules having 

changeable states of nonterminal/terminal, a distinction of symbols must not be 

made. The latter difference reflects a general characteristic of plants that modules 

of a plant proliferate simultaneously. These differences make the L-systems capable 

of modeling evolving plant structure, and changes the formal properties of L-

systems so that L-systems do not fit into the Chomsky hierarchy. 

The studies [35] of L-systems show that L-systems can be is divided into 0L (or 

OL), 1L and 2L-systems by following the different dependencies in symbol 

generation of a derivation, i.e. the transition of a symbol depends on zero neighbors, 

left neighbor and left and right neighbors. An L-system is propagating or a POL-

system if there is no production rule producing the empty string 𝜖. It is deterministic 

or a DOL-system if there is at most one production rule applicable for every symbol. 

As shown in Figure 2.4 [2], the studies [32-37] also reveal the relations between 

formal languages generated by grammars of the Chomsky hierarchy and those 

 

 

 

Figure 2.4 Relations between formal languages generated by grammars of the 

Chomsky hierarchy and the languages generated by L-system grammars [2].  
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generated by L-system grammars. OL-systems generated languages (OL in short) 

are not always context free formal grammars, 1L-systems generated languages (1L 

in short) are not always context sensitive formal languages. 

Although L-systems were accepted as a mathematical theory of plant structure 

evolution, the original version  has also the obvious defect that they focus on only 

on one aspect of the plant structure, the topology (i.e., adjacency between plant 

modules), without much attention on the geometric side. Therefore, rather than 

realistic graphics, L-systems can only provide diagrammatic sketches of plants. To 

make L-systems comprehensive tools for plant structural development modeling, 

many different geometric interpretations of the systems were studied and proposed. 

A widely accepted one is the interpretation using turtle geometry. 

2.2.2.2 Turtle interpretations of strings 

Turtle graphics, or turtle geometry, is a variant of vector graphics using a so-

called “turtle” (i.e. a relative cursor) on a Cartesian plane. It is a major component 

of Logo, which is a programming language [38, 39] introduced in the late 1960s. 

The turtle has three attributes to describe its “current” state including geometrical 

position (coordinates) and orientation (or rotation) of a virtual pen. The pen also 

has three attributes to describe its current state including colour and the width the 

line will be drawn by the pen, and on/off state of the pen. The turtle modifies its 

geometric state with commands, e.g. “move forward for 9 step length” and “turn 

right by 30 degrees”. Other state variables bound to the pen can also be managed 

with the turtle, by setting the pen with on/off state, its colour and width. A full turtle 

graphics system requires procedures that consist of commands, control flow of the 

commands (e.g. choice or loop) within procedures, and recursion of procedures. 

From these features, shapes such as triangles, squares, circles and other composite 

figures can be generated. 
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From the 1970s on, different graphical interpretation methods of L-systems were 

introduced (c.f. Figure 2.5). One of them is the turtle interpretation [40, 41], which 

generates graphics with rigorously defined geometry, such as fractals. Inspired from 

the turtle graphics of the Logo language, the basic setting of the turtle interpretation 

includes a state variable of the turtle which consist of three attributes x, y, and α. 

The first two attributes represent the “current” position of the turtle in two 

dimensions, and the last represents its “heading”, i.e., angle or current orientation 

of the turtle forwarding.  In addition, a set of commands is also included [2]: 

‘F’: move forward and draw a line from the current position (x, y) to the new 

position (x’, y’) by a step of length d. The state variable of the turtle updates to (x’, 

y’, α), with x’ = x + d cos α, y’ = y + d sin α. 

‘f’: with effects similar to ‘F’, except no line is drawn. 

‘+’ for turning left by angle δ, the state variable of the turtle updates to (x, y, 

α’), with α’ = α’ + δ. 

                                   FFF-FF-F-F+F+FF-F-FFF 

                      (a)                                                                       (b) 

 

Figure 2.5 (a) Turtle commands F, +,− in two dimensions. (b) Graphical 

interpretation of a string with fixed rotation angle δ 90 degrees.   
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‘−’ for turning right by angle δ, the state variable of the turtle updates to (x, y, 

α’), with α’ = α’ - δ. 

Based on the basic setting, a string can be interpreted as a graphic drawn by the 

turtle with given initial turtle state (x0, y0, α0), step length d and angle δ. As a 

particular kind of strings that are produced by L-systems, this way of interpretation 

surely works. However, the interpretation in this setting is limited to two 

dimensions. To allow realistic geometric modeling of plants, further settings to 

allow three-dimensional geometric interpretation are needed. 

Concepts to allow three-dimensional geometric interpretation [42] have been 

introduced by Abelson and diSessa (c.f. Figure 2.6). The key is to describe the 

“current” orientation of the turtle in three dimensions.  Three vectors are used to 

represent components of the orientation on different dimensions: vector H for the 

heading direction, vector L for the left direction, and vector U for the up direction. 

It is obvious that the three vectors are mutually perpendicular and normalized, and 

satisfy the H × L = U equation. With the vectors, a rotation of the turtle updates the 

“current” orientation of the turtle state from [H L U] to [H L U] R, where R is a 3×3 

matrix. Rotations by angle α about H, L and U are represented by matrices: 

Figure 2.6 Turtle commands in three dimensions 
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RU (α) = [
cos 𝛼 sin 𝛼 0

− sin 𝛼 cos 𝛼 0
0 0 1

] 

RL (α) = [
cos 𝛼 0 −sin 𝛼 

0 1 0
sin 𝛼 0 cos 𝛼

] 

RH (α) = [
1 0 0
0 cos 𝛼 − sin 𝛼
0 sin 𝛼 cos 𝛼

] 

The commands +, - defined for two dimensional turtle interpretation keep the 

same meaning, the matrix RU (α)  or RU (- α) is used to compute  the new point 

(x’, y’, z’) of the turtle state from the current point (x, y, z) for a left or right turn by 

angle α of the turtle. In the case when angle α = 180, RU (180) ≡ RU (-180), 

therefore the unpaired command | is defined for turning around. 

Similarly, the commands & and ˄ are defined for pitch up or down by angle α, 

the matrix RL (α) or RL (- α) is used to compute the new point (x’, y’, z’) of the 

turtle state from the current point (x, y, z). \ and / are defined for roll left or right by 

angle α  when the turtle is heading to the H direction, the matrix RH (α)  or RH (- 

α) is used to compute the new point (x’, y’, z’) of the turtle state from the current 

point (x, y, z).  

2.2.2.3 Graphical rewriting  

To allow a DOL system to be used for graphically representing the biologically 

regulated dynamics such as plant structural evolution, figure substitution operations 

were introduced [2]. Two modes of applying the operations with turtle 

interpretation were discussed, i.e. edge/node rewriting, with terms originating from 

graph grammars.  

Figure substitution operations capture the recursive structure within figures and 

link it to a tiling of a plane. The substitution is the combination of strings rewriting 
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and the turtle interpretation of the strings. Each generated string serves as the input 

of both rewriting for the next step and the interpretation to generate graphics. For 

the edge or node rewriting modes, the production rule causes the substitution of 

figures of new polygons for a polygon edge or polygon node respectively. With the 

existing setting of DOL-systems, the former mode is possible but the latter is not. 

To enable node rewriting, symbols representing different subfigures are included 

into the alphabet of the L-system, and the corresponding subfigures are drawn when 

such symbols are encountered during turtle interpretation of strings. To ensure the 

correct position and orientation of the drawn subfigure, a pair of contact points Px 

and Qx are introduced with a pair of direction vectors 𝑝𝑥⃗⃗⃗⃗  and 𝑞𝑥⃗⃗⃗⃗ . (referred as 

entry/exit points and vectors). With these settings, each subfigure x in a subfigure 

set X can be correctly appended to the result graphic. During the string 

interpretation, when the symbol s representing the subfigure is encountered, it will 

be replaced with the subfigure having its entry point Px and vector 𝑝𝑥⃗⃗⃗⃗  aligned with 

the current turtle states (i.e. position and rotation). After the placement of the 

subfigure, the state of the turtle will be updated, i.e. the current position and 

orientation of the turtle will become Qx and 𝑞𝑥⃗⃗⃗⃗ .  

 

 

Edge rewriting L-system: 

alphabet: {𝐹𝑥, 𝐹𝑦} 

𝜔:𝐹𝑥, production rules: 

𝐹𝑥 → 𝐹𝑥 + 𝐹𝑦 + 

𝐹𝑦 → −𝐹𝑥 − 𝐹𝑦 

 

Node rewriting L-system: 

alphabet: {𝑥, 𝑦, 𝐹} 

𝜔:𝐹𝑥, production rules: 

𝑥 → 𝑥 + 𝑦𝐹 + 

𝑦 → −𝐹𝑥 − 𝑦 

 

 

Figure 2.7 The same dragon curve generated by edge and node rewriting L-systems 

with n=9, δ=90 
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The graphics generated by the edge and node rewriting systems are not disjoint, 

and sometimes an edge rewriting system can be transformed into a node rewriting 

system using a pseudo L-system as bridge, namely by introducing a predecessor 

containing more than one symbol, so that a substring may be substituted by the 

successor of a rule. Figure 2.7 shows the same dragon curve [43] for generated by 

edge and node rewriting L-systems with nine derivation steps. The alphabet of the 

edge rewriting L-system includes two different symbols representing the same 

turtle command “move forward a step by a specific length”, while the alphabet of 

the node rewriting L-system uses two symbols representing the “subfigures that are 

reduced to single points”. The edge rewriting system shown in the figure can be 

rewritten as a pseudo L-system with the non-turtle interpretable symbols x and 

y:  𝜔: 𝐹𝑥, 𝑃: {𝐹𝑥 → 𝐹𝑥 + 𝑦𝐹+, 𝑦𝐹 → −𝐹𝑥 − 𝑦𝐹 }. From the pseudo L-system 

[40], string rewriting rules from x to x+yF+, and from y to –Fx-y can be found, thus 

it can be transformed to the node rewriting system shown in the figure. 

2.3 L-system extensions for graphic-centric plant 

modeling 

Graphic centric plant modeling is about using L-system strings to represent plant 

structure. Combining the turtle interpretation of strings, the technical basis of this 

modeling method is the graphic rewriting. The plant graphic drawing is based on 

the turtle interpretation of the strings. 

2.3.1 Plant topology modeling  

Compared to the string rewriting L-systems, the graphical rewriting L-systems 

have already a certain strength for modeling plant structure graphically. However, 

the modeling is still quite limited. On one hand, the generated graphics can only be 

linear with all modules in a sequence. On the other hand, the generated graphics is 
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considered as a single structural unit without capability to express different types 

of adjacency between graphic components representing plant modules.  

In real the world, the structure of plants normally consists of branching structures 

with plant modules connected in different topological types, such as trunk or branch 

modules. Moreover, each plant module (organ, tissue…) has certain functional 

roles, e.g. a blade plays a role in photosynthesis, and an internode plays a role in 

water transport. These modules directly or indirectly depend on each other, i.e., it 

is only possible to maintain the normal function and structure of a module if the 

function and structure of other related modules are normal. Consequently, when 

different plant functions are involved, the research is on module (organ, tissue…) 

scale and it is more appropriate to graphically represent a complete plant with a 

combination of multiple structural units representing plant modules rather than a 

single unit.  

To express the multi-module composite branching structures, another extension 

of L-systems including rooted tree based axial trees [44, 45] and tree OL-systems 

was introduced. The rooted tree [46] comes from a mathematical notion from 

Graph Theory, where mathematical structures are established to model pairwise 

relations between objects. A rooted tree consists of a set of edges and a set of nodes 

just like other types of graphs. What makes it special is that it has a tree-like 

structure without cycles. In the structure, edges are labeled and directed. A special 

node “root” is distinguished and all the other nodes are connected from it by edges 

directly or indirectly.  

By adding a collection of additional topologic specifications to a rooted tree, a 

special type of rooted tree, the axial tree, was introduced to allow the expressiveness 

of branching structures in L-systems. As Figure 2.8 [2] shows, in an axial tree, each 

node has at most one outgoing straight edge, and all the other non-straight edges 

are referred as lateral or side edges. A totally ordered set of straight edges forms 

an axis with the condition that the first edge is lateral or originates from the root 
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and no straight edges follow the last edge. An axes and all its sub axis form a branch 

or a sub tree. Depending on the level of nesting, an order number is given to the 

axis and branch. The axis with first edge originating from the root has order number 

0. An axis with first edge being lateral and the source node of this edge belonging 

to an axis with order number n has order number n+1. Beside the topological 

expressiveness at organ level, the edges in the rooted tree (or different branches in 

the axial tree) represent real plant modules in exactly the same way as in L-systems 

with simple turtle interpretation. Hence, the axial tree gives L-systems 

expressiveness of both topology and geometry at organ level. It is worth noting that 

the application of topology or the rooted tree is not the same as it is in Graph theory 

or Data models, for example, here they are borrowed for explanation of the 

arrangement of graphics, while in Data models they are used for describing the 

arrangement of data elements. 

 

Figure 2.8 An axial tree  [2] 
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Meanwhile, OL-systems evolved to Tree OL-systems to allow the modeling of 

the development of axial trees with branching systems, i.e. rewriting of axial trees. 

Similar to the DOL system, a tree OL system G is defined by three components: 

𝐺 = 〈𝑉, 0𝜔, 0𝑃〉 

V is a set of edge labels and 𝜔 is an initial tree with labels from the set. P denotes 

a finite set of tree production rules. Figure 2.9 [2] shows a tree production rule and 

its application. With an initial tree T1, a given tree OL-system generates a new tree 

T2 after applying the production rules once. 

The evolution to tree OL-system alone is not enough, and relevant supporting 

measures are also needed, namely specific grammatical settings denote different 

topological types. Otherwise, production rules P will only be expressed in a form 

similar to the one in Figure 2.5, and the turtle interpretation of a branch will always 

need to start from the root. To make up for this deficiency, tree OL-systems were 

again extended to bracketed tree OL-systems. New grammatical components, 

brackets “[” and “]” were introduced, so that the production rules can distinguish 

the edges of a branch. Moreover, this allows the state of turtle at the starting point 

 

Figure 2.9 An example of applying a rule P to the edge S of an initial tree T1. [2] 
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of a branch to be stored in a stack, so when the interpretation of one branch with 

order n+1 is finished, the “turtle state” can be used for continuous interpretation of 

the axis with order n (where the branch is originating). Figure 2.10 [2] shows the 

string representation of an axial tree using the concept of bracket. 

 

2.3.2 Plant geometry modeling 

The enrichment by plant topology enables the topological expressiveness of 

graphical rewriting L-systems, while the problem of lack of geometry 

expressiveness remains, i.e. the graphics generated by production rules are still 

nonrealistic compared to plants in nature. This problem is solved by providing 

continuous and composite geometry within the graphics. 

2.3.2.1 Continuous geometry 

One reason for lacking realism is the turtle command F drawing a line segment 

with fixed length. The result of this setting is that the length of every plant module 

represented by a line segment is the same, even if a plant module is represented by 

a group of line segments, the length is still limited to an integer multiple of a fixed 

length. Hence, it is impossible to have a plant module with continuous length. Not 

to mention the size of the corresponding string will be rather long when a large 

plant is addressed. On the other hand, the length should not be fixed when functional 

effects are taken into account. That means the length might be computed with a 

Figure 2.10 An example of representing a tree by a bracketed string [2] 

 

F[+F][-F[-F]F]F[+F][-F] 
 



 

32 

 

coefficient that represents the effect of certain functions. To allow an adjustable 

geometry (e.g. step length, rotation angle), the L-system symbols (e.g. turtle 

commands) associated with parameters, i.e. the paramedic L-systems [2, 47, 48] are 

introduced . As the parameters are not fixed values, the computed result, i.e. 

adjusted geometry, is continuous.  

The turtle interpretation of parametric words is included into the L-systems 

accordingly. The principle is to take the first parameter to control the corresponding 

turtle state, default values are applied if there is no parameter. The main parametric 

symbols include [2]: 

‘F(a)’: move forward and draw a line from the current point (x, y, z) to the new 

point (x’, y’, z’) by a step of length a. The state variable of the turtle changes to (x’, 

y’, z’), where x’ = x + a 𝐻𝑥
⃗⃗ ⃗⃗   , y’ = y + a 𝐻𝑦

⃗⃗⃗⃗  ⃗ , z’ = z + a 𝐻𝑧
⃗⃗ ⃗⃗  

‘f(a)’: with effects similar to ‘F(a)’, except no line is drawn. 

‘+(a)’ rotating around 𝑈⃗⃗  by an angle of a degrees. Depending on if a is positive 

or negative, the turtle is rotated to the left or the right. 

‘&(a)’ rotating around 𝐿⃗  by an angle of a degrees. Depending on if a is positive 

or negative, the turtle is pitched down or up. 

‘/(a)’ rotating around 𝐻⃗⃗  by an angle of a degrees. Depending on if a is positive 

or negative, the turtle is rolled to the right or left.  

For example a production rule that multiplies the length x of an internode I in 

every derivation step by 1.2 can be written as 𝐼(𝑥) → 𝐼(1.2 × 𝑥). 

Besides fixed length, all line segments have the same width as well. This 

problem can be solved by simply providing different types of line segments with 
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different widths or by using another parameter representing the width of line 

segments.   

2.3.2.2 Composite geometry 

Another reason for lack of realism is that the production rules can only generate 

graphics consisting of line segments and no shapes are generated to realistically 

represent the real plant modules. The problem is solved by providing a mechanism 

similar to the “subfigure” introduced for node rewriting with predefined figures of 

polygon shapes [2]. In detail, surfaces are composed bicubic patches defined by 

polynomials. Symbols representing different surfaces are included into the L-

system alphabet, and during the interpretation of the strings produced by production 

rules, the turtle draws the surface when its symbol preceded by a tilde was detected. 

Beside the shape itself, the position and orientation of the surface is determined 

similar to that of a subfigure (using contact points and vectors).  

2.4 L-system extensions for data-centric plant 

modeling 

Data centric plant modeling is about using data models (i.e. graphs in the context 

of FSPMs) to represent plant structures. Generalizing the L-system production 

rules, the technical basis of this modeling method is the graph rewriting. Instead of 

turtle interpretation, the plant graphics generation is based on the combine of graph 

traversal and turtle interpretation. Compared to graphical centric plant modeling, 

the essence of the data centric modeling is organizing FSP data in data model. There 

are two main advantages to do so. The primary one is automatic management of the 

dependencies between different kinds of data and data of different plant modules. 

The secondary one is plants can be modeled by a structure more general than tree, 

e.g. a multiscale structure, where a coarse scale node decompose to two 
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successively connected fine scale nodes, is a circle, which cannot be modeled by a 

string but a graph data model. 

2.4.1 Graphics library 

The plant graphical rewriting L-systems with graphic centric extensions enable 

realistic graphical modeling of plants, but it has the limitation that the strings are 

directly interpreted as graphics, and geometry data are not stored for possible 

further usage such as functional processes by considering geometry. To make 

geometry data of a plant module reusable, the concept of data structure must be 

applied. That means each plant module should be associated to a variable of a 

specific graphic type. When relevant data processes are required, access and 

modification are all through the variable, and so data are kept available for further 

processes after finishing the current process. The key here is to have a suitable 

graphic technology to provide data structures for both geometry data management 

and precise graphical representation of the geometry.   

To allow a graphic data structure, there are actually two different two technical 

paths: vector graphics and raster graphics (c.f. Figure 2.11 [6]). Vector graphics 

 

 

           

Figure 2.11 Examples of vector graphics (left) and raster graphics (right) [6] 
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[49-54] use mathematical formulas to describe graphics, usually showing things 

such as lines, curves, and shapes, which can be defined by vector graphic types. 

Raster graphics [52-54] describe graphics as a series of color values, which are then 

placed in grid mode as basic unit of a raster graphic, i.e., pixels in 2D and voxels in 

3D graphics. Both technologies have capability of managing data and presenting 

precise graphics, but the mainstream technical path in the area of FSPM is vector 

graphics [2, 12, 40, 44, 55-58]. In fact, compared to raster graphics vector graphics 

has some advantages of higher weight.  

One advantage is that the controlling and computing of geometry for vector 

graphics (through parameters) are more straightforward and accurate. Another 

advantage is, regarding storage requirement, that raster graphics has a high demand 

as it stores information of the grid for not only target objects that are normally 

tangible but also the empty space around them, while vector graphics has a low 

demand as it stores only the mathematical formulas and the parameters for target 

objects. Additionally, vector graphics has the capability of undistorted scaling while 

raster graphics has not. 

Above all, the fundamental reason for L-systems to take the vector graphics over 

raster graphics lies in the natures of the two technologies. In fact, in the bracketed 

tree OL-systems, the turtle command F represents both graphical transformations 

and drawing of line segments and other turtle commands represent only graphical 

transformations. In the context of including graphical representation of organs, the 

line segments are expected to be replaced with graphical shapes, thus the turtle 

command F needs to be replaced by different graphical objects. Therefore, it is 

logical that each of these graphical objects represents both transformation and 

graphical shape. For example, a Cylinder object not only needs to have the 

capability to draw a cylinder shape, but also needs to have the capability to change 

the turtle state from “start position” to “end position” of the object. Hence, both 

capabilities need to be enabled as a part of new L-systems and this can be done for 
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both raster and vector graphics theoretically: Raster graphics drawing can be 

enabled by setting up a set of specific raster primitives using certain encoding 

technologies, e.g. bitmap, jpg, or png, for raster graphics. While vector graphics 

drawing can be enabled by setting up a set of vector primitives using different 

generic vector graphic libraries[53], e.g. OpenGL. However, the raster graphics is 

discretized and is normally used in visual input (e.g. optical/digital photography or 

laser scanning) or visual output (e.g. inkjet/laser printing or CRT/LCD/LED 

displaying), while the vector graphics is continuous and is normally used in graphic 

computing [52, 54]. The main reason of the division of work comes from the natures 

of the two different types of graphics: technologies for input and output are all 

discretized sampling based, while technologies for graphic computing are all 

continuous geometry based.  

In addition to being of vector graphic type, the function as a turtle of an L-system 

needs to be guaranteed as well. This includes the definition of the start position and 

end position of the turtle for the specific graphic type, the local transformation for 

the change of the turtle state, and the method to execute the transformation. The last 

two are based on the first definition, and they are not always easy, especially for 

non-convex vector shapes (e.g. NURBSSurface). Fortunately, non-convex shaped 

organ barely locate at non-terminal position in nature, thus it is not necessary to 

define them as turtle actions. In many cases, it is more appropriate to define them 

as an independent library of “non-turtled” vector primitives that complements the 

library of “turtled” vector primitives rather than having a library that mix them 

together. 

Besides the turtle command F, other turtle commands, such as “RU”, “RL”, and 

“RH” are also needed to be a part of the library as well. It is clear that these types 

are just pure turtle commands, they will not be used for representing organs. 

In the last decade, some 3D graphics libraries were introduced to make up for 

this lack for L-system specific constructions. Due to previously described reasons, 
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these 3D graphics libraries are mostly of vector graphics and consist of a rich set of 

well-defined vector primitives that are tailored for FSPM, e.g. IMP3D of the 

GroIMP platform. As a part of the L-system, these primitives are not only vector 

shapes or transformations but also turtle commands.  

The usage of a vector graphics library fulfills the needs of having geometric data 

structures and reflects the evolution from graphics to data structure. On one hand, 

graphical representation of the geometry is ensured by the inclusion of both shape 

and transformation types. To make the usage of the library flexible, the library 

includes not only basic transformation types, e.g., Translation, Rotation and 

Scaling, but also different transformation matrix types, e.g., Matrix4d, Matrix34d. 

On the other hand, the types are essentially data structures for organization of 

geometry data. In detail, they are mostly implemented using the class concept of 

object orient programming. Different classes represent different graphics types, 

which include data fields coded in typed variables and their applicable operations 

coded in methods. After including the 3D graphics library, the L-system alphabet 

needs to include symbols representing geometric instances while the symbols 

representing subfigures can be retained.   

2.4.2 FSP data model 

2.4.2.1 Notions of data structure & data model  

The concepts and notions of data structure [59, 60] and data model [61] are basis 

of the data centric plant modeling, they contain the fundamental reason why the 

advancement from graphic centric plant modeling to data centric modeling is 

necessary for FSP modeling, and why a FSP data structure & data model is in the 

center of the modeling.  These notions [59-62] are interrelated but different, thus 

are much confusing and should be compared and understand first. 
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A data is a symbolic representation of an objective thing. In computer science, 

it refers to a sequence of one or more symbols given meaning by specific act(s) of 

interpretation.  

A data type is a classification of data. It includes a class of data with certain 

similarity (e.g. precision), namely a collection of values, and the operations that can 

be done on the data. The data type defines the meaning of the data, and the way 

values of that type can be stored. Data types of a high level programming language 

can be divided into atomic (or primitive) types with indecomposable values, e.g. 

integer or boolean, and aggregate (or composite) types with values aggregated (or 

compound) in a certain way (i.e. decomposable values), e.g. list or array. An 

abstract data type (ADT) defines the blue print of a data type by a mathematical 

model with applicable operations. 

A value is a data with a given type. The members of a type are the values of that 

type. When a data is classified into a type, it becomes a value and can be 

manipulated by a program. Data and value can also be distinguished using the data 

structure concept (c.f. next page): a data is unstructured and a value is structured, 

when a data is structured, it becomes a value. When certain meaning or 

interpretation is given to a value, it becomes an information. The meaning or 

interpretation is understood as semantics of the information, while the data 

structure is understood as syntax of the information. 

A literal is the representation of a fixed value in source code. Most programming 

languages allows literals of both primitive and composite data types, such as 

integers and arrays.   

A variable is a symbolic name (an identifier) bound to a storage location holding 

a changeable value. It allows the name to be used independent of the value it 

represents. The variable can be bound to a value during the compiling or run time. 

The symbolic names of variables are a usual way to reference the stored values, and 
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are replaced with the actual storage location of values by compilers or interpreters. 

Values in locations change during program execution while locations and names 

are fixed. A constant is a special variable with value does not change during 

program execution.  

A data structure is a specific way of data management, i.e. organization and 

storage of data to allow its efficient access and modification. A data structure is the 

implementation of one or more abstract data types (i.e. an actual data type), and 

consists of a collection of typed data (i.e. values) referred as data elements, the 

relations among them, and the functions or operations that can be applied to the 

data. The data element is the basic unit of data and is usually considered and 

processed in the computer as a whole. Sometimes a data element can consist of 

several typed data referred to as data items. Data items are the indivisible minimum 

units of a data structure.  

According to the abstract description method and the internal storage form, the 

data structure can be divided into logical structure and physical structure. The 

logical structure describes the logical relations between data elements in a data 

structure using an abstract mathematical model. The physical structure, also 

known as storage structure or storage image, is a storage representation of a data 

structure in primary storage (or main memory) or secondary storage (or external 

memory) of a computer. 

A data element stored in memory is also called a node, and each data item in a 

data element is called a data field. Nodes can be seen as storage structures of data 

elements, which are represented by bits in certain memory units. The logical 

relations between the data elements are represented in the computer by a sequential, 

linked, indexed, or hashed image, in sequential, linked, indexed, or hashed storage 

structure.  
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Data elements can be organized in different structures, which can be roughly 

divided into four basic types. (1) Set: There is no other relations between data 

elements in the structure other than the “belong to the same set” relation. Structures 

of this type are usually represented in the computer as hashed images. (2) Linear 

structure: There are one-to-one relations between data elements in a structure. 

Structures of this type are usually represented in the computer as sequential or 

linked images. (3) Tree structure: There are one-to-many relations between data 

elements in a structure. Structures of this type are usually represented in the 

computer as linked images. (4) Graph or Network structure: There are many-to-

many relations between data elements in a structure. Structures of this type are 

usually represented in the computer as linked images. 

The data management of a data structure is based on the ability of a computer to 

fetch and store data elements in its memory by address. Specifically, data 

management for the sequential data structures is based on computing of the address 

of data elements with arithmetic operations, while data management for the linked, 

indexed, or hashed data structures is based on storing address (i.e. pointer), index, 

or hash of the data elements within the structure itself. 

The most widely used data structures [60] include: 

• Linear data structures, including linear list, linked list, stack, queue and 

array, in which one data element has at most one direct successor or 

predecessor, i.e., the one-to-one relations are directed. 

• Tree data structures, including tree, binary tree, in which one data 

element has one direct predecessor but more than one direct successor, 

i.e., the tree data structure is hierarchically directed and without cycle. 

• Graph data structures, including directed graph and undirected graph, in 

which data elements have many-to-many oriented or non-oriented 

relations.  
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A data model defines the schema how the elements of data are organized and 

interrelated, and how they are related to properties of entities in the real world. It is 

a concept from the perspective of application and is occasionally referred to as data 

structure from the perspective of technology, especially in the context of computer 

languages. A data model can be conceptual, logical or physical [61, 62]. A 

conceptual data model gives only general high-level data constructs with no 

technical terms. It allows business information to be captured in non-technical way 

so that the technical designer can take over the conceptual data model from the 

business designer to do further logical design. A logical data model gives detailed 

data structure using technical terms, such as tables of the relational data model, 

classes of object-oriented data models, or tags of XML based data models. A 

physical data model gives the implementation of a logical data model using specific 

technical tools such as specific database management systems for relational tables, 

specific object-oriented programming languages for classes. Besides the definition 

of “How (data elements are organized)”, the term data model sometimes refers to a 

set of concepts (e.g. entity, attribute, relation in the ER model) used in constructing 

such schema, i.e., “What (is used to do so)”.  

Data models precisely describe the objective natural system’s statics, dynamics 

and integrity constraints. Thus, a data model normally includes a data structure1 for 

static descriptions, data operation for dynamic descriptions and integrity constraints.   

There are many types of data models, including: 

• Database model, describing how data is managed in database. 

• Data structure diagram, describing conceptual data models through 

graphical notations that describe entities with their relationships and 

relevant constraints. 

• Entity-relationship model [63], describing interrelated things of interest 

in a specific domain of knowledge. A basic ER model is composed of 
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entity types (which classify the things of interest) and specifies 

relationships that can exist between instances of those entity types. 

• Generic data model, defining standardized general relation types, 

together with the kinds of things that may be related by such a relation 

type to facilitate data exchange and integration.  

With its logical structure or schema, a data structure is capable of physical 

storage image manipulation, while a data model is capable of the real world 

expressiveness. As the focus of this thesis is not the computer technology itself but 

the application of the technology, the introduction and discussion does not focus on 

data structures but data models, and in this section, we discus only the data model 

at conceptual level. Different concrete plant data models at logical and physical 

level will be introduced and discussed as a part of the design of our architecture for 

the integration of different functional and structural plant models. Moreover, this 

thesis mainly discusses the “How” aspect of the data model, therefore the first type 

(i.e. database model) is in our focus. 

The most widely used data models (or, more specifically, database models) [64-

68] include:  

• Hierarchical model, in which data is managed in a tree structure. The 

data elements are stored as records which are related to one another by 

links. It allows one-to-many relationships. A record is a group of 

correlated fields, where each retains a single value. The entity type of a 

record specifies which fields the record holds. The record and entity type 

of a hierarchical model respectively correspond to the row (or tuple) and 

table (or relation) in the relational model.  

• Network model, which expands upon the hierarchical structure, allowing 

many-to-many relationships in a graph structure with the possibility of 
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multiple parents. It operates at a low level of abstraction and lacks easy 

traversal over a chain of edges. 

• Relational model, in which data is managed into a structure conforming 

to first-order predicate logic and set theory, with all data being held in 

tuples, which are then grouped and stored into relations, namely two-

dimensional tables. 

• Graph model, in which data is managed into a graph structure where one 

node may be connected to any other node. Although the structure is the 

same as that of the Network model, the Graph model has a clear 

separation between the model and the actual implementation and it is 

easy to traverse over a chain of edges, which makes semantic queries 

with nodes, edges and properties possible. Within the graph structure, 

data elements are directly related through relationships (i.e. edges) in the 

data store so in many cases they can be retrieved with one operation. The 

graph data can be stored differently, for example, “into” relational tables 

with an additional level of abstraction, i.e., regarding the tables as nodes 

and edges of the graph; or into key-value based structures such as 

dictionary or hash; or document based structures such as XML or RDF. 

Depending on the degree that the schema constrains data, data models can be 

divided into structured and semi-structured data models. The structured data 

models have a clear separation between schema information and data. The schemas 

fully constrain data and are normally predefined with the intension to keep them 

stable. The semi-structured data model is a data model having the schema 

information mostly contained within the data, i.e., without predefined schema that 

is separate from data. In some cases, schema information is contained within a 

predefined “weak” schema (with only a few restrictions) that is separate from data. 

Often, the semi-structured data model is referred to as self-describing data model. 

In general, the use of structured or semi-structured data models depends on whether 
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the data-modeling object and objective is generic or specific. For example, if the 

data modeling object is a student, and the objective is the student registration 

management, then the schema can be predefined as precisely as possible. In case of 

FSPM, a structured data model is good enough for a specific plant species, while a 

semi structured data model as a basic feature of a FSP modeling platform provides 

better flexibility for various modeling use cases of different plant species. 

2.4.2.2 Modeling of FSP data 

2.4.2.2.1 The necessity and requirements 

The addition of a graphics library to graphical rewriting L-system solves the 

problem of unmanaged geometry data. However, it is still difficult to model the 

function of each plant module and the structure – function interaction within and 

between organs. The essence of interaction between structure and function of a 

plant module is that the computation of new structure takes not only existing 

structural data but also existing functional data into account, and vice versa. The 

essence of interaction between different plant modules is that the computation of 

new FSP data of one plant module takes not only the existing FSP data of itself but 

also the existing FSP data of other related plant modules into account.  

In graphical rewriting L-systems, literals and variables with primitive data 

structures are used as parameters to compute continuous geometry values of a plant 

module. Using variables of primitive data structures, functional data of a plant 

module can be taken into account for the computation of geometry values. 

However, modelers have to manually ensure that the functional data for 

computation of geometry values is of the right plant module. Moreover, the 

resulting geometry values of the computation of plant modules are literals without 

means to reference the stored values to allow further computation of functional data, 

i.e. structural feedback to function. Besides that, the two different topology relations 

between plant modules are distinguished by the appearance of bracket symbols, 

these symbols are interpretable by the turtle for graphic drawing but are not able to 
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take into account (as arguments) the interaction of geometry values and functional 

data between two plant modules for computation. The addition of a graphics library 

already allows the resulting geometry values to be used for further computation of 

functional data. But the other problems still remain unsolved. 

The main reason for the defects is the lack of a uniform data model in the system 

that manages functional and structural data of a plant module together and the data 

of different modules together. This lack causes a separation of functional and 

structural data for each plant module, and a separation of the data of one module 

from the others. In other words, the problems can be solved only when the L-

systems advance from graphical rewriting to graph rewriting. 

On one hand, as the structural data mainly refer to the shape and location of a 

plant module, the related data are managed as fields of an instance of a graphic 

primitive, which are predefined as a part of the library/L-system and do not depend 

on specific modeling cases. In contrast, functional data refer to plant function, 

which depends on specific modeling cases, thus it is impossible and not logical to 

predefine them as fields of a graphic type. Without a uniform data model, FSP 

modelers have to manage the link between functional data and corresponding 

structural data of a specific plant module. This makes the modeling of the function 

and the interaction between function and structure of a plant module very difficult. 

On the other hand, because of the same reason, the structural data include only 

the quantitative aspect (i.e. the shape and location, or the turtle state), the qualitative 

aspect (i.e. different adjacency between plant modules) is not managed at all. 

Actually, the neighbor relationships between modules has been considered in to 

axial tree, but that improvement was made only to produce branching graphics. 

Although the neighbor relationship in axial tree seems acquirable by string scanning 

in theory, it is difficult for modeler in practice. The separation of the model and the 

modeling platform is to free the modelers from the complex technical work, so that 

they can focus on their areas of expertise. However, such acquisition requires the 
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modeler to be familiar with platform-level technologies and know how to 

manipulate L-system string. In fact, the key defect of axial tree is that the 

distinguished two different neighbor relationships (lateral or axial) does not 

managed by a FSP data model and thus cannot be used for finding out the related 

modules by applying the platform level technologies. Theoretically, it is not 

possible and also not logical for adjacency to be managed as the fields of an instance 

of graphic primitive because they depends on specific modeling cases. Therefore, 

FSP modeler have to manage the link between specific adjacency and 

corresponding structures representing source and target plant modules. This makes 

the modeling of the interaction between function and structure of different organs 

very difficult. 

Essentially, the FSP data of parametric L-systems with library are literals, or 

individually managed constants/variables. This might be suitable for simple 

abstract and conceptual FSPM development, but not for high-precision modeling 

tasks that include complex details. In order to allow FSPM with accurate details and 

to free the modeler from heavy technical work, FSP data models have been designed 

and introduced as a part of rewriting systems. 

2.4.2.2.2 Conceptions of FSP data model   

From the perspective of FSP modeling application, or the point of view of FSP 

modeler, a logical data model is needed to bridge the gap between real world plants 

and digital plants expressed by a physical data model, while from the technical 

perspective of an FSP modeling system, a logical data structure is needed to allow 

the data management at storage level by operations at logical level. 

The intersection part between the needed logical data model and the logical data 

structure is the logical structure of data elements. Through it, real world plants are 

physically represented and the relevant storage image is physically managed. Thus, 

it is both a data model and a data structure. Nevertheless, we refer to it as FSP data 

model because the expected logical structure cares more the expressiveness in the 
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specific domain of FSPM than for the effectiveness of data management, and the 

description of the logical structure essentially reflects the underlying structure of 

the domain itself, thus it is overall not technology oriented but application oriented.  

The FSP data model refers to two levels of data management. One is the data 

management at the plant module level. At this level, the same data model should 

manage all kinds of data relevant to a plant module. Which include geometry data 

and functional data, such as length/width, water pressure or sugar content. Simple 

usage of a graphic data structure does not meet the demand. The relation between 

the graphic data and functional data is obviously that they belong to the same set, 

thus a data structure that simply composes the graphic data structure and functional 

data structure is needed. The other sort of data management is that at plant level. At 

this level, the same data model should manage all modules of a plant. Which 

includes the composite data structure for each plant module, and the topology 

relations between plant modules. The logical structure at this level reflects the real 

plant structure, and is either a tree or a rooted graph. 

Compared to the rooted tree in Bracketed tree OL-systems or Parametric L-

systems, the FSP data model is fundamentally different. The rooted tree is the direct 

graphic result produced by L-systems, in which plant modules are represented by 

graphics. The FSP data model is a collective data management tool and supposed 

to be a part of the rewriting systems. The purpose to have an FSP data model is to 

allow effective access and modification of FSP data of each plant module. It 

represents plant modules by data elements (or graph nodes if the data model is a 

graph), and the adjacency between plant modules by relations between data 

elements (or edges if the data model is a graph). 

Besides the logical structure of data elements for static descriptions, the basic 

definition of a FSP data model should include also data operations for dynamic 

descriptions and integrity constraints. For the data operations, functions for access 

and modification of data are indispensable. The integration constraints highly 
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depend on the specific technical environment but some are basic, such as the edges 

should have existing graph nodes as source/target nodes.  

2.4.2.3 Data models in practice 

A general data model for vector graphics, called Scene Graph [50, 69-71], is 

widely used in graphics editing applications. It allows the arrangement of logical 

(and spatial) representations of a graphical scene [72, 73] by vector-based geometry 

manipulation. Typically, a scene graph is a data model with a tree structure or a 

DAG (Directed Acyclic Graph). In a scene graph having a tree structure, a parent 

node has one or more child nodes, and nodes other than the root usually correspond 

to geometric objects, such as spline surfaces. In a scene graph, geometric objects 

can be iteratively grouped into Layers in linear or hierarchic manner. A linearly 

layered scene graph consists of shapes or groups of shapes at the same compositing 

level, while a hierarchically layered scene graph consists of nested shapes or groups 

of shapes. In a layered scene graph, some processes such as color-fading can be 

carried out individually on a layer without side effects to the others. In some FSP 

modeling platforms, the layer concept is equivalently used in the form of spatial 

scales to represent a plant at different levels of detail/spatial resolution.  

The most significant advantage of the scene graph is the combination of logical 

and spatial (i.e. topology and geometry for FSPMs) modeling capabilities. In the 

scene graph, a logical modeling effect applied to a parent node propagates to every 

child node; an action on a collection of graph components is applied to the 

components automatically. Mostly, this process is realized by concatenating the 

geometrical transformations bound to each group. Through the combination of 

transformation propagation and graphics layering, vector graphics can be 

manipulated efficiently. There is a special advantage for L-systems using turtle 

commands. In fact, the turtle commands and the geometrical transformations in a 

scene graph are essentially both graphical operations on a relative or local 

coordinate system. Hence, the turtle commands of L-systems can be directly used 
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to represent the geometrical transformations in a scene graph, and the scene graph 

can be operated using turtle commands without additional grammatical settings. 

However, the scene graph has also some obvious shortcomings for FSP modeling. 

It does not distinguish different topological relationships between graph nodes, and 

has no means for plant functional property management as well. Besides, there is 

an essential topological disadvantage for using the scene graph as FSP data model. 

The transformations, equivalent to the turtle commands, are presented in the graph 

as topological nodes just like the shapes, but they do not represent any real world 

objects (i.e. plant organs). Therefore, it is clear that direct use of a scene graph is 

not appropriate and specific adaptions to suit the requirements of FSP modeling are 

needed.  

On the other hand, another general data model for objects with various 

properties, called Property graph [74-77], is widely used in data management 

applications. It consists of a set of nodes (also called vertices) and directed edges 

(also called arcs). Within a property graph, each node or edge has a unique identifier 

and a set of properties of the form of key-value pairs. Besides, each node has a set 

of outgoing and incoming edges, and each edge relates to exactly two nodes with a 

fixed direction from a source to a target node. Particularly, when two nodes are 

connected by multiple edges at the same time, the property graph is a multigraph. 

When nodes or edges are tagged with labels, the property graph is called labeled 

property graph. The most important characteristic of the property graph is that the 

various data of a component or module of an object are regarded as the properties 

of the module. Essentially, different kinds of properties of the same module are 

organized into a set (i.e. indirectly related), and each set is distinguished as a node 

and identified by a unique id. The relations between nodes are regarded as edges, 

and can be distinguished by different edge types. The advantage of this data model 

is that it clearly defines the relations between both properties and nodes. The 

disadvantage is that it is too general to be directly used for a specific domain.  
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2.5 Synthesis of technologies and theories 

Different comprehensive L-system based FSP modeling platforms have been 

formed by synthesizing the theories and technologies discussed in previous sections 

of this chapter in different ways. In this section, the different syntheses are 

introduced, and the resulting platforms, especially the research target platforms of 

this project (i.e. GroIMP and OpenAlea), are compared in details. 

2.5.1 Synthesis of different platforms 

The efforts to provide a specialized plant modeling tool started from the research 

of Lindenmayer, and continuously evolved by absorbing and synthesizing the 

theories and technologies which emerged during the same period. The whole 

process so far can be roughly divided into two stages.  

The first stage includes the synthesis of research results and theory in the field 

of linguistics, including formal languages and Chomsky hierarchy, and in the field 

of computer science, including early third-generation programming languages [78] 

(3GL) (aka imperative languages) and turtle graphics. The focus on this stage is to 

support the plant structural modeling. In the 1990s, the parametric L-system based 

platforms (these early modeling tools were often referred to as programs because 

of their simplicity but we uniformly call them platforms) were the mainstream. 

Typical ones include cpfg [48, 79-81], grogra [56]. The modeling languages 

provided by these platforms directly use literals, or individually managed 

constants/variables of primitive types to allow FSP data to be manipulated by 

functional or structural simulators. The Module is defined as the basic syntactic 

construct and structural units correspond to a single or a set of plant organs. Only 

rule grammars are allowed for the development of simulators. Line segments are 

used to represent the plant modules. These syntheses provide plant graphic 

rewriting systems with limited modeling applications, such as computer animation.  
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The second stage includes improvements to the previous synthesis with emerged 

technologies in the field of computer science, including the property graph/scene 

graph based data models, the advanced third-generation programming languages 

(mostly the object oriented languages), and 3D graphics libraries. With these 

improvements, the platforms gain the capability for modeling sophisticated 

function - structure interactions within and between plant modules.  

Precisely, in the early 2000s, the upgrade of cpfg, lfpg [82-84] was introduced 

with a special name called L+C given to its modeling language. It is one of the first 

systems to adopt the object-oriented technology and supports hybrid grammars 

combining L-system syntax borrowed from C++ and original C++ syntax. It does 

not provide a vector graphics library but four vector structures to support 3D lines 

representing plants. It also does not provide a FSP data model but an object database 

to facilitate the manual management of structural and functional data, which has 

been added as a shared tool to cpfg. By combining cpfg and lpfg with further shared 

tools like editors and 3D surfaces, this resulted in the platform L-studio [85, 86].  

In 2008, GroIMP as the upgrade of grogra, including RGG (Relational Growth 

Grammar) and its Java implementation XL was introduced [58, 87-92]. It is one of 

the first L-system languages to adopt a FSP data model, namely the RGG graph. It 

is scene graph based property graph but with a more general structure, i.e. a rooted 

graph. For the RGG graph, specific syntax applying data operations to the graph 

and ensuring its integrity constraints are defined, and modules of types extended 

from the types defined in the IMP-3D library are used as nodes. Therefore, the 

nodes are Java objects that contain geometrical fields originally defined in graphical 

types (such as “length”) and functional fields defined through type extension (such 

as “absorbed light”). Edges are Java objects containing source and target nodes as 

data fields. Combining with tools like JEdit as code editor, code file explorer and 

3D display, resulted in the platform GroIMP.  
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In 2012, a Python implementation L-py [93-96] with grammar largely borrowed 

from cpfg and lpfg was introduced as a supplement to the FSP modeling platform 

OpenAlea that was originally introduced in 2008 as a component based modeling 

platform [28, 97, 98]. It is one of the first L-system languages to adopt a dynamic 

programing language, and just like cpfg and lpfg, its technical basis is the 

parametric L-system. To make use of the existing FSP data model of OpenAlea, i.e. 

MTG (Multiscale Tree Graph), two-way conversion mechanisms between L-

system strings and MTGs are provided, e.g. primitive mtg2lstring (mtg, 

{parameters}) converts a “mtg” object with key-value paired parameters organized 

by a Python dictionary. The L-system string was extended from a bracketed string 

representing a single-scaled branching system to a string representing a multi-

scaled branching system to enable this mechanism. To make use of the existing 

graphics library PlantGL and to control geometry in the specific language 

environment, adapted turtle commands are introduced, e.g., a generic primitive @g 

(geometry) is provided to allow the modeler to include any graphical objects of 

types defined in PlantGL.  

2.5.2 Differences between the platforms 

In general, the L-system based FSP modeling platforms can be roughly divided 

into two categories: graphical rewriting systems and graph rewriting systems. Cpfg, 

lpfg and grogra are graphical rewriting systems that combine string rewriting and 

turtle interpretation. Each derivation step includes two main sub steps, one is string 

rewriting, and another is turtle interpretation of the rewritten string. With graphical 

extensions, these systems can produce realistic plant structures.  XL contains a 

rewriting formalism that generalizes string rewriting to graph rewriting. It provides 

RGG graphs as plant data models to algorithmically produce an updated graph from 

an original graph. The grammars that can be specified within the XL language are 

of a specific type of formal grammar, the graph grammars [99]. A typical graph 

grammar includes a set of graph-rewriting rules of the form 𝐿 → 𝑅, where 𝐿 and 𝑅 
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are called pattern and replacement graph respectively. A graph-rewriting rule is 

applied to a host graph through two steps: 1. seeking for a match of the pattern 

graph in the host graph, 2. replacing the matching part by an instance of the 

replacement graph. L-py, on the other hand, is a special rewriting system, which is 

based on the combination of string rewriting and turtle interpretation similar to the 

graphical rewriting systems cpfg, lpfg and grogra. Although it provides grammars 

to allow the bidirectional translation between L-system strings and the data model 

MTG, the translation is not mandatory and automatic for each deviation step. 

Hence, it is essentially still a graphical rewriting system, but with an option to 

manually build a temporary graph rewriting system by the modeler on top of the 

platform.  

In detail, the differences between L-system based FSP modeling platforms, 

particularly between GroIMP and OpenAlea lie in design and implementation of 

the platform components, i.e. L-systems based modeling languages, FSP data 

model, and the graphics libraries. 

The grammar of XL, i.e. RGG, was introduced in 2008 [91] together with the 

RGG graph (and IMP-3D graphics library) with the purpose to link the graph with 

the grammar to form a graph rewriting system. The language XL thus includes the 

constructs not only for rewriting but also for data operations on the graph. The 

graphics types (and their extended types) defined in the graphics library are a part 

of the alphabet of the RGG. The grammar of L-py is based on the grammars of cpfg 

and lpfg, which are essentially string rewriting grammars. The early version of 

OpenAlea is a component-based platform allowing FSP modeling by visual 

programming [28]. It synthesizes the FSP data model MTG emerged before its 

introduction (in 1998 [100]), and the re-engineered graphics library PlantGL in 

Python emerged after its introduction (in 2009 [55]). The L-py was however 

introduced after this first synthesis, in 2012 [93]. The grammar does not include the 
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constructs for data operations on MTG but for translation of MTG and making use 

of PlantGL.  

In terms of implementation of grammars, the RGG was implemented to XL in 

the Java programming language [101-103], for which variables need to be typed 

during coding and the program cannot be changed during execution.  The 

implemented L-py is based on the Python programming language [104, 105], for 

which variables do not need to be typed during coding and the program can be 

changed during execution. XL has a rule-styled grammar while L-py has a 

statement-styled grammar. 

RGG graph has a rooted graph structure that can better suit the needs for 

description of a wide variety of plant structures than a tree structure. Its early 

version includes three basic types (successor, branch, refinement) of edges to allow 

the description of topological relationships between graph nodes, and arbitrary edge 

types defined by modelers are allowed for special modeling cases as well (c.f. 

Figure 2.12 [13]). All components of the RGG graph, including nodes of both 

shapes and transformations, directly correspond to the grammatical symbols of the 

 

Figure 2.12 An example of single scaled RGG graph [13] 
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string describing the graph grammar. The advantage of the direct correspondence 

is that it ensures that the modification of strings has intuitive and automatic effects 

on the graph, gives GroIMP high modeling interactivity, and essentially ensures the 

methodological evolution of string rewriting to graph rewriting. However, there is 

also a disadvantage of the setting. In fact, because the transformations appear as 

RGG graph nodes just like the shapes, there is no one-to-one relationship between 

the graph nodes and real plant modules, and thus the topology of the RGG graph 

does not match the topology of the real plant. Besides, this early version of the RGG 

graph only support static expression of plants at different scales, did not effectively 

consider dynamic modeling of plants at different scales. In 2014, the early version 

of the RGG graph was supplemented by introducing multiscale data structure 

components and data operations to the graph [15, 106]. Two sub graphs as 

metadata/schema were added to form a new version of RGG graph, namely three-

 

Figure 2.13 An example of three-part graph consisting of a scale graph (A), a type 

graph (B) and an instanced graph(C) [15] 
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part-graph, which consist of a sub graph called type graph responsible for the 

description of types using at different scales, a sub graph called structure-of-scales 

(i.e. scale graph) responsible for the description of scale hierarchies, and the original 

graph as instanced graph (c.f. Figure 2.13 [15]). Meanwhile, the relevant 

grammatical updates have also been made to the XL modeling language 

accordingly, e.g. addition of multiscale grammatical symbols to the RGG alphabet.  

The MTG was introduced in 1998 [100] as a method to digitally abstract and 

encode the architecture of real world plants (c.f. Figure 2.14 [12] ). The design of 

the early version of MTG was focus on universality and intuitiveness. It has a 

multiscale tree structure without consideration of the shape types and 

transformation propagation. Every node in the MTG corresponds to a single or 

group of plant modules. The metadata of MTG [107] is included but not present as 

a part of the graph. The early version of MTG can only encode the plant skeleton 

 

 

 

Figure 2.14 Encoding plant structure in MTG [12].  
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under global coordinates systems because it does not consider 3D graphics types 

[12, 100, 108]. The PlantGL library described in 2009 [55] makes MTG suitable to 

encode plants realistically with graphics object (c.f. Figure 2.15 [11] of types 

defined in this library.  

In terms of implementation of graphs, the RGG graph is a scene graph based 

property graph, its primary nature is of scene graph. Which means it is of typical 

property graph, functional properties (i.e. key-value pairs) of a node cannot be 

directly added. In GroIMP, the RGG graph is implemented by a collection of related 

Java objects, in which nodes are Java objects of module types extending graphics 

types or turtle command types. The addition of functional properties is enabled by 

the type extension to modules. The MTG is a property graph based scene graph, its 

primary nature is that of a property graph. This means it is a typical property graph, 

functional properties of a node can be directly added. In OpenAlea, MTGs are 

implemented by a nested Python dictionary[105], in which nodes are entries of the 

nested Python dictionary. The functional properties can be added by applying MTG 

data operations that correspond the action of adding an entry of a Python dictionary. 

The graphic properties of a MTG node normally are not located in the MTG object, 

 

Figure 2.15 MTG with geometric models linked to each vertex [11] 
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but in a special object of Scene type available in PlantGL. So the graphics are not 

structured logically, thus the propagation of local transformation of a typical scene 

graph does not work. Consequently, every shape object is globally transformed 

from the coordinate origin.  

The IMP-3D library of GroIMP is designed with all graphics types also graph 

node types. Some of them, i.e. the shaded shape types, have also turtled nature. That 

means when a shape is put into the RGG graph as a node, the current position of 

the turtle state will be changed from the start to the end location of the shape. 

Besides objects of the graphics types, RGG graph nodes consist of turtle commands 

as well. The alphabet of RGG includes both shaded shape types and turtle 

commands. The PlantGL library is designed with all graphics types not being the 

MTG node types but its property types, which do not have turtle nature. The 

alphabet of the L-py grammar does not include the graphics types but turtle 

commands, while the MTG does not include turtle commands but the objects of 

graphics types. The turtle commands are related to a local coordinate system while 

the graphics types are related to a global coordinate system. These are parts of the 

function of two-way conversion between L-system strings and MTGs, e.g., 

MAppleT map transforming turtle commands to the graphics types Translated, 

Scaled, and Oriented.    

In terms of implementation of graphics libraries, the IMP-3D library [109] is 

implemented in Java as a plug-in of GroIMP and mainly defines 3D graphics types 

in the package de.grogra.imp3d.objects. This consist of types for RGG nodes that 

derive from the same root type de.grogra.graph.impl.Node in the RGG plug-in. 

Where all types (including de.grogra.graph.impl.Edge) for RGG graph constructs 

are defined. The turtle commands are defined as internal package de.grogra.turtle 

of the RGG plug-in, and all the command types are derived from the same root type 

de.grogra.graph.impl.Node as well. In this way, the objects of all 3D graphics and 

turtle command types or their child types are ensured to be RGG graph nodes. 
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Besides, all 3D graphics shapes derive from another root type 

de.grogra.imp3d.objects.Transformation, which is used to update the current 

position from the start to the end position of the shape. This ensures the turtled 

nature of the graphics shapes in the IMP-3D library. With such implementation, the 

application of graphical computing for a RGG graph node is a sequential process. 

Equations representing vector graphics types may have multiple equivalent forms 

containing different parameters. In the IMP-3D library, this phenomenon is enabled 

through the Java overloading mechanism [101-103], i.e. providing multiple 

overloaded constructors with different parameters.  The re-engineered PlantGL 

library [110] was implemented in Python and is defined as an module independent 

from modules for MTG and L-py, it consist of types for the scene graph, but not for 

the MTG as there is no inheritance relationship similar to the IMP-3D library. In 

fact, it is technically impossible to have such inheritance in OpenAlea, as the MTG 

is not a graph of objects but a graph of abstract vertices and edges based on nested 

Python dictionary with numerical keys as id. Types of shapes and transformations 

are both defined in PlantGL as Python classes. Particularly, the transformations take 

the shapes as parameters of their constructors to generate the transformed shapes. 

Hence, they are derived from the same root type as the types of shapes, and with 

such implementation, the application of graphical computing for a MTG node is a 

recursive process. In PlantGL, the multiple equivalent forms of vector graphics 

equations are abstracted by creating a special function of the form __init__(self, 

*args, **kwargs) [105]. There, __init__ is the function for initializing newly 

created instances by default, and *args and **kwargs are Python syntax to define 

functions with an indefinite number of parameters. 
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Chapter 3   
 

REQUIREMENT ANALYSIS AND 

TECHNOLOGY SURVEY 

This chapter is mainly a survey of the existing technologies for the integration 

of different FSPMs based on requirement analysis. The background knowledge in 

the domain of software engineering, namely software reuse, integration and 

interoperability are introduced as the basis of the technologies. The requirement 

analysis is based on but not limited to the needs of the FSPM Apple project, the 

purpose to do so is to allow the design and implementation of the integrative 

interface to not only fulfill the requirements of our specific project, but also to 

provide a general solution for this type of problem. Here the general solution 

includes the technological basis of the integration and specific technologies 

designed on top of it. The former aspect is introduced in this chapter and the latter 

aspect is introduced in the next chapter. As the purpose of the PhD project is the 

construction of a complex FSPM reusing existing FSPMs, we therefore first give 

an overview about the software reuse and the integration of different software.  
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3.1 Complexity and requirement analysis of the 

integration 

As introduced in the first chapter, this PhD project aims at integrating the two 

different FSPMs. The intuitive reason for doing this is to avoid duplication of work, 

but the root cause is the contradiction between limited resources and near-infinite 

modeling complexity. Actually, like all other kinds of models, FSPMs abstract and 

simplify only a finite range of plants to a finite extent due to various constraints, 

such as the limited available resources. It is practically not possible to model all 

physiological and environmental aspects of large complex botanical systems with 

many species by a single FSPM. To model complex botanical systems for a wide 

range of plants to a considerable extent, the capability of reusing the existing 

FSPMs on different platforms is desired. Which leads to the foundations of the 

domain of software engineering, and the background knowledge for software reuse, 

integration and interoperability. 

3.1.1 Software reuse, integration and interoperability 

The NATO Software engineering conference in 1968 gave birth to the field of 

software engineering [111, 112]. At this meeting, the so-called software crisis, 

namely the problem of building software that meets all requirements and guarantees 

quality in all aspects (operation, modification, transfer) in a manageable manner, 

was first introduced and discussed as the core topic of the conference, and software 

reuse was first proposed as a way to overcome the crisis. The software reuse is 

about the process of using existing software artifacts to build new software rather 

than building them from scratch. The reason it was supposed to be a potentially 

powerful way of improving software practice and providing a solution for the 

software crisis is that the time and effort required for building software systems can 

be obviously reduced by the reuse of existing software.  
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In the following two decades after the conference, many research and practice 

activities on software reuse technology were carried out. However, due to various 

technical and non-technical factors, the software reuse has not been widely accepted 

as a standard practice. In 1992, C.W. Krueger [113] introduced four dimensions 

that software reuse technologies might involve, i.e. abstraction, selection, 

specialization and integration, and analyzed the reason why the reuse is difficult by 

following the dimensions. He found the primary requirement for implementing a 

software reuse technology is to provide natural, succinct, high-level abstractions 

that describe artifacts in terms of “what” they do rather than “how” they do it. As 

the essential dimension, the abstraction of software artifacts is however very 

complicated, especially when the artifacts are large and complex ones.   

In the 1990s, the maturity of object-oriented methods and technologies provided 

powerful technical support for software reuse [112, 114]. In particular, the 

development of software component technology has injected new vitality into 

software reuse, making its research a hot spot again. It is regarded as a realistic and 

feasible way to solve the software crisis and improve production efficiency and 

quality of software. At the same time, it has become a solution to avoid duplication 

of labor in software development, and to some extent reduce the cost of software 

development. The reuse practice based on component technology mainly includes 

two types, software composition and software integration [115].  

Software composition refers to the process of seamlessly connecting different 

software based on a certain software component model, following a specific 

software architecture, through a standard interface mechanism, and assembling into 

a new software system or software component with certain functional 

characteristics. Software composition solved the software crisis to a certain extent. 

It is suitable for assembly of components in homogeneous environments, especially 

in stand-alone systems. From an application perspective, it is mainly a means to 

solve the problem of efficient development and upgrade of software systems. It is 
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the composition of components designed for reuse purposes, which enables a 

software reuse in a complete sense. That is, software (component) based application 

system construction (development with reuse).  

In 1990s, with the development of computer networks, especially the popularity 

and application of the Internet, the problem of software reuse in a distributed and 

heterogeneous environment emerged. To address the problem, the concept of 

software integration [116-118] was introduced. Software integration (also called 

software system integration) refers to the process of homogeneously or 

heterogeneously connecting and coordinating different existing software (software 

components, non-software components or legacy systems) in a distributed 

environment, based on a certain architecture, following a specific software 

architecture, through a specific infrastructure (integration middleware [119, 120]), 

and meeting certain performance requirements (such as real-time and security). It 

is suitable for the assembly of components in distributed heterogeneous 

environments. From an application perspective, it is mainly a means to solve the 

problem of communication and interoperability between legacy systems or island 

systems. In the software integration process, in many cases, some non-

componentized legacy systems are involved. Due to historical reasons, these 

systems were not designed for reuse purposes at the beginning of the development. 

Therefore, in the process of software integration, there is a process of re-

engineering, encapsulating, and building components of legacy systems. 

In the development of software engineering, various aspects of software 

integration have been discovered in practice. Typical ones include the integration 

for two layers of the widespread three-tier architecture, i.e. data/information 

integration, the process/business integration [116, 117, 121]. The former is about 

passing information back and forth between different software systems, and 

assuring that the information is understood by these systems to produce useful 

results. The latter is about coordinating processes or workflows between different 
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software systems. That means a workflow can start in system A and continue in 

system B, and the flow is meaningful and in line with expectations. Diverse 

methods and technologies [118, 122, 123] for the software integration have been 

introduced from different perspectives and application fields.  

As one of the practice types of software reuse, the technology used in software 

integration generally consists of three categories. The main category is undoubtedly 

component technology. In addition, technologies that respond to complex situations 

in a distributed and heterogeneous environment are also needed. Which mainly 

include two categories, i.e. middleware technology (including communication 

technology, distributed object computing technology), and software architecture 

technology.  

Precisely, the component technology refers to the use of software components 

for software development. Unlike the process-oriented technology that allows the 

reuse of functions and object-oriented technology that allows the reuse of classes, 

component technology allows the reuse of program modules with full specific 

functionality. Each component provides some interfaces to expose its functions, 

through which components from different sources may be assembled to rapidly 

build a large application that meets all requirements and guarantees quality in all 

aspects (and at a relatively low price). The main characteristics of “components” 

are different from ordinary software, such as reusability (common/general), 

customizability (setting parameters and attributes), self-containability (relatively 

independent with relatively complete functions) and interoperability (multiple 

components work together). Process-oriented and object-oriented technology 

typically generates two types of software: application-specific executables and API 

libraries for general-purpose software development. The former contains various 

special specific functions that are required, but must be created from start to finish, 

many of which are low-level repetitive work; the latter, although generic, does not 

meet the specific needs of specific applications. Component technology provides a 
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third way to combine the reusability of libraries with the customizability of specific 

programs, allowing users to customize their own specific applications with reusable 

components. Therefore, a component is similar to an “executable program” in some 

respects and a “library” in other respects. Essentially, a reusable software 

component is an independent executable unit defined by its interfaces that can be 

included directly in a software system or referenced as an external service. By 

parameterizing operations through interfaces of components, their functionalities 

are available for interaction. A component is either a software element or an 

external service. In the former case, it has two related interfaces, namely the 

‘requires’ (or ‘required’) and ‘provides’ (or ‘provided’) interfaces (c.f. Figure 3.1 

[1]) which reflect the functionalities needed by them and supplied to others. In the 

latter case, it has only the ‘requires’ interface. A software component conforms to 

a component model, which defines the architecture of the component and how to 

manipulate it and interact with the other elements.  

 

Middleware in general is a service system between the application system and 

the operation system. (c.f. Figure 3.2 [5]). It provides standard programming 

interfaces and protocols to allow interoperability on different hardware and 

operating systems, and can also dynamically respond to some operational 

performance requirements, such as real-time, security. The introduction of 

middleware technology in software integration makes it easy to integrate existing 

 

Figure 3.1 Component interfaces [1] 
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software systems and realize the integration of data, service and presentation layers. 

It also reflects the openness and scalability of software system development. When 

using middleware, it is often a set of middleware integrated to form a platform 

(including development platform and running platform), but in this set of 

middleware there must be a communication middleware, namely middleware 

consisting of platform and communication. This definition limits the use of 

middleware only in distributed systems, and distinguishes it from supporting 

software and utility software. It can achieve access transparency and location 

transparency of resources to distributed software systems, and ensure 

interoperability between objects in distributed homogeneous or heterogeneous 

environments. Developers are thus able to access and integrate a large number of 

software resources, regardless of the tools or languages used by their developers or 

Figure 3.2 Middleware architecture [5] 
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development processes. In a narrow sense, middleware is a system that allows 

independently developed software that operate on different network platforms to 

cooperate with each other. It hides some complexities of building a distributed 

software and allows developers to focus on issues at the application level rather 

than low level.  

In software integration, software architecture is an integrated architecture, which 

is the guiding basis for developers of distributed software application systems to 

integrate software. A software architecture is the structure of a program/system 

component, the relationships between them, and the principles of design and 

evolution over time. The following mechanisms and methods are commonly used 

to describe software architecture: architecture description languages, architecture 

viewpoints, architecture frameworks and architectural patterns. An architecture 

framework captures the “conventions, principles and practices for the description 

of architectures established within a specific domain of application and/or 

community of stakeholders” (ISO/IEC/IEEE 42010). An architectural pattern, or 

design pattern, is a general, reusable solution to a commonly occurring problem in 

software architecture within a given context. In practice, specific design patterns 

have been introduced to enable the EAI (Enterprise Application Integration).  

Since the end of the last century, software interoperability has received attention 

and is being studied as a major method of achieving software integration [124]. 

Various architectures enabling software interoperability have been introduced. In 

different application areas and practical situations, software interoperability is 

endowed with different connotations not only at application level but also at the 

standard level [125-127]. Here is an example at the application level: in the 

application field of electronic government (eGoverment), the European 

Interoperability Framework (EIF) v1.0 [21] under the Interoperable Delivery of 

European eGovernment Services to public Administrations, Businesses and 

Citizens program (IDABC) was published in 2004 and defined Interoperability as 
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“the ability of information and communication technology (ICT) systems and of the 

business processes they support to exchange data and to enable the sharing of 

information and knowledge”. While in the area of health care, the Office of the 

National Coordinator for Health IT (ONC) of the USA defined it in the Shared 

Nationwide Interoperability Roadmap version 1.0 [128] as “the ability of a system 

to exchange electronic health information with and use electronic health 

information from other systems without special effort on the part of the user”.  Here 

is an example at the standard level: the ISO/IEC 2382-01:1993 [129] described 

interoperability as “The capability to communicate, execute programs, or transfer 

data among various functional units in a manner that requires the user to have little 

or no knowledge of the unique characteristics of those units”. While the IEEE 

Standard Computer Dictionary: A Compilation of IEEE Standard Computer 

Glossaries [130] defined the interoperability as “the ability of two or more systems 

or components to exchange information and to use the information that has been 

exchanged.” Even the same standardization organization gives different standards 

for the interoperability at the same application field, e.g. K. Kosanke [126] 

compared two ISO standards for software interoperability (ISO 15745 and ISO 

16100), with their focus on interoperability within manufacturing applications and 

between manufacturing software units, respectively. These definitions are 

ambiguous and misleading, some are not even comprehensive, e.g. the definition of 

interoperability in ISO/IEC 2382-01:1993 focused on the technical side and did not 

consider organizational issues such as the user of a program to be another program. 

Moreover, practical aspects of software integration and software interoperability 

are very much overlapping, which has led to conflicts and contradictions. Some 

people see interoperability as the result of integration [131, 132], while some see it 

the other way around [133].  Others [134, 135] argue that an integrated solution not 

only allows the subsystems to talk to each other in their current state, but also 

provides backward and forward compatibility with future versions of each other. 

Nevertheless, interoperability reflects only an immediate form of functionality 

between different subsystems, future upgrades or developments or improvements 
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to any of the subsystems can cause interoperability to cease. In brief, the two 

concepts are different, and there is no causal relationship between them.  

From the perspective of software reuse, the integration of different FSPMs refers 

to the means that enable the existing functional and structural data processing 

programs to act as one program so that a specific simulation purpose can be 

achieved without developing a new complex FSPM that may duplicate the 

development work of existing FSPMs. It is obvious that the interoperability 

between the FSPMs is the key to the success of the integration. Moreover, FSPMs 

are normally designed without consideration of technical upgrades, while the 

modeling platforms have potential technical upgrades, developments or 

improvements and provide certain downward compatibility just like other software 

development tools. The integrated FSPMs can work together for a relatively long 

time thanks to such technical stability at model level and downward compatibility 

at platform level. Therefore, in this project, we regard software interoperability as 

the technical basis to enable software integration, not the other way around. 

3.1.2 The target FSPMs of the project: overview 

In this project, the target FSPMs to be integrated are MAppleT and a GroIMP 

based transport or radiation model. MAppleT [26] is a graphical rewriting based 

functional and structural model simulating the growth of apple trees on a stochastic 

basis and taking the effects of gravity on branch shape into account. The GroIMP 

transport model [136] is a GroIMP based functional and structural model simulating 

the water and sugar transport in an apple branch. The GroIMP radiation model [91] 

is a GroIMP based functional and structural model simulating the light absorbed by 

an object located in a scene. The goal of the integration is to provide a complex 

FSPM without duplicative modeling work. The integration here mainly refers to the 

process to enable the interaction between apple tree growth and physiological 
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function. Water and sugar transport is our main focus, with light interception as one 

of the factors influencing stomatal conductance and thus water flow.  

MAppleT models the plant topology and geometry by a mixed approach that 

combines stochastics and biomechanics. A hierarchical hidden Markov model is 

used to model the development of growth units along both axes and branches, and 

a biomechanical model is applied to compute the stem at metamer scale considering 

the primary and secondary dynamics and fruit growth within a year. In [26], at a 

time interval of one simulated year, the architecture of an apple tree generated by 

L-studio is represented as MTG to quantitatively compare the virtual tree with a 

real tree. For the creation of organ geometry, the library PlantGL [55] was applied. 

The scale hierarchy of an apple tree modeled by MAppleT includes the tree, 

axes, GUs (growth units), and metamers with topological connection types 

including succession, branching and decomposition. 

The GroIMP transport model abstracts the dynamics of two related processes in 

an apple tree branch, i.e. water transport in the xylem from root to leaf and sugar 

transport in the phloem from leaf to all organs. The former is the basis of 

transpiration and the latter is the basis of carbon allocation. This model takes the 

branch structure of the apple tree in the form of an RGG graph, and computes the 

flux within the branch, i.e. the dynamics of the amount of flux passing each shape 

node. The computation is applied to a sequence of RGG graph nodes of shaded 

shape type that belong to the same branch. The physical principle followed in this 

model is Darcy’s law [136]. The GroIMP radiation model computes the light 

amount absorbed by an object placed in a scene with customizable light sources. 

This model uses the technology of path tracing for radiation transport, i.e. light rays 

emits from a light source are traced to calculate a scattered ray by applying optical 

principles., and the Monte Carlo method for tracing diffuse reflection or 

transmission, i.e. the new direction is (pseudo-) random. The geometry of the scene, 

the optical properties of the objects and light sources are set as parameters to 
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compute the light amount intercepted or absorbed by any object. The computation 

of the radiation model thus is applied to each RGG graph node of shaded shape 

type.  

On one hand, the GroIMP based FSPMs can take both single-scaled and multi-

scaled RGG graphs, with topological connection types including one, two or three 

types out of the succession, branching and decomposition. On the other hand, it is 

logical that the GroIMP functional models take the role of servers that receive the 

modeling interaction requirements from MAppleT, because one plant can have 

multiple functions but only one growth algorithm. Thus, the interaction between 

MAppleT and the GroIMP FSPMs acts in a way that FSP data generated by 

MAppleT is reproduced in an RGG graph with original topology and geometry to 

allow the functional computing by the GroIMP models. Obviously, there are 

syntactic and semantic gaps which need to be bridged, e.g., the FSP data generated 

by MAppleT does not contain data fields for the flux or light, which are needed for 

GroIMP FSPMs to perform functional computing. 

3.1.3 Requirements to achieve the project goal  

From the perspective of software engineering, this PhD project is about the reuse 

of two existing FSPMs and the construction of a complex FSPM. On one hand, 

almost no FSPM that is expected to be reused was originally designed for reuse 

purposes. On the other hand, FSPMs that are expected to be reused are mostly based 

on heterogeneous technology environments (e.g. different programming languages, 

different platforms) with different aspects of plant abstraction. The reason is that 

the same research team often uses the same technical environment to do the same 

kind of research, and the reuse of research results of different research teams on 

different research directions will enable a more comprehensive understanding of 

the research object and will thus be more valuable. Consequently, not software 
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composition but software integration is a major kind of software reuse practice for 

FSPMs, and is the focus of this thesis. 

The essential mechanism that executes different FSPMs as one program is 

obviously the cooperative processing of the functional and structural information 

of the same virtual plants. An information exchange between FSPMs is thus 

necessary. In order to ensure the information processed by different models are 

indeed for the same virtual plants, the exchange of the FSP information between 

different FSPMs is indispensable. It is noteworthy that when information is 

decoupled from the modeling environments, e.g. XL/L-py, IMP-3D/PlantGL, it will 

become data, which is the actual form of exchange. Only when the exchanged data 

are recoupled to another modeling environment, the FSP data become information 

again. Another notable feature is that the target FSPMs of an integration typically 

include a plant structural model and zero or more functional models. In biology, the 

basic assumption is that a structure is the basis of its functions; functions of a 

structure determine the performance of the structure. Consequently, a single 

structural model takes the role of “client” and the multiple functional models take 

the role of “servers”.  

In detail, the integration involves every aspect of a FSPM. The first is the 

modeling platform – model aspect. Although both modeling platform and model are 

software programs, they play rather different roles for a FSPM. The modeling 

platform provides the technical basis of the FSPM. At platform level, plant 

information produced by FSPMs based on the same modeling platform shares the 

same syntax and semantics. Hence, these FSPMs can use the same platform-level 

integrating infrastructure, i.e., processes for the platform-level interoperability of 

information. At model level, both information and simulator of a particular model 

have their own specific syntax and semantics, hence every FSPM has its unique 

model-level integrating infrastructure, i.e., processes for model-level 

interoperability of information and for synergy of simulators. The second is the 
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syntax - semantics aspect. Information involved in FSPMs includes plant and 

environmental information. Both consist of data organized in syntactic structures 

with given semantics. Data need to be exchanged with relevant semantics to enable 

the simulation by the receiving FSPMs. The third is the dependent - independent 

aspect. Because plant elements are biologically dependent on and interact with each 

other, FSPMs compute the FSP data of one plant element by taking into account 

inputs from one or more other plant elements. The plant information produced over 

one simulation step thus needs to be exchanged as a complete piece with consistent 

semantics in different syntax. In contrast, the different environmental information 

is normally considered independent from each other; hence, it does not need to be 

exchanged as a complete piece. The fourth is the spatial-temporal aspect. An 

execution of FSPM normally simulates particular plant functions at one or more 

structural extents (i.e. spatial resolutions/scales) with a specific simulation step 

length (i.e. temporal resolutions/scales). The fifth is the topology - geometry aspect. 

Being a part of plant information, structural information includes topology and 

geometry. In detail, topology denotes the adjacency relationships between a plant 

module and its neighbors, whilst geometry denotes the location and orientation of 

a shape presenting a plant module, which can be expressed by the geometric 

transformation between the plant modules and its parents (local transformation) or 

the root (global transformation). The sixth is the internal - external aspect. The FSP 

data in plant information captures properties of the plant itself, i.e., internal data. In 

contrast, the data in environmental information is external. As FSPMs focus on 

small spatial scale modeling, the evolution of internal data is frequently assumed to 

have no feedback on the external data, and the same external data is applicable for 

all involved virtual plants. The seventh is the non-retroactive - retroactive aspect. 

A non-retroactive integration denotes a situation in which the target FSPMs do not 

send the updated plant information back to the source FSPM. In contrast, a 

retroactive integration describes the case where the target FSPMs send the updated 

plant information back to the source FSPM and let the source FSPM take into 

account data on updated properties when computing new plant information. 
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Before FSPMs can be integrated, some preparations need to be carried out. One 

preparation is for plant properties. Similar to databases where different data fields 

characterize different properties of an object, different FSPMs originally organize 

data characterizing plant property information in different data field sets. However, 

the simulation of integrated FSPMs requires plant information with data fields from 

both source and target FSPMs. As the original plant information from the source 

FSPM does not match data fields needed by the target FSPM, hence, the data fields 

defined in the target FSPMs need to be added to the data field set of the source 

FSPMs and data fields need to be adjusted to the types available on platform where 

the target FSPM is based. The other preparation is for simulators. Originally, 

simulators of an FSPM update plant information by computing new data of a data 

field using old data of relevant data fields defined in the FSPM itself. However, to 

compute new data of data fields defined in the source FSPMs in case of retroactive 

integration, the computation also takes data from data fields defined in the target 

FSPMs as inputs. Hence, simulators of the source FSPM need to be adjusted. On 

the other hand, the types used to graphically represent plant modules in simulators 

of the source FSPMs might be different from those of the target FSPMs, besides of 

the structure alignment mentioned in the geometry-topology aspect at the data 

model level, adjustments of the simulator of the target FSPM at biology level are 

also needed. (e.g. a source FSPM uses a Parallelogram type available in its library 

for a leaf, a target FSPM uses a Triangle type for a leaf available in its library, then 

a leaf object produced by the source FSPM needs to be represented by, let’s say two 

triangle objects which will be incorrectly recognized by the simulator of the target 

FSPM as two leaves. To have a correct biological interpretation, the simulator of 

the target FSPM needs to use an array of two objects of the Triangle type available 

in its library to represent a leaf, and the production rule needs to be changed 

accordingly.) 

In order to have a standardized technology, we must consider the requirements 

of diverse projects, namely the integration of a various number of FSPMs. Here, 
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the integration case of the FSPM Apple project is a special case where only two 

FSPMs are involved. When there are more than two FSPMs to be integrated, the 

coordination of the execution of different FSPMs becomes necessary. The 

coordination has to conform to specific knowledge or settings of experiments, thus 

the participation of domain experts is indispensable.  

To meet all the requirement aspects and achieve the integration of the two 

specific FSPMs, specific middleware has to be developed to enable the required 

interoperability. The middleware needs to be modularized as reusable components 

and loosely coupled with the FSPMs through “provided” or “required” interfaces 

to keep the independence of the FSPMs. However, the middleware obtained can 

only be used under the specific conditions of our project. To provide technical 

support for all the cases of integration, a set of technologies to support the 

integration of different FSPMs is better to be provided first, and then a middleware 

that fulfills the specific requirements in our integration case can be developed by 

applying these technologies. 

3.2  Technology survey for the integration of 

different FSPMs 

Being a particular kind of software, the technology categories [115] to achieve 

software integration, i.e. software component technology, middleware technology, 

software architecture, are logically applicable for the integration of different 

FSPMs. However, the existing technologies of each category are generalized 

standards that do not fully meet the obtained requirements, e.g. many of them are 

only applicable for specific languages or platforms. Therefore, the pragmatic 

approach is to establish a specific solution with full adaptability to the needs of the 

project based on a survey of different existing technologies. In this section, we 

firstly survey the existing technologies of each category for software integration, 
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and then we introduce some of them in detail as the conceptual basis for 

construction of our specific solution of FSPM integration.  

 

3.2.1 Technologies for software integration: overview 

David S. Rosenblum has summarized ten different approaches to achieving 

interoperability (abbreviated as D.S.R ten IOP approaches, c.f. Figure 3.3 [10]) with 

“form” referring to the representation, communication, packaging semantics from 

the perspective of methodology. These approaches mostly embody the roles of 

different integration technologies and the logical relationship between them, and 

can provide guidance on how to apply specific integration technologies.   

1. Change A’s form to B’s form, which is about to a complete rewrite of A or B 

using standard architecture-specific frameworks 

2. Publish abstraction of A’s form 

3. Transform on the fly, through data filters, mediators, scripts and other 

externally-imposed controls 

4. Negotiate common form 

5. Make B multilingual, which is about to make the subsystems capable of 

interacting in different forms 

6. Provide import/export converters 

7. Introduce intermediate form 

8. Use wrapper 

9. Parallel consistent versions 

10. Separate B’s essence from its packaging 

 

Figure 3.3 Approaches for software interoperability [10] 
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In the category of component technology, the existing concrete ones mainly are 

technologies supporting the reuse of a component by creating a copy within the new 

software system. The typical examples include Common Object Request Broker 

Architecture (CORBA), Java Bean & Enterprise Java Bean (EJB), and Component 

Object Model (COM) & .NET. Through the comparative Table 3.1 [16], Philip T. 

Cox and Baoming Song summarized the characteristics of these technologies, and 

found that despite the differences in many aspects, such as the parameterization 

mechanism, these technologies have some basic features in common [16], which 

include the standards provided for the definition of the interfaces required for 

component communication and the message exchange mechanism for the 

interoperability between components.  

Ian Sommerville found that the situation of the multiple standards has caused 

difficulties for components developed using different approaches to work together 

[1], e.g., components developed for .NET and J2EE cannot interoperate. 

Consequently, the component based software engineering and software reuse is 

greatly hindered. Besides, these component technologies are highly complex with 

 

Table 3.1 Comparison of JavaBeans, COM and CORBA [16]. 
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steep learning curve. He suggested that component technologies adopt a service-

oriented concept to address these issues. This means to establish standards 

supporting the reuse of a component by referring to it as a standalone service that 

is external to the software that uses it. The most important service-oriented 

component technology is the Web Services technology. As a common means for 

cross language/platform software interoperability, the Web Services technology 

combines a collection of recognized standards to define software components as 

web services over networks, and to allow their communication through XML 

messages. These standards usually include Web Services Description Language 

(WSDL), Simple Object Access Protocol (SOAP) and Hyper Text Transfer 

Protocol (HTTP) respectively.  

In the category of middleware technology, the existing concrete solutions mainly 

are different models/protocols allowing communication between distributed 

software applications or components, including RPC (Remote Procedure Call), 

MOM (Message-Oriented Middleware) and ORB (Object Request Broker). The 

RPC is a protocol for communication between processes. It allows a program to call 

procedures in a different address space (usually on another machine in the network) 

without explicitly describing the details of the remote call by the developer. That 

is, whether the procedure calls locally or remotely, the calling code is essentially 

the same. The MOM allows distributed applications to communicate and exchange 

data through messaging mechanisms. The messages are asynchronously stored, 

forwarded, transformed and routed. The OBR enables an application’s objects to be 

distributed and shared across heterogeneous networks, i.e. interoperability between 

objects. All these middleware models make it possible for one software component 

to affect the behavior of another component over a network. The difference is that 

systems built upon ORB- or RPC-based middleware have components that are 

tightly coupled, whereas systems built upon MOM-based middleware have 

components that are loosely coupled. In an ORB- or RPC-based system, 

communication between components is straightforward and synchronous. That is 
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to say, there is no forwarding intermediary, and the caller must wait for the reply 

from the callee before proceeding to the next step. In a MOM-based system, a 

message is sent from a source application to a destination application through a 

messaging provider that mediates the messaging operation. This means that the 

provider manages the message by routing and delivering it. The source application 

can continue for further work once it has sent the message, confident that the 

provider maintains the message until a destination application receives it. [5].  

In the category of software architecture of integration, the existing concrete 

software integration architectures mainly are embodied by different architecture 

frameworks and design patterns. As introduced previously, the interoperability 

enabled software integration is the state-of-art approach, we thus focus on the IOP 

architecture frameworks. One of the early IOP architecture frameworks is the four 

levels or aspects of software interoperability, including physical, data type, 

specification and semantic, introduced in 1997 [124]. Issues for interoperability at 

each of the four levels have been studied, e.g. procedure call versus message 

passing, systems interface definition, execution intermediaries and data type 

compatibility. In the following twenty years, through a large number of practices in 

specific application fields, different layered frameworks combined with technical 

solutions adapted to the application fields have been introduced.  

In the field of eGovernment, which is about providing public services to people 

electronically and which involves interactions between heterogeneous roles ranging 

from different people to countries, the EIF version 1.0 [21] and version 2.0 draft [3] 

was introduced in 2004 and 2009 respectively. It is an IOP architecture framework 

for enabling the integration of the eGovernment Services of the member countries 

of the EU. The version 1.0 introduces a framework consisting of technical, semantic 

and organizational aspects. Despite the suggestion [9] to confine the organizational 

interoperability to standards or concepts handling the linkage of business processes 

and rename it to business interoperability, the version 2.0 draft  kept the 
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organizational layer and added an additional legal layer with a political context 

applicable to all four layers (c.f. Figure 3.4 [3]). An architecture framework similar 

to EIF version 1.0, i.e. the European Public Administration Network (EPAN), adds 

a layer corresponding to contact/support of a structured customer and introduces 

the aspect of governance as a cross-cutting issue as an addition to the four layers 

(EPAN 2004). In the white paper "Standards for Business", the European 

Telecommunications Standardization Institute (ETSI) introduces a new layer 

between the layers for technical and semantic IOP, which corresponds to syntactic 

IOP (ETSI 2006).  

 

Like the situation for the definition of interoperability, different application 

fields will give different interoperability frameworks. Even in the same application 

area, the frameworks given by different institutions are not the same. Besides, the 

frameworks change over time. As previously introduced, these conflicting and 

inconsistent taxonomies have been observed and discussed, but no universal 

Figure 3.4 The interoperability framework of EIF version 2.0 draft [3] 
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solution has been provided. In fact, it is understandable that it is not possible to 

provide such a static and universal framework to enable software interoperability 

because of the high diversity and variability of software development technology. 

Thus, it is pragmatic to refer to the existing standards and develop a realistic 

framework based on our project needs. 

 

It is easy to see that all the interoperability frameworks include explicitly or 

implicitly the syntactic and semantic interoperability, which is about to ensure the 

information exchange and consistency in understanding the exchanged information. 

From the perspective of layered interoperability frameworks, each layer needs to 

have a clear technical solution when a specific interoperability task is faced. The 

four levels of interoperability of H. Kubicek and R. Cimander [9] (abbreviated as 

K.C. IOP framework, c.f. Table 3.2 [9]), show the solution (and some candidate 

Layer of 

IOP 

Aim Objects Solutions State of 

knowledge 

Technical IOP Technically 

secure data 

transfer 

Signals Protocols of 

data transfer  

Fully developed 

Syntactic IOP Processing of 

received data 

data Standardized 

data exchange 

formats, e.g. 

XML 

Fully developed 

Semantic IOP Processing and 

interpretation 

of received 

data 

Information Common 

directories, data 

keys, ontologies 

Theoretically 

developed, but 

practical 

implementation 

problems 

Organizational 

IOP 

Automatic 

linkage of 

processes 

among 

different 

systems 

Processes 

(workflow) 

Architectural 

models, 

standardized 

process 

elements (e.g. 

SOA with 

WSDL, BPML) 

Conceptual clarity 

still lacking, 

vague concepts 

with large scope 

of interpretation  

 

Table 3.2 Four levels of interoperability (IOP) [9]. 
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technologies) for each layer, and the state of knowledge for the solutions. The fact 

is that the technical and syntactic interoperability has mature candidate technologies 

such as TCP/IP or XML, JSON for the solution, but there are only unstandardized 

concepts and methods available for the semantic interoperability, and there is even 

a lack of conceptual clarity for organizational interoperability (i.e. the automatic 

linkage of processes among different subsystems). 

 

The design patterns, as one of the two major technologies in the category of 

software architecture, are intensively discussed based on the integration practice of 

enterprise applications. An icon-based pattern language consisting of sixty-five 

integration patterns structured into nine categories was introduced to ease the 

difficulties of the software integration, especially the high complexity of Enterprise 

Application Integration (EAI) [7], which is about to facilitate the integration of 

 

Figure 3.5 Design patterns for enterprise application integration [7] 

 



 

83 

 

software applications (and hardware) systems across different enterprises. The 

patterns were collected from a large number of integration practices and provide 

technology-independent design guidance for developers and architects to describe 

and develop robust integration. This coherent collection of relevant and proven 

patterns forms an icon-based integration pattern language which can be used to 

describe the pattern. The EAI is enabled by different messaging EIPs including ten 

Channel patterns, fourteen Router patterns, and seven Transformation patterns. The 

additional Endpoint patterns, Message Construction Patterns, System Management 

Patterns (c.f. Figure 3.5) are also included to describe the produce-consume, 

monitoring, pack-unpack of messages. Following the EIPs, the enterprise 

application is essentially integrated through message-oriented middleware. 

While discussing software integration, we must also note that the aim of software 

integration is to construct complex software systems reusing existing software. As 

the software is mainly about to process data/information, the integration of different 

software will surely bring problems of data/information interoperability, especially 

when complex data models are involved. This can be confirmed from the existence 

of syntactic and semantic IOP layers in most IOP architecture frameworks. The 

formal definition of data integration is to logically or physically combine data from 

different sources in different formats or data models into meaningful and valuable 

information and providing users/processes with a unified view of them. The method 

of data integration bridges the gaps of heterogeneous data formats/models, which 

logically has the potential to enable data to be processed collaboratively by 

heterogeneous software, i.e. the data integration methods enable the syntactic or 

semantic interoperability. Traditionally, data integration can be divided into two 

broad categories of methods, namely data warehouses and federated databases. 

Database warehousing technology physically integrates and stores data distributed 

across different data sources into a single data model and central database so a 

single user query can retrieve data from different sources. Typically, a data 

warehouse is established through a data pipeline to extract, transform, load (ETL) 



 

84 

 

data in heterogeneous data models into a single data model so data from different 

sources become compatible. Federated databases logically integrate data only by 

translating user queries into data source queries, i.e. decompose the user query into 

subqueries for submission to the relevant constituent databases and compose the 

result sets of the subqueries. To deal with the heterogeneous query languages of the 

constituent databases, federated database systems typically apply wrappers to the 

subqueries to translate them into the appropriate query languages. 

3.2.2 Conceptual foundation of integration of FSPMs 

Through the survey of these software integration technologies, we become aware 

of correlations between these technologies as follows. The layered IOP architecture 

frameworks give the overall guidance for software integration while the D.S.R ten 

IOP approaches provide conceptual solutions for each necessary integration aspect. 

The EIPs embody most of the ten approaches with formal and refined description 

in icon-based language, and provide technology-independent design guidance for 

the integration process or workflow. The middleware technologies provide support 

for the Technical IOP by enabling communication between distributed applications. 

The component technologies provide support for the Organizational IOP by 

enabling interactions between different software applications. The data integration 

technologies provide support for the syntactic and semantic IOP by solving the 

heterogeneity of data that exists in different data models.  

Taking both the correlations and the high complexity of integration of FSPMs 

revealed by the requirement analysis into account, we conclude that a single 

technology cannot provide a complete solution for the integration. It is necessary to 

have concrete technologies including component and middleware technologies, 

ETL pipeline, as well as technology-neutral methods including the ten IOP 

approaches and software architectures to provide the overall design guidance for us 

to design and implement an integration solution with high quality. 
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Consequently, we determined a list of technologies as the conceptual foundation 

of the integration of FSPMs based on previously obtained requirements from the 

available technologies for general integration of software. It includes Webservices 

technology, RPC middleware model, and K.C. IOP framework, Message Translator 

& Canonical Data Model design pattern, and ETL data preparing process. We also 

try to rationalize the logical relationship between these technologies following the 

D.S.R. ten IOP approaches to make a detailed study of each technology to facilitate 

the design of our solution for the integration of FSPMs.  

3.2.2.1 Determining the conceptual foundation 

As one of the two main types of architecture for software integration, different 

IOP architecture frameworks have been considered, and the K.C. IOP framework 

is prominent. It clearly distinguishes the levels of interoperability between objects 

to be interoperated, i.e. signals, data, information, and processes. Compared to the 

other frameworks that have layers with complex technical nature, e.g. the technical 

interoperability layer for EIF, this layered structure makes it intuitive and distinct 

to identify corresponding candidate technologies for each layer. It provides an 

“object oriented” framework for the interoperability of FSPMs. With it, the 

correspondence between levels/layers – integrating objects in the framework and 

the various aspects obtained from requirement analysis can be easily established.  

In detail, two aspects, the syntax – semantics aspect and the non-retroactive – 

retroactive aspect, directly correspond to layers of the framework. The former 

represents the FSP data and information, and exactly corresponds to the syntactic 

and semantic interoperability layers of the framework. The latter represents the 

linkage of processes among different FSPMs, i.e. cooperation at the domain 

knowledge or semantic level, which corresponds to the layer of organizational 

interoperability.  The other aspects do not correspond to layers of the framework, 

but reflect the intertwined situation of the layers. The modeling platform – model 

aspect represents the “vertically” intertwined situation of syntax and semantics of 
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information in FSPMs. As previous analyzed, in this project, the FSP data of all 

modules of a plant need to be exchanged together to ensure the topological relations, 

which reflect also a biological context of a plant module. Therefore, for FSP data 

of a module, the syntactic interoperability has to ensure the data type compatibility. 

For data of primary type, most languages have similar sets of data structures, direct 

mapping or casting can achieve the compatibility, and straightforward technical 

candidates are available in most programming languages and FSP modeling 

platforms for this kind of solutions. For the data of composite type, especially for 

the graphic primitives defined in graphics libraries as a part of a modeling platform, 

it is much more complicated. A graphic type itself has both a syntactic aspect and 

a semantic aspect. In most cases, an object-oriented class is used to define such a 

type. The syntactic aspect of a graphic type refers to the signature of the class 

constructors, i.e. the types, order of parameters and returns. The semantic aspect of 

a graphic type refers to the graphical meaning of the name of a constructor (or 

class). The dependent – independent aspect, the spatial – temporal aspect, the 

topology – geometry aspect and the internal – external aspect represent the 

“horizontally” intertwined situation of syntax and semantics of information in 

FSPMs. Syntax and semantics of functional and structural information of a plant 

module are two interdependent sides of the information, thus they have to be 

interoperated simultaneously with all other dependent information. For example, 

although the different environmental information might be considered independent 

from each other in FSPMs, the environmental information might still need to be 

exchanged because there might exist specific dependencies between functional and 

structural information of a plant module and environmental information. The 

preparations of plant properties and simulators and the coordination of execution of 

FSPMs are caused by the independent development of the FSPMs to be integrated. 

Hence, they correspond to the layer of organizational interoperability. All the 

correspondences between requirements and IOP layers proves the role of K.C. IOP 

framework as one of the conceptual foundations of our technology. 
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It is clear that the integration of FSPMs is primarily a type of software 

integration, i.e. under heterogeneous technology environments (e.g. different 

programming languages, different platforms). Therefore, compared to other 

component technologies, the Webservices are fully in line with the requirements 

and thus can be determined as one of the conceptual foundations of our technology. 

Precisely, a web service makes software applications available over networks using 

standard technologies so that they can perform cross-language/platform interaction. 

This makes it highly suitable for building distributed integrated FSPM that must 

incorporate diverse FSPMs over a network. The standard technologies of 

Webservices include Web Service Description Language (WSDL) specifying how 

component interfaces should be defined, XML messages formatted with SOAP 

protocol to communicate with other applications, through a network protocol like 

HTTP [8]. The WSDL is a standard XML format for describing web services, and 

is the key to the interoperability of Web service agents. A WSDL file defines a web 

 

 

Figure 3.6 Web Service architecture [8] 
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service as software component by specifying its component interfaces. Other 

software applications can interact with it by writing components to access the 

service through the interfaces [137]. The Webservices architecture illustrated by 

Figure 3.6 [8] clearly shows the relationships between distributed software 

components and their interaction. In detail, a web service is deployed on an 

application server responsible for message routing. It interacts with a component of 

the client software application and resources or external web services through 

SOAP formatted XML messages over standard protocols such as HTTP.  

The requirement analysis implies a client-server relationship between structural 

and functional FSPMs because a biological structure is assumed as the basis of all 

its functions. Consequently, the plant structural model always needs to wait for the 

response of the plant functional model for further execution. This indicates that the 

RPC middleware technology meets the requirements of the integration of FSPMs 

and thus can be determined as another conceptual foundation of our technology.  In 

detail, RPC enables request-response or client-server communication between 

programs over a network without need to understand the lower level protocols. It is 

based on certain transport protocols, e.g. TCP or UDP, for carrying 

information/data. The process of a RPC program involves five parts: Client, Client 

Stub, RPC Runtime, Server Stub, and Server. The Client initiates a RPC by calling 

the Client Stub with parameters. The Client Stub packs the parameters into a 

message and passes it to RPC Runtime. The RPC Runtime on the client machine 

sends the message to the server machine through a communication network. The 

RPC Runtime on the server machine passes the received message to the Server 

Stub. The Server stub unpacks the parameters from the message, and then calls the 

Server procedure. The result replies to the client in the reverse direction. The 

simplest RPC system is XML-RPC or JSON-RPC using HTTP to transport the 

message carrying the calls (i.e. method name and parameters) encoded in XML or 

JSON. Technically, it consists of three parts, including data model (i.e. a set of types 

for use in messages), request message structures (i.e. an HTTP request with method 
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name and parameters), response message structures (i.e. an HTTP response with 

return values or fault information). 

 

Being a specific type of software integration, IOP of information, i.e. syntactic 

and semantic IOP, are essential for the integration of FSPMs. The requirements 

indicate that for FSPMs, some specific IOPs, namely the IOPs of plant functional 

and structural information (including topology and geometry) are needed, and the 

information heterogeneity needs to be solved physically as the complete 

information of same plant needs to be transmitted and processed by different 

FSPMs. As the typical data warehouse technology that provides this physical 

support, the ETL (c.f. Figure 3.7) [138, 139] data pipeline was determined as one 

of the conceptual foundations of our technology to support IOP of information. 

Precisely, data extraction collects data from various sources. Data transformation 

operates data by converting them into a proper storage structure. Data loading 

inserts data into the target database (typically a data warehouse). A well designed 

ETL system extracts data from different sources, ensures data quality and 

consistency, and conforms data so that various sources can be used together for 

delivery of data in a uniformed format for the usage of end users. For our project, 

 

Figure 3.7 Classical ETL Diagram for Data warehouse 
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the data preparation process of the ETL pipeline embodies the interoperability of 

the FSP information, is thus useful for the integration of different FSPMs. 

The requirement analysis also indicates the necessity of an intermediate form 

because of the relation between function and structure, which was embodied by the 

Canonical Data Model EIP and the approach 7 (Introduce intermediate form) of the 

D.S.R. ten IOP approaches. Thus, this is undoubtedly determined as one of the 

conceptual foundations of our technology to support the IOP of information. In 

addition, we have found that the Canonical Data Model EIP has two opposite ETL 

pipelines made up of four Message Translators (c.f. Figure 3.8), which embody the 

approach 6 (provide import/export converters) of the D.S.R. ten IOP approaches. 

We thus determined the Message Translator EIP and the approach 6 as supplements 

to support the IOP of information. Precisely, a message translator [7] is a process 

translating the messages exchanged between different enterprise applications. The 

transformation can occur at different levels, including data structure, data types, 

 

 

 
 

 

Figure 3.8 Message Translator EIP (upper), Canonical Data Model EIP (lower)[7] 

model EIP (lower) 
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data representation, and transport. A canonical data model [7] is a data model that 

is in the simplest form based on a standard integration solution and independent 

from any specific application. It provides an additional layer of intermediary 

between the various data formats/data models of applications. If a new application 

is added, a development for the transformation between the canonical data model 

and the individual data formats/data models of the new application is enough, which 

is independent from the transformations between the canonical model and 

applications within the existing solution. It is a generic intermediate form providing 

the integration potential not only for now but also for the future. 
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Chapter 4   
 

DESIGN OF TECHNOLOGIES FOR THE 

INTEGRATION  

Based on the introduced technologies for software integration, the requirements 

for the integration of different FSPMs can be rationalized to following aspects. (1) 

FSP data transfer by HTTP message. (2) FSP graph exchange by an intermediate 

FSP data model of integrative protocol on top of HTTP. (3) Automatic linkage of 

FSPM processes/simulators through ‘provides/requires’ interface of components. 

(4) FSP graph conversion between intermediate FSP data model and FSP data 

model of target FSPM by Canonical Data Model EIP with embedded Message 

Translator EIP that conform to the ETL pipeline and embody the D.S.R. approaches 

6 and 7. (5) The preparations for plant properties and simulators of different FSPMs. 

(6) The coordination for the execution of different FSPMs. It is clear that none of 

the technologies can cover all the aspects. Consequently, the combination of these 

technologies is necessary to support the integration of different FSPMs. 

In this chapter, we introduce the specific technologies designed for the 

integration of different FSPMs based on the determined conceptual foundations. 

This includes a component model based on WebServices technology, a network 

protocol based on JSON-RPC as middleware technology, and an architecture 
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framework based on the K.C. IOP framework and Canonical Data Model EIP with 

embedded Message Translator EIP that conform to the ETL pipeline and embody 

the D.S.R. approaches 6 and 7 (c.f. Figure 4.1). . 

 

During the technology survey for the integration of different FSPMs, we have 

noticed some confusing situation/ambiguity between the component technology, 

middleware technology and software architecture. The situation is that network 

protocols are often referred to as middleware. For example ORB provided CORBA 

to allow program calls to be made among distributed software components over 

network being constantly referred to as middleware, which is actually a feature 

based on RPC protocol for communication over network. The fact is that the 

essential functionality of a middleware is to integrate components of application 

Figure 4.1 Relationships between involved technologies for FSPM integration. 
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software located on the network. The key point is that the middleware provides 

services beyond those available from the operation system. According to the 

mainstream network model, namely the TCP/IP model, different network protocols 

are actually layered hierarchy. A layer serves the layer above it and is served by the 

layer below it. Figure 4.2 clearly shows the relationships between layers of different 

network entities in a TCP/IP network, which are mainly embodied by recursive data 

encapsulation. For example, the segments of the transport layer encapsulate the 

message M of the application layer and a header Ht of the transport layer. 

Consequently, a protocol is a middleware with regard to the layers lower than its 

reference layer. If a new protocol is designed on top of a protocol that is available 

from a reference layer, the new protocol is then a middleware with regard to the 

current reference layer. However, if the protocol is later standardized and becomes 

available from the updated reference layer, then it is a protocol with regard to the 

updated reference layer. IETF defines middleware as “those services found above 

the transport (i.e. over TCP/IP) layer set of services but below the application 

Figure 4.2 TCP/IP protocol stack and data encapsulation [4] 
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environment (i.e., below application-level APIs)” [140] because the support of 

protocols at transport (and lower) layer is commonly available in operation systems. 

Another situation is that specific IOP tools are often referred to as implementations 

of all the three technologies. For example CORBA is referred to not only as 

component technology and software architecture, but also as middleware 

technology [141]. The fact is that the three technologies are overlapping in terms of 

software integration. The component technology supports both software 

composition and integration, its focus is the independence and reusability of 

software. The middleware technology is most commonly used in distributed 

environments to support software integration. Its focus is making complexity 

caused by distributed environments (such as communication and interoperability) 

transparent. Therefore, as a concrete component technology, i.e. a component 

model, the architecture described by CORBA should include the architecture of 

components, the standard method exposing ‘requires’ and ‘provides’ interfaces and 

allowing the operational interactions between different components, as well as a 

protocol to provide the communication service to the interaction over a distributed 

environment. With regard to the conceptual foundation of the integration of FSPMs, 

the WebServices have the WSDL as standard method to expose ‘requires’ and 

‘provides’ interfaces. Its SOAP is a protocol, and is a middleware technology as 

well with regard to operation systems.  

Based on the survey, we have also noticed that component modes are highly 

diverse and can include different combinations of model elements. Table 3.1 clearly 

illustrates different model elements provided by JavaBean, COM and CORBA. A 

more complete comparison of the component models can be found in [142]. Some 

studies have attempted to standardize the component model technology. This 

includes the standardization of what a component model should describe by 

summarizing it in a comprehensive list of model elements. For example, model 

elements have been categorized into six areas, including composition, provided 

interfaces, dependencies, instantiation, interactions, and assembly [143]. Ian 
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Sommerville have summarized the basic elements of an ideal component model 

with even more elements  (c.f. Figure 4.3 [1]). Their studies include also the 

standardization of the way to describe a component model. They suggest to describe 

a component by three views, including a component diagram as static view that 

describes relationships between components, an activity diagram as dynamic view 

that describes interactions between components, and a component description with 

an appropriate level of details that is related to one of three (conceptual, 

specification, or physical) levels of model elaboration. [144]. Based on all these 

studies, we conclude that our technology for the FSPMs integration should be a 

component model with standardized method to expose interface and component 

architecture that abstract the needed components and their relationships. A protocol 

for communication as middleware technology should be established first to support 

the component model.  

 

4.1 Design of a middleware technology  

It is clear that the difference between software composition and integration is 

that communication protocols are involved as middleware, which are therefore the 

basis of software integration. So, a specific protocol suiting the requirements of 

 

Figure 4.3 Basic elements of an ideal component model [1] 
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FSPMs integration needs to be designed at first. The protocol, as we introduced in 

the last chapter, is conceptually based on the JSON-RPC protocol and conforms to 

the Canonical Data Model EIP.  

To fulfill the primary needs of information interoperability, we have designed a 

canonical data model. This is also the key that differentiates our protocol from the 

existing JSON-RPC protocol. The design includes data exchange models at both 

logical and physical level. The logical data exchange model defines the logical 

relations between FSP data elements with simplest abstraction, has high 

adaptability for different cases of FSPM integration, can be detailed to the physical 

level to suit specific cases. The physical data model implements the logical structure 

using s specific serial format to suit the specific needs of our project. 

4.1.1 Design of a logical data exchange model 

We now introduce the design of a logical data exchange model by adapting our 

published article [17]. As a canonical data model at the logical level, the logical 

data exchange model is about to design a logical structure that is simple and abstract 

enough to enable the data in different FSP data models to be exchanged. Therefore, 

it should be a generic structure for FSP data organization. 

Being a data model abstracting structure and function of plants, the logical data 

exchange model itself can also be created by data modeling based on the analysis 

and abstraction of plant structures in the real world. Similar to the other FSP data 

model, the focus should be on the structure, as “structure is the basis of function; 

function is the performance of structure”. In essence, there are two levels of 

requirements for designing a logical data model for abstracting plant structure. The 

first is the syntactic level, which is the basic level for every kind of data models and 

which refers to how the elements of data may be organized and accessed. As a plant 

structure model, some important characteristics of plants need to be taken into 

account: (1) plant components normally emerge and grow based on existing 
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components; (2) nutrients reach a component after going through a path consisting 

of preceding components that are physically connected; (3) also the amount of 

components and interconnections changes constantly during the whole life cycle of 

the plant. Because of these characteristics, the elements of plant architectural data 

are highly connected and codependent with a high rate of change. This demands a 

data model with high efficiency of update such as insertion and deletion of elements 

of data.  

Apart from the requirements at syntactic level, expressive relationships between 

elements of data representing dependencies between plant components are 

biologically meaningful. To automatize various types of biological reasoning, the 

meaning of the dependencies should also be captured. This leads to the requirement 

on the semantic level, and demands a data model capable of capturing the semantics 

of the dependencies/relationships between elements of plant architectural data. 

In addition, FSPMs distinguish between function and structure of plants and 

regard the structure as the basis of the function. Hence, the way organizing elements 

of architectural (topological or geometric) data of the expected data model needs to 

be syntactically and semantically different from functional elements. In other 

words, the architectural data elements are required and the functional data elements 

are optional. The functional data elements are attached to the architectural data 

elements. The semantic relationships representing adjacency (i.e. biological 

dependency) between plant components exist only between architectural data 

elements. 

Structured data models, such as the relational model, do not meet these 

requirements [145]. The reason is that for elements of plant architectural data, these 

models are capable of a high efficiency when responding to queries, but have 

difficulties to capture the semantics of the dependencies, and suffer from a low 

efficiency update. On the other hand, some semi-structured data models do not 

distinguish between different elements of data. There is no concept of some 
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elements of data having more precedence, or importance, over other elements, e.g. 

properties of a resource are also resources in the Resource Description Framework 

(RDF) [146], and thus these kinds of data model do not meet the requirement.  

The development of plant data models demonstrates an evolution from specific 

architectural models for specific plant structural modeling, via generic architectural 

models for structural modeling, to generic FSP data models for FSP modeling. The 

MTG and RGG graph are two typical data models that are currently widely used 

and accepted as standards for FSP data modeling, and they are the target data 

models of our project as well. Hence, the detailed comparative analysis between 

MTG and RGG graph is helpful to get a logical data exchange model enabling the 

exchange of FSP data between MTG and RGG graph. 

From the facts shown in the detailed comparison of the MTG and RGG graph 

on both design and implementation introduced in the second chapter, some common 

elements were discovered and abstracted. At design level, the two data models in 

their current version are both multi-scaled, with the support of three types of 

adjacency to abstract the neighboring relationships between modules of real plants. 

For the MTG, the within- and inter- scale topology are both rooted trees, while the 

overall topology is a rooted graph. For the RGG graph (i.e. three-part-graph), 

particularly the instanced graph, the within-, inter- scale, and overall topology are 

all rooted graphs. Therefore, the topology of the RGG graph is the more general 

and was considered as the topology of the logical data exchange model. At the 

implementation level, both MTG and RGG graph are a combination of property 

graph and scene graph, but with opposite primary/secondary relationship and other 

specific settings, e.g., geometric data elements can only be represented as properties 

of graph nodes in the MTG, transformations without other (functional) properties. 

Thus the logical data exchange model considers the same combination but with no 

primary/secondary relationship and no specific settings. Topologically, a property 

graph is a scene graph with properties attached to nodes and edges. For the logical 
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data exchange model that considers only the topology, the abstraction from the 

implementation level is thus the “general” or “original” property graph.  

The property graph is a type of semi-structured data model distinguishing nodes 

and their properties. In these logical models or graphs, nodes and edges are used for 

representing the elements of architectural data and relationships respectively. This 

makes insertion and deletion of nodes very easy and fast, and ensures a high 

efficiency update. Moreover, different types of relationships are defined to 

explicitly describe the meanings of the relationships, so the data model becomes a 

semantic network and automatic reasoning can be carried out through relationship 

paths for computing biological variables. Besides, functional data elements are 

optional and attached as properties of a node of the graph. This guarantees that the 

architectural data element takes precedence over the functional elements. The 

property graph meets all the requirements and suits well for the specific focus of 

corresponding methods abstracting plant architecture, except the capability of 

multiscale modeling. Consequently, the logical data exchange model should be the 

combination of the multi-scaled rooted graph and the property graph, with three 

types of adjacency to abstract the neighboring relationships between modules of 

real plants. There should also be an unambiguity property for nodes, i.e. id as the 

unique identifier of a node, as well as for edges, i.e. id as the unique identifier of an 

edge, source id as the id of the node where the edge starts, and target id as the id of 

the node where the edge ends. Unlike the MTG and RGG graph, which have their 

own specific modeling focus, the designed logical data model does not have a 

specific focus, so that it is able to function as a data exchange model adapting all 

the logical variants of rooted multi-scaled property graphs. 

On one hand, we derived a logical property graph model by specializing the 

conceptual property graph with some constraints that exist in both MTG and RGG-

based graph, or by generalizing MTG and RGG-based graph. Figure 4.4 illustrates 

two basic types of components, i.e. Nodes and Edges that are directed and labeled 
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with a “Type” denoting the type of relationship between their source and target 

nodes. The arrowheads indicate the direction of edges. Both Nodes and Edges have 

“Ids” in Arabic or Roman numbers and can be associated with properties, which 

are “key: value” pairs in italics. The key refers to the property id and the value is 

the property of a particular node or edge. In addition, we added some constraints 

for the properties, as illustrated in Figure 4.4 [17], two properties “Name” and 

“Type” which are associated to each node, and the “Type” property attached to each 

edge that allows a value set including the three standard options (succession, 

branch, and decomposition). With the additional semantic features, we enhance the 

ability of our data exchange model to adapt to heterogeneous plant architectural 

data. 

 

On the other hand, we propose a logical data model of a conceptual data model 

“Rooted Graph” [147] [148] with specific constraints. The reason is that we have 

observed that many applications have a distinguished node serving as entrance node 

Figure 4.4 Logical property graph model [17] 
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to their graphs. Figure 4.5 [17] shows our logical rooted graph that is a directed 

graph in which one single node has been distinguished as the root node (illustrated 

by a dashed circle). All the other nodes are connected directly or indirectly with the 

root node. This root node is a special node that does not correspond to any plant 

architectural component in the real world, but represents the whole plant (or the 

coarsest scale) for multiscale data. 

 

By combining the logical property graph and the logical rooted graph, setting 

the id of the root node as “root_id” with the fixed value “0” and prohibiting having 

properties of the root node, we get our targeted logical data model EG (Exchange 

Graph), as shown in Figure 4.6 [17]. 

Figure 4.5 Logical rooted graph model [17] 
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4.1.2 Design of a FSP data exchange model 

Based on the EG model, different physical data models can be implemented and 

enable plant architectural data exchange between heterogeneous FSPMs. We have 

implemented one in XML because it is an effective tool for standardizing the format 

of data exchange among various applications, has mature mechanisms for complex 

data modeling, such as XML schema and DTD for validation. 

In detail, our physical data exchange model, XEG (XML based Exchange 

Graph) has been designed by detailing the logical data model. The full definition of 

the XEG data model includes its structure, integrity constraints, and applicable 

operations which are regarded as the import and export modules of the interfacing 

packages on GroIMP and OpenAlea and are introduced in the next chapter. 

Imitating the XML-RPC data model that defines a set of general types for use in 

general messages, we have defined a set of specific types for use in XEG messages.  

Figure 4.6 Data exchange graph model (EG) [17] 
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Using XML elements with different tag names, four XEG elements have been 

defined to ensure the rooted graph structure: 

• An XML element with tag name “graph” represents an XEG graph. This 

is the highest level of the XML structure. The other XML elements are 

all nested within it. 

• An XML element with tag name “node” or “edge” represents a node or 

edge of an XEG. A special XML element with tag name “root” represents 

the root node of the XEG.  

Using XML elements or attributes, XEG properties have been defined to ensure 

the property graph structure: 

• An XML element with tag name “property” represents a property of an 

XEG node. XML attributes “name” and “value” are assigned to the XML 

element to hold the name and value of the property. 

• Some XML elements with specific tag names hold XEG nodes’ property 

values with complex form as their content, e.g., XML elements with tag 

name “rgb” holding the XEG node’s “color” property with RGB form 

(i.e., a numerical sequence with three values representing the red, green 

and blue component respectively). 

• Some XML attributes represent simple properties of XEG nodes, e.g., 

“id” represents the identifier of an XEG node or edge. The “type” 

attribute represents the XEG node or edge type. “src_id” and “dest_id” 

attributes represent the identifier of the XEG node where an XEG edge 

starts or ends, respectively. 
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• An XML element with tag name “type” represents the object oriented 

type extension, allowing a hierarchy of types analogous to a class 

hierarchy, with inheritance of properties from supertypes to subtypes.  

The following XEG code represents a scene with a single green sphere of radius 

0.1, possibly representing some plant organs with a functional property 

‘p_extended’. 

Integrity constraints of the XEG data model mainly include the limited choice 

of the edge type (three basic types: successor, branch and decomposition), the 

existence and uniqueness of the graph root, the correspondence between “id” of an 

XEG node and the “src_id” / “dest_id” of an XEG edge. To ensure the validity of 

the XEG, an XML schema including all the structure and constraints has been 

defined as XEG schema. 

4.1.3 Design of a FSPM integrative protocol 

With the designed FSP data exchange model, we can now design the needed 

protocol-middleware technology, i.e. the FSPM integrative protocol, by referencing 

the JSON-RPC [149, 150]. 

<graph> 

  <root root_id="0"/> 

  <type name="A"> 

<extends name="Sphere"/> 

<property name="p_extended" type="float"/> 

  </type> 

  <node id="1" name="" type="A"> 

    <property name="radius" value="0.1"/> 

    <property name="color"> 

      <rgb>0.0 1.0 0.0</rgb> 

</property> 

<property name="p_extened" value="0.1"/> 

  </node> 

  <edge id="1" src_id="0" dest_id="1" type="successor"/> 

</graph> 

 

Figure 4.7 An example of XEG code representing a plant with a sphere component  
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The JSON-RPC refers to the RPC protocol that uses JSON to encode its calls 

and the HTTP protocol as transport mechanism, which indicates that it is an 

application layer protocol but on top of HTTP. It mainly consists of three specified 

parts, including a set of data models for typing of data in the HTTP message body, 

the request and response structures for constructing of the HTTP request and 

response messages [151]. The data models are data types sharing from JSON, 

namely four primitive types (Strings, Numbers, Booleans, and Null) and two 

structured types (Objects and Arrays).  

The JSON-RPC request structure defines how the method name and its 

parameters of a JSON-RPC call are packed as an HTTP request message. The HTTP 

response message structure defines how the returning values or error information 

of a JSON-RPC call is packed as an HTTP response message. (c.f. Figure 4.8). 

By default, the request structure includes: 

• A request line with POST as preferred request method 

• Request header fields, including at least: 

o Content-Type: value must be application/json 

Figure 4.8 Examples of JSON-RPC POST request and response message 
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o Content-Length: value must comply to HTTP protocol 

specification 

o Accept: value must be application/json 

• An empty line 

•  A message body with a single JSON object consisting of four members: 

o jsonrpc: A string denoting the version of JSON-RPC protocol.  

o method: A string containing the name of the method to be 

invoked. 

o params: An optional structured value that holds the parameter 

values to be used during the invocation of the method.  

o id: A client established identifier with String, Number or Null 

type.  

 The response structure includes: 

• A status line with one of five JSON-RPC specified status codes, or a 

HTTP specified status code. 

• Response header fields, including at least: 

o Content-Type: value must be application/json 

o Content-Length: value must comply to HTTP protocol 

specification 

• An empty line 

•  A message body with a single JSON object consisting of four members: 
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o jsonrpc: A string denoting the version of JSON-RPC protocol.  

o result: Value is data generated by the invoked method, required 

on success. 

o error: A structured value that holds the parameter values to be 

used during the invocation of the method, required on error. 

o id: An identifier which must be equal to the id of the Request 

Object.  

We have defined our ‘FSPM integrative RPC’ based on specific assumptions of 

the integration of different FSPMs. A FSPM, as introduced previously, is a special 

type of program that can be executed independently. It thus always has a ‘main’ 

method, which takes a FSP data graph and some environment arguments as 

parameters. The integration of different FSPMs is about to allow one FSPM to call 

the ‘main’ method of another FSPM over networks in a distributed manner. More 

specifically in our project, the FSPM for structural simulation has to be integrated 

with a FSPM for functional simulation by calling its ‘main’ method. Environmental 

data will thus only be used as the parameters of the functional FSPM and will affect 

the structural simulation indirectly by the computed functional properties in the 

exchange graph received by the structural FSPM. In general, it is hardly true that 

identical environment parameters are needed for different FSPMs to be integrated. 

It is because of their heterogeneity that they have the value of being integrated. It is 

also because of their heterogeneity that their parameters cannot be exactly the same.  

With reference to the data models of JSON-RPC, we designed an application 

layer protocol on top of HTTP with a smaller set of data models as data types. As 

the XEG is added as a new type for an intermediate form of FSP graph in our 

protocol, content-type is specified to media type (formerly MIME type) [152] 

‘application/x-www-form-urlencoded’ accordingly. This defines the format of the 

message body: the keys and values are encoded in key-value pairs separated by ‘&’, 
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with a ‘=’ between the key and the value. On one hand, JSON and XML are the two 

most common formats for data exchange, we choose XML as data model format of 

the XEG for its mature data modeling mechanisms. On the other hand, JSON has 

less verbose syntax, and is quicker to read and write, the syntax of URL encoded 

form is even simpler than JSON (e.g. no nested values). The combination of data 

model XEG and media type ‘application/x-www-form-urlencoded’ therefore 

results in a simple but powerful protocol. 

With reference to the request and response structures of JSON-RPC, we 

designed our integrative protocol with simplified request and response structures. 

Similar to the standard JSON-RPC, a call of our FSPM integrative RPC is 

represented by sending a set of key-value pairs to a server. The difference is that 

the key-value pairs in our protocol are not formatted in a JSON object but in a URL 

encoded form. Moreover, the member of the URL encoded form of the request and 

response structure have members ‘model’, ‘main_method’, ‘result_graph’ ‘time’ 

‘retroactive’ to enable the integration of different FSPMs. The value of the member 

‘model’ should be Null when the code of the server FSPM is not available on client 

side. When a FSPM integrative RPC call is received, a response with a URL 

encoded form with the result in XEG will be sent back to the client. No specific 

status codes have been designed at the level of our protocol, and we think the status 

code mechanism defined at HTTP level is already enough to ensure the correct 

exchange between different FSPMs. 

In detail (c.f. Figure 4.9), the data models of the designed protocol includes four 

primitive data types sharing from JSON-RPC (i.e. Strings, Numbers, Booleans, and 

Null), and one structured type (XEG).  

The request structure includes: 

• A request line with POST as request method 

• Request header fields, including at least: 
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o Content-Type: value must be application/x-www-form-

urlencoded 

o Content-Length: value must comply to HTTP protocol 

specification 

o Accept: value must be  application/x-www-form-urlencoded 

• An empty line 

•  A message body consisting of four members: 

o model: A string containing the code of the FSPM to be 

integrated. If the code is not sent from the callee, the value must 

be Null  

o main_method: A string containing the name of the ‘main’ 

method of the FSPM to be integrated. 

o graph: An optional structured value that holds the FSP graph (in 

XEG) as input of the invocation of the method.  

o time: A value of Number type to represent the number of running 

steps of the target FSPM. It is the key for time scale alignment 

between different FSPMs. 

o retroactive: A value of Boolean type to represent the retroactive 

setting of the integration. 

o id: A client established identifier with String, Number or Null 

type.  

 The response structure includes: 



 

111 

 

• A status line with a HTTP specified status code. 

• Response header fields, including at least: 

o Content-Type: value must be application/x-www-form-

urlencoded 

o Content-Length: value must comply to HTTP protocol 

specification 

• An empty line 

•  A message body consisting of two members: 

o result_graph: Value is an FSP graph in XEG generated by the 

invoked method, required on success. 

o id: An identifier which must be equal to the id of the request.  

 

Figure 4.9 Examples of the FSPM integrative protocol request (upper) and 

response (lower) messages. 
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4.2 Design of a component model 

To design a component model for the integration of FSPMs, we need to design 

at least the component architecture and the standard method to expose the ‘required’ 

and ‘provided’ interfaces of different FSPMs through the designed middleware, as 

they are the two basic elements of a component model. As previously introduced, 

the requirements of the integration of different FSPMs include five aspects and the 

component model is about to enable the automatic linkage of FSPM 

processes/simulators through ‘provided’ or ‘required’ interfaces of software 

components in the integration systems. By referring to the relevant conceptual 

foundation, i.e. Webservices technology, we designed a standardized component 

architecture of the FSPM integration system with language neutral method for 

exposing ‘required’ and ‘provided’ interfaces, which effectively fulfill the required 

aspects. Beside of the two basic elements, we also provide a detailed component 

architecture for the middleware of the integration as a standard to facilitate the 

design and development in integration projects.  
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Figure 4.10 The UML component diagram for the integration of different FSPMs 
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4.2.1 Design of a component architecture 

We introduce firstly the component architecture designed based on the analysis 

of requirements previously introduced and the determined conceptual foundation, 

i.e. Webservices technology. Its static view is described by the component diagram 

and component description while the dynamic view is described by the activity 

diagram. 

As the Figure 4.10 shows, the standardized component architecture of the FSPM 

integration system includes an integrative middleware (we named it FSPM 

integrative interface) that consists of two components: the ClientSideInterface and 

the ServerSideInterface. It resides in the middle of the ClientFSPM component and 

the ServerFSPM component to enable their integration by providing necessary 

interoperability. The component ClientSideInterface requires service from the 

component ServerSideInterface for the integration of different FSPMs. The 

cardinality ‘[0..1]’ at client side means one server may have zero to one client, and 

‘[0..*]’ at server side means one client may have zero to many servers. This is a 

design based on the assumption about the possible integration of different FSPMs 

scenarios, i.e. one structural model with one or more functional models. The 

component ClientSideInterface includes six components, i.e. Client, Message, 

Graph, Coordinator, GraphConverter, and ConfManager. The component 

ServerSideInterface includes six components, i.e. Server, Message, Graph, 

GraphConverter, RetroactiveChecker and ServerFSPMRunner. The components 

Message and Client/Server are for message packing/unpacking and transmission. 

The components Graph and GraphConverter are for the conversion of FSP data 

and information between different FSP data models. The component ConfManager 

at client side is about to allow the plant scientists to input the configuration setup 

for the integration based on biological knowledge. This might be a list of model 

records expressing the order of the model simulation, the name and network address 

of the model, its ‘main’ method, the times of its execution, and the names of its 



 

115 

 

characteristic properties (e.g. ‘interceptedLightAmount’). The component 

Coordinator at client side is about coordinating the simulation/execution of the 

different FSPMs by taking the configuration list set by plant scientists as reference. 

By getting relevant member of message body (retroactive) through the provided 

interface MessageComponent of component ‘Message’, the component 

RetroactiveChecker is for determining if the client graph is needed to be converted 

for responding to the client. By getting the relevant members of message body 

(model, main_method, time) through the provided interface MessageComponent of 

component Message, the component ServerFSPMRunner is about to run the FSPM 

on server side through the provided interface MainMethod of the server FSPM.  One 

remark is that the data flow in the integrated FSPM is mostly two directional. For 

example, the ‘message’ interface can be a provided interface of the component 

Message when the message is ready for the component Client to send. It can also 

be a required interface of the component Message when the response message is 

received by the component Client and ready for unpacking. We represent these two 

directional interfaces by one single (one directional) interface for the sake of 

simplification. Another remark is that the MessageComponent interface in the 

component ClientSideInterface includes a ‘two directional’ interface of the 

component Graph, a normal provided interface of the component ConfManager 

and a normal required interface of the component Coordinator. They refer to 

packing or unpacking of an XEG to or from the component Message, packing of 

relevant members of message body (i.e. model, main_method, time, and 

retroactive) to form the request message, and unpacking of ‘result_graph’ from 

response message for the use of the component Coordinator respectively. The 

MessageComponent interface in the component ServerSideInterface includes a 

‘two directional’ interface of the component Graph, a required interface of the 

component ServerFSPMRunner, and a required interface of the component 

RetroactiveChecker. It refers to packing or unpacking of an XEG to or from the 

component Message, and unpacking of other relevant members of message body 
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(i.e. model, main_method, time, and retroactive) from the component Message 

respectively. 

The static relationships are embodied by the usage dependency between the 

components. At the level of the FSPM integration system, the interface has two 

components, ClientSideInterface and ServerSideInterface. The former requires the 

FSPM integration service from the latter through the required interface 

FSPMIntegration, namely calls of the designed protocol.  

• The component ClientFSPM’ depends on the service provided through the 

provided interface ClientGraph of the component ClientSideInterface,  

• The component ServerFSPM depends on the service provided through the 

provided interface ServerGraph of the component ServerSideInterfacde. 

• The component ClientSideInterface depends on the service provided 

through the provided interface FSPMIntegration of the component 

SeverSideInterface 

• The component SeverSideInterface depends on the service provided through 

the provided interface MainMethod  of the component ServerFSPM 

• Plant scientists depend on services provided through the provided interface 

IntegrativeConfigurationEntry of the component ClientSideInterface and 

the provided interface MainMethod of the component ClientFSPM  

At the level of integrative middleware, there are usage dependencies within the 

component ClientSideInterface and the component ServerSideInterface. In detail, 

the usage dependencies within the component ClientSideInterface are:  

• The component Graph depends on services provided through the provided 

interface Conversion of the component GraphConverter and the provided 
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interface ManageComponent of the component Message (the component 

ConfManager also depends on the service through the latter interface). 

• The component Coordinator depends on services provided through the 

provided interface CoordinativeReference of the component ConfManager 

and the provided interface ManageComponent of the component Message. 

• The component Client depends on services provided through the provided 

interface Location of the component ConfManager and the provided 

interface Message of the component Message. 

• The component Message depends on the service provided through the 

provided interface Coordination of the component Coordinator. 

The usage dependencies within the component ServerSideInterface are: 

• The component Graph depends on the services provided through the 

provided interface Conversion of the component GraphConverter and the 

provided interface CheckRetroactive of the component RetroactionChecker 

• The component Server depends on the service provided through the 

provided interface Message of the component Message. 

• The components SeverFSPMRunner, Graph, RetroactionChecker depend 

on the service provided through the provided interface MessageComponent 

of the component Message 
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Figure 4.11 The UML activity diagram for the integration of different FSPMs 
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The dynamic relationships between components are described by an activity 

diagram (c.f. Figure 4.11). In the diagram, the action flow starts from the 

RunMainMethod action in the ClientFSPM partition and the 

IntegrativeConfigurationEntry action in the ServerSideInterface partition, the 

former leads the FSPMSimulation action in the ClientFSPM partition, which then 

produces the ClientGraph object in the ServerSideInterface partition. The actions 

at the ClientSideInterface partition include IntegrativeConfigurationEntry, 

ClientGraphToXEG, GetMessageMembers, GetLocation, 

GetCoordinativeReference, PackMessage, SendMessage, ReceiveMessage, 

UnpackMessage, Coordinate, XEGToClientGraph, GetClientGraph, the involved 

objects are Configuration, ClientGraph, XEG, MessageMembers, Location, 

CoordinativeReference, UpdatedMessage, MessageMembers, UpdatedXEG. A 

decision is made over the result of the action Coordinate, which effectively 

coordinates the simulation of different FSPMs. At the ServerSideInterface partition, 

the actions include ReceiveMessage, UnpackMessage, CheckRetroactive, 

RunMainMethod, XEGToServerGraph, ServerGraphToXEG, PackMessage, 

RespondMessage, the involved objects are Retroactive, MainMethod, XEG, 

ServerGraph, UpdatedServerGraph, UpdatedXEG. A decision over the result of 

the action CheckRetroactive is made. The action flow ends when the client FSPM 

simulation is finished, the UpdateMessage is determined as unexpected, or the 

result of the action CheckRetroactive is determined as non-retroactive. 

4.2.2 Design of a standard to define component interfaces  

Beside the component architecture of the integration system, we introduce also 

the other basic element of our component model, namely the standard to define the 

interfaces of the components within the integration system based on the relevant 

conceptual foundation, i.e. the WSDL provided by WebServices technology. By 

analysis of the WSDL, we found that the designed protocol is exactly a standard 

way to define the interfaces of the component within the integration system. One 
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remark is that the interfaces are defined for the interactions between FSPMs on top 

of the service provided by middleware. It is on the layer of FSPMs that the protocol 

provides a standard to define the interfaces of components (i.e. FSPMs). Both 

WSDL and our protocol provide a platform-language independent method to allow 

the interaction between different FSPMs in a distributed manner. The difference is 

mainly in who specifies the interfaces when they are applied. It is the service 

provider who specifies the interfaces in the Webservices technology, while it is the 

service consumer who specifies the interfaces in our component model. 

4.3 Design of a C/S-ETL based architecture 

Based on the designed protocol and component model for the integration of 

different FSPMs, the aspects of the requirements of the integration of different 

FSPMs can be concretized as : (1) FSP graph transfer by HTTP message, (2) FSP 

data exchange by XEG as a data model of the designed integrative RPC protocol, 

(3) automatic linkage of FSPM processes/simulators by the ‘model’ and 

‘main_method’ provided as members of request structures of the designed 

integrative RPC protocol, (4) FSP graph conversion between XEG and FSP data 

model of the target FSPM, (5) the preparation for properties and coordination of 

simulation/execution of FSPMs by the combination of ‘time’, ‘retroactive’ 

provided as members of request structures of the designed integrative RPC 

protocol, the component ConfManager, and the component Coordinator of the 

designed component  architecture, (6) the preparations for simulators of FSPMs. 

On one hand, we found that the aspects 1, 2, 3 and 5 are supported by the 

designed integrative RPC protocol/component model, and correspond to the 

technical, syntactic, organizational IOP layer of the K.C. IOP framework 

respectively. On the other hand, we found that the aspects 4 and 6 are not supported 

by the designed protocol and component model, and they do not have a simple one-

to-one correspondence with the layers of the K.C. IOP framework either. This 
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situation suggests that an IOP architecture framework is necessary as a supplement, 

and it should be an architecture framework different from the K.C. IOP framework 

and adapted to the aspects. 

With the determined conceptual foundation, namely the K.C. IOP framework 

and Canonical Data Model EIP with embedded Message Translator EIP that 

embody the ETL pipeline and the D.S.R approaches 6 and 7, we introduce our 

designed architecture framework. The essential reason to have an architecture 

framework is clear: the FSPM integrative component model and the middleware-

protocol can only partially fulfill the requirements of the integration of different 

FSPMs.  

To establish our specific architecture framework, we firstly analyzed the 

weaknesses or defects of the K.C. IOP framework for the integration of different 

FSPMs in detail. The obvious one is that it does not abstract and reflect all required 

aspects of the FSPM integration, such as the preparations. Moreover, the 

preparations are literally needed for organizational reason, but the data/information 

are involved as objects, which indicate that the IOP layers in the framework overlap 

each other for the case of FSPM integration. The biggest weakness of the K.C. IOP 

framework is that, although it perfectly abstracts the IOP related aspects with the 

four layers, the required aspects of the FSPM integration do not accurately 

correspond to each layer. For example, the FSP graph conversion between XEG 

and FSP data model involves both the syntactic and semantic IOP. The inconvenient 

point here is that the conversion processes are interdependent, it is not appropriate 

to divide them into different IOP layers. Based on such a situation, we conclude 

that a framework with a layered structure similar to the K.C. IOP framework is not 

appropriate. We already know that the Canonical Data Model EIP with embedded 

Message Translator EIP that embody the ETL pipeline and D.S.R approaches 6 and 

7 convert data from one model to another through an intermediate data model. 

Naturally, we come up with the idea of having our integrative architecture 
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framework by combining the component model and the middleware-protocol with 

them. This turns out to be a valid idea: the designed FSPM integrative RPC protocol 

partially takes the role of the component model and supports the requirement 

aspects 1-3 the Canonical Data Model EIP with embedded Message Translator EIP 

that embody the ETL pipeline and the D.S.R approaches 6 and 7 support the aspect 

4. This combination of these technologies covers all the aspects except the 

preparations of simulators of different FSPMs, which cannot be automatized and 

are one-time processes. We believe it is appropriate to keep the preparations 

outside, and only present the parts that involve the interactive simulation in the 

architecture framework. In this way, it can be used directly for the development of 

the interface/infrastructure without causing misunderstanding. One remark here is 

that the ETL pipeline, the Canonical Data Model EIP with embedded Message 

Translator EIP, and the D.S.R approaches 6 and 7 refer to the same essence but 

from a different point of view, namely the approach, pattern/architecture (c.f. Figure 

4.1). In the following introduction, we simply use the ETL pipeline as their 

reference as it explicitly expresses the processes of data and information. 

To have the overall integrative architecture framework, two sub architectures are 

designed. One is the C/S based sub architecture for the requirement aspects 1-3. 

Another is the ETL based architecture for the requirement aspect 4. We now 

introduce the framework by adapting our published article [14] 

4.3.1 Design of a C/S based sub architecture 

The sub architecture abstracts the aspects 1-3. Within the C/S based sub 

architecture, a TCP/IP based integrative RPC protocol enables communication and 

processes cooperation between different FSPMs respectively. The former is 

automatic while the latter is semi-automatic, which means the cooperation between 

processes of different FSPMs needs to be ensured by the integrator. For example, a 

FSPM for simulating plant light interception might run cooperatively with a FSPM 
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for photosynthesis, not with a FSPM simulating water pressure, because there is a 

direct biological relation between the first two. Of cause, multiple-integration might 

enable a chain of FSPMs, in which not everyone has biological relations to all 

others, but a relation path is needed at least. The C/S based sub architecture only 

ensures the “how” aspect, not the “what” aspect. So, all of the “what do cooperate” 

related questions (i.e. domain specific questions) need to be answered and ensured 

by the integrator before the implementation of the architecture for a specific 

integration case of different FSPMs.  

The main point of the sub architecture is that it consists of one FSPM for 

simulating structural evolution and one or more FSPMs for simulating function. 

The reason for this is that a digital plant module representing a real plant organ 

cannot have more than one pattern of structural evolution. Theoretically, only 

FSPMs that simulate the structural evolution of the same plant module at different 

periods or of different plant modules at the same period can be integrated. However, 

this kind of integration needs a precise plan in advance as accurate time and space 

need to be aligned while FSPMs were spontaneously created in most cases and were 

hardly developed with a precise plan for the integration with other specific FSPMs. 

On the other hand, there is usually no difference between the temporal and spatial 

resolutions at which functions of a plant are simulated at organ level, thus the time 

and space (or both) can be coarsely or qualitatively aligned during the integration.  

In the sub architecture, the role of client and server was taken by the FSPM 

simulating the structural evolution and the FSPMs simulating the functions 

respectively, as “structure is the basis of function”.  Consequently, multiple servers 

in our architecture serve one client, contrary to the common C/S architecture that 

has one server for multiple clients (c.f. Figure 4.12 [14]). 
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4.3.2 Design of an ETL based sub architecture 

Based on the K.C. IOP framework and the Canonical Data Model EIP with 

embedded Message Translator EIP that embody the ETL pipeline and the D.S.R 

approaches 6 and 7, we have designed the sub architecture with the ETL pipeline 

as its focus. The objective of the sub architecture is to enable the FSP information 

IOP. The sub architecture includes two layers of the overall architecture, namely 

platform layer and model layer.  

The sub architecture includes three data models, the FSP data models of the 

source and target FSPMs, and the Physical EG, i.e. the canonical data model XEG, 

as intermediate form. Four message translators consisting of different ETL 

processes are the main building blocks of the sub architecture, in which the extract 

and load processes next to the FSPMs are practically import/export converters (c.f. 

Figure 4.13 [14]). 

Figure 4.12 C/S based sub architecture [14] 
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To enable the IOP of FSP information at platform level, ETL processes have to 

be defined according to the data models and graphics libraries of source and target 

FSPMs.  

For the extract and load processes at platform level, the intra-scale structure is 

mostly concerned because it is defined as the basic part of the FSP data model at 

the platform level. Unlike in data warehousing where only data of primitive type 

are extracted and loaded, the interoperability of information for the integration of 

FSPMs usually requires more extract and loading data of composite type, e.g., 

graphics types.  

Figure 4.13 ETL based sub architecture [14] 
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For the transforming process at platform level, several sub processes are 

necessary to meet the requirements of the integration. (1) Syntactic and semantic 

transformation of topology of data elements, e.g., generation of an edge in the target 

graph between corresponding source and destination nodes, and assignment of an 

edge type according to the edge type in the source graph, e.g., assignment of the 

“refinement” type available in the target FSP data model to generate an edge of the 

“decomposition” type in the source graph. Essentially, the topology here concerns 

the structure with equivalent systems of scales (spatial resolutions). (2) Semantic 

transformation of the geometry of data elements. This may include a sub process 

that transforms geometric transformations between local and global. This sub-

process is then essentially converting geometric relationships between nodes and is 

based on graph traversal. To avoid double running of graph traversal, this process 

is better run with the corresponding extract process. Another sub process performs 

syntactic and semantic transformations of shape instances, e.g., transforms a 

signature with argument values of “Parallelogram” type to a signature with 

argument values of “TriangleSet” type. To allow this sub process, a “dictionary” to 

“translate” types from the graphics library used in the source FSPM to types in the 

graphics libraries used in the target FSPMs will be necessary.  

To enable the IOP of FSP information at model level, ETL processes have to be 

defined also for functional information.  

The functional information is usually specified in a FSPM using primitive types 

(e.g. float or integer). Thus, extract and load processes are not really needed. The 

transformation process includes two sub processes. (1) Syntactic and semantic 

translation of coded values or derivation of new calculated values for functional or 

environmental data fields (e.g., float_ Fahrenheit = (float) (double_ Celsius * 1.8 + 

32)). (2) Syntactic and semantic transformation of different systems of scales, for 

multiscale structures (e.g., decomposition of a scale with metamers as nodes to a 

new scale with elementary geometric objects as nodes) defined in different FSPMs. 
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In most cases, simulators are applied to the finest scale of the multiscale graph. 

Thus the received structure needs to be transformed into a new structure with the 

finest scale on which the target simulator can be applied. (3) Manual modification 

of the semantic definitions in target FSPMs if it is necessary. This includes the 

previously introduced preparations for both FSP information and simulators. 

4.3.3 The overall integrative architecture 

The overall architecture framework for the integration of different FSPMs (c.f. 

Figure 4.14 [14]) results from combining the two sub architectures. To be clearer, 

we present it with both pairwise view and one-to-many view. With the architecture, 

we can see that the ETL processes are the core of the integration. Particularly the 

processes at platform level are should be automatized, thus the integration interface 

should be the infrastructure that implements these processes.  

 

A. Pairwise view of the architecture. 
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B. One-to-many view of the architecture. 

Figure 4.14 Overall architecture framework for the integration of different FSPMs 

[14] 
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Chapter 5   
 

AN INTERFACE FOR THE INTEGRATION OF 

THE TARGET FSPMS 

In this chapter, we introduce an interface for the integration of the two FSPMs 

for the FSPM Apple project, namely MAppleT and the GroIMP based water and 

sugar transport model, by applying the technologies designed for the integration of 

different FSPMs, i.e. the FSPM integrative component model, RPC protocol-

middleware, and the C/S-ETL based architecture. The design of the interface is 

focused on the algorithms for IOP of FSP data and information. The implementation 

of the interface is focused on the software components that conform to the designed 

technologies for the integration of different FSPMs. The former is about the 

conception of the ETL processes based on the Breadth-First Search (BFS) algorithm 

to bridge the differences at both platform (c.f. 2.5.2) and model level (c.f. 3.1.2). 

The latter is mainly about the realization of the integrative RPC protocol and the 

component architecture of the integrative middleware/interface based on the two 

platforms to allow FSP data transfer, FSP graph exchange, and process linkage and 

coordination between the two FSPMs.  
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5.1 Design and implementation of the component 

ClientSideInterface  

In our designed component architecture of the FSPM integrative interface, the 

component ClientSideInterface consists of six components, which can be divided 

into a group for communication and interaction between FSPMs and a group for 

ETL processing. The former group includes the component Client and the 

component Message as implementation of the FSPM integrative protocol for 

constructing & sending the integrative simulation request to the server and 

receiving & deconstructing the simulated response from the server. As a part of the 

component ClientSideInterface, the group should also include the component 

ConfManager and the component Coordinator for the preparation for plant 

properties and the coordination of execution of FSPMs. We have just implemented 

GUI modules for the entry of the name and network address of the model, its ‘main’ 

method, the number of its executions, and the names of its characteristic properties. 

This enables the message to be transferred through HTTP, the members of message 

body to be packed, the preparations for plant properties, i.e. adding properties (i.e. 

data fields for water and sugar flux and the modification done by MAppleT) to 

allow that the results of functional simulation can be stored. In our project, only two 

target FSPMs are involved, the coordination for execution of more than two FSPMs 

is actually not necessary, and the preparation of simulators of different FSPMs to 

allow specific functional properties to affect the structural evolvement of apple tree 

has to be achieved manually. The latter group includes the component Graph and 

the component GraphConverter for FSP graph conversion between XEG and MTG. 

These are the main parts that correspond to the ETL pipeline and are in the focus of 

the introduction.  
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5.1.1  The communication group at client side 

In the communication group of the component ClientSideInterface, the 

component Client is for sending and receiving the HTTP message based on the 

specification of the HTTP protocol. The component Message is for request message 

construction and response message destruction based on the specification of the 

FSPM integrative RPC protocol. In our specific case, we have only one server 

FSPM so the component ConfManager for manual entry of configuration 

information and FSPM related information (location, name of server FSPM and its 

‘main’ method) extraction and the component Coordinator for coordination of the 

interaction of different FSPM processes can be simplified to a manual entry for 

FSPM related information. The focus of this group is thus the components Client 

and Message. 

In detail, we have implemented modules that take the combination of IP address 

and port number (i.e. Socket) to identify the server FSPM on a specific device, the 

‘model’, ‘main_method’, ‘graph’, ‘time’, ‘restorative’ and ‘id’ of the FSPM 

integrative protocol members. All these parameters are taken by GUIs from entry 

of users except the ‘id’, which is automatically generated. Moreover, a module that 

encodes the protocol members into URL form and a module that establishes an 

HTTP connection with location, sends the form and necessary headers in a POST 

request and waits for response on this connection have been implemented as well.  

5.1.2 The ETL group at client side 

In the ETL group of the component ClientSideInterface, the components Graph 

and GraphConverter are for ETL processes between XEG and MTG. Among the 

three processes of ETL, the extract process is driven by a graph traversing algorithm 

and the transforming and load processes are carried out according to the extracted 

FSP data. The extract process is based on an implemented XEG library in Java and 
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the focus of extract and load processes is to ensure the correctness of the graph 

topology. The focus of the transforming processes is to ensure the correctness of 

the geometry encoded in the graph nodes. The data of each data field of FSP graphs 

need to be extracted, transformed, and loaded according to the modeling platforms 

on which the two FSPMs are based, namely OpenAlea and GroIMP. This means 

the processes might be applicable for the integration of other FSPMs based on the 

two modeling platforms. Beside the topology and geometry, other kinds of data 

fields such as colors have been considered as well.  

To allow the client side to make the RPC call, we have designed an algorithm to 

extract FSP data from an MTG (generated by MAppleT) and load it into an XEG, 

and a set of algorithms to transform nodes of OpenAlea types to nodes of GroIMP 

types. To allow the client side to process the response of the RPC call from the 

server side, we have designed an algorithm to extract FSP data from an XEG and 

load it into an MTG, and a set of algorithms to transform nodes of GroIMP types to 

nodes of OpenAlea types. Transforming processes between global and local 

transformations applied to a shape need to be carried out during an iterative graph 

traversal from parents to children, which confirms the correctness of using the BFS 

as the algorithm for the extract processes. The implementation of ETL processes at 

client side has its focus mainly on the transforming processes of nodes of different 

data types. For the MTG to XEG direction, we have divided the nodes into different 

categories according to their data types and developed the transforming modules by 

applying an implantation template designed for nodes of the same category. For the 

MTG to XEG direction, only nodes of types used in MAppleT are processed and 

node-transforming modules for these types are implemented following designed 

algorithms.  

5.1.2.1 Algorithms for ETL processes from MTG to XEG 

As previously introduced, the FSP data model MTG of the OpenAlea platform 

lets every node in the MTG correspond to a single or group of plant modules. 
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Particularly in MAppleT, the topology of the MTG has four different scales, namely 

the tree, axis, growth unit, and metamer scale. All nodes in the MTG might have 

biological properties, but only the nodes at metamer scale have graphical properties. 

In other words, the metamer scale is the primary scale that MAppleT generates first 

and the other scales are generated based on it. Hence, the algorithm of extract and 

load needs to have one part for the scales above the metamer scale and one part for 

the metamer scale. The former part is just to duplicate the topology of the above-

metamer scales, while the latter part needs to be designed by referring to the details 

of MAppleT.  

In MAppleT, three 3D shape types (Cylinder, BezierPatch, Sphere) and three 

transformation types (Scaled, Oriented, Translated) of the PlantGL library [110] 

are used to form the graphical properties (i.e. 3D graphical elements) of a node at 

metamer scale. As introduced in section 2.5.2, the manner of applying 

transformations to a shape in PlantGL is taking an object of shape or transformation 

types as argument to instantiate the object of transformation types. Precisely, there 

are three patterns of transformation application, which generate three kinds of 

transformed shapes: 

• Translated (Oriented (Cylinder)), expresses a transformed cylinder, 

namely an object of ‘Cylinder’ type successively transformed by a 

rotation and a translation. 

• Translated (Oriented (Scaled (Sphere))), expresses a transformed sphere, 

namely an object of ‘Sphere’ type successively transformed by a scaling, 

a rotation and a translation. 

• Translated (Oriented (Scaled (Scaled (BezierPatch)))), expresses a 

transformed object of BezierPatch type, namely an object of 

‘BezierPatch’ type successively transformed by two scalings, a rotation 

and a translation. 
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Based on the three kinds of transformed shapes, MAppleT defines four different 

kinds of graphical elements as apple tree modules, which are graphic properties of 

nodes at metamer scale of the MTG. They are not managed by the MTG, but by an 

object of PlantGL type Scene in a list structure and are globally transformed from 

the origin of a global coordinate system: 

• The ‘internode’ graphic element that is a transformed cylinder. A node 

with this kind of graphic element as property is referred to as ‘internode’ 

metamer node. 

• The ‘leaf’ metamer graphic element that consists of two transformed 

objects of Cylinder type as an internode and a petiole, one transformed 

object of BezierPatch type as a blade. A node with this kind of graphic 

element as property is referred to as ‘leaf’ metamer node. 

• The ‘flower’ metamer graphic element that consists of two transformed 

objects of Cylinder type as an internode and a petiole, ten transformed 

objects of Cylinder type as middle of flower, five transformed objects of 

BezierPatch type as petals. A node with this kind of graphic element as 

property is referred to as ‘flower’ metamer node. 

• The ‘fruit’ metamer graphic element that consists of two transformed 

objects of Cylinder type as an internode and a petiole, one transformed 

object of BezierPatch type as blade, one transformed object of Sphere 

type as fruit. A node with this kind of graphic element is referred to as 

‘fruit’ metamer node. 

In MAppleT, the metamer scale is the primary and finest scale. Moreover, the 

MTG locates the graphic properties outside the graph, in a data structure called 

Scene as a type available in PlantGL. It is an object different from the object of 

MTG type, and unlike a typical scene graph, graphic objects are managed in this 
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structure with no explicit topological relationships in-between. Our XEG has all 

kinds of properties for each node, including graphic shapes and transformations. It 

is a rooted graph managing all data fields, between which there should be at least 

one topological relationship from the graph root. Consequently, it is necessary to 

have an additional scale to load nodes of graphic types extracted from the object of 

Scene type. Thus we perform effectively a decomposition of the metamer scale to 

a new scale (which we denote as submetamer or organ scale) consisting of 

elementary graphic objects as nodes. For each of the four graphic elements, we 

designed a specific decomposition scheme: 

• ‘internode’ metamer node />Orientation>Translation>Cylinder 

• ‘leaf’ metamer node 

/>Orientation>Translation>Cylinder[Orientation>Translation>Cylinder

>Scale>Scale>Orientation>Translation>BezierSurface] 

• ‘fruit’ metamer node 

/>Orientation>Translation>Cylinder[Orientation>Translation>Cylinder

>Scale>Scale>Orientation>Translation>BezierSurface][Scale>Orientat

ion>Translation>Sphere] 

• ‘flower’ metamer node 

/>Orientation>Translation>Cylinder[Orientation>Translation>Cylinder

][Orientation>Translation>Cylinder][Orientation>Translation>Cylinder

][Orientation>Translation>Cylinder][Orientation>Translation>Cylinder

][Orientation>Translation>Cylinder][Orientation>Translation>Cylinder

][Orientation>Translation>Cylinder][Orientation>Translation>Cylinder

][Orientation>Translation>Cylinder][Scale>Scale>Orientation>Transla

tion>BezierPatch][Scale>Scale>Orientation>Translation> 

BezierPatch][Scale>Scale>Orientation>Translation> 

BezierPatch][Scale>Scale>Orientation>Translation> 
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BezierPatch][Scale>Scale>Orientation>Translation> 

BezierPatch][Orientation>Translation>Cylinder>Scale>Scale>Orientati

on>Translation> BezierPatch] 

The algorithm to extract FSP data from data fields of the MTG and load them 

into data fields of the XEG by constructing an additional scale (i.e. sub metamer 

scale) using the graphic properties of nodes at metamer scale lets the other 

properties of nodes at metamer scale unchanged. The topology of the above-

metamer scales remains unchanged as well. Overall, the extract and load processes 

from the MTG to the XEG have mainly the purpose to insert all graphic objects 

managed by the object of Scene type into the original topology as a new finest scale 

(i.e. a fusion of a pair of objects of Scene and MTG types) (c.f. Figure 5.1). Its 

essence is topological downscaling.  

Figure 5.1 Map for fusion of an object of MTG type (top left) and a corresponding 

object of Scene type (bottom left) to an XEG (right). The items in the list of the 

latter object link to the nodes of former object by Ids. R, T, C are rotation, 

translation, cylinder objects converted from the list items. 
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From the designed C/S-ETL based architecture, we know that the ETL pipeline 

from MTG to XEG includes only extract and load processes, which perform 

essentially a topology conversion. In practice, we have also included transforming 

processes. The reason it that the nodes at the sub metamer scale are designed to be 

objects of shape or transformation types, but graphic types of PlantGL and the way 

the objects are managed are not compatible with the XEG syntax. The graphic types 

of PlantGL require nested graphic objects, i.e. the nodes at the sub metamer scale 

must be able to have nodes as properties. This violates the principle of the EG and 

thus is not compatible with the XEG syntax. Moreover, the objects of shape and 

transformation types are managed in a set, where there are no topological 

relationships or edges between the objects, this is also not compatible with the EG’s 

property graph nature. To solve the issue, we placed the transforming processes 

designed at the server side to the client side. This refers to the transforming 

processes from nodes of types available on OpenAlea to nodes of types available 

on GroIMP. As only three graphic types are used in MAppleT, putting the 

transforming processes on the client side will not cause much substantial impact. 

Moreover, putting all processes that are applicable for a specific FSPM together 

makes the implementation modular. We thus believe such a practical adjustment is 

appropriate. 

In this project, there are necessary transforming processes for MTG vertices, 

shapes, transformations, and colors. We have treated them differently. (1) The part 

of the MTG that is supposed be loaded to the metamer and above-metamer scales 

of the XEG are nodes with properties of non-graphic types. They are located in the 

object of OpenAlea MTG type textually as entries of a nested Python dictionary. 

Hence, they are not typed and it is necessary to assign a data type to them. We have 

made a string ‘MtgVertex’ as the type value of these nodes in the XEG. The 

properties of the nodes are stored as the properties of the XEG nodes without 

effective changes. (2) The part of the MTG supposed be loaded at the sub metamer 

scale are graphic object managed by an object of PlantGL Scene type. The managed 
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data include objects of PlantGL types for shape, transformation, color. Actually, the 

conversion between nodes of two sets of types available in two graphic libraries is 

about the conversion of their properties according to the signatures of their types. 

As a graphic type normally has more than one equivalent type signature, 

technologies that allow conversion between nodes of types with multiple signatures 

are needed. We introduce them later in the next sections. The focus here is about 

the algorithms and correspondences between the types used in MAppleT and the 

types available in the IMP3D library of GroIMP: 

• The first step is to compute the individual transformation matrix applied 

to a shape according to the relevant PlantGL type definition. 

o Get the transformation matrix of a MTG object od of Oriented 

type, which represents a rotation:  

𝑂𝑚 = [

𝑃. 𝑥 𝑆. 𝑥 𝑇. 𝑥 0
𝑃. 𝑦 𝑆. 𝑦 𝑇. 𝑦 0
𝑃. 𝑧 𝑆. 𝑧 𝑇. 𝑧 0
0 0 0 1

],   

𝑃 = 𝑜𝑑. 𝑝𝑟𝑖𝑚𝑎𝑟𝑦, 𝑆 = 𝑜𝑑. 𝑠𝑒𝑐𝑜𝑛𝑑𝑎𝑟𝑦, 𝑇 = 𝑃 × 𝑆 

o Get the transformation matrix of a MTG object td of Translated 

type:  

𝑇𝑚 = [

1 0 0 𝑇[0]
0 1 0 𝑇[1]
0 0 1 𝑇[2]
0 0 0 1

],  

𝑇 = 𝑡𝑑. 𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑖𝑜𝑛 

o Get the transformation matrix of a MTG object sd of Scaled type: 
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𝑆𝑚 = [

𝑆[0] 0 0 0
0 𝑆[1] 0 0
0 0 𝑆[2] 0
0 0 0 1

], 

𝑆 = 𝑠𝑑. 𝑠𝑐𝑎𝑙𝑒 

• The second step is to compute the global transformation matrix Gm 

applied to a shape according to the patterns of transformation application 

valid for the organ shapes used in MAppleT: 

o The transformation matrix applied to a MTG object of Cylinder 

type is the result 𝑂𝑚 ∙ 𝑇𝑚 

o The transformation matrix applied to a MTG object of Sphere 

type is the result 𝑆𝑚 ∙ 𝑂𝑚 ∙ 𝑇𝑚 

o The transformation matrix applied to a MTG object of 

BezierPatch type is the result 𝑆𝑚1 ∙ 𝑆𝑚2 ∙ 𝑂𝑚 ∙ 𝑇𝑚 

• The third step is to compute the local transformation matrix 𝑝2𝑐localm 

from location of a parent shape (𝑝𝑎𝑟𝑒𝑛𝑡𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛) to location of a child 

shape ( 𝑐ℎ𝑖𝑙𝑑𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 ) using the global transformation matrices 

(𝑝𝑎𝑟𝑒𝑛𝑡𝑔𝑙𝑜𝑏𝑎𝑙) and (𝑐ℎ𝑖𝑙𝑑𝑔𝑙𝑜𝑏𝑎𝑙) applied to them: 

o 𝑝2𝑐localm = 𝑝𝑎𝑟𝑒𝑛𝑡𝑔𝑙𝑜𝑏𝑎𝑙𝑚
−1 ∙ 𝑐ℎ𝑖𝑙𝑑𝑔𝑙𝑜𝑏𝑎𝑙𝑚 

= [

𝑎 𝑏 𝑐 𝑑
𝑒 𝑓 𝑔 ℎ
𝑖 𝑗 𝑘 𝑙
0 0 0 1

] , 

𝑐ℎ𝑖𝑙𝑑𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 = 𝑐ℎ𝑖𝑙𝑑𝑔𝑙𝑜𝑏𝑎𝑙𝑚 ∙ [

0
0
0
1

] , 
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𝑝𝑎𝑟𝑒𝑛𝑡𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 = 𝑝𝑎𝑟𝑒𝑛𝑡𝑔𝑙𝑜𝑏𝑎𝑙𝑚 ∙ [

0
0
0
1

] . 

• The fourth step is to decompose the local transformation matrix to a 

sequence of objects of transformation types available in the IMP3D 

library according to the shape to which the transformations are applied.  

o If the transformation matrix is applied to a MTG object of 

Cylinder type, the sequence is ShadedNull object>Translate 

object, here the ShadedNull object represents a rotation. 

o If the transformation matrix is applied to a MTG object of Sphere 

type, the sequence is Scale object>ShadedNull object>Translate 

object. 

o If the transformation matrix is applied to a MTG object of 

BezierPatch type, the sequence is Scale object>Scale 

object>ShadedNull object>Translate object. 

• The fifth step is to form an XEG node for each transformation object of 

a type in PlantGL using an appropriate type in the IMP3D library: 

o The object of type Oriented forms an XEG node with type value 

‘ShadedNull’, and a property with name ‘transform’ and 

value[

𝑎 𝑏 𝑐 0
𝑒 𝑓 𝑔 0
𝑖 𝑗 𝑘 0
0 0 0 1

]. 

o The object of type Translated forms an XEG node with type 

value ‘Translate’, and a property with names ‘translateX’, 

‘translateY’ and ‘translateZ’, and their values 0 (c.f. remarks 

following later). 
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o The object of type Scaled forms an XEG node with type value 

‘Scale’, and a property with names ‘scaleX’, ‘scaleY’ and 

‘scaleZ’, and their values 1 (c.f. remarks following later). 

• The sixth step is to form an XEG node for each shape object of a type in 

PlantGL using an appropriate type in the IMP3D library: 

o For a shape cylinder_object of type Cylinder, an XEG node with 

type value ‘Cylinder’, a property with name ‘radius’ and value 

cylinder_object.radius, a property with name ‘length’ and value 

cylinder_object.height. 

o For a shape sphere_object of type Sphere, an XEG node with 

type value ‘Sphere’, a property with name ‘radius’ and value 

sphere_object.radius,  

o For a shape bezierPatch_object of type BezierPatch, an XEG 

node with type value ‘BezierSurface’, a property with string 

‘data’ as name and the float list converted from 

bezierpatch_object.ctrlPointMatrix as value, a property with 

string ‘dimension’ as name and the dimension number of the 

bezierPatch_object.ctrlPointMatrix as value, a property with 

string ‘uCount’ as name and bezierpatch_object.Udegree +1 as 

value. 

One remark is that all graphic transformations in FSPMs are applied to shapes. 

Particularly in the FSPM Apple project, the graphic transformations were applied 

to 3D shapes that represent real plant modules. The transformation matrix applied 

to an XEG node of shape type is to be interpreted relative to its parent node of shape 

type. Precisely, it is a matrix describing the transformation from the location of the 

reference point of the parent shape node to the location of the reference point of the 

child shape node. On the other hand, for the symmetrical shape types (e.g. Cylinder) 
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in the IMP3D library that are commonly used to graphically represent plant 

modules, the location of their reference point is normally a ‘starting location’ of 

such a shape object. A translation is by default applied to allow the current location 

to be updated to the ‘end location’ of the shape during graphical interpretation. On 

the other hand, the designed four different decomposition schemes follow the 

principle that the topological neighbors are also geometrical neighbors. Thus, if the 

translation component of the computed local transformation matrix is not zero, then 

it is from the starting location to the ending location of the child shape node. To 

avoid the translation to be applied twice when the XEG is imported into GroIMP, 

we set it as zero manually. That is reflected by the replacement of d, h, l by ‘0’ in 

the transformation matrix of the fifth step. Besides, we use a node of type 

ShadedNull to capture the local transformation matrix that excludes the translation 

component, and a node of type Scale with values 1 to capture the scales. The reason 

we do this instead of decomposing the local transformation matrix that excludes the 

translation component into a rotation and a scale is that the BezierSurface has two 

applied scales and a rotation, it makes no sense to decompose the local 

transformation matrix into two different scales and a rotation. Restoring the 

transformation using original types is optional, while ensuring the geometric 

correctness is mandatory. As long as the transformation matrix is correct, the 

information consistency is guaranteed. 

Another remark is that the essence of the node conversion from MTG to XEG is 

to find the type correspondence and to establish algorithms to convert properties for 

each correspondence. However, one type might have more than one signature with 

different combinations of properties that are equivalent with each other. It is 

therefore important to find a way to ensure all possible property sets have 

correspondences with appropriate property converting algorithms when the node 

transformation processes are developed for the integration of all FSPMs based on 

the same platforms. Here, the node transformation from MTG to XEG is designed 

for the integration of two specific FSPMs. Hence, in the sixth step, we simply 
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established an algorithm to convert the property set of an object of OpenAlea type 

actually used in MAppleT to the property set of an object of GroIMP type actually 

used in the GroIMP transport model.  

5.1.2.2 Algorithms for ETL processes from XEG to MTG 

For the opposite direction of data flow at the client side, we designed a set of 

algorithms for nodes transforming accompanied by an algorithm for extracting FSP 

data from XEG and loading them to MTG. The former includes algorithms to 

convert nodes of most commonly used graphic types on GroIMP to graphic types 

on OpenAlea. The richness of the algorithms practically enables the transforming 

processes of the integration of all FSPMs based on OpenAlea and GroIMP. The 

latter includes an algorithm extracting the sub metamer scale and loading them to 

an object of PlantGL Scene type, and an algorithm extracting the other scales and 

loading them to an object of OpenAlea MTG type. The original objects of OpenAlea 

MTG type have a data field ‘id’ with data that links each node at metamer scale to 

its graphic properties, namely graphic objects managed by the object of Scene type, 

and we keep the id field of nodes at metamer scale. In this way, we guarantee the 

validation of separation of graphics to the object of Scene type when data have been 

exported back to MTG. 

The extract processes for FSP data in XEG include a pre step to divide the XEG 

object into an XEG of geometrical structure and an XEG of non-geometrical 

structure. The former XEG is to restore the FSP data originating from the object of 

PlantGL Scene type. The latter XEG is to restore the FSP data originating from the 

object of OpenAlea MTG type. To allow the interface, the division of XEG has to 

consider FSP data originating from the simulation of FSPMs based on both 

platforms. We have designed a division scheme of two maps to allow the integration 

of all FSPMs (c.f. Figure 5.2).  
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A. Map for division of XEG encoding multiscale FSP data  

B. Map for division of XEG encoding single scale FSP data 

Figure 5.2 The division scheme of XEG 
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Following the map for multiscale FSP data (part A in the Figure 5.2), the nodes 

at the scale consisting of geometrical nodes are used to create the geometrical XEG 

with the intra scale topology. Moreover, the root of the geometrical XEG will 

decompose into all the nodes directly. The other part of the XEG will be used to 

create the non-geometrical XEG with topology unchanged. 

Following the map for single scale FSP data (part B in the Figure 5.2), the 

geometrical XEG is created by a copy of the XEG to be divided. The non-

geometrical XEG will have the finest scale with non-geometrical nodes 

corresponding to a group of nodes that consists of one shape node and all its 

ancestry transformation nodes until the nearest ancestry shape node in the topology 

of the XEG to be divided. Each non-geometrical node will have an id that 

corresponds to the order of applying BFS to the finest scale with a group being 

regarded as a node. The edges between the groups of nodes are copied to the non-

geometrical XEG. In this way, all structural information is preserved when the 

divided XEGs are converted to the objects of MTG and Scene types. Meanwhile, 

the structure complies with the way to preserve transformations in OpenAlea and 

does not depend on any specific ‘design of metamer’ similar to MAppleT’s four 

different kinds of graphical elements as apple tree modules, which are graphic 

properties of nodes at the metamer scale of the MTG. The essence of such division 

is topological upscaling. 

For the geometrical XEG, the extract processes apply a Breadth-first search 

(BFS) algorithm. During the transversal, transforming processes for graphic 

transformations, shapes, and colors convert from GroIMP types to OpenAlea types. 

During the load processes, graphic transformations are applied to shapes and then 

the transformed shapes are added to the data structure of an object of PlantGL Scene 

type. We have divided the nodes within the geometrical XEG into different 

categories according to their data types and handled them differently.  
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XEG node of IMP3D type MTG graphic objects of PlantGL type  

Sphere(radius) Sphere(radius), None 

Box(length, width, height) Translated(0, 0, z/2, Box(Vector3(length /2, width/2, 

height/2))) 

Matrix4.translation(Vector3(0, 0, height)) 

Cone(length, radius) Cone(radius, height=length), 

Matrix4.translation(Vector3(0, 0, length)) 

Cylinder(length, radius) Cylinder(radius, height=length) 

Matrix4.translation(Vector3(0, 0, length)) 

Frustum(length, baseRadius, 

topRadius) 

Frustum(radius=baseRadius, height=length, 

taper=baseRadius/length) 

Matrix4.translation(Vector3(0, 0, length)) 

TextLabel(caption) Text(caption), None 

PointCloud(color, points, pointSize) PointSet(pointListpoints, colorListcolor, 

width=pointSize), None 

Parallelogram(length, width) TriangleSet(pointList, indexList) 

pointList=[Vector3(0, 0, 0), Vector3(width, 0, 0), 

Vector3(width, 0, length), Vector3(0, 0, length)], 

indexList=[(0, 1, 2), (0, 2, 3)], None 

Polygon(vertices) TriangleSet(pointListvertices, 

indexListvertices), None 

BezierSurface(uCount, data, 

dimension) 

BezierPatch(ctrlPointList (data, dimension)), 

None 

NURBSCurve(ctrlpoints, 

dimension) 

If dimension ==2: NurbsCurve2D(ctrlPointList 

(ctrlpoints, dimension)),  

else:  NurbsCurve(ctrlPointList (ctrlpoints, 

dimension)), None 

NURBSSurface(ctrlpoints, uSize, 

vSize, uDegree, vDegree, 

dimension) 

NurbsPatch(matrixArray( ctrlpoints, uSize, vSize, 

dimension), uDegree, vDegree), None 

 

 Table 5.1 Transform schemes for XEG nodes of GroIMP shape types  
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• XEG nodes of normal shape types, including Sphere, TextLabel, 

PointCloud, Polygon, BezierSurface, NURBSCurve, NURBSSurface, and 

XEG nodes of shape types that apply a default translation from starting 

location to ending location of the shapes, including Box, Cone, Cylinder, 

and Frustum. For such nodes, corresponding transforming processes take 

their properties to create an object of a PlantGL shape type and an object of 

PlantGL transformation type (i.e. a matrix instance) that captures the 

translation. For nodes of latter types, None is used for the transformation 

matrix. As Table 5.1 shows, radius and length of an object of IMP3D 

Cylinder type oic are taken to create an object of PlantGL Cylinder type opc 

and an object of PlantGL Matrix4 type opm. The values of oic’s properties 

are respectively assigned to opc’s properties radius and height, and the 

length is applied in the creation of opm as well. In the table the symbol ‘→’is 

used to reflect transformations of properties that cannot be expressed in 

simple assignments.  

• XEG nodes of normal graphic transformation types, including Translate, 

Scale, and Rotate, and XEG nodes of types for turtle commands that act as 

graphic transformations, including M, RL, RU, RH, RV, RV0, RG, RD, RO, 

RP, RN, AdjustLU as well. For such nodes, corresponding transforming 

processes take their properties to create a PlantGL transformation matrix. 

• XEG nodes of types for a turtle command that act as shapes but take turtle 

states as parameters, including F, F0, and M0. For such nodes, 

corresponding transforming processes take their properties and relevant 

current turtle states (e.g. diameter, length) to create an object of a PlantGL 

shape type (i.e. Cylinder) or None (for nodes of type M0) and create a 

PlantGL transformation matrix. 

• XEG nodes of types for turtle commands that modify states, including V, 

Vl, VlAdd, VlMul, VAdd, VMul, L, Ll, LlAdd, LlMul, LAdd, LMul, D, Dl, 
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DlAdd, DlMul, DAdd, DMul, P. For such nodes, corresponding 

transforming processes take their properties to modify relevant turtle states. 

Particularly for ShadedNull, which is not a turtle command, processes 

modify turtle states and create a PlantGL transformation matrix. 

To allow the transform processes for the geometrical XEG, an object to store 

current turtle states, an object of PlantGL Scene type, and a map to store the current 

parent nodes and their global transformation matrix (iterative products of local 

transformation matrices produced when applying the BFS) are needed. 

In detail, the ETL processes start from the root of the geometrical XEG, which 

is not typed, thus no transform process is carried out so that nothing is produced for 

loading to the object of PlantGL Scene type, an entry (root:None) is stored in the 

map with None as the global transformation matrix GM of the root. Following the 

BFS, children nodes of the nodes traversed in the previous step will be traversed as 

nodes of the current generation. Corresponding transform processes are carried out 

according to the schemes defined in different catalogs. If the transforming result of 

an XEG node of the current generation cnd includes a transformation matrix M, its 

parent node’s global transformation matrix multiplied by M is stored in the map as 

the current node’s global transformation matrix GM. If the result has also a shape, 

then the GM is applied to the shape, and the transformed shape is merged in the 

object of PlantGL Scene type. Before the next BFS step, an entry of the form (cnd, 

GM) is stored in the map. Note that when the operand of a matrix multiplication is 

None, it is replaced by an identity matrix. 

As L-py does not include the turtle commands as MTG elements, the transform 

processes of turtle commands are actually for the execution of the models based on 

GroIMP from OpenAlea, which is a special use case of the integrative interface. To 

allow a relatively comprehensive usage of turtle commands, we have implemented 

the transform processes for most commonly used types of turtle commands and a 

turtle state object with all interaction algorithms/patterns originating from GroIMP.  
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One remark concerns the transform processes for nodes of shape types. During 

a process, an XEG node is processed according to its type originating from GroIMP. 

For most type correspondences, the processes are about to convert the properties to 

suit the corresponding OpenAlea type, i.e. a type available in PlantGL. For the types 

Parallelogram and Polygon, there are no graphically equivalent types in PlantGL, 

thus we have to use alternative types. In our implementation, we used the 

TriangleSet type in PlantGL, and the transform processes for nodes of the two types 

are based on triangulation algorithms correspondingly. For the type Parallelogram, 

we designed a simple algorithm that divides a parallelogram into two head-to-tail 

congruent triangles. For the type Polygon, which is a general case, we use a general 

algorithm, i.e. the Delaunay triangulation algorithm[153].  

Another remark is about the problem that one correspondence of types can have 

several equivalent property list/signature correspondences. Unlike the previous 

transform processes from MTG to XEG that consider only specific signature 

correspondences, the transform processes in this part are supposed to be applicable 

for all FSPMs based on GroIMP and OpenAlea. Therefore, we have designed 

general algorithms for each type correspondence and implemented them with a 

specially designed paradigm available in Python. It combines the *args and 

**kwargs Python syntax for defining methods with an indefinite number of 

parameters and the object.__getattribute__(self, name) [154] for calling the defined 

methods with a given node type. 

Besides, it is clear that the algorithm might not restore exactly the transformation 

with original types such as Oriented, Translated but with the transformation matrix 

type Matrix4. The reason is the same as that given in the first remark in the last 

section. Each transform scheme for nodes of types Box, Cone, Cylinder, Frustum 

creates not only an object of PlantGL shape type but also an object of PlantGL 

transformation matrix type Matrix4 corresponding to the default translation from 

starting to ending location of the shape. This effectively ensures the geometry 
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correctness of the transform process from XEG to MTG. To ensure the correctness 

of geometrical transformations, the topology at sub metamer scale has been restored 

by decomposing the transformation matrix of PlantGL Matrix4 type to the pattern 

of applying the transformation to our three types of shapes (c.f. section 5.1.2.1). 

The order of the graphic objects to be restored to the object of PlantGL Scene type 

has been particularly taken care of (c.f. Figure 5.1).  

For the XEG of multiscale structures, the extract processes need to be driven by 

a spanning algorithm because at each scale the RGG graph has a general graph 

structure while the MTG has a tree structure. The algorithm contains a step to locate 

the root of a scale. It starts from the graph root, and then proceeds to the root of the 

next finer scale. When such a root is located, a process to carry out a BFS (Depth-

First-Search, DFS could also be used) starts. During this process, a tree structure 

using the MTG API is constructed, i.e. a load process while extracting. For each 

BFS step, we create corresponding MTG nodes for XEG nodes just traversed and 

we create MTG edges for existing edges from the parent node to the current 

traversed nodes in the XEG. We create also MTG edges for existing outgoing edges 

of decomposition type of XEG nodes just traversed. 

It should be emphasized that the geometrical XEG has also a general graph 

structure. We do not take the topology into this structure, so the algorithm is simply 

the BFS (without creating edges). Besides, as there was no demand in the project, 

we have implemented only partially for the map B of the division scheme of XEG 

shown in part B of Figure 5.2. The implementation currently allows the geometrical 

XEG to be produced, but not the non-geometrical XEG.  

Another remark is that the ETL processes for the geometrical and non-

geometrical XEG work cooperatively. This is mainly required by the geometrical 

XEGs generated by the simulations of FSPMs based on GroIMP that might have 

nodes of extended types. To handle such a situation, the functional properties 

obtained through a type extension are added to the nodes at metamer scale of the 
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MTG object produced by the ETL processes for the non-geometrical XEG. 

Consequently, the ETL processes for the non-geometrical XEG are executed earlier 

than the ETL processes for the geometrical XEG. 

5.2 Design and implementation of the component 

ServerSideInterface  

In our designed component architecture of the FSPM integrative interface, the 

component ServerSideInterface consists of six components, which can be divided 

into a group for communication and interaction between FSPMs and a group for 

ETL processing. The former group includes the component Client and the 

component Message as implementation of the FSPM integrative protocol for 

receiving & deconstructing the integrative simulation request from the client and 

constructing & sending the simulated response to the client. As a part of the 

component ServerSideInterface, the group should also include the component 

RetroactionChecker and the component SeverFSPMRunner for calling the main 

method of the server FSPM and the coordination of retroaction of FSPMs. The latter 

group includes the component Graph and the component GraphConverter for FSP 

graph conversion between XEG and RGG graph. These are the main parts that 

correspond to the ETL pipeline and have been the focus of the introduction.  

5.2.1 The communication group at server side 

In the communication group of the component ServerSideInterface, the 

component Server is for receiving and responding the HTTP messages based on the 

specification of the HTTP protocol. The component Message is for request message 

destruction and response message construction based on the specification of the 

FSPM integrative RPC protocol. In our specific case, the non-retroactive use case 

is just for the user to run FSPMs based on GroIMP through the OpenAlea platform, 
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the component RetroactiveChecker is thus just an if-else statement as a part of the 

component Graph. For the ServerFSPMRunner, we have implemented a module 

using APIs available on GroIMP to get the target FSPM managed by the editor 

JEdit, then to compile the FSPM and run its ‘main method’. The focus of this group 

is thus on the components Client and Message. 

In detail, we have implemented the Master-Slave Pattern to allow simultaneous 

requests from multiple clients. The implementation includes a master module as 

http request listener and a slave module as http message handler. These correspond 

to the components Client and Message respectively. When a request is received, the 

master instantiates a slave thread to handle the request, and then resumes listening. 

In the meantime, the slave continues its communication with the client. The 

implementation is similar to the implementation of the communication group at 

client side, but the modules for the components Client and Message at client side 

do not have a master-slave relationship, i.e. an instance of a module for the 

component Client cannot create an instance of a module for the component 

Message. This way ensures sequential execution of FSPMs. By applying the 

implementation at server side, the master modules create an HTTP Service bind 

with a created slave thread and the Socket (IP address + Port number). The slave 

thread takes an initialized graph from the GroIMP current workbench and the 

extracted FSPM integrative protocol members ‘model’, ‘main_method’, ‘graph’, 

‘time’, ‘restorative’ and ‘id’ to execute the module for the component 

ServerFSPMRunner and to reply the generated response message to the client 

through the bind Socket. The component ServerFSPMRunner uses the Java 

Reflection mechanism applied in GroIMP to get the corresponding method of the 

compiled model in the current workbench and iteratively run it using the graph just 

converted from the XEG as initial data. 
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5.2.2 The ETL group at server side 

In the ETL group of the component ServerSideInterface, the components Graph 

and GraphConverter are for ETL processes between XEG and RGG graph. Among 

the three processes of ETL, the extract process is driven by the BFS graph-

traversing algorithm and the load process is carried out according to the extracted 

FSP data. Similar to the client side, the extract process is based on an implemented 

XEG library in Python and the focus of extract and load processes is to ensure the 

correctness of the graph topology. As the transform processes for XEG to RGG 

graph have been included to the client side and there is no transform process for 

RGG graph to XEG at server side, there is actually no transform process on the 

server side. However, because of the specific technical setting of the RGG three-

part-graph, we have modified the topology of the XEG to fit this setting when the 

extracted topology from the XEG is loaded to the RGG three-part-graph. Similar to 

the server side, data of each data field of FSP graphs need to be extracted and loaded 

according to the modeling platforms on which the two FSPMs are based, namely 

GroIMP and OpenAlea. This means the processes shall be applicable for the 

integration of other FSPMs based on the two modeling platforms. Beside the 

topology and geometry, other kinds of data fields such as colors have been 

considered as well.  

To allow the server side to process the request of the RPC call from the client 

side, we have designed an algorithm to extract FSP data from an XEG and load it 

into an RGG graph. To allow the server side to response the RPC call, we have 

designed an algorithm to extract FSP data from an RGG graph (generated by 

GroIMP) and load it into an XEG. The implementation of the ETL group at client 

side has its focus mainly on the load processes of topology and nodes of the XEG 

to the RGG graph and vice versa. In detail, the RGG three-part graph is a pseudo 

multiscale graph as a general version of MTG with a general graph at each scale. 

Graph operations, such as graph query, can be performed as it is a multiscale graph. 
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However, its actual ‘single’ or multi-scale topology for one or multiple plants does 

not comply with standard scaled topology for one or multiple plants because of 

GroIMP’s graph setting and rendering mechanism. In fact, the RGG grammars 

expect a connection of the graph root to direct neighboring nodes not with 

decomposition edges, but with zero or more branch edges and optionally a 

successor edge. One plant is topologically connected with others with branch edges. 

When the multiscale concept is introduced, a type graph and a scale graph is added 

to the original graph to form a three-part graph to allow different scales to be 

rendered differently. The root of each scale is connected not only with a node of the 

next-coarser scale by a decomposition edge but also with the graph root by a branch 

edge. This setting allows the rendering paths of a RGG three-part graph to be 

activated and deactivated easily by changing the type of edges from the graph root 

to the roots of the scales. Consequently, for loading the XEG topology to the RGG 

three-part graph and vice versa, it is necessary to distinguish the case of ‘single’ 

scale from multiscale. Besides, the RGG graph root can be connected to at most a 

successor edge and one or more branch edges according to the specific code of a 

GroIMP model because the RGG graph structure is the result of compiling of XL 

code, while in our project, the involved FSP data is generated by MAppleT. 

Figure 5.3 Topological map between XEG with multiscale FSP data (left) and 

RGG graph (right) 
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Therefore, when the FSP data encoded in the XEG is extracted and loaded into the 

RGG graph, how the RGG graph root is connected is indeterminate. To address this 

issue, we have designed a simplified scheme to map the topology within XEG and 

RGG graph. Figure 5.3 shows the map for multiscale topology. In the topology of 

an XEG with multiscale FSP data, there are only decomposition edges between 

nodes at different scales, while in the topology of a transformed multiscale RGG 

graph, there are also branch edges between the graph root and the root of each scale. 

Particularly for the nodes at the scale just finer than the graph root (i.e. whole stand 

or tree scale), the edges connecting the graph root to them are practically a 

replacement of decomposition edges by branch edges. Figure 5.4 shows the map 

for ‘single’ scale topology. For a ‘single’ scale XEG, the one or multiple plant cases 

are processed differently. The ‘single’ scale RGG graph of multiple plants keeps 

Figure 5.4 Topological map between ‘single’ scale XEG (left) and RGG graph 

(right) 
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the same correspondence as for the multiscale case, while in the RGG graph for one 

plant, the graph root is connected by a successor edge. Maps in the two figures are 

bidirectional, which means they describe the ETL pipeline for directions both from 

XEG to RGG graph and vice versa. Note that the designed scheme is about to map 

the topology of FSP data originating from MAppleT. The FSP data originating from 

a GroIMP model simulation can surely be represented with a topology that contains 

both successor and branch edges, but when they are transformed through the ETL 

pipeline, the resulting topology will comply with the designed scheme. For 

example, a typical RGG graph for a single plant with a ‘single’ scale has the form 

shown in the bottom right of Figure 5.4. But if the graph root is connected by a 

branch edge, the bottom left will be the topology of the resulting XEG, and when 

the XEG is converted back to a RGG graph, the bottom right will be the topology 

of the resulting RGG graph, which is different from the original topology. The 

reason to do so is that the RGG graph is a general graph allowing an arbitrary 

configuration yet we need a definite scheme to bridge the gap of topological 

difference. Thus, we have designed the scheme that ensures the ‘unchanged’ 

mapping of topology only for typical usage. 

Beside the topological correspondence for the load processes, we have 

implemented a mechanism for the property correspondence. The nodes at metamer 

and above metamer scales are nodes of non-geometrical types with various 

properties. There is a mechanism in GroIMP to declare a Module as a new type that 

extends a type existing in GroIMP so that certain new properties can be added, but 

there are no data types that directly allow indefinite properties. We have 

implemented a new type called PropertyNode with a data field of java.util.List type. 

Together with another type called Property, this effectively enables the loading of 

nodes of non-geometrical types at metamer and above metamer scales. On the other 

hand, as we want the ETL group to be applicable for all FSPMs based on the two 

platforms, our implementation of the load process allows RGG graph nodes of 

extended types which are obtained from user-declared Modules to be expressed in 
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the XEG (c.f. Figure 4.7), and also XEG nodes with such extended types to be 

expressed in the RGG graph. The load processes also provide a solution for the 

issue of multiple signatures for the same type: We combine a java list and the java 

reflection mechanism [155] to allow various properties to be held temporally and 

to be assigned to an object (as RGG graph node) as properties.  

 

5.3 Distinguishing features of the interface 

One feature of the interface is the instance of architecture of the implemented 

interface, as shown in Figure 5.5. The ETL processes from MTG to XEG at the 

Figure 5.5 The instance architecture of the implemented interface for the 

integration of target FSPMs  
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client side have a specific implementation that is only applicable for MAppleT, all 

the other parts of the interface are applicable for all FSPMs based on 

OpenAlea/GroIMP. 

Another feature is that the ETL groups at server side are applicable not only for 

the integration of the target FSPMs, but also for the invocation of any GroIMP 

model from the OpenAlea platform. The role of the integrative FSPM can be shifted 

from one model to the other. In other words, FSPMs based on GroIMP can be 

client/source and FSPMs based on OpenAlea can be server/target when the 

corresponding server and client are further provided. 
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Chapter 6   
 

APPLICATIONS AND ENHANCEMENTS  

In this chapter, we introduce the applications of the interface and the 

enhancements realized for GroIMP and the interface. The applications include 

geometrical upscaling using an XEG with multiscale FSP data converted from an 

MTG and the integrative simulation of the target FSPMs of the FSPM Apple 

project. The enhancements mainly result from the development of graph query 

commands as an addition to the vocabulary of the language XL.  

6.1 Geometrical upscaling 

After introducing the multiscale concept to the RGG graph, the original single 

part graph has been replaced by the three-part graph. The added parts, i.e. the scale 

and type graphs clarify the relations between different scales and data types used in 

a particular scale [106]. Together with its special multiscale topology mentioned in 

the last chapter, rendering of a particular scale becomes possible. On the other hand, 

there is a concept called Level of Detail (LOD) [156] in the field of computer 

graphics, which is a kind of technique of interactive computer graphics that attempts 

to compromise complexity and performance by regulating the amount of detail used 

to visually represent the virtual world. The basic idea of LOD is to increase the 
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graphical performance by rendering a scene with a less complex graphical 

representation that reduces details for small, distant, or unimportant portions. Many 

LOD algorithms have been introduced since the last decade. For us, this approach 

has an additional value: FSPMs in principle use graphics to represent plants at organ 

level. With the introduction of the multiscale concept, the graphical representation 

of plants at organ level is supposed to be distributed to different spatial scales so 

that plant functions can be simulated at different spatial resolutions. This can bring 

advantages such as simplification of FSPMs using production rules at coarse scales 

and higher performance of the computation of functional properties associated with 

less complex shapes presenting plant modules. However, there are not much 

algorithms established to achieve such purpose. In our project, we have the XEG 

converted from the MTG which is produced by a MAppleT simulation that encodes 

multiscale plant structures with geometrical objects at the finest scale. We thus take 

this opportunity to try to develop LOD algorithms to allow the plant functions to be 

simulated at different scales, which we call geometrical upscaling.  

The basis of our algorithms is the bounding volume concept, namely using a 

closed but simpler volume that completely contains the union of a set of geometrical 

objects to improve graphical performance. The common bounding volumes include 

bounding box, bounding sphere and convex hull. We have developed two 

algorithms of geometrical upscaling using bounding box and convex hull. Applying 

the algorithms, a bounding volume of geometrical objects (also nodes) at a finer 

scale is computed to represent a node at a coarse scale that directly or indirectly 

decomposes into the nodes at the finer scale. In detail, the first step is to perform a 

RGG graph query to get all nodes at a coarse scale. These nodes in our case are 

non-geometrical nodes and are of PropertyNode type after being loaded to the RGG 

graph. The nodes are retrieved by using RGG query syntax. For such a node at a 

coarse scale, the nodes into which it decomposes at the sub metamer scale of the 

XEG are used to compute a bounding box or a convex hull of a type that extends 

both PropertyNode and relevant geometrical types (here we have used MeshNode 
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as the base type.). Then all properties of a node at the coarse scale are duplicated to 

the computed bounding box or convex hull. Finally, the corresponding volume 

replaces the node at coarse scale through a graph rewriting. In addition to the main 

steps, a pre step that creates the type and scale structure is necessary to allow the 

scales with different geometry to be visualized in an interactive manner.  

The key of the algorithms are the methods to compute the bounding box and 

convex hull of a set of geometrical objects of Cylinder, Sphere and BezierSurface 

type. The idea of the methods is to get the extreme points of the geometrical objects 

of such types at their default positions in the coordinates systems. For the Cylinder, 

its default position is defined as the basal circle lying in a plane spanned by the X 

and Y-axes, with its center as coordinate origin. Thus, the defined extreme points 

are expressed using its parameters, the length l of the cylinder and radius r of the 

basal circle, as follows: 

(𝑟, 𝑟, 0), (−𝑟, 𝑟, 0), (−𝑟,−𝑟, 0), (𝑟, −𝑟, 0), 

(𝑟, 𝑟, 𝑙), (−𝑟, 𝑟, 𝑙), (−𝑟,−𝑟, 𝑙), (𝑟, −𝑟, 𝑙)    

For the Sphere, its default position is defined as the center of the sphere being in 

the origin of the coordinates. Thus, the defined extreme points are expressed using 

its parameter, the radius r of the sphere, as follows: 

(𝑟, 𝑟, 𝑟), (𝑟, −𝑟, 𝑟), (−𝑟, 𝑟, 𝑟), (−𝑟, −𝑟, 𝑟),  

(𝑟, 𝑟, −𝑟), (𝑟, −𝑟,−𝑟), (−𝑟, 𝑟, −𝑟), (−𝑟, −𝑟,−𝑟)   

For the BezierSurface, its control points are directly used as its extreme points, 

which are constructed using its parameters data (i.e. a float array of coordinate 

components of all control points) and dimension. This leads to a bounding volume 

that is just an approximation of the minimal bounding volume. 
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For the algorithm of computing the bounding box and convex hull, we use in 

both cases a three dimensional implementation of the Quickhull algorithm [157], 

which computes the convex hull of a set of 3D points. We did it in this way for the 

following reasons. On one hand, a box can be constructed as a convex hull of eight 

extreme points. On the other hand, the issue of default translation where using 

directly the IMP3D type Box for computing the bounding box is avoided. One 

remark is that the computed bounding box is axis aligned as we compute the 

extreme points from the transformed shapes (i.e. shapes with global coordinates).  

We have done an experiment with an XEG of made-up structure of two 

schematic plants with an organ and a tree scale to test the geometrical upscaling and 

the switch of scales with type and scale graphs. This effectively validates the extract 

and load processes at server side from XEG to RGG graph for multi-scales/plants 

cases. In Figure 6.1, part A shows the RGG graph extracted and loaded from XEG. 

Part B shows the result of geometrical upscaling applied to the RGG graph. The 

non-geometrical node of ‘PropertyNodeImpl’ type at coarse scale has been replaced 

by the geometrical node of ‘PropertyMeshNodeT’ type, which is the bounding box 

computed from the corresponding organs at finer scale. Part C shows the result of 

adding scale and type graphs after the geometrical upscaling. Those two graphs 

makes it is possible to activate and deactivate the rendering of a scale (i.e. to switch 

the scales). 
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A. An XEG of two plants with two scales converted into an RGG graph 

Non-Geometrical typed 

node at tree scale 

Geometrical typed 

node at tree scale 

B. Geometrical upscaling of the RGG graph converted from XEG 
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We then geometrically upscaled an XEG converted from an MTG (c.f. XL code 

in section 7.3), which encodes a plant having an additional organ scale and original 

metamer, growth unit, tree scales with ‘leaf’ and ‘internode’ metamers, using both 

bounding box (c.f. Figure 6.2) and convex hull (c.f. Figure 6.3).  

Scale graph 

Type graph 

Geometrical 

typed node 

at tree scale 

Figure 6.1 Geometrical upscaling with bounding box for multiple plants at two 

scales from which an interactive choice is possible by the panel in the upper-

right corner. 

C. Geometrically upscaled RGG three-part graph after switching off the tree 

scale  
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A. Original Geometry from the RGG graph at organ scale 

B. Geometry upscaled from organ to metamer scale 
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C. Geometry upscaled from organ to growth unit (GU) scale 

D. Geometry upscaled from organ to tree scale 

Figure 6.2 Geometrical upscaling with axis-aligned bounding box. The data 

originally encoded in the MTG are loaded into the RGG graph with their original 

geometry at the additional organ scale (A) and geometries upscaled to metamer 

scale (B), growth unit scale (C), and tree scale (D). 
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A. Original geometry from the RGG graph at organ scale 

B. Geometry upscaled from organ to metamer scale 
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C. Geometry upscaled from organ to growth unit (GU) scale scale 

D. Geometry upscaled from organ to tree scale 

Figure 6.3 Geometrical upscaling with convex hull. The data originally encoded 

in the MTG are loaded into the RGG graph with their original geometry at the 

additional organ scale (A) and geometries upscaled to metamer scale (B), growth 

unit scale (C), and tree scale (D). 
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6.2 The integration of different FSPMs using the 

interface  

After comprehensive introduction of the integrative middleware, i.e. the 

interface, we move to the application. Before we integrated the target FSPMs, we 

have performed several experiments which exhibit the practical usage of the 

interface and validate its implementations. 

Figure 6.4 The identical results of the same GroIMP model directly run on GroIMP 

(left) and invoked from OpenAlea through a FSPM integrative RPC call (right). 
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We have firstly tried an experiment to test the interface by applying a simulation 

of a GroIMP model at the OpenAlea side, that means to just make a FSPM 

integrative RPC call by directly providing all the request members of message body 

including the model (i.e. XL code, it is possible also to have the it at server side). 

Figure 6.4 shows the graphic views of the simulation results of a GroIMP model. 

The right panel shows the graphic view of the simulation ‘executed’ at the 

OpenAlea side by making a FSPM integrative RPC call. The graphic view is 

identical with the graphic view of the simulation executed directly at the GroIMP 

side. Notice that an object of PlantGL TriangleSet type consists of two objects of 

PlantGL Triangle type and represents an object of Parallelogram type of IMP3D. It 

is also noticeable that the message structure members ‘graph’ and ‘model’ here are 

single scaled. Consequently, the experiment validates the implementations for the 

communication group at both client and server side, the ETL group at both sides, 

especially the transform process at client side including turtle commands and 

triangulation of Parallelogram, the extract and load processes at both sides for a 

topology of a ‘single’ scaled model and multiple plants. 

 

A. FSP data representing a small apple tree 
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We tried a second experiment to test the interface by applying ETL processes to 

three MTGs generated by MAppleT simulations that encode a small apple tree with 

only internodes and leaves, a medium apple tree including flowers, and a large apple 

tree with apple fruit. Figure 6.5 shows the three virtual apple trees encoded in RGG 

Figure 6.5 FSP data in RGG graph (left)/MTG (right) after ETL processed  

B. FSP data representing an apple tree with flowers 

C. FSP data representing an apple tree with fruits 
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graph and MTG. All three virtual apple trees encoded in RGG graph are loaded 

from three XEGs generated by the ETL processes of ClientSideInterface in the 

direction of MTG to XEG. The virtual apple tree encoded in MTG at the right side 

of part A is the original result from the MAppleT simulation. The other two virtual 

apple trees encoded in MTG on the right side of part B and C are converted from 

the two corresponding virtual apple trees encoded in RGG graph on the left via 

XEGs (through an ETL process from RGG graph to XEG and an ETL process from 

XEG to MTG). Figure 6.6 shows partially the topology of the RGG graph converted 

from the XEG encoding the small apple tree (the topology embodying the 

decomposition scheme of ‘leaf’ metamer nodes M1 and M2 can be directly viewed). 

Such an experiment geometrically validates the ETL processes at both client and 

server sides.  

Figure 6.6 The topology of the RGG graph converted from an XEG encoding a 

small apple tree from MAppleT shown in 2D on GroIMP 

Nodes at sub metamer scale 
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A node at tree scale 

Successor edge 

Branch edge 

Decomposition 

edge 



 

173 

 

 

We tried a third experiment to test the interface by applying a simulation of a 

simple GroIMP model through ETL processes. We used a GroIMP model with a 

single production rule to change the color of plant modules representing internodes, 

then loaded the modified FSP data to XEG and sent them back to 

ClientSideInterface. Thus the XEG appears to correctly present the plant structure 

with modified color. Figure 6.7 shows that the plant structure is correctly 

represented in different MTGs and RGG graphs with modified color. This 

experiment approved that the FSP data passed through ETL processes by the 

interface can be further processed by a GroIMP model, and the processed results 

with updated data can be correctly re-encoded in MTG for MAppleT’s further 

simulation. One remark is that the nodes in a RGG graph are initially of a graphic 

type without functional properties, which is exactly the case for XEG as it is 

converted from MTG. It is necessary to allow the simulated functional properties 

Figure 6.7 Experiment to test the interface by a GroIMP color-changing model. 

The arrow points to show the flow of data between different data models and 

FSPM. 
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to be stored in the RGG graph imported from XEG. We first came up with the 

approach to replace an original node by a module type that extends the type of the 

original node. This approach complies with the GroIMP method to define a plant 

module with functional properties but it brings some inconveniencies. In fact, after 

the GroIMP model simulation, the result needs to be converted back to XEG. At its 

finest scale, the nodes with functional properties are of extended module types. The 

interface converts the nodes to objects of PlantGL types to form an object of 

PlantGL Scene type. That means the properties need to be moved and added up to 

nodes at metamer scale. Therefore, we think it is appropriate to directly sum up the 

values of all properties of nodes at the finest scale that are decomposed from a 

metamer node to be summed to the corresponding properties of the metamer node. 

Such a process avoids the type extension and is actually a property upscaling. It is 

necessary to have such property upscaling for the retroactive simulation because 

the simulated result needs to be converted back to MTG which has its properties 

carried not by graphic objects but by nodes at metamer or coarser scales. Figure 6.8 

shows an example of property upscaling that sums up the property 

‘interceptedLightAmount’ from four different nodes (G1, G2, G3 and G4) at growth 

unit scale to a node (T1) at tree scale. Notice that this particular method was chosen 

because it meets our specific needs. There are various other methods for property 

upscaling besides this method.   
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After the experiments, we can now perform a simulation of the integrated FSPM 

by using the interface. Through the interface, MAppleT and the GroIMP transport 

model were supposed to be integrated as one model that was supposed to be able to 

simulate apple tree growth by considering the water and sugar conditions. However, 

we have changed the simulation plan for internal reasons. The new plan was to 

integrate a GroIMP light model with MAppleT. MAppleT is a stochastic model that 

does not take any functional conditions except gravity to compute the structure of 

apple trees. An intermediate OpenAlea FSPM that takes light conditions to compute 

the photosynthesis is planned to do a pre simulation before that done by MAppleT. 

MAppleT then takes over the tree structure with properties of assimilate content 

from photosynthesis to play with the size of each plant module. In such a way, the 

project can be validated and the concept of the integration of different FSPMs can 

be approved as well.  

Figure 6.8 An example of property upscaling. 
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A Module that extends the ray tracer based GroIMP type SpotLight is used in the 

light model as the type of light source. We set up a particular position for the light, 

and varied the light energy (i.e. the power in Watt) and the number of rays. We 

want to compare the MAppleT simulated structure by different light energy (same 

numbers of rays), and by different numbers of rays (same light energy). The light 

model computes the amount of light being absorbed by the plant modules and we 

assumed that only green plant modules can intercept light.   

So far, we are still working at the simulation of the integrated FSPM through the 

interface in cooperation with our French partners.  

6.3 The enhancements of GroIMP and the 

interface 

During the application of the interface, we have found that the RGG three-part 

graph lacks possibilities for query in a multiscale manner for the usage in XL 

imperative code blocks. We thus developed some query commands to bridge the 

difference between the true graph topology and the multiscale topology to allow the 

graph to be used as a ‘real’ multiscale graph. 

• findParent (Node n): find the parent nodes of the parameter node  

• findChildren (Node n): find the children nodes of the parameter node 

• findComplex (Node n): find the coarse node that decomposes into the 

parameter node  

• findComponents (Node n): find the nodes into which the parameter node 

decomposes 
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• findFinestComponents (Node n): find the nodes at finest scale that are 

accessible by paths of decomposition edges from the parameter node. 

• findAllNodesAtSameScale (Node n): find all nodes at the scale that the 

parameter node locates 

• getScaleNumber (Node n): get the index of the scale where the parameter 

node locates. Such index is defined to identify the topological position in 

an RGG graph with linearly ordered scales. In other words, such indexing 

concept only applies to a specific variant of the RGG graph. 

• getRootsAtScale (Int scaleNumber): get the root node at a scale specified 

by the parameter scaleNumber 

• getNodesAtScale (Int scaleNumber): get all nodes at a scale specified by 

the parameter scaleNumber 

• getMaxScaleNumber (): get the maximum number of scales for the 

current RGG graph.  

• getGraphScaleNumber (): get the number of scales for the current RGG 

graph. (normally a universal root represents the scale of the whole graph, 

with number 0, consequently graphScaleNumber =getMaxScaleNumber 

+1) 

• getGraphRoot(): get the root node of the current RGG graph 

Besides, the ETL components at the server side effectively make the XEG 

become a possible data format ideally suited for FSPMs based on GroIMP to 

preserve its simulation results and to restart simulation using the preserved results. 

Thus, we have developed software modules to allow the manual import and export 

of XEG through graphic user interface (GUI, c.f. Figure 6.9). This calls the ETL 

processes just like the component ‘Message’ does.  
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To facilitate the usage of the ClientSideInterface (with a given name ‘groalea’ 

to be integrated as a part of the OpenAlea package), we developed graphical 

components to allow different FSPMs to be integrated by the usual way of 

OpenAlea, i.e. to form a workflow by drag/drop of the components and connecting 

them with edges. Some workflows for the integration case of our projects are also 

provided as examples (c.f. Figure 6.10). 

Figure 6.9 GUI for manual import (top) and export (bottom) of XEG  



 

179 

 

To facilitate the usage of the ServerSideInterface, a GUI module (c.f. Figure 

6.11) to allow the server to be launched has also been provided. After it is launched, 

the client can start the integrative simulation for both retroaction and non-

retroaction. 

Figure 6.10 Graphical components (top) of groalea and an example of visual 

workflow (bottom) to run a FSPM at server side constructed using the graphic 

components. 
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6.4 Discussion and conclusions 

The designed middleware technology - FSPM integrative RPC protocol, the 

component model, and the C/S-ETL based architecture provide a comprehensive 

and generic technical framework for the integration of different FSPMs. Its 

effectiveness has been approved through the developed interface for our specific 

project. This enables the integration of MAppleT with a FSPM based on GroIMP 

and further integration of FSPMs based on the two platforms. Hence, we conclude 

that our design and developments fully fulfill the objective of the FSPM Apple 

project and the PhD tasks. On the other hand, we have also witnessed some collision 

for the concept of the integration of different FSPMs. In our project, the objective 

is to have an integrated model that simulates growth of an apple tree considering 

the water and sugar transport. However, MAppleT itself is a stochastic model that 

does not take any functional aspects to compute the growth of apple trees. So to 

allow the integration, MAppleT needs to ‘modify’ its core production rules, from 

stochastically based to biological function based. In the application, even another 

model computing photosynthesis is used to bridge the gap between apple tree 

growth and intercepted light. Although the component based structure coming with 

the integration enables high flexibility and some of the developed components are 

reusable for further integration, such a situation of collision indicates the concept 

Figure 6.11 GUI components on GroIMP to launch the integrative server 
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of integration of different FSPMs might be valid in general, but its adaptability to 

specific projects needs to be verified beforehand. Moreover, estimations will have 

to be made to compare the cost of the integration of different FSPMs with the 

alternative of directly enriching the existing FSPMs by adding modules. 

Beside of our project, some other project attempting to integrate different FSPMs 

have been carried out as well, including the integration of FSPMs based on GroIMP 

and PyGMAlion (Plant Growth Modeling Analysis and Identification) [158], the 

integration of FSPMs based on OpenAlea and a specific FSPM called RATP 

(Radiation Absorption, Transpiration and Photosynthesis) [159], and the integration 

of FSPMs based on OpenAlea and the Lignum model [160]. 

PyGMAlion is a platform that provides assistance to the development of FSPMs, 

mainly through model comparison and selection [161], parameter estimation [162], 

sensitivity analysis [163], uncertainty analysis [164]. An interface [165] was 

established to allow the communication between FSPMs based on GroIMP and 

PyGMAlion for sensitivity analysis. The communication is based on an exchange 

of data that is managed by a CSV (Comma-Separated Values) based simple data 

model, where FSPMs based on GroIMP provide simulation inputs and outputs for 

the sensitivity analysis by PyGMAlion. From the point of view of application, the 

integration through the interface is not exactly an integrative simulation of plant 

growth like the integration through our interface, but about the analysis of the 

relationships between specific inputs and outputs of a FSPM. The exchanged data 

is not functional and structural plant data, i.e. an instance of an FSP graph, but 

values of some specific numerical properties. Thus, no structural (topology and 

geometry) alignment is involved. From the point of view of data/information 

interoperability, the integration is different from ours. On the other hand, the 

integration involves process interoperation with fixed syntax, including the syntax 

of run.sh and commands to run a sensitivity analysis algorithm. The user of the 

interface determines the semantics, i.e. the meaning of a specific interoperation 
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between an FSPM model and a sensitivity analysis algorithm. Thus, from the point 

of view of process interoperability, this integration is similar to ours. Overall, the 

integration can be regarded as the non-retroactive case of our case. 

RATP is a FSPM for light interception, water consumption, and carbon 

allocation of a tree using the Beer Lambert law, transpiration and photosynthesis 

models. It has been enclosed as a component provided to the OpenAlea users for 

building FSPMs. The model was developed in the end of last century by Fortran 90 

language. The tree structure is represented by 3D raster graphics, i.e. an array of 3D 

voxels that does not capture explicit neighboring relationships (topology) between 

plant modules (functional units). It was enclosed in OpenAlea through the 

mechanism of two-way conversion between the 3D array of voxels and MTG. The 

essence of such mechanism is to provide the data/information interoperability 

between RATP and the other FSPMs by taking the MTG as a canonical data model. 

Besides, the mechanism provides Python functions to allow the communication 

between RATP and other FSPMs. Thus from the point of view of interoperability 

of both data/information and processes, the integration is similar to ours. However, 

the canonical data model originated from a specific need with a tree structure with 

separated topology and geometry, while the communication is based on some 

specific function available on OpenAlea (in Python), which greatly reduces its 

adaptability. Thus such mechanism is limited to the usage of enclosing models in 

the OpenAlea platform and enabling the integration of FSPMs through OpenAlea.  

Lignum is an FSPM developed in the late 1990s and a XML based data format 

was included in 2006. The model includes a standard overcast sky based light model 

to allow the modeling of the interaction between plant structure (growth) and 

functions (light interception and photosynthesis). An interface [166, 167] has been 

created to allow the model to be executed under OpenAlea so that the light model 

can be compared with the light models available on OpenAlea (e.g. RATP). 

Through the interface, the MTG and Lignum XML based data models are 
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interoperable in both directions. This integration is a simplified version of our 

integration, which enables the data/information interoperability by direct 

conversion without canonical data model as intermediate. Thus, the interface is 

dedicated to this specific integration and cannot be reused by other integration 

projects. Moreover, the integration does not involve the interoperability of 

processes, thus the interface is indeed only for the comparison of the simulation 

results of different models, not for a cooperative simulation of different models.  

In addition to the integration of FSPMs, OpenAlea has also been enriched by 

integrations using wrapper tools such as Boost.Python [168], SWIG (Simplified 

Wrapper and Interface Generator) [169] to integrate C/C++ based libraries to 

Python based platforms, F2PY [170] to integrate Fortran based libraries to Python 

based platforms. A typical example is PlantGL that was originally developed in 

C++ and has been integrated [55] to OpenAlea as its basis of geometrical modeling 

of plants using the wrapper tool Boost.Python. This kind of integration is the 

integration of modeling tools, not of the FSPMs themselves. Unlike the integration 

of FSPMs, where the FSPMs are software with comparable functions (FSP data 

processing) with comparable technologies applied, the tools have incomparable 

functions with incomparable technologies applied (graphics library for 3D 

modeling, MTG for multiscale topology modeling). Thus, we have here are actually 

general software integrations, or more precisely a software composition. For this, a 

general canonical data model is not possible and the integration is limited by the 

specific technologies, e.g., wrappers, with an interoperability that is limited to the 

technical level. 

Through the comparison between the other integrations and ours, we can 

conclude that our integration indeed provides a generic solution at both 

methodological and technical levels for the integration of a specific type of 

software, i.e. different FSPMs. To illustrate the integration capabilities of the 

designed techniques and the implemented interface, we compare integration 



 

184 

 

solutions based on our techniques with an example hosted on a single platform, an 

FSPM called MuSCA.  

MuSCA is a multiscale FSPM to compute carbon allocation at different user 

defined spatial scales, allowing the comparison of results and estimation of the 

impact of the scale setting [171] . It is a modular model that takes use of some 

components on and through OpenAlea, including MTG (with PlantGL) as its data 

model and RATP for light interception. Besides, it simulates biomass accumulation 

using a carbon flow model that represents the flow as a function of source and sink 

inversely related to distance and resistance (friction) in-between. The RATP light 

interception model computes the absorbed light amount using 3D voxels/raster 

graphics which is less precise than the vector graphics based FSPM such as GroIMP 

ray tracer based models, while the carbon flow model considers only the distance 

and friction which is less precise than FSPMs based on Munch flow [136, 172]. 

Consequently, MuSCA can only simulate a less precise biomass accumulation and 

provides a rough assessment for different scale settings. If our interface is applied, 

the intercepted light amount and biomass accumulation can be more precisely 

computed by the integrated FSPMs available on GroIMP.  

On the other hand, the designed technologies and the implemented interface have 

also some limitations. For the designed technologies, the major one is the lack of 

measures to allow simultaneous simulations. In other words, the current design and 

implementation allows only a sequential integrative simulation of different FSPMs. 

Besides, we designed the component model with an architecture that has the 

component ConfManager at client side to allow the plant scientists to input the 

configuration setup for the integration based on biological knowledge, without 

providing any standard to define the inputs. Both the two limitations are caused by 

lack of biological background and high diversity of different FSPMs. We think 

some sort of standardized input format to allow the coordination of simulation of 

different FSPMs can be a realizable target. For the implemented interface, it 
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certainly has the limitations of the used technologies. Another major limitation for 

the interface is that the integrative protocol is not standardized yet, thus it is limited 

to the usage of OpenAlea and GroIMP based FSPMs, and it is still a middleware 

with regard to FSPMs. This means that the FSPMs based on platforms that are 

different from the two need to have a library to support XEG processing before they 

can be integrated using the protocol. Such kind of library in different programming 

environments can be provided as an alternative way of protocol standardization. 

Finally, our interface has the potential to enable a two-way integration of FSPMs 

based on GroIMP and OpenAlea. To turn such potential into reality, the client at 

GroIMP side, the server at OpenAlea side, and the extension of the implementation 

for the map for division of XEG encoding single scale FSP data to allow both 

geometrical and non-geometrical XEG to be generated is needed.  
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Chapter 7   
 

APPENDICES  

7.1 The technical documents of the interface for 

the integration of target FSPMs 

7.1.1 The specification of XEG 

The data model XEG is specified mainly by an XML schema [173]: 

<?xml version="1.0" encoding="utf-8" ?> 
<xs:schema elementFormDefault="qualified" 
 xmlns:xs="http://www.w3.org/2001/XMLSchema"> 
 <xs:element name="graph" type="Graph" /> 
 <xs:complexType name="Graph"> 
  <xs:sequence minOccurs="0" maxOccurs="unbounded"> 
   <xs:element name="type" type="Type" minOccurs="0" 
maxOccurs="unbounded" /> 
            <xs:element name="root" type="Root" minOccurs="0" maxOccurs="1" /> 
   <xs:element name="node" type="Node" minOccurs="0" 
maxOccurs="unbounded" /> 
         <xs:element name="edge" type="Edge" minOccurs="0" 
maxOccurs="unbounded" /> 
  </xs:sequence> 
 </xs:complexType> 
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 <xs:complexType name="Edge"> 
  <xs:attribute name="id" type="id_type" use="optional" /> 
  <xs:attribute name="src_id" type="id_type" use="required" /> 
  <xs:attribute name="dest_id" type="id_type" use="required" /> 
  <xs:attribute name="type" type="xs:string" use="required" /> 
 </xs:complexType> 
 
 <xs:simpleType name="float_type"> 
  <xs:restriction base="xs:float" /> 
 </xs:simpleType> 
 
 <xs:simpleType name="int_type"> 
  <xs:restriction base="xs:int"/> 
 </xs:simpleType> 

  
 <xs:simpleType name="list_of_float_type"> 
  <xs:list itemType="float_type" /> 
 </xs:simpleType> 
  
 <xs:simpleType name="list_of_int_type"> 
  <xs:list itemType="int_type" /> 
 </xs:simpleType> 
  
 <xs:simpleType name="float4x4_type"> 
  <xs:restriction base="list_of_float_type"> 
   <xs:minLength value="16" /> 
   <xs:maxLength value="16" /> 
  </xs:restriction> 
 </xs:simpleType> 
  
 <xs:simpleType name="matrix_type"> 
  <xs:annotation> 
   <xs:documentation> 
    Matrix transformations embody mathematical changes to 
    points within a coordinate systems or the coordinate 
    system itself. The matrix element contains a 4-by-4 
    matrix of floating-point values. 
   </xs:documentation> 
  </xs:annotation> 
  <xs:restriction base="float4x4_type" /> 
 </xs:simpleType> 
  
 <xs:simpleType name="float3x1_type"> 
  <xs:restriction base="list_of_float_type"> 
   <xs:minLength value="3"/> 
   <xs:maxLength value="3"/> 
  </xs:restriction> 
 </xs:simpleType> 
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 <xs:simpleType name="float4x1_type"> 
  <xs:restriction base="list_of_float_type"> 
   <xs:minLength value="4"/> 
   <xs:maxLength value="4"/> 
  </xs:restriction> 
 </xs:simpleType> 
  
 <xs:simpleType name="rgb_type"> 
  <xs:restriction base="float3x1_type"/> 
 </xs:simpleType> 
  
 <xs:simpleType name="rgba_type"> 
  <xs:restriction base="float4x1_type"/> 
 </xs:simpleType> 
  
 <xs:simpleType name="list_of_float"> 
  <xs:restriction base="list_of_float_type"/> 
 </xs:simpleType> 
  
 <xs:simpleType name="list_of_int"> 
  <xs:restriction base="list_of_int_type"/> 
 </xs:simpleType> 
  
 <xs:simpleType name="id_type"> 
  <xs:restriction base="xs:long" /> 
 </xs:simpleType> 
 
 <xs:complexType name="Node"> 
  <xs:sequence maxOccurs="unbounded" minOccurs="0"> 
   <xs:element name="property" type="Property" /> 
  </xs:sequence> 
  <xs:attribute name="id" type="id_type" use="required" /> 
  <xs:attribute name="type" type="xs:string" use="optional" /> 
  <xs:attribute name="name" type="xs:string" use="optional" /> 
 </xs:complexType> 
 
 <xs:complexType name="Property"> 
  <xs:choice minOccurs="0" maxOccurs="1"> 
   <xs:element name="matrix" type="matrix_type" /> 
   <xs:element name="rgb" type="rgb_type" /> 
   <xs:element name="rgba" type="rgba_type" /> 
   <xs:element name="list_of_int" type="list_of_int" /> 
   <xs:element name="list_of_float" type="list_of_float" /> 
  </xs:choice> 
  <xs:attribute name="name" type="xs:string" use="required" /> 
  <xs:attribute name="value" type="xs:string" use="optional" /> 
  <xs:attribute name="type" type="xs:string" use="optional" /> 
 </xs:complexType> 
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 <xs:complexType name="Type"> 
  <xs:sequence minOccurs="1" maxOccurs="1"> 
   <xs:element name="extends" type="ExtendsType" 
minOccurs="1" maxOccurs="1" /> 
   <xs:sequence minOccurs="0" maxOccurs="unbounded"> 
    <xs:element name="implements" 
type="ImplementsType" /> 
   </xs:sequence> 
   <xs:sequence maxOccurs="unbounded" minOccurs="0"> 
    <xs:element name="property" type="Property" /> 
   </xs:sequence> 
  </xs:sequence> 
  <xs:attribute name="name" type="xs:string" /> 
 </xs:complexType> 
 
 <xs:complexType name="ImplementsType"> 
  <xs:attribute type="xs:string" name="name" /> 
 </xs:complexType> 
 
 <xs:complexType name="ExtendsType"> 
  <xs:attribute type="xs:string" name="name" /> 
 </xs:complexType> 
 
 <xs:complexType name="Root"> 
        <xs:annotation> 
         <xs:documentation> 
          Root is an extra node and does NOT refer to an 
          existing node in the node array. It is used with its ID 
          to model the edges. This node is mapped in GroIMP as an 
          object of class Node. 
         </xs:documentation> 
        </xs:annotation> 
        <xs:attribute name="root_id" type="id_type" use="required"> 
        </xs:attribute> 
 </xs:complexType> 
</xs:schema> 
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7.1.2 The package diagram of the ClientSideInterface 

 



 

191 

 

7.1.3 The package diagram of the ServerSideInterface 
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7.2 The user manual of the interface 

7.2.1  The installation of the interface 

The interface has been developed on top of GroIMP and OpenAlea, as a 

middleware between platforms and FSPMs. It consists of two parts, the 

ClientSideInterface on top of OpenAlea and the ServerSideInterface on top of 

GroIMP. Each part is supposed to be included in the new version of the 

corresponding platform. Before that, the two parts of the interface have to be 

installed separately, in a developer mode, under Linux (Ubuntu is recommended). 

To install the two parts of the interface in developer mode, the pre-condition is to 

check out the code of each corresponding platforms.  

For ClientSideInterface (named ‘groalea’), the source code of the most recent 

version of the OpenAlea platform needs to be checked out from its official 

repository. However, the source code of the most recent version did not work 

correctly during the project. We have used the source code with three packages 

(Openalea-1.2.0.tar.gz, VPlants-1.2.0.tar.gz, Alinea_1_0.tar.gz) of an earlier 

version (release 0.9) from this webpage: 

(http://openalea.gforge.inria.fr/wiki/doku.php?id=download:source_distribution).  

Once the three packages are retrieved to the local operation system, they can be 

installed by following the instructions for Ubuntu 12.10 under the section 

Compilation from sources at this webpage: 

(http://openalea.gforge.inria.fr/wiki/doku.php?id=documentation:user:ubuntu#dep

endencies). 

When the three packages of the OpenAlea platform release 0.9 have been 

installed correctly, the interface can be installed by following the steps below: 

http://openalea.gforge.inria.fr/wiki/doku.php?id=download:source_distribution
http://openalea.gforge.inria.fr/wiki/doku.php?id=documentation:user:ubuntu#dependencies
http://openalea.gforge.inria.fr/wiki/doku.php?id=documentation:user:ubuntu#dependencies
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1. Clone the remote repository to local using the command  

git clone https://github.com/longmanplus/groalea.git 

2. Go to the directory of the local package where the setup.py is located.  

3. Install groalea using the command 

python setup.py install 

Or, to contribute on the interface, use the command  

python setup.py develop 

General instructions for the working on a github project can be found here: 

http://virtualplants.github.io/contribute/devel/workflow-github.html#workflow-

github 

For the ServerSideInterface, the source code of the most recent version of the 

GroIMP platform needs to be checked out from its official repository, on 

SourceForge. The IDE Eclipse is recommended. The source code of GroIMP can 

be found here: https://sourceforge.net/p/groimp/code/HEAD/tree/ . To install the 

platform, all packages except ExchangeGraph, OpenAlea, Graph, RGG need to be 

checked out from the trunk using Eclipse (c.f. Figure 7.1). (Note the interface 

includes the first two packages. The package Graph has the dupnew method added 

to /Graph/src/de/grogra/graph/impl/Node.java for duplication of nodes and 

properties of a node, the package RGG has new query methods for multiscale RGG 

graphs. They enable geometrical upscaling.) 

https://github.com/longmanplus/groalea.git
http://virtualplants.github.io/contribute/devel/workflow-github.html#workflow-github
http://virtualplants.github.io/contribute/devel/workflow-github.html#workflow-github
https://sourceforge.net/p/groimp/code/HEAD/tree/
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Figure 7.1 The packages/files to be checked out from the trunk of the GroIMP 

SVN repository 
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Then, the source code of the interface needs to be checked out from the branch 

named FSPM Apple (c.f. Figure 7.2) by firstly selecting the files, then clicking on 

the Check Out item on the right-click menu.  

Figure 7.2 The packages to be checked out from the FSPM Apple branch of the 

GroIMP SVN repository 
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7.2.2 The usage of the interface 

There are three scenarios of using the interface: calling FSPMs based on GroIMP 

from OpenAlea, integration of the FSPMs, saving simulation results to XEG. These 

scenarios involve the usage of groalea under OpenAlea except the last one, which 

mainly refers to the scenario for GroIMP (OpenAlea has already the possibility to 

save the simulation result in files, i.e. MTG file/.mtg, Scene file/.bgeom).  

The usage of groalea under OpenAlea starts by launching OpenAlea by the 

command visualea. and launching GroIMP by the following instructions. 

Click the Run button on the Eclipse main panel, and click Run Configurations… 

on the appeared drop-down menu. Then right click the item Java Application on 

the appeared Run Configurations panel, and click the item New on the appeared 

menu to create a new configuration.  

On the appeared panel on the right side, the configuration just created needs to 

be adjusted with a given name as you like, under the tab Main, the Project must be 

Platform-Core, Main class must be de.grogra.pf.boot.Main. Under the tab 

Arguments, the Program arguments must be --project-tree (c.f. Figure 7.3). 

Figure 7.3 Adjustment for the created configuration under Eclipse. 
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Then the GroIMP platform can be launched by clicking Run button to run the 

created configuration. On the appeared GroIMP main panel, click OpenGroIMP, 

then click the item Start HTTP Server for OpenGroIMP (c.f. Figure 6.11), a 

dialogue box Start OpenGroIMP Server will appear to allow the input of a port 

number (with pre filled number ‘58070’) . When the port number is provided, the 

server can be launched by clicking the button OK in the dialogue box. 

To call FSPMs based on GroIMP from OpenAlea, continue with the following 

steps: 

1. Construct a workflow similar to LSystem in a loop, where axiom.xeg is 

an input XEG file, axiom.xl is an input model source code file, ‘run’ is 

the name of the ‘main’ method of the input model. Double click the range 

box, the range dialogue box with three modifiable value items appears. 

Those are start, step, and end values of a ‘for loop’ (c.f. Figure 6.10). The 

member of message body ‘time’ is set using the loop values. (Note that 

we set the default value of the server host and port to ‘localhost’, i.e. 

127.0.0.1, and ‘58070’). The host can be modified by connecting a string 

box with given IP value (similar the ‘run’ box) to the red point on the 

right side of the box http connection. The default port number is not 

supposed to be modified, unless a different port number has been agreed 

upon, and the GroIMP side has launched the OpenGroIMP server with 

the agreed port number. 

2. At the top of the panel Visualea, click on WorkSpace, then click the item 

Run to run the simulation of the constructed workflow in the current 

workspace. 

To run the integrative simulation of the FSPMs, the pre-condition is to have the 

.mtg and .bgeom file pairs, or the objects of MTG and Scene types available. The 

latter case needs to have MAppleT available as a visual component in OpenAlea to 
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construct a workflow. However, for internal reasons, we currently do not have it 

available. Thus, the current possibility is to run the integrative simulation manually 

under the former pre-condition.  

 

With the available .mtg and .bgeom file pairs, a workflow similar to the example 

workflow MAppleT mtg + scene to XEG (c.f. Figure 7.4) needs to be created. The 

box addMTGProperty adds a property with initial value zero to every MTG node 

except the root with a given name. The box produceXEGfile generates an XEG file 

with a given full name. Conversely, a workflow similar to the example workflow 

XEG to mtg + scene (c.f. Figure 7.5) needs to be created. Through the box 

xeg2MtgAndScene, an XEG file can be converted to an object of MTG type and 

an object of Scene type. The results can be further processed by MAppleT, or 

explored (e.g. explored graphically by box plot3D).  

Figure 7.4 The way to run the example workflow MAppleT mtg + scene to XEG 
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To allow the generated XEG to be processed by a GroIMP model, it needs to be 

imported to the workbench where the model is compiled. Click on Objects on the 

main panel of GroIMP, and then click on the item Insert File on the appeared menu. 

Then, an XEG can be chosen for importing through the appeared Open File 

dialogue box, just click Open, the XEG file will be imported. Then, the GroIMP 

model can be run to modify the imported graph. At the end, the graph needs to be 

exported to an XEG by clicking on View on the View panel, then click on item 

Export on the appeared menu. Then an XEG can be exported to a chosen directory 

with a given name through the appeared Export dialogue box. The steps to save 

simulation results to XEG are essentially the steps to export an XEG file (c.f. Figure 

6.9).  

Figure 7.5 The example workflow XEG to mtg + scene 
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7.3 The source code for the experiments of 

geometrical upscaling 

 

import de.grogra.ext.exchangegraph.graphnodes.*; 

 

scaleclass ScaleTree; 

scaleclass ScaleGU; 

scaleclass ScaleMetamer; 

scaleclass ScaleOrgan; 

 

module PropertyMeshNodeN extends PropertyMeshNode; 

module PropertyMeshNodeGU extends PropertyMeshNode; 

module PropertyMeshNodeT extends PropertyMeshNode; 

 

public void geoUpScale2M () 

[ 

 n:PropertyNodeImpl,  

 (!empty((*n /> ShadedNull*))  

 && empty((*n /> />ShadedNull*)))   

 ==> m:PropertyMeshNodeN  

 {//m.dupnew(getMesh(getComponentBasedConvexhull(n, false)), false, null); 

  m.dupnew(getMesh(getComponentBasedABBHull(n, true)), false, null); 

  m.setNodeProperties(n.getNodeProperties()); 

  m.setShader(RGBAShader.BLUE);}; 

] 

 

public void geoUpScale2GU () 

[ 

 n:PropertyNodeImpl,  

 (!empty((*n /> PropertyMeshNodeN*))  

 && empty((*n /> /> />ShadedNull*)))   

 ==> m:PropertyMeshNodeGU  

 {//m.dupnew(getMesh(getComponentBasedConvexhull(n, false)), false, null); 

  m.dupnew(getMesh(getComponentBasedABBHull(n, true)), false, null); 

  m.setNodeProperties(n.getNodeProperties()); 

  m.setShader(RGBAShader.BLUE);}; 

] 
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Remark: the method addScaleTypeGraph has to be executed when all the 

upscaling methods have been executed. The source code allows geometrical 

upscaling from sub metamer scale to metamer (M), growth unit (GU) and tree (T) 

scales using Convexhull or Axis-aligned Bounding Box based on convex hull 

(ABBHull). To allow the former, it is necessary to use the green line of each 

upscaling method, and comment out the next line. To visually switch the scales 

represented by bounding volumes interactively, one needs to click on View on the 

View panel, and click the item Scales on the appeared menu (c.f. Figure 6.9). In 

the appeared dialogue box, the view of different bounding volumes of scales can 

 

public void geoUpScale2T () 

[ 

 n:PropertyNodeImpl,  

 (!empty((*n /> PropertyMeshNodeGU*))  

 && empty((*n /> /> /> />ShadedNull*)))   

 ==> m:PropertyMeshNodeT  

 {//m.dupnew(getMesh(getComponentBasedConvexhull(n,false)), false, null); 

  m.dupnew(getMesh(getComponentBasedABBHull(n, true)), false, null); 

  m.setNodeProperties(n.getNodeProperties());   

  m.setShader(RGBAShader.BLUE);}; 

] 

 

public void addScaleTypeGraph() 

[ 

         RGGRoot ==>> ^ [  

   /> TypeRoot  

   /> {# nt: PropertyMeshNodeT #} 

   /> {# ngu: PropertyMeshNodeGU #} 

   /> {# m: PropertyMeshNodeN #} 

   /> {# tt:Translate ts:Scale tr:ShadedNull  

   sc:Cylinder ss:Sphere sn: NURBSSurface #}] 

     [/>SRoot  

     /> scaleTree:ScaleTree  

     /> scaleGU:ScaleGU  

     /> scaleM:ScaleMetamer  

     /> scaleOrgan:ScaleOrgan], 

     scaleTree +> {# nt #}, 

     scaleGU +> {# ngu #}, 

     scaleM +> {# m #}, 

     scaleOrgan +>{# tt ts tr sc ss sn #}; 

] 
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then be switched by checking or unchecking the corresponding checkboxes (c.f. 

Figure 6.2, Figure 6.3). This code computes bounding volumes for different scales 

based on the sub metamer scale, i.e., the finest scale, where the geometrical nodes 

are located. It is also possible to compute the bounding volumes for a scale 

iteratively, based on the next-finer scale. This requires the warranty to ensure the 

finer scale has already a geometry. The computed bounding volumes obtained from 

the two ways (in both cases, ABBHull and Convex hull) for a given scale are 

identical because the extreme points are the same and straight lines connect them.  
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