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Notation

• N := {1, 2, 3, . . . } and N0 := N ∪ {0}

• pl: lth prime number

• Ck2π := {f : [0, 2π]→ C : f is 2π-periodic and k times continuously differentiable}

• L1
2π :=

{
f : [0, 2π]→ C : f is 2π-periodic with

∫ 2π
0 |f(x)|dx <∞

}
: Banach space

with norm ‖f‖1 := 1
2π

∫ 2π
0 |f(x)|dx

• L2
2π :=

{
f : [0, 2π]→ C : f is 2π-periodic with

∫ 2π
0 |f(x)|2dx <∞

}
: Hilbert space

with inner product (f, g) := 1
2π

∫ 2π
0 f(x)g(x)dx and norm ‖f‖2 := (f, f)

1
2

• `1 :=
{
c = (ck)k∈Z :

∑
k∈Z |ck| <∞

}
: Banach space with norm ‖c‖1 :=

∑
k∈Z |ck|

• `2 :=
{
c = (ck)k∈Z :

∑
k∈Z |ck|2 <∞

}
: Hilbert space with inner product (c,d) :=∑

k∈Z ckdk and norm ‖c‖2 :=
(∑

k∈Z |ck|2
) 1

2

• Z[x]: the ring of polynomials with integer coefficients

• 0n: (0, . . . , 0)T ∈ Rn

• In: n× n identity matrix

• Jn: n× n counter identity matrix

• Pn :=

 (δ2k, l)
n
2
−1, n−1

k, l=0

(δ2k+1, l)
n
2
−1, n−1

k, l=0

: n× n even-odd permutation matrix for even n ∈ N.

• δk, l: Kronecker delta with δk, l :=

{
1 if k = l,

0 otherwise,
for k, l ∈ Z.

• δ(n)
k, l : n-periodic Kronecker delta with δ(n)

k, l :=

{
1 if k ≡ l mod n,

0 otherwise,
for k, l ∈ Z.

• FN : Nth Fourier matrix.

• ŷ := FNy: DFT of y ∈ CN .

• CII
N ,C

III
N ,C

IV
N : N ×N cosine matrices of types II, III and IV.

• SIV
N : N ×N sine matrix of type IV.

• xÎI := CII
Nx, x

ÎV := CIV
N x: DCT-II, DCT-IV of x ∈ RN .

• Ia, b for a ≤ b: interval with Ia, b = {a, a+ 1, . . . , b}.

ix



Notation

• I(j)
a, b: periodized interval with I(j)

a, b =
{
a mod 2j , . . . , b mod 2j

}
⊆ I0, 2j−1.

• x(0) := (xk)
n
2
−1

k=0 , x(1) := (xk)
n−1
k=n

2
: first and second half of x ∈ Rn, n even.

• y(j) := y
(j+1)
(0) + y

(j+1)
(1) : periodization of length 2j of y = y(J) ∈ R2J

• x[j] := x
[j+1]
(0) + J2jx

[j+1]
(1) : reflected periodization of length 2j of x = x[J ] ∈ R2J .

• A[j] := A
[j+1]
(0,0) +JM [j]A

[j+1]
(1,0) +

(
A

[j+1]
(0,1) + JM [j]A

[j+1]
(1,1)

)
JN [j] : reflected periodization

of size M [j] ×N [j] of A ∈ RM×N .

x



List of Figures
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Introduction

Trigonometric transforms are usually understood to be transforms comprised of linear
combinations of cosine and sine terms. In a discretized setting, which is necessary for
practical applications, the trigonometric transforms are the discrete cosine and sine trans-
forms. They are of immense importance in many areas of signal processing, including
the JPEG image compression standard, the AAC audio compression standard, and image
and video coding. Furthermore, the discrete cosine and sine transforms can be employed
for solving some types of partial differential equations.
Cosine and sine transforms are also closely related to the Fourier transform. As Euler’s

identity links the natural exponential function with the cosine and sine functions via

eix = cos(x) + i sin(x) ∀x ∈ R,

the Fourier transform of an even function reduces to a cosine transform and the Fourier
transform of an odd function reduces to a sine transform. Similarly, the Fourier transform
in a discretized setting, the so-called discrete Fourier transform, is also connected to the
discrete cosine and sine transforms.
Extensive research over the past few decades provided us with essentially runtime-

optimal algorithms for the discrete Fourier transform and the discrete cosine and sine
transforms. Significant runtime improvements are only possible if there is additional a
priori information about the signal. In practice, one usually assumes that the output
signal is sparse, meaning that only a few of its components are significant. Thus, it
often suffices to only recover those components to obtain a good approximation. Since
this can usually be achieved in less time than required by full-length algorithms, the
closely connected fields of sparse fast Fourier transforms and sparse fast trigonometric
transforms are much investigated areas of research. Many applications in signal and
image processing can merit from new methods for sparse fast Fourier transforms and
sparse fast trigonometric transforms.

Fourier Transform

The first part of this thesis addresses the problem of sparse fast Fourier transforms,
which is closely related to the topic of sparse trigonometric transforms. Like few other
mathematical concepts Fourier analysis and its applications have shaped today’s world,
due to their extensive usage in many areas of signal and image processing, engineer-
ing, physics and data processing. Well-known technologies based on Fourier analysis
and closely related concepts include, for example, musical signal processing, image and
video compression, computer tomography, nuclear magnetic resonance spectroscopy and
infrared spectroscopy, as well as mass spectrometry and magnetic resonance imaging.
During the course of his work on heat propagation in solid bodies, the French mathe-

matician Jean Baptiste Joseph Fourier (1768–1830) was able to prove that every periodic
function can be approximated well by an expansion into trigonometric functions. For a
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2π-periodic function f : [0, 2π]→ R this would mean that

f(x) ≈ a0 +
∞∑
k=1

ak cos(kx) +
∞∑
k=1

sin(kx) =
∞∑

n=−∞
cne

inx ∀x ∈ [0, 2π),

where

a0 :=
1

2π

∫ 2π

0
f(x)dx,

ak :=
1

π

∫ 2π

0
f(x) cos(kx)dx, bk :=

1

π

∫ 2π

0
f(x) sin(kx)dx ∀ k ∈ N.

and

c0 := a0 and cn :=

{
1
2 (an − ibn) if n > 0,
1
2 (an + ibn) if n < 0.

Such a series is called Fourier series, and its coefficients ak, bk and cn are known as
Fourier coefficients. Fourier series can be utilized to solve certain types of differential
equations, particularly linear differential equations with constant coefficients, including
the heat equation, the wave equation and Schrödinger’s equation. Chapters 1 and 2
in [Fol92] and Chapter 1 in [PPST19] provide detailed derivations of Fourier series from
differential equations like the heat equation inspired by Fourier’s approach.
Nowadays, the process of computing the coefficients in the Fourier series of a periodic

function f is known as the finite Fourier transform. For a periodic function the coefficient
cn can be interpreted as a measure for how much the frequency n ∈ Z contributes to the
input signal f .
There also exists an extension of the concept of the Fourier transform to non-periodic

functions, where the Fourier transform of an absolutely integrable function f : R→ C is
its continuous spectrum. Many physical phenomena can be described using the Fourier
transform. One of them is the Fraunhofer diffraction, which approximates the diffraction
pattern of a wave at a long distance from the diffracting object, e.g., a single slit or a
double slit. The diffraction pattern is approximately given as the Fourier transform of
the diffracting object.
The finite Fourier transform for 2π-periodic functions is a powerful theoretical tool,

but its computation requires knowledge of the function for a complete period. Thus, it
cannot be applied directly in practice, since measurements can only be taken discretely.
Discretizing the integrals required for the computation of the Fourier coefficients with
the trapezoidal rule on a uniform grid of length N ∈ N yields that

cn ≈
1

N

N−1∑
j=0

f

(
2πj

N

)
e
−2πijn
N ∀n ∈ Z.

The sum on the right-hand side is known as the discrete Fourier transform (DFT) of

the vector
(
f
(

2πj
N

))N−1

j=0
. Hence, the coefficient cn can be approximated by the nth

entry of the DFT of this vector of equidistant samples of f . If it is known a priori that
the frequencies with significantly large Fourier coefficients are contained in the interval{
−
⌈
N
2

⌉
+ 1, . . . ,

⌊
N
2

⌋}
, then the above approximation is very accurate. Similarly, the

Fourier transform for non-periodic functions can be approximated well by the DFT. The
discrete Fourier transform also arises naturally in the context of trigonometric polynomial
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interpolation, i.e., the interpolation of data points by a function of the form

P (x) =

n∑
k=−n

cke
ikx x ∈ R.

As a means of discretely approximating the finite Fourier transform, the DFT is already
very valuable. However, the definition given above implies that the DFT can be written
as the multiplication of a dense N × N matrix with a vector of length N , which has
an arithmetical complexity of O(N2). The development of machine computing in the
second half of the 20th century and ever-increasing amounts of input data motivated
the development of algorithms with significantly lower runtimes. The first algorithm
achieving a runtime that is subquadratic in N was published in 1958, see [Goo58], but
was not further recognized. In 1965, Cooley and Tukey introduced the first well-known
DFT algorithm with a runtime of O(N logN), see [CT65]. DFT algorithms with such
a runtime are known as fast Fourier transforms (FFT). A detailed compilation of many
FFT algorithms can be found in [CG99].
With the definition given as above, FFT algorithms require equidistant samples of a

2π-periodic function. However, the acquisition of equidistant samples is not feasible for all
practical applications. This inspired the research of FFT algorithms for non-equispaced
data, the so-called NFFTs. There exist NFFT algorithms achieving the same order of
runtime as the FFT, see, e.g., [DR93, Bey95, Ste98, PST01]. Chapter 7 in [PPST19]
provides an overview of a variety of NFFT methods.
Due to the technological developments of the past 50 years, the amount of data that

has to be processed have increased even further. Consequently, faster algorithms than
conventional FFTs are desirable for many applications. It has been shown that for arbi-
trary input vectors of length N the order N logN of the runtime is optimal. Therefore,
research in recent years focused on finding FFT algorithms with lower runtimes. Provided
that there is some a priori information about the vector given, runtimes that are sublinear
in N could be achieved. Usually, one assumes that the output vector is sparse, meaning
that it has only a few significantly large entries. Many such methods are summarized in
the survey [GIIS14].

Contribution to Sparse FFTs

In the first part of this thesis we will focus on two different classes of 2π-periodic frequency
sparse functions. For both we will introduce deterministic algorithms for computing the
Fourier coefficients from as few samples and using as few arithmetical computations as
possible. All of our algorithms achieve runtime and sampling complexities that are sub-
linear in the assumed bandwidth of the function. The first class of frequency sparse
functions we will consider are functions with short frequency support, meaning that all
frequencies corresponding to significantly large Fourier coefficients are contained in an
interval of length B in Z. We introduce two new algorithms arising from different sim-
plifications of Algorithm 2 in [Iwe10], which is a deterministic sublinear-time algorithm
for computing the Fourier coefficients of an arbitrary B-sparse function from samples.
Algorithm 2 in [Iwe10] requires very complex sampling schemes that can be relaxed in
two ways by utilizing the short frequency support, resulting in one algorithm with a
runtime of

O

(
B logB

log2 N
B

log log N
B

)
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and another with a runtime of

O
(

(B + logN) logN

log2B
log2

(
B + logN

logB

))
.

All existing deterministic FFT algorithms for recovering sparse functions from samples
have runtimes which scale quadratically in the sparsity B and are thus slower than our
algorithms. Both of the algorithms are deterministic and require a priori knowledge of
an upper bound on the support length B of the function we aim to recover.
The second class of frequency sparse functions we will investigate in this thesis are

functions with polynomially structured sparsity. This means that the frequencies corre-
sponding to significantly large Fourier coefficients are generated by evaluating n polyno-
mials of degree at most d at B consecutive points. Polynomially structured sparsity is a
generalization of the concept of short frequency supports, since a short frequency support
can be interpreted as being generated by evaluating a single monic linear polynomial at
B consecutive points. We will derive a deterministic algorithm that computes the Fourier
coefficients of a polynomially structured sparse function from samples in sublinear time.
This algorithm, which is, to the best of our knowledge, the first deterministic algorithm
for recovering polynomially structured sparse functions, can be seen as a generalization of
Algorithm 2 in [Iwe10] and Algorithm 3 in [Iwe13]. The key feature of our new algorithm
is the restriction of the input function to frequencies that satisfy certain congruency
conditions, which contributes significantly to its

O
(
Bd2n3 log5N

log2(2dn)

)
runtime. Our algorithm needs a priori knowledge of upper bounds on the number of
polynomials n, their maximal degree d and the number B of evaluation points. For the
special case of block frequency sparse functions, where all generating polynomials are
monic, our method can be slightly simplified, yielding an algorithm with runtime of

O
(
Bn2 logB log4N

log2(2n)

)
.

This runtime scales subquadratically in the sparsity Bn, thus performing better than all
previously existing deterministic FFT methods for frequency sparse functions.

Discrete Cosine Transform

The second part of this thesis covers a particular sparse trigonometric transform, the
discrete cosine transform of type II (DCT-II). It is a well-known fact that the cosine and
sine functions are the eigenfunctions of the homogeneous harmonic oscillator system

u′′ + λu = 0

on the domain [0, π]. Discretizing this system, which is necessary for any kind of practical
application, where all measurements can only be realized discretely, yields discretized co-
sine and sine functions. As eigenfunctions or eigenvectors of the discretized homogeneous
harmonic oscillator they constitute the basis functions for the different types of discrete
cosine and sine transforms (DCT and DST). More precisely, it has been shown in [Str99]
that the different types of the DCT and DST are “the natural outcome of different com-
binations of homogeneous boundary conditions applied to the discretized solution of a
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simple harmonic oscillator equation”, see [BYR06], Section 2.1. For example, the basis
functions of the discrete cosine transform of type I (DCT-I) can be obtained by applying
Neumann boundary conditions at both ends of N equispaced grid points, and the basis
functions of the discrete cosine transform of type II by applying the Neumann boundary
conditions mid-grid at −1

2 and N− 1
2 . See [Str99] and [BYR06], Section 2.6, for a detailed

explanation of this approach.
Using Neumann boundary conditions at 0 and either Neumann or Dirichlet boundary

conditions at the far end, yields the DCTs of types I-IV if the conditions are applied
either at grid points for both ends or mid-grid for both ends. If one of the boundary
conditions is applied at grid points and the other one mid-grid, one obtains the DCTs of
types V-VIII, which are used less often in practice.
The closely related DSTs can be found by using Dirichlet boundary conditions at 0

and either Neumann or Dirichlet boundary conditions at the far end. Following the same
naming conventions as for the DCTs, the application of the boundary conditions at grid
points for both ends or mid-grid for both ends yields the DSTs of types I-IV, and the
application of one condition at grid points and the other one mid-grid yields the DSTs
of types V-VIII, which are also of little practical importance.
All types of the DCT and the DST, often referred to as the discrete trigonometric

transforms, possess some very important properties. For example, all of them can be
written as a multiplication with an orthogonal transformation matrix. Other properties
include linearity, scaling in time, shifts in time, and difference and convolution properties.
Some of the discrete trigonometric transforms have been shown to be very useful for

a variety of problems in the area of digital signal processing. From the motivation of
their definition as solutions of the discretized homogeneous harmonic oscillator it is not
at all apparent why this should be the case. Nevertheless, it can be observed that the
DCT-II diagonalizes the correlation matrix of a stationary Markov-1 signal. Since in fact
many signals in practical applications are approximately stationary Markov-1 signals,
this makes the DCT-II a powerful tool for dealing with such signals.
There even exists a transform that exactly diagonalizes the correlation matrix of any

signal, the so-called Karhunen-Loéve transform (KLT), see, e.g., [Kar47,Loé48].
It can be shown that the KLT is an optimal transform with the following properties,

cited from [BYR06], Section 3.2.

(i) It completely diagonalizes the signal in the transformation domain.

(ii) It minimizes the mean square error in bandwidth reduction or data compression.

(iii) It contains the most variance (energy) in the fewest number of transform coeffi-
cients.

(iv) It minimizes the total representation entropy of the data sequence.

These properties would make the KLT indispensable in signal processing and many other
areas if there existed a fast transformation algorithm for it. Unfortunately, as the KLT is a
highly signal dependent transform, this is not the case, which makes the KLT impractical
for applications. Instead, researchers were interested in finding a predetermined, i.e.,
signal independent, basis that approximates the KLT well. This actually leads us back
to the discrete trigonometric transforms. As proven in [AF82,Kit80,KSK77], the DCT
of types I and II can be derived precisely as a solution for the problem of approximating
the KLT for stationary Markov-1 signals. Thus, they are asymptotically equivalent to
the KLT, which explains their great applicability to signal processing problems. For
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the DCT-I the asymptotic behavior is obtained if the matrix size N approaches infinity
and the adjacent correlation coefficient ρ does not approach 1. For the DCT-II, whose
decorrelation property is independent of N , one has to consider the case where ρ tends
to 1. Furthermore, the KLT is also asymptotically equivalent to the DFT for stationary
Markov-1 signals if N approaches infinity.
Still, the DCTs and DSTs would never have been so widely used in signal processing

if their computation was only possible via the above-mentioned matrix-vector multipli-
cation, as such a multiplication has a runtime of O

(
N2
)
for the dense DCT and DST

matrices. Fortunately, as for the DFT, extensive research in the past few decades has pro-
vided us with a variety of fast algorithms with runtimes of O(N logN). See, e.g., [RY90],
Chapter 4, and [BYR06], Chapter 4, for an overview of many such methods.
For plenty of applications these improved runtimes are sufficient. However, over the

past few decades, in many areas of application the amount of input data that has to be
processed has increased faster than the computing power, making even faster, sublinear
runtimes necessary. As for the DFT, this is not possible for arbitrary input vectors,
though there has been some progress in developing faster algorithms for certain a priori
sparsity assumptions.

Contribution to Sparse DCTs

In the second part of this thesis we will investigate the deterministic reconstruction of
sparse vectors from their DCT-II transformed vectors. We will assume that the vectors
we aim to recover have a short support, meaning that the indices corresponding to
significantly large entries are contained in an interval of short length m. We will develop
two new algorithms for the inverse discrete cosine transform of type II (IDCT-II) which
are, as far as we are aware, the first sparse IDCT-II algorithms specifically tailored to
the cosine bases and the short support.
The first algorithm we will derive is based on the fact that the DCT-II of any vector

x = (xk)
N−1
k=0 ∈ RN can be directly computed from the auxiliary vector

y = (x0, x1, . . . , xN−1, xN−1, xN−2, . . . , x0)T ∈ R2N .

First, we will develop an algorithm for recovering y, which has a so-called reflected block
support if x has a short support, from its Fourier transformed vector ŷ. In order to do
this we will utilize the notion of periodized vectors introduced in [PW16a]. Our new
sparse IFFT algorithm can detect the support of y on the fly; thus, it does not require
any a priori knowledge of the support length m. Then we utilize this IFFT method to
derive a deterministic, adaptive IDCT-II algorithm for recovering x from xÎI in

O
(
m logm log

2N

m

)
time. As our IFFT method is specifically designed for the sparsity structure of y that
is induced by the short support of x, it performs better than previously existing sparse
IDCT-II methods employing arbitrary sparse IFFTs.
The DCT-II is a transform that can be computed in a fast way using only real arith-

metic, so we will present another IDCT-II algorithm for recovering vectors with short
support that only requires real arithmetic. The proposed algorithm employs the notion
of reflected periodizations, a DCT-II specific analog to the periodizations arising in the
DFT case. Due to slightly different sparsity constraints, this second IDCT-II method
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requires a priori knowledge of an upper bound M on the support length m. It achieves
a runtime of

O
(
M logM +m log

N

M

)
for input vectors of length N . To the best of our knowledge, our algorithm is the first
existing IDCT-II algorithm for vectors with short support that only uses real arithmetic.
Numerical experiments show that it is even faster than our proposed IDCT-II algorithm
based on special sparse IFFTs.
As many of the problems in which DCTs are used are actually higher dimensional, e.g.,

digital image and video compression, there is also a demand for fast algorithms for higher
dimensions. Thus, we will introduce a new IDCT-II algorithm for recovering a matrix
of size M ×N with block support, meaning that all of its significantly large entries are
contained in a rectangle of size m × n, where m and n are small compared to M and
N , respectively. The algorithm is based on generalizations of the techniques developed
for our 1-dimensional IDCT-II algorithm that only uses real arithmetic. Analogously,
the 2-dimensional IDCT-II algorithm requires a priori knowledge of upper bounds on
the support sizes m and n. Under the assumption that N ≈ M and n ≈ m with upper
bound b ≥ m, it has a runtime of

O
(
b2 log2 b+ b2 log2

M

b
+
M

2
b log2

(
M

2
b

))
.

As far as we are aware, this is the first 2-dimensional IDCT-II algorithm for block sparse
matrices that only requires real arithmetic.

Overview

This thesis is divided into two main parts. In the first part we study fast Fourier trans-
form algorithms for 2π-periodic frequency sparse functions. We begin by giving a brief
overview of the discrete Fourier transform (DFT) and a variant of it, the centered dis-
crete Fourier transform (CDFT) in Chapter 1. Further, we sketch one of the most famous
algorithms for the fast discrete Fourier transform (FFT), the so-called Sande-Tukey algo-
rithm. As we are interested in FFT algorithms for functions, we then introduce the finite
Fourier transform for 2π-periodic functions and highlight its connection to the CDFT.
In Chapter 2 we develop two related algorithms for recovering 2π-periodic functions

from samples if the input functions satisfy the simple sparsity constraint of having a short
support. We also prove theoretical estimates for their runtime and sampling require-
ments. We conclude this chapter with a numerical comparison of these two algorithms
to other sparse FFT methods regarding both runtime and robustness to noise.
Extending the previous setting, we investigate 2π-periodic functions with polynomially

structured sparsity in Chapter 3. We begin by defining this theoretical concept and
then derive an algorithm for polynomially structured sparse functions. Additionally,
we investigate special cases for which our algorithm can be simplified, most notably
block sparsity. For block sparse functions we also provide an adapted version of our
algorithm with reduced runtime. Furthermore, we show theoretical runtime and sampling
bounds for the algorithm for polynomially structured sparsity and the algorithm for block
sparsity. We complete the chapter by numerically investigating the runtime and the
robustness to noise of the algorithm for block sparse functions.
The second part of the thesis is concerned with the related topic of sparse fast discrete

cosine transforms. Instead of recovering functions from samples, we aim to recover a
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real-valued vector from its discrete cosine transform of type II (DCT-II). In Chapter 4
we define the most common types of the DCT and summarize a fast algorithm for the
DCT-II. Further, we recall some important results regarding Vandermonde matrices and
Chebyshev polynomials.
Starting from this background, we introduce two algorithms for the sparse IDCT-II for

vectors with short support. In Chapter 5 we first recall the notions of short support and
periodized vectors, which were introduced in [PW16a]. Then we present an algorithm
for recovering a vector x with short support from its DCT-II transformed vector. The
method is based on recovering an auxiliary vector y of double length from its IFFT.
The vector y has a special sparsity structure, the so-called reflected block support, if x
has a short support. We first develop an IDFT algorithm for recovering y from its FFT
transformed vector by iteratively reconstructing its periodizations. Then we will use this
method to derive an IDCT-II algorithm for vectors with short support. The chapter
closes with theoretical estimates for the runtimes and the number of required samples of
both the sparse IDFT and the sparse IDCT-II algorithm.
In Chapter 6 we introduce a sparse IDCT-II algorithm for vectors with short support

which only requires real arithmetic. We begin by introducing the concept of reflected
periodizations, a DCT-II-specific analog to periodized vectors. Based on them we develop
our algorithm and prove its theoretical runtime and sampling complexities. We conclude
the chapter with a numerical comparison of our IDFT for vectors with reflected block
support and our two IDCT-II algorithms for vectors with short support with other sparse
IDFT and sparse IDCT-II methods.
Transferring the techniques from Chapter 6 to the more general setting of matrices,

we conclude this thesis by presenting a 2-dimensional IDCT-II algorithm for matrices
with block support in Chapter 7. First, we generalize the concepts of short support and
reflected periodizations and use them to derive our algorithm. Then we prove estimates
on its runtime and number of required samples.

Please Note

Parts of this thesis have already been published in our papers [Bit17c, BP18c, BP18a,
BZI19]. I significantly contributed to the publications [BZI19,BP18c,BP18a], which con-
stitute Chapters 3, 5 and 6, and I am the corresponding author for all three. Furthermore,
I am the sole author of [Bit17c], included in this thesis as Sections 2.1 to 2.3, and also
developed the method introduced in Section 2.4 on my own. Finally, the 2-dimensional
IDCT-II for sparse matrices presented in Chapter 7 was also completely developed by
myself.
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Part II

Sparse Fast Fourier Transform





1 Fourier Transform

The Fourier transform has proven to be one of the most important mathematical trans-
forms, with applications in, e.g., signal and image processing, engineering, physics, and
data processing. Hence, the efficient reconstruction of signals from Fourier data or from
samples is a problem which has been investigated in great detail over the past few decades.
Before presenting new deterministic sparse fast Fourier algorithms for periodic functions
with structured Fourier sparsity in Chapters 2 and 3, we will provide the theoretical
background for the discrete Fourier transform for complex vectors of length N and the
finite Fourier transform for 2π-periodic functions in this chapter.

1.1 Discrete Fourier Transform

Let us begin by defining the discrete Fourier transform (DFT) for complex vectors and
stating some of its properties. The following definitions and theorems are based on
[CLRS09], Chapter 30.2, [CG99], Chapters 1 and 3, and [PPST19], Chapter 3.2.

Definition 1.1 (Discrete Fourier Transform (DFT)) Let N ∈ N and y = (yk)
N−1
k=0 ∈

CN . Define the N th Fourier matrix FN ∈ CN×N as

FN :=
(
ωN

kl
)N−1

k, l=0
,

where ωN := e−
2πi
N is an N th primitive root of unity. Then the discrete Fourier transform

ŷ = (ŷk)
N−1
k=0 ∈ CN of y is given by

ŷ := FNy.

Thus, we can write the entries of ŷ as

ŷk =

N−1∑
l=0

ωN
klyl ∀ k ∈ {0, . . . , N − 1}.

It is a well known fact that the Fourier matrix is invertible. For a proof see, e.g.,
[CLRS09], Theorem 30.7. Consequently, there also exists the inverse discrete Fourier
transform (IDFT).

Definition 1.2 (Inverse Discrete Fourier Transform (IDFT)) Let N ∈ N and
ŷ = (ŷk)

N−1
k=0 ∈ CN . Then its inverse discrete Fourier transform y = (yk)

N−1
k=0 ∈ CN is

given by
y := FN

−1ŷ,

where
FN
−1 :=

1

N
FN =

1

N

(
ωN
−kl
)N−1

k, l=0
∈ CN×N
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1 Fourier Transform

is the inverse of the Nth Fourier matrix. Hence, we find that

yk =
1

N

N−1∑
l=0

ωN
−klŷl ∀ k ∈ {0, . . . , N − 1}.

Note that the Nth Fourier matrix is unitary if the scaling factor in Definition 1.1 is
chosen as 1√

N
instead of 1 and the one in Definition 1.2 as 1√

N
instead of 1

N . The DFT
has many useful properties, some of which are summarized in the following theorem.

Theorem 1.3 Let N ∈ N, y, z ∈ CN , α, β ∈ C, n ∈ Z and define the flipping matrix
UN via

UN :=
(
δ

(N)
k+l

)N−1

k, l=0
:=


1 0 . . . 0

0 0 . .
.

1
... . .

.
. .
.

0 1 0

 ,

where δ(N) denotes the N -periodic Kronecker symbol,

δ
(N)
k :=

{
1 if k ≡ 0 mod N,

0 if k 6≡ 0 mod N
∀ k ∈ Z.

Further, we define the matrices

PN :=
(
δ

(N)
k−l−1

)N−1

k, l=0
and MN = diag

((
ωN

k
)N−1

k=0

)
.

Then the following statements are true:

(i) ̂(αy + βz) = αŷ + βẑ,

(ii) y = FN
−1ŷ =

1

N
UNFN ŷ,

(iii) ÛNy = UN ŷ and ŷ = UN ŷ,

(iv) P̂N
n y = MN

n ŷ and M̂N
−n y = PN

n ŷ,

(v)
1

N
(ŷ, ẑ) = (y, z) :=

N−1∑
k=0

ykzk.

For a proof see [PPST19], Chapter 3.2.3, Theorem 3.26.

Remark 1.4 It follows from Theorem 1.3 (ii) that, as the multiplication of UN and a
vector y ∈ CN only reorders the entries of y, the DFT and the IDFT can be computed
using the same algorithm with runtimes of the same order. ♦

The DFT of a real vector y and the vector obtained by cyclically shifting all entries
by half the vector length are also closely related, as was shown in [PW16a], Lemma 2.2.

Lemma 1.5 Let u ∈ R2j+1 , j ≥ 0, and let the shifted vector u1 :=
(
u1
k

)2j+1−1

k=0
∈ R2j+1

be given by
u1
k := u(k+2j) mod 2j+1 , k ∈

{
0, . . . , 2j+1 − 1

}
.
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1.1 Discrete Fourier Transform

Then û1 satisfies
û1
k = (−1)k ûk ∀ k ∈

{
0, . . . , 2j+1 − 1

}
.

1.1.1 Fast Fourier Transform

Computing the DFT of a vector y ∈ CN via the matrix-vector multiplication from
Definition 1.1 has a runtime of O

(
N2
)
. However, employing more efficient strategies,

one can develop algorithms with a runtime of O(N logN). For arbitrary vectors, where
no further a priori knowledge about their entries is given, this runtime can in fact be
shown to be optimal.
In this section, which is based on [CG99], Chapter 3 and [PPST19], Chapter 5.2, we

will briefly outline one of the most widely known fast DFT (FFT) algorithms, achieving
a runtime of O(N logN).
By Definition 1.1, the DFT of a vector y ∈ CN can be computed by multiplying the

matrix FN by y. However, being a Vandermonde matrix (see Chapter 4.4 for more de-
tailed information on Vandermonde matrices), FN has a very special structure which can
be exploited using the so-called divide-and-conquer paradigm to obtain fast algorithms
for the computation of FNy. There exists a variety of FFT algorithms based on this
approach, see, e.g., [CT65,GS66,Ber68]. In [CG99], Chapter 3, the divide-and-conquer
technique is characterized as follows:

Step 1 Divide the problem into two or more subproblems of smaller size.

Step 2 Solve each subproblem recursively by the same algorithm. Apply the bound-
ary condition to terminate the recursion when the sizes of the subproblems
are small enough.

Step 3 Obtain the solution for the original problem by combining the solutions to
the subproblems.

The most widely known FFT algorithms are radix-2 algorithms, which are based on
separating the computation of the DFT of a vector y ∈ CN into two DFT computations
of half length. Applying this idea recursively implies that these methods are best suited
for vector lengths N that are a power of 2, since then one can employ the above steps
until the vector length in the subproblems is 1. Let us thus assume that N = 2J .
There are two main possibilities for reducing the problem of the DFT computation

to a DFT computation of half length, decimation in time and decimation in frequency.
Recall that by Definition 1.1 we have that

ŷk =
N−1∑
l=0

ωN
klyl (1.1)

for any y ∈ CN . The vector y is sometimes said to be contained in time-domain and the
vector ŷ in frequency domain, analogously to time and frequency domain for the Fourier
transform for square-integrable functions f : R → C, see, e.g., [PPST19], Chapter 2,
and the finite Fourier transform for 2π-periodic functions, see Section 1.2 of this thesis.
Decimation in time means that we split the sum in (1.1) into two sums such that each
sum only involves half of the entries of the time-domain vector y. To be precise, one sum
only depends on the evenly indexed entries of y and the other one only depends on the
oddly indexed entries. This approach yields the so-called Cooley-Tukey FFT algorithm,
see [CT65].
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1 Fourier Transform

We will now explain the second idea of decimation in frequency in more detail. This
method, often referred to as the Sande-Tukey algorithm, was first described in [GS66].
In fact, by writing the required operations for decimation in time and decimation in
frequency algorithms in matrix form, and factorizing the occurring matrices, one can
show that each of the methods can be derived from the other. Analogously to the idea
of decimation in time, in each step we restrict the entries of the frequency-domain vector
ŷ, which is returned by the method, to the evenly and the oddly indexed ones. Then
both the evenly and the oddly indexed entries of ŷ can be computed with the help of a
DFT of length N

2 . This can be achieved by rewriting (1.1) as follows,

ŷk =

N
2
−1∑

l=0

ωN
klyl +

N−1∑
l=N

2

ωN
klyl

=

N
2
−1∑

l=0

ωN
klyl +

N
2
−1∑

l=0

ωN
k(l+N

2 )yl+N
2

=

N
2
−1∑

l=0

ωN
kl
(
yl + yl+N

2
ωN

kN
2

)
∀ k ∈ {0, . . . , N − 1}. (1.2)

Now we consider the evenly and the oddly indexed entries of ŷ separately. First, we
focus on indices of the form k = 2k′, where k′ ∈

{
0, . . . , N2 − 1

}
. Then (1.2) yields

ŷ2k′ =

N
2
−1∑

l=0

ωN
2k′l
(
yl + yl+N

2
ωN

k′N
)

=

N
2
−1∑

l=0

ωN
2

k′l
(
yl + yl+N

2

)
. (1.3)

If we define the vector y(N/2), e ∈ C
N
2 via

y
(N/2), e
l := yl + yl+N

2
∀ l ∈

{
0, . . . ,

N

2
− 1

}
,

we find that (1.3) implies

ŷ2k′ = ̂y(N/2), e
k′ =

N
2

1−1∑
l=0

ωN
2

k′l y
(N/2), e
l ∀ k′ ∈

{
0, . . . ,

N

2
− 1

}
, (1.4)

so the vector (ŷ2k′)
N
2
−1

k′=0 can be computed via a DFT of length N
2 , which is the first

subproblem of half size.
For oddly indexed entries of the form k = 2k′+1, where k′ ∈

{
0, . . . , N2 − 1

}
, it follows
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1.1 Discrete Fourier Transform

from (1.2) that

ŷ2k′+1 =

N
2
−1∑

l=0

ωN
(2k′+1)l

(
yl + yl+N

2
ωN

(2k′+1)N
2

)

=

N
2
−1∑

l=0

ωN
2

k′lωN
l
(
yl + yl+N

2
ωN

k′NωN
N
2

)

=

N
2
−1∑

l=0

ωN
2

k′l
(
yl − yl+N

2

)
ωN

l. (1.5)

Defining the vector y(N/2), o ∈ C
N
2 via

y
(N/2), o
l :=

(
yl − yl+N

2

)
ωN

l ∀ l ∈
{

0, . . . ,
N

2
− 1

}
,

(1.5) yields

ŷ2k′+1 = ̂y(N/2), o
k′ =

N
2
−1∑

l=0

ωN
2

k′l y
(N/2), o
l ∀ k ∈

{
0, . . . ,

N

2
− 1

}
, (1.6)

so the vector (ŷ2k′+1)
N
2
−1

k′=0 can also be computed using a DFT of length N
2 , which gives

us the second subproblem of half size. By construction of the subproblems, every entry
of ŷ is calculated exactly once if both subproblems (1.4) and (1.6) are solved.
By Step 2 of the divide-and-conquer paradigm, the same idea of splitting the sum for

the matrix-vector multiplication is now applied to the DFTs of the two vectors y(N/2), e

and y(N/2), o in (1.4) and (1.6), resulting in two new subproblems of computing the DFT
of a vector of length N

4 for each of the N
2 -length vectors. As we assumed that N = 2J ,

this idea can be applied repeatedly until the final 2J subproblems have length 1.
It still remains to be shown that this method indeed improves the runtime of O

(
N2
)
of

the matrix-vector multiplication FNy. Computing the two vectors y(N/2), e and y(N/2), o

requires 2 · N2 = N complex additions and N
2 complex multiplications with the so-called

twiddle factors ωNl for l ∈
{

0, . . . , N2 − 1
}
. Furthermore, two DFTs of length N

2 of the
vectors y(N/2), e and y(N/2), o have to be computed. Instead of calculating these DFTs
directly, we split each of the two vectors again into two vectors of length N

4 . Thus, the
second step also requires 2·2· N4 = N additions and 2· N4 = N

2 complex multiplications, in
addition to 4 DFTs of length N

4 . Repeatedly applying this idea until subproblem vectors
of length 1 are achieved, the Sande-Tukey algorithm performs J steps altogether, using

J−1∑
j=0

N = NJ = N log2N

complex additions and
J−1∑
j=0

N

2
=
N

2
log2N

complex multiplications. This yields an overall runtime of O(N logN).
The closely related Cooley-Tukey algorithm, based on decimation in time, also has a
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1 Fourier Transform

runtime of O(N logN). Furthermore, it can be shown that for arbitrary input vectors
y ∈ CN the order N logN of the runtime of these FFT methods is optimal, i.e., that there
cannot exist a general FFT algorithm with a runtime below O(N logN), see [Mor73].
There also exist radix-4 algorithms for vector lengths N = 4J , see, e.g., [Ber68,Nus82],

and so-called split-radix algorithms, which combine radix-4 and radix-2 methods, see,
e.g., [Yav68,DH84].

Remark 1.6 FFT algorithms also exist for vectors whose lengths are not powers of 2.
For vectors with small prime length see, e.g., [Rad68], and for vectors with lengths that
are powers of a single prime see, e.g., [Win78]. If the vector length is the product of two
relatively prime numbers, [Goo58,Nus82], among others, provide fast algorithms. There
also exist FFT algorithms if the vector length is the product of several small primes, see,
e.g., [Ber67].
Even for completely arbitrary vector lengths, e.g., [Blu70,RSR69] presented FFT pro-

cedures with a runtime of O(N logN). These methods utilize that the DFT of a vector
can be written as a convolution. The computation of this convolution can be embedded
into a circulant matrix whose size is a power of 2. For an efficient calculation of the DFT
this matrix has to be diagonalized, which only needs a DFT that can be found using,
e.g., a radix-2 algorithm like the Sande-Tukey algorithm sketched above. See [CG99],
Chapter 13, for a more detailed explanation of this approach.
Thus, even for arbitrary vector lengths N , there always exist methods with a runtime

of O(N logN) and a sampling complexity of O(N). Hence, we assume throughout this
thesis that any N -length DFT computation requires O(N logN) arithmetical operations.

♦

1.1.2 Centered Discrete Fourier Transform

For certain applications it is more convenient not to index the entries of a Fourier trans-
formed vector ŷ ∈ CN from 0 to N − 1, as in Definition 1.1, but from −

⌈
N
2

⌉
+ 1 to⌊

N
2

⌋
. This usually makes sense if one is referring to frequencies in Fourier domain, as we

will do in Chapters 2 and 3. For this reason we also define the centered discrete Fourier
transform (CDFT). As we will never use both the DFT and the CDFT for the same
problem, we denote both of them by ŷ and clarify at the beginning of each section which
transform will be used in the following.

Definition 1.7 (Centered Discrete Fourier Transform (CDFT)) Let N ∈ N and

y := (yk)
N−1
k=0 ∈ CN . Its centered discrete Fourier transform ŷ = (ŷν)

bN2 c
ν=−dN2 e+1

∈ CN is

given by
ŷ := F̃Ny,

where the N th centered Fourier matrix F̃N ∈ CN×N is defined as

F̃N :=
1

N

(
ωN

νk
)bN2 c, N−1

ν=−dN2 e+1, k=0

=
1

N

(
ωN

νk · ωNk(−d
N
2 e+1)

)N−1

ν, k=0

=
1

N
FN diag

((
ωN

k(−dN2 e+1)
)N−1

k=0

)
. (1.7)
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1.2 Finite Fourier Transform

Consequently, we can write the entries of ŷ as

ŷν =
1

N

N−1∑
k=0

ωN
νkyk ∀ ν ∈

{
−
⌈
N

2

⌉
+ 1, . . . ,

⌊
N

2

⌋}
.

Lemma 1.8 The Nth centered Fourier matrix F̃N is invertible with inverse matrix

F̃−1
N = N diag

((
ω
−k(−dN2 e+1)
N

)N−1

k=0

)
FN
−1

=
(
ωN

k(dN2 e−1)ωN
−kν
)N−1

k, ν=0

=
(
ωN
−kν
)N−1,bN2 c
k=0, ν=−dN2 e+1

.

Proof. The proof follows immediately from Definition 1.2 and (1.7), since the diagonal
matrix in said equation is invertible.

Remark 1.9 Due to (1.7), the transformation matrices F̃N and FN only differ by the
multiplication with a diagonal matrix whose entries are Nth roots of unity. Thus, the
CDFT can be computed using the same fast algorithms as the DFT after performing the
O(N) operations necessary for the multiplication. We also obtain a sampling complexity
of N and a theoretical runtime of O(N logN) for the CDFT using the FFT mentioned in
Section 1.1.1 for arbitrary vector lengths N . Consequently, we will henceforth say that
we apply the FFT to a vector without specifying whether we used Definition 1.1 or 1.7,
i.e., the CDFT or the standard DFT, as for all our purposes these two methods have the
same order runtime. From the context it will always be clear whether we are employing
the DFT or the CDFT. Furthermore, the multiplication with the diagonal matrix in (1.7)
does not change the absolute values of the entries of the vector it is applied to. Hence,
for any y ∈ CN , FNy and F̃Ny have the same number of non-zero entries and also the
same number of entries with small absolute value. ♦

1.2 Finite Fourier Transform

The concept of Fourier transforms does not only exist for vectors, but also for periodic
functions, and for absolutely integrable functions from R into C. All of these transforms
are related, but there is a very close connection between the discrete Fourier transform
and the one for periodic functions. For the remainder of this thesis we only consider
2π-periodic functions. However, the concepts discussed herein can also be extended to
general P -periodic functions. The following section is based on [Fol92], Chapter 2.1
and [PPST19], Chapter 1.

Definition 1.10 (Fourier Coefficients and Fourier Series) Let f ∈ L1
2π. The

Fourier coefficients of f are given by

cν(f) =
1

2π

∫ 2π

0
f(x)e−iνxdx ∀ ν ∈ Z.
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1 Fourier Transform

Then the Fourier series of f is defined as∑
ν∈Z

cν(f)eiνx ∀x ∈ [0, 2π).

With the help of the Fourier coefficients we can now define the finite Fourier transform
for 2π-periodic square-integrable functions.

Definition 1.11 (Finite Fourier Transform) The mapping F2π : L2
2π → `2 with

F2πf := c(f) := (cν(f))ν∈Z

is called Finite Fourier transform. The vector c(f) is called the finite spectrum of f . The
domain of F2π is also referred to as time domain, and its range as frequency domain.
The mapping F2π : L2

2π → `2 is linear, bounded and bijective, and its inverse, the
inverse finite Fourier transform, is the mapping F−1

2π : `2 → L2
2π with(

F−1
2π c

)
(x) :=

∑
ν∈Z

cνe
iνx ∀x ∈ [0, 2π).

Similar to the DFT, the finite Fourier transform has many useful properties.

Theorem 1.12 Let f, g ∈ L1
2π, α, β ∈ R, η ∈ Z and x0 ∈ [0, 2π). Then the following

statements are true.

(i) c(αf + βg) = αc(f) + βc(g),

(ii) c (f(· − x0)) =
(
e−iνx0cν(f)

)
ν∈Z,

(iii) (cν−η(f))ν∈Z =
(
cν
(
eiη·f

))
ν∈Z.

For a proof see [PPST19], Chapter 1.2, Lemma 1.6.

Theorem 1.13 Let f, g ∈ L2
2π. Then the following statements are true.

(i) f has a unique representation of the form

f(x) =
∑
ν∈Z

cν(f)eiνx,

(ii) (f, g) :=
1

2π

∫ 2π

0
f(x)g(x)dx =

∑
ν∈Z

cν(f)cν(g) =: (c(f), c(g)).

A proof of these claims can be found in [PPST19], Chapter 1.2, Theorem 1.3.
One can show that, under certain conditions, the Fourier series of a function f converges

in the L2
2π-norm (see [PPST19], Chapter 1.3), pointwise (see [PPST19], Chapter 1.4.1,

Theorem 1.34) or uniformly (see [PPST19], Chapter 1.4.2, Remark 1.38) to f .

Theorem 1.14 Let f : R→ C be 2π-periodic.

(i) If f ∈ L2
2π, then its Fourier series converges to f w.r.t. the L2

2π-norm, i.e.,

lim
n→∞

‖f − Snf‖2 = 0,
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1.2 Finite Fourier Transform

where

(Snf)(x) :=
n∑

ν=−n
cν(f)eiνx ∀x ∈ [0, 2π).

(ii) If f is piecewise differentiable, then for every x0 ∈ R the Fourier series of f con-
verges as

lim
n→∞

(Snf) (x0) =
1

2
(f(x0 + 0) + f(x0 − 0)) .

(iii) If f ∈ C1
2π, then its Fourier series converges uniformly to f .

Theorems 1.13 and 1.14 enable us to identify f with its Fourier series. For the remain-
der of this thesis we consider functions that only have finitely many significantly large
Fourier coefficients, i.e., that satisfy

|cν(f)| < ε ∀ ν /∈
{
−
⌈
N

2

⌉
+ 1, . . . ,

⌊
N

2

⌋}
for some threshold value ε > 0 and large N ∈ N. Then we obtain that

f(x) ≈
bN2 c∑

ν=−dN2 e+1

cν(f)eiνx ∀x ∈ [0, 2π).

1.2.1 Connection between Finite and Centered Discrete Fourier
Transform

For bandlimited 2π-periodic functions the finite Fourier transform and the CDFT are
closely related. Let us first formally define the notion of bandlimited functions.

Definition 1.15 (Bandlimited Function) A function f ∈ L2
2π is called bandlimited

on
{
−
⌈
N
2

⌉
+ 1, . . . ,

⌊
N
2

⌋}
for some N ∈ N if

|cν(f)| = 0 ∀ ν /∈
{
−
⌈
N

2

⌉
+ 1, . . . ,

⌊
N

2

⌋}
.

The natural number N is called the bandwidth of N .

Let us now consider a function f ∈ L2
2π with bandwidth N , i.e.,

f(x) =

bN2 c∑
ν=−dN2 e+1

cν(f)eiνx ∀x ∈ [0, 2π). (1.8)

Note that a function f as in (1.8) is a trigonometric polynomial, see, e.g., [PPST19],
Section 1.2, and as such contained in C2π. We would like to obtain a connection between
the finite spectrum c(f) of f and the CDFT. As the input argument of the CDFT has
to be a vector rather than a function, we need to discretize f by constructing a suitable
vector of evaluations of f . Since f is bandlimited with bandwidth N , its finite spectrum
is determined by N Fourier coefficients. Because of the linearity of the DFT and the
CDFT, it is natural to evaluate f at N equidistant points.
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1 Fourier Transform

We define the following vector of N equidistant samples of f on [0, 2π),

aN :=

(
f

(
2πj

N

))N−1

j=0

∈ CN .

If we now apply the CDFT to aN , we obtain for any η ∈
{
−
⌈
N
2

⌉
+ 1, . . . ,

⌊
N
2

⌋}
that

âNη =
1

N

N−1∑
j=0

ωN
ηjf

(
2πj

N

)

=
1

N

N−1∑
j=0

e
−2πijη
N

bN2 c∑
ν=−dN2 e+1

cν(f)e
2πijν
N

=

bN2 c∑
ν=−dN2 e+1

cν(f)
1

N

N−1∑
j=0

ωN
j(η−ν)

︸ ︷︷ ︸
=

1 if ν = η,

0 if ν 6= η.

= cη(f). (1.9)

Consequently, by calculating the CDFT of the vector aN ∈ CN of N equidistant samples
of f , we obtain a vector that contains precisely the N Fourier coefficients cν(f) of f
for ν ∈

{
−
⌈
N
2

⌉
+ 1, . . . ,

⌊
N
2

⌋}
. This vector is just a restriction of the finite spectrum

c(f) ∈ CZ of f to the frequencies contained in
{
−
⌈
N
2

⌉
+ 1, . . . ,

⌊
N
2

⌋}
,

âN = (cν(f))ν∈{−dN2 e+1,...,bN2 c} ∈ CN .

This means that we can compute the finite spectrum of a bandlimited function, which by
(1.8) and Theorem 1.12 (i) completely defines f , if we calculate the CDFT of the vector
aN of N equidistant samples of f . Thus, we can recover f from N discrete, equidistant
samples via the FFT in O(N logN) time.
For functions that are only approximately bandlimited, i.e.,

|cν(f)| < ε ∀ ν /∈
{
−
⌈
N

2

⌉
+ 1, . . . ,

⌊
N

2

⌋}
for some threshold value ε > 0 and large bandwidth N ∈ N, with

f(x) ≈
bN2 c∑

ν=−dN2 e+1

cν(f)eiνx ∀x ∈ [0, 2π),

the FFT of aN provides a good approximation of the function.

Remark 1.16 If we apply the CDFT to a vector of equidistant samples of f of length
s < N , i.e., to

as :=

(
f

(
2πj

s

))s−1

j=0

∈ Cs,
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1.2 Finite Fourier Transform

we find that

âsη =
1

s

s−1∑
j=0

e
−2πijη

s

bN2 c∑
ν=−dN2 e+1

cνe
2πijν
s

=
1

s

bN2 c∑
ν=−dN2 e+1

cν

s−1∑
j=0

ωs
j(η−ν)

=

bN2 c∑
ν=−dN2 e+1

ν≡η mod s

cν

for all η ∈
{
−
⌈
s
2

⌉
+ 1, . . . ,

⌊
s
2

⌋}
. ♦

Since the O(N logN) runtime of the FFT is, as noted in Section 1.1.1, optimal for
arbitrary N -length vectors, we can only hope to improve the runtime of fast Fourier
algorithms for 2π-periodic functions if their Fourier coefficients satisfy additional a priori
known conditions. The by far most interesting case is the one of functions with sparse
frequency support, meaning that most of the corresponding Fourier coefficients are in-
significantly small and that only few of them actually contribute to the Fourier series of
the function. We will investigate different types of sparsity in Chapters 2 and 3.
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2 Sparse FFT for 2π-Periodic Functions
with Short Support

Sparse Fourier transforms have many applications in signal processing, for example
analog-to-digital conversion, see, e.g., [LKM+06,YRR+12], GPS signal acquisition, see,
e.g., [HAKI12], and wideband communication or spectrum sensing, see, e.g., [HSA+14,
YG12]. Thus, in the first part of this thesis we are interested in deterministically re-
covering 2π-periodic functions f from samples. By Theorem 1.14 it suffices to know the
significantly large Fourier coefficients and the frequencies corresponding to them in order
to obtain a good approximation of f . We can only hope to do this in a more efficient way
than by directly applying the CDFT to the vector of N equidistant samples of f as in
Section 1.2.1 if the number of Fourier coefficients we need to recover is small compared
to the assumed bandwidth N of f .
Most of the existing sparse Fourier transform methods do not assume any further

structure of the sparsity. The first sparse methods which achieved runtimes that are
sublinear in the bandwidth or vector length N were randomized algorithms. This means
that with a small, usually tunable probability the returned vector is not a good ap-
proximation of the correct solution. Such algorithms have runtimes of O

(
B logO(1)N

)
,

see, e.g., [AGS03, GMS05, GGI+02, Man92, HIKP12a, HIKP12c, IKP14, IGS07, CLW16,
CCW16,LWC13,MZIC18, SI13,CIK18]. More information and implementations can be
found in a survey about randomized sparse FFT algorithms, see [GIIS14].
There also exist deterministic sparse Fourier algorithms where the probability of failure

is zero. These methods include techniques arising from modifications of Prony’s method
with a runtime of O

(
B3
)
, see, e.g., [HKPV13, PT14, PTV16]. As many Prony-based

techniques suffer from numerical instabilities for noisy input data, they cannot be ap-
plied to all problems. Other deterministic method utilize arithmetic progressions or the
Chinese Remainder Theorem, see, e.g., [Aka10,Aka14, Iwe10, Iwe13], or other properties
of the DFT, see, e.g., [Mor16,PWCW18]. All of these non-Prony-based methods have in
common that their runtime is O

(
B2 logO(1)N

)
. Thus, they are sublinear in the vector

length or bandwidth N , but quadratic in the sparsity B. For general B-sparsity it seems
to be extremely difficult to reduce the quadratic dependence of the runtime on B, see,
e.g., [BDF+11,CI16,FR13].
However, if there is some additional a priori information about the sparsity struc-

ture, runtimes scaling subquadratically in the sparsity can indeed be achieved, see,
e.g., [PW16a,PW17a] with runtimes of O(B logN) and O

(
B logB log N

B

)
. Consequently,

we will focus on two types of structured sparsity in the first part of this thesis. To
be more precise, we will always assume that the frequencies associated with signifi-
cantly large Fourier coefficients are contained in a small number, n, of support sets
S1, . . . , Sn (

{
−
⌈
N
2

⌉
+ 1, . . . ,

⌊
N
2

⌋}
, and that each of the unknown sets Sj has a “sim-

ple” structure.
In this chapter we will investigate the special case that there is only one such set S
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2 Sparse FFT for 2π-Periodic Functions with Short Support

and that S is an interval in Z, i.e., that n = 1 and

S = {ω1, ω1 + 1, . . . , ω1 +B − 1}

for some starting frequency ω1 ∈
{
−
⌈
N
2

⌉
+ 1, . . . ,

⌊
N
2

⌋
−B + 1

}
. In Chapter 3 we will

extend our methods for deterministically recovering 2π-periodic functions to the case of
frequency supports consisting of several sets with more complex structures.
In the vector setting the special case of n = 1 and S being an interval corresponds

to the case that the vector we aim to recover has a short support. This is precisely the
sparsity assumption of the deterministic sparse FFT algorithms [PW16a, PW17a]. See
Section 5.3 for a more detailed explanation of these two methods.
Sections 2.1 to 2.3 in this chapter are based on my paper [Bit17c] and are in part iden-

tical with the representations therein. Section 2.4 presents completely new, previously
unpublished results that I developed on my own.

2.1 Sparsity and Short Support

Throughout the next two chapters we will always consider a 2π-periodic function f ∈ C2π

with finite spectrum c(f) ∈ CZ. We will assume that f has approximately a large band-
width N ∈ N. This means that the Fourier coefficients corresponding to the frequencies
that are not contained in

{
−
⌈
N
2

⌉
+ 1, . . . ,

⌊
N
2

⌋}
have an absolute value which is so small

that it can be disregarded. Hence, f is of the form

f(x) ≈
bN2 c∑

ω∈−dN2 e+1

cω(f)eiωx.

As in practical applications the given data is usually noisy, we will assume that the
function f is perturbed by a 2π-periodic function η ∈ C2π with c(η) ∈ `1 satisfying
‖c(η)‖∞ ≤ ε for some suitably chosen noise threshold ε > 0. Since we aim to recover
f from finitely many samples of noisy data, our main object of interest for now are the
Fourier coefficients of f + η.
Using a threshold parameter ε > 0, we can now formally define the notion of signifi-

cantly large Fourier coefficients.

Definition 2.1 Let f ∈ C2π, let ε > 0 be a suitably chosen noise threshold and ω ∈ Z.
A Fourier coefficient cω(f) ∈ C is called significantly large if |cω(f)| > ε. A frequency ω
is called energetic if its corresponding Fourier coefficient cω(f) is significantly large.

As already mentioned above, due to the fact that the runtime of the FFT is opti-
mal for arbitrary N -length input vectors, we can only expect to improve its runtime of
O(N logN) if it is known a priori that many of the Fourier coefficients are insignificantly
small. This motivates the following formal definition of the concept of sparsity.

Definition 2.2 (Sparsity) Let f ∈ C2π and let ε > 0 be a suitably chosen noise
threshold. Then f is called B-sparse if it has only B energetic frequencies.

In this chapter we are interested in functions whose energetic frequencies are contained
in a short interval in Z.
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2.2 Methodical Background

Definition 2.3 (Short Support) Let f ∈ C2π and let ε > 0 be a suitably chosen noise
threshold. If f is B-sparse such that all energetic frequencies are contained in a support
interval

S := {ω1, ω1 + 1, . . . , ω1 +B − 1} (
{
−
⌈
N

2

⌉
+ 1, . . . ,

⌊
N

2

⌋}
of length B, we say that f has a short (frequency) support of length B.
A short support is, depending on the context, also called block or one-block support.

We will employ a related concept for vectors in Chapters 5 and 6.

Remark 2.4 Since we denote the energetic frequencies by ω1, . . . , ωB in order to use
the same notation as in [Iwe10, Bit17c, BZI19], we need to be able to distinguish the
kth energetic frequency from the kth primitive root of unity. Consequently, in the few
equations where we require to explicitly write down the Nth primitive root of unity in
Chapter 2, we will denote it by ωN to avoid ambiguities. This will not be necessary in
any other chapter of this thesis. ♦

In this and the following chapter, we will always consider the samples to be taken
from the perturbed function f + η, where η ∈ C2π satisfies c(η) ∈ `1 and ‖c(η)‖∞ ≤ ε.
Consequently, we are recovering a function which might be non-sparse in Fourier domain
and could have an unstructured frequency support. However, if, for example, the nonzero
Fourier coefficients of f all satisfy |cω(f)| > 2ε, then the structured frequency sparsity
of f guarantees that

{ω : |cω(f + η)| > ε} ∩Ropt
B (f + η) ⊆ S,

where Ropt
B (f + η) (

{
−
⌈
N
2

⌉
+ 1, . . . ,

⌊
N
2

⌋}
contains the indices of B entries of c(f + η)

with largest magnitudes.

2.2 Methodical Background

Our aim in this chapter is to develop a fast Fourier algorithm that deterministically
reconstructs a function f ∈ C2π from noisy samples if it is known that f has a short
frequency support. In [Iwe10, Iwe13] a deterministic algorithm for the reconstruction of
general unstructured B-sparse functions from samples was introduced, achieving a run-
time that is sublinear in the assumed bandwidth N of f . Using our support set notation,
general B-sparsity means that there are B support sets S1, . . . , SB, each containing only
one frequency,

Sj = {ωj} (
{
−
⌈
N

2

⌉
+ 1, . . . ,

⌊
N

2

⌋}
.

Employing the stronger condition of a short frequency support, we will simplify the meth-
ods from [Iwe10, Iwe13] in two ways. Thus, we obtain two algorithms using significantly
less samples which also have a much shorter runtime.
In order to be able to adapt the procedures from [Iwe10, Iwe13] to the setting of a

short frequency support, we will first sketch the ideas of Algorithm 2 in [Iwe10] that are
required for reconstructing a function f ∈ C2π with short frequency support of length
at most B. Note that Algorithm 2 in [Iwe10] and Algorithm 3 in [Iwe13] are essentially
the same method and are just written down using different notation. For now we will
assume that all samples are known exactly, i.e., that η ≡ 0.
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2 Sparse FFT for 2π-Periodic Functions with Short Support

2.2.1 Reconstruction Procedure for One Frequency

We begin by supposing that the function f possesses only a single energetic frequency
ω ∈

{
−
⌈
N
2

⌉
+ 1, . . . ,

⌊
N
2

⌋}
with corresponding Fourier coefficient cω := cω(f) ∈ C \ {0}.

We will later extend the reconstruction procedure to several energetic frequencies. Then
f is of the form

f(x) = cω · eiωx.

Thus, f is completely determined if we can recover ω and cω. We will do this utilizing
vectors aM of equidistant samples of f , where we keep the slightly unintuitive notation
of aM used in [Iwe10, Iwe13,BZI19,Bit17c].

Definition 2.5 (Vector of Equidistant Samples) Let f ∈ C2π and M ∈ N. By
aM ∈ CM we denote the vector of M equidistant samples of f , i.e.,

aM :=
(
aMj
)M−1

j=0
:=

(
f

(
2πj

M

))M−1

j=0

.

Recall that we learned in Section 1.2.1 that we can recover f by applying the FFT
to the vector aN of N equidistant samples of f in O(N logN) time. The central idea
of Algorithm 2 in [Iwe10] is to obtain a method with shorter runtime than the FFT by
applying the CDFT to several vectors of equidistant samples with lengths that are small
compared to the bandwidth N . We choose the CDFT here so that we can consider func-
tions with energetic frequencies contained in the interval

{
−
⌈
N
2

⌉
+ 1, . . . ,

⌊
N
2

⌋}
centered

around 0. In order for this idea to work, the vector lengths have to be chosen in a very
specific way, which we will discuss later on. First, we will investigate what happens if we
apply the CDFT to the vector aM of M � N equidistant samples of f . We find that

âMν =
1

M

M−1∑
j=0

e
−2πijν
M · cωe

2πijω
M

=
cω
M

M−1∑
j=0

ωM
j(ν−ω)

=

{
cω if ν ≡ ω mod M,

0 otherwise,
∀ ν ∈

{
−
⌈
M

2

⌉
+ 1, . . . ,

⌊
M

2

⌋}
. (2.1)

Hence, âM has exactly one nonzero entry, namely the Fourier coefficient corresponding
to ω, and its index is the residue of ω modulo M ,

âMω mod M = cω =
1

2π

2π∫
0

cωe
iωx · e−iωxdx.

Consequently, (2.1) gives us the value of the Fourier coefficient cω and the residue of
the frequency ω modulo M while actually knowing neither cω nor ω. If we compute the
CDFTs of several such vectors with different lengths, we obtain a system of simultaneous
congruencies. Under certain conditions on the occurring moduli, i.e., the lengths of the
vectors of equidistant samples, such a system can be solved via the well-known Chinese
Remainder Theorem. For a proof and more details, see [Lan05], Chapter I, §4.
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2.2 Methodical Background

Theorem 2.6 (Chinese Remainder Theorem (CRT)) Let M1, . . . ,ML be pairwise
relatively prime integers and N ≤

∏L
l=1Ml. Further, let rl ∈

{
−
⌈
Ml
2

⌉
+ 1, . . . ,

⌊
Ml
2

⌋}
for all l ∈ {1, . . . , L}. Then there exists a unique solution modulo N of the system of
simultaneous congruencies

x ≡ r1 mod M1,

...

x ≡ rL mod ML.

The unique solution of such a system can be computed using the following algorithm
adapted from the implementation ChineseRem in GAP, an open source system for com-
putational discrete algebra (see [The18a]).

Algorithm 1 CRT Reconstruction Algorithm
Input: Residues r1, . . . , rL modulo pairwise relatively prime integers M1, . . . ,ML.
Output: Integer ν ∈ {0, . . . ,M − 1} such that ν ≡ rl mod Ml ∀ l ∈ {1, . . . , L} and

M ≥
∏L
l=1Ml.

1: Set l = 1, ν = r1 and M = M1.
2: while l < L do
3: Set l = l + 1.
4: (g, u, v)← extended_gcd(M,Ml)
5: if g 6= 1 and rl − ν mod g 6= 0 then
6: Error . The residues have to be equal modulo g.
7: end if
8: ν = M

((
rl−ν
g · u

)
mod Ml

)
+ ν

9: M = Ml
g ·M

10: end while
11: ν = ν mod M
Output: ν, M .

The function extended_gcd in line 4 of Algorithm 1 computes the greatest common
divisor g of two integers a and b using the extended Euclidean algorithm, as well as two
integers u and v satisfying Bézout’s identity, see [Bos06], Chapter 2.4, Theorem 15.

Theorem 2.7 (Euclidean Algorithm) Let R be a Euclidean ring. For two elements
a, b ∈ R \ {0} consider the sequence z0, z1, . . . ∈ R which is given inductively by

z0 = a,

z1 = b,

zk+1 =

{
zk−1 mod zk if zk 6= 0,

0 otherwise.

Then there exists a smallest index n ∈ N such that zn+1 = 0. It satisfies zn = gcd(a, b).
Furthermore, there exists an explicit representation of the greatest common divisor of a
and b in the form

g = gcd(a, b) = ua+ vb

for some u, v ∈ R, which is known as Bézout’s identity.
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2 Sparse FFT for 2π-Periodic Functions with Short Support

It can be shown that for a > b the extended Euclidean algorithm has a runtime of
O (log b); see, e.g., [CLRS09], Chapter 31.2. Thus, Algorithm 1 requires O

(∑L
l=1 logMl

)
arithmetical operations, as we will show in the proof of Theorem 2.22.
If âM is known for sufficiently many pairwise relatively prime moduli Ml � N ,

l ∈ {1, . . . , L}, with N ≤
∏L
l=1Ml, the CRT implies that we can uniquely recover the

energetic frequency ω. The corresponding Fourier coefficient cω is already given by (2.1),

âMlω mod Ml
= cω ∀ l ∈ {1, . . . , L}.

This means that, instead of computing the CDFT of length N of âN , it suffices to
calculate L CDFTs of length M1, . . . ,ML � N and reconstruct ω from its residues
modulo M1, . . . ,ML.
Let us illustrate the reconstruction procedure from Algorithm 1 by an example.

Example 2.8 Let f ∈ C2π, f(x) = ei·210x with bandwidth N = 1,000. According to the
CRT, the single energetic frequency ω is uniquely determined modulo N by its residues
moduloM1 = 10,M2 = 11 andM3 = 13, asM1,M2 andM3 are pairwise relatively prime
and their product is 1,430. Locating the nonzero entry of â10, â11 and â13, we find

â10
0 = 1 ⇒ ω ≡ 0 mod 10 ⇒ r1 := 0,

â11
1 = 1 ⇒ ω ≡ 1 mod 11 ⇒ r2 := 1 and

â13
2 = 1 ⇒ ω ≡ 2 mod 13 ⇒ r3 := 2.

Now we can recover ω from its residues r1, r2 and r3 using Algorithm 1. We begin by
setting M := M1 = 10 and ω := r1 = 0. Then, with

gcd(M,M2) = 1 = −1 · 10 + 1 · 11,

it follows that u = −1, and thus obtain

ω := M · (((r2 − ω) · u) mod M2) + ω

= 10 · (((1− 0) · (−1)) mod 11) + 0

= 10 · 10

= 100.

The frequency ω = 100 satisfies that ω ≡ 0 mod 10 and ω ≡ 1 mod 11. Now we update
M := M2 ·M = 110. Since

gcd(M,M3) = 1 = −2 · 110 + 17 · 13,

we have that u = −2, so we redefine

ω := 110 · (((2− 100) · (−2)) mod 13) + 100

= 110 · (196 mod 13) + 100

= 210.

Finally, we set M := M3 ·M = 1,430. As ω ∈
{
−
⌈
N
2

⌉
+ 1, . . . ,

⌊
N
2

⌋}
= {−499, . . . , 500},

the output of Algorithm 1 is ω = 210 and M = 1,430. The obtained frequency ω indeed
satisfies the required congruencies ω ≡ 0 mod 10, ω ≡ 1 mod 11 and ω ≡ 2 mod 13.
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2.2 Methodical Background

The Fourier coefficient cω is given by (2.1) as, e.g.,

cω = â10
0 = 1.

For the above computation three CDFTs of lengths 10, 11 and 13 were necessary; hence,
only 34 instead of N = 1,000 samples of f were used. Moreover, as we discussed in
Section 1.1.1, there exist fast algorithms for the DFT of vectors of arbitrary length,
and, by Remark 1.9, also for the CDFT, so the three CDFTs can be computed in
O
(∑3

l=1Ml logMl

)
time, instead of calculating one CDFT with complexity O(N logN).

We will show in the proof of Theorem 2.22 that the frequency reconstruction needs
O
(∑3

l=1 logMl

)
arithmetic operations, which is insignificant compared to the compu-

tational costs of the CDFTs. ♦

However, as soon as the function we aim to recover has more than one energetic fre-
quency, the residues of these frequencies can coincide modulo various integers. If we
choose the moduli Ml arbitrarily, it can happen that ω1 ≡ ω2 mod M1, so it is impossi-
ble to distinguish these two frequencies modulo M1. Furthermore, we cannot determine
the values of the Fourier coefficients from âM1 . This means that in the case of a B-sparse
function, we have to choose the moduliMl carefully in order to avoid ambiguities. With-
out a priori knowledge of the energetic frequencies, guaranteeing unique recoverability
requires a more involved reconstruction procedure.

2.2.2 Reconstruction Procedure for Several Frequencies

Let us now examine a 2π-periodic function f ∈ C2π with B distinct energetic frequencies
ω1, . . . , ωB ∈

{
−
⌈
N
2

⌉
+ 1, . . . ,

⌊
N
2

⌋}
and their Fourier coefficients cω1 , . . . , cωB ∈ C \ {0},

f(x) =
B∑
k=1

cωk · e
iωkx.

Note that for an arbitrary s ∈ N the CDFT of the vector as of s equidistant samples of
f given by Definition 2.5 satisfies

âsν =
1

s

s−1∑
j=0

e
−2πijν

s

B∑
k=1

cωke
2πijωk

s

=
1

s

B∑
k=1

cωk

s−1∑
j=0

ωs
j(ν−ωk)

=

B∑
k=1

ωk≡ν mod s

cωk (2.2)

for all ν ∈
{
−
⌈
s
2

⌉
+ 1, . . . ,

⌊
s
2

⌋}
, see also Remark 1.16. Since the B energetic frequencies

are distinct, there exists an s ∈ N such that their residues modulo s do not coincide.
This motivated the use of the notion of separation in [Iwe10].
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2 Sparse FFT for 2π-Periodic Functions with Short Support

Definition 2.9 (Separation) Let s,B ∈ N and ω1, . . . , ωB ∈ Z be distinct. Then s
separates the integers ω1, . . . , ωB if

ωk mod s 6= ωl mod s ∀ k, l ∈ {1, . . . , B}, k 6= l.

It is intuitively clear that we need the chosen moduli Ml to separate all energetic
frequencies. We assume for the moment that such a separating s is known. If we apply
the CDFT to as, (2.2) yields that

âsν =


cω1 if ν ≡ ω1 mod s,
...

...

cωB if ν ≡ ωB mod s,

0 otherwise,

∀ ν ∈
{
−
⌈s

2

⌉
+ 1, . . . ,

⌊s
2

⌋}
. (2.3)

Hence, âs has exactly B nonzero entries and their indices are the residues of the energetic
frequencies ωk modulo s, as the frequencies’ residues cannot coincide due to the separation
property of s. However, this is still not sufficient for unique recovery of the energetic
frequencies and their corresponding Fourier coefficients. If the Fourier coefficients of
some of the frequencies are equal, (2.3) yields that it is impossible to directly match
their residues modulo any separating integer uniquely to the frequencies.
In order to be able to apply the CRT reconstruction from Algorithm 1 for finding

ω1, . . . , ωB, we have to choose the moduli Ml in a way that allows us to determine
for each frequency the residue modulo Ml just from entries of the vector âMl for all
l ∈ {1, . . . , L}. We define the required moduli using that for all p ∈ N and a, b ∈ Z the
following holds,

(a ≡ b mod ps ⇒ a ≡ b mod s)

⇔ (a 6≡ b mod ps ⇐ a 6≡ b mod s).
(2.4)

Consequently, if s separates the frequencies ω1, . . . , ωB, so does ps for all p ∈ N, which
means that we can generate infinitely many separating natural numbers if one such
number is known. Then, as in (2.3), we obtain that the residues of all energetic frequencies
modulo ps can be obtained from âps. However, for several distinct values of p, the
numbers ps are of course not pairwise relatively prime anymore, so we cannot apply
Algorithm 1 directly to the residues modulo ps. Instead, we will use the residues modulo
the p, choosing finitely many such that the prerequisites of the CRT are satisfied for them
and s. If we tried to obtain the residues modulo p directly from âp, we would still have
the problem of uniquely matching the energetic frequencies to the residues. Computing
the residues modulo p from âps instead solves this problem. Hence, the moduli we use
for the CRT reconstruction are not the same as the lengths of the vectors of equidistant
samples of f .
The residue of any integer a modulo p can be computed from its residue modulo ps by

a mod p = (a mod ps) mod p ∀ a ∈ Z. (2.5)

The simplest way to ensure the prerequisites of the CRT is to take the L smallest prime
numbers t1, . . . , tL that are relatively prime to s such that

s ·
L−1∏
l=1

tl < N ≤ s ·
L∏
l=1

tl, gcd(tl, s) = 1 ∀ l ∈ {1, . . . , L}.
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2.2 Methodical Background

We show now how to correctly find the residues of the unknown frequencies modulo all
the tls. Let us fix an arbitrary residue r0 modulo s such that âsr0 6= 0. By ω we denote
its still unknown corresponding energetic frequency. In order to simplify the notation,
we just consider an arbitrary prime p, but the same procedure works for all primes tl.
How can we find the residue of ω modulo p? From (2.3) we know that

âpsω mod ps = cω = âsω mod s,

so the residue of ω modulo ps can be found by comparing it to its residue modulo s.
Since ω ≡ r0 mod s, it is of the form

ω = r0 + a · s

for an a ∈ Z, and its residue modulo ps satisfies

ω mod ps = (r0 + as) mod ps = r0 + (a mod p) · s =: r0 + bmin · s (2.6)

for bmin := a mod p ∈
{
−
⌈p

2

⌉
+ 1, . . . ,

⌊p
2

⌋}
. We do not know a yet, but by (2.6) we

only have to check p possible values in order to find the correct residue of the frequency
ω modulo ps, instead of checking ps possibilities. Recall that due to the separation
property of s we have that

r0 = ω mod s 6= ωk mod s ∀ k ∈ {1, . . . , B} with ω 6= ωk.

Then
(r0 + bs) mod s 6= ωk mod s ∀ k ∈ {1, . . . , B} with ω 6= ωk,

and therefore (2.4) yields that

(r0 + bs) mod ps 6= ωk mod ps ∀ k ∈ {1, . . . , B} with ω 6= ωk (2.7)

for all b ∈
{
−
⌈p

2

⌉
+ 1, . . . ,

⌊p
2

⌋}
. Consequently, none of the p possible values r0 + bs for

the residue of ω modulo ps from (2.6) can coincide with the residue of another energetic
frequency ωk 6= ω modulo ps. Therefore, we cannot match a wrong energetic residue to
ω if we restrict ourselves to the p possible residues from (2.6). Exactly one of the p values
âpsr0+bs, where b ∈

{
−
⌈p

2

⌉
+ 1, . . . ,

⌊p
2

⌋}
, is not zero but equal to âsr0 = cω. Hence, we

can determine ω mod ps by comparing âsr0 and âpsr0+bs for all possible values of b, i.e.,

ω mod ps = r0 + bmin · s

⇔
∣∣∣âsr0 − âpsr0+bmin·s

∣∣∣ = min
b∈{−d p2e+1,...,b p2c}

∣∣∣âsr0 − âpsr0+bs

∣∣∣ . (2.8)

Having found the residue of ω modulo ps from (2.8), its residue modulo p can be calcu-
lated with the help of (2.5) via

ω mod p = (ω mod ps) mod p. (2.9)

Recall that this procedure can be used to determine the residues of ω modulo tl for all
l ∈ {1, . . . , L}. After computing the residues modulo all tl, we can uniquely reconstruct
ω from its residues modulo s, t1, . . . , tL using Algorithm 1. Since s separates all occurring
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2 Sparse FFT for 2π-Periodic Functions with Short Support

frequencies, the Fourier coefficient cω is given by (2.3) as

cω = âsω mod s. (2.10)

The remaining frequencies and their coefficients can be found analogously. Due to the
separation property of s, all residues are matched to the right frequency and thus all
energetic frequencies and their corresponding Fourier coefficients are found correctly.
We also demonstrate the reconstruction procedure for 2π-periodic functions with sev-

eral energetic frequencies by an example.

Example 2.10 Let f ∈ C2π, f(x) = e−i·105x−ei·42x+ei·210x with bandwidth N = 1,000
and assume that it is known a priori that s = 10 separates the frequencies ω1 = −105,
ω2 = 42 and ω3 = 210. Indeed, we have that

ω1 ≡ 5 mod s, ω2 ≡ 2 mod s and ω3 ≡ 0 mod s.

Computing the CDFT of the vector a10 of 10 equidistant samples of f , we obtain

â10 = (0, 0, 0, 0, 1, 0,−1, 0, 0, 1)T .

This vector already shows that we cannot uniquely match the frequencies ω1 and ω3 to
their residues modulo 10, since â10

0 = â10
5 = 1 = cω1 = cω3 . Instead, we choose an

arbitrary residue r0 modulo 10 such that â10
r0 6= 0, e.g., r0 = 5 with â10

r0 = 1. Now
we reconstruct the frequency corresponding to this residue modulo s. In practice the
frequencies are not known a priori, so let us just denote the frequency corresponding to
the residue r0 = 5 modulo s by ω, as we cannot tell yet that it is ω1.
In order to ensure the prerequisites of the CRT, we set t1 := 3, t2 := 7 and t3 := 11,

since 3, 7, 11 are relatively prime to s = 10, and 10 · 3 · 7 = 210 and 10 · 3 · 7 · 11 = 2,310.
It follows from (2.6) that the tl possible residues of ω modulo 10 · tl satisfy

ω mod (10 · tl) ∈
{
r0 + b · 10 : b ∈

{
−
⌈
tl
2

⌉
+ 1, . . . ,

⌊
tl
2

⌋}}
for l ∈ {1, 2, 3}. For t1 = 3 this yields

ω mod 30 ∈ {−5, 5, 15}.

Since
â30−5 = â30

5 = 0 and â30
15 = 1,

using (2.8) we find that bmin = 1, so we have

ω mod 30 = r0 + bmin · s = 15.

By (2.9) we obtain for the residue of ω modulo 3 that

ω mod 3 = (ω mod 30) mod 3 = 0.

Analogously, we find for t2 = 7 that

ω mod 70 ∈ {−25,−15,−5, 5, 15, 25, 35}.
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2.2 Methodical Background

It follows from
â70−25 = · · · = â70

25 = 0 and â70
35 = 1

that bmin = 3, so
ω mod 70 = r0 + bmin · s = 35.

Consequently, we have that

ω mod 7 = (ω mod 70) mod 7 = 0.

For t3 = 11 the residue of ω modulo 110 has to satisfy that

ω mod 110 ∈ {−45,−35,−25,−15,−5, 5, 15, 25, 35, 45, 55}.

Since

â110−45 = · · · = â110−5 = â110
15 = · · · = â110

55 = 0 and â110
5 = 1,

we find that bmin = 0, and thus

ω mod 110 = r0 + bmin · s = 5.

Hence, we obtain for the residue of ω modulo 11 that

ω mod 11 = (ω mod 110) mod 11 = 5.

Now we can reconstruct the frequency ω from its residues ω ≡ 5 mod 10, ω ≡ 0 mod 3,
ω ≡ 0 mod 7 and ω ≡ 5 mod 11 via the CRT procedure from Algorithm 1, which yields

ω = −105 ∈ {−499, . . . , 500}.

By (2.3), the corresponding Fourier coefficient is given as

cω = â10−105 mod 10 = â10
5 = 1.

Thus, we have correctly recovered the frequency ω1 = −105 and its Fourier coefficient
cω1 = 1, even though ω1 is not the only frequency with Fourier coefficient 1. The two
remaining frequencies ω2 and ω3 can be found analogously, starting with the other two
significantly large entries of â10. As a last step let us compare the residues of the three
energetic frequencies modulo stl. We have that

ω2 ≡ 12 mod 30 and ω3 ≡ 0 mod 30,

ω2 ≡ −28 mod 70 and ω3 ≡ 0 mod 70,

ω2 ≡ 42 mod 110 and ω3 ≡ −10 mod 110.

Since we know from (2.6) that

ω1 mod 30 ∈ {−5, 5, 10},
ω1 mod 70 ∈ {−25,−15, . . . , 35},
ω1 mod 110 ∈ {−45,−35, . . . , 55},

we can discern that for a fixed l ∈ {1, 2, 3} indeed none of the tl possible values for the
residue of ω1 modulo stl collides with the residue of another energetic frequency modulo
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stl, thus illustrating what we already proved in (2.7).
In order to recover the function f with this method, we essentially calculated four

CDFTs of lengths 10, 30, 70 and 110, which together require 220 samples of f instead
of the N = 1,000 samples needed by the single CDFT of length N for finding the
Fourier coefficients from âN as in Section 1.2.1. The shorter CDFTs can be computed in
O
(∑3

l=0 stl log(stl)
)
time instead of O(N logN) time for the N -length CDFT. As we

remarked in Example 2.8, the effort of the frequency reconstruction via Algorithm 1 is
insignificant compared to the computational effort of the CDFTs. ♦

So far, we just assumed that a natural number s separating all energetic frequencies is
known. However, for arbitrary at most B-sparse functions with unknown frequencies, as
in [Iwe10,Iwe13], guaranteeing that any s separates all energetic frequencies is impossible.
With some combinatorial constructions it could be shown in [Iwe10] that for a suitable K̃
depending on B and N at least more than half of K̃ integers s̃1, . . . , s̃K̃ , satisfying certain
additional properties, separate all energetic frequencies. Applying median techniques
then yields the correct frequencies and coefficient estimates. In Chapter 3.2, we will go
into more detail about these aspects of the algorithm. For now, we just note that, for
a function with B-sparse frequency support and bandwidth N , Algorithm 2 in [Iwe10]
uses the L̃ smallest primes t̃1, . . . , t̃L̃ such that

L̃−1∏
l=1

t̃l <
N

B
≤

L̃∏
l=1

t̃l.

Then s̃1 is chosen as the smallest prime that is greater than both B and t̃L̃. Setting
K̃ := 8B

⌊
logs̃1 N

⌋
+ 1, one additionally chooses s̃2, . . . , s̃K̃ as the K̃ − 1 smallest primes

that are greater than s̃1. Then the algorithm requires the sampling vectors as̃k t̃l and
computes the K̃ ·

(
L̃+ 1

)
CDFTs âs̃k t̃l for all k ∈

{
1, . . . , K̃

}
and l ∈

{
0, . . . , L̃

}
.

Employing some combinatorial constructions, the algorithm returns the B most en-
ergetic frequencies and accurate estimates for their corresponding Fourier coefficients if
the input data is noisy. Note that the sparsity of the function we aim to recover does
not have to be known a priori; a good upper bound B on it suffices. Both Algorithm 2
in [Iwe10] and Algorithm 3 in [Iwe13] have a runtime of

O

(
B2

log2B
· log4N log2(B logN)

log log N
B

)

and require

O

(
B2

log2B
· log4N log(B logN)

log log N
B

)
samples.

Remark 2.11 Note that, as the distance between increasing prime numbers is often
rather large, it might be possible to omit some of the smaller prime numbers t̃l while still
satisfying that their product is greater than N

B . For example, if N = 1,000 and B = 3,
choosing the t̃l as above would yield t̃1 = 2, t̃2 = 3, t̃3 = 5, t̃4 = 7 and t̃5 = 11, since

2 · 3 · 5 · 7 = 210 <
N

B
≤ 2 · 3 · 5 · 7 · 11 = 2,310.
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Then one could actually omit t̃1 = 2 and thus work with fewer vectors, since

3 · 5 · 7 = 105 <
N

B
≤ 3 · 5 · 7 · 11 = 1,155,

so t̃2 = 3, t̃3 = 5, t̃4 = 7 and t̃5 = 11 already satisfy the requirements of the CRT. This
does not affect the order of the theoretical runtime and sampling complexities, but in
practice it slightly improves the performance of the algorithm. Being closely related to
the frequency reconstruction approach sketched above, similar improvements are possible
for Algorithms 2, 3, 4, 5 and 6 in this thesis and could thus be incorporated into future
improved implementations. ♦

2.3 Sparse FFT for Functions with Short Frequency
Support I

Before investigating frequency supports with more complex structures in Chapter 3, we
will focus on functions with short frequency support for the remainder of this chapter,
which is based directly on [Bit17c] and is in parts identical with the representations
therein. In this case, the reconstruction approach from [Iwe10,Iwe13], which we sketched
in Section 2.2.2, can be simplified. We now consider functions f ∈ C2π of the form

f(x) =
B−1∑
k=0

cω1+k · ei(ω1+k)x,

such that all energetic frequencies are contained in the B-length support interval

S := {ω1, . . . , ω1 +B − 1} (
{
−
⌈
N

2

⌉
+ 1, . . . ,

⌊
N

2

⌋}
.

Consequently, B already separates the B consecutive energetic frequencies. In the proce-
dure outlined in Section 2.2.2 the moduli we used were a separating s and the L smallest
primes tl that do not divide B such that

N ≤ B ·
L∏
l=1

tl.

To simplify the estimation of the runtime and sample bounds, and to avoid collision with
the other moduli, we set s as the smallest power of 2 that is greater than B,

s := 2α, where α := blog2Bc+ 1.

Then t1, . . . , tL can be chosen as the L smallest odd primes satisfying

B ·
L−1∏
l=1

tl < N ≤ B ·
L∏
l=1

tl, (2.11)

and, for inductive purposes, we set t0 := 1. As s is greater than B, it still separates the
B energetic frequencies ω1, ω1 + 1, . . . , ω1 +B − 1. Furthermore, s is relatively prime to
all small odd primes t1, . . . , tL, so we can indeed uniquely recover the frequencies from
their residues modulo s, t1, . . . , tL with the help of Algorithm 1.
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Remark 2.12 Using the reconstruction procedure with s is just applying Algorithm 2 in
[Iwe10] to the first element of a B-majority selective collection of sets, S , whose elements
do not have to be primes (see [Iwe10], Section 3). The combinatorial considerations
necessary for the general case of B energetic frequencies are rendered redundant by
the fact that for functions with short frequency support of length B we always find an
s = 2α > B that separates all energetic frequencies, so, unlike in [Iwe10], we do not
require s to separate any B-element subset of

{
−
⌈
N
2

⌉
+ 1, . . . ,

⌊
N
2

⌋}
. ♦

Due to the block structure of the energetic frequencies, it suffices to perform the CRT
reconstruction procedure for a single energetic frequency ω̃ and find the remaining ones
by examining whether the absolute values of the Fourier coefficients corresponding to the
2B − 1 frequencies in {ω̃ −B + 1, ω̃ −B + 2, . . . , ω̃ +B − 1} are significantly large. All
of the at most B energetic frequencies have to be contained in this set, as the distance
of any energetic frequency ω to ω̃ can be at most B − 1. We can find such a frequency
ω̃ by reconstructing it via Algorithm 1 from the index of the largest magnitude entry
of âs and the corresponding residues modulo the smallest odd primes t1, . . . , tL, as the
indices of the significantly large entries of âs are precisely the residues of the energetic
frequencies modulo s.
The Fourier coefficients are then given without any further computation, since, by

(2.3), they are just the significantly large entries of âstl for any l. The 2B − 1 possibly
energetic, consecutive frequencies ω̃−B+ 1, . . . , ω̃+B− 1 cannot be distinct modulo s,
but they are separated by st1 = 3s. For exact data their Fourier coefficients are given by

cω = â3s
ω mod 3s

for all ω ∈ {ω̃ − B + 1, . . . , ω̃ + B − 1}. Note that it is not necessary here to know the
block length exactly; it suffices that an upper bound B on it is known. If B is not the
exact block length, some of the reconstructed Fourier coefficients will just be zero or, in
the case of noisy data, insignificantly small.

Remark 2.13 It was recently pointed out that, choosing s > B, one can even detect
the remaining at most B−1 energetic frequencies by looking at the nonzero entries of âs,
since one energetic frequency ω̃ is already known and f has a short frequency support
of length at most B. Then, using ω̃, the energetic frequencies can be uniquely found
from their residues modulo s. Consequently, the method presented hereafter can be
further improved. The orders of theoretical runtime and sampling complexities of both
approaches are not affected by this, as 2B = O(B). ♦

Before presenting the detailed algorithm, we illustrate the procedure sketched above
by an example.

Example 2.14 Let f ∈ C2π, f(x) = ei·210x − ei·211x + 2ei·212x − ei·213x − 2ei·214x with
bandwidth N = 1,000 and block length 5. Let us assume that we only know the upper
bound B = 6 on the true block length a priori. Then we set

s := 2blog2Bc+1 = 23 = 8.

Since B · 3 · 5 · 7 = 630 and B · 3 · 5 · 7 · 11 = 6,930, we set t1 := 3, t2 := 5, t3 := 7 and
t4 := 11. Computing the CDFT of â8, we find that

â8 = (−1,−2, 0, 0, 0, 1,−1, 2)T .
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We begin by recovering the frequency corresponding to the residue modulo s = 8 given
by the index of one of the largest magnitude entries of â8, i.e., to −2 or 4 modulo 8.
We choose the residue r0 := 4 mod 8 and denote the corresponding frequency by ω̃.
Applying the reconstruction procedure for several frequencies detailed in Section 2.2.2 to
a24,a40,a56 and a88, we obtain that

ω̃ ≡ 2 mod 3, ω̃ ≡ 2 mod 5, ω̃ ≡ 2 mod 7 and ω̃ ≡ 3 mod 11.

Then Algorithm 1 yields that ω̃ = 212. Since ω̃ is an arbitrary energetic frequency,
we now have to determine the remaining energetic frequencies by examining the Fourier
coefficients of the 2B − 1 = 11 frequencies contained in the set S = {207, 208, . . . , 217}.
Of course, these frequencies are not separated by s = 8 anymore; however, st1 = 24 does
separate them. It follows that

â24 = (0, 0, 0︸︷︷︸
=c207

, 0, 0, 1︸︷︷︸
=c210

,−1, 2,−1, −2︸︷︷︸
=c214

, 0, 0, 0︸︷︷︸
=c217

, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)T .

Thus, we find that there are 5 energetic frequencies, 210, 211, 212, 213 and 214, with
corresponding coefficients c210 = 1, c211 = −1, c212 = 2, c213 = −1 and c214 = −2, which
means that we have completely recovered the function f . This approach requires five
CDFTs of lengths 8, 24, 40, 56 and 88, with a total runtime of O

(∑4
l=0 stl log(stl)

)
and

a sampling complexity of 216, instead of a single N -length CDFT with a runtime of
O(N logN) and N = 1,000 samples.

♦

Remark 2.15 In Example 2.14, similar to the comment made in Remark 2.11, the
runtime of the procedure could be reduced by omitting one of the primes t1 = 3 or
t2 = 5, since the requirements of the CRT are then still satisfied. Furthermore, we
could actually have restricted our search of the remaining energetic frequencies to the
frequencies in S = {207, 208, . . . , 217} whose residues modulo 8 correspond to nonzero
entries of â8, as no other frequencies can have significantly large Fourier coefficients.
This would have decreased the runtime of the method slightly. However, not realizing
this was possible at that time, the implementation of this method used for the numerical
experiments in [Bit17c] and Section 2.5 does not incorporate these improvements. ♦

2.3.1 Algorithm for Functions with Short Frequency Support I

We summarize the procedure introduced above in Algorithm 2, which finds the energetic
frequencies and the Fourier coefficients of a function f ∈ C2π with bandwidth N and
short frequency support of length at most B if N and an upper bound B on the support
length are known a priori. We will investigate its performance with respect to runtime
and noisy input data in numerical experiments in Section 2.5, where we will also compare
Algorithm 2 to other methods.
As in Section 2.2.1, the function extended_gcd in line 16 of Algorithm 2 finds a

representation of the greatest common divisor g of two integers a and b of the form

g = gcd(a, b) = ua+ vb,

where u, v ∈ Z. By definition of s, t1, . . . , tL, we always have g = 1 in line 16.
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Algorithm 2 Algorithm for Functions with Short Frequency Support I (Algorithm 1
in [Bit17c])
Input: f ∈ C2π, N , B, where f has bandwidth N and a short frequency support of

length at most B < N , and noise threshold ε > 0.
Output: The set R of at most B energetic frequencies of f and the vector x of estimates

for their Fourier coefficients.
1: Initialize R← ∅.
2: Find L and the smallest odd primes t1, . . . , tL s.t. B ·

∏L−1
l=1 tl < N ≤ B ·

∏L
l=1 tl.

3: Set s := 2α, where α := blog2Bc+ 1.
4: for l from 0 to L do
5: astl ←

(
f
(

2πj
stl

))stl−1

j=0

6: âstl ← CDFT
[
astl
]

7: end for
Identification of one of the Energetic Frequencies

8: r0 ← argmax
{∣∣âsν∣∣ : ν ∈

{
− s

2 + 1, . . . , s2
}}

.
9: for l from 1 to L do

10: bmin ← argmin
b∈
{
−
⌈
tl
2

⌉
+1,...,

⌊
tl
2

⌋}
(∣∣∣âsr0 − âstlb·s+r0∣∣∣)

11: rl ← (bmin · s+ r0) mod tl
12: end for

Reconstruction of ω̃ from its Residues
13: Set l = 0, ω̃ = r0 and n = s.
14: while l < L do
15: Set l = l + 1
16: (g, u, v)← extended_gcd(n, tl)
17: ω̃ = n (((rl − ω̃) · u) mod tl) + ω̃
18: n = tl · n
19: end while
20: Set ω̃ = ω̃ mod n and shift ω̃ into the range

{
−
⌈
N
2

⌉
+ 1, . . . ,

⌊
N
2

⌋}
, since N ≤ n.

Identification of the Remaining Frequencies and Coefficients
21: for ω from ω̃ −B + 1 to ω̃ +B − 1 do
22: if

∣∣∣âst1ω mod st1

∣∣∣ > ε then
23: R← R ∪ {ω}
24: xω ← âst1ω mod st1

25: end if
26: end for
Output: R, x.
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Remark 2.16 Until now we considered the samples of the input function f ∈ C2π to be
noiseless. In practice, however, this is rarely the case. If we assume that instead of f we
can only measure the perturbed function f+η, where η ∈ C2π satisfies that c(η) ∈ `1 and
‖c(η)‖∞ ≤ ε for some suitable noise threshold ε > 0, then f + η has still approximately
a short support of length B. As Algorithm 2 reconstructs the frequency ω̃ with largest
magnitude Fourier coefficient of f + η in lines 8 to 20, ω̃ is also an energetic frequency
of f if ε > 0 is not chosen too large, e.g., if

|cω(f)| > 2ε

for all energetic frequencies ω of f . The remaining energetic frequencies are determined
by examining whether the corresponding Fourier coefficients of f + η are significantly
large, i.e., whether ∣∣∣âst1ω mod st1

∣∣∣ > ε

for all ω ∈ {ω̃ −B + 1, . . . , ω̃ +B − 1}. Consequently, the thus obtained coefficients are
good approximations of the true Fourier coefficients cω(f) of f , even if the samples are
only obtained from the noisy function f + η. This behavior is also supported empirically
by the numerical results presented in Section 2.5.
Recall that, as mentioned in Remarks 2.11 and 2.15, the runtime of Algorithm 2 could

be decreased by checking whether the condition in line 2 is still satisfied if some of the
small odd primes t1, . . . , tL are omitted, as then fewer samples have to be used and fewer
DFTs have to be computed. Additionally, one can also restrict the identification of the
energetic frequencies in lines 21 to 26 to the frequencies in {ω̃ −B + 1, . . . , ω̃ +B − 1}
whose residues modulo s correspond to nonzero entries of âs.
The performance of Algorithm 2 for noisy data can also be improved by choosing the

Fourier coefficient approximates in line 24 via

xω :=
1

L

L∑
l=1

âstlω mod stl .

Note that none of these improvements change the order of the theoretical runtime and
sample bound we will show in Section 2.3.2. For the numerical experiments in Section 2.5
we did not incorporate these improvements and stabilizations into the implementation
of the algorithm. ♦

2.3.2 Runtime and Sampling Bounds

Proving runtime and sample bounds for Algorithm 2 requires some preliminary results
about the occurring sums of prime numbers. Recall that we have to compute CDFTs of
length stl for all l ∈ {0, . . . , L}. By Section 1.1.1 and Remark 1.9, a CDFT of length
stl requires stl samples and O (stl log(stl)) arithmetical operations. Hence, we have to
estimate the number of necessary samples,

L∑
l=0

stl, (2.12)
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of the input function f , and the runtime of the computation of the CDFTs,

O

(
L∑
l=0

stl log(stl)

)
= O

(
s

L∑
l=0

tl log(tl) + s log(s)
L∑
l=0

tl

)
. (2.13)

First, we will estimate the largest of the small odd primes, tL.

Definition 2.17 For l ∈ N we denote by pl the lth prime. Further, we set p0 := 1.

The following result about the smallestM primes p1, . . . , pM has been shown in [IS08],
Lemma 4.

Lemma 2.18 Let B,N ∈ N with B ≤ N . If M ∈ N satisfies

M−1∏
l=1

pl <
N

B
≤

M∏
l=1

pl,

there exists a constant a > 0 with

pM = log
N

B
+O

 log N
B

exp

(
a
√

log log N
B

)
 .

Using Lemma 2.19, we obtain an estimate for the prime tL required by Algorithm 2.

Lemma 2.19 (Lemma 3.2 in [Bit17c]) Denote by tl the lth odd prime. Let B,N ∈ N
with B ≤ N . If L ∈ N satisfies

L−1∏
l=1

tl <
N

B
≤

L∏
l=1

tl,

there exists a constant a > 0 with

tL = log
2N

B
+O

 log 2N
B

exp

(
a
√

log log 2N
B

)
 .

Proof. Multiplying the presumed inequalities by 2 yields that

L−1∏
l=1

tl <
N

B
≤

L∏
l=1

tl ⇔
L∏
l=1

pl <
2N

B
≤

L+1∏
l=1

pl.

By Lemma 2.18 there exists a constant a > 0 such that

tL = pL+1 = log
2N

B
+O

 log 2N
B

exp

(
a
√

log log 2N
B

)
 = O

(
log

N

B

)
.
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Additionally, we require estimates about general sums of prime numbers, which were
provided in Lemmas 5 and 6 in [IS08].

Lemma 2.20 For all R ∈ N the following estimates hold true,

(i)
∑
p≤R
p prime

p =
R2

2 logR
+O

(
R2

log2R

)
,

(ii)
∑
p≤R
p prime

p log p =
R2

2
+O

(
R2

logR

)
.

With the help of Lemma 2.20 we can now estimate the sums in (2.12) and (2.13).

Lemma 2.21 (Lemma 3.4 in [Bit17c]) Denote by tl the lth odd prime. Let B,N ∈ N
with B ≤ N and let L ∈ N such that

L−1∏
l=1

tl <
N

B
≤

L∏
l=1

tl.

Then we obtain the following estimates,

(i)
L∑
l=0

tl = O

(
log2 N

B

log log N
B

)
,

(ii)
L∑
l=0

tl log tl = O
(

log2 N

B

)
.

Proof. (i) In order to prove the first claim, we apply the estimate from Lemma 2.20 (i)
and find that

L∑
l=0

tl ≤
∑
p≤tL
p prime

p

=
tL

2

2 log tL
+O

(
tL

2

log2 tL

)
.

Using the estimate

tL = log
2N

B
+O

(
log 2N

B

A

)
, where A := exp

(
a

√
log log

2N

B

)
,

from Lemma 2.19, we find

L∑
l=0

tl =

(
log 2N

B +O
(

log 2N
B

A

))2

2 log

(
log 2N

B +O
(

log 2N
B

A

)) +O


(

log 2N
B +O

(
log 2N

B
A

))2

log2

(
log 2N

B +O
(

log 2N
B

A

))


= O

(
log2 N

B

log log N
B

)
.
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(ii) For the second claim we employ the result from Lemma 2.20 (ii), which yields

L∑
l=0

tl log tl ≤
∑
p≤tL
p prime

p log p

=
tL

2

2
+O

(
tL

2

log tL

)

=

(
log 2N

B +O
(

log 2N
B

A

))2

2
+O


(

log 2N
B +O

(
log 2N

B
A

))2

log

(
log 2N

B +O
(

log 2N
B

A

))


= O
(

log2 N

B

)
.

Combining all of these estimates, we can prove the following main result about the
runtime and sampling complexity of Algorithm 2.

Theorem 2.22 (Theorem 3.5 in [Bit17c]) Let B and N ∈ N with B < N and
ω1 ∈

{
−
⌈
N
2

⌉
+ 1, . . . ,

⌊
N
2

⌋
−B + 1

}
. Let f ∈ C2π have a short frequency support of

length at most B and bandwidth N , i.e.,

f(x) =
B−1∑
k=0

cω1+k · ei(ω1+k)x.

Then Algorithm 2 returns the energetic frequencies of f and their corresponding Fourier
coefficients in

O

(
B logB ·

log2 N
B

log log N
B

)
time, and has a sampling complexity of

O

(
B ·

log2 N
B

log log N
B

)
.

Proof. It is evident from the construction of Algorithm 2 that it correctly returns the
energetic frequencies and their corresponding Fourier coefficients, disregarding numerical
errors, for exact data. We can now calculate the runtimes of the different parts of
Algorithm 2 using the observations made above.
The costs of computing the small odd primes t1, . . . , tL are insignificant. Even if we

choose a bandwidth N = 1010 and a support length B = 1, the largest required prime,
tL = O

(
log N

B

)
, is 31. Usually one would consider greater support lengths, which means

that even fewer tl sufficed. Hence, the tl can easily be found from precomputed lists of
small primes in O

(
log N

B

)
time.

By Section 1.1.1 and Remark 1.9, calculating the CDFT of a vector of arbitrary length
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M has a runtime of O(M logM), so the CDFTs in lines 4 to 7 require

O

(
L∑
l=0

stl log(stl)

)
= O

(
s

L∑
l=0

tl log(tl) + s log(s)
L∑
l=0

tl

)

arithmetical operations. With Lemma 2.21 and s = O(B), we obtain that

O

(
L∑
l=0

stl log(stl)

)

= O

(
B log2 N

B
+B logB ·

log2 N
B

log log N
B

)

= O

(
B log2 N

B

(
1 +

logB

log log N
B

))
.

Finding the largest magnitude entry of âs in line 8 needs O(s) operations. The compu-
tation of the residues of an energetic frequency in lines 9 to 12 has a complexity of

O

(
L∑
l=0

tl

)
= O

(
log2 N

B

log log N
B

)
.

As already mentioned in Section 2.2.1, the runtime of the extended Euclidean algorithm
extended_gcd(n, tl) in line 16 is O(log tl), since tl < n for all l. Therefore, the CRT
reconstruction procedure in lines 13 to 20, see Algorithm 1, requires O

(∑L
l=1 log tl

)
operations, which is insignificant compared to the runtime of lines 9 to 12. Identifying
the remaining frequencies in lines 21 to 26 has an arithmetical complexity of O(B).
Combining all these considerations yields an overall runtime of

O

(
L∑
l=0

stl log(stl)

)
+O(s) +O

(
L∑
l=0

tl

)
+O(B)

= O

(
B log2 N

B

(
1 +

logB

log log N
B

)
+B + log

N

B
+B

)

= O

(
B logB ·

log2 N
B

log log N
B

)
.

Further, we obtain with Lemma 2.21 (i) that Algorithm 2 has a sampling complexity of

s

L∑
l=0

tl = O

(
B ·

log2 N
B

log log N
B

)
.
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2.4 Sparse FFT for Functions with Short Frequency
Support II

The simplification of Algorithm 2 in [Iwe10] which we developed in Section 2.3 is not the
only feasible way to adapt said method to the setting of a function f ∈ C2π with short
frequency support of length at most B. Instead of choosing the L smallest odd primes
satisfying

B ·
L−1∏
l=1

tl < N ≤ B ·
L∏
l=1

tl

and the smallest power of 2, s, that is greater than B in order to reconstruct the energetic
frequencies of f from their residues modulo s and t1, . . . , tL, one can also consider K
primes s1, . . . , sK greater than 2B such that they satisfy the prerequisites of the CRT,
and reconstruct the frequencies from their residues modulo s1, . . . , sK , thus completely
omitting the small primes tl. This approach was suggested to us by the anonymous
reviewer of [Bit17c].
If one can guarantee that the residue of the, e.g., smallest energetic frequency modulo

sk is identified correctly for all k, this choice of s1, . . . , sK yields an algorithm which the
anonymous reviewer expected to have an even smaller theoretic runtime. We will prove
in Section 2.4.3 that it has a runtime of

O
(

(B + logN) logN

log2B
log

(
B + logN

logB

))
,

whereas Algorithm 2 has a runtime of

O
(
B logB · log2(N/B)

log log(N/B)

)
.

Since it is not obvious which of the algorithms is faster for usual choices for the support
length B and the bandwidth N , and impossible to tell which of the algorithms performs
better with respect to noisy data, we will investigate the suggested approach in detail
hereafter and compare it numerically to Algorithm 2 in Section 2.5.
Due to the block structure of the energetic frequencies, it suffices to reconstruct, for

example, the smallest energetic frequency ω1 of the function

f(x) =
B−1∑
k=0

cω1+k · ei(ω1+k)x.

The remaining energetic frequencies can then be identified by examining whether the
Fourier coefficients corresponding to the frequencies contained in the support interval
S := {ω1, ω1 + 1, . . . , ω1 +B − 1} are significantly large. All of the at most B possibly
energetic frequencies have to be contained in this set, which is completely determined
by ω1 and the bound B on the support length. Consequently, we will now focus on
the correct identification of ω1, for which the concept of first support indices can be
employed.
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Definition 2.23 (First Support Index) Let f ∈ C2π have a short frequency support
of length at most B and let M ∈ N. The first support index of âM is defined as

νM := max

{
ν ∈

{
−
⌈
M

2

⌉
+ 1, . . . ,

⌊
M

2

⌋}
: âMω = 0

∀ω /∈ {ν, (ν + 1) mod M, . . . , (ν +B − 1) mod M}
}
,

i.e., νM is the largest index for which all entries of âM that are not the B periodically
consecutive entries âMνM , â

M
(νM+1) mod M , . . . , âM (νM+B−1) mod M vanish.

Remark 2.24 Note that Definition 2.23 is only meaningful if M > 2B. For M ≤ 2B,
there might not be an intuitive first support index. Consider for example the function

f(x) = ei·213x + ei·217x ∈ C2π.

We find that ω1 := 213 ≡ −3 mod 8, ω5 := 217 ≡ 1 mod 8 and

â8 = (1, 0, 0, 0, 1, 0, 0, 0)T .

By Definition 2.23, the first support index of â8 is 1, even though −3, which corresponds
to ω1, makes more sense. As we want to use the first support index of aM such that it
corresponds to the smallest energetic frequency of f , we will restrict ourselves to the case
M > 2B from now on.
Recall that by (1.9)

âNν =

{
cν if ν ∈ {ω1, ω1 + 1, . . . , ω1 +B − 1},
0 otherwise.

Hence, the first support index of âN is precisely the smallest energetic frequency ω1. If
we consider an integer s > 2B, then s separates all energetic frequencies. The CDFT of
the vector of s equidistant samples, âs, satisfies that

âsν =

bN2 c∑
ω=−dN2 e+1

ω≡ν mod s

cω

by (2.2). Thus, it follows from the separation property of s and (2.3) that the block
structure of the short support of âN remains intact in âs, though it might be periodically
wrapped around the boundary of as, i.e., around

⌊
s
2

⌋
and −

⌈
s
2

⌉
+ 1. Figure 2.1 shows

the essentially two possibilities for the support of âs if f has a short frequency support.
Hence, âs is also said to have a short support, which can be of the form

âM =
(
âM−dM2 e+1, . . . , â

M
−dM2 e+B−b−1, 0, . . . , 0, â

M
bM2 c−b, . . . , â

M
bM2 c

)T
.

The concept of short supports for vectors is not relevant for this chapter, but will be
used extensively in Chapters 5 and 6. ♦

By (2.3), the first support index νs of âs is the residue of the smallest energetic fre-
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âN

âs

or âs

Figure 2.1: Short support of âN and periodized blocks in âs

quency ω1 modulo s if s > 2B. Consequently, if we can determine the first support
indices of âs1 , . . . , âsK for K primes s1, . . . , sK > 2B satisfying the requirements of the
CRT, we can uniquely reconstruct ω1 from its thus obtained residues using Algorithm 1.
The remaining energetic frequencies can be identified by checking for all frequencies ω
in the set S = {ω1, ω1 + 1, . . . , ω1 +B − 1} of possibly energetic frequencies whether the
corresponding Fourier coefficient cω is significantly large. Hence, besides N , this method
also requires an upper bound on the support length B, though it does not have to be
known exactly.
The simplest way to ensure that the CRT reconstruction can be used is to choose

the K := blogs1 Nc + 1 smallest primes s1, . . . , sK that are greater than 2B. They are
pairwise relatively prime and satisfy

K∏
k=1

sk ≥
K∏
k=1

s1 = s
blogs1 Nc+1

1 ≥ s
logs1 N

1 = N.

Choosing s1, . . . , sK > 2B guarantees that the first support indices of âs1 , . . . , âsK are
unique and correspond to the smallest energetic frequency ω1, which allows us to recover
ω1 from its residues modulo s1, . . . , sK as in Section 2.2.2. All remaining possibly en-
ergetic frequencies then have to be contained in the set S = {ω1, . . . , ω1 + B − 1}. For
exact data, their Fourier coefficients are given without any further computation, since
for any k the prime sk is separating, so the Fourier coefficients are just the significantly
large entries of âsk , see (2.3). For noisy data we can stabilize this method by using the
mean of these values as an estimate for the coefficients, i.e.,

cω =
1

K

K∑
k=1

âskω mod sk

for all ω ∈ {ω1, . . . , ω1 +B−1}. Thus, we can correctly identify the energetic frequencies
and find good estimates for the corresponding Fourier coefficients.

Remark 2.25 Similarly to Remark 2.11, this method can be further improved by
checking whether some of the primes s1, . . . , sK can be omitted while still satisfying
the requirements of the CRT. Again, we did not incorporate this enhancement in the
implementation of our algorithm used for the numerical experiments in Section 2.5. ♦

However, in order to obtain an efficient algorithm, we have to be able to find the first
support index of the CDFT of a vector of equidistant samples in a fast and stable way.
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2.4.1 Detecting the First Support Index

In the following section we will discuss two methods for efficiently and stably finding the
first support index of âs for an s > 2B.
The first one, taken from [PW16a], relies on the computation of the local energies es, ω

for ω ∈
{
−
⌈
s
2

⌉
+ 1, . . . ,

⌊
s
2

⌋}
, defined as

es, ω :=

(ω+B−1) mod s∑
ν=ω

∣∣âsν mod s

∣∣2 .
The local energies satisfy

es, ω = es, ω−1 −
∣∣âsω−1

∣∣2 +
∣∣âs(ω+B−1) mod s

∣∣2
for all ω ∈

{
−
⌈
s
2

⌉
+ 2, . . . ,

⌊
s
2

⌋}
. The first support index νs of âs is given as

νs = argmax

∣∣âsν∣∣ : ν ∈ argmax
ω∈{−d s2e+1,...,b s2c}

{es, ω}

 ,

i.e., as the index corresponding to the largest magnitude entry,
∣∣âsνs∣∣, of âs of the set

of indices maximizing the local energies. This guarantees that, in the case where several
indices result in the same maximal local energy, an index corresponding to a significantly
large entry of âs is chosen. The maximizer of es, ω is only not unique if the bound B is
not the exact support length, so we avoid using a non-energetic index as the first support
index by the above choice.
However, this method is not well-suited for noisy data. In [PW16a], the authors

suggested a stabilized version for finding the first support index. This stabilization cannot
be applied in our setting, since the available samples are obtained from as and not from
the full-length vector aN . Further, we do not consider successive periodizations of the
same vector. The input vectors we require for our approach are structured differently;
thus, we cannot utilize similar redundancies in order to stabilize the detection.
The second method for detecting the first support index we want to employ is a simple

block search algorithm. If s > 2B and the data is exact, the first support index νs is
uniquely determined as the largest index of âs with nonzero entry which is preceded by
at least B + 1 entries that are zero. In the case of noisy data, it is the largest index
with significantly large entry that is preceded by at least B + 1 insignificant entries.
Here, analogously to the definition for frequencies, we call an entry of âs significantly
large and its corresponding index energetic if the absolute value of the entry is greater
than or equal to some threshold ε > 0 depending on the noise level. For exact data this
approach works well, but for noisy data one has to choose a suitable threshold ε > 0,
usually without knowing the noise level a priori.
Note that both methods require a priori knowledge of a good upper bound B on the

support length of f . With either of these methods we can now correctly identify the
first support index of âs for any s > 2B. If we compute the residues of ω1 modulo some
integers s1, . . . , sK such that they satisfy the prerequisites of the CRT, we can uniquely
reconstruct ω1 via Algorithm 1.
Again, we provide an example for the method presented above before giving the de-

tailed algorithm. We apply our second procedure for functions with short frequency
support to the same function as in Example 2.14.
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Example 2.26 Let f ∈ C2π, f(x) = ei·210x − ei·211x + 2ei·212x − ei·213x − 2ei·214x with
bandwidth N = 1,000 and block length 5. Let us again assume that we only know the
upper bound B = 6 on the true block length a priori. Then we set s1 := 13 > 2 ·B,

K :=
⌊
logs1 N

⌋
+ 1 = 3,

s2 := 17 and s3 := 19. Indeed, we have that B · 13 · 17 = 221 and B · 13 · 17 · 19 = 4,199.
Computing the CDFT of a13, we obtain

â13 = (0, 0, 0, 0, 0, 0, 0, 0, 1,−1, 2,−1,−2)T .

We aim to recover the smallest energetic frequency ω1 of f from its residues modulo
13, 17 and 19, which are precisely the first support indices of the vectors â13, â17 and
â19. For this example we want to detect the first support indices using local energies.
First, we have to compute e13, ω for all ω ∈ {−6, . . . , 6}. We find that

e13,−6 =

−1∑
ν=−6

∣∣∣â13
ν

∣∣∣2 = 0,

and obtain the following vector of local energies,

(e13, ω)6
ω=−6 = (0, 0, 0, 1, 2, 6, 7, 11, 11, 10, 9, 5, 4)T .

Consequently, since e13, 1 = e13, 2 = 11 and
∣∣∣â13

1

∣∣∣ = 0 <
∣∣∣â13

2

∣∣∣ = 1, the first support

index ν13 of â13 is 2. Analogously, we can compute the first support indices of â17 and
â19. With

â17 = (−1,−2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1,−1, 2)T and

â19 = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1,−1, 2,−1,−2, 0, 0, 0, 0)T ,

we find that

(e17, ω)8
ω=−8 = (5, 4, 0, 0, 0, 0, 0, 0, 0, 1, 2, 6, 7, 11, 11, 10, 9)T and

(e19, ω)9
ω=−9 = (0, 0, 0, 0, 0, 1, 2, 6, 7, 11, 11, 10, 9, 5, 4, 0, 0, 0, 0)T .

It follows from e17, 5 = e17, 6 = 11 and
∣∣∣â17

5

∣∣∣ = 0 <
∣∣∣â17

6

∣∣∣ = 1 that the first support index

ν17 of â17 is 6. Since e19, 0 = e19, 1 = 11 and
∣∣∣â19

0

∣∣∣ = 0 <
∣∣∣â19

1

∣∣∣ = 1, the first support

index ν19 of â19 is 1. Consequently, the smallest energetic frequency ω1 of f satisfies

ω1 ≡ 2 mod 13, ω1 ≡ 6 mod 17 and ω1 ≡ 1 mod 19.

Reconstructing ω1 from these residues via Algorithm 1 yields that ω1 = 210. The re-
maining energetic frequencies can be identified by computing the Fourier coefficients of
the B = 6 frequencies contained in the set S = {210, 211, . . . , 215} via

cω =
1

3

3∑
k=1

âskω mod sk ∀ω ∈ S.
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Thus, we obtain that c210 = 1, c211 = −1, c212 = 2, c213 = −1 and c214 = −2. Since
c215 = 0, we find that 215 is not an energetic frequency and that f has a short frequency
support of length 5. This method requires three CDFTs of lengths 13, 17 and 19 with
a runtime of O

(∑3
k=1 sk log sk

)
and a sampling complexity of 49 instead of a single

CDFT of length 1,000. Note that for this example the second method for reconstructing
a function with short frequency support needs significantly less samples than the 220
samples required by the procedure described in Section 2.3. We will compare the runtimes
and sampling complexities of the two methods more thoroughly in Section 2.5.

♦

2.4.2 Algorithm for Functions with Short Frequency Support II

We summarize the procedure introduced above in Algorithm 3, which deterministically
finds the energetic frequencies and the Fourier coefficients of a function f ∈ C2π with
bandwidth N and short frequency support if N and an upper bound B on the support
length are known a priori. We will investigate its performance with respect to runtime
and noisy input data in numerical experiments in Section 2.5, where we will also compare
Algorithm 3 to Algorithm 2 and other sparse FFT methods.
As in Section 2.2.1, the function extended_gcd in line 13 of Algorithm 3 finds a

representation of the greatest common divisor g of two integers a and b of the form

g = gcd(a, b) = ua+ vb,

where u, v ∈ Z. As in Algorithm 2, we always have g = 1 in line 13 by choice of s1, . . . , sK .

2.4.3 Runtime and Sampling Bounds

In order to prove runtime and sample bounds for Algorithm 3, we need some estimates
involving the required primes s1, . . . , sK . This can be done using two equivalent formu-
lations of the Prime Number Theorem.

Theorem 2.27 (Prime Number Theorem) For x ∈ R define the prime-counting
function

π(x) :=
∑
p≤x

p prime

1.

Then the following estimates hold.

(i) π(x) =
x

log x
+O

(
x

log2 x

)
,

(ii) pl = l log l +O(l log log l).

See [MV07], Chapter 6.2, Theorem 6.9 for a proof of (i) and [HW60], Chapter 1,
Theorem 8 for a proof of (ii). Recall that in line 5 of Algorithm 3 we have to compute
CDFTs of length sk for all k ∈ {1, . . . ,K}. Each of them needs sk equidistant samples of
f and requires O(sk log sk) arithmetical operations, as already discussed in Section 1.1.2.
Thus, we have to find estimates for

K∑
k=1

sk and
K∑
k=1

sk log sk,
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Algorithm 3 Algorithm for Functions with Short Frequency Support II
Input: f ∈ C2π, B, N , where f has bandwidth N and a short frequency support of

length at most B < N , and noise threshold ε > 0.
Output: The set R of at most B energetic frequencies of f and the vector x of estimates

for their Fourier coefficients.
1: Set s1 as the smallest prime with s1 > 2B.
2: Let K = blogs1 Nc+ 1 and s2 < · · · < sK the K − 1 smallest primes greater than s1.
3: for k from 1 to K do
4: ask ←

(
f
(

2πj
sk

))sk−1

j=0

5: âsk ← CDFT[ask ]
6: end for

Identification of the Smallest Energetic Frequency ω1

7: for k from 1 to K do
8: νsk ← first support index of âsk
9: end for

Reconstruction of ω1 from its Residues
10: Set k = 1, ω1 = νs1 and n = s1.
11: while k < K do
12: Set k = k + 1
13: (g, u, v)← extended_gcd(n, sk)
14: ω1 = n (((νsk − ω1) · u) mod sk) + ω1

15: n = sk · n
16: end while
17: Set ω1 = ω1 mod n and shift ω1 into the range

{
−
⌈
N
2

⌉
+ 1, . . . ,

⌊
N
2

⌋}
, since N ≤ n.

Identification of the Remaining Frequencies and Coefficients
18: for ω from ω1 to ω1 +B − 1 do
19: if

∣∣∣ 1
K

∑K
k=1 â

skω mod sk

∣∣∣ > ε then
20: R← R ∪ {ω}
21: xω ← 1

K

∑K
k=1 â

skω mod sk

22: end if
23: end for
Output: R, x.
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in order to obtain bounds for the number of required samples of the function we aim to
recover and the runtime of the computation of the CDFTs.

Lemma 2.28 Let B,N ∈ N with B < N and let s1 be the smallest prime greater than
2B. Set K = blogs1 Nc+ 1 and s2, . . . , sK as the K − 1 smallest primes greater than s1.
Then the following estimates are satisfied.

(i)
K∑
k=1

sk = O
(

(B + logN) logN

log2B
log

(
B + logN

logB

))
,

(ii)
K∑
k=1

sk log sk = O
(

(B + logN) logN

log2B
log2

(
B + logN

logB

))
.

Proof. (i) There exists an index q ∈ N such that s1 = pq, i.e., s1 is the qth prime.
Consequently, pq−1 is the largest prime that is smaller than 2B. Theorem 2.27 (i) yields

q − 1 = π(2B) =
2B

log(2B)
+O

(
2B

log2(2B)

)
= O

(
B

logB

)
.

Note that sK = pq+K−1. Further, by Betrand’s postulate, see [HW60], Chapter 22.3,
Theorem 417, there exists at least one prime number between 2B and 2 · 2B. Thus, we
know that 2B < s1 < 4B, and s1 = O(B). With K = blogs1 Nc+ 1, we obtain

q +K − 1 = O
(

B

logB

)
+
⌊
logs1 N

⌋
+ 1

= O
(

B

logB
+

logN

logB

)
= O

(
B + logN

logB

)
.

Hence, the second formulation of the Prime Number Theorem (Theorem 2.27 (ii)) implies

sK = pq+K−1

= O ((q +K − 1) log(q +K − 1))

= O
(
B + logN

logB
log

(
B + logN

logB

))
. (2.14)

Using (2.14), we find for the number of required samples that

K∑
k=1

sk = O (KsK)

= O
(

logN

logB
· B + logN

logB
log

(
B + logN

logB

))
= O

(
(B + logN) logN

log2B
log

(
B + logN

logB

))
.

(ii) In order to deal with the estimates for the runtime of the CDFT computation, we
first recall a property of the logarithm. For any a > 0, the logarithm satisfies that

log(a · log(a)) = log a+ log log(a) = O(log a). (2.15)
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Consequently, combining (2.14) and (2.15) yields

O

(
K∑
k=1

sk log sk

)
= O (KsK log sK)

= O
(

logN

logB
· B + logN

logB
log

(
B + logN

logB

)
· log

(
B + logN

logB
log

(
B + logN

logB

)))
= O

(
(B + logN) logN

log2B
log2

(
B + logN

logB

))
.

Employing the estimates proven in Lemma 2.28, we can now show the main result
about the runtime and sampling complexities of Algorithm 3.

Theorem 2.29 Let B,N ∈ N with B < N and ω1 ∈
{
−
⌈
N
2

⌉
+ 1, . . . ,

⌊
N
2

⌋}
. Let

f ∈ C2π have a short frequency support of length at most B with bandwidth N , i.e.,

f(x) =
B−1∑
k=0

cω1+k · ei(ω1+k)x.

Then Algorithm 3 returns the energetic frequencies of f and their corresponding Fourier
coefficients in

O
(

(B + logN) logN

log2B
log2

(
B + logN

logB

))
time, and has a sampling complexity of

O
(

(B + logN) logN

log2B
log

(
B + logN

logB

))
.

Proof. By construction of Algorithm 3, we know that it returns the correct frequencies
and Fourier coefficients, apart from numerical errors, for exact data. We will now examine
the runtime of the different parts of the algorithm using the considerations made above.
Using precomputed lists of the first, e.g., 10,000 primes, the computational costs of

finding the K = blogs1 Nc+ 1 smallest primes greater than 2B in lines 1 and 2 are

O (π(sK)) = O (q +K − 1) = O
(
B + logN

logB

)
,

as one has to check all primes less than or equal to sK = pq+K−1.
By Section 1.1.1 and Remark 1.9, the computation of a CDFT of length M has a

runtime of O(M logM). Consequently, it follows from Lemma 2.28 (ii) that the CDFTs
in lines 3 to 6 require

O

(
K∑
k=1

sk log sk

)
= O

(
(B + logN) logN

log2B
log2

(
B + logN

logB

))
(2.16)

arithmetical operations.
The runtime of line 8 depends on whether we find the first support indices νsk of the

vector âsk via local energies or via block search.
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(i) If we use the local energies method to detect the first support index, computing the
first local energy

esk, 0 =

b sk2 c+B−1∑
ν=−d sk2 e+1

∣∣∣âskν∣∣∣2
requires O(B) additions. As for j ∈ {1, . . . , sk − 1} the jth local energy is given as

esk, j = esk, j−1 −
∣∣∣âsk−d sk2 e+1+j−1

∣∣∣2 +
∣∣∣âsk(−d sk2 e+1+j+B−1) mod sk

∣∣∣2 ,
we have to execute O (B + sk) additions in order to calculate all sk local energies for a
fixed k. Thus, employing this method, lines 7 to 9 have a runtime of

O

(
K∑
k=1

(B + sk)

)
= O (K · (B + sK)) = O(K · sK),

since B < sK .

(ii) If we want to identify the first support index νsk of âsk by looking forB+1 consecutive
entries that have an absolute value less than the noise threshold ε > 0, we need to check
each entry at most twice to also allow for blocks that are wrapped periodically around
the boundary of the vector. Hence, finding the first support index of âsk requires O(sk)
arithmetical operations, and lines 7 to 9 need

O

(
K∑
k=1

sk

)
= O (K · sK)

operations.

Consequently, the theoretical runtime of lines 7 to 9 is always dominated by the compu-
tational effort of the CDFT computations in lines 3 to 6.
As we discussed in Section 2.2.1, the runtime of the extended Euclidean algorithm

extended_gcd(n, sk) in line 13 is O(log sk) if k ≥ 3, since then n =
∏k−1
l=1 sl > sk. If

k = 2, we can still estimate its runtime with O(log s2), as s2 > n = s1. Consequently,
the CRT reconstruction procedure in lines 10 to 17, i.e., Algorithm 1, has a runtime of

O

(
K∑
k=1

log sk

)
= O(K · log sK),

which is again dominated by the runtime of the CDFT computations. Finally, the cal-
culation of the coefficient estimates for the B possibly energetic frequencies contained in
{ω1, . . . , ω1 +B−1} in lines 18 to 23 needs O(K ·B) = O(K ·sK) arithmetical operations.
Hence, we obtain that the runtime of Algorithm 3 is dominated by the runtime of the

CDFT computations in lines 3 to 6, so, by (2.16), we obtain an overall runtime of

O

(
K∑
k=1

sk log sk

)
= O

(
(B + logN) logN

log2B
log2

(
B + logN

logB

))
.
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Further, Lemma 2.28 (i) yields that Algorithm 3 has a sampling complexity of

K∑
k=1

sk = O
(

(B + logN) logN

log2B
log

(
B + logN

logB

))
,

which completes the proof.

2.5 Numerical Results for Algorithms 2 and 3

We now present some numerical results regarding the runtimes of Algorithms 2 and 3,
their performances for noisy input data and their sampling complexities. Additionally,
we compare them to the deterministic sparse inverse FFT algorithm for vectors with
short support presented by Plonka and Wannenwetsch as Algorithm 2 in [PW16a], and
to Matlab 2016a’s fft function.
Algorithm 2 in [PW16a] recovers a vector y ∈ C2J with short support of length B

from its Fourier transform ŷ by considering periodizations y(j) ∈ C2j of y,

y(j) :=

2J−j−1∑
l=0

yk+2j l

2j−1

k=0

∀ j ∈ {dlog2Be+ 1, . . . , J} .

For a more detailed description of this method see Section 5.3. In the case of noisy input
data, the algorithm has an arithmetical complexity of O(B logN), where O(B + logN)
samples of the input vector ŷ are being used. Algorithm 2 in [PW16a] is actually an
IFFT algorithm that recovers a 2J -length vector y from its Fourier transformed vector
ŷ ∈ C2J , whereas Algorithms 2 and 3 find the finite spectrum, i.e., the vector of Fourier
coefficients of a 2π-periodic function, from several vectors of equidistant samples of the
form

astl =

(
f

(
2πj

stl

))stl−1

j=0

or ask =

(
f

(
2πj

sk

))sk−1

j=0

.

Thus, Algorithm 2 in [PW16a] cannot be applied to the same data as our new methods
for functions with short support. The more complex sampling schemes for IDFT methods
for functions rely heavily on the fact that f ∈ C2π can be evaluated at any x ∈ [0, 2π),
whereas Algorithm 2 in [PW16a], which can be modified to become a DFT method for
recovering a vector ŷ ∈ C2J with short support from y, see [PPST19], Section 5.4.2,
always requires 2J equidistant samples of f .

Matlab’s fft routine is a fast and highly optimized implementation of the fast Fourier
transform, based on the FFTW library, see [FJ17,The18b]. In order to use it meaningfully
in our setting, we sample the input function f at N equidistant points, i.e., we determine

aN =

(
f

(
2πj

N

))N−1

j=0

.

Then we compute an approximation of c(f) by applying fft to aN , as we discussed
in Section 1.2.1. Vector-based and function-based algorithms are not really comparable
from a sampling perspective, as for vector-based algorithms we can only use the given
vector entries, which correspond to equidistantly sampling the function at N points. For
function-based algorithms, however, one can use much more complex sampling schemes.
In Algorithms 2 and 3, for example, we sample equidistantly at stl points for L+1 values
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2.5 Numerical Results for Algorithms 2 and 3

for tl, or at sk points for K different primes sk.
As we do not know of any other, more suitable algorithms to which we can compare

Algorithms 2 and 3, we decided to use Algorithm 2 in [PW16a] anyway. It requires that
the length of y is a power of 2, whereas Algorithms 2 and 3 and fft can be applied to
arbitrary bandwidths N of f or input vector lengths, respectively. In order to be able
to better compare these four algorithms, we always consider bandwidths that are of the
form N = 2J in the following numerical experiments.
For sake of completeness we also include the average runtimes of Algorithm 2 in [Iwe10]

for the support lengths B = 10 and B = 100. However, since Algorithms 2 and 3 are
different simplifications of the method used therein, we expect them to have signifi-
cantly shorter runtimes. The primes considered in our two algorithms for functions
with short frequency support are essentially slightly altered subsets of the K̃ + L̃ primes
s̃1, . . . , s̃K̃ , t̃1, . . . , t̃L̃ used by Algorithm 2 in [Iwe10] for general B-sparse functions, which
computes K̃ · L̃ CDFTs of length s̃k t̃l, as mentioned in Section 2.2.2. Algorithm 2, on
the other hand, needs L + 1 CDFTs of length s · tl, where tl ≈ t̃l and s ≈ s̃1, whereas
Algorithm 3 requires K < K̃ CDFTs of prime length sk ≈ s̃k. Thus, for both meth-
ods for functions with short frequency support there are less and shorter CDFTs to be
computed. This is also supported by the theoretical runtimes

O

(
B logB ·

log2 N
B

log log N
B

)

of Algorithm 2,

O
(

(B + logN) logN

log2B
log2

(
B + logN

logB

))
of Algorithm 3 and

O

(
B2

log2B
· log4N log2(B logN)

log log N
B

)
of Algorithm 2 in [Iwe10], as well as by the numerical results we will present later on.
All algorithms have been implemented in Matlab R2016a, and the code is freely

available in [Bit17a,Bit17b,PW16b]. For Algorithm 3 we test both methods for finding
the first support index of âsk discussed in Section 2.4.1. Note that the publicly available
code for Algorithm 2 in [PW16a], which we used for the numerical experiments in [Bit17c]
and in this section, is not implemented optimally, as its runtime is worse than that of
fft, which can be seen in Figure 2.2. Theoretically, though, this algorithm has a runtime
of O(B logN) with a small constant. The numerical experiments in [Wan16], where the
runtime performance was not investigated, suggest that the implementation is very stable
with respect to noisy input data, which is also supported by our experiments. In order
to achieve this level of stability, a higher runtime seems to have been accepted.
Figure 2.2 depicts the average runtimes of Algorithm 2, both versions of Algorithm 3,

Algorithm 2 in [PW16a], Algorithm 2 in [Iwe10] and Matlab’s fft for 100 randomly
generated input functions or vectors, where the absolute values of the real and imaginary
parts of the Fourier coefficients or entries, respectively, are bounded by 10. We choose
a noise threshold of ε = 10−4 for Algorithm 2 and and the version of Algorithm 3 using
block search.
Of course, any comparison of the first four algorithms with the highly optimized im-

plementation fft of the FFT must be flawed; however, we note that Algorithm 2 and
Algorithm 3 are much faster than both fft and Algorithm 2 in [PW16a] for support
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Figure 2.2: Average runtimes of Algorithm 2, Algorithm 3 using local energies and block
search, Algorithm 2 in [PW16a], Algorithm 2 in [Iwe10] and Matlab’s fft for
100 random input functions with support length B and bandwidth N = 220

lengths up to B = 1,000 ≈
√
N , and that Algorithm 2 in [PW16a] is as fast as fft for

the same support lengths. For greater support lengths, all four methods for functions or
vectors with short support perform much slower than fft, whose runtime of O(N logN)
is independent of the support length, whereas the algorithms for short supports have
runtimes that are almost linear or linear in B.
Additionally, it can be seen that the runtimes of Algorithm 3 and especially Algorithm 2

increase much faster in the support length B than the runtime of Algorithm 2 in [PW16a].
One can clearly discern that Algorithm 3 slightly improves the runtime of the related
Algorithm 2. Even though the block search approach for detecting the first support index
νsk of âsk is somewhat faster up to B = 1,000, the runtime of Algorithm 3 is basically
the same for both methods for finding the first support index if the support length is
increased further. If the stabilizing step of computing the Fourier coefficient estimate xω
in line 21 by averaging is omitted, the runtime of Algorithm 3 can be reduced further.
However, as this negatively affects its performance with respect to noise, we choose the
stabilized variant for all numerical experiments.
As expected, even for a support of length B = 100, the runtime of Algorithm 2

in [Iwe10] is several orders of magnitude greater than the runtime of any of the other
considered algorithms, and it also increases much faster in B. Hence, we do not inves-
tigate its runtime for greater support lengths and also do not consider its performance
with respect to noise. To highlight the fact that Algorithms 2 and 3 are simplifications of
Algorithm 2 in [Iwe10], we will still include it in our study of the sampling requirements
later on.
Next, we examine the quality of the frequency and coefficient reconstructions for noisy

input data. For Algorithm 2, Algorithm 3 and fft we assume that we can only sample
the perturbed function f + η, where f has a short frequency support of length at most
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2.5 Numerical Results for Algorithms 2 and 3

B and η ∈ C2π. Further, η has to satisfy that its vector of Fourier coefficients c(η) ∈ CN
is uniformly distributed noise with c(η) ∈ `1 and ‖c(η)‖∞ ≤ ε for some suitable noise
threshold ε > 0. Then Algorithms 2 and 3 and fft reconstruct the restriction c(N) ∈ CN
of c(f + η) ∈ CZ to the frequencies contained in

{
−
⌈
N
2

⌉
+ 1, . . . ,

⌊
N
2

⌋}
.

For Algorithm 2 in [PW16a], we create disturbed Fourier data ẑ ∈ CN by adding
uniform noise η̃ ∈ CN to ŷ,

ẑ := ŷ + η̃.

We measure the noise with the signal-to-noise ratio (SNR),

SNR := 20 · log10

‖c(f)‖2
‖c(η)‖2

, and SNR := 20 · log10

‖ŷ‖2
‖η̃‖2

,

respectively. Recall that Algorithm 2 and Algorithm 3 reconstruct the Fourier coefficients
of f from function values, and that fft is applied to the vector aN of N equidistant
function values. Algorithm 2 in [PW16a], on the other hand, recovers a vector y from
its Fourier transform ŷ, which means that the output of this algorithm is contained in a
different domain. Figures 2.3 and 2.4 depict the average reconstruction errors

‖x− x′‖2
N

,

where x denotes the restriction c(N, f) of the original finite spectrum c(f) ∈ CZ to the
frequencies contained in

{
−
⌈
N
2

⌉
+ 1, . . . ,

⌊
N
2

⌋}
, or the original vector y, respectively. By

x′, we denote the reconstruction by the corresponding algorithm applied to noisy input
data for support lengths B = 100 and B = 1,000.
The threshold parameter ε for the block search method for finding the first support

index νsk of âsk is chosen according to Table 2.1. The values for ε, depending on the

SNR 0 10 20 30 40 50

ε 70 35 20 15 2 0.5

Table 2.1: Parameter ε for the block search method in Algorithm 3

SNR and the fact that |Re(cω)| and | Im(cω)| are bounded by 10 for all frequencies, were
obtained via an attempt to minimize the approximation error. As the afore-mentioned
dependencies are nontrivial, we cannot recommend good heuristics for finding ε. If the
SNR is known approximately a priori, one can determine good values for ε by applying
the algorithm to synthetic data with similar noise levels. If ε is too small, the found
support blocks will be too long, as, due to the noise, Fourier coefficients corresponding to
non-energetic frequencies will also be included. If ε is too large, the found support block
tends to be too short, because coefficients corresponding energetic frequencies might be
cut off. In the case of Algorithm 2 we always choose ε = 10−4.
Algorithm 2 in [PW16a] achieves the lowest average reconstruction errors for all con-

sidered SNR values and both support lengths. This very high stability was achieved
at the cost of an increased runtime. For higher SNR values the average reconstruction
errors for both variants of Algorithm 3 are smaller than the one of Algorithm 2, due
to taking the mean of the K possible coefficient estimates in line 21 of Algorithm 3.
However, for lower SNR values, the error of Algorithm 3 increases up to the error level
of fft, especially for the block search method, which is only well-suited for low-level
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Figure 2.3: Average reconstruction errors ‖x−x′‖2/N of Algorithm 2, Algorithm 3 using
local energies and block search, Algorithm 2 in [PW16a] and fft for 100
random input functions with uniformly distributed noise, B = 100, N = 220
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Figure 2.4: Average reconstruction errors ‖x−x′‖2/N of Algorithm 2, Algorithm 3 using
local energies and block search, Algorithm 2 in [PW16a] and fft for 100
random input functions with uniformly distributed noise, B = 1,000, N = 220

noise. If the first support index of âsk is detected using local energies, Algorithm 3 has
an approximation error slightly greater than the one of Algorithm 2 in [PW16a] up to
an SNR of 20 if B = 100, and 30 if B = 1,000. If one did not take the mean in line 21
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2.5 Numerical Results for Algorithms 2 and 3

of Algorithm 3, its average reconstruction error would be slightly greater than the one
of Algorithm 2 and about the size of the error of fft for all considered SNR values.
As for some applications it might be important to correctly recover the short support of

the function or vector in question, we also investigate whether the considered methods are
able to do so. Tables 2.2 and 2.3 show the percentage of correctly found smallest energetic
frequencies ω1 for Algorithm 2, Algorithm 3 using block search and local energies, and
Algorithm 2 in [PW16a].

Rate of Correct Recovery in % Using
SNR Algorithm 2 Algorithm 3 Algorithm 2 in [PW16a]

Local Energies Block Search

0 91 18 0 84
10 100 92 65 100
20 100 100 89 100
30 100 100 95 100
40 100 100 100 100
50 100 100 100 100

Table 2.2: Rate of correct recovery of ω1 in percent for Algorithm 2, Algorithm 3 using
local energies and block search and Algorithm 2 in [PW16a] for the 100 random
input functions with support length B = 100 from Figure 2.3

Rate of Correct Recovery in % Using
SNR Algorithm 2 Algorithm 3 Algorithm 2 in [PW16a]

Local Energies Block Search

0 81 27 0 86
10 99 83 53 100
20 100 97 86 100
30 100 100 91 100
40 100 100 100 100
50 100 100 100 100

Table 2.3: Rate of correct recovery of ω1 in percent for Algorithm 2, Algorithm 3 using
local energies and block search and Algorithm 2 in [PW16a] for the 100 random
input functions with support length B = 1,000 from Figure 2.4

It can be seen that for an SNR of 0, Algorithm 3 using the block search method for
detecting the first support index of âsk fails to recover ω1 in all 100 test runs for both
support lengths B, and has a rate of correct recovery of 65% if B = 100, and 53% if
B = 1,000, for an SNR of 10. If one employs the local energies method, ω1 will still be
found in 18% and 27%, respectively, of the cases for an SNR of 0 and even in 92% and
83% for an SNR of 10.
The problem for both the block search and local energies method is that, in order to

compute the smallest energetic frequency ω1, we have to find its residues modulo the sk
by finding K first support indices. Hence, if the first support index νsk of just one vector
âsk is found incorrectly, the reconstructed ω1 might deviate much from the true frequency,
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resulting in higher reconstruction errors for Algorithm 3. In this respect, Algorithm 2 is
much more stable; in our experiments it always recovers the correct frequencies except
for an SNR of 0, where the rates of correct recovery are 91% and 81%, respectively, and,
for B = 1,000, for an SNR of 10, with a rate of 99%. For Algorithm 2 in [PW16a], the
procedure for identifying the first support index via local energies has to be applied only
once and can also be stabilized in a way that is infeasible for Algorithm 3. This results
in always correctly identified first support indices, except for an SNR of 0, where the
rates of correct recovery are 84% and 86%, respectively. Even though the runtime of its
implementation is not optimal, our numerical experiments show that it is highly stable
for noisy input data.
Another aspect regarding to which we want to compare Algorithms 2 and 3 are the

sampling requirements. If obtaining samples of the input function f requires a lot of
resources, e.g., time, money or measuring equipment in practical applications, reducing
the number of samples might be more important than minimizing the runtime of the
algorithm. The theoretical sampling requirements of

O

(
B ·

log2 N
B

log log N
B

)

for Algorithm 2 and

O
(

(B + logN) logN

log2B
log

(
B + logN

logB

))
for Algorithm 3 indicate that we should expect Algorithm 3 to use significantly less
samples than Algorithm 2. We also investigate this numerically. Figure 2.5 shows the
ratio between the number of used samples and the bandwidthN = 220 for varying support
lengths for Algorithm 2, Algorithm 3, whose sampling requirements do not depend on
the selected method for detecting the first support indices, Algorithm 2 in [PW16a],
Algorithm 2 in [Iwe10] and fft. One can see that, compared to Algorithm 2, the sampling
requirements of Algorithm 3 are an order of magnitude smaller, and of the same size as
the ones of Algorithm 2 in [PW16a], which needs O(B+logN) equidistant samples of f .
Figure 2.5 also illustrates that both Algorithm 2 and 3 require significantly less samples
than Algorithm 2 in [Iwe10], of which they are special simplifications.
Summing up the insights gained from the presented numerical examples, we can con-

clude that Algorithm 3 performs better than Algorithm 2 if the costs for obtaining the
samples of the input function are significant or if it is known that the input data is only
perturbed by noise with a high SNR. In the second case the runtime can also be slightly
decreased by removing the computation of the mean, though this increases the average
reconstruction error of the method. As using the block search method only gives a small
runtime advantage for support lengths up to B = 100 while resulting in less stability for
noisy data, we recommend to find the first support indices via local energies, which also
do not require any a priori knowledge about the precise noise level.
Being more stable with respect to noise, Algorithm 2 is a better choice for higher noise

levels, i.e., lower SNR values, despite its slightly greater runtime. As its runtime is also
lower than that of Algorithm 2 in [PW16a] while being similarly robust with respect
to noise, Algorithm 2 should also be preferred over the latter method if the sampling
requirements are not crucial.
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Figure 2.5: Number of used samples per bandwidth N = 220 for varying support lengths
B for Algorithm 2, Algorithm 3, Algorithm 2 in [PW16a], Algorithm 2 in
[Iwe10] and fft
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3 Sparse FFT for 2π-Periodic Functions
with Polynomially Structured Sparsity

In Sections 2.3 and 2.4 we introduced two algorithms for deterministically recovering a
function f ∈ C2π with short support S = {ω1, ω1 + 1, . . . , ω1 +B − 1} of length at most
B from samples. In this chapter, which is based on our paper [BZI19] and is in parts
identical with the representations therein, we want to focus on more general structures.
To be more precise, we assume that the energetic frequencies of f are contained in a
small number, n, of support sets S1, . . . , Sn (

{
−
⌈
N
2

⌉
+ 1, . . . ,

⌊
N
2

⌋}
, and that each of

the unknown sets Sj is generated by evaluating a polynomial Pj of degree at most d at
B points. This means that f is of the form

f(x) =

n∑
j=1

∑
ω∈Sj

cω(f)eiωx,

where
Sj = {Pj(x) : x ∈ {1, . . . , B}}

for some polynomial Pj of degree at most d with integer coefficients. The perhaps simplest
class of functions with such a frequency structure are the functions with short frequency
support of length B studied in Chapter 2, which can be obtained by setting n = 1 and
generating the set S1 by evaluating the polynomial P1(x) = x+ω1−1 at x ∈ {1, . . . , B}.
The generalization to block sparse functions, where each of the n support sets is gen-

erated by evaluating a linear, monic polynomial at B points, is of importance in many
signal processing problems, for example the reconstruction of multiband signals via blind
sampling at sub-Nyquist rates, see, e.g., [FB96,ME10,MET08,MEDS11,ME09]. Another
application is the fast and efficient evaluation of functions that can be represented as a
sparse expansion of other orthonormal basis functions, like Legendre or Gegenbauer, see,
e.g. [PT16]. For example, functions that are a sparse combination of high-degree Leg-
endre polynomials can be approximated via computing DFTs of samples of an auxiliary
periodic function, which can be shown to be block frequency sparse, see [HIK17].
Our aim in this chapter is to develop an algorithm that deterministically recovers a

general polynomially structured sparse function from samples by generalizing the recon-
struction ideas introduced in [Iwe10,Iwe13], which we also briefly outlined in Section 2.1.
Unlike in Sections 2.3 and 2.4, we cannot hope to obtain such a method by simplifying
Algorithm 2 in [Iwe10].

3.1 Polynomially Structured Sparsity

As in Chapter 2, we always consider a 2π-periodic function f ∈ C2π with finite spectrum
c(f) ∈ CZ and a large bandwidth N ∈ N. Again, we assume that we can only evaluate
the perturbed function f+η, where η ∈ C2π satisfies c(η) ∈ `1 and ‖c(η)‖∞ ≤ ε for some
suitable noise threshold ε > 0. We denote by c(N) ∈ CN the restriction of the finite
spectrum c(f + η) ∈ CZ of f + η to the frequencies contained in

{
−
⌈
N
2

⌉
+ 1, . . . ,

⌊
N
2

⌋}
,
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and by c(N,Z) ∈ CZ the embedding of c(N) into CZ,

(c(N,Z))ω =

{
cω(f + η) if ω ∈

{
−
⌈
N
2

⌉
+ 1, . . . ,

⌊
N
2

⌋}
,

0 otherwise.

In the case of exact data, i.e., η ≡ 0, we denote by c(N, f) ∈ CN the restriction of c(f)
to the frequencies in

{
−
⌈
N
2

⌉
+ 1, . . . ,

⌊
N
2

⌋}
.

We begin by formally defining the concept of polynomially structured frequency spar-
sity mentioned above.

Definition 3.1 (P (n, d,B)-structured Sparsity (Definition 2.3 in [BZI19])) Let
B, d, n and N ∈ N such that d < B < N . Let P1, . . . , Pn ∈ Z[x] be non-constant
polynomials of degree at most d with

Pj(x) =
d∑

k=0

ajkx
k,

where ajk ∈
{
−
⌈
N
2

⌉
+ 1, . . . ,

⌊
N
2

⌋}
such that for all j ∈ {1, . . . , n} and x ∈ {1, . . . , B}

we have that Pj(x) ∈
{
−
⌈
N
2

⌉
+ 1, . . . ,

⌊
N
2

⌋}
. The n support sets are defined as

Sj := {Pj(x) : x ∈ {1, . . . , B}} ,

and we set S :=
⋃n
j=1 Sj . Let ε > 0 be a suitably chosen noise threshold. If f ∈ C2π

is Bn-sparse such that all of its energetic frequencies are contained in S, it is called
P(n,d,B)-structured sparse (polynomially structured sparse). Then f is of the form

f(x) =
∑
ω∈S

cω(f)eiωx

for some vector of Fourier coefficients (cω(f))ω∈S ∈ CBn.

Polynomially structured sparsity means that the at most Bn energetic frequencies of
the function f are generated by evaluating n polynomials with integer coefficients of
degree at most d at B points. The following example illustrates this concept.

Example 3.2 Let N = 1,024, n = d = 2 and B = 9. We choose the polynomials

P1(x) = 11x2 − 22x− 200 and P2(x) = −13x2 + 26x+ 350.

The support sets generated by P1 and P2 are

S1 = {−211,−200,−167,−112,−35, 64, 185, 328, 493} and
S2 = {−469,−274,−105, 38, 155, 246, 311, 350, 363}.

Then, with S := S1 ∪ S2, the function

f(x) =
∑
ω∈S

eiωx

is P (2, 2, 9)-structured sparse with cω(f) = 1 for all frequencies ω ∈ S and cω(f) = 0 for
all ω ∈

{
−
⌈
N
2

⌉
+ 1, . . . ,

⌊
N
2

⌋}
\ S. ♦
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3.1 Polynomially Structured Sparsity

As general polynomially structured sparsity is a more complex construct than the
short support considered in Chapter 2, using separating primes does not suffice here.
Instead, we introduce the concept of a good hashing prime; a prime modulo which not
all frequencies in a support set Sj have the same residue.

Definition 3.3 (Definition 2.3 in [BZI19]) Let f be P (n, d,B)-structured sparse
with bandwidth N , noise threshold ε > 0 and support set S =

⋃n
j=1 Sj generated by the

polynomials P1, . . . , Pn. A prime p > B hashes a support set Sj well if the cardinality of
the set obtained by taking the residues modulo p of all elements of Sj is greater than 1,
i.e., if

|{ω mod p : ω ∈ Sj}| > 1.

Example 3.4 (Example 3.2 continued) We consider the same support sets

S1 = {−211,−200,−167,−112,−35, 64, 185, 328, 493} and
S2 = {−469,−274,−105, 38, 155, 246, 311, 350, 363}

as in Example 3.2. Then we have that

{ω mod 11 : ω ∈ S1} = {9} and {ω mod 11 : ω ∈ S2} = {0, 1, 3, 4, 5, 9}.

Consequently, 11 does not hash S1 well, but it hashes S2 well. ♦

Whether a prime hashes a support set well or not can be easily deduced from the
coefficients of the generating polynomial using the following well-known generalization
of the fundamental theorem of algebra.

Theorem 3.5 Let k be a field and P a polynomial in one variable x in k[x], of degree
d ≥ 0. Then P has at most d roots in k.

For a proof see [Lan05], Chapter IV, §1, Theorem 1.4. With the help of Theorem 3.5
we can now prove the following result.

Lemma 3.6 (Lemma 2.5 in [BZI19]) Let f be P (n, d,B)-structured sparse with
bandwidth N , noise threshold ε > 0 and support set S =

⋃n
j=1 Sj generated by the

polynomials P1, . . . , Pn. Then a prime p > B hashes a support set Sj with generating
polynomial

Pj(x) =
d∑

k=0

ajkx
k ∈ Z[x]

well if and only if there exists a coefficient ajk with k 6= 0 such that p - ajk.

Proof. Assume p|ajk for all k ∈ {1, . . . , d}. Then we have for all x ∈ {1, . . . , B} that

Pj(x) =
d∑

k=0

ajkx
k ≡ aj0 mod p.

As Sj is generated by evaluating Pj at x ∈ {1, . . . , B}, we obtain that

|{ω mod p : ω ∈ Sj}| = 1,

so p does not hash Sj well.
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If, on the other hand, p does not hash Sj well, then

|{ω mod p : ω ∈ Sj}| = 1.

This implies that
Pj(y) ≡ Pj(z) mod p ∀ y, z ∈ {1, . . . , B}.

Hence, for fixed y ∈ {1, . . . , B}, the polynomial

Q(x) := Pj(x)− Pj(y) =

d∑
k=0

ajkx
k − Pj(y)

of degree d has B > d zeroes modulo p. By Theorem 3.5, Q is the zero polynomial
modulo p, so

p| (aj0 − Pj(y)) and p|ajk ∀ j ∈ {1, . . . , d},

which is a contradiction.

For a good hashing prime and a P (n, d,B)-structured sparse function we can bound
the number of energetic frequencies that are hashed to the same residue by the maximal
polynomial degree d.

Lemma 3.7 (Lemma 2.6 in [BZI19]) Let f be P (n, d,B)-structured sparse with
bandwidth N , noise threshold ε > 0 and support set S =

⋃n
j=1 Sj generated by the

polynomials P1, . . . , Pn ∈ Z[x]. If a support set Sj is hashed well by a prime p > B, then

(i) Pj is not a constant polynomial modulo p,

(ii) |{ω ∈ Sj : ω ≡ ν mod p}| ≤ d for all residues ν ∈ {0, . . . , p− 1}.

Proof. It is clear that Pj cannot be constant modulo p if |{ω mod p : ω ∈ Sj}| > 1.
Assume now that |{ω ∈ Sj : ω ≡ ν mod p}| > d for some ν ∈ {0, . . . , p − 1}. Since all
elements of Sj are generated by evaluating Pj at some x ∈ {1, . . . , B}, we find for a
y ∈ {1, . . . , B} with Pj(y) ≡ ν mod p that

Pj(y) ≡ Pj(z) mod p

for d distinct choices of z ∈ {1, . . . , B}\{y}. Then the polynomial Q(x) := Pj(x)−Pj(y)
has at least d+ 1 zeroes modulo p. By Theorem 3.5 this is a contradiction.

Example 3.8 (Example 3.2 continued) We consider the same support sets as in
Example 3.2. Recall that

S2 = {−469,−274,−105, 38, 155, 246, 311, 350, 363},

the support set generated by P2, is well-hashed by 11. Indeed, P2 is not a constant
polynomial modulo 11, as

P2(x) ≡
(
9x2 + 4x+ 9

)
mod 11 6≡ c mod 11

for all c ∈ {0, . . . , 10}. Further, we obtain the following vector of residues modulo 11 of
the elements of S2,

(ω mod 11)ω∈S2
= (4, 1, 5, 5, 1, 4, 3, 9, 0)T ∈ N|S2|

0 .
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3.1 Polynomially Structured Sparsity

Hence, for each residue ν modulo 11 there are at most two elements in S2 that are
congruent to ν,

|{ω ∈ S2 : ω ≡ ν mod 11}| =


0 if ν ∈ {2, 6, 7, 8, 10},
1 if ν ∈ {0, 3, 9},
2 if ν ∈ {1, 4, 5}.

♦

Let us now assume that there exists a prime p > B that hashes all support sets
S1, . . . , Sn of a P (n, d,B)-structured sparse function f well. Then the restriction of any
support set Sj to the frequencies congruent to ν modulo p contains at most d elements
by Lemma 3.7 (ii) and this holds for all residues ν ∈ {0, . . . , p − 1}. Consequently, the
restriction of S to these frequencies contains at most dn elements, and a function whose
support set is the restriction of S is dn-sparse. Thus, we will from now on also refer to
support sets as sparse if the corresponding functions are sparse.
Instead of developing a completely new algorithm, we can now employ existing methods

for reconstructing the restricted functions, which are much sparser than f . Due to the
structure of the problem, Algorithm 2 in [Iwe10] and Algorithm 3 in [Iwe13] are especially
well-suited for this task. In theory, though, any sparse FFT algorithm for recovering a
function f ∈ C2π from samples could be considered. It can be shown both theoretically
and numerically that Algorithm 2 in [Iwe10] and Algorithm 3 in [Iwe13], which are
essentially the same method, are very efficient for very small sparsities. This is also
apparent from the numerical experiments we performed in Section 2.5, see Figure 2.2.
The main idea of our approach for reconstructing a function with polynomially structured
sparsity from samples is to apply Algorithm 3 in [Iwe13] to the restrictions to frequencies
congruent to ν modulo u for all residues ν, where u is a prime that hashes all support
sets well, since these restrictions are at most dn-sparse. If this procedure is performed for
all residues, we find all energetic frequencies and their Fourier coefficients. By applying
Algorithm 3 in [Iwe13] only to the dn-sparse restriction instead of the Bn-sparse function,
we can indeed reduce the overall runtime, as the runtime of Algorithm 3 in [Iwe13] scales
quadratically in the sparsity, which we already mentioned in Section 2.2.2. We will prove
theoretical bounds on the runtime and sampling complexities of our new algorithm in
Section 3.3.3.
However, finding a single prime u that hashes all n support sets well is, in general, not

possible without further information on the generating polynomials. In the remainder of
this section we will show how to find M primes such that the majority of them hashes
all support sets well. The existence of such primes can be proven with the help of the
CRT, see Theorem 2.6, and the concept of separation, which we already introduced in
Definition 2.9. Recall that u ∈ N separates the integers ω1, . . . , ωB if their residues
modulo u are all distinct. The correct energetic frequencies can then be found using
median arguments.

Example 3.9 (Example 3.2 continued) For the support sets from Example 3.2 we
find, e.g., that

(ω mod 17)ω∈S2
= (7, 15, 14, 4, 2, 8, 5, 10, 6)T ,

so 17 separates the elements of S2. ♦

The following result about separating primes has been shown in Lemma 1 in [Iwe10].
Note that, according to Definition 2.17, we denote the rth prime by pr.

69



3 Sparse FFT for 2π-Periodic Functions with Polynomially Structured Sparsity

Lemma 3.10 Let E,N ∈ N, E < N , and u1 := pr for some r ∈ N. We define
M = 2 · E · blogu1 Nc + 1. Choose M − 1 further primes with u1 < · · · < uM , and let
T (

{
−
⌈
N
2

⌉
+ 1, . . . ,

⌊
N
2

⌋}
with |T | ≤ E. Then more than M

2 of the um separate every
x ∈

{
−
⌈
N
2

⌉
+ 1, . . . ,

⌊
N
2

⌋}
from all t ∈ T \ {x}.

In the next lemma we prove that, for a suitable M , it suffices to find M primes such
that more than half of them separate the leading coefficients of the frequency generating
polynomials from 0 at the same time in order to guarantee that more than half of these
primes hash all support sets well.

Lemma 3.11 (Lemma 2.13 in [BZI19]) Let f be P (n, d,B)-structured sparse with
bandwidth N , noise threshold ε > 0 and support set S =

⋃n
j=1 Sj generated by the

polynomials P1, . . . , Pn, and set E = n+ 1. Let M primes B < u1 < · · · < uM satisfying
Lemma 3.10 be given. Then more than M

2 of the um hash all n support sets S1, . . . , Sn
well.

Proof. Let T be the set consisting of the leading coefficients of the polynomials P1, . . . , Pn
that generate the support sets S1, . . . , Sn, i.e.,

T :=

aj,deg(Pj) : Pj(x) =

deg(Pj)∑
k=0

ajkx
k, j ∈ {1, . . . , n}

 .

By definition aj,deg(Pj) 6= 0 for all polynomials and, since |T ∪ {0}| ≤ E, by Lemma 3.10
more than M

2 of the um separate every element of
{
−
⌈
N
2

⌉
+ 1, . . . ,

⌊
N
2

⌋}
from all other

elements of T ∪ {0}, i.e., from all distinct leading polynomial coefficients and from 0.
Let p = um be one of these separating primes for an m ∈ {1, . . . ,M}. Assume that

there exists a support set Sj that is not well hashed by p, so that we have

{ω mod p : ω ∈ Sj} = {ν}

for some residue ν ∈ {0, . . . , p− 1}. Then the polynomial Pj that generates Sj satisfies

Pj(x)− ν ≡ 0 mod p ∀x ∈ {1, . . . , B}.

Consider now the polynomial Q(x) := Pj(x)−ν modulo p. It is a polynomial of degree at
most d with B > d zeroes modulo p, so by Theorem 3.5 it has to be the zero polynomial
modulo p. Consequently, we obtain that

p|ajk ∀ k ∈ {1, . . . , d} and p|(aj0 − ν),

so aj,deg(Pj) ≡ 0 mod p. Since p separates aj,deg(Pj) from 0 and the other leading coeffi-
cients, we also find that

aj,deg(Pj) 6≡ t mod p ∀ t ∈ (T ∪ {0}) \
{
aj,deg(Pj)

}
.

This is only possible if aj,deg(Pj) = 0, which is a contradiction. Thus, it follows that

|{ω mod p : ω ∈ Sj}| > 1,

so p hashes all Sj well. Hence, all of the more than M
2 primes u1, . . . , uM that separate

the leading coefficients from one another and from 0 also hash all support sets well.
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Example 3.12 (Example 3.2 continued) For the P (2, 2, 9)-structured sparse function
f from Example 3.2 we can choose u1 = 11 > B and require

M = 2 · 3 blog11Nc+ 1 = 13

primes in total, e.g., u1 = 11, u2 = 13, . . . , u13 = 59. According to Lemma 3.11, at least
seven of these primes have to hash S1 and S2 well. In fact, all um except u1 = 11 and
u2 = 13 hash both support sets well. ♦

Lemmas 3.10 and 3.11 imply that, forM suitably chosen primes u1, . . . , uM , the restric-
tion of the input function to frequencies congruent to ν modulo um is at most dn-sparse
for the majority of the um. Consequently, since Algorithm 3 in [Iwe13] recovers the
dn most energetic frequencies and gives accurate estimates for their Fourier coefficients
if the restriction is at most dn-sparse, applying it to the restriction to the frequencies
congruent to ν modulo um yields the correct frequencies and Fourier coefficients for the
majority of the um.
Having thus established a foundation for our main idea, we now have to formalize the

method in order to be able to determine the required samples and the runtime of the
method. First, however, we will look at Algorithm 3 in [Iwe13] more closely.

3.2 Methodical Background

In this section we will explain Algorithm 2 in [Iwe10] and Algorithm 3 in [Iwe13] in more
detail, and summarize some of the results proven in the respective papers. Note that
both algorithms are essentially the same method, but use different notation. Algorithm 3
in [Iwe13] transfers the approach from Algorithm 2 in [Iwe10], which we briefly outlined
in Section 2.2, to a matrix setting, thus allowing for more efficient computations and
better error bounds. The main ideas remain unchanged.
Both algorithms reconstruct the B most energetic frequencies and produce accurate

estimates for the corresponding Fourier coefficients of a sparse function f ∈ C2π with
bandwidth N from the CDFTs of the vectors as̃k t̃l , k ∈

{
1, . . . , K̃

}
, l ∈

{
0, . . . , L̃

}
of

equidistant samples of f , where s̃k and t̃l are small primes depending on the bandwidth
and sparsity of the function. The energetic frequencies are reconstructed from their
residues modulo s̃k and t̃1, . . . , t̃L̃ for all k with the help of the CRT reconstruction, see
Algorithm 1, which is why the primes have to satisfy

L̃−1∏
l=1

t̃l <
N

s̃1
≤

L̃∏
l=1

t̃l.

For a general B-sparse input function the method introduced in [Iwe10, Iwe13] cannot
be guaranteed to work for a single prime s̃k. However, setting K̃ = 8Bblogs̃1 Nc + 1

and choosing s̃1, . . . , s̃K̃ as the K̃ smallest primes greater than B and t̃L̃, all energetic
frequencies are correctly reconstructed from their residues for more than K̃/2 of them.
The residues modulo t̃l can be found by comparing the entries of âs̃k and âs̃k t̃l that
correspond to the same frequency. The coefficient estimates are then obtained by taking
the medians over the K̃ coefficient estimates found for each of the s̃k.
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3 Sparse FFT for 2π-Periodic Functions with Polynomially Structured Sparsity

3.2.1 Measurement Matrices I

In [Iwe13], the concept of measurement matrices was introduced in order to facilitate the
notation of the computations briefly outlined in Section 2.2.2. As we want to use the
same notation for our method later on, we explain this construction here in more detail.
For the definition of measurement matrices we first require the definition of the row-wise
Hadamard tensor product.

Definition 3.13 (Row-wise Hadamard Product) Let A = (ak, l)
κ−1,m−1
k, l=0 ∈ Cκ×m,

B = (bk, l)
λ−1,m−1
k, l=0 ∈ Cλ×m. Then the row-wise Hadamard product A~B ∈ C(κ·λ)×m is

given by

(A~B)k, l := ak mod κ, l · b k−(k mod κ)
κ

, l
, k ∈ {0, . . . , κλ− 1}, l ∈ {0, . . . ,m− 1},

i.e., the first κ rows of A~B are given as the Hadamard product of all κ rows of A with
the first row of B, the second κ rows as the Hadamard product of all κ rows of A with
the second row of B and so forth.

The following property of the Hadamard product follows directly from Definition 3.13.

Lemma 3.14 Let A ∈ Cκ×m, B ∈ Cλ×m. Then every row of A~B is given as the row
tensor product of a row of A with a row of B.

Now we can define the measurement matrices required for Algorithm 3 in [Iwe13]. We
choose the necessary primes s̃k and t̃l in the way we already indicated at the beginning of
Section 3.2. We want to apply the CRT reconstruction from Algorithm 1 to the residues
modulo t̃1, . . . , t̃L̃ and s̃k for all k. Hence, we need that

s̃k

L̃−1∏
l=1

t̃l < N ≤ s̃k
L̃∏
l=1

∀ k ∈
{

1, . . . , K̃
}
.

In order to be able to choose the t̃l independently of the s̃k, we use that s̃k has to be
greater than B for all k.

Definition 3.15 (Measurement Matrices I ((5) in [Iwe13])) Let B,N, ε−1 ∈ N\{1}
with B < N . Let t̃1, . . . , t̃L̃ be the smallest primes such that

B

L̃−1∏
l=1

t̃l < N ≤ B
L̃∏
l=1

t̃l.

For algorithmic purposes we additionally set t0 := 1. Let s̃1 be the smallest prime
greater than max

{
t̃L̃, B

}
and let K̃ = 4Bε blogs̃1 Nc + 1. Set s̃2, . . . , s̃K̃ as the smallest

K̃ − 1 primes greater than s̃1. Furthermore, we define κ̃ :=
∑K̃

k=1 s̃k, λ̃ :=
∑L̃

l=0 t̃l and
q̃ := lcm{N, s̃1, . . . , s̃K̃ , t̃1, . . . , t̃L̃}, where lcm{a, b} denotes the least common multiple
of a and b for any a, b ∈ Z.
We define a special κ̃×N measurement matrix. All entries of this matrix will be either

one or zero. It is built up row-wise, where an entry of the jth row is one if and only if its
column index l is congruent to a certain residue modulo s̃k. For a formal definition we
fix an index k ∈ {1, . . . , K̃} and a residue ν ∈

{
−
⌈
s̃k
2

⌉
+ 1, . . . ,

⌊
s̃k
2

⌋}
modulo s̃k. Then
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we define the row rs̃k, ν ∈ {0, 1}1×N corresponding to the residue ν modulo s̃k by

(rs̃k, ν)j := δ(j−ν) mod s̃k, 0
:=

{
1 if j ≡ ν mod s̃k,

0 otherwise
(3.1)

for j ∈
{
−
⌈
N
2

⌉
+ 1, . . . ,

⌊
N
2

⌋}
, where δk, l denotes the Kronecker delta. Combining for

each prime s̃k the s̃k possible rows, we set

M
s̃1, K̃

:=



r
s̃1,−

⌈
s̃1
2

⌉
+1

...
r
s̃1,
⌊
s̃1
2

⌋
r
s̃2,−

⌈
s̃2
2

⌉
+1

...
r
s̃K̃ ,

⌊
s̃
K̃
2

⌋


∈ {0, 1}κ̃×N .

In order to be able to utilize M
s̃1, K̃

in our setting, its number of columns has to be
divisible by all s̃k and t̃l. Hence, we define the extension E

K̃
ofM

s̃1, K̃
to a κ̃× q̃ matrix

by extending all rows rs̃k, ν to columns indexed by j ∈
{
−
⌈
q̃
2

⌉
+ 1, . . . ,

⌊
q̃
2

⌋}
, as in (3.1).

Then E
K̃

is the first measurement matrix employed by the algorithm. The middle N
columns of E

K̃
are justM

s̃1, K̃
, and, since s̃1, . . . , s̃K̃ all divide q̃, we have that

E
K̃

=



. . . . . . Is̃1 Is̃1 Is̃1 Is̃1 . . . . . .

. . . . . . Is̃2 Is̃2 Is̃2 . . . . . .

...
...

...
...

...

...
...

...
...

...

. . . . . . Is̃
K̃

. . . . . .



,

where Is̃k denotes the identity matrix of size s̃k × s̃k.
Further, we analogously define the (λ̃ − 1) ×N matrixMt̃1, L̃

, consisting of the rows
corresponding to the possible residues modulo t̃1, . . . , t̃L̃,

Mt̃1, L̃
:=


r
t̃1,−

⌈
t̃1
2

⌉
+1

...
r
t̃L̃,

⌊
t̃
L̃
2

⌋

 .
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Let us denote by 1M ∈ CM the vector consisting ofM ones. We set Nt̃1, L̃ to be the λ̃×N
matrix whose first row contains only ones and whose other rows are given byMt̃1, L̃

,

Nt̃1, L̃ :=

(
1N
Mt̃1, L̃

)
,

and define the (κ̃ · λ̃)×N row-wise Hadamard product R
L̃, K̃

:=M
s̃1, K̃
~Nt̃1, L̃ ofM

s̃1, K̃

and Nt̃1, L̃ and its extension G
L̃, K̃

to a (κ̃ ·λ̃)× q̃ matrix, which is the second measurement
matrix used by the algorithm. Recall that by definition, all s̃k and t̃l divide q̃. Later on,
q̃ will be the length of the vector of equidistant samples of f from which the algorithm
chooses only a few. Note that q̃ is even since t̃1 = 2.

The measurement matrices have been chosen as above in order to be able to write
down all congruencies occurring in the reconstruction procedure described in Section 2.2
in an easy way. The following property has been shown in Lemma 5 in [Iwe13].

Lemma 3.16 Let f ∈ C2π have bandwidth N and let B ∈ N with B < N . By the
CRT, every row of G

L̃, K̃
is of the form

(
rs̃k t̃l, h

)
j

=
(
rs̃k, h mod s̃k ~ rt̃l, h mod t̃l

)
j

=

{
1 if j ≡ h mod s̃k t̃l,

0 otherwise,

for some indices h ∈
{
−
⌈
s̃k t̃l

2

⌉
+ 1, . . . ,

⌊
s̃k t̃l

2

⌋}
, j ∈

{
− q̃

2 + 1, . . . , q̃2

}
, k ∈

{
1, . . . , K̃

}
and l ∈

{
0, . . . , L̃

}
. With t̃0 = 1 we can use the same notation for rows of the form

rs̃k, h mod s̃k ~ 1N , which are generated as the row-wise Hadamard product of a row of
E
K̃

with the first row of the extension of Nt̃1, L̃ to a λ̃× q̃ matrix.

Remark 3.17 With the help of Lemma 3.16 we can use G
L̃, K̃

in order to obtain the
required samples of f as a few measurements of aq̃, where

aq̃ =

(
f

(
2πj

q̃

))q̃−1

j=0

is, as in Definition 2.5, the vector of q̃ equidistant samples of f . Then aq̃ can be consid-
ered to be the generating sampling vector, since any vector as̃k t̃l of equidistant samples
required for Algorithm 3 in [Iwe13] can be obtained from it via

as̃k t̃l =

(
aq̃
j· q̃
s̃kt̃l

)s̃k t̃l−1

j=0

.

Of course we will not sample f at q̃ equidistant points; the vector aq̃ is only used theo-
retically in [Iwe13] to show that the concepts introduced therein work, by embedding all
necessary samples into one vector of equidistant samples. Lemma 3.16 yields for every
h ∈

{
−
⌈
s̃k t̃l

2

⌉
+ 1, . . . ,

⌊
s̃k t̃l

2

⌋}
that by multiplying the row rs̃k t̃l, h ∈ {0, 1}

1×q̃ of G
L̃, K̃
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with the CDFT of the sampling vector aq̃, we obtain the corresponding entry of âs̃k t̃l ,

rs̃k t̃l, h · â
q̃ =

q̃
2∑

j=− q̃
2

+1

(
rs̃k t̃l, h

)
j
âq̃j

=

q̃
2∑

j=− q̃
2

+1

δ(j−h) mod s̃k t̃l, 0
· âq̃j

=

⌊
q̃

2s̃kt̃l

⌋∑
j′=−

⌈
q̃

2s̃kt̃l

⌉
+1

1

q̃

q̃−1∑
b=0

e
−2πib(h+j′s̃kt̃l)

q̃ aq̃b

=

q̃−1∑
b=0

1

q̃
aq̃b · e

−2πibh
q̃

⌊
q̃

2s̃kt̃l

⌋∑
j′=−

⌈
q̃

2s̃kt̃l

⌉
+1

e
−2πibj′s̃kt̃l

q̃

=

q̃−1∑
b=0

1

s̃k t̃l
f

(
2πb

q̃

)
e
−2πibh

q̃ δb mod q̃
s̃kt̃l

, 0

=

s̃k t̃l−1∑
b′=0

1

s̃k t̃l
f

(
2πb′ q̃

s̃k t̃l

q̃

)
e

−2πib′h q̃
s̃kt̃l

q̃

=
1

s̃k t̃l

s̃k t̃l−1∑
b′=0

f

(
2πb′

s̃k t̃l

)
e
−2πib′h
s̃kt̃l

= âs̃k t̃lh,

where we have j = h+ j′s̃k t̃l for j′ ∈
{
−
⌈

q̃
2s̃k t̃l

⌉
+ 1, . . . ,

⌊
q̃

2s̃k t̃l

⌋}
and b = b′ q̃

s̃k t̃l
for some

b′ ∈
{

0, . . . , s̃k t̃l − 1
}
.

Hence, the vector G
L̃, K̃
·Fq̃ ·as̃k t̃l contains precisely the CDFTs of the necessary vectors

of equidistant samples of f , and is of the form

G
L̃, K̃

Fq̃ · aq̃ =

(
âs̃1

T
, âs̃1 t̃1

T

, . . . , âs̃1 t̃L̃
T

, âs̃2
T
, âs̃2 t̃1

T

, . . . , âs̃K̃ t̃L̃
T
)T

.

Analogously, one can show that

E
K̃
Fq̃ · aq̃ =

(
âs̃1

T
, âs̃2

T
, . . . , âs̃K̃

T
)T

.

This implies that we do not need all q̃ equidistant samples of f in order to obtain the
CDFTs of the required sampling vectors as̃k t̃l . These CDFTs can be found by computing
CDFTs of the vectors of s̃k t̃l equidistant samples of f for all k ∈ {1, . . . , K̃} and l ∈
{0, . . . , L̃}, which can be done in much less time than computing the CDFT of the vector
aq̃ of q̃ equidistant samples of f . ♦
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3 Sparse FFT for 2π-Periodic Functions with Polynomially Structured Sparsity

3.2.2 Algorithm 3 in [Iwe13]

Using the notion of measurement matrices, we can now summarize Algorithm 3 in [Iwe13]
as Algorithm 4.

Algorithm 4 Algorithm 3 in [Iwe13]

Input: f + η, B,N, ε−1 ∈ N \ {1} with B < N , where f is at most B-sparse.
Output: R, xR, where R contains the 2B frequencies ω with greatest magnitude coef-

ficient estimates xω.
1: Find the L̃ smallest primes t̃1, . . . , t̃L̃ such that

∏L̃−1
l=1 t̃l <

N
B ≤

∏L̃
l=1 t̃l. Set t̃0 = 1.

2: Let s1 > max{B, t̃L̃} be the smallest prime, K̃ = 4Bε
⌊
logs̃1 N

⌋
+ 1 and s̃2, . . . , s̃K̃ be

the smallest primes greater than s̃1.
3: Initialize R = ∅, xR = 0N , q̃ = lcm

(
N, s̃1, . . . , s̃K̃ , t̃1, t̃L̃

)
.

4: G
L̃, K̃
· âq̃ ←

(
âs̃1

T
, âs̃1 t̃1

T

, . . . , âs̃1 t̃L̃
T

, âs̃2
T
, . . . , âs̃K̃ t̃L̃

T
)T

5: E
K̃
· âq̃ ←

(
âs̃1

T
, . . . , âs̃K̃

T
)T

6: for k from 1 to K̃ do
7: for h from −

⌈
s̃k
2

⌉
+ 1 to

⌊
s̃k
2

⌋
do

8: for l from 1 to L̃ do

9: bmin ← argmin

b∈
{
−
⌈
t̃l
2

⌉
+1,...,

⌊
t̃l
2

⌋}
∣∣∣∣∣(EK̃ · âq̃)rs̃k, h −

(
G
L̃, K̃
· âq̃
)
rs̃kt̃l, h+b·s̃k

∣∣∣∣∣
10: rk, hl ← (h+ bmin · s̃k) mod t̃l
11: end for
12: Recover ωk, h from ωk, h ≡ h mod s̃k, ωk, h ≡ ak, hl mod t̃l for l ∈ {1, . . . , L̃}.
13: end for
14: end for
15: for each ωk, h value reconstructed more than K̃

2 times do

16: Re(xω)← median
h∈
{
−
⌈
s̃k
2

⌉
+1,...,

⌊
s̃k
2

⌋}
k∈{1,...,K̃}
l∈{1,...,L̃}

{
Re

((
G
L̃, K̃
· âq̃
)
rs̃kt̃l,h

)
: ω = ωk, h

}

17: Im(xω)← median
h∈
{
−
⌈
s̃k
2

⌉
+1,...,

⌊
s̃k
2

⌋}
k∈{1,...,K̃}
l∈{1,...,L̃}

{
Im

((
G
L̃, K̃
· âq̃
)
rs̃kt̃l,h

)
: ω = ωk, h

}

18: end for
19: Sort the coefficients by magnitude s.t. |xω1 | ≥ |xω2 | ≥ · · · .
Output: R = {ω1, . . . , ω2B}, xR.

In lines 9 and 10 of Algorithm 4, the residues of the possibly energetic frequencies
modulo t̃l are computed, similar to (2.6) and (2.9). Line 12 reconstructs the frequencies
from their previously computed residues via the CRT procedure from Algorithm 1. For
all frequencies that have been reconstructed more than K̃

2 times by Algorithm 4, the
Fourier coefficient estimates xω are computed by taking the median of the real and the
imaginary parts of the corresponding entries of âs̃k t̃l for all s̃k and t̃l. If ω is found for
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more than K̃
2 values for s̃k, its coefficient estimate, which is the corresponding Fourier

coefficient of f + η, is accurate for the same primes s̃k, so by taking the medians, one
obtains the real and imaginary parts of the correct coefficient estimates. By additionally
considering all s̃k t̃l instead of just the s̃k, as in (2.10), the method becomes more stable
with respect to noise, since we want to find good estimates for the Fourier coefficients of
the original function f .
The following lemma summarizes the main results shown for Algorithm 3 in [Iwe13]

that are relevant for our method. Here, for any vector y ∈ C|I| with index set I, and a
subset R ⊆ I, we denote by yR ∈ C|I| the vector

(yR)j =

{
yj if j ∈ R,
0 otherwise,

for all j ∈ I. For any s < |I| we will let the subset Ropt
s ⊆ I be the, in lexicographical

order, first s-element subset such that |yj | ≥ |yk| for all j ∈ Ropt
s and k ∈ I \Ropt

s . Thus,
Ropt
s contains the indices of s entries of y with largest magnitudes. While choosing s

entries with largest magnitudes might not be unique, Ropt
s is unique by definition. To

simplify notation we set yopt
s := yRopt

s
.

Lemma 3.18 Let f ∈ C2π have bandwidth N and let B ∈ N with B < N .

(i) (Lemma 6 in [Iwe13]) If ω ∈
{
−
⌈
N
2

⌉
+ 1, . . . ,

⌊
N
2

⌋}
satisfies

|cω| > 4 ·
(

1

2B

∥∥∥c(N)− copt
2B (N)

∥∥∥
1

+ ‖c(f)− c(N,Z)‖1
)
,

then ω will be reconstructed more than K̃
2 times.

(ii) (Proof of Theorem 7 in [Iwe13]) If ω is reconstructed more than K̃
2 times, then

|xω − cω| ≤
√

2

(
1

2B

∥∥∥c(N)− copt
2B (N)

∥∥∥
1

+ ‖c(f)− c(N,Z)‖1
)
.

(iii) (Theorem 7 in [Iwe13]) Choosing ε−1 = 2, Algorithm 3 in [Iwe13] will output an
xR ∈ CN satisfying

‖c(N)− xR‖2

≤
∥∥∥c(N)− copt

B (N)
∥∥∥

2
+

11√
B

∥∥∥c(N)− copt
2B (N)

∥∥∥
1

+ 22
√
B ‖c(f)− c(N,Z)‖1

in a runtime of

O

(
B2 log2N log2(2B logN) log2 N

2B

log2(2B) log log N
2B

)
,

and using

O

(
B2 log2N log(2B logN) log2 N

2B

log2(2B) log log N
2B

)
.

samples of f .

Remark 3.19 (i) Heuristically, the assertions of Lemma 3.18 (i) imply that if ω is
sufficiently energetic, if the perturbed function f + η is approximately B-sparse and if N
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3 Sparse FFT for 2π-Periodic Functions with Polynomially Structured Sparsity

is a good estimate on the bandwidth of f , ω will be reconstructed for more than half of
the s̃k. Thus, its coefficient estimate will be computed by taking the medians in lines 16
and 17.

(ii) It follows from Lemma 3.18 (ii) that if a frequency ω is reconstructed for more than
half of the s̃k, then its coefficient estimate xω, calculated in lines 16 and 17, will be
accurate if the perturbed function f + η is still approximately B-sparse and if N is a
good estimate on the bandwidth of f .

(iii) Lemma 3.18 (iii) implies that, if the perturbed function f + η is still approximately
B-sparse and N is a good estimate on the bandwidth of f , the reconstruction of c(N)
by the vector xR given by Algorithm 4 is accurate.

Further, it follows that the runtime and sampling complexity of Algorithm 4 are sub-
linear in the bandwidth N and quadratic in the sparsity B.

♦

3.3 Polynomially Structured Sparse Functions

3.3.1 Measurement Matrices II

In Section 3.1 we already mentioned that the main idea of our algorithm for polynomially
structured sparse functions is to apply Algorithm 3 in [Iwe13] to all restrictions of the
input function to frequencies congruent to a residue modulo the primes u1, . . . , uM . In
order to be able to do so, we first have to introduce the measurement matrices and primes
required for our approach. Analogously to Algorithm 4, we want to apply the CRT
reconstruction procedure from Algorithm 1 to the residues modulo skum and t1, . . . , tL
for all k ∈ {1, . . . ,K} and m ∈ {1, . . . ,M}. Consequently, we require that

skum

L−1∏
l=1

tl < N ≤ skum
L∏
l=1

tl ∀ k ∈ {1, . . . ,K} and ∀m ∈ {1, . . . ,M}.

In order to be able to choose the tl independently of the sk and um, we use that um will be
greater than B and sk will be greater than dn for all k ∈ {1, . . . ,K} andm ∈ {1, . . . ,M}.

Definition 3.20 (Definition 3.1 in [BZI19]) Let f ∈ C2π be P (n, d,B)-structured
sparse with bandwidth N and noise threshold ε > 0. Let t1, . . . , tL be the L smallest
primes satisfying

Bdn

L−1∏
l=1

tl < N ≤ Bdn
L∏
l=1

tl.

For algorithmic purposes we let t0 := 1. Further, we set s1 to be the smallest prime that
is greater than both dn and tL, i.e.,

s1 := pa > max{dn, tL} ≥ pa−1.

The minimal K for guaranteeing correct recovery of the restricted functions for more
than half of the sk by Algorithm 3 in [Iwe13] would now be

K = 8dn

⌊
logs1

N

u1

⌋
+ 1.
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3.3 Polynomially Structured Sparse Functions

However, since we did not choose the hashing primes u1, . . . , uM yet, which, similarly to
Definition 3.15, have to be distinct from the sk, we increase K slightly using that the
unknown u1 will have to be strictly greater than B, i.e.,

K := 8dn

⌊
logs1

N

B

⌋
+ 1 ≥ 8dn

⌊
logs1

N

u1

⌋
+ 1.

Hence, we can now choose the remaining sk independently from the hashing primes
u1, . . . , uM to be sk := pa−1+k for k ∈ {1, . . . ,K}. The um can be found by setting

u1 := pb > max{B, sK} ≥ pb−1,

M := 2(n+1)
⌊
logu1 N

⌋
+1 and um := pb−1+m form ∈ {1, . . . ,M}. With these definitions

s1, . . . , sK , t1, . . . , tL, u1, . . . , uM are pairwise relatively prime and satisfy that

skum ·
L∏
l=1

tl ≥ N

for all k ∈ {1, . . . ,K} and m ∈ {1, . . . ,M}, so the frequencies of the restriction can be
reconstructed from their residues modulo sk · um, t1, . . . , tL for all k and m via the CRT
reconstruction method in Algorithm 1. By choice ofM and Lemmas 3.10 and 3.11, more
than M

2 of the um hash all support sets Sj of the input function f well. Furthermore, we
have that sk > dn and um > B for all k and m.
We also set κ :=

∑K
k=1 sk, λ :=

∑L
l=0 tl and µ :=

∑M
m=1 um. Analogously to q̃ defined

in Section 3.2.1, we set

q = lcm(N, s1, . . . , sK , t1, . . . , tL, u1, . . . , uM ),

because all sk, tl and um have to divide q. Again, q will be the length of the generating
sample vector later on, i.e., all required samples of f can be selected as entries of aq, but
of course we do not need all entries of aq. Note that q is even, as t1 = 2.

From now on we always assume that the occurring natural numbers q, s1, . . . , sK ,
t1, . . . , tL, u1, . . . , uM comply with Definition 3.20. Recall that in Definition 2.5 we set
the vector of M equidistant samples of f ∈ C2π to be

aM =

(
f

(
2πj

M

))M−1

j=0

∈ CM .

In order to apply Algorithm 3 in [Iwe13] to the restrictions of f to frequencies that
are congruent to ν modulo um for all residues ν ∈

{
−
⌈
um
2

⌉
+ 1, . . . ,

⌊
um
2

⌋}
and all

m ∈ {1, . . . ,M}, we need to transform the vector âq = Fqa
q into a matrix with sparse

columns whose entries correspond to the frequencies that are congruent to ν modulo um.

Definition 3.21 (Measurement Matrices II (Definition 3.6 in [BZI19])) For
t1, . . . , tL, s1, . . . , sK , u1, . . . , uM and q as in Definition 3.20, we construct a special µ×N
measurement matrixMu1,M , analogously to the measurement matrices used in [Iwe13],
given by Definition 3.15. As before, an entry of a row is one if and only if its col-
umn index is congruent to a certain residue modulo um. Let m ∈ {1, . . . ,M} and
ν ∈

{
−
⌈
um
2

⌉
+ 1, . . . ,

⌊
um
2

⌋}
be a fixed residue modulo um. Then we define the row
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rum, ν ∈ {0, 1}1×N by

(rum, ν)j := δ(j−ν) mod um, 0 =

{
1, if j ≡ ν mod um,

0, otherwise
(3.2)

for j ∈
{
−
⌈
N
2

⌉
+ 1, . . . ,

⌊
N
2

⌋}
, and set

Mu1,M :=



ru1,−du12 e+1

...
ru1,bu12 c
ru2,−du22 e+1

...
ruM ,buM2 c


.

We define the extension HM,L,K of Mu1,M to a µ × q matrix by extending all rows
rum, ν to columns indexed by j ∈

{
− q

2 + 1, . . . , q2
}
, as given in (3.2). Thus, the middle N

columns of HM,L,K are just Mu1,M . Further, as in Section 3.2.1, we define the κ × N
matrixMs1,K and the (λ− 1)×N matrixMt1, L, consisting of the rows corresponding
to the possible residues modulo all the sk and tl, respectively,

Ms1,K :=


rs1,−d s12 e+1

...
rsK ,b sK2 c

 and Mt1, L :=


r
t1,−d t12 e+1

...
r
tL,
⌊
tL
2

⌋

 .

We set Nt1, L to be the λ×N matrix whose first row contains only ones and whose other
rows are given byMt1, L,

Nt1, L :=

(
1N
Mt1, L

)
,

and define the (κ ·λ)×N row-wise Hadamard product RL,K :=Ms1,K~Nt1, L ofMs1,K

and Nt1, L and its extension GL,K to a (κ · λ) × q matrix. The measurement matrices
required for our algorithm are EK , GL,K and HM,L,K .

Remark 3.22 (Restriction of âq (Remark 3.7 in [BZI19])) If we compute the row-
wise Hadamard product of HM,L,K with (âq)T ∈ C1×q, every row of HM,L,K ~ (âq)T

is, by Lemma 3.14, given as the row-wise Hadamard product of a row of HM,L,K and
(âq)T . Let us denote the columns of (HM,L,K~ (âq)T )T ∈ Cq×µ by ρTum, ν for all residues
ν ∈

{
−
⌈
um
2

⌉
+ 1, . . . ,

⌊
um
2

⌋}
and m ∈ {1, . . . ,M}. Then the column ρTum, ν corresponds

to a residue ν modulo the hashing prime um. This column only contains nonzero entries
at frequencies that are congruent to ν modulo um,(

ρTum, ν
)
j

:=
(
rum, ν ~

(
âq
)T)T

j

= (rum, ν)Tj ·
(
âq
)
j

= δ(j−ν) mod um, 0 · âqj
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=

{
âqj , if j ≡ ν mod um,

0, otherwise

for j ∈
{
− q

2 + 1, . . . , q2
}
. Hence, the column ρTum, ν of (HM,L,K~(âq)T )T is the restriction

of âq to the frequencies congruent to ν modulo um, which is at most dn-sparse for a good
hashing prime um. Thus, for more than M

2 of the um, we can apply Algorithm 3 in [Iwe13]
with sparsity dn to all columns. ♦

3.3.2 Algorithm for Polynomially Structured Sparse Functions

By Remark 3.22, Algorithm 3 in [Iwe13] can be applied with sparsity dn to all columns
ρTum, ν of (HM,L,K ~ (âq)T )T . Recall that the column ρTum, ν is only guaranteed to be
at most dn-sparse if um hashes all support sets S1, . . . , Sn well. This means that only
for the columns corresponding to those primes the algorithm will return all energetic
frequencies and provide good estimates for their Fourier coefficients. Consequently, we
have to apply Algorithm 3 in [Iwe13] to every single column of (HM,L,K ~ (âq)T )T and
choose the frequencies and coefficient estimates that appear for more than M

2 of the um.
In Algorithm 3 in [Iwe13] estimates for the Fourier coefficients cω of the input function

f are calculated from certain entries of GL,K · âq. These entries can be obtained in a
fast way from f by computing CDFTs of the vectors asktl . A similar property is true
for the entries of GL,K · (HM,L,K ~ (âq)T )T required for polynomially structured sparse
functions, as the following remark shows.

Remark 3.23 (Remark 3.9 in [BZI19]) For polynomially structured sparse input
functions we now prove that the entries of GL,K · (HM,L,K ~ (Âq)

T )T can be calculated
fast. As we want to use the residues modulo the hashing primes u1, . . . , uM for the
reconstruction as well, an idea similar to the one from [Iwe13] leads to CDFTs of the
sktlum-length vectors asktlum of equidistant samples from Definition 2.5.
Consider an entry of GL,K · (HM,L,K ~ (âq)T )T ∈ Cκλ×µ. By construction, it is the

product of a row of GL,K , which is by Lemma 3.16 of the form rsktl, h for a residue
h ∈

{
−
⌈
sktl

2

⌉
+ 1, . . . ,

⌊
sktl

2

⌋}
modulo sktl, with a column ρTum, ν of (HM,L,K ~ (âq)T )T

for a residue ν modulo um for some m ∈ {1, . . . ,M}. Remark 3.22 yields that

rsktl, h · ρ
T
um, ν =

q
2∑

j=− q
2

+1

(rsktl, h)j
(
ρTum, ν

)
j

=

q
2∑

j=− q
2

+1

δ(j−h) mod sktl, 0 · δ(j−ν) mod um, 0 · âqj . (3.3)

As there can only be nonzero summands in (3.3) if j ≡ h mod sktl and j ≡ ν mod um,
we find with the CRT that j has to be of the form

j = τ + j′sktlum, j′ ∈
{
−
⌈

q

2sktlum

⌉
+ 1, . . . ,

⌊
q

2sktlum

⌋}
,

where τ ∈
{
−
⌈
sktlum

2

⌉
+ 1, . . . ,

⌊
sktlum

2

⌋}
is the residue of j modulo sktlum. Then it

81



3 Sparse FFT for 2π-Periodic Functions with Polynomially Structured Sparsity

follows that

rsktl, h · ρ
T
um, ν =

⌊
q

2sktlum

⌋∑
j′=−

⌈
q

2sktlum

⌉
+1

âqτ+j′·sktlum

=

⌊
q

2sktlum

⌋∑
j′=−

⌈
q

2sktlum

⌉
+1

1

q

q−1∑
b=0

e
−2πib(τ+j′sktlum)

q aqb

=

q−1∑
b=0

1

q
aqb · e

−2πibτ
q

⌊
q

2sktlum

⌋∑
j′=−

⌈
q

2sktlum

⌉
+1

e
−2πibj′sktlum

q

=

q−1∑
b=0

1

sktlum
f

(
2πb

q

)
e
−2πibτ

q · δb mod q
sktlum

, 0

=

sktlum−1∑
b′=0

1

sktlum
f

(
2πb′ q

sktlum

q

)
e
−2πiτb′ q

sktlum
q

= âsktlumτ .

By Bézout’s identity, see Theorem 2.7, 1 = gcd (sktl, um) = v · sktl + w · um for some
v, w ∈ Z, and we obtain that τ satisfies

τ = ((h− ν)w mod sktl) · um + ν ∈
{
−
⌈
sktlum

2

⌉
+ 1, . . . ,

⌊
sktlum

2

⌋}
. (3.4)

Thus, in the column corresponding to the residue ν modulo um, for fixed sktl only the
sktl different values âsktlumτ with τ depending on h as in (3.4) are contained. Hence, the
column of GL,K · (HM,L,K ~ (âq)T )T corresponding to ν modulo um is of the form(

v̂m, νs1

T
, v̂m, νs1t1

T
, . . . , v̂m, νs1tL

T
, v̂m, νs2

T
, v̂m, νs2t1

T
, . . . , v̂m, νsKtL

T
)T

,

where (
v̂m, νsktl

)
j

:= âsktlum ((j−ν)w mod sktl)·um+ν (3.5)

for all j ∈
{
−
⌈
sktl

2

⌉
+ 1, . . . ,

⌊
sktl

2

⌋}
. The entries of GL,K · (HM,L,K ~ (âq)T )T can be

calculated in a fast way, usingKLM CDFTs of the vectors of sktlum equidistant samples,
which has a runtime O (sktlum · log (sktlum)) for all k, l,m, as we know from Section 1.1.1
and Remark 1.9. ♦

We still have to specify how we apply Algorithm 4 (Algorithm 3 in [Iwe13]) to the
columns of the matrix GL,K ·(HM,L,K~(âq)T )T . Until now, we considered fixed residues
h modulo sktl and ν modulo um. However, in line 7 of Algorithm 4, we fix the residue
h′ modulo sk of a frequency ω and find the residues modulo the sktl of ω in line 9. The
following remark shows how these residues can be combined.

Remark 3.24 Choose s1, . . . , sK , t1, . . . , tL, u1, . . . , uM as in Definition 3.20 and let
ω ∈

{
−
⌈
N
2

⌉
+ 1, . . . ,

⌊
N
2

⌋}
satisfy ω ≡ ν mod um and ω ≡ h′ mod sk for some residues
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ν ∈
{
−
⌈
um
2

⌉
+ 1, . . . ,

⌊
um
2

⌋}
and h′ ∈

{
−
⌈
sk
2

⌉
+ 1, . . . ,

⌊
sk
2

⌋}
, where k ∈ {1, . . . ,K} and

m ∈ {1, . . . ,M}. For the fixed frequency ω we have to find the corresponding residue
modulo sktlum for every l ∈ {1, . . . , L}. Bézout’s identity implies that

1 = gcd (sk, um) = v′ · sk + w′ · um

for some v′, w′ ∈ Z. Then the residue τ ′ of ω modulo skum has to satisfy

τ ′ := ω mod skum =
((
h′ − ν

)
w′ mod sk

)
· um + ν,

and the residue of ω modulo sktlum is of the form

ω mod sktlum = τ ′ + bmin · skum (3.6)

for a bmin ∈
{
−
⌈
tl
2

⌉
+ 1, . . . ,

⌊
tl
2

⌋}
, which is given as

bmin := argmin
b∈
{
−
⌈
tl
2

⌉
+1,...,

⌊
tl
2

⌋}
∣∣∣âskumτ ′ − âsktlumτ ′+b·skum∣∣∣ . (3.7)

If sk and um are separating, then bmin is unique, since no other energetic frequency can
have a residue of the form in (3.6). This is analogous to (2.8) in Section 2.2.2. If bmin is
not unique, we can choose any minimizer, resulting in a possibly wrong residue for the
frequency ω modulo tl and an incorrectly recovered ω. However, since more than half
of the sk and more than half of the um guarantee separation, we will still reconstruct
ω correctly in more than half of the cases. Thus, we can find ω by employing median
techniques in both Algorithm 4 and our new Algorithm 5.
Finally, it follows from (3.6) that the residue of ω modulo tl is

al := ω mod tl =
(
τ ′ + bmin · skum

)
mod tl,

and ω can be reconstructed from its residues ω ≡ τ ′ mod skum, ω ≡ a1 mod t1, . . . ,

ω ≡ aL mod tL. Recall the vectors v̂
(m, ν)
sktl

introduced in (3.5). These vectors are defined
such that if ω ≡ ν mod um, ω ≡ h′ mod sk and ω ≡ h mod sktl, we have(

v̂m, νsktl

)
ω mod sktl

= âsktlumω mod sktlum .

To use this notation, we take the residues modulo sktlum again modulo sktl, and obtain

bmin = argmin
b∈
{
−
⌈
tl
2

⌉
+1,...,

⌊
tl
2

⌋}
∣∣∣âskumτ ′ − âsktlumτ ′+b·skum∣∣∣

= argmin
b∈
{
−
⌈
tl
2

⌉
+1,...,

⌊
tl
2

⌋}
∣∣∣∣(v̂m, νsk

)
h′
−
(
v̂m, νsktl

)
(τ ′+b·skum) mod sktl

∣∣∣∣
= argmin

b∈
{
−
⌈
tl
2

⌉
+1,...,

⌊
tl
2

⌋}
∣∣∣∣(EK · âq)rsk, h′ , ρTm, ν − (GL,K · âq)rsktl, (τ ′+bskum) mod sktl

, ρTm, ν

∣∣∣∣
This shows that we can indeed apply Algorithm 4 to the restriction to the frequencies
congruent to ν modulo um while also utilizing this congruency information. ♦
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Remark 3.25 Similarly to Remarks 2.11 and 2.25, Algorithms 4 and 5 can achieve
even faster runtimes if some of the primes s1, . . . , sK , t1, . . . , tL, u1, . . . , uM are omitted
and the preconditions of the CRT are still met. We also did not incorporate these
improvements in the implementation of our algorithm for block sparse functions we used
for the numerical experiments in Section 3.5. ♦

Algorithm 5 presents itself as a summary of the preceding considerations.

Algorithm 5 Algorithm for Functions with Polynomially Structured Frequency Support
(Algorithm 1 in [BZI19])
Input: f + η, n, d,B,N ∈ N with d < B < N , where f ∈ C2π has bandwidth N and is

P (n, d,B)-structured sparse.
Output: R,xR, where R contains the nB frequencies ω with greatest magnitude coef-

ficient estimates xω.
1: Find the L smallest primes t1, . . . , tL such that

∏L−1
l=1 tl <

N
Bdn ≤

∏L
l=1 tl. Set t0 = 1.

2: Let s1 > max{dn, tL} be the smallest prime, K = 8dn
⌊
logs1

N
B

⌋
+ 1 and s2, . . . , sK

the smallest primes greater than s1.
3: Let u1 > max{B, sK} be the smallest prime, M = 2(n + 1) ·

⌊
logu1 N

⌋
+ 1 and

u2, . . . , uM the smallest primes greater than u1.
4: Initialize R = ∅, xR = 0N , q = lcm (N, s1, . . . , sK , t1, . . . , tL, u1, . . . , uM ).

5: GL,K ·
(
HM,L,K ~

(
âq
)T)T ← ((

v̂m, νs1

T
, v̂m, νs1t1

T
, . . . , v̂m, νsKtL

T)T)M,um−1

m=1, ν=0

6: EK ·
(
HM,L,K ~

(
âq
)T)T ← ((

v̂m, νs1

T
, . . . , v̂m, νsK

T))M,um−1

m=1, ν=0

7: for m from 1 to M do
8: for ν from −

⌈
um
2

⌉
+ 1 to

⌊
um
2

⌋
do

9:
(
R(m, ν),x(m, ν)

)
← 2dn frequencies with largest magnitude coefficient es-

timates returned by Algorithm 4 applied to GL,K · (HM,L,K ~ (âq)T )T
ρTm, ν

and

EK · (HM,L,K ~ (âq)T )T
ρTm, ν

with sparsity dn.
10: end for
11: end for
12: for each ω ∈

⋃M
m=1

⋃um−1
ν=0 R(m, ν) found more than M

2 times do

13: Re(xω) = median
ν={−dum2 e+1,...,bum2 c}
m∈{1,...,M}

{
Re
(
x

(m, ν)
ω̃

)
: ω̃ = ω, ω̃ ∈ R(m, ν)

}
14: Im(xω) = median

ν={−dum2 e+1,...,bum2 c}
m∈{1,...,M}

{
Im
(
x

(m, ν)
ω̃

)
: ω̃ = ω, ω̃ ∈ R(m, ν)

}
15: end for
16: Sort the coefficients by magnitude s.t. |xω1 | ≥ |xω2 | ≥ · · · .
17: R← {ω1, . . . , ωBn}
Output: : R,xR.

3.3.3 Error, Runtime and Sampling Bounds

We will now prove runtime and sampling bounds for Algorithm 5. Furthermore, we will
give theoretical bounds on the accuracy of the returned Fourier coefficient estimates.
In order to obtain such bounds, we can utilize some of the results developed in [Iwe13]
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for the more than M
2 primes um that hash all support sets S1, . . . , Sn well. These are

precisely the primes for which the corresponding columns ρTum, ν of (HM,L,K ~ (âq)T )T

are guaranteed to be at most dn-sparse.
Analogously to our previous notation, we denote by c(N, um, ν), c(N,Z, um, ν) and

c(um, ν) the restrictions of c(N), c(N,Z) and c(f + η), respectively, to the frequen-
cies congruent to ν modulo um for a residue ν ∈

{
−
⌈
um
2

⌉
+ 1, . . . ,

⌊
um
2

⌋}
modulo um

for some m ∈ {1, . . . ,M}. Further, recall that copt
2dn(N, um, ν) is the optimal 2dn-term

representation of c(N, um, ν).
The following lemma guarantees that any sufficiently significant frequency, i.e., any

frequency whose corresponding Fourier coefficient has a sufficiently large absolute value,
will be found by Algorithm 5. Further, it also implies that the Fourier coefficient estimate
given by the algorithm is accurate.

Lemma 3.26 (Lemma 3.10 in [BZI19]) Let f ∈ C2π be P (n, d,B)-structured sparse
with bandwidth N and noise threshold ε > 0. Let η ∈ C2π such that c(η) ∈ `1 and
‖c(η)‖∞ ≤ ε. Let u1 be a prime and s1, t1 ∈ N such that with K = 8dn

⌊
logs1

N
u1

⌋
+ 1

and M = 2(n + 1)
⌊
logu1 N

⌋
+ 1 we have that B < u1 < · · · < uM are prime numbers,

t1 < · · · < tL < s1 < · · · < sK , and s1, . . . , sK , t1, . . . , tL, u1, . . . , uM are pairwise
relatively prime with

∏L
l=1 tl ≥

N
s1u1

. Set

δ := max
ν∈{−dum2 e+1,...,bum2 c}

um hashes well

{
δ(m, ν)

}

= max
ν={−dum2 e+1,...,bum2 c}

um hashes well

{
1

2dn

∥∥∥c(N, um, ν)− copt
2dn(N, um, ν)

∥∥∥
1

+ ‖c(N,Z, um, ν)− c(um, ν)‖1
}
.

Then each ω ∈
{
−
⌈
N
2

⌉
+ 1, . . . ,

⌊
N
2

⌋}
with |cω| > ε + 4δ is added to the output R of

Algorithm 5 in line 17, and its coefficient estimate from lines 13 and 14 satisfies

|xR(ω)− cω| ≤ 2δ.

Proof. Let um be a good hashing prime, ν ∈
{
−
⌈
um
2

⌉
+ 1, . . . ,

⌊
um
2

⌋}
a residue modulo

um and assume that ω ∈
{
−
⌈
N
2

⌉
+ 1, . . . ,

⌊
N
2

⌋}
is contained in R(m, ν), opt

dn \R(m, ν), where
R(m, ν) are the frequencies returned in line 9 of Algorithm 5 by applying Algorithm 4
with sparsity dn to GL,K · (HM,L,K ~ (âq)T )T

ρTm, ν
. This means that ω is one of the dn

frequencies congruent to ν modulo um with largest magnitude Fourier coefficients, but
it is not contained in R(m, ν). Since the residue of ω modulo um is unique, ω cannot be
contained in any of the sets R(m, ν̃) for ν̃ ∈

{
−
⌈
um
2

⌉
+ 1, . . . ,

⌊
um
2

⌋}
\ {ν}.

Let us first have a look at the error caused by frequencies with small Fourier coefficients
that are not included in the set R of returned frequencies, even though this is not part
of the statement of the lemma. Let ω ∈

{
−
⌈
N
2

⌉
+ 1, . . . ,

⌊
N
2

⌋}
with |cω| ≤ ε + 4δ and

assume that it is not included in the reconstruction R in line 17. Then we have that

|xR(ω)− cω| ≤ ε+ 4δ.
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Recall that δ is defined as the maximum over the values δ(m, ν), where

δ(m, ν) =
1

2dn

∥∥∥c(N, um, ν)− copt
2dn(N, um, ν)

∥∥∥
1

+ ‖c(N,Z, um, ν)− c(um, ν)‖1

for all good hashing primes um. The first summand measures the distance of the restric-
tion of f + η to frequencies congruent to ν modulo um to being a 2dn-sparse function,
and the second summand measures how good the assumed bandwidth N is for f + η. As
for all good hashing primes the restriction of f to the frequencies congruent to ν modulo
um is at most dn-sparse, the error caused by omitting ω from the reconstruction R is
small if the noise is not too dominant and the bandwidth is chosen well.
If |cω| > ε + 4 · δ and ω /∈ R(m, ν), it also follows that |cω| > 4 · δ(m, ν) for all good

hashing primes um and all residues ν ∈
{
−
⌈
um
2

⌉
+ 1, . . . ,

⌊
um
2

⌋}
. By Lemma 3.18 (i),

ω will be reconstructed more than K
2 times by Algorithm 4 in line 9 of Algorithm 5.

Hence, ω can only not be contained in R(m, ν) if there exist dn + 1 frequencies ω̃ in
R(m, ν) \ R(m, ν), opt

dn that satisfy
∣∣∣x(m, ν)
ω̃

∣∣∣ ≥ ∣∣∣x(m, ν)
ω

∣∣∣, i.e., that have coefficient estimates
with greater magnitude than the one of ω. Recall that um hashes all support sets
S1, . . . , Sn well, so f has at most dn energetic frequencies that are congruent to ν modulo
um. Suppose that all frequencies with this residue modulo um are ordered by magnitude
of their Fourier coefficients, i.e.,∣∣∣c

ω
(m, ν)
1

∣∣∣ ≥ ∣∣∣c
ω
(m, ν)
2

∣∣∣ ≥ · · · ≥ ∣∣∣c
ω
(m, ν)
dn

∣∣∣ ≥ ∣∣∣∣cω(m, ν)
dn+1

∣∣∣∣︸ ︷︷ ︸
≤ε

≥ · · · .

Then |cω̃| ≤
∣∣∣∣cω(m, ν)

dn+1

∣∣∣∣ ≤ |cω| for all ω̃ ∈ R(m, ν) \ R(m, ν), opt
dn . By Lemma 3.18 (ii) we

have for all ω̄ that are reconstructed more than K
2 times if Algorithm 4 is applied to

GL,K · (HM,L,K ~ (âq)T )T
ρTm, ν

that∣∣∣x(m, ν)
ω̄ − cω̄

∣∣∣ ≤ √2δ(m, ν). (3.8)

It follows from (3.8) that∣∣∣x(m, ν)
ω̄

∣∣∣ ≤ |cω̄|+√2δ(m, ν) and (3.9)∣∣∣x(m, ν)
ω̄

∣∣∣ ≥ |cω̄| − √2δ(m, ν). (3.10)

As ω̄ was chosen arbitrarily from the frequencies reconstructed more than K
2 times,

(3.8) to (3.10) also hold for the frequencies ω and ω̃ from above. Thus, we find for all
ω ∈ R(m, ν), opt

dn \R(m, ν) that∣∣∣∣cω(m, ν)
dn+1

∣∣∣∣+
√

2δ(m, ν) ≥ |cω̃|+
√

2δ(m, ν)

≥
∣∣∣x(m, ν)
ω̃

∣∣∣ ≥ |xω|
≥ |cω| −

√
2δ(m, ν)

≥
∣∣∣∣cω(m, ν)

dn+1

∣∣∣∣−√2δ(m, ν).
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Hence,

|cω| ≤
∣∣∣∣cω(m, ν)

dn+1

∣∣∣∣+ 2
√

2δ(m, ν) ≤ ε+ 2
√

2δ(m, ν),

which contradicts |cω| > ε+4δ. Consequently, we obtain that ω was indeed reconstructed
by Algorithm 4, so ω ∈ R(m, ν). Since um was an arbitrary good hashing prime, this holds
for all more than M

2 good hashing primes. Thus, ω is contained in more than M
2 sets

R(m, ν) and will be considered from line 12 of Algorithm 5 onward.
Before we can show that ω will indeed be added to R in line 17, we first have to prove

the accuracy of the corresponding coefficient estimate xω. From (3.8) it follows that∣∣∣Re
(
x(m, ν)
ω

)
− Re(cω)

∣∣∣ ≤ ∣∣∣x(m, ν)
ω − cω

∣∣∣ ≤ √2δ(m, ν) ≤
√

2δ, (3.11)

and, analogously, the same estimate holds for the imaginary parts. As the inequalities
are true for all more than M

2 good hashing primes um, they also hold for the medians
in lines 13 and 14 of Algorithm 5. These are taken over at most M coefficient estimates
x

(m, ν)
ω̃ for ω, since for each prime um the frequency ω can be contained in at most one

set R(m, ν) with ν ∈
{
−
⌈
um
2

⌉
+ 1, . . . ,

⌊
um
2

⌋}
. Thus, we obtain that

|Re (xω)− Re(cω)| ≤
√

2δ and |Im (xω)− Im(cω)| ≤
√

2δ.

Combining these two estimates yields that

|xω − cω| =
√

(Re (xω − cω))2 + (Im (xω − cω))2 ≤
√(√

2δ
)2

+
(√

2δ
)2

= 2δ.

All that remains to be shown is that ω with |cω| > ε + 4δ will actually be added to R
in line 17. Similarly to (3.10) we find that |xω| ≥ |cω| − 2δ. Together with |cω| > ε+ 4δ
this implies that |xω| > ε + 2δ. Then it is only possible that ω is not included in the
output set R if xω is not among the Bn largest magnitude coefficient estimates, i.e., if
there exist Bn other frequencies ω̃ that satisfy |xω̃| ≥ |xω|. We know that ω is energetic,
which means that at least one of these ω̃ must have a Fourier coefficient with |cω̃| ≤ ε.
Then an analog to (3.9) yields

|xω| ≤ |xω̃| ≤ |cω̃|+ 2δ ≤ ε+ 2δ,

which contradicts |xω| > ε+ 2δ. Hence, ω will be added to R in line 17.

Example 3.27 (Example 3.2 continued) Recall the P (2, 2, 9)-structured sparse func-
tion f with bandwidth N = 1,024 from Example 3.2. Let us now find the required primes
for this example. Since

2 · 3 < N

Bnd
≤ 2 · 3 · 5,

we set L := 3, t1 := 2, t2 := 3 and t3 := 5. Then s1 can be chosen as the smallest prime
greater than both dn = 4 and tL = 5,

s1 := 7 > max {dn, tL} .

Then K = 8dn
⌊
logs1

N
B

⌋
+ 1 = 65 and we find that

{s1, . . . , sK} = {7, 11, 13, . . . , p68 = 337} .
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Setting u1 := p69 = 347 > max {B, sK}, we obtain M = 2(n+ 1)
⌊
logu1 N

⌋
+ 1 = 7 and

{u1, . . . , uM} = {347, 349, . . . , p75 = 379} .

Note that since B and N are very small with B 6� d2n logN to keep the example simple,
we have to choose many primes. Algorithm 5 is not efficient for the chosen parameters, as
the bandwidth needs to be significantly larger than the sparsity in order for our method
to be fast. We only computed the required primes for the example in order to illustrate
the prime-choosing procedure. ♦

Using the sk, tl and um from Definition 3.20, the following theorem provides us with
the runtime and error bounds of Algorithm 5.

Theorem 3.28 (Theorem 3.13 in [BZI19]) Let f ∈ C2π be P (n, d,B)-structured
sparse with bandwidth N ∈ N and noise threshold ε > 0. Let η ∈ C2π such that c(η) ∈ `1
and ‖c(η)‖∞ ≤ ε. Let t1, . . . , tL be the smallest primes with

∏L
l=1 tl ≥

N
Bdn . Set s1 as the

smallest prime greater than max {dn, tL}, K = 8dn
⌊
logs1

N
B

⌋
+ 1 and s2, . . . , sK as the

first K−1 primes greater than s1. Let u1 be the smallest prime greater than max {B, sK},
M = 2(n+ 1)

⌊
logu1 N

⌋
+ 1 and u2, . . . , uM the first M − 1 primes greater than u1. Let

further δ be defined as

δ := max
ν∈{−dum2 e+1,...,bum2 c}

um hashes well

{
1

2dn

∥∥∥c(N, um, ν)− copt
2dn(N, um, ν)

∥∥∥
1

+ ‖c(N,Z, um, ν)− c(um, ν)‖1
}
.

Then the output (R,xR) of Algorithm 5 satisfies

‖c(N)− xR‖2 ≤
∥∥∥c(N)− copt

Bn(N)
∥∥∥

2
+
√
Bn · (ε+ 6δ).

If B > sK , the output can be computed in a runtime of

O

d2n3(B + n logN) log2 N
2Bdn log2 N

B logN log
(
2dn log N

B

)
log2

(
B+n logN

logB

)
log2B log2(2dn) log log N

2Bdn

 ,

and the algorithm has a sampling complexity of

O

d2n3(B + n logN) log2 N
2Bdn log2 N

B logN log
(
2dn log N

B

)
log
(
B+n logN

logB

)
log2B log2(2dn) log log N

2Bdn

 .

Proof. Recall that the entries of cR(N) ∈ CN are the coefficients cω(f + η) of the per-
turbed function f + η for the frequencies contained in the output R of Algorithm 5 and
zero for the frequencies not contained in R, whereas the entries of c(N) are the Fourier
coefficients of f + η for all ω ∈

{
−
⌈
N
2

⌉
+ 1, . . . ,

⌊
N
2

⌋}
. The triangle inequality yields

‖c(N)− xR‖2 ≤ ‖c(N)− cR(N)‖2 + ‖cR(N)− xR‖2 . (3.12)
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The square of first summand in (3.12) can be written as

‖c(N)− cR(N)‖22

=

bN2 c∑
ω=−dN2 e+1

|cω − cR(ω)|2

=
∑
ω/∈R

|cω|2 +
∑
ω∈R
|cω − cR(ω)|2︸ ︷︷ ︸

=0

=
∑

ω/∈Ropt
Bn

|cω|2 +
∑

ω∈Ropt
Bn\R

|cω|2 −
∑

ω∈R\Ropt
Bn

|cω|2

=
∥∥∥c(N)− copt

Bn(N)
∥∥∥2

2
+

∑
ω∈Ropt

Bn\R

|cω|2 −
∑

ω∈R\Ropt
Bn

|cω|2.

For every frequency ω ∈ Ropt
Bn \ R we know by Lemma 3.26 that |cω| ≤ ε + 4δ, because

otherwise it would be contained in R. As Ropt
Bn \R contains at most Bn elements, we find

‖c(N)− cR(N)‖22

=
∥∥∥c(N)− copt

Bn(N)
∥∥∥2

2
+

∑
ω∈Ropt

Bn\R

|cω|2

︸ ︷︷ ︸
≤Bn(ε+4δ)2

−
∑

ω∈R\Ropt
Bn

|cω|2

︸ ︷︷ ︸
≥0

≤
∥∥∥c(N)− copt

Bn(N)
∥∥∥2

2
+Bn(ε+ 4δ)2.

For the second summand in (3.12) we consider consider a frequency ω ∈ R. For each of
the more than M

2 good hashing primes ω has to be contained in exactly one of the sets
R(m, ν) returned in line 9 of Algorithm 5 by applying Algorithm 4 with sparsity dn to
GL,K · (HM,L,K~ (âq)T )T

ρTm, ν
. Thus, ω must have been reconstructed more than K

2 times
by Algorithm 4. Hence, it follows from Lemma 3.18 that∣∣∣x(m, ν)

ω − cω
∣∣∣ ≤ √2δ(m, ν),

which, analogously to (3.8) and (3.11) in the proof of Lemma 3.26, yields

|xR(ω)− cω| ≤ 2δ.

Since R contains at most Bn elements, we find that

‖cR(N)− xR‖22 =
∑
ω∈R
|cω − xR(ω)|2︸ ︷︷ ︸

≤4δ2

≤ 4Bnδ2.

Combining all these estimates we obtain that

‖c(N)− xR‖2 ≤
√
‖c(N)− cR(N)‖22 + ‖cR(N)− xR‖22

≤
∥∥∥c(N)− copt

Bn(N)
∥∥∥

2
+
√
Bn(ε+ 4δ) + 2

√
Bnδ

=
∥∥∥c(N)− copt

Bn(N)
∥∥∥

2
+
√
Bn(ε+ 6δ).
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In order to determine the runtime of the algorithm, let us first consider the runtime of the
calculation of the CDFTs in line 5 of Algorithm 5. We have to calculate the CDFTs of
length sktlum of the vectors asktlum of equidistant samples of f+η for all k ∈ {1, . . . ,K},
l ∈ {1, . . . , L} and m ∈ {1, . . . ,M}. By Section 1.1.1 and Remark 1.9, a CDFT of length
sktlum has runtime O (sktlum log (sktlum)). It was shown in Lemma 4 and Section IV
in [IS08], and Section 2 in [Iwe13] that

tL = O
(

log
N

2Bdn

)
and sK = O

(
dn log2dn

N

B
log

(
2dn log

N

B

))
.

If sK ≤ B, we can set u1 := pb > B ≥ pb−1 to be the first prime greater than B, so by
the first formulation of the Prime Number Theorem, see Theorem 2.27 (i), we find that

b− 1 = π(B) = O
(

B

logB

)
and, since M = 2(n+ 1)

⌊
logu1 N

⌋
+ 1 = O (n logB N),

b− 1 +M = O
(

B

logB
+ n logB N

)
= O

(
B + n logN

logB

)
,

where π is the prime counting function. The second formulation of the Prime Number
Theorem, see Theorem 2.27 (ii), yields for uM = pb−1+M that

uM = O ((b− 1 +M) log(b− 1 +M)) = O
(
B + n logN

logB
log

(
B + n logN

logB

))
.

Recall that by Lemma 2.20 (i)

∑
2≤p≤R
p prime

p = O
(

R2

logR

)
.

However, if we estimated
∑M

m=1 um log um by adding p log p for all primes that are at
most uM , we would take into account many primes that do not contribute to the sum,
as the um are rather large because um > sk > tl for all k, l and m. Instead, we estimate
the hashing primes by um ≤ uM for all m ∈ {1, . . . ,M}, i.e.,

M∑
m=1

um log um = O(M · uM log uM ).

Since u1 > sK , we obtain for the runtime of the CDFT calculations in line 5 that

O

(
K∑
k=1

L∑
l=0

M∑
m=1

sktlum log(sktlum)

)

= O

(
K∑
k=1

sk

L∑
l=0

tl

M∑
m=1

um log um

)

= O
(

t2L
log tL

·
s2
K

log sK
·M · uM log uM

)
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= O

(
log2 N

2Bdn

log log N
2Bdn

·
d2n2 log2 N

B log2
(
2dn log N

B

)
log2(2dn) log

(
dn log2dn

N
B log

(
2dn log N

B

))
· n logN

logB
· B + logN

logB
log

(
B + n logN

logB

)
log

(
B + logN

logB
log

(
B + n logN

logB

)))

= O

d2n3(B + n logN) log2 N
2Bdn log2 N

B logN log(2dn log N
B ) log2

(
B+n logN

logB

)
log2B log2(2dn) log log N

2Bdn

 .

Now we can estimate the runtime of the remaining steps of the algorithm. The least
common multiple q in line 4 does not actually have to be computed, it is just defined
there in order to introduce more convenient notation. The algorithm also does not need
all q samples of f ; rather, any of the required samples can be written as an entry of aq.

In line 9, we apply Algorithm 4 to the column of GL,K ·
(
HM,L,K ~

(
âq
)T)T corre-

sponding to the residue ν modulo um. We know from Lemma 3.18 (iii) that the runtime
of Algorithm 4 is dominated by the computation of the CDFTs. Since the CDFTs in
line 5 have even greater lengths than the CDFTs required for Algorithm 4, the runtime
of lines 7 to 11 of Algorithm 5 is insignificant compared to runtime of line 5. In order
to find out for which frequencies lines 12 to 15 have to be executed, we can sort the
2dn

∑M
m=1 um frequencies that are returned by all the calls of Algorithm 4 by size and

count how often each distinct frequency appears. This can be done in

O

(
2dn

(
M∑
m=1

um

)
· log

(
2dn

M∑
m=1

um

))
= O (dnMuM · log (dnMuM ))

time, so its computational effort is also dominated by the effort of the CDFT computa-
tion. There are at most

2

M
·
M∑
m=1

bum2 c∑
ν=−dum2 e+1

2dn =
4dn

M
·
M∑
m=1

um = O (4dn · uM )

frequencies that have been found more than M
2 times. If we fix one of these frequencies,

ω, then for each um there exists exactly one residue ν(m) ∈
{
−
⌈
um
2

⌉
+ 1, . . . ,

⌊
um
2

⌋}
with

ω ≡ ν(m) mod um. Since the 2dn frequencies recovered for any fixed residue modulo
some hashing prime um are distinct, each frequency can be reconstructed at most M
times by all hashing primes together. This means that the medians in lines 13 and 14 are
taken over at most M elements. As medians can be computed with the help of a sorting
algorithm, both lines have a runtime of O(M logM). Combining these considerations,
we obtain that lines 12 to 15 require

O (4dn · uM ·M logM)

arithmetical operations, which is dominated by the effort of the CDFT computations in
line 5. Finally, sorting the O (4dn · uM ) coefficient estimates in line 16 has a runtime of

O (4dnuM log (4dnuM )) .

Consequently, the runtime of Algorithm 5 is determined by that of line 5, which yields
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an overall runtime of

O

d2n3(B + n logN) log2 N
2Bdn log2 N

B logN log(2dn log N
B ) log2

(
B+n logN

logB

)
log2B log2(2dn) log log N

2Bdn

 .

Each of the KLM CDFTs of size sktlum requires sktlum samples of f , so we find for the
sampling complexity of Algorithm 5 that

O

(
K∑
k=1

L∑
l=0

M∑
m=1

sktlum

)

= O

(
K∑
k=1

sk

L∑
l=0

tl

M∑
m=1

um

)

= O
(

t2L
log tL

·
s2
K

log sK
·M · uM

)

=O

d2n3(B + n logN) log2 N
2Bdn log2 N

B logN log(2dn log N
B ) log

(
B+n logN

logB

)
log2B log2(2dn) log log N

2Bdn

 .

If not only f , but also f + η is bandlimited with bandwidth N , the error bound from
Theorem 3.28 can be simplified.

Corollary 3.29 (Corollary 3.14 in [BZI19]) Let f ∈ C2π be P (n, d,B)-structured
sparse with bandwidth N and noise threshold ε > 0. Let η ∈ C2π such that f + η also
has bandwidth N with c(η) ∈ `1 and ‖c(η)‖∞ ≤ ε. Choosing s1, . . . , sK , t1, . . . , tL,
u1, . . . , uM as in Theorem 3.28, the output (R,xR) of Algorithm 5 satisfies

‖c(N)− xR‖2 ≤
∥∥∥c(N)− copt

Bn(N)
∥∥∥

2
+
√
Bn

(
ε+

3

dn

∥∥∥c(N)− copt
2Bn(N)

∥∥∥
1

)
.

Proof. By definition of δ we have that

δ = max
ν={−dum2 e+1,...,bum2 c}

um hashes well

{
δ(m, ν)

}
=: δ(m′, ν′)

=
1

2dn

∥∥∥c (N, um′ , ν ′)− copt
2dn

(
N, um′ , ν

′)∥∥∥
1

+
∥∥c (N,Z, um′ , ν ′)− c

(
um′ , ν

′)∥∥
1

(3.13)

for some residue ν ′ ∈
{
−
⌈um′

2

⌉
+ 1, . . . ,

⌊um′
2

⌋}
modulo a good hashing prime um′ . Since

f and f + η are bandlimited, the second summand in (3.13) is 0. We find the following
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estimate

δ ≤

⌊
um′
2

⌋∑
ν=−

⌈
um′
2

⌉
+1

δ(m′, ν)

=

⌊
um′
2

⌋∑
ν=−

⌈
um′
2

⌉
+1

1

2dn

∥∥∥c(N, um′ , ν)− copt
2dn(N, um′ , ν)

∥∥∥
1

=

⌊
um′
2

⌋∑
ν=−

⌈
um′
2

⌉
+1

1

2dn

bN2 c∑
ω=−dN2 e+1

ω≡ν mod um′

∣∣∣cω − (copt
2dn(N, um′ , ν)

)
ω

∣∣∣︸ ︷︷ ︸
=

|cω| if ω /∈ R(m′, ν), opt
2dn ,

0 otherwise.

=

bN2 c∑
ω∈−dN2 e+1

ω/∈
⋃bum′2 c
ν∈−dum′2 e+1

R
(m′, ν), opt
2dn

1

2dn
|cω|

≤
bN2 c∑

ω=−dN2 e+1

1

2dn

∣∣∣cω − (copt
2Bn(N)

)
ω

∣∣∣︸ ︷︷ ︸
=

|cω| if ω /∈ Ropt
2Bn,

0 otherwise.

=
1

2dn

∥∥∥c(N)− copt
2Bn(N)

∥∥∥
1
,

since ∣∣∣∣∣∣∣∣
⌊
um′
2

⌋⋃
ν∈−

⌈
um′
2

⌉
+1

R
(m′, ν), opt
2dn

∣∣∣∣∣∣∣∣ = 2dn · um′ ≥ 2Bn =
∣∣∣Ropt

2Bn

∣∣∣ .
Consequently, the error bound from Theorem 3.28 reduces to

‖c(N)− xR‖2 ≤
∥∥∥c(N)− copt

Bn(N)
∥∥∥

2
+
√
Bn · (ε+ 6δ)

≤
∥∥∥c(N)− copt

Bn(N)
∥∥∥

2
+
√
Bn ·

(
ε+

3

dn

∥∥∥c(N)− copt
2Bn(N)

∥∥∥
1

)
.

3.4 Algorithm for Functions with Simplified Fourier
Structure

Algorithm 5, which we introduced in Section 3.3.2, always requires M hashing primes of
which more than M

2 have to be good, since in general it is not possible to guarantee that
any given prime is a good hashing prime. However, in certain special cases, the frequency
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structure already implies that primes satisfying some additional, easily to check property
are good hashing primes. A very important example for this are block sparse functions,
where each of the n support sets Sj is an interval of length B,

Sj := {ωj , ωj + 1, . . . , ωj +B − 1},

so the support consists of n blocks of length B. For the function classes for which one
good hashing prime suffices, we will introduce a simplified, faster version of Algorithm 5
in the following section.

3.4.1 Structured Sparse Functions Requiring Only One Hashing Prime

If certain additional information about the polynomials generating the support sets
S1, . . . , Sn is known, the number M of required hashing primes can be reduced to one.
We know by Lemma 3.6 that a prime u does not hash a support set Sj well if and only
if u divides all coefficients corresponding to the non-constant terms. Thus, we can make
the following observation.

Theorem 3.30 (Theorem 4.1 in [BZI19]) Let f ∈ C2π be P (n, d,B)-structured sparse
with bandwidth N and noise threshold ε > 0. Let η ∈ C2π such that c(η) ∈ `1 and
‖c(η)‖∞ ≤ ε. Let the support set S =

⋃n
j=1 Sj of f be generated by the non-constant

polynomials Pj(x) =
∑d

k=0 ajkx
k for j ∈ {1, . . . , n}. Let u > B be a prime such that for

all j ∈ {1, . . . , n} there exists a kj ∈ {1, . . . , d} with p - ajkj . Then u hashes all support
sets well. Set M = 1 and s1, . . . , sK and t1, . . . , tL as in Theorem 3.28. If B > sK , the
runtime of Algorithm 5 reduces to

O

(
u log u · (dn)2 log2 N

2Bdn log2 N
B log

(
2dn log N

B

)
log2(2dn) log log N

2Bdn

)
,

while only

O

(
u · (dn)2 log2 N

2Bdn log2 N
B log

(
2dn log N

B

)
log2(2dn) log log N

2Bdn

)
samples of f + η are being used. If B ≤ sK , we obtain a runtime of

O

(
u · (dn)2 · log2 N

2Bdn log2 N
B log2

(
2dn log N

B

)
log2(2dn) log log N

2Bdn

)

and a sampling complexity of

O

(
u · (dn)2 · log2 N

2Bdn log2 N
B log

(
2dn log N

B

)
log2(2dn) log log N

2Bdn

)
.

Proof. Lemma 3.6 implies that u hashes all n support sets well, so the restriction of
f to the frequencies congruent to ν modulo u is at most dn-sparse for all residues
ν ∈

{
−
⌈
um
2

⌉
+ 1, . . . ,

⌊
um
2

⌋}
. Hence, we can apply Algorithm 4 with sparsity dn to

GL,K · (HM,L,K ~ (âq)T )T
ρTm, ν

for every residue ν modulo u, always obtaining a good
reconstruction of the restriction by Lemma 3.18. As there are no residues modulo u for
which more than dn energetic frequencies can collide, there is no need for us to use any
further hashing primes and employ median arguments. Hence, it suffices to set u1 = u
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and M = 1 in Algorithm 5. Lines 12 to 15 of Algorithm 5 do not have to be executed in
this setting, because every energetic frequency will be recovered for exactly one residue
in line 9.
If u > sK for the prime sK used by Algorithm 5, we use the primes t1, . . . , tL and

s1, . . . , sK from Definition 3.20. If u ≤ sK , then u might collide with one of the sk or
tl. In that case we shift the tl and sk that are greater than or equal to u to the next
greatest prime, so the new tl and sk are at most the first prime greater than the original
tl and sk for Algorithm 5. This small shift does not change the estimates in the proof of
Theorem 3.28.
Let us first consider the case that u > sK . We obtain that the computation of the

CDFTs in line 5, which, as we have seen in the proof of Theorem 3.28, determines the
runtime complexity of Algorithm 5, requires

O

(
K∑
k=1

L∑
l=0

sktlu log (sktlu)

)

= O
(
u log u ·

t2L
log tL

·
s2
K

log sK

)
= O

(
u log u · (dn)2 log2 N

2Bdn log2 N
B log

(
2dn log N

B

)
log2(2dn) log log N

2Bdn

)

arithmetical operations. The sampling complexity of the method is

O

(
K∑
k=1

L∑
l=0

sktlu

)

= O
(
u ·

t2L
log tL

·
s2
K

log sK

)
= O

(
u · (dn)2 log2 N

2Bdn log2 N
B log

(
2dn log N

B

)
log2(2dn) log log N

2Bdn

)
.

If u ≤ sK , we obtain a runtime of

O

(
u ·

L∑
l=0

tl

K∑
k=1

sk log sk

)

= O
(
u ·

t2L
log tL

· s2
K

)
= O

(
u · (dn)2 · log2 N

2Bdn log2 N
B log2

(
2dn log N

B

)
log2(2dn) log log N

2Bdn

)

and a sampling complexity of

O

(
K∑
k=1

L∑
l=0

sktlu

)
= O

(
u ·

t2L
log tL

·
s2
K

log sK

)

= O

(
u · (dn)2 · log2 N

2Bdn log2 N
B log

(
2dn log N

B

)
log2(2dn) log log N

2Bdn

)
.
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We now give some conditions on the coefficients of the polynomials P1, . . . , Pn gen-
erating the support sets S1, . . . , Sn which guarantee that all Sj are hashed well. The
conditions arise by tightening the necessary and sufficient requirement of the existence
of a coefficient corresponding to a term of degree at least one that is not divisible by u in
Theorem 3.30. Hence, all of the conditions are sufficient, but they may not be necessary
anymore, which causes them to be easier to prove in practice.

Lemma 3.31 (Lemma 4.2 in [BZI19]) Let f ∈ C2π be P (n, d,B)-structured sparse
with generating polynomials Pj(x) =

∑d
k=0 ajkx

k for j ∈ {1, . . . , n}. In the following
cases any prime u > B is guaranteed to hash all frequency subsets well.

(i) ∀ j ∈ {1, . . . , n} : gcd (aj1, . . . , ajd) < B, which includes gcd (aj1, . . . , ajd) = 1,

(ii) ∀ j ∈ {1, . . . , n} ∃ kj ∈ {1, . . . , d} :
∣∣ajkj ∣∣ < B,

(iii) ∀ j ∈ {1, . . . , n} ∃ kj ∈ {1, . . . , d} : ajkj = 1, which includes monic polynomials,

(iv) ∀ j ∈ {1, . . . , n} : deg(Pj) = 1 and aj1 = 1, which is the block sparse case.

Example 3.32 We illustrate the conditions from Lemma 3.31 by some examples for
P (2, 2, 9)-structured sparse functions which can be obtained by slightly modifying the
polynomials occurring in Example 3.2.

(i) P1(x) = 11x2 − 21x− 200 and P2(x) = −13x2 + 27x+ 350

P1 and P2 satisfy

gcd(a11, a12) = gcd(−21, 11) = 1 and gcd(a21, a22) = gcd(27,−13) = 1.

(ii) P1(x) = 8x2 − 22x− 200 and P2(x) = −3x2 + 26x+ 350

Here, we have that |a12| = 8 < 9 = B and |a22| = 3 < 9 = B.

(iii) P1(x) = 11x2 + x− 400 and P2(x) = x2 + 26x− 400

Here, we have that a11 = 1 and a22 = 1.

(iv) P1(x) = x− 200 and P2(x) = x+ 350.

Both polynomials are monic and of degree 1, so they each generate a B-length
block of frequencies.

For all these pairs of polynomials any prime u ≥ 11 > 9 = B hashes the generated
support sets S1 and S2 well. ♦

If one has already fixed a prime u > B that is supposed to be used as the hashing
prime, the following conditions imply that u indeed hashes all support sets well.

Lemma 3.33 (Lemma 4.4 in [BZI19]) Let f be P (n, d,B)-structured sparse and
generated by the polynomials Pj(x) =

∑d
k=0 ajkx

k for j ∈ {1, . . . , n}. In the following
cases a fixed prime u > B is guaranteed to hash all support sets well.

(v) ∀ j ∈ {1, . . . , n} : u -
d∑

k=1

ajk,

(vi) ∀ j ∈ {1, . . . , n} ∃ εj =
(
εjk

)d
k=1
∈ {0, 1}d : u -

d∑
k=1

(−1)ε
j
kajk,
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(vii) One of the conditions (i)–(iv) from Lemma 3.31 is satisfied, where B can be replaced
by u in (i) and (ii).

Example 3.34 (Example 3.32 continued) We also illustrate the additional conditions
by examples for P (2, 2, 9)-structured sparse functions.

(v) P1(x) = 11x2 − 22x− 200 and P2(x) = −13x2 + 26x+ 350

For P1 and P2 as in Example 3.2 we have that

2∑
k=1

a1k = −11 and
2∑

k=1

a2k = 13,

so any fixed prime u ≥ 17 satisfies (v).

(vi) P1(x) = 11x2 − 22x− 200 and P2(x) = −13x2 + 26x+ 350

For P1 and P2 as in Example 3.2 we have that

2∑
k=1

(−1)ε
1
ka1k ∈ {−33,−11, 11, 33} and

2∑
k=1

(−1)ε
2
ka2k ∈ {−39,−13, 13, 39}

for all εj ∈ {0, 1}2, so any fixed prime u ≥ 17 satisfies (vi).

♦

3.4.2 Block Frequency Sparse Functions

The probably most practically useful condition is condition (iv) in Lemma 3.31, which
characterizes functions with frequency support consisting of n blocks of length B. This
means that the support sets S1, . . . , Sn are of the form

Sj = {ωj , ωj + 1, . . . , ωj +B − 1} , ∀ j ∈ {1, . . . , n},

where Pj(x) = x + ωj − 1. In this section we will investigate this special case in more
detail and develop a specially adapted version of Algorithm 5 for it, which will have a
further improved runtime. Let us first formally define the concept of block sparsity.

Definition 3.35 ((n,B)-block Sparsity (Definition 4.6 in [BZI19])) A P (n, 1, B)-
structured sparse function f is called (n,B)-block sparse if the support sets S1, . . . , Sn
are generated by monic linear polynomials

Pj(x) := x+ aj , j ∈ {1, . . . , n}.

Example 3.36 Let N = 1,024, n = 2, B = 9 and set

P1(x) = x− 200 and P2(x) = x+ 350.

Then the support sets generated by P1 and P2 are

S1 = {−199,−198, . . . ,−191} and S2 = {351, 352, . . . , 359},
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and, with S = S1 ∪ S2, the function

f(x) :=
∑
ω∈S

eiωx

is (2, 9)-block sparse. ♦

For block sparse functions we can extend the definition of good hashing primes to good
hashing integers, because no monic linear polynomial P can satisfy P (x) ≡ P (y) mod p
for some x 6= y, x, y ∈ {1, . . . , B} if p > B. Hence, we do not require to consider the
field Z/pZ anymore, which was necessary in order to be able to apply Theorem 3.5 in
the proofs of Lemmas 3.6, 3.7, and 3.11.

Definition 3.37 (Definition 4.8 in [BZI19]) Let f be (n,B)-block sparse with support
S =

⋃n
j=1 Sj generated by the polynomials P1, . . . , Pn. An integer u > B hashes a

support set Sj well if the cardinality of the set of residues of elements of Sj modulo u is
B, i.e.,

|{ω mod u : ω ∈ Sj}| = B ∀j ∈ {1, . . . , n}.

Example 3.38 (Example 3.36 continued) We consider the same polynomials and
support sets as in Example 3.36. Since

(ω mod 16)ω∈S1
= (9, 10, 11, 12, 13, 14, 15, 0, 1)T and

(ω mod 16)ω∈S2
= (15, 0, 1, 2, 3, 4, 5, 6, 7)T ,

we obtain that

|{ω mod 16 : ω ∈ S1}| = 9 and |{ω mod 16 : ω ∈ S1}| = 9.

Consequently, we find that 16 hashes both S1 and S2 well. Further, for each residue
modulo 16 there are at most two elements in S = S1 ∪ S2 that are congruent to it,

|{ω ≡ ν mod 16 : ω ∈ S}| =


0 ν = 8,

1 ν ∈ {2, . . . , 7, 9, . . . , 14},
2 ν ∈ {0, 1, 15}.

♦

Remark 3.39 For an (n,B)-block sparse function f any integer u > B hashes every
support set Sj well, since Sj consists of B consecutive frequencies. Thus, for every residue
ν ∈

{
−
⌈
u
2

⌉
+ 1, . . . ,

⌊
u
2

⌋}
modulo u the restriction of S to the frequencies congruent to

ν is at most n-sparse,

|{ω ≡ ν mod u : ω ∈ S}| ≤ n ∀ν ∈
{
−
⌈u

2

⌉
+ 1, . . . ,

⌊u
2

⌋}
.

We choose the hashing integer u to be the smallest power of 2 greater than the block
length B, i.e.,

u := 2blog2Bc+1.

Then u = O(B), which allows us to simplify the runtime estimates. Additionally, com-
puting CDFTs of length stu, where s and t are small primes and u is a power of 2, is
faster than if u were a prime of the same size.
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Setting u as a power of 2 implies that we now have to slightly modify the primes tl
and sk. Similarly to the choice of the primes in Definition 3.20 for Algorithm 5, we use
the smallest L odd primes such that their product is greater than or equal to N

un ,

L−1∏
l=1

tl <
N

un
≤

L∏
l=1

tl, t1 := 3.

Let s1 be the smallest prime greater than n and tL. In this setting we can use the minimal
K from Algorithm 4 for ε−1 = 2, since u is already fixed,

K = 8n

⌊
logs1

N

u

⌋
+ 1.

The remaining sk can be set as the K − 1 smallest primes greater than s1. Then u > B,
the integers s1, . . . , sK , t1, . . . , tL, u are pairwise relatively prime, and

L∏
l=1

tl ≥
N

s1u
,

so the CRT reconstruction method from Algorithm 1 can be applied. Since we chose
t1 = 3, the prime tL in this case is at most the smallest prime greater than the tL from
Definition 3.20 for d = 1 and M = 1. ♦

Example 3.40 (Example 3.36 continued) For the (2, B)-block sparse function in
Example 3.36 choosing the required integers as in Remark 3.39 yields

u := 2blog2Bc+1 = 16.

Since
3 · 5 < N

un
≤ 3 · 5 · 7,

we set L := 3, t1 := 3, t2 := 5 and t3 := 7. Selecting s1 as the smallest prime greater
than both n and tL, we obtain

s1 := 11 > max{2, 7} = max {n, tL} .

Then K = 8n
⌊
logs1

N
u

⌋
+ 1 = 17 and we find

{s1, . . . , sK} = {11, 13, 17, . . . , p21 = 73} .

If we chose the primes as in Definition 3.20 for d = 1 andM = 1, we would obtain t1 = 2,
t2 = 3, t3 = 5 and t4 = 7, since

2 · 3 · 5 < N

Bn
≤ 2 · 3 · 5 · 7.

Then we would find that

s1 ≥ 11 > max{2, 7} = max{n, tL}.

Hence, defining the primes as in Remark 3.39 results in one fewer prime tl. As we would
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also have that K = 8n
⌊
logs1

N
B

⌋
+ 1 = 17, we would obtain

{s1, . . . , sK} = {11, 13, 17, . . . , p21 = 73} and
u = p22 = 79 > max{9, 73} = max{B, sK}.

This already illustrates that by setting u to be the smallest power of 2 greater than B,
we can reduce the runtime of the method. ♦

In Algorithm 6 we provide the explicit pseudocode for Algorithm 5 in the special
case of (n,B)-block sparse functions, including the CRT reconstruction procedure from
Algorithm 1 and the required steps from Algorithm 4, as the latter method is applied in
a slightly different way here due to the fact that we only use one hashing integer u. We
will investigate the performance of Algorithm 6 with respect to runtime and noisy input
data in numerical experiments in Section 3.5, also comparing it to other methods.
As in Section 2.2.1, the function extended_gcd in line 12 denotes the extended Eu-

clidean algorithm, which finds the greatest common divisor g of two integers a and b, as
well as two integers v and w such that Bézout’s identity

g = gcd(a, b) = v · a+ w · b,

see Theorem 2.7, is satisfied. By definition of u and s1, . . . , sK , we always have g = 1 in
line 12.

Corollary 3.41 (Corollary 4.12 in [BZI19]) Let f ∈ C2π be (n,B)-block sparse
with bandwidth N and noise threshold ε > 0. Let η ∈ C2π such that c(η) ∈ `1 and
‖c(η)‖∞ ≤ ε. Set u, s1, . . . , sK and t1, . . . , tL as in Remark 3.39. If u > sK , the runtime
of Algorithm 6 is given by

O

(
B logB · n2 log2 N

2Bn log2 N
B log

(
2n log N

B

)
log2(2n) log log N

2Bn

)
,

and otherwise, if u < sK , by

O

(
Bn2 · log2 N

2Bn log2 N
B log2

(
2n log N

B

)
log2(2n) log log N

2Bn

)
.

In both cases the algorithm has a sampling complexity of

O

(
Bn2 · log2 N

2Bn log2 N
B log

(
2n log N

B

)
log2(2n) log log N

2Bn

)
.

For Algorithm 6 the error bounds from Theorem 3.28 are still satisfied.

Proof. Since we set t1 = 3 in Remark 3.39, the prime tL for Algorithm 6 is at most the
smallest prime greater than the tL from Definition 3.20 for d = 1 and M = 1. Thus, the
estimates

tL = O
(

log
N

2un

)
and sK = O

(
n log2n

N

u
log

(
2n log

N

u

))
from the proof of Theorem 3.28 are still satisfied. Using additionally that u = O(B), the
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Algorithm 6 Fourier Approximation for (n,B)-block Sparse Functions (Algorithm 2
in [BZI19])
Input: Function f + η, n,B,N ∈ N with B < N , where f ∈ C2π has bandwidth N and

is (n,B)-block sparse.
Output: R,xR, where R contains the nB frequencies ω with greatest magnitude coef-

ficient estimates xω.
1: Set u = 2α with α = blog2Bc+ 1 and find the L smallest odd primes t1, . . . , tL such

that
∏L−1
l=1 tl <

N
un ≤

∏L
l=1 tl. Set t0 = 1.

2: Let s1 > max{n, tL} be the smallest prime, K = 2n
⌊
logs1

N
u

⌋
+ 1 and s2, . . . , sK be

the smallest primes greater than s1.
3: Initialize R = ∅, xR = 0N .
4: for k from 1 to K do . computation of GL,K and EK
5: for l from 0 to L do
6: asktlu ←

(
f
(

2πj
sktlu

))sktlu−1

j=0

7: âsktlu ← CDFT[asktlu]
8: end for
9: end for

Identification of the Energetic Frequencies
10: for ν from −u

2 + 1 to u
2 do

11: for k from 1 to K do
12: (1, v, w)← extended_gcd(sk, u) . i.e., 1 = v · sk + w · u
13: for h from −

⌈
sk
2

⌉
+ 1 to

⌊
sk
2

⌋
do

14: rk, h0 ← ((h− ν)w mod sk) · u+ ν . residue modulo sku
15: for l from 1 to L do
16: bmin ← argmin

b∈
{
−
⌈
tl
2

⌉
+1,...,

⌊
tl
2

⌋}
∣∣∣âskurk, h0

− âsktlu
rk, h0 +b·sku

∣∣∣
17: rk, hl ←

(
rk, h0 + bmin · sku

)
mod tl

18: end for
19: Recover ωk, h by ωk, h ≡ rk, h0 mod sku, ωk, h ≡ rk, hl mod tl, l = 1, . . . , L.
20: end for
21: end for

Fourier Coefficient Estimation
22: for each ωk, h ≡ ν mod u value reconstructed more than K

2 times do

23: Re (xω)← median
{

Re
(
âsktLuω mod sktLu

)
: k ∈ {1, . . . ,K}

}
24: Im (xω)← median

{
Im
(
âsktLuω mod sktLu

)
: k ∈ {1, . . . ,K}

}
25: end for
26: Sort the coefficients by magnitude s.t. |xω1 | ≥ |xω2 | ≥ · · · .
27: R(1, ν) = {ω1, ω2, . . . , ω2n}
28: end for
29: Sort the coefficients in

⋃u−1
ν=0 R

(1, ν) by magnitude s.t. |xω1 | ≥ |xω2 | ≥ · · · .
Output: : R = {ω1, ω2, . . . , ωnB} ,xR.
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runtime of Algorithm 6 for u > sK is

O

(
K∑
k=1

L∑
l=0

sktlu log (sktlu)

)

= O
(
u log u ·

s2
K

log sK
·

t2L
log tL

)
= O

(
B logB · n2 log2 N

2Bn log2 N
B log

(
2n log N

B

)
log2(2n) log log N

2Bn

)
.

If u < sK , we obtain a runtime of

O

(
K∑
k=1

L∑
l=0

sktlu log (sktlu)

)

= O
(
u · s2

K ·
t2L

log tL

)
= O

(
Bn2 · log2 N

2Bn log2 N
B log2

(
2n log N

B

)
log2(2n) log log N

2Bn

)
.

In both cases the number of required samples of f + η is

O

(
K∑
k=1

L∑
l=0

sktlu

)

= O
(
u ·

s2
K

log sK
·

t2L
log tL

)
= O

(
Bn2 · log2 N

2Bn log2 N
B log

(
2n log N

B

)
log2(2n) log log N

2Bn

)
.

The error bound from Theorem 3.28 is still satisfied, as it is unaffected by the slightly
altered choice of the primes.

If not only f , but also f + n is bandlimited with bandwidth N , and f is (n,B)-block
sparse, the error bound in Theorem 3.28 can be simplified, analogously to Corollary 3.29.

Corollary 3.42 (Corollary 4.13 in [BZI19]) Let f ∈ C2π be (n,B)-block sparse with
bandwidth N and noise threshold ε > 0. Let η ∈ C2π such that f+η also has bandwidth
N and η ∈ `1 and ‖c(η)‖∞ ≤ ε. Choosing u and the sk and tl as in Remark 3.39, the
output (R,xR) of Algorithm 6 satisfies

‖c(N)− xR‖1 ≤ 4
∥∥∥c(N)− copt

Bn(N)
∥∥∥

1
+ 2Bnε.

Proof. As we do not have to take medians over the estimates obtained for the different
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hashing primes, we can consider the following equality,

‖c(N)− xR‖1 =

bN2 c∑
ω=−dN2 e+1

|cω − xω|

=

u
2∑

ν=−u
2

+1

bN2 c∑
ω=−dN2 e+1

ω≡ν mod u

|cω − xω|

=

u
2∑

ν=−u
2

+1

( ∑
ω∈R(1, ν)

|cω − xω|+
∑

ω/∈R(1, ν)

ω≡ν mod u

|cω|
)

=

u
2∑

ν=−u
2

+1

( ∑
ω∈R(1, ν)

|cω − xω|+
∑

ω/∈R(1, ν), opt
n

ω≡ν mod u

|cω|

+
∑

ω∈R(1, ν), opt
n \R(1, ν)

|cω| −
∑

ω∈R(1, ν)\R(1, ν), opt
n

|cω|
)
. (3.14)

By (3.8) in the proof of Lemma 3.26, all of the 2n elements of R(1, ν) have to satisfy
that |cω − xω| ≤

√
2δ(1, ν), since each frequency in R(1, ν) was reconstructed more than

K
2 times. Furthermore, note that

(
copt
n

)
ω

= 0 for all ω ≡ ν mod u with ω /∈ R(1, ν), opt

and (c(N, u, ν))ω =
(
copt
n

)
ω
for all ω ≡ ν mod u with ω ∈ R(1, ν), opt. It also follows

from the proof of Lemma 3.26 that |cω| ≤ ε + 2
√

2δ(1, ν) for all at most n frequencies ω
contained in R(1, ν), opt

n \R(1, ν). Recall that by definition of δ(1, ν), we have that

δ(1, ν) :=
1

2n

∥∥∥c(N, u, ν)− copt
2n (N, u, ν)

∥∥∥
1

+ ‖c(N,Z, u, ν)− c(u, ν)‖1︸ ︷︷ ︸
=0

,

as we assume f + η to be bandlimited. Combining these considerations, (3.14) yields

‖c(N)− xR‖1

≤

u
2∑

ν=−u
2

+1

(
2n
√

2δ(1, ν) +
∥∥c(N, u, ν)− copt

n (N, u, ν)
∥∥

1
+ n

(
ε+ 2

√
2δ(1, ν)

))

=

u
2∑

ν=−u
2

+1

(∥∥c(N, u, ν)− copt
n (N, u, ν)

∥∥
1

+
4
√

2n

2n

∥∥∥c(N, u, ν)− copt
2n (N, u, ν)

∥∥∥
1

)
+ nuε.
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Analogously to the proof of Corollary 3.29 we find the following estimate,

u
2∑

ν=−u
2

+1

(∥∥c(N, u, ν)− copt
n (N, u, ν)

∥∥
1

+ 2
√

2
∥∥∥c(N, u, ν)− copt

2n (N, u, ν)
∥∥∥

1

)

=

u
2∑

ν=−u
2

+1

bN2 c∑
ω=−dN2 e+1

ω≡ν mod u

( ∣∣cω − (copt
n (N, u, ν)

)
ω

∣∣︸ ︷︷ ︸
=

|cω| if ω /∈ R(1, ν), opt
n ,

0 otherwise.

+2
√

2
∣∣∣cω − (copt

2n (N, u, ν)
)
ω

∣∣∣︸ ︷︷ ︸
=

|cω| if ω /∈ R(1, ν), opt
2n ,

0 otherwise.

)

=

bN2 c∑
ω∈−dN2 e+1

ω/∈
⋃u

2
ν∈−u2 +1

R
(1, ν), opt
dn

|cω|+ 2
√

2 ·
bN2 c∑

ω∈−dN2 e+1

ω/∈
⋃u

2
ν∈−u2 +1

R
(1, ν), opt
2dn

|cω|

≤ (1 + 2
√

2)

bN2 c∑
ω∈−dN2 e+1

ω/∈
⋃u

2
ν∈−u2 +1

R
(1, ν), opt
dn

|cω| ≤ (1 + 2
√

2)

bN2 c∑
ω=−dN2 e+1

∣∣∣cω − (copt
Bn(N)

)
ω

∣∣∣︸ ︷︷ ︸
=

|cω| if ω /∈ Ropt
Bn,

0 otherwise.

= (1 + 2
√

2)
∥∥∥c(N)− copt

Bn(N)
∥∥∥

1
.

Consequently, we find that

‖c(N)− xR‖1 ≤ (1 + 2
√

2)
∥∥∥c(N)− copt

Bn(N)
∥∥∥

1
+ nuε

≤ 4 ·
∥∥∥c(N)− copt

Bn(N)
∥∥∥

1
+ 2Bnε.

3.5 Numerical Results for Algorithm 6

In this section we will evaluate the performance of Algorithm 5 with respect to runtime
and robustness to noisy data. As the most interesting and practically useful example for
polynomially structured sparse functions are block sparse functions, we restrict ourselves
to investigating the simplified version of Algorithm 5, namely Algorithm 6. We consider
two variants of this method: on the one hand the deterministic algorithm, which we
developed for (n,B)-block sparse functions in Section 3.4.2, and on the other hand a
randomized implementation of Algorithm 6 which only utilizes a small random subset of
the K primes s1, . . . , sK used by Algorithm 6. Instead of K primes we chose the first

K̃ =
3

2
log(2n) +R

primes s1, . . . , sK̃ > max
{
n, t̃L̃

}
, where R is an odd natural number controlling the

probability of correct recovery. In the numerical experiments below we always set R such
that the probability of correct recovery is at least 0.9. The probability of correct recovery
increases with increasing R.
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Both methods have been implemented in C++ and the code is publicly available
in [BZI17b].1 We also compare these implementations’ runtime and robustness character-
istics to those of the deterministic Algorithm 4 (Algorithm 3 in [Iwe13]), which we briefly
sketched in Section 3.2, using an optimized implementation in C++ based on [SI13]. The
code is also publicly available in [BZI17b,SI17]. Additionally, we compare our methods
to FFTW 3.3.4 and sFFT 2.0. FFTW 3.3.4 is a highly optimized and publicly available
implementation of the traditional FFT algorithm with runtime O(N logN) for input
vectors of length N , as we have seen in Section 1.1.1. See [FJ17] for more information on
the implementation. All the FFTW results below were obtained using FFTW 3.3.4 with
its FFTW_MEASURE plan. sFFT 2.0 is a randomized sparse Fourier transform that is
robust with respect to noise; see [HIKP12c,HIKP12b] for more detailed information and
an implementation. It has a theoretical runtime of O

(
logN

√
NB logN

)
for a B-sparse

input function with bandwidth N .
Note that both the deterministic and the randomized version of Algorithm 6 are de-

signed to approximate functions that are (n,B)-block sparse. Thus, both methods require
upper bounds on the number of blocks n and the block length B of the functions they
aim to recover as parameters. In contrast, both Algorithm 4 and sFFT 2.0 only need an
upper bound on the effective sparsity s of the Fourier coefficients of the function. For an
(n,B)-block sparse function the effective sparsity s is nB. Hence, for the remainder of
this section, s is always set such that s = nB for Algorithm 4 and sFFT 2.0.
For the numerical experiments investigating the runtime, each test function f was

formed by choosing an (n,B)-block sparse set S of frequencies uniformly at random from{
−
⌈
N
2

⌉
+ 1, . . . ,

⌊
N
2

⌋}
. Each frequency in the set S was then assigned a Fourier coeffi-

cient cω with magnitude 1 and a phase chosen uniformly at random from [0, 2π). The
Fourier coefficients of the remaining frequencies of f were all set to zero. The follow-
ing figures were obtained by computing the average over 100 runs on 100 different test
functions as described above. Depending on the choice of the number of blocks n and
their length B, the parameters in the two randomized algorithms, i.e., the randomized
variant of Algorithm 6 and sFFT 2.0, were chosen such that the probability of correctly
recovering an (n,B)-block sparse function was at least 0.9 for each run. For the random-
ized version of Algorithm 6 with n = 2 it suffices to set R = 1 if B ≤ 210 and R = 3 if
B ≤ 211 to achieve this probability. For n = 3 blocks we can set R = 1 if B ≤ 24 and
R = 3 if B ≤ 211.
In Figure 3.1 we plot the average runtimes of Algorithm 6 and its randomized variant,

Algorithm 4, sFFT 2.0 and FFTW for n = 2 blocks, a bandwidth of N = 226 and block
lengths B varying between 22 and 211. In Figure 3.2 we perform the same numerical
experiments for a block sparse function with n = 3 blocks.
As expected, due to the independence of its runtime of the actual sparsity of the func-

tion, the runtime of FFTW is constant for increasing block lengths. The theoretical
runtimes of all sparse Fourier transform algorithms other than Algorithm 4 are sub-
quadratic in B. Indeed, the plots of their average runtimes for varying B have similar
slopes. Figures 3.1 and 3.2 also demonstrate that allowing a small probability of incor-
rect recovery for the randomized algorithms sFFT 2.0 and the randomized variant of
Algorithm 6 lets these methods outperform the deterministic algorithms with respect to
runtime for all considered block lengths B. Among the deterministic algorithms, Algo-
rithm 6 is always faster than Algorithm 4, and only becomes slower than FFTW when
the block length B is greater than 256. The runtimes of both the randomized variant of

1There is also an implementation of the general Algorithm 5 in Matlab 2016b publicly available
in [BZI17a].
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Figure 3.1: Average runtimes of Algorithm 4, Algorithm 6 (deterministic), FFTW, sFFT
2.0 and Algorithm 6 (randomized) for 100 random input functions with n = 2
blocks of length B and bandwidth N = 226

10−3

10−2

10−1

100

101

102

4 8 16 32 64 128 256 512 1024 2048

R
un

ti
m
e

[s
]

Block Length B

Algorithm 4
Algorithm 6
FFTW
sFFT 2.0
Algorithm 6, rand.

Figure 3.2: Average runtimes of Algorithm 4, Algorithm 6 (deterministic), FFTW, sFFT
2.0 and Algorithm 6 (randomized) for 100 random input functions with n = 3
blocks of length B and bandwidth N = 226

Algorithm 6 and sFFT 2.0 are still comparable with the one of FFTW when the block
length B is as large as 2,048 for n = 2 and 1,024 for n = 3. Compared to sFFT 2.0, the
randomized variant of Algorithm 6 has a better runtime performance for the considered
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parameters. It is also the only algorithm that is still faster than FFTW when B = 2,048
for both n = 2 and n = 3.
In Figure 3.3 we fix the bandwidth and block length to be N = 226 and B = 32 and

vary the number of blocks n from 1 to 10.
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Figure 3.3: Average runtimes of Algorithm 4, Algorithm 6 (deterministic), FFTW, sFFT
2.0 and Algorithm 6 (randomized) for 100 random input functions with n
blocks of length B = 32 and bandwidth N = 226

Then we can see that the deterministic sparse Fourier methods, Algorithms 4 and 6,
both have runtimes that increase more rapidly in n than those of their randomized com-
petitors. Among the three deterministic methods, Algorithm 6 has the best performance
when the number of blocks is at most 6. Similar to the previous experiments, FFTW
becomes the fastest deterministic algorithm when the sparsity s = Bn is at least 224,
as its runtime does not depend on the sparsity of the function. The two randomized
algorithms are both faster than FFTW by an order of magnitude even if the number of
blocks is 10. As in the experiments where we varied the block length B, the randomized
version of Algorithm 6 is always faster than sFFT 2.0 for the examined value of N .
In Figure 3.4 we set the number of blocks and the block length to be n = 2 and B = 64

and examine the performance of the different algorithms for varying bandwidths N .
It can be seen that FFTW is the fastest deterministic algorithm for small bandwidth

values. However, the runtime of FFTW becomes slower than the one of Algorithm 6
when the bandwidth N is greater than 224. Algorithm 4 is the slowest deterministic
algorithm for this fixed sparsity of 128 for all considered bandwidths N . Comparing
the randomized sparse Fourier methods, the randomized variant of Algorithm 6 always
performs better than sFFT 2.0 when the bandwidth N is greater than 218.
In order to test the robustness of the methods with respect to noise, we add Gaussian

noise to each of the samples of the (n,B)-block sparse function f ∈ C2π utilized in
the algorithms, and then measure the average approximation errors of the reconstructed
Fourier coefficients. As parameters we choose a bandwidth of N = 222 and n = 3 blocks
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Figure 3.4: Average runtimes of Algorithm 4, Algorithm 6 (deterministic), FFTW, sFFT
2.0 and Algorithm 6 (randomized) for 100 random input functions with n = 2
blocks of length B = 64 and bandwidth N

of length B = 24. More specifically, for exact data, each method considered herein utilizes
one or several vectors of equidistant samples of f for suitable lengths M ≤ N . For the
robustness experiments we provide each algorithm with noisy samples of the form(

f

(
2πj

M

)
+ ηj

)M−1

j=0

,

where each ηj ∈ C is a complex Gaussian random variable with mean 0. The ηj are then
rescaled such that the total additive noise η = (ηj)

M−1
j=0 achieves signal-to-noise ratios

(SNRs) between 0 and 60, where the SNR is defined as

SNR := 20 log

(∥∥aM∥∥
2

‖η‖2

)
.

The resulting reconstruction errors are depicted in Figure 3.5.
Recall that the two randomized algorithms compared herein, sFFT 2.0 and the ran-

domized variant of Algorithm 6, are both tuned to guarantee exact recovery of block
sparse functions with probability at least 0.9 in all experiments. For the numerical ex-
periments investigating the robustness with respect to noise, this ensures that the correct
support set S is found for at least 90 of the 100 test functions used to generate the points
plotted in Figure 3.5. All deterministic methods always find the correct support S for
all considered noise levels after sorting their output Fourier coefficient estimates by mag-
nitude. Figure 3.5 depicts the average `1-error between the true Fourier coefficients for
frequencies in the correct frequency support S of each test signal and the corresponding
coefficient estimate xω, averaged over the at least 90 runs for which the respective sparse
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Figure 3.5: Average reconstruction errors of Algorithm 4, Algorithm 6 (deterministic),
FFTW, sFFT 2.0 and Algorithm 6 (randomized) for 100 random input func-
tions with n = 3 blocks of length B = 24 and bandwidth N = 222

Fourier transform correctly identified S. More specifically, it plots

1

Bn

∑
ω∈S

∣∣cω − x̄ω∣∣,
where cω are the true Fourier coefficients for the frequencies ω ∈ S, and x̄ω are their
recovered approximations, averaged over the at least 90 test signals where the respective
method correctly identified S.
Looking at Figure 3.5, one can see that all algorithms considered in our experiments

are robust with respect to noise. Overall, the deterministic methods Algorithm 6, Al-
gorithm 4 and FFTW are more robust than the randomized methods sFFT 2.0 and the
randomized variant of Algorithm 6. As expected, FFTW is the most robust algorithm
in this experiment, followed closely by Algorithm 4. Still, the performance of Algorithm
6 for noisy data is comparable to their performance, and Algorithm 6 is also more stable
than the randomized methods. For the randomized algorithms, the randomized variant
of Algorithm 6 is more robust than sFFT 2.0.
In this chapter we introduced the first deterministic algorithm for reconstructing block

sparse functions from samples. The numerical experiments presented above show that
Algorithm 6 is faster than all existing general sparse FFT methods, while also being very
robust with respect to noisy input data. Furthermore, the investigation of the runtime of
a randomized version of Algorithm 6 showed that it is also faster and more robust than
the fastest existing randomized general sparse FFT algorithms.
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Part III

Sparse Fast Cosine Transform





4 Discrete Cosine Transform

As mentioned in the introduction to this thesis, the discrete cosine and sine transforms
(DCT and DST) of types I to VIII can be obtained by applying combinations of Neu-
mann and Dirichlet boundary conditions to the discretized solution of the homogeneous
harmonic oscillator equation. Furthermore, the DCT-II approximates the statistically op-
timal Karhunen-Loéve transform, which decorrelates stationary Markov-1 signals. Since
in many practical applications the occurring signals can be approximated by stationary
Markov-1 signals, the DCT-II is an extremely useful tool for solving the arising problems.
Similarly as for the DFT, only the development of fast algorithms with a runtime of
O(N logN) instead of O(N2) allowed the widespread practical use of different types of
the DCT and the DST. Some of these methods employ existing fast DFT algorithms, see,
e.g., [PPST19], Section 6.3.1, whereas others only use real arithmetic. See, e.g, [BYR06],
Section 4.4 and [PPST19], Section 6.3.2, for an overview of such real methods.
There is a lower limit for the runtime of fast DCT and DST algorithms for arbitrary

input vectors of length N , though, since the order O(N logN) of the runtime, like the
one of the DFT, can be proven to be optimal. Any further speeding up of the methods
therefore requires additional a priori knowledge about the vector we aim to recover;
in practice this is usually information about its sparsity. After providing the required
theoretical background about the DCT in this chapter, we will investigate sparse DCT-II
problems in more detail in Chapters 5 and 6.

4.1 Discrete Cosine Transform

Let us begin by formally defining the first four types of the discrete cosine transform as
matrix-vector multiplications for real vectors. The DCTs of types V to VIII are not of
interest for this thesis. The following definitions are based on [PPST19], Section 3.5.

Definition 4.1 (Discrete Cosine Transform (DCT)) LetN ∈ N, x = (xk)
N−1
k=0 ∈ RN

and x̃ ∈ RN+1. The cosine matrices of types I-IV are defined as

CI
N+1 :=

√
2

N

(
εN (k)εN (l) cos

(
klπ

N

))N
k, l=0

∈ R(N+1)×(N+1),

CII
N :=

√
2

N

(
εN (k) cos

(
k(2l + 1)π

2N

))N−1

k, l=0

∈ RN×N ,

CIII
N :=

√
2

N

(
εN (l) cos

(
(2k + 1)lπ

2N

))N−1

k, l=0

∈ RN×N ,

CIV
N :=

√
2

N

(
cos

(
(2k + 1)(2l + 1)π

4N

))N−1

k, l=0

∈ RN×N ,

where

εN (k) :=

{
1√
2

if k ≡ 0 mod N,

1 otherwise.
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4 Discrete Cosine Transform

Then the discrete cosine transforms of types I-IV of the vectors x̃ and x, respectively,
are given by

x̃Î := CI
N+1x̃,

xÎI := CII
Nx,

xÎII := CIII
N x,

xÎV := CIV
N x.

The cosine matrices of types I-IV can in fact be shown to be orthogonal, analogously
to the almost unitary Fourier matrix FN , see Definition 1.1.

Theorem 4.2 Let N ∈ N and x ∈ RN . Then the cosine matrices of types I-IV are
orthogonal with

(i) CI
N+1

−1
= CI

N+1
T

= CI
N+1,

(ii) CII
N
−1

= CII
N
T

= CIII
N ,

(iii) CIV
N
−1

= CIV
N
T

= CIV
N .

For a proof see, e.g., [PPST19], Section 3.5, Lemmas 3.46 to 3.48. Apart from the
discrete cosine transforms, there exists another, closely related, set of linear trigonometric
transforms, the discrete sine transforms of types I to VIII. For this thesis only the sine
matrix of type IV, which was introduced in [Jai79], is of interest. Analogously to the
DCT-IV, the sine matrix of type IV defines the discrete sine transform of type IV.

Definition 4.3 (Sine Matrix of Type IV) Let N ∈ N and x = (xk)
N−1
k=0 ∈ RN . The

sine matrix of type IV is defined as

SIV
N :=

√
2

N

(
sin

(
(2k + 1)(2l + 1)π

4N

))N−1

k, l=0

∈ RN×N .

The following theorem proves the orthogonality of the sine matrix of type IV and
provides us with its connection to the cosine matrix of type IV.

Theorem 4.4 Let N ∈ N. We define the counter identity matrix of size N ×N as

JN := (δk,N−1−l)
N−1
k, l=0 =


0 . . . 0 1
0 1 0
... . .

. ...
1 . . . 0 0

 ∈ RN×N ,

and set
DN := diag

((
(−1)k

)N−1

k=0

)
∈ RN×N .

Then the following statements are true.

(i) The sine matrix of type IV is orthogonal with

SIV
N
−1

= SIV
N
T

= SIV
N .
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(ii) The cosine and sine matrices of type IV satisfy

SIV
N = DNC

IV
N JN and SIV

N = JNC
IV
N DN .

A proof of (i) can be found in [Jai79], Section III A. For a proof of (ii) see [Wan84],
Section IV, equation (56).

4.2 Fast DCT-II Algorithms

Computing the DCT of a vector x ∈ RN via the matrix-vector multiplications from
Definition 4.1 has a runtime of O(N2). Fortunately, as for the DFT, there exist more
efficient techniques for computing DCTs, which can achieve runtimes of O(N logN).
Some of these methods use a divide-and-conquer approach like the one we explained
in Section 1.1.1, some only employ real arithmetic, whereas others are based on existing
FFT algorithms. For more details on an efficient algorithm for computing the DCT-II via
FFTs see Section 5.2 of this thesis; for FFT-based algorithms for the other types of the
DCT see, e.g., [PPST19], Section 6.3.1. It can also be shown that the order O(N logN)
for the runtime of the fast DCT is optimal for arbitrary input vectors of length N .
As the existence of fast algorithms for the DCT-II is integral for the methods we

will present in Chapter 6, we now briefly sketch a fast algorithm for the DCT-II. This
section, in which we present a method based on orthogonal matrix factorizations that
only employs real arithmetic, is based on [PPST19], Section 6.3.2.
Let N ∈ N be even with N ≥ 4. Our aim is to factorize the matrix CII

N into a product
of sparse orthogonal matrices that allow for divide-and-conquer steps. For the DFT
the factorizations of FN corresponding to the radix-2 algorithms which we sketched in
Section 1.1.1 mainly depend on FN

2
, a permutation matrix and a simple diagonal matrix,

see, e.g., [PPST19], Section 5.2.3. However, the factorization of CII
N we want to employ

does not only depend on CII
N
2

, but also on CIV
N
2

. Hence, we also require a factorization of

CIV
N
2

into orthogonal matrices.

The following factorization of CII
N was proved in [PT05], Lemma 2.2 (i). See also

[PPST19], Theorem 6.32 (i), for more details.

Lemma 4.5 Let N ∈ N be even, N ≥ 4, and let

PN :=

 (δ2k, l)
N
2
−1, N−1

k, l=0

(δ2k+1, l)
N
2
−1, N−1

k, l=0

 =



1 0 0 0 0 . . . 0 0
0 0 1 0 0 . . . 0 0
...

. . .
. . .

...
0 . . . . . . 1 0
0 1 0 0 0 . . . 0 0
0 0 0 1 0 . . . 0 0
...

. . .
...

0 . . . . . . . . . 0 1


∈ RN×N

be the even-odd permutation matrix. Further, define

TN :=
1√
2

 IN
2

JN
2

IN
2
−JN

2

 ∈ RN×N ,
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where IN
2
denotes the identity matrix of size N

2 ×
N
2 and JN

2
the counter identity matrix

of size N
2 ×

N
2 from Theorem 4.4. Then CII

N satisfies the following factorization,

CII
N = PN

T

 CII
N
2

0N
2

0N
2

CIV
N
2

TN . (4.1)

Remark 4.6 Note that for x = (xk)
N−1
k=0 ∈ RN , N even, we have that

PNx =

 (x2k)
N
2
−1

k=0

(x2k+1)
N
2
−1

k=0

 , (4.2)

i.e., multiplying PN by a vector x returns the evenly indexed entries of x in the first half
and the oddly indexed ones in the second half. ♦

Proof of Lemma 4.5. Let us consider the matrix PNC
II
N . By Remark 4.6 we obtain that

PNC
II
N =

√
2

N


(
εN (2k) cos

(
2k(2l+1)π

2N

))N
2
−1, N−1

k, l=0(
cos
(

(2k+1)(2l+1)π
2N

))N
2
−1, N−1

k, l=0

 , (4.3)

since 2k+ 1 6≡ 0 mod N for all k ∈
{

0, . . . , N2 − 1
}
. Writing the right-hand side of (4.3)

as a block matrix consisting of four submatrices indexed from 0 to N
2 − 1 yields

PNC
II
N

=

√
2

N


(
εN

2
(k) cos

(
2k(2l+1)π

2N

))N
2
−1

k, l=0

(
εN

2
(k) cos

(
2k(2(N2 +l)+1)π

2N

))N
2
−1

k, l=0(
cos
(

(2k+1)(2l+1)π
2N

))N
2
−1

k, l=0

(
cos

(
(2k+1)(2(N2 +l)+1)π

2N

))N
2
−1

k, l=0



=

√
2

N


√

N
4 C

II
N
2

(
εN

2
(k) cos

(
k(N+2l+1)π

N

))N
2
−1

k, l=0√
N
4 C

IV
N
2

(
cos
(

(2k+1)(N+2l+1)π
2N

))N
2
−1

k, l=0

 . (4.4)

Since

cos

(
k(N + 2l + 1)π

N

)
= cos(kπ) cos

(
k(2l + 1)π

N

)
− sin(kπ) sin

(
k(2l + 1)π

N

)
︸ ︷︷ ︸

=0

= cos(kπ) cos

(
k(2l + 1)π

N

)
+ sin(kπ) sin

(
k(2l + 1)π

N

)
︸ ︷︷ ︸

=0
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= cos

(
k(N − 2l − 1)π

N

)
= cos

(
k
(
2
(
N
2 − l − 1

)
+ 1
)
π

N

)
,

we find for the top-right quadrant of the matrix in (4.4) that(
εN

2
(k) cos

(
k (N + 2l + 1)π

N

))N
2
−1

k, l=0

=

(
εN

2
(k) cos

(
k
(
2
(
N
2 − l − 1

)
+ 1
)
π

N

))N
2
−1

k, l=0

=

√
N

4
CII

N
2

JN
2
. (4.5)

Similarly, using

cos

(
(2k + 1)(N + 2l + 1)π

2N

)
= cos

(
(2k + 1)π

2

)
cos

(
(2k + 1)(2l + 1)π

2N

)
︸ ︷︷ ︸

=0

− sin

(
(2k + 1)π

2

)
sin

(
(2k + 1)(2l + 1)π

2N

)
= − cos

(
(2k + 1)π

2

)
cos

(
(2k + 1)(2l + 1)π

2N

)
︸ ︷︷ ︸

=0

− sin

(
(2k + 1)π

2

)
sin

(
(2k + 1)(2l + 1)π

2N

)
= − cos

(
(2k + 1)(N − 2l − 1)π

2N

)
= − cos

(
(2k + 1)

(
2
(
N
2 − l − 1

)
+ 1
)
π

2N

)
,

the bottom-right quadrant of the matrix in (4.4) can be written as(
cos

(
(2k + 1) (N + 2l + 1)π

2N

))N
2
−1

k, l=0

= −

(
cos

(
(2k + 1)

(
2
(
N
2 − l − 1

)
+ 1
)
π

2N

))N
2
−1

k, l=0

= −
√
N

4
CIV

N
2

JN
2
. (4.6)
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Combining (4.5) and (4.6) with (4.4), we obtain that

PNC
II
N =

√
2

N


√

N
4 C

II
N
2

√
N
4 C

II
N
4

JN
2√

N
4 C

IV
N
2

−
√

N
4 C

IV
N
4

JN
2



=
1√
2

 CII
N
2

CII
N
2

JN
2

CIV
N
2

−CIV
N
2

JN
2



=

 CII
N
2

0N
2

0N
2

CIV
N
2

 1√
2

 IN
2

JN
2

IN
2
−JN

2



=

 CII
N
2

0N
2

0N
2

CIV
N
2

TN ,

which proves the claim.

Note that both PN , as a permutation matrix, and TN are orthogonal, which implies
that the factorization from Lemma 4.5 is indeed one into real orthogonal sparse matrices.
This factorization now provides us with the necessary tools for a first divide-and-conquer
step. Let x ∈ RN , where N ≥ 4 is even. Let us denote by x(0) and x(1) the first and
second half of x, respectively, i.e.,

x(0) := (xk)
N
2
−1

k=0 ∈ R
N
2 and x(1) := (xk)

N−1
k=N

2

∈ R
N
2 .

Then we find that

xÎI = CII
Nx = PN

T

CII
N
2

0N
2

0N
2

CIV
N
2

 1√
2

(
IN

2
JN

2

IN
2
−JN

2

)
·
(
x(0)

x(1)

)

= PN
T

CII
N
2

(
x(0) + JN

2
x(1)

)
CIV

N
2

(
x(0) − JN

2
x(1)

)
 .

Consequently, the first subproblem of half size is to compute the DCT-II of the vector
x(0) + JN

2
x(1) ∈ R

N
2 , and the second subproblem of half size is to compute the DCT-IV

of the vector x(0) − JN
2
x(1) ∈ R

N
2 . Thus, we also require a factorization of the matrix

CIV
N
2

into real orthogonal sparse matrices such that we can apply the divide-and-conquer
paradigm.
The following factorization of CIV

N was shown in [PT05], Lemma 2.4. See [PPST19],
Section 6.3.2, Theorem 6.33, for more details.
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Lemma 4.7 Let N ∈ N be even, N ≥ 4. Define

AN :=
1√
2



√
2

IN
2
−1 IN

2
−1

IN
2
−1 −IN

2
−1

−
√

2


·

 IN
2

0N
2

0N
2

DN
2
JN

2

 ∈ RN×N .

Further, let

cN
2

:=

(
cos

(
(2k + 1)π

4N

))N
2
−1

k=0

and sN
2

:=

(
sin

(
(2k + 1)π

4N

))N
2
−1

k=0

,

and set

TN (1) :=

 IN
2

DN
2

 ·
 diag

(
cN

2

)
diag

(
sN

2

)
JN

2

−JN
2

diag
(
sN

2

)
diag

(
JN

2
cN

2

)
 ∈ RN×N .

Then CIV
N satisfies the following factorization,

CIV
N = PN

TAN

 CII
N
2

0N
2

0N
2

CII
N
2

TN (1).

Note that AN and TN (1) are indeed orthogonal matrices. With the factorization from
Lemma 4.7 the subproblem of size N

2 of computing the DCT-IV of the vector x(0)−JN
2
x(1)

can be reduced to two subproblems of size N
4 of essentially computing DCT-IIs of length

N
4 , since

CIV
N ·

(
x(0) − JN

2
x(1)

)

= PN
2

TAN
2

 CII
N
4

0N
4

0N
4

CII
N
4

TN
2

(1) ·
(
x(0) − JN

2
x(1)

)

= PN
TAN

CII
N
4

(
TN

2
(1)
(
x(0) − JN

2
x(1)

))
(0)

CII
N
4

(
TN

2
(1)
(
x(0) − JN

2
x(1)

))
(1)

 .

These subproblems of size N
4 can again be split into a DCT-II and a DCT-IV computation

of length N
8 if 8 divides N . Continuing these splitting steps until the vectors in the

subproblems have length 2, for which we compute the DCT-II and DCT-IV directly,
yields fast algorithms for the DCT-II and DCT-IV. Careful consideration of the matrix
factorizations given by Lemmas 4.5 and 4.7 shows that, for a vector x ∈ RN , N = 2J ,
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the fast DCT-II algorithm performs

4

3
NJ − 8

9
N − 1

9
(−1)J + 1 = O(NJ) = O (N log2N)

complex additions and

NJ − 4

3
N +

1

3
(−1)J + 1 = O (N log2N)

complex multiplications. The fast DCT-IV algorithm also has a runtime of O (N log2N),
with similarly small constants. See [PPST19], Section 6.3.2, Theorem 6.39, for a proof
of these runtime complexities.

Remark 4.8 Since CIII
N = CII

N
T

= CII
N
−1, Lemma 4.5 also provides us with an or-

thogonal factorization of the cosine matrix of type III. Thus, we directly obtain a fast
algorithm with runtime O (N log2N) for the DCT-III, which is the same as the IDCT-II.
It can be shown that for the DCT-I there also exist fast algorithms with a runtime of
O(N log2N). For an overview of several fast methods for the different DCT and DST
types see, e.g., [BYR06], Section 4.4.
Besides the already mentioned possibility of computing the DCT of a vector via the

DFT, which will be explained for the DCT-II in detail in Section 5.2, there also exist fast
DCT algorithms based on Chebyshev polynomials. These methods use factorizations of
the cosine matrices which are not orthogonal, thus leading to less stable algorithms, but
also only require real arithmetic, see, e.g., [Fei90, FW92, PM03, Ste92, ST91]. Further,
the DCT-II can be computed via the Walsh-Hadamard transform, see, e.g., [AR75] and
[BYR06], Section 4.4.3.3. There also exist split-radix methods for the DCT-II, see,
e.g., [BYR06], Section 4.4.3.4. Other algorithms include, for example, [SH86,Wan84,
Wan83,CSF77]. All of these methods have a runtime of O(N logN) for arbitrary vectors
of length N . ♦

4.3 2-Dimensional Discrete Cosine Transform

Some of the main areas of application for discrete cosine and sine transforms are digital
image or video processing and compression, and transform-based coding applications.
All of these problems are at least 2-dimensional, so there has also been extensive re-
search regarding the development of fast 2-dimensional DCT and DST algorithms, with
particular focus on the DCT-II.
We now define the 2-dimensional discrete cosine transforms of types II and IV, see,

e.g., [RY90], Chapter 5 and [BYR06], Section 4.5.

Definition 4.9 (2-Dimensional DCT-II and DCT-IV) Let A ∈ RM×N . Then the
2-dimensional discrete cosine transforms of types II and IV of A are defined as

AÎI := CII
MACII

N
T and AÎV := CIV

MACIV
N .

The other 2-dimensional discrete trigonometric transforms are defined analogously. As
for the 1-dimensional DCT, the 2-dimensional DCT of a real M × N matrix can be
calculated by applying a 2-dimensional DFT, see, e.g., [RY90], Section 5.4. However,
there also exist direct approaches for computing 2-dimensional discrete trigonometric
transforms. The first method, the so-called row-column method, is based on the ability
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to rapidly calculate 1-dimensional DCTs or DSTs. It first applies a fast 1-dimensional
DCT or DST algorithm of length N to all row vectors of the input matrix A. Then
another fast 1-dimensional M -length DCT or DST algorithm is applied to all column
vectors of the resulting matrix, which yields an overall runtime of

O (MN log2(MN)) ,

while using MN samples of AÎI.
The second approach is a 2-dimensional vector-radix method, which uses 2-dimensional

decomposition ideas, see, e.g., [CH91,WP89b,WP89a,WP91,BR00]. Such methods can
be directly applied to 2-dimensional data, as they decompose the M ×N DCT or DST
into sums of four DCTs or DSTs of size M

2 ×
N
2 . Applying this idea recursively until

DCTs or DSTs of size 2× 2 are achieved, these methods are even faster than row-column
algorithms, having to perform

3

4
N2 log2N

instead of
N2 log2N

multiplications for a matrix of size N ×N . Other approaches include algorithms based
on polynomial transforms, see [DG90,PD96].

4.4 Vandermonde Matrices and Chebyshev Polynomials

Even though the connection between discrete cosine transforms on the one hand and
polynomial interpolation on the other hand may not seem evident at first, we will now
briefly recall some basic results in the second topic. They will lead us to the concept of
(odd) Vandermonde matrices and Chebyshev zero nodes, which we will employ in the
reconstruction procedures in Chapter 6.
Polynomial interpolation is the problem of, given a set of n+1 data tuples (x0, y0) , . . . ,

(xn, yn) ∈ R2, finding a polynomial P of degree at most n that satisfies

P (xk) = yk ∀ k ∈ {0, . . . , n} . (4.7)

It can be easily shown that the interpolation problem (4.7) has a unique solution if
the interpolation points xk, k ∈ {0, . . . , n}, are distinct, see, e.g., [Atk89], Chapter 3,
Theorem 3.1. Let us denote the vector space of polynomials with real coefficients of degree
at most n by Πn, i.e.,

Πn :=

{
P (x) =

n∑
l=0

alx
l : al ∈ R ∀ l ∈ {0, . . . , n}

}
.

Assume that P ∈ Πn with

P (x) =
n∑
l=0

alx
l

satisfies (4.7), i.e.,

P (xk) =
n∑
l=0

alxk
l = yk ∀ k ∈ {0, . . . , n}.
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Writing this as a linear equation system, we obtain
1 x0 x0

2 . . . x0
n

1 x1 x1
2 . . . x1

n

...
...

...
...

1 xn xn
2 . . . xn

n

 ·

a0

a1

...
an

 =


y0

y1

...
yn

 . (4.8)

The matrix in (4.8) is known as the Vandermonde matrix.

Definition 4.10 (Vandermonde Matrix) Let n ∈ N and x = (xk)
n
k=0 ∈ Rn+1. The

matrix

V (x) :=
(
xk

l
)n
k, l=0

=


1 x0 x0

2 . . . x0
n

1 x1 x1
2 . . . x1

n

...
...

...
...

1 xn xn
2 . . . xn

n


is called Vandermonde matrix.

The following property of Vandermonde matrices is very well known. For a proof see,
e.g., [Sch02], Section 3.1.2, Lemma 3.1.2.

Lemma 4.11 Let n ∈ N and x = (xk)
n
k=0 ∈ Rn+1. Then we have that

det (V (x)) =
∏

0≤k<l≤n
(xl − xk) ,

so V(x) is invertible if and only if x0, . . . , xn are pairwise distinct.

Consequently, since the monomials 1, x, . . . , xn form a basis of Πn, the interpolation
problem (4.7) has a unique solution if the interpolation points x0, . . . , xn are all distinct.
However, Vandermonde matrices are, in general, ill-conditioned, so interpolating polyno-
mials are not found by inverting (4.8) in practice. Instead of the monomial basis, which
corresponds to the Vandermonde matrix, bases consisting of, e.g., Lagrange, Newton or
Chebyshev polynomials are used.
If the interpolation points are generated by evaluating a function, i.e., if

yk = f (xk) ∀ k ∈ {0, . . . , n}

for a function f : [x0, xn] → R, then it is also of interest whether the interpolating
polynomial P approximates the function f well in some sense. To be more precise, the
goal is to find a polynomial P ∈ Πn such that the interpolation error

rn(x) := f(x)− P (x) (4.9)

is sufficiently small. The following result can be found, e.g., in [Atk89], Section 3.2,
equations (3.2.11) and (3.2.12).

Theorem 4.12 Let n ∈ N and x0, . . . , xn ∈ R be pairwise distinct. Let x ∈ R and
f : I → R be (n+1)-times continuously differentiable, where I is an interval containing x
and x0, . . . , xn. Let P ∈ Πn be the interpolating polynomial for the interpolation problem

P (xk) = f (xk) ∀ k ∈ {0, . . . , n}.
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Then we have that

f(x)− P (x) =
f (n+1)(ξ)

(n+ 1)!

n∏
k=0

(x− xk)

for some ξ ∈ I depending on x. Further, it follows that

|f(x)− P (x)| ≤
∥∥f (n+1)

∥∥
∞

(n+ 1)!
·

∣∣∣∣∣
n∏
k=0

(x− xk)

∣∣∣∣∣ . (4.10)

The first factor in the error estimate only depends on f and the degree of the interpo-
lating polynomial, so we cannot influence it, since for a fixed degree the only parameters
that can be varied are the interpolation points. These considerations give rise to the
problem of finding interpolation points which minimize∣∣∣∣∣

n∏
k=0

(x− xk)

∣∣∣∣∣
for x in a given interval I. Such optimal interpolation points do indeed exist; they are
called Chebyshev (zero) nodes, as they are the zeros of the Chebyshev polynomial of the
first kind.

Definition 4.13 (Chebyshev Polynomials of the First Kind) Let n ∈ N0 and
x ∈ R. Then the Chebyshev polynomial of the first kind of degree n+ 1 is defined as

Tn+1(x) := 2n
n∏
k=0

(
x− cos

(
(2k + 1)π

2(n+ 1)

))
=:

n+1∑
l=0

αn+1, l x
l,

and T0(x) := 1.

Some of the most important properties of the Chebyshev polynomials of the first kind
are summarized in the next lemma.

Lemma 4.14 Let n ∈ N0 and x ∈ R.

(i) Tn is a polynomial of degree n.

(ii) The leading coefficient of Tn satisfies

αn, n =

{
1 if n = 0,

2n−1 if n ≥ 1.
(4.11)

(iii) Tn is odd if n is odd, and Tn is even if n is even.

(iv) The n zeros of Tn are

tn, l := cos

(
(2l + 1)π

2n

)
, l ∈ {0, . . . , n− 1},

and they are called Chebyshev zero nodes.

(v) If |x| ≤ 1, then Tn can be written as

Tn(x) = cos(n arccosx).
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4 Discrete Cosine Transform

(vi) Evaluating Tk at the Chebyshev zero nodes tn, l for l ∈ {0, . . . , n − 1}, n ∈ N and
k ∈ N0 yields

Tk (tn, l) = cos

(
k(2l + 1)π

2n

)
.

Claims (i), (ii) and (iv) follow directly from Definition 4.13. Proofs of (iii) and (v) can
be found in [PPST19], Section 6.1. The claim in (vi) follows directly from (v).
Using the properties in Lemma 4.14, one can prove that the maximal absolute value

of the polynomial 2−nTn+1 in the interval [−1, 1] is indeed not greater than the maximal
absolute value of any other polynomial of degree n+1 with leading coefficient 1 in [−1, 1].
Consequently, the Chebyshev zero nodes xk = tn+1, k minimize the value

max
x∈[−1,1]

∣∣∣∣∣
n∏
k=0

(x− xk)

∣∣∣∣∣
in (4.10) in Theorem 4.12.
The Chebyshev polynomials, which form a complete orthogonal system, are used in

many areas of numerical mathematics besides polynomial interpolation, e.g., for spectral
methods and for the so-called Chebyshev filters. We will utilize them in Chapter 6 in
order to obtain an invertible factorization of a special submatrix of the cosine matrix of
type IV. Apart from Chebyshev polynomials and Chebyshev zero nodes this will require
the notion of odd Vandermonde matrices. We saw at the beginning of this section how
Vandermonde matrices are related to polynomial interpolation in the monomial basis. If
it is known a priori that an odd function f is being interpolated, then the interpolating
polynomial will be odd as well. Hence, it suffices to restrict the linear equation system
(4.8) to the columns corresponding to odd exponents, as the polynomial coefficients a2k,
k ∈

{
0, . . . ,

⌊
n
2

⌋}
, have to be zero. This motivates the notion of odd Vandermonde

matrices introduced in [BP18a].

Definition 4.15 (Odd Vandermonde Matrix) Let n ∈ N and x = (xk)
n
k=0 ∈ Rn+1.

The matrix

Vodd (x) :=
(
xk

2l+1
)n
k, l=0

=


x0 x0

3 x0
5 . . . x0

2n+1

x1 x1
3 x1

5 . . . x1
2n+1

...
...

...
...

xn xn
3 xn

5 . . . xn
2n+1


is called odd Vandermonde matrix.

The determinant of an odd Vandermonde matrix is related to the determinant of a
standard Vandermonde matrix as given by Definition 4.10.

Lemma 4.16 (Lemma 3.1 in [BP18a]) Let n ∈ N and x = (xk)
n
k=0 ∈ Rn+1 such

that x0, . . . , xn 6= 0 and |xk| 6= |xl| for all k 6= l, where k, l ∈ {0, . . . , n}. Then the odd
Vandermonde matrix Vodd(x) is invertible with

det
(
Vodd(x)

)
=

n∏
j=0

xj · det
(
V
(
x0

2, . . . , xn
2
))

=

n∏
j=0

xj
∏

0≤k<l≤n

(
xl

2 − xk2
)
.
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Proof. Using the multilinearity of the determinant and Lemma 4.11, we obtain that

det
(
Vodd(x)

)
= det


x0 x0

3 x0
5 . . . x0

2n+1

x1 x1
3 x1

5 . . . x1
2n+1

...
...

...
...

xn xn
3 xn

5 . . . xn
2n+1



=
n∏
j=0

xj · det


1 x0

2 x0
4 . . . x0

2n

1 x1
2 x1

4 . . . x1
2n

...
...

...
...

1 xn
2 xn

4 . . . xn
2n


=

n∏
j=0

xj · det
(
V
(
x0

2, . . . , xn
2
))

=
n∏
j=0

xj
∏

0≤k<l≤n

(
xl

2 − xk2
)
.

As xk 6= 0 and |xk| 6= |xl| for k 6= l, k, l ∈ {0, . . . , n}, it follows that Vodd (x0, . . . , xn) is
invertible.

Recall that any odd function f is rotational symmetric with respect to the origin and
always satisfies that f(0) = 0. Consequently, if it is known a priori that we interpolate an
odd function f with an odd polynomial, the interpolation point 0 cannot yield additional
knowledge about the function and must not be used. Further, since f(x) = −f(−x),
two nodes xk, xl with |xk| = |xl| provide the same information. Thus, it makes sense
that Vodd(x) is invertible if and only if none of the interpolation points is 0 and their
absolute values are pairwise distinct.
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5 Sparse Fast IDCT-II for Vectors with
One-Block Support Based on IFFT

In the second part of this thesis we are interested in deterministically reconstructing real
vectors from their DCT-II. For the closely related case of recovering a vector from its
DFT under the assumption of sparsity there has been extensive research in recent years.
We listed several sparse IFFT and FFT methods at the beginning of Chapter 2, including,
e.g., the deterministic IFFT methods for vectors [PW16a,PW17a,PWCW18], which we
will explain in more detail in Sections 5.3 and 6.5.1. The investigation of sparse discrete
cosine and sine transforms has not yet been that thorough, even though, as mentioned
in Section 4, there exists a variety of fast DCT and DST algorithms for arbitrary input
vectors. They have a runtime of O(N logN), which is optimal for arbitrary input vectors
of length N . As for the 2π-periodic functions considered in the first part of this thesis,
we can only hope to achieve lower runtimes if we additionally assume sparsity of the
output vector.
Being one of the most widely used algorithms in applied mathematics, engineering

and signal processing due to the fact that it approximates the statistically optimal KLT,
there indeed exist various applications not only for general DCTs but also for sparse
DCTs. For example, sparse DCTs can be employed to rapidly evaluate polynomials in
monomial form from sparse expansions of Chebyshev polynomials, see, e.g., [PPST19],
Section 6.2. Since DCTs also play an important part in data compression, e.g., for images
and videos, the ability to incorporate sparsity into such methods can also lead to faster
data compression algorithms.
Of course, given a vector x = (xk)

N−1
k=0 ∈ RN , it is always possible to obtain xÎI by

applying a DFT to the vector

y = (x0, x1, . . . , xN−1, xN−1, xN−2, . . . , x0) ∈ R2N ,

since
xÎI =

εN (k)√
2N

ω4N
k · ŷk ∀ k ∈ {0, . . . , N − 1},

as we will explain in more detail in Section 5.2. Similar FFT-based approaches also exist
for the computation of DCTs of types I, III and IV, see, e.g., [PPST19], Section 6.3.1.
If x is m-sparse, then the auxiliary vector y is 2m-sparse. Thus, by applying a general
2m-sparse FFT algorithm to y, one can obtain the DCT-II of x faster than by performing
a fast full-length DCT-II like the one described in Section 4.2. However, y has twice as
many nonzero entries as x, so applying a 2m-sparse FFT will not be the most efficient
method, especially since y is symmetric.
If the input vector x is not only sparse but satisfies some additional structural proper-

ties, for example having a short support, then the structure of the support of y is closely
related to that of x. This special structure of y can be employed to find a faster sparse
FFT algorithm for y and thus a faster DCT-II algorithm for x. Another way to obtain a
fast sparse DCT-II method is to utilize the special structure of x directly for the DCT-II
computations without employing DFTs.
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5 Sparse Fast IDCT-II for Vectors with One-Block Support Based on IFFT

Our topic of interest for this and the following chapter is the deterministic recovery
of a vector x ∈ RN with short support of length m from its DCT-II transformed vector
xÎI, so we will focus on inverse DCT-IIs. For vectors having a short support means that
the indices corresponding to its significantly large entries are contained in an interval
Sx of length m. In this chapter we will develop a fast IDCT-II algorithm for vectors
with short support that is based on IFFTs, whereas in Chapter 6 we will introduce an
IDCT-II algorithm for vectors with short support that only requires real arithmetic. We
will compare the performances of both methods numerically in Section 6.5.
To the best of of our knowledge these are the first IDCT-II methods that are specifically

optimized for the DCT-II setting and utilize the special support structures of x and
the auxiliary vector y that arise if x has a short support. We are not aware of other
sparse algorithms for any of the DCT and DST types that are specifically tailored to the
respective cosine and sine bases or the occurring sparsity structures.
The following chapter is based on our paper [BP18c] and is in parts identical with the

representations therein.

5.1 One-Block Support

Throughout this chapter we will always consider a real vector x = (xk)
N−1
k=0 ∈ RN ,

N := 2J−1, that has a short or one-block support. Unlike in Chapters 2 and 3, we use
the representative system {0, 1, . . . , N − 1} for the residues modulo N , since both x and
xÎI are indexed from 0 to N − 1 by definition. In order to formally define the concept of
a one-block support, we first have to introduce periodized intervals.

Definition 5.1 Let n = 2j with j ∈ N0 and a, b ∈ N0. Then we denote by I(j)
a, b the

periodized interval

I
(j)
a, b := {a mod n, (a+ 1) mod n, . . . , b mod n} ⊆ {0, . . . , n− 1}.

Periodized intervals allow us to consider an index set, corresponding to vector entries,
that is wrapped periodically around the boundary of the vector as a single set instead
of as two separated sets. With their help we can now define the notion of one-block
supports.

Definition 5.2 Let N = 2J−1 with J ≥ 2 and x = (xk)
N−1
k=0 ∈ RN . Then x has a

one-block support of length m if m is the minimal integer such that

xk = 0 ∀ k /∈ I(J−1)
µx, νx = {µx, (µx + 1) mod N, . . . , νx} ,

for some µx ∈ {0, . . . , N − 1} and νx := (µx +m− 1) mod N .
The interval Sx := I

(J−1)
µx, νx is called the support interval, µx the first support index and

νx the last support index of x.

Remark 5.3 Recall that in Definition 2.23 we already defined the notion of a first
support index. However, in Section 2.4, we knew that âM had a short support of length
at most B if M > 2B, so we used B in the definition of the first support index. In this
chapter, though, we require a definition for which neither the support length m nor the
first support index µx are known a priori; hence, Definition 5.2 is slightly different from
Definition 2.23. In both cases we allow the support to be periodically wrapped around
the boundary of the vector, i.e., around N − 1 and 0 in this chapter, and around

⌊
M
2

⌋
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and −
⌈
M
2

⌉
+ 1 in Section 2.4. Note that in the definition of a short support which we

will give in Section 6.1 and which we will use throughout Chapter 6, the support will
not be considered periodically. To be able to differentiate between these two cases we
will call the support one-block support if we allow it to be wrapped periodically around
the boundary of the vector, and short support if this is not the case in Chapters 5 and
6. According to this nomenclature, the vectors aM in Section 2.4 would actually have a
one-block support. However, as short support is the commonly used term and we only
introduced the name one-block support to avoid confusion with respect to the closely
related concepts used in Chapters 5 and 6, we decided to use the word short support in
Chapters 2 and 3, since there are no ambiguities there.
The support interval Sx contains all indices at which x has nonzero entries. Since

for some of the theoretical concepts used hereafter we require the support of x to be a
periodized interval in N0, some of the indices in Sx may correspond to zero entries of x.
By definition, the support length m of x ∈ RN is uniquely determined, but the first

support index is not unique if m > N/2. Consider for example the vector x ∈ R8 with

x = (1, 0, 0, 0, 1, 0, 0, 0)T .

Then x has a short support of length m = 5, but, according to Definition 5.2, we can
choose the first support index µx to be either 0 or 4, resulting in the support intervals
Sx = I

(3)
0, 4 or Sx = I

(3)
4, 0, respectively. For m ≤ N

2 , though, the first support index is
always uniquely determined. ♦

5.2 DCT-II via FFT

Our aim in this chapter is to develop a fast algorithm that deterministically recovers a
vector x ∈ RN , N = 2J−1, from its DCT-II transformed vector xÎI ∈ RN if we know a
priori that x has a one-block support of some unknown length. In our newly introduced
notation this means that x has the support set

Sx = I
(J−1)
µx, νx = {µx, (µx + 1) mod N, . . . , νx}

for some µx, νx ∈ I(J−1)
0, N−1 and the support length m = (νx − µx + 1) mod N . We do not

require any a priori knowledge of m in this chapter.
Apart from the fast DCT-II algorithm using a factorization of CII

N into real invertible
matrices and the divide-and-conquer method, which we explained briefly in Section 4.2,
one can also obtain a fast DCT-II algorithm using the FFT. More precisely, the DCT-II
of any vector x ∈ RN can be computed from the DFT of the auxiliary vector y ∈ R2N

of double length, where

y :=
(
xT , (JNx)T

)T
=
(
x0, x1, . . . , xN−1︸ ︷︷ ︸

=xT

, xN−1, xN−2, . . . , x0︸ ︷︷ ︸
=(JNx)T

)T
,

i.e., the first half of the vector y is x and the second half of y is the reflection of x, JNx.
As in Theorem 4.4, JN denotes the counter identity matrix of size N ×N . Equivalently,
we can write that

yk :=

{
xk if k ∈ {0, . . . , N − 1},
xN−1−k if k ∈ {N, . . . , 2N − 1}.

(5.1)
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The following lemma shows the close relation between xÎI and ŷ, namely that xÎI can be
computed from ŷ and vice versa, see also [PPST19], Section 6.3.1.

Lemma 5.4 (Lemma 1 in [BP18c]) Let N ∈ N, x ∈ RN and y = (xT , (JNx)T )T ∈
R2N .

(i) y is symmetric, i.e.,
y = J2Ny.

(ii) xÎI =
(
xÎI
k

)N−1

k=0
= CII

Nx is given by

xÎI
k =

εN (k)√
2N

ω4N
k · ŷk ∀ k ∈ {0, . . . , N − 1},

where ŷ = (ŷk)
2N−1
k=0 = F2Ny.

(iii) ŷ is completely determined by xÎI via

ŷk =


√

2N
εN (k)ω4N

−k · xÎI
k if k ∈ {0, . . . , N − 1},

0 if k = N,

−
√

2N
εN (2N−k)ω4N

−k · xÎI
2N−k if k ∈ {N + 1, . . . , 2N − 1}.

Proof. (i) Note that y is symmetric by construction, since

J2Ny = J2N

(
x

JNx

)
=

(
x

JNx

)
= y.

(ii) Let k ∈ {0, . . . , N − 1}. Using that for all x ∈ R

cos(x) =
eix + e−ix

2
,

we find that

xÎI
k =

√
2

N
εN (k)

N−1∑
l=0

cos

(
2 · k(2l + 1)π

2 · 2N

)
xl

=
εN (k)√

2N

N−1∑
l=0

(
ω4N

k(2l+1) + ω4N
−k(2l+2−1)

)
xl

=
εN (k)√

2N

N−1∑
l=0

(
ω4N

2klω4N
k + ω4N

2k(−l−1)ω4N
k
)
xl

=
εN (k)√

2N
ω4N

k
N−1∑
l=0

(
ω2N

kl + ω2N
k(2N−1−l)

)
xl

=
εN (k)√

2N
ω4N

k

(
N−1∑
l=0

ω2N
klxl +

2N−1∑
l′=N

ω2N
kl′x2N−1−l′

)

=
εN (k)√

2N
ω4N

k · ŷk,
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where we set l′ = 2N − 1− l for l ∈ {0, . . . , N − 1}.

(iii) If k ∈ {0, . . . , N − 1}, the claim in (iii) follows directly from (ii). For any index
k ∈ {N, . . . , 2N − 1} the symmetry of y guaranteed by (i) implies that

ŷk =
(
Ĵ2Ny

)
k

=

2N−1∑
l′=0

ω2N
kl′y2N−1−l′

=

2N−1∑
l=0

ω2N
k(2N−1−l)yl

=
2N−1∑
l=0

ω2N
−k(l+1)yl

= ω2N
−k

2N−1∑
l=0

ω2N
−klyl, (5.2)

where we set l := 2N − 1− l′ for l′ ∈ {0, . . . , 2N − 1}. If k = N , (5.2) yields

ŷN = ω2N
−N

2N−1∑
l=0

ω2N
−Nlyl

= −
2N−1∑
l=0

ω2N
Nlyl

= −ŷN ,

so it follows that ŷN = 0. If k ∈ {N + 1, . . . , 2N − 1}, then 2N − k ∈ {1, . . . , N − 1},
and we obtain from (5.2) that

ŷk = ω2N
−k

2N−1∑
l=0

ω2N
−klyl

= ω2N
−k

2N−1∑
l=0

ω2N
(2N−k)lyl

= ω2N
−k · ŷ2N−k

= −
√

2N

εN (2N − k)
ω4N

−k · xÎI
2N−k.

Lemma 5.4 implies that we can compute ŷ from xÎI in O(N) time, and that each entry
of ŷ depends on only one entry of xÎI. Thus, the problem of reconstructing x ∈ RN from
xÎI can be transferred to recovering the vector y = (xT , (JNx)T )T ∈ R2N from ŷ. If x
has a one-block support of length m, we can apply any deterministic 2m-sparse IDFT
algorithm for recovering y = (xT , (JNx)T )T ∈ R2N , which also gives us x. However,
if such an algorithm required every entry of ŷ, we would not obtain an algorithm for
recovering x from xÎI via IDFTs whose runtime is sublinear in the vector length N . As
each entry of ŷ depends on only one entry of xÎI, we can achieve a sublinear runtime if
the sampling complexity of the employed IDFT algorithm is sublinear in N .
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As already mentioned in Chapter 2, there exist fast algorithms for recovering a sparse
vector y from ŷ. However, to the best of our knowledge, all algorithms for arbitrary spar-
sity have a runtime that is at least quadratic in the sparsity. We provided an incomplete
list of such methods at the beginning of Chapter 2. Actually, with x having a one-block
support of length m, the associated vector y = (xT , (JNx)T )T ∈ R2N is 2m-sparse with
a very special structure, so we can employ this knowledge to achieve a sublinear runtime
for our algorithm.

Definition 5.5 (Reflected Block Support) Let N = 2J−1 with J ≥ 2 and x ∈ RN
have a one-block support of length m < N . Then we say that the vector

y :=
(
xT , (JNx)T

)T
∈ R2N

has a reflected block support.

Remark 5.6 Note that the vector y does not necessarily have a support consisting of
two blocks of length m. Under certain conditions it is also possible that y possesses two
support blocks of different lengths or just a single support block of length 2m. We will
discuss the support structure of y in more detail in Section 5.4.1. If y has only a single
support block, we will denote its length by m(J) for algorithmic purposes. If y has two
support blocks, we will refer to their length as n(J) if both blocks have the same length,
and as n(J)

(0) and n(J)
(1) otherwise. The support set of y will be denoted by S(J) ⊆ I(J)

0, 2J−1
.

See Remark 5.13 for additional information about the support of y. ♦

By utilizing the a priori known information about the support structure of y, we hope
to obtain an algorithm for reconstructing y from ŷ that is faster than all previously
existing deterministic methods for general 2m-sparse vectors. Note that even though y
has a sparsity of 2m, it is, due to its symmetry guaranteed by Lemma 5.4 (i), already
completely determined by the m nonzero entries in its first half.
Consequently, our aim in this chapter is to first develop a deterministic IDFT algorithm

for recovering a vector with reflected block support from its DFT transformed vector. If
we can then show that this algorithm has runtime and sampling complexities that are
subquadratic in the block length and sublinear in the vector length, this will also give us
a deterministic IDCT-II algorithm for recovering a vector with one-block support from
its DCT-II transformed vector with the same runtime and sampling requirements.

5.3 IDFT Methods for Vectors with One-Block Support

The IDFT algorithm for vectors with reflected block support which we will introduce
hereafter is obtained by extending recent methods in [PW16a, PW17a] for the recon-
struction of vectors with one-block support from their DFT to our setting. Therefore, we
will give a brief overview of the techniques used in said papers which we will also employ.
Both Algorithm 2 in [PW16a] and Algorithm 2.1 in [PW17a] rely on an approach that

iteratively recovers certain shorter periodizations of y. The following definition lies at
the heart of the two papers.

Definition 5.7 ((2.1) in [PW16a], (1.1) in [PW17a]) For any vector x ∈ R2j we
denote by

x(0) := (xk)
2j−1−1
k=0 ∈ R2j−1

and x(1) := (xk)
2j−1
k=2j−1 ∈ R2j−1
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the first and second half of x, respectively, i.e., x =
(
xT(0),x

T
(1)

)T
.

Let N = 2J−1 with J ≥ 2 and y ∈ R2N . We set y(J) := y. For j ∈ {0, . . . , J − 1} we
iteratively define the periodization y(j) ∈ R2j of y as

y(j) := y
(j+1)
(0) + y

(j+1)
(1) =

(
y

(j+1)
k + y

(j+1)

k+2j

)2j−1

k=0
.

By definition, for any j ∈ {0, . . . , J−1} the periodization y(j) ∈ R2j is given by adding
the first and the second half of the periodization y(j+1) ∈ R2j+1 .

Example 5.8 Let y ∈ R16 with nonzero entries y1, y2. Then its periodizations are

y = y(4) = (0, y1, y2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)T ,

y(3) = (0, y1, y2, 0, 0, 0, 0, 0)T ,

y(2) = (0, y1, y2, 0)T ,

y(1) = (y2, y1)T ,

y(0) = (y1 + y2)T .

♦

The periodization has several useful properties, some of which are summarized in the
following lemma. Claim (iii) was shown in Lemma 2 in [BP18c].

Lemma 5.9 Let N = 2J−1 with J ≥ 2 and j ∈ {0, . . . , J − 1}. Let y ∈ R2N . Then the
following statements are true:

(i) y(0) =
2N−1∑
k=0

yk

(ii) y(j) =

2J−j−1∑
l=0

yk+2j l

2j−1

k=0

(iii) If y is symmetric, then y(j) is symmetric as well, i.e., y(j) = J2jy
(j).

Proof. For a proof of (i) and (ii) see, e.g., [PW16a], Section 2, and [PW17a], Section 2.

(iii) Since y is symmetric by Lemma 5.4 (i), we have that yk = y2J−1−k for all indices
k ∈

{
0, . . . , 2J − 1

}
. For the entries of y(J−1) it follows that

y
(J−1)
k = yk + yk+2J−1

= y2J−1−k + y2J−1−(k+2J−1)

= y2J−1−1−k+2J−1 + y2J−1−1−k

= y
(J−1)

2J−1−1−k

for all k ∈
{

0, . . . , 2J−1 − 1
}
; thus, y(J−1) = J2J−1y(J−1). Now we assume that y(j+1) is

symmetric for j ∈ {0, . . . , J − 1} and show that y(j) is symmetric as well. Since y(j+1)
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is symmetric, it follows that y(j+1)
k = y

(j+1)

2j+1−1−k for all k ∈
{

0, . . . , 2j − 1
}
, and hence

y
(j)
k = y

(j+1)
k + y

(j+1)

k+2j

= y
(j+1)

2j+1−1−k + y
(j+1)

2j+1−1−(k+2j)

= y
(j)

2j−1−k,

which proves the claim.

The reason why these periodizations are so interesting for the development of fast
IDFT algorithms is that for j ∈ {0, . . . , J − 1} the DFT of the periodization y(j) of
any y ∈ R2N is already completely determined by the DFT of y itself, as the following
lemma, which was proved in [PW16a], shows.

Lemma 5.10 (Lemma 2.1 in [PW16a]) Let N = 2J−1 with J ≥ 2 and j ∈ {0, . . . , J}.
Let y ∈ R2N . Then ŷ(j) satisfies

ŷ(j) = (ŷ2J−jk)
2j−1
k=0 .

There exist several sparse IFFT methods based on the notion of periodizations from
Definition 5.7, e.g., [PW17a, PW16a, PWCW18]. We want to explain these algorithms
in more detail, as some of the concepts used for them are also utilized for the sparse
IDCT-II algorithms we will present in this chapter and in Chapter 6.

Algorithm 2 in [PW16a]

Let y ∈ CN , N = 2J , have a one-block support of length m. For Algorithm 2 in [PW16a]
the authors additionally suppose that an upper bound M ≥ m on the support length
of y is known. Then one can show that for any j ∈ {L + 1, . . . , J}, where L is chosen
such that 2L−1 < m ≤ 2L, the periodization y(j) of y has already a one-block support
of length m. Further, each nonzero entry of y corresponds to exactly one nonzero entry
of y(j) with the same value, so the nonzero entries of y and y(j) are the same. The only
remaining unknown parameter is the first support index µ(j) of y(j), which can in fact
be obtained in a fast way from the periodization y(j−1) of half length and ŷ.
The main idea of the algorithm is thus to iteratively recover y from ŷ and the peri-

odizations y(L+1),y(L+2), . . . ,y(J) = y, using for the reconstruction of y(j+1) that y(j) is
already known from the previous iteration step. Since

ŷ(L+1) = (ŷ2J−L−1k)
2j−1
k=0

by Lemma 5.10, the initial vector y(L+1) can be computed directly from ŷ via an IFFT of
length 2L+1. For j ∈ {L+1, . . . , J−1} it was shown in [PW16a], Section 4, that if y(j) has
the one-block support S(j) = I

(j)

µ(j), ν(j)
of length m(j), there are only two possibilities for

y(j+1). More precisely, y(j+1) has either the support interval S(j+1) = S(j) = I
(j+1)

µ(j), ν(j)
or

S(j+1) = I
(j+1)

µ(j)+2j , ν(j)+2j
. Denoting the first possible vector by u0 and the second possible

vector by u1, we find that u1 is the 2j-shift of u0.
Theorem 4.2 in [PW16a] proves that y(j+1) can be uniquely recovered from y(j) and
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one oddly indexed nonzero entry of ŷ(j+1), using that

û0
2k+1 = −û1

2k+1

for all k ∈
{

0, . . . , 2j − 1
}
. Comparing û0

2k0+1 and û1
2k0+1 at an index 2k0 + 1 corre-

sponding to an oddly indexed nonzero entry ŷ(j+1)
2k0+1 6= 0 then allows for the detection

of µ(j+1), since y(j+1) = u0 if û0
2k0+1 = ŷ(j+1)

2k0+1, and y(j+1) = u1 otherwise.
Employing some further stabilization techniques for noisy data and an efficient method

for determining the required oddly indexed nonzero entry of ŷ(j+1) yields a deterministic
IFFT algorithm for recovering a vector y ∈ CN , N = 2J , with one-block support of
length m from ŷ and an upper bound M on m in

O(M logN)

time and using
O(M logN)

samples of ŷ. Note that the runtime and sampling complexities are sublinear in the
vector length N and even subquadratic in the bound M on the support length.

Algorithm 2.1 in [PW17a]

As seen above, Algorithm 2 in [PW16a] requires a priori knowledge of an upper bound
M on the support length m of the sought-after vector y ∈ CN with one-block support.
In [PW17a], on the other hand, an adaptive algorithm which can detect the support
length on the fly is presented. However, this approach now requires the entries of the
vector y to be real and nonnegative, as otherwise there might be cancellations of entries
corresponding to nonzero entries of y in some of the periodizations. Again, the algorithm
will recover y iteratively from ŷ and the periodizations y(0),y(1), . . . ,y(J) = y, using
that for all j ∈ {0, . . . , J} the periodization y(j) ∈ R2j has a one-block support of length
m(j) ≤ m.
For the initial vector we have that y(0) = ŷ0. In each step the algorithm computes

y(j+1) via an IFFT of a vector of length O
(
m(j)

)
instead of 2j , restricting y(j+1) to its

O(m) possibly nonzero entries. It was shown in [PW17a], Section 2, that(
ŷ(j+1)

2k+1

)2j−1

k=0
= F2j · diag

((
ω2j+1

l
)2j−1

l=0

)
·
(

2y
(j+1)
(0) − y(j)

)
. (5.3)

As y(j) = y
(j+1)
(0) +y

(j+1)
(1) , (5.3) yields that y(j+1) can be completely recovered essentially

via an IFFT of length 2j and using Lemma 5.10, since y(j) is known from the previous
iteration step. If m(j) > 2j−1, the one-block support of y(j) and y(j+1) cannot be used
to speed up the computation. However, if m(j) ≤ 2j−1, one can restrict y(j) and y

(j+1)
(0)

to vectors z(j), z
(j+1)
(0) of length 2L

(j) , where 2L
(j)−1 < m(j) ≤ 2L

(j) , such that all possibly

nonzero entries of y(j) and y
(j+1)
(0) are taken into account. Then it suffices to recover these
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shorter vectors. Restricting (5.3) to suitable rows, one obtains

(
ŷ(j+1)

2k+1

)2L
(j)−1

k=0

= diag

((
ω

2L
(j)
µ(j)p

)2L
(j)−1

p=0

)
· F

2L
(j) · diag

((
ω2j+1

(µ(j)+r) mod 2j
)2L

(j)−1

r=0

)

·
((

2y
(j+1)
(0) − y(j)

)
(µ(j)+r) mod 2j

)2L
(j)−1

r=0

,

implying that periodization y(j+1) can essentially be reconstructed via an IFFT of length
2L

(j)
= O

(
m(j)

)
. Applying a stable technique for finding the first support index and the

support length of y(j+1) yields a deterministic IFFT algorithm for recovering a vector
y ∈ RN≥0, N = 2J , with one-block support of length m from ŷ without a priori knowledge
of m in

O
(
m logm log

N

m

)
time and using O

(
m log

N

m

)
samples of ŷ. Thus, for Algorithm 2.1 in [PW17a] both the runtime and the number of
required samples are sublinear in the vector length N and subquadratic in the support
length m, and similar to those of Algorithm 2 in [PW16a].

5.4 Support Structures of Periodizations

Our goal is to reconstruct a vector y = (xT , (JNx)T )T ∈ R2N , N = 2J−1, with reflected
block support from ŷ by successively computing its periodizations y(0), y(1), . . . ,y(J) = y
without any a priori knowledge on the block length m. In the jth iteration step of the
procedure we thus have to determine y(j+1) from ŷ efficiently, which can be done by
employing the vector y(j) known from the previous step. In order for this approach to
work, we need to investigate how the support blocks of y(j+1) can look like if the support
of y(j) is given.
For an iterative reconstruction procedure we need to guarantee that relevant informa-

tion about the support of y is not canceled out in any of the periodized vectors y(j) for
j ∈ {0, . . . , J − 1}. More precisely, we require that for any nonzero entry yk 6= 0 of y the
entries of y(j) which depend on yk do not vanish. Otherwise we cannot hope to be able
to correctly recover the support of y. Formally, the periodizations have to satisfy

y
(j)

k mod 2j
=

2j−1∑
l=0

yk+2j l 6= 0 ∀ j ∈ {0, . . . , J} (5.4)

for any yk 6= 0 with k ∈ {0, . . . , 2N − 1}. This assumption holds for example if all
nonzero entries of x, and thus of y, are positive or if all nonzero entries are negative, i.e.,
if x ∈ RN≥0 or x ∈ RN≤0.
In practical applications for our algorithm the given data will usually not be exact.

Hence, for noisy data and given a threshold ε > 0 depending on the noise level, we have
to ensure that ∣∣∣y(j)

k mod 2j

∣∣∣ > ε ∀ j ∈ {0, . . . , J}

for all significantly large entries |yk| > ε of y with k ∈ {0, . . . , 2N − 1}.
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5.4.1 Support Structure of y = y(J) for Given x

We are interested in vectors y = (xT , (JNx)T )T ∈ R2N arising from a vector x ∈ RN
with one-block support of length m. Consequently, the structure of y also has important
characteristics, which we want to inspect in this section. For better illustration we begin
by motivating the main possible support structures by three different examples. These
examples will be utilized for demonstrating the support structures of the periodized
vectors y(j), j ∈ {0, . . . , J − 1}, as well.

Example 5.11

1. Let x = (0, x1, x2, 0, 0, 0, 0, 0)T ∈ R8 with nonzero entries x1, x2, i.e., with one-block
support Sx = I

(3)
1, 2 of length m = 2. Then we find that

y = y(4) = (0, x1, x2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, x2, x1, 0)T .

Consequently, y has the reflected block support S(4) = I
(4)
1, 2 ∪ I

(4)
13, 14 with two blocks of

length n(4) := 2 = m each.

2. Let x = (x0, 0, 0, 0, 0, 0, 0, 0)T ∈ R8 with nonzero entry x0, i.e., with one-block support
Sx = I

(3)
0, 0 of length m = 1. Then we obtain that

y = y(4) = (x0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, x0)T ,

so y has the reflected block support S(4) = I
(4)
15, 0 with one block of length m(4) := 2.

3. Let x = (x0, x1, 0, 0, 0, 0, 0, x7)T ∈ R8 with nonzero entries x0, x1 and x7, i.e., with
one-block support Sx = I

(3)
7, 1 of length m = 3. Then we have that

y = y(4) = (x0, x1, 0, 0, 0, 0, 0, x7, x7, 0, 0, 0, 0, 0, x1, x0)T

has the reflected block support S(4) = I
(4)
7, 8 ∪ I

(4)
14, 1 with block lengths n(4)

(0)
:= 2 and

n
(4)
(1)

:= 4. ♦

It follows from Example 5.11 that, unless the support of x includes the first or last
entry of the vector, y has a reflected block support consisting of two blocks of the same
length. These findings motivate the following lemma.

Lemma 5.12 (Lemma 4 in [BP18c]) Let N = 2J−1 with J ≥ 2 and x ∈ RN have the
one-block support Sx = I

(J−1)
µx, νx of length m < N . Set y = y(J) = (xT , (JNx)T )T ∈ R2N

and assume that y satisfies (5.4).

i) If µx ≤ νx, then y possesses the (reflected) two-block support

S(J) = I
(J)
µx, νx ∪ I

(J)
2N−1−νx, 2N−1−µx .

In the special cases µx = 0 or νx = N − 1 the two support blocks are adjacent and
form a (reflected) one-block support.

ii) If µx > νx, then y has the (reflected) two-block support

S(J) = I
(J)
µx, 2N−1−µx ∪ I

(J)
2N−1−νx, νx .

137



5 Sparse Fast IDCT-II for Vectors with One-Block Support Based on IFFT

Proof. The proof of Lemma 5.12 follows directly from the definition of y. Figures 5.1
and 5.2 illustrate the two cases.

x
0 N − 1N/2− 1

m

µx

y
0 2N − 1N − 1

m m

µ(J) = µx 2N − 1− νx

Figure 5.1: Illustration of the support of y for given x according to Lemma 5.12 case i)

x
0 N − 1N/2− 1 µx

y
0 2N − 1N − 1µ(J) = µx 2N − 1− νx = η(J)

Figure 5.2: Illustration of the support of y for given x according to Lemma 5.12 case ii)

Remark 5.13 (Remark 1 in [BP18c])

i) In case i) of Lemma 5.12, if µx 6= 0 and νx 6= N−1, the two support blocks of y = y(J)

have the same length νx − µx + 1 = m, as in Example 5.11.1. For algorithmic purposes
we denote the length of the support blocks by n(J) := m. As the blocks are separated, we
denote by µ(J) and ν(J) be the first and last index of the first support block. The support
set of y, which is always the union of two intervals, is then referred to as

S(J) = Iµ(J), ν(J) ∪ I2j+1−1−ν(J), 2j+1−1−µ(J) .

If µx = 0 or νx = N − 1, i.e., if the support blocks of x and JNx are (periodically)
adjacent, y has a one-block support of length m(J) := 2m. For µx = 0 it is of the form

S(J) = I
(J)
2N−1−νx, νx ,

see Example 5.11.2, and for νx = N − 1 it is of the form

S(J) = I
(J)
µx, 2N−1−µx .

Here, we denote the first and last support indices of y by µ(J) and ν(J), respectively.

ii) In case ii) of Lemma 5.12, µx cannot be equal to νx + 1, since m < N . This implies
that the two support blocks of y are indeed always separated. For algorithmic purposes
we then denote the first index of the block centered around the middle of the vector
by µ(J) and the first index of the block centered around the boundary of the vector by
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η(J). The blocks have the possibly different lengths 2(N − µx) and 2(νx + 1), with
2m = 2 (N − µx + νx + 1), as in Example 5.11.3. ♦

5.4.2 Support Structure of y(j) for Given y

We are interested in iteratively reconstructing the vector y = (xT , (JNx)T )T ∈ R2N ,
which we know by Lemma 5.12 to have a reflected block support with two support blocks,
except for special cases µx = 0 and νx = N − 1, from its periodizations y(j) ∈ R2j for
j ∈ {0, . . . , J − 1}. Thus, we will now investigate the implications of the above obtained
knowledge about the support of y on the support of y(j). Again, we will motivate the
claims in the next lemma by first looking at exemplary vectors and their periodizations.
In fact, we will utilize the same three vectors as in Example 5.11.

Example 5.14 (Example 5.11 continued)

1. Consider again x = (0, x1, x2, 0, 0, 0, 0, 0)T ∈ R8. Then y and its periodizations are

y = y(4) = (0, x1, x2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, x2, x1, 0)T ,

y(3) = (0, x1, x2, 0, 0, x2, x1, 0)T ,

y(2) = (0, x1 + x2, x1 + x2, 0)T ,

y(1) = (x1 + x2, x1 + x2)T ,

y(0) = (2 (x1 + x2))T .

We assume that y satisfies (5.4), i.e., that x0 + x2 6= 0. If this is the case, then y(3)

has the two-block support S(3) = I
(3)
1, 2 ∪ I

(3)
5, 6 of length n(3) := 2 = m and y(2) has the

one-block support S(2) = I
(2)
1, 2 of length m(2) := 2 < 2m, centered around the middle of

the vector, i.e., around 1 and 2, with first support index µ(2) := 1. The vectors y(1) and
y(0) both have full support, which can be interpreted as a one-block support centered
around the middle with first support indices µ(1) := µ(0) := 0 and block lengths m(1) := 2
and m(0) := 1.

2. Now let again x = (x0, 0, 0, 0, 0, 0, 0, 0)T ∈ R8. Then y satisfies (5.4), since x0 6= 0 by
assumption. We have that

y = y(4) = (x0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, x0)T ,

y(3) = (x0, 0, 0, 0, 0, 0, 0, x0)T ,

y(2) = (x0, 0, 0, x0)T ,

y(1) = (x0, x0)T ,

y(0) = (2x0)T .

Here, y(3) has the one-block support S(3) = I
(3)
7, 0 of length m(3) := 2 and y(2) has the

one-block support S(2) = I
(2)
3, 0 of length m(2) := 2. Both supports are centered around

the boundary of the vector and have the first support indices µ(3) := 7 and µ(2) := 3. The
vectors y(1) and y(0) have full support, which can be interpreted as a one-block support
centered around the middle with first support indices µ(1) := µ(0) := 0 and block lengths
m(1) := 2 and m(0) := 1.
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3. Again, we examine x = (x0, x1, 0, 0, 0, 0, 0, x7)T ∈ R8. Then we obtain

y = y(4) = (x0, x1, 0, 0, 0, 0, 0, x7, x7, 0, 0, 0, 0, 0, x1, x0)T ,

y(3) = (x0 + x7, x1, 0, 0, 0, 0, x1, x0 + x7)T ,

y(2) = (x0 + x7, x1, x1, x0 + x7)T ,

y(1) = (x0 + x1 + x7, x0 + x1 + x7)T ,

y(0) = (2(x0 + x1 + x7))T .

Thus, (5.4) is satisfied if x0 + x7 6= 0 and x0 + x1 + x7 6= 0. If this is the case, then
y(3) has the one-block support S(3) = I

(3)
6, 1 of length m(3) := 4 with first support index

µ(3) := 6, centered around 7 and 0. All shorter periodizations have a one-block support
as well, but their supports have full length and are thus centered around the middle of
the respective vectors with first support indices µ(2) := µ(1) := µ(0) := 0. ♦

In Example 5.14 the periodizations have either a one-block or a two-block support of
length at most 2m for all considered vectors y. These observations are generalized in the
following lemma.

Lemma 5.15 (Lemma 5 in [BP18c]) Let N = 2J−1 with J ≥ 2 and j ∈ {0, . . . , J−1}.
Let x ∈ RN have a one-block support of length m < N . Set y = (xT , (JNx)T )T and
assume that y satisfies (5.4). Then y(j) possesses either

A) the one-block support
S(j) = I

(j)

µ(j), 2j−1−µ(j)

of length m(j) ≤ 2m, or

B) the two-block support

S(j) = I
(j)

µ(j), ν(j)
∪ I(j)

2j−1−ν(j), 2j−1−µ(j)

with block length n(j) = m.

Proof. Note that by Lemma 5.12, y = y(J) has a reflected block support with either one
or two support blocks. Let us fix a level j ∈ {0, . . . , J − 1}. It follows from Definition
5.7 that the number of indices k ∈

{
0, . . . , 2j − 1

}
satisfying

y
(j)
k 6= 0

cannot exceed the number of indices k′ ∈
{

0, . . . , 2j+1 − 1
}
such that

y
(j+1)
k′ 6= 0,

i.e., the sparsity of y(j) cannot exceed the sparsity of y(j+1).
If y(j+1) has a two-block support, then y(j) can have at most two support blocks, as

the two blocks of y(j+1) are either mapped to two separate blocks in y(j) or to one block
consisting of the two partially overlapping blocks of y(j+1). If j + 1 = J and the two
blocks in y(J) have the possibly different lengths 2 (N − µx) and 2 (νx + 1), then y(J−1)

has a one-block support of length m(J−1) ≤ 2m by Definition 5.7, see also Figure 5.3.
If j ≤ J − 1, the periodization y(j) cannot have a two-block support with two blocks of
different lengths as in Lemma 5.12, case ii).
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y(J)

0 2J − 12J−1 − 1

n
(J)
(0) n

(J)
(1) /2

η(J)µ(J)

y(J−1)

0 2J−1 − 12J−2 − 1
µ(J−1)

Figure 5.3: Illustration of the support of y(J−1) if y(J) has a two-block support with two
possibly different block lengths according to Lemma 5.15

Otherwise, i.e., if j + 1 < J or if the two blocks in y(J) both have length m, then y(j)

has either a one-block or a two-block support. If the two blocks are still separated in
y(j), they have the same length as they did in y(j+1), i.e., n(j) = n(j+1) = m. It follows
from Lemma 5.9 (iii) that y(j) is symmetric, so the two support blocks are reflections of
each other, which results in a support of the form

S(j) = I
(j)

µ(j), ν(j)
∪ I(j)

2j−1−ν(j), 2j−1−µ(j) ,

see also Figure 5.4.

y(j+1)

0 2j+1 − 12j − 1

n(j+1)

µ(j+1)

y(j)

0 2j − 12j−1 − 1

n(j) = n(j+1) n(j)

µ(j)

Figure 5.4: Illustration of the support of y(j) if y(j+1) and y(j) have a two-block support
according to Lemma 5.15

If y(j+1) has a two-block support and y(j) a one-block support, the length m(j) of
the support of y(j) can be at most 2m by Definition 5.7. Moreover, due to the vector’s
symmetry, the single support block has to be centered around the middle of the vector
or around its boundary, so it has to be of the form

S(j) = I
(j)

µ(j), 2j−1−µ(j) ,

see Figure 5.5.
In the case that y(j+1) already has a one-block support, by the considerations above

it must have arisen from a vector y(k), k > j + 1, with two-block support or from y(J)

with one-block support, which has to be centered around the middle or the boundary of
the vector according to Lemma 5.12. Thus, the support of y(j+1) is centered around the
middle or the boundary of the vector and its length satisfies m(j+1) ≤ 2m. Periodizing
y(j+1) to obtain y(j) then yields a vector whose support of length at most 2m is centered
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y(j+1)

0 2j+1 − 12j − 1

n(j+1) n(j+1)

µ(j+1)

y(j)

0 2j − 12j−1 − 1

m(j)

µ(j)

Figure 5.5: Illustration of the support of y(j) if y(j+1) has a two-block support and y(j)

a one-block support according to Lemma 5.15

around the boundary of the vector by definition of the periodization, see Figure 5.6.
Consequently, the vector y(j) has a one-block support of length m(j) ≤ 2m, and thus

y(j+1)

0 2j+1 − 12j − 1

m(j+1)

µ(j+1)

y(j)

0 2j − 12j−1 − 1

m(j)/2 = m(j+1)/2

µ(j)

Figure 5.6: Illustration of the support of y(j) if y(j+1) has a one-block support according
to Lemma 5.15

all shorter periodizations y(l), l ∈ {0, . . . , j − 1}, possess a one-block support of length
m(l) ≤ 2m as well.

Remark 5.16 i) Let j ∈ {0, . . . , J − 1}. We always denote by µ(j) and ν(j) the first
and last support index of y(j) if y(j) has a one-block support, or the first and last index of
the first support block if y(j) has a two-block support. In the one-block case, the support
length of y(j) is m(j), and in the two-block case, we denote the length of the two support
blocks by n(j) for algorithmic purposes, even though n(j) = m for exact data. Since
j < J , the two support blocks must have the same length by Lemma 5.15. The support
set of y(j), which is always the union of two intervals, one of which may be empty, is
referred to as S(j) ⊆ I

(j)

0, 2j−1
. The notation for the support of the periodizations y(j) is

thus analogously to the notation for the support of y introduced in Remark 5.13.

ii) If y(j) has a one-block support of length 2j−1 < m(j) ≤ 2j , the first support index
µ(j) may not be uniquely determined. For example, for y(3) = (0, 1, 1, 0, 0, 1, 1, 0)T ∈ R8,
which, by definition, can also be considered to have a one-block support of length 6, the
support interval can be either S(3) = I

(3)
1, 6 or S(3) = I

(3)
5, 2. Note that by Lemma 5.15 the

support of y(j) is symmetric, i.e., S(j) = I
(j)

µ(j), 2j−1−µ(j) , which can be used to exclude
some possible first support indices. If the first support index is still not unique, we choose
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0 ≤ µ(j) < 2j−1−1 such that S(j) is centered around the middle of the vector, i.e., around
2j−1 − 1 and 2j−1. In the example above we choose µ(3) := 1. If m = 2j , we just fix
µ(j) := 0, as in Example 5.14, which also results in a support centered around the middle
of the vector.

iii) In case A of Lemma 5.15, the first support index µ(j) of y(j) is contained in the interval
I

(j)

0, 2j−1
. Due to y(j) being symmetric, we set ν(j) := 2j−1−µ(j). If ν(j) ≥ µ(j), it follows

that the support block is centered around the middle of the vector, i.e., 2j−1 − 1 and
2j−1, and the support length is m(j) = ν(j)−µ(j) +1, since S(j) = I

(j)

µ(j), ν(j)
. If ν(j) < µ(j),

the support block is centered around the boundary, i.e., 2j − 1 and 0, and its length is
m(j) = 2j − µ(j) + ν(j) + 1.

iv) In case B of Lemma 5.15, the two blocks are always separated and we find that the
first support index of the first block, µ(j), is contained in the interval I(j)

0, 2j−1−1
, and that,

by symmetry, the first support index of the second block, 2j − 1 − ν(j), is contained in
the interval I(j)

2j−1, 2j−1
. ♦

5.4.3 Support Structure of y(j+1) for Given y(j)

If we want to iteratively recover the vector y = (xT , (JNx)T )T ∈ R2N from its periodiza-
tions y(j) ∈ R2j for j ∈ {0, . . . , J − 1}, using in each step that y(j) is already known,
we have to carefully inspect how much of the support structure of y(j+1) can already
be deduced from y(j) in order to minimize the computational effort. Before proving a
general theorem about the support of y(j+1) for given y(j), we will have another look
at the different cases that can occur for the periodizations of the vectors considered in
Examples 5.11 and 5.14.

Example 5.17 (Examples 5.11 and 5.14 continued) Throughout this example we
use that y(j) is symmetric by Lemma 5.9 (iii), the observations made in Lemma 5.15,
as well as the fact that, by definition, y(j) = y

(j+1)
(0) + y

(j+1)
(1) for all j ∈ {0, . . . , J − 1}.

Furthermore, we have to assume that the vector length 16 = 2J is known a priori.

1. Consider y(1) =
(
y

(1)
0 , y

(1)
0

)T
with full support S(1) = I

(1)
0, 1. Similar structures were

obtained in Examples 5.14.1, 5.14.2 and 5.14.3. Then it follows that y(2) has a one-block
support of length m(2) ≥ m(1) of the general form

y(2) =
(
y

(2)
0 , y

(2)
1 , y

(2)
1 , y

(2)
0

)T
,

where y(2)
0 + y

(2)
1 = y

(1)
0 . The entries of y(2) have to be recovered from ŷ using the

methods we will present in Section 5.5. If we find that y(2)
0 = 0, the vector y(2) has

the one-block support S(2) = I
(2)
1, 2 of length m(2) = 2 centered around the middle, and if

y
(2)
1 = 0, it has the one-block support S(2) = I

(2)
3, 0 of length m(2) = 2 centered around the

boundary. However, if both y(2)
0 and y(2)

1 are not zero, we obtain the one-block support
S(2) = I

(2)
0, 3 of full length m(2) = 4.

2. Let y(2) =
(

0, y
(2)
1 , y

(2)
1 , 0

)T
have the one-block support S(2) = I

(2)
1, 2 of length m(2) = 2

centered around the middle of the vector, as obtained in Example 5.14.1. Then, by its
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symmetry and Definition 5.7, y(3) has to be of the form

y(3) =
(

0, y
(3)
1 , y

(3)
2 , 0, 0, y

(3)
2 , y

(3)
1 , 0

)T
,

where y(3)
1 + y

(3)
2 = y

(2)
1 . This means that y(3) has a two-block support S(3) ⊆ I(3)

1, 2 ∪ I
(3)
5, 6

with block length n(3) ≤ m(2) = 2. It is possible that y(3)
1 = 0 or y(3)

2 = 0; then, we
find that n(3) = 1. Otherwise, we have n(3) = 2, but we require additional entries of ŷ
in order to be able to recover the possibly nonzero entries y(3)

1 and y(3)
2 of y(3). We will

show how to compute them in detail in Section 5.5.

3. Let y(2) =
(
y

(2)
0 , 0, 0, y

(2)
0

)T
have the one-block support S(2) = I

(2)
3, 0 of length m(2) = 2

centered around the boundary, as it occurs in Example 5.14.2. Then we can conclude
that either

y(3) =
(
y

(3)
0 , 0, 0, 0, 0, 0, 0, y

(3)
0

)T
or y(3) =

(
0, 0, 0, y

(3)
3 , y

(3)
3 , 0, 0, 0

)T
,

with y
(3)
0 = y

(3)
3 = y

(2)
0 , since no other symmetric vector in R8 with periodization y(2)

can arise from periodizing a vector y ∈ R16 with reflected block support. Therefore, y(3)

must also possess a one-block support of length m(3) = m(2) = 2. In particular, since
y(3) is still an “intermediate” vector, i.e., 3 < J , a two-block support of the form

y(3) = (∗, 0, 0, ∗, ∗, 0, 0, ∗)T ,

where ∗ denotes the nonzero entries, cannot occur, as the corresponding vector y would
either not be symmetric or of the form

y = (∗, 0, 0, ∗, ∗, 0, 0, ∗, ∗, 0, 0, ∗, ∗, 0, 0, ∗)T ,

which violates Lemma 5.12. Thus, y(3) has either the support S(3) = I
(3)
7, 0 or S(3) = I

(3)
3, 4.

We will show in Section 5.5 how to determine which of the possibilities is the correct one.

4. Consider y(3) =
(
y

(3)
0 , 0, 0, 0, 0, 0, 0, y

(3)
0

)T
with one-block support S(3) = I

(3)
7, 0 of

length m(3) = 2 centered around the boundary. Here, 3 = J − 1, i.e., the periodiza-
tion y(4) of double length is the final vector y, see Examples 5.14.2 and 5.14.3. We find
that

y = y(4) = (y0, 0, 0, 0, 0, 0, 0, y7, y7, 0, 0, 0, 0, 0, 0, y0)T ,

where y0 + y7 = y
(3)
0 . Thus, y has a two-block support S(4) ⊆ I

(4)
(7, 8) ∪ I

(4)
(15, 0) of length

n(4) := 2 if y0 and y7 are both not zero. If y0 = 0 or y7 = 0, one of the blocks is empty,
resulting in a one-block support of length m(4) = 1. Since J = 4, all these structures are
feasible. Using additional information about ŷ, one can compute y0 and y7, as we will
show in Section 5.5.

5. Let y(3) =
(

0, y
(3)
1 , y

(3)
2 , 0, 0, y

(3)
2 , y

(3)
1 , 0

)T
have the two-block support S(3) = I

(3)
1, 2∪I

(3)
5, 6

of block length n(3) = 2, as in Example 5.14.1. Then there are precisely two possibilities
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for y, either

y = y(4) =
(

0, y
(3)
1 , y

(3)
2 , 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, y

(3)
2 , y

(3)
1 , 0

)T
or

y = y(4) =
(

0, 0, 0, 0, 0, y
(3)
2 , y

(3)
1 , 0, 0, y

(3)
1 , y

(3)
2 , 0, 0, 0, 0, 0

)T
,

since y is symmetric and Lemma 5.12 holds. Thus, y has either the two-block support
S(4) = I

(4)
1, 2 ∪ I

(4)
13, 14 or S(4) = I

(4)
5, 6 ∪ I

(4)
9, 10 with block length n(4) = n(3) = 2 = m. Note

that the values of the nonzero entries of y(3) and y are the same. Which of the two
possibilities is the correct one can be determined using the methods we will present in
Section 5.5. ♦

Using the considerations from Example 5.17, we now reconstruct the support of the
vector from Example 5.11.1 step by step to illustrate this part of our algorithm.

Example 5.18 (Examples 5.11.1 and 5.14.1 continued) We want to recover the
vector x = (0, x1, x2, 0, 0, 0, 0, 0)T ∈ R8 with positive entries x1, x2 from the periodiza-
tions of y = (xT , (JNx)T )T . Assume that we know ŷ ∈ C16. By Definition 1.1 and
Lemma 5.10, we obtain that

y(0) = y
(0)
0 =

(
ŷ(0)
)

0
= ŷ0 ∈ R.

Thus, y(0) has full support and, analogously to Example 5.17.1, y(1) has the one-block
support S(1) = I

(1)
0, 1 of the form

y(1) =
(
y

(1)
0 , y

(1)
0

)T
,

where 2y
(1)
0 = y

(0)
0 . Similarly, y(2) satisfies

y(2) =
(
y

(2)
0 , y

(2)
1 , y

(2)
1 , y

(2)
0

)T
,

where y(2)
0 + y

(2)
1 = y

(1)
0 . In order to recover y(2) completely, we require further informa-

tion, which can be gained from the given Fourier data ŷ, as we will show in Section 5.5.
Using these methods we find that y(2)

0 = 0, so y(2) has the one-block support S(2) = I
(2)
1, 2

of length m(2) = 2 centered around the middle. As in Example 5.17.2, we obtain

y(3) =
(

0, y
(3)
1 , y

(3)
2 , 0, 0, y

(3)
2 , y

(3)
1 , 0

)T
,

where y(3)
1 + y

(3)
2 = y

(2)
1 . Hence, y(3) has a two-block support of length n(3) ≤ m(2) = 2.

With the help of the given Fourier data and the methods from Section 5.5, we will be
able to prove that neither y(3)

1 nor y(3)
2 are zero, i.e., that n(3) = 2 and S(3) = I

(3)
1, 2 ∪ I

(3)
5, 6.

Finally, it follows from Example 5.17.5 that either

y = y(4) =
(

0, y
(3)
1 , y

(3)
2 , 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, y

(3)
2 , y

(3)
1 , 0

)T
or

y = y(4) =
(

0, 0, 0, 0, 0, y
(3)
2 , y

(3)
1 , 0, 0, y

(3)
1 , y

(3)
2 , 0, 0, 0, 0, 0

)T
.

Using the given Fourier data ŷ, we can then determine that the first possibility is the
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correct one, so that S(4) = I
(4)
1, 2 ∪ I

(4)
13, 14, which also allows us to recover

x =
(

0, y
(3)
1 , y

(3)
2 , 0, 0, 0, 0, 0

)T
∈ R8.

♦

Even the two previous examples, though by no means all-encompassing, illustrate that
one already has to consider several cases in order to correctly recover the three simple
test vectors iteratively from their periodizations. In the following theorem we give a
complete characterization of the supports of y(j+1) which are possible if y(j) is given for
all cases that can occur for a vector y with reflected block support.

Theorem 5.19 (Theorem 1 in [BP18c]) Let N = 2J−1, J ≥ 2, and j ∈ {0, . . . , J−1}.
Let x ∈ RN have a one-block support of length m < N . Set y = (xT , (JNx)T )T and
assume that y satisfies (5.4). Then we have to distinguish the following cases.

A) y(j) has the one-block support S(j) = I
(j)

µ(j), 2j−1−µ(j) of length m(j) ≤ 2m:

A1) If the support of y(j) has length m(j) < 2j and is centered around the middle of
the vector, then y(j+1) possesses the two-block support

S(j+1) = I
(j+1)

µ(j+1), ν(j+1) ∪ I
(j+1)

2j+1−1−ν(j+1), 2j+1−1−µ(j+1)

with two blocks of length n(j+1) = m, see Figure 5.7.

A2) If the support of y(j) has full length m(j) = 2j and j < J − 1, then y(j+1) has
a one-block support of length m(j+1) ≥ m(j). If j = J − 1, then y = y(J) has
a two-block support with two blocks of possibly different lengths or a one-block
support of length m(J) ≥ m(J−1).

A3) If the support of y(j) has length m(j) < 2j and is centered around the boundary
of the vector, and j < J − 1, then y(j+1) possesses the one-block support

S(j+1) = I
(j+1)

µ(j+1), 2j+1−1−µ(j+1)

of length m(j+1) = m(j), see Figure 5.8.

A4) If the support of y(J−1) has length m(J−1) < 2J−1 and is centered around the
boundary of the vector, then y = y(J) possesses the two-block support

S(J) = I
(J)

µ(J), 2J−1−µ(J) ∪ I
(J)

η(J), 2J−1−η(J) with µ(J) < 2J−1 ≤ η(J),

where the two blocks may have different lengths, see Figure 5.9. If µx = 0 or
νx = 2J−1 − 1, one of these blocks is empty.

B) y(j) has the two-block support S(j) = I
(j)

µ(j), ν(j)
∪ I(j)

2j−1−ν(j), 2j−1−µ(j) with block length

n(j) = m:

Then y(j+1) has the two-block support

S(j+1) = I
(j+1)

µ(j+1), ν(j+1) ∪ I
(j+1)

2j+1−1−ν(j+1), 2j+1−1−µ(j+1)

with block length n(j+1) = m, see Figure 5.10.
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Proof. Cases A1 to A4, henceforth subsumed to case A, summarize the support properties
of y(j+1) if y(j) possesses a one-block support. Assertion B covers the case that y(j) has
a two-block support. All observations about the possible support blocks of y(j+1) follow
by employing the results from Lemmas 5.12 and 5.15 and utilizing the known support
S(j) of y(j), Definition 5.7 and the symmetry of y(j+1) given by Lemma 5.9 (iii).

A) One-block support:
A1) In case A1 there are, due to the symmetry and the reflected block support of y,
exactly two possibilities for the support of the periodization y(j+1) of double length that
have the given periodization y(j). They are depicted in Figure 5.7. As the support of
y(j) is centered around the middle of the vector, the support blocks have to be separated
in y(j+1), resulting in two blocks of length n(j+1) = m by definition of y. In the first
case, since m ≤ m(j), the support set S(j+1) of y(j+1) satisfies

S(j+1) = I
(j+1)

µ(j), µ(j)+m−1
∪ I(j+1)

2j+1−m−µ(j), 2j+1−1−µ(j)

⊆ I(j+1)

µ(j), µ(j)+m(j)−1
∪ I(j+1)

2j+µ(j), 2j+µ(j)+m(j)−1

with µ(j+1) = µ(j), and in the second case

S(j+1) = I
(j+1)

2j−m−µ(j), 2j−1−µ(j) ∪ I
(j+1)

2j+µ(j), 2j+µ(j)+m−1

⊆ I(j+1)

µ(j), µ(j)+m(j)−1
∪ I(j+1)

2j+µ(j), 2j+µ(j)+m(j)−1

with 2j+1 − 1− ν(j+1) = µ(j) + 2j .

y(j)

0 2j − 12j−1 − 1

m(j)

µ(j)

y(j+1)

0 2j+1 − 12j − 1

m m

µ(j+1) = µ(j)

or y(j+1)

0 2j+1 − 12j − 1

m m

2j + µ(j)ν(j+1) = 2j − 1− µ(j)

Figure 5.7: Illustration of the two possibilities for the support of y(j+1) for given y(j)

according to Theorem 5.19, case A1

A2) In case A2 we cannot learn much from the structure of the periodization y(j). It
follows from Lemmas 5.12 and 5.15 that, if j < J − 1, y(j+1) has a one-block support of
length m(j+1) ≥ m(j). If j = J − 1, then we can only deduce that y has a reflected block
support. However, the inclusion

S(j+1) ⊆ I(j+1)

µ(j), µ(j)+m(j)−1
∪ I(j+1)

2j+µ(j), 2j+µ(j)+m(j)−1
,

which already held for case A1, is still satisfied.
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A3) In case A3 there are, due to the definition of y, only two possibilities for y(j+1),
which are shown in Figure 5.8. As the support of y(j) is centered around the boundary
of the vector, y(j+1) must have a one-block support of length m(j+1) = m(j) as well. In
the first case we find for the support set S(j+1) of y(j+1) that

S(j+1) = I
(j+1)

µ(j), µ(j)+m(j)−1

⊆ I(j+1)

µ(j), µ(j)+m(j)−1
∪ I(j+1)

2j+µ(j), 2j+µ(j)+m(j)−1
,

centered around the middle with µ(j+1) = µ(j), and in the second case

S(j+1) = I
(j+1)

2j+µ(j), 2j+µ(j)+m(j)−1

⊆ I(j+1)

µ(j), µ(j)+m(j)−1
∪ I(j+1)

2j+µ(j), 2j+µ(j)+m(j)−1
,

centered around the boundary with µ(j+1) = 2j + µ(j).

y(j)

0 2j − 12j−1 − 1 µ(j)

y(j+1)

0 2j+1 − 12j − 1

m(j+1) = m(j)

µ(j+1) = µ(j)

or y(j+1)

0 2j+1 − 12j − 1 µ(j+1) = 2j + µ(j)

Figure 5.8: Illustration of the two possibilities for the support of y(j+1) for given y(j)

according to Theorem 5.19, case A3

A4) In case A4 the collided blocks almost always have to separate when we recover y
from y(J−1), since y = y(J) has a reflected block support. The vector y can only have
a one-block support of length 2m constituted of two adjacent blocks if the first support
index of x is 0 or if its last support index is 2J−1 − 1.

Hence, y(J−1) can only be of the form given in case A4 if 0 or 2J−1 − 1 are contained
in the support interval Sx of x. Again, there are two possibilities for the support of y,
which are depicted in Figure 5.9.

In the first case we find that

S(J) = I
(J)

µ(J), µ(J)+n
(J)
(0)
−1
∪ I(J)

η(J), η(J)+n
(J)
(1)
−1

⊆ I(J)

µ(J−1), µ(J−1)+m(J−1)−1
∪ I(J)

2J−1+µ(J−1), 2J−1+µ(J−1)+m(J−1)−1
,
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y(J−1)

0 2J−1 − 12J−2 − 1
µ(J−1)

y(J)

0 2J − 12J−1 − 1

n
(J)
(0) n

(J)
(1) /2

η(J)µ(J) = µ(J−1)

or y(J)

0 2J − 12J−1 − 1

n
(J)
(0) n

(J)
(1) /2

η(J) = 2J−1 + µ(J−1)µ(J)

Figure 5.9: Illustration of the possibilities for the support of y(J) for given y(J−1) accord-
ing to Theorem 5.19, case A4

where η(J) is unknown, µ(J) = µ(J−1) and n(J)
(0) = m(J−1), and in the second case that

S(J) = I
(J)

µ(J), µ(J)+n
(J)
(0)
−1
∪ I(J)

η(J), η(J)+n
(J)
(1)
−1

⊆ I(J)

µ(J−1), µ(J−1)+m(J−1)−1
∪ I(J)

2J−1+µ(J−1), 2J−1+µ(J−1)+m(J−1)−1
,

where µ(J) is unknown, η(J) = 2J−1 + µ(J−1) and n(J)
(1) = m(J−1). In both cases we have

that n(J)
(0) + n

(J)
(1) = 2m.

If the first support index µx of x is 0 or its last support index νx is 2J−1 − 1, then y
has a one-block support, where the first block in the cases above is empty if µx = 0 and
the second block is empty if νx = 2J−1 − 1.

B) Two-block support:

In case B the support blocks are already separated in y(j), so y(j+1) has a two-block
support of block length n(j+1) = n(j) = m as well. Since there is no collision, the nonzero
entries of y(j+1) and y(j) are the same, and only the first support indices of the blocks in
y(j+1) are unknown. Again, there are only two possibilities for y(j+1), which are shown
in Figure 5.10. We find for the first case that

S(j+1) = I
(j+1)

µ(j), ν(j)
∪ I(j+1)

2j+1−1−ν(j), 2j+1−1−µ(j) ,

where the first blocks of y(j) and y(j+1) are identical, with the same support, and the
second block of y(j+1) is the second block of y(j), shifted by 2j . Otherwise, S(j+1) satisfies

S(j+1) = I
(j+1)

2j−1−ν(j), 2j−1−µ(j) ∪ I
(j+1)

2j+µ(j), 2j+ν(j)
,

where the first block of y(j+1) is the second block of y(j), with the same support, and
the second block of y(j+1) is the first block of y(j), shifted by 2j . Thus, the first support
index µ(j+1) of y(j+1) is either µ(j) or 2j − 1− ν(j) = 2j −m− µ(j).
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y(j)

0 2j − 12j−1 − 1

n(j) n(j)

µ(j)

y(j+1)

0 2j+1 − 12j − 1

n(j+1) = n(j)

µ(j+1) = µ(j) 2j+1 − 1− ν(j)

or y(j+1)

0 2j+1 − 12j − 1

n(j+1) = n(j)

2j + µ(j)µ(j+1) = 2j − 1− ν(j)

Figure 5.10: Illustration of the two possibilities for the support of y(j+1) for given y(j)

according to Theorem 5.19, case B

5.5 Iterative Sparse Recovery Procedures

There is an important difference between case A of Theorem 5.19 on the one hand and
case B on the other hand. In case A, y(j) has a one-block support that usually contains
overlapping entries of the original vector y, i.e., some entries of y(j) are obtained as
sums of nonzero entries of y(j+1), and thus also of y. In case B, however, both support
blocks of y(j) are of length n(j) = m and they are separated. This is only possible if no
nonzero entries of y(j+1), and thus of y, have been added in the process of computing
y(j). The nonzero entries of y(j) and y(j+1) are the same and we only have to determine
the first support indices of the blocks in y(j+1) in order to recover the vector from y(j).
In this section we will therefore derive two different strategies for computing y(j+1); the
first one has to be employed in case A, and the second one in case B. None of them
will require a priori knowledge on the support length m of the vector x ∈ RN defining
y = (xT , (JNx)T )T ∈ R2N .

5.5.1 Recovery Procedure for Case A: One-Block Support

We begin by deriving a recovery procedure for case A of Theorem 5.19, so let us assume
that j ∈ {0, . . . , J − 1} and that y(j) has the one-block support

S(j) = I
(j)

µ(j), 2j−1−µ(j) = I
(j)

µ(j), µ(j)+m(j)−1

of length m(j) ≤ 2m. The definition of the periodization and Theorem 5.19, case A imply
that the support set S(j+1) of y(j+1) satisfies

S(j+1) ⊆ I(j+1)

µ(j), µ(j)+m(j)−1
∪ I(j+1)

2j+µ(j), 2j+µ(j)+m(j)−1
.

In particular, y(j+1) can have at most 2m(j) nonzero entries.
The procedure developed hereafter utilizes that y(j+1) is symmetric and thus deter-
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mined by its first half. Recall that we denote by

y
(j+1)
(0)

:=
(
y

(j+1)
k

)2j−1

k=0
and y

(j+1)
(1)

:=
(
y

(j+1)
k

)2j+1−1

k=2j

the first and second half of y(j+1), respectively. It also follows from Theorem 5.19 that
both halves of y(j+1) have a one-block support of length at most m(j). Since y

(j+1)
(1)

is completely determined by y(j) and y
(j+1)
(0) by Definition 5.7, we will only develop a

method for recovering y
(j+1)
(0) .

To efficiently compute the at most m(j) nonzero entries of y
(j+1)
(0) , we will consider

restrictions of y(j) and y
(j+1)
(0) to vectors of length 2L

(j) , where 2L
(j)−1 < m(j) ≤ 2L

(j) ,

taking into account all nonzero entries. We will then show that y
(j+1)
(0) and thus y(j+1)

can be computed using essentially one IFFT of length 2L
(j) and some further operations

of complexity O
(
m(j)

)
. This requires the vector y(j) known from the previous iteration

step and 2L
(j) suitably chosen oddly indexed entries of ŷ(j+1).

Theorem 5.20 (Theorem 2 in [BP18c]) Let N = 2J−1, J ≥ 2, and j ∈ {0, . . . , J−1}.
Let x ∈ RN have a one-block support of length m < N . Set y = (xT , (JNx)T )T and
assume that y satisfies (5.4). Suppose that y(j) has a one-block support of length m(j).
Assume that we have access to all entries of ŷ. Further, let L(j) :=

⌈
log2m

(j)
⌉
≤ j. Then

y(j+1) can be uniquely recovered from
(
ŷ

2J−j−1
(

2j+1−L(j)
p+1

))2L
(j)−1

p=0

and y(j).

Proof. It suffices to only consider the oddly indexed entries ŷ(j+1)
2k+1 of ŷ(j+1), where

k ∈
{

0, . . . , 2j − 1
}
. By Definition 5.7 we obtain for all k ∈

{
0, . . . , 2j − 1

}
that

ŷ(j+1)
2k+1

=

((
ω2j+1

(2k+1)l′
)2j+1−1

l′=0

)T y
(j+1)
(0)

y
(j+1)
(1)


=

((
ω2j+1

(2k+1)l′
)2j−1

l′=0

)T
y

(j+1)
(0) +

((
ω2j+1

(2k+1)l′
)2j+1−1

l′=2j

)T (
y(j) − y

(j+1)
(0)

)
=

((
ω2j+1

(2k+1)l′
)2j−1

l′=0

)T
y

(j+1)
(0) +

((
ω2j+1

(2k+1)l ω2
2k+1

)2j−1

l=0

)T (
y(j) − y

(j+1)
(0)

)
=

((
ω2j+1

(2k+1)l
)2j−1

l=0

)T
y

(j+1)
(0) −

((
ω2j+1

(2k+1)l
)2j−1

l=0

)T (
y(j) − y

(j+1)
(0)

)
=

((
ω2j+1

(2k+1)l
)2j−1

l=0

)T (
2y

(j+1)
(0) − y(j)

)
,

where we set l := l′ − 2j in the second summand. Using Lemma 5.10, we find that(
ŷ2J−j−1(2k+1)

)2j−1

k=0
=
(
ŷ(j+1)

2k+1

)2j−1

k=0

=
(
ω2j+1

(2k+1)l
)2j−1

k, l=0

(
2y

(j+1)
(0) − y(j)

)
, (5.5)
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so y
(j+1)
(0) can be computed from y(j) and the oddly indexed entries of ŷ(j+1). However,

if we had to compute y(j+1) like this in every step where we have to apply the procedure
for case A of Theorem 5.19, our IDFT algorithm could not achieve an overall runtime
that is sublinear in the vector length 2N . Recall that by assumption y(j) has the support
interval

S(j) = I
(j)

µ(j), 2j−1−µ(j) = I
(j)

µ(j), µ(j)+m(j)−1
(5.6)

of length m(j) ≤ 2m for some µ(j), ν(j) ∈ I(j)

0, 2j−1
. Then it follows from Definition 5.7 and

Theorem 5.19, case A that the support set S(j+1) of y(j+1) satisfies

S(j+1) ⊆ I(j+1)

µ(j), µ(j)+m(j)−1
∪ I(j+1)

2j+µ(j), 2j+µ(j)+m(j)−1
. (5.7)

Considering the first half y(j+1)
(0) ∈ R2j of y(j+1) separately, Theorem 5.19 implies that

it also has a one-block support. Analogously, y(j+1)
(1) has a one-block support, which is

illustrated by Figures 5.7 to 5.9. From now on we will denote the support of y(j+1)
(0) by

S
(j+1)
(0) and the support of y(j+1)

(1) by S(j+1)
(1) , respectively. Then the following inclusion

holds for S(j+1),

S(j+1) ⊆
{(
µ(j) + r

)
mod 2j : r ∈

{
0, . . . ,m(j) − 1

}}
︸ ︷︷ ︸

⊇S(j+1)
(0)

∪
{

2j +
(
µ(j) + r

)
mod 2j : r ∈

{
0, . . . ,m(j) − 1

}}
︸ ︷︷ ︸

⊇S(j+1)
(1)

. (5.8)

Note that the sets in (5.7) and (5.8) are not the same, as the indices in (5.7) correspond
to the support of y(j+1) ∈ R2j+1 and are taken modulo 2j+1. The first interval in (5.8)
corresponds to the possibly nonzero entries of y(j+1)

(0) ∈ R2j and the second interval to

the possibly nonzero entries of y(j+1)
(1) , and both are considered modulo 2j . Thus, the

support of y(j+1)
(0) is contained in the first interval in (5.8), and the support of y(j+1)

(1) is
contained in the second interval. In particular, y(j+1) can have at most 2m(j) nonzero
entries. By Definition 5.7 we have that

y(j) = y
(j+1)
(0) + y

(j+1)
(1) , (5.9)

so, using the symmetry of y(j+1), the second half y(j+1)
(1) = J2jy

(j+1)
(0) can be computed

via a permutation instead of by solving (5.9). Thus, it suffices to recover y(j+1)
(0) .

In order to decrease the runtime of our method, we define the restrictions of y(j) and
y

(j+1)
(0) to 2L

(j)-length vectors,

z(j) :=

(
y

(j)

(µ(j)+r) mod 2j

)2L
(j)−1

r=0

and z
(j+1)
(0)

:=

(
y

(j+1)

(µ(j)+r) mod 2j

)2L
(j)−1

r=0

.

By definition of L(j), we have that 2L
(j)−1 < m(j) ≤ 2L

(j) , and the m(j) nonzero entries
of y(j) are taken into account by the 2L

(j)-length restriction z(j) of y(j). Similarly, by
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definition of the periodization, z(j+1)
(0) takes into account the at most m(j) nonzero entries

of y
(j+1)
(0) . Hence, it is sufficient to recover the 2L

(j)-length vector z
(j+1)
(0) in order to

determine y(j+1). Restricting (5.5) to the vectors z(j) and z
(j+1)
(0) yields

(
ŷ2J−j−1(2k+1)

)2j−1

k=0

=
(
ω2j+1

(2k+1)((µ(j)+r) mod 2j)
)2j−1, 2L

(j)−1

k, r=0
·
(

2z
(j+1)
(0) − z(j)

)
. (5.10)

As z
(j+1)
(0) and z(j) have length 2L

(j) , we only have to consider 2L
(j) equations of (5.10).

We choose the ones corresponding to kp := 2j−L
(j)
p for p ∈

{
0, . . . , 2L

(j) − 1
}
, since

2kp + 1 ∈ I(j+1)

0, 2j+1−1
for all p. Then we obtain the factorization

(
ŷ

2J−j−1
(

2j+1−L(j)
p+1

))2L
(j)−1

p=0

=

(
ω2j+1

(
2j+1−L(j)

p+1
)
((µ(j)+r) mod 2j)

)2L
(j)−1

p, r=0

·
(

2z
(j+1)
(0) − z(j)

)

=

(
ω2j

2j−L
(j)
p((µ(j)+r) mod 2j) ω2j+1

(µ(j)+r) mod 2j
)2L

(j)−1

p, r=0

·
(

2z
(j+1)
(0) − z(j)

)
=
(
ω

2L
(j)
pµ(j) ω

2L
(j)
pr ω2j+1

(µ(j)+r) mod 2j
)2L

(j)−1

p, r=0
·
(

2z
(j+1)
(0) − z(j)

)
= diag

(
ω

2L
(j)
pµ(j)

)2L
(j)−1

p=0
·
(
ω

2L
(j)
pr
)2L

(j)−1

p, r=0
· diag

(
ω2j+1

(µ(j)+r) mod 2j
)2L

(j)−1

r=0

·
(

2z
(j+1)
(0) − z(j)

)
= W

(j)
(0) · F2L

(j) ·W(j)
(1)

(
2z

(j+1)
(0) − z(j)

)
, (5.11)

where

W
(j)
(0)

:= diag
(
ω

2L
(j)
pµ(j)

)2L
(j)−1

p=0
and W

(j)
(1)

:= diag
(
ω2j+1

(µ(j)+r) mod 2j
)2L

(j)−1

r=0
.

Since all matrices occurring in (5.11) are invertible, we find that

z
(j+1)
(0) =

1

2

W
(j)
(1)

−1
· F

2L
(j)
−1 ·W(j)

(0)

−1
·
(
ŷ

2J−j−1
(

2j+1−L(j)
p+1

))2L
(j)−1

p=0

+ z(j)

 .

Hence, y(j+1) is completely determined by its symmetry, guaranteed by Lemma 5.9 (iii),
and the definition of z(j+1)

(0) , with

(
y

(j+1)
(0)

)
(µ(j)+k) mod 2j

=


(
z

(j+1)
(0)

)
k

if k ∈
{

0, . . . , 2L
(j) − 1

}
,

0 else,
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(
y

(j+1)
(1)

)
2j−1−(µ(j)+k) mod 2j

=


(
z

(j+1)
(0)

)
k

if k ∈
{

0, . . . , 2L
(j) − 1

}
,

0 else.

Note that if 2L
(j)

= 2j , i.e., if 2j−1 ≤ m(j) ≤ 2j , then z(j) = y(j) and z
(j+1)
(0) = y

(j+1)
(0) .

Consequently, (5.5) yields that(
ŷ2J−j−1(2k+1)

)2j−1

k=0
=
(
ŷ(j+1)

2k+1

)2j−1

k=0

=
(
ω2j+1

(2k+1)l
)2j−1

k, l=0
·
(

2y
(j+1)
(0) − y(j)

)
=
(
ω2j

kl ω2j+1
l
)2j−1

k, l=0
·
(

2y
(j+1)
(0) − y(j)

)
= F2j · diag

((
ω2j+1

l
)2j−1

l=0

)
·
(

2y
(j+1)
(0) − y(j)

)
and thus

y
(j+1)
(0) =

1

2

(
diag

((
ω2j+1

−l
)2j−1

l=0

)
· F2j

−1 ·
(
ŷ2J−j−1(2k+1)

)2j−1

k=0
+ y(j)

)
.

As the recovery of y(j+1) from y(j) and ŷ thus requires essentially an IFFT of length
2L

(j) ≤ 2m, we have reason to believe that this procedure for case A sufficiently speeds
up the overall runtime of our method. Note that we do not need to know m a priori; it
suffices if the support of the periodization y(j) from the previous iteration step is known.

5.5.2 Recovery Procedure for Case B: Two-Block Support

We still have to devise a procedure for reconstructing y(j+1) from y(j) in case B of
Theorem 5.19, i.e., if y(j) has a two-block support of the form

S(j) = I
(j)

µ(j), ν(j)
∪ I(j)

2j−1−ν(j), 2j−1−µ(j) (5.12)

with two blocks of length n(j) = m, and ν(j) = µ(j) + m − 1. We recall that it follows
from Theorem 5.19, case B that the support of y(j+1) satisfies

S(j+1) = I
(j+1)

µ(j+1), ν(j+1) ∪ I
(j+1)

2j+1−1−ν(j+1), 2j+1−1−µ(j+1)

with µ(j+1) = µ(j) or 2j+1−1−ν(j+1) = 2j+µ(j). Here, the lengths n(j) and n(j+1) of the
blocks in y(j) and y(j+1), respectively, are the same. They also coincide with the support
length m of x. Furthermore, the values of the nonzero entries of y(j+1) are the same as
the values of the nonzero entries of y(j) and are thus already determined; we just have to
find out whether the first support block of y(j) remains at the same position in y(j+1) or
whether it is shifted by 2j . The other support block is obtained as the reflection of this
block according to Lemma 5.9 (iii), see also Figure 5.10. Which of the two possibilities
for y(j+1) is true can be decided by comparing the DFTs of the two possible vectors at
an oddly indexed entry for which the corresponding entry of ŷ(j+1) has to be nonzero.
In a first step we show that such an oddly indexed nonzero entry of ŷ(j+1) can be found
by examining at most 2m entries.

154



5.5 Iterative Sparse Recovery Procedures

Lemma 5.21 (Lemma 6 in [BP18c]) Let N = 2J−1 with J ≥ 2 and j ∈ {0, . . . , J−1}.
Let x ∈ RN have a one-block support of length m < N . Set y = (xT , (JNx)T )T and
assume that y satisfies (5.4). Suppose that y(j) has a two-block support. Assume that

we have access to all entries of ŷ. Then
(
ŷ(j+1)

2k+1

)2m−1

k=0
has at least one nonzero entry.

Proof. If y(j) has the two-block support

S(j) = I
(j)

µ(j), ν(j)
∪ I(j)

2j−1−ν(j), 2j−1−µ(j)

of length n(j) = ν(j) − µ(j) + 1 = m for first and last support indices µ(j), ν(j) ∈ I(j)

0, 2j−1
,

then by case B of Theorem 5.19 y(j+1) has the two-block support S(j+1) with two blocks
of length n(j+1) = n(j) = m and either

S(j+1) = I
(j+1)

µ(j), µ(j)+m−1
∪ I(j+1)

2j+1−m−µ(j), 2j+1−1−µ(j) or (5.13)

S(j+1) = I
(j+1)

2j−m−µ(j), 2j−1−µ(j) ∪ I
(j+1)

2j+µ(j), 2j+µ(j)+m−1
. (5.14)

We want to guarantee the existence of an oddly indexed nonzero entry of ŷ(j+1). Con-
sidering the first 2m oddly indexed entries of ŷ(j+1), we find(

ŷ(j+1)
2k+1

)2m−1

k=0

=

 ∑
l∈S(j+1)

ω2j+1
(2k+1)ly

(j+1)
l

2m−1

k=0

=
(
ω2j

kl ω2j+1
l
)2m−1

k=0, l∈S(j+1)
·
(
y

(j+1)
l

)
l∈S(j+1)

=

((
ω2j

l
)k)2m−1

k=0, l∈S(j+1)

· diag
((
ω2j+1

l
)
l∈S(j+1)

)
·
(
y

(j+1)
l

)
l∈S(j+1)

. (5.15)

Assume that the claim is false, i.e.,
(
ŷ(j+1)

2k+1

)2m−1

k=0
= 02m. Since

∣∣S(j+1)
∣∣ = 2m, the

first matrix in (5.15),
((
ω2j

l
)k)2m−1

k=0, l∈S(j+1)
, is a square Vandermonde matrix according

to Definition 4.10. Thus, by Lemma 4.11, it is invertible if and only if the ω2j
l are

pairwise distinct for all l ∈ S(j+1), or, equivalently, if the residues l mod 2j are pairwise
distinct for all l ∈ S(j+1). It follows from (5.13) and (5.14) that{

l mod 2j : l ∈ S(j+1)
}

= I
(j)

µ(j), µ(j)+m−1
∪ I(j)

2j−m−µ(j), 2j−1−µ(j) = S(j),

see also Figure 5.10. Consequently, since y(j) already has a two-block support with
separated blocks, the residues modulo 2j of all l ∈ S(j+1) have to be pairwise distinct
as well. The second matrix in (5.15) is invertible by construction. Hence, under our
assumption, said equation is equivalent to

02m =
(
y

(j+1)
l

)
l∈S(j+1)

.

However, we have that
(
y

(j+1)
l

)
l∈S(j+1)

6= 02m due to the reflected block support of y
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and Definition 5.7. Thus, we obtain a contradiction, implying that there indeed exists
an oddly indexed nonzero entry ŷ(j+1)

2k0+1 6= 0 with k0 ∈ {0, . . . , 2m− 1}.

Remark 5.22 In order to obtain an efficient and stable implementation for the proce-
dure for case B, we will later set

k0 := argmax
k∈{0,...,2m−1}

{∣∣∣ŷ2J−j−1(2k+1)

∣∣∣} ,
employing that the entries of ŷ(j+1) are given via Lemma 5.10. Then ŷ(j+1)

2k0+1 6= 0
and it is likely that this entry is not too close to zero, which is supported empirically by
the numerical experiments in Section 6.5. ♦

Now that it is guaranteed that there is at least one nonzero entry among the first 2m

oddly indexed entries of ŷ(j+1), we can show how the support of y(j+1) can be determined
from y(j) and such a nonzero entry.

Theorem 5.23 (Theorem 3 in [BP18c]) Let N = 2J−1, J ≥ 2, and j ∈ {0, . . . , J−1}.
Let x ∈ RN have a one-block support of length m < N . Set y = (xT , (JNx)T )T and
assume that y satisfies (5.4). Suppose that y(j) has a two-block support. Assume that we
have access to all entries of ŷ = (ŷk)

2J−1
k=0 . Then y(j+1) can be uniquely recovered from

y(j) and one nonzero entry of
(
ŷ2J−j−1(2k+1)

)2m−1

k=0
.

Proof. If y(j) is known and has the two-block support

S(j) = I
(j)

µ(j), ν(j)
∪ I(j)

2j−1−ν(j), 2j−1−µ(j)

of length n(j) = m for some µ(j), ν(j) ∈ I
(j)

0, 2j−1
, there are two possibilities for the pe-

riodized vector y(j+1). Theorem 5.19, case B yields that one of the possible vectors is
obtained by shifting the other one by 2j , see also Figure 5.10. We denote these two
possible vectors by u0 =

(
u0
k

)2j+1−1

k=0
and u1 =

(
u1
k

)2j+1−1

k=0
, and their support intervals by

S
(
u0
)
and S

(
u1
)
. Then S

(
u0
)
and S

(
u1
)
satisfy that

S
(
u0
)

= I
(j+1)

µ(j), ν(j)
∪ I(j+1)

2j+1−1−ν(j), 2j+1−1−µ(j) and

S
(
u1
)

= I
(j+1)

2j−1−ν(j), 2j−1−µ(j) ∪ I
(j+1)

2j+µ(j), 2j+ν(j)
.

Thus, we obtain

u0
k :=


y

(j)
k if k ∈

{
µ(j), . . . , µ(j) +m− 1

}
,

y
(j)

k−2j
if k ∈

{
2j+1 −m− µ(j), . . . , 2j+1 − 1− µ(j)

}
,

0 else

and

u1
k := u0

(2j+k) mod 2j+1 , ∀ k ∈
{

0, . . . , 2j+1 − 1
}
.

Lemma 1.5 implies that

û1
2k+1 = −û0

2k+1, k ∈
{

0, . . . , 2j − 1
}
, (5.16)
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for all oddly indexed entries of û0 and û1, since u1 is the periodic 2j-shift of u0. In order
to decide whether y(j+1) = u0 or y(j+1) = u1, we compare a nonzero entry

ŷ(j+1)
2k0+1 = ŷ2J−j−1(2k0+1) 6= 0

to the corresponding entry of û0. It follows from Lemma 5.21 that such an entry can be
found by examining the first 2m oddly indexed entries of ŷ(j+1). If û0

2k0+1 = ŷ(j+1)
2k0+1,

we conclude that y(j+1) = u0, and if û0
2k0+1 = −ŷ(j+1)

2k0+1, then y(j+1) = u1 by (5.16).
Numerically, we set y(j+1) = u0 if∣∣∣û0

2k0+1 − ŷ(j+1)
2k0+1

∣∣∣ < ∣∣∣û0
2k0+1 + ŷ(j+1)

2k0+1

∣∣∣ ,
and y(j+1) = u1 otherwise. The required entry of û0 can be computed from y(j) using
O(m) operations,

û0
2k0+1 =

2j+1−1∑
l=0

ω2j+1
(2k0+1)l u0

l

=

µ(j)+m−1∑
l=µ(j)

ω2j+1
(2k0+1)l y

(j)
l +

2j+1−1−µ(j)∑
l=2j+1−m−µ(j)

ω2j+1
(2k0+1)l y

(j)

l−2j
,

since the support of y(j) and thus of u0 is known from the previous iteration step.

The recovery of y(j+1) from y(j) and an oddly indexed nonzero entry of ŷ(j+1) via the
procedure for case B requires at most 2m samples of ŷ and O(m) arithmetical operations,
so this approach also contributes sufficiently to obtaining an overall runtime of our sparse
IDFT method that is sublinear in the vector length 2N . Note that, as for the method
introduced in Section 5.5.1, a priori knowledge of the block lengthm of y is not necessary.

5.6 Sparse Fast IDFT and Sparse Fast IDCT-II

In Section 5.5 we presented the procedures necessary to derive the new sparse fast IDFT
for vectors y ∈ R2N , N = 2J−1, that have a reflected block support and satisfy (5.4).
Using Lemma 5.4, we obtain at the same time a new sparse fast IDCT-II algorithm for
vectors with one-block support. Note that neither of the procedures for reconstructing
y(j+1) from y(j) and ŷ introduced in Section 5.5 requires a priori knowledge of the length
of the blocks in y. However, what these procedures do require is the support structure
of the vector y(j) from the previous iteration step. More precisely, we need to detect
whether y(j) has a one-block or a two-block support and determine the corresponding
first and last support indices µ(j) and ν(j), as well as the support length m(j) or block
length n(j).

5.6.1 Detecting the Support Sets

In Sections 5.5.1 and 5.5.2 we showed how to compute y(j+1) from y(j) and ŷ. Both
reconstruction methods introduced above rely heavily on the fact that the support struc-
ture of y(j) is already known from the previous step. However, if y(j) has a one-block
support, the reconstruction method from Theorem 5.20 does not provide us with both
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the block or support length n(j+1) or m(j+1) and the first support index µ(j+1), even
though we need both to recover y(j+2) from y(j+1) in the next iteration step. In this
section we introduce methods for the stable and efficient detection of the first support
index and the block or support length n(j+1) or m(j+1). These methods are designed for
noisy data, as input data is usually noisy in practical applications, but can of course also
be applied to exact data. Note that for noisy data the found block lengths n(j+1) for
y(j+1) with two-block support might not be the same as the exact block length m of x.
For detecting the support sets efficiently, we choose a threshold ε > 0 depending on the
noise level of the data.

A) One-block support:

A1) y(j) has the one-block support S(j) = I
(j)

µ(j), 2j−1−µ(j) of length m(j) < 2j centered
around the middle of the vector.

Theorem 5.19, case A1 implies that y(j+1) has the two-block support

S(j+1) = I
(j+1)

µ(j+1), ν(j+1) ∪ I
(j+1)

2j+1−1−ν(j+1), 2j+1−1−µ(j+1)

of length n(j+1) ≤ m(j). Further, we know that the support interval I(j+1)

µ(j+1), ν(j+1) of

the first block of y(j+1) is a subset of S(j). By the proof of Theorem 5.19 and the
symmetry guaranteed by Lemma 5.9 (iii), the indices corresponding to the signifi-
cantly large entries of the first block of y(j+1) have to be contained in the set

T
(j+1)
(0)

:=
{
k ∈

{
µ(j), µ(j) + 1, . . . , 2j − 1− µ(j)

}
:
∣∣∣y(j+1)
k

∣∣∣ > ε
}

=: {t1, . . . , tK} ,

where t1 < · · · < tK . Thus, we define

µ(j+1) := t1 and n(j+1) := tK − t1 + 1.

Hence, in order to find the first support index and the support length, we have to
inspect the m(j) entries of y(j+1) corresponding to indices in T

(j+1)
(0) , which has a

runtime of O
(
m(j)

)
.

A2) y(j) has the one-block support S(j) = I
(j)

0, 2j−1
of length m(j) = 2j .

If j < J − 1, Theorem 5.19, case A2 yields that y(j+1) has a one-block support
whose location and length are unknown. As y(j+1) is symmetric, the indices of its
significantly large entries are

T (j+1) :=
{
k ∈ I(j+1)

0, 2j+1−1
:
∣∣∣y(j+1)
k

∣∣∣ > ε
}

=:
{
t1, . . . , tK , 2

j+1 − 1− tK , . . . , 2j+1 − 1− t1
}

=: {t1, . . . , t2K} ,

where tK ≤ 2j − 1 and tK+1 ≥ 2j . If t2K − t1 + 1 > 2j , we set µ(j+1) := 0 and
m(j+1) := 2j+1, as we are not able to correctly determine the first support index for
support lengths that are greater than half of the vector length. Otherwise, we need
to detect whether the support block is centered around the middle or the boundary
of y(j+1). We define

d0 := tK+1 − tK and d1 := (t1 − t2K) mod 2j+1,
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since not all entries belonging to the support block have to be significantly large.

If d0 < d1, i.e., if the distance between the first significantly large entry to the left
and right of the middle of the vector is smaller than the periodic distance between
the first and last significantly large entry of the vector, then y(j+1) has a one-block
support centered around 2j − 1 and 2j . Analogously, if d0 > d1, the support block
is centered around 0 and 2j+1 − 1. If d0 = d1, then y(j+1) must have full support of
length m(j+1) = 2j+1, so we can conclude that

µ(j+1) :=


t1 if d0 < d1,

tK+1 if d0 > d1,

0 if d0 = d1,

and

m(j+1) :=


t2K − t1 + 1 if d0 < d1,

2j+1 − tK+1 + tK + 1 if d0 > d1,

2j+1 if d0 = d1.

By symmetry of y(j+1) it suffices to find t1, . . . , tK ; hence, we only have to inspect
2j = m(j) entries of y(j+1).

In the case that j = J − 1, there are some additional possibilities. Due to its
symmetry, it suffices to check

T
(J)
(0)

:=
{
k ∈

{
0, . . . , 2J−2 − 1

}
: |yk| > ε

}
=: {t1, . . . , tK} and

T
(J)
(1)

:=
{
k ∈

{
2J−2, . . . , 2J−1 − 1

}
: |yk| > ε

}
=: {u1, . . . , uL} .

If T (J)
(0) = ∅, then y has a one-block support centered around the middle with

µ(J) := u1 and m(J) := 2
(
2J−1 − u1

)
= 2m.

If T (J)
(1) = ∅, then y has a one-block support centered around the boundary with

µ(J) := 2J − 1− tK and m(J) := 2 (tK + 1) = 2m.

Otherwise, there are three possibilities for the support of y, where we do not know
the correct one a priori:

(i) S(J) := I
(J)

t1, 2J−1−t1
,

(ii) S(J) := I
(J)

2J−1−uL, uL
,

(iii) y has a two-block support with two blocks of possibly different lengths and
unknown positions.

However, if case A2 occurs for j = J − 1, then y(J−1) has a one-block support of
full length m(J−1) = 2J−1 ≤ 2m. Consequently, the vector x is not really sparse
and the first support index of x might not be uniquely determined. Additionally,
the iteration stops with y, so not being able to detect its support uniquely does not
pose an algorithmic problem. As we have to check 2J−1 = m(J−1) entries of y(J),
this yields an arithmetical complexity of O

(
m(J−1)

)
.
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A3) y(j) has the one-block support S(j) = I
(j)

µ(j), 2j−1−µ(j) of length m(j) < 2j centered
around the boundary of the vector and j < J − 1.

It follows from Theorem 5.19, case A3 that y(j+1) has a one-block support of length
m(j+1) := m(j) with µ(j+1) = µ(j) or µ(j+1) = 2j + µ(j). We compare the entries at
the possible locations of the support block and set

e0 :=

µ(j)+m(j)−1∑
k=µ(j)

∣∣∣y(j+1)
k

∣∣∣ and e1 :=

(2j+µ(j)+m(j)−1) mod 2j+1∑
k=2j+µ(j)

∣∣∣y(j+1)
k

∣∣∣ .
Since for exact data one of the sums has only vanishing summands, see Figure 5.8,
we choose

µ(j+1) :=

{
µ(j) if e0 > e1,

2j + µ(j) if e0 < e1.

This detection procedure has a computational effort of O
(
m(j)

)
.

A4) y(J−1) has the one-block support S(J−1) = I
(J−1)

µ(J−1), 2J−1−1−µ(J−1) of length m(J−1) <

2J−1 centered around the boundary.

Theorem 5.19, case A4 implies that y(J) = y has the support

S(J) = I
(J)

µ(J), 2J−1−µ(J) ∪ I
(J)

η(J), 2J−1−η(J) with µ(J) < 2J−1 ≤ η(J). (5.17)

This is either a two-block support with two separated blocks of possibly different
lengths or, as a boundary case, a one-block support, where one of the two blocks
in (5.17) vanishes. In the case of two blocks, one is centered around the mid-
dle of the vector, i.e., around 2J−1 − 1 and 2J−1, and its support is a subset of
I

(J)

µ(J−1), 2J−1−µ(J−1) , and the other one is centered around the boundary of the vec-

tor, i.e., around 2J−1 and 0, and its support is a subset of I(J)

2J−1+µ(J−1), 2J−1−1−µ(J−1) .
If y has a one-block support, which can only happen if the first support index µx of
x is 0 or its last support index νx is 2J−1 − 1, then one of the two blocks in (5.17)
is empty. Since the support blocks have even length by Lemma 5.4 (i), set

T
(J)
(0)

:=
{
k ∈

{
µ(J−1), . . . , 2J−1 − 1

}
: |yk| > ε

}
=: {t1, . . . , tK} and

T
(J)
(1)

:=
{
k ∈

{
2J−1 + µ(J−1), . . . , 2J − 1

}
: |yk| > ε

}
=: {u1, . . . , uL} ,

see also Figure 5.9. If T (J)
(0) = ∅, then y has a one-block support centered around the

boundary. In this case we set

µ(J) := u1 and m(J) := 2 ·
(
2J − u1

)
= 2m

to obtain the support interval S(J) := I
(J)

µ(J), 2J−1−µ(J) of y. If T (J)
(1) = ∅, then y has

a one-block support centered around the middle of the vector, and we set

µ(J) := t1 and m(J) := 2 ·
(
2J−1 − t1

)
= 2m,

implying that the support interval of y is S(J) := I
(J)

µ(J), µ(J)+m(J)−1
. If neither T (J)

(0)

nor T (J)
(1) is empty, y has a two-block support with two separated blocks of possibly
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different lengths. Recall that we denote the first index of the block centered around
the middle by µ(J) and the first index of the block centered around the boundary
by η(J) and set

µ(J) := t1 and η(J) := u1.

We obtain the support set S(J) := I
(J)

µ(J), 2J−1−µ(J) ∪ I
(J)

η(J), 2J−1−η(J) , where the block

centered around the middle of the vector has length n(J)
(0)

:= 2
(
2J−1 − t1

)
and the

block centered around the boundary has length n
(J)
(1)

:= 2
(
2J − u1

)
. Thus, the

support detection requires us to inspect 2 ·m(J−1)/2 entries of y(J), which has an
arithmetical complexity of O

(
m(J−1)

)
.

B) Two-block support:

y(j) has the two-block support S(j) = I
(j)

µ(j), ν(j)
∪I(j)

2j−1−ν(j), 2j−1−µ(j) with block length

n(j) = m.

We know from the proof of Theorem 5.19, case B, the proof of Theorem 5.23 and
Figure 5.10 that y(j+1) has a two-block support of block length n(j+1) := n(j) = m.
Further, the first support index µ(j+1) of y(j+1) is either µ(j) or 2j + µ(j) with

µ(j+1) :=

µ(j) if
∣∣∣û0

2k0+1 − ŷ(j+1)
2k0+1

∣∣∣ < ∣∣∣û0
2k0+1 + ŷ(j+1)

2k0+1

∣∣∣ ,
2j + µ(j) else,

where u0 and u1 denote the two possibilities for y(j+1). In this case the support
detection has a computational effort of O(1).

The support detection methods described in this section cover all possible cases for the
support of y(j+1) for a given y(j). Additionally, as we will prove in Section 5.6.3, they
are stable and efficient, as they require at most O

(
m(j)

)
operations.

5.6.2 Sparse Fast IDFT for Vectors with Reflected Block Support

Now that we know how to detect the correct support structure of any periodization y(j)

of y for j ∈ {0, . . . , J}, we can summarize the insights gained in Section 5.5 into a sparse
fast IDFT algorithm. Let us assume that N = 2J−1 with J ≥ 2 and that y ∈ R2N has
a reflected block support of unknown block length m < N . Further, we suppose that y
satisfies (5.4), i.e., there is no cancellation of nonzero entries in any of the periodization
steps, and that we have access to all entries of ŷ ∈ C2N .
Using Lemma 5.9 (i), the algorithm starts with the initial vector

y(0) =

2N−1∑
l=0

yl = ŷ0 ∈ R,

which has a one-block support by definition. For j ∈ {0, . . . , J − 1} we perform the
following iteration steps.

1. Recovery of y(j+1):

a) If y(j) possesses a one-block support, apply the procedure from Theorem 5.20
to recover y(j+1).

b) If y(j) possesses a two-block support, apply the procedure from Theorem 5.23
to recover y(j+1).
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2. Detect the support set of y(j+1) with the appropriate method from Section 5.6.1.

Having reconstructed a vector y(l) with two-block support of block length n(l), it follows
from Theorem 5.19, case B that all longer periodizations y(j), j ∈ {l + 1, . . . , J}, also
possess a two-block support with the same block length n(j) = n(l), so for j > l we always
have to apply step 1b.
If a lower bound 2b−1 ≤ m on the block length of y is known, we can begin the

algorithm with the computation of y(b) by applying a 2b-length IFFT algorithm to

ŷ(b) = (ŷ2J−bk)
2b−1
k=0 ,

and detecting its support. Then we only have to execute the above iteration steps
for j ∈ {b, . . . , J − 1}, thus reducing the runtime slightly. The complete procedure is
summarized in Algorithm 7.

5.6.3 Runtime and Sampling Bounds

We show now that the theoretical runtime and sampling complexities of Algorithm 7
are indeed sublinear in the vector length 2N and subquadratic in the sparsity 2m. In
Section 6.5.1 we will illustrate the runtime and the stability of Algorithm 7 by numerical
examples, also comparing it to other IDFT methods.

Theorem 5.24 (Theorem 4 in [BP18c]) Let N = 2J−1, J ≥ 2, and x ∈ RN have a
one-block support of length m < N . Set y = (xT , (JNx)T )T and assume that y satisfies
(5.4). Further, suppose that there is no a priori knowledge of the support length m of x.
Then Algorithm 7 has a runtime of O

(
m logm log 2N

m

)
and uses O

(
m log 2N

m

)
samples

of ŷ.

Proof. (i) Note that the support S(J) of y = y(J) has at most cardinality 2m. Let
2L−1 < 2m ≤ 2L ≤ 2J .

For j ∈ {0, . . . , L − 1} the vector y(j) has necessarily a one-block support of length
m(j) with 2j−1 ≤ m(j) ≤ 2j , and we have to apply the procedure from Step 1a. Since
L(j) = 2j in this case, the computation of y(j+1)

(0) requires an IFFT of length 2j with
O
(
2j log 2j

)
operations and O

(
2j
)
additional multiplications, according to line 5 of

Algorithm 7. To determine the nonzero entries of y(j+1) in lines 6 and 7, further O
(
2j
)

operations are needed. According to cases A1 to A4 in Section 5.6.1, detecting its support
structure in line 24 also has a runtime of O

(
m(j)

)
= O

(
2j
)
. Thus, the iteration steps

for j ∈ {0, . . . , L− 1} have a runtime complexity of

O

L−1∑
j=0

2j log 2j

 = O
(
2L(L− 2)

)
.

For j ∈ {L, . . . , J − 1} we have to apply either the recovery step 1a or the recovery
step 1b. If y(j) has a one-block support of length m(j), then m ≤ m(j) ≤ 2m and
2L−1 < m(j) ≤ 2L, so we have that L(j) = L. Computing z(j+1)

(0) in lines 12 and 13 requires
an IFFT of length 2L and further operations of complexity O

(
2L
)
. In order to detect

the support structure in line 24, at most O
(
m(j)

)
= O

(
2L
)
operations are necessary by

cases A1 to A4 in Section 5.6.1. Altogether, we require O
(
2L log 2L

)
operations for such

an iteration step.
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Algorithm 7 Sparse IDFT for Vectors with Reflected Block Support (Algorithm 1
in [BP18c])

Input: ŷ, where the sought-after y ∈ R2N with N = 2J−1, J ≥ 2, has a reflected block support
of (unknown) length m and satisfies (5.4), and noise threshold ε > 0. If a lower bound on
m is known, let b ∈ N0 s.t. 2b−1 ≤ m, else b = 0.

Output: y.
1: y(b) ← IFFT

[
(ŷ2J−bk)

2b−1
k=0

]
and, if b > 0, detect its support structure.

2: for j from b to J − 1 do
3: if y(j) has a one-block support of length m(j) then
4: if m(j) > 2j−1 then
5: a← diag

((
ω2j+1

−l)2j−1
l=0

)
IFFT

[(
ŷ2J−j−1(2k+1)

)2j−1
k=0

]
6:

(
y
(j+1)
(0)

)
k
←

{
1
2 Re

(
y(j) + a

)
k

if
∣∣ 1
2 Re

(
y(j) + a

)
k

∣∣ > ε,

0 else,
k ∈ I(j)0, 2j−1

7: y
(j+1)
(1) ← J2jy

(j+1)
(0)

8: else if m(j) ≤ 2j−1 then

9: Set L(j) =
⌈
log2m

(j)
⌉
and v =

(
ŷ
2J−j−1

(
2j+1−L(j)

p+1
))2L

(j)
−1

p=0

.

10: Set z(j) =

(
y
(j)

(µ(j)+r) mod 2j

)2L
(j)
−1

r=0

.

11: Set W(j)
(1)

−1
= diag

(
ω2j+1

−(µ(j)+r) mod 2j
)2L(j)

−1

r=0
.

12: a←W
(j)
(1)

−1
IFFT

[
diag

(
ω
2L

(j)
−pµ(j)

)2L(j)
−1

p=0
v

]

13:
(
z
(j+1)
(0)

)
k
←

{
1
2 Re

(
z(j) + a

)
k

if
∣∣ 1
2 Re

(
z(j) + a

)
k

∣∣ > ε,

0 else,
k ∈ I(L(j))

0, 2L
(j)−1

14:
(
y
(j+1)
(0)

)
(µ(j)+k) mod 2j

←


(
z
(j+1)
(0)

)
k

if k ∈ I(L(j))
0, 2L

(j)−1
,

0 else,
k ∈ I(j)0, 2j−1

15:
(
y
(j+1)
(1)

)
2j−1−(µ(j)+k) mod 2j

←


(
z
(j+1)
(0)

)
k

if k ∈ I(L(j))
0, 2L

(j)−1
,

0 else,
k ∈ I(j)0, 2j−1

16: end if
17: else if y(j) has a two-block support with block length n(j) then
18: k0 ← argmax

k∈{0,...,2n(j)−1}

{∣∣ŷ2J−j−1(2k+1)

∣∣}
19: α← ŷ2J−j−1(2k0+1).

20: û02k0+1 ←
µ(j)+n(j)−1∑

l=µ(j)

ω2j+1
(2k0+1)ly

(j)
l +

2j+1−1−µ(j)∑
l=2j+1−n(j)−µ(j)

ω2j+1
(2k0+1)ly

(j)
l−2j

21: λ(j+1) ←

{
µ(j) if

∣∣∣û02k0+1 − α
∣∣∣ < ∣∣∣û02k0+1 + α

∣∣∣ ,
2j + µ(j) else

22: y
(j+1)
k ←


y
(j)
k mod 2j if k ∈ I(j+1)

λ(j+1), λ(j+1)+n(j)−1,

y
(j)
k mod 2j if k ∈ I(j+1)

2j+1−n(j)−λ(j+1), 2j+1−1−λ(j+1) ,

0 else,

k ∈ I(j+1)
0, 2j+1−1

23: end if
24: Detect the support structure of y(j+1) (one-block or two-block) and find µ(j+1) and

m(j+1) or n(j+1).
25: end for
Output: y = y(J).
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If y(j) possesses a two-block support with block length n(j) = m, then the execution
of lines 18 to 22 requires O(m) = O

(
2L
)
operations, and the support structure of y(j+1)

is already completely determined.

However, in the worst case, we have to apply step 1a, the recovery step for periodiza-
tions with one-block support, for every j ∈ {L, . . . , J − 1}, which can also be seen in
Examples 5.14.2 and 5.14.3. As we cannot tell beforehand how often each method will
be used, we can only estimate a theoretical runtime of

O

J−1∑
j=L

2L log 2L

 = O
(
(J − L)2L log 2L

)
for the last J −L iteration steps, even though the algorithm is usually faster in practice.
Adding the arithmetical complexities for both cases yields an overall runtime of

O

L−1∑
j=0

2j log 2j +
J−1∑
j=L

2L log 2L


= O

(
(2L(L− 2) + (J − L)2LL

)
= O

(
m logm log

2N

m

)
,

where we have used that 2m ≤ 2L < 4m.

(ii) For j ∈ {0, . . . , L − 1} it follows from 2L−1 < 2m ≤ 2L that the computation of

y(j+1) requires all 2j samples of
(
ŷ(j+1)

2k+1

)2j−1

k=0
. With the help of Lemma 5.10, this

implies that after performing the first L iteration steps, every entry of the vector ŷ(L)

has been used in one of the L iteration steps necessary to recover y(L). An iteration step
with j ∈ {L, . . . , J − 1} needs 2L

(j)
= O

(
m(j)

)
samples if y(j) has a one-block support.

For a two-block support it suffices to examine 2m = O
(
2L
)
entries of ŷ to find a nonzero

one by Lemma 5.21. Hence, Algorithm 7 has an overall sampling complexity of

O

L−1∑
j=0

2j +
J−1∑
j=L

2L


= O

(
2L + (J − L)2L

)
= O

(
m log

2N

m

)
.

Remark 5.25 Note that if the unknown block length m of y approaches N , then
Algorithm 7 has a runtime of O(N logN) and a sampling complexity of O(N), which
are the same as the runtime and sampling complexity of a full length IFFT. ♦

5.6.4 Sparse Fast IDCT-II for Vectors with One-Block Support

As already mentioned, the sparse IDFT algorithm for vectors y ∈ R2N with reflected
block support presented in Section 5.6.2 can be applied to derive a sparse fast IDCT-II
algorithm for vectors x ∈ RN with one-block support. Recall that by Lemma 5.4 (iii) the
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DFT of the vector y = (xT , (JNx)T )T is completely determined by xÎI. Hence, we can
compute y from ŷ with the help of Algorithm 7 if xÎI is known. By construction, x is then
given as the first half of y. Each entry of ŷ depends only on one entry of xÎI. Thus, our
IDCT-II method inherits the sublinearity in N of the runtime and sampling complexities
of Algorithm 7. Since Algorithm 7 is adaptive, no a priori knowledge of the support
length of x is required. The resulting sparse fast IDCT-II procedure is summarized in
Algorithm 8.

Algorithm 8 Sparse Fast IDCT-II for Vectors with One-Block Support (Algorithm 2
in [BP18c])

Input: xÎI, where the sought-after vector x ∈ RN with N = 2J−1, J ≥ 2, has a one-
block support of (unknown) length m and y = (xT , (JNx)T )T satisfies (5.4), and
noise threshold ε > 0. If a lower bound on m is known a priori, let b ∈ N0 such that
2b−1 ≤ m, otherwise b = 0.

Output: x.

1: Compute ŷk =


√

2N
εN (k)ω4N

−k · xÎI
k if k ∈ {0, . . . , N − 1},

0 if k = N,

−
√

2N
εN (2N−k)ω4N

−k · xÎI
2N−k if k ∈ {N + 1, . . . , 2N − 1},

if the sample ŷk is needed in Algorithm 7.
2: y← Algorithm 7 [ŷ, b]
3: x← y(0) = (yk)

N−1
k=0

Output: x.

The following theorem provides us with theoretical estimates for the runtime and
sampling complexity of Algorithm 8. We will illustrate them and the numerical stability
of the method by numerical examples in Section 6.5.2, also comparing Algorithm 8 to
other sparse fast IDCT-II algorithms.

Theorem 5.26 (Theorem 5 in [BP18c]) Let N = 2J−1, J ≥ 2, and x ∈ RN have a
one-block support of length m < N . Set y = (xT , (JNx)T )T and assume that y satisfies
(5.4). Further, suppose that there is no a priori knowledge of the support length m of x.
Then Algorithm 8 has a runtime of O

(
m logm log 2N

m

)
and uses O

(
m log 2N

m

)
samples

of xÎI.

Proof. As shown in Theorem 5.24, Algorithm 7 requires a total of O
(
m log 2N

m

)
samples

of ŷ, which are used in lines 1, 5, 9, 18 and 19. In an implementation one would compute
the respective samples of ŷ from xÎI directly in the lines of Algorithm 7 where they
are needed. In our pseudocode for Algorithm 8, we summarize these calculations in
line 1. Since by Lemma 5.4 (iii) each entry of ŷ depends on only one entry of xÎI, the
computation of the samples of ŷ in line 1 has a computational effort of O

(
m log 2N

m

)
and requires O

(
m log 2N

m

)
samples of xÎI. Hence, Algorithm 8 has the same runtime and

sampling complexity as Algorithm 7.

Remark 5.27 Analogously to Algorithm 7, if the unknown support length m of x
approaches N , the runtime of Algorithm 8 is O(N logN) and it requires O(N) samples
of xÎI. Thus, it achieves the same runtime and the same sampling complexity as an
N -length IDCT-II. ♦
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6 Real Sparse Fast IDCT-II for Vectors
with Short Support Based on Real
Arithmetic

With Algorithm 8 we introduced a deterministic IDCT-II algorithm for reconstructing
a vector x ∈ RN with one-block support from its DCT-II, xÎI, in Chapter 5. However,
Algorithm 8 effectively recovers the vector y = (xT , (JNx)T )T ∈ R2N via Algorithm 7
from its DFT, ŷ ∈ C2N , which can be computed from xÎI. Since Algorithm 7 exploits
the short support of x and the resulting symmetric reflected block support of y, it still
performs better than general sparse FFT methods. This assertion will be supported by
numerical experiments in Section 6.5.1. Nevertheless, despite being an adaptive algorithm
which does not need any a priori knowledge of the support length, its assumptions on
the sought-after vector x are quite strict and, without supposing extensive knowledge
of x, they can usually only be satisfied if, e.g., x ∈ RN≥0. Additionally, the vector y is
2m-sparse, whereas x is only m-sparse, and Algorithm 8 requires complex arithmetic for
recovering x, even though the DCT-II is a real transform that can be computed in a fast
way using only real arithmetic, as we have seen in Section 4.2.
Thus, investigating fully real sparse fast IDCT-II algorithms that recover x without

using IDFTs and the auxiliary vector y is the natural next course of action. We will
present a deterministic sparse fast algorithm for the inverse DCT-II of vectors with
short support that only employs real arithmetic in this section. Unlike in Chapter 5,
we now require that an upper bound M ≥ m on the support length of x is known a
priori. In Section 6.5.2 we will compare the performance of our new real sparse IDCT-II
with respect to runtime and noisy input data to the one of Algorithm 8 by numerical
experiments.
The following chapter is based on our preprint [BP18a], and coincides in parts identi-

cally with said publication.
In order to derive the algorithm presented hereafter, we transfer some of the concepts

introduced in [PW16a,PW17a,PWCW18] and the methods presented in Chapter 5 to the
purely real IDCT-II setting. We sketched the main ideas of Algorithm 2 in [PW16a] and
Algorithm 2.1 in [PW17a] in Section 5.3. For a summary of Algorithm 2.3 in [PWCW18]
see Section 6.5.1. These four methods reconstruct a vector y ∈ RN , N = 2J , with either
short support of lengthM ,M -sparse support or reflected block support with block length
M from its DFT. In Chapter 5 and [PW16a,PW17a,PWCW18] the sought-after vector
y is recovered iteratively from its 2j-length periodizations y(j), where y(J) := y and
y(j) is obtained by adding the first and second half of y(j+1) for all j ∈ {0, . . . , J − 1},
see Definition 5.7. However, for recovering a vector x ∈ RN directly from its DCT-II,
the concept of periodizations has to be adapted using an iterative application of both
reflections and periodizations, as we will show in Section 6.1. We still set x[J ] := x, but
x[j] ∈ R2j is now defined by adding the first half of x[j+1] and the reflection of the second
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6 Real Sparse Fast IDCT-II for Vectors with Short Support Based on Real Arithmetic

half of x[j+1], i.e.,

x[j] :=
(
x

[j+1]
0 + x

[j+1]

2j+1−1
, x

[j+1]
1 + x

[j+1]

2j+1−2
, . . . , x

[j+1]

2j−1
+ x

[j+1]

2j

)T
.

Employing this concept for j ∈ {L, . . . , J − 1}, where 2L−1 ≥ M , our new real IDCT-II
algorithm is based on iteratively recovering x[j+1] from xÎI using that x[j] is known from
the previous step. To the best of our knowledge the algorithm we will present hereafter
is the first deterministic sparse IDCT-II algorithm that only uses real arithmetic.

6.1 Short Support and Reflected Periodizations

Throughout this chapter we will always consider a real vector x = (xk)
N−1
k=0 ∈ RN , with

N = 2J , that has a short support of length m ≤M , where the upper bound M is known
a priori. Unlike in Chapter 5, we do not allow the support of x to be wrapped periodically
around the boundary of the vector anymore. Again, we index both x and xÎI from 0 to
N − 1, since we do not consider frequencies in this vector setting. In order to formally
define the notion of a short support, we introduce notation for non-periodized intervals.

Definition 6.1 Let a, b ∈ N0 with a ≤ b. Then we denote by Ia, b the interval

Ia, b := {a, a+ 1, . . . , b} ( N0.

The above notation for intervals facilitates giving the definition of a vector with short
support, which is analogous to the definition of a vector with one-block support from
Definition 5.2, where the support could be wrapped periodically around the boundary of
the vector.

Definition 6.2 (Short Support) Let x = (xk)
N−1
k=0 ∈ RN . Then x has a short support

of length m if m is the minimal integer such that

xk = 0 ∀ k /∈ Iµ, ν = {µ, µ+ 1, . . . , ν}

for some µ ∈ {0, . . . , N −m} and ν := µ+m− 1 with xµ 6= 0 and xν 6= 0.
The interval S := Iµ, ν is called the support interval, µ the first support index and ν

the last support index of x.

Remark 6.3 Note that if x ∈ RN has a short support, then its support is not considered
periodically, unlike for vectors with one-block support according to Definition 5.2. Thus,
for vectors with short support, the first support index µ is always uniquely determined,
even if the support length m is greater than N/2, which is not the case for vectors with
one-block support. The last support index ν and the support length m are also uniquely
determined.
As in Chapter 5, the interval S contains all indices at which the vector x ∈ RN has

nonzero entries, while x may also be zero at indices in S, since for some of the theoretical
concepts employed hereafter we need the support of x to be an interval in N0. ♦

Our aim in this chapter is to find a deterministic algorithm for reconstructing a sparse
vector x ∈ RN , N = 2J , from its discrete cosine transform of type II, xÎI, using only real
arithmetic. More precisely, we assume that x has a short support of length m and that
only an upper bound M on m is known. As in Chapter 5, which is based on [BP18c],
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and [PW17a,PW16a,PWCW18], we will use an iterative approach. Thus, we first require
an analog to the periodizations y(j) of y ∈ R2N from Definition 5.7, which were used in
the publications cited above. In order to do this in a meaningful way, we inspect one of
the possible factorizations of the orthogonal cosine matrix of type II, see Definition 4.1,
namely the one given by Lemma 4.5.
Recall that for N ∈ N even and x ∈ RN we have that

xÎI = CII
Nx = PN

T

 CII
N
2

0N
2

0N
2

CIV
N
2

TNx,

where

TNx :=
1√
2

 IN
2

JN
2

IN
2
−JN

2

x =
1√
2

x(0) + JN
2
x(1)

x(0) − JN
2
x(1)

 , (6.1)

PN is the even-odd permutation matrix from Lemma 4.5 and JN is the counter identity
from Theorem 4.4. Recall that according to Definition 5.7 we denote by x(0) the first
half of x and by x(1) the second half, respectively. Inspired by (6.1), we define the
DCT-II-specific analog to the periodization from Definition 5.7.

Definition 6.4 (Reflected Periodization ((5) in [BP18a])) Let N = 2J with J ∈ N
and x ∈ RN . We set x[J ] := x. For j ∈ {0, . . . , J−1} we define the reflected periodization
x[j] ∈ R2j of x as

x[j] := x
[j+1]
(0) + J2jx

[j+1]
(1) =

(
x

[j+1]
k + x

[j+1]

2j+1−1−k

)2j−1

k=0
.

By definition, the reflected periodization x[j] ∈ R2j is given by adding the first half
and the reflection of the second half of the reflected periodization x[j+1] ∈ R2j+1 for any
j ∈ {0, . . . , J − 1}.

Example 6.5 Let x ∈ R16 with nonzero entries x13, x14. Then x and its reflected
periodizations are

x = x[4] = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, x13, x14, 0)T ,

x[3] = (0, x14, x13, 0, 0, 0, 0, 0)T ,

x[2] = (0, x14, x13, 0)T ,

x[1] = (0, x13 + x14)T ,

x[0] = (x13 + x14)T .

♦

As the notion of reflected periodizations arises naturally from the factorization of
the matrix CII

N given in Lemma 4.5, it has many useful properties. Most importantly,
similarly as for the periodizations considered in Chapter 5, for j ∈ {0, . . . , J} the DCT-II
of the reflected periodization x[j] of any x ∈ RN is already completely determined by the
DCT-II of x itself, as we will show in the following lemma.
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Lemma 6.6 (Lemma 2.3 in [BP18a]) Let N = 2J with J ∈ N and j ∈ {0, . . . , J}.
Let x ∈ RN . Then

(
x[j]
)ÎI satisfies

(
x[j]
)ÎI

=
√

2
J−j (

xÎI
2J−jk

)2j−1

k=0
.

Proof. We prove the lemma by induction. For j = J the claim holds, since x[J ] = x by
definition. Now we assume the induction hypothesis for some j ∈ {1, . . . , J} and show
that the claim also holds for j − 1. Lemma 4.5, (6.1) and Definition 6.4 yield

P2jC
II
2jx

[j] =
1√
2

(
CII

2j−1

CIV
2j−1

)(
I2j−1 J2j−1

I2j−1 −J2j−1

)x
[j]
(0)

x
[j]
(1)


=

1√
2

 CII
2j−1x

[j−1]

CIV
2j−1

(
x

[j]
(0) − J2j−1x

[j]
(1)

)
 . (6.2)

It follows from Remark 4.6 and the first 2j−1 rows of (6.2) that(
x[j−1]

)ÎI
= CII

2j−1x
[j−1]

=
√

2
(
P2jC

II
2jx

[j]
)

(0)

=
√

2

((
x[j]
)ÎI

2k

)2j−1−1

k=0

=
√

2
(√

2
J−j

xÎI
2J−j2k

)2j−1−1

k=0

=
√

2
J−(j−1)

(
xÎI

2J−(j−1)k

)2j−1−1

k=0
,

where we used the induction hypothesis in the second to last step.

6.2 Support Structures of Reflected Periodizations

Our goal is to reconstruct a vector x ∈ RN , N = 2J , with short support of length m ≤M
from xÎI by successively computing its reflected periodizations x[L],x[L+1], . . . ,x[J ] = x.
Unlike for the DFT case, due to different support constraints, we cannot begin the
reconstruction with x[0] ∈ R. Instead, we have to start at a level L with 2L−1 ≥M , thus
being forced to have a priori knowledge of an upper bound M on the support length m.
As in Chapter 5 we have to determine x[j+1] efficiently from xÎI in the (j−L)th iteration
step using that x[j] is already known. Hence, we have to investigate how the support of
x[j+1] can look like if the support of x[j] is given.
There are three main differences between the method from Chapter 5 and the one

we will present hereafter. Firstly, our new real IDCT-II algorithm will only use real
arithmetic, whereas Algorithm 8 requires the computation of IFFTs. Secondly, by re-
constructing x directly from its reflected periodizations instead of the periodizations of
the auxiliary vector y = (xT , (JNx)T )T , we have to recover a vector with short support
of length at most m in each iteration step instead of a vector with reflected block sup-
port, as we will show in the following section. Thus, we do not have to detect whether
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the reflected periodization has a one-block or a two-block support, which simplifies the
reconstruction. Thirdly, while Algorithm 8 is completely adaptive, our new real IDCT-II
method requires a priori knowledge of an upper bound M on the support length m of x.
For our real IDCT-II method recovering x iteratively from its reflected periodizations

can only be possible if we do not lose any relevant information about the support structure
in the periodization process. More precisely, we require that, in addition to xµ[J] 6= 0
and xν[J] 6= 0, x satisfies the non-cancellation condition

xµ[J] + xν[J] 6= 0 if m is even. (6.3)

This condition suffices to guarantee the correct identification of the support of x[j] for
all j ∈ {L, . . . , J}, since the real IDCT-II method will not have to detect how many
support blocks a given reflected periodization x[j] has. It is less restrictive than the
non-cancellation condition (5.4) for Algorithm 8. Condition (6.3) holds for example if all
nonzero entries of x are positive or if all nonzero entries of x are negative, i.e., if x ∈ RN≥0

or x ∈ RN≤0.
Applying our method in practice means that the given data will be noisy. Then we

have to guarantee that, for some threshold ε > 0 depending on the noise level, the vector
x satisfies ∣∣∣xµ[J]∣∣∣ > ε, |xν[J] | > ε and

∣∣∣xµ[J] + xν[J]
∣∣∣ > ε.

6.2.1 Support Structure of x[j] for Given x

We want to iteratively recover the vector x ∈ RN , N = 2J , from its reflected periodiza-
tions x[j] ∈ R2j for j ∈ {L, . . . , J−1} for a suitable starting index L. Since we learned in
Section 5.4 that the DFT-specific periodizations of a vector with reflected block support
have a very special structure that can be employed for the iteration procedure, we have
reason to expect that similar results also hold for the DCT-II-specific reflected periodiza-
tions of a vector with short support. Thus, we will first investigate the support structure
of x[j] for a vector x ∈ RN with short support.

Remark 6.7 If x ∈ RN , N = 2J , has a short support of length m, the possibly
nonzero entries of x will definitely collide in the reflected periodizations of length 2j for
j ∈

{
0, . . . , 2K−2

}
, where K := dlog2me+ 1, since 2K−2 < m ≤ 2K−1, see Example 6.5.

Such collisions did not pose much of a problem in the DFT case that was discussed in
Chapter 5. However, for the slightly differently structured reflected periodizations, an
iterative approach beginning at x[0] would not be feasible, as we can only undo collisions
if the support of x[j] is contained in the last 2K−1 entries. We actually want to reduce
collisions of nonzero entries of x in the reflected periodizations x[j] as much as possible,
which is why we will only consider the reflected periodizations to the level K, similarly to
Algorithm 2 in [PW16a]. Thus, in all reflected periodizations x[j] with j ∈ {K, . . . , J},
the support length m of x is at most half the vector length. Due to this restriction, our
method will not be able to detect the support on the fly and require a priori knowledge
of an upper bound M on the support length m of x. ♦

Before formulating a lemma about the support structure of the reflected periodization
x[j], we will motivate the claims therein by looking at some exemplary vectors, illustrating
the main possible support structures.
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Example 6.8

1. Let x ∈ R16 satisfy (6.3) with nonzero entries x13, x14, i.e., with the short support
S[4] = I13, 14 of length m = 2. Assume that m is known exactly, i.e., that M = m = 2.
Then K = 2, and x and its reflected periodizations x[j] for j ∈ {K, . . . , J} are

x = x[4] = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, x13, x14, 0)T ,

x[3] = (0, x14, x13, 0, 0, 0, 0, 0)T ,

x[2] = (0, x14, x13, 0)T .

Here, x[3] and x[2] have the short support S[3] = S[2] = I1, 2 of lengthm[3] = m[2] = 2 = m.

2. Let x ∈ R16 satisfy (6.3) with nonzero entries x7, x8, i.e., with short support S[4] = I7, 8

of length m = 2. Again, we assume that M = m, so K = 2. Then, for j ∈ {2, 3, 4}, the
reflected periodizations of x are

x = x[4] = (0, 0, 0, 0, 0, 0, 0, x7, x8, 0, 0, 0, 0, 0, 0, 0)T ,

x[3] = (0, 0, 0, 0, 0, 0, 0, x7 + x8)T ,

x[2] = (x7 + x8, 0, 0, 0)T .

Here, x[3] has the short support S[3] = I7, 7 of length m[3] = 1 < m = 2 and x[2] has the
short support S[2] = I0, 0 of length m[2] = m[3] = 1. ♦

Note that the second example shows that even though we only computed the reflected
periodizations of length 2j for j ∈ {K, . . . , J}, we could not completely avoid the collision
of nonzero entries of x, unlike in [PW16a]. For both vectors considered in Example 6.8
all reflected periodizations x[j] for j ∈ {K, . . . , J} with K = dlog2me + 1 have a short
support of length at most m. This observation is generalized in the following lemma.

Lemma 6.9 (Lemma 2.4 in [BP18a]) Let N = 2J with J ∈ N. Let x ∈ RN have a
short support of length m and assume that x satisfies (6.3). Set K := dlog2me+ 1 and
let j ∈ {K, . . . , J}. Then x[j] has a short support of length m[j] ≤ m.

Proof. We employ an induction argument. By assumption x[J ] = x has a short support
of length m. Now suppose that for j ∈ {K, . . . , J−1} x[j+1] has a short support of length
m[j+1] ≤ m with support interval S[j+1] = Iµ[j+1], ν[j+1] , and first and last support indices
µ[j+1] ∈

{
0, . . . , 2j+1 −m[j+1]

}
and ν[j+1] := µ[j+1] +m[j+1] − 1. We have to distinguish

three cases.

(i) S[j+1] ⊆ I0, 2j−1, i.e., the nonzero entries are contained in the first half of x[j+1].

This implies that x
[j+1]
(1) = 02j . Since x[j] = x

[j+1]
(0) + J2jx

[j+1]
(1) by Definition 6.4, we

obtain that x[j] also has a short support of length m[j] = m[j+1] with

x[j] = x
[j+1]
(0) and S[j] = S[j+1],

see Figure 6.1.
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x[j+1]

0 2j+1 − 12j − 1

m[j+1]

µ[j+1]

x[j]

0 2j − 1

m[j] = m[j+1]

µ[j] = µ[j+1]

Figure 6.1: Illustration of the support of x[j] for given x[j+1] according to Lemma 6.9 if
S[j+1] ⊆ I0, 2j−1

(ii) S[j+1] ⊆ I2j , 2j+1−1, i.e., the nonzero entries are contained in the second half of x[j+1].

As x
[j+1]
(0) = 02j , it follows from the definition of the reflected periodization that x[j]

also has a short support of length m[j] = m[j+1], with

x[j] = J2jx
[j+1]
(1) and S[j] = I2j+1−1−ν[j+1], 2j+1−1−µ[j+1] ,

see Figure 6.2.

x[j+1]

0 2j+1 − 12j − 1

m[j+1]

µ[j+1]

x[j]

0 2j − 1

m[j] = m[j+1]

µ[j] = 2j+1 − 1− ν[j+1]

Figure 6.2: Illustration of the support of x[j] for given x[j+1] according to Lemma 6.9 if
S[j+1] ⊆ I2j , 2j+1−1

(iii) I2j−1, 2j ⊆ S[j+1]

Then at least one possibly nonzero entry from the second half of x[j+1], x[j+1]
l with

l ∈ I2j , 2j+1−1, is added to a possibly nonzero entry x[j+1]
k with k = 2j+1− 1− l ∈ I0, 2j−1

from the first half at the reflected index in the computation of x[j]. Thus, it follows from
Definition 6.4 that x[j] has indeed a short support of length m[j] < m[j+1] with support
interval

S[j] =
(
Iµ[j+1], ν[j+1] ∪ I2j+1−1−ν[j+1], 2j+1−1−µ[j+1]

)
∩ I0, 2j−1

=: I2j−m[j], 2j−1 ( I2j−m[j+1], 2j−1,

and either µ[j] = µ[j+1] or µ[j] = 2j+1 − 1− ν[j+1], see Figure 6.3.
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x[j+1]

0 2j+1 − 12j − 1

m[j+1]

x[j]

0 2j − 1

m[j] < m[j+1]

Figure 6.3: Illustration of the support of x[j] for given x[j+1] according to Lemma 6.9 if
I2j−1, 2j ⊆ S[j+1]

Remark 6.10

(i) Note that in cases (i) and (ii) of the proof of Lemma 6.9 the support length does
not change, i.e., m[j] = m[j+1], and that the support length m[j] < m[j+1] always
decreases in case (iii).

(ii) For any j ∈ {K, . . . , J} we will always denote the support length, the first and last
support index and the support interval of the reflected periodization x[j] ∈ R2j of
x ∈ RN , N = 2J , by m[j], µ[j], ν[j] and S[j], respectively. Since x[J ] = x, we will
usually write m instead of m[J ] etc. ♦

6.2.2 Support Structure of x[j+1] for Given x[j]

The aim of our algorithm is to reconstruct x ∈ RN , N = 2J , from xÎI by successively
computing its reflected periodizations x[L],x[L+1], . . . ,x[J ] = x for a suitable starting
index L if only an upper bound M on the support length m of x is known. Choosing
L := dlog2Me + 1 will guarantee correct recovery of the supports of all these reflected
periodizations. Similarly to Chapter 5.4.3 we now investigate how the support of x[j+1]

can look like if the support of x[j] is already known from the previous iteration step, by
which we aim to reduce the runtime of our method. Prior to proving a general theorem
about the support of x[j+1], we will illustrate the main possible cases for the support of
x[j+1] for given x[j] by the vectors considered in Example 6.8.

Example 6.11 (Example 6.8 continued)
Let us assume again that the support length m of x is known exactly, i.e., that we have
M = m = 2. Then it follows that L = 2. Further, we assume that N = 16 is known.

1. Note that for the vector x ∈ R16 with short support S[4] = I13, 14 from Example 6.8.1

we have that S[j] 6⊆ I2j−M, 2j−1 for all j ∈ {2, 3, 4}. Consider x[2] =
(

0, x
[2]
1 , x

[2]
2 , 0

)T
with short support S[2] = I1, 2 of length m[2] = 2. It follows from Definition 6.4 that x[3]

has to be either

x[3] =
(

0, x
[2]
1 , x

[2]
2 , 0, 0, 0, 0, 0

)T
or x[3] =

(
0, 0, 0, 0, 0, x

[2]
2 , x

[2]
1 , 0

)T
,

since no other vector in R8 with reflected periodization x[2] can arise from reflectedly
periodizing a vector x ∈ R16 that has a short support of length at most M = 2. Thus,
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x[3] has a short support of length m[3] = m[2] as well, with

S[3] = I1, 2 or S[3] = I5, 6,

where the values of the nonzero entries of x[2] and x[3] are the same. We will show in
Section 6.3 how we can determine which of the two possibilities is the correct one by
using additional entries of xÎI. Analogously, x = x[4] can be recovered from x[3].

2. Note that for the vector x ∈ R16 with short support S[4] = I7, 8 from Example 6.8.2
we have that j′ = 3 is the only index contained in {2, 3, 4} such that S[j] ⊆ I2j−M, 2j−1.
Let us consider now the reflected periodization x[3], which can be reconstructed from x[2]

as in Example 6.11.1. Then, with the help of the methods from Section 6.3, it follows
that x[3] has the short support S[3] = I7, 7 of length m[3], i.e.,

x[3] =
(

0, 0, 0, 0, 0, 0, 0, x
[3]
7

)T
.

By definition of the reflected periodization and since M = m = 2 is known exactly,
x = x[4] has to be of the form

x = (0, 0, 0, 0, 0, 0, 0, x7, x8, 0, 0, 0, 0, 0, 0, 0)T

with x7 + x8 = x
[3]
7 . The nonzero entries of x, which do not have to be the same as the

nonzero entry x[3]
7 of x[3], can be determined from xÎI using the methods we will present

in Section 6.3. If x7 and x8 are both not zero, then x has the short support S[4] = I7, 8

of length m = 2. Otherwise, it has the short support S[4] = I7, 7 or S[4] = I8, 8 of length
m = 1. ♦

Example 6.11 shows that, at least for the two vectors from Example 6.8, there is at most
one index j′ ∈ {L, . . . , J} such that the support of x[j′] is contained in the lastM entries.
Further, if j 6= j′, there are precisely two possibilities for the reflected periodization x[j+1]

of double length. These observations are generalized in the following theorem.

Theorem 6.12 (Lemma 2.5 in [BP18a]) Let N = 2J with J ∈ N. Let x ∈ RN have a
short support of length m ≤M and assume that x satisfies (6.3). Set L := dlog2Me+ 1.

A) Possible collision:

There is at most one index j′ ∈ {L, . . . , J} such that S[j′] ⊆ I2j′−M, 2j′−1, and we
have that S[j′+1] ( I2j′−M, 2j′+M−1 if j′ ≤ J − 1.

B) No collision:

Let j ∈ {L, . . . , J − 1} \ {j′} with j′ as in case A. Let x[j] have the short support
S[j] = Iµ[j], ν[j] of length m

[j]. Then

(i) m[j] = m[j+1] and

(ii) x[j+1] is either

x[j+1] =

(
x[j]

02j

)
or x[j+1] =

(
02j

J2jx
[j]

)
,

with S[j+1] = Iµ[j], ν[j] or S
[j+1] = I2j+1−1−ν[j], 2j+1−1−µ[j] .
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Proof. A) Recall that K = dlog2me+ 1 ≤ L, so, by Lemma 6.9, x[j] has a short support
S[j] of length m[j] ≤ m for all j ∈ {L, . . . , J}. Set

j′ := max
{
j ∈ {L, . . . , J} : S[j] ⊆ I2j−M, 2j−1

}
(6.4)

if such an index exists. If there is no such j′, claim A is already proven, so let us assume
that there exists a j′ ∈ {L, . . . , J} satisfying (6.4). By definition of L we have that
2j
′ −M ≥ 2j

′−1. Thus, if j′ > L, we obtain

x[j′−1] = x
[j′]
(0)︸︷︷︸

=0
2j
′−1

+J2j′−1x
[j′]
(1) = J2j′−1x

[j′]
(1) ,

and, consequently,
S[j′−1] ⊆ I0,M−1.

Inductively, for all j ∈ {L, . . . , j′ − 2}, we also find that

x[j] = x
[j+1]
(0) + J2j x

[j+1]
(1)︸ ︷︷ ︸

=0
2j

and S[j] = S[j+1] ⊆ I0,M−1,

since 2j −M ≥ 2j−1 if j ≥ L. This implies that j′ is the unique index in {L, . . . , J}
for which (6.4) holds. Furthermore, we even showed that for j ∈ {L, . . . , j′ − 1} the
support of x[j] is contained in the first M ≤ 2j−1 entries of the vector. By definition of
the reflected periodization, we immediately obtain for the support S[j′+1] of the reflected
periodization of length 2j

′+1 that

S[j′+1] ( I2j′−M, 2j′+M−1

if j′ ≤ J − 1, as S[j′] ( I2j′−M, 2j′−1. Hence, it is possible that x[j′+1] has a longer
support than x[j′]. For the special case that m[j′] < m[j′+1] the supports of the reflected
periodizations are depicted in Figure 6.4.

x[j′−1]

0 2j
′−1 − 1

m[j′−1]

x[j′]

0 2j
′ − 1

m[j′] = m[j′−1]

2j
′ −M

x[j′+1]

0 2j
′+1 − 12j

′ − 1

m[j′+1] > m[j′]

2j
′ −M 2j

′
+M − 1

Figure 6.4: Illustration of the support of x[j′−1], x[j′] and x[j′+1] if m[j′] < m[j′+1] accord-
ing to Theorem 6.12, case A
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B) Let now j ∈ {L, . . . , J − 1} \ {j′} with j′ as defined in (6.4).

(i) It follows from the proof of Lemma 6.9 that for decreasing j the support lengthm[j] of
x[j] cannot increase. Assume that there exists an index j1 ∈ {L, . . . , J−1}\{j′} such that
m[j1] < m[j1+1]. Case (iii) in the proof of Lemma 6.9 yields that

{
2j1 − 1, 2j1

}
⊆ S[j1+1],

because otherwise we would have that m[j1] = m[j1+1]. As m[j1+1] ≤ m ≤M , this implies

S[j1+1] ( I2j1−M, 2j1+M−1,

and hence, by Definition 6.4,
S[j1] ⊆ I2j1−M, 2j1−1.

This is a contradiction, since j1 ∈ {L, . . . , J − 1} \ {j′} and j′ is, if it exists, the
unique index that satisfies (6.4). Consequently, we obtain that m[j] = m[j+1] for all
j ∈ {L, . . . , J − 1} \ {j′}.
(ii) For j ∈ {L, . . . , J − 1} \ {j′} we have that m[j] = m[j+1] by (i), which also holds if j′

does not exist. Hence, cases (i) and (ii) of the proof of Lemma 6.9 show that either

x[j+1] =

(
x[j]

02j

)
or x[j+1] =

(
02j

J2jx
[j]

)
,

as these are the only two 2j+1-length vectors arising from repeatedly applying the re-
flected periodization to a vector x with short support of length at most M that have the
reflected periodization x[j]. In Figures 6.5 and 6.6 these two possibilities are depicted for
the two different cases j < j′ and j > j′.

x[j]

0 2j − 1

m[j]

x[j+1]

0 2j+1 − 12j − 1

m[j+1] = m[j]

µ[j+1] = µ[j]

or x[j+1]

0 2j+1 − 12j − 1

m[j+1] = m[j]

µ[j+1] = 2j+1 −m[j] − µ[j]

Figure 6.5: Illustration of the two possibilities for the support of x[j+1] for given x[j]

according to Theorem 6.12, case B for j ∈ {L, . . . , j′−1} with m[j′] < m[j′+1]

Theorem 6.12 shows that even if we only know an upper bound M on m, there is at
most one index j′ such that the support of x[j′] is contained in its last M entries. This
is also the only case for which the support length of the reflected periodization of double
length can increase and for which one might have to undo collisions of nonzero entries in
order to compute x[j′+1] from x[j′]. For all other indices the values of the nonzero entries
of x[j] and x[j+1] are the same and there are only two possibilities for x[j+1].
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x[j]

0 2j − 1

m[j]

µ[j]

x[j+1]

0 2j+1 − 12j − 1

m[j+1] = m[j]

µ[j+1] = µ[j]

or x[j+1]

0 2j+1 − 12j − 1

m[j+1] = m[j]

µ[j+1] = 2j+1 −m[j] − µ[j]

Figure 6.6: Illustration of the two possibilities for the support of x[j+1] for x[j] according
to Theorem 6.12, case B for j ∈ {j′ + 1, . . . , J − 1} with m[j′] < m[j′+1]

6.3 Iterative Sparse Recovery Procedures

Lemma 6.6 implies that if xÎI is known, the DCT-IIs of all reflected periodizations x[j]

are also known, as they can be obtained by selecting certain entries of xÎI. Analogously
to [PW16a,PW17a,PWCW18] and the methods detailed in Chapter 5, which is based
on [BP18c], our goal is to develop an algorithm which recovers x ∈ RN , N = 2J ,
with short support of length m ≤ M from xÎI by successively calculating the reflected
periodizations x[L], x[L+1], . . . ,x[J ] = x for some starting index L satisfying M ≤ 2L−1.
It follows from Theorem 6.12 that there is an important difference between case A and

case B. In case A, i.e., when the support of x[j] is contained in its last M entries, some of
the entries of x[j] might have been obtained as the sum of two nonzero entries of x[j+1]

and thus also of x. On the other hand, in case B, no entries of x[j] are sums of nonzero
entries of x[j+1], though they might be sums of nonzero entries of x if j ≤ j′, where j′

is defined as in (6.4). Thus, the nonzero entries of x[j] and x[j+1], which are the only
relevant vectors for the current iteration step, are the same and there are precisely two
possibilities for x[j+1].

Therefore, in this section we will develop two different methods for calculating x[j+1]:
the first one is tailored to case A of Theorem 6.12 and the second one to case B. Both
will require a priori knowledge of an upper bound M on the support length m of x.

6.3.1 Recovery Procedure for Case A: Possible Collision

We start by introducing the reconstruction procedure for case A, so let us assume that
j ∈ {L, . . . , J − 1} with j = j′, i.e., S[j] ⊆ I2j−M, 2j−1. Then Theorem 6.12, case A yields
that S[j+1] ( I2j−M, 2j+M−1 and that the reflected periodization x[j] may have been
obtained by adding nonzero entries of x[j+1]. Thus, the values of the nonzero entries of
x[j] and x[j+1] are not necessarily the same. We can restrict the possible support of x[j+1]

even further, using that the support of x[j] has length m[j] ≤ m ≤M . By Definition 6.4
and Theorem 6.12, case A, the support of the first half of x[j+1], S[j+1]

(0) , can have at most
length m̃[j] := 2j − µ[j] ≤M . See Figures 6.7 and 6.8 for illustrations.
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x[j]

0

m[j]

2j −M µ[j] 2j − 1

x[j+1]

0 2j+1 − 12j − 1

m̃[j]

µ[j]2j −M

Figure 6.7: Illustration of the support of x[j] and one possibility for the support of x[j+1]

for m[j] < m[j+1] with j = j′

x[j]

0

m[j]

2j −M µ[j] 2j − 1

x[j+1]

0 2j+1 − 12j − 1

m̃[j]

µ[j]2j −M

Figure 6.8: Illustration of the support of x[j] and one possibility for the support of x[j+1]

for m[j] = m[j+1] with j = j′

Consequently, we have that

S
[j+1]
(0) ⊆ I2j−m̃[j], 2j−1.

By definition of the reflected periodization, x[j+1]
(1) is completely determined by x[j] and

x
[j+1]
(0) . As the support of x[j+1]

(0) is contained in the short support of length m̃[j] of x[j],

we have to recover at most m̃[j] nonzero entries of x[j+1]
(0) . We will do this, analogously

to Section 5.5.1, by considering restrictions of x[j] and x
[j+1]
(0) to vectors of length 2K̃−1,

where m̃[j] ≤ 2K̃−1, which take all nonzero entries into account. We will use these nonzero
entries to show that x[j+1]

(0) and thus x[j+1] can be calculated essentially by a DCT-IV of

length 2K̃−1 and further operations of complexity O
(

2K̃−1
)
. In order to do this we also

have to employ the vector x[j] known from the previous iteration step and 2K̃ suitably

chosen oddly indexed entries of
(
x[j+1]

)ÎI.
The efficient computation of x[j+1] from x[j] and xÎI is based on the following theorem.

Theorem 6.13 (Theorem 3.4 in [BP18a]) Let N = 2J with J ∈ N. Let x ∈ RN
have a short support of length m ≤ M and assume that x satisfies (6.3). Suppose that
we have access to all entries of xÎI. Let j = j′ as in (6.4) and set m̃[j] := 2j − µ[j] and
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K̃ :=
⌈
log2 m̃

[j]
⌉

+ 1. Then x[j+1] can be uniquely recovered from x[j] and the 2K̃ entries

(
xÎI

2J−j−1(2·2j−K̃(2p+1)+1)

)2K̃−1−1

p=0
and

(
xÎI

2J−j−1(2(2j−K̃(2p+1)−1)+1)

)2K̃−1−1

p=0
.

Proof. It suffices to only consider the oddly indexed entries
(
x[j+1]

)ÎI
2k+1

of
(
x[j+1]

)ÎI for
k ∈

{
0, . . . , 2j − 1

}
. We obtain from (4.2) and (6.2) that

((
x[j+1]

)ÎI
2k

)2j−1

k=0((
x[j+1]

)ÎI
2k+1

)2j−1

k=0

 =
1√
2

(
CII

2j

CIV
2j

)(
I2j J2j

I2j −J2j

)
·

x
[j+1]
(0)

x
[j+1]
(1)



=
1√
2

(
CII

2j

CIV
2j

)
·

(
x[j]

x
[j+1]
(0) − J2jx

[j+1]
(1)

)

=
1√
2

 (
x[j]
)ÎI(

2x
[j+1]
(0) − x[j]

)ÎV

 , (6.5)

where we used that J2jx
[j+1]
(1) = x[j] − x

[j+1]
(0) by Definition 6.4.

If j = j′, Lemma 6.9 and Theorem 6.12, case A imply that the support interval S[j] of
x[j] satisfies

S[j] ⊆ Iµ[j], 2j−1 ⊆ I2j−M, 2j−1.

With m̃[j] := 2j − µ[j] ≤M and K̃ :=
⌈
log2 m̃

[j]
⌉

+ 1, we obtain

S[j] ⊆ I2j−m̃[j], 2j−1 ⊆ I2j−2K̃−1, 2j−1
,

and, by definition of the reflected periodization, the support set S[j+1] of x[j+1] satisfies

S[j+1] ( I2j−m̃[j], 2j+m̃[j]−1 ⊆ I2j−2K̃−1, 2j+2K̃−1−1
. (6.6)

Consequently, both the first half of x[j+1], x[j+1]
(0) , and the second half, x[j+1]

(1) , have a
short support of length at most m̃[j]. Note that we always have that m̃[j] ≥ m[j] and
that m̃[j] > m[j] is possible if there is no collision. The latter happens if the support of
x[j] is contained in the last M entries, but 2j − 1 /∈ S[j], as M is just an upper bound
on the support length m of x. The choice of m̃[j] allows us to reduce the number of
computations necessary to find x[j+1]. Since we only suppose that xµ[J] 6= 0, xν[J] 6= 0

and xµ[J] + xν[J] 6= 0 in (6.3), some of the last m̃[j] entries of x[j] might be zero, despite
being obtained by adding two nonzero entries of x[j+1]. However, the first and last
support index of x[j+1] never cancel each other out, so we are always able to find the
correct first support index µ[j], which satisfies either µ[j] = µ[j+1] or µ[j] = 2j+1−1−ν[j+1]

by case (iii) in the proof of Lemma 6.9. We need to incorporate all entries of x[j] that
are influenced by possibly nonzero entries of x[j+1]. Hence, if we restrict x[j] to its last
2K̃−1 ≥ m̃[j] = 2j − µ[j] entries, i.e., to

z[j] :=
(
x

[j]
k

)2j−1

k=2j−2K̃−1
,
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we take all of the at most m̃[j] entries of x[j] into account which can be obtained from
possibly nonzero entries of x[j+1] by reflectedly periodizing, as the support of x[j+1] has to
be contained in I2j−m̃[j], 2j+m̃[j]−1. Thus, z

[j] contains all the information of x[j] necessary

for recovering x[j+1]. Analogously, by (6.6), the 2K̃−1-length vectors

z
[j+1]
(0)

:=
(
x

[j+1]
k

)2j−1

k=2j−2K̃−1
and z

[j+1]
(1)

:=
(
x

[j+1]
k

)2j+2K̃−1−1

k=2j

take the at most m̃[j] nonzero entries of x[j+1]
(0) and x

[j+1]
(1) into account. Note that the

restricted vectors still satisfy

z[j] = z
[j+1]
(0) + J

2K̃−1z
[j+1]
(1) . (6.7)

Therefore, it is enough to derive a fast algorithm for computing z
[j+1]
(0) that utilizes z[j]

and some entries of
(
x[j+1]

)ÎI. In order to do so we restrict the second 2j equations in
(6.5), i.e., the ones depending on x

[j+1]
(0) , to the vectors z[j] and z

[j+1]
(0) , which yields

((
x[j+1]

)ÎI

2k+1

)2j−1

k=0

=
1√
2j

(
cos

(
(2k + 1)(2l′ + 1)π

4 · 2j

))2j−1

k, l′=0

(
2x

[j+1]
(0) − x[j]

)
=

1√
2j

(
cos

(
(2k + 1)(2l′ + 1)π

4 · 2j

))2j−1

k=0, l′=2j−2K̃−1

(
2z

[j+1]
(0) − z[j]

)
=

1√
2j

(
cos

(
(2k + 1)(2j+1 − (2l + 1))π

4 · 2j

))2j−1, 2K̃−1−1

k, l=0

J
2K̃−1

(
2z

[j+1]
(0) − z[j]

)
=

1√
2j

(
cos

(
(2k + 1)2j+1π

4 · 2j

)
cos

(
(2k + 1)(2l + 1)π

4 · 2j

)

+ sin

(
(2k + 1)2j+1π

4 · 2j

)
sin

(
(2k + 1)(2l + 1)π

4 · 2j

))2j−1, 2K̃−1−1

k, l=0

J
2K̃−1

(
2z

[j+1]
(0) − z[j]

)
=

1√
2j

(
cos

(
(2k + 1)π

2

)
cos

(
(2k + 1)(2l + 1)π

4 · 2j

)

+ sin

(
(2k + 1)π

2

)
sin

(
(2k + 1)(2l + 1)π

4 · 2j

))2j−1, 2K̃−1−1

k, l=0

J
2K̃−1

(
2z

[j+1]
(0) − z[j]

)
=

1√
2j

(
(−1)k sin

(
(2k + 1)(2l + 1)π

4 · 2j

))2j−1, 2K̃−1−1

k, l=0

J
2K̃−1

(
2z

[j+1]
(0) − z[j]

)
, (6.8)

where we set l := 2j − 1− l′ in the third step. As z[j] and z
[j+1]
(0) both have length 2K̃−1,

it suffices to consider 2K̃−1 equations of (6.8). We choose the ones corresponding to the
indices 2kp + 1, where kp := 2j−K̃(2p + 1), p ∈

{
0, . . . , 2K̃−1 − 1

}
. Since we have that
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2kp + 1 ∈
{

0, . . . , 2j+1 − 1
}
for all p, we obtain

√
2j(−1)2j−K̃

((
x[j+1]

)ÎI

2kp+1

)2K̃−1−1

p=0

=

sin


(

2j−K̃+1(2p+ 1) + 1
)

(2l + 1)π

4 · 2j

2K̃−1−1

p, l=0

J
2K̃−1

(
2z

[j+1]
(0) − z[j]

)
=

(
sin

(
(2p+ 1)(2l + 1)π

4 · 2K̃−1

)
cos

(
(2l + 1)π

4 · 2j

)

+ cos

(
(2p+ 1)(2l + 1)π

4 · 2K̃−1

)
sin

(
(2l + 1)π

4 · 2j

))2K̃−1−1

p, l=0

J
2K̃−1

(
2z

[j+1]
(0) − z[j]

)
. (6.9)

Defining the vectors

c :=

(
cos

(
(2l + 1)π

4 · 2j

))2K̃−1−1

l=0

and s :=

(
sin

(
(2l + 1)π

4 · 2j

))2K̃−1−1

l=0

and recalling Definition 4.3 of the sine matrix of type IV, (6.9) can be written as

√
2j−K̃+2(−1)2j−K̃

((
x[j+1]

)ÎI

2kp+1

)2K̃−1−1

p=0

=
(
SIV

2K̃−1
· diag(c) + CIV

2K̃−1
· diag(s)

)
J

2K̃−1

(
2z

[j+1]
(0) − z[j]

)
=
(
CIV

2K̃−1
diag(s) + J

2K̃−1C
IV
2K̃−1

D
2K̃−1 diag(c)

)
J

2K̃−1

(
2z

[j+1]
(0) − z[j]

)
=
(

CIV
2K̃−1

J
2K̃−1C

IV
2K̃−1

)(diag(s)
D

2K̃−1 diag(c)

)J
2K̃−1

(
2z

[j+1]
(0) − z[j]

)
J

2K̃−1

(
2z

[j+1]
(0) − z[j]

)
 ,

(6.10)

where we used that, by Theorem 4.4 (ii),

SIV
n = JnC

IV
n Dn with Dn = diag

(
(−1)k

)n−1

k=0
∀n ∈ N.

Our aim is to find a representation of z[j+1]
(0) depending only on z[j] and some entries

of xÎI. However, as the first matrix in (6.10),
(
CIV

2K̃−1
| J

2K̃−1C
IV
2K̃−1

)
, is not a square

matrix, we have to consider 2K̃−1 additional equations from (6.8) in order to be able
to invert (6.10) and solve it for z

[j+1]
(0) . Now we choose the equations corresponding to

the indices 2k′p + 1, where k′p := 2j−K̃(2p + 1) − 1, p ∈
{

0, . . . , 2K̃−1 − 1
}
. Since also
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2k′p + 1 ∈
{

0, . . . , 2j+1 − 1
}
for all p, we find that

√
2j−K̃+2

((
x[j+1]

)ÎI

2k′p+1

)2K̃−1−1

p=0

=
(−1)k

′
p√

2K̃−2

sin


(

2j−K̃+1(2p+ 1)− 1
)

(2l + 1)π

4 · 2j

2K̃−1−1

p, l=0

J
2K̃−1

(
2z

[j+1]
(0) − z[j]

)

=
(−1)2j−K̃−1√

2K̃−2

(
sin

(
(2p+ 1)(2l + 1)π

4 · 2K̃−1

)
cos

(
(2l + 1)π

4 · 2j

)

− cos

(
(2p+ 1)(2l + 1)π

4 · 2K̃−1

)
sin

(
(2l + 1)π

4 · 2j

))2K̃−1−1

p, l=0

J
2K̃−1

(
2z

[j+1]
(0) − z[j]

)
=

(−1)2j−K̃−1√
2K̃−2

√
2K̃−2

(
SIV

2K̃−1
· diag(c)−CIV

2K̃−1
· diag(s)

)
J

2K̃−1

(
2z

[j+1]
(0) − z[j]

)
= (−1)2j−K̃

(
CIV

2K̃−1
· diag(s)− SIV

2K̃−1
· diag(c)

)
J

2K̃−1

(
2z

[j+1]
(0) − z[j]

)
= (−1)2j−K̃

(
CIV

2K̃−1
−J

2K̃−1C
IV
2K̃−1

)(diag(s)
D

2K̃−1 diag(c)

)

·

J
2K̃−1

(
2z

[j+1]
(0) − z[j]

)
J

2K̃−1

(
2z

[j+1]
(0) − z[j]

)
 (6.11)

Using Lemma 6.6, we denote by

b0 :=

((
x[j+1]

)ÎI

2kp+1

)2K̃−1−1

p=0

=
√

2
J−j−1

(
xÎI

2J−j−1(2kp+1)

)2K̃−1−1

p=0
∈ R2K̃−1

and

b1 :=

((
x[j+1]

)ÎI

2k′p+1

)2K̃−1−1

p=0

=
√

2
J−j−1

(
xÎI

2J−j−1(2k′p+1)

)2K̃−1−1

p=0
∈ R2K̃−1

the two 2K̃−1-length vectors of required entries of xÎI. Combining (6.10) and (6.11) yields√
2j−K̃+2(−1)2j−K̃

(
b0

b1

)

=

CIV
2K̃−1

J
2K̃−1C

IV
2K̃−1

CIV
2K̃−1

−J
2K̃−1C

IV
2K̃−1

(diag(s)
D

2K̃−1 diag(c)

)J
2K̃−1

(
2z

[j+1]
(0) − z[j]

)
J

2K̃−1

(
2z

[j+1]
(0) − z[j]

)


=

(
I

2K̃−1 J
2K̃−1

I
2K̃−1 −J

2K̃−1

)(
CIV

2K̃−1

CIV
2K̃−1

)(
diag(s)

D
2K̃−1 diag(c)

)

·

J
2K̃−1

(
2z

[j+1]
(0) − z[j]

)
J

2K̃−1

(
2z

[j+1]
(0) − z[j]

)
 . (6.12)
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Note that the first matrix in (6.12) is invertible, as(
I

2K̃−1 J
2K̃−1

I
2K̃−1 −J

2K̃−1

)
· 1

2

(
I

2K̃−1 I
2K̃−1

J
2K̃−1 −J

2K̃−1

)
=

(
I

2K̃−1

I
2K̃−1

)
= I

2K̃
. (6.13)

Furthermore, since m̃[j] ≤M and thus K̃ ≤ L ≤ j by definition, it follows that

(2l + 1)π

4 · 2j
∈
(

0,
π

4

)
for all l ∈

{
0, . . . , 2K̃−1 − 1

}
. Consequently, the entries of the vectors c and s satisfy

cos

(
(2l + 1)π

4 · 2j

)
∈
(

1√
2
, 1

)
and sin

(
(2l + 1)π

4 · 2j

)
∈
(

0,
1√
2

)
. (6.14)

This implies that the third matrix in (6.12) is invertible as well, since the multiplication
of oddly indexed entries of c with −1, caused by D

2K̃−1 , does not change the absolute
value of the determinant of the matrix. Thus, all matrices in (6.12) can be inverted and
we obtain thatJ

2K̃−1

(
2z

[j+1]
(0) − z[j]

)
J

2K̃−1

(
2z

[j+1]
(0) − z[j]

)


=
√

2j−K̃(−1)2j−K̃
(

diag(s̃)
diag(c̃)D

2K̃−1

)(
CIV

2K̃−1

CIV
2K̃−1

)

·

(
I

2K̃−1 I
2K̃−1

J
2K̃−1 −J

2K̃−1

)(
b0

b1

)

=
√

2j−K̃(−1)2j−K̃

(
diag(s̃)CIV

2K̃−1

diag(c̃)D
2K̃−1C

IV
2K̃−1

)(
b0 + b1

J
2K̃−1

(
b0 − b1

)) (6.15)

where

c̃ :=

(
cos

(
(2l + 1)π

4 · 2j

)−1
)2K̃−1−1

l=0

and s̃ :=

(
sin

(
(2l + 1)π

4 · 2j

)−1
)2K̃−1−1

l=0

.

For recovering z
[j+1]
(0) it suffices to use the second 2K̃−1 equations in (6.15), which yields

z
[j+1]
(0) =

1

2

(√
2j−K̃(−1)2j−K̃J

2K̃−1 diag(c̃)D
2K̃−1C

IV
2K̃−1

J
2K̃−1

(
b0 − b1

)
+ z[j]

)
. (6.16)

Then, by (6.7), z[j+1]
(1) can be found in O

(
2K̃−1

)
time as

z
[j+1]
(1) = J

2K̃−1

(
z[j] − z

[j+1]
(0)

)
.
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Thus, by definition of z[j+1]
(0) and z

[j+1]
(1) , the reflected periodization x[j+1] is given as

x
[j+1]
k =



(
z

[j+1]
(0)

)
k−2j+2K̃−1

if k ∈
{

2j − 2K̃−1, . . . , 2j − 1
}
,(

z
[j+1]
(1)

)
k−2j

if k ∈
{

2j , . . . , 2j + 2K̃−1 − 1
}
,

0 else

for k ∈
{

0, . . . , 2j+1 − 1
}
, since all possibly nonzero entries of x[j+1] are determined by

z
[j+1]
(0) and z

[j+1]
(1) . Note thatD

2K̃−1 is a diagonal matrix and J
2K̃−1 is a permutation. Thus,

(6.16) implies that z
[j+1]
(0) can be computed by performing a DCT-IV with a runtime of

O
(

2K̃−1 log 2K̃−1
)
, and O

(
2K̃−1

)
further operations, while using 2K̃ entries of xÎI.

Remark 6.14 Note that by choosing to compute z[j+1]
(0) from the second 2K̃−1 equations

in (6.15), we avoid inverting diag(s), which would be numerically less stable than inverting
diag(c), since for large K̃ its nonzero entries are rather close to zero, whereas all nonzero
entries of diag(c) are greater than 1√

2
. ♦

As by restricting x[j] and x
[j+1]
(0) to vectors of length 2K̃−1 we can recover x[j+1] in

O
(
m̃[j] logm[j]

)
= O (M logM) time using 2K̃ = O(M) samples of xÎI, we have reason to

believe that the runtime reduction for case A is sufficient to obtain an IDCT-II algorithm
with overall runtime that is sublinear in the vector length, provided that we can also find a
fast method for case B. Furthermore, the procedure for case A has to be executed at most
once by Theorem 6.12. Since we do not know a priori for which j′ ∈ {L, . . . , J − 1} this
is the case, we need the runtime of the procedure from Theorem 6.13 to be subquadratic
in the bound M on the support length m of x in order to obtain an overall runtime that
is subquadratic in M . Note that a priori knowledge of the upper bound M is an integral
part of the procedure detailed in this section.

6.3.2 Recovery Procedure for Case B: No Collision

We still have to derive a method for case B of Theorem 6.12, so let us now suppose that
j ∈ {L, . . . , J − 1} \ {j′}, where j′ is given by (6.4), i.e., that S[j] 6⊆ I2j−M, 2j−1. Then
case B of Theorem 6.12 implies that if S[j] = Iµ[j], ν[j] , the values of the nonzero entries
of x[j] and x[j+1] are the same, with m[j+1] = m[j] and

S[j+1] = Iµ[j], ν[j] or S[j+1] = I2j+1−1−ν[j], 2j+1−1−µ[j] .

Hence, we only need to determine whether the first support index of x[j+1] is µ[j+1] = µ[j]

or µ[j+1] = 2j+1 − 1− ν[j], i.e.,

x[j+1] =

(
x[j]

02j

)
or x[j+1] =

(
02j

J2jx
[j]

)
.

We can determine which is the correct first support index by employing a nonzero entry

of
(
x[j+1]

)ÎI, similarly to the recovery procedure described in Section 5.5.2. First we
show how such a nonzero entry can be found efficiently, for which we will employ the
odd Vandermonde matrices defined in Section 4.4.
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Lemma 6.15 (Lemma 3.2 in [BP18a]) Let N = 2J with J ∈ N. Let x ∈ RN have a
short support of length m ≤M and assume that x satisfies (6.3). Suppose that we have
access to all entries of xÎI. Set L := dlog2Me + 1 and j ∈ {L, . . . , J − 1} \ {j′} with j′

as in (6.4). Then
((
x[j+1]

)ÎI
2k+1

)m[j]−1

k=0

has at least one nonzero entry.

Proof. If x[j] has the short support S[j] = Iµ[j], ν[j] of length m
[j] for some µ[j] ∈ I0, 2j−m[j]

and ν[j] = µ[j] + m[j] − 1, then by Theorem 6.12, case B, x[j+1] has the short support
S[j+1] of length m[j+1] = m[j] and either

x[j+1] =

(
x[j]

02j

)
or x[j+1] =

(
02j

J2jx
[j]

)
. (6.17)

We want to guarantee the existence of an oddly indexed nonzero entry of
(
x[j+1]

)ÎI by
only looking at the first m[j] ones. Recall that it follows from (6.5) that((

x[j+1]
)ÎI

2k+1

)2j−1

k=0

=
1√
2
CIV

2j

(
2x

[j+1]
(0) − x[j]

)
. (6.18)

Let us denote the support interval of x
[j+1]
(0) by S

[j+1]
(0) and the support interval of an

arbitrary vector y ∈ Rn with short support by S(y). Then (6.17) yields that S[j+1]
(0) = S[j]

or S[j+1]
(0) = ∅. Consequently, S[j+1]

(0) ⊆ S[j] and S
(

2x
[j+1]
(0) − x[j]

)
⊆ S[j]. Restricting

(6.18) to the rows corresponding to the first m[j] oddly indexed entries of
(
x[j+1]

)ÎI, we
find that((

x[j+1]
)ÎI

2k+1

)m[j]−1

k=0

=
1√
2

((
CIV

2j

)
k, l

)m[j]−1, 2j−1

k, l=0

(
2x

[j+1]
(0) − x[j]

)

=
1√
2j

∑
l∈S[j]

cos

(
(2k + 1)(2l + 1)π

4 · 2j

)(
2x

[j+1]
(0) − x[j]

)
l

m[j]−1

k=0

=
1√
2j
·T[j] ·

((
2x

[j+1]
(0) − x[j]

)
l

)
l∈S[j]

, (6.19)

where

T[j] :=

(
cos

(
(2k + 1)(2l + 1)π

4 · 2j

))m[j]−1

k=0, l∈S[j]

is the restriction of the cosine matrix of type IV without the normalization factor to
the first m[j] rows and the m[j] columns indexed by S[j]. Since

∣∣S[j]
∣∣ = m[j], T[j] is a

quadratic matrix.

We assume now that the claim is false, i.e., that
((
x[j+1]

)ÎI
2k+1

)m[j]−1

k=0

= 0m[j] . By

showing that T[j] is invertible, which is possible with the help of Chebyshev polynomi-
als, (6.19) will yield a contradiction. Recall that by Lemma 4.14 (v), the Chebyshev
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polynomial of the first kind of degree n can be written as

Tn(x) = cos(n arccosx) =:
n∑
l=0

αn, lx
l

if |x| ≤ 1. Note that it follows from Lemma 4.14 (iii) that we have for any k ∈ N0

α2k+1, 2l = 0 ∀ l ∈ {0, . . . , k},

since T2k+1 is an odd polynomial. Then Lemma 4.14 (vi) and the coefficient representa-
tion of the Chebyshev polynomials yield that

T[j]

=

(
cos

(
(2k + 1)(2l + 1)π

2 · 2j+1

))m[j]−1

k=0, l∈S[j]

=
(
T2k+1

(
t2j+1, l

))m[j]−1

k=0, l∈S[j]

=

 2k+1∑
r′=0

r′≡1 mod 2

α2k+1, r′ · t2j+1, l
r′


m[j]−1

k=0, l∈S[j]

= (α2k+1, 2r+1)m
[j]−1

k, r=0 ·
(
t2j+1, l

2r+1
)m[j]−1

r=0, l∈S[j] (6.20)

=


α1, 1 0 0 . . . 0
α3, 1 α3, 3 0 . . . 0
...

...
... 0

α2m[j]−1, 1 α2m[j]−1, 3 a2m[j]−1, 5 . . . α2m[j]−1, 2m[j]−1





(
t2j+1, l

)T
l∈S[j](

t2j+1, l
3
)T
l∈S[j]

...(
t2j+1, l

2m[j]−1
)T
l∈S[j]


=: X

[j]
odd ·V

odd
((
t2j+1, l

)
l∈S[j]

)T
, (6.21)

where we set a2k+1, 2r+1 := 0 for r ∈
{
k + 1, . . . ,m[j] − 1

}
in (6.20). Recall that

Vodd
((
t2j+1, l

)
l∈S[j]

)
denotes the odd Vandermonde matrix defined in Definition 4.15.

By Lemma 4.14 (ii), the triangular matrix X
[j]
odd in (6.21) is invertible. Furthermore,

since S[j] ⊆ I0, 2j−1, it follows that

(2l + 1)π

2 · 2j+1
∈
(

0,
π

2

)
for all l ∈ S[j]. Consequently, we have that

t2j+1, l = cos

(
(2l + 1)π

2 · 2j+1

)
∈ (0, 1).

This implies that
∣∣t2j+1, k

∣∣ 6= ∣∣t2j+1, l

∣∣ for all k 6= l, k, l ∈ S[j], as the cosine is bijective on(
0, π2

)
. Hence, the transposed odd Vandermonde matrix in (6.21),Vodd

((
t2j+1, l

)
l∈S[j]

)T
,

is invertible by Lemma 4.16, so T[j] can also be inverted.
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Recall that we assumed that
(
x[j+1]

)ÎI
2k+1

= 0 for all k ∈
{

0, . . . ,m[j] − 1
}
. Then (6.19)

and (6.21) yield

0m[j] =

((
x[j+1]

)ÎI

2k+1

)m[j]−1

k=0

=
1√
2j

T[j]
((

2x
[j+1]
(0) − x[j]

)
l

)
l∈S[j]

⇔ 0m[j] =
((

2x
[j+1]
(0) − x[j]

)
l

)
l∈S[j]

. (6.22)

However, since j 6= j′, we have by (6.17) that either

x[j+1] =

(
x[j]

02j

)
or x[j+1] =

(
02j

J2jx
[j]

)
.

In either case, (6.22) is only possible if x[j] = 02j . This is a contradiction, as by assump-
tion x 6= 0N has a short support of length m and satisfies (6.3). Hence, there exists an

index k0 ∈
{

0, . . . ,m[j] − 1
}
such that

(
x[j+1]

)ÎI
2k0+1

6= 0.

Remark 6.16 For obtaining an efficient and stable implementation of the recovery
procedure for case B, we set

k0 := argmax
k∈{0,...,m[j]−1}

{∣∣∣√2
J−j−1

xÎI
2J−j−1(2k+1)

∣∣∣} ,
where we use that

(
x[j+1]

)ÎI is given via Lemma 6.6. Then
(
x[j+1]

)ÎI
2k0+1

6= 0 and it
is likely that this entry is not too close to zero, which is supported empirically by the
numerical experiments in Section 6.5. ♦

Now that it is guaranteed that at least one of the first m[j] oddly indexed entries of(
x[j+1]

)ÎI is nonzero, we will show how x[j+1] can be computed from x[j] and one such
nonzero entry in the following theorem.

Theorem 6.17 (Theorem 3.3 in [BP18a]) Let N = 2J with J ∈ N. Let x ∈ RN
have a short support of length m ≤ M and assume that x satisfies (6.3). Suppose that
we have access to all entries of xÎI. Set L := dlog2Me + 1, let j′ as in (6.4) and let
j ∈ {L, . . . , J − 1} \ {j′}. Then x[j+1] can be uniquely recovered from x[j] and one

nonzero entry of
(√

2
J−j−1

xÎI
2J−j−1(2k+1)

)m[j]−1

k=0
.

Proof. If x[j] is known and has the short support S[j] = Iµ[j], ν[j] of length m
[j] for some

µ[j] ∈ I0, 2j−m[j] and ν[j] = µ[j]+m[j]−1, there are precisely two vectors in R2j+1 that arise
from repeatedly applying the reflected periodization to x and have the given reflected
periodization x[j] by Theorem 6.12, case B. They are

u0 :=

(
x[j]

02j

)
and u1 :=

(
02j

J2jx
[j]

)
,
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with short support

S
(
u0
)

= Iµ[j], ν[j] and S
(
u1
)

= I2j+1−1−ν[j], 2j+1−1−µ[j] ,

see also Figures 6.5 and 6.6. Hence, the vector u0 has the first support index µ[j], the
vector u1 has the first support index 2j+1−m[j]−µ[j] and both have a support of length
m[j+1] = m[j].
Analogously to the approach in Theorem 5.23, let us now compare the DCT-IIs of u0

and u1. Lemma 4.5 yields
((
u0
)ÎI

2k

)2j−1

k=0((
u0
)ÎI

2k+1

)2j−1

k=0

 = P2j+1

(
u0
)ÎI

=
1√
2

(
CII

2j

CIV
2j

)(
I2j J2j

I2j −J2j

)
·
(
x[j]

02j

)
=

1√
2

(
CII

2j

CIV
2j

)
·
(
x[j]

x[j]

)

=
1√
2

(x[j]
)ÎI(

x[j]
)ÎV


and 
((
u1
)ÎI

2k

)2j−1

k=0((
u1
)ÎI

2k+1

)2j−1

k=0

 =
1√
2

(
CII

2j

CIV
2j

)(
I2j J2j

I2j −J2j

)
·

(
02j

J2jx
[j]

)

=
1√
2

(
CII

2j

CIV
2j

)
·

(
J2j
(
J2jx

[j]
)

−J2j
(
J2jx

[j]
))

=
1√
2

 (
x[j]
)ÎI

−
(
x[j]
)ÎV
 .

Consequently, we find that(
u1
)ÎI

2k+1
= −

(
u0
)ÎI

2k+1
, k ∈

{
0, . . . , 2j − 1

}
, (6.23)

for all oddly indexed entries of
(
u0
)ÎI and (u1

)ÎI. In order to decide whether x[j+1] = u0

or x[j+1] = u1, we compare a nonzero entry(
x[j+1]

)ÎI

2k0+1
=
√

2
J−j−1

xÎI
2J−j−1(2k0+1) 6= 0

to the corresponding entry of u0. By Lemma 6.15 such an entry can be found by examin-

ing m[j] entries of xÎI. If
(
u0
)ÎI

2k0+1
=
(
x[j+1]

)ÎI
2k0+1

, it follows that x[j+1] = u0 by (6.23),
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and if
(
u0
)ÎI

2k0+1
= −

(
x[j+1]

)ÎI
2k0+1

, then we must have that x[j+1] = u1. Numerically, we
set x[j+1] = u0 if∣∣∣∣(u0

)ÎI
2k0+1

−
√

2
J−j−1

xÎI
2J−j−1(2k0+1)

∣∣∣∣ < ∣∣∣∣(u0
)ÎI

2k0+1
+
√

2
J−j−1

xÎI
2J−j−1(2k0+1)

∣∣∣∣ ,
and x[j+1] = u1 otherwise. The required entry of u0 can be computed from x[j] using
O
(
m[j]

)
= O(m) operations,

(
u0
)ÎI

2k0+1
=

2j+1−1∑
l=0

(
CII

2j+1

)
2k0+1, l

u0
l

=

m[j]−1∑
l=0

(
CII

2j+1

)
2k0+1, µ[j]+l

x
[j]

µ[j]+l
,

since the support of x[j] and thus of u0 is already known from the previous iteration step.
Furthermore, the first support index µ[j+1] of x[j+1] is given via

µ[j+1] :=

{
µ[j] if x[j+1] = u0,

2j+1 −m[j] − µ[j] if x[j+1] = u1,

so we know which of the two possible first support indices from Theorem 6.12 case B is
attained.

Recovering the vector x[j+1] from x[j] and an oddly indexed nonzero entry of
(
x[j+1]

)ÎI
via the procedure for case B has a runtime of O

(
m[j]

)
= O(m) and requires at most

m[j] = O(m) samples of xÎI. This contributes decidedly to obtaining an IDCT-II algo-
rithm with an overall runtime that is sublinear in the vector lengthN , since the procedure
for case A has to be executed at most once by Theorem 6.12.
Note that, as for the procedure described in Section 6.3.1, a priori knowledge of an

upper bound M on the block length m is indispensable.

6.4 Real Sparse Fast IDCT-II for Vectors with Short
Support

In Section 6.3 we introduced the iterative methods required for the new sparse IDCT-II
for vectors x ∈ RN , N = 2J , with short support of length m ≤ M that satisfy (6.3). In
this section we will summarize them into both an algorithm for the case that the support
length m of x is known exactly and an algorithm that only requires an upper bound
M ≥ m on the support length. We will begin by detailing an algorithm for the case
that only an upper bound M on m is known and investigating its theoretical runtime
and sampling complexity. Afterwards, we will focus on the special case that the support
length m is known exactly, as in that case the more time consuming procedure from
Section 6.3.1 only has to be applied when there indeed has been collision of possibly
nonzero entries of x. Such an algorithm can be obtained easily by modifying the more
general method.
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6.4.1 Sparse Fast IDCT-II for Bounded Short Support Length

Let us first consider the case that an upper bound on the support length is known. More
precisely, we suppose that N = 2J with J ≥ 2 and x ∈ RN has a short support of
unknown length m, but that M ≥ m is given a priori. Further, we assume that (6.3)
holds for x, i.e., that no relevant information about x is canceled out in the periodization
process, and that we can access all entries of xÎI ∈ RN . Utilizing Lemma 6.6, the
algorithm begins by computing the initial vector

x[L] = CIII
2L

(√
2
J−L (

xÎI
2J−Lk

)2L−1

k=0

)
,

where L := dlog2Me + 1. This can be done with the help of a fast DCT-III algorithm
for vectors with full support, see, e.g., [PT05,Wan84], since the DCT-III is the same as
the IDCT-II, as we saw in Theorem 4.2 (ii). By Lemma 6.9 the periodization x[L] has
a short support of length m[L] ≤ M . For j ∈ {L, . . . , J − 1} we perform the following
iteration steps.

1) If the support of x[j] is contained in I2j−M, 2j−1, recover x[j+1] using the procedure
given in Theorem 6.13.

2) If the support of x[j] is not contained in I2j−M, 2j−1, recover x[j+1] using the pro-
cedure given in Theorem 6.17.

By Theorem 6.12, there is at most one index j′ such that S[j′] ⊆ I2j′−M, 2j′−1, so we have
to apply step 1 at most once. The complete procedure is summarized in Algorithm 9.

Remark 6.18 (Remark 4.1 in [BP18a]) For finding the first support index µ[L] and
the support length m[L] in line 2, as well as µ[j+1] and m[j+1] in line 13 efficiently, we
choose a threshold ε > 0 depending on the noise level of the data. In order to determine
the support of x[L], we define the set

T [L] :=
{
k ∈ I0, 2L−1 :

∣∣∣x[L]
k

∣∣∣ > ε
}

=: {u1, . . . , uP }

of indices corresponding to the significantly large entries of x[L]. This set can be found
in O

(
2L
)

= O (M) time. Then we set

µ[L] := u1 and m[L] := uP − u1 + 1.

In order to find the support of x[j+1] in step 1, recall that then j = j′ ∈ {L, . . . , J − 1}.
Thus, it suffices by Theorem 6.12, case A to consider the set

T [j+1] :=
{
k ∈

{
2j − 2K̃−1, . . . , 2j + 2K̃−1 − 1

}
:
∣∣∣x[j+1]
k

∣∣∣ > ε
}

=: {v1, . . . , vQ} ,

where Q ≤ m̃[j] ≤M . Then T [j+1] can be found in O
(

2K̃
)

= O
(
m̃[j]

)
= O(M) time as

well, and we define
µ[j+1] := v1 and m[j+1] := vQ − v1 + 1

in line 13. For step 2, i.e., for j ∈ {L, . . . , J − 1} \ {j′}, the first support index µ[j+1] and
the support length m[j+1] are computed in line 20 or line 23. ♦
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Algorithm 9 Real Sparse Fast IDCT-II for Vectors with Bounded Short Support Length
(Algorithm 1 in [BP18a])

Input: xÎI, M , where the sought-after x ∈ RN with N = 2J , J ∈ N, has an unknown short
support of length at most M and satisfies (6.3), and noise threshold ε > 0.

1: L← dlog2Me+ 1 and x[L] ← DCT-III
[√

2
J−L (

xÎI2J−Lk

)2L−1
k=0

]
2: Find µ[L] and m[L].
3: for j from L to J − 1 do
4: if µ[j] ≥ 2j −M then
5: K̃ ←

⌈
log2

(
2j − µ[j]

)⌉
+ 1

6: z[j] ←
(
x
[j]

2j−2K̃−1+k

)2K̃−1−1

k=0

7: b0 ←
√

2
J−j−1

(
xÎI
2J−j−1(2j−K̃+1(2p+1)+1)

)2K̃−1−1

p=0

8: b1 ←
√

2
J−j−1

(
xÎI
2J−j−1(2j−K̃+1(2p+1)−1)

)2K̃−1−1

p=0

9: z
[j+1]
(0) ← 1

2

√
2j−K̃(−1)2

j−K̃

J
2K̃−1 diag(c̃)D

2K̃−1DCT-IV
[
J
2K̃−1

(
b0 − b1

)]
+ 1

2z
[j]

10:
(
z
[j+1]
(0)

)
k
←

{(
z
[j+1]
(0)

)
k

if
∣∣∣(z[j+1]

(0)

)
k

∣∣∣ > ε,

0 else,
k ∈ I

0, 2K̃−1−1

11: z
[j+1]
(1) ← J

2K̃−1

(
z[j] − z

[j+1]
(0)

)

12: x
[j+1]
k ←



(
z
[j+1]
(0)

)
k−2j+2K̃−1

if k ∈ I
2j−2K̃−1, 2j−1,(

z
[j+1]
(1)

)
k−2j

if k ∈ I
2j , 2j+2K̃−1−1,

0 else,

k ∈ I0, 2j+1−1

13: Find µ[j+1] and m[j+1].
14: else
15: k0 ← argmax

k∈I
0,m[j]−1

{∣∣∣√2
J−j−1

xÎI2J−j−1(2k+1)

∣∣∣}
16: α←

√
2
J−j−1

xÎI2J−j−1(2k0+1).

17:
(
u0
)ÎI
2k0+1

← 1√
2j

m[j]−1∑
l=0

cos

(
(2k0+1)(2(µ[j]+l)+1)π

2·2j+1

)
x
[j]

µ[j]+l

18: νt ←

0 if
∣∣∣∣(u0)ÎI2k0+1

− α
∣∣∣∣ < ∣∣∣∣(u0)ÎI2k0+1

+ α

∣∣∣∣ ,
1 else

19: if νt = 0 then
20: µ[j+1] ← µ[j] and m[j+1] ← m[j]

21: x
[j+1]
k ←

{
x
[j]
k if k ∈ Iµ[j+1], µ[j+1]+m[j+1]−1,

0 else,
k ∈ I0, 2j+1−1

22: else
23: µ[j+1] ← 2j+1 −m[j] − µ[j] and m[j+1] ← m[j]

24: x
[j+1]
k ←

{
x
[j]
2j+1−1−k if k ∈ Iµ[j+1],...,µ[j+1]+m[j+1]−1,

0 else,
k ∈ I0, 2j+1−1

25: end if
26: end if
27: end for
Output: x = x[J].
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6.4.2 Runtime and Sampling Bounds

Having presented our new algorithm we now prove that its runtime and sampling com-
plexity are sublinear in the vector length N and subquadratic in the bound M on the
support length. In Section 6.5.2 we will investigate the performance of Algorithm 9 with
respect to runtime and noisy input data in some numerical examples, also comparing it
to other sparse IDCT-II methods, including Algorithm 8.

Theorem 6.19 (Theorem 4.2 in [BP18a]) Let N = 2J with J ∈ N and x ∈ RN
have a short support of length m < N . Assume that x satisfies (6.3). Further sup-
pose that only an upper bound M ≥ m is known. Then Algorithm 9 has a runtime of
O
(
M logM +m log2

N
M

)
and uses O

(
M +m log2

N
M

)
samples of xÎI.

Proof. (i) Computing the initial vector x[L] in line 1 via a 2L-length DCT-III has a
runtime of O

(
2L log 2L

)
, as mentioned in Remark 4.8. It follows from Remark 6.18 that

finding µ[L] and m[L] in line 2 needs O
(
2L
)
operations.

If j = j′ with j′ as defined in (6.4), we have to apply the recovery step 1. The
computation of z[j+1]

(0) in lines 9 and 10 requires a DCT-IV of length 2K̃−1 and further

operations of complexity O
(

2K̃−1
)
, since D

2K̃−1 and diag(c̃) are diagonal matrices and

J
2K̃−1 is just a permutation. Computing z

[j+1]
(1) and x[j+1] in lines 11 and 12 and finding

µ[j+1] and m[j+1] in line 13 also needs O
(

2K̃−1
)

operations. Note that we can only

estimate that m̃[j] = O(M) and thus 2K̃−1 = O(M), since m is not known apriori and
the support of x[j] can be located anywhere in the interval I2j−M, 2j−1. Consequently,

lines 6 to 13 have a runtime of O
(

2K̃−1 log 2K̃−1
)

= O(M logM), which was shown in
Section 4.2.

For j ∈ {L, . . . , J − 1} \ {j′} the support of x[j] is not contained in the interval

I2j−M, 2j−1, so we have to apply the recovery step 2. Finding a nonzero entry of
(
x[j+1]

)ÎI
in lines 15 and 16 requires O

(
m[j]

)
= O(m) operations by Lemma 6.15. The execution

of lines 17 to 24 has a runtime of O
(
m[j]

)
as well, since u0 has a known short support

of length m[j] and x[j+1] has a short support of length m[j+1] = m[j].

Hence, Algorithm 9 has an overall runtime of

O

2K̃ log 2K̃ +
J−1∑
j=L
j 6=j′

m[j]

 = O (M logM + (J − L)m)

= O
(
M logM +m log2

N

M

)
.

(ii) The initial vector x[L] can be computed from 2L samples of xÎI in line 1. If j = j′, we
need to use 2K̃ ≤ 2L samples in lines 7 and 8. Further, finding an oddly indexed nonzero

entry of
(
x[j+1]

)ÎI in lines 15 and 16 requires at most m[j] samples of xÎI by Lemma 6.15,
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which yields a total sampling complexity of

O

2L + 2K̃ +
J−1∑
j=L
j 6=j′

m[j]

 = O (M + (J − L)m)

= O
(
M +m log2

N

M

)
.

Remark 6.20 If the upper bound M on the support length of x or the support length
m, and thusM , approach N , Algorithm 9 has a runtime of O(N logN), which is the same
order as the runtime of a full length fast IDCT-II. Further, then it requires O(N) samples
of xÎI, which is the same as the sampling complexity of a full length fast IDCT-II. ♦

6.4.3 Sparse Fast IDCT-II for Exactly Known Short Support Length

Having introduced our new sparse IDCT-II for vectors with bounded short support
length, we can now modify Algorithm 9 to better fit the case where the support length
m of x is known exactly, i.e., if M = m. Since there is at most one index j′ for which
the support of x[j′] is contained in the last m entries, the procedure from Theorem 6.13
only has to be applied if m[j′] < m[j′+1], i.e., if there was a collision of nonzero entries,
or if ν[j′] = 2j

′ − 1, unlike in Algorithm 9.
We can simply replace M by m in Algorithm 9 to obtain the sparse IDCT-II for

vectors with exactly known short support length. Then we have that L := dlog2me+ 1
and m̃[j′] = 2j

′ − µ[j′] = m[j′] = O(m) and K̃ = L. Note that m[j+1] = m for j ≥ j′. For
this simplification we find the following runtime and sampling complexities.

Corollary 6.21 (Theorem 4.3 in [BP18a]) Let N = 2J with J ∈ N and x ∈ RN have
a short support of length m < N . Assume that x satisfies (6.3). Further suppose that m
is known exactly. Then Algorithm 9 has a runtime of O

(
m logm+m log2

N
m

)
and uses

O
(
m+m log2

N
m

)
samples of xÎI.

6.5 Numerical Results for the Algorithms from Chapters 5
and 6

In the following section we will test the sparse IDFT and IDCT-II algorithms developed
in Chapters 5 and 6 numerically with respect to their runtime and stability for noisy input
data. First, we will evaluate Algorithm 7, the sparse IDFT algorithm for vectors with
reflected block support, and afterwards we will focus on the two new IDCT-II algorithms
for vectors with one-block or short support, Algorithms 8 and 9.

6.5.1 Numerical Results for Algorithm 7

Let us first present some numerical experiments regarding the runtime of Algorithm 7
and its robustness to noise. As our algorithm is deterministic and designed for vectors
with reflected block support, we only compare it to Algorithm 2.3 in [PWCW18] and to
Matlab 2016b’s ifft routine, which is a fast and highly optimized implementation of the
fast inverse Fourier transform based on the FFTW library, see [FJ17,The18d,The18b].
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The sparse IDFT algorithm in [PWCW18] is suited for the fast reconstruction of an
arbitrary m-sparse vector y from its DFT ŷ for small sparsities m and is the only general
sparse deterministic IDFT for vectors we are aware of.
Similarly as Algorithm 2 in [PW16a] and Algorithm 2.1 in [PW17a], Algorithm 2.3

in [PWCW18] recovers y iteratively from ŷ and its periodizations y(0),y(1), . . . ,y(J). It
finds the sparsity m of the vector y adaptively without a priori knowledge of m. The
main idea is to restrict the periodizations y(j) and y

(j+1)
(0) to vectors of length m(j), where

m(j) denotes the sparsity of y(j). Then it was shown that (5.3) can be restricted to m(j)

equations such that all occurring matrices are well-conditioned, which requires careful
considerations of the chosen equations. Employing additional stabilizing techniques,
Algorithm 2.3 in [PWCW18] achieves a runtime of O(M2 logN) if M2 < N .
Deterministic sparse FFT methods like Algorithm 4, Algorithm 6 or the ones intro-

duced in [Iwe10, Iwe13,CLW16] are designed for 2π-periodic functions and rely heavily
on the fact that the function in question can be evaluated anywhere. They require very
complex sampling schemes, unlike the simple O

(
m log 2N

m

)
entries of ŷ ∈ C2N necessary

for Algorithm 7, and are thus not suited for a comparison. Methods like Algorithms 2 and
3 additionally have sparsity constraints that are not satisfied by reflected block sparsity.
Other deterministic sparse IDFT algorithms for vectors like Algorithm 2 in [PW16a] and
Algorithm 2.1 in [PW17a] also require y to have a one-block support and hence cannot
be compared to a method that is designed for vectors with reflected block support.
Algorithm 7 and Algorithm 2.3 in [PWCW18] have been implemented in Matlab

2016b; the codes are freely available in [BP18e,PW17b]. We chose the implementation of
Algorithm 2.3 in [PWCW18] which uses Algorithm 4.5 in [PWCW18] to find m(j) equa-
tions that yield well-conditioned matrices. Note that neither of the algorithms requires
a priori knowledge of the length of the support blocks or the sparsity, but that both
Algorithm 7 and Algorithm 2.3 in [PWCW18] require that y satisfies (5.4), i.e., that

y
(j)

k mod 2j
6= 0 ∀ j ∈ {0, . . . , J}

for all k ∈ {0, . . . , 2N − 1} with yk 6= 0 for exact data and∣∣∣y(j)

k mod 2j

∣∣∣ > ε ∀ j ∈ {0, . . . , J}

for all k ∈ {0, . . . , 2N − 1} with |yk| > ε for noisy data, where ε > 0 is a threshold
depending on the noise level.
Figure 6.9 shows the average runtimes of Algorithm 7 with noise threshold ε = 10−4,

Algorithm 2.3 in [PWCW18] and Matlab’s ifft applied to ŷ for 100 randomly gener-
ated vectors y of length 2N = 221 with reflected block support of lengths varying between
5 and 50,000. The nonzero entries of the vectors are chosen between 0 and 10. For each
vector at most b(m − 2)/2c entries in the first support block, excluding the first and
last one, are randomly set to 0, and the second half of y is determined by its symmetry
y = J2Ny.
Applying Algorithm 2.3 in [PWCW18] to 2m-sparse vectors is very unstable for increas-

ing sparsities m, as it often has to solve a close to singular equation system. This is due
to the fact that the algorithm is optimized for general sparse vectors and does not utilize
the special structure of y at all. Hence, we decided to only measure its runtime for block
lengths up to m = 30. Obviously, any comparison to the highly optimized ifft must be
flawed; however, we can discern that Algorithm 7 and Algorithm 2.3 in [PWCW18] are
both much faster than ifft for sufficiently small block lengths. The former algorithm

195
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Figure 6.9: Average runtimes of Algorithm 7 with threshold ε = 10−4, Algorithm 2.3 in
[PWCW18] and Matlab’s ifft for 100 random input vectors with reflected
block support of block length m and vector length 2N = 221

achieves faster runtimes for block lengths up to m = 10,000, while the latter does so
at least for block lengths up to m = 30. Note that by setting at most b(m − 2)/2c · 2
entries inside the support blocks randomly to 0, the actual sparsity of y can be almost
as low as m. This barely affects the runtime of Algorithm 7, but it decreases the average
runtime of Algorithm 2.3 in [PWCW18]. As can be seen from Table 6.1 presenting the
average reconstruction errors for exact data, Algorithm 2.3 in [PWCW18] is not accurate
for block lengths of m = 20 or greater, and, as we found out during the experiments, not
even consistently accurate for block lengths up to m = 10.

m Algorithm 7 Algorithm 2.3 in [PWCW18] ifft

5 4.2 · 10−20 3.4 · 10−8 3.8 · 10−21

10 8.0 · 10−20 1.4 · 100 4.8 · 10−21

20 2.2 · 10−19 3.1 · 107 7.0 · 10−21

30 6.6 · 10−19 3.9 · 108 8.3 · 10−21

100 1.5 · 10−18 − 1.5 · 10−20

1,000 7.7 · 10−14 − 4.7 · 10−20

10,000 3.6 · 10−12 − 1.5 · 10−19

50,000 1.3 · 10−11 − 3.5 · 10−19

Table 6.1: Reconstruction errors for the three IDFT algorithms for exact data

Still, for block lengths up to m = 10, this method is much faster than Algorithm 7.
For block lengths up to m = 100, Algorithm 7 achieves an accuracy close to that of ifft,
and even for m = 50,000 its reconstruction error is small.
Next we examine the robustness of the algorithms with respect to noisy data. Since
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6.5 Numerical Results for the Algorithms from Chapters 5 and 6

Algorithm 2.3 in [PWCW18] is not suitable for noisy data due to ill-conditioned equation
systems having to be solved, we will only consider Algorithm 7 and Matlab’s ifft
hereafter. Disturbed Fourier data ẑ ∈ C2N is created by adding uniform noise η ∈ C2N

to the given data ŷ,
ẑ := ŷ + η.

We measure the noise with the signal-to-noise ratio (SNR),

SNR := 20 · log10

‖ŷ‖2
‖η‖2

.

Figures 6.10 and 6.11 depict the average reconstruction errors ‖y− y′‖2/(2N) for block
lengths m = 100 and m = 1,000, where y denotes the original vector and y′ the re-
construction by the corresponding algorithm applied to ẑ. Note that for noisy data the
resulting vector y′ does no longer have an exact reflected block support, but the support
blocks have entries that are significantly greater than the noise and can thus be found
by the stable support detection procedures presented in Section 5.6.1. The threshold ε
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Figure 6.10: Average reconstruction errors ‖y − y′‖2/(2N) of Algorithm 7 and ifft for
100 random input vectors with reflected block support of block length m =
100 and vector length 2N = 221

for Algorithm 7 is chosen according to Table 6.2.

SNR 0 10 20 30 40 50

ε 1.70 1.20 0.40 0.19 0.05 0.02

Table 6.2: Threshold ε for Algorithm 7

We cannot recommend general heuristics on how to choose ε for other values of N
and m so far, though, as ε depends non-trivially on the entries of ŷ and the noise
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Figure 6.11: Average reconstruction errors ‖y − y′‖2/(2N) of Algorithm 7 and ifft for
100 random input vectors with reflected block support of block length m =
1,000 and vector length 2N = 221

η, which is added to the given data ŷ. However, ε is essentially only used to detect
the support blocks of the periodizations y(j). Thus, good values for it can be found
by testing different parameters ε and comparing the found support indices of y′ and the
corresponding entries. If the SNR of the input data can be estimated, ε can be optimized
using synthetic data. Too small values for ε result in smaller reconstruction errors, but
overestimated support lengths; too large values result in higher reconstruction errors and
higher rates of correct recovery. Depending on the application, different choices of ε are
viable.
The values in Table 6.2 were found via an attempt to minimize the approximation

error and maximize the rate of correct recovery for the given setting. Both for m = 100
and m = 1,000 we see that the reconstruction by Algorithm 7 yields a smaller error than
the one by ifft for all considered noise levels.
Since for vectors with reflected block support the structure is especially important,

we also examine whether Algorithm 7 can correctly identify the support blocks of y for
noisy input data. Especially for high noise levels Algorithm 7 tends to overestimate the
true length of the support blocks. Table 6.3 shows the rates of correct recovery of the
support.
In the second and fourth column we present the rate of correct recovery, where we

consider y to be correctly recovered by y′ if the support of the two blocks of the original
vector y is contained in the support blocks found by the algorithm. In the third and fifth
column we additionally require that the block length m′ found by Algorithm 7 satisfies
m′ ≤ 3m in order to illustrate whether the block lengths are significantly overestimated
or not.
For SNR values of 20 or more our IDFT method has a very high rate of correct recovery

in the sense that the original support is contained in the reconstructed one. For these
noise levels the block length of y′ is also almost always at most 3m.
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6.5 Numerical Results for the Algorithms from Chapters 5 and 6

Rate of Correct Recovery in % Using Algorithm 7 for

SNR m = 100 m = 100 m = 1,000 m = 1,000
m′ ≤ 3m = 300 m′ ≤ 3m = 3,000

0 70 49 69 47
10 70 70 74 68
20 86 83 93 85
30 98 98 94 93
40 99 98 97 93
50 100 100 99 98

Table 6.3: Rate of correct recovery of the support of y in percent for Algorithm 7, without
bounding m′ and with m′ ≤ 3m, for the 100 random input vectors with block
length m = 100 and m = 1,000 from Figures 6.10 and 6.11

6.5.2 Numerical Results for Algorithms 8 and 9

In the following section we evaluate the performances of Algorithm 8 and Algorithm 9,
in the variant for exactly known support lengths and for bounded short support lengths,
with respect to runtime and robustness to noise. To the best of our knowledge most
existing sparse IDCT-II algorithms use an approach of computing x by recovering the
vector y = (xT , (JNx)T )T from ŷ by an unstructured and thus inefficient 2m-sparse
IDFT. Solely Algorithm 8 utilizes an IDFT approach especially tailored to the structure
of y, so we only compare our algorithms to Matlab 2018a’s idct routine, which is
part of the Signal Processing Toolbox, see [The18c]. idct is a fast and highly optimized
implementation of the fast inverse cosine transform of type II. Note that, compared to the
implementation of idct in Matlab 2016b, which we used for the numerical experiments
in [BP18a] and in Section 6.5.1, the runtime of idct in Matlab 2018a has reduced
by almost half for arbitrary nonnegative vectors of length N = 220 on the machine
used for the experiments, which is why the results of the numerical experiments with
respect to runtime in this section are different from the ones in [BP18a], Section 6.2. All
algorithms have been implemented in Matlab 2018a, and the code is freely available
in [BP18b,BP18d]. Recall that Algorithm 8 does not require any a priori knowledge of
the support length, but needs that for x ∈ R2J the vector y = (xT , (JNx)T )T ∈ R2J+1

satisfies ∣∣∣∣∣∣
2J+1−j−1∑

l=0

yk+2j l

∣∣∣∣∣∣ > ε ∀ j ∈ {0, . . . , J + 1}

for all |yk| > ε for a noise threshold ε > 0. Algorithm 9, on the other hand, requires an
upper bound M ≥ m on the support length and that x ∈ R2J satisfies∣∣∣xµ[J]∣∣∣ > ε, |xν[J] | > ε and

∣∣∣xµ[J] + xν[J]
∣∣∣ > ε if m is even.

Figure 6.12 shows the average runtimes of Algorithm 8, Algorithm 9 for exactly known
support lengths, i.e., for M = m, and for bounded short support lengths with M = 3m,
and idct applied to xÎI for 1,000 randomly generated 220-length vectors x with short
support of lengths varying between 10 and 500,000. For Algorithms 8 and 9 we use the
noise threshold ε = 10−4. The nonzero entries of the vectors are chosen randomly with
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Figure 6.12: Average runtimes of Algorithm 8 and Algorithm 9 for exactly known short
support and for bounded short support with ε = 10−4, and Matlab’s idct
for 1,000 random input vectors with short support of length m, bound M =
3m and vector length N = 220

uniform distribution between 0 and 10, with xµ[J] and xν[J] chosen from (ε, 10]. For each
vector at most b(m− 2)/2c entries in the support block, excluding the first and last one,
are randomly set to 0. Hence, both (5.4) and (6.3) hold. Since for m = 500,000 we have
that M = 3m > N , we only execute Algorithm 9 in the variant for bounded support
lengths up to m = 100,000.
Of course the comparison of the sparse IDCT-II algorithms to the highly optimized,

support length independent idct routine must be flawed; however, one can see that all
three sparse IDCT-II procedures are much faster than idct for sufficiently small support
lengths. Algorithm 8 is faster than idct for block lengths up to m = 1,000. For exactly
known support lengths Algorithm 9 achieves smaller runtimes for block lengths up to
m = 100,000, and for bounded support lengths this is the case for block lengths up
to m = 50,000, where the known bound on the block length is M = 150,000. Both
variants of Algorithm 9 are about an order of magnitude faster than Algorithm 8 for
block lengths up to m = 104, and, if m is known exactly, even for all considered block
lengths. IfM = 3m, Algorithm 9 allows for an effective sparsity of three times the actual
size in the method for case A of Theorem 6.12, which results in a runtime increasing faster
than for the variant where m is known exactly.
Note that by setting b(m− 2)/2c entries inside the support to zero, the actual sparsity

of x can be almost as low as m/2; however, this barely affects the runtime of any of
the considered algorithms, if at all. It follows from Table 6.4, presenting the average
reconstruction errors for exact data for all four considered methods, that, while the
sparse IDCT-II algorithms only achieve reconstruction errors comparable to those of
idct if m ≤ 100, their outputs are still very accurate. Note that, with x ∈ R220 , for
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6.5 Numerical Results for the Algorithms from Chapters 5 and 6

m
Algorithm 8 Algorithm 9, Algorithm 9, idct

M = m M = 3m

10 1.3 · 10−19 1.8 · 10−20 1.7 · 10−20 7.8 · 10−21

100 4.9 · 10−18 5.3 · 10−20 3.9 · 10−20 2.4 · 10−20

1,000 4.9 · 10−13 7.5 · 10−14 4.1 · 10−14 7.6 · 10−20

10,000 3.9 · 10−12 1.0 · 10−12 1.4 · 10−12 2.4 · 10−19

50,000 1.5 · 10−11 3.6 · 10−12 2.9 · 10−12 5.4 · 10−19

100,000 2.9 · 10−11 7.5 · 10−12 7.6 · 10−19 7.6 · 10−19

500,000 9.6 · 10−11 1.7 · 10−18 – 1.7 · 10−18

Table 6.4: Reconstruction errors for the four IDCT-II algorithms for exact data

M = m = 500,000, we obtain that

L = dlog2 500,000e+ 1 = 20,

so in line 1, Algorithm 9 computes x[20] = x directly via a full length DCT-III, thus
resulting in a much lower reconstruction error than for M = m = 100,000. Similarly, for
M = 3m = 300,000, we also have that L = 20, which explains the small reconstruction
error for Algorithm 9 in the bounded support case for m = 100,000.
We also investigate the robustness of Algorithms 8 and 9 for noisy data. Disturbed

cosine data zÎI ∈ RN is created by adding uniform noise η ∈ RN to the given data xÎI,

zÎI := xÎI + η.

As in Section 6.5.1, we measure the noise with the signal-to-noise ratio (SNR), given by

SNR := 20 · log10

∥∥∥xÎI
∥∥∥

2

‖η‖2
.

Figures 6.13 and 6.14 depict the average reconstruction errors ‖x− x′‖2 /N , where x
denotes the original vector and x′ the reconstruction by the corresponding algorithm
applied to zÎI for support lengths m = 100 and m = 1,000.
The threshold parameters ε for Algorithm 8 and both variants of Algorithm 9 are

chosen according to Table 6.5. All parameters were obtained in an attempt to minimize
the reconstruction error and maximize the rate of correct recovery. Similarly to the choice
of ε for Algorithm 7, we cannot recommend good general heuristics for the choice of ε for
Algorithms 8 and 9. Usually, Algorithm 8 requires slightly higher noise thresholds than
Algorithm 7, which might be caused by the numerical errors induced by the computation
of the samples of ŷ from xÎI. For Algorithm 9 the threshold ε is also basically only
used to detect the first support indices of the reflected periodizations. Again, all we can
suggest is to test different values for ε on synthetic data.
For m = 100 and SNR values greater than 10, Algorithm 9 with M = 3m has the

smallest reconstruction error, with Algorithm 8 achieving very similar errors. For exactly
known support lengths, the reconstruction error of Algorithm 9 is slightly larger and
comparable to the one of idct, albeit being smaller than the latter. Similar behavior can
be observed for m = 1,000 for these two methods. Algorithms 8 and 9 have comparable
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Figure 6.13: Average reconstruction errors ‖x− x′‖2/N of Algorithm 8, Algorithm 9 for
M = m andM = 3m and idct for 1,000 random input vectors with support
length m and vector length N = 220
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Figure 6.14: Average reconstruction errors ‖x− x′‖2/N of Algorithm 8, Algorithm 9 for
M = m andM = 3m and idct for 1,000 random input vectors with support
length m and vector length N = 220

reconstruction errors for m = 1,000 with no method performing better than the other
for all SNR values.
In certain applications the support of xmight be of importance as an output; hence, we
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SNR Alg. 8 Alg. 9, Alg. 9,
m = 100 m = 1,000

0 2.50 2.50 2.50
10 1.80 2.00 2.10
20 1.00 1.00 1.50
30 0.50 0.40 0.85
40 0.15 0.15 0.20
50 0.05 0.05 0.10

Table 6.5: Threshold ε for Algorithm 8 and Algorithm 9

also examine whether the sparse IDCT-II algorithms can correctly identify the support
for noisy input data. Tables 6.6 and 6.7 show the rates of correct recovery of the support
for m = 100 and m = 1,000. As Algorithms 8 and 9 tend to overestimate the support

Rate of Correct Recovery in % for m = 100

SNR
Alg. 8 Alg. 8, Alg. 9, Alg. 9, Alg. 9,

M = m M = 3m M = 3m,
m′ ≤ 3m m′ ≤ 3m

0 83.1 77.1 61.6 89.9 0.0
10 97.6 97.4 64.0 98.7 85.4
20 100.0 100.0 95.1 100.0 96.2
30 100.0 100.0 99.3 100.0 98.6
40 100.0 100.0 99.9 100.0 99.4
50 100.0 100.0 100.0 100.0 99.9

Table 6.6: Rate of correct recovery of the support of x in % for Algorithm 8 and Algorithm
9 forM = m andM = 3m, without bounding m′ and with m′ ≤ 3m, for 1,000
random input vectors with support length m = 100 from Figure 6.13

for noisy data, we consider x to be correctly recovered by x′ in the second, fourth and
fifth column if the support of x is contained in the support interval returned by the
sparse IDCT-II algorithms. In the third and sixth column we additionally require that
the support length m′ obtained by the procedures satisfies m′ ≤ 3m. Note that if m is
known exactly, Algorithm 9 will not overestimate the support length m.
For SNR values of 20 and greater all sparse IDCT-II algorithms have very high rates

of correct recovery. Algorithm 9 for bounded short support overestimates the support
length by more than a factor three in less than 4% of the cases for SNR values of 20 or
more for m = 100 and in less than 6 % of the cases for SNR values of 40 or more for
m = 1,000. Algorithm 8 never overestimates the support length for m = 100 and in less
than 1% of the cases for m = 1,000, for SNR values of 20 or more.
Summing up the findings gleaned from the numerical experiments described above,

we can conclude that Algorithm 9, because of its significantly smaller runtime, is the
algorithm of choice for any setting where an a priori bound M on the support length
m of the real vector x ∈ RN , N = 2J , with short support is known. This is true both
for noisy and exact data, since Algorithm 8 and Algorithm 9 perform similarly for noisy
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Rate of Correct Recovery in % for m = 1,000

SNR
Alg. 8 Alg. 8, Alg. 9, Alg. 9, Alg. 9,

M = m M = 3m M = 3m,
m′ ≤ 3m m′ ≤ 3m

0 83.1 68.0 51.6 88.0 0.0
10 96.4 95.0 51.6 93.4 53.7
20 100.0 99.7 99.4 100.0 84.5
30 100.0 99.6 100.0 100.0 89.3
40 100.0 99.8 100.0 100.0 94.8
50 100.0 99.8 100.0 100.0 98.1

Table 6.7: Rate of correct recovery of the support of x in % for Algorithm 8 and Algorithm
9 forM = m andM = 3m, without bounding m′ and with m′ ≤ 3m, for 1,000
random input vectors with support length m = 1,000 from Figure 6.14

data, as long as M > m. The slightly worse reconstruction error of Algorithm 9 for
the case that M = m is caused by the fact that a slightly overestimated support length
leaves more room for detecting the first support indices correctly.
However, if no a priori knowledge of the support length is given or if one does not

know whether the vector has a short or a one-block support, i.e., it is not clear whether
the support is wrapped periodically around the boundary of the vector or not, then
Algorithm 9 cannot be applied, but one can still use Algorithm 8, which detects the
support length on the fly. The latter algorithm also has a slightly higher rate of correctly
recovering the support of x.
In settings where it is more important to obtain the first and last support index cor-

rectly than it is to obtain them as fast as possible, the usage of Algorithm 8 is also
recommendable, especially since this method tends to overestimate the support length
less than Algorithm 9.
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7 Real 2D Block Sparse Fast IDCT-II

In Chapters 5 and 6 we derived two different algorithms for recovering a vector x ∈ RN

from its DCT-II transformed vector, xÎI, under the assumption that x has a one-block or
a short support, respectively. Many practical applications of the DCT-II concern higher
dimensional objects like images or videos. In this chapter we will derive a 2-dimensional
IDCT-II algorithm for sparse matrices.
This chapter contains completely new, previously unpublished results, which I devel-

oped by myself.
In order to obtain a new sparse 2-dimensional IDCT-II algorithm, we will transfer the

ideas presented in Chapter 6 to the 2-dimensional setting of sparse matrices. Instead
of a short support we will now consider a block support, meaning that the support of
a matrix A ∈ RM×N , M = 2JR , N = 2JC , is contained in a rectangle of size m × n,
where both m and n are small compared to the matrix sizes M and N . The concept of
reflected periodizations for vectors can be directly generalized to matrices. Hence, our
new algorithm will be based on reconstructing A iteratively from its DCT-II transformed
matrix, AÎI, and its reflected periodizations A[L],A[L+1], . . . ,A for some suitably chosen
starting index L. It will only employ real arithmetic and shorter 2-dimensional DCTs,
instead of performing 1-dimensionalM - and N -length IDCT-IIs row- and column-wise as
described in Section 4.3. Analogously to Chapter 6, our 2-dimensional IDCT-II algorithm
will require a priori knowledge of upper bounds bR ≥ m and bC ≥ n on the number of
support rows and columns, respectively. As far as we are aware, the algorithm we will
develop hereafter is the first existing 2-dimensional sparse IDCT-II algorithm that only
uses real arithmetic.

7.1 Preliminaries

Throughout this chapter we will always consider a matrix A ∈ RM×N , where M = 2JR

and N = 2JC with JR, JC ∈ N. Further, we will assume that A has a block support of
size m× n, and that upper bounds bR ≥ m and bC ≥ n are known.

Remark 7.1 A natural idea for deriving a fast 2-dimensional IDCT-II algorithm for
matrices with block support would be to apply either Algorithm 8 or Algorithm 9 both
row- and column-wise, analogously to one of the methods for obtaining fast full-sized
2-dimensional IDCT-II algorithms from Section 4.3. However, close examination of the
definition of the 2-dimensional DCT-II shows that neither of the 1-dimensional sparse
IDCT-II methods developed in this thesis is feasible for this problem. Recall that for a
matrix A ∈ RM×N we have by Definition 4.9 that

AÎI = CII
MACII

N
T
.

Let us assume that A has a block support of size m×n. We will now check whether the
preconditions of Algorithms 8 and 9 for reconstructing ACII

N
T from AÎI = CII

M

(
ACII

N
T
)

are satisfied. Since ACII
N
T

=
(
CII
NA

T
)T , i.e., a 1-dimensional DCT-II is applied to all
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rows of A, it follows that each column of ACII
N
T has a short support of length m. Thus,

all but the n rows of ACII
N
T that correspond to the support of the columns only consist

of zeros. However, having a short support in all columns of ACII
N
T is not the only

condition that has to be satisfied if we want to apply Algorithms 8 and 9 to all columns
of AÎI. Additionally, Algorithm 8 requires that we have for each column a�, l of ACII

N
T ,

l ∈ {0, . . . , N − 1}, that(
y

(j)
�, l

)
k mod 2j

6= 0 ∀ j ∈ {0, . . . , log2N},

if (y�, l)k 6= 0, where y�, l := (a�, l
T , (JNa�, l)

T )T and y
(j)
�, l denotes the 2j-length periodiza-

tion of y�, l according to Definition 5.7. For Algorithm 9 it is necessary that we have
for the first and last support indices µ[JR]

l and ν[JR]
l of each column a�, l ∈ R2JR = M of

ACII
N
T ∈ RM×N that (

a
[JR]
�, l

)
µ
[JR]

l

+
(
a

[JR]
�, l

)
ν
[JR]

l

6= 0

ifm is even. Neither of these two conditions can be satisfied without extensive knowledge
of the matrix A we aim to recover. In general, even if A ∈ RM×N≥0 or A ∈ RM×N≤0 , the

nonzero entries of ACII
N
T are not all positive or all negative. Consider for example the

matrix

A =



0 0
. . . . .

.

2 8
8 2

. .
. . . .

0 0


∈ R8×8

with block support of size 2× 2. Then we obtain that

ACII
8
T ≈



0 . . . . . . 0
...

...
0 . . . . . . 0

3.54 −0.59 −4.62 1.67 3.54 −2.49 −1.91 2.94
3.54 0.59 −4.62 −1.67 3.54 2.49 −1.91 −2.94

0 . . . . . . 0
...

...
0 . . . . . . 0


.

However, this matrix satisfies neither the non-cancellation condition (5.4) required by
Algorithm 8 nor the non-cancellation condition (6.3) for Algorithm 9. For the column
indexed by 1 we find that

a�, 1 ≈ (0, 0, 0,−0.59, 0.59, 0, 0, 0)T ,

y�, 1 =
(
a�, 1

T , (JNa�, 1)T
)T
≈ (0, 0, 0,−0.59, 0.59, 0, 0, 0, 0, 0, 0, 0.59,−0.59, 0, 0, 0)T ,

y
(4)
�, 1 = (0, 0, 0, 0, 0, 0, 0, 0)T ,
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and further, since
(
a

[4]
�, 1

)
µ
[4]
1

+
(
a

[4]
�, 1

)
ν
[4]
1

≈ −0.59 + 0.59 = 0,

a
[4]
�, 1 ≈ (0, 0, 0,−0.59, 0.59, 0, 0, 0)T ,

a
[3]
�, 1 = (0, 0, 0, 0)T .

Thus, we have to develop new sparse IDCT-II methods for the 2-dimensional case. ♦

In order to obtain a sparse 2-dimensional IDCT-II algorithm, we will adapt techniques
used in Chapter 6 for the reconstruction of vectors with short support from their DCT-II
to the 2-dimensional setting. First, we need to define a generalization of the definition
of a short support to matrices.

Definition 7.2 (Block Support I) Let M = 2JR and N = 2JC with JR, JC ∈ N, and
let J := min {JR, JC}. We say that A = (ak, l)

M−1, N−1
k, l=0 ∈ RM×N has a block support of

size m× n if m and n are the minimal integers such that

ak, l = 0 ∀ (k, l) /∈ I
µ
[J]
R , ν

[J]
R

× I
µ
[J]
C , ν

[J]
C

,

for some µ[J ]
R ∈ {0, . . . ,M − m} and µ

[J ]
C ∈ {0, . . . , N − n} with ν

[J ]
R := µ

[J ]
R + m − 1

and ν
[J ]
C := µ

[J ]
C + n − 1. Further, there have to exist indices k0, k1 ∈ I

µ
[J]
R , ν

[J]
R

and
l0, l1 ∈ Iµ[J]C , ν

[J]
C

such that

a
µ
[J]
R , l0

6= 0, a
ν
[J]
R , l1

6= 0, a
k0, µ

[J]
C

6= 0, and a
k1, ν

[J]
C

6= 0.

The intervals S[J ]
R := I

µ
[J]
R , ν

[J]
R

and S[J ]
C := I

µ
[J]
C , ν

[J]
C

are called the row and column support

of A, respectively. The set S[J ] := S
[J ]
R × S

[J ]
C is called the support block. Further, the

indices µ[J ]
R and µ[J ]

C are called the first row and column support indices, and ν[J ]
R and ν[J ]

C

the last row and column support indices.

Remark 7.3 Note that, as in Chapter 6, we do not allow the support block to be
wrapped periodically around any of the boundaries of the matrix. Consequently, the
support block sizes m and n, and the first and last row and column support indices are
uniquely determined. Instead of S[J ], m[J ] and n[J ] etc., we usually write S, m and n.
Analogously to the 1-dimensional cases in Chapters 5 and 6, the block S[J ] contains all

indices at which the matrix A has nonzero entries, while A may also be zero at indices
contained in S[J ], since we need the support of A to be a block in N0 × N0 for some of
the theoretical concepts used hereafter. ♦

If we want to transfer the techniques used in Chapter 6 to the 2-dimensional setting,
we need to define an analog to the reflectedly periodized vectors x[j] ∈ R2j of x ∈ RN ,
N = 2J , from Definition 6.4. For this we first introduce some more notation to generalize
the concept of first and second half of a vector.
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Definition 7.4 (Notation) Let M = 2JR and N = 2JC for JR, JC ∈ N. For a matrix
A ∈ R2jR×2jC , jR ∈ {1, . . . , JR}, jC ∈ {1, . . . , JC}, we denote by

A(0,0) := (ak, l)
2jR−1−1, 2jC−1−1
k, l=0 , A(0,1) := (ak, l)

2jR−1−1, 2jC−1

k=0, l=2jC−1 ,

A(1,0) := (ak, l)
2jR−1, 2jC−1−1

k=2jR−1, l=0
, A(0,0) := (ak, l)

2jR−1, 2jC−1

k=2jR−1, l=2jC−1 ,

the four quadrants of size 2jR−1 × 2jC−1 of A, i.e.,

A =

(
A(0,0) A(0,1)

A(1,0) A(1,1)

)
.

Definition 7.4 allows us to extend the notion of reflected periodizations to matrices.

Definition 7.5 (Reflected Periodization) Let M = 2JR and N = 2JC , JR, JC ∈ N.
Let A ∈ RM×N . Set J := min {JR, JC} and A[J ] := A. For j ∈ {0, . . . , J − 1} let
M [j] := 2JR−J+j , N [j] := 2JC−J+j , and define the reflected periodization A[j] ∈ RM [j]×N [j]

A[j] := A
[j+1]
(0,0) + JM [j]A

[j+1]
(1,0) +

(
A

[j+1]
(0,1) + JM [j]A

[j+1]
(1,1)

)
JN [j] .

By definition, for any j ∈ {0, . . . , J−1}, the reflected periodization A[j] ∈ RM [j]×N [j] is
obtained by first adding the bottom left quadrant with reverse-ordered rows, JM [j]A

[j+1]
(1,0) ,

to the top left quadrant A[j+1]
(0,0) , and the bottom right quadrant with reverse-ordered rows,

JM [j]A
[j+1]
(1,1) , to the top right quadrant, A[j+1]

(0,1) . Then the sum originating from the right

half of the matrix is added with reverse-ordered columns,
(
A

[j+1]
(0,1) + JM [j]A

[j+1]
(1,1)

)
JN [j] ,

to the sum arising from the left half of the matrix, A[j+1]
(0,0) + JM [j]A

[j+1]
(1,0) . See Figure 7.1

and Example 7.6 for an illustration. One can also visualize the reflected periodization

 A
[j+1]
(0,0) A

[j+1]
(0,1)

A
[j+1]
(1,0) A

[j+1]
(1,1)



 

(
A

[j+1]
(0,0) + JM [j]A

[j+1]
(1,0) A

[j+1]
(0,1) + JM [j]A

[j+1]
(1,1)

)

 

(
A[j]

)

JM [j] JM [j]

JN [j]

Figure 7.1: Visualization of the reflected periodization

by imagining folding a piece of paper twice, halving first the vertical edges and then the
horizontal ones.
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Example 7.6 Let A ∈ R8×8 with nonzero entries a3, 3, a3, 4, a4, 3, a4, 4, i.e.,

A =



0 0 0 0
0 0
0 0 0 0
0 0 0 a3, 3 a3, 4 0 0 0

0 0 0 a4, 3 a4, 4 0 0 0
0 0 0 0
0 0
0 0 0 0


.

Performing first a folding of the columns, i.e., adding the bottom half of A with reverse-
ordered rows to the top half of A, we obtain the intermediate matrix

0 0 0 0
0 0
0 0 0 0
0 0 0 a3, 3 + a4, 3 a3, 4 + a4, 4 0 0 0

 .

Folding the rows, i.e., adding the right half of the intermediate matrix with reverse-
ordered columns to its left half, now yields the reflected periodization A[2] ∈ R4×4,

A[2] =


0 0 0 0
0 0
0 0
0 0 0 a3, 3 + a4, 3 + a3, 4 + a4, 4

 .

♦

Remark 7.7 We can also apply the factorization of the cosine matrix of type II from
Lemma 4.5 in the 2-dimensional case, which can be used to motivate the definition of
the reflected periodization for matrices. Recall that for N ∈ N even we have that

CII
N = PN

T

 CII
N
2

0N
2

0N
2

CIV
N
2

TN .

Let M = 2JR and N = 2JC with JR, JC ∈ N, and A ∈ RM×N . Then we obtain for all
j ∈ {0, . . . , J − 1} that(

A[j+1]
)ÎI

= CII
M [j+1]A

[j+1]CII
N [j+1]

T

=
1

2
PM [j+1]

T

(
CII
M [j]

CIV
M [j]

)(
IM [j] JM [j]

IM [j] −JM [j]

)
A[j+1]

(
IN [j] IN [j]

JN [j] −JN [j]

)
·

(
CII
N [j]

T

CIV
N [j]

T

)
PN [j+1]
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=
1

2
PM [j+1]

T

(
CII
M [j]

CIV
M [j]

)A
[j+1]
(0,0) + JM [j]A

[j+1]
(1,0) A

[j+1]
(0,1) + JM [j]A

[j+1]
(1,1)

A
[j+1]
(0,0) − JM [j]A

[j+1]
(1,0) A

[j+1]
(0,1) − JM [j]A

[j+1]
(1,1)


·
(
IN [j] IN [j]

JN [j] −JN [j]

)(
CII
N [j]

T

CIV
N [j]

)
PN [j+1]

=:
1

2
PM [j+1]

T

(
CII
M [j]

CIV
M [j]

) A[j] Ã
[j+1]
(0,1)

Ã
[j+1]
(1,0) Ã

[j+1]
(1,1)

(CII
N [j]

T

CIV
N [j]

)
PN [j+1]

=
1

2
PM [j+1]

T

 CII
M [j]A

[j]CII
N [j]

T
CII
M [j]Ã

[j+1]
(0,1) C

IV
N [j]

CIV
M [j]Ã

[j+1]
(1,0) C

II
N [j]

T
CIV
M [j]Ã

[j+1]
(1,1) C

IV
N [j]

PN [j+1] , (7.1)

where

A[j] := Ã
[j+1]
(0,0)

:= A
[j+1]
(0,0) + JM [j]A

[j+1]
(1,0) +

(
A

[j+1]
(0,1) + JM [j]A

[j+1]
(1,1)

)
JN [j] ,

Ã
[j+1]
(0,1)

:= A
[j+1]
(0,0) + JM [j]A

[j+1]
(1,0) −

(
A

[j+1]
(0,1) + JM [j]A

[j+1]
(1,1)

)
JN [j] ,

Ã
[j+1]
(1,0)

:= A
[j+1]
(0,0) − JM [j]A

[j+1]
(1,0) +

(
A

[j+1]
(0,1) − JM [j]A

[j+1]
(1,1)

)
JN [j] ,

Ã
[j+1]
(1,1)

:= A
[j+1]
(0,0) − JM [j]A

[j+1]
(1,0) −

(
A

[j+1]
(0,1) − JM [j]A

[j+1]
(1,1)

)
JN [j] .

(7.2)

Using that

PM [j+1]

(
A[j+1]

)ÎI
PN [j+1]

T

=


(
aÎI

2k, 2l

)M [j]−1, N [j]−1

k, l=0

(
aÎI

2k, 2l+1

)M [j]−1, N [j]−1

k, l=0(
aÎI

2k+1, 2l

)M [j]−1, N [j]−1

k, l=0

(
aÎI

2k+1, 2l+1

)M [j]−1, N [j]−1

k, l=0

 , (7.3)

we also find that (7.1) is equivalent to
(
aÎI

2k, 2l

)M [j]−1, N [j]−1

k, l=0

(
aÎI

2k, 2l+1

)M [j]−1, N [j]−1

k, l=0(
aÎI

2k+1, 2l

)M [j]−1, N [j]−1

k, l=0

(
aÎI

2k+1, 2l+1

)M [j]−1, N [j]−1

k, l=0


=

1

2

 CII
M [j]A

[j]CII
N [j]

T
CII
M [j]Ã

[j+1]
(0,1) C

IV
N [j]

CIV
M [j]Ã

[j+1]
(1,0) C

II
N [j]

T
CIV
M [j]Ã

[j+1]
(1,1) C

IV
N [j]

 . (7.4)

♦

By (7.1) it is evident that the reflected periodization for matrices, which is given in
Definition 7.5, occurs naturally for the 2-dimensional DCT-II if the factorization of CII

N

from Lemma 4.5 is used. The concept of reflected periodizations is of such importance for
developing a fast 2-dimensional IDCT-II algorithm, because the DCT-IIs of the reflected
periodizations are already completely determined by the DCT-II of A, similarly to the
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1-dimensional case in Lemma 6.6.

Lemma 7.8 Let M = 2JR and N = 2JC with JR, JC ∈ N. Let A ∈ RM×N . Set

J := min {JR, JC} and let j ∈ {0, . . . , J}. Then
(
A[j]

)ÎI satisfies
(
A[j]

)ÎI
= 2J−j

(
aÎI

2J−jk, 2J−j l

)M [j]−1, N [j]−1

k, l=0
.

Proof. We show the lemma by induction. For j = J the claim holds, since A[J ] = A
by definition. Now we assume that the induction hypothesis is satisfied for some index
j + 1 ∈ {1, . . . , J} and prove that the claim also holds for j. By (7.1) we find that

PM [j+1]

(
A[j+1]

)ÎI
PN [j+1]

T =
1

2

 (
A[j]

)ÎI
CII
M [j]Ã

[j+1]
(0,1) C

IV
N [j]

CIV
M [j]Ã

[j+1]
(1,0) C

II
N [j]

T
CIV
M [j]Ã

[j+1]
(1,1) C

IV
N [j]

 .

Consequently, the induction hypothesis and (7.3), applied to the upper left quadrant of
the right-hand side, yield

(
A[j]

)ÎI
= 2

((
A[j+1]

)ÎI

2k, 2l

)M [j]−1, N [j]−1

k, l=0

= 2
(

2J−(j+1)aÎI
2J−(j+1)2k, 2J−(j+1)2l

)M [j]−1, N [j]−1

k, l=0

= 2J−j
(
aÎI

2J−jk, 2J−j l

)M [j]−1, N [j]−1

k, l=0
,

which completes the proof.

We will prove shortly that, analogously to Chapter 6, the reflected periodizations of a
matrix with block support will also have a short support. First, we introduce notation
for their supports sets.

Definition 7.9 (Block Support II) Let M = 2JR and N = 2JC with JR, JC ∈ N, and
J := min {JR, JC}. Let A ∈ RM×N and j ∈ {0, . . . , J−1}. We say that A[j] ∈ RM [j]×N [j]

has a block support of size m[j] × n[j] if m[j] and n[j] are the minimal integers such that

a
[j]
k, l = 0 ∀ (k, l) /∈ I

µ
[j]
R , ν

[j]
R

× I
µ
[j]
C , ν

[j]
C

,

for some µ[j]
R ∈ {0, . . . ,M −m} and µ

[j]
C ∈ {0, . . . , N − n} with ν

[j]
R := µ

[j]
R + m − 1 and

ν
[j]
C := µ

[j]
C +n−1. Further, there have to exist indices k0, k1 ∈ Iµ[j]R , ν[j]R

and l0, l1 ∈ Iµ[j]C , ν[j]C
such that

a
[j]

µ
[j]
R , l0

6= 0, a
[j]

ν
[j]
R , l1

6= 0, a
[j]

k0, µ
[j]
C

6= 0 and a
[j]

k1, ν
[j]
C

6= 0.

The intervals S[j]
R := I

µ
[j]
R , ν

[j]
R

and S[j]
C := I

µ
[j]
C , ν

[j]
C

are called the row and column support

of A[j], respectively. The set S[j] := S
[j]
R × S

[j]
C := is called the support block. The indices

µ
[j]
R and µ[j]

C are called the first row and column support indices, and ν[j]
R and ν[j]

C the last
row and column support indices.
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7.2 Support Structures of Reflectedly Periodized Matrices

Analogously to Chapters 5 and 6, our goal is to recover a matrix A ∈ RM×N , M = 2JR ,
N = 2JC , with block support of size m × n from AÎI by successively calculating its
reflected periodizations A[L],A[L+1], . . . ,A[J ] = A. Our 2-dimensional IDCT-II method
will be based on a generalization of Algorithm 9, and, even forM = N , the reconstruction
cannot begin with A[0] ∈ R due to similar support constraints. This means that we will
require a priori knowledge of upper bounds bR and bC on the row and column support
lengths, and have to choose L depending on them.
Transferring the approaches from Algorithm 9 to matrices implies that the (j − L)th

iteration step consists of efficiently reconstructing A[j+1] from AÎI utilizing that A[j] is
known from the previous step. Thus, we have to investigate how the support of A[j+1]

can look like if the support of A[j] is given. Furthermore, we require an analog to the
non-cancellation condition (6.3) for Algorithm 9.

Remark 7.10 In order to preserve the information necessary to detect the correct block
support in all iteration steps, we require the following non-cancellation conditions. For
exact data it is necessary by Definition 7.2 that there exist indices k0, k1 ∈ Iµ[J]R , ν

[J]
R

and
l0, l1 ∈ Iµ[J]C , ν

[J]
C

such that

a
µ
[J]
R , l0

6= 0, a
ν
[J]
R , l1

6= 0, a
k0, µ

[J]
C

6= 0 and a
k1, ν

[J]
C

6= 0.

Additionally, by Definition 7.5, we need that there exist an index l ∈ I
µ
[J]
C , ν

[J]
C

such that

a
µ
[J]
R , l

+ a
ν
[J]
R , l

+ a
µ
[J]
R , N−1−l + a

ν
[J]
R , N−1−l 6= 0 if n is even, (7.5)

and an index k ∈ I
µ
[J]
R , ν

[J]
R

such that

a
k, µ

[J]
C

+ a
k, ν

[J]
C

+ a
M−1−k, µ[J]C

+ a
M−1−k, ν[J]C

6= 0 if m is even. (7.6)

Conditions (7.5) and (7.6) ensure that in every reflected periodization A[j] ∈ RM [j]×N [j] ,
j ∈ {L, . . . , J}, there is at least one row from which the correct current row support
length can be detected, and one column from which the correct current column support
length can be determined. These assumptions are for example satisfied if A ∈ RM×N≥0 or
if A ∈ RM×N≤0 .
In practice, i.e., for noisy data, we have to guarantee that for a threshold ε > 0

depending on the noisy level we have, besides∣∣∣a
µ
[J]
R , l0

∣∣∣ > ε,
∣∣∣a
ν
[J]
R , l1

∣∣∣ > ε,
∣∣∣a
k0, µ

[J]
C

∣∣∣ > ε and
∣∣∣a
k1, ν

[J]
C

∣∣∣ > ε,

also ∣∣∣a
µ
[J]
R , l

+ a
ν
[J]
R , l

+ a
µ
[J]
R , N−1−l + a

ν
[J]
R , N−1−l

∣∣∣ > ε and∣∣∣a
k, µ

[J]
C

+ a
k, ν

[J]
C

+ a
M−1−k, µ[J]C

+ a
M−1−k, ν[J]C

∣∣∣ > ε.

♦
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7.2.1 Support Structure of A[j] for Given A

We showed in Section 6.2.1 that for a vector x ∈ RN , N = 2J , with short support of
lengthm the reflected periodizations x[j] ∈ R2j for j ∈ {L, . . . , J−1} have a short support
of length m[j] ≤ m. Thus, we expect similar results for the reflected periodizations of a
matrix A ∈ RM×N ,M = 2JR , N = 2JC , with block support of lengthm×n. Analogously
to Chapter 6, we will only consider the reflected periodizations to the level K, where we
now set

K := max {dlog2me+ 1, dlog2 ne+ 1} ,

in order to reduce the collisions of nonzero entries of A in the reflected periodizations
A[j]. This causes our method, like Algorithm 9, to require a priori knowledge of upper
bounds bR and bC on the number of support rows and columns.
Before we prove the corresponding lemma, let us motivate the claims therein by some

examples.

Example 7.11

1. LetA ∈ R16×16 satisfy (7.5) and (7.6) with nonzero entries a3, 11, a3, 12, a4, 11 and a4, 12,
i.e., with block support S[4] = I3, 4× I11, 12. We assume that m = 2 and n = 2 are known
exactly, i.e., that bR = bC = 2. Then K = 2, and A and its reflected periodizations A[j]

for j ∈ {K, . . . , J} are

A = A[4] =



0 . . . 0 0 . . . . . . 0
...

... 0 0
0 0 0 0
0 0 0 a3, 11 a3, 12 0 0 0
0 0 0 a4, 11 a4, 12 0 0 0
0 0 0 0

...
... 0 0

0 . . . 0 0 . . . . . . 0

0 . . . 0 0 . . . . . . 0
...

...
...

...
0 . . . 0 0 . . . . . . 0



A[3] =



0 0 0 0
0 0
0 0 0 0
0 0 0 a3, 12 a3, 11 0 0 0

0 0 0 a4, 12 a4, 11 0 0 0
0 0 0 0
0 0
0 0 0 0



A[2] =


0 0
0 0
0 0
0 0 0 a3, 11 + a3, 12 + a4, 11 + a4, 12


Here, A[3] has the block support S[3] = I3, 4 × I3, 4 of size m[3] × n[3] := 2 × 2, and A[2]

has the block support S[2] = I3, 3 of size m[2] × n[2] := 1× 1.
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2. Let A ∈ R16×16 satisfy (7.5) and (7.6) with nonzero entries a7, 11, a7, 12, a8, 11 and
a8, 12, i.e., with block support S[4] = I7, 8 × I11, 12. We assume again that m = 2 and
n = 2 are known exactly. Then the reflected periodizations of A are

A = A[4] =



0 . . . 0 0 . . . . . . 0
...

...
...

...
...

... 0 . . . . . . 0
0 . . . 0 0 0 0 a7, 11 a7, 12 0 0 0

0 . . . 0 0 0 0 a8, 11 a8, 12 0 0 0
...

... 0 . . . . . . 0
...

...
...

...
0 . . . 0 0 . . . . . . 0



A[3] =



0 0 0 0 0 0 0 0
0 0
0 0 0 0
0 0 0 0

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 a7, 12 + a8, 12 a7, 11 + a8, 11 0 0 0



A[2] =


0 0 0 a7, 11 + a7, 12 + a8, 11 + a8, 12

0 0
0 0
0 0 0 0


Here, A[3] has the block support S[3] = I7, 7 × I3, 4 of size m[3] × n[3] := 1 × 2, and A[2]

has the block support S[2] = I0, 0 × I3, 3 of size m[2] × n[2] := 1× 1. ♦

As in Chapter 6, we have to undo collisions of nonzero entries in the reflected peri-
odizations. For both matrices considered in Example 7.11 the reflected periodizations
A[j] with j ∈ {K, . . . , J} have a block support of size m[j] × n[j], where m[j] ≤ m and
n[j] ≤ n. We generalize this observation in the next lemma.

Lemma 7.12 Let M = 2JR and N = 2JC with JR, JC ∈ N, and let J := min {JR, JC}.
Let A ∈ RM×N have a block support of size m×n and assume that A satisfies (7.5) and
(7.6). Set K := max {dlog2me+ 1, dlog2 ne+ 1} and let j ∈ {K, . . . , J}. Then A[j] has
a block support of size m[j] × n[j] with m[j] ≤ m and n[j] ≤ n.

Proof. We prove the lemma by induction. By assumption, A = A[J ] has a block support
of size m × n. Now we suppose that A[j+1] has a block support of size m[j+1] × n[j+1]

with m[j+1] ≤ m and n[j+1] ≤ n for some j ∈ {K, . . . , J − 1}. More precisely, we assume
that A[j+1] has the support block

S[j+1] = I
µ
[j+1]
R , ν

[j+1]
R

× I
µ
[j+1]
C , ν

[j+1]
C

,

where µ[j+1]
R ∈

{
0, . . . ,M [j+1] −m[j+1]

}
and µ

[j+1]
C ∈

{
0, . . . , N [j+1] − n[j+1]

}
, and we

set ν[j+1]
R := µ

[j+1]
R +m[j+1] − 1 and ν[j+1]

C := µ
[j+1]
C + n[j+1] − 1. We have to distinguish

four main cases and their subcases.
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(i) S[j+1] contains indices from all four quadrants of A[j+1], i.e.,
{
M [j] − 1,M [j]

}
×{

N [j] − 1, N [j]
}
⊆ S[j+1].

Then it follows from Definition 7.5 that

S[j] =
((
I
µ
[j+1]
R , ν

[j+1]
R

∪ I
M [j+1]−1−ν[j+1]

R ,M [j+1]−1−µ[j+1]
R

)
∩ I0,M [j]−1

)
×
((
I
µ
[j+1]
C , ν

[j+1]
C

∪ I
N [j+1]−1−ν[j+1]

C , N [j+1]−1−µ[j+1]
C

)
∩ I0, N [j]−1

)
=: IM [j]−m[j],M [j]−1 × IN [j]−n[j], N [j]−1

( IM [j]−m[j+1],M [j]−1 × IN [j]−n[j+1], N [j]−1.

Thus, A[j] has a block support as well. Due to collision of possibly nonzero entries of
A[j+1], the support of A[j] has less rows and less columns than the support of A[j+1],
i.e., m[j] < m[j+1] and n[j] < n[j+1], see also Figure 7.2.

A[j+1] A[j]

Figure 7.2: Illustration of the support of A[j] if
{
M [j] − 1,M [j]

}
×
{
N [j] − 1, N [j]

}
⊆

S[j+1]

(ii) S[j+1] is completely contained in the upper or lower half, but contains indices from
both the left and right half of A[j+1].

(a) S[j+1] ⊆ I0,M [j]−1 × I0, N [j+1]−1 and
{
N [j] − 1, N [j]

}
⊆ S[j+1]

C .

Then it follows from Definition 7.5 that

S[j] = I
µ
[j+1]
R , ν

[j+1]
R

×
((
I
µ
[j+1]
C , ν

[j+1]
C

∪ I
N [j+1]−1−ν[j+1]

C , N [j+1]−1−µ[j+1]
C

)
∩ I0, N [j]−1

)
=: I

µ
[j]
R , ν

[j]
R

× IN [j]−n[j], N [j]−1

( I
µ
[j+1]
R , ν

[j+1]
R

× IN [j]−n[j+1], N [j]−1.
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(b) S[j+1] ⊆ IM [j],M [j+1]−1 × I0, N [j+1]−1 and
{
N [j] − 1, N [j]

}
⊆ S[j+1]

C .

Then we obtain that

S[j] = I
M [j+1]−1−ν[j+1]

R ,M [j+1]−1−µ[j+1]
R

×
((
I
µ
[j+1]
C , ν

[j+1]
C

∪ I
N [j+1]−1−ν[j+1]

C , N [j+1]−1−µ[j+1]
C

)
∩ I0, N [j]−1

)
=: I

µ
[j]
R , ν

[j]
R

× IN [j]−n[j], N [j]−1

( I
M [j+1]−1−ν[j+1]

R ,M [j+1]−1−µ[j+1]
R

× IN [j]−n[j+1], N [j]−1,

see also Figure 7.3.

A[j+1] A[j]

Figure 7.3: Illustration of the supports of A[j+1] and A[j] if
{
N [j] − 1, N [j]

}
⊆ S[j+1]

C and
S

[j+1]
R ⊆ IM [j],M [j+1]−1

Consequently, we find that A[j+1] has a block support as well. Due to collision of possibly
nonzero entries from A[j+1] in both subcases of case (ii), the support of A[j] has less
columns than the one of A[j+1], i.e., n[j] < n[j+1], and the supports of A[j] and A[j+1]

have the same number of rows. i.e., m[j+1] = m[j].

(iii) S[j+1] is completely contained in the left or right half, but contains indices from
both the upper and lower half of A[j+1].

(c) S[j+1] ⊆ I0,M [j+1]−1 × I0, N [j]−1 and
{
M [j] − 1, M [j]

}
⊆ S[j+1]

R .

Then it follows from the definition of the reflected periodization that

S[j] =
((
I
µ
[j+1]
R , ν

[j+1]
R

∪ I
M [j+1]−1−ν[j+1]

R ,M [j+1]−1−µ[j+1]
R

)
∩ I0,M [j]−1

)
× I

µ
[j+1]
C , ν

[j+1]
C

=: IM [j]−m[j],M [j]−1 × Iµ[j]C , ν[j]C
( IM [j]−m[j+1],M [j]−1 × Iµ[j+1]

C , ν
[j+1]
C

.
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(d) S[j+1] ⊆ I0,M [j+1]−1 × IN [j], N [j+1]−1 and
{
M [j] − 1, M [j]

}
⊆ S[j+1]

R .

Then we find that

S[j] =
((
I
µ
[j+1]
R , ν

[j+1]
R

∪ I
M [j+1]−1−ν[j+1]

R ,M [j+1]−1−µ[j+1]
R

)
∩ I0,M [j]−1

)
× I

N [j+1]−1−ν[j+1]
C , N [j+1]−1−µ[j+1]

C

=: IM [j]−m[j],M [j]−1 × Iµ[j]C , ν[j]C
( IM [j]−m[j+1],M [j]−1 × IN [j+1]−1−ν[j+1]

C , N [j+1]−1−µ[j+1]
C

,

see also Figure 7.4.

A[j+1] A[j]

Figure 7.4: Illustration of the supports of A[j+1] and A[j] if
{
M [j] − 1, M [j]

}
⊆ S

[j+1]
R

and S[j+1]
C ⊆ IN [j], N [j+1]−1

Hence, we obtain that A[j] also has a block support. Due to collision of possibly nonzero
entries of A[j+1] in both subcases of case (iii), the support of A[j] has less rows than
the one of A[j+1], i.e., m[j] < m[j+1], and the supports of A[j] and A[j+1] have the same
number of columns, i.e., n[j+1] = n[j].

(iv) S[j+1] is completely contained in one of the four quadrants of A[j+1].

(e) S[j+1] ⊆ I0,M [j]−1 × I0, N [j]−1.

Then it follows from Definition 7.5 that A[j] has a block support with

A[j] = A
[j+1]
(0,0) and S[j] = S[j+1].

(f) S[j+1] ⊆ I0,M [j]−1 × IN [j], N [j+1]−1.

Then A[j] has a block support with

A[j] = A
[j+1]
(0,1) JN [j] and S[j] = I

µ
[j+1]
R , ν

[j+1]
R

× I
N [j+1]−1−ν[j+1]

C , N [j+1]−1−µ[j+1]
C

.

(g) S[j+1] ⊆ IM [j],M [j+1]−1 × I0, N [j]−1.

Then A[j] has a block support with

A[j] = JM [j]A
[j+1]
(1,0) and S[j] = I

M [j+1]−1−ν[j+1]
R ,M [j+1]−1−µ[j+1]

R

× I
µ
[j+1]
C , ν

[j+1]
C

.
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(h) S[j+1] ⊆ IM [j],M [j+1]−1 × IN [j], N [j+1]−1.

Then A[j] has a block support with

A[j] = JM [j]A
[j+1]
(1,1) JN [j] and

S[j] = I
M [j+1]−1−ν[j+1]

R ,M [j+1]−1−µ[j+1]
R

× I
N [j+1]−1−ν[j+1]

C , N [j+1]−1−µ[j+1]
C

,

see also Figure 7.5.

A[j+1] A[j]

Figure 7.5: Illustration of the support of A[j] if S[j+1] ⊆ IM [j],M [j+1]−1 × IN [j], N [j+1]−1

Since the support block of A[j] is just a reflection of the support block of A[j+1], we have
m[j] = m[j+1] and n[j] = n[j+1] in all four subcases of case (iv).

7.2.2 Support Structure of A[j+1] for Given A[j]

In our algorithm we want to recover A from AÎI by iteratively computing its reflected
periodizations A[L],A[L+1], . . . ,A[J ] = A for a suitable starting index L. For this we
only assume that upper bounds bR ≥ m and bC ≥ n on the number of support rows and
columns of A are known. If we choose L := max {dlog2 bRe+ 1, dlog2 bCe+ 1}, we can
guarantee correct reconstruction of the supports of all of these reflected periodizations.
As in Chapter 6, we have to examine how the support of A[j+1] looks like if A[j] is
given. Again, we will illustrate some of the possible cases for the support of A[j+1] by
the vectors from Example 7.11, before we will prove the general results.

Example 7.13 (Example 7.11 continued) Throughout this example we will again
assume that the support sizes m and n of A are known exactly. Then it follows that
L = 2. Additionally, we suppose that the size M ×N = 16× 16 of A is known.

1. We consider the reflected periodization

A[2] =


0 0
0 0
0 0

0 0 0 a
[2]
3, 3

 ∈ R4×4

with block support S[2] = I3, 3 × I3, 3 of size m[2] × n[2] := 1 × 1, which also occurs in
Example 7.11.1. It follows from Definition 7.5 that A[3] has a block support of size at
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most m× n = 2× 2, which is of the form

A[3] =



0 0 0 0

0 0

0 0 0 0

0 0 0 a
[3]
3, 3 a

[3]
3, 4 0 0 0

0 0 0 a
[3]
4, 3 a

[3]
4, 4 0 0 0

0 0 0 0

0 0

0 0 0 0



,

where a[2]
3, 3 = a

[3]
3, 3 + a

[3]
3, 4 + a

[3]
4, 3 + a

[3]
4, 4. The nonzero entries of A[3] can be determined

from AÎI using the methods we will present in Section 7.3.2. If at least one entry from
each row and column of A[3] is not zero, then A[3] has the block support S[3] = I3, 4×I3, 4

of size m[3] × n[3] = 2× 2.

2. Now we will consider the reflected periodization A[3] ∈ R8×8 with block support
S[3] = I3, 4× I3, 4 of size m[3]×n[3] = 2× 2, as it occurs in Example 7.11.1. By definition
of the reflected periodization, there are precisely four possibilities for A = A[4],

A =

(
A[3] 0
0 0

)
or A =

(
0 A[3]J8

0 0

)
or A =

(
0 0

J8A
[3] 0

)
or A =

(
0 0

0 J8A
[3]J8

)
,

with the corresponding support sets

S[4] = S[3] = I3, 4 × I3, 4 or S[4] = I3, 4 × I11, 12

or S[4] = I11, 12 × I3, 4 or S[4] = I11, 12 × I11, 12.

We will show in Section 7.3.1 how to determined which of these four matrices is the
correct one by employing additional nonzero entries of AÎI.

3. Let us consider the reflected periodization

A[2] =


0 0 0 a

[2]
0, 3

0 0
0 0
0 0 0 0

 ∈ R4×4

with block support S[2] = I0, 3 of size m[2] × n[2] = 1× 1, as obtained in Example 7.11.2.
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By Definition 7.5, there are two possibilities for the support of A[3], namely

A[3] =



0 0 0 a
[3]
0, 3 a

[3]
0, 4 0 0 0

0 0 0 0
0 0 0 0
0 0 0 0 0 0 0 0

0 0



or A[3] =


0 0

0 0 0 0
0 0 0 0
0 0 0 0

0 0 0 a
[3]
7, 3 a

[3]
7, 4 0 0 0


,

with S[3] = I0, 0 × I3, 4 or S[3] = I7, 7 × I3, 4 of size m[3] × n[3] = 1× 2. Further, we have
that a[2]

0, 3 = a
[3]
0, 3 +a

[3]
0, 4 in the first case and a[2]

0, 3 = a
[3]
7, 3 +a

[3]
7, 4 in the second case. Whether

the support of A[3] is contained in its upper or lower half, and which values the nonzero
entries of A[3] take on can be determined with the help of additional nonzero entries of
AÎI, as we will show in Section 7.3.3.

4. Finally, we investigate the matrix

A[3] =


0 0

0 0 0 0 0 0 0 0
0 0 0 0
0 0 0 0

0 0 0 a
[3]
7, 3 a

[3]
7, 4 0 0 0


∈ R8×8

with block support S[3] = I7, 7 × I3, 4 of size m[3] × n[3] = 1× 2, as it occurs in Example
7.11.2. By definition of the reflected periodization there are two possibilities for the
support of A = A[4], either

A = A[4] =



0 . . . . . . 0

0
...

...
0 . . . . . . 0
0 0 0 a7, 3 a7, 4 0 0 0

0 0 0 a8, 3 a8, 4 0 0 0

0
0 . . . . . . 0
...

...
0 . . . . . . 0


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or A = A[4] =



0

0 . . . . . . 0
... 0

0 . . . . . .
...

0 0 0 a7, 11 a7, 12 0 0 0

0

0 0 0 a8, 11 a8, 12 0 0 0
0 . . . . . . 0
...

...
0 . . . . . . 0


♦

Example 7.13 shows that even for the two matrices from Example 7.11 we already have
to distinguish four cases for the support of A[j]. In the following theorem we generalize
the observations made above.

Theorem 7.14 Let M = 2JR and N = 2JC with JR, JC ∈ N, and let J := min {JR, JC}.
Let A ∈ RM×N have a block support of size m×n with known bounds bR ≥ m and bC ≥ n,
and assume that A satisfies (7.5) and (7.6). Set L := max {dlog2 bRe+ 1, dlog2 bCe+ 1}.

A) There is at most one index j1 ∈ {L, . . . , J} such that

S[j1] ⊆ IM [j1]−bR,M [j1]−1 × IN [j1]−bC , N [j1]−1.

If j1 ≤ J − 1, we find that

S[j1+1] ( IM [j1]−bR,M [j1]+bR−1 × IN [j1]−bC , N [j1]+bC−1.

B) There is at most one index j2 ∈ {L, . . . , J} such that

S[j2] ⊆ I0,M [j2]−1 × IN [j2]−bC , N [j2]−1 and S
[j2]
R 6⊆ IM [j2]−bR,M [j2]−1.

If j2 ≤ J − 1, we find that

S[j2+1] ( I
µ
[j2]
R , ν

[j2]
R

× IN [j2]−bC , N [j2]+bC−1 or

S[j2+1] ( I
M [j2+1]−1−ν[j2]R ,M [j2+1]−1−µ[j2]R

× IN [j2]−bC , N [j2]+bC−1,

so m[j2+1] = m[j2].

C) There is at most one index j3 ∈ {L, . . . , J} such that

S[j3] ⊆ IM [j3]−bR,M [j3]−1 × I0, N [j3]−1 and S
[j3]
C 6⊆ IN [j3]−bC , N [j3]−1.

If j3 ≤ J − 1, we find that

S[j3+1] ( IM [j3]−bR,M [j3]+bR−1 × Iµ[j3]C , ν
[j3]
C

or

S[j3+1] ( IM [j3]−bR,M [j3]+bR−1 × IN [j3+1]−1−ν[j3]C , N [j3+1]−1−µ[j3]C

,

so n[j3+1] = n[j3].
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D) If j ∈ {L, . . . , J − 1} \ {j1, j2, j3}, then either

A[j+1] =

(
A[j] 0
0 0

)
or A[j+1] =

(
0 A[j]JN [j]

0 0

)
or A[j+1] =

(
0 0

JM [j]A[j] 0

)
or A[j+1] =

(
0 0

0 JM [j]A[j]JN [j]

)
,

so m[j+1] = m[j] and n[j+1] = n[j].

Proof. Recall that K = max {dlog2me+ 1, dlog2 ne+ 1} and that m ≤ bR and n ≤ bC .
Consequently, L ≥ K and A[j] has a block support of size m[j] × n[j] with m[j] ≤ m and
n[j] ≤ n for all j ∈ {L, . . . , J} by Lemma 7.12. We define

j1 := max
{
j ∈ {L, . . . , J} : S[j] ⊆ IM [j]−bR,M [j]−1 × IN [j]−bC , N [j]−1

}
, (7.7)

j2 := max
{
j ∈ {L, . . . , J} : S[j] ⊆ I0,M [j]−1 × IN [j]−bC , N [j]−1

and S[j]
R 6⊆ IM [j]−bR,M [j]−1

}
, (7.8)

j3 := max
{
j ∈ {L, . . . , J} : S[j] ⊆ IM [j]−bR,M [j]−1 × I0, N [j]−1

and S[j]
C 6⊆ IN [j]−bC , N [j]−1

}
, (7.9)

if such indices exist.

(i) If there is no index j1, claim A is already proven, so we assume that there exists a
j1 ∈ {L, . . . , J} satisfying (7.7). Then we find that

A[j1−1] = A
[j1]
(0,0)︸ ︷︷ ︸
=0

+JM [j1−1] A
[j1]
(1,0)︸ ︷︷ ︸
=0

+A
[j1]
(0,1)︸ ︷︷ ︸
=0

JN [j1−1] + JM [j1−1]A
[j1]
(1,1)JN [j1−1] ,

since by m[j1] ≤ 2L−1 and n[j1] ≤ 2L−1 the reflected periodization A[j1] can only have
nonzero entries in its bottom right quadrant. Hence, we obtain that

S[j1−1] ⊆ I0, bR−1 × I0, bC−1

if j1 > L. Inductively, it follows for all j ∈ {L, . . . , j1 − 2} that

A[j] = A
[j+1]
(0,0) + JM [j] A

[j+1]
(1,0)︸ ︷︷ ︸
=0

+A
[j+1]
(0,1)︸ ︷︷ ︸
=0

JN [j] + JM [j] A
[j+1]
(1,1)︸ ︷︷ ︸
=0

JN [j] ,

and thus
S[j] ⊆ I0, bR−1 × I0, bC−1.

Consequently, j1 is the unique index satisfying (7.7). Further, for j ∈ {L, . . . , j1 − 1},
the support of A[j] is contained in the first bR rows and first bC columns.

Since A[j1+1] has a block support of size m[j1+1] × n[j1+1] with m[j1+1] ≤ m and
n[j1+1] ≤ n by Lemma 7.12 and

A[j1] = A
[j1+1]
(0,0) + JM [j1]A

[j1+1]
(1,0) + A

[j1+1]
(0,1) JN [j1] + JM [j1]A

[j1+1]
(1,1) JN [j1] ,
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the support of A[j1+1] satisfies

S[j1+1] ( IM [j1+1]−bR,M [j1+1]+bR−1 × IN [j1+1]−bC , N [j1+1]+bC−1.

See Figure 7.6 for an illustration.

A[j] A[j+1]

Figure 7.6: Illustration of the support of A[j+1] if the support of A[j] is contained in the
last bR rows and bC columns

(ii) Assume that there exists an index j2 ∈ {L, . . . , J} as defined in (7.8). Then we have

A[j2−1] = A
[j2]
(0,0)︸ ︷︷ ︸
=0

+JM [j2−1] A
[j2]
(1,0)︸ ︷︷ ︸
=0

+A
[j2]
(0,1)JN [j2−1] + JM [j2−1]A

[j2]
(1,1)JN [j2−1] ,

since by n[j2] ≤ n ≤ bC ≤ 2L−1 the reflected periodization A[j2] cannot have nonzero
entries in its left half. Hence, we find that

S[j2−1] ⊆ I0,M [j2−1] × I0, bC−1

if j2 > L. It follows by induction that for all j ∈ {L, . . . , j2 − 2}

A[j] = A
[j+1]
(0,0) + JM [j]A

[j+1]
(1,0) + A

[j+1]
(0,1)︸ ︷︷ ︸
=0

JN [j] + JM [j] A
[j+1]
(1,1)︸ ︷︷ ︸
=0

JN [j] ,

and thus
S[j] ⊆ I0,M [j]−1 × I0, bC−1.

Consequently, j2 is the only index that can satisfy (7.8). For j ∈ {L, . . . , j2 − 1}, the
support of A[j] is contained in the first bC columns.

Since A[j2+1] has a block support of size m[j2+1] × n[j2+1] with m[j2+1] ≤ m and
n[j2+1] ≤ n by Lemma 7.12, Definition 7.5 implies that the support of A[j2+1] satisfies

S[j2+1] ( I
µ
[j2]
R , ν

[j2]
R

× IN [j2]−bC , N [j2]+bC−1 or

S[j2+1] ( I
M [j2+1]−1−ν[j2]R ,M [j2+1]−1−µ[j2]R

× IN [j2]−bC , N [j2]+bC−1.
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This is depicted in Figure 7.7.

A[j]

A[j+1] or A[j+1]

Figure 7.7: Illustration of the support of A[j+1] if the column support of A[j] is contained
in the last bC columns and the row support is not contained in the last bR
rows

(iii) Now we assume that there exists an index j3 ∈ {L, . . . , J} as in (7.9). Then we have

A[j3−1] = A
[j3]
(0,0)︸ ︷︷ ︸
=0

+JM [j3−1]A
[j3]
(1,0) + A

[j3]
(0,1)︸ ︷︷ ︸
=0

JN [j3−1] + JM [j3−1]A
[j3]
(1,1)JN [j3−1] ,

since by m[j3] ≤ m ≤ bR ≤ 2L−1 the reflected periodization A[j3] cannot have nonzero
entries in its upper half. Hence, we find that

S[j3−1] ⊆ I0, bR−1 × I0, N [j3−1]

if j3 > L. Again, it follows from induction that for all j ∈ {L, . . . , j3 − 2}

A[j] = A
[j+1]
(0,0) + JM [j] A

[j+1]
(1,0)︸ ︷︷ ︸
=0

+A
[j+1]
(0,1) JN [j] + JM [j] A

[j+1]
(1,1)︸ ︷︷ ︸
=0

JN [j] ,

and thus
S[j] ⊆ I0, bR−1 × I0, N [j]−1.

Consequently, j3 is the only index for which (7.9) holds. For j ∈ {L, . . . , j3 − 1}, the
support of A[j] is contained in the first bR rows.

Since A[j3+1] has a block support of size m[j3+1] × n[j3+1] with m[j3+1] ≤ m and
n[j3+1] ≤ n by Lemma 7.12, the definition of the reflected periodization yields that the
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support of A[j3+1] satisfies

S[j3+1] ( IM [j3]−bR,M [j3]+bR−1 × Iµ[j3]C , ν
[j3]
C

or

S[j3+1] ( IM [j3]−bR,M [j3]+bR−1 × IN [j3+1]−1−ν[j3]C , N [j3+1]−1−µ[j3]C

.

See Figure 7.8 for a visualization.

A[j]

A[j+1] or A[j+1]

Figure 7.8: Illustration of the support of A[j+1] if the row support of A[j] is contained
in the last bR rows and the column support is not contained in the last bC
columns

(iv) For j ∈ {L, . . . , J−1}\{j1, j2, j3} we show first that m[j+1] = m[j] and n[j+1] = n[j].
The proof of Lemma 7.12 yields that m[j+1] ≥ m[j] and n[j+1] ≥ n[j]. Let us assume that
there exists an index j′ ∈ {L, . . . , J−1}\{j1, j2, j3} with m[j′+1] > m[j′] or n[j′+1] > n[j′].
If m[j′+1] > m[j′], then {

M [j′] − 1,M [j′]
}
⊆ S[j′+1]

R ,

as we have to be in case (i) or (iii) of the proof of Lemma 7.12. Since m[j′+1] ≤ m ≤ bR,
this implies that

S
[j′+1]
R ( IM [j′]−bR,M [j′]+bR−1.

Consequently, it follows from Definition 7.5 that

S
[j′]
R ⊆ IM [j′]−bR,M [j′]−1. (7.10)

Depending on the column support, either j1 or j3, which are given by (7.7) and (7.9), is
the unique index satisfying (7.10). Thus, we obtain that j′ = j1 or j′ = j3, which is a
contradiction to the choice of j′. Hence, we showed that m[j+1] = m[j].

Analogously, if n[j′+1] > n[j′], then we have to be in case (i) or (ii) of the proof of
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7 Real 2D Block Sparse Fast IDCT-II

Lemma 7.12, so {
N [j′] − 1, N [j′]

}
⊆ S[j′+1]

C .

It follows from n[j′+1] ≤ n ≤ bC that

S
[j′+1]
C ( IN [j′]−bC , N [j′]+bC−1,

and thus the definition of the reflected periodization implies that

S
[j′]
C ⊆ IN [j′]−bC , N [j′]−1. (7.11)

Since, depending on the row support, either j1 or j2, as defined in (7.7) and (7.8), is the
unique index satisfying (7.11), we obtain that j′ = j1 or j′ = j2. This is a contradiction
to the choice of j′, so we proved that n[j+1] = n[j].

As m[j+1] = m[j] and n[j+1] = n[j], Definition 7.5 and Lemma 7.12 yield that there
exist precisely four matrices of size M [j+1]×N [j+1] arising from repeatedly applying the
reflected periodization to the matrix A ∈ RM×N with block support that have the given
reflected periodization A[j], namely

A[j+1] =

(
A[j] 0
0 0

)
or A[j+1] =

(
0 A[j]JN [j]

0 0

)
or A[j+1] =

(
0 0

JM [j]A[j] 0

)
or A[j+1] =

(
0 0

0 JM [j]A[j]JN [j]

)
.

This is depicted in Figure 7.9.

7.3 Iterative Sparse 2D Recovery Procedures

If we aim to recover a matrix A ∈ RM×N , M = 2JR , N = 2JC , with block support of
size m×n from its DCT-II transformed matrix AÎI by iteratively computing its reflected
periodizations A[L],A[L+1], . . . ,A[J ] = A, then we need to develop recovery procedures
for the four cases of Theorem 7.14. All of these methods will require a priori knowledge
of upper bounds bR ≥ m and bC ≥ n on the number of support rows and columns of A.
We will first present a recovery procedure for case D of Theorem 7.14 and then one for

case A. Afterwards, we will investigate cases B and C, which are closely related, as we
can utilize some techniques for them that are easier to introduce for cases D and A.

7.3.1 Recovery Procedure for Case D: No Collision

Let us begin by deriving a recovery procedure for case D of Theorem 7.14. Hence, we
assume that j ∈ {L, . . . , J − 1} \ {j1, j2, j3}, with j1, j2 and j3 given by (7.7) to (7.9).
Then the support of A[j] is not contained in its last bR rows and last bC columns. We
know from Theorem 7.14, case D that the values of the nonzero entries of A[j] and A[j+1]

are the same, with

A[j+1] =

(
A[j] 0
0 0

)
or A[j+1] =

(
0 A[j]JN [j]

0 0

)
or A[j+1] =

(
0 0

JM [j]A[j] 0

)
or A[j+1] =

(
0 0

0 JM [j]A[j]JN [j]

)
,
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see also Figure 7.9.

A[j]

A[j+1] or A[j+1]

or A[j+1] or A[j+1]

Figure 7.9: Illustration of the support of A[j+1] if the support of A[j] is not contained in
the last bR rows and the last bC columns

Similarly to the procedure for case B of Theorem 6.12 in Chapter 6, it is possible
to determine which of these matrices is the correct one by using one nonzero entry of((
a[j+1]

)ÎI
2k, 2l+1

)m[j]−1, n[j]−1

k, l=0

and one of
((
a[j+1]

)ÎI
2k+1, 2l

)m[j]−1, n[j]−1

k, l=0

.

Thus, we first show that such nonzero entries exist and can be found efficiently. Anal-
ogously to Section 6.3.2, this can be done with the help of odd Vandermonde matrices.

Lemma 7.15 Let M = 2JR and N = 2JC with JR, JC ∈ N, and let J := min {JR, JC}.
Let A ∈ RM×N have an unknown block support of sizem×n with known bounds bR ≥ m
and bC ≥ n, and assume that A satisfies the non-cancellation conditions (7.5) and (7.6).
Let L := max {dlog2 bRe+ 1, dlog2 bCe+ 1} and j ∈ {L, . . . , J−1}\{j1, j2, j3} with j1, j2
and j3 as in (7.7), (7.8) and (7.9). Suppose that we have access to all entries of AÎI.
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Then the even-odd partial matrix and the odd-even partial matrix,((
a[j+1]

)ÎI

2k, 2l+1

)m[j]−1, n[j]−1

k, l=0

and
((

a[j+1]
)ÎI

2k+1, 2l

)m[j]−1, n[j]−1

k, l=0

,

of
(
A[j+1]

)ÎI both have at least one nonzero entry.

Proof. The claims can be shown by adapting the proof of Lemma 6.15 (Lemma 3.2
in [BP18a]) to the 2-dimensional setting. LetA[j] have the block support S[j] = S

[j]
R ×S

[j]
C .

(i) It follows from (7.1) in Remark 7.7 that

((
a[j+1]

)ÎI

2k, 2l+1

)M [j]−1, N [j]−1

k, l=0

=
1

2
CII
M [j]Ã

[j+1]
(0,1) C

IV
N [j] , (7.12)

where
Ã

[j+1]
(0,1)

:= A
[j+1]
(0,0) + JM [j]A

[j+1]
(1,0) −A

[j+1]
(0,1) JN [j] − JM [j]A

[j+1]
(1,1) JN [j] . (7.13)

If we denote by S(B) the block support of a matrix B ∈ M [j] × N [j], the definition of

Ã
[j+1]
(0,1) =

((
ã

[j+1]
(0,1)

)
k, l

)M [j]−1, N [j]−1

k, l=0

yields that

S
(
Ã

[j+1]
(0,1)

)
⊆ S[j] = I

µ
[j]
R , ν

[j]
R

× I
µ
[j]
C , ν

[j]
C

.

Since the block support S[j] of A[j] is of size m[j] × n[j], we can restrict (7.12) to the
equations corresponding to the first m[j] rows and the first n[j] columns, obtaining((

a[j+1]
)ÎI

2k, 2l+1

)m[j]−1, n[j]−1

k, l=0

=
1

2

((
CII
M [j]

)
k, r

)m[j]−1,M [j]−1

k, r=0
Ã

[j+1]
(0,1)

((
CIV
N [j]

)
s, l

)N [j]−1, n[j]−1

s, l=0

=
1√

M [j]N [j]

 ν
[j]
R∑

r=µ
[j]
R

ν
[j]
C∑

s=µ
[j]
C

εM [j](k) cos

(
k(2r + 1)π

2M [j]

)(
ã

[j+1]
(0,1)

)
r, s

· cos

(
(2s+ 1)(2l + 1)π

4N [j]

))m[j]−1, n[j]−1

k, l=0

=:
1√

M [j]N [j]
diag

(
(εM [j](k))m

[j]−1
k=0

)
T

[j]
II, R

((
ã

[j+1]
(0,1)

)
r, s

)ν[j]R , ν
[j]
C

r=µ
[j]
R , s=µ

[j]
C

T
[j]
IV, C

T
, (7.14)

where

T
[j]
II, R :=

(
cos

(
k(2r + 1)π

2M [j]

))m[j]−1, ν
[j]
R −1

k=0, r=µ
[j]
R

is the restriction of the cosine matrix of type II without the normalization factors to the
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first m[j] rows and the m[j] columns indexed by the row support S[j]
R of A[j], and

T
[j]
IV, C

T
:=

(
cos

(
(2s+ 1)(2l + 1)π

4N [j]

))ν[j]C , n[j]−1

s=µ
[j]
C , l=0

is the restriction of the cosine matrix of type IV without the normalization factors to the
n[j] rows indexed by the column support S[j]

C of A[j] and the first n[j] rows.

Our next goal is to show that T [j]
II, R and T

[j]
IV, C are invertible. Both of these claims

can be proven by employing Chebyshev polynomials. Recall that by Lemma 4.14 (v) the
Chebyshev polynomial of the first kind of degree n can be written as

Tn(x) = cos(n arccosx) =

n∑
l=0

αn, l x
l

for x ∈ R with |x| ≤ 1 and n ∈ N0. Further, Lemma 4.14 (vi) yields that

Tk (tn, l) = cos

(
k(2l + 1)π

2n

)
∀ l ∈ {0, . . . , n− 1}, k ∈ N0.

Combining this with the definition of T
[j]
II, R and the coefficient representation of the

Chebyshev polynomials, and setting αk, i := 0 for all i ∈ {k + 1, . . . ,m[j] − 1}, we find

T
[j]
II, R =

(
Tk

(
tM [j], r

))m[j]−1, ν
[j]
R

k=0, r=µ
[j]
R

=

(
k∑
i=0

αk, i · tM [j], r
i

)m[j]−1, ν
[j]
R

k=0, r=µ
[j]
R

= (αk, i)
m[j]−1
k, i=0 ·

(
tM [j], r

i
)m[j]−1, ν

[j]
R

i=0, r=µ
[j]
R

=


α0, 0 0 0 . . . 0
α1, 0 α1, 1 0 . . . 0
...

...
...

...
αm[j]−1, 0 αm[j]−1, 1 αm[j]−1, 2 . . . αm[j]−1,m[j]−1





(1)T
r∈S[j]

R(
tM [j], r

)T
r∈S[j]

R

...(
tM [j], r

m[j]−1
)T
r∈S[j]

R


=: X

[j]
R ·V

((
tM [j], r

)
r∈S[j]

R

)T
. (7.15)

The diagonal matrix X
[j]
R is invertible by (6.20). Further, we have that

(2r + 1)π

2M [j]
∈ (0, π)
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for all r ∈ S[j]
R ⊆ I0,M [j]−1. Hence, we obtain that

tM [j], r = cos

(
(2r + 1)π

2M [j]

)
∈ (−1, 1),

with tM [j], r 6= tM [j], s for r 6= s, r, s ∈ S[j]
R , as the cosine is bijective on (0, π). Conse-

quently, V
((

tM [j], r

)
r∈S[j]

R

)
is invertible by Lemma 4.11, and (7.15) yields that T

[j]
II, R

can also be inverted.

We already proved in Section 6.3.2, (6.21), that

T
[j]
IV, C =

(
T2l+1

(
tN [j+1], s

))n[j]−1

l=0, s∈S[j]
C

= (α2l+1, 2r+1)n
[j]−1
l, r=0

(
tN [j+1], s

2i+1
)n[j]−1

i=0, s∈S[j]
C

=: X
[j]
odd, C ·V

odd
((

tN [j+1], s

)
s∈S[j]

C

)T
. (7.16)

Since S[j]
C ⊆ I0, N [j]−1, both matrices in (7.16) and thus T [j]

IV, C are invertible.

Let us now assume that all entries of
((
a[j+1]

)ÎI
2k, 2l+1

)m[j]−1, n[j]−1

k, l=0

are zero. Then we

obtain from (7.14), (7.15) and (7.16) that

0 =

((
a[j+1]

)ÎI

2k, 2l+1

)m[j]−1, n[j]−1

k, l=0

=
1√

M [j]N [j]
diag

(
(εM [j](k))m

[j]−1
k=0

)
·X[j]

R ·V
((

tM [j], r

)
r∈S[j]

R

)T
·
((

ã
[j+1]
(0,1)

)
r, s

)
r∈S[j]

R , s∈S[j]
C

·Vodd
((

tN [j+1], s

)
s∈S[j]

C

)
·X[j]

odd, C
T

⇔ 0 =

((
ã

[j+1]
(0,1)

)
r, s

)
r∈S[j]

R , s∈S[j]
C

, (7.17)

since all other matrices are invertible. However, we have j ∈ {L, . . . , J − 1} \ {j1, j2, j3},
i.e., only one quadrant of A[j+1] contains nonzero entries. Theorem 7.14, case D and
(7.13) yield that Ã[j+1]

(0,1) = A[j] or Ã[j+1]
(0,1) = −A[j]. Consequently, (7.17) is only possible if

A[j] = 0, which is a contradiction to (7.5) and (7.6) and the fact that A 6= 0 has a block
support of sizem×n. Thus, there exists an index pair

(
k(0,1), l(0,1)

)
∈ I0,m[j]−1×I0, n[j]−1

such that
(
a[j+1]

)ÎI
2k(0,1), 2l(0,1)+1

6= 0.

(ii) For
((
a[j+1]

)ÎI
2k+1, 2l

)m[j]−1, n[j]−1

k, l=0

we can proceed analogously. Equation (7.1) in

Remark 7.7 yields that((
a[j+1]

)ÎI

2k+1, 2l

)m[j]−1, n[j]−1

k, l=0

=
1

2
CIV
M [j]Ã

[j+1]
(1,0) C

II
N [j]

T
, (7.18)
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where
Ã

[j+1]
(1,0)

:= A
[j+1]
(0,0) − JM [j]A

[j+1]
(1,0) +

(
A

[j+1]
(0,1) − JM [j]A

[j+1]
(1,1)

)
JN [j] . (7.19)

We restrict (7.18) to the first m[j] rows and the first n[j] columns as well, obtaining

((
a[j+1]

)ÎI

2k+1, 2l

)m[j]−1, n[j]−1

k, l=0

=
1√

M [j]N [j]

 ν
[j]
R∑

r=µ
[j]
R

ν
[j]
C∑

s=µ
[j]
C

cos

(
(2k + 1)(2r + 1)π

4M [j]

)(
ã

[j+1]
(1,0)

)
r, s

· εN [j](l) cos

(
(2s+ 1)lπ

2N [j]

))m[j]−1, n[j]−1

k, l=0

=:
1√

M [j]N [j]
T

[j]
IV, R

((
ã

[j+1]
(1,0)

)
r, s

)ν[j]R , ν
[j]
C

r=µ
[j]
R , s=µ

[j]
C

T
[j]
II, C

T
diag

(
(εN [j](l))

n[j]−1
l=0

)
, (7.20)

where

T
[j]
II, C

T
:=

(
cos

(
(2s+ 1)lπ

2N [j]

))ν[j]C −1, n[j]−1

s=µ
[j]
C , l=0

is the restriction of the transposed cosine matrix of type II without the normalization
factors to the n[j] rows indexed by the column support S[j]

C of A[j] and the first n[j]

columns. The matrix

T
[j]
IV, R :=

(
cos

(
(2k + 1)(2r + 1)π

4M [j]

))m[j]−1, ν
[j]
R

k=0, r=µ
[j]
R

is the restriction of the cosine matrix of type IV without the normalization factors to
the first m[j] rows and the m[j] columns indexed by the row support S[j]

R of the reflected
periodization A[j]. Similar to part (i) of the proof we obtain the factorizations

T
[j]
II, C = (αl, i)

n[j]−1
l, i=0 ·

(
tN [j], s

i
)n[j]−1, ν

[j]
C

i=0, s=µ
[j]
C

=: X
[j]
C ·V

((
tN [j], s

)
s∈S[j]

C

)T
. (7.21)

and

T
[j]
IV, R = (α2k+1, 2i+1)m

[j]−1
k, i=0 ·

(
tM [j+1], r

2i+1
)m[j]−1

i=0, r∈S[j]
R

=: X
[j]
odd, R ·V

odd
((

tM [j+1], r

)
r∈S[j]

R

)T
, (7.22)

By analogous arguments as in part (i) of the proof, T[j]
IV, R and T

[j]
II, C are invertible.

Let us now assume that
((
a[j+1]

)ÎI
2k+1, 2l

)m[j]−1, n[j]−1

k, l=0

has no nonzero entries. Then
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(7.20), (7.21) and (7.22) yield that

0 =

((
a[j+1]

)ÎI

2k+1, 2l

)m[j]−1, n[j]−1

k, l=0

=
1√

M [j]N [j]
X

[j]
odd, R ·V

odd
((

tM [j+1], r

)
r∈S[j]

R

)T
·
((

ã
[j+1]
(1,0)

)
r, s

)
r∈S[j]

R , s∈S[j]
C

V

((
tN [j], s

)
s∈S[j]

C

)
X

[j]
C

T
diag

(
(εN [j](l))

n[j]−1
l=0

)
⇔ 0 =

((
ã

[j+1]
(1,0)

)
r, s

)
r∈S[j]

R , s∈S[j]
C

. (7.23)

However, we are in the case where j ∈ {L, . . . , J − 1} \ {j1, j2, j3}, so Ã
[j+1]
(1,0) = A[j]

or Ã
[j+1]
(1,0) = −A[j] by (7.19). Consequently, (7.23) is only possible if A[j] = 0, which

is a contradiction to (7.5) and (7.6) and the fact that A 6= 0 has a block support of
size m × n. Thus, there exists an index pair

(
k(1,0), l(1,0)

)
∈ I0,m[j]−1 × I0, n[j]−1 with(

a[j+1]
)ÎI

2k(1,0)+1, 2l(1,0)
6= 0.

Remark 7.16 For an efficient and stable implementation of the recovery procedure for
case D of Theorem 7.14 using Lemma 7.8 we set(

k(0,1), l(0,1)

)
:= argmax

(k, l)∈I
0,m[j]−1

×I
0, n[j]−1

{∣∣∣2J−j−1aÎI
2J−jk, 2J−j−1(2l+1)

∣∣∣}
and (

k(1,0), l(1,0)

)
:= argmax

(k, l)∈I
0,m[j]−1

×I
0, n[j]−1

{∣∣∣2J−j−1aÎI
2J−j−1(2k+1), 2J−j l

∣∣∣} .
♦

The following theorem, a 2-dimensional analog to Theorem 5.23, shows how A[j+1] can

be recovered from A[j] and two nonzero entries of
(
A[j+1]

)ÎI.
Theorem 7.17 Let M = 2JR and N = 2JC with JR, JC ∈ N, and let J := min {JR, JC}.
Let A ∈ RM×N have a block support of size m×n with known bounds bR ≥ m and bC ≥ n,
and assume that A satisfies (7.5) and (7.6). Let L := max {dlog2 bRe+ 1, dlog2 bCe+ 1}
and j ∈ {L, . . . , J−1}\{j1, j2, j3} with j1, j2 and j3 as in (7.7), (7.8) and (7.9). Suppose
that we have access to all entries of AÎI. Then A[j+1] can be recovered from A[j], one

nonzero entry of
(
a

[j+1]
2k, 2l+1

)m[j]−1, n[j]−1

k, l=0
and one nonzero entry of

(
a

[j+1]
2k+1, 2l

)m[j]−1, n[j]−1

k, l=0
.

Proof. Let A[j] have the block support S[j] = S
[j]
R × S

[j]
C of size m[j] × n[j]. It follows

from Theorem 7.14, case D that there are four matrices of size M [j+1] × N [j+1] arising
from repeatedly applying the reflected periodization to the block sparse matrix A that
can have the given reflected periodization A[j], namely

U(0,0) =

(
A[j] 0
0 0

)
, U(0,1) =

(
0 A[j]JN [j]

0 0

)
,
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U(1,0) =

(
0 0

JM [j]A[j] 0

)
, U(1,1) =

(
0 0

0 JM [j]A[j]JN [j]

)
.

We compare the DCT-IIs of U(0,0), U(0,1), U(1,0) and U(1,1). Remark 7.7 yields that

PM [j+1]

(
U(0,0)

)ÎI
PN [j+1]

T =
1

2

CII
M [j]A

[j]CII
N [j]

T
CII
M [j]A

[j]CIV
N [j]

CIV
M [j]A

[j]CII
N [j]

T
CIV
M [j]A

[j]CIV
N [j]

 , (7.24)

PM [j+1]

(
U(0,1)

)ÎI
PN [j+1]

T =
1

2

CII
M [j]A

[j]CII
N [j]

T −CII
M [j]A

[j]CIV
N [j]

CIV
M [j]A

[j]CII
N [j]

T −CIV
M [j]A

[j]CIV
N [j]

 ,

PM [j+1]

(
U(1,0)

)ÎI
PN [j+1]

T =
1

2

 CII
M [j]A

[j]CII
N [j]

T
CII
M [j]A

[j]CIV
N [j]

−CIV
M [j]A

[j]CII
N [j]

T −CIV
M [j]A

[j]CIV
N [j]

 ,

PM [j+1]

(
U(1,1)

)ÎI
PN [j+1]

T =
1

2

 CII
M [j]A

[j]CII
N [j]

T −CII
M [j]A

[j]CIV
N [j]

−CIV
M [j]A

[j]CII
N [j]

T
CIV
M [j]A

[j]CIV
N [j]

 .

Consequently, using (7.3), we find(
u(0,1)

)ÎI

2k, 2l+1
= −

(
u(0,0)

)ÎI

2k, 2l+1
and

(
u(0,1)

)ÎI

2k+1, 2l
=
(
u(0,0)

)ÎI

2k+1, 2l
, (7.25)(

u(1,0)
)ÎI

2k, 2l+1
=
(
u(0,0)

)ÎI

2k, 2l+1
and

(
u(1,0)

)ÎI

2k+1, 2l
= −

(
u(0,0)

)ÎI

2k+1, 2l
, (7.26)(

u(1,1)
)ÎI

2k, 2l+1
= −

(
u(0,0)

)ÎI

2k, 2l+1
and

(
u(1,1)

)ÎI

2k+1, 2l
= −

(
u(0,0)

)ÎI

2k+1, 2l
, (7.27)

for all k ∈
{

0, . . . ,M [j] − 1
}

and l ∈
{

0, . . . , N [j] − 1
}
. As either U[0,0], U[0,1], U[1,0]

or U[1,1] has to be A[j+1], we can determine which of these four matrices is the correct

one by comparing nonzero entries
(
a[j+1]

)ÎI
2k, 2l+1

and
(
a[j+1]

)ÎI
2k+1, 2l

to the corresponding
entries of U(0,0). Hence, we require(

a[j+1]
)ÎI

2k(0,1), 2l(0,1)+1
= 2J−j−1aÎI

2J−jk(0,1), 2J−j−1(2l(0,1)+1) 6= 0 and(
a[j+1]

)ÎI

2k(1,0)+1, 2l(1,0)
= 2J−j−1aÎI

2J−j−1(2k(1,0)+1), 2J−j l(1,0)
6= 0

for some indices k(0,1), k(1,0) ∈ I0,M [j]−1 and l(0,1), l(1,0) ∈ I0, N [j]−1. By Lemma 7.15,

both of these entries can be found by examining O
(
m[j]n[j]

)
entries of AÎI. Further, we

also need to compute the corresponding entries of
(
U(0,0)

)ÎI. Since the support of size
m[j] × n[j] of A[j] and thus of U(0,0) is known, we obtain that(

u(0,0)
)ÎI

2k(0,1), 2l(0,1)+1
=
(
CII
M [j]U

(0,0)CII
N [j]

T
)

2k(0,1), 2l(0,1)+1

=

ν
[j]
R∑

r=µ
[j]
R

ν
[j]
C∑

s=µ
[j]
C

(
CII
M [j]

)
2k(0,1), r

u(0,0)
r, s

(
CII
N [j]

T
)
s, 2l(0,1)+1

and
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(
u(0,0)

)ÎI

2k(1,0)+1, 2l(1,0)
=
(
CII
M [j]U

(0,0)CII
N [j]

T
)

2k(1,0)+1, 2l(1,0)

=

ν
[j]
R∑

r=µ
[j]
R

ν
[j]
C∑

s=µ
[j]
C

(
CII
M [j]

)
2k(1,0)+1, r

u(0,0)
r, s

(
CII
N [j]

T
)
s, 2l(1,0)

,

so the required entries of
(
U(0,0)

)ÎI can be calculated in O
(
m[j]n[j]

)
time as well.

By (7.24), we have that A[j+1] = U(0,0) if(
u(0,0)

)ÎI

2k(0,1), 2l(0,1)+1

=
(
a[j+1]

)ÎI

2k(0,1), 2l(0,1)+1

and(
u(0,0)

)ÎI

2k(1,0)+1, 2l(1,0)
=
(
a[j+1]

)ÎI

2k(1,0)+1, 2l(1,0)
,

by (7.25) that A[j+1] = U(0,1) if(
u(0,1)

)ÎI

2k(0,1), 2l(0,1)+1

= −
(
a[j+1]

)ÎI

2k(0,1), 2l(0,1)+1

and(
u(0,1)

)ÎI

2k(1,0)+1, 2l(1,0)
=
(
a[j+1]

)ÎI

2k(1,0)+1, 2l(1,0)
,

by (7.26) that A[j+1] = U(1,0) if(
u(1,0)

)ÎI

2k(0,1), 2l(0,1)+1

=
(
a[j+1]

)ÎI

2k(0,1), 2l(0,1)+1

and(
u(1,0)

)ÎI

2k(1,0)+1, 2l(1,0)
= −

(
a[j+1]

)ÎI

2k(1,0)+1, 2l(1,0)
,

and by (7.27) that A[j+1] = U(1,1) if(
u(1,1)

)ÎI

2k(0,1), 2l(0,1)+1

= −
(
a[j+1]

)ÎI

2k(0,1), 2l(0,1)+1

and(
u(1,1)

)ÎI

2k(1,0)+1, 2l(1,0)
= −

(
a[j+1]

)ÎI

2k(1,0)+1, 2l(1,0)
.

Numerically, we define

δ−(0,1)
:=

∣∣∣∣(u(0,0)
)ÎI

2k(0,1), 2l(0,1)+1
−
(
a[j+1]

)ÎI

2k(0,1), 2l(0,1)+1

∣∣∣∣ ,
δ+

(0,1)
:=

∣∣∣∣(u(0,0)
)ÎI

2k(0,1), 2l(0,1)+1
+
(
a[j+1]

)ÎI

2k(0,1), 2l(0,1)+1

∣∣∣∣ ,
δ−(1,0)

:=

∣∣∣∣(u(0,0)
)ÎI

2k(1,0)+1, 2l(1,0)
−
(
a[j+1]

)ÎI

2k(1,0)+1, 2l(1,0)

∣∣∣∣ ,
δ+

(1,0)
:=

∣∣∣∣(u(0,0)
)ÎI

2k(1,0)+1, 2l(1,0)
+
(
a[j+1]

)ÎI

2k(1,0)+1, 2l(1,0)

∣∣∣∣ ,

234



7.3 Iterative Sparse 2D Recovery Procedures

and set

A[j+1] :=


U(0,0) if δ−(0,1) < δ+

(0,1) and δ−(1,0) < δ+
(1,0),

U(0,1) if δ−(0,1) > δ+
(0,1) and δ−(1,0) < δ+

(1,0),

U(1,0) if δ−(0,1) < δ+
(0,1) and δ−(1,0) > δ+

(1,0),

U(1,1) if δ−(0,1) > δ+
(0,1) and δ−(1,0) > δ+

(1,0).

Then we obtain for the first row and column support indices that

µ
[j+1]
R :=

{
µ

[j]
R if A[j+1] = U(0,0) or A[j+1] = U(0,1),

M [j+1] − 1− ν[j]
R if A[j+1] = U(1,0) or A[j+1] = U(1,1),

(7.28)

and

µ
[j+1]
C :=

{
µ

[j]
C if A[j+1] = U(0,0) or A[j+1] = U(1,0),

N [j+1] − 1− ν[j]
C if A[j+1] = U(0,1) or A[j+1] = U(1,1).

(7.29)

Recall that we have already shown that m[j+1] = m[j] and n[j+1] = n[j] in Theorem 7.14,
case D.

7.3.2 Recovery Procedure for Case A: Colliding Rows and Columns

If j = j1, with j1 as in (7.7), the support S[j] of A[j] is contained in the last bR rows and
the last bC columns, i.e.,

S[j] ⊆ IM [j]−bR,M [j]−1 × IN [j]−bC , N [j]−1.

We know from Theorem 7.14, case A that

S[j+1] ( IM [j]−bR,M [j]+bR−1 × IN [j]−bC , N [j]+bC−1,

and that the support of A[j+1] contains entries from all four quadrants of A[j+1]. Further,
it is possible that nonzero entries of A[j+1] have been added to compute A[j], so A[j] and
A[j+1] do not necessarily have the same nonzero entries. The support S[j] of A[j] has
size m[j] × n[j] with m[j] ≤ m ≤ bR and n[j] ≤ n ≤ bC . Analogously to Section 6.3.1, it
follows from Definition 7.5 that the supports of A[j+1]

(0,0) , A
[j+1]
(0,1) , A

[j+1]
(1,0) and A

[j+1]
(1,1) have at

most size m̃[j] × ñ[j], where

m̃[j] := M [j] − µ[j]
R ≤ bR and ñ[j] := N [j] − µ[j]

C ≤ bC .

See Figure 7.10 for an illustration.
Consequently, we can restrict A[j] and the four quadrants of A[j+1] to matrices of size

2K̃R−1 × 2K̃C−1, where m̃[j] ≤ 2K̃R−1 and ñ[j] ≤ 2K̃C−1, which take all nonzero entries
into account. Then it suffices to recover these restrictions.
The following theorem enables us to compute A[j+1] from A[j] and AÎI.

Theorem 7.18 Let M = 2JR and N = 2JC with JR, JC ∈ N, and let J := min {JR, JC}.
Let A ∈ RM×N have a block support of size m×n with known bounds bR ≥ m and bC ≥ n,
and assume that A satisfies (7.5) and (7.6). Let L := max {dlog2 bRe+ 1, dlog2 bCe+ 1}
and j = j1 ∈ {L, . . . , J − 1} as in (7.7). Suppose that we have access to all entries of
AÎI. Then A[j+1] can be recovered from A[j] and 8 · 2K̃R−1 · 2K̃C−1 entries of AÎI.
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A[j]

m[j]

n[j]

N [j] − bC

M [j] − bR

A[j+1]

m̃[j]

ñ[j]

µ
[j]
R

µ
[j]
C

Figure 7.10: Illustration of the support of A[j] and a possibility for the support of A[j+1]

Proof. Recall that by (7.1)

PM [j+1]

(
A[j+1]

)ÎI
PN [j+1]

T =
1

2

 CII
M [j]A

[j]CII
N [j]

T
CII
M [j]Ã

[j+1]
(0,1) C

IV
N [j]

CIV
M [j]Ã

[j+1]
(1,0) C

II
N [j]

T
CIV
M [j]Ã

[j+1]
(1,1) C

IV
N [j]

 , (7.30)

where

A[j] = Ã
[j+1]
(0,0) = A

[j+1]
(0,0) + JM [j]A

[j+1]
(1,0) +

(
A

[j+1]
(0,1) + JM [j]A

[j+1]
(1,1)

)
JN [j] ,

Ã
[j+1]
(0,1) = A

[j+1]
(0,0) + JM [j]A

[j+1]
(1,0) −

(
A

[j+1]
(0,1) + JM [j]A

[j+1]
(1,1)

)
JN [j] ,

Ã
[j+1]
(1,0) = A

[j+1]
(0,0) − JM [j]A

[j+1]
(1,0) +

(
A

[j+1]
(0,1) − JM [j]A

[j+1]
(1,1)

)
JN [j] ,

Ã
[j+1]
(1,1) = A

[j+1]
(0,0) − JM [j]A

[j+1]
(1,0) −

(
A

[j+1]
(0,1) − JM [j]A

[j+1]
(1,1)

)
JN [j] .

(7.31)

As A[j] = Ã
[j+1]
(0,0) is known from the previous iteration step and we can only observe(

A[j+1]
)ÎI from the given data AÎI, we have to recover Ã[j+1]

(0,1) , Ã
[j+1]
(1,0) and Ã

[j+1]
(1,1) in order

to be able to compute A
[j+1]
(0,0) , A

[j+1]
(0,1) , A

[j+1]
(1,0) and A

[j+1]
(1,1) . Solving the equation system

(7.31) for the four quadrants of A[j+1], we find that

A
[j+1]
(0,0) =

1

4

(
A[j] + Ã

[j+1]
(0,1) + Ã

[j+1]
(1,0) + Ã

[j+1]
(1,1)

)
,

A
[j+1]
(0,1) =

1

4

(
A[j] − Ã

[j+1]
(0,1) + Ã

[j+1]
(1,0) − Ã

[j+1]
(1,1)

)
JN [j] ,

A
[j+1]
(1,0) =

1

4
JM [j]

(
A[j] + Ã

[j+1]
(0,1) − Ã

[j+1]
(1,0) − Ã

[j+1]
(1,1)

)
,

A
[j+1]
(1,1) =

1

4
JM [j]

(
A[j] − Ã

[j+1]
(0,1) − Ã

[j+1]
(1,0) + Ã

[j+1]
(1,1)

)
JN [j] .

(7.32)
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We now investigate the support of the four quadrants of the matrix

Ã[j+1] :=

 A[j] Ã
[j+1]
(0,1)

Ã
[j+1]
(1,0) Ã

[j+1]
(1,1)

 .

Note that by (7.31) and the non-cancellation conditions (7.5) and (7.6), all quadrants of
Ã[j+1] have the same support, namely the support S[j] of A[j]. Let us assume that the
support of A[j] is of size m[j] × n[j] with first row and column support indices µ[j]

R and
µ

[j]
C . As j = j1, Lemma 7.12, case (i) and Theorem 7.14, case A yield that

S[j] ⊆ I
µ
[j]
R ,M

[j]−1
× I

µ
[j]
C , N

[j]−1
⊆ IM [j]−bR,M [j]−1 × IN [j]−bC , N [j]−1, (7.33)

so the support of all four quadrants of Ã[j+1] is contained in the direct product of two
intervals on the right-hand side. Analogously to Section 6.3.1, we set

m̃[j] := M [j] − µ[j]
R ≤ bR and ñ[j] := N [j] − µ[j]

C ≤ bC .

Both intervals can be increased to lengths that are powers of 2 by defining

K̃R :=
⌈
log2 m̃

[j]
⌉

+ 1 and K̃C :=
⌈
log2 ñ

[j]
⌉

+ 1.

Then we find that

S[j] ⊆ IM [j]−m̃[j],M [j]−1 × IN [j]−ñ[j], N [j]−1

⊆ I
M [j]−2K̃R−1,M [j]−1

× I
N [j]−2K̃C−1, N [j]−1

, (7.34)

and it follows from Definition 7.5 and (7.33) that

S[j+1] ( IM [j]−m̃[j],M [j]+m̃[j]−1 × IN [j]−ñ[j], N [j]+ñ[j]−1

⊆ I
M [j]−2K̃R−1,M [j]+2K̃R−1−1

× I
N [j]−2K̃C−1, N [j]+2K̃C−1−1

. (7.35)

Note that we always have m̃[j] ≥ m[j] and ñ[j] ≥ n[j]. If there is no collision in the rows
or columns, respectively, inequality is possible. By (7.34), we obtain

S
(
Ã

[j+1]
(0,1)

)
, S
(
Ã

[j+1]
(1,0)

)
, S
(
Ã

[j+1]
(1,1)

)
⊆ I

M [j]−2K̃R−1,M [j]−1
× I

N [j]−2K̃C−1, N [j]−1

if we denote by S(B) the support of a matrix B, see also Figure 7.11.
For incorporating all entries of Ã[j+1] that are influenced by possibly nonzero entries of

A[j+1] it suffices to restrict the four quadrants of Ã[j+1] to matrices of size 2K̃R−1×2K̃C−1,

B̃
[j+1]
(r,s)

:=
(
ã

[j+1]
k, l

)M [j]−1+rM [j], N [j]−1+sN [j]

k=M [j]−2K̃R−1+rM [j], l=N [j]−2K̃C−1+sN [j]

for all r, s ∈ {0, 1}, and just recover these restrictions, analogously to Section 6.3.1. Note
that since A[j] = Ã

[j+1]
(0,0) , we have that B[j] := B̃

[j+1]
(0,0) is a restriction of A[j] to its last

2K̃R−1 rows and 2K̃C−1 columns.

237



7 Real 2D Block Sparse Fast IDCT-II

Ã[j+1]

B̃
[j+1]
(0,0) B̃

[j+1]
(0,1)

B̃
[j+1]
(1,0) B̃

[j+1]
(1,1)

Figure 7.11: Illustration of the support of Ã[j+1] and the choice of B̃[j+1]
(0, 0) , B̃

[j+1]
(0, 1) , B̃

[j+1]
(1, 0)

and B̃
[j+1]
(1, 1)

Furthermore, by (7.35), we also have to restrict the four quadrants ofA[j+1] to matrices
of size 2K̃R−1 × 2K̃C−1 by setting

B
[j+1]
(0,0)

:=
(
a

[j+1]
k, l

)M [j]−1, N [j]−1

k=M [j]−2K̃R−1, l=N [j]−2K̃C−1
,

B
[j+1]
(0,1)

:=
(
a

[j+1]
k, l

)M [j]−1, N [j]+2K̃C−1−1

k=M [j]−2K̃R−1, l=N [j]
,

B
[j+1]
(1,0)

:=
(
a

[j+1]
k, l

)M [j]+2K̃R−1−1, N [j]−1

k=M [j], l=N [j]−2K̃C−1
,

B
[j+1]
(0,0)

:=
(
a

[j+1]
k, l

)M [j]+2K̃R−1−1, N [j]+2K̃C−1−1

k=M [j], l=N [j]
.

These four matrices take all of the possibly nonzero entries of A[j+1] into account, similar
to the vectors z[j+1]

(0) and z
[j+1]
(1) in Section 6.3.1. Then (7.31) and (7.32) also hold for the

restrictions of the quadrants of A[j+1] and Ã[j+1], respectively. Hence, our goal is to

recover B̃[j+1]
(0,1) , B̃

[j+1]
(1,0) and B̃

[j+1]
(1,1) from

(
A[j+1]

)ÎI and A[j], using as few arithmetical op-

erations and samples from AÎI as possible. By (7.32) and B[j], which is completely given
by A[j], we can then compute B

[j+1]
(0,0) , B

[j+1]
(0,1) , B

[j+1]
(1,0) and B

[j+1]
(1,1) . From these restrictions

we finally obtain the sought-after matrix A[j+1].

(i) Computation of B̃[j+1]
(0,1) .

For the computation of B̃[j+1]
(0,1) we proceed analogously to (6.8) in Section 6.3.1. Recall

that by definition of B̃[j+1]
(0,1) , we have that

S
(
B̃

[j+1]
(0,1)

)
⊆ I

M [j]−2K̃R−1,M [j]−1
× I

N [j]−2K̃C−1, N [j]−1
.
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It follows from (7.30) and (7.3) that

√
M [j]N [j]

((
a[j+1]

)ÎI

2k, 2l+1

)M [j]−1, N [j]−1

k, l=0

=

√
M [j]N [j]

2
CII
M [j]Ã

[j+1]
(0,1) C

IV
N [j]

=

M [j]−1∑
r′=0

N [j]−1∑
s′=0

εM [j](k) cos

(
k(2r′ + 1)π

2M [j]

)(
ã

[j+1]
(0,1)

)
r′, s′

· cos

(
(2s′ + 1)(2l + 1)π

4N [j]

))M [j]−1, N [j]−1

k, l=0

=

 M [j]−1∑
r′=M [j]−2K̃R−1

N [j]−1∑
s′=N [j]−2K̃C−1

εM [j](k) cos

(
k(2r′ + 1)π

2M [j]

)(
ã

[j+1]
(0,1)

)
r′, s′

· cos

(
(2s′ + 1)(2l + 1)π

4N [j]

))M [j]−1, N [j]−1

k, l=0

=

2K̃R−1−1∑
r=0

2K̃C−1−1∑
s=0

εM [j](k) cos

(
k
(
2M [j] − (2r + 1)

)
π

2M [j]

)(
J

2K̃R−1B̃
[j+1]
(0,1) J2K̃C−1

)
r, s

· cos

((
2N [j] − (2s+ 1)

)
(2l + 1)π

4N [j]

))M [j]−1, N [j]−1

k, l=0

=

2K̃R−1−1∑
r=0

2K̃C−1−1∑
s=0

εM [j](k)

(
cos(kπ) cos

(
k(2r + 1)π

2M [j]

)
+ sin(kπ) sin

(
k(2r + 1)π

2M [j]

))

·
(
J

2K̃R−1B̃
[j+1]
(0,1) J2K̃C−1

)
r, s
· (−1)l sin

(
(2s+ 1)(2l + 1)π

4N [j]

))M [j]−1, N [j]−1

k, l=0

=

2K̃R−1−1∑
r=0

2K̃C−1−1∑
s=0

εM [j](k)(−1)k cos

(
k(2r + 1)π

2M [j]

)(
J

2K̃R−1B̃
[j+1]
(0,1) J2K̃C−1

)
r, s

·(−1)l sin

(
(2s+ 1)(2l + 1)π

4N [j]

))M [j]−1, N [j]−1

k, l=0

, (7.36)

where we set r := M [j]−1−r′ and s := N [j]−1−s′ in the third step, and use (6.8) in the
fourth step. Since B̃

[j+1]
(0,1) is of size 2K̃R−1 × 2K̃C−1, it suffices to restrict (7.36) to 2K̃R−1

rows and 2K̃C−1 columns in order to recover the matrix. From Section 6.3.1 we already
know how to restrict the sine terms in (7.36), which correspond to columns. We choose
the columns indexed by 2lq+1, where lq := N [j]2−K̃C (2q+1) for q ∈

{
0, . . . , 2K̃C−1 − 1

}
.

We restrict the rows, which correspond to the cosine terms, by only considering the ones
indexed by 2k′′p , where we define k′′p := M [j]2−K̃R+1p, p ∈

{
0, . . . , 2K̃R−1 − 1

}
. As
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k′′p ∈
{

0, . . . ,M [j] − 1
}
for all p, we find that

√
M [j]N [j]

((
a[j+1]

)ÎI

2k′′p , 2lq+1

)2K̃R−1−1, 2K̃C−1−1

p, q=0

=

(
(−1)k

′′
p εM [j]

(
k′′p
)

cos

(
M [j]2−K̃R+1p(2r + 1)π

2M [j]

))2−K̃R−1−1

p, r=0

J
2K̃R−1B̃

[j+1]
(0,1) J2K̃C−1

·

(−1)N
[j]2−K̃C sin

(2s+ 1)
(
N [j]2−K̃C+1(2q + 1) + 1

)
π

4N [j]

2K̃C−1−1

s, q=0

= (−1)N
[j]2−K̃C

(
ε

2K̃R−1(p) cos

(
p(2r + 1)π

2 · 2K̃R−1

))2K̃R−1−1

p, r=0

J
2K̃R−1B̃

[j+1]
(0,1) J2K̃C−1

·
(

cos

(
(2s+ 1)π

4N [j]

)
sin

(
(2s+ 1)(2q + 1)π

4 · 2K̃C−1

)

+ sin

(
(2s+ 1)π

4N [j]

)
cos

(
(2s+ 1)(2q + 1)π

4 · 2K̃C−1

))2K̃C−1−1

s, q=0

, (7.37)

since
2K̃R−1 ≤ 2L−1 = M [L] · 2J−JR−1 ≤M [j] · 2−1

for all j ∈ {L, . . . , J − 1}. Thus

k′′p = M [j]2−K̃R+1p = 2αp

with α ∈ N, α ≥ 1. Hence, we have that (−1)k
′′
p = 1 and εM [j]

(
k′′p
)

= ε
2K̃R−1(p) for all

p. Defining the vectors

c
[j]
C :=

(
cos

(
(2s+ 1)π

4N [j]

))2K̃C−1−1

s=0

and s
[j]
C :=

(
sin

(
(2s+ 1)π

4N [j]

))2K̃C−1−1

s=0

,

analogously to Section 6.3.1, and using Theorem 4.4 (ii), (7.37) can be written as

√
M [j]N [j]2−K̃R−K̃C+4 (−1)N

[j]2−K̃C
((

a[j+1]
)ÎI

2k′′p , 2lq+1

)2K̃R−1−1, 2K̃C−1−1

p, q=0

= CII

2K̃R−1
J

2K̃R−1B̃
[j+1]
(0,1) J2K̃C−1

(
diag

(
s

[j]
C

)
CIV

2K̃C−1
+ diag

(
c

[j]
C

)
D

2K̃C−1C
IV

2K̃C−1
J

2K̃C−1

)
= CII

2K̃R−1

(
J

2K̃R−1B̃
[j+1]
(0,1) J2K̃C−1 J

2K̃R−1B̃
[j+1]
(0,1) J2K̃C−1

)
·

diag
(
s

[j]
C

)
diag

(
c

[j]
C

)
D

2K̃C−1

 CIV

2K̃C−1

CIV

2K̃C−1
J

2K̃C−1

 . (7.38)

Since the last matrix in (7.38) is not a square matrix, this means that we did not obtain
an invertible matrix factorization. Analogously to Section 6.3.1, we solve this problem

by considering 2K̃C−1 additional columns of
((
a[j+1]

)ÎI
2k, 2l+1

)M [j]−1, N [j]−1

k, l=0

. We choose
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the same rows as before and the columns corresponding to the indices 2l′q + 1, where

l′q := N [j]2−K̃C (2q + 1)− 1, q ∈
{

0, . . . , 2K̃C−1 − 1
}
. Then (6.11) and (7.36) yield

√
M [j]2−K̃R+2

((
a[j+1]

)ÎI

2k′′p , 2l
′
q+1

)2K̃R−1−1, 2K̃C−1−1

p, q=0

= (−1)l
′
qCII

2K̃R−1
J

2K̃R−1B̃
[j+1]
(0,1) J2K̃C−1

·

sin

(2s+ 1)
(
N [j]2−K̃C+1(2q + 1)− 1

)
π

4N [j]

2K̃C−1−1

s, q=0

=
(−1)N

[j]2−K̃C√
N [j]2−K̃C+2

CII

2K̃R−1

(
J

2K̃R−1B̃
[j+1]
(0,1) J2K̃C−1 J

2K̃R−1B̃
[j+1]
(0,1) J2K̃C−1

)

·

diag
(
s

[j]
C

)
diag

(
c

[j]
C

)
D

2K̃C−1

 CIV

2K̃C−1

−CIV

2K̃C−1
J

2K̃C−1

 . (7.39)

Let us denote the matrices of required entries of AÎI by

E
(0,1)
(0,0)

:=

((
a[j+1]

)ÎI

2k′′p , 2lq+1

)2K̃R−1−1, 2K̃C−1−1

p, q=0

and

E
(0,1)
(0,1)

:=

((
a[j+1]

)ÎI

2k′′p , 2l
′
q+1

)2K̃R−1−1, 2K̃C−1−1

p, q=0

.

If we combine (7.38) and (7.39), we obtain

(−1)N
[j]2−K̃C

√
M [j]N [j]2−K̃R−K̃C+4

(
E

(0,1)
(0,0) E

(0,1)
(0,1)

)
= CII

2K̃R−1

(
J

2K̃R−1B̃
[j+1]
(0,1) J2K̃C−1 J

2K̃R−1B̃
[j+1]
(0,1) J2K̃C−1

)
·

diag
(
s

[j]
C

)
diag

(
c

[j]
C

)
D

2K̃C−1

 CIV

2K̃C−1
CIV

2K̃C−1

CIV

2K̃C−1
J

2K̃C−1 −CIV

2K̃C−1
J

2K̃C−1


= CII

2K̃R−1

(
J

2K̃R−1B̃
[j+1]
(0,1) J2K̃C−1 J

2K̃R−1B̃
[j+1]
(0,1) J2K̃C−1

)
·

diag
(
s

[j]
C

)
diag

(
c

[j]
C

)
D

2K̃C−1

(CIV

2K̃C−1

CIV

2K̃C−1

)(
I

2K̃C−1 I
2K̃C−1

J
2K̃C−1 −J

2K̃C−1

)
.

(7.40)

By (6.13), the last matrix in (7.40) is invertible. As ñ[j] ≤ bC and thus 2K̃C ≤ 2L ≤ N [j],
diag

(
c

[j]
C

)
and diag

(
s

[j]
C

)
are invertible, analogously to (6.14). Consequently, the third

matrix in (7.40) is invertible as well, since the multiplication with ±1, caused by the
diagonal matrix D

2K̃C−1 , does not change the absolute value of the determinant. Thus,
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all square matrices in (7.40) can be inverted, and it follows that(
J

2K̃R−1B̃
[j+1]
(0,1) J2K̃C−1 J

2K̃R−1B̃
[j+1]
(0,1) J2K̃C−1

)
= (−1)N

[j]2−K̃C
√
M [j]N [j]2−K̃R−K̃C+4 CIII

2K̃R−1

(
E

(0,1)
(0,0) E

(0,1)
(0,1)

)
· 1

2

(
I

2K̃C−1 J
2K̃C−1

I
2K̃C−1 −J

2K̃C−1

)(
CIV

2K̃C−1

CIV

2K̃C−1

)diag
(
s̃

[j]
C

)
D

2K̃C−1 diag
(
c̃

[j]
C

)
= (−1)N

[j]2−K̃C
√
M [j]N [j]2−K̃R−K̃C+2 CIII

2K̃R−1

·
(

E
(0,1)
(0,0) + E

(0,1)
(0,1)

(
E

(0,1)
(0,0) −E

(0,1)
(0,1)

)
J

2K̃C−1

)
·

CIV

2K̃C−1
diag

(
s̃

[j]
C

)
CIV

2K̃C−1
D

2K̃C−1 diag
(
c̃

[j]
C

) , (7.41)

where

c̃
[j]
C :=

(
cos

(
(2s+ 1)π

4N [j]

)−1
)2K̃C−1−1

s=0

and s̃
[j]
C :=

(
sin

(
(2s+ 1)π

4N [j]

)−1
)2K̃C−1−1

s=0

.

The last 2K̃C−1 columns of (7.41) are sufficient in order to find B̃[j+1]
(0,1) , i.e.,

B̃
[j+1]
(0,1) = (−1)N

[j]2−K̃C
√
M [j]N [j]2−K̃R−K̃C+2 J

2K̃R−1C
III

2K̃R−1

(
E

(0,1)
(0,0) −E

(0,1)
(0,1)

)
J

2K̃C−1

·CIV

2K̃C−1
D

2K̃C−1 diag
(
c̃

[j]
C

)
J

2K̃C−1 . (7.42)

Thus, B̃[j+1]
(0,1) can be computed using 2K̃R−1 · 2K̃C samples of AÎI by essentially applying

2K̃C−1 1-dimensional DCT-IIIs of length 2K̃R−1 to the columns of the sample matrix and
2K̃R−1 1-dimensional DCT-IVs of length 2K̃C−1 to the rows.

By choosing the last 2K̃C−1 columns in (7.41), we avoid inverting diag
(
s

[j]
C

)
, whose

entries can be close to zero, and instead invert diag
(
c

[j]
C

)
, whose entries are all greater

than 1√
2
. This computation is numerically more stable and is similar to the calculation

of z[j+1]
(0) in Algorithm 9.

(ii) Computation of B̃[j+1]
(1,0)

Recall that

S
(
B̃

[j+1]
(1,0)

)
⊆ I

M [j]−2K̃R−1,M [j]−1
× I

N [j]−2K̃C−1, N [j]−1
.

Analogously to (7.36) in case (i), (7.30) and (7.3) yield that

√
M [j]N [j]

((
a[j+1]

)ÎI

2k+1, 2l

)M [j]−1, N [j]−1

k, l=0

=

√
M [j]N [j]

2
CIV
M [j]Ã

[j+1]
(1,0) C

II
N [j]

T
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=

M [j]−1∑
r′=0

N [j]−1∑
s′=0

cos

(
(2k + 1)(2r′ + 1)π

4M [j]

)(
ã

[j+1]
(1,0)

)
r′, s′

· εN [j](l) cos

(
(2s′ + 1)lπ

2N [j]

))M [j]−1, N [j]−1

k, l=0

=

2K̃R−1−1∑
r=0

2K̃C−1−1∑
s=0

(−1)k sin

(
(2k + 1)(2r + 1)π

4M [j]

)(
J

2K̃R−1B̃
[j+1]
(1,0) J2K̃C−1

)
r, s

·εN [j](l)(−1)l cos

(
(2s+ 1)lπ

2N [j]

))M [j]−1, N [j]−1

k, l=0

. (7.43)

We can restrict (7.43) using the same ideas as in (i) if we switch the roles of the rows and
columns. Consequently, we select the rows corresponding to the indices 2kp + 1, where
kp := M [j]2−K̃R · (2p + 1), p ∈

{
0, . . . , 2K̃R−1 − 1

}
, and the columns corresponding to

the indices 2l′′q , where l′′q := N [j]2−K̃C+1q, q ∈
{

0, . . . , 2K̃C−1 − 1
}
. Note that, like k′′p , l′′q

is even for all q. Then we obtain

√
M [j]N [j]

((
a[j+1]

)ÎI

2kp+1, 2l′′q

)2K̃R−1−1, 2K̃C−1−1

p, q=0

= (−1)M
[j]2−K̃R

(
sin

(
(2p+ 1)(2r + 1)π

4 · 2K̃R−1

)
cos

(
(2r + 1)π

4M [j]

)

+ cos

(
(2p+ 1)(2r + 1)π

4 · 2K̃R−1

)
sin

(
(2r + 1)π

4M [j]

))2K̃R−1−1

k, r=0

J
2K̃R−1B̃

[j+1]
(1,0) J2K̃C−1

·
(
ε

2K̃C−1(q) cos

(
(2s+ 1)qπ

2 · 2K̃C−1

))2K̃C−1−1

s, q=0

. (7.44)

Defining the vectors

c
[j]
R :=

(
cos

(
(2r + 1)π

4M [j]

))2K̃R−1−1

r=0

and s
[j]
R :=

(
sin

(
(2r + 1)π

4M [j]

))2K̃R−1−1

r=0

,

we can write (7.44) as

√
M [j]N [j]2−K̃R−K̃C+4 (−1)M

[j]2−K̃R
((

a[j+1]
)ÎI

2kp+1, 2l′′q

)2K̃R−1−1, 2K̃C−1−1

p, q=0

=
(
J

2K̃R−1C
IV

2K̃R−1
D

2K̃R−1 diag
(
c

[j]
R

)
+ CIV

2K̃R−1
diag

(
s

[j]
R

))
· J

2K̃R−1B̃
[j+1]
(1,0) J2K̃C−1C

III

2K̃C−1

=
(

CIV

2K̃R−1
J

2K̃R−1C
IV

2K̃R−1

)diag
(
s

[j]
R

)
D

2K̃R−1 diag
(
c

[j]
R

)
·

J
2K̃R−1B̃

[j+1]
(1,0) J2K̃C−1

J
2K̃R−1B̃

[j+1]
(1,0) J2K̃C−1

CIII

2K̃C−1
. (7.45)
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In order to obtain an invertible matrix factorization, we additionally consider the rows
indexed by 2k′p + 1, where k′p := M [j]2−K̃R(2p + 1) − 1, p ∈

{
0, . . . , 2K̃R−1 − 1

}
. Then

(7.43) implies that

√
N [j]2−K̃C+2 (−1)M

[j]2−K̃R
((

a[j+1]
)ÎI

2k′p+1, 2l′′q

)2K̃R−1−1, 2K̃C−1−1

p, q=0

=
(

CIV

2K̃R−1
−J

2K̃R−1C
IV

2K̃R−1

)diag
(
s

[j]
R

)
D

2K̃R−1 diag
(
c

[j]
R

)
·

J
2K̃R−1B̃

[j+1]
(1,0) J2K̃C−1

J
2K̃R−1B̃

[j+1]
(1,0) J2K̃C−1

CIII

2K̃C−1
. (7.46)

Let us denote the matrices of required entries of AÎI by

E
(1,0)
(0,0)

:=

((
a[j+1]

)ÎI

2kp+1, 2l′′q

)2K̃R−1−1, 2K̃C−1−1

p, q=0

and

E
(1,0)
(1,0)

:=

((
a[j+1]

)ÎI

2k′p+1, 2l′′q

)2K̃R−1−1, 2K̃C−1−1

p, q=0

.

Combining (7.45) and (7.46), we obtain

(−1)M
[j]2−K̃R

√
M [j]N [j]2−K̃R−K̃C+4

E
(1,0)
(0,0)

E
(1,0)
(1,0)


=

(
I

2K̃R−1 J
2K̃R−1

I
2K̃R−1 −J

2K̃R−1

)(
CIV

2K̃R−1

CIV

2K̃R−1

)diag
(
s

[j]
R

)
D

2K̃R−1 diag
(
c

[j]
R

)
·

J
2K̃R−1B̃

[j+1]
(1,0) J2K̃C−1

J
2K̃R−1B̃

[j+1]
(1,0) J2K̃C−1

CIII

2K̃C−1
. (7.47)

Recall that m̃[j] ≤ bR and thus 2K̃R ≤ 2L ≤ M [j]. Then diag
(
c

[j]
R

)
and diag

(
s

[j]
R

)
, and

hence all square matrices in (7.47), are invertible by (6.14). Setting

c̃
[j]
R :=

(
cos

(
(2r + 1)π

4M [j]

)−1
)2K̃R−1−1

r=0

and s̃
[j]
R :=

(
sin

(
(2r + 1)π

4M [j]

)−1
)2K̃R−1−1

r=0

,
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7.3 Iterative Sparse 2D Recovery Procedures

we find thatJ
2K̃R−1B̃

[j+1]
(1,0) J2K̃C−1

J
2K̃R−1B̃

[j+1]
(1,0) J2K̃C−1


= (−1)M

[j]2−K̃R
√
M [j]N [j]2−K̃R−K̃C+4

diag
(
s̃

[j]
R

)
diag

(
c̃

[j]
R

)
D

2K̃R−1


·

(
CIV

2K̃R−1

CIV

2K̃R−1

)
1

2

(
I

2K̃R−1 I
2K̃R−1

J
2K̃R−1 −J

2K̃R−1

)E
(1,0)
(0,0)

E
(1,0)
(1,0)

CII

2K̃C−1

= (−1)M
[j]2−K̃R

√
M [j]N [j]2−K̃R−K̃C+4

·

diag
(
s̃

[j]
R

)
CIV

2K̃R−1

diag
(
c̃

[j]
R

)
D

2K̃R−1C
IV

2K̃R−1


·

 E
(1,0)
(0,0) + E

(1,0)
(1,0)

J
2K̃R−1

(
E

(1,0)
(0,0) −E

(1,0)
(1,0)

)
CII

2K̃C−1
. (7.48)

Here, it is numerically more stable to compute B̃
[j+1]
(1,0) from the last 2K̃R−1 columns, i.e.,

B̃
[j+1]
(1,0) = (−1)M

[j]2−K̃R
√
M [j]N [j]2−K̃R−K̃C+4 J

2K̃R−1 diag
(
c̃

[j]
R

)
D

2K̃R−1C
IV

2K̃R−1
J

2K̃R−1

·
(
E

(1,0)
(0,0) −E

(1,0)
(1,0)

)
CII

2K̃C−1
J

2K̃C−1 . (7.49)

Then B̃
[j+1]
(1,0) can be calculated using 2K̃R · 2K̃C−1 samples of AÎI by essentially applying

2K̃C−1 1-dimensional DCT-IVs of length 2K̃R−1 to the columns of the sample matrix and
2K̃R−1 1-dimensional DCT-IIs of length 2K̃C−1 to its rows.

(iii) Computation of B̃[j+1]
(1,1)

Recall that

S
(
B̃

[j+1]
(1,1)

)
⊆ I

M [j]−2K̃R−1,M [j]−1
× I

N [j]−2K̃C−1, N [j]−1
.

Analogously to (7.36) in case (i) and (7.43) in case (ii), (7.30) and (7.3) yield that

√
M [j]N [j]

((
a[j+1]

)ÎI

2k+1, 2l+1

)M [j]−1, N [j]−1

k, l=0

=

√
M [j]N [j]

2
CIV
M [j]Ã

[j+1]
(1,1) C

IV
N [j]

=

2K̃R−1−1∑
r=0

2K̃C−1−1∑
s=0

(−1)k sin

(
(2k + 1)(2r + 1)π

4M [j]

)(
J

2K̃R−1B̃
[j+1]
(1,1) J2K̃C−1

)
r, s

· (−1)l sin

(
(2s+ 1)(2l + 1)π

4N [j]

))M [j]−1, N [j]−1

k, l=0

. (7.50)
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Since the sine terms appear for rows and columns, we will have to restrict both the
rows and the columns of (7.50) as in Section 6.3.1, so that we will have to consider
four submatrices in order to be able to compute B̃

[j+1]
(1,1) . We begin by selecting the rows

corresponding to 2kp + 1, p ∈
{

0, . . . , 2K̃R−1 − 1
}
, and the columns corresponding to

2lq + 1, q ∈
{

0, . . . , 2K̃C−1 − 1
}
. This yields

√
M [j]N [j]

((
a[j+1]

)ÎI

2kp+1, 2lq+1

)2K̃R−1−1, 2K̃C−1−1

p, q=0

=
(−1)M

[j]N [j]2−K̃R−K̃C√
2−K̃R−K̃C+4

(
CIV

2K̃R−1
diag

(
s

[j]
R

)
+ SIV

2K̃R−1
diag

(
c

[j]
R

))
J

2K̃R−1B̃
[j+1]
(1,1) J2K̃C−1

·
(

diag
(
s

[j]
C

)
CIV

2K̃C−1
+ diag

(
c

[j]
C

)
SIV

2K̃C−1

)
=

(−1)M
[j]N [j]2−K̃R−K̃C√

2−K̃R−K̃C+4

(
CIV

2K̃R−1
J

2K̃R−1C
IV

2K̃R−1

)

·

diag
(
s

[j]
R

)
D

2K̃R−1 diag
(
c

[j]
R

)J
2K̃R−1B̃

[j+1]
(1,1) J2K̃C−1 J

2K̃R−1B̃
[j+1]
(1,1) J2K̃C−1

J
2K̃R−1B̃

[j+1]
(1,1) J2K̃C−1 J

2K̃R−1B̃
[j+1]
(1,1) J2K̃C−1


·

diag
(
s

[j]
C

)
diag

(
c

[j]
C

)
D

2K̃C−1

 CIV

2K̃C−1

CIV

2K̃C−1
J

2K̃C−1

 . (7.51)

In order to obtain an invertible matrix factorization, we now have to use both additional
rows and columns. First, we choose the same rows as before and the columns correspond-
ing to the indices 2l′q + 1, q ∈

{
0, . . . , 2K̃C−1 − 1

}
. Analogously to previously considered

cases we find that

(−1)M
[j]N [j]2−K̃R−K̃C

√
M [j]N [j]2−K̃R−K̃C+4

((
a[j+1]

)ÎI

2kp+1, 2l′q+1

)2K̃R−1−1, 2K̃C−1−1

p, q=0

=
(

CIV

2K̃R−1
J

2K̃R−1C
IV

2K̃R−1

)diag
(
s

[j]
R

)
D

2K̃R−1 diag
(
c

[j]
R

)
·

J
2K̃R−1B̃

[j+1]
(1,1) J2K̃C−1 J

2K̃R−1B̃
[j+1]
(1,1) J2K̃C−1

J
2K̃R−1B̃

[j+1]
(1,1) J2K̃C−1 J

2K̃R−1B̃
[j+1]
(1,1) J2K̃C−1

diag
(
s

[j]
C

)
diag

(
c

[j]
C

)
D

2K̃C−1


·

 CIV

2K̃C−1

−CIV

2K̃C−1
J

2K̃C−1

 . (7.52)

Taking now the rows corresponding to 2k′p+1, p ∈
{

0, . . . , 2K̃R−1 − 1
}
, and the columns
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indexed by 2lq + 1 yields

(−1)M
[j]N [j]2−K̃R−K̃C

√
M [j]N [j]2−K̃R−K̃C+4

((
a[j+1]

)ÎI

2k′p+1, 2lq+1

)2K̃R−1−1, 2K̃C−1−1

p, q=0

=
(

CIV

2K̃R−1
−J

2K̃R−1C
IV

2K̃R−1

)diag
(
s

[j]
R

)
D

2K̃R−1 diag
(
c

[j]
R

)
·

J
2K̃R−1B̃

[j+1]
(1,1) J2K̃C−1 J

2K̃R−1B̃
[j+1]
(1,1) J2K̃C−1

J
2K̃R−1B̃

[j+1]
(1,1) J2K̃C−1 J

2K̃R−1B̃
[j+1]
(1,1) J2K̃C−1

diag
(
s

[j]
C

)
diag

(
c

[j]
C

)
D

2K̃C−1


·

 CIV

2K̃C−1

CIV

2K̃C−1
J

2K̃C−1

 . (7.53)

Finally, for the rows indexed by 2k′p + 1 and the columns indexed by 2l′q + 1, we obtain

(−1)M
[j]N [j]2−K̃R−K̃C

√
M [j]N [j]2−K̃R−K̃C+4

((
a[j+1]

)ÎI

2k′p+1, 2l′q+1

)2K̃R−1−1, 2K̃C−1−1

p, q=0

=
(

CIV

2K̃R−1
−J

2K̃R−1C
IV

2K̃R−1

)diag
(
s

[j]
R

)
D

2K̃R−1 diag
(
c

[j]
R

)
·

J
2K̃R−1B̃

[j+1]
(1,1) J2K̃C−1 J

2K̃R−1B̃
[j+1]
(1,1) J2K̃C−1

J
2K̃R−1B̃

[j+1]
(1,1) J2K̃C−1 J

2K̃R−1B̃
[j+1]
(1,1) J2K̃C−1

diag
(
s

[j]
C

)
diag

(
c

[j]
C

)
D

2K̃C−1


·

 CIV

2K̃C−1

−CIV

2K̃C−1
J

2K̃C−1

 . (7.54)

Combining (7.51) to (7.54), we find that
((
a[j+1]

)ÎI
2kp+1, 2lq+1

)2K̃R−1−1, 2K̃C−1−1

p, q=0

((
a[j+1]

)ÎI
2kp+1, 2l′q+1

)2K̃R−1−1, 2K̃C−1−1

p, q=0((
a[j+1]

)ÎI
2k′p+1, 2lq+1

)2K̃R−1−1, 2K̃C−1−1

p, q=0

((
a[j+1]

)ÎI
2k′p+1, 2l′q+1

)2K̃R−1−1, 2K̃C−1−1

p, q=0


=

(−1)M
[j]N [j]2−K̃R−K̃C√

M [j]N [j]2−K̃R−K̃C+4

(
I

2K̃R−1 J
2K̃R−1

I
2K̃R−1 −J

2K̃R−1

)(
CIV

2K̃R−1

CIV

2K̃R−1

)

·

diag
(
s

[j]
R

)
D

2K̃R−1 diag
(
c

[j]
R

)J
2K̃R−1B̃

[j+1]
(1,1) J2K̃C−1 J

2K̃R−1B̃
[j+1]
(1,1) J2K̃C−1

J
2K̃R−1B̃

[j+1]
(1,1) J2K̃C−1 J

2K̃R−1B̃
[j+1]
(1,1) J2K̃C−1


·

diag
(
s

[j]
C

)
diag

(
c

[j]
C

)
D

2K̃C−1

(CIV

2K̃C−1

CIV

2K̃C−1

)(
I

2K̃C−1 I
2K̃C−1

J
2K̃C−1 −J

2K̃C−1

)
.

(7.55)
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We denote the required samples of AÎI by

E
(1,1)
(0,0)

:=

((
a[j+1]

)ÎI

2kp+1, 2lq+1

)2K̃R−1−1, 2K̃C−1−1

p, q=0

,

E
(1,1)
(0,1)

:=

((
a[j+1]

)ÎI

2kp+1, 2l′q+1

)2K̃R−1−1, 2K̃C−1−1

p, q=0

,

E
(1,1)
(1,0)

:=

((
a[j+1]

)ÎI

2k′p+1, 2lq+1

)2K̃R−1−1, 2K̃C−1−1

p, q=0

,

E
(1,1)
(1,1)

:=

((
a[j+1]

)ÎI

2k′p+1, 2l′q+1

)2K̃R−1−1, 2K̃C−1−1

p, q=0

.

As all square matrices in (7.55) are invertible, we obtain thatJ
2K̃R−1B̃

[j+1]
(1,1) J2K̃C−1 J

2K̃R−1B̃
[j+1]
(1,1) J2K̃C−1

J
2K̃R−1B̃

[j+1]
(1,1) J2K̃C−1 J

2K̃R−1B̃
[j+1]
(1,1) J2K̃C−1


= (−1)M

[j]N [j]2−K̃R−K̃C
√
M [j]N [j]2−K̃R−K̃C + 4

diag
(
s̃

[j]
R

)
diag

(
c̃

[j]
R

)
D

2K̃R−1


·

(
CIV

2K̃R−1

CIV

2K̃R−1

)
1

2

(
I

2K̃R−1 I
2K̃R−1

J
2K̃R−1 −J

2K̃R−1

)E
(1,1)
(0,0) E

(1,1)
(0,1)

E
(1,1)
(1,0) E

(1,1)
(1,1)


· 1

2

(
I

2K̃C−1 J
2K̃C−1

I
2K̃C−1 −J

2K̃C−1

)
·

(
CIV

2K̃C−1

CIV

2K̃C−1

)diag
(
s̃

[j]
C

)
D

2K̃C−1 diag
(
c̃

[j]
C

)
= (−1)M

[j]N [j]2−K̃R−K̃C
√
M [j]N [j]2−K̃R−K̃C

·

diag
(
s̃

[j]
R

)
CIV

2K̃R−1

diag
(
c̃

[j]
R

)
D

2K̃R−1C
IV

2K̃R−1

Ẽ
(1,1)
(0,0) Ẽ

(1,1)
(0,1)

Ẽ
(1,1)
(1,0) Ẽ

(1,1)
(1,1)


·

CIV

2K̃C−1
diag

(
s̃

[j]
C

)
CIV

2K̃C−1
D

2K̃C−1 diag
(
c̃

[j]
C

) , (7.56)

where we set

Ẽ
(1,1)
(0,0)

:= E
(1,1)
(0,0) + E

(1,1)
(1,0) + E

(1,1)
(0,1) + E

(1,1)
(1,1),

Ẽ
(1,1)
(0,1)

:=
(
E

(1,1)
(0,0) + E

(1,1)
(1,0) −E

(1,1)
(0,1) −E

(1,1)
(1,1)

)
J

2K̃C−1 ,

Ẽ
(1,1)
(1,0)

:= J
2K̃R−1

(
E

(1,1)
(0,0) −E

(1,1)
(1,0) + E

(1,1)
(0,1) −E

(1,1)
(1,1)

)
,

Ẽ
(1,1)
(1,1)

:= J
2K̃R−1

(
E

(1,1)
(0,0) −E

(1,1)
(1,0) −E

(1,1)
(0,1) + E

(1,1)
(1,1)

)
J

2K̃C−1 .

It suffices to just consider the bottom-right quadrant of (7.56) in order to compute B̃[j+1]
(1,1) ,
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which is numerically more stable. Thus, we find that

B̃
[j+1]
(1,1) = (−1)M

[j]N [j]2−K̃R−K̃C
√
M [j]N [j]2−K̃R−K̃C J

2K̃R−1 diag
(
c̃

[j]
R

)
D

2K̃R−1

·CIV

2K̃R−1
J

2K̃R−1

(
E

(1,1)
(0,0) −E

(1,1)
(1,0) −E

(1,1)
(0,1) + E

(1,1)
(1,1)

)
J

2K̃C−1

·CIV

2K̃C−1
D

2K̃C−1 diag
(
c̃

[j]
C

)
J

2K̃C−1 . (7.57)

Consequently, B̃[j+1]
(1,1) can be calculated using 2K̃R · 2K̃C samples of AÎI by essentially

applying a 2-dimensional DCT-IV of size 2K̃R−1 × 2K̃C−1.

(iv) Computation of A[j+1].

The matrix B[j] is given as a restriction of A[j], and the restricted matrices B̃
[j+1]
(0,1) ,

B̃
[j+1]
(1,0) and B̃

[j+1]
(1,1) can be obtained from (7.42), (7.49) and (7.57). Thus, we can compute

B
[j+1]
(0,0) , B

[j+1]
(0,1) , B

[j+1]
(1,0) and B

[j+1]
(1,1) via (7.32), as it also holds for the restrictions of the

matrices A[j+1] and Ã[j+1], with

B
[j+1]
(0,0) =

1

4

(
B[j] + B̃

[j+1]
(0,1) + B̃

[j+1]
(1,0) + B̃

[j+1]
(1,1)

)
,

B
[j+1]
(0,1) =

1

4

(
B[j] − B̃

[j+1]
(0,1) + B̃

[j+1]
(1,0) − B̃

[j+1]
(1,1)

)
JN [j] ,

B
[j+1]
(1,0) =

1

4
JM [j]

(
B[j] + B̃

[j+1]
(0,1) − B̃

[j+1]
(1,0) − B̃

[j+1]
(1,1)

)
,

B
[j+1]
(1,1) =

1

4
JM [j]

(
B[j] − B̃

[j+1]
(0,1) − B̃

[j+1]
(1,0) + B̃

[j+1]
(1,1)

)
JN [j] .

(7.58)

Then A[j+1] is given by

a
[j+1]
k, l =



(
b
[j+1]
(0,0)

)
k−M [j]+2K̃R−1, l−N [j]+2K̃C−1

if k ∈ I
M [j]−2K̃R−1,M [j]−1

,

l ∈ I
N [j]−2K̃C−1, N [j]−1

,(
b
[j+1]
(0,1)

)
k−M [j]+2K̃R−1, l−N [j]

if k ∈ I
M [j]−2K̃R−1,M [j]−1

,

l ∈ I
N [j], N [j]+2K̃C−1−1

,(
b
[j+1]
(1,0)

)
k−M [j], l−N [j]+2K̃C−1

if k ∈ I
M [j],M [j]+2K̃R−1−1

,

l ∈ I
N [j]−2K̃C−1, N [j] ,(

b
[j+1]
(1,1)

)
k−M [j], l−N [j]

if k ∈ I
M [j],M [j]+2K̃R−1−1

,

l ∈ I
N [j], N [j]+2K̃C−1−1

,

0 otherwise.

Consequently, reconstructing A[j+1] in case A of Theorem 7.14 requires

2K̃R−1 · 2K̃C + 2K̃R · 2K̃C−1 + 2K̃R · 2K̃C = 8 · 2K̃R−1 · 2K̃C−1

entries of
(
A[j+1]

)ÎI. We will show in Section 7.3.5 how to detect the exact first and last
row and column support indices efficiently.
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7.3.3 Recovery Procedure for Case B: Colliding Columns

If j = j2, where j2 is defined as in (7.8), the column support S[j]
C of A[j] is completely

contained in the last bC columns, but the row support S[j]
R is not contained in the last

bR rows, i.e.,
S

[j]
C ⊆ IN [j]−bC , N [j]−1 and S

[j]
R 6⊆ IM [j]−bR,M [j]−1.

Then it follows from Theorem 7.14, case B that

S[j+1] ( I
µ
[j]
R , ν

[j]
R

× IN [j]−bC , N [j]+bC−1 or

S[j+1] ( I
M [j+1]−1−ν[j]R ,M [j+1]−1−µ[j]R

× IN [j]−bC , N [j]+bC−1,

see also Figure 7.12.

A[j]

n[j]

N [j] − bC

A[j+1]

µ
[j]
C

ñ[j]

N [j] − bC

A[j]

n[j]

N [j] − bC

A[j+1]

µ
[j]
C

ñ[j]

N [j] − bC

Figure 7.12: Illustration of the support of A[j] and one possibility for the support of
A[j+1] for m[j] < m[j+1] (top) and m[j] = m[j+1] (bottom)

Hence, there are two possibilities for the support of the rows of A[j+1], as S[j+1] is
either contained in the upper or in the lower half of A[j+1]. Furthermore, we have to
undo collisions of nonzero entries, so we do not exactly know the column support of
A[j+1]. The following theorem shows how A[j+1] can be reconstructed from A[j] and
AÎI by combining some of the ideas used for cases A and D of Theorem 7.14 with an
additional new approach.

Theorem 7.19 Let M = 2JR and N = 2JC with JR, JC ∈ N, and let J := min {JR, JC}.
Let A ∈ RM×N have a block support of size m×n with known bounds bR ≥ m and bC ≥ n,
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and assume that A satisfies (7.5) and (7.6). Let L := max {dlog2 bRe+ 1, dlog2 bCe+ 1}
and j = j2 ∈ {L, . . . , J − 1} as in (7.8). Suppose that we have access to all entries of
AÎI. Then A[j+1] can be recovered from A[j], 2K

[j]
R · 2K̃C entries of AÎI and one nonzero

entry of
((
a[j+1]

)ÎI
2k+1, 2l

)m[j]−1, n[j]−1

k, l=0

, where K [j]
R ∈

{
dlog2me+ 1, . . . , log2M

[j]
}
.

Proof. By assumption and Lemma 7.12, A[j] has the block support

S[j] = S
[j]
R × S

[j]
C = I

µ
[j]
R , ν

[j]
R

× I
µ
[j]
C , ν

[j]
C

⊆ I
µ
[j]
R , ν

[j]
R

× IN [j]−bC , N [j]−1 (7.59)

of size m[j] × n[j]. Recall that it follows from (7.30) that

PM [j+1]

(
A[j+1]

)ÎI
PN [j+1]

T =
1

2

 CII
M [j]A

[j]CII
N [j]

T
CII
M [j]Ã

[j+1]
(0,1) C

IV
N [j]

CIV
M [j]Ã

[j+1]
(1,0) C

II
N [j]

T
CIV
M [j]Ã

[j+1]
(1,1) C

IV
N [j]

 . (7.60)

With
ñ[j] := N [j] − µ[j]

C ≤ bC and K̃C :=
⌈
log2 ñ

[j]
⌉

+ 1,

as in Section 7.3.2, we obtain that

S
[j]
C ⊆ IN [j]−2K̃C−1, N [j]−1

.

Since j = j2, it follows from Definition 7.5 and (7.59) that

S[j+1] ( I
µ
[j]
R , ν

[j]
R

× I
N [j]−2K̃C−1, N [j]+2K̃C−1−1

or

S[j+1] ( I
M [j+1]−1−ν[j]R ,M [j+1]−1−µ[j]R

× I
N [j]−2K̃C−1, N [j]+2K̃C−1−1

,
(7.61)

so either A[j+1]
(1,0) = 0 and A

[j+1]
(1,1) = 0, or A[j+1]

(0,0) = 0 and A
[j+1]
(0,1) = 0, see also Figure 7.7.

Consequently, there are precisely two possibilities for the support rows of A[j+1], but
we can only deduce that the column support is contained in an interval of length 2K̃C

starting at µ[j]
C . If the lower half of A[j+1] is zero, (7.31) and (7.32) can be simplified to

A[j] = Ã
[j+1]
(0,0) = A

[j+1]
(0,0) + A

[j+1]
(0,1) JN [j] = Ã

[j+1]
(1,0) ,

Ã
[j+1]
(0,1) = A

[j+1]
(0,0) −A

[j+1]
(0,1) JN [j] = Ã

[j+1]
(1,1) ,

(7.62)

and
A

[j+1]
(0,0) =

1

2

(
A[j] + Ã

[j+1]
(0,1)

)
,

A
[j+1]
(0,1) =

1

2

(
A[j] − Ã

[j+1]
(0,1)

)
JN [j] .

(7.63)

If the top half of A[j+1] is zero, we find that

A[j] = Ã
[j+1]
(0,0) = JM [j]A

[j+1]
(1,0) + JM [j]A

[j+1]
(1,1) JN [j] = −Ã[j+1]

(1,0) ,

Ã
[j+1]
(0,1) = JM [j]A

[j+1]
(1,0) − JM [j]A

[j+1]
(1,1) JN [j] = −Ã[j+1]

(1,1) ,
(7.64)
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and
A

[j+1]
(1,0) =

1

2
JM [j]

(
A[j] + Ã

[j+1]
(0,1)

)
,

A
[j+1]
(1,1) =

1

2
JM [j]

(
A[j] − Ã

[j+1]
(0,1)

)
JN [j] .

(7.65)

Note that (7.63) and (7.65) only differ by a row permutation JM [j] . Provided that we can
determine whether the support of A[j+1] is contained in its upper or in its lower half, it
suffices to recover Ã[j+1]

(0,1) in order to be able to compute A[j+1], as A[j] is already known
from the previous iteration step. Thus, we need to derive a method for reconstructing
Ã

[j+1]
(0,1) from AÎI and A[j], and a method to decide whether the support of A[j+1] is

contained in its upper or in its lower half.
Let us first focus on the reconstruction of Ã[j+1]

(0,1) . It follows from (7.3) and (7.30) that

((
a[j+1]

)ÎI

2k, 2l+1

)M [j]−1, N [j]−1

k, l=0

=
1

2
CII
M [j]Ã

[j+1]
(0,1) C

IV
N [j] . (7.66)

Similarly to the approach taken in Sections 6.3.1 and 7.3.2, we want to reduce the number
of rows and columns of CII

M [j] and CIV
N [j] required in (7.66), using that Ã(0,1) has a block

support of size m[j] × n[j]. Thus, we want to obtain an invertible matrix factorization
consisting of matrices of size O

(
m[j]2

)
and O

(
n[j]2

)
. By definition, the supports of

Ã
[j+1]
(0,1) and A[j] are the same, so, denoting by S(B) the support of a matrix B, we have

S
(
Ã

[j+1]
(0,1)

)
⊆ I

µ
[j]
R , ν

[j]
R

× I
N [j]−2K̃C−1, N [j]−1

.

Since the support of A[j] is contained in its last bC columns, we already know from
Sections 6.3.1 and 7.3.2 how to restrict the rows and columns of CIV

N [j] . Recall that

KR =
⌈
log2m

[j]
⌉

+ 1 ≤ K̃R.

Ideally, we would like to subdivide the interval I0,M [j]−1 into M [j] · 2−KR intervals of
length 2KR = O

(
m[j]

)
of the form

I
d
[j]
R ·2

KR ,
(
d
[j]
R +1

)
·2KR−1

.

If the rows of A[j] are contained in such a 2KR-length interval, the multiplication by the
cosine matrix of type II in (7.66) can be reduced to a multiplication by invertible matrices
of size 2KR × 2KR , similarly to the restrictions we have seen in Section 7.3.2. However,
the row support S[j]

R of A[j] does not have to be contained in one of these intervals of
length 2KR , for example if

{
M [j]

2 − 1, M
[j]

2

}
⊆ S

[j]
R . We have not been able to find an

invertible matrix factorization of size 2K
R × 2KR by restricting the rows and columns of

CII
M [j] in (7.66) that correspond to the nonzero entries of Ã[j+1]

(0,1) and A[j]. Shifting the
above intervals by, e.g., 2KR−1, also does not provide the sought-after factorization.
Instead, we have to content ourselves with an approach that requires more arithmetical

operations. Note that there exists a minimal K [j]
R ∈

{
KR, . . . , log2M

[j]
}
satisfying that
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there is an index d[j]
R ∈

{
0, . . . ,M [j]2−K

[j]
R − 1

}
such that

S
[j]
R ( I

d
[j]
R ·2

K
[j]
R ,
(
d
[j]
R +1

)
·2K

[j]
R −1

, (7.67)

i.e.,

K
[j]
R := min

K∈{KR,...,log2M
[j]}

{
∃ d[j]

R ∈ I
0,M [j]2

K
[j]
R −1

: S
[j]
R ( I

d
[j]
R ·2

K
[j]
R ,
(
d
[j]
R +1

)
·2K

[j]
R −1

}
,

Thus, instead of always subdividing I0,M [j]−1 into intervals of length 2KR = O
(
m[j]

)
,

we will divide it into intervals of length 2K
[j]
R , where K [j]

R depends on the location of the
row support of A[j] and Ã

[j+1]
(0,1) . The drawback of this approach is that we do not have

any a priori knowledge on K
[j]
R . Both the optimal case K [j]

R = KR and the worst case
K

[j]
R = M [j] are possible. Further, j2 can be as small as L, but also as large as J − 1,

and we do not have any a priori estimates on it. For computing the theoretical runtime
of the approach we will present hereafter we can thus only estimate 2K

[j]
R = O

(
M
2

)
. This

value is attained if the support of A is contained both in its upper and in its lower half,
as well as in its last bC columns, i.e., if

IM
2
−1, M

2
⊆ S[J ]

R and S
[J ]
C ⊆ IN−1−bC , N−1,

because then j2 = J − 1 and 2K
[j2]
R = M

2 . See Figures 7.13 and 7.14 for illustrations.

S
[j]
R

0 M [j] − 12KR − 1 2 · 2KR − 1 3 · 2KR − 1

2K
[j]
R 2K

[j]
R 2K

[j]
R 2K

[j]
R

µ
[j]
R ν

[j]
R

Figure 7.13: Illustration of the subdivision of I0,M [j]−1 for 2K
[j]
R = 2KR = 1

4M
[j] with

d
[j]
R = 2

S
[j]
R

0 M [j] − 12KR − 1 3 · 2KR − 12 · 2KR − 1

2K
[j]
R

µ
[j]
R ν

[j]
R

Figure 7.14: Illustration of the subdivision of I0,M [j]−1 for 2K
[j]
R = M [j] with d[j]

R = 0
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Since
S[j] = S

(
Ã

[j+1]
0,1

)
( I

d
[j]
R ·2

K
[j]
R ,
(
d
[j]
R +1

)
·2K

[j]
R −1

× I
N [j]−2K̃C−1, N [j]−1

,

let us define the restriction of Ã[j+1]
(0,1) to the d[j]

R th set of 2K
[j]
R rows and the last 2K̃C−1

columns as

B̃
[j+1]
C =

((
ã

[j+1]
(0,1)

)
k, l

)(d[j]R +1
)

2
K

[j]
R −1, N [j]−1

k=d
[j]
R 2

K
[j]
R , l=N [j]−2K̃C−1

.

Utilizing this restriction in the upper right quadrant of (7.60), we obtain from (7.66) and
(7.36) that

√
2M [j]

((
a[j+1]

)ÎI

2k, 2l+1

)M [j]−1, N [j]−1

k, l=0

=

M [j]−1∑
r′=0

εM [j](k) cos

(
k(2r′ + 1)π

2M [j]

)(
ã

[j+1]
(0,1)

)
r′, l

M [j]−1, N [j]−1

k, l=0

CIV
N [j]

=


(
d
[j]
R +1

)
2
K

[j]
R −1∑

r′=d
[j]
R 2

K
[j]
R

εM [j](k) cos

(
k(2r′ + 1)π

2M [j]

)(
ã

[j+1]
(0,1)

)
r′, l


M [j]−1, N [j]−1

k, l=0

CIV
N [j]

=

2
K

[j]
R −1∑
r=0

εM [j](k) cos

k
((
d

[j]
R + 1

)
2K

[j]
R +1 − (2r + 1)

)
π

2M [j]


·
(
ã

[j+1]
(0,1)

)
(d[j]+1)2

K
[j]
R −1−r, l

)M [j]−1, N [j]−1

k, l=0

CIV
N [j]

=

√
2

N [j]

2
K

[j]
R −1∑
r=0

2K̃C−1−1∑
s=0

εM [j](k)

cos

k
(
d

[j]
R + 1

)
π

M [j]2−K
[j]
R

 cos

(
k(2r + 1)π

2M [j]

)

+ sin

k
(
d

[j]
R + 1

)
π

M [j]2−K
[j]
R

 sin

(
k(2r + 1)π

2M [j]

)(J
2
K

[j]
R
B̃

[j+1]
C J

2K̃C−1

)
r, s

· (−1)l sin

(
(2s+ 1)(2l + 1)π

4N [j]

))M [j]−1, N [j]−1

k, l=0

, (7.68)

where r :=
(
d

[j]
R + 1

)
2K

[j]
R −1−r′. As B̃[j+1]

C is of size 2K
[j]
R ×2K̃C−1, it suffices to use 2K

[j]
R

rows and 2K̃C−1 columns of (7.68) for its reconstruction. We choose the rows indexed by
2k′′′p , where k′′′p := M [j]2−K

[j]
R p, p ∈

{
0, . . . , 2K

[j]
R − 1

}
, since k′′′p ∈

{
0, . . . ,M [j] − 1

}
for

all p. As in Sections 6.3.1 and 7.3.2, we use the 2K̃C−1 columns of (7.68) that correspond
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to 2lq + 1, q ∈
{

0, . . . , 2K̃C−1 − 1
}
. Using (7.37) and (7.38), this implies

(−1)N
[j]2−K̃C

√
M [j]N [j]2−K̃C+2

((
a[j+1]

)ÎI

2k′′′p , 2lq+1

)2
K

[j]
R −1, 2K̃C−1−1

p, q=0

=

(−1)k
′′′
p εM [j](k′′′p )

cos

M [j]2−K
[j]
R p
(
d

[j]
R + 1

)
π

M [j]2−K
[j]
R

 cos

(
M [j]2−K

[j]
R p(2r + 1)π

2M [j]

)

+ sin

M [j]2−K
[j]
R p
(
d

[j]
R + 1

)
π

M [j]2−K
[j]
R

 sin

(
M [j]2−K

[j]
R p(2r + 1)π

2M [j]

)2
K

[j]
R −1

p, r=0

· J
2
K

[j]
R
B̃

[j+1]
C J

2K̃C−1

(
diag

(
s

[j]
C

)
CIV

2K̃C−1
+ diag

(
c

[j]
C

)
SIV

2K̃C−1

)
=

(
(−1)k

′′′
p εM [j](k′′′p )

(
cos
(
p
(
d

[j]
R + 1

)
π
)

cos

(
p(2r + 1)π

2 · 2−K
[j]
R

)

+ sin
(
p
(
d

[j]
R + 1

)
π
)

sin

(
p(2r + 1)π

2 · 2−K
[j]
R

)))2
K

[j]
R −1

p, r=0

· J
2
K

[j]
R
B̃

[j+1]
C J

2K̃C−1

(
diag

(
s

[j]
C

)
CIV

2K̃C−1
+ diag

(
c

[j]
C

)
SIV

2K̃C−1

)

=

(
(−1)

(
d
[j]
R +1+M [j]2

−K[j]
R

)
p
ε

2
K

[j]
R

(p) cos

(
p(2r + 1)π

2 · 2K
[j]
R

))2
K

[j]
R −1

p, r=0

J
2
K

[j]
R
B̃

[j+1]
C J

2K̃C−1

·
(

diag
(
s

[j]
C

)
CIV

2K̃C−1
+ diag

(
c

[j]
C

)
SIV

2K̃C−1

)

=

√
2K

[j]
R −1 diag

(
(−1)

(
d
[j]
R +1+M [j]2

−K[j]
R

)
p
)2

K
[j]
R −1

p=0

CII

2
K

[j]
R

·
(

J
2
K

[j]
R
B̃

[j+1]
C J

2K̃C−1 J
2
K

[j]
R
B̃

[j+1]
C J

2K̃C−1

)diag
(
s

[j]
C

)
diag

(
c

[j]
C

)
D

2K̃C−1


·

 CIV

2K̃C−1

CIV

2K̃C−1
J

2K̃C−1

 , (7.69)

where s[j]
C and c

[j]
C are defined in Section 7.3.2. As in Sections 6.3.1 and 7.3.2, we also need

to consider the columns corresponding to the indices 2l′q + 1, q ∈
{

0, . . . , 2K̃C−1 − 1
}
,

while using the same 2K
[j]
R rows as before. It follows from (7.39) that

(−1)N
[j]2−K̃C

√
M [j]N [j]2−K

[j]
R −K̃C+3

((
a[j+1]

)ÎI

2k′′′p , 2l
′
q+1

)2
K

[j]
R −1, 2K̃C−1−1

p, q=0

= diag

(
(−1)

(
d
[j]
R +1+M [j]2

−K[j]
R

)
p
)2

K
[j]
R −1

p=0

CII

2
K

[j]
R
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·
(

J
2
K

[j]
R
B̃

[j+1]
C J

2K̃C−1 J
2
K

[j]
R
B̃

[j+1]
C J

2K̃C−1

)diag
(
s

[j]
C

)
diag

(
c

[j]
C

)
D

2K̃C−1


·

 CIV

2K̃C−1

−CIV

2K̃C−1
J

2K̃C−1

 . (7.70)

Combining (7.69) and (7.70), we find that

(−1)N
[j]2−K̃C

√
M [j]N [j]2−K

[j]
R −K̃C+3

·

 ((
a[j+1]

)ÎI
2k′′′p , 2lq+1

)2
K

[j]
R −1, 2K̃C−1−1

p, q=0

((
a[j+1]

)ÎI
2k′′′p , 2l

′
q+1

)2
K

[j]
R −1, 2K̃C−1−1

p, q=0



= diag

(
(−1)

(
d
[j]
R +1+M [j]2

−K[j]
R

)
p
)2

K
[j]
R −1

p=0

CII

2
K

[j]
R

·
(

J
2
K

[j]
R
B̃

[j+1]
C J

2K̃C−1 J
2
K

[j]
R
B̃

[j+1]
C J

2K̃C−1

)diag
(
s

[j]
C

)
diag

(
c

[j]
C

)
D

2K̃C−1


·

(
CIV

2K̃C−1

CIV

2K̃C−1

)(
I

2K̃C−1 I
2K̃C−1

J
2K̃C−1 −J

2K̃C−1

)
. (7.71)

Let us denote the required samples of AÎI by

E
(C)
(0,0)

:=

((
a[j+1]

)ÎI

2k′′′p , 2lq+1

)2
K

[j]
R −1, 2K̃C−1−1

p, q=0

and

E
(C)
(0,1)

:=

((
a[j+1]

)ÎI

2k′′′p , 2l
′
q+1

)2
K

[j]
R −1, 2K̃C−1−1

p, q=0

.

As all square matrices in (7.71) are invertible, see (7.41), it follows that(
J

2
K

[j]
R
B̃

[j+1]
C J

2K̃C−1 J
2
K

[j]
R
B̃

[j+1]
C J

2K̃C−1

)

= (−1)N
[j]2−K̃C

√
M [j]N [j]2−K

[j]
R −K̃C+3 CIII

2
K

[j]
R

diag

(
(−1)

(
d
[j]
R +1+M [j]2

−K[j]
R

)
p
)2

K
[j]
R −1

p=0

·
(

E
(C)
(0,0) E

(C)
(0,1)

) 1

2

(
I

2K̃C−1 J
2K̃C−1

I
2K̃C−1 −J

2K̃C−1

)(
CIV

2K̃C−1

CIV

2K̃C−1

)

·

diag
(
s̃

[j]
C

)
D

2K̃C−1 diag
(
c̃

[j]
C

)
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= (−1)N
[j]2−K̃C

√
M [j]N [j]2−K

[j]
R −K̃C+1 CIII

2
K

[j]
R

diag

(
(−1)

(
d
[j]
R +1+M [j]2

−K[j]
R

)
p
)2

K
[j]
R −1

p=0

·
(

E
(C)
(0,0) + E

(C)
(0,1)

(
E

(C)
(0,0) −E

(C)
(0,1)

)
J

2K̃C−1

)
·

CIV

2K̃C−1
diag

(
s̃

[j]
C

)
CIV

2K̃C−1
D

2K̃C−1 diag
(
c̃

[j]
C

) . (7.72)

Here, it suffices to take the last 2K̃C−1 columns of (7.72) for computing B̃
[j+1]
C , so we find

B̃
[j+1]
C = (−1)N

[j]2−K̃C

√
M [j]N [j]2−K

[j]
R −K̃C+1 J

2
K

[j]
R
CIII

2
K

[j]
R

· diag

(
(−1)

(
d
[j]
R +1+M [j]2

−K[j]
R

)
p
)2

K
[j]
R −1

p=0

(
E

(C)
(0,0) −E

(C)
(0,1)

)
J

2K̃C−1C
IV

2K̃C−1

·D
2K̃C−1 diag

(
c̃

[j]
C

)
J

2K̃C−1 . (7.73)

Using (7.73), we can compute

(
ã

[j+1]
(0,1)

)
k, l

=


(
b̃
[j+1]
C

)
k−d[j]R 2

K
[j]
R , l−N [j]+2K̃C−1

if k ∈ I
d
[j]
R 2

K
[j]
R ,
(
d
[j]
R +1

)
2
K

[j]
R −1

,

l ∈ I
N [j]−2K̃C−1, N [j]−1

,

0 otherwise.

Hence, B̃[j+1]
C can be calculated using 2K

[j]
R · 2K̃C samples of AÎI by essentially applying

2K̃C−1 1-dimensional DCT-IIIs of length 2K
[j]
R to the columns of the sample matrix and

2K
[j]
R 1-dimensional DCT-IVs of length 2K̃C−1 to the rows.
We still need to determine whether the support of A[j+1] is completely contained in

its upper or in its lower half. By Theorem 7.14, case B and (7.62) to (7.65), there are
precisely two possibilities for A[j+1], either

V(0) :=
1

2

 A[j] + Ã
[j+1]
(0,1)

(
A[j] − Ã

[j+1]
(0,1)

)
JN [j]

0 0

 or

V(1) :=
1

2

 0 0

JM [j]

(
A[j] + Ã

[j+1]
(0,1)

)
JM [j]

(
A[j] − Ã

[j+1]
(0,1)

)
JN [j]

 .

Let us define

X(+) := A[j] + Ã
[j+1]
(0,1) and X(−) := A[j] − Ã

[j+1]
(0,1) ,

and, analogously to Section 7.3.1, compare the DCT-IIs of V(0) and V(1). Remark 7.7
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yields that

PM [j+1]

(
V(0)

)ÎI
PN [j+1]

T

=
1

2

CII
M [j]

(
X(+) + X(−)

)
CII
N [j]

T
CII
M [j]

(
X(+) −X(−)

)
CIV
N [j]

CIV
M [j]

(
X(+) + X(−)

)
CII
N [j]

T
CIV
M [j]

(
X(+) −X(−)

)
CIV
N [j]


and

PM [j+1]

(
V(1)

)ÎI
PN [j+1]

T

=
1

2

 CII
M [j]

(
X(+) + X(−)

)
CII
N [j]

T
CII
M [j]

(
X(+) −X(−)

)
CIV
N [j]

CIV
M [j]

(
−X(+) −X(−)

)
CII
N [j]

T
CIV
M [j]

(
−X(+) + X(−)

)
CIV
N [j]

 .

Consequently, it follows that(
v(1)
)ÎI

2k+1, 2l
= −

(
v(0)
)ÎI

2k+1, 2l
(7.74)

for all k ∈
{

0, . . . ,M [j] − 1
}
and l ∈

{
0, . . . , N [j] − 1

}
. Analogously to Section 7.3.1, we

can determine whether V(0) or V(1) is the correct matrix A[j+1] by comparing a nonzero

entry of
((
a[j+1]

)ÎI
2k+1, 2l

)M [j]−1, N [j]−1

k, l=0

to the corresponding entry of
(
V(0)

)ÎI. However,
we first need to show that such a nonzero entry can be found efficiently.
Assume that there does not exist such an entry, i.e., that((

a[j+1]
)ÎI

2k+1, 2l

)m[j]−1, n[j]−1

k, l=0

= 0.

We know from (7.23) in Section 7.3.1 that

0 =

((
a[j+1]

)ÎI

2k+1, 2l

)m[j]−1, n[j]−1

k, l=0

=
1√

M [j]N [j]
X

[j]
odd, rV

odd
((

tM [j+1], r

)
r∈S[j]

R

)T
·
((

ã
[j+1]
(1,0)

)
r, s

)
r∈S[j]

R , s∈S[j]
C

V

((
tN [j], s

)
s∈S[j]

C

)
X

[j]
C

T
diag

(
(εN [j](l))

n[j]−1
l=0

)
⇔ 0 =

((
ã

[j+1]
(1,0)

)
r, s

)
r∈S[j]

R , s∈S[j]
C

. (7.75)

Since j = j2, the support of A[j+1] is either completely contained in its upper half or in
its lower half. If S[j+1] is contained in its upper half, i.e., if A[j+1]

(1,0) = 0 and A
[j+1]
(1,1) = 0,

recall that by (7.62)
Ã

[j+1]
(1,0) = A

[j+1]
(0,0) + A

[j+1]
(0,1) JN [j] = A[j].

If the support of A[j+1] is completely contained in its lower half, i.e., if A[j+1]
(0,0) = 0 and
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A
[j+1]
(0,1) = 0, then, by (7.64),

Ã
[j+1]
(1,0) =− JM [j]A

[j+1]
(1,0) − JM [j]A

[j+1]
(1,1) JN [j] = −A[j].

Hence, we have that either Ã[j+1]
(1,0) = A[j] or Ã[j+1]

(1,0) = −A[j], which implies that (7.75) is
equivalent to A[j] = 0. This is a contradiction to (7.5) and (7.6) and the fact that the
matrix A has a block support of size m × n. Consequently, there exists an index pair

(kC , lC) ∈ I0,m[j]−1 × I0, n[j]−1 such that
(
a[j+1]

)ÎI
2kC+1, 2lC

6= 0.
For a stable and efficient implementation of this procedure using Lemma 7.8 we set

(kC , lC) := argmax
(k, l)∈I

0,m[j]−1
×I

0, n[j]−1

{∣∣∣2J−j−1aÎI
2J−j−1(2k+1), 2J−j l

∣∣∣} .
Further, we also need to compute the corresponding entry of

(
V(0)

)ÎI. By construction,
the support of V(0) is contained in

I
µ
[j]
R , ν

[j]
R

× I
N [j]−2K̃C−1, N [j]+2K̃C−1−1

.

Thus, the required entry of
(
V(0)

)ÎI satisfies
(
v(0)
)ÎI

2kC+1, 2lC
=
(
CII
M [j]V

(0)CII
N [j]

T
)

2kC+1, 2lC

=

ν
[j]
R∑

r=µ
[j]
R

N [j]+2K̃C−1−1∑
s=N [j]−2K̃C−1

(
CII
M [j]

)
2kC+1, r

v(0)
r, s

(
CII
N [j]

T
)
s, 2lC

and can be computed using O
(
m[j] · 2K̃C

)
operations.

By (7.74), we have that A[j+1] = V(0) if(
v(0)
)ÎI

2kC+1, 2lC
=
(
a[j+1]

)ÎI

2kC+1, 2lC
,

and A[j+1] = V(1) if (
v(0)
)ÎI

2kC+1, 2lC
= −

(
a[j+1]

)ÎI

2kC+1, 2lC
.

Numerically, we define

δ−C :=

∣∣∣∣(v(0)
)ÎI

2kC+1, 2lC
−
(
a[j+1]

)ÎI

2kC+1, 2lC

∣∣∣∣ and

δ+
C :=

∣∣∣∣(v(0)
)ÎI

2kC+1, 2lC
+
(
a[j+1]

)ÎI

2kC+1, 2lC

∣∣∣∣ ,
and set

A[j+1] =

{
V(0) if δ−C < δ+

C ,

V(1) if δ−C > δ+
C .
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Further, the first row support index of A[j+1] is given by

µ
[j+1]
R :=

{
µ

[j]
R if A[j+1] = V(0),

M [j+1] − 1− ν[j]
R if A[j+1] = V(1).

(7.76)

Note that m[j+1] = m[j], but that we only know that

S
[j+1]
C ⊆ I

N [j]−2K̃C−1, N [j]+2K̃C−1−1
(7.77)

and n[j] < n[j+1]. As in Chapter 6 we have to detect the exact first and last column
support indices by examining which of the entries corresponding to the indices in (7.77)
are nonzero. In Section 7.3.5 we will thus give a 2-dimensional analog to Remark 6.18.

7.3.4 Recovery Procedure for Case C: Colliding Rows

If j = j3, where j3 is defined as in (7.9), the row support S[j]
R of A[j] is completely

contained in the last bR columns, but the column support S[j]
C is not contained in the

last bC columns, i.e.,

S
[j]
R ⊆ IM [j]−bR,M [j]−1 and S

[j]
C 6⊆ IN [j]−bC , N [j] .

Then it follows from Theorem 7.14, case C that

S[j+1] ( IM [j]−bR,M [j]+bR−1 × Iµ[j]C , ν[j]C
or

S[j+1] ( IM [j]−bR,M [j]+bR−1 × IN [j+1]−1−ν[j]C , N [j+1]−1−µ[j]C
,

see also Figure 7.15.
Analogously to Section 7.3.3, there are two possibilities for the column support S[j+1]

C

of A[j+1], as S[j+1] is either contained in the left or the right half of A[j+1]. Due to
collision of nonzero entries, the row support S[j+1]

R is not known exactly. Switching the
roles of rows and columns, we can proceed similarly to Section 7.3.3. The main theorem
for reconstructing A[j+1] from A[j] and AÎI in case C of Theorem 7.14 presents itself
as an analog to Theorem 7.19. We will briefly sketch the proof to introduce the setup
and notation necessary for formulating the complete 2-dimensional IDCT-II algorithm
for block sparse matrices in Section 7.4.

Theorem 7.20 Let M = 2JR and N = 2JC with JR, JC ∈ N, and let J := min {JR, JC}.
Let A ∈ RM×N have a block support of size m×n with known bounds bR ≥ m and bC ≥ n,
and assume that A satisfies (7.5) and (7.6). Let L := max {dlog2 bRe+ 1, dlog2 bCe+ 1}
and j = j3 ∈ {L, . . . , J − 1} as in (7.9). Suppose that we have access to all entries of
AÎI. Then A[j+1] can be recovered from A[j], 2K̃R · 2K

[j]
C entries of AÎI and one nonzero

entry of
((
a[j+1]

)ÎI
2k, 2l+1

)m[j]−1, n[j]−1

k, l=0

, where K [j]
C ∈

{
dlog2 ne+ 1, . . . , log2N

[j]
}
.

Proof. By assumption and Lemma 7.12, A[j] has the block support

S[j] = S
[j]
R × S

[j]
C = I

µ
[j]
R , ν

[j]
R

× I
µ
[j]
C , ν

[j]
C

⊆ IM [j]−bR,M [j]−1 × Iµ[j]C , ν[j]C
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A[j]

m[j]

M [j] − bR

A[j+1]

m̃[j]

M [j] − bR

µ
[j]
R

A[j]

m[j]

M [j] − bR

A[j+1]

m̃[j]

M [j] − bR

µ
[j]
R

Figure 7.15: Illustration of the support of A[j] and one possibility for the support of
A[j+1] for n[j] < n[j+1] (top) and n[j] = n[j+1] (bottom)

of size m[j] × n[j]. Analogously to Section 7.3.3, we now have that

S[j+1] ( I
M [j]−2K̃R−1,M [j]+2K̃R−1−1

× I
µ
[j]
C , ν

[j]
C

or

S[j+1] ( I
M [j]−2K̃R−1,M [j]+2K̃R−1−1

× I
N [j+1]−1−ν[j]C , N [j+1]−1−µ[j]C

.
(7.78)

If the right half of A[j+1] is zero, (7.31) can be simplified to

A[j] = Ã
[j+1]
(0,0) = A

[j+1]
(0,0) + JM [j]A

[j+1]
(1,0) = Ã

[j+1]
(0,1) and

Ã
[j+1]
(1,0) = A

[j+1]
(0,0) − JM [j]A

[j+1]
(1,0) = Ã

[j+1]
(1,1) .

(7.79)

Hence, it follows from (7.32) that

A[j+1] =
1

2

 A[j] + Ã
[j+1]
(1,0) 0

JM [j]

(
A[j] − Ã

[j+1]
(1,0)

)
0

 =: W(0). (7.80)
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If the left half of A[j+1] is zero, we find that

A[j] = Ã
[j+1]
(0,0) = A

[j+1]
(0,1) JN [j] + JM [j]A

[j+1]
(1,1) JN [j] = −Ã[j+1]

(0,1) ,

Ã
[j+1]
(1,0) = A

[j+1]
(0,1) JN [j] − JM [j]A

[j+1]
(1,1) JN [j] = −Ã[j+1]

(1,1) ,
(7.81)

and

A[j+1] =
1

2

 0
(
A[j] + Ã

[j+1]
(1,0)

)
JN [j]

0 JM [j]

(
A[j] − Ã

[j+1]
(1,0)

)
JN [j]

 =: W(1). (7.82)

Similarly to case B, it suffices to recover Ã
[j+1]
(1,0) in order to compute A[j+1] if we can

determine whether the support of A[j+1] is contained in the left or right half. Recall that
by (7.60) ((

a[j+1]
)ÎI

2k+1, 2l

)M [j]−1, N [j]−1

k, l=0

=
1

2
CIV
M [j]Ã

[j+1]
(1,0) C

II
N [j]

T
. (7.83)

Using a subdivision of I0, N [j]−1 into intervals of length 2K
[j]
C , analogously to (7.67), with

K
[j]
C = min

K∈{KC ,...,log2N
[j]}

{
∃ d[j]

C ∈ I
0, N [j]2

K
[j]
C −1

: S
[j]
C ( I

d
[j]
C ·2

K
[j]
C ,
(
d
[j]
C +1

)
·2K

[j]
C −1

}
,

we define the restriction

B̃
[j+1]
R :=

((
ã

[j+1]
(1,0)

)
k, l

)M [j]−1,
(
d
[j]
C +1

)
2
K

[j]
C
−1

k=M [j]−2K̃R−1, l=d
[j]
C 2

K
[j]
C

of Ã[j+1]
(1,0) to the last 2K̃R−1 rows and the d[j]

C th set of 2K
[j]
C columns. Then, analogously to

(7.68) to (7.73), where we use the 2K
[j]
C columns of (7.83) indexed by l′′′q := N [j]2−K

[j]
C q,

q ∈
{

0, . . . , 2K
[j]
C − 1

}
, and the rows corresponding to kp and k′′p , we find that

B̃
[j+1]
R =(−1)M

[j]2−K̃R

√
M [j]N [j]2−K̃R−K

[j]
C +1 J

2K̃R−1 diag
(
c̃

[j]
R

)
D

2K̃R−1

·CIV

2K̃R−1
J

2K̃R−1

(
E

(R)
(0,0) −E

(R)
(1,0)

)(
diag(−1)

(
d
[j]
C +1+N [j]2

−K[j]
C

)
q
)2

K
[j]
C −1

q=0

·CII

2
K

[j]
C

J
2
K

[j]
C
. (7.84)

Here, we denote the required samples of AÎI by

E
(R)
(0,0)

:=

((
a[j+1]

)ÎI

2kp+1, 2l′′′q

)2K̃R−1−1, 2
K

[j]
C −1

p, q=0

and

E
(R)
(1,0)

:=

((
a[j+1]

)ÎI

2k′p+1, 2l′′′q

)2K̃R−1−1, 2
K

[j]
C −1

p, q=0

.
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Hence, B̃[j+1]
R can be computed using 2K̃R · 2K

[j]
C samples of AÎI by essentially applying

2K
[j]
C 1-dimensional DCT-IIs of length 2K̃R−1 to the columns of the sample matrix and

2K̃R−1 1-dimensional DCT-IVs of length 2K
[j]
C to the rows. From (7.84) we can compute

(
ã

[j+1]
(1,0)

)
k, l

=


(
b̃
[j+1]
R

)
k−M [j]+2K̃R−1, l−d[j]C 2

K
[j]
C

if k ∈ I
M [j]−2K̃R−1,M [j]−1

,

l ∈ I
d
[j]
C 2

K
[j]
C ,
(
d
[j]
C +1

)
2
K

[j]
C −1

,

0 otherwise.

Analogously to Section 7.3.3, we still have to find out whether the support of A[j+1] is
completely contained in its left or in its right half. We can determine whether A[j+1]

is W(0) or W(1) by comparing their DCT-IIs at an evenly indexed row and an oddly

indexed column such that the corresponding entry of
(
A[j+1]

)ÎI is nonzero, since
(
w(1)

)ÎI

2k, 2l+1
= −

(
w(0)

)ÎI

2k, 2l+1

for all k ∈
{

0, . . . ,M [j] − 1
}

and l ∈
{

0, . . . , N [j] − 1
}
. As in Section 7.3.3, it can

be shown that there exists an index pair (kR, lR) ∈ I0,m[j]−1 × I0, n[j]−1 such that(
a[j+1]

)ÎI
2kR, 2lR+1

6= 0. For a stable and efficient implementation of the method we set

(kR, lR) := argmax
(k, l)∈I

0,m[j]−1
×I

0, n[j]−1

{∣∣∣2J−j−1aÎI
2J−jk, 2J−j−1(2l+1)

∣∣∣} .
Because S

(
W(0)

)
= S[j], we obtain for the corresponding entry of

(
W(0)

)ÎI that
(
w(0)

)ÎI

2kR, 2lR+1
=
(
CII
M [j]W

(0)CII
N [j]

T
)

2kR, 2lR+1

=
M [j]+2K̃R−1−1∑
r=M [j]−2K̃R−1

ν
[j]
C∑

s=µ
[j]
C

(
CII
M [j]

)
2kR, r

w(0)
r, s

(
CII
N [j]

T
)
s, 2lR+1

,

so it can be computed using O
(

2K̃R · n[j]
)
operations. Then we set

δ−R :=

∣∣∣∣(w(0)
)ÎI

2kR, 2lR+1
−
(
a[j+1]

)ÎI

2kR, 2lR+1

∣∣∣∣ and

δ+
R :=

∣∣∣∣(w(0)
)ÎI

2kR, 2lR+1
+
(
a[j+1]

)ÎI

2kR, 2lR+1

∣∣∣∣ ,
and let

A[j+1] =

{
W(0) if δ−R < δ+

R ,

W(1) if δ−R > δ+
R .

Further, the first column support index of A[j+1] satisfies

µ
[j+1]
C :=

{
µ

[j]
C if A[j+1] = W(0),

N [j+1] − 1− ν[j]
C if A[j+1] = W(1).

(7.85)
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Note that n[j+1] = n[j] but that, analogously to Section 7.3.3, the first and last row
support index of A[j+1] are not known, and that we only have that

S
[j+1]
R ( I

M [j]−2K̃R−1,M [j]+2K̃R−1−1

and m[j] < m[j+1]. We will show in Section 7.3.5 how to find the exact first and last row
support indices by a 2-dimensional analog to Remark 6.18.

7.3.5 Detecting the Support Sets

All of the reconstruction procedures introduced above rely heavily on the fact that the
reflected periodization A[j] and its support S[j] are known from the previous iteration
step. Hence, we still have to develop methods for efficiently finding the first and last
support indices. Let ε > 0 be a threshold depending on the noise level of the data.
Note that if j ∈ {L, . . . , J − 1} \ {j1, j2, j3}, where j1, j2, j3 are given by (7.7) to (7.9),

the first and last row and column support indices are already completely determined by
(7.28) and (7.29).

Case A: Colliding Rows and Columns

If j = j1 as in (7.7), i.e., if the support S[j] of A[j] is contained in its last bR rows and
bC columns, we know from (7.35) that

S[j+1] ( I
M [j]−2K̃R−1,M [j]+2K̃R−1−1

× I
N [j]−2K̃C−1, N [j]+2K̃C−1−1

.

Hence, it suffices to consider the set

Z [j+1] :=
{

(k, l) ∈ I
M [j]−2K̃R−1,M [j]+2K̃R−1−1

× I
N [j]−2K̃C−1, N [j]+2K̃C−1−1

:
∣∣∣a[j+1]
k, l

∣∣∣ > ε
}

in order to determine the first and last row and column support indices. We obtain that

µ
[j+1]
R := min

{
k : (k, l) ∈ Z [j+1]

}
, µ

[j+1]
C := min

{
l : (k, l) ∈ Z [j+1]

}
,

ν
[j+1]
R := max

{
k : (k, l) ∈ Z [j+1]

}
, ν

[j+1]
C := max

{
l : (k, l) ∈ Z [j+1]

}
,

m[j+1] := ν
[j+1]
R − µ[j+1]

R + 1, n[j+1] := ν
[j+1]
C − µ[j+1]

C + 1.

Thus, Z [j+1] and the first and last row and column support indices can be found in

O
(

2K̃R · 2K̃C
)

= O (bRbC)

time.

Case B: Colliding Columns

If j = j2 as in (7.8), i.e., if the column support of A[j] is completely contained in the
last bC columns, but the row support is not contained in the last bR rows, we know from
(7.61) and (7.76) that

µ
[j+1]
R :=

{
µ

[j]
R if A[j+1] = V(0),

M [j+1] − 1− ν[j]
R if A[j+1] = V(1),
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and
S

[j+1]
C ( I

N [j]−2K̃C−1, N [j]+2K̃C−1−1
.

Consequently, the first and last column support indices can be found from the set

Z
[j+1]
C :=

{
l ∈ I

N [j]−2K̃C−1, N [j]+2K̃C−1−1
: ∃ k ∈ I

µ
[j+1]
R , ν

[j+1]
R

:
∣∣∣a[j+1]
k, l

∣∣∣ > ε
}
.

Then we define

µ
[j+1]
C := min

{
l ∈ Z [j+1]

C

}
, ν

[j+1]
C := max

{
l ∈ Z [j+1]

C

}
,

n[j+1] := ν
[j+1]
C − µ[j+1]

C + 1.

Hence, we can find Z [j+1]
C and the first and last column support index using

O
(

2K̃C
)

= O (bC)

operations.

Case C: Colliding Rows

If j = j3 as in (7.9), i.e., if the row support of A[j] is completely contained in the last bR
rows, but the column support is not contained in the last bC columns, (7.78) and (7.85)
yield that

µ
[j+1]
C :=

{
µ

[j]
C if A[j+1] = W(0),

N [j+1] − 1− ν[j]
C if A[j+1] = W(1),

and
S

[j+1]
R ( I

M [j]−2K̃R−1,M [j]+2K̃R−1−1
.

Analogously to case B, we define the set

Z
[j+1]
R :=

{
k ∈ I

M [j]−2K̃R−1,M [j]+2K̃R−1−1
: ∃ l ∈ I

µ
[j+1]
C , ν

[j+1]
C

:
∣∣∣a[j+1]
k, l

∣∣∣ > ε
}

and let

µ
[j+1]
R := min

{
k ∈ Z [j+1]

R

}
, ν

[j+1]
R := max

{
k ∈ Z [j+1]

R

}
,

m[j+1] := ν
[j+1]
R − µ[j+1]

R + 1.

Consequently, determining Z [j+1]
R and the first and last row support index requires

O
(

2K̃R
)

= O (bR)

operations.

Detecting the Support of A[L]

Our method begins by computing the initial matrix A[L] ∈ M [L] × N [L] directly from
AÎI, so we also have to detect its support. As we do not have any a priori knowledge of
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S[L], we have to consider the set

Z [L] :=
{

(k, l) ∈ I0,M [L]−1 × I0, N [L]−1 :
∣∣∣a[L]
k, l

∣∣∣ > ε
}
.

Then we let

µ
[L]
R := min

{
k : (k, l) ∈ Z [L]

}
, µ

[L]
C := min

{
l : (k, l) ∈ Z [L]

}
,

ν
[L]
R := max

{
k : (k, l) ∈ Z [L]

}
, ν

[L]
C := max

{
l : (k, l) ∈ Z [L]

}
,

m[L] := ν
[L]
R − µ

[L]
R + 1, n[L] := ν

[L]
C − µ

[L]
C + 1.

Thus, Z [L] and the first and last row and column support indices can be obtained in
O
(
M [L]N [L]

)
time.

7.4 A 2D Sparse Fast IDCT-II for Block Sparse Matrices

We can now combine the procedures developed in Section 7.3 to obtain our new deter-
ministic 2-dimensional IDCT-II algorithm for block sparse matrices.
We suppose that AÎI ∈ RM×N is given, where M = 2JR , N = 2JC and JR, JC ∈ N.

Further, we assume that A has a block support of unknown size m×n, but that bounds
bR ≥ m and bC ≥ n are known. We also suppose that A satisfies (7.5) and (7.6), and
that we can access all entries of AÎI. Setting J := max {JR, JC}, our method starts with
calculating the matrix

A[L] = CIII
M [L]

(
2J−L

(
aÎI

2J−Lk, 2J−Ll

)M [L]−1, N [L]−1

k, l=0

)
CIII
N [L]

T
,

where
L := max {dlog2 bRe+ 1, dlog2 bCe+ 1} ,

directly via a fast full-sized 2-dimensional DCT-III, which can be computed with the help
of the row-column method mentioned in Section 4.3. Then the support of A[L] has to be
detected as we described in Section 7.3.5. Recalling that the indices j1, j2 and j3 are given
by (7.7) to (7.9), we have to execute the following iteration steps for j ∈ {L, . . . , J − 1}.

1) If the support of A[j] is contained in the last bR rows and in the last bC columns,
reconstruct A[j+1] using the recovery procedure from Theorem 7.18.

2) If the support ofA[j] is not contained in the last bR rows, but in the last bC columns,
reconstruct A[j+1] using the recovery procedure from Theorem 7.19.

3) If the support ofA[j] is contained in the last bR rows, but not in the last bC columns,
reconstruct A[j+1] using the recovery procedure from Theorem 7.20.

4) If the support of A[j] is neither contained in the last bR rows nor in the last bC
columns, reconstruct A[j+1] using the recovery procedure from Theorem 7.17.

It follows from Theorem 7.14 that there is at most one index j1 such that we have to
apply step 1, at most one index j2 such that we have to apply step 2 and at most one
index j3 such that we have to apply step 3. The complete procedure is summarized in
Algorithm 10.
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Algorithm 10 2-Dimensional Real Sparse Fast IDCT-II for Matrices with Block Support

Input: AÎI, bR, bC , where the sought-after matrix A ∈ RM×N with M = 2JR , N = 2JC ,
JR, JC ∈ N, has an unknown block support of size at most bR × bC and satisfies (7.5) and
(7.6), and noise threshold ε > 0.

1: J ← min {JR, JC}
2: L← max {dlog2 bRe+ 1, dlog2 bCe+ 1}

3: A[L] ← DCT− III

[
2J−L

(
aÎI2J−Lk, 2J−Ll

)M [L]−1, N [L]−1

k, l=0

]
4: Find µ[L]

R , µ[L]
C , m[L] and n[L].

5: for j from L to J − 1 do
6: if µ[j]

R ≥M [j] − bR and µ[j]
C ≥ N [j] − bC then

7: Calculate A[j+1] using Theorem 7.18.
8: Find µ[j+1]

R , µ[j+1]
C , m[j+1] and n[j+1].

9: else if µ[j]
R < M [j] − bR and µ[j]

C ≥ N [j] − bC then
10: Calculate A[j+1] using Theorem 7.19.

11: m[j+1] ← m[j] and µ[j+1]
R ←

{
µ
[j]
R if A[j+1] = V(0),

M [j+1] − 1− ν[j]R if A[j+1] = V(1).

12: Find µ[j+1]
C and n[j+1].

13: else if µ[j]
R ≥ bR and µ[j]

C < N [j] − bC then
14: Calculate A[j+1] using Theorem 7.20.

15: n[j+1] ← n[j] and µ[j+1]
C ←

{
µ
[j]
C if A[j+1] = W(0),

N [j+1] − 1− ν[j]C if A[j+1] = W(1).

16: Find µ[j+1]
R and m[j+1].

17: else if µ[j]
R < M [j] − bR and µ[j]

C < N [j] − bC then
18: Calculate A[j+1] using Theorem 7.17.

19: µ
[j+1]
R ←

{
µ
[j]
R if A[j+1] = U(0,0) or A[j+1] = U(0,1),

M [j+1] − 1− ν[j]R if A[j+1] = U(1,0) or A[j+1] = U(1,1).

20: µ
[j+1]
C ←

{
µ
[j]
C if A[j+1] = U(0,0) or A[j+1] = U(1,0),

N [j+1] − 1− ν[j]C if A[j+1] = U(0,1) or A[j+1] = U(1,1).

21: m[j+1] ← m[j] and n[j+1] ← n[j].
22: end if
23: end for
Output: A = A[J].

In the following theorem we prove that the runtime and the sampling complexity of
Algorithm 10 are both sublinear in the matrix size MN .

Theorem 7.21 Let M = 2JR and N = 2JC with JR, JC ∈ N, and let J := min {JR, JC}.
Let A ∈ RM×N have a block support of size m×n with known bounds bR ≥ m and bC ≥ n,
and assume that A satisfies (7.5) and (7.6). Let L := max {dlog2 bRe+ 1, dlog2 bCe+ 1}
and b := max {bR, bC}. Suppose that we have access to all entries of AÎI ∈ RM×N . Then
Algorithm 10 has a runtime of

O
(
bRbC log2 (bRbC) + b2

MN

min{M,N}2
log

(
b2MN

min{M,N}2

)
+
M

2
bC log2

(
M

2
bC

)
+ bR

N

2
log2

(
bR
N

2

)
+mn log2

min{M,N}
b

)
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and requires

O
(
brbC + b2

MN

min{M,N}2
+mn log2

min{M,N}
b

+
M

2
bC + bR

N

2

)
samples of AÎI.
If N = O(M) and bC = O(bR), then the above runtime and sampling complexities

simplify to

O
(
b2 log2 b

2 + b2 log2

M

b
+
M

2
b log2

(
M

2
b

))
and O

(
b2 + b2 log2

M

b
+
M

2
b

)
.

Proof. Computing the initial matrix A[L] in line 3 using a 2-dimensional DCT-III of size
M [L] ×N [L] with M [L] = M

2J−L
and N [L] = N

2J−L
requires

O
(
M [L]N [L] log

(
M [L]N [L]

))
= O

(
b2

MN

min{M,N}2

)
operations, since 2L = O(b). The first and last row and column support indices of A[L]

in line 4 can be found with the method described in Section 7.3.5, which has a runtime
of O

(
M [L]N [L]

)
.

If j = j1 as in (7.7), i.e., if we apply step 1, we use the method from Theorem 7.18.
By (7.42), (7.49) and (7.57), it requires the application of 2K̃C−1 1-dimensional DCTs of
types II and IV of length 2K̃R−1 to columns, and of 2K̃R−1 1-dimensional DCTs of types
II and IV of length 2K̃C−1 to rows. It follows from (7.58) that additional operations of
complexity O

(
2K̃R−1 · 2K̃C−1

)
have to be performed, as all other occurring matrices are

either diagonal or permutations. Using the row-column approach detailed in Section 4.3
for the computation of the DCTs, line 7 has a runtime of

O
(

2K̃R−12K̃C−1 log2

(
2K̃R−12K̃C−1

))
= O (bRbC log2 (bRbC)) .

If we apply step 2, then j = j2 as in (7.8), and we have to employ the technique described
in Theorem 7.19. By (7.73), calculating B̃[j+1]

C needs the application of 1-dimensional
DCT-IIIs of length 2K

[j]
R to 2K̃C−1 columns, the application of 1-dimensional DCT-IVs

of length 2K̃C−1 to 2K
[j]
R rows, and further operations of complexity 2K

[j]
R × 2K̃C−1, as all

other matrices are either diagonal or permutations. Finding the index pair (kC , lC) and

the entry
(
v(0)
)ÎI
kC , lC

requires O
(
m[j]bC

)
additional operations. Note that we can only

estimate that 2K
[j]
R = O

(
M [j]

)
= O

(
M
2

)
, since we do not know the location of the row

support of A[j2] a priori and also do not have an estimate for j2 besides J − 1. Hence,
with the row-column approach for the DCTs, line 10 has a runtime of

O
(

2K
[j]
R 2K̃C−1 log2

(
2K

[j]
R 2K̃C−1

))
= O

(
M

2
bC log2

(
M

2
bC

))
.

The first column support index µ
[j+1]
C and the column support length n[j+1] can be

computed as detailed in Section 7.3.5, which yields a runtime of O (bC).
If j = j3 as given by (7.9), we have to apply step 3. Employing the technique from
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Theorem 7.20, lines 14 and 16 analogously require

O
(

2K̃R−12K
[j]
C log2

(
2K̃R−12K

[j]
C

))
= O

(
bR
N

2
log2

(
bR
N

2

))
and O (bR) operations, respectively.
If j ∈ {L, . . . , J−1}\{j1, j2, j3}, we always have to apply step 4, for which the approach

from Theorem 7.17 is used. By Lemma 7.15, the nonzero entries
(
a[j+1]

)ÎI
2k(0,1), 2l(0,1)+1

and(
a[j+1]

)ÎI
2k(1,0)+1, 2l(1,0)

can be found in O
(
m[j]n[j]

)
time. Calculating the corresponding

entries of
(
U(0,0)

)ÎI requires the same number of operations, so line 18 has a runtime of

O
(
m[j]n[j]

)
.

Recall that, if they exist, j1, j2 and j3 are unique. Thus, Algorithm 10 has an overall
runtime of

O
(
M [L]N [L] log

(
M [L]N [L]

)
+ bRbC log2 (bRbC)

+ 2K
[j2]
R bC log2

(
2K

[j2]
R bC

)
+ bR2K

[j3]
C log2

(
bR2K

[j3]
C

)
+

J−1∑
j=L

j /∈{j1,j2,j3}

m[j]n[j]


= O

(
b2

MN

min{M,N}2
log

(
b2

MN

min{M,N}2

)
+ bRbC log2 (bRbC) + (J − L)mn

+
M

2
bC log2

(
M

2
bC

)
+ bR

N

2
log2

(
bR
N

2

))
= O

(
bRbC log2 (bRbC) + b2

MN

min{M,N}2
log

(
b2MN

min{M,N}2

)
+
M

2
bC log2

(
M

2
bC

)
+ bR

N

2
log2

(
bR
N

2

)
+mn log2

min{M,N}
b

)
.

If we know a priori that the number of matrix rowsM and the number of matrix columns
N , and the bounds bR and bC are of a similar size, i.e., if we have that N = O(M) and
bC = O (bR) = O(b), then the above runtime simplifies to

O
(
b2 log2 b

2 + b2 log2

M

b
+
M

2
b log2

(
M

2
b

))
.

These assumptions are for example met by commonly used image formats, where the
ratio N

M is usually between 1 and 2 if only a small subimage with similar column-to-row
ratio is not zero.
In order to compute the initial matrix A[L] in line 3, we need M [L]N [L] samples of

AÎI. By Theorem 7.18, line 7 requires 8 · 2K̃R−12K̃C−1 samples of AÎI. Further, it
follows from Theorems 7.19 and 7.20 that lines 10 and 14 have sampling complexities of
O
(

2K
[j2]
R 2K̃C +m[j2]n[j2]

)
and O

(
2K̃R2K

[j3]
C +m[j3]n[j3]

)
, respectively. Finally, line 18
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requires m[j]n[j] samples of AÎI. Hence, Algorithm 10 has a sampling complexity of

O

M [L]N [L] + bRbC + 2K
[j2]
R bC +mn+ bR2K

[j3]
C +mn+

J−1∑
j=L

j /∈{j1,j2,j3}

m[j]n[j]


= O

(
b2

MN

min{M,N}2
+ bRbC + (J − L)mn+

M

2
bC + bR

N

2
+mn

)
= O

(
brbC + b2

MN

min{M,N}2
+mn log2

min{M,N}
b

+
M

2
bC + bR

N

2

)
.

Again, if N = O(M) and bC = O (bR) = O(b), this simplifies to

O
(
b2 + b2 log2

M

b
+
M

2
b

)
.

Remark 7.22 Note that in practice the runtime of Algorithm 10 depends on whether
and at which level j steps 2 and 3 have to be executed, and also on the location of the
row support of A[j2] and the location of the column support of A[j3]. If j2 and j3 exist
and are approximately L, then 2K

[j2]
R = O (bR) and 2K

[j3]
C = O (bC). Thus, the algorithm

requires

O
(
b2 log2 b

2 + b2 log2

M

b

)
arithmetical operations. Such a runtime is also obtained if K [j2]

R and K [j3]
C are approxi-

mately K̃R and K̃C , respectively, since K̃R = O (bR) and K̃C = O (bC). However, even
if, e.g., j2 = J − 1 and j3 = J − 2 with 2K

[j2] = M
2 and 2K

[j3] = N
4 , the theoretical

runtime of Algorithm 10 proven in Theorem 7.21 is still smaller than the runtime

O (MN log2(MN))

of a 2-dimensional IDCT-II of size M × N from Section 4.3. If j2 and j3 exist and are
approximately L, or if K [j2]

R ≈ K̃R and K [j3]
C ≈ K̃C , the number of required samples is

O
(
b2 +mn log2

M

b

)
,

and if, e.g., j2 = J − 1 and j3 = J − 2 with 2K
[j2] = M

2 and 2K
[j3] = N

4 , Algorithm 10
still uses less thanMN samples of AÎI. In order to obtain a really efficient 2-dimensional
IDCT-II algorithm for block sparse matrices with the runtime of

O
(
b2 log2 b

2 + b2 log2

M

b

)
we initially hoped for, faster procedures for cases B and C of Theorem 7.14 have to be
developed. Algorithm 10 is a good first algorithm for the problem of recovering block
sparse matrices from their DCT-II, but it can still be improved. Nevertheless, even in
the worst case Algorithm 10 achieves a runtime that is sublinear in the matrix size MN
and subquadratic in the sparsity mn. ♦
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Conclusion





Conclusion

This thesis consists of two parts, the first one focusing on sparse FFT algorithms for
2π-periodic functions and the second one investigating sparse IDCT-II algorithms for
vectors and matrices. In the first part of this thesis we began by introducing two new
deterministic sparse FFT algorithms for reconstructing 2π-periodic functions with short
frequency support from samples. Both can be obtained as different simplifications of
the sampling schemes used for the general B-sparse Algorithm 2 in [Iwe10] if the given
support structure is utilized. Analogously to Algorithm 2 in [Iwe10], our new sparse FFT
algorithms need a priori knowledge of an upper boundB on the support length. Estimates
for the theoretical runtime and sampling complexities of both algorithms provided in
Chapter 2 showed that they are sublinear in the bandwidth N of the function we aim to
recover, with runtimes of

O

(
B logB

log2 N
B

log log N
B

)
and O

(
(B + logN) logN

log2B
log2

(
B + logN

logB

))
,

respectively. Thus, they both improve on the O(N logN) runtime of the FFT. Fur-
ther, the runtime and sampling complexities scale subquadratically in the sparsity, which
makes them faster than all existing deterministic FFT algorithms for arbitrary B-sparse
functions, whose runtimes are quadratic in the sparsity. Numerical experiments sup-
ported these claims empirically and also showed the robustness of both methods with
respect to noisy input data.
In Chapter 3 we extended the methods from [Iwe10, Iwe13] to functions with more

complex sparsity constraints, namely polynomially structured sparse functions, where
the energetic frequencies are generated by evaluating n polynomials of degree at most
d at B consecutive points. We derived the, as far as we are aware, first deterministic
FFT algorithm for this class of functions and proved that its runtime is sublinear in the
bandwidth N of the function in question, with

O
(
Bd2n3 log5N

log2(2dn)

)
.

Our algorithm requires a priori knowledge of upper bounds on n, d and B, analogously
to Algorithm 2 in [Iwe10]. Furthermore, we proved a theoretical error estimate of

‖c(N)− xR‖2 ≤
∥∥∥c(N)− copt

Bn(N)
∥∥∥

2
+
√
Bn

(
ε+

3

dn

∥∥∥c(N)− copt
2Bn(N)

∥∥∥
1

)
for an approximately polynomially structured sparse function f + η with bandwidth N
and noise η such that c(η) ∈ `1 and ‖c(η)‖∞ ≤ ε. For the class of functions with block
sparse frequency support, which is probably the most practically useful subclass of the
functions with polynomially structured sparsity, we adapted our method to obtain an even
lower runtime. This, to the best of our knowledge, first FFT algorithm for block sparse
functions also achieves runtime and sampling complexities that scale subquadratically in
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the sparsity, with a runtime of

O
(
Bn2 log4N

log1(2n)

)
.

We concluded the chapter by numerical experiments highlighting the performance of the
algorithm for block sparse functions with respect to runtime and noisy input data.
In the second part of this thesis we investigated the related problem of determinis-

tically reconstructing a vector x ∈ R2J−1 from its DCT-II transformed vector xÎI. In
Chapter 5 we derived an algorithm that recovers a vector x with one-block support, i.e.,
the support may be wrapped periodically around the boundary of x. Our approach uti-
lizes that xÎI is completely determined by the Fourier transform of the auxiliary vector
y = (xT , (JNx)T )T of double length. Since y has a reflected block support if x has
a one-block support, we first developed an algorithm for iteratively recovering y from
its periodizations y(0),y(1), . . . ,y(J) = y and ŷ. The notion of periodizations was first
introduced in [PW16a] for an IFFT algorithm for reconstructing vectors with one-block
support. Applying our new sparse IFFT method then yields a sparse IDCT-II algorithm
for recovering vectors with one-block support. Both our new sparse IFFT and our new
sparse IDCT-II have runtimes of O

(
m logm log 2N

m

)
, which are sublinear in the length

of the vector and subquadratic in the sparsity. Furthermore, they do not require any
a priori information on the support length of x. As far as we are aware, these are the
first deterministic IFFT and IDCT-II algorithms, respectively, that are tailored to the
specific support structures of reflected block support and one-block support.
As the DCT-II is a real transform that can be computed in a fast way using only

real arithmetic, we focused on finding a second sparse IDCT-II that only requires real
arithmetic in Chapter 6. Instead of employing periodizations of the auxiliary vector y
and IFFTs, we developed the new concept of reflected periodizations. These are a DCT-II
specific analog to the periodizations from [PW16a] used in the DFT case. For recovering
a vector x ∈ R2J from its reflected periodizations the vector must have a short support of
length m, i.e., the support can no longer be wrapped periodically around the boundary
of the vector. Moreover, this approach requires a priori knowledge of an upper bound M
on m. With the help of the reflected periodizations, x can be recovered iteratively from
x[L],x[L+1], . . . ,x[J ] = x and xÎI, where the starting index L has to satisfy 2L−1 ≥ M .
Our new real sparse IDCT-II algorithm, which is, to the best of our knowledge, the first
deterministic sparse IDCT-II algorithm that only uses real arithmetic, achieves a runtime
of O

(
M logM +m log N

M

)
. Thus, its runtime is both sublinear in the vector length N

and subquadratic in the sparsity bound M . We concluded the chapter with numerical
comparisons of our two new sparse IDCT-II methods with respect to runtime and noisy
input data.
Many of the applications for which the DCT-II is typically used, like digital image and

video compression, are higher dimensional, but also sparse. In Chapter 7 we investigated
the special case of block sparse matrices, where the support is contained in a rectangle
of size m×n. For such matrices we derived a new 2-dimensional IDCT-II algorithm that
is based on a generalization of the techniques used in Chapter 6. Instead of employing
reflectedly periodized vectors, we now recover a matrix A ∈ R2JR×2JC iteratively from
its reflectedly periodized matrices A[L],A[L+1], . . . ,A[J ] = A and its DCT-II, AÎI. Anal-
ogously to Algorithm 9 from Chapter 6, our algorithm requires a priori knowledge of
upper bounds on the support sizes m and n. As far as we are aware this is the first deter-
ministic 2-dimensional IDCT-II algorithm for block sparse matrices that only uses real

274



arithmetic. Unfortunately, until now, our method has the worst case runtime estimate

O
(
b2 log2 b

2 + b2 log2

M

b
+
M

2
b log2

(
M

2
b

))
for a matrix of size M ×M with block support of size m×m and upper bound b ≥ m,
which is attained for certain matrices. Initially, we hoped to obtain a runtime of

O
(
b2 log2 b

2 + b2 log2

M

b

)
,

and, in practice, we expect that this runtime is achieved for most matrices M . Never-
theless, the theoretical runtime which we were able to prove is sublinear in the matrix
size M2 and subquadratic in its sparsity bound b2.
The in-depth study of the problems discussed in this thesis brings up some open

questions. The key concept used in our algorithm for 2π-periodic functions with polyno-
mially structured sparsity is the restriction of the input function to frequencies satisfying
congruency conditions. The choice of the restriction is intertwined with the choice of
Algorithm 3 in [Iwe13] as the sparse FFT algorithm that is applied to the restrictions.
Other sparse FFT methods will require other types of restrictions, which in turn may
allow for different sparsity structures. As of yet there has been no investigation of other
combinations of sparse FFTs, restrictions and the resulting possible frequency structures.
We believe this to be an interesting topic of research. Furthermore, the idea of restricting
a complex structure to several sparser subproblems and applying existing methods to the
subproblems for reducing the runtime, is rather universal. Similar approaches could be
useful in many contexts, perhaps even in the sparse DCT setting we considered in the
second part of this thesis.
We solely focused on the IDCT-II, or, equivalently, the DCT-III in Chapters 5 to 7. It

would be very interesting to investigate whether the approaches taken in Chapters 5 and 6
can be transferred to other types of the DCT, particularly the IDCT-III or DCT-II. Since
DCT-II and DCT-III are, as their respective inverse transforms, very closely connected,
we are convinced that similar approaches as the ones introduced in this thesis can also
yield fast sparse IDCT-III algorithms. The investigation of other types of sparsity, for
example two or more support intervals, or general sparsity, could also prove to be fruitful.
Another highly interesting topic for future research is the runtime optimization of

Algorithm 10 for the reconstruction of block sparse matrices from their DCT-II. So far,
we provided very efficient procedures for cases A and D of Theorem 7.14. For cases B
and C we initially expected runtimes of

O (mbC log (mbC)) and O (bRn log (bRn)) ,

respectively. We have not been able to find invertible matrix factorizations allowing such
complexities yet, but we are confident that it should be possible. If procedures with such
a runtime could be found, the overall runtime of Algorithm 10 would reduce to

O
(
b2 log2 b

2 + b2 log2

M

b

)
for a matrix of size M ×M with block support of size m×m and upper bound b ≥ m.
This is the order of runtime we initially hoped to achieve. Investigating other types
of sparsity could also prove to be rewarding, especially if corresponding 1-dimensional
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algorithms have already been found. Furthermore, the sparse 2-dimensional IDCT-II
algorithm has not yet been implemented and no numerical experiments have been made.
Summing up, all of our new sparse deterministic FFT or IDCT-II algorithms have

applications in several areas of signal and image processing. They can be shown both
theoretically and numerically to be faster than comparable existing methods. With the
exception of the two algorithms for 2π-periodic functions with short frequency support,
all methods introduced in this thesis are, as far as we are aware, the first existing de-
terministic algorithms for the respective sparsity structure. As all of our methods are
deterministic, they will always return accurate estimates of the function or vector that
we aim to recover, which we also supported by numerical experiments for all algorithms
except the 2-dimensional IDCT-II.
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