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SUMMARY 

Prediction of genetic values plays a central role in quantitative genetics and breeding. Genomic 

prediction making use of genome-wide single nucleotide polymorphisms (SNPs) was widely 

adopted to predict breeding values in animal and plant breeding, and to accurately quantify 

individual disease risk early in human genetics. In the multi-omics era, as omics data (genome, 

transcriptome, proteome, metabolome, epigenome etc.) increasingly became available during 

recent years, exploring multi-layer omics data to be predictors in prediction models has been an 

accessible way to improve predictive abilities in phenotype prediction. 

Gene expression profiles potentially hold valuable information for the prediction of breeding 

values and phenotypes. The Drosophila melanogaster Genetic Reference Panel (DGRP) is a 

community resource for analysis of population genomics and quantitative traits. It consists of 

more than 200 fully sequenced inbred lines (include 185 lines with whole genome gene expression 

data) derived from the Raleigh population, USA. In Chapter 2, the utility of transcriptome data for 

phenotype prediction was tested with 185 inbred lines of Drosophila melanogaster for 9 traits in 

two sexes. In total, 2,863,909 SNPs and 18,140 genome-wide annotated genes and novel 

transcribed regions (NTRs) were used for all the analyses. We incorporated the transcriptome data 

into genomic prediction via two kernel methods: GTBLUP and GRBLUP, both combining single 

nucleotide polymorphisms and transcriptome data. The genotypic data was used to construct the 

common additive genomic relationship, which was used in genomic best linear unbiased 

prediction (GBLUP) or jointly in a linear mixed model with a transcriptome-based linear kernel 

(GTBLUP), or with a transcriptome-based Gaussian kernel (GRBLUP). We studied the predictive 

ability of the models and discuss a concept of “omics-augmented broad sense heritability” for the 

multi-omics era. There was one trait (olfactory perceptions to Ethyl Butyrate in females) in which 

the predictive ability of GRBLUP was significantly higher (0.23) than the predictive ability of GBLUP 

(0.21). Nonetheless, for most traits, GRBLUP and GBLUP provided similar predictive abilities, while 

GRBLUP explained more of the phenotypic variance. The better goodness of fit of GRBLUP in 

general did not translate into a better predictive ability. A possible explanation was suggested that 

sample size was small and gene expression was not measured at one time point and in one specific 



Summary   2 

 

tissue which is functionally linked to the trait of interest. 

It is well known that gene expression and regulation may extensively vary among different tissues. 

However, the transcripts abundance of Drosophila melanogaster used was quantified from the 

entire flies. To test whether tissue-specific transcriptome data can substantially improve 

predictive abilities, in Chapter 3, we used tissue-specific transcriptome data from the three mice 

brain tissues: hippocampus (HIP), prefrontal cortex (PFC), and striatum (STR) for phenotype 

prediction on four novel behavioral traits and four muscle weight traits with low to medium 

heritability. There were 1063 mice individuals with pedigree information from a multigenerational 

outbred population which had been sequenced with the reduced-representation genotyping 

method genotyping-by-sequencing (GBS). After quality control, 523,028 SNPs were used in the 

analyses. All analyses were conducted in three groups of mice with pedigree, genotype, gene 

expression and phenotype data, which contained 208 (HIP), 185 (PFC) and 169 (STR) individuals, 

respectively. The abundances of RNA products from three tissues encompassed 16,533 genes in 

HIP, 16,249 genes in PFC and 16,860 genes in STR.  For the muscle weight traits, the tissue-

specific transcriptome data-based prediction (TBLUP) showed high predictive abilities, and the 

predictive abilities overall were remarkably higher than the pedigree-based prediction (BLUP) and 

the SNP-based prediction (GBLUP). For the four behavioral traits, the increase of predictive 

abilities of the transcriptome data-based prediction (TBLUP) were lower than that for the muscle 

weight traits. When combining transcriptome data with SNPs or pedigree information as 

predictors, predictive abilities overall were not improved. To study whether the numbers of genes 

has impact on transcriptome-based prediction, we randomly chose different number of genes for 

the prediction with TBLUP. The differences among predictive abilities were negligible. Our results 

suggested that making use of transcriptome data has the potential to improve phenotype 

predictions if transcriptome data can be sampled in a specific tissue. 

In contrast to phenotype prediction, multi-omics data are not ideal candidates for prediction of 

genetic value and estimation of heritability, since they are not causal variants but intermediate 

products between causal variants and phenotypes. During the transfer process of genetic 

information from DNA to phenotype, multi-omics data are inevitably affected by genetic and 

environmental effects, and the interaction between both. The ‘pan-genome’ denotes the set of 
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all genes or open reading frames (ORFs) present in the genomes of a group of organisms. Pan-

genomic open reading frames potentially carry genome-wide protein-coding genes or causal 

variant information in a population. The 1002 Yeast Genome project comprised 1,011 S. cerevisiae 

isolates that maximized the breadth of their ecological and geographical origins. In Chapter 4, we 

used 787 diploid S. cerevisiae isolates with 1,625,809 high-quality reference-based SNPs, 7,796 

ORFs, copy number of ORFs (CNO) and 35 traits with linear models in the genomic prediction and 

estimation of heritability. Our results showed that compared to SNP-based genomic prediction 

(GBLUP), pan-genomic ORF-based genomic prediction (OBLUP) was distinctly more accurate for 

all the traits, and the predictive abilities were improved by 132% on average across all traits. In 

addition, the ORF-based heritability can capture more additive effects than SNP-based heritability 

for all traits. When we combined two subsets of total SNP data (MAF ≥ 0.01 and MAF ≥ 0.05) which 

contained 311,447 SNPs and 102,253 SNPs, respectively, to pan-genomic ORFs with GOBLUP, the 

predictive abilities remained the same with OBLUP only using pan-genomic ORFs data. For the 

second combined method GCBLUP, the predictive abilities remained the same as with CBLUP for 

all traits, suggesting that ORF data or CNO data covered all causal variant information which SNP 

data carried. When using three different numbers of isolates in training sets in ORF-based 

prediction, the predictive abilities of all traits increased as the number of isolates in the training 

set increased, showing that increasing the training set size could more accurately estimate ORF 

effects. We demonstrated that pan-genomic ORFs have the potential to be a substitution of single 

nucleotide polymorphisms in estimation of heritability and genomic prediction under certain 

conditions. However, in our study there was still a big gap between traits’ heritability estimates 

and prediction accuracy for all the traits. We provide evidence that if larger sample sizes can be 

used in training set, the prediction accuracy will be further improved. 
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Genomic prediction 

Prediction of breeding values has been of central importance in animal breeding. Since 

best linear unbiased prediction (BLUP) was introduced in animal breeding (Henderson, 

1975), it has been a milestone in the development of breeding models. A big advantage 

of this method is that it can comprehensively utilize pedigree information across many 

generations to calculate the similarity matrix   between individuals in a population, 

which has led to genetic gains in most farmed species (Van Vleck et al., 1986; Havenstein 

et al., 1994). Meuwissen et al. (2001) proposed to use whole genome single nucleotide 

polymorphisms (SNPs) to replace the traditional prediction of breeding values using 

pedigree. The concept of “genomic selection” (GS) has revolutionized animal and plant 

breeding. Implementation of GS became feasible thanks to the large number of SNPs 

discovered by genome sequencing and new methods to efficiently genotype large number 

of SNPs. In order to accurately estimate SNP effects, a number of statistical approaches 

have been proposed such as genomic best linear unbiased prediction (GBLUP), the 

“Bayesian Alphabet” and Reproducing kernel Hilbert space regression (RKHS). 

The BLUP framework model is: 

 

where ~  and ~   are vectors containing random breeding values 

and residual effects, respectively and where  is the overall mean. 

Based on the BLUP framework, it was suggested that replacing  in BLUP by , a SNP-

based relationship matrix, then under centain circumstances the predictive ability could 

be improved (VanRaden, 2008), and this method was called genomic BLUP (GBLUP).  

The  matrix is: 
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, 

where  denotes the minor allele frequency (MAF) of marker . Moreover,  denotes 

the minor allele frequency adjusted marker matrix with entries  ,  

and  for genotypes AA, Aa and aa, respectively. The better predictive ability of 

GBLUP was perhaps because markers provided a better representation of genetic 

relatedness between individuals than a pedigree (Habier et al., 2007). For example, on the 

basis of pedigree information only, all full-sibs have the same expected relatedness. By 

contrast, the realized relatedness based on SNP information varies among full-sibs.  

Compared to traditional BLUP, GBLUP assumes that all markers have equal effects, in 

accordance with the infinitesimal model. However, genome wide association studies 

(GWAS) indicated that this assumption (that the effect of each SNP comes from a normal 

distribution, with the same variance across all SNP) may not always be reasonable, e.g. 

some markers may not have effects, and some markers may have relatively big effects. To 

better accommodate different effects of SNPs in GS, a variety of prior distributions have 

to be considered. Thus, some methods under the Bayesian framework were applied in 

practice, called “Bayesian alphabet”(Gianola, 2013). For instance, Bayes A assumes a 

Student's t distribution of SNP effects, which may have large effects; Bayes B assumes a 

mixture distribution with a number of SNPs with no effects and a Student's t distribution 

for the effects of remaining SNPs (Meuwissen et al., 2001).  

The general model for Bayes A and Bayes B is: 

, 

where  is a m x 1 vector of normally distributed and independent ORF or CNO effects. 

The variance of the  th ORF effect,   , is assigned a scaled inverted chi-square 

distribution . 
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The mixture distributions in Bayes B is given by 

 

where    , the variance of the  th marker effect, is assigned a scaled inverted chi-

square distribution , where S is a scale parameter and is the number of degrees 

of freedom. 

All these methods only capture additive gene effects. However, some evidences proved 

that there are substantial or extensive epistatic interactions between genes (Huang et al., 

2012; Mackay, 2014; Taylor and Ehrenreich, 2014). Reproducing kernel Hilbert space 

regression (RKHS), a semi-parametric prediction method, was introduced to the field of 

animal breeding (Gianola et al., 2006). It was promoted as an alternative option to capture 

the complicated interactions between genes. RKHS regression proceeds by searching a 

function and uses the residual sum of squares as a loss function, and assigns the squared 

norm of g under a Hilbert space as a penalty. The objective function to be minimized with 

respect to g is: 

 

where λ is a regularization parameter and H represents a Hilbert space, very rich class of 

functions. In Chapter 2, we chose the Gaussian kernel to calculate the genetic covariance 

between Drosophila inbreed lines by  

 

Here,  is a bandwidth parameter which controls how fast the covariance function drops 
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as points get further apart as measured by  . The vector   gives the vector of 

standardized expression levels of line   across all genes, and   is the vector of 

standardized expression levels of line j across all genes. 

Estimation of heritability 

The GBLUP method was also proposed for the estimation of the proportion of the 

phenotypic variance explained by SNP markers (Yang et al., 2010), called SNP-based 

heritability. Estimation of the variance explained by all common SNPs used in a genome-

wide association study (GWAS) was initially motivated by the ‘missing heritability’ 

problem:  SNPs significantly associated with human height that were discovered by 

GWASs  only explained 5% of phenotypic variance, which is much smaller than the 

narrow sense heritability (80%) from within family studies (Maher, 2008). Several factors 

of the missing heritability were provided, including the causal variants each explaining 

such a small amount of variation that their effects do not reach stringent significance 

thresholds: rare variants of large effect were not tagged by common SNPs on genotyping 

arrays, and the pedigree-based narrow sense heritability may include environmental 

effects (Yang et al., 2017). How much of the proportion of variance explained by SNPs can 

be attributable to phenotype? Yang et al. (2010) used all common SNPs (defined here as 

those with minor allele frequency, MAF ≥ 0.01) to quantify SNP-based heritability for 

human height with unrelated individuals, and demonstrated that common SNPs on a 

genotyping array explain a large proportion (45%) of variance in height. Given the small 

 (5%) and relatively large  (45%), it was concluded that, for complex traits like 

height, there are likely a large number of common variants with too small effect sizes to 

pass the stringent GWAS threshold (P < 5 × 10-8) in GWAS (Yang et al., 2010). 

The SNP-based heritability is defined as   
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where    denotes the proportion of the additive genetic variance explained by the 

common SNPs;   denotes the residuals. 

Narrow sense heritability estimates play a key role in predicting or assessing the 

effectiveness of artificial selection in that they provide a way to measure the extent to 

which additive genetic variance is related to phenotypic variance in a specific population 

(Visscher et al., 2008). However, for the prediction of phenotypes, especially when multi-

omics data (the transcriptome, proteome, metabolome, epigenome, metagenome etc.) 

was used, in Chapter 1, we defined a new concept “omics-augmented broad sense 

heritability” for the prediction of phenotype which not only includes the effects at the 

genome level (both additive and non-additive), but also includes the effects of 

downstream biological regulation captured by one or several omics layers (Li et al., 2019). 

The omics-augmented broad sense heritability was defined as the proportion of 

phenotypic variance explained by whole genome SNP marker and other omics data, 

 

where   denotes the proportion of additive genetic variance explained by the whole 

genome SNP markers and   denotes the variances explained by one or several 

omics data layers which can be the transcriptome, proteome, metabolome, epigenome, 

metagenome etc.  

Gene expression data 
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The advent of microarrays in the mid-1990s heralded a new era wherein it became 

possible to measure the abundances of large numbers of transcripts simultaneously 

(Skelly et al., 2009). It has been demonstrated that there are widespread variations in gene 

expression levels between individuals within natural populations (Oleksiak et al., 2002; 

Cheung et al., 2003). The heritability of gene expression variation on a genome-wide scale 

was first estimated in a cross between a laboratory and a wild strain of Saccharomyces 

cerevisiae (Brem et al., 2002), indicating a substantial genetic component to 

transcriptional variation in yeast (Skelly et al., 2009). Most quantitative phenotypes have 

proved to be genetically complex. As intermediate products between DNA and 

phenotypes, transcript abundances exhibit substantial genetic complexity, despite their 

close connection to DNA sequence. Several studies have investigated the prevalence of 

non-additivity, where gene expression in F1 heterozygotes differs from the mid-value of 

the homozygous parents (Gibson et al., 2004; Vuylsteke et al., 2005; Swanson-Wagner et 

al., 2006). It has been proven that non-additivity is common in D. melanogaster (Huang et 

al., 2012), A. thaliana and maize (Vuylsteke et al., 2005), and that its extreme forms, 

overdominance and under dominance, are not rare (Gibson et al., 2004). Genetic 

interactions have been observed in several studies, and a systematic scan for interacting 

QTLs found non-additive interactions among loci for roughly half of all transcripts (Brem 

et al., 2005). Gene expression studies have been used for the identification of expression 

QTL (eQTL) which regulate the transcription levels of individual genes, and gene 

expression information was used as the phenotype for eQTL mapping based on genetic 

markers (Brem et al., 2002; West et al., 2007; Nica and Dermitzakis, 2013). In contrast to 

the major utility of gene expression as phenotypes, several studies in recent years have 

directly used them as explanatory variables for predicting complex trait phenotypes. The 

Drosophila melanogaster Genetic Reference Panel (DGRP) is a community resource for 

analysis of population genomics and quantitative traits. It consists of more than 200 fully 

sequenced inbred lines (including 185 lines with whole genome gene expression data) 
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derived from the Raleigh population, USA. In Chapter 2, we tested the utility of 

transcriptome data for phenotype prediction with the 185 inbred lines of Drosophila 

melanogaster for 9 traits in two sexes. In total, 2,863,909 SNPs, and 18,140 genome-wide 

annotated genes and novel transcribed regions (NTRs) were used for all analyses. We 

constructed a semiparametric prediction model (GRBLUP) with two kernels combining 

SNP and transcriptome data. The parametric G kernel was used to capture the additive 

genetic part, and the Gaussian kernel is a non-parametric kernel which was used to pick 

up non-additive genetic effects and biological regulation effects regardless of the 

underlying genetic architecture. In our results, GRBLUP and GBLUP provided similar 

predictive ability, but GRBLUP could capture more phenotypic variance components 

explained by transcriptome data. The better goodness of fit of GRBLUP in general did not 

translate into a better predictive ability. It should be noted, though, that sample size was 

small, and gene expression was not measured at one time point and in one specific tissue 

that functionally linked to the trait of interest. 

The effects of genetic variation on gene expression are condition-dependent, and gene by 

environment interactions have been shown in comparisons of inbred strains across 

conditions (Jin et al., 2001; Chen et al., 2005; Whitehead and Crawford, 2005). In 

multicellular organisms, the local conditions differ in each tissue, and genetic variation 

with a cell-type dependent influence on gene expression represents a special case of 

gene-by-environment interaction. Studies of gene expression in mouse brain (Chesler et 

al., 2005), hematopoietic, stem cells (Bystrykh et al., 2005), fat and liver (Schadt et al., 

2003; Yang et al., 2006), and in rat kidney and fat (Hubner et al., 2005), have found that 

the genetic basis of variation in a gene’s expression is sometimes shared between 

different tissues but is often unique to each tissue (Cotsapas et al., 2006). Studies in flies 

and mice have also shown extensive sex dependence of gene expression (Wang et al., 

2006). To test whether tissue-specific transcriptome data can substantially improve 
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predictive abilities, in Chapter 3, we used tissue-specific transcriptome data from three 

mice brain tissues: hippocampus, prefrontal cortex, and striatum for phenotype prediction 

on four novel behavioral traits and four muscle weight traits with low to medium 

heritability. For the muscle weight traits, the tissue-specific transcriptome data-based 

prediction (TBLUP) showed high predictive abilities, and the predictive abilities overall 

were remarkably higher than the pedigree-based prediction (BLUP), and single nucleotide 

polymorphisms-based prediction (GBLUP). For the four behavioral traits, the increase of 

predictive abilities of the transcriptome data-based prediction (TBLUP) were lower than 

that for the muscle weight traits. When combining transcriptome data with SNPs or 

pedigree information as predictors, predictive abilities overall were not improved. 

Pan-genomic open reading frames 

Although genome-wide SNPs were the most mainstream data type for genomic selection 

and estimation of narrow sense heritability, a question arises: are SNPs the ultimate 

source of genomic data for prediction of genetic value or estimation of heritability?  

Pan-genomic open reading frames potentially hold whole-genome protein-coding genes 

or causal variant information. The ‘pan-genome’ denotes the set of all genes or open 

reading frames (ORFs) present in the genomes of a group of organisms, usually a species 

(Lapierre and Gogarten, 2009; Vernikos et al., 2015). There are three subsets within the 

concept: the core genome that contains genes shared by all individuals within the 

populations; the dispensable genome made of genes shared by a subset of the individuals 

and contributes to the species diversity  (Tettelin et al., 2005); and individual-specific 

genes (Vernikos et al., 2015). The concept has been applied to bacterial (Tettelin et al., 

2005), viral (Aherfi et al., 2013), plant (Cao et al., 2011; Li et al., 2014; Zhao et al., 2018) , 

fungal (Dunn et al., 2012), and human genome studies (Sherman et al., 2019). A series of 

pan-genomic studies were performed when studying genomic dynamics (Donati et al., 
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2010), pathogenesis and drug resistance (D'Auria et al., 2010; Hu et al., 2011), bacterial 

toxins (Fang et al., 2011), and species evolution (Konstantinidis et al., 2006). An open 

reading frame (ORF) is defined as a sequence that has a length divisible by three and is 

bounded by stop codons. For a particular reading frame, an ORF is a region that is not 

interrupted by a stop codon. It is a sequence region that is ‘open’ for translation, and an 

indicator for a potential protein-coding gene (Sieber et al., 2018). One common use of 

ORFs is as one piece of evidence to assist in gene prediction. Long ORFs are often used 

along with other evidences to initially identify candidate protein-coding regions or 

functional RNA-coding regions in a DNA sequence (Deonier et al., 2005). The detection of 

ORFs is of central importance in finding protein-coding genes in genomic sequences. On 

the other hand, pan-genomic ORFs provide an opportunity to accommodate the 

phenotypic variation caused by the potential protein-coding sequences in a population. 

We hypothesize that pan-genomic ORFs can be viewed as a representation of a whole 

genomic gene set. Directly using this gene set in genomic prediction can capture more 

genetic variance than SNP-based prediction. There is an increasing understanding that 

variation in gene presence/absence and copy number of genes play an essential role in 

the heritability of complex traits. however, there have been no studies utilizing this 

information in genomic prediction and estimation of heritability (Marroni et al., 2014). In 

Chapter 4, we used S. cerevisiae pan-genomic ORFs which represent 7,796 non-redundant 

ORFs in genomic prediction, accounting either for the presence/absence of a specific ORF 

or copy number of ORF (CNO). We exploited a new source of genome-wide potential gene 

set for genomic prediction and estimation of heritability, and demonstrated (1) genomic 

prediction using ORF data and CNO data performed better than that using genome-wide 

SNP data, and (2) the estimation of narrow sense heritability based on pan-genomic ORF 

data and CNO data can capture parts of the “missing heritability” that appears when using 

SNP data. 



1st CHAPTER General Introduction        14 

 

 

References 

Aherfi, S., Pagnier, I., Fournous, G., Raoult, D., La Scola, B., and Colson, P. (2013). Complete 

genome sequence of Cannes 8 virus, a new member of the proposed family 

“Marseilleviridae”. Virus Genes 47(3), 550-555. 

Brem, R.B., Storey, J.D., Whittle, J., and Kruglyak, L. (2005). Genetic interactions between 

polymorphisms that affect gene expression in yeast. Nature 436(7051), 701-703. 

Brem, R.B., Yvert, G., Clinton, R., and Kruglyak, L. (2002). Genetic dissection of transcriptional 

regulation in budding yeast. Science 296(5568), 752-755. 

Bystrykh, L., Weersing, E., Dontje, B., Sutton, S., Pletcher, M.T., Wiltshire, T., et al. (2005). 

Uncovering regulatory pathways that affect hematopoietic stem cell function 

using'genetical genomics'. Nature Genetics 37(3), 225-232. 

Cao, J., Schneeberger, K., Ossowski, S., Günther, T., Bender, S., Fitz, J., et al. (2011). Whole-

genome sequencing of multiple Arabidopsis thaliana populations. Nature Genetics 

43(10), 956-963. 

Chen, W.J., Chang, S.H., Hudson, M.E., Kwan, W.-K., Li, J., Estes, B., et al. (2005). Contribution of 

transcriptional regulation to natural variations in Arabidopsis. Genome Biology 6(4), R32. 

Chesler, E.J., Lu, L., Shou, S., Qu, Y., Gu, J., Wang, J., et al. (2005). Complex trait analysis of gene 

expression uncovers polygenic and pleiotropic networks that modulate nervous system 

function. Nature Genetics 37(3), 233-242. 

Cheung, V.G., Conlin, L.K., Weber, T.M., Arcaro, M., Jen, K.-Y., Morley, M., et al. (2003). Natural 

variation in human gene expression assessed in lymphoblastoid cells. Nature Genetics 

33(3), 422-425. 

Cotsapas, C.J., Williams, R.B., Pulvers, J.N., Nott, D.J., Chan, E.K., Cowley, M.J., et al. (2006). 

Genetic dissection of gene regulation in multiple mouse tissues. Mammalian Genome 

17(6), 490-495. 



1st CHAPTER General Introduction        15 

 

 

D'Auria, G., Jiménez-Hernández, N., Peris-Bondia, F., Moya, A., and Latorre, A. (2010). Legionella 

pneumophila pangenome reveals strain-specific virulence factors. BMC Genomics 11(1), 

181. 

Deonier, R.C., Tavaré, S., and Waterman, M.S. (2005). Computational genome analysis: an 

introduction. Springer-Verlag Berlin, Heidelberg. 

Donati, C., Hiller, N.L., Tettelin, H., Muzzi, A., Croucher, N.J., Angiuoli, S.V., et al. (2010). 

Structure and dynamics of the pan-genome of Streptococcus pneumoniae and closely 

related species. Genome Biology 11(10), R107. 

Dunn, B., Richter, C., Kvitek, D.J., Pugh, T., and Sherlock, G. (2012). Analysis of the 

Saccharomyces cerevisiae pan-genome reveals a pool of copy number variants 

distributed in diverse yeast strains from differing industrial environments. Genome 

Research 22, 908–924. 

Fang, Y., Li, Z., Liu, J., Shu, C., Wang, X., Zhang, X., et al. (2011). A pangenomic study of Bacillus 

thuringiensis. Journal of Genetics and Genomics 38(12), 567-576. 

Georges, M., Charlier, C., and Hayes, B. (2018). Harnessing genomic information for livestock 

improvement. Nature Reviews Genetics 20,135–56. 

Gianola, D. (2013). Priors in whole-genome regression: the Bayesian alphabet returns. Genetics 

90, 525–540. 

Gianola, D., Fernando, R.L., and Stella, A. (2006). Genomic assisted prediction of genetic value 

with semi-parametric procedures. Genetics 173,1761–1776. 

Gibson, G., Riley-Berger, R., Harshman, L., Kopp, A., Vacha, S., Nuzhdin, S., et al. (2004). 

Extensive sex-specific nonadditivity of gene expression in Drosophila melanogaster. 

Genetics 167(4), 1791-1799. 

Habier, D., Fernando, R.L., and Dekkers, J.C. (2007). The impact of genetic relationship 

information on genome-assisted breeding values. Genetics 177(4), 2389-2397. 



1st CHAPTER General Introduction        16 

 

 

Havenstein, G., Ferket, P., Scheideler, S., and Larson, B. (1994). Growth, livability, and feed 

conversion of 1957 vs 1991 broilers when fed “typical” 1957 and 1991 broiler diets. 

Poultry Science 73(12), 1785-1794. 

Henderson, C.R. (1975). Best linear unbiased estimation and prediction under a selection model. 

Biometrics, 423-447. 

Hu, P., Yang, M., Zhang, A., Wu, J., Chen, B., Hua, Y., et al. (2011). Comparative genomics study 

of multi-drug-resistance mechanisms in the antibiotic-resistant Streptococcus suis R61 

strain. PLoS One 6(9), e24988. 

Huang, W., Richards, S., Carbone, M.A., Zhu, D., Anholt, R.R., Ayroles, J.F., et al. (2012). Epistasis 

dominates the genetic architecture of Drosophila quantitative traits. Proceedings of the 

National Academy of Sciences 109(39), 15553-15559.  

Hubner, N., Wallace, C.A., Zimdahl, H., Petretto, E., Schulz, H., Maciver, F., et al. (2005). 

Integrated transcriptional profiling and linkage analysis for identification of genes 

underlying disease. Nature Genetics 37(3), 243-253. 

Jin, W., Riley, R.M., Wolfinger, R.D., White, K.P., Passador-Gurgel, G., and Gibson, G. (2001). The 

contributions of sex, genotype and age to transcriptional variance in Drosophila 

melanogaster. Nature Genetics 29(4), 389-395. 

Konstantinidis, K.T., Ramette, A., and Tiedje, J.M. (2006). The bacterial species definition in the 

genomic era. Philosophical Transactions of the Royal Society of London B: Biological 

Sciences 361(1475), 1929-1940. 

Lapierre, P., and Gogarten, J.P. (2009). Estimating the size of the bacterial pan-genome. Trends 

in genetics 25(3), 107-110. 

Li, Y.-h., Zhou, G., Ma, J., Jiang, W., Jin, L.-g., Zhang, Z., et al. (2014). De novo assembly of 

soybean wild relatives for pan-genome analysis of diversity and agronomic traits. Nature 

Biotechnology 32(10), 1045-1052. 

Li, Z., Simianer, H., and Martini, J.W. (2019). Integrating gene expression data into genomic 

prediction. Frontiers in Genetics 10, 126-137. 



1st CHAPTER General Introduction        17 

 

 

Mackay, T.F. (2014). Epistasis and quantitative traits: using model organisms to study gene–gene 

interactions. Nature Reviews Genetics 15(1), 22-33. 

Maher, B. (2008). Personal genomes: The case of the missing heritability. Nature News 

456(7218), 18-21. 

Marouli, E., Graff, M., Medina-Gomez, C., Lo, K.S., Wood, A.R., Kjaer, T.R., et al. (2017). Rare and 

low-frequency coding variants alter human adult height. Nature 542(7640), 186-190. 

Marroni, F., Pinosio, S., and Morgante, M. (2014). Structural variation and genome complexity: is 

dispensable really dispensable? Current Opinion in Plant Biology 18, 31-36. 

Meuwissen, T.H.E., Hayes, B.J., and Goddard, M.E. (2001). Prediction of total genetic value using 

genome-wide dense marker maps. Genetics 157(4), 1819-1829. 

Nica, A.C., and Dermitzakis, E.T. (2013). Expression quantitative trait loci: present and future. 

Philosophical Transactions of the Royal Society B: Biological Sciences 368(1620), 

20120362. 

Oleksiak, M.F., Churchill, G.A., and Crawford, D.L. (2002). Variation in gene expression within 

and among natural populations. Nature Genetics 32(2), 261-266. 

Schadt, E.E., Monks, S.A., Drake, T.A., Lusis, A.J., Che, N., Colinayo, V., et al. (2003). Genetics of 

gene expression surveyed in maize, mouse and man. Nature 422(6929), 297-302. 

Sherman, R.M., Forman, J., Antonescu, V., Puiu, D., Daya, M., Rafaels, N., et al. (2019). Assembly 

of a pan-genome from deep sequencing of 910 humans of African descent. Nature 

Genetics 51(1), 30-35. 

Sieber, P., Platzer, M., and Schuster, S. (2018). The Definition of Open Reading Frame Revisited. 

Trends in Genetics 34(3), 167-170. 

Skelly, D.A., Ronald, J., and Akey, J.M. (2009). Inherited variation in gene expression. Annual 

Review of Genomics and Human Genetics 10, 313-332. 

Swanson-Wagner, R.A., Jia, Y., DeCook, R., Borsuk, L.A., Nettleton, D., and Schnable, P.S. (2006). 

All possible modes of gene action are observed in a global comparison of gene 



1st CHAPTER General Introduction        18 

 

 

expression in a maize F1 hybrid and its inbred parents. Proceedings of the National 

Academy of Sciences 103(18), 6805-6810. 

Taylor, M.B., and Ehrenreich, I.M. (2014). Genetic interactions involving five or more genes 

contribute to a complex trait in yeast. PLoS Genetics 10(5), e1004324. 

Tettelin, H., Masignani, V., Cieslewicz, M.J., Donati, C., Medini, D., Ward, N.L., et al. (2005). 

Genome analysis of multiple pathogenic isolates of Streptococcus agalactiae: 

implications for the microbial “pan-genome”. Proceedings of the National Academy of 

Sciences 102(39), 13950-13955. 

Van Vleck, L.D., Westell, R., and Schneider, J. (1986). Genetic change in milk yield estimated 

from simultaneous genetic evaluation of bulls and cows. Journal of Dairy Science 69(11), 

2963-2965. 

VanRaden, P.M. (2008). Efficient methods to compute genomic predictions. Journal of Dairy 

Science 91(11), 4414-4423.  

Vernikos, G., Medini, D., Riley, D.R., and Tettelin, H. (2015). Ten years of pan-genome analyses. 

Current Opinion in Microbiology 23, 148-154. 

Visscher, P.M., Hill, W.G., and Wray, N.R. (2008). Heritability in the genomics era—concepts and 

misconceptions. Nature Reviews Genetics 9(4), 255-266. 

Vuylsteke, M., Van Eeuwijk, F., Van Hummelen, P., Kuiper, M., and Zabeau, M. (2005). Genetic 

analysis of variation in gene expression in Arabidopsis thaliana. Genetics 171(3), 1267-

1275. 

Wang, S., Yehya, N., Schadt, E.E., Wang, H., Drake, T.A., and Lusis, A.J. (2006). Genetic and 

genomic analysis of a fat mass trait with complex inheritance reveals marked sex 

specificity. PLoS Genetics 2(2), e15. 

West, M.A., Kim, K., Kliebenstein, D.J., Van Leeuwen, H., Michelmore, R.W., Doerge, R., et al. 

(2007). Global eQTL mapping reveals the complex genetic architecture of transcript-

level variation in Arabidopsis. Genetics 175(3), 1441-1450. 



1st CHAPTER General Introduction        19 

 

 

Whitehead, A., and Crawford, D.L. (2005). Variation in tissue-specific gene expression among 

natural populations. Genome Biology 6(2), R13. 

Yang, J., Benyamin, B., McEvoy, B.P., Gordon, S., Henders, A.K., Nyholt, D.R., et al. (2010). 

Common SNPs explain a large proportion of the heritability for human height. Nature 

Genetics 42(7), 565-569. 

Yang, J., Zeng, J., Goddard, M.E., Wray, N.R., and Visscher, P.M. (2017). Concepts, estimation 

and interpretation of SNP-based heritability. Nature Genetics 49(9), 1304-1310. 

Yang, X., Schadt, E.E., Wang, S., Wang, H., Arnold, A.P., Ingram-Drake, L., et al. (2006). Tissue-

specific expression and regulation of sexually dimorphic genes in mice. Genome 

Research 16(8), 995-1004. 

Zhao, Q., Feng, Q., Lu, H., Li, Y., Wang, A., Tian, Q., et al. (2018). Pan-genome analysis highlights 

the extent of genomic variation in cultivated and wild rice. Nature Genetics 50(2), 278-

284. 



2nd CHAPTER Integrating gene expression data into genomic prediction        20 

 

 

 

 

 

 

2nd CHAPTER 

 

 

 

Integrating gene expression data into genomic prediction 

 

Zhengcao Li1, Ning Gao2, Johannes W. R. Martini3, Henner Simianer1* 

 

1Animal Breeding and Genetics Group, Center for Integrated Breeding Research, 

Department of Animal Sciences, University of Goettingen, Goettingen, Germany 

2State Key Laboratory of Biocontrol, School of Life Science, Sun Yat-sen University, North 

Third Road, Guangzhou Higher Education Mega Center, Guangzhou, China 

3KWS SAAT SE, Einbeck, Germany. 

Keywords: GRBLUP, transcriptome, phenotype prediction, Drosophila melanogaster, 

epistasis 

 

 



2nd CHAPTER Integrating gene expression data into genomic prediction        21 

 

 

Abstract 

Gene expression profiles potentially hold valuable information for the prediction of 

breeding values and phenotypes. In this study, the utility of transcriptome data for 

phenotype prediction was tested with 185 inbred lines of Drosophila melanogaster for 9 

traits in two sexes. We incorporated the transcriptome data into genomic prediction via 

two methods: GTBLUP and GRBLUP, both combining single nucleotide polymorphisms and 

transcriptome data. The genotypic data was used to construct the common additive 

genomic relationship, which was used in genomic best linear unbiased prediction (GBLUP) 

or jointly in a linear mixed model with a transcriptome-based linear kernel (GTBLUP), or 

with a transcriptome-based Gaussian kernel (GRBLUP). We studied the predictive ability 

of the models and discuss a concept of “omics-augmented broad sense heritability” for 

the multi-omics era. For most traits, GRBLUP and GBLUP provided similar predictive 

abilities, but GRBLUP explained more of the phenotypic variance. There was only one trait 

(olfactory perceptions to Ethyl Butyrate in females) in which the predictive ability of 

GRBLUP (0.23) was significantly higher than the predictive ability of GBLUP (0.21). Our 

results suggest that accounting for transcriptome data has the potential to improve 

genomic predictions if transcriptome data can be included on a larger scale. 

Introduction 

Prediction of genetic values has been a key problem in quantitative genetics. Since 

Meuwissen et al. (2001) published the landmark article, which uses whole genome single 

nucleotide polymorphisms (SNPs) to modify the traditional prediction of breeding values 

using family relationship, the concept of “genomic selection” has revolutionized animal 

and plant breeding. A number of statistical approaches have been applied in practice, such 

as genomic best linear unbiased prediction (GBLUP) (VanRaden, 2008), ridge regression 

(Whittaker et al., 1999), or the “Bayesian Alphabet” (Gianola, 2013, Gianola et al., 2009). 
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These approaches utilizing genome-wide SNP data have been used to increase the genetic 

progress of breeding programs by increasing predictive accuracy of breeding values, 

reducing generation intervals or shortening the breeding cycles. In plant line breeding, 

genomic prediction focuses on breeding values in early generations of a breeding program, 

while the genomic prediction of phenotypes may be attractive when estimating the 

commercial value of cultivars (Crossa et al., 2017). Broad sense heritability is the relevant 

genetic parameter for phenotypic prediction, which is defined as the ratio of genetic 

variance over the phenotypic variance. It reflects all genetic contributions to a 

population's phenotypic variance including additive and non-additive effects such as 

dominance, and epistasis. It was demonstrated that epistasis explains noticeable fractions 

of variation in human gene expression (Brown et al., 2014). One of the critically important 

issues for phenotypic prediction and the estimation of broad sense heritability is how to 

model non-additive effects. There is plenty of literature illustrating an improved prediction 

of phenotypes when using non-additive relationships (Crossa et al., 2010, Forsberg et al., 

2017, Gao et al., 2017, Martini et al., 2016). However, epistatic effects can arise from 

various interactions between alleles or genotypes at different loci. For more than two 

genes, higher order interactions may be included, which makes the estimation of epistatic 

effects very difficult by using typically parametric regression methods. Another problem 

for the prediction of phenotypes is that from DNA sequences to phenotypes there are 

complex biological processes that may affect the phenotypes. Even with complete whole 

sequence information, genomic prediction may not capture multiple interactions 

between genes and downstream in the biological regulation. The inclusion of additional 

layers of omics data in the prediction machinery may provide a partial solution for this 

problem, since for instance transcriptome data may be “closer” to the phenotype, and 

since an epistatic interaction on the genotype level may be captured by an additive effect 

on -for instance- the transcriptome level. In the context of defining the respective broad 

sense heritability for the combination of genotypic data and omics data, the classical 
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concept only covers the proportion of genetic factors including additive or dominance 

effects and interactions (Lush, 1940). We discuss the concept of “omics-augmented broad 

sense heritability” to be used in the context of the prediction of phenotypes not only 

based on effects at the genome level, but also accounting for effects of downstream 

biological regulation captured by omics data. 

 

Recently, several studies have proposed to exploit transcriptome data as explanatory 

variables for prediction of traits. Other than nuclear DNA-based SNP data, gene expression 

levels are affected by several factors, like choice of tissue, time of sampling and 

experimental conditions, and using only gene expression data in prediction of phenotypes 

may not be as robust as using SNP markers. Utilizing both genomic marker information 

and gene expression data could be a promising option. Modeling gene expression data as 

a predictor into genomic prediction is expected to explain more epistatic variance or 

complex biological regulation processes and potentially increases predictive accuracy. 

González-Reymúndez et al. (2017) integrated whole-omics data (including whole-genome 

gene expression profiles) into breast cancer prediction, and demonstrated that omics and 

omic-by-treatment interactions explain a sizable fraction of the variance of survival time, 

and further suggested that whole-omic profiles could be used to improve prognosis 

prediction accuracy among breast cancer patients. Guo et al. (2016) showed that gene 

expression levels provided reduced predictive abilities compared to those based on 

genetic markers. When combing gene expression data with SNPs, the predictive abilities 

are either greater than or comparable to those with GBLUP alone. Loh et al. (2011) found 

when comparing genotype markers to gene expression data to predict soybean plant 

resistance to the pathogen Phytophthora sojae, using gene expression data performed 

better than genotype markers. (Zarringhalam et al., 2018) obtained robust phenotype 

prediction from gene expression data using differential shrinkage of co-regulated genes. 

Moreover, different types of omics data have been used for hybrid prediction in Maize 
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(Schrag et al., 2018, Westhues et al., 2017). 

 

Reproducing kernel Hilbert space regression (RKHS), a semi-parametric prediction method, 

was introduced by Gianola et al. (2006) to the field of animal breeding. It was promoted 

as an alternative option to capture the complicated interactions between genes. Jiang and 

Reif (2015) illustrated that the Gaussian kernel models interaction effects implicitly. More 

importantly, RKHS provides a simple framework to incorporate information on pedigrees, 

markers, or any other form of data characterizing the genetic background of individuals 

(de los Campos et al., 2009). Hu et al. (2015) used RKHS for evaluating the utility of 

methylation information in prediction of plant height, and demonstrated that epigenetic 

variation accounted for 65% of the phenotypic variance. In the present study, we used five 

kernel-based methods: GBLUP, TBLUP, RKHS, GTBLUP and GRBLUP. Genomic best linear 

unbiased prediction (GBLUP) using SNP data is set to be a benchmark model. TBLUP and 

RKHS are used for transcriptomic prediction, where the first uses a linear kernel and the 

latter uses a Gaussian kernel. Moreover, we define GTBLUP (combining GBLUP and TBLUP) 

and GRBLUP (combining GBLUP and RKHS) utilizing both transcriptome data and whole-

genome sequence data. 

 

Drosophila melanogaster is a widely used model organism for biological research in 

genetics, physiology, microbial pathogenesis, and life history evolution, and it has been 

demonstrated that the architecture of Drosophila quantitative traits is dominated by 

extensive epistasis (Huang et al., 2012). Making use of Drosophila omics data stands a 

chance to capture the prevalent epistasis for phenotype prediction. The Drosophila 

melanogaster Genetic Reference Panel (DGRP) is a community resource for analysis of 

population genomics and quantitative traits. It consists of more than 200 fully sequenced 

inbred lines derived from the Raleigh population, USA (Mackay et al., 2012). We used 

whole-genome SNP data and gene expression data of 185 Drosophila inbred lines from 
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DGRP in this study. The objective was (1) to combine transcriptome data with whole-

genome sequence data for genomic-transcriptomic prediction using GTBLUP and GRBLUP, 

(2) to assess whether GTBLUP and GRBLUP can capture substantial proportions of 

phenotypic variances explained by transcriptome data, and (3) to test whether accounting 

for transcriptome data can improve phenotype prediction. 

Materials and methods 

Data 

Whole-Genome Sequence data 

The Drosophila melanogaster Genetic Reference Panel (DGRP) is a community resource 

for analysis of population genomics and quantitative traits. It consists of 205 fully 

sequenced inbred lines derived from 20 generations of full sibling inbreeding of a single 

outbred population in Raleigh, North Carolina, USA (Mackay et al., 2012). Whole genome 

sequence data of all lines were downloaded from the DGRP2 website. SNPs called with a 

call rate of less than 95% or minor allele frequency (MAF) smaller than 0.01 and individuals 

with a call rate less than 95% were excluded. In total, 2,863,909 SNPs of the 185 

Drosophila lines for which transcriptome data were also available were used for this study. 

Beagle 4.0 (https://faculty.washington.edu/browning/beagle/b4_0.html) was used for 

the imputation of missing SNP genotypes (Browning and Browning, 2013).  

 

Transcriptome data 

The abundances of RNA products of 18,140 genome-wide annotated genes and novel 

transcribed regions (NTRs) in 185 DGRP lines was quantified using Affymetrix Drosophila 

2.0 genome-tiling arrays, with two biological replicates for each sex. Since the correlation 

coefficient between the two replicates on average across all lines reached 0.95, we 

https://faculty.washington.edu/browning/beagle/b4_0.html
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randomly chose one replicate for this study. The mated 3- to 5-d-old flies were collected 

between 1:00 and 3:00 PM, and RNA was extracted from the flies homogenized with 1 mL 

of QIAzol lysis reagent (Qiagen) and two 0.25-in ceramic beads (MP Biomedical). For 

details on fly husbandry, RNA extraction, RNA sequence annotation and quality control 

see (Huang et al., 2015).  

Phenotype data 

In total, 9 Phenotypes, which were measured on females and males separately were used: 

startle response (STR), starvation resistance (STV), alcohol sensitivity and tolerance (AST), 

food intake (FI), and olfactory perceptions to 5 chemical odorants: olfactory perceptions 

to 2-Heptanone (OP2H), Methyl Salicylate (OPMS), l-Carvone (OPIC), 1-Hexanol (OP1H), 

Ethyl Butyrate (OPEB). These phenotypes are line means or medians of repeated 

measurements in different ways, and are treated as response variables in our statistical 

model. For startle response (starvation resistance), there were on average 40±4 (52±11) 

measurements for females, and 40±4 (52±11) measurements for males, the line medians 

were taken in several replicates for each trait (Mackay et al., 2012). The line mean of 

alcohol sensitivity and tolerance was calculated from two replicated measurements for 

each sex per line (Morozova et al., 2015). The line mean of food intake was measured from 

6 replicate assays per sex per DGRP line (Garlapow et al., 2015). For olfactory perceptions 

to 5 chemical odorants, the average of 10 measurements was calculated as the response 

score of each individual trial and the averages of 10 trials on the same genotype and sex 

were recorded as the line means (Arya et al., 2015).The line means and variances are 

shown in Table 1. 

Availability of Supporting Data 

The whole genome sequence data, gene expression data of 185 DGRP lines, and 

phenotype data of 9 traits are available on Drosophila melanogaster Genetic Reference 
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Panel (DGRP, http://dgrp2.gnets.ncsu.edu). 

Statistical models 

To remove the gender effect in prediction, we performed the subsequent analyses with 

female and male data separately. Predictions of phenotypes were done with 3 basic 

approaches and 2 combined methods. The basic approaches were genomic BLUP (GBLUP) 

to predict phenotypes using genotype data, transcriptomic BLUP (TBLUP) predicting 

phenotypes using transcriptome data with a linear kernel, and RKHS predicting 

phenotypes using transcriptome data with a Gaussian kernel (Gianola and van Kaam, 

2008). The combined methods, integrating genomic and transcriptome data, were 

GTBLUP (combining GBLUP and TBLUP) and GRGLUP (combining GBLUP and RKHS).  

GBLUP 

As a baseline, we used SNP data of 185 Drosophila lines to conduct the benchmark GBLUP 

(VanRaden, 2008). The statistical model for GBLUP is 

   (1), 

where ~  and ~   are vectors containing random breeding values 

and residual effects, respectively and where   is the overall mean. The genomic 

relationship matrix   was calculated as   (VanRaden, 2008), where  

denotes the minor allele frequency (MAF) of marker . Moreover,  denotes the MAF 

adjusted marker matrix with entries  and   for genotypes AA and 

aa, respectively. 

TBLUP 

http://dgrp2.gnets.ncsu.edu/


2nd CHAPTER Integrating gene expression data into genomic prediction        28 

 

 

In this approach, transcriptome data of the 185 Drosophila lines were used as predictor 

variables. The statistic model is:   

    (2) 

where  ~   is a transcriptomic line effect. The corresponding variance-

covariance matrix is  which is a linear kernel calculated from an  x  matrix 

  of standardized gene expression levels from   lines and  genes. The 

standardization of gene expression levels was conducted by calculating   , 

where  is the expression level of gene  in line ,  is the mean expression level of 

gene  across all lines, and  is the standard deviation of gene expression level of gene 

.  

Reproducing Kernel Hilbert Space Regression (RKHS) 

Analogously, to the previously described approaches, the statistical model was:  

     (3) 

where ~  is a random effect measured by transcriptome data with being 

the genetic covariance matrix (Gianola et al., 2006). We chose the Gaussian kernel to 

calculate the genetic covariance between lines by  

    (4), 
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Here,  is a bandwidth parameter, which controls how fast the covariance function drops 

as points get further apart. The vector   gives the vector of standardized expression 

levels of line  across all genes, and  is the vector of standardized expression levels 

of line j across all genes. The bandwidth parameter  was chosen using a grid search 

approach under cross-validation, aiming at finding a suitable value that maximized the 

predictive correlation within a model setting (Gianola and Schön, 2016, Jones et al., 1996). 

GTBLUP 

In GTBLUP, transcriptome data was integrated into genomic prediction. SNP data and 

transcriptome data of 185 Drosophila lines were treated as predictor variables. The 

prediction model was: 

      (5), 

where all variables are defined as described above. 

GRBLUP 

The statistical model for GRBLUP can be expressed as 

     (6). 

The only difference between GTBLUP and GRBLUP is that in GRBLUP we replace  ~

 of GTBLUP with ~  of RKHS. Again is the genetic covariance 

matrix constructed by the Gaussian kernel (4) and the optimum bandwidth parameter h 

is found by grid-search and cross-validation. 

Estimation of the omics-augmented broad sense heritability based on the between line 



2nd CHAPTER Integrating gene expression data into genomic prediction        30 

 

 

effects 

The omics-augmented broad sense heritability was defined as the proportion of 

phenotypic variance explained by whole genome SNP marker and other omics data, 

        (7) 

where   denotes the proportion of additive genetic variance explained by the whole 

genome SNP markers and   denotes the variances explained by one or several 

omics data layers which can be the transcriptome, proteome, metabolome, epigenome, 

metagenome etc.  

(1) SNP-based genomic narrow sense heritability for GBLUP ( ) 

The SNP-based genomic narrow sense heritability is defined as the proportion of 

phenotypic variance explained by SNP marker effects. This SNP-based heritability is 

calculated as   

          (8) . 

(2) SNP and gene expression data-augmented broad sense heritability for GTBLUP ( ) 

and GRBLUP ( ) 

The proportion of phenotypic variance explained by SNP data and gene expression data 

in GTBLUP ( ) is calculated as 

      (9). 

 and in GRBLUP ( ) are calculated as 
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       (10). 

The variance components  ,  ,   ,   from models (1), (5), and (6) were 

estimated from the entire data sets, using the R package “regress” (Clifford and McCullagh, 

2014), which also provided predictions of random effects. 

Comparison of predictive abilities 

The different approaches were assessed using 20 replicates of a 5-fold cross-validation  

(Erbe et al., 2013). Predictive abilities were defined as the Pearson’s correlation 

coefficients between predicted genetic values and observed phenotypes in the test sets. 

The final predictive ability of each model was the mean of the predictive abilities across 

100 estimates. Overall predictive abilities among the five models implemented in the 

study were compared using a Tukey’s honest significant difference test (Tukey, 1949). 

Results 

Estimation of “omics-augmented broad sense heritability” based on the between line 

effects and variance components 
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Figure 1: Percentages of variance components of GBLUP, GTBLUP and GRBLUP for 9 traits 

for females (left) and males (right). e is the residual; t is the transcriptomic line effect in 

GTBLUP; v is the transcriptomic line effect in GRBLUP, and g is the additive genetic effect 

captured by SNP data. 

Genomic heritabilities obtained with model (1) ranged from 0.25 to 0.99 and are generally 

high. On average across all traits, they are slightly higher for females 

(  than for males (  (see Fig. 1 and Table 1). 

It should be noted, though, that these values pertain to the average performance of many 

replications of inbred individuals, and thus should not be compared to narrow sense 

heritability estimates on an individual base.  

In GTBLUP and GRBLUP, we integrated transcriptome data into genomic prediction. The 
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only difference between these two methods is that two different kernels were used to 

construct the relationship matrix based on transcriptome data. For the SNP and gene 

expression data-augmented heritability,  was higher than  for almost all traits 

and in both sexes (Table 1). Only the trait FI did not show this pattern for males. Across all 

traits,  had a mean of 0.85±0.050 for females and 0.81± 0.080 for males compared 

to  0.71±0.025 for females, and 0.69±0.049 for males. Compared to GTBLUP, GRBLUP 

captured more genetic variance explained by gene expression data for some traits, 

especially for some traits with relatively low SNP-based genomic heritability , such as 

FI, OPMS, OPIC, OP1H, and OPEB in females and AST, OP2H, OPMS, and OP2H in males.  

Overall predictive ability 

The predictive abilities of the 9 traits obtained with the 5 statistical models for females 

and males are shown in Figure 2 and Supplementary Table 1. 
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Figure 2:  Predictive abilities for 9 traits with 5 statistical models in females and males. 

GBLUP as the reference method provided predictive abilities ranging from 0.162 ± 0.012 

to 0.240 ± 0.013 in females and from 0.095 ± 0.015 to 0.325 ± 0.013 in males across all 

traits. For GBLUP, the proportion of phenotypic variance explained by SNP data and 

genomic predictive abilities were highly positively correlated. The correlation coefficients 

were 0.731 and 0.885 for females and males, respectively. Transcriptome-based 

prediction alone was not accurate for most traits: observed predictive abilities were 0.001 

± 0.013 to 0.182 ± 0.011 for females, and 0.036 ± 0.014 to 0.107 ± 0.014 for males with 

RKHS and -0.035 ± 0.011 to 0.165±0.014 for females and -0.113±0.013 to 0.13±0.015 for 

males with TBLUP. The correlation between female and male predictive abilities with RKHS 

and TBLUP were low with correlation coefficients of 0.077 and -0.189 respectively. 

Except for one trait (OPEB) in females, there was no significant difference of predictive 

abilities between GRBLUP and GBLUP. For the trait OPEB in female, GRBLUP (0.23 ± 0.012) 

gave a higher predictive ability than GBLUP (0.208 ± 0.012). Both GRBLUP (female 0.21, 

male 0.187) and GBLUP (female 0.205, male 0.184) provided better predictive abilities on 
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average in all traits than GTBLUP (female 0.187, male 0.156) for female and male. It is 

worth noting that predictive abilities between males and females for all models were 

found to be remarkably different for 6 out of 9 traits (AST, FI, OP2H, OPMS, OPIC, OP1H). 

In females, the predictive abilities of three models (GBLUP, GTBLUP and GRBLUP) varied 

slightly among all 9 traits with a range between 0.139 ± 0.012 (OP1H in GTBLUP) and 0.24 

± 0.013 (STV in GRBLUP), while in males the predictive abilities of these three models have 

a more significant variation ranging from 0.045 ± 0.014 (OPMS in GTBLUP) to 0.326 ± 0.014 

(FI in GRBLUP).  The correlation coefficient between predictive abilities in females and 

males across all traits and models is 0.623 (Fig. 3).  

 

Figure 3: The correlation between predictive abilities in females and males across 9 traits 

and 5 statistical models. r denotes the Pearson correlation coefficient between female and 

male predictive abilities across all traits and all statistical models. The red line denotes a 

standardized major axis regression line. 

The correlation coefficients between heritabilities   ,   ,    and predictive 
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abilities for GBLUP, GTBLUP, GRBLUP across all traits and both sexes are 0.823, 0.821 and 

0.832 respectively (Fig. 4). The bandwidth parameter h in the Gaussian kernel varied 

dramatically from 0.7 to 270’000, and choosing the right value had great impact on 

predictive abilities of RKHS and GRBLUP.  

 

Figure 4: The correlation between heritabilities , ,  and predictive abilities for 

GBLUP, GTBLUP, and GRBLUP across all traits and both sexes. r denotes the Pearson 

correlation coefficient. The blue lines denote the overall linear regression lines. The grey 

shadow denotes the 0.95 confidence interval. 

Discussion 
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Previous Drosophila genomic prediction studies have shown that there is a high degree of 

genotype by sex interaction in some traits. Ober et al. (2012) showed that given the 

significant sex by line interaction variance in starvation resistance, the prediction is more 

accurate in females than in males (0.254 vs. 0.203), and in chill coma recovery time the 

predictive ability is very low for female and zero for male. It has also been found that 42% 

of the Drosophila transcriptome is genetically variable between males and females, 

including the novel transcribed regions (NTRs) (Huang et al., 2015). We also found 

expression patterns to be clearly separated between males and females (see 

Supplementary Figure 1) and thus we performed all analyses on females and males 

separately in order to remove the gender effect in prediction. 

Omics-augmented broad sense heritability 

Yang et al. ( 2010) showed that 45% of the variance for human height can be explained by 

considering all SNPs simultaneously when using GBLUP to estimate the narrow sense 

heritability, the proportion of phenotypic variance due to additive genetic variance. Two 

explanations for the “missing heritability” were provided: (1) the causal variants each 

explain such a small amount of variation that their effects do not reach stringent 

significance thresholds, or (2) the causal variants are not in complete linkage 

disequilibrium (LD) with the SNPs that have been genotyped. Speed et al. (2012) argued 

that GBLUP may not be capable to provide unbiased estimates of the genomic heritability, 

and a main reason is that in the computation of the G matrix the LD between SNPs and 

QTL is ignored. Kim et al. (2017) proposed that the main problem of estimating genomic 

heritability does not reside in the manner the G matrix is computed, but rather in the use 

of massive numbers of markers that are in LD with QTL. Since there is probably no 

complete linkage disequilibrium between SNPs and all causal variants, which e.g. also can 

be structural variants, using SNP data may not provide accurate estimates of narrow sense 

heritability. Narrow sense heritability estimates play a key role in predicting or assessing 
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the effectiveness of artificial selection in that they provide a way to measure the extent 

to which additive genetic variance is related to phenotypic variance in a specific 

population (Visscher et al., 2008). However, for the prediction of phenotypes, the concept 

of broad sense heritability is more useful than the concept of narrow sense heritability, 

because it reflects all the genetic contributions to a population's phenotypic variance 

including additive and non-additive effects, which provides upper limits to estimates of 

transmissible genetic variance (Lush, 1940, Stoltenberg, 1997). Nevertheless, as 

mentioned, even if all SNPs were used, only part of the genetic effects can be captured. 

The inclusion of additional layers of genomic information in the prediction machinery may 

provide a partial solution for this problem. When DNA information is transcribed into RNA 

and then expressed as protein products, abundance of gene expression products is one of 

the intermediate layers in this process. We assume that the missing additive variance in 

estimation of narrow sense heritability by using SNP data, and some non-additive effects 

may be captured by the gene expression data. In this case, utilizing both SNP data and 

gene expression data to estimate broad sense heritability can be a promising approach. 

The classical definition of broad sense heritability is the ratio of genetic variance to the 

phenotypic variance, which implicitly assumes that all genetic variation must be encoded 

at the genome level. However, gene expression data may be inevitably affected by some 

external regulation which belongs to environment effects in terms of the classical genetic 

model, where the phenotype is considered to be affected by genetic and environmental 

effects, and the interaction between both. In the multi-omics era, the input information 

for the phenotypic prediction machinery is not restricted to gene or genome layer. Multi-

omics data reflecting the transcriptome, proteome, metabolome, epigenome, 

metagenome etc. are increasingly exploited as input data for the phenotypic prediction 

(Acharjee et al., 2016, Xu et al., 2016). Thus, we discuss the concept “omics-augmented 

broad sense heritability” for the prediction of phenotype which not only includes the 

effects at the genome level (both additive and non-additive), but also includes the effects 
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of downstream biological regulation captured by one or several omics layers. In 

phenotype prediction this concept can help to measure the extent to which the 

information in the different layers of multi-omics data is related to phenotypic variance in 

a specific population. For some traits substantially affected by non-additivity and 

downstream biological regulation effects, or with poor LD between SNPs and QTL, the 

estimated genomic heritabilities may be low so that they may be inadequate as a measure 

of predictive ability. In this case the omics-based broad sense heritability may be more 

informative than narrow or broad sense heritability because of the inclusion of non-

additive effects and biological regulation effects in the numerator of , and it can be 

seen as the potential upper limit of the predictive ability of phenotypic prediction when 

utilizing multi-omics data. This method was used to measure the increased heritabilities 

of 11 traits when incorporating gene expression and metabolic data into phenotypic 

prediction in maize, however, without discussing the reasonability (Guo et al., 2016). It 

must be highlighted that the “omics - augmented broad sense heritability” is just available 

in the context of phenotype prediction, while in the genomic prediction for breeding 

values this concept is of limited usefulness because the biological regulation variance in 

the numerator of   is not fully heritable. The approach should be seen as a 

complement or partial substitution to the classical narrow sense heritability when using 

multi-omics data to predict phenotypes.  

Assessment of predictive abilities 

Due to the transmission of genetic information from DNA sequence to transcripts, 

information at the gene expression layer (transcriptome) is “closer” to phenotypes than 

genomic information, and thus should help providing better predictions of phenotypes 

than genomic information. However, unlike the DNA sequence, the transcriptome 

information is not stably inherited and measurements of transcriptome abundance are 
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affected by choice of tissue, time of sampling and experimental conditions. In this study, 

predictive abilities of RKHS obtained on 9 traits were relatively low (0.001 to 0.182 in 

female, 0.036 to 0.107 in male), and were much lower than predictive abilities obtained 

with GBLUP using SNP data. A similar result was also shown in maize, where predictive 

abilities of transcriptomic prediction were always lower than the genomic prediction 

when comparing both using eight statistical models (Xu et al., 2017). RKHS and GRBLUP 

performed significantly better than TBLUP and GTBLUP, indicating that RKHS with a 

Gaussian should be preferred when conducting transcriptome-based prediction.  

For GBLUP, we found predictive ability and the phenotypic variance component explained 

by SNP data to be highly positively correlated with correlation coefficients of 0.73 and 

0.89 for females and males respectively. However, the phenotypic variance explained by 

SNP data was exceedingly high (> 0.8) for some traits, such as STV, AST, OP2H in females 

and STV, AST, FI, OPIC in males, while the predictive abilities for these traits were relatively 

low. The reason could be the small sample size of lines and this result was consistent with 

the previous study for starvation resistance and startle response which the predictive 

abilities were 0.239 ± 0.012 and 0.23 ± 0.012 respectively. Ober et al. (2012) showed that 

the predictive ability could reach 0.58 if the number of sequenced lines for training was 

increased to 1000 (Ober et al., 2012). 

We incorporated transcriptome data with genomic prediction using GRBLUP which 

combine the standard GBLUP and the RKHS method. From an RKHS point of view, the 

genomic relationship matrix G in GBLUP can be viewed as a parametric kernel that only 

captures genetic values based on an additive genetic relationship among individuals. The 

Gaussian kernel is a non-parametric kernel which may pick up genetic signals regardless 

of the underlying genetic architecture. Choosing the most suitable bandwidth parameter 

h can provide an optimal   ratio, which gives an appropriate weight to the 
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phenotypic variance explained by transcriptome data, leading to an optimized predictive 

performance. GRBLUP can be considered as a case of RKHS with two kernels. For the 

comparison between GTBLUP and GRBLUP, the only difference between these two 

methods is that two different kernels were used to construct a relationship matrix based 

on transcriptome data. In GTBLUP, we replaced the Gaussian kernel used in GRBLUP with 

a linear kernel. Compared with GBLUP, the SNP and gene expression data-based broad 

sense heritability  of GTBLUP was higher than the SNP-based genomic heritability  

of GBLUP at all 9 traits in both male and female, but GTBLUP slightly decreased the 

combined predictive ability for most traits. This result suggests that there may be an 

overfitting problem when using GTBLUP to model the combined data. Xu et al. (2017) 

observed an analogical result which decreased the predictive ability when combining 

transcriptome data and metabolic data into genomic prediction for six yield-related traits 

in maize (Xu et al., 2017). Compared to GTBLUP, GRBLUP captured more genetic variance 

explained by gene expression data for some traits, especially for traits with relatively lower 

genomic heritability  in GBLUP, such as FI, OPMS, OPIC, OP1H, OPEB in female; and 

AST, OP2H, OPMS, OP2H in male. For the omics-based broad sense heritability based on 

the between line effects,  was higher than  for all 9 traits in both males and 

females, and GRBLUP provided a superior predictive ability than GTBLUP across all traits. 

This demonstrated that the Gaussian kernel is superior to the linear kernel  for 

modeling transcriptome data in genomic prediction. 

In our result, there was only one trait (OPEB in females) for which the predictive ability of 

GRBLUP (0.23) was higher than the predictive ability of GBLUP (0.21). This indicated that 

predictive ability can be improved when combining transcripts with SNPs using GRBLUP, 

but it depends on the traits. For the rest of the traits for both males and females, the SNP 

and gene expression data-based heritability  was remarkably increased compared to 
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the SNP-based heritability   of GBLUP. However, there is no significant difference in 

predictive ability between GRBLUP and GBLUP, which might be caused by the small sample 

size and may be changing with increased sample sizes. 

Conclusion 

We constructed a semiparametric prediction model (GRBLUP) with two kernels combining 

SNP and transcriptome data. The parametric G kernel was used to capture the additive 

genetic part, and the Gaussian kernel is a non-parametric kernel which was used to pick 

up non-additive genetic effects and biological regulation effects regardless of the 

underlying genetic architecture. In our study, GRBLUP and GBLUP provided similar 

predictive ability, but GRBLUP could capture more phenotypic variance components 

explained by transcriptome data. The better goodness of fit of GRBLUP in general did not 

translate into a better predictive ability. It should be noted, though, that sample size was 

small and gene expression was not measured at one time point and in one specific tissue 

functionally linked to the trait of interest. However, including transcriptomic data can 

increase predictive ability, as was shown for the trait OLED in females. We conclude that 

adding more specifically collected transcriptome data has the potential to improve 

genomic predictions in larger scale applications.   
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Table 1: Line means (M) and variances (V) of phenotypes and heritability estimates for the 9 traits in males and females.  denotes 

the SNP-based genomic heritability calculated with GBLUP;   denotes the SNP and gene expression data-based broad sense 

heritability calculated with GTBLUP;   denotes the SNP and gene expression data-based broad sense heritability calculated with 

GRBLUP. r denotes the phenotypic correlation between female and male phenotypes across lines. 

 

   Female     Male    

Traits M V  𝐻̂𝐺𝑇
2  𝐻̂𝐺𝑅

2  M V    r 

STR 28.75±0.44 40.29    0.703    0.739    0.842 28.29±0.50 41.22    0.701    0.749 0.801 0.958 

STV 60.61±0.89 159.06    0.898    0.943    0.948 45.65±0.67 90.39    0.805    0.807 0.903 0.684 

AST 17.36±0.28 14.03    0.943    0.944    0.972 16.49±0.24 10.45    0.730    0.923 0.978 0.685 

FI 0.99±0.04 0.36    0.566    0.545    0.908 1.02±0.05 0.50    0.989    0.988 0.980 0.674 

OP2H 3.10±0.04 0.28    0.819    0.823    0.840 3.04±0.04 0.28    0.258    0.299 0.616 0.760 

OPMS 3.40±0.03 0.15    0.586    0.605    0.839 3.32±0.03 0.17    0.385    0.361 0.673 0.582 

OPIC 3.50±0.03 0.20    0.525    0.520    0.750 3.39±0.03 0.21    0.851    0.853 0.925 0.697 

OP1H 2.30±0.04 0.28    0.520    0.565    0.748 2.34±0.04 0.28    0.362    0.536 0.635 0.794 

OPEB 3.51±0.03 0.18    0.462    0.673    0.848 3.57±0.03 0.16    0.694    0.719 0.833 0.594 
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 Female Male 

Traits GBLUP TBLUP RKHS GTBLUP GRBLUP GBLUP TBLUP RKHS GTBLUP GRBLUP 

STR 0.239 ± 0.015 0.061±0.013 0.123 ± 0.014 0.216 ± 0.014 0.239 ±0 .015 0.261 ± 0.015 0.049±0.014 0.036 ± 0.014 0.237 ± 0.016 0.261 ± 0.015 

STV 0.240 ± 0.013 0.150±0.014 0.155 ± 0.013 0.217 ± 0.013 0.240 ± 0.013 0.230 ± 0.014 -0.044±0.013 0.067 ± 0.011 0.222 ± 0.014 0.233 ± 0.014 

AST 0.210 ± 0.013 -0.035±0.011 0.182 ± 0.011 0.205 ± 0.013 0.211 ± 0.013 0.204 ± 0.014 0.130±0.015 0.107 ± 0.014 0.215 ± 0.015 0.220 ± 0.015 

FI 0.200 ± 0.015 0.011±0.015 0.158 ± 0.016 0.190 ± 0.015 0.215 ± 0.014 0.325 ± 0.013 -0.081±0.015 0.070 ± 0.013 0.324 ± 0.013 0.326 ± 0.014 

OP2H 0.237 ± 0.012 0.051±0.012 0.100 ± 0.011 0.224 ± 0.012 0.238 ± 0.012 0.096 ± 0.014 -0.030±0.013 0.010 ± 0.013 0.029 ± 0.016 0.096 ± 0.014 

OPMS 0.183 ± 0.015 0.123±0.015 0.130 ± 0.013 0.149 ± 0.013 0.183 ± 0.015 0.095 ± 0.015 -0.113±0.013 0.072 ± 0.014 0.045 ± 0.014 0.096 ± 0.015 

OPIC 0.162 ± 0.012 0.038±0.015 0.090 ± 0.015 0.139 ± 0.013 0.163 ± 0.012 0.175 ± 0.014 -0.078±0.011 0.050 ± 0.015 0.155 ± 0.015 0.175 ± 0.014 

OP1H 0.168 ± 0.011 -0.002±0.013 0.001 ± 0.013 0.139 ± 0.012 0.169 ± 0.011 0.100 ± 0.012 -0.025±0.011 0.090 ± 0.015 0.030 ± 0.012 0.110 ± 0.012 

OPEB 0.210 ± 0.012 0.165±0.014 0.180 ± 0.014 0.208 ± 0.011 0.230 ± 0.012 0.170 ± 0.013 0.068±0.015 0.056 ± 0.014 0.149 ± 0.012 0.170 ± 0.013 
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Supplementary Figure 1: PC analysis of female (red) and male lines (green) for gene expression 

data. The variances explained by PC 1 (x-axis) and PC 2 (y-axis) are shown in the respective captions. 
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Abstract 

Transcriptome potentially holds valuable information for the prediction of phenotypes. However, 

gene expression and regulation may extensively vary among different tissues. In this study, the 

effectiveness of tissue-specific transcriptome data from three mice brain tissues: hippocampus 

(HIP), prefrontal cortex (PFC), and striatum (STR) was tested for phenotype prediction on four 

novel behavioral traits and four muscle weight traits with low to medium heritability. The 

abundances of RNA products from three tissues encompassed 16,533 genes in HIP, 16,249 genes 

in PFC, and 16,860 genes in STR. For the muscle weight traits, the tissue-specific transcriptome 

data-based prediction (TBLUP) showed a high level of statistical robustness, and the predictive 

abilities overall were remarkably higher than the pedigree-based prediction (BLUP), and single 

nucleotide polymorphisms based genomic prediction (GBLUP). For the four behavioral traits, the 

improvement of predictive abilities with TBLUP was lower than that for the muscle weight traits. 

When different numbers of genes were randomly chosen for prediction with TBLUP, the 

differences among predictive abilities were negligible. Combining transcriptome data with SNPs 

or pedigree information as predictors did not improve predictive abilities. Our results suggest that 

inclusion of transcriptome data has the potential to improve phenotype predictions if 

transcriptome data can be sampled in a specifically relevant tissue. 

Introduction 

Genomic selection (GS) making use of genome-wide single nucleotide polymorphisms (SNPs) has 

been widely adopted to replace the pedigree-based prediction of breeding values using in animal 

and plant breeding (Meuwissen et al., 2001). GS is a form of marker-assisted selection which can 

improve the breeding progress by increasing predictive accuracy of breeding values, or reducing 

generation intervals (Schaeffer, 2006). In plant line breeding, genomic prediction mainly focuses 

on breeding values in early generations of a breeding program, while the genomic prediction of 

phenotypes may be attractive when estimating the commercial value of cultivars (Crossa et al., 

2017). Likewise, in human genetics, phenotype prediction aims at accurately quantifying disease 

risk so that preventative measures may be taken earlier, (Abraham and Inouye, 2015). However, 
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under certain circumstances, the predictive ability of SNP-based phenotype prediction often 

remains low. e.g., for some traits with low heritability in humans, such as psychiatric illnesses 

(Bouchard Jr, 2004), reproductive fitness traits (Kosova et al., 2010), tinnitus (Kvestad et al., 2010), 

or behavioral problems (Pappa et al., 2015). For some traits in livestock, such as litter weight gain 

in pigs (Thekkoot et al., 2016) or lamb survival in sheep (Hatcher et al., 2010), SNP-based 

phenotype prediction also has limited predictive abilities. Although some studies illustrated an 

improved prediction of phenotypes when using linear or non-linear kernels to model epistatic 

effects (Su et al., 2012; Vitezica et al., 2013; Akdemir and Jannink, 2015; Jiang and Reif, 2015), the 

improvement was still inappreciable especially for accurate prediction of human disease risk 

which requires more precision than prediction in livestock and crops (Wray et al., 2013b).  

On the other hand, sample size has a significant impact on prediction accuracy (Kim et al., 2017). 

It has been shown in a dairy cattle application, that the predictive ability increases as the number 

individuals in the training set increases (Erbe et al., 2013). Furthermore, for prediction of distantly 

related individuals, the prediction accuracy is lower than prediction of closely related individuals, 

because the extent of LD between SNP and causal variants depends on the relatedness of the 

sample of individuals used (Wray et al., 2013a). If closely related individuals are included in the 

sample, long-range LD is generated even between SNPs and QTLs on different chromosomes 

(Wray et al., 2013b).  

Another problem for phenotype prediction is that there are complex biological processes from 

DNA sequences to observable phenotypes. Only using information from the genome level may 

not capture such complex downstream effects, which often encompass linear or non-linear 

interactions between different genetic and regulatory complexes (Mackay et al., 2009). The 

inclusion of transcriptome data in the prediction model may provide a partial solution for this 

problem, since transcriptome data may be “closer” to the phenotype, and causal variants 

influence phenotypes by causing variation in protein sequence and/or the abundance of 

transcripts. Variation in the transcripts abundance has significant impact on quantitative traits 

(Mackay et al., 2009).  

Recently, transcriptome data have been employed for prediction of complex traits in several 
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studies. In human disease prediction, it was demonstrated that whole-genome gene expression 

profiles increased the prediction accuracy when they were used in breast cancer prediction 

(Vazquez et al., 2016). In maize complex traits prediction, transcriptome data were found to have 

similar predictive ability as SNP markers, and it was stressed that the use of transcript information 

may be important for unveiling the contribution of regulatory variation to the genetic architecture 

of traits (Azodi et al., 2019). In other studies gene expression data was considered as 

complementary information, and was combined with sequence data in the prediction of traits. E.g 

integrating transcriptome data into prediction of rice yield lead to a higher prediction accuracy of 

the combined method compared to only using a single type of predictors (Hu et al., 2019).  

However, a challenge of gene expression data-based phenotype prediction stems from the fact 

that, other than nuclear DNA-based SNP data, the mRNA transcript abundance is affected by 

several factors, such as time of sampling and experimental conditions. In addition, gene 

expression levels may be variable among different tissues. Assessing gene expression in the 

specific tissue at the specific time is critical for the success of gene expression data-based 

phenotype prediction.  

An advanced intercross line (AIL) of mice is the simplest possible outbred population (Darvasi and 

Soller, 1995). It is produced by intercrossing two inbred strains beyond the F2 generation, and has 

been demonstrated a powerful tool for genetic analysis (Gonzales et al., 2018). The LG/J x SM/J 

advanced intercross line (AIL) of mice is a multigenerational outbred population, which was 

derived from the LG and SM inbred strains (Ehrich et al., 2005). In this paper, we used AIL of mice 

(generation 50–56) with pedigree, SNP, phenotype data, and gene expression quantified from 

three brain tissues. For prediction we used five kernel-based linear models: best linear unbiased 

prediction (BLUP) with pedigree data, genomic BLUP (GBLUP) with SNP data, transcriptomic BLUP 

(TBLUP) with tissue-specific transcriptome data, GTBLUP combining SNP data and tissue-specific 

transcriptome data, and PTGLUP combining pedigree data and tissue-specific transcriptome data 

for phenotype prediction. The objective was to test whether using tissue-specific transcriptome 

data with a linear model can improve phenotype prediction compared to BLUP and GBLUP for 

traits with medium to low heritability in the studied mouse population. 



3rd CHAPTER            Utilizing tissue-specific gene expression data for phenotype prediction in mice  55 

 

 

 

Materials and methods 

Genotype and pedigree data  

The 1063 mouse individuals (530 female, 533 male) with pedigree information were from a 

multigenerational outbred population which had been sequenced with the reduced-

representation genotyping method genotyping-by-sequencing (GBS) (Elshire et al., 2011). The GBS 

data yielded 38,238 high-quality autosomal SNPs (Gonzales et al., 2018). X chromosomal SNPs 

were excluded to avoid potential problems with genotyping accuracy, statistical power, and other 

complications that had been discussed elsewhere (Wise et al., 2013). Beagle 4.1 had been used in 

conjunction with haplotypes of LG and SM lines obtained from whole genome sequencing data to 

impute 4.3 million additional SNPs into the 1063 mice (Browning and Browning, 2007; Nikolskiy 

et al., 2015; Browning and Browning, 2016). SNPs with MAF < 0.1, and Hardy–Weinberg 

Equilibrium violations were removed. Finally, 523,028 SNPs were used in the analysis. 

Gene expression data 

The generation of expression data is described in Gonzales et al. (2018), and provided tissue-

specific gene expression data of three brain tissues: hippocampus (HIP), prefrontal cortex (PFC), 

and striatum (STR) were quantified with mRNA transcript abundances. These data were used to 

map expression quantitative trait loci QTL (eQTL) contributing to mammalian behavior and 

physiological traits (Gonzales et al., 2018). Three groups of 208 (HIP), 185 (PFC) and 169 (STR) 

individuals, respectively, sampled among the 1063 phenotyped and genotyped mice, were used 

to generate gene expression data. The tissues from each brain had been dissected within five 

minutes, aiming at limiting stress-induced changes in gene expression. All brain tissues were 

dissected by the same experimenter and subsequently stored at−80°C until extraction. The 

abundances of RNA products from three tissues encompassed 16,533 genes in HIP, 16,249 genes 

in PFC and 16,860 genes in STR, respectively. For more details, see Gonzales et al. (2018). The 

overlap of individuals and the overlap of genes among the three subsets is shown in Figure 1. 
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Figure 1 The Venn diagrams show the overlap of individuals (a) and the overlap of genes (b) among 

the three groups of mice 

Phenotype data   

We used 8 traits in this study which had been phenotyped previously, including four novel 

behavioral traits, three of which were conditioned place preference (CPP) for methamphetamine, 

and the other one was the number of side changes which was a trait measuring locomotor activity. 

CPP is an associative learning paradigm that had been used to measure the motivational 

properties of drugs in humans and rodents (Tzschentke, 1998; Mayo et al., 2013), and it was 

defined as the number of seconds spent in a drug-associated environment relative to a neutral 

environment over the course of 30 min. The full procedure takes eight days, which were referred 

to as D1–D8. The baseline preference was measured after administration of vehicle (0.9% saline, 

i.p.) on D1. On D2 and D4, mice were administered methamphetamine (1 mg kg−1, i.p.) and 

restricted to one visually and tactically distinct environment; on D3 and D5 mice were 

administered vehicle and restricted to the other, contrasting environment. The locomotor activity 

trait measured during the CPP test on D1 and D8. CPP and locomotor traits were measured across 

six five-minute intervals and summed them to generate a total phenotype for each day.  

Further four hindlimb muscle weight traits relevant to exercise physiology were chosen. The four 

phenotyped muscles include two dorsiflexors: tibialis anterior (TA), and extensor digitorum longus 

(EDL), and two plantar flexors: gastrocnemius and plantaris. Individual muscles were isolated 

under a dissection microscope and weighed to 0.1 mg precision on a Pioneer balance.  
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For more details about phenotyping, statistical description and heritability of phenotypes see 

table 1 and (Gonzales et al., 2018). 

Table 1. Descriptions, means (M), standard deviations (SD), minimum (MIN), maximum (MAX) and 

SNP-based heritabilities ( ) of phenotypes. 

Category Traits Trait descriptions 
 

M SD MIN MAX 

Muscle weight 

traits 

TGW Tibialis anterior weight (mg) 0.379 48.602 7.558 28.9 70.8 

EDLW Extensor digitorum longus weight (mg) 0.429 8.845 1.558 4.9 13.3 

GW Gastrocnemius weight (mg) 0.309 110.573 20.893 65.9 168.3 

SW Soleus weight (mg) 0.202 7.754 1.839 3.2 13.5 

Behavioral 

traits 

SCD8 Side changes on Day 8 (20-25 min) 0.105 27.606 10.542 0 78 

D1C Day 1 activity (saline, 25-30 min) 0.093 1381.883 451.429 0 3093 

D2C Day 2 activity (1 mg/kg meth, 10-15 min) 0.252 389.366 155.803 0 1019 

D3C Day 3 activity (saline, 0-30 min) 0.221 192.84 84.028 0 623 

 

Data availability 

The genotypes, pedigree, phenotypes, and gene expression data of mice population are freely and 

publicly available on http://palmerlab.org/protocols-data/, and on http://genenetwork.org/.  

Statistical models and estimation of predictive ability 

Predictions of phenotypes were performed with 5 linear models: best linear unbiased prediction 

(BLUP) with pedigree data, genomic BLUP (GBLUP) with SNP data, transcriptomic BLUP (TBLUP) 

with tissue-specific transcriptome data, GTBLUP combined SNP data and tissue-specific 

transcriptome data, and PTGLUP combined pedigree data and tissue-specific transcriptome data. 

BLUP 

The statistical model is (Henderson, 1975): 

 

http://palmerlab.org/protocols-data/
http://genenetwork.org/
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Where  is the vector of phenotypic observations, ~  and ~  are vectors 

containing random breeding values and residual effects, respectively and where  is the overall 

mean and  a vector of ones. The numerator relationship matrix   was calculated using AIL 

pedigree information from generation 1 to 56 with the R package “AGHmatrix” (Amadeu et al., 

2016). 

GBLUP 

We used all available SNPs data to conduct the benchmark GBLUP (VanRaden, 2008). The 

statistical model for GBLUP is: 

 

where  ~  . The genomic relationship matrix   was calculated as  

(VanRaden, 2008), where  denotes the minor allele frequency (MAF) of marker . Moreover,  

denotes the MAF adjusted marker matrix with entries ,   and   

for genotypes AA, Aa and aa, respectively. All other variables are as defined above. 

TBLUP 

In this approach, tissue-specific gene expression data were used as predictor variables (Li et al., 

2019). The statistic model is:   

 

where ~  is a transcriptomic line effect. The corresponding variance-covariance matrix 

is  which is a linear kernel calculated from an  x  matrix  of standardized gene 

expression levels from   lines and  genes. The transcriptomic relationship matrix   used 

here reflected transcriptomic similarity between individuals based on tissue-specific gene 

expression data. The standardization of gene expression levels was conducted by calculating  

 , where   is the expression level of gene   in line  ,   is the mean expression 

level of gene  across all lines, and  is the standard deviation of gene expression level of gene 
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. All other variables are as defined above. 

GTBLUP 

In GTBLUP, transcriptome data was integrated into genomic prediction (Li et al., 2019). SNP data 

and transcriptome data were treated as predictor variables. The prediction model was: 

 

where all variables are defined as described above. 

PTBLUP 

In PTBLUP, pedigree data and transcriptome data were treated as predictor variables. The 

prediction model was: 

 

where all variables are defined as described above. 

The different approaches were assessed using 20 replicates of a 5-fold cross-validation  (Erbe et 

al., 2013). Predictive abilities were defined as the Pearson’s correlation coefficients between 

predicted genetic values and observed phenotypes in the test sets. The final predictive ability of 

each model was the mean of the predictive abilities across 100 estimates. Random effects from 

the five models were estimated using the R package “regress” (Clifford and McCullagh, 2014).  

Results 

All analyses were conducted in three groups of mice, and each group had a unique type of gene 

expression data quantified from one of the three brain tissues: hippocampus, prefrontal cortex, 

and striatum. The predictive abilities of eight traits obtained with the five statistical models for 

the three groups are shown in Figure 2.  
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Figure 2. Predictive abilities for 8 traits with 5 statistical models in 3 groups: Panels a, b, and c, 

refer to the HIP, PFC, and STR group, respectively. Trait names are as in Table 1. 

BLUP and GBLUP provided very low predictive abilities for the traits with low to medium 

heritabilities, the observed predictive abilities being -0.003 and -0.02 on average across eight traits 

and three groups, respectively. The transcriptome-based prediction (TBLUP) was the most 

accurate method for which the observed predictive ability was 0.26 on average, and it performed 

equal to or slightly better than the two combining methods (GTBLUP and PTBLUP) whose 

observed predictive abilities were 0.235 and 0.246, respectively.  
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In both the HIP and PFC groups, the predictive abilities of TBLUP, GTBLUP and PTBLUP on the four 

muscle weight traits (TGW, EDLW, GW, SW) were remarkably higher than the predictive abilities 

of BLUP and GBLUP. For the two behavioral trait (SCD8, D2C) in HIP group and one behavioral trait 

(D1C) in PFC group, the predictive abilities of TBLUP, GTBLUP and PTBLUP were also higher than 

BLUP and GBLUP, while for the remaining behavioral traits (D1C, D3C) in HIP group, and SCD8, D2C, 

D3C in PFC group, the predictive abilities of all models remained low. In the STR group, the 

predictive abilities of TBLUP, GTBLUP and PTBLUP were distinctly higher than the predictive 

abilities of BLUP and GBLUP just for two muscle weight traits (EDLW, GW).  

For the four behavioral traits (SCD8, D1C, D2C, D3C) with low heritabilities from 0.1 to 0.25, the 

five models in the three groups overall provided very low predictive abilities (< 0.1). For the four 

muscle weight traits (TGW, EDLW, GW, SW) with low to medium heritabilities from 0.2 to 0.43, the 

predictive abilities of the models (TBLUP, GTBLUP, PTBLUP) with transcriptome data on average 

were distinctly higher (0.42) than the predictive abilities of the models (BLUP, GBLUP) without 

transcriptome data (-0.05). The SNP-based heritabilities, the proportion of phenotypic variance 

explained by the additive effects of 523,028 SNPs for 8 traits had been estimated previously using 

the restricted maximum likelihood algorithm in GEMMA as described in Gonzales et al. (2018), 

and are shown in table 1. The heritabilities of 8 traits were highly correlated with the predictive 

abilities of TBLUP on average across 8 traits and 3 groups with a correlation coefficient of 0.71, 

while the heritabilities were not resp. unfavorably correlated with the predictive abilities of BLUP 

or GBLUP on average across 8 traits and 3 groups with correlation coefficient of -0.25 or -0.08, 

respectively (Fig. 3). To study whether the number of genes has impact on transcriptome-based 

prediction, we randomly chose 1000, 50000 and 10000 genes for prediction with TBLUP. The 

differences among predictive abilities using different numbers of genes were negligible (results 

not shown).   
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Figure 3. The correlation between heritabilities of 8 traits and the average predictive abilities 

across 8 traits and 3 groups in BLUP, GBLUP and TBLUP. r denotes the Pearson correlation 

coefficient. The red, grey and yellow lines denote three standardized major axis regression lines. 

The dotted lines represent the heritabilities of 8 traits.  

Discussion  

In this study, we tested gene expression data quantified from three brain tissues in a mouse 

outbred population for phenotype prediction. The utility of gene expression data for phenotype 

prediction has also been evaluated in several other species (Acharjee et al., 2016; Guo et al., 2016; 

Tissier et al., 2018). For prediction of complex traits in Drosophila melanogaster, the predictive 

abilities of transcriptome-based method TBLUP and reproducing kernel Hilbert space regression 

were significantly lower than GBLUP both in females and males for all traits with high heritability 

(Li et al., 2019). For this result, the explanation was suggested that gene expression was not 

measured at one time point and in one specific tissue functionally linked to the trait of interest. It 

has been demonstrated that gene expression extensively varies among tissues in teleost fish, 

soybean, mice and humans (Maguire et al., 2002; Oleksiak et al., 2002; Hsieh et al., 2003; Yang et 

al., 2006; GTEx Consortium, 2015). The low predictive abilities was also found in maize where 

transcriptome-based prediction did not outperform models that used genotype data for flowering 
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time, height and grain yield (Azodi et al., 2019), and grain dry matter content (Schrag et al., 2018).  

In contrast to the studies in Drosophila melanogaster that used transcript abundance quantified 

from entire flies (Li et al., 2019), or in maize that utilized transcriptome data from whole-seedling 

tissues (Schrag et al., 2018; Azodi et al., 2019), our primary interest was assessing the effectiveness 

of gene expression data quantified from specific tissues for phenotype prediction of complex traits 

with medium to low heritability. For the four muscle weight traits, prediction based on tissue-

specific transcriptome data performed remarkably better than pedigree-based prediction and 

SNP-based prediction. A similar study revealed that when using transcriptome data specifically 

sampled from flag leaves for rice yield prediction, the predictive ability was distinctly higher than 

SNP-based prediction for yield per plant and grain number per panicle (Hu et al., 2019). In addition, 

improved predictive abilities were also observed when using gene expression data specifically 

quantified from immature seeds compared to SNP-based prediction in a maize study for 

predictions of days to silking, kernel width and ear diameter (Guo et al., 2016). These studies 

demonstrated that using tissue-specific gene expression data is effective to improve predictive 

abilities of transcriptome-based phenotype prediction.  

However, for the four behavioral traits, transcriptome data did not generally improve prediction 

relative to pedigree and SNPs based approaches. Analogously, for tiller number per plant and 

1000-gain weight in rice (Hu et al., 2019) , and cob weight and plant height in maize (Guo et al., 

2016), the transcriptome data-based prediction performed also worse than SNP-based prediction, 

even though tissue-specific gene expression data were used. This may indicate that the predictive 

abilities based on tissue-specific transcriptome data depend on the genomic architecture of traits. 

In our study, the predictive abilities of BLUP and GBLUP were extremely low for all traits in the 

mouse populations. Such low predictive abilities were not surprising, since all traits we analyzed 

had relatively low heritabilities and extremely small training set sizes. Similar results were also 

observed in studies for weight and growth slope with low heritabilities with about 1900 mice 

across families, while for within-family prediction, the predictive abilities was considerably 

improved compared to across-family prediction (Legarra et al., 2008; Neves et al., 2012), 

confirming that predictive abilities are highly dependent on relatedness among individuals.  
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Some studies indicated that combining transcriptome data with SNP data or pedigree information 

could improve predictive abilities for several yield and quality-related traits in silage maize 

(Westhues et al., 2017; Schrag et al., 2018). However, our results have shown that combining gene 

expression data with pedigree data or SNPs did not improve predictions, and in some cases even 

decreased predictive abilities. It was also observed in studies of maize and Drosophila 

melanogaster that a combined prediction of transcriptome data and SNP data had similar or 

slightly lower predictive ability than the superior single type of data (Li et al., 2019). This indicates 

that combining different sources of data will not always bring improvement of predictive abilities.  

When we randomly chose different numbers of genes for prediction with TBLUP, the difference 

among predictive abilities was negligible. This is in accordance with a maize hybrid prediction 

study using 1000 and 10000 randomly chosen mRNAs (Zenke-Philippi et al., 2016), where only 

minor differences were observed in predictive abilities. This indicates that high numbers of genes 

are not necessarily required for transcriptome-based prediction, and that transcription profiling 

with limited resources might result in prediction accuracies that can be successfully used for 

indirect selection (Zenke-Philippi et al., 2016).  

In this study, modeling transcriptome data with linear models was shown to have the potential to 

improve trait prediction. The reasons for this improvement could be that transcriptome data 

might be “closer” to the phenotype, and harbor more information than genotypes, e.g. multiple 

interactions between different genes and between genes and environmental factors. The 

heritable part of genome-wide gene expression variation was first assessed in a cross population 

of Saccharomyces cerevisiae (Brem et al., 2002), indicating a substantial genetic component in 

transcriptional variation in yeast (Skelly et al., 2009). Furthermore, it has been proven that non-

additivity is common in D. melanogaster (Huang et al., 2012), A. thaliana and maize (Vuylsteke et 

al., 2005), and that its extreme forms, overdominance and underdominance, are common (Gibson 

et al., 2004). The expression level of genes may be a complicated non-linear function of genetic 

effects and environmental effects, but this complicated function could be linearly captured by the 

transcript abundances.  



3rd CHAPTER            Utilizing tissue-specific gene expression data for phenotype prediction in mice  65 

 

 

 

Gene expression can be greatly affected by the tissue sampled and time of measurement. 

Thousands of genes are differentially expressed between tissues or show tissue preferential 

expression (Melé et al., 2015). In addition, some gene expression products have “housekeeping” 

functions, and are therefore expressed in all cells, while other genes are expressed in a tissue-

specific manner (Fagerberg et al., 2014). It has been found that variation in gene expression is 

even far greater among tissues (47% of total variance in gene expression) than among individuals 

(4% of total variance) (Melé et al., 2015). Hence, it is important to use gene expression data from 

specific tissues for phenotype prediction. In this study, we demonstrated that the predictive 

abilities of tissue-specific transcriptome data-based prediction were remarkably higher than the 

pedigree-based and SNP-based prediction for certain traits. However, since the gene expression 

data from three brain tissues were quantified from three different subsets of the mouse 

population, we could not compare the predictive abilities among predictions with transcriptome 

data from different tissues. More studies with larger sample size and with different types of tissue-

specific gene expression data need to be performed to further explore the potential benefits. 
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Abstract 

Pan-genomic open reading frames potentially carry genome-wide protein-coding genes or coding 

variant information in a population. In this study, we used 1,011 S. cerevisiae isolates with 

1,625,809 SNPs, 7,796 pan-genomic ORFs, and the copy numbers of ORFs in genomic prediction 

and estimation of heritability for 35 traits. Our results show that compared to SNP-based genomic 

prediction, pan-genomic ORF-based genomic prediction (OBLUP) was distinctly more accurate for 

all traits, and the prediction was improved by 132% on average across all traits. When using 

different numbers of isolates in training sets in ORF-based prediction, the predictive abilities for 

all traits increased as more isolates were added in the training sets. In addition, the ORF-based 

heritability can capture more genetic effects than SNP-based heritability for all traits. Using copy 

numbers of pan-genomic ORF information to estimate heritability accounts for more “missing 

heritability” compared to ORF-based heritability in all 32 traits. For four traits (YP sorbitol 2%, YPD 

sodium metaarsenite 2.5 mM, YPD LiCl 250mM, YPD CuSO4 10 mM), using the copy numbers of 

pan-genomic ORFs-based prediction was more accurate than pan-genomic ORF-based prediction. 

When combining pan-genomic ORFs or the copy numbers of pan-genomic ORFs with common 

SNPs in prediction models, no increase in phenotypic variance explained was observed. When 

using exclusively pan-genomic ORF data, OBLUP had similar predictive abilities as ORF-based 

Bayes A and Bayes B prediction for all traits. However, when only using copy numbers of pan-

genomic ORFs, Bayes B performed slightly better than a linear model accounting for copy numbers 

and Bayes A for 22 of the traits. We demonstrate that pan-genomic ORFs have the potential to be 

a substitution of single nucleotide polymorphisms in estimation of heritability and genomic 

prediction under certain conditions. 

Introduction 

Genome-wide single nucleotide polymorphisms (SNPs) were first proposed in 2001 to be used for 

predicting genetic values (Meuwissen et al., 2001). Implementation in practice became pervasive 

due to the large amount of single nucleotide polymorphisms (SNP) that became available in recent 

years (Goddard and Hayes, 2007). By utilizing genome-wide SNP data, ’genomic selection’ based 

on genomically predicted breeding values has triggered a revolution of estimating genetic value 
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in animal and plant breeding. It improved the breeding progress by reducing generation intervals 

or increasing predictive ability of breeding values (Schaeffer, 2006; Goddard et al., 2010; Crossa 

et al., 2017). In human genetics, genomic prediction aimed at accurately quantifying disease risk 

so that preventative measures can be taken earlier (Abraham and Inouye, 2015). However, SNP 

markers are normally not causal variants, but in genomic prediction the causal variant effects are 

estimated indirectly by modeling SNP makers that are in linkage disequilibrium (LD) with them 

(Goddard and Hayes, 2007). The prediction accuracy highly depends on the level of LD between 

SNP markers and causal variants, and the level of LD depends on the relatedness of the individuals 

used (Wray et al., 2013a). For prediction of distantly related individuals, even if high density SNP 

or whole-genomic SNP markers were used, the prediction accuracy still can be very low (de los 

Campos et al., 2013). Likewise, genome-wide SNP data are also used for estimation or dissection 

of genetic parameters, such as SNP-based heritability (Evans et al., 2018). Several factors 

inevitably caused the ’still missing heritability’ problem when using common SNPs with minor 

allele frequency (MAF) ≥ 0.01 to estimate narrow sense heritability (Wray et al., 2013b). e.g. the 

causal variants are not in complete LD with the SNPs that have been genotyped, or rare variants 

of large effect are not tagged by common SNPs on genotyping arrays (Yang et al., 2010; Yang et 

al., 2017). 

Pan-genomic open reading frames potentially hold whole-genome protein-coding genes or coding 

variant information. The ‘pan-genome’ denotes the set of all genes or open reading frames (ORFs) 

present in the genomes of a group of organisms, usually a species (Lapierre and Gogarten, 2009; 

Vernikos et al., 2015). The concept has been applied to bacterial (Tettelin et al., 2005), viral (Aherfi 

et al., 2013), plant (Cao et al., 2011; Li et al., 2014; Zhao et al., 2018) , fungal (Dunn et al., 2012), 

and human genome studies (Sherman et al., 2019). Series of pan-genomic studies were performed 

when studying genomic dynamics (Donati et al., 2010), pathogenesis and drug resistance (D'Auria 

et al., 2010; Hu et al., 2011), bacterial toxins (Fang et al., 2011), and species evolution 

(Konstantinidis et al., 2006). An open reading frame (ORF) is defined as a sequence that has a 

length divisible by three and is bounded by stop codons (Sieber et al., 2018). It is a sequence 

region that is ‘open’ for translation, and an indicator for a potential protein-coding gene (Sieber 

et al., 2018). The detection of ORFs is of central importance in finding protein-coding genes in 
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genomic sequences. 

The budding yeast Saccharomyces cerevisiae is a model organism which is not only a premier 

model for eukaryotic cell biology, but also the pioneer organism for the establishment of the new 

fields “functional genomics” and “systems biology” (Botstein and Fink, 2011). It has previously 

been shown to be a good tool for exploring the genotype–phenotype relationship via linkage 

mapping (Fay, 2013), and the study of “missing heritability” (Bloom et al., 2013). Importantly, S. 

cerevisiae is an informative predictor of human gene function: nearly 50% of human genes 

implicated in heritable diseases have a yeast homologue (Kumar and Snyder, 2001), which makes 

S. cerevisiae a suitable model species for studies of accurate prediction of human disease 

(Märtens et al., 2016). It further has a compact genome: ~70% of its total (non-ribosomal) DNA 

sequence is protein-coding, and the yeast genome is reported to encode ~6,200 genes (Goffeau 

et al., 1996).  

Structural variants (SVs) such as presence/absence variants (PAVs) and copy number variants 

(CNVs) have been proven to substantially influence genetic variation and phenotypic diversity 

(Marroni et al., 2014). In this study, we used S. cerevisiae pan-genomic open reading frames which 

represent 7,796 non-redundant ORFs in genomic prediction, accounting either for the 

presence/absence of a specific ORF or its copy number (CNO). With this we exploited a new source 

of genome-wide variability for genomic prediction and estimation of heritability, and 

demonstrated (1) genomic prediction using ORF data and CNO data performed substantially 

better than that using genome-wide SNP data, and (2) the estimation of heritability based on pan-

genomic ORF data and CNO data can capture parts of the “missing heritability” that appears when 

using SNP data. 

Data and Methods 

Whole-Genome SNP data 

We used 1,011 S. cerevisiae isolates that maximized the breadth of their ecological and 

geographical origins comprised in the 1002 Yeast Genome project. In these distantly related 

isolates, 918 of the isolates had been deep sequenced (Peter et al., 2018), and the other 93 
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isolates that had previously been sequenced (Skelly et al., 2013; Bergström et al., 2014; Strope et 

al., 2015). A total of 1,625,809 high-quality SNPs was reported across the 1,011 genomes. Most 

of these SNPs were present at very low frequency, with 31.3% of the polymorphic positions being 

singletons and 93% with a minor allele frequency (MAF) < 0.1. We chose a subset of 787 diploid 

S. cerevisiae isolates for which SNP, ORF, copy number of ORF and phenotypes were available for 

all analyses. The SNPs with missing rate > 0.05, MAF < 0.01, and Hardy–Weinberg Equilibrium 

violations (based on a Chi-squared test, p < 10-6) were removed. The remaining missing genotypes 

were imputed using Beagle 4.1 (Browning and Browning, 2013). In total, 311’447 SNPs were used 

in the analysis. The distribution of minor allele frequency of all common SNPs in 787 diploid S. 

cerevisiae isolates is shown in Supplementary Figure 1. 

Pan-genomic open reading frame data the S. cerevisiae pangenome had been determined by the 

1,011 genomes using de novo genome assemblies and detection of non-reference genome 

material, and represented by 7,796 non-redundant ORFs. Among them, 4,940 were core ORFs, 

containing ORFs present in all isolates and 2,856 ORFs had a presence/absence variability within 

the population, containing ORFs that were dispensable or isolate-specific genes. For annotating 

ORFs in non-reference materials, an integrative yeast gene annotation pipeline had been set up 

previously by combining different existing annotation approaches, which gave rise to an evidence-

leveraged protein-coding gene annotation (Yue et al., 2017). Three individual components: RATT 

package (Otto et al., 2011), yeast genome annotation pipeline(YGAP) (Proux-Wéra et al., 2012), 

and Maker pipeline(v2.31.8) (Holt and Yandell, 2011) were independently run for gene annotation, 

and their results were subsequently integrated using EVidenceModeler(EVM) (Haas et al., 2008). 

Proteomes of the Saccharomyces species (S. cerevisiae, S. paradoxus, S. mikatae, S. kudriavzevii, 

S. arboricolus, S. uvarum and S. eubayanus) were retrieved and used in the annotation pipeline to 

provide protein alignment support for annotated gene models. For details of the de novo genome 

assemblies, detection of non-reference genome material, and annotation of ORFs see (Peter et al., 

2018). The frequency distribution of pan-genomic open reading frames in 787 diploid S. cerevisiae 

isolates is shown in Supplementary Figure 1. 

The copy number of each ORF of the pangenome (include copy numbers of core ORFs) was 

assessed by mapping the reads from each strain to the pan-genomic ORFs with BWA (Li and Durbin, 
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2009), using default parameters. The median coverage for each ORF was taken as coverage for the 

ORF in the specific isolate. The ratio between the values of individual ORFs and the values of 

genome coverage on the reference of the isolate was considered as the copy number for the 

haploid genome. After removing ORFs with missing value, 7708 ORFs and the copy numbers for 

7708 ORFs were left and used in the analysis. For more information about copy number variation 

distribution across isolates and ORFs see (Peter et al., 2018). 

Phenotype data 

Quantitative high-throughput phenotyping had been performed using end-point colony growth 

on solid medium (Peter et al., 2018). In parallel, 971 strains were phenotyped in different 

conditions that affect various physiological and cellular responses. Strains were pregrown in flat-

bottom 96-well microplates containing liquid yeast extract peptone dextrose (YPD) medium. Each 

phenotype value was normalized using the growth ratio between 35 stress conditions and 

standard YPD medium at 30°C. Pairwise Pearson’s correlations of fitness trait values between 

replicates were calculated for each condition. In total, 35 fitness traits were used in the present 

study. The overall statistical description of the 35 traits is shown in Supplementary Table 1, and 

the correlation matrix of the 35 traits is shown in Supplementary Figure 2. 

Statistical models 

GBLUP: As a baseline, we conduct the benchmark GBLUP (VanRaden, 2008), using all 311’447 

common SNPs (MAF ≥ 0.01) of 787 diploid S. cerevisiae isolates. The statistical model for GBLUP 

is 

, 

where  is the vector of phenotypic observations,  is the overall mean and  is a vector of 

ones, and   and   are vectors containing random additive genetic 

effects and residual effects. The genomic relationship matrix  was calculated as , 

where  denotes the minor allele frequency (MAF) of marker . Moreover,  denotes the MAF 
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adjusted marker matrix with entries  ,   and   for genotypes 0, 1 

and 2, respectively, where the coding refers to the number of reference alleles observed in the 

genotype. 

OBLUP: The model for OBLUP is 

, 

where  and  are vectors containing random additive genetic effects 

modeled by pan-genomic ORFs and residual effects, respectively. The ORF-based covariance 

matrix   was calculated as  , where  denotes the frequency of ORF  , and  

denotes the ORF matrix with entries   and   that represented absence and 

presence of ORFs, respectively. All other variables are defined as in the GBLUP model. 

CBLUP: The model for CBLUP is 

, 

where  and  are vectors containing random additive genetic effects 

modeled by copy numbers of pan-genomic ORFs and residual effects, respectively. The covariance 

matrix based on the copy numbers of pan-genomic ORFs  was calculated as , where  

denotes the copy numbers of ORFs matrix with entries where 0 ≤  ≤ 296 represents 

the copy number of the th ORF in th isolate, and denotes the mean of copy numbers of ORF 

  in all isolates.   is a scalar which denotes the median of the diagonal of  . All other 

variables are defined as in the GBLUP model. 

GOBLUP and GCBLUP: The linear model for GOBLUP is 

, 

and the linear model for GCBLUP is 

, 
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where all variables are defined as described above. 

ORF or CNO-based Bayes A and Bayes B: The model of ORF or CNO -based Bayes A is 

 , 

where  is a m x 1 vector of normally distributed and independent ORF or CNO effects. The 

variance of the  th ORF effect,   , is modeled as a scaled inverted chi-square distribution 

 , where S = 0.002, and v = 5. are defined as described above. Gibbs-sampling 

chains for 50,000 iterations were run, and the first 45,000 burn-in iterations were discarded. The 

model of ORF or CNO-based Bayes B is the same as with ORF-based Bayes A, but the prior 

distribution of the variance of ORF effect is a mixture of distributions which is given by 

 

ORF or ORF-based Bayes A and Bayes B were implemented in an R package ‘BGLR’ (Pérez and de 

Los Campos, 2014). 

Estimation of heritability 

The SNP-based heritability was defined as the proportion of phenotypic variance explained by SNP 

marker effects and calculated as  . All common SNPs (defined here as those with MAF 

≥ 0.01) were used for the estimation (Yang et al., 2017). 

The ORF-based heritability was defined as the proportion of phenotypic variance explained by 

ORF effects. It was calculated as  . All variable ORFs without missing values were used 

for the estimation. The copy number of ORF (CNO)-based heritability was defined as the 

proportion of phenotypic variance explained by the copy number of ORF effects. It was calculated 

as  . The copy numbers of 7,708 pan-genomic ORFs without missing values were used 

for the estimation. The ORF-SNP-based heritability was defined as the proportion of phenotypic 

variance explained by ORF and SNP effects. It was calculated as  . All common 
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SNPs and variable ORFs without missing values were used for the estimation. The CNO-SNP-based 

heritability was defined as the proportion of phenotypic variance explained by CNO and SNP 

effects. It was calculated as  . All common SNPs and copy numbers of 7708 pan-

genomic ORFs without missing values were used for the estimation. The variance components 

, ,  ,   from models above were estimated from the entire data sets, using the R 

package “regress” (Clifford and McCullagh, 2014), which also provided predictions of random 

effects. 

Comparison of predictive abilities 

The predictive abilities of these models were measured with 20 replicates of a 5-fold cross-

validation (Erbe et al., 2013). We defined predictive abilities as the Pearson’s correlation 

coefficients between predicted genetic values and observed phenotypes in the test sets. The 

mean of the predictive abilities across 100 estimates was the final predictive ability of each model. 

Principal component analysis 

Principal components analysis (PCA) of all common SNPs, pan-genomic open reading frames, and 

copy number of pan-genomic open reading frames on 787 diploid S. cerevisiae isolates was 

performed using R package ‘factoextra’. 

Genomic and genetic distances 

Three neighbor-joining trees were constructed with the R package ‘ape’ using all common SNPs, 

pan-genomic open reading frames, and copy number of pan-genomic open reading frames, 

respectively (Paradis and Schliep, 2018). Isolate dissimilarities were estimated via “Euclidean 

distance” for each pair of isolates with the dist.gene function. 

Linkage disequilibrium 
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The extent of linkage disequilibrium was measured for two subsets of total SNPs: (1) MAF ≥ 0.01, 

(2) MAF ≥ 0.05, which contained 311’447 SNPs and 102’253 SNPs, respectively. The software PLINK 

1.9 was used to calculate r2 as a standard measure of association for linkage disequilibrium 

between syntenic pairwise SNPs (Purcell et al., 2007). The average r2 between all pairwise SNPs 

on each chromosome represented the extent of linkage disequilibrium on the three subsets of 

total SNPs. 

Data availability 

ALL data used in this study are available in the 1002 Yeast Genome website 

http://1002genomes.u-strasbg.fr/files/. 

Results 

Population structure based on different genetic variants 

Three types of datasets: all common SNPs, pan-genomic open reading frames, and copy numbers 

of pan-genomic open reading frames were used for principal components analysis (PCA) on the 

787 diploid S. cerevisiae isolates. Based on the first four principal components, each type of 

dataset showed a diverse genetic structure of the S. cerevisiae isolates (Supplementary Figure 3). 

Compared to the PCA with SNPs where most isolates scattered into a shape of triangle, most 

isolates in PCA with ORFs and CNOs gathered, but isolates in PCA with CNOs were more scattered 

than isolates in PCA with ORFs. The first principal component (PC1) in the PCA with SNPs caught 

41.7% of the total variance which was much more than PC1 in PCA with ORFs (18.8%) and PCA 

with CNOs (7.04%). Likewise, three neighbor-joining trees based on the three types of data were 

shown in Supplementary Figure 4. The ORF-based and CNO-based neighbor-joining trees had 

similar shapes in which the genetic distances among most isolates were close, and only a few 

isolates were far away from the other isolates in terms of genetic distance. The ‘outlier’ isolates 

in ORF-based and CNO-based neighbor-joining trees partly overlapped. For the SNP-based 

neighbor-joining tree, the genetic distances among most isolates were relatively large, and the 

isolates clustered into groups that were clearly separated from each other. The heat maps of 

http://1002genomes.u-strasbg.fr/files/
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genetic covariance matrixes: , ,  constructed using three types of datasets are shown in 

Supplementary Figure 5, where the yeast strains were in the same order on the basis of their 

geographical origins in the three matrices. The red color blocks, indicating high covariance, in the 

SNP-based genetic covariance matrix were in different positions compared with the red color 

blocks in the other two genetic covariance matrixes. The red color blocks in the ORF-based and 

CNO-based genetic covariance matrixes shared similar positions along the diagonal region, but 

compared to the ORF-based genetic covariance matrix, the CNO-based genetic covariance matrix 

has more red color blocks indicating high similarity in the off-diagonal regions. 

Estimation of heritability 

Narrow sense heritability was estimated using three datasets with three models: all common SNPs 

(GBLUP), pan-genomic open reading frames (OBLUP), or copy numbers of pan-genomic open 

reading frames (CBLUP). The SNP-based heritability ( ) was the lowest on average across all traits 

(0.281 ± 0.005), ranging from 0.004 ± 0.002 to 0.67 ± 0.003 (Supplementary table 1). The ORF-

based heritability ( ) on average across all traits was 0.847 ± 0.002, ranging from 0.766 ± 0.004 

to 0.919 ± 0.001, and notably captured more phenotypic variance attributable to the additive 

genetic variation than the SNP-based heritability in all traits. The CNO-based heritability ( ) was 

the highest on average across all traits (0.935 ± 0.002), ranging from 0.445 ± 0.021 to 0.996 ± 0 

(Figure 1).  
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Figure 1. Heritability estimates for all 35 traits estimated based on all common SNPs, pan-genomic 

open reading frames, and the copy numbers of pan-genomic open reading frames, respectively. 

Each error bar indicates the standard error of the estimate. 

When using copy numbers of pan-genomic ORF information to estimate narrow sense heritability, 

the  captured more “missing heritability” compared with  in 32 traits, and only for three 

traits (YPD formamide 5%, YPD formamide 4%, YPD DMSO 6%)  was lower than . Among 

the 32 traits, there were 20 traits for which  exceeded 0.98. We combined all common SNPs 

with pan-genomic ORFs to estimate the SNP-ORF-based heritability (  ) using GOBLUP, and 

combined all common SNPs with pan-genomic CNOs to estimate the SNP-CNO-based heritability 

( ) using GCBLUP. The  and  were consistent with  and  for all traits, and no 

more additive genetic variance explained by SNPs was captured (Supplementary table 2). 
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Assessment of predictive abilities 

The predictive abilities of the 35 traits obtained with the 3 models: GBLUP, OBLUP, CBLUP are 

shown in Figure 2 and Supplementary Table 3.  

 

Figure 2. Predictive abilities of three models across 35 traits: GBLUP0.01 using all common SNPs, 

OBLUP using pan-genomic open reading frames, and CBLUP using copy numbers of pan-genomic 

open reading frames. 

GBLUP as the reference method provided predictive abilities ranging from 0.002 ± 0.007 to 0.482 

± 0.009 across the studied traits. For GBLUP, the SNP-based heritability and genomic predictive 

ability were highly positively correlated with r= 0.935 (Figure 3).  
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Figure 3. Panel a depicts the correlation between predictive abilities of GBLUP and SNP-based 

heritabilities across all traits; b depicts the correlation between predictive abilities of GBLUP and 

predictive abilities of CBLUP across all traits; c depicts the correlation between predictive abilities 

of GBLUP and predictive abilities of OBLUP across all traits; d depicts the correlation between CNO-

based heritabilities and ORF-based heritabilities across all traits; e depicts the correlation between 

predictive abilities of OBLUP and ORF-based heritabilities across all traits; f depicts the correlation 

between predictive abilities of CBLUP and predictive abilities of OBLUP across all traits; g depicts 

the correlation between SNP-based heritabilities and ORF-based heritabilities across all traits; h 

depicts the correlation between SNP-based heritabilities and CNO-based heritabilities across all 

traits; i depicts the correlation between predictive abilities of CBLUP and CNO-based heritabilities 

across all traits . r depicts the Pearson correlation coefficients. The dots in the 9 panels depict the 

35 traits. 

 

Compared to GBLUP, pan-genomic ORF-based prediction (OBLUP) was more accurate for all traits: 

observed predictive abilities ranged from 0.284 ± 0.006 to 0.706 ± 0.004. The correlation 

coefficient between SNP-based predictive abilities and ORF-based predictive abilities was 0.787, 
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and the correlation coefficient between the ORF-based heritability and ORF-based predictive 

ability was 0.765. When using different numbers of isolates in training sets in ORF-based 

prediction, the predictive abilities of all traits increased as the number of isolates in the training 

set increased(Figure 4), showing that increasing the training set size could more accurately 

estimate ORF effects. The curves in Figure 4 corresponding to a function,  (Erbe 

et al., 2013), of the heritability ( ), the number of isolates ( ) and the number of independent 

chromosome segments (  ) was used to fit the predicted points by least squares, where r 

represents the predictive ability in this study. The two parameters  and  across 35 traits 

were determined with a maximum likelihood approach which was done using the function “optim” 

in R (Team, 2013). 
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Figure 4. The predictive abilities of ORF-based genomic prediction for 35 traits using different 

number of isolates in training sets. The solid curves are fitted lines that correspond to the function, 

 (Erbe et al., 2013), where r represents the predictive ability in this study. 

 

The predictive ability of copy numbers of pan-genomic ORF-based prediction (CBLUP) was 0.13 ± 

0.008 to 0.72 ± 0.004, which was significantly higher than the predictive ability of GBLUP. For four 

traits (YP sorbitol 2%, YPD sodium metaarsenite 2.5 mM, YPD LiCl 250mM, YPD CuSO4 10 mM), 

CBLUP was more accurate than OBLUP, while for the remaining 31 traits, CBLUP was slightly less 

accurate than OBLUP. The reason could be that some of CNOs were not simple repeats of causal 

variants, and these CNOs added noise in the prediction. The correlation coefficient between the 

CNO-based heritability and CNO-based predictive ability was 0.633. When we combined two 

subsets of total SNP data (MAF ≥ 0.01 and MAF ≥ 0.05) which contained 311’447 SNPs and 102’253 

SNPs, respectively, to pan-genomic ORFs with GOBLUP, the predictive abilities remained the same 

with OBLUP only using pan-genomic ORFs data. The average r2 between all pairwise SNPs on each 

chromosome for the two subsets of all SNPs (MAF ≥ 0.01, MAF ≥ 0.05) were 0.034 and 0.119, 

respectively. For the second combined method GCBLUP, the predictive abilities remained the 

same as with CBLUP for all traits (Supplementary Figure 6, 7 and Supplementary Table 3), 

suggesting that ORF data or CNO data covered all causal variant information which SNP data 

carried. When using exclusively pan-genomic ORF data, OBLUP had similar predictive abilities with 

ORF-based Bayes A and Bayes B for all traits (Supplementary Figure 8). However, when only using 

copy numbers of pan-genomic ORFs, Bayes B performed slightly better than CBLUP and Bayes A 

for 22 traits, which indicated that some of the copy numbers of ORF information had no genetic 

effect (Supplementary Figure 9). 

Discussion 

Capture of “still missing heritability” 

‘Missing heritability’ has been a critical problem in quantitative genetics: causal variants 
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discovered using genome-wide association studies (GWAS)  only explain a small 

proportion of the phenotypic variation of human height  (Maher, 2008). When using 

all common SNPs simultaneously in a linear model, 45% of phenotypic variance of human 

height can be explained, which demonstrated that SNP data without any pre-filtering for 

significance in GWAS could capture a larger part, but still not all of the missing heritability (Yang 

et al., 2010). However, the estimation of SNP-based heritability depended on the extend of LD 

between SNP markers and causal variants. If SNPs were in low LD with causal variants, which might 

occur if common SNPs are used but causal variants have low MAF, genomic variants cannot be 

well tagged by SNPs. Thus, a part of the heritability could still be missing, which was termed “still 

missing heritability” (Wray et al., 2013b).  

Our results show that the ORF-based heritability ( ) was able to capture a major part of the “still 

missing heritability” for all traits. On average across all traits 84.7% of phenotypic variance was 

explained by ORF-based additive genetic effects, while only 25.4% of phenotypic variance can be 

explained by SNP-based additive genetic effects. This indicates that pan-genomic open reading 

frames hold more causal variant information than common SNPs in the population, and pan-

genomic ORFs encompass most of the repertoire of genes or coding variants accessible to the 

yeast population. On the other hand, it also provides evidence that most of the genetic variation 

of complex traits is additive in nature. In other words, additive genetic variance accounts for most 

of total genetic variance, and this genetic variation can be captured by a linear model (Hill et al., 

2008). Furthermore, the CNO-based heritability ( ) was higher than  for 32 of the 35 traits, 

which indicates that copy number variation of pan-genomic ORFs can further explain more of the 

missing variance of additive genetic effects. The reason could be that part of copy numbers of 

ORFs reflect a variable number of repeats of some complete genes. An example of a complete 

gene repeat was that the copy number of human alpha-amylase 1 gene (AMY1), which is directly 

associated with the amount of salivary amylase (Walker, 2007), significantly varied between 

different populations with different diets. Another example is the correlation between the copy 

number of the chemokine gene CCL3L1 and susceptibility to HIV/AIDS. There are significant 

interindividual and interpopulation differences in the copy number of a segmental duplication 

encompassing the gene encoding CCL3L1 (MIP-1αP) (Gonzalez et al., 2005). In addition, the  

https://en.wikipedia.org/wiki/Alpha-amylase
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exceeded 0.99 for 19 of the 35 traits, which showed copy numbers of pan-genomic ORFs harbored 

almost all causal variant information in the yeast population for these traits. However, there were 

three traits (YPD formamide 5%, YPD formamide 4%, YPD DMSO 6%) for which   was 

substantially lower than . It showed the causal variants of these three traits were not repeated 

by copy numbers, and using copy number of ORF data presumably added noise in the estimation 

of genetic variance. 

Improvement of predictive ability 

Precision of SNP-based genomic prediction depends on two factors: SNP-based heritability and 

the accuracy with which the SNP marker effects are estimated (Goddard et al., 2009). The SNP-

based heritability provides the upper bound of predictive ability for SNP-based genomic prediction, 

this upper bound can be reached when big sample sizes are used for model training (Kim et al., 

2017). However, the biggest inherent limitation of SNP-based genomic prediction is the extend of 

LD between SNP markers and causal variants. When causal variants are in low LD with SNPs, 

additive genetic effects will be underestimated (Yang et al., 2010; Speed et al., 2012), and the SNP-

based heritability can be much lower than narrow-sense heritability which is the ultimate upper 

bound of predictive ability when genetic variance explained by all additive effects are captured. 

Since there is no perfect LD between causal variants and SNPs, e.g. when rare variants are not 

captured by common SNPs (Wray et al., 2013b), the ultimate upper bound (narrow-sense 

heritability) can never be reached when only using SNPs in genomic prediction. Due to this 

limitation, genomic prediction suffers from diminishing improvements when trying to increase 

prediction accuracy by increasing the training set. It is necessary to explore new sources of 

predictors to overcome the imperfection. Recently, multi-omics data (transcriptome, metabolome, 

proteome etc.) appeared to be possible complements to SNP markers in genomic prediction (Guo 

et al., 2016; González-Reymúndez et al., 2017; Li et al., 2019). However, these types of data also 

have inherent limitations for prediction of genetic value, since they are not causal variants but 

intermediate products between causal variants and phenotypes (Rockman and Kruglyak, 2006). 

During the transfer process of genetic information from DNA to phenotype, multi-omics data will 

be inevitably affected by environmental effects , or the interaction effects between genes and 
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environments (Gibson et al., 2004).  

The ‘pan-genome’ denotes the set of all genes or ORFs present in the genomes of a group of 

organisms (Tettelin et al., 2005; Bentley, 2009). It provides an opportunity to accommodate the 

phenotypic variation caused by the potential protein-coding sequences in a population. We 

hypothesize that pan-genomic ORFs can be viewed as a representation of a pan-genomic gene set, 

and directly using this pan-genomic structure variation (presence/absence) set at gene level in 

genomic prediction can capture more genetic variance than SNP-based prediction. Furthermore, 

pan-genomic ORFs can also be viewed as a representation of a coding variant set. Causal variants 

are either coding or regulatory (Georges et al., 2018). Coding variants falling within a coding region, 

especially non-synonymous variants, may change amino acid sequences, and then lead to 

phenotype variations (Marouli et al., 2017). In our results, compared to SNP-based genomic 

prediction, pan-genomic ORF-based genomic prediction was substantially more accurate for all 

traits, and the predictive abilities were improved by 132% on average across all traits, which 

manifested the distinct advantage of making use of pan-genomic ORF data in genomic prediction. 

However, it should be noted that the pan-genomic ORFs excluded most of non-coding causal 

variants which are regulatory variants located in non-coding regions. It has been proven that the 

majority of disease and trait associated variants emerging from genome-wide association analysis 

studies (GWAS) in humans lie within noncoding sequence that are not in linkage disequilibrium 

with coding exons (Maurano et al., 2012). Such noncoding variants have substantial effects in gene 

expression (Albert and Kruglyak, 2015), and may further influence phenotypes (Yan et al., 2002; 

Kleinjan and van Heyningen, 2005) Nevertheless, when we combined pan-genomic ORFs with 

common SNPs in the model, no more phenotypic variance explained by SNPs was captured, which 

suggests the noncoding variants have limited impact on the variation of phenotypes in the yeast 

population, or are not in sufficient LD with the used SNP set. 

A recent study (Sherman et al., 2019), showed that the African pan-genome encompasses ~10% 

more DNA than the current human reference genome, but this study did not provide ORF 

information for the population. To our knowledge, there are no other higher animals’ pan-

genomes reported so far. In plants, a range of pan-genome studies have shown gene 

presence/absence variation in many species. Different species present various proportions of core 

https://www.ebi.ac.uk/training/online/glossary/amino-acid
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genes: Brachypodium distachyon (35%) (Gordon et al., 2017), rice (54%) (Wang et al., 2018), 

Brassica napus (62%) (Hurgobin et al., 2018), bread wheat (64.3%) (Montenegro et al., 2017), and 

tomato (74.2%) (Gao et al., 2019). Whether pan-genomic ORF data can be used for human risk 

prediction or for animal or plant breeding remains unverified, but one advantage of ORF-based 

genomic prediction is obvious: ORF-based genomic prediction is not involved in the ‘insufficient 

LD’ problem which appears in SNP-based estimation of heritability and genomic prediction. 

Relative to livestock and crops, predicting genotypes or phenotypes using SNPs in humans may be 

more challenging because the extent of LD in human populations is lower than in domesticated 

species, which have a long and intensive history of selection and smaller effective population size. 

In a human genetics context, ORF based prediction may have the potential to more accurately 

identify individuals that are at risk for diseases, and to improve the preventive medicine strategies 

and clinical decision making.  

In conclusion, the ORF-based and CNO-based heritability can capture a major part of the “still 

missing heritability”, and ORF-based and CNO-based genomic prediction were more accurate than 

SNP-based genomic prediction for all traits in the distantly related yeast isolates. We 

demonstrated that pan-genomic ORFs explained more causal variance than common SNPs in the 

population, and so ORFs have potential to substitute or complement SNPs in estimation of 

heritability and genomic prediction under certain conditions. However, in our study there still was 

a major gap between heritability and prediction accuracy for all traits. We provide evidence that 

prediction accuracy will be further improved if larger sample sizes can be used in training sets. 
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Supplementary Figure 1. Distribution of minor allele frequency of all common SNPs (red), and 

distribution of frequency of occurrence of variable ORFs among 787 diploid S. cerevisiae isolates 

(green). 
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Supplementary Figure 2. Phenotype correlation matrix of 35 traits. Traits were sorted according to 

the principal component ordering. The blue and pink color denote positive and negative 

correlation, respectively. The scale ranges from r = 0.977 for combination T34 and T35 to -0.126 

for combination T35 and T31. T1 to T35 represent the 35 traits which were shown in 

Supplementary Table 1. 
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Supplementary Figure 3. Panels a, b and c represent principal component (PC) analysis for all 

common SNPs on 787 diploid S. cerevisiae isolates. Panels d, e and f represent PC analysis for pan-

genomic open reading frames on 787 diploid S. cerevisiae isolates. Panels g, h and i represent PC 

analysis for the copy numbers of pan-genomic open reading frames on 787 diploid S. cerevisiae 

isolates. PC1, PC2, PC3 and PC4 denote the first four principal components. 
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a b c 

 

Supplementary Figure 4. Panels a, b and c represent the Neighbor-joining trees of 787 diploid S. 

cerevisiae constructed using all common SNPs, pan-genomic open reading frames, and copy 

numbers of pan-genomic open reading frames, respectively. 
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(a) 

(b) 
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(c) 

Supplementary Figure 5. Panels a, b and c display heatmaps of genetic covariance matrixes of 787 

diploid S. cerevisiae isolates based on all common SNPs, pan-genomic open reading frames, and 

copy numbers of pan-genomic open reading frames, respectively. Isolates are in the same order in 

all three panels. 
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Supplementary Figure 6. Box plots for predictive abilities of GBLUP0.01 using SNPs with MAF ≥ 0.01, 

GBLUP0.05 using SNPs with MAF ≥ 0.05, OBLUP using pan-genomic open reading frames, 

GOBLUP0.01 using both SNPs with MAF ≥ 0.01 and pan-genomic open reading frames, GOBLUP0.05 

using both SNPs with MAF ≥ 0.05 and pan-genomic open reading frames. 
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Supplementary Figure 7. Box plots for predictive abilities of GBLUP0.01 using SNPs with MAF ≥ 0.01, 

CBLUP using copy numbers of pan-genomic open reading frames, GCBLUP0.01 using both SNPs with 

MAF ≥ 0.01 and copy numbers of pan-genomic open reading frames. 
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Supplementary Figure 8. Box plots for predictive abilities of OBLUP, BayesAORF and BayesBORF using 

pan-genomic open reading frames across 35 traits. 

 

Supplementary Figure 9. Box plots for predictive abilities of OBLUP, BayesAORF and BayesBORF using 

copy numbers of pan-genomic open reading frames across 35 traits. 
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Supplementary Table 1. Statistical description of phenotype data. 

 

 Conditions Mean ± Standard error Variance Max value Minimum value 

T1 YPD formamide 5% 0.258 ± 0.004 0.01 1 0.026 

T2 YPD fluconazole 20 ug/ml 0.405 ± 0.005 0.02 1.142 0.005 

T3 YPD 14°C 0.462 ± 0.003 0.008 0.81 0.021 

T4 YPD hydroxyurea 30 mg/ml 0.358 ± 0.004 0.01 0.849 0.02 

T5 YPD formamide 4% 0.406 ± 0.004 0.013 0.964 0.026 

T6 YP ethanol 15% 0.585 ± 0.006 0.033 1.517 0.013 

T7 YP glycerol 2% 0.546 ± 0.006 0.031 1.632 0.004 

T8 YPD DMSO 6% 0.533 ± 0.004 0.013 1.277 0.049 

T9 YPD 6AU 600 ug/ml 0.31 ± 0.004 0.015 1.213 0.002 

T10 YPD EtOH 2% 0.394 ± 0.004 0.011 0.756 0.008 

T11 YP sorbitol 2% 0.431 ± 0.005 0.021 1.455 0.01 

T12 YPD sodium metaarsenite 2.5 mM 0.256 ± 0.008 0.048 1.576 0.002 

T13 YPD LiCl 250mM 0.2 ± 0.004 0.014 0.971 0.003 

T14 YPD SDS 0.2% 0.244 ± 0.006 0.025 0.84 0.002 

T15 YPD anisomycin 50 ug/ml 0.222 ± 0.005 0.018 1.123 0.006 

T16 YPD nystatin 10 ug/ml 0.138 ± 0.003 0.009 0.705 0.001 

T17 YP acetate 2% 0.432 ± 0.004 0.016 1.125 0.034 

T18 YP xylose 2% 0.397 ± 0.004 0.016 1.345 0.01 

T19 YP ribose 2% 0.413 ± 0.005 0.016 1.113 0.006 

T20 YPD NaCl 1.5M 0.151 ± 0.003 0.005 0.48 0.003 

T21 YPD NaCl 1 M 0.241 ± 0.003 0.009 0.645 0.014 

T22 YPD Mv 20 mM 0.171 ± 0.003 0.007 0.641 0.002 

T23 YP galactose 2% 0.92 ± 0.01 0.082 1.903 0.075 

T24 YPD anisomycin 20 ug/ml 0.378 ± 0.009 0.061 1.464 0.003 

T25 YPD CHX 0.5 ug/ml 0.301 ± 0.005 0.023 1.135 0.001 

T26 YPD CHX 1 ug/ml 0.141 ± 0.004 0.01 1.132 0.002 

T27 YPD benomyl 200 ug/ml 0.239 ± 0.003 0.007 0.679 0.007 

T28 YPD 40°C 0.655 ± 0.007 0.044 1.318 0.066 

T29 YPD anisomycin 10 ug/ml 0.623 ± 0.009 0.067 1.318 0.001 

T30 YPD 42°C 0.418 ± 0.007 0.038 1.555 0.005 

T31 YPD CuSO4 10 mM 0.617 ± 0.016 0.2 1.756 0.01 

T32 YPD KCl 2M 0.194 ± 0.004 0.01 0.585 0.007 

T33 YPD benomyl 500ug/ml 0.278 ± 0.004 0.015 0.857 0.009 

T34 YPD caffeine 40 mM 0.211 ± 0.005 0.022 0.739 0.002 

T35 YPD caffeine 50 mM 0.15 ± 0.004 0.013 0.627 0.002 
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Supplementary Table 2. Heritabilities estimated from five models across 35 traits: GBLUP, OBLUP, 

CBLUP, GOBLUP and GCBLUP.   denoted the SNP-based heritability;   the ORF-based 

heritability;  the CNO-based heritability;  the SNP-ORF-based heritability;  the SNP-

CNO-based heritability 

Conditions      

YPD formamide 5% 0.004 ± 0.002 0.766 ± 0.004 0.445 ± 0.021 0.767 ± 0.004 0.447 ± 0.021 

YPD fluconazole 20 ug/ml 0.019 ± 0.003 0.799 ± 0.003 0.966 ± 0.003 0.8 ± 0.003 0.966 ± 0.003 

YPD 14°C 0.021 ± 0.003 0.868 ± 0.002 0.965 ± 0.001 0.868 ± 0.002 0.962 ± 0.001 

YPD hydroxyurea 30 mg/ml 0.027 ± 0.001 0.841 ± 0.002 0.9 ± 0.003 0.846 ± 0.002 0.91 ± 0.003 

YPD formamide 4% 0.032 ± 0.003 0.802 ± 0.004 0.638 ± 0.01 0.803 ± 0.004 0.63 ± 0.01 

YP ethanol 15% 0.059 ± 0.002 0.784 ± 0.004 0.971 ± 0.001 0.79 ± 0.004 0.973 ± 0.003 

YP glycerol 2% 0.094 ± 0.003 0.796 ± 0.004 0.957 ± 0.001 0.798 ± 0.004 0.955 ± 0.001 

YPD DMSO 6% 0.104 ± 0.004 0.78 ± 0.004 0.44 ± 0.021 0.79 ± 0.004 0.441 ± 0.021 

YPD 6AU 600 ug/ml 0.094 ± 0.005 0.832 ± 0.002 0.98 ± 0 0.834 ± 0.002 0.981 ± 0.003 

YPD EtOH 2% 0.165 ± 0.004 0.839 ± 0.002 0.96 ± 0.001 0.843 ± 0.002 0.963 ± 0.001 

YP sorbitol 2% 0.162 ± 0.005 0.852 ± 0.003 0.976 ± 0 0.851 ± 0.003 0.972 ± 0 

YPD sodium metaarsenite 2.5 mM 0.181 ± 0.006 0.946 ± 0.001 0.999 ± 0 0.946 ± 0.001 0.993 ± 0.005 

YPD LiCl 250mM 0.184 ± 0.006 0.887 ± 0.002 0.994 ± 0 0.889 ± 0.002 0.993 ± 0 

YPD SDS 0.2% 0.219 ± 0.011 0.871 ± 0.002 0.988 ± 0 0.877 ± 0.002 0.987 ± 0 

YPD anisomycin 50 ug/ml 0.226 ± 0.007 0.788 ± 0.003 0.974 ± 0.001 0.796 ± 0.003 0.976 ± 0.001 

YPD nystatin 10 ug/ml 0.312 ± 0.007 0.788 ± 0.003 0.955 ± 0.001 0.796 ± 0.003 0.956 ± 0.003 

YP acetate 2% 0.232 ± 0.005 0.767 ± 0.003 0829 ± 0.006 0.771 ± 0.003 0827± 0.006 

YP xylose 2% 0.258 ± 0.006 0.865 ± 0.003 0.985 ± 0 0.861 ± 0.003 0.985 ± 0.001 

YP ribose 2% 0.266 ± 0.005 0.829 ± 0.003 0.983 ± 0 0.822 ± 0.003 0.981 ± 0 

YPD NaCl 1.5M 0.279 ± 0.009 0.851 ± 0.002 0.989 ± 0 0.861 ± 0.002 0.985 ± 0.001 

YPD NaCl 1 M 0.268 ± 0.005 0.898 ± 0.001 0.995 ± 0 0.903 ± 0.001 0.991 ± 0 

YPD Mv 20 mM 0.272 ± 0.006 0.863 ± 0.002 0.989 ± 0 0.868 ± 0.002 0.985 ± 0.002 

YP galactose 2% 0.349 ± 0.007 0.823 ± 0.002 0.978 ± 0.001 0.823 ± 0.002 0.979 ± 0.001 

YPD anisomycin 20 ug/ml 0.346 ± 0.006 0.886 ± 0.001 0.993 ± 0 0.887 ± 0.001 0.9943 ± 0 

YPD CHX 0.5 ug/ml 0.384 ± 0.004 0.88 ± 0.002 0.992 ± 0 0.881 ± 0.002 0.992 ± 0.003 

YPD CHX 1 ug/ml 0.419 ± 0.007 0.779 ± 0.003 0.983 ± 0.001 0.783 ± 0.004 0.986 ± 0.001 

YPD benomyl 200 ug/ml 0.419 ± 0.005 0.77 ± 0.003 0.973 ± 0 0.772 ± 0.003 0.977 ± 0 

YPD 40°C 0.433 ± 0.005 0.897 ± 0.001 0.99 ± 0 0.898 ± 0.001 0.991 ± 0 

YPD anisomycin 10 ug/ml 0.479 ± 0.006 0.92 ± 0.001 0.995 ± 0 0.921 ± 0.001 0.991 ± 0.001 

YPD 42°C 0.517 ± 0.005 0.883 ± 0.001 0.986 ± 0 0.883 ± 0.001 0.982 ± 0 

YPD CuSO4 10 mM 0.523 ± 0.005 0.897 ± 0.001 0.991 ± 0 0.898 ± 0.001 0.991 ± 0 

YPD KCl 2M 0.563 ± 0.005 0.84 ± 0.001 0.992 ± 0 0.856 ± 0.002 0.99 ± 0.001 

YPD benomyl 500ug/ml 0.599 ± 0.003 0.909 ± 0.001 0.996 ± 0 0.909 ± 0.001 0.991 ± 0 

YPD caffeine 40 mM 0.656 ± 0.003 0.916 ± 0.001 0.996 ± 0 0.917 ± 0.001 0.992 ± 0 

YPD caffeine 50 mM 0.67 ± 0.003 0.919 ± 0.001 0.996 ± 0 0.919 ± 0.001 0.997 ± 0 
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Supplementary Table 3. Predictive abilities estimated from five models across 35 traits: GBLUP, 

OBLUP, CBLUP, GOBLUP and GCBLUP. 

Conditions GBLUP OBLUP CBLUP GOBLUP GCBLUP 

YPD formamide 5% 0.002 ± 0.007 0.284 ± 0.006 0.13 ± 0.008 0.281 ± 0.007 0.126 ± 0.008 

YPD fluconazole 20 ug/ml 0.017 ± 0.007 0.376 ± 0.007 0.258 ± 0.01 0.375 ± 0.007 0.257 ± 0.01 

YPD 14°C 0.053 ± 0.007 0.394 ± 0.008 0.308 ± 0.009 0.394 ± 0.008 0.306 ± 0.009 

YPD hydroxyurea 30 mg/ml 0.078 ± 0.008 0.369 ± 0.007 0.241 ± 0.007 0.373 ± 0.007 0.238 ± 0.007 

YPD formamide 4% 0.077 ± 0.007 0.284 ± 0.008 0.177 ± 0.007 0.282 ± 0.008 0.172 ± 0.007 

YP ethanol 15% 0.121 ± 0.007 0.391 ± 0.009 0.311 ± 0.009 0.402 ± 0.009 0.338 ± 0.009 

YP glycerol 2% 0.163 ± 0.007 0.363 ± 0.008 0.33 ± 0.008 0.371 ± 0.007 0.353 ± 0.008 

YPD DMSO 6% 0.119 ± 0.006 0.306 ± 0.007 0.114 ± 0.007 0.316 ± 0.007 0.152 ± 0.007 

YPD 6AU 600 ug/ml 0.106 ± 0.005 0.48 ± 0.006 0.426 ± 0.006 0.479 ± 0.006 0.424 ± 0.006 

YPD EtOH 2% 0.146 ± 0.006 0.366 ± 0.007 0.26 ± 0.007 0.367 ± 0.007 0.26 ± 0.007 

YP sorbitol 2% 0.179 ± 0.007 0.371 ± 0.007 0.377 ± 0.008 0.371 ± 0.007 0.389 ± 0.008 

YPD sodium metaarsenite 2.5 mM 0.154 ± 0.006 0.501 ± 0.007 0.588 ± 0.009 0.501 ± 0.007 0.586 ± 0.009 

YPD LiCl 250mM 0.129 ± 0.007 0.408 ± 0.009 0.45 ± 0.009 0.407 ± 0.009 0.45 ± 0.009 

YPD SDS 0.2% 0.112 ± 0.006 0.436 ± 0.006 0.396 ± 0.006 0.44 ± 0.007 0.392 ± 0.007 

YPD anisomycin 50 ug/ml 0.18 ± 0.007 0.418 ± 0.009 0.356 ± 0.008 0.421 ± 0.009 0.355 ± 0.008 

YPD nystatin 10 ug/ml 0.18 ± 0.007 0.418 ± 0.009 0.356 ± 0.008 0.421 ± 0.009 0.355 ± 0.008 

YP acetate 2% 0.18 ± 0.006 0.33 ± 0.006 0.185 ± 0.007 0.346 ± 0.006 0.248 ± 0.006 

YP xylose 2% 0.236 ± 0.007 0.431 ± 0.007 0.433 ± 0.008 0.432 ± 0.007 0.448 ± 0.008 

YP ribose 2% 0.261 ± 0.007 0.417 ± 0.007 0.409 ± 0.008 0.421 ± 0.007 0.424 ± 0.007 

YPD NaCl 1.5M 0.147 ± 0.006 0.477 ± 0.006 0.409 ± 0.008 0.48 ± 0.006 0.419 ± 0.008 

YPD NaCl 1 M 0.181 ± 0.006 0.516 ± 0.006 0.471 ± 0.007 0.518 ± 0.006 0.47 ± 0.007 

YPD Mv 20 mM 0.174 ± 0.006 0.454 ± 0.006 0.438 ± 0.006 0.456 ± 0.006 0.437 ± 0.006 

YP galactose 2% 0.199 ± 0.007 0.479 ± 0.006 0.429 ± 0.008 0.478 ± 0.006 0.427 ± 0.007 

YPD anisomycin 20 ug/ml 0.232 ± 0.007 0.55 ± 0.007 0.507 ± 0.007 0.548 ± 0.007 0.504 ± 0.007 

YPD CHX 0.5 ug/ml 0.286 ± 0.008 0.506 ± 0.008 0.489 ± 0.007 0.505 ± 0.008 0.488 ± 0.007 

YPD CHX 1 ug/ml 0.299 ± 0.008 0.421 ± 0.01 0.387 ± 0.011 0.419 ± 0.01 0.382 ± 0.011 

YPD benomyl 200 ug/ml 0.273 ± 0.007 0.411 ± 0.007 0.341 ± 0.008 0.421 ± 0.007 0.356 ± 0.007 

YPD 40°C 0.237 ± 0.008 0.558 ± 0.005 0.486 ± 0.007 0.558 ± 0.006 0.484 ± 0.007 

YPD anisomycin 10 ug/ml 0.26 ± 0.007 0.628 ± 0.005 0.57 ± 0.006 0.627 ± 0.005 0.57 ± 0.006 

YPD 42°C 0.28 ± 0.007 0.587 ± 0.006 0.511 ± 0.007 0.586 ± 0.006 0.508 ± 0.007 

YPD CuSO4 10 mM 0.268 ± 0.005 0.69 ± 0.004 0.72 ± 0.004 0.689 ± 0.004 0.719 ± 0.004 

YPD KCl 2M 0.323 ± 0.007 0.522 ± 0.006 0.492 ± 0.007 0.538 ± 0.006 0.512 ± 0.007 

YPD benomyl 500ug/ml 0.407 ± 0.007 0.706 ± 0.004 0.674 ± 0.005 0.708 ± 0.004 0.677 ± 0.005 

YPD caffeine 40 mM 0.471 ± 0.009 0.698 ± 0.005 0.655 ± 0.005 0.698 ± 0.005 0.654 ± 0.005 

YPD caffeine 50 mM 0.482 ± 0.009 0.697 ± 0.005 0.655 ± 0.005 0.695 ± 0.005 0.654 ± 0.005 
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General discussion 

It was long presumed that single nucleotide polymorphisms (SNPs) represent the majority 

of genetic variation across individuals. Animal and plant breeding increasingly benefit 

from the implementation of genomic selection (GS), and the increasing availability of SNPs 

supports the advanced method. SNPs have also been used to trace genes that are 

undergoing selective sweeps or to observe population structure variation (Cavanagh et al., 

2013). However, the critical role of structural variations (SVs) is becoming increasingly 

acknowledged (Wendel et al., 2016). SVs are defined as large sequence variation (> 1 kb) 

such as insertions, duplications, copy number variants, deletions and translocations in the 

genome (Feuk et al., 2006). In this study, we utilized two types of SVs which are deemed 

to prevailingly contribute to genomic and phenotype variation: copy number variants 

(CNVs), sequences that are present in different copy numbers among individuals, and 

presence/absence variants (PAVs), sequences that are present in some individuals but 

absent in others (Marroni et al., 2014). Although the contribution of CNVs and PAVs to 

genome and phenotype diversity is significant, these structural variants in many genomic 

sequences have no significant phenotypic consequence (Sebat et al., 2004). Nevertheless, 

gene dosage can cause genetic diseases, either alone or in combination with other genetic 

or environmental factors (Inoue and Lupski, 2002). We used pan-genomic 

presence/absence of ORFs and copy number of ORFs that combined both SVs and gene 

dosage information in genomic prediction, which excluded non-causal SVs in the process 

of prediction. Our results demonstrate that presence/absence of ORFs and copy number 

of ORFs have a dominant impact on phenotype variation. Similar conclusions have also 
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been drawn in a Brachypodium distachyon pan-genome study where differentially present 

genes contribute substantially to the understanding of population genetics and 

phenotypic variation within a eukaryotic species (Gordon et al., 2017). When using pan-

genomic ORFs in genomic prediction, we exclusively picked dispensable ORFs as predictors, 

since core ORFs present in all isolates will not affect prediction accuracy. A recent study 

compared the predicted biological functions of core and dispensable pan-genes, and 

revealed that core genes are enriched for essential cellular processes (e.g. glycolysis), 

whereas the dispensable genes are not indispensable for survival, since they could be 

absent in at least one individual (Marroni et al., 2014). The dispensable genes are enriched 

for functions that may be advantageous in some environments (e.g. disease resistance, 

gene regulation). The observed enrichment of dispensable genes with putative adaptive 

functions in that study suggests that dispensable genes are preferentially retained when 

they acquire functions that confer benefits under certain circumstances. Therefore, they 

may contribute to phenotypic variation that could be of particular interest for animal and 

plant breeding and evolutionary studies of adaptive traits (Marroni et al., 2014). A Brassica 

napus pan-genome study proved that the main cause of gene presence/absence variation 

is homoeologous exchange (HE), and demonstrated their considerable association with 

agronomic traits (Hurgobin et al., 2018). The meiotic chromosome pairing that occurs 

between homoeologous chromosomes leads to increased homoeologous exchanges and 

gene conversion events. These HE-related PAV events are useful to understand the 

association between genomic structural rearrangement and phenotypic variation, 

particularly the role of genome duplications or deletions spanning genes with trait-related 

dosage effects (Hurgobin et al., 2018). 

Gene expression data has been suggested to be a valuable resource for phenotype 

prediction (Guo et al., 2016). The heritable part of genome-wide gene expression variation 

was first assessed in a cross population of Saccharomyces cerevisiae (Brem et al., 2002), 
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indicating a substantial genetic component in transcriptional variation in yeast (Skelly et 

al., 2009). Furthermore, it has been proven that non-additivity is common in D. 

melanogaster (Huang et al., 2012), A. thaliana and maize (Vuylsteke et al., 2005), and that 

its extreme forms, overdominance and underdominance, are common (Gibson et al., 

2004). These heritable components have potential to be utilized for complex traits 

prediction. However, gene expression can be greatly affected by the tissue sampled and 

time of measurement. Thousands of genes are differentially expressed between tissues 

or show tissue preferential expression (Melé et al., 2015). In addition, some gene 

expression products have “housekeeping” functions, and are therefore expressed in all 

cells, while other genes are expressed in a tissue-specific manner (Fagerberg et al., 2014). 

It has been found that variation in gene expression is even far greater among tissues (47% 

of total variance in gene expression) than among individuals (4% of total variance) (Melé 

et al., 2015). Hence, it is important to use gene expression data from specific tissues for 

phenotype prediction. 

Overall, the thesis focuses on two critical problems in quantitative genetics: prediction of 

genetic values or phenotypes, and estimation of heritability. In the multi-omics era, we 

verified that gene expression data, especially tissue-specific gene expression data, can be 

integrated into genomic prediction, can be regarded as a complementary information for 

prediction of phenotype. At the gene level, we first explored pan-genomic ORFs to be a 

potential substitution of SNPs in prediction of genetic value and estimation of heritability. 

The valuable resources will play an important role in understanding the diversity of the 

genome and the genetic architecture of complex traits, and then accelerate the breeding 

process. In a human genetics’ context, omics data-based prediction may have the 

potential to more accurately identify individuals that are at risk for diseases, and to 

improve the preventive medicine strategies and clinical decision making. 
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