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Summary 
Traditional practices of human land use have shaped semi-natural open habitats over 

the past millennia, resulting in the typical European cultural landscapes with 

characteristic, diverse species communities. In the course of agricultural intensi-

fication during the twentieth century, however, areas extensively used, e.g. for 

pastoral farming, have declined immensely. At the same time, agriculturally suitable 

soils have been widely improved, especially by mineral fertilisation. This has been 

associated with widespread losses of plant diversity, as increasing nutrient availability 

promotes plant species that are strong competitors for light and thus increases the 

exclusion of less competitive species. Little is known about plant community patterns 

related to soil chemical parameters in open habitats where the soil nutrient status has 

not been anthropogenically enhanced.  

In the absence of traditional agricultural land use, conservation management is 

required to remove biomass from open habitats in order to prevent secondary 

succession and related changes in plant communities. Extensive grazing with large 

domestic herbivores has proven beneficial to the maintenance of semi-natural open 

habitats. Under certain circumstances (e.g. large, inaccessible areas), however, 

livestock grazing is impossible. Therefore, there is a need to study if wild herbivores 

that do not require fencing, regular monitoring or veterinary treatment could be an 

alternative option for conservation grazing. 

The present work took advantage of a study area where military land use has 

prevented agricultural intensification during the past century: the Grafenwöhr 

military training in north-eastern Bavaria, Germany. In this area, abundant wild and 

free-ranging red deer (Cervus elaphus) use the open land, such as semi-natural 

grasslands and heathlands, for foraging. Focusing on two exemplary Natura 2000 

open habitat types (European dry heaths and lowland hay meadows), this thesis 

explores (i) the relationship between soil chemical parameters and vegetation patterns 

under nearly pre-industrialised soil conditions, and (ii) the interplay of grazing by 

free-ranging red deer and different vegetation processes.  

Chapter 1 investigates how the naturally occurring variability in phosphorus and 

other soil chemical parameters relates to plant species community composition and 

richness in open habitats. In 2014, plant species composition was surveyed in 40 and 

54 relevés in heathlands and grasslands, respectively. The insights provide valuable 

information about the sensitivity of different semi-natural habitats to changes in soil 

chemical parameters. Plant species richness increased with increasing soil pH in 

heathlands and decreased with increasing soil phosphorus concentration in 

grasslands. Therefore, in order to maintain suitable soil conditions for diverse plant 

communities in semi-natural open habitats, conservation management should take 

care to prevent further acidification in heathlands and even low phosphorus input in 

grasslands.  

Chapter 2 & 3 look into the contribution of wild red deer to the maintenance of 

semi-natural grasslands and heathlands based on a grazing exclusion experiment 
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running from 2015 to 2017/18 on a subset of the sampling sites used in the 2014 

plant survey. In order to assess synergistic effects between wildlife grazing and 

additional biomass removal measures (i.e. burning, mowing), the sampling sites in 

grasslands included burnt, mown and untreated treatment areas.  

Chapter 2 analyses the dynamics of vegetation productivity, forage quality and 

biomass removal by red deer, using data from movable exclusion cages installed on 

open, continuously grazed plots and translocated five times per vegetation period. 

The amount of biomass annually removed by wild red deer was quantitatively similar 

to the forage removal by domestic grazing animals in stocking rates commonly used 

in conservation grazing. Despite the different productivity and grazing requirements 

of semi-natural grasslands and heathlands, biomass removal by red deer, with its 

habitat-type–specific seasonal variation, proved beneficial in both habitat types. 

Mowing, enhancing productivity and forage quality in the late season, increased the 

grassland attractiveness to red deer, and could therefore be a strategy to spatially 

direct the grazing activities by free-ranging red deer.  

Comparing the vegetation development in open and permanently fenced plots in 

grasslands and heathlands, Chapter 3 studies how plant diversity and vegetation 

structure respond to the exclusion of red deer. Plant community composition 

diverged in open and fenced blots in both habitat types. In grasslands, plant species 

diversity was significantly reduced in fenced compared to open plots. Increasing 

height of sward and litter in both habitat types and, additionally, reduced cover of 

bare soil and increasing number of woody plant individuals in heathlands indicated 

beginning succession when red deer were excluded. In grasslands, the most 

pronounced differences between open and fenced plots occurred in the mown 

treatment, suggesting that red deer grazing combined with mowing could create 

particularly favourable conditions for grassland plant diversity.  

Taken together, Chapter 2 & 3 indicate that grazing by wild red deer could be useful 

to the conservation management of semi-natural open habitats, quantitatively—in 

terms of biomass removal—and qualitatively, providing benefits to vegetation 

structure and diversity. An adapted wildlife management that allows red deer to 

forage in open landscapes could therefore contribute to maintaining semi-natural 

open habitats and simultaneously reduce the potential for conflict between red deer 

and forestry. Integrating wild red deer into the conservation management seems 

promising and practicable in particular for large areas of conservation interest, such 

as core zones of national parks, wilderness areas or active and abandoned military 

training areas.  

Overall, the insights from this thesis can contribute to developing suitable strategies 

for the conservation management of semi-natural open habitats to preserve their 

biodiversity and ecosystem services in times of increasing anthropogenic pressure on 

ecosystems. 
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Zusammenfassung 
Traditionelle Landnutzungspraktiken formten während der vergangenen 

Jahrtausende naturnahe Offenlandlebensräume. Auf diese Weise entstanden die 

typischen europäischen Kulturlandschaften mit ihren charakteristischen, diversen 

Artengemeinschaften. Extensiv bewirtschaftete Flächen, auf denen etwa Weide-

wirtschaft betrieben wurde, haben jedoch im Zuge der landwirtschaftlichen 

Intensivierung während des 20. Jahrhunderts stark abgenommen. Gleichzeitig 

wurden landwirtschaftlich geeignete Böden in großem Umfang, insbesondere durch 

mineralische Düngung, aufgewertet. Eine Folge sind weitverbreitete Verluste von 

Pflanzendiversität, da mit zunehmender Nährstoffverfügbarkeit konkurrenzschwache 

Pflanzenarten vermehrt durch Arten verdrängt werden, die erfolgreich um Licht 

konkurrieren können. In Offenlandlebensräumen, in denen der Bodennährstoff-

gehalt nicht anthropogen erhöht ist, ist wenig darüber bekannt, wie Muster in 

Vegetationsgesellschaften mit bodenchemischen Faktoren zusammenhängen. 

Wenn keine traditionelle landwirtschaftliche Bewirtschaftung stattfindet, erfordert 

der Erhalt von Offenlandlebensräumen ein Naturschutzmanagement, das Biomasse 

entnimmt, um sekundärer Sukzession und damit verbundenen Veränderungen in 

Pflanzengesellschaften entgegenzuwirken. In vielen Fällen hat sich extensive 

Beweidung mit großen domestizierten Pflanzenfressern als eine geeignete Maßnahme 

zum Erhalt von naturnahen Offenlandlebensräumen erwiesen. Unter bestimmten 

Bedingungen (z.B. große, unzugängliche Gebiete) ist Nutztierbeweidung allerdings 

nicht umsetzbar. Daher besteht Forschungsbedarf in Bezug auf die Frage, ob wilde 

Pflanzenfresser, welche weder ein eingezäuntes Gebiet noch regelmäßige (veterinär-

medizinische) Betreuung benötigen, eine alternative Möglichkeit zur Beweidung im 

Naturschutz sein könnten.  

Mit dem Truppenübungsplatz Grafenwöhr in Bayern stand für die vorliegende 

Arbeit ein Studiengebiet zur Verfügung, in dem wegen der mehr als hundertjährigen 

militärischen Nutzung keine landwirtschaftliche Intensivierung stattgefunden hat. 

Die zahlreich vorkommenden wildlebenden Rothirsche (Cervus elaphus) nutzen in 

diesem Gebiet das Offenland, z.B. naturnahes Grünland und Heiden, zur Nahrungs-

suche. Mit Fokus auf zwei exemplarische Natura 2000-Offenlandlebensraumtypen 

(Trockene Europäische Heiden und Magere Flachlandmähwiesen) untersucht diese 

Dissertation (i) die Beziehung zwischen bodenchemischen Faktoren und 

Vegetationsmustern unter nahezu vorindustriellen Bodenbedingungen und (ii) das 

Zusammenspiel von Beweidung freilebender Rothirsche und verschiedenen 

Vegetationsprozessen.  

Kapitel 1 beleuchtet, wie die natürlich vorkommende Variabilität von Phosphor und 

anderen bodenchemischen Faktoren mit der Komposition und dem Artenreichtum 

von Vegetationsgesellschaften in Offenlandlebensräumen zusammenhängt. Im Jahr 

2014 wurden Vegetationsaufnahmen von 40 bzw. 54 Relevés in Heiden und 

Grünland durchgeführt. Die Erkenntnisse liefern wertvolle Informationen über die 

Sensitivität unterschiedlicher naturnaher Lebensräume gegenüber Veränderungen in 

bodenchemischen Faktoren. Der Pflanzenartenreichtum nahm mit steigendem 
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Boden-pH in Heiden zu und im Grünland mit steigender Phosphorkonzentration im 

Boden ab. Daher sollte das Naturschutzmanagement darauf achten, weitere 

Versauerung in Heiden sowie selbst geringfügige Phosphorzufuhr im Grünland zu 

verhindern.  

Kapitel 2 & 3 untersuchen den Beitrag freilebender Rothirsche zur Erhaltung von 

naturnahem Grünland und Heiden basierend auf einem Beweidungsausschluss-

experiment, welches von 2015 bis 2017/18 auf einem Teil der im Jahr 2014 für die 

Vegetationsaufnahmen genutzten Untersuchungsflächen durchgeführt wurde. Um 

Synergieeffekte zwischen Wildtierbeweidung und zusätzlicher Biomasseentnahme 

(Brand, Mahd) ermitteln zu können, umfasste das Experiment im Grünland 

gebrannte, gemähte sowie unbehandelte Behandlungsflächen.  

Kapitel 2 analysiert die Dynamik von Produktivität und Nahrungsqualität der 

Vegetation und Biomasseentnahme durch Rothirsche. Dazu wurden versetzbare 

Weidekörbe eingesetzt, welche auf offen zugänglichen, kontinuierlich beweideten 

Plots installiert und fünf Mal pro Vegetationsperiode umgesetzt wurden. Die jährlich 

von wilden Rothirschen aufgenommene Biomasse lag in einer vergleichbaren 

Größenordnung wie die Futteraufnahme domestizierter Weidetiere bei in Natur-

schutzbeweidungssystemen üblichen Besatzdichten. Trotz unterschiedlicher 

Produktivität und Beweidungsansprüche von naturnahem Grünland und Heiden 

erwies sich die Biomasseentnahme durch Rothirsche mit ihrer habitatspezifischen 

saisonalen Variation als günstig für beide Lebensraumtypen. Die Mahd, einhergehend 

mit erhöhter Produktivität und Nahrungsqualität in der späteren Jahreszeit, erhöhte 

die Attraktivität des Grünlands für die Rothirsche und könnte daher eine Strategie 

sein, um die Beweidung von freilebenden Rothirschen räumlich steuern zu können.  

Basierend auf dem Vergleich der Vegetationsentwicklung in offenen und permanent 

eingezäunten Plots untersucht Kapitel 3, wie Pflanzendiversität und Vegetations-

struktur auf den Ausschluss von Rothirschen reagieren. Die Vegetationszusammen-

setzung in offenen und permanent eingezäunten Plots entwickelte sich in beiden 

Lebensraumtypen unterschiedlich. Im Grünland war die Pflanzendiversität in 

eingezäunten Plots signifikant niedriger als in offenen Plots. Als Anzeichen für 

beginnende Sukzession unter Rothirschausschluss wurden in beiden Lebensräumen 

eine zunehmende Höhe von Vegetation und Streuschicht sowie in Heiden abneh-

mende Deckung von Offenboden und zunehmende Individuenzahl verholzender 

Pflanzen festgestellt. Im Grünland zeigten sich in der gemähten Behandlungsfläche 

die deutlichsten Unterschiede zwischen offenen und eingezäunten Plots, was darauf 

hindeutet, dass Rothirschbeweidung kombiniert mit Mähen besonders günstige 

Verhältnisse für Pflanzendiversität im Grünland schaffen könnte.  

Die Ergebnisse von Kapitel 2 & 3 legen nahe, dass Beweidung durch wildlebende 

Rothirsche für das Naturschutzmanagement naturnaher Offenlandlebensräume von 

Nutzen sein könnte, nicht nur quantitativ – in Form von Biomasseentzug – sondern 

auch qualitativ, durch vorteilhafte Auswirkungen auf Vegetationsstruktur und            

-diversität. Ein angepasstes Wildtiermanagement, das Rothirschen erlaubt, sich ihre 

Nahrung im Offenland zu suchen, könnte daher zur Erhaltung von naturnahen 

Offenlandlebensräumen beitragen und zugleich das Konfliktpotential zwischen 

Rothirsch und Forstwirtschaft mindern. Wildlebende Rothirsche in das Naturschutz-
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management zu integrieren, erscheint besonders vielversprechend und praktikabel in 

großen Gebieten, wie etwa Kernzonen von Nationalparks, Wildnisgebieten oder 

aktiven und ehemaligen Truppenübungsplätzen.  

Insgesamt können die Erkenntnisse aus dieser Arbeit dazu beitragen, geeignete 

Strategien für das Naturschutzmanagement naturnaher Offenlandlebensräume zu 

entwickeln, um ihre Biodiversität und Ökosystemdienstleistungen in Zeiten zu 

erhalten, in denen Ökosysteme durch menschlichen Einfluss zunehmend gefährdet 

sind.  

 



 

 

 

PART I  
 

 

 

 

 

 

General Introduction  
 

 

 

 

 

 

 

 

 

 

The preservation of semi-natural open habitats in the face of ongoing agricultural 

intensification and abandonment is among the key challenges to nature conservation 

in Europe. Socio-economic or other constraints can impede the implementation of 

conventional management measures, such as livestock grazing, particularly in large 

conservation areas. It is hence urgently required to develop alternative management 

strategies for maintaining semi-natural open habitats. Whether grazing by 

autochthonous wild herbivores could contribute to the conservation management of 

open habitats has not been tested so far in a Central European context. This thesis 

presents insights from an experimental case study in a military training area in 

Germany, where semi-natural grasslands and heathlands have been grazed by free-

ranging red deer (Cervus elaphus) for many decades. The following paragraphs will 

introduce the background of the study relating to semi-natural habitats, large 

herbivores and their relevance to conservation. Subsequently, Part II of this work 

will present three original research articles as published in or submitted to 

international journals. 
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The origin of semi-natural open habitats 

The global environmental impacts of human land use today are mostly disastrous 

(Foley et al. 2005; Rockström et al. 2009) and contribute to a rapid loss of species 

comparable with a sixth mass extinction wave (Barnosky et al. 2011; Pimm et al. 

2014; Ceballos et al. 2015; Ceballos et al. 2017). However, particular forms of human 

land use in former times have created and maintained many habitats of high 

biodiversity. For example, the present European ‘cultural landscapes’ (Farina 2000; 

Plieninger et al. 2013; Tieskens et al. 2017) have been shaped over the past millennia 

by human activities (Bignal and McCracken 2000). 

Hunters and gatherers, present in Europe since the last glaciation, contributed to 

ecological processes through predation, consumption of vegetation, distribution of 

seeds and disturbances (Bignal and McCracken 2000). When people started to settle 

and cultivate the land, the human impact on the landscape became more profound. 

Dense forest had to make way for open space, which was used as arable land or 

pasture. This was accompanied by an increase in the abundance and distribution of 

light-demanding species, which were previously mostly limited to areas where abiotic 

conditions impeded tree growth (Hejcman et al. 2013). As a consequence, the 

biological diversity at both the species and habitat scale increased (Bignal and 

McCracken 2000).  

Specific forms of human exploitation promoted different open habitats, such as 

grasslands and heathlands, which are now termed ‘semi-natural’ because their 

vegetation has not been planted by humans but is influenced by human actions 

(FAO 2000).  

For example, the oldest archaeological record of scythes suggests that hay meadow 

communities probably evolved around the 7th century BC (Hejcman et al. 2013). But 

only when livestock production became more intensive in Central Europe from the 

18th century onwards, the proportion of hay meadows increased, because the 

livestock that was more and more kept indoors required conserved forage. The 

increasing area of mown grasslands facilitated the spread of species characteristic to 

Central European lowland meadows today. The most prominent case is probably 

Arrhenatherum elatius (Hejcman et al. 2013), which is the eponymous species of the 

order Arrhenatheretalia, the agricultural grasslands in plant-sociological terminology 

(Leuschner and Ellenberg 2017).  

Another habitat promoted by certain forms of human exploitation are heathlands, 

which developed across large areas in Europe about 4000 years ago (Webb 1998). 

Heathlands replaced forests after clearing when the land was subsequently used for 

livestock grazing and, additionally, turf and vegetation were cut for use as fuel and 

fodder for stabled animals. As the manure accumulating in the stables was used to 

fertilize arable fields, heathland soils were successively depleted of nutrients, which 

contributed to arresting the succession to scrub and forest (Webb 1998).  

The conservation value of semi-natural open habitats 

Open landscapes such as semi-natural grasslands and heathlands are of immense 

importance for conservation. At global as well as local scale, they are hotspots of 
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plant and animal biodiversity supporting many threatened species (Vickery et al. 

2001; Price 2003; Wilson et al. 2012; Dengler et al. 2014; Berry et al. 2016). For 

example, a maximum of 116 plant species on an area of 25 m2 has been reported for 

semi-dry basiphilous grasslands in the Czech Republic (Wilson et al. 2012). In 

addition, these ecosystems provide various regulating and provisioning services, such 

as soil conservation and pollination (Sala and Paruelo 1997; Harrison et al. 2010; 

Wrage et al. 2011; Burkhard et al. 2012; Maes et al. 2015; Holland et al. 2017). The 

aforementioned examples of hay meadows and heathlands show that semi-natural 

open habitats furthermore represent a cultural heritage of human civilisation (Webb 

1998; Farina 2000; Hejcman et al. 2013; Tieskens et al. 2017). These landscapes 

appeal to most people’s aesthetic perception, which in turn represents another facet 

of the cultural ecosystem services delivered by semi-natural open habitats (Plieninger 

et al. 2013; Tieskens et al. 2017; Assandri et al. 2018).  

However, the area covered by extensively used open landscapes, e.g. land used for 

pastoral grazing, has declined tremendously in Europe during the last century (Webb 

1998; Bignal and McCracken 2000; Poschlod and WallisDeVries 2002; Pywell et al. 

2011; Hooftman and Bullock 2012). On the one hand, this still proceeding 

development is driven by agricultural intensification; on the other hand, by the 

abandonment of marginal sites that have become unprofitable for farming (Bignal 

and McCracken 2000; Hodgson et al. 2005; Poschlod et al. 2009; Hilpold et al. 2018). 

The relative importance of these main drivers of the loss of traditional agricultural 

practices and the associated decline of extensively used open habitats differs between 

European countries and regions due to their heterogeneous socio-political and 

economic history (Jepsen et al. 2015). Today, semi-natural grasslands and heathlands 

in most European countries cover less than 10% of their former areal extent 

(Piessens et al. 2004; Fagúndez 2012; Berry et al. 2016) and continue to decline 

(European Environment Agency 2015a; Berry et al. 2016). 

The European Union has acknowledged the value of semi-natural open habitats and 

the necessity of their conservation by listing many of them in Annex I of the EU 

Habitats Directive (Council Directive 92/43/EEC on the Conservation of natural 

habitats and of wild fauna and flora). The EU member states are obliged to establish 

conservation measures for theses habitat types and must ensure management in 

accordance with their ecological requirements. However, only a small fraction of 

open habitats protected under the Habitats Directive (12.3% of grasslands, 26.2% of 

heathlands) is actually in a favourable conservation status (European Environment 

Agency 2015b). There is hence an urgent need for applied conservation research to 

identify and develop adequate and feasible approaches for the maintenance of 

different semi-natural open habitat types.  

The current situation of semi-natural grasslands and heathlands 

A resurvey study on historical grassland relevés from the 1950/60s in northern 

Germany has provided evidence that up to 50% of plant species at the plot-level 

have been lost from grasslands since the middle of the 20th century, as a consequence 

of intensified management and increased nutrient input (Wesche et al. 2012). The 

loss of biodiversity in grasslands is not limited to plants, as land use intensification 
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has in fact homogenised grassland species communities across all trophic levels 

(Gossner et al. 2016).  

Vascular plant species richness per se is low in heathlands (Fagúndez 2012), but they 

provide a valuable habitat for rare plant species (Kleijn et al. 2008) as well as rich 

animal (Usher 1992; Usher and Thompson 1993; Hartley et al. 2003; Littlewood et al. 

2006; Buchholz et al. 2013) and cryptogam communities (Chytrý et al. 2001). Apart 

from habitat loss, conservation concerns are related to gradual shifts in heathland 

plant species composition towards grass- (Bakker and Berendse 1999) or tree-

dominated communities (Kepfer-Rojas et al. 2015) and the rapid decline of rare 

herbaceous heathland species sensitive to changes in soil biochemistry (Houdijk et al. 

1993; Kleijn et al. 2008).  

The present thesis is focused on two open habitat types protected within the 

framework of the EU Habitats Directive: (i) lowland hay meadows (habitat type 

6510)—defined as species-rich grasslands with abundant flowers mown only once or 

twice per year on little to moderately fertilised soils of the plain to submontane levels 

belonging to the Arrhenatherion and the Brachypodio-Centaureion nemoralis 

alliances and (ii) European dry heaths (habitat type 4030)—characterized as 

mesophile or xerophile shrub communities dominated by Ericoideae species on 

siliceous, podsolic soils in moist Atlantic and sub-Atlantic climates of plains and low 

mountains of Western, Central and Northern Europe (European Commission 2013). 

Similarly to many other Annex I habitat types, both are classified as being dependent 

on agricultural activities (Halada et al. 2011).  

According to the results of the Habitats Directive - Article 17 reporting process in 

the EU 27 for the period 2007−2012, the overall assessment as well as the future 

prospects of both habitat types are ‘unfavourable-bad’ in the majority of European 

biogeographic regions. In the continental climate region in Germany, the dominant 

threats and pressures reported for lowland hay meadows relate to the intensification 

of agricultural practices, including mowing, grazing and fertilisation and the 

conversion to arable land. European dry heaths in this region suffer mainly from the 

abandonment of pastoral systems and lack of grazing, succession and change in 

species composition. The two focal habitat types of the present study can hence be 

considered as representatives for the majority of semi-natural open habitat types 

whose future maintenance in Europe is critically endangered without effective 

conservation management approaches. 

Large herbivores in the conservation management of open habitats  

Against the backdrop of today’s lack of traditional extensive land use practices in 

Europe, conservation management is required to attend to biomass removal in semi-

natural open habitats in order to prevent secondary succession and undesirable 

changes in plant communities (MacDougall and Turkington 2007; Tälle et al. 2016; 

Valkó et al. 2018). Over the past few decades, besides mechanical management (e.g. 

mowing or burning), extensive grazing with different livestock species has 

increasingly been implemented in open and semi-open areas of high conservation 

interest (Van Wieren 1995; Bunzel-Drüke et al. 2008; Rosenthal et al. 2012; García et 
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al. 2013; Bunzel-Drüke et al. 2015). It has been appreciated that large mammalian 

herbivores can contribute to structural heterogeneity and biodiversity (Olff and 

Ritchie 1998; Adler et al. 2001). Whether the actual grazing impact on plant diversity 

in a certain system is positive or negative, might however depend on habitat 

productivity and herbivore species (Bakker et al. 2006). Positive effects of large 

herbivores on plant species richness and diversity generally occur when grazing 

induces changes in the competitive environment reducing the abundance of 

dominant species (Koerner et al. 2018) and alleviating light competition (Borer et al., 

2014). 

In contrast to livestock grazing, the potential contribution of autochthonous wild 

herbivores to maintaining open habitat vegetation has only recently found the 

attention of applied conservation science (Tschöpe et al. 2011; Schulze et al. 2018). 

This might be related to certain controversial questions in conservation theory 

concerning the relevance of wild herbivores for vegetation development in historic 

times, e.g.: Which vegetation types would be ‘naturally’ prevailing in Europe (Vera 

2000; Svenning 2002; Sutherland 2002; Mitchell 2005; Leuschner and Ellenberg 

2017)? Which historic time period is suitable to serve as a reference for defining 

‘natural’ vegetation (Johnson 2009)? How much did humans contribute to megafauna 

extinctions at the end of the Pleistocene (Barnosky 2008; Sandom, et al. 2014; 

Svenning et al. 2016)?  

Independently from specific answers to these background questions, however, the 

influence of wild herbivores on the ecology and evolution of vegetation worldwide 

has now been widely recognized (Sandom et al. 2014; Bakker et al. 2016; Pausas and 

Bond 2018). Simultaneously, rewilding (Fuhlendorf et al. 2009; Ceaușu et al. 2015; 

Svenning et al. 2016) and wilderness protection (Schumacher et al. 2018) have 

become popular concepts in conservation. The basic idea is that conservation 

management based on wild instead of domestic herbivores could allow for more 

natural grazing regimes and ecological dynamics (Sutherland 2002; Ceaușu et al. 

2015).  

Red deer—candidates for wildlife conservation grazing? 

In contemporary Europe, red deer are one of the largest and most widespread native 

mammal species (Milner et al. 2006; Zachos and Hartl 2011). At the evolutionary 

timescale, cervids persisted in highly variable habitats ranging from open, grassy 

environments to intermediate savannahs and temperate wooded habitats (Lister 

1984; Lister 2004). During the drastic changes in climate and environmental 

conditions in Late Glacial and early Holocene time, red deer even preferred open 

environments, but today, the species is mostly associated with forested environments 

(Drucker et al. 2011). Consequently, it has been repeatedly noted that browse 

constitutes the main food component for red deer (Gebert and Verheyden-Tixier 

2001; Katona et al. 2014), but see Schröder 1977). This observation, however, might 

result from the limited habitat choice of red deer in the European cultural landscape 

due to human disturbance (e.g. from hunting or recreation) and habitat 

fragmentation (Lister 1984; Jayakody et al. 2011; Meiri et al. 2013). Based on 
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morphophysiological characteristics, red deer are classified as ruminants of the 

intermediate feeding type (Hofmann 1989): their nutritional physiology is in-between 

highly selective ‘concentrate selectors’, such as roe deer (Capreolus capreolus), adapted 

to a high-quality diet, and generalist ‘grass and roughage eaters’, such as cattle (Bos 

taurus domesticus), adapted to forage with high fibre concentration. They forage 

opportunistically, i.e. switch between browsing and grazing, dependent on seasonal 

fluctuations of forage quantity and quality as well as metabolism-related nutrient 

requirements (Hofmann 1989).  

The ability of red deer to forage more selectively and to choose from a wider 

spectrum of forage types than most domestic large herbivores, which are 

predominantly grass and roughage eaters, could potentially result in different impacts 

of red deer on vegetation compared to livestock. A further key aspect regarding the 

relationship between red deer and vegetation is that the habitat use of the wild 

animals is not restricted by fences or herding. While stocking rates of domestic 

herbivores in livestock grazing systems can be adjusted as needed for specific 

conservation purposes, the population density of wild red deer is not closely related 

with their foraging impact, since they are able to freely choose between differently 

preferred vegetation types (Gordon et al. 2004; Moore et al. 2015). On the one hand, 

this poses the question how to spatially direct grazing activities of free-ranging red 

deer in order to harmonise red deer habitat use with the grazing requirements of 

different habitat types (Moore et al. 2015). On the other hand, the fact that wild 

herbivores, in contrast to livestock, do not require fencing, regular monitoring or 

veterinary treatment could facilitate the implementation of conservation grazing 

under certain conditions. Particularly in very large, remote or inaccessible areas, such 

as military training areas, where conventional conservation measures are 

economically or practically unfeasible, grazing by wild red deer could be an appealing 

opportunity for conservation management.  

Military training areas—opportunities for science and conservation  

Up to 80% of the land area in Europe is used for production systems (agriculture and 

forestry), settlement and infrastructure (European Environment Agency 2008). Areas 

with high yield potential are almost always used for intensive agriculture (Hodgson et 

al. 2005). Plant diversity and its determinants, such as soil chemical factors, have 

been studied extensively in such agricultural systems where nutrient availability is 

chronically enhanced. For instance, it is well-known that species richness responds 

negatively to additions of nitrogen or phosphorus (Ceulemans et al. 2013; Field et al. 

2014; Tang et al. 2017), which favour competitive species, enhance light competition 

and finally result in the exclusion of small and slow-growing species (Hautier et al. 

2009). By contrast, open habitats that have not been agriculturally meliorated at any 

time in the past (e.g. by mineral fertilisation) are rare. Hence, knowledge on the 

drivers of phytodiversity under zero-input conditions is scarce. 

Military training areas (MTAs) differ from the surrounding landscape because 

military land use precludes intensive agriculture, and open habitats are maintained for 

training purposes. In terms of soil chemical factors, MTAs are therefore often 

comparatively pristine systems, where the soil nutrient status is still comparable with 
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pre-industrialised levels. Besides, MTAs have been recognized for their nature 

conservation value (Warren et al. 2007; Lindenmayer et al. 2016; Ellwanger and 

Reiter 2019), in particular regarding plants and butterflies (Cizek et al. 2013), 

grasshoppers and ground beetles (Warren and Büttner 2008a), dragonflies (Harabiš 

and Dolný 2018), amphibians (Warren and Büttner 2008b) and birds (Bušek and Reif 

2017). It is supposed that biodiversity does not only benefit from the lack of 

intensive cultivation on MTAs, but also from the heterogeneous disturbance regime 

caused by military training and vehicle traffic (Warren et al. 2007). With regard to the 

usually large size of MTAs and the limited accessibility to unauthorized persons, 

promoting grazing by wild herbivores could potentially be an advantageous strategy 

to enhance and preserve the high conservation value of these areas.  

Study area 

In our study, we took advantage of such a site unaffected by industrialised 

agricultural practices: the Grafenwöhr military training area (GTA) in the Upper 

Palatinate (German: Oberpfalz), in north-eastern Bavaria, Germany (Fig. 1). The site 

has served military training purposes for more than one century. The older part 

(almost 100 km2) of the present area was acquired by the Bavarian Military 

administration between 1907 and 1909. A further 140 km2 were added to the western 

part of the area in 1938/39. Ordinary agricultural land use had accordingly stopped 

in GTA long before the agricultural intensification gained substantial momentum in 

the middle of the 20th century (Wesche et al. 2012).  

Figure 1: Study area Grafenwöhr military training area located in Bavaria, Germany. In 2014, 

vegetation relevés were taken on nine sampling sites in grasslands (habitat type 6510, lowland 

hay meadows) and 10 sampling sites heathlands (habitat type European dry heaths). Five of 

these sampling sites, respectively, were used in the experimental study of vegetation 

dynamics and impacts of grazing by wild red deer. The background map is based on 

modified Copernicus Sentinel-2 data (acquisition date: 22 May 2016; C. Raab). 
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Today, GTA is covered for the larger part by woodlands, but approximately 40% of 

the area consist of heterogeneous open and semi-open habitats (C. Raab, 

unpublished). Situated amidst an intensively cultivated landscape, GTA thus offers 

the opportunity to study plant community patterns in semi-natural open habitats and 

their relationship to endogenous soil chemical factors in the absence of direct 

anthropogenic enhancement of nutrient availability. 

Apart from the virtually pre-industrialized soil nutrient status, the second peculiarity 

of GTA is the large resident population of wild and free-ranging red deer. Several 

decades ago, the German Federal Forests Division (Bundesforst), in charge of the 

land and hunting management in GTA, has introduced a progressive wildlife 

management regime with the aim to reduce browsing damage in the commercially 

used forests. The underlying idea is to redirect red deer from the forests to the open 

landscapes based on a push-and-pull strategy: red deer are hunted intensively in 

forests, whereas they are spared from hunting in open areas for most the year, so that 

the animals are free to use the open landscapes for foraging (Meißner et al. 2013). 

Therefore, in GTA, it is possible to evaluate the effects of a wild large herbivore on 

the vegetation of different semi-natural open habitat types.  

Experimental design 

In 2014, nine and 10 sampling sites, respectively, were selected within the habitat 

types lowland hay meadows (hereafter ‘grasslands’) and European dry heaths 

(‘heathlands’) in GTA (Fig. 1). The plant species composition was surveyed in six 

relevés per site in grasslands and four relevés per site in heathlands. To study the 

relationships between red deer grazing and vegetation productivity and biomass 

dynamics, forage quality, and plant species composition and diversity, in 2015, a 

grazing experiment was established on five of these sampling sites per habitat type. 

The general experimental set up in grasslands (Fig. 2) included three treatment areas 

(B, burnt, M, mown and U, untreated). Per treatment, a pair of plots was demarcated: 

an open plot, continuously accessible to all kinds of animals, and a fenced plot that 

permanently excluded red deer and other larger animals. Each plot contained one 

vegetation relevé. Additionally, on the open plots, a temporary, movable exclusion 

cage was installed, in order to determine the aboveground net primary productivity 

of the grazed vegetation and forage removal by red deer (McNaughton et al. 1996).  

As opposed to grasslands, the experimental design implemented in heathlands was 

not orthogonal. At the outset of the experiment, it was already clear that 

implementing the M treatment was impossible in heathlands, as these areas in GTA 

are highly contaminated by remnants of ammunition and unexploded ordnance, 

impeding the use of agricultural machinery. By contrast, the B treatment was initially 

included in the heathland study design, in the form of a one-time burning event in 

the first study year. Owing to low standing biomass and unfavourable weather 

conditions, however, the B treatment failed on three out of the five heathland 
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Figure 2: Conceptual representation of the study design implemented in grasslands. Each 

sampling site consisted of three treatment areas, which were either annually burnt (B) or 

mown (M) or remained untreated (U). Each treatment area contained a pair of sampling 

plots. The open plot (O) was continuously accessible to wild red deer, while the fenced plot 

(F) was protected from grazing throughout the three experimental years. Sampling sites in 

heathlands were composed of the U treatment with one or two pairs of plots.  

sampling sites. Accordingly, in heathlands, only the U treatment was assessed, on two 

sites with one and three sites with two pairs of plots. The data collection in the 

experiment ran from April 2015 until April 2018. To investigate the response of 

plant species composition and diversity to the experimental conditions, the 

vegetation relevés were resurveyed in summer 2018.  

Research objectives and chapter outline 

The present work took advantage of the experimental study design in GTA to 

expand our knowledge on (i) the relationship between soil chemical parameters and 

vegetation patterns in semi-natural open habitats not altered by anthropogenic 

fertilizer input, and (ii) the interplay of grazing by free-ranging red deer and different 

vegetation processes. The overarching goal of this thesis is to contribute to the 

development of effective and expedient strategies for the conservation of semi-

natural open habitats in order to preserve their biodiversity and ecosystem services in 

times of increasing anthropogenic pressure on ecosystems (European Environment 

Agency 2015c; Jones et al. 2018). 

In three chapters, this thesis addresses the following research issues:  

In the face of the widely enhanced soil nutrient status today, especially in terms of 

phosphorus, Chapter 1 focuses on the question how gradients in phosphorus and 

other soil chemical parameters that naturally occur in unimproved open habitats 

relate to plant species community composition and richness. The results allow for the 

identification of the soil chemical parameters with the most decisive influence on 

plant communities in semi-natural grasslands and heathlands, respectively. These 
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findings are used to give habitat-type specific recommendations for conservation 

management in order to prevent future deterioration of habitat quality related to 

human-induced changes in soil chemical parameters.  

Chapter 2 shifts the focus to the dynamics of vegetation productivity, forage quality 

and forage removal by red deer, which were assessed over three years. Whether 

grazing by free-ranging red deer is compatible with the grazing requirements of 

different semi-natural open habitats is evaluated based on detailed information on 

annual and seasonal biomass productivity and removal by red deer. Forage quality 

data are linked to forage removal by red deer in order to reveal potential synergistic 

effects between wildlife grazing and additional grassland management measures. 

Chapter 3 investigates how plant species richness, diversity, community composition 

and vegetation structure in grasslands and heathlands respond to the experimental 

exclusion of wild and free-ranging red deer. The vegetation development is 

compared between open and fenced plots to evaluate whether grazing by wild red 

deer contributes to the preservation of the characteristic plant communities in 

different semi-natural open habitats. Reduced plant diversity in grasslands following 

red deer exclusion and different indications of beginning succession in fenced plots 

in both habitat types substantiate the suitability of grazing by wild red deer as an 

alternative conservation management approach. 

Finally, this thesis concludes with a General Discussion of the key findings, putting 

the merits and limitations of grazing by wild red deer into a broader conservation 

context. A special attempt will be made to assess the transferability of grazing by red 

deer as practised in GTA to other areas with open habitats of conservation interest. 
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Abstract 

Background: Increased soil phosphorus (P) caused by agricultural intensification has 

been associated with decreased plant species richness (SR) in central Europe. How 

plant communities and soil P gradients are related in unimproved open habitats 

remains unclear. 

Aims: The aim of this article was to characterise the relationship between soil 

chemical parameters and plant species composition and richness in unimproved 

open habitats. 

Methods: The influence of soil chemical parameters (pH, P, K, Mg) on species 

composition was assessed, using data from 40 heathland and 54 grassland plots, by 

non-metric multidimensional scaling and permutational multivariate analysis of 

variance. The relationship between soil chemical parameters and SR was tested by 

linear mixed effects models. 

Results: A direct relationship between heathland community composition and pH was 

observed, explaining 10% of variation in species composition, while P, Mg and pH 

together explained 17% of variation in grassland composition. In heathlands, SR 

increased with increasing pH, whereas in grasslands, SR decreased with increasing 

soil P. 

Conclusions: Soil chemical parameters were substantially related to plant community 

composition and richness. In an area spared from a century of agricultural 

intensification, reduced pH appeared to constrain SR in heathlands, while even slight 

P increases (< 10 mg kg-1) depressed plant SR in semi-natural grasslands. 

 

Keywords 

Acidification; Ellenberg indicator values; military training area; Natura 2000; open 

habitat conservation; plant community composition; plant functional strategies 

 

Introduction 

Increasing soil phosphorus (P) is generally related to decreasing plant species 

richness, for instance in forests (Dumortier et al. 2002; De Keersmaeker et al. 2004; 

Dorrough et al. 2006) and different grassland systems (Janssens et al. 1998; Critchley 

et al. 2002; Marini et al. 2007; Gilbert et al. 2009; Hejcman et al. 2010; Ceulemans et 

al. 2013). This can be explained by increased growth of competitive species (Grime 

1979) at higher P availability levels and resulting exclusion of less productive species 

via light competition (Hautier et al. 2009). It has even been proposed that P rather 

than nitrogen (N)—whose negative effects on plant diversity have been widely 

reported (e.g. Zechmeister et al. 2003; Stevens et al. 2004; Bobbink et al. 2010; Field 

et al. 2014; Tang et al. 2017)—is the main factor associated with species richness (SR) 

and the persistence of endangered plant species in temperate grassland systems 

(Wassen et al. 2005; Ceulemans et al. 2013), but see Soons et al. (2017). 
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In the biogeochemical P cycle, bacteria, fungi and plants incorporate phosphate 

released from weathered primary minerals into biomass, while inorganic P is released 

by the decomposition and mineralisation of organic substances (Cross and 

Schlesinger 1995). In natural systems, usually only a small proportion of the total P, 

mostly derived from soil organic matter, is bioavailable (Stewart and Tiessen 1987). 

For this reason, the use of P fertilisers has been central to agricultural intensification. 

Consequently, since the first inorganic fertilisers were developed by the treatment of 

phosphate rock in the middle of the nineteenth century and especially from the 

1950s onwards (Smil 2000), soil P status in Europe has increased dramatically 

(Barberis et al. 1995; Tunney et al. 2003). Recent studies pointed out that restoring 

pre-industrialised soil P levels can take from several decades up to centuries 

depending on soil properties, successional vegetation and management (MacDonald 

et al. 2012; Schelfhout et al. 2015). 

Little is known about the influence of plant-available P and other soil chemical 

parameters on plant communities of open habitats, such as semi-natural grasslands 

and heathlands, where P levels have not been significantly anthropogenically 

enhanced. Earlier studies usually included agriculturally improved habitats and 

covered a wide geographical range, differences in management or different soil and 

vegetation types. This resulted in soil P concentrations spanning up to several orders 

of magnitude and different shapes (e.g. hump-shaped or negative exponential) of the 

relationship between soil P and SR (Table S1). How the natural low-level variation in 

soil P that is not governed by agricultural input relates to plant species composition 

and richness within different open habitat types still needs to be explored. 

As few unimproved areas remain in central Europe (Hodgson et al. 2005), we 

selected a study area differing from the surrounding landscape to fill this knowledge 

gap. We took advantage of the fact that military land use generally precludes 

intensive agriculture but also requires the maintenance of open habitats. That military 

training areas can have high nature conservation value has already been recognised, 

for instance regarding plants and butterflies (Cizek et al. 2013), grasshoppers and 

ground beetles (Warren and Büttner 2008a) or amphibians (Warren and Büttner 

2008b). In our study area, Grafenwöhr military training area (GTA) in Bavaria, 

Germany, regular agricultural land use had stopped more than 100 years ago, leading 

to a soil which has remained unaffected by intensive agriculture. We focused on the 

two most important open habitat types within GTA, the Natura 2000 habitat types 

European dry heaths (hereafter ‘heathlands’) and lowland hay meadows (hereafter 

‘grasslands’). Conservation interest in both of these habitats is high, because they 

have been facing a rapid decline throughout Europe since the twentieth century 

(European Environment Agency 2015). Our interest lay mainly in the within-habitat 

gradients in soil chemical parameters and their relationship with plant species 

composition and richness and not in comparing the inherent habitat-type–specific 

differences in nutrient availability (very low in heathlands, higher in grasslands) or 

species composition. Therefore, we addressed heathlands and grasslands separately in 

multivariate and univariate analyses. We measured soil P, potassium (K), magnesium 

(Mg) and pH. Other factors relevant to plant community composition and SR (e.g. 

water and N availability) were included by analysing ecological and functional 
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gradients in Ellenberg indicator values (EIV; Ellenberg and Leuschner 2010) and 

species strategy types according to Grime (1979). 

As our study area did not receive nutrient input via fertilisation in the twentieth 

century, we anticipated a comparably low soil P status. We expected that, in contrast 

to the generally established negative species richness–soil P relationship, a positive 

relationship between plant SR and soil P might occur under such conditions. We 

hypothesised that plant species with higher P requirements would be absent where 

plant-available P concentrations fell below a certain threshold (Tilman 1982), below 

which only species tolerating the stress of nutrient deficiency could persist. As a 

consequence, the relationship between SR and soil P would be hump-shaped—

similar to the proposed unimodal diversity–productivity relationship (Grime 1979; 

Fraser et al. 2015). Specifically, in our study, we hypothesised that (1) when plant-

available soil P concentration was extremely low, P could have a positive effect on 

plant species richness, but the relationship would become negative when P 

availability increased, i.e. the species richness–soil P relationship would be hump-

shaped; (2) increasing soil P would be accompanied by a shift in plant community 

composition towards more competitive and less stress-tolerant plant species. We 

expected that hypotheses (1) and (2) would hold true within both semi-natural 

heathlands and grasslands. 

Materials and methods 

Study area 

The study was conducted on the GTA in Bavaria, Germany (centred at 49° 40’ 

56’’ N, 11° 47’ 20’’ E; Figure S1), a United States Army Garrison since 1947. GTA 

lies at 450 to 500 m above sea level in the Upper Palatine–Upper Main Hills region 

(or Oberpfälzisch-Obermainisches Hügelland in German), the western part bordering the 

Franconian Jura upland. Long-term annual averages of temperature and precipitation 

(1981–2010, mean ± SE of four weather stations of the German Weather Service 

(Deutscher Wetterdienst, DWD) in the immediate vicinity) are 8.3 ± 0.04 °C and 

701 ± 4 mm, respectively. GTA covers ca. 230 km2 with 134 km2 of forest and 

95 km2 of different open habitat types. 

The older part of GTA (almost 100 km2) was acquired by the Bavarian Military 

administration between 1907 and 1909. Further 140 km2 were added to the western 

part of the area in 1938/39. Today, 85% of GTA are included in the Natura 2000 

network. Open land areas on GTA are mainly used as artillery firing points, which 

implies occasional intensive vehicle traffic. In the 1960s and 1970s, intensive training 

with heavy vehicles led to the destruction of vegetation cover and severe soil 

compaction over large areas. Subsequent landscape restoration measures included 

loosening of soils and tree planting and reseeding with common agricultural 

grassland seeds. In recent decades, reseeding was limited to extremely deteriorated 

areas and seeds contained local plant species (Table S2). From the start of the 

military land use, no fertiliser has been applied. Regular open land management 

includes mowing of meadows by local farmers at the beginning of July after the main 
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flowering phase of grasses and grazing by wildlife, especially by abundant red deer 

(Cervus elaphus). 

Field sampling 

Vegetation surveys were conducted in two different open habitat types (Figure S1), 

both protected under the European Habitats Directive. We selected 10 heathland 

sampling sites representing the habitat type 4030, European dry heaths (total area on 

GTA: 463 ha) belonging to the Vaccinio-Callunetum vulgaris association, occurring on 

Triassic sandstone and dystrophic sandy soils in the eastern part of GTA. In the 

western third of GTA, characterised by calcareous soils derived from Jurassic 

limestone sediments (Warren and Büttner 2008a), we selected nine grassland 

sampling sites within the habitat type 6510, lowland hay meadows (total area on 

GTA: 340 ha) belonging to the Arrhenatherion elatioris vegetation alliance. For reasons 

of safety and to avoid frequently disturbed areas, the main ordnance impact areas 

covering the south-eastern part of GTA were excluded from the sampling scheme. 

Selection criteria for sampling sites were (1) an approximate area size of at least 1 ha 

(0.5 ha in heathlands); (2) the habitat type-specific species composition based on the 

Bavarian monitoring scheme for Natura 2000 habitats (Lang and Zintl 2010). 

Elevation of heathland sites ranged between 438 and 500 m, while grasslands were 

distributed between 422 and 536 m. According to the German Federal Forests 

Division, soil moisture in heathlands was categorised as ranging from moderately dry 

to moderately and periodically wet, while grasslands were moderately moist or 

moderately periodically wet (Bundesanstalt für Immobilienaufgaben 2003). The 

sampled sites had not been reseeded for at least 20 years. 

At each sampling site, four (heathlands) or six (grasslands) plots of 5 m × 5 m in size 

were selected based on floristic homogeneity between and within the plots at each 

sampling site. The plots were surveyed by the same person between June and July 

2014 (grasslands) and between the end of July and end of September 2014 

(heathlands). One heathland and one grassland site each was visited in 2015. In total, 

40 heathland and 54 grassland plots were recorded. 

From the total aboveground plant biomass (100%), the relative biomass contribution 

of each plant species was visually estimated (Klapp 1965). Nomenclature follows 

Jäger (2011) for plants and Mucina et al. (2016) and Rennwald (2000) for vegetation 

types. Some species of the species-rich Alchemilla genus could not be identified with 

certainty and were collectively recorded as Alchemilla species. The same holds true for 

sp. of the taxa Crataegus, Hieracium, Leontodon, Ononis and Silenoideae. The following 

plot characteristics were recorded: percent cover of vascular plants (cover), average 

height of herbaceous canopy (canopy height) as well as the ratio of relevant 

functional groups (FG ratio), i.e. grasses to forbs including legumes in grasslands and 

woody to herbaceous vegetation in heathlands. Percent cover and species 

composition of the cryptogam layer were recorded but not included in further 

analyses. Soil samples to a depth of 10 cm were taken with a Pürckhauer soil corer, 

which was randomly inserted into the soil 10 times per plot. 

Soil samples were analysed for extractable P, K and Mg concentrations and pH, 

following German agricultural standard soil analysis (LUFA Nord-West 2017). P and 
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K were extracted according to the calcium-acetate−lactate (CAL) method (Schüller 

1969; Hoffmann 1991) and Mg was extracted with calcium chloride (CaCl2). Soil pH 

was determined in a 0.01 M CaCl2 solution (Hoffmann 1991). The elemental 

concentrations were determined by inductively coupled plasma optical emission 

spectrometry (iCAP 6300 DUO ICP OMS, Thermo Fisher Scientific, Waltham, MA, 

US). All information on plant species biomass percentages and plot characteristics 

are supplied as supplementary data files. 

Data analyses 

For all data processing and statistics, we used R version 3.1 (R Core Team 2015). SR 

was calculated as the number of vascular plant species per plot. To characterise the 

ecological requirements and functional strategy of each plant species recorded, we 

used EIV (Ellenberg and Leuschner 2010) for soil moisture (EF), soil reaction (ER) 

and soil nutrient availability (EN), and strategy types according to Grime (1979). Plant 

species’ strategy types were converted to a numeric CSR signature (C – competitive 

strategy, S – stress-tolerant strategy, R – ruderal strategy) as described by Hunt et al. 

(2004). For each plot, we then calculated the average value of each EIV or strategy 

type weighted by each species’ relative biomass contribution to total biomass. 

Our statistical analyses at habitat-type level took four steps: (1) the general variation 

in species composition; (2) the relationship between soil chemical parameters and 

species composition; (3) the relationship between soil chemical parameters and SR; 

(4) Pearson correlations between EIV or CSR-signature components and SR or 

soil P. 

First, we explored the variation in vegetation composition within each habitat type 

using non-metric multidimensional scaling (NMDS; Minchin 1987) implemented in 

the R package vegan (Oksanen et al. 2015). We used the Bray–Curtis index as 

dissimilarity measure. The Kulczyński dissimilarity measure yielded qualitatively 

similar results. The NMDS process included Wisconsin double standardisation of 

square-root–transformed raw data. In order to facilitate comparisons between the 

two investigated habitat types, NMDS plots were rotated, so that the pH gradient 

paralleled the first NMDS axis. We examined vegetation responses to soil chemical 

parameters and plot-specific ecological characteristics by fitting linear trends as well 

as non-parametrically smoothed surfaces (Virtanen et al. 2006). The significance of 

vectors was tested by 10,000 permutations. Significance of surfaces was tested by 

generalised additive models (GAMs) in the mgcv package (Wood 2016). A separate 

smooth term was used to fit sampling site as random effect and variance structures 

were specified if necessary to account for heteroscedastic within-group errors. In the 

grassland GAMs, soil P and Mg were log-transformed. 

Second, we tested relationships between soil chemical parameters and vegetation 

community composition by permutational multivariate analysis of variance 

(PerMANOVA). We transformed species biomass percentages of heathlands and 

grasslands analogously to the NMDS process and applied the function adonis 

(Anderson 2001) on the Bray–Curtis distance matrices. To account for the lack of 

independence of plots, we constrained permutations (n = 10,000) within sampling 

sites. 
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Third, we assessed the relationship between soil chemical parameters and plant SR 

using linear mixed effects (LME) models in the package nlme (Pinheiro et al. 2015). 

Sampling site was included as a random intercept. All explanatory variables were 

centred at zero mean and scaled to 0.5 standard deviation prior to analysis (Grueber 

et al. 2011), which allowed to directly compare the magnitudes of their effects. To 

allow for hump-shaped SR relationships (Hypothesis 1), we added quadratic terms of 

the soil nutrients (P, K, Mg). Normality of residuals of the global model was checked 

by visual inspection of quantile-quantile plots and Shapiro–Wilk test (heathlands: 

p = 0.700; grasslands: p = 0.913). The homogeneity of variance was assessed based 

on plots of residuals vs. fitted values and residuals vs. predictors (Zuur et al. 2009). 

Variance inflation factors for each parameter in the global model were well below 5 

(Table 3); therefore, we could largely exclude multicollinearity as a confounding 

factor to our results (Dormann et al. 2013). We ranked all models nested in the 

global model according to the second-order Akaike information criterion (AICc 

accounting for small sample size using the MuMIn package (Barton 2016)). 

According to Nakagawa and Schielzeth (2013), we expressed the variance explained 

by fixed and random effects as conditional coefficient of determination (R(c)
2) and the 

variance explained by fixed effects alone as marginal coefficient of determination 

(R(m)
2). As no single model reached strong support, i.e. no Akaike weight (the 

probability of a model to be the actual best model (Wagenmakers and Farrell 2004)) 

wi ≥ 0.9, we carried out multimodel averaging to overcome model selection 

uncertainty (Burnham and Anderson 2002). We averaged weighted parameter 

estimates over the set of models with cumulative Akaike weight, acc wi, ≤ 0.95. This 

set of models could be interpreted as 95% confidence set to the best approximating 

model (Burnham and Anderson 2002). For each parameter, we estimated the relative 

importance as the sum of Akaike weights over all models including the explanatory 

variable in the 95% confidence set. Relative importance ranged from 0% (parameter 

not given in any model in the confidence set) to 100% (parameter appears in all 

models of the confidence set). We visualised the model-averaged effects of the most 

important variables (pH and P) on plant SR keeping potential other parameters 

constant at their mean. Finally, we calculated Pearson correlation coefficients to 

evaluate whether EIV or the distribution of plant CSR-strategy types correlated with 

SR and whether CSR-strategy types correlated with soil P. 

Results 

On average, we found 14.1 ± 0.8 (mean ± standard error) vascular plant species per 

25 m2 in heathlands and 45.9 ± 0.8 species in grasslands. The total number of species 

was 67 in heathlands and 154 in grasslands (Table S3). Twenty of the plant species 

occurred in both habitats. 

Site conditions 

Edaphic conditions differed considerably between heathland and grassland sites 

(Table 1). Soil pH in heathlands was acidic (pH 3.3–4.7), whereas pH in grasslands 

ranged from moderately acidic (pH 4.8) to neutral (pH 6.8). P and Mg concentrations 

were generally lower in heathlands (0.7–10.5 mg P kg-1; 21.1–66.7 mg Mg kg-1) than 
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Table 1: Summary of soil chemical parameters averaged over 40 heathland plots and 54 

grassland plots, Grafenwöhr military training area (GTA) in Bavaria, Germany. Values for P 

(CAL), K (CAL) and Mg (CaCl2) are given in mg kg-1 top soil dry matter; pH was measured 

in CaCl2.  

 

Heathlands Grasslands 

Parameter Min Max Mean SEM Min Max Mean SEM 

pH 3.3 4.7 3.9 0.04 4.8 6.8 5.7 0.06 

P 0.7 10.5 4.2 0.30 4.6 28.8 11.7 0.74 

K 20.3 84.7 47.3 2.72 28.6 85.3 52.1 1.84 

Mg 21.1 66.7 39.2 1.74 50.4 439.0 139.1 11.39 

 

in grasslands (4.6–28.8 mg P kg-1; 50.4–439.0 mg Mg kg-1) but habitat types 

overlapped in their ranges of P concentration. K availability was similar in heathland 

(20.3–84.7 mg K kg-1) and grassland soils (28.6–85.3 mg K kg-1). In general, 

heathland plots were characterised by lower vascular plant cover and canopy height 

relative to grasslands. Cryptogams were present in all but one heathland plots and in 

48 out of the 54 grassland plots ranging in percent cover from 2% to 40% and from 

0.04% to 50%, respectively. In heathlands, the typical moss species Pleurozium schreberi 

and Hypnum cupressiforme as well as different lichens of the Cladonia genus were 

abundant. In grasslands, common moss species (Brachythecium rutabulum, 

Rhytidiadelphus squarrosus and Cirriphyllum piliferum) occurred. Weighted mean EIV 

indicated that heathland vascular plant communities were composed of species 

adapted to (extreme) acidity, soil infertility and different soil moisture regimes 

ranging from dry to moist, while in grasslands vascular plant species composition 

indicated intermediate fertility, weak acidity and intermediate soil moisture. In 

heathland communities, the R strategy was scarcely represented, while in grasslands 

C, S and R strategy occurred in equal proportions (Table S4). 

Gradients in species composition 

The two-dimensional NMDS analysis of species biomass percentages per plot 

reached a solution with stress of 0.19 for heathlands (linear fit R2 = 0.83, non-metric 

fit R2 = 0.96) and 0.20 for grasslands (linear fit R2 = 0.80, non-metric fit R2 = 0.95). 

See Appendix S1 and Figure S2 for more detailed information on the ordination 

results. 

Using smoothed surfaces to fit non-linear relationships between plot characteristics 

and NMDS scores most often yielded substantially better R2 than using linear 

vectors, especially in heathlands (Table S5). High SR in heathlands was accompanied 

by elevated pH and canopy height (Figure 1(a)). In grasslands, species-rich sites were 

characterised by high pH, high ER and EN and a relatively high share of the C strategy 

component on the one hand and on the other hand by low-to-intermediate cover, 

low EF and reduced share of the R strategy component (Figure 1(b)). 
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Effects of soil chemical parameters on species composition and richness 

We directly tested the relationship of soil chemical parameters with vegetation 

community composition via PerMANOVA. In heathlands, pH was the only soil 

chemical parameter significantly (p < 0.05) related to vegetation composition 

(Table 2). By contrast, grassland species composition was related to pH, Mg and P. 

Of the total variation in species composition, soil chemical parameters significantly 

explained 10% in heathlands and 17% in grasslands. 

For both habitat types, models explaining vascular plant SR based on soil chemical 

parameters (pH, P, K and Mg) yielded high goodness-of-fit, with a substantial 

amount of variance explained by the fixed effects. The explained variance was higher 

in heathlands (Table S6; R(m)
2 and R(c)

2 of models in the 95% confidence set ranged 

between 0.51 and 0.56 and 0.68 and 0.73, respectively) than in grasslands (R(m)
2 and 

R(c)
2 ranged between 0.27 and 0.44 and 0.37 and 0.50, respectively). The relative 

variable importance was highest for pH in heathlands and for P followed by pH in 

grasslands (Table 3). 

Evidence was strong (i.e. the 95% confidence interval of these coefficient estimates 

did not bracket zero) for a steep increase of SR with pH in heathlands and a steep 

decrease of SR with soil P in grasslands, especially for low levels of P (CAL-

P ≤ 10 mg kg-1, Table 3, Figure 2). In grasslands, the positive effect of pH on SR was 

weaker than in heathlands and less evident (the 95% confidence interval of the 

coefficient estimate slightly overlapped with zero). Soil P was not related to plant SR 

in heathland plots. The apparent mismatch between the patterns of the heathland 

observations and the predicted P effect in Figure 2(b) stemmed from a significant 

negative correlation between heathland soil pH and P (Pearson r = −0.42, p = 0.008).  

 

Table 2: Results of the PerMANOVA analyses on the relationship between soil chemical 

parameters and vegetation composition in heathlands and grasslands, Grafenwöhr military 

training area (GTA) in Bavaria, Germany. Each variable was used as final explanatory 

variable after all the others in the model. R2 shows each variable’s share of the total variation 

in the dataset. 

Model Parameter df F-value R2 pa 

Heathlands P 1 2.87 0.06 0.070 

 

pH 1 5.01 0.10 0.024 

 

Mg 1 1.88 0.04 0.080 

 

K 1 1.47 0.03 0.359 

 Residuals  35   0.71  

Grasslands P 1 2.69 0.04 0.004 

 

pH 1 4.84 0.08 0.023 

 

Mg 1 3.26 0.05 0.022 

  K 1 1.26 0.02 0.176 

 Residuals 49  0.78  

aBold type face indicates statistical significance (p < 0.05) 
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Removing the outlying maximum value of heathland soil P did not qualitatively 

change the results. In grasslands, soil pH and P did not correlate (Pearson r = 0.06, 

p = 0.666). 

 

 

Figure 1: NMDS ordination (cf. Figure S2) of sampling sites in (a) heathlands and (b) 

grasslands, Grafenwöhr military training area (GTA) in Bavaria, Germany, with significant 

(p < 0.05, cf. Table S5) regression surfaces and/or vectors of plot characteristics (SR, species 

richness; pH, soil pH-value; Mg, soil Mg concentration [mg kg-1]; FG ratio, ratio of 

functional groups, i.e. woody to herbaceous vegetation in heathlands and grasses to forbs 

incl. legumes in grasslands; canopy height, average height of herbaceous canopy; cover, 

percent cover of vascular plants; biomass percentage weighted averages of Ellenberg 

indicator values (EIV) and CSR-signature components – EF, EIV for soil moisture; ER, EIV 

for soil reaction; EN, EIV for soil fertility; R strategy, ruderal; S strategy, stress-tolerator; 

C strategy, competitor). Grey circles represent plot scores. 
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Table 3: Soil chemical parameters determining vascular plant species richness, Grafenwöhr 

military training area (GTA) in Bavaria, Germany. Results of model-averaging based on 

separate linear mixed effects models for heathlands and grasslands including relative 

importance, model-averaged standardised coefficients, lower and upper bound of 95% 

confidence interval (CI) and variance inflation factor (VIF) for the global model. 

Model Parameter 

Relative 

importance (%)a 

Averaged 

estimateb 

CI 

VIF Lower Upper 

Heathlands  pH 100 7.67 4.68 10.66 1.79 

 Mg 35 0.59 -1.75 2.93 3.21 

 K2 27 0.59 -2.63 3.81 1.45 

 K 22 0.22 -1.46 1.91 2.62 

 P2 22 0.16 -1.13 1.44 1.46 

 Mg2 21 -0.25 -2.22 1.72 1.97 

 P 17 -0.04 -1.34 1.25 1.80 

Grasslands P 100 -8.85 -15.58 -2.11 4.98 

 pH 90 3.31 -0.27 6.88 1.22 

 P2 71 3.33 -2.30 8.97 3.75 

  K2 66 3.26 -3.02 9.54 1.37 

 K 43 1.02 -2.14 4.18 1.41 

 Mg 20 0.06 -1.88 2.00 3.03 

 Mg2 20 -0.01 -1.53 1.51 2.61 

aThe importance of each variable (sum of AICc weights) within the 95% confidence set of all 

possible models 

bCoefficient averaged over the 95% confidence set of all models 

 

Correlation tests largely confirmed the SR patterns arising from the NMDS in 

grasslands (Table 4). We furthermore found significant positive correlations between 

heathland SR and EF, ER, EN and R strategy, which were not obvious from the 

NMDS because of the non-linear or very short gradients. The R strategy was 

negatively associated with soil P in heathlands and the S strategy correlated negatively 

with soil P in grasslands. 

Discussion 

Our investigation of semi-natural heathlands and grasslands on a military training 

area in southern Germany showed that soil chemical parameters accounted for a 

considerable amount of the variability in species composition and richness in both 

habitats. This result is remarkable since within-habitat gradients in edaphic factors 

were short. Out of the edaphic factors examined, soil pH was clearly the main 

determinant for plant community composition and SR in heathlands, whereas 

grassland SR was mainly driven by soil P. Moreover, SR per plot was three times 

lower on average in heathlands than in grasslands harbouring more than twice as 
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many plant species as the regional average (19.4 species per 25 m2 in grasslands in 

Bavaria (Kuhn et al. 2011)). 

Site conditions 

In terms of soil pH, heathlands and grasslands were clearly separated, with strongly 

acidic soils in heathlands and moderately acidic to almost neutral soils in grasslands. 

Availability of P and Mg, but not of K, was lower in heathlands than in grasslands. 

According to extensive vegetation surveys reported by Klapp (1965) dating back to 

the beginning of the twentieth century, soil P concentration in heathland habitats 

averaged 7.0 mg P kg-1 (P determination using the double lactate method of Egnér et 

al. (1960)), which is corresponding to about 3.7 mg CAL-P kg-1 based on Steffens et 

al. (2010). For typical Arrhenatherum grasslands, Klapp (1965) reported average soil P 

concentrations of 28.4 mg kg-1 (corresponding to ca. 15.2 mg CAL-P kg-1). The P 

status of the soils in the present study thus agrees with the habitat characterisations 

derived from similar habitats about 100 years ago. 

Main edaphic factors influencing plant species composition and richness in heathlands 

Compared to the strong relationship between soil pH and plant species composition 

and richness in heathlands, the influence of the other soil chemical parameters 

examined was negligible. That soil pH is the driving force behind patterns of SR in 

heathland systems has been observed throughout different European heathland areas 

(De Graaf et al. 2009). In the Netherlands, heathland acidification was closely related 

to reduced SR and diversity, while other soil chemical parameters were less important  

 

 

Figure 2: Relationships between vascular plant species richness (SR) and soil pH in (a) 

heathlands and (c) grasslands and between plant SR and soil P concentration in (b) 

heathlands and (d) grasslands, Grafenwöhr military training area (GTA) in Bavaria, Germany. 

Lines and ribbons show the predictions (±95% confidence interval) based on model-

averaged coefficient estimates along the range of observed pH or P values when all other 

model parameters were held constant at their mean. Solid and dotted lines indicate strongly 

(i.e. 95% confidence interval does not include zero) and weakly supported effects (cf. 

Table 3), respectively. Circles represent observations. 
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Table 4: Pearson correlation coefficients (r) between species richness (SR) and Ellenberg 

indicator values (EIV) or CSR-signature components (EF, EIV for soil moisture; ER, EIV for 

soil reaction; EN, EIV for productivity; R strategy, ruderal; S strategy, stress-tolerator; C 

strategy, competitor) and between soil phosphorus (P) and CSR-signature components in 

heathlands and grasslands, Grafenwöhr military training area (GTA) in Bavaria, Germany. 

  

Heathlands Grasslands 

Parameter 1 Parameter 2 r pa r pa 

SR EN 0.48 0.002 0.28 0.043 

SR EF 0.39 0.013 -0.51 <0.001 

SR ER 0.47 0.002 0.34 0.013 

SR C strategy -0.28 0.080 0.30 0.029 

SR S strategy 0.19 0.232 0.06 0.652 

SR R strategy 0.32 0.043 -0.41 0.002 

P C strategy 0.03 0.858 0.18 0.188 

P S strategy 0.12 0.446 -0.37 0.006 

P R strategy -0.39 0.012 0.11 0.435 

aBold type face indicates statistical significance (p < 0.05) 

  

(Roem et al. 2002). A serious problem from the conservationist point of view is that 

endangered species disappear in soils at pH(H2O) < 5 (Roem and Berendse 2000; Van 

Den Berg et al. 2005). 

Contrasting the pH effects on SR in heathlands and in grasslands (for which 

evidence was limited; Table 3; Figure 2(a,c)) revealed that the vegetation responded 

more strongly to a one unit change in pH in the acidic than in the rather neutral pH 

range, which can be attributed to the logarithmic character of the pH scale. Although 

pH does not have a limiting effect on plants per se, it alters nutrient availability 

(Roem and Berendse 2000). For example, the solubility of soil P and its availability to 

plants depend on pH (Barrow 2017). The effectiveness of methods measuring 

extractable soil P as indicator for plant-available P, however, may itself be influenced 

by pH (Holford 1997; Wuenscher et al. 2015). The CAL-method used for P 

extraction in the present study is known for potentially underestimating the actual 

plant-available P in acidic soils (Schüller 1969; Wuenscher et al. 2015). The observed 

negative correlation between pH and soil P in heathlands thus might have been less 

pronounced if the soil test method employed was unbiased by pH. Even more 

important in terms of SR is that reduced pH induces toxic effects of aluminium (Van 

Den Berg et al. 2005) and ammonium (Rout et al. 2001; Roem et al. 2002). Only few 

plant species, such as Calluna vulgaris (De Graaf et al. 1997) or Deschampsia flexuosa 

(Van Den Berg et al. 2005), can tolerate these toxic conditions and persist under 

extreme soil acidity. In the NMDS ordination, these acidophilous species were 

located in the left part of the ordination space associated with reduced pH and SR, 

whereas basidophilous species sensitive to aluminium toxicity (characterised by 
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ER > 6 (Ewald 2003)), such as Lotus corniculatus or Linum catharticum, were located in 

the right part of the ordination space (Figures 1, S2). 

We found no evidence that soil CAL-P affected heathland plant SR (Figure 2(b)), 

which might also be related to the short soil P gradient in this habitat type (ranging 

from 0.7 to 10.5 mg kg-1). Consequently, we cannot support our Hypothesis (1) that 

P can have a positive effect on plant SR when P availability is low. 

Main edaphic factors influencing plant species composition and richness in grasslands 

Soil pH and the concentrations of Mg and P influenced grassland species 

composition (Table 2 and Figure 1). While the significant effects of soil pH and Mg 

became obvious in the two-dimensional NMDS ordination, the effect of P on 

grassland species composition was only revealed by the direct analysis of the distance 

matrix in PerMANOVA. 

Grassland SR, however, did not significantly respond to any factor but soil P. We 

know about the adverse effect of enhanced P availability on grassland diversity from 

studies in intensively used and semi-natural areas and also from fertilisation 

experiments (Crawley et al. 2005; Hejcman et al. 2010). The present study allows 

expanding our knowledge on agriculturally unimproved areas with inherently low P 

availability. Since the various approaches to determine plant-available P applied in 

current research assess different P pools and are differently affected by soil 

properties, such as pH, carbonate content or texture, they can highly differ in 

extraction yield (Wuenscher et al. 2015). To facilitate the comparison between 

studies, we used a conversion factor of 1.45 (based on Barberis et al. 1995; 

Wuenscher et al. 2015) to provide approximate values converted from Olsen-P to 

CAL-P. Regarding lowland hay meadows across Europe, Ceulemans et al. (2014) 

identified a log-linear decrease of SR with increasing soil P up to Olsen-P of 

124 mg kg-1 (ca. 180 mg CAL-P kg-1), above which plant diversity remained at a 

constantly low level. This threshold is about six times higher than the maximum 

CAL-P concentration we observed in grasslands. Olsen-P concentrations >15 mg l-1 

(ca. 30 mg CAL-P kg-1 assuming a bulk density of 1.4 g cm-3) are considered as an 

indication of anthropogenic P enrichment (Critchley et al. 2002), whereas the highest 

chance for the restoration of species-rich grasslands is anticipated where Olsen-P 

concentrations do not exceed 10 mg kg-1 (ca. 14.5 mg CAL-P kg-1; (Gilbert et al. 

2009)). Our study shows that even slight increases in soil P are associated with a 

reduction of SR in low-P–level grasslands, underlining not only the potential nature 

conservation value of historically unimproved grasslands but also their susceptibility 

to any increase in nutrient status. We could not confirm our Hypothesis (1) that plant 

diversity might be limited by extremely low P availability in grasslands. While we did 

not detect any significant relationship between plant SR and soil P (ranging from 0.7 

to 10.5 mg CAL-P kg-1) in heathlands, the relationship was negative in grasslands, 

where CAL-extractable P was higher (ranging from 4.6 to 28.8 mg kg-1). There was 

no evidence for a hump-shaped relationship between SR and soil P. This is in 

contrast with different reports of plant SR peaking along the P availability gradient 

(Table S1). Combining our results from heathlands and grasslands suggests that the 

effect of P at the within-habitat scale depends on the habitat type: while SR in 
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heathlands was not influenced by soil P, grasslands exhibited a substantial decrease in 

SR with increasing P. Alarmingly, grassland SR decreased most steeply with 

increasing P at the lower end of the soil P range studied. 

While pH could explain a higher share of the variation in grassland species 

composition than the other edaphic factors examined, we found only minor evidence 

for a slightly positive relationship between pH and grassland SR. Previous studies 

reported inconsistent results on the importance of soil pH for grassland diversity. 

Janssens et al. (1998) did not find a clear relationship between pH and SR in 

grasslands and attributed this to the influence of pH on nutrient availability. 

Ceulemans et al. (2013) documented a weak positive relationship between pH and 

grassland SR, as well as Critchley et al. (2002), but the latter underlined that in 

mesotrophic grasslands SR did not depend on soil pH. They supposed that pH was 

more important for explaining differences in SR between broader vegetation types 

than between subunits within one vegetation type, which is in accord with the 

heathlands (low SR) vs. grasslands (high SR) dichotomy in the present study. 

Additional soil–vegetation relationships 

Our results did not support pronounced relationships between soil Mg or K 

concentration and SR in neither heathlands nor grasslands. Similarly, from grasslands 

in British Environmentally Sensitive Areas, only weak relationships between soil-

extractable K and Mg concentrations and SR are reported (Critchley et al. 2002). 

Grassland species composition, however, was affected by Mg (Table 2, Figure 1(b)). 

In the ordination of grassland plots, the directional trends of both pH and Mg 

pointed in the same direction, which might relate to the reduced Mg uptake in plants 

under acidic conditions (Mayland and Wilkinson 1989). That Mg can have a 

considerable impact on grassland species composition, but not necessarily on SR, 

was shown by a long-term fertilisation experiment as well (Hejcman et al. 2010). In 

heathlands, we did not observe a significant Mg effect on species composition nor a 

similar coincidence of increasing pH and Mg, probably due to the low variation in 

heathland soil Mg concentration. 

Regarding soil K, we did not find distinct relationships with species composition or 

richness. The average K concentration in the present study was about six times lower 

than the threshold of 300 mg K kg-1 dry soil above which a decrease in SR can be 

expected (Janssens et al. 1998). To the observation that high grassland diversity is 

compatible with moderately high soil K (Janssens et al. 1998; Marini et al. 2007), we 

can hence add that under zero-input conditions, an increase in K from low 

(minimum ca. 20 mg CAL-K kg-1; cf. Table 1) to intermediate levels (maximum ca. 

85 mg CAL-K kg-1) does not affect plant SR in open habitats. 

Functional gradients in species composition 

We employed EIV and Grime’s functional strategy types as vegetation-derived 

indicators to identify environmental and functional gradients in heathland and 

grassland communities. In particular, for lack of a soil test method for plant-available 

N reliable at low levels of available N (Schimel and Bennett 2004), we made use of 

EN, which is regarded as an integrative indicator for overall soil fertility and resulting 
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productivity (Schaffers and Sýkora 2000). Böcker et al. (1983) defined mean EIV for 

southern German plant communities described by Oberdorfer (1957). In comparison 

with these literature values for hay meadows (Arrhenatherion, EF: 5.2, ER: 5.8, EN: 4.3), 

the mean EIV of the plots we surveyed in grasslands were equal for EF, slightly lower 

for ER and markedly lower for EN. For the mean ER and EN of the heathland plots, 

the differences to the mean values of southern German dry heaths (Calluno-

Vaccinietum, EF: 5.2, ER: 2.4, EN: 2.6) were even more pronounced. Since several 

studies have found a long-term increase in EN for grasslands (Haines-Young et al. 

2003; Bennie et al. 2006; Duprè et al. 2010; Wesche et al. 2012), we would rather 

have expected an increase in EN given the time lag between the surveys of 

Oberdorfer (1957) and the present study. Therefore, we can assume that nutrient 

enrichment from atmospheric deposition (modelled as 11–13 kg N ha-1 at GTA in 

2009 (Umweltbundesamt 2011; Kruit et al. 2014)) probably has not much affected 

vegetation communities on GTA during the last decades. However, even though the 

modelled annual N deposition for GTA is less than the average European N 

deposition of 17 kg ha-1 (Stevens et al. 2004), and is below the critical load for low 

and medium altitude hay meadows (20–30 kg N ha-1 year-1; Bobbink and Hettelingh 

(2011)), it already falls into the critical load range of N deposition for dry heaths (10–

20 kg N ha-1 year-1). Considering the complex and long-term impacts of increased N 

inputs to dry heaths (Härdtle et al. 2009; Bobbink and Hettelingh 2011; Fagúndez 

2012; Southon et al. 2013), paying attention to further N deposition in this habitat is 

recommended, especially since critical N load ranges have recently been criticised for 

being too high to prevent significant N deposition-induced community 

compositional change (Wilkins et al. 2016). 

Interestingly, in our study EN and soil P did not correlate (heathlands: Pearson 

r = −0.02, p = 0.924; grasslands: Pearson r = 0.20, p = 0.142; but see Chytrỳ et al. 

(2009)), requiring to consider the general soil fertility as reflected by the plant 

community separately from the concentration of P as a single soil nutrient. In 

contrast to the negative relationship between soil P and SR, it appeared from 

ordination and correlation test results that elevated SR and increased EN co-occurred 

in grasslands (Table 4). As expected in our second hypothesis and in line with 

Critchley et al. (2002), we found that soil P and the S strategy component were 

negatively associated in grasslands, while a direct correlation between S strategy and 

SR was missing (Table 4). Hence, a loss of stress-tolerant plants is not sufficient to 

explain the reduced SR in P-rich plots. In contrast to the finding by Marini et al. 

(2007), elevated SR was associated with an increased share of the C strategy and a 

reduced share of the R strategy. Plants with high competitive ability can exploit 

resources effectively under low levels of stress and disturbance, whereas ruderal 

plants are mostly short-lived species whose seedling establishment depends on 

disturbances (Grime 1979). The disturbance regime on GTA, characterised by 

military training and wildlife activities, might provide favourable conditions for 

ruderal plants, while increasing general soil fertility, as reflected by EN, could 

additionally allow the occurrence of plants with higher competitive ability. That EF 

and SR were negatively correlated might be explained by soils with higher moisture 

content being potentially more susceptible to disturbances. Overall, we can support 
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what Warren et al. (2007) have proposed, i.e. that, owing to the spatially and 

temporally heterogeneous disturbance regime, military training areas can provide 

suitable habitat for the whole continuum of species ranging from disturbance-

dependent to disturbance-averse. 

While we showed that soil P is not a main factor for heathland plant diversity (e.g. 

Figure 2), similar to the pattern in grasslands, SR and EN were also positively 

correlated in heathlands (Table 4), suggesting that slight increases in productivity did 

not compromise SR in dry heaths. This result agrees with a British survey on the 

effects of N deposition stating that in plant communities of acid soils, a reduction in 

richness did not result from competitive exclusion caused by the response of fast-

growing dominants to increased nutrient availability but from soil acidification 

(Maskell et al. 2010). EF in heathlands reflected their broader range of soil moisture 

conditions compared to grasslands and correlated positively with heathland SR, 

suggesting that also water availability could potentially affect heathland plant 

diversity. Regarding the CSR-strategy components, only the R strategy exhibited a 

significant (non-linear) trend in the ordination and correlated positively with soil P 

and SR (Table 4), but its gradient length was minimal. Hence, increasing soil P in 

heathlands did not appear to be related to a decrease in stress-tolerant plants nor to 

an increase in plants with competitive strategy. In heathlands, we thus did not find 

evidence to confirm a relation between soil P and the distribution of plant functional 

strategy types as supposed in Hypothesis (2). 

Conclusions 

We found no support for the existence of a unimodal relationship between soil P and 

SR at the scale of single open habitat types. Despite the long-term absence of 

common agricultural management (including fertilisation) and soil P concentrations 

ranging much lower relative to comparable studies (Table S1), the well-documented 

negative relationship between soil P and grassland SR was confirmed, whereas in 

heathlands evidence for any effect of P was lacking. We assume that even though 

CAL-extractable P in heathlands ranged as low as < 1 mg kg-1, this concentration still 

met the basic requirements of plant species. It has to be kept in mind, however, that 

heathlands, as opposed to grasslands, were governed by strong soil acidity and 

harboured less than half the number of species. Hence, it remains for further studies 

to explore how low-level soil P relates to SR within less acidified heathland habitats 

or acidic grasslands. 

Important practical implications arise from our investigation: based on the 

detrimental influence of reduced pH on heathland plant species, we suggest that 

future efforts for heathland conservation should be mindful of the potential species 

loss caused by further acidification (e.g. resulting from N deposition). Aiming at 

preserving species-rich grasslands, it seems most essential to keep soil P at a low 

level. Our comprehensive results from a long-term zero-input area may prove 

valuable as a reference to evaluate changes in soil–vegetation relationships in open 

habitats driven by the past 100 years of agricultural intensification. 
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Figure S1: Location of the sampling sites in heathlands (10) and grasslands (nine) at 

Grafenwöhr military training area (GTA) in Bavaria, Germany. Each site comprised four 

plots in heathlands and six plots in grasslands, respectively. Shaded areas indicate the 

occurrence of the Natura 2000 habitat types 4030, European dry heaths, and 6510, lowland 

hay meadows, according to the draft of the Natura 2000 management plan (2013/2014) for 

the Site of Community Importance and Special Area of Conservation US-Truppenübungs-

platz Grafenwöhr (DE6336301).   
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Figure S2: NMDS ordination of vascular plant species composition of (a) 40 plots surveyed 

in heathlands and (c) 54 plots surveyed in grasslands. Sampling sites are visualised by shaded 

hulls. The first NMDS axis parallels the soil pH gradient of plots. Individual species scores 

for (b) heathlands and (d) grasslands are shown in the same ordination space. The name of 

the species with the higher abundance was printed (30 species in heathlands, 40 species in 

grasslands) if species’ name tags overlapped; remaining species are represented by ‘+’. See 

Table S3 for abbreviations of species names.  
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Appendix S1: Floristic details to the NMDS results 

The two-dimensional NMDS analysis of species biomass percentages per plot 

reached a solution with stress of 0.19 for heathlands (linear fit R2 = 0.83, non-metric 

fit R2 = 0.96) and 0.20 for grasslands (linear fit R2 = 0.80, non-metric fit R2 = 0.95). 

In most cases, sampling sites were well separated from each other representing the 

spatial nestedness of the data (Figure S2(a) and (c)). The first axis (which was forced 

to parallel the pH gradient constituted by heathland or grassland plots, respectively) 

captured the largest spread of plots in the ordination space. The arrangement of 

species’ optima in both heathlands and grasslands reflects this gradient (Figure S2(b) 

and (d)). 

In accordance with the trends in soil chemical parameters (cf. Figure 1 in the main 

text) the NMDS ordinations allowed to delineate subunits of heathland and grassland 

plant communities. In heathlands, typical species of the Vaccinio-Callunetum Büker 

1941 association, such as Calluna vulgaris and Vaccinium spp., occupy the left part of 

the ordination space. Moving towards the centre, there are species associated with 

the alliance Violion caninae Schwickerath 1944, e.g. Potentilla erecta, Nardus stricta and 

Arnica montana. Species related to mesotrophic grassland communities, e.g. 

Leucanthemum ircutianum, gather on the right side of the ordination space. In the 

ordination of grasslands, species indicating nutrient scarcity scatter from the left to 

the upper right side of the ordination space. While the left is governed by species 

indicative of nutrient-poor siliceous grasslands (Polygalo-Nardetum Oberd. 1957), such 

as Viola canina, more and more representatives of calcicolous grassland communities, 

e.g. Brachypodium pinnatum, appear on the right side of the ordination space. Species 

typical of mesotrophic grassland communities occupy the centre of the ordination 

space and a conspicuous cluster of ruderal plants, e.g. Aphanes arvensis, is located at 

the bottom. 

 



48 Chapter 1 

 

 

Table S1: Information on selected studies and their results reported on the relationship between plant species richness (SR) and extractable soil phosphorus 

(P). n is the number of vegetation plots examined. For the studies that used a different P extraction method than CAL, the approximate CAL-P range (mg kg-1) 

was roughly estimated by CAL-P = Olsen-P * 1.45 (Barberis et al. 1995; Wuenscher et al. 2015) and Olsen-P = EDTA-P * 1.55 (Gilbert et al. 2009). 

P concentrations referring to soil volume (mg l-1) were converted to the unit g kg-1 assuming a soil bulk density of 1.4 g cm-3). Approximate CAL-P values for 

critical soil P concentrations derived from the literature are given in parentheses.  

Study Location Vegetation units Fertilisation 

Mana-

gement 

Plot 

size  n 

P ex-

traction 

method 

Soil P 

range 

Approxi-

mate 

CAL-P 

range 

(mg kg-1) 
Critical soil P 

concentrations  

Shape of 

SR ~ P 

relation-

ship 

Ceulemans 

et al. 2013 

North-

western 

Europe 

(GB, FR, 

BE) 

Violion caninae alliance none extensive 

manage-

ment by 

cutting 

or cut-

ting and 

grazing 

 

4 m2 132 Olsen 0.4−86.1 

mg kg-1 

0.6− 

124.9 

< 20 species per 4 m2 for 

Olsen-P > 20 mg kg-1 

(29 mg CAL-P kg-1) 

negative 

exponen-

tial 

Ceulemans 

et al. 2014 

Europe 

(IE, IM, 

GB, FR, 

BE, NL, 

DE, NO, 

DK, SE) 

Nardus grasslands (Habi-

tat type 6230), lowland 

hay meadows (Habitat 

type 6510), calcareous 

grasslands (Habitat types 

6210 and 2130)  

none extensive 

manage-

ment by 

cutting 

or cut-

ting and 

grazing 

4 m2 501 Olsen 0−305.5 

mg kg-1 

0−442.9 SR at a constant low level 

where Olsen-P > 

104−130 mg kg-1 

(150.8−188.5 mg CAL-P 

kg-1) 

negative 

log-linear 
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Study Location Vegetation units Fertilisation 

Mana-

gement 

Plot 

size  n 

P ex-

traction 

method 

Soil P 

range 

Approxi-

mate 

CAL-P 

range 

(mg kg-1) 
Critical soil P 

concentrations  

Shape of 

SR ~ P 

relation-

ship 

Critchley et 

al. 2002 

GB (14 

environ-

mentally 

sensitive 

areas)  

38 plant communities 

within seven main vege-

tation types (calcareous, 

mesotrophic and acidic 

grasslands, mires, heaths, 

swamps, underscrub) 

 

in most 

cases low or 

absent 

primarily 

grazing 

1 m2 569 Olsen 1.3−82.2 

mg l-1  

2.7− 

166.9 

highest SR at 4−15 mg 

Olsen-P l-1 (8.1−30.5 mg 

CAL-P kg-1) 

humped-

back  

Gilbert et 

al. 2009 

GB (11 

lowland 

grassland 

sites) 

neutral lowland grass-

lands  

(Triseto-Polygonion, 

Alopecurion, Centaureo-

Cynosuretum, Lolio-

Cynosuretum, Lolio-

Plantaginion, Calthion, 

Elymo-Rumicion) 

 

no fertiliza-

tion during 

previous 

decade 

different 

intensi-

ties of 

grazing 

or cut-

ting 

1 m2 176 Olsen  0.1−37.5 

mg kg-1  

0.2−54.3 declining SR for increas-

ing Olsen-P > 5 mg kg-1 

(7.3 mg CAL-P kg-1) 

humped-

back 

Hejcman et 

al. 2010 

DE 

(Rengen 

Grassland 

Experi-

ment) 

Nardus grasslands  

(Violion caninae, Polygono-

Trisetion, Arrhenatherion) 

five treat-

ments (Ca, 

CaN, 

CaNP, 

CaNP-KCl 

and CaNP-

K2SO4 ) 

2 cuts y-1 0.02− 

5.76 m2 

30 CAL 4.8−425.9 

mg kg-1  

4.8− 

425.9 

no species indicative of 

extensive grasslands, 

where Olsen-

P > 20 mg kg-1 

negative 

linear 
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Study Location Vegetation units Fertilisation 

Mana-

gement 

Plot 

size  n 

P ex-

traction 

method 

Soil P 

range 

Approxi-

mate 

CAL-P 

range 

(mg kg-1) 
Critical soil P 

concentrations  

Shape of 

SR ~ P 

relation-

ship 

Janssens et 

al. 1998 

Western 

and 

Central 

Europe 

(BE, NL, 

GB, ES, 

LU) 

old permanent grasslands 

with different soils and 

management 

not 

specified 

1-2 

cuts y-1 

and 

autumn 

grazing 

in some 

cases 

 

100 m2 281 acetate 

+ 

EDTA 

extrac-

tion 

0.8−346.7 

mg kg-1  

1.8− 

779.2 

< 20 species per 100 m2 

on soils with EDTA-P 

> 50 mg kg-1 (112.4 mg 

CAL-P kg-1);  

maximum of species at 

40 mg EDTA-P kg-1 

(58 mg CAL-P kg-1) 

humped-

back 

Marini et al. 

2007 

IT 

(Southern 

Alps) 

lowland moderate and 

high intensive meadows 

(Pastinaco-Arrhenatheretum, 

Ranunculo repentis-

Alopecuretum pratensis), 

mountain intensive 

meadows (Trisetetum 

flavescentis), semi-natural 

low productive meadows 

(Bromion erecti) 

0−350 kg N 

ha-1 y-1 

1−4 

cuts y-1 

100 m2 56 Olsen  5.7−67.6 

mg kg-1 

8.2−98.1 conservation and restora-

tion of species-rich hay 

meadows requires low-

level soil Olsen-

P < 26.2 mg kg-1 (38.0 mg 

CAL-P kg-1) 

negative 

log-linear 
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Table S2: Composition of seed mixtures designed for sands (heathlands) and calcareous 

loamy sands (grasslands) used for occasional reseeding on Grafenwöhr military training area.  

 Heathlands Grasslands 

Functional 
group Species 

Mass 
percent Species 

Mass 
percent 

 Forbs Achillea millefolium 2.5% Achillea millefolium 4% 

  Daucus carota 2% Agrimonia eupatoria 1% 

  Hypericum perforatum 0.5% Cichorium intybus 4% 

  Plantago lanceolata 2% Galium verum 2% 

  Plantago major 1% Pimpinella major 1% 

  Taraxacum officinale 2% Plantago lanceolata 5% 

    Polygonum aviculare 3% 

     
 Legumes Medicago lupulina 10% Lotus corniculatus 5% 

  Trifolium repens 20% Medicago lupulina 5% 

    Trifolium repens 5% 

     
 Grasses Agrostis capillaris 5% Bromus erectus 15% 

  Agrostis stolonifera 5% Dactylius glomerata 20% 

  Dactylis glomerata 20% Festuca rubra 20% 

  Festuca rubra 15% Phleum pratense 5% 

  Festuca ovina 15% Trisetum flavescens 5% 
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Table S3: List of vascular plant species found on 40 and 54 plots of 25 m2 in heathlands and 

grasslands (abbreviations of species names or symbol ‘+’ relate to the representation in 

Figure S2(b) and (d)) on Grafenwoehr military training area in Bavaria, Germany. Functional 

strategy refers to Grime (1979): ‘C’ – competitive strategy, ‘S’ – stress-tolerant strategy, ‘R’ – 

ruderal strategy (according to Hunt et al. (2004); [cited 2016 Feb 05]; Available from: 

http://people.exeter.ac.uk/rh203/csr_signature.html). EF, ER, and EN are Ellenberg 

indicator values for soil moisture, soil reaction and nutrient availability, respectively 

(Ellenberg & Leuschner 2010); ‘x’ – indifferent behaviour, ‘~’ – fluctuating water table, ‘=’ – 

indicator of inundated soils. ‘NA’ denotes missing information. 

Species Heathlands Grasslands 

Functional 

strategy EF ER EN 

Achillea millefolium + + CR/CSR  4 x 5 

Achillea ptarmica  + CR/CSR 8 4 2 

Agrimonia eupatoria  Agreup CSR 4 8 4 

Agrostis capillaris + Agrcap CSR x 4 4 

Alchemilla glaucescens  + CSR 5 4 3 

Alchemilla monticola  + CSR 5 6 4 

Alchemilla sp.  + NA NA NA NA 

Alchemilla subcrenata  + CSR 5 5 6 

Alchemilla vulgaris  + S/CSR 5 6 6 

Alchemilla xanthochlora  + CSR 7 7 ? 

Allium vineale  + S/CSR 4 x 7 

Alopecurus pratensis  + C/CSR 6 6 7 

Anthoxanthum odoratum + + SR/CSR x 5 x 

Anthriscus sylvestris  + CR 5 x 8 

Aphanes arvensis  Apharv R/SR 6 x 5 

Arenaria serpyllifolia  + SR 4 7 x 

Arnica montana Arnmon  CSR 5 3 2 

Arrhenatherum elatius  Arrela C/CSR x 7 7 

Bellis perennis  + R/CSR 5 x 6 

Betonica officinalis  + S x~ x 3 

Betula pendula +  C/SC x x x 

Brachypodium pinnatum  Brapin SC 4 7 4 

Briza media  Brimed S x x 2 

Bromus hordeaceus ssp. hordeaceus  + R/CR x~ x 3 

Bromus sterilis  + R/CR 4 x 5 

Calamagrostis epigejos Calepi  C/SC x~ x 6 

Calluna vulgaris Calvul  SC x 1 1 

Campanula glomerata  + S 4 7 3 

Campanula patula  + CSR 5 7 5 

Campanula rapunculoides  Camrap CR/CSR 4 7 4 

Campanula rotundifolia + + S x x 2 

Capsella bursa-pastoris  + R 5 x 6 
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Species Heathlands Grasslands 

Functional 

strategy EF ER EN 

Cardamine pratensis  + R/CSR 6 x x 

Carex flacca  Carfla S 6~ 8 4 

Carex hirta  + C/CSR 6~ x 5 

Carex leporina  Carova S/CSR 7~ 3 3 

Carex pallescens  Carpal S 6~ 4 3 

Carex pilulifera Carpil  S 5~ 3 3 

Carex spicata  + CSR 4 6 4 

Carlina vulgaris +  SR 4 7 3 

Carum carvi  + C 5 x 6 

Centaurea jacea  + C x x x 

Centaurea scabiosa  + S/CSR 3 8 4 

Centaurium erythraea  + SR 5 6 6 

Cerastium arvense  + SR/CSR 4 6 4 

Cerastium holosteioides + + R/CSR 5 x 5 

Cichorium intybus  + CSR 4 8 5 

Cirsium arvense  + C x x 7 

Cirsium vulgare  + CR 5 7 8 

Clinopodium vulgare  + S/CSR 4 7 3 

Convolvulus arvensis  + CR 4 7 x 

Crataegus monogyna  + SC 4 8 4 

Crataegus sp. + + NA NA NA NA 

Crepis biennis  + R/CSR 6 6 5 

Cruciata laevipes  + CSR 6 6 7 

Cynosurus cristatus  + CSR 5 x 4 

Cytisus scoparius Cytsco  SC 4 3 4 

Dactylis glomerata  + C/CSR 5 x 6 

Danthonia decumbens +  S x 3 2 

Daucus carota  + SR/CSR 4 x 4 

Deschampsia cespitosa ssp. cespitosa  Desces SR/CSR 7~ x 3 

Deschampsia flexuosa +  S/SC x 2 3 

Dianthus deltoides  Diadel S/CSR 3 3 2 

Elymus repens ssp. repens  + C/CR x~ x 7 

Epilobium angustifolium Epiang  C 5 5 8 

Equisetum arvense  + CR x~ x 3 

Erigeron acris ssp. acris +  SR 4 8 2 

Euphorbia cyparissias  + CSR 3 x 3 

Euphrasia micrantha +  R 5 2 1 

Festuca filiformis Fesfil  SC 4 3 2 

Festuca ovina +  S x 3 1 

Festuca pratensis  Fespra CSR 6 x 6 
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Species Heathlands Grasslands 

Functional 

strategy EF ER EN 

Festuca rubra ssp. rubra  Fesrub CSR 6 6 x 

Fragaria vesca  + CSR 5 x 6 

Fragaria viridis  + CSR 3 8 3 

Galium album  + C/CSR 5 7 5 

Galium pumilum  + CSR 4~ 4 2 

Galium uliginosum  Galuli S/CSR 8~ x 2 

Galium verum + + SC/CSR 4~ 7 3 

Galium x pommeranicum  Galpom NA NA NA NA 

Genista pilosa Genpil  SC x 2 1 

Genista tinctoria Gentin  SC 6~ 6 1 

Geranium columbinum  + SR 4 7 7 

Geranium dissectum  + R/SR 5 8 5 

Geum urbanum  + S/CSR 5 x 7 

Glechoma hederacea  Glehed CSR 6 x 7 

Helictotrichon pubescens  + S/CSR 3 x 4 

Heracleum sphondylium  + CR 5 x 8 

Hieracium lachenalii +  S/CSR 4 4 2 

Hieracium pilosella +  S/CSR 4 x 2 

Hieracium sabaudum +  S/CSR 4 4 2 

Hieracium sp. +  S/CSR NA NA NA 

Hieracium umbellatum  + S/CSR 4 4 2 

Holcus lanatus + + CSR 6 x 5 

Hypericum maculatum agg.  + CR/CSR 6~ 3 2 

Hypericum perforatum + + CR/CSR 4 6 4 

Hypochaeris radicata Hyprad + CSR 5 4 3 

Juncus conglomeratus + Juncon C/SC 7~ 4 3 

Juncus squarrosus Junsqu  S/SC 7~ 1 1 

Juncus tenuis Junten + CSR 6 5 5 

Knautia arvensis  Knaarv CSR 4 x 4 

Lathyrus pratensis  + CSR 6 7 6 

Leontodon hispidus ssp. hispidus  Leohis S/CSR 5 7 6 

Leontodon saxatile +  SR/CSR 6~ 6 5 

Leontodon sp. +  NA NA NA NA 

Leucanthemum ircutianum Leuirc + C 4 x 3 

Leucanthemum vulgare  Leuvul C/CSR 4 x 3 

Linum catharticum Lincat  SR x 7 2 

Lolium perenne  Lolper CR/CSR 5 7 7 

Lotus corniculatus Lotcor + S/CSR 4 7 3 

Luzula campestris + + S/CSR 4 3 3 

Luzula multiflora Luzmul  S 5~ 5 3 
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Species Heathlands Grasslands 

Functional 

strategy EF ER EN 

Lychnis flos-cuculi  + CSR 7~ x x 

Medicago falcata/varia  Medvar C/CSR 3 9 3 

Medicago lupulina  Medlup R/SR 4 8 x 

Melampyrum pratense +  SR 5 3 2 

Melampyrum sylvaticum +  CR 5 2 2 

Mentha arvensis  + CR 7~ x x 

Molinia caerulea Molcae  SC 7 x 2 

Nardus stricta Narstr  S x~ 2 2 

Odontites rubra Odorub + R 5~ 7 5 

Ononis sp.  + NA NA NA NA 

Pedicularis sylvatica Pedsyl  SR 8~ 1 2 

Phleum pratense  Phlpra CSR 5 x 7 

Picea abies Picabi  C x x x 

Picris hieracioides  Pichie R/CSR 4 8 4 

Pimpinella major  + CSR 5 7 6 

Pimpinella saxifraga  + S/SR 3 x 2 

Pinus sylvestris ssp. sylvestris +  C x x x 

Plantago lanceolata  + CSR x x x 

Plantago major  + R/CSR 5 x 6 

Plantago media  + S/CSR 4 7 3 

Plantago uliginosa Plauli  R 7= 5 4 

Poa angustifolia  + S/CSR x x 3 

Poa humilis  Poahum C 5 6 3 

Poa pratensis  Poapra CSR 5 x 6 

Poa trivialis  Poatri CR/CSR 7 x 7 

Polygala serpyllifolia +  S 6 2 2 

Polygala vulgaris  + S 4 3 2 

Populus tremula + + SC 5 x x 

Potentilla anserina  + CR/CSR 6~ x 7 

Potentilla argentea  + S/CSR 2 3 1 

Potentilla erecta Potere  S/CSR x x 2 

Potentilla neumanniana  Potneu S 3 7 2 

Potentilla recta  + CSR 3 5 2 

Potentilla reptans  + CR/CSR 6 7 5 

Primula veris  + S/CSR 4 8 3 

Prunella vulgaris Pruvul + CSR 5 7 x 

Prunus spinosa  + SC 4 7 x 

Pteridium aquilinum +  C 5~ 3 3 

Pyrus communis  + C 5 8 x 

Quercus robur Querob  SC x x x 
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Species Heathlands Grasslands 

Functional 

strategy EF ER EN 

Ranunculus acris ssp. acris  + CSR 6 x x 

Ranunculus bulbosus  + SR 3 7 3 

Ranunculus repens  + CR 7~ x 7 

Rhinanthus minor  Rhimin R/SR 4 x 3 

Rubus caesius  Rubcae SC x 8 7 

Rubus plicatus Rubpli  C 5 2 3 

Rumex acetosa  + CSR x x 6 

Rumex acetosella +  SR/CSR 3 2 2 

Rumex crispus  + R/CR x x 6 

Salix aurita Salaur  C 8~ 4 3 

Salix caprea +  C 6 7 7 

Sanguisorba minor  Sanmin S 3 8 2 

Saxifraga granulata  + SR/CSR 4 5 3 

Scorzoneroides autumnalis  + R/CSR 5 5 5 

Securigera varia  Secvar C/CSR 4 9 3 

Senecio jacobaea  + R/CR 4~ 7 5 

Silaum silaus  + S/CSR x~ 7 3 

Silene vulgaris  + CSR 4~ 7 4 

Silenoideae sp.  + NA NA NA NA 

Stellaria graminea  + CSR 5 4 3 

Taraxacum Sect. Ruderalia  TarRud R/CSR 5 x 8 

Thymus pulegioides  + CSR 4 x 1 

Torilis japonica  Torjap SR/CSR 5 8 8 

Tragopogon pratense  + CR/CSR 4 7 6 

Trifolium campestre  + SR 4 6 3 

Trifolium dubium  + R/SR 4 6 4 

Trifolium medium + + SC/CSR 4 6 3 

Trifolium pratense  + CSR 5 x x 

Trifolium repens  + CR/CSR 5 6 6 

Trisetum flavescens  + CSR x x 5 

Vaccinium myrtillus Vacmyr  SC x 2 3 

Vaccinium uliginosum +  SC x 1 3 

Vaccinium vitis-idaea Vacida  S/SC 4~ 2 1 

Veronica arvensis  Verarv SR x 6 x 

Veronica chamaedrys Vercha + CSR 5 x x 

Veronica officinalis + Veroff S/CSR 4 3 4 

Veronica serpyllifolia  + R/CSR 5 5 5 

Vicia angustifolia  + R/CSR x x x 

Vicia cracca  + C/CSR 6 x x 

Vicia hirsuta  Vichir R/CSR 4 x 4 
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Species Heathlands Grasslands 

Functional 

strategy EF ER EN 

Vicia lathyroides  + SR 2 3 2 

Vicia sepium  + C/CSR 5 6 5 

Vicia tetrasperma  + R/CR 5 5 5 

Viola canina + Viocan S 4 3 2 

Viola hirta   + S 3 8 3 
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Table S4: Summary statistics of plot characteristics (species richness, plant cover [%], 

herbaceous canopy height [cm], functional group ratio and biomass percentage weighted 

averages of Ellenberg indicator values and Grime strategy type components).  

 Heathlands Grasslands 

Parameter Min Max Mean SEM Min Max Mean SEM 

SR 4.00 28.00 14.10 0.81 33.00 61.00 45.89 0.83 

cover 35.00 90.00 60.10 2.33 60.00 96.00 83.13 1.35 

canopy height 0.00 100.00 59.50 4.85 65.00 120.00 92.69 1.76 

FG ratio 0.00 0.82 0.12 0.03 1.00 9.00 3.46 0.30 

EF 4.00 6.81 5.33 0.15 4.33 5.84 5.21 0.05 

ER 1.00 1.51 1.16 0.02 5.14 7.19 6.09 0.07 

EN 1.00 1.66 1.22 0.03 3.81 5.90 5.02 0.06 

C strategy 0.45 0.55 0.50 0.00 0.29 0.51 0.36 0.01 

S strategy 0.45 0.55 0.50 0.00 0.27 0.39 0.32 0.00 

R strategy 0.00 0.03 0.00 0.00 0.23 0.43 0.32 0.01 
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Table S5: Results of gradient analysis of linear and non-linear relationships between NMDS 

scores of heathland and grassland communities and plot characteristics including soil 

chemical parameters. Significance of linear relationships was tested by permutations 

(n = 10,000) and significance of non-linear relationships was tested in generalised additive 

models. 

 Linear response 
Non-linear 
response 

Parameter R2 pa R2 pa 

Heathlands 

 

   

pH 0.73 0.002 0.86 <0.001 

P 0.34 0.386 0.60 0.077 

K 0.15 0.764 0.61 0.392 

Mg 0.20 0.767 0.60 0.409 

SR 0.90 <0.001 0.93 <0.001 

cover 0.08 0.991 0.74 0.269 

canopy height 0.36 0.022 0.59 0.007 

FG ratio 0.57 0.020 0.89 <0.001 

EF 0.65 0.080 0.66 0.001 

ER 0.32 0.092 0.59 0.023 

EN 0.27 0.179 0.53 0.016 

C strategy 0.06 0.666 0.36 0.675 

S strategy 0.02 0.850 0.12 0.970 

R strategy 0.32 0.279 0.55 <0.001 

Grasslands 

 

   

pH 0.53 0.001 0.52 <0.001 

P 0.17 0.165 0.50 0.313 

K 0.07 0.467 0.38 0.055 

Mg 0.16 0.004 0.79 0.013 

SR 0.36 0.007 0.41 <0.001 

cover 0.45 0.050 0.63 0.002 

canopy height 0.42 0.221 0.55 0.015 

FG ratio 0.04 0.439 0.51 <0.001 

EF 0.40 <0.001 0.74 <0.001 

ER 0.58 <0.001 0.62 <0.001 

EN 0.66 <0.001 0.74 <0.001 

C strategy  0.38 0.054 0.52 <0.001 

S strategy 0.43 0.003 0.60 0.001 

R strategy 0.44 0.028 0.67 0.028 

aBold font indicates statistical significance (p < 0.05) 
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Table S6: Overview of candidate linear mixed effects models (cumulative Akaike weight, 

acc wi, ≤ 0.95) explaining species richness in heathlands and grasslands based on soil 

chemical parameters listing degrees of freedom (df), log-likelihood (logLik), small sample size 

corrected Akaike information criterion (AICc), its difference to the best ranking model 

(∆AICc), model weights (wi), which are standardised to sum to one, as well as marginal (R(m)²) 

and conditional coefficient of determination (R(c)²). Maximum likelihood estimation was used 

for AICc-based model comparison, but R(m)² and R(c)² were calculated under restricted 

maximum likelihood estimation.  

Model  df logLik AICc ∆AICc wi R(m)² R(c)² 

Heathlands 

       pH 4 -101.26 215.49 0.00 0.16 0.54 0.70 

Mg + pH 5 -99.39 216.51 1.02 0.10 0.55 0.70 

K² + pH 5 -99.16 217.15 1.66 0.07 0.55 0.68 

K + pH 5 -99.65 217.29 1.80 0.07 0.53 0.72 

P² + pH 5 -100.04 217.66 2.18 0.05 0.55 0.70 

Mg² + pH 5 -99.92 218.09 2.60 0.04 0.54 0.70 

P + pH 5 -100.04 218.14 2.65 0.04 0.53 0.70 

Mg + Mg² + pH 6 -97.56 218.54 3.06 0.04 0.54 0.71 

K² + Mg + pH 6 -97.40 218.57 3.08 0.03 0.55 0.69 

Mg + P² + pH 6 -98.13 218.69 3.20 0.03 0.56 0.70 

Mg + P + pH 6 -98.17 219.33 3.84 0.02 0.54 0.70 

K + Mg + pH 6 -97.94 219.37 3.88 0.02 0.54 0.70 

K² + P² + pH 6 -97.93 219.49 4.00 0.02 0.56 0.68 

K + K² + pH 6 -97.71 219.52 4.03 0.02 0.53 0.70 

K² + Mg² + pH 6 -97.51 219.54 4.05 0.02 0.54 0.68 

K² + Mg + Mg² + pH 7 -94.91 219.54 4.05 0.02 0.55 0.69 

K + Mg² + pH 6 -98.17 219.85 4.37 0.02 0.51 0.73 

K + P² + pH 6 -98.53 219.86 4.37 0.02 0.53 0.71 

K + P + pH 6 -98.17 219.96 4.47 0.02 0.52 0.73 

K² + P + pH 6 -97.93 219.96 4.48 0.02 0.54 0.68 

P + P² + pH 6 -98.63 220.40 4.91 0.01 0.55 0.70 

Mg² + P² + pH 6 -98.70 220.44 4.95 0.01 0.54 0.69 

Mg² + P + pH 6 -98.69 220.90 5.41 0.01 0.53 0.70 

K² + Mg + P² + pH 7 -96.12 220.91 5.42 0.01 0.56 0.68 

Mg + Mg² + P² + pH 7 -96.34 221.00 5.51 0.01 0.55 0.70 

Mg + P + P² + pH 7 -96.61 221.37 5.88 0.01 0.56 0.70 

Mg + Mg² + P + pH 7 -96.32 221.51 6.03 0.01 0.53 0.71 

K² + Mg + P + pH 7 -96.15 221.53 6.04 0.01 0.54 0.68 

K + Mg + P² + pH 7 -96.61 221.53 6.04 0.01 0.56 0.69 

K + Mg + Mg² + pH 7 -96.09 221.54 6.05 0.01 0.53 0.71 

K + K² + Mg + pH 7 -95.95 221.56 6.08 0.01 0.54 0.68 

K + K² + Mg² + pH 7 -95.91 221.79 6.30 0.01 0.52 0.70 

K² + Mg² + P² + pH 7 -96.31 222.15 6.66 0.01 0.55 0.68 

K + K² + P² + pH 7 -96.57 222.21 6.72 0.01 0.53 0.69 

K² + P + P² + pH 7 -96.46 222.22 6.74 0.01 0.56 0.68 

K² + Mg + Mg² + P² + pH 8 -93.73 222.25 6.77 0.01 0.56 0.68 

K + K² + Mg + Mg² + pH 8 -93.37 222.32 6.84 0.01 0.56 0.68 
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Model  df logLik AICc ∆AICc wi R(m)² R(c)² 

K + K² + P + pH 7 -96.21 222.33 6.84 0.01 0.52 0.71 

K + P + P² + pH 7 -96.75 222.38 6.89 0.01 0.53 0.73 

K + Mg + P + pH 7 -96.50 222.44 6.95 0.00 0.52 0.71 

        

Grasslands 

       K² + P + P² + pH 7 -150.87 330.86 0.00 0.14 0.44 0.48 

K² + P + pH 6 -154.18 331.38 0.52 0.11 0.41 0.42 

K + P + P² + pH 7 -151.53 331.69 0.83 0.10 0.41 0.50 

K + K² + P + P² + pH 8 -148.73 331.94 1.08 0.08 0.44 0.49 

P + P² + pH 6 -154.45 332.43 1.58 0.07 0.39 0.46 

K + K² + P + pH 7 -152.53 333.51 2.65 0.04 0.41 0.43 

K² + Mg + P + pH 7 -152.49 333.55 2.69 0.04 0.41 0.43 

K² + Mg² + P + P² + pH 8 -149.57 333.64 2.78 0.04 0.43 0.48 

K² + Mg² + P + pH 7 -152.72 333.70 2.84 0.03 0.41 0.42 

K² + Mg + P + P² + pH 8 -149.38 333.72 2.86 0.03 0.43 0.48 

K + Mg² + P + P² + pH 8 -150.07 333.98 3.12 0.03 0.42 0.50 

K + P + P² 6 -155.05 334.13 3.28 0.03 0.34 0.47 

K + Mg + P + P² + pH 8 -149.85 334.22 3.37 0.03 0.41 0.50 

Mg² + P + P² + pH 7 -153.02 334.70 3.84 0.02 0.39 0.46 

K + K² + Mg² + P + P² + pH 9 -147.41 334.84 3.99 0.02 0.44 0.49 

K + K² + Mg + P + P² + pH 9 -147.20 334.96 4.10 0.02 0.43 0.50 

K + K² + P + P² 7 -152.49 335.06 4.20 0.02 0.36 0.46 

Mg + P + P² + pH 7 -152.88 335.06 4.20 0.02 0.38 0.47 

K + K² + Mg + P + pH 8 -150.86 335.84 4.99 0.01 0.40 0.43 

P + pH 5 -158.97 335.85 5.00 0.01 0.31 0.37 

K + K² + Mg² + P + pH 8 -151.07 335.92 5.06 0.01 0.40 0.43 

K² + P + P² 6 -155.62 336.19 5.33 0.01 0.34 0.43 

K + P + pH 6 -156.50 336.30 5.44 0.01 0.32 0.42 

K² + Mg + Mg² + P + pH 8 -150.84 336.38 5.53 0.01 0.40 0.43 

K² + Mg + Mg² + P + P² + pH 9 -147.73 336.67 5.81 0.01 0.43 0.48 

K + Mg² + P + P² 7 -153.80 336.77 5.91 0.01 0.33 0.47 

K + Mg + P + P² 7 -153.51 336.83 5.97 0.01 0.33 0.47 

K + Mg + Mg² + P + P² + pH 9 -148.15 337.00 6.14 0.01 0.41 0.50 

K² + Mg + P  6 -156.48 337.40 6.54 0.01 0.33 0.41 

Mg + Mg² + P + P² + pH 8 -151.11 337.58 6.72 0.01 0.39 0.47 

K + K² + Mg + P + P² 8 -150.83 337.59 6.73 0.00 0.37 0.47 

K + K² + Mg² + P + P² 8 -151.09 337.63 6.77 0.00 0.36 0.46 

P + P² 5 -159.25 337.68 6.82 0.00 0.28 0.41 

K² + P  5 -159.26 337.73 6.88 0.00 0.27 0.37 

K² + Mg + P + P² 7 -153.61 337.77 6.91 0.00 0.35 0.45 

K + K² + P  6 -156.70 337.91 7.05 0.00 0.29 0.41 

K + K² + Mg + Mg² + P + P² + pH 10 -145.55 338.04 7.19 0.00 0.43 0.49 

K² + P + P² + pH 7 -150.87 330.86 0.00 0.14 0.44 0.48 
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Abstract  

1. Maintaining semi-natural open habitats requires biomass removal, which can be 

achieved by extensive grazing with livestock species. However, implementing this 

established conservation management strategy in large or access-restricted areas 

is often not possible.  

2. We investigated grazing by wild and free-ranging red deer (Cervus elaphus) as an 

alternative conservation management approach on an active military training area 

in Germany. In grasslands and heathlands protected under the EU Habitats 

Directive, we quantified aboveground net primary productivity, forage quality 

and forage removal by red deer over three successive years. To assess synergistic 

effects between wildlife grazing and additional grassland management measures 

removing vegetation biomass (i.e. burning, mowing), we conducted our grazing 

experiment in burnt, mown and untreated grasslands.  

3. Annual forage removal by red deer amounted to 35%, 44%, 48% and 59% of the 

aboveground net primary productivity in burnt, mown and untreated grasslands 

and untreated heathlands, respectively. Theoretically, a similar annual biomass 

removal could be obtained by livestock grazing with 0.54 animal units ha-1 in 

grasslands and 0.45 animal units ha-1 in heathlands. In grasslands, daily rates of 

forage removal peaked in spring and early summer, whereas in heathlands, forage 

removal rates were only significant in winter.  

4. Forage removal rates in grasslands increased with productivity and forage quality, 

which were both enhanced in mown grasslands. This suggests mowing can 

increase grassland attractiveness to red deer. Forage removal rates in heathlands 

did not relate to productivity or forage quality but to standing biomass.  

5. Synthesis and applications. We demonstrate that the quantity of forage removed by 

wild red deer can be comparable to that of livestock in common conservation 

grazing systems. The seasonal patterns of forage removal by red deer in 

grasslands and heathlands coincided with the different grazing requirements of 

these habitats. Especially in large areas of conservation interest, we therefore 

encourage attempts to modify current wildlife management strategies to allow red 

deer to forage in open landscapes, which can contribute to the conservation of 

semi-natural open habitats and also help to reduce damage in forest stands.  

 

Keywords  

Cervus elaphus, European dry heaths, forage, grazing, lowland hay meadows, Natura 

2000, rewilding, semi-natural habitat  
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Second abstract (German) 

1. Der Erhalt von naturnahen Offenlandschaften erfordert Biomasseentnahme, 

welche durch eine extensive Beweidung mit Nutztieren erzielt werden kann. In 

großen oder unzugänglichen Gebieten ist es allerdings häufig nicht möglich, diese 

etablierte Naturschutzmanagementstrategie umzusetzen.  

2. Als ein alternativer Ansatz zum Offenlandmanagement wurde die Beweidung 

durch wildlebende Rothirsche (Cervus elaphus) auf einem aktiv genutzten Trup-

penübungsplatz in Deutschland untersucht. In zwei nach FFH-Richtlinie 

geschützten Lebensraumtypen (Grünland und Heide) wurden oberirdische 

Primärproduktion, Futterqualität und Biomasseentnahme durch Rothirsche 

während drei aufeinanderfolgender Jahre erfasst. Um Synergieeffekte zwischen 

Wildtierbeweidung und zusätzlichen Grünlandpflegemaßnahmen (Brennen, 

Mähen) zu beurteilen, wurde das Beweidungsexperiment im Grünland auf 

gebrannten, gemähten sowie ungepflegten Behandlungsflächen durchgeführt.  

3. Die jährliche Biomasseentnahme durch Rothirsche belief sich auf durchschnitt-

lich 35 %, 44 % und 48 % des jährlichen Vegetationsaufwuchses in gebranntem, 

gemähtem und ungepflegtem Grünland und auf 59 % des jährlichen Vegetations-

aufwuchses in ungepflegten Heiden. Dies würde im Durchschnitt einer theoreti-

schen Besatzstärke von 0.54 und 0.45 Großvieheinheiten pro Hektar in Grünland 

und Heiden entsprechen. Die täglichen Biomasseentnahmeraten waren im Grün-

land in Frühling und Frühsommer am höchsten, wohingegen in Heiden die 

höchsten Biomasseentnahmeraten im Winter verzeichnet wurden.  

4. Im Grünland nahmen die Biomasseentnahmeraten mit steigender Produktivität 

und Futterqualität zu. In gemähtem Grünland waren Produktivität und Futter-

qualität erhöht, sodass sich die Mahd als ein Instrument eignen könnte, um die 

Attraktivität von Grünland für Rothirsche zu fördern. Die Biomasseentnahme-

raten in Heiden hingen nicht mit Produktivität oder Futterqualität, sondern mit 

der stehenden Biomasse zusammen. 

5. Synthese und Anwendungen. Unsere Untersuchungen zeigen, dass die Biomasse-

entnahme durch wildlebende Rothirsche in einer vergleichbaren Größenordnung 

wie bei extensiver Nutztierbeweidung liegen kann. Die saisonalen Muster der 

Biomasseentnahme durch Rothirsche in Grünland und Heiden deckten sich mit 

den unterschiedlichen Beweidungsansprüchen dieser Lebensraumtypen. Unsere 

Ergebnisse setzen daher einen Impuls, insbesondere in großen Naturschutz-

flächen das Wildtiermanagement so anzupassen, dass die Nutzung von Offen-

landlebensräumen durch Rothirsche gefördert wird. Auf diese Weise kann ein 

Beitrag zum Erhalt naturnaher Offenlandlebensräume geleistet und gleichzeitig 

das Risiko von Schäden in forstlich genutzten Wäldern reduziert werden.   
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Introduction  

Biomass removal by grazing, mowing or fire is key to maintaining semi-natural open 

habitats in temperate regions (MacDougall and Turkington 2007; Tälle et al. 2016; 

Valkó et al. 2018).  

Both agricultural intensification and abandonment, however, have resulted in a 

continuing loss of semi-natural open habitats and their characteristic species 

(Poschlod and WallisDeVries 2002; Hooftman and Bullock 2012; Wesche et al. 

2012). To compensate for the decline of traditional extensive land use systems, such 

as pastoral farming (Poschlod et al. 2009; Leuschner and Ellenberg 2017), extensive 

livestock grazing has become a valuable tool for conservation management in 

Europe (Van Wieren 1995; Rosenthal et al. 2012; García et al. 2013). The primary 

mechanism by which biomass removal in general, and grazing in particular, benefits 

plant diversity in grassland ecosystems is that it enhances the light availability at 

ground level and thereby alleviates light competition (Borer et al., 2014). 

Independently from grazer species, nutrient supply, or site productivity, grazing is 

thus expected to counteract biodiversity losses resulting from anthropogenic nutrient 

inputs to natural systems (Borer et al. 2014). To develop appropriate conservation 

strategies for different habitat types, it is, however, essential to account for the effect 

of habitat productivity on the grazing impact of large herbivores (Bakker et al. 2006). 

Therefore, target stocking rates for conservation grazing, e.g. laid down by EU agri-

environment schemes (FAS 2017) differ between habitat types to prevent over- as 

well as undergrazing.  

Livestock grazing usually requires fencing or herding and frequent inspection of the 

animals to ensure health and welfare. Fulfilling these requirements can be difficult 

and costly where the target area is large or access is restricted. This is especially true 

for military training areas (MTAs), which bring along even more challenges for 

conservation management, such as military activities and unexploded ordnance. 

MTAs are increasingly in the focus of nature conservation because they present a 

contrast to the intensively used agricultural matrix and, hence, often harbour high 

biodiversity including large numbers of threatened and endangered species (Warren 

et al. 2007; Riesch et al. 2018). Active and abandoned MTAs cover considerable 

areas, for instance more than one million hectares in Central and Eastern Europe 

(assessed in eight EU countries; Naturstiftung David 2016). In MTAs and other areas 

where it is difficult to apply established conservation strategies for maintaining open 

habitats, grazing by wild herbivores might be an alternative management option 

requiring neither fencing nor regular human presence in the target area. A 

conservation approach using wild herbivores is furthermore appealing because it is in 

line with the historical importance of large herbivores for landscape structure and 

vegetation openness in Pleistocene times (Vera 2000; Bakker et al. 2016) and 

complies with the increasingly popular concept of rewilding to restore natural 

ecosystem functions and biodiversity, especially in areas threatened by abandonment 

(Navarro and Pereira 2012; Svenning et al. 2016). The most widespread extant large 

autochthonous grazer species in Central Europe, red deer (Cervus elaphus), is therefore 

of particular interest to conservation management.  
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First attempts to deliberately use red deer in conservation management have been 

made under island (Moore et al. 2015) or fenced conditions (Tschöpe et al. 2011; 

Fløjgaard et al. 2017) but the interplay between free-ranging red deer and vegetation 

dynamics in open habitats has not been studied in Central Europe in the context of 

nature conservation thus far. Regarding the challenge that the conservation of 

different plant communities requires different grazing intensities (Moore et al. 2015) 

it is fundamental to quantify the forage removal by free-ranging red deer in habitats 

differing in productivity and forage quality. As red deer grazing patterns have usually 

been studied over short periods or within single years, it is furthermore pivotal to 

assess how seasonal changes in forage productivity and quality drive patterns in 

forage removal by red deer. In large and heterogeneous areas, the relationship 

between wild herbivore density and the distribution of their foraging impact is 

known to be weak (Gordon et al. 2004), so that the applied conservation 

management would benefit greatly from means to spatially direct grazing activities by 

free-ranging red deer. Mowing and burning do not only remove biomass but also 

lead to enhanced forage quantity and quality in the regrowing vegetation, which can 

attract herbivores (Langvatn and Hanley 1993; Wilmshurst et al. 1995; Rivrud et al. 

2016). Consequently, interaction and synergistic effects between large herbivore 

grazing and mowing (Taylor et al. 2004; Cromsigt and Olff 2008) or burning 

(Fuhlendorf et al. 2009) are well-known. But it has not yet been tested if the 

attractiveness of certain areas to red deer and the local forage removal could be 

increased by additional burning or mowing. An improved understanding of such 

synergistic effects could provide the basis for influencing the grazing impacts of free-

ranging red deer within a wider spatial context. For instance, this would be useful for 

harmonising red deer habitat use with the different grazing requirements of habitat 

types (Moore et al. 2015). 

Our study aims to provide a sound initial assessment if grazing by wild and free-

ranging red deer in semi-natural open habitats can be quantitatively sufficient for 

conservation purposes. Therefore, we selected two divergent habitats of high 

conservation interest, lowland hay meadows and European dry heaths, on an active 

MTA in Central Europe and sampled data on aboveground net primary productivity 

and red deer forage removal over three successive years. We hypothesised: (1) forage 

removal by red deer in open habitats is comparable in magnitude to the amount of 

forage removed by livestock under recommended conservation grazing schemes (2) 

seasonal changes in productivity and forage quality are reflected by seasonal patterns 

in red deer forage removal, (3) additional management (burning, mowing) in 

grasslands improves forage quality and thus affects red deer forage removal. Our 

results contribute to developing red deer management strategies promoting grazing 

in open habitats. Such approaches could prove especially useful for large areas where 

access restrictions or high costs render conventional conservation methods 

unfeasible.  
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Materials and methods  

Study area  

We investigated red deer grazing on the US Army Garrison Grafenwöhr military 

training area (GTA) in Bavaria, Germany (49° 40' 56'' N, 11° 47' 20'' E). The size of 

GTA is approximately 230 km2, composed of approximately 60% forest and 40% 

different open habitat types. The German Federal Forests Division (Bundesforst) is 

responsible for the land and wildlife management in forested as well as open areas. 

Long-time annual average temperature is 8.3 ± 0.04 °C and precipitation is 701 ± 

4 mm (1981–2010, mean ± SE of four weather stations of the German Weather 

Service (Deutscher Wetterdienst, DWD) in the immediate vicinity; Fig. S1 in 

Supporting Information). The area has served military purposes for more than a 

century. Approximately 85% of GTA belong to the European Natura 2000 

conservation network. Wildlife, foremost red deer, is abundant (average annual 

harvest numbers during the three study years: 1493 red deer, 584 roe deer (Capreolus 

capreolus), 553 wild boars (Sus scrofa)). Since the 1980s, red deer management by 

Bundesforst has aimed at reducing damage to the forest by encouraging red deer 

habitat use of open landscapes. Consequently, hunting in open habitats is mainly 

limited to driven hunts on few days in early winter in order to minimise disturbing 

the red deer’s natural daily activity patterns (Meißner et al. 2013). By contrast, in the 

forested areas in the periphery of GTA, which are supposed to fulfil multiple 

purposes, such as timber production and protection against noise and dust, hunting 

(driven hunts and stand hunting) is intense during the entire hunting season set by 

the federal state (01 August–31 January, yearlings: 01 June–31 January). An extensive 

telemetry study has confirmed that red deer in GTA frequently forage in open 

habitats and large groups of red deer can be observed in open areas even by daylight 

(Meißner et al. 2013). Livestock grazing, in contrast, is impossible in most parts of 

GTA because of intensive military land use and public access restrictions. 

Study design  

We established a grazing experiment in two different habitats, lowland hay meadows 

(EU Habitats Directive Annex I habitat type 6510, hereafter ‘grasslands’) and 

European dry heaths (habitat type 4030, ‘heathlands’). The grassland habitat type is 

part of a large, (semi-)open landscape in the western third of the GTA and covers in 

total c. 340 ha on calcareous soils. The heathland habitat type is dominated by 

Calluna vulgaris and occurs with a total area of 463 ha in the eastern part of GTA on 

Triassic sandstone and highly acidic, sandy soils. Soil fertility is generally low in both 

habitat types (Riesch et al. 2018).  

We established five sampling sites (each c. 1 ha in grasslands and c. 0.5 ha in 

heathlands) per habitat type (Fig. S2). Sampling sites were smaller in heathlands 

because the accessible heathlands in GTA (outside of the main ordnance impact 

areas and shooting ranges) occur as small patches within shrub- and forest-

dominated areas.  

In grasslands, which had been mown once per year before the start of the 

experiment, each sampling site was divided equally into three areas receiving different 
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treatments starting in 2015: burnt (B), mown (M) and untreated (U) grassland. 

Prescribed burning was conducted by Bundesforst at the end of March or at the 

beginning of April each year. Burning removed an estimated average amount of 80% 

of the standing biomass. In the first two study years, however, burning succeeded 

only on three of the five sites owing to low residual standing biomass at the end of 

the winter. The M treatment received one annual cut in July using conventional 

agricultural machinery. There was one sampling plot per treatment totalling 15 plots 

in grasslands. In heathlands, we assessed only the U treatment on a total of eight 

plots (two sites with one plot, three sites with two plots). In both grasslands and 

heathlands, sampling plot size was 225 m2 (15 × 15 m).  

The distance between sampling plots and the closest opportunity for red deer to seek 

cover in shrub or forest ranged from 26 to 164 m (69 ± 5 m, mean ± SE) in 

grasslands and 0 to 55 m (18 ± 3 m) in heathlands. The main land cover surrounding 

grassland plots was unmanaged or managed grassland. In contrast, forests dominated 

the landscape surrounding heathland plots and the share of managed grassland was 

negligible (Table S1, C. Raab, unpublished). We assume that different red deer 

individuals grazed on the experimental plots in grasslands and heathlands as the 

distance between the sampling sites of the two habitat types is large (Fig. S2) 

compared to the size of the mean minimum convex polygon home range of red deer 

in GTA (488 ha, sd = 122 ha; 34 annual home ranges of 24 female red deer in 2015–

2018; L. Richter, unpublished). 

Data collection  

To assess the standing biomass in both habitat types, we used a double-sampling 

technique (Correll et al. 2003) relying on rising-plate meter measurements of the 

compressed sward height and calibration cuts (for details see Appendix S1). For each 

plot, we measured the standing biomass at five annual sampling dates (April, May, 

June, August and October) in three years (2015–2017). To assess aboveground net 

primary productivity (ANPP) between succeeding sampling dates, we used movable 

exclusion cages (Fig. S4, Appendix S1), which allow measuring the actual 

productivity of previously grazed vegetation (McNaughton et al. 1996). We installed 

one 1-m2–exclusion cage per plot in April 2015. We then moved the cage to a new, 

randomly chosen position at each sampling date until April 2018, resulting in five 

growth periods per study year. Red deer forage removal was calculated as the 

difference in biomass increments of the vegetation temporarily protected from 

grazing (under the exclusion cage) and the continuously grazed vegetation (on the 

open plot). To account for the length of growth periods between sampling dates, we 

present daily rates of productivity and red deer forage removal averaged over 

sampling sites in each habitat. To calculate the annual ANPP, we summed up the 

positive biomass increments determined by the exclusion cages over the five growth 

periods per year (McNaughton et al. 1996). We analogously computed the 

accumulated annual red deer forage removal.  

As the B treatment plots in grasslands were burnt before the first sampling date each 

year, our data do not accurately represent the productivity and forage removal in the 

B treatment during the winter period from October to April. To allow mowing of 
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the complete M treatment plot by conventional large agricultural machinery, the 

exclusion cages were removed after the June sampling date and reinstalled after 

mowing. Our data for productivity, yield and forage removal in the M treatment are 

hence conservative because we did not account for vegetation growth and forage 

removal during the time lag (14 days on average) between cage removal and mowing 

in July.  

As we frequently found red deer dung on our plots but very rarely faeces of other 

species, e.g. hares (Lepus europaeus) or wild boars, we attributed the whole forage 

removal to red deer. We cannot assess the potential influence of invertebrate 

herbivores, but we suppose that such small animals were not deterred from our 

exclusion cages (45 mm mesh size) and foraged equally inside and outside of the 

cages.  

To analyse forage quality as a potential driver of red deer foraging activity, on each 

sampling date, we collected hand-pluck samples imitating red deer foraging 

behaviour. We determined crude protein concentration (CP) in plant material 

(Dumas combustion), as well as organic acid and neutral detergent fibre (oADF, 

oNDF) by near-infrared spectroscopy for grasslands and by wet-chemical analysis for 

heathlands (for details see Appendix S2). 

Statistical analyses 

We performed all analyses in R (v 3.4.4; R Core Team 2015). We used linear mixed 

effects (LME) models provided by the package nlme (Pinheiro et al. 2015) to analyse 

the main and interaction effects of year (2015, 2016, 2017) and treatment (B, M, U) 

on the ANPP and accumulated annual red deer forage removal in grasslands. In 

heathlands, where U was the only treatment, we only analysed the main effect of 

year.  

For each habitat, we also tested the main and interaction effects of year, month 

(April, May, June, August, October) and treatment on the daily rates of productivity 

and forage removal as well as on CP, oNDF and oADF. In heathlands, the treatment 

factor with the single level (U) was omitted.  

We used treatment nested in sampling site as a random factor in all grassland models 

and plot nested in sampling site as a random factor in all heathland models. Variance 

structure functions were used if necessary to meet assumptions of homoscedasticity 

and normality of residuals. We report results for the most parsimonious models in 

terms of second-order Akaike information criterion (AICc).  

To further investigate potential factors influencing daily red deer forage removal 

rates, we ran additional models including either daily productivity (g m-2 d-1) during 

the growth period, the distance (m) to cover (shrub or forest), standing biomass at 

the beginning of the growth period (g m-2), CP (%) or oADF (%) as continuous 

environmental predictor variables in addition to the experimental predictor variables. 

We present the results of these models only if the respective environmental variable 

was retained as a significant effect in the most parsimonious model.  
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Results  

The annual forage removal by red deer amounted to 35% (B), 44% (M) and 48% (U) 

of the ANPP in grasslands and 59% in heathlands (U), respectively.  

Averaged over the three study years, ANPP in grasslands was 20% higher in the M 

than in the B or U treatment, whereas red deer forage removal did not differ 

significantly between treatments, but was 12% higher in 2017 than in 2016 

(Tables 1, S3).  

Mowing in grasslands yielded 204 g m-2 on average. In the M treatment, forage 

removal of red deer therefore actually accounted for 79% of the residual fraction of 

ANPP that had not been removed by mowing. 

In heathlands, forage removal was similar in all study years, but ANPP was 36% 

higher in 2017 than in the two preceding study years. 

Seasonal variation in productivity, standing biomass and forage removal  

In the different treatments in grasslands, the daily productivity rates peaked in the 

spring growth periods April–May or May–June (except for the M and B treatments in 

2017 peaking in June–August) at 3.4 to 6.0 g m-2 d-1 (estimated marginal means; 

Fig. 1a, Table S4).  

Generally, standing biomass levels were higher in the B and U treatment than in the 

M treatment (Fig. S3a, Table S4). In the B treatment, the standing biomass reached 

maximum annual values in August (2015, 2017) or August and October (2016). In 

the M treatment, peak standing biomass levels occurred in June (2015, 2017) or May 

and June (2016). In the U treatment, the standing biomass gradually increased over 

the three study years; peaked in June (2015) or August (2017) and was generally high 

from May to October 2016.  

 

 

Table 1: Overview of mean standing biomass, aboveground net primary productivity 

(ANPP) and forage removal (dry weight, g m-2) by red deer in grasslands and heathlands in 

Grafenwöhr military training area, Germany, in 2015–2017. 

    Grasslands Heathlands 

    Burnt Mown Untreated Untreated 

    2015 2016 2017 2015 2016 2017 2015 2016 2017 2015 2016 2017 

Standing 

biomass  Mean 313.0 384.6 270.1 202.5 239.2 219.3 283.2 443.6 458.7 337.3 339.6 317.9 

 

SE 15.0 19.6 17.3 17.0 21.5 12.7 17.2 24.5 15.6 17.3 11.6 15.0 

 

ANPP  Mean 412.3 357.5 437.9 495.4 476.3 398.8 396.3 422.9 293.2 215.1 225.1 300.0 

 

SE 47.3 8.9 26.3 41.6 23.2 38.1 58.2 23.0 27.9 37.8 16.4 16.0 

Forage 

removal  Mean 160.7 82.0 180.8 185.2 224.5 191.8 184.2 178.8 169.6 141.5 130.1 164.0 

  SE 39.7 18.1 17.2 27.5 46.4 40.2 46.5 21.0 38.3 11.1 21.1 25.1 

 



72 Chapter 2 

 

 

In heathlands, the daily productivity peaked in 2016 and 2017 in the growth period 

April–May at 5.7 and 2.0 g m-2 d-1, respectively, and in 2015 in June–August at 

0.8 g m-2 d-1 (Fig. 1b, Table S4). The standing biomass in heathlands was similar 

throughout the first study year, while peak values were reached in May 2016 and 

August 2017 (Fig. S3b, Table S4). 

 

 

 

Figure 1: Daily rates of aboveground net primary productivity (dry matter) and red deer 

forage removal (g m-2 d-1) in (a) burnt, mown and untreated grasslands (n = 5); and (b) 

heathlands (n = 8) in 2015 to 2017. Symbols and lines show estimated marginal means and 

95% confidence interval based on the most parsimonious linear mixed effects models 

(Table S4) except for forage removal in heathlands, where the full model is shown because 

the simplified model did not include the factor year. 
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The daily rates of red deer forage removal in grasslands were generally 58% higher in 

the M treatment than in the B treatment (averaging 0.71 g m-2 d-1 and 0.45 g m-2 d-1 in 

the M and B treatment, respectively) and intermediate in the U treatment. In 2015 

and 2017, forage removal rates averaged over all grassland treatments peaked in 

April–May at 1.9 g m-2 d-1 and 1.1 g m-2 d-1, respectively, while in 2016, forage removal 

was highest in May–June at 1.5 g m-2 d-1 (Table S4, Fig. 1a). In heathlands, forage 

removal rates peaked in all study years at 0.4 g m-2 d-1 in October–April, which was 

the only growth period when forage removal rates differed significantly from zero 

(Table S4, Fig. 1b). 

Forage quality 

In the B and U treatments in grasslands, forage quality decreased constantly in the 

course of the season in all study years, indicated by a decrease in CP from 15.3% in 

April to 7.6% in October and an increase in oADF and oNDF from 31.5% and 

58.1% to 40.2% and 64.9%, respectively (Fig. 2a, Table S5). By contrast, forage 

quality in the M treatment was distinctly higher than in the B or U treatment in 

August and October, with forage quality in August almost as good as in spring (CP, 

oADF and oNDF averaging 13.1%, 30.2% and 50.4% in the M treatment, 

respectively).  

CP concentration in heathlands generally peaked with an average of 10.3% in May, 

although less pronounced in 2017 (Fig. 2b, Table S5), while oADF and oNDF were 

lowest in May or June at 35.0% and 54.8% on average, respectively. Depending on 

between-year variability, heathland forage quality was lowest in April or October with 

CP, oADF and oNDF averaging 6.4%, 43.8% and 59.3%, respectively.  

Forage removal in relation to environmental predictors 

The red deer daily forage removal rates in grasslands were positively related to the 

daily rates of productivity, but this relationship was moderated by year, growth 

period and treatment (Tables S6, S7). Generally, forage removal increased with 

productivity most strongly at the beginning of the growing season in April–May, but 

the relationship was also fairly pronounced at the end of the growing season in 

October–April. More precisely, averaged over treatments and years, a 1 g m-2 d-1 

increase in productivity resulted in an increase in forage removal of up to 0.43 

(October–April) or 0.48 g m-2 d-1 (April–May). Furthermore, the daily red deer forage 

removal rates increased with the concentration of CP in the grassland forage, i.e. 

across all treatments and growth periods, red deer forage removal increased by 

0.28 g m-2 d-1 for each 1% increase in CP.  

In heathlands, red deer daily forage removal rates did not relate to productivity, but 

there was a significant relationship between forage removal and the standing biomass 

at the beginning of the respective growth period. During most growth periods, 

forage removal rates increased with standing biomass. In October–April, when the 

daily forage removal in heathlands was significant, a 100 g m-2 increase in standing 

biomass did not substantially affect forage removal in 2015 but resulted in an 

increase of 5.6 and 5.8 g m-2 d-1 in daily forage removal in 2016 and 2017, 

respectively. When including oADF as an additional explanatory variable for daily 

https://www.dict.cc/englisch-deutsch/growing.html
https://www.dict.cc/englisch-deutsch/season.html
https://www.dict.cc/englisch-deutsch/growing.html
https://www.dict.cc/englisch-deutsch/season.html
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forage removal rates in heathlands, oADF replaced the experimental factor growth 

period as a single explanatory variable in the most parsimonious model. The distance 

between sampling plots and the nearest shrub or forest did not relate to red deer 

daily forage removal rates neither in grasslands nor heathlands.  

 

 

 

Figure 2: Concentration of crude protein and acid and neutral detergent fibre (exclusive of 

residual ash) in (a) burnt, mown and untreated grasslands (n = 5); and (b) heathlands (n = 8) 

in 2015 to 2017. Symbols and lines show estimated marginal means and 95% confidence 

interval based on the most parsimonious linear mixed effects models (Table S5). 
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Discussion  

Our data on productivity and biomass removal by red deer collected on a fine 

temporal scale over three successive years serve as a basis to judge the quantitative 

effect of grazing by a wild and free-ranging large herbivore species with regard to the 

grazing requirements of different semi-natural open habitat types. We found a 

comparable magnitude of annual forage removal by red deer in lowland hay 

meadows (82–225 g m2 y-1) and European dry heaths (130–164 g m2 y-1; Table 1), 

despite the different plant species composition, structure, phenology and 

productivity of these open habitat types.  

Assuming that a standard animal unit (AU) requires 8.8 kg dry matter forage per day 

at maintenance level (Allen et al. 2011), the overall average annual forage removal by 

red deer in grasslands and heathlands amounts to the theoretical forage removal by 

0.54 and 0.45 AU per hectare, respectively. For extensive grazing of neutral 

grasslands, a stocking rate of 0.5 AU ha-1y-1 is recommended (Crofts and Jefferson 

1999), while commonly used stocking rates for conservation grazing on lowland 

heathlands are highly variable (0.03–0.50 AU ha-1y-1) and strongly depend on the 

specific conservation aim (Gimingham 1992). Generally, this rough estimation of AU 

based on the observed forage removal substantiates that the quantity of forage 

biomass removed by free-ranging red deer can reach levels comparable to the 

amount of forage removed by livestock in conservation grazing (hypothesis 1) and is 

therefore relevant to the conservation of semi-natural open habitats. Future studies 

assessing the effect of red deer grazing on open habitat plant species richness and 

composition as well as their impact on the encroachment of woody species will be 

crucial for a comprehensive evaluation of wild red deer’s potential in applied 

conservation. 

ANPP and forage removal by red deer in grasslands  

The ANPP of grasslands in the present study (293–495 g m-2 y-1) reflects the lack of 

fertilisation during the past decades of military land use in GTA and is therefore low 

compared to the productivity of agriculturally improved grasslands, and within the 

range of the productivity of unfertilized dry Arrhenatherum meadows (200–

450 g m 2 y-1; Leuschner and Ellenberg 2017).  

The share of the ANPP consumed by red deer in grasslands in GTA is in line with 

the few earlier studies that quantified forage removal by wild and free-ranging red 

deer. In the US Yellowstone National Park, forage removal by red deer and bison 

accounted for 22 to 58% of the ANPP (Frank and McNaughton 1992). In a 

protected area in the Italian Pre-Alps, wild red deer consumed high amounts of 

biomass in agriculturally used mountain meadows, reaching up to 40% of the 

biomass at the second cut (Marchiori et al. 2012), and in south-eastern Slovenia, red 

deer grazing in grasslands close to forest borders reduced the herbage yield by 50% 

on average (Trdan and Vidrih 2007). 
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ANPP and forage removal by red deer in heathlands  

The ANPP of heathlands in GTA (215–300 g m-2 y-1) is higher than the productivity 

observed in northwest German inland heaths and similar to the productivity in 

British Calluna heathlands (Leuschner and Ellenberg 2017). Comparing the 

productivity between heathlands, however, is not straightforward because the Calluna 

life history phase strongly influences productivity rates (Barclay-Estrup 1970): The 

productivity of Calluna is low in the pioneer phase (150 g m-2 y-1), peaks at 440 g m2 y-1 

in the building phase, and decreases from the mature phase (360 g m-2 y-1) to the 

degenerate stage (140 g m-2 y-1), while the standing biomass increases sharply from 

the pioneer (290 g m-2) over the building (1510 g m-2) to the mature phase (1920 g m-2) 

and declines towards the degenerate stage (1040 g m-2). The relatively high 

productivity of heathlands in GTA in conjunction with the low mean standing 

biomass (318–340 g m-2) and the moderate Calluna cover (66% on average over the 

study period; data not shown) hence suggest that GTA heathlands represent Calluna 

stands in an early building phase.  

Interestingly, relative to the published data on Calluna height in the different life 

history phases (24–63 cm; Barclay-Estrup, 1970), the vegetation height was much 

lower throughout heathlands in GTA (6.3 ± 0.04 cm; mean ± SE over 3600 CSH 

measurements during the three study years). From the considerable annual forage 

removal by red deer in heathlands, we deduce that grazing by red deer can prevent 

biomass accumulation and increasing vegetation height in heathlands. The divergent 

vegetation development inside additional permanent exclosures on our study sites 

(Fig. S5) provides further support for a profound retarding effect of red deer grazing 

on the Calluna life history cycle. Our results moreover corroborate that Calluna can 

thrive despite the removal of up to 60% of the annual production (Gimingham 

1989). 

Seasonal variability in forage quality and forage removal by red deer 

Both the B and U treatment in grasslands showed opposing seasonal dynamics in 

CP, on the one hand, and fibre components, on the other hand (Fig. 2a). Cervids 

strongly select for CP in forage, whereas fibre components, especially oADF, are 

often avoided owing to the portion of indigestible lignin (Felton et al. 2018). The 

attractiveness of forage in the B and U treatment hence continually decreased from 

spring to the end of the vegetation period. In the M treatment, by contrast, the 

forage quality was significantly higher in the late season after mowing. With regard to 

mowing, we can therefore confirm the first part of hypothesis (3) that additional 

management in grasslands improves forage quality.  

The high rates of red deer forage removal detected in grasslands in spring and early 

summer corresponded to the high productivity and forage quality at the beginning of 

the vegetation period (Figs 1a, 2a). This temporal association was corroborated by 

significant positive linear relationships between daily forage removal in grasslands 

and productivity and CP, respectively (Tables S6, S7). The forage maturation 

hypothesis, widely supported in cervids (Fryxell 1991; Mysterud et al. 2017; Debeffe 

et al. 2017), can explain this seasonal pattern: red deer strongly select for vegetation 

in an early phenological stage because it offers easily digestible and highly nutritious 
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forage. From a conservation point of view, high forage removal in grasslands during 

spring and early summer is essential to prevent the accumulation of unpalatable dead 

plant material (Crofts and Jefferson 1999) that grazing animals would reject in the 

later season and that could introduce changes in the plant community conflicting 

with conservation aims.  

The forage maturation hypothesis, however, cannot explain that forage removal rates 

in heathlands were only significant during the winter period from October to April 

when neither productivity nor forage quality were high (Figs 1b, 2b). The diverging 

phenological development in heathlands and grasslands could illuminate this 

inconsistent pattern. Whereas grasslands offered forage of much better quality than 

heathlands in the early season, this difference vanished towards the end of the 

vegetation period. Consequently, the quality of the forage available to the red deer in 

heathlands during winter may be at least as good as in unmanaged grasslands, which 

made up the majority of open habitats in the surroundings of heathland plots (Table 

S1). The relatively high levels of yet ungrazed standing biomass at that time might 

additionally attract red deer (Fig. S3b), as indicated by the significant positive 

relationship between forage removal and the standing biomass in heathlands (Tables 

S6, S7). The observed forage removal in heathlands during the winter is in line with 

the results of faecal analyses of red deer in an Irish National Park, where Calluna was 

the major food component in winter when the quality of grasses was inferior 

(Sherlock and Fairley 1993). When forage quality is generally low as in the heathlands 

in our study, the quantity of potential forage biomass, rather than the quality, could 

be a driver for red deer foraging behaviour. Therefore, regarding hypothesis (2), we 

have to differentiate between grasslands, where seasonal changes in productivity and 

forage quality were reflected by seasonal patterns in red deer forage removal, and 

heathlands, where we did not detect a temporal association between productivity, 

forage quality and red deer forage removal. 

Management and drivers of forage removal by red deer  

While the annual forage removal of red deer indicated only by tendency that red deer 

foraged more in the M than in the B or U treatment (Table 1), we showed that the 

percent forage removal of the ANPP was 79% in the M treatment after subtracting 

the mown fraction from the ANPP. Hence, as assumed in hypothesis (3), mowing 

affected red deer forage removal. We explain this finding by the enhanced 

productivity and forage quality after the cut (Figs 1a, 2a) and the fact that red deer 

forage removal increased significantly with increasing productivity and CP (Tables 

S6, S7). Providing red deer with high-quality forage by mowing specific areas in their 

home range could, therefore, be an opportunity to influence their habitat use. In the 

Swiss Alps, a telemetry study similarly showed that farmed grassland could be an 

attractive and important food resource for free-ranging red deer and even suggested 

improving red deer access to open farmland to mitigate impacts on forests (Zweifel-

Schielly et al. 2012). 

In contrast to mowing, which had a distinct effect on the ANPP, standing biomass 

and forage quality, the B treatment was less effective. One reason might be that 

burning partly failed in the first two study years. The reduced standing biomass at the 
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first sampling date in April 2017 reflects that burning was more successful in the last 

study year, but further studies should explore the interactions between burning, 

productivity, forage quality and red deer grazing and judge potential benefits for 

grassland conservation in a Central European context.  

Trdan and Vidrih (2007) suggested an association between forage removal by free-

ranging red deer and the distance from the forest border. In contrast, we did not 

detect a significant relationship between forage removal by red deer and the distance 

to shrub or forest cover. In the structurally heterogeneous open landscapes in GTA, 

distances to the next shrub or forest are generally small, so that the consequently low 

range of distances studied might have limited a potential effect of distance to cover 

on red deer forage intake. However, it is also likely that the wildlife management, 

especially via hunting, has contributed to this result. On Italian mountain meadows, 

forage intake by wild red deer did not consistently relate to the distance to the forest 

in different study years, which was attributed to a habituation effect of red deer to 

the lack of hunting pressure (Marchiori et al. 2012). In open areas in GTA, red deer 

are not disturbed by hunting for most of the year (Meißner et al. 2013). Accordingly, 

the use of open habitats for foraging by red deer in GTA is not as much influenced 

by the distance to cover as in other parts of Central Europe (Lone et al. 2015). 

Opportunities and challenges for conservation  

Our results seem very promising for a successful implementation of red deer grazing 

to conserve semi-natural open habitats because (i) forage removal by wild red deer 

was comparable in magnitude to the amount of forage removed by livestock in 

conservation grazing and (ii) in the two different open habitat types studied (lowland 

hay meadows and European dry heaths), red deer forage removal peaked in different 

seasons. In grasslands, red deer responded with high forage removal to the high 

productivity in the early season, presumably attracted by the high forage quality, 

whereas the grazing impact in heathlands was most pronounced in winter and not 

during the summer period when severe grazing could affect Calluna detrimentally 

(Gimingham 1989). Such flexibility in forage selection, characteristic of a herbivore 

with intermediate feeding strategy, cannot be expected from domestic herbivores, 

which mostly belong to the true roughage eaters (Hofmann 1989), so that red deer 

grazing could substantially advance current management options for semi-natural 

open habitat conservation. Especially for large target areas, for instance abandoned 

and active military training areas, core zones of national parks or other large nature 

reserves, red deer grazing could be a viable management opportunity. To that end, it 

is indispensable that the local hunting regime enables red deer to use open areas 

where grazing is considered beneficial, while deterring them from areas where it is 

not (Ciuti et al. 2012; Cromsigt et al. 2013).  

In large-scale heterogeneous open landscapes, conservation management has to meet 

the challenge that different open habitat types require different grazing intensities 

and the proximity of a preferred plant community can increase the grazing impact of 

red deer on surrounding vegetation types (Palmer et al. 2003; Moore et al. 2015). Our 

results suggest that mowing of certain grassland areas, providing attractive forage in 

the late season, could be used to influence the habitat use of free-ranging red deer 
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and thus manage grazing impacts in a spatially-explicit way. To preserve 

comparatively productive semi-natural habitats such as lowland hay meadows in the 

long run, biomass removal as achievable through wild, free-ranging red deer might 

not be sufficient, as indicated by a trend of biomass accumulation in our U treatment 

over the three study years (Fig. S3a). Therefore, combining red deer grazing with 

additional occasional and local management interventions, which could 

simultaneously serve as a leverage point for a targeted wildlife grazing management, 

might benefit the conservation of open habitats. In conclusion, we encourage 

attempts to modify current wildlife management strategies in large areas of 

conservation importance to allow red deer to forage in open landscapes, which could 

help to reduce damage in forest stands (Zweifel-Schielly et al. 2012; Jarnemo et al. 

2014) and contribute to the conservation of semi-natural open habitats.  
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Appendix S1: Details on the assessment of standing biomass, aboveground net 

primary productivity and forage removal by wild red deer in Grafenwöhr military 

training area 

Standing biomass and calibration models 

To assess the standing biomass in both heathlands and grasslands, we used a double-

sampling technique relying on measurements of the compressed sward height by a 

rising-plate meter (30 cm disc diameter, 200 g disc weight) and calibration cuts 

(Correll et al. 2003). In each plot, we measured the sward height on 30 randomly 

distributed locations at five annual sampling dates (April, May, June, August and 

October) in three years (2015–2017). Additionally, we took two calibration cuts per 

plot, measuring the sward height on a 0.18 m2 area (two measurements) and cutting 

all vegetation to ground level. The calibration cut samples were weighed after drying 

at 105 °C for at least 24 hours. We determined the relationship between calibration 

cut biomass (dry weight) and sward height by a linear model for each habitat and year 

(average adjusted R2
 of 0.81 and 0.67 for grasslands and heathlands, respectively; 

Table S2). Using these calibration models, we determined the standing biomass based 

on the mean over the 30 sward height measurements for each plot and sampling 

date.  

Aboveground net primary productivity 

Aboveground net primary productivity (ANPP) and forage removal by red deer were 

assessed by exclusion cages (Fig. S4), which were moved to a new position at each 

sampling date, i.e. five times per growing season, resulting in five growth periods per 

study year. Each time the exclusion cages were translocated, we measured the sward 

height under the cage (nine measurements; 1 m2) on the new and on the former cage 

position, respectively. Using the calibration models, we predicted the standing 

biomass at the old and new cage position for each sampling date based on the mean 

of the nine sward height measurements under the cage. To quantify the actual 

biomass growth during each growth period without biomass losses due to grazing, 

we calculated the difference in biomass under the cage between succeeding sampling 

dates. ANPP was calculated as the sum of the positive biomass increments under the 

cage over the five growth periods per year. 

Red deer forage removal 

To assess the forage removal by red deer, we calculated the increments of the 

standing biomass of the continuously grazed vegetation on the sampling plot 

between succeeding sampling dates. Red deer forage removal was then calculated as 

the difference in biomass increments of the vegetation temporarily protected from 

grazing (under the exclusion cage) and the continuously grazed vegetation (on the 

open plot). Analogously to ANPP, annual forage removal resulted from summing up 

positive forage removal values over the five growth periods per year.  



Chapter 2 85 

 

 

Appendix S2: Details on the forage quality analyses 

 

On each sampling date (April, May, June, August and October; 2015 to 2017), we 

collected hand-pluck samples imitating red deer foraging behaviour to analyse forage 

quality as a potential driver of red deer foraging activity. We assessed total nitrogen 

concentration in plant material according to the Dumas combustion method in a CN 

elemental analyzer (vario MAX cube (in 2015), vario EL III (2016 and 2017), 

elementar, Langenselbold, DE). We multiplied total nitrogen by 6.25 to obtain crude 

protein (CP). Organic acid detergent fibre (exclusive of residual ash, oADF) and 

organic neutral detergent fibre (oNDF) in dried (at 60 °C for at least 24 hours) and 

milled (1 mm grain size) hand-pluck samples were determined by near-infrared 

spectroscopy (NIRS) for grasslands and by wet-chemical analysis for heathlands. 

Grassland samples were scanned with a Foss NIRSystems 6500 spectrophometer 

(Foss NIRSystems, Silver Spring, MD, US) and spectra were calibrated using a well-

established calibration function provided by the Institute VDLUFA Qualitäts-

sicherung NIRS GmbH, Kassel, DE, which has proven valid for extensive grassland 

samples (Tillmann 2010). We additionally validated the NIRS results by wet-chemical 

analysis for a subset of 24 and 40 grassland samples in 2015 and 2016, respectively 

(oADF: R2 ≥ 0.94; oNDF: R2 ≥ 0.92). Because an equally valid calibration for 

heathland vegetation is lacking, heathland samples were processed according to the 

detergent fibre method (Van Soest et al. 1991) in an ANKOM fibre analyzer 

(ANKOM220, ANKOM Technology Corp., Macedon, NY, US).   
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Table S1: Mean proportion (%) of land cover classes in the surroundings of the 

experimental plots in grasslands and heathlands in Grafenwöhr military training area within a 

circular area of 488 ha, which corresponds to the average 95% minimum convex polygon 

home range size (mean of 34 annual home ranges of 24 female red deer in 2015–2018; L. 

Richter, unpublished). The proportion of land cover classes was calculated based on a 

Random-Forest-classification with 94.4% Overall Accuracy (C. Raab, unpublished). 

 

Water Heath Grassland Forest Shrub Other 

      managed unmanaged deciduous coniferous     

Grasslands 0.34 0.03 19.04 37.65 13.28 9.53 10.30 9.82 

Heathlands 2.29 7.33 1.57 22.83 16.01 42.73 1.15 6.09 
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Table S2: Results of the sequential analysis of variance for the most parsimonious linear 

models calibrating vegetation biomass (dry weight, g m-2) to compressed sward height (CSH, 

cm) for grasslands and heathlands in the three study years 2015 to 2017 including degrees of 

freedom (df), sums of squares (sum sq), F- and p-values and adjusted coefficient of 

determination (R2
(adj.)) 

Habitat Year Parameter df sum sq mean sum sq F p-value R2
(adj.) 

Grasslands 2015 CSHa 1 4583782 4583782 1286.65 <0.001 0.83 

  

Cutb 1 52277 52277 14.67 <0.001  

  

Treatmentc 2 124325 62162 17.45 <0.001  

  

Sampl_dated 5 626714 125343 35.18 <0.001  

  

Sampl_sitee 4 323605 80901 22.71 <0.001  

  

CSH × Treatment 2 96547 48274 13.55 <0.001  

  

CSH × Sampl_date 5 168708 33742 9.47 <0.001  

  

Treatment × Sampl_date 10 156468 15647 4.39 <0.001  

  

Sampl_date × Sampl_site 20 327798 16390 4.60 <0.001  

  

Residuals 318 1132898 3563 

  

 

 

2016 CSH 1 8914048 8914048 1294.87 <0.001 0.82 

  

Treatment 2 568188 284094 41.27 <0.001  

  

Sampl_date 5 714466 142893 20.76 <0.001  

  

Sampl_site 4 745686 186421 27.08 <0.001  

  

CSH × Treatment 2 157211 78605 11.42 <0.001  

  

CSH × Sampl_date 5 328132 65626 9.53 <0.001  

  

Treatment × Sampl_date 10 395997 39600 5.75 <0.001  

  

Sampl_date × Sampl_site 20 386775 19339 2.81 <0.001  

  

Residuals 320 2202916 6884 

  

 

 

2017 CSH 1 7315719 7315719 1015.01 <0.001 0.79 

  

Cut 1 53994 53994 7.49 0.007  

  

Treatment 2 2069942 1034971 143.60 <0.001  

  

Sampl_date 5 178027 35605 4.94 <0.001  

  

Sampl_site 4 281809 70452 9.77 <0.001  

  

CSH × Sampl_date 5 222900 44580 6.19 <0.001  

  

Treatment × Sampl_date 10 279554 27955 3.88 <0.001  

  

Residuals 341 2457759 7208 

  

 

Heathlands 2015 CSH 1 2048807 2048807 356.22 <0.001 0.75 

  

Sampl_date 5 63087 12617 2.19 0.058  

  

Pairf 7 207459 29637 5.15 <0.001  

  

CSH × Sampl_date 5 143045 28609 4.97 <0.001  

  

Sampl_date × Pair 35 1096222 31321 5.45 <0.001  

  

Residuals 136 782212 5752 

  

 

 

2016 Plotg 1 51013 51013 5.23 0.023 0.62 

  

CSH 1 1728899 1728899 177.18 <0.001  

  

Sampl_date 5 1156063 231213 23.69 <0.001  

  

Plot × CSH 1 100891 100891 10.34 0.002  
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Habitat Year Parameter df sum sq mean sum sq F p-value R2
(adj.) 

  

CSH × Sampl_date 5 119867 23973 2.46 0.035  

  

Residuals 178 1736909 9758 

  

 

 

2017 Plot 1 191297 191297 16.87 <0.001 0.65 

  

CSH 1 2873789 2873789 253.37 <0.001  

  

Sampl_date 5 544309 108862 9.60 <0.001  

  

Plot × CSH 1 346236 346236 30.53 <0.001  

  

CSH × Sampl_date 5 137060 27412 2.42 0.038  

    Residuals 178 2018931 11342       

aCompressed sward height (cm); continuous 
bGrassland cut before sampling date; factor (Yes, No)  
cTreatments in grasslands; factor (burnt, mown, untreated) 
dSampling date; factor (April, May, June, August, October) 
eSampling site; factor (five levels) 
fPair of plots in heathlands; factor (eight levels) 
gType of plot; factor (open, fenced) 

 

To obtain consistent vegetation biomass data throughout the entire research project 

on Grafenwöhr military training area, the calibration models were built upon data 

from both the open plots, on which we investigated red deer grazing in the present 

study, as well as additional permanently fenced plots. Therefore, prior to AICc-based 

model selection, each global model for calibrating vegetation biomass (dry weight, 

g m-2) to compressed sward height (CSH, cm) included the explanatory variable 

'Plot'. The fenced plots were not the focus of the present study, so that the results 

from the predictions of the vegetation biomass for fenced plots were excluded from 

all present analyses.  

In heathlands, study sites comprised only one treatment category (untreated) but 

either one or two pairs of open and fenced plots, so that 'Pair' instead of 'Treatment' 

was used as explanatory variable in heathlands.   



Chapter 2 89 

 

 

Table S3: Numerator (df(num)) and denominator degrees of freedom (df(den)), F- and p-values 

for sequential Wald tests for the parameters in the most parsimonious linear mixed effects 

models for standing biomass, annual aboveground net primary production (ANPP) and 

annual forage removal by red deer (g m-2) in grasslands and heathlands including each 

model’s marginal (R2
(m)) and conditional coefficient of determination (R2

(c)) according to 

Nakagawa and Schielzeth (2013). 

Habitat type Response Parameter df(num) df(den) F p-value R2
(m) R2

(c) 

Grasslands Standing biomass  Year 2 24 97.02 <0.001 0.83 0.97 

  

Treatment 2 8 264.64 <0.001 

  

  

Year × Treatment 4 24 57.03 <0.001 

  

 

ANPP  Treatment 2 8 9.17 0.009 0.55 0.55 

 

Forage removal Year 2 28 18.19 <0.001 0.44 0.94 

Heathlands Standing biomass  (Intercept) 1 16 404.12 <0.001 0.00 0.71 

 

ANPP  Year 2 14 4.85 0.025 0.22 0.48 

  Forage removal (Intercept) 1 16 121.50 <0.001 0.00 0.56 
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Table S4: Numerator (df(num)) and denominator degrees of freedom (df(den)), F- and p-values 

for sequential Wald tests for the parameters in the most parsimonious linear mixed effects 

models for daily rates of primary productivity and forage removal by red deer (g m-2 d-1) and 

standing biomass (g m-2) in grasslands and heathlands including each model’s marginal (R2
(m)) 

and conditional coefficient of determination (R2
(c)) according to Nakagawa and Schielzeth 

(2013). 

Habitat type Response Parameter df(num) df(den) F p-value R2
(m) R2

(c) 

Grasslands Productivity Treatment 2 8 80.10 <0.001 0.98 0.99 

  

Period 4 168 261.93 <0.001 

  

  

Year × Treatment 4 168 4.44 0.002 

  

  

Year × Period 8 168 21.44 <0.001 

  

  

Treatment × Period 8 168 12.93 <0.001 

  

  

Year × Treatment × Period 16 168 5.00 <0.001 

  

 

Forage removal  Year 2 196 23.38 <0.001 0.91 0.95 

  

Treatment 2 8 4.57 0.011 

  

  

Period 4 196 10.68 0.006 

  

  

Year × Period 8 196 16.65 <0.001 

  

 

Standing biomass Year 2 184 99.86 <0.001 0.82 0.88 

  

Treatment 2 8 356.48 <0.001 

  

  

Month 4 184 332.82 <0.001 

  

  

Year × Treatment 4 184 77.00 <0.001 

  

  

Year × Month 8 184 25.15 <0.001 

  

  

Treatment × Month 8 184 34.49 <0.001 

  Heathlands Productivity  Year 2 98 122.05 <0.001 0.23 0.23 

 
 

Period 4 98 102.26 <0.001 

  

  

Year × Period 8 98 74.43 <0.001   

 

Forage removal  Period 4 108 5.02 0.001 0.04 0.04 

 

Standing biomass Year 2 98 58.93 <0.001 0.13 0.16 

  

Month 4 98 80.43 <0.001 

      Year × Month 8 98 22.69 <0.001     
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Table S5: Numerator (df(num)) and denominator degrees of freedom (df(den)), F- and p-values 

for Wald tests for the parameters in the most parsimonious linear mixed effects models for 

forage quality (CP, crude protein (%); oADF, acid detergent fibre (%); oNDF, neutral 

detergent fibre (%)) in grasslands and heathlands including each model’s marginal (R2
(m)) and 

conditional coefficient of determination (R2
(c)) according to Nakagawa and Schielzeth (2013). 

Habitat type Response Parameter df(num) df(den) F p-value R2
(m) R2

(c) 

Grasslands CP Year 2 188 33.69 <0.001 0.79 0.80 

  

Treatment 2 8 71.07 <0.001 

  

  

Month 4 188 266.27 <0.001 

  

  

Year × Month 8 188 15.68 <0.001 

  

  

Treatment × Month 8 188 37.07 <0.001 

  

 

oADF Year 2 184 78.80 <0.001 0.71 0.72 

  

Treatment 2 8 54.05 <0.001 

  

  

Month 4 184 300.46 <0.001 

  

  

Year × Treatment 4 184 10.10 <0.001 

  

  

Year × Month 8 184 16.28 <0.001 

  
 

 

Treatment × Month 8 184 43.67 <0.001 

  
 

oNDF Year 2 188 47.37 <0.001 0.67 0.69 

 
 

Treatment 2 8 23.96 <0.001 

  
 

 

Month 4 188 146.46 <0.001 

  

  

Year × Month 8 188 12.70 <0.001 

  Heathlands CP Year 8 188 120.30 <0.001 0.61 0.88 

  

Month 4 98 120.26 <0.001 

  

  

Year × Month 8 98 7.01 <0.001 

  

 

oADF Year 2 98 24.40 <0.001 0.64 0.65 

  

Month 4 98 109.31 <0.001 

  

  

Year × Month 8 98 11.22 <0.001 

  

 

oNDF Year 2 106 42.55 <0.001 0.07 0.18 

    Month 4 106 21.99 <0.001     
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Table S6: Numerator (df(num)) and denominator degrees of freedom (df(den)), F- and p-values 

for sequential Wald tests for the parameters retained in the most parsimonious linear mixed 

effects models for daily forage removal by red deer (g m-2d-1) in grasslands and heathlands 

including daily productivity (g m-2 d-1), crude protein (CP, %), standing biomass (g m-2) or 

acid detergent fibre (oADF, %) as an additional continuous environmental covariate, 

respectively. R2
(m) and R2

(c) show each model’s marginal and conditional coefficient of 

determination according to Nakagawa and Schielzeth (2013). 

Habitat 
type Covariate Parameter df(num) df(den)  F p-value R2

(m) R2
(c) 

Grasslands Productivity  Productivity 1 179 182.78 <0.001 0.94 0.95 

  

Year 2 179 0.87 0.420 

  

  

Treatment 2 8 1.43 0.293 

  

  

Period 4 179 6.16 0.000 

  

  

Productivity × Year 2 179 13.59 <0.001 

  

  

Productivity × Treatment 2 179 1.23 0.296 

  

  

Productivity × Period 4 179 8.42 <0.001 

  

  

Year × Treatment 4 179 4.11 0.003 

  

 

 Year × Period 8 179 13.73 <0.001 

  

  

Productivity × Year × Treatment 4 179 4.84 0.001 

  

 

CPa Year 2 195 0.23 0.798 0.29 0.30 

  

Period 4 195 13.73 <0.001 

  

  

CP 1 195 10.52 0.001 

  

  

Year × Period 8 195 6.13 <0.001 

  Heathlands Biomassa Biomass 1 99 30.98 <0.001 0.12 0.13 

  

Year 2 99 4.08 0.020 

  

  

Period 4 99 9.22 <0.001 

  

  

Biomass × Year 2 99 17.97 <0.001 

  
 

 

Biomass × Period 4 99 4.45 0.002 

    oADFa oADF 1 111 12.02 0.001     

aMeasured at the beginning of the respective growth period  



Chapter 2 93 

 

 

Table S7: Slopes and 95% confidence limits (CL) associated with the additional continuous 

environmental covariates in the most parsimonious linear mixed effects models explaining 

red deer daily forage removal (g m-2 d-1). Daily productivity (g m2 d1) and crude protein (%) 

were retained as significant covariates in the models for forage removal in grasslands, while 

standing biomass (g m-2) and acid detergent fibre (oADF, %) were significant for forage 

removal in heathlands (cf. Table S6). 

Habitat type Covariate Treatment Year Growth period  Slope Lower CL Upper CL 

Grasslands Productivity Burnt 2015 Apr15–May15 0.5096 0.3199 0.4167 

   

2016 Apr16–May16 0.2931 0.0829 0.1901 

   

2017 Apr17–May17 0.6293 0.4282 0.5308 

  

Mown 2015 Apr15–May15 0.3919 0.1854 0.2908 

   

2016 Apr16–May16 0.4489 0.2484 0.3507 

   

2017 Apr17–May17 0.8146 0.5978 0.7084 

  

Untreated 2015 Apr15–May15 0.4871 0.2739 0.3827 

   

2016 Apr16–May16 0.4608 0.2507 0.3579 

   

2017 Apr17–May17 0.6688 0.4289 0.5513 

  

Burnt 2015 May15–Jun15 0.2194 0.0604 0.1415 

   

2016 May16–Jun16 0.0028 -0.1713 -0.0825 

   

2017 May17–Jun17 0.3391 0.1688 0.2557 

  

Mown 2015 May15–Jun15 0.1017 -0.0590 0.0230 

   

2016 May16–Jun16 0.1586 -0.0142 0.0740 

   

2017 May17–Jun17 0.5243 0.3328 0.4305 

  

Untreated 2015 May15–Jun15 0.1969 -0.0073 0.0969 

   

2016 May16–Jun16 0.1706 -0.0164 0.0790 

   

2017 May17–Jun17 0.3785 0.1950 0.2886 

  

Burnt 2015 Jun15–Aug15 0.1099 -0.0614 0.0260 

   

2016 Jun16–Aug16 -0.1067 -0.2720 -0.1877 

   

2017 Jun17–Aug17 0.2296 0.1096 0.1708 

  

Mown 2015 Jun15–Aug15 -0.0078 -0.1909 -0.0975 

   

2016 Jun16–Aug16 0.0491 -0.1265 -0.0369 

   

2017 Jun17–Aug17 0.4148 0.2459 0.3321 

  

Untreated 2015 Jun15–Aug15 0.0874 -0.1183 -0.0134 

   

2016 Jun16–Aug16 0.0611 -0.1174 -0.0263 

   

2017 Jun17–Aug17 0.2690 0.0688 0.1709 

  

Burnt 2015 Aug15–Oct15 0.1011 -0.0346 0.0346 

   

2016 Aug16–Oct16 -0.1154 -0.2496 -0.1811 

   

2017 Aug17–Oct17 0.2208 0.0707 0.1473 

  

Mown 2015 Aug15–Oct15 -0.0166 -0.1670 -0.0903 

   

2016 Aug16–Oct16 0.0404 -0.0771 -0.0172 

   

2017 Aug17–Oct17 0.4061 0.2360 0.3228 

  

Untreated 2015 Aug15–Oct15 0.0786 -0.1013 -0.0095 

   

2016 Aug16–Oct16 0.0523 -0.1035 -0.0240 

   

2017 Aug17–Oct17 0.2602 0.0651 0.1647 
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Habitat type Covariate Treatment Year Growth period  Slope Lower CL Upper CL 

  

Burnt 2015 Oct15–Apr16 0.3978 0.2714 0.3359 

   

2016 Oct16–Apr17 0.1813 0.0490 0.1165 

   

2017 Oct17–Apr18 0.5175 0.3991 0.4595 

  

Mown 2015 Oct15–Apr16 0.2801 0.1268 0.2050 

   

2016 Oct16–Apr17 0.3371 0.1730 0.2567 

   

2017 Oct17-Apr18 0.7028 0.5339 0.6200 

  

Untreated 2015 Oct15–Apr16 0.3753 0.1983 0.2886 

   

2016 Oct16–Apr17 0.3490 0.1769 0.2647 

   

2017 Oct17-Apr18 0.5569 0.3691 0.4649 

 

Crude proteina 

   

0.2755 0.1261 0.2023 

Heathlands Biomassa Untreated 2015 Apr15–May15 0.0031 -0.0008 0.0012 

   

2016 Apr16–May16 0.0087 0.0045 0.0066 

   

2017 Apr17–May17 0.0089 0.0049 0.0069 

   

2015 May15–Jun15 -0.0022 -0.0070 -0.0046 

   

2016 May16–Jun16 0.0034 -0.0013 0.0011 

   

2017 May17–Jun17 0.0037 -0.0013 0.0012 

   

2015 Jun15–Aug15 0.0029 0.0007 0.0018 

   

2016 Jun16–Aug16 0.0085 0.0054 0.0070 

   

2017 Jun17–Aug17 0.0087 0.0053 0.0070 

   

2015 Aug15–Oct15 -0.0044 -0.0075 -0.0059 

   

2016 Aug16–Oct16 0.0012 -0.0026 -0.0006 

   

2017 Aug17–Oct17 0.0015 -0.0024 -0.0004 

   

2015 Oct15–Apr16 0.0000 -0.0017 -0.0008 

   

2016 Oct16–Apr17 0.0056 0.0037 0.0046 

   

2017 Oct17–Apr18 0.0058 0.0034 0.0046 

  oADFa Untreated     0.0351 0.0152 0.0254 

 aMeasured at the beginning of the respective growth period  
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Figure S1: Mean temperature (°C, blue bars) and precipitation (mm, red line) during the 

time of study, April 2015 to April 2017, in Grafenwöhr military training area in Bavaria, 

Germany (averaged over four weather stations of the German Weather Service (Deutscher 

Wetterdienst, DWD) in the immediate vicinity). The grey bars and the black line show the 

1981–2010 long-term average temperature and precipitation, respectively.  
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Figure S2: Location of the sampling sites in heathlands and grasslands at Grafenwöhr 

military training area in Bavaria, Germany. Shaded areas indicate the occurrence of the 

Natura 2000 habitat types 4030, European dry heaths, and 6510, lowland hay meadows, 

according to the draft of the Natura 2000 management plan (2013/2014) for the Site of 

Community Importance and Special Area of Conservation US-Truppenübungsplatz 

Grafenwöhr (DE6336301). Adapted from Riesch et al. (2018).  
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Figure S3: Standing biomass (dry matter, g m-2) in (a) burnt, mown and untreated grasslands 

(n = 5); and (b) heathlands (n = 8) in 2015 to 2017. Symbols and lines show estimated 

marginal means and 95% confidence interval based on linear mixed effects models.  
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Figure S4: Movable exclusion cage after translocation to a new position. The former cage 

position is clearly recognizable by the square of taller, ungrazed vegetation. Picture taken in 

August 2016 (Anya Wichelhaus).  
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Figure S5: Exemplary additional permanent exclosure preventing red deer grazing in 

heathlands. The picture was taken in May 2016, 20 months after the fence was installed.  
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Abstract 

Conservation management of semi-natural open habitats today has to compensate 

for the decline of traditional practices of agricultural land use. We studied if wild and 

free-ranging red deer contribute to the preservation of characteristic open habitat 

plant communities. On a military training area in Germany, we set up a grazing 

exclusion experiment in grasslands (lowland hay meadows) and heathlands 

(European dry heaths) and monitored structural vegetation characteristics (sward 

height, bare soil, biomass contribution of Calluna vulgaris, litter height, woody species 

individuals) in open and fenced plots within a 3-year study period. We compared 

plant species richness, diversity and community composition before and after the 

experimental period. In grasslands, plant species diversity was significantly reduced in 

fenced compared to open plots and in both habitat types, plant community 

composition responded to the exclusion of red deer. Indications of beginning 

succession when fencing prevented red deer grazing were increasing height of sward 

and litter in both habitat types and, additionally, reduced cover of bare soil and 

increasing number of woody plant individuals in heathlands. In annually mown 

grasslands, where the regrowth provides attractive forage for red deer, the differences 

between open and fenced plots were most pronounced. Overall, our results indicate 

that the conservation value of the studied open habitat types started to decrease after 

red deer exclusion. Hence, we conclude that grazing by wild red deer provides 

benefits to vegetation structure and diversity and could therefore enrich the set of 

tools available for the conservation management of semi-natural open habitats. 
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Introduction 

Semi-natural open habitats are hotspots of plant and animal biodiversity at global as 

well as local scales, supporting many threatened species, and providing various 

ecosystem services (Harrison et al. 2010; Wrage et al. 2011; Carbutt et al. 2017). 

Many open habitat types are associated with traditional extensive agricultural land use 

practices (Poschlod et al. 2009; Halada et al. 2011), which have shaped the European 

landscape in former times. Today, most of the agricultural land in Europe is 

intensively farmed, whereas marginal land is increasingly abandoned so that the 

maintenance of semi-natural open habitats is a continuous challenge to nature 

conservation (Poschlod et al. 2009; Hilpold et al. 2018). Alarmingly, only a small 

fraction of the open habitats protected under the EU Habitats Directive (e.g. 11.3% 

of grasslands, 20.8% of heathlands) is in a favourable conservation status (European 

Environment Agency 2015).  

Extensive grazing with different livestock species has become a valuable tool for 

conservation management in Europe (García et al., 2013; Rosenthal et al. 2012; Van 

Wieren, 1995). Grazing, trampling and defecation of large herbivores affect 

vegetation structure and composition (Milchunas et al. 1988; Cingolani et al. 2005) 

and can contribute to structural heterogeneity and biodiversity (Olff and Ritchie 

1998; Adler et al. 2001). For very large or inaccessible areas, however, livestock 

grazing is inapplicable because regular monitoring of the animals and/or fencing is 

required. Under such circumstances, grazing by wild herbivores could be an 

alternative management option to keep up biomass removal levels as required for 

maintaining open habitats (Riesch et al. 2019).  

Conservation science has only recently focused on the strong impact on vegetation 

development by wild herbivores, which actually represent key determinants of the 

ecology and evolution of vegetation worldwide (Sandom et al. 2014; Pausas and 

Bond 2018). From this perspective, more natural grazing regimes and ecological 

processes could potentially be restored by incorporating wild autochthonous 

herbivore species—such as red deer (Cervus elaphus)—into the conservation practice 

(Sutherland 2002; Ceaușu et al. 2015).  

In contrast to the generally acknowledged conservation benefits of livestock grazing, 

grazing or browsing by free-ranging red deer has mostly been judged from an 

economic point of view (Putman and Moore 1998), as a cause of damage in forests 

and woodlands (Beguin et al. 2016; Eichhorn et al. 2017) or agriculture (Trdan and 

Vidrih 2007; Walter et al. 2011; Marchiori et al. 2012). Deer have also been criticised 

for deleterious effects on conservation habitats (Putman and Moore 1998), especially 

regarding their impact on heathlands (Albon et al. 2007; DeGabriel et al. 2011). 

However, a more differentiated perspective on red deer herbivory is increasingly 

supported (Virtanen et al. 2002; Mysterud 2006; Smolko et al. 2018). For example, 

grazing by wild red deer enhanced understory species richness in boreal old-growth 

forests (Hegland et al. 2013; Hegland and Rydgren 2016) and productive forests 

throughout France (Boulanger et al. 2018). Similarly, red deer have been driving 

changes in the vegetation of subalpine grasslands over several decades including a 

distinct increase in species richness with increasing deer density (Schütz et al. 2003). 
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Consequently, red deer grazing could have potentially strong, positive impacts on 

herbaceous vegetation communities.  

It is, however, yet unclear how red deer grazing affects the vegetation development 

in specific open habitats of high conservation importance, such as the habitat types 

listed in Annex I of the EU Habitats Directive. Red deer grazing ecology and 

vegetation impacts have been studied mostly on tamed or captive animals (Langvatn 

and Hanley 1993; Palmer and Hester 2000) or on wild, but not strictly free-ranging 

animals (Tschöpe et al. 2011; Fløjgaard et al. 2017). Thus, we lack a thorough 

understanding of the benefits or drawbacks of long-term grazing by wild and free-

ranging red deer for different open habitat types in Central Europe. Whether red 

deer grazing can preserve the characteristic species communities of specific habitat 

types in the long run can only be answered conclusively by long-term monitoring. 

The vegetation structure, however, responds more immediately to changes in grazing 

intensity (Dumont et al. 2011) and can therefore serve as an immediate indication 

whether the grazing intensity by red deer corresponds to habitat requirements. On 

the one hand, if grazing is not sufficient, the persistence of open habitats is critically 

endangered by natural succession involving the accumulation of litter, increasing 

vegetation height, density and biomass and the encroachment of woody species 

(Crofts and Jefferson 1999; Kahmen and Poschlod 2004). On the other hand, if the 

habitat use of red deer is too intensive, habitat quality could be compromised, for 

instance due to damage to the vegetation layer and increased cover of bare soil 

(Mysterud 2006).  

As grazing requirements, or tolerance, differ between habitat types (Bakker et al. 

2006; Moore et al. 2015), possibilities to spatially direct grazing activities by free-

ranging red deer would substantially advance the conservation management of open 

habitats in large-scale heterogeneous areas. The vegetation regrowth after biomass 

removal can be highly attractive to large herbivores (Langvatn and Hanley 1993; 

Wilmshurst et al. 1995; Allred et al. 2011; Proffitt et al. 2016). Removing vegetation 

biomass from selected areas by additional mechanical management, e.g. mowing or 

burning, could therefore be a potential strategy to influence the habitat use of red 

deer (Riesch et al. 2019). Hence, it is of interest to explore vegetation communities’ 

responses to red deer grazing alone but also in combination with additional 

management treatments. 

To assess the applicability of grazing by wild and free-ranging red deer for 

conservation purposes, we established a grazing exclusion experiment in two Natura 

2000 habitat types, lowland hay meadows and European dry heaths, within an active 

military training area in Germany. Over three years, we monitored the development 

of different structural vegetation characteristics in pairs of open, continuously grazed 

plots and fenced plots protected against grazing. Besides, we compared the 

vegetation composition and diversity before and at the end of the period of red deer 

exclusion in the paired plots. In general, we hypothesised that the conservation value 

of habitats would diminish following red deer exclusion because of missing grazing 

benefits to vegetation structure and diversity. More specifically, we expected (i) 

changes in diversity and species composition introduced by red deer exclusion; (ii) 

the vegetation structure in fenced plots to show initial evidence of natural succession; 
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(iii) most pronounced effects of red deer exclusion where additional management 

was applied making vegetation more attractive to red deer. 

Methods  

Study area 

We studied vegetation responses to the exclusion of wild red deer in the US Army 

Garrison Grafenwöhr military training area (GTA) in Bavaria, Germany (49° 40' 56'' 

N, 11° 47' 20'' E, Online Resource Fig. S1). GTA covers approximately 230 km2, 

composed of 60% forest and 40% open land (C. Raab, unpublished). Long-time 

(1981–2010) annual averages of temperature and precipitation are 8.3 ± 0.04 °C and 

701 ± 4 mm (mean ± SE of four weather stations of the German Weather Service 

(Deutscher Wetterdienst) in close proximity to GTA, Fig. S2). Designated as a Site of 

Community Importance and Special Area of Conservation (DE6336301), about 85% 

of GTA belong to the European Natura 2000 network. Implementing livestock 

grazing is not possible in most parts of GTA because of the permanent intensive 

military training and the restricted public access. The abundance of wildlife species, 

especially red deer, is high (annual harvest numbers averaged over the study years: 

1493 red deer, 584 roe deer (Capreolus capreolus), 553 wild boars (Sus scrofa)). The 

German Federal Forests Division (Bundesforst) is in charge of the land and hunting 

management in GTA. For several decades, the hunting management has been aiming 

at reducing damage to the forest by encouraging red deer to make use of the open 

landscapes. Therefore, hunting in open areas is largely limited to driven hunts on few 

days in early winter to minimise disturbances to the red deer’s natural behaviour and 

circadian movement patterns (Meißner et al. 2013). By contrast, hunting in forested 

areas (driven and still hunts) continues during the entire hunting season defined by 

the federal state’s hunting regulations (six to eight months). In consequence, red 

deer’s habitat use of open land in GTA is intense and forage removal is considerable 

(Meißner et al. 2013, Riesch et al. 2019).  

Experimental design 

We set up a grazing exclusion experiment in the two open habitat types with the 

largest total area in GTA: lowland hay meadows (EU Habitats Directive Annex I 

habitat type 6510, hereafter ‘grasslands’) and European dry heaths (habitat type 4030, 

‘heathlands’), covering 340 and 463 ha, respectively (Fig. S1). The grasslands largely 

belong to the Arrhenatherion elatioris vegetation alliance and the heathlands belong to 

the Vaccinio-Callunetum vulgaris association. The grasslands are situated in the western 

third of the GTA within a large (semi-)open area on calcareous soils, whereas the 

heathlands form small-sized patches within shrub- or forest-dominated areas in the 

eastern part of GTA on Triassic sandstone and highly acidic, sandy soils. Further, 

larger heathland areas exist within the shooting ranges and the main ordnance impact 

areas, where access is permanently prohibited. In both habitat types, the soil fertility 

is low as no agricultural inputs occurred over the more than one hundred years of 

military land use in GTA (average values for P (CAL), K (CAL) and Mg (CaCl2) in 
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grasslands: 11.7 mg kg-1, 52.1 mg kg-1, 139.1 mg kg-1; in heathlands: 4.2 mg kg-1, 47.3 

mg kg-1, 39.2 mg kg-1; Riesch et al. 2018).  

In each habitat type, we established five sampling sites (Fig. S1). In grasslands, each 

sampling site (c. 1 ha) was composed of three equally sized treatments: burnt (B), 

mown (M) and untreated (U) grassland. These treatments started in 2015; prior to 

that, all grassland sites had been mown once per year over several decades. The B 

treatment was burnt at the end of March or at the beginning of April in 2015 to 

2017. In accordance with the previous land management, the M treatment was mown 

annually in July by a tractor mower and biomass was removed as haylage. In 2014, we 

designated two plots of 225 m2 (15 × 15 m) within each treatment. The plots were 

randomly assigned as ‘open’ or ‘fenced’, totalling 30 plots in grasslands. In 

heathlands, we could not implement the M and B treatments, as mowing was 

impossible due to abundant remnants of ammunition in that area of GTA, and 

burning failed due to unfavourable weather conditions and low standing biomass. 

Accordingly, in heathland sites (c. 0.5 ha), U was the single treatment, which was 

assessed on three sites with two pairs of plots and two sites with one pair of plots, 

resulting in 16 plots in heathlands. 

The fences excluding all larger animals (10 × 30 cm mesh size, 2 m height) were 

installed in July and September 2015 in grasslands and heathlands, respectively. After 

fencing, the size of the fenced plots was slightly smaller (11 × 11 m) because the 

fences were constructed of prefabricated elements with defined size (Figs S7, 8). 

Both open and fenced plots received the M and B treatment in grasslands. 

Data collection 

In 2014, before the beginning of the experiment, the vegetation had been surveyed in 

one relevé (5 × 5 m) per plot as part of a study on the relationships between soil 

chemical parameters and plant communities using a larger number of relevés (Riesch 

et al. 2018). Owing to logistical constraints, the relevés of one grassland site and one 

heathland site were surveyed one year later in 2015. The relative biomass 

contribution of each vascular plant species to the total aboveground plant dry matter 

biomass was visually estimated as described by Klapp (1965; see also Boob et al. 

2019) in grassland and heathland relevés in summer and autumn, respectively. The 

nomenclature of plant species follows Jäger (2011). Species of the species-rich genera 

Alchemilla and Hieracium that could not be identified with certainty were recorded as 

Alchemilla sp. 1–3 and Hieracium sp. 1–2. The taxa Crataegus, Ononis and Prunus were 

recorded at the genus level. To assess changes in vegetation composition and 

diversity introduced by the experimental treatments and red deer grazing exclusion, 

all relevés were resurveyed in 2018 according to the same procedure by the same 

botanist.  

From 2015 to 2017, we recorded data on the vegetation height on five dates per year 

(April, May, June, August and October). In both habitat types and on each sampling 

date, we measured the compressed sward height (CSH) on 30 randomly chosen 

locations per plot with a rising-plate meter, which is an established method for 

assessing vegetation structure dynamics in heterogeneous swards (Correll et al. 2003). 

In heathlands, the percent area covered by bare soil and the percent biomass 
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contribution of Calluna vulgaris to the total aboveground biomass were recorded as 

additional structural relevé characteristics. 

Additionally, in April 2018, we measured the height of the litter layer as the distance 

between the soil and highest piece of fallen litter 30 times per plot with a pencil-

shaped ruler (1 cm diameter) and counted the number of individuals of woody plant 

species per plot.  

To substantiate our assumption that red deer is the main large herbivore foraging in 

open habitats in GTA, we used time-lapse cameras (PlotWatcher Pro, Day 6 

Outdoors, Columbus, GA, US). In May 2016, we installed one camera on a 2.5 m 

wooden post at 5 m distance to the southern corner of each open plot, overviewing 

the complete plot area. The cameras took one picture per minute between sunrise 

and sunset over a 13-months period. As cameras occasionally failed, we had to 

exclude 41 ± 11 days (mean ± SE) from the reference period. On each picture, we 

counted the individuals of red deer, roe deer and wild boars within the plot area and 

calculated the frequency of occurrence for each species in minutes per day based on 

the number of days when the camera was working.  

All data are supplied as supplementary files. 

Statistical analyses 

We conducted all data processing and statistics in R version 3.5.1 (R Core Team 

2015). To assess the effects of red deer exclusion and additional management 

treatments in grasslands on the different components of vegetation diversity and 

structure, we performed univariate and multivariate analyses separately for grasslands 

and heathlands.  

Species richness (SR) was calculated as the number of vascular plant species per 

relevé. As a measure for the heterogeneity of species abundances within 

communities, we calculated the Inverse Simpson index (Simpson 1949; Hill 1973) as 

1/Σp i
2, with pi = the proportion of species i in the community. This index represents 

the reciprocal of the probability that two individuals in a community belong to the 

same species and, hence, largely depends on the abundance of dominant species 

(Magurran 2004). We conducted univariate analyses of SR and diversity indices using 

linear mixed effects models (LME) in the package nlme (Pinheiro et al. 2015). Year 

(2014/2018), treatment (B/M/U, only in grasslands) and plot (open/fenced) and all 

their interactions served as explanatory variables. We accounted for the spatial 

nestedness of the experimental design using a nested random intercept composed of 

plot, treatment (grasslands) or pair (heathlands) and sampling site. We applied 

appropriate variance structure functions if needed to improve the normality and 

homogeneity of residuals. Starting from the full model, each model was simplified 

based on the second-order Akaike information criterion accounting for small sample 

size (AICc) to find the most parsimonious model. For this model, we computed the 

conditional (R(c)²) and the marginal coefficient of determination (R(m)²) expressing the 

variance explained by fixed and random effects combined and the variance explained 

by fixed effects alone (Nakagawa et al. 2017). To evaluate differences between open 

and fenced plots, we computed estimated marginal means and p-values for the 
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pairwise comparisons between open and fenced plots using the package emmeans 

(Lenth 2018) for all cases where the explanatory variable plot was included in a 

significant model term in the most parsimonious model (Online Resource Table S2). 

For testing whether the exclusion of red deer translated into changes in vegetation 

community composition, we employed the R package mvabund (Wang et al. 2012, 

2018), providing tools for model-based analyses of multivariate abundance data. 

Using the function many.glm, which fits generalized linear models simultaneously to 

each species of a community, we assessed the effects of year (2014/2018), treatment 

(B/M/U, only in grasslands), plot (open/fenced) and their interactions on the 

community composition of grasslands and heathlands. In consideration of the mean-

variance relationship, we specified a negative binomial distribution of the data with 

log-link function. As the negative binomial distribution cannot handle decimals, the 

community data were rounded to integers (1−100) prior to analysis. To account for 

correlations between species, we calculated the Score test statistics using ridge 

regularization (Warton 2008) of the sample correlation matrix of the null model. The 

significance of the Score test statistic was determined by resampling rows of the data 

via bootstrapping probability integral transform residuals (PIT-trap, Warton et al. 

(2017); n = 999). To account for the spatially nested experimental design, we 

constrained resampling to sampling sites in grasslands (n = 5) and to a balanced 

factor composed of sampling site and plot pair in heathlands (n = 8).  

To visualise patterns in the vegetation composition of grasslands and heathlands, we 

used two-dimensional non-metric multidimensional scaling (NMDS; Minchin (1987)) 

implemented in the R package vegan (Oksanen et al. 2015). The grassland and 

heathland plant community data were subjected to square root transformation and 

Wisconsin double standardisation. Dissimilarity matrices were computed using the 

Bray-Curtis index. To enhance interpretability and facilitate comparisons between 

grasslands and heathlands, the first NMDS axis was aligned with the SR gradient in 

both habitat types. 

The structural response variables CSH, litter height, number of woody individuals, 

bare soil cover (in heathlands only) and Calluna biomass contribution (in heathlands 

only) were analysed using LME models, in the same way as SR and the diversity 

indices. The explanatory variables in the full models for CSH (mean over the 30 

measurements per plot), bare soil cover and Calluna biomass contribution were year 

(2015/2016/2017), month (April/May/June/August/October), treatment (B/M/U, 

only in grasslands), plot (open/fenced) and all interactions of these factorial 

variables. The models for litter height (mean over the 30 measurements per plot) and 

the number of woody individuals (log-transformed), assessed only in 2018, did not 

include the factor year nor month as explanatory variable and therefore omitted plot 

as random effect.  

In figures and text, we present means (± SE) of the raw data. Unless stated 

otherwise, we report results at the 0.05 significance level.  
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Results 

The camera survey substantiated that red deer were the main large wildlife species on 

our experimental plots in grasslands and heathlands (Table 1). Red deer occurred 

with a 300 times higher frequency on average than roe deer and with a 30 times 

higher frequency than wild boars. The amount of time red deer spent on the plots 

was lowest in the U, intermediate in the B and highest in the M treatment. The 

frequency of red deer occurrence was similar in untreated grasslands and heathlands.  

Plant diversity and community composition 

The plant species richness in grasslands was affected by significant two-way 

interactions between plot and year as well as year and treatment (Fig. 1a, Table 2). In 

2014, before the treatments and red deer exclusion were initiated, grasslands plant 

species richness was similar in all plots averaging 47 species per 25 m2 (Fig. 1a, 

Tables 2, S2). In 2018, species richness was significantly reduced compared to the 

initial survey to an average of 40 species per relevé. While the open plots harboured 

an average of 42 species in 2018, only 37 species occurred on average in the fenced 

plots, though the significance level for this pairwise comparison was slightly 

exceeded (p = 0.058, Table S2). Besides, in 2018, the average species richness was 

significantly lower in the U treatment (34 species) than in the M treatment (45 

species) and intermediate in the B treatment (40 species).  

Like species richness, the Inverse Simpson index did not differ significantly between 

treatments or open and fenced plots in 2014 with an overall average of 10.4 (Fig. 1b, 

Tables 2, S2). In 2018, the Inverse Simpson index in the fenced plots was 

significantly reduced, averaging 6.5 across all treatments. In the M treatment, the 

Inverse Simpson index was significantly higher in the open (12.2) than in the fenced 

plots (7.5) irrespective of study year. The opposite pattern was true for the Berger-

Parker index (Fig. S3, Tables S1, S2).  

In heathlands, an average of 14 plant species per relevé was recorded in 2014. In 

2018, plant species richness was significantly lower and only 11 species occurred on 

average per relevé (Fig. S4, Table 2). The Inverse Simpson and Berger-Parker index 

averaged 1.6 and 0.80, respectively. Neither plant species richness nor diversity 

indices (for which the respective most parsimonious model included the intercept 

only) responded to the experimental exclusion of red deer in heathlands.  

Table 1: Frequency of occurrence (mean ± SE, min d-1) of large wildlife species in daylight 

on the open experimental plots (225 m2) in burnt (B), mown (M) and untreated (U) 

grasslands (n = 5) and untreated heathlands (n = 8) in Grafenwöhr military training area 

averaged over a 13-month period (May 2016 to May 2017). 

Habitat 
type Treatment Red deer 

 
Roe deer 

 
Wild boars 

Grasslands B 3.647 ± 1.401  0.006 ± 0.005  0.423 ± 0.346 

 
M 4.440 ± 1.349  0 ± 0  0.032 ± 0.026 

 
U 2.824 ± 1.487  0.001 ± 0.001  0.032 ± 0.009 

Heathlands U 2.939 ± 1.615  0.038 ± 0.009  0.005 ± 0.002 
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Figure 1: Mean and standard error of plant species richness and Inverse Simpson index of 

plant communities in relevés (25 m2) within plots open to or protected against red deer 

grazing (fenced) in burnt, mown and untreated grasslands (n = 5) in Grafenwöhr military 

training area in 2014 before the beginning of the experiment and 2018 after more than 30 

months of red deer exclusion from the fenced plots. 

The NMDS ordinations of grassland and heathland plant communities (Fig. 2a,c) 

suggested that plant community composition was similar for all combinations of 

treatment and plots in 2014, while the communities of open and fenced plots 

differentiated from each other in 2018 (Fig. 2b,d). Additionally, the grassland 

ordination indicated emerging differences between the communities of the B, M and 

U treatment (Fig. 2b). The model-based multivariate analysis corroborated the 

patterns apparent from the ordinations (Table 3). The interaction effect of year and 

plot was significant in both grasslands and heathlands. Though not significant, 

interaction effects of treatment with year or with year and plot in grasslands were 

associated with low p-values (p < 0.1).  

Vegetation structure 

In both grasslands and heathlands, marked differences in the CSH between open and 

fenced plots developed over the course of the experiment from April 2015 to 

October 2017 (Figs 3, S7, S8, Tables 2, S2). After the exclusion fences had been 

installed in grasslands in July 2015, the CSH was significantly higher by 1.3 cm in the 

fenced plots than in the open plots across all treatments already in October 2015. 

The difference in CSH between open and fenced plots gradually became more 

pronounced and finally, in October 2017, the grassland vegetation in fenced plots  
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Table 2: Results of univariate analyses of the effect of red deer exclusion on vegetation 

structure and diversity. Numerator (df(num)) and denominator degrees of freedom (df(den)), F- 

and p-values for sequential Wald tests for the factors retained in the most parsimonious 

linear mixed effects models for plant diversity and vegetation structure response variables in 

grasslands and heathlands including each model’s marginal R(m)
2 and conditional coefficient 

of determination R(c)
2 according to Nakagawa et al. (2017). Results of the models for diversity 

indices in heathlands are not shown because the most parsimonious model in these cases 

contained the intercept only. 

Response 
Habitat 
type Factor df(num) df(den) F p-valuee R(m)

2 R(c)
2 

Species 
richness 

Grasslands Plota 1 14 0.50 0.493 0.44 0.64 

 Yearb 1 26 60.03 ≤0.001   

  Treatmentc 2 8 1.86 0.218   

  Plot × Year 1 26 6.58 0.016   

  Year × Treatment 2 26 9.25 0.001   

 Heathlands Year 1 15 6.20 0.025 0.05 0.99 

Inverse 
Simpson 
index 

Grasslands Plot 1 12 6.98 0.022 0.37 0.38 

 Year 1 28 8.37 0.007   

 Treatment 2 8 2.04 0.192   

  Plot × Year 1 28 6.31 0.018   

  Plot × Treatment 2 12 4.58 0.033   

Compressed 
sward height 
(cm) 

Grasslands Plot 1 12 29.15 ≤0.001 0.94 0.96 

 Year 2 376 10.56 ≤0.001   

 Treatment 2 8 50.70 ≤0.001   

  Monthd 4 376 814.60 ≤0.001   

  Plot × Year 2 376 48.85 ≤0.001   

  Plot × Treatment 2 12 2.16 0.158   

  Plot × Month 4 376 11.71 ≤0.001   

  Year × Treatment 4 376 10.78 ≤0.001   

  Year × Month 8 376 42.01 ≤0.001   

  Treatment × Month 8 376 81.85 ≤0.001   

  Plot × Year × Treatment 4 376 4.09 0.003   

  Plot × Year × Month 8 376 5.19 ≤0.001   

 Heathlands Plot 1 7 1.21 0.307 0.64 1.00 

  Year 2 208 54.35 ≤0.001   

  Month 4 208 82.89 ≤0.001   

  Plot × Year 2 208 67.17 ≤0.001   

  Year × Month 8 208 4.28 ≤0.001   

Bare soil 
cover (%) 

Heathlands Plot 1 7 4.83 0.064 0.10 0.45 

 Year 2 208 11.80 ≤0.001   

  Month 4 208 4.32 0.002   

  Plot × Year 2 208 13.62 ≤0.001   

  Year × Month 8 208 4.38 ≤0.001   

Litter height 
(cm) 

Grasslands Treatment 2 8 72.41 ≤0.001 0.90 0.94 

 Plot 1 12 74.45 ≤0.001   

  Treatment × Plot 2 12 19.69 ≤0.001   

 Heathlands Plot 1 7 15.70 0.005 0.45 0.57 

Woody 
individuals  

Grasslands Treatment 2 8 4.44 0.050 0.39 0.89 

Heathlands Plot 1 7 10.27 0.015 0.33 0.51 

aType of plot; factor (open/fenced) 
bStudy year; factor (2015, 2016, 2017 or 2014/2018) 
cTreatments in grasslands; factor (burnt/mown/untreated) 
dMonth of sampling; factor (April/May/June/August/October) 
eBold type face indicates statistical significance (p < 0.05) 
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Figure 2: Two-dimensional NMDS ordinations of plant species communities open to or 

protected against red deer grazing (fenced) in burnt, mown and untreated grasslands (a, b) 

and untreated heathlands (c, d) in Grafenwöhr military training area in 2014 before the 

beginning of the experiment and 2018 after more than 30 months of red deer exclusion. 

NMDS stress: grasslands 0.19 (2014) and 0.21 (2018), heathlands 0.11 (2014) and 0.17 

(2018). 

was on average 5.0 cm higher than in the open plots. This effect of red deer 

exclusion was similar in all grassland treatments. In heathlands, where the exclusion 

fences had been installed in September 2015, the CSH in the fenced plots started to 

increase significantly relative to the open plots in the second study year. While in 

2016 the heathland vegetation was on average 1.6 cm higher in the fenced plots than 

in the open plots, the difference in CSH increased to an average of 3.5 cm 

throughout 2017.  
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Table 3: Results of multivariate analyses of the effect of red deer exclusion on 

vegetation community composition. Degrees of freedom, sequential Score test 

statistic and p-value of multivariate generalized linear models of species composition 

in grasslands and heathlands. 

Habitat type Parameter Residual df df Score p-valued 

Grasslands 
     

 

(Intercept) 59 
   

 

Yeara 58 1 69.28 0.981 

 

Treatmentb 56 2 88.99 0.063 

 

Plotc 55 1 35.99 0.433 

 

Year × Treatment 53 2 96.04 0.098 

 

Year × Plot 52 1 50.64 0.032 

 

Treatment × Plot 50 2 77.91 0.224 

 

Year × Treatment × Plot 48 2 71.60 0.098 

Heathlands 
     

 
(Intercept) 31 

   

 
Year 30 1 22.48 0.673 

 
Plot 29 1 10.24 0.399 

  Year × Plot 28 1 20.43 0.047 
aStudy year; factor (2014/2018) 
bTreatments in grasslands; factor (burnt/mown/untreated) 
cType of plot; factor (open/fenced) 
dBold type face indicates statistical significance (p < 0.05) 

In heathlands, from 2016 on, the cover of bare soil also started to differentiate 

between open and fenced plots, in which the area covered by bare soil continuously 

decreased (Fig. 4, Tables 2, S2). The difference in bare soil cover became significant 

in 2017 when on average 9.8% of the area of open plots was covered by bare soil 

compared to 4.4% the fenced plots. This equals approximately a 50% reduction in 

the fenced plots relative to the initial average bare soil cover in 2015. The increasing 

estimated contribution of C. vulgaris to the total aboveground biomass (Fig. S5, 

Tables S1, S2) mirrored the decreased area of bare soil in the fenced plots. 

The height of the litter layer measured in April 2018, 32 and 30 months after the 

exclusion fenced had been installed in grasslands and heathlands, respectively, 

revealed further significant differences between open and fenced plots (Fig. 5, 

Tables 2, S2). In grasslands, the litter layer was on average 3.2 and 3.3 cm thicker in 

the fenced than in the open plots in the M and U treatment, corresponding to a 

relative increase in litter height of 149 and 62%, respectively. In the B treatment, the 

litter layer was considerably thinner than in the other treatments and did not differ 

between open and fenced plots. In heathlands, the litter layer in the fenced plots was 

on average 1.6 cm (73%) higher than in the open plots.  
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Figure 3: Mean and standard error of compressed sward height (cm) in sampling plots open 

to or protected against red deer grazing (fenced) in burnt, mown and untreated grasslands (n 

= 5) and untreated heathlands (n = 8) in Grafenwöhr military training area measured 30 

times per plot at five dates per vegetation period in 2015–2017. 

 

Figure 4: Percent cover of bare soil (mean ± SE) in sampling plots open to or protected 

against red deer grazing (fenced) in heathlands (n = 8) in Grafenwöhr military training area 

estimated at five dates per vegetation period in 2015–2017. 
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Figure 5: Mean and standard error of litter height (cm) in sampling plots open to or 

protected against red deer grazing (fenced) in burnt, mown and untreated grasslands (n = 5) 

and untreated heathlands (n = 8) in Grafenwöhr military training area in April 2018 after 

more than 30 months of red deer exclusion. 

The number of woody plant individuals counted at the end of the experiment in 

2018 did not differ significantly between open and fenced plots in grasslands (Fig. 6, 

Table 2). There were, however, pronounced differences between grassland 

treatments. While woody plants were almost absent from the M treatment and the 

number of individuals was very variable in the B treatment, a significantly higher 

number of woody plants occurred in the U treatment (4 individuals on average per 

plot). In heathlands, the exclusion of red deer from the fenced plots resulted in a 

multiple times higher number of woody plant individuals relative to the open plots 

(Fig. 6, Tables 2, S2). The difference amounted to a surplus of more than 305 woody 

plant individuals in the fenced plots, equivalent to a 266% increase in comparison to 

the open plots.  

 

 

Figure 6: Number of woody plant individuals (mean ± SE) in sampling plots open to or 

protected against red deer grazing (fenced) in burnt, mown and untreated grasslands (n = 5) 

and untreated heathlands (n = 8) in Grafenwöhr military training area counted in April 2018 

after more than 30 months of red deer exclusion. 
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Discussion 

The experimental exclusion of wild and free-ranging red deer from two different 

open habitat types of high conservation interest over almost three years revealed 

distinct effects of wildlife grazing on vegetation diversity, composition and structure. 

Our results indicate that the conservation value of the semi-natural habitats started to 

decrease after red deer exclusion as grazing benefits to vegetation structure and 

diversity ceased. 

Red deer exclusion effects in grasslands 

After 32 months of red deer exclusion, the difference in species richness between 

open and fenced plots in 2018 just failed to meet the threshold for statistical 

significance of p < 0.05 (Fig. 1a, Table S2). From livestock grazing systems, there is 

evidence that changes in plant species richness relating to management may take a 

long time to manifest, e.g. more than six years (Dumont et al. 2011), which is twice 

as long as the study period encompassed by our experiment. Based on diversity 

indices, however, we showed that red deer could indeed play an important role for 

maintaining grassland plant diversity. Diversity indices are often superior to species 

richness in reflecting the response of plant species communities to changes in 

management because they account for the species’ abundances, which change more 

immediately than the species richness of the whole community (Wilsey et al. 2005). 

The Inverse Simpson index was significantly enhanced in open relative to fenced 

plots, which suggests that the exclusion of red deer promoted species contributing a 

high share to the total vegetation biomass. The Berger-Parker index corroborated 

this interpretation, confirming that the proportion of the most dominant species in a 

relevé was significantly lower in open than in fenced plots. This implies that red deer 

grazing can alter the competitive environment in the plant community by effectively 

reducing the abundance of dominant species, which has recently been proposed as a 

key mechanism how grazing can enhance plant biodiversity independently from site 

productivity (Koerner et al. 2018). In principle, our results based on the short-term 

experimental exclusion of red deer grazing in grasslands are in line with findings  

from a long-term observational study in the Swiss National Park, where the average 

number of plant species in preferred red deer grazing areas had doubled over a 82-

year period (Schütz et al. 2003). 

The model-based multivariate analysis confirmed a significant change in grassland 

plant community composition introduced by the experimental red deer exclusion 

(Table 3). The NMDS ordination illustrated trends in community change 

corresponding to the results of the univariate analyses (Figs 2a,b and S6a). The 

arrangement of species in the ordination mirrored the differentiation between fenced 

and open plots along the first NMDS axis (i.e. the species richness gradient), with 

species indicative of abandonment (e.g. Crataegus spp., Centaurea scabiosa) grouping to 

the left and short-grass vegetation species typical of pastures (e.g. Lolium perenne, 

Cynosurus cristatus) occupying the right part of the ordination space. 

A first sign of beginning succession in the fenced grassland plots was the increasing 

vegetation height, which became significantly higher relative to the open plots already 
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after two months of red deer exclusion. Furthermore, in the last study year, a 

significantly higher litter layer had accumulated in the fenced than in the open plots 

of the M and U treatment (Fig. S7). As litter can impair germination and 

establishment of plant species in grasslands (Ruprecht et al. 2010; Kelemen et al. 

2013), the litter accumulation following grazing exclusion could have contributed to 

diminishing plant diversity in the fenced plots.  

Interactions of red deer grazing with additional grassland management 

The effects of red deer grazing exclusion on grassland plant diversity, sward height 

and litter height were moderated by the additional grassland management treatments. 

We had expected to observe increased differences between open and fenced plots 

when mechanical management was applied in addition to red deer grazing. This 

assumption builds on earlier studies showing that the removal of vegetation biomass 

by mowing or burning is followed by regrowth with high nutritional quality, which,  

in turn, attracts red deer and increases grazing intensity (Langvatn and Hanley 1993; 

Wilmshurst et al. 1995; Proffitt et al. 2016). Alternatively, one could assume that the 

removal of a large proportion of the aboveground biomass at a time by mowing or 

burning might override or blur the effects of grazing, which successively removes 

only small proportions of plant biomass. In our experiment, the plant diversity in the 

fenced plots was significantly reduced compared to the open plots in the M but not 

in the B and U treatment. Similarly, the sward height differed most distinctly between 

open and fenced plots in the M treatment (Table S2). These results suggest that the 

cessation of red deer grazing affected the vegetation of mown grasslands most 

strongly. In line with our hypothesis, this could be explained by the elevated 

productivity and forage quality in the mown grasslands (Riesch et al. 2019), providing 

an attractive resource for red deer. From our camera survey, we can infer that red 

deer actually grazed mown grasslands more intensively, since the highest frequency 

of red deer occurrence was recorded on the plots of the M treatment (Table 1). As 

our cameras took pictures every minute in daylight but not at dark, it should be 

noted that these data are well-suited for comparing the red deer frequency of 

occurrence between treatments but do not represent the actual time red deer spent 

on a plot within 24 hours. The overall daily presence of red deer per plot might have 

been multiple times higher as GPS data of red deer living in the surroundings of the 

grassland sampling in GTA indicate a much higher use of open habitats at dark than 

in daylight (unpublished data). 

In the B treatment, where the frequency of red deer occurrence was intermediate, the 

effects of red deer exclusion on the vegetation were less conclusive than in the M 

treatment, although interactions between red deer habitat use and fire are well-known 

(Proffitt et al. 2016; Sittler et al. 2019). This may partly be explained by the fact that 

in the first two study years burning succeeded only on three out of the five grassland 

study sites (Riesch et al. 2019).  

Red deer exclusion effects in heathlands 

In heathlands, the experimental exclusion of red deer did not trigger a response of 

species richness or diversity indices after 30 months, although our camera survey 
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showed that the range of red deer frequency of occurrence in heathlands was largely 

comparable to that in grasslands. Plant species richness was lower in both open and 

fenced heathland plots in the resurvey in 2018, which was probably related to the 

exceptionally dry weather conditions during that year (Fig. S2). Nonetheless, our 

model-based multivariate analysis revealed that the heathland plant community 

composition significantly diverged in response to the exclusion of red deer (Table 3, 

Fig. 2c,d). Accordingly, in the NMDS ordination, the communities of open and 

fenced plots did not differentiate along the first axis, which paralleled the species 

richness gradient, but along the second NMDS axis. In 2018, typical dwarf shrub 

species (e.g. Vaccinium spp.) occupied the upper part of the ordination space related 

to fenced plots, whereas gap-dependent species characteristic of matgrass 

communities (e.g. Nardus stricta, Arnica montana) occurred in the lower part of the 

ordination space associated with open plots (Figs 2d, S6).  

In accordance with the changes in community composition detected in the 

multivariate analyses, the recorded structural vegetation characteristics responded 

significantly to red deer exclusion in heathlands, i.e. sward height in the fenced plots 

increased, while the cover of bare soil decreased. Additionally, in the final study year, 

the biomass contribution of Calluna, the height of the litter layer and the number of 

woody individuals (mainly saplings belonging to Pinus sylvestris and a minor fraction 

of the genera Betula, Picea, Salix and Rubus; mean height 26.3 cm in open and 44.3 cm 

in fenced plots) were significantly elevated in the fenced plots (Fig. S8). These 

findings suggest that in consequence of the red deer grazing exclusion, heathlands in 

GTA become prone to succession, involving potentially serious consequences for 

conservation. In Germany, a favourable conservation status is attributed to the 

habitat type European dry heaths if the cover of bare soil ranges between 5 and 25% 

(Bundesamt für Naturschutz 2017) because bare soil is essential for many animal 

(Bell et al. 2001; Cameron and Leather 2012) as well as plant and cryptogam species 

(Chytrý et al. 2001; Henning et al. 2017). In our experiment, the bare soil cover in the 

open heathland plots was constantly within the range required for a favourable 

conservation status, whereas the bare soil cover fell below that range in the fenced 

plots in 2017. This indicates that red deer grazing might be crucial for maintaining 

suitable habitat conditions for a diverse flora and fauna in heathlands. 

Moreover, the increasing vegetation height and biomass contribution of Calluna 

plants in the fenced plots in our experiment could represent first signs of a beginning 

overaging process, which, in the long run, can result in reduced vitality and, finally, 

dieback of Calluna plants (Barclay-Estrup 1970). Red deer removing a considerable 

proportion of the annual productivity in heathlands (Riesch et al. 2019) can hence 

contribute to a vital population of Calluna by preventing the transition to mature or 

degenerate life history stages. For the same reason, livestock grazing at appropriate 

stocking rates has long-since been valued as a suitable management strategy for 

heathlands (Gimingham 1992; Fagúndez 2012).  

As the progressive succession towards woodlands is a major threat to heathlands 

(Bullock and Pakeman 1997; Fagúndez 2012), the strikingly effective suppression of 

woody species by red deer in GTA (Fig. 6) seems very promising to conservation 

practice. Among livestock species, only goats have been highlighted for efficiently 
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counteracting the encroachment of woody species (Ascoli et al. 2013; Elias and 

Tischew 2016), whereas cattle, for example, could not prevent the succession 

towards forest in Dutch heathlands (Bokdam and Gleichman 2000). In sum, our 

results do not substantiate concerns about the impact of red deer on heathlands, as 

especially expressed for Scottish heathlands (Albon et al. 2007; DeGabriel et al. 

2011), but instead point towards various benefits to vegetation structure. As we did 

not observe any changes in heathland plant species richness and diversity related to 

red deer exclusion but a significant change in species composition, future studies 

should monitor the vegetation development in heathlands with and without red deer 

grazing over a longer period. 

Conclusions  

Comparing the vegetation development in open and fenced plots over almost three 

years, we found support for our overarching hypothesis that the conservation value 

of habitats diminished following red deer exclusion because of missing grazing 

benefits to vegetation structure and diversity. Specifically, as postulated in hypothesis 

(i), our study confirmed benefits of grazing by wild red deer for plant diversity in the 

Natura 2000 habitat type lowland hay meadows. This result echoes the global pattern 

arising from exclusion experiments worldwide that grazing by large herbivores 

enhances grassland diversity (Jia et al. 2018). In the habitat type European dry heaths, 

by contrast, we saw a significant change in species composition but no changes in 

species richness or diversity related to grazing exclusion. In both habitat types, 

however, we found compelling evidence supporting our hypothesis (ii) because the 

vegetation structure in the fenced plots developed indications of succession, such as 

increasing vegetation height, litter accumulation and, in heathlands, disappearance of 

bare soil and encroachment of woody species. Our study therefore confirmed the 

influence of large herbivores on successional pathways in open habitats (Brinkert et 

al. 2016). In hypothesis (iii), we expected that red deer exclusion in grasslands would 

cause the most pronounced effects where additional management was applied. We 

could confirm this hypothesis for the M treatment where the highest frequency of 

red deer occurrence was recorded. Since the relative attractiveness of a habitat and its 

spatial arrangement with other habitat types affect the grazing intensity by red deer 

(Moore et al. 2015), mowing certain areas has been suggested as a strategy to attract 

red deer and thereby increase their use of adjacent habitats, based on the elevated 

productivity and forage quality in mown grassland (Riesch et al. 2019). Regarding 

grassland conservation, red deer grazing combined with annual mowing might be an 

especially beneficial management regime (Fig. 1), as in our experiment, diversity 

remained at the initial level only in the open plots of the M treatment, whereas 

diversity decreased in all other cases.  

Overall, our study provides evidence that grazing by wild red deer can be judged 

favourably from the conservation perspective not only for understorey vegetation 

(Hegland et al. 2013; Hegland and Rydgren 2016; Boulanger et al. 2018) but also for 

different open habitat types. Consequently, our results advocate for grazing by wild 

red deer as a promising additional tool that could enrich the existing toolkit available 



120 Chapter 3 

 

 

for the conservation management of semi-natural open habitats and simultaneously 

permit the restoration of natural grazing regimes and ecological processes. 
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Figure S1: Location of the sampling sites in heathlands and grasslands at Grafenwöhr 

military training area in Bavaria, Germany. Shaded areas indicate the occurrence of the 

Natura 2000 habitat types 4030, European dry heaths, and 6510, lowland hay meadows, 

according to the draft of the Natura 2000 management plan (2013/2014) for the Site of 

Community Importance and Special Area of Conservation (DE6336301) US-Truppen-

übungsplatz Grafenwöhr (Riesch et al. (2019), adapted from Riesch et al. (2018)).  
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Figure S2: Mean temperature (°C, blue bars) and precipitation (mm, red line) during the 

study years, 2014 to 2018, in Grafenwöhr military training area in Bavaria, Germany 

(averaged over four weather stations of the German Weather Service (Deutscher 

Wetterdienst, DWD) in the immediate vicinity). The grey bars and the black line show the 

1981–2010 long-term average temperature and precipitation, respectively. 
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Figure S3: Mean and standard error of the Berger-Parker index of plant communities in 

relevés (25 m2) within plots open to or protected against red deer grazing (fenced) in burnt, 

mown and untreated grasslands (n = 5) in Grafenwöhr military training area in 2014 before 

the beginning of the experiment and 2018 after more than 30 months of red deer exclusion. 
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Figure S4: Mean and standard error of plant species richness, Inverse Simpson index and 

Berger-Parker index of plant communities in relevés (25 m2) within plots open to or 

protected against red deer grazing (fenced) in heathlands (n = 8) in Grafenwöhr military 

training area in 2014 before the beginning of the experiment and 2018 after more than 30 

months of red deer exclusion (cf. Table S1). 
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Figure S5: Percent contribution (mean ± SE) of Calluna vulgaris to the total aboveground 

plant biomass in sampling plots open to or protected against red deer grazing (fenced) in 

heathlands (n = 8) in Grafenwöhr military training area estimated at five dates per vegetation 

period in 2015–2017 (cf. Table S1). 
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Figure S6: Two-dimensional NMDS ordinations of species in (a) grassland and (b) 

heathland plant communities in Grafenwöhr military training area in 2018 after more than 30 

months of red deer exclusion. If nametags overlapped, the name of the species with the 

highest abundance was printed, while the other species were represented by ‘+’. See Table S3 

for the abbreviations of species names. 
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Figure S7: Exemplary picture of a fenced plot in untreated grasslands in Grafenwöhr 

military training area. The picture was taken in April 2018 after more than 30 months of red 

deer exclusion. 
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Figure S8: Exemplary photograph of heathland vegetation grazed by wild red deer (right) 

and protected from grazing inside a fenced plot (left) in Grafenwöhr military training area. 

The picture was taken in April 2018 after more than 30 months of red deer exclusion. 
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Table S1: Results of linear mixed models analysing the effect of red deer exclusion on the 

Berger-Parker index in grasslands and on the percent biomass contribution of Calluna vulgaris 

to the total aboveground plant biomass in heathlands. Numerator (df(num)) and denominator 

degrees of freedom (df(den)), F- and p-values for sequential Wald tests for the factors retained 

in the most parsimonious models including each model's marginal R(m)
2 and conditional 

coefficient of determination R(c)
2
 according to Nakagawa et al. (2017). 

Response Habitat type Factor df(num) df(den) F p-valuee R(m)
2 R(c)

2 

Berger-Parker 
index 

Grasslands Plota 1 12 7.29 0.019 0.39 0.45 

 Yearb 1 26 6.02 0.021   

  Treatmentc 2 8 1.77 0.231   

  Plot × Year 1 26 7.23 0.012   

  Plot × Treatment 2 12 4.97 0.027   

    Year × Treatment 2 26 3.88 0.034     

Calluna 
biomass (%) 

Heathlands Plot 1 7 5.74 0.048 0.05 0.35 

 

Year 2 208 0.51 0.600 

   

 

Monthd 4 208 8.16 ≤0.001 

   

 

Plot × Year 2 208 10.91 ≤0.001 

  

  

Year × Month 8 208 3.85 ≤0.001 

  aType of plot; factor (open/fenced) 
bStudy year; factor (2015, 2016, 2017) 
cTreatments in grasslands; factor (burnt/mown/untreated) 
dMonth of sampling; factor (April/May/June/August/October) 
eBold type face indicates statistical significance (p < 0.05) 
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Table S2: Estimated marginal means for open (O) and fenced (F) plots calculated for 

significant model terms including the explanatory variable ‘Plot’ (p ≤ 0.05) in the most 

parsimonious linear mixed effects models for plant diversity and vegetation structure 

response variables in grasslands and heathlands (c.f. Table 2 and Table S1). P-values are 

associated with the pairwise comparison between open and fenced plots. 

Response 
Habitat 
type Model term Year Montha Treatmentb Plot Estimate p-valuec 

Species 
richness 

Grasslands Plot × Year 2014 - - O 46.8 
0.378 

  

 

- - F 48.1 

   2018 - - O 41.0 
0.058 

   

 

- - F 38.2 

Inverse 
Simpson 
Index 

Grasslands Plot × Year 2014 - - O 10.4 
0.927 

  

 

- - F 10.3 

  2018 - - O 10.1 
0.003 

   

 

- - F 6.5 

  Plot × 
Treatment 

- - B O 9.6 
0.756 

  - - 

 

F 10.0 

   - - M O 12.2 
0.002 

   - - 

 

F 7.5 

   - - U O 9.0 
0.328 

   - - 

 

F 7.7 

Berger-
Parker 
Index 

Grasslands Plot × Year 2014 - - O 0.2 
0.993 

  

 

- - F 0.2 

  2018 - - O 0.2 
0.002 

   

 

- - F 0.3 

  Plot × 
Treatment 

- - B O 0.2 
0.576 

  - - 

 

F 0.2 

   - - M O 0.2 
0.002 

   - - 

 

F 0.3 

   - - U O 0.3 
0.193 

   - - 

 

F 0.3 

Compressed 
sward 
height (cm) 

Grasslands Plot × Year 
× Treatment 

2015 - B O 12.5 
0.346 

 

 

- 

 

F 12.0 

  

 

- M O 8.4 
0.740 

   

 

- 

 

F 8.5 

   

 

- U O 11.3 
0.377 

   

 

- 

 

F 11.7 

   2016 - B O 13.3 
0.001 

   

 

- 

 

F 16.4 

   

 

- M O 7.8 
<0.001 

   

 

- 

 

F 12.2 

   

 

- U O 13.5 
<0.001 

   

 

- 

 

F 16.4 

   2017 - B O 9.9 
0.003 

   

 

- 

 

F 12.3 
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Response 
Habitat 
type Model term Year Montha Treatmentb Plot Estimate p-valuec 

   

 

- M O 6.7 
<0.001 

   

 

- 

 

F 10.9 

   

 

- U O 10.9 
0.003 

   

 

- 

 

F 12.9 

  Plot × Year 
× Month 

2015 1 - O 4.5 
0.900 

  

  

- F 4.4 

   

 

2 - O 10.2 
0.298 

   

  

- F 9.7 

   

 

3 - O 18.0 
0.242 

   

  

- F 17.2 

   

 

4 - O 10.4 
0.721 

   

  

- F 10.6 

   

 

5 - O 10.6 
0.024 

   

  

- F 11.7 

   2016 1 - O 5.8 
0.027 

   

  

- F 6.8 

   

 

2 - O 10.5 
<0.001 

   

  

- F 14.4 

   

 

3 - O 16.3 
<0.001 

   

  

- F 21.9 

   

 

4 - O 14.1 
0.013 

   

  

- F 17.1 

   

 

5 - O 11.0 
0.001 

   

  

- F 14.7 

   2017 1 - O 4.9 
0.075 

   

  

- F 5.7 

   

 

2 - O 6.9 
<0.001 

   

  

- F 9.4 

   

 

3 - O 10.3 
0.001 

   

  

- F 13.8 

   

 

4 - O 12.9 
0.002 

   

  

- F 15.9 

   

 

5 - O 10.9 
<0.001 

   

  

- F 15.3 

Compressed 
sward 
height (cm) 

Heathlands Plot × Year 2015 - - O 5.9 
0.750 

  

 

- - F 5.8 

  2016 - - O 6.2 
0.027 

   

 

- - F 7.2 

   2017 - - O 6.4 
<0.001 

   

 

- - F 9.1 

Bare soil 
cover (%) 

Heathlands Plot × Year 2015 - - O 7.5 
0.620 

  

 

- - F 8.5 
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Response 
Habitat 
type Model term Year Montha Treatmentb Plot Estimate p-valuec 

   2016 - - O 11.1 
0.062 

   

 

- - F 7.2 

   2017 - - O 9.3 
0.023 

   

 

- - F 4.4 

Calluna 
biomass (%) 

Heathlands Plot × Year 2015 - - O 67.0 
0.935 

  

 

- - F 66.5 

   2016 - - O 65.2 
0.073 

   

 

- - F 76.8 

   2017 - - O 65.7 
0.035 

   

 

- - F 79.8 

Litter height 
(cm) 

Grasslands Plot × 
Treatment 

- - B O 1.6 
0.892 

 - - 

 

F 1.5 

   - - M O 2.1 
<0.001 

   - - 

 

F 5.3 

   - - U O 5.3 
<0.001 

   - - 

 

F 8.7 

Litter height 
(cm) 

Heathlands Plot - - - O 2.2 
0.005 

  - - - F 3.8 

Woody 
individuals 

 Plot - - - O 99.6 
0.015 

    - - - F 290.1 

aMonth of sampling; factor (1, April/2, May/3, June/4, August/5, October) 
bTreatments in grasslands; factor (B, burnt/M, mown/U, untreated) 
cBold type face indicates statistical significance (p < 0.05) 

 

  



138 Chapter 3 

 

 

Table S3: List of plant species recorded in grasslands and heathlands in Grafenwöhr military 

training area in 2018 on 30 and 16 relevés of 25 m2, respectively. Abbreviations of species 

names or symbol ‘+’ relate to the representation in Fig. S6. 

Species Grasslands Heathlands 

Achillea millefolium + 

 Achillea ptarmica Achpta 

 Agrimonia eupatoria + 

 Agrostis capillaris + Agrcap 

Ajuga reptans + 

 Alchemilla glaucescens + 

 Alchemilla monticola + 

 Allium vineale + 

 Alopecurus pratensis + 

 Anthoxanthum odoratum + Antodo 

Anthriscus sylvestris + 

 Arnica montana 

 

Arnmon 

Arrhenatherum elatius Arrela 

 Bellis perennis + 

 Betonica officinalis + 

 Betula pendula 

 

+ 

Brachypodium pinnatum Brapin 

 Briza media Brimed 

 Bromus erectus Broere 

 Bromus hordeaceus ssp. hordeaceus + 

 Calluna vulgaris 

 

Calvul 

Campanula glomerata + 

 Campanula patula + 

 Campanula rotundifolia + 

 Cardamine pratensis + 

 Carex caryophyllea + 

 Carex flacca + 

 Carex hirta + 

 Carex ovalis + 

 Carex pallescens + 

 Carex pilulifera 

 

Carpil 

Carex spicata Carspi 

 Centaurea jacea + 

 Centaurea scabiosa Censca 

 Cerastium arvense + 

 Cerastium holosteoides + 

 Chenopodium album + 

 Cichorium intybus Cicint 

 Cirsium arvense Cirarv 

 Cirsium vulgare Cirvul 

 Clinopodium vulgare Clivul 

 Convolvulus arvensis Conarv 

 Crataegus monogyna Cramon 

 Crataegus sp.  Craspe 

 Crepis biennis + 
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Species Grasslands Heathlands 

Cruciata laevipes + 

 Cynosurus cristatus Cyncri 

 Cytisus scoparius 

 

Cytsco 

Dactylis glomerata + 

 Danthonia decumbens 

 

Dandec 

Daucus carota Daucar 

 Deschampsia cespitosa ssp. cespitosa Desces 

 Deschampsia flexuosa 

 

Desfle 

Dianthus deltoides + 

 Elymus repens ssp. repens + 

 Epilobium angustifolium 

 

+ 

Equisetum arvense + 

 Euphorbia cyparissias + 

 Euphrasia micrantha 

 

Eupmic 

Festuca filiformis 

 

Fesfil 

Festuca pratensis Fespra 

 Festuca rubra ssp. rubra Fesrub 

 Fragaria vesca Fraves 

 Fragaria viridis Fravir 

 Galium album + 

 Galium pumilum + + 

Galium verum + 

 Galium x pommeranicum + 

 Genista pilosa 

 

Genpil 

Genista tinctoria 

 

Gentin 

Glechoma hederacea + 

 Helictotrichon pubescens + 

 Heracleum sphondylium + 

 Hieracium cf laevigatum 

 

Hielae 

Hieracium umbellatum Hieumb 

 Holcus lanatus Hollan 

 Hypericum maculatum agg.  + 

 Hypericum perforatum ssp. perforatum Hypper 

 Hypochaeris radicata + 

 Juncus squarrosus 

 

Junsqu 

Knautia arvensis + 

 Lathyrus pratensis + 

 Leontodon hispidus ssp. hispidus Leohis 

 Leucanthemum ircutianum Leuirc 

 Linaria vulgaris + 

 Lolium perenne Lolper 

 Lotus corniculatus + Lotcor 

Luzula campestris + Luzcam 

Luzula multiflora 

 

Luzmul 

Lychnis flos cuculi + 

 Medicago falcata varia Medvar 

 Medicago lupulina + 

 Molinia caerulea 

 

Molcae 

Nardus stricta 

 

Narstr 
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Species Grasslands Heathlands 

Odontites rubra 

 

+ 

Ononis sp.  Onospe 

 Phleum pratense Phlpra 

 Pimpinella saxifraga + 

 Pinus sylvestris ssp. sylvestris 

 

Pinsyl 

Plantago lanceolata Plalan 

 Plantago media Plamed 

 Poa angustifolia Poaang 

 Poa annua + 

 Poa humilis Poahum 

 Poa trivialis Poatri 

 Polygonum aviculare Polavi 

 Populus tremula 

 

Poptre 

Potentilla argentea + 

 Potentilla erecta 

 

+ 

Potentilla neumanniana + 

 Potentilla recta + 

 Potentilla reptans + 

 Primula veris + 

 Prunella vulgaris + 

 Prunus sp.  + 

 Prunus spinosa + 

 Pyrus communis + 

 Quercus robur 

 

Querob 

Ranunculus acris ssp. acris + 

 Ranunculus auricomus agg.  + 

 Ranunculus bulbosus + 

 Ranunculus repens Ranrep 

 Rhinanthus minor + 

 Rosa canina + 

 Rubus caesius Rubcae 

 Rubus plicatus 

 

Rubpli 

Rumex acetosa + 

 Rumex crispus + 

 Salix aurita 

 

Salaur 

Salvia pratensis + 

 Sanguisorba minor ssp. minor Sanmin 

 Saxifraga granulata + 

 Scorzoneroides autumnalis + 

 Securigera varia + 

 Senecio jacobaea + 

 Silaum silaus + 

 Stellaria graminea + 

 Taraxacum sect. Ruderalia + 

 Thymus pulegioides + 

 Tragopogon pratense + 

 Trifolium dubium Tridub 

 Trifolium medium + 

 Trifolium pratense + 
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Species Grasslands Heathlands 

Trifolium repens Trirep 

 Trisetum flavescens Trifla 

 Vaccinium myrtillus 

 

Vacmyr 

Vaccinium vitis idaea 

 

Vacida 

Veronica arvensis Verarv 

 Veronica chamaedrys + 

 Veronica officinalis Veroff Veroff 

Vicia angustifolia Vicang 

 Vicia cracca + 

 Vicia tetrasperma + 

 Viola hirta Viohir   
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This thesis set out to improve our understanding of (i) vegetation patterns in open 

habitats under close-to-natural soil nutrient conditions (Chapter 1) and (ii) 

vegetation processes and their relationship with grazing by wild red deer in these 

semi-natural open habitats (Chapter 2 & 3). The following section highlights and 

connects the key findings and evaluates how the insights gained from the different 

studies can contribute to the future conservation of semi-natural open habitats. To 

support the practical relevance of the research results, the basic conditions required 

to implement grazing by free-ranging red deer in other areas of high conservation 

interest receive special attention.  

In short, what are the lessons learned and what are the future perspectives for 

conservation? 
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Soil−vegetation patterns in a pre-industrialised landscape  

From a conservation perspective, the main finding of the vegetation survey 

performed in lowland hay meadows (‘grasslands’) and European dry heaths 

(‘heathlands’) in Grafenwöhr military training area (GTA) was that plant species 

richness in both habitat types was sensitive to gradients in (different) soil chemical 

parameters—even though these gradients were short because the analyses were 

performed at the within-habitat scale and the study area had never been affected by 

industrialised agriculture (Chapter 1).  

Plant species richness in heathlands did not relate to soil nutrient concentrations but 

responded strongly to soil acidity, increasing linearly with increasing soil pH. This 

local pattern points to how human alterations of global environmental processes can 

have consequences for conservation. As atmospheric nitrogen (N) deposition is 

projected to remain high in the future (Kanakidou et al. 2016), further N-

deposition−related acidification has to be considered as a potentially serious threat to 

heathland habitat quality (Kleijn et al. 2008), especially considering the fact that rare 

and endangered plant species are lost when soils become too acidic (Roem and 

Berendse 2000; Van Den Berg et al. 2005). 

By contrast, grasslands plant species richness in GTA decreased with increasing 

extractable soil phosphorus (P) concentration. This indicates that similar mechanisms 

as in agriculturally improved grasslands govern the relationship between plant-

available soil P and plant species richness in unimproved semi-natural grasslands. For 

instance, increasing P availability can lead to increasing competition for light (Hautier 

et al. 2009) or for other nutrients that become, in relation to P, less available 

(Güsewell 2004). This result adds evidence to the relevance of soil P for grassland 

plant diversity arising from earlier studies, which included much larger gradients in 

soil P (Janssens et al. 1998; Critchley et al. 2002; Gilbert et al. 2009; Hejcman et al. 

2010; Ceulemans et al. 2013). Of particular concern is that grassland plant species 

richness in GTA decreased most strongly when extractable soil P increased from the 

lowest to intermediate levels within the P gradient studied (Chapter 1, Fig. 2), 

pointing out that even a minor enhancement of plant-available P might compromise 

plant diversity. Preventing any artificial P input thus seems crucial in order to 

preserve plant species richness in semi-natural grasslands.  

Not only direct additions of nutrients, but also the management can affect soil 

nutrient pools (Rumpel et al. 2015). For example, grazing over many years has been 

associated with decreasing availability of soil P in grazed grassland areas (Mládková et 

al. 2015). Benefits of grazing for the conservation of semi-natural grasslands might 

therefore also involve specific interactions between soil chemical properties. This 

note bridges the gap to the second main topic of this thesis—grazing by wild red 

deer.  

Vegetation responses to grazing by wild red deer  

A fundamental insight from the three-year grazing experiment in GTA is that wild 

red deer can remove forage from semi-natural open habitats in a quantity comparable 

to the annual biomass removal by domestic herbivores in stocking rates commonly 
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applied in conservation grazing systems (Chapter 2). In spite of the differing 

productivity and associated grazing requirements of the two studied habitat types, 

grasslands and heathlands, red deer grazing proved beneficial in both habitat types. 

In that regard, the observed habitat-type–specific seasonal variation in red deer 

forage removal turned out to be important:  

In heathlands, the removal of biomass by red deer was significant in the winter but 

not in the summer period (Chapter 2, Fig. 1b). This is promising news to heathland 

conservation, because earlier research has cautioned that severe grazing during the 

summer could affect Calluna detrimentally (Gimingham 1989). The relatively high 

annual productivity, along with further vegetation characteristics of the studied 

heathlands, suggested that these stands represent the early building phase of the 

Calluna life cycle. The considerable removal of up to 60% of the annually produced 

heathland vegetation biomass by red deer thus did not seem to compromise heather 

vitality in GTA. Comparing the vegetation development in open, continuously 

grazed plots and fenced plots, from which red deer were excluded over three years, 

gave further indications of a favourable habitat quality in the heathlands grazed by 

red deer (Chapter 3). Most conspicuously, the percent cover of bare soil decreased 

continuously in heathlands when red deer were fenced off, while the number of 

woody plant individuals sharply increased (Chapter 3, Figs 4, 6). These findings 

suggest that red deer grazing can contribute to the total biodiversity in heathlands by 

creating suitable habitat conditions for species dependent on bare soil (Bell et al. 

2001; Chytrý et al. 2001; Cameron and Leather 2012; Henning et al. 2017). Moreover, 

consistent with the main threats reported for European dry heaths, the experimental 

results illustrate that this habitat type is highly susceptible to succession when grazing 

is lacking.  

Another threat, primarily described for heathlands subject to intense livestock 

grazing, is the displacement of heather by grasses (Newton et al. 2009; Fagúndez 

2012). During the study period in GTA, the estimated percentage contribution of 

grasses to the total aboveground biomass remained constant in the open, 

continuously grazed plots (data not shown). In addition, the local forestry staff 

responsible for the heathland management in GTA did not observe an increase in 

grass cover in heathlands over time. Therefore, the present study gives no reason to 

assume that grazing by wild red deer might relate to an increase in graminoid cover 

interfering with heathland conservation aims.  

While it has been noted that a sustainable heathland management often needs to 

combine grazing with additional, more intensive management interventions (Härdtle 

et al. 2009; Fagúndez 2012), this does not seem to be necessary in GTA, where red 

deer grazing alone apparently maintained favourable heathland habitat quality. 

However, no information was available regarding past military activities, which might 

have caused occasional supplementary disturbances in our study sites (e.g. fire due to 

ordnance impact) long before the beginning of the study period. Taken as a whole, 

the results from the experimental study in GTA make the case for considering 

grazing by wild red deer as a suitable management strategy for heathlands, similar to 

livestock grazing at appropriate stocking rates (Gimingham 1992; Fagúndez 2012).  
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For effectively conserving semi-natural grasslands communities by grazing, it is 

usually necessary to prevent the accumulation of unpalatable dead plant material, 

which is unlikely to be consumed by herbivores (Crofts and Jefferson 1999). Thus, 

when productivity is high in grasslands at the beginning of the vegetation period, 

concomitant high forage removal is required. Red deer grazing in GTA fulfilled this 

precondition, as the forage removal by red deer in grasslands peaked in spring and 

early summer (Chapter 2, Fig. 1a). This could be well explained by the forage 

maturation hypothesis (Fryxell 1991; Mysterud et al. 2017; Debeffe et al. 2017), 

predicting that red deer, being intermediately foraging herbivores (Hofmann 1989), 

select for easily digestible and highly nutritious forage as provided by grassland 

vegetation in early phenological stages. The experimental exclusion of red deer from 

permanent plots in GTA corroborated that red deer grazing can actually reduce the 

vegetation height and prevent the accumulation of litter (Chapter 3, Figs 3, 5). These 

findings contribute to explain the changes in grassland plant community composition 

observed after three years of red deer exclusion (Chapter 3, Figs 1, 2). The reduced 

plant diversity in fenced plots might stem from increased competition for light 

(Huisman et al. 1999; Bakker et al. 2006) and increased abundance of dominant 

species in the absence of grazing (Koerner et al. 2018) as well as from impaired 

germination and establishment of plant species due to litter accumulation (Ruprecht 

et al. 2010; Kelemen et al. 2013).  

In a relatively productive habitat type, such as lowland hay meadows, the biomass 

removal by wild red deer alone, however, might not be sufficient as a single 

management measure in the long term. For one thing, we saw a trend of biomass 

accumulation over the three study years in the untreated grassland plots, where red 

deer grazing was the only management (Chapter 2, Fig. S3a). In addition, pairwise 

comparisons of open and fenced plots showed that the increased plant species 

diversity in the open plots was only significant when the grassland was also mown 

(Chapter 3, Table S2). Hence, it could prove advantageous to combine red deer 

grazing with additional management measures in grasslands in order to maximize 

conservation benefits.  

Synergies between additional grassland management and red deer grazing 

The grazing experiment in GTA included burning and mowing as additional 

grassland treatments. The underlying hypothesis was that additional biomass removal 

could increase the grassland attractiveness to red deer (Taylor et al. 2004; Cromsigt 

and Olff 2008; Fuhlendorf et al. 2009; Allred et al. 2011) and thereby provide the 

opportunity to influence the spatial distribution of red deer grazing impact. With 

regard to burning, the study results were not conclusive, which was probably related 

to the limited success of the burning treatment on two out of five study sites due to 

insufficient fuel (Hobbs et al. 1991) in the first two study years. Consequently, while 

prescribed fire has been used to enhance the quality and availability of forage for red 

deer in Northern America since the 1980s (Sittler et al. 2019), reasonably assessing 

the applicability and usefulness of a fire-based management approach for red deer in 

European semi-natural grasslands remains beyond the scope of the present work. 

Future studies should make a new attempt to assess the efficacy of burning as a 
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means to influence the habitat use and grazing impact of red deer, because burning 

might be a more practical management option than mechanical biomass removal 

under certain conditions, e.g. in military impact areas (Montiel and Kraus 2010).  

By contrast, experimental evidence in favour of the basic hypothesis emerged with 

regard to mowing: First, mowing enhanced the productivity and improved the forage 

quality in the late season after mowing (Chapter 2, Figs 1a, 2a). Second, mowing 

increased the proportion of the annually produced biomass removed by red deer 

(considering that mowing also removed a certain fraction from the annual 

productivity; c.f. Chapter 2, Table 2). And third, red deer forage removal increased 

significantly with increasing productivity and forage quality (i.e. crude protein 

concentration; Chapter 2, Tables S6, S7). That mown plots were indeed more 

attractive than burnt or untreated plots was substantiated by the elevated frequency 

of red deer occurrence determined by cameras surveilling the open plots (Chapter 3, 

Table 1). The increased use of mown areas by red deer translated into the most 

pronounced differences between open and fenced plots in terms of plant diversity 

(Chapter 3, Figs 1, S3) and sward height (Chapter 3, Fig. 3). In sum, these results 

allow drawing two main conclusions. Firstly, as hypothesised, mowing could serve as 

a means to increase the local habitat use and forage removal of red deer in semi-

natural grasslands. Earlier studies have suggested that the relative attractiveness of a 

habitat and its spatial arrangement with other habitat types affect the grazing 

intensity by red deer (Clarke et al. 1995; Gordon et al. 2004; Moore et al. 2015). 

Therefore, further experimental studies are now required to test if mowing actually 

stimulates free-ranging red deer to also make increased use of habitats adjacent to the 

mown areas. Secondly, mowing in combination with red deer grazing seems to be an 

ideal strategy for creating suitable habitat conditions for highly diverse plant 

communities in semi-natural grasslands. Different explanations for this synergistic 

effect are conceivable. For instance, when the successive biomass removal by grazing 

is complemented by mowing and biomass harvesting, light competition could be 

most effectively reduced, while simultaneously promoting temporal stability in 

community evenness (Mortensen et al. 2018). Additionally, mowing and grazing 

could favour different plant functional groups (Mládková et al. 2015). However, as 

the red deer exclusion experiment in GTA encompassed three years, but plant 

communities might respond rather slowly and discontinuously to changes in 

management (Bullock et al. 2001; Dumont et al. 2011), it would be desirable to 

supplement the present findings by exclusion experiments including different 

management regimes running over an extended period of time (Bakker et al. 2016). 

Such future studies on synergistic effects between red deer grazing and additional 

grassland management could also experimentally vary the frequency of additional 

management measures, which could help to optimize the costs and benefits of 

conservations efforts (Tälle et al. 2018).  

Based on the results so far, the potential benefits from grazing by wild red deer for 

the conservation of semi-natural open habitats seem persuasive. Actually 

implementing grazing by wild red deer in applied conservation management, 

however, requires consideration of the societal, organisational and ecological 
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conditions—some of which differ considerably between the study area, GTA, and 

ordinary cultural landscapes.  

Conservation grazing by wild red deer—future perspectives and open 

questions 

Assessing the scope of application for the insights from the present work first 

requires to acknowledge that conservation grazing by wild red deer, obviously, is only 

an option in regions permanently inhabited by this species. Although associated with 

certain advantages when it comes to the practical implementation (as pointed out in 

the Introduction), in this regard, grazing by wild red deer has to be considered as 

less flexible than grazing by domestic herbivores, which could, theoretically, be 

moved as necessary to any target area.  

During the past decades, red deer populations have increased throughout Europe 

(Putman and Moore 1998; Côté et al. 2004; Milner et al. 2006; Burbaitė and Csányi 

2010). Habitat use and movement of red deer are, however, substantially restricted in 

most countries (Linnell et al. 2015). In many German federal states, strict hunting of 

red deer outside of specifically designated areas has been required by law since the 

1950s; but certain populations also occur outside of these defined areas, so that the 

species range covers approximately 25% of Germany (Kinser et al. 2010; Deutsche 

Wildtier Stiftung 2017a; Deutsche Wildtier Stiftung 2017b). Intensive management 

and manipulation of red deer populations, including hunting, even extends into 

protected areas (Günther and Heurich 2013; Linnell et al. 2015). The main reason for 

this widespread policy are concerns about damage to commercial forests (Côté et al. 

2004; Deutsche Wildtier Stiftung 2017b). Unfortunately, the various ways by which 

human activities, such as hunting or recreation, disturb red deer, aggravate the 

potential for conflict as the animals respond by seeking cover in forests (Deutsche 

Wildtier Stiftung 2017c; Wisdom et al. 2018; Westekemper et al. 2018). The present 

work may contribute to ease the controversial public debate concerning red deer by 

highlighting that an adapted wildlife management regime can reduce the potential for 

conflict between red deer and forestry. In the study area GTA, human disturbances 

were mainly limited to military land use, which enabled the resident red deer to leave 

forested areas and forage in open habitats even during the daytime (Meißner et al. 

2013, L. Richter, unpublished). Similarly, in a Natura 2000 area in the Italian Pre-

Alps, the abolition of hunting has encouraged red deer to make use of grasslands 

(Marchiori et al. 2012).  

While it seems very challenging to establish a coherent wildlife management regime 

pushing red deer out of forests and pulling them into the open landscapes in highly 

fragmented landscapes with many landowners and stakeholders (Beguin et al. 2016), 

sizable areas suitable to such an approach exist, such as core zones of national parks 

or other large nature reserves. Additionally, in Germany, the National Strategy on 

Biological Diversity aims at designating 2% of the national territory as large-scale 

wilderness areas. Natural processes should be allowed in these areas without or with 

only very slight human interference (Schumacher et al. 2018). Grazing by wild red 

deer could hence be an opportunity to enhance the natural and ‘wild’ character 

intended for those wilderness areas. In addition, wild red deer could prove 
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particularly advantageous not only for active military training areas, such as GTA, but 

also for decommissioned former military training areas. Since the end of the Cold 

War in 1989, an estimated total area of 1.5 million ha of military land has been 

abandoned in Europe (Ellwanger and Reiter 2019). The cessation of military activities 

is often followed by shrub and tree encroachment, critically threatening the 

persistence of disturbance-dependent communities (Jentsch et al. 2009). However, in 

many cases, appropriate conservation measures are not yet implemented because 

these areas are often highly contaminated by unexploded ordnance (Ellwanger and 

Reiter 2019). 

From an applied conservation point of view, there are some unanswered questions 

regarding the practical implementation of grazing by wild red deer. For instance, 

despite the challenges related to estimating or controlling red deer population size 

(Hagen et al. 2018), practicians may ask which local density of red deer is required for 

effectively contributing to the preservation of open habitats. As a general rule, the 

number of red deer obviously needs to be considered in relation to the available area 

of open habitats. However, as the foraging impact of wild red deer depends much 

more on their spatial distribution within the landscape than on population density 

(Gordon et al. 2004; Moore et al. 2015), a general estimate regarding the minimum 

size of a red deer population needed for meeting the grazing requirements of open 

habitat types is not possible. The exemplary case in GTA, where the red deer 

abundance is comparatively high, shows that the wildlife management is a key 

element for successfully implementing grazing by wild red deer in open habitats. In 

GTA, targeted hunting and land management are combined in a push-and-pull 

strategy to deter red deer from forests and encourage them to forage in open 

landscapes (Meißner et al. 2013). The question how long it may usually take until red 

deer have sufficiently accommodated to a new wildlife management regime remains 

to be addressed by future studies, as the way of managing wildlife in GTA had 

already been developed over a long time before the present study started. 

Besides an adapted hunting regime, another prerequisite for a successful 

conservation management of open habitats based on grazing by wild red deer is to 

supply the animals within the target area with all essential resources throughout the 

year. For example, it should be considered that the availability of forage provided by 

open as well as forested habitats decreases in winter (Smolko et al. 2018). In GTA, 

red deer are provisioned in winter with haylage produced from vegetation biomass 

cut in summer from meadows within the area; although the usefulness of 

supplementary or diversionary feeding of wild ungulates in general is highly debated 

(Milner et al. 2014; Beguin et al. 2016). Therefore, the relevance of supplementary or 

divisionary feeding in the context of a wildlife management system aiming at 

increasing red deer habitat use of open landscapes requires further investigations. 

As red deer can play an important role for the endozoochorous dispersal of plant 

species, especially for early-successional (Iravani et al. 2011) and many rare and 

endangered species (Wichelhaus 2017), further experimental research could attempt 

to develop habitat restauration strategies based on red deer grazing. For example, 

seed mixtures containing rare plant species could be sown in open areas highly 

attractive to red deer. Extensive fecal sampling could show if seeds of these plant 
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species can subsequently be retrieved from red deer feaces and to which locations the 

seeds are dispersed.  

To attain a comprehensive picture of red deer as ecosytem engineer, also the 

influence of its presence on other species groups should receive further attention (c.f. 

Spalinger et al. 2012; Lilleeng et al. 2018; Horák et al. 2018), epecially in comparison 

to livestock. For instance, a conservation grazing approach based on wild red deer 

could favour faunal biodiversity because wild herbivores do not receive antiparasitic 

treatment, which is commonly applied to livestock and can have harmful side-effects 

on invertebrates living in dung or soil (Förster et al. 2011; Sutton et al. 2014).  

Additionally, in order to promote the practical implementation of grazing by free-

ranging red deer for the conservation of semi-natural open habitats, research on the 

potential interactions between red deer and domestic grazers (DeGabriel et al. 2011; 

Pérez-Barbería et al. 2015) is required. Another intriguing task for future reseach is 

investigating if and how the habitat use and grazing impact of red deer will change in 

response to the presence of natural predators—a question that has become topical 

also in Germany, which is currently being recolonized by wolves, especially via 

military training areas (Reinhardt et al. 2019). 

Conclusions  

Taking advantage of a study area where military land use has prevented industrial 

agricultural practices during the past century, the present thesis has improved our 

understanding of vegetation patterns under close-to-natural soil nutrient conditions 

(Chapter 1). The identified significant relationships between soil chemical 

parameters and plant species richness have meaningful implications for the 

conservation of semi-natural open habitat types. Preventing acidification in 

heathlands and soil P concentration in grasslands from increasing might be essential 

preconditions for maintaining species-rich plant communities.  

Using an experimental approach, this thesis has explored how grazing by wild and 

free-ranging red deer contributes to vegetation processes in these semi-natural open 

habitats (Chapter 2 & 3). From an applied conservation perspective, the results 

regarding biomass removal and the development of habitat quality strongly argue for 

beneficial effects of wild red deer in both heathlands and grasslands. Transferring the 

wildlife grazing regime as practised in GTA to other conservation target areas, 

however, requires certain adaptations of habitat and wildlife management 

conventions in order to encourage red deer to make use of open habitats for 

foraging. Overall, in accord with the recent call to consider wild ungulates as an 

integral part of both ecosystems and ecosystem management (Apollonio et al. 2017), 

the present work supports considering red deer not (only) as a potential cause of 

economic damage in forests but as an ecosystem engineer that can contribute to the 

preservation of semi-natural open habitats.  
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