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1. Summary 

The striking diversity in adult morphologies is the result of millions of years of adaptation 

of species to different environments and habitats. Fixed changes in populations or species are 

the consequence of mutations in the genome and thus in the developmental programs of body 

plans, their structures and organs. Years of studies in the field of ‘Evo-Devo’ have revealed that 

there exists only a limited number of genes, governing basic developmental processes, and that 

these so-called ‘toolkit genes’ are highly conserved even between distantly related species. It 

is nowadays accepted, that morphological diversification is often driven by changes in gene 

expression and subsequently the interplay of gene products. Since the expression of genes is 

tightly controlled in a spatiotemporal manner on several molecular levels, also the wiring of 

such gene regulatory networks is highly context dependent. Therefore, single cells, tissues and 

organs are characterized by a unique set of expressed transcripts and proteins which are 

specifically intertwined and govern their developmental programs. The advent of high 

throughput sequencing techniques provides nowadays the opportunity to analyze the 

transcriptome of developing structures in a highly specific manner and opens the possibility to 

understand how these toolkit genes are differentially used and rewired in different 

developmental and evolutionary contexts. In Chapter I of this thesis, I studied gene expression 

in a developmental context, using the emerging model species Schistocerca gregaria to 

understand the development and function of pleuropodia - small glandular structures forming 

on the first abdominal segment of many insect embryos. In Chapter II, I used a comparative 

transcriptomic dataset of developing eye-antennal discs in two closely related species of the 

Drosophila melanogaster subgroup to study the molecular basis of evolution of complex traits. 

The size and shape of the compound eyes and head structures vary extensively between D. 

melanogaster and D. mauritiana and show a typical trade-off between eye-size and head width. 

I could show that differential expression of pannier (pnr) underlies natural variation of eye size, 

ommatidia number and head width between these two species. In Chapter III, I combined an 

allele specific expression dataset of F1 hybrids between D. melanogaster vs. D. mauritiana and 

D. simulans vs. D. mauritiana with a newly generated comparative ATAC-seq dataset, to study 

gene expression divergence and sought to recapitulate the observed patterns in terms of 

nucleotide turnover and accessibility of regulatory regions. In summary, this works shows that 
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the combination of methods and various datasets allows to gain major insights into 

development, function, and evolution of morphological traits.  
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2. General Introduction 

2.1. Development, function and evolution of body structures are 

governed by tightly regulated gene expression 

The information how we and all other organisms develop, function and interact with 

our environment is encoded in our DNA which lies tightly packed as chromosomes in the nuclei 

of each of our cells (Figure 1A). During a process called transcription the genetic information 

encoded in genes is transcribed into messenger RNA (mRNA). The mRNA provides the template 

for the translational machinery, which translates the mRNA into amino acid sequences and 

eventually functional proteins (Figure 1C).  

A typical eukaryotic gene locus is composed of several elements. The protein 

information is encoded in one or more exons, which together form the coding region (CDS), 

and are separated by introns. Transcription is initiated by the assembly of a basal transcription 

machinery at the promoter region, mostly located 5’ upstream, close to the transcription start 

site (TSS) of the respective gene. This protein complex recruits the RNA polymerase that 

synthesizes the pre-mRNA. Where, when and how strong a gene is transcribed is though in the 

first place controlled by regulatory intronic or intergenic DNA regions, so called enhancers or 

cis-regulatory regions ((Davidson, 2001; Wray, 2003), Figure 1C). Therefore the respective 

genomic regions must be depleted of nucleosomes, which otherwise confer tight DNA packing. 

Hence, regulatory sequences must be accessible for transcription factors (TFs) that physically 

interact with the DNA by recognizing sequence-specific TF-binding motifs. This in turn leads to 

recruitment of additional TFs and co-factors. Enhancer sequences, are often of modular nature, 

meaning that several, locally separated regulatory regions modulate the expression of a single 

gene (e.g. (Adachi et al., 2003; Davidson, 2001; Stanojevic et al., 1991)). The advances in high 

throughput sequencing methods nowadays allow to reliably define the location of open 

chromatin regions in the genome. Approaches like ChIP-seq (Johnson et al., 2007; Robertson 

et al., 2007), FAIRE-seq (Giresi et al., 2007) or ATAC-seq (Buenrostro et al., 2013) are frequently 

used to define putative regulatory regions and allow to link them to gene expression, if 

combined with other methods like RNA-seq (Wang et al., 2009). However, how exactly 

enhancers carry out their regulatory function is not yet completely understood and different 

models of enhancer function have been proposed (Buffry et al., 2016). Chromosome 
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conformation capture methods combined with high throughput sequencing such as Hi-C (van 

Berkum et al., 2010) allow resolving the 3-dimensional chromatin states and are used  to study 

how distantly located regulatory sequences exert their regulatory function (Furlong and Levine, 

2018). 

Each cell type of an organism is characterized by a certain combination of expressed 

genes and the defined interplay of their gene products. Since different cell types have to carry 

out distinct functions for a long period of time (depending on the life span of an organism), this 

function is ensured by tissue or even cell-specific gene expression (Lübbe and Schaffner, 1985). 

Traditional methods to quantify the expression levels of single genes include quantitative real- 

time PCR (qRT PCR,(Bustin, 2000)) and Northern Blotting (Alwine et al., 1977). The spatial 

distribution of transcripts can be studied by in-situ hybridization (Pardue and Gall, 1969). 

Nevertheless, only the advent of next generation sequencing (NGS) like RNA-seq facilitated the 

efficient genome wide assessment of gene expression by quantifying the complete mRNA 

content that is expressed at a certain time point in a cell or tissue (Wang et al., 2009). 

Disturbance of gene expression, and thus function, eventually leads to disease or death of the 

respective organism (e.g. (Dermitzakis, 2008; Emilsson et al., 2008)). For instance, in humans, 

the formation and progression of cancer is tightly linked to aberrant gene expression and 

regulation (e.g. (Liang and Pardee, 2003)). Therefore, the expression of genes has to be under 

tight spatial and temporal regulation, which is ensured on several molecular and cellular levels 

(Figure 1C). The accessibility of regulatory regions for instance is highly dependent on the tissue 

and developmental stage (e.g. Bozek et al., 2019). Furthermore, biochemical modifications of 

DNA (methylation) and histone proteins (methylation, acetylation, phosphorylation and many 

others) influence gene expression (Kouzarides, 2007; Lawrence et al., 2016) (Figure 1C). In 

Drosophila dosage compensation relies for example on the acetylation of lysine 16 residues on 

the H4 histones of the X-chromosome, allowing the increase of transcription in males by 

decondensation of the chromosomes (e.g. (Akhtar and Becker, 2000; Turner et al., 1992)). 

Additionally, methylation of Cytosines has been linked to repression of transcription (reviewed 

in Bird and Wolffe, 1999). In vertebrates for example, promoter or enhancer regions, often 

containing so-called CpG-islands are usually depleted of methylated CpGs and hyperacetylated 

histones, marking actively transcribed genes.  
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The spatially and temporally restricted availability of TFs and co-factors that bind to 

accessible regulatory regions further represents a level of context specific gene regulation. One 

example of transcriptional co-regulation, which will be introduced in Chapter II in more detail 

can be found in the developing Drosophila wing disc. Pannier (Pnr), a GATA transcription factor 

which usually activates expression of its target genes, interacts in a spatially defined manner 

with U-shaped (Ush) (Fromental-Ramain et al., 2010, 2008). The resulting heterodimer loses 

the activating role of Pnr but acquires a repressing function (Haenlin et al., 1997). Also, post-

transcriptional processes can modulate gene expression in a context dependent manner. For 

instance, the context dependent expression of small regulatory RNA molecules such as 

microRNAs (miRNAs) modifies the stability of mRNA or the efficiency with which an mRNA 

molecule is translated (reviewed in Bartel, 2018; Kittelmann and McGregor, 2019). Also, for 

long-non-coding RNAs (lncRNAs) it has been established that they are transcribed in a highly 

spatially and temporally controlled manner and are suggested to influence for example the 

expression of genes in their close genomic vicinity (Kopp and Mendell, 2018; Ponting et al., 

2009; Sarropoulos et al., 2019). These are only few of the many examples that show that tissue 

and stage specific gene expression is orchestrated on different levels of the gene regulation 

machinery.  

 

Figure 1. Gene expression is tightly controlled. A. The DNA lies heavily packed as so-called chromatin in the 
nuclei of eukaryotic cells. B. Formation of chromatin is carried out by wrapping DNA around histones, which are 
composed of nucleosomes. Regions of loose packing, characterized by nucleosome depletion, are in general 
more accessible for transcription factors (TFs) and loci in these regions are mostly actively transcribed. In 
contrast, tightly packed DNA is inaccessible to regulatory proteins and subsequent transcription. Biochemical 
modification of histones or cytosines provide another level of gene regulation. C. A eukaryotic gene locus is 
composed of one or more exons, which make up the CDS of the gene. Regulatory regions are located in introns, 
separating the exons, or in intergenic regions. Transcription is initiated at the promoter region, 5’ upstream of 



General Introduction 

- 6 - 
 

the transcription start site (TSS), and TFs bound to enhancer regions further regulate gene expression. The figure 
is taken from (Buchberger et al., 2019). 

While gene expression has to be tightly controlled to ensure proper organ development 

and function, many evolutionary studies revealed that divergence in gene expression is a key 

driver for phenotypic evolution (Alvarez et al., 2015; Carroll, 2005; King and Wilson, 1975; Todd 

et al., 2016). One of the most classical examples, where differences in morphologies were 

associated with differential gene expression is the work of Abzhanov and colleagues, who linked 

higher expression of bone morphogenetic protein 4 (BMP4) to wide beak morphology in ground 

finches (Abzhanov, 2004), whereas development of long beaks of cactus finches is mainly driven 

by higher levels of calmodulin (CaM) (Abzhanov et al., 2006). In East African cichlid fish it has 

recently been revealed, that changes in the expression of the agrp2 gene, defines the 

pigmentation pattern of different radiations (Kratochwil et al., 2018). Similarly, adaptive 

changes in abdominal pigmentation of African Drosophila populations are caused by expression 

variation of the ebony gene (Pool and Aquadro, 2007; Rebeiz et al., 2009). Changes in gene 

expression levels could be due to changes in a gene’s own regulatory regions (cis-regulatory 

divergence) or due to divergence of upstream regulators, such as transcription factors or 

regulatory RNAs (trans-regulatory divergence) (Cowles et al., 2002; Wittkopp et al., 2004). For 

many simple traits, including pigmentation, trichome formation or loss of specific skeletal 

structures, it has been shown that the causative underlying mutations are often located in the 

non-coding, regulatory regions of the locus (e.g. Chan et al., 2010; McGregor et al., 2007; 

Prud’homme et al., 2006; Rebeiz et al., 2009), which would eventually affect the expression of 

the respective gene. If this also applies to quantitative, complex traits like size and shape of 

organs and structures remains to be established. 

In summary, gene expression is a central biological process that transfers the 

information stored in the genome of an organism to its development, function and evolution.  
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2.2. Thesis overview 

During my PhD work I applied comparative gene expression studies to gain new insights 

into: 

I. developmental processes and organ function,  

II. the evolution of complex morphological traits and  

III. molecular mechanisms underlying gene expression divergence. 

Chapter I ‘Transcriptomics supports that pleuropodia of insect embryos function in 

degradation of the serosal cuticle to enable hatching’ resulted from a collaboration with Dr. 

Barbora Konopová and Dr. Alastair Crisp. Applying comparative RNA-seq, we provide strong 

evidence that pleuropodia in the locust Schistocerca gregaria indeed participate directly in the 

digestion of the serosal cuticle during embryogenesis and reveal that they also might take over 

a role in insect immunity.  

In Chapter II ‘Variation in a pleiotropic regulatory module drives evolution of head shape 

and eye size in Drosophila’ I studied differences in gene expression dynamics between D. 

melanogaster and D. mauritiana and show that differential expression of the conserved 

transcription factor Pnr underlies variation in head shape and ommatidia number between the 

two species. Additionally, I found that the co-factor of Pnr, Ush is expressed and functional in 

the developing eye-antennal discs of Drosophila and therefore represents a new player in the 

eye and head GRN.  

For Chapter III ‘Regulatory divergence in the Drosophila melanogaster subgroup’ I 

combined previous knowledge about regulatory divergence in three species of the D. 

melanogaster subgroup with a newly generated ATAC-seq dataset to study if patterns of cis- 

and trans-regulatory divergence can be recapitulated on the basis of open and accessible 

chromatin regions.  

In the following paragraphs I will provide an overview of the current knowledge to 

introduce each of the three chapters.  
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2.3. Comparative gene expression studies in development 

The goal of molecular studies in developmental biology is to understand how gene 

products work together to provide instructive signals that control developmental processes 

(Wolpert and Tickle, 2011). The context dependency of gene expression ensures that specific 

cell types and tissues are characterized by the expression of a unique set of transcripts which 

are then translated into transcription factors and structural proteins, making up the building 

blocks of the respective cell, tissue and organ. Assessing and comparing mRNA composition and 

gene expression levels across developmental time points provides therefore the chance to 

better understand the molecular underpinnings of developmental processes and eventually 

organ functions. 

Much of our detailed knowledge about the genes coordinating developmental 

processes in insects is deduced from studies in the model species D. melanogaster. In this 

species, for instance, the establishment of the body axis, was first studied and understood in 

great detail: The translation of maternally deposited mRNA leads to the activation of a 

hierarchical gene activation cascade and subsequently to anterior-posterior segmentation of 

the complete developing embryo (e.g. Johnston and Nüsslein-Volhard, 1992). Since the advent 

of RNA-seq, major effort has been made to characterize not only the location and role of single 

genes, but to establish a complete catalog of transcripts and their expression dynamics in 

developing and adult tissues (e.g. Brown et al., 2014; Graveley et al., 2011). One major 

drawback of focusing developmental studies on established model systems is that derived 

structures or organs that are not present in the vinegar fly are less well studied and understood. 

Easy accessibility and constant reduction of costs for next generation sequencing techniques 

nowadays allow to explore the development and function of single organs in nearly every 

species, including plants and animals (Wang et al., 2009) and has greatly expanded the use of 

emerging model organisms in developmental biology (Ellegren, 2014).  

Since genomic or transcriptomic resources are usually sparse in emerging model 

systems, the first step often includes the de-novo assembly of reference genomes or 

transcriptomes against which the short reads can subsequently be mapped (reviewed in Cheng 

et al., 2018). Depending on the species, de-novo transcriptome assembly can be achieved with 

the help of a reference genome, or if not available by using the short reads directly for assembly 

(Cheng et al., 2018). Blasting the de-novo assembled transcriptome against databases like 
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UniProt/Swiss-Prot, allows to assign putative functions to transcripts and by this allows to 

retrieve such information also for transcriptome datasets of non-model species (“UniProt,” 

2019). 

Once references are established, genome wide gene expression can be compared 

across different conditions of interest, which can include the comparison of different stages 

during development of a certain organ, or the comparison of different tissues. Such an analysis 

usually results in long lists of differentially expressed genes. Depending on the exact research 

question, a major challenge is to extract meaningful information from such large datasets. A 

first helpful step is often the integration of prior molecular, cellular or functional knowledge. 

This information can be retrieved from the Gene Ontology (GO) database, which links a 

particular gene to its function by annotating it to one or more defined GO-terms. Using a 

statistical framework, it allows to understand in which molecular functions, biological processes 

and cellular components differentially expressed genes are enriched in (Ashburner et al., 2000; 

The Gene Ontology Consortium, 2019). If, for instance, different developmental stages are 

studied, the expression dynamics can be analyzed in more detail by clustering genes that share 

a similar expression profile. It has been proposed, that such co-expressed genes are often co-

regulated by the same upstream transcription factors and are involved in related biological 

functions (Yu et al., 2003). Following that assumption, clustering algorithms that group genes 

with similar expression levels over a certain period of time, combined with GO-enrichment 

analysis and an upstream search for transcription factor binding motifs, provides a meaningful 

tool for the reconstruction of developmental gene regulatory networks (GRNs). Note that the 

direct search for transcription factor binding motifs works well for established model systems, 

where databases of TF binding profiles exist. These include e.g. humans and mouse as 

representatives of vertebrates, D. melanogaster for insects or Arabidopsis thaliana 

representing plants (Khan et al., 2018). Nevertheless, for non-model systems a so-called de-

novo motif search can be useful to find overrepresented motifs in regulatory regions of co-

expressed genes, followed by a subsequent comparison to known motifs (e.g. Bailey et al., 

2009), since transcription factor binding domains are often conserved along large phylogenetic 

distances.  

Studying the development and function of organs in classical model organisms like 

Drosophila has brought major insights in many aspects of biology. However, for some questions 
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in developmental or evolutionary biology, the selection of a handful of established model 

species does not necessarily represent the best systems. Developmental processes that are 

highly derived in Drosophila are for example insect head development (Davis and Patel, 2002; 

Grossniklaus et al., 1994) or the embryonic development of insects. Extraembryonic 

membranes that usually protect insect eggs from desiccation have been secondarily reduced 

in higher flies (Schizophora) (Glaser-Schmitt and Parsch, 2018; Jacobs et al., 2013; Schmidt-Ott, 

2000) and certain structures which play a role during hatching of the embryo, like pleuropodia 

(see next section) are missing in the model species Drosophila. Studying traits which are not 

present in classical model species requires therefore to establish morphological and genomic 

resources in a variety of species. We applied a comparative RNA-seq approach to pleuropodia 

and leg buds of the desert locust Schistocerca gregaria (S. gregaria) and combined this with a 

thorough description of their ultrastructure throughout development to understand their 

function during insect embryogenesis. We further provide a transcriptomic resource to 

understand appendage differentiation by comparing two serially homologous structures. 

2.3.1. Schistocerca gregaria as a model to study the role of pleuropodia in 

insect embryogenesis. 

Insects are the most species-rich animal group on this planet and their success is the result 

of several evolutionary specializations which allowed them to conquer all environments such 

as air, water and land (Losos, 2014). These include for instance the emergence of wings in 

pterygotes (winged insects), the development of three life stages in holometabolous species or 

eusociality in several insect lineages (Losos, 2014). The colonization of land also required 

protection against desiccation, especially during embryonic development (Jacobs et al., 2013). 

Most insect embryos possess two membranes, the amnion and the serosa (Figure 2B), which 

do not directly contribute to the formation of the insect body, but often cover the entire 

embryo and take part in crucial developmental processes including - amongst many others - 

cuticle production, immune responses, or hatching (e.g.(Jacobs et al., 2015, 2014, 2013; 

Panfilio, 2008)). A non-cellular, three-layered serosal cuticle, which is secreted by the serosa 

itself, lies between this non-embryonic membrane and the eggshell ((Goltsev et al., 2009; 

Jacobs et al., 2015) Figure 2B). The serosal cuticle has to be digested prior to hatching of the 

embryo. In grasshoppers and glowworms for instance, the two inner layers of the serosal cuticle 

merge and decay shortly before hatching, whereas the eggshell and the remaining layer of the 
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serosal cuticle layer is mechanically torn by the mandibles (H. Slifer, 1937; Kobayashi et al., 

2003). The pair of pleuropodia develops in a plethora of insects at the first abdominal segment 

of the embryo (Figure 2A; (Wheeler, 1890)) and degenerates at the end of embryogenesis. 

Orthopterans have proven to be a valuable model to study these small organs, since they are - 

due to their large embryos - easily accessible. Consequently, it was already shown 80 years ago 

in grasshoppers, that pleuropodia are involved in the digestion of the serosal cuticle (H. Slifer, 

1937; Slifer, 1938). However, the clear mechanism how these organs are involved in this 

process has remained elusive so far. It was suggested, that they facilitate digestion indirectly 

via secretion of the ecdysone hormone (Novak and Zambre, 1974), or directly by secreting the 

so-called ‘hatching enzyme’ (H. Slifer, 1937; Louvet, 1975). Up to now, a thorough description 

of pleuropodia development, their function and transcriptomic landscape is still missing. 

Furthermore, since pleuropodia are serially homologous to leg buds, these two structures 

provide an excellent model to study when and how initially similar structures differentiate 

during the development of an organism. The proper development of body structures is highly 

dependent on tissue and stage specific gene expression and the correct interplay of the 

translated proteins. The methods described in the latter section nowadays allow to generate 

relatively easily transcriptomes from different organs of non-model species, taking the 

spatiotemporal gene expression into account. With this they provide the basis for comparative 

gene expression approaches, which permit to recapitulate and understand the developmental 

programs of differentiating, serially homologous organs. 
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Figure 2. Pleuropodia and their role during insect embryogenesis. A. A pair of pleuropodia develops at the first 
abdominal segment in insect embryos (here marked with the white arrow and pink labelled in an embryo of S. 
gregaria). Pleuropodia and the third leg pair (in blue) were dissected to generate a comparative transcriptomic 
dataset (adapted from (Konopová et al., 2019)). B. Schematic representation of an insect embryo (germband 
stage). The embryo (in grey) is covered by the amnion (in orange). The serosa (in blue) envelopes the complete 
embryo and secretes the serosal cuticle (in pink) which lies between the serosa and the egg shell (in black) (after 
(Panfilio, 2008)) C. Experimental set-up of the comparative gene expression study to analyze function and 
putative new roles of pleuropodia during insect embryogenesis.  

We therefore generated a comparative embryonic RNA-seq dataset of Schistocerca 

gregaria (S. gregaria) pleuropodia and legs (Figure 2 A and C), to investigate on a transcriptional 

level how the pleuropodia facilitate hatching of the embryo. The possibility to dissect 

pleuropodia and legs provided the opportunity to generate tissue specific datasets at 10 

timepoints, also accounting for the temporal context dependency of gene expression. 

Combined with an in-depth morphological characterization, our results provide interesting 

insights into the development of pleuropodia, their function during hatching and putative roles 

in the embryo’s immunity and are described in Chapter I of this thesis.  
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2.4. Comparative gene expression studies in phenotypic evolution 

Besides far-reaching novelties, the adaptation to different environments is also 

facilitated by the ability to change the size and shape of organs and other body parts. The most 

classic example for natural variation in size and shape are the various beak forms of Galápagos 

finches, where changes in beak morphology were fundamental for the adaptation to different 

environments and food sources (Abzhanov, 2004; Abzhanov et al., 2006; Schluter, 2000). 

Morphological differences that are fixed across populations or species are the result of 

heritable changes in the genome (Figure 3). Even though this fact is widely accepted, 

pinpointing the exact molecular changes has been shown to be rather difficult and only few 

studies succeeded in resolving the causative genomic changes that underlie variation in adult 

phenotypes. This is mainly due to two reasons. First, variation in many traits, but especially 

complex traits like size and shape, are influenced by several genomic loci, i.e. they are polygenic 

(Boyle et al., 2017). Second, causative changes are not always found in the coding region of a 

gene (CDS), potentially changing the function of the resulting protein, but it is nowadays 

believed, that many changes occur in so-called cis-regulatory regions, affecting the expression 

of the respective gene (Wray, 2007).  

While selection mostly acts on adult structures, developmental processes define the 

size and shape of the respective organ. Therefore, fixed changes in adult structures are the 

result of variation in developmental processes (Figure 3). By comparing the development of 

organisms one can thus reveal mechanisms underlying morphological divergence. The task of 

finding the genetic causes for phenotypic variation is usually addressed in the field of 

evolutionary developmental biology (‘Evo-Devo’), the combination of evolutionary studies and 

developmental biology. ‘Evo-Devo’ aims to assess conserved aspects as well as differences in 

developmental programs between species that eventually result in variation in adult 

morphology (e.g.(Hall, 2003; Raff, 2000), Figure 3).  

 

Figure 3. Genetic changes in the genome, which can occur in coding regions but also regulatory regions (light 
blue box) underlie changes in development by rewiring developmental gene regulatory networks (dark blue box) 
and subsequent variation in adult morphology (yellow box). If a certain phenotype provides an advantage in 
fitness in a specific environment (green box), these specific phenotypes will eventually be more common than 
others (‘natural selection’, grey box). 
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Numerous studies in this field resulted in exciting findings, such as the observation that 

a set of highly conserved transcription factors and signaling pathways governs the development 

of organisms over large phylogenetic distances from invertebrates to vertebrates. This was 

impressively shown in the case of HOX genes, a cluster of homeobox transcription factors, 

which define the anterior-posterior axes of all metazoans (Duboule and Dollé, 1989; Graham 

et al., 1989; McGinnis and Krumlauf, 1992; Scott and Weiner, 1984). Another well-described 

example is the Pax6 gene, which is conserved in all organisms with light sensitive cells. Loss of 

function of this gene results in a no-eye phenotype in mouse embryos as well as in the vinegar 

fly Drosophila, where the gene was typically called eyeless (ey) (Hill et al., 1991; Quiring et al., 

1994). The coding sequences of the two homologous proteins are strikingly similar, illustrated 

by the observation that the mouse protein can rescue mutants in the fly (Halder et al., 1995). 

Therefore, despite the diversity present in nature, the development of organisms is controlled 

by a limited set of highly conserved regulators, the so called ‘developmental toolkit’ (Carroll et 

al., 2001). Consequently, one major question in evolutionary biology is to understand how 

phenotypic diversity can arise in the light of generally highly conserved developmental 

regulators. In some cases, the causative mutations underlying phenotypic variation have been 

identified in protein coding sequences. Hoekstra and colleagues linked a fixed mutation in the 

gene, encoding for the receptor Mc1r, to differences in color patterns between subspecies of 

the beach mouse, Peromyscus polionotus (Hoekstra et al., 2006). Additionally, variation in HOX 

proteins has been shown to drive body plan diversification (Grenier and Carroll, 2000). 

However, many genetic variants identified for instance by quantitative genetics approaches 

mapped to non-coding regions (Dixon et al., 2007; Gilad et al., 2008; Jia and Xu, 2007). Already 

King and Wilson concluded in 1975 that much of the variation that can be observed between 

species, must be rather based on the way how genes are expressed than on changes in protein 

sequences themselves (King and Wilson, 1975). Therefore, variation in gene expression 

underlies phenotypic evolution. Here, we address the question how gene expression diverges 

in closely related species, and we use Drosophila head and eye development as a model to 

understand how body structures change their size and shape during evolution.  
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2.4.1. Drosophila melanogaster as a model species to study head size and 

shape evolution 

Many studies assess the consequences of gene expression divergence by studying 

classical, discrete traits, like trichome patterns (e.g. McGregor et al., 2007), coloring patterns 

(e.g.(Gautier et al., 2018; Kratochwil et al., 2018; Prud’homme et al., 2006)) or the loss or gain 

of skeletal structures (Chan et al., 2010; Xie et al., 2019). However, in recent years, researchers 

also started to focus on the genomic basis underlying complex trait evolution, such as changes 

in size and shape of adult structures. The vinegar fly D. melanogaster but also its closely related 

sister species, D. simulans and D. mauritiana regularly serve as model species to study evolution 

of organ size. Hagen et al. showed for example that differences in the expression of tartan (trn) 

underlies the evolution of male genitalia size between D. simulans and D. mauritiana (Hagen et 

al., 2018). Especially variation in head and eye structures of Drosophila has been of particular 

interest in recent years (Arif et al., 2013a; Gaspar et al., 2019; Hilbrant et al., 2014; Keesey et 

al., 2019; Norry et al., 2000; Posnien et al., 2012). In comparison to its sister species, D. 

melanogaster has very small eyes with a broad interstitial face cuticle. In contrast, D. mauritiana 

has bigger eyes with a reduced face cuticle (Figure 4A and B, (Posnien et al., 2012)). 

Interestingly, it has recently been shown in a large-scale screen covering more than 60 

Drosophila species that the trade-off between eye and head size is a common feature of 

Drosophila and most likely represents a functionally relevant subdivision of the visual and 

olfactory system (Keesey et al., 2019).  

 

Figure 4. Natural Variation in eye size and head shape between closely related Drosophila species. A. Species 
in the D. melanogaster subgroup show extensive variation in eye size and head shape. They display the typical 
trade-off between the head capsule and the compound eye, where a larger eye area goes hand in hand with a 
narrower interstitial face cuticle and vice-versa. D. melanogaster has very small eyes, and a broad face, whereas 
D. mauritiana has very large eyes, which is especially pronounced in the dorsal part of the compound eyes. 
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Differences in eye size can either arise due to variation in ommatidia number, which is the case between D. 
melanogaster and D. mauritiana, or due to changes in ommatidia size, as observed for D. mauritiana vs. D. 
simulans. B. Eye area differences in different strains of D. melanogaster, D. simulans and D. mauritiana. OregonR 
(D. melanogaster) and TAM16 (D. mauritiana) show the most extreme phenotypes on both ends of the spectrum. 
Figure adapted from (Posnien et al., 2012).  

The natural variation in Drosophila eye size and head shape provides an excellent model 

to study evolution of complex traits, since the GRNs that govern the development of these 

structures were already extensively studied. The Drosophila head develops from so-called eye-

antennal imaginal discs which reside in the larva, attached to the mouth hooks and the two 

brain lobes. These paired epithelial cell sheets eventually give rise to several distinct adult head 

structures, including the head capsule, eyes, antennae and mouthparts (Haynie and Bryant, 

1986). They have been used to study basic questions in developmental biology, including 

pattern formation, organ growth or the establishment of compartment boundaries (reviewed 

in Kumar, 2018). The developing eye-antennal imaginal disc grows homogeneously during the 

first two larval stages. Only at the end of the second instar the so-called morphogenetic furrow 

(MF) starts sweeping across the tissue, commencing at the posterior end of the disc. Cells in 

front of the MF stop dividing after a final mitotic wave. Cells posterior to the MF undergo a 

second and final round of mitosis, generating the cells, that make up each ommatidium, 

including for instance photoreceptors and cone cells (Wolpert and Tickle, 2011). Therefore, at 

the end of larval development the number of ommatidia in the adult compound eye is already 

defined. 

All imaginal discs are formed by two layers, the disc proper and the peripodial 

epithelium. Both layers are connected via the cuboidal marginal cells ((Lim and Choi, 2004), 

reviewed in (Gibson and Schubiger, 2001; Kumar, 2018)). The squamous peripodial epithelium 

is defined by its large cell nuclei that can easily be distinguished from the columnar epithelial 

cells in the disc proper ((Auerbach, 1936), Figure 5A and B). The disc proper gives rise to most 

of the adult head structures, whereas the peripodial epithelium is thought to contribute to 

parts of the body wall cuticle (Figure 5C, (Fristrom et al., 1993; Milner et al., 1984)). It is 

nowadays accepted that the peripodial epithelium is essential for proper eye development, 

playing a role for instance in coordinating signaling pathways involved in dorsal-ventral 

patterning or MF progression, as well as disc growth via microtubule-based extension signaling 

through the lumen between the two layers (Gibson and Schubiger, 2000). This second 

epithelium is also important during pupal stages, where the two eye discs evert and finally fuse 
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to form the adult head structures. Mechanistic analyses suggested that the reduction of the 

peripodial epithelium area pushes the eye over the antennal area and by this facilitates 

morphogenesis of the head (Milner et al., 1984).  

 

Figure 5. Eye and head development in Drosophila. A. In the third instar eye-antennal disc it can already be 
determined which part will give rise to which adult structure (eye, ocelli, head (he), antenna and maxillary palp 
(mp). B. Same eye-antennal disc as in A., focusing on the peripodial epithelium, characterized by large nuclei, 
stained with DAPI. C. Adult Drosophila head, the structures are labelled as in A. D. A simplified scheme of the 
GRN network governing eye development in Drosophila (Figure adapted from (Kumar, 2009)). 

The GRN governing eye and head development is among the best studied in Drosophila. 

It is composed of a set of genes, the so-called retinal determination genes. On top of this 

cascade stands the famous Pax6 homolog ey as a master regulator for eye development 

(Callaerts et al., 1997). Besides the retinal determination genes, important signaling pathways, 

including Wnt-, Dpp- and Notch signaling are part of the GRN and are involved in eye/head 

specification and cell proliferation (reviewed in (Kumar, 2009), Figure 5D).  
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The retinal determination genes get restricted to the posterior part of the developing 

eye-antennal disc during the second larval instar and by this stage ey is not expressed in the 

antennal part anymore. Instead, expression of the transcription factor Cut (Ct) can be detected 

in the anterior part of the disc. One important hallmark of this interplay of transcription factors 

is that they are not activated in a hierarchical cascade but interact in different GRNs which are 

themselves interconnected (Kumar, 2009; Treisman, 2013). These GRNs do not only include 

activation between transcription factors and their target genes but also involve feedback loops 

and repression of locally restricted GRNs: Wang and Sun showed that the expression of ey in 

the antennal part is repressed by Ct and Homothorax (Hth), whereas Sine oculis (So) is activated 

by Ey in the eye disc and represses Hth and So (Wang and Sun, 2012). Also, the growth of the 

final adult structures and therefore the size relationship among them are controlled via the 

repressing function of specific transcription factors. For instance, Wingless (Wg) signaling is 

important for defining the head cuticle fate by repressing retinal development and in turn 

promotes dorsal head specification (Magri et al., 2018; Treisman and Rubin, 1995). Therefore, 

in order to ensure the development of several functional organs and structures from one single 

epithelium, the underlying, intertwined GRNs must be tightly controlled and regulated.  

Given the observed variation in eye size and head width within the D. melanogaster 

subgroup, we sought to study the evolution of this trade-off in D. melanogaster and D. 

mauritiana and focused on recapitulating where GRNs in closely related species evolve. 

Following the assumption that variation in gene expression is a major driver of phenotypic 

evolution, we generated a comparative transcriptomic dataset covering three distinct stages 

during eye and head development (72h after egg laying (AEL), 96h AEL and 120h AEL) in both 

species. Differential expression analysis together with a transcription factor binding site analysis 

showed that the GATA factor Pannier (Pnr) regulates many genes that are differentially 

expressed between D. melanogaster and D. mauritiana. We found that the transcript of pnr 

itself is differentially expressed in the two species during eye development. Additionally, our 

genome wide approach allowed us to characterize U-shaped (Ush), a co-factor of Pnr, as a 

previously unknown player in the GRN of the developing eye-antennal disc and could show that 

they genetically interact.  Overall, we show in Chapter II that higher expression of pnr in D. 

mauritiana underlies part of the observed natural variation in eye size and head shape between 

D. mauritiana and D. melanogaster.  
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2.4.2. Mechanisms underlying context dependent gene expression divergence 

While gene expression represents a great intermediate phenotype to study 

development and the molecular basis of phenotypic variation, it is also of major interest to gain 

comprehensive insights into the mechanisms underlying gene expression divergence itself. 

Divergent gene expression can arise due to two different mechanisms; either due to differences 

in the regulatory region of the differentially expressed gene itself (cis-regulatory divergence, 

Figure 6) or due to changes in an upstream regulator (trans-regulatory divergence, Figure 6) 

(Cowles et al., 2002; Wittkopp, 2005; Wittkopp et al., 2004). cis-regulatory divergence is the 

result of variation in a gene’s regulatory region, caused by nucleotide changes in promoter or 

enhancer sequences that lead for instance to divergence in transcription factor binding 

(Wittkopp, 2013). trans-regulatory divergence is caused by changes in the upstream gene 

regulatory cascade, for instance in an upstream transcription factors, which would onsequently 

affect the transcriptional response following its binding to regulatory regions. Differences in 

the functionality of such an upstream factor can either be due to changes in the coding region, 

affecting for instance DNA-binding affinity, or due to differences in its expression, influencing 

the amount of available transcription factor in a given cell or tissue (Wittkopp, 2005). Even 

though trans-regulatory changes are mostly referred to as changes in transcription factors, it is 

noteworthy to mention, that upstream changes can occur on all levels of the upstream gene 

regulatory cascade, including for instance regulatory miRNAs (Figure 1).  

Allele specific expression analysis (ASE) has been used to gain mechanistic insights into 

gene expression divergence. This approach makes use of an F1 hybrid generation by comparing 

gene expression in homozygous parent species with expression of their alleles in the same 

trans-regulatory background of the heterozygous hybrid ((Cowles et al., 2002; Wittkopp et al., 

2008, 2004) Figure 6). Is a specific allele still differentially expressed in the hybrid background, 

then the causative mutation underlying differential expression of the respective genes in the 

parentals is thought to be located in the gene’s own cis-regulatory region (Figure 6). If the two 

alleles do not show differential expression in the hybrids anymore, then the differential 

expression in the parental species is due to changes in upstream trans-regulatory factors, which 

are neutralized in the common hybrid background. The approach also reveals genes, whose 

expression is kept conserved in all conditions, i.e. neither the genes in the parental species, nor 

the alleles in the hybrid are differentially expressed. ASE also gives insights into compensatory 
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mechanisms, for instance when the expression of a gene is conserved in the parental species 

but the two allelic variants in the hybrid do show significant differential expression ((McManus 

et al., 2010) see Figure 6). Even though ASE is a valuable tool to gain genome wide insights into 

the mechanisms that underly gene expression divergence, the causative locus underlying 

differential gene expression cannot be directly inferred (reviewed in (Buchberger et al., 2019)). 

Additionally, one can only reveal changes over short evolutionary distances, since they rely on 

the ability of two parental species to produce viable hybrids.  

 

Figure 6. Allele specific expression analysis to study gene expression divergence. Parental species are shown 
on the left side: Red – D. melanogaster and blue – D. mauritiana. The colored bars represent the cis-regulatory 
elements of the respective alleles. In the F1 hybrid the trans background (TFs and co-factors) contains factors 
from both parents, therefore only differences in the cis-regulatory regions of the two alleles will influence 
differences in allelic expression. A gene is called ‘conserved’ if neither the genes in the parental species, nor the 
two alleles in the hybrids are differentially expressed. A gene is differentially expressed due to cis-regulatory 
changes, if it is higher expressed in one of the two parental species, and if the allele coming from the same parent 
is equally higher expressed in the hybrid. A gene is differentially expressed due to trans-regulatory changes, if it 
is differentially expressed in the parental species, but the alleles do not show differential expression in the hybrid 
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offspring. ‘Compensatory’ describes the situation, if the gene is not differentially expressed between the 
parentals but the alleles in the hybrids show differential expression. Figure adapted from (McManus et al., 2010). 

Even though it is clear from the literature that both cis- and trans-regulatory changes 

contribute to the evolution of phenotypic traits (Hoekstra and Coyne, 2007; Stern and 

Orgogozo, 2008), genome-wide ASE studies found cis-regulatory changes to be more prevalent. 

This fact is usually explained by the argument that trans-regulatory changes would potentially 

act in a highly pleiotropic manner (Wittkopp et al., 2008). The rational is that mutations in 

transcription factors or enzymes which are involved in many biological processes, would impact 

not only one evolving structure but many (He and Zhang, 2006). In contrary, mutations in a cis-

regulatory region of a gene could have a more tissue-specific function due to the modular 

nature of the regulatory landscape (reviewed in (Stern and Orgogozo, 2008). Up to now, the 

question if gene expression divergence results mainly from cis- or trans-regulatory changes has 

mostly been tackled by studying adult tissue (e.g. (Coolon et al., 2015; Graze et al., 2009; 

Wittkopp et al., 2004)). However, since gene expression changes during developmental 

processes shape adult morphology, it is important to study the mechanisms underlying gene 

expression divergence also during these early stages.  

Even though they are closely related, we found many genes to be differentially 

expressed between species of the D. melanogaster subgroup (Buchberger et al. in prep. 

(Chapter II), Almudi et al. in prep.) and we used here this model system to study the evolution 

of gene expression divergence during head and eye development. We combined previous 

knowledge about regulatory divergence in three species of the D. melanogaster subgroup (D. 

melanogaster , D. simulans and D. mauritiana) with a newly generated ATAC-seq dataset to 

study, if patterns of cis- and trans-regulatory divergence can be recapitulated on the basis of 

open and accessible chromatin regions. Preliminary data surprisingly showed, that gene 

expression divergence during eye and head development is mainly cause by trans-regulatory 

divergence. Additionally, we describe in Chapter III that the combination of ASE with ATAC-seq 

datasets indeed allowed to partly recapitulate regulatory divergence by analysing species, stage 

and tissue specific open chromatin architecture. We revealed, that nucleotide changes in 

regulatory regions but also their differential accessibility explains parts of the observed cis-

regulatory divergence. Additionally, not only the coding regions but also the cis-regulatroy 

regions of conserved or trans-regulated upstream factors are highly constraint on a sequence 

level.   
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3. Chapter I - Transcriptomics supports that pleuropodia of insect 

embryos function in degradation of the serosal cuticle to enable 

hatching 
 

The manuscript ‘Transcriptomics supports that pleuropodia of insect embryos function in 

degradation of the serosal cuticle to enable hatching’ is the result of a collaboration with Dr. B. 

Konopová and Dr. A. Crisp.  

The work was conceived and coordinated by Dr. B. Konopová. The manuscript was written by 

Dr. B. Konopová. I was involved in revising the manuscript. 

My contribution for this manuscript includes the following bioinformatic analyses: 

- Final cleaning of the transcriptome (filtering, incl. testing for completeness) and blast 

against Uniprot databases 

- Quality assessment of the RNA-seq dataset (quality inspection of raw data, preparation 

of reads for mapping, principal component analysis (PCA)) 

- Mapping of RNA-seq reads to the transcriptome 

- Differential Expression Analysis  

- GO enrichment analysis 

- Editing of the draft 

I prepared the following figures for the manuscript: 

- Figure 5 A: Legs and pleuropodia become genetically more different as development 

progresses 

- Figure 6 A and B: Dot plot visualization of GO terms enriched in DEGs in the highly 

secreting pleuropodia 

The following figures and tables were summarized and prepared by B. Konopová with the data 

resulting from my bioinformatics analyses: 

- Figure 5 B: Legs and pleuropodia become genetically more different as development 

progresses 

- Figure 7 (only RNA-seq): Expression profiles of NAGs and CHTs upregulated in the 

pleuropodia of Schistocerca across development 
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- Table 1: Top ten percent of the most abundant transcripts upregulated in the highly 

secreting pleuropodia of Schistocerca 

- Table 2: RNA-seq differential gene expression of cuticular chitin degrading enzymes in 

the highly secreting pleuropodia of Schistocerca 

- Table 3: MF proteases that were upregulated in the highly secreting pleuropodia of 

Schistocerca 

- Table 4: RNA-seq differential gene expression of Schistocerca lysozymes in the highly 

secreting pleuropodia. 

- Table 5: RNA-seq differential gene expression of Schistocerca ecdysone biosynthesis 

enzymes in the highly secreting pleuropodia. 

- Table S1: Embryonic transcriptome of Schistocerca: numbers of sequenced reads and 

assembled transcripts. 

- Table S2: RNA-seq expression analysis: numbers of sequenced and mapped reads. 

- Table S3: Number of differentially expressed genes at selected levels of stringency. 

- Table S4: Differential expression of genes, whose expression dynamics in the early 

stages is known.  

- Table S5 (only RNA-seq): Comparison between differential expression of selected genes 

obtained by RNA-seq and real-time RT-PCR. 

- Table S6  - S9: GO enrichment analyses  

- Table S10 - S15: transcript annotations 

- Table S16: RNA-seq differential gene expression of Schistocerca ecdysone biosynthesis 

enzymes in the pleuropodia at diverse stages.  

- Table S17: Schistocerca genes with GO terms "hormone biosynthetic process" 

upregulated in the highly secreting pleuropodia. 

Status of the manuscript:  

Published on bioRxiv (doi: http://dx.doi.org/10.1101/584029) 

In preparation for submission to Scientific Reports  

  

http://dx.doi.org/10.1101/584029
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3.1. Abstract 

Background 

Pleuropodia are limb-derived vesicular organs that transiently appear on the first 

abdominal segment of embryos from the majority of insect “orders”. They are missing in the 

model Drosophila and little is known about them. Experiments carried out on orthopteran 

insects eighty years ago indicated that the pleuropodia secrete a “hatching enzyme” that at the 

end of embryogenesis digests the serosal cuticle to enable the larva to hatch. This hypothesis 

contradicts the view that insect cuticle is digested by enzymes produced by the tissue that 

deposited it.  

Results 

We studied the development of the pleuropodia in embryos of the locust Schistocerca 

gregaria (Orthoptera) using transmission electron microscopy. RNA-seq was applied to 

generate a comprehensive embryonic reference transcriptome that was used to study genome 

wide gene expression of 10 stages of pleuropodia development. We show that the mature and 

secretion releasing pleuropodia are primarily enriched in transcripts associated with transport 

functions. They express genes encoding enzymes capable of digesting cuticular protein and 

chitin. These include the potent cuticulo-lytic Chitinase 5, whose transcript rises just before 

hatching. The pleuropodia are also enriched in transcripts for immunity-related enzymes, 

including the Toll signaling pathway, melanization cascade and lysozymes.  

Conclusions 

These data provide transcriptomic evidence that the pleuropodia of orthopterans produce 

the “hatching enzyme”, whose important component is the Chitinase 5. They also indicate that 

the organs facilitate epithelial immunity and may function in embryonic immune defence. 

Based on their gene expression the pleuropodia appear to be an essential part of insect 

physiology.  
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3.2. Introduction 

An integral part of insect embryogenesis is the transient appearance of enigmatic glandular 

organs on the first abdominal segment (A1) that are called the pleuropodia (Rathke, 1844; 

Wheeler, 1890) (Figure 7A-C). These are paired structures that form external vesicles in some 

species while in others they sink down into the body wall (reviewed in e.g. (Hussey, 1926; 

Roonwal Mithan Lal and Imms Augustus Daniel, 1936; Wheeler, 1890)). The pleuropodia are 

peculiarly modified limbs (Bennett et al., 1999; Lewis et al., 2000; Machida, 1981) (Figure 7D,E): 

their buds emerge in a line with the buds for the walking legs, but unlike the legs, the 

pleuropodia remain short, the majority of their cells massively enlarge and develop into a 

transporting-like and secretory epithelium (Bullière, 1970; Louvet, 1975, 1973; Stay, 1977). The 

pleuropodia degenerate before hatching and are absent in larvae.  They have been found in at 

least some species of nearly all insect “orders” (Figure 7F), but are absent in others, like Diptera, 

Hymenoptera and advanced Lepidoptera such as silkworms  (e.g. (Ando, 1962; Ando and Haga, 

1974; Bedford, 1978; Fraulob et al., 2015; Graber, 1889; Hagan, 1931; Heming, 1993; Hussey, 

1926; Kamiya and Ando, 1985; Kobayashi et al., 2003; Kobayashi and Ando, 1990; Lambiase et 

al., 2003; Larink, 1983; Louvet, 1983; Machida, 1981; Machida et al., 2004; Mashimo et al., 

2014; Miller, 1940; Miyakawa, 1979; Norling, 1982; Roonwal Mithan Lal and Imms Augustus 

Daniel, 1936; Rost et al., 2004; S. MILLAM STANLEY and W. GRUNDMANN, 1970; Tanaka et al., 

1985; Tsutsumi, 2008; Uchifune and Machida, 2005)). Perhaps because the pleuropodia are 

missing in the genetic model Drosophila, they have been neglected in recent decades. Their 

function has remained unclear and the genes expressed during their active stages are unknown. 

Eighty years ago Eleanor Slifer (H. Slifer, 1937; Slifer, 1938) demonstrated that the 

pleuropodia of grasshoppers (Orthoptera) are necessary for the digestion of the serosal cuticle 

(SC) before hatching, to enable the larva to get out of the egg. The SC is a chitin and protein-

containing sheet structurally similar to the larval or adult cuticles and is produced by the 

extraembryonic serosa in early embryogenesis (Goltsev et al., 2009; Jacobs et al., 2015). Shortly 

before hatching the inner layer of the SC (procuticle) disappears. Slifer (H. Slifer, 1937) showed 

that when the pleuropodia are removed from fully developed embryos, the SC remains thick 

and the larva stays arrested in the egg.  She proposed that the pleuropodia secrete the 

“hatching enzyme”, a substance likely similar to the cuticle degrading moulting fluid (MF) that 

is released by the larval epidermis under the old cuticle when the insect is preparing to moult 
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(Reynolds and Samuels, 1996). The exact molecular composition of this “hatching enzyme” is 

unknown. 

The endocrinologists Novak and Zambre (Novak and Zambre, 1974) argued that this would 

be an unusual way to digest a cuticle. During larval moulting (Nijhout, 1998) the larval 

epidermal cells deposit a cuticle and subsequently it is the same epidermal cells, not a special 

gland that secretes the cuticle degrading MF. Therefore, they proposed that the SC degrading 

enzymes would most probably be secreted by the serosa itself. They proposed that the 

pleuropodia instead secrete the moulting hormone “ecdysone”, which then stimulates the 

serosa to secrete the “hatching enzyme”. They also suggested that the pleuropodia reach the 

peak of their activity in very young embryos during katatrepsis when the serosa is still present 

(Panfilio, 2008). 

 

Figure 7. Pleuropodia are limb-derived organs on the first abdominal segment of insect embryos. A-C. External 
morphology of fully developed pleuropodia of Schistocerca gregaria. A. Embryo before dorsal closure (yolk was 
removed). B. Enlarged left pleuropodium. C. Cross section through A1. D. and E.: Pleuropodia originate by a 
modification of a limb bud. D. Early embryo: all appendages are similarly looking buds. E. Older embryo: future 
legs elongate and the buds on A1 start to take shape of pleuropodia. F. Insect phylogenetic tree showing the 
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presence of pleuropodia among “orders”. The cross marks “orders” where at least some species develop 
pleuropodia. Phylogeny from (Kjer et al., 2016), other references in the text. A-E are SEM micrographs. 
Pleuropodium is marked with an arrow. A1, the first abdominal segment; h, head; L3, hind third. leg; y, yolk. Scale 
bars: in A., 1 mm; in B., 100 μm; in C.; 500 μm; in D., for D. and E., 500 μm. 

In some insects, including locusts, ultrastructural studies (Bullière, 1970; Louvet, 1975, 

1973; Rost et al., 2004; Viscuso and Sottile, 2008) have indeed shown that the pleuropodia 

secrete granules similar to the “ecdysial droplets” carrying the MF (Locke and Krishnan, 1973). 

Some of the Slifer’s experiments (H. Slifer, 1937) were successfully repeated by others (Jones, 

1956) and a substance capable of digesting pieces of SC was even isolated from the pleuropodia 

(Shutts, 1952). But a proper validation by the state-of-the-art genetic methods that the 

pleuropodia express genes for enzymes capable to digest the SC is missing.  

Here, we identified the mRNAs expressed in the pleuropodia of the locust Schistocerca 

gregaria (Orthoptera). We chose Schistocerca as an ideal model, because it has large embryos 

(eggs over 7 mm) and external pleuropodia that can easily be dissected out, and because the 

previous experiments testing the function of pleuropodia were carried out in orthopterans. We 

studied the development of the pleuropodia including using transmission electron microscopy 

(TEM), and by high-throughput RNA sequencing (RNA-seq) generated transcriptomes from 10 

morphologically defined stages. We performed differential gene expression analysis between 

the pleuropodia and similarly aged hind legs. For mapping of reads we assembled a 

transcriptome from whole embryos. The goal of this paper was to investigate whether the 

observed gene expression profile of the pleuropodia is consistent with the idea that these are 

organs for the secretion of the “hatching enzyme”. We show that during their high secretory 

activity the pleuropodia express genes for cuticle degrading chitinase and proteases that were 

previously identified in the moulting fluid. This supports the “hatching enzyme hypothesis” (H. 

Slifer, 1937; Slifer, 1938). 

3.3. Results 

3.3.1. Development of pleuropodia in the course of Schistocerca embryogenesis 

Before we could start exploring the genes expressed in the pleuropodia of Schistocerca we 

needed to understand how these organs develop in the locust, i.e. when they are fully 

differentiated and show activity. Cytological study of developing pleuropodia in grasshopper 

embryos was previously carried out by Slifer (Slifer, 1938), but the light microscopy that she 

used does not provide sufficient resolution to distinguish the fine ultrastructure of the cells. 
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Ultrastructure of pleuropodia by TEM has been described for several insects (Bullière, 1970; 

Louvet, 1983, 1975, 1973; Rost et al., 2004; Stay, 1977; Viscuso and Sottile, 2008), but a 

chronological study is missing for Schistocerca or any other orthopteran.  

Under our conditions Schistocerca embryogenesis lasts 14.5 days (100% developmental 

time, DT) (Figure 8A, S1). We followed the development of the pleuropodia from the age of 4 

days (27.6 % DT), when all appendages are similar looking short buds, until just before hatching, 

day 14 (Figures 8B, S2-3). Simultaneously, we followed the development of the hind leg, which 

we used for comparison (because pleuropodia are peculiarly modified legs). 

 

Figure 8. Summary of the development of pleuropodia in Schistocerca embryos. A. Scheme of Schistocerca 
embryogenesis marking the key developmental events in the embryos and timing of the two experiments on 
pleuropodia. Numbers above the scale are days from egg-laying, numbers below the scale are percent of 
embryonic developmental time. Yellow boxes indicate the stages that were sampled for RNA-seq. Eggs with the 
developing embryos at each stage are shown below the scale, insets for the 4-8 day stages show the embryo 
dissected out from the egg. B. External features of the developing pleuropodia; after hatching part of the 
stretched exuvia is shown; the degenerated pleuropodium is marked with an arrow. C. Paraffin sections through 
the pleuropodium and surrounding tissue. Pleuropodia are marked with arrowheads. PH3 (green) detects cell 
divisions in the immature glandular cells (tip of appendage bud) on day 4 and 5, not in later stages. The 
pleuropodial stalk cells, haemocytes entering the pleuropodia and cells in other tissues were labeled. Nuclei 
(grey) enlarge from day 6. The text below the pictures refers to the main events in the glandular cells. EX, exuvia; 
L, larva. Scale bars: in A. (eggs), 1 mm; in B., 0.2 mm. Background was cleaned in photos in A (see Materials and 
Methods). 

We traced cell divisions in the pleuropodia by using Phosphohistone- 3 as a marker 

(Figure 8C). The glandular cells were labeled only in the days 4 and 5. From day 6 onwards no 

cell divisions were detected and the nuclei started to enlarge as the cells became polyploid 
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(Grellet, 1971). The pleuropodial stalk cells, haemocytes entering the pleuropodia and cells in 

the other embryonic tissues kept dividing. 

Although the pleuropodia get their final external mushroom-like shape just before the 

embryos undergo katatrepsis (day 6; 41.4% DT) (Figure 8A,B), we found by TEM (Figure 9) that 

the glandular cells fully differentiate only later, shortly before dorsal closure (day 8; 55.2% DT) 

(compare the undifferentiated cells in Figure 9F-I, with differentiated cells in Figure 9J-P). At 

that time these cells form a single-layered transporting-like epithelium (Berridge and Oschman, 

1972) and secretion granules inside and outside the cells become visible (Figure 9A-E, J).  The 

granules outside of the cells first appear at the base and in between the long apical microvilli 

(brush-border) (Figure 9E,J). The whole pleuropodium is covered with a thin embryonic cuticle 

(“the first embryonic cuticle”, EC1); the tips of the microvilli produce fibrous material that is a 

part of this cuticle (Figure 9E) (compare with similar fibers above the leg epidermis Figure S4). 
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Figure 9. Ultrastructure of the Schistocerca pleuropodia. A.-E. Main features of the cells in the fully formed 
pleuropodia. Pleuropodia just before dorsal closure are shown. A. Cross section through the pleuropodium. B. 
Stalk cell. The short microvilli at the apical side are associated with the deposition of fibres in the embryonic 
cuticle (“the first embryonic cuticle”, EC1). C.-E. Glandular cells. In D. the white arrowheads mark the spaces 
between neighboring cells. In E. the black arrows mark mitochondria inside the microvilli and the asterisks mark 
spots of different electron-density in the secreted granule. Note that the secretion granule is located at the base 
of the microvilli (brush-border); the tips of the microvilli produce fibrous material that is a part of the embryonic 
cuticle EC1. F.-P. Ontogenesis of the glandular cells.  Note the development of the microvilli (brush border) and 
the onset of secretion (appearance of secretion granules within and above the microvilli). On day 8 (J.) the 
glandular cells are differentiated, on day 12 (N.) patches of the apical side elevate, on day 13 (O.) the organelles 
are disorganized, on day 14 (P.) cytoplasm is electron dense (cells shrink), chromatin condensed, but large 
secretion granules are still present at the base of microvilli and above them. A. is a toluidine blue stained semithin 
section, B.-P. TEM micrographs. Secretion granules are marked with yellow arrows. bm, basement membrane; 
bl, basal labyrinth (infolding of the basal plasma membrane); cj, cell junction; dv, dense vesicle; EC1, the first 
embryonic cuticle; gly, glycogene; ld, lipid droplet; mit, mitochondria; mv, microvilli; nu, nucleus; ser, smooth 
endoplasmic reticulum. Scale bars: in B., C., D., E. and F. for F.-P., 2 μm; inset in E., 500 nm. 
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As development progresses the secretion granules (inside and outside the cells) become 

more abundant and are present also above the microvilli (Figure 9K-P). On day 12 the apical 

side of the glandular cells changes: clusters of microvilli (usually at the borders between cells) 

elevate (Figure 9N). Later the cells show signs of degeneration, the chromatin condenses and 

the cell content becomes disorganized (Figure 9O,P). Large secretion granules are still abundant 

and probably released even on the last day before hatching, when the pleuropodia have shrunk 

and collapsed (Figures 8B, 9P).  

When the embryo moults (apolyses a cuticle and secretes a new one), first at about 8.5 

days and again just before 12 days (Figures 8A, S4), ecdysial droplets are present below the 

apolysed cuticle. These droplets are very similar at both moults (compare Figures S4F and I). 

They are very similar, but not identical to the granules released by the pleuropodia (Figure 

10A,B). The glandular cells of the pleuropodia do not moult and keep the first embryonic cuticle 

(EC1) their whole life-time. 

 

Figure 10. Granules secreted from the pleuropodia resemble ecdysial droplets. A. Ecdysial droplet secreted 
during the second embryonic moult by hind leg epidermis. B. Granules secreted from pleuropodia at the same 
developmental stage. The pleuropodial granules are typically larger, less compact and with non-homogeneous 
electrondensity. The “spot” of a different electron-density in the pleuropodial granules is marked with an 
asterisk. EC1, EC2, the first and second embryonic cuticles; ed, ecdysial droplets; mv, microvilli; pg, granules 
secreted from the pleuropodia. Scale bar: for A. and B., 500 nm. 

At hatching, the larva enclosed in the (now apolysed) second embryonic cuticle (EC2) 

leaves the eggshell and digs through the substrate up to the surface (Bernays, 1971; Konopová 

and Zrzavý, 2005). Here the EC2 is shed and the degenerated pleuropodia are removed with it 

((Roonwal ML and Imms AD, 1936); Figure 8A).  
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Therefore our observations show that the timing of the high secretory activity corresponds 

to the stages when Slifer (H. Slifer, 1937) demonstrated the presence of the “hatching enzyme” 

(Figure 8A). Next we looked at what genes are expressed in the pleuropodia at this time. 

3.3.2. Generation of a comparative RNA-seq dataset from developing pleuropodia and 

legs of Schistocerca 

To find out what genes are upregulated in the pleuropodia of Schistocerca, we applied a 

comparative genome wide expression analysis using RNA-seq. We generated a comprehensive 

embryonic transcriptome (see details in Materials and Methods) that served as reference for 

the analysis. This transcriptome consists of 20 834 transcripts (Table S1). Its completeness was 

assessed using the open-source software BUSCO (Simão et al., 2015; Waterhouse et al., 2017). 

95.6%, 96.3% and 94.6% of the Metazoa, Arthropoda and Insecta orthologs, respectively, were 

found, a level comparable to published “complete” transcriptomes. 

To gain insights into the gene expression dynamics of pleuropodia development, we dissected 

pleuropodia from 10 embryonic stages and isolated their mRNAs. In parallel, we dissected hind 

legs for the same 10 stages to generate a comparative transcriptomic dataset. In total we 

sequenced pairs of samples (pleuropodia and legs) from 10 developmental stages and 

performed a differential expression analysis between legs and pleuropodia for each stage 

(Figure 8A, Table S2). A principal component analysis (PCA) confirmed that legs and pleuropodia 

are not only morphologically very similar at early stages, but share a common transcriptomic 

landscape as well (Figure 11A). The number of differentially expressed genes (DEGs) rises as 

development progresses (Figure 11B, Table S3). 
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Figure 11 Legs and pleuropodia become genetically more different as development progresses. A. PCA on genes 
expressed in legs and pleuropodia at 10 embryonic stages (rlog transformed read counts). The expression profile 
diversifies with development, consistent with the observation that the two tissues develop into two different 
structures (starting from day 6). Samples from young embryos are genetically more similar and cluster together, 
while samples from advanced stages are genetically more distant and also separated on the plot. B. Number of 
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DEGs at two levels of stringency (RPKM ≥ 10 and fold change ≥ 2 was considered as a threshold for a gene to be 
differentially expressed). LEG, DEGs downregulated in pleuropodia and upregulated in legs, PLP, DEGs 
upregulated in pleuropodia and downregulated in legs. 

For several genes whose expression dynamics in the pleuropodia were already known, such 

as Ubx, abd-A, dll and dac (Angelini et al., 2005; Bennett et al., 1999; Hughes and Kaufman, 

2002; Prpic et al., 2001; Tear et al., 1990; Zhang et al., 2005), we confirmed that they were up- 

or downregulated in our RNA-seq data as predicted (Table S4). To further validate the RNA-seq 

dataset, we carried out real-time RT-PCR on 46 selected genes in several stages (in total in 176 

cases) and got results consistent with the sequencing data (Table S5). Therefore, we are 

confident that we can identify important factors that are relevant for pleuropodia function and 

development. 

3.3.3. Identification of genes upregulated in the intensively secreting pleuropodia 

Since we wanted to focus specifically on the pleuropodia with high secretory activity we 

pooled the data from the samples 10, 11 and 12 days together, separately for pleuropodia and 

legs, and treated them as triplicates. These three samples cover the stages from the embryos 

after the dorsal closure, when the pleuropodia intensively release secretion granules, but are 

not in advanced state of degeneration (day 13) (Figures 10A, 9L-N). We performed differential 

expression analysis and gene ontology (GO) enrichment analysis with genes upregulated in legs 

and pleuropodia. We identified 781 transcripts upregulated in the pleuropodia (compared to 

the legs) and 1535 downregulated (Table S3). Table 1 shows the top 10% of the most highly 

abundant transcripts (measured in RPKM units, “reads per kilobase of transcript per million 

reads mapped”) that we found upregulated in the pleuropodia.  

Table 1. Top ten percent of the most abundant transcripts upregulated in the highly secreting pleuropodia of 
Schistocerca. 

       

Transcript ID Protein Characteristics Immunitya 
Cuticle 

digestionb 

RPKM Fold 
change legs pleuropodia 

        

        

SgreTa0017702 x    23.07 15186.05 658.36 

SgreTa0007897 C-type lysozyme anti-bacterial protein x  42.93 14452.15 336.64 
SgreTa0002988 Uncharacterized, contains DUF4773 

domain 
   15.16 9112.05 601.19 

SgreTa0005052 x    13.37 7950.98 594.48 

SgreTa0001636 Serine protease proteolysis  x x 49.38 7578.31 153.48 

SgreTa0008851 Chitin binding Peritrophin-A perotrophic matrix protein   9.12 6836.42 749.88 

SgreTa0017707 I-type lysozyme anti-bacterial protein x  12.20 6712.31 550.26 

SgreTa0007042 x    7.04 6650.18 944.25 

SgreTa0004599 Alpha-tocopherol transfer protein intermembrane lipid 
transfer 

  8.99 5848.12 650.71 

SgreTa0009217 x    5.03 5384.56 1070.14 

SgreTa0003175 Collagen    32.25 5220.96 161.87 
SgreTa0007886 Alpha-N-acetylgalactosaminidase carbohydrate catabolism   3.85 4372.63 1134.69 

SgreTa0002109 x    2.20 3016.31 1372.07 

SgreTa0017715 Serine protease, Snake-like  proteolysis, Toll signaling x x 70.55 2947.46 41.78 

SgreTa0017664 Chitinase 5 cuticular chitin degradation  x 79.32 2620.11 33.03 

SgreTa0002467 Neutral endopeptidase 24.11 proteolysis  x 62.26 2282.01 36.66 
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SgreTa0004397 x    11.21 2266.30 202.21 

SgreTa0002828 x    1.77 2188.14 1234.00 

SgreTa0006539 Serpin, 88E-like serine protease inhibitor x  32.42 2152.14 66.38 

SgreTa0001321 Glycosyl hydrolase, Myrosinase 1-
like 

carbohydrate catabolism   3.93 2070.40 527.16 

SgreTb0011177 x    1.38 1884.79 1369.32 
SgreTa0008335 x    54.24 1812.38 33.41 

SgreTa0003635 Alpha-tocopherol transfer protein intermembrane lipid 
transfer 

  2.23 1800.68 806.99 

SgreTb0003860 Serine protease, H2-like proteolysis x x 77.42 1727.41 22.31 

SgreTa0013418 x    0.87 1484.98 1710.66 

SgreTa0014009 Angiotensin-converting enzyme proteolysis  x 65.76 1457.47 22.16 
SgreTa0006966 Pro-phenol oxidase subunit 2 immunity, melanization x  144.78 1347.43 9.31 

SgreTa0000425 6-phosphofructo-2-kinase glycolysis   93.52 1346.50 14.40 

SgreTa0003661 Serine protease, Easter-like proteolysis x x 29.50 1332.79 45.18 

SgreTa0006960 Glutamate dehydrogenase 
mitochondrial 

nitrogen and glutamate 
metabolism 

  172.56 1327.45 7.69 

SgreTa0017670 Xaa-Pro aminopeptidase proteolysis  x 2.89 1322.01 457.96 
SgreTb0000759 Cathepsin L proteolysis, lysosomal 

enzyme 
 x 105.63 1308.36 12.39 

SgreTa0014684 x    1.30 1294.87 994.80 

SgreTa0007025 Insect pheromone-binding protein 
A10/OS-D 

chemoreception   1.77 1224.20 692.95 

SgreTa0006282 Cytochrome P450 CYP4G102 synthesis of hydrocarbons, 
anti-dehydration 

  2.91 1196.27 410.93 

SgreTa0009515 Sensory neuron membrane protein, 
1-like 

chemoreception   3.33 1188.81 357.50 

SgreTa0008528 C-type lysozyme anti-bacterial protein x  8.61 1159.55 134.71 

SgreTa0009095 Catalase redox homeostasis x  355.15 1158.27 3.26 
SgreTb0039135 x    3.53 1119.22 316.71 

SgreTa0001486 Lipopolysaccharide-induced tumor 
necrosis factor-alpha factor homolog 

lysosomal degradation   45.83 1109.33 24.20 

SgreTb0039012 x    14.29 1060.82 74.25 

SgreTa0009747 Serpin (27-like) serine protease inhibitor, 
melanization 

x  14.49 1054.67 72.80 

SgreTa0013400 Peroxiredoxin, 5-llke redox homeostasis x  101.10 1034.15 10.23 

SgreTa0017395 x    5.08 1004.86 197.64 

SgreTa0017712 x    15.59 990.41 63.53 

SgreTa0005600 Beta-N-acetylglucosaminidase NAG2  cuticular chitin degradation  x 15.10 939.60 62.21 

SgreTa0000783 Serine protease, Snake-like proteolysis x x 4.30 917.47 213.59 

SgreTa0006651 Uncharacterized, contains 
Transcription activator MBF2 
domain 

   1.62 907.98 561.49 

SgreTa0017657 Putative serine protease, K12H4.7-
like / Serine carboxypeptidase 

proteolysis  x 2.31 904.26 391.60 

SgreTa0017700 Peroxidase redox homeostasis x  5.36 874.51 163.25 

SgreTa0002600 Uncharacterized, contains DUF3421 
domain 

   0.97 870.73 894.35 

SgreTb0019827 Tob antiproliferative protein, 
transcription corepressor 

  141.26 846.86 5.99 

SgreTa0017854 x    0.85 838.89 981.74 
SgreTa0007774 Lysosomal-associated membrane 

protein  
lysosomal membrane 
protein 

  185.20 822.81 4.44 

SgreTa0015156 x    27.45 804.82 29.32 

SgreTa0007809 Tetraspanin scaffolding protein in cell 
membrane 

  63.04 799.76 12.69 

SgreTa0004471 Leucine rich repeat membrane glycoprotein   74.88 797.35 10.65 
SgreTa0004278 Fatty acyl-CoA reductase, 

waterproof-like 
lipid metabolism   1.75 733.39 417.99 

SgreTa0014626 V-type proton ATPase proteolipid 
subunit 

proton transporting 
ATPase 

  190.76 708.56 3.71 

SgreTa0016256 Bax inhibitor 1 negative regulation of 
apoptosis and autophagy 

  237.58 692.52 2.91 

SgreTa0001469 Sodium/potassium-transporting 
ATPase subunit alpha 

sodium:potassium 
exchanging ATPase 

  119.60 685.51 5.73 

SgreTa0007426 Serine protease, Easter-like proteolysis x x 0.66 673.43 1023.60 

SgreTa0007081 Vigilin RNA binding, sterol 
metabolism 

  247.46 655.61 2.65 

SgreTa0013328 Ferritin iron ion transport, iron 
sequestration 

x  238.10 651.31 2.74 

SgreTa0002155 Uncharacterized serine protease 
inhibitor 

serine protease inhibitor x  33.83 646.73 19.12 

SgreTa0014303 x    176.21 645.78 3.66 

SgreTa0017577 Aquaporin water channel   0.39 635.34 1638.96 

SgreTa0013377 Phosphoenolpyruvate carboxykinase 
[GTP] 

gluconeogenesis   13.56 628.95 46.37 

SgreTa0005752 Alpha-tocopherol transfer protein intermembrane lipid 
transfer 

  12.98 594.56 45.79 

SgreTa0014098 Phospholipase B-like lipid degradation   206.76 577.99 2.80 

SgreTa0000856 Transposase-like    25.93 576.67 22.24 

SgreTa0008861 x    0.37 541.63 1456.67 
SgreTa0017826 Sodium:neurotransmitter symporter solute:sodium symport   0.49 540.53 1104.10 

SgreTb0019287 x    3.11 528.47 169.79 

SgreTa0015520 Protein yellow melanization x  2.75 520.09 189.08 

SgreTb0006243 I-type lysozyme anti-bacterial protein x  16.96 519.35 30.62 

SgreTa0009559 Gram-negative bacteria binding 
protein 3 

pathogen recognition x  15.40 510.04 33.13 
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a proteins related to immune response 

b proteins that participate in larval moulting; some of them are known, other anticipated to digest cuticular 
chitin and protein (e.g., present in the MF)   

For the sake of clarity we summarized redundant GO terms in representative GO-groups 

(Figure 12; the full set of enriched GO terms are presented in Tables S6,S7; GOs enriched at 

each developmental stage separately are in Tables S8,S9) (see Materials and Methods). Our 

results show that the genes downregulated in the pleuropodia (upregulated in the legs) are 

enriched in GO terms associated with development and function of muscle tissue, cell division 

and DNA synthesis. This is in agreement with our and previous observations that the 

pleuropodia lack muscles, while at these stages the legs are differentiating, developing muscles 

and their cells are still dividing (Figure 8C).  The pleuropodia downregulate genes for the 

development of mesoderm, which is consistent with the morphological observation that they 

are formed by ectodermal cells (Figure 9A).  
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Figure 12. Dot plot visualization of GO terms enriched in differentially expressed genes in highly secreting 
pleuropodia. Representative groups of GO terms enriched in genes that are A. downregulated in pleuropodia (in 
comparison to legs) and B. upregulated in pleuropodia. Major clusters are labeled. Relevant GOs are marked with 
an arrow. Bubble color indicates the p-value of the GO term, the size indicates the frequency of the GO term in 
the underlying Gene Ontology Annotation (GOA) database (bubbles of more general terms are larger). 

The upregulated genes are primarily enriched in GO terms (Figure 12, Table S7) associated 

with transport thus genetically confirming the morphological observations that the pleuropodia 

are transporting organs. These include genes for transporters present in typical insect 

transporting epithelia (Chintapalli et al., 2013), such as the energy providing V-ATPase and Na+, 

K+ ATPase (Table S10). We found enriched GO terms linked with lysosome organization, 

consistent with the observation that the pleuropodia contain numerous lysosomes (Figure 9, 
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(Louvet, 1975)).  We also found a large cluster of GO terms associated with lipid metabolism, 

consistent with the abundant smooth endoplasmic reticulum in the cells. Therefore, the pool 

of genes expressed in the pleuropodia is in agreement with the morphology of the organs. 

Among the novel findings are upregulation of genes associated with immunity, as well as with 

carbohydrate derivative metabolism, aminoglycan catabolic process and proteolysis: these 

might contain genes for degradation of the SC. Next we looked at selected genes in a detail. 

3.3.4. The pleuropodia upregulate genes for cuticular chitin degrading enzymes 

Insect cuticle is digested by a cocktail of chitin and protein degrading enzymes (Reynolds 

and Samuels, 1996; Zhang et al., 2014). Cuticular chitin is hydrolyzed by a two-enzyme system 

composed of a β-N-acetyl-hexosaminidase (NAG) and a chitinase (CHT) (Zhu et al., 2007).  Both 

types of enzymes, a NAG and a chitinase, have to be simultaneously present for efficient 

hydrolysis of chitin (Fukamizo and Kramer, 1985). Previous studies have shown that only 

particular NAGs and CHTs are capable of efficiently digesting the type of chitin present in the 

insect cuticle (see below). 

Insect NAGs were classified into 4 major classes, of which chitinolytic activity was 

demonstrated for group I and II (Table 2) (Hogenkamp et al., 2008; Rong et al., 2013). Our 

transcriptome contains 4 NAG transcripts, each representing one group (Table 2, Figures 13A-

D, S5A, S6A). All were upregulated in the pleuropodia. Among them the Sg-nag2 for the 

chitinolitic NAG group II had the highest expression (among 46 most highly “expressed” genes, 

Table 1) and fold change between legs and pleuropodia. The abundance of transcripts for the 

chitinolitic NAGs starts to rise from day 6 (Figure 13A, B) when the glandular cells in the 

pleuropodia begin to differentiate morphologically (Figs 7, 9). The expression profile of Sg-

nag2, that we have chosen for validation, was similar by RNA-seq and real-time RT-PCR 

(compare Figure 13B and B’). 

Table 2. RNA-seq differential gene expression of cuticular chitin degrading enzymes in highly secreting 
pleuropodia of Schistocerca. 

Family Group Protein Schistocerca 

gene 

UP/DOWNa Fold 

change 

Expressionb 

       

ß-N-acetylhexosaminidase I NAG1 Sg-nag1 UP 7.85 124 (15.88%) 

 II NAG2  Sg-nag2 UP 62.21 46 (5.89%) 

 III Fused lobes Sg-fdl UP 14.18 592 (75.8%) 
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 IV Hex Sg-hex UP 47.37 306 (39.18%) 

       

chitinase-like I-Major "moulting" chitinases Chitinase 5 Sg-cht5-1 UP 33.03 15 (1.92%) 

   Sg-cht5-2 UP 234.78 400 (51.21%) 

 II-"Moulting" chitinases Chitinase 10 Sg-cht10-1 nac   

   Sg-cht10-2 nsd   

 III-Cuticle assembly chitinases Chitinase 7 Sg-cht7-1 ns   

   Sg-cht7-1 ns   

   Sg-cht7-1 ns   

 IV-Gut, fat body and other 

chitinases 

Chitinase 8 Sg-cht8-1 na   

   Sg-cht8-1 na   

   Sg-cht8-1 na   

  Chitinase 6 Sg-cht6-1 ns   

   Sg-cht6-2 ns   

  Chitinase 2 Sg-cht2 UP 2.81 188 (24.07%) 

 V-Imaginal disc growth factors IDGF Sg-idgf-1 UP 20.97 391 (50.06%) 

   Sg-idgf-2 ns   

   Sg-idgf-3 ns   

a upregulated (UP)/ downregulated (DOWN) 

b the DEGs were ranked according to their RPKM (in descending order), the number describes the position of the 
DEG in the ranked table; top 25% highlighted in black, others in descending level of grey 

c not applicable (expression low to undetectable in both samples, transcript filtered out) 

d not significant 

 

 

Figure 13. Expression profiles of NAGs and CHTs upregulated in the pleuropodia of Schistocerca across 
development. Top row: NAGs, bottom row: CHTs. A-D. and F-I. RNA-seq, Expression in single-sample sequencing 
is shown. B’. and F’. real-time RT-PCR. B’. is the same gene as in B. and F’. is the same gene as in F. Analysis of 3-
4 technical replicates is shown. Expression in day 8 was set as 1. 
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To see if the pleuropodia are the major source of the Sg-nag2 transcript in the embryo, 

we looked at its expression in various parts of the body (head, thorax, abdomen with 

pleuropodia, abdomen from which pleuropodia were removed) using real-time RT-PCR (Figure 

14A,B). We performed this analysis in embryos on day 6, when the pleuropodia are still 

immature, day 8, just at the onset of the secretory activity, day 10 and day 12 during active 

secretion. During all of the stages the abdomen with pleuropodia had the highest expression 

(A+ in Figure 14B), although the expression was lower in the youngest sample (day 6) compared 

to the samples from older embryos (day 8, 10 and 12). This shows that the pleuropodia are the 

major source of mRNAs for this cuticle-degrading NAG. 

 

Figure 14. Real-time RT-PCR expression analysis of Sg-nag2 and Sg-cht5-1 on cDNA from parts of Schistocerca 
embryos. A. cDNA was prepared from mRNAs isolated from parts of embryos at the age of 6, 8, 10 and 12 days: 
H, head; T, thorax; A+, abdomen with pleuropodia; A-, abdomen without pleuropodia. For each age the same 
number of body parts was used (5-10) and RNA was resuspended in the same volume of water. The size of the 
pleuropodium is indicated by the yellow dot. B. and C. expression of Sg-nag2 and Sg-cht5-1, respectively. Analysis 
of 3-4 technical replicates is shown. Expression in A+8 (abdomen with pleuropodia at stage when the organs first 
become differentiated) was set as 1. Numbers above A+ expression is fold change from A- of the same age. 

The insect CHTs have been classified into several groups (Noh et al., 2018; Zhu et al., 

2016), of which the major role in the digestion of cuticular chitin is played by Chitinase 5 and 

(perhaps with a secondary importance) by Chitinase 10 (Qu et al., 2014; Zhu et al., 2008) (Table 

2; the classification of CHTs into 5 major groups that we use here is based on (Zhu et al., 2008)). 

Some chitinases, for example, are expressed in the gut, trachea and fat body, where they are 

likely involved in digestion of dietary chitin, turnover of peritrophic matrix and immunity, other 

chitinases organize assembly of new cuticle (Merzendorfer, 2013; Noh et al., 2018; Pesch et al., 

2016). 

Our transcriptome contains 16 full or partial transcripts of CHTs representing all of the 

major CHT groups (Table 2, Figure S5B, S6B). The pleuropodia specifically upregulate both of 

the genes for Chitinase 5, homologs of cht5-1 and cht5-2 from the locust Locusta migratoria (Li 

et al., 2015). One of the transcripts, Sg-cht5-1, was among the top 15 most highly expressed 

genes (Table 1). The predicted amino acid sequence contains a conserved catalytic domain and 
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a signal peptide, and thus is likely to be active and secreted, respectively (Figure S5B). The other 

upregulated CHTs were homologs of Cht2 and Idgf. By contrast, the Schistocerca homolog of 

cht-10 that also has a role in cuticular chitin hydrolysis and required for larval moulting (Pesch 

et al., 2016; Zhu et al., 2008) had low expression in both legs and pleuropodia. 

We next focused on the transcript of the major chitinase, Sg-cht5-1. Unlike the NAGs, both 

RNA-seq and real-time RT-PCR have shown that the expression of this CHT is low in the early 

secreting stages, rises only later around day 12 and reaches highest levels when the 

pleuropodia are already degenerating (day 13 and 14) (Figure 13 F,G,F’). Also real-time RT-PCR 

on cut embryos has shown that the pleuropodia are a major source of the Sg-cht5-1 mRNA on 

day 12 but not before (the high expression in the whole embryo on day 10 could be linked to 

the second embryonic moult and was also observed with Sg-cht7, although not with Sg-cht10, 

Figure S8). These data show that the pluropodia before hatching express a cuticle-degrading 

chitinase.  

3.3.5. Pleuropodia upregulate transcripts for some proteases that could digest a cuticle 

Our GO enrichment analysis has shown that the secreting pleuropodia are enriched in 

transcripts for genes associated with proteolysis (Figure 12, Table S11). Transcripts for 

proteases and their inhibitors are abundant among the top 10 per cent of the most highly 

“expressed” upregulated DEGs (Table 1).  To see if the upregulated transcripts encode enzymes 

that are associated with digestion of insect cuticle, we compared our data with the enzymes 

identified in the complete proteomic analysis of the MF from the lepidopteran Bombyx mori 

(Liu et al., 2018; Zhang et al., 2014). Out of 69 genes that we searched, we found homologs or 

very similar genes in Schistocerca transcriptome for half of them (35). This made in total 75 

transcripts, of which 27 were upregulated (7 among the top 10 per cent most highly expressed) 

and 15 downregulated (Table 3, S12). The prominent MF protease Carboxypeptidase A (Sui et 

al., 2009; Zhang et al., 2014) and the Trypsin-like serine protease known to function in locust 

moulting (Wei et al., 2007) were not upregulated in the pleuropodia. These data indicate that 

the pleuropodia upregulate transcripts for proteolytic enzymes associated with the 

degradation of the cuticle and would be able to contribute to digest the SC. 

Table 3. MF proteases that were upregulated in the highly secreting pluropodia of Schistocerca. 

MF proteina Blast queryb 

Schistocerca 

transcript IDc homolog/similard RPKM PLP Fold change UP 
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Putative peptidase D2KMR2 SgreTa0000627 similar 131.75 3.14 

Aminopeptidase N-12 I3VR83 SgreTb0018983 similar 35.86 4.35 

Neutral endopeptidase 

24.11 

Q9BLH1 SgreTa0002467 similar 2282.01 36.66 

 Q9BLH1 SgreTa0017692 similar 133.30 240.28 

 Q9BLH1 SgreTb0039123 similar 219.35 186.96 

Ecdysteroid-inducible 

angiotensin-converting 

enzyme 

Q9NDS8 SgreTa0014009 similar 1457.47 22.16 

 Q9NDS8 SgreTa0017728 similar 62.71 57.08 

Carboxypeptidase E-like H9IST0 SgreTa0000925 homolog 139.81 10.95 

Angiotensin-converting 

enzyme-like 

H9IZ41 SgreTa0003298 homolog 23.64 5.65 

Aminopeptidase N-like H9JEW9 SgreTa0017219 homolog 391.03 437.93 

Digestive cysteine protease 

1, cathepsin L 

H9JHZ1 SgreTa0000627 homolog 131.75 3.14 

Serine carboxypeptidase H9J242 SgreTa0017657 homolog 904.26 391.60 

Serine protease HP21 

precursor 

H9JJA9 SgreTa0017649 similar 179.69 24.45 

Trypsin-like serine protease 

- fibroin heavy chain 

H9JPA8 SgreTa0001636 homolog 7578.31 153.48 

Serine protease, Easter-like Q2VG86 SgreTa0003188 homolog 485.97 837.45 

 Q2VG86 SgreTa0003661 homolog 1332.79 45.18 

 Q2VG86 SgreTa0006780 homolog 103.37 14.76 

 Q2VG86 SgreTa0007424 homolog 29.62 79.13 

 Q2VG86 SgreTa0007425 homolog 123.69 72.31 

 Q2VG86 SgreTb0037249 homolog 21.76 249.74 

 Q2VG86 SgreTb0039879 homolog 305.63 544.04 

 H9JLZ4 SgreTa0010219 similar 46.12 20.75 

 H9JLZ4 SgreTb0039024 similar 11.71 22.11 

Serine protease 1 H9JXY6 SgreTb0003860 homolog 1727.41 22.31 
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Serine protease, Snake-like H9IWW2 SgreTa0000783 similar 917.47 213.59 

a proteomic sequencing of MF of the lepidopteran Bombyx mori (Zhang et al., 2014; Liu et al., 2018) 

b Uniprot ID for blast on Schistocerca transcriptome 

c transcripts in bold were among the top 10% most highly "expressed" upregulated DEGs (Table 1) 

d considered as homologous, if reciprocal blast retrieved the query sequence 

3.3.6. Pleuropodia are enriched in transcripts for immunity-related proteins 

An observation that was not anticipated was the upregulation of genes for proteins involved 

in immunity (Buchon et al., 2014; Lemaitre and Hoffmann, 2007) (Figures 12, 15, Table S13). 

This is especially interesting, because immunity related proteins have been found in the MF 

(Zhang et al., 2014). It is in agreement with that the cells in the pleuropodia are a type of barrier 

epithelium (Bergman et al., 2017; Buchon et al., 2014; Lemaitre and Hoffmann, 2007), which 

enables the contact between the organism and its environment. Barrier epithelia (e.g., the gut, 

Malpighian tubules or tracheae) constitutively express genes for immune defense. 

 

Figure 15. Schematic representation of the key immunity-related genes expressed in the highly secreting 
pleuropodia of Schistocerca. Proteins whose transcripts were found in the pleuropodia are in black, number in 
the brackets is the number of upregulated transcripts. Proteins whose transcripts were not upregulated are in 
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grey. Out of the total 25 serine proteases and 25 serpins, 14 and 15 are known to function in Toll signaling, 
respectively. AMP, antimicrobial peptide; GNBP, gram-negative bacteria-binding protein; GST, glutathione S-
transferase; MP, melanization protease; NOS, nitric oxide synthase; PGRP, peptidoglycan recognition preotein; 
PPO, pro-phenoloxidase; pxn, peroxiredoxin; RNS, reactive nitrogen species; ROS, reactive oxygen species; SPE, 
Spaetzle-processing enzyme. 

In total we found upregulated 99 transcripts (13 per cent of the upregulated genes) for 

immunity-related proteins. These include proteins at all three levels, the pathogen recognition, 

signaling and response (Figure 15, Table S13).  From the four signaling pathways, Toll was 

upregulated, but not IMD or JAK/STAT, and from the JNK signaling we found c-Jun. Genes for a 

range of immune responses were upregulated, including production of reactive nitrogen 

species (RNS), melanization, genes for lysozymes and one antimicrobial peptide (AMP) similar 

to Diptericin. 

 

Figure 16. Real-time RT-PCR expression analysis of genes for lysozymes on cDNA from parts of Schistocerca 
embryos. cDNA was prepared from mRNAs isolated from parts of embryos at the age of 6, 8, 10 and 12 days. For 
each age the same number of body parts was used (5-10) and RNA was resuspended in the same volume of 
water. Analysis of 3-4 technical replicates is shown. Expression in A+8 (abdomen with pleuropodia at stage when 
the organs first become differentiated) was set as 1. Numbers above A+ expression is fold change from A- of the 
same age. 

The transcripts for lysozymes were among the most highly expressed (Table 1) and we 

chose to focus on them. Lysozymes are secreted proteins that kill bacteria by breaking down 

their cell wall. Our Schistocerca transcriptome contains 9 genes for lysozymes, 7 of which were 

upregulated (Table 4, Table S14). The second most highly expressed DEG was a transcript for a 

C-type lysozyme (SgLyzC-1) that was previously shown to have anti-bacterial properties in 

Schistocerca (Mohamed et al., 2016) (Table 1). We examined expression of 5 selected genes on 

cut embryos by real-time RT-PCR (Figure 15). Our data showed that the pleuropodia are the 

major source of mRNAs for these genes.  
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Table 4. RNA-seq differential gene expression of Schistocerca lysozymes in the highly secreting pleuropodia. 

     

Lysozyme type Gene UP/DOWNa Fold change Expressionb 

     

C-type lysozyme SgLyzC-1 UP 336.64 2 (0.26%) 

 SgLyzC-2 UP 134.71 37 (4.74%) 

I-type lysozyme SgLyzI-1 UP 550.26 7 (0.90%) 

 SgLyzI-2 nsc   

 SgLyzI-3 UP 30.62 76 (9.73%) 

 SgLyzI-4 DOWN -34.41 1251 (81.50%) 

 SgLyzI-5 ns   

Lysozyme-like SgLyz-like-1 UP 192.68 150 (19.21%) 

 SgLyz-like-2 ns   

a upregulated (UP)/ downregulated (DOWN) 

b the DEGs were ranked according to their RPKM (in descending order), the number describes the position of 
the DEG in the ranked table; shading as in Table 2 

c not significant 

3.3.7. The pleuropodia do not upregulate the pathway for ecdysone biosynthesis 

Previous work has suggested that pleuropodia may be embryonic organs producing the 

moulting hormone ecdysone (Novak and Zambre, 1974). During post-embryonic stages, 

ecdysone is synthesized in the prothoracic glands and several other tissues by a common set of 

enzymes (Niwa and Niwa, 2014; Ou et al., 2016), some which have been characterized in the 

locusts (Lenaerts et al., 2016; Marchal et al., 2012, 2011; Sugahara et al., 2017). As shown in 

Drosophila, these genes are expressed in diverse cell types in embryos, and when the larval 

prothoracic glands are formed their expression co-localizes there (Chávez et al., 2000; Niwa et 

al., 2004; Petryk et al., 2003; Warren et al., 2004, 2002). 

Out of the nine genes critical for ecdysone biosynthesis, only one (dib) was upregulated in 

the highly secreting pleuropodia (Table 5, S15). One gene (spo) was downregulated. The 

pleuropodia are not enriched in the whole pathway at any time of development, including 

around katatrepsis, in which experiments supporting the synthesis of moulting hormone were 

carried out (Table S9, S16). Under the GO term “hormone biosynthetic process” enriched in the 
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intensively secreting pleuropodia (Table S7, S17) we found a gene Npc2a that encodes a 

transporter of sterols including precursors of ecdysone. It is also required for ecdysone 

biosynthesis, but indirectly and in the cells it functions as a general regulator of sterol 

homeostasis (Huang et al., 2007). We conclude that our transcriptomic data provide little 

evidence that the pleuropodia are involved in ecdysone biosynthesis. 

3.4. Discussion 

3.4.1. Pleuropodia of Schistocerca express genes for the “hatching enzyme”  

The first demonstration of the physiological role of the pleuropodia comes from the 

experiments carried out on a grasshopper Melanoplus (closely related to Schistocerca), by 

Eleanor Slifer (H. Slifer, 1937). When she took embryos before hatching (Figure 8) and 

separated anterior and posterior halves by ligation the SC was digested only in the part of the 

egg with the pleuropodia. Surgical removal of the pleuropodia prevented SC digestion in the 

whole egg. Slifer’s hypothesis that the pleuropodia secrete the “hatching enzyme” was 

criticized by Novak and Zambre (Novak and Zambre, 1974): if the deposition and digestion of 

the SC is similar to the cuticle turnover during larval moulting, then the “hatching enzyme” is 

produced by the serosa. They believed that the pleuropodia reach the peak of their activity in 

embryos during katatrepsis (45% development) and participate on SC digestion indirectly by 

secreting ecdysone to stimulate the serosa. 

Our ultrastructural observations on staged pleuropodia of Schistocerca have shown that 

the glandular cells only begin to differentiate just at the time of katatrepsis (45% DT) and do 

not secrete at that time. This would explain why no digestive effect on the SC was detected by 

Novak and Zambre (Novak and Zambre, 1974) using a homogenate from Schistocerca 

pleuropodia isolated at this stage. The release of granular secretion starts just before the dorsal 

closure (55% DT) and intensifies before hatching. This is in agreement with previous 

observations on some stages of the pleuropodia in other orthopterans (Louvet, 1975; Viscuso 

and Sottile, 2008).  

Our RNA-seq analysis revealed that the secreting pleuropodia highly express genes 

encoding enzymes that are capable of digesting a typical chitin-protein insect cuticle. These 

include genes for proteolytic enzymes similar to those present in the moulting fluid and 

cuticular chitin-degrading NAGs and Chitinase 5. The pleuropodia also express genes for 

Chitinase 2 and Idgf, which have low effect on cuticular chitin digestion, but were shown to 
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organize proteins and chitin fibres during cuticle deposition (Pesch et al., 2016). These CHTs 

may organize the fibres in the cuticle secreted by the pleuropodia (Figure 9). 

In combination with RT-PCR we showed that, while the expression of the Sg-nag1 and Sg-

nag2 started to rise in parallel with the differentiation of the glandular cells, the Sg-cht5-1 and 

Sg-cht5-2 transcripts raised shortly before hatching. Chitinase 5 is a critical chitin-degrading 

chitinase in insects: it is highly abundant in the moulting fluid and its silencing in diverse insects 

including locusts leads to failure in larval moulting (Li et al., 2015; Pesch et al., 2016; Xi et al., 

2015; Zhang et al., 2014; Zhu et al., 2008). Our data indicate that the sudden rise in the 

expression of cht5 in the pleuropodia at the end of embryogenesis and presumably secretion 

of this CHT into the extraembryonic space is the key component of the “hatching enzyme” 

effect (H. Slifer, 1937; Slifer, 1938) in locusts and grasshoppers.  

3.4.2. Pleuropodia in some other insects could secrete the “hatching enzyme” and their 

function may also vary among species 

There is evidence to suggest that the process occurs similarly in some insect. As in 

orthopterans, the pleuropodia of the rhagophthalmid beetle Rhagophthalmus ohbai release 

secretion soon after katatrepsis and SC rapidly degrades just shortly before hatching (Kobayashi 

et al., 2003). In the large water true bugs from the family Belostomatidae, the male carries a 

batch of eggs on his back. It is believed that the detachment of the eggs just before hatching is 

also caused by the secretion from the pleuropodia (Tanizawa et al., 2007). 

The molecular mechanism of SC degradation may also vary between insects and as 

previously hypothesized (Novak and Zambre, 1974) the serosa may also contribute to the SC 

degradation. The serosa of the beetle Tribolium, expresses cht10 and cht7 (Jacobs et al., 2015), 

of which the former CHT is important for cuticular chitin digestion. Silencing of cht10, but not 

cht5 prevented larvae from hatching (Zhu et al., 2008). Transcripts for cht10 were not 

upregulated in the pleuropodia of Schistocerca. This suggests that the SC is degraded by 

enzymes produced by both, the serosa and the pleuropodia and that the indispensable roles in 

cuticle digestion are played by different enzymes in different insects. 

In some insects the pleuropodia may not be involved in hatching but have another function. 

In the viviparous cockroach Diploptera punctata (Stay, 1977), the secretion from the 

pleuropodia is very low and the large pleuropodia of the melolonthid beetle Rhizotrogus majalis 

have not been observed to produce any secretion granules at all (Louvet, 1983). In dragonflies, 
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one of the more basal lineages of insects, the secretion likely has a different function than in 

orthopterans, because their SC is not digested before hatching (Andō, 1962). The special 

epithelium in the pleuropodia shares features with transporting epithelia (Louvet, 1973; Stay, 

1977) that function in water transport and ion balance (Berridge and Oschman, 1972). Our data 

do not exclude this function, but it is yet to be tested. 

3.4.3. The pleuropodia of Schistocerca are enriched in transcripts for enzymes functioning 

in immunity 

We found that many of the genes expressed in the pleuropodia encode proteins involved 

in immunity (Lemaitre and Hoffmann, 2007). This indicates that the pleuropodia are also organs 

of epithelial immunity, similar to other barrier epithelia in postembryonic stages (such as the 

gut) (Bergman et al., 2017), which are in a constant contact with microorganisms. The 

pleuropodia differ from such tissues in that they are not directly exposed to the environment, 

but enclosed in the eggshell, seemingly limiting their contact with microorganisms. Proteins 

associated with immune defense are also found in the MF (Zhang et al., 2014), where they 

prevent invasion of pathogens through a “naked” epidermis after the separation of the old 

cuticle from the epidermis in the process of apolysis. As found in the beetle Tribolium, during 

the early embryonic stages the frontier epithelium providing the egg with an immune defense 

(Jacobs et al., 2014) is the extraembryonic serosa. The serosa starts to degenerate after 

katatrepsis and disappears at dorsal closure (Panfilio, 2008).  The pleuropodia of Schistocerca 

differentiate just before dorsal closure, suggesting that they take over this defense function in 

late embryogenesis.  It will be interesting to clarify in the upcoming research whether apart 

from their role in hatching the pleuropodia are important organs for fighting against potential 

pathogens that have gained access to the space between the embryo and the eggshell. 

3.4.4. Conclusions 

The pleuropodia of Schistocerca have morphological markers of high secretory activity in 

the second half of embryogenesis after the definitive dorsal closure is finished. Transcriptomic 

profiling indicate that the conclusions that Eleanor Slifer drew from her experiments over eighty 

years ago that the pleuropodia secrete cuticle degrading enzymes, were correct. The 

pleuropodia likely have other functions, such as in immunity. The pleuropodia are specialized 

embryonic organs and an important though neglected part of insect physiology. 
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3.5. Material and Methods 

3.5.1. Insects 

Schistocerca gregaria (gregarious phase) were obtained from a long-term, partly inbred 

colony at the Department of Zoology, University of Cambridge. Eggs were collected into 

aluminium pots filled with damp sand. The pots were picked up after 2 (most samples) or 4 

hours and incubated at 30°C.  

3.5.2. Description of embryonic stages 

Embryos and appendages were dissected in phosphate buffer saline (PBS). Whole eggs 

were bleached in 50 per cent household bleach to dissolve the chorion. All were photographed 

in water or PBS using the Leica M125 stereomicroscope equipped with DFC495 camera and 

associated software. Photos were processed using Adobe Photoshop CC 2017.1.1. Photos of 

eggs and embryos that illustrate the stage (Figure 8A and S1) had the background cleaned using 

the software (removal of the tools that hold the photographed objects in place). 

3.5.3. Immunohistochemistry on paraffin sections 

Embryos were dissected in PBS and pieces including posterior thorax and anterior 

abdomen (older embryos) or mid thorax plus whole abdomen (young embryos) were fixed in 

PEMFA (4% formaldehyde in PEM buffer: 100 mM PIPES, 2.0 mM EGTA, 1.0 mM MgSO4) at 

room temperature (RT) for 15-30 minutes, then washed in PBT (PBS with 0.1 % Triton-X 100) 

and stored in ethanol at -20°C. 

Samples were cleared in 3x10 minutes in Histosol (National Diagnostics) at RT, infiltrated 

with paraffin at 60°C for 2-3 days, embedded in moulds and hardened at RT. Sections 6-8 μm 

thick were prepared on a Leica RM2125RTF microtome. The slides with sections were washed 

with Histosol, ethanol, then step wise re-hydrated to PBT. Incubations were carried out in a 

humidified chamber. Slides were blocked with 10% sheep serum (Sigma-Aldrich) in PBT for 30 

minutes at RT, incubated with Phospho-Histone H3 antibody (Invitrogen) diluted with PBT 

1:130 at 4°C overnight, washed and incubated with Alexa Fluor 568 anti-rabbit secondary 

antibody (Invitrogen) diluted 1:300 at RT for 2 hours, washed and incubated with DAPI 

(Invitrogen) diluted 1:1000. Sections were imaged with a Leica TCS SP5 confocal microscope 

and photos processed using Fiji (https://fiji.sc). 
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3.5.4. Transmission (TEM) and scanning (SEM) electron microscopy 

For TEM embryos were removed from the chorion in PBS and pieces of posterior thorax 

to anterior abdomen were fixed in 2.5-3.0% glutaraldehyde in 0.1 M phosphate buffer pH7.2 

for a few hours at room temperature and then at 4°C for several days. Each pleuropodium and 

leg were then separated and embedded into 2 % agar. Small cubes of agar with the tissue were 

incubated in osmium ferrocyanide solution (3 % potassium ferricyanide in cacodylate buffer 

with 4 mM calcium chloride) for 1-2 days at 4°C , then in thiocarbohydrazide solution (0.1 mg 

thiocarbohydrazide from Sigma-Aldrich, and 10 ml deionized water dissolved at 60°C ) and 

protected from light for 20-30 minutes at RT, then in 2% aqueous osmium tetroxide 30-45 

minutes at RT and in 1% uranyl acetate (maleate buffered to pH 5.5) at 4°C  overnight. Washing 

between each step was done with deionized water. Samples were dehydrated in ethanol, 

washed with dry acetone, dry acetonitrile, infiltrated with Quetol 651 resin (Agar Scientific) for 

4-6 days and hardened in moulds at 60°C for 2-3 days. Semithin sections were stained with 

toluidine blue. Ultrathin sections were examined in the Tecnai G280 microscope. 

For SEM whole embryos were dissected out of the chorion in PBS, fixed in 3% 

glutaraldehyde in phosphate buffer similarly as above. They were post-fixed with osmium 

tetroxide, dehydrated through the ethanol series, critical point dried, gold coated, and 

observed in a FEI/Philips XL30 FEGSEM microscope. Photos from TEM and SEM were processed 

using Adobe Photoshop CC 2017.1.1. 

3.5.5. Preparation of the reference transcriptome 

Whole embryo transcriptome: Eggs from each 1-day egg collection incubated for the 

desired time were briefly treated with 50% bleach, washed in distilled water and frozen in liquid 

nitrogen. Total RNA was isolated with TRIzol reagent (Invitrogen), treated with TURBO DNase 

(Invitrogen) and purified on a column supplied with the RNAeasy Kit (Quiagen). The purified 

RNA from each day (14 samples) was pooled into 4 samples: day 1-4, 5-7, 8-10 and 11-14. 10 

μg of RNA from each of the 4 samples was sent to BGI (Hong Kong). The total RNA was enriched 

in mRNA by using the oligo(dT) magnetic beads and cDNA library was prepared. 100 bp paired-

end (PE) reads were sequenced on Illumina HiSeq 2000; numbers of the reads obtained are in 

Table S2. Non-clean reads were filtered using filter_fq software (removes reads with adaptors, 

reads with unknown nucleotides larger than 5% and low quality reads). Transcripts from all 

samples were assembled separately using the Trinity software (release 20130225) (Grabherr et 
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al., 2011) with parameters: --seqType fq --min_contig_length 100; --min_glue 4 --

group_pairs_distance 250;  --path_reinforcement_distance 95 --min_kmer_cov 4. Transcriptes 

from the 4 assemblies were then merged together to form a single set of non-redundant 

transcripts using TGICL software (v2.1) (Pertea et al., 2003) with parameters: -l 40 -c 10 -v 20. 

Legs and pleuropodia transcriptome (age about 8.5-8.75 days): The appendages were 

dissected in cold RNase-free PBS (treated with diethyl pyrocarbonate) and total was RNA 

isolated and cleaned as described above. 10 μg of RNA from each leg sample and pleuropodium 

sample were transported to the Eastern Sequence and Informatics Hub (EASIH), Cambridge 

(UK).  cDNA libraries were prepared including mRNA enrichment. 75 bp PE reads were 

sequenced on Illumina GAIIX; numbers of the reads obtained are in Table S2. The reads were 

trimmed to the longest contiguous read segment for which the quality score at each base is 

greater than a Phred quality score of Q = 13 (or 0.05 probability of error) using the program 

DynamicTrim (v. 1.7) from the package SolexQA ((Cox et al., 2010) 

http://solexaqa.sourceforge.net/).  The trimmed reads were then filtered to remove sequence 

adapter using the program cutadapt (v. 0.9; http://code.google.com/p/cutadapt/). Sequences 

shorter than 40 base pairs were discarded. Trimmed reads were used to de novo assemble the 

transcriptome using Velvet (v. 1.1.07; (Zerbino and Birney, 2008); 

http://www.ebi.ac.uk/~zerbino/velvet/) (commands: -shortPaired –fastq; -short2 –fastq; -

read_trkg yes) and Oases (v. 0.2.01; (Schulz et al., 2012); 

http://www.ebi.ac.uk/~zerbino/oases/) (commands: -ins_length 350). Velvet is primarily used 

for de-novo genome assembly; here, the contigs that were output by Velvet were used by the 

complementary software package Oases to build likely transcripts from the RNA-seq dataset.  

K-mer sizes of 21, 25 and 31 were attempted for the two separate samples as well as the 

combined samples and optimal K-mer sizes of 21 were found for both samples. 

Transcripts for the reference transcriptome were selected from the embryonic and legs 

and pleuropodia transcriptome. The transcripts were first merged with evigene ((Gilbert, 2013) 

version 2013.03.11) using default parameters. Because this selection of transcripts eliminated 

some genes (gene represented by zero transcripts, although the transcripts were present in the 

original transcriptomes), we repeated the step with less strict parameters (cd-hit-est - version 

4.6, with -c 0.80 -n 5). This second selection contained several genes represented by more 

transcripts, thus we aligned selection 1 and 2 to each other to identify, which genes in selection 
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1 were missing. Selection 1 was then completed with the help of selection 2 by adding the 

missing transcripts. The quality and completeness of the resulting transcriptome was assessed 

and edited in the following steps. First, we removed several redundant transcripts manually: 

these were found by blasting diverse insect sequences (queries) against the Schistocerca 

transcriptome using the local ViroBLAST interface (Deng et al., 2007). Some transcripts were 

edited manually, such as when we found that two transcripts were combined into one, resulting 

in an alignment against two protein sequences (Schistocerca transcript blasted against NCBI 

database) we split the respective transcripts. Second, we blasted the whole transcriptome 

against itself and removed redundant sequences, if the alignment was spanning at least 300bp 

with a sequence identity of at least 98% (Blast+ suite, version 2.6.0) (Camacho et al., 2009). The 

longer transcript was kept in all cases. Transcripts shorter than 200 bp were discarded. All these 

steps were carried out in R (R Development Core Team, 2008) and sequences were handled 

using the Biostrings package (Pagès et al., 2017). 

3.5.6. Sequence analysis 

Basic transcript analysis was done by CLC Sequence Viewer7 (QIAGEN). Signal peptide 

and transmembrane regions were predicted by Phobius (Käll et al., 2007); 

http://phobius.binf.ku.dk/index.html). To annotate the newly assembled transcriptome, the 

freely available annotation pipeline Trinotate (version 3.1.1) was used (Haas et al., 2013). The 

longest candidate ORF of each sequence was identified with the help of the inbuilt 

TransDecoder (Haas et al., 2013); https://github.com/TransDecoder/TransDecoder/wiki) 

software.  

A blast was run against Uniprot sequences specific for Schistocerca gregaria, Locusta 

migratoria, Apis melifera, Tribolium castaneum, Bombyx mori and Drosophila melanogaster 

(blastx with default parameter and -max_target_seqs 1) and against nr database using 

Blast2GO (Götz et al., 2008). 

3.5.7. RNA-seq expression analysis 

Pleuropodia and hind legs from embryos at the same age (day 4, 5, 6, 7, 8, 10, 11, 12 

and 13) were dissected in cold RNase-free PBS and total RNA was isolated as described for 

samples for the reference transcriptome, but cleaned with RNA Clean & Concentrator (Zymo 

Research). 1 μg of RNA from each sample was sent to BGI (Hong Kong). The mRNA enrichment 
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and cDNAs preparation as described above. 50 bp single-end (SE) reads were sequenced on 

Illumina HiSeq 2000. Over 45 million reads were sequenced from each sample (Table S2).  

A pair of samples from mixed embryos 8-9 days that was used for the preparation of 

the reference transcriptome (described above) was also included in the expression analysis, but 

prior to mapping, the 75bp PE reads were trimmed to 50 bp, using Trimmomatic in the paired-

end mode (version 0.36) using the CROP function (CROP:50) (Bolger et al., 2014). A single 

pleuropodium or leg sample was sequenced from each stage.  

The quality of the sequenced reads was assessed with the help of the FastQC software. 

All samples consistently showed a Per base sequence quality of >30. Reads were mapped to 

the Reference transcriptome with Bowtie2 (version 2.2.5) using default parameter and the –

local alignment mode (Langmead et al., 2009). The trimmed pairs of reads were concatenated 

for each stage and treated as single reads. A PCA plot was generated to assess if differences in 

sequencing type and processing (SE samples and PE samples day 8-9) had an effect, which was 

not the case. This plot was prepared by using the plotPCA() function in the DESeq2 R package 

(Love et al., 2014); the count matrix was transformed with the rlog() function. The R package 

HTSFilter (Rau et al., 2013) was used with default parameters to filter constantly low expressed 

genes and 12988 transcripts were left.  

The differential expression analysis was performed with the NOISeq R package (2.22.1; 

(Tarazona et al., 2011). Reads were first normalized using the RPKM method (Mortazavi et al., 

2008). We used NOISeq-sim to find the differentially expressed genes between legs and 

pleuropodium for each stage with the following parameters:  k = NULL, norm ="n", pnr =0.2,  

nss =5, v = 0.02, lc=1, replicates ="no", following the recommendations by the authors for 

simulation of  “technical replicates” prior to differential expression analysis without replicates. 

Additionally differentially expressed genes between active pleuropodia and legs at the same 

stage were assessed (treating samples from day 10, 11 and 12 as replicates) using the NOISeq-

real algorithm with the following parameters: k=0.5, norm="n", factor="type", nss=0, lc=1, 

replicates = "technical". To define significantly, differentially expressed genes, the probability 

(“prob”) threshold was set at 0.7 for single stage comparisons and 0.8 for the triplicated 

comparison, RPKM ≥ 10 and fold change ≥ 2 for both single stage and triplicated comparisons 

(based on the expression of the genes whose expression dynamics in the pleuropodia were 

already known, Table S4). 
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3.5.8. GO enrichment 

The transcriptome was blasted against the whole UniProt/Swiss-Prot database  to assess 

the corresponding GO terms. Only blast hits with an e-value <= 1e-5 were considered for the 

subsequent GO annotation. GO enrichment of differentially expressed genes was performed 

using the R package GOSeq (version 1:30.0, (Noh et al., 2018) implemented in the Trinotate 

pipeline (see above). Enriched GO-terms were summarized and visualized with REVIGO (Supek 

et al., 2011).  Dot plots were prepared from DEGs selected at thresholds: RPKM>50, fold change 

>3. 

3.5.9. Real-time RT-PCR 

Tissues were dissected, total RNA was isolated and DNase treated the same way as for 

sequencing and cleaned with RNA Clean & Concentrator (Zymo Research). cDNA was 

synthesized with oligo-dT primer (Invitrogen) 0.5 μg (legs, pleuropodia) or 1 μg  (pieces of 

embryos) of the RNA using ThermoScript RT-PCR System (Invitrogen) at 55°C. The cDNA was 

diluted to concentration 40 ng/μl and 5 μl was used in a reaction containing 10 μl of SYBR Green 

PCR Master Mix (Applied Biosystems) and 5 μl of a 1:1 mix of forward and reverse primers (each 

20nM in this mix). Reactions were run in the LightCycler480 (Roche) and analyzed using the 

associated software (release 1.5.0 SP1) according to the comparative Ct method and 

normalized to the eEF1α gene.  Primers (Table S18) were designed with Primer3PLUS program 

(Untergasser et al., 2007). To check for the presence of a single PCR product, the melting curve 

was examined after each run and for each pair of primers at least 2 finished runs were visualized 

on a 2 % agarose gel. 

The program was: denaturation: 95°C for 10 minutes (1 cycle), amplification: 95°C for 10 

seconds, 60°C for 15 seconds, 72°C for 12 seconds (40 cycles) melting: 95°C for 5 seconds, 60°C 

for 1 minute, 95°C. 

3.6. List of abbreviations 

CHT: chitinase, DEG: differentially expressed gene; EC1, EC2: the first and the second 

embryonic cuticle, respectively; GO: gene ontology; LEG: hind leg(s); MF: moulting fluid; NAG: 

β-N-acetyl-hexosaminidase; PCA: principal component analysis; PLP: pleuropodium 

(pleuropodia); RPKM: reads per kilobase of transcript per million reads mapped; SC: serosal 

cuticle 
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3.7. Data availability 

The sequencing data generated and analyzed during the study are available in the NCBI 

repository, BioProject ID PRJNA524786 (the reference transcriptome has the accession number 

GHHP00000000, the version described in this paper is the first version, GHHP01000000). 
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3.12. Supplementary Figures 
 

 

Supplementary Figure 1. Schistocerca embryonic stages used in this study. Images of live embryos dissected 
out of the eggs; imaged under a stereomicroscope. Eggs and embryos of Schistocerca typically slightly vary in 
size. Numbers indicate age in days. Scale bar: 1 mm. Background in photos was cleaned (see Materials and 
Methods). 

 

 

 

Supplementary Figure 2. External features of developing hind legs and pleuropodia. Compare the sizes of the 
appendages; imaged under a stereomicroscope. Numbers indicate age in days. Scale bar: 0.2 mm for all 
pleuropodia and for legs at days 4 and 5; 0.5 mm for legs at days 6-14. 

 



Chapter I - Transcriptomics supports that pleuropodia of insect embryos function in 
degradation of the serosal cuticle to enable hatching 

- 58 - 
 

 

 

Supplementary Figure 3. Figure S3. Cross-sections through developing hind legs and pleuropodia. Toluidine 
blue stained semi-thin sections of appendages embedded in epoxy resin. Numbers indicate age in days. 

 

 

 

Supplementary Figure 4. Ultrastructure of epidermal cells in developing hind legs. TEM micrographs. Compare 
with pleuropodia in Figure 3. Note the three different cuticles and appearance of ecdysial droplets (ed) during 
embryonic moulting. EC1, EC2, EC3, the first, the second and the third embryonic cuticle, respectively (EC3 
becomes the cuticle of the first instar larva). Scale bar: 2 μm. 
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 (A) 

Sg-nag1 

MSVISTTVLVFALYGIFSCFATQAEEERPVWTWECRESRCEKVAAGEGEAQSLGACRLSCDPWATLWPRPRGGLQRTPGRLLALNPYSVSVEAAGRDLQP

GVRQLLQEAGRIFHRKVERKARTGAKLRSAGERRSLFVTLTVSDGQTRSFHTDTSEAYSLSISEVTAGRVNAAVTADTFFGARHALETLYQLIVYDDINKQLLL

LSEINLSDSPAFPHRAIALDTARSYFSVASIKRTIDAMAANKLNTFHWHITDSHSFPFVSETFPKLSQYGAYSPEKVYTPDEIKSVVEYARVRGVRIIPEFDAPAH

VGEGWQWVGDNATVCFKADPWSQYCVEPPCGQLNPTSEKMYQVLAGIYKDMLNVFDSDVFHMGGDEVNMNCWNTSEVITDWMDANGIPRTEEGL

HELWDRFQSRAYSLLAEANGKKELPVILWTSTLTDVAHVDKYLDNKRYIIQIWTRGTDLVIPELIRKGFRVIFSNYDALYFDCGFGAWIGSGNNWCSPYIGW

QKVYDNNVWDLLSAFGIDVGEGSEARKLVLGSEAALWSEQADEFALDGRLWPRAAALAERLWTDPVEGWMSAEHRFLIQRQRLVDEGIAADTIEPEWCL

QNQGHCYA* 

Sg-nag2 

MAPAPPAPHLLALTLLLTLLPSPPVVWANSPRWQWTCDSGLCVRSEAPPEPRLDAELEETVVQRSVHRLRPPWPSHELCRLTCGPYGALWPRPTGHTLIA

DALVPFNPATARFDLSAVAGEQGRELVDAASRRWVRDLQHALAASGGHGGGGEVAGAAAGAGTDVLVTVLTRDSPQALSWETDETYTLDVASSGHEVR

VTVSAQTVWGALHGLTSLRQLVGCCSEDGAALMVAEARIVDGPVYAHRGLLLDTARNFLPVETMMATMDAMAASKLNVLHWHATDSQSFPLLLPRVP

QLARWGAFSARETYSSQQVSALLGYAHARGIRLLLELDAPAHSGQGWQWGEAEGLGALALCVGQQPWRRLCIQPPCGQLNPANPRLVGVLADVYRDVV

DLWPPGQPLHMGGDEVSYSCWNSSAEVLEYMSKRRWDRSQDGFLRLWAEFQQAALEALDAARGSSDVPAILWSSHLTRPGNIERFLNSSRYVIETWVE

GGDPLPQQLLALGYRLVVATKDAWYLDHGFWGSTRYHDWKAVYSNRLPGSMAQGVLGGEVASWGELVDDQSLDARLWPRAAALAERLWSNPGASAR

EAEPRLHAHRARLVAAGVRPEALAPRYCVLNEGACQ* 

Sg-fdl 

MSRQRLLWRLLGAALALTVAGLAAPPLFRLLVSPHSAANSVAGRRVYSSDPGPWTWSCESGRCVRALWQGGTQVSLDTCQWTCAGWEAPLWPRPTGA

LRLANSTAALPEDLDVRLRLSGPQHEDTRGLLAAATERLARHLQLVRPAWAGRVACDAARGATVARLTVFVKLDADGSRPTGQLTLDTDESYRLQVRRESQ

DLQAEIDARSFFGARHALETLSQLAWWDPVSGCVHILDSAIVKDAPKFRHRGLMVDTARNFIPLEALQRTVDAMASNKLNTLHWHLTDSTSFPYLSRALPT

MARYGAYSPEQVYSMEDVSRLAEFARERGVRLVVELDVPAHAAAGWPTEQVSCSEQRGSAANAPLVQQQQHRQNEDNGLQYRQEERRERRAQHGGE

QQPAWWELCGQPPCGQLPPADEAAFGTLRTLYQELRQASGASDVAHLGGDEVSAECWGGVRGERLWSLWGGFMRRAHRELVAASQGNPPTAVLVW

SSELTAPHNLRRYFDPSTHVVQVWGGSKWNETLPVLLAGFRAVVSHVDAWYLDCGWGDFRSGGPGPCGPVATWQTVYSHRPWAAFPPGARSRLLGGE

ACLWSEKVDDQTLDVRLWPRAAALAERLWSDPPAGVHPDLPPPGSPQRDEPTLRRAYQRLSHHRERLVARGVRAEAMWPRYCHLNPGACF* 

Sg-hex 

MGKKVEVVLCACVCVGLLLTVTAAEPLPRYITEPGPTVKATQGAVWPKPQNEQRFGGSVLIVPGNFTFQVEGPECDILSEAVSRYEAILKEEAAIKGPRNASE

ASTQLSALLVRLDGECGDRPVFGMDESYELRINSPDLPGAMLLTSASVWGILRGLETFSQVATRVKTADALILDNLAIADIPRFSHRGLLLDTSRHFIPVSYIKK

TLDAMAYNKMNVFHWHIVDDQSFPYQSAAFPLLSEKGSYDPERFVYSPADVAEVIEYARVRGIRVVPEFDTPGHTRSWGEAYPDLLTPCYNATGSPDGTY

GPIDPTKNFTYEFLQTLFEEIVNVFPDEYFHLGGDEVGFECWESNQDILDFMSEHNITESKDLESYYIQKIVDIASNLNSKSIVWQEVFDNEVRLSADTVVHIW

TGDRNEELDSVTAAGHYTLLSQCYYLDRFRYFGGDWHKFYNCEPLDFSADNVYQYDLVIGGEAAMWSEFVDESNVESRVWPRASAVAERLWSPMNVTD

IDEAATRIEEHYCRLRRRGINAQPPNGPGYCV* 

(B) 

Sg-cht5-1 

MRTSAAWFLAVAGLCVVFCPPLVSGNVGDRGRVVCYFSNWAIYRPGIGRYGIDDVPASMCTHLVYSFIGVSNVTWGVLVIDPENDVENHGFANFTALKSK

YPGLKTQLAIGGWAEGGRKYSAMAAVPARRRSLIASVVEYMKRYGFDGFDLDWEYPGAADRGGSFSDKNHFKCFVQELREAFDAEGQGWEITMAVPLA

KFRLQEGYHVPELCELVDAIHVMSYDLRGNWAGFADTHSPLYKRPHDQWAYEKLNVHDGLKLWQDMGCPAHKLVVGVPFYGRSFTLSAGNKDYKLGTY

INKEAGGGKPGNYTQAKGFLAYYEICLEIQEVGGWTEKWDEAGKVPYAYKGTQWVGFENPKSVQIKMDFIKAKGYGGAMTWAIDMDDFRGVCGPKDA

LISVMYNNMKDYIVPDIQYSTTKRPDWDRPPPCDGKKPGAAPASTTTRRPTAAPTQSTTRRPAPTTTAAPSSSSSTTTTRRTTTASRPSTQPPPPPAAPDDN

ELPPAAIDCSDGDFVPHHDCSKYYRCVYGKPVEFSCYEGTVWNPQLRVCDRPNDVHRTDCSMAKLHS* 

Sg-cht5-2 

MRAATQVGLLLAVALALAAASDEDTTPLDSSTGSPTNSVDEESSSSENAAVLSGGQRRGRVTCYFESWAVYRKRLRYGIEDIPGDMCTHIIYSFVGLNNVT

WELQVLDEKLDVQDGGFENFTALRQEFPGVRLQVALGGWAEGGHNYSAMVGDPARRASLVRSAVAFLHRYGFDGFDVDWEYPGNAPRGGVPEDKDD

FLCFMQELRVAFDAEGLGWELTMAVPLTEDKLRDGFHVPQLCSIVDAVHVMAYDLRGEWDHFADVHSPLYRRPHDTGAYAKINTHDGLLLWEQLGGSS

WGCHSTATPTNCVPTSPTTLPVLASFRAPEMTSAE* 

(based on alignment with homologous sequences this transcript might be misassembled and the amino acid sequenced prematurely 

terminated by introduction of a stop codon) 

Sg-cht10-1 

MWRPVALSLWLLLATSRGLHVPPADEPSFVRDAVEAPPGQSLALRRSATASRPRLPAFGTRQLPLRQAVESPPMAARLRSSERLPLRDAVEHVPYEALPGA

PTASEAFSLWRGFGDWLPENLPSTRQFNHSFAWWHDAIIAKLSLGGPRTKPPSLQAPSTHTSGIRQFKVVCFVEGWAGYRRDPMRFTTADIDPFACTHIIY

AFAVMDPHDLHIKPQDEQYDIIQGGYRSIVGLKRQNPQLKVMISVGGWPEERRKFAEMTASASTRREFIRSVLHFIDEYGFDGIDLDWEYPGAADMGGSA

REKEHFSLLVEELAEAFAPRGSVLSASVSPSRFRVEDGYDVPRLARRLDFLNLMAFDLLTEQDAAADHHAPLTQRKHDYGLAVFYNVDYAVRYWLRKGARR

DQLVVGIPFHGHSFTLQDEAKNSPGAPVKGLGKEGPYTQEKGFLAYFEILQLLEEGHWMKATDDVGSPYMVKGNQWIGYEDQRSIATKVMYIKKNLLGG

AMVWALDLDDFEGAYGQKWPLLSVVKKGLLETTPQSDQQQASQEPTHVTPPIAGVPVSVDSSQYNCSGRGYVRDSASCQIYHRCEWGMKHTYICPEGL
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HYDSRTQLCDWPQIANCPMDNSSQRIEQENQSEVACNEEGLMEDPKDCNRYYMCHKGVAQHYSCMLGQYFNVQKGICEYGSCMPKAPQDNIPSSQTR

NLVGEDHYKVVCYYASWAWYRKEGGKFVPEHIDPTLCTHIVYAYASLDPNTLTMKYFDERADKENNFYERLTELPKKSGHHQQHASDVTVMIGLGGWTD

SAGDKYSRLVSEGSARRRFVSKAVEFLHRHQFGGLHLDWDYPRCWQSNCGRGPTSDKPNFTKLVQELRQAFKKQNPPLALAISISGYHEVIDEAYDLAELG

RNTDFMSVMTYDYHGSWEKSTGHVSPLYHRNGDIFPMYNTNDTMEYLVNKGAPRDKLLVGIPFYGQSYTLENPSNHDIGAPATGPGLAGEFTMQPGML

AYYEICDRVRNNFWKIGRDRFGATGPFAYAGNQWVSFEDTKSVKEKAKYIKNMGYGGAMTFTLDLDDFENRCCRGAFPLLRSINRVFGRIPDSAEPSGDD

CTRPPPPVTPPPPTYTTGVDSGDHRPTTPISTTHQHPTSPKPSTTEYPWW 

Sg-cht10-2 

PSTTTSTTTSTTTTTTTTTTSTTTTPRPTTRPTTMSTTEYPWWTPSTTSTTRKPPTTRPTTTSTTEEYPWWTPPSTTKKPTTSSTTEQPWWTPSTTSTTSTAAP

TTTMTTTEKPWWSTTPQKPLPPDSGPCEAGVYYPDPTNCNAYYRCVLGELRKEFCAGGLHWNPDKKVCDWPSESKCDTKEPSETTVGSTTSSTTENPWW

TPSKPSETQATTTTTEVPWWSTTRPPRPPTTEGNSEWVTTSRPTTTQQPSEEVSECMNGQYYPVAGSCKSFYICVNGRLIKQTCAPGLVWNQDQTMCD

WGFNVKCADDSEREAVHKAQPDDPCNQGALNPYPGDCTRYLYCQWGRYHEADCAAGLHWNEMEKICDWPENAKCTDMESGSEAPAASSQKPVTEM

STSWTTAAPTTKPPWTWATTTTVKPVTTTSTRAPPAQGPPISGYFKVVCYFTNWAWYRRGLGKYVPEDIDANLCTHIVYGFAVLDYENLIIKAHDSWADFD

NKFYERVVAYKKKGLKVSLAIGGWNDSAGDKYSRLVNSPSARRRFIKHVLEFLEKYGFDGLDLDWEYPVCWQVDCAKGPASDKSSFAALVKELRQAFEPKG

LLLSSAVSPSKTVIDAGYDVKTLAENLDWIAVMTYDFHGQWDKKTGHVAPLYFHPDDDFYFFNANFSINYWISEGAPRRKIVMGMPLYGQSFQLEKASTN

GLNARSTGPGQAGEFTRAAGFLAYYEICDRIKNKGWTVVQDPERRMGPYAFKGNQWVSFDDVAMIQQKSEYIRKMGLGGGMIWALDLDDFRNRCGG

GTHPLLNTIRTVLAAPPGGDGATEMPPSWSTPGGGQPTMSTEEWMSSTSISSTEITDSGHHSTQDSGGEVTSVSPAITTTNRPAHPGTSSSPPPPPSQGEF

KVVCYFTNWAWYRQGVGKYLPNEIDPDLCTHIVYGFAVLNGDRLTIKPHDTWADYDNKFYEKVTEYKKKGIKVLVAIGGWNDSAGDKYSRLVNSPGARRR

FIEDVIDFIEQNNFDGLDLDWEYPKCWQVDCKKGPDSDKEAFAAFVRELRAAFNPKGLLLTAAVSPSKAVVDAGYDVPTLSQNLDWIAVMTYDFHGQWD

KITGHVAPMYTHPEDVDVTFNANFSIHYWIQKGASPKKIVMGMPMYGQSFSLADNSDHGLNAPTYGGGEAGESTRARGFLSYYEICTNIQKKGWRVVKD

PEGRMGPYAYLRDQWVSFDDTSMIRYKSNFIRRMGLGGGMIWALDLDDFRNVCSCEKYPLLKTINRVLRGYPGPGPNCDIEATEKPGSEETDNRIHPTIPP

TSSTNNWNVISGGGGIVPKDPTCGNRLFAPHDKDCNKYYLCQYGDFMEQSCPQGLYWNKDHCDWPSNTDCSKEDSSVINPAPIASTQEPEMSSTTENIH

MSESTVTTSIRPSEPGTSTVMTPSGDYMVVCYFTNWAWYRQGLGKYLPSDIDTSLCTHIAYGFAVLDGNSLTIKPHDSWADLDNEFYTKVSGLKKKGIKVLL

AIGGWNDSLGDKYSRLANNPSARRKFVEHVVKFIEKYGFEGLDLDWEYPKCWQVDCNAGPDSDKQGFADLVKELSMAFKPRGLLLSSAVSPSKVVIDSGY

DVPVLSQYFDYISVMTYDFHGHWDKQTGHVAPLYYYPGDTYDYFNANFTMHYWIEKGADRKKLIMGMPMYGQSFSLADAKNHGLNAKSYGPGEAGEF

TRAGGFMAYYEICYNVKSKGWTTVRDPEGRIGPYAYRGNQWVSYDDVSDIRRKTQFIKELGLGGGMIWALDLDDFRNRCGCGTYPLLRTINSELRGLTAN

THDCT* 

Sg-cht7-1 

MIAPRCVWRAALWCVVIILLADLVYSASSTGRRRLRRPGGSSSSSTTSSSSSTSTKVRTRDQETSASVNRFRVRNRLTPPGANRKSGSGSAVAAASDKSGGY

KVVCYYTNWSQYRTAHGKFLPEDITPDLCTHIIYAFGWLKKGKLTSFEGNDETKDGKVGLYERVMALKKANPKLKVLLALGGWSFGTQKFKAMSETRYTRQ

TFIYSAIPYLRKHDFDGLDMDWEYPKGTDDKKNFVLLLKELREAFEAEAQEVKQSRLLLSAAVPVGPDNVRGGYDVPAVASYLDFINLMAYDFHGKWERET

GHNAPLYAPSSDSEWRKQLSVDHAATMWVKLGAPKEKLVIGMPTYGRTFTLSNPSNFKVNAPASGGGKAGDFTKEGGFLAYYEVCDMLKKGATYIWDD

EMKVPYAVMGDQWVGFDDERSIRHKMKWLKEGGYGGAMVWTVDMDDFTGTVCGGGVKYPLIGAIREELRGVSRGPNAKDVDWSKVARTVSLEATT

KPAPIKIDVSEVLNRVRKPTKQAPADLSNEVIDLNSRPAQVFCYMTSWSGKRPGAGKFSPEDVDPSLCTHVVFAFATLKDHKLAPANDKDDGLYERVIALRE

KNPQLKVLLAIGGWAFGSTPFKELTSNVFRMNQFVYDAIELLRDFKFDGLDVDWEYPRGADDRAAYVSLLKELRMAFEGEAKTAEQPRLLLSAAVPASFEAI

AAGYDVPEISKYLDFINVMTYDFHGQWERQVGHNSPLYPLESATSYQKKLTVDFSAREWVKQGAPKEKLLIGMPTYGRSFTLVDTSKFDIGAPASGGGAAG

RYTAEAGFMAYYEVCDFLHHDNTTLVWDNEQQVPFAYRGDQWVGFDDERSLKTKMGWLKELGFGGIMVWSVDMDDFRGQCGAGKYPLLTSMRQEL

RDYRVQLEYDGPYESRGPLGAYTTKDPTSVSCEEEDGHISYHPDKADCTMYYMCEGERKHHMPCPSNLVFNPNENVCDWPENVEGCMHHTQAPPAAR

RR* 

Sg-cht7-2 

MTWPPPPLLLSLLVLLATSASARFVSTHDVTPCAVEALAPSDKALLCYYEGRLSVYQLDPCLCTHIVFKDAAVVSDNFGLKIVSDVSGASLLRARSPSLRTVLGL

RLSGAVARAALASPSRRLALARDAARRLYAHHLDGIELSVDDDEAASAAAADAAPAATARQGLVALLKALRTALDSHGREKRDYLVSEQVFDDFTTQEYEPT

WSDGSSRKSRRRATTTTTTTSTTESPEETAARYLELERDAQNAQLLLSLPTKPETIAKRYDVKNITRYVDYVVLRTQAMTDDSERGLVYHPSRLMGLDDMLN

ADAVVDLVTSLGASPAQLVITLPGQATAFELRREDRTEPRSPASGAPRTISQPELCRALSRGNWTLERDEDQTAPYAYSGRRWIAFDDALSASIKGKYAVVR

GLAGTAVDAADALDWQGTCGAPASQLRALHSALAQLRRSSRGALLHGLE 

Sg-cht7-3 

DKGMPKNKIIVGIPTYGHSFRLINAENHGWSAPASGYGKIGSKGFVSYPEVCQFLHSTGSKYIFDKNFEVPYAYQGLEWISYDDECSVMYKAKYIASSSYGGA

MVFSLNVDDHQGVCAGTTFLLTTQIRNILGVSWQ* 

Sg-cht2 

MQQLAPLAFVLAFLAAAFAASPLGHNKAVVCYVSSWAVYRPGNGVFTVSDINPNICSHLVYAFAGLNATDNTIITLDKYNDLEEDYGKGNYKKITGLKNQYP

HLKVSIAIGGWNEGSANYSHMASTPTTRQQFIRSVVNFLRKYNFDGLDLDWEYPTQRGGVPSDRENFVALVRELRQEFDKNGWLLTAALGASTAVIEKAY

DVPMLGKYLDYMHIMCYDYHGTWDKMTGANAPLYGSSPSDTLSVDNSIRYYLKLGAPAKKLLMGVPLYGRTFMSDANANMGGLGAPAEEKSFQGPYTK

EDGYMGYNEICLELKTNSSMWTIMWDDKSSTPYAVSTNKVIVYDNAKSLTEKVNLAMKLELGGIMVWPLDTDDFRGECSEGIYPLMHTINKAIVQSSQQK

SDSSGMKVPDSTAAASCGCASLIFLSFLYLFQL* 

Sg-cht6-1 

VCYYTNWSVYRPGTAKFTPQNINPYLCTHLIYAFGGLSRENGLRPFDKYQDIEQGGYAKFTGLKTYNKDLKTMLAIGGWNEGSTRFSPLVADAERRKEFVKN

VLRFLRQNHFDGLDLDWEYPAFRDGGKSRDRDNYALLVKELREEFDRESEKTGRPRLLLTMAVPAGIEYIDKGFDIASMNKHLDFMNILSYDYHSAFEPAVN

HHSPLYSMEEDDEYNFDAQLTIDHTVNHYMKSGADRNKLVLGIPTYGRSYTLFNPLATELGSPADGPGEQGDSTREKGYLAYYEICENLQSDDWKVVQPN
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PSAMGPYAYKGNQWVSYDDMDIIKKKAQYVNDNGLGGIMFWAIDNDDFRGKCHGRPYPLIEAGKEAMLKGVKRSNNEIETTPVQNNRQSSRKRNRNR

SKGNARGRTRTTASTSTVVTTTTTTTTTTAAPLITPSYTTPEPPTTPDPGSDFKCKDEGFFPHPRDCKKYFWCLDSGPSNLGIVAHQFTCPSGLFFNKAADSC

DYARNVVCNKKSKSQGGSSSTLPPIKAATSSTTRFSTSPSTKLTTKLTTTTTTEPPPVLDDDDDDD 

Sg-cht6-2 

MNIRVKQPVIIGNCYRGQPNRLWEVFILKWFLVAVACLIAAGAVTVYLAHYFMKTRYTSTNVTGVTGQHSDLNTYKGQLQDMGDGYSLFKQEDMTQICK

TDELTGSQQMRKQSTKLVCYYTFPGPGGLVPDKIDPFLCTHINIAAVGINNSKLEPLCEERKEVIKSLVGLKTRNKNLKVILSVIGMPGGFGDMVSKSSSRRM

FIKDL 

Sg-cht8-1 

MSHFWLRLAVILGVSLSICGAEDKKVVCYHGSWSAYRNGNGRFEIEYIQPELCTHLIYTFVGITSAGEVRILDEWLDLPSGKNAYNRFNALKSSNTKTLVAIGG

WNEGSATYSAVMNDASLRAKFVQNVVNFVKTYGFDGFDLDWEYPANRGGSPGDLTAFVELIKELRTEFDKYGYLLTAAVGVGRYLIGTAYDVPQISKYLDF

INLMTYDLHGSWDGKTGQNAPLYASSADKTEAERQLNVDSSVRYWIQNGADPSKLVLGMGTYGRTFTLSSAANTGVGAPATAPGTNGPYTMESGMMG

YNEICEKINAGGWTVVWDEEQKVPYAVNGNQWIGYDNEESIRLKSQYVLDMGLAGGMIWSLETDDFKGLCGSKTYPLLSTINEVLRGITSTNSGSSSSSSSS

SSSSSSSSSSSSSSSSSSSNTAASASSSSGVCSSAGYVRDPSDCGVFYLCTASGSGYTASKFTCPGDLVFDESSSACNYKSLVAC* 

Sg-cht8-2 

MSPFLSGLLLLLGVLNICGADEKKVVCYHGSWSAYRNGNGRFEIEYIRPELCTHMIYSFVGITSAGEVRILDEWLDLASGKNAYNRFNKLKSSNTKTLVAIGG

WNEGSATYSAVMNNAALRQKFVQNVVNFVKTYGFDGFDLDWEYPANRGGSPGDLRAYVELLKELRAEFDKHGFILSAAVGVGRYLIGSAYDVPQLSKYLD

FINL 

Sg-cht8-3 

ESGMMGYNEICEKIKAGGWKVTWDDEQKVPYAVSGNQWVGYDNEESIKLKSQYVLDMGLGGGMIWSLETDDFKGVCGAGTFPLLSAINQVLRGAAAT

SSAGSSTSGSSSGSSGSSSSSSASSGGSSSGTSSGSSTTSSGASADSSGSSASSGSSSSGSSATSVSSGSNSSGVCNSAGYARDPSDCGV 

Sg-idgf-1 

MAELPLLLLLLAAAATCWTSAAALGATRVVCYLDGGALRRPEPHRMLVSEIEPSLTYCTHLIYGYATIDTDSYKAVPRHEGEGTNYTSVVALKRRFPALNVLLS

IGGGSADSGQREKYLHLLESDEHRRTFVKSAKDLLKQYHFDGIDIAWEFPMNKEKKERSTLGSFWHGFKKVIGLAHSHKDEKADEHRREFSSLIQELKTSLKT

ENALLTLSVIPYINHTLYYDCSALSPHVDHLHLLAYDYHTPQRTPNTADYPAPLYVAGKRDPDLTADGNVRWFLERGFPSRKIILGIPTFARTWKLDDDSRVS

GVPPIEADGAGDTDNIANTAGIMAFQTVCMLLPNAGNAGYKTTLSRVTDPTDRLGSYGFRLPSGEVTGLWVGYEDPDVAQYKAAYAKIKSLGGIAFSDLSL

DDYHGICTGDKYPIVRAGTLKLRYK* 

Sg-idgf-2 

MQSFARLLLLSACCWSAALAATTKVVCYFNTSALKRPESSRMLLSQIEPSFSYCTHLVVGYATINTETYKAVPPSEDEHTTYTNIVALKRRFPSLKILLSIGGGAA

DTDTREKYFELLESDEHRTTFVSSAKSLLKQHGFDGIDIAWEFPKNKAKKDRGTFGSIWHGIKKAVGAAHSHTDEKADEHKSQFSALIRELRTSLRNENALLTL

SVIPYINQSLYYDPTALNQQIDELHVLAFDYRNPERDSQGGRLPCAALPSRAEGLRPLGRREHPLVPRELIPS* 

Sg-idgf-3 

TDSYKAVPRYQDDTTKYTSLVALKERFPSLKVLLSIGGGGADADQRKKYLELLESDEHRRTFVDSVKELLQQNRFDGIDIAWEFPFSKEKKDRGNVWHGVKKVLGY

AHSHRDENPDEHRRQFSALIRELKSSLKTQNALLTLSVIPYINHSLYYDCASLSPEIDQLHLLAYDYHSPTRTPKKADYPAPLYRAGERSADLTVDGNVRWFLEKGFPS

RKIILGIPTFARTWKLTKDSRITGVPPIDADGPGVAGSIANISGLLAYQTVCTLLPNDANAAYRTTLRRVTDPTDRLGSYGFRLPTREVSGLWVGYENQHSAEYKAAY

ARKKSLGGIAFSDLSLDDYNGVCTGEKFPIVRAGTLKLLSTSV* 

 

 

Supplementary Figure 5 Amino acid sequences and conserved domains of Schistocerca chitin degrading 
enzymes. A. NAGs, B. CHTs. Signal peptide and transmembrane region identified by Phobius 
(http://phobius.binf.ku.dk/index.html) and conserved domains identified by SMART (http://smart.embl-
heidelberg.de/) are underlined and coloured. In A. and B. signal peptide: magenta, transmembrane region: dark 
blue. In A. Glycohydro 20b2 domain (N-terminal domain of the eukaryotic beta-hexosaminidases): light green, 
Glyco hydro 20 domain (glycoside hydrolase family 20 catalytic domain): grey. In B. Glyco 18 domain (catalytic 
domain): light blue, Chitin-binding domain type 2 (ChBD2): green; catalytically critical consensus sequence in the 
Glyco 18 domain, FDG(L/F)DLDWE(Y/F)P, is highlighted in yellow and amino acid changes from the consensus are 
coloured in orange. 
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FIGURE S6 
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Supplementary Figure 6. Phylogenetic trees of chitin degrading enzymes in Schistocerca and other insects. A. 
NAGs, B. CHTs. Schistocerca sequences are in bold. Amino acid sequences were extracted from NCBI GenBank. 
The numbers above the branches are bootstrap support. The marker shows a branch length. Both trees are 
unrooted. The tree in A. was prepared using the SeaView software (version 4.6.1; (Gouy et al., 2010); 
http://doua.prabi.fr/software/seaview): alignment with default parameters, tree using the Neighbor Joining 
method, Poisson distribution, 5000 bootstrap replicates. The tree in B. was prepared using the CLC Sequence 
Viewer (version 7.8.1; https://www.qiagenbioinformatics.com/products/clc-sequence-viewer/): alignment with 
default parameters except gap open cost 3.0 and gap extension cost 3.0, tree using Neighbor Joining method, 
Kimura model, 1000 bootstrap replicates. 
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FIGURE S7 

 

Supplementary Figure 7. Real-time RT-PCR expression analysis of Sg-cht7 and Sg-cht10-1 on cDNA from parts 
of Schistocerca embryos. cDNA was prepared from mRNAs isolated from parts of embryos at the age of 8, 10 
and 12 days: H, head; T, thorax; A+, abdomen with pleuropodia; A-, abdomen without pleuropodia. Analysis of 
3-4 technical replicates is shown. Expression in A+8 (abdomen with pleuropodia when they first become 
differentiated) was set as 1. Numbers above A+ expression is fold change from A- of the same age. 
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3.13. Supplementary Tables 

a in "embryo" samples the mRNA was isolated from whole eggs collected at each day, then in indicated age 
groups pooled together for sequencing 

b see Materials and Methods how transcripts for the reference transcriptome were selected 

 

Supplementary Table 2. RNA-seq expression analysis: numbers of sequenced and mapped reads. 

Sample Reads total Reads mapped 

4d LEG 50,592,896 38.404.015 (75.91%) 

4d PLP 47,004,156 35.905.385 (76.39%) 

5d LEG 49,391,167 35.559.693 (75.11%) 

5d PLP 49,002,608 36.095.324 (73.66%) 

6d LEG 50,647,001 37.684.851 (74.41%) 

6d PLP 49,111,150 37.490.747 (76.34%) 

7d LEG 47,410,277 35.958.856 (75.85%) 

7d PLP 47,275,171 35.971.381 (76.09%) 

8d LEG 49,998,624 38.119.439 (76.24%) 

8d PLP 48,420,404 37.706.738 (77.87%) 

8-9d LEG 38,919,230 29.467.879 (75,72%) 

8-9d PLP 22,302,378 16.152.357 (72.42%) 

10d LEG 49,170,085 37.814.977 (76.91%) 

10d PLP 46,901,233 35,403,192 (75.48%) 

11d LEG 49,472,441 37.815.815 (76.44%) 

11d PLP 48,516,135 36.818.833 (75.89%) 

12d LEG 47,068,033 34.117.674 (72.49%) 

12d PLP 46,801,370 34.936.272 (74.65%) 

13d LEG 46,658,116 33.454.889 (71.70%) 

13d PLP 49,776,232 37.167.588 (74.67%) 

 

  

Samplesa Reads total Unique transcripts 
Transcripts in reference 
transcriptomeb 

1-4d embryos 96,907,644 

70,529 

20,834 

5-7d embryos 92,825,202 

8-10d embryos 99,198,014 

11-14d embryos 96,759,706 

8-9d legs 38,919,230 
40,143 

8-9d pleuropodia 22,302,378 

Supplementary Table 1. Embryonic transcriptome of Schistocerca: numbers of sequenced reads and assembled 
transcripts. 
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Supplementary Table 3. Number of differentially expressed genes at selected levels of stringency. 

Day 4 5 6 7 8 

RPKM Fold change DOWNa UP DOWN UP DOWN UP DOWN UP DOWN UP 

>10 >2 29 19 77 195 360 589 649 857 944 791 

>50 >2 5 6 18 63 97 241 181 394 289 403 

>100 >2 2 3 7 26 31 130 70 238 111 265 

8-9 10 11 12 13 10+11+12 

DOWN UP DOWN UP DOWN UP DOWN UP DOWN UP DOWN UP 

890 850 1538 857 1874 842 1358 772 1196 871 781 1535 

259 430 427 454 457 411 492 408 523 478 451 484 

108 256 215 301 216 292 287 286 350 312 327 277 
a DOWN: downregulated, UP: upregulated 
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Supplementary Table 5. Comparison between differential expression of selected genes obtained by RNA-seq 
and real-time RT-PCR. 

    Real-time RT-PCRa  RNA-seqb  Details RNA-seq 

Day Transcript ID UP DOWN UP DOWN  RPKM leg RPKM plp prob 

4 SgreTa0007432   1.058 1.064  11.177 11.888 0.261 

4 SgreTa0001469 1.303  1.214  96.102 116.656 0.359 

4 SgreTa0005616 not detected 6.282  0.002 0.012 0.261 

4 SgreTa0013453 1.734  1.543  75.079 115.851 0.521 

4 SgreTa0008219 not detected   3.584 0.232 0.065 0.261 

4 SgreTa0001661 1.058    1.035 38.974 37.662 0.265 

4 SgreTa0014626 1.055    1.022 145.383 142.194 0.263 

5 SgreTa0007432 1.099  1.011  11.303 11.430 0.266 

5 SgreTa0001469 2.060  1.510  84.745 127.987 0.515 

5 SgreTa0015941 210.358  168.642  0.276 46.467 0.797 

5 SgreTa0007802 3.726  5.914  0.450 2.659 0.543 

5 SgreTa0005616 
UP 

indefinitely  2.473  0.056 0.138 0.266 

5 SgreTa0017664 not detected NAc NA NA NA NA 

5 SgreTa0009118   1.823   1.972 119.291 60.507 0.579 

5 SgreTa0000088 1.074    1.171 55.737 47.592 0.333 

5 
SgreTd000275

5   10.247   14.055 46.458 3.305 0.796 

5 SgreTa0001341   8.662   10.941 22.491 2.056 0.790 

5 SgreTf0013577 1.015  1.108  30.766 34.088 0.297 

5 SgreTa0005600 
UP 

indefinitely  5.204  0.526 2.739 0.543 

5 SgreTa0013453 2.469  2.368  81.519 193.025 0.689 

5 SgreTa0008219   1.123 2.095  0.314 0.657 0.266 

5 SgreTa0008219   1.120 2.095  0.314 0.657 0.266 

5 SgreTf0014307 2.661  2.626  71.708 188.284 0.707 

5 SgreTa0001661 1.237  1.238  38.483 47.658 0.360 

5 SgreTa0014626 1.427  1.408  142.712 200.902 0.454 

5 SgreTa0007477 4.762  5.104  52.030 265.551 0.789 

6 SgreTa0007432   1.181   1.258 10.152 8.069 0.369 

6 SgreTa0001469 2.475  2.182  85.763 187.142 0.680 

6 SgreTa0002409 30.406  33.056  8.717 288.152 0.794 

6 SgreTa0015941 12.189  22.566  0.040 0.907 0.289 

6 SgreTa0007802 3.463  3.248  0.809 2.627 0.448 

6 SgreTa0005616 
UP 

indefinitely  901.151  0.198 178.706 0.971 

6 SgreTa0017664 
UP 

indefinitely  

2717.49
5  0.211 572.225 0.999 

6 SgreTa0009118   3.750   4.200 117.188 27.902 0.776 

6 SgreTa0000088   1.065   1.136 46.963 41.325 0.329 

6 
SgreTd000275

5   320.639   
275.79

5 74.322 0.269 0.794 
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6 
SgreTb000624

3 
UP 

indefinitely  2.287  0.442 1.011 0.289 

6 SgreTa0017707   8.595   2.935 4.258 1.451 0.528 

6 SgreTa0017736 8.122  7.221  0.156 1.129 0.289 

6 SgreTa0008528   
DOWN 

indefinitely   1.681 3.778 2.247 0.396 

6 SgreTa0005600 
UP 

indefinitely  97.272  1.880 182.830 0.794 

6 SgreTa0013453 2.602  2.513  76.870 193.188 0.707 

6 SgreTa0013453 2.602  2.513  76.870 193.188 0.707 

6 SgreTa0008219   2.208   1.516 0.752 0.496 0.289 

6 SgreTa0008219   1.327   1.516 0.752 0.496 0.289 

6 SgreTf0014307   1.193   1.082 112.101 103.605 0.308 

6 SgreTa0001661 1.488  1.259  40.953 51.580 0.398 

6 SgreTa0014626 2.116  1.868  162.842 304.203 0.585 

7 SgreTa0007432   1.035   1.217 10.039 8.247 0.347 

7 SgreTa0001469 5.404  2.822  82.172 231.897 0.718 

7 SgreTa0007802 563.365  300.262  1.148 344.621 0.795 

7 SgreTa0005616 
UP 

indefinitely  619.842  0.242 149.935 0.927 

7 SgreTa0017664 
UP 

indefinitely  251.604  0.330 83.089 0.794 

7 SgreTa0009118   4.507   6.370 98.857 15.520 0.791 

7 SgreTa0000088 1.266    1.005 45.617 45.398 0.303 

7 SgreTa0014975 4.777  3.028  17.526 53.072 0.752 

7 
SgreTb001997

3 87.226  63.539  18.121 1151.375 0.795 

7 
SgreTb000624

3 1268.530  524.381  0.555 290.855 0.927 

7 SgreTa0017707 52.614  25.430  18.890 480.378 0.795 

7 SgreTa0017736 54.154  16.270  0.719 11.703 0.769 

7 SgreTa0007897 391.606  160.119  0.530 84.880 0.794 

7 SgreTa0008528 229.010  147.348  3.858 568.467 0.795 

7 SgreTa0005600 966.179  279.788  2.927 819.045 0.795 

7 SgreTa0013453 9.930  8.482  61.614 522.632 0.794 

7 SgreTa0008219 145.183  143.957  0.797 114.758 0.794 

7 SgreTa0006308 8.248  9.049  0.111 1.008 0.303 

7 SgreTa0001661 4.515  3.163  38.206 120.862 0.754 

7 SgreTa0014626 8.443  6.388  160.490 1025.240 0.791 

8 SgreTa0007432   1.189   1.296 9.430 7.276 0.395 

8 SgreTa0001469 4.905  3.109  89.858 279.396 0.749 

8 SgreTa0007802 2052.856  652.039  1.063 693.338 0.788 

8 SgreTa0005616 552.396  234.275  0.489 114.514 0.788 

8 SgreTa0017664 26.449  7.225  7.118 51.426 0.785 

8 SgreTa0009118   8.144   9.556 82.176 8.599 0.787 

8 SgreTa0000088   1.443   1.496 34.508 23.071 0.526 

8 SgreTa0014975 3.818  2.915  18.201 53.056 0.710 
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8 
SgreTb001997

3 29.591  20.892  55.364 1156.651 0.788 

8 
SgreTb000624

3 537.340  297.963  2.284 680.550 0.788 

8 SgreTa0017707 344.572  219.619  16.926 3717.263 0.788 

8 SgreTa0017736 20.254  11.347  1.017 11.544 0.763 

8 SgreTa0007897 116.944  69.794  8.998 628.012 0.788 

8 SgreTa0008528 420.588  251.695  3.422 861.195 0.788 

8 SgreTa0005600 318.652  179.306  7.170 1285.584 0.788 

8 SgreTa0013453 5.827  5.301  73.218 388.135 0.780 

8 SgreTa0008219 133.217  91.006  1.483 134.976 0.788 

8 
SgreTd000888

6 1.776    2.530 1.933 0.764 0.467 

8 
SgreTd001487

5 1.260  1.143  10.234 11.697 0.345 

8 SgreTa0006386   6.385   23.445 18.820 0.803 0.779 

8 SgreTa0006977   5.063   13.209 9.183 0.695 0.750 

8 SgreTa0006308 2.995    1.383 5.007 3.620 0.390 

8 SgreTa0002186 820.939  463.758  2.510 1164.179 0.788 

8 SgreTa0001661 5.725  4.409  42.609 187.852 0.771 

8 
SgreTb001604

7 5.226  4.234  30.761 130.242 0.771 

8 
SgreTb001604

7 5.048  4.234  30.761 130.242 0.771 

8 SgreTa0014626 7.975  4.671  199.900 933.699 0.773 

8 SgreTa0008504 8.862  6.990  76.345 533.636 0.786 

10 SgreTa0007432   1.999   1.396 9.752 6.988 0.420 

10 SgreTa0001469 5.781  5.850  109.290 639.310 0.773 

10 SgreTa0007802 132.766  250.286  2.403 601.355 0.781 

10 SgreTa0005616 64.339  58.145  0.902 52.426 0.780 

10 SgreTa0011044 not detected    

filtered 
out    

10 SgreTa0006252 1.805  3.043  52.999 161.261 0.741 

10 SgreTa0017664   9.079   3.391 166.597 49.135 0.742 

10 SgreTa0005054   2.158   1.237 34.081 27.554 0.396 

10 SgreTa0002027   
DOWN 

indefinitely   87.018 3.994 0.046 0.642 

10 SgreTa0009118   45.352   33.703 69.800 2.071 0.781 

10 SgreTa0000088   11.293   9.208 43.460 4.720 0.779 

10 SgreTa0014975 3.435  4.368  11.542 50.413 0.762 

10 SgreTa0001826 20.587  24.972  11.469 286.400 0.781 

10 SgreTa0000488 12.479  34.903  9.829 343.044 0.781 

10 SgreTa0009559 29.148  56.862  5.898 335.386 0.781 

10 SgreTa0003305 3.697  5.089  42.278 215.172 0.773 

10 
SgreTd000394

9 14.818  20.871  2.640 55.104 0.780 

10 
SgreTb000624

3 87.476  113.407  5.083 576.448 0.781 

10 SgreTa0017707 1001.576  756.230  9.643 7292.232 0.919 
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10 SgreTa0017736 22.014  47.457  1.186 56.284 0.780 

10 SgreTa0007897 103.446  136.655  48.453 6621.339 0.781 

10 SgreTa0008528 180.946  202.895  8.199 1663.469 0.781 

10 SgreTa0001449 
UP 

indefinitely  582.222  0.369 214.943 0.919 

10 SgreTa0005600 56.826  62.483  12.381 773.605 0.781 

10 SgreTc0000004 
UP 

indefinitely  

2844.05
0  0.154 439.013 0.998 

10 SgreTc0000003 3.309  4.751  2.622 12.459 0.740 

10 SgreTc0000003 3.687  4.751  2.622 12.459 0.740 

10 SgreTa0013453 2.349  3.157  82.567 260.688 0.741 

10 SgreTa0008219 36.004  37.305  4.463 166.492 0.781 

10 SgreTa0008497 63.642  55.465  2.680 148.627 0.781 

10 SgreTa0002186 225.140  195.257  2.298 448.716 0.781 

10 SgreTa0001661 3.569  4.482  34.555 154.888 0.764 

10 
SgreTb001604

7 6.146  6.000  21.481 128.879 0.777 

10 SgreTa0014626 3.451  5.045  167.728 846.249 0.773 

11 SgreTa0007432   1.320   1.732 10.454 6.036 0.514 

11 SgreTa0001469 5.808  5.190  117.377 609.215 0.769 

11 SgreTa0007802 100.910  143.963  2.751 396.066 0.776 

11 SgreTa0005616 18.886  58.723  0.980 57.520 0.775 

11 SgreTa0017664 1256.088  12.672  55.939 708.860 0.776 

11 SgreTa0014975 4.698  4.449  14.202 63.189 0.758 

11 
SgreTb000624

3 57.231  108.492  5.052 548.138 0.776 

11 SgreTa0017707 1216.859  358.692  18.704 6708.830 0.776 

11 SgreTa0017736 133.453  210.082  1.312 275.635 0.776 

11 SgreTa0007897 428.417  352.913  48.413 
17085.54

2 0.776 

11 SgreTa0008528 78.880  73.748  12.770 941.764 0.776 

11 SgreTa0005600 79.572  68.596  14.671 1006.405 0.776 

11 SgreTa0013453 3.110  2.931  85.577 250.815 0.699 

11 SgreTa0008219 19.265  24.288  4.807 116.746 0.776 

11 SgreTa0001661 4.935  4.377  34.422 150.654 0.759 

11 SgreTa0014626 4.514  4.126  161.557 666.631 0.759 

12 SgreTa0007432 1.306  1.009  5.591 5.640 0.368 

12 SgreTa0001469 10.590  6.115  132.137 808.004 0.754 

12 SgreTa0007802 30.338  19.349  12.445 240.795 0.756 

12 SgreTa0005616 13.108  3.231  16.053 51.872 0.720 

12 SgreTa0017664 2689.973  460.128  15.436 7102.347 0.756 

12 
SgreTb000624

3 11.666  10.639  40.743 433.469 0.756 

12 SgreTa0017707 4391.195  743.840  8.249 6135.875 0.916 

12 SgreTa0017736 964.373  291.207  1.516 441.598 0.756 

12 SgreTa0007897 2008.506  615.488  31.925 
19649.55

9 0.916 



Chapter I - Transcriptomics supports that pleuropodia of insect embryos function in 
degradation of the serosal cuticle to enable hatching 

- 72 - 
 

12 SgreTa0008528 506.989  179.902  4.855 873.417 0.756 

12 SgreTa0005600 56.899  56.893  18.258 1038.782 0.756 

12 SgreTa0013453 2.626  1.967  126.721 249.303 0.575 

12 SgreTa0008219 15.694  8.224  16.314 134.174 0.756 

12 SgreTa0001661 6.011  3.578  39.526 141.416 0.725 

12 SgreTa0014626 3.395  2.522  242.996 612.785 0.681 

13 SgreTa0007432 1.771  1.474  3.521 5.189 0.431 

13 SgreTa0001469 10.436  5.266  136.452 718.578 0.732 

13 SgreTa0007802 18.212  15.472  6.595 102.045 0.737 

13 SgreTa0005616 7.423  2.137  14.119 30.177 0.641 

13 SgreTa0017664 1748.639  576.461  26.670 
15373.99

4 0.911 

13 
SgreTb000624

3 46.612  47.622  6.077 289.402 0.737 

13 SgreTa0017707 8527.308  469.508  7.262 3409.772 0.911 

13 SgreTa0017736 1344.749  658.489  0.672 442.276 0.911 

13 SgreTa0007897 1243.649  456.919  37.460 
17116.00

2 0.911 

13 SgreTa0008528 
UP 

indefinitely  433.678  2.621 1136.614 0.738 

13 SgreTa0005600 83.004  72.572  15.901 1153.927 0.738 

13 SgreTa0013453 2.524  1.873  112.755 211.156 0.565 

13 SgreTa0008219 29.562  10.248  13.991 143.386 0.737 

13 SgreTa0001661 14.842  5.235  33.357 174.626 0.731 

13 SgreTa0014626 5.341   3.954   164.431 650.184 0.711 

         
a “UP indefinitely”: not detected in the legs after 35 cycles, “DOWN indefinitely”: not detected in the pleuropodia; 
compare with the low RPKM in LEG and PLP samples, respectively 

b significant upregulation (UP) or downregulation (DOWN) (fold change between expression in pleuropodia and 
legs) are highlighted in magenta and blue, respectively (thresholds: prob > 0.7, RPKM > 10, fold change > 2; prob 
below threshold highlighted in grey) 

c not applicable - expression too low 
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Supplementary Table 6. GOs enriched in the downregulated DEGs from the highly secreting pleuropodia (joined 
sample 10, 11 and 12 days) – First 100 terms are shown. 

category 
over  

represented  
pvalue 

num 
DEInCat 

num 
InCat 

term ontologya 
over 

represented 
FDR 

GO:0048856 2.00E-20 320 2000 anatomical structure development BP 3.36E-16 

GO:0051301 1.75E-19 88 292 cell division BP 1.47E-15 

GO:0007010 1.56E-17 112 446 cytoskeleton organization BP 6.54E-14 

GO:0022402 2.10E-16 126 567 cell cycle process BP 5.89E-13 

GO:0031032 1.25E-15 37 81 actomyosin structure organization BP 3.00E-12 

GO:0007049 5.33E-15 81 301 cell cycle BP 1.12E-11 

GO:0044767 1.21E-14 375 2646 
single-organism developmental 

process BP 2.26E-11 

GO:0051276 1.35E-14 61 195 chromosome organization BP 2.27E-11 

GO:0048513 3.75E-14 151 838 animal organ development BP 5.72E-11 

GO:0032502 1.16E-13 389 2822 developmental process BP 1.62E-10 

GO:1903047 4.45E-13 90 395 mitotic cell cycle process BP 5.49E-10 

GO:0009888 4.57E-13 80 348 tissue development BP 5.49E-10 

GO:0071840 7.41E-13 380 2732 
cellular component  

organization or biogenesis BP 8.31E-10 

GO:0016043 1.26E-12 374 2689 cellular component organization BP 1.25E-09 

GO:0045214 1.60E-12 25 51 sarcomere organization BP 1.49E-09 

GO:0022414 2.36E-12 169 999 reproductive process BP 2.08E-09 

GO:0097435 1.50E-11 58 217 supramolecular fiber organization BP 1.27E-08 

GO:0071103 3.16E-11 28 64 DNA conformation change BP 2.53E-08 

GO:0007017 1.35E-10 79 377 microtubule-based process BP 1.03E-07 

GO:0000226 1.51E-10 54 202 
microtubule cytoskeleton 

organization BP 1.10E-07 

GO:0006996 1.99E-10 196 1224 organelle organization BP 1.39E-07 

GO:0006323 3.62E-10 21 40 DNA packaging BP 2.44E-07 

GO:0006260 3.91E-10 37 114 DNA replication BP 2.53E-07 

GO:0030261 1.55E-09 20 39 chromosome condensation BP 7.92E-07 

GO:0000278 1.70E-09 30 83 mitotic cell cycle BP 8.42E-07 

GO:0035295 3.63E-09 47 187 tube development BP 1.69E-06 

GO:0007444 5.94E-09 29 89 imaginal disc development BP 2.56E-06 

GO:0009653 1.39E-08 157 1030 
anatomical structure 

morphogenesis BP 5.72E-06 

GO:0007517 2.61E-08 25 70 muscle organ development BP 1.04E-05 

GO:0042127 3.83E-08 88 474 regulation of cell proliferation BP 1.43E-05 

GO:0010564 5.03E-08 69 338 regulation of cell cycle process BP 1.76E-05 

GO:0030036 6.24E-08 45 175 actin cytoskeleton organization BP 2.14E-05 

GO:1903046 7.39E-08 33 113 meiotic cell cycle process BP 2.49E-05 

GO:0032501 1.53E-07 240 1835 multicellular organismal process BP 5.04E-05 

GO:0051726 1.63E-07 95 533 regulation of cell cycle BP 5.28E-05 

GO:0050793 1.67E-07 153 989 
regulation of developmental 

process BP 5.28E-05 
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GO:0009886 2.02E-07 44 182 
post-embryonic animal 

morphogenesis BP 6.28E-05 

GO:0030029 3.27E-07 46 193 actin filament-based process BP 9.37E-05 

GO:0006270 3.29E-07 14 28 DNA replication initiation BP 9.37E-05 

GO:0044702 3.52E-07 123 766 
single organism reproductive 

process BP 9.87E-05 

GO:1901990 4.50E-07 41 165 
regulation of mitotic cell  

cycle phase transition BP 0.000122089 

GO:0030703 4.60E-07 9 12 eggshell formation BP 0.00012278 

GO:0044699 4.86E-07 678 6032 single-organism process BP 0.000127791 

GO:0060429 5.28E-07 39 161 epithelium development BP 0.000136482 

GO:0006275 5.68E-07 17 41 regulation of DNA replication BP 0.000138504 

GO:0007498 6.68E-07 18 46 mesoderm development BP 0.00015832 

GO:0051783 8.24E-07 42 174 regulation of nuclear division BP 0.000192552 

GO:0007346 1.00E-06 65 338 regulation of mitotic cell cycle BP 0.000231045 

GO:0007088 1.20E-06 40 163 
regulation of mitotic nuclear 

division BP 0.000262458 

GO:0044707 1.25E-06 209 1578 
single-multicellular organism 

process BP 0.000270362 

GO:1901987 1.28E-06 42 176 
regulation of cell cycle phase 

transition BP 0.000272555 

GO:0007076 1.36E-06 12 22 mitotic chromosome condensation BP 0.00028512 

GO:2000026 1.61E-06 115 715 
regulation of multicellular  
organismal development BP 0.000330645 

GO:0090068 1.82E-06 34 128 
positive regulation of cell cycle 

process BP 0.000368697 

GO:0051239 2.61E-06 153 1042 
regulation of multicellular 

 organismal process BP 0.000521508 

GO:0061077 2.80E-06 13 33 chaperone-mediated protein folding BP 0.000547652 

GO:0007304 2.84E-06 8 11 
chorion-containing eggshell 

formation BP 0.000549565 

GO:0035220 3.44E-06 19 59 wing disc development BP 0.000646364 

GO:0048869 3.46E-06 201 1476 cellular developmental process BP 0.000646364 

GO:0032989 3.86E-06 74 451 cellular component morphogenesis BP 0.000704622 

GO:0043062 4.36E-06 25 90 extracellular structure organization BP 0.000779886 

GO:0090329 4.91E-06 11 23 
regulation of DNA-dependent DNA 

replication BP 0.000868797 

GO:0042559 5.27E-06 8 14 
pteridine-containing compound  

biosynthetic process BP 0.000923292 

GO:0002066 6.43E-06 22 76 
columnar/cuboidal epithelial  

cell development BP 0.001114131 

GO:0022412 6.67E-06 72 405 

cellular process involved in 
reproduction  

in multicellular organism BP 0.001145056 

GO:0060052 9.62E-06 7 10 
neurofilament cytoskeleton 

organization BP 0.001586311 

GO:0007552 1.05E-05 12 40 metamorphosis BP 0.001685364 

GO:0051983 1.10E-05 19 58 
regulation of chromosome 

segregation BP 0.00175249 

GO:0035114 1.13E-05 24 88 
imaginal disc-derived appendage 

morphogenesis BP 0.001777181 

GO:0007015 1.19E-05 30 122 actin filament organization BP 0.001832454 
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GO:0000904 1.26E-05 23 84 
cell morphogenesis involved in 

differentiation BP 0.001926008 

GO:0045297 1.34E-05 8 25 post-mating behavior BP 0.002030503 

GO:0061061 1.59E-05 33 162 muscle structure development BP 0.002373115 

GO:0048646 1.61E-05 74 433 
anatomical structure formation  

involved in morphogenesis BP 0.002378056 

GO:0002064 1.77E-05 27 108 epithelial cell development BP 0.002539527 

GO:0042558 1.77E-05 10 23 
pteridine-containing  

compound metabolic process BP 0.002539527 

GO:0006281 1.90E-05 60 335 DNA repair BP 0.002689969 

GO:0030071 2.12E-05 15 41 
regulation of mitotic metaphase/ 

anaphase transition BP 0.002893062 

GO:1902099 2.12E-05 15 41 
regulation of metaphase/ 

anaphase transition of cell cycle BP 0.002893062 

GO:0030198 2.57E-05 22 82 extracellular matrix organization BP 0.003437198 

GO:0044763 2.58E-05 548 4818 single-organism cellular process BP 0.003437198 

GO:0030707 2.60E-05 19 63 ovarian follicle cell development BP 0.003439415 

GO:0007527 2.74E-05 7 10 adult somatic muscle development BP 0.003439415 

GO:0045168 2.74E-05 19 65 
cell-cell signaling involved  
in cell fate commitment BP 0.003439415 

GO:0046331 2.74E-05 19 65 lateral inhibition BP 0.003439415 

GO:0045841 2.74E-05 10 20 
negative regulation of mitotic  

metaphase/anaphase transition BP 0.003439415 

GO:1902100 2.74E-05 10 20 

negative regulation of  
metaphase/anaphase transition of 

cell cycle BP 0.003439415 

GO:1905819 2.74E-05 10 20 
negative regulation of  

chromosome separation BP 0.003439415 

GO:2000816 2.74E-05 10 20 
negative regulation of mitotic  
sister chromatid separation BP 0.003439415 

GO:0048609 2.90E-05 68 409 
multicellular organismal  

reproductive process BP 0.003612766 

GO:0033045 3.02E-05 17 52 
regulation of sister chromatid 

segregation BP 0.003706573 

GO:0010965 3.11E-05 15 42 
regulation of mitotic sister  

chromatid separation BP 0.0037589 

GO:1905818 3.11E-05 15 42 
regulation of chromosome 

separation BP 0.0037589 

GO:0007519 3.20E-05 11 24 skeletal muscle tissue development BP 0.003837808 

GO:0032467 3.41E-05 8 13 positive regulation of cytokinesis BP 0.003984256 

GO:0042335 3.67E-05 20 78 cuticle development BP 0.004254892 

GO:0051253 3.69E-05 77 460 
negative regulation of RNA 

metabolic process BP 0.004254892 

GO:0035120 3.97E-05 22 82 
post-embryonic appendage 

morphogenesis BP 0.004537709 

GO:0033046 4.09E-05 11 25 
negative regulation of  

sister chromatid segregation BP 0.004610621 

GO:0051985 4.09E-05 11 25 
negative regulation of  

chromosome segregation BP 0.004610621 
a BP, biological process; CC, cellular component; MF, molecular function 
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Supplementary Table 7. GOs enriched in the upregulated DEGs from the highly secreting pleuropodia (joined 
sample 10, 11 and 12 days). 

category 
over  

represented  
pvalue 

num 
DEInCat 

num 
InCat 

term ontologya 
over 

represented 
FDR 

GO:0006811 1.47E-19 77 534 ion transport BP 1.24E-15 

GO:0034220 2.23E-16 43 221 ion transmembrane transport BP 4.69E-13 

GO:0090662 7.94E-16 16 24 
ATP hydrolysis coupled  

transmembrane transport 
BP 1.48E-12 

GO:0015672 4.65E-15 33 149 
monovalent inorganic cation 

transport 
BP 6.76E-12 

GO:0055085 4.82E-15 56 381 transmembrane transport BP 6.76E-12 

GO:0015988 6.36E-15 14 19 
energy coupled proton  

transmembrane transport,  
against electrochemical gradient 

BP 7.64E-12 

GO:0015991 6.36E-15 14 19 
ATP hydrolysis coupled  

proton transport 
BP 7.64E-12 

GO:0099131 4.55E-14 14 21 
ATP hydrolysis coupled  

ion transmembrane transport 
BP 4.50E-11 

GO:0099132 4.55E-14 14 21 
ATP hydrolysis coupled  

cation transmembrane transport 
BP 4.50E-11 

GO:0006820 1.20E-13 43 253 anion transport BP 1.06E-10 

GO:0006818 8.74E-13 17 41 hydrogen transport BP 7.00E-10 

GO:0015711 1.50E-12 37 207 organic anion transport BP 1.14E-09 

GO:0015992 7.45E-12 16 40 proton transport BP 5.45E-09 

GO:0044765 8.20E-11 92 961 single-organism transport BP 4.90E-08 

GO:0007311 1.21E-10 12 24 
maternal specification of 

dorsal/ventral  
axis, oocyte, germ-line encoded 

BP 6.77E-08 

GO:0006812 1.34E-10 41 302 cation transport BP 7.26E-08 

GO:1902600 2.07E-10 14 35 
hydrogen ion transmembrane 

transport 
BP 1.06E-07 

GO:1902578 6.71E-10 95 1043 single-organism localization BP 3.05E-07 

GO:0098655 1.92E-09 24 133 cation transmembrane transport BP 7.67E-07 

GO:0008063 7.06E-09 15 50 Toll signaling pathway BP 2.58E-06 

GO:1901615 1.75E-08 36 273 
organic hydroxy compound 

metabolic process 
BP 5.65E-06 

GO:0007310 1.82E-08 13 39 
oocyte dorsal/ventral axis 

specification 
BP 5.76E-06 

GO:0098660 2.46E-08 24 145 
inorganic ion transmembrane 

transport 
BP 7.34E-06 

GO:0098662 3.09E-08 21 117 
inorganic cation transmembrane 

transport 
BP 8.80E-06 

GO:0009950 4.22E-08 15 55 dorsal/ventral axis specification BP 1.14E-05 

GO:0015849 5.06E-08 23 132 organic acid transport BP 1.31E-05 

GO:0046942 5.06E-08 23 132 carboxylic acid transport BP 1.31E-05 

GO:0006865 6.50E-08 17 76 amino acid transport BP 1.58E-05 

GO:0003333 1.02E-07 12 37 
amino acid transmembrane 

transport 
BP 2.42E-05 

GO:0006629 1.29E-07 64 687 lipid metabolic process BP 3.02E-05 
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GO:0007309 1.69E-07 14 52 oocyte axis specification BP 3.80E-05 

GO:0006814 3.19E-07 15 73 sodium ion transport BP 6.96E-05 

GO:0007370 4.49E-07 8 17 ventral furrow formation BP 9.44E-05 

GO:0006809 5.39E-07 5 7 nitric oxide biosynthetic process BP 0.000109252 

GO:0046209 5.39E-07 5 7 nitric oxide metabolic process BP 0.000109252 

GO:0044281 1.22E-06 85 1048 small molecule metabolic process BP 0.000226884 

GO:0044710 1.23E-06 144 2090 single-organism metabolic process BP 0.000226884 

GO:1903825 1.91E-06 12 47 
organic acid transmembrane 

transport 
BP 0.00032152 

GO:1905039 1.91E-06 12 47 
carboxylic acid transmembrane 

transport 
BP 0.00032152 

GO:0098656 2.65E-06 15 75 anion transmembrane transport BP 0.000423703 

GO:0006810 4.16E-06 136 1930 transport BP 0.000641496 

GO:0044699 4.20E-06 346 6032 single-organism process BP 0.000642071 

GO:0051234 4.73E-06 139 1983 establishment of localization BP 0.000714453 

GO:0006885 4.76E-06 10 35 regulation of pH BP 0.000714453 

GO:0044703 5.37E-06 13 67 
multi-organism reproductive 

process 
BP 0.00079928 

GO:2001057 6.39E-06 5 9 
reactive nitrogen species 

metabolic process 
BP 0.000925751 

GO:0006026 8.56E-06 11 47 aminoglycan catabolic process BP 0.001199491 

GO:0055067 8.96E-06 10 37 
monovalent inorganic cation 

homeostasis 
BP 0.001245784 

GO:1903409 1.93E-05 5 11 
reactive oxygen species 

biosynthetic process 
BP 0.002598165 

GO:0051453 2.03E-05 9 33 regulation of intracellular pH BP 0.002715202 

GO:0046348 2.30E-05 7 19 amino sugar catabolic process BP 0.003041764 

GO:0030641 2.74E-05 9 34 regulation of cellular pH BP 0.003577987 

GO:0045851 2.88E-05 6 15 pH reduction BP 0.003727792 

GO:1901136 3.44E-05 15 93 
carbohydrate derivative catabolic 

process 
BP 0.004385845 

GO:0050801 3.60E-05 26 237 ion homeostasis BP 0.00454847 

GO:0030004 3.68E-05 9 35 
cellular monovalent inorganic  

cation homeostasis 
BP 0.004619921 

GO:0042940 3.92E-05 4 6 D-amino acid transport BP 0.004883535 

GO:0006869 4.07E-05 18 130 lipid transport BP 0.004979036 

GO:0019835 4.09E-05 5 13 cytolysis BP 0.004979036 

GO:0005975 4.52E-05 35 364 carbohydrate metabolic process BP 0.005466278 

GO:0006582 5.02E-05 10 47 melanin metabolic process BP 0.005988923 

GO:0007035 5.38E-05 5 10 vacuolar acidification BP 0.006373312 

GO:0009617 5.70E-05 17 123 response to bacterium BP 0.006708191 

GO:0048878 5.84E-05 33 341 chemical homeostasis BP 0.006773732 

GO:0043207 5.84E-05 33 369 
response to external biotic 

stimulus 
BP 0.006773732 

GO:1901072 7.99E-05 6 16 
glucosamine-containing 

compound  
catabolic process 

BP 0.008951938 

GO:0072593 8.36E-05 9 43 
reactive oxygen species metabolic 

process 
BP 0.009311797 
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GO:0009607 9.01E-05 33 377 response to biotic stimulus BP 0.009925828 

GO:0035006 9.47E-05 8 32 melanization defense response BP 0.010268044 

GO:0055088 0.0001012 12 70 lipid homeostasis BP 0.010843485 

GO:0051179 0.0001095 148 2272 localization BP 0.011649984 

GO:0044706 0.0001168 10 55 
multi-multicellular organism 

process 
BP 0.012352242 

GO:0050830 0.0001252 9 43 
defense response to Gram-

positive bacterium 
BP 0.013158789 

GO:0009798 0.0001292 16 109 axis specification BP 0.013446589 

GO:0030001 0.0001295 23 222 metal ion transport BP 0.013446589 

GO:0009620 0.0001398 9 42 response to fungus BP 0.014424836 

GO:0009605 0.0001444 51 666 response to external stimulus BP 0.014716665 

GO:0006003 0.0001636 3 3 
fructose 2,6-bisphosphate 

metabolic process 
BP 0.016276968 

GO:0006665 0.0001704 11 61 sphingolipid metabolic process BP 0.016755635 

GO:0051704 0.0001748 44 549 multi-organism process BP 0.016992012 

GO:0018958 0.0001763 13 88 
phenol-containing compound 

metabolic process 
BP 0.017039357 

GO:0051707 0.0001907 28 311 response to other organism BP 0.018223573 

GO:0065008 0.0001928 103 1526 regulation of biological quality BP 0.018318887 

GO:0006066 0.0002057 20 175 alcohol metabolic process BP 0.019211887 

GO:0051452 0.0002413 5 14 intracellular pH reduction BP 0.02229664 

GO:0006563 0.0002432 4 7 L-serine metabolic process BP 0.022346163 

GO:0010817 0.0003176 22 213 regulation of hormone levels BP 0.028404042 

GO:0071825 0.0003465 6 22 
protein-lipid complex subunit 

organization 
BP 0.030502766 

GO:0071827 0.0003465 6 22 
plasma lipoprotein particle 

organization 
BP 0.030502766 

GO:0006032 0.0004406 5 14 chitin catabolic process BP 0.03838474 

GO:0034368 0.0004595 5 14 protein-lipid complex remodeling BP 0.039247694 

GO:0034369 0.0004595 5 14 
plasma lipoprotein particle 

remodeling 
BP 0.039247694 

GO:0034375 0.0004595 5 14 
high-density lipoprotein particle 

remodeling 
BP 0.039247694 

GO:0042742 0.0004629 14 109 defense response to bacterium BP 0.039308893 

GO:0034374 0.0005063 4 9 
low-density lipoprotein particle 

remodeling 
BP 0.042777281 

GO:0045087 0.0005142 18 162 innate immune response BP 0.043231252 

GO:0019752 0.0005449 43 513 carboxylic acid metabolic process BP 0.04558214 

GO:0006564 0.0005656 3 4 L-serine biosynthetic process BP 0.047084223 

GO:0032367 0.0005741 5 18 intracellular cholesterol transport BP 0.047557237 

GO:0032787 0.0005854 26 263 
monocarboxylic acid metabolic 

process 
BP 0.048015835 

a BP, biological process; CC, cellular component; MF, molecular function 
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Supplementary Table 8. GOs enriched in the downregulated DEGs from each developmental stage (FDR < e-5); 
Only the first 10 GO terms of each time-point are shown. 

day category 
over  

represented  
pvalue 

num 
DEInCat 

num 
InCat 

term ontologya 
over 

represented 
FDR 

7 GO:0051301 1.50E-11 23 292 cell division BP 2.52E-07 

  GO:0007049 1.34E-09 21 301 cell cycle BP 1.13E-05 

8 GO:0051301 2.76E-11 28 292 cell division BP 4.65E-07 

  GO:0005488 2.99E-10 185 7055 binding MF 1.76E-06 

  GO:0007049 3.14E-10 27 301 cell cycle BP 1.76E-06 

  GO:0005832 2.00E-09 6 8 
chaperonin-containing T-

complex CC 6.33E-06 

  GO:0101031 2.00E-09 6 8 chaperone complex CC 6.33E-06 

  GO:0016043 2.55E-09 93 2689 cellular component organization BP 6.33E-06 

  GO:0071840 2.63E-09 94 2732 
cellular component organization 

or biogenesis BP 6.33E-06 

  GO:0005634 1.30E-08 95 2897 nucleus CC 2.74E-05 

  GO:0097159 3.75E-08 117 4057 organic cyclic compound binding MF 7.00E-05 

  GO:0042559 5.81E-08 6 14 
pteridine-containing compound  

biosynthetic process BP 9.76E-05 

8-9 GO:0051301 9.46E-16 32 292 cell division BP 1.59E-11 

  GO:0005634 1.43E-13 100 2897 nucleus CC 1.20E-09 

  GO:0005488 1.18E-11 172 7055 binding MF 6.62E-08 

  GO:0007049 2.34E-11 27 301 cell cycle BP 9.82E-08 

  GO:0044427 1.03E-09 30 473 chromosomal part CC 3.46E-06 

  GO:0071103 2.76E-09 12 64 DNA conformation change BP 7.74E-06 

  GO:0048856 5.90E-09 68 2000 
anatomical structure 

development BP 1.32E-05 

  GO:0051276 6.93E-09 19 195 chromosome organization BP 1.32E-05 

  GO:0071840 7.43E-09 85 2732 
cellular component organization 

or biogenesis BP 1.32E-05 

  GO:0016043 7.83E-09 84 2689 cellular component organization BP 1.32E-05 

10 GO:0005198 2.07E-15 45 502 structural molecule activity MF 3.47E-11 

  GO:0042302 1.47E-14 20 113 structural constituent of cuticle MF 1.08E-10 

  GO:0071103 2.56E-14 19 64 DNA conformation change BP 1.08E-10 

  GO:0006323 2.58E-14 16 40 DNA packaging BP 1.08E-10 

  GO:0044427 1.57E-13 46 473 chromosomal part CC 5.26E-10 

  GO:0051276 1.95E-13 30 195 chromosome organization BP 5.47E-10 

  GO:0030261 3.22E-13 15 39 chromosome condensation BP 7.73E-10 

  GO:0051301 5.77E-13 36 292 cell division BP 1.21E-09 

  GO:0071840 1.07E-12 135 2732 
cellular component organization  

or biogenesis BP 2.01E-09 

  GO:0016043 1.58E-12 133 2689 cellular component organization BP 2.66E-09 

11 GO:0071840 5.54E-16 153 2732 
cellular component organization  

or biogenesis BP 9.32E-12 

  GO:0016043 1.73E-15 150 2689 cellular component organization BP 1.46E-11 

  GO:0044427 3.31E-15 51 473 chromosomal part CC 1.85E-11 
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  GO:0051276 5.27E-14 32 195 chromosome organization BP 2.21E-10 

  GO:0051301 7.92E-14 39 292 cell division BP 2.67E-10 

  GO:0071103 1.22E-13 19 64 DNA conformation change BP 3.41E-10 

  GO:0005488 1.45E-13 284 7055 binding MF 3.41E-10 

  GO:0005634 1.62E-13 151 2897 nucleus CC 3.41E-10 

  GO:0007049 2.49E-13 39 301 cell cycle BP 4.66E-10 

  GO:0044428 1.64E-12 121 2074 nuclear part CC 2.69E-09 

12 GO:0005198 1.10E-13 46 502 structural molecule activity MF 1.86E-09 

  GO:0031032 1.16E-12 20 81 
actomyosin structure 

organization BP 9.74E-09 

  GO:0044183 1.78E-12 9 11 
protein binding involved in 

protein folding MF 9.96E-09 

  GO:0097435 2.18E-11 30 217 
supramolecular fiber 

organization BP 9.15E-08 

  GO:0005832 2.49E-10 7 8 
chaperonin-containing T-

complex CC 6.62E-07 

  GO:0101031 2.49E-10 7 8 chaperone complex CC 6.62E-07 

  GO:0044449 2.77E-10 22 124 contractile fiber part CC 6.62E-07 

  GO:0042302 3.29E-10 17 113 structural constituent of cuticle MF 6.62E-07 

  GO:0045214 3.54E-10 14 51 sarcomere organization BP 6.62E-07 

  GO:0006457 3.74E-09 19 115 protein folding BP 6.28E-06 

  GO:0030036 5.70E-09 24 175 actin cytoskeleton organization BP 8.71E-06 

13 GO:0042302 1.77E-69 61 113 structural constituent of cuticle MF 2.98E-65 

  GO:0005198 3.79E-46 89 502 structural molecule activity MF 3.19E-42 

  GO:0031032 2.37E-11 19 81 
actomyosin structure 

organization BP 1.33E-07 

  GO:0006091 9.91E-11 22 132 
generation of precursor 
metabolites and energy BP 3.91E-07 

  GO:0046034 1.16E-10 16 68 ATP metabolic process BP 3.91E-07 

  GO:0044449 2.74E-10 24 124 contractile fiber part CC 7.68E-07 

  GO:0044455 4.56E-10 20 124 mitochondrial membrane part CC 1.09E-06 

  GO:0045214 1.02E-09 14 51 sarcomere organization BP 2.15E-06 

  GO:0006090 1.40E-09 12 38 pyruvate metabolic process BP 2.62E-06 

  GO:0009205 2.40E-09 16 82 

purine ribonucleoside 
triphosphate  

metabolic process BP 4.04E-06 
a BP, biological process; CC, cellular component; MF, molecular function 
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Supplementary Table 9. GOs enriched in the upregulated DEGs from each developmental stage (FDR < e-5); 
Only the first 10 GO terms of each time-point are shown. 

day category 
over  

represented  
pvalue 

num 
DEInCat 

num 
InCat 

term ontologya 
over 

represented 
FDR 

4               

5 GO:0044420 4.846E-09 8 66 extracellular matrix component CC 8.14836E-05 

  GO:0005604 9.752E-09 7 46 basement membrane CC 8.19932E-05 

6 GO:0006030 1.032E-13 11 26 chitin metabolic process BP 1.73589E-09 

  GO:1901071 1.561E-11 11 37 
glucosamine-containing 

compound metabolic process BP 1.31253E-07 

  GO:0006040 2.608E-11 12 50 amino sugar metabolic process BP 1.46188E-07 

  GO:0044421 2.251E-10 51 1255 extracellular region part CC 9.46145E-07 

7 GO:0090662 7.616E-20 16 24 
ATP hydrolysis coupled 

transmembrane transport BP 1.28067E-15 

  GO:0015988 2.554E-18 14 19 

energy coupled proton 
transmembrane transport, 

against electrochemical gradient BP 1.43142E-14 

  GO:0015991 2.554E-18 14 19 
ATP hydrolysis coupled proton 

transport BP 1.43142E-14 

  GO:0099131 1.415E-17 14 21 
ATP hydrolysis coupled ion 
transmembrane transport BP 4.75697E-14 

  GO:0099132 1.415E-17 14 21 
ATP hydrolysis coupled cation 

transmembrane transport BP 4.75697E-14 

  GO:0044425 1.846E-17 153 3119 membrane part CC 5.17435E-14 

  GO:0016021 3.583E-16 124 2321 
integral component of 

membrane CC 8.60757E-13 

  GO:0006818 7.457E-16 16 41 NA NA 1.56745E-12 

  GO:0031224 1.117E-15 125 2397 
intrinsic component of 

membrane CC 2.08631E-12 

  GO:0015992 1.137E-14 15 40 NA NA 1.91225E-11 

8 GO:0090662 4.98E-20 1.60E+01 2.40E+01 
ATP hydrolysis coupled 

transmembrane transport BP 8.37E-16 

  GO:0015988 1.49E-18 1.40E+01 1.90E+01 

energy coupled proton 
transmembrane transport, 

against electrochemical gradient BP 8.37E-15 

  GO:0015991 1.49E-18 1.40E+01 1.90E+01 
ATP hydrolysis coupled proton 

transport BP 8.37E-15 

  GO:0099131 9.69E-18 1.40E+01 2.10E+01 
ATP hydrolysis coupled ion 
transmembrane transport BP 3.26E-14 

  GO:0099132 9.69E-18 1.40E+01 2.10E+01 
ATP hydrolysis coupled cation 

transmembrane transport BP 3.26E-14 

  GO:0044425 5.63E-17 1.50E+02 3.12E+03 membrane part CC 1.58E-13 

  GO:0006818 7.48E-16 1.60E+01 4.10E+01 NA NA 1.80E-12 

  GO:0044710 1.06E-15 1.13E+02 2.09E+03 NA NA 2.23E-12 

  GO:0015992 1.15E-14 1.50E+01 4.00E+01 NA NA 2.14E-11 

  GO:0016021 2.10E-14 1.18E+02 2.32E+03 
integral component of 

membrane CC 3.54E-11 

8-9 GO:0090662 1.72E-19 1.60E+01 2.40E+01 
ATP hydrolysis coupled 

transmembrane transport BP 2.88E-15 
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  GO:0015988 4.61E-18 1.40E+01 1.90E+01 

energy coupled proton 
transmembrane transport, 

against electrochemical gradient BP 2.58E-14 

  GO:0015991 4.61E-18 1.40E+01 1.90E+01 
ATP hydrolysis coupled proton 

transport BP 2.58E-14 

  GO:0099131 2.86E-17 1.40E+01 2.10E+01 
ATP hydrolysis coupled ion 
transmembrane transport BP 9.61E-14 

  GO:0099132 2.86E-17 1.40E+01 2.10E+01 
ATP hydrolysis coupled cation 

transmembrane transport BP 9.61E-14 

  GO:0015992 3.20E-14 1.50E+01 4.00E+01 NA NA 8.96E-11 

  GO:0006818 5.28E-14 1.50E+01 4.10E+01 NA NA 1.27E-10 

  GO:1902600 1.05E-13 1.40E+01 3.50E+01 
proton transmembrane 

transport BP 2.20E-10 

  GO:0046961 6.80E-13 9.00E+00 1.10E+01 
proton-transporting ATPase 

activity, rotational mechanism MF 1.27E-09 

  GO:0044425 1.61E-12 1.46E+02 3.12E+03 membrane part CC 2.67E-09 

10 GO:0090662 4.15E-19 1.60E+01 2.40E+01 
ATP hydrolysis coupled 

transmembrane transport BP 4.65E-15 

  GO:0006811 5.54E-19 5.80E+01 5.34E+02 ion transport BP 4.65E-15 

  GO:0044425 4.73E-18 1.68E+02 3.12E+03 membrane part CC 2.65E-14 

  GO:0031224 7.66E-18 1.41E+02 2.40E+03 
intrinsic component of 

membrane CC 2.81E-14 

  GO:0015988 1.00E-17 1.40E+01 1.90E+01 

energy coupled proton 
transmembrane transport, 

against electrochemical gradient BP 2.81E-14 

  GO:0015991 1.00E-17 1.40E+01 1.90E+01 
ATP hydrolysis coupled proton 

transport BP 2.81E-14 

  GO:0015672 1.44E-17 2.90E+01 1.49E+02 
monovalent inorganic cation 

transport BP 3.46E-14 

  GO:0016021 3.05E-17 1.37E+02 2.32E+03 
integral component of 

membrane CC 6.41E-14 

  GO:0099131 6.19E-17 1.40E+01 2.10E+01 
ATP hydrolysis coupled ion 
transmembrane transport BP 1.04E-13 

  GO:0099132 6.19E-17 1.40E+01 2.10E+01 
ATP hydrolysis coupled cation 

transmembrane transport BP 1.04E-13 

11 GO:0006811 3.80E-19 5.50E+01 5.34E+02 ion transport BP 6.39E-15 

  GO:0015988 2.09E-18 1.40E+01 1.90E+01 

energy coupled proton 
transmembrane transport, 

against electrochemical gradient BP 1.17E-14 

  GO:0015991 2.09E-18 1.40E+01 1.90E+01 
ATP hydrolysis coupled proton 

transport BP 1.17E-14 

  GO:0090662 4.57E-18 1.50E+01 2.40E+01 
ATP hydrolysis coupled 

transmembrane transport BP 1.92E-14 

  GO:0099131 1.34E-17 1.40E+01 2.10E+01 
ATP hydrolysis coupled ion 
transmembrane transport BP 3.75E-14 

  GO:0099132 1.34E-17 1.40E+01 2.10E+01 
ATP hydrolysis coupled cation 

transmembrane transport BP 3.75E-14 

  GO:0015672 9.40E-17 2.70E+01 1.49E+02 
monovalent inorganic cation 

transport BP 2.26E-13 

  GO:0005576 7.58E-16 5.70E+01 7.41E+02 extracellular region CC 1.59E-12 

  GO:0005215 1.18E-15 6.60E+01 8.91E+02 transporter activity MF 2.20E-12 

  GO:0044425 2.92E-15 1.48E+02 3.12E+03 membrane part CC 4.91E-12 

12 GO:0006811 1.60E-16 5.10E+01 5.34E+02 ion transport BP 2.69E-12 
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  GO:0031224 7.01E-15 1.23E+02 2.40E+03 
intrinsic component of 

membrane CC 5.47E-11 

  GO:0022857 9.76E-15 5.50E+01 6.93E+02 
transmembrane transporter 

activity MF 5.47E-11 

  GO:0016021 3.38E-14 1.19E+02 2.32E+03 
integral component of 

membrane CC 1.27E-10 

  GO:0005215 3.79E-14 6.30E+01 8.91E+02 transporter activity MF 1.27E-10 

  GO:0044425 5.41E-14 1.44E+02 3.12E+03 membrane part CC 1.52E-10 

  GO:0022804 1.41E-13 3.40E+01 3.02E+02 
active transmembrane 

transporter activity MF 3.38E-10 

  GO:0005576 4.28E-13 5.20E+01 7.41E+02 extracellular region CC 8.99E-10 

  GO:0034220 1.01E-12 2.80E+01 2.21E+02 ion transmembrane transport BP 1.71E-09 

  GO:0022891 1.02E-12 4.70E+01 5.94E+02 NA NA 1.71E-09 

13 GO:0031224 3.60E-19 1.48E+02 2.40E+03 
intrinsic component of 

membrane CC 5.36E-15 

  GO:0044425 6.38E-19 1.75E+02 3.12E+03 membrane part CC 5.36E-15 

  GO:0016021 3.32E-18 1.43E+02 2.32E+03 
integral component of 

membrane CC 1.86E-14 

  GO:0015988 1.51E-17 1.40E+01 1.90E+01 

energy coupled proton 
transmembrane transport, 

against electrochemical gradient BP 5.08E-14 

  GO:0015991 1.51E-17 1.40E+01 1.90E+01 
ATP hydrolysis coupled proton 

transport BP 5.08E-14 

  GO:0090662 3.87E-17 1.50E+01 2.40E+01 
ATP hydrolysis coupled 

transmembrane transport BP 1.08E-13 

  GO:0099131 9.86E-17 1.40E+01 2.10E+01 
ATP hydrolysis coupled ion 
transmembrane transport BP 2.07E-13 

  GO:0099132 9.86E-17 1.40E+01 2.10E+01 
ATP hydrolysis coupled cation 

transmembrane transport BP 2.07E-13 

  GO:0006811 1.03E-15 5.40E+01 5.34E+02 ion transport BP 1.92E-12 

  GO:0015672 2.92E-14 2.60E+01 1.49E+02 
monovalent inorganic cation 

transport BP 4.90E-11 
 

a BP, biological process; CC, cellular component; MF, molecular function  
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Schistocerca gregaria 
transcript 

 
Tribolium castaneum top blast hit Drosophila melanogaster topblast hit 

Transcript 
ID Protein 

 Uniprot 
ID e-value Protein Uniprot ID e-value Protein 

SgreTb0018
983 Aminopeptidase 

 

D6WCY0 0 
Aminopeptida

se Q7KRW4 0 
Aminopeptidase 

 (EC 3.4.11.-) 

SgreTa00069
80 Aminopeptidase 

 

D7EJC6 0 
Aminopeptida

se Q86NQ5 0 
Aminopeptidase 

 (EC 3.4.11.-) 

SgreTa00140
09 

Angiotensin-
converting enzyme 

 

D6X4L0 0 

Angiotensin-
converting 

enzyme X2J8C3 0 

Angiotensin-converting 
enzyme 

 (EC 3.4.-.-) 

SgreTa00002
84 

ATP-dependent Clp 
protease  

ATP-binding 
subunit clpX 

 

A0A139
WNK6 0 

ATP-
dependent Clp  
protease ATP-

binding  
subunit clpX-

like, 
mitochondrial Q960M5 9.24E-175 LD45279p 

SgreTa00167
82 

Carbohydrate 
sulfotransferase 

 

D6WTL6 1.20E-48 

Carbohydrate 
sulfotransfera

se Q9W070 2.20E-40 
Carbohydrate sulfotransferase  

(EC 2.8.2.-) 

SgreTc00000
11 Carboxypeptidase 

 

D2A5G0 1.65E-19 
Carboxypeptid

ase A P42787 0.24 

Carboxypeptidase D (EC 
3.4.17.22)  

(Metallocarboxypeptidase D)  
(Protein silver) 

SgreTa00144
01 Cathepsin B 

 

D6WGZ1 4.52E-152 Cathepsin B Q9VY87 6.74E-152 

Cathepsin B1, isoform A  
(Cathepsin B1, isoform C)  
(EC 3.4.-.-) (EC 3.4.22.-) 

(GH06546p) 

SgreTd0014
041 

Cysteine 
proteinase 

 

D6WPZ3 1.6 Cystatin Q9VN93 1.93E-118 

Putative cysteine  
proteinase CG12163 (EC 

3.4.22.-) 

SgreTa00026
70 

E3 ubiquitin-
protein ligase 

 

D6WQG
3 7.43E-13 

E3 ubiquitin-
protein ligase  

HRD1-like 
Protein 

A0A0B4KHH
2 1.96E-06 

Septin interacting protein 3,  
isoform B (EC 6.3.2.-) 

SgreTa00071
52 

E3 ubiquitin-
protein ligase  

synoviolin b-like 

 

D6WQG
3 0 

E3 ubiquitin-
protein ligase  

HRD1-like 
Protein 

A0A0B4KHH
2 0 

Septin interacting protein 3,  
isoform B (EC 6.3.2.-) 

SgreTa00046
53 

Heat shock protein 
90 

 

D6X0J9 0 

Heat shock 
protein 83-like 

Protein Q9VAY2 0 Glycoprotein 93 (LD23641p) 

SgreTa00025
96 

Lys-63-specific 
deubiquitinase 

 

D6X1A0 1.46E-43 

Lys-63-specific 
deubiquitinas

e  
BRCC36-like 

Protein Q9V3H2 5.38E-06 

26S proteasome non-ATPase  
regulatory subunit 14 (EC 
3.4.19.-) (26S proteasome 

regulatory  
complex subunit p37B)  

(26S proteasome regulatory  
subunit rpn11)  

(Yippee-interacting 

SgreTa00176
92 Neprilysin 

 
A0A139

WI73 0 
Neprilysin-2-
like Protein A0A0B4K692 0 

Neprilysin-2 (EC 3.4.24.11)  
[Cleaved into: Neprilysin-2, 

soluble form] 

Supplementary Table 11. Schistocerca gene for proteins with GO "proteolysis" that were upregulated in the  
highly secreting pleuropodia. 
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SgreTa001769
2 Neprilysin A0A139WI73 0 

Neprilysin-2-
like Protein A0A0B4K692 0 

Neprilysin-2 (EC 3.4.24.11)  
[Cleaved into: Neprilysin-2, soluble 

form] 

SgreTa001774
6 Neprilysin A0A139WHP0 

1.37E
-54 

Neprilysin-2-
like Protein A0A0B4K692 

1.38E
-52 

Neprilysin-2 (EC 3.4.24.11)  
[Cleaved into: Neprilysin-2, soluble 

form] 

SgreTa000246
7 Neprilysin A0A139WHP0 0 

Neprilysin-2-
like Protein A0A0B4K692 0 

Neprilysin-2 (EC 3.4.24.11)  
[Cleaved into: Neprilysin-2, soluble 

form] 

SgreTb003904
5 Neprilysin  A0A139WI73 

6.32E
-14 

Neprilysin-2-
like Protein A0A0B4K692 

1.08E
-12 

Neprilysin-2 (EC 3.4.24.11)  
[Cleaved into: Neprilysin-2, soluble 

form] 

SgreTb003912
3 Neprilysin  A0A139WHP0 

3.79E
-23 

Neprilysin-2-
like Protein A0A0B4K692 

3.90E
-26 

Neprilysin-2 (EC 3.4.24.11)  
[Cleaved into: Neprilysin-2, soluble 

form] 
SgreTa001658

2 
Protein 

roadkill-like 
A0A139WMR

0 
2.72E

-12 
Protein roadkill-

like Protein C7LAF6 
1.02E

-15 RE09961p 

SgreTa001765
7 

Putative 
serine 

protease,  
K12H4.7-like D6WGL2 

2.66E
-101 

Putative serine 
protease  

K12H4.7-like 
Protein Q9VS02 

5.88E
-90 CG9953 

SgreTa000493
9 

Rhomboid-
like protein D6WUJ2 

1.61E
-105 

Rhomboid-like 
protein Q9VYW6 

1.39E
-86 Rhomboid-like protein (EC 3.4.21.-) 

SgreTb002374
5 

RING finger 
domain 
protein D2A2S1 

3.52E
-13 

RING-box 
protein  

1A-like Protein Q7JWH5 
2.50E

-32 

MIP07211p (RE61847p)  
(Regulator of cullins 2, isoform A)  
(Regulator of cullins 2, isoform B) 

SgreTa000590
5 

Selenoprotei
n S D6WGX2 

2.27E
-06 

Uncharacterize
d protein Q9W0D3 6.6 GH15728p 

SgreTa001764
9 

Serine 
protease  A0A139W9L3 

1.55E
-74 

Serine protease 
P43 Q9VAQ3 

5.03E
-52 GH18608p 

SgreTa001021
9 

Serine 
protease, 
Easter-like D6WUF6 

1.90E
-20 

Serine protease 
P136 P13582 

4.44E
-18 

Serine_protease_easter_(EC_3.4.21.
-) 

SgreTb003724
9 

Serine 
protease, 
Easter-like D6WUF7 

9.05E
-54 

Serine protease 
H137 

A0A0B4KGQ
4 

4.24E
-52 

Easter, isoform B (EC 3.4.-.-) (EC 
3.4.21.-) 

SgreTb003902
4 

Serine 
protease, 
Easter-like D6WGT8 

2.22E
-26 

Serine protease 
H33 P13582 

1.35E
-21 Serine protease easter (EC 3.4.21.-) 

SgreTb003987
9 

Serine 
protease, 
Easter-like D6WP87 

2.25E
-16 

Serine protease 
P90 P13582 

7.93E
-14 Serine protease easter (EC 3.4.21.-) 

SgreTa000366
1 

Serine 
protease, 
Easter-like D6WUF6 

5.95E
-90 

Serine protease 
P136 P13582 

2.76E
-82 Serine protease easter (EC 3.4.21.-) 

SgreTa000742
4 

Serine 
protease, 
Easter-like D6WUF6 

2.87E
-75 

Serine protease 
P136 P13582 

3.76E
-76 Serine protease easter (EC 3.4.21.-) 

SgreTa000742
5 

Serine 
protease, 
Easter-like D6WUF6 

1.68E
-73 

Serine protease 
P136 P13582 

2.34E
-75 Serine protease easter (EC 3.4.21.-) 

SgreTa000742
6 

Serine 
protease, 
Easter-like D6WUF6 

3.37E
-60 

Serine protease 
P136 

A0A126GUP
6 

5.60E
-61 

Melanization protease 1 (EC 3.4.21.-
) 

SgreTa000106
5 

Serine 
protease, gd-

like D6WYU8 
3.73E

-56 
Serine protease 

P69 A4V9W2 
2.70E

-37 CG9649_protein 

SgreTb000386
0 

Serine 
protease, H2-

like D6WBT0 
1.02E

-81 
Serine protease 

H2 Q86PE8 
1.14E

-69 SD23103p 
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Chapter I - Transcriptomics supports that pleuropodia of insect embryos function in 
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Supplementary Table 15. Genes for ecdysone biosynthesis enzymes identified in the Schistocerca embryonic 

transcriptome.  

a not found 

  

Gene Transcript ID 
D. 

melanogaster 
Uniprot ID 

e-value 
Transcript 
length (bp) 

Protein 
length (aa) 

N-
terminus  

C-
terminus 

shade (shd), 
Cyp314A1 SgreTa0006977 M9PI59 

7.19E-
143 2603 521 no yes 

shadow 
(sad), 

Cyp315A1 SgreTa0006386 Q9VGH1 
2.41E-

72 1734 481 yes yes 
disembodied 

(dib), 
Cyp302A1 SgreTa0014975 Q9NGX9 

8.93E-
148 1826 526 yes yes 

phantom 
(phm), 

Cyp306A1 SgreTd0014875 X2JG03 
4.54E-

124 1597 482 yes yes 

shroud (sro) SgreTb0007943 I3VPX6 
3.00E-

61 1464 357 yes yes 

spook (spo), 
Cyp307A1 SgreTa0006308 H8F4V5 

6.82E-
98 2338 303 yes yes 

spook-like SgreTa0009228 A8Y592 
9.09E-

48 412 137 no no 
neverland 

(nvd) SgreTd0008886 Q1JUZ1 
4.46E-

93 1567 288 yes yes 

Cyp6t3 nfa             

Cyp6u1 SgreTa0011509 A0A0B4LET2 
6.74E-

05 311 96 yes no 

Cyp303a1 SgreTa0005101 X2JA13 
7.54E-

141 2633 497 yes yes 

torso nf             
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Supplementary Table 17. Schistocerca genes with GO terms "hormone biosynthetic process" upregulated in 

the highly secreting pleuropodia.  

S. gregaria transcript   
D. melanogaster top 

hit 

Transcript ID Protein Note 
Functions in 

ecdysone 
biosynthesis 

D. 
melanogaster 

Uniprot ID 
e-value 

SgreTa0013987 Juvenile hormone 
acid O-

methyltransferase 

methyl transferase, in the 
corpora allata functions in 

juvenile hormone 
biosynthesis 

  Q9VJK8 1.38E-
32 

SgreTa0014975 Cytochrome P450 
302A1 (dib) 

ecdysone biosynthesis in 
prothoracic glands and 

other ecdysone producing 
tissues 

x Q9NGX9 8.93E-
148 

SgreTa0016782 Carbohydrate 
sulfotransferase 

carbohydrate 
biosynthetic process 

  Q9W070 2.20E-
40 

SgreTa0017764 Uncharacterized 
Short-chain 

dehydrogenase-
reductase  

    Q9VDC0 1.23E-
46 

SgreTb0017908 Niemann Pick 
type C2 protein 
homolog (Npc2) 

regulates sterol 
homeostasis and by this 

also ecdysteroid 
biosynthesis 

x Q9VQ62 7.98E-
35 

SgreTa0002115 Dopamine N-
acetyltransferase 

melatonin biosynthesis   Q94521 1.62E-
21 

SgreTa0002227 Cytochrome P450 
305A1 

may be involved in the 
metabolism of insect 

hormones by sequence 
similarity (Uniprot)  

  Q9VW43 4.39E-
107 

SgreTa0007915 Juvenile hormone 
acid O-

methyltransferase 

methyl transferase, in the 
corpora allata functions in 

juvenile hormone 
biosynthesis 

  Q9VJK8 1.14E-
31 
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Supplementary Table 18. Sequnces of Primers 

Transcript ID Forward primer (5'-3') Reverse primer (5'-3') 

SgreTa0002695 ATGCCTGGGTGTTGGATAAG GGAGCATCTATGATGGTCACG 

SgreTa0007432 AAGGTTCTTGCAGGATGGTG AGCTCCACAAATCTGCCTTC 

SgreTa0001469 TCATCACTGGCATCTTCTCG TTTTCACCTCCACGGAGAAC 

SgreTa0015941 AACACCGCTACAGGAAATGG TGCACCTTGAGGTTTGACAG 

SgreTa0007802 ATGAGGGCTCTTTGACAACC ACAGCGCAGACTACGAAATG 

SgreTa0005616 GAAGGATTCGCTTACGAAGG TATCGGGCTCTGGTACTTGC 

SgreTa0011044 TGTGAAGGGCCTAGGAAAAG TCAGTTGCCTTCATCCAGTG 

SgreTa0006252 TCCAACACAAAGAGGTGGTG TGCTGCAGTAAGCAACCAAC 

SgreTa0017664 GGACAGAAGACGACACACAGG ACACGCAGGACAATGAGGAC 

SgreTa0005054 TCGGCACACAGAAGTTCAAG TCCATCGAAGTCGTGCTTTC 

SgreTa0002027 ACCCGACATCCTCAAACTTC TTTGGCTGACTCCCAGAAAC 

SgreTa0009118 AGGTATCGCCAAGCACAAAG GAGTTCTTATCTTGGGGTGCAG 

SgreTa0000088 TGTGTCCATTGGATGTCACC CACATGCTGCTGGATCATTC 

SgreTd0002755 GGTCCGGTATTTGGGAAAAC AACTGAGGTCTCGCACCTTG 

SgreTa0014975 TGGATTCCATGTACCAGCAG TGTCCTTTCAGCCACCTTTC 

SgreTa0001341 GGATTCGATCTCAACGCAAG AGGACAGCGTGTTGTTGTTG 

SgreTf0013577 ACGATGCACCAGAACTACCC TTATTCCCTTCCCGTACAGC 

SgreTa0001826 ATGCGTCCATACTTGTGGTG ATGAACAGCAGCTGGAAAGC 

SgreTa0000488 ACCTGTTCTGATGGCGAATC GCCCCGTCTTCTTTTCTTG 

SgreTa0009559 CCCTGAGATTTGGCTTGAAC CTTCATTTCCTCGTGCCATC 

SgreTa0003305 AATGGCTCCAAGACAAGTGG TCACTTGGAGATGCTGAAGG 

SgreTd0003949 TGAGAAGGCAGACGAACATC AGGGTCAGCAGTGCATTTTC 

SgreTb0019973 TCCAGTGATGACACACACACAG CGAAATGAGGCGAGAGAAAC 

SgreTb0006243 CCATGACTTCGCTTTGATCC TAAGGCTGGTTGAGCACTTC 

SgreTa0017707 TTACGTGCGATGTTCGTCAG AATGGCTGCATAGTCGAAGC 

SgreTa0017736 ACTCCTCAACGATGCTTTCG GTTGCAATCCTTGCGATACC 

SgreTa0007897 TCAGGAACTGGGTATGCTTG TGATCTGGAACAAGCCGTAG 

SgreTa0008528 AATTGCCAGGAGTGGATAGG ATTGTAGGCCAGAGCCAAAC 

SgreTa0001449 GGAAAGATTGCTCTGGATGG ATTCCAAGCTGACCACGAAG 

SgreTa0005600 AACTTCCTGCCAGTGGAGAC AGTGCAGCACATTCAGCTTG 

SgreTc0000004 AAGGCCCAGTGTCTGTTTTC TTTCTCGGGGATGTACTTGG 

SgreTc0000003 AGTGCTTTGCCTTGTTGGAC GTTCACGGAAACGATTGCAC 

SgreTa0013453 AAGGCTGCATTGTGGATACC TGGACGTGAACGATTGTAGC 

SgreTa0008219 CAAGTCGAGCAATTCTACGC TCTCGGGGTTCCATAAGAAG 

SgreTd0008886 GGAGCGGTGTTCAAAAAGAC GAAACAGCCGTGTTCCTTTC 

SgreTa0008497 GGAAACAGTGAGGCGAAAAC AGTTGTTCTGGGCATTAGCC 

SgreTd0014875 AGCCCGGACAACACTTCTAC CCATCATGAGCAGGAACCAG 

SgreTa0006386 GACCTCAGCAGCGATCATTC CACACGCAGGTACATATGAAGG 

SgreTa0006977 CTTGCAGATGCAGTCAATGG TGGCAGTATCTTCCAGAATGG 

SgreTa0006308 GTGCATCAAATGCTCACTCG TGGACGCTAGCACTCTCTAATG 

SgreTa0002186 ACTTTTGTGGACCCCTCATC AGTGGACCAGCCTTTCATAGAC 

SgreTf0014307 CAAGATGCCGACTGTGAGTG GGCGGTAACAGAAACAAAGC 
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SgreTa0001661 AGGATTGGTCCAGTTTCGTG TCCATCTCGTCACATCTTCG 

SgreTb0016047 ACGTAATTGACAGCCACTCG ATCGAGTCTTTGGTGGCATC 

SgreTa0014626 ATTTACGGCTTGGTCGTAGC GATGCCGATAGCAAATCCTG 

SgreTa0008504 GAGAAATCATCCGGTTGGAG AAGATGCTGCCCATGATACC 

SgreTa0007477 GAGCAGCATTTCCACAAGC TCATGCGCTTCTCCTTCTG 
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4. Chapter II - Variation in a pleiotropic regulatory module drives 

evolution of head shape and eye size in Drosophila  
 

The manuscript ‘Variation in a pleiotropic regulatory module drives evolution of head shape and 

eye size in Drosophila.’ is the main project of my PhD thesis.  

My contributions for this manuscript includes the following parts: 

- Conceptualization of project and experiments (together with Dr. Nico Ponsien) 

- Bioinformatics analyses (RNA-seq and ATAC-seq) 

- Planning and performing experiments (Experimental lab work was supported by Bilen 

A., Matas de las Heras C., Ayaz S., Niksic A.) 

- Data interpretation (together with Dr. Nico Posnien) 

- Writing of the first manuscript draft and editing (together with Dr. Nico Posnien) 

- Visualization (together with Dr. Nico Posnien) 
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4.1. Abstract 

Insect compound eyes are highly complex organs, which are composed of individual 

subunits, so called ommatidia. We have recently shown that closely related Drosophila species 

show remarkable differences in eye size and head shape. The eye size differences between D. 

melanogaster and D. mauritiana are the result of differences in the number of ommatidia. We 

use this model to identify the molecular changes underlying the observed morphological 

variation in adult structures and try to understand how gene regulatory networks (GRNs) in 

closely related species evolve.  

A comparative developmental transcriptomic dataset combined with a transcription factor 

binding site analysis showed that the GATA factor Pannier (Pnr) regulates many genes that are 

differentially expressed between D. melanogaster and D. mauritiana and that the transcript of 

pnr itself is differentially expressed in the two species during eye development. Additionally, 

we could show that u-shaped (ush), coding for a co-factor of Pnr, is transcribed and translated 

in the developing eye-antennal disc. We used the binary GAL4-UAS system and subsequent 

antibody staining to reveal that the two factors regulate each other. To test, if the regulatory 

module composed of Pnr and Ush may represent a flexible node in the eye and head 

developmental GRN, we overexpressed pnr and ush, respectively in the eye-antennal disc in D. 

melanogaster. We indeed were able to phenocopy aspects of the differences observed 

between D. melanogaster and D. mauritiana, showing that higher levels of Pnr lead to a bigger 

eye area, due to a higher number of ommatidia and a narrower, interstitial face cuticle. In 

summary, our data suggests that differences in the expression of pnr and ush might explain 

part of the variation observed between the head shapes of D. melanogaster and D. mauritiana. 

  



Chapter II - Variation in a pleiotropic regulatory module drives evolution of head shape and 
eye size in Drosophila 

- 113 - 
 

4.2. Introduction 

The capacity of organisms to generate new forms is a key prerequisite for the adaptation 

to an ever-changing environment. One of the major goals in biological research is to understand 

the intrinsic and extrinsic forces shaping this morphological variability. Since the genome of an 

organism contains instructive information about its morphology, generally a first crucial step is 

the establishment of the genotype-phenotype map for a given morphological trait. The genetic 

architecture of relatively simple traits has been successfully determined at a high resolution. 

For instance, natural variation in body pigmentation in the vinegar fly Drosophila melanogaster 

or the beach mouse Peromyscus polionotus has been mapped to individual nucleotides 

affecting the expression of the underlying gene (Jeong et al., 2006) or protein function 

(Hoekstra et al., 2006), respectively. Also, the genetic basis of the gain or loss of structures like 

trichomes in Drosophila (Arif et al., 2013b; McGregor et al., 2007), pelvic spines in stickleback 

fish populations (Chan et al., 2010; Xie et al., 2019) or the repeated loss of eyes in cave fish 

(reviewed in (Krishnan and Rohner, 2016)) has been successfully revealed. However, the 

genetic changes underlying the evolution of complex traits, such as the size and shape of organs 

remain largely elusive to date. This is in part due to the polygenic nature of complex 

quantitative traits. This means that the final observable variation is influenced by many genetic 

changes with small effect sizes, which are spread throughout various genomic locations, 

significantly hampering their detection (Boyle et al., 2017; Mackay, 2001). Additionally, 

quantitative traits are highly context dependent, i.e. time and tissue specific and often 

influenced by environmental factors like temperature or food availability (e.g. (Casasa and 

Moczek, 2018; Siomava et al., 2016)). Despite these difficulties, the genetic basis of variation in 

complex traits has started to be elucidated in recent years. For instance, mandible and 

craniofacial shape differences between mouse strains are influenced by loci located on most of 

the chromosomes (Boell et al., 2011; Boell and Tautz, 2011; Burgio et al., 2009; Maga et al., 

2015; Pallares et al., 2014). Several studies in Drosophila revealed, that loci on several 

chromosomes underly differences in eye size and head shape (Arif et al., 2013a; Gaspar et al., 

2019; Norry and Gomez, 2017). These examples confirm that the genetic architecture of such 

traits is rather complex and individual causative molecular changes are difficult to determine. 

While the genetic architecture of morphological trait variation is being revealed, a 

mechanistic understanding of the impact of the genomic changes is still missing to date. For 
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instance, the size and shape of an organ is often exposed to selection pressures at the adult 

stage when it is functional. However, its appearance is defined during embryonic and post-

embryonic development. Therefore, it is conceivable that genetic variation underlying complex 

trait diversity has a direct impact on its development. The development of an organism and its 

organs relies on the correct activation and repression of developmental genes which is 

orchestrated by a complex interplay between gene products in developmental gene regulatory 

networks (GRNs). These GRNs must be tightly controlled because changes at any node of this 

network will eventually influence the interaction with its downstream target genes. A balance 

between a constraint network architecture and flexibility is thus important for allowing changes 

in size and shape of a certain organ to occur throughout evolution, but at the same time keeping 

the resulting adult organ fully functional. For the gain or loss of simple morphological traits, a 

few studies so far have established a clear link between causative genetic variation and GRN 

architecture. For instance, genetic variation that changes the expression of the zinc finger 

transcription factor Shavenbaby (Svb) is associated with the presence of trichomes in 

Drosophila larvae (McGregor et al., 2007), while natural variation in adult trichome patterns is 

explained by genetic variants affecting the expression of the micro RNA miR-92a (Arif et al., 

2013b). A thorough analysis of the GRNs governing larval and adult trichome development, 

revealed fundamental differences in the interplay of key developmental regulators (Kittelmann 

et al., 2018). This data strongly suggests that the GRN architecture poses constraints on the 

nodes within the network that change during evolution. Due to the polygenic nature of complex 

morphological traits, the link between genetic variation and GRN architecture is more 

complicated to establish.  

A typical approach to address this gap could be to first identify genetic variants associated 

with morphological diversity and place the candidates into the GRN context in a second step. 

As an alternative, we propose here to first identify putative flexible nodes within the GRN 

governing the development of a variable morphological trait. We suggest that the data 

obtained from this first step can subsequently be used in follow-up studies to reveal the 

causative genetic variation associated with trait variation. To identify ‘flexible nodes’ in an 

otherwise constraint GRN, we studied genome wide patterns of developmental gene 

expression variation. We assume that flexible nodes can be identified by their effects on 

downstream target genes. As model we compared eye and head development in the two 

closely related Drosophila species D. melanogaster and D. mauritiana, which vary extensively 
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in adult eye size and head shape (Posnien et al., 2012). It has recently been shown that D. 

mauritiana develops larger compound eyes due to a higher number of individual ommatidia 

especially in the dorsal eye. The bigger eyes of D. mauritiana are accompanied by a narrower 

interstitial head cuticle (Posnien et al., 2012), recapitulating the common origin of eye and head 

cuticle tissue from the same eye-antennal imaginal disc during larval development (Haynie and 

Bryant, 1986). Since the GRN governing eye-antennal disc development is extensively studied 

and well understood in D. melanogaster (Kumar, 2009; Potier et al., 2014; Treisman, 2013), this 

process represents an excellent model to link morphological diversification to developmental 

and genetic variation.  

We applied RNA-seq at different developmental stages of eye-antennal discs in D. 

melanogaster and D. mauritiana. A systematic co-expression and transcription factor 

enrichment analysis revealed that many differentially expressed genes were regulated by the 

GATA transcription factor Pannier (Pnr). Our results suggest that Pnr plays a dual role in the 

underlying GRN since it activates and represses its target genes. The repressive role is most 

likely mediated by its co-factor U-shaped (Ush) which is, in contrast to previous reports, co-

expressed with Pnr during eye-antennal disc development. We applied functional genetics 

approaches to establish that Ush and Pnr interact genetically during eye-antennal disc 

development and are thus involved in the same regulatory module. Finally, we show 

quantitative expression differences of pnr and ush between D. melanogaster and D. mauritiana 

and that the overexpression of pnr in D. melanogaster phenocopies aspects of the D. 

mauritiana like head shape and eye size. Our data confirms a role of Pnr in morphological 

differences observed between D. melanogaster and D. mauritiana and therefore suggest that 

Pnr might be one flexible node in the conserved eye-antennal GRN. 

4.3. Results 

4.3.1. Drosophila melanogaster and D. mauritiana exhibit differences in dorsal head shape 

Eye size and head shape vary extensively between Drosophila melanogaster and D. 

mauritiana with the latter having bigger eyes due to more ommatidia at the expense of 

interstitial face cuticle (Arif et al., 2013a; Hilbrant et al., 2014; Posnien et al., 2012). Since eye 

size differences are most pronounced in the dorsal part (Posnien et al., 2012), we proposed 

that the shape of the dorsal interstitial cuticle may vary as well. To test this hypothesis, we 
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comprehensively quantified differences in the dorsal head morphology among the two sister 

species.  

We placed 57 landmarks on pictures of dorsal heads (Figure 17A) covering the main 

dorsal cuticle regions (Figure 17A, (Haynie and Bryant, 1986)) and we applied a geometric 

morphometrics analysis. A discriminate function analysis clearly distinguished the head shapes 

of D. melanogaster and D. mauritiana (Figure 17B). In accordance with previous data (Posnien 

et al., 2012), we found main differences in dorsal eye size with the eye area protruding more 

towards the back of the head in D. mauritiana (Figure 17B). The posterior expansion of the eye 

area in D. mauritiana was accompanied by a narrower dorsal head region, which affected both 

the orbital cuticle (OC) and the dorsal frons (DF) region (compare to Figure 17A). The ocellar 

complex was slightly shifted ventrally. In D. melanogaster, the eye area was clearly smaller, 

whereas both dorsal head regions (OC and DF) were larger and the ocellar complex was shifted 

dorsally (Figure 17B). 

In summary, we found that D. melanogaster and D. mauritiana do not only differ in the 

size of the dorsal eye area, but also exhibit variation in the relative contribution of different 

head regions to the dorsal head capsule.  
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Figure 17. A. Dorsal view of a Drosophila head and schematic representation of the dorsal head structures in 

Drosophila. The dorsal Drosophila head cuticle consists of three morphologically distinguishable regions, namely 

the orbital cuticle next to the compound eye (yellow), the dorsal frons (green) and the ocellar cuticle (blue). The 

dots show the 57 landmarks that were used to analyze head shape, where the white landmarks represent fixed 

landmarks and the grey ones represent sliding landmarks. B. Mean head shape of D. melanogaster (blue) and D. 

mauritiana (red) after discriminate function analysis, which clearly distinguished the two groups based on their 

dorsal head shapes. C. Experimental setup of the bioinformatics analysis. Arrows point to each step in the 

pipeline; Left side: Transcriptomic datasets were generated for developing eye-antennal discs in both species at 

three developmental stages, namely 72h AEL (after egg laying; late L2), 96h AEL (mid L3) and 120h AEL (late L3). 

The scheme shows the workflow from data generation to, differential expression analysis to clustering of the 
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differentially expressed genes. Right side: An ATAC-seq dataset was generated for developing eye-antennal discs 

in D. melanogaster at the same three stages. We defined a list of potential Pnr target genes, using motif search 

in open chromatin sequences and combined this approach with data from the DroID database, to reconstruct 

the close network around the GATA-factor. 

4.3.2. Difference in the transcriptomics landscape recapitulate observed morphological 

differences between D. melanogaster and D. mauritiana 

To reveal the molecular basis of the size and shape differences in dorsal head structures, 

we obtained comparative transcriptomes for three stages of eye-antennal discs development. 

The stages represented the onset of differentiation (72 h AEL), the progression (96 h AEL) and 

termination of differentiation (120 h AEL), respectively (Figure 17C) (Torres-Oliva et al., 2018). 

A global analysis of the expression data showed that 72 % of variation in the dataset 

was due to differences between 72h and 96h AEL (Supplementary Figure 8). This observation 

was confirmed by a pairwise differential expression analysis to determine the number of genes 

that were differentially expressed between D. melanogaster and D. mauritiana for each 

developmental stage. At 72h AEL we found the highest number of differentially expressed 

genes (DEGs), namely 6,683. This number decreased in later stages with 3,260 and 2,380 DEGs 

at 96h AEL and 120 h AEL, respectively (Supplementary Figure 9A). We did not find a biased 

expression difference between species since we observed a more or less equal number of DEGs 

with higher expression in D. melanogaster and D. mauritiana, respectively (Supplementary 

Figure 9A). To test whether the DEGs may be enriched for genes with specific cellular or 

molecular functions, we performed a gene ontology (GO) enrichment analysis. Indeed, we saw 

that stage specific DEGs are enriched in GO categories that can recapitulate the cellular events 

that happen at each respective stage. At 72h AEL we found DEGs upregulated in D. mauritiana 

and enriched in establishment and maintenance of cell polarity, a process which is highly 

important for overall disc growth and the mirror arrangement of the future ommatidia (e.g. 

(Jenny, 2010)). Also, DEGs were enriched in signal transduction pathways, for instance protein 

kinase A signalling (e.g. (Chanut and Heberlein, n.d.; Domínguez, 1999; Pan and Rubin, 1995; 

Strutt et al., 1995)), Inositol phosphate metabolism (e.g. (Seeds et al., 2015; Tsui and York, 

2010)), and TORC signalling (e.g. (Wang and Huang, 2009)), all of which have shown to be 

involved in Drosophila eye development. In D. melanogaster, genes were predominantly 

enriched in cell cycle processes, consistent with the proliferation going on during this early 

stage (Casares and Almudi, 2016; Kenyon et al., 2003) (Supplementary Figure 9B). At 96h AEL 

differentiation events with more specific functions related to neural and photoreceptor 
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development were captured using GO enrichment analysis, like R7 cell development and 

neural-related GO terms, reflecting the onset of the morphogenetic furrow at this time point, 

leaving behind differentiated ommatidia (Bonini and Choi, 1995; Heberlein and Moses, 1995; 

Treisman and Heberlein, 1998) (Supplementary Figure 9C). At 120h AEL we found, among many 

genes involved in metabolic pathways, differences and genes important for cuticle 

development. Overall, we were able to recapitulate the differences we observe in the adult 

flies already in the developing larval tissue (Supplementary Figure 9D).  

Overall, we found a substantial number of DEGs between D. mauritiana and D. 

melanogaster during eye-antennal disc development, suggesting that we were able to 

recapitulate the differences we observe in the adult flies already in the developing larval tissue. 

The observation that these DEGs are involved in crucial developmental processes and 

molecular pathways suggests that various developmental mechanisms may contribute to 

morphological diversification between species. Also, this vast range of processes clearly reflects 

the development of various head regions and sensory organs from one single tissue. 

4.3.3. Central transcription factors regulate differentially expressed genes 

Since genes involved in central developmental processes are differentially expressed 

between D. melanogaster and D. mauritiana, we hypothesized that also key transcriptional 

regulators may be involved in their differential regulation. To get a global overview of 

differential gene expression dynamics across both species and time points, we clustered all 

genes that were differentially expressed in at least one stage according to their expression 

dynamics. This analysis resulted in 15 unique clusters based on 8,350 genes. Each cluster thus 

contained genes that share expression profiles across species and developmental stages. A 

gene ontology (GO) enrichment analysis supported the specificity of the clustering approach 

(Supplementary Figure 10).  

Assuming that co-expressed genes could be regulated by the same transcription factors, 

we identified putative shared transcription factor binding sites enriched in the regulatory 

regions of genes present in each expression cluster (see Materials and Methods for details). 

The unique expression dynamics of each cluster was recapitulated by a specific set of 

transcription factors involved in the regulation of genes in each cluster (Supplementary Figure 

10). Among the enriched motifs, we found binding sites for transcription factors which have 

previously been described to be involved in eye-antennal disc development. For instance, in 
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cluster 6 and 7 we found motifs for Lola that regulates ocelli (Mishra et al., 2016), 

photoreceptor and cone cell development (Zheng and Carthew, 2008). In cluster 10 we found 

motifs for Blimp-1, a transcriptional repressor associated with Ecdysone signalling (Neto et al., 

2017), that has been shown to control the progression of the morphogenetic furrow and thus 

differentiation in the eye-antennal disc (Brennan et al., 1998). Intriguingly, genes in the same 

cluster were enriched for Ecdysone receptor (EcR) motifs, further supporting the cooperation 

of Blimp-1 and Ecdysone signalling (Agawa et al., 2007; Akagi and Ueda, 2011). Transcription 

factors that have been shown to be involved in photoreceptor development were enriched in 

cluster 11. For instance, Nejire (Nej) is involved in determination of photoreceptor cell fate 

(Kumar et al., 2004) and Jun-related antigen (Jra), a member of the c-Jun N-terminal kinase 

(JNK) pathway, is involved in establishment cell polarity and R3/R4 photoreceptor development 

(Ciapponi, 2001; Mlodzik, 2002; Weber et al., 2000). In cluster 15 we found an enrichment for 

the binding sites of Tramtrack (Ttk), a transcriptional repressor that negatively influences the 

Epidermal growth factor receptor (EGFR) signalling pathway in the eye-antennal disc (Kumar 

and Moses, 2001). Additionally, Ttk is involved in cone cell (Shi and Noll, 2009) photoreceptor 

development (Xiong and Montell, 1993). A strong enrichment of GATA motifs was observed in 

clusters 2, 3, 5 and 8. Motifs of the GATA transcription factor Pnr, that is playing a role in the 

establishment of the early dorsal ventral axis of the eye and later dorsal head development 

(Maurel-Zaffran and Treisman, 2000; Singh and Choi, 2003) were enriched in all four clusters 

with the strongest enrichment in cluster 8.  

Intriguingly, 12 of the 20 identified transcription factors (60%) were also differentially 

expressed between D. melanogaster and D. mauritiana (labelled transcription factors in 

Supplementary Figure 10), suggesting that variation in expression of these central regulators 

had a major impact on the transcriptomics landscape of developing eye-antennal discs among 

species.  

In summary, we could show that interspecific variation in expression of central 

transcription factors very likely drive the differential expression of a high number of target 

genes which control important developmental processes during eye-antennal disc 

development.  
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4.3.4. Pannier regulates genes that are differentially expressed between D. melanogaster and 

D. mauritiana 

Pnr is an interesting candidate transcription factor that may be involved in the 

development of differences in dorsal head morphology as well as eye size observed between 

D. melanogaster and D. mauritiana for the following reasons: 1. Our global clustering and motif 

enrichment analyses suggest that Pnr regulates many DEGs between both species. 2. pnr itself 

is differentially expressed between D. melanogaster and D. mauritiana. 3. Pnr is known to be 

expressed in the dorsal portion of the eye-antennal disc (Maurel-Zaffran and Treisman, 2000; 

and see below) and it determines the dorsal-ventral axis of the retinal field in the early L2 discs 

(Maurel-Zaffran and Treisman, 2000; Singh et al., 2005; Singh and Choi, 2003). Additionally, 

later during eye-antennal disc development, Pnr influences the ratio of retinal and head cuticle 

fate in the dorsal disc by repressing retinal determination genes (Oros et al., 2010). Therefore, 

we sought to validate and refine our global differential expression data focusing on Pnr. 

First, we asked at what stage of eye-antennal disc development pnr was differentially 

expressed between species. Based on our transcriptomic dataset we found significantly higher 

expression in D. mauritiana at 120h AEL (Figure 18A). This trend was further confirmed by real-

time qPCR (Supplementary Figure 11).  
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Figure 18. A. Expression dynamics of the pnr transcript at the three developmental stages in D. melanogaster 

(red) and D. mauritiana (blue). B. Network reconstruction of known interactions upstream and downstream 

targets of Pnr (DroID (Yu et al., 2008)) that overlap with our Pnr target gene list. Cyan nodes represent target 

genes that are differentially expressed between D. melanogaster and D. mauritiana in at least one of the three 

studied developmental stages. Grey nodes represent predicted targets of Pnr based on our target gene list but 

are not differentially expressed. Black edges describe potential upstream regulators of Pnr based on DroID. Red 

arrows point towards Pnr target genes that are annotated as being ‘activated’ by Pnr in DroID, whereas blue 

edges point to genes where the interaction between Pnr and the gene is annotated as ‘repressing’. Grey edges 

describe interactions that are annotated as direct TF-gene interactions in DroID. C. Hierarchical clustering of read 

counts of predicted Pnr target genes (based on our target gene list) which were found to be differentially 

expressed in at least one developmental stage. The cyan line in each cluster represents pnr expression, which 

itself is a member of Cluster 6. Left side of each cluster: Expression dynamics of genes in D. melanogaster (OreR), 

Right side of each cluster: Expression dynamics of genes in D. mauritiana (TAM16). 

Next, we wanted to define a list of putative direct Pnr target genes. This was crucial 

since the database used to infer motif enrichment was based on ChIP-Chip and ChIP-seq 
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experiments that were not conducted in Drosophila eye-antennal discs (Herrmann et al., 2012; 

Imrichová et al., 2015). To obtain tissue and stage specific putative target genes, we assessed 

accessible chromatin regions by generating an ATAC-seq dataset for D. melanogaster eye-

antennal discs covering the same three time points used for the transcriptomic dataset (Figure 

17C). We found 14,511 unique peaks across all three timepoints. In the open chromatin 

regions, we revealed 1,335 Pnr-specific GATA motifs associated with 1108 genes expressed in 

our RNA-seq dataset (see Materials and Methods for details), suggesting that they were active 

during eye and head development. A cross validation of the putative Pnr target genes using the 

i-cisTarget tool confirmed an enrichment for Pnr, Nej, pMad and Mef2 binding sites 

(Supplementary Figure 12A). The identification of putative pMad target genes among Pnr 

targets may recapitulate the previous observation that both proteins interact physically during 

larval development (Kim et al., 2017). The putative Pnr target genes were highly enriched in GO 

terms like signal transduction, development, growth and cell cycle progression as well as in very 

specific terms such as compound eye development (Supplementary Figure 12B), recapitulating 

known functions of Pnr during eye-antennal disc development.  

We further assessed the reliability of our target gene identification by searching for 

known target genes of Pnr. Among the putative target genes, we found Angiotensin-converting 

enzyme (Ance) (Supplementary Table 19), which is regulated by Pannier and pMad during 

Drosophila larval development (Kim et al., 2017). pnr itself is autoregulated in the wing imaginal 

disc (Fromental-Ramain et al., 2010, 2008). Accordingly, we found pnr as target gene as well 

(Figure 18C, Supplementary Table 19). We did not find wg as putative target gene, which is 

consistent with the study of Pereira and collegues, who suggested that Pnr does not activate 

wg expression in the peripodial membrane (Pereira et al., 2006). Conserved GATA motifs, that 

were though shown to be not responsive to Pnr bining (Pereira et al., 2006) lie indeed between 

significantly called peaks of a highly accessible intergenic region between the wg and wg6 loci 

(Supplementary Figure 13). Overall, we were able to obtain a high confidence Pnr target gene 

list. 

Our initial cluster analysis suggested that Pnr may regulate many genes that are 

differentially expressed between D. melanogaster and D. mauritiana. We could confirm this 

observation because 67.8 % (751 of the 1,108) of the expressed target genes showed 

expression differences between D. melanogaster and D. mauritiana in at least one stage.  
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In summary, we could show that pnr expression was significantly higher in D. mauritiana 

at 120h AEL and we identified a list of high confidence Pnr target genes which are mainly 

involved in signalling and developmental processes, cell cycle progression and growth. Most of 

the Pnr target genes were differentially expressed between D. melanogaster and D. mauritiana. 

4.3.5. Pnr activates and represses target genes in the eye-antennal disc 

To gain more detailed insights into the expression dynamics throughout eye-antennal 

disc development, we next clustered the differentially expressed Pnr target genes according to 

their expression profiles (Figure 18C). Among the 12 obtained clusters, we found pnr itself in 

cluster 6. While the other genes in cluster 6 as well as genes in clusters 7, 8 and 12 showed a 

similar expression dynamics as pnr, we also found clusters in which the expression of the target 

genes showed the exact opposite trend. For instance, the Pnr target genes in cluster 3 were 

highly expressed at 72 h AEL in D. mauritiana, while pnr itself showed a relatively low expression 

(Figure 18C). The expression of the same target genes decreased at 120h AEL with pnr 

expression increasing at the same time. This contrasting expression profile suggests that those 

target genes may be repressed by Pnr action. In contrast, genes in clusters that show the same 

dynamics as pnr may be positively regulated by Pnr. 
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Figure 19 A. VT042374 drives expression in the dorsal part of the developing eye-antennal disc being partially 

reminiscent of the endogenous pnr expression. A’. Vertical section of VT042374>GFP. VT042374 drives 

predominantly in the cells of the peripodial epithelium and in a few cells of the margin cells, which connect the 

peripodial epithelium with the disc proper. B. Pnr is localized in the dorsal part of the developing eye-antennal 

disc of D. melanogaster (detected with α-Pnr antibody). White, dotted lines mark the area where antibody 

staining could be detected. Phalloidin (in cyan) was used to show the structures of the eye-antennal discs. B’. 

Ush was detected in the same dorsal region of the eye-antennal disc (detected with α-Ush antibody). C – C’’’: 

Overexpression and knock-down of pnr. C. Pnr localization after overexpression of pnr using the VT042374 

driver line. C’. Ush localization after overexpression of pnr using the VT042374 driver line. C’’. Pnr localization 

after knock-down of pnr using the VT042374 driver line and the pnrRNAi2 effector line. C’’’. Ush localization after 

knock-down of pnr using the VT042374 driver line and the pnrRNAi2 effector line. D-D’’’: Overexpression and 
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knock-down of ush. D. Pnr localization after overexpression of ush using the VT042374 driver line. D’. Ush 

localization after overexpression of ush using the VT042374 driver line. D’’. Pnr localization after knock-down of 

ush using the VT042374 driver line. D’’’. Ush localization after knock-down of ush using the VT042374 driver line. 

F,F’. Overexpression of ush using pnrGAL4 (F’) recapitulates knock-down of pnr (F), resulting in duplication of the 

antennal part of the disc. Pnr is only detectable in a few remaining cells. G. Proposed model of how Pnr and its 

co-factor Ush interact in the developing eye-antennal disc.  

To get a clearer picture of whether Pnr may indeed be involved in activation and 

repression of target genes, we integrated known interactions from the DroID interaction 

database (Yu et al., 2008). We selected all known target genes of Pnr from this database and 

overlapped them with our list of putative Pnr target genes. We found three target genes in our 

list for which the direct interaction of Pnr and the target genes (i.e. Pnr-regulatory sequence 

interaction) was already shown (dl, Pc and Sfmbt). Additionally, we found 25 of our high 

confidence target genes in the list of known genetic interactions (Figure 18B). The fact that we 

found GATA motifs in the putative regulatory regions of these genes, suggests that they might 

be direct Pnr target genes. Since the DroID database contains the information, whether 

interactions are “suppressible” or “enhanceable”, we tested if target genes of both categories 

were present in our dataset. Indeed, 14 of the 29 target genes showed “enhanceable” and 8 

showed “suppressible” interactions with Pnr, respectively. 6 target genes showed both types 

of interactions. Intriguingly, 21 of the 30 putative Pnr target genes (68%) found in the DroID 

database were differentially expressed (Figure 18B). 

The clustering analysis of differentially expressed target genes suggests that Pnr 

activates and represses its targets in the eye-antennal disc. An in-depth analysis of previously 

known interactions strongly supported that Pnr target genes are under positive as well as 

negative transcriptional control.  

4.3.6. Pannier and its co-repressor U-shaped participate in the same regulatory network 

during eye- and head development in Drosophila 

Our observation and previous reports of a dual regulatory role of Pnr during eye-

antennal disc development may be mediated by the presence of a co-factor that modulates its 

regulatory role. In the developing wing imaginal disc, it has been shown that Pnr acquires a 

repressing mode of regulation upon heterodimerization with its co-factor U-shaped (Ush) 

(Fossett et al., 2001; Haenlin et al., 1997; Sorrentino et al., 2007). It has previously been stated 

that Ush is not expressed in the eye-antennal disc (Fossett et al., 2001; Maurel-Zaffran and 

Treisman, 2000). However, in our RNA-seq data we found the transcript of ush being expressed 
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during eye-antennal disc development (Supplementary Figure 14A). Therefore, we 

hypothesized that Ush may act as a co-factor in this tissue.  

A role of Ush as co-factor of Pnr requires both proteins to be present in the same cells 

of the eye-antennal disc. Since pnr expression in the eye-antennal disc has only been studied 

based on Gal4 driver lines, we first characterized the localization of Pnr using a newly generated 

antibody. We found that the protein is located, as previously reported, in the large nuclei of 

the dorsal peripodial epithelium (Figure 19B). Additionally, Pnr was detected in a few cell rows 

in the disc proper, most probably in a subset of the cuboidal margin cells (Supplementary Figure 

15B-B’’). In later stages, the Pnr staining was less intense in the future ocellar complex region 

(Supplementary Figure 15AA’’). Lineage tracing experiments showed that descendants of pnr-

positive cells extend further ventrally in the peripodial epithelium (Supplementary Figure 15C-

C’’’). Additionally, we observed descendants of pnr-positive cells in the dorsal disc margin as 

well as in the disc proper (Supplementary Figure 15D-D’’’). Using a newly generated antibody 

against Ush, we confirmed the presence of the Ush protein during eye-antennal disc 

development in D. melanogaster (Figure 19B’). As shown for Pnr, the Ush protein is localized in 

the nuclei of the peripodial epithelium in the dorsal part of the eye-antennal disc, spanning the 

antennal, the ocellar and parts of the future head cuticle regions (Figure 19B’). We also 

observed Ush expression in potential adjacent cuboidal margin cells (Supplementary Figure 16). 

Therefore, Ush and Pnr expression largely overlaps in the dorsal region of the eye-antennal disc 

(see also Supplementary Figure 14B), suggesting that they could indeed interact in the 

developing head. Please note that Ush is not only expressed during eye-antennal disc 

development, but also necessary for proper head development. Knockdown of ush in the dorsal 

developing eye-antennal disc consistently led to the loss of posterior vertical bristles (pVT – 

(Chyb and Gompel, 2013)), and irregularities at the border of orbital cuticle and dorsal frons 

(Supplementary Figure 14C), while the upregulation of ush affected the overall head shape and 

loss or gain of the pVT and adjacent bristles (Supplementary Figure 14C’). The effect on bristle 

patterns is consistent with the reported role of Ush in bristle formation on the thorax (Cubadda 

et al., 1997; Haenlin et al., 1997). 

The co-expression of Pnr and Ush suggested that both genes may interact genetically. 

To test this, we assessed the effect of gain- and loss of function of both genes on each other 

using the binary GAL4-UAS system in combination with Immunohistology. Since we aimed at 
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modulating the expression of both genes within the endogenous domains, we used GAL4 driver 

lines, which drive expression in different dorsal regions of the developing eye-antennal disc. 

VT042374 activity was reminiscent of the pnr expression domain in the peripodial epithelium 

and in marginal cells except for a small region in the presumptive ocelli domain (Figure 19A). 

Regulatory elements of this line overlap with two open chromatin ATAC-seq peaks in an intronic 

region of the pnr locus (Supplementary Figure 17), suggesting that indeed partial endogenous 

pnr expression is reported. Additionally, we used the oc-GAL4 driver line that drove expression 

in the ocellar complex region that was not covered by the VT042374 line (Supplementary Figure 

18 A-A’’).  

Knock-down of pnr in the eye-antennal disc using VT042374 led to depletion of both, 

Pnr protein and Ush protein (Figure 19C’’-C’’’). This finding showed on the one hand that the 

pnr knock-down worked efficiently and suggests on the other hand that Pnr is necessary for the 

expression of ush. Note that this result could also be observed using the oc-GAL4 driver line, 

where even though the discs show great deformation after pnr knockdown, the Ush protein 

was clearly detected only in a smaller region (Supplementary Figure 18D’). Pnr was upregulated 

upon overexpression using the VT042374 driver (Figure 19C) and the oc driver (Supplementary 

Figure 18C). While the effect on Ush was not obvious after pnr overexpression using the 

VT042374 driver (Figure 19C’), slight upregulation was observed when the oc driver was used 

(Supplementary Figure 18C’).  

The knockdown of ush using the VT042374 driver line resulted in a complete loss of Ush 

protein in the expected region (Figure 19D’’’), confirming that the knock-down worked 

efficiently. Conversely, we observed upregulation of Pnr expression in the region where RNAi 

against ush was driven (Figure 19D’’), suggesting that the presence of Ush results in pnr 

repression. Overexpression of ush using the VT042374 driver line resulted in a reduction of Pnr 

expression (Figure 19D). To confirm this observation, we made use of a previously reported 

double antenna phenotype upon loss of Pnr function (Oros et al., 2010), that we also found 

after pnr RNAi (Figure 19F). Intriguingly, overexpression of ush using a stronger pnr driver line 

(pnr-GAL4, (Fossett et al., 2001; Heitzler et al., 1996)) resulted in the same double antenna 

phenotype (Figure 19F’), supporting the observation that Ush is involved in repression of pnr 

expression. 
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In summary, we could show that Ush and Pnr are spatially co-expressed during eye-

antennal disc development. Our gain- and loss of function experiments showed that Ush is 

necessary for proper head development. Furthermore, we found evidence for genetic 

interactions between Ush and Pnr during eye-antennal disc development (Figure 19G), implying 

that both participate in the same regulatory network. 

4.3.7. Overexpression of pannier phenocopies aspects of the differences observed between 

D. melanogaster and D. mauritiana. 

The findings obtained so far strongly suggest that Pnr and Ush may contribute to the 

morphological differences observed between D. melanogaster and D. mauritiana adult heads: 

1) pnr and ush showed higher expression in D. mauritiana during eye-antennal disc 

development. 2) Both genes are expressed in the dorsal region of the disc and they cross-

regulate each other. 3) Many target genes of Pnr are differentially expressed between both 

species. To test if changes in pnr expression indeed have the potential to explain naturally 

occurring differences in eye size and head shape we quantitatively analysed the shape of fly 

heads originating from gain- and loss of function experiments.  

We crossed the VT042374 driver line to a UAS-pnr overexpression line to mimic higher 

pnr expression in D. melanogaster as observed in D. mauritiana. Additionally, we crossed the 

VT042374 line to two UAS-pnrRNAi lines. Overexpression of pnr led to a duplication of one of 

the posterior vertical bristles at the eye rim, while pnr RNAi resulted in a loss of bristles (Figure 

20A). This observation is consistent with the reported role of Pnr in governing bristle pattern 

formation (Heitzler et al., 1996) and confirms the specificity of the performed gain- and loss of 

function experiments.  
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Figure 20. A. Dorsal view of heads of D. mauritiana (top), D. melanogaster (middle) and VT042374 (‘pnr4’) >pnr 

(pnr overexpression) flies. B. Principle component analysis of dorsal head shapes. Shown are PC2 against PC3. 

Red and orange clouds represent the ‘WT-like’ head shapes (D. melanogaster in orange and D. mauritiana in 

red). Overexpression of pnr is represented in pink. The blue empty circles represent knock-down of pnr, with a 

weak effector line in dark blue and a strong effector RNAi line in light blue. The dotted lined circles represent 

head shapes of the parental UAS- and GAL4 fly lines, respectively, that were used to set up overexpression and 

knock-down of pnr. Extracting Procrustes distances between the groups showed that head shapes of D. 

melanogaster, D. mauritiana and flies upon pnr overexpression are all significantly different from each other. C. 
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Boxplot of ommatidia numbers in each of the lines (same color-code as in B.). Statistical comparisons represent 

pair-wise comparisons after Tukey HSD test: *** p<0.0001; *p<0.05.  

Apart from extra setae at the rim of the eye, overexpression of pnr in the dorsal head 

region did not result in major morphological perturbations (Figure 20A). To quantitatively 

compare head shapes, we applied geometric morphometrics based on 57 landmarks placed on 

the dorsal head pictures. A principal component analysis showed that 40.9% of the observed 

variation in head shape could be assigned to technical artefacts related to the positioning of 

the heads (PC1, Supplementary Figure 19). Therefore, we excluded the first principal 

component (PC1) and analysed PC2 and PC3 in more detail. PC2 explained 19.2% of the 

observed variation in the head shape dataset and PC3 explained 6.7% (Figure 20B). Variation 

along PC2 mainly captured differences in the proportion of eye vs. cuticle tissue in the dorsal 

head, as well as the location of the ocellar region. PC3 explained mostly differences in the 

dorsal-posterior head cuticle and the location of the ocellar region (Figure 20B). The 

overexpression of pnr in the dorsal head region resulted in a shift from a “D. melanogaster”-

like shape towards a more “D. mauritiana”-like shape along PC2. The shape analysis revealed 

an enlargement of the eyes in the dorsal head region that was accompanied by a slight 

reduction of the head cuticle between the two eyes (Figure 20B). Ommatidia counting in entire 

eyes confirmed that the increase in eye area upon pnr overexpression observed in our shape 

analysis was indeed due an increase in number of ommatidia (Figure 20C). Note that pnr RNAi 

influenced overall head shape (Figure 20B), but no impact on the number of ommatidia was 

observed (Figure 20C). 

We also observed that the occipital region of the posterior head was more convex upon 

overexpression (Supplementary Figure 20A), whereas downregulation consistently led to an 

enlargement of these regions (Supplementary Figure 20B). To test, whether the occipital region 

also showed differences between D. melangaster and D. mauritiana, we performed a shape 

analysis with additional landmarks. Intriguingly, the occipital region was clearly convex in D. 

mauritiana and more concave in D. melanogaster (Supplementary Figure 20C-E). Detection of 

pnr expression in pupae stages (Supplementary Figure 20F-F’’) as well as the analysis of pnr-

expressing clones in adult heads (Supplementary Figure 20G) confirmed that pnr is indeed 

expressed in the future occipital region.  
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In summary, the upregulation of pnr expression in the developing eye-antennal disc led to 

larger eyes due to a higher number of ommatidia and a smaller dorsal head cuticle. Therefore, 

we were able to phenocopy aspects of the “D. mauritiana”-like head shape and eye size. 

4.4. Discussion 

While the genetic architecture of variation in complex morphological traits is being revealed 

these days (Arif et al., 2013a; Boell and Tautz, 2011; Gaspar et al., 2019; Norry and Gomez, 

2017; Pallares et al., 2014; Ramaekers et al., 2018), a mechanistic understanding of how genetic 

variation affects trait evolution remains largely elusive to date. Here we addressed this gap by 

combining thorough quantitative phenotyping with comparative transcriptomics, GRN 

reconstruction and functional genetics to study natural interspecific variation in head shape 

and eye size between the two closely related Drosophila species D. melanogaster and D. 

mauritiana.  

4.4.1. A developmental model for natural variation in head shape and eye size 

Comparative morphology studies revealed that natural intra- and interspecific variation in 

head shape and eye size is pervasive among species of the D. melanogaster subgroup (Gaspar 

et al., 2019; Hilbrant et al., 2014; Norry et al., 2000; Posnien et al., 2012; Ramaekers et al., 

2018). Previous shape analyses suggested that the eyes of D. mauritiana are predominantly 

larger in the dorsal region when compared to D. melanogaster (Posnien et al., 2012). Therefore, 

we restricted our geometric morphometrics analysis to the dorsal head region and found 

significant natural variation in dorsal head shape. We could confirm that increased eye size in 

D. mauritiana is due to a higher number of ommatidia and goes hand in hand with a reduction 

of the dorsal interstitial cuticle and a convex bending of the occipital head region. This trade-

off between eye size and head cuticle seems to be a common feature of Drosophila (Keesey et 

al., 2019; Norry et al., 2000). Previous attempts to disentangle the genetic architecture of eye 

and head cuticle size variation did not yet converge on a clear idea, whether the evolution of 

both structures is linked or not.  

Morphological differences in adult traits are a result of variation in developmental 

processes (Carroll, 2005; Raff, 2000). Since GRNs that regulate such processes are extensively 

wired, the impact of variation in one node can be elucidated by extensive variation in gene 

expression (Thompson et al., 2015). Therefore, we applied comparative RNA-seq to reveal 

‘flexible nodes’ in the GRN underlying head and eye development. In accordance with the 
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previous observation of highly dynamic gene expression throughout eye-antennal disc 

development (Torres-Oliva et al., 2018), our comparative transcriptomics approach revealed 

stage-specific interspecific expression divergence. Intriguingly, many of the differentially 

expressed genes were enriched for binding sites of the GATA transcription factor Pnr that has 

previously been shown to be involved in dorsal head development (Maurel-Zaffran and 

Treisman, 2000; Oros et al., 2010). Our finding that pnr expression was higher in D. mauritiana 

suggests that natural variation in pnr expression may cause extensive remodelling of the 

transcriptional landscape downstream of this transcription factor.  

We could establish a functional link between enhanced pnr expression and morphological 

differences, because overexpression in the dorsal eye-antennal disc of D. melanogaster 

phenocopied major aspects of D. mauritiana head shape and eye size. In particular, we 

observed an enlargement of the dorsal eye area due to increased ommatidia number as well 

as a reduction of the dorsal interstitial cuticle. Additionally, overexpression of pnr resulted in 

typical convex bending of the occipital region. In contrast, knockdown of pnr resulted in the 

opposite phenotype, characterized by reduction of the eye area, increase of the interstitial 

cuticle size and massive enlargement of the occipital region. The fact that the strength of the 

phenotype depended on the RNAi line used, strongly suggests that indeed quantitative 

differences in pnr expression seem to be relevant for phenotypic variation.  

Our phenocopy experiment suggests that Pnr is involved in specifying the ratio between 

retinal tissue and head cuticle. Indeed, at least two major roles of Pnr during D. melanogaster 

eye-antennal disc development have been established. From the late second instar stage on, 

Pnr regulates the ratio of retinal cells vs. head cuticle cells by suppression of the eye fate in the 

dorsal region of the eye-antennal disc. This suppression is either accomplished by directly 

repressing members of retinal determination network as for instance teashirt (tsh) or indirectly 

via activation of wingless (wg) (Oros et al., 2010). Our results combining transcriptomics, ATAC-

seq and transcription factor binding motif enrichment did not identify tsh as a direct target 

gene of Pnr, suggesting that the observed repression of tsh by Pnr (Oros et al., 2010) may be 

indirect. Interestingly, with eyeless (ey) and eyegone (eyg) we found two other members of the 

retinal determination network among the putative Pnr targets. Whether potential direct 

interactions are negative and may be linked to the repression of retinal fate in the dorsal disc 

remains to be determined. This later role in defining the dorsal cuticle vs. retinal fate is well in 
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line with the observed trade-off between eye size and interstitial cuticle. Additionally, our 

tracing experiment revealed that pnr-expressing cells contribute to the dorsal occipital head 

region. Therefore, a direct effect on the morphological differences in this region is likely.  

During early eye-antennal disc development, Pnr plays a pivotal role in defining the 

dorsal/ventral boundary and is therefore responsible for overall tissue growth (Maurel-Zaffran 

and Treisman, 2000; Singh et al., 2005; Singh and Choi, 2003). Our result that ey is among the 

putative direct Pnr target genes offers now an exciting and yet unpredicted early role of Pnr in 

ey activation in the peripodial epithelium and in margin cells. It has recently been shown that 

Ey activity in the peripodial epithelium and the margin cells is necessary for decapentaplegic 

(dpp) induction and subsequent initiation of the morphogenetic furrow (Baker et al., 2018). 

Loss of Ey function also interferes with the placement of the dorsal/ventral boundary (Baker et 

al., 2018) providing a functional link to this well-established early role of Pnr. Throughout the 

third larval instar Pnr is predominantly expressed in the peripodial epithelium and our lineage 

tracing experiment showed that during earlier stages pnr must be expressed in cells that 

contribute to the dorsal posterior margin where the morphogenetic furrow is initiated. 

Therefore, Pnr is expressed in the right cells at the right time to act upstream of ey during 

dorsal/ventral boundary establishment and the initiation of the morphogenetic furrow, 

suggesting that differences in early pnr expression could have a direct effect on retinal 

development.  

In summary, we provide a comprehensive developmental model suggesting that variation 

in expression of a pleiotropic central transcription factor is responsible for the concerted 

diversification of a complex morphological trait.  

4.4.2. Pnr and Ush represent a functionally linked pleiotropic module in the GRN 

underlying head and eye development 

Our developmental data showed that natural variation in pnr expression influences 

different developmental processes. Our combinatorial RNA-seq and ATAC-seq data revealed 

that more than 1,000 putative Pnr target genes expressed during eye-antennal disc 

development, further substantiating its central role during head development. Some of the 

target genes showed expression profiles in agreement with an activating role of Pnr, while some 

targets showed signatures of a negative relationship. This observation suggests that the dual 

regulatory role of Pnr observed in the wing disc (Fromental-Ramain et al., 2010, 2008) may be 
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true for the eye-antennal disc as well. The repressive role of Pnr in the wing imaginal disc is 

realized upon heterodimerization with its co-factor Ush (Cubadda et al., 1997; García-García et 

al., 1999; Haenlin et al., 1997). However, it was thought that ush was not expressed in the 

developing eye-antennal disc (Fossett et al., 2001) or non-functional (Maurel-Zaffran and 

Treisman, 2000). Following this assumption, ush overexpression was in fact mainly used to 

mimic pnr knock-down (Fossett et al., 2001). Based on our RNA-seq data we show for the first 

time that ush is transcribed in the eye-antennal disc. Additionally, we confirm that ush 

transcripts are translated and that the protein is co-localized with Pnr in the squamous cells of 

the dorsal peripodial epithelium and in the cuboidal cells of the disc margin. Furthermore, ush 

expression is necessary for proper head development, since knock down in the dorsal part of 

the eye-antennal disc resulted in irregularities in adult dorsal head cuticle and head bristle 

pattern. The latter effect has been previously described for ush hypomorphs (Cubadda et al., 

1997). Intriguingly, overexpression of Ush in the dorsal eye-antennal disc resulted in a double 

antenna phenotype reminiscent of that observed upon loss of Pnr function (Oros et al., 2010). 

The co-expression as well as similar functions of pnr and ush strongly suggest that they 

interact during eye-antennal disc development. This hypothesis is further supported by a clear 

genetic interaction between both factors. We showed that Pnr is involved in ush activation. 

Since we did not find ush as a potential target gene of Pnr, the activation of ush may be indirect. 

Furthermore, we identified an autoregulatory loop of Pnr that seems to be negatively 

modulated by the presence of Ush. Since we found pnr in our list of putative Pnr target genes, 

we propose here that the expression level of pnr is kept in balance via activation by Pnr alone 

and repression by the Pnr-Ush heterodimer.  

This model suggests that the various roles of Pnr during eye-antennal disc development 

could be facilitated by the stoichiometry between Pnr and its co-factor Ush. For instance, the 

early function of Pnr in dorsal/ventral boundary establishment and morphogenetic furrow 

initiation is most likely independent of Ush (i.e. mainly activating role of Pnr). This is supported 

by our observation that reduction of pnr expression via RNAi did not influence the final 

ommatidia number in the adult eyes. In the absence of Ush the reduced pnr expression can be 

compensated by an increased auto-activation to restore normal retinal development. 

Additionally, the effect of ush RNAi was mostly restricted to the dorsal head cuticle, suggesting 

that it might not play a major role during retina development. However, the later function in 
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head cuticle development and sensory bristle formation most likely depends on the ratio of Pnr 

and Ush. This is supported by a similar expression profile of pnr and ush during third instar 

development. Additionally, it has been shown that sensory bristles in the thorax arise at regions 

with high pnr and low ush expression (Cubadda et al., 1997; Heitzler et al., 1996). Our 

overexpression of Pnr using the VT042374 driver line consistently resulted in duplication of the 

posterior vertical bristles, underpinning the role of Pnr in sensory bristle formation (Heitzler et 

al., 1996; Ramain et al., 1993). Interestingly, this is reminiscent of the phenotype described for 

a dominant pnrD allele (Heitzler et al., 1996), which is characterized by a loss of the ability to 

dimerize with Ush. Since Ush antagonizes bristle formation (Haenlin et al., 1997), the 

duplication of the posterior vertex bristles is most likely the result of overexpression in the 

posterior part of the dorsal peripodial epithelium where endogenous ush is not expressed 

anymore. In the anterior region, the endogenous ush expression is sufficient to block the 

development of additional sensory bristles. In contrast, overexpression of ush in most of the 

dorsal peripodial epithelium did not only result in the loss of the posterior vertical bristles, but 

also in the loss of the anterior vertical bristles, suggesting that extra Ush above a certain 

threshold completely antagonizes sensory bristle formation. Hence, the correct stoichiometry 

between Pnr and its co-factor Ush is crucial for proper dorsal head and sensory bristle 

formation. This notion is further supported by our observation that also ush to be slightly 

upregulated in D. mauritiana, recapitulating the expression dynamics of pnr.  

In summary, we identified variation in expression of a highly pleiotropic regulatory module 

composed of Pnr and Ush that causes the differential expression of a plethora of potential 

target genes. Therefore, we conclude that this regulatory module might be a flexible node in 

the GRN underlying head and eye development in Drosophila.  

4.4.3. GRN rewiring facilitates natural variation in pleiotropic developmental factors 

Eye-antennal disc development is highly complex and the underlying GRN is extensively 

rewired both throughout time (Torres-Oliva et al., 2018) and in different parts of the disc (Potier 

et al., 2014). For instance, genes of the retinal determination network are required for the initial 

proliferation and growth of the entire eye-antennal disc  and later they play a pivotal role in 

retinal specification (Baker et al., 2018; Bessa, 2002; Lopes and Casares, 2010; Neto et al., 

2017). It has been suggested that the retinal determination genes are part of different GRNs 

during these events and extensive rewiring of the GRNs allows them to fulfil temporally 
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restricted tasks (Palliyil et al., 2018). Similarly, the integration of gene products in spatially 

restricted GRNs may also explain why some genes are broadly expressed in the eye-antennal 

disc although they regulate different processes in different parts of the disc, which give rise to 

the various head structures (Palliyil et al., 2018; Potier et al., 2014). It seems therefore that 

rewiring of GRNs facilitates the use of the same developmental gene products in different 

contexts.  

The various described roles for Pnr (summarized in (Oros et al., 2010)), its continuous 

expression in the eye-antennal disc and the observation that variation in pnr expression affects 

overall head shape and eye size simultaneously, strongly suggest that Pnr is involved in several 

GRNs during eye and head development. The interaction with co-factors, such as Ush provides 

a mechanism facilitating such network rewiring by modulating the role of Pnr from an activating 

to a repressing transcription factor. We conclude that the dynamic nature of GRNs may explain 

how interspecific variation in expression of a highly pleiotropic and central transcription factor 

such as Pnr can result in extensive remodelling of the transcriptomic landscape in an otherwise 

tightly controlled GRN.  

Intriguingly, Pnr is not the only central and pleiotropic factor implicated in natural variation 

in head shape and eye size. It has recently been shown that a single point mutation in the cis-

regulatory sequence of ey, one of the most upstream factors of the retinal determination 

network (Callaerts et al., 1997), leads to heterochronic changes in its regulation and subsequent 

variation in eye size among D. melanogaster laboratory strains. This polymorphism segregates 

in natural D. melanogaster populations and it shows signatures of longitudinal cline in Europe, 

suggesting that it may provide some selective advantage in certain environmental conditions 

(Ramaekers et al., 2018). In summary, we hypothesize that the modularity of regulatory 

interactions during development may allow selection to act on highly pleiotropic 

developmental factors to drive diversification of complex morphological traits.  

4.4.4. Evolution of GRNs and implications for convergent evolution of head shape and eye 

size 

A trade-off between the size of the compound eye and other head structures is common in 

Drosophila (Keesey et al., 2019; Norry et al., 2000). Depending on the environment, 

enlargement or reduction of the eye is most probably selected, since smaller eyes and less 

ommatidia lead indeed to poorer temporal acuity (Currea et al., 2018; Ramaekers et al., 2018) 
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and has ecological implications (Currea et al., 2018). This assumption is also supported by the 

fact that an enlargement of the compound eye is associated with increased optic lobe size 

(Keesey et al., 2019). However, functional sensory systems consume tremendous amounts of 

energy (Niven and Laughlin, 2008; Tan et al., 2005) suggesting that their size must be tightly 

controlled. It has been proposed that the common origin of the adult visual (i.e. compound 

eyes) and olfactory (i.e. antennae) system from the same imaginal disc provides an opportunity 

to balance the energy investment either in olfactory or in visual structures (Keesey et al., 2019). 

Although D. mauritiana was not included in this large-scale survey, it is likely that the resource 

allocation hypothesis applies to this species as well. However, it remains to be studied how 

temporal acuity and the size of visual neuropils coevolved with head shape variation between 

D. melanogaster and D. mauritiana.  

In the light of a pervasive trade-off between eye and head cuticle in Drosophila it is tempting 

to ask whether this morphological trait evolves through the same or different nodes of the 

underlying GRN among different populations or species. Between D. melanogaster and D. 

simulans different QTL regions were identified for eye size and the width of the interstitial 

cuticle. This observation was supported by quantitative developmental data showing that the 

anlagen for the head cuticle start to diverge in size prior to the retinal tissue (Arif et al., 2013a). 

Therefore, the trade-off seems to be regulated by independent factors in these two species. 

However, recent quantitative genetics analyses identified some loci that affect eye size and 

head cuticle in opposite directions in intraspecific comparisons in D. melanogaster and D. 

simulans (Gaspar et al., 2019; Norry and Gomez, 2017). Additionally, our finding that variation 

in pnr expression influences both traits simultaneously further suggests that they may be 

genetically linked in D. melanogaster and D. mauritiana. Therefore, a convergent evolution of 

the trade-off in Drosophila is likely. A detailed analysis of the morphological basis of eye size 

differences showed that bigger eyes can be the result of differences in ommatidia number (e.g. 

between D. melanogaster and D. mauritiana) or ommatidia size (e.g. between D. simulans and 

D. mauritiana) (Posnien et al., 2012). Since these two features are regulated at different time-

points and developmental processes (reviewed in (Amore and Casares, 2010; Domínguez and 

Casares, 2005)) it is conceivable that the molecular and developmental basis of eye size 

differences varies in different groups. In summary, our current knowledge based on 

quantitative genetics, developmental as well as morphological data suggests that different 
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nodes within the GRN underlying head and eye development may evolve to give rise to 

variation in head morphology in Drosophila. 

4.4.5. Conclusion and Outlook 

We provide here a methodological framework to reveal flexible nodes within GRNs and to 

subsequently validate these findings. Our comparative transcriptomics approach can be used 

as entry point to study the evolution of complex morphological traits or it can be applied to link 

already identified genetic variation to nodes within developmental GRNs and to developmental 

processes. It is important to note, however, that this approach unfolds its full potential if 

complemented with quantitative genetics data that allows identifying exact genetic variants 

associated with trait variation. The fact that we were not able to phenocopy the D. mauritiana 

head shape and eye size entirely, suggests that multiple genomic loci are responsible for the 

observed morphological divergence between D. melanogaster and D. mauritiana. 

Furthermore, it remains to be established, whether the pnr and/or ush loci contain genetic 

variants associated with eye size and head shape differences. Quantitative genetics approaches 

are not applicable since interspecific crosses between D. melanogaster and D. mauritiana result 

in infertile F1 females. However, reciprocal hemizygosity tests (Stern, 2014) for Pnr, Ush and 

putative regulators of these two factors represent a powerful tool to further dissect the 

causative genetic variants in the future. Overall, much more genetic as well as developmental 

data from different groups is necessary to draw a full picture of this exciting morphological 

phenomenon. Eventually, it remains to be established, whether similar functional requirements 

and ecological forces are involved in shaping the Drosophila head morphology. 

4.5. Material and Methods  

4.5.1. Generation of the transcriptomic dataset 

Flies from the following strains were raised at 25°C at a 12:12 dark:light cycle for at least 

two generations and their eggs were collected on agar plates for one hour: D. melanogaster 

(OreR), D. mauritiana (TAM16). 30 L1 larva were collected in vials and developing eye-antennal 

discs were dissected at 72h AEL (120–130 discs; m and f), 96h AEL (80–90 discs; f) or 120h AEL 

(40-50 discs; f) and stored in RNALater (Quiage, Venlo, Netherlands). For each species and stage 

3 biological replicates were generated. Total RNA was isolated using the Trizol (Invitrogen, 

Thermo Fisher Scientific, Waltham, 

Massachusetts, USA) method according to the manufacturer’s recommendations and the 
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samples were DNAseI (Sigma, St. Louis, Missouri, USA) treated in order to remove DNA 

contamination. RNA quality was determined using the Agilent 2100 Bioanalyzer (Agilent 

Technologies, Santa Clara, CA, USA) microfluidic electrophoresis. Only samples with 

comparable RNA integrity numbers were selected for sequencing. Library preparation for RNA-

seq was performed using the TruSeq RNA Sample Preparation Kit (Illumina, catalog ID RS-122-

2002) starting from 500 ng of total RNA. Accurate quantification of cDNA libraries was 

performed using the QuantiFluordsDNA System (Promega, Madison, Wisconsin, USA). The size 

range of final cDNA libraries was determined, applying 

the DNA 1000 chip on the Bioanalyzer 2100 from Agilent (280 bp). cDNA libraries were 

amplified and sequenced (50 bp single-end reads) using cBot and HiSeq 2000 (Illumina). 

Sequence images were transformed to bcl files using the software BaseCaller (Illumina). The 

bcl files were demultiplexed to fastq files with CASAVA (version 1.8.2) 

4.5.1.1. Mapping 

The reads were mapped against strain-specific transcriptomes of D. melanogaster and D. 

mauritiana, including CDS and UTRs (Torres-Oliva et al., 2016) using Bowtie2 v. 2.3.4.1  with the 

following parameters: -very-sensitive-local -N1 (Langmead et al., 2009). Samtools 

version 1.9 was used to further process the reads, and count the reads mapped to each 

transcript (idxstats) (Li et al., 2009).  

4.5.1.2. DEA and data visualization 

A principal component analysis was done using the regularized log (rlog) transformation 

from the DESeq2 package (DESeq2_1.22.2; R version 3.5.2) (Love et al., 2014).  

We then used DeSeq2 (Love et al., 2014) to perform a pairwise differential expression 

analysis between the two species at each time point (D. melanogaster 72h vs. D. mauritiana 

72h, D. melanogaster 96h vs. D. mauritiana 96h, D. melanogaster 120h vs. D. mauritiana 120h). 

We used the online tool Metascape (Zhou et al., 2019) to perform GO enrichment analysis for 

each time point. All genes that were significantly differentially expressed (log2FC > 0 | log2FC 

< 0 and padj < e0.05) in at least one stage (8350 unique genes) were combined and clustered 

using the coseq package (version 1.6.1; (Rau et al., 2013)) with the following parameters: 

K=2:25, transformation="arcsin", norm="TMM", model="Normal". We searched 

for potential upstream factors in 5kb upstream of the TSS, 5’UTR regions and 1st introns using 

the i-cisTarget tool (Imrichová et al., 2015; Pereira et al., 2006) keeping the default parameters: 
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Minimum fraction of overlap: 0.4., NES: 3.0, ROC threshold for AUC calculation: 0.01. 

Metascape was used to analyse differential enrichment of GO terms for each pairwise 

comparison.  

4.5.2. Generation of the ATAC-seq dataset 

For the generation of ATAC-seq datasets we followed (Buenrostro et al., 2013). Developing 

eye-antennal discs of D. melanogaster were dissected in ice-cold PBS at 72h, 96h and 120h AEL. 

PBS was removed and exchanged for 50 µl lysis buffer (10 mM Tris-HCl (pH = 7.4); 10 mM NaCl; 

3 mM MgCl2; 0.1 % IGEPAL). The mixture was pipetted several times up and down to lyse the 

cells and then split into micro centrifuge tubes. Centrifugation for 10 min at 500 g and 4 °C. The 

cell number was assessed in one of the samples and between 50,000 and 80,000 nuclei were 

used in subsequent steps. The supernatant was removed and the pellet(s) dissolved in 47.5 µl 

1X tagmentation buffer (20 mM Tris-CH3COOH (pH = 7.6); 10 mM MgCl2; 20 % (vol/vol) 

dimethylformamide) with 2.5 µl Tn5 Transposase and then incubated for 30 min at 37 °C. For 

purification we used the QIAGEN MinElute Kit and eluted in 10 µl Elution Buffer (10 mM Tris, 

pH = 8). For the PCR amplification was done as follows:  

 10 µl tagmented chromatin 

 10 µl H2O 

 2.5 µl Nextera PCR primer 1* 

 2.5 µl Nextera PCR primer 2** 

 25 µl NEBNext High-Fidelity 2X PCR Master Mix (Cat #M0541) 

We used the following program:  

(1) 72 °C  5 min 

(2) 98 °C 30 sec 

(3) 98 °C 10 sec 

(4) 63 °C 30 sec 

(5) 72 °C 1 min 

(6) repeat 3-5 13 times 

(7) hold at 4 °C 

followed by another 2x purification step with the QIAGEN MinElute Kit: elution in 2 X 10 µl 

Elution Buffer (10 mM Tris, pH = 8). 
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* AATGATACGGCGACCACCGAGATCTACACTCGTCGGCAGCGTCAGATGTG 

** Ad2.2_CGTACTAG  CAAGCAGAAGACGGCATACGAGATCTAGTACGGTCTCGTGGGCTCGGAGATGT 
      Ad2.3_AGGCAGAA CAAGCAGAAGACGGCATACGAGATTTCTGCCTGTCTCGTGGGCTCGGAGATGT 
      Ad2.4_TCCTGAGC CAAGCAGAAGACGGCATACGAGATGCTCAGGAGTCTCGTGGGCTCGGAGATGT 
      Ad2.5_GGACTCCT CAAGCAGAAGACGGCATACGAGATAGGAGTCCGTCTCGTGGGCTCGGAGATGT 
      Ad2.6_TAGGCATG CAAGCAGAAGACGGCATACGAGATCATGCCTAGTCTCGTGGGCTCGGAGATGT  
      Ad2.7_CTCTCTAC CAAGCAGAAGACGGCATACGAGATGTAGAGAGGTCTCGTGGGCTCGGAGATGT 
 

4.5.3. Bioinformatics processes of the ATAC-seq dataset 

We performed quality checks of the sequenced reads using FASTQC 

(https://www.bioinformatics.babraham.ac.uk/projects/fastqc/). The reads were trimmed, 

using Trimmomatic (version 0.36) (Bolger et al., 2014) appyling a sliding window trimming with 

the parameters slidingwindow 4:15 and minlen 30. Trimmed reads were mapped to the 

D. melanogaster genome (version 6.13) after discarding the mitochondrial genome, using 

Bowtie2 (version  2.3.4.3) (Langmead et al., 2009), with the commands: --no-unal and -

X2000. Samtools version 1.9 (Li et al., 2009) were subsequently used to convert the sam to 

bam files, and to sort and index bam files. We removed duplicates using PICARD (version 2.1.1, 

https://github.com/broadinstitute/picard)  with default parameters and converted the resulted 

bam files to bed files. Reads were then centered as described in (Buenrostro et al., 2013). We 

used MACS2 (version 2.1.2) (Zhang et al., 2008, p. 2) with the following commands -g dm --

nomodel --shift -100 --extsize 200 -q 0.01 –bdg to call significant peaks. We 

used the Integrated Genome Browser (IGB, (Freese et al., 2016)) to visualize the read depth 

and peaks. Peaks were annotated to the closest gene using the annotatePeaks.pl program 

from the HOMER software package (v4.8.3) using dm6 as genomic input.   

4.5.4. Definition of a Pnr target gene list 

As a basis for the high confidence list of putative Pnr target genes a Chip-chip dataset was 

used (downloaded on 1st of July, 2015 from http://furlonglab.embl.de/data/download, 

(Junion et al. 2012), which comprises ChIP-chip experiments in the Drosophila embryo with 

several transcription factors, including Pnr at two time points (4-6h AEL and 6-8h AEL).  

All Pnr-binding regions from both time points were selected with a Tile-Map score of <5.5. and 

where the distance of the center of the peak to the TSS was -1000 bp and +1000 bp. This 

resulted in a gene list of 4009 putative Pnr targets (Figure 10). The peak regions of these genes 

were used to search for the Pnr GATA motif, resulting in a list of 1675 putative target genes.  

We restricted the list of potential Pnr target genes to those genes which are expressed (>= 10 

reads on average for each stage in D. melanogaster) in our transcriptomic dataset and 
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performed hierarchical clustering using coseq (Rau and Maugis-Rabusseau, 2017) according to 

their expression dynamics with the following parameters: K=2:25, 

transformation="arcsin", norm="TMM", model="kmeans". We downloaded a list 

of all known direct (TF-gene) or genetic interactions of Pnr from the DroID database (Yu et al., 

2008) and found an overlap of 30 genes, of which 21 are differentially expressed between the 

D. melanogaster and D. mauritiana. We used Cytoscape (Shannon et al., 2003) to visualize the 

interaction between these target genes and potential upstream regulators found in the 

database.  

4.5.5. qPCR 

Discs from D. melanogaster and D. mauritiana larva were dissected in ice-cold PBS at 96h 

AEL and 120h AEL and collected in TRIZOL. The samples were then homogenized using a 

TissueLyser and total mRNA was extracted using the Phenol/Chloroform extraction method. 

We then used TurboDNAse to remove potential gDNA contamination. Concentration was 

measured using Nanodrop and the Maxima First Strand cDNA Synthesis Kit for RT-qPCR kit was 

used for cDNA preparation. To test the efficiency of primers, we prepared four 1:4 dilutions of 

a pool of all RNA samples per species (1:2, 1:6, 1:18, 1:54; for calculations see Supplementary 

Figure 11). Real-time qPCR was then performed using the HOT FIREpol EvaGreen qPCR Mix Plus 

(ROX) (Solis BioDyne, Tartu, Estland) and a CFX96 Real-time PCR System (Bio-Rad Laboratories, 

Hercules, CA, USA). Log2 fold changes in expression were calculated using the ΔΔCT method 

(Livak and Schmittgen, 2001) with actin79b as a reference gene.  

Following primer pairs were used: 

pnrB: f: CGCAGACGAATCAAACG, r: TCACGTTCTGATAGTCGC 

actin 79b: f: CGCAAGGATCTGTATGCCAAC, r: TCTTGATGGTGGACGGGG 

The following temperatures were used: 

1) 95°C – 15:00 

2) 95°C – 00:30 

3) 56°C – 0:30 

4) 72°C – 0:30 

5) Repeat step 2-4 for 39x 

6) 65°C – 0:05 
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7) 95°C 

4.5.6. Antibody staining 

Developing eye-antennal discs were dissected in ice-cold PBS and fixed for 30 min in 4% 

paraformaldehyde (PFA). The discs were then washed 3 times in 0.03% PBT (Phosphate 

buffered saline 1%, Triton X-100) before blocked in 5% goat serum for 30min. Incubation with 

the Primary Antibody was done for 90 min, before 3 additional washing steps with PBT and one 

round of blocking for 30 min. The tissue was then incubated overnight with the Secondary 

Antibody on a rocking plate on 4°C. If needed, Phalloidin-488 (1:100) was added. After 3 

washing steps with PBT, the discs were incubated with DAPI (1:1000) for 10 min, followed by 

one washing step with PBT and one washing step with PBS. Subsequently, the discs were 

mounted in mounting medium (80% glycerol + 4% n-propyl-galate) and kept at least one night 

on 4° degree before imaging.  

Antibodies used: We generated polyclonal, primary antibodies against Pnr (Junion et al., 

2012) (Pnr_B (125-294) 

(TPLWRRDGTGHYLCNACGLYHKMNGMNRPLIKPSKRLVSATATRRMGLCCTNCGTRTTTLWRRNNDG

EPVCNACGLYYKLHGVNRPLAMRKDGIQTRKRKPKKTGSGSAVGAGTGSGTGSTLEAIKECKEEHDLKPSL

SLERHSLSKLHTDMKSGTSSSSTLMGHHSAQQ) and Pnr_B (206-336) 

(GVNRPLAMRKDGIQTRKRKPKKTGSGSAVGAGTGSGTGSTLEAIKECKEEHDLKPSLSLERHSLSKLHTDM

KSGTSSSSTLMGHHSAQQQQQQQQQQQQQQQQQQQQSAHQQCFPLYGQTTTQQQHQQHGH)) 

and Ush (Fossett et al., 2001) based on previous knowledge, against the peptide sequences: 

Ush-(231–250) (CSHRIKDTDEAGSDKSGAGG) and Ush-(1174 –1191) (VGGHGQQKNKENLQEAAI). 

Before usage, both antibodies were preabsorbed overnight on Drosophila embryos on 4°C.  

Please note that we confirmed the specificity of the Ush antibody by recapitulating known 

Ush expression domains in the wing imaginal disc (Supplementary Material Figure 1A) and 

during embryonic development (Supplementary Material Figure 1B) (Muratoglu et al., 2006; 

Tomoyasu et al., 2000)). For test stainings in embryos we collected embryos for several hours 

on apple agar plates, removed the chorion with 50% Klorix and rinsed them 3x with 0.03% PBT 

(Phosphate buffered saline 1%, Triton X-100). We fixed the embryos with heptane and 2% 

formaldehyde for 20min and washed with MeOH, followed by washing steps with PBT. The 

embryos were then blocked in 3% BSA for one hour, followed by incubation with the primary 

AB overnight. After two washing steps with PBT, we added HRP-coupled secondary AB for 90 
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min. After three washing steps with PBT we performed a DAB (3’-3diaminobenzidine) staining. 

The embryos were then washed again 2 times in PBT and mounted in glycerol.  

Concentrations Primary AB’s: Anti-Pnr (rabbit): 1:200, Anti-Ush (rabbit): 1:2000, Anti-GFP 

(chicken): 1:1000; Concentrations Secondary AB’s: Anti-Chicken-488; Anti-Rabbit-Cy3: 1:500; 

Anti-rabbit-HRP-coupled (1:1000).  

Pictures of eye-antennal discs upon antibody staining were taken using a Zeiss LSM 710 

confocal microscope. Antibody stainings were visualized and processed with Fiji software 

(Schindelin et al., 2012). Vertical section of the confocal pictures were generated using the 

Volume Viewer plugin (https://imagej.nih.gov/ij/plugins/volume-viewer.html) with the 

following parameters: Display Mode: Slice and Boarders, Interpolation: Nearest 

Neighbour, Transfer Function: Fire LUT.  

4.5.7. Geometric Morphometrics 

We imaged WT species, each parental line and the offspring of the respective crosses from 

the dorsal view of the head using a Leica M205 FA stereo microscope. We placed 64 landmarks 

on pictures of these dorsal heads using the tpsDig2 software.  We then defined 23 fixed 

landmarks and 41 sliding landmarks using tpsUtil. tpsRelw32 was used to calculate the 

consensus (i.e. Procrustes superimposition), partial warps and relative warps 

(https://life.bio.sunysb.edu/morph/). Using MorphoJ (Klingenberg, 2011) for visualization, we 

performed Procrustes Fit and generated a covariance matrix. To analyse differences in dorsal 

head shapes in WT D. melanogaster and D. mauritiana, we performed discriminate function 

analysis using MorphoJ. We further performed a principal component analysis (PCA) to analyse 

difference in head shapes upon knock-down or up-regulation of pnr.  

4.5.8. Overexpression/Knock-down of pnr and ush 

To overexpress or knock-down pnr and ush, the following fly lines were used:  

D. melanogaster (Oregon R) and D. mauritiana (TAM 16) (both kindly provided by Prof. 

Alistair McGregor, Oxford Brookes University), pnr GAL4/TM6B (kindly provided by Prof. Marc 

Haenlin), pnr GAL4>UAS2YFP/TM6B (kindly provided by Prof. Marc Haenlin, CBI Toulouse), ush 

GAL4 26662 (y[1] w[*]; P{w[+mW.hs]=GawB}ush[MD751]), Bloomington; UAS ush 14IIA/CyO 

(kindly provided by Prof. Marc Haenlin, CBI Toulouse); ush-RNAi 3622 (y[1] v[1]; P{y[+t7.7] 

v[+t1.8]=TRiP.HM05193}attP2/TM3, Sb[1]), Bloomington;UAS pnr (w; UAS-pnr/CyO; 
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TM2/TM6B) (kindly provided by Prof. Fernando Casares); pnr-RNAi (VT101522/KK, #108962 

VDRC Stock Center and VT6224/GD, #1511 VDRC Stock Center); oc2-Gal4/CyO (kindly provided 

by Prof. Fernando Casares). 

All crosses were performed at 25°C and at a constant 12h/12h light/dark cycle. Since Pnr 

and Ush are crucial during embryonic development, we chose combinations of GAL4/UAS lines, 

that resulted in a phenotype but were not lethal during embryonic, larval of pupal stages. We 

used a set of GAL4 lines, that overlap a range of weak to strong driving capacity and in the case 

of pnrRNAi we used two RNAi lines with different effector strengths.  

4.5.9. pnr expression and lineage.  

The pnr-GAL4 line pnrMD237 (Calleja et al., 1996), recombined with UAS-GFP, was used to 

follow pnr expression in imaginal and pupal eye-antennal discs. Adult pnr expression domain in 

adult heads was monitored in y; pnr-GAL4/UAS-y+ flies (Calleja et al., 1996) as the cuticle region 

with y-rescued pigmentation. To follow the pnr-GAL4 lineage, pnr-GA4, UAS-GFP flies were 

crossed to UAS-flipase; act5c>stop< nuc-lacZ flies (Struhl and Basler, 1993). In the discs of the 

progeny, pnr expression was visualized with anti-GFP and its lineage with anti β-galactosidase. 

4.5.10. Immunostaining and imaging.  

Third instar or pupal discs were processed as in (Magri et al., 2018). Primary antibodies 

were chicken anti-GFP (1/500; ab13970, Abcam), rabbit anti-β-galactosidase (1/1000; Cappel) 

and mouse anti-Eya (1/500; 10H6, Developmental Studies Hybridoma Bank, Iowa University). 

Secondary antibodies at 1/400 were from Molecular Probes. Imaging was carried out on a Leica 

SPE confocal setup (ALMI, CABD). 

4.5.11. Adult head cuticle preparation.  

Dissected adult heads in PBS were mounted in Hoyer’s mountant: Lactic Acid (50:50) as in 

(Magri et al., 2018). 

4.5.12. Ommatidia Counting 

To estimate ommatidia number of single fly eyes, we took pictures of one eye per fly (50 

stacks/eye) using a Leica M205 FA stereo microscope and an external light source, which 

resulted in reflection of light by each ommatidium. We used FIJI to perform the following 

analyses. We performed Z-projection using maximum intensity and then transformed each 

picture, so that the single reflection of each ommatidium is represented by a black dot. We 
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then used the ICTN cell counter tool (with the following parameters: Width: 7, Minimum 

Distance: 17, Threshold: 1.5) to estimate the number of black dots, i.e. the number ommatidia. 

Statistical analysis of ommatidia number was done using a one-way ANOVA and pair-wise 

comparisons were calculated using Tukey HSD test.  
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4.6. Supplementary Figures 

 

Supplementary Figure 8. Principal component analysis of all RNA-seq samples based on rlog transformed read 
counts. PC1 separates the samples according to time-points, whereas PC2 separates the data mainly by species. 
D. melanogaster (OreR), D. mauritiana (TAM16). 
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Supplementary Figure 9. A. Number of genes that are significantly differentially expressed (padj <= 0.05) 
between the two species for each time-point. D. melanogaster is depicted in red and D. mauritiana in blue. Total 
number of differentially expressed gene that are upregulated are shown in the third column, as a sum of genes, 
upregulated in each species. B. Differential GO-term analysis of genes that are upregulated in each species per 
time-point. 
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Supplementary Figure 10. Clustering of all genes that are significantly differentially expressed (padj <= 0.05) 

between the two species in at least one time-point resulted in 15 distinct co-expression profiles. Shown is the 

number of genes in each cluster and the expression profile plot. The tables show transcription factors whose 

transcription factor binding motifs were enriched 5kb upstream of the TSS, 5’UTR regions and 1st introns of the 

clustered genes. The NES-factors are shown in the second column.  Transcription factors labelled in cyan are 

themselves significantly differentially expressed in at least one stage. GO-terms enriched in each cluster are given 

in the last column. 
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Supplementary Figure 11. A. q-RT PCR for pnrB in D. melanogaster and D. mauritiana. Efficiency of the used 
primers in D. melanogaster for pnrB. we prepared four 1:4 dilutions of a pool of all RNA samples per species (1:2, 
1:6, 1:18, 1:54). The primer pair for pnrB yielded an efficiency of 98% in D. melanogaster and the primer pair for 
actin yielded an efficiency of 106%. B. Same efficiency calculations for the same genes as in A for D. mauritiana. 
In this species the primer pair for pnrB showed an efficiency of 104% and 100.5% for actin. C. Comparison of pnr 
expression levels in D. melanogaster and D. mauritiana at 96h AEL. actin was in all cases used as reference gene. 
Log2fold changes were calculated using the ΔΔCT method. At 96h AEL, expression of pnr was 1.3x higher than in 
D. melanogaster at the same time point. D. Comparison of pnr expression levels in D. melanogaster and D. 
mauritiana at 120h AEL. Expression of pnr was 1.5x higher than in D. melanogaster at the same time point. Even 
though the difference in expression is not significant we observe the same trend as in the transcriptomics 
dataset. 
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Supplementary Figure 12. A. Cross validation of TFBS enrichment in 5kb upstream of the TSS, 5’UTR regions and 
1st introns of all predicted Pnr target genes, NES-values are given in the second column. B. GO-term enrichment 
analysis of all predicted Pnr target genes are enriched in processes like signal transduction, growth, cell cycle but 
also in more specific terms like compound eye development.    
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Supplementary Figure 13. Gene locus of wg and wnt6. The grey tracks show the depth graph of the ATAC-seq 
dataset at 96h AEL. The grey bars are significantly called peaks at three timepoints (72h AEL – light grey, 96h AEL 
– grey, 120h AEL – dark grey). The red bar depicts the wg-enhancer region containing two conserved GATA motifs, 
which are though not activated by Pnr to drive expression in the peripodial epithelium.  

  



Chapter II - Variation in a pleiotropic regulatory module drives evolution of head shape and 
eye size in Drosophila 

- 154 - 
 

 

Supplementary Figure 14. A. Expression dynamics of the ush transcript in D. melanogaster (red) and D. 
mauritiana (blue). B. Overlap of pnr expression pattern visualized by pnrGAL4>2YFP line and Ush protein location, 
detected with an α-Ush antibody. The two signals overlap in the dorsal part of the developing eye-antennal disc. 
C. Knock-down of ush using the VT042374 driver line and UAS-ushRNAi. The head cuticle shows irregularities 
with loss of the posterior vertical bristles C’. Overexpression of ush using the VT042374 driver line and UAS-
ush14IIA line. As the knock-down of ush, upregulation affects the structure of the head cuticle and leads to an 
overgrowth of the occipital structures. Additionally, the bristle patterns are affected. The posterior vertical 
bristles as well as the bristles surrounding the eye area are lost.  
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Supplementary Figure 15. A. Pnr protein location (detected with an α-Pnr antibody) in the developing eye-
antennal disc at 120h AEL in D. melanogaster. A’. Vertical section of the same disc as depicted in A along the red 
line showing Pnr antibody staining. Pnr is expressed in the peripodial epithelium and in marginal cells reaching 
into the disc proper. The intensity of the Pnr signal is lower in the future ocelli region of disc. A’’. Vertical section 
of the same disc as in A along the red line showing the cell nuclei using DAPI staining. B. Pnr protein location 
(detected with an α-Pnr antibody) in the same disc as in B. B’. Vertical section of the same disc as depicted in B 
along the red line showing Pnr antibody staining. Pnr is expressed in the peripodial epithelium and in the marginal 
cells of the disc proper. B’’. Vertical section of the same disc as in B along the red line showing the cell nuclei 
using DAPI staining. C-D. Lineage of pnr-expressing cells in the developing eye-antennal disc. C-C’’’. pnr>GFP 
expression can be detected in the margin cells (A’’) of the disc proper. Eyeless expression is shown in red (A and 
A’), pnr-GFP in green. The pnr-lineage shows (in blue) that a view cells that were initially pnr-expressing, are 
forming the dorsal-most cells of the developing retina (A’’’). D-D’’’. pnr>GFP and the cells of the pnr-lineage in 
the peripodial membrane of the same disc as in A. D. Overlap of pnr>GFP cells (green) and the pnr-lineage in 
blue. Eyeless cannot be detected in the disc proper (D’). The pnr-driver line drives expression of GFP in the dorsal 
most region of the developing eye-antennal disc (D’’). Cells that initially expressed pnr cover the complete dorsal 
lineage of the eye-antennal disc including the retina (D’’’). 
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Supplementary Figure 16. A. Ush protein location (detected with an α-Ush antibody) in the developing eye-
antennal disc at 120h AEL in D. melanogaster. A’. Vertical section of the same disc as depicted in A along the red 
line showing Ush antibody staining. Ush is expressed in the peripodial epithelium. A’’. Vertical section of the 
same disc as in B along the red line showing the cell nuclei using DAPI staining. B. Ush protein location (detected 
with an α-Ush antibody) in the same disc as in A. B’. Vertical section of the same disc as depicted in B along the 
red line showing Ush antibody staining. Ush is expressed in the peripodial epithelium and in marginal cells 
reaching into the disc proper. B’’. Vertical section of the same disc as in B along the red line showing the cell 
nuclei using DAPI staining. 
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Supplementary Figure 17. pnr locus showing two isoforms, namely pnrA (FBtr0083221) and pnrB (FBtr0083220). 
The grey track shows the ATAC-seq data at 96h AEL represented as a depth graph. The cyan bar represents the 
2kb DNA fragment that controls expression of GAL4 of the VT042374 driver line. It overlaps with two open-
chromatin peaks, which are potential regulatory regions for the expression of pnr in the eye-antennal disc. 
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Supplementary Figure 18. A. oc-GAL4>UAS-GFP (StingerII lline). A’. Vertical section along the red line in the same 
disc as in A showing GFP expression in a few cells of the disc proper and in the peripodial epithelium. B. Pnr 
location in D. melanogaster WT eye-antennal disc at 120h AEL, detected with an α-Pnr antibody B’. Ush location 
in D. melanogaster WT eye-antennal disc at 120h AEL. C. Overexpression of pnr using the oc-GAL4 driver line 
leads to a stronger antibody signal in the future oc-region of the developing disc. C’. A slight upregulation of Ush 
signal can be detected in the future oc-region of the developing disc, upon upregulation of pnr using the oc-GAL4 
driver line. White dotted lines mark the border between stronger antibody signals were pnr is overexpressed and 
weaker endogenous expression. D. Upon knock-down of pnr using the oc-GAL4 driver line, Pnr antibody staining 
is lost in the future oc-region. D’. Upon knock-down of pnr using the oc-GAL4 driver line, Ush antibody staining 
is lost in the future ocelli-region. Note that the dorsal part of the eye-antennal disc is folded in this picture. White 
dotted lines mark the border where antibody signal still can be detected and where it is lost, due to pnr RNAi.  
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Supplementary Figure 19.  Principle component analysis of dorsal head shapes. Shown are PC1 against PC2. Red 
and orange clouds represent the ‘WT-like’ head shapes (D. melanogaster in orange and D. mauritiana in red). 
Overexpression of pnr is represented in pink. The blue empty circles represent knock-down of pnr, with a weak 
effector line in dark blue and a strong effector RNAi line in light blue. The dotted lined circles represent head 
shapes of the parental UAS- and GAL4 fly lines, that were used to set up the crosses for overexpression and 
knock-down of pnr. 
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Supplementary Figure 20. A-D. Dorsal-most view of adult heads of D. melanogaster and D. mauritiana WT flies, 
VT042374>pnr and VT042374>pnrRNAi2 flies. The white dotted line represents the occipital region, showing the 
variation in this structure in the different lines: A: VT042374>pnr; overexpression of pnr. B. VT042374>pnrRNAi2 
knock-down of pnr. C. D. melanogaster D. D. mauritiana. E. Mean head shapes of D. melanogaster and D. 
mauritiana using 64 landmarks (instead of 57) including the occipital region. Discriminant function analysis clearly 
reveals the convex form of this region in D. mauritiana (see black arrowhead). F-F’’. pnr-expression in developing 
pupal head structures. Cells marked with pnr>GFP are accumulating in the future occipital region (green), right 
behind the developing ocelli (red), and the head region where the two discs are fusing.  D. The y-rescued area 
representing the pnr-domain, moves towards the occipital region (black arrows) in the adult Drosophila head. 
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Supplementary Material Figure 1. A. Ush protein location in the developing Drosophila wing disc, detected with 
the newly generated α-Ush antibody. The regions where Ush can be detected is reminiscent of the region where 
ush mRNA was detected using in-situ hybridization in (Tomoyasu et al., 2000) (see white and black arrows). B. 
Ush protein location in the developing Drosophila embryo at ~stage 9 and ~stage 13, detected with an α-Ush 
antibody. 
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4.7. Supplementary Tables 

Supplementary Table 19. List of putative Pnr target genes. 

FBgn GeneSymbol FBgn GeneSymbol FBgn GeneSymbol FBgn GeneSymbol 

FBgn0027786 Mtch FBgn0015795 Rab7 FBgn0030610 CG9065 FBgn0004167 kst 

FBgn0016984 sktl FBgn0264785 Hph FBgn0012051 CalpA FBgn0041188 Atx2 

FBgn0053111 CG33111 FBgn0052423 shep FBgn0032901 sky FBgn0261270 SelD 

FBgn0086856 CG11555 FBgn0011586 e(r) FBgn0029840 raptor FBgn0263005 CG43313 

FBgn0038834 RpS30 FBgn0022029 l(2)k01209 FBgn0038890 CG7956 FBgn0032988 Tif-IA 

FBgn0266570 NO66 FBgn0040212 Dhap-at FBgn0023519 mRpL16 FBgn0039633 CG11873 

FBgn0038504 Sur-8 FBgn0011817 nmo FBgn0004876 cdi FBgn0044020 Roc2 

FBgn0037358 elm FBgn0014020 Rho1 FBgn0083968 CG34132 FBgn0037363 Atg17 

FBgn0046704 Liprin-alpha FBgn0000611 exd FBgn0031310 Vps29 FBgn0030341 p24-1 

FBgn0036381 CG8745 FBgn0033649 pyr FBgn0261574 kug FBgn0015799 Rbf 

FBgn0015279 Pi3K92E FBgn0263144 bin3 FBgn0030396 CG2556 FBgn0020261 pcm 

FBgn0003660 Syb FBgn0038191 CG9925 FBgn0031174 CG1486 FBgn0027597 CG17712 

FBgn0029662 CG12206 FBgn0028484 Ack FBgn0003557 Su(dx) FBgn0032633 Lrch 

FBgn0260748 CG5004 FBgn0000405 CycB FBgn0015789 Rab10 FBgn0038787 CG4360 

FBgn0026418 Hsc70Cb FBgn0005671 Vha55 FBgn0039929 CG11076 FBgn0051698 CG31698 

FBgn0029976 snz FBgn0261538 CG42662 FBgn0061198 HSPC300 FBgn0035989 CG3967 

FBgn0027342 fz4 FBgn0037696 GstZ1 FBgn0000017 Abl FBgn0003205 Ras85D 

FBgn0283477 SF2 FBgn0052479 Usp10 FBgn0033340 CG13751 FBgn0040056 CG17698 

FBgn0030502 tth FBgn0032197 CG5694 FBgn0003371 sgg FBgn0036970 Spn77Bc 

FBgn0025574 Pli FBgn0034091 mrj FBgn0005659 Ets98B FBgn0036257 RhoGAP68F 

FBgn0026533 Dek FBgn0039158 TBC1d7 FBgn0037906 PGRP-LB FBgn0031850 Tsp 

FBgn0015791 Rab14 FBgn0034436 CG11961 FBgn0030030 CG1636 FBgn0031609 CG15443 

FBgn0035414 CG14965 FBgn0026206 mei-P26 FBgn0030503 Tango2 FBgn0034503 MED8 

FBgn0029944 Dok FBgn0000711 flw FBgn0052529 Hers FBgn0038551 Odj 

FBgn0037551 Arl8 FBgn0040087 p115 FBgn0263216 CG43386 FBgn0002715 mei-S332 

FBgn0086757 cbs FBgn0004837 Su(H) FBgn0037846 CG6574 FBgn0259176 bun 

FBgn0263603 Zn72D FBgn0261524 lic FBgn0022787 Hel89B FBgn0000183 BicD 

FBgn0050122 CG30122 FBgn0004888 Scsalpha1 FBgn0026196 nop5 FBgn0023143 Uba1 

FBgn0035088 CG3776 FBgn0030686 mRpL3 FBgn0002645 Map205 FBgn0028509 CenG1A 

FBgn0261609 eIF2alpha FBgn0029689 CG6428 FBgn0035121 Tudor-SN FBgn0250843 Prosalpha6 

FBgn0053156 CG33156 FBgn0030873 CG15814 FBgn0264712 CG1172 FBgn0262117 IntS3 

FBgn0030616 RpL37a FBgn0036028 CG16717 FBgn0002354 l(3)87Df FBgn0025936 Eph 

FBgn0027866 CG9776 FBgn0039233 CG7006 FBgn0015331 abs FBgn0001138 grn 

FBgn0035540 Syx17 FBgn0267849 Syx7 FBgn0030581 CG14408 FBgn0000286 Cf2 

FBgn0011592 fra FBgn0004370 Ptp10D FBgn0023212 EloB FBgn0032817 CG10631 

FBgn0025864 Crag FBgn0263352 Unr FBgn0000179 bi FBgn0027532 CG7139 

FBgn0037978 KLHL18 FBgn0020279 lig FBgn0037082 CG5664 FBgn0031988 CG8668 

FBgn0011604 Iswi FBgn0027553 NELF-B FBgn0038156 side-IV FBgn0053653 Cadps 

FBgn0014879 Set FBgn0034194 CG15611 FBgn0004177 mts FBgn0038454 CG10324 

FBgn0031253 CG11885 FBgn0033463 CG1513 FBgn0021874 Nle FBgn0035157 CG13894 

FBgn0016977 spen FBgn0038143 CG9813 FBgn0044826 Pak3 FBgn0028984 Spn88Ea 

FBgn0037918 CG6791 FBgn0032725 Nedd8 FBgn0029504 CHES-1-like FBgn0038662 Mpc1 
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FBgn0001087 g FBgn0039140 Miro FBgn0024734 PRL-1 FBgn0031769 CG9135 

FBgn0041087 wun2 FBgn0032482 Pect FBgn0000015 Abd-B FBgn0040344 CG3711 

FBgn0039641 CG14511 FBgn0024314 Plap FBgn0029801 CG15771 FBgn0017581 Lk6 

FBgn0031263 Tspo FBgn0039266 CG11791 FBgn0004395 unk FBgn0002774 mle 

FBgn0003317 sax FBgn0052177 Ndfip FBgn0036926 CG7646 FBgn0030435 CG4645 

FBgn0061476 Zwilch FBgn0002973 numb FBgn0052708 CG32708 FBgn0001218 Hsc70-3 

FBgn0003447 sn FBgn0031474 CG2991 FBgn0038947 Sar1 FBgn0041706 CG3253 

FBgn0259202 CG42306 FBgn0032614 CG13284 FBgn0259113 
DNApol-
alpha180 

FBgn0004587 B52 

FBgn0039068 CG13827 FBgn0002643 mam FBgn0027872 rdgBbeta FBgn0001995 mRpL4 

FBgn0002775 msl-3 FBgn0039654 Brd8 FBgn0035159 CG13896 FBgn0016131 Cdk4 

FBgn0020653 Trxr-1 FBgn0033229 CG12822 FBgn0261550 CG42668 FBgn0003423 slgA 

FBgn0037710 CG9393 FBgn0038928 Fadd FBgn0026375 RhoGAPp190 FBgn0030963 CG7101 

FBgn0002431 hyd FBgn0031023 CG14200 FBgn0030554 CG1434 FBgn0264089 sli 

FBgn0015037 Cyp4p1 FBgn0031143 CG1532 FBgn0250838 roh FBgn0039773 CG2224 

FBgn0261986 RASSF8 FBgn0005558 ey FBgn0051151 wge FBgn0030243 CG2186 

FBgn0015477 Rme-8 FBgn0085370 Pde11 FBgn0013272 Gp150 FBgn0003231 ref(2)P 

FBgn0038981 CG5346 FBgn0038053 CG18549 FBgn0028688 Rpn7 FBgn0031053 CG14223 

FBgn0038870 Oga FBgn0039764 CG15535 FBgn0033762 ZnT49B FBgn0031768 CG12393 

FBgn0010303 hep FBgn0040283 SMC1 FBgn0015774 NetB FBgn0040237 bor 

FBgn0039508 CG3368 FBgn0040660 CG13551 FBgn0027055 CSN3 FBgn0027779 VhaSFD 

FBgn0024889 Kap-alpha1 FBgn0031992 Acbp1 FBgn0016693 Past1 FBgn0267252 Ggamma30A 

FBgn0050338 CG30338 FBgn0262733 Src64B FBgn0037188 CG7369 FBgn0039737 CG7920 

FBgn0036890 CG9368 FBgn0051126 CG31126 FBgn0037021 CG11399 FBgn0022764 Sin3A 

FBgn0021895 ytr FBgn0051915 CG31915 FBgn0000536 eas FBgn0035094 CG9380 

FBgn0031118 RhoGAP19D FBgn0035449 CG14971 FBgn0041111 lilli FBgn0262517 Ltn1 

FBgn0015622 Cnx99A FBgn0003002 opa FBgn0261244 inaE FBgn0037841 CG4565 

FBgn0039904 Hcf FBgn0037468 CG1943 FBgn0086359 Invadolysin FBgn0039226 Ude 

FBgn0015229 glec FBgn0029887 CG3198 FBgn0033052 SCAP FBgn0038578 MED17 

FBgn0003525 stg FBgn0000319 Chc FBgn0037900 CG5276 FBgn0032223 GATAd 

FBgn0038745 CG4538 FBgn0036913 Usp32 FBgn0039938 Sox102F FBgn0263258 chas 

FBgn0026257 cav FBgn0033961 ND-B15 FBgn0001105 Gbeta13F FBgn0260962 pic 

FBgn0013954 Fkbp12 FBgn0003301 rut FBgn0003415 skd FBgn0038256 CG7530 

FBgn0030420 CG12717 FBgn0033089 CG17266 FBgn0033921 tej FBgn0032919 CG9253 

FBgn0086784 stmA FBgn0051075 CG31075 FBgn0283473 S6KL FBgn0038826 Syp 

FBgn0013305 Nmda1 FBgn0263993 CG43736 FBgn0030082 HP1b FBgn0004657 mys 

FBgn0026373 RpII33 FBgn0037669 Ibf2 FBgn0034674 CG9304 FBgn0028476 Usp1 

FBgn0260632 dl FBgn0262656 Myc FBgn0034853 Ice1 FBgn0030572 mRpS25 

FBgn0034573 CG3295 FBgn0034878 pita FBgn0030786 mRpL22 FBgn0051436 CG31436 

FBgn0262614 pyd FBgn0037012 Rcd2 FBgn0023529 CG2918 FBgn0038953 CG18596 

FBgn0039160 CG5510 FBgn0032943 Tsp39D FBgn0030478 CG1640 FBgn0266696 Svil 

FBgn0085377 CG34348 FBgn0041342 Pcyt1 FBgn0030744 CG9992 FBgn0265630 sno 

FBgn0052133 Ptip FBgn0028375 heix FBgn0283499 InR FBgn0020655 ArfGAP1 

FBgn0027280 l(1)G0193 FBgn0259749 mmy FBgn0038686 CG5555 FBgn0265434 zip 

FBgn0001124 Got1 FBgn0087013 Karybeta3 FBgn0261799 dsx-c73A FBgn0027621 Pfrx 

FBgn0283724 Girdin FBgn0031779 CG9175 FBgn0004401 Pep FBgn0035824 CG8281 

FBgn0028662 VhaPPA1-1 FBgn0024973 CG2701 FBgn0026179 siz FBgn0033127 Tsp42Ef 
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FBgn0034997 CG3376 FBgn0029820 CG16721 FBgn0036697 rogdi FBgn0010621 CCT5 

FBgn0033770 wuc FBgn0037614 TMEM216 FBgn0004903 Rb97D FBgn0261439 SdhA 

FBgn0264307 orb2 FBgn0030403 CG1824 FBgn0003274 RpLP2 FBgn0260970 Ubr3 

FBgn0031449 CG31689 FBgn0000810 fs(1)K10 FBgn0003396 shn FBgn0025839 ND-B14.5A 

FBgn0038659 EndoA FBgn0030505 NFAT FBgn0034657 LBR FBgn0035357 MEP-1 

FBgn0039155 Kal1 FBgn0035907 GstO1 FBgn0030973 CG7332 FBgn0039966 Rab21 

FBgn0028897 CG4935 FBgn0039215 CG6695 FBgn0038877 CG3308 FBgn0031505 ND-B14.5B 

FBgn0031574 TTLL4B FBgn0261647 Axud1 FBgn0005648 Pabp2 FBgn0284250 Oaz 

FBgn0028541 TM9SF4 FBgn0028695 Rpn1 FBgn0003134 Pp1alpha-96A FBgn0038471 CG5220 

FBgn0013983 imd FBgn0037944 CG6923 FBgn0025394 inc FBgn0003165 pum 

FBgn0052141 saturn FBgn0037874 Tctp FBgn0033951 CG10139 FBgn0011606 Klp3A 

FBgn0031549 Spindly FBgn0010265 RpS13 FBgn0030956 CG18259 FBgn0028968 gammaCOP 

FBgn0004913 Gnf1 FBgn0020309 crol FBgn0015623 Cpr FBgn0267791 HnRNP-K 

FBgn0031183 CG14621 FBgn0016685 Nlp FBgn0034914 CG5554 FBgn0027492 wdb 

FBgn0002590 RpS5a FBgn0028408 Drep2 FBgn0031682 CG5828 FBgn0261823 Asx 

FBgn0266084 Fhos FBgn0024754 Flo1 FBgn0259876 Cap-G FBgn0031681 Pgant5 

FBgn0031161 CG15445 FBgn0265192 Snp FBgn0030055 CG12772 FBgn0029903 pod1 

FBgn0032821 CdGAPr FBgn0002873 mud FBgn0043903 dome FBgn0022153 l(2)k05819 

FBgn0036373 Tgi FBgn0051683 CG31683 FBgn0030930 Pgant7 FBgn0029708 CG3556 

FBgn0029709 CHOp24 FBgn0061200 Nup153 FBgn0086361 alph FBgn0025741 PlexA 

FBgn0010348 Arf79F FBgn0039213 atl FBgn0010488 NAT1 FBgn0000479 dnc 

FBgn0051992 gw FBgn0035909 ergic53 FBgn0002638 Rcc1 FBgn0017567 ND-23 

FBgn0260780 wisp FBgn0025185 az2 FBgn0265784 CrebB FBgn0027343 fz3 

FBgn0001169 H FBgn0031250 Ent1 FBgn0265052 St3 FBgn0011272 RpL13 

FBgn0032656 CG5674 FBgn0010408 RpS9 FBgn0033673 CG8298 FBgn0000404 CycA 

FBgn0037912 sea FBgn0031144 CG1529 FBgn0003159 CG2841 FBgn0001941 ifc 

FBgn0015024 CkIalpha FBgn0039705 Atg16 FBgn0039590 CG10011 FBgn0025724 beta'COP 

FBgn0013749 Arf102F FBgn0039851 mey FBgn0028360 Cdc7 FBgn0036974 eRF1 

FBgn0028717 Lnk FBgn0036762 CG7430 FBgn0034528 CG11180 FBgn0035689 CG7376 

FBgn0265140 Meltrin FBgn0033154 CG1850 FBgn0033199 CG17985 FBgn0265298 SC35 

FBgn0263987 spoon FBgn0010198 RpS15Aa FBgn0010113 hdc FBgn0034240 MESR4 

FBgn0022213 Cse1 FBgn0000473 Cyp6a2 FBgn0037238 CG1090 FBgn0024555 flfl 

FBgn0030693 CG8974 FBgn0015320 Ubc2 FBgn0039635 Pdhb FBgn0037073 Tsr1 

FBgn0039026 CG7029 FBgn0022960 vimar FBgn0051989 Cap-D3 FBgn0037234 CG9795 

FBgn0039338 XNP FBgn0034570 CG10543 FBgn0025382 Rab27 FBgn0028331 l(1)G0289 

FBgn0023130 a6 FBgn0004907 14-3-3zeta FBgn0053469 CG33469 FBgn0030592 CG9514 

FBgn0037354 CG12171 FBgn0052280 CG32280 FBgn0263392 Tet FBgn0027339 jim 

FBgn0035558 CG11357 FBgn0264975 Nrg FBgn0039136 CG5902 FBgn0025335 Cpes 

FBgn0025681 CG3558 FBgn0015270 Orc2 FBgn0028425 JhI-21 FBgn0032029 CG17292 

FBgn0001075 ft FBgn0041585 olf186-F FBgn0011656 Mef2 FBgn0283657 Tlk 

FBgn0263231 bel FBgn0034742 CG4294 FBgn0029679 CG2901 FBgn0086694 Bre1 

FBgn0034230 CG4853 FBgn0001269 inv FBgn0005655 PCNA FBgn0031037 CG14207 

FBgn0024184 unc-4 FBgn0038197 foxo FBgn0003139 PpV FBgn0036828 CG6841 

FBgn0024733 RpL10 FBgn0031145 Ntf-2 FBgn0039665 CG2310 FBgn0028693 Rpn12 

FBgn0002044 swm FBgn0015218 eIF4E1 FBgn0039908 Asator FBgn0032006 Pvr 

FBgn0038320 Sra-1 FBgn0035046 ND-19 FBgn0032363 Dlg5 FBgn0041186 Slbp 

FBgn0261885 osa FBgn0267912 CanA-14F FBgn0264294 Cyt-b5 FBgn0032475 Sfmbt 
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FBgn0031717 Oscillin FBgn0250786 Chd1 FBgn0003391 shg FBgn0032339 Wdr59 

FBgn0034313 CG5726 FBgn0025830 IntS8 FBgn0000719 fog FBgn0036566 ClC-c 

FBgn0020412 JIL-1 FBgn0283536 Vha13 FBgn0003042 Pc FBgn0024909 Taf7 

FBgn0021760 chb FBgn0003701 thr FBgn0003189 r FBgn0050372 Asap 

FBgn0085693 CG41562 FBgn0029006 Smurf FBgn0052212 CG32212 FBgn0039920 CG11360 

FBgn0001139 gro FBgn0010583 dock FBgn0031883 Caper FBgn0024251 bbx 

FBgn0036449 bmm FBgn0035452 CG10359 FBgn0029878 Pat1 FBgn0038755 Hs6st 

FBgn0030349 CG10353 FBgn0260858 Ykt6 FBgn0030049 Trf4-1 FBgn0029095 aru 

FBgn0038350 AOX4 FBgn0262114 RanBPM FBgn0262734 eIF4H1 FBgn0032075 Tsp29Fb 

FBgn0029990 CG2233 FBgn0037282 CG14657 FBgn0028394 CG17834 FBgn0033925 CG8617 

FBgn0001301 kel FBgn0040208 Kat60 FBgn0261268 Cul3 FBgn0032848 nesd 

FBgn0004655 wapl FBgn0036476 sstn FBgn0051108 TTLL5 FBgn0003716 tkv 

FBgn0030366 Usp7 FBgn0029825 CG12728 FBgn0033715 CG8490 FBgn0036240 CG6928 

FBgn0011754 PhKgamma FBgn0003731 Egfr FBgn0042134 Capr FBgn0036964 FRG1 

FBgn0037092 M6 FBgn0053181 CG33181 FBgn0031314 IntS14 FBgn0010620 CG10939 

FBgn0037549 CG7878 FBgn0260462 CG12163 FBgn0034418 CG15118 FBgn0085430 CG34401 

FBgn0283741 prage FBgn0000581 E(Pc) FBgn0034488 Hacl FBgn0052756 CG32756 

FBgn0037561 CG9630 FBgn0029685 CG2938 FBgn0261444 CG3638 FBgn0000261 Cat 

FBgn0038853 RhoGAP93B FBgn0015790 Rab11 FBgn0260400 elav FBgn0031881 MME1 

FBgn0004959 phm FBgn0083984 CG34148 FBgn0041174 Vhl FBgn0001189 hfw 

FBgn0029629 eIF3g1 FBgn0000394 cv FBgn0037814 CG6325 FBgn0035533 Cip4 

FBgn0020440 Fak FBgn0038976 Pfdn5 FBgn0037391 CG2017 FBgn0035120 wac 

FBgn0030996 CG14194 FBgn0039852 nyo FBgn0034854 Golgin245 FBgn0024957 Irp-1B 

FBgn0023458 Rbcn-3A FBgn0036846 MESR6 FBgn0039065 Rad60 FBgn0033519 CG11825 

FBgn0034763 RYBP FBgn0265082 Cdep FBgn0031036 CG14220 FBgn0019637 Atu 

FBgn0028506 CG4455 FBgn0004864 hop FBgn0261019 moi FBgn0029958 Pdp 

FBgn0031492 CG3542 FBgn0267326 Ntl FBgn0027932 Akap200 FBgn0034225 veil 

FBgn0035148 CG3402 FBgn0052831 CG33695 FBgn0028494 CG6424 FBgn0004397 Vinc 

FBgn0028474 CG4119 FBgn0261705 CG42741 FBgn0035001 Slik FBgn0019968 Khc-73 

FBgn0030912 CG6023 FBgn0083167 Neb-cGP FBgn0053293 CG33293 FBgn0037138 P5CDh1 

FBgn0003117 pnr FBgn0015524 otp FBgn0260789 mxc FBgn0266111 ana3 

FBgn0033774 CG12374 FBgn0010328 woc FBgn0014388 sty FBgn0267390 dop 

FBgn0020249 stck FBgn0262127 kibra FBgn0263705 Myo10A FBgn0052758 CG32758 

FBgn0259168 mnb FBgn0025615 Torsin FBgn0032444 CCT4 FBgn0035890 CG13667 

FBgn0265003 koi FBgn0025628 CG4199 FBgn0021856 l(2)k14505 FBgn0037218 aux 

FBgn0262743 Fs(2)Ket FBgn0026259 eIF5B FBgn0052767 CG32767 FBgn0034708 Vps35 

FBgn0001978 stc FBgn0031126 Cyp6v1 FBgn0030869 Socs16D FBgn0085220 Ufm1 

FBgn0052473 CG32473 FBgn0031488 CG17265 FBgn0261722 fwe FBgn0025637 SkpA 

FBgn0025455 CycT FBgn0032341 Reps FBgn0086906 sls FBgn0037525 CG17816 

FBgn0067622 LSm-4 FBgn0031044 MKP-4 FBgn0035713 velo FBgn0262740 Evi5 

FBgn0004103 Pp1-87B FBgn0000283 Cp190 FBgn0032899 CG9338 FBgn0051184 LSm3 

FBgn0038737 CG11447 FBgn0034061 Ufc1 FBgn0017418 ari-1 FBgn0026376 Rgl 

FBgn0003310 S FBgn0039914 mav FBgn0025693 ZnT41F FBgn0021825 DCTN2-p50 

FBgn0086368 tw FBgn0035644 
DNApol-

epsilon58 
FBgn0040309 Jafrac1 FBgn0015772 Nak 

FBgn0039265 CG11790 FBgn0039733 CG11504 FBgn0037892 mRpL40 FBgn0015379 dod 

FBgn0041604 dlp FBgn0261570 CG42684 FBgn0015754 Lis-1 FBgn0263108 BtbVII 



Chapter II - Variation in a pleiotropic regulatory module drives evolution of head shape and 
eye size in Drosophila 

- 166 - 
 

FBgn0025885 Inos FBgn0033033 scaf FBgn0259481 Mob2 FBgn0019925 Surf4 

FBgn0033259 CG11210 FBgn0260442 rhea FBgn0033766 Nup188 FBgn0263257 Cngl 

FBgn0038769 CG10889 FBgn0029929 CG4593 FBgn0035432 ZnT63C FBgn0001248 Idh 

FBgn0035213 CG2199 FBgn0025633 CG13366 FBgn0000259 CkIIbeta FBgn0039664 CG2006 

FBgn0035617 l(3)psg2 FBgn0030327 FucT6 FBgn0043900 pygo FBgn0087035 AGO2 

FBgn0036008 CG3408 FBgn0030121 Cfp1 FBgn0010531 Ccs FBgn0033005 CG3107 

FBgn0035771 Sec63 FBgn0027951 MTA1-like FBgn0010808 Chchd3 FBgn0033480 mRpL42 

FBgn0013987 MAPk-Ak2 FBgn0020312 Tmtc3 FBgn0002542 lds FBgn0031540 Pif1 

FBgn0032833 COX4 FBgn0024556 mEFTu1 FBgn0265193 Atf-2 FBgn0036340 SRm160 

FBgn0053265 Muc68E FBgn0015621 Clp FBgn0011224 heph FBgn0035388 CG2162 

FBgn0003891 tud FBgn0265101 Sgt1 FBgn0052816 CG32816 FBgn0016926 Pino 

FBgn0030218 CG1628 FBgn0022699 D19B FBgn0260392 CG42518 FBgn0052772 CG32772 

FBgn0035574 RhoGEF64C FBgn0066084 RpL41 FBgn0015269 Nf1 FBgn0035630 CG10576 

FBgn0028687 Rpt1 FBgn0052425 CG32425 FBgn0263395 hppy FBgn0064766 CG7600 

FBgn0033844 bbc FBgn0260450 CalpC FBgn0001491 l(1)10Bb FBgn0039680 Cap-D2 

FBgn0016917 Stat92E FBgn0262126 Sec24CD FBgn0003392 shi FBgn0035356 CG16986 

FBgn0261573 CoRest FBgn0036309 Hip1 FBgn0029763 Usp16-45 FBgn0027066 Eb1 

FBgn0002283 l(3)73Ah FBgn0263237 Cdk7 FBgn0034049 bdg FBgn0034527 CG9945 

FBgn0034925 CG5339 FBgn0085451 htk FBgn0027865 Tsp96F FBgn0000289 cg 

FBgn0032751 CG17343 FBgn0086372 lap FBgn0011336 Stt3B FBgn0034500 CG11200 

FBgn0041789 Pax FBgn0045038 Proc FBgn0001316 klar FBgn0266717 Bruce 

FBgn0031150 bves FBgn0052296 Mrtf FBgn0034542 Fem-1 FBgn0031874 CG13775 

FBgn0024998 CG2685 FBgn0040251 Ugt302K1 FBgn0261934 dikar FBgn0062413 Ctr1A 

FBgn0037998 Cog1 FBgn0043884 mask FBgn0050389 CG30389 FBgn0030141 Gga 

FBgn0026379 Pten FBgn0261477 slim FBgn0038269 Rrp6 FBgn0030809 Ubr1 

FBgn0035640 mad2 FBgn0038145 Droj2 FBgn0262527 nsl1 FBgn0003575 su(sable) 

FBgn0031635 tank FBgn0039741 CG7943 FBgn0283500 Sac1 FBgn0035480 CG14984 

FBgn0000617 e(y)1 FBgn0034504 CG8929 FBgn0003079 Raf FBgn0032050 CG13096 

FBgn0263968 nonC FBgn0051064 CG31064 FBgn0261456 hpo FBgn0266525 CG45092 

FBgn0040493 grsm FBgn0005585 Calr FBgn0260743 GC1 FBgn0024846 p38b 

FBgn0036575 CG5157 FBgn0015371 chn FBgn0005427 ewg FBgn0031575 Cep97 

FBgn0261599 RpS29 FBgn0026679 IntS4 FBgn0011760 ctp FBgn0035024 CG11414 

FBgn0035942 ValRS-m FBgn0000635 Fas2 FBgn0036052 CG10809 FBgn0266917 Sf3a1 

FBgn0016983 smid FBgn0037215 beta-Man FBgn0052672 Atg8a FBgn0026149 BCL7-like 

FBgn0053062 CG33062 FBgn0027505 Rab3-GAP FBgn0052264 CG32264 FBgn0243486 rdo 

FBgn0035719 tow FBgn0024432 Dlc90F FBgn0035087 CG2765 FBgn0015737 Hmu 

FBgn0037720 CG8312 FBgn0003204 ras FBgn0052451 SPoCk FBgn0086676 spin 

FBgn0036376 Liprin-beta FBgn0039857 RpL6 FBgn0028686 Rpt3 FBgn0039293 Alg9 

FBgn0051324 CG31324 FBgn0039209 REPTOR FBgn0003360 sesB FBgn0011573 Cdc37 

FBgn0022382 Pka-R2 FBgn0037270 eIF3f1 FBgn0026316 Ubc10 FBgn0051457 CG31457 

FBgn0004107 Cdk2 FBgn0040334 Tsp3A FBgn0261108 Atg13 FBgn0028916 CG33090 

FBgn0010497 dmGlut FBgn0003261 Rm62 FBgn0031090 Rab35 FBgn0032378 CycY 

FBgn0030674 CG8184 FBgn0001197 His2Av FBgn0030360 CG1806 FBgn0028689 Rpn6 

FBgn0004435 Galphaq FBgn0024811 Crk FBgn0083969 CG34133 FBgn0037702 CG8176 

FBgn0010288 Uch FBgn0267698 Pak FBgn0040239 bc10 FBgn0034067 CG8399 

FBgn0000625 eyg FBgn0051217 modSP FBgn0012037 Ance FBgn0026428 HDAC6 

FBgn0039620 wat FBgn0036932 CG14184 FBgn0033929 Tfb1 FBgn0039835 mRpL32 
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FBgn0045866 bai FBgn0030808 RhoGAP15B FBgn0036483 CG12316 FBgn0086855 CG17078 

FBgn0037135 CG7414 FBgn0002936 ninaA FBgn0259483 Mob4 FBgn0004652 fru 

FBgn0036341 Syx13 FBgn0028582 lqf FBgn0264075 tgo FBgn0020626 Osbp 

FBgn0030519 CG11151 FBgn0004870 bab1 FBgn0033261 udd FBgn0058191 CG40191 

FBgn0031736 CG11030 FBgn0024236 foi FBgn0038055 trus FBgn0011771 Hem 

FBgn0037911 CG10898 FBgn0031420 Atxn7 FBgn0019662 qm FBgn0039932 fuss 

FBgn0033757 muskelin FBgn0034728 rad50 FBgn0028504 CG12182 FBgn0000044 Act57B 

FBgn0035497 CG14995 FBgn0261954 east FBgn0025638 Roc1a FBgn0032886 CG9328 

FBgn0037440 CRAT FBgn0022349 CG1910 FBgn0261985 Ptpmeg FBgn0051279 CG31279 

FBgn0031320 CG5126 FBgn0026252 msk FBgn0029935 CG4615 FBgn0036058 CG6707 

FBgn0030753 rngo FBgn0039623 CG1951 FBgn0033668 exp FBgn0031374 Wdr62 

FBgn0024807 DIP1 FBgn0052262 CG32262 FBgn0040230 dbo FBgn0283468 slmb 

FBgn0263974 qin FBgn0000721 for FBgn0260653 serp FBgn0034735 CG4610 

FBgn0032330 Samuel FBgn0086704 stops FBgn0267347 squ FBgn0004875 enc 

FBgn0030114 CG17754 FBgn0037220 CG14641 FBgn0250830 CG12547 FBgn0038872 Nelf-A 

FBgn0267975 vib FBgn0028956 mthl3 FBgn0029849 Efr FBgn0037831 Cap-H2 

FBgn0037743 CG8412 FBgn0002921 Atpalpha FBgn0004050 z FBgn0035147 Gale 

FBgn0263106 DnaJ-1 FBgn0037680 pasi2 FBgn0011236 ken FBgn0030065 CG12075 

FBgn0001994 crp FBgn0031244 CG11601 FBgn0260659 CG42542 FBgn0035443 CG12010 

FBgn0012058 Cdc27 FBgn0051122 CG31122 FBgn0040238 Best1 FBgn0034722 Rtf1 

FBgn0037679 Aduk FBgn0035101 p130CAS FBgn0039487 gb FBgn0015396 jumu 

FBgn0025743 mbt FBgn0030648 CG6340 FBgn0000163 baz FBgn0030137 CG15317 

FBgn0034180 Ehbp1 FBgn0026160 tna FBgn0032774 CG17549 FBgn0030321 CG1703 

FBgn0027561 CG18659 FBgn0034475 Obp56h FBgn0261592 RpS6 FBgn0039668 Trc8 

FBgn0026879 CG13364 FBgn0265998 Doa FBgn0031873 Gas41 FBgn0035393 CG16753 

FBgn0259704 Nsun5 FBgn0016754 sba FBgn0036254 CG5645 FBgn0030089 AP-1gamma 

FBgn0032715 CG17597 FBgn0038956 CAH8 FBgn0266918 CG32486 FBgn0030354 Upf1 

FBgn0025639 Hmt4-20 FBgn0025463 Bap60 FBgn0051739 AspRS-m FBgn0035016 CG4612 

FBgn0032957 CG2225 FBgn0027497 Madm FBgn0034530 Rcd6 FBgn0036039 Naa60 

FBgn0050421 Usp15-31 FBgn0016694 Pdp1 FBgn0032815 CG10462 FBgn0033549 mms4 

FBgn0026250 eIF1A FBgn0032949 Lamp1 FBgn0026239 gukh FBgn0026086 Adar 

FBgn0028684 Rpt5 FBgn0038039 CG5196 FBgn0004654 Pgd FBgn0034918 Pym 

FBgn0035021 CG4622 FBgn0015278 Pi3K68D FBgn0283509 Phm FBgn0037856 Leash 

FBgn0046687 Tre1 FBgn0033100 CG3420 FBgn0260484 HIP FBgn0035270 CG13933 

FBgn0040964 CG18661 FBgn0005631 robo1 FBgn0053113 Rtnl1 FBgn0086613 Ino80 

FBgn0085481 CG34452 FBgn0036684 CG3764 FBgn0029893 CG14442 FBgn0028325 Pdha 

FBgn0027546 CG4766 FBgn0262872 milt FBgn0051957 CG31957 FBgn0034300 CG5098 

FBgn0053977 CG33977 FBgn0036402 CG6650 FBgn0086680 vvl FBgn0003227 rec 

FBgn0030217 CG2124 FBgn0029157 ssh FBgn0051158 Efa6 FBgn0266580 Gp210 

FBgn0024194 rasp FBgn0263006 SERCA FBgn0039858 CycG FBgn0001624 dlg1 

FBgn0044510 mRpS5 FBgn0284220 Top2 FBgn0003638 su(w[a]) FBgn0264078 Flo2 

FBgn0265623 Su(z)2 FBgn0032586 Tpr2 FBgn0036577 CG13073 FBgn0035049 Mmp1 

FBgn0015773 NetA FBgn0036249 CG11560 FBgn0284256 bsf FBgn0053531 Ddr 

FBgn0004854 B-H2 FBgn0037890 CG17734 FBgn0032600 BuGZ FBgn0003206 Ras64B 

FBgn0014133 bif FBgn0037439 CG10286 FBgn0039827 CG1544 FBgn0038146 CG9799 

FBgn0030269 CDK2AP1 FBgn0026313 X11L FBgn0036825 RpL26 FBgn0263855 BubR1 

FBgn0262738 norpA FBgn0039528 dsd FBgn0039600 CG1646 FBgn0038100 Paip2 
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FBgn0030240 CG2202 FBgn0027556 CG4928 FBgn0022985 qkr58E-2 FBgn0037336 CG2519 

FBgn0028380 fal FBgn0028579 phtf FBgn0011584 Trp1 FBgn0052204 CG32204 
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5. Chapter III - Regulatory Divergence in the Drosophila 

melanogaster subgroup 
 

The manuscript ‘Regulatory Divergence in the Drosophila melanogaster subgroup‘ is the result 

of a side project that is initially based on allele specific expression analysis (ASE) started by Dr. 

Torres-Oliva, M.  

My contributions for this manuscript includes the following parts: 

- Conceptualization of the project (together with Dr. Nico Ponsien) 

- Bioinformatics analyses (ATAC-seq) 

- Data interpretation (together with Dr. Nico Posnien) 

- Writing of manuscript draft  

- Visualization  

Contribution of other authors includes: 

- Dr. Torres-Oliva, M. and Dr. Almudi, I. generated the transcriptomic and ATAC-seq 

dataset. The Illumina sequencing was performed at the Transcriptome Analysis Lab 

(TAL) in Göttingen. 

- Data prepared by Dr. Torres-Oliva, M. include the differential expression (ASE) analysis 

of the parental and hybrid RNA-seq datasets and the allele specific expression analysis 

(ASE), presented in Figure 1B. She also kindly provided the tables with all genes and the 

corresponding divergence types, which underlie GO analysis, presented in Figure 1C.  

Status of the manuscript:  

In preparation for submission  
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5.1. Introduction 

In recent years it became clear that differences in gene expression levels contribute to 

a large extend to the diverse morphology of body plans that we can observe in the animal 

kingdom (e.g. (Carroll, 2005; Khaitovich et al., 2006; King and Wilson, 1975; Tautz, 2000)). The 

process of transcription i.e. gene expression must be tightly controlled to ensure the proper 

development and function of tissues and organs of an organism. Today, we have a very detailed 

understanding of transcriptional regulation that is at play on different levels. For instance, the 

interplay of transcription factors with co-factors and the accessibility of cis-regulatory regions, 

where these factors can bind to, represent central regulatory mechanisms (reviewed in 

(Buchberger et al., 2019)). But also, higher order chromatin structure (reviewed e.g. (Furlong 

and Levine, 2018) and post-translational processes, such as the action of regulatory RNA 

molecules (Bartel, 2018; Kittelmann and McGregor, 2019) work together to ensure time and 

tissue specific gene expression. Since evolutionary changes on each of these levels could cause 

natural variation in gene expression levels, the complexity of regulatory mechanisms 

contributes to the complications to pinpoint the exact cause of gene expression divergence 

between individuals and species (reviewed in (Buchberger et al., 2019)). The dissection of the 

molecular basis of gene expression differences and its impact on morphological evolution is 

further hampered by the polygenic nature of many phenotypes (Boyle et al., 2017; Mackay et 

al., 2009).  

The number of differentially expressed genes is highly correlated with the phylogenetic 

distance of populations or species (Khaitovich et al., 2006; Rifkin et al., 2003). Variation in gene 

expression results from mutations in the genome, which can either affect the regulatory region 

of the differentially expressed gene itself (i.e. cis-regulatory changes) or an upstream regulator 

of the gene (for instance a transcription factor) (i.e. trans-regulatory changes)(Wittkopp, 2005). 

Even though it is under debate, how much of the overall gene expression divergence is caused 

by cis- or trans-regulatory changes, it is clear that both contribute to evolutionary changes 

within populations, strains or species (Genissel et al., 2007; Hoekstra and Coyne, 2007; Stern 

and Orgogozo, 2008; Tautz, 2000). The general idea is though that cis-regulatory changes are 

the main cause for divergent expression, since a change in these parts of the locus would only 

affect the respective gene, whereas an upstream trans-regulatory change would have major 

pleiotropic effects on its many target genes (Carroll, 2005; Prud’homme et al., 2007; Wray, 
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2007, 2003). Interestingly, recent studies in various model organisms revealed that gene 

expression changes in cis and trans are context dependent, i.e. the respective tissue and 

environmental factors can affect the relative contribution of each divergence type (Duveau et 

al., 2017; Reuveni et al., 2018).  

Since mutations affecting gene expression are heritable, allele specific expression 

analyses (ASE) have been used to understand the molecular mechanisms of divergent gene 

expression. This approach takes advantage of the possibility to obtain viable offspring from 

crosses among closely related strains or species (Cowles et al., 2002; Wittkopp et al., 2004). 

Comparing the gene expression levels in closely related parental strains to the expression of 

the respective allele in their offspring, allows to classify the modes of differential gene 

expression in the parental into cis- and trans-regulatory changes. ASE allows to deduce the 

mode of expression changes for each expressed gene in parental species but cannot provide 

information about the detailed genetic causes that underlie the observed expression 

divergence. The combination of open chromatin datasets revealing potential regulatory regions 

and RNA-seq datasets, helps nowadays to better draw the links between changes in these cis-

regulatory regions and the resulting differences in gene expression (e.g. (Hughes et al., 2017; 

Rendeiro et al., 2016; Starks et al., 2019)). Nevertheless, a genome-wide understanding of how 

cis- and trans-regulatory changes can be recapitulated on the level of accessible chromatin 

regions is missing up to now. 

 To address this open question, we use three species, D. melanogaster, D. mauritiana 

and D. simulans to understand the evolution of gene expression divergence during head and 

eye development in the Drosophila melanogaster subgroup. The three species vary remarkably 

in their eye sizes and head shapes. Differences in eye size between D. melanogaster and D. 

mauritiana are mainly due to variation in ommatidia number, and differences in eye size 

between D. mauritiana and D. simulans result mainly from variation in ommatidia size (Posnien 

et al., 2012). Previous gene-expression studies using these three species have shown, that a 

plethora of genes is differentially expressed between D. melanogaster and D. mauritiana 

(Buchberger et al. in prep.) and D. mauritiana and D. simulans (Almudi et al. in prep.). However, 

the underlying mechanisms of this gene expression divergence are completely unknown 

We therefore performed ASE using the F1 hybrid generation of D. melanogaster x D. 

mauritiana and D. mauritiana x D. simulans to analyse the contribution of cis- and trans-
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regulatory changes. We further used a comparative ATAC-seq dataset to address the question 

how changes in the regulatory landscapes influence species-specific gene expression. We 

assessed and compared open chromatin regions between D. melanogaster, D. mauritiana and 

D. simulans in terms of differential cis-regulatory landscapes and sequence divergence and 

revealed that genes that were found to be differentially expressed due to cis-regulatory 

changes indeed exhibited a more divergent chromatin architecture. Additionally, orthologous 

regulatory sequences of cis-divergent genes showed a more pronounced sequence variation 

than regulatory regions of conserved genes or genes that are differentially expressed due to 

trans-changes. We suggest that both mechanisms contribute to cis-regulatory changes – 

namely differential accessibility of regulatory regions, but also sequence divergence in potential 

promoters or enhancers.  

5.2. Results 

5.2.1. Regulatory Divergence in the D. melanogaster subgroup 

To better understand the patterns of regulatory divergence in closely related Drosophila 

species, we obtained F1 hybrids of interspecific crosses between D. simulans and D. mauritiana 

and between D. melanogaster and D. mauritiana. The three species vary extensively in their 

adult head shapes ((Posnien et al., 2012), Figure 21A) and therefore provide an excellent model 

to understand how conserved GRNs evolve over time, being on the one hand tightly controlled 

to ensure proper organ development and function, and on the other hand flexible enough to 

allow evolution of size and shape of these structures. Since the adult head structures in 

Drosophila develop from two 2D larval epithelia, the eye-antennal discs (Haynie and Bryant, 

1986) and variation in adult morphologies arise from differences during development of the 

respective structures, we applied RNA-seq to mid L3 developing eye-antennal discs (96h after 

egg laying, (AEL)) of the three parental species and the two hybrid crosses (Figure 21A). We 

first determined the number of genes, differentially expressed between the parental species. 

Subsequently, we analysed differential expression of the parental alleles in the two hybrid 

datasets to assess the type of regulatory divergence for each gene. When a gene was 

differentially expressed in the parental species as well as their alleles in the hybrids, its 

expression diverged due to cis-regulatory changes in its own locus. Cis-regulatory changes can 

have two underlying causes. First, mutations in either promoter or enhancer regions can 

change the regulation of a gene via, for instance, affecting the binding of transcription factors 
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(e.g. (Prud’homme et al., 2006; Rogers et al., 2013)). Second, variation in the accessibility of 

such regulatory regions could alter gene regulation and hence gene expression (e.g. (Zhang and 

Borevitz, 2009)). If we found a gene to be differentially expressed between the parentals, but 

the two alleles in the hybrids were not, the gene expression in the parental species diverged 

due to upstream trans-regulatory changes. Trans-regulatory changes can arise due to 

nucleotide changes in the coding sequences (CDS) of an upstream regulator, but also due to 

cis-regulatory changes of an upstream transcription factor which changes the amount of 

available upstream regulators (Wittkopp, 2005). Genes that show neither significant differential 

expression between the parentals nor in the hybrid setting are considered conserved in 

expression. If genes with conserved expression levels in the parental species, showed 

differential allelic expression in the hybrids, we called the regulation type ’compensatory’.  

Comparing D. melanogaster and D. mauritiana, we found that most genes were 

conserved (71%, Figure 21B). Of the genes that showed divergent expression, most were 

differentially expressed due to variation in trans, i.e. due to variation in an upstream regulator 

(20%, Figure 21B). Only 5% of the differentially expressed genes showed regulatory divergence 

in cis (5% Figure 21B). A nearly equal number of genes showed signatures of compensatory 

divergence (4%, Figure 21B). Although the general trends are the same for both pairwise 

comparisons, we found more genes to be differentially regulated by cis-regulatory effects 

between D. melanogaster and D. mauritiana (Figure 21B), compared to the more closely 

related D. simulans and D. mauritiana (2% vs. 5%, Figure 21B). In the latter comparison we 

found even more genes to be differentially expressed due to trans-regulatory divergence (23% 

vs. 20%, Figure 21B).  

We further assessed in which biological processes these genes were enriched and 

performed a GO enrichment analysis. Genes which are conserved between D. melanogaster 

and D. mauritiana were involved in basic processes like cell morphogenesis, cell proliferation, 

growth and developmental processes (Figure 21C). Genes that show regulatory divergence in 

trans, were enriched in morphological and developmental processes, and more specifically in 

transcription, neuronal processes or photoreceptor development (Figure 21C). We found genes 

that were differentially expressed due to cis-regulatory divergence to be enriched in metabolic 

and biosynthetic GO terms (Figure 21C). Genes with signs of compensatory regulation were 

mainly enriched in GO terms like cell fate, cell cycle or larval cuticle development (Figure 21C). 
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We obtained a very similar pattern for the other species pair (D. simulans vs. D. mauritiana) 

(Supplementary Figure 21). Overall, we found that most genes that were differentially 

expressed in the developing eye-antennal disc in closely related species were different due to 

trans-regulatory changes. We showed that genes diverging in cis or trans take part in different 

processes, with the latter ones being enriched in developmental GO terms.  

 

Figure 21. Regulatory divergence in three closely related Drosophila species. A. Phylogenetic relationship 
between the three Drosophila species used in this study and differences in their head shapes (Posnien et al., 
2012). The boxes summarize the two crosses giving rise to viable F1 hybrids. RNA-seq was performed of 
developing eye-antennal discs of the three parental species and the two F1 hybrid offspring. B. Allele specific 
expression analysis between the two species pairs (D. melanogaster vs. D. mauritiana and D. simulans vs. D. 
mauritiana). Most genes are conserved between the species. Differentially expressed genes are predominantly 
differentially expressed due to changes in trans. We found more ‘trans-genes’ between D. simulans vs. D. 
mauritiana. A higher number of cis-regulatory changes was observed between D. melanogaster vs. D. mauritiana. 
C. A random subset of 3000 conserved genes (see Material and Methods) between D. melanogaster and D. 
mauritiana was highly enriched in processes like morphogenesis, cell proliferation, growth, larval development 
etc. Genes that were differentially expressed due to trans-regulatory changes were as well highly enriched in 
developmental and morphogenetic processes (especially neuronal development), whereas we found more 
biosynthetic and metabolic GO terms for cis-effect genes. Genes with compensatory expression in hybrids were 
mainly enriched in cell-cycle but also metabolic processes. 
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5.2.2. A comparative ATAC-seq dataset of three closely related Drosophila species 

To test if the different types of regulatory divergence during head development can also 

be recapitulated on the level of the regulatory landscape, we generated a comparative ATAC-

seq dataset for eye-antennal discs (96h AEL) for the three species. We could significantly call 

21,705 peaks in D. melanogaster, 21,499 peaks in D. mauritiana and 20,374 peaks in D. 

simulans (Figure 22A). These numbers of open chromatin regions in the developing eye-

antennal disc is in concordance with previous studies (Davie et al., 2015).  

For further quality assessment of the three ATAC-seq datasets, we calculated the insert 

size distribution. This is based on the assumption that the Tn5 transposase used for ATAC-seq 

can only insert adapters where the DNA is not covered by nucleosomes. Therefore, proper 

ATAC-seq library preparation should result in a clear peak at ~100bp where the DNA is depleted 

of nucleosomes, hence most easily accessible to the transposase, and smaller peaks resulting 

from sequences that are wrapped around different-sized nucleosomes. All of our datasets 

showed the typical periodicity of ~200 bp  (Figure 22B, Supplementary Figure 22, (Buenrostro 

et al., 2013; Davie et al., 2015)). We annotated open chromatin regions of D. melanogaster to 

the gene loci according to the closest transcription start site (TSS) and to the respective gene 

features. We found that open chromatin sites predominantly mapped to promoter regions 

(~37%), intronic (~30%) and intergenic regions (~18%) (Figure 22B). This demonstrates that we 

generated a reliable open chromatin dataset for developing eye-antennal discs at mid L3 larval 

stages in terms of peak number and annotation. 
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Figure 22. A comparative ATAC-seq dataset for the Drosophila melangaster subgroup. A. We were able to call 
a similar number of open chromatin peaks in all three species, namely between 20,300 and 21,700, which is 
comparable with previous ATAC-seq studies (Davie et al., 2015). We converted the peak coordinates of D. 
mauritiana and D. simulans into the D. melanogaster coordinate system. Using our customized pipeline, we were 
able to convert 96-97% of all peaks in D. mauritiana and D. simulans, respectively. B. The insert sizes of the D. 
melanogaster ATAC-seq dataset shows the typical periodicity of the expected ~200 bp (Buenrostro et al., 2013). 
C. Annotation of the D. melanogaster peaks to gene features. Typically for open chromatin datasets, most peaks 
mapped to either promoter, intronic or intergenic regions.  

To compare the open regulatory landscape of D. melanogaster with the ones of its sister 

species, we developed a pipeline to convert D. mauritiana and D. simulans peak coordinates 

into the D. melanogaster genome coordinate system. For this we adapted the workflow used 

by the UCSC coordinate conversion tool (http://genome.ucsc.edu/, see Material and Methods 

and Appendix). In short, split chromosomes of D. melanogaster were aligned to the D. 

mauritiana or the D. simulans genome and respective chain files were generated for each of 

the two species. We then used the liftOver tool (Hinrichs et al., 2006) to convert the 

coordinates. By this we were able to convert 96% and 97% of D. mauritiana and D. simulans 

peak regions, respectively into D. melanogaster coordinates (Figure 22A). Peaks that could not 

be reliably converted were mostly found at the centromeres of chromosomes (Supplementary 

Figure 23A), which is consistent with the suggested quick evolution of these genomic regions 

(Henikoff et al., 2001). To overcome this bias, we removed the centromeric regions in the 

genome of D. melanogaster for further analyses (Supplementary Figure 23B, Material and 

Methods). Annotation of the converted open chromatin regions to gene features showed that 

they mainly mapped to intronic, intergenic and promoter regions which is comparable to the 

annotation of D. melanogaster ATAC-seq peaks (Figure 22C, Supplementary Figure 23C and D). 

https://genome.ucsc.edu/index.html
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After applying this pipeline for peak coordinate conversion, we continued with a total number 

of 20,678 peaks in D. mauritiana and 19,732 peaks in D. simulans, compared to 21,705 peaks 

in D. melanogaster.  

5.2.3. Genes with species specific regulatory regions are more often regulated in cis 

To understand how the accessibility of regulatory regions influences the evolution of 

gene expression in the D. melanogaster subgroup, we sought to compare the open-chromatin 

landscape between each of the species pairs (D. melanogaster vs. D. mauritiana and D. simulans 

vs. D. mauritiana). For each species we first summarized the peaks that mapped either to a 

TSS/promoter region or an intronic region and excluded peaks that mapped to intergenic 

regions (also see Technical and other considerations). To find orthologous peak regions 

between D. melanogaster and D. mauritiana or D. simulans and D. mauritiana, we overlapped 

peak regions using the bedtools suite (Quinlan, 2014; Quinlan and Hall, 2010), which resulted 

in three peak sets per pairwise comparison: 1) Peaks shared between two species; 2) Species-

specific peaks for one species; and 3) Species-specific peaks for the other species. We found 

11,439 peaks, mapping to 6,159 genes that were shared between D. melanogaster and D. 

mauritiana, and 3,103 and 2,829 peaks being specific for D. melanogaster and D. mauritiana, 

respectively. Of these, a higher number of species-specific peaks are annotated to introns than 

promoters (Table 5). We found a very similar pattern between D. mauritiana and D. simulans, 

but a slightly smaller number of species-specific peaks between these two closer related 

species (Table 5). 

Table 5. For each species in each species comparison we combined intronic and promoter/TSS peaks (excluding 
intergenic peaks) and overlapped the peak sets to find orthologous peaks, and species-specific peak sets. The 
table lists intronic peaks in each species, plus the overlapping intronic peaks in the fist column, and the same 
information for TSS/propmter peaks in the second column. The sum of species specific intronic, TSS/promoter 
and shared peaks is shown in the thrid column (please note, that this number does not correspond to the total 
peak number per species after peak conversion). In all comparisons we found more species-specific peaks 
mapping to intronic regions, than TSS/promoter regions. The % is calculated by deviding the species specific 
intronic or TSS/promoter peaks by the sum of intronic or TSS/promoter peaks (species-specific plus shared).  

 intronic peaks TSS/promoter peaks 
sum of TSS/promoter and intronic peaks / 

species (species specific + shared) 

  D. melangoaster vs. D. mauritiana 

D. melanogaster 1696 (12.2%) 1407 (10.1%) 13898 

D. mauritiana 1718 (12.6%) 1111 (8.2%) 13624 

shared 4488 6307   

  D. simulans vs. D. mauritiana 

D. simulans 1021 (8%) 854 (6.7%) 12755 

D. mauritiana 1537 (11.3%) 1223 (9%) 13640 

shared 4707 6173   
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Figure 23. Comparison of the regulatory landscape. A-A’’. We summarized all gene loci according to their 
regulatory landscape into A) genes with highly diverged regulatroy landscape, with no overlapping peaks 
between the species. A’) genes with a very conserved regulatory landscape and no species-specific peaks and 
A’’) genes with overlapping peaks but additional species specific ones. The loci in the rectangles show one 
randomly picked locus from each Set with the respective ATAC-seq peaks in the two species. orange: D. 
melanogaster, blue: D. mauritiana, grey: read densitiy of the D. melanogaster ATAC-seq dataset. B-C. Genes with 
a highly divergent regulatory landscape are significantly more often differentially expressed due to cis-regulatory 
changes. We find a high number of compensatory changes for genes with a very conserved regulatory landscape 
and significantly more genes that are differentially regulated in trans for genes with overlapping but also species-
specific genes. Note that we provide all p-values between the pairwise comparisons in Supplementary Table 20A 
and B. B. D. melanogaster vs. D. mauritiana C. D. simulans vs. D. mauritiana. 

Second, we assigned every gene locus to one of three genes sets (Figure 23A-A’’): The 

first gene set included genes that showed a completely divergent regulatory landscape (i.e. no 

overlapping peaks between two species) (Figure 23A). The second set included genes, that had 

the same regulatory landscape in two species (i.e. only overlapping peaks between two species, 

Figure 23A’) and third we pooled genes that had a similar open chromatin landscape in both 

species, but also putative species-specific regulatory regions (Figure 23A’’). We then 

overlapped these sets with the differentially expressed genes, for which the type of regulatory 

divergence was known (Figure 21B). Interestingly, we found that genes that are differentially 
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regulated due to cis-regulatory changes between the D. melanogaster and D. mauritiana, 

overlap predominantly with genes in Set1, i.e. genes that have only species-specific peaks 

(Figure 23B and C , e.g. cis vs. trans Fishers exact test, p=0.0095), whereas genes with a 

conserved regulatory region, are mainly differentially expressed between species, due to 

compensatory mechanisms and surprisingly not necessarily conserved in expression levels 

(Figure 23B). Genes, which show conserved regulatory regions but also additional species-

specific peaks (Set3), were predominantly differentially expressed due to trans mechanisms 

(Figure 23B).  

To test, whether we find similar patterns in more closely related species, we also 

performed this analysis for the set of differentially expressed genes between D. mauritiana and 

D. simulans. As observed for D. melanogaster and D. mauritiana genes in Set 1, summarizing 

genes with a divergent chromatin landscape, were mostly differentially regulated due to 

variation in cis. However, for genes with a conserved regulatory landscape we found that they 

were differentially expressed due to trans-regulatory changes. Genes in Set 3 showed the same 

pattern with genes being mostly differentially regulated due to upstream trans mechanisms 

(Figure 23C).  

Overall, we show that genes with a highly divergent DNA accessibility landscape were 

significantly more often differentially expressed due to cis-regulatory changes, compared to 

genes that show a more conserved regulatory architecture.  

5.2.4. Regulatory regions of genes, diverging in cis, show a higher sequence divergence 

Since cis-regulatory divergence may not only arise due to differences in accessibility of 

the respective regulatory regions, but also due to sequence changes affecting for instance 

transcription factor binding, we focused in more detail on the sequence divergence of 

orthologous open chromatin regions between the species. We extracted the sequences of all 

orthologous intronic and TSS peaks and compared their sequences between the species pairs. 

Peak regions that were annotated to genes showing cis-regulatory divergence, showed a 

significantly lower percentage of sequence identity between D. melanogaster and D. 

mauritiana. Peaks assigned to genes showing compensatory divergence had similarly diverged 

regulatory sequences (Figure 24A). We found the same trend between D. mauritiana and D. 

simulans, although the differences in sequence divergence between different regulatory 
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groups were not significant, reflecting the closer phylogenetic relationship between these two 

species (Supplementary Figure 24A).  

 

Figure 24. Cis-regulatory changes arise due to differences in DNA accesssibility but also due to sequence 
divergence. A. Genes that are differentially expressed due to cis-regulatroy changes, but also compensatory 
genes show more diverged peak sequences than conserved genes or genes with trans effects. Note that we 
provide all p-values between the pairwise comparisons in Supplementary Table 21. B. We separated 
TSS/promoter peaks from intronic peaks and showed that intronic peak sequences are on average more 
conserved than peaks mapping to promoter regions. Note that we provide all p-values between the pairwise 
comparisons in Supplementary Table 22. 

We further wanted to test, whether TSS/ promoter regions and intronic regions evolve 

quicker in terms of nucleotide content. For this, we aligned the sequences of accessible 

orthologous promoter regions and intronic regulatory regions of D. melanogaster and D. 

mauritiana. Interestingly, we observed for all four classes of genes (cis, trans, compensatory 

and conserved) that intronic sequences seem to be more conserved in terms of nucleotide 

sequences, whereas peaks in the promoter regions show a lower sequence similarity (Figure 

24B, Supplementary Figure 25, Supplementary Table 22).  

We conclude, that orthologous regulatory sequences of genes, differentially expressed 

due to cis-regulatory changes show higher sequence divergence and that this pattern is more 

pronounced in peaks annotated to TSS/promoter regions.   
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5.2.5. Regulatory divergence in transcription factors 

Since the overall patterns seemed to be similar between the two species comparisons, 

we next asked, whether the same gene sets were composed of the same genes in the two 

comparisons. For this we focused on a set of 149 transcription factors which we overlapped 

with the gene sets shown in Figure 23A-A’’. Furthermore, we assessed if these transcription 

factors, if differentially expressed, showed divergence in cis, trans or compensatory expression 

in the hybrids. We found strikingly few transcription factors in Set 1 (i.e. genes with only 

species-specific peaks, Supplementary Table 23). The potential regulatory regions of most 

transcription factors were conserved (Set 2, 72 and 79 TFs from the D. melanogaster vs. D. 

mauritiana and D. simulans vs. D. mauritiana comparison, respectively; Supplementary Table 

23) or only slightly diverged with additional species-specific peaks (Set 3, 51 TFs from the D. 

melanogaster vs. D. mauritiana and 46 TFs from D. simulans vs. D. mauritiana comparison, 

respectively; Supplementary Table 23). Consistently, we found transcription factors mostly to 

be conserved in expression, and if differentially expressed, this was due to trans-regulatory 

changes, except in one case, where we found bicoid (bcd) to be differentially regulated between 

D. melanogaster and D. mauritiana due to a cis-regulatory change.  

Overall, we found that the expression and regulatory landscape of transcription factors 

is highly conserved between the two species pairs.  

5.3. Discussion 

5.3.1. Regulatory divergence is context dependent  

Our differential expression analysis between three closely related Drosophila species 

revealed that most genes were conserved among species. This recapitulates previous data 

which showed that the overall gene expression dynamics in developing eye-antennal discs 

between the three species D. melanogaster, D. mauritiana and D. simulans are to a large extend 

conserved (Torres-Oliva, 2016). Still, we found a substantial number of genes to be differentially 

expressed during eye and head development (Buchberger et al. in prep; Chapter II, Almudi et 

al. in prep). Since changes in gene expression during development often correlate with variation 

in adult morphology and physiology (Carroll, 2005; Khaitovich et al., 2006; King and Wilson, 

1975; Tautz, 2000), this observation most probably recapitulates the remarkable variation in 

size and shape of the head cuticle and the adjacent compound eyes (Posnien et al., 2012). 

However, in most cases it is not known which regulatory change underlies differential 
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expression of a gene. ASE analysis provides a powerful tool to test this on a genome-wide level. 

Therefore, we generated F1 hybrids between D. melanogaster x D. mauritiana and D. simulans 

x D. mauritiana and performed ASE analysis do understand if the cause for differential 

expression in a developing epithelium can be mainly found in the gene’s own regulatory region 

(cis) or is rather caused by changes in upstream factors (trans).  

Interestingly, the majority of the differentially expressed genes was due to variation in 

trans. We applied the same analysis pipeline to two species comparisons differing in their 

divergence time using D. melanogaster vs. D. mauritiana, which diverged about 2-3 Mya, and 

D. simulans vs. D. mauritiana diverging about 0.3 Mya (Figure 21A). Even though patterns in 

terms of regulatory divergence were similar, the number of cis-regulatory changes increased 

with phylogenetic distance, whereas the number of trans-regulatory changes decreased (Figure 

21B). This is consistent with the finding that usually more cis-regulatory changes accumulate 

throughout time (Metzger et al., 2017; Stern and Orgogozo, 2008; Wittkopp et al., 2008).  

The excess of trans-regulatory changes contradicts most previous studies which 

reported a higher contribution of cis-regulatory changes, compared to trans (e.g. (Graze et al., 

2009; Wittkopp et al., 2008, 2004). This has mainly been explained by the fact that a cis-

regulatory change would only affect the respective locus, whereas changes in an upstream 

regulator would have more widespread and pleiotropic effects on all of its target genes 

(Wittkopp et al., 2008). Nevertheless, other studies also found a slightly higher amount of trans-

regulatory changes (McManus et al., 2010; Suvorov et al., 2013). More trans-acting changes 

were mostly found in intraspecific comparisons, explained by a larger mutational target size of 

trans-factors that correlates positively with mutational variance (i.e. increase in trait-variance 

introduced by mutations in each generation (Landry et al., 2007)) (Landry et al., 2007; Wittkopp 

et al., 2008). McManus and colleagues also found an increase in trans-regulatory changes 

between D. melanogaster and D. sechellia and explained that pattern with the small population 

size of the latter species. Consequently, mutations would rather get fixed due to random 

genetic drift than due to natural selection (McManus et al., 2010). We cannot exclude a similar 

scenario for D. mauritiana, which is endemic on the island of Mauritius (David et al., 1989). To 

test this, it would be necessary to produce an F1 hybrid generation between the two 

cosmopolitan species D. melanogaster and D. simulans and compare the ASE analysis for this 

comparison with the already existing ones, including D. mauritiana.  
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We examined the role of the differentially expressed genes in the four divergence types 

to test, whether there may be functional constraints on the type of regulatory divergence. 

Indeed, we found that genes differentially expressed due to variation in trans were enriched in 

developmental processes. In contrast, genes showing cis-regulatory divergence were in general 

enriched in metabolic and biosynthetic processes. A similar pattern has been observed in 

Drosophila embryos, where genes with cis-effects were more enriched in housekeeping 

functions, and genes with trans-effects mainly functioned in developmental and gene 

regulatory processes (Cannavò et al., 2017), suggesting that the function of a gene product 

indeed has an impact on its evolvability.  

Another source of constraints may be imposed by the excess of regulatory interactions of a 

gene within a gene regulatory network (GRN). We studied a developing tissue, whereas 

comparable ASE studies were mostly performed in whole-body adult flies (McManus et al., 

2010; Suvorov et al., 2013). We therefore checked specifically for regulatory divergence of 

transcription factors to find out if upstream, developmental regulators are more constraint and 

as previously suggested, more likely to be affected by trans-regulatory changes (Luscombe et 

al., 2004; Wittkopp, 2005). Likewise, genes showing cis-regulatory changes display a lower 

average connectivity in mouse tissues (Mack et al., 2019) but also in plants (Mähler et al., 2017). 

In general, we found a low number of TFs to be differentially expressed between the species. 

If they showed divergent expression, this was due to upstream trans-regulatory changes, which 

suggests, that the loci of these important regulators are indeed kept highly conserved between 

the species. We did not specifically analyse the connectivity of these TFs but one can assume 

that most of developmentally important TFs are positioned at the top of the GRNs and are most 

probably highly interconnected (MacNeil and Walhout, 2011; Stern and Orgogozo, 2008). 

Therefore, an excess of trans-regulatory divergence may be a common feature of developing 

tissues.  

Nevertheless, several important regulators in the eye-antennal disc were differentially 

expressed due to differences in an upstream regulator. Between D. melanogaster and D. 

mauritiana these include for instance sine oculis (so), pannier (pnr), ocelliless (oc), whereas we 

found that the alleles of eyeless (ey) were only differentially regulated in the hybrid 

(Supplementary Table 23). We could functionally show, that differential expression of pnr 

indeed underlies differences in head shape and eye size between these two species 
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(Buchberger et al. in prep.; Chapter II). Finding the potential upstream trans-acting transcription 

factors, that lead to differential expression of these important developmental regulators might 

eventually reveal the true genetic causes of variation in adult morphologies that we observe 

between the here studied Drosophila species. Also, between D. simulans and D. mauritiana 

transcription factors involved directly in eye development were differentially expressed. Among 

these are interesting candidates like the proneural gene atonal (ato), scalloped (sd), or ttk 

(tramtrack), for which a role in ommatidia development was reported (e.g. (Garg et al., 2007; 

Jarman et al., 1994; Li et al., 1997; Siddall et al., 2009)). In the light of the finding, that eye size 

between these two species varies due to changes in ommatidia size (Posnien et al., 2012), these 

could be additional candidates to test if they indeed impact the size of the individual facets. 

5.3.2. cis- regulatory divergence is due to changes in chromatin accessibility and sequence 

divergence 

We further tested, which mechanisms contribute to cis-regulatory divergence in our 

data. Two reasons can theoretically underlie cis-regulatory changes leading to subsequent gene 

expression divergence, namely either mutations directly in the regulatory regions or divergent 

accessibility of these regions.  

Orthologous regulatory sequences might have experienced changes in their nucleotide 

sequence, which could, amongst other things, affect TF-binding (Wittkopp, 2013). Even if the 

regulatory regions of a gene are characterized, studying the influence of sequence changes on 

gene expression is not straightforward. In some reported cases only one nucleotide change is 

enough to alter the temporal expression of an important master regulator (Ramaekers et al., 

2018), whereas other enhancer sequences keep their conserved function despite extensive 

reshuffling of TF binding sites (Khoueiry et al., 2017; Ludwig et al., 2000). However, some 

mechanistic insights have been gained in the last years, that may help interpreting the obtained 

data. It was for instance shown in Drosophila, that quantitative changes in enhancer strengths 

between species correlate linearly with sequence divergence (Arnold et al., 2014) and that 

sequence changes in regulatory regions may lead to differential functionality due to loss in 

transcription factor or co-factor binding (e.g. (Paris et al., 2013; Schmidt et al., 2010; Zheng et 

al., 2010)). However, how deleterious the loss of a certain TF binding motif is, seems to depend 

on the combinatorial binding of a TF collective (Khoueiry et al., 2017). In our genome wide 

comparison, orthologous sequence divergence is higher in open chromatin regions close to 
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genes with cis-regulatory divergence between species or compensatory changes in hybrids. A 

higher rate of polymorphisms in promoter regions of cis-effect genes (compared to trans-effect 

genes) was for instance shown in plants (Zhang and Borevitz, 2009), but also in Drosophila 

(McManus et al., 2010). These studies and our results suggest higher purifying selection in 

regulatory regions of highly connected developmental genes, which we found to be more often 

differentially expressed due to upstream trans-effects or are conserved between the species.  

Studies in Arabidopsis thaliana suggest that not only open chromatin regions with 

nucleotide changes, but also differentially accessible DNase hyperactive sites (DHS) are often 

found close to genes that show differential expression between ecotypes (Alexandre et al., 

2018). Therefore, differential accessibility of regulatory regions very likely adds to expression 

variation in cis. Here, we found that indeed genes with highly divergent DNA accessibilities are 

significantly more often differentially expressed due to cis-regulatory changes. Chromatin 

remodelling and differential enhancer opening is prevalent during development (e.g. Bozek et 

al., 2019; Hughes et al., 2017; Kvon et al., 2014; McKay and Lieb, 2013; Uyehara et al., 2017), 

and in the last years an in-depth understanding of how 3D chromatin organization, epigenetic 

and histone modifications and chromatin accessibility interact has emerged (e.g. (Corrales et 

al., 2017; Cubeñas-Potts et al., 2017; Rennie et al., 2018b; Sexton et al., 2012)). How this though 

affects divergent DNA accessibility among species is still largely unclear.  

We further checked for sequence divergence and accessibility of promoters and intronic 

regulatory regions separately. Regulatory sequences annotated to TSS and promoter regions 

showed a higher sequence divergence, whereas intronic regulatory sequences seemed to be 

more constraint. Intronic peaks were more often differentially accessible in both of our 

comparisons, suggesting that in general the accessibility of TSS/promoter peaks is more 

conserved, whereas accessibility of regulatory regions in introns seems to be more species 

specific. We could therefore observe the trend in which changes in DNA accessibility affect 

more often intronic regions, though their sequences seem to stay more conserved. Apart from 

the circumstance that intronic sequences are maybe more conserved due to their location in 

gene loci, higher sequence conservation was indeed observed in long introns, which are 

thought to harbour more functional elements (Haddrill et al., 2005). It will be important to 

compare these results with sequence divergence of more distant intergenic regulatory regions. 
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5.3.3. Compensation and conservation of gene expression 

It was suggested, that gene expression falls largely under stabilizing selection (e.g. 

(Landry et al., 2005; Lemos et al., 2005)), i.e. that a certain level of gene expression has to be 

kept stable. The rational is, that even though mutations in regulatory sequences accumulate 

over time, trans-regulatory factors co-evolve to buffer these changes (Landry et al., 2005). We 

found in our analysis a high number of compensatory effects, characterized by allelic 

misexpression in the F1 hybrid generation. Interestingly, regulatory regions of genes show a 

similar sequence divergence than genes that are affected by cis-regulatory changes, suggesting 

that indeed upstream trans-regulatory factors co-evolved to maintain the expression levels in 

the parental species. We found compensatory regulation in all three gene sets, predominantly 

though in genes that show no divergence in peak accessibility, therefore, the main mode of cis-

regulatory changes in these genes might be attributed to nucleotide changes. Nevertheless, 

compensatory changes are also found in genes with diverged accessibility of regulatory regions. 

One characteristic of enhancer function is that they usually work in a highly modular manner 

(reviewed for example in (Arnone and Davidson, 1997; Wray, 2003)). It was for instance 

estimated for Drosophila that each expressed gene is controlled by an average of four distinct 

enhancers (Kvon et al., 2014). This modularity allows also to control gene expression in a 

spatially and temporally controlled manner (reviewed for instance in (Prud’homme et al., 

2007)). This has been elegantly shown in more simple traits like pigmentation patterns, in which 

the deletion of a ‘spot enhancer’ or an ‘abdomen enhancer’ leads to loss of wing pigmentation 

on a Drosophila wing or loss of dark abdomen coloration (Jeong et al., 2006; Prud’homme et 

al., 2006). Our dataset provides the opportunity to further analyse in more detail, how much of 

the compensatory coevolution is driven by differential combinatorial usage of such enhancer 

modules. Since DNA accessibility is highly dependent on the developmental stage and tissue, 

one can assume that this kind of compensatory regulation is in general highly context 

dependent and calls for a more thorough comparison with other developing tissues, like the 

wing disc for instance.  

We found a high number of genes that show conserved expression in the parental 

species as well as in their F1 hybrids. These conserved genes were highly enriched in general 

developmental functions, like growth, proliferation or morphogenesis, which is consistent with 

our finding that most developmental TFs are conserved in expression between the species. 

Regulatory sequences of conserved genes were equally constraint in terms of sequence 



Chapter III - Regulatory Divergence in the Drosophila melanogaster subgroup 

- 188 - 
 

divergence than genes that showed trans-regulatory divergence. Nevertheless, in cases that 

show high sequence divergence, conservation of TF binding could be attributed for example to 

the topology but also the function of the GRN. It has been suggested that upstream genes in 

highly connected GRNs show a more conserved TF occupancy (Khoueiry et al., 2017) and have 

therefore a higher chance to balance sequence changes in their regulatory regions. For 

conserved genes that show a high divergence in peak accessibility between the species, the 

modularity of enhancer elements, as discussed for compensatory changes, might ensure the 

correct level of gene expression. In contrast to genes that show compensatory changes though, 

these mechanisms would not lead to misexpression in the hybrids, therefore they might be less 

dependent on the co-evolution of upstream trans-regulators. 

Overall, the high number of compensatory and conserved genes that do show changes 

in DNA accessibility or enhancer and promoter sequence reflects the high potential of 

compensatory mechanisms, that ensure the correct level of expression despite substantial cis-

regulatory changes (Ludwig et al., 2000). In this study, we mainly concentrate on changes in 

regulatory regions and upstream transcription factors. Given the highly complex regulation of 

gene expression (reviewed in (Buchberger et al., 2019)) it remains to be studied how gene 

expression control on other levels, for instance miRNAs contribute to such compensatory 

mechanisms.  

5.3.4. Technical and other considerations 

The combination of RNA-seq and open chromatin datasets like ATAC-seq allows to 

deduce certain patterns in gene expression divergence and its correlation with regulatory 

regions. Apart from the high context dependency and compensatory mechanisms of gene 

expression, additional technical limitations must be considered. We assume here, that the 

annotation of a peak to the closest TSS does represent the true regulatory influence on the 

respective gene, which in Drosophila is often, but not always true. A systematic annotation of 

active enhancers in Drosophila revealed that about 88% are located in direct proximity of the 

target gene (Kvon et al., 2014). About 20% of all enhancers, were found to be located in 

between 4 kb distance from the respective TSS; about the same fraction of enhancers showed 

though a distance >100 kb (Kvon et al., 2014). The fact that we focus on only TSS/promoter and 

intronic peaks, might on the one hand reduce the chance to interpret intergenic peaks with 

ambiguous gene association, but on the other hand leads to wrong assumptions of peak 
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number in a gene’s regulatory landscape. Therefore, it will be important to repeat the analysis 

including these intergenic peaks. The annotation of peaks to a certain gene is particularly error 

prone for peaks in regions of the genome that contain many overlapping gene models. This is 

mostly due to the fact that an enhancer element might control only one gene in a multi-gene 

locus, or several ones. These drawbacks have started to be overcome in studies using 

annotation-unbiased approaches that base the characterization of regulatory regions rather on 

parameters related to transcriptional properties (Rennie et al., 2018a). Also, our focus on 

TSS/promoter and intronic peaks reduces the number of genes to be included in the analysis. 

While our study focuses on 6100-6200 genes, an earlier estimation using the same RNA-seq 

dataset as a basis resulted in about 9000 genes being transcribed in the eye (Torres-Oliva, 

2016). This clearly shows, that to understand the complete picture, also intergenic peaks have 

to be included in this analysis.  

Furthermore, we define here ‘differential accessibility’ as a peak being significantly 

called or not, i.e. we did not consider the height of ATAC-peaks. The height of peaks is defined 

by the number of reads that map to a specific peak region. This can be influenced for example 

by the number of cells in a heterogenous tissue that show the specific chromatin opening or 

the ‘accessibility’ of a specific regulatory region. To address questions like variation of DNA 

accessibility in an epithelium like the eye-antennal disc, which gives rise to a plethora of 

different head structures (Haynie and Bryant, 1986), one might learn a lot by applying single 

sell ATAC-seq (Buenrostro et al., 2015; Cusanovich et al., 2015). 

5.4. Conclusion 

In summary, we show that regulatory divergence can partly be recapitulated on the 

basis of DNA accessibility. This holds true, especially for cis-regulatory changes, where we 

found, that these are based on both, namely changes in DNA accessibility, as well as sequence 

divergence in orthologous regulatory regions. Comparing two different species pairs we 

confirm, that the amount of cis-regulatory divergence correlates with the phylogenetic distance 

in the Drosophila melanogaster subgroup. ASE expression analysis cannot reveal the causative 

genetic variants leading to differential expression, but with the combination of open chromatin 

datasets one can start to dissect the underlying genetic regulatory architecture. Our result that 

in general more trans-regulatory changes seem to underlie gene expression divergence 

between closely related species, calls for more tissue specific ASE studies in other animal 
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groups. It will be also interesting to reveal how the here described patterns deviate in other 

tissues, like the developing thoracic or leg imaginal discs to learn more about the context 

dependency of regulatory divergence.  

5.5. Material and Methods 

5.5.1. RNA-seq 

The generation of RNA-seq datasets of developing eye-antennal discs (96h AEL) was 

performed as described for D. melanogaster in (Torres-Oliva et al., 2018). The same procedure 

was applied for datasets of D. mauritiana and D. simulans. In short, developing eye-antennal 

discs were dissected at 96h AEL for D. melanogaster and D. mauritiana. Please note, that in D. 

simulans, the morphogenetic furrow progressed a bit slower than in the other two species, 

therefore disc were dissected at 98h AEL, to ensure the same developmental time point (in the 

manuscript we still refer to ’96h AEL’ for the sake of clarity).  To set up the hybrid crosses 400 

D. melanogaster or D. simulans virgin females were crossed to 300 D. mauritiana males and 

the respective discs were dissected at 96h AEL. mRNA was extracted using the standard Trizol 

protocol and library preparation was prepared as described in (Torres-Oliva et al., 2018). 

Differential expression analysis between parental strains and subsequent allele specific 

expression analysis (ASE) was performed by Dr. Torres-Oliva M. and is described in (Torres-

Oliva, 2016). 

We used the online tool Metascape (Zhou et al., 2019) to perform GO enrichment 

analysis for each group of genes (cis, trans, compensatory, conserved) in both pairwise settings 

(D. melanogaster vs. D. mauritiana and D. simulans vs. D. mauritiana.). In cases where more 

than 3000 genes were tested for enrichment, we randomly chose 3000 genes from the pool, 

since Metascape does not allow more genes as input.  

5.5.2. ATAC-seq 

5.5.2.1. ATAC-seq library preparation 

For the generation of ATAC-seq datasets we followed (Buenrostro et al., 2013). Of all three 

species (D. melanogaster, D. mauritiana and D. simulans), developing eye-antennal discs were 

dissected in ice-cold PBS at 96h AEL. Please note, that in D. simulans, the morphogenetic furrow 

progressed a bit slower than in the other two species, therefore disc were dissected at 98h AEL, 

to ensure the same developmental time point (in the manuscript we still refer to ’96h AEL’ for 
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the sake of clarity). PBS was removed and exchanged for 50 µl lysis buffer (10 mM Tris-HCl 

(pH = 7.4); 10 mM NaCl; 3 mM MgCl2; 0.1 % IGEPAL). The mixture was pipetted several times 

up and down to lyse the cells and then split into micro centrifuge tubes. Centrifugation for 

10 min at 500 g and 4 °C. The cell number was assessed in one of the samples and 50,000 to 

80,000 nuclei were used in subsequent steps. The supernatant was removed and the pellet(s) 

dissolved in 47.5 µl 1X tagmentation buffer (20 mM Tris-CH3COOH (pH = 7.6); 10 mM MgCl2; 

20 % (vol/vol) dimethylformamide) with 2.5 µl Tn5 Transposase and then incubated for 30 min 

at 37 °C. For purification we used the QIAGEN MinElute Kit and eluted in 10 µl Elution Buffer 

(10 mM Tris, pH = 8). For the PCR amplification was done as follows:  

 10 µl tagmented chromatin 

 10 µl H2O 

 2.5 µl Nextera PCR primer 1* 

 2.5 µl Nextera PCR primer 2** 

 25 µl NEBNext High-Fidelity 2X PCR Master Mix (Cat #M0541) 

We used the following program:  

(8) 72 °C  5 min 

(9) 98 °C 30 sec 

(10) 98 °C 10 sec 

(11) 63 °C 30 sec 

(12) 72 °C 1 min 

(13) repeat 3-5 13 times 

(14) hold at 4 °C 

followed by another 2x purification step with the QIAGEN MinElute Kit: elution in 2 X 10 µl 

Elution Buffer (10 mM Tris, pH = 8). 

* AATGATACGGCGACCACCGAGATCTACACTCGTCGGCAGCGTCAGATGTG 

** Ad2.2_CGTACTAG  CAAGCAGAAGACGGCATACGAGATCTAGTACGGTCTCGTGGGCTCGGAGATGT 
      Ad2.3_AGGCAGAA CAAGCAGAAGACGGCATACGAGATTTCTGCCTGTCTCGTGGGCTCGGAGATGT 
      Ad2.4_TCCTGAGC CAAGCAGAAGACGGCATACGAGATGCTCAGGAGTCTCGTGGGCTCGGAGATGT 
      Ad2.5_GGACTCCT CAAGCAGAAGACGGCATACGAGATAGGAGTCCGTCTCGTGGGCTCGGAGATGT 
      Ad2.6_TAGGCATG CAAGCAGAAGACGGCATACGAGATCATGCCTAGTCTCGTGGGCTCGGAGATGT 
      Ad2.7_CTCTCTAC CAAGCAGAAGACGGCATACGAGATGTAGAGAGGTCTCGTGGGCTCGGAGATGT 
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5.5.2.2. Bioinformatics 

We performed quality checks of the sequenced reads using FASTQC 

(https://www.bioinformatics.babraham.ac.uk/projects/fastqc/). The reads were trimmed, 

using Trimmomatic (version 0.36) (Bolger et al., 2014) appyling a sliding window trimming with 

the parameters slidingwindow 4:15 and minlen 30. Trimmed reads were mapped to the 

D. melanogaster genome (version 6.13) after discarding the mitochondrial genome, using 

Bowtie2 (version  2.3.4.3) (Langmead et al., 2009), with the commands: --no-unal and -

X2000. Samtools version 1.9 (Li et al., 2009) were subsequently used to convert the sam to 

bam files, and to sort and index bam files. We removed duplicates using PICARD (version 2.1.1, 

https://github.com/broadinstitute/picard)  with default parameters and converted the resulted 

bam files to bed files. Reads were then centered as described in (Buenrostro et al., 2013). We 

used MACS2 (version 2.1.2) (Zhang et al., 2008, p. 2) with the following commands -g dm --

nomodel --shift -100 --extsize 200 -q 0.01 –bdg to call significant peaks. We 

used the Integrated Genome Browser (IGB, (Freese et al., 2016)) to visualize the read depth 

and peaks. Peaks were annotated to the closest gene using the annotatePeaks.pl program 

from the HOMER software package (v4.8.3) using dm6 as genomic input.   

5.5.3. Conversion of Coordinates 

To compare the open chromatin landscape of all three sister species, we converted peak 

coordinates of D. mauritiana and D. simulans into D. melanogaster coordinates. This required 

to create custom liftOver files, also called chain files which are usually used to convert 

annotations from one genome version to the other (here from one species to another).  

First, the D. melanogaster genome was indexed and each chromosome arm was saved 

separately as a .fasta file, using the samtools faidx command (Li et al., 2009). The same 

was done for the D. mauritiana strain-specific genome (TAM16). Each chromosome arm 

sequence was then split into chunks using the following command to ensure an efficient BLAT 

alignment and a .lft file was directly created using the size parameters: faSplit – 

lift=Dmel_x.lft –oneFile size Dmel/dem-x.fasta 3000 dmel-x_chunks, 

where x stands for each chromosome arm. The resulting sequence chunks were then aligned 

to the D. mauritiana genome sequences using the BLAT alignment tool (Kent, 2002) with default 

parameters and .psl files as output. The coordinates of the alignment were then changed to 

the D. melanogaster coordinate system using the liftUp tool (Hinrichs et al., 2006) and the 

.lft files created in the chromosome split step (see above). The converted alignments were 
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then chained together using the axtChain tool with the following parameters: -psl –

linearGap=medium –faQ –faT. The resulting chain file (of each chromosome arm) were 

then combined and sorted using the chainMergeSort program. Using the chromosome sizes, 

co-called nets were created form chains using chainNet and subsequently netChainSubset 

was used to create over.chain files which are the files used for the coordinate conversion of 

peaks. This pipeline was adapted to both species, D. mauritiana and D. simulans. To convert 

peak coordinates, the liftOver tool was used with the parameter: -minMatch=0.1.  The script 

can be found in the Appendix. Peaks which could not be converted were visualized using the 

Integrated Genome Browser (IGB) (Freese et al., 2016) and since nearly all mapped to the 

centromere regions of the respective chromosomes, we removed this regions from the D. 

melanogaster genome as well for further analysis.  

5.5.4. Comparison of peak architectures 

To get the consensus peak set of two sister species we used the bedtools intersect 

tool from the Bedtools toolset (version 2.24) (Quinlan, 2014; Quinlan and Hall, 2010) with the 

following parameters: -wa -wb –wo. Species specific peaks were extracted using the same 

tool with the –v parameter. All further analyses were carried out using R version 3.3.3 or 3.5.2 

(R Development Core Team, 2008). Gene sets were combined according to the following 

criteria: Set1 – genes did not have a single overlapping peak between two species, Set2 – genes 

that had only overlapping peaks, and Set3 – genes that had overlapping and additional non-

overlapping peaks. These genes were then overlapped with the information gained from our 

RNA-seq and ASE analysis, namely if the gene was differentially expressed between the two 

species, and if yes, which regulatory type was responsible for this differential expression. 

Fisher’s exact tests was used to test for significances among the groups in the contingency 

tables.  

5.5.5. Sequence alignments 

 To get the sequences of homologous peaks, the Bedtools (version 2.24) getfasta 

programm was used with default parameters. Peak sequences of D. mauritiana were then used 

to build a BLAST database (Camacho et al., 2009) using the -parse_seqids -dbtype nucl 

parameters. blastn –db was then used to blast the peak sequences in the two comparisons, 

with parameters -outfmt 6 -max_target_seqs 1 -evalue 0.01. Wilcoxon Rank Sum 

test was applied to compare the percentage of identical matches between the groups (cis-, 
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trans-, conserved or compensatory genes). To test if intronic sequences and TSS/promoter 

sequences show differences in sequences conservation, we split all peak sequences in the 

groups according to the respective annotation and repeated the analysis separately for both 

groups. 

5.5.6. Overlap with DroID database 

To test for regulatory divergence specifically in transcription factors, we downloaded all 

entries from the Transcription Factor TF - Gene Interaction data file in the DroId database 

(version 2015-2) (Yu et al., 2008), including 157462 interactions and 12323 genes. We then 

overlapped the transcription factors with our RNA-seq dataset to filter those that are expressed 

in eye-antennal disc. Of these we retrieved the then the information about potential differential 

expression of the transcription factors between species, by comparing them with our 

differential expression analysis and further checked if differential expression was due to cis- or 

trans-regulatory changes. We additionally checked if the transcription factors fall into Gene Set 

1, 2, or 3, allowing us to categorize their regulatory landscape.  
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5.6. Supplementary Figures 

 

 

Supplementary Figure 21. GO enrichment analysis following ASE analysis between D. simulans vs. D. 
mauritiana.  Genes that were differentially expressed due to trans-regulatory changes were enriched in 
morphogenetic, cell cycle, growth and developmental GO terms. Genes, showing compensatory regulation in the 
hybrids were enriched in more metabolic processes. Gene with cis-regulatory divergence showed enrichment in 
similar processes, namely biosynthetic and metabolic processes, but also in more eye-specific processes, like 
‘retinal cell programmed cell death’.  
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Supplementary Figure 22. Insert size distribution of ATAC-seq datasets of D. mauritiana  and D. simulans. A. 
The insert size distribution of the D. mauritiana ATAC-seq dataset and B. of D. simulans show the same typical 
periodicity of  ~200 bp as the D. melanogaster dataset (Figure 22B.).  
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Supplementary Figure 23. Conversion of genomic coordinates. A. Peak coordinates that could not be converted 
from the D.simulans to the D. melanogaster genomic coordinate system mapped predominantly to the 
centromeric regions of the chromosomes. Shown here is the 2nd chromosome of D. simulans. B. Peaks that were 
excluded by filtering centromeric regions and peaks that did not map in each species. The last column in D. 
melanogaster lists the regions that were excluded for each chromosome arm (in bp). C. Converted peaks were 
annotated to gene features. The pattern is comparable to D. melanogaster, where also most peaks were 
annotated to promoter regions, followed by intronic regions and intergenic regions.  
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Supplementary Figure 24. A. The sequence divergence between peak sequences close to genes showing cis-
regulatroy divergence or ‘compensatory - genes’ in the hybrid do not show significantly more sequence changes 
than conserved genes or genes with trans-regulatory divergence when D. simulans is compared to D. mauritiana.  
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Supplementary Figure 25. As shown for genes with cis-regulatory divergence between D. melanogaster and D. 
mauritiana, TSS\promoter peaks of genes from all divergence groups show a significantly higher sequence 
divergence than intronic peaks. Note that we provide all p-values between the pairwise comparisons in 
Supplementary Table 22. 
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5.7. Supplementary Tables 

Supplementary Table 20. A. Fisher’s Exact test (p-values) for pairwise comparisons of gene sets between D. 
melanogaster  vs. D. mauritiana from Figure 25B. B. Fisher’s Exact test (p-values) for pairwise comparisons of 
gene sets between D. mauritiana vs. D. simulans from Figure 25C. 
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Supplementary Table 21. Wilcoxon Rank Sum Test (p-values) of sequence alignments between regulatory 
regions between D. melanogaster and D. mauritiana (Boxplots are shown in Figure 24A).  

 

Supplementary Table 22. Wilcoxon Rank Sum Test (p-values) of sequence alignments between intronic and 
TSS/promoter regulatory regions for each regulatory type. The boxplot for the cis-regulatroy changes is depicted 
in Figure 24B, whereas the three boxplots for trans-regulatry, compensatoy and conserved gene sets are shown 
in Supplementary Figure 25. 
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Supplementary Table 23. Transcription Factors downloaded from the DroID database were first overlapped with the 
Gene Sets 1-3 (highly diverged regulatory regions, conserved regulatory regions and sligthly diverged regulatory regions) 
and second with the information about their divergence type. Most transcription factors show a highly conserved 
regulatory region and their expression levels are conserved as well between the species. If differentially expressed the 
genes are differentially expressed due to upstream trans-regulatory changes. 

 



Chapter III - Regulatory Divergence in the Drosophila melanogaster subgroup 

- 203 - 
 

5.8. Appendix 

###The script was written to generate chain files to convert open-chromatin 

peak coordinates from D. mauritiana to D. melanogaster 

###The same pipeline was applied to D. simulans 

 

#!/bin/bash 

#script was adapted from http://blog.windhager.io/2016/10/21/creating-

liftover-chain-files/ 

 

# requires UCSC genome browser 'kent' bioinformatic utilities 

 

module load EMBOSS/6.5.7 UCSC/20160601 

 

mkdir psl 

mkdir chain 

mkdir net 

 

#get all the chromosomes in extra files 

 

mkdir Dmel 

mkdir Dmau 

 

samtools faidx dmel-all-chromosome-r6.13_woMito.fasta 2L > Dmel/dmel-

2L.fasta 

samtools faidx dmel-all-chromosome-r6.13_woMito.fasta 2R > Dmel/dmel-

2R.fasta 

samtools faidx dmel-all-chromosome-r6.13_woMito.fasta 3L > Dmel/dmel-

3L.fasta 

samtools faidx dmel-all-chromosome-r6.13_woMito.fasta 3R > Dmel/dmel-

3R.fasta 

samtools faidx dmel-all-chromosome-r6.13_woMito.fasta 4 > Dmel/dmel-4.fasta 

samtools faidx dmel-all-chromosome-r6.13_woMito.fasta X > Dmel/dmel-X.fasta 

 

samtools faidx TAM16_strainspecificGenome_woMito.fasta Dmau_2L > Dmau/dmau-

2L.fasta 

samtools faidx TAM16_strainspecificGenome_woMito.fasta Dmau_2R > Dmau/dmau-

2R.fasta 

samtools faidx TAM16_strainspecificGenome_woMito.fasta Dmau_3L > Dmau/dmau-

3L.fasta 

samtools faidx TAM16_strainspecificGenome_woMito.fasta Dmau_3R > Dmau/dmau-

3R.fasta 

samtools faidx TAM16_strainspecificGenome_woMito.fasta Dmau_4 > Dmau/dmau-

4.fasta 

samtools faidx TAM16_strainspecificGenome_woMito.fasta Dmau_X > Dmau/dmau-

X.fasta 

 

# split new sequences for efficient BLAT alignment 

 

faSplit -lift=Dmel_2L.lft -oneFile size Dmel/dmel-2L.fasta 3000 Dmel/dmel-

2L_chunks 

faSplit -lift=Dmel_2R.lft -oneFile size Dmel/dmel-2R.fasta 3000 Dmel/dmel-

2R_chunks 

faSplit -lift=Dmel_3L.lft -oneFile size Dmel/dmel-3L.fasta 3000 Dmel/dmel-

3L_chunks 

faSplit -lift=Dmel_3R.lft -oneFile size Dmel/dmel-3R.fasta 3000 Dmel/dmel-

3R_chunks 

faSplit -lift=Dmel_4.lft -oneFile size Dmel/dmel-4.fasta 3000 Dmel/dmel-

4_chunks 

faSplit -lift=Dmel_X.lft -oneFile size Dmel/dmel-X.fasta 3000 Dmel/dmel-

X_chunks 
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# align resulting sequence chunks to old sequence, which is in my case the 

Dmau genome 

 

/home/uni05/ebuchbe/Programme/./blat 

Dmau/TAM16_strainspecificGenome_woMito.fasta Dmel/dmel-2L_chunks.fa 

psl/chr2L_blat_param.psl & 

/home/uni05/ebuchbe/Programme/./blat 

Dmau/TAM16_strainspecificGenome_woMito.fasta Dmel/dmel-2R_chunks.fa 

psl/chr2R_blat_param.psl & 

/home/uni05/ebuchbe/Programme/./blat 

Dmau/TAM16_strainspecificGenome_woMito.fasta Dmel/dmel-3L_chunks.fa 

psl/chr3L_blat_param.psl & 

/home/uni05/ebuchbe/Programme/./blat 

Dmau/TAM16_strainspecificGenome_woMito.fasta Dmel/dmel-3R_chunks.fa 

psl/chr3R_blat_param.psl & 

/home/uni05/ebuchbe/Programme/./blat 

Dmau/TAM16_strainspecificGenome_woMito.fasta Dmel/dmel-4_chunks.fa 

psl/chr4_blat_param.psl & 

/home/uni05/ebuchbe/Programme/./blat 

Dmau/TAM16_strainspecificGenome_woMito.fasta Dmel/dmel-X_chunks.fa 

psl/chrX_blat_param.psl & 

 

# change alignment coordinates to parent coordinate system according to LFT 

file 

#LiftUp can convert coordinates in most annotation files. It can add to 

positions and change the chromosome part of those files. It's main input is 

the lift-file that specifies how to convert the coordinates.  

liftUp -pslQ psl/chr2L.psl Dmel_2L.lft warn psl/chr2L_blat_param.psl   

liftUp -pslQ psl/chr2R.psl Dmel_2R.lft warn psl/chr2R_blat_param.psl   

liftUp -pslQ psl/chr3L.psl Dmel_3L.lft warn psl/chr3L_blat_param.psl   

liftUp -pslQ psl/chr3R.psl Dmel_3R.lft warn psl/chr3R_blat_param.psl   

liftUp -pslQ psl/chr4.psl Dmel_4.lft warn psl/chr4_blat_param.psl   

liftUp -pslQ psl/chrX.psl Dmel_X.lft warn psl/chrX_blat_param.psl   

 

# chain together alignments from PSL files 

 

axtChain -psl -linearGap=medium -faQ -faT psl/chr2L.psl 

Dmau/TAM16_strainspecificGenome_woMito.fasta Dmel/dmel-2L.fasta 

chain/chr2L_axtChain.chain 

axtChain -psl -linearGap=medium -faQ -faT psl/chr2R.psl 

Dmau/TAM16_strainspecificGenome_woMito.fasta Dmel/dmel-2R.fasta 

chain/chr2R_axtChain.chain 

axtChain -psl -linearGap=medium -faQ -faT psl/chr3L.psl 

Dmau/TAM16_strainspecificGenome_woMito.fasta Dmel/dmel-3L.fasta 

chain/chr3L_axtChain.chain 

axtChain -psl -linearGap=medium -faQ -faT psl/chr3R.psl 

Dmau/TAM16_strainspecificGenome_woMito.fasta Dmel/dmel-3R.fasta 

chain/chr3R_axtChain.chain 

axtChain -psl -linearGap=medium -faQ -faT psl/chr4.psl 

Dmau/TAM16_strainspecificGenome_woMito.fasta Dmel/dmel-4.fasta 

chain/chr4_axtChain.chain 

axtChain -psl -linearGap=medium -faQ -faT psl/chrX.psl 

Dmau/TAM16_strainspecificGenome_woMito.fasta Dmel/dmel-X.fasta 

chain/chrX_axtChain.chain 

 

# combine and sort chain files 

#chainSort chain/chr1_axtChain.chain chain/chr2_axtChain.chain 

chain/chr3_axtChain.chain | chainSplit chain stdin 

chainMergeSort chain/chr2L_axtChain.chain chain/chr2R_axtChain.chain 

chain/chr3L_axtChain.chain chain/chr3R_axtChain.chain 

chain/chr4_axtChain.chain chain/chrX_axtChain.chain| chainSplit chain stdin 
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# determine chromosome sizes 

faToTwoBit Dmau/dmau-2L.fasta Dmau/dmau-2L.2bit   

faToTwoBit Dmau/dmau-2R.fasta Dmau/dmau-2R.2bit   

faToTwoBit Dmau/dmau-3L.fasta Dmau/dmau-3L.2bit   

faToTwoBit Dmau/dmau-3R.fasta Dmau/dmau-3R.2bit   

faToTwoBit Dmau/dmau-4.fasta Dmau/dmau-4.2bit   

faToTwoBit Dmau/dmau-X.fasta Dmau/dmau-X.2bit   

 

faToTwoBit Dmel/dmel-2L.fasta Dmel/dmel-2L.2bit   

faToTwoBit Dmel/dmel-2R.fasta Dmel/dmel-2R.2bit    

faToTwoBit Dmel/dmel-3L.fasta Dmel/dmel-3L.2bit   

faToTwoBit Dmel/dmel-3R.fasta Dmel/dmel-3R.2bit    

faToTwoBit Dmel/dmel-4.fasta Dmel/dmel-4.2bit   

faToTwoBit Dmel/dmel-X.fasta Dmel/dmel-X.2bit   

 

{ twoBitInfo Dmau/dmau-2L.2bit stdout; twoBitInfo Dmau/dmau-2R.2bit stdout; 

twoBitInfo Dmau/dmau-3L.2bit stdout; twoBitInfo Dmau/dmau-3R.2bit stdout; 

twoBitInfo Dmau/dmau-4.2bit stdout; twoBitInfo Dmau/dmau-X.2bit stdout; } > 

Dmau/chrom.sizes 

{ twoBitInfo Dmel/dmel-2L.2bit stdout; twoBitInfo Dmel/dmel-2R.2bit stdout; 

twoBitInfo Dmel/dmel-3L.2bit stdout; twoBitInfo Dmel/dmel-3R.2bit stdout; 

twoBitInfo Dmel/dmel-4.2bit stdout; twoBitInfo Dmel/dmel-X.2bit stdout; } > 

Dmel/chrom.sizes 

 

# make alignment nets out of chains 

mkdir net 

chainNet chain/Dmau_2L.chain Dmau/chrom.sizes Dmel/chrom.sizes 

net/chr_2L.net /dev/null   

chainNet chain/Dmau_2R.chain Dmau/chrom.sizes Dmel/chrom.sizes 

net/chr_2R.net /dev/null   

chainNet chain/Dmau_3L.chain Dmau/chrom.sizes Dmel/chrom.sizes 

net/chr_3L.net /dev/null 

chainNet chain/Dmau_3R.chain Dmau/chrom.sizes Dmel/chrom.sizes 

net/chr_3R.net /dev/null   

chainNet chain/Dmau_4.chain Dmau/chrom.sizes Dmel/chrom.sizes net/chr_4.net 

/dev/null 

chainNet chain/Dmau_X.chain Dmau/chrom.sizes Dmel/chrom.sizes net/chr_X.net 

/dev/null 

 

# create over.chain 

netChainSubset net/chr_2L.net chain/Dmau_2L.chain 

chain/Dmau_2L_subset.chain   

netChainSubset net/chr_2R.net chain/Dmau_2R.chain 

chain/Dmau_2R_subset.chain   

netChainSubset net/chr_3L.net chain/Dmau_3L.chain 

chain/Dmau_3L_subset.chain   

netChainSubset net/chr_3R.net chain/Dmau_3R.chain 

chain/Dmau_3R_subset.chain   

netChainSubset net/chr_4.net chain/Dmau_4.chain chain/Dmau_4_subset.chain   

netChainSubset net/chr_X.net chain/Dmau_X.chain chain/Dmau_X_subset.chain   

cat chain/Dmau_2L_subset.chain chain/Dmau_2R_subset.chain 

chain/Dmau_3L_subset.chain chain/Dmau_3R_subset.chain 

chain/Dmau_4_subset.chain chain/Dmau_X_subset.chain > over_DmauToDmel.chain 

 

rm -rf psl chain net   

 

# do the coordinate conversion with liftOver 

# Usage: 

# liftOver oldFile map.chain newFile unMapped 

 

##liftOver the already called peaks for Dmau for comparison 
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module load EMBOSS/6.5.7 UCSC/20160601 

 

liftOver -minMatch=0.1 TAM_96hA_peaks.bed over_DmauToDmel.chain 

TAM_96hA_peaks_mapped.bed TAM_96hA_peaks_unmapped.bed & 

 

###grep the unmapped peaks in Dmau for visualization 

 

grep "Dmau" TAM_96hA_peaks_unmapped.bed > 

TAM_96hA_peaks_unmapped_IGBinput.bed 
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6. General Discussion and Outlook 

Evolutionary changes in phenotypes, including adult morphologies, life history or 

physiological traits are a prerequisite for a constant adaptation to an ever-changing 

environment and the result of heritable mutations in the genome. For variation in adult 

morphological structures it is widely accepted that such mutations often affect the 

developmental programs underlying the formation of the respective structures. Building a 

complex organism requires that an initially single cell differentiates into various cell types that 

make up a variety of tissues and eventually form functional organs. The instructions for these 

developmental processes are encoded in the genome and translated through stage- and tissue-

specific gene expression, that allows a cell or a group of cells to acquire a specific fate. 

Consequently, a major goal of biological studies is to understand how a given genotype 

translates - on a molecular level - into relevant phenotypes (‘genotype to phenotype map’). For 

morphological traits, the application of comparative developmental approaches has been 

proven to be a powerful way to achieve this goal. 

6.1. Integration of different datasets in comparative biological studies 

Historically, the relationships between animal lineages were often reconstructed by the 

comparison of adult morphological features (e.g. (Snodgrass, 1938)), resulting in numerous 

descriptions of morphological phenotypes and traits in a variety of organisms. Advances in 

molecular techniques and the establishment of genetic tools allowed a shift from comparative 

and descriptive studies, towards a more experimental discipline that made it possible to verify 

phylogenetic relationships on a molecular level. However, only the advent of high throughput 

sequencing technologies revolutionized the way to reconstruct such phylogenies (e.g. (Dunn et 

al., 2008; Oakley et al., 2013) for a very recent study see: (Laumer et al., 2019)). Approaches, 

that combine morphological data and genomic approaches have been used to resolve for 

example the relationships of Squamata (comprising lizards, snakes and amphisbaenia), 

including fossil taxa (Reeder et al., 2015) or to address the evolution of larger groups, like all 

deuterostomes (Swalla and Smith, 2008). Whole genome sequencing and/or transcriptomics 

also have the power to reveal major ancient evolutionary events like whole genome 

duplications, allowing for instance subsequent comparison of gene content and syntenies (eg. 

(Dehal and Boore, 2005; Schwager et al., 2017; Singh et al., 2015)). The finding that spiders and 

scorpions share an ancient genome duplication supports their close relationship compared to 



General Discussion and Outlook 

- 208 - 
 

arachnids that do not show signatures of this duplication (Schwager et al., 2017). Apart from 

gaining more insights into phylogenetic relationships, such data are also highly valuable in 

answering questions about phenotypic evolution, including neofunctionalization of genes and 

the emergence of evolutionary novelties (e.g. (Moriyama and Koshiba-Takeuchi, 2018; Turetzek 

et al., 2017, 2016)).   

Apart from the comparison of adult morphologies, classical comparative developmental 

approaches like the analysis of, for instance, Hox genes in several lineages, have brought major 

insights into the evolution of body plans (e.g. (Akam, 1995; Akam et al., 1994; Garcia-Fernàndez 

and Holland, 1994)). Tarazona and colleagues recently used the cuttlefish Sepia officinalis to 

study if the developmental processes underlying appendage development are conserved 

among Bilaterians. They could indeed find that, despite legs of vertebrates, arthropods and 

cephalopods not being homologous structures, the ‘developmental mechanisms’ of appendage 

formation seem to be highly conserved (Prpic, 2019; Tarazona et al., 2019). 

Comparative embryology resulted in the suggestion that vertebrate embryogenesis 

goes through highly conserved stages, so-called phylotypic stages. Haeckel proposed, based on 

his observations that species look exceptionally similar during certain stages of embryonic 

development, his ‘biogenetic law’, suggesting that the phylogeny is recapitulated during 

development of an organism (Haeckl, 1879, 1867; Losos, 2014). Even though it is clear 

nowadays that the biogenetic law does not reflect reality, gene expression data has indeed 

shown that the transcriptome expressed at defined stages of zebrafish or Drosophila 

development shows signatures of an hourglass (Domazet-Lošo and Tautz, 2010). While 

molecular tools were for a long time only available for a few model systems, affordable 

sequencing technologies facilitated in recent years the establishment of genomic resources not 

only for classical, but also emerging model systems (Ellegren, 2014). Sequencing the genome 

and analyzing open chromatin datasets of Branchiostoma lanceolatum, the Mediterranean 

amphioxus, recently revealed that gene expression and the cis-regulatory architecture are 

highly conserved in all chordates during certain stages of development but showed that this 

phylotypic stage (i.e. the time point showing minimal transcriptomics divergence) between 

Branchiostoma and other vertebrates occurs at a slightly earlier time point compared to 

vertebrates (Marlétaz et al., 2018). Overall, it is relatively easy these days to provide a detailed 

description of the genotype for many different organisms for which detailed anatomical data 
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has been revealed over the years. But even though many genomes are sequenced, and the 

morphology and development of many organisms are described, it remains often elusive to 

recapitulate how the genomic information is used to define the adult phenotype. Further, 

mechanistic insights are in most cases missing. In summary, one can assume that the 

integration of morphological, developmental and molecular datasets allows comprehensive 

insights in phylogenetic relationships (Lee and Palci, 2015) and the genotype-phenotype map. 

Here I argue that the combination of various detailed datasets provides the means to 

establish genotype-phenotype associations. First, a thorough understanding of the phenotype 

of interest is necessary. Additionally, for morphological traits it is highly informative to gain 

insights into developmental differences. Second, a comprehensive overview of the gene 

content and the genome size/organization is helpful. This can be achieved by generating 

transcriptome and genome datasets. Third, a correlation between the genotype and the 

phenotype must be established. If closely related species, that do not yet result in sterile 

offspring, are studied this can be done by quantitative genetics approaches such as QTL 

mapping or GWAS. Also, gene expression has been extensively used as an intermediate 

phenotype, backed up by the fact, that many mapped variances were described that influence 

gene expression (e.g. (Chan et al., 2010; Coyle et al., 2007; Cresko et al., 2004; Dixon et al., 

2007; Gilad et al., 2008; Jia and Xu, 2007; Rockman and Kruglyak, 2006; Shapiro et al., 2004)). 

Hence, establishing gene expression differences between species (independent of the 

phylogenetic distance) allows identifying candidate genes responsible for morphological 

diversification. For morphological traits, such approaches are most powerful if they are 

combined with developmental data and if they are studied throughout development.  

In each chapter of this work we used a combination of different datasets to connect 

phenotypes on several levels. In Chapter I, we applied microscopy techniques like scanning 

electron microscopy (SEM) and transmission electron microscopy (TEM) to analyze the function 

of pleuropodia in Schistocerca gregaria and connected the obtained insights with stage specific 

gene expression datasets. This allowed us to study long standing questions about the function 

of these organs, revealing potential new functions and as discussed below, holds the possibility 

to ask more general questions about developmental processes. In Chapter II and III, we used 

the model species Drosophila melanogaster and its sister species Drosophila mauritiana and 

Drosophila simulans to understand how complex traits like organ size and shape can evolve. As 
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in Chapter I, we used a comparative transcriptomic dataset as an intermediate phenotype to 

link this genetic readout to observable morphological changes. We applied geometric 

morphometrics to quantitatively compare adult head shapes and developed a semi-automated 

method to count individual ommatidia of single compound eyes. By adding a comparative 

ATAC-seq dataset, representing stage and tissue specific open chromatin landscapes, we were 

able to gain more genome-wide insights into the evolution of gene expression divergence and 

subsequently eye size and head shapes in these three closely related species.  

The different types of transcriptomics and functional genomics datasets that I 

generated, will allow in the future to gain insights on a more global GRN level, going beyond a 

gene-centric approach. In the following two sections I will argue that a GRN-centric view will 

further result in new insights into development and phenotypic evolution. 

6.2. Comparative gene expression studies and gene regulatory networks in 

development 

Research in Evo-Devo has established that the development of diverse organisms as 

well as organs and tissues is based on a limited set of developmental genes, so-called ‘toolkit 

genes’ (Carroll et al., 2001). Intriguingly, many of these factors are highly conserved in different 

lineages (e.g. (Halder et al., 1995; King and Wilson, 1975)). Therefore, a central question is how 

this limited set of genes can control the development of different cell types and tissues? It is 

widely accepted nowadays, that differential expression of these genes and rewiring of 

regulatory interactions underlies the generation of differences between cells types and 

subsequently organs and that the proper development of organs and structures relies heavily 

on the correct temporal and spatial expression of genes. One of the best described examples 

exemplifying this is the development of the Drosophila nervous system. Initially identical 

precursor cells start to express distinct transcription factors in a spatially and temporally 

defined manner, leading to the formation of different neural identities (e.g. (Homem and 

Knoblich, 2012; Karcavich, 2005; Technau et al., 2006)). A great model to study how gene 

expression distinguishes organs are serially homologous structures, such as the insect 

appendages. We studied pleuropodia in the locust S. gregaria, small glandular structures that 

are apparent at the first abdominal segment of many insect embryos and are thought to be 

serially homologous to embryonic leg buds (Bennett et al., 1999; Lewis et al., 2000; Machida, 

1981). These transient organs eventually mature and gain specific functions during 
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embryogenesis, but in contrast to other appendages they degenerate already before hatching 

of the embryo (Bullière, 1970; Louvet, 1975, 1973; Stay, 1977) . The comparison of developing 

leg buds and pleuropodia is therefore a valuable model to address the question of how 

differences in development, morphology and function of initially similar structures can arise. In 

our study we showed that especially in the early stages of embryonic development, legs and 

pleuropodia are not only morphologically extremely similar, but that this similarity is also 

recapitulated on a transcriptomic level. Genes which are known to be involved in leg 

development, for instance distal-less (dll) are also active in pleuropodia (Lewis et al., 2000; 

Yamamoto et al., 2004). In later stages we found that gene expression patterns become more 

and more divergent and gene set enrichment showed that the functional annotation of 

expressed transcripts gets more and more tissue specific. Our combinatorial approach revealed 

that pleuropodia of S. gregaria are indeed directly involved in the breakdown of the serosal 

cuticle and subsequently in the hatching of the insect embryo, supporting the result drawn by 

Slifer already 1937 (H. Slifer, 1937). Surprisingly, our GO-term enrichment analysis of 

differentially expressed genes points towards a role of pleuropodia in insect embryonic 

immunity, a function that is usually conferred by the extraembryonic serosa (Jacobs et al., 

2014). It remains to be shown functionally if the pleuropodia take over immune protection of 

the embryo after degeneration of the serosa upon dorsal closure (Konopová et al., 2019; 

Panfilio, 2008). Overall, we demonstrate that the combination of thorough phenotyping of 

developing structures with the analysis of differential expression levels as an intermediate 

phenotype allows to gain major insights into function and developmental processes of 

embryonic structures.  

While gene expression catalogs of various organs and expression dynamics of individual 

genes are being established for more and more developmental processes, it is not yet 

completely resolved how developmental genes are regulated in a tissue and stage specific 

manner. In recent years it became clear that the regulation of genes is not a simple hierarchical 

process but rather defined by an intricate interplay of gene products. These interactions are 

usually represented as so-called gene regulatory networks (GRNs) which describe genes or their 

products (transcription factors and other proteins) as nodes and the interaction among these 

(i.e. genetic interactions) as edges (Davidson and Levine, 2008; Thompson et al., 2015). GRNs 

provide therefore a logic and comprehensible cascade of the underlying developmental 

program. RNA profiling has been proposed as one of the main experimental procedures in 
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reconstructing GRNs, since it provides the possibility to collect all nodes that theoretically have 

to be considered in the respective GRN (shown for instance in (Sonawane et al., 2017), 

reviewed in (Thompson et al., 2015)). This allows to mathematically describe global properties 

of biological networks: One hallmark seems to be, that GRNs are so-called scale-free networks, 

meaning that the majority of the nodes is poorly connected and that we can only find a few 

highly connected nodes, also called hubs (Barabasi and Albert, 1999). Other measures, like 

node betweenness can further provide information about the role of single nodes in the global 

network architecture (e.g.(Koschützki and Schreiber, 2008)). One question that arises is how 

GRNs confer tissue specificity, i.e. when and where initially similar GRNs change and get 

rewired. By comparing tissue specific GRNs from adult human organs, Sonawane and 

colleagues found a rather low number of tissue-specific transcription factors (Sonawane et al., 

2017). They show that functional specificity is primarily ensured by tissue specific interactions 

and that the expression of transcription factors is less well correlated with the regulation of 

functions in specific organs. Instead, tissue specific target gene expression is rather 

accomplished by context dependent paths throughout the network (Sonawane et al., 2017). 

Also, during eye-and head development in Drosophila, it was shown, that the same genes are 

able to exert different functions, mainly via rewiring of existing nodes (Palliyil et al., 2018). 

Palliyil and colleagues suggested that the retinal determination gene network is first important 

for overall growth of the complete eye-antennal disc, whereas later on, it specifically promotes 

retinal development. The fact that GRNs are constantly rewired during development provides 

an explanation, how morphological diversification can be achieved despite the developmental 

toolkit genes being not only expressed in one organ but are crucial for the proper development 

of several structures.  

To dissect in more detail how and when such a rewiring takes place, our comparative 

dataset of Schistocerca pleuropodia and legs provides an excellent starting point. The already 

existing transcriptomic dataset allows to deduce which nodes are present and will need to be 

considered for the reconstruction of the respective tissue and stage specific GRN. The 

generation of a GRN depends though not only the information which genes have to be 

considered as nodes, but one also has to establish where to draw the edges. To add the edges 

globally it will be necessary to combine the RNA-seq dataset with, for instance, open chromatin 

datasets. ATAC-seq allows to search for transcription factor binding motifs in accessible and 

therefore potential cis-regulatory regions in the whole genome. This can be used to predict 
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direct genetic interactions between transcription factors and their target genes. While such a 

dataset remains to be established for pleuropodia, preliminary results of our ATAC-seq dataset 

of the eye-antennal disc suggests that the open chromatin landscape is dependent on the 

temporal context, since we found a number of stage specific peaks at each of the studied time 

points (72h, 96h and 120 AEL, data not shown). This is consistent with other studies conducted 

in Drosophila, that showed that the opening of regulatory regions is highly dynamic between 

stages during embryogenesis and also during larval stages (McKay and Lieb, 2013). 

Interestingly, the same study revealed also, that the accessibility of regulatory sequences in 

different developing appendages of Drosophila is exceptionally similar. The small number of 

tissue-specific open chromatin regions were annotated as regulatory regions of tissue specific 

master regulators (McKay and Lieb, 2013). In contrast, other studies found a highly unique and 

cell specific open chromatin landscape, for example in rods of murine retinas (Hughes et al., 

2017). Hence, it will be interesting to investigate how changes in gene expression dynamics 

correlate with the open chromatin landscape in developing pleuropodia and legs. By comparing 

the output of this analysis between legs and pleuropodia at different stages, one might 

eventually be able to pinpoint the tissue and stage specific rewiring of the GRN that underlies 

the morphological differentiation of initially similar structures into two distinct organs. Overall, 

the combination of transcriptomic datasets with open chromatin datasets allows to tackle the 

question, how the rewiring of GRNs might be realized – on the level of chromatin accessibility 

and gene expression.  

How the rewiring of existing GRNs is affecting direct gene interactions and impacts gene 

regulation on a mechanistic level, requires focusing on distinct nodes and edges. Apart from 

revealing global properties of biological networks, it has been shown, that GRNs are composed 

of smaller interaction entities or so-called circuits, which ensure certain gene expression 

outputs, like robustness or stochasticity (reviewed in (MacNeil and Walhout, 2011)). These are 

interactions between only a few nodes describe for instance feed-forward loops, 

autoregulatory loops or feed-back loops (reviewed in (MacNeil and Walhout, 2011)). In Chapter 

II of this work, we showed for the first time on a transcriptomics and protein level, that the co-

factor of Pnr, called Ush is expressed in the eye-antennal disc. Subsequent validation of protein 

location and perturbation of pnr and ush expression levels allowed us in the following to analyze 

the small regulatory module of these two factors in more detail. Our results hint towards an 

auto-regulatory loop of Pnr, which is most probably kept in balance via the repressing function 
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of the heterodimer Pnr/Ush. Additionally, an activating role of Pnr on the expression of ush is 

very likely, and together with the repressing function of Pnr/Ush on pnr expression this 

interaction might represent a feed-back loop. These interactions are highly similar to the ones 

described for the developing wing imaginal disc (Fromental-Ramain et al., 2010). In their earlier 

work, Fromental-Ramain and colleagues additionally showed, that two isoforms of Pnr (Pnr-A 

and Pnr-B) are differentially expressed (Fromental-Ramain et al., 2008). We could confirm on 

the basis of quantitative real-time PCR and RNA-seq that, similar to the wing disc, pnr-A is not 

or only weakly expressed in the developing eye-antennal disc (data not shown). Thus, it remains 

to be analyzed, if also in these imaginal discs, the isoforms take over a distinct function, which 

would eventually refine the understanding of this regulatory module.  Overall, the combination 

of RNA-seq with classical genetic tools can be used to define these small circuits which provide 

further information about direct transcriptional interactions on a more mechanistic level. 

In summary, implementing a GRN centric view in developmental studies has great 

potential to broaden our current understanding of the molecular control of developmental 

processes. Especially the analysis of stage- and tissue-specific regulatory modules allows to 

understand mechanistically how a limited number of developmental gene products governs 

the formation of different tissues and organs. 

6.3. Evolution of gene regulatory networks 

Up to now we established, that the development of distinct organ fates relies on 

differential wiring of GRNs and consequently on tissue and stage specific gene expression. Since 

the GRN architecture and the transcriptomic landscape is highly variable across different 

serially homologous organs, it is as well conceivable that such variation also underlies the 

evolution of adult organs. Assuming that changes in developmental GRNs cause variation in 

adult structures requires therefore to study how such GRNs can change and evolve, primarily 

via the loss of existing edges or the connection of previously unconnected nodes. In all cases, 

the readout of such changes is reflected in changes of the transcriptional landscape (Thompson 

et al., 2015). 

In our work we assumed that the GRNs that underlie the development of head 

structures in D. melanogaster are highly conserved in its closely related sister species, D. 

simulans and D. mauritiana. Nevertheless, D. melanogaster and D. mauritiana differ extensively 

in their eye size and head shapes, and even though the genetic architecture of such complex 
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traits has been started to be revealed (Arif et al., 2013a; Gaspar et al., 2019; Norry and Gomez, 

2017), we lack - in most cases (for an exception see: (Ramaekers et al., 2018)) - functional data 

that validate single candidate loci in-vivo. We used comparative gene expression data to find 

nodes in the conserved eye and head developmental GRN of D. melanogaster and D. 

mauritiana that are flexible enough to lead to the observed differences in head shape. Using 

differential expression dynamics as a readout, we found that higher expression of pnr underlies 

the enlargement of the eye area, a higher number of ommatidia and a narrower face cuticle in 

D. mauritiana. However, using this approach it remains so-far unclear, where the causative 

mutation lies that leads to variation in pnr expression and subsequently to observed changes 

in adult morphologies. Studying if a gene is differentially expressed due to cis- or trans-

regulatory divergence is a first step to reveal the causative variants (Wittkopp, 2013). Using our 

genome wide allele specific expression (ASE) dataset, we found that pnr itself shows very likely 

divergent expression due to changes in trans in the mid third instar disc (Chapter III). Therefore, 

Pnr most probably does not represent the evolving locus between D. melanogaster and D. 

mauritiana. We do not yet know which upstream factors activate pnr expression in the early 

eye-antennal disc. During early embryonic development pnr expression is under the control of 

Dpp signaling (Ashe et al., 2000; Winick et al., 1993), an interaction that had also been shown 

for the developing wing imaginal disc (Tomoyasu et al., 2000). Preliminary results that I gained 

combining our ATAC-seq datasets and transcription factor motif search tools, suggest that Jim, 

a zinc finger transcription factor or pMad, the transcription factor translating Dpp activity, 

might be good candidates which are currently tested in our lab.  

A genome wide investigation of how the expression of highly connected transcription 

factors evolve (Chapter III) revealed that if they were not conserved between two species, they 

were almost exclusively divergent due to trans-regulatory changes. This underrepresentation 

of cis-regulatory changes in highly connected transcription factors suggests, that these toolkit 

genes are not only constraint on a coding sequence level (Halder et al., 1995; King and Wilson, 

1975), but also on the level of cis-regulatory regions. We could support this hypothesis using 

our comparative ATAC-seq dataset, by showing that accessible regulatory regions of genes, 

divergent due to upstream trans-changes, are much more conserved on a sequence level than 

genes that are differentially expressed due to cis-regulatory changes. Consistent with this 

finding is that highly connected genes, have in general a lower log2 fold change between closely 

related species than genes displaying a low degree (Dr. Torres-Oliva, M.; personal 



General Discussion and Outlook 

- 216 - 
 

communication). We conclude, that changes upstream in a developmental GRN are rather due 

to trans-regulatory changes, but that highly pleiotropic factors like Pnr still represent ‘flexible 

nodes’ in a conserved GRN, driving phenotypic variation.  

It is still an open question if, during evolution of GRNs, we find changes in highly 

connected nodes, presumably in genes with highly pleiotropic functions, or rather changes in 

genes located at the endpoints of GRNs. Highly connected nodes can represent so-called 

‘transcription factor (TF)-hubs’ and are defined as transcriptional regulators that impact an 

exceptionally large number of downstream target genes (MacNeil and Walhout, 2011). Our 

bioinformatics analysis of target genes suggests that Pnr potentially regulates more than 1000 

genes, of which more than 700 were significantly differentially expressed between D. 

melanogaster and D. mauritiana during eye-antennal disc development. This high number of 

putative target genes is consistent with previous studies suggesting that Pnr takes over 

different functions during eye-and head development. Pnr defines the dorsal lineage of the 

eye-antennal disc and by this is involved in setting up the dorsal/ventral border (Maurel-Zaffran 

and Treisman, 2000; Singh et al., 2005; Singh and Choi, 2003). We confirmed this with our 

lineage tracing line, showing that the complete dorsal part of the eye-antennal disc, including 

the retinal part, stems from initially pnr-expressing cells. Pnr was also suggested to promote 

head cuticle fate via repression of members of the retinal determination network (Oros et al., 

2010). Apart from these many roles during eye and head development, the function of Pnr 

during Drosophila wing development is well characterized (Sato and Saigo, 2000; Tomoyasu et 

al., 2000). The GATA factor is also crucial for the dorsal/ventral patterning of the embryo 

(Heitzler et al., 1996; Herranz and Morata, 2001; Winick et al., 1993). Pnr also plays a role in 

setting up proper sensory bristle patterns (Haenlin et al., 1997; Heitzler et al., 1996) and 

activates together with Tinman (Tin) D-mef2, promoting cardioblast fate in Drosophila 

(Gajewski et al., 1999; Lovato et al., 2015). Given these diverse functions it seems at a first 

glance counter-intuitive that such a highly pleiotropic factor underlies the evolution of adult 

morphologies.  

A recent example which exemplifies that the wiring and evolution of GRNs is highly 

context dependent, was elegantly shown with the characterization of variation in another 

Drosophila GRN, namely the one underlying trichome development. These small actin-filled 

protrusions form in different stages at different positions of the developing fly, for instance on 
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the larval cuticle, and during pupal stages on developing legs (reviewed in (Arif et al., 2015)). 

The causative changes that led to repeated loss of these small structures on legs and larval 

cuticle are though surprisingly different. Whereas changes in the regulatory regions of 

shavenbaby (svb) - a key player during trichome formation - lead to loss of these structures in 

the larva (McGregor et al., 2007; Sucena et al., 2003; Sucena and Stern, 2000), it seems that 

changes in the cis-regulatory regions of the microRNA miR-92a cause the appearance of the so-

called naked valley on adult Drosophila legs (Arif et al., 2013b). Kittelmann and colleagues could 

show, that even though a similar set of genes governs trichome formation in both structures, 

some nodes and edges of the underlying GRN differ and that their variation in the wiring can 

lead to differences in which nodes and (sub-)networks eventually evolve (Kittelmann et al., 

2018). Therefore, context-dependent wiring of important developmental nodes might be 

prevalent.  

Our results, that variation in pnr expression affects the eye area but also the head cuticle 

suggests that Pnr is very likely involved in several sub-networks that participate in distinct 

developmental cascades. Context dependent integration into sub-networks and function might 

be ensured by spatiotemporal availability of co-factors like Ush, as for instance shown in the 

wing disc (Fromental-Ramain et al., 2010, 2008). Understanding the role of Pnr and architecture 

of potential sub-networks will require a more thorough dissection of the effects of Pnr up- or 

downregulation at distinct time points. The extension of the here used GAL4/UAS system with 

GAL80 (Jiang et al., 2009; Suster et al., 2004), providing additional temporal control of gene 

expression could be used in the future to address this question.  In summary, with Pnr we found 

a highly pleiotropic TF-hub acting as a ’flexible node’ underlying natural variation in eye size 

and head shape between D. melanogaster and D. mauritiana. 

Phenotypes that evolved repeatedly, like the re-occurring loss of trichomes, provide a 

powerful tool to learn more about the evolvability, architecture and robustness of 

developmental GRNs, by studying if the same nodes or paths are evolving, given the 

assumption, that the structure of the GRN and therefore the position of a specific node 

influences where these switches can arise (Stern and Orgogozo, 2008). Categorizing 

phenotypes and their genetic basis revealed that often evolution at the same loci underlies the 

evolution of similar traits (Martin and Orgogozo, 2013). Simple traits like trichome patterns 

have proven to be an excellent model to study which nodes are likely to evolve, since the 
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underlying GRN is extremely well understood. The shavenbaby (svb) gene has been proposed 

to act as a so called ‘hot-spot’ gene, since repeated changes in the expression of svb have been 

correlated with changes in trichome patterns on cuticles of Drosophila larva (McGregor et al., 

2007; Sucena et al., 2003; Sucena and Stern, 2000). Stern and Orgogozo proposed that due to 

its specific position in the GRN, svb can act as a switch, turning the development of trichomes 

simply on or off (Stern and Orgogozo, 2008). Recently the genetic changes underlying repeated 

loss of pelvic appendages in stickleback fish have been revealed. Freshwater populations of 

these fish independently lost these structures and mapping data point towards repeated, 

independent deletions in the enhancer region of the Pitx1 gene, encoding a homeodomain 

transcription factor (Chan et al., 2010; Coyle et al., 2007; Cresko et al., 2004; Shapiro et al., 

2004). Xie et al. elegantly showed, that the DNA sequence of the Pitx1 enhancer is exceptionally 

fragile and therefore prone to break more frequently (Xie et al., 2019), providing a clear 

mechanistic cause for repeated evolution at the same locus. These examples are cases, where 

relatively simple traits were studied, and the resulting phenotype is described with a discrete 

readout, namely loss or gain of a trait. It remains to be shown, which molecular changes 

underlie the repeated evolution of complex traits - like the here studied trade-off of head 

structures in different Drosophila species. This trade-off between eye size and head width was 

characterized in several species of the Drosophila melanogaster subgroup (Gaspar et al., 2019; 

Hilbrant et al., 2014; Norry et al., 2000; Posnien et al., 2012). A recent study describes a general 

inverse resource allocation between the visual system and the olfactory system in more than 

60 species within the Drosophila genus (Keesey et al., 2019). The authors argued that this trade-

off evolved several times independently in the genus (Keesey et al., 2019) and therefore 

provides an excellent opportunity to study the repeated evolution of a complex trait. 

Characterization of the trade-off between D. melanogaster, D. simulans and D. mauritiana 

revealed, that evolution of eye size differences can have two different causes: First, the eye 

area can be changed by a different number of more or less equally sized single ommatidia. 

Second, the number of these single facets can be kept stable, but instead the size of the 

ommatidia can change. A single-nucleotide-polymorphism (SNP) in the regulatory region of ey 

has recently been linked to heterochronic changes in the expression of this master regulator 

and the authors could functionally validate, that this variant underlies natural variation in 

ommatidia number of various D. melanogaster populations (Ramaekers et al., 2018). Analyses 

of eye size differences between D. simulans and D. mauritiana have shown, that the number of 
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ommatidia does not differ between these two species, but that the latter one develops larger 

ommatidia, leading to an increased eye ares (Posnien et al., 2012). Preliminary data suggests 

that changes in the expression of ocelliless (oc), causes the observed differences in facet size in 

the two species (Almudi et al. in prep.). Together with our results, this might indicate that in 

general expression changes in highly pleiotropic factors underlie repeated evolution of this 

trade-off between eye size and head width, but that the causative molecular mechanisms might 

be surprisingly different.  
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