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Abstract

Nanodevices are objects with broad relevance for today’s society, which bases its economy,
operation, and communication onto digital resources. In ballistic nanodevices, disorder has
either negligible or minor impact on electron transport. These ballistic devices are then typical
components in computers and digital storage units. This cumulative thesis theoretically studies
ballistic electron transport in graphene-based nanodevices and billiards. The thesis is divided
into two main parts: the first part uses classical dynamical systems theory, while the second
part applies semiclassical approaches to quantum transport.

The first part of the thesis is motivated by recent graphene experiments, that show puzzling
measurements of the resistance versus the magnetic field strength in an antidot superlattice nan-
odevice, a two-dimensional periodic array of repellers patterned on top of a crystalline lattice (in
this case, graphene). The resistance of an antidot superlattice shows pronounced peaks when
the strength of an applied perpendicular magnetic field is varied. The peaks, called commensu-
rability peaks, occur when the cyclotron radius becomes commensurable with the geometry of
the superlattice. This effect was been studied before, and it was shown that classical theory and
nonlinear dynamics are best suited to understand it. What is puzzling is that existing theories
cannot account for the observed peaks, when the electron mean free time (average time between
disorder-induced scatterings) in the device is as small as in the recent experiments. By finding
the inherent timescales of the dynamical system that represents the nanodevice, we provide the
necessary theoretical background to explain the experiments and understand how it is possible
to observe the effect. In the process of doing so, we also resolve a long-standing controversy
on the origin of the effect and its connection with the various parts of the electron dynamics
in an antidot superlattice. In addition, analytic connections are made between characteristic
timescales in dynamical systems and the volume of sets in the phase space, and the impact of
volume conservation of Hamiltonian mechanics is demonstrated.
These analytic connections are further taken advantage of in dynamical billiards, systems typi-
cally used to model real nanodevices. There, we show that generically in billiards the Lyapunov
exponent, a number quantifying the chaotic dynamics of a system, has a leading contribution
inversely proportional to the chaotic phase space volume. This finding has theoretical value in
itself, but it also allows one to readily connect the Lyapunov exponent with the parameters of
the billiard, which has implications for using billiards to model real physical systems.
The results of the first part of the thesis have implications in understanding transport in many
models following classical dynamics, because of the very simple principles used in deriving ana-
lytic relations between transport timescales and phase space volumes. Also, our results suggest
that if a relevant dynamic timescale is larger than the mean free time, then a reasonable expec-
tation is that the dynamic feature will not be observable at all in experiments. Thus, knowing
exactly which is the important timescale is crucial even before starting an experimental mea-
surement.

The second part of this thesis is motivated by quantum processes specific to graphene, as
well as questions regarding quantum-classical correspondence. Specifically, electrons in graphene
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undergo a special tunneling process called Klein tunneling. There, a particle incident on a po-
tential barrier can penetrate the barrier with perfect transmission (100% probability), provided
that the incident particle reaches the barrier with zero angle of incidence (i.e. normal incidence).
Oddly, this is true irrespectively of the characteristics of the potential. From its definition, Klein
tunneling is a process that depends on the angle of incidence of the particle, a concept that has
classical intuition. Furthermore, even though possible to define in a trivial plane wave eigen-
function, defining the angle of incidence in a complicated quantum transport setting is not at
all trivial. To be able to define concepts such as the angle of incidence, and obtain classical
intuition about them in a quantum transport numerical experiment, in this thesis we use the
Husimi function, in both the absence and presence of magnetic fields.
The Husimi function is a tool that can transform a quantum wavefunction into a probability
distribution over the phase space of position and momentum, which is useful for defining con-
cepts such as the angle of incidence. The Husimi function also helps to quantitatively define
more complicated concepts, like intervalley scattering, and even in devices with non-trivial ge-
ometries. We also show how, through the Husimi function, one can recover the transmission
probabilities of electronic wavefunctions being transmitted through a nanodevice, by interpret-
ing the marginal distributions of the Husimi function as weighting probabilities of a transmission
formula. We then quantitatively measure the effect that pn-junctions and geometric scattering
have on intervalley scattering. Surprisingly, we show that pn-junctions can intervalley-scatter
only one of the two valleys of graphene. In the literature, it has been qualitatively suggested
that the armchair termination of graphene is the strongest geometric intervalley scatterer. Here,
we prove this to be true using quantitative measurements.
Lastly, for the first time in the literature, we extend the Husimi function for electrons moving
in magnetic fields while respecting fundamental energy considerations. We further use this new
tool to study Klein tunneling in magnetic fields. Our results demonstrate that Klein tunneling
in magnetic fields is not well understood yet since our numeric study does not align with the
existing theory on the effect. The entire second part of this thesis showcases that the Husimi
function is very likely to help unravel transport phenomena in nanodevices. Thus, it could be of
general interest for condensed matter theory, currently a field that does not utilize the Husimi
function at all.
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1 | Introduction

The 21st century has been dubbed by many the Information Age or Digital Age [1], due to
the rapid shift from the previous industry-based economy to a society that bases its economy,
operation and communication onto digital resources. It is not an exaggeration to say that
in the present day it would be impossible for society to operate without digital information
and computers to handle it. As time progresses, digital computation takes an ever-increasing
role in society and economy. For example, the new concept of “cryptocurrencies” [2, 3] is an
economic model based entirely on digital assets which are created on the basis of computation.
Scientific progress is also becoming increasingly more reliant on both digital information and
digital computation. Scientific models that aim to understand and predict the most fundamental
aspects of the world, like the weather [4, 5] or the quantum realm [6], require tremendous amount
of both computing power as well as digital storage to operate properly.

But what enables all of this? What is the key that opened the door to this new Digital Age?
By large part, it is nanodevices and our improved understanding and fabrication of them. For
example, the transistor, one of the biggest discoveries of humankind [7], is a simple nanodevice
that can amplify or switch on and off electric current. Understanding its underlying physical
principles, how to use it in circuits to great effect, and how to make increasingly more efficient
transistors was exactly what allowed the fabrication of the early computers and ushered humanity
into the digital age [7].

The progress that lead to the Digital Age did not happen instantly, nor by chance. Advances
in engineering were important to fabricate better, more efficient, and smaller devices. Advances
in experimental physics were necessary to invent new materials as nanodevice basis, as well as
to measure complex phenomena. And finally, advances in theoretical physics were necessary to
understand the new materials, explain the measured complex phenomena, and demonstrate how
the physical principles underlying the devices may be used in application scenarios.

Nanodevices & graphene

Making a nanodevice is an extremely difficult task. By definition, to make a nanodevice one must
be able to fabricate structures with sufficient accuracy on the order of 10 to 100 nanometers [8].
The reason that this is so hard is because the typical distance between the atoms that make up
the crystalline lattice of a metal or alloy is about 0.1 to 0.3 nanometers [9]. Therefore, making
a nanodevice amounts to having accurate control to e.g. deposit or remove around 100 to 1000
atoms. Although it is possible to achieve such a control, it is nearly impossible to achieve it
in perfection. As a result, fabricated nanodevices contain several structural disorders, defects,
impurities and other factors, which for our purposes are noise-inducing sources in the device.
The electrons that are transported through the device interact with these factors, typically in
a stochastic manner. More often than not, these interactions are inhibiting the propagation
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and control of electric current. Thankfully, experimental advances in fabrication techniques
are constantly happening. This gives more and more control over the fabrication process and
reduces the noise, resulting in “cleaner” devices.

Experimental advances also lead to the discovery of new materials. Standard materials for
fabricating nanodevices and transistors were, and still are, gallium arsenide (GaAs) [10] as well
as silicon [11] based semiconductors and heterostructures. In 2004 however, experimentalists
were able to fabricate for the first time a new material, and in fact a new class of materials,
graphene [12, 13, 14, 15]. Graphene is a simple material, at least on paper: it is composed
exclusively of carbon atoms and is purely two dimensional, with the carbon atoms existing
in a single atomic layer, arranged in a honeycomb pattern like in Fig. 1.1. Even though a
material that is only a single layer of atoms thick seems something unfamiliar with everyday life
a stack of many of these layers is simply graphite (the material used in pencils). What is special
about graphene, however, is not its purely two-dimensional nature, but that its structure and
symmetries have brought completely new physics into condensed matter theory.

In a typical semiconductor like e.g. GaAs or silicon-based, the electrons follow what is
called a “parabolic dispersion relation”, which means that the energy associated with an electron
scales with the square of the wavevector associated with the electron wavefunction, E ∼ k2. In
the classical limit where the wavevector is replaced with the momentum, this means that the
electrons follow the well known classical Newtonian dynamics. In graphene the case is different.
Here, the dispersion relation is not parabolic, but conic instead, E ∼ |k|. In the classical limit,
this relation means that the electrons move as hyper-relativistic particles, i.e. not only do they
follow relativistic equations of motion instead of Newtonian ones, but they also behave as if they
have zero mass (i.e. like photons). Of course, this also applies in the quantum case, where the
electrons there are labeled Dirac particles, in honor of Paul Dirac who was one of the pioneers
to discuss quantum relativistic phenomena and the dispersion E ∼ |k| in detail [16].

The basic physics of graphene lead to some remarkable properties. Graphene is a zero-gap
semiconductor, meaning that it can always conduct current. It has resistivity smaller than silver
at room temperature, at around 10−6Ω/m, which is the lowest known at room temperature [15,
17]. Its thermal conductivity exceeds that of diamond [18] while its mechanical properties
establish it as one of the strongest materials ever tested [19]. These, and many more almost
exotic properties concern the infinite sheet of pure graphene (for more details see [20, 21] and
references therein) and it is because of these properties that graphene was heralded as the
substitute for silicon that will lead to new age electronics. Examples include applications in
transistors, touch-screens, biomedicine [22] and energy, to name a few (see e.g. [23, 24] and
references therein). However, up to the point of writing this thesis, graphene has not taken over
silicon and is in fact not that widespread in real-world applications. The reason is because it
is exceptionally difficult, as well as expensive, to manufacture sufficiently clean graphene and
in large quantities [25]. Progress is rapid though [25], and sufficiently clean devices based on
graphene are now being created by experimentalists and studied by theorists.

Classical theory for ballistic nanodevices

Clearly, the amount of disorder (and its minimization) is a crucial concept in the study of nan-
odevices since it can even forbid the technological application of an otherwise promising material.
A qualitative description of how important is the noise level in a device rests on the concept
of a ballistic device [8, 26]. By definition, a device is called ballistic when the noise-induced
scattering of the electrons is either negligible or plays a minor role in the dynamics of the device.
In the ballistic scenario, the electrons inside the device move mostly according to deterministic
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Hamiltonian mechanics (either classical or quantum) and the electron motion is dictated by the
device geometry as well as existing electromagnetic potentials. A quantitative way to define a
device as ballistic is to look at its mean free time τ . Simply put, τ quantifies on average for
how much time the electrons move in a device until interactions with the noise-inducing factors
significantly disrupt the electron motion. If τ · v (with v the average carrier velocity) is larger
than the characteristic length scales of the device or of the present electromagnetic potentials,
then the device is typically ballistic. Of course, even though it is a difficult task, only making a
ballistic device is not enough; one also has to understand its physics, both for interpretation of
experiments as well as for potential technological applications. And since ballistic realizations
of complex nanodevices in e.g. graphene have started becoming a reality only recently, it is now
a prime time to theoretically analyze and understand these new devices while comparing with
the newly accessible experimental data.

One aspect that is highly relevant for applications, experiments, as well as theory, is under-
standing and controlling electronic transport, i.e. the movement of electrons (and by extension,
the transport of charge i.e. electric current) in a ballistic device. To do this, many different
approaches have been implemented by physicist [27, 8], for example the density functional the-
ory [28] or tight-binding simulations [27, 29]. In this dissertation, however, the focus lies in the
following two approaches: using the dynamical systems framework and phase space representa-
tion of quantum mechanics. Dynamical systems theory is an abstract mathematical formalism
that can describe many different physical systems. A dynamical system is represented by a
collection of variables (e.g. position and momentum of an electron, voltage and current in an
electronic circuit, temperature and pressure of an air parcel, chemical concentrations, and in
general any physical system) whose value changes with time. The dynamical system then is
modeled by a set of coupled ordinary differential equations, or coupled discrete maps. Note
that the classical Hamilton’s equation of motion are also part of dynamical system theory. Dy-
namical systems have been successful in modeling essentially every part of the physical world,
from weather [30], to fluctuation of populations [31] to the heart [32] to microbes [33] and more.
Specifically within the context of nanodevices, they have been used in e.g. quantum dots [34],
optical lattices [35] and antidot superlattices [36] (see also sec. 2.1.2). An example of an antidot
superlattice, a nanodevice that will be discussed at length in later chapters of this dissertation,
is shown in Fig. 1.1(b, c).

A subclass of classical Hamiltonian systems, that are very relevant for modeling nanodevices,
are dynamical billiards [37]. In billiards the dynamic variables are always the position and
momentum of a point particle (here an electron). This particle propagates freely within a domain
(which often represents a nanodevice) and only upon colliding with the boundary of the domain
the particle is reflected specularly, as is shown in Fig. 1.1(d), which shows the “mushroom”
billiard. Billiards are relevant in theoretical studies and modeling of nanodevices and have been
used extensively to model nanodevices both from a classical [38, 36, 39, 40, 41, 42, 43, 44, 45, 46]
as well as quantum perspective [47, 48, 49, 50], and have also been implemented extensively
specifically for graphene [51, 46, 52, 53].

Generally dynamical systems posses intrinsic characteristic timescales. These timescales
arise from the inherent dynamics of the system and can have profound relevance not only for
the dynamics, but also for the behavior of the real systems that the dynamical system models.
For example, if we imagine the mushroom billiard of Fig. 1.1(d) to represent a nanodevice where
electrons are injected from the stem bottom, and can only leave the device again from the stem
bottom, then an important timescale of the system would be the average amount of time the
electrons need to return to the stem bottom. One more example of an important timescale is the
average travel time between antidots in an antidot superlattice (Fig. 1.1(b,c)), which is discussed
in the first paper of this dissertation, in chapter 3. Finding these characteristic timescales, and
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understanding how they depend on the parameters of the nanodevice is crucial in the context
of ballistic transport. An important question is how these inherent timescales compare with
the mean free time τ . One can imagine that if τ is shorter than the inherent timescales, the
associated part of the dynamics could be inaccessible by experiments in the real system.

But besides system-specific timescales, there is one more timescale that is of general interest
for dynamical systems: the Lyapunov exponent [54, 55, 56, 57]. Most dynamical systems have
nonlinear equations of motion [58], which quite often results in chaotic evolution of the dynamical
variables (e.g. chaotic motion of electrons inside nanodevices). It is broadly defined that the
dynamics of a system are chaotic if initially close trajectories separate exponentially fast as
they are evolved with time [59]. Chaos also leads to analytically intractable evolution of the
dynamic variables in time [58, 60, 59]. Because of this chaotic property, it is impossible to exactly
predict the long term behavior of a dynamical system. This happens because there is always
finite precision in determining the initial condition of the system, from which the evolution in
time will start. This initial inaccuracy grows with time in chaotic systems, until the inaccuracy
actually covers the entire phase space, meaning that the system could be in any of the all possible
states it is allowed to be. The Lyapunov exponent establishes a timescale tλ which, in order to
increase the time of an accurate prediction linearly (in multiples of tλ), one has to increase the
initial accuracy geometrically [61]. In a sense this quantifies the “predictability horizon” of a
chaotic system, since predictions above some multiples of this timescale are very difficult, if not
impossible.

Figure 1.1: Example sketches of concepts and physical systems treated in this dissertation. (a) Graphene
honeycomb lattice, with black and white dots denoting the two sublattices (see sec. 2.3). (b) Experimental
realization of a graphene antidot superlattice (the green colored part), which is an artificial array of
periodic repelling disks on top of a graphene lattice. Taken with permission from [62]. (c) A dynamical
system that models (b): an electron is propagating chaotically in a periodic array of repellers (the electron
trajectory is blue, see sec. 2.1.2 for more). (d) The mushroom billiard with two example trajectories. (e)
A sketch of the Landauer-Büttiker setup, with the scattering region representing a graphene nanodevice
in the middle. (f) A sketch of the Klein tunneling.
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Quantum theory for ballistic nanodevices

Notice that the dynamical systems approach, as is discussed here, is concerning classical mechan-
ics. Some properties of nanodevices can be best understood using classical models, but usually
nanodevices have to be described quantum mechanically (owing to their tiny sizes). Although
there are possibilities to extend classical mechanics to include features of quantum systems, as
done for example in ray-splitting billiards [63, 64, 65], sometimes one has to perform simulations
of quantum systems in a direct manner. The approach that is used in various parts of this
dissertation is based on the Landauer-Büttiker formalism [66, 8]. There, a nanodevice is treated
as a compact unit (commonly called the scattering region), in which electron wavefunctions go
in, get scattered by the device, and then go out again. A sketch illustrating this is shown in
Fig. 1.1(e), while more details on the formalism and its implementation are given in sec. 2.5.
What is important for this introduction is that this formalism is able to provide the electron
wavefunctions inside the nanodevice.

A purely quantum phenomenon which is quite often of relevance in electron transport is
quantum tunneling. Quantum particles can propagate through classically forbidden energy bar-
riers with the propagation described by specific quantum rules [67]. These rules typically state
that the probability to propagate through the classically inaccessible barrier decays exponen-
tially with increasing the barrier width and strength [68]. This is the case for example in silicon
or GaAs based nanodevices. Graphene, however, obeys different rules, owing its special physical
properties stemming from the hyper-relativistic (Dirac) dynamics. A peculiar and even exotic
tunneling process takes place in graphene, which is named Klein tunneling [69, 70, 71], after
Oscar Klein, the first to study the effect in detail [72]. According to Klein tunneling, the proba-
bility of an electron in graphene to go through a potential wall depends strongly on the angle of
incidence of the electron on the wall. Specifically, it holds that T ∼ exp(−γ sin(φ)2), as sketched
in Fig. 1.1(f), with γ a factor containing the parameters of the potential. Thus, the transmis-
sion is higher if the electron hits the barrier at normal incidence, while it becomes significantly
smaller for oblique angles. It is crucial here to see that if φ = 0 (i.e. normal incidence on the
barrier) then T = 1 and thus we have perfect transmission of the electron. This is important,
because this property holds irrespectively of γ, the details of the potential (i.e. width, strength,
etc.). This may have profound effects in real world applications, as on the one hand it inhibits
a straight-forward application of the operating principle of the transistor, while on the other it
significantly reduces disorder-induced localization [71].

Quantum tunneling typically depends on the “angle of incidence” and this dependence is even
more crucial for Klein tunneling. The angle of incidence may be possible to define for a trivial
wavefunction as the wavevector angle [71], but it is not at all obvious to define for a complex
wavefunction, as is the ones that exist inside a nanodevice like in the sketch of Fig. 1.1(e), since
there there cannot be only a single angle of incidence. Furthermore, even for a simple device,
although possible to define in the quantum sense (wavevector angle), the angle of incidence
concept has a classical intuition. Two immediate and natural questions arise. Firstly, how can
one define, and also obtain, such a concept as the angle of incidence in a complex quantum
wavefunction? Secondly, how can one connect the quantum concept of Klein tunneling with
the classical intuition of the phase space (position, momentum, velocity) through this angle of
incidence? These specific questions may be new, because graphene is a relatively new material,
but in a general sense such questions are not all that new; they fall under the concept of
quantum-classical correspondence.

Quantum-classical correspondence is the train of thought that tries to connect the quantum
realm with the classical world that we live and see on a daily basis. Even though quantum and
classical phenomena can be wildly different, they are after all part of the same physical reality,
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and classical and quantum mechanics try to understand the same universe, just on different
scales. Therefore, attempting to connect the two sides of the same coin is well justified [73].
The first discussion on the topic was by Niels Bohr [74] when he formulated the correspondence
principle: quantum mechanics should reproduce classical physics in the limit of large quantum
numbers (e.g. large energy levels, large orbits, etc.). Although heuristic, the principle is sup-
ported by Ehrenfest’s theorem [75]. A more rigorous entry on the subject was offered by Wigner
in 1932 [76]. Wigner came up with a rigorous way to transform a wavefunction into a probabil-
ity distribution over momenta and positions, a construct now called the Wigner function [73],
which takes as an input a wavefunction ψ and returns a distribution P on the phase space. Even
though this seems to be the perfect way to transform quantum mechanics into classical mechan-
ics, simply by taking P as a probability distribution, there is a catch. P can have negative values
(owing to quantum interference) and thus is not so straightforward to interpret classically.

A similar approach to the Wigner function is provided by the Husimi function, first intro-
duced by Kodi Husimi in 1940 [77]. The Husimi function is the Weirstrass transform of the
Wigner function and thus retains all the rigorous properties with regards to derivations from
quantum mechanics [78]. It has the advantage, however, that is has no negative values and thus
it is much easier to interpret as a probability distribution over the classical phase space (for more
see sec. 2.6). Husimi functions have been used extensively in physics, being a standard tool in
quantum optics [79, 80, 78], and ocean acoustics [81]. The field that takes most advantage of
Husimi functions is definitely quantum chaos [82, 83, 84, 85, 86, 87, 88, 89, 90, 91], a field of
physics devoted to studying the quantum-classical correspondence in systems with complex dy-
namics. Given the discussion and questions raised in this subsection, one would expect Husimi
functions to have been used extensively in condensed matter (where study of nanodevices is a
subpart of), since they can give intuition on concepts like the angle of incidence of a quantum
wavefunction. Surprisingly however, this is not at all the case. Only very recently Mason et al.
introduced the Husimi functions for studying nanodevices [92, 93, 94], in an approach aiming to
visualize classical paths inside the device. More in-depth analysis of classical concepts (e.g. angle
of incidence and the phase space structure) and their definition given a quantum wavefunction
are currently lacking in this field.

1.1 Thesis synopsis and outline

In this cumulative thesis I theoretically studied graphene-based nanodevices and ballistic electron
transport within them, discussing the topics and answering the questions raised in the introduc-
tion section. The thesis is divided into two main parts, the first being classical theory while the
second being quantum theory, with emphasis on semiclassical approaches (quantum-classical cor-
respondence). The first part of the thesis is heavily motivated by recent graphene experiments,
that show puzzling measurements of the resistance versus the magnetic field strength in an anti-
dot superlattice (Fig. 1.1(b)) [41, 62]. Understanding and providing a theoretical background of
these experiments required finding the inherent timescales of the dynamical system that repre-
sents the nanodevice (Fig. 1.1(c)). In addition, strong analytic connections were made between
characteristic timescales in dynamical systems and the volume of sets in the phase space, and
the impact of volume conservation of Hamiltonian mechanics was demonstrated. The second
part is motivated by the questions raised in the final section of the introduction. It discusses how
to obtain a (semi-)classical intuition of complicated quantum phenomena special to graphene,
like Klein tunneling, using the Husimi function in both the absence and presence of magnetic
fields. The significant contributions of this part of my thesis was firstly to show that the Husimi
function can be very useful in condensed matter as a tool to understand nanodevices. This is
because it provides an intuitive framework to understand concepts like the angle of incidence,
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but also because it allows measuring complicated concepts (like intervalley scattering, see below)
straightforwardly. In addition, I extended the Husimi function for electrons moving in magnetic
fields, and used it to study Klein tunneling in magnetic fields, which is not yet fully understood
by the graphene community.

Chapter 2 provides the theoretical background necessary to understand the papers that make
up my dissertation. The focus is specifically on the physics and methods relevant for this
thesis. For example, antidot superlattices, billiards, graphene, Klein tunneling and the Husimi
function are discussed in more detail and from a more theoretical perspective. Besides providing
a background, this chapter also provides more context as well as more specific motivation to the
questions discussed in the introduction.

Chapter 3 is the first paper that composes this dissertation. There we simulate a dynamical
system representing an antidot superlattice (ADSL). The magnetoresistance of an ADSL shows
characteristic peaks for magnetic field values where the cyclotron orbit is commensurable with
the geometry of the device. Motivated by puzzling recent experiments with graphene ADSLs,
which show the same characteristic peaks in a regime that shouldn’t be possible, we analyze
the timescales of the ADSL and find out which is the important inherent timescale relevant
for the magnetotransport experiments. We then explain these experiments by understanding
(and analytically prooving) that this characteristic timescale is reduced at the commensurable
magnetic fields, simply due to the characteristic phase space volume conservation of Hamiltonian
mechanics. In doing so, we also resolve a long-standing controversy on the origin of the magneto-
resistance peaks in an ADSL. This chapter closes with unpublished results about the Hall effect
of an ADSL, and highlights what gave us the insight to understand which is the important
timescale, relevant for the experiments.

Chapter 4 presents a scientific software to simulate and analyze dynamical billiards, that I
developed and published during my dissertation: DynamicalBilliards.jl. This software has
been used extensively in the first two papers of this thesis, but it is also being used by other
members of the scientific community. In the chapter I briefly overview the software, discuss the
advantages of using it and point out some unique features that other software do not possess.

Chapter 5 is the second paper that composes this dissertation. There we analyze the Lyapunov
exponent of several diverse billiards. This exponent is a timescale directly linked with the chaotic
dynamics of a billiard. Motivated by the first paper (chapter 3), we link the exponent with
the volume of the chaotic phase space. This not only provides a deeper, more fundamental
understanding of how this chaotic timescale is linked with the properties of the phase space, but
it also readily connects the timescale with the parameters of the billiard. This is because the
phase space volume is very often determined analytically from the parameters of the billiard, or
at least straightforwardly from numeric simulations. A result of broad interest from this work is
that the Lyapunov exponent generically has a contribution that is inversely proportional to the
chaotic phase space volume. This result is also backed by strong analytic arguments, assuming
only the phase space volume conservation (which is a property of all Hamiltonian systems).

Chapter 6 is the third paper that composes this dissertation. In this chapter a transition
is made from classical to quantum mechanics, which is motivated in more detail in sec. 2.4.
The paper implements the Husimi function to study the Klein tunneling effect discussed in
the introduction, as well as intervalley scattering, another quantum process that is inherent
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to graphene. In this work we showed that the Husimi function is an excellent tool fitting
to be used in the field of condensed matter, as it can be used both for intuition but also
for uncovering fundamental information. More specifically, we showed that using the Husimi
function allows one to reproduce theoretical predictions on Klein tunneling, and to quantify
Klein tunneling in scenarios intractable by theory. Furthermore, we showed how analyzing the
Husimi function can provide a quantitative measure of intervalley scattering (see sec. 2.3), which
in essence is scattering in momentum space due to either the device geometry or the electrostatic
potential. Surprisingly, electrostatic potentials like pn-junctions have strong asymmetry in their
intervalley scattering. Finally, we demonstrated that a specific termination of the graphene
lattice (called armchair) is by far the strongest intervalley scatterer in graphene, a result that
was often suggested theoretically in the literature but not discussed much quantitatively.

Chapter 7 is the final project of this dissertation. In this chapter we firstly extend the Husimi
functions for electrons moving in magnetic fields, to properly account for energy considerations.
We perform numeric simulations that validate our extension, and also show that it is possible
to recover localized wavepackets (to create e.g. point particles) in magnetic fields in graphene
devices through the Husimi function. Then, we use this new tool to study Klein tunneling in
magnetic fields, which is an effect that has been studied little and seems to be lacking under-
standing. We show that the currently standing theory for Klein tunneling in magnetic fields
cannot explain the numeric results of simple quantum transport simulations in pn-junctions.

Chapter 8 is the closing chapter of the dissertation. It summarizes the results of the various
projects that compose my dissertation. A discussion of potential applications of my results, as
well as direct continuations of some of the projects concludes the thesis.
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2 | Fundamental Concepts

The goal of this chapter is twofold. On one hand, it introduces the fundamental concepts, un-
derlying physical principles, governing mathematical laws and relationships between the phys-
ical systems that are treated in this dissertation. The concepts that are discussed here well-
established, and therefore only a brief overview will be given. On the other hand, the chapter
provides more context and more motivation to the specific questions and problems that are
treated in this thesis as well as justification on the choices of what modeling approaches to use.

2.1 Nonlinear dynamics of antidot superlattices

The physical systems that motivated the present thesis are called graphene antidot superlattices
(Fig. 2.1). These are in essence two dimensional nanodevices with a external modification done
on top of the crystalline lattice. Before going into the details of the antidot superlattices however,
it is best to review the basic relationship between current and resistance in a two dimensional
electronic system in the presence of magnetic fields [8].

To experimentally measure magneto-transport (i.e. current and resistance in the presence
of a magnetic field), one typically uses the Hall bar setup [8], shown in Fig. 2.1(a). A current
is applied across the device, and then one can define the magneto-resistance Rxx = VL/I and
the Hall-resistance Rxy = RH = VH/I. The classical Drude theory for conductors says that the
magneto-resistance of a two dimensional electron conductor is independent of the magnetic field
B, while the Hall-resistance is linearly proportional to it [27]

R(D)
xx (B) =

m

|e|2nstm
, R(D)

xy (B) =
B

|e|ns
. (2.1.1)

Here ns denotes the electron density (for graphene given by eq. (2.3.14)), while tm stands for the
mean free time, which for the purposes of this thesis is the average amount of time an electron
moves before it interacts with noise-inducing factors (e.g. impurities or defects) and randomizes
its own velocity. It was later discovered that for very strong magnetic fields the quantum Hall
effect (QHE) occurs [95, 96]. There, the Hall-resistance increases in quantized steps, while the
magneto-resistance follows strong oscillations versus B, called Shubnikov–de Haas oscillations,
see [8] for more. This thesis is concerned with magnetic field values below the QHE regime.

2.1.1 Antidot superlattices

Additional effects arise when one modifies the two-dimensional conductor via means of a super-
lattice: a periodic modification, with periodicity at a scale much larger than that of the regular
crystalline lattice of the material that composes the nanodevice. This modification typically
acts as an electrostatic potential. One such example is a rectangular or hexagonal lattice of re-
pulsors, called antidot superlattice (ADSL), which is shown in Fig. 2.1(b, d). Holes are “drilled”
in the material periodically, typically using electron beam lithography [97], and these holes act
as repulsive centers for the electrons [36]. Fig. 2.1(c) shows is an example potential landscape
that is probed by the electrons.
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Such ADSL modifications were first done in the 1990 by three groups. D. Weiss and col-
leagues [97] used electron beam lithography while K. Esslin and P. Petroff [98] used ion bean
implantation to create the antidots by “drilling” holes in the material. In these cases the antidots
are absence of (or heavily damaged) material. A. Lorke et al. [99] created antidot superlattices
via means of electrostatic modulation using lateral gates. In this case the antidots are formed by
the electrostatic potential, instead. In all three cases the antidots are perceived by the electrons
as repulsive centers either because they are physically inaccessible, or because the potential
barriers are unpenetrable with quantum tunneling due to their high strength and width. In ad-
dition, Refs. [97, 98, 99] used GaAs heterostructures as the material basis and fabricated ballistic
devices (i.e. with sufficiently large mean free time). Since then, antidot superlattices have been
created in a wide range of materials [100, 101, 102] including graphene [62, 41] and very recently
topological insulators [42]. ADSLs have even been used to study composite fermions, which
are particles that lead to the fractional quantum Hall effect, see e.g. [103]. Reviews on antidot
superlattices in semiconductor heterojunctions and graphene can be found in [104] and [105]
respectively.

Assuming that we are in the small magnetic field regime and at low temperatures, where the
Drude picture should still hold, all aforementioned experimental realizations of antidots show
that the Drude picture actually breaks down. Instead, interesting structures occur in both the
magneto-resistance Rxx as well as the Hall-resistance Rxy. Rxx displays a series of peaks at
characteristic magnetic field values, which we show in Fig. 2.2 for three different materials. At
the same values Rxy displays non-quantized steps (but only in experiments with sufficiently
small mean free time [62]). The reason these ADSLs are a very interesting system is exactly
because of the aforementioned peaks in the magneto-resistance.

Figure 2.1: (a) Hall-bar experimental setup. (b) Sketch of an antidot array consisting of periodically
arranged holes etched into a graphene nanodevice, taken from [62] (replicated with permission). (c) The
corresponding potential landscape probed by the electrons in the ADSL. The electrons move at the Fermi
energy, depicted by a semitransparent red plane. (d) False-color scanning electron micrograph of a real
graphene antidot superlattice sample. Here, the heterostructure is shaded in green, the Cr/Au contacts
yellow, and the Si/SiO2 substrate violet. Scale bar length 500 nm. Reproduced with permission from [62].
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2.1.2 Nonlinear dynamics

Because the length scales in antidot superlattices involved are on the order of 10 to 100 nanome-
ters, one would expect that quantum mechanics plays a big role in the observed physics. Yet,
ADSLs are devices that display a large range of classical effects [104], even though their length
scales are in a regime where quantum mechanics is typically important [8] (this is also possible
because in the ballistic experiments of [97, 98, 99] the Fermi wavelength was comparable with
the characteristic lengths of the nanodevice). After the first fabrication of ADSLs it was im-
mediately realized that the magnetic field values where the Rxx peaks occur are very specific.
In fact, these peaks occur when the classical cyclotron radii can (approximately) enclose an
integer number of antidots without collision (the cyclotron radius is inversely proportional to
the magnetic field r ∼ 1/B). Such cyclotron examples are shown in the insets of Fig. 2.2(a, b)
but also in Fig. 2.3. Because of this condition, the magneto-resistance peaks are referred to as
Commensurability Peaks (CPs). Another interesting effect is the “quenched Hall effect” that will
be discussed after presenting the first paper of chapter 3, in sec. 3.1. Notice that the concept of
the cyclotron radius (i.e. the radius of the circular motion an electron performs in the presence
of a constant magnetic field) is an entirely classical concept.

Many research groups were able to reproduce the CPs using classical mechanics [36, 106,
107, 108, 104, 109]. Most attempts to explain the origin of the CPs were based on the nonlinear
dynamics of the electrons in the lattice and the nonlinear resonances with respect to the com-
mensurable orbits. However, the exact mechanism for the origin of the CPs was controversial in
the literature because different groups were claiming different kind of resonances to be important
(for more details please see the in-depth discussion happening in the first paper, chapter 3).

At this point it is best to define and explain the term “nonlinear resonance”. The dynamics
of the electrons in an ADSL with a perpendicular magnetic field can be modeled within the
single electron picture by a simple dynamical system introduced by Fleischmann, Ketzemerick
and Geisel [36]

ẋ = vx (2.1.2)
ẏ = vy (2.1.3)

v̇x = 2
√

2Bvy − ∂U/∂x (2.1.4)

v̇x = −2
√

2Bvx − ∂U/∂y (2.1.5)

U(x, y) = U0 [cos(2πx) cos(2πy)]β (2.1.6)

where x, y is the position of the electron (the antidots are located at x, y = 0 mod 1), vx, vy
the velocity, B the magnetic field and U is the potential landscape created by the superlattice.

Figure 2.2: Commensurability peaks (CPs) as a universal feature of antidot superlattices (ADSLs). The
subplots show magneto-resistances of ADSLs patterned into different materials. (a) 2DEG of semicon-
ductor heterostructures (from [97]), (b) graphene (from [62]), (c) topological insulator (from [42]). All
figures reproduced with permission.
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I will call this dynamical system the FKG model in the following. For the current discussion
the parameters U0, β are of low importance for the dynamics. This means that in principle
the system has a single parameter, the magnetic field B, which has dramatic impact on the
resulting dynamics. The system is also Hamiltonian since it is just a representation of Hamilton’s
equations of motion for H = (p−A)2 + U (with A the vector potential). Besides the FKG
model, one can also use the periodic Sinai billiard (PSB) [110, 97, 111], Fig. 2.4, as a model for
the ADSL which is equivalent with the FKG model with β → ∞, U0 = 1/const.β . This results
in a simplified model, which cannot reproduce the experimental measurements with as high
accuracy as the FKG model. Nevertheless, it still reproduces the fundamental properties of the
magnetoresistance and thus is fitted to examine in detail fundamental concepts (see chapter 3).

The orbits shown in Fig. 2.3 are the result of straight-forward numeric integration of (a
modified version of) the FKG model. Once we have the timeseries of the model’s variables, it is
possible to calculate the resistances using the Kubo formalism [112]. Following [36] the result is

σij ∼
∫ ∞

0
e−t/τi〈vi(t)vj(0)〉EF dt , (2.1.7)

Rij =
σij

σ2xx + σ2xy
(2.1.8)

with the conductivities σij (ij = xx or xy) and the magneto- and Hall-resistivity Rxx and
Rxy, respectively (modulo some geometry prefactor). Cij(t) ≡ 〈vi(t)vj(0)〉EF is the velocity
correlation function (VCF), averaged over the available phase space at the Fermi energy. Here
τi represents the impurity scattering time, also called the mean free time.

The solutions to the FKG model are typically chaotic. However, the model also has periodic
solutions in the phase space for specific magnetic field values [36]. These periodic orbits are of
two kinds, both shown in Fig. 2.3. The first kind are the collision-less electron orbits that were
already discussed. The second are the “skipping” electron orbits, that hop periodically across the

Figure 2.3: Replication of Fig. 2 of the first manuscript of my thesis, ch. 3. The Figure shows the antidot
superlattice (black filled disks), the two types of periodic motion (collision-less electron orbits at different
commensurable magnetic fields n=1 to 9 as well as skipping orbits) and typical chaotic motion (both just
“chaotic” as well as trapped). The boundary roughness (right part of the figure) is not discussed in this
introduction.
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different antidots. Notice that the collision-less electron orbits, also called pinned orbits in the
literature [36] (in the PSB the skipping orbits are unstable). These periodic orbits are composing
the nonlinear resonances of the system. In a nonlinear dynamical system (that ADSLs are),
the chaotic electrons can “resonate” with these nonlinear resonances and follow their dynamics
for sufficiently large time spans until returning again to the “chaotic” dynamics (for an exact
description of how this resonance can occur, please see [36] or one of the textbooks on nonlinear
dynamics [60]). These interplay of the chaotic electrons with the nonlinear resonances are what
the different research groups used to explain the origin of the CPs, but there was a controversy
since different groups were focusing on different resonances. Regardless, the fundamental claim
was that the CPs are a result of the nonlinear resonances in the dynamics of the ADSL. At this
point one has to realize that for this claim to make sense, the mean free time of the electrons
inside the real device has to be several times larger than the resonance period, which was indeed
the case for the original ADSL systems fabricated in semiconductor heterostructures [97].

2.1.3 Graphene antidot superlattices

Two recent experimental papers were able to fabricate ballistic nanodevices of ADSL based on
graphene [62, 41] that had sufficiently large mean free time that allowed one to resolve magneto-
resistance features like the CPs in Hall-bar measurements. This is of interest, because electron
motion in graphene has different basic transport properties than in standard semiconductors.
Specifically (and more details on this are in sec. 2.3) the carrier motion follows hyper-relativistic
dynamics instead of classical, i.e. the kinetic energy of the particles has the form K ∼ |p| instead
of the common case of K ∼ p2 (here p is the electron momentum). In my M.Sc. thesis [113] I
extended the FKG model to accommodate the hyper-relativistic dynamics, and showed that the
fundamental aspects of the model remained intact: the resonances, the commensurability peaks
and other properties only changed slightly in numerical value but not qualitatively.

The bigger challenge that these two new experimental papers brought though was not the
relativistic dynamics, but the fact that the mean free time in these devices was extremely small.
If ta is the average time an electron needs to move from one antidot to the next one, the
experiments had a mean free time of at most τi = 3ta. Why is this a challenge? The smallest
period of the aforementioned resonances is πta (for details see ch. 3). If one wants to use the
resonances to explain the origin of the CPs, the mean free path should be much larger than
the period of the resonance. Yet, in both the new experiments in graphene ADSLs as well as
preliminary simulations done in my M.Sc. thesis, it was clear that CPs can exist when the mean
free time is 3ta. This simply means that the old theories cannot explain the origin of the CPs,
at least not at the fundamental level. “What is the origin of the CPs” is exactly what the first
paper of this thesis answers.

2.1.4 Origin of commensurability peaks

Finding the origin of the commensurability peaks (CPs) was the first project of my disserta-
tion. The full details of this are described in chapter 3, using the published paper as well as
unpublished results that give some insight into the process that lead to answering the question.
I believe it is worthy to provide here a conceptual summary and sketch the core ideas that lead
to the answer, because it further motivates the remaining thesis. Basically, the CPs exist due
to volume conservation.

Three ingredients are necessary to understand the origin of the CPs. The first ingredient is
the volume-preserving nature of the phase space dynamics for an ADSL. Within the framework of
classical mechanics, the phase space of (for example) the FKG model is mixed : chaotic motion
coexists with regular motion for different initial conditions, at least for the commensurable
magnetic field values. For other magnetic field values the phase space is entirely chaotic. To
understand this better please see Fig. 2.4. There one can clearly see that for some values of B
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it is impossible to find periodic orbits. For some other values of B though (the commensurable
values), both chaotic and regular orbits exist in the phase space.

Besides the fact that the phase space is mixed, the FKG model (and also the periodic Sinai
billiard, PSB) conserve phase space volumes, because they are Hamiltonian systems [60]. In
addition, these systems have the interesting property that their total phase space volume is
independent of the magnetic field B. This has the implication that both regular and chaotic
trajectories compete for the same phase space volume. Therefore, if the amount of regular
trajectories is increased from zero (non-commensurable magnetic field) to a nonzero value (at a
commensurable magnetic field) the total volume the chaotic orbits can occupy will necessarily
decrease.

The second ingredient of this sketch of the origin of the CPs is how the resistance of the
ADSL is connected with the electron motion in the FKG or PSB models. What turns out to be
the case is that it is possible to connect the resistance Rxx with the mean collision time κ of the
electrons in the ADSL (skipping many details which are enclosed in chapter 3). κ simply notes
the average amount of time an electron needs to travel from one collision with one antidot to
the next collision with the next antidot. Keep in mind that κ and τi (the mean time between
impurity scatterings) are independent and model completely different physical processes.

To be more specific, the magnetoresistance has a contribution inversely proportional to the
mean collision time κ. A valley in the curve κ vs. B corresponds to a peak in Rxx vs. B. In
Fig. 4 of the manuscript of ch. 3 it is clearly shown that κ has valleys at the commensurable
magnetic fields, where the magnetoresistance has peaks. To conceptualy understand why this
should be the case, one does not need the details of the paper. On the most basic level, resistance
is how difficult it is for the electrons to move through a device. It makes sense that, at least
on average, the more frequently the electrons collide inside the device (i.e. the lower the κ) the
higher the resistance of the device should be. And to aid this conceptual argument, we can also

Figure 2.4: Mixed nature of the phase space of the FKG model or the periodic Sinai billiard (in the
Figure the billiard is shown, similar results are obtained for the FKG model). (a) Poincaré surface of
section (PSOS) and (b) movement in the ADSL for B = 0.4 (non-cummensurable value). (c, d) same
for B = 1.0 (commensurable value). Chaotic orbits are colored blue in the PSOS while periodic orbits
are colored red. Notice that in (b, d) a red circle indicates the cyclotron motion. In (b) it is impossible
to fit such a circle and obtain periodic motion.
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invoke the basic Drude formalism of eq. (2.1.1) that generically states that magnetoresistances
are generically inversely proportional with mean free times.

By now it is established that the reason Rxx has the CPs is because the mean collision
time in the ADSL κ becomes smaller at the commensurable magnetic fields, which is also the
magnetic field values where periodic orbits exist. But the question now is, why should κ be
reduced when regular orbits exist? The chaotic orbits (which contribute to electron transport
and whose average time between collisions is κ) do not necessarily interact with the periodic
orbits. The third and final ingredient in understanding the true origin of the CPs is Kac’s
lemma [114, 115, 116, 117], which is a universal property of measure preserving maps. Kac’s
lemma is extremely simple and astonishingly general. It states that for any measure preserving
map f : M →M , which preserves a measure µ, and any set S ⊂M it holds

〈nS〉 =
µ(Macc)

µ(S)
. (2.1.9)

Macc is the accessible part of M for trajectories starting in the set S while 〈nS〉 is the average
amount of iterations needed for a trajectory to return back to S (starting to count immediately
after exiting the set). Notice that it is guaranteed that the trajectories will at some point return
to S due to Poincaré’s recurrence theorem [60]. A sketch that illustrates Kac’s lemma is shown
in Fig. 2.5. Notice that Kac’s lemma is a direct result of measure preservation and requires no
additional assumptions about the system (see [116] for a proof).

Why is Kac’s lemma relevant for the magnetoresistance of an ADSL? Let gc(B) denote
the portion of the phase space of the ADSL that is chaotic. This portion is at most 1 at the
non-commensurable magnetic fields, and is reduced from 1 when periodic orbits exist (at the
commensurable magnetic fields). What I was able to prove is that

κ(B) = gc(B)κ(0) (2.1.10)

i.e. that the mean collision time of the chaotic orbits in the ADSL is directly proportional to
the chaotic phase space portion. This portion gc can also be interpreted as the probability that
a random initial condition will be chaotic. The proof of eq. (2.1.10) is fully analytic, based
on Kac’s lemma, and is presented in the first paper in chapter 3. In essence this means that
the mere existence of the periodic orbits affects the chaotic orbits indirectly, by reducing their
average collision time simply by occupying some part of the phase space. Thus, again indirectly,

Figure 2.5: Left: A sketch of Kac’s lemma. Right: Numeric computation of the mean collision time κ in
the periodic Sinai billiard and portion of the chaotic phase space gc (scaled to same maximum), versus
the magnetic field.
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the presence of these periodic orbits, an entirely classical concept, leads to the commensurability
peaks of the magnetoresistance.

2.2 Lyapunov exponents in billiards

2.2.1 Motivation

While explaining the origin of CPs in ADSLs, we uncovered a fundamental connection with a
characteristic transport timescale in a dynamical system (specifically the PSB) and the way the
phase space is affected by an external parameter (here the magnetic field): κ(B) = gc(B)κ(0).
The ingredients that led to this relation were all derived purely from volume conservation. It
seems valid that such relation could be generalized and phase space volumes could be connected
with more than a transport timescale and in more systems than only the periodic Sinai billiard.

For several reasons, an excellent family of dynamical systems to test this hypothesis is bil-
liards. Firstly, they are measure preserving and thus satisfy the necessary criterion for Kac’s
lemma. Secondly, billiards are conceptually simple to understand yet most of them display a
plethora of interesting dynamics [118]. Thirdly, it is straight forward to connect distances in the
phase space, with paths in the real billiard space, since the phase space variables of the billiard
system are the position and the propagation angle. This provides an intuitive framework for one
to conceptualize what mean return times mean (which is what Kac’s lemma provides). Fourthly,
billiards have been used extensively in many areas of physics, like ergodic theory [110, 119, 120],
quantum chaos [47, 48], optical microresonators and laserss [49, 50] and room acoustics [121])
and also in condensed matter to model transport properties of electronic nanostructures such as
quantum dots and antidot superlattices [122, 36, 97, 40, 41, 42, 43, 44, 45, 46] and even more
specifically for graphene nanodevices [51, 46, 52, 53]. This means that any general results we
can find about billiards could have potential implications for various areas of physics and thus
have a broad impact. Lastly, the software DynamicalBilliards.jl [123] (chapter 4) allowed us
to examine any billiard of any shape with ease.

Thus, in the second paper of this dissertation (chapter 5), we studied billiards which have
mixed phase space, so that phase space volumes can be tuned by an external parameter. The
first billiard we looked at was the aforementioned periodic Sinai billiard [122, 110], the second
was the mushroom billiard [124] and the third one was the inverse stadium billiard [125]. Fig. 2.6
shows the billiards as well as how their volume changes with a change in a parameter. Part of
the standing hypothesis of this section is that phase space volumes should be connected with
“more than a transport timescale”. To put this vague concept into concrete terms, we decided
to study the Lyapunov exponent of these billiards.

2.2.2 Chaos and Lyapunov exponents

The Lyapunov exponents are a set of numbers that characterize stability properties of the phase
space, as well as quantify the chaotic motion, introduced first by A. Lyapunov [54]. A dynamical
system has as many exponents as its dynamical variables, and thus a billiard has four. However,
because billiards are Hamiltonian systems, one can show that λ1 = −λ4, λ2 = λ3 = 0. Thus one
only needs to discuss λ ≡ λ1, the maximum Lyapunov exponent. The way λ quantifies chaotic
motion is based on how quickly nearby trajectories separate (or converge) from each other as
the trajectories evolve in the phase space [126, 58].

To intuitively grasp the concept of the Lyapunov exponent, imagine the following scenario,
demonstrated in the sketch of Fig. 2.7: a ray of particles, all with the same velocity but a
tiny difference in their initial position, are propagated at the same time in the periodic Sinai
billiard. The initial maximum distance between the particles is δ = δ0. As time progresses and
the particles move according to the dynamics of the billiard, their distance δ changes. Because
the Sinai billiard is indeed chaotic [110], their distance increases, as can be seen by the fact
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that the ray of particles expands. At some later point in time t the distance has value δ > δ0.
The Lyapunov exponent quantifies how fast δ increases, with the formula δ = δ0 exp(λt). In a
non-chaotic system, the trajectories get closer with each other. In such a case we would have
λ ≤ 0, but chaotic dynamics always have λ > 0. Typically, the Lyapunov exponent is calculated
based on the evolution of perturbations in the phase space. A simple formula for this is [58]

λΓ(0),δΓ(0) = lim
t→∞

1

t
log
|δΓ(t)|
|δΓ(0)| (2.2.1)

with Γ being the phase space vector (for billiards a vector of the position and velocity of the
particle) and δΓ a perturbation vector, evolving according to the evolution equations in tangent
space, δΓ̇ = J(Γ(t)) · δΓ where J is the Jacobian matrix of the equations of motion.

2.2.3 The Lyapunov exponent as a timescale

For chaotic motion, λ can be understood as the the inverse timescale that nearby trajectories
need to separate and become uncorrelated. Thus, the larger λ, the more strongly chaotic is a
system. An important fact is that for chaotic systems (or at least for the chaotic part of the
phase space of a dynamical system), it holds that the value of λ is an intrinsic property of the
dynamics, which does not depend on the initial condition Γ(0).

This interpretation of λ already motivates why we would choose λ to test the hypothesis that
phase space volumes could be generically connected with timescales beyond the specific case of
the periodic Sinai billiard. The exponent is naturally representing with a chaotic timescale of
the system. It seems valid therefore to assume (based on the findings of chapter 3 of course)
that this timescale that the exponent represents can be connected with phase space volumes via
Kac’s lemma.

And indeed, in the second paper of my dissertation, we are able to show that in billiards, λ
has a leading contribution inversely proportional to the volume of the chaotic part of the phase
space. For more details on this finding, I point to chapter 5.

Figure 2.6: The periodic Sinai billiard (with magnetic field), the mushroom billiard and the inverse
stadium billiard. Below each billiard their chaotic phase space volume is plotted (normalized to maximum
value for simplicity).
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Figure 2.7: A sketch demonstrating the
concept of exponential divergence of tra-
jectories, as well as the Lyapunov expo-
nent λ.

Figure 2.8: Graphene (honeycomb)
lattice, where the typical distance
between two dots is around 0.1
nanometers. The two colors of the
dots denote the two different sublat-
tices. The red arrows note the Bra-
vais vectors.

2.3 Fundamental properties of graphene

This section briefly reviews some fundamental properties of graphene that are necessary to obtain
a basic understand of the material. These properties are relevant for my thesis in a general sense,
but also specifically for chapters 3, 6 and 7 that directly treat graphene nanodevices. This
overview of this section based on the three review articles by Allain and Fuchs [69], Castro Neto
et al. [20] and Goerbig [127]. Since all of the concepts that I will present here are well-established,
I will not go into any detail but point to one of the three review papers when appropriate. In
addition, to make it easier to connect graphene with the papers included in this dissertation, at
the end of each subsection I point out how the knowledge of the subsection is taken advantage
of in the papers.

2.3.1 Energy dispersion of graphene

Graphene is a two dimensional crystal made exclusively out of carbon atoms arranged in a
periodic honeycomb pattern, as seen in Fig. 2.8. This special structure of graphene gives rise
to many physical properties that have not been explored before its creation, for the first time
in 2004 [13]. A review of the electronic properties of graphene is given in [20], while a review of
the transport properties is given in [128].

The honeycomb lattice, in which graphene crystallizes, is not a Bravais lattice but instead it
is a triangular Bravais lattice with a two atom basis, or equivalently as two triangular sublattices
A and B (white and black dots in Fig. 2.8). The average distance between each carbon atom is
a ≈ 0.142 nm. Each triangular sublattice is composed by the two fundamental vectors (Fig. 2.8)

a1 = a
√

3(1, 0) , a2 = a
√

3

(
1

2
,

√
3

2

)
. (2.3.1)

Notice that the Bravais lattice constant is not the carbon-carbon distance but a0 = a
√

3 ≈ 0.224
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nm. The fundamental wavevectors of the reciprocal lattice are

a∗1 =
4π

3a

(√
3

2
,−1

2

)
, a∗2 =

4π

3a
(0, 1) . (2.3.2)

The reciprocal lattice is also a honeycomb lattice of constant a∗0 = 4π/3
√

3. The first Brillouin
Zone (BZ) is also a hexagon but rotated 90o with respect to the direct lattice, as shown in
Fig. 2.9. There are two inequivalent corners noted by the K+ and K− points (meaning that it is
not possible to translate from K+ to K− using linear combinations of the reciprocal fundamental
vectors)

K+, K− =

(
± 4π

3
√

3a
, 0

)
or
(
∓ 2π

3
√

3a
,
2π

3a

)
or
(
∓ 2π

3
√

3a
,−2π

3a

)
. (2.3.3)

All equivalent corners of the first BZ are connected by a transformation by the fundamental
vectors of the reciprocal lattice.

The energy dispersion of a material is an equation that gives the energy of an electron wave
with respect to its wavevector. This relation is of utmost importance for any material, in the con-
text of condensed matter physics, since all fundamental properties of the material (e.g. electron
density) are derived from the dispersion relation. The energy dispersion is typically computed
within the tight-binding framework [27]. We will not go through the necessary calculations of
the framework that lead to the dispersion relation. Instead I point the interested reader to an
excellent introduction by Goerbig [127]. The resulting expression is [127, 20, 128]

ελ(k) = λt
√

3 + f(k)− t′f(k) (2.3.4)

with

f(k) := 2
3∑

i=1

cos(k · ai)

= 2 cos
(√

3kxa
)

+ 4 cos

(√
3

2
kxa

)
cos

(
3

2
kya

)
(2.3.5)

and t is the nearest neighbor hopping constant and t′ is the effective next-nearest neighbor
hopping constant. λ = ±1 is the band index (with +1 for electrons and -1 for holes, see [127]).

Figure 2.9: Brillouin Zone (BZ) of graphene (area within the red hexagon) and dispersion relation (left:
colored contours, right: three-dimensional surface plot), using t = 2.8, t′ = 0 eV. The corners of the
BZ are noted (the inequivalent corners are K,K ′ with any subscript). The dispersion relation becomes
perfect cones when approaching ε = 0, which is why these points are called “valleys”, but here the plotting
distorts the structure a bit.
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Fitting (2.3.4) to data from self-consistent density functional theory studies, one finds t ' 2.7 ∼
2.8 eV and t′ = 0.1t [20]. Eq. (2.3.4), which is plotted in Fig. 2.9, is relevant for the third paper
of my thesis (chapter 6). This is because there we examined the entirety of the BZ and looked
at nearly all energy values. We used the divergence of eq. (2.3.4), to obtain a group velocity
value for any wavevector, which is necessary in order to understand the transport direction that
electrons move in. The expression one obtains for the group velocity then is

vg,x =

√
3a√

f(k) + 3

(
−λt+ 2t′

√
f(k) + 3

)(
sin

(√
3a

2
kx

)
cos

(
3a

2
ky

)
+ sin

(√
3kxa

))

(2.3.6)

vg,y = +
3a cos

(√
3a
2 kx

)

√
f(k) + 3

(
−λt+ 2t′

√
f(k) + 3

)
sin

(
3a

2
ky

)
. (2.3.7)

The result of eq. (2.3.4) considers only the pz orbitals of each individual carbon atom [127].
Since each carbon atom contributes one electron and each electron may occupy spin up or spin
down states, the hole band is completely filled and the electron band is completely empty (at
zero temperature). The Fermi level is therefore located at the points where the two bands
touch each other, meaning that the Fermi surface (for undoped graphene) consist of just the
two (inequivalent) points K, K′ of the Brillouin zone. Notice that for t′ = 0, the energy bands
are symmetric for the electrons and holes, in the sense that there is only a sign inversion for the
dispersion expression.

2.3.2 Dirac particles in graphene

For realistic dopings occurring in most experiments, the excitations (chemical potential level)
are considered to be at energies very close to the neutrality point (the point where the electron
and hole bands meet, for pure graphene this is ε = 0), |ε| � t [128]. Due to the form of the
dispersion relation these excitations exist on cones which have the corners of the BZ as centers
(see Fig. 2.9), also called Dirac points. It is useful then to conduct a first order approximation
around these points, in order to get an effective continuum description. This will simplify the
dynamics at small energies and give us a good intuition about how the carriers (electrons/holes)
behave.

We first introduce the concept of the valley pseudo-spin and denote it by ξ = ±1. ξ = 1
indicates the K+ valley and ξ = −1 the K− valley. We call these points “valleys” because the
dispersion surface around them looks like a cone. Let

q = k−Kξ. (2.3.8)

Then q is the wavevector relative to the Dirac point so that |q| � |Kξ| ≈ 1/a. For detailed
calculations of the expansion see [127]. The resulting low-energy effective Hamiltonian turns out
to be

Ĥξ(q) = ~vF (ξqxσ̂x + qyσ̂y) = ~vF
(

0 ξqx − iqy
ξqx + iqy 0

)
(2.3.9)

which satisfies the effective Schrödinger equation Ĥξψ = εψ. We have defined the Fermi velocity
as

vF =
3ta

2~
≈ 106 m/s ≈ c

300
(2.3.10)

(c is the speed of light) and σ̂x, σ̂y denote the two dimensional Pauli matrices

σ̂x =

(
0 1
1 0

)
, σ̂y =

(
0 −i
i 0

)
.
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The energy dispersion of this Hamiltonian is easily found to be

ελ(q; ξ) = λ~vF |q| with λ = ±1 (2.3.11)

which is independent of ξ meaning that we have a two-fold valley degeneracy. Also, it is obvious
that the velocity of the low energy quasi-particles does not increase linearly with k as is commonly
the case with many other 2D electron systems. Here the velocity is a constant, given by the
Fermi velocity

vg =
1

~
∇qε = λvF

q

|q| , (2.3.12)

hinting that the carriers behave as photon-like particles. This also shows that the valence band
(λ = −1) has group velocity opposite to its momentum.

Massless Relativistic Quasiparticles of 2+1 Dimensionality

The Hamiltonian of the form Ĥ ∼ σ̂ · q is called the Dirac Hamiltonian and describes massless
relativistic fermions in two-dimensional space. Because the Hamiltonian is already a matrix,
the wavefunction is a spinor. In the original case studied by Dirac the “spin” corresponds to the
real electron spin. In the case of graphene the spin is called “sub-lattice pseudospin” because
it instead serves as an index of being in sublattice A or B. This sub-lattice pseudospin is a
conserved quantity for free particles. The Dirac Hamiltonian is valid in graphene as long as the
energies considered are well below the hopping amplitude |ε| � t (typically up to ±0.2 eV).

However, there are two such Dirac cones where the quasi-particles behave as massless rela-
tivistic fermions. Although the system is two dimensional in space, the inclusion of both cones
in the effective Dirac Hamiltonian makes Ĥ a 4×4 matrix and the wavefunction a 4-component
spinor. This is the same case with the 3D Dirac Hamiltonian for “true” Dirac fermions, due to
the two projections of spin and two values of the charge degree of freedom [129]. The small
energy quasi-particles of graphene are therefore described by what is called “2+1”-dimensional
quantum electrodynamics [130].

This low-order approximation of graphene is used in the third paper in several points. Firstly,
it allows for analytical treatment of Klein Tunneling (see sec. 2.3.6). Secondly, it defines the
concepts of intra- and inter-valley scattering. If an electron wave with momentum in one valley
undergoes a (momentum-changing) process that results in the electron being in the other valley
after scattering, then we have intervalley scattering. Otherwise the processes is intravalley
scattering.

2.3.3 Single Valley Approximation

In general in nanodevices, non-constant space depending electrostatic potentials exist V = V (r)
(and maybe constant in parts). It is important then to consider under what approximations,
does the single Dirac cone Hamiltonian represent the graphene system accurately. Let us call w
the characteristic length scale over which the potential varies. In order for inter-valley scattering
to be avoided, the potential must be smooth on the lattice scale i.e. w � a0 ≈ 0.2nm. This
is an important requirement because the distance between the valleys in reciprocal space is
|K−K′| ≈ 1/a0 and the Fourier transform of the aforementioned potential Ṽ (q) will be non-
zero for q ≤ 1/w � 1/a0 [127].

For such potentials the valleys are decoupled and electrons/holes in graphene can be described
by a single valley 2D massless Dirac Hamiltonian Ĥ = Ĥkin+V̂ (x, y) [131]. In addition, since the
potential varies slowly over the distance between two neighboring atoms (A and B sublattice)
the potential matrix V̂ can be taken to be diagonal in the sublattice space, V̂ (x, y) = V (x, y)Î.
We will refer to these approximations as the single valley approximation. Importantly, the sub-
lattice pseudospin is a conserved quantity within this approximation, since the potential in this
case (by definition) cannot scatter in sublattice space [69].
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The single valley approximation is used throughout the first paper in chapter 3. There we
approximated the electron kinetic energy using the simplest possible dispersion form, ε = vF~|k|.

2.3.4 Cyclotron radius & electron density

Due to the connection between momentum and energy for the first order approximation of
graphene, the cyclotron radius scales differently with energy than what would be the case of a
standard semiconductor, since

Rc :=
p

eB
=

E

vF eB
⇒ R[nm] = 103

E[eV]
B[T]

. (2.3.13)

The electron density, immediately obtained from the dispersion relation, is also very different
for graphene. To compute the density one first needs the density of states, which for graphene
is linear within the Dirac approximation [128]

ρ(ε) =
gvgs
2π

|ε|
(~vF )2

.

Here gs = 2 is the spin degeneracy for the case of free electrons and gv = 2 is the valley
degeneracy, assuming the single cone approximation. The electron density ns is simply the
integral of ρ up to the Fermi energy (assuming very low temperatures)

ns =

∫ EF

0
ρ(ε)dε =

1

π

E2
F

(~vF )2
. (2.3.14)

From this one can obtain the Fermi wavevector from the electron density, and vice versa, using
kF =

√
πns.

Both Rc and ns are crucial values for the first manuscript of chapter 3. The experimen-
tal measurements only provide an estimate for ns which we then transformed into the Fermi
wavevector. We then used this wavevector to deduce the correct cyclotron radius to be used in
both the continuous system and the billiard system considered in chapter 3.

2.3.5 Beyond the Dirac Regime

Even though the continuum description can be based just on the first order, the second order
approximation provides a lot of insight and leads to new effects and thus it is worth studying.
The energy dispersion calculated up to second order is given by [20, 127]

ελ(q; ξ) = 3t′ + λ~vF |q| − |q|2
[

9t′a2

4
+ (λ · ξ)3ta2

8
cos(3ϕq)

]
(2.3.15)

with
ϕq = arctan(qy/qx). (2.3.16)

Using the definition vF = 3ta
2~ , one can reduces the above to

ελ(q; ξ) = 3t′ + λ~vF |q|+ (~vF |q|)2
1

t

[(
t′

t

)
− λξ

6
cos (3φq)

]
. (2.3.17)

Second order corrections transform the Fermi surfaces from circles to smoothened triangles
as the energy increases, adding an anisotropic group velocity. The reason for this is the tripling
of the period, due to the term cos(3φ), which reflects the symmetry of the underlying lattice
and is also referred to as trigonal warping [127]. This term is in addition coupled with the
valley pseudo-spin which means that the energy dispersion is anisotropic in q with a different
orientation for the different valleys. The second order approximation is accurate up to energies
of 2t/3 ≈ 2eV [127].
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Group Velocity We have seen the group velocity for the first order approximation in eq. (2.3.12).
For the second order dispersion, the group velocity formally defined as vg := ∇qE/~ can be
obtained from eq. (2.3.15). The result is

vx = −~λv2F ξ
3t

qx cos (3φ) +
2~
t2
qxt
′v2F −

~λv2F ξ
2t

qy sin (3φ) + λvF cos (φ)

vy =
~λv2F ξ

2t
qx sin (3φ)− ~λv2F ξ

3t
qy cos (3φ) +

2~
t2
qyt
′v2F + λvF sin (φ).

Based on the above equations, we can map each pair (qx, qy) to an energy-propagation angle pair
(E, θ) (where θ = arctan

(
vy
vx

)
) and vice versa. Inversion for each valley is possible, however it

has to be done numerically as there is no way to invert θ for φ analytically.
This second order approximation shown here is used in the third manuscript (chapter 6),

specifically in section II.D where we inquire about the nature of Klein tunneling in the presence
of trigonal warping.

2.3.6 Klein Tunneling

Particles satisfying the Dirac equation have some very peculiar properties when one considers
typical tunneling scenarios, like e.g. incidence on a potential barrier. What was first discovered
by Oscar Klein in 1929 [72] is that under certain conditions Dirac particles can penetrate a
potential barrier with perfect transmission, under some conditions. What was astonishing is
that this transmission remains perfect even in the case of infinitely wide and high barriers. This
section is a brief overview of the phenomenon as it is applied in the case of graphene, by following
the pedagogical introduction by Allain and Fuchs [69]. Keep in mind that the eigenstates of the
Dirac Hamiltonian H = λ~vFσ · k are given (in position representation) by [69, 129]

ψξλ(r) =
eiq·r√

2

(
1

λe+iξφq

)
(2.3.18)

with φq = arctan(qy/qx). Notice also that the wavenumber q is measured with the respect to
the Dirac points Kξ. Depending on the context, φ is frequently called the “angle of incidence”
because in this Dirac approximation the group velocity direction coincides with the wavevector
direction. The entirety of this section assumes the single valley approximation 2.3.3.

A tunneling event in the context of the single valley approximation works as follows. An
electron (present in the electron band) is incident on a potential step, like in Fig. 2.10(a). After
the step, the electron is transmitted (with some probability T ) into the hole band. Transmission
with non-zero probability in this case is always possible, because there always exist states in
the hole band that match the required energy, momentum and sublattice pseudospin due to the
symmetry of the Dirac dispersion (see sketch). Notice that matching the pseudospin is necessary
because by definition in this context the sublattice pseudospin is a conserved quantity.

It turns out that for Dirac particles having angle of incidence φ = 0, reflection from the
potential barrier is only possible by reversing the sublattice pseudospin (see [69] for a proof).
This is impossible however, since by definition this potential step cannot change the sublattice
pseudospin, which is a conserved quantity. Therefore, the only possible case for φ = 0 is that
no reflection happens whatsoever, i.e. perfect transmission occurs T (φ = 0) = 1. This must
happen regardless of the details of the potential, assuming that we remain in the single valley
approximation. The manifestation of Klein tunneling in graphene comes from this fact, which
analytically expresses itself in the transmission probability formula T (φ), which always satisfies
the property T (0) = 1.
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Klein Tunneling in Steps

Sec. 2.3.3 defined what properties the characteristic length scale of a potential must satisfy in
order for inter-valley scattering to be averted, i.e. w � a0. In addition, the potential can be
smooth (w � 1/kF ) or sharp (w � 1/kF ) on the Fermi wavelength scale kF = |Ekin|/~vF . If
it is sharp, we can assume that it is piecewise constant (step or square barrier). If however this
condition does not apply, one has to use smooth formulas for the potential function, which are
presented in the next section.

An electron is in the presence of a potential V (x) such that: V (x < 0) = −V0/2 and
V (x > 0) = V0/2. Let φi be the incidence angle of the wave coming from the left and with
energy E so that E − V0/2 is negative after the step (so the electron moves into the valence
band after transmission). Let φr and φt be the angles of reflection and transmission. Due to the
conservation of energy and y momentum, we have that

~vF qy,j = λEkin,j sinφj = const. ∀j, (2.3.19)

with j = i, r, t. In the case of transmission λ and Ekin change sign. The above directly gives φt
through (

E +
V0
2

)
sinφi = −

(
E − V0

2

)
sinφt. (2.3.20)

To find the transmission probability one has to match the wavefunctions at x = 0 (see [69]),
with result

T (φi) = − cosφi cosφt

sin2
(
φi+φt

2

) . (2.3.21)

For E = 0 one has the simplification of T = cos(φi)
2 = 1 − (qy/qF )2. T is defined only up to

the so-called critical angle, and vanishes otherwise. This angle is defined by

φc = arcsin

(
V0/2− E
V0/2 + E

)
(2.3.22)

but only makes sense if E > 0. When this condition is satisfied, any transmission for φi > φc is
0 (the transmitted wavefunction is evanescent) and total internal reflection takes place. What
stands out is that T (φ = 0) = 1 independently of the characteristics of the potential. This is a
manifestation of Klein tunneling, and it is related with the absence of backscattering (discussed
in detail in [69]).

Figure 2.10: (a) An electron incoming from the left is incident on a potential step (black line). It is then
transmitted into the hole band via reversing its band index and momentum, but conserving its sublattice
pseudospin (the pseudospin in this simple sketch is simply either positive or negative slope of the cone).
(b) Klein tunneling: the transmission probability decays exponentially with the angle of incidence. Step
refers to eq. (2.3.21) while WKB to eq. (2.3.26).
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Klein Tunneling in Smooth Junctions

We will now consider the case of tunneling through a smooth junction, λF = 1/kF � w. This
was first done by Cheianov and Fal’ko in 2006 [70], using the WKB approximation, and further
summarized in [69]. Let’s assume that the smooth junction has a total width of w and total
potential difference of V0. It can be approximated by either a linear

Vl(x) =

{
V0

x
w for |x| < w/2

sign(x)V02 else
(2.3.23)

or hyperbolic function

Vh(x) = tanh

(
x

w/2

)
. (2.3.24)

We assume an electron approaching from the left and also assume Fermi energy E = EF = 0.
Of course, this means that the kinetic energy is

Ek = ~vF
√
k2x,0 + k2y = vF

√
p2x,0 + p2y = E − V (−∞) = V0/2 (2.3.25)

with Fermi wavenumber kF = V0/(2~vF ). Let the incidence angle be φ, px,0 = ~kF cosφ. After
the junction, the electron is expected to emerge in the far-right side of the junction with y-
momentum conserved p′y = py = ~kF sinφ and x-momentum reversed p′x = −px,0, with some
probability T (φ), so that the pseudospin is conserved. In [70] the authors are able to find this
probability as

T (φ) = e−πkF
w
2 sin2 φ. (2.3.26)

The main result of [70] is that the above formula is exact for any smooth junction with “width”
w (and symmetric around 0 energy), as long as the incidence angles are not too close to π/2,
where the transmission in fact vanishes. Once again we see that T (φ = 0) = 1 independent of
the potential parameters and incoming energy, which again reflects Klein tunneling.

The smooth case has differences from the step case; in the former a collimation effect takes
place. The junction focuses the electronic flow by allowing the transmission of only the tra-
jectories that are close to normal incidence. This is true for angles |φ| 6 1/

√
πkFw. The

non-symmetric case of Ek 6= V0/2 has been considered in [132]

T (φ) ≈ exp

(
−π 2k21

k1 + k2

w

2
sin2 φ

)
, (2.3.27)

with k1, k2 the Fermi wavevectors in the left and right zones (k = Ekin/~vF ). Once again, in
all cases shown here, we see Klein tunneling: T (0) = 1 independently of the parameters of the
potential barrier meaning always perfect electron transmission at normal incidence.

Impact on transport

The potential impact of Klein tunneling on transport was first discussed by Katsnelson, Geim
and Novoselov in [71]. A first consequence regards disorder-induced localization. In a typical
parabolic dispersion semiconductor and at small excitation levels, disorder will create random
potential barriers that will confine carriers in arbitrary configurations [71]. In graphene however
the effect changes, since all barriers will be at some point penetrated, since the random electron
velocities will come close to angle of incidence φ = 0 for an arbitrary barrier. Another conse-
quence regards making transistors out of graphene. Since it is not simple to turn on a potential
barrier and stop current flow due to Klein tunneling, the working principle of the transistor does
not straight-forwardly apply to graphene and different approaches are necessary. For a more
in-depth review of transport in graphene please see [128].
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This entire section on Klein tunneling is of crucial importance for the third paper in chapter 6.
The paper analyzes Klein tunneling in various contexts: a simple pn-junction injected with Dirac
eigenstates, a complicated wavefunction resulting via boundary-induced scattering and finally
in energies beyond the Dirac regime.

2.3.7 Lead Modes

For current to flow through a nanodevice, it has to be connected to leads (wires) which, in a
loose sense, bring electron waves in and out of the device. These leads are typically assumed
to be of the same material as the nanodevice, here graphene, and are therefore represented as
systems with finite width and (semi-)infinite length. Also called graphene nanoribbons (GNR),
they have been studied analytically in the literature [133, 134, 135]. This section reviews some
core results that are fundamentally relevant for the third paper, chapter 6, which considers
nanodevices connected to such GNRs.

As was discussed in sec. 2.3.1, the energy dispersion is necessary to deduce various crucial
electronic properties of a material. Here, since the GNR are periodically extending only in one
spatial dimension, the energy dispersion is a function of only a single wavenumber (the one of the
longitudinal direction). The system then is composed of a unit cell which is repeated indefinitely
along the period direction. In Fig. 2.11 I show a “zigzag” graphene nanoribbon (ZGNR), which
will be the model system for the leads, along with its unit cell. The zigzag edge (top of Fig. 2.11)
has the interesting property that the atoms of each side belong to the same sublattice.

Using Kwant [29] (see sec. 2.4), a software for quantum transport within the tight-binding
framework, one can compute the energy bands of the ZGNR. The results of numeric calculations
based on the unit cells defined in Fig. 2.11 are presented in Fig. 2.12. It should be noted that
there are multiple bands in the dispersion; this is because the unit cells of the GNRs are composed
of multiple carbon atoms. The number of bands equals the number of atoms in the unit cell.
Besides “bands” the different dispersion curves are also called “modes” (because they correspond
to transverse oscillation modes of the wavefunction).

Due to the property of the terminating edges, the ZGNR retain the two inequivalent valleys
of the normal two dimensional graphene case, as can be seen in Fig. 2.12. The Dirac valleys now
live in kxa0 = ±2π/3 (the bands are symmetric over translations by π). The ZGNR are always
metallic, due to the existence of bands for any energy level. Let us now review from [134] the
functional form of the wavefunctions in a ZGNR, given the single valley approximation.

The wavefunction in the continuum description of a ZGNR is a spinor of the form

W(r) = exp(qx)

(
ΦA(y)
ΦB(y)

)
(2.3.28)

with Φ being the transverse wavefunction in each sublattice, qx the longitudinal wavenumber as
measured from the Dirac point. Here I only focus on one of the two Dirac valleys, but I will

Figure 2.11: Different terminations of a graphene nanoribbon. Top, green: zigziag, bottom, blue: arm-
chair. The dotted rectangles indicate the unit cells. Next to each nanoribbon I show the dependence of
the width L with respect to the number of atoms in the cell N . Figure produced using Kwant [29].
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not discuss further any differences between the two cases, because all subsequent properties are
transformed from one valley to the other via a reflection x→ −x.

In [134] the authors are able to analytically find the form of Φ, which is

ΦA = sin(kny) (2.3.29)

ΦB =
i

ε
[−kn cos(kny) + qx sin(kny)] . (2.3.30)

with kn being the transverse (and discrete) wavenumber and ε the energy of the mode, ε =
±
√
q2x + k2n (the ± here denotes the electron or hole regime). The values of kn can be obtained

from qx by solving the nonlinear equation

qx =
kn

tan(knL)
. (2.3.31)

These solutions correspond to confined modes, i.e. standing waves. Due to symmetry, for each
solution +kn there is also a solution −kn. Besides confined modes there are also other solutions,
but not of interest for this thesis, see [134]. Using (2.3.31) the second equation for ΦB can be
simplified greatly to

ΦB = ∓i sin(kn(L− y)). (2.3.32)

These formulas show that the transverse modes, for small energies and wide enough nanoribbons,
can be approximated as simple sine modes. This is also shown in the third paper of my thesis,
where I use this simple fact to confirm the validity of the Husimi function (which very clearly
displays the symmetry of ±kn, as seen in e.g. sec. IIA of the third paper).

2.4 Why quantum?

Sec. 2.1.4 (and generally the first two papers of this dissertation, chapters 3 and 5) explains mag-
netotransport phenomena in graphene-based nanostructures, namely antidot superlattices, using
classical mechanics, without any special care for quantum-exclusive phenomena like tunneling.
This approach seems to work very well for the devices of Refs. [41, 62], which both use electron
beam lithography to create the antidot superlattice. In this scenario the antidots are absolutely
inaccessible repellers with respect to the electron motion, which is qualitatively the same case
as in GaAs-based antidots, described in sec. 2.1.1. In the same section another technique for
fabricating antidots superlattices was mentioned, namely by electrostatic modulations. In the
GaAs-based systems, this once again results in inaccessible repellers.

Figure 2.12: Energy bands for different graphene nanoribbons, in units of the hopping parameter t, as they
are calculated through tight-binding models. For zigzag the lattice constant a0 is the same as graphene’s.
For the armchair the lattice constant is further multiplied with

√
3. Figure produced using Kwant [29].
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But one has to wonder, would the same be true for graphene? If an antidot superlattice
was made in graphene using electrostatic modulations, then the situation would not the same as
with the original GaAs-based devices. Here, the antidots are no longer absolutely inaccessible
repellers due to Klein tunneling. If an electron is incident normally on the antidot potential
(assuming the potential satisfies the requirements mentioned in sec. 2.3.3), then Klein tunneling
dictates that the electron should pass through the antidot, a case that was not possible so far.
Fortunately, this scenario has been already realized in experiments. The experimental group
from Regensburg that performed the original graphene antidot superlattice experiments has
made the same system using electrostatic modulation, as shown in Fig. 2.13(a, b). More details
on this device can be found in [136], chapter 9. These new experiments did not display the
commensurability peaks with the same clarity as the ones mentioned in sec. 2.1 and chapter 3.
This could be perceived as indication that Klein tunneling should be taken into account when
modeling these new devices.

The simplest approach to do this is to continue using classical mechanics (e.g. billiards) but
to incorporate the tunneling process into the classical system. This is done using the approach
of ray-splitting billiards [63, 64, 65]. Here, the standard billiard system is modified so that
the particle may penetrate an obstacle upon collision, instead of always being reflected. The
penetration event happens with a given probability T . In our case, this probability is simply
the probability that Klein tunneling occurs (see e.g. eq. (2.3.26)). A ray-splitting periodic Sinai
billiard is presented in Fig. 2.13(d). Unfortunately, preliminary results showed that the situation
is not that simple and the magnetoresistance only changes slightly when one incorporates Klein
tunneling into a billiard, as seen in Fig. 2.13(c).

At the point in time of doing these ray-splitting simulations, the literature on transport in
graphene simply had too little content that connected quantum phenomena with semiclassics,
which seems to be necessary for devices like e.g. antidot superlattices, which display profound

Figure 2.13: (a, b) New graphene antidot superlattice device using electrostatic modulation. (a) Device
setup (with n(x) the electron density variation) and (b) electron density variation throughout the device.
The electrostatic potential is directly proportional to the electron density n(x, y). (c) comparison of
the magnetoresistance simulations from the periodic Sinai billiard (with “raysplit”) and without (“PSB”)
raysplitting. The motion of the particle in the raysplitting case is shown in (d). (a,b) are kindly shared
by Andreas Sandner.
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classical phenomena. To improve this, in the third paper of this dissertation in chapter 6 we
studied exemplary nanodevices from a semiclassical perspective, connecting quantum phenomena
(e.g. Klein tunneling) with the phase space, providing semiclassical intuition. We did this by first
simulating quantum systems, as described in sec. 2.5, and then analyzing them using the Husimi
function (defined in sec. 2.6), which is a tool that allows one to obtain semiclassical information
from a quantum wavefunction. Note that as this new project was underway, we believe that
we have understood why the new experimental devices did not display commensurability peaks
with clarity; the real mean free path in the devices was probably smaller than the mean collision
time κ, which according to our analysis, would make the commensurability peaks unobservable
in experiments. For this reason in the rest of the thesis there will be no further mention of this
new device.

2.5 Transport simulations and scattering wavefunctions

This section describes the basics of performing quantum transport simulations using the Landauer-
Büttiker formalism [66]. This is a well-established approach which is described in more detail
in [8] and only summarized here (and also sketched in Fig. 2.14). In the Landauer-Büttiker
approach one studies transport through a device, which is referred to as the “scattering region”.
In this thesis the device is represented as a tight-binding system (i.e. discrete lattice with con-
nections between the lattice sites). This device is connected via semi-infinite leads to “reservoirs”
of a specified chemical potential (Fermi energy). The leads in the case of my thesis are graphene
nanoribbons (GNR), discussed in detail in sec. 2.3.7. A GRN may have several modes (i.e.
wavefunctions) that it can accommodate at a given Fermi energy. These modes are then the
electronic wavefunctions that each lead can bring into the scattering region.

While in the device, the wavefunction gets scattered, not only due to the device’s geome-
try, but also due to the presence of scalar or vector potentials. This results in the scattering

Figure 2.14: A sketch explaining the Landauer-Büttiker formalism.
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wavefunction ψm, each one corresponding to an incoming mode m. In my thesis I performed
all these quantum simulations with the existing excellent software Kwant [29]. The recursive
Green’s function method is used to obtain the scattering wavefunctions, and more details can
be found in Refs. [8, 29].

After scattering occurs the wavefunction exits the device either through the same lead it
entered (reflection) or through another lead (transmission). In the case of only two leads being
connected to the device (which is what I studied), the numbers Rm, Tm quantify the reflection
and transmission probability of an incoming electron wave with mode numberm (obviously Rm+
Tm = 1∀m). Within this framework the conductance G of the device is directly proportional
to the sum of the transmission probabilities, G ∼∑m Tm [8].

Klein tunneling, which is discussed in sec. 2.3.6, crucially depends on the so-called “angle
of incidence” φ. Now, as one can imagine, and also by looking at the sketch of Fig. 2.14, the
scattering wavefunctions are complicated objects. They are not easily described by a plane wave
with a simple angle of incidence φ. So the question is, how can one recover some kind of angle of
incidence information from the complicated scattering wavefunctions? To resolve this problem
one has to transform the wavefunction to a distribution over wavevectors and positions, so that
one can have an estimate of which wavevectors (and thus angles of incidence) are relevant at
which positions inside the nanodevice. I describe how to achieve such a feat in the following
section.

2.6 Quantum mechanics and the phase space

Soon after the first formulation of quantum mechanics, there have been efforts to connect wave-
functions and distributions on the phase space (the joint space of momentum and position) [73].
Such a connection is important for the concept of quantum-classical correspondence, which was
discussed in the introduction (chapter 1). All these efforts aim to formally define a so-called
quasi-probability distribution on the phase space of classical conjugate variables x and p. Here
the wording “quasi-probability” is crucial. A true probability distribution cannot be defined for
the quantum world, due to the uncertainty principle. Any attempt to define such will always
necessarily drop support of Kolmogorov’s third axiom of probability, because any phase space
point is indistinguishable from any neighboring point within area of 2π~.

Weirdly enough, the first attempt to define such a quasi-probability distribution, dropped
even the first axiom of Kolmogorov, namely that the distribution should be non-negative definite.
The Wigner function was this first attempt, introduced by Wigner in 1932 [76], which can
give negative probability values. This property though is not unphysical; it is connected with
the fact that probability waves can interfere in quantum mechanics. Regardless, the phase
space formulation of quantum mechanics is to this day a widely used and powerful semiclassical
technique. For excellent reviews, we refer the reader to [73, 79, 137].

2.6.1 The Husimi Q Distribution Function

The Husimi quasi-probability distribution function is a well known [137] phase space represen-
tation of quantum mechanics. It can be directly connected with the Wigner function, in ways
that we show in sec. 2.6.2, and was first introduced by Kodi Husimi in 1940 [77]. To avoid
redundancy, in the following we will refer to this quasi-probability distribution function simply
as “Husimi function”. The advantage of the Husimi function is that it does not have negative
values and thus can be interpreted as a probability distribution. This (I believe) is the reason
that it has been used extensively in numerous fields such as quantum optics [79, 80, 78], ocean
acoustics [81] and quantum chaos [82, 83, 84, 85, 86, 87, 88, 89, 90, 91]. Adaptation in condensed
matter physics is still lagging behind other fields, as only recently the Husimi function has been
used to study nanodevices [92, 93, 94].
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One way to define the Husimi function is as an expectation value of the density operator.
Given a wavefunction ket |ψ〉 the operator is defined as ρ̂ := |ψ〉 〈ψ|. The reason this operator
is labeled as “density”, comes from the fact that e.g. the position distribution function is the
expectation value of the operator in position representation

〈x | ρ̂ |x〉 = 〈x|ψ| 〈ψ |x〉 = | 〈x |ψ〉 |2 = ρ(x).

The Husimi function is defined as the expectation value of ρ̂ in a basis of coherent states
〈W | ρ̂ |W〉. Equivalently, it can be considered a projection of a wavefunction to a coherent
state |W(r0,k0, σ)〉.

Formally, these states are eigenstates of annihilation operators. Here, we will not care about
such properties, and simply state that coherent states are Gaussian wavepackets: Gaussian
envelopes in space with origin r0, which multiply a plane wave with wavevector k0. The key
property of coherent states is that they minimize the uncertainty relation between position and
momentum.

In position representation and in the absence of magnetic fields, we define the wavepackets
as

W(r0,k0;σ) := 〈r |W(r0,k0;σ)〉 = ND/2
σ exp

(
−(r− r0)

2

4σ2
+ ik0 · r

)
(2.6.1)

with Nσ =
(
σ
√

2π
)−1 being the normalization in factor in the continuous case. Formally, the

projection of a wavefunction ψ is then defined as [137]

〈ψ |W(r0,k0;σ)〉 =

∫
ψ∗(r)× 〈r |W(r0,k0;σ)〉 dr (2.6.2)

where the integral stands for integration across each of the D spatial dimensions and over all
the available space. That is also the reason for having D/2 in the exponent of (2.6.1), so that
〈W |W〉 = 1. For our case D = 2 and thus r = (x, y). In (2.6.1) we have also assumed equal
uncertainties in both spatial directions, ∆x = ∆y = σ.

For a tight-binding system the projection has to be modified to accommodate the discrete
nature of the lattice. This is done by turning the integral into a sum over all the lattice sites

〈ψ |W(r0,k0, σ)〉 =
∑

i

ψ∗(ri)× e−
(ri−r0)

2

4σ2 eik0·ri (2.6.3)

with ψ(ri) ≡ ψi being the wavefunction at lattice site i with position ri. The normalization
factors here depend on the lattice and are thus skipped.

The Husimi distribution function is then defined as [137]

Q[ψ](r0,k0;σ) =
1

π
|〈ψ |W(r0,k0, σ)〉|2 . (2.6.4)

In the field of quantum optics, the Husimi function is referred to as Q-function [79], which is
why in the following we will use the same symbol to represent it. In the following subsections
we state some formal properties of the Husimi function, in order to complement the paper of
ch. 6, which only has a brief introduction.

2.6.2 Connection with the Wigner function

The definition of the Wigner function W is [73]

W (x, p) =
1

2π~

∫ +∞

−∞
exp

(
− i
~
pλ

)〈
x+

λ

2

∣∣∣∣ ρ̂
∣∣∣∣x−

λ

2

〉
dλ

=
1

2π~

∫ +∞

−∞
exp

(
− i
~

2py

)
ψ∗(x− y)ψ(x+ y) dy (2.6.5)
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(for simplicity we will consider one dimension in this section). Q can be connected with W in
many (equivalent) ways, one of which is a Weirstrass transform of W . This transform is simply
a “smoothing” of a function f , obtained by averaging the values of f with a Gaussian kernel,

Tx[f ](x) =
1

2σ
√
π

∫ +∞

−∞
f(x− y)e−

y2

4σ2 dy. (2.6.6)

In eq. (2.6.6) we are defining the generalized transform which is parameterized by σ, the “smooth-
ing amount”. Then Q is the double Weirstrass transform of W

Q(x, p) = TxTp[W ](x, p)

∝
+∞∫

−∞

+∞∫

−∞

exp

(
− 1

4σ2
(x− x′)2 − σ2

~2
(p− p′)2

)
W (x′, p′) dx′dp′. (2.6.7)

2.6.3 Connection with the flux operator

Mason, Borunda and Heller have also used the Husimi function recently in condensed matter
systems [92, 93, 94]. The extended the Husimi function, defining the Husimi processed map,
which is a tool that allows one to visualize classical paths in nanodevices. Besides this, they also
showed how this extension generalized the probability flux operator and allowed it to be used
in cases where traditionally the probability flux is everywhere zero to uncover more information
about the system.

2.6.4 Plane Wave example

The simplest case of the Husimi function of a plane wave is easy to calculate analytically and can
provide intuition for the Husimi function. To do this we need to obtain the coherent projection
of P (r,k) = exp(ik · r), which equals

〈P |W(r0,k0, σ)〉 = 4πσ2e−k
′2
x σ

2
e−k

′2
y σ

2
eik
′
xx0eik

′
yy0

using the known integral
∫ +∞

−∞
e−

(x−x0)2
4σ2 eikx dx = 2σ

√
πe−k

2σ2
eikx0 .

This then results in the following Husimi function

Q[P ](r0,k0;σ) ∝ |〈P (r,k) |W(r0,k0, σ)〉|2 ∝ e−2k′2x σ2
e−2k

′2
y σ

2
(2.6.8)

with k′ = k−k0. As expected the Husimi distribution does not depend on r0, since a plane wave
is spatially extended. In addition, it depends only on the difference between the measurement
wavevector and the plane wave direction which is also something intuitively obvious.

2.6.5 Zig-Zag Lead Mode example

Lead modes are crucial components of quantum transport and have been summarized in sec. 2.3.7.
For the simplest case of a zigzag nanoribbon in the absence of magnetic fields, the wavefunctions
in the continuum description can be expressed as Φ = sin(kny + α)eikxx for either sublattice

(see eq. 2.3.30). Thus we only need to calculate
∫ L
0 sin(kny+α)e−

(y−y0)2
4σ2 eik0,yy dy since we know

from the previous calculation that the integral in the x direction is simply 2
√
πσe−k

′2
x σ

2
eik
′
xx0 .

Considering the fact that sin(a) = (exp(ia)− exp(−ia))/2i, the calculation is straight-forward.
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For the case of very large systems where the integration limits can become (0,∞) (and also
setting α = 0 for simplicity) we obtain

∫ ∞

0
sin(kny)W(r0,k0, σ) dy =

1

2

1

2

∫ ∞

−∞

(
eikny − e−ikny

)
exp

(
(y − y0)2

4σ
+ ik0,yy

)
dy

=
2σ
√
π

4

(
e−(k0,y+kn)

2σ2 − e−(k0,y−kn)2σ2
)
eiβ (2.6.9)

where we have grouped in eiβ all purely imaginary exponentials that will not appear in the
Husimi function due to the presence of the absolute value.

The above result is straight-forward to interpret; just like in the case of the plane wave,
there is no dependence on x0, y0, since we considered an infinite system. For finite size there
would be some small dependence on y0: the Husimi function will be smaller when y0 is near the
lead edges. The most crucial part is that, even though for the translationally invariant direction
(here x) we recover the result of the plane wave, the case is different for the transverse direction
(y). Both wavenumbers kn,−kn will gave same result in the Husimi distribution. This means
that examining the projection at a test wavevector angle θ0 and −θ0 will give identical results.
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Robustness of ballistic transport in antidot superlattices
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Keywords: antidots, Kac’s lemma, nonlinear resonance, graphene,measure theory, energy conservation

Abstract
Themagneto-resistance of antidot lattices shows pronounced peaks, which became a hallmark of
ballistic electron transport.Whilemost studies agree that they reflect the interplay of regular and
chaoticmotion in the quasi-classical dynamics, the exactmechanismhas been surprisingly
controversial. Inspired by recent experiments on graphene antidot lattices showing that the effect
survives strong impurity scattering, we give a new explanation of the peaks linked to a fundamental
relation between collision times and accessible phase space volumes, accounting for their robustness.
Due to the fundamental nature of themechanismdescribed it will be relevant inmanymesoscopic
transport phenomena.

Antidot superlattices are nanostructured artificial crystals of repellers in highmobility two-dimensional electron
gases (2DEGs). Theywere first fabricated by ion-beam implantation [1] or by etching periodic arrays of holes
with periods of a few hundred nanometers into the 2DEGof AlGaAs/GaAs heterostructures [2] and by
modulation of the 2DEGby nanostructured lateralmetal gates [3]. Since then antidots were realized inmany
differentmaterials [4–6], and recently also in graphene [7–9] and topological insulators [10]. They are a prime
example of devices showing features of ballistic transport: when the typical length scales of a device become
smaller than themean free path of the electrons, transport is no longer dominated by diffusion due to impurity,
phonon or electron–electron scattering. Instead, transport ismainly affected by external forces or the potential
of the device superstructure.

Themost prominent of a number of ballistic transport effects observed in antidot lattices is their low
temperaturemagneto-resistance at smallmagneticfields which typically shows a series of pronounced peaks. It
was realized [2] that they occur atmagnetic field values where collision-less circular cyclotron orbits encircling a
certain numbers of antidots can exist in the superlattice (seefigures 1 and 2) and they are therefore known as
commensurability peaks (CPs). At even lower temperatures, when the coherence length of the electrons grows,
quantization of periodic orbitsmanifests itself in additional resistivity oscillations [11–13]. CPs in graphene have
also been reproduced recently in tight-binding simulations of small antidot systems [14]. In the followingwewill
consider the incoherent ballistic transport, which can be analyzed in terms of quasi-classical dynamics [15]. Such
quasi-classical resistivity peaks have even been observed at highmagnetic fields in the fractional quantumhall
regime, where compound quasi-particles, so called composite fermions, experience a reduced effectivemagnetic
field [16, 17].

Whilemost studies agree that the CPs reflect the interplay of regular and chaotic quasi-classical dynamics,
their origin has remained controversial [15, 18–21]. Recent experiments by Sandner et al [7] on antidot lattices in
monolayer graphene can give us new insight, as they reveal the existence of CPs despite strong impurity
scattering. In the present letter we analyze the quasi-classical electron dynamics in graphene antidot lattices to
interpret thesemagnetoresistance experiments and provide a new explanation for themechanisms giving rise to
CPs in general.

Thefirstmechanismproposed to explainCPswas based on the assumption that cyclotron orbits encircling
antidots get pinned by the antidots and do not contribute to conduction [2]. It was shown theoretically that
nonlinear resonances in soft wallmodels can give rise to such a pinningmechanism [15]. Furthermore it was
demonstrated that the resistivity contributions of the chaotic (i.e. non pinned) trajectories alone can already
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produceCPs and that pinning is not the dominant effect [15]. How the chaotic dynamics leads toCPs, however,
was strongly disputed (see e.g. [15, 18–21]). In any case onewould assume that themean impurity scattering
time τi due to residual disorder in the substratemust be sufficiently long in order to observe features of chaotic
ballistic dynamics and nonlinear resonances in transportmeasurements.More specifically it should fulfill
ωτi?2π, whereω is the typical frequency of the nonlinear resonances (which in the antidot system is close to
the cyclotron frequencyωc). In the graphene experiments by Sandner et al [7] andYagi et al [8], however, the
scattering time is quite short and thusωτi only barely reaches 2π(see below for numeric values).

Why do the experiments still exhibit CPs nevertheless? In this article wewill show that the resistance peaks
survive the impact of these short impurity scattering times due to a deep rooted connection of different
dynamical properties. The nonlinear resonances, by theirmere existence and simply because they are taking
away a part of the chaotic phase space volume, are reducing the fastest chaotic timescale, i.e.themean time
between (successive) collisions with antidots. A fact that wewill proof usingKac’s lemma. In contrast to the time
scales of the nonlinear resonances, themean collision time in the experiment is shorter or at least comparable to
the impurity scattering time, andwe argue that its reduction is what is observed in experiment as a resistance
peak. The discoveredmechanism is very general andwill therefore be applicable to awide range of billiard-like

Figure 1. (a):Magnetoresistivity simulations of antidot superlattices (ADSLs) demonstrating commensurability peaks (c=0.1,
d0=0.3, τi=5, 20). Rxx¢ denotes simulationswith boundary roughness with parameter ε=0.1 (seefigure 2(b) formathematical
details). Rxx

c( ) is the resistivity of the chaotic part of the phase space. Vertical dashed lines indicate the commensurable fieldsBn (see
figure 2). (b)Comparison of recent experiments ofmagneto- andHall resistanceR( e) by Sandner et al [7]with simulationsR( s) using
parameters c=0.2, d0=0.3, τi=2.5 andB0=3.7 T (the prefactor was determined by a least squaresfit).

Figure 2.Contours of the potentialU (filled:U 1 , dashed:U=0). Antidots with boundary roughness are shown in (b), with
parameter ε=0.1. Examples of chaotic, skipping, as well as trapped orbits atB=1.0 and pinned orbits enclosing n=1, 2, 4 and 9
antidots at the commensurable fields B 1, 0.66, 0.42, 0.285n Î { } are also shown.
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mesoscopic systems: generically the intrinsic scattering time of the chaotic orbits is linked to nonlinear
resonances simply by their phase space volume.

The paper is structured as follows. In section 1we first introduce themodel we use to describe transport in
graphene antidot lattices. Ourmodel uses smooth antidot potentials and includes bulk and boundary disorder.
We show that it is capable of quantitatively reproducing the experimental findings verywell. In section 2we
analyze the numerical simulations and find that the resistance peaks correspond tominima in the fastest
dynamical time scale, themean collision time. To conclude our analysis and to study this fast timescales in detail,
we switch to a billiardmodel with hardwalled antidots. The billiard does not as closely reproduce the
experimental findings but allows us to exhibit the underlying dynamical principlesmuch clearer in awell
defined and partially analytically treatablemanner.We end our discussion by showing in section 2.1 that even in
a purely stochasticmodel of uncorrelated collisions with diffusely scattering antidots theminima in the collision
time lead to resistivity peaks. This clearly demonstrates the robustness of the effect.

1.Model

We study the electron transport in the single particle picture using (quasi-)classical Hamiltonian dynamics [13].
We thereforemodel the carriers by a quasi-classicalmicro-canonical ensemble at the Fermi energy EF. The

Hamiltonian is p p x y, ,x y  = +( ) ( ), where v p px yF
2 2 = + follows from theDirac approximation of

the dynamics of electrons in graphenewith Fermi velocity vF [22]. Ourmain conclusions apply equally well to
themore commonquadratic dispersion relation p2 µ , as will become apparent later. Themagnetic field
perpendicular to the graphene layer is introduced byminimal coupling, qp p A - , choosing the symmetric

gauge yB xBA r B , , 01

2

1

2
= - ´ = -( ).Wemodel the antidot super-lattice by a square array of localized,

isotropic potential peaks of the form

U c r 1a
E

c

d
a2

4
F
4

0= + -⎡⎣ ⎤⎦( ) ( )
if r x x y y ca a a

d2 2
2
0= - + - < +( ) ( ) and 0 otherwise. x y na ma, ,a a =( ) ( )with n m, Î is the center of

the (nearest) antidot and a is the super-lattice constant. d0 is the antidot diameter (in the experiment by Sandner
et al [7] reported values are d0≈25–30 nmwith antidot spacing a≈100 nm). The parameter c defines a cut-off
distance of the potential and it is also the parameter that controls the steepness of the antidots. The full potential
is then the (infinite) sumof the above localized potentials over all antidot centers Un m a, = å . A contour plot of
 is given in figure 2(a).Wewant to stress that even though of course the diameter and smoothness of the
antidots are important parameters, different functional forms (e.g. x a y acos 2 cos 2 p pµ b[ ( ) ( )] , like in [15])
for the potential have very little impact on the resistivities, and no bearing at all on ourmain conclusions.

We can add boundary roughness (which aims tomodel the antidot fabrication defects) to the above potential
bymaking the antidot diameter depend pseudo-randomly on the position. Specifically, let x x xa= -˜ ,
y y ya= -˜ and define y xarctanf = ( ˜ ˜).We can thenwrite

d d d x y, , sin 2
M

a a0 0
1

åf e n z zf= + ´
z=

( ) ( ) ( ) ( )

with ν being randomnumbers uniformly distributed in [−0.5, 0.5)which are different for each combination of
xa, ya, ζ, so that on average d d0fá ñ =( ) .M is the total number of sinemodes used (measure of the edge
complexity) and εmeasures the relative boundary roughness1. A realization is shown infigure 2(b). (Note that
this boundary roughness is distinct from the impurity scattering, whichwe also included in ourmodel, see
equation (8).)

Introducing dimensionless variables xi→xi/a (where a is the antidot lattice spacing), v v vi i F and
scaling the energy by the Fermi energy E v neF F p= [22] (≈0.1–1 eV in [7]), theHamiltonian of ourmodel
becomes

p yB p xB x y, . 3x y
2 2 = + + - +( ) ( ) ( ) ( )

In the followingwe study the dynamics on themanifoldH= 1 (i.e. the Fermi energy).We scale themagnetic
field by its value at the principal (n= 1) commensurability B n ea2 e0  p= ( ), corresponding to a cyclotron
diameter equal to the antidot lattice constant a. All times are given in units of t a v0 F= and the cyclotron
frequency isωc=2B.

Equation (3) leads to the equations ofmotion x p p x, = ¶ ¶ = -¶ ¶˙ ˙ .We then obtain equations for
velocities instead ofmomenta

1
In the numerical computations we used an array of 100×M randomnumbers repeated periodically and usedM = 16 for all simulations

shown in themanuscript.
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x v , 4x=˙ ( )
y v , 5y=˙ ( )

v v
v v B2

1
, 6x y

x y y x


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=
- +

-

¶
¶

¶
¶

⎛

⎝
⎜⎜

⎞

⎠
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1
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- +

-

¶
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⎝
⎜⎜

⎞

⎠
⎟⎟˙ ( )

Equations (4)–(7) describe (classical) hyper-relativistic particles inmagnetic fieldB and potential  . The velocity
timeseries are obtained by numerical integration of the equations ofmotion using standard Runge–Kutta
schemes.

After obtaining the velocity time series we then calculate the conductivities and resistivities using theKubo
formalism [23]. Following [15]wewrite

v t v te 0 d , 8ij
t

i j E
0

i
Fòs ~ á ñt

¥
- ( ) ( ) ( )

R 9ij
ij

xx xy
2 2

s

s s
=

+
( )

with the conductivitiesσij (ij=xx or xy) and themagneto- andHall-resistivityRxx andRxy, respectively (modulo
some geometry prefactor). C t v t v 0ij i j EF

º á ñ( ) ( ) ( ) is the velocity correlation function (VCF), averaged over the
available phase space at the Fermi energy. Impurity scattering is introduced in equation (8) by assuming that the
electron velocities are decorrelated by random scattering events which follow a Poisson distributionwithmean
time τi [15]. In the experimental paper [7], the authors, using a simplemodel, estimated τi≈3.5, however the
bestfit to ourmore elaborated numericalmodel yields 2.5±0.25 (see below).Wewill therefore assume the
latter to be the correct value. Asωcτi<2π, we cannot assume that the regular orbits are actually pinned (with

0ij
rs =( ) as in [15]), since they get scattered before they close.We therefore treated themwithin theKubo

formalism. They lead toDrude like contributions. By assuming v Btcos 2x = ( ) and v Btsin 2y = ( ) (i.e. regular
cyclotronmotion) theVCFs for the regular phase space are C t Btcos 2 2xx

r =( ) ( )( ) and C t Btsin 2xy
r =( ) ( )( ) /2.

2. Analysis

In the following discussion it is advantageous to divide theVCFs into contributions of the different regions of the
mixed phase space. The chaotic part of the phase space has portion gc and its correlations Cij

c( ) are decaying. On
the other hand, the regular phase space with portion gr (where gc+gr=1) has non-decaying correlations Cij

r( ).
We thuswrite C g C g C1ij c ij

r
c ij

c= - +( ) ( ) ( ), and subsequently

g g1 . 10ij c ij
r

c ij
cs s s= - +( ) ( )( ) ( )

Note that the regular islands of pinned orbits (see figure 2) correspond to almost circular (quasi-)periodic
orbits, which in a smooth antidot potential are stable against the application of an external electric field [15].
Examples of these pinned orbits at thefirst four commensurabilities are shown infigure 2. Islands can also
correspond to various forms of skipping [18] orbits, an example is also shown in thefigure. It has been argued
that skipping orbits are essential for the creation of resistance peaks [18–21].Boundary roughness, which
probably is present in the experiments of [7], however, almost completely eliminates their existence without
affecting the pinned orbitsmuch.

Figure 1(a) shows examplemagnetoresistivity curves for the unperturbed antidot lattice for various values of
the impurity scattering time τi. An excellentfit to the experiment inmagneto- andHall resistivity is achieved for
a small scattering time τi=2.5, as shown infigure 1(b). Notice that the 4-peak is observable in both experiments
and simulations, with characteristic ballistic time scaleT 0.44 7.1R p» » (in our units). Thismeans that this
ballistic feature is observable evenwhen the impurity time is almost three times shorter than the associated
ballistic time scale.

Themagnetoresistivity of an antidot lattice with boundary roughness (Rxx¢ ), shown infigure 1(a) exhibits
surprisingly little differences from the unperturbed lattice. This suggests that the skipping orbits have little
impact on theCPs. Furthermore, the resistivity curve Rxx

c( ) of only the chaotic part of phase space, already fully
reveals all CPs. It thus suffices to understand how the chaotic correlations changewith themagnetic field to
produceCPs.
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Chaotic orbits get trappednear regular islands [15, 24–28], i.e. they follow the quasiperiodicmotion of the
regular orbits for long times, as illustrated infigure 2(a). This leads to long-time tails in the correlations of the
chaotic orbits. It was therefore argued that theywould give rise to valleys rather than peaks in the
magnetoresistivity [20].Wewill show, however, that this effect is overcompensated by an initially accelerated
correlation decay as a direct consequence of phase space volume conservation.

To do so, let usfirst inspect examples of the chaotic VCFs C tij
c ( )( ) infigure 3. In the absence of regular islands

in phase space (B=0.32)we observe a single, fast correlation decay. In the presence of islands (B=0.44), we
see long time tails in the correlations, originating from trapping. From figure 3(b), showing the envelope of the
autocorrelation, however, it becomes clear, that the decay is an overlap of a fast and a slow component.Wemay
think of it in the form

C t g C t g C t 11xx
c

col fast trap slow» +( ) ( ) ( ) ( )( )

(and similarly for the cross-correlationCxy)where gtrap is an appropriatemeasure of the trapping regions in the
chaotic sea, and g g gccol trap= - is its complement, i.e. the phase space regionwith strong chaotic scattering at
the antidots (‘collisions’). The black line offigure 3(b) illustrates this division by assuming exponential correlation
decays with a fast and a slow time constant, 3fastt = and 350slowt = , with g 1.5%trap = . At this point, the
detailed values are of no concern.What we see is that slowt is orders ofmagnitude larger than τi. The slow decay
rate is therefore almost zero in comparison and the portion of trapped chaotic orbits is just a (small) correction
to the portion of pinned orbits. Themain contribution to theCPs stems from the change in the fast decay, which
reflects the dynamics of the highly chaotic part of the phase space, afindingwhich is also reported by recent
quantum simulations on graphene antidots by Power et al [14]. This is also in accordance with themagnetic
focusingmechanism between successive collisions with an antidot and its neighbors that has been argued to
increase the diffusivity of chaotic orbits in [29]. The fast correlation decay can be studied best in a billiardmodel
with infinitely steep antidot walls, like in the Sinai billiard [30], which allows for an analytical treatment and
should be a good approximation for these highly chaotic trajectories.

In the remainder of this letter wewill therefore study the periodic Sinai billiard (PSB), also known as periodic
Lorentz gas, which is probably themost prominent example of a low-dimensional ergodic system [2, 30, 31]. The
PSB is the infinite steepness limit of the antidot super-lattice: the particles perform true freeflight and are
reflected specularly when collidingwith the disks (i.e. the antidots).We simulate the PSB using an open source
softwarewe developed [32].We denote the collision times in the PSB by tκ and themean collision time byκ,
having inmind that the time scale of the fast correlation decay fastt in the originalmodel is approximated byκ.

Figure 4(a) showsκ as a function of themagnetic field. Remarkably, it exhibits pronounced valleys at the
magnetic field values of the CPs inRxx as shown infigure 4(b) for the billiardmodel. In thewholeB rangeκ is
comparable with τi and even smaller at the commensurable fields. The valleys inκ(B) are the origin of theCPs. It
is intuitive thatmore frequent collisions lead to reduced conductivity and thus increasedRxx, andwewill further
confirm this argument belowusing a simplified stochasticmodel. Butfirst we show that the structure ofκ(B) has
a deep connectionwith themixed nature of the phase space (i.e. the coexistence of regular and chaotic phase
space regions):figure 4(a) indeed shows that it is directly proportional to the portion of the chaotic part of phase
space gc(B).

We can understand this striking fact usingKac’s lemma [33–36], which is a direct consequence of phase space
volume conservation inHamiltonian systems.We obtain amap of theflowΦt by discretizing in time, f tFD e≔ ,
with t eD ~e . Kac’s lemma states that themean number of iterations Ná ñneeded to return to a compact subset
 of the phase space is given by

Figure 3. (a): Velocity correlation function of chaotic orbits forB=0.32, 0.44 and c=0.1, d0=0.3. (b): Envelope of Cxx
c( ) and a plot

of p t p texp 1 expfast slowt t- + - -( ) ( ) ( )with p 0.985, 3.0, 350.0fast slowt t= = = .While for non-commensuratemagnetic
fields (B=0.32) there is a fast exponential decay, for commensuratemagnetic fields (B=0.44) there is an additional slow decay as
seen in the envelope.
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whereμ(·) is the phase spacemeasure and acc the part of the phase space accessible to orbits starting in  .
Let B t N B = D ´ á ñe( ) ( ) denote physical time instead ofmap iterations. Let be a circle of radius
d0/2+ε concentric to the antidot and define  Ìe such that

x v x v x, : and 0 , 13  h= Î <e
     { · ( ) } ( )

where xh ( ) is the vector normal to . Themean collision timeκ of the PBS is exactly  in the limit ε→ 0.
Tofind B;m ( )wefirst realize that it does not depend on themagneticfield, B; ; 0  m m m= =( ) ( ) ( ).

This is due to the infinitesimal width of  , over whichmotion can always be approximated by a straight line for
allfinitemagnetic fields values (i.e. equaling themagnetic field free case). Then, using (12) atB= 0, we have

t t
0 ; 0 , 14acc
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m

m
=
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e

e

⎛
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because the PSBwithoutmagnetic field is fully ergodic and thus ; 0 1acc m m= =( ) ( ) . By substitutionwe
get B B; 0acc   m= ´( ) ( ) ( ). For small enoughmagnetic fields all chaotic orbits (and up tomeasure 0
only those) collidewith the antidots. In the limit ε→ 0 bothΔtε and m e( ) go to 0 linearly with ε, therefore
their ratio converges, i.e.  k . Since by definition gcaccm =( ) , we find that themean collision time is
given by the fraction of chaotic orbits as a function of themagnetic fieldB, times themean collision time atB= 0

B g B 0 . 15ck k= ´( ) ( ) ( ) ( )
From this derivation it becomes also clear that the collision times are not sensitive to boundary roughness.

This is intuitive, since the dynamics is already highly chaotic. To confirm this we also simulated a ‘rough’ Sinai
billiardwhere the particle gets reflected in a randomangle at collisionwith the antidot (RPSB), corresponding to
strong boundary roughness. The changes in themagnetoresistivity are only small indeed as shown infigure 4(b).

2.1. Stochasticmodel
For completeness we now conclude our argumentation that theCPs arise due to the collision times by linking
the collision times to the resistivities in a simplified purely stochastic analyticmodel for themotion in the billiard
with boundary roughness (RPSB).We approximate the dynamics by a renewal process of stochastic scattering
events (the distribution of the scattering times reflects the geometry of the antidot lattice) and free cyclotron
motion in between scattering events. Each scattering eventwith a rough boundary leads to a random change in

Figure 4. (a): Average collision timeκ in the periodic Sinai billiard (PSB) versusB. It coincides with the portion of chaotic orbits gc
timesκ(0). (b)The resistivity curve of the randomPSB (RPSB) does not differmuch from that of the PSB. (c)TheRPSB resistivity
curve is approximated sufficiently well by the stochasticmodel (labeled ‘Stoc.’). All curves are calculatedwith τi=2.5, d0=0.3.
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the velocity angle

2 , 16a p y= + ( )
whereψ is the randomangle formed by the normal of the boundary segment and the velocity vector of the
trajectory undergoing the scattering event. Under the assumption that all spatial orientations of the boundary
segments are equally probable the probability density of hitting a segment with angleψ is

h cos , with 2, 2 . 171

2
y y y p p= Î -( ) [ ] ( )

Notice that this stochasticmodel is not the same as the RPSB; in the latter there is a strong correlation between
the reflected angle and the subsequent collision time. This correlation does not exist in the stochasticmodel, as
well as any knowledge of phase space volumes.

TheVCFs are

S v t v v t0 cos cos 0 , 18xx y x 0
2 j j= á ñ = á ñ( ) ( ) ( ( )) ( ( )) ( )

S v t v v t0 sin cos 0 , 19yx y x 0
2 j j= á ñ = á ñ( ) ( ) ( ( )) ( ( )) ( )

where v0 is the constant absolute value of the velocity (v0=1 in our units) and the ensemble average á ñ· reduces
to an average over the initial anglej0 of the velocities and the collision events. In the free propagation in-between
events the velocity angle changes byΔj(t)=ωΔtwithω=2B the cyclotron frequency. The contribution to
the correlation functions of all trajectories that have scattered (exactly)m times up to time t is given by
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where Pm(t;B) is the probability that a trajectory has scattered exactlym times up to time t. Theψi integrals can be
easily carried out successively. Using the notation t m 2m i

m
i0 1f w j p y= + + + å = , wewrite
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correlation functions as the sumof these contributions:
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The probability density function (pdf) of the collision time p(t) is a complicated function that is very sensitive
to changes in themagnetic field, as shown infigure 5. Therefore it is hard tofind a useful analyticalmodel for the
probability Pm(t;B). Only in the limit of largem they are well approximated byGaussians (see e.g. [37]).We are,
however,mainly interested in short times and thus smallm. Thereforewe choose to calculate the Pm(t;B)
numerically using the followingmethod: let qm(t)denote the pdf for themth scattering event (m�1) occuring
at time t. It can be calculated through recursive convolutionwith the pdf p(t)
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with q t p t1 º( ) ( ). ThenPm(t) can be found from qm using the survival function W t p t td
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form>0 andP0(t)≡W(t). Examples ofPm(t) are shown in the inset offigure 5.
Our stochasticmodel reproduces the contribution of the chaotic orbits to theCPs in the RPBS in very good

approximation, as shown infigure 4(c). This confirms our claim that theCPs are duemerely to the distribution
of collision times in the antidot lattice.

3. Conclusions

In conclusion, we have explained recentmagnetotransport experiments on graphene antidot lattices using
appropriate quasiclassical electron dynamics. (Andwe note that our approach can also be applied to the analysis
of theHall-resistivity which shows a quenched or even negativeHall-effect at very smallmagnetic fields.)We
found that ballistic transport features like theCPs are visible in the resistivities even though themean free time
due to impurity scattering is so short that it is comparable to the fastest timescales of the chaotic dynamics.We
showed that this striking robustness of the commensurability features can be understood by the fact that the fast
chaotic time scale, the collision time, is reduced by themere existence of stable islands in amixed phase space,
which reduce the chaotic phase space volume (Kac’s Lemma). By this we solved a decades old riddle on the
influence of nonlinear resonances onmagnetotransport in antidot superlattices. Finally, due to the fundamental
nature of themechanism linking the time scales, which only depends on the basic properties of chaotic
Hamiltonian systemswithmixed phase space, it will be generally applicable to awide range ofmesoscopic
systems.
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3.1 Hall resistance

In sec. 2.1 we mentioned the quantum Hall effect, where the Hall resistance (RH) increases in
quantized steps. For weak magnetic fields (below the QHE regime), the RH of an ADSL device
behaves similarly: it increases in non-quantized steps whenever the magnetoresistance displays
peaks (which are linked to the existence of stable orbits) [104, 138]. In this section I want to
focus on the behavior of RH for very small magnetic fields (in the units discussed in the first
paper somewhere between 0 and 0.1). This is relevant because, as will be shown below, looking
at RH gave me the necessary insight to discover the importance of the mean collision time in
the first paper.

3.1.1 Negative Hall effect

For small B it is known (both via experiments [104] as well as simulations [138]) that RH
becomes negative or stays very small (compared with the predicted Drude slope), depending on
the mean free time. This is shown in Fig. 3.1. This effect came to be known as negative or
“quenched” Hall effect and was examined in detail in [138]. The effect stems from the velocity
cross-correlation Cxy, seen for example in Fig. 3.2, whose integral uniquely determines the sign
of RH . Cxy becomes negative after some initial decay and it was shown in [138] that the negative
part of Cxy goes to 0 as a power-law, which gives a strong negative contribution to the integral.

This power-law was connected with long channeling orbits, which perform Lévy flights. Typ-
ical electron motion for the continuous system and small magnetic fields is shown in Fig. 3.2(c).
There we can see that the electron trajectories are very chaotic, but are frequently interrupted
by very long, almost completely straight segments, which are called “channels”. The length of
these channels follows a power-law distribution, a defining characteristic of Lévy flights, but I
will not show these results in this thesis for the sake of conciseness. For more details on the
subject please see [138].

3.1.2 Collisions and negative cross-correlation

Even though in [138] it became clear why the cross correlation has a negative power law decay,
what I wanted to understand is why it becomes negative in the first place. The new experiments
did not show any sufficient quenching of RH , due to the very strong impurity scattering, and yet

Figure 3.1: Hall resistance RH ≡ Ryx of the continuous ADSL system of the first paper, for parameters
c = 0.1 (antidot steepness) and d = 0.3 (antidot radius) and various impurity scattering times. The zoom
in displays the quenched or negative Hall effect, which depends on the strength of the impurity scattering.
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our simulations showed that Cxy becomes strongly negative (but the power-law tail is suppressed,
like in Fig. 3.2(b)).

For the value of RH , the cross-correlation Cyx has much more impact than the autocorre-
lation Cxx, which decays almost exponentially in this magnetic field regime. What one has to
understand is whether there is something special about the exact point in time that Cyx be-
comes 0. As the magnetic field here is very weak, this point cannot have any connection with
oscillations in Cyx due to the magnetic field, following the form ∼ sin(2Bt), which exist at larger
B values.

When one thinks about the dynamics of the electron velocities in the antidot lattice, one thing
can become evident. Colliding with an antidot will, on average, reverse the sign of the product
vxvy (the particle’s velocities). To understand this let us re-write the velocity correlations in the
collision coordinate system. Since the correlation functions are a result averaged over time, and
due to the fact that an ADSL possesses the symmetries of the square, it holds

Cxx = 〈vx(t)vx(0)〉 = 1
2 〈v(t) · v(0)〉 (3.1.1)

Cxy = 〈vx(t)vy(0)〉 = 1
2 〈[v(t)× v(0)]z〉 (3.1.2)

(notice that vz = 0). In a collision event the longitudinal component of the velocity changes
sign, while the transverse does not. Thus the longitudinal-transverse product (Cxy) changes
sign, but the longitudinal-longitudinal (Cxx) does not.

In addition, it is possible to find strong numeric evidence that Cxy should change sign
on the collision with antidots. Fig. 3.2(d) plots the time tc that Cxy crosses zero for various
parameters of the continuous ADSL model. It is clear that this time is relatively constant for
small magnetic fields, which intuitively is what one would expect. The time between collisions
should be impacted very little by a small magnetic field, as the particle motion is relatively the
same. In addition, this time is larger for c = 0.1 then when c = 0.2. This also falls in line with
the idea, since smaller c means smaller effective radius for the antidot (more details in the first
paper preceding this section).

Figure 3.2: (a, b) Velocity cross-correlation for small magnetic field B = 0.02. It is shown that a power
law fits the negative tail, but this power law disappears for strong impurity scattering. (c) Channeling
orbits that lead to the negative power law tail in Cxy. (d) First zero of the cross-correlation tc.
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What was the the decisive evidence however was the numeric value of this time tc. We
see that it is around 3 to 3.5 depending on the steepness. What is known in the literature is
the exact, analytic value for the mean collision time in the periodic Sinai billiard [139]. The
expression is (4 − πd2)/4d which, for d = 0.3, gives a result of 3.1. This established that it
is the collision with the antidots that leads to the cross-correlation becoming negative initially,
and later made us appreciate and understand the impact the mean collision time has on the
magnetoresistance as well.
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4 | Software to simulate dynamical
billiards

Figure 4.1: Logo of DynamicalBilliards.jl.

While analyzing antidot superlattices (ADSL) I needed to simulate dynamical billiards in
two dimensions. To briefly recapitulate, billiards are simple dynamical systems in which a
point particle is propagating inside a domain (either closed or periodic), performing “free flight”
(movement in the absence of scalar potentials). For the analyses I required a software that
could calculate the collision times exactly, included magnetic fields, was extendable (to allow
implementing the Lyapunov exponent calculation), was written in a high-level language (for in-
teractivity), and was able to plot billiards. Such software did not exist when I started my project,
and so I decided to create it myself. The result is the software DynamicalSystems.jl [123],
written in the Julia programming language [140]. In addition, I made it simple to use, free and
open source, well documented and with the highest performance possible. Making the software
publicly available was an excellent choice, as it allowed it to be used and even be extended by
others.

A detailed documentation (circa 100 pages) is available online under this page: https://
juliadynamics.github.io/DynamicalBilliards.jl/dev/. This documentation is guaranteed
to be up to date, since it is created from within the software itself, and thus is updated with every
change to the source code. Because of the extent of this documentation, this chapter will be very
brief. It is worth noting that besides me and my coworkers using this software extensively in two
publications, DynamicalBilliards.jl has already been in use by the scientific community, since
it has been used, for example, in a recent publication by Tapias, Sanders and Altmann [141] to
study statistically extreme trajectories.

4.1 Design

DynamicalBilliards.jl is propagating particles in billiards following a completely modular
approach. In general, the workflow of DynamicalBilliards.jl follows these simple steps: (1)
create a billiard, (2) create particles inside that billiard (3) get the output you want by using
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one of the high level functions.
Step (1) means to modularly combine any arbitrary number of obstacles together. For

example, to make a Sinai billiard, one would combine four Wall and one Disk obstacle. Of
course, pre-defined billiards are available, e.g. this code

using DynamicalBilliards # load the software

bd = billiard_stadium()

Billiard{Float64} with 4 obstacles:
Bottom wall
Right semicircle
Top wall
Left semicircle

creates a Bunimovich stadium [120] and lets the user know that it is composed by two Semicircle
and two Wall obstacles. For step (2) the user can initialize any number of AbstractParticle
instances with random or specified initial conditions. Again here the modularity comes from the
type of the particle. If the user chooses Particle then straight propagation will occur. If the
type is MagneticParticle then propagation in a perpendicular magnetic field will occur. No
other change whatsoever is required form the user side in this regard.

The last step (3) means to pass these two arguments, the billiard and the particle, to a high
level function and obtain a result. For example here I calculate the timeseries of evolving a
particle inside a periodic Sinai billiard, as well as the mean collision time of this particle in the
billiard

using DynamicalBilliards

bd = billiard_sinai(setting = "periodic")
p = Particle(0.1, 0.1, pi/3) # x0, y0, phi0

x, y, vx, vy, t = timeseries(p, bd, 5000)
kappa = meancollisiontime(p, bd, 5000)

1.6204349026634695

Extendability Because of the modular design, the software is highly extendable. For example,
to add a new type of obstacle that does not already exist one only has to define the type itself
within the Julia language and only provide three simple functions (with an average of 10 lines
of code each). The Semicircle tutorial in the documentation especially highlights how easy this
process truly is.

Collisions A key aspect of DynamicalBilliards.jl is that the collisions between the particle
and the various obstacles of the billiard are calculated from analytic expressions, for both straight
as well as magnetic propagation. This gives tremendous accuracy in calculating very important
concepts such as the mean collision time.
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Performance Even though DynamicalBilliards.jl offers a high level interface and it is inter-
active, it still maintains high performance. Below are some benchmarks of the average amount
of computing time needed to propagate a particle inside a billiard for a single collision.

using DynamicalBilliards, BenchmarkTools

bd = billiard_sinai()

p = randominside(bd) # random particle inside the billiard
@btime bounce!($p, $bd); # benchmarking process

mp = randominside(bd, 2.0) # random particle in a magnetic field
@btime bounce!($mp, $bd); # benchmarking process

# straight propagation:
46.114 ns (0 allocations: 0 bytes)

# magnetic propagation:
253.585 ns (0 allocations: 0 bytes)

(keep in mind that these benchmarks were performed on a average laptop and not on a super-
computer).

45 nanoseconds is fast, once we put it into perspective. To get an accurate representation
of e.g. the mean collision time, one needs to propagate around 1000 initial conditions for 1000
collisions. With DynamicalBilliards.jl, this process takes around 0.045 seconds. Doing a
parameter scan for e.g. 100 different parameter values for the given billiard will thus require
in total 4.5 seconds, i.e. almost instant. Notice that the only other (free) software that has
similar capabilities is Bill2D [142], however direct numeric comparison is not possible. First,
the authors do not provide benchmarks of their software and second, DynamicalBilliards.jl
operates through a high-level interactive interface, while Bill2D is static (written in C).

4.2 Usage in my projects

The larger part of the work that I present in ch. 5 was done seamlessly with DynamicalBil-
liards.jl. To understand why this was important let me present the full source code necessary
to compute the Lyapunov exponent of the magnetic periodic Sinai billiard (MPSB), averaged
over N initial random conditions, each evolved for total time T :

using DynamicalBilliards, Statistics

N, T = 5000, 10000.0
bd = billiard_sinai(;setting = "periodic")

lambdas = parallelize(lyapunovspectrum, bd, T, N)
lambda = mean(lambdas)

1.7199670790368764

To do exactly the same thing for the mushroom billiard, one only has to define bd as another
billiard (e.g. bd = billiard_mushroom()). This is a convenient API that allows one to examine
many different billiards without much more effort.
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Notice of course that in the actual simulations of the second manuscript in ch. 5, we did not
use random initial conditions. For example for the MPSB we chose initial conditions such that
there were no pinned particles (since by definition their Lyapunov exponent is zero). This does
not come at the cost of writing much more code though. For example, modifying the above
example to only use non-pinned particles as initial conditions can be done as:

B = 1.0 # magnetic field
ps = MagneticParticle{Float64}[] # particle container
while length(ps) < N

p = randominside(bd, 2B) # random particle
!ispinned(p, bd) && push!(ps, p) # only non-pinned

end

lambdas = parallelize(lyapunovspectrum, bd, T, ps)
lambda = mean(lambdas)

0.8011528409793797

4.3 Unique features

Another (free) software to simulate billiard systems is Bill2D [142], albeit its scope is a bit
different from DynamicalBilliards.jl since it targets interacting electrons. Regardless, out of
scanning the available source code and other implementations on the web to simulate billiards,
to the best of my knowledge DynamicalBilliards.jl has some unique features that I could not
find anywhere. I will list them here but will not discuss them further, since all of them have
several pages dedicated to them on the official documentation.

• Extensive documentation available online, with several examples, tutorials, figures, ani-
mations & runnable code snippets, everything hyper-linked with each other.

• Guaranteed up-to-date documentation, because it is generated from within the software
and recompiled with any change in the source code.

• Native, fully featured support for plotting and animating the motion of any particle in any
billiard.

• An interface to interactively switch from real 3D space (the flow) to boundary 2D space
(the map) and also from boundary space back to real space.

• Ray-splitting: particles may propagate an obstacle given arbitrary transmission and re-
fraction laws.

• Lyapunov exponent computation based on the algorithm by Dellago et al. [143].

• Lyapunov exponent computation in the presence of magnetic fields.

• Analytic computation of collision times in magnetic fields.

• Support for creating random initial conditions in an arbitrary billiard.
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5 | 2nd paper: Estimating Lyapunov
exponents in billiards

This paper is published in Chaos with license CC BY 3.0 as G. Datseris, L. Hupe and R.
Fleischmann, Estimating Lyapunov exponents in billiards, Chaos 29, 093115 (2019)
DOI: 10.1063/1.5099446.

Author contributions GD and RF conceptualized the project. LH extended the Dellago for-
malism to magnetic fields. GD proved eq.(1) and LH and GD proved the mean return time to
the stem. GD and LH wrote the computer code, did the simulations and data analysis. All
authors contributed in creating the final version of the toy model. GD prepared the figures
(except figure 8, made by LH) and the first version of the manuscript. All authors discussed the
results as well as reviewed and edited the manuscript.
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From the foundations of statistical physics to transport properties
of electronic devices, in many areas of physics “billiard models”
are an important tool for understanding complex dynamics. In a
billiard model, a point particle is moving freely (and frictionless)
on a �at (or constantly curved) surface until it hits the boundary
of the billiard where it is specularly re�ected. Chaotic dynamics in
the billiard are characterized by a positive “Lyapunov exponent,”
measuring how initially close trajectories separate exponentially
fast. Obtaining its value so far usually requires detailed numerical
simulations of the chaotic dynamics. In our paper, we assess how
well the Lyapunov exponent can be estimated from quite general
considerations. Speci�cally, we study how parameter changes that
vary the phase space structure of the billiard get re�ected in the
Lyapunov exponent. For example, the application of an external
magnetic �eld can force some trajectories in the billiard on closed
cyclotron orbits. We show how the mere existence of such orbits
varies the Lyapunov exponent of the chaotic dynamics through the
phase space volume they occupy. The knowledge of this connec-
tion will be helpful to understand physical mechanisms in many
systems like the magnetotransport in graphene nanostructures.

I. INTRODUCTION
Dynamical billiards are a well-studied class of dynamical sys-

tems, having applications in many di�erent �elds of physics. Besides

playing a prominent role in ergodic theory,1–3 billiards are important
example systems for understanding quantum chaos,4,5 with practi-
cal applications, e.g., inmodeling optical microresonators for lasers6,7

and room acoustics.8 Billiard models have also been particularly suc-
cessful in helping to understand transport properties of electronic
nanostructures such as quantum dots and antidot superlattices.9–18

A billiard consists of a �nite (or periodic) domain in which a
point particle performs free �ight with a unit velocity. Upon collision
with the boundary of the domain, the particle (typically) is specu-
larly re�ected. In Fig. 1, we are showing the two example billiards
we will be considering in this paper: the mushroom billiard (MB)19

and the periodic Sinai billiard1without (PSB) andwithmagnetic �eld
(MPSB).

An essential characterization of the chaotic dynamics of a bil-
liard is of course provided by its Lyapunov exponents. (In this article,
we will study the Lyapunov exponents of the “billiard �ow” in the
physical, continuous time, in contrast to those of the “billiard map”
in a discrete time that counts the number of collisions with the
boundary.) For a two dimensional billiard, the Lyapunov exponents
are four numbers λ1−4 that measure how “chaotic” the billiard is,
in terms of the average exponential rates of expansion (and con-
traction) of the phase space along certain characteristic directions.
Due to the Hamiltonian nature of the dynamics, the Lyapunov expo-
nents ful�l λ1 = −λ4, λ2 = λ3 = 0. Therefore, in the remainder of
the text, we will be only considering the largest exponent λ ≡ λ1. The
fundamental mathematical properties of the Lyapunov exponents
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FIG. 1. (a) A regular (blue) and chaotic (red) orbit in the mushroom billiard (MB),
whose cap radius is a constant set to 1 and the stem has widthw and height h. The
cap and the stem are separated with different background colors (orange, green).
(b) Chaotic orbits without (orange) and with (red) magnetic field and regular orbits
(blue, purple) in the magnetic periodic Sinai billiard (MPSB) with disc radius r .

in billiards, including rigorous proofs of their existence, have been
studied in the literature and can, e.g., be found in Refs. 20–22 and
references therein.

Quantitative studies of the Lyapunov exponent in actual physi-
cal billiards are surprisingly rare, however. A computational frame-
work for calculating λ in billiard systems was formulated by Dellago,
Posch, and Hoover in Refs. 23 and 24 (to which we refer to as the
“DPH framework” in the following, and which we will extend to
the dynamics in magnetic �elds). Alternative approaches are pre-
sented, e.g., in Refs. 25 and 26. In the literature, Lyapunov exponents
have been computed for the PSB on square27 and hexagonal23,27 lat-
tices, as well as for the stadium billiard,23,28 which is related to the
mushroom billiard. Furthermore, there are results for the magnetic
elliptical billiard29 and the inverse magnetic stadium.30

All these quantitative calculations rely on detailed numerical
simulations of the complex billiard dynamics. In this paper, how-
ever, we want to follow a di�erent approach exploring approximate
expressions for the parameter dependence of the Lyapunov expo-
nents in some paradigmatic cases, especially of billiards with the
“mixed” phase space, where regions of regular and chaotic dynam-
ics coexist. Our work is motivated by a recent study that has shown
that magnetoresistance measurements in graphene and semiconduc-
tor nanostructures directly re�ect the parameter dependence of the
chaotic phase space volume.9 This is due to the fact that character-
istic transport times in the chaotic sea are fundamentally linked to
the respective volume of the chaotic phase space in the correspond-
ing billiards. In particular, for the magnetic periodic Sinai billiard
(MPSB) in Fig. 1(b), it was analytically shown that themean collision
time κ(B) between successive collisions with the discs (of radius r)
as a function of an applied external magnetic �eld B is equal to the
varying chaotic phase space portion gc(B) times the value of κ at a
zero magnetic �eld,9 i.e.,

κ(B) = gc(B) × κ(0) = gc(B) ×
1 − πr2

2r
. (1)

[The value of κ(0) is obtained from Eq. (3).] For the convenience of
the reader, we replicate the proof of Eq. (1) from Ref. 9, which uses
Kac’s lemma,31–33 in Appendix D.

The Lyapunov exponent in billiards is also linked to mean
collision times as the following back-of-the-envelope calculation

motivates. Let us study the perturbation growth, i.e., the exponential
growth of the phase space distance |δ0(t)| of two initially in�nites-
imally close by trajectories. The origin of the exponential perturba-
tion growth and thus of chaos in billiards is collisions with curved
boundaries.34 Assuming an average perturbation growth increase of
C between collisions with curved boundaries and an average time κ

between such collisions, one would expect a perturbation growth of
|δ0(t)| ≈ Ct/κ |δ0(0)|. This means for the Lyapunov exponent of the
ergodic component of phase space [see the de�nition in Eq. (4)], we
expect

λ ≈
log(C)

κ
. (2)

In general, billiards have noncurved boundaries as well as
curved ones. Themean collision time τ between two consecutive col-
lisions with any parts of the billiard boundary is known analytically
for “any” billiard and is given by

τ =
π |Q|
|∂Q|

, (3)

where |Q| is the area of the billiard and |∂Q| is the total length of
its boundary.20 Since Eq. (3) is averaged over the entire boundary of
the billiard, it includes contributions from both chaotic and regular
components (if any). Also, notice that a formula similar to Eq. (3)
exists for billiards of any dimension, see Ref. 20.

The starting point of our work is the observation that in bil-
liards the mean collision time between curved boundaries κ (a more
precise de�nition will be given in Sec. II C) is fundamentally linked
to the chaotic phase space volume VCH by Kac’s lemma.31–33 There-
fore, the Lyapunov exponent is also linked to the chaotic phase space
volume, and the aim of this paper is to explore how far consider-
ations like Eq. (1) allow us to estimate the parameter dependence
of the Lyapunov exponent in billiard systems. To this end, we will
analyze the contributions to the approximate expression (2) and com-
pare it with detailed numerical simulations. In Sec. II, we provide the
basic framework we will use for computing λ, as well as apply the
aforementioned back-of-the-envelope calculation to realistic pertur-
bation growth. Following in Sec. III, we present our results about the
periodic Sinai billiard and the mushroom billiard. We conclude by
discussing the generality of our approach, while presenting one addi-
tional billiard with mixed phase space, the inverse stadium billiard,
which has been studied by Vörös et al.30

II. LYAPUNOV EXPONENTS IN BILLIARDS
In this section, we �rst give a brief overview of the DPH

framework23,24 for numerically computing λ, reciting the equations
that will be relevant for our study. We will then extend the frame-
work to motion in an external magnetic �eld. In the following, we
will assume that the point particle in the billiard has unit mass, and
momentum and velocity are the same.

The (maximum) Lyapunov exponent is de�ned based on the
evolution of the four-dimensional perturbation vector
δ0 = (δq, δp)T as

λ0(0),δ0(0) = lim
t→∞

1

t
log

|δ0(t)|
|δ0(0)|

, (4)
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with δ0 evolving according to the evolution equations in tangent
space, δ0̇ = J(0(t)) · δ0, where J is the Jacobian matrix of the equa-
tions of motion. For almost all 0(0) inside an ergodic component of
phase space, the value of λ does not depend on the initial condition.

A. Without magnetic field
The time evolution in the tangent space for a particle moving in

a straight line is

δ0(t) =
(

I2×2 t · I2×2

02×2 I2×2

)

δ0(0). (5)

At discrete time points, Eq. (5) is interrupted by collisions with the
boundary and the perturbation vector changes discontinuously. The
perturbation vector just after the collision (wewill use ′ to label quan-
tities right after the collision) is derived from the one just before the
collision as24

δ0′ =
(

δq − 2 (δq · n)n

δp − 2 (δp · n)n − 2γr
(δq·e)
cosφ

e′

)

(6)

for a collision with a boundary segment of curvature γr . The two
types of boundaries we will encounter in this work are straight walls
and the boundaries of circular discs. For a straight wall section γr = 0
and for a disc of radius r, we have γr = ± 1

r
, with—for collisions hap-

pening from the inside of the disc (as in the MB) and + otherwise
(as in the PSB). Here, n denotes the normal vector of the boundary
segment at the collision point q, and φ is the angle of incidence (mea-
sured with respect to the normal to the surface). The vectors e and e′

are unit vectors orthogonal to the incident and re�ected momenta p
and p′, respectively (for more details, see Ref. 24).

Notice that a collision with a straight wall does not change the
normof δ0 because both the coordinate and the velocity components
are re�ected specularly.

B. With magnetic field
Wenow extend theDPH formalism for a particle experiencing a

magnetic �eld perpendicular to the billiard plane. In this section, we
present only the �nal expressions. The full calculations are presented
in Appendix A.

The magnetic �eld is uniform, with value B (positive means a
counterclockwise rotation). The free evolution of the perturbation
vector δ0(t) in the presence of a perpendicular magnetic �eld is
given by

δ0(t) = B · δ0(t0),

B =







I2×2
ρ sin(ωt)

−ρ (cos(ωt) − 1)
ρ (cos(ωt) − 1)

ρ sin(ωt)

02×2
cos(ωt)
sin(ωt)

− sin(ωt)
cos(ωt)






, (7)

with the cyclotron frequency ω = 2B and the cyclotron radius
ρ = 1/ω. As already mentioned in the introduction, in the billiard,
the particle always moves with unit velocity by convention. The
expressions that give the discontinuous change of the perturbation

vector at a collision with a wall or disc are

δ0′ =
(

δq − 2 (δq · n)n

δp − 2 (δp · n)n − 2γr
〈δq,e〉
cosφ

e′

)

− ω
(δq · n)

(p · n)

(

0
S · p

)

,

S = 2

(

−2n1n2 n21 − n22
n21 − n22 2n1n2

)

, n =
(

n1
n2

)

, (8)

where γr again is the curvature of the wall segment (0 for a straight
wall, ± 1

r
for a disc).

C. The “toy model”
Before �nding an approximate expression for the value of λ in

our model systems, it is worthwhile to get an impression of how
the norm of the perturbation vector evolves with time. In Fig. 2,
we show typical plots for the three di�erent billiards. We computed
the perturbation growth using the DPH framework, sampling the
perturbation vector immediately before and after every collision to
resolve the instantaneous jumps. As the DPH evolution is linear, in
the actual numerical simulations, we renormalized the perturbation
vector after sampling to prevent numerical errors due to the rapid
perturbation growth.

Let us �rst examine Figs. 2(a) and 2(b). We see that the norm
of the perturbation vector changes in two ways. Let the jth collision

with a disc happen at time tj =
∑j−1

i=0 1ti = tj−1 + 1tj−1. There a dis-
continuous change of the perturbation vector norm happens, so that
|δ0′

j| = aj|δ0j| (in general, aj is a function of δ0j). The collision event
is followed by a time-interval 1tj, in which the perturbation norm
changes continuously because there are no collisions with curved
boundaries. Just before the next collision with a disc the perturbation
norm takes the value |δ0j+1|. In the following, we will refer to these
repeated segments of the growth curve as “elementary growth seg-
ments,” starting with one collision event with a disc and ending just
before the next one. In general, it is the segment of the perturbation
growth curve between successive dispersing or defocussing collisions
which are the origin of chaos in billiards.34 An elementary growth
segment thus re�ects the perturbation growth during an “e�ective
free path” as de�ned by Bunimovich.34

A crucial simpli�cation we do in deriving an approximate
expression for the Lyapunov exponent will be to express the pertur-
bation growth in the time-interval 1tj as a function z(1tj) of the
interval length. The actual precise value |δ0j+1/δ0

′
j| is not a simple

scalar function of the time interval since, for example, in the case of
the PSB we can obtain from Eq. (5)

|δ0j+1(1t)| =
√

(δq′
j + δp′

j1t)2 + (δp′
j)
2 (9)

[due to the linearity of the equations of motion of the tangent space
we can assume a norm of |δ0′

j| = 1 in Eq. (9)]. Equation (9) depends
on the initial orientations of both the momentum and position
deviation vectors and thus is not a function of just 1t.

We will show, however, by analyzing numerical data, that a rea-
sonable approximation can be obtained by assuming that such a
function z(1t) exists. Notice that this assumption is only regard-
ing the existence of z. The functional form and its complexity can
be completely arbitrary (and in fact in the following we have three
di�erent versions of z for the di�erent billiards). For each elementary
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FIG. 2. Typical time evolution of the logarithm of the norm of the perturbation vector |δ0(t)| for the periodic Sinai billiard without (a) and with (c) magnetic field (B = 1)
and for the mushroom billiard (e) (without magnetic field). Zoom-ins are below each panel. For (a)–(d), red markers mean collision with the disc, while blue markers mean
“collision” with the periodic walls (not a true collision, but a way of recording the value of |δ0|). For (e)–(f), red is collision with cap head, orange with cap walls, blue with stem
sides, and green with stem bottom. The colored background stripes denote the “elementary growth segments” discussed in Sec. II C (random colors are used) with hatched
orange color used for the laminar episodes (see Sec. II C).

growth segment, we thus write

|δ0j+1| = z(1tj) × aj × |δ0j| = z(1tj) × |δ0′
j|. (10)

We then recursively apply Eq. (10) to get

|δ0n| =
n−1
∏

i=0

aiz(1ti)|δ0(0)| ⇒

log (|δ0n|) =
n−1
∑

i=0

log(ai) + log(z(1ti)) (11)

(using |δ0(0)| = 1) and with Tn =
∑n−1

i=0 1ti we use Eq. (4) to write
λ = limn→∞ log (|δ0n|) /Tn. The quotient of the in�nite sums is the
same as the ratio of the average over all unit cells (denoted by 〈·〉), i.e.,

λ ≈
1

κ

(

〈log(a)〉 + 〈log(z(1t))〉
)

, (12)

κ ≡ 〈1t〉. (13)

Averaging over the unit cells implicitly assumes the ergodicity.
Notice also that in some billiards, there could be several ergodic
chaotic components that are separated from each other. In such
cases, the above process has to be applied to each component sep-
arately, since each component has its own exponent λ. For the bil-
liards considered here, we have found that furthermore 〈log(z(1t))〉
= log(z(〈1t〉)) = log(z(κ)) is good approximation that we will use.
This approximation is valid when the standard deviation of 1t is
small (compared to its mean).

In the remainder of the text, wewill call Eq. (12) the “toymodel.”
It is the more detailed version of the back-of-the-envelope calcula-
tion given in the introduction. In Sec. III we will apply this toy model

to speci�c billiards and see how well it approximates the Lyapunov
exponent and its parameter dependence.

D. Software
All numerical computations presented in this paper were

performed with an open source software to simulate billiards,
“DynamicalBilliards.jl.”35 In this paper, we extend the DPH frame-
work to magnetic �elds. We also implemented this extension in
the software (which previously only included the nonmagnetic
case). All code we used for this paper, including all code to repli-
cate the �gures we show here, is publicly available on GitHub:
https://github.com/Datseris/arXiv˙1904.05108.

III. RESULTS
A. Periodic Sinai billiard

We start our analysis with the PSB because it is the simplest case
and we are able to give a fully analytical expression for the Lyapunov
exponent in the simpli�ed toy model. We note that in the absence of
a magnetic �eld, the PSB is ergodic and its phase space is not mixed.
Nevertheless, it will serve as a pedagogic example of how the toy
model approximates the Lyapunov exponent.

For the PSB, τ = κ and the value of τ is known from Eq. (3)

κPSB =
1 − πr2

2r
. (14)

An approximation for z(1t) is easily found as well from Eq. (9),
namely,

zPSB(t) ≈
√

1 + t2, (15)
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FIG. 3. (a) Lyapunov exponent of the periodic Sinai billiard for different radii, com-
pared with the toy model. The dashed curve obtains 〈log(a)〉 by numeric average,
while the red curve uses Eq. (19). The blue curve is using the DPH framework.
(b) Average value of 〈log(a)〉 used in panel (a). (c) Perturbation norm increases

during the free flight part. In the zoom in (d), we also plot the curve
√
1 + 1t2 as

a dashed line.

which uses the assumption that after a collision with a disc, the
momentum contribution to the perturbation vector is much larger
than the position contribution, i.e., |δp′| � |δq′|. Numerical calcu-
lations show that this approximation is valid for small enough radii
(see Fig. 3). The instantaneous change factor 〈log(a)〉 is rather large
for all but very large disc radii. Also, as seen in panel (c) and its inset
(d), Eq. (15) almost perfectly approximates the perturbation norm
increase during the free �ight part.

We still need an approximate expression for a, the instantaneous
change factor, which we can derive from Eq. (6). Since the norm of
the position deviation does not change at the collision, we focus on
the momentum deviation δp′ = δp(r) − 2

r

δq·e
cos(φ)

e′ with δp(r) = δp −
2 (δp · n)n (if not explicitly written otherwise all quantities in this
paragraph have a collision-time index j, which we suppress to make
the symbols simpler). We de�ne A = 2

r

δq·e
cos(φ)

and carrying out the

calculations leads to

|δ0′|/|δ0| = a =
√

1 + A2 − 2A(e′ · δp) (16)

again using the assumption that |δ0j| = 1 (and recall that |δp(r)|
= |δp|, |δq′| = |δq|).

We now need to average 〈log(a)〉. We start our approxima-
tion by replacing the inner product (δq · e) by an averaged quantity
b(r) (we show below how b depends on r). It is expected that per-
turbations will grow and orient themselves perpendicular to the
particle’s direction of motion. Since e is a unit vector perpendicular

to the particle’s momentum and thus parallel to δq, this means that
〈|(δq · e)|/|δ0|〉 = 〈|δq|/|δ0|〉 = b(r).

Which portion of |δ0| is contained in |δq| is answered based on
howperturbations evolve during the free �ight part. Starting from the
jth collision the perturbations evolve for time1tj. Using Eq. (9) (and
assuming that the cross terms δp · δqwill drop out in the averaging),
we obtain

|δqj+1|
|δ0j+1|

=

√

|δq′
j |2

|δp′
j |2

+ 1t2j
√

|δq′
j |2

|δp′
j |2

+ 1 + 1t2j

. (17)

To analytically resolve Eq. (17), we use the same assumption as
in Eq. (15), |δp′| � |δq′|. We then average, replacing 1t by κ , which
leads to

b(r) =

√

κ2
PSB

1 + κ2
PSB

. (18)

We discard the term 2A(e′ · δp) in Eq. (16) again assuming that
the inner product averages to 0. Now, the only variable left to aver-
age over is φ, the angle with respect to the normal vector. This is
distributed in [−π/2,π/2] with probability distribution of cos(φ)/2.
Therefore,

〈log(a)〉 =
∫ π

2

− π
2

log





√

1 +
(

2b

r cos(φ)

)2




cos(φ)

2
dφ

=
csch−1

(
2b
r

)√
4b2 + r2

r
+ log

(
b

r

)

, (19)

with csch−1 being the inverse hyperbolic cosecant.
We then put Eqs. (14), (15), (18), and (19) into the toy model

of Eq. (12) and obtain an analytic approximation for the Lyapunov
exponent

λPSB(r) =
2r

1 − πr2

(

csch−1
(
2b(r)
r

)√

4b(r)2 + r2

r

+ log

(
b(r)

r

)

+ log





√

1 +
(
1 − πr2

2r

)2







 . (20)

The result is shown in Fig. 3(a), comparedwith the numerical value of
λ using the DPH framework as well as with the result of computing
the term 〈log(a)〉 in the toy model numerically from the evolution
of the perturbation vector norm. All three curves are in excellent
agreement for small and intermediate r, only for large r does Eq. (20)
slightly deviate from the numerical values because the approximation
for b(r) in Eq. (18) and thus for 〈log(a)〉 becomes less accurate.

B. Magnetic periodic Sinai billiard
We now want to apply the same process to the MPSB, which,

however, has a mixed phase space: there exist collisionless orbits like
those seen in Fig. 1(b) that constitute the regular part of phase space
(other unstable periodic orbits of zeromeasure are not relevant here).
We are of course only considering the Lyapunov exponent of the
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chaotic part of the phase space, which means that we initialize parti-
cles only in the chaotic phase space region. The mean collision time
κMPSB between successive collisions with discs is also only de�ned for
the chaotic phase space part (as the regular trajectories do not collide
with the discs).

The free �ight evolution in the MPSB is fundamentally di�er-
ent from the PSB. Not only are the functional forms di�erent but in
addition due tomagnetic focusing, it is possible (and in fact quite fre-
quent) for the perturbation norm to “decrease” during the evolution,
as can be seen in Figs. 4(e) and 4(f). In addition, as visible in Fig. 2(d),
it is also possible for the norm to decrease during the instantaneous
change as well.

This more complex behavior is of course hidden in the more
complicated formulas of our extension to the DPH framework for
magnetic �elds. For example, explicitly writing out Eq. (7) gives

|δ0(t)| =
[

(δp2x + δp2y)

+
(

δqx + δpy
cos(ωt) − 1

ω
+ δpx

sin(ωt)

ω

)2

+
(

δqy − δpx
cos(ωt) − 1

ω
+ δpy

sin(ωt)

ω

)2
]1/2

(21)

(where againwe assumed |δ0(0)| = 1). The consequences of Eq. (21)
can be seen in Figs. 4(d) and 4(e). Using a univariate scalar function
z(1t) to approximate these distributions appears to be a bold move,
but in the end it will turn out to give good approximation. To obtain
z(1t), we simplify Eq. (21) to

zMPSB(t) =

√

1 +
(
1 − cos(ωt)

ω

)2

+
(
sin(ωt)

ω

)2

, (22)

which is also plotted in Figs. 4(d) and 4(e).
In the next step, we compute 〈log(a)〉 numerically and use its

value in the toy model along with zMPSB(κ(B)). We remind that the
value of κ , the mean collision time between discs in MPSB, is not
known analytically but it is connected with the chaotic phase space
portion through Eq. (1). The results of the toy model are presented
in Fig. 4.

Besides the fact that our toy model approximates λ very accu-
rately, Fig. 4 shows the impact of phase space restriction on λ. In our
toy model, the value of λ is composed of �ve contributions, the �rst
being the denominator κ . The value of 〈log(a)〉 itself has two con-
tributions, one again stemming from κ (as shown in Sec. III A) and
the other from B. The function zMPSB also has two contributions, one
from B and one from κ . Therefore, three out of �ve contributions to
λ are inherently linked to the restriction of the chaotic phase space
by regular orbits.

C. Mushroom billiard
Because the volume fractions of the regular and the chaotic

phase space regions are not known analytically in theMPSB, we have
turned to a billiard that also has a mixed phase space but allows us
to calculate these fractions, and, as we will show, the relevant aver-
age time scales analytically: themushroombilliard (MB). The regular
orbits in theMB are orbits forever staying in the cap, evolving exactly

FIG. 4. (a) Lyapunov exponent of the magnetic periodic Sinai billiard (MPSB) for
different radii vs magnetic field, compared with the toy model. The solid curves
are the numeric result λ, the dashed curves are the toy model using the numeric
average of 〈log(a)〉. (b) Numeric average of 〈log(a)〉 vs the magnetic field. (c)
Chaotic phase space portion [gc = κ/κ(0)] of the MPSB [(a)–(c) share legend].
(d) and (e) Perturbation norm change during the free flight in theMPSB (calculated
with the DPH framework). Plotted with dashed lines are Eq. (22) (data for r = 0.2).

like they would as if they were in a circular billiard.19 The tangential
circle to these orbits has a radius ≥w/2, as shown in Fig. 1(a). The
rest of the orbits, which do not satisfy this criterion, eventually enter
the stem and are chaotic. The tangential circle argument was used
in Ref. 5 to obtain an analytic expression for the regular phase space
volume VREG of the MB as a function of the billiard parameters,

VREG = 2π

(

arccos
(w

2

)

−
w

2

(

1 −
w2

4

))

, (23)

VTOT = 2π(hw + π/2), (24)

VCH = VTOT − VREG, (25)

where VTOT and VCH are the total and chaotic phase space volume
(all lengths are scaled to the cap radius r which is �xed to r = 1). The
parameter dependence of VCH is illustrated in Figs. 5(c) and 5(d).
Interestingly, VCH does not vanish for small h, although it is obvi-
ous that there are no chaotic orbits for h = 0. This discontinuity is
due to the fact that the volume of chaotic phase space in the cap
is independent of stem height for nonzero h, but drops to zero for
h = 0.
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FIG. 5. (a) A laminar episode (orange, dashed) and two chaotic episodes (blue,
purple) in the mushroom billiard. Start and end of each episode are denoted with
closed and open circles and the blue episode starts directly after the orange. The
cap head is plotted in dark color to differentiate. (b) Mean return time to the stem
bottom, which is equivalent with the average elementary growth segment time,
Eqs. (27) and (28). (c) and (d) Volume of chaotic phase space for the mushroom
billiard.

In Figs. 6(c) and 6(d), we present a scatterplot of various pos-
sible increases of the perturbation norm during the unit cells. We
found that there are clearly distinct contributions to the increase,
each seemingly approximated as a linear function of1t. By analyzing
the dynamics in more detail, it turns out that the di�erent contri-
butions of Fig. 6(c) and 6(d) come from the trapping of the chaotic
orbits in the regular phase space. In the coordinate space, this means
that the particles get trapped in the cap and mimic the motion of the
regular phase space there until eventually escaping after some time.
This e�ect is often called “intermittency” and is known to occur in
mushroom billiards.36,37 Intermittent behavior in theMB can happen
in the stem as well, where orbits stay trapped bouncing between the
stem walls.

We, therefore, have to separate the elementary growth segment
into two di�erent “episodes:” the chaotic episode c and the laminar
episode `, where the particle is trapped in the cap. Notice that the
second intermittent behavior, trapping in the stem, does not lead to
a new type of dynamics, but is just prolonged chaotic episodes (sim-
ilarly to a large free �ight in the PSB). We show the two episodes in
Fig. 5(a). Numeric calculations shown in Figs. 6(e) and 6(f) show that
each episode has a di�erent average time, τc, τ`, respectively.

During the chaotic episodes, the picture is very similar to the
PSB. A collision with the cap head gives an instantaneous increase
to |δ0|, followed by an approximately linear increase until the next

collision with the cap head. Here, the linear increase approxima-
tion is valid because for the chaotic episodes1t & 2h + 2 − w. After
collidingwith the cap head, the particlemay return to the stem imme-
diately which initializes another chaotic episode. Occasionally, after
ending a chaotic episode, the particle will get trapped in the cap [see
Fig. 5(a), orange], starting a laminar episode. Even though there are
successive collisions with the cap head in this episode, the pertur-
bations do not increase exponentially. The successive instantaneous
increases are very quickly becoming insigni�cant [see Figs. 2(e)
and 2(f)] due to the fact that cap collisions have an initially focusing
e�ect which only becomes defocusing if the consecutive free motion
is long enough, which is not the case in the laminar episodes. There-
fore, the overall perturbation growth inside the cap trapping episodes
is “linear.”

Let nc and n` be the counts of chaotic and laminar episodes up to
time T. Notice that n` is strictly less than nc since a chaotic episode
always follows a laminar episode, but the inverse is only occasion-
ally true. In the limit T → ∞, we de�ne f` = n`/(n` + nc) to be the
frequency of the laminar episodes. We then write the function z as

zMB(1t) = (oc + sc1tc) + f`(o` + s`1t`), (26)

with oi being the o�set and si being the slope of the linear approx-
imation [we obtain these values with least squares �t to Fig. 6(c)
and 6(d)]. For the chaotic episodes s, o are constant vs h,w while for
the laminar episodes o depends strongly on w. Also, for the chaotic
episodes, o has a negative value (of around −0.8) which is expected
due to the focusing e�ect. We once again compute 〈log(z(1t))〉
simply by replacing 1t by its average values τc, τ` in Eq. (26).

The instantaneous change factor a is the same between the lam-
inar and chaotic episodes so we do not need to separate it. Notice
that for the laminar episode we only consider the �rst jump as
the instantaneous increase. Subsequent jumps that decrease rapidly
are encoded in the linear growth approximation. After comput-
ing 〈log(a)〉 numerically, we still need a value for κMB, the ele-
mentary growth segment average time, to apply our toy model
λ = (〈log(a)〉 + log(zMB(τc, τ`))/κMB. Numerically, we can estimate

κMB = τc + f`τ`. (27)

However, we can estimate κMB analytically as well, using Kac’s
lemma.31–33 The key to this is understanding that the mean elemen-
tary growth segment time is equivalent with the mean return time
to the stem bottom, since all phases in the end of the day have to go
there, since all phases are part of the chaotic phase space.

We present the full proof in Appendix B. The �nal expression is
given by

κMB(h,w) =
VCH(h,w)

2w
. (28)

We compare the analytic formula with the numeric result in Fig. 5(b)
and �nd the expected perfect agreement, since Eq. (28) is exact. In
Appendix C, we also present an analytic approximation for τc. Since
we know κMB and τc analytically, we also know the product f`τ` (but
we do not have an expression for f` or τ` individually).

We can now use our toy model to compare with λ, which we do
in Figs. 6(a) and 6(b). Again we �nd good agreement between the toy
model and the numerical simulation using the DPH framework. The
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FIG. 6. (a) and (b) Lyapunov exponents in the mushroom billiard (MB) vs the width w or height h of the stem. Solid lines are numeric results using the DPH framework, and
dashed lines are using the toy model. (c) and (d) Perturbation norm increases during the chaotic c and laminar ` episodes. (e) and (f) Parameters of the toy model vs w or h
(for constant h = 1 and w = 1, respectively); legend is shared.

model mildly diverges for very small w, probably because the mean
laminar time τ` diverges as seen in Fig. 6(e).

As was the case in the MPSB, the average elementary growth
segment time κ is inversely proportional to λ and directly propor-
tional to the chaotic phase space volume VCH. This shows that phase
space restrictions have an immediate impact in the value of the Lya-
punov exponent even for billiardswith intermittent dynamics. Notice
that in theMB bothVCH and λ increase asw increases. This is simply
due to the dependence of VCH on w, as well as the direct dependence
of κMB on 1/w [this, for example, was not the case in Eq. (1) for the
MPSB].

IV. DISCUSSION
To summarize, we have examined the value of the Lyapunov

exponent λ in chaotic billiards. We were able to create a concep-
tually simple model that approximates λ very well. The model is
based on how perturbations evolve in billiards “on average” and
helps to understand how each part of the dynamics contributes to
the perturbation increase. The simple model is written as Eq. (12),
which is

λ =
1

κ

(

〈log (a)〉 + 〈log (z(1t))〉
)

,

where a the instantaneous change of |δ0| at a collision with a curved
boundary and z(t) the continuous change of |δ0| in between colli-
sions with curved boundaries. κ is the average elementary growth
segment time equal to the mean collision time between curved
boundaries. The approximations that lead to the toy model were the
following. First, we assumed that the chaotic phase space is ergodic
and time averages can be replaced by phase space averages and that
for 1t, log(a), log(z(1t)), their averages are �nite and greater than
0. We then made the simplifying assumption that the norm of the

perturbation vector increases continuously in between successive
chaos-inducing collisions (i.e., in each elementary growth segment)
as a “univariate” function of the time interval z(1t).

We used Eq. (12) to �nd an analytic expression for λ in the
periodic Sinai billiard (PSB). We have also shown that Eq. (12) can
be used to analyze the Lyapunov exponent in the magnetic peri-
odic Sinai billiard (MPSB), and by approximating the numerical
curves identi�ed the main contributions. We could follow the same
approach for the mushroom billiard (MB), even though the process
is complicated in this case by intermittent dynamics. In both billiards
with mixed phase space, we connected the chaotic phase space vol-
ume with λ through κ and showed that λ has a leading contribution
given by the inverse of the chaotic phase space volume (for theMPSB,
we used the chaotic “portion” instead of volume, because the total
phase space volume does not depend on B).

To strengthen our point that a prominent contribution to the
parameter dependence of the Lyapunov exponent in billiard is given
by the inverse chaotic phase space volume, we present one �nal bil-
liard, called the inverse stadium billiard (ISB) shown in Fig. 7(a),
originally studied by Vörös et al. in Ref. 30. In this billiard, a particle
is propagating inside the stadium on straight lines, but after passing
the boundary of the stadium, it is subjected to a constant magnetic
�eld, which brings the particle back inside the stadium, as depicted
in Fig. 7(a). In the limit of in�nite magnetic �eld, the ISB recovers the
fully chaotic Bunimovich stadium, for �nite magnetic �elds it has a
mixed phase space. Here, we do not want to analyze the ISB in any
detail but only point out that also in this billiard the parameter depen-
dence of its Lyapunov exponent is closely following the inverse of the
chaotic phase space volume as shown in Figs. 7(b) and 7(c).

We want stress how di�erent the mechanisms are that lead to
chaos in the three di�erent billiards. In the MPSB, it is dispersing as
well as the magnetic �eld. InMB, it is defocusing, and, in the ISB, it is
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FIG. 7. The inverse stadium billiard (ISB). (a) An example orbit in the ISB (stadium
width and length are 0.5). Outside the stadium, the particle undergoes circular
motion with radius 1/ω. (b) The boundary map (see Appendix B) of the ISB, com-
puted forω = 10. In the middle, one can see stability islands, which seem to have
a fractal boundary. (c) Lyapunov exponent λ and chaotic volume VtextCH vs ω,
both normalized to their maximums for comparison. λ is obtained with a modified
version of the DPH framework using tangent space evolution matrices derived by
Vörös et al. in Ref. 30. VCH is the volume of the billiard flow of the chaotic orbits
and is calculated by weighting the area of the ergodic region (obtained numeri-
cally) on the boundary map with its mean time to next collision. We only consider
orbits that do intersect the billiard boundary of the ISB.

even more involved. Yet, in all three cases, we �nd what is suggested
by our toy model: the Lyapunov exponent has a leading contribution
that is inverse to the chaotic phase space volume.

Because generally chaos in billiards arises via dispersing and
defocusing collisions with curved boundary segments,34 the Lya-
punov exponent is necessarily inversely linked with the mean return
time to these boundary segments. Furthermore, Kac’s lemma dic-
tates that the mean return time of the chaotic trajectories to these
boundaries is directly proportional to the chaotic phase space
volume. For this reason, we hypothesize that, for most chaotic bil-
liards with mixed phase space, the Lyapunov exponent has a leading
contribution inverse to the chaotic phase space volume.

This should straightforwardly carry over to higher dimensions
as well, since Kac’s lemma, the DPH framework, as well as our toy
model, does not depend in any way on the dimensionality of the bil-
liard. So far, we did not �nd signi�cant di�erences between billiards
with sharply divided phase space (like the MB and the MPSB) and
a fractal phase space structure (like the ISB). To conclude whether
there are fundamental di�erences between sharply-divided and frac-
tal phase spaces, one will have to do more research. What we want to
point out is that for fractal phase spaces, it is much harder to estimate
the volume of the chaotic set.

APPENDIX A: EVOLUTION OF PERTURBATION
VECTOR IN A MAGNETIC FIELD

In their paper, Dellago, Posch, and Hoover give two main equa-
tions to compute the evolution of perturbations in the tangent space
along a piecewise smooth �ow de�ned by the autonomous ODE
system,

0̇ = F(0). (A1)

During smooth propagation, the perturbation vector δ0 along the
trajectory 0 evolves according to

˙δ0 =
∂F

∂0

∣
∣
∣
∣
0

· δ0. (A2)

If smooth propagation is interrupted at discrete times tj(0) by a dis-
continuous jump, represented here by a di�erentiablemapMj(0), the
perturbation vector after the jump is given by

δ0′ =
∂Mj

∂0

∣
∣
∣
∣
0

· δ0i +
(

∂Mj

∂0

∣
∣
∣
∣
0

· F(0i) − F(M(0))

)

δτc, (A3)

where δτc = tj(0 + δ0) − tj(0). For the case of elastic re�ection
with an obstacle,Mj can be written as

0
′ = Mj(0) =

(

I2×2 02×2

02×2 I2×2 − 2(n ⊗ n)

)

· 0. (A4)

Here, n is the normal vector of the obstacle at the collision point,
I2×2 and 02×2 are the 2 × 2 identity and zero matrices, respectively,
and (a ⊗ b)jk = ajbk is a second-order tensor.

1. Propagation
In magnetic billiards, particles propagate in circular arcs. To

get the simplest possible set of equations of motion describing
this mode of propagation, it is useful to introduce a phase angle
θ = arctan(py/px). For uniform circular motion, this phase angle
grows linearly in time as the system rotates with constant angular
velocity ω. This can be exploited to determine ṗ using the chain rule,

ṗ =
dp

dt
=

dθ

dt
·
dp

dθ
= ω ·

dp

dθ
. (A5)

Using ‖p‖ = 1, one can easily calculate the explicit relation between
p and θ ,

px = cos(θ)

py = sin(θ)
⇒

dpx

dθ
= −py,

dpy

dθ
= px,

(A6)

and combine the results of Eqs. (A5) and (A6) to receive the equations
of motion

F(0) =
(

p
ω · Rp

)

where R =
(

0 −1
1 0

)

. (A7)

Using Eq. (A2), we can now state the equations of evolution for a
perturbation vector δ0 using the Jacobian J of F,

˙δ0 = J · δ0 =
(

02×2 I2×2

02×2 −ω · R

)

δ0. (A8)
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Using an exponential ansatz, we can compute the general solution of
this system and receive a �nal result of

δ0(t) = B · δ0(t0),

B =







I2×2
ρ sin(ωt)

−ρ (cos(ωt) − 1)
ρ (cos(ωt) − 1)

ρ sin(ωt)

02×2
cos(ωt)
sin(ωt)

− sin(ωt)
cos(ωt)






, (A9)

where ρ = 1/ω is the cyclotron radius.

2. Collisions
The derivation of the collision map for δ0 is largely analogous

to the process used by DPH to derive their result for nonmagnetic
billiards. The equations of motion are assumed as stated in Eq. (A7).
For Eq. (A3), we require the Jacobian matrix ofMj, which is

∂Mj

∂0
=
(

I2×2 0
A B

)

, (A10)

where

A = 2 ((n ⊗ p) + 〈p,n〉 1I2×2)
∂n

∂q
,

B = I2×2 − 2 (n ⊗ n).

By inserting Eqs. (A7), (A4), and (A10) into (A3), we �nd

δ0′ =
(

I2×2 0
A B

)

δ0 +
[(

I2×2 0
A B

)

·
(

p
ω · Rp

)

−
(

p − 2 (n ⊗ n) p
ω · RBp

)]

δτc. (A11)

It is now helpful to continue calculations for δq′ and δp′ separately.
For the position component δq′, equation (A11) can be written as

δq′ = δq + [p − p + 2 (n ⊗ n) p] δτc

= δq + 2 δτc (n ⊗ n) p. (A12)

For the momentum component δp′, we get

δp′ = A δq + B δp + δτc [pA + ωS] , (A13)

where

S := BR − RB = 2

(

−2n1n2 n21 − n22
n21 − n22 2n1n2

)

.

This can be simpli�ed by using the fact that (b ⊗ a)c = 〈c, a〉 b and
introducing the quantity δqc = δq + δτc p, which represents the real
space di�erence vector between the collision points of satellite and
reference trajectories,

δp′ = δp − 2 〈δp,n〉n − 2
∂n

∂q
(〈p, δqc〉n

+ 〈p,n〉 δqc) + δτc ω Sp. (A14)

Using geometric considerations outlined by DPH, we can now
rewrite the penultimate term to get

δp′ = δp − 2 〈δp,n〉n − 2γR

〈δq, e〉
cosφ

e′ + δτc ω Sp, (A15)

FIG. 8. (a) Geometric derivation of δτc. As all spatial perturbations are small, it is
sufficient to approximate the obstacle as a straight line. In this example, the satel-
lite particle collides after the reference particle. (b) Decomposition of momentum
into normal and tangential components.

where φ is the angle of incidence, γR is the local curvature of the
obstacle, and e and e′ are unit vectors orthogonal to p and p′,
respectively.

3. Collision delay time
The quantity δτc in Eqs. (A3) and (A11) can be interpreted as

the time delay in between the collisions of the reference trajectory 0

and its satellite 0 + δ0.
It can be computed by determining the signed distance from the

satellite to its collision point measured along its trajectory at the time
tj(0) of the collision of the reference particle. As we are considering
the linearized dynamics of the perturbation and Eq. (A3) is valid only
to the �rst order of δ0, we will ignore all higher orders of δ0 in the
subsequent calculations.

Furthermore, we will denote vector components in the normal
direction of the obstacle by a subscript n, i.e., an = 〈a,n〉. Similarly,
the tangent component of a vector will be denoted by a subscript t.

Geometrically, one can immediately derive the following two
relations from the two triangles highlighted in Fig. 8(a):

ρ sinφ = 〈δq,n〉 − 〈c,n〉 (blue triangle), (A16)

ρ sin θ = 〈c,n〉 (red triangle), (A17)

where c is a vector between the obstacle and the cyclotron centre, as
shown in Fig. 8(a). Eliminating the factor 〈c,n〉 yields

sin θ =
〈δq,n〉

ρ
− sinφ. (A18)

By construction, θ cannot exceed π

2
in the absolute value. Therefore,

we can safely apply the arcsine function to Eq. (A18), receiving an
expression for θ ,

θ = arcsin

(
〈δq,n〉

r
− sinφ

)

. (A19)

We can now use this to compute the angle α corresponding to the arc
the particle has to travel during δτc.
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Using Fig. 8(a), we can determine an expression for α

α = φ + θ

Eq. (A19)= φ + arcsin

(
〈δq,n〉

r
− sinφ

)

. (A20)

This can be further simpli�ed by expressing φ in terms of the satellite
particle’s momentum [compare Fig. 8(b)],

α = arcsin

(
pt + δpt

‖p + δp‖

)

︸ ︷︷ ︸

K

+ arcsin

(
〈δq,n〉

r
−

pt + δpt

‖p + δp‖

)

︸ ︷︷ ︸

L

. (A21)

We can now linearize Eq. (A21) to receive our �nal result forα. As the
individual terms are somewhat complicated, but very similar, we will
treat them separately. The �rst-order Taylor expansion of leftmost
term is

K ≈ arcsin

(
pt

‖p‖

)

+ ζ(δpt), (A22)

where ζ is of the form a · δpt + b · δpn with a, b given by the respec-
tive partial derivatives. Expanding the rightmost term in (A21) yields
the similar result of

L ≈ arcsin

(

−
pt

‖p‖

)

− ζ(δpt) +
1

√

1 − p2t
·
〈δqi,n〉

r
. (A23)

This simpli�es the �nal result for α signi�cantly. Using the antisym-
metry of the arcsine function, we can see that most of (A22) and
(A23) cancel out, leaving only

α =
1

√

1 − p2t
·
〈δq,n〉

r
. (A24)

Finally, we have to multiply Eq. (A24) with the cyclotron radius r,
then divide the resulting arclength by

∥
∥p
∥
∥ to get δτc.

As ‖p‖ = 1 per convention, we can substitute
√

1 − p2t =
∣
∣pn
∣
∣.

However, we know that pt < 0 as the reference particle must have
been moving toward the obstacle to collide with it. Therefore, we can
further simplify our result to obtain

δτc = −
〈δq,n〉
〈p,n〉

. (A25)

This is the same result as for linear propagation in Ref. 24 [Eq. (18)],
since higher orders of δ0 were neglected.

Combining Eqs. (A12), (A15), and (A25), we receive the �nal
result

δ0′ =
(

δq − 2 (δq · n)n

δp − 2 (δp · n)n − 2γr
〈δq,e〉
cosφ

e

)

− ω
(δq · n)

(p · n)

(

0
S · p

)

. (A26)

APPENDIX B: MEAN RETURN TIME TO STEM
In this section, we will derive an analytic expression for the

mean return time to the stem bottom in a mushroom billiard. Using
Kac’s lemma,31–33 which states that for volume-preserving maps, the
mean number of iterations nS required to return to a compact subset
S of phase space is given by

nS =
µ(A)

µ(S)
, (B1)

where µ(·) is the volume of a set and A is the subset of phase space
accessible to orbits originating in S.

To transform the billiard �ow into a map, we discretize time in
small steps 1t, implicitly considering the limit of 1t → 0. We now
choose the set S of momenta and positions de�ned by

S = {q ∈ Y , py > 0}, (B2)

where Y is a box of width w and height ε at the bottom of the stem.
One should be careful about the choice of S. The simplistic approach
of choosing the cap semicircle as the returning set (since the ele-
mentary growth segments are delimited by collisions with curved
boundaries) will not yield the correct result. That is because themean
return time to the cap semicircle inherently includes contributions
from both the periodic orbits of the MB and the laminar episodes of
the elementary growth segments, which we have already shown to
correspond to “free �ight”-like motion.

The phase space volume of S is µ(S) = πwε in the limit of
1t → 0. As the chaotic phase space component of mushroom bil-
liards is ergodic,19we know that the measure of the subset A of phase
space accessible from S is given by the volume of chaotic phase space
VCH = VTOT − VREG.

Applying Kac’s lemma to get themean iterations to return to the
stem and multiplying by 1t, we get a result for the mean return time
κS(h,w, r) to the set S,

κS(h,w) =
VCH(h,w)

πεw
1t. (B3)

To eliminate 1t, we divide by κS for w = 2 to get

κS(h,w) =
VCH(h,w)

VTOT(h, 2)

2

w
κS(h, 2). (B4)

As this equation no longer depends on ε, we can now take the limit
ε → 0. The reason to use w = 2 here is because the MB becomes the
stadium billiard for w = 2 (and thus is fully chaotic with no regular
components with measure > 0).

We can �nd κS(h, 2) because of the ergodicity of the MB for
w = 2. Speci�cally, it holds that κS(h, 2) = nS(h) × τ with nS being
the mean amount of iterations to return to the stem and τ being
the mean collision time in the MB given by Eq. (3). We consider
the boundary map of the billiard (Birkho� coordinates), (ξ , sinφn),
with ξ being the coordinate along the boundary (i.e., the arc-length)
and φn being the angle of incidence with respect to the normal vector
at ξ . This coordinate system is a discrete mapping and Kac’s lemma
applies directly. Therefore, the mean iterations to return to the stem
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bottom are

nS =
2 |∂Q|
2 · 2

, (B5)

where |∂Q| is the perimeter the boundary (the explicit factor of 2
represents the contribution of sinφn). Using Eq. (3), we �nd

τ =
π · (2h + π/2)

|∂Q|
. (B6)

Combining Eqs. (B5) and (B6), we receive an expression for themean
stem return time in the fully ergodic case

κS(h, 2) =
π

2
(2h + π/2). (B7)

This expression can be simpli�ed by substituting the total phase space
volume as de�ned in Eq. (25), yielding

κS(h, 2) =
VTOT(h, 2)

4
. (B8)

Inserting this result into Eq. (B4), we receive

κMB(h,w) =
VCH(h,w)

2w
. (B9)

APPENDIX C: MEAN DURATION OF CHAOTIC
EPISODES

Achaotic episode in theMB as de�ned above consists of the par-
ticle travelling from the cap head directly into the stem and back up
to the cap head, without any other collisions inside the cap. To deter-
mine the mean duration τc of these episodes, we can geometrically
determine the average lengths of the trajectories, exploiting that all
trajectories are uniquely de�ned by the angle of incidence α and the
distance δ from the cap center at which they enter the stem.

To simplify the calculation, it is useful to split the trajectory into
themean length of cap transit 〈c〉 and themean length of stem transit
〈s〉, where τc = 2〈c〉 + 2〈s〉.

The stem transit length can be easily computed using simple
trigonometry and depends only on the angle α

s =
h

cos(α)
. (C1)

As the directions of particle momenta are equidistributed, we know
that α must be cosine-distributed. We can now integrate over α to
obtain the mean s, �nding

〈s〉 =
∫

h

cosα

1

2
cos(α)dα = πh. (C2)

Determining the cap transit length ismore di�cult as it depends
on both α and δ. Using the law of sines, we can derive

c =
r

cos(α)
cos

(

asin

(
δ

r
cosα

)

− α

)

. (C3)

To get an average result, this expression has to be integrated both over
δ and α, again using the fact that α is cosine-distributed. Unfortu-
nately, we were unable to solve the integrals analytically. Therefore,

we decided to approximate
∫

c dδ by a polynomial before performing
the second integration, yielding

〈c〉 ≈ 1 −
w2

36
−

w4

1200
− · · · . (C4)

APPENDIX D: PROOF OF EQ. (1)
We are interested in the �ow of the PSB but to apply Kac’s

lemma, we need a discrete system. Thus, we obtain a map of the �ow
8t by discretizing in time (similarly with Appendix B), f := 81tε ,
with 1tε ∼ ε. To prove Eq. (1), we will apply Kac’s lemma to a set S .

Let TS(B) = 1tε × nS(B) (where B is the magnetic �eld)
denote physical recurrence time instead of map iterations. LetW be
a circle of radius r + ε concentric to the disc of the PSB and de�ne
the phase space subset Sε such that

Sε = {x, v : x ∈ W and v · η(x) < 0}, (D1)

where η(x) is the vector normal toW . The mean collision time κ of
the PBS is exactly TS in the limit ε → 0.

To �ndµ(S ;B), the measure of set S , we �rst realize that it does
not depend on the magnetic �eld, µ(S ;B) = µ(S ; 0) = µ(S). This
is due to the in�nitesimal width of S , over which motion can always
be approximated by a straight line for all �nite magnetic �elds val-
ues (i.e., equalling the magnetic �eld free case). Then, using (B1) at
B = 0, we have

TS(B = 0) =
(

1tε

µ(Sε)

)

µ(A;B = 0) =
(

1tε

µ(Sε)

)

, (D2)

because the PSB without magnetic �eld is fully ergodic and thus
µ(A;B = 0) = µ(M) = 1 (here M denotes the entire phase space
whose measure we set for simplicity to 1). By substitution, we get
TS(B) = µ(A;B) × TS(0). For small enough magnetic �elds, all
chaotic orbits (and up to measure 0 only those) collide with the
discs. In the limit ε → 0, both 1tε and µ(Sε) go to 0 linearly with
ε; therefore, their ratio converges, i.e., TS → κ . Since by de�nition
µ(A) = gc, the portion of chaotic orbits in the PSB (because we set
the entire volume to have measure 1), we �nd that the mean colli-
sion time is given by the fraction of chaotic orbits as a function of the
magnetic �eld B, times the mean collision time at B = 0

κ(B) = gc(B) × κ(0). (D3)
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Phase space analysis of quantum transport in graphene
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(Dated: Friday 17th May, 2019)

Prominent among the many fascinating properties of graphene are its surprising electronic trans-
port characteristics which are commonly studied theoretically and numerically within the Landauer-
Büttiker formalism. Here a device is characterized by its scattering properties to and from reservoirs
connected by perfect semi-infinite leads, and transport quantities are derived from the scattering
matrix. In many respects, however, the device becomes a “black box” as one only analyses what
goes in and out. Here we use the Husimi function as a complementary tool for understanding trans-
port in graphene nanodevices. It is a phase space representation of the scattering wavefunctions
that allows to link the scattering matrix to a more semiclassical and intuitive description and gain
additional insight in to the transport process. In this article we demonstrate the benefits of the
Husimi approach by analysing Klein tunneling and intervalley scattering in two simple graphene
nanostructures.

INTRODUCTION

Graphene is a fascinating material for studying quan-
tum transport, due to the abundance of new physics it
brought into light quite quickly after its discovery. The
possibility to measure the quantum Hall effect at room
temperature1, weak (anti-)localization effects connected
with the existence of two inequivalent valleys2, the Klein
tunnel effect and its potential impact on technological
applications3 or the so called universal minimum ballis-
tic conductivity4 are just a few examples of its intriguing
electronic properties (for a review of electronic transport
in graphene we point to5). Most of the exciting new
physics of graphene stems from the fact that the carriers
for small doping follow hyper-relativistic (Dirac) dynam-
ics.

Most quantum transport simulations of graphene
nanostructures are based on the Landauer-Büttiker for-
malism. Its main ingredient is the scattering matrix
of the device which can be calculated using techniques
like the (non-equilibrium) recursive Green’s functions
method in tight binding models. The scattering ma-
trix approach gives a wealth of information on trans-
port through the device, even though in the end in
some respects the device appears to be a black box.
Most transport quantities, for example conductivity,
thermal conductivity and even tunneling of individual
modes are straightforward to obtain. For the case of
zigzag graphene nanoribbons (which we present in de-
tail in sec. I B) it is even possible to extract information
about intervalley scattering (for a definition please see
sec. II B), since all modes are valley polarized.

A weakness of the scattering matrix approach only be-
comes apparent when one wants to connect the quanti-
tative results it produces to the physical intuition and if
one wants to understand the role played by the different

∗ george.datseris@ds.mpg.de

components of a complex (not easy to compartmentalize)
device. In that case one wants to analyse the scattering
wavefunctions inside the device, and how they populate
position and momentum space. For example, besides the
valley polarization of incoming and outgoing waves, it
can be reasonable to wonder about the valley occupation
inside complicated devices, and specifically in the differ-
ent parts that constitute the devices.

In order to complement the scattering matrix informa-
tion, and to get an intuitive connection with the semi-
classical picture, here we will use the Husimi function
Q which transforms a wavefunction into a phase space
(quasi-)distribution.

Husimi functions, that in many respects give a more
convenient phase space representation of quantum states
than the Wigner function, have been introduced to quan-
tum mechanics a long time ago6. They have been used
in various areas of physics. For example in such dif-
ferent fields as quantum optics, where they are a stan-
dard tool7,8, and ocean acoustics9. Their most promi-
nent role Husimi functions probably play in the field of
quantum chaos which tries to unravel the properties of
complex quantum systems. They have for example been
used to understand the structure of the eigenfunctions in
paradigmatic chaotic systems like quantum maps and bil-
liards10–14, transport in quantum ratchets15, the dynam-
ics of Bose-Einstein-Condensates in double well poten-
tials16 and the properties of optical microdisc lasers17–19.
While Husimi functions have e.g. also been used to study
electronic transport in disordered systems20, in general
solid state physics does not yet take much advantage of
this very useful tool.

Recently, in tight-binding models of nanodevices Ma-
son et al.21–23 have introduced a processed Husimi map
allowing to recover and visualize classical paths in coor-
dinate space. In particular they used the Husmimi map
to study graphene billiard systems21. We will show be-
low that the direct application of the Husimi function
as a distribution in position and momentum can as well
be a powerful tool to understand transport in graphene

ar
X

iv
:1

90
5.

06
63

7v
1 

 [
co

nd
-m

at
.m

es
-h

al
l]

  1
6 

M
ay

 2
01

9



2

nanodevices, because, for example, it offers readily ac-
cessible information on the actual angle of incidence at
barriers within the device, or it reveals where in momen-
tum space the scattering wavefunction gets localized at
different spatial positions in the nanodevice.

In this article we will study Klein tunneling and inter-
valley scattering in tight-binding models of simple, ex-
emplary graphene nanodevices. We use the recursive
Green’s function method to obtain the scattering ma-
trices and the scattering wavefunctions in the devices,
using the software Kwant30. We then analyze the wave-
functions using the Husimi projection and show, by com-
paring to the scattering matrix results, that the combi-
nation of Husimi functions and semiclassical considera-
tions allows us to interpret and understand the observed
transport phenomena. The observations we report in-
clude among others the mode dependence of intervalley
scattering at a pn-junction, the quantification of inter-
valley scattering at a tilted graphene edge and the evo-
lution of Klein tunneling at a pn-junction at high Fermi-
energies, when the dispersion relation deviates from the
Dirac approximation.

I. MODEL

A. The Husimi function

Let |W(r0,k0, σ)〉 denote a Gaussian wavepacket. In
position representation and in the absence of magnetic
fields this is simply24

W(r, r0,k0;σ) = ND/2
σ exp

(
− δr

2

4σ2
+ ik0 · δr

)
(1)

(with δr = r − r0 and D spatial dimensions) which is
a Gaussian envelope in space with origin r0 multiplying

a plane wave with wavevector k0. Nσ =
(
σ
√

2π
)−1

is
the normalization factor in the case of continuous space,
so that 〈W |W 〉 = 1 and that ∆x = ∆y = σ. The key
property of these wavepackets is that they minimize the
uncertainty relation between position and momentum.
Here σ is the spatial uncertainty and thus is a parame-
ter that controls the trade-off between the uncertainty in
position (σ) or momentum space (1/(2σ)).

The Husimi function is defined as the magnitude of a
projection of a wavefunction onto |W〉6,24–26

Q(r0,k0;σ) =
1

π
|〈ψ |W(r0,k0;σ)〉|2 (2)

where for continuous space systems we have

〈ψ |W(r0,k0;σ)〉 =

∫
ψ∗(r)×W(r, r0,k0;σ) dr (3)

where the integration extends over the full spatial domain
of the device (in our case in two dimensions). For a tight

binding system the projection is turned into a sum due
to the discrete nature of the lattice

〈ψ |W(r0,k0, σ)〉 =
∑

j

ψ∗(rj)× e−
δr2j

4σ2 eik0·δrj (4)

with δrj = rj − r0, ψ(rj) ≡ ψj being the wavefunction
at lattice site j with position rj

27. The normalization
factors here depend on the lattice. We use Q in its orig-
inal form as defined by eq. (2) and we do not process it
further in any way .
Q is the Weierstrass transform of the Wigner function

and thus is a rigorous method for transforming a wave-
function into a phase space distribution. It is versatile
tool for understanding complex quantum and other wave
dynamics9–26.

B. Graphene devices

We study transport in the tight binding models of
the two graphene-based devices shown in Fig. 1. Device
A is the conceptually simplest device in which one can
study Klein tunneling in a realistic scenario (i.e. a finite
nanodevice): a graphene nanoribbon (GNR) of constant
width with a p-n junction in its middle. In device A
the boundary conditions are chosen such that it forms a
“zigzag” nanoribbon. These have been studied by Bray
and Fertig in detail within the Dirac approximation28

and many of their properties are known analytically (for
small Fermi energies). Analytical descriptions in this case
are possible because of the many symmetries that are
present. Device B however breaks both, the conserva-
tion of ky as well as the reflection symmetry along the x
axis. Note also that for ω = π/6 the “scattering edge”
in device B (highlighted in green in Fig. 1c) exactly is
an armchair boundary. In both devices we create p-n
junctions via a linear increment of the potential energy
from the n region with −V0/2 to the p region with +V0/2
over a range w (see Fig. 1). The kinetic energy E of the
incoming electrons is connected to the Fermi energy EF
by E = EF + V0/2.

Zigzag GNRs have a dispersion relation shown in
Fig. 1a and discussed in detail in28,29. For a given Fermi
energy M bands of the dispersion intersect the energy
level at positive slope, thus having positive group veloc-
ity. This results in M incoming (M is always odd and
scales linearly with the width of the GNR). We order
the modes by decreasing kx, as shown in Fig. 1a. Impor-
tantly, for small energies the two (inequivalent) Dirac val-
leys K,K ′ are well separated in momentum space, which
leads to the incoming modes being “valley-polarized”.
This means that modes 1 to bM/2c (where b·c denotes the
integer part) come from valley K ′, while modes bM/2c+1
to M come from valley K. We also stress that K has one
additional incoming mode, see Fig. 1a.

All of our quantum transport simulations are
tight binding calculations performed with the software
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FIG. 1. Graphene-based nanodevices. (a) Dispersion relation of a zigzag graphene nanoribbon, which is separated into two
inequivalent Dirac valleys for small energies. Sketched are the levels of the incoming (red) and outgoing (green) energy as well
as the incoming and outgoing modes (intersections with the bands). As our transport setup is from the left to the right lead,
only modes with positive group velocity (slope at the intersection) are valid. Incoming mode numbers are also shown. (b)
Sketch of device A, a simple graphene nanoribbon with a p-n junction (blue). Below the device we sketch the potential profile
of the p-n junction. (c) Sketch of device B. With green we highlight the scattering edge. Leads are colored orange in both
sketches. (d, e) A scattering wavefunction amplitude inside simulated devices A and B respectively. The inset is showing how
we plot the wavefunctions: for each sublattice we use a different marker (up or down triangles).

Kwant30. The devices are finite scattering regions that
are coupled to semi-infinite leads (which are also GNR).
The modes (eigenfunctions) of the leads enter the device
and are subsequently scattered, giving rise to the scatter-
ing matrix S and the scattering wavefunctions for each
mode ψm

31. From S one can easily compute the trans-
mission from one lead to another (i.e. conductance) as
well as other useful quantities32. As we consider trans-
port always from the left to the right lead, we define T to
be the transmission matrix with N rows and M columns,
where M and N are the total number of modes in the
left and right lead respectively. The element Tnm is the
transmission amplitude from the m-th (incoming) mode
of the left lead to the n-th (outgoing) mode of the right
lead. Similarly, we define R to be the M ×M reflection
matrix. In this paper we will be particularly interested in
the total transmission probability Tm of each individual
incoming mode given by

Tm =
N∑

i=1

|Tim|2 . (5)

C. Calculating the Husimi function

For each scattering wavefunction ψm we compute the
Husimi function Q. It is of course defined on the whole
phase space of the device. Not only for numerical reasons,
however, but also to expose the important information, it
is reasonable to calculate and analyse Q only on certain
well chosen subregions of phase space, and especially to
reduce the dimensionality of the data we need to under-
stand. We therefore need to specify the positions r0 and

wavevectors k0 where we want to determine the distri-
bution. For the positions we choose transverse cuts at
appropriate x0 coordinates e.g. just before and after the
p-n junction in device A, i.e. we keep x0 fixed and vary
y0. (In practice we use slices of width 3σ around the cuts
to evaluate Eq. (4).) We will thus obtain a distribution of
incoming and outgoing wavevectors that “pass through”
these cuts as a function of the transverse coordinate y.

In the following we want to reduce the dimensionality
of Q further by exploiting energy conservation. Before
we do this we need do some general consideration. The
dispersion relation of an infinite graphene sheet is well
known33 (see34 for a derivation)

ελ(k) = λt
√

3 + f(k)− t′f(k) (6)

f(k) = 2 cos
(√

3kxa
)

+ 4 cos

(√
3

2
kxa

)
cos

(
3

2
kya

)

where a ≈ 0.142 nm is the carbon-carbon distance (the

Bravais lattice constant is a0 =
√

3a), λ = ±1 is the band
index, t ≈ 2.8 eV is the nearest neighbor hopping and t′

is the next-nearest neighbor hopping, which we consider
0 here for simplicity. We plot eq. (6) in Fig. 2a.

In nanoribbons the situations is of course different
though, as the dispersion is one-dimensional (not known
analytically) with multiple positive energy bands depend-
ing on the width W of the ribbon (sec. I B). For each
mode the incoming longitudinal wavevector kx (inside
the lead) is known (numerically) but ky is not. For small
energies one can use the theory of Brey & Fertig28 which
states that the transverse wavefunctions (accessible from
Kwant30) are pure sine modes in each sublattice. Fitting
a sine wave therefore also yields the incoming ky. Al-
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FIG. 2. Husimi functions in device A. (a) Dispersion relation of graphene (red-yellow color, dashed black line for E = t = 2.8 eV)
and Husimi functions for 2 incoming modes (blue and green respectively) over the entire Brillouin zone, for r0 = (L

2
, W

2
), EF =

0.2 eV, V0 = 0 eV,W = 80 nm leading to M = 17 incoming modes. With K
(′)
i we label the six valleys. In the insets, the

bright-red colored contour is noting the incoming energy of the simulation, here 0.2 eV. (b) Husimi distribution functions over
wavevector angles φ and positions y in device A, 3σ ≈ 24 nm before the p-n junction (i.e. incoming & reflected) for valleys
K2,K

′
2, see sec. I C. Here V0 = 0.4, EF = 0.0 eV (i.e. same incoming energy as panel (a)). (c) Same as (b) but Q is measured

3σ ≈ 24 nm after the p-n junction (i.e. transmitted). For (b, c) the mode number is m = 5. (d, e) Same as (b, c) but for mode
number m = 11. Over all Q(φ, y) we plot the marginal distribution Q(φ; ξ) eq. (7) (in arbitrary units) with red color.

though this approach fails at high energies (see sec. II D),
it gives a very accurate representation of the incoming
wavevectors for each mode at low energies. Because de-
vice A has constant width and the potential is indepen-
dent of y, the incoming wavevector angle is conserved up
until the p-n junction, since ky is conserved throughout.
We will use this fact in sec. II A to confirm how robust
and accurate the application of the Husimi function is.

Our aim will be to use the 2D dispersion relation
Eq. (6) to reduce the dimensionality and translate the
two dimensional wave vectors into a single propagation
angle. To show that this is possible with good accuracy,
we first compute Q over the entire Brillouin zone (BZ)
at a fixed spatial position r0 in the center of device A
(i.e. at r0 = (L2 ,

W
2 )) in the case V0 = 0 (i.e. without

potential step). Fig. 2a shows Q(kx, ky) for two different
modes. We see that Q localizes perfectly on top of the
two-dimensional energy contour at EF , even though the
system width is only 80 nm. This is also true for higher
energies when the the Dirac approximation fails as we
will show in sec. II D. Q also distinguishes the inequiva-
lent valleys excellently, since the blue and green modes
of Fig. 2 are localized in different valleys (as mentioned
in sec. I B we know exactly which is the incoming valley
for zigzag GNR).

The above observations allows now us to reduce the di-
mensionality of Q by using the 2D dispersion. What we
do in the following is populate the incoming energy con-
tour with wavevectors using equally spaced angles and
measure Q for these wavevectors. For energies below t
(dashed contour line in Fig. 2) this is done for all six val-
leys and the angle is measured with respect to the Dirac
points, i.e. in each valley the energy contour is populated

by wavevectors with equally spaced angles. Then instead
of simply Q(. . .) we have Q(. . . ; ξ), where ξ counts the
valleys (ξ ∈ {1, 2, 3} means K, ξ ∈ {4, 5, 6} means K ′).
For energies above t the angle is measured with respect
to the center of the BZ and there is no ξ index. This re-
duces our distribution Q(kx, ky, y;x) (x is constant) from
depending on both kx, ky to be only a function of the
wavevector angle φ, i.e. Q(φ, y;x). The parameter σ we
will choose such that the wavevector uncertainty satis-
fies ∆k/k = 0.2, where k is the (average) magnitude of
the wavevector with respect to the center from which we
measure angle. As we show in appendix A this relative
wavenumber uncertainty corresponds to the angle uncer-
tainty, i.e. ∆k/k = ∆φ. The chosen value yields typical
values of σ ≈ 8 nm for small energies, while for higher
energies σ can be smaller than 4nm. In the following and
for device A the notation x = n will denote a cut in the
n region of the device, 3σ before the p-n junction, while
x = p denote a cut 3σ after the junction. For device
B the slice location is given explicitly (in the rest of the
text we measure space in nm and energy in eV).

II. APPLICATIONS OF THE HUSIMI
FUNCTION

A. Accuracy of the Husimi function

We first want to test the usage of Q in a well studied
situation where much can be inferred analytically: Klein
tunneling in device A at small energies28 (see35 for a re-
view on Klein tunneling in graphene). Fig. 2(b-e) shows
Q(φ, y) in device A for W = 80, L = 12σ ≈ 96, EF =
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0, V0 = 0.4. The top panels show Q for valley K2, the
bottom for K ′2. We show Q both before (incoming &
reflected) and after (outgoing) the p-n junction for two
modes. What we have seen is that for device A before
the junction, Q in valley K2(′) is the mirror reflection of
Q in valley K3(′) while in valley K1(′) we find an almost
exact superposition of the Qs in K1(′) and K2(′).

Fig. 2 shows that for all modes the incoming Q nicely
localizes at a single angle. We also show in red the
marginal distributions

Q(φ; ξ) =

∫ W

0

Q(φ, y;x, ξ) dy

Q(φ) =
∑

ξ

Q(φ;x, ξ) (7)

Because in this setup the incoming Q is very highly lo-
calized, we do not need the entire distribution and can
simply choose the maximum location of Q(φ), Φ, to rep-
resent the “incoming angle” for each mode

Φ = argmax [Q(φ;x = p)] , for φ ∈
[
0,
π

2

)
(8)

(we use Q of valley K2(′) exclusively for this, and we also
know which of the two valleys is the incoming one).

We compare Φ with ν, the angle obtained by sine-
fitting the lead modes, in Fig. 3a. We see that only for
the lowest modes of each cone Φ does not have a perfect
agreement with ν. We now want to use Φ to compare the
results of the tight binding calculations with theoretical
result for the Klein tunneling at a p-n junction, utilizing
the impact angle obtained from the Husimi function. De-
pending on the width of the p-n junction, there are two
theoretical predictions

TStep(φin) = − cos(φin) cos(φout)

sin2
(
1
2 (φin + φout)

) (9)

TWKB(φin) = exp

(
−π 2k21

k1 + k2

w

2
sin2 φin

)
, (10)

where φin (φout) is the wavevector angle of the incom-
ing and transmitted wave, respectively, and kj = |EF ±
V0/2|/(~vF ) the corresponding wavenumber. TStep is the
result of wave function matching at a sharp interface
whereas TWKB is a semiclassical result obtained in the
WKB approximation35,36. In Fig. 3c we plot the the-
oretical curves and the values of Tm versus Φ for each
mode, for two different p-n junction widths w, and find
very good agreement. This does not only hold for the
case of a symmetric p-n junction, i.e. EF = 0, but also
for higher and lower Fermi energies, as shown in Fig. 3d
for w = 10 nm (for other parameter values we also find
excellent agreement).

We have seen, that we can use Q to find the param-
eter φin from numerical simulations needed to compare
them to the theoretical predictions. Now we want to
show that we can obtain the transmission probabilities

from the Husimi function using the theoretical predic-
tions. Using the marginal distribution of eq. (7) we can
compute the transmission of a mode as the average

〈T 〉 =

∫ π
2

−π2
T (φ)Q(φ;x = p) dφ

∫ π
2

−π2
Q(φ;x = p) dφ

(11)

where T represents one of the analytical formulas of
eqs. (9) and (10). In Fig. 3b we compare this value with
Tm and again we find a near perfect match (also for many
more parameters than the ones shown). Equation (11)
will also give a good estimate of the transmission value
in cases where the distribution is not strongly localized
at a single angle, allowing us to use the integrated trans-
mission in more complicated cases like those in sec. II C.

B. Intervalley Scattering

We now turn to study intervalley scattering, which de-
scribes the scattering of a wavefunction from one valley
to another (inequivalent) one, e.g. from K to K ′. We
discussed in sec. I B that for zigzag GNRs and low en-
ergies every incoming mode is valley-polarized28. Inter-
valley scattering has found considerable interest in the
literature, and was first discussed in the context of weak
localization2,37–39. Later work focused on valley filters
and valley “spintronics”, see40–42 and references therein.
The discussions in the literature so far have been quali-
tative and mostly theoretical.

The Husimi function is an excellent tool to study inter-
valley scattering, because it directly provides information
in momentum space at different positions in the device.
In fact, Mason et al. have used a processed Husimi pro-
jection technique in Ref.22 to study intervalley scattering
in graphene billiards. Here we will use a simpler ap-
proach directly using the Husimi function. As one can
already see from Fig. 2b-e, the “incoming Q” (i.e. Q(y, φ)
with φ ∈ [−π/2, π/2)) has most weight in one valley (the
“incoming valley”) Vi, while the other (the “complemen-
tary”) valley Vc contains either just noise or only the
reflected wave (compare the scales of the colorbars). In
panels (c, e) it is evident there exist modes that undergo
intervalley scattering, as for panel (e) the outgoing valley
K ′ has significantly more weight than what it had in the
incoming case of panel (d).

We want to define two intuitive measures for interval-
ley scattering. We first define the following weights (the
sums are over all equivalent valleys)

α =
∑

ξ∈Vi

∫ W

0

∫ π
2

−π2
Q(φ, y;x = n, ξ) dφ dy (12)

β =
∑

ξ∈Vi

∫ W

0

∫ π

−π
Q(φ, y;x = p, ξ) dφ dy (13)

γ =
∑

ξ∈Vc

∫ W

0

∫ π

−π
Q(φ, y;x = p, ξ) dφ dy. (14)
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FIG. 3. Klein tunneling and intervalley scattering in device A for σ = 8,W = 80, L = 12σ, V0 = 0.4, EF = 0,±0.1 and various
w. (a) Angle of incidence ν deduced from the transverse wavefunctions, compared with the ones deduced from the Husimi
function, Φ. (b) Transmission probability obtained through the scattering matrix Tm eq. (5) versus the integrated one obtained
from Q, 〈T 〉 using eq. (11). (a, b) are plotted versus incoming mode m and for w = 1 nm. (c) Theoretical curves on Klein
tunneling (lines, eqs. (10), (9)) and transmission probability Tm versus Φ (scatter plots, for two different w values). The red
arrow notes the angle uncertainty ∆φ. (a, b, c) use EF = 0 eV. (d) is the same as (c) but for w = 10 and different Fermi
energies instead. (e, f) Measures for intervalley scattering, eq. (15) versus mode number. (g) Sketch (x-axis is not uniform) of
where is each mode transmitted, based on the elements of the transmission matrix T . The width of each line is proportionate
to the transmission amplitude towards the outgoing channel that the line connects to (normalized to same maximum).

The first quantity, α, is used for the normalization to
the incoming mode. The quantities β and γ measure the
weights of the transmitted wave that are localized in the
same valley as the incoming mode and its complement,
respectively. With these quantities we define

I1 =
γ

α
, I2 =

γ

β + γ
. (15)

Here I1 is the the fraction of the incoming wave that
is transmitted through the p-n junctions and has un-
dergone intervalley scattering. I2 is the fraction of the
transmitted wave that has undergone intervalley scatter-
ing, i.e. a transmitted wave with I2 = 0 or I2 = 1 is
completely valley polarized. We show both measures of
intervalley scattering in Fig. 3e,f plotted versus the mode
number for various junction widths. (Qualitatively the
results remain unchanged when we use only K2(′) instead
of summing over equivalent valleys).

The most striking feature of Fig. 3e,f is that intervalley
scattering happens only for the second half of the modes.
Recall that modes with 1 ≤ m ≤ bM/2c come from K ′

while the higher modes come from the K valley which
has an additional incoming band (see Fig. 1a or Fig. 3g).
The perplexing result of Fig. 3e can be qualitatively ex-
plained based on this extra mode and the unitarity of
the scattering matrix S32 (i.e. current conservation). To
aid the following argument, in Fig. 3g we show a sketch
of where is each incoming mode transmitted. The lines
connecting incoming and outgoing modes have widths di-
rectly proportional to the transmission amplitude |Tim|2.

After transmission, each mode “tries” to scatter into a
the same valley at negative energy to conserve the valley
pseudospin (green dots in Fig. 3g). Likewise should the
reflected part scatter into modes in the same valley at
the same energy level but with negative group velocity.
Modes 1 to bM/2c have no problem achieving this, as
within their valley the outgoing channels are more than
the incoming ones and thus available channels always ex-
ist. This is not the case however for modes bM/2c + 1
to M , since the number of outgoing channels within the
same valley is one less, both for transmission and reflec-
tion. As the mode number increases the outgoing chan-
nels are filled and the higher modes have to move some
of their weight to other channels (as a specific outgo-
ing channel cannot be filled with more than total trans-
mission of 1, see Ref.32). The only remaining channels
that can accommodate these modes exist in the K ′ valley
(right valley of Fig. 1a) which leads to intervalley scatter-
ing. This qualitative argument cannot certainly explain
the exact values of intervalley scattering, but gives a ba-
sic idea of the phenomenon.

Looking at I1 we see a complicated dependence on the
junction width w. For modes with small angle of inci-
dence I1 increases as w increases, however the contrary
happens for modes with large angle of incidence. I1 al-
ways tends to 0 as m → M since the highest mode has
almost 0 transmission. Another interesting observation
is that as mode number (and thus angle of incidence)
is increased, the modes that do get intervalley scattered
transfer most of their weight into the other valley. This
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can be seen from Fig. 3f where I2 comes close to 1.

C. Asymmetric Device

In this section we study transport through the asym-
metric device B (see Fig. 1c) in which the incoming modes
are scattered both from the boundary (“scattering edge”,
highlighted in green) and the p-n junction, and which is
neither axially nor centrally symmetric. There are two
main questions we want to address. First, to what extend
can we use the existing expressions describing Klein tun-
neling to understand the transmission properties of such
a device? These expressions are derived for plane waves,
which have infinite spatial extend and are characterized
by a single angle φin, either semiclassically or by wave
matching. Due to the boundary induced scattering the
wavefunction that incides on the p-n junction in device B
cannot be well approximated by a single plane wave. Can
we use the Husimi technique to connect the transmission
through the device to Klein tunneling?

Second, we want to understand how the type of the
scattering boundary (green color in Fig. 1c) affects in-
tervalley scattering. There is strong theoretical evidence
that the armchair termination is in some way unique,
while a random termination behaves like zigzag29,43,44.
In addition, in the theoretical treatment of graphene
nanoribbons in28, the authors showed that the armchair
termination mixes valleys while the zigzag keeps them
separated.

These arguments indicate that intervalley scattering
should be enhanced by an edge with armchair termina-
tion. However, they are only qualitative. Mason et al.
have shown in21 that a (also Husimi-based) qualitative
measure of intervalley scattering is generally enhanced at
armchair boundaries. Here we want to quantify of these
effect by using the Husimi function, similarly as in II B
and we will show that intervalley scattering is indeed en-
hanced drastically at armchair edges.

Let us stress that in device B the lead modes and thus
the angles ν are not of much use. This is in part be-
cause the waves are deflected by the titled boundary of
device B, but also because the right part of device B
has a different width than the incoming lead (and thus
does not accommodate the same ky). On the other side,
Q(φ) is just as valid here as it was in sec. II A. It also
becomes clear from Fig. 4a that many of the scattering
waves inside L2 cannot be approximated using a single
angle, which means that one needs the entire distribu-
tion.

1. Tunneling

We find that we can apply the Klein tunneling formu-
las “locally” even in small devices and when the incoming
waves are not single plane waves. We show this numeri-
cally using the integrated transmission formula, eq. (11)

with Q measured at location x = L1 +L2/2 (which is 3σ
before the p-n junction). However, now we can’t compare
〈T 〉 with Tm directly, because Tm also accounts for the
back-scattering from the boundary inside L1. To com-
pensate for that, we compute the transmission of eq. (5)
once without any p-n junction at all. We call this quan-
tity T0. We now have to compare 〈T 〉 ·T0 with Tm, which
we do in Fig. 4c-f for various orientations of the bound-
ary.

We see that the integrated transmission matches the
transmission obtained through the p-n junction (using
the scattering matrix) very well. This good agreement
means that the Klein tunneling formula still locally de-
scribes the tunneling properties at the p-n junction, even
when the nanodevice is small (e.g. 60 nm for ω = π/4)
and the incoming wave is not a simple plane wave. In
addition, this also means that the Husimi function accu-
rately decomposed the incoming scattering wave into a
representative distribution of angles of incidence.

2. Intervalley scattering

We now want to explore the intervalley scattering in-
duced by the scattering edge and not the p-n junction.
Therefore we first obtain the scattering wavefunctions ψm
in device B without a p-n junction (i.e. V0 = 0, EF = 0.2
eV). We measure Q using a slice at x = L1 (exactly where
the scattering boundary ends) and we compute I2 from
Q there. The results are shown in Fig. 4g-i.

An important benefit of using I2 (over e.g. measures
used in21) is that it does not depend on, or demand mea-
suring Q for r0 exactly at the boundaries. This is cru-
cial as the accuracy of the Husimi function dramatically
drops at the boundaries, since most lattice sites around a
circle of 3σ from r0 do not even exist. We have observed
in our simulations that this leads to numeric artifacts and
should be avoided (this is also clear from all colorplots of
Q we show in this paper, see e.g. Fig. 2 or 4 where the
value of Q drastically drops for y → 0 or y →W ).

There are two interesting observations to be made.
First, the intervalley scattering from a lattice termina-
tion is fundamentally different from that seen in sec. II B
which results from a p-n junction. In the present case
both valleys always undergo intervalley scattering.

The second observation is what we expected from exist-
ing theory and now quantified using a well-defined mea-
sure: armchair lattice terminations induce much more
intervalley scattering than any other termination orien-
tation. This can be seen firstly in Fig. 4g,h where I2
has clearly higher values, but most prominently in panel
i where we plot the average intervalley scattering per
mode, i.e.

Ĩ2 =
1

M

M∑

m

I2(m). (16)

Ĩ2 has a very sharp peak at ω = π/6, where the boundary
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FIG. 4. Tunneling and intervalley scattering in device B, using σ = 10, L1 = L2 = 6σ,W1 = 120, w = 1, V0 = 0.4, EF = 0.
W2 = W1 − L1 tan(ω) depends on ω. (a, b) Husimi function Q(φ, y) at position x = L1 + L2/2 (3σ before the p-n junction)
for ω = π/4. For the mode shown, the incoming valley is K2 (but a lot of intervalley scattering has already occurred). (c-f)
Integrated transmission. (g, h) Intervalley scattering I2 of eq. (15) for various ω values using Q measured at x = L1 (computed

without a p-n junction, V0 = 0, EF = 0.2). (i) Average intervalley scattering per mode Ĩ2 versus boundary angle ω. A sharp
increase is seen when ω = π/6.

termination is exactly armchair.

D. Trigonal Warping and Klein Tunneling

Klein tunneling applies to graphene because for small
energies the Dirac equation is a valid approximation. In
Klein tunneling the important angle is the wavevector an-
gle (with respect to the Dirac points), see eqs. (9), (10).
The group velocity angle θ coincides with φ for small
energies, however as the energy increases and trigonal
warping effects begin to be significant, this is not the case
anymore and θ 6= φ5. As there is no theoretical result on
the tunneling behavior of graphene for energies beyond
the Dirac regime, one is left to wonder: for higher ener-
gies is the Klein tunneling picture still relevant? And if
yes, are the tunneling properties still dictated by φ? This
is an interesting question since the physical propagation
direction is governed by θ.

We can answer this using the Husimi function. We re-
turn to our setup in device A like in sec. II A but signif-
icantly increase the energies, setting V0 = 5 and keeping
EF = 0, yielding incoming energy of E = 2.5 ≈ 0.9t
which shows strong trigonal warping. Once again we
compute incoming angles using Φ as in eq. (8) because
incoming Q is well-localized in momentum space, see
fig. 5a,b. However, the limits of argmax must be mod-
ified. For modes m ≤ bM/2c the angle span of eq. (8)
is set to [0, π3 ) while for the rest of the modes it is set

to [0, 2π3 ), due to the warping of the energy contour, see
below.

In this energy regime the theory of Brey and Fertig28

breaks down and the transverse wavefunctions are not
necessarily sin-functions. One may still attempt to fit
sines to them, as shown in Fig. 5d and e, however here we
find Q to perform better, as shown in panel (d). So even
though kx is still known, one cannot straight forwardly
compute ky using only the lead modes.

At higher energies the two valleys are very different,
since the group velocities of the incoming modes differ
fundamentally (see Fig. 5c). For valley K ′ there is a
“flat” front, greatly limiting the possible group velocities.
The contrary is happening in valley K where the contour
with positive group velocity spans many more angles. In
addition, in the K ′ case the incoming wavevector angle
is limited to |φin| . π/3 but in K we have |φin| . 2π/3,
due to the requirement of positive x-component of the
group velocity, calculated from eq. (6)

vx = −
√
3λta√

f(k)+3

(
sin
(√

3a
2 kx

)
cos
(
3a
2 ky

)
+ sin

(√
3kxa

))

vy = −3λa√
f(k)+3

cos
(√

3a
2 kx

)
sin
(
3a
2 ky

)
.

(17)

Here kx, ky are measured with respect to the center of
the BZ since the above equations are valid for any energy
value.

Klein tunneling assumes equivalence between the two
valleys as it depends on the wavevector angle. To see
whether some remnant of Klein tunneling exists at higher
energies, we have to look for some tunneling property
that not only decays exponentially with increasing angle
of incidence, but also stays “as similar” as possible be-
tween the two valleys. In fig. 5d,e we compare the trans-
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FIG. 5. Transmission and Husimi functions in device A for high energies: σ = 4, L = 12σ,W = 90, V0 = 5, EF = 0, w = 1.
(a, b) Q(φ, y) for the modes shown in (e). (c) Maxima of incoming Q (see sec. II D) on momentum space. Each incoming
mode is using a different color, see colorbar. (d) Angles deduced through sine fitting (ν) versus the ones deduced from Q
(Φ). (e) Transverse wavefunction amplitude Y on sublattice A (arbitrary choice) versus y inside the lead. Small modes can
be approximated by sines but higher modes cannot. (f) Mode transmission Tm versus wavevector angle (obtained using the
Husimi function). (g) Same but versus group velocity angle θ instead. The dashed line plot of TStep is only meant as a guide
to the eye, the formula is not valid for high energies.

mission probability of each mode Tm versus the wavevec-
tor angle Φ and group velocity angle θ.

The result surprised us, since we find a Klein tunneling-
like behaviour in Tm versus φ. We were rather expect-
ing Tm versus θ to show similar behaviour at the two
valleys, because θ corresponds to the physical propaga-
tion direction. We do not suggest that Klein tunneling
straightforwardly applies to higher energies. In Fig. 5f
the characteristic perfect transmission at normal inci-
dence (φin = 0) is lost, nevertheless, it is clear that the
tunneling probability as a function of the wavevector an-
gle is quite similar to what would be expected for Klein
tunneling.

E. From Dirac points to the center of the Brillouin
zone

Before concluding our paper we want to show some in-
teresting numerical results for the case of high but not
symmetric energies. Here we use the setup exactly as in
section II D but we set EF = ±1 eV. In this case the in-
coming (outgoing) modes, for plus (minus) sign, do not
live in the trigonally warped Dirac points, but instead are
located on the almost circular contours around the center
of the BZ, see Fig. 6. In this case any Klein tunelling-
like behaviour is impossible as there is no Dirac valley in
either the incoming or outgoing modes. This of course
does not exclude an angle collimation effect in the trans-
mission function, it only excludes Klein tunneling as a
potential explanation.

Once again we are interested in Tm versus some incom-

FIG. 6. Tunneling through a pn-junction for high and non-
symmetric energies. (a) Incoming modes, as identified using
the Husimi function, for high energy (red, EF = 1) or low
(green, EF = −1) for V0/2 = 5. Arrows guide the eye for
where is each contour transmitted to (of course in the negative
energy space). In (b, c) we plot the transmission of modes
incoming from the green or red contour respectively, versus
their group velocity angle.



10

ing angle. However, it does not make sense to measure
angles from the nearby Dirac centers. Instead, for all in-
coming modes we use the Husimi function to identify the
wavevectors kx, ky where the mode is localized, from the
entire BZ (as in Fig. 2). To be able to compare across
the different energy regimes, we then calculate the angle
of the group velocity θ at point kx, ky.

In Fig. 6a we plot the points where the Husimi function
is localized for each incoming mode. Then, in subplots b
and c, we show the transmission versus angle of incidence
for the case of low to high (absolute value in) energy
(green) and high to low (red). A very surprising result
is shown in (b): the transmission for one incoming valley
is much higher. Not only that, but for valley K ′ the
transmission goes to 0 for θ → 0. For the transmission
from high to low energy (red) we see a very quick drop
of the transmission as θ increases. What is noteworthy
(and quite perplexing) is that the transmission increases
again when θ approaches π/2.

III. CONCLUSION

In conclusion we have found that the Husimi function
can indeed be a very useful tool for studying transport
in graphene (but not only graphene) nanostructures. We
have for example shown that even in situations where the
angle of incidence on a tunnel barrier is not easily dis-
cernible we can use the Husimi distribution to evaluate
Klein tunneling at this barrier. For higher Fermi energies,
we have studied the tunneling behavior in the regime of
triangular warped Dirac cones. Specifically we looked at
two cases: tunneling between warped cones and tunnel-
ing between states near the center of the Brillouin zone
and the warped Dirac cones. In the first case, overall the
behavior we found is clearly different from Klein tunnel-
ing between Dirac cones. The transmission probability as
a function of angle of incidence varies when the angle is
either measured by the directions of the wave vectors or
the group velocities. When measured by the wave vector,
however, we observed reminiscences of Klein tunneling.
In the second case we found a strong asymmetry between
the two valleys. Other interesting results concern inter-
valley scattering. At a pn-junction in a nanoribbon we

found a pronounced valley asymmetry of the intervalley
scattering due to the extra mode in the dispersion rela-
tion of the nanoribbon. We have also quantified the inter-
valley scattering at a tilted graphene edge as the function
of the tilt angle, confirming the special role played by the
armchair boundary configuration.

Appendix A: Angle uncertainty

For a given value of the parameter σ, the wavepacket
has a known uncertainty in both position and momentum

σ := ∆x =
1

2∆k
. (A1)

What we are interested about is the uncertainty in the
propagation angle. For small energies the propagation
angle is the same for the wavevector and the group ve-
locity defined as

φ = arctan(qy/qx) (A2)

with q = k−Kξ. For any nonlinear function, uncertainty
propagation is given by

σ2
φ =

∣∣∣∣
∂φ

∂qx
σqx

∣∣∣∣
2

+

∣∣∣∣
∂φ

∂qy
σqy

∣∣∣∣
2

.

Since by definition σqx = σqy = ∆q = ∆k we have

σ2
φ =

q2y∆q2

(q2x + q2y)2
+

q2x∆q2

(q2x + q2y)2
= ∆q2

q2

q4

therefore we see that

σφ =
∆q

q
. (A3)

If we want to have a constant σφ for measurements at
different energies, then we will use σ such that (assuming
also ∆x∆k = 1/2)

∆q

q
=

1

2qσ
⇒ σ =

1

2q

(
∆q

q

)−1
⇒ σ =

1

2σφq
. (A4)
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7 | Husimi functions and Klein tun-
neling in magnetic fields

This chapter continues from chapter 6 and studies Klein tunneling using the Husimi function
but now with the presence of a perpendicular magnetic field. As it will become clear below, this
entails differences, both for using the Husimi function, but also for studying Klein tunneling.

The first big difference is that it seems that Klein tunneling in magnetic fields is not fully
understood, in contrast with the absence of magnetic fields, where well-established analytic
expressions exist. To see why, first consider the influential publication in Phys. Rev. Lett. by
Shytov et al [144, 145] and the subsequent experimental publications in Phys. Rev. Lett. by
Stander et al. [146] as well as in Nature Physics by Young et al. [147]. These papers model
Klein tunneling using a transmission formula where the transmission probability depends on the
value of the magnetic field. Specifically, the angle of perfect transmission is shifted from φ = 0
to a value φ = φ∗ that depends on the magnetic field (T ∼ exp(−(sin(φ)− a)2) see sec. 7.3 for
details). This formula is challenged significantly with the numerical data presented in sec. 7.3
(in fact that numeric data do not agree at all with the formula).

Not only that, but the most recent experimental study of Klein tunneling, which uses almost 8
years of extra experimental progress, changes the picture dramatically. In the Science publication
by Chen et al. [43] the authors claim to measure Klein tunneling using a transmission formula
that has no dependence whatsoever on the magnetic field! So, which case is true? Does the
transmission probability depend on the magnetic field or not? It is certain that more study
needs to be done before we reach a conclusive answer, and this chapter contributes by using the
semiclassical approach of the Husimi function.

A second difference here is that one cannot straight-forwardly apply the Husimi function for
an electron moving in magnetic field, due to energy considerations. One first needs to extend
the Husimi function so that it respects well-established physical principles regarding the energy
of the electron. In sec. 7.1 this is problem is discussed, as well as solved (to the best of my
knowledge for the first time in the literature).

7.1 Husimi function in magnetic fields

The Q function is given by eq. (2.6.4), Q[ψ](r0,k0;σ) = 1
π |〈ψ |W(r0,k0, σ)〉|2, and relies on the

definition of a “wavepacket” (i.e. coherent state), given by

W(r0,k0;σ) ∼ exp

(
−(r− r0)

2

4σ2
+ ik0 · r

)
. (2.6.1 revisited)

How should this expression be modified in the case of particles moving in magnetic fields?

7.1.1 The naive transformation

In the presence of magnetic fields, the Hamiltonian of the system is typically transformed under
minimal coupling, by setting k → k− cqA/~ with cq the particle charge (signed quantity) and
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A the vector potential. Mason, Borunda and Heller have suggested in [94] that one should use
the same transformation for the wavepacket, k0 → k0 − cqA/~.

To check the validity of the suggestion, consider the energy of the wavepacket before and
after adding a magnetic field. We do not need to go into the case of graphene, using the Dirac
Hamiltonian; for this illustration the standard Schrödinger Hamiltonian is enough. Under a
vector potential A the Schrödinger Hamiltonian becomes

HS,A = − ~2

2m
∇2 + i

cq~
m

A · ∇+
c2q
2m

A2 (7.1.1)

(using k = −i∇ and being in absence of any scalar potentials). In following computations I set
~ = m = cq = σ = 1 for simplicity. The energy of the wavepacket of eq. (2.6.1) with HS,A=0 is

〈W |HS,0 |W〉 =

∫ ∫
W∗HS,0W dxdy =

π

4

(
k20,x + k20,y + 2

)
. (7.1.2)

To add the magnetic field, we modify W according to Mason et. al [94] as

WMason :=W exp(−icqA · r). (7.1.3)

We calculate again eq. (7.1.2) using the Landau gauge with AL = cqB(−y, 0)

〈WMason |HS,A |WMason〉 =
π

16

(
5B2 + 4(2By0 + k0,x)2 + 4(Bx0 + k0,y)

2 + 8
)
. (7.1.4)

This result is surprising, as it shows that the energy of this wavepacket depends on both x0 and
y0 (similar results are obtained with any gauge). The immediate technical problem that this
entails is that the wavepackets are initialized with different energy (thus, in different parts of
the dispersion relation) for different initial positions. This is almost always not what one wants.
But there is a bigger problem here. The expression is enforcing an arbitrary origin to the real
space (where are x0, y0 measured from?), even though there are no scalar potentials to dictate
it! This result is of course unphysical, and very difficult to make sense of, therefore, eq. (7.1.3)
cannot be the correct way to proceed.

7.1.2 Magnetic translation operator: the correct transformation

The naive transformation of eq. (7.1.3) of the previous section cannot properly create wavepack-
ets in magnetic fields. We have to find a different approach, in order to have the wavepacket
manifest at any center r0 while respecting the energy independence from r0. It is very surpris-
ing that in the existing literature the Husimi function has never been properly used to study
electrons moving in magnetic fields.

Fortunately, a similar problem has been considered before but in other context (tight-binding
theory). It was solved in 1964 independently by Brown [148] and Zak [149], where each one
invented the magnetic translation operator group. This operator group translates a wavefunction
from one location to another one, while in the presence of magnetic fields. We follow the approach
of Brown, which states that the translation operator in magnetic fields is expressed as

T̂M (R) = exp (−iR · (p− cqA)/~) = exp (icqR ·A/~) T̂ (R) (7.1.5)

where T̂ (R) is the known translation operator, shifting a wavefunction from position r to r + R.
It is important to take note that eq. (7.1.5) is valid only in the case of the symmetric gauge, i.e.
AS = −1

2(r×B).
The operator T̂M (r0) must first be applied to the wavepacket of eq. (2.6.1) (setting its r0 = 0

first) to properly make the wavepacket centered at r0. Then, one more transformation must be
made. Because the expression of eq. (7.1.5) is valid only in the symmetric gauge, while in
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the simulations presented in this thesis I operate in the Landau gauge, the wavepacket must be
further manipulated to transform from the symmetric to the Landau gauge. This transformation
is straight-forward: given a wavefunction ψ in some gauge AS , one changes the gauge to AL by
multiplying the wavefunction with exp

(
i
cq
~ ΛS→L

)
with ΛS→L the gauge transform. Assuming

B = Bẑ the transformation from the symmetric to Landau gauge is

ΛS→L =

(
−B

2
xy

)
, AL = AS +∇ΛS→L (7.1.6)

for the Landau gauge oriented in the x direction, AL = −Byx̂.
Sequentially applying all the transformations we arrive at what I will call magnetic Gaussian

wavepacket (in the Landau gauge and for 2 dimensional space)

ML(r0,k0, B;σ) = exp
(
i
cq
~

ΛS→L

)
exp

(
i
cq
~

r0 ·AS

)
T̂ (r0)W(0,k0;σ)

= Nσ exp

(
−(r− r0)

2

4σ2
+ ik0 · (r− r0)

)
exp

(
−icq

~
B

2
(xy − x0y + xy0)

)
.

(7.1.7)

What we see is that the phase factors of eq. (7.1.7) are not trivially related to the gauge, like
for example simply −cqAL/~, as was suggested in the preceding section.

Let us now revisit the integral of sec. 7.1.1. The energy of this new magnetic wavepacket
in a 2D continuous space with the Schrödinger Hamiltonian yields (again setting ~ = m = σ =
cq = 1)

〈HS,A=AL
|ML |HS,A=AL

〉 =
π

32

(
B2 + 8

(
k20,x + k20,y + 2

))
(7.1.8)

which has no dependence on x0, y0 as it should. Notice that the energy does depend on the
magnetic field, and this is an expected result. It stems from the last term of eq. (7.1.1), which
is known as the diamagnetic term. Normally this contribution is small, as it is multiplied by a
factor of c2q/m.

7.1.3 Magnetic wavepacket energy in a tight-binding system

To test the validity of the magnetic wavepacket also in discretized space (i.e. crystalline lattice),
I use a trivial graphene rectangle, as shown in Fig. 7.1. What we want to compare is the energy
of the wavepacket when its center is moved around the lattice. Physically, this energy should
not depend on the location, because the lattice is in the absence of scalar potentials, and σ is
small enough that finite-size effects should not matter.

Setting up the tight-binding system is identical like in the third paper of this thesis (chap-
ter 6). The only change is that now there is also an magnetic field. The details of how to
apply a magnetic field in a tight-binding system are discussed in the appendix at the end of
the current chapter. Then different wavepackets are created in the lattice, with eqs. (7.1.3),
(7.1.7), as well as the unmodified version eq. (2.6.1), while the Hamiltonian matrix H is ob-
tained straightforwardly from Kwant. H here is just a sparse matrix whose entries give either
the hopping amplitudes or the onsite energies. The product ψ∗Hψ thus gives the energy of the
wavepacket. The table of Fig. 7.1 compares the differences

|ψ(rj)
∗Hψ(rj)− ψ(ri)

∗Hψ(ri)|

for i = 1 and j = 2, 3, 4, and the locations r are highlighted in the figure.
The Hamiltonian matrix is the same across all cases, using the standard Landau gauge (see

appendix). In the table only the energy difference across different positions is shown, because no
care was taken to choose proper units or to normalize the wavepackets. We first see the expected
result, i.e. that the energy of a unmodified wavepacket is not independent of its position. We
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Energy difference between wavepackets

Positions Standard Mason Magnetic

(2,1) 3.554E-15 4.715E-01 1.776E-15
(3,1) 1.011E-01 5.724E-01 1.776E-15
(4,1) 5.158E-02 3.181E-01 2.664E-15

Figure 7.1: Energy difference between wavepackets centered at different positions, see the first column of
the table as well as the graphic. For the locations 1, 2 and 3 the wavepacket centers have exactly the
same distances from the edges of the sample. The formula used for the wavepacket is noted with the titles
“Standard”, “Mason” or “Magnetic”. Standard uses eq. (2.6.1), Mason uses eq. (7.1.3) while Magnetic
uses eq. (7.1.7). Notice that the energy differences in the magnetic case equals the machine precision.

also see that the same holds true for the modification suggested by Mason et al.. Finally, we can
see that the magnetic wavepacket defined in this chapter does indeed have energy independent
of its position (within numerical accuracy).

7.2 Application to a graphene nanodevice

This section applies the Husimi function in magnetic fields, by using the magnetic wavepacket
defined in the preceding section. This application is done in scattering wavefunctions of the
device A, which is described in detail in the third paper of this dissertation, chapter 6. The
difference here is of course that there is an additional external (and constant) magnetic field.
Similarly with chapter 6, the Husimi function Q is calculated at a given energy contour by
scanning it at different wavevector angles φ. Notice that the energy value is used here is the
incoming energy E. It should be said however that this is slightly inaccurate as the energy is
increasing a bit by adding a magnetic field. Because the increase is slight, and also because
at the moment the discussion here focuses on angle resolution (which would be the same even
if the Husimi function was localized at a contour of higher energy) this slight inaccuracy is
insignificant.

Example Husimi functions of device A are shown in Fig. 7.2. One can immediately “see” the
magnetic field just by looking at Q(φ, y). In the B = 0 the expected result is seen, and Q(y)
localizes into two maxima, since for m = 2 by definition the wavefunction has one node (besides
the extra two at the device edge). For B > 0 we first see that the incoming angle drastically
changes, including its distribution. In addition Q(y) is no longer spread out throughout the
width of the device. Instead it becomes localized at large y, which correspond to the upper part
of the waveguide, which is exactly what one should expect: the incoming modes in this case
can be perceived as edge states (Landau levels) or skipping orbits that hop along the edge of
the device. It therefore makes sense for Q(y) to be localized mostly in the top of the device
(notice that for positive B we have counterclockwise rotation). Before the pn-junction and by
summing over all valleys Q is still an even function of φ. This comes from the the pre-existing
translational symmetry over x, which still exists even though there is an applied magnetic field.

The Husimi function is also very useful for obtaining a “particle” (i.e. localized wavepacket)
to represent the scattered wavefunction. To do this let us will focus on the region after the pn
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Figure 7.2: Husimi functions of the second incoming mode of device A for various magnetic fields. First
column is the Husimi function, while second and third columns are the marginal distributions of φ and y
respectively. Here Q is measured at a distance 3σ before the pn-junction, with σ = 8.

junction, as shown in Fig. 7.3, to avoid the interference. There Q is calculated in a given x0
slice, as described in chapter 6 and using the magnetic wavepacket of sec. 7.1. The maximum of
Q is then used to obtain an initial position y0 and angle φ0. The initial conditions (x0, y0, φ0)
are then further used to a particle in a standard rectangular billiard (with same size and shape
as the device) and applied magnetic field −B (because in the hole regime, which is after the
pn-junction, the felt field effectively changes sign), using DynamicalBilliards.jl, see chapter 4.

It is astonishing how well the particle trajectory fits on top of the wavefunction, establishing
not only the validity of Q but also its accuracy in the case of applied magnetic fields. Notice
that this accuracy does not depend on the specific x location that I measure Q at; this was not
hand picked, and to prove this I supplement my thesis with a video file that shows the plot of
Fig. 7.3 as an animation scanned over several x slices.

7.3 Klein tunneling in a pn-junction with magnetic field

In Ref. [145] and the follow-up work the transmission probability to tunnel through a pn-junction
is modified with a magnetic field. In its most general form it can be written as [144, 145, 147, 146]
(see e.g. equation (10) of Ref. [144])

T (φ) = exp
(
−γ (sinφ−B/B∗)2

)
(7.3.1)

with γ a parameter that typically depends on the pn junction functional form as well as its
parameters (e.g. the width of the junction) and also the incoming energy, and B∗ a field
normalization that depends on the same (or similar) parameters. Details of these parameters do
not matter, as in this section only qualitative comparisons will be made with eq. (7.3.1) (but as
an example, for the setup of device A with a junction width of 10nm one has B∗ ≈ 40 Tesla).

What this formula states is that as the strength of the applied field is increased there is
still an angle φ∗ = arcsin(B/B∗) where the transmission remains perfect, in the spirit of Klein
tunneling. This angle φ∗ non-zero and is increased as B is increased (up to a critical value). In
addition, there is still a collimation effect around φ∗. Conceptual issues arise in this approach.
One might attempt to interpret eq. (7.3.1) by claiming that the term B/B∗ comes from the
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Figure 7.3: A scattering wavefunction inside device A. The red rectangle denotes the pn-junction, while
the colormap denotes the wavefunction amplitude (yellow means highest) in arbitrary units. On top of
the wavefunction a particle is plotted which is simulated with DynamicalBilliards.jl, see chapter 4.
The initial conditions for the particle, noted by a gray dot and arrow, are obtained through the Husimi
function at a specific x slice. The orbit of the particle is plotted in orange color.

deflection of the electron ray from its starting angle until reaching the junction. This is false,
however, since in no point in Refs. [144, 145, 147, 146] this is discussed and in addition in
eq. (7.3.1) the distance from injection point to junction is completely absent as a parameter.

Eq. (7.3.1) is also in direct opposition with the latest experimental paper of Chen et al. [43]
where the transmission probability does not depend on the magnetic field. The following two
subsections present two different numeric facts that I believe also do not align with eq. (7.3.1).
The first does not depend in any way on the Husimi function while the second utilizes the
magnetic wavepackets of sec. 7.1.

7.3.1 Transmission versus mode number

In this subsection, the transmission of each mode Tm versus the mode number m is presented.
Similarly with the previous sections, device A is simulated, with an applied perpendicular mag-
netic field of value B (in Tesla). Various measurements of Tm vs. m for different magnetic field
values are shown in Fig. 7.4.

There is one thing that deserves particular focus in this figure: as the magnetic field is
increased, there is no longer any mode near perfect transmission. This appears to be in con-
tradiction with eq. (7.3.1), according to which some mode should have perfect (or at least near
perfect) transmission. One might argue that it could be that none of the modes has an angle
that is in the perfect sweet spot of φ∗. Even though this may seem valid, we already know from
ch. 6 that increasing the mode number increases the incoming angle of incidence and thus we
have a decent scan of the possible incoming angles that would allow us to find at least one mode
with incoming angle near φ∗. In addition, looking at high magnetic fields, e.g. B = 5 − 6 T
we see that most modes almost the same transmission value: not only isn’t there a mode with
perfect transmission, but also all modes have significantly non-zero transmission, which once
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Figure 7.4: Mode transmission Tm versus mode number m for different magnetic fields in device A.
Because as the magnetic field strength is increased some available open channels may close, the modes
are plotted based on the two Dirac valleys discussed in the third paper of chapter 6 (all modes start from
1 to M ÷ 2 and then again from M ÷ 2 + 1 to their end). The magnetic field is stated in Tesla.

again does not agree with eq. (7.3.1) and its collimation effect.

7.3.2 Transmission versus incoming angle

Here the Husimi function is used to get a representation of an “incoming angle” for each scattering
wavefunction in device A with magnetic field. This process is identical with the process followed
in chapter 6, keeping in mind the energy caveat discussed in sec. 7.2. Summing Q over all
valleys, integrating to obtain Q(φ) and then using the argmax of Q(φ) gives an estimate of
an “incoming angle”, Φm, which is preserved all the way up to the pn-junction, due to the
translational symmetry over x.

In Fig. 7.5 presents the results, which show some interesting behavior. As the magnetic field
strength is increased a “thermalization” process seems to occur. All incoming modes tend to
have equal transmission value, even if the incoming angle is clearly different. This fact does
not agree with eq. (7.3.1) which suggests an exponential decrease of T shifted to some different
origin other than φ = 0.

Appendix: Peierls Substitution

To apply a magnetic field in a tight binding system one modifies the hopping elements tmn
according to [8]

tmn → tmne
iφmn ; φmn =

cq
~

∫ Rm

Rn

A · dr (7.3.2)

with cq the charge of the particle. The integral is from n to m because the hopping element tmn
corresponds to going from n to m (so the second index is the source and the first index is the
target). In the case of uniform magnetic fields the expression simplifies to

φmn =
cq
~

A(rm+rn
2 ) · (rm − rn). (7.3.3)

Notice that in the last equation the vector potential’s value is evaluated at the mid-point of the
two lattice sites.
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Figure 7.5: Transmission of each incoming mode versus angle of incidence for device A in various
magnetic fields. The scatter points are Tm vs. Φm, the angle deduced using the Husimi function. The
solid black curves are the transmission probability for no magnetic field, eq. (2.3.26) for the parameters
of the device. The dashed curved is eq. (7.3.1) for γ = πkFw/2 (i.e. same prefactor as the non-magnetic
case) and B/B∗ = 0.25 (arbitrary choice for qualitative comparison).

The common case of a 2D material with a perpendicular magnetic field is the constant one,
B = Bẑ. Since it must hold that B = ∇ × A, one has the possibility to choose one of the
many available gauges for the vector potential. A good approach is to choose a gauge that is
independent of the invariant direction of a lead. For example, the leads of the system are along
the direction of the x̂ axis, then we can choose A = −Byx̂ which gives the expected B. In this
case, the integral gives

φmn = −cq
~
B
yn + ym

2
(xm − xn)

for the case where the two sites do not share the same y coordinate, such as the case of nearest
neighbors in graphene. Notice that the coordinates are in real-space, not lattice space. Equiva-
lently for the case of translational invariance along ŷ, one would use A = Bxŷ and obtain

φmn =
cq
~
B
xn + xm

2
(ym − yn).
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8 | Summary & Outlook

8.1 Summary of results

In my thesis I studied electron dynamics in nanodevices and billiards. Of course, billiards
themselves are often used as model systems for real devices. My work revolved around connecting
transport properties and quantum effects with the phase space of the electron dynamics. On
one hand, this was done directly by studying classical dynamics using the theory of dynamical
systems and billiards. On the other hard, I simulated quantum systems and then studied them
through the semiclassical lens of the Husimi function.

The first project of my dissertation, chapter 3, studied the electron movement in antidot
superlattices by modeling the system using the single electron picture and classical (Hamilto-
nian) mechanics. The main result of this work was showing that the resistance of the antidot
superlattice can be connected with the chaotic phase space volume of the system’s dynamics.
We used our findings to explain exactly the mechanism behind classical features of the mag-
netoresistance, like the commensurability peaks. In doing so, we also resolved a long-standing
controversy about which part of the dynamics leads to the resistance peaks. What happens
in the end is that the mere existence of periodic orbits in the phase space reduce the mean
collision time of the chaotic electrons, thus leading to peaks in the magnetoresistance. During
this project I also developed and published a high quality software for simulating dynamical
billiards, showcased in chapter 4. This software was used and extended by other members of
the scientific community as well [141].

Explaining the mechanism behind the commensurability peaks involved an analytic proof
of the connection between phase space volumes and characteristic timescales in the antidot
superlattice. This proof used an extremely general and simple theorem called Kac’s lemma.
This lemma is a proportionality relation that holds true for all measure-preserving maps (which
all of Hamiltonian mechanics are), and states that mean recurrence times in the phase space
are proportional to phase space volumes. The second project of my thesis, chapter 5, applied
this general lemma to study billiards, and more specifically their Lyapunov exponent, in detail.
The project led to several results. Firstly, we provided an analytic expression for the Lyapunov
exponent of the periodic Sinai billiard. Secondly, we showed that in very diverse billiards, the
Lyapunov exponent has a leading contribution inverse with the chaotic phase space volume of
the billiard. We also provided strong arguments on why this should happen for all billiards, not
just the ones considered in the paper. Thirdly, we formulated a conceptual model that allows
one to estimate the Lyapunov exponent and connect it with the parameters of the billiard.

In the second half of my thesis I studied quantum systems, but even so once again the
goal was to connect aspects of the system with the phase space. This was achieved by using
the Husimi function, a tool that transforms a wavefunction into a phase space distribution.
I used this tool to study in detail quantum phenomena specific to graphene, by simulating
simple, but paradigmatic, graphene nanodevices. Chapter 6 starts by establishing the Husimi
function as an accurate tool to study transport in nanodevices, and even in relatively small tight-
binding systems. It then proceeds to display several findings, some surprisingly missing from
the literature even though graphene is such a well studied material. For example, in our paper
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we showed that a pn-junction has significant asymmetry in its intervalley scattering process,
effectively scattering only one of the two valleys. We explain this based on the form of the
dispersion relation of a graphene nanoribbon. To properly study intervalley scattering, we also
provided an intuitive and quantitative measure for intervalley scattering, that can be applied
generically in other materials besides graphene. Another important result was a quantitative
assessment of intervalley scattering from graphene edges, showing that armchair edges are the
strongest intervalley scatterers present in graphene (which was suggested several times in the
literature). Coming back to Klein tunneling, we showed that it is possible to use the Husimi
function as a probability distribution to uncover the transmission probabilities of each incoming
mode (assuming knowledge of Klein tunneling), and we further used this to confirm that Klein
tunneling takes place even in much more complicated geometries. Lastly, we did an analysis on
the nature of Klein tunneling for higher energies, which to the best of my knowledge has never
been done before in the literature. Besides these graphene-specific results, I believe that this
manuscript provides a strong case of why the Husimi function should be more generally adopted
by the condensed matter community and become a standard tool of the field.

In the last project of my thesis, chapter 7, I continued the approach of using the Husimi
functions but for propagation in magnetic fields. To be able to apply the Husimi function in this
context, I first had to extend it to magnetic fields, so that energy considerations are respected.
Numeric analysis confirmed the validity of my extension and also showed that it is possible to
obtain “particles” (localized wavepackets) in nanodevices using the Husmi function. Then, Klein
tunneling was examined in detail, and was compared with standing theories in the literature.
Several numeric findings were presented, some also using the newly extended Husimi function,
that seem to contradict the standing theory. These numeric results show that Klein tunneling
in magnetic fields (in real, finitely-sized nanodevices) is not yet perfectly understood and more
analysis is necessary.

8.2 Outlook

In this final section of my dissertation it is fitting to discuss the impact and potential applica-
tion of the work and results that compose the thesis. The first project about the mechanisms
of antidot superlattices can be interpreted as a case study. The main implications, that could
have broad impact in other scenarios, can be formulated as follows. Transport timescales in
nanodevices seem to be of crucial importance, and it is possible to connect them with macro-
scopic observables. This was shown to be true in detail for the antidot superlattices, but another
example system would be the average transit time through a quantum dot and its connection to
the conductivity. In addition, a working assumption is that dynamical features with timescales
larger than the mean free time will be inaccessible by experiments. For the case of the antidot
superlattices this seems to be confirmed by experiments, as in the measurements one cannot
see neither commensurability peaks (chapter 3) nor the negative Hall effect (sec. 3.1) for mean
free times smaller than κ, the mean collision time. Therefore experimentalists should be aware
of the timescales of the dynamics that they are trying to measure before they perform their
measurements, as they first need to compare the mean free time with the appropriate timescale.
Besides this, since we also showed that it is possible to connect a characteristic timescale in
an antidot superlattice with the corresponding phase space volume. Due to the very general
ingredients leading to such connection (essentially volume conservation) one could see this be-
ing possible in may other Hamiltonian systems, relevant for other experiments or theoretical
studies not considered here. Notice that this also has further impact: sometimes phase space
restrictions dictate exactly how the phase space should change with respect to a change in an
external parameter. In our case this could directly explain why the chaotic phase space volume
is decreased when the magnetic field is changed, and such an explanation could be carried out
in different scenarios as well.

90



The second project showed that the leading contribution to the Lyapunov exponent in bil-
liards is inversely proportional with the chaotic phase space volume. This finding by itself is of
broad interest from the theoretical perspective, since very little was known about the Lyapunov
exponent of billiards before we completed our work. But besides this theoretical impact, there is
also a practical one. In our work we formulated a conceptual model that allows one to estimate
the Lyapunov exponent and connect it with the parameters of the billiard. This is relevant for all
the fields that use billiards to model real world systems. When one wants to study real physical
systems that can be approximated by billiards, the role of the Lyapunov exponent is indirect.
For example, it sets a timescale which governs correlation decays (and thus conductivities in
experimental systems) or echo signals. To understand, and not just numerically reproduce, the
parameter dependence of such experimental signals (for example the magnetic field dependence
of the conductivity) it can be extremely valuable to know at least approximately the connection
between the Lyapunov exponent and the parameters of the system.

One of the goals of chapter 6 was to prove that the Husimi function is a tool that brings
benefits to the study of nanodevices from a semiclassical perspective. Because in this chapter
I presented several findings that have either not been discussed at all in the literature, or have
been discussed only qualitatively, I believe a strong case is being made for wider adoption of the
Husimi function. In addition, some of the numeric findings presented definitely deserve further
study, for example the connection between the group velocity and the wavevector angle with
the transmission probability at higher energies. (To the best of my knowledge) neither theory
nor experiments have been performed in a sufficient amount in this regime but the numeric
results of section II.D and II.E of chapter 6 seem to be interesting, if not immediately from an
application perspective, definitely from a theory perspective. Besides being a tool to measure
quantities, using the marginal distributions obtained from the Husimi one can even calculate
the transmission probability through e.g. a pn-junction, using theoretical formulas. This is yet
one more reason to use the Husimi function in condensed matter.

Chapter 7, which discusses the Husimi function and Klein tunneling in magnetic fields,
provides both new tools as well as open questions. The extension of Q to magnetic fields
provides a new tool for studying transport from the semiclassical perspective in the presence of
magnetic fields. This new tool can be used to study both the open questions of chapter 7 as well
as questions in other context. It also remains to be seen what new insights can the magnetic
wavepackets of chapter 7 provide for other scenarios, besides Klein tunneling. For example, one
case to study is magnetic focusing, which is an effect that has been studied extensively from
different perspectives. Since the effect relies heavily on the concept of the cyclotron radius,
semiclassical approaches are naturally fitting to analyze it from new perspectives. This will also
be yet one more case study to strengthen adoption of the Husimi function by the condensed
matter community.

The big open question of chapter 7 is what happens with Klein tunneling in magnetic fields.
The numerical results of the chapter show that the effect is not well understood yet, since
the results do not align with the existing theoretical predictions of the effect (and the same
can be said for recent experiments). Therefore, more steps have to be taken in understanding it
better. One approach, already partly implemented in this thesis, is to use the Husimi function in
magnetic fields. Other approaches are also possible, for example wavepacket dynamics, localized
electron beams in larger systems (as in [150]) or ray-splitting billiards. It is important to use
these tools to understand not only why eq. (7.3.1) does not work in the context studied in this
thesis, but also to find out the correct answer and explain the physics of Klein tunneling in
magnetic fields.
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imaging and data analysis (Conference), invited by Ulrich Parlitz.
05/2019 Music timeseries analysis: universal structure and its impact on the

listening experience, Max Planck Institute for the Physics of Complex Sys-
tems, invited by Holger Kantz.

04/2019 Spatiotemporal Timeseries prediction using locally reconstructed
states, Potsdam Institute for Climate Impact Research, invited by Norbert
Marwan.

07/2018 Fresh approach to dynamical systems software, TU Munich, invited by
Oliver Junge.

04/2018 Nonlinear Resonances and phase-space volume conservation lead to
robust ballistic transport in antidot superlattices, Uni. Regensburg,
invited by Jonathan Eroms.

Supervised Theses
2018 Statistical properties of musical time series, L. Jahn, Bachelor thesis

co-supervised with T. Geisel.
2018 Observing and predicting complex dynamics using local modelling,

J. Isensee, Bachelor thesis co-supervised with U. Parlitz.
2018 Lyapunov exponents vs. phase space restrictions in dynamical bil-

liards, L. Hupe, Bachelor thesis co-supervised with R. Fleischmann.
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Teaching
Lectures

2017 Introduction to the Physics of Complex Systems, University of
Göttingen.
Tutoring for the course (total amount of around 48 hours) with lecturers R. Fleis-
chmann, U. Parlit and A. Gholami.

2016 Introduction to the Physics of Complex Systems, University of
Göttingen.
Tutoring for the course (total amount of around 48 hours) with lecturers R. Fleis-
chmann, U. Parlit and K. Alim.

04/2014 -
06/2014

Chaos in 1D and 2D Maps, University of Athens.
Total of 9 hours lecture for the course called "Non-linear dynamical systems". The
units I taught undergraduate students were 1D Chaotic Maps, 2D Hamiltonian Maps,
Lyapunov exponents and Invariant measures.
Workshops, Videos, Other

2017-2019 Software video tutorials, Online.
Multiple videos uploaded (or livestreamed) on YouTube explaining the use of software
described in the Software section of the CV.

2017 Jumping into Julia, Max Planck Institute for Dynamics and Self-
Organization.
Single day workshop about the programming language Julia and how can one start
using it in scientific work.

Event Organizing
10/2019 Hacktoberfest meetup at the Max Planck Institute for Dynamics and Self-

Organization
2018 - 2019 Göttingen GGNB Debate club.

2018 Bi-annual retreat of the PhD school for the Physics of Biological and Complex
Systems.

Languages
Mothertongue Greek

Expert English Proficiency degree from the University of Michigan
Intermediate Spanish B2 National degree
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