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Abstract 

Organic biomarkers have been widely used to trace the information of their biological precursors and 

to reveal information about fossil depositional environment, and thus they help to reconstruct ancient 

ecosystems. Prior to the advent of bioturbation at Ediacaran-Cambrian transitions, pervasive microbial 

mats covered large areas of Proterozoic oceanic shelves. This contrasts with the Phanerozoic, 

characterized by the flourishment of metazoans and less common benthic microbial mats. One of the 

characteristic features of Precambrian biomarker records is that eukaryotic steranes are typically 

absent or occur in very low concentrations. It is not known whether this feature reflects the scarcity of 

eukaryotic primary producers in Proterozoic environments, or rather the preferential degradation of 

eukaryotic lipids in the widespread benthic microbial mats (proposed as “mat-seal effect”). One of the 

main goals of this PhD work is to test this hypothesis, demonstrating the preservation pathways of 

eukaryote-derived steroids as well as other lipid biomarkers (e.g. bacteria-derived hopanoids and fatty 

acids) in modern microbial mat settings. This work will provide new insights into the potential 

taphonomic bias of eukaryotic steroids, in contrast to other lipids, in distinct microbial mat 

ecosystems. 

This thesis aims at 1) assessing the fate of total extractable steroids in microbial mats; 2) 

differentiating the preservation pathways of sterols between freely extractable lipids, carbonate-bound 

lipids and the non-extractable residues, and testing if calcification within microbial mats may function 

as a preservation mechanism for these biomarkers; 3) examining the taphonomy of OM and 

microfacies in microbial mats, and providing reference data for the relations between the preservation 

of OM and the associated mineralization modes. To this end, I performed several studies in which I 

used different techniques to provide answers for specific research questions. 

In the first study, a c. 1200 yrs old microbial mat from a hypersaline Lake 22 on Kiritimati was 

investigated to analyze the fate of steroids. This mat was divided into different layers, and the 

biomarker inventory in the total lipid extracts (including steroids) was assessed and quantified in each 

mat layer. It was demonstrated that the steroids experienced anaerobic microbial transformation along 

distinctive diagenetic pathways (stenols => stanols => sterenes => steranes), however, the total 

amount of the compounds with the steroid skeleton retained markedly constant on a 103 yrs scale, and 

hence, the results contradict with the so called “mat-seal effect”. 

The second study examined the taphonomic pathways of eukaryotic sterols, as freely extractable 

and carbonate-bound lipids, in a c. 1500 yrs hypersaline microbial mat (Lake 2, Kiritimati, Central 

Pacific), to test if calcification within microbial mats may function as a preservation mechanism for 



these biomarkers. In addition, the results in this work were compared to other studies performed on 

microbial mats from different settings (including other lakes on Kiritimati) to obtain better insight in 

which factors affect the preservation of sterols in hypersaline microbial mat systems. This work 

illustrated 1) that the carbonate matrix played no important role in encasing sterols in the mat that was 

analysed for this study, 2) that a significant drop in total sterols concentration was observed 

immediately below the top layer and retained in a low abundance in deeper layers, indicating in favor 

of “mat-seal effect” theory; and 3) the discrepancies with respect to the preservation of sterols in the 

two Kiritimati mats (i.e., Lake 2 and 22) might be linked to the differences in salinity or to periods of 

subaerial exposure, suggesting that sterols would have a higher preservation potential in microbial 

mats experiencing stronger salinities or more desiccated conditions. 

As for the third study, the analysis of lipid biomarkers was combined with petrographic and 

histologic investigation, in a depth profile of a recent calcifying mat (the same mat as investigated in 

the second study) from a hypersaline Lake 2 in Kiritimati. This work aims at a better understanding of 

the processes that lead to mineralization of a microbial mat and the preservation of organic matter in 

the resulting microbialites. This study shows for the first time that significantly different organic 

matter preservation pathways are observed even within a single microbial mat. In addition, the data 

illustrate that preservation of lipids may have been strongly controlled by mineralization processes. 

Fast mineral precipitation driven by environmental changes might preserve microbial lipid signatures 

much better than relatively slow mineralization driven by progressive EPS degradation in deeper mat 

layers. 

Finally, this thesis demonstrates that the preservation of steroids is not only regulated by 

heterotrophic degradation, but rather reflects a complex interplay of taphonomic processes, and it may 

be also associated with multiple biotic and abiotic factors including salinity and periods of subaerial 

exposure. Therefore, caution has to be taken in the interpretation of sterols distribution patterns in 

modern and ancient microbial mat settings. Moreover, future works on microbial lipids in fossil 

microbialites should thoroughly consider the mineralization processes to reach sound interpretations 

on organic biosignatures enclosed therein. 

 

  



 
 

Kurzfassung 

Organische Biomarker werden häufig verwendet um Informationen über ihre biologischen Vorläufer 

und über die fossile Ablagerungsumgebung zu erhalten, womit sie zur Rekonstruktion alter 

Ökosysteme beitragen. Vor Beginn der Bioturbation an der Ediakarium-Kambrium-Grenze bedeckten 

mikrobielle Matten große Bereiche der proterozoischen ozeanischen Schelfgebiete. Dies steht im 

Gegensatz zum Phanerozoikum, das durch die Entfaltung von Metazoen und weniger verbreiteten 

benthischen mikrobiellen Matten gekennzeichnet ist. Eines der charakteristischen Merkmale der 

präkambrischen Biomarkeraufzeichnungen ist, dass eukaryotische Sterane typischerweise fehlen oder 

in sehr niedrigen Konzentrationen vorkommen. Es ist nicht bekannt, ob dieses Phänomen die 

Knappheit eukaryotischer Primärproduzenten in proterozoischen Umgebungen widerspiegelt, oder 

vielmehr den bevorzugten Abbau eukaryotischer Lipide in den weit verbreiteten benthischen 

mikrobiellen Matten (vorgeschlagen als "mat-seal effect"). Eines der Hauptziele dieser Doktorarbeit 

ist es, diese Hypothese zu testen und die Konservierungswege von Steroiden aus Eukaryoten sowie 

anderen Lipid-Biomarkern (z.B. bakterielle Hopanoide und Fettsäuren) in modernen mikrobiellen 

Mattensituationen aufzuzeigen. Eines der Hauptziele dieser Doktorarbeit ist es, diese Hypothese zu 

testen und die Konservierungswege von Steroiden aus Eukaryoten sowie anderen Lipid-Biomarkern 

(z.B. bakterielle Hopanoide und Fettsäuren) in modernen mikrobiellen Matten aufzuzeigen. Diese 

Arbeit wird neue Erkenntnisse über die potenzielle taphonomische Verzerrung eukaryotischer 

Steroide, verglichen mit anderen Lipiden, in verschiedenen mikrobiellen Mattenökosystemen liefern. 

Mit einer Reihe von Experimenten zielt diese Arbeit darauf ab, 1) das Schicksal frei extrahierbarer 

Steroide in mikrobiellen Matten zu beurteilen; 2) die Konservierungswege von Sterolen zwischen frei 

extrahierbaren Lipiden, karbonatgebundenen Lipiden und den nicht extrahierbaren Rückständen zu 

unterscheiden und zu testen, ob die Kalzifizierung innerhalb der mikrobiellen Matte als 

Konservierungsmechanismus für diese Biomarker funktionieren kann; 3) die Taphonomie von OM 

und Mikrofazies in mikrobiellen Matten zu untersuchen und Referenzdaten für die Beziehungen 

zwischen der Erhaltung von OM und den zugehörigen Mineralisierungsmethoden bereitzustellen. 

In der ersten Studie wurde eine ca. 1200 Jahre alte mikrobielle Matte aus dem hypersalinaren See 

22 auf Kiritimati untersucht, um das Verhalten von Steroiden zu analysieren. Diese Matte wurde in 

verschiedene Schichten aufgeteilt und die Biomarker in den gesamten Lipidextrakten (einschließlich 

Steroide) wurden in jeder Mattenschicht bewertet und quantifiziert. Es konnte gezeigt werden, dass die 

Steroide eine anaerobe mikrobielle Transformation entlang ausgeprägter diagenetischer Pfade 

durchlaufen haben (Stenole => Stanole => Sterene => Sterane), wobei jedoch die Gesamtmenge der 

Verbindungen mit Steroidskelett auf einer 103-jährigen Skala deutlich konstant blieb und damit gegen 

den "mat-seal-effect". 



Die zweite Studie untersuchte die taphonomischen Pfade eukaryotischer Sterole als frei 

extrahierbare und karbonatgebundene Lipide in einer neueren hypersalinaren mikrobiellen Matte (See 

2, Kiritimati, Zentralpazifik), um zu testen, ob die Kalzifizierung innerhalb der mikrobiellen Matte als 

Konservierungsmechanismus für diese Biomarker dienen kann. Darüber hinaus wurden die Ergebnisse 

dieser Arbeit mit anderen Studien verglichen, die an mikrobiellen Matten aus verschiedenen 

Umgebungen (einschließlich anderer Seen auf Kiritimati) durchgeführt wurden, um einen besseren 

Einblick in die Erhaltung von Sterolen in hypersalinaren mikrobiellen Mattensystemen zu erhalten. 

Diese Arbeit verdeutlichte 1), dass die Karbonatmatrix keine wichtige Rolle bei der Umhüllung von 

Sterolen in der untersuchten Matte spielte, 2) dass ein signifikanter Rückgang der 

Gesamtsterolkonzentration unmittelbar unter der oberen Schicht beobachtet wurde und in geringer 

Menge in tieferen Schichten beibehalten wurde, was auf den "mat-seal effect" hinweist; und 3) die 

Diskrepanzen in Bezug auf die Konservierung von Sterolen in den beiden Kiritimati-Matten (d.h. See 

2 und 22) könnten mit den Unterschieden in der Salinität oder mit Perioden subaerischer 

Unterbrechung zusammenhängen, was darauf hindeutet, dass Sterole ein höheres 

Konservierungspotenzial in mikrobiellen Matten unter stärkeren Salinitäten oder trockeneren 

Bedingungen hätten. 

In der dritten Studie wurde die Analyse von Lipid-Biomarkern mit petrografischen und 

histologischen Untersuchungen am Tiefenprofil einer kürzlich verkalkenden Matte (~1500 Jahre) aus 

dem hypersalinaren See 2 in Kiritimati ergänzt. Diese Arbeiten zielen auf ein besseres Verständnis der 

Prozesse ab, die zur Mineralisierung einer mikrobiellen Matte und zur Erhaltung der organischen 

Substanz in den resultierenden Mikrobialiten führen. Diese Studie zeigt zum ersten Mal, dass 

signifikant unterschiedliche Wege zur Erhaltung der organischen Substanz auch innerhalb einer 

einzigen mikrobiellen Matte beobachtet werden. Darüber hinaus zeigen die Daten, dass die 

Konservierung von Lipiden möglicherweise stark durch Mineralisierungsprozesse gesteuert wurde. 

Schnelle Mineralfällung aufgrund von Umweltveränderungen könnte die mikrobiellen Lipidsignaturen 

viel besser bewahren als eine relativ langsame Mineralisierung, die durch den fortschreitenden EPS-

Abbau in tieferen Mattenschichten verursacht wird. 

Schließlich zeigte diese Arbeit, dass die Erhaltung von Steroiden nicht nur durch heterotrophen 

Abbau reguliert wird, sondern vielmehr ein komplexes Zusammenspiel taphonomischer Prozesse 

widerspiegelt und auch mit mehreren biotischen und abiotischen Faktoren in Verbindung gebracht 

werden kann, einschließlich Salzgehalt und Perioden subaerischer Einwirkung. Daher ist bei der 

Interpretation der Sterolverteilung in modernen und alten mikrobiellen Matten Vorsicht geboten. 

Darüber hinaus sollten zukünftige Arbeiten zu mikrobiellen Lipiden in fossilen Mikrobialiten die 

Mineralisierungsprozesse gründlich prüfen, um fundierte Interpretationen der darin enthaltenen 

organischen Biosignaturen zu erreichen. 
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-Chapter 1- 

Introduction 

1.1 Aim of the thesis 

This work was performed at the Department of Geobiology, University of Göttingen, and it 

was done as part of the DFG project “Geobiology of Organo- and Biofilms” (Re 665/18-2 and 

Research Unit 571). One of the main goals of the thesis is to test the hypotheses on the 

preservation pathways of organic lipid biomarkers in natural microbial mat settings. The other 

goal is to examine the mineralization of microbial mat and the preservation of organic matter 

(OM) in the resulting microbialites. With experimental studies and analytical data, this 

investigation provides detailed information about the preservation of biosignatures within the 

studied microbial mats, including microfacies components, lipid biomarkers (eukaryote-

derived steroids as well as microbial-derived hopanoids and fatty acids) and stable isotope 

signatures. These results offer novel insights for the taphonomy of OM and the search of 

original OM in ancient microbialites. 

The thesis aims at: 

● Assessing the fate of total extractable steroids in microbial mats; 

● Differentiating the preservation pathways of sterols between freely extractable lipids, 

carbonate-bound lipids and the non-extractable residues, and testing if calcification within 

microbial mats may function as a preservation mechanism for these biomarkers; 

● Examining the taphonomy of OM and microfacies in microbial mats, and providing 

reference data for the relations between the preservation of OM and the associated 

mineralization modes. 

1.2 Early eukaryote 

The earliest steranes of demonstrably eukaryotic origin have been reported from late Archean 

sedimentary rocks (2700 Mya old shales from the Pilbara Craton, Australis) (Brocks et al., 

1999). Although several issues are concerned with respect to the eukaryote fossils (Knoll, 

2014), most of them have been clarified (see below). 
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The first concern relates to environmental conditions, i.e., molecular O2 is a known 

prerequisite for sterol biosynthesis, which contradicts the geochemical data revealing 

anaerobic atmosphere and oceans in the Archean (Holland, 2006). Jahnke (1986) and 

Waldbauer et al. (2011) demonstrated possible sterol synthesis at very low thresholds, and in 

addition, the presence of small amounts of O2 in the marine environment could have been 

persistent for long periods of time, prior to the accumulation of significant levels of 

atmospheric O2 (the Great Oxidation Event, Anbar et al., 2007; Planavsky et al., 2014a). This 

corroborates the possible situations that enable the production of their oldest eukaryote 

fossils. Second, certain groups of bacteria are capable of synthesizing sterols (Pearson, Budin 

and Brocks, 2003), causing the debate about probable prokaryotic origin of these preserved 

steranes. However, so far, only some products such as lanosterol are related to bacterial sterol 

synthesis, while complex steranes were detected in Late Archean samples. It is therefore 

reasonable to consider this sterane as eukaryotic origin. The third issue is the contamination, 

because only trace amounts of sterane (part-per-billion concentrations) occur in Archean 

rocks. In this regard, biomarkers can be potentially emplaced by fluid flow during 

sedimentary or diagenetic processes, or by the drilling procedure, even by the sample 

preparation. As a result, stringent protocols for drilling and sample analysis have been 

developed, to avoid ambiguous sterane signatures. 

Molecular clocks (calibration with phylogenetical fossils, Knoll, 2014) suggest that the last 

common ancestor of extant eukaryotes emerged during the Proterozoic Eon, which is 

concordant with permanent oxygenation of Earth’s atmosphere and surface ocean occurred c. 

2400 Mya (Holland, 2006) as well as with stable atmospheric O2 (ca. 0.1% of present 

atmospheric level) in mid-Proterozoic (Planavsky et al., 2014b). Moderate expansion of 

eukaryotic organisms occurred in the Mesoproterozoic oceans, and subsequent major 

eukaryotic diversification appears to have begun in the Neoproterozoic (c. 800 Mya), 

documented by the increasing taxonomic richness of complex, organic-walled microfossils 

(Knoll et al., 2007; Knoll, 2014). On the other hand, the preserved molecular fossils in 

Proterozoic oceans are dominated by cyanobacteria and other photosynthetic bacteria, 

indicating that eukaryotes played a limited quantitative role in primary production at that time 

(Knoll et al., 2007). Another evidence, which demonstrates the major radiation of eukaryotes 

at the end of the Proterozoic, is the increasing amounts of C29 steranes detected in Late 

Neoproterozoic (Ediacaran) samples (Grantham, 1986), suggesting eukaryotic algae may have 

become the major primary producer in the oceans (excluding terrestrial plants-derived C29 
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steranes, because their earliest microfossils are found in Late Ordovician-Silurian rocks, Gray 

and Boucot, 1978; Morris et al., 2018). 

Further evidence for the proliferation of eukaryotes in Ediacaran is the relatively high 

abundances of isopropylcholestane, ascribed to sponges that played a role in primary 

production (Love et al., 2009; McCaffrey et al., 1994a). Apparently, this eukaryotic radiation 

did not finish by the latest Proterozoic; instead, most of eukaryotes are the product of 

Phanerozoic evolution. Fossils provide evidences of proliferation of complex multicellular 

organisms, such as animals, land plants as well as fungi (Knoll, 2011). 

As noted above, the evolution of eukaryotes is intimately correlated with the oxygenation 

of oceans and atmosphere. For instance, a more enriched O2 in Phanerozoic ecosystems as 

compared to the Proterozoic counterpart, facilitate the radiation of animals in Cambrian 

oceans (Dahl et al., 2010). Over billions years of evolution, and throughout the many 

environmental changes, the remarkable prosperity of eukaryotes has made significant 

contributions to the complex biota (including flora and fauna) of modern Earth. 

1.3 Microbial mat, microbialites 

Microbial mats are complex, millimeter to centimeter scale self-sustaining ecosystems (see 

Figure 1.1). They have been present on Earth for billions of years, and developed under a 

wide range of environmental conditions such as hydrothermal vents, hypersaline coastal 

lagoons, alkaline lakes, cold seeps, hot springs and interdidal flats (Crépeau et al., 2011; 

Ramos et al., 2017; Spring et al., 2015; Arp, Hofmann and Reitner, 1998; Prieto-Barajas, 

Valencia-Cantero and Santoyo, 2018; Reitner et al., 2005; Thiel et al., 2001; Guerrero and de 

Wit, 1992; Shiea, Brassel and Ward, 1991; Schuler, Havig and Hamilton, 2017; van der Meer, 

2002; Mackenzie, Pedrós-Alió and Díez, 2013; Scherf and Rullkötter, 2009; Słowakiewicz et 

al., 2016). The oldest fossil microbial mats have been found in Archaea sedimentary rocks 

from west Australia (c. 3.5 Ga, Allwood et al., 2006; Noffke et al., 2013) and South Africa (c. 

3.2 Ga, Noffke et al., 2006; c. 3.4 Ga, Tice and Lowe, 2004).  
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Figure 1.1 Examples of microbial mats and ancient microbialites: (a)-(f) a variety of colourful microbial 
mats collected from the atoll of Kiritimati (contributions from the department of Geobiology, University of 
Göttingen); (g) Stromatolites from Shark Bay, Western Australia (modified from sharkbay visit.com.au); 
(h) Thrombolites from Lake Clifton, Western Australia (modified from lifeonperth.com). 
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Microbial mats present vertically laminated structures and are composed of functional 

groups of microbial communities controlling the organic matter (OM) turnover within the 

mats (Des Marais, 2003; van den Ende and van Gemerden, 1994). The major groups comprise 

cyanobacteria, colorless sulfur bacteria, purple sulfur bacteria and sulfate-reducing bacteria as 

well as eukaryotic organisms and archaea (Schneider et al., 2013; van Gemerden, 1993). 

Photosynthesis, coupling light energy to CO2 fixation and leading to accumulation of 

biomass, is thought to be the primary driving force of microbial mats. Subsequently, sulfate-

reducing bacteria, decomposing the primary production of cyanobacteria, produce sulfide by 

the dissimilatory reduction of sulfate. The resulting sulfide can be re-oxidized to sulfate again 

by colorless and purple sulfur bacteria. Moreover, several other microbes might also be 

involved in the OM turnover in the mat, such as chemotrophic bacteria and archaea 

(Blumenberg, Thiel and Reitner, 2015; Reitner and Thiel, 2011; Spring et al., 2015). In this 

respect, microbial mats are great models to investigate biogeochemical processes on a small 

(mm-cm) scale, since a large variety of microorganisms cooperate and interact in complex 

metabolic pathways that influence the cycles of major elements within the mats (Seckbach 

and Oren, 2010). Under certain conditions, part of the microbial mat biomass might be 

transformed and preserved within mineral precipitates (commonly carbonate) that lead to the 

mineralization of the mat (i.e., microbialite). 

The term “Microbialite” was introduced by Burne and Moore (1987), who characterized it 

as ‘organosedimentary deposits that have accreted as a result of benthic microbial 

communities trapping and binding sediment and/or forming the locus of mineral 

precipitation’. A number of studies have demonstrated that several factors are involved in the 

carbonate precipitation within the mats, but the extracellular polymeric substances (EPS) 

secreted by the microbes are one of the most crucial controls of that process (Arp, Reimer and 

Reitner, 1999; Arp, Reimer and Reitner, 2001; Dupraz et al., 2009; Dupraz and Visscher, 

2005; Reitner, 1993). EPS consist of polysaccharides, proteins, nucleic acids, lipids and 

humic substances (Nielsen, Jahn and Palmgren, 1997). In most cases, EPS accumulate outside 

the cells, and function as preventing desiccation, retaining essential nutrients as well as 

protecting against UV radiation (Decho, 1990; Decho, 2000). EPS contains negatively-

charged acidic groups (e.g., carboxyl, amine, hydroxyl groups), and hence EPS are able to 

bind a large amount of divalent free cations (e.g. Ca2+ and Mg2+, Braissant et al., 2007). This 

binding capacity might inhibit mineral precipitation by depleting the positive ions from the 

surrounding microenvironment. Therefore, microbial carbonate formation is controlled by the 
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inhibitory function of acidic EPS. Carbonate precipitates are formed, if the local 

hydrochemical conditions are suitable (e.g. alkalinity and saturation state; Arp et al., 2001), 

when EPS release the previously bound cations, as they are often degraded in the deeper part 

of the mat (Arp et al., 2012; Arp, Reimer and Reitner, 2003; Dupraz, Reid and Visscher, 

2011). Consequently, EPS play an important role in the formation of microbialites as they 

influence the availability of cations and provide the location where the carbonate minerals 

nucleate and grow (Dupraz et al., 2004). 

Microbialites can be generally classified into four types based on their mesostructure 

(structure visible with the naked eye, such as lamination, see Figure 1.1): stromatolites 

(laminated microbialites), thrombolites (clotted fabrics), leiolites (structureless micritic 

fabrics), and dendrolites (dendritic fabrics; Burne and Moore, 1987; Dupraz, Reid and 

Visscher, 2011; Dupraz and Strasser, 2002; Riding, 1991; Riding, 2000). Various 

microstructures may occur within these microbialites, including micritic, clotted, 

micropeloidal, microsparitic, agglutinated, and even sometimes including encrusting fossils 

and borings (Flügel and Munnecke, 2010). 

Prior to the advent of vertical bioturbation at the Ediacaran-Cambrian transition 

(“agronomic revolution” or “substrate revolution”; Bottjer, Hagadorn and Dornbos, 2000, 

Seilacher, 1999; Seilacher and Pflüger, 1994), microbial mats have been proposed to be the 

predominant life forms in Archean and Proterozoic oceans, distinguished from the 

Phanerozoic, which is typified by the flourishment of metazoans and less common benthic 

microbial mats (Grotzinger and Knoll, 1999; Riding, 2011). Eukaryotic steranes are 

particularly absent or occur in very low concentrations in Precambrian sedimentary rocks. 

This phenomenon may be explained by minor eukaryotic contributions to primary production 

(Anbar and Knoll, 2002; Blumenberg, Thiel and Reitner, 2015; Knoll et al., 2007), and/or 

thermal destruction (Summons, Powell and Boreham, 1988a). Another potential explanation 

would be that eukaryote-derived lipids might have suffered from a preservation bias due to 

the ubiquitous benthic microbial mats (“mat-seal effect”, Pawlowska, Butterfield and Brocks, 

2013). Thereby, organic matter produced by heterotrophic microorganisms in the deeper mat 

layers would be preferentially preserved, while the signals from the upper layers get 

suppressed (chapter 3 of this thesis). This scenario is distinct from the situation in the 

Phanerozoic, in which OM from primary producers is more quickly transported to the 

sediment through sinking aggregates (e.g. faecal pellets), and lacking alteration in microbial 

mats (Close, Bovee and Pearson, 2011; Fowler and Knauer, 1986). As a result, marine 
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biogeochemical cycles were reorganized. For instance, O2 was largely retained in surface 

waters and hardly transported to the deeper ocean in the Proterozoic. Due to the slow sinking, 

OM was greatly reworked by heterotrophic organisms resulting in the depletion of O2 on the 

sea floor. On the other hand, in the Phanerozoic, the rapid transportation of OM significantly 

decreased the consumption of O2 in surface waters, and thus prompted its evasion to the 

atmosphere as well as its delivery to the deep sea. Hence, the biological redox level moved 

from surface waters to the bottom sediments, and considerable quantities of organic carbon 

were transported to the sea floor and sequestered by the remineralization. Ultimately, the deep 

ocean was ventilated, allowing the start of radiation of metazoan (Logan et al., 1995). 

1.4 Biosignatures 

Biosignatures are traces of organisms that provide scientific evidence of past or present life. 

They may hold characteristic information such as the fundamental structure and biosynthetic 

pathways of their parent organisms, and the contemporary surrounding environmental 

conditions. In general, biosignatures could be derived from the major features of living 

organisms, including nucleic acids and membrane lipids, physical structures such as skeletons 

and shells as well as synthetic metabolisms and the associated products. Possible 

biosignatures could be: 1) genetic and biochemical substances (i.e., DNA and protein), 2) 

morphological fossils (i.e., body fossils), 3) organic molecular fossils (i.e., biomarkers), 4) 

elemental isotopic compositions, 5) mineral precipitates (i.e., microbial carbonate 

microfacies). This thesis will particularly focus on molecular biosignatures and on the 

associated microbial carbonate microfacies observed in the studied microbial mats. 

1.4.1 Morphological biosignatures 

Fossils are the remnants of the physical structure of ancient organisms or the traces of activity 

of such organisms, which can be divided in two types: body fossils and trace fossils (Figure 

1.2). Body fossils are the most common type of fossils found across the world, and include 

the remains of hard parts of dead animals, plants and other life forms (i.e., teeth, bones and 

shells).  
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Figure 1.2 Fossil examples: (a) Body fossil of crabs from Late Triassic, found in Solnhofen lithographic 
limestone, Germany; (b) Body fossil of sea star from lower Devonian, found in Bundenbach Hunsrück 
Slate, Germany; (c) Body fossil of worm Polychaete from Carboniferous, found in Mazon Creek deposits, 
Illinois, USA; (d) Body fossil of Ernietta from Ediacara, found in Namibia; (e) Trace fossil footprints of 
Chirotherium, found in Triassic sandstone; (f) Trace fossil burrow of sea star, Asteriacites, from Devonian 
of northeastern Ohio, USA (modified from Wikipedia); (g) Trace fossil of Trilobite, found in Georgia, 
USA. Subfigures (a) to (d) are modified from the collections of Department of Geobiology, University of 
Göttingen; subfigures (e) and (g) are modified from (Seilacher 2007). 
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Microfossils are another kind of body fossils, which show generally small size and are 

often observed with microscopes. Unlike other kinds of body fossils (i.e., invertebrate fossils, 

palynomorphs, fossil plants), microfossils are not grouped based on the phylogenetic 

relationships, but only due to their small size and method of study. As a result, microfossils 

comprise heterogeneous fossil remains, including bacteria, foraminifera, diatoms and pollen. 

Trace fossils are the indirect signs of past life that provide evidence of the occurrence of 

those organisms (i.e., footprints, burrows and trails). 

As silent witnesses to Earth’s life, fossils have the potential to provide valuable insights, 

not only into the climates and ecosystems in which they once lived, but also into the evolution 

of organisms through their sequential occurrence during the geologic history of Earth 

(Bykova et al., 2017; Bolliger et al., 2012; Canfield, Poulton and Narbonne, 2007; Chen et al., 

2014; Johnston et al., 2013; Porter and Knoll, 2000; Sahoo et al., 2012). 

1.4.2 Microfacies 

Microfacies denote all the sedimentological and paleontological data that can be described 

and classified from thin-sections, peels, polished slabs or rock samples (Flügel and 

Munnecke, 2010). 

Microfacies include fossils and a variety of sedimentary minerals deposited from the 

natural environment (i.e., carbonate, silicate, gypsum and phosphate), or during burial and 

diagenesis. Since carbonate minerals are the primary components observed within the studied 

modern microbial mats (Kiritimati, Central Pacific), the following description about 

microfacies will be particularly concentrating on the microbial carbonate microfacies (see 

Figure 1.3), using the classification proposed by (Flügel and Munnecke, 2010). 

Peloids, exhibiting a general size of 20-60 μm, are one of the most common microfabric 

components of modern and ancient microbialites, and they are composed of fine-grained 

granular micritic aggregates, often irregularly distributed (Reitner, 1993). They are generally 

interpreted as autochthonous, benthic and microbial in origin (Dupraz and Strasser, 1999; 

Monty, 1976; Riding, 2002b; Riding, 2000; Perri, Tucker and Spadafora, 2012). 

Microscopically, some peloids possess fossil bacterial clumps constituting their nuclei and 

showing a diameter of 10-20 μm (Reitner, 1993). Chafetz (1986) and Riding (2002a) 

suggested that peloids may be calcified aggregates similar to fossilized bacterial colonies in 

Phanerozoic biofilms. Other hypotheses have regarded the formation of peloidal carbonate 
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precipitates as related to the metabolic activities of bacteria (Dupraz et al., 2004; Riding and 

Tomas, 2006; Spadafora et al., 2010). Peloidal fabrics might form in situ during very early 

diagenesis, as a result of degradation and mineralization of organic matter (i.e., EPS) 

mediated by heterotrophic bacteria (Reitner, 1993; Reitner et al., 1995). The spaces between 

peloids are successively infilled by the precipitation of microsparite, when the organic matter 

is removed (Perri, Tucker and Spadafora, 2012; Spadafora et al., 2010; Riding and Tomas, 

2006). 

 

Figure 1.3 Microfacies examples in Kiritimati microbial mat: (a) Transmitted light photomicrograph of 
subspherical aragonite particles (Sph) with radially-oriented internal structure, within abundant micritic 
aggregates (MA); (b) Transmitted light photomicrograph of micritic aggregates (MA), composed of 
micropeloids. Note also isolated micropeloids (M) in an early stage of development, before they evolve into 
micritic aggregates; (c) Transmitted light photomicrograph of micropeloids (M) within a matrix of 
extracellular polymeric substances (EPS); (d) Cross-polarized light photomicrograph of a clotted fabric 
consisting of large micritic aggregates (MA) and smaller micropeloidal micrite (M); (e) Cross-polarized 
light photomicrograph of micritic aggregates (MA) over the mineral crust (C); (f) partial view of mineral 
crust layer with abundant remains of filamentous and bacteria entrapped therein. Note also foraminifera (F) 
over the mineral crust.  
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Other common and significant components of microbialite microfacies are clotted fabrics, 

consisting of densely packed, variable sized peloids amalgamated in larger, globular and 

irregular micritic clots. They often occur within a microspar, micrite or spar matrix and are 

widespread in stromatolites and thrombolites (Flügel and Munnecke, 2010). Earlier works 

reported the potential origins of micritic clotted fabric, for instance, as recrystallization of 

carbonate mud and peloidal micrite (Bathurst, 1970), as diagenetic amalgamation of 

precipitated peloids (Reid, 1987), and as diagenetic modification of algal debris (Coniglio and 

James, 1985), as well as in situ production of calcified mats of benthic coccoid cyanobacteria 

(Kazmierczak et al., 1996), which is currently the most commonly accepted hypothesis. 

Spherulites (see Figure 1.3), composed of radially-oriented carbonate precipitates, 

typically μm scale in diameter with a cloudy micrite core, occur in many different settings 

(Flügel and Munnecke, 2010) and they are commonly formed in association with microbial 

EPS (e.g. Braissant et al., 2003). The formation of spherulites within the sediment is mainly 

controlled by the CaCO3 supersaturation attributed to the release of CO2 during the decay of 

organic matter and microbial activities (i.e., sulphate reduction, Flügel and Munnecke, 2010). 

Fossil cyanobacterial filaments are also common components of microbialite microfacies. 

They result from complex bacterially-driven mineral precipitation processes within and upon 

the sheath surrounding the cell wall. This calcification process is possibly dependent on the 

sheath character, environmental conditions and nucleation of CaCO3 within the sheath (Arp, 

Reimer and Reitner, 2001). The calcified sheath surfaces facilitate the fossilization of 

microbes (calcimicrobes), and thus their preservation (Flügel and Munnecke, 2010). 

Cyanobacteria calcification occurs ubiquitous in marine environment during Palaeozoic and 

Mesozoic Eras, which may reflect temporal changes in seawater chemistry (Arp, Reimer and 

Reitner, 2001). The records of well-calcified cyanobacteria first appear in the Precambrian-

Cambrian boundary (Riding, 1991). 

The carbonate microfacies in Kiritimati microbial mats primarily include micropeloidal 

aggregates and subspherical particles (see Figure 1.3) with fibrous-radial structures. Suarez-

Gonzalez et al. (2017) described that the micropeloidal aggregates are composed of the μm-

scale bundles of aragonite needles and dumbbells, which occur either individually, twinned or 

forming small (10-30 μm) spheres with radial structure (i.e. peloids). The subspherical 

particles are internally formed by fibrous radially arranged long and thin aragonite crystals, 

and hence can be classified as spherulites. However, since they often grow around a micritic 
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nucleus and their cortex is laminated (with micritic laminae which alternate with the radial 

crystalline laminae), some of them could be classified as ooids (Suarez-Gonzalez et al., 2017). 

These micritic laminae within the ooid-like spherulites are typically very thin, but locally 

reach c. 50 μm. Another peculiar structure observed only in the microbial mat microfacies of 

Kiritimati Lake 2, is a thin mineral crust composed of a µm-scale superposition of radial-

fibrous aragonite botryoids that encase very abundant filamentous microbes and diatoms. 

More detailed information will be found in Chapter 4. 

1.4.3 Biomarker 

The term biological markers or “biomarkers” refers to organic compounds (particularly lipids) 

that are taxonomically specific for some certain groups of once-living organisms and can be 

helpful to reconstruct ancient ecosystems and the concurrent environmental conditions 

(Brocks, 2005; Peters, Walters and Moldowan, 2005a; Volkman, 2006). Biomarkers are 

molecular fossils consisting of carbon and hydrogen, and often oxygen, and may also contain 

other elements such as nitrogen, phosphorous and sulfur. Biomarkers are often preserved in 

two fractions of organic matter that retained in fossil samples. One fraction called bitumen 

which is soluble in organic solvents; while the other is kerogen that is insoluble in organic 

solvents, acids and bases (Dow, 1977; Vandenbroucke and Largeau, 2007). For this thesis, 

bitumen is further subdivided in free-lipids (extracted before decalcification) and bound-lipids 

(those tightly bound to the mineral precipitates, extracted after decalcification). 

Biomarkers are derived from functional biomolecules that experience alteration by 

diagenesis (biological and chemical processes) during deep burial over geologic time. Most 

functional biomolecules lose all of their functional groups and undergo structural 

rearrangement via cracking and isomerization reactions. These processes create a variety of 

homologues and stereo- and structural isomers. The resulting products possess geologically-

stable structures that are highly resistant to thermal- and biodegradation, termed as geolipids. 

As a consequence, they can be preserved in sediments, sedimentary rocks and crude oils over 

billions of years (Brocks, 2005). 

Unlike the body fossils, biomarker conservation is determined by different taphonomic 

rules, and in addition, many organisms did not produce preservable cell walls or skeletons to 

against degradation (i.e., soft, single-celled organisms). Therefore, organic biomarkers are 

considered to provide complementary view of past ecosystems independent from the body 

fossil records (Brocks et al., 2016; Knoll et al., 2007). Given these characteristic features of 
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biomarkers and their analyzable natural samples with routine techniques, they are useful tools 

to trace the information of their biogenic precursors and to reveal the depositional 

environment in the past (Peters, Walters and Moldowan, 2005a; Brocks and Summons, 2004; 

Summons et al., 2008). Many investigations have successfully unveiled the earlier 

environmental settings by assessing the biomarker signatures buried at the time of deposition. 

For instance, Summons and Powell (1986) demonstrated anaerobic conditions in the water 

column of Palaeozoic seas; warmer and higher-elevation were reconstructed in northern Sierra 

Nevada during the early Eocene (Hren et al., 2010); hypersaline deposition occurred in 

evaporitic environment of the Dead Sea Basin for the Miocene/Pliocene (Grice et al., 1998). 

In addition to paleoenvironment, organic biomarkers also encode ancient biodiversity and 

evolution of early life in the Earth’s history, for example, the evidence of the early rise of 

eukaryotes reported by Brocks et al. (1999) and the increasing role of algae as drivers for the 

radiation of the eumetazoan animals (Brocks et al., 2017). Other studies also used biomarkers 

to reconstruct the first appearance of major groups of organisms, as demonstrated by 

McCaffrey et al. (1994a); Moldowan et al. (1994); Moldowan and Talyzina (1998) and 

Brocks et al. (2005). Moreover, biomarkers have recorded the global cooling event (Liu et al., 

2009) and the reorganization of biogeochemical cycles (Logan et al., 1995), and applied to the 

discovery of new petroleum reservoirs (Peters, Walters and Moldowan, 2005b). The realm of 

biomarker research is relatively young (i.e., Treibs, 1936) and present extensive prospects. 

Some examples for representative lipid biomarkers are given below. 

1.4.3.1 Hydrocarbons 

Hydrocarbons are compounds that only contain carbon and hydrogen, consisting of multiple 

chemical structures formed by degradation of lipids. 

▲ Straight-chain alkanes (n-alkanes) are acyclic saturated hydrocarbons with the absence 

of branches (i.e., methyl, ethyl), showing general chemical formula of CnH2n+2 such as 

hexadecane (C16H34; see Figure 1.4), which are ubiquitous in sedimentary rocks of any 

geological age, and their potential biogenic precursors can be found in virtually all extant 

organisms (Brocks and Summons, 2004). The biologically derived n-alkanes often show an 

odd-to-even predominance, resulted from the decarboxylation (loss of -COOH) of even 

numbered fatty acids (Peters, Walters and Moldowan, 2005b). As previously reported, short-

chain length n-alkanes, particularly n-C17, are usually considered to be derived from algae and 

photosynthetic bacteria (Han and Calvin, 1969; Cranwell, Eglinton and Robinson, 1987; 
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Meyers, 2003), while n-alkanes with 23 and 25 carbon atoms reveal an origin of 

submerged/floating aquatic macrophytes (Ficken et al., 2000; Nichols et al., 2006; Sachse, 

Radke and Gleixner, 2004). The long-chain homologs in the range of n-C27 to n-C33 are 

commonly suggesting the organic inputs of epicuticular leaf waxes from higher land plants 

(Eglinton and Hamilton, 1967; Cranwell, Eglinton and Robinson, 1987). n-alkanes can be 

easily identified with gas chromatograph-mass spectrometry (GC-MS), and give characteristic 

mass spectra showing series of CnH2n+1 ions that decrease in abundance with increasing m/z 

value. The major mass fragmentations are visualized as m/z 57, 71, or 85 as well as the mass 

molecular weight M+ and M+-15 ions. 

 

Figure 1.4 Examples of hydrocarbons showing the carbon skeletons: (1) Hexadecane (C16H34); (2) 7-
methylheptadecane (C18H38); (3) Isoprene (C5H8); (4) Pristane (C19H40); (5) Phytane (C20H42); (6) 
Crocetane (C20H42); (7) 2,6,10,15,19-Pentamethylicosane (PMI, C25H52); (8) HBI (C30H62); (9) Biphytane 
(C40H82); (10) Lycopane (C40H82). 
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▲ Branched acyclic alkanes are acyclic saturated hydrocarbons wherein the carbon 

backbone splits off in two or more directions. Simple branched alkanes such as 6-, 7- and 8- 

methylheptadecane (C18H38; see Figure 1.4) are universally biosynthesized by cyanobacteria 

(Coates et al., 2014; Han and Calvin, 1969; Fehler and Light, 2002). Series of longer mid-

chain monomethyl alkanes have been reported in Precambrian sedimentary rocks and crude 

oils (Kenig et al., 1995; Kissin, 1987; Höld et al., 1999; Shiea, Brassel and Ward, 1991; 

Summons et al., 1988b; Fowler and Douglas, 1987; Summons, 1987), indicating either direct 

biological contributions (Höld et al., 1999; Shiea, Brassell and Ward, 1990) or diagenetic 

products generated by the transformation of functionalized lipid such as carboxylic acids 

(Summons, Powell and Boreham, 1988a; Thiel et al., 1999a). 

Other branched alkanes included here are isoprenoids, which are hydrocarbons composed 

of polymerized isoprene units (C5H12; see Figure 1.4; an arrangement of five carbon atoms 

that forms the building blocks of many biomarkers such as triterpanes and steranes). Isoprene 

units can be linked together in 1) regular way (tail to head, i.e., pristane C19H40 and phytane 

C20H42; see Figure 1.4); and 2) irregular way (tail to tail, i.e., crocetane C20H42; and head to 

head, i.e., biphytane C40H82; see Figure 1.4). Isoprenoids comprise various compounds, and 

typical acyclic isoprenoids include pristane and phytane, which are major components in 

many ancient sediments and crude oils. In addition, pristane and phytane have been widely 

assumed to be diagenetic products of the phytyl side chain of chlorophyll a in phototrophic 

organisms and bacteriochlorophyll a and b in purple sulfur bacteria (Brooks, Gould and 

Smith, 1969; Powell and McKirdy, 1973; ten Haven et al., 1987; Wang et al., 2008), and 

other potentiall sources are also suggested such as tocopherols (Goossens et al., 1984) and 

archaea (Chappe, Albrecht and Michaelis, 1982). Briefly, anoxic conditions facilitate 

cleavage of the phytyl side chain to yield phytol that experience reduction to generate 

phytane, while oxic conditions promote the formation of pristane by oxidation and 

decarboxylation of phytol. The ratio of pristane/phytane (Pr/Ph) is therefore interpreted as a 

proxy for the depositional redox conditions (Didyk et al., 1978). For instance, high values of 

Pr/Ph (>3) suggest organic matter inputs under oxic conditions, whereas low ratios (<0.8) are 

typical for anoxic, normally hypersaline or carbonate environments (Peters, Walters and 

Moldowan, 2005b). Crocetane (C20H42, an isomer of phytane) and PMI (C25H52; see Figure 

1.4) are both tail-to-tail linked isoprenoid hydrocarbons, and they show origins from 

methanogenic and methanotrophic archaea as well as sulfate-reducing bacteria that are 

typically depleted in 13C (Hinrichs et al., 2000; Pancost et al., 2000a; Thiel et al., 1999b; 
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Peters, Walters and Moldowan, 2005b). Further, lycopane (C40H82; see Figure 1.4), also 

presenting a tail-to-tail isoprenoid linkage, is particularly abundant in ancient sediments 

which were deposited under anoxic environmental conditions (Kimble et al., 1974; Kohnen et 

al., 1992; Schouten et al., 1997; Freeman et al., 1990). Several investigations have suggested 

the potential origins of lycopane, such as methanogenic archaea (Brassell et al., 1981), 

photoautotrophic microorganisms (Wakeham et al., 1993) as well as marine phytoplankton 

(McCaffrey, Farrington and Repeta, 1991). In addition, Sinninghe Damsté et al. (2003) 

reported that long-chain n-alkanes are more stable and less prone to post-depositional 

degradation relative to lycopane, and thus the lycopane/n-C31 ratio may be used as a proxy to 

evaluate palaeoxicity during sedimentary processes, with higher values as indicative of low 

oxygen concentrations. Biphytane (C40H82), as an isomer of lycopane, show irregular head-to-

head linkages and commonly bound to ether-bonds that are typical biomarkers from 

diglycerol tetraether lipids in membranes of Archaea (Volkman and Maxwell, 1986; Kates, 

1997). These ether-bound extended C40 isoprenoids have been detected in a variety of ancient 

source-rock settings, including marine marls and hypersaline evaporites (Schouten et al., 

1998a; Schouten et al., 2000b) as well as recent sediments such as hydrothermal springs and 

surface ocean waters (Hoefs et al., 1997) and peat bogs (Pancost et al., 2000b), and their 

possible biogenic precursors could be methanogenic archaea (Schouten, Hopmans and 

Sinninghe Damsté, 2013; Schouten et al., 1998a). Other common isoprenoidal compounds are 

highly branched isoprenoid (HBI; see Figure 1.4), which are used as specific molecular fossils 

for diatoms, and can be used as age-diagnostic biomarkers (Sinninghe Damsté et al., 2004). 

For the identification of these isoprenoids, branched alkanes produce similar spectra to 

those of n-alkanes, but show more intense fragmentations with the branching position that is 

easily visualized. In general, isoprenoids give characteristic ions at m/z 113, 169, 183, 197, 

253 and with help of other mass fragments deduced from different connections of isoprene 

units (i.e., head-to-head and tail-to-tail linkages). Combined with some co-elution cases, i.e., 

pristane is often co-eluting with nC17-alkanes, phytane co-elutes with nC18 and PMI with 

nC23-alkanes, while biphytane co-elute with nC35, and lycopane elutes near nC34-nC35-

alkanes, and hence they can be readily identified. 
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1.4.3.2 Fatty acids 

Fatty acids are carboxylic acids with saturated or unsaturated hydrocarbon chains, generally 

ranging between 4 and 28 of carbon atoms. They are vital components of phospholipids and 

glycolipids, which are the primary constituents of lipid membranes in eubacteria and eukarya. 

▲ Straight-chain fatty acids (saturated and unsaturated) occur ubiquitously in organic 

sediments of geological time, and have been used as indicators of sedimentary source 

materials. For instance, the fatty acids (i.e., >C20) often showing a strong even-over-odd 

predominance are thought to be inputs of higher plants, while those in the range of C12-C18 

have been attributed to aquatic (algal and microbial) source organisms (Brassell et al., 1980; 

Cranwell, 1982). Of the straight-chain fatty acids, C16:0 (palmitic acid; see Figure 1.5) and 

C18:0 (stearic acid; see Figure 1.5), together with their mono-unsaturated analogues, are often 

predominant (Kaneda, 1991). 

 

Figure 1.5 Examples of fatty acids showing the carbon skeletons: (1) Palmitic acid (C16H32O2); (2) Stearic 
acid (C18H36O2); (3) iso-C15:0 (C15H30O2); (4) anteiso-C15:0 (C15H30O2); (5) iso-C17:0 (C17H34O2); (6) 
anteiso-C17:0 (C17H34O2); (7) α,ω-dicarboxylic acid (C20H38O4). 
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▲ Branched-chain fatty acids 

The iso- and anteiso- designation, as terminally branched type, represents fatty acids with a 

methyl group at the ω2 and ω3 position, respectively. These carboxylic acids such as iso- and 

anteiso-C15:0 and -C17:0 (see Figure 1.5), are considered to be primarily originated from 

sulfate-reducing bacteria (Dowling, Widdel and White, 1986; Heindel et al., 2010; Kaneda, 

1991; Wakeham and Beier, 1991), although they have also been reported in other types of 

bacteria (Heindel et al., 2012; Romano et al., 2008). 

Another type introduced here are mid-chain branched fatty acids, with a methyl group 

located at a mid-chain position. Examples are the suites of methyl-C14 to methyl-C24 (i.e., 10-

C14:0 and 9-C24:0), which are probably produced by heterotrophic bacteria living in symbiosis 

with demosponges. In addition, mid-chain branched fatty acids could be the precursors for the 

mid-chain branched alkanes preserved in ancient sediments and oils (Thiel et al., 1999a). 

▲ α,ω-dicarboxylic acids (α,ω-diacids; see an example of diacids in Figure 1.5) refer to 

organic compounds containing two carboxyl functional groups (-COOH). Earlier studies 

suggested that α,ω-diacids have multiple biological sources, e.g., higher plants (Kolattukudy, 

1980), sea-grass (Volkman et al., 1980), but can also be derived from in situ formation (via 

terminal oxidation of monoacids or other aliphatic moieties such as n-alkanes (Ishiwatari and 

Hanya, 1975; Johns and Onder, 1975) and ω-hydroxy acids (Cranwell, 1978; Eglinton, 

Hunneman and Douraghi-Zadeh, 1968). 

Fatty acids are typically studied as methyl esters, and give characteristic mass spectra 

showing a base peak at m/z 74 for saturated fatty acids, and an additional enhanced m/z 55 for 

unsaturated counterparts. For the branched iso-fatty acids, they display extra enriched m/z 

M+- 43, while anteiso- present relative higher abundance of m/z M+- 57 and M+- 29 ions 

(Peters, Walters and Moldowan, 2005a). 

1.4.3.3 Hopanoids 

Hopanoids are omnipresent natural products occurring in diverse taxonomic groups of 

microbial communities, and they are indicative of bacterial origin (Ourisson and Albrecht, 

1992; Ourisson, Albrecht and Rohmer, 1979; Rohmer, Bouvier-Nave and Ourisson, 1984). 

There is one exception, indicating their detection in plants of the genus Hopea (Pearson, 

2014). They are cyclization products of squalene and show a structure of pentacyclic 

triterpenoids (four cyclohexane rings and one cyclopentane ring; see Figure 1.6, Kannenberg 
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and Poralla, 1999; Sinninghe Damsté et al., 2017). Hopanoids are considered to be the 

functional analogue of sterols attributable to their similar structure and amphiphilic properties 

(Ourisson et al., 1987; Sáenz et al., 2015), and act as stabilizers in bacteria membranes, i.e., 

regulating and rigidifying functions comparable to that of sterols in the Eukarya (Summons et 

al., 1999; Rohmer, Bouvier and Guy, 1979; Rohmer, Dastillung and Ourisson, 1980). 

In bacteria, the functional forms of hopanoids are bacteriohopanepolyols (BHP; see Figure 

1.6), with a five carbon sugar-derived moiety bounded to the C30 pentacyclic hopane skeleton. 

These BHPs might have the potential to survive in geological time, due to additional 

functionalized groups (i.e., –OH and amino acid) located at the side chain of the hopane 

skeleton. These polar moieties are easily cross-linking by sulfur compounds (Wakeham et al., 

1995), and result in the formation of complex macromolecules and incorporation into kerogen 

(Dow, 1977; Vandenbroucke and Largeau, 2007). Apolar ringstructures of hopanoids may 

contain unsaturations or methyl groups at various positions. For instance, in the study of 

Summons et al. (1999), 2α-methylhopanes (see Figure 1.6) are possibly indicative of 

cyanobacterial inputs to sedimentary organic matter, while 3β-methylhopanes (see Figure 1.6) 

appear to be diagnostic for aerobic methanotrophs and methylotrophs as well as acetic acid 

bacteria (Blumenberg et al., 2012; Brocks, 2005; Summons and Jahnke, 1992; Zundel and 

Rohmer, 1985), or useful proxies for specific environmental conditions (Welander and 

Summons, 2012). Gammacerane, similar to hopanoids, was first identified as a C30 triterpane 

in the Green River shale with skeleton of five cyclohexane rings (Hills and Whitehead, 1966) 

and can be used as an indicator for water column stratification (Sinninghe Damsté et al., 

1995). Its biological precursor, tetrahymanol, is primarily derived from bacterivorous ciliates 

when their diet is deprived of sterols (Lennart M. Maldegem et al., 2019; Sinninghe Damsté et 

al., 1995). 

Earlier work reported that O2 is not required for hopanoid biosynthesis, but a large number 

of known hopanoid producers belong to aerobic or microaerophilic bacteria (Rohmer, 

Bouvier-Nave and Ourisson, 1984), i.e., cyanobacteria and α- and β-proteobacteria. On the 

other hand, several studies also proved biosynthesis of hopanoids could be conducted in 

anaerobic environments (Thiel et al., 1999b; Thiel et al., 2003; Pancost et al., 2000a). 
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Figure 1.6 Examples of hopanoids showing the carbon skeletons: (1) Hopanoid ring structure; (2) 
Bacteriohopanepolyols (BHP); (3) 2α-methylhopanes; (4) 3β-methylhopanes. 

Further, due to advanced methodologies, most hopanoids (excluding intact hopanoids) can 

be nowadays directly identified by the routine techniques of GC-MS, and are usually 

characterized with the major mass fragmentograms of m/z 191, and additionally, m/z 177 for 

desmethylated hopanes or m/z 205 with an extra methyl group in A ring (Sessions et al., 

2013; Volkman, 2006). Some characteristics of hopanoids cannot be determined from their 

mass spectra, i.e., isomerization of 22(R) and 22(S). In this regard, retention time has to be 

considered to identify the compounds, suggesting S always elute earlier than R (Peters et al., 

2000; Peters, Walters and Moldowan, 2005b; two possible configuration of an asymmetric 

carbon atom are called R and S, R indicate the asymmetric carbon points clockwise on the 

wheel, while S refers to counterclockwise. The biologically produced hopane precursors carry 

a 22R configuration, whereas 22S do not exist in organisms). In the petroleum industry, these 

isomerizations occurring in hopanoid skeleton have been widely used as index to determine 

the thermal maturation for crude oils and source rocks. For example, C32 hopane 

22S/(22S+22R), which can be also calculated for other C31-C35 hopanoidal compounds. This 

ratio increases with the maturity until it reaches a constant ratio of 0.6 (Peters, Walters and 

Moldowan, 2005b). 
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Figure 1.7 Examples of steroids showing the carbon skeletons: (1) Sterane (C27H48); (2) Lanosterol 
(C30H50O); (3) Cycloartenol (C30H50O); (4) Diasterane (C27H48); (5) 24-n-propylcholestane (C30H54); (6) 
24-isopropylcholestane (C30H54); (7) 4α,23,24-trimethylcholest-22-en-3β-ol (dinosterol); (8) 22,23-
methylene-4α,23,24-trimethylcholest-5-en-3β-ol (4α-methylgorgosterol) 
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1.4.3.4 Steroids 

Steroids, consisting of tetracyclic triterpenoids (see Figure 1.7), are formed from cyclization 

of squalene epoxide (2,3-oxidosqualene) in an O2-dependent pathway that resemble the 

biosynthetic pathway of hopanoids (Ourisson et al., 1987; Pearson, 2014; Summons et al., 

2006). They are vital components of cellular membranes of all eukaryotic organisms and 

function as controlling membrane’s permeability and flexibility. In addition to all eukaryotic 

organisms, it occurs in microalgae and protozoans (Volkman, 2003). For unknown reasons, a 

very few bacteria can also produce steroids (Bode et al., 2003; Pearson, Budin and Brocks, 

2003). Enzymes involving in sterol biosynthesis, such as oxidosqualene cyclase, convert the 

compound 2,3-oxidosqualene into one of three biosynthetic intermediates: lanosterol (see 

Figure 1.7) serve as precursors of cholesterol in animals and fungi, while cycloartenol (see 

Figure 1.7) and parkeol are sterol intermediates in plants and sea cucumbers (Desmond and 

Gribaldo, 2009; Dupont et al., 2012; Kushiro and Ebizuka, 2010; Meyer et al., 2000). 

The term “desmethylsteranes” is used to identify the steranes that do not have an additional 

alkyl group at ring A. These desmethylsteranes with 27-29 carbon atoms are the most 

abundant steranes and occur widespread in fossil materials. Despite the fact that C27-C29 

desmethylsteranes are not characteristics for the specific taxon, they still provide information 

about their possible biological precursors. For instance, cholestane (C27) commonly occurs in 

animals, algae and plants, while ergostane (C28) could be derived from yeasts and fungi, and 

algae (Brocks and Summons, 2004; Volkman, 2003). For C29 homologues, stigmastane, is 

typically found in higher plants (Huang and Meinschein, 1979; Volkman, 1986). Diasteranes 

(see Figure 1.7), steroids with structures distinctly different from normal steranes, have no 

direct biological precursors. Instead, diasteranes are formed by a diagenetic rearrangement of 

sterols which is catalized by clay minerals (Brocks and Summons, 2004; Peters, Walters and 

Moldowan, 2005a; van Kaam-Peters et al., 1998). 

Steroids often possess alkyl substituent at position C-24 in the side chain. This is regarded 

as indicative of eukaryotes, since no bacteria is known so far to have the capacity to alkylate 

the steroid side chain (Brocks et al., 2003; Volkman, 2003). Specifically, 24-n-

propylcholestanes (see Figure 1.7) are indicators for marine conditions (Moldowan, Seifert 

and Gallegos, 1985), and 24-isopropylcholestane skeleton (see Figure 1.7) is typically derived 

from sponges (McCaffrey et al., 1994b). Furthermore, steranes with alkyl substituents at C-2 

or C-3 were detected in some ancient sediments and petroleums, and their biological 

precursors have not been observed in extant organisms (Summons and Capon, 1988c). 
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Instead, they are possibly formed via microbial transformation during the early stages of 

diagenesis (Summons and Capon, 1991). 

Another series of alkylsteranes is methyl group at C-4, and sterols with this corresponding 

carbon structure are ubiquitous in dinoflagellates, although multiple other potential sources 

are existing (i.e., Pavlovales order of haptophyte algae, Volkman, Kearney and Jeffrey, 1990; 

methanotrophic bacteria of the family Methylococcaceae, Schouten et al., 2000a; diatoms, 

Rampen et al., 2010 and Volkman et al., 1993; higher plants, Yano et al., 1992; and various 

bacteria, Volkman, 2003 and 2005). As a consequence, relative low concentrations of 4-

methylsterols are not specific for the particular organisms, but significant amounts can be 

used as diagnostic biomarkers for dinoflagellates. For instance, one distinctive group of 4-

methylsterols, the dinosterols (4α,23,24-trimethylcholest-22-en-3β-ol, see Figure 1.7 and 

chapter 2), are considered to be an origin of dinoflagellates. In addition, 4α-methylgorgosterol 

(22,23-methylene-4α,23,24-trimethylcholest-5-en-3β-ol, see Figure 1.7 and chapter 3) was 

described to occur in some dinoflagellate species, and particularly indicative of the genera 

Peridinium, Alexandrium and Pyrodinium (Atwood, Volkman and Sachs, 2014; Houle, Lopez 

and Leblond, 2018), and refs therein. 

Steroids are readily identified based on their mass spectra and often investigated as 

trimethylsilyl (TMS-) derivatives. In the analysis of these derivatives, the ion fragmentation 

of [m/z 129 + (M+-90) + M+] for the ∆5-unsaturated sterols and [m/z 215 + (M+-90) + M+] for 

the saturated sterols were used for identification. In addition to the above specific 

fragmentations, retention time are also applied to help identify particular series, i.e., 5β(H)-

stanols elute always earlier than 5α(H)-stanols (α indicate the hydrogen atom is located below 

the plane of the paper while β refers to the position above the plane). Like the hopanoids, 

isomerization of steroid skeleton is very useful to understand the maturity with respect to the 

stages of oil generation. For instance, low ratios of C29 sterane 20S/(20S+20R) 

(configurations at the 20 carbon position) indicate low maturation for the oils, and it reach an 

equilibrium value of c. 0.55 (Peters, Walters and Moldowan, 2005b). 

1.4.3.5 Stable isotope signatures 

Fixation or assimilation of inorganic carbon to an accumulation of organic biomass is usually 

accompanied by significant isotopic fractionation of 13C over 12C (expressed as δ13C). Typical 

δ13C values of inorganic carbon substrates in geological settings ranges from -6 to -8‰ for 

atmospheric CO2; while presenting -2 to +2 for dissolved HCO3
- and CO3

2- (‰: relative to 
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standard VPDB; Brocks, 2005). These concomitant fractionations are determined by several 

factors such as metabolic pathways of organisms, carbon source and environmental 

conditions. In general, it is well known that organic carbon show depletion in 13C relative to 

inorganic carbon due to the sizeable fractionation associated with the biologically processed 

synthesis, and thus the isotopically lighter carbon (12C-enriched, i.e., with lower δ13C) of 

organic compounds have been interpreted as a biosignature (Schidlowski, 2001; Hayes, 

2001). Previous works reported light δ13C values in Archaean rocks from Isua Supracrustal 

Belt (West Greenland), suggesting the emergence of early life on Earth dating back to 3800 

Myr ago (Mojzsis et al., 1996; Schidlowski, 2001). On the other hand, the carbon 

fractionation can also be caused abiogenically under certain circumstances (i.e., hydrothermal 

settings), for instance, from abiotic Fischer-Tropsch-type synthesis (Mccollom et al., 2010; 

van Zuilen, Lepland and Arrhenius, 2002). Consequently, these findings imply that care must 

be taken when tracing the evidence of ancient life by using carbon isotope signatures from old 

rock samples that may have yielded non-biological signals. 

Furthermore, δ13C measurements have been applied at the molecular level termed as 

“compound-specific isotope analyses”. This isotopic analysis of individual organic biomarker 

molecules provides valuable information with respect to the paleoenvironments and 

biogeochemistry of ancient ecosystems (Freeman et al., 1990; Hayes et al., 1990; van der 

Meer et al., 2001; Schouten et al., 1998b; van der Meer, Schouten and Sinninghe Damsté, 

1998). 

In addition to carbon, other isotopic systems are also used as indicators for early life, such 

as sulfur (S) isotopes that show 34S-depletion in Archaean fossil samples, which demonstrate 

microbial biological activity regulating sulphate reduction processes (Canfield, Farquhar and 

Zerkle, 2010; Philippot et al., 2007; Shen et al., 2009; Shen and Buick, 2004; Shen, Buick and 

Canfield, 2001), and the fractionation of iron (Fe) isotopes inferring microbial activity (Beard 

et al., 1999; Czaja et al., 2013; Icopini et al., 2004), and the applicability of nitrogen (N) 

isotopes was also investigated as indicative of biogenic processes (Beaumont and Robert, 

1999; Papineau et al., 2005; Pinti, Hashizume and Matsuda, 2001). Moreover, several works 

revealed biological isotope fractionations for the transition metals, for instance preferential 

assimilation of light molybdenum (Mo) by cyanobacteria (Zerkle et al., 2011), incorporation 

of light copper (Cu) into cellular protein (Zhu et al., 2002), fractionation of chromium (Cr) 

occurred during bacteria reduction pathways (Sikora, Johnson and Bullen, 2008) as well as 

biogenic uptake of nickel (Ni) and Zinc (Zn), Vance et al., 2017). 



Introduction 

25 
 

1.5 Study Site: the atoll of Kiritimati, Central Pacific 

The atoll of Kiritimati (formerly Christmas Island), which was discovered by Captain James 

Cook in 1777 (Woodroffe and McLean, 1998), is located c. 200 km north of the Equator at 

1º55’ N, 157º25’ W in the Central Pacific (see Figure 1.8). It is the southeasternmost of the 

Northern Line Islands, c. 41 km long from NW to SE and 25 km from north to south coast at 

the western end. The atoll covers a surface area of (c. 360 km2, Valencia, 1977) and is 

regarded as the largest coral atoll in the world. The observed distinctive morphologies of the 

atoll, together with the distributions of lagoon (in the west), the interconnected lakes (in the 

center) and the dry part (in the east), suggest a drop in sea level after a Mid-Holocene 

highstand and a possible northwestward tilting on the atoll (Valencia, 1977; Woodroffe and 

McLean, 1998). The atoll’s inland exhibits rather uniform height, with masses of reef rock, 

not exceeding 4 m above msl (Wentworth, 1931). 

 

Figure 1.8 Location of the atoll of Kiritimati in the Pacific Ocean and its satellite image showing reticulate 
distribution of the lakes (from Google Earth and GraphicMaps.com). 

The surface of the atoll shows a reticulate pattern formed by numerous lakes (c. 500), with 

salinities ranging from brackish to hypersaline. Considerable variations between the lakes 

occur, Trichet et al. (2001), for example, observed salinities of 69‰ and 202‰ in two 

adjacent lakes, and Valencia (1977) reported distinct water levels up to 1 m between nearby 

lakes. Most of the lakes are populated by thick and highly developed benthic microbial mats 



1.6 Integrated analytical methodology 

26 
 

showing clear lamination, ongoing mineral precipitation and variations in microbial 

community (cf. Blumenberg et al., 2013; Blumenberg, Thiel and Reitner, 2015; Bühring et al., 

2009; Ionescu et al., 2015; Schneider et al., 2013). During the cold war several nuclear 

weapon tests occurred in the Kiritimati area, e.g. British military performed hydrogen bombs 

directly above or near the atoll in 1957 and 1958. Subsequent tests were conducted by the 

U.S. Army in 1962. This atoll is sparsely inhabited, and it has been only recently recolonized 

with a population of around 2000 people in 1989, but it significantly increased in recent years, 

up to 6500 in the census of 2015, and they are currently living in 5 villages on the atoll. 

The region of Kiritimati experiences a dry climate, with a variable annual precipitation. 

For instance, averaging 869 mm during 1947-1991, while only 177 mm in 1950. In general, 

the climate is affected by the El Niño-Southern Oscillation (ENSO) atmospheric 

phenomenon. This ENSO have significant impact on rainfall and sea level variability of the 

island, and hence the changes in lake salinities. Specifically, there is recharge of the lakes 

during El Niño wet events, when heavy rains induce high sea levels and flooding, thus a 

decrease in lake salinities. However, La Niña dry events triggers reduced precipitation and 

droughts, causing higher evaporation and increased lake salinities. Most inner part of the atoll 

is composed of scarce scrub, dominated by Tournefortia argentea, Scaevola taccada, and 

Suriana maritima, with the ground coverage of Sida fallax, Lepturus repens, Boerhavia 

tetrandra and Sesuvium portulacastrum (Chock and Hamilton, 1962; Wester, 1985; 

Woodroffe and McLean, 1998). Furthermore, the primary faunal elements in the lakes include 

the brine shrimp Artemia, the land crab Gecarcoidea natalis as well as the milkfish Chanos 

chanos (Saenger et al., 2006; Shen et al., 2018). 

1.6 Integrated analytical methodology 

Several proxies based on biosignatures such as molecular biomarkers, isotope fractionations 

as well as microfacies are investigated in this work. To a better understanding of these 

biosignatures and their interactions in modern microbial mats, multiple approaches have been 

utilized to fulfill the objectives for this thesis. The approaches include histological thin 

section, Scanning electron microscope (SEM), Gas Chromatography-Mass Spectrometry 

(GC-MS), Gas Chromatography-Combustion-Isotope Ratio Mass Spectrometry (GC-C-

IRMS), Pyrolysis-Gas Chromatography-Mass Spectrometry (Py-GC-MS), bulk geochemical 

analysis and bulk isotope analysis. The more detailed description of these techniques will be 

given in the following chapters. 
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Tracing the fate of steroids through a hypersaline microbial mat 

(Kiritimati, Kiribati/Central Pacific) 

(published in Geobiology) 

Yan Shen, Volker Thiel, Jan-Peter Duda, Joachim Reitner 

Abstract 

Eukaryotic steranes are typically absent or occur in very low concentrations in Precambrian 

sedimentary rocks. However, it is as yet unclear whether this may reflect low source inputs or 

a preservational bias. For instance, it has been proposed that eukaryotic lipids were 

profoundly degraded in benthic microbial mats that were ubiquitous prior to the advent of 

vertical bioturbation in the Cambrian (“mat-seal effect”). It is therefore important to test the 

microbial turnover and degradation of eukaryotic steroids in real-world microbial mats. Here 

we assessed steroid inventories in different layers of a microbial mat from a hypersaline lake 

on Kiritimati (Central Pacific). Various eukaryote-derived C27-C30 steroids were detected in 

all mat layers. These compounds most likely entered the mat system as unsaturated sterols 

from the water column or the topmost mat, and were progressively altered during burial in the 

deeper, anoxic mat layers over c. 103 years. This is reflected by increasing proportions of 

saturated sterols and sterenes, as well as the presence of thiosteranes in certain horizons. 

Sterol alteration can partly be assigned to microbial transformation but is also due to chemical 

reactions promoted by the reducing environment in the deeper mat layers. Notably, however, 

compounds with a sterane skeleton were similarly abundant in all mat layers and their 

absolute concentrations did not show any systematic decrease. Decreasing steroid/hopanoid 

ratios with depth therefore rather indicate a progressive “dilution” by lipids derived from 

heterotrophic bacteria. Further, pyrolysis revealed that steroids, in contrast to hopanoids, were 

not sequestered into non-extractable organic matter. This may lead to a preservational bias 

against steroids during later stages of burial. Taken together, steroid preservation in the 
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microbial mat is not only controlled by heterotrophic degradation, but rather reflects a 

complex interplay of taphonomic processes. 

Keywords: eukaryotes, mat-seal effect, organic biomarkers, preservational pathways, 

pyrolysis, taphonomy 

2.1 Introduction 

Microbial mats are mm- to cm- thick benthic communities with a clear vertical zonation of 

different functional microbial groups (Van den Ende and Van Gemerden, 1994; Van 

Gemerden, 1993). Inorganic carbon assimilation, commonly by photoautotrophs, leads to an 

accumulation of biomass, which is subsequently transformed and degraded by aerobic and 

anaerobic heterotrophic prokaryotes in deeper mat layers. Hence, only a minor fraction of the 

carbon becomes preserved as residual organic matter and/or carbonate deposits. In the 

Proterozoic, prior to the emergence of vertical bioturbation at the Precambrian-Cambrian 

transition (“agronomic revolution” or “substrate revolution”; Bottjer, Hagadorn and Dornbos, 

2000; Seilacher, 1999; Seilacher and Pflüger, 1994), microbial mats probably have been more 

widespread in marine environments than in the Phanerozoic (Grotzinger and Knoll, 1999; 

Riding, 2011; Walter, 1976) and may have been a major factor influencing global 

biogeochemical cycles (Canfield and Des Marais, 1993; Canfield, Sørensen and Oren, 2004; 

Hoehler, Bebout and Des Marais, 2001). 

Eukaryote-derived steranes are typically absent or occur in very low concentrations in 

Precambrian sedimentary rocks. The scarcity of sedimentary steranes may be explained by a 

limited ecological significance of eukaryotic algae and thus, a minor contribution to primary 

production (Anbar and Knoll, 2002; Knoll, Summons, Waldbauer and Zumberge, 2007; 

Blumenberg et al., 2012), and/or thermal destruction (e.g. in the 1.64 Ga Barney Creek 

Formation; Summons, Powell and Boreham, 1988). Alternatively, however, this feature might 

reflect a taphonomic bias against the preservation of eukaryotic lipids. Prior to the advent of 

vertical bioturbation at the Ediacaran-Cambrian transition, pervasive benthic microbial mats 

may have formed a mechanical and biochemical barrier against eukaryotic biomass derived 

from the water column and the upper mat layers (“mat-seal effect”, Pawlowska, Butterfield 

and Brocks, 2013). In this scenario, signals from heterotrophic microorganisms living within 

the deeper mat layers would be preferentially preserved, thus leading to a suppression of the 

primary ecological signal. 
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The atoll of Kiritimati (Republic of Kiribati, Central Pacific: Figure 2.1) is a perfect study 

site for testing preservational pathways of steroids in microbial mats. The island contains c. 

500 brackish to hypersaline lakes with well-developed microbial mats (Trichet et al., 2001; 

Valencia, 1977). Several of these mats have successfully been characterized by using lipid 

biomarkers (Blumenberg et al., 2013; Blumenberg, Thiel and Reitner, 2015; Bühring et al., 

2009). Increased hopane/sterane ratios in the non-extractable lipids from a Lake 2 mat suggest 

that steroids may indeed suffer from a potential mat-seal effect (Blumenberg, Thiel and 

Reitner, 2015). However, the detailed preservation pathways of eukaryote-derived steroidal 

compounds have not been assessed in any of the Kiritimati mats so far. 

 

Figure 2.1 (a) Satellite view of Kiritimati atoll (Landsat 7 image, 1999); (b) Enlarged view showing the 
study site (Lake 22; red dot: sampling site; Google Earth image, 2017); (c) Map showing the location of 
Kiritimati in the Central Pacific (modified from Wikipedia). 

Here we trace the fate of eukaryotic steroids in an active microbial mat from the 

hypersaline Lake 22 at the northern part of the Kiritimati atoll (Figure 2.1). A detailed 

analysis of steroid assemblages at different depths of the mat allows to elucidate the 

taphonomy of these biomarkers after their introduction into the microbial mat system. 
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2.2 Materials and methods 

2.2.1 Location and samples 

The atoll of Kiritimati (formerly Christmas Island) is located close to the Equator at 1º55’ N, 

157º25’ W in the Central Pacific (Figure 2.1). It is part of the Northern Line Islands of the 

Republic of Kiribati, the largest coral atoll in the world (surface area c. 360 km2). Kiritimati 

has an arid climate (-2 mm/d long term net rainfall minus evaporation), and harbors 

approximately 500 brackish to hypersaline lakes (Valencia, 1997; Trichet et al., 2001). 

Substantial differences can be observed between the lakes in terms of salinities (e.g. 69‰ and 

202‰ in two adjacent lakes; Trichet et al., 2001), colors of the top sediments (gray, red, 

orange, pink), and water levels (up to 1 m between adjacent lakes; Valencia, 1977). As a 

consequence, mats are highly diverse and exhibit fundamental variations in microbial 

community composition between different lakes (cf. Blumenberg et al., 2013; Blumenberg, 

Thiel and Reitner, 2015; Bühring et al., 2009; Ionescu et al., 2015; Schneider et al., 2013). 

Kiritimati is influenced by the El Niño-Southern Oscillation (ENSO). Recharge of the 

lakes occurs during El Niño wet events, when heavy rains and high sea levels induce flooding 

and a decrease in lake salinities. During La Niña dry events, in turn, reduced precipitation and 

higher evaporation cause droughts and increased lake salinities. The biota prevailing in the 

vicinity of the lakes consists of the land crab Gecarcoidea natalis, the mangrove Rhizophora 

mucronata, the parasitic climber Cassytha filiformis, the grass Lepturus repens, and the 

ironwood Pemphis acidula. Important faunal elements of the lakes comprise the brine shrimp 

Artemia and occasionally the milkfish Chanos chanos (Saenger, Miller, Smittenberg and 

Sachs, 2006). 

Microbial mats from the Lake 22 at the northern part of the Kiritimati atoll (Figure 2.1) are 

of different visual appearance as those described from other ponds on the island (cf. Bühring 

et al., 2009; Arp et al., 2012; Blumenberg et al., 2013; Blumenberg, Thiel and Reitner, 2015; 

Ionescu et al., 2015; Schneider et al., 2013) and have not been investigated so far. The water 

salinity in this lake declined from 149‰ in 1988 to 140‰ in 1990 (Trichet et al., 2001), and 

132‰ in 2002 (Arp et al., 2012), but increased to 250‰ in 2011 (own data, unpublished), 

probably indicating prevailing ENSO activity. The analyzed mat was collected during a field 

trip in March 2011 at the margin of the lake (1º58.154’ N, 157º20.035’ W; water depth c. 0.2 

m; Figure 2.1). A cube-shaped sample was cut out with a knife, immediately cooled at 4°C in 

the field, and later frozen at -20°C until further processing in the home laboratory. For this 
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study, six sub-samples, each representing a 0.5-1 cm thick mat layer, were taken from 

different depths of the mat profile (12 cm total thickness; Figure 2.2). 

2.2.2 Accelerator Mass Spectrometry (AMS) dating 

AMS 14C dating was performed in the Laboratory of Ion Beam Physics at the ETH Zurich, 

Switzerland (see http://www.Ams.ethz.ch/ for details). The analyses were conducted on small 

aragonite aggregates which were formed within the extracellular polymeric substances (EPS) 

of the microbial mat. The obtained 14C ages (±40 years) have been corrected for δ13C on the 

basis of 14C concentrations in the sample and are provided in yrs BP (before present; i.e. 

before 1950, the start of worldwide nuclear bomb tests). 

 

Figure 2.2 Analyzed microbial mat from Lake 22 (12 cm thickness in total), indicating the position of the 
six sampled layers. 14C AMS dating of carbonate aggregates from the top of the mat (layer 1, arrow) 
yielded an age of 62 ± 40 yrs BP. 

2.2.3 Bulk analysis 

Homogenized aliquots of the freeze-dried samples were subjected to C/N/S analysis, using a 

Hekatech EA 3000 CNS analyzer. To determine the contents of organic carbon (Corg) and 

carbonate carbon (Ccarb) simultaneously, the samples were also analyzed with a LECO RC 

612 Multiphase-Carbon-Analyzer. Freeze-dried ground mat sample was placed in a quartz 

combustion boat and heated from 120 to 1000°C in a stream of O2 (750 ml/min). The time- 

and temperature-resolved CO2 release was detected with an infrared absorption cell. 

http://www.ams.ethz.ch/
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2.2.4 Extraction and derivatization 

1 g of freeze dried homogenized sample from each layer was suspended in dichloromethane 

(DCM)-extracted millipore water. To remove the carbonate, HCl (10%) was added dropwise 

until CO2 development ceased. The decalcified samples were washed with water until a 

neutral pH was reached. Lipid biomarkers were extracted in the following steps: (i) 15 ml 

DCM/methanol (MeOH) mixture (2:1, V:V), (ii) 15 ml DCM/MeOH mixture (3:1, V:V), (iii) 

15 ml DCM, and (iv) 15 ml n-hexane (20 min ultrasonication, respectively). The resulting 

total lipid extracts were combined and carefully reduced to 1 ml in a gentle stream of N2. 

To make ester-bound and free carboxylic acids GC-amenable, a mixture of 

trimethylchlorosilane (TMCS)/MeOH (1:9, V:V) was added to a 10% aliquot of the total lipid 

extract (80°C, 60 min). The resulting carboxylic acid methyl esters and remaining neutral 

lipids (including sterols and steroid hydrocarbons) were extracted from the reaction mixture 

by vigorous shaking with 3×1 ml n-hexane. The extracts were combined and evaporated to 

near-dryness under a gentle stream of N2, re-dissolved in n-hexane, and analyzed by gas 

chromatography-mass spectrometry (GC-MS). To make alcohols (including sterols) GC-

amenable, a 20% aliquot of the total lipid extract was silylated using BSTFA (N,O-

bis(trimethylsilyl)trifluoroacetamide) containing 5% (V:V) TMCS as a catalyzer (70°C, 60 

min). The resulting trimethylsilyl (TMS-) derivatives were dried, re-dissolved in n-hexane, 

and analyzed by gas chromatography-mass spectrometry (GC-MS). 

2.2.5 Gas chromatography-mass spectrometry (GC-MS) 

GC-MS analyses were carried out using a Thermo Fisher Trace 1300 Series GC coupled to a 

Thermo Fisher Quantum XLS Ultra MS. The GC was equipped with a capillary column 

(Phenomenex Zebron ZB-5, 30 m length, 0.1 μm film thickness, inner diameter 0.25 mm). 

The derivatized extracts were injected into a splitless injector and transferred to the GC 

column at 270°C. The carrier gas was helium at a flow rate of 1.5 ml min-1. The GC oven 

temperature was ramped from 80°C (1 min) to 310°C at 5°C min-1 (held 20 min). Electron 

ionization mass spectra were recorded in full scan mode at 70 eV, a mass range of m/z 50-600 

and a scan time of 0.42 s. n-eicosane-D42 was used as an internal standard for quantification. 

2.2.6 Pyrolysis-gas chromatography-mass spectrometry (Py-GC-MS) 

Extraction residues were pyrolysed on a fast-heating Pt-filament using a Pyrola 2000 

pyrolysis device (Pyrolab SB) coupled to a Varian CP3800 GC and a Varian 1200L MS. The 
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filament, loaded with c. 5 mg of sample powder and 120 ng of an internal standard (n-

eicosane-D42), was heated in 2 ms to 560°C (held 30 s). Pyrolysis products were flushed 

from the chamber into the GC split injector (305°C) and transferred to the GC column using a 

split rate of 75. The GC instrument was equipped with a Phenomenex Zebron ZB-5 capillary 

column (30 m, 0.1 µm film thickness, inner diameter 0.32 mm). The carrier gas was He at a 

flow rate of 1.4 ml min-1. The GC oven temperature was ramped from 40°C (1 min) to 330°C 

at 10°C min-1 and held for 13 min. Electron ionization mass spectra were recorded in full scan 

mode at an electron energy of 70 eV, a mass range of m/z 50 to 500, and a scan time of 0.5 s. 

2.3 Results 

2.3.1 Visual appearance of the microbial mat 

The investigated microbial mat was situated close to the mouth of a small creek transporting 

lesser saline shallow groundwater into the highly saline lake basin. In the mixing zone of both 

water masses, a high microbial productivity resulted in the formation of a thick, blackish- to 

brownish colored microbial mat. 

The studied microbial mat has a thickness of about 12 cm and is subdivided into two major 

facies zones. The lower, older portion (layers 5-6; Figure 2.2) is c. 5 cm thick, has a blackish 

color, and is coarsely laminated. The c. 1-2 cm thick laminae contain differently shaped 

carbonate particles (small seed- and dumbbell type crystals, crystal aggregates, as well as 

peloidal aggregates and spherical bodies) of varying size (10 µm-1 mm). EDX- and Raman 

analyses revealed mainly aragonite and rarely Mg-calcite and proto-dolomite mineralogies. 

These particles were likely formed through EPS degradation (cf. Arp et al., 2012; Ionescu et 

al., 2015). Additionally, some sulfate particles (e.g. gypsum) were detected. At the facies 

boundary (between layer 4 and 5, see Figure 2.2), mineralized particles are significantly 

enriched. The origin of the facies boundary is unknown, but may be related to changes in 

precipitation due to El Niño events. Carbonate particles from a corresponding depth in an 

immediately adjacent mat yielded a 14C age of 1,291 ± 40 yrs BP. 

The upper facies (layers 1-4; Figure 2.2) has a thickness of c. 7 cm and exhibits again a 

rough 1-2 cm layering. In contrast to the older facies section, the color is more brownish to 

pinkish, except layer 3 which is slightly darker. The mat has an irregular top layer, which 

shows V-shaped fractures with buckled margins, similar to Tepee fabrics known from other 

evaporitic settings. The microbial mat is covered by a crust of halite and gypsum. The upper 



2.3 Results 

 

52 
 

facies contains a variety of mineral particles similar to the lower facies, probably also formed 

through EPS degradation (cf. Arp et al., 2012; Ionescu et al., 2015). In addition to the 

mineralisates, remains of crustaceans (Artemia sp.), bones and scales of fishes (“milkfish” – 

Chanos chanos, and Tilapia sp.), rare Miliolid foraminifers, algae and land plants were 

observed. 14C AMS analyses on carbonate particles from layer 1 revealed a radiometric age of 

62 ± 40 yrs BP. 

2.3.2 Bulk geochemical data 

Bulk geochemical data for individual mat layers showed no significant trend (Table 2.1). The 

highest amount of Corg (15.5%) was observed in layer 1, while the other mat layers showed 

somewhat lower but quite constant values (7.5 to 10.6%). The CaCO3 contents generally 

showed a narrow range between 20-25% throughout the mat, with a somewhat higher 

abundance (30.3%) in layer 5. N and S ranged from 0.9-2.1%, and 1.9-3.3%, respectively, 

with highest values occurring in the topmost mat layer 1. 

Table 2.1 Bulk geochemical data for the microbial mat layers. 

 

 

2.3.3 Quantitative distribution of steroids 

The most abundant steroids were saturated sterols (Δ0, stanols), in particular 5α-cholestan-3β-

ol (cholestanol, C27
∆0), 5α-24-methylcholestan-3β-ol (ergostanol, C28

∆0) and 5α-24-

ethylcholestan-3β-ol (stigmastanol, C29
∆0; Figure 2.3, Table 2.2). The stanols showed an 

overall increase in concentration with depth. The highest concentrations of cholestanol and 

stigmastanol appeared in layer 6 (26.6 and 12.6 µg/g dry mat, respectively), while the highest 

abundance of ergostanol was found in layer 2 (15.5 µg/g dry mat). In addition, an isomer of 

cholestanol, coprostanol (5β-cholestan-3β-ol) was observed in each mat layer. The 

coprostanol also showed an increased abundance with depth, with the highest amount 

appearing in layer 5 (7.0 µg/g dry mat). 

Layer Ctot (%) Corg(%) Ccarb (%) CaCO3 
(%) Ntot (%) Stot (%) 

1 17.9 15.5 2.4 20.3 2.1 3.3 
2 11.6 9.1 2.6 21.5 1.0 2.7 
3 10.5 7.5 3.0 24.8 0.9 2.1 
4 10.5 7.6 2.9 24.2 0.9 2.1 
5 12.7 9.0 3.6 30.3 1.1 1.9 
6 13.0 10.6 2.4 20.1 1.2 2.1 
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Unsaturated sterols (stenols) accounted for another major portion of the total steroids. 

These compounds include cholest-5-en-3β-ol (cholesterol, C27
∆5), 24-methylcholest-5-en-3β-

ol (campesterol, C28
∆5), and 24-ethylcholest-5-en-3β-ol (β-sitosterol, C29

∆5; Figure 2.3, Table 

2.2). Unlike the stanols, the stenols showed an overall decrease in abundance with depth. For 

instance, cholesterol was most abundant in layer 2 (8.1 µg/g dry mat) and showed lowest 

amounts in layer 4 (1.5 µg/g dry mat) and layer 6 (1.6 µg/g dry mat). Similarly, the highest 

concentration of 24-ethylcholesta-5,22-dien-3β-ol (stigmasterol, C29
∆5,22) was present in layer 

2 (9.8 µg/g dry mat) and the lowest value was found in layer 6 (2.1 µg/g dry mat). 

Further, dinosterol (4α,23,24-trimethylcholest-22-en-3β-ol) was observed in each mat 

layer. This compound did not follow the depth trend of the other stenols, as the highest 

amount (9.3 µg/g dry mat) was observed in layer 6, while the lowest appeared in layer 2 (2.2 

µg/g dry mat; Table 2.2). 

C27-C29 sterenes were detected in each mat layer, including 5α-cholest-2-ene, 5α-24-

methylcholest-2-ene, and 5α-24-ethylcholest-2-ene. In addition, a C27 thiosterane (5α-

cholestane-3β-thiol, see Figure A.1 for mass spectrum) was exclusively detected in layer 5 

(29.1 µg/g dry mat; Table 2.2). 
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Table 2.2 Concentrations of steroids in the microbial mat layers (μg/g dry mat; n.d. = not determined). 

Trivial 

names 
- - - - Coprostanol Cholesterol Cholestanol Brassicasterol Thiosterane Campesterol Ergostanol Stigmasterol β-sitosterol Stigmastanol Dinosterol 

Compound 
 

 
Layer 

5α-cholest-
2-ene 

Unknown 
cholestene 

5α-24-
methylchole

st-2-ene 

5α-24-
ethylcholest

-2-ene 

5β-cholestan-
3β-ol 

Cholest-5-
en-3β-ol 

5α-
cholestan-

3β-ol 

24-
methylcholesta
-5,22-dien-3β-

ol 

5α-
cholestane-

3β-thiol 

24-
methylcholest

-5-en-3β-ol 

5α-24-
methylchol
estan-3β-ol 

24-
ethylcholesta-

5,22-dien-3β-ol 

24-
ethylcholest-
5-en-3β-ol 

5α-24-
ethylcholestan

-3β-ol 

4α,23,24-
trimethylchole
st-22-en-3β-ol 

1 1.0 0.3 0.7 0.4 2.6 1.9 14.8 3.4 n.d. 7.5 9.2 2.9 2.8 6.9 4.8 

2 2.1 1.1 1.3 1.2 5.4 8.1 21.7 14.7 n.d. 23.0 15.5 9.8 9.1 12.5 2.2 

3 1.3 0.2 0.6 0.6 3.2 2.6 14.3 2.4 n.d. 5.3 6.6 2.5 2.9 6.4 2.9 

4 1.6 0.3 0.6 0.4 3.5 1.5 25.3 1.0 n.d. 6.3 12.0 3.7 3.5 9.0 5.4 

5 4.1 1.5 2.2 0.5 7.0 3.0 26.0 n.d. 29.1 8.4 13.0 2.9 3.4 9.2 4.6 

6 2.1 0.2 0.9 0.3 6.6 1.6 26.6 n.d. n.d. 5.6 13.5 2.1 3.2 12.6 9.3 
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Figure 2.3 Partial GC-MS chromatograms (total ion current) showing sterol distributions (TMS-
derivatives) in (a) layer 2, and (b) layer 5 of the microbial mat studied. 
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2.3.4 Relative variations of steroids 

 

Figure 2.4 Stanol/stenol ratios for the microbial mat layers. 

The ratios of 5α-stanols to their corresponding ∆5-stenols (Δ5: stenols with double bond 

located at C-5) showed a clear increase with depth (Figure 2.4). The highest stanol/stenol 

ratios were observed for layer 6, with 17.0, 2.4, and 3.9 for the C27-, C28-, and C29- pairs, 

respectively (Table 2.3). Likewise, sterene/(∆5-stenol+∆5,22-stenol) ratios (sterene/stenol) 

increased with depth (Figure 2.5). Here, C27- and C28- sterene/stenol ratios were highest in 

layer 5 (1.86 and 0.27, respectively), while the C29- compounds showed the highest ratio 

(0.11) in layer 3 (Table 2.3). 

Table 2.3 Stanol/stenol and sterene/stenol ratios for the microbial mat layers. 

Layer stanol/stenol (Δ0/Δ5) sterene/stenol (sterene/Δ5+Δ5,22) 
C27 C28 C29 C27 C28 C29 

1 7.6 1.2 2.5 0.63 0.07 0.06 
2 2.7 0.7 1.4 0.40 0.03 0.06 
3 5.5 1.3 2.2 0.60 0.08 0.11 
4 16.4 1.9 2.6 1.25 0.08 0.05 
5 8.6 1.6 2.7 1.86 0.27 0.08 
6 17.0 2.4 3.9 1.48 0.16 0.06 
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Figure 2.5 Sterene/stenol ratios for the microbial mat layers. 

Figure 2.6 illustrates the relative abundance of the different steroid classes with respect to 

the total steroids in each mat layer (see also Table 2.3). The percentages of both sterenes and 

stanols increased with depth, whereas the relative contributions of stenols declined. However, 

no systematic decrease in the total amount of steroids with depth was observed. While the 

highest abundance of total steroids occurred in layer 2 (125.6 µg/g dry mat), the second 

highest value appeared deep in the mat (layer 5: 110.5 µg/g dry mat), and the lowest value 

was found for layer 3 (49.1 µg/g dry mat). 
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Figure 2.6 Proportions of different steroid classes in the microbial mat layers. 

2.3.5 Steroids vs. hopanoids and fatty acids 

Hopanoids and fatty acids (FAs) were observed in each mat layer. Compound distributions 

and concentrations (normalized to dry sample wt.) are detailed in Table A.1. The summed 

concentrations of the major GC-amenable hopanoids, FAs, and steroids (for comparison) are 

shown in Figure 2.7. Hopanoids increase in abundance with depth, while FAs and steroids 

show no obvious trend. FAs are several times more abundant than steroids, but the 

distributions of these compound classes are very similar (high amounts in layer 2, low 

amounts in layers 3 and 4). Largely the same distributions were observed when the compound 

concentrations were plotted against Corg, according to fairly constant organic carbon contents 

in all microbial mat layers (~7-10% in layers 2-5). The only exception is layer 1, which shows 

the lowest abundances of all three lipid classes relative to Corg, which is notably increased 

(15.5%). 
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Figure 2.7 Abundances of steroids, hopanoids, fatty acids (μg/g dry mat; μg/g Corg), and Corg (wt. %) in the 
microbial mat layers. 

2.3.6 Pyrolysis 

In addition to the extractable lipid portion, the extraction residues of the microbial mat layers 

were analyzed using Py-GC-MS. Ion chromatograms representing steroids (i.e. including 

sterenes, steranes and sterols) and hopanoids are shown in Figure A.2. Pyrolysis yielded no 

detectable amounts of steroids from any of mat layers, whereas hopanoids were always 

present. 

2.4 Discussion 

2.4.1 Sources and diagenetic pathways of steroids 

Sterol biomarkers have been broadly reported from modern and ancient environments, and it 

is commonly accepted that some of these compounds are diagnostic for major taxonomic 

groups of eukaryotes (Brocks and Summons, 2004; Peters, Walters and Moldowan, 2005; 

Volkman, 1986; Volkman, Kearney and Jeffrey, 1990; Volkman, 2003). Steroids have 

previously been reported in a number of microbial mats from Kiritimati (Bühring et al., 2009) 

and other meso- to hypersaline environments (Grimalt, de Wit, Teixidor and Albaigés, 1992; 

Scherf and Rullkötter, 2009; Słowakiewicz et al., 2016). The analyzed Kiritimati mat also 

contained a broad variety of C27-C30 steroids, reflecting mixed inputs mainly by animals (C27), 

fungi (C28), algae (C27-C29) including dinoflagellates (C30), and terrestrial plants (C29). 
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Concentrations of steroids in the mat studied are in the same order (~102-103 µg/g Corg) as 

those previously reported from Kiritimati Lake 2A (Bühring et al., 2009) and from solar 

salterns in southern Spain (Grimalt, De Wit, Teixidor and Albaigés, 1992), but are 

considerably higher as those observed in mats from Qatar and Abu Dhabi (~101-102 µg/g Corg; 

Scherf and Rullkötter, 2009; Słowakiewicz et al., 2016). 

Eukaryotes generally rely on an oxygenated environment and are unlikely to thrive in 

deeper, anoxic mat layers. Rather, the steroids in the analyzed microbial mat derived from mat 

surface-dwelling or planktonic organisms. These compounds were probably introduced as 

stenols, and were then altered by diagenetic processes, resulting in the observed variety of 

steroids. For instance, the formation of 5α-stanols through the reduction of ∆5-stenols 

(hydrogenation) is mainly a result of anaerobic microbial transformation (Rosenfeld and 

Hellman, 1971; Wakeham, 1989). Therefore, stanol/stenol ratios have often been used as an 

indicator for biological degradation under anoxic conditions, with high values reflecting low 

redox potentials (Gagosian et al., 1980; Gaskell and Eglinton, 1975; Nishimura, 1977; 

Wakeham, 1989). The presence of stanols was also reported from deeper layers of other 

microbial mats (Grimalt, de Wit, Teixidor and Albaigés, 1992; Bühring et al., 2009; Scherf 

and Rullkötter, 2009; Słowakiewicz et al., 2016). In the microbial mat studied, all 

stanol/stenol ratios showed enhanced values with depth (Figure 2.4), and highest values were 

observed in the bottom mat layer. This is in good agreement with an increasing microbial 

conversion of stenols to stanols occurring under anaerobic conditions in deeper mat layers. 

In addition to abundant 5α-stanols, the 5β-stanols coprostanol and (minor) epi-coprostanol 

(5β-cholestan-3α-ol) were detected in each mat layer. Because coprostanol is formed in the 

intestines of many mammals, including humans, it has been used as a biomarker for sewage 

contamination (Hatcher and McGillivary, 1979; Writer et al., 1995). The ratio of 

coprostanol/(coprostanol+cholestanol) has been used to distinguish an urban contaminant 

source, where values between 0.7 and 1 indicate sewage pollution, while ratios from 0.1 to 0.3 

typically occur in uncontaminated sediments (Grimalt, Fernández, Bayona and Albaigés, 

1990). In the microbial mat studied, ratios between 0.1 and 0.3 indicate that the sample has 

not received urban pollution. Coprostanol can thus be considered a diagenetic product of ∆5-

stenols rather than a sewage contaminant, which is in agreement with the remote natural 

environment of Lake 22. 5β-stanols can be produced from ∆5-stenols via intermediate 

steroidal ketones, or by direct conversion in very reducing environments (Edmunds, Brassell 

and Eglinton, 1980; Robinson, Eglinton, Brassell and Cranwell, 1984). In the mat studied 
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neither stanones nor stenones were above detection limit, suggesting that coprostanol was 

rapidly, and possibly directly, formed from its corresponding ∆5-stenol, cholesterol. This is in 

good agreement with observations made in deeper layers of a cyanobacterial mat from 

southern Spain (Grimalt, de Wit, Teixidor and Albaigés, 1992). 

Sedimentary sterenes are diagenetic intermediates formed through microbiological 

reduction and dehydration of stenols (Dastillung and Albrecht, 1977). The occurrence of 

sterenes has also been reported from other microbial mats in meso- to hypersaline settings 

(Grimalt, de Wit, Teixidor and Albaigés, 1992; Bühring et al., 2009; Scherf and Rullkötter, 

2009; Słowakiewicz et al., 2016). In the Kiritimati mat, the progressive transformation of 

sterols into sterenes with depth is well reflected by increasing sterene/stenol ratios for the C27- 

and, to a slightly lesser extent, for the C28- pseudohomologues (Figure 2.5). Interestingly, this 

trend was not evident for the C29- compounds, possibly reflecting that the original C29 stenols 

were not used by, or less accessible to, the respective microorganisms. 

5α-cholestane-3β-thiol was exclusively observed in layer 5, where it comprised 26.3% of 

the summed steroids (Figure 2.3b). Thiosteranes are not biosynthesized directly, but form as a 

result of diagenetic sulfur incorporation into the respective sterols via microbial processes or 

abiotic reactions in the presence of high amounts of sulfide (Hebting et al., 2006). The C27 

thiosterane potentially indicates fecal pollution (Louati et al., 2001), but as discussed above 

sewage contamination appears unlikely for the sampling site. The strong preference of the C27 

thiosterane in a distinct mat layer and the virtual absence of C28- and C29- thiosteranes 

therefore suggest a sudden, monospecific input of organic matter with a high C27 sterol 

content. Possible sources include animal faeces or salinity-driven mass mortality of fish or 

crustaceans. 

2.4.2 Depth distributions of steroids vs. hopanoids and fatty acids (FAs) 

The mat contains high amounts of unspecific C16 and C18 FAs, but also abundant iso-/anteiso- 

C15 and cyclopropyl-C19 FAs that clearly have a bacterial origin (Kates, 1964; Anhalt and 

Fenselau, 1975). The relative depth distribution of FAs and steroids is similar and shows no 

clear trend through the mat (Figure 2.7), as also reflected by fairly constant steroids/FAs 

ratios (Table A.2). This suggests that both compound classes have a similar taphonomic fate 

in the analyzed hypersalinar microbial mat from Kiritimati. 
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Unlike the steroids and FAs, the major GC-amenable hopanoids (bishomohopanoic acid, 

bishomohopanol and trishomohopanol; Table A.1) increased in abundance with depth (Figure 

2.7). This increase in GC-amenable hopanoids results in decreasing steroid/hopanoid ratios 

(Table A.2). However, it should be considered that the compounds observed are no primary 

biosynthates but represent the diagenetic products of bacteriohopanepolyols (BHPs; Rohmer, 

Bouvier-Nave and Ourisson, 1984). It is therefore likely that a major portion of the observed 

GC-amenable hopanoids has been formed within the mat through the progressive 

defunctionalization of BHPs. Another part of BHPs (or their alteration products) obviously 

becomes incorporated into macromolecular organic matter, as indicated by the release of 

hopanoid moieties upon pyrolysis of the extraction residues (see chapter. 2.3.6, Figure A.2). 

A further potential source of hopanoids is new production of BHPs at greater mat depths, 

as it has e.g. been observed for a mat from another lake on Kiritimati (Blumenberg et al., 

2013). It can be expected, however, that such an additional input would be accompanied by a 

concurrent increase in bacterial FAs. This has not been observed in the mat studied (Table 

A.2), which may point against major additional contributions of bacterial lipids in deeper mat 

layers. 

2.4.3 Preservation of eukaryotic steroids - taphonomically biased? 

Taken together, the series of microbial/diagenetic transformations of biological sterols in the 

microbial mat studied appears to be fully analogous to the known sedimentary reaction series 

eventually yielding saturated steranes (stenols => stanols => sterenes => steranes). As the 

summed steroids (i.e. original stenols plus their transformation products) do not decrease in 

abundance with depth, it appears that these processes are not accompanied by a major 

destruction of steroidal carbon skeletons. Rather, heterotrophic microbial activity in the 

reducing environment of the mat led to progressive transformation (hydrogenation and 

dehydration) of the original sterols. The presence of a thiosterane in one of the samples also 

points to the possibility of an abiotic formation, and preservation, of sulfurized steranes in 

deeper mat layers. 

The systematic decrease of ∆5-stenols vs. their diagenetic products also implies that no 

significant, if any, biological production of steroids occurred within the deeper mat layers that 

may have biased the distributions observed. Most likely, ∆5-stenols had successively been 

introduced at the mat surface, and have been buried and transformed in deeper, anoxic layers 

during further growth of the mat. We do not know, however, about possible variations in the 
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original inputs of these primary sterols. Such variation may have existed as e.g. revealed by 

the observation that a compound of a clearly algal origin, dinosterol, was actually more 

abundant in the lowermost mat layer than at the surface (Table 2.2). Nevertheless, the 

consistent presence of steroids in ample amounts throughout the profile does not support a 

preferential degradation of these compounds in the microbial mat studied. 

Pyrolysis of the extraction residues revealed that steroids were not introduced into 

insoluble OM (proto-kerogen), while hopanoids were present in all pyrolysates (Figure A.2). 

This can plausibly be explained by the degree of functionalization in the biological 

precursors. BHPs are highly functionalized at their side chain (e.g. four hydroxyl-groups in 

bacteriohopanetetrol). It has been shown that hopanoids become rapidly (≤350 yrs) 

incorporated into macromolecular OM via cross-linking of reactive sites (Farrimond et al., 

2003). Steroids, in contrast, typically exhibit only few reactive sites (e.g. one hydroxyl-group 

and one double bond in cholesterol). This may explain the exclusive presence of steroids in 

the extractable (lipid) portion of the mat studied, and the lack of any significant sequestration 

of steroids into macromolecular OM on a 103 yrs timescale. 

Summarizing, our data clearly show conspicuously high concentrations of eukaryotic 

steranes even after the pronounced microbial alteration within the mat. Hence, the steroids are 

not destroyed while transported through the mat studied, which, at first glance, argues against 

the “mat-seal effect” in this particular case. On the other hand, the results reveal a relative 

increase of GC-amenable hopanoids over steroids with depth. These compounds are most 

likely sourced from defunctionalized BHPs whose concentrations may even increase in 

deeper mat layers, as it has been shown for a different mat on Kiritimati (Blumenberg et al. 

2013). Consequently, the steroid/hopanoid ratios at the bottom of a microbial mat will tend to 

be lower than in the primary signal. On longer terms, the preservation of hopanoids may 

additionally be promoted by a more effective incorporation into the early (proto-) kerogen, as 

indicated by the pyrolysis data.  
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2.5 Conclusion 

In a hypersaline microbial mat from Kiritimati, progressive alteration of primary sterols 

occurred with mat depth. This resulted in relative increases in stanols and sterenes vs. ∆5-

stenols, as well as the presence of thiosteranes in certain mat layers. These alterations can 

partly be assigned to microbial transformation processes but are probably also due to 

chemical reactions promoted by the reducing environment of the deeper mat layers. Steroids 

were nevertheless abundant in all mat layers and their summed concentrations did not show 

any systematic decrease with depth. Obviously, the microbial mat studied does not form an 

effective barrier against eukaryote-derived steroids over a time scale of c. 103 years. On the 

other hand, decreasing steroid/hopanoid ratios with depth indicate a progressive “dilution” of 

the eukaryotic signal by lipids of heterotrophic bacteria. It can also be anticipated that the 

observed lack of protective sequestration into (proto-) kerogen would lead to a preservational 

bias at the expense of steroids during later stages of burial. This underlines that steroid 

preservation in microbial mats may not be exclusively controlled by heterotrophic 

degradation, but rather depends on a complex interplay of taphonomic processes. 
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Abstract 

Microbial mats are self-sustaining benthic ecosystems composed of highly diverse microbial 

communities. It has been proposed that microbial mats were widespread in Proterozoic 

marine environments, prior to the emergence of bioturbating organisms at the Precambrian-

Cambrian transition. One characteristic feature of Precambrian biomarker records is that 

steranes are typically absent or occur in very low concentrations. This has been explained by 

low eukaryotic source inputs, or degradation of primary produced sterols in benthic microbial 

mats (“mat-seal effect”). To better understand the preservational pathways of sterols in 

microbial mats we analysed freely extractable and carbonate-bound sterols as well as 

decalcified extraction residues in different layers of a recent calcifying mat (~1500 years) 

from the hypersaline Lake 2 on the island of Kiritimati, Central Pacific. A variety of C27-C29 

sterols and distinctive C31 4α-methylsterols (4α-methylgorgosterol and 4α-methylgorgostanol, 

biomarkers for dinoflagellates) were detected in both lipid pools. These sterols most likely 

originated from organisms living in the water column and the upper mat layers. This 

autochthonous biomass experienced progressive microbial transformation and degradation in 

the microbial mat, as reflected by a significant drop in total sterols concentrations, up to 98 %, 

in the deeper layers, and a concomitant decrease in total organic carbon. Carbonate-bound 

sterols were generally low in abundance, suggesting that incorporation into the mineral matrix 

does not play a major role for the preservation of eukaryotic sterols in this mat. Likewise, 

pyrolysis revealed that steroids (i.e., including sterenes, steranes and sterols), in contrast to 

hopanoids, were not sequestered into insoluble organic matter which may give rise to a 

further bias in the preservation of steroids vs. hopanoids, particularly in the later stages of 

burial. While these findings argue for a strong ‘mat-seal effect’ in the mat studied, they 

markedly differ from recent findings made for another microbial mat growing in the near-by 
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hypersaline Lake 22 on the same island, where sterols showed no systematic decrease with 

depth. The observed discrepancies in the taphonomic pathways of sterols in microbial mats 

from Kiritimati may be linked to multiple biotic and abiotic factors including salinity and 

periods of subaerial exposure, implying that caution has to be exercised in the interpretation 

of sterols distributions in modern and ancient microbial mat settings. 

Keywords: freely-extractable lipids, carbonate-bound lipids, eukaryotic steroids, mat-seal 

effect, pyrolysis 

3.1 Introduction 

Sterols, biological precursors of steroids, are commonly used as biological markers for 

specific classes of organisms (Atwood et al., 2014; Brocks and Summons, 2004; Rampen et 

al., 2009; Volkman, 1986; Volkman, 2005). Sterols have been found in many different types 

of depositional environments such as soils (van Bergen et al., 1997; Birk et al., 2012; Otto and 

Simpson, 2005), recent lacustrine and marine sediments (Brassell and Eglinton, 1983; Gaskell 

and Eglinton, 1976; Robinson et al., 1984; Volkman, 1986), as well as microbial mats from 

meso- to hypersaline conditions (Grimalt et al., 1992; Scherf and Rullkötter, 2009). Further, 

the hydrocarbon skeleton of sterols is relatively stable, and thus significant amounts can be 

preserved in the geological record (Brocks et al., 2017; Mattern et al., 1970). 

Microbial mats are vertically laminated organo-sedimentary structures, which are primarily 

self-sustaining ecosystems (Des Marais, 2003), ranging in thickness from millimeters to 

decimeters. The mineralized fossil product of microbial mats are microbialites, which have a 

long geological history of over 3 billion years, indicating that microbial mats probably 

represented the earliest complex ecosystems on Earth (Reitner and Thiel, 2011). Microbial 

mats typically consist of many different functional groups of microorganisms which control 

the organic matter (OM) turnover in the microbial mat. Major groups include cyanobacteria, 

colorless sulfur bacteria, purple sulfur bacteria and sulfate-reducing bacteria, but also 

eukaryotic organisms (Schneider et al., 2013; van Gemerden, 1993). A large proportion of the 

OM consists of extracellular polymeric substances (EPS), secreted by the microorganisms, 

which are crucial for the support and the development of the microbial mat (Wingender et al., 

1999; Decho, 2011; Reitner and Thiel, 2011). EPS are rich in acidic groups that bind cations 

such as Ca2+, thereby inducing a strong inhibitory effect on the precipitation of common 

minerals formed within microbial mats, such as CaCO3 (Arp et al., 1999; Dupraz et al., 2009; 
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Ionescu et al., 2015). Consequently, carbonate precipitation often occurs in deeper and older 

mat layers in which decomposing EPS gradually releases previously-bound Ca2+, thus 

facilitating carbonate supersaturation (Arp et al., 1999; Dupraz et al., 2009; Ionescu et al., 

2015). Previous studies indicate that early sequestration into a mineral matrix may promote 

the preservation of organic compounds (Summons et al., 2013; Smrzka et al., 2017; Thiel et 

al., 1999). Hence, microbial mats possibly provide an enhanced chance for OM to survive in 

the geosphere if carbonate or other mineral precipitation occurs therein. 

In the Proterozoic, microbial mats have been proposed to be a predominant life form in 

marine environments, in contrast to the Phanerozoic that is characterized by prosperity of 

biota (including fauna and flora) and a low abundance of benthic microbial mats (Grotzinger 

and Knoll, 1999; Riding, 2011; Walter, 1976). One of the characteristic features of the 

Precambrian biomarker records is that eukaryotic steranes are typically absent or occur in 

very low concentrations. This may be explained by a limited ecological distribution of 

eukaryotic algae and thus minor contributions of sterols to sedimentary OM (Anbar and 

Knoll, 2002; Blumenberg et al., 2012; Brocks et al., 2017; Knoll et al., 2007), and/or by a 

thermal degradation of sterols during catagenesis (e.g. in the 1640 Ma Barney Creek 

Formation and 1430 Ma Velkerri Formation, Northern Australia, Dutkiewicz et al., 2003; 

Summons et al., 1988). An alternative explanation would be that eukaryotic lipids have been 

subject to a preservation bias due to the ubiquity of benthic microbial mats. It has been 

hypothesized that these mats would have formed a significant mechanical and chemical 

barrier against the preservation of eukaryotic lipids sourced from water column and upper mat 

layers, a phenomenon termed as “mat-seal effect” (Pawlowska et al., 2013). Selective 

preservation induced by the mat-seal effect would also impart a bias in favour of lipids 

derived from heterotrophic microorganisms living in the deeper mat layers, and cause a 

suppression of the primary ecological signal. This is different from the situation in the 

Phanerozoic, where OM from planktonic primary producers (including algae and bacteria) is 

more rapidly transferred to the sediment through sinking aggregates (such as crustacean faecal 

pellets), and without being reworked in benthic microbial mats (Close et al., 2011; Fowler and 

Knauer, 1986; Logan et al., 1995). 

The Kiritimati atoll (Kiribati Republic, Central Pacific, Figure 3.1) is an ideal study site for 

investigating the taphonomy of sterols in microbial mats. The island is covered by c. 500 

brackish to hypersaline lakes, most of which are populated by thick and highly developed 

benthic mats that are clearly laminated and show ongoing mineral precipitation, i.e. 
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microbialite formation (Arp et al., 2012; Trichet et al., 2001; Valencia, 1977). Therefore, 

Kiritimati enables studies on the behaviour of sterols within various types of microbial mats 

thriving under different environmental conditions and showing different degrees of 

mineralization.

 

Figure 3.1 (a) Location of Kiritimati atoll in the Pacific Ocean and its satellite image showing reticulate 
distribution pattern of the lakes (red dots: Lake 2 studied in this work; Lake 2A and 22 previously studied 
by Bühring et al., 2009 and Shen et al., 2018a); (b) the microbial mat sample from Lake 2 studied in this 
work (14C data from Blumenberg et al., 2015). 

A recent study conducted on a microbial mat from Lake 22 on Kiritimati demonstrated that 

a range of sterols were abundantly present in all parts of that mat. The lack of any systematic 

decrease with depth suggested that the sterols in that particular mat had not been impacted by 

a major mat-seal effect (Shen et al., 2018a). On the other hand, an earlier study on insoluble 

OM obtained from a microbial mat from a different lake of the same island (Lake 2, located 

about 10 km south of Lake 22) reported an increasing trend of hopane/sterane ratios with 

depth (Blumenberg et al., 2015). In conjunction with other findings, this was considered 

indicative of a “suppression of biosignatures derived from the upper mat layers” and thus, a 

mat-seal effect (Blumenberg et al., 2015). Since that work had a different focus and did not 

report detailed sterol data, it is not directly comparable with the results on the Lake 22 mat 

reported by Shen et al. (2018a). Therefore we revisited the microbial mat from Lake 2 and 

performed a detailed analysis of sterol compounds, investigating both freely extractable as 

well as carbonate-bound lipid fractions, and also decalcified extraction residues. Our study 

was aimed at further examining general trends in the preservation of sterols in hypersaline 

microbial mat systems by comparing the results from different settings within the same 

geological and geographical context (i.e. Lakes 2 and 22). 
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3.2 Materials and methods 

3.2.1 Location and samples 

The atoll of Kiritimati (Republic of Kiribati) is located in the central part of the Pacific 

Ocean, close to the Equator (Figure 3.1). Its surface displays a complex reticular pattern 

encompassing c. 500 lakes with salinities that range from brackish to hypersaline. Most of the 

lakes harbour thick microbial mats that show ongoing mineralization processes (Figures 3.1, 

3.2) and generally occur on top of older, more developed microbialites (i.e. already fossilized 

microbial mats; Arp et al., 2012; Ionescu et al., 2015; Trichet et al., 2001; Valencia, 1977). 

Vegetation around the lake areas comprises the mangrove Rhizophoramucronata, the parasitic 

climber Cassytha filiformis, the grass Lepturus repens, and the ironwood Pemphis acidula 

(Figure 3.2e; Saenger et al., 2006). The climate of Kiritimati is broadly controlled by the El 

Niño-Southern Oscillation (ENSO) atmospheric phenomenon. During El Niño wet events, 

heavy rains occur, decreasing lake salinities; whereas reduced precipitation during La Niña 

dry events triggers higher evaporation and increasing lake salinities (Arp et al., 2012; Saenger 

et al., 2006; Trichet et al., 2001). Materials studied in this work were sampled from Lake 2 

(Figure 3.1), whose salinity was 97 ‰ in 2002 and 125 ‰ in 2011 (own data, unpublished). 

This high and variable salinity causes low metazoan diversity within Lake 2. Faunal elements 

include abundant Tilapia fish (Figure 3.2d) and Artemia brine shrimp as well as few land 

crabs, and unicellular miliolid foraminifera (Saenger et al., 2006; Shen et al., 2018a). Events 

of mass mortality of fish have been observed in some of the lakes (Figure 3.2d), which may 

be linked to extreme hypersaline conditions probably due to heavy evaporation during La 

Niña dry periods. More detailed information about the environmental setting of Kiritimati can 

be found elsewhere (Arp et al., 2012; Saenger et al., 2006; Shen et al., 2018a; Trichet et al., 

2001). 

In this work, a microbial mat from the hypersaline Lake 2, previously studied by 

Blumenberg et al. (2015), was analysed for sterols (Figure 3.1). This mat is 10 cm thick and 

was sampled from the centre of the lake (water depth c. 4 m) during a field campaign in 

March 2011 (Figures 3.1, 3.2). Samples were stored at -20°C until laboratory preparation. 

Based on the macroscopic appearance, Blumenberg et al. (2015) divided the mat in five 

layers, the topmost layer corresponding to the photosynthetically active mat, and layers 2-5 

representing ancient mat generations being degraded by recent anaerobic microorganisms 

(Figures 3.1, 3.2). For this study, we used the same layer division as Blumenberg et al. 

(2015). However, a thin but distinctive mineral crust occurring just below layer 2 (Figure 
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3.2c) has not been analysed in the previous study and is additionally included here 

(corresponding to our layer 3, Figures 3.1, 3.2). Therefore, six layers in total were analysed in 

this work, each one c. 1-2 cm thick (except layer 3 ~0.15 cm). 

 

Figure 3.2 Field images: (a) general view of hypersaline Lake 2 in Kiritimati; (b) underwater photograph 
showing an example of a currently-active, orange-coloured microbial mat at the bottom of the lake; (c) the 
microbial mat sampled for this study, with clear colour-zonation; note the whitish mineral crust (Layer 3) 
separating the upper younger growth phase from the older, more mineralized layers; (d) lake shore showing 
dead fish; (e) vegetation around the lake area; (f) sampling site for hypersaline Lake 22 mat (Shen et al., 
2018a). 
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3.2.2 Bulk analysis 

Homogenized (mortar) aliquots of the freeze-dried samples (both original mat layers and 

extraction residues) were subjected to C/N/S analysis, using a Hekatech EA 3000 CNS 

analyzer and LECO RC 612 multiphase carbon analyser as described elsewhere (Shen et al., 

2018a). 

3.2.3 Extraction and derivatization 

Aliquots of the freeze-dried samples (5-20 g) were homogenized and extracted using 4×50 ml 

portions of dichloromethane/methanol (3:1; V/V) (10 min ultrasonication) to obtain the freely 

extractable lipids. The remaining extraction residues were decalcified using 37 % HCl 

(dropwise until CO2 development ceased), and again extracted as described above to yield the 

carbonate-bound lipids. The remaining extraction residues (after decalcification) were freeze 

dried for the analysis of bulk Corg and pyrolysis. 

To make alcohols (including sterols) GC-amenable, aliquots of the lipid extracts (both 

freely extractable and carbonate-bound lipid fractions) were silylated using BSTFA (N,O-

bis(trimethylsilyl)trifluoroacetamide) containing 5 % (V/V) trimethylchlorosilane (TMCS) as 

a catalyser (70°C, 60 min). The resulting trimethylsilyl (TMS-) derivatives were dried under 

gentle N2 flow, re-dissolved in n-hexane, and analysed by gas chromatography-mass 

spectrometry (GC-MS). 

To make fatty acids GC-amenable, a mixture of TMCS/MeOH (1:9, V:V) was added to all 

aliquots of lipid extracts and samples were heated at 80°C for 60 min. The resulting fatty acid 

methyl esters were extracted from the reaction mixture by vigorous shaking with 3×1 ml n-

hexane. The extracts were combined and evaporated to near-dryness under a gentle stream of 

N2, re-dissolved in n-hexane, and analysed by gas chromatography-mass spectrometry (GC-

MS). 

3.2.4 GC-MS 

GC-MS analyses were carried out using a Thermo Fisher Trace 1310 GC coupled to a 

Thermo Fisher Quantum XLS Ultra MS as described elsewhere (Shen et al., 2018a). Due to 

low sterol concentrations and co-elutions, particularly in the deeper mat layers, sterols were 

not quantified via peak integration in the total ion currents (TIC). Instead, the summed ion 

traces of [m/z 129 + (M+-90) + M+] for the TMS-derivatives of ∆5- and ∆5,22-stenols, and [m/z 

215+ (M+-90) + M+] for the TMS-derivatives of stanols were used. Appropriate correction 
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factors were applied according to the response of these ions vs. concentration in the mass 

spectra of standard compounds. Average standard deviations of sterol concentrations were 

determined from repeated analyses of sample material. 

3.2.5 Pyrolysis-gas chromatography-mass spectrometry (Py-GC-MS) 

Aliquots of the decalcified extraction residues were pyrolysed on a fast-heating Pt-filament 

using a Pyrola 2000 pyrolysis device (Pyrolab SB) coupled to a Varian CP3800 GC and a 

Varian 1200L MS as described elsewhere (Shen et al., 2018a). 

3.2.6 Compound-specific stable carbon isotopes analysis 

Compound-specific stable carbon isotope ratios were measured for sterols and fatty acids in 

the freely extractable lipid fractions of the microbial mat. Analyses were conducted using a 

Thermo Scientific Trace gas chromatograph (GC) coupled to a Delta Plus isotope ratio mass 

spectrometer (IRMS). The conventional CuO/NiO/Pt reactor was used and combusted at 

940°C. The GC-column used was an Agilent DB-5 coupled to an Agilent DB-1 (each 30 m 

length, 250 μm internal diameter, and 0.25 μm film thickness). Lipid fractions were injected 

into a splitless injector and transferred to the GC column at 290°C. The carrier gas was 

helium at a flow rate of 1.2 ml/min. The temperature program for analyzing lipid fractions 

was ramped from 80°C, followed by heating to 325°C (at 5°C/min, held for 60 min). Analysis 

of laboratory standards were carried out to control the reproducibility of measuring conditions 

and measurements were calibrated by using CO2 gas of known isotopic composition. 

3.3 Results 

3.3.1 General characterization of the microbial mat 

The microbial mat has a thickness of c.10 cm. Based on its macroscopic appearance it shows 

two major phases of development. The upper, younger growth phase is represented by layer 1 

(photosynthetically active mat) and layer 2 (each c. 1 cm thick, Figures 3.1, 3.2). These layers 

have a cohesive texture, sticking together when handled, due to abundant and relatively fresh 

organic material (i.e. EPS) of bright orange, green and brown colours. Layer 1 includes small 

and scarce mineral precipitates, whereas layer 2 shows more abundant whitish minerals 

within its organic matrix (Figure 3.2c). Layer 2 is underlain by a thin but distinctive, laterally 

continuous mineral crust (layer 3). Below the crust, layers 4, 5 and 6 (c. 7 cm thick in total, 

Figures 3.1, 3.2) are more friable, having a crumbly appearance, due to a higher abundance of 
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mineral particles as compared to EPS. In this older growth phase, brown and beige colours 

predominate (Figure 3.2c). The minerals observed within the mat layers are mainly aragonite 

(CaCO3), with minor amounts of gypsum (CaSO4) found only in the uppermost layer 1 (Shen 

et al., 2018b). Previously reported 14C ages of the mat (Blumenberg et al., 2015) show that its 

upper growth phase formed in approximately 1000 years (62±40 years BP for layer 1, 551±40 

years BP for layer 2 and 1111±40 years BP for layer 3; Figure 3.1b) whereas the older (and 

thicker) growth phase formed approximately in the preceding 300 years (1331±40 years BP 

for layer 5 and 1440±40 years BP for layer 6; Figure 3.1b). 

3.3.2 Bulk geochemical data 

Bulk geochemical data for individual mat layers are shown in Table 3.1a. In the original mat 

(i.e. bulk sample before decalcification) relatively high Corg contents were observed in layers 

1 and 2 (4.7 and 6.2 %, respectively; Table 3.1a and Figure 3.3a), consistent with a more fresh, 

cohesive appearance of the organic matrix in these layers. Below layer 2, the earlier growth 

phase consistently showed low and constant Corg contents < 2 %, with the lowest value found 

for layer 6 (1.2 %) (see section 3.3.1). The CaCO3 content of the mat increased significantly 

with depth (Figure 3.3a; Table 3.1a). The lowest value was observed in the top layer 1 

(27.1 %), a strong enrichment occurred in layer 2 (73.1 %), and constantly high contents > 90 % 

were found for all deeper mat layers. This is consistent with the observation of more abundant 

mineral precipitates downwards in the mat. The highest S content was detected for layer 1 

(9.8 %), due to gypsum precipitates. Below, S decreased sharply (1.2 % in layer 2) and 

retained low values (< 1 %) in the earlier growth phase of the mat (~0.3-0.5 %). N showed 

generally low contents (0.14-0.75 %) throughout the mat. 

In the decalcified extraction residues (i.e., extraction residues after decalcification; Table 

3.1b), Corg showed a broad range but increased significantly with depth, with the highest value 

observed in layer 6 (42.3 %; also see Figure 3.3b). N was likewise enhanced in the deeper 

parts, with the highest amount found in layer 5 (6.7 %). By contrast, a decrease in S content 

was observed with depth, with highest values occurring in the topmost mat layer 1 (10.4 %).  
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Figure 3.3 (a) Corg and CaCO3 contents of the bulk mat (%wt); (b) Corg content of the extraction residues 
after decalcification (%wt); (c) Distribution of C27- vs. C28- vs. C29- vs. C31- sterols in the freely extractable 
lipids (μg/g dry mat); (d) Distribution of C27- vs. C28- vs. C29- vs. C31- sterols in the carbonate-bound lipids 
of the microbial mat (μg/g dry mat). 

Table 3.1a Bulk geochemical data for the microbial mat (original mat layers before decalcification). 

Table 3.1b Bulk geochemical data for the microbial mat (extraction residues after decalcification; modified 
after Blumenberg et al., 2015). 

 

 

 

 

  

Layers Ctot (%) Corg(%) Ccarb (%) CaCO3 

(%) 

Ntot (%) Stot (%) Corg/N Corg/S 

1 7.94 4.69 3.25 27.10 0.41 9.78 11.40 0.50 
2 15.00 6.23 8.77 73.10 0.74 1.21 8.40 5.20 
3 12.59 1.71 10.88 90.70 0.16 0.33 10.50 5.10 
4 12.33 1.33 11.00 91.70 0.19 0.49 7.00 2.70 
5 12.45 1.47 10.98 91.50 0.20 0.52 7.30 2.80 
6 12.23 1.20 11.03 91.90 0.14 0.48 8.50 2.50 

Layers Corg(%) Ntot (%) Stot (%) Corg/N Corg/S 

1 15.2 1.9 10.4 7.9 1.5 
2 32.8 4.9 2.9 6.7 11.4 
3 37.3 5.6 4.6 6.7 8.2 
4 37.0 6.2 2.6 6.0 14.4 
5 40.1 6.7 2.0 6.0 20.3 
6 42.3 6.6 2.0 6.4 21.4 
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3.3.3 Sterol distributions and concentrations 

Various sterols were detected within the mat, including saturated sterols (stanols; C27∆0, 

C28∆0, C29∆0, C31∆0) and unsaturated sterols (stenols; C27∆5, C28∆5,22, C28∆5, C29∆5,22, C29∆5, 

C31∆5, see Figure 3.4; Table 3.2). Based on the retention characteristics and comparison with 

published mass spectra (Atwood et al., 2014; Houle et al., In Press), the C31 sterols were 

identified as 22,23-methylene-4α,23,24-trimethylcholest-5-en-3β-ol (4α-methylgorgosterol) 

and 22,23-methylene-4α,23,24-trimethylcholestan-3β-ol (4α-methylgorgostanol), respectively 

(see Figure B.1). 

.  

Figure 3.4 Partial GC-MS chromatograms (total ion current) showing the distributions of freely extractable 
sterols (TMS-derivatives) in (a) layer 1, and (b) layer 6 of the microbial mat. 
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Table 3.2a Concentrations of sterols in the freely extractable lipids of the microbial mat layers. SD indicate mean value of standard deviation (μg/g dry mat; n.d. = not 
detected). 

Trivial names Cholesterol Cholestanol Brassicasterol Campesterol Ergostanol Stigmasterol β-sitosterol Stigmastanol 

4α-

methylgorgoste

rol 

4α-

methylgorgosta

nol 

Compound 

 

 

 
                      SD 

Layers 

Cholest-5-en-

3β-ol 

5α-cholestan-

3β-ol 

24-

methylcholesta-

5,22-dien-3β-ol 

24-

methylcholest-

5-en-3β-ol 

5α-24-

methylcholesta

n-3β-ol 

24-

ethylcholesta-

5,22-dien-3β-ol 

24-ethylcholest-

5-en-3β-ol 

5α-24-

ethylcholestan-

3β-ol 

22,23-

methylene-

4α,23,24-

trimethylcholes

t-5-en-3β-ol 

22,23-

methylene-

4α,23,24-

trimethylcholes

tan-3β-ol 

28.4% 41.7% 12.31% 10.7% 28.3% 20.0% 13.2% 27.7% 41.3% 41.6% 

1 5.20 0.86 4.93 4.91 0.20 3.74 5.44 0.77 1.10 5.21 
2 0.24 0.19 n.d. 0.34 0.06 0.43 0.77 0.19 0.36 1.55 
3 0.01 0.04 n.d. 0.02 0.02 0.02 0.03 0.05 0.09 0.37 
4 0.02 <0.01 n.d. 0.02 0.01 0.05 0.02 0.02 0.12 0.40 
5 0.03 0.02 n.d. 0.07 0.04 0.16 0.12 0.13 0.95 2.72 
6 0.08 <0.01 n.d. n.d. n.d. 0.08 0.02 0.01 0.10 0.73 

Table 3.2b Concentrations of sterols in the carbonate-bound lipids of the microbial mat layers. SD indicate mean value of standard deviation (μg/g dry mat; n.d. = not 
detected; dashes indicate SD are not applicable). 

 

Trivial names Cholesterol Cholestanol Brassicasterol Campesterol Ergostanol Stigmasterol β-sitosterol Stigmastanol 

4α-

methylgorgoste

rol 

4α-

methylgorgosta

nol 

Compound 

 

 

  
                    SD 

Layers 

Cholest-5-en-

3β-ol 

5α-cholestan-

3β-ol 

24-

methylcholesta-

5,22-dien-3β-ol 

24-

methylcholest-

5-en-3β-ol 

5α-24-

methylcholesta

n-3β-ol 

24-

ethylcholesta-

5,22-dien-3β-ol 

24-ethylcholest-

5-en-3β-ol 

5α-24-

ethylcholestan-

3β-ol 

22,23-

methylene-

4α,23,24-

trimethylcholes

t-5-en-3β-ol 

22,23-

methylene-

4α,23,24-

trimethylcholes

tan-3β-ol 

24.0% 47.6% −− −− −− −− 24.8% 40.2% −− −− 

1 n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. 
2 0.02 <0.01 n.d. 0.08 <0.01 0.08 0.07 0.01 n.d. 0.34 
3 0.04 0.05 n.d. 0.08 0.02 0.03 0.06 0.04 n.d. 0.40 
4 0.11 0.07 n.d. 0.12 0.03 0.25 0.12 0.09 n.d. 0.45 
5 0.02 <0.01 n.d. n.d. n.d. 0.06 0.01 <0.01 n.d. 0.22 
6 0.02 <0.01 n.d. 0.03 <0.01 0.04 0.03 0.01 n.d. 0.59 
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Figure 3.5 Distributions and concentrations of C27-C29 sterols in the microbial mat layers, (a) freely 
extractable lipids, and (b) carbonate-bound lipids. 

In the freely extractable lipids, stenols were by about an order more abundant than stanols. 

Both groups showed highest concentrations in layer 1, and a major decrease with depth (see 

Table 3.2a). Figure 3.5a shows the variations of C27-C29 sterols (e.g. stenols vs.stanols) in the 

freely extractable lipids through the mat profile. The highest abundance of sterols occurred in 

the topmost layer 1 (26.05 µg/g dry mat, see Figure 3.5a). Concentrations decreased 

drastically in the upper layers, and remained low from layer 3 onwards. C28 and C29 sterols 

were the most dominant sterols in layer 1 while the C31 sterols dominated in the deeper layers 

(Figure B.3). The C31-sterol distributions differed from the other sterol distributions identified 

in this mat, with concentrations in layer 5 being three to ten times higher than in layers 3, 4 

and 6 (Figure 3.3c; Table 3.2a). Further, in the freely extractable lipids, the ratios of 5α-

stanols to their corresponding ∆5-stenols (stanol/stenol ratios) showed no consistent trend 
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within the profile (Figure 3.6a; Table 3.3). As expected, the C27-, C28- and C29- ratios 

increased in the upper, younger growth phase of the mat, with the highest value observed for 

layer 3, but decreased again in the deeper, older growth phase (Figure 3.6; Table 3.3). In 

contrast, stanol/stenol ratios for the C31 sterol declined from layer 1 to layer 5, and showed a 

remarkable increase in layer 6. 

 

Figure 3.6 Stanol/stenol ratios for the microbial mat layers, (a) freely extractable lipids, and (b) carbonate-
bound lipids. 
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Sterol concentrations in the carbonate-bound lipid fractions are given in Table 3.2b. In the 

topmost layer 1, no carbonate-bound sterols were observed. In mat layers 2 and 3, carbonate-

bound sterols occurred, but were still much less abundant as freely extractable sterols (below 

detection limit to ~10-2 µg/g dry mat). In the deeper mat layers (4-6), however, sterols showed 

similar absolute concentrations (~10-2 - 10-3 µg/g dry mat) in both, the carbonate-bound and 

the freely extractable fractions. Sterenes were also detected in both lipid pools, but only at 

trace abundances (not discussed further). 

In the carbonate-bound lipids, stenols comprised the predominant portion (c. from 65 % up 

to 90 % of all sterols) (Figure 3.5b). Overall low abundances of carbonate-bound sterols were 

observed throughout the mat (10-1 µg/g dry mat range). C31- groups were the primary 

contributors in both lipid fractions (ranging up to ca. 85 % in the deeper part of the mat), and 

C29- groups were the second major inputs (Figure B.3). Carbonate-bound C31-sterols 

increased in the bottom layer 6, which is distinguished from the other sterols (Figure 3.3d). 

The stanol/stenol ratios in the carbonate-bound lipids, increased for the C27-, C28- and C29- 

pairs between layers 1 and 3, and again decreased downwards as they did in the freely 

extractable lipids (see Figure 3.6b; Table 3.3). No stanol/stenol ratios could be obtained for 

the carbonate-bound C31 sterols, as C31 stenols were virtually absent throughout the mat. 

Table 3.3 Stanol/stenol ratios in the freely extractable lipids and carbonate-bound lipids for the microbial 
mat layers (n.d. = not determined, due to very low concentration of sterols). 

 

3.3.4 Pyrolysis 

Ion chromatograms representing steroids (i.e., including sterenes, steranes and sterols) and 

hopanoids released by pyrolysis of the decalcified extraction residues are shown in Figure B.2. 

Steroids were not observed in the pyrolysates throughout the mat, while hopanoids were 

found in the insoluble matter of each mat layer. Notably, only small amounts of hopanoid 

moieties were observed in the pyrolysates of layer 1, but their abundance gradually increased 

with depth. 

 

Layer 

stanol/stenol (Δ
0
/Δ

5
) in Free lipids stanol/stenol (Δ

0
/Δ

5
) in carbonate-bound 

C27 C28 C29 C31 C27 C28 C29 C31 

1 0.17 0.04 0.14 4.73 n.d. n.d. n.d. n.d. 
2 0.77 0.18 0.24 4.26 0.34 0.05 0.19 n.d. 
3 3.49 1.00 1.52 3.95 1.28 0.22 0.64 n.d. 
4 0.38 0.42 1.24 3.31 0.62 0.27 0.74 n.d. 
5 0.78 0.55 1.08 2.87 n.d. n.d. n.d. n.d. 
6 n.d. n.d. n.d. 7.35 0.11 n.d. 0.29 n.d. 
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3.3.5 Compound-specific δ
13

C values 

A reliable compound-specific δ13C value could be obtained for the coeluting C31-sterols from 

the freely extractable lipids in layer 1. This compound showed a strong enrichment in 13C 

(δ13C = -7.2 ‰). Fatty acids (including C14-C19 homologues) showed similarly high δ13C 

values ranging from -4.4 to -11.7 ‰. 

3.4 Discussion 

3.4.1 Biological sources of sterols 

The studied mat contained a broad variety of C27-C29 sterols as well as two C31 sterols, 

indicating potential sources like animals (C27), fungi (C28), algae including dinoflagellates 

(C27-C29 + C31) and terrestrial plants (C29) (Atwood et al., 2014; Houle et al., In Press; 

Volkman, 1986; Volkman, 2003). The concentrations of freely extractable sterols in the 

topmost layer 1 in the studied Lake 2 mat are similar to Lake 2A and Lake 22 (~102-103 µg/g 

Corg; Bühring et al., 2009; Shen et al., 2018a; see Figure 3.5a). However, sterols in the deeper 

layers are much less abundant in the Lake 2 mat as compared to other mats in Kiritimati lakes. 

Figure B.3 shows the relative distribution of summed C27- vs. C28- vs. C29- vs. C31- sterols 

in the microbial mat layers. In both lipid fractions, the C31-sterols are predominant, suggesting 

inputs from dinoflagellates (Atwood et al., 2014; Houle et al., In Press). C29-sterols make up 

the next most abundant group, potentially indicating contributions from either algae or 

terrestrial plants (Volkman, 1986); also these compounds are known to be produced by 

diatoms and other algal groups (Rampen et al., 2010; Volkman, 2003). 

The high δ13C value of -7.2 ‰ for the C31-sterols, and similarly high values for the fatty 

acids measured from layer 1, imply that the carbon source of these compounds was 

autochthonous and derived from the hypersaline, CO2-limited ecosystem of Lake 2 (cf. 

Schouten et al., 2001). Previous work on carbon isotope compositions of sterols in a mat from 

the adjacent Kiritimati Lake 2A showed δ13C values from -19 to -23 ‰ (Bühring et al., 2009). 

In addition, Trichet et al. (2001) reported δ13C values for sedimentary bulk OM from -14 to -

17 ‰ in Kiritimati Lake 30. Both studies showed more depleted values than those observed 

for Lake 2. An explanation could be a better CO2 exchange in those lakes, due to their 

shallow water layer (a maximum depth of 0.2 m in Lake 2A, Bühring et al., 2009; depth of 

0.9 m in Lake 30, Trichet et al., 2001), leading to the relatively light δ13C signatures. Another 

explanation could be that shrinking lake water bodies caused by La Niña dry events are often 
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associated with massive increases in lake salinities (Trichet et al., 2001). For instance, Lake 

2A (Bühring et al., 2009) was observed to be nearly dried out during our sampling campaign 

in 2011. The increasing salinities may result in a CO2-limited ecosystem, leading to 

enrichment in 13C. The resulting reinforced CO2-limitation in Lake 2 is not only reflected by 

the high δ13C values of sterols and fatty acids in this work, but also δ13C values of carbonates 

that were observed to be as high as +6 ‰ (Arp et al., 2012). 

3.4.2 Taphonomy of sterols 

The sterols in the studied mat are probably sourced from plankton or organisms thriving at the 

mat surface, because eukaryotes are generally depending on an oxygenated environment and 

would hardly thrive in anoxic, deeper parts of the mat. It can also be expected that sterols 

were initially introduced as stenols. Subsequent alteration by early diagenetic processes 

within the mat would have resulted in a variety of sterol transformation products. Reduction 

of ∆5-stenols to 5α-stanols (hydrogenation) is a known result of anaerobic microbial 

degradation (Rosenfeld and Hellman, 1971; Wakeham, 1989). Consequently, stanol/stenol 

ratios may reflect the extent of microbial stenol alteration under anoxic conditions (i.e. under 

low redox potential; Gaskell and Eglinton, 1975; Nishimura, 1977; Wakeham, 1989). Several 

investigations have reported such conversion in microbial mats (Grimalt et al., 1992; Scherf 

and Rullkötter, 2009; Słowakiewicz et al., 2016), including some mats from other lakes on 

Kiritimati (Bühring et al., 2009; Shen et al., 2018a). 

In the mat studied, stanol/stenol ratios for C27-C29 pairs initially increased with depth and 

showed highest values in layer 3, suggesting low redox potentials and a pronounced anaerobic 

microbial transformation of stenols therein. In the deeper layers (4-6), ratios decreased again. 

We interpret this to result from a more efficient microbial OM degradation, which occurred 

under higher redox potentials during the more rapid accretion of the earlier growth phase of 

the mat (1440-1111 years BP, see Figure 3.1b). This idea is supported by constantly lower 

Corg contents in the earlier growth phase of the mat (1.20-1.47 %, see Table 3.1a). Exclusively 

for the C31-stanol/stenol ratios, they showed a steady decrease with depth but sharply 

increased again in the bottom layer 6. It could be possible that input variations of the C31 

stanol and stenol played a more important role than microbial alteration for the distributions 

of C31 sterols. 4α-methylgorgostanol has been reported in a few dinoflagellate species 

belonging to the genera Peridinium, Alexandrium and Pyrodinium, (Atwood et al., 2014; 

Houle et al., In Press, and refs therein), and the mass spectra of the sterol we tentatively 



3.4 Discussion 

86 
 

identified as 4α-methylgorgosterol is similar to that reported for a sterol occurring in resting 

cysts but not in the motile cells of the dinoflagellate Peridinium umbonatum var. inaequale 

(Amo et al., 2010). As a result, C31 sterols could partly have been derived from sedimentary 

resting cysts that may have been less affected by degradation during transport or microbial 

recycling than conventional C27-C29 sterols. It may also be speculated that the unusual side-

chain structure and methylation pattern of 4α-methylgorgosterols hamper enzymatic microbial 

degradation (e.g. Giner et al., 2003, and refs therein). The steadily increasing relative 

abundances of C31- vs. C27-C29 sterols in the mat profile (Figure B.3) suggest that C31 sterols 

experienced different degradation patterns as compared to conventional sterols. 

For the total sterols, concentrations of freely extractable sterols were high in the top layer 

but dropped sharply immediately below and kept at very low concentrations throughout the 

deeper mat (< 1 μg/g dry mat). Carbonate-bound sterols, on the other hand, were hardly 

detectable at the top of the mat, and likewise showed constantly low abundances below. These 

observations suggest that (i) freely extractable sterols are rapidly degraded in the upper layers 

of the mat and (ii) the carbonate matrix played no important role in encasing (i.e., preserving) 

sterols in this mat. This is in agreement with previous reports about minor amounts of such 

sterols in methane seep microbialites and ooids (Birgel et al., 2006; Thiel et al., 1999; Thiel et 

al., 2001; Summons et al., 2013). However, in those settings, high concentrations of microbial 

lipids preserved in the carbonate matrix possibly reflect a constructive role of their source 

organisms in carbonate formation and/or their continuous incorporation into carbonate during 

the precipitation processes (Summons et al., 2013; O'Reilly et al., 2017). For instance, 

abundant 13C-depleted acyclic isoprenoids encased in ancient methane-derived carbonates 

have been shown to originate from methane-oxidizing archaea whose metabolism 

immediately enhanced calcification (Peckmann and Thiel, 2004). 

Blumenberg et al. (2015) pointed out that organic compounds in the deeper parts of the 

Lake 2 mat, unlike those at the top, are better preserved in the insoluble OM fraction, which is 

concordant with the results in this work (Figure B.2). Specifically, our pyrolysis of the 

decalcified extraction residues revealed that steroids were not sequestered into insoluble OM, 

while hopanoids were present in all mat layers (Figure B.2). This phenomenon was also 

observed for pyrolysates in Lake 22 mat (Shen et al., 2018a). An explanation could be that the 

low number of reactive sites in common sterols (i.e. one hydroxyl-group) would lead to a low 

tendency to incorporate into macromolecular OM as compared to hopanoids (e.g. highly 

functionalized bacteriohopanepolyols with several hydroxyl-groups). This behaviour may 
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eventually give rise to a further preservational bias of steroids vs. hopanoids over geological 

time. 

In the Lake 2 mat studied here, the strong decline in freely extractable sterols below the 

uppermost mat layer, along with the lack of any significant carbonate incorporation, suggests 

major degradation of steroids vs. hopanoids during early diagenesis (i.e. on a timescale of 

102-103 years). 

3.4.3 Comparison with sterol taphonomy in other microbial mats 

The results from the Lake 2 mat differ significantly from the results of a previous study on a 

microbial mat profile in another lake in Kiritimati (Lake 22; Shen et al., 2018a). Sterol 

concentrations from the topmost layers are similar in both mats (102 µg/g Corg range), but the 

Lake 22 mat showed no systematic decrease in sterols with depth. Such entirely different 

behaviour of sterols in these two lakes raises questions about potential mechanisms causing 

the observed variation. 

One explanation for the differences between the Lake 2 and 22 mats could be variations in 

salinity. In 2011, the salinity of Lake 22 (Shen et al., 2018a) was 250 ‰, whereas Lake 2 

showed 125 ‰. High salinity may reduce microbial cell growth and reproduction, and limit 

the metabolism of microorganisms. The resulting decrease in bacterial activity would affect 

the biodegradation rates of organic compounds (Abed et al., 2006). Several studies reported 

that the degradation rates of hydrocarbons significantly decrease as salinity increases 

(microbial mat from Saudi Arabia, Abed et al., 2006; water and tar samples from Great Salt 

Lake, Ward and Brock, 1978). On the other hand, lower salinity supports the proliferation of a 

more diverse microbial community (Bolhuis et al., 2014), thus possibly enhancing OM 

biodegradation. As a consequence, conditions for mat-forming microorganisms would be 

more favourable in Lake 2 as compared to the extremely hypersaline Lake 22, thus 

accelerating the biodegradation rates of organic molecules, including sterols. Another possible 

reason might be decreased precipitation resulting in the decline of water depth. A major 

drought period prevailed in Kiritimati from 2002 to 2011, as a result of a very strong La Niña 

dry event. Due to reduced rainfall, the water level of the lakes in Kiritimati generally dropped, 

so that, in some areas, parts of the lake bottoms became subaerially exposed. The Lake 22 

microbial mat was collected at the margin of the lake (Figure 3.2f; water depth c. 0.2 m; Shen 

et al., 2018a). Therefore, mats from this shallow sampling site may have suffered from heavy 

evaporation due to such major drought events. As pointed out by Shen et al. (2018a), the Lake 
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22 mat shows an irregular top layer of V-shaped fractures, which are general characteristic 

features of evaporitic settings, thus further demonstrating the repeated occurrence of dry 

periods in the region. On the other hand, the Lake 2 mat was collected in the lake centre 

(water depth c. 4 m) which is clearly less prone to subaerial exposure. These interpretations 

are further supported by other studies that highlighted how environmental conditions such as 

water depth and salinity may have a significant influence on the microbial composition of 

microbial mats (Pagès et al., 2014). In addition to these environmental conditions, the 

differences of stanol/stenol ratios between the two lakes are noteworthy. Much higher ratios 

were observed in Lake 22 mat (Shen et al., 2018a), indicating a much more intense anaerobic 

microbial transformation (yet no degradation) as compared to the Lake 2 mat (Figure 3.6). 

Whereas sterols in Lake 22 mat experienced major microbial transformation (stenols => 

stanols => sterenes), sterols in Lake 2 apparently suffered from major degradation that 

suppressed the primary ecological signal. The contrasting distributions observed for the 

Kiritimati mats studied also suggest that sterols have a higher preservation potential in 

microbial mats under stronger salinities and/or more desiccated conditions, such as those of 

Lake 22. Our finding of such significant differences in two adjacent mat settings on the same 

island calls for great caution when studying sterols in microbialites or in modern microbial 

mats and making generalizations for the fossil record. Sterol preservation within microbial 

mats is a complex process that may be strongly influenced by environmental parameters. 

Therefore, palaeoenvironments must be thoroughly constrained if the presence, or absence, of 

these compounds is interpreted in the study of ancient deposits. 

3.5 Conclusion 

The preservation of primary eukaryotic sterols and their progressive alteration was studied in 

a c. 1500 years old microbial mat from the hypersaline Lake 2 on Kiritimati. High δ13C values 

of C31-sterols and fatty acids suggest an autochthonous origin for these lipids. Total sterols 

decreased immediately below the uppermost layer, suggesting a major degradation of these 

compounds within the mat. A different pattern was observed for unusual, isotopically heavy 

C31-sterols (4α-methylgorgosterol and 4α-methylgorgostanol; δ13C = -7.2 ‰), which showed 

increasing abundances in the deeper mat layers as compared to the conventional C27-C29 

sterols. These C31 sterols may have partly derived from resting cells of dinoflagellates, or their 

unusual side-chain might hamper degradation, which may have enhanced the resistance of 

these sterols against degradation. No significant ‘trapping’ of sterols into the mineral lattice 

occurred in this mat. Likewise, steroids were not sequestered into insoluble organic matter (as 
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opposed to hopanoids). It is therefore suggested that the studied mat might have formed an 

effective filter against the preservation of sterols in the sedimentary record. The results from 

this microbial mat, therefore, support the hypothesis of a ‘mat-seal effect’ describing the 

degradation of eukaryote-derived lipids in benthic microbial mats. Our results are markedly 

different from those recently obtained from another mat from Kiritimati Lake 22, where 

sterols showed no systematic decrease with depth, suggesting that the preservation of sterol 

carbon skeletons in that microbial mat did not suffer from a mat-seal effect. In that lake, an 

even higher salinity or temporal subaerial exposure may have hampered microbial 

metabolism and instead promoted sterol transformation rather than degradation. The 

combined data show that sterol taphonomy may strongly vary between different mat systems, 

and even contrasting sterol degradation patterns may be expected in response to 

environmental conditions. 
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-Chapter 4- 

Different modes of calcification control the preservation of 

organic matter in a recent microbial mat 

(in preparation) 

Yan Shen, Pablo Suarez-Gonzalez, Volker Thiel, Martin Blumenberg, Joachim Reitner 

Abstract 

Microbial mats probably represented the earliest complex ecosystems on Earth since fossil 

mineralized examples (i.e., microbialites) are as old as the Archean (~3.5 Ga), and some 

contain putative remains of organic matter (OM). However, the processes and pathways of 

microbial mat mineralization and of OM preservation within them are still poorly understood. 

Here, we analysed lipid biomarkers, and performed petrography and histology of a recent 

(~1500 years) calcifying mat from a hypersaline lake in Kiritimati, Central Pacific. Our 

results reveal two major phases of microbial mat development, separated by a distinctive, 

laterally continuous thin mineral crust. Two distinct calcification modes are observed: one 

characteristic of the main microbialite laminae that are observed in both accretion phases, and 

another observed only in the thin mineral crust. Interestingly, the original OM is preserved 

differently in each precipitation mode. In the main microbialite laminae, the minerals 

observed primarily consist of calcium carbonate (aragonite), occurring either as irregular 

micritic crystals or as subspherical particles. These minerals are interpreted as precipitated in 

association with the gradual degradation of extracellular polymeric substances (EPS), which 

initially inhibit carbonate precipitation. Such gradual degradation of OM through time is 

reflected by a decline in total organic carbon and bacteria-derived hopanoids and fatty acids 

downwards in the mat laminae. In contrast, the thin mineral crust at the boundary between 

both growth phases formed during an interruption in the microbial mat accretion. It is 

composed of a µm-scale superposition of radial-fibrous aragonite botryoids that entomb very 

abundant filamentous microbes and diatoms. This suggests that a significant change occurred 

during the hiatus: the mat surface was covered by a thin biofilm of a different biotic 

composition. This biofilm was completely calcified in different episodes of a relatively fast 
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collapse of the EPS inhibitory function, probably controlled by changes in the hydro-

chemically conditions, which is evident from the depleted δ13C signatures for lipid biomarkers 

observed within the thin mineral crust. This event-like mode of calcification caused a fast and 

efficient inclusion of lipid biomarkers, as reflected by a remarkable increase in the 

abundances of fatty acids and, to a lesser extent, hopanoids. These results suggest that 

episodic environmental changes could have induced a rapid entombment of OM in microbial 

mats and its enhanced preservation within distinctive mineral precipitates. Such rapidly 

formed precipitates may have preserved OM better than the average mineralization mode 

commonly observed in microbial mats, and thus they represent excellent targets for the search 

of authentic OM in the ancient microbialites. 

Keywords: taphonomy, lipid biomarker, microfacies, mineralization, microbialites 

4.1 Introduction 

Microbial mats probably represented the earliest complex ecosystems on Earth. They are mm- 

to cm-thick vertically laminated organosedimentary structures, which may occur in many 

different environments including coastal lagoons, marine intertidal zones, hypersaline and 

alkaline lakes, hot springs and freshwater rivers (Arp et al., 1998; Bolhuis et al., 2013; Freytet 

and Plet, 1996; Ionescu et al., 2015; Scherf and Rullkötter, 2009; Shiea et al., 1991; van der 

Meer, 2002; Słowakiewicz et al., 2016). Microbial mats consist of several specialized biotic 

consortia (van Gemerden, 1993; Dupraz and Visscher, 2005), and each layer contains 

different microorganisms with distinct metabolic activities, e.g. photoautotrophs 

(cyanobacteria), anoxygenic phototrophs (purple and green bacteria), aerobic heterotrophic 

bacteria, fermenters, anaerobic heterotrophs (SRB, sulfate-reducing bacteria) and sulphide 

oxidizing bacteria (SOB). Microbial mats are efficient in element cycling via the metabolic 

processes of these microbial communities, e.g. cyanobacteria couple light energy to CO2 

fixation, leading to the accumulation of biomass, which is later oxidized and/or recycled by 

SRB and SOB. Under certain conditions, part of the microbial mat biomass might be 

transformed and preserved within mineral precipitates (commonly carbonate) that lead to the 

fossilization of the mat (i.e., microbialite). 

In general, two factors (mediated by microbial activity and physicochemical features) 

control carbonate precipitation within microbial mats: extracellular polymeric substances 

(EPS) and saturation index (determined by pH and Ca2+, Arp et al., 1999a; Arp et al., 2001; 
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Dupraz and Visscher, 2005; Reitner, 1993). EPS are secreted by most microbes, and mainly 

comprise polysaccharides, proteins, nucleic acids, lipids and humic substances (Nielsen et al., 

1997). In most cases, EPS serve as protection against multiple stress conditions, such as 

desiccation, nutrient shortages and UV exposure. Due to their functional groups (e.g. COO-), 

EPS are able to bind divalent free cations (e.g. Ca2+ and Mg2+), inhibiting mineral 

precipitation by depleting the positive ions from the surrounding environment. Therefore, 

microbial carbonate formation is controlled by the inhibitory function of acidic EPS, and 

carbonate precipitates are formed when EPS release the cations, as they are gradually 

degraded during the evolution of the mat (Arp et al., 2012; Arp et al., 2003; Dupraz et al., 

2011). This form of mineral precipitation influenced by the presence of organic matrices is 

often termed organomineralization, and it entails that EPS provide the location of mineral 

nucleation within microbial mats (Dupraz et al., 2009). Calcification is also related to 

supersaturation of calcium carbonate minerals. When the critical level of supersaturation of 

CaCO3 mineral is surpassed, combined with the release of divalent cations such as Ca2+, 

carbonate nucleates and grows, which is more likely to occur in deeper parts of the mat, 

where EPS are more degraded (Arp et al., 1998). 

The term “microbialite” was introduced by Burne and Moore (1987) as a definition for 

mineral deposits which result from microbially-mediated mineral precipitation. They have 

been formed throughout the geological record, the oldest microbialites being ~3.5 Ga (Pilbara 

Craton, Western Australia; Allwood et al., 2006; Hofmann et al., 1999), whereas the younger 

ones occurs in various modern environmental conditions (Awramik and Vanyo, 1986; 

Couradeau et al., 2012). Microbialites are mainly composed of carbonate (e.g. stromatolites, 

laminated microbialites) combined with other types of minerals such as phosphate and 

silicate, and putative remains of the original organic matter (OM) have been found within 

some of them. For instance, Thiel et al. (1999) reported organic compounds preserved in the 

carbonate matrix of ancient cold seep microbialites; nanoscale detection of organic signatures 

in carbonate microbialites from a soda lake (Benzerara et al., 2006); these OM was also 

sequestrated into carbonate-silicate microbialites from Hawaiian basaltic sea caves (Léveillé 

et al., 2000). In the last decades, several hypotheses of calcification mechanisms have been 

proposed for modern hypersaline mats, e.g. both photosynthesis and EPS degradation promote 

the formation of microbialites in Kiritimati lake (Arp et al., 2012); succession of microbial 

community leading to laminae of stromatolitic knobs in Bahamas lake (Dupraz et al., 2013). 
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However, the exact processes that lead to mineralization of a microbial mat, especially the 

preservation of OM in the resulting microbialites remains incompletely understood. 

Microbial mats have been proposed to be a predominant life form in Proterozoic marine 

environments (Grotzinger and Knoll, 1999; Riding, 2011; Walter, 1976). Recent microbial 

mats are considered potential analogues of ancient microbialites because they resemble many 

fossil microbialites that persisting morphological similarities, and rapid cycling of major 

elements occurs within the mats on very small (mm-μm) scales. Therefore, investigation on 

recent microbial mats is of great importance for a better understanding of fossil microbialites, 

e.g. unravelling the mineralization of the mat as well as the associated preservation of OM in 

the ancient microbialites. 

Kiritimati (Central Pacific) is the largest coral atoll in the world, covering surface area c. 

360 km2. It is well suited for testing taphonomy of OM in microbial mats, because the atoll 

contains c. 500 brackish to hypersaline lakes hosting plenty of mats, which show features of 

great thickness, clear lamination and ongoing mineral precipitation (i.e., microbialite 

formation). Taphonomy of OM has been already investigated through lipid biomarkers in 

several of these mats (Blumenberg et al., 2015; Shen et al., 2018). However, the detailed 

preservation pathways of bacteria-derived OM in different lipid pools have not been evaluated 

in any of the Kiritimati mats so far. 

This work aims to shed light on the relationship between the modes of mineral 

precipitation within microbial mats and the preservation of OM therein, using a recent (~1500 

years BP) calcifying mat from a hypersaline lake in Kiritimati, and combining lipid biomarker 

analyses, with a detailed petrographic and histologic investigation of the different mat 

horizons. This dual (organogeochemical and geomicrobiological) approach allows to better 

elucidate the distinctive mineralization processes controlling the preservation of OM within 

the resulting carbonate precipitates. 

4.2 Materials and methods 

4.2.1 Site description and sample collection 

Kiritimati (formerly Christmas Island) is the world’s largest coral atoll, with the surface area 

c. 360 km2. It is located in the Central Pacific and close to the Equator (1º55’ N, 157º25’ W). 

The island harbours approximately 500 lakes with salinities ranging from brackish to 
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hypersaline conditions, in many of which, well-developed microbial mats occur. In general, 

Kiritimati has an arid climate and is mostly controlled by the El Niño-Southern Oscillation 

(ENSO). Recharge of lakes occurs as a result of heavy rains during El Niño wet events, 

leading to a decrease in lake salinities. During La Niña dry events, reduced precipitation and 

higher evaporation induce an increase in lake salinities. More detailed information about the 

site description can be found elsewhere (Arp et al., 2012; Saenger et al., 2006). 

Sampling was carried out during a 2-week expedition on the atoll of Kiritimati in March 

2011 (Figure 4.1). The microbial mat studied in this work is 10 cm thick and it was collected 

from the centre of Lake 2 at water depth c. 4m (Blumenberg et al., 2015). The salinity of Lake 

2 was 97‰ in 2002 and 125‰ in 2011 (own data, unpublished). Blumenberg et al. (2015) 

divided the mat in five layers based on the macroscopic appearance. In this work, the same 

layer divisions were exercised as Blumenberg et al. (2015). Markedly, we additionally 

analysed a thin but distinctive mineral crust, occurring just below layer 2 (Figure 4.2c), which 

has not been analysed in the previous study (corresponding to our layer 3, Figures 4.1, 4.2). 

Therefore, six layers in total, each representing c. 1-2 cm thick (except layer 3 ~0.15 cm) 

were investigated for this work. 

 

Figure 4.1 (a) General location of Kiritimati atoll in the Pacific Ocean and its satellite image, showing a 
reticulate distribution pattern of the lakes. The red dot indicates the sampling site of this study, Lake 2; (b) 
View of Lake 2 shore; (c) Photograph showing active microbial mats and whitish fish coprolites in Lake 2; 
(d) Microbial mat sample from Lake 2 studied in this work. 14C dates of carbonate particles, measured by 
Blumenberg et al. (2015).  
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4.2.2 Preparation of histological thin sections 

For the preparation of histological thin sections, samples were dehydrated with a graded 

ethanol series. Afterwards, mat samples were embedded in LR White resin (medium grade, 

London Resin Company Ltd., Reading, UK), following the manufacturer’s instructions. The 

embedded samples were cut with a microtome saw (Leica SP1600) to a thickness of c. 100 

µm, mounted on glass slides using Biomount mounting medium (Electron Microscopy 

Sciences, Hatfield, PA). Thin sections were studied under petrographic (Zeiss Axiolab) and 

fluorescence (Zeiss Imager. Z1) microscopes. 

 

Figure 4.2 Field images. (a) General view of hypersaline Lake 2 in Kiritimati; (b) Underwater photograph 
showing an example of fresh, currently-active, orange-coloured microbial mat at the bottom of the lake; (c) 
The microbial mat sampled for this study, with clear colour-zonation; note the whitish mineral crust (Layer 
3) separating the upper fresher layer from the older, more mineralized layers; (d) Lake shore showing dead 
fish; modified after Shen et al., 2019). 

4.2.3 Preparation for the electron microscope 

To observe the mineral fraction of the microbial mat under a field-emission scanning electron 

microscope (FE-SEM), the organic matter of the samples was removed through oxidation 

with NaOCl (Mikutta et al., 2005). Each sample from individual mat layer was immersed in 

6% NaOCl, changing the solution every 12 h for several days, until no traces of organic 

matter were visible. The remaining mineral particles were washed with distilled H2O until pH 

was neutral, and then dried. Mineral particles were mounted on SEM sample holders and 

sputtered with Pt (14.1 nm for 5 min) and then observed in a FE-SEM (Leica EM QSG100) 

combined with an INCA X-act EDX (Oxford Instruments). 
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4.2.4 Bulk analysis 

Homogenized aliquots of the freeze-dried samples, including the original mat samples and 

decalcified extraction residues, were subjected to C/N/S analysis, using a Hekatech EA 3000 

CNS analyser and LECO RC 612 as described elsewhere (Shen et al., 2018). 

4.2.5 Extraction and derivatization 

Aliquots of the freeze-dried samples (5-20 g) were homogenized (not powdered) and 

extracted by 4× 50 ml dichloromethane/methanol (3:1; V/V) (10 min ultrasonication, 

respectively) to get freely extractable lipids. The resulting extraction residues was decalcified 

using 37% HCl, and was again extracted as described above to obtain the carbonate-bound 

lipids. The remaining extraction residues were freeze dried for the analysis of bulk Corg and 

pyrolysis. 

To make carboxylic acids GC-amenable, a mixture of trimethylchlorosilane 

(TMCS)/MeOH (1:9, V:V) was added to a 5% aliquots of the lipid extracts (both freely 

extractable and carbonate-bound lipids, at 80°C for 60min). The resulting carboxylic acid 

methyl esters and the neutral lipids (including n-alkanes and hopanoid hydrocarbons) were 

extracted from the reaction mixture by vigorous shaking with 3×1ml n-hexane. The extracts 

were combined and evaporated to near-dryness under a gentle N2 flow, re-dissolved in n-

hexane, and analysed by gas chromatography-mass spectrometry (GC-MS). 

To make alcohols (including sterols and hopanols) GC-amenable, all aliquots of lipid 

fractions were silylated using BSTFA (N,O-bis(trimethylsilyl)trifluoroacetamide) containing 

5 % (V/V) trimethylchlorosilane (TMCS) as a catalyser (heated at 70°C for 60 min). The 

resulting trimethylsilyl (TMS-) derivatives were dried, and re-dissolved in n-hexane, and 

analysed by gas chromatography-mass spectrometry (GC-MS). 

4.2.6 GC-MS 

GC-MS analyses were conducted using a Thermo Fisher Trace 1310 GC coupled to a Thermo 

Fisher Quantum XLS Ultra MS as described elsewhere (Shen et al., 2018). n-eicosane-D42 

was used as an internal standard for quantification. 
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4.2.7 Pyrolysis-gas chromatography-mass spectrometry (Py-GC-MS) 

Aliquots of the decalcified extraction residues were pyrolysed on a fast-heating Pt-filament 

using a Pyrola 2000 pyrolysis device (Pyrolab SB) combined with a Varian CP3800 GC and a 

Varian 1200L MS as described elsewhere (Shen et al., 2018). 

4.2.8 Compound-specific stable carbon isotopes (GC-C-IRMS) 

Compound-specific stable carbon isotope ratios were measured for microbial lipids (i.e., FAs 

and hopanoids) and hydrocarbons as well as sterols in both freely extractable and carbonate-

bound lipid fractions in the studied microbial mat. Analyses were conducted using a Thermo 

Scientific Trace gas chromatograph (GC) coupled to a Delta Plus isotope ratio mass 

spectrometer (IRMS) as described elsewhere (Shen et al., 2019). 

4.2.9 Bulk stable isotope analysis 

Bulk carbonate samples for carbon stable isotope measurements were conducted in the 

different layers of the mat profile. The preparation of carbonate samples was finished after 

removal of OM (Mikutta et al., 2005; see 4.2.3 section), and the samples were collected in 

two separate parts based on the microscopical observation from the individual mat layers: 

fine-grained particles and spherical ooids. Carbonate powders were heated at 70°C and 

reacted with c. 105% oversaturated phosphoric acid. A Thermo Kiel IV carbonate device 

connected to a Finnigan Delta plus masspectrometer were used for the isotope measurements. 

All values were reported in per mil relative to V-PDB, which were calibrated by using CO2 

gas of known isotopic composition against NBS 19. CO2 were analyzed with dual-inlet mode 

in masspectrometer. Reproducibility of measurement conditions has been checked by 

replicate analysis of laboratory standards, and one measurement consists of 8 cycles to control 

the standard deviation (< ±0.05). The stable isotope measurements were carried out at the 

laboratory of Andreas Pack, University of Göttingen. 

4.3 Results 

4.3.1 Description of mat layers at macro- and micro-scale 

The studied microbial mat has a thickness of c.10 cm and it is subdivided in two main parts 

based on their macroscopic aspects: a) the upper two layers (1-2, c. 3 cm thick, Figures 4.1-

4.3) have a cohesive appearance, sticking together when handled, due to abundant and 

relatively fresh organic material (i.e., EPS), which shows bright orange, green and brown 
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colours with transparent or whitish mineral particles therein (Figures 4.2c, 4.3); b) the lower 

three layers (4-6, c. 7 cm thick, Figures 4.1-4.3) are more friable, having a crumbly 

appearance, due to the rarer and poorly preserved EPS between more abundant mineral 

particles, producing brown and beige colours (Figures 4.2c, 4.3). The 14C ages of the mat 

(Blumenberg et al., 2015) show that its upper (and thinner) part was formed approximately in 

the last 1000 years (62±40 years BP for layer 1, 551±40 years BP for layer 2 and 1111±40 

years BP for layer 3; Figure 4.1d) whereas the lower (and thicker) part was formed 

approximately in the previous 330 years (1331±40 years BP for layer 5 and 1440±40 years BP 

for layer 6; Figure 4.1d). 

 

Figure 4.3 Close-up picture of frozen microbial mat sample studied in this work (compare with Figure 4.1). 
Green arrows point to transparent gypsum crystals, which occur only in the uppermost layer. Note common 
beige, irregular to subspherical, carbonate particles, more abundant downwards in the mat. Yellow arrow 
points to the whitish mineral crust that forms Layer 3, and which separates the younger upper part of the 
mat from the lower older layers. 
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The mineral particles observed in the studied mat have mainly a calcium carbonate 

(aragonite) composition, with local idiomorphic calcium sulphate (gypsum) crystals occurring 

only at the uppermost part of layer 1 (Figures 4.3, 4.4a). Carbonate precipitates occur either as 

irregular micritic particles with a micropeloidal internal texture (Figures 4.4b-c, 4.6c-d) or as 

subspherical particles, commonly with a crystalline fibrous-radial internal structure (Figures 

4.4a, d-f, 4.6a-b); cf. ‘spherulites’ of (Arp et al., 2012). In general, these carbonate 

precipitates are larger and more abundant downwards in the mat, and they tend to coalesce 

with each other forming complex aggregates of particles, which become larger in the 

lowermost layers of the mat (Figures 4.4e-f). This composition and distribution of mineral 

precipitates is consistent with that observed in other microbial mats from Kiritimati (Arp et 

al., 2012; Défarge et al., 1996; Trichet et al., 2001). The exception is layer 3, a very thin (1-2 

mm) but laterally very continuous carbonate crust that separates the younger and older parts 

of the mat (Figures 4.3, 4.5), and which shows features not previously described in Kiritimati 

microbial mats. With the naked eye, this crust shows white-beige colours with darker areas, 

and in general, it has a flat bottom and domed top (Figures 4.5a-b). Microscope observations 

show that the crust is composed of several superposed laminae of botryoidal carbonate with a 

fibrous-radial internal texture, formed by long aragonite needles (Figures 4.5c-e). These 

aragonite botryoids include abundant large pores filled by residual organic matter (i.e. EPS, 

Figures 4.5c, f-g), which generate the darker areas observed macroscopically within the crust 

(Figure 4.5b). In addition, moulds of filamentous microbes and diatoms are ubiquitous 

throughout the crust, enclosed within the fibrous crystalline structure of the botryoids (Figures 

4.5e, h). These moulds are either empty (preserved as porosity) or filled by carbonate with 

only local preservation of the original EPS (Figure 4.5h). Diatom moulds also occur locally 

within mineral particles of the older layers (4-6), but not as abundant as in the crust of layer 3. 

Within this crust, foraminifera have also locally been observed (Figure 4.5f). 
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Figure 4.4 Mineral precipitates observed within the studied microbial mat. (a) Cross-polarized light 
photomicrograph of gypsum crystals (Gyp) and subspherical aragonite particles (Sph) from Layer 1. (b) 
Cross-polarized light photomicrograph of irregular micritic aggregates from Layer 6, showing their 
micropeloidal internal texture. Yellow arrow points to thick and birefringent EPS threads. (c) SEM image 
of an irregular micritic aggregate from Layer 1, showing a detail of its micropeloids (M), formed by 
intergrown bundles of aragonite needles, and completely surrounded by a matrix of EPS, whithin which 
they precipitate. (d) Close-up picture of the loose mineral particles extracted from Layer 2 after complete 
removal of the organic matter. Note the presence of both subspherical particles and irregular aggregates. (e) 
SEM image showing a section of coalesced subspherical particles from Layer 2. Note their fibrous radial 
structure formed by aragonite needles. (f) Large irregular carbonate aggregate from Layer 4 after complete 
removal of organic matter. Note that it is formed by the coalescence of both subspherical particles and 
micritic aggregates. Large complex aggregates are typical from the lower older layers of the mat (compare 
with the younger precipitates of Figure 4.4d). 
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Figure 4.5 Layer 3. (a) Close-up picture of the upper part of the studied mat. Green arrows point to 
transparent gypsum crystals. Yellow arrows point to dark-coloured cavities within the mineral crust of 
Layer 3. (b) Close-up picture of the mineral crust of Layer 3 after complete removal of organic matter. 
Note the botryoidal upper surface of the crust and its local dark colour. (c) Cross-polarized light 
photomicrograph of a thin section of the mineral crust of Layer 3, showing its internal structure, composed 
of several superposed laminae of botryoidal carbonate, indicating different precipitation episodes. Yellow 
arrows point to cavities within the crust, filled by organic matter. (d) SEM image showing the fibrous-
radial structure of a carbonate botryoid from Layer 3, formed by aragonite needles, and covered by a thin 
film of EPS. (e) Transmitted light photomicrograph showing a detail of a carbonate botryoid from Layer 3. 
Note the fibrous-radial internal texture and the presence of very abundant curved dark filaments. Cloudier 
aspect of the outer part is due to a higher abundance of dark filaments. (f) SEM image of a freshly-cut 
section of layer 3, showing irregular and partially-filled cavities (yellow arrows) and a section of a 
foraminifer (green arrow). Red rectangle marks the position of Figure 4.5g. (g) Detail of the SEM image of 
Figure 4.5f, showing the EPS matrix that infills the cavities observed within the mineral crust of Layer 3. 
(h) Close-up SEM view of a freshly-cut section of the mineral crust of Layer 3, showing moulds of diatoms 
(green and yellow arrows) and much more abundant small filaments (red arrows) included within the 
mineral crust. Most diatom moulds are filled by carbonate (green arrows) but locally others are partially 
empty, with some remains of EPS (yellow arrows).  
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The upper and lower parts of the mat (separated by the crust of layer 3) show significant 

differences not only in their size and abundance of mineral precipitates, but also in the EPS 

matrix where the minerals occur. The upper layers (1-2) have a denser, more cohesive and 

viscous organic matrix, with a dense reticulate microstructure formed by a net of intertwined 

delicate EPS fibres (Figures 4.6a-b), whereas the lower layers (4-6) have a much less dense 

and less abundant matrix between the mineral precipitates (causing their crumbly texture), 

and this matrix shows a porous laminated microstructure with coarser and parallel-oriented 

individual EPS fibres, which include many nano- to micro-scale precipitates and which, 

unlike fresher EPS fibres, show birefringence under cross-polarized light (Figures 4.6c-d; cf. 

Arp et al., 1998; Arp et al., 1999a). 

 

Figure 4.6 Different preservation of EPS. (a, c) Photomicrographs taken with fluorescence microscope. (b, 
d) Same areas as a, c, but seen with cross-polarized light. (a-b) Carbonate precipitates from the topmost 
Layer 1, within a dense reticulate net of intertwined delicate fibres of younger and fresher EPS, which show 
no birefringence (black colour in b) with cross-polarized light. (c-d) Carbonate precipitates from the 
lowermost Layer 6, forming in a less dense and more porous matrix of older EPS with a laminated 
microstructure of coarser individual EPS fibres, which show birefringence (yellow arrow in d) with cross-
polarized light. 
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4.3.2 Bulk data 

Bulk geochemical data for individual mat layers are shown in Table 4.1 (a: bulk sample 

before decalcification) and (b: extraction residues after decalcification). In Table 4.1a, Corg 

showed relatively high contents in layers 1 and 2 (4.7% and 6.2%), sharply decreased in layer 

3 (1.7%) and sustained in low contents for all deeper mat layers (1.2%-1.5%), which is 

concordant with the more abundant, fresher organic matrix observed in the younger phase of 

mat layers 1-2. The CaCO3 concentration significantly increased with mat depth, whose 

lowest content was observed in layer 1 (27.1%). A remarkable enrichment in CaCO3 occurred 

in layer 2 (73.1%) and followed by a constant high amounts (>90%) in deeper parts of the mat, 

as also reflected by the microscopic observation of an increase in abundance of mineral 

precipitates downwards in the mat. Contrarily, S amounts significantly deceased with depth, 

with the highest abundance occurring in layer 1 (9.78%) as a result of gypsum precipitates. 

Below, in layer 2, S markedly dropped to 1.2%, and kept in low concentration in the older 

phase of the mat (c. 0.3%-0.5%). For N, it showed generally low amounts throughout the mat 

profile (0.14%-0.74%). 

Table 4.1a Bulk geochemical data for the microbial mat layers (original mat layers; 
data from Shen et al., 2019). 

Table 4.1b Bulk geochemical data for the microbial mat layers (extraction residues; modified after 
Blumenberg, Thiel and Reitner, 2015). 

Layers Corg(%) Ntot (%) Stot (%) Corg/N Corg/S 
1 15.2 1.9 10.4 7.9 1.5 
2 32.8 4.9 2.9 6.7 11.4 
3 37.3 5.6 4.6 6.7 8.2 
4 37.0 6.2 2.6 6.0 14.4 
5 40.1 6.7 2.0 6.0 20.3 
6 42.3 6.6 2.0 6.4 21.4 

  

Layers Ctot (%) Corg(%) Ccarb (%) CaCO3 
(%) 

Ntot (%) Stot (%) Corg/N Corg/S 

1 7.94 4.69 3.25 27.10 0.41 9.78 11.40 0.50 
2 15.00 6.23 8.77 73.10 0.74 1.21 8.40 5.20 
3 12.59 1.71 10.88 90.70 0.16 0.33 10.50 5.10 
4 12.33 1.33 11.00 91.70 0.19 0.49 7.00 2.70 
5 12.45 1.47 10.98 91.50 0.20 0.52 7.30 2.80 
6 12.23 1.20 11.03 91.90 0.14 0.48 8.50 2.50 
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In the decalcified extraction residue (Table 4.1b), Corg increased significantly with depth, 

showing a broad range from 15.2% to 42.3%. Similarly, N appeared an enhanced 

concentration in the deeper parts, with the highest value occurred in layer 5 (6.7%). Unlike 

the trend of N, S sharply decreased with depth, with the highest concentration found in the 

uppermost layer 1 (10.4%). 

4.3.3 Qualitative GC-amenable hopanoids and FAs 

GC-amenable hopanoids were detected in the freely extractable lipids, i.e., hop-22(29)-ene 

(diploptene), ββ-bishomohopanoic acid, ββ-bishomohopanol (see Table C.1). In general, the 

summed major hopanoids decreased with depth, with the highest abundance in layer 1 (16.67 

µg/g dry mat) and the lowest abundance in layer 4 (3.34 µg/g dry mat) (see Table C.3). Like 

hopanoids, summed FAs (i.e., iso-/anteiso- C15- C17 and unsaturated C18:1 and C19:1 FAs) 

significantly decreased in abundance with depth. The highest abundance was found in layer 1 

(212.72 µg/g dry mat) and the lowest abundance, was two orders less abundant, occurring in 

layer 3 (3.34 µg/g dry mat) (see Table C.3). 

Fewer hopanoids (i.e. hop-17(21)-ene and ββ-bishomohopanoic acid) were observed in the 

carbonate-bound lipid fraction, with no consistent behaviour with mat depth. For instance, the 

concentrations of the summed hopanoids were, by two orders, less abundant (10-1 µg/g dry 

mat) in the upper layer 2 as compared to the abundance in the free lipids (see Table C.4). 

Thereafter, the summed hopanoids markedly enhanced in the carbonate layer 3, which were in 

the same order (100 µg/g dry mat) as they showed in the free lipids. These hopanoids 

significantly decreased again downwards in the mat. For FAs, similar major groups (i.e., iso-

/anteiso- C15- C17 and unsaturated C18:1 and C19:1 FAs) were observed in the carbonate-bound 

lipid fraction, and the summed concentration, were in the same order (100~101 µg/g dry mat 

range) as they did in the free lipids. FAs in the carbonate-bound lipid fraction were an order 

of magnitude less abundant compared to the topmost layer 1 in the free lipids (102 µg/g dry 

mat range, see Table C.3 and C.4). Likewise, the summed FAs first showed an increase until 

layer 3 (highest concentration: 80.45 µg/g dry mat), and followed by a sharp decrease in the 

deeper parts, with the lowest values observed for layer 5 (6.87 µg/g dry mat; see Table C.4). 

Further, in addition to the conventional FAs (i.e., iso-/anteiso-, unsaturated and saturated 

FAs), small quantities of dicarboxylic acids (C21-C28; 10-1 µg/g dry mat, see Table C.2) were 

exclusively observed in the carbonate-bound lipids, but only in layers 3 and 4 (10-1 µg/g dry 

mat). 
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4.3.4 Steroids vs. hopanoids and fatty acids 

Depth distribution of the summed concentrations of the major GC-amenable hopanoids, FAs, 

and steroids are presented in Figure 4.7. In the freely extractable lipid fractions (Figure 4.7a), 

the abundance of total steroids significantly decreased (by > 90%) immediately below the 

topmost layer 1, and they kept at a trace amount (10-1 μg/g dry mat) in the deeper part of the 

mat. Likewise, hopanoids and FAs also showed a general decrease in abundance with mat 

depth; however, both compounds appeared an enhancement in the older phase of the mat. 

Further, the concentration of FAs showed many folds more abundant as compared to 

hopanoids and steroids observed for layer 1, but the distributions of the three compound 

classes resemble each other (high amounts in layer 1, low amounts in layer 3 and 4, Figure 

4.7a). Quite similar distributions were observed when the compound concentrations were 

plotted against Corg, due to relatively low organic carbon throughout the mat (1.20-6.23%, 

Table 4.1a, Figure 4.7a). 

In the carbonate-bound lipids, total steroids showed overall low abundance within the mat 

profile and no steroids were detected in the topmost layer 1. Hopanoids was likewise not 

detected in layer 1. Its abundance significantly increased until layer 3, but decreased again in 

the lower mat. For the FAs, also in the carbonate-bound lipid fractions, the concentrations 

were much more abundant than hopanoids and steroids. Similarly, FAs also remarkably 

enhanced in the upper layers, but sharply decreased again in the lower part of the mat. Largely 

identical distribution was observed when these compound classes were plotted against Corg 

(Figure 4.7b). Notably, the highest abundances of hopanoids and FAs were both observed in 

layer 3 (Table C.4; Figure 4.7b). 

4.3.5 Pyrolysis 

In addition to the soluble lipids (including freely extractable and carbonation-bound fractions), 

the decalcified extraction residues were analyzed using Py-GC-MS. Ion chromatograms 

representing steroids (i.e. including sterenes, steranes and sterols) and hopanoids are shown in 

Figure C.1. No steroids were detected in the pyrolysates throughout the mat, while hopanoids 

presented in the insoluble matter of each mat layers (layer 1 appeared trace amount, and the 

relative abundance gradually increased with depth).  
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Figure 4.7 Depth distribution of steroids, hopanoids, fatty acids (μg/g dry mat; μg/g Corg), and Corg (wt. 
%) in the microbial mat layers, (a) free- lipids, and (b) carbonate-bound lipids. 

4.3.6 Carbon isotopic compositions of microbial lipids and hydrocarbons 

FAs (including C14-C26 homologues), and hopanoids (including C30 hopene and C32 hopanol) 

as well as unique hydrocarbon (C17 n-alkanes) were identified. GC-C-IRMS measurements 

revealed relatively high δ13C values in both lipid fractions of the studied mat, which range 

from -15.4 to -20.7 ‰ for C17 n-alkanes, -4.4 to 16.4 ‰ for FAs, -17.6 to -20.2 ‰ for 

hopanoids, and -7.2 to -13.3 ‰ for sterols (Table 4.2).  
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Table 4.2 Carbon isotopic signatures of lipid biomarkers observed in the studied mat (unit: ‰ relative to 
V-PDB; n.d.=not detected; C31 ∆0 data from Shen et al., 2019). 

Layer 
 
 
 
 
Compounds 

1 3 5 6 

Freely 
extractable 

lipids 

Carbonate-
bound 
lipids 

Freely 
extractable 

lipids 

Carbonate-
bound 
lipids 

Freely 
extractable 

lipids 

Carbonate-
bound 
lipids 

Freely 
extractable 

lipids 

Carbonate-
bound 
lipids 

n-alkanes         
17 -15.4 -16.1 -18.7 -20.7 -17.3 -17.4 -15.8 -15.7 

         
FAs         
14:0 -8.5 n.d. n.d. n.d. n.d. n.d. n.d. n.d. 
iso-15 n.d. n.d. n.d. -11.8 n.d. -16.4 n.d. -12.1 
15:0 -4.4 -8.6 n.d. -4.7 n.d. n.d. n.d. -11.0 
16:1 -9.4 -8.7 n.d. n.d. n.d. n.d. n.d. n.d. 
iso-16 n.d. -9.3 n.d. -12.6 n.d. 12.4 n.d. -12.9 
16:0 -6.8 -12.8 n.d. -16.4 n.d. -14.3 n.d. -13.7 
iso-17 n.d. n.d. n.d. n.d. n.d. -9.3 n.d. -12.8 
anteiso-17 n.d. n.d. n.d. n.d. n.d. -10.5 n.d. -12.0 
17:0 -4.8 n.d. n.d. -12.9 n.d. -13.8 n.d. -13.3 
18:1 -11.6 -11.4 n.d. n.d. n.d. n.d. n.d. n.d. 
18:0 n.d. -11.4 n.d. -14.3 n.d. -12.5 n.d. -12.9 
19:1 -11.8 -10.7 n.d. -16.3 -15.0 -13.8 n.d. -12.9 
24:0 n.d. n.d. n.d. -14.8 -8.5 -14.4 -7.8 -15.1 
26:0 n.d. n.d. n.d. -14.5 n.d. n.d. n.d. -15.9 

         
Sterols         
C31 ∆0 -7.2 n.d. n.d. n.d. -12.5 n.d. -13.3 n.d. 

         
Hopanoids         
C30 hopene n.d. n.d. n.d. n.d. -20.2 n.d. -18.5 n.d. 
C32 hopanol n.d. n.d. n.d. n.d. -17.6 n.d. -17.8 n.d. 

 

Low concentrations of lipid biomarkers restricted measurements of δ13C values in the 

studied mat, and thus the general trend with respect to isotope signatures between free and 

carbonate-lipids are not conceivable here. Nonetheless, of all the identifiable isotopic signals, 

we observe several δ13C values of FAs (e.g. C19:1) are more enriched in the carbonate-bound 

phases than the free lipids, some cases (e.g. C16) are vice versa, and certain FAs (e.g. C18:1) 

showed similar isotopic signatures in both lipid pools. 

In general, short-chain FAs (including C14-C17) showed highly enriched δ13C values 

(ranging from -4.4 to -14.3 ‰), while 13C-depletion were observed for their long-chain 

homologues (including C18-C26; ranging from -10.7 to -16.3 ‰) within the studied mat. 

Exceptions are two depleted δ13C values for short-chain FAs (iso-C15 and C16) showing -16.4 

‰, and two 13C-enriched signatures for long-chain C24 FAs with -7.8 ‰. 
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Further, δ13C values for FAs in the deeper, older phase of the studied mat were consistently 

depleted by c. 0.2-11.5 ‰ as compared to the top layer 1 (see Table 4.2). This depletion trend 

was even biased in the mineral crust of layer 3, as evident from more 13C-depleted values for 

the long-chain FAs as well as C17 n-alkanes observed therein (see Table 4.2). Another 

characteristic feature of carbon isotopic distribution in the studied mat is that much lighter 13C 

contents observed for the hopanoids compared to the other lipids (see Table 4.2), ranging 

from -17.6 to -20.2 ‰. 

4.3.7 Carbon isotopic signatures of bulk carbonate 

Two different types of bulk carbonate (fine particles and ooids) were measured for carbon 

isotopes, and positive values were obtained from these carbonate (+1.7 to +6.9 ‰; see Table 

4.3). In the deeper layers 5 and 6, δ13Cooid exhibited by 2.5 ‰ more enriched than their 

counterparts, fine particles. In addition, a general 13C-enrichment in the mineral crust of layer 

3 was observed within the mat. 

Table 4.3 δ13C values of bulk carbonate (Fine particles and Ooid, carbonate crust of layer 3) as well as 
∆δ13C values between FA and bulk carbonate in the studied mat (TLE1: freely extractable lipid, TEL2: 

carbonate-bound lipid; ∆δ13C(FA-carbfine) and ∆δ13C(FA-carbooid); unit: ‰ relative to V-PDB; n.d.=not detected; 
n.a.=not analysed). 

Layer 
 

δ13Cbulk 
1 2 3 4 5 6 

Fine particles +1.7 +4.8 +6.5 +5.7 +4.3 +4.1 
Ooid n.d. +4.9 +5.0 +6.9 +6.5 

∆δ13C(FA-particle) 
TLE1 

 
-11.8 

TLE2 
 

-13.2 
n.a. -21.8 n.a. 

TLE1 
 

-13.6 

TLE2 
 

-15.6 

TLE1 
 

-11.9 

TLE2 
 

-17.3 

∆δ13C(FA-ooid) n.d. n.a. -21.8 n.a. 
TLE1 

 
-16.2 

TLE2 
 

-18.2 

TLE1 
 

-14.3 

TLE2 
 

-19.7 
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4.4. Discussion 

4.4.1 Growth history of the microbial mat 

The microscopic study presented here (see section 4.3.1), together with the 14C dates (Figure 

4.1d; Blumenberg et al., 2015) indicate that the studied microbial mat records two distinct 

phases of mat development, separated by the mineral crust of layer 3 and with dissimilar 

growth rates (Figures 4.2c, 4.3). The older phase is represented by the three lower layers (4-6, 

c. 7 cm thick, Figures 4.2c, 4.3), which formed in less than 350 years (from 1440±40 to 

1111±40 years BP). The younger phase is represented by the two upper layers (1-2, c. 3 cm 

thick, Figures 4.2c, 4.3), which formed in more than 550 years (from  551±40 to 62±40 years 

BP) and maybe up to 1000 years (if we take into account the age of the underlying layer 3, 

1111±40 years BP). Despite their differences in age and in accretion rate (the younger and 

thinner phase seems to have accreted at a much slower rate than the older phase, cf. Figure 

4.1d), both phases show similar mineral composition, being mainly formed by irregular 

micritic aggregates and subspherical particles. These types of carbonate precipitates are not 

only common in Kiritimati but in all microbialites. In particular, the micropeloidal texture of 

the irregular micritic aggregates (Figures 4.4, 4.6) is very commonly described in most 

modern and fossil microbialites throughout their long geological history, since the Archean. 

The main difference between the mineral precipitates of both growth phases of the studied 

microbial mat is their abundance, size and development. In the lower layers, precipitates are 

more abundant than in the upper layers, and they tend to be coalesced in larger aggregates 

(Figures 4.3, 4.4). This is easily explained by the fact that they have had a longer time to 

precipitate since their formation, between 1440 and 1111 years BP, than the precipitates of the 

younger (<550 years BP) upper layers. In addition, the lower layers also show a less abundant 

and more degraded EPS matrix than the upper layers, where this matrix is fresher and denser 

(Figure 4.6), which is consistent with the lower Corg content in the older layers (1.20%-1.47%, 

see Table 4.1b), compared with the upper layers (4.69-6.23%, see Table 4.1b) indicating a 

general increase in OM degradation downwards in the mat. The coincidence of this 

taphonomic evolution of EPS with the downwards increase in mineral size and abundance 

shows and supports the commonly stated role of the degradation of microbial EPS as a trigger 

to mineral precipitation and to the formation of microbialites (e.g. Arp et al., 1998; Arp et al., 

1999b; Dupraz et al., 2009; Reitner et al., 1995). Therefore, the upper and lower parts of the 

studied sample may be interpreted as two different growth phases of relatively similar 

microbial mats, formed under probably similar environmental conditions, but representing 
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different development stages: the upper part being the earliest steps of mineralization and the 

lower part representing a more evolved proto-microbialite, after ~1400 years of degradation 

of EPS and of mineral precipitation. 

Interestingly, the boundary between those two development stages of the mat is marked by 

the mineral crust of layer 3, which shows strong contrasts with the other layers (Figure 4.5). 

The 14C dates (Figure 4.1d; Blumenberg et al., 2015) and the microscopic study of the crust 

suggest that it was formed during an interruption in microbial mat accretion, c. 1100 years 

BP. During this hiatus the microbial mat did not develop as it had in the previous c. 350 years, 

probably due to an environmental change. This hypothesis is supported by the biotic change 

that can be inferred from the organisms and their traces preserved within the crust: very 

abundant filamentous microbes and diatoms, with less common foraminifera (Figures 4.5e-h). 

Foraminifera do occur in the modern surface of the living mat (Layer 1), and they are also 

preserved in older layers, but diatoms and filamentous microbes are absent or much less 

common in other layers, being only locally preserved as molds within some mineral 

precipitates of Layers 4-6. Furthermore, the significant contrast in the mode of mineral 

precipitation observed in layer 3 also points to environmental changes. The µm-scale 

superposition of fibrous-radial botryoidal laminae (Figure 4.5c) indicates that precipitation 

was episodic, occurring repeatedly but only during favorable moments. Similar botryoidal or 

fan-like fibrous-radial fabrics with microbial filament remains have been described in fossil 

microbialites interpreted as formed under large hydrological variations, ranging from 

freshwater to hypersaline conditions (Camoin et al., 1997). In Kiritimati, the only similar 

microfabric has been described locally as fibrous aragonite veneers interpreted to precipitate 

at low supersaturation (Arp et al., 2012). The fact that Kiritimati lakes may experience inflow 

of fresh groundwater (Saenger et al., 2006) makes it plausible that the hiatus represented by 

layer 3 and the precipitation of its mineral crust are related to a hydrochemical change in Lake 

2, due to freshwater input, which would reduce salinity and alkalinity and could prompt a 

biotic change, interrupting the former microbial mat accretion and promoting the occurrence 

of a much thinner biofilm dominated by filamentous microbes and diatoms, with foraminifera 

being less abundant. In this context, carbonate precipitation would occur only when 

supersaturation sporadically increased, and it would be relatively fast, allowing the rapid 

entombment of most biofilm organisms. After this anomalous period, a new change back to 

hypersaline conditions would reinstate the accretion of a new microbial mat (layers 1-2) 
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similar (in biotic composition and in mode of mineral precipitation) to the older one (layers 4-

6). 

4.4.2 Depth distributions of steroids vs. hopanoids and fatty acids (FAs) 

Significant amounts of unspecific C18 and C19 FAs as well as certain amounts of iso-/anteiso- 

C15-C17 were observed in the free lipids. These FAs occur commonly in many bacteria (Anhalt 

and Fenselau, 1975; Kates, 1964). In the upper layers (1-3), the abundances of FAs and 

hopanoids drastically dropped (Figure 4.7a). Thereafter, in the deeper layers (4-6), hopanoids 

and FAs slightly increased in abundance. For the steroids, it shows a significant decrease in 

the abundance in the upper mat layers and retained a low amounts in the deeper parts. These 

observations suggest that steroids, FAs and hopanoids suffered from microbial degradation 

during further growth of the mat. The general decreasing trend of hopanoids in the mat 

studied is contrasting with the previous study that described an increasing hopanoids with 

depth from another microbial mat (Lake 22; Shen et al., 2018). However, the enhancement of 

hopanoids in the deeper parts of the mat studied could be interpreted as the diagenetic 

products of bacteriohopanepolyols (BHPs; Rohmer, Bouvier-Nave and Ourisson, 1984). We 

assume that one part of BHPs yielded the observed GC-amenable hopanoids via the 

progressive defunctionalisation process. Another part of BHPs (or their alteration products) 

apparently has been incorporated into macromolecular organic matter, as revealed by 

hopanoids released from pyrolysates (see chapter 3.5, Figure C.1). A major part of BHPs 

probably have been degraded by intensive activity of microorganisms, eventually causing the 

major degradation of hopanoids, also reflected by the low Corg in the deeper part of the mat 

(1.2%-1.47%; Table 4.1a). Alternative source of hopanoids is new production of BHPs 

downwards in the mat. As reported by Blumenberg et al. (2013) about another mat on 

Kiritimati, BHPs could be more abundant in deeper layers. Such an additional input was 

accompanied by the slight co-occurring increase in bacterial FAs. However, the predominant 

source of hopanoids in the deeper mat is derived from defunctionalisation of BHPs rather than 

new production. This is also revealed by the constant steroids/hopanoids ratios downwards in 

the mat (Table C.3). Specifically, this ratio significantly dropped in the upper two layers, 

which resulted from the remarkable degradation of steroids occurred therein. Thereafter, the 

ratios showed constant low values in the deeper part of the mat, as a result of the consistent 

degradation of both steroids and hopanoids, and thus, no primarily additional inputs of 

hopanoids occurred in deeper layers. This is corroborated by the overall low Corg contents 

downwards in the mat, indicating no major production of bacteria-derived lipid biomarkers 
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occurred therein. Further, the relative depth distribution of FAs and steroids is similar in the 

upper layers, as evident from fairly constant steroids/FAs ratios, suggesting they experienced 

similar preservation pathways. Below, in the deeper layer 5, steroids/FAs ratios markedly 

increased, possibly due to the production of C31-sterols derived from dinoflagellates resting 

cysts (Shen et al., 2019). In the bottom layer 6, the ratio decreased again, caused by the 

ongoing degradation of steroids. 

In the carbonate-bound lipids, hopanoids were far less abundant compared to the free lipid 

fractions. Specifically, hopanoids increased in abundance until layer 3 and then decreased 

again. FAs showed similar trends with a maximum in layer 3 and decreasing concentrations in 

the deeper layers (Table C.4; Figure 4.7b). Unlike hopanoids and FAs, the total carbonate-

bound steroids showed overall low abundance through the mat. The high abundances of FAs 

and hopanoids in layer 3 co-occurs with the presence of large amounts of remains from 

filamentous microbes, diatoms and foraminifera, as well as the presence of large pores filled 

with residual OM (Figures 4.5e-h, also see 4.1). Further, steroids/hopanoids ratios decreased 

in the upper layers (2-3), due to an increase in hopanoids in the mineral crust of layer 3. This 

possibly also influenced the underlain layer 4 that induced large amounts of microorganisms 

thriving there, as the observed high abundance of hopanoids. In the lower layers 5 and 6, 

steroids/hopanoids ratios showed a significant increase, inferred from the major degradation 

of hopanoids downwards in the mat. Steroids/FAs ratios had very low values through the mat 

profile. The lowest values were observed in layer 3, which contained the highest 

concentration of FAs. This coincides with the microscopy observation of abundant presence 

of remains of filamentous microbes, diatoms and foraminifera. In the deeper mat, these ratios 

slightly increased, due to the decrease in the abundance of FAs. As discussed above (4.3.1 

and 4.4.1 sections), the carbonate crust is composed of several µm-scale superposition of 

fibrous-radial botryoidal laminae, which indicate crust layer 3 was formed during episodic, 

repeated fast mineral precipitation probably only occurred during favorable moments. These 

episodes of fast mineralization result in the entrapment of microorganisms, and it also 

explains the more efficient inclusion of lipids within layer 3 as compared to the other mat 

layers. This phenomenon is evident from the sharp increase in bacteria-derived FAs and, to a 

lesser extent, hopanoids (Table C.4; Figure 4.7b). 

Unlike hopanoids and FAs, eukaryote-derived steroids did not show an increase in 

abundance in layer 3, although plenty of steroids-producing diatom moulds were observed 

(Figure 4.5h). It is possibly resulted from the composition of diatom frustule that mainly 
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consists of silicate, which can be easily dissolved in alkaline environments as the settings in 

the studied mat. Alternatively, it might be caused by a relatively fast (bacterial) degradation of 

organic matrix and/or diatom-derived EPS (function as protecting diatom frustules from 

dissolution), and thus accelerating the degradation processes and eventually not preserved 

over geological time (Lewin, 1961; Bidle and Azam, 1999). Consequently, the scenarios 

could be assumed that layer 3 experienced entirely distinct conditions deduced from large 

hydrological variations, which were probably no longer suitable for the accretion of microbial 

mat. Meanwhile, the distinct conditions might be in favour of the growth of diatom. However, 

these diatom-derived OM was rapidly altered/degraded/dissolved by microorganisms and 

replaced by carbonate minerals at the later stage of diagenesis, and this replacement process 

was more likely occurred during the formation of the carbonate crust. A further unique feature 

for the carbonate-bound lipids are the occurrence of α,ω-dicarboxylic acids (α,ω-diacids). 

This is in concert with the report about the early Jurassic concretions and their immediate host 

rocks, published by Thiel and Hoppert. (2018). They stated remarkably more abundant 

dicarboxylic acids in concretions detected compared to the host rocks, suggesting an 

enrichment of preservation or selective accumulation mechanism for these compounds in the 

concretions (Thiel and Hoppert, 2018). Several works suggested that α,ω-diacids have 

multiple biological sources, e.g., higher plants (Kolattukudy, 1980), sea-grass (Volkman et 

al., 1980), and can also be derived from in situ formation (via terminal oxidation of 

monoacids or other aliphatic moieties such as n-alkanes; Ishiwatari and Hanya, 1975; Johns 

and Onder, 1975) and ω-hydroxy acids (Cranwell, 1978; Eglinton, Hunneman and Douraghi-

Zadeh, 1968). Moreover, in another recent study on Cretaceous hydrocarbon seep limestones, 

Smrzka et al. (2017) detected α,ω-diacids only after dissolution of the authigenic carbonate 

minerals, which might indicate an in-situ formation directly associated with carbonate 

precipitation, which is in agreement with the diacids only observed in the carbonate-bound 

lipids of the studied mat. Combined with the observed terrestrial plants-derived C29 sterols as 

well as C20-C28 FAs in the studied mat, we therefore assume that these α,ω-diacids primarily 

originated from higher plant waxes and/or terminal oxidation of monoacids. 

Consequently, lipid biomarkers (i.e., steroids, hopanoids and FAs, Figure 4.7a) 

experienced major degradation in the freely extractable lipids of the studied mat. This is in 

line with the previous report from the same mat in Kiritimati Lake 2 that described a 

decreased concentration of microbial FAs in the decalcified extraction residues (Blumenberg 

et al., 2015). However, the decreased hopanoids in the studied mat is in disagreement with the 
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increased hopane/sterane ratios in the decalcified extraction residues of the deeper mat 

(Blumenberg et al., 2015), which might be interpreted as the extractable hopanoids were 

degraded during further burial of the mat, while the other part of hopanoids were sequestered 

into proto-kerogen (equal to “decalcified extraction residues” in this work), therefore better 

preserved in the geological record. Unlike the free lipids, carbonate-bound biomarkers 

behaved completely different, which shows a sharp increase in abundance of hopanoids and 

FAs occurred in layer 3, which was not analysed by Blumenberg et al. (2015), is interpreted 

here as being linked to the abundance of remains of filamentous microbes, diatoms and 

foraminifera entrapped in large pores of the carbonate crust of layer 3 (Figures 4.5e-h). 

4.4.3 Stable carbon isotope signatures for microbial lipids (δ
13

Clipid) and bulk 

carbonate (δ
13

Ccarb) 

Highly enriched δ13C values (weighted average c. -10 ‰) were observed for the short-chain 

FAs in the studied mat, clearly implying their carbon sources were autochthonous and derived 

from the hypersaline, CO2-limited ecosystem of Lake 2 (cf. Schouten et al., 2001). This 13C-

enrichment in microbial lipids was consensus from a recent study concentrating on the same 

Lake 2 mat that showed high δ13C values for eukaryotic sterols from the top layer 1 (Shen et 

al., 2019). Further, the long-chain FAs were generally depleted (i.e., by weighted average 0.1-

8.2 ‰ in this work) than the short-chain homologues, indicating partial contributions from 

terrestrial higher plants (Schouten et al., 2001). 

For the hopanoids they showed lower δ13C values as compared to the other lipids, 

suggesting these hopanoids were partially originated from methanogens or anaerobic 

methane-oxidizing archaea (Pancost and Pagani, 2006). In addition, van der Meer et al. 

(1998) reported that isoprenoid lipids were 7 to 9 ‰ in 13C-depletion relative to the straight-

chain lipids, due to the utilization of the reversed tricarboxylic acid cycle. Apparently, the 

observed δ13C values of hopanoids (pentacyclic isoprenoids) in the studied mat are well in the 

range of that published isotope data of isoprenoids (van der Meer et al., 1998). 

Throughout the mat profile, slightly lighter δ13C values were observed in the deeper, older 

growth phase of the mat (layers 5 and 6) than the topmost layer 1, suggesting a decrease in 

suppression effect caused by CO2-limitation of local Lake 2 ecosystem. This phenomenon 

was, to a greater extent, observed in the mineral crust of layer 3 that showed more 13C-

depleted values. Furthermore, FAs and hydrocarbons (i.e., C17 n-alkanes) showed more 13C-

depletions in the mineral crust of layer 3. This supports the idea that during the formation of 
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layer 3, the lake has experienced periods with enhanced inputs of fresher or less saline 

groundwater. The reduced salinity caused changes in the mat biota, which is reflected by the 

microscope observations, the biomarker composition and the carbon isotope values. 

The ∆δ13C between FA and bulk carbonate was given in Table 4.3, exhibited from -11.8 to 

-21.8 ‰ for ∆δ13C(FA-carbfine) and -14.3 - 21.8 ‰ for ∆δ13C(FA-carbooid), respectively, which were 

in the same range of ∆δ13C(FA-substrate) as reported by (Londry et al., 2004). 

No consistent trend of the FAs isotopes observed between free and carbonate-bound lipid 

fractions. For instance, part of the isotopic results (e.g. C19:1) showed 13C-enriched signatures 

for carbonate-bound FAs as compared to freely extractable counterparts (see Table 4.2), 

which reconcile with the previous studies that reported similar observation (Craig et al., 2004; 

O'Reilly et al., 2017; Summons et al., 2013). Some carbonate-bound FAs (e.g. C18:1) have 

similar δ13C values as they showed in the free lipids, which is congruent with a recent 

investigation published by Smrzka et al. (2017). The other FAs (e.g. C16) showed more 

depletion in 13C contents in the carbonate-bound fractions than the free lipids. Thiel et al. 

(1999) reported isotopically lighter δ13C values of carbonate-bound hydrocarbons than those 

in free lipid pools, which, in their study, might be caused by the anaerobic methane-oxidation. 

This δ13C values pattern is in agreement with the isotope distributions for the observed cases 

such as C16 FAs in the studied mat, but the potential explanation is unlikely as reported by 

Thiel et al. (1999). In addition, Summons et al. (2013) reported carbon isotope data of oolites 

from hypersaline Hamelin Pool, and demonstrated that isotopic signatures of the OM in the 

carbonate matrix differ from the freely extractable lipids, which might be related to some 

fractionation process that mediate the entrapment of organics in the carbonate. Of the 

observed δ13C values for FAs in the studied mat, the mechanisms for these variable 13C 

contents of FAs (without consistent trend) between free and carbonate-bound lipids are yet 

unclear. It might be associated with different environmental settings and diverse physiology 

of microorganisms. 

Bulk carbonate of Lake 2 mat showed positive δ13C signatures, which is similar to the 

carbonate isotope data up to +6.3 ‰ reported by Arp et al. (2012). Among the two types of 

carbonate mineral, a shift towards higher δ13C values for the large ooids than for the fine 

particles were observed. These discrepancies might be resulted from distinct EPS (i.e., carry 

originally disparate 13C signals) producing different size of carbonate minerals, or diverse 

metabolisms of microorganisms generating/mediating the variations of 13C contents. 
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4.5 Conclusion 

The processes of microbial mat mineralization and the preservation pathways of OM in the 

resulting microbialites were investigated in different layers of a c. 1500 yrs hypersaline 

microbial mat from Kiritimati island. Two major growth phases are observed within the 

studied mat and they are separated by a thin, distinctive mineral crust. Our analysis reveals 

two distinct calcification modes in this single mat, one exhibit in both accretion phases (the 

main microbialite), the other only showing in the thin mineral crust. Further, we notice the 

primary OM in these deposits was preserved in two very different ways. Firstly, in the main 

microbialite, those minerals were formed due to the degradation of EPS that initially suppress 

the formation of carbonate. During further growth of the mat, OM was gradually degraded, as 

reflected by a decline in total organic carbon and bacteria-derived hopanoids and fatty acids in 

the deeper parts of the mat. Contrarily, petrographic features suggest that the carbonate crust 

at the boundary horizon is consisted of µm-scale superposition of radial-fibrous botryoidal 

laminae, indicating the precipitation was episodic, occurring at times of favorable 

environmental conditions and this entire mineral crust was calcified due to a very fast collapse 

of the EPS inhibition function. This hydro-chemically driven, event-like mode of calcification 

was accompanied by a significant biotic change, as inferred from abundant filamentous 

microbes and diatoms and the depleted δ13C signatures for lipid biomarkers observed within 

the thin mineral crust. It also caused a fast and efficient inclusion of lipid biomarkers, as 

reflected by a remarkable increase in the abundances of fatty acids and, to a lesser extent, 

hopanoids. These results suggest that the episodes of hydrological changes may have resulted 

in a fast entrapment of OM in microbial mats and an enrichment of its preservation within 

distinctive mineral precipitates. Such rapidly formed precipitates might have preserved OM 

better than the normal mineralization and hence represent excellent targets for the search of 

authentic OM in the ancient microbialites. 
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-Chapter 5- 

Summary and conclusions 

This thesis integrated a series of experimental works, which were designed to aim at 1) 

assessing the fate of total extractable steroids in microbial mats; 2) differentiating the 

preservation pathways of sterols between freely extractable lipids, carbonate-bound lipids and 

the non-extractable residues, and testing if calcification within microbial mats may function 

as a preservation mechanism for these biomarkers; 3) examining the taphonomy of OM and 

microfacies in microbial mats, and providing reference data for the relations between the 

preservation of OM and the associated mineralization modes. 

In the first study, a c. 1200 years old microbial mat from hypersaline Lake 22 of Kiritimati 

(Kiribati, Central Pacific) was investigated to analyze the fate of steroids (Chapter 2). This 

mat was divided into different layers, and the steroids inventory in the total lipid extracts was 

assessed and quantified in each mat layer. It was demonstrated that progressive microbial 

alteration of primary sterols occurred within the mat, which was reflected by the increases in 

stanols and sterenes vs. ∆5-stenols, as well as the presence of thiosteranes in certain mat 

layers. The summed concentrations of total steroids were consistently abundant throughout 

the mat, and did not show any systematic decrease with depth, hence the result argues against 

“mat-seal effect”. 

The second study examined the taphonomic pathways of eukaryotic sterols, differentiated 

in freely extractable and carbonate-bound lipids and insoluble organic matter, in a recent 

hypersaline microbial mat (Lake 2, Kiritimati; Chapter 3). High δ13C values of C31-sterols and 

fatty acids indicate an autochthonous origin for these lipids. A significant drop in total sterols 

was observed, up to 98% in the deeper part of the mat, suggesting a major degradation of 

these compounds. Further, carbonate-bound sterols generally appeared in low abundances, 

indicating that incorporation into the mineral matrix did not play a major role in the 

preservation of sterols in this mat. Likewise, steroids were not sequestered into insoluble 

organic matter. Therefore, the results from this work support the hypothesis of “mat-seal 

effect”. Interstingly, the distribution patterns of the steroids from this Lake 2 mat are 

markedly different from the previous findings from the Lake 22 mat, where there was no 

evidence for such a “mat-seal effect”. The potential mechanisms which might have caused the 
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distinct behavior of sterols could be differences in salinity and/or temporal subaerial exposure 

in these two different lake ecosystems, and hence contrasting sterol degradation patterns may 

be expected in response to environmental conditions, as showed by these particular cases. 

As for the third study, analysis of lipid biomarkers combined with petrographic and 

histologic investigations were used in a depth profile of a recent calcifying mat (~1500 years) 

from hypersaline Lake 2 in Kiritimati (the same mat as investigated in the second study; 

Chapter 4). This work aims at a better understanding of the processes that lead to 

mineralization of a microbial mat and the preservation of organic matter in the resulting 

microbialites. The analysis revealed two major phases of mat development, separated by a 

distinctive mineral crust, which contrasts with the common mineral precipitation (i.e., mainly 

controlled by the degradation of EPS, exopolymeric substances) observed in the two accretion 

phases. The primary organic matter in these deposits was preserved in two different ways: one 

observed in both accretion phases, and the other occurring only in the thin mineral crust that 

separates them. To our best knowledge, this is the first time that significantly different organic 

matter preservation pathways are observed within a single microbial mat. In addition, the 
14

C 

dates of the mat illustrate that preservation of lipids may have been strongly controlled by 

mineralization processes. Fast mineral precipitation driven by environmental changes, 

resulting in a rapid and efficient inclusion of lipid biomarkers, as reflected by a remarkable 

increase in the abundance of microbial lipid signatures within the crust. Meanwhile, this 

hydrologically-driven mineralization was accompanied by a significant biotic change, as 

inferred from abundant filamentous microbes and diatoms therein. Consequently, such rapidly 

formed precipitates might have preserved organic matter much better than the normal 

mineralization and hence represent excellent targets for the search of authentic organic matter 

in ancient microbialites. 

In conclusion, this thesis demonstrates that the preservation of steroids in microbial mats 

may not be exclusively controlled by heterotrophic degradation, but rather depends on a 

complex interplay of sedimentary and taphonomic processes. It may be also influenced by 

multiple biotic and abiotic factors including salinity and periods of subaerial exposure, which 

might cause the occurrence of “mat-seal effect” or not. Therefore, caution must be taken when 

analyzing sterols distribution patterns in modern and ancient fossil microbialites. Moreover, 

thorough consideration of mineralization processes should be particularly exercised in the 

future works if investigating microbial lipids in fossil microbial mats, in order to obtain 

comprehensive interpretation of organic biosignatures encased therein. 
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-Chapter 6- 

Outlook 

Further works associated with this thesis would include the evaluation of pyrolysis results 

from the non-extractable organic matter (partially presented in Appendix A and B). Currently, 

only steroids and hopanoids were analyzed in the extraction residues from the studied 

microbial mats. The other kerogen-bound compounds such as furan, indole and levoglucosan 

were not investigated yet, since some of them have been demonstrated as indicative of 

proteins and sugars. Obtaining the detailed information in the kerogen fraction will allow 

presenting a complementary picture of organic matter preserved in microbial mats. In addition 

to the kerogen, pyrolyzing the original mat samples could be another work in the future. This 

would enable the comparison of organic compounds between the original bulk mat and 

extraction residues. 

Experimental results presented in this thesis mainly concentrated on the preservation 

pathways of eukaryote-derived steroids and microbial-derived hopanoids and fatty acids 

(Chapter 2, 3, and 4, Appendix A, B and C). Further investigations of lipid biomarkers might 

extend to the evaluation of intact bacteriohopanepolyols (BHP) and their related products 

such as acetyl derivative of anhydrobacteriohopanetetrol, aromatized hopane glucosamine, 

and hopane series containing thiophene rings. 

The hypothesis of mat-seal effect was tested in hypersaline lake ecosystems on the atoll of 

Kiritimati. More hypersaline mats on the atoll might be examined to demonstrate whether 

ultrasalinity favor the preservation of steroids during burial processes. Further works could 

also encompass the low saline and brackish lakes on Kiritimati, to see if the taphonomy of 

organic matter differs from those observed in high salinity settings, and to get a more general 

idea about how the preservation of lipid biomarkers responds to different lake environmental 

conditions within the same general setting. 

In addition to the Kiritimati atoll environments, more environmental settings, such as 

freshwater, hot springs and methane seeps (in particular, those that are similar to Proterozoic 

marine environments), could be involved in future research steps. These investigations would 
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provide further understanding of the preservation of organic compounds in fossil microbial 

mats, through the study of varied modern analogues. 

Finally, phylogenetic analysis (i.e., DNA extraction, PCR, pure culture) could be 

conducted to get an overview of taxonomic groups that lived in the mats. In combination with 

biogeochemical methods, it would provide more comprehensive results with respect to the 

biological precursors of lipid biomarkers and source organisms. 
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Appendix A 

Supplementary material 

Tracing the fate of steroids through a hypersaline microbial mat (Kiritimati, 

Kiribati/Central Pacific) 

Table A.1: Concentrations of major fatty acids (FAs) and hopanoids (ββ-bishomohopanoic acid, ββ-
bishomohopan-32-ol and αβ-trishomohopan-32-ol) in the microbial mat layers (μg/g dry mat). 

  

Layer 
 

Compound 

 
1 

 
2 

 
3 

 
4 

 
5 

 
6 

FAs μg/g μg/g μg/g μg/g μg/g μg/g 

14:0 4.1 9.7 2.3 3.0 6.5 4.3 

i-15:0 11.0 25.5 4.8 4.7 8.5 7.9 

ai-15:0 5.1 12.3 3.1 3.1 3.6 3.9 

15:0 3.6 10.5 1.7 1.6 3.9 3.5 

i-16:0 19.5 37.6 5.2 5.4 5.7 5.6 

16:0 29.5 60.3 18.3 17.9 42.5 28.5 

i-17:0 6.0 16.8 4.7 4.4 7.9 9.0 

ai-17:0 7.3 17.6 3.3 3.2 5.4 5.8 

17:0 6.3 11.5 1.7 1.5 8.0 3.5 

ω-cyclohexyl-17:0 2.5 5.2 2.9 1.0 1.9 2.4 

18:1 (mainly ω7c and ω9c) 13.7 28.3 8.5 4.7 10.7 10.4 

18:0 23.0 10.2 10.1 9.0 19.0 20.7 

9,10-cyclopropyl-19:0 30.4 65.6 12.4 10.3 22.6 20.9 

20:0 4.3 6.0 2.4 2.6 4.6 4.5 

22:0 3.7 5.0 2.0 2.1 4.8 5.1 

24:0 9.0 16.5 7.6 6.5 15.3 15.4 

26:0 4.1 10.9 8.2 6.0 9.1 6.7 

28:0 3.4 7.2 4.4 4.8 6.3 6.2 

30:0 2.1 6.5 5.7 4.3 6.7 8.4 

       

Hopanoids       

ββ-bishomohopanoic acid 59.2 97.5 91.0 83.1 180.9 216.2 

ββ-bishomohopanol 5.5 12.3 8.5 9.0 10.1 12.0 

αβ-trishomohopanol 12.8 14.3 42.0 40.8 79.3 33.6 
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Table A.2: Concentrations of summed major hopanoids (ββ-bishomohopanoic acid, ββ-bishomohopan-32-
ol and αβ-trishomohopan-32-ol), fatty acids (FAs) and steroids (μg/g dry mat) as well as steroids/hopanoids 

and steroids/FAs ratios in the microbial mat layers. 

*including dinosterol  

Layers Hopanoids FAs  Steroids Steroids*/ 
Hopanoids 

Steroids*/FAs 
 

1 77.5 188.6 54.3 0.76 0.31 

2 124.1 363.2 125.6 1.03 0.35 

3 141.5 109.3 49.1 0.37 0.48 

4 132.9 96.1 68.7 0.56 0.77 

5 270.3 193.0 110.5 0.43 0.60 

6 261.8 172.7 75.4 0.32 0.49 
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Figure A.1: Mass spectrum of the C27 thiosterane (5α-cholestane-3β-thiol) observed in the microbial mat 
layer 5. 
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Figure A.2: Summed Pyrolysis-GC-MS chromatograms of steroids (m/z 213+215+217) and hopanoids 
(m/z 177+191) from microbial mat extraction residues (Eocene Green River Shale for reference). Please 
note that there are no detectable amounts of steroids in any of the mat layers, whereas hopanoids are always 
present. 
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 Figure B.1: Mass spectra of 22,23-methylene-4α,23,24-trimethylcholest-5-en-3β-
ol (4α-methylgorgosterol) and 22,23-methylene-4α,23,24-trimethylcholestan-3β-ol 
(4α-methylgorgostanol) observed in the studiedmicrobial mat (Atwood et al., 2014; 
Houle et al., In Press). 



Appendix B 

136 
 

 

  

Figure B.2: Pyrolysis-GC-MS ion chromatograms showing the distributions of steroids (m/z 
213+215+217)vs. hopanoids (m/z 177+191) in the insoluble organic matter of the microbial mat layers 
(extraction residuesafter decalcification; Eocene Green River Shale for reference). 
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Figure B.3: Distributions of summed C27- vs. C28- vs. C29- vs. C31-sterols in the (a) freely extractable 
lipids, and (b) carbonate-bound lipids of the microbial mat layers (in % of the total). 
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Appendix C 

Supplementary material 

Different modes of calcification control the preservation of organic matter in a recent 

microbial mat 

Table C.1: Concentrations of major fatty acids (FAs) and hopanoids (hop-17(21)-ene, hop-22(29)-ene, ββ-
bishomohopanoic acid, ββ-bishomohopan-32-ol and αβ-trishomohopan-32-ol) in free- lipids of the 

microbial mat layers (μg/g dry mat). 

Layer 
 

Compound 

 
1 

 
2 

 
3 

 
4 

 
5 

 
6 

FAs μg/g μg/g μg/g μg/g μg/g μg/g 

14:0 3.28 0.77 0.11 0.10 0.27 0.18 

i-15:0 4.02 2.18 0.21 0.13 0.25 0.20 

ai-15:0 0.81 1.19 0.09 0.08 0.16 0.11 

15:0 2.21 1.04 0.10 0.06 0.16 0.13 

i-16:0 7.85 1.74 0.17 0.22 0.43 0.32 

16:1 26.66 0.50 -- -- -- 0.89 

16:0 35.85 7.17 0.89 0.94 2.56 1.97 

i-17:0 1.18 0.59 0.08 0.10 0.18 0.16 

ai-17:0 1.16 0.82 0.07 0.15 0.27 0.20 

17:0 2.30 1.08 0.08 0.08 0.22 0.18 

18:1 50.71 5.67 0.26 0.24 0.87 0.80 

18:0 12.41 3.10 0.37 0.45 -- 1.38 

19:1 56.09 7.17 0.55 0.35 0.45 0.55 

19:0 0.96 0.48 0.02 0.07 0.16 0.13 

3-hydroxy-methylester 1.90 0.20 -- 0.11 0.13 0.19 

20:0 1.64 0.54 0.11 0.15 0.41 0.37 

21:0 0.95 0.12 -- 0.03 0.09 0.09 

22:0 0.66 0.34 0.03 0.14 0.45 0.35 

23:0 0.17 0.09 -- 0.03 0.05 0.08 

24:0 1.56 0.64 0.13 0.76 3.24 2.61 

26:0 0.35 0.50 0.07 0.32 0.96 0.97 

28:0 -- 0.52 -- 0.17 0.30 0.25 

30:0 -- 0.28 -- 0.06 0.29 0.39 

       

Hopanoids       

Hop-17(21)-ene 
(Moretene) 

6.67 2.82 0.38 0.48 1.84 1.05 

Hop-22(29)-ene 
(Diploptene) 

6.27 1.25 0.61 0.20 0.81 0.31 

ββ-bishomohopanoic acid 2.17 7.74 0.79 1.78 2.60 2.59 

ββ-bishomohopanol 1.56 3.24 1.26 0.88 3.32 1.06 

αβ-trishomohopanol -- 0.71 0.94 -- 1.19 0.69 
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Table C.2: Concentrations of major fatty acids (FAs) and hopanoids (Hop-17(21)-ene, Hop-22(29)-ene, 
ββ-bishomohopanoic acid, ββ-bishomohopan-32-ol) in carbonate-bound lipids of the microbial mat layers 

(μg/g dry mat). 

  

Layer 
 

Compound 

 
1 

 
2 

 
3 

 
4 

 
5 

 
6 

FAs μg/g μg/g μg/g μg/g μg/g μg/g 

14:0 0.37 0.25 0.65 0.19 0.18 0.12 

i-15:0 0.70 0.74 3.71 0.54 0.51 0.43 

ai-15:0 0.21 0.23 0.46 0.12 0.13 0.11 

15:0 0.28 0.42 0.92 0.27 0.26 0.26 

i-16:0 0.61 0.78 3.41 0.76 0.49 0.55 

16:1 1.13 0.36 -- -- -- -- 

16:0 5.49 2.62 12.19 2.34 1.48 1.36 

i-17:0 0.12 0.31 1.34 0.26 0.14 0.19 

ai-17:0 0.14 0.31 1.31 0.27 0.18 0.22 

17:0 0.30 0.56 0.89 0.24 0.18 0.21 

18:1 3.49 0.91 1.41 0.31 -- 0.12 

18:0 2.59 1.29 4.97 1.36 0.62 0.61 

19:1 1.52 4.54 28.69 4.53 0.87 2.84 

19:0 0.05 0.17 0.25 0.11 0.09 0.04 

9,10-cyclopropyl-19:0 1.65 0.38 5.13 1.08 0.41 0.12 

Methyl 3-hydroxy (12:0) -- 0.10 0.23 0.28 0.05 0.04 

Methyl 3-hydroxy (14:0) -- 0.05 0.42 0.26 0.06 0.10 

Methyl 3-hydroxy (16:0) -- 0.25 3.99 1.45 0.11 0.27 

20:0 0.08 0.18 0.62 0.31 0.06 0.08 

21:0 0.50 0.15 1.83 0.35 0.20 0.06 

22:0 0.10 0.17 1.04 0.59 0.11 0.07 

24:0 0.21 0.45 2.41 2.79 0.60 0.67 

26:0 0.09 0.15 0.65 0.85 0.14 0.17 

28:0 -- 0.12 0.49 0.47 -- -- 

Dioic acids-21:0   0.29 0.18 -- -- 

Dioic acids-22:0   0.38 0.17 -- -- 

Dioic acids-23:0   0.79 0.21 -- -- 

Dioic acids-24:0   0.27 0.18 -- -- 

Dioic acids-25:0   0.29 0.11 -- -- 

Dioic acids-26:0   0.38 0.15 -- -- 

Dioic acids-27:0   0.30 0.23 -- -- 

Dioic acids-28:0   0.74 0.26 -- -- 

      -- 

Hopanoids      -- 

Hop-17(21)-ene -- -- 1.03 0.15 -- -- 

Hop-22(29)-ene 
(Diploptene) 

-- -- -- -- -- -- 

ββ-bishomohopanoic acid -- 0.72 2.19 1.76 0.22 0.22 

ββ-bishomohopanol -- 0.22 -- 0.33 -- 0.50 
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Table C.3: Concentrations of summed major hopanoids (hop-17(21)-ene, hop-22(29)-ene, ββ-
bishomohopanoic acid, ββ-bishomohopan-32-ol and αβ-trishomohopan-32-ol), fatty acids (FAs) and 

steroids (μg/g dry mat) as well as steroids/hopanoids and steroids/FAs ratios in freely extractable lipids of 
the microbial mat layers. 

*including C31-sterols  

Layer Hopanoids FAs  Steroids Steroids*/ 
Hopanoids 

Steroids*/FAs 
 

1 16.67 212.72 26.05 1.94 0.15 

2 15.76 36.73 2.22 0.26 0.11 

3 3.98 3.34 0.19 0.16 0.19 

4 3.34 4.74 0.15 0.20 0.14 

5 9.76 11.9 0.57 0.43 0.36 

6 5.70 12.5 0.19 0.18 0.08 
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Table C.4: Concentrations of summed major hopanoids (hop-17(21)-ene, hop-22(29)-ene, ββ-
bishomohopanoic acid, ββ-bishomohopan-32-ol), fatty acids (FAs) and steroids (μg/g dry mat) as well as 

steroids/hopanoids and steroids/FAs ratios in carbonate-bound lipids of the microbial mat layers. 

*including C31-sterols 

Layer Hopanoids FAs  Steroids Steroids*/ 
Hopanoids 

Steroids*/FAs 
 

1 -- 19.63 -- -- -- 

2 0.94 15.49 0.27 0.65 0.04 

3 3.22 80.45 0.32 0.22 0.01 

4 2.24 21.22 0.79 0.55 0.06 

5 0.22 6.87 0.10 1.44 0.05 

6 0.72 8.64 0.14 1.01 0.08 
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Figure C.1: Summed Pyrolysis-GC-MS chromatograms of steroids (m/z 213+215+217) and hopanoids 
(m/z 177+191) from the remaining extract residues within the microbial mat (Eocene Green River Shale for 
reference; data from Shen et al., 2019). 
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