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Abstract 

Otoferlin is a large multi-C2- domain protein essential for hearing and fast Ca2+-triggered 
transmitter release from auditory IHCs. Mutations in the OTOF gene are linked to a form of 
autosomal recessive non-syndromic hearing loss, DFNB9. Otoferlin is involved in several steps 
of the synaptic vesicle cycle in IHCs including vesicle fusion, vesicle reformation, vesicle 
recycling, endocytosis and coupling of exo- and endocytosis. While some progress has been 
made in understanding its role in IHC synaptic transmission, mechanisms regulating its 
function have not been studied to date. Second messenger-activated protein kinases regulate 
synaptic transmission in conventional synapses via phosphorylation of presynaptic proteins 
thereby controlling presynaptic plasticity, protein interactions within the release apparatus, 
endocytosis and trafficking events. 

In this thesis, I focused on deciphering the role of protein kinases in IHC synaptic 
transmission. Together with my collaborators, I showed for the first time that synaptic activity 
in IHC synapses is also regulated by phosphorylation of presynaptic proteins. By combining 
immunohistochemistry, in situ proximity ligation assays (PLAs), confocal microscopy, real-
time PCR, mutagenesis, microscale thermophoresis (MST), pull-downs, co-
immunoprecipitations (co-IPs), in vitro assays and mass spectrometry approaches, we showed 
that Ca2+/calmodulin-dependent serine/threonine kinase delta (CaMKIIδ) and protein kinase 
C α (PKCα) phosphorylate otoferlin and regulate its function in rodent IHCs. CaMKIIδ and 
PKCα are expressed throughout the cell and both revealed to be in close proximity to otoferlin 
upon strong stimulation. Physical association between the two kinases and otoferlin was 
confirmed via binding assays, and kinase-specific phosphorylation sites were retrieved: 
CaMKIIδ phosphorylates otoferlin in its C2 domains (C2C, C2D, C2de, C2F) whereas 
PKCα seems to target linker regions and the FerA domain (presumed to be involved in 
membrane-association events), suggesting a combined but distinct action of CaMKIIδ and 
PKCα. Phosphorylation by CaMKIIδ affects the affinity of otoferlin’s C2C and C2F domains 
to Ca2+ under physiological conditions. PKCα is targeted upon activation (either 
pharmacologically or following high K+ stimulation) to the basolateral plasma membrane and 
to endocytic compartments where it interacts with otoferlin.  The previously reported 
interaction of otoferlin with myosin VI appears to be PKC-dependent. Moreover, otoferlin 
interacts with the EF-hand protein calbindin-D28k in a PKC-dependent manner, whereas 
PKCα and calbindin-D28k seem not to interact directly. The association of these three 
proteins probably happens in a sequential fashion and potentially regulates different modes of 
membrane internalization and may control the dynamics of the synaptic vesicle cycle in IHCs. 
The PKC-dependent association of otoferlin with calbindin-D28k is especially potentiated 
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under strong stimulatory conditions and might play a role in clathrin-independent events like 
ultrafast endocytosis. This mechanism may constitute a molecular switch between different 
modes of endocytosis, thus providing the grounds for fast and efficient vesicle recycling, 
hallmarks of IHC ribbon synapses. 
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1.1. The auditory system 

Hearing is a unique sensory feature that provides us with acoustic information about our direct 
surroundings. The evolution of the auditory system in higher vertebrates allowed for prey and 
predator detection, and particularly in humans, facilitated communication and social 
interaction, being one of the hallmarks of our information-centered society. 

Different mammalian species perceive different ranges of frequencies and intensities of sound 
stimuli. The human auditory system can encode sounds over a broad dynamic range of 0 to 
120 dB sound pressure level (SPL), spanning frequencies from 20 Hz to 20 kHz (reviewed in 
Kandel et al, 2012). Mice are sensitive to sounds ranging from 1 to 100 kHz (Heffner & 
Heffner, 2007) and became the most commonly used mammal model in hearing research due 
to the advantages in genetic manipulation (reviewed in Ohlemiller et al, 2016). 

1.1.1. Anatomy of the ear 

Figure 1.1. Structure of the mammalian ear. 
A. Detection of environmental sound begins when incoming sound waves reach the outer ear. Sound propagates
through the ossicles in the middle ear, which then transmit it to the cochlea in the inner ear. B. A cross section
of the mammalian cochlea, a fluid-filled continuous coiled duct. C. A cross section of one of the cochlear
partitions, showing the organ of Corti and the three fluid-filled cochlear chambers, scala tympani, scala media and
scala vestibuli. The organ of Corti bears the mechanosensory epithelium composed of one row of inner hair cells
and three rows of outer hair cells. Adapted from Frolenkov et al, 2004; Müller & Barr-Gillespie, 2015.

In the mammalian ear, sound travels through several stations along the auditory pathway in a 
mechanical-coupling fashion, with sound information being lastly delivered to the cochlea – 
in the inner ear (Figure 1.1A). The cochlea is a snail-shaped structure with a bony core – the 
modiolus – around which several turns of fluid-filled compartments (scala vestibuli, scala 
tympani and scala media) are coiled up – two and a half turns in humans (Figure 1.1A-B). Scala 
vestibuli and scala tympani are filled with perilymph, with a potassium (K+) concentration of 
~5 mM, while the scala media is filled with endolymph, with higher K+ concentrations of ~160 
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mM. Reissner's membrane separates scala vestibuli from scala media. Between scala tympani 
and scala media is the basilar membrane, and on top of it sits the organ of Corti, a specialized 
sensory epithelium that amplifies and transduces mechanical sound vibrations into an electrical 
output signal which is then transferred to the brain (see chapter 1.1.2) (Figure 1.1C). In 
humans the organ of Corti harbors approximately 16000 hair cells (HCs) organized into three 
rows of outer hair cells (OHCs) and one row of inner hair cells (IHCs). These cells have on 
their apical surface structures termed stereocilia, mechanically sensitive actin-filled organelles 
organized in rows of increasing height. The tectorial membrane sits on top of the organ of 
Corti and forms direct connections to the stereocilia of the OHCs but not of IHCs (Figure 
1.1C) (reviewed in Hudspeth, 1997; Kandel et al, 2012). 

1.1.2. Auditory transduction 

The sense of hearing is accomplished by a process known as auditory transduction. The ear 
converts sound waves in the air into electrical impulses, which are then interpreted by the brain. 

As sound enters the ear, it passes through the auditory canal in the outer ear and it reaches the 
tympanic membrane, which separates the outer from the middle ear. The tympanic 
membrane then vibrates in response to the sound waves and delivers them to a chain of three 
bones called the ossicles (malleus, incus and stapes) (Figure 1.1A). Vibrations transmitted by 
the stapes are drowned into the spiral system through the oval window of the cochlea where 
they are converted into liquid pressure waves in the fluid-filled space of the cochlea. These are 
propagated to the apex of the cochlea, ascending through the scala vestibuli, and return to the 
round window, descending through the scala tympani (Figure 1.1B). Reissner's and basilar 
membranes are flexible and move in response to the vibrations travelling up the scala vestibuli 
and down the scala tympani. As the basilar membrane vibrates, OHCs and IHCs, located 
between the basilar and tectorial membranes, are stimulated by the shearing force between the 
basilar and tectorial membranes. While OHCs boost the sound stimulus by amplifying the 
sound-driven basilar membrane vibrations, IHCs convert the sound-induced vibrations 
into an electrical signal and convey it to the afferent boutons of the spiral ganglion neurons 
(SGNs). Firstly, the basilar and tectorial membranes’ oscillations lead to deflection of the 
OHCs’ stereocilia and to opening of mechanoelectrical transduction (MET) channels in the 
tips of the stereocilia. K+ influx leads to OHC depolarization and the cell undergoes an 
oscillation-based alternation of length, amplifying the oscillations which are in turn transferred 
back to the basilar and tectorial membranes and to the endolymph. Mechanical vibrations in 
the endolymph are transferred to the IHCs, leading to deflection of their stereocilia and 
resulting in the opening of MET channels (Fettiplace & Kim, 2014). The subsequent K+ 
influx generates a depolarizing receptor potential that scales with sound intensity (Glowatzki 
& Fuchs, 2002) (Figure 1.2A). This in turn triggers Ca2+ influx via opening of voltage-gated 



General Introduction | 7 
 

 

calcium (Ca2+) channels (Platzer et al, 2000; Brandt et al, 2003) which cluster at the presynaptic 
release sites, also termed active zones (AZs) (Figure 1.2A), triggering Ca2+-dependent exocytosis 
and release of neurotransmitter onto the IHC-SGN synaptic cleft (Moser & Beutner, 2000; 
Glowatzki & Fuchs, 2002) (Figure 1.2B). Neurotransmitter release into the synaptic cleft 
activates AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic) receptors at afferent 
dendrites of the SGNs (Glowatzki & Fuchs, 2002; Schnee et al, 2011) (Figure 1.2B). The 
electrical signal is then propagated along the auditory pathway and is processed in the auditory 
centers of the brain (reviewed in Hudspeth, 1997; Kiang, 2011; Kandel et al, 2012; Fettiplace, 
2017). 

The entire basilar membrane does not vibrate simultaneously. Instead, specific areas of the 
basilar membrane move variably in response to different frequencies of sound. This is 
determined by the width and thickness of the basilar membrane at a particular location. Lower 
frequencies vibrate the basilar membrane stronger in regions closer to the apex of the cochlea 
whereas higher frequencies produce vibrations with higher amplitudes closer to the base. This 
arrangement is known as tonotopic organization (reviewed in Hudspeth, 1997; Frolenkov et 
al, 2004; Mann & Kelley, 2011; Fettiplace, 2017). 

 

1.1.3. Inner hair cell ribbon synapses 

IHCs must be able to detect sudden sound pressure changes in the environment, support 
incessant stimulation, and convey the signal faithfully to the SGNs. To support such high 
demands, the synapses between IHCs and SGNs need to maintain high rates of sustained 
release and are therefore equipped with ribbon synapses (Figure 1.2A). The hallmark feature 
of these synapses and to which they owe their name is a proteinaceous electron-dense structure 
called the synaptic ribbon. 

The synaptic ribbon is associated with the presynaptic release sites, positioned at the basolateral 
plasma membrane in IHCs (Figure 1.2B). Each ribbon tethers a halo of synaptic vesicles 
(SVs) (Sterling & Matthews, 2005) facilitating continuous vesicular replenishment to the 
release site and hence allowing an indefatigable afferent transmission at high rates with sub-
millisecond temporal precision (Khimich et al, 2005; Matthews & Fuchs, 2010; Wichmann 
& Moser, 2015). Because of this, IHCs release SVs at rates several orders of magnitude higher 
than conventional synapses for longer time periods (Griesinger et al, 2005). Graded variations 
in membrane potential – and not action potentials – induce synaptic response and influence 
the amount of released vesicles, a characteristic of sensory cells with ribbon synapses including 
IHCs, retina photoreceptors and bipolar cells (Matthews & Fuchs, 2010). Each IHC can form 
10 to 20 synapses with afferent boutons from SGNs, with numbers varying along the tonotopic 
region of the cochlea (Meyer et al, 2009; Fettiplace, 2017). Each IHC AZ is normally occupied 
by one or two ribbons and transmits information to a single SGN afferent (Fuchs et al, 2003). 
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Figure 1.2. The ribbon synapse, a specialized synapse between inner hair cells (IHCs) and spiral ganglion 
neurons (SGNs). 
Auditory ribbon synapses are highly specialized structures that assure the indefatigable encoding of sound 
information with sub-millisecond temporal resolution. A. Schematic representation of an IHC composed of 
several ribbon synapses, each connected to a single SGN. B. Schematic representation of an IHC-SGN ribbon 
synapse. The synaptic ribbon, mainly composed of the protein RIBEYE, tethers a large number of synaptic vesicles 
(SVs) and is anchored to the presynaptic active zone membrane by the scaffolding protein bassoon. SVs undergo 
exocytosis upon IHC depolarization and subsequent Ca2+ influx through voltage-gated Ca2+ channels. Vglut3 is 
the main glutamate transporter. The presynaptic active zone is equipped with CaV1.3 Ca2+ channels. The 
postsynaptic membrane contains AMPA-receptor subunits GluA2/3 and GluA4. Original illustration adapted 
from Moser & Starr, 2016. 

The specialized molecular anatomy of the IHC ribbon synapse, which as of now is largely 
unknown (see chapter 1.1.3.1), is the base for its impressive release capacity. Besides clustering 
Ca2+ channels at the release sites (Frank et al, 2010; Khimich et al, 2005), the ribbon delivers 
SVs to the AZ plasma membrane, by one of two disputed models: the “conveyor belt” model 
or the “safety belt” model. In the conveyor belt model the ribbon is said to operate as a conveyor 
belt, where it shuttles vesicles downward the ribbon toward the release sites (Lenzi & von 
Gersdorff, 2001; Parsons & Sterling, 2003; Graydon et al, 2014; Becker et al, 2018; Jean et al, 
2018). In the safety belt model the ribbon slows down the process by tethering vesicles stably 
in mutual contact, with vesicles fusing with each other before release thus facilitating 
multivesicular release by compound exocytosis (Parsons & Sterling, 2003; Matthews & 
Sterling, 2008; Jackman et al, 2009). The ribbon has also been proposed to facilitate exocytosis 
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through provision of multiple release sites (multi-vesicular release) by synchronization of SV 
fusion (Edmonds, 2004; Fuchs, 2005; Glowatzki & Fuchs, 2002; Khimich et al, 2005). 
However, in late years this mechanism has been questioned, with univesicular release being 
proposed instead, where single SVs are released independently of each other involving 
glutamate release through a flickering fusion pore (Chapochnikov et al, 2014; Grabner & 
Moser, 2018; Huang & Moser, 2018). 

 

1.1.3.1.  Molecular composition of inner hair cell ribbon synapses 

Collective efforts have been made to elucidate the molecular composition of IHC ribbon 
synapses (reviewed in Pangršič et al, 2012; Safieddine et al, 2012; Rutherford & Pangršič, 
2012; Wichmann & Moser, 2015). While the composition of these synapses differ from that 
of conventional and other ribbon synapses, and the identification of an exocytic SNARE 
complex is still missing, there has been progress towards the identification of the ribbon 
components.  

The main component of the ribbon is the protein RIBEYE (Schmitz et al, 2000; Schmitz, 
2009), with an N-terminal A domain and a C-terminal B domain identical to the nuclear co-
repressor protein C-terminal binding protein 2 (CtBP2), a transcription factor ubiquitously 
found in most tissues. The A domain has a predominantly structural role, whereas the B 
domain is responsible for NAD(H) binding and protein interactions with other ribbon 
components (Schmitz et al, 2000; Magupalli et al, 2008; Alpadi et al, 2008; Müller et al, 2019). 
Several other ribbon-associated proteins, present in conventional synapses, also compose the 
synaptic ribbons. The scaffolding protein bassoon anchors the ribbon to the presynaptic 
density (Frank et al, 2010). Both bassoon (Khimich et al, 2005; Frank et al, 2010; Jing et al, 
2013) and RIBEYE (Frank et al, 2010; Sheets et al, 2011; Graydon et al, 2011; Maxeiner et al, 
2016; Jean et al, 2018) organize individual release sites by promoting Ca2+ channel clustering 
at these sites, and promote vesicle replenishment to the ribbon. Piccolo/Piccolino, CtBP1, 
KIF3A and RIM1/2 were also identified as ribbon components (Muresan et al, 1999; Dick et 
al, 2001; tom Dieck et al, 2005; Deguchi-Tawarada et al, 2006; Regus-Leidig et al, 2013; 
reviewed in Schmitz, 2009). 

While neurons use P/Q- and N-type CaV2.1/2.2 Ca2+ channels (Catterall & Few, 2008), IHCs 
employ L-type CaV1.3 channels (Platzer et al, 2000; Brandt et al, 2003; Dou et al, 2004; Brandt 
et al, 2005) for Ca2+ influx. Additionally, they use the unconventional vesicular glutamate 
transporter 3 (Vglut3) to loads SVs with neurotransmitter (Seal et al, 2008; Ruel et al, 2008) 
as opposed to Vglut1 and Vglut2 in conventional synapses (Bellocchio et al, 2000; Fremeau et 
al, 2001; Takamori et al, 2001).  
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We have yet to find the components of a protein complex that would make up a functional 
exocytic machinery in these synapses. The neuronal soluble N-ethylmaleimide-sensitive factor 
attachment protein receptors (SNAREs) – SNAP-25, synaptobrevins/VAMPs 1-3 and 
syntaxins 1-3 – (Nouvian et al, 2011), the vesicular Ca2+ sensors synaptotagmins (Syt) 1/2 
(Safieddine & Wenthold, 1999; Beurg et al, 2010; Reisinger et al, 2011), as well as late step 
exocytic proteins like synaptophysins, synapsins and complexins (Safieddine & Wenthold, 
1999; Strenzke et al, 2009; Uthaiah & Hudspeth, 2010), but also the priming proteins 
Munc13 and CAPS (Vogl et al, 2015) are either not expressed or are functionally redundant 
for exocytosis in mature IHCs. Instead, IHCs express the multi-C2 domain protein otoferlin 
(Roux et al, 2006; Pangršič et al, 2012), a member of the ferlin family of membrane fusion 
proteins (Lek et al, 2012), which appears to take over the function of many of the neuronal 
proteins and is currently proposed to act as the Ca2+ sensor for exocytosis (Roux et al, 2006; 
Vincent et al, 2014; Michalski et al, 2017) (see chapter 1.1.4). Current knowledge of the 
proteins present and absent in IHCs and their functional equivalents in conventional synapses 
is summarized in Table 1.1. 

 

 

 
Figure 1.3. Exocytic machinery at the IHC ribbon synapse. 
A. Schematic summary of the protein arrangement at mature IHC ribbon synapses. B. Vglut3 is found in IHC 
SVs. Otoferlin is found at the active zone (AZ) membrane. It is currently disputed whether otoferlin is found at 
the ribbon-associated SVs. Other vesicle-localized (v)- or target-membrane-bound (t)-SNAREs in IHCs are 
unknown. Original illustration adapted from Pangršič et al, 2012. 
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Table 1.1. Main molecular differences between conventional synapses of the mammalian CNS and the 
IHC ribbon synapse.  
Several synaptic proteins seem to be absent in mature IHC ribbon synapses. Instead, other proteins either specific 
to IHCs or found in other cell types seem to take over. The table lists first reports or reviews on the proteins for 
CNS and IHC synapses. “None” indicates the protein is probably absent; “FR” indicates the protein is present 
but is functionally redundant “?” indicates lack of published data or conflicting results. CNS, central nervous 
system. Adapted from Pangršič et al, 2012. 

Conventional synapses  Cochlea inner hair cell synapses 
Vglut1, 2 (Bellocchio et al, 2000; Fremeau et al, 
2001; Takamori et al, 2001) 

Glutamate uptake Vglut3 (Ruel et al, 2008; Seal et al, 2008) 

None Scaffold proteins Ribeye/CtBP2 (Khimich et al, 2005) 
Bassoon (tom Dieck et al, 1998; Altrock et al, 
2003; Hallermann et al, 2010) 

Bassoon (Khimich et al, 2005) 

Piccolo (Cases-Langhoff et al, 1996; Mukherjee et 
al, 2010) 

Piccolino (Regus-Leidig et al, 2013) 

CAST/ELKS (Ohtsuka et al, 2002; Ohara-
Imaizumi et al, 2005) 

? 

Rab3 (Olofsson et al, 1988; Geppert et al, 1997) Vesicle tethering, 
docking, priming 

Rab3a, c (Uthaiah & Hudspeth, 2010; 
Revelo et al, 2014) 

Synapsin (Shupliakov et al, 2011; Cesca et al, 
2010) 

? 

RIM (Wang et al, 1997; Schoch et al, 2002) 
 

RIM2α,β and RIM3γ (Jung et al, 2015b; 
Picher et al, 2017b); RIM-BP2 (Krinner 
et al, 2017) 

Munc18-1 (Hata et al, 1993; Verhage et al, 2000) ? 
Munc13-1,2,3 (Augustin et al, 1999; Brose et al, 
1995; Walent et al, 1992) 

None (Vogl et al, 2015) 

CAPS (Jockusch et al, 2007) None (Vogl et al, 2015) 
FR (Schug et al, 2006; Reisinger et al, 2011) Otoferlin (Pangrsic et al, 2010) 
Syntaxin 1, SNAP-25, Synaptobrevin 2 (Rizo & 
Rosenmund, 2008; Sørensen, 2009; Jahn & 
Scheller, 2006) 

Fusion and regulation of 
fusion 

None (Safieddine & Wenthold, 1999; 
Uthaiah & Hudspeth, 2010; Nouvian et 
al, 2011) 
 

Synaptotagmin 1,2 (Matthew et al, 1981; Perin et 
al, 1990; Geppert et al, 1991, 1994) 
 

Otoferlin (Pangrsic et al, 2010) 
Synaptotagmin 4 (Johnson et al, 2010) 
 

Complexins 1-4 (Takahashi et al, 1995; 
McMahon et al, 1995; Reim et al, 2001) 

None (Strenzke et al, 2009; Uthaiah & 
Hudspeth, 2010) 

P/Q- and N-type CaV2.1/2.2 (Catterall & Few, 
2008; Catterall, 2011) 

Ca2+ channel and its 
regulation 

L-type CaV1.3 (Platzer et al, 2000; Brandt 
et al, 2003; Dou et al, 2004; Brandt et al, 
2005) 
 

CaBP1 (Lee et al, 2002) CaBP2 (Yang et al, 2006; Cui et al, 2007; 
Yang et al, 2016; Picher et al, 2017a) 
 

? Harmonin (Gregory et al, 2011) 
AP-2 (Keen, 1987; Kirchhausen et al, 1989; 
Boucrot et al, 2010) 

Endocytosis and SV 
reformation 

AP-2 (Duncker et al, 2013; Jung et al, 
2015a) 

AP180 (Keen, 1987; Zhang et al, 1998) AP180 (unpublished) 
Synaptotagmin (Zhang et al, 1994) ? 
Endophilins (Masuda et al, 2006; Bai et al, 2010; 
Milosevic et al, 2011) 

Endophilin A1-3 (Kroll et al, 2019) 

Dynamins 1, 2, 3 (Cao et al, 1998; Ferguson et 
al, 2007; Ferguson & De Camilli, 2012) 

Dynamins 1-3 (Neef et al, 2014) 

FR (Schug et al, 2006; Reisinger et al, 2011) Otoferlin (Strenzke et al, 2016) 
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1.1.3.2.  Synaptic vesicle pool organization and synaptic vesicle cycle at inner hair 

cell ribbon synapses 

Electron microscopy and electrophysiological capacitance measurements resulted in distinct 
classifications of SV pools in different synapses. In conventional synapses of the central nervous 
system (CNS), three main pools of SVs were characterized morphologically and 
physiologically: i) readily releasable pool (RRP), consists of vesicles docked at the AZ 
membrane and primed for release; ii) recycling pool or slowly releasable pool (SRP), located in 
the vicinity of the AZ membrane, mostly refilled by newly endocytosed SVs and refills the 
RRP; iii) reserve pool, located further away from the AZ membrane, formerly seem as the 
supplier for the refilling of the recycling and RRP pools (Rizzoli & Betz, 2005; Denker & 
Rizzoli, 2010) but recently proposed to be static (Truckenbrodt et al, 2018) (Figure 1.4A). 

The different architecture of the ribbon synapses led to an adapted vesicle pool organization. 
In these synapses, SVs are connected to the ribbon and to the AZ plasma membrane by 
filaments also termed “tethers”. Morphologically, the SV pools are then subdivided into: i) 
membrane-proximal SV (MP-SV) pool, in direct vicinity to the presynaptic density and at a 
distance of ≤40 nm from the AZ membrane, composed of docked, tethered and non-tethered 
vesicles sitting on the plasma membrane,; ii) ribbon-associated SV (RA-SV) pool, the first row 
of SVs around the ribbon except MP-SVs  (at a distance of ≤80 nm from the ribbon), tethered 
and non-tethered to the ribbon; iii) outlying or cytosolic SV pool, at a distance of ≥80 nm 
from the ribbon, all SVs not belonging to the MP-SV and RA-SV pools (Kantardzhieva et al, 
2013; Chakrabarti et al, 2018). Capacitance measurements recorded from IHCs revealed two 
kinetic components of exocytosis: a fast component, occurring at high release rates for up to 
~15 ms but slowing down after a few milliseconds of stimulation, followed by a slower 
component, occurring at a nearly constant rate between 20 and 500 ms (Moser & Beutner, 
2000; Schnee et al, 2011). The SV pools have thus been classified physiologically based on 
dynamics and release kinetics into: i) readily releasable pool (RRP), the population of SVs 
located just above the AZ membrane and that can be immediately released upon depolarization 
and Ca2+ influx, reflects the fast component of exocytosis for short IHC depolarizations (up to 
~15 ms); ii) recycling pool, further away from the AZ membrane and refills the RRP; iii) reserve 
pool, composed of free cytosolic vesicles and is the largest pool and constantly refills the 
recycling and RRP pools, and it represents the sustained component of exocytosis for long IHC 
depolarizations; iv) distant pool, serves as a reservoir to refill all other pools. Movement of SVs 
between pools is believed to be dynamic (Moser & Beutner, 2000; Beutner & Moser, 2001; 
Nouvian et al, 2006; Pangrsic et al, 2010; Schnee et al, 2011; Michalski et al, 2017) (Figure 
1.4.C). In conventional synapses, exocytosis and movement of SVs between pools is regulated 
by second messenger-activated protein kinases, like CaMKIIδ and PKCα (see chapter 1.2). As 
of now, in IHC synapses only otoferlin, involved in several steps of the SV cycle, is known to 
be regulated by this kind of mechanism (Meese et al, 2017). 
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Figure 1.4. Synaptic architecture, synaptic vesicle pools and mechanisms of synaptic vesicle recycling at 
conventional synapses and auditory ribbon synapses. 
A. Schematic representation of a central nervous system (CNS) nerve terminal. Displayed are the different pools 
of synaptic vesicles (SVs): i) the readily releasable pool (RRP), consisting of SVs docked at the active zone (AZ) 
membrane and ready for release; ii) the recycling pool refills the RRP and is located close to the AZ membrane; 
iii) the reserve pool refills the recycling and RRP pools. Current understanding of exocytic and endocytic 
mechanisms at this synapse is represented. SVs directly in contact with the AZ plasma membrane fuse (exocytosis) 
and this process is followed by membrane internalization (endocytosis) via i) clathrin-mediated endocytosis 
(CME), at distal sites, requiring the assembly of a protein coat composed of clathrin and adaptor proteins to 
induce curvature and form a spherical invagination; ii) Kiss-and-run: SV fusion pore opening and closing at the 
AZ; iii) bulk endocytosis, at distal sites, where a larger area of membrane is internalized as cisternae or endosomes 
from which multiple SVs can bud off using CME or clathrin-independent endocytosis (CIE); iii) ultrafast 
endocytosis, with reformation of SVs from clathrin-coated pits from endosomes (Watanabe & Boucrot, 2017). 
B. Schematic representation of an inner hair cell (IHC) with different modes of synaptic vesicle trafficking: i) 
constitutive membrane trafficking takes place in the top and nuclear regions of the IHC, with endocytosed 
material being converted to large vesicles and early endosome-like structures; ii) SV recycling happens at the base 



14 | General Introduction 
 

 

of the IHC in the vicinity of the synaptic ribbon and it involves the formation of large membrane infoldings and 
cisternae that give rise to SVs (Revelo et al, 2014). C. Schematic representation of the SV cycle at IHC ribbon 
synapses. The different SV pools are represented. Ribbon-tethered SVs are delivered to and fuse with the AZ 
plasma membrane undergoing exocytosis. Membrane and exocytic machinery are recycled via CME and bulk 
endocytosis. Endocytosed material fuses with large endosomal compartments in close proximity to the synaptic 
ribbons. SV reformation occurs from clathrin-coated pits in large endosomal compartments or possibly directly 
from newly endocytosed material, which in turn replenish SVs to the ribbon. 

 

After SV exocytosis, membrane content and exocytic machinery content are recycled from the 
release sites at the AZ membrane to generate new docking spots for new-coming SVs that are 
transported along the ribbon. This membrane retrieval assures a constant SV turnover and 
occurs via compensatory endocytic mechanisms. This process is thought to be mostly mediated 
by clathrin-mediated endocytosis (CME) or bulk endocytosis, depending on the intensity of 
the stimulus  (Beutner et al, 2001; Neef et al, 2014; Jung et al, 2015a; Michalski et al, 2017). 
Two studies in particular sought to analyze endocytic intermediates and their processing into 
vesicles throughout the IHCs (Kamin et al, 2014; Revelo et al, 2014). The authors propose 
that in IHCs constitutive membrane trafficking is abundant and takes place both at rest and 
during stimulation, and most endocytosed material converts into tubular organelles in the top 
and nuclear areas that later give rise to large vesicles that resemble early endosomes (Figure 
1.4B). Synaptic vesicle recycling takes place after stimulation at the base of the cell where the 
AZs are located. Here, synaptic vesicles tethered to synaptic ribbons are released. During 
recovery after IHC stimulation, membrane material is recycled via endocytosis which 
depending on the stimulus intensity results in the formation of i) clathrin-coated vesicles via 
CME (mild stimulus); ii) bulk endosomes (medium strength stimulus); and iii) large cisterns 
(strong stimulus). Bulk endosomes and large cisterns are later converted to small vesicles 
(Figure 1.4B-C). It was also shown that in some cases strong stimulation leads to the formation 
of large cisterns as large as ~450 nm in diameter and situated close to the AZs (Strenzke et al, 
2016). It is possible that these structures result from ultrafast endocytosis like in hippocampal 
synapses where strong stimuli trigger ultrafast endocytosis resulting in the formation of 
endosomes about four times the size of SVs (Watanabe et al, 2013).  

IHC SVs seem not to differ in size (Neef et al, 2007b, 2014; Michanski et al, 2019) from the 
average SV (Harris & Sultan, 1995; Hu et al, 2008; Qu et al, 2009) (average: 40 nm diameter; 
most in the range 30-50 nm diameter). Bulk endocytosis appears to contribute to the formation 
of larger vesicles (50-70 nm diameter) and endosome-like vacuoles (ELVs) (>70 nm diameter) 
(Chakrabarti et al, 2018). Properly-sized SVs are more likely to be formed from i) clathrin-
coated pits in these larger endosome-like structures either located near the ribbon and that 
subsequently “feed” the ribbon (Revelo et al, 2014; Jung et al, 2015a; Strenzke et al, 2016; 
Kroll et al, 2019) or ii) directly from newly endocytosed material, like large membrane 
invaginations and cisterns found at the AZ membrane, via a clathrin-dependent or clathrin-
independent pathway (Neef et al, 2014; Jung et al, 2015a). However, it is not known if newly 
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internalized membrane first fuses with bona fide endosomes or if it is directly 
compartmentalized (Figure 1.4C). As in conventional synapses, the proteins clathrin, 
dynamin, amphiphysin (Neef et al, 2014), the adaptor protein complex 2 (AP-2) (Duncker et 
al, 2013; Jung et al, 2015a), and endophilin A (Kroll et al, 2019) are involved in CME in 
IHCs. AP-2 and endophilin A were shown to be also involved in clathrin-dependent SV 
reformation and AZ clearance (Duncker et al, 2013; Jung et al, 2015a; Kroll et al, 2019). 

 

1.1.4. Otoferlin 

Mature IHC synapses lack the SV proteins Syt1 and Syt2 (Safieddine & Wenthold, 1999; 
Beurg et al, 2010; Reisinger et al, 2011), which function as Ca2+ sensors for transmitter release 
at CNS synapses (Geppert et al, 1991, 1994; Südhof, 2013). Synaptotagmins contain two 
cytoplasmic C2 domains and bind to membrane phospholipids in a Ca2+-dependent manner 
(Brose et al, 1992; Sutton et al, 1995; Wang et al, 2014), triggering the last steps of exocytosis 
via interaction with the SNARE complex (Bennett et al, 1992; Söllner et al, 1993; Li et al, 
1995; Giraudo et al, 2006; Südhof, 2013). Unlike CNS synapses, IHC ribbon synapses contain 
otoferlin, a multi-C2 domain protein belonging to the ferlin family of proteins (Lek et al, 2010, 
2012). Mutations disrupting the OTOF gene lead to a form of autosomal recessive non-
syndromic hearing loss in humans, DFNB9, with severity ranging from moderate-to-profound 
depending on the mutation (Yasunaga et al, 1999; Varga et al, 2003; Shearer & Smith, 2015) 
(Figure 1.5A). 

 

1.1.4.1.  Structure 

The ferlin protein family is composed of six members in mammals: dysferlin (Fer1L1), 
otoferlin (Fer1L2), myoferlin (Fer1L3), Fer1L4, Fer1L5, and Fer1L6. All ferlins contain six to 
seven C2 domains sharing high sequence homology (Jiménez & Bashir, 2007), a highly 
conserved FerI motif between C2B and C2C domains, and a C-terminal transmembrane 
domain. C2 domains consist of a β-sandwich structure composed of eight anti-parallel β-
strands with connecting top loops predicted to bind Ca2+ ions. They are Ca2+-dependent 
membrane-targeting modules found in many proteins involved in signal transduction or 
membrane trafficking, as is the case of phospholipases, protein kinase C (PKC), 
synaptotagmins, and ferlins (Nalefski & Falke, 1996; Cho & Stahelin, 2006). In fact, ferlins 
were shown to regulate Ca2+-induced membrane fission and fusion events (Lek et al, 2012; 
Johnson, 2017). To date, due to technical hurdles related to the size, complexity, and 
instability of otoferlin, only the structure of its C2A domain was solved (Helfmann et al, 2011), 
and a putative model of the FerA domain based on dysferlin’s FerA domain was created 
(Harsini et al, 2018). 
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1.1.4.2.  Isoforms 

Several otoferlin variants have been reported in different tissues. A long variant ~7 kb-long was 
detected in human and mouse brain, while a shorter ~5 kb-long variant was present in human 
heart, placenta, liver, pancreas, skeletal muscle, kidney, inner ear and brain tissues but was 
absent in mouse (Yasunaga et al, 1999, 2000). The long otoferlin variant (1997-amino acids-
long) consists of six C2 domains (C2A-F), possibly a seventh C2 domain (C2de) predicted 
between the C2D and C2E domains, a FerA domain, a FerB domain and a C-terminal 
transmembrane domain (Yasunaga et al, 1999, 2000; Roux et al, 2006; Lek et al, 2010, 2012; 
Pangršič et al, 2012; Harsini et al, 2018) (Figure 1.5A). A shorter variant containing only the 
C2D-F and transmembrane domains was also reported (Yasunaga et al, 1999, 2000).  

 

1.1.4.3.  Expression and distribution 

Like other ferlins and the SNAREs synaptobrevin and syntaxin, otoferlin also belongs to the 
family of tail-anchored (TA) proteins which contain their transmembrane domain close to the 
C-terminus while the N-terminus is oriented towards the cytoplasm (Kalbfleisch et al, 2007). 
These proteins reside in several intracellular compartments like secretory organelles and the 
plasma membrane. The insertion of these proteins into the membrane of the endoplasmic 
reticulum (ER) is done post-translationally and is mediated by the guided entry of TA proteins 
(GET)/TRC40/Asna1 pathway, with the involvement of the tryptophan-rich basic protein 
(WRB) and the calcium-modulating cyclophilin ligand (Caml) as the TRC40 receptor at the 
ER (Vilardi et al, 2011; Yamamoto & Sakisaka, 2012). WRB knock-out (WRB–/–) mouse IHCs 
showed reduced otoferlin levels and disruption of synaptic structure and function, which 
ultimately resulted in hearing impairment (Vogl et al, 2016). 

Otoferlin’s expression varies among different cell types and changes during development. 
Otoferlin is expressed in auditory HCs as early as embryonic day (E) 16 in IHCs and E18 in 
OHCs, reaching its maximal expression at postnatal day (P) 6 in both cell types; in OHCs the 
expression of otoferlin decreases after P6 and is almost abolished with maturation, whereas 
IHCs continue expressing the protein (Roux et al, 2006; Beurg et al, 2010; Pangrsic et al, 2010; 
Strenzke et al, 2016) (Figure 1.5B). Otoferlin is essential for Ca2+-evoked exocytosis in IHCs 
after P4, in contrast to early developmental stages where exocytosis is otoferlin-independent 
(Beurg et al, 2010). Ultrastructural analysis via immunogold electron microscopy (EM) with 
post-embedding showed that in IHCs otoferlin localizes to the plasma membrane and synaptic 
vesicles (tethered and non-tethered to the ribbon) (Roux et al, 2006). By contrast, in another 
study using immunogold EM with pre-embedding, no immunogold particles were detected in 
SVs tethered to the ribbon (Strenzke et al, 2016) (Figure 1.5C2,C4-5). Strenzke and 
collaborators also found otoferlin in vesicular structures ranging from ~50 to 450 nm in 
diameter, with the largest most likely representing ELVs (Figure 1.5C). 
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Immunohistochemistry stainings additionally revealed that otoferlin is expressed not only at 
the presynaptic area but also at the apical region of IHCs above the nucleus where the Golgi 
apparatus is located (Schug et al, 2006; Heidrych et al, 2008) (Figure 1.5B), where it 
colocalized with the trans-Golgi markers GM130 and TGLON2 (Redpath et al, 2015). 
Additionally, otoferlin was reported to colocalize and interact with Rab8b (Heidrych et al, 
2008), a protein that regulates the trafficking along the trans-Golgi network, the endosome 
recycling pathway and basolateral transport of SVs in polarized epithelial cells (Henry & Sheff, 
2008). 

 

1.1.4.4.  Function and interaction partners 

Multiple converging fields of evidence, with great contribution from different mutant mouse 
lines, place otoferlin as a major key player in several steps of the IHC synaptic vesicle cycle.  

Otoferlin knock-out mice (Otof –/–) are profoundly deaf, with almost entirely abolished IHC 
exocytosis albeit normal Ca2+ currents, ribbon morphogenesis and SV numbers (Roux et al, 
2006; Reisinger et al, 2011; Vogl et al, 2015). In light of this evidence, it was proposed that 
otoferlin is essential for a late step of exocytosis of the RRP of vesicles, likely priming and/or 
fusion.  It was shown that Syt1 and otoferlin cannot replace each other, since neither virus-
mediated Syt1 expression in Otof –/– IHCs nor ectopic expression of otoferlin in Syt1-defficient 
chromaffin cells and neurons restored exocytosis (Reisinger et al, 2011). This led to the 
hypothesis that otoferlin is the main Ca2+ sensor that triggers exocytosis in mature IHCs.  

Since the synapses of Otof –/– mice are silent, the exact role of otoferlin and at which steps of 
the synaptic vesicle cycle it acts cannot be determined using this model. Several mutant mouse 
lines were generated to assist in this task. The pachanga mouse model (Otof Pga/Pga), harboring 
the p.Asp1767Gly (D1767G) missense mutation in the C2F domain of otoferlin and also 
profoundly deaf (Schwander et al, 2007), presented some residual otoferlin expression in IHCs 
and unaffected vesicle fusion (RRP exocytosis) but showed lower rates of vesicle replenishment 
(sustained exocytosis) (Pangrsic et al, 2010). It was then postulated that otoferlin is important 
for SV replenishment, providing an explanation for the fast SV replenishment rates in IHCs. 
Some OTOF mutations cause temperature-sensitive auditory synaptopathy/neuropathy, as is 
the case of the p.Ile515Thr mutation in otoferlin’s C2C domain (Mirghomizadeh et al, 2002; 
Varga et al, 2006), where at normal core body temperatures “compound heterozygous” patients 
for this mutation (one allele carries the missense mutation and the other an “inactivating” 
premature STOP codon) display normal-to-mild hearing impairment, with mild elevation of 
auditory thresholds and impairment of speech perception, but suffer from severe-to-profound 
deafness at elevated body temperature (Starr et al, 1996; Varga et al, 2006; Shearer & Smith, 
2015). The Otof I515T/I515T knock-in mouse model, homozygous for this mutation, showed 
moderate hearing impairment, with reduced otoferlin levels, enlarged SVs possibly of 
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endosomal origin and strongly reduced exocytosis for long stimuli (Strenzke et al, 2016). 
Immunogold labeling revealed the presence of otoferlin in large ELVs found in AP-2µ-
deficient IHCs (Jung et al, 2015a). It became evident that otoferlin is essential for the 
reformation of properly-sized and fusion-competent vesicles. An additional role for 
otoferlin in SV endocytosis via the reported interactions with AP-2 and endophilin A 
(Duncker et al, 2013; Jung et al, 2015a; Kroll et al, 2019) is probable. 

Different studies reported that up to five of otoferlin’s C2 domains are able to bind Ca2+ and 
phosphatidylinositol-4,5-bisphosphate (PI(4,5)P2 or PIP2) (Roux et al, 2006; Ramakrishnan et 
al, 2009; Goodyear et al, 2010; Johnson & Chapman, 2010; Helfmann et al, 2011; 
Padmanarayana et al, 2014; Meese et al, 2017; Michalski et al, 2017). However, it is currently 
disputed which of the domains actually bind Ca2+, a topic vastly discussed in chapter 4.2.2. 

Several lines of evidence indicate that the long variant of otoferlin is crucial for proper synaptic 
transmission both in auditory IHCs (Roux et al, 2006; Pangrsic et al, 2010) and vestibular 
HCs (Dulon et al, 2009). Of interest, truncated otoferlin versions retaining the C2F domain 
could not fully restore exocytosis in mouse Otof –/– IHCs (Tertrais et al, 2019). 

Otoferlin might also be involved in the tethering of SVs to the AZ membrane during 
exocytosis, as these tethers were reported to be altered in Otof –/– IHCs (Vogl et al, 2015). Otof 
Pga/Pga IHCs, with a defect in sustained release (Pangrsic et al, 2010), showed multi-tethered SVs 
and docked SVs at the AZ membrane (Chakrabarti et al, 2018) pointing toward a role for 
otoferlin in release site clearance. Kroll et al, 2019 proposed that the interaction of otoferlin 
with endophilin A is required for this purpose. 

No morphological or ribbon number differences were observed at P6 between Otof –/– and 
wild-type IHCs, indicating that otoferlin has no involvement in IHC development and survival 
or in ribbon formation (Roux et al, 2006). Otoferlin seems, however, to be important for 
ribbon synapse maintenance after the onset of hearing, since P15 Otof –/– and Otof Pga/Pga IHCs 
showed ~40% and ~19% reduction in ribbon synapse numbers, respectively, when compared 
to wild-type IHCs (Roux et al, 2006; Pangrsic et al, 2010). Otoferlin might also be important 
for synapse maturation: i) gene delivery of otoferlin at P6-P7 revealed to be too late to reverse 
or prevent synaptic ribbon loss in Otof –/– IHCs, with dual-AAV transduced and non-
transduced Otof –/– IHCs showing equal synaptic ribbon numbers at P26-29 (Al‐Moyed et al, 
2019); ii) Otof –/– IHCs present a delay in synapse maturation with higher synapse numbers 
than wild-type IHCs of the same age (up until P14) (Al-Moyed, 2019). 

Exocytic responses of both the RRP and recycling pool components in IHCs are governed by 
CaV1.3 channels and require otoferlin (Roux et al, 2006; Pangrsic et al, 2010; Levic et al, 2011; 
Vincent et al, 2014). CaV1.3 channels and otoferlin were proposed to interact physically in 
IHCs (Ramakrishnan et al, 2009; Hams et al, 2017). Additionally, Vincent and collaborators 
showed that otoferlin controls the ratio between fast and inactivating CaV1.3 isoforms, 
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indicating that otoferlin influences Ca2+ influx dynamics in IHCs (Vincent et al, 2014, 2017). 
Recently, Johnson et al, 2017 reported that the coupling between CaV1.3 channels and the 
Ca2+ sensor (e.g. otoferlin) varies tonotopically along the cochlea, with high-frequency cells 
being more microdomain (for better encoding of a large dynamic range of sound intensities) 
and low-frequency cells operating via Ca2+ nanodomains (for precise time encoding) (Johnson 
et al, 2017). While it cannot be ruled out that another yet-to-be-identified Ca2+-sensing protein 
might assist otoferlin, IHCs seem to use otoferlin as the main Ca2+ sensor possibly in different 
steps of the SV cycle as proposed by Michalski et al, 2017. 

The filamentous actin (F-actin) network seems to control otoferlin-dependent exocytosis in 
auditory IHCs (Vincent et al, 2015; Guillet et al, 2016) by forming dense cage-shaped 
structures beneath the synaptic ribbons that maintain a tight spatial organization of CaV1.3 
channels at the synaptic ribbons (Vincent et al, 2015). Each F-actin cage associates with one 
ribbon and one CaV1.3 channel immunoreactive patch, and colocalizes with otoferlin  (Vincent 
et al, 2015), predicting a physical association of otoferlin with the F-actin network either 
directly or via scaffolding protein(s). 

Otoferlin was also reported to colocalize with endosomal (EEA1) and Golgi proteins (GM130) 
which led to a yeast-two-hybrid screen that retrieved the GTPase Rab8b as interaction partner 
of otoferlin in IHCs (Heidrych et al, 2008). As already mentioned, Rab8b regulates the 
trafficking along the trans-Golgi network, the endosome recycling pathway but also controls 
the basolateral transport of SVs in polarized epithelial cells (Henry & Sheff, 2008).  This 
supports the notion that otoferlin is involved in recycling of endosomes into SVs and suggests 
an additional role for otoferlin in trafficking events in IHCs. The unique motor myosin VI, 
involved in the early endocytic pathway and also required for cargo sorting (Tumbarello et al, 
2013) not only interacts with otoferlin (Roux et al, 2009; Heidrych et al, 2009) but, like all 
myosin motors, also associates with the actin filaments by moving along them, thereby 
regulating the dynamics of the cytoskeleton and affecting transport of cellular components. It 
is currently hypothesized that myosin VI, F-actin and otoferlin are involved in endosomal 
trafficking processes in IHCs. 

Although it was shown that otoferlin is able to bind syntaxin 1 and SNAP-25 in vitro (Roux et 
al, 2006; Ramakrishnan et al, 2009, 2014; Hams et al, 2017), these proteins seem to be absent 
from mature IHC synapses (Nouvian et al, 2011) and it is not known if these interactions are 
of physiological relevance. 

Otoferlin emerges as a multi-functional protein, being essential to many processes in IHCs like 
exocytosis, SV replenishment, SV reformation, endocytosis and exo-endocytosis coupling. 
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Figure 1.5. Otoferlin's structure, distribution and function in IHCs. 
A. Schematic representation of the long isoform of human otoferlin present in auditory IHCs. Protein domain 
structure, with pathogenic missense mutations and in-frame deletions (top). C2 domains (C2A-F, C2de), FerA and 
FerB domains and boundaries are depicted. Missense mutations linked to temperature sensitive hearing 
impairment like the p.Ile515Thr (I515T) mutation are displayed in magenta. The p.Asp1767Gly (D1767G) 
missense mutation is depicted in light blue. Adapted from Pangršič et al, 2012; Harsini et al, 2018. B. Wild-type 
organ of Corti (P15) immunolabeled for otoferlin (intensity-coded lookup table) (top). High magnification views 
of IHCs (bottom). Original unpublished data. C. Otoferlin’s subcellular localization in wild-type P15-16 IHCs 
visualized by immunogold EM. C1, Random ultrathin sections through the basal part of the IHCs. C2-C5, 
Magnified synaptic ribbons (R) and postsynaptic afferent boutons of SGNs (Aff). Note otoferlin immunogold 
labelling at active zone membranes and endosomal compartments (pink arrowheads) but not around the ribbon. 
Treatments with saponin (Sap) (C2–C4) or Triton X-100 (Trit) (C5). Adapted from Strenzke et al, 2016. D. 
Summary of different roles of otoferlin in IHC synaptic transmission: vesicle fusion and vesicle replenishment, 
active zone clearance, endocytosis. From Moser & Starr, 2016. IHC: inner hair cell; Fer, Ferlin-specific motif; 
TM, transmembrane domain; AZ: active zone. 
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1.2. CaMKII and PKC as regulators of synaptic transmission 

Protein phosphorylation and dephosphorylation modulates synaptic transmission by 
regulating long-term synaptic plasticity but are also directly involved in modulating exocytosis 
in neurons and other cell types. The control of the SV cycle, either by increasing the number 
of SVs being reformed from the reserve pool or by increasing the number of available SV ready 
to fuse, is one of the ways to regulate neurotransmitter release and underlies some forms of 
synaptic plasticity (Südhof, 1995).  

At conventional synapses, protein interactions within the presynaptic release apparatus are 
regulated via phosphorylation of various exocytic proteins (Turner et al, 1999). The final steps 
of SV exocytosis are regulated by second messenger-activated protein kinases expressed in 
presynaptic terminals. In particular, the activation of Ca2+/calmodulin-dependent protein 
kinase II (CaMKII), cAMP-dependent protein kinase A (PKA) and protein kinase C (PKC) 
correlates with increased transmitter release (Capogna et al, 1995; Hilfiker & Augustine, 
1999). These kinases control not only protein interactions within the release machinery but 
also the availability of free SNARE proteins that will form the functional fusion complex to 
facilitate exocytosis. They appear to be also involved in modulation of presynaptic plasticity by 
regulating the refilling of the RRP of SVs (Stevens & Sullivan, 1998; Pang et al, 2010; Leenders 
& Sheng, 2005). 

 

1.2.1.  CaMKII 

CaMKII is a multifunctional holoenzyme expressed in the hippocampus at both the presynapse 
and the postsynapse. CaMKII is encoded by four genes in mammals – α, β, γ, and δ – which 
in total give rise to about 30 isoforms (Hudmon & Schulman, 2002; Tombes et al, 2003). The 
α and β isoforms are predominantly expressed in the brain, while γ and δ are expressed in most 
tissues (Erondu & Kennedy, 1985; Tobimatsu & Fujisawa, 1989; Burgin et al, 1990; Brocke 
et al, 1995; Hudmon & Schulman, 2002). Each gene encodes a protein composed of an N-
terminal serine-threonine kinase domain, followed by a regulatory region with an auto-
inhibitory sequence and a calmodulin (CaM)-binding site, and a C-terminal association or 
oligomerization domain responsible for assembly of subunits into large ring-shaped oligomers 
(Gaertner et al, 2004; Hudmon & Schulman, 2002) (Figure 1.6A). The structure of the 
functional CaMKII enzyme is dodecameric, made up of two stacked hexameric rings (Chao et 
al, 2011) (Figure 1.6B-C). In basal Ca2+ concentrations, the kinase remains in an auto-
inhibitory state, with the catalytic domain sterically blocked by the regulatory domain that acts 
as a pseudosubstrate, preventing binding of substrates. CaMKII is activated by 
Ca2+/calmodulin (CaM) binding to the CaM-binding site of the regulatory domain, leading to 
a conformational change which exposes the catalytic domain, allowing the kinase to 



22 | General Introduction 
 

 

phosphorylate itself and other substrates (Rosenberg et al, 2005). Auto-phosphorylation 
renders the kinase Ca2+- and CaM-independent, resulting in a sustained activation (Malenka, 
2003). 

Synapsin I (Llinás et al, 1985; Greengard et al, 1993; Ryan et al, 1996), synaptotagmin-1 
(Popoli, 1993), syntaxin, SNAP-25, and VAMP2 (Nielander et al, 1995; Hirling & Scheller, 
1996; Turner et al, 1999) are substrates of CaMKII. 

 

 
Figure 1.6. CaMKII domain organization and structure. 
A. Schematic domain organization of CaMKII. B. View of the CaMKII dimer. C. Organization of CaMKII in a 
dodecamer structure (12 subunits). (A-C) Molecule A in purple and molecule B in green. Ca2+/CaM binding 
region in red and the rest of the regulatory segment in orange. Adapted from Rosenberg et al, 2005. 

 

 

1.2.2.  PKC 

PKC was one of the first kinases to be identified (Inoue et al, 1977). In mammals the PKC 
family members are divided structurally and functionally in distinct groups according to their 
regulatory domains. Structurally they generally comprise a phospholipid-binding and 
diacylglycerol (DAG)/phorbol ester-binding C1 domain, followed by a calcium-binding C2 
domain and a C-terminal kinase moiety – conventional or classical PKCs (cPKCs). Structural 
and functional variations gave rise to new classes of PKCs: novel (nPKC), atypical (aPKC) and 
PKN-related kinases (PKN) (reviewed in Rosse et al, 2010; Callender & Newton, 2017) 
(Figure 1.7A). Of interest, cPKCs are activated by combined binding of DAG and 
phospholipid-binding to the C1 domain and Ca2+-dependent phospholipid-binding to the C2 
domain. nPKCs are activated by DAG and phospholipids but do not respond to Ca2+, and 
aPKCs do not respond to DAG or Ca2+ but instead are allosterically activated by their PB1 
(Phox and Bem1) domain with the PAR6-CDC42 complex involved in cell polarity. PKN are 
yet another variation where the PB1 regulatory domain was replaced by the homology region 
1 (HR1) motif, which is activated by the GTPases Rho and Rac (Figure 1.7A). 



General Introduction | 23 
 

 

cPKCs are the most abundant and can be activated by phosphatidylserine (PS) and DAG in a 
Ca2+-dependent manner but also by DAG-mimetics phorbol esters (Castagna et al, 1982; 
Nishizuka, 1984). cPKC’s activation occurs in a similar fashion to CaMKII’s. A 
pseudosubstrate sequence in the regulatory domain blocks the substrate-binding site in the 
catalytic domain keeping the kinase in an inactive autoinhibited form that, in this specific case, 
targets the enzyme to the cytosol (Parker & Murray-Rust, 2004; Newton, 2010; Gould et al, 
2011; Antal et al, 2014, 2015). cPKC is activated by increases in the concentration of DAG 
and Ca2+ and subsequent binding of Ca2+ to the C2 domain, leading to an increased affinity of 
cPKC to phospholipids, which in turn results in its recruitment to the membrane (Verdaguer 
et al, 1999; Sánchez-Bautista et al, 2006; Evans et al, 2006). Once at the membrane cPKC 
binds to DAG via its C1 domain, yielding an open and active PKC form that will phosphorylate 
target substrates (Kraft et al, 1982; Sakai et al, 1997) (Figure 1.7B). 

 

 
Figure 1.7. PKC kinase structure and families. 
A. Schematic domain organization of the mammalian PKC family, which can be divided into four structurally 
and functionally distinct subgroups according to their regulatory domains: classical (cPKC), novel (nPKC), 
atypical (aPKC) and PKC-related kinases (PKN). B. A pseudosubstrate in its regulatory domains keeps PKC in a 
self-inhibited state through binding to the substrate-binding pocket in the kinase domain. Self-inhibition is 
relieved by different activators (indicated in A) depending on the subgroup. The regulatory domain is recruited 
to the plasma membrane and the catalytic domain of PKC is free to phosphorylate target substrates. Adapted 
from Rosse et al, 2010. 

 

Crucial for multiple forms of presynaptic plasticity, the DAG/PKC pathway is one of the most 
potent pathways at the presynapse, with its activation leading to 50-100% potentiation of 
spontaneous and action potential-induced release (Malenka et al, 1986; Shapira et al, 1987; 
Lou et al, 2005). PKC was reported to phosphorylate several presynaptic proteins, e.g. SNAP-
25 (Shimazaki et al, 1996; Kataoka et al, 2000; Nagy et al, 2002; Genoud et al, 2001), 



24 | General Introduction 
 

 

Munc18-1 (Wierda et al, 2007; Barclay et al, 2003; Genç et al, 2014; Cijsouw et al, 2014) and 
Syt1 (Jong et al, 2016). For instance, in the case of Syt1 – the Ca2+ sensor in conventional 
synapses – Jong et al proposed that its PKC-dependent phosphorylation enhances synaptic 
strength to action potential bursts. Mechanistically, phosphorylated Syt1 seems to act in a 
cooperative way with phosphorylated Munc18-1 (PKC substrate) and Munc13-1 (DAG 
substrate but not PKC substrate; Rhee et al, 2002) to control a post-priming step of exocytosis. 

In addition to phosphorylating exocytic proteins and thus facilitating neurotransmitter release 
from presynaptic terminals, PKC’s central role in vesicular transport pathways has become 
evident, particularly in regulating membrane trafficking events and endocytosis (reviewed in 
Alvi et al, 2007). For instance, phosphorylation of synaptotagmin IX by PKC targets this 
protein to endocytic compartments (Haberman et al, 2005).  

 

1.2.3.  CaMKII and PKC at inner hair cell ribbon synapses 

At IHC ribbon synapses, regulation of presynaptic activity via phosphorylation of the 
presynaptic release machinery is a field yet to be explored. To date, only otoferlin has been 
shown to be subject of such regulation, being phosphorylated by CaMKIIδ (Meese et al, 2017 
and this thesis). The phosphorylation of otoferlin by CaMKIIδ changes the affinity of 
otoferlin’s C2 domains to Ca2+, e.g. phosphorylation of the C2F domain renders it Ca2+-
insensitive under physiological conditions. This type of molecular modification might affect 
the kinetics of exocytosis, endocytosis and vesicle replenishment at IHC synapses.   

 

1.3. Scope of the project 

The large multi-C2 domain protein otoferlin is essential for hearing and fast Ca2+-triggered 
transmitter release from auditory IHCs (Roux et al, 2006; Pangršič et al, 2012), and it is 
involved in several steps of the synaptic vesicle cycle. While some progress has been made in 
understanding its role in IHC synaptic transmission, mechanisms regulating its function were 
not studied to date. In conventional synapses, second messenger-activated protein kinases 
expressed in presynaptic nerve terminals phosphorylate presynaptic proteins thereby regulating 
i) presynaptic plasticity by controlling the refilling of the RRP of vesicles, ii) protein 
interactions within the release apparatus and iii) endocytosis and trafficking events (Südhof, 
1995; Turner et al, 1999; Haberman et al, 2005; Jong et al, 2016). It is unknown if protein 
kinases also regulate presynaptic transmission in IHC ribbon synapses, and to assess this was 
the main goal of this thesis. 

The first part of my thesis focused on assessing the role of CaMKII in IHC synaptic 
transmission. This was an ongoing project started before the beginning of my doctoral studies, 
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and I helped guiding it to completion during the course of my thesis. Before I joined the project 
in vitro and mass spectrometry studies showed that otoferlin and CaMKII interact, that 
otoferlin is phosphorylated by CaMKII, and that this phosphorylation affects the affinity of 
otoferlin’s C2 domains to Ca2+. Additionally, it was found that phosphorylation of otoferlin 
and/or otoferlin-bearing protein complexes is enhanced upon hair cell depolarization in rat 
IHCs. However, the question remained on which CaMKIIs were mainly expressed in rodent 
IHCs. To answer this question, I performed immunohistochemistry on dissected organs of 
Corti and real-time PCR experiments on a few isolated IHC of C57BL/6J mice. Using in situ 
proximity ligation assays (PLAs), I additionally investigated if otoferlin and CaMKII are in 
close proximity and if phosphorylation was enhanced upon IHC stimulation also in murine 
IHCs. The obtained results were partially published in Meese et al (2017). 

Another goal of this thesis was to assess the potential role of other kinases in IHC synaptic 
function. I screened for the expression of other kinases in murine IHCs, I assessed if they 
interact with and phosphorylate otoferlin, and evaluated potential changes upon IHC 
stimulation. For this purpose, I combined immunohistochemistry and PLA assays on explanted 
organs of Corti, confocal microscopy, pull-downs, co-immunoprecipitations and in vitro 
assays. 
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Chapter 2: CaMKIIδ is expressed in the organ 

of Corti and regulates otoferlin’s activity during 

strong inner hair cell stimulation 
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Published article 

 

Meese S, Cepeda AP, Gahlen F, Adams CM, Ficner R, Ricci AJ, Heller S, Reisinger E, Herget 
M (2017) Activity-dependent phosphorylation by CaMKIIδ alters the Ca2+ affinity of the 
multi-C2-domain protein otoferlin. Front Synaptic Neurosci 9: 13. 

(see original publication in Appendix) 

 

 

2.1. Synopsis 

 

Otoferlin is essential for fast Ca2+-triggered transmitter release from auditory IHCs and it has 
been shown to be involved in several steps of the synaptic vesicle cycle including vesicle fusion, 
vesicle reformation, vesicle replenishment, and active zone clearance via coupling of exo- and 
endocytosis (Roux et al, 2006; Pangrsic et al, 2010; Duncker et al, 2013; Jung et al, 2015a; 
Strenzke et al, 2016; Michalski et al, 2017). While great progress has been made in 
understanding the essential role of otoferlin in IHC synaptic function, mechanisms regulating 
its activity have not been studied to date. 

My collaborators and I showed for the first time that similarly to what happens in conventional 
synapses, synaptic activity in IHC synapses is regulated by phosphorylation of presynaptic 
proteins, in this case otoferlin. Combining immunohistochemistry, in situ proximity ligation 
assays (PLAs), confocal microscopy, real-time PCR, mutagenesis, microscale thermophoresis 
(MST), pull-downs, co-immunoprecipitation (co-IP), in vitro assays and mass spectrometry 
approaches, we found that Ca2+/calmodulin-dependent serine/threonine kinase delta 
(CaMKIIδ) phosphorylates otoferlin and regulates its activity in rodent IHCs. Firstly, Dr. 
Meike Herget identified CaMKIIδ as a binding partner of otoferlin via pull-down assays with 
chicken utricle lysates and co-IPs with heterologously expressed proteins in HEK293 cells. Dr. 
Meike Herget confirmed the expression of CaMKIIδ in rat IHCs via immunohistochemistry. 
I then proved that CaMKIIδ is the main CaMKII expressed in rodent IHCs (with a minor 
contribution of CaMKIIγ) via real-time PCR and immunohistochemistry on C57BL/6J mice. 
A PLA revealed close proximity between otoferlin and CaMKII (α-δ and δ) in rat (performed 
by Dr. Meike Herget) and mouse (performed by me) IHCs, suggesting a probable interaction 
also in vivo. Dr. Sandra Meese and the Mass Spectrometry Unit of Stanford University 
(Stanford, CA, USA) identified ten phosphorylation sites in otoferlin via mass spectrometry 
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following an in vitro assay, five of which are located within otoferlin’s C2-domains. Exchange 
of these phosphorylated serine/threonine residues by phosphomimetic aspartates led to a 10-
fold reduction of the C2F domain affinity to Ca2+ and increased the affinity of the C2C domain 
to Ca2+. Additionally, Dr. Meike Herget showed that phosphorylation of otoferlin and/or 
otoferlin-baring protein complexes is enhanced upon hair cell stimulation and is partially 
blocked by pharmacological inhibition of CaMKIIδ in rat IHCs. I found that in mouse IHCs 
otoferlin and CaMKII are also in close proximity and phosphorylation is enhanced upon 
stimulation. Our data suggests that the functions of otoferlin might be regulated by CaMKIIδ 
during strong IHC depolarization. 

In this chapter, I present original data partially published in Meese et al (2017), corresponding 
to the investigation of the expression and localization of different CaMKIIs in mouse IHCs via 
immunohistochemistry and real-time PCR (chapters 2.3.1 and 2.3.2, Figures 1 and 2 in Meese 
et al (2017)). Only studies on the proximity between otoferlin and CaMKII and on the activity-
dependent phosphorylation of otoferlin protein complexes in rat IHCs, performed by Dr. 
Meike Herget, were included in Meese et al (2017). I further validated and confirmed these 
findings in mouse IHCs and present them here in chapters 2.4.1 and 2.4.2. 

 

2.2. Own contribution 

 

Contribution to Meese et al (2017):   

• Figure 1: Immunohistochemistry (stainings of CaMKIIα−δ in combination with otoferlin 
and with pre- and postsynaptic markers in organs of Corti of C57BL/6J mice), confocal 
microscopy, data analysis (using ImageJ), figure preparation (identical to Figure 2.1 in 
chapter 2.3.1). 

• Figure 2: Real-time PCR experiments (primer design, real-time PCR experiments, gel 
electrophoresis, data analysis; cells were collected by PD Dr. Ellen Reisinger), figure 
preparation (identical to Figure 2.2 in chapter 2.3.1). 

• Writing, editing and revision of the manuscript together with all authors. See also “Author 
Contributions” section in Meese et al (2017) (see original publication in Appendix). 

 

Additional data not published in Meese et al (2017):   

• Figure 2.3: Immunohistochemistry (stainings of CaMKIIα−δ in combination with 
parvalbumin) and proximity ligation assays (combinations: otoferlin with CaMKIIα−δ 
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and otoferlin with CaMKIIδ) in organs of Corti of C57BL/6J mice, confocal microscopy, 
data analysis (using ImageJ), figure preparation. 

• Figure 2.4: Immunohistochemistry (stainings of phosphoserine residues in combination 
with otoferlin) and proximity ligation assay between otoferlin and phosphoserine residues 
in organs of Corti of C57BL/6J mice, confocal microscopy, data analysis (using ImageJ), 
figure preparation. 

All experiments and subsequent data analysis were performed as described in the “Materials 
and Methods” section of Meese et al (2017). 

 

2.3. Published results 

 

2.3.1.  Expression and cellular distribution of different CaMKIIs in the 

organ of Corti 

This section is based on Meese et al (2017), with emphasis on the work I was significantly involved in. 

 

With the goal of studying the subcellular localization of the different CaMKIIs in mammalian 
IHCs, I started by performing immunohistochemistry on acutely explanted organs of Corti of 
P14 wild-type C57BL/6J (henceforth, B6) mice (Figure 2.1). Used antibodies and detailed 
methods are described in the “Materials and Methods” section of Meese et al (2017). 

No CaMKIIα expression was detected in IHCs (Figure 2.1A). CaMKIIβ (Figure 2.1B), γ 
(Figure 2.1C) and δ (Figure 2.1D) were found in regions outside the IHCs, possibly in efferent 
and/or afferent synaptic boutons. Additionally, CaMKIIδ immunofluorescence was detected 
in the cytoplasm of IHCs but also in regions near the active zones (Figure 2.1E) where it 
colocalized with the postsynaptic protein PSD95 (Figure 2.1F). Although an apparent 
colocalization with the postsynaptic protein PSD95 potentially indicates a postsynaptic 
localization for CaMKIIδ, the localization of the protein at the presynapse cannot be excluded. 
The small volume of the synaptic cleft made it impossible to narrow down the synaptic 
localization of CaMKIIδ via conventional confocal microscopy. 
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Figure 2.1. Localization of the different CaMKIIs in the murine organ of Corti. 
A-D High magnification views of representative wild-type B6 P14 mouse IHCs immunolabeled for 

CaMKIIα (A), CaMKIIβ (B), CaMKIIγ (C) and CaMKIIδ (D) (green) and otoferlin (magenta). 
E Higher magnification views of a representative IHC displayed in D, showing apical and basal regions 

for better visualization of subcellular localization of CaMKIIδ. 
F Higher magnification views of the synaptic area of a representative IHC, immunolabeled against 

CaMKIIδ (green), the ribbon marker CtBP2 (blue) and the postsynaptic protein PSD95 (magenta). 
Colocalization between CaMKIIδ and PSD95 is displayed in white in the merged image (top panel). 

Single confocal optical sections. Scale bars: 5 µm (A-E), 2 µm (F). IHC, inner hair cell. Based on Figure 1 of 
Meese et al, 2017. 
 

 

2.3.2. CaMKIIδ is the predominant CaMKII in rodent IHCs 

This section is based on Meese et al (2017), with emphasis on the work I was significantly involved in. 

 

To investigate the presence of CaMKII transcripts in the organ of Corti, and more specifically 
in IHCs, a few IHCs were isolated with the aid of a patch-clamp setup. 3 to 5 IHCs per 



Chapter 2 | 33 
 

 

biological replicate were collected (Samples 1 to 3, Figure 2.2). Negative bath controls (small 
volume of bath solution in close proximity to the IHC row prior to and directly after extraction 
of the IHC’s cytoplasm) were also collected. I then designed specific primers for each of the 
four CaMKII genes and performed real-time PCR experiments with a few isolated IHCs. For 
this, RNA from IHCs was reverse transcribed into complementary DNA (cDNA). Mouse 
brain cDNA was used as positive control in PCR reactions with SYBR green (Figure 2.2.E). 
Only samples with positive TaqMan-PCR signals for both housekeeping genes, bassoon and 
TATA-binding protein, were considered for analysis. Detailed methods are described in the 
“Materials and Methods” section of Meese et al (2017). Note that IHCs were harvested by PD 
Dr. Ellen Reisinger. Primer design, PCR reactions and subsequent data analysis were 
performed by me. 

In these experiments, there was no amplification of CaMKIIα or CaMKIIβ mRNA (Figure 
2.2A-C). CaMKIIδ transcripts were identified in three independent samples (Figure 2.2A-C) 
and CaMKIIγ transcripts in one of the samples only (Figure 2.2C). These results point to a 
major role of CaMKIIδ in rodent IHCs, with a minor but supporting contribution of 
CaMKIIγ. 

 

 

Figure 2.2. CaMKIIδ transcripts are predominantly expressed in murine IHCs. 
Real-time PCR analysis of CaMKII transcripts: CaMKII γ and δ are expressed in IHCs of P14 wild-type B6 mice. 
A–C Cytoplasm of 3–5 IHCs per sample analyzed by PCR for the mRNA expression of CaMKIIα, β, γ, and 

δ (SYBR green reactions).  Primers specific for each of the four CaMKII genes were designed. TaqMan 
assays for bassoon (Bsn) and TATA-binding protein (TBP) were used as internal controls.  

D Melting curve analysis for SYBR green assays of the three IHC cDNA samples and control brain cDNA 
samples.  

E Amplicons from positive control experiments on brain cDNA (Brain), IHC samples (Samples 1 to 3) 
and one representative bath control, analyzed by agarose gel electrophoresis. 

Based on Figure 2 of Meese et al, 2017. 
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2.4. Complementary studies 

 

2.4.1.  CaMKII interacts with otoferlin in murine IHCs 

Dr. Meike Herget first observed that CaMKIIα-δ and otoferlin are in close proximity in rat 
IHCs, and the distance between the two proteins decreases upon stimulation. For this, she 
used a proximity ligation assay (PLA) that she established for rat IHCs (Figure 4 in Meese et 
al (2017)). This assay allows in situ detection of proximity between two protein, with a signal 
being produced only if the two proteins are closer than 40 nm (Koos et al, 2014). I next 
investigated if otoferlin and CaMKII are in close proximity also in mouse IHCs.  

 

 
Figure 2.3. Activity-dependent interaction of otoferlin and CaMKII in mouse IHCs. 
Proximity ligation assay reveals close proximity between otoferlin and CaMKII and the interaction is potentiated 
by high K+ stimulation. 
A High magnification view of representative wild-type B6 P15 IHCs immunolabeled for CaMKIIpan 

(green) with the antibody used for the PLA shown in (B). Parvalbumin (magenta) was used as IHC 
marker. 

B High magnification views of representative PLAs for otoferlin and CaMKIIpan performed on wild-type 
B6 P14-P20 IHCs at rest and after strong stimulation with 40 mM KCl for 15 minutes at 37 °C. 

C High magnification views of a representative PLA for otoferlin and CaMKIIδ performed on wild-type 
B6 P14-P20 IHCs after strong stimulation with 40 mM KCl for 15 minutes at 37 °C.  

CaMKIIpan refers to anti-CaMKIIα-δ antibody against the kinase domain, highly conserved among all CaMKII 
genes. In (A-C), maximum intensity projections of confocal optical sections. Scale bars: 5 µm. In (B, C), PLA 
channel is depicted with an intensity-coded lookup table with warmer colors representing higher pixel intensities; 
calbindin-D28k (green) was used as IHC marker. IHC, inner hair cell. Otof, otoferlin. Calb, calbindin-D28k. 
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The PLA between otoferlin and CaMKIIα-δ (Figure 2.3B) performed in explanted organs of 
Corti of P14-20 mice in resting conditions resulted in hardly any fluorescent puncta 
distributed throughout the cytoplasm of the IHC. When the same PLA was done after a 15-
minute stimulation period with high K+ (Figure 2.3B, right panel), there was an increase in 
PLA signal when compared to resting conditions (Figure 2.3B, left panel). The same happened 
for a PLA between otoferlin and CaMKIIδ (Figure 2.3C). These data confirm the results 
obtained for rat IHCs reported in Meese et al (2017). 

 

2.4.2.  Activity-dependent phosphorylation of otoferlin or otoferlin 

interaction partners in murine IHCs 

In Meese et al (2017) a PLA to find phosphoserine residues in close proximity to otoferlin was 
used to test whether otoferlin or proteins interacting with otoferlin are phosphorylated and to 
assess if this phosphorylation is activity-dependent in rat IHCs (Figure 10 in Meese et al 
(2017)). My aim was to confirm these findings in mouse IHCs. My results are in agreement 
with what was observed for rat IHCs. In resting conditions, the PLA for otoferlin and 
phosphoserine residues resulted in a few puncta across the cytoplasm of the IHCs pointing 
towards a certain degree of basal phosphorylation (Figure 2.4B, left panel). After a 15-minute 
high K+ stimulation there was an increase in PLA signal intensity (Figure 2.4B, right panel) 
and the PLA puncta did not overlap but were found in close proximity to the synaptic ribbon, 
as observed via co-staining with the ribbon marker CtBP2 (Figure 2.4C-C’). Given the rather 
basal location of the PLA puncta, it is possible that important phosphorylation events might 
occur in regions close to the basolateral plasma membrane, where the active zones reside in 
these cells, or in endocytic compartments, both situated in close proximity to the synaptic 
ribbons (Duncker et al, 2013; Neef et al, 2014; Revelo et al, 2014; Jung et al, 2015a). In Meese 
et al (2017), it was additionally shown that the stimulation-induced increase in PLA signal is 
at least in part CaMKII-dependent since this effect could be partially blocked by the CaMKII 
inhibitor KN-93.  

From these results we can infer that protein complexes of which otoferlin is part of seem to be 
phosphorylated upon strong hair cell depolarization. These phosphorylation events appear to 
occur in close proximity to the ribbons and seem to be promoted at least partially by CaMKII. 
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Figure 2.4. Phosphorylation of otoferlin complexes is strongly promoted by strong hair cell stimulation. 
A High magnification view of representative wild-type B6 P14 IHCs immunolabeled for otoferlin 

(magenta) and phosphoserine (green), with the antibodies used for the PLAs shown in (B, C). 
B High magnification views of representative PLAs for otoferlin and phosphoserine residues (magenta) 

performed on wild-type B6 P14-P20 IHCs at rest and after strong stimulation with 40 mM KCl for 15 
minutes at 37 °C. Parvalbumin (green) was used as IHC marker. PLA channel (magenta) is also depicted 
separately with an intensity-coded lookup table with warmer colors representing higher pixel intensities 
(bottom panel). 

C High magnification views of a representative PLA for otoferlin and phosphoserine residues (magenta) 
performed on wild-type B6 P14-P20 IHCs after strong stimulation with 40 mM KCl for 15 minutes at 
37 °C. Co-staining with the ribbon marker CtBP2 (green) indicates close proximity but no 
colocalization of phosphorylated otoferlin complexes with synaptic ribbons (C’). 

In (A-C), maximum intensity projections of confocal optical sections. In (C’), single confocal optical section. 
Scale bars: 5 µm. IHC, inner hair cell. Otof, otoferlin. P-Ser, phosphoserine. PV, parvalbumin. 
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Published article 

 

Cepeda AP, Al-Moyed H, Lenz C, Urlaub H, Reisinger E (2019) PKCα-dependent 
interaction of otoferlin and calbindin: evidence for regulation of endocytosis in inner hair cells. 
bioRxiv 779520; doi: https://doi.org/10.1101/779520. 

 

 

3.1. Synopsis 

 

From Chapter 2 and from Meese et al (2017) it becomes evident that otoferlin’s function in 
rodent IHCs can be modulated by CaMKII. It is noteworthy that when a PLA was used to test 
whether otoferlin and/or proteins interacting with otoferlin are phosphorylated (PLA for 
otoferlin and phosphoserine residues) in an activity-dependent manner in rat IHCs, the PLA 
signal increased with high K+ stimulation when compared to resting conditions, and this effect 
could be only partially blocked by the CaMKII inhibitor KN-93. This suggests that other 
kinases can potentially be involved in regulating IHC synaptic function. I then screened for 
the presence of other kinases and found protein kinase C α (PKCα) to be highly expressed in 
murine IHCs. IHC depolarization via high K+ stimulation led to the activation and targeting 
of PKCα to endocytic compartments where it colocalized with otoferlin. Upon strong IHC 
stimulation the PLA signal for the pair PKCα-otoferlin increased over resting conditions, 
confirming close proximity of the two proteins during strong stimulation. A pull-down assay 
with partially purified otoferlin and an organ of Corti homogenate and co-
immunoprecipitation assays with heterologously overexpressed proteins confirmed that 
otoferlin and PKCα can interact. An in vitro assay with co-incubated otoferlin and 
recombinant PKCα followed by subsequent mass spectrometry analysis confirmed the 
interaction and revealed that PKCα phosphorylated otoferlin at five serine residues. The PLA 
signal for otoferlin and phosphoserine residues increased over resting conditions upon strong 
IHC stimulation and after treatment with PMA (phorbol 12-myristate 13-acetate; a PKC 
activator). The stimulation-dependent increase in PLA signal was blocked to a large extend by 
the PKC inhibitor BIM I (bisindolylmaleimide I, a PKC inhibitor), but was fully blocked by 
co-treatment with KN-93 and BIM I. This suggests that the activity-dependent 
phosphorylation of otoferlin and/or its interactors in mouse IHCs relies on the combined 
action of PKC and CaMKII. Additionally, the previously reported interaction between 
otoferlin and myosin VI appears to be PKC-dependent: i) the PLA signal for otoferlin-myosin 
VI increased after PKC activation either upon high K+ stimulation or pharmacological 
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activation with PMA; ii) the stimulation-dependent increase in PLA signal was fully blocked 
by the PKC inhibitor BIM I. Furthermore, I show that upon strong IHC stimulation and 
pharmacological PKC activation, otoferlin interacts with the EF-hand protein calbindin-
D28k, while PKCα and calbindin-D28k seem not to interact directly. The physical association 
of otoferlin and calbindin-D28k was further confirmed via pull-down assays. 

In summary, by combining co-immunoprecipitation and pull-down assays, PLAs, 
immunohistochemistry, confocal microscopy, and mass spectrometry approaches, I could 
show that otoferlin is phosphorylated by PKCα in an activity-dependent manner, and the 
interaction of the two proteins was characterized by short-living accumulations in common 
large endocytic compartments. Moreover, otoferlin interacts with myosin VI and calbindin-
D28k in an activity-dependent and PKCα-dependent manner. The PKC-dependent 
interaction of otoferlin with calbindin-D28k potentially regulates different modes of 
membrane internalization and might control the dynamics of the SV cycle in IHCs. This 
cooperative mechanism might constitute a molecular switch that provides the basis for the fast 
and efficient vesicle recycling characteristic of IHC ribbon synapses. 

The contribution of other calcium buffer proteins like parvalbumin and calretinin in exocytic 
and/or endocytic events was also explored. Positive PLAs for otoferlin-parvalbumin and 
otoferlin-calretinin indicate close proximity of the proteins, and parvalbumin and calretinin 
immunofluorescence levels were altered in different otoferlin mouse models. 

Altogether, my data suggests that otoferlin might act in collaboration with other Ca2+-binding 
proteins (like PKCα, calbindin, parvalbumin and calretinin) rather than being an exclusive 
Ca2+ sensor for exocytic and/or endocytic processes in IHCs. 

 

3.2. Own contribution 

 

Contribution to Cepeda et al (2019): 

• Figure 3.1: Immunohistochemistry, confocal microscopy, data analysis, statistics, 
illustration, figure preparation. 

• Figure 3.2: Immunohistochemistry, confocal microscopy, data analysis, illustration, 
figure preparation. 

• Figure 3.3: Proximity ligation assays, confocal microscopy, cloning, heterologous 
protein expression in HEK293T cells, co-immunoprecipitation and pull-down assays, 
western blotting, in vitro phosphorylation assay, data analysis, statistics, illustrations, 
figure preparation. 
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• Figure 3.4: Immunohistochemistry, confocal microscopy, data analysis, statistics, 
figure preparation. 

• Figure 3.5: Proximity ligation assays, confocal microscopy, data analysis, statistics, 
figure preparation. 

• Figure 3.6: Immunohistochemistry, proximity ligation assays, confocal microscopy, 
data analysis, statistics, figure preparation. 

• Figure 3.7 (A-D, F-H): Immunohistochemistry, proximity ligation assays, confocal 
microscopy, data analysis, statistics, pull-down assays, western blotting, illustration and 
figure preparation. 

• Figure EV1: Immunohistochemistry, confocal microscopy, data analysis, figure 
preparation. 

• Figure EV2: Immunohistochemistry, confocal microscopy, data analysis, figure 
preparation. 

• Figure EV3A: Immunohistochemistry, confocal microscopy, data analysis and figure 
preparation. 

• Figure EV4: Proximity ligation assays, confocal microscopy, data analysis, statistics, 
figure preparation. 

• Appendix Figure S1: Immunohistochemistry, proximity ligation assays, confocal 
microscopy, data analysis, figure preparation. 

• Appendix Figure S2: Proximity ligation assays, confocal microscopy, data analysis, 
figure preparation. 

• Appendix Figure S10: Sequence alignment and mapping of phosphorylation sites in 
the otoferlin sequence, figure preparation. 

• Appendix Figure S11: Sequence alignment and mapping of phosphorylation sites in 
the otoferlin sequence from different species, figure preparation. 

• Appendix Figure S12: Venn diagram of PKC phosphorylation sites prediction, figure 
preparation. 

• Appendix Table S1. Statistical analysis summary. 
• Appendix Table S2: PKC phosphorylation sites prediction. 

 

Mass spectrometry analysis of phosphorylation sites on otoferlin depicted in Figure 3.3 and 
Appendix Figures S3-S9 of Cepeda et al (2019) were performed by Dr. Christof Lenz (Core 
Facility Proteomics, Institute of Clinical Chemistry, University Medical Center Göttingen and 
Bioanalytical Mass Spectrometry Group, Max Planck Institute for Biophysical Chemistry, 
Göttingen, Germany) with the technical assistance of Lisa Neuenroth as referred in “Author 
Contributions” section in Cepeda et al (2019). Otoferlin rescue experiments, confocal 
microscopy, data analysis, statistics and figure preparation in Figures Figure 3.7E and Figure 

EV3B were performed by Dr. Hanan Al-Moyed (InnerEarLab, University Medical Center 
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Göttingen, Germany). Gerhard Hoch (Institute for Auditory Neuroscience and InnerEarLab, 
University Medical Center Göttingen) developed the custom-written Matlab (MathWorks) 
routine integrated into Imaris 7.6.5 (Bitplane Scientific Software) for immunofluorescence 
level quantifications (see “Materials and Methods” section in Strenzke et al, 2016) and Dr. 
Hanan Al-Moyed further helped improving it during the course of her Ph.D. thesis. 

All experiments and subsequent data analysis, statistical analysis and figure preparation were 
carried out during the course of this thesis as described in the “Materials and Methods” section 
of Cepeda et al (2019). The manuscript for this publication was written, edited and revised 
together with all authors (see “Author Contributions” section in Cepeda et al (2019)). 

 

Additional data not included in Cepeda et al (2019):   

• Figure 3.8: Proximity ligation assays, confocal microscopy, data analysis, figure 
preparation. 

• Figures 3.9 and 3.10: Immunohistochemistry, confocal microscopy, data analysis, 
statistics, figure preparation. 
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Title: PKCα-dependent interaction of otoferlin and calbindin: evidence for 
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3.3.1.  Synopsis and Graphical Abstract 

 

 

This study provides a molecular mechanism regulating endocytosis at auditory inner hair cell 
(IHC) ribbon synapses: protein kinase C α (PKCα) phosphorylates otoferlin and both localize 
to endocytic compartments upon PKCα activation; otoferlin interacts with calbindin-D28k 
and myosin VI in a PKCα-dependent manner, forming a Ca2+-dependent signaling complex. 

• Strong IHC depolarization leads to activation and targeting of PKCα to endocytic 
compartments where it colocalizes with otoferlin. 

• PKCα interacts with otoferlin in an activity-dependent manner (i.e. upon inner hair 
cell depolarization) and phosphorylates it at five serine residues. 

• Otoferlin interacts with calbindin-D28k in an activity-dependent and PKC-dependent 
manner. 

• PKCα and calbindin-D28k seem not to interact directly. 
• PKCα promotes the interaction of otoferlin with calbindin-D28k, which might trigger 

ultrafast endocytosis in IHCs. 
• The interaction of otoferlin with myosin VI is strongly enhanced by PKCα activation. 
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3.3.2.  Abstract 

Otoferlin is essential for the fast and indefatigable release of synaptic vesicles at auditory inner 
hair cell (IHC) ribbon synapses, being involved in exocytic, endocytic and regenerative steps 
of the synaptic vesicle cycle. Serving diverse functions at this highly dynamic synapse implies 
that this multi-C2 domain protein is precisely regulated. Here we found protein kinase C α 
(PKCα) and otoferlin to colocalize in endocytic recycling compartments upon IHC 
depolarization and to interact in an activity-dependent manner. In vitro assays confirmed that 
PKCα can phosphorylate otoferlin at five serine residues, which correlates with increased serine 
phosphorylation in <40 nm proximity to otoferlin in murine IHCs that can be fully blocked 
by combining PKC and CaMKII inhibitors. Moreover, otoferlin interacts with calbindin-
D28k in stimulated IHCs, which was precluded when PKCα was inhibited. Similarly, the 
activity-dependent increase in otoferlin-myosin VI interaction depends on PKCα activation. 
We propose that upon strong hair cell depolarization, PKCα phosphorylates otoferlin, thereby 
enabling it to interact with calbindin-D28k and myosin VI, building a Ca2+-dependent 
signaling complex that possibly regulates different modes of endocytosis. 

 

Keywords: calbindin / endocytosis / otoferlin / PKC / ribbon synapse 

 

3.3.3.  Introduction 

In the mammalian auditory system, sound encoding between the sensory inner hair cells 
(IHCs) and the primary auditory neurons occurs with remarkable precision, reliability, and 
dynamics over prolonged periods of stimulation (Moser & Beutner, 2000; Glowatzki & Fuchs, 
2002). IHC ribbon synapses are highly specialized for this challenging task, constantly 
sustaining the pool of fusion-competent vesicles. At physiological temperature, each synapse of 
a depolarized IHC can sustain a synaptic vesicle (SV) fusion rate of up to 2300 vesicles per 
second for at least several hundred milliseconds (Strenzke et al, 2016). This high release rate 
requires the efficient and coordinated retrieval of excess plasma membrane, for which both 
clathrin-independent and clathrin-dependent modes of endocytosis have been proposed (Neef 
et al, 2014; Kroll et al, 2019). Crucial proteins for Ca2+-triggered exocytosis in conventional 
synapses, like SNAREs, synaptotagmins, Munc13 or complexins, are either absent or are 
dispensable for exocytosis in IHCs (Safieddine & Wenthold, 1999; Strenzke et al, 2009; Beurg 
et al, 2010; Nouvian et al, 2011; Reisinger et al, 2011; Vogl et al, 2015). The multi-C2 domain 
protein otoferlin seems to replace some of these proteins and is currently hypothesized to act 
as the Ca2+ sensor for exocytosis in mature IHCs (Roux et al, 2006; Michalski et al, 2017). 
Different OTOF mutations lead to almost entirely abolished IHC exocytosis and thus to 
profound deafness in humans and animal models (Yasunaga et al, 1999, 2000; Roux et al, 
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2006; Longo-Guess et al, 2007; Marlin et al, 2010; Pangršič et al, 2010; Reisinger et al, 2011). 
Otoferlin is involved in vesicle priming and fusion, vesicle replenishment, vesicle reformation 
from bulk endosomes, active zone clearance, and clathrin-mediated endocytosis (Pangršič et al, 
2010; Duncker et al, 2013; Jung et al, 2015a; Strenzke et al, 2016). It has been reported to 
interact with several proteins involved in the SV cycle, e.g. Rab8b, myosin VI, CaV1.3 calcium 
channels, the adaptor protein 2 (AP-2) and endophilin A (Roux et al, 2006; Heidrych et al, 
2008, 2009; Ramakrishnan et al, 2009; Roux et al, 2009; Johnson & Chapman, 2010; Zak et 
al, 2012; Duncker et al, 2013; Ramakrishnan et al, 2014; Vincent et al, 2014; Jung et al, 2015a; 
Hams et al, 2017; Meese et al, 2017; Kroll et al, 2019). Otoferlin bears six to seven C2 domains, 
of which at least three likely bind Ca2+ (Meese et al, 2017). Binding of Ca2+ to C2 domains is 
known to promote or hinder protein interactions, thus it is conceivable that this modular 
protein might integrate a series of regulatory interactions to finely balance the requirements of 
exo- and endocytosis at this synapse. 

In conventional neuronal synapses, second messenger-activated protein kinases like 
Ca2+/calmodulin-dependent protein kinase II (CaMKII), cAMP-dependent protein kinase A 
(PKA), and protein kinase C (PKC) tightly and finely regulate synaptic transmission, and their 
activation correlates with increased transmitter release (Capogna et al, 1995; Hilfiker & 
Augustine, 1999). They control the function of the release machinery and the final steps of SV 
docking/fusion by regulating not only the availability of free SNARE proteins to form the 
functional fusion machinery but also protein-protein interactions within the release apparatus 
(reviewed in Turner et al, 1999b; Leenders & Sheng, 2005). They have also been implicated 
in presynaptic plasticity via regulation of the refilling of the readily releasable pool of SVs 
thereby governing the number of release sites and the release probability (Pang et al, 2010; 
Stevens & Sullivan, 1998; Leenders & Sheng, 2005). At IHC synapses, CaMKIIδ was shown 
to phosphorylate otoferlin, rendering its C2F domain Ca2+-insensitive under physiological 
conditions (Meese et al, 2017). The regulation of otoferlin’s activity by CaMKIIδ may provide 
a molecular mechanism that influences the kinetics of exocytosis, endocytosis and vesicle 
replenishment in IHCs. 

In this study, we assessed the effects of PKC in IHC synaptic function. Conventional PKCs 
(cPKCs; α, β and γ), the most abundant, structurally comprise a phospholipid-binding 
diacylglycerol (DAG)/phorbol ester-binding C1 domain, followed by a Ca2+-binding C2 
domain and a C-terminal kinase moiety (reviewed in Rosse et al, 2010; Callender & Newton, 
2017). They require Ca2+ and either membrane-bound DAG or phosphatidylserine (PS) for 
activation, but can also be activated by other DAG mimetics, resulting in enhanced glutamate 
release (Castagna et al, 1982; Nishizuka, 1984; Malenka et al, 1986; Shapira et al, 1987; Parfitt 
& Madison, 1993; Hori et al, 1999; Yawo, 1999; Brager et al, 2003; Korogod et al, 2007). 
The DAG/PKC pathway is one of the most potent pathways at presynaptic nerve terminals 
with its activation resulting in 50-100% potentiation of spontaneous and action potential-



46 | Chapter 3 
 

 

induced release (Malenka et al, 1986; Shapira et al, 1987; Lou et al, 2005). cPKC is 
autoinhibited by a pseudosubstrate sequence in its regulatory domain that sterically blocks the 
catalytic domain, rendering the kinase inactive and targeting it to the cytosol (Parker & 
Murray-Rust, 2004; Newton, 2010; Gould et al, 2011; Antal et al, 2014, 2015). cPKCs are 
activated in a sequential fashion. Firstly, Ca2+ binding to the C2 domain leads to an increased 
affinity of cPKC to phospholipids, resulting in its recruitment to membranes, where it then 
binds to its allosteric activator DAG via the C1 domain. This renders the cPKC in an open and 
active form ready to phosphorylate target substrates (Kraft et al, 1982; Sakai et al, 1997; 
Verdaguer et al, 1999; Sánchez-Bautista et al, 2006; Evans et al, 2006). Besides 
phosphorylating presynaptic proteins to facilitate exocytosis (Shimazaki et al, 1996; Kataoka et 
al, 2000; Genoud et al, 2001; Nagy et al, 2002; Barclay et al, 2003; Wierda et al, 2007; Genç 
et al, 2014; Cijsouw et al, 2014; Jong et al, 2016), PKC is emerging as a central player in 
vesicular transport pathways, being involved in regulation of membrane trafficking and 
endocytosis (reviewed in Alvi et al, 2007). For instance, it was shown to regulate the targeting 
of synaptotagmin IX to endocytic compartments (Haberman et al, 2005).  

In this study, we investigated the effects of PKCα activation on the function of the IHC 
synaptic protein otoferlin, unravelling a Ca2+-controlled signaling complex potentially acting 
in regulation of endocytosis. 

 

3.3.4.  Results 

 

PKCα is expressed in the organ of Corti and redistributes to the synaptic region of IHCs 
upon stimulation where it colocalizes with otoferlin 

PKC is known to regulate presynaptic plasticity, exocytosis and endocytosis in neurons 
(Shapira et al, 1987; Alvi et al, 2007; Jong et al, 2016). To examine whether PKC is involved 
in modulating presynaptic function in IHCs, we mapped its subcellular localization and tested 
if it colocalizes with otoferlin (Figure 3.1 and Figure EV1). We performed 
immunohistochemistry on acutely dissected organs of Corti from wild-type C57BL/6J 
(henceforth, WT) mice after the onset of hearing (at P15). Dissections were done in phosphate 
buffered saline (PBS) solution (no supplemented Ca2+).  The α isoform was chosen because it 
is the cPKC most ubiquitously expressed in other systems and there is only one variant (Kofler 
et al, 2002). We found PKCα to be expressed both in IHCs and OHCs (Figure EV1A). In 
IHCs, PKCα was expressed throughout the cell (Figure EV1B), predominantly in the cytosol 
and to a lesser extent at the plasma membrane, where it partially colocalizes with otoferlin 
(Figure EV1C-D). 
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Figure 3.1. PKCα redistributes to base of IHCs upon strong stimulation and PKCα distribution correlates 
with otoferlin localization. 
A High magnification views of representative WT P14-16 IHCs immunolabeled for PKCα and otoferlin, 

at rest (Rest), after strong stimulation for 1 (Stim 1’) and 5 minutes (Stim 5’) and after a 5-minute 
recovery period post 1-minute stimulation (Recov 5’ (Stim 1’)). For clarity, individual otoferlin and 
PKCα channels are depicted separately with an intensity-coded lookup table with warmer colors 
representing higher pixel intensities (middle and bottom panels). 

B PKCα immunolabelling (intensity-coded lookup table) in higher magnification views of basal regions 
of the IHCs labelled in (A) as a1, a2, a3, a4. Note that PKCα clustering is maximal at 1-minute 
stimulation. 

C  Fluorescence intensity line profile through the longitudinal axis at the mid-region of representative IHCs 
labelled in (A), from apex to base (five optical sections). Note that PKCα relocates to the base of the 
IHCs at Stim 1’ where the intensity line profile overlaps with that of otoferlin. 

D Correlation of otoferlin and PKCα ratio of apical/basal immunofluorescence (above/below nuclear 
midline depicted in (E)) indicates a strong localization correlation between PKCα and otoferlin. Mean 
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values are displayed with darker colors and bigger symbols. Individual cells are depicted with lighter 
colors and smaller symbols. Mean averages, sample size and statistical analysis are detailed in Appendix 
Table S1. 

E Schematic representation of an IHC, indicating how the apical/basal ratio of immunofluorescence was 
determined. Higher immunofluorescence above or below the nuclear midline (dashed line) results in a 
ratio >1 or <1, respectively. A ratio >1 indicates a shift towards a more apical localization while a ratio 
<1 corresponds to a more basal localization of the protein. 

Data information: In (A-B), maximum intensity projections of confocal optical sections. Scale bars: 5 µm (A), 2 
µm (B). Fluor., fluorescence. 
 

 
Figure EV1. PKCα is expressed in the organ of Corti, in IHCs and OHCs. 
A, B WT organ of Corti (P15) immunolabeled for otoferlin and PKCα. (A) Low magnification views. (B) 

High magnification views of IHCs from the organ of Corti shown in (A).  PKCα channel is depicted 
separately with an intensity-coded lookup table with warmer colors representing higher pixel intensities. 
IHCs: inner hair cells, OHCs: outer hair cells. 

C, D  (C) Fluorescence intensity line profile through the longitudinal axis at the mid-region of a representative 
IHC, from apex to base (five optical sections). (D) Representative IHC used for the fluorescence 
intensity line profile. PKCα and otoferlin channels depicted separately (intensity-coded lookup table). 

Data information: In (A-B), maximum intensity projections of confocal optical sections. (D) Single optical 
section. Scale bars: 100 µm (A), 5 µm (B), 2 µm (D). 
 
 

Upon Ca2+ influx, PKC typically relocates to the plasma membrane upon Ca2+ influx (Codazzi 
et al, 2001; Zhao et al, 2006). Using a previously described rest/stimulation/recovery paradigm 
(Kamin et al, 2014; Revelo et al, 2014), we followed PKCα immunofluorescence in IHCs 
(Figure 3.1). In resting conditions (1 min, 5.36 mM KCl, no supplemented Ca2+), 
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PKCα immunoreactivity was located almost exclusively in the cytosol. Strong stimulation (1 
min, 65.36 mM KCl, 2 mM CaCl2) resulted in a distinct relocation of PKCα within the base 
of the IHCs where it accumulated in clusters close to the plasma membrane (Figure 3.1A-B 
and Figure 3.2). Most PKCα clusters were found near the synaptic ribbons (Figure 3.2A-F) in 
structures resembling plasma membrane patches and endosomes where it partially colocalized 
with otoferlin (Figure 3.2E-H). This effect seems to be rather transitory as only few PKCα 
clusters remained after 5-minute stimulation, and hardly any PKCα clusters persisted after 5-
minute recovery (5 min, 5.36 mM KCl, 2 mM CaCl2, following a 1-minute stimulation; 
Figure 3.1A-B). The relocation of PKCα to regions close to active zones in a cluster-like 
appearance seems to occur only for strong stimulations, as no clustering could be observed at 
milder stimulations inducing less Ca2+ influx (1 min, 25 mM KCl, 2 mM CaCl2; Figure 
EV2A). Interestingly, the trafficking of otoferlin seems to follow that of PKCα (Figure 3.1A, 
C-E), pointing towards a probable interaction of the two proteins. At rest, otoferlin 
immunofluorescence was found throughout the cell in the cytoplasm and at the plasma 
membrane whereas PKCα seems to be expressed mainly in the cytoplasm with rather weak 
plasma membrane localization (Figure 3.1C, upper panel; Figure 3.1D, apical/basal PKCα 
ratio: 1.05±0.03; mean ± standard error of the mean, s.e.m.). After 1-minute stimulation, both 
PKCα and otoferlin localized more towards the basal region of the IHCs when compared to 
resting conditions (Figure 3.1C, middle panel; Figure 3.1D, apical/basal ratio <1), while both 
were found more apically after letting the cells recover for 5 minutes (Figure 3.1C, bottom 
panel; Figure 3.1D, apical/basal ratio >1).  

In order to find out if the observed clustering of PKCα close to the plasma membrane of IHCs 
is coherent with its activation, we assessed its localization after pharmacological PKCα 
activation. In many cell types treatment with phorbol 12-myristate 13-acetate (PMA), a PKC 
agonist that mimics DAG and strongly binds cPKCs (Takekoshi et al, 1995), induced the 
recruitment of PKC to membranes (Hermelin et al, 1988; Huang et al, 1997; Feng et al, 1998, 
2000; Tardif et al, 2002; González et al, 2003; Schechtman et al, 2004; Wu et al, 2006; Cordey 
& Pike, 2006). When we treated organs of Corti with PMA, PKCα redistributed to the plasma 
membrane throughout the cell (Figure EV2B-C) with the stronger effect observed at 15-
minute incubation (Figure EV2B-C, PMA 15’). Moreover, PMA treatment for 5 minutes 
resulted in enrichment of otoferlin immunofluorescence in large patches at the base of the hair 
cells (Figure EV2B, PMA 5’) and enhanced colocalization of PKCα and otoferlin at the 
basolateral plasma membrane could be observed for 15-minute incubation (Figure EV2B, 
PMA 15’).  

Altogether, these results indicate co-trafficking of PKCα and otoferlin upon PKCα activation 
(either pharmacologically or following strong stimulation) and thus point towards a possible 
activity-dependent interaction of the two proteins. 
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Figure 3.2. PKCα redistributes to the base of IHCs after strong stimulation, where it is found near the 
synaptic ribbons and partially colocalizes with otoferlin. 
A High magnification view of a representative WT P15 IHC immunolabeled for PKCα (magenta), 

otoferlin (green) and the ribbon marker CtBP2 (blue), after strong stimulation for 1 minute.  
B-D Orthogonal views of the IHC displayed in (A). (B) Schematic representation of an IHC, with illustration 

of side (yz; C) and bottom (xz; D) views, for clarity. In (C-D), individual PKCα channel is depicted 
separately (right panels) with an intensity-coded lookup table. 

E Higher magnification view of the basal region of the IHC displayed in (A), showing PKCα 
accumulations in regions close to the ribbons (immunolabelled with an antibody against CtBP2, blue) 
and in endosome-like structures. 

F-H Colocalization analysis for otoferlin (green) and PKCα (magenta) channels for the area labelled in E. (F) 
Single image plane with individual (first two panels) and merged (third panel) channels. Pixels with 
positive signals for both channels are shown in white (forth panel). (G) PKCα and otoferlin intensity 
profiles through the dashed line in F.  (H) Scatterplot of PKCα and otoferlin pixel intensities and 
calculated Pierson’s correlation coefficient using the Costes automatic thresholding method. 

Data information: In (A), maximum intensity projection of confocal optical sections. In (C-F), single confocal 
optical sections. Scale bars: 2 µm (A, C-D), 1 µm (E), 0.5 µm (F). IHC, inner hair cell. 
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Figure EV2. PKCα redistributes upon strong stimulation and treatment with PMA. 
A High magnification views of representative WT P15-16 IHCs immunolabeled for PKCα, after mild (25 

mM KCl) and strong (65 mM KCl) stimulations for 1 minute. PKCα staining is depicted with an 
intensity-coded lookup table with warmer colors representing higher pixel intensities.  

B High magnification views of representative WT P15-16 IHCs immunolabeled for PKCα and otoferlin, 
at rest (Rest), and after treatment with the PKC activator PMA for 1 (PMA 1’), 5 (PMA 5’) and 15 
(PMA 15’) minutes. Individual otoferlin and PKCα channels are depicted separately with an intensity-
coded lookup table with warmer colors representing higher pixel intensities.  

C Fluorescence intensity line profile through the longitudinal axis at the mid-region of representative IHCs 
labelled in (B), from apex to base (five optical sections). 

Data information: In (A-B), maximum intensity projections of confocal optical sections. Scale bars: 5 µm.  
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PKCα interacts with otoferlin in IHCs 

We next investigated a potential interaction of PKCα and otoferlin in IHCs. We first 
performed a proximity ligation assay (PLA), which allows in situ detection of endogenous 
protein interactions with single molecule resolution, detecting a <40 nm distance of antibody-
labeled proteins (Figure 3.3A-B). This assay was previously established for rat IHCs with the 
reported interaction pair otoferlin-myosin VI and was validated here in mouse IHCs 
(Appendix Figure S1). The PLA for otoferlin and PKCα performed in explanted organs of 
Corti of P14-16 mice in resting conditions resulted in few fluorescent puncta distributed 
throughout the IHC (Figure 3.3A-B). When the same PLA was performed after 1-minute 
stimulation, we saw a >4-fold increase in PLA fluorescence intensity (442±28%, n=141 IHCs) 
when compared to resting conditions (100±7%, n=122 IHCs), pointing to an interaction of 
the proteins upon strong IHC stimulation. The intensity of the PLA puncta dropped to 
178±7% (n=112 IHCs) during a 5-minute recovery period, indicating a rather short-living 
otoferlin-PKCα complex (Figure 3.3A-B). 

Given that a positive PLA signal could potentially result from an indirect interaction via 
scaffolding proteins, we assessed whether otoferlin and PKCα interact directly in vitro (Figure 
3.3C-D). In a first approach, we co-transfected HEK293T cells with HA-tagged full-length 
otoferlin (mCherry-P2A-mOtof-HA) and GFP-tagged PKCα (eGFP-PKCα; Figure 3.3C, 
upper panel) and performed anti-HA and anti-GFP co-immunoprecipitation (Co-IP) assays. 
Western blotting of immunoprecipitated samples of HA IPs, where otoferlin-HA was used as 
bait, revealed a band of ~105 kDa in the eluate corresponding to GFP-PKCα when 
immunoblotted against GFP (Figure 3.3C, bottom left panel). Conversely, a band of ~240 
kDa corresponding to otoferlin-HA was detected with an anti-HA antibody, when GFP-
PKCα was used as bait in GFP IPs. The faint bands in both situations suggest a weak 
interaction of the two proteins, possibly because the cells were harvested in conditions with 
weak PKC activation. In a second approach, we ran pull-down assays from organ of Corti 
homogenates which we loaded onto HA beads enriched with otoferlin-HA protein previously 
expressed in HEK293T cells (Figure 3.3D, upper panel). When we immunoblotted for PKCα, 
a strong band of ~77 kDa was evident in the eluate; the same band was absent in control 
experiments with HEK-expressed HA peptide (Figure 3.3D, bottom panel). Both in vitro 
assays indicate that otoferlin and PKCα can interact directly. 
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Figure 3.3.  PKCα and otoferlin interact in IHCs. 
A, B PLA for otoferlin and PKCα performed on WT P15 IHCs at rest, after strong stimulation for 1 (Stim 

1’) and 5 minutes (Stim 5’), and after a 5-minute recovery period post stimulation (Recov 5’ (Stim 1’)). 
(A) High magnification views of representative PLAs: calbindin (blue) was used as IHC marker; PLA 
channel is depicted with an intensity-coded lookup table with warmer colors representing higher pixel 
intensities. (B) Average otoferlin/PKCα PLA puncta fluorescence intensity per cell for all conditions, 
normalized to the resting condition. Individual cells are depicted with lighter colors and open symbols. 
See Appendix Figure S2A and C for control PLAs. 

C Representative immunoblot showing results of anti-HA and anti-GFP co-immunoprecipitation from 
lysates of HEK293T cells co-transfected with otoferlin-HA and GFP-PKCα. Samples were probed for 
HA and GFP. Upper panel depicts constructs used in binding assays. 

D Representative immunoblot showing results from pull-down assay from organs of Corti loaded onto 
anti-HA beads with previously bound otoferlin-HA expressed in HEK293T cells. Samples were probed 
for HA and PKCα.  Upper left panel depicts constructs used in binding assays. Upper right panel depicts 
scheme of the assay. 
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E Schematic representation of the in vitro phosphorylation assay and subsequent mass spectrometry 
analysis to assess PKCα-induced phosphosites on otoferlin. Alkaline phosphatase (AP) was used to 
remove any residual phosphate groups and obtain dephosphorylated otoferlin. After incubation with AP 
+ PKCα or with AP only, samples were loaded onto a SDS-PAGE gel, otoferlin bands were excised, 
digested and analyzed by LC-MS/MS. For annotated MS/MS spectra of detected phosphosites, LC-
MS/MS profiling of phosphopeptides and mapping of sites in the otoferlin sequence refer to Appendix 
Figures S3-S9. 

F Position of the phosphorylation sites in the otoferlin sequence (mouse, isoform 4, NP_001300696.1) 
determined by LC-MS/MS. For mapping of sites in the otoferlin sequence refer to Appendix Figure 
S10. 

Data information: In (A), maximum intensity projections of confocal optical sections. Scale bars: 5 µm. In (B), 
data are displayed as mean ± s.e.m.; ***P≤0.001 (Kruskal-Wallis test followed by Dunn’s multiple comparison 
test); mean averages, sample size and statistical analysis are detailed in Appendix Table S1. In (A-B), only puncta 
inside the cells were considered for quantification purposes; quantification was performed in Imaris as described 
in Materials and Methods. PLA, proximity ligation assay. IHC, inner hair cell. Otof, otoferlin. 
 

 

An in vitro assay where immobilized otoferlin-HA was incubated with recombinant PKCα was 
conducted to test if PKCα can phosphorylate otoferlin (Figure 3.3E). LC-MS/MS analysis 
(Appendix Figures S3-S10) revealed phosphorylation of otoferlin at five serine residues: S158, 
S775, S1169, S1224 and S1436 (otoferlin variant 4, NP_001300696.1) (Figure 3.3F). All 
phosphorylation sites were found to be conserved between mammalian and non-mammalian 
otoferlin orthologs, with the exception of S1169 at the C2de domain conserved only among 
mammalian species (Appendix Figure S11). Interestingly, none of the phosphorylated serine 
residues is located in one of the main six C2 domains; yet, two were found in the C2de domain, 
a putative C2 domain with poor conservation of sequence and secondary structure elements 
among species. Phosphorylation at S775 in the FerA domain could possibly alter the 
interaction of FerA with membranes in the presence of Ca2+ (Harsini et al, 2018). It is 
noteworthy that three of the five positions (S158, S775, S1224) match phosphorylation sites 
retrieved by different kinase-specific, sequence- and structure-based prediction tools (Appendix 
Figure S12 and Appendix Table S2). 

In the absence of otoferlin hardly any membrane turnover takes place in IHCs due to the 
abolishment of fast exocytosis (Roux et al, 2006). Here, we used knock-out mice (Otof –/–) 
(Reisinger et al, 2011) to find out if the disaggregation of PKCα immunofluorescence clusters 
depends on proper endocytic and vesicle processes (Figure 3.4). In Otof –/– IHCs, although 
PKCα immunofluorescence levels were only slightly altered when compared to WT IHCs 
(WT: 100±2%, n=233 IHCs vs. Otof –/–: 92±1%, n=205 IHCs; **P=0.0054, Mann-Whitney 
two-tailed t-test), the localization of PKCα was shifted towards the base of the cell (apical/basal 
ratio: WT 1.06±0.03 vs. Otof –/– 0.66±0.02; Figure 3.4A-C). Upon high potassium (K+) 
stimulation, PKCα relocated to the base of Otof –/– IHCs (Figure 3.4D-G) in a similar fashion 
to what happened in WT IHCs (Figure 3.1A-D). This indicates that exocytosis seems not to 
be required for the trafficking of PKCα towards the plasma membrane. However, after 5-



Chapter 3 | 55 
 

 

minute stimulation and during recovery (following 1-minute stimulation), PKCα 
immunofluorescence was still evident at endosomal structures and at the basolateral plasma 
membrane in Otof –/– IHCs (Figure 3.4D-E). Given that otoferlin is not only involved in exo-
endocytosis coupling but is also required for proper vesicle reformation from recycling 
endosomes, it is probable that these plasma membrane patches and endosomes are not 
converted to smaller vesicles as quickly as in the presence of otoferlin, reassuring that PKCα 
indeed persists in these endosomal compartments in Otof –/– IHCs.  

 

 

Figure 3.4. PKCα subcellular distribution is affected in otoferlin knock-out IHCs. 
A-C PKCα immunofluorescence in Otof –/– compared to WT P15-16 IHCs. (A) High magnification views 

of representative WT B6 and Otof –/– P14-P16 IHCs immunolabeled for PKCα (magenta) and otoferlin 
(magenta). Otoferlin and PKCα channels are depicted separately with an intensity-coded lookup table 
with warmer colors representing higher pixel intensities. (B) Quantification of overall PKCα 
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immunofluorescence. (C) Apical/basal PKCα immunofluorescence (above/below nuclear midline). 
Number of cells in (C) also apply to (B). 

D, E PKCα distribution in Otof –/– P14-16 IHCs for all indicated conditions. (D) High magnification views 
of representative Otof –/– P15-16 IHCs immunolabeled for PKCα. (B) Higher magnification views of 
basal regions of the Otof –/– IHCs labelled in (D) as a1, a2, a3, a4. For clarity, an intensity-coded lookup 
table was used. 

F, G Comparison of PKCα distribution in WT and Otof –/– P14-16 IHCs. (F) Fluorescence intensity line 
profile through the longitudinal axis at the mid-region of representative WT and Otof –/– IHCs, from 
apex to base (five optical sections). (G) Comparison of apical/basal PKCα immunofluorescence 
(above/below nuclear midline) among the different experimental conditions. 

Data information: In (A, D-E), maximum intensity projections of confocal optical sections. Scale bars: 5 µm (A, 
D), 2 µm (E). In (B-C, G), data are displayed as mean ± s.e.m.; ns P>0.05, **P≤0.01, ***P≤0.001; mean averages, 
sample size and statistical analysis are detailed in Appendix Table S1. In (C, G) individual cells are depicted with 
lighter colors and open symbols. Rest, resting; Stim 1’, 1-minute stimulation; Stim 5’, 5-minute stimulation; 
Recov 5’ (Stim 1’), 5-minute recovery after 1-minute stimulation. IHC, inner hair cell. 
 

Activity-dependent phosphorylation of otoferlin or otoferlin interactors by PKCα 

To test whether otoferlin and/or proteins interacting with otoferlin are phosphorylated and to 
assess if the phosphorylation of otoferlin is activity-dependent in vivo, Meese et al (2017) 
applied a PLA to find phosphoserine residues in <40 nm distance from otoferlin in rat IHCs. 
Upon stimulation with high K+ the PLA signal increased when compared to resting conditions, 
and this effect could be only partially blocked by the CaMKII inhibitor KN-93 (Meese et al, 
2017; Figure 10B-C), suggesting the involvement of other kinases in the regulation of synaptic 
function through phosphorylation of otoferlin in mammalian IHCs.   

We sought to assess whether the increase in phosphorylation of otoferlin or otoferlin-associated 
proteins is complemented by PKC in mouse IHCs (Figure 3.5). We first stimulated the cells 
(with 65.36 mM KCl, 2 mM CaCl2) and observed an increase in PLA signal that peaked at 5-
minute stimulation (Rest: 100±11%, n=100 IHCs vs. Stimulation 1’: 234±13%, n=37 IHCs 
vs. Stimulation 5’: 438±38%, n=52 IHCs; ***P<0.0001, Kruskal-Wallis test followed by 
Dunn’s multiple comparison test; Figure 3.5). Pre-incubation with the PKC inhibitor 
bisindolylmaleimide I (BIM I) for 15 minutes prior to 5-minute stimulation blocked the 
stimulation-dependent increase in PLA signal to a large extent (BIM I + Stimulation 5’: 
122±2%, n=34 IHCs; **P=0.0013 vs. Stimulation 5’). Moreover, pre-incubation with BIM I 
and KN-93 completely blocked this effect (BIM I+KN-93 + Stimulation 5’: 97±4%, n=50 
IHCs; ***P<0.0001; Figure 3.5). Treatment with the PKCα activator PMA led to an increase 
in PLA signal (PMA 5’: 157±4%, n=66 IHCs and PMA 15’: 139±6%, n=48 IHCs; 
***P≤0.0002 vs. Rest). This effect could only be seen for longer incubations times (PMA 1’: 
77±7%, n=61 IHCs; ns P=0.3464 vs. Rest; Figure 3.5) likely due to extracellular application 
and thus the time needed for PMA to flip to the inner leaflet of the lipid membrane. The 
PMA-induced increase in PLA signal was not as evident as for 1- and 5-minute high K+ 
stimulations. Since PMA strongly activates PKCα even in the absence of Ca2+, the finding that 
phosphorylation by PKCα is enhanced under depolarizing conditions suggests that Ca2+ might 
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be able to strengthen the interaction of otoferlin and PKCα, likely via binding to their C2 
domains. Altogether, these data indicate that the activity-dependent phosphorylation of 
otoferlin and/or its interactors in mouse IHCs relies on the combined action of PKCα and 
CaMKIIδ.  

 

 
Figure 3.5. Otoferlin phosphorylation is strongly promoted by hair cell stimulation and can be blocked by 
combined inhibition of PKC and CaMKII. 
A, B PLA for otoferlin and phosphoserine residues performed on WT P15-16 IHCs at rest, after stimulation, 

after incubation with BIM I (PKC inhibitor) or with BIM I and KN-93 (CaMKII inhibitor), and after 
incubation with PMA (PKC activator). (A) High magnification views of representative PLAs; Calbindin 
(blue) was used as IHC marker; PLA channel is depicted with an intensity-coded lookup table with 
warmer colors representing higher pixel intensities. (B) Average otoferlin/phosphoserine PLA puncta 
fluorescence intensity per cell, normalized to the resting condition. Individual cells are depicted with 
lighter colors and open symbols. See control PLAs in Appendix Figure S2A and B. 

Data information: In (A), maximum intensity projections of confocal optical sections. Scale bars: 5 µm. In (B), 
data are displayed as mean ± s.e.m.; ns P>0.05, *P≤0.05, **P≤0.01, ***P≤0.001 (Kruskal-Wallis test followed by 
Dunn’s multiple comparison test); mean averages, sample size and statistical analysis are detailed in Appendix 
Table S1. Rest, resting; Stim 1’, 1-minute stimulation; Stim 5’, 5-minute stimulation; BIM I + Stim 5’, 
Incubation with BIM I prior to 5-minute stimulation; BIM I+KN-93 + Stim 5’, Incubation with BIM I and KN-
93 prior to 5-minute stimulation; PMA 1’, 1-minute incubation with PMA; PMA 5’, 5-minute incubation with 
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PMA; PMA 15’, 15-minute incubation with PMA. IHC, inner hair cell. Otof, otoferlin. P-Ser, phosphoserine. 
Calb, calbindin. PLA, proximity ligation assay. 
 

Otoferlin interacts with myosin VI in a PKCα-dependent manner, but not with Vglut3 

To narrow down the cellular pathways potentially affected by the PKCα-mediated regulation 
of otoferlin, we tested an activity-dependent interaction of otoferlin with candidate proteins.  

Firstly, we assessed if the interaction of otoferlin with its reported interaction partner myosin 
VI (Heidrych et al, 2009; Roux et al, 2009) is influenced by IHC stimulation and PKC 
activation (Figure 3.6A-C). After stimulation with high K+ for 1 minute, not only did myosin 
VI immunofluorescence levels increase significantly (Rest: 100± 5%, n=43 IHCs vs. 
Stimulation 1’: 138±3%, n=44 IHCs; ***P<0.0001; Figure 3.6A-B) but the PLA signal for 
otoferlin and myosin VI increased even more (Rest: 100±3%, n=265 IHCs vs. Stimulation 1’: 
173±4%, n=170 IHCs; P<0.0001; Figure 3.6C-D). The PLA signal remained high during a 
5-minute recovery period following a 1-minute stimulation, indicating that the interaction 
persists in this time frame (Recovery 5’ (Stimulation 1’): 183±4%, n=153 IHCs, P>0.9999 vs. 
Stimulation 1’). Incubation with BIM I prior to 1-minute high K+ stimulation led to a 
complete abolishment of the stimulation-induced increase in PLA signal (BIM I + Stimulation 
1’: 102±6%, n=37 IHCs). Treatment with PMA also resulted in an increase in PLA signal 
(PMA 5’: 133±3%, n=122 IHCs and PMA 15’: 149±9%, n=96 IHCs; ***P<0.0001 vs. Rest; 
Kruskal-Wallis test followed by Dunn’s multiple comparison test; Figure 3.6C-D). These 
results support the notion that the interaction of otoferlin and myosin VI is strongly PKC-
dependent. 

We then followed Vglut3, the vesicular glutamate transporter in IHCs, to probe for a potential 
regulatory role of PKC in exocytosis (Figure 3.6E-I). A 1-minute stimulation with high K+ led 
not only to an increase in Vglut3 immunofluorescence (Rest: 100±2%, n=89 IHCs vs. 
Stimulation 1’: 163±8%, n=92 IHCs; ***P<0.0001 vs. Rest) but also to a relocation of the 
protein to the basal region of the IHCs (apical/basal ratio: Rest: 1.12±0.06 vs. Stimulation 1’: 
0.83±0.04; ***P<0.0001 vs. Rest) with a strong localization to the basolateral plasma 
membrane (Figure 3.6E, second panel). This likely reflects uncovering of the epitope and the 
transport of distal SVs to membrane-proximal sites with translocation of Vglut3 from SVs to 
the active zone membrane during exocytosis. After a 5-minute recovery period the levels 
(Recovery 5’: 118±2%, n=71 IHCs) and localization of Vglut3 (apical/basal ratio: Recovery 5’: 
1.19±0.08) returned to initial values (Figure 3.6E-G).  A PLA for otoferlin and Vglut3 was 
positive but no change in intensity was registered (Rest: 100±2%, n=78 IHCs vs. Stimulation 
1’: 104±1%, n=146 IHCs vs. Recovery 5’: 95±2%, n=93 IHCs; Figure 3.6H-I). This might 
be explained by the fact that both proteins are known to localize to common structures in 
IHCs (Strenzke et al, 2016) and therefore follow at least in part the same trafficking pathways 
without necessarily interacting. 
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Figure 3.6. Otoferlin interacts with myosin VI, but not with Vglut3, in a PKCα-dependent manner. 
A, B  Myosin VI immunofluorescence in WT P14-16 IHCs for all displayed conditions. (A) High 

magnification views of representative WT IHCs immunolabelled for myosin VI (intensity-coded lookup 
table). (B) Quantification of overall myosin VI immunofluorescence normalized to the resting condition. 

C, D PLA for otoferlin and myosin VI in WT P14-16 IHCs for all indicated conditions. (C) High 
magnification views of representative PLAs. (D) Average otoferlin/myosinVI PLA puncta fluorescence 
intensity per cell, normalized to the resting condition. See control PLAs in Appendix Figure S2A and F. 
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E-G Vglut3 immunofluorescence in WT P14-16 IHCs for all displayed conditions. (E) High magnification 
views of representative WT IHCs immunolabelled for Vglut3 (intensity-coded lookup table). (F) 
Quantification of overall Vglut3 immunofluorescence, normalized to the resting condition. (G) 
Apical/basal Vglut3 immunofluorescence (above/below nuclear midline). Number of cells in (G) also 
apply to (F). 

H, I PLA for otoferlin and Vglut3 in WT P14-16 IHCs for all displayed conditions. (H) High magnification 
views of representative PLAs. (I) Average otoferlin/Vglut3 PLA puncta fluorescence intensity per cell, 
normalized to the resting condition. See control PLAs in Appendix Figure S2A and E. 

Data information: In (A, C, E, H), maximum intensity projections of confocal optical sections. Scale bars: 5 µm. 
In (C, H), calbindin (blue) was used as IHC marker; PLA channel is depicted with an intensity-coded lookup 
table with warmer colors representing higher pixel intensities. In (B, D, F-G, I), data are displayed as mean ± 
s.e.m.; ns P>0.05, *P≤0.05, ***P≤0.001 (Kruskal-Wallis test followed by Dunn’s multiple comparison test); mean 
averages, sample size and statistical analysis are detailed in Appendix Table S1. In (D, G, I), individual cells are 
depicted with lighter colors and open symbols. Rest, resting; Stim 1’, 1-minute stimulation; Stim 5’, 5-minute 
stimulation; Recov 5’ (Stim 1’), 5-minute recovery after 1-minute stimulation; BIM I + Stim 1’, Incubation with 
BIM I prior to 1-minute stimulation; PMA 5’, 5-minute incubation with PMA; PMA 15’, 15-minute incubation 
with PMA. IHC, inner hair cell. Calb, calbindin. MyoVI, myosin VI. Otof, otoferlin. PLA, proximity ligation 
assay. 
 

 

 

Otoferlin interacts with calbindin and this interaction is strongly dependent on PKCα 

In most PLA experiments we used calbindin-D28k (henceforth, calbindin) as a hair cell marker 
and noticed a change in calbindin immunofluorescence among the different experimental 
conditions (Figure 3.7A-C). Calbindin is a member of the calmodulin superfamily of Ca2+-
binding proteins and it was reported to function both as Ca2+ buffer and Ca2+ sensor (Berggard, 
2002). A 1-minute high K+ stimulation led to a decrease in calbindin immunofluorescence, 
probably due to reduced epitope accessibility (Rest: 100±1%, n=296 IHCs vs. Stimulation 1’: 
62±2%, n=174 IHCs; ***P<0.0001) and treatment with BIM I blocked this effect (BIM I + 
Stimulation 1’: 99±3%, n=26 IHCs; Kruskal-Wallis test followed by Dunn’s multiple 
comparison test; Figure 3.7B). At the same time, calbindin redistributed to the base of the IHC 
upon stimulation (apical/basal ratio: Rest: 1.04±0.02 vs. Stimulation 1’: 0.84±0.03; 
***P<0.0001) and this effect was again blocked by BIM I (BIM I + Stimulation 1’: 1.14±0.34; 
ns P=0.8940 vs. Rest; Kruskal-Wallis test followed by Dunn’s multiple comparison test; Figure 
3.7C). Calbindin seems to regain its initial location after a 5-minute recovery period 
(apical/basal ratio: 1.07±0.05; ns P=0.6380 vs. Rest; Figure 3.7C), while immunofluorescence 
levels remained low as for the stimulatory condition (73±2%, n=141 IHCs; ***P<0.0001 vs. 
Rest and *P=0.0152 vs. Stimulation 1’; Figure 3.7B). 
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Figure 3.7. The interaction of otoferlin with calbindin is strongly dependent on PKCα. 
A-C Calbindin immunofluorescence in WT P14-16 IHCs for all indicated conditions. (A) High 

magnification views of representative WT IHCs immunolabelled for calbindin (intensity-coded lookup 
table). (B) Quantification of overall calbindin immunofluorescence. (C) Apical/basal calbindin 
immunofluorescence (above/below nuclear midline). Data were normalized to the resting condition. 
Number of cells in (C) also apply to (B). 

D Average calbindin and otoferlin immunofluorescence levels in otoferlin mutant and WT IHCs (P14-
16). Immunofluorescence levels were normalized to WT levels for each antibody separately. See Figure 
EV3A for high magnification views of representative immunostainings of IHCs used for quantifications. 

E Average calbindin and otoferlin immunofluorescence levels in dual‐AAV‐transduced Otof−/− and WT 
IHCs (P23–30). Immunofluorescence levels were normalized to levels in non‐transduced WT B6 IHCs 
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for each antibody separately. See Figure EV3B for high magnification views of representative 
immunostainings of IHCs used for quantifications. 

F Representative immunoblot showing results from pull-down assay from organs of Corti loaded onto 
anti-HA beads with previously bound otoferlin-HA expressed in HEK293T cells. Samples were probed 
for HA and calbindin.  Right panel depicts scheme of the assay. 

G, H PLA for otoferlin and calbindin performed on WT P14-16 IHCs for all indicated conditions. (G) High 
magnification views of representative PLAs. (D) Average otoferlin-calbindin PLA puncta fluorescence 
intensity per cell for all conditions, normalized to the resting condition. See control PLAs in Appendix 
Figure S2A and D. 

Data information: In (A, G), maximum intensity projections of confocal optical sections. Scale bars: 5 µm. In 
(G), calbindin (blue) was used as IHC marker; PLA channel is depicted with an intensity-coded lookup table with 
warmer colors representing higher pixel intensities. In (B-E, H), data are displayed as mean ± s.e.m.; ns P>0.05, 
*P≤0.05, **P≤0.01, ***P≤0.001 (Kruskal-Wallis test followed by Dunn’s multiple comparison test); mean 
averages, sample size and statistical analysis are detailed in Appendix Table S1. In (C, H), individual cells are 
depicted with lighter colors and open symbols. Rest, resting; Stim 1’, 1-minute stimulation; Stim 5’, 5-minute 
stimulation; Recov 5’ (Stim 1’), 5-minute recovery after 1-minute stimulation; BIM I + Stim 1’, Incubation with 
BIM I prior to 1-minute stimulation; PMA 5’, 5-minute incubation with PMA; PMA 15’, 15-minute incubation 
with PMA. IHC, inner hair cell. Otof, otoferlin. Calb, calbindin. PLA, proximity ligation assay. 
 

 

Calbindin levels also appear to vary among several otoferlin mutants (Figure 3.7D and Figure 
EV3A). In Otof –/– IHCs, calbindin levels were reduced to about 50% of WT levels (Otof –/–: 
56±1%, n=108 IHCs vs. WT: 100±1%, n=176 IHCs; ***P<0.0001), while IHCs of Otof +/– 
mice showed a reduction of about 20% (Otof +/–: 83±3%, n=99 IHCs; ***P=0.0002; Kruskal-
Wallis test followed by Dunn’s multiple comparison test; Figure 3.7D). For the Otof I515T/I515T 
mutant, carrying the temperature-sensitive p.Ile515Thr point mutation in the C2C domain of 
otoferlin (Strenzke et al, 2016), we found a reduction of about 25% in calbindin 
immunofluorescence levels when compared to WT controls (Otof I515T/I515T: 72±3%, n=83 
IHCs; ***P<0.0001), accompanied by the previously reported reduction in otoferlin levels 
(Figure 3.7D). In Otof Pga/Pga mutant IHCs (Pangršič et al, 2010), carrying the p.Asp1767Gly 
missense mutation in the C2F domain, there were no evident changes in calbindin levels when 
compared to WT IHCs (Otof Pga/Pga: 92±2%, n=76 IHCs; ns P=0.5900; Kruskal-Wallis test 
followed by Dunn’s multiple comparison test), although otoferlin levels are slightly lower in 
this mutant by comparison to Otof I515T/I515T IHCs (Figure 3.7D). In our recent study where we 
partially rescued hearing in Otof –/– mice by reintroducing otoferlin in IHCs via dual-AAV 
approaches (Al‐Moyed et al, 2019), we quantified calbindin immunofluorescence levels 
alongside otoferlin levels (Figure 3.7E and Figure EV3B). Reintroduction of otoferlin led to 
an increase in calbindin levels not only in Otof –/– IHCs (untreated Otof –/– CD1B6F1: 50±2%, 
n=142 IHCs; Otof –/– CD1B6F1+DualAAV-Hybrid: 63±3%, n=64 IHCs; Otof –/– 
CD1B6F1+DualAAV-Trans-splicing: 70±5%, n=13 IHCs), but also in wild-type IHCs 
(untreated WTB6: 100±2%, n=276 IHCs; WTCD1B6F1+DualAAV-Trans-splicing: 
117±4%, n=62 IHCs; Figure 3.7E). 
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Figure EV3. Calbindin and otoferlin immunofluorescence in different otoferlin mutants and in dual-AAV-
transduced Otof –/– and WT IHCs. 
A High magnification views of representative WT, Otof I515T/I515T, Otof Pga/Pga, Otof +/– and Otof –/– P14-16 

IHCs immunolabeled for calbindin and otoferlin, used for quantification of calbindin levels in Figure 
3.7D.  Individual calbindin and otoferlin channels are depicted separately with an intensity-coded 
lookup table with warmer colors representing higher pixel intensities. 

B High magnification views of dual‐AAV‐TS (P26) and dual‐AAV‐Hyb (P26) transduced CD1B6F1‐ 
Otof –/– IHCs compared to AAV2/6.eGFP transduced WT CD1B6F1 (P28) and non‐injected WT B6 
(P27) IHCs, used for quantification of calbindin levels in Figure 3.7E. Successful virus transduction was 
monitored via eGFP immunofluorescence (green). Organs of Corti were immunolabeled against 
otoferlin (magenta) and calbindin (blue). Individual eGFP, otoferlin, and calbindin channels are 
depicted separately with an intensity-coded lookup table with warmer colors representing higher pixel 
intensities.  

Data information: In (A-B), maximum intensity projections of optical confocal sections. Scale bars: 5 μm (A), 
10 μm (B). IHC, inner hair cell. Calb, calbindin. Otof, otoferlin. 
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To explore a possible interaction of otoferlin and calbindin, we repeated the otoferlin-HA pull-
downs described before but this time we immunoblotted for calbindin. A strong band of ~28 
kDa in the eluate indicates a direct interaction of otoferlin and calbindin in vitro (Figure 3.7F). 

We then assessed a possible interaction of otoferlin and calbindin and its potential dependency 
on PKCα activation in IHCs of explanted organs of Corti (Figure 3.7G-H). In resting 
conditions, we found few PLA puncta throughout the IHCs. A 1-minute high K+ stimulation 
led to a >5-fold increase in PLA signal (Rest: 100±2%, n=327 IHCs vs. Stimulation 1’: 
560±26%, n=168 IHCs; ***P<0.0001). After a 5-minute recovery period, the PLA signal 
dropped to values lower than those of the resting condition (Recovery 5’: 77±5%, n=107 IHCs; 
***P<0.0001 vs. Rest). Treatment with the PKC inhibitor BIM I fully blocked the stimulation-
induced increase in PLA signal (BIM I + Stimulation 1’: 101±3%, n=98 IHCs; ns P>0.9999 
vs. Rest). Incubation with PMA led to an increase in PLA signal, though not as pronounced as 
for high K+ stimulation (PMA 5’: 175±4%, n=114 IHCs and PMA 15’: 161±3%, n=127 IHCs; 
***P<0.0001 vs. Rest and ***P<0.0001 vs. Stimulation 1’; Kruskal-Wallis test followed by 
Dunn’s multiple comparison test). Thus, otoferlin and calbindin interact in IHCs in a strong 
activity- and PKCα-dependent manner. 

A PLA between PKCα and calbindin in the same conditions (Figure EV4) resulted in an 
increased PLA signal after stimulation (Rest: 100±6%, n=75 IHCs vs. Stimulation 1’: 158±5%, 
n=94 IHCs; ***P<0.0001), yet not as demarked as the increase observed for the PLAs between 
otoferlin and PKCα and between otoferlin and calbindin. This points toward an indirect 
interaction between calbindin and PKCα via a scaffolding protein, likely otoferlin. It is also 
conceivable that PKCα, otoferlin and calbindin are part of the same complex at least at some 
point during strong stimulation, with PKC and calbindin binding to distinct regions of 
otoferlin. 

 
 
 



Chapter 3 | 65 
 

 

 
Figure EV4. Weak PLA signal between PKCα and calbindin points toward an indirect interaction of the 
two proteins via scaffolding proteins. 
A-B PLA for PKCα and calbindin performed on WT P15-16 IHCs for the indicated conditions. (A) High 

magnification views of representative PLAs. (B) Average PKCα/calbindin PLA puncta fluorescence 
intensity per cell, normalized to the resting condition. Individual cells are depicted with lighter colors 
and open symbols. 

C High magnification views of representative control PLA performed with calbindin primary antibody 
only. See control PLA with PKCα antibody only in Appendix Figure S2C. 

Data information: In (A, C), maximum intensity projections of confocal optical sections. Scale bars: 5 µm. Vglut3 
(blue) was used as IHC marker. The PLA channel is depicted with an intensity-coded lookup table with warmer 
colors representing higher pixel intensities. Rest, resting; Stim 1’, 1-minute stimulation; Recov 5’ (Stim 1’), 5-
minute recovery after 1-minute stimulation. Calb, calbindin. 
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3.3.5.  Discussion 

Inner hair cells exhibit an extraordinarily high rate of synaptic vesicle turnover. Both exocytosis 
and endocytosis are known to be regulated by Ca2+ (Beutner et al, 2001). In this study, we 
found two Ca2+-binding proteins, PKCα and calbindin, to interact with otoferlin, thereby 
forming a Ca2+-dependent signaling complex that likely regulates different modes of 
endocytosis at IHC synapses. 

Upon high K+ exposure leading to IHC depolarization, Ca2+ influx through voltage-gated Ca2+ 
channels triggers exocytosis, but also activates Ca2+-dependent kinases like PKC and CaMKII 
(Meese et al, 2017 and this study). Several proteins located next to the Ca2+ sources bind Ca2+, 
e.g. the proposed Ca2+ sensor for exocytosis at this synapse, otoferlin, as well as Ca2+ buffer 
proteins like calbindin, parvalbumin and calretinin (Pangršič et al, 2015). Among these, 
regulatory roles have so far been attributed to calbindin only (Berggard, 2002). In this study 
we found that PKC activation in IHCs, either pharmacologically or upon high K+ stimulation, 
triggers the interaction of PKC with otoferlin, resulting in the phosphorylation of otoferlin at 
S158, S775, S1169, S1224 and S1436 residues. These post-translational modifications might 
enable otoferlin to interact with other proteins, like myosin VI and calbindin. Pharmacological 
activation of PKCα without intracellular Ca2+ elevation also induced the interaction of 
otoferlin with calbindin and myosin VI, although not as effectively as by cell depolarization 
which triggers Ca2+ influx, indicating that Ca2+ binding to either one or both proteins strongly 
promotes the interaction. Since PKC inhibition before high K+ exposure abolished the 
association of otoferlin with calbindin and a direct interaction of PKCα and calbindin is rather 
unlikely, the phosphorylation of otoferlin by PKCα seems to be a prerequisite for the otoferlin-
calbindin interaction. It is noteworthy that the increase in PLA signal for calbindin and PKCα 
was much weaker than for the other combinations under the same stimulatory conditions, 
suggesting either that calbindin and PKCα bind to distal parts of otoferlin, or PKCα 
dissociates from the complex after calbindin binds to phosphorylated otoferlin.  
The activation of PKCα upon high K+ stimulation was characterized by accumulations of 
PKCα and otoferlin in common structures near the active zones. A closer observation of the 
subcellular location of the interaction revealed clearly rendered fluorescent hotspots close to 
the synaptic ribbons. These structures were revealed to be larger than synaptic vesicles and 
resemble recycling endosomes described elsewhere (Kamin et al, 2014; Revelo et al, 2014; 
Watanabe et al, 2014; Jung et al, 2015a). In an earlier study, we examined IHCs at the 
ultrastructural level and we found otoferlin immunogold labelling to localize to membranous 
compartments of >50 nm diameter close to active zones, which were clearly larger than synaptic 
vesicles of ~40 nm. Many of the otoferlin-immunogold-labelled structures had a clathrin-
coated pit at its edge, indicating these structures are most likely endosomal recycling 
compartments (Strenzke et al, 2016, Figure 7I,F,G). In addition, some otoferlin-labelled 
endocytic structures resembled ultrafast endocytic compartments (Strenzke et al, 2016, Figure 
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7I, F, G), which are located laterally to active zones and are about four times the size of synaptic 
vesicles in hippocampal synapses (Watanabe et al, 2013). Since ultrafast endocytosis requires a 
plasma membrane excess at active zones, which occurs only after strong exocytosis (Watanabe 
et al, 2013), and lower exocytosis rates rather induce clathrin mediated endocytosis (Kamin et 
al, 2014; Revelo et al, 2014) it is noteworthy that weak stimulation paradigms did not lead to 
PKCα immunofluorescence clustering in IHCs (Figure EV2A). Notably, in central nervous 
system synapses PKC was shown to be essential for the trafficking of synaptotagmin IX to 
endocytic recycling compartments (Haberman et al, 2005), but also seems to be involved in 
endocytic processes in general (Alvi et al, 2007). We thus propose that the structures where 
otoferlin and PKC interact in IHCs are most likely endocytic recycling compartments. 

The nature of proteins which we found to interact with otoferlin in an activity-dependent and 
strongly PKCα-dependent manner supports our hypothesis that PKCα might be involved in 
regulating different modes of endocytosis. Upon high K+ IHC stimulation or treatment with a 
PKC activator, we observed an increase in PLA signal for the previously reported interaction 
of otoferlin and myosin VI (Roux et al, 2009; Heidrych et al, 2009). Myosin VI, like other 
myosin motors, interacts with filamentous actin (F-actin) generating the force that propels the 
sliding of these filaments and moves along them, thereby regulating the dynamics of the actin 
cytoskeleton and affecting the transport of cellular components (reviewed in Kneussel & 
Wagner, 2013). It was also reported that F-actin seems to control otoferlin-dependent 
exocytosis in auditory IHCs (Vincent et al, 2015), where it forms dense cage-shaped structures 
beneath the synaptic ribbon thereby maintaining a tight spatial organization of calcium 
channels at the active zones. Additionally, the authors show that F-actin colocalizes with 
otoferlin at the basal region of the IHC, predicting a physical association between them. 
Moreover, the unique myosin VI motor is involved in the early endocytic pathway, where it is 
required for cargo sorting (Tumbarello et al, 2013), so it seems plausible that both myosin VI 
and F-actin in association with otoferlin are involved in cellular trafficking processes in a PKC-
dependent manner, which might include trafficking of endosomal compartments in IHCs. 

What might be the role of calbindin in this complex? The finding that calbindin 
immunofluorescence is strongly reduced in Otof I515T/I515T but not in Otof Pga/Pga IHCs seems 
contradictory in the first place. Yet, a potential explanation might be that these mutations 
differentially impair distinct cellular processes, like vesicle replenishment (proposed for Otof 
Pga/Pga) and vesicle reformation from endocytic recycling compartments (ascribed to Otof 
I515T/I515T IHCs), and only one of these processes involves the calbindin-otoferlin interaction. In 
addition, a knock-out of calbindin does not affect hearing or susceptibility to noise, at least 
regarding threshold shifts (Airaksinen et al, 2000). Although a role in noise-induced 
synaptopathy cannot be ruled out, the short timescale of the interaction, growing weaker 
between 1 and 5-minute depolarizations, makes it unlikely that calbindin acts in processes that 
need to last from minutes to hours, such as affecting the susceptibility to noise. Similarly, triple 
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knock-out mice of calbindin, parvalbumin and calretinin (Ca2+ buffer TKO) showed 
remarkably low impact on hearing (Pangršič et al, 2015). In patch-clamp recordings from Ca2+ 
buffer TKO IHCs, exocytosis upon short stimuli (reflecting the fusion of the readily releasable 
pool of vesicles) remained wild-type-like; hence, an involvement of the Ca2+ buffer proteins in 
vesicle fusion seems unlikely. However, for longer stimuli (100-ms and 200-ms-long 
depolarizations to −17 mV), the change in plasma membrane capacitance (∆Cm) was larger in  
Ca2+ buffer TKO than in wild-type control IHCs (Pangršič et al, 2015, Figure 3C).  
Substitution of endogenous buffers with variable concentrations of the synthetic Ca2+ buffers 
EGTA or BAPTA could not accurately restore the Cm changes in response to fast and sustained 
stimuli to wild-type values, indicating that at least one of the Ca2+ buffer proteins might fulfill 
an additional function over simple Ca2+ buffering. At the time, the larger ∆Cm obtained for 
Ca2+ buffer TKO IHCs in response to longer depolarizations was presumed to reflect an 
increase in exocytosis, which, nonetheless, did not trigger more action potentials in 
postsynaptic neurons, and this apparent increase in exocytosis was then attributed to 
extrasynaptic vesicle fusion. Yet, 200-ms-long stimulations resulted in a ∆Cm of 360 fF in Ca2+ 
buffer TKO IHCs vs. 116 fF in wild-type IHCs (at 2 mM [Ca2+]e), implying that extrasynaptic 
exocytosis would need to occur at double the rate of synaptic exocytosis if this were the only 
explanation. However, corresponding amounts of extrasynaptic synaptic vesicles were never 
found in EM ultrastructure images, and particularly the ribbon is presumed to assist in vesicle 
reformation and resupply (Jung et al, 2015a; Pangrsic & Vogl, 2018; Jean et al, 2018). Instead, 
we favor the hypothesis that ultrafast endocytosis, occurring in wild-type but absent in Ca2+ 
buffer TKO IHCs, might explain a major part of the difference in ∆Cm for 100-ms and 200-
ms stimulations. This mode of endocytosis was first proposed by Watanabe and collaborators 
(Watanabe et al, 2013). The authors stimulated hippocampal neurons expressing 
channelrhodopsin with a short light pulse and fixed the tissue within few milliseconds by high-
pressure quick freezing (“flash-and-freeze”). Ultrastructural analysis revealed membrane 
invaginations next to active zones, which were detached from the plasma membrane between 
50 and 100 ms of stimulation. In Cm recordings, membrane invaginations do not lead to a 
reduction of cellular capacitance, but once the compartments become constricted and are 
further internalized, the plasma membrane surface area, and proportionally to it the Cm, 
decrease. In the recordings of Pangršič et al (2015), ∆Cm from Ca2+ buffer TKO IHCs was 
larger than in wild-type IHCs, but only from 100-ms stimulations onwards (~140 fF in Ca2+ 
buffer TKO IHCs vs. ~60 fF in wild-type IHCs for 100-ms depolarizations at 2 mM [Ca2+]e). 
This could be interpreted that at least one of the Ca2+ buffer proteins might be required for 
ultrafast endocytosis.  

In a follow-up study, Watanabe and collaborators found that ultrafast endocytosis depends on 
actin polymerization (Watanabe et al, 2014). When actin polymerization was inhibited with 
latrunculin A, the authors found a strong reduction in ultrafast endocytosis, again revealed by 
flash-and-freeze and EM analysis. In different studies aiming at elucidating the role of actin 
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polymerization in IHC synaptic function (Vincent et al, 2015; Guillet et al, 2016), latrunculin 
A was used during Cm recordings of IHCs. Again, ∆Cm increased more in latrunculin A-treated 
IHCs both for whole-cell patch clamp recordings and flash photolysis of caged Ca2+. The 
authors interpreted this as facilitation of exocytosis by reduction of actin filament-based 
diffusion barriers and proposed a role for F-actin in controlling the diffusion rate of the 
synaptic vesicles to the sites of release in IHCs. However, Ca2+ uncaging experiments in 
Vincent et al (2015) show that there is hardly any difference in exocytic rates in the first 50 ms 
both in presence and absence of latrunculin A (Vincent et al, 2015, Figure 2D), indicating that 
in this experimental setting the diffusion of vesicles to the sites of release was comparable. 
Differences in kinetics were rather registered between 50 to 100 ms after the flash (faster 
increase in Cm for latrunculin A-treated IHCs), which is coherent with the proposed timescale 
for ultrafast endocytosis. We thus favor the hypothesis that the increased ∆Cm in presence of 
latrunculin A, both for step depolarizations and flash photolysis, reflects absence of ultrafast 
endocytosis. In Guillet et al (2016), ∆Cm was significantly larger in presence of both actin 
polymerization inhibitors used, but only for 20-ms-long stimulations (~120 fF with latrunculin 
A vs. ~20 fF without, 2 mM [Ca2+]e). For longer stimuli, two actin-dependent processes might 
be impaired that differentially affect ∆Cm: the impairment of ultrafast endocytosis, increasing 
∆Cm, and a reduction in vesicle replenishment, reducing ∆Cm in comparison to untreated cells. 
Both effects combined might thus have resulted in non-significantly different ∆Cm for 50 to 
100-ms-long depolarizations.  

More recently, Tertrais and collaborators blocked the fission of endocytic invaginations with 
the dynamin blocker dyngo-4a and observed an increase in ∆Cm over control values (~50 fF 
vs. ~35 fF for a train of five consecutive 20-ms depolarizations, 5 mM [Ca2+]e) (Tertrais et al, 
2019). This would be in agreement with the assumption that IHC synapses compensate the 
extraordinary release rates of synaptic vesicles by ultrafast endocytosis. For endocytosis 
triggered by flash photolysis of caged Ca2+ in IHCs, time constants of 10 ms for ∆Cm were 
found, which would be even faster than reported for ultrafast endocytosis at hippocampal 
synapses. Although this might be a plausible scenario that would explain how this synapse 
compensates the extraordinarily high rates of exocytosis and compares to the effect found after 
20 ms stimulation in Guillet et al (2016), the triggering of vesicle fusion by Ca2+ uncaging is a 
rather unphysiological strong stimulus. It increases the cellular surface by >1 pF, which would 
require 22 000 synaptic vesicles (of 45 aF each) per pF (Neef et al, 2007a) to fuse with the 
plasma membrane and might induce endocytic mechanisms that do not typically occur in more 
physiological conditions. Since Cm recordings only reveal the sum of endocytic and exocytic 
events, it will be important to confirm this remarkably ultrafast kinetics of endocytosis by flash-
and-freeze experiments in IHCs.  

What other molecular players could be involved in ultrafast endocytosis at IHC synapses? 
Endophilin A was first attributed to play a role in fast bulk endocytosis, but with slower kinetics 
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than that of ultrafast endocytosis (Watanabe & Boucrot, 2017). More recently, endophilin A 
and synaptojanin were found to accelerate ultrafast endocytosis at hippocampal synapses 
(Watanabe et al, 2018). In Cm recordings of endophilin A knock-out IHCs no apparent 
increase in ∆Cm was observed (Kroll et al, 2019), seemingly arguing against an involvement of 
endophilin A in ultrafast endocytosis at this synapse. However, chronic impairment of 
endocytosis and vesicle reformation will inevitably affect vesicle replenishment. Since both 
endophilin A and synaptojanin are known to be required not only for fission of bulk 
endosomes but also for clathrin uncoating of recycling vesicles, inhibition of synaptic vesicle 
recycling might act more strongly on synaptic function in Cm recordings than the slowing 
down of ultrafast endocytosis. 

In conclusion, we showed that Ca2+ influx activates PKCα, which phosphorylates otoferlin, 
enabling it to interact with calbindin and myosin VI. We propose that the association of these 
proteins constitutes a molecular switch with the assembly of the otoferlin-calbindin complex 
being required for ultrafast endocytosis in IHCs.  

 

 

3.3.6.  Materials and Methods 

 

Study approval 

Animal handling and experiments complied with national animal care guidelines and were 
approved by the board for animal welfare of the University of Göttingen and the animal welfare 
office of the state of Lower Saxony, Germany. 

 

Animals 

Wild-type C57BL/6J (B6), Otof I515T/I515T (Strenzke et al, 2016), Otof Pga/Pga (Pangršič et al, 2010) 
and Otof –/– (Reisinger et al, 2011) mice of either gender were used. For otoferlin rescue 
experiments, CD1xC57BL/6N‐F1 (CD1B6F1) Otof –/– and control wild-type 
CD1xC57BL/6N‐F1 (CD1B6F1) or wild-type C57BL/6J (B6) mice were used, as previously 
described (Al‐Moyed et al, 2019). The mice were housed in social groups in individually 
ventilated cage (IVC) racks in a specific pathogen‐free facility with free access to food and water 
and 12‐h/12‐h light/dark cycles. 
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Constructs 

RNA isolation and cDNA synthesis from mouse organs of Corti (OCs) were carried out as 
described previously (Al‐Moyed et al, 2019). To generate eGFP-mPKCα, protein kinase C α 
cDNA (NM_011101.3) was amplified from the organ of Corti cDNA and subcloned into 
pEGFP-C2. The mCherry-P2A-mOtof-HA vector contains mCherry, a P2A peptide sequence 
inducing ribosome skipping (Kim et al, 2011), the mouse organ of Corti otoferlin coding 
sequence (CDS) (transcript variant 4, KX060996; NM_001313767) (Strenzke et al, 2016) 
and a hemagglutinin (HA) epitope tag  (YPYDVPDYA) introduced in a region where no 
deleterious mutations in otoferlin were reported. To generate mCherry-P2A-HA, the HA-
tagged otoferlin CDS in mCherry-P2A-mOtof-HA was replaced by an HA tag. 

 

Co-immunoprecipitation in HEK cells 

HEK293T cells were plated at a density of 1x106 cells per 10 cm dish and transfected 
Lipofectamine® 3000 (#L3000015, Thermo Fisher Scientific) 24h post-seeding. For GFP 
immunoprecipitation, cells were transfected with mCherry-P2A-mOtof-HA and eGFP-
mPKCα or mCherry-P2A-mOtof-HA only (control). For HA immunoprecipitation, cells 
were transfected with mCherry-P2A-mOtof-HA and eGFP-mPKCα or eGFP-mPKCα only 
(control). Cells were harvested 72h post-transfection by washing three times in PBS (137 mM 
NaCl, 2.7 mM KCl and 10 mM phosphate buffer solution, pH 7.4), and lysed in NP-40 lysis 
buffer supplemented with protease inhibitors (10 mM Tris-HCl pH 7.5, 150 mM NaCl, 0.5 
mM EDTA pH 8.0, 0.5% NP-40, protease inhibitors (#4693132001, Roche, cOmplete™, 
EDTA-free Protease Inhibitor Cocktail)) by pipetting extensively for 1h on ice and centrifuged 
at 500 x g, 4 °C for 5 min to remove cell debris. The lysates were mixed with 25 µL of anti-
GFP beads slurry (GFP-Trap®_MA, #gtma-10, Chemotek) or anti-HA bead slurry (Pierce™ 
Anti-HA Magnetic Beads, #88836, Thermo Fisher Scientific) for GFP immunoprecipitation 
and HA immunoprecipitation, respectively, and incubated with gentle end-over-end mixing 
for 4h at RT. Beads were washed three times with dilution buffer (10 mM Tris-HCl pH 7.5, 
150 mM NaCl, 0.5 mM EDTA pH 8.0) before boiling for 10 min at 70 °C. Protein complexes 
were resolved in 4-20% Tris-glycine gels (BIO-RAD) using PageRuler™ Plus Prestained 
Protein Ladder (Thermo Fisher Scientific) as a marker and transferred onto nitrocellulose 
membranes (GE Healthcare Life Sciences). Membranes were probed with primary antibodies 
mouse anti-HA (#MMS-101P, Covance, 1:1000) and mouse anti-GFP (#600-301-215, 
Rockland, 1:1000) followed by incubation with secondary antibody goat anti-mouse IgG-
HRP (#115-035-146, Jackson ImmunoResearch, 1:2000). Immobilon Forte Western HRP 
substrate (#WBLUF0100, Millipore) was used for detection. Protein concentration was 
determined with Pierce™ BCA Protein Assay Kit (#23227, Thermo Fisher Scientific). 
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Pull-down assays 

HEK293T cells were plated at a density of 1x106 cells per 10 cm dish and transfected 24h post-
seeding with mCherry-P2A-mOtof-HA or mCherry-P2A-HA (control) using Lipofectamine® 
3000 (#L3000015, Thermo Fisher Scientific). Cells were harvested 72h post-transfection by 
washing three times in PBS and lysed in NP-40 lysis buffer supplemented with protease 
inhibitors by pipetting extensively for 1h on ice and centrifuged at 500 x g, 4 °C for 5 min to 
remove cell debris. Lysates were mixed with 25 µL of anti-HA bead slurry (Pierce™ Anti-HA 
Magnetic Beads, #88836, Thermo Fisher Scientific) incubated with gentle end-over-end 
mixing for 1h at 4 °C. Beads were washed three times with dilution buffer (10 mM Tris-HCl 
pH 7.5, 150 mM NaCl, 0.5 mM EDTA pH 8.0). 
OCs from 25 mice at P8-P9 were homogenized in ice-cold sucrose buffer (320 mM sucrose, 4 
mM HEPES, pH 7.4, supplemented with protease inhibitors (#4693132001, Roche, 
cOmplete™, EDTA-free Protease Inhibitor Cocktail)) using a glass-Teflon homogenizer, with 
10 strokes at 900 r.p.m (adapted from Huttner et al, 1983; Hell & Jahn, 2006; Ahmed et al, 
2013). The homogenate was centrifuged at 500 x g, 4 °C for 5 min to remove bone and cell 
debris. Homogenates (500 µg total protein) were loaded onto anti-HA beads previously 
immobilized with HA or otoferlin-HA proteins, and incubated with gentle end-over-end 
mixing overnight at 4 °C. Beads were washed three times with dilution buffer prior to elution 
by boiling for 10 min at 70 °C. 
Protein complexes were resolved in 4-20% Tris-glycine gels (BIO-RAD) using PageRuler™ 
Plus Prestained Protein Ladder (Thermo Fisher Scientific) as a marker and transferred onto 
nitrocellulose membranes (GE Healthcare Life Sciences). Membranes were probed with 
primary antibodies rabbit anti-PKC alpha (#ab32376, Abcam, 1:1000), mouse anti-calbindin 
D-28K (#CB300, Swant, 1:1000) and mouse anti-HA (#MMS-101P, Covance, 1:1000) 
followed by incubation with secondary antibodies goat anti‐rabbit IgG (H+L)‐HRP (#111‐
035‐144, Jackson ImmunoResearch, 1:2000), goat anti-mouse Fcγ fragment specific-HRP 
(#115-035-008, Jackson ImmunoResearch, 1:2000), goat anti-mouse IgG (H+L)-HRP (#115-
035-146, Jackson ImmunoResearch, 1:2000), respectively. Immobilon Forte Western HRP 
substrate (#WBLUF0100, Millipore) was used for detection. Protein concentration was 
determined with Pierce™ BCA Protein Assay Kit (#23227, Thermo Fisher Scientific). 

 

In vitro phosphorylation assay and mass spectrometry analysis 

HA-tagged otoferlin was overexpressed in HEK293T cells and immobilized onto anti-HA 
beads (Pierce™ Anti-HA Magnetic Beads, #88836, Thermo Fisher Scientific) as already 
described. To obtain dephosphorylated otoferlin-HA, after extensive washing in dilution buffer 
(10 mM Tris-HCl pH 7.5, 150 mM NaCl, 0.5 mM EDTA pH 8.0), beads were incubated 
with equimolar amounts of alkaline phosphatase (Calf Intestinal Alkaline Phosphatase, 
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#18009019, Thermo Fisher Scientific) in dephosphorylation buffer (50 mM Tris-HCl pH 
8.5, 0.1 mM EDTA) for 30 min at 37 °C. The reaction was stopped by incubation with 
phosphatase inhibitors (PhosSTOP EASYpack Roche, #4906845001, Thermo Fisher 
Scientific) for 15 min at 25 °C. After extensive washing in dilution buffer to remove any 
residual phosphatase, half the sample was set aside (dephosphorylated control sample) and the 
other half proceeded for incubation with PKC. The kinase assay was carried out with equimolar 
amounts of recombinant PKCα (Recombinant human PKC alpha protein, ab55672, Abcam) 
in kinase buffer (20 mM HEPES pH 7.5, 2mM DTT, 2 mM CaCl2, 5mM MgCl2, 200 nM 
phorbol 12-myristate 13-acetate, 260 µM phosphatidylserine, 100 µM ATP) for 30 min at 37 
°C. The reaction was terminated by adding 4X NuPAGE LDS Sample Buffer supplemented 
with 10% beta-mercaptoethanol to the samples and boiling at 95 °C for 10 min. Protein 
samples were loaded onto a 4-12% NuPAGE Novex Bis-Tris Minigels (Invitrogen). Following 
detection by Coomassie staining, protein bands were cut out, diced and subjected to reduction 
with dithiothreitol, alkylation with iodoacetamide and finally overnight digestion with trypsin. 
Tryptic peptides were extracted from the gel, the solution dried in a Speedvac and kept at -
20°C for further analysis (Atanassov & Urlaub, 2013).  
Protein digests were analyzed on a nanoflow chromatography system (Eksigent nanoLC425) 
hyphenated to a hybrid triple quadrupole-TOF mass spectrometer (TripleTOF 5600+) 
equipped with a Nanospray III ion source (Ionspray Voltage 2400 V, Interface Heater 
Temperature 150°C, Sheath Gas Setting 12) and controlled by Analyst TF 1.7.1 software build 
1163 (all AB Sciex). In brief, peptides were dissolved in loading buffer (2% acetonitrile, 0.1% 
formic acid in water), enriched on a micro pillar array trapping column (1 cm, µPac, 5 µm, 
PharmaFluidics) and separated on an analytical micro pillar array column (200 cm, µPac, 2.5 
µm, PharmaFluidics) using a 60 min linear gradient of 5-40 % acetonitrile/0.1% formic acid 
(v:v) at 450 nl min-1. 
Qualitative LC-MS/MS analysis was performed using a Top20 data-dependent acquisition 
method with an MS survey scan of m/z 350–1250 accumulated for 250 ms at a resolution of 
30,000 full width at half maximum (FWHM). MS/MS scans of m/z 180–1600 were 
accumulated for 85 ms at a resolution of 17,500 FWHM and a precursor isolation width of 
0.7 FWHM, resulting in a total cycle time of 2.0 s. Precursors above a threshold MS intensity 
of 125 cps with charge states 2+, 3+, and 4+ were selected for MS/MS, the dynamic exclusion 
time was set to 45 s. MS/MS activation was achieved by CID using nitrogen as a collision gas 
and the manufacturer’s default rolling collision energy settings. Two technical replicates per 
sample were analyzed. 
Protein identification was achieved using Mascot Software 2.6 (Matrixscience). LC-MS/MS 
runs were searched against the UniProtKB Mus musculus reference proteome (revision 12-
2017, 60,769 entries). The search was performed with trypsin as enzyme and iodoacetamide 
as cysteine blocking agent. Up to two missed tryptic cleavages, methionine oxidation and 
S/T/Y phosphorylation as variable modifications were allowed for. Search tolerances were set 
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to 20 ppm for the precursor mass and 0.05 Da for fragment masses, and ESI-QUAD-TOF 
specified as the instrument type. Extracted Ion Chromatograms (XICs) were generated in 
PeakView Software version 2.1 build 11041 (AB Sciex) using 0.05 m/z extraction windows. 
 

Immunohistochemistry and Proximity ligation assay 

For general immunostainings (Figure EV1) and quantification of total protein levels (Figures 
3.4A-B, 3.7D-E, EV3), the apical turn of OCs from P14-16 mice was freshly dissected in 
phosphate buffered saline (PBS), directly fixed with 4% formaldehyde (FA) in phosphate 
buffered saline (PBS) for 45 min at 4 °C. 

In otoferlin rescue experiments, cochleae of P23-P30 mice were directly fixed with 4% FA in 
PBS for 45 min at 4 °C and decalcified in 0.12 M EDTA (pH 8.0) for 2-3 days before 
dissection of the OCs. 
Chemical stimulation was performed essentially as described before (Kamin et al, 2014; Revelo 
et al, 2014). The apical turn of the OC from P14-16 mice was dissected in Hank's Balanced 
Salt Solution without calcium HBSS (HBSS without Ca2+; composed of 5.36 mM KCl, 141.7 
mM NaCl, 1 mM MgCl2, 0.5 mM MgSO4, 10 mM HEPES, 3.4 mM L-glutamine, and 6.9 
mM D-glucose, pH 7.4) and then subjected to one of the following experimental conditions: 
i) Resting, 1 min in HBSS without Ca2+; b) Stimulation, 1 min in HBSS high K+ (KCl 
increased to 65.36 mM, NaCl reduced to 79.7 mM, and 2 mM CaCl2); c) Recovery, same as 
stimulated, followed by incubation for 5 min in HBSS with Ca2+ (NaCl reduced to 139.7 mM 
plus 2 mM CaCl2, with 5.36 mM KCl). To pharmacologically activate PKC, OCs were 
dissected in HBSS without Ca2+ and incubated for 1, 5 and 15 min in HBSS with Ca2+ 
supplemented with 1 µM PMA (phorbol 12-myristate 13-acetate; #ab120297, Abcam). To 
inhibit PKC, OCs were incubated for 15 min in HBSS with Ca2+ supplemented with 10 μM 
BIM I (Bisindolylmaleimide I, #203290, Merck) prior to stimulation with HBSS high K+ + 
BIM I. To pharmacologically inhibit both PKC and CaMKII, OCs were incubated for 15 min 
in HBSS with Ca2+ supplemented with 10 μM BIM I and 50 µM CaMKII inhibitor KN-93 
(#Cay13319, Cayman Chemical) prior to stimulation with HBSS high K+ + BIM I + KN-93. 
All incubations were carried out at 37 °C and all solutions were prewarmed at 37 °C. OCs were 
subsequently fixed with 4% FA in PBS for 45 min at 4 °C. 
Immunostainings were performed as previously described (Strenzke et al, 2016). The following 
primary antibodies were used: mouse anti-otoferlin [13A9] (#ab53233, Abcam, 1:300), rabbit 
anti-PKC alpha [Y124] (#ab32376, Abcam, 1:300), rabbit anti-calbindin D28k (#CB-38a, 
Swant, 1:300), goat anti-calbindin D28k [C-20] (#sc-7691, Santa Cruz Biotechnology, 
1:100), rabbit anti-Vglut3 (#135 203, Synaptic Systems, 1:300), rabbit anti-myosin VI (KA-
15) (#M5187, Sigma-Aldrich, 1:300),  and goat IgG anti-CtBP2 [E-16] (#sc-5967, Santa Cruz 
Biotechnology, 1:100) to label the synaptic ribbons. The following secondary antibodies were 
used: Alexa Fluor 488-conjugated goat anti-mouse IgG (#A11001, Thermo Fisher Scientific, 
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1:200), Alexa Fluor 594- and Alexa Fluor 568-conjugated donkey anti-mouse IgG (#A21203, 
#A10037, Thermo Fisher Scientific, 1:200), Alexa Fluor 568-conjugated goat anti-rabbit IgG 
(#A11011, Thermo Fisher Scientific, 1:200), Alexa Fluor 488-conjugated donkey anti-rabbit 
IgG (#A21206, Thermo Fisher Scientific, 1:200), DyLight 405-conjugated donkey anti-goat 
IgG (#705-475-003, Jackson ImmunoResearch, 1:200),  and MFP 488-conjugated donkey 
anti-goat IgG (#MFP-A1055, MoBiTec, 1:200).   
Proximity ligation assay (Duolink, Sigma-Aldrich) was performed essentially as described 
elsewhere (Meese et al, 2017). The Duolink® In Situ Detection Reagents Red set was used. The 
following antibody combinations were used: mouse anti-otoferlin [13A9] (#ab53233, Abcam, 
1:500) with rabbit anti-PKC alpha [Y124] (#ab32376, Abcam, 1:500) or rabbit anti-
phosphoserine (#9332, Abcam, 1:300) or rabbit anti-calbindin D28k (#CB-38a, Swant, 
1:500) or  rabbit anti-Vglut3 (#135 203, Synaptic Systems, 1:500) or rabbit anti-myosin VI 
(KA-15) (#M5187, Sigma-Aldrich, 1:500); mouse anti-calbindin D28k (#CB300, Swant, 
1:500) with rabbit anti-PKC alpha [Y124] (#ab32376, Abcam, 1:500). To visualize hair cells, 
primary antibody goat anti-calbindin D28K [C-20] (#sc-7691, Santa Cruz Biotechnology, 
1:100) was combined with secondary antibody MFP488 donkey anti-goat IgG (#MFP-A1055, 
MoBiTec, 1:200), or primary antibody guinea pig anti-Vglut3 (#135 204, Synaptic Systems, 
1:500) was combined with secondary antibody DyLight 405-conjugated donkey anti-guinea 
pig IgG (#706-475-148, Jackson ImmunoResearch, 1:100). 

 

Confocal microscopy and image analysis 

Confocal images were acquired using a laser scanning confocal microscope Leica TCS SP5 
(Leica Microsystems GmbH, Wetzlar, Germany) with a 10X air objective (0.4 NA) and a 63x 
glycerol-immersion objective (1.3 NA) for low and high magnification images, respectively. 
Exceptionally, confocal images in Figure 3.2 were acquired with a laser scanning confocal 
microscope Zeiss LSM800 with Airyscan (Carl Zeiss AG, Oberkochen, Germany) with a 63X 
oil-immersion objective (1.4 NA). All images from the same series were acquired with the same 
voltage/offset/pinhole settings and laser power. 
Maximum intensity projections of optical confocal sections and single-stack images were 
generated using Fiji (Schindelin et al, 2012, https://fiji.sc/) and assembled for display in Adobe 
Illustrator (Adobe Systems). Color-coded 2D images were constructed in Fiji as 16-bit 
grayscale images to which the given color look-up table was applied. Colocalization analysis 
was performed using the “Coloc2” Fiji's plugin with Costes' autothreshold method (Costes et 
al, 2004). 
Protein expression levels, immunofluorescence and PLA signals were quantified from high 
magnification 3D IHC images (0.6 µm z-stack step size, 2X digital zoom) in Imaris 7.6.5. 
Protein expression levels were quantified using a custom written Matlab (Mathworks) routine 
integrated into Imaris as previously described (Strenzke et al, 2016). PLA puncta were 
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identified via “Spots” tool as objects with a signal above a minimum threshold. IHCs were 
identified by calbindin or Vglut3 fluorescence and the “Surface” tool was used to create a 
volume for each individual cell. Puncta per cell were obtained via the “Split Spots Into Surface 
Objects” Matlab XTension from Imaris, which creates a new subset of Spots that contains only 
the Spots that lie inside each Surface (i.e. each cell). Summed fluorescence intensities of puncta 
per cell were used to calculate the PLA puncta fluorescence intensity per cell and were 
normalized to the resting condition. For each experimental condition at least two independent 
experiments were performed. The same experimental settings were used for each series. 
 

Otoferlin rescue experiments  

The viral vectors used for the otoferlin rescue experiments in Figure 3.7E and Figure EV3B 
were designed, produced, purified, and injected through the round window membrane 
(RWM) into the left cochlea of P5-6 wild-type (B6 and CDB6F1) control and CD1B6F1 
otoferlin knock-out mice as described in (Al‐Moyed et al, 2019). The following virus titers 
were used for postnatal RWM injections: AAV2/6.eGFP (1.44 x1010 vg/µl), otoferlin 
dual-AAV2/6-TS half-vectors (1:1) (1.2 x 1010 vg/µl), and otoferlin dual-AAV2/6-Hyb half-
vectors (1:1) (1.38 x1010 vg/µl). AAV2/6.eGFP was used as a control virus.  

Otoferlin and calbindin protein expression levels were quantified in transduced IHCs (P23-
30) and normalized to protein levels in IHCs of non-injected B6 wild-type mice as in (Al‐
Moyed et al, 2019). The otoferlin protein levels were previously reported in (Al‐Moyed et al, 
2019) and were only replotted in this study to better visualize the effect of otoferlin rescue on 
calbindin protein levels in otoferlin dual-AAV transduced IHCs.  

 

Statistical analysis 

Data averages from at least two independent trials are depicted as mean ± standard error of the 
mean (s.e.m.). P≤0.05 value was considered significant and is denoted in figures as follows: 
ns P>0.05; *P≤0.05; **P≤0.01; ***P≤0.001. Statistical parameters, significance, and sample 
size (N, animal numbers; n, cell numbers) are reported in the figure legends. All data fitting 
and statistical analysis was performed using GraphPad Prism 7.03 (GraphPad Software). The 
D’Agostino-Pearson omnibus and the Shapiro-Wilk tests were used to test for normality. The 
Mann-Whitney test was used to test for statistical significance between two unpaired non-
normally distributed groups. The Kruskal-Wallis test followed by the Dunn’s multiple 
comparison test was used to test for statistical significance in non-parametric multiple 
comparisons.  
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Data availability 

Raw data produced in this study are available upon request. 

The mass spectrometry proteomics data have been deposited to the ProteomeXchange 
Consortium (http://proteomecentral.proteomexchange.org) via the PRIDE partner repository 
(Perez-Riverol et al, 2019) with the dataset identifier PXD015338. 

 

3.3.7.  Acknowledgments 

The authors would like to thank Nina-Katrin Dankenbrink-Werder and Lisa Neuenroth for 
excellent technical assistance. We thank Ulrich Mueller for providing the pachanga mouse line. 
This work was supported by the University Medical Center Göttingen, the Deutsche 
Forschungsgemeinschaft (DFG) through the Collaborative Research Center SFB 889 (project 
A4 to ER and HU), the Heisenberg Program (to ER), and the Göttingen Graduate Center for 
Neurosciences, Biophysics, and Molecular Biosciences (GGNB) through a stipend to APC 
(DFG Grant GSC 226/4). 

3.3.8.  Author Contributions 

APC and ER conceived the study. APC designed and cloned DNA constructs, carried out Co-
IP, pull-down and in vitro phosphorylation assays, performed immunohistochemistry and 
proximity ligation assays, acquired and analyzed confocal microscopy images. HAM performed 
otoferlin rescue experiments, corresponding immunohistochemistry and confocal microscopy 
image acquisition and analysis. CL designed and evaluated mass spectrometry experiments. 
APC, HAM and CL analyzed data and prepared figures. APC and ER wrote the manuscript 
with input from all authors. All authors revised the manuscript. ER and HU acquired funding. 

 

3.3.9.  Conflict of interest 

The authors declare that the research was conducted in the absence of any commercial or 
financial relationships that could be construed as a potential conflict of interest. 

 

 

 



78 | Chapter 3 
 

 

3.3.10.  Appendix 

 

 

 
 
Appendix Figure S1. Validation of the proximity ligation assay in mice organs of Corti.   
A High magnification views of a PLA assay for otoferlin and myosin VI performed on WT P14 IHCs. 

Calbindin (blue) was used as IHC marker. PLA channel is depicted with an intensity-coded lookup table 
with warmer colors representing higher pixel intensities. 

B High magnification views of WT P14 IHCs immunolabeled for otoferlin and myosin VI with the 
antibodies used for the PLA shown in (A). 

Data information: In (A-B), maximum intensity projections of confocal optical sections. Scale bars: 5 µm. PLA, 
proximity ligation assay. IHC, inner hair cell. Otof, otoferlin. MyoVI, myosin VI. Calb, calbindin. 
 
 



Chapter 3 | 79 
 

 

 
Appendix Figure S2. Negative controls for the proximity ligation assays.   
A-F High magnification views of representative control PLAs performed with only one of the primary 

antibodies and done in parallel to the PLAs presented in this study: anti-otoferlin (A), anti-
phosphoserine (B), PKCα (C), calbindin (D), Vglut3 (E), myosin VI (F). Calbindin (blue) was used as 
IHC marker. The PLA channel is depicted with an intensity-coded lookup table (fire) with warmer 
colors representing higher pixel intensities. PLAs were performed for the conditions where the strongest 
PLA signal was registered in all different PLA combinations. 

Data information: In (A-F), maximum intensity projections of confocal optical sections. Scale bars: 5 µm. Rest, 
resting; Stim 1’, 1-minute stimulation; Stim 5’, 5-minute stimulation; Recov 5’ (Stim 1’), 5-minute recovery after 
1-minute stimulation. PLA, proximity ligation assay. Calb, calbindin. Otof, otoferlin. P-Ser, phosphoserine. 
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Annotated MS/MS Spectra of Detected Phosphosites 
 
 

 
Appendix Figure S3. MS/MS spectrum of m/z 632.6293+ at 38.63 min, DSQETDGLLPGSRP158pSTR 
(otoferlin variant 1, NP_001093865.1). 
 
 
 

 
Appendix Figure S4. MS/MS spectrum of m/z 449.2093+ at 42.93 min, FL790pSLSDKDQGR (otoferlin variant 
1, NP_001093865.1). 
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Appendix Figure S5. MS/MS spectrum of m/z 485.2453+ at 32.04 min, GVQS1184pSLIHNYKK (otoferlin 
variant 1, NP_001093865.1). 

 
 

 
Appendix Figure S6. MS/MS spectrum of m/z 542.6143+ at 38.08 min, YTLVGSHAVS1239pSLRR (otoferlin 
variant 1, NP_001093865.1). 
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Appendix Figure S7. MS/MS spectrum of m/z 591.2802+ at 37.87 min, FKG1451pSLCVYK (otoferlin variant 1, 
NP_001093865.1). 
 
 
 
 
 
 

LC-MS/MS profiling of phosphopeptides 
 
 

 
Appendix Figure S8. Total Ion Chromatograms (TICs) of otoferlin in-gel tryptic digests analyzed by LC-
MS/MS. 
Two replicates each of phosphatase-treated (black) and phosphatase-treated/PKC-incubated (red) samples were 
analyzed. XIC overlays demonstrate excellent reproducibility. 
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Appendix Figure S9. Extracted Ion Chromatograms (XICs) of otoferlin-derived phosphopeptides. 
Two replicates each of phosphatase-treated (black) and phosphatase-treated/PKC-incubated (red) samples were 
analyzed. 
A m/z 632.6293+ DSQETDGLLPGSRP158pSTR 
B m/z 449.2093+ FL790pSLSDKDQGR 
C m/z 663.3222+ GVQS1184pSLIHNYK 
D m/z 485.2453+ GVQS1184pSLIHNYKK 
E m/z 542.6143+ YTLVGSHAVS1239pSLRR 
F m/z 591.2802+ FKG1451pSLCVYK 
Background signal in the phosphatase-treated samples (black) indicates that phosphorylation was achieved by 
PKC incubation (red). 
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Appendix Figure S10. Sequence alignment of phosphorylated sites in otoferlin variants 1 
(NP_001093865.1) and 4 (NP_001300696.1). 
Phosphosites (red) identified at positions S158, S790, S1184, S1239, S1451 in variant 1 correspond to S158, 
S775, S1169, S1224, S1436 in variant 4, respectively. Alignment was performed using CLUSTAL Omega 
(1.2.4), EMBL-EBI. 
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Appendix Figure S11. Sequence alignment of phosphorylated sites in otoferlin from different species.  
Identified phosphorylation sites in mouse otoferlin (NP_001093865.1, variant 1) were aligned with human 
(NP_919224.1), rat (NP_001263649.1), chicken (XP_015140684.1) and zebrafish (NP_001025283.1) 
otoferlin sequences (displayed in red). PKC consensus motif (R-X-X-S/T-X-R-X) with with respective arginines 
(R) indicated in green; X indicates any amino acid. Hydrophobic leucine residues (L) at the +1 position shown 
to be favored by PKC and reported variations to the consensus motif with basic amino acids (R, H, K) at positions 
−6, −4, −2, +2, +3, and +4 (Nishikawa et al, 1997) are depicted in yellow. Alignment was performed using 
CLUSTAL Omega (1.2.4), EMBL-EBI. 
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Appendix Figure S12. PKC is predicted to phosphorylate otoferlin.  
Analysis of putative PKC phosphorylation sites in otoferlin (mouse, isoform 4, NP_001300696.1) using four 
different prediction tools (see Appendix Table S2 for detailed analysis). A comparative analysis between tools is 
represented as Veen Diagram. Numbers in parenthesis refer to total number of sites for each tool. Common sites 
to all tools are displayed in bold. Common sites found in at least three of the tools are also depicted. 
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Appendix Table S1. Mean averages, sample size and statistical analysis. 
Data information: s.e.m., standard error of the mean; N, number of animals; n, number of cells. 
 
Figure 3.1D 

Genotype/Condition Mean ± s.e.m. N n 
Otoferlin PKCα 

Rest 1.03 ± 0.02 1.05 ± 0.03 6 150 
Stim 1' 0.89 ± 0.01 0.76 ± 0.02 7 179 
Stim 5' 0.94 ± 0.06 0.85 ± 0.06 1 37 
Recov 5' (Stim 1') 1.60 ± 0.04 1.32 ± 0.04 6 195 

 
Compared group Statistical 

significance 
P-value Statistical test 

Apical/basal Otoferlin ratio: 
Rest vs. Stim 1' *** 0.0004 Kruskal-Wallis test followed by 

Dunn’s multiple comparison test Rest vs. Stim 5' ns 0.0658 
Rest vs. Recov 5' (Stim 1') *** < 0.0001 
Stim 1' vs. Stim 5' ns > 0.9999 
Stim 1' vs. Recov 5' (Stim 1') *** < 0.0001 
Stim 5' vs. Recov 5' (Stim 1') *** < 0.0001 
Apical/basal PKCα ratio: 
Rest vs. Stim 1' *** < 0.0001 Kruskal-Wallis test followed by 

Dunn’s multiple comparison test Rest vs. Stim 5' ** 0.0080 
Rest vs. Recov 5' (Stim 1') *** < 0.0001 
Stim 1' vs. Stim 5' ns > 0.9999 
Stim 1' vs. Recov 5' (Stim 1') *** < 0.0001 
Stim 5' vs. Recov 5' (Stim 1') *** < 0.0001 

 
 
Figure 3.3B 

Genotype/Condition Mean ± s.e.m. N n 
Rest 100 ± 7 % 7 122 
Stim 1' 442 ± 28 % 8 141 
Recov 5' (Stim 1') 178 ± 7 % 6 112 

 
Compared group Statistical 

significance 
P-value Statistical test 

PLA Otoferlin/PKCα: 
Rest vs. Stim 1’ *** < 0.0001 Kruskal-Wallis test followed by 

Dunn’s multiple comparison test Rest vs. Recov 5' (Stim 1') *** < 0.0001 
Stim 1’ vs. Recov 5' (Stim 1') *** < 0.0001 

 
 
Figure 3.4B-C 

Genotype/Condition Mean ± s.e.m. N n 
Immunofluorescence Apical/basal ratio 

WT 100 ± 2 % 1.06 ± 0.03 6 233 
Otof –/– 92 ± 1 % 0.66 ± 0.02 6 205 
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Compared group Statistical 
significance 

P-value Statistical test 

PKCα immunofluorescence: 
WT vs. Otof –/– ** 0.0054 Mann-Whitney two-tailed t-test 
Apical/basal PKCα ratio: 
WT vs. Otof –/– *** < 0.0001 Mann-Whitney two-tailed t-test 

 
Figure 3.4G 

Genotype/Condition Mean ± s.e.m. N n 
WT Rest 1.05 ± 0.03 6 150 
WT Stim 1' 0.76 ± 0.02 7 179 
WT Stim 5' 0.85 ± 0.06 1 37 
WT Recov 5' (Stim 1') 1.32 ± 0.04 6 195 
Otof –/– Rest 1.15 ± 0.12 1 15 
Otof –/– Stim 1' 0.75 ± 0.03 2 50 
Otof –/– Stim 5' 0.81 ± 0.03 2 46 
Otof –/– Recov 5' (Stim 1') 0.83 ± 0.04 1 26 

 
Compared group Statistical 

significance 
P-value Statistical test 

WT vs. Otof –/– apical/basal PKCα ratio: 
WT Rest vs. Otof –/– Rest ns > 0.9999 Kruskal-Wallis test 

followed by Dunn’s 
multiple 

comparison test 

WT Rest vs. WT Stim 1' *** < 0.0001 
WT Rest vs. Otof –/– Stim 1' *** < 0.0001 
WT Rest vs. WT Stim 5' * 0.0101 
WT Rest vs. Otof –/– Stim 5' ** 0.0051 
WT Rest vs. WT Recov 5' (Stim 1') *** < 0.0001 
WT Rest vs. Otof –/– Recov 5' (Stim 1') ns 0.1708 
Otof –/– Rest vs. WT Stim 1' ** 0.0011 
Otof –/– Rest vs. Otof –/– Stim 1' ** 0.0023 
Otof –/– Rest vs. WT Stim 5' ns 0.0754 
Otof –/– Rest vs. Otof –/– Stim 5' ns 0.0740 
Otof –/– Rest vs. WT Recov 5' (Stim 1') ns > 0.9999 
Otof –/– Rest vs. Otof –/– Recov 5' (Stim 1') ns 0.2537 
WT Stim 1' vs. Otof –/– Stim 1' ns > 0.9999 
WT Stim 1' vs. WT Stim 5' ns > 0.9999 
WT Stim 1' vs. Otof –/– Stim 5' ns > 0.9999 
WT Stim 1' vs. WT Recov 5' (Stim 1') *** < 0.0001 
WT Stim 1' vs. Otof –/– Recov 5' (Stim 1') ns > 0.9999 
Otof –/– Stim 1' vs. WT Stim 5' ns > 0.9999 
Otof –/– Stim 1' vs. Otof –/– Stim 5' ns > 0.9999 
Otof –/– Stim 1' vs. WT Recov 5' (Stim 1') *** < 0.0001 
Otof –/– Stim 1' vs. Otof –/– Recov 5' (Stim 1') ns > 0.9999 
WT Stim 5' vs. Otof –/– Stim 5' ns > 0.9999 
WT Stim 5' vs. WT Recov 5' (Stim 1') *** < 0.0001 
WT Stim 5' vs. Otof –/– Recov 5' (Stim 1') ns > 0.9999 
Otof –/– Stim 5' vs. WT Recov 5' (Stim 1') *** < 0.0001 
Otof –/– Stim 5' vs. Otof –/– Recov 5' (Stim 1') ns > 0.9999 
WT Recov 5' (Stim 1') vs. Otof –/– Recov 5' (Stim 1') *** < 0.0001 
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Figure 3.5B 
Genotype/Condition Mean ± s.e.m. N n 

Rest 100 ± 11 % 3 100 
Stim 1’ 234 ± 13 % 1 37 
Stim 5' 438 ± 38 % 2 52 
BIM I + Stim 5' 122 ± 2 % 1 34 
BIM I+KN-93 + Stim 5' 97 ± 4 % 1 50 
PMA 1’ 77 ± 7 % 2 61 
PMA 5’ 157 ± 4 % 2 66 
PMA 15’ 139 ± 6 % 2 48 

 
Compared group Statistical 

significance 
P-value Statistical test 

PLA Otoferlin/P-Serine: 
Rest vs. Stim 1' *** < 0.0001 Kruskal-Wallis test followed 

by Dunn’s multiple 
comparison test 

Rest vs. Stim 5' *** < 0.0001 
Stim 1' vs. Stim 5' ns > 0.9999 
Stim 5' vs. BIM I + Stim 5' ** 0.0013 
Stim 5' vs. BIM I+KN-93 + Stim 5' *** < 0.0001 
BIM I + Stim 5' vs. BIM I+KN-93 + Stim 
5' * 0.0250 
Rest vs. BIM I + Stim 5' * 0.0133 
Rest vs. BIM I+KN-93 + Stim 5' ns > 0.9999 
Rest vs. PMA 1' ns 0.3464 
Rest vs. PMA 5' *** < 0.0001 
Rest vs. PMA 15' *** 0.0002 
PMA 1' vs. PMA 5' *** < 0.0001 
PMA 1' vs. PMA 15' *** < 0.0001 
PMA 5' vs. PMA 15' ns 0.1802 

 
 
 
Figure 3.6B 

Genotype/Condition Mean ± s.e.m. N n 
Rest 100 ± 5 % 2 43 
Stim 1' 138 ± 3 % 2 44 
Recov 5' (Stim 1') 107 ± 3 % 1 23 

 
Compared group Statistical 

significance 
P-value Statistical test 

Myosin VI immunofluorescence: 
Rest vs. Stim 1' *** < 0.0001 Kruskal-Wallis test followed by 

Dunn’s multiple comparison test Rest vs. Recov 5' (Stim 1') ns > 0.9999 
Stim 1' vs. Recov 5' (Stim 1') *** < 0.0001 
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Figure 3.6D 
Genotype/Condition Mean ± s.e.m. N n 

Rest 100 ± 3 % 6 265 
Stim 1' 173 ± 4 % 3 170 
Recov 5' (Stim 1') 183 ± 4 % 3 153 
BIM I + Stim 1' 102 ± 6 % 1 37 
PMA 5’ 133 ± 3 % 3 122 
PMA 15’ 149 ± 9 % 3 96 

 
Compared group Statistical 

significance 
P-value Statistical test 

PLA Otoferlin/Myosin VI: 
Rest vs. Stim 1' *** < 0.0001 Kruskal-Wallis test followed 

by Dunn’s multiple 
comparison test 

Rest vs. Recov 5' (Stim 1') *** < 0.0001 
Rest vs. BIM I + Stim 1' ns > 0.9999 
Rest vs. PMA 5' *** < 0.0001 
Rest vs. PMA 15' *** < 0.0001 
Stim 1' vs. Recov 5' (Stim 1') ns > 0.9999 
Stim 1' vs. BIM I + Stim 1' *** < 0.0001 
Stim 1' vs. PMA 5' *** < 0.0001 
Stim 1' vs. PMA 15' *** < 0.0001 
Recov 5' (Stim 1') vs. BIM I + Stim 1' *** < 0.0001 
Recov 5' (Stim 1') vs. PMA 5' *** < 0.0001 
Recov 5' (Stim 1') vs. PMA 15' *** < 0.0001 
BIM I + Stim 1' vs. PMA 5' ** 0.0013 
BIM I + Stim 1' vs. PMA 15' *** 0.0002 
PMA 5' vs. PMA 15' ns > 0.9999 

 
 
 
Figure 3.6F-G 

Genotype/Condition Mean ± s.e.m. N n 
Immunofluorescence Apical/basal ratio 

Rest 100 ± 2 % 1.12 ± 0.06 3 89 
Stim 1' 163 ± 8 % 0.83 ± 0.04 3 92 
Recov 5' (Stim 1') 118 ± 2 % 1.19 ± 0.08 3 71 

 
Compared group Statistical 

significance 
P-value Statistical test 

Vglut3 immunofluorescence: 
Rest vs. Stim 1' *** < 0.0001 Kruskal-Wallis test followed by 

Dunn’s multiple comparison test Rest vs. Recov 5' (Stim 1') *** < 0.0001 
Stim 1' vs. Recov 5' (Stim 1') ns > 0.9999 
Apical/basal Vglut3 ratio: 
Rest vs. Stim 1' *** 0.0005 Kruskal-Wallis test followed by 

Dunn’s multiple comparison test Rest vs. Recov 5' (Stim 1') ns > 0.9999 
Stim 1' vs. Recov 5' (Stim 1') *** 0.0009 
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Figure 3.6I 
Genotype/Condition Mean ± s.e.m. N n 

Rest 100 ± 2 % 5 78 
Stim 1' 104 ± 1 % 4 146 
Recov 5' (Stim 1') 95 ± 2 % 3 93 

 
Compared group Statistical 

significance 
P-value Statistical test 

PLA Otoferlin/Vglut3: 
Rest vs. Stim 1' ns 0.0961 Kruskal-Wallis test followed by 

Dunn’s multiple comparison test Rest vs. Recov 5' (Stim 1') ns 0.5761 
Stim 1' vs. Recov 5' (Stim 1') *** 0.0005 

 
 
 
Figure 3.7B-C 

Genotype/Condition Mean ± s.e.m. N n 
Immunofluorescence Apical/basal ratio 

Rest 100 ± 1 % 1.04 ± 0.02 15 296 
Stim 1' 62 ± 2 % 0.84 ± 0.03 11 174 
Recov 5' (Stim 1') 73 ± 2 % 1.07 ± 0.05 8 141 
BIM I + Stim 1' 99 ± 3 % 1.14 ± 0.07 1 26 

 
Compared group Statistical 

significance 
P-value Statistical test 

Calbindin immunofluorescence: 
Rest vs. Stim 1' *** < 0.0001 Kruskal-Wallis test followed by 

Dunn’s multiple comparison test Rest vs. Recov 5' (Stim 1') *** < 0.0001 
Rest vs. BIM I + Stim 1' ns > 0.9999 

Stim 1' vs. Recov 5' (Stim 1') * 0.0152 
Stim 1' vs. BIM I + Stim 1' *** < 0.0001 

Recov 5' (Stim 1') vs. BIM I + Stim 1' *** < 0.0001 
Apical/basal Calbindin ratio: 

Rest vs. Stim 1' *** < 0.0001 Kruskal-Wallis test followed by 
Dunn’s multiple comparison test Rest vs. Recov 5' (Stim 1') ns 0.6380 

Rest vs. BIM I + Stim 1' ns 0.8940 
Stim 1' vs. Recov 5' (Stim 1') *** 0.0007 
Stim 1' vs. BIM I + Stim 1' *** 0.0001 

Recov 5' (Stim 1') vs. BIM I + Stim 1' ns 0.1856 
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Figure 3.7D 
Genotype/Condition Mean ± s.e.m. N n 

Calbindin Otoferlin 
WT 100 ± 1 % 100 ± 1 % 8 176 
Otof I515T/I515T 72 ± 3 % 42 ± 1 % 3 83 
Otof Pga/Pga 92 ± 2 % 30 ± 1 % 4 76 
Otof +/– 83 ± 3 % 51 ± 2 % 3 99 
Otof –/– 56 ± 1 % 0 ± 0 % 4 108 

 
 

Compared group Statistical 
significance 

P-value Statistical test 

Calbindin levels: 
WT vs. Otof I515T/I515T *** < 0.0001 Kruskal-Wallis test followed by 

Dunn’s multiple comparison test WT vs. Otof Pga/Pga ns 0.5900 
WT vs. Otof +/– *** 0.0002 
WT vs. Otof –/– *** < 0.0001 

Otof I515T/I515T vs. Otof Pga/Pga * 0.0124 
Otof I515T/I515T vs. Otof +/– ns > 0.9999 
Otof I515T/I515T vs. Otof –/– * 0.0186 

Otof Pga/Pga vs. Otof +/– ns > 0.9999 
Otof Pga/Pga vs. Otof –/– *** < 0.0001 

Otof +/– vs. Otof –/– *** < 0.0001 
Otoferlin levels: 

WT vs. Otof I515T/I515T *** < 0.0001 Kruskal-Wallis test followed by 
Dunn’s multiple comparison test WT vs. Otof Pga/Pga *** < 0.0001 

WT vs. Otof +/– *** < 0.0001 
WT vs. Otof –/– *** < 0.0001 

Otof I515T/I515T vs. Otof Pga/Pga ns 0.4603 
Otof I515T/I515T vs. Otof +/– ns > 0.9999 
Otof I515T/I515T vs. Otof –/– *** < 0.0001 

Otof Pga/Pga vs. Otof +/– *** 0.0006 
Otof Pga/Pga vs. Otof –/– *** < 0.0001 

Otof +/– vs. Otof –/– *** < 0.0001 
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Figure 3.7E 
Genotype/Condition Mean ± s.e.m. N n 

Calbindin Otoferlin 
WTB6 – AAV 100 ± 2 % 100 ± 1 % 11 276 
WTCD1B6F1 + AAV.eGFP 94 ± 3 % 104 ± 4 % 8 168 
WTCD1B6F1 + DualAAV-TS 117 ± 4 % 147 ± 5 % 3 62 
Otof –/– CD1B6F1 + DualAAV-TS 70 ± 5 % 31 ± 3 % 1 13 
Otof –/– CD1B6F1 + DualAAV-Hyb 63 ± 3 % 29 ± 2 % 5 64 
Otof –/– CD1B6F1 – AAV 50 ± 2 % 3 ± 0 % 6 142 

 
 

Compared group Statistical 
significanc

e 

P-value Statistical test 

Calbindin levels: 
WTB6 – AAV vs.  

WTCD1B6F1 + AAV.eGFP 
ns 0.36 Kruskal-Wallis test followed by 

Dunn’s multiple comparison test 
WTB6 – AAV vs. 

WTCD1B6F1 + DualAAV-TS 
** 0.002 

WTB6 – AAV vs.  
Otof –/– CD1B6F1 + DualAAV-TS 

*** < 0.0001 

WTB6 – AAV vs.  
Otof –/– CD1B6F1 + DualAAV-Hyb 

*** < 0.0001 

WTB6 – AAV vs.  
Otof –/– CD1B6F1 – AAV 

*** < 0.0001 

Otof –/– CD1B6F1 + DualAAV-TS vs. 
 Otof –/– CD1B6F1 + DualAAV-Hyb 

ns 0.38 

Otof –/– CD1B6F1 + DualAAV-TS vs.  
Otof –/– CD1B6F1 – AAV 

** 0.0095 

Otof –/– CD1B6F1 + DualAAV-Hyb vs.  
Otof –/– CD1B6F1 – AAV 

* 0.0292 

Otoferlin levels: 
WTB6 – AAV vs.  

WTCD1B6F1 + AAV.eGFP 
ns 0.58 Kruskal-Wallis test followed by 

Dunn’s multiple comparison test 
WTB6 – AAV vs.  

WTCD1B6F1 + DualAAV-TS 
*** < 0.0001 

WTB6 – AAV vs.  
Otof –/– CD1B6F1 + DualAAV-TS 

*** < 0.0001 

WTB6 – AAV vs.  
Otof –/– CD1B6F1 + DualAAV-Hyb 

*** < 0.0001 

WTB6 – AAV vs.  
Otof –/– CD1B6F1 – AAV 

*** < 0.0001 

Otof –/– CD1B6F1 + DualAAV-TS vs.  
Otof –/– CD1B6F1 + DualAAV-Hyb 

ns > 0.9999 

Otof –/–CD1B6F1 + DualAAV-TS vs.  
Otof –/– CD1B6F1 – AAV 

*** < 0.0001 

Otof –/–CD1B6F1 + DualAAV-Hyb vs.  
Otof –/– CD1B6F1 – AAV 

*** < 0.0001 
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Figure 3.7H 

Genotype/Condition Mean ± s.e.m. N n 
Rest 100 ± 2 % 7 327 
Stim 1' 560 ± 26 % 4 168 
Recov 5' (Stim 1') 77 ± 5 % 2 107 
BIM I + Stim 1' 101 ± 3 % 2 98 
PMA 5’ 175 ± 4 % 3 114 
PMA 15’ 161 ± 3 % 3 127 

 
 

Compared group Statistical 
significance 

P-value Statistical test 

PLA Otoferlin/Calbindin: 
Rest vs. Stim 1' *** < 0.0001 Kruskal-Wallis test followed by 

Dunn’s multiple comparison test Rest vs. Recov 5' (Stim 1') *** < 0.0001 
Rest vs. PMA 5' *** < 0.0001 
Rest vs. PMA 15' *** < 0.0001 
Rest vs. BIM I + Stim 1' ns > 0.9999 
Stim 1' vs. Recov 5' (Stim 1') *** < 0.0001 
Stim 1' vs. PMA 5' *** < 0.0001 
Stim 1' vs. PMA 15' *** < 0.0001 
Stim 1' vs. BIM I + Stim 1' *** < 0.0001 
Recov 5' (Stim 1') vs. PMA 5' *** < 0.0001 
Recov 5' (Stim 1') vs. PMA 15' *** < 0.0001 
Recov 5' (Stim 1') vs. BIM I + Stim 1' *** 0.0006 
PMA 5' vs. PMA 15' ns > 0.9999 
PMA 5' vs. BIM I + Stim 1' *** < 0.0001 
PMA 15' vs. BIM I + Stim 1' *** < 0.0001 

 
 
 
 
Figure EV4 

Genotype/Condition Mean ± s.e.m. N n 
Rest 100 ± 6 % 2 75 
Stim 1' 158 ± 5 % 2 94 
Recov 5' (Stim 1') 82 ± 6 % 2 61 

 
Compared group Statistical 

significance 
P-value Statistical test 

PLA PKCα/Calbindin: 
Rest vs. Stim 1' *** < 0.0001 Kruskal-Wallis test followed by 

Dunn’s multiple comparison test Rest vs. Recov 5' (Stim 1') ** 0.0051 
Stim 1' vs. Recov 5' (Stim 1') *** < 0.0001 
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Appendix Table S2. Prediction of PKC phosphorylation sites in otoferlin.  

Tool Model Sites  Reference 
NetPhos 3.1 ANN T24; S55; S74; S173; S224; T229; 

S230; T285; S319; T342; T466; S467; 
S530; S541; S563; S683; S715; S784; 
T904; T954; T1050; S1224; T1457; 
T1504; T1538; T1577; T1597; S1646; 
T1840; S1859; T1940 

http://www.cbs.dtu
.dk/services/NetPh

os-3.1/ 

(Blom et al, 
2004) 

KinasePhos 
1.0 

HMM T9; S74; S158; T159; S162; S166; 
S183; S185; S237; S246; T285; T331; 
T446; S467; S520; S541; S563; S685; 
T750; S775; S784; S785; T787; S810; 
T819; S866; T904; S970; T1083; 
S1130; S1223; S1224; T1242; T1261; 
S1293; T1318; T1416; T1424; T1482; 
T1538; S1566; T1577; T1597; T1624; 
T1639; T1756; S1789; S1796; T1809 

http://kinasephos.
mbc.nctu.edu.tw/ 

(Huang et 
al, 2005) 

PSSP BDT T24; S29; S55; S74; S113; S145; S158; 
S162; S166; S185; S233; S237; S246; 
S286; S290; S335; S434; S467; S472; 
S501; S520; S541; S563; S753; S775; 
S784; S785; S796; S803; S810; T819; 
T826; S918; S1099; S1130; S1223; 
S1224; S1293; S1351; S1355; S1436; 
S1566; S1579; S1705; S1789; S1793; 
T1840; S1933 

http://ppsp.biocuck
oo.org/ 

(Xue et al, 
2006) 

GPS 3.0 PSSM, GA T24; S55; S74; S158; S162; S166; S185; 
S219; S233; S467; S775; S777; S784; 
S785; S796; S810; T819; S918; S1040; 
S1099; S1224; S1351; S1355; S1965 

http://gps.biocucko
o.org/online.php 

(Xue et al, 
2011) 

Data information: Mouse otoferlin isoform 4 (NCBI accession number NP_001300696.1) was used for 
predictions. ANN, artificial neural network; HMM, Hidden Markov Models; PSSM, position-specific scoring 
matrices; GA, genetic algorithm; BDT, Bayesian decision theory. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

http://www.cbs.dtu.dk/services/NetPhos-3.1/
http://www.cbs.dtu.dk/services/NetPhos-3.1/
http://www.cbs.dtu.dk/services/NetPhos-3.1/
http://kinasephos.mbc.nctu.edu.tw/
http://kinasephos.mbc.nctu.edu.tw/
http://ppsp.biocuckoo.org/
http://ppsp.biocuckoo.org/
http://gps.biocuckoo.org/online.php
http://gps.biocuckoo.org/online.php
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3.4. Complementary studies 

 

3.4.1.  Exploring the possible interaction of otoferlin with other calcium 

buffer proteins 

In the previous chapter (chapter 3.3), I show that calbindin interacts with otoferlin upon strong 
IHC depolarization and PKC activation, possibly regulating endocytic events in murine IHCs. 

While screening for potential interaction partners of otoferlin, other two calcium buffer 
proteins were identified as positive hints. A PLA between otoferlin and parvalbumin (Figure 
3.8A) and between otoferlin and calretinin (Figure 3.8B) performed in explanted organs of 
Corti of WT B6 P14-16 mice in HBSS with Ca2+ resulted in strong fluorescent puncta 
distributed throughout the cytoplasm of the IHCs. These results indicate that these two 
calcium buffer proteins are in close proximity to otoferlin and might interact with it. 

 

 

Figure 3.8. Proximity ligation assays for otoferlin and other calcium buffer proteins. 
A High magnification views of a representative PLA for otoferlin and parvalbumin performed on WT B6 

P15 mouse IHCs. 
B High magnification views of a representative PLA for otoferlin and calretinin performed on WT B6 P15 

mouse IHCs. 
Data information: Calbindin (blue) was used as IHC marker. PLA channel is depicted with an intensity-coded 
lookup table with warmer colors representing higher pixel intensities. In (A-B), maximum intensity projections 
of confocal optical sections. Scale bars: 5 µm. IHC, inner hair cell. PLA: proximity ligation assay. Otof, otoferlin. 
Parv, parvalbumin. Calret, calretinin. 



Chapter 3 | 97 
 

 

Parvalbumin and calretinin levels also appear to differ among several otoferlin mutants. In Otof 
–/– IHCs parvalbumin immunofluorescence levels were reduced to about 50% of WT levels 
(Otof –/–: 54±4%, n=74 IHCs vs. WT: 100±1%, n=197 IHCs; ***P<0.0001), IHCs of Otof +/– 
mice showed a reduction of ~30% (Otof +/–: 68±2%, n=127 IHCs; ***P<0.0001) and those of 
Otof I515T/I515T mice a reduction of ~20% (Otof I515T/I515T: 79±2%, n=61 IHCs; ***P<0.0001) 
(Kruskal-Wallis test followed by Dunn’s multiple comparison test; Figure 3.9). Calretinin 
immunofluorescence levels were also reduced in Otof –/– IHCs though to a less extent (Otof –/–: 
77±1%, n=74 IHCs vs. WT: 100±1%, n=98 IHCs; ***P<0.0001) but unaltered in Otof 
I515T/I515T IHCs (Otof I515T/I515T: 97±4%, n=74 IHCs; ns P>0.9999) (Kruskal-Wallis test followed 
by Dunn’s multiple comparison test; Figure 3.10.). These data support a role for parvalbumin 
and calretinin in IHC synaptic function, potentially mediating exocytic and/or endocytic 
processes. 

 

 

 
Figure 3.9. Parvalbumin immunofluorescence levels in different otoferlin mutant mouse lines. 
A High magnification views of representative WT B6, Otof I515T/I515T, Otof +/– and Otof –/– P14-P16 IHCs 

immunolabeled for parvalbumin and otoferlin, used for quantification of parvalbumin levels in B. 
B Average parvalbumin and otoferlin immunofluorescence levels in mutant and WT IHCs (P14-16). 

Immunofluorescence levels were normalized to WT levels for each antibody separately. Data are 
displayed as mean ± s.e.m.; ns P>0.05, *P≤0.05, **P≤0.01, ***P≤0.001 (Kruskal-Wallis test followed by 
Dunn’s multiple comparison test); mean averages, sample size and statistical analysis are detailed in 
Appendix Supplementary Table 1. 

Data information: In (A), maximum intensity projections of confocal optical sections. Scale bars: 5 µm. IHC, 
inner hair cell.  
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Although exploring a potential role of these two calcium buffers in IHC exo- and endocytosis 
via interaction with otoferlin would be of interest, to follow up on these leads was beyond the 
scope of the current project. In any case, my data suggests that otoferlin might not act alone to 
mediate Ca2+-dependent exocytic and endocytic events in IHCs and seems to rather join forces 
with other Ca2+-binding proteins like PKCα and calbindin (this thesis; Cepeda et al, 2019), 
and possibly parvalbumin and calretinin. 

 

 
Figure 3.10. Calretinin immunofluorescence levels in different otoferlin mutant mouse lines. 
A High magnification views of representative WT B6, Otof I515T/I515T and Otof –/– P14-P16 IHCs 

immunolabeled for calretinin and otoferlin, used for quantification of calretinin levels in B. 
B Average calretinin and otoferlin immunofluorescence levels in mutant and WT IHCs (P14-16). 

Immunofluorescence levels were normalized to WT levels for each antibody separately. Data are 
displayed as mean ± s.e.m.; ns P>0.05, *P≤0.05, **P≤0.01, ***P≤0.001 (Kruskal-Wallis test followed by 
Dunn’s multiple comparison test); mean averages, sample size and statistical analysis are detailed in 
Appendix Supplementary Table 1. 

Data information: In (A), maximum intensity projections of confocal optical sections. Scale bars: 5 µm. IHC, 
inner hair cell. 
 

PLA assays and quantification of protein levels were performed as described in Materials and 
Methods section of Cepeda et al (2019). Additional information: 

Primary antibodies used in PLAs: mouse anti-otoferlin [13A9] (#ab53233, Abcam, 1:500), 
rabbit anti-parvalbumin (#ab11427, Abcam, 1:500), rabbit anti-calretinin (#7697, Swant, 
1:500), goat anti-calbindin D28k [C-20] (#sc-7691, Santa Cruz Biotechnology, 1:100). 

Primary antibodies used in immunostainings: mouse anti-otoferlin [13A9] (#ab53233, Abcam, 
1:300), rabbit anti-parvalbumin (#ab11427, Abcam, 1:300), rabbit anti-calretinin (#7697, 
Swant, 1:500). Secondary antibodies reported in Cepeda et al (2019). 
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Hearing loss is one of the most common sensory deficiencies among the human population. 
About 466 million people worldwide suffer from disabling hearing loss (6.1% of the world’s 
population) and this number is estimated to reach over 900 million by 2050 (World Health 
Organization Webpage: https://www.who.int/deafness/estimates/en/). Hearing loss can be 
inherited (hereditary non-syndromic hearing loss, NSHL) or acquired through exposure to risk 
factors (Varga et al, 2003; Matsunaga et al, 2012; Shearer & Smith, 2015; Nishio & Usami, 
2017). About 75 genes have been linked to a particular case of deafness, autosomal recessive 
non-syndromic hearing loss (DFNB) (Hereditary Hearing Loss Webpage: 
http://hereditaryhearingloss.org/), a sensorineural type of deafness which affects the inner ear 
or the auditory nerve. Pathogenic mutations in the OTOF gene, encoding the protein otoferlin, 
contribute to 2.3-10% of the cases of NSHL, and cause congenital prelingual autosomal 
recessive non-syndromic hearing loss 9 (DFNB9) in humans (Yasunaga et al, 1999; Varga et 
al, 2003; Shearer & Smith, 2015), with effects ranging from moderate-to-profound depending 
on the OTOF mutation. 

Otoferlin is a large multi-C2 domain protein, belonging to the ferlin family of membrane-
fusion proteins (Lek et al, 2012). Mutations in the OTOF gene lead to deafness due to 
disruption of synaptic transmission between IHCs and the SGNs of the auditory nerve 
(auditory synaptopathy) (Roux et al, 2006, 200; Moser et al, 2013; Moser & Starr, 2016). In 
analogy to synaptotagmins in the conventional synapse, otoferlin was initially proposed to act 
as the Ca2+ sensor for vesicle fusion based on functional studies with otoferlin knock-out mouse 
mutants (Roux et al, 2006) and Ca2+-binding studies via biochemical approaches (Johnson & 
Chapman, 2010). Further studies confirmed the Ca2+ sensor hypothesis and additionally 
involved otoferlin in several steps of the synaptic vesicle cycle in IHCs including SV priming, 
SV fusion, SV tethering, SV reformation from bulk endosomes, SV replenishment to the 
ribbon, endocytosis and coupling of exo- and endocytosis by regulating active zone clearance 
(Pangrsic et al, 2010; Duncker et al, 2013; Vincent et al, 2014; Jung et al, 2015a; Strenzke et 
al, 2016; Meese et al, 2017; Michalski et al, 2017; Chakrabarti et al, 2018). Several proteins 
were identified as otoferlin interaction partners in different steps of the synaptic vesicle cycle 
(Roux et al, 2006; Heidrych et al, 2008, 2009; Ramakrishnan et al, 2009; Roux et al, 2009; 
Johnson & Chapman, 2010; Zak et al, 2012; Duncker et al, 2013; Ramakrishnan et al, 2014; 
Vincent et al, 2014; Jung et al, 2015a; Hams et al, 2017; Meese et al, 2017) and helped 
understanding the role of otoferlin in IHC synaptic transmission. However, most studies were 
based on in vitro and static approaches, which can result in false-positive or false-negative 
interactions that would in any case have no physiological meaning.  

This thesis has contributed to the efforts towards understanding the role of otoferlin in auditory 
IHCs’ physiology. I provide insights into the mechanisms regulating otoferlin’s function 
possibly in several steps of the synaptic vesicle cycle. I show that otoferlin can be 
phosphorylated by Ca2+/calmodulin-dependent serine/threonine kinase delta (CaMKIIδ) and 

https://www.who.int/deafness/estimates/en/
http://hereditaryhearingloss.org/
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protein kinase C alpha (PKCα) in an activity-dependent manner, and that phosphorylation 
can have repercussions in Ca2+-binding and membrane-binding properties, ultimately 
regulating otoferlin’s involvement in various processes. The main findings and their 
implications are discussed in the following sections in detail. 

 

4.1. Activity-dependent regulation of the synaptic vesicle cycle  

Over the past decades, the molecular composition of the conventional presynapse and the steps 
of the synaptic vesicle cycle have been studied in detail, and great progress has been made in 
understanding the underlying molecular events. However, not much is known of how the 
synaptic vesicle cycle is regulated. 

It is well established that calcium is fundamental to many biological processes, being essential 
to regulated exocytosis but also influencing endocytic retrieval processes at presynaptic 
terminals (reviewed in Neher & Sakaba, 2008). Elevation of [Ca2+] at presynaptic nerve 
terminals upon stimulation regulates neurotransmitter release. Synaptotagmins are Ca2+ sensors 
expressed at the presynapse able to detect these changes in [Ca2+]. Syt1 is present on synaptic 
vesicles of neurons and neuroendocrine cells (Matthew et al, 1981; Perin et al, 1990) and is the 
major Ca2+ sensor for evoked neurotransmitter release in neurons (Brose et al, 1992; Yoshihara 
& Littleton, 2002; Geppert et al, 1994; Maximov & Südhof, 2005) and neuroendocrine cells 
(Voets et al, 2001; Sørensen et al, 2003), triggering fast and synchronous Ca2+-mediated 
synaptic vesicle fusion. Syt2, is assumed to have similar functions in neurons but it is not 
expressed in neuroendocrine cells (Geppert et al, 1991). At least a dozen additional 
synaptotagmin isoforms exist. Four synaptotagmins (Syt1, 2, 7 and 9) account for nearly all 
transmitter exocytosis (Südhof, 2014). After exocytosis, endocytosis takes place to retrieve 
excess membrane from which new vesicles are generated, replenishing the vesicle pool and 
maintaining exocytosis, with different modes of endocytosis being evoked depending on the 
amount of Ca2+ influx (reviewed in Wu et al, 2007).  Various forms of endocytosis with 
differences in speed, number and vesicle size require either different Ca2+ sensors or one 
versatile Ca2+ sensor. At least a dozen additional synaptotagmin isoforms were identified which 
together with calmodulin, constitute well-characterized Ca2+ sensors for endocytosis and 
membrane traffic events (reviewed in Wu et al, 2019). 

Ca2+ also modulates the activity of kinases and phosphatases expressed in nerve terminals, with 
implications to the phosphorylation state of synaptic proteins. Reversible phosphorylation of 
proteins controls not only protein-protein interactions but also protein activity and subcellular 
localization (Hunter, 2007). Several lines of evidence have shown that at conventional synapses 
presynaptic proteins are reversibly phosphorylated, suggesting that protein phosphorylation 
plays a role in the regulation of synaptic transmission, and might constitute the basis for the 
profound plasticity and fast adaptation to a multitude of signals observed in many synapses. 
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Phosphorylation of presynaptic proteins by second messenger-activated protein kinases has 
been shown to regulate synaptic transmission, with effects on presynaptic plasticity (refilling 
of the RRP of vesicles and synaptic strength), protein interactions within the release apparatus, 
endocytosis and trafficking events (Südhof, 1995; Turner et al, 1999; Haberman et al, 2005; 
Jong et al, 2016). Identifying protein kinases and their targets in nerve terminals, particularly 
those regulated by synaptic activity or intracellular [Ca2+], has been critical to elucidating the 
molecular mechanisms underlying modulation of synaptic transmission. 

While some progress has been made in understanding the role of protein kinases in synaptic 
transmission in conventional synapses, mechanisms regulating the function of presynaptic 
proteins in IHC ribbon synapses have not been studied to date. This is largely because 
presynaptic proteins expressed in conventional synapses and that are targets of these kinases 
seem to be absent in IHC ribbon synapses (see chapter 1.1.3.1). Instead, IHC synapses express 
the multifunctional protein otoferlin, structurally and functionally related to some of these 
proteins (Pangršič et al, 2012), which seems to take over at least partially their function. While 
otoferlin is attributed to act as the Ca2+ sensor for exocytosis in IHC synapses (Roux et al, 2006; 
Johnson & Chapman, 2010; Michalski et al, 2017), its involvement in many other processes 
like SV priming, SV fusion, SV tethering, SV reformation, SV replenishment, endocytosis and 
coupling of exo- and endocytosis (Roux et al, 2006; Pangrsic et al, 2010; Duncker et al, 2013; 
Vincent et al, 2014; Jung et al, 2015a; Strenzke et al, 2016; Meese et al, 2017; Michalski et al, 
2017; Chakrabarti et al, 2018), that extend beyond a mere Ca2+-sensing role like that of Syt1 
in conventional synapses, predicts a fine regulation by phosphorylation and dephosphorylation 
events. This kind of regulation could at least in part explain otoferlin’s multifunctionality 
across the synaptic vesicle cycle. In this thesis, I studied the activity-dependent regulation of 
otoferlin’s function by the protein kinases CaMKIIδ and PKCα and explored possible 
downstream effects of otoferlin’s phosphorylation, particularly in respect to interaction 
partners and synaptic vesicle recycling. 

 

4.2. The phosphorylation of otoferlin by CaMKIIδ 

In pull-down assays with chicken utricles, Dr. Meike Herget (Stanford University) first 
identified CaMKIIδ as an interaction partner of otoferlin (Meese et al, 2017). I showed via 
immunostainings and PCRs that CaMKIIδ is the main CaMKII expressed in rodent IHCs, 
being present throughout the cell and at the synaptic region (Meese et al, 2017: Figures 1 and 
2; this thesis: Figures Figure 2.1 and Figure 2.2). Co-immunoprecipitation assays performed 
by Dr. Meike Herget with recombinant otoferlin and CaMKIIδ expressed in HEK293 cells 
further supported a direct interaction of the two proteins (Meese et al, 2017). An in situ PLA 
assay performed with explanted organs of Corti confirmed close proximity (<40 nm) between 
otoferlin and CaMKIIδ upon strong stimulation (Meese et al, 2017: Figure 4; this thesis: 
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Figure 2.3), which led to the hypothesis that CaMKIIδ may phosphorylate otoferlin thereby 
regulating its function.  

 

4.2.1. Otoferlin is phosphorylated by CaMKIIδ in an activity-dependent 

manner 

Another PLA, this time for otoferlin and phosphoserine residues, was performed to test 
whether otoferlin or proteins interacting with otoferlin are phosphorylated in IHCs, and if this 
phosphorylation depends on IHC stimulation (Meese et al, 2017: Figure 10; this thesis: Figure 
2.4). We noted the presence of a few PLA puncta in resting conditions, and high K+ stimulation 
resulted in more and brighter puncta, suggesting otoferlin and/or its associated proteins are 
phosphorylated upon stimulation. Pre-treatment with a CaMKII inhibitor, KN-93, blocked 
the stimulation-dependent increase in PLA signal to a large extent, confirming that the activity-
dependent phosphorylation of otoferlin or otoferlin interactors is at least partially attributed to 
CaMKII’s action. 

Phosphorylation of otoferlin by CaMKIIδ was proven in vitro by incubating two otoferlin 
fragments (otoferlin-C2ABC and otoferlin-C2DEF) with recombinant CaMKIIδ. Mass 
spectrometry analysis retrieved ten phosphorylation sites (P1 to P10) in otoferlin, five within 
C2 domains (P1 in C2C, P3 in C2D and P8-P10 in C2F) and the remaining within linker 
regions (Meese et al, 2017: Figure 7). Six of the phosphorylation sites are conserved among 
species (P1, P3, P8-P10 – in C2 domains; P2 – in a linker region between C2C and C2D). 
Interestingly, of the phosphorylation sites found within C2 domains, only two – P8 and P10 – 
located in the C2F domain are conserved among several ferlin proteins, including dysferlin, 
myoferlin, Fer1L4 and Fer1L5, although P10 only partially (Meese et al, 2017: Figure 8). Even 
though the CaMKII consensus sequence R/K-X-X-S/T (White et al, 1998) is absent in many 
of the phosphorylation hotspots, other studies reported it not to be necessary for substrate 
phosphorylation (Ando et al, 1991; Sun et al, 1994). 

In conventional presynaptic terminals, synapsin 1, synaptotagmin 1, syntaxin 1, SNAP-25, 
VAMP2, and CaV1.2-3 L-type calcium channels (Llinás et al, 1985, 1991; Greengard et al, 
1993; Popoli, 1993; Fukunaga et al, 1995; Nielander et al, 1995; Ryan et al, 1996; Hirling & 
Scheller, 1996; Turner et al, 1999; Ohyama et al, 2002; Abiria & Colbran, 2010; Jenkins et 
al, 2010) are CaMKII substrates. While some presynaptic proteins, like synapsin 1, undergo 
phosphorylation upon depolarization, other proteins involved in clathrin-mediated 
endocytosis are dephosphorylated upon depolarization e.g. by the Ca2+-dependent phosphatase 
calcineurin, as is the case of dynamin, amphiphysin, synaptojanin and the adaptor protein 
AP180 (Liu et al, 1994; Cousin & Robinson, 2001). However, phosphorylation of the 
presynaptic machinery seems not to specifically target C2 domains. A recent 
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phosphoproteomics study assessed the phosphorylation status of presynaptic proteins in resting 
and stimulated nerve terminals (isolated rat brain synaptosomes) and for all C2 domain proteins 
differentially regulated upon depolarization, no phosphorylation sites were detected within C2 
domains (Kohansal-Nodehi et al, 2016). Only in very few cases phosphorylation seems to 
target C2 domains: cytosolic phospholipase A2 (Gijón et al, 1999), a novel PKC from Aplysia 
(Pepio & Sossin, 2001), synaptotagmin 4 (Roggero et al, 2005), and rice small C2 domain 
proteins (Kang et al, 2013). In the novel PKC’s case, phosphorylation of its non-Ca2+-binding 
C2 domain seems to increase PKC’s affinity to phospholipids, inducing its translocation to the 
membrane (Pepio & Sossin, 2001). In these studies, the effects of phosphorylation in Ca2+ 
binding were never assessed, and therefore reports on regulation of Ca2+ affinity of C2 domains 
through phosphorylation are non-existent, which in the case of otoferlin might constitute a 
unique regulatory mechanism. 

 

4.2.2.  Phosphorylation by CaMKIIδ affects Ca2+ affinity of otoferlin’s C2 

domains 

C2 domains are Ca2+-binding motifs found in a vast array of proteins involved in signaling 
processes including membrane trafficking, generation of lipid-second messengers, activation of 
GTPases and control of protein phosphorylation (Nalefski & Falke, 1996). They have a variety 
of ligands and substrates, like Ca2+, membrane phospholipids, inositol phosphates, and 
proteins. Since not all C2 domain proteins seem to bind or be regulated by Ca2+, some C2 
domains most likely have a mere structural role within proteins, being involved in protein-
protein interactions or membrane binding. 

It is currently disputed which of otoferlin’s C2 domains bind Ca2+. Some studies reported that 
all C2 domains of otoferlin are able to bind Ca2+ in vitro (Johnson & Chapman, 2010; 
Padmanarayana et al, 2014) with the exception of the C2A domain, which is not able to bind 
Ca2+ due to the missing Ca2+ -coordinating aspartates and a shorter loop 1 (Johnson & 
Chapman, 2010; Helfmann et al, 2011; Ramakrishnan et al, 2014). In the C2B domain only 
one aspartate is present at the Ca2+ -binding pocket (Jiménez & Bashir, 2007), which was 
deemed to be insufficient for Ca2+  binding. Although Johnson & Chapman, 2010 initially 
reported Ca2+ binding for the C2B domain, this domain did not bind Ca2+ in our hands (Meese, 
2015; Meese et al, 2017). A similar situation was found for the C2C domain, with only three 
aspartate residues being present at the Ca2+-binding region. No Ca2+ binding was detected via 
microscale thermophoresis (MST) for otoferlin’s C2C domain for either otoferlin-C2C or 
otoferlin-C2ABC fragments (Meese et al, 2017: Figure 9A), contradicting previous 
experimental findings (Johnson & Chapman, 2010; Padmanarayana et al, 2014). More 
recently, an otoferlin knock-in mouse model Otof C2C/C2C was generated, carrying two missense 
mutations (Asp515Ala and Asp517Ala) in the Ca2+-binding pocket of the C2C domain and 
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predicted to affect Ca2+ binding (Michalski et al, 2017). Although in this study the authors 
claim that the C2C domain is able to bind Ca2+, no biochemical or binding assays were 
performed. The observed effects in exocytic rates as a consequence of the mutation could 
simply be secondary and result for example from folding changes that impair the binding of 
otoferlin to another protein (e.g. CaMKIIδ, PKCα, calbindin). 

In Meese et al  (2017), the Ca2+-binding properties of otoferlin’s C2C and C2F domains were 
assessed via MST (van den Bogaart et al, 2012) using recombinant otoferlin single or multiple 
C2 domains heterologously expressed in E. coli. The influence of CaMKIIδ phosphorylation 
on Ca2+ affinity of otoferlin’s C2C and C2F domains was studied by generating 
phosphomimetics substitutions where serine and threonine residues targeted by 
phosphorylation were replaced by aspartates to mimic the negative change introduced by 
phosphorylation (Meese, 2015; Meese et al, 2017). 

A closer look at the CaMKIIδ phosphorylation hotspots in otoferlin’s sequence aligned with 
that of different ferlins, revealed that the phosphorylated threonine at P1 in otoferlin’s C2C 
domain is occupied by an aspartate residue (D) in dysferlin and myoferlin (Meese et al, 2017: 
Figure 8). These aspartate residues in dysferlin and myoferlin are located in the top loops of 
C2 domains in these proteins, and are positioned close to another aspartate residue predicted 
to coordinate Ca2+ (Jiménez & Bashir, 2007). To address the influence of CaMKIIδ 
phosphorylation on Ca2+ affinity of otoferlin’s C2C domain, this threonine residue was mutated 
into an aspartate (T448D). For the phosphomimetic C2C domain an increase in MST signal 
was observed with an apparent dissociation constant (KD) of 8.7 ± 2.8 mM (Meese et al, 2017: 
Figure 9B-C). [Ca2+] within Ca2+ hotspots at IHC ribbon synapses is estimated to range from 
>10 µM to >100 µM (Roberts, 1994; Beutner et al, 2001; Wong et al, 2014), meaning such 
high KD for C2C’s phosphomimetic represents a rather low affinity for Ca2+ and hence does not 
guarantee that the phosphomimetic C2C domain binds Ca2+ in vivo. That being said, 
phosphorylation by CaMKIIδ likely converts the C2C domain of otoferlin from a non-Ca2+-
binding domain into a Ca2+-binding domain, though with low affinity. 

As already mentioned, retrieved CaMKIIδ phosphorylation sites in otoferlin’s C2F domain 
seem to be conserved among different ferlin proteins (Meese et al, 2017: Figure 8). To assess 
the effect of phosphorylation on the Ca2+ affinity of otoferlin’s C2F domain, serine and 
threonine residues at CaMKIIδ phosphorylation sites P8, P9 and P10 on otoferlin were 
substituted by aspartates (S1777D, S1808D, T1860D). The wild-type C2F domain retrieved 
a KD of 402 ± 54 µM (Meese et al, 2017: Figure 9D). Such KD for Ca2+ binding of otoferlin’s 
C2F domain might seem high (hence, resulting in low Ca2+ affinity), but similar values were 
previously reported for this domain (KD ~ 267 µM) (Ramakrishnan et al, 2014) and for Syt1’s 
C2B domain (KD ~ 50-250 µM) (Fernandez et al, 2001; Radhakrishnan et al, 2009; van den 
Bogaart et al, 2012). Moreover, in our study, Ca2+-binding assays were performed in the 
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absence of phospholipidic membranes, whose presence typically results in an increased Ca2+ 
affinity of C2 domains (Brose et al, 1992; Johnson & Chapman, 2010; Padmanarayana et al, 
2014). Such studies reported higher Ca2+ affinities for otoferlin’s C2F domain, with a KD of ~ 
20-25 µM (Johnson & Chapman, 2010; Padmanarayana et al, 2014). Phosphomimetic C2F 
bound Ca2+ with lower affinity, with a KD of 6.7 ± 7.2 mM, an overall 10-fold affinity reduction 
(Meese et al, 2017: Figure 9F). Phosphorylation by CaMKIIδ possibly reduces the affinity of 
the C2F domain to Ca2+. 

When a PLA for otoferlin and phosphoserine residues, indicative of overall phosphorylation of 
otoferlin or protein complexes of which otoferlin is part of, was performed under stimulatory 
conditions, the PLA puncta did not overlap with but were located in close proximity to the 
ribbons (Meese et al, 2017: Figure 10D; this thesis: Figure 2.4C). This result indicates that 
phosphorylation might play an important role in targeting otoferlin to the active zone in IHCs. 
It is also possible that the presence of negatively charged phospholipids like PIP2 may increase 
the Ca2+ affinity of otoferlin’s C2 domains in a similar fashion to what was observed for Syt1 
and PKC (Brose et al, 1992; Guerrero-Valero et al, 2009; van den Bogaart et al, 2012). If fact, 
otoferlin was reported to interact with the membrane lipid PIP2 (Roux et al, 2006; 
Ramakrishnan et al, 2009; Padmanarayana et al, 2014). Direct interactions between PIP2 and 
otoferlin’s C2C and C2F domains in specific (Padmanarayana et al, 2014) seem to target these 
domains toward PIP2-bearing liposomes, used in this study to mimic phospholipidic 
membranes, and therefore the C2C and C2F domains of otoferlin were assumed to target the 
protein to the presynaptic area. This membrane targeting seems to occur in a Ca2+-independent 
manner, and in the specific case of the C2F domain, the Ca2+-binding loops appear to directly 
interact with the lipid bilayer. These data highlight the importance of the C2C and C2F 
domains for otoferlin’s Ca2+-binding ability and membrane localization and are in line with 
results obtained by our research group for two particular mouse mutants for the C2C and C2F 
domains of otoferlin which display distinct degrees of IHC disfunction and hearing 
impairment: the Otof I515T/I515T and Otof Pga/Pga mutants. The Otof Pga/Pga mutant, carrying the 
p.Asp1767Gly missense mutation in the C2F domain (Schwander et al, 2007), is profoundly 
deaf and displays severely reduced IHC sustained exocytosis but unaltered fast exocytic rates 
(Pangrsic et al, 2010). The Otof I515T/I515T mutant, carrying the human p.Ile515Thr missense 
mutation in the C2C domain (Mirghomizadeh et al, 2002; Varga et al, 2006), displays 
moderate hearing impairment (temperature-sensitive) with sustained IHC exocytosis at levels 
between those of wild-type and Otof Pga/Pga (Strenzke et al, 2016).  

The amino acid residue changes caused by the p.Ile515Thr and p.Asp1767Gly mutations are 
predicted to impact otoferlin’s stability (Pangrsic et al, 2010; Strenzke et al, 2016). 
Replacement of isoleucine 515, a naturally hydrophobic residue predicted to be positioned at 
the C2C domain hydrophobic core, by a threonine residue probably renders the core less 
hydrophobic, and therefore affects the stability of the protein. The replacement of aspartate 
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1767, a negatively charged and polar residue which generally prefers to be on the surface of 
proteins and is frequently involved in protein active or binding sites, by a glycine, a non-polar 
and rather unique and flexible amino acid with more hydrophobic properties, will most 
certainly have serious repercussions on protein function. Detailed studies on these two mutants 
have proven exactly that. While wild-type otoferlin is normally distributed throughout the 
cytoplasm of IHCs but also at the plasma membrane and endosomal structures (Roux et al, 
2006; Pangrsic et al, 2010; Strenzke et al, 2016: Figures 1A and D, Appendix Figure S1A), and 
Otof –/– IHC completely lack otoferlin (Roux et al, 2006; Reisinger et al, 2011; Strenzke et al, 
2016: Figure 7C), Otof I515T/I515T and Otof Pga/Pga mutant IHCs display reduced overall otoferlin 
expression, ~31% and ~27% of wild-type levels, respectively (Strenzke et al, 2016: Figure 1G). 
Though overall otoferlin levels are comparable between Otof I515T/I515T and Otof Pga/Pga IHCs, 
otoferlin plasma membrane localization is distinct. While Otof I515T/I515T IHCs retain 35% of 
membrane-bound otoferlin, Otof Pga/Pga IHCs retain only 3% of otoferlin at the basolateral 
plasma membrane (Strenzke et al, 2016: Figures 1D-F, 1I-J), which leads to the conclusion 
that the Otof Pga/Pga mutation seems to affect otoferlin’s membrane localization. Biolistic gene 
gun transfection of a C2F deletion otoferlin cDNA construct into Otof –/– IHCs led to hardly 
any otoferlin staining in the plasma membrane (Müller, 2017), supporting the importance of 
the C2F domain for membrane localization. The Otof Pga/Pga mutation appears to additionally 
interfere with the Ca2+ binding ability of the C2F domain (Meese, 2015), potentially affecting 
the targeting of otoferlin towards the plasma membrane and other cellular compartments 
(Strenzke et al, 2016: Figure 1H) and most likely affecting its interaction with proteins 
responsible for membrane retrieval like AP-2 (Duncker et al, 2013; Jung et al, 2015a). 
Additional implications of these mutations and the regulatory role by CaMKIIδ are discussed 
later on in chapter 4.4. 

 

4.3. The phosphorylation of otoferlin by PKCα  

With the goal of assessing the potential role of other kinases in IHC synaptic function, I 
screened for the presence of other kinases in IHCs.  

 

4.3.1. PKCα is expressed in IHCs and redistributes upon activation 

PKCα was found to be highly expressed in murine IHCs, with a homogeneous distribution 
throughout the cell and to a less extent at the plasma membrane (Figure EV1). To study the 
dynamics of PKCα activation in IHCs, I decided to apply an already-established 
resting/stimulation/recovery paradigm (Kamin et al, 2014; Revelo et al, 2014). In these two 
studies, trafficking events and SV recycling were followed using FM 1-43 dye and the 
mCLING probe to analyze endocytic intermediates and their conversion into SVs. The authors 
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observed that in IHCs constitutive membrane trafficking is abundant and takes place at rest 
and during stimulation, and most endocytosed material is converted into tubular organelles in 
the top and nuclear areas of the cell giving rise to larger vesicles that resemble early endosomes. 
Upon stimulation, SVs tethered to the ribbons are released, and SV recycling takes place at the 
base of the cell in close proximity to the AZs. During recovery after the stimulation period, 
membrane endocytosis leads to the formation of large cisterns that later on are converted to 
small vesicles (see Figure 1.4). 

Strong IHC depolarization via high K+ stimulation (1 min, 65 mM KCl, 2 mM CaCl2) led to 
the activation and strong expression of PKCα at the basolateral plasma membrane of IHCs 
and was characterized by accumulations of PKCα and otoferlin in common structures near the 
active zone (Figure 3.2). These structures did not overlap but were close to the synaptic ribbons 
and revealed to be larger than synaptic vesicles, resembling recycling endosomes previously 
described by several research groups (Kamin et al, 2014; Revelo et al, 2014; Watanabe et al, 
2014; Jung et al, 2015a; Strenzke et al, 2016).  

 

4.3.2. PKCα interacts with and phosphorylates otoferlin 

To investigate a possible interaction between otoferlin and PKCα in IHCs, I first performed a 
PLA for otoferlin and PKCα in different conditions. A 4-fold increase in PLA signal from 
resting to strong stimulatory conditions indicated close proximity between the proteins during 
strong IHC stimulation (Figure 3.3A-B). Pull-down and co-IP assays later confirmed the 
interaction of the two proteins (Figure 3.3C-D). 

I then performed an in vitro assay with heterologously expressed otoferlin and recombinant 
PKCα to retrieve possible phosphorylation sites in otoferlin. LC-MS/MS analysis was done in 
collaboration with Dr. Christof Lenz (Core Facility Proteomics, Institute of Clinical 
Chemistry, University Medical Center Göttingen; Bioanalytical Mass Spectrometry Group, 
Max Planck Institute for Biophysical Chemistry, Göttingen) and retrieved phosphorylation of 
otoferlin at five serine residues: S158, S775, S1169, S1224 and S1436 (otoferlin variant 4, 
NP_001300696.1) (Figure 3.3E-F; Appendix Figures Appendix Figure S3-Appendix Figure 

S10). All phosphorylation sites were found to be conserved between mammalian and non-
mammalian otoferlin orthologs, with the exception of S1224 at the C2de domain only 
conserved among mammalian species (Appendix Figure S11). It is interesting to note that most 
phosphorylation sites were not located within otoferlin’s C2 domains but rather in linker 
regions predicted to be involved in phospholipid-binding. Moreover, phosphorylation at S775 
could possibly facilitate the interaction of FerA with membranes in the presence of Ca2+, as 
proposed before (Harsini et al, 2018), by changing the folding and/or lipid-binding properties 
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of the domain through conversion from a four-helix bundle to an inverted hydrophobic 
membrane-associating structure. 

 

4.3.3. Activity-dependent phosphorylation of otoferlin and/or otoferlin-

bearing complexes has an overall contribution of CaMKIIδ and PKCα 

 

A PLA between otoferlin and phosphoserine residues was used to test whether otoferlin and/or 
proteins interacting with otoferlin are phosphorylated in rat (Meese et al, 2017: Figure 10B) 
and mouse (this thesis: Figure 2.4) IHCs. Upon stimulation with high K+ the PLA signal 
increased when compared to resting conditions, but this effect could be only partially blocked 
by the CaMKII inhibitor KN-93 (Meese et al, 2017: Figure 10B-C), suggesting the 
involvement of other kinases in the regulation of synaptic function through phosphorylation 
of otoferlin in mammalian IHCs. In this thesis, I showed that the stimulation-dependent 
increase in PLA signal can also be blocked to a large extent by the PKCα inhibitor BIM I, and 
it is completely blocked by treatment with inhibitors of both kinases (Figure 3.5). These results 
point to a combined action of CaMKIIδ and PKCα in phosphorylating otoferlin or otoferlin 
interaction partners. 

 

4.3.4. Phosphorylation of otoferlin by PKCα promotes the interaction of 

otoferlin with myosin VI and calbindin 

Does the phosphorylation of otoferlin by PKCα promote the interaction of otoferlin with 
other proteins involved in SV recycling? 

In this thesis, I show that the previously reported interaction of otoferlin with myosin VI 
(Heidrych et al, 2009; Roux et al, 2009) is PKCα-dependent. The PLA signal for the 
interaction otoferlin-myosin VI increased when compared to the resting condition, and this 
increase was in the same order of magnitude when PKCα was activated either by high K+ 
stimulation or pharmacologically (Figure 3.6C-D). Treatment with the PKCα inhibitor fully 
abolished the stimulation-induced increase in PLA signal. These results suggest that otoferlin 
interacts with myosin VI in a PKCα-dependent manner. This assumption is supported by the 
results obtained for the PLA pair otoferlin-Vglut3. In all conditions (resting, stimulation and 
recovery) the PLA was positive but the signal intensity did not change (Figure 3.6H-I), most 
likely because both proteins are known to localize to common structures in IHCs and therefore 
follow shared trafficking pathways without necessarily interacting. Although Vglut3 
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immunofluorescence raised upon strong IHC stimulation, which was accompanied by a 
relocation of the protein to the basolateral plasma membrane (Figure 3.6E-G), this result likely 
reflects i) exposure of the epitope, ii) transport of distal SVs to the release sites, and iii) fusion 
of SVs with the AZ membrane during sustained release. 

Changed calbindin immunofluorescence levels among different experimental conditions 
(decreased immunofluorescence upon stimulation; Figure 3.7A-C) and among several otoferlin 
mouse mutants (general decreased immunofluorescence; Figure 3.7D and Figure EV3A), and 
rescue of these levels in Otof –/– IHCs when otoferlin was reintroduced via dual-AAV 
approaches (Figure 3.7E), led us to investigate a possible interaction of otoferlin with calbindin. 
A PLA between otoferlin and calbindin (Figure 3.7G-H) resulted in a >5-fold increase in signal 
upon strong IHC stimulation when compared to resting conditions, indicating close proximity 
between the two proteins upon stimulation. The stimulation-induced increase in PLA signal 
was fully blocked by a PKCα inhibitor. A pull-down assay confirmed physical association of 
the two proteins in vitro (Figure 3.7F). An additional PLA between calbindin and PKCα led 
to a not so pronounced increase in signal upon stimulation, possibly because the two proteins 
do not interact directly, but rather interact indirectly through a scaffolding protein, likely 
otoferlin. Given the strong activity-dependency of the interactions otoferlin-PKCα and 
otoferlin-calbindin, it is conceivable that the three proteins are part of one complex during 
stimulation, with PKCα and calbindin binding to distinct regions of otoferlin. 

4.3.5. PKCα’s probable role in otoferlin-dependent SV reformation events 

Multiple lines of evidence suggest that the structures where otoferlin and PKCα accumulate 
and interact are bulk endosomes and/or ultrafast endocytic compartments from where new SVs 
are reformed. When in an earlier study our group examined IHCs via electron microscopy, 
otoferlin immunogold particles were found in large membranous compartments positioned 
laterally  to the active zones (Strenzke et al, 2016). Due to their size (ranging from >50 to ~450 
nm in diameter) and because they exhibited budding of clathrin-coated vesicles (Strenzke et al, 
2016: Figure 7I, F,G) these structures were classified as endosomal recycling compartments. 
Structures about four times the size of synaptic vesicles and positioned laterally to active zones 
are associated with ultrafast endocytosis in hippocampal synapses (Watanabe et al, 2013), 
which given the similar morphology support the ultrafast endocytosis hypothesis in IHCs. 
Additional evidence strengthens this theory that PKCα and otoferlin might colocalize in such 
compartments involved in ultrafast endocytosis. Firstly, the lack of PKCα “clustering” in the 
vicinity of the ribbons when using milder stimulations (25 mM KCl, 2 mM CaCl2, for 1 min) 
(Figure EV2A). Revelo and collaborators (Revelo et al, 2014) observed that milder stimulations 
(10 or 25 mM KCl, 2 mM CaCl2, for 1 min) retrieved single vesicles from the plasma 
membrane via clathrin-mediated endocytosis but also gave rise to large organelles clearly 
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separated from the plasma membrane in areas surrounding the synaptic ribbon (similar to bulk 
endosomes in conventional synapses). However, stronger stimulations (65 mM KCl, 2 mM 
CaCl2, for 1 min) generated even larger membrane infoldings and cisterns continuous with the 
basolateral plasma membrane (Revelo et al, 2014: Figure 5A) – similar to membrane infoldings 
of stimulated IHCs observed by electron microscopy in Neef et al, 2014. Secondly, in strongly 
stimulated Otof –/– IHCs, PKCα distributed to endosomal compartments at the base of the 
cells (Figure 3.4D-G) like it happened in wild-type IHCs (Figure 3.1A-D), but while in wild-
type IHCs the pronounced accumulations in endosomal structures disappeared for longer 
stimulation times and during recovery, in Otof –/– IHCs PKCα remained at the basolateral 
plasma membrane and in endosomes (Figure 3.4D-E). Processes like exocytosis, endocytosis 
and SV reformation, proven to be dependent on otoferlin, are undoubtedly severely impaired 
in Otof –/– IHCs. Recycling endosomes might not be converted to SVs as fast as in the presence 
of otoferlin, and if we consider PKCα to be involved in this event, the delay in the whole 
process might explain why PKCα is still present in these compartments in Otof –/– IHCs during 
longer stimulations and recovery. In fact, the clustering and redistribution of PKCα towards 
the basolateral plasma membrane and to endosomal compartments in IHCs is coherent with 
the behavior observed in other cell types upon its activation, where PKC is recruited to 
membranes (Hermelin et al, 1988; Huang et al, 1997; Feng et al, 1998, 2000; Tardif et al, 
2002; González et al, 2003; Schechtman et al, 2004; Wu et al, 2006; Cordey & Pike, 2006). 
In many cases, PKCα regulates the function of several cell surface receptors and membrane 
transporters by inducing their translocation from the plasma membrane to endocytic 
compartments (Peng et al, 2002; Le et al, 2002; Loder & Melikian, 2003; Becker & Hannun, 
2003). In neuronal synapses, PKC is responsible for the trafficking of Syt XI to endocytic 
recycling compartments (Haberman et al, 2005), but is also involved in endocytic processes in 
general (reviewed in Alvi et al, 2007). The co-trafficking of PKCα and otoferlin towards such 
structures upon IHC stimulation points toward a possible interaction of the two proteins at 
this location, and to an involvement of PKCα in the regulation of endocytic processes via 
phosphorylation of otoferlin and/or other proteins. 

As already mentioned, myosin VI-dependent trafficking events in IHCs seem to be dependent 
on PKC and otoferlin. A PLA between otoferlin and myosin VI led to a comparable increase 
in PLA signals upon PKCα activation via high K+ stimulation or pharmacological activation, 
and treatment with a PKCα inhibitor abolished the stimulation-induced increase in PLA 
signal. 

Myosin VI and F-actin are closely associated and affect the trafficking of cellular components 
(reviewed in Kneussel & Wagner, 2013). F-actin was also shown to control otoferlin-
dependent exocytosis in IHCs, forming dense cage-shape structures beneath the ribbon in 
order to maintain a tight special organization of calcium channels (Vincent et al, 2015) which 
likely interact with otoferlin (Ramakrishnan et al, 2009; Hams et al, 2017). Myosin VI is also 
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involved in cargo sorting in the early endocytic pathway (Tumbarello et al, 2013). It is then 
conceivable that myosin VI and F-actin in association with otoferlin might be involved in 
PKC-dependent trafficking processes in IHCs, which most probably involve recycling of 
endocytic intermediates. Since otoferlin also interacts with calbindin in an activity-dependent 
manner, calbindin might also be involved in endocytic events, at least at some stage of the SV 
cycle. 

 

4.3.6. The otoferlin-calbindin interaction might be important for ultrafast 

endocytosis 

The observation that calbindin immunofluorescence levels are strongly reduced in Otof 
I515T/I515T but not in Otof Pga/Pga IHCs, although otoferlin levels are comparable in both mutants, 
might be inconsistent and incompatible with a direct impact of calbindin in the process. 
However, these two mutations were proposed to affect distinct cellular processes: SV 
replenishment to the ribbon in the case of the pachanga mutation, and SV reformation from 
endocytic recycling compartments in the case of the p.Ile515Thr mutation. Given our 
observations, it is anticipated that calbindin may be involved in only one of these processes via 
interaction with otoferlin. Calbindin seems not to be absolutely required for hearing nor it 
confers protection against moderate noise-induced hearing loss (Airaksinen et al, 2000). 
Supporting this finding, a triple knock-out mouse model of calbindin, parvalbumin and 
calretinin (Ca2+ buffers) presented almost unaffected hearing abilities (Pangršič et al, 2015). 
Since susceptibility to noise is more likely to be induced in timescales ranging from minutes to 
hours and given the short timescale of the PKCα-otoferlin-calbindin interaction (growing 
weaker between 1 and 5-minute strong depolarizations), it is probable that the mechanisms in 
which calbindin is taking part in might comprehend shorter periods. 

We hypothesize that calbindin involvement in the complex might be the trigger for ultrafast 
endocytosis events. Patch-clamp capacitance measurements from calbindin knock-out IHCs 
(Pangršič et al, 2015) and actin polymerization studies (Vincent et al, 2015; Guillet et al, 2016; 
Tertrais et al, 2019) support these claims. For a comprehensive review of these studies, refer to 
the discussion section of Cepeda et al (2019) (chapter 3.3.5 of this thesis). 

To be unequivocally sure on which processes PKCα (in a complex with otoferlin and 
calbindin) might be involved, one would need to perform patch-clamp capacitance 
measurements to monitor exo- and endocytosis rates in IHCs after treatment with PKC 
inhibitors. The main challenge here will be to find a paradigm where PKC is reliably activated. 
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4.3.7. Parvalbumin and calretinin might also interact with otoferlin to 

mediate Ca2+-dependent exocytic and endocytic events 

The contribution of other calcium buffer proteins like parvalbumin and calretinin to exocytic 
and/or endocytic events is not off the table. A PLA for otoferlin-parvalbumin and otoferlin-
calretinin was positive (Figure 3.8) and parvalbumin and calretinin immunofluorescence levels 
in different mutant IHCs were also altered (Figures Figure 3.9 and Figure 3.10) but to follow 
up on these leads was beyond the scope of the current project. 

Parvalbumin levels were comparable with calbindin levels observed for these mutants (Figure 
3.7D), while calretinin levels seemed to be affected to a lesser extent. Contrary to what happens 
in other cell types, hair cells (of most species) express the three Ca2+-binding proteins, possibly 
reflecting the need for buffers with different properties to act in different Ca2+ signalling 
mechanisms, which in these cells are not well spatially isolated. Even though the levels of 
parvalbumin and calretinin might be changed due to indirect effects like reduced vesicle 
turnover in these mutants, it is tempting to speculate about a potential involvement of the two 
buffers in exocytic and/or endocytic events. It is also possible that parvalbumin and calretinin 
are mediating distinct membrane retrieval events. For instance, it is noteworthy that Otof 
I515T/I515T IHCs show altered parvalbumin levels but no changes in calretinin levels were 
registered. Given the defects in SV reformation observed in Otof I515T/I515T mutant IHCs 
(Strenzke et al, 2016) induced by the p.Ile515Thr mutation in the C2C domain of otoferlin, 
one of the explanations can be that parvalbumin joins otoferlin to mediate the reformation of 
properly sized SVs from endocytic recycling compartments. If we consider otoferlin and 
parvalbumin to be interaction partners, the conformational changes in otoferlin induced by 
the p.Ile515Thr mutation might also increase the affinity between the two proteins, leaving 
the parvalbumin epitope to which the antibody binds to less exposed, and hence the decreased 
parvalbumin levels. In the case of calretinin, if we consider a scenario where defective otoferlin 
(p.Ile515Thr) is unable to bind Ca2+, and we assume calretinin to have also a sensor function 
(besides Ca2+ buffering), calretinin might be overexpressed in Otof I515T/I515T IHCs to compensate 
the lack of “good” otoferlin, hence the unchanged levels even though the reduced vesicle 
turnover in these cells. Another scenario that could explain the unchanged calretinin levels 
might be that this protein is mediating other processes like vesicle replenishment to the ribbon 
(a process affected in Otof Pga/Pga IHCs) or other trafficking events. It would be interesting to 
quantify parvalbumin and calretinin levels also for Otof Pga/Pga mutant IHCs (Pangrsic et al, 
2010), which present SV replenishment defects, and see if they are unchanged as it was 
observed for calbindin levels. If changes would be observed, they could potentially point 
towards a role of these two proteins in mediating replenishment of SVs to the ribbon. 

My data suggests that otoferlin might not be a solitary Ca2+ sensor for endocytic processes in 
IHCs but might rather act in consortium with other Ca2+-binding proteins (like PKCα, 
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calbindin, parvalbumin and calretinin). Otoferlin most likely interacts with different proteins 
to mediate not only exocytosis but also different modes of endocytosis and/or different steps 
of the SV cycle like SV reformation from large endosomes or SV replenishment to the ribbon. 

 

4.4. Potential impact of OTOF mutations in otoferlin’s regulation by 

protein kinases 

The function of a protein is largely determined by its three-dimensional structure. Mutations 
leading to changes in the amino acid sequence usually affect protein folding and ultimately 
result is overall stability perturbations. Changes in protein folding can, for instance, affect 
membrane targeting, interaction with other proteins, cofactor (e.g. Ca2+) binding, and effector 
accessibility (e.g. kinases, phosphatases). 

Otoferlin is thought to be involved in SV recycling and SV reformation processes in IHCs by 
interacting with phospholipids (see chapters 1.1.4 and 4.2.2) and proteins like AP-2 (Duncker 
et al, 2013; Jung et al, 2015a) and myosin VI (Heidrych et al, 2009; Roux et al, 2009; see also 
PLAs in Meese et al, 2017: Figure 3B and this thesis: chapter 3.3.10: Appendix Figure S1), or 
other yet-to-be-identified proteins (see chapter 1.1.4). These components are believed to form 
a large complex that facilitates pinching off of vesicles from large endosomal compartments 
and membrane invaginations (Duncker et al, 2013; Kononenko et al, 2014; Jung et al, 2015a; 
Strenzke et al, 2016; Chakrabarti et al, 2018; Pangrsic & Vogl, 2018). Protein kinases control 
these processes in other cell types (see chapter 1.2) and in the case of otoferlin this thesis shows 
that CaMKIIδ and PKCα possibly regulate both exocytic and endocytic processes near IHC’s 
active zones to ensure fast and continuous SV recycling (Meese et al, 2017; this thesis: chapters 
2 and 3).  

By affecting the folding of the protein, either locally (at the single domain level) or globally 
(leading in some cases to a complete collapse of the structure), OTOF mutations might hinder 
accessibility by kinases that regulate their function, like CaMKII and PKC, and/or by other 
interactors involved in membrane retrieval, SV recycling and SV reformation. This can 
ultimately lead to membrane turnover defects and enlarged SVs as it was observed in Otof 

I515T/I515T and Otof Pga/Pga IHCs (Strenzke et al, 2016; Chakrabarti et al, 2018).  
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Figure 4.1. Position of known OTOF mutations relative to CaMKIIδ phosphorylation sites. 
Most CaMKIIδ phosphorylations sites (in red) are located in C2 domains, in conserved regions among different 
species. A few OTOF mutations (in blue) are located within C2 domains and close to CaMKIIδ's phosphorylation 
hotspots. The Otof C2C/C2C and Otof Pga/Pga mutations (found only in mouse models) are labelled in brown.  Sequence 
alignment was performed in CLUSTAL Omega (1.2.4), EMBL-EBI, using mouse (NP_001093865.1, variant 
1), human (NP_919224.1), rat (NP_001263649.1), chicken (XP_015140684.1) and zebrafish 
(NP_001025283.1) otoferlin sequences. 
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It is actually interesting to note that some OTOF/Otof mutations cluster near CaMKIIδ and 
PKCα phosphorylation sites (Figures Figure 4.1. and Figure 4.2. ). Among others, the OTOF 

I515T/I515T (in the C2C domain) and the Otof Pga/Pga (in the C2F domain) mutations are located 
close to CaMKIIδ phosphorylation hotspots, in regions conserved among species (Figure 4.1.). 
The p.Ile515Thr and Pga mutations affect not only the stability of otoferlin but also, in the 
case of the Pga mutation, its ability to bind Ca2+ (Pangrsic et al, 2010; Strenzke et al, 2016; 
Meese, 2015; Meese et al, 2017), ultimately leading to hearing impairment.  Detailed 
implications of amino acid substitutions in p.Ile515Thr and Pga on protein folding and 
domain accessibility were already vastly discussed in chapter 4.2.2. Ca2+ binding was 
additionally shown to be regulated by phosphorylation (by CaMKIIδ) at least for two of the 
C2 domains, leading to an increased Ca2+ affinity of the C2C domain and decreased Ca2+ affinity 
of the C2F domain upon phosphorylation (Meese et al, 2017). It is then clear that 
phosphorylation is an important regulatory event in the life of otoferlin, mediating Ca2+ 
binding and possibly also subcellular localization. Although Ca2+ binding was presumed to be 
also affected in the Otof C2C/C2C mutant (Michalski et al, 2017), this mouse model was generated 
with the purpose of changing the Ca2+ binding ability of otoferlin by mutating the aspartate 
residues predicted to coordinate Ca2+. Therefore, any implications regarding Ca2+ binding 
changes due to close proximity to a CaMKII phosphorylation hotspot (Figure 4.1.) cannot be 
drawn. 

The two OTOF pathogenic mutations p.Glu766del and p.Arg794His (Varga et al, 2006; Choi 
et al, 2009), located at the B and C helices of otoferlin’s FerA domain, respectively, are located 
near the PKCα phosphorylation site S775 in otoferlin and were the only mutations found near 
PKCα’s phosphorylation sites (Figure 4.2. ). The p.Glu766del mutation was first described as 
prevalent in a Pakistani family, and is characterized by severe-to-profound hearing impairment 
(Choi et al, 2009). The p.Arg794His mutation was found in three individuals in one family 
from Iowa, USA, with all individuals heterozygous for the mutation and suffering from severe-
to-profound hearing impairment (Varga et al, 2006). As already mentioned, the 
phosphorylation at S775 in the FerA domain could possibly facilitate the interaction of FerA 
with membranes in a Ca2+-dependent manner (Harsini et al, 2018), by changing the folding 
and/or lipid-binding properties of the domain through conversion from a four-helix bundle to 
an inverted hydrophobic membrane-associating structure. If we consider the FerA domain to 
be an essential component for the membrane-associating properties of otoferlin, and absolutely 
necessary for its functions in SV recycling in IHCs, it is logic why these two mutations are 
pathogenic. The aforementioned mutations might on one hand change the overall folding and 
impede the access of the kinase or may affect the overall stability of the structure culminating 
in its collapse. The deletion of glutamine in p.Glu766del mutation, a naturally amphipathic 
amino acid with polar and hydrophobic areas, may render the FerA less hydrophobic affecting 
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its interaction with or integration into membranes. For the p.Arg794His mutation, arginine, 
an amphipathic but positively charged amino acid, was replaced by a histidine, a more 
hydrophobic residue either considered uncharged or positively charged. Switching from an 
arginine to a histidine can turn helix C into a more hydrophobic surface that has higher affinity 
to negatively charged membrane surfaces. However, what could be seen as a gain-of-function 
mutation can be detrimental for otoferlin given its role in different processes, as otoferlin most 
probably needs to adopt different conformations and interact or not with membranes at 
different stages of the SV cycle. Conversely, conformational changes induced by 
phosphorylation and dephosphorylation processes are modifications that are more flexible 
when introduced in a protein. 

 

 

Figure 4.2. Position of p.Glu766del and p.Arg794His mutations relative to PKCα phosphorylation site 
in FerA domain of otoferlin. 
A. PKCα phosphorylation site (in red) in FerA domain of otoferlin, in a conserved region among different species 
(S→T variation in zebrafish and chicken). p.Glu766del and p.Arg794His mutations (in blue) are located within 
FerA helices B and C, respectively, and close to PKCα’s phosphorylation site in this domain. Sequence alignment 
was performed in CLUSTAL Omega (1.2.4), EMBL-EBI, using mouse (NP_001093865.1, variant 1), human 
(NP_919224.1), rat (NP_001263649.1), chicken (XP_015140684.1) and zebrafish (NP_001025283.1) 
otoferlin sequences. FerA domain boundaries were determined by aligning otoferlin and dysferlin sequences, as 
done in Harsini et al, 2018.  B. Position of the phosphorylation site in the modelled 3D structure of the FerA 
domain of dysferlin from Harsini et al, 2018. 

 

 

4.5. Outlook 

Sound perception, like the perception of light, demands sensitivity and dynamic range. Sound 
encoding between the sensory IHCs and the SGNs occurs with exceptionally high precision, 
reliability and dynamics over prolonged periods of stimulation. Ribbon synapses are highly 
specialized features that fulfill this task. With their tethering pool of SVs they assure fast 
exocytic rates and sustained replenishment of the pool of fusion-competent vesicles, allowing 
an indefatigable afferent transmission at high rates with sub-millisecond temporal precision 
(Sterling & Matthews, 2005; Griesinger et al, 2005; Khimich et al, 2005). Auditory processing 
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relies on Ca2+-triggered fast synchronous fusion of neurotransmitter-filled SVs with the IHC’s 
active zone plasma membrane. Otoferlin is currently accepted as the main Ca2+ sensor for 
exocytosis, but it is also involved in synaptic vesicle reformation and recycling, endocytosis and 
active zone clearance (see chapter 1.1.4). It is known for some time that at least some modes 
of endocytosis in IHCs are Ca2+-dependent (Beutner et al, 2001). It is also known that 
depending on stimulus intensity, different modes of endocytosis may be induced, and though 
their Ca2+-dependency or Ca2+ sensor have not been confirmed, otoferlin has been proposed to 
fulfill this role at several steps of the SV cycle (Beutner et al, 2001; Neef et al, 2014; Revelo et 
al, 2014; Jung et al, 2015a; Strenzke et al, 2016; Michalski et al, 2017; Kroll et al, 2019). My 
data supports this notion, with otoferlin regulating endocytic processes in collaboration with 
other Ca2+-binding proteins (calbindin, parvalbumin and calretinin) rather than as a standalone 
protein. 

In conventional synapses, protein kinases like CaMKII and PKC have been known to regulate 
exocytosis (by controlling protein interactions within the release apparatus) but also some 
forms of presynaptic plasticity (e.g. by controlling the refiling of the RRP), endocytosis and 
trafficking events (Südhof, 1995; Turner et al, 1999; Haberman et al, 2005; Jong et al, 2016). 
In this thesis I show that otoferlin’s function is regulated by the combined action of CaMKII 
and PKC in an activity-dependent manner. Differential phosphorylation by these kinases 
might explain otoferlin’s involvement in distinct steps of the SV cycle in IHCs. CaMKII 
phosphorylates otoferlin in an activity-dependent manner (i.e. upon strong IHC 
depolarization), thereby regulating Ca2+-binding properties of otoferlin, affecting the affinity 
to Ca2+ of at least some of its C2 domains (see Chapter 2 and Meese et al, 2017). 
Phosphorylation by PKC also occurred in an activity-dependent manner and was characterized 
by short-living accumulations of the kinase and otoferlin in common endocytic structures 
(Revelo et al, 2014; Strenzke et al, 2016). Otoferlin was also found to interact with calbindin-
D28k and myosin VI in an activity-dependent and PKC-dependent manner. My data suggest 
that PKCα, otoferlin, and calbindin-D28k form a Ca2+-dependent complex involved in 
endocytic events. A comprehensive evaluation of capacitance measurements from calbindin 
knock-out IHCs (Pangršič et al, 2015) and actin polymerization studies (Vincent et al, 2015; 
Guillet et al, 2016; Tertrais et al, 2019) points toward a possible involvement of calbindin in 
ultrafast endocytosis in IHCs, but this theory needs further validation. Patch-clamp 
capacitance measurements with CaMKII and PKC activators and inhibitors will be essential 
to pinpoint the step(s) of the SV cycle these two kinases might be influencing: exocytosis, 
endocytosis or both. Immunoprecipitation assays with otoferlin (phosphomimetics, full-
length, deletion constructs, partial fragments, or a combination of all) could prove useful to 
assess the exact binding sites of otoferlin to CaMKII, PKC and calbindin-D28k. Otoferlin 
phosphomimetics of PKCα’s phosphorylation sites could help assessing the implications of 
these phosphorylations on otoferlin’s function. For instance, liposome flotation assays with 
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reconstituted wild-type or phosphomimetic otoferlin could help assessing a change in affinity 
towards lipidic membranes. 

As it stands, these two studies are of crucial importance and constitute the first-time evidence 
for regulation of IHC’s synaptic activity by protein kinases. The phosphorylation of otoferlin 
by CaMKII and PKC possibly establish a molecular switch triggering exocytic and/or endocytic 
events in IHCs. The requirement of a Ca2+ sensor for endocytosis can be then overcome by the 
combined action of several molecular players, as I propose here. 
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Appendix 

Publication: Meese et al (2017) 

The results presented in chapters 2.3.1 and 2.3.2 were published in Frontiers in Synaptic 

Neuroscience © as Meese et al, 2017: 

Meese S, Cepeda AP, Gahlen F, Adams CM, Ficner R, Ricci AJ, Heller S, Reisinger E & Herget 

M (2017) Activity-Dependent Phosphorylation by CaMKIIδ Alters the Ca2+ Affinity of the Multi-

C2-Domain Protein Otoferlin. Front Synaptic Neurosci 9: 13. 

See attached publication in the following pages. 
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Statistical analysis 

Appendix Supplementary Table 1. Mean averages, sample size and statistical analysis. 
Data information: s.e.m., standard error of the mean; N, number of animals; n, number of cells. 

Figure 3.9 

Genotype/Condition Mean ± s.e.m. n N 
Parvalbumin Otoferlin 

WT 100 ± 1 % 100 ± 1 % 197 8 
Otof I515T/I515T 79 ± 2 % 48 ± 3 % 61 2 
Otof +/– 68 ± 2 % 53 ± 1 % 127 3 
Otof –/– 54 ± 4 % 8 ± 1 % 74 4 

Compared group Statistical 
significance 

P-value Statistical test 

Parvalbumin levels: 
WT vs. Otof I515T/I515T *** < 0.0001 Kruskal-Wallis test followed by 

Dunn’s multiple comparison test WT vs. Otof +/– *** < 0.0001 
WT vs. Otof –/– *** < 0.0001 

Otof I515T/I515T vs. Otof +/– ns 0.3296 
Otof I515T/I515T vs. Otof –/– ** 0.0015 

Otof +/– vs. Otof –/– ns 0.3481 
Otoferlin levels: 

WT vs. Otof I515T/I515T *** < 0.0001 Kruskal-Wallis test followed by 
Dunn’s multiple comparison test WT vs. Otof +/– *** < 0.0001 

WT vs. Otof –/– *** < 0.0001 
Otof I515T/I515T vs. Otof –/– ns > 0.9999
Otof I515T/I515T vs. Otof –/– *** 0.0001 

Otof +/– vs. Otof –/– *** < 0.0001 

Figure 3.10 

Genotype/Condition Mean ± s.e.m. n N 
Calretinin Otoferlin 

WT 100 ± 1 % 100 ± 1 % 98 4 
Otof I515T/I515T 97 ± 4 % 48 ± 1 % 74 2 
Otof –/– 77 ± 1 % 13 ± 1 % 74 3 

Compared group Statistical 
significance 

P-value Statistical test 

Calretinin levels: 
WT vs. Otof I515T/I515T ns > 0.9999 Kruskal-Wallis test followed by 

Dunn’s multiple comparison test WT vs. Otof –/– *** < 0.0001 
Otof I515T/I515T vs. Otof –/– *** < 0.0001 

Otoferlin levels: 
WT vs. Otof I515T/I515T *** < 0.0001 Kruskal-Wallis test followed by 

Dunn’s multiple comparison test WT vs. Otof –/– *** < 0.0001 
Otof I515T/I515T vs. Otof –/– ** 0.0030 
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