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"All models are wrong, but some are useful."
George Edward Pelham Box
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Summary

The aim of this thesis is the development of methods and software to enhance the
statistical analysis in large scale problems in breeding and quantitative genetics. In
Chapter 1 a brief introduction to the subject of big data is given and the topics
relevant for the following chapters are presented.

In Chapter 2 a new method (HaploBlocker) for the identi�cation of haplotype
blocks and libraries is presented that is also implemented in the associated R-package
HaploBlocker. In contrast to commonly applied methods for the identifying hap-
lotype blocks, HaploBlocker not only utilizes population-wide measures of linkage
disequilibrium (LD), such as the correlation between genetic markers, but also an-
alyzes groups of haplotypes for segments with the same genetic origin (identity-by-
descent, IBD). Haplotype blocks are de�ned as a sequence of genetic markers that
has a prede�ned minimum frequency in the population and only haplotypes with a
similar sequence of markers are considered to carry that block. Since the identi�ed
blocks are subpopulation speci�c, much longer haplotype blocks than in conventional
methods can be identi�ed. This in turn leads not only to a substantial reduction
in the number of variables for later analysis, but also to potentially more informa-
tive variables than single nucleotide polymorphisms (SNP). By using HaploBlocker
a dataset of 501 doubled haploid lines in a European maize landrace genotyped at
501'124 SNPs was reduced to 2'991 haplotype blocks with an average length of 2'685
SNPs. Despite the lower number of variables, 94% of the genetic diversity of the
original dataset can be explained by the block dataset.

Steps of quality control must be performed before genetic data can be analyzed in
methods such as HaploBlocker. A central part of any quality control protocol is
imputation, which is discussed in Chapter 3. The phasing accuracy is of central
importance for HaploBlocker and is therefore a special focus in the analysis. In
addition, the applicability of commonly applied imputation software for livestock
and crop datasets is evaluated, as commonly used tools were originally developed
for the use in human genetics. In particular, the software BEAGLE is examined
here, as it enables the user to adapt the algorithm to the genetic structure of the
dataset by tuning parameter settings. The error rates of imputation were reduced by
up to 98.5% by parameter tuning such as the e�ective population size. In addition,
further in�uencing factors for imputation such as the construction of a suitable
reference dataset and the choice and validation of the used reference genome were
considered.

In Chapter 4 the software MoBPS (Modular Breeding Program Simulator) that
was developed within the scope of this thesis, is presented. MoBPS is an R-package
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that can assist scientists and breeders to simulate both breeding programs and his-
torical populations. Among others, resulting breeding programs can be compared
in terms of their economic impact, resulting genetic gain and inbreeding. MoBPS
uses a modular and �exible design that allows for the simulation of di�erent breeding
programs, but is still very e�cient in terms of computing time and memory usage.

In the �rst part of the discussion (Chapter 5) the in�uence of imputation on the
structure of di�erent haplotyping methods is discussed and subsequently the use of
HaploBlocker for genomic prediction is analyzed. In the second part of the discus-
sion, di�erent breeding programs that can be simulated via MoBPS are showcased
and potential analyses that can be performed based on these simulations are brie�y
discussed. Particular attention will be paid to the use of genome editing to accel-
erate the genetic progress for quantitative traits. In the third and last section of
this chapter, an outlook on possible further application areas for HaploBlocker and
MoBPS is given.

In the supplementary of this thesis, the user manuals for the two R-packages devel-
oped in this work are given (Supplementary A and B).



Zusammenfassung

Das Thema dieser Arbeit ist die Entwicklung von Methoden und Software für die
Zucht und die quantitative Genetik um statistische Probleme zu bewältigen, die im
Zusammenhang mit immer gröÿer werden Datensätzen und komplexerer Fragestel-
lungen auftreten. In Kapitel 1 wird eine kurze Einführung in das Thema Big Data
gegeben und die für die folgenden Kapitel relevanten Themen werden vorgestellt.

InKapitel 2 wird eine neue Methode (HaploBlocker) zur Identi�zierung von Haplo-
typenblöcken und -bibliotheken aufzeigt, die im zugehörigen R-Paket HaploBlocker
implementiert ist. Im Gegensatz zu gängigen Methoden zur Identi�zierung von
Haplotypenblöcken nutzt HaploBlocker nicht nur populationsweite Maÿe des Kop-
plungsungleichgewichts (linkage disequilibrium, LD), wie die Korrelation zwischen
Markern, sondern analysiert zudem Gruppen von Haplotypen auf Segmente mit
gleichem genetischen Ursprung (identity-by-descent, IBD). Ein Haplotypenblock ist
de�niert als eine Sequenz von genetischen Markern, die mit einer vorde�nierten
Mindestfrequenz in der Population auftritt und nur Haplotypen mit ähnlicher Se-
quenz von Markern tragen entsprechenden Block. Da die identi�zierten Blöcke in
HaploBlocker subpopulationsspezi�sch sind, können wesentlich längere Haplotypen-
blöcke als in herkömmlichen Methoden identi�ziert werden. Dies wiederum führt
nicht nur zu einer deutlichen Reduzierung der Anzahl der Variablen für die nachfol-
gende Analysen, sondern auch zu potenziell aussagekräftigeren Variablen als einzelne
Marker (single nucleotide polymorphism, SNP). Der Nutzen von HaploBlocker wird
durch die Anwendung auf einen Datensatz von 501 doppelhaploider Linien einer Eu-
ropäischen Maislandrasse mit 501'124 SNPs verdeutlicht. Der entsprechende Daten-
satz konnte durch Nutzung von HaploBlocker auf 2'991 Haplotypenblöcke mit einer
durchschnittlichen Länge von 2'685 SNPs reduziert werden. Trotz der geringeren
Variablenzahl können durch den Blockdatensatz noch 94% der genetischen Diver-
sität des Ursprungsdatensatzes erklärt werden.

Bevor genetische Daten mit Methoden wie HaploBlocker analysiert werden können,
ist die Durchführung der Qualitätskontrolle erforderlich. In Kapitel 3 wird mit der
Imputation ein zentraler Bestandteil der Qualitätskontrolle genauer beleuchtet. Die
Phasinggenauigkeit ist für HaploBlocker von zentraler Bedeutung und ist somit ein
besonderer Schwerpunkt in der Analyse. Darüber hinaus wurde zunächst grund-
sätzlich die Anwendbarkeit von Imputationstechniken für Datensätze aus der Tier-
und P�anzenzucht überprüft, da gängige Methoden für den Einsatz in der Human-
genetik entwickelt wurden. Insbesondere die Software BEAGLE wird hier näher
betrachtet, da sie es dem Benutzer ermöglicht durch das Anpassen von Inputpa-
rametern den Algorithmus auf die genetische Struktur des Datensatzes anzupassen.
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Die Fehlerraten der Imputation können durch Parameteranpassungen, wie der e�ek-
tiven Populationsgroÿe, um bis zu 98.5% reduziert werden. Darüber hinaus werden
weitere Ein�ussfaktoren für die Imputation, wie die Auswahl eines geeigneten Ref-
erenzdatensatzes und Referenzgenoms, betrachtet.

In Kapitel 4 wird die im Rahmen dieser Arbeit entwickelte Software MoBPS
(Modular Breeding Program Simulator) vorgestellt. MoBPS ist ein R-Paket, dass
es Wissenschaftlern und Züchtern ermöglicht sowohl Zuchtprogramme als auch his-
torische Populationen zu simulieren. Daraus resultierende Zuchtprogramme kön-
nen anhand ihrer ökonomischen Auswirkungen, aber auch basierend auf ihrem re-
sultierenden Zuchtfortschritt und dem Inzuchtsniveau verglichen werden. MoBPS
nutzt ein modulares und �exibles Design, das die Simulation verschiedenster Zucht-
programme ermöglicht, aber dennoch sehr e�zient in Bezug auf Rechenzeit und
Speicherauslastung ist.

Im ersten Teil der Diskussion (Kapitel 5) wird der Ein�uss der Imputation auf die
Struktur verschiedener Haplotypisierungsmethoden diskutiert und anschlieÿend der
Einsatz von HaploBlocker für die Zuchtwertschätzung analysiert. In zweiten Teil der
Diskussion werden verschiedene Zuchtprogramme, die durch MoBPS simuliert wer-
den können, vorgestellt und potentielle nachfolgende Analysen werden kurz disku-
tiert. Besonderer Augenmerk wird hier auf die Nutzung von Methoden der Genom-
Editierung zur Erhöhung des Zuchtfortschritt für quantitative Merkmale gelegt. Im
dritten und letzten Abschnitt dieses Kapitels wird ein Ausblick auf mögliche An-
wendungsgebiete und Erweiterungen für HaploBlocker und MoBPS gegeben.

Im Anhang dieser Arbeit werden die User-Manuals für die beiden in dieser Arbeit
entwickelten R-Pakete gegeben (Anhang A und B).



1 Introduction

"The goal is to turn data into information, and information into
insight."

Carly Fiorina

In recent years, data collection has become cheaper and easier than ever before. In
addition, the available computing resources have increased massively and through
this big data analysis has become a �eld of great importance for modern society. Big
data provide opportunities to detect patters that could previously not be identi�ed
and thereby could potentially improve the understanding of the underlying truth.
However, this also comes with new challenges for scientist to develop methods that
are able to cope with the computational and statistical challenges of working with
large datasets.

The impact of this rise of big data for genetics are enormous. Scientists today can
work with thousands or even millions of genetic markers instead of microsatellites
and pedigrees. Rather than focusing on some highly heritable performance traits,
a wide range of traits must be taken into account today, with additional challenges
caused by correlations between traits, low heritabilities and complex underlying
e�ect structures. In addition, the number of individuals to consider is heavily in-
creasing with national evaluations in cattle using millions of animals. New data
types and larger datasets are leading to a paradigm change in the way quantitative
genetics is carried out and new tools to perform statistical analysis of these large
scale problems are need.

In the following, a general introduction in the structure of genomic datasets will be
provided. In addition to that, existing methods in the �elds of haplotype blocks, im-
putation, genomic prediction and the design of breeding programs will be presented
and an outlook on the methods and tools developed in this thesis is given.

1.1 Rise of dimensionality in genomic data

In recent years, methods for the generation of data have become more sophisticated
and cheaper and by that the size of datasets used in breeding and quantitative genet-
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ics has been rapidly increasing. High-throughput phenotyping techniques (Solberg
et al., 2006; Cabrera-Bosquet et al., 2012) not only make it possible to phenotype
more individuals, but also to consider new traits (Egger-Danner et al., 2015). With
regard to the generation of genomic data, the marker density of genotyping arrays
has been increasing from low-density (~10K markers, (Boichard et al., 2012)) to
medium-density (~50k markers (Matukumalli et al., 2009; Groenen et al., 2009)) to
high-density chips (~600k markers, (Matukumalli et al., 2009; Kranis et al., 2013)).
Whereas the costs to generate a full genome sequence until 2007 have been more
than 10 million US dollars, prices today have dropped to a thousand US dollars
(Check Hayden, 2014; Wetterstrand, 2019). Among others, metagenomics (Sleator
et al., 2008), epigenomics (Ji et al., 2015), metabolomics (Spratlin et al., 2009) and
transcriptomics (Kremling et al., 2018; Herrera-Marcos et al., 2017) are �elds of ris-
ing popularity with a variety of new data types (omics, (Horgan and Kenny, 2011))
which o�er an even wider set of potential variables for analysis.

On the one hand, this growing amount of data sources has the potential to improve
prediction and functional understanding of the genome. On the other hand, there are
both computational and analytical challenges to overcome (Fan et al., 2014). From
a computational point of view, scaling in terms of computational costs and memory
requirements needs to be controlled when applying existing and/or developing new
methods. Analytical methods need to be robust to handle potential heterogeneity
(e.g. joint analysis of multiple subpopulations) that can cause algorithmic instabili-
ties. The interested reader is referred to Fan et al. (2014) for a broader overview of
the challenges of big data analysis.

1.2 Patterns in genetic data: haplotype blocks

Patterns in a SNP-dataset can arise from the joint inheritance of physically close
segments but can also be caused by functional interactions between genes. The
identi�cation and analysis of these patterns is useful for a variety of applications,
including the mapping of positive selection (Sabeti et al., 2007; Schrider et al., 2016),
the estimation of recombination rates (Nielsen, 2000), and the improvement of the
understanding of the underlying genetics of complex traits (Churchill et al., 2004).

A �rst and intuitive way to detect non-random associations is the use of population-
wide measures of linkage disequilibrium (LD). The most commonly used LD mea-
surement r2 is the analysis of pairwise correlations between markers (VanLiere and
Rosenberg, 2008):

r2(pa, pb, pab) =
(pab − papb)2

pa (1− pa) pb (1− pb)
,

where pa and pb are allele frequencies of alleles a and b at their respective locus and
pab is the frequency of both alleles occurring jointly. However, reducing something as
complex as the identi�cation of patterns to a simple correlation can lead to a severe
loss of information and thus leads to a multitude of problems (Slatkin, 2008).
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As an alternative to identifying patterns at the population level, it is a common prac-
tice to screen pairs of haplotypes for sequences of SNPs that are identity-by-descent
(IBD, (Donnelly, 1983)). The identi�cation of IBD can be used for imputation
(Browning and Browning, 2011; Sargolzaei et al., 2014) and help to assess rates of
inbreeding (runs-of-homozygosity, (McQuillan et al., 2008)).

A haplotype block is commonly de�ned as a set of physically adjacent markers that is
used as a joint variable in further analysis (Daly et al., 2001; Sabeti et al., 2002). The
boundaries of the haplotype blocks can be set by using of a �xed number of markers
per block or a �xed number of di�erent sequences of alleles per block (Meuwissen
et al., 2014). Alternatively, LD measures can assist in the identi�cation process of
the block boundaries (Gabriel et al., 2002; Taliun et al., 2014; Kim et al., 2017).

The use of haplotype blocks can improve further analysis, as the high volatility and
noisiness of pairwise LD (r2) is heavily reduced (Wall and Pritchard, 2003). This is
particularly relevant for applications that make use of dimension reduction (Pattaro
et al., 2008) and thereby tackle the p� n problem (Fan et al., 2014). Applications
can be found in a variety of �elds including �ne-mapping in association studies
(Druet and Georges, 2010; Islam et al., 2016), genomic prediction (Meuwissen et al.,
2014; Jiang et al., 2018) and mapping of positive selection in speci�c regions of the
genome (Sabeti et al., 2002, 2007).

In this thesis, the concept of IBD is extended to derive deterministic and subgroup
speci�c haplotype blocks for large scale datasets (Chapter 2), as IBD-based blocks
are usually only represented in a probabilistic way (Browning and Browning, 2007) or
methods can only be applied to a limited number of individuals due to computational
constrains (Moltke et al., 2011). In addition to the method itself, the associated R-
package HaploBlocker (R Core Team, 2017; Pook and Schlather, 2019) was developed
within the scope of this thesis.

1.3 Imputation

When generating data, it is a common problem that some of the needed information
is missing. Imputation is the �eld in mathematical statistics that is concerned with
replacing missing data points with reasonable values.

When generating genetic data there are several factors that can lead to missing
data. Since the generation of full genome sequence data is extremely costly, it is
common practice to use a genotyping array or low-coverage sequencing instead and
then use imputation techniques to �ll in missing entries in the dataset by utilizing
genomic information of related individuals. Since it is not relevant for later parts of
this thesis, details on the molecular processes (LaFramboise, 2009), read alignment
(Burrows and Wheeler, 1994; Langmead et al., 2009), SNP-calling (Rabbee and
Speed, 2005) and other steps of quality control (Teo, 2008) are neglected here. After
these steps, a pair of alleles is called for most markers and imputation is required
to �ll in the remaining gaps. This is made even more di�cult by potential false
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calls (Unterseer et al., 2014) and the fact that assessing the gamete from which a
base-pair stems from is not easily possible (phasing). All tools discussed in this
thesis were developed for diploid genomes. The interested reader is referred to Su
et al. (2008) for an imputation algorithm for other ploidy levels.

The imputation of genotype data was �rst introduced by Li and Stephens (2003).
The basic idea of the algorithm is the �tting of a Hidden Markov Model (HMM,(Baum
and Petrie, 1966; Rabiner, 1989)) to the sequence of alleles of a haplotype. Over the
years, a variety of di�erent tools with a similar basic framework, but improvements
to the computational e�ciency for larger datasets (Howie et al., 2009), reference
panels (Browning et al., 2018) or modi�cations for improved modeling have been
developed. Among others, improvements to the modeling include the use of coales-
cent trees (Marchini et al., 2007), haplotype clusters (Scheet and Stephens, 2006)
and pre-phasing steps (Howie et al., 2012; Scott et al., 2007; Loh et al., 2016). The
interested reader is referred to Das et al. (2018); Marchini and Howie (2010) for an
detailed review and comparison between commonly used imputation software.

Even though some of the tools mentioned so far account for parent-o�spring rela-
tionships, the pedigree only has a subordinate role in these algorithms, as the tools
were all developed for the use in human genetics, where pedigrees often are limited
in size and completeness. Since pedigrees in animal and plant breeding can be much
denser (both w.r.t. depth and family sizes), tools to capitalize on this like AlphaIm-
pute (Hickey et al., 2011), AlphaPeel (Whalen et al., 2018) and FImpute (Sargolzaei
et al., 2014) have been developed.

Especially in the �eld of genome-wide association studies (Klein et al., 2005; Yan
et al., 2017), but also in the prediction of heritability (Wainschtein et al., 2019)
the use of a higher marker density to improve results has shown to be successful.
Overall, the analysis of a subset of preselected markers can lead to an ascertainment
bias (Albrechtsen et al., 2010; Geibel et al., 2018). Nevertheless, the higher number
of markers has to be weighted against a potentially higher share of errors in the
data panel and usefulness of imputation needs to be evaluated for the application
at hand.

Imputation and especially phasing accuracy are of high importance for the derivation
of haplotype blocks in the method developed in this thesis (HaploBlocker, Chapter
2) and therefore is extensively checked in Chapter 3. Among others, the tuning of
parameter settings in the software BEAGLE (Browning et al., 2018) to adapt the
algorithm to the speci�c genetic structure of the respective dataset will be discussed.
This is of particular interest since the application of HaploBlocker is mainly intended
for the use in livestock and crop datasets with lower genetic diversity than human
datasets.
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1.4 Genomic prediction

One of the most common applications of SNP-datasets is the use for genomic pre-
diction. The genomic value of an individual is estimated based on its genomic and
phenotypic data. Since the number of markers is usually high, �tting a traditional
ordinary least square model can lead to potential problems in terms of over�tting.
Instead, the base model commonly used in genetics is a so-called linear mixed model
(Henderson, 1975) that contains an additional random e�ect u (Fisher, 1918):

y = Xβ + Zu+ ε,

where X and Z both are matrices containing a set of regressor variables for pre-
diction. The e�ects β are assumed to be �xed. In the context of a SNP-dataset
all entries are all 0, 1, 2. It is common practice to model genomic data as random
e�ects and assume everything else to be �xed. Furthermore, the random e�ect can
be rewritten as the genomic e�ect g := Zu (Habier et al., 2007). After normal-
ization, the variance of g is given according to the genomic relationship matrix G
(VanRaden, 2008). This genomic best linear unbiased predicton (GBLUP) approach
was �rst proposed by Meuwissen et al. (2001).

Today, variations of the model have been successfully implemented in both animal
(Hayes et al., 2009; Hayes and Goddard, 2010; Gianola and Rosa, 2015) and plant
breeding (Jannink et al., 2010; Albrecht et al., 2011; Nakaya and Isobe, 2012; Heslot
et al., 2015). Variations of the model include adaptations to control for inbreeding
(Nielsen et al., 2011), accounting for non-additive e�ects (Da et al., 2014; Jiang and
Reif, 2015; Martini et al., 2017), other omics (Li et al., 2019) and haplotype blocks
(Meuwissen et al., 2014; Jiang et al., 2018).

Depending on the application, the aim of genomic prediction can be the prediction of
phenotypes instead of genetic breeding values. In contrast to prediction of breeding
values, which are additive by de�nition, the accuracy of phenotype prediction can
be increased by the inclusion of non-additive e�ects (Tyler et al., 2016; Forsberg
et al., 2017).

In this thesis, the use of haplotype blocks derived in HaploBlocker (Chapter 2) for
genomic prediction will be discussed in Chapter 5.2. Furthermore, the use of genomic
prediction is of fundamental importance for the design and simulation of breeding
programs (Chapter 4).

1.5 Design of breeding programs

Breeding programs are needed to improve the genetic ability of animals and plants
w.r.t. productivity, �tness and adaptation. Progress towards the target is limited
by the available resources, but also negative e�ects, such as inbreeding depression or
health issues, have to be avoided or at least controlled. Among others, the following
components need to be considered (Henryon et al., 2014):
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1. Breeding objective

2. Infrastructure

3. Genotyping

4. Phenotyping

5. Prediction

6. Selection

7. Mating

8. Interacting components

The interested reader is referred to Henryon et al. (2014) for details on the individual
components and how the use of genomic data can improve them.

In the simplest case, using truncation selection based on phenotypes and a random
mating design, the response to selection R per generation can be expressed via the
breeders equation (Falconer and Mackay, 1996):

R = i · h · σa.

Here i is de�ned as the selection intensity that is applied, h is the square root of the
narrow sense heritability and σa is the additive genetic standard deviation. Depend-
ing on the application, a variety of extensions to this formula are possible. The use
of a breeding value estimation (Chapter 1.4) can lead to a higher precision in the
selection of individuals. Depending on the mating scheme a shorter generation inter-
val might be obtainable, leading to a higher gain in the same time frame (Schae�er,
2006). With rising model complexity, parameters can potentially interact. Most
prominently, an increasing selection intensity i will reduce the additive genetic stan-
dard deviation σa in the following generation (Bulmer-e�ect, (Falconer and Mackay,
1996)).

Depending on the species, di�erent mating schemes can be applied to achieve the
respective breeding objectives. In the simplest case, one can distinguish between
purebred and crossbred breeding schemes to account for additive and non-additive
genetic e�ects. For further details the interested reader is referred to Falconer and
Mackay (1996); Henryon et al. (2014); Willam and Simianer (2017).

Under several simpli�cations one can derive closed-form expressions for expected
inbreeding levels and genetic progress per cohort of individuals. An example for
a software to perform these calculations is ZPLAN+ (Täubert et al., 2010). With
rising model complexity and �exible design choices, the derivation of a close-form
solution for an optimal allocation of resources becomes virtually impossible. An al-
ternative to this deterministic approach and costly real-world experiments is the use
of stochastic simulation. Breeding programs can be simulated in tools like QMSim
(Sargolzaei and Schenkel, 2009) and AlphaSim (Faux et al., 2016), followed up by
numerical optimization comparison of di�erent breeding schemes for the respective
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breeding objective. The use of simulation enables a relatively simple comparison of
breeding programs with low costs and potential uncertainty. Nevertheless, a simu-
lation study should always be taken with caution since its is limited to the assumed
model, which is usually a simpli�cation of the reality ("All models are wrong, but
some are useful", George Edward Pelham Box). Before drawing conclusion from a
simulation study it is important to check whether the model assumptions may lead
to a bias towards a particular method.

In this thesis, the R-package MoBPS (Modular Breeding Program Simulator, (R
Core Team, 2017; Pook et al., 2018)) has been developed (Chapter 4). MoBPS uses
a modular and �exible design that allows for the simulation of di�erent breeding
programs, but is still very e�cient in terms of computation time and memory usage.
In Chapter 5 a variety of di�erent breeding programs that can be simulated in
MoBPS are showcased and potential applications of these simulations are brie�y
discussed.
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2 HaploBlocker: Creation of subgroup

speci�c haplotype blocks and

libraries

"A point of view can be a dangerous luxury when substituted for
insight and understanding."

Marshall McLuhan

This chapter contains the manuscript "HaploBlocker: Creation of subgroup speci�c
haplotype blocks and libraries" that has been published in the journal Genetics
(Pook et al., 2019). For reasons of uniformity in this thesis, the journal style is not
used in this chapter.

The manuscript focuses on the methodology of HaploBlocker that is implemented
in the associated R-package (R Core Team, 2017; Pook and Schlather, 2019). For
a more detailed discussion on potential applications like the detection of selection
signatures and genomic prediction we refer to Chapter 5.3.5 and 5.2. For a discussion
on potential problems of the algorithm caused by imputation errors it is refer to
Chapter 5.1. For the current version of the R-package and an in-depth user manual
the interested reader is referred to https://github.com/tpook92/HaploBlocker

and Supplementary A.

This manuscript is a joined work of Torsten Pook1,2, Martin Schlather2,3, Gustavo
de los Campos4, Manfred Mayer5, Chris-Carolin Schön5 and Henner Simianer1,2.
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sity of Goettingen, 37075 Goettingen, Germany
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tingen, Germany
3: Stochastics and Its Applications Group, University of Mannheim, 68159 Mannheim,
Germany
4: Departments of Epidemiology & Biostatistics and Statistics & Probability, In-
stitute for Quantitative Health Science and Engineering, Michigan State University,
MI 48824, USA

https://github.com/tpook92/HaploBlocker
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sity of Munich, 85354 Freising, Germany

Author contributions by TP

TP lead the development of the methodology, performed most of the analysis, wrote
the associated R-package (C parts written by MS), wrote the initial manuscript and
led the revision of the manuscript.

2.1 Abstract

The concept of haplotype blocks has been shown to be useful in genetics. Fields of
application range from the detection of regions under positive selection to statisti-
cal methods that make use of dimension reduction. We propose a novel approach
(�HaploBlocker�) for de�ning and inferring haplotype blocks that focuses on linkage
instead of the commonly used population-wide measures of linkage disequilibrium.
We de�ne a haplotype block as a sequence of genetic markers that has a prede�ned
minimum frequency in the population and only haplotypes with a similar sequence
of markers are considered to carry that block, e�ectively screening a dataset for
group-wise identity-by-descent. From these haplotype blocks we construct a haplo-
type library that represents a large proportion of genetic variability with a limited
number of blocks. Our method is implemented in the associated R-package Hap-
loBlocker and provides �exibility to not only optimize the structure of the obtained
haplotype library for subsequent analyses, but is also able to handle datasets of
di�erent marker density and genetic diversity. By using haplotype blocks instead of
single nucleotide polymorphisms (SNP), local epistatic interactions can be naturally
modelled and the reduced number of parameters enables a wide variety of new meth-
ods for further genomic analyses such as genomic prediction and the detection of
selection signatures. We illustrate our methodology with a dataset comprising 501
doubled haploid lines in a European maize landrace genotyped at 501'124 SNPs.
With the suggested approach, we identi�ed 2'991 haplotype blocks with an average
length of 2'685 SNPs that together represent 94% of the dataset.

2.2 Introduction

Over the years, the concept of haplotype blocks has been shown to be highly useful
in the analysis of genomes. Applications can be found in a variety of �elds including
�ne-mapping in association studies (Druet and Georges, 2010; Islam et al., 2016),
genomic prediction (Meuwissen et al., 2014; Jiang et al., 2018) and mapping of posi-
tive selection in speci�c regions of the genome (Sabeti et al., 2002, 2007). Haplotype
blocks can also be used as a dimension reduction technique (Pattaro et al., 2008;
Fan et al., 2014) that produces features which are potentiality more informative



2.2 Introduction 17

than individual single nucleotide polymorphisms (SNP) (Zhang et al., 2002; Wall
and Pritchard, 2003).

Existing methods commonly de�ne a haplotype block as a set of adjacent loci, us-
ing either a �xed number of markers or a �xed number of di�erent sequences of
alleles per block (Meuwissen et al., 2014). Alternatively, population-wide linkage
disequilibrium (LD) measures (Gabriel et al., 2002; Daly et al., 2001; Taliun et al.,
2014; Kim et al., 2017) can be used in the identi�cation process to provide more �ex-
ibility of the block size based on local genetic diversity. The methods and software
(e.g., HaploView, (Barrett et al., 2005)) available for inferring haplotype blocks have
become increasingly sophisticated and e�cient. Although those approaches to infer
haplotype blocks have been proven to be useful, existing methods share some key
limitations (Slatkin, 2008). In particular, the use of population-wide measures of LD
limits the ability of existing methods to capture cases of high linkage characterized
by the presence of long shared segments caused by absence of crossing over (typi-
cally within families or close ancestry). To illustrate this, consider the following toy
example of four di�erent haplotypes: 11111111, 10101010, 01010101, and 00000000.
If all four haplotypes have the same frequency in the population, pairwise LD (r2)
of adjacent SNPs is zero and LD-based algorithms would not retrieve any structure.
However, in this example, knowledge of the �rst two alleles fully determines the
sequence in the segment.

In this work, we use the term �allele� for a genetic variant. This can be a SNP or
other variable sites like short indels. We use the term �haplotype� for the sequence
of alleles of a gamete. This always refers to the full gamete and explicitly not a local
and short sequence of alleles. Lastly, a combination of multiple adjacent alleles is
here referred to as an "allelic sequence".

As the starting point of our approach (�HaploBlocker�), we assume a set of known
haplotypes which can be either statistically determined as accurately phased geno-
types, or observed via single gamete genotyping from fully inbred lines or doubled
haploids. When the interest is in inferring the longest possible shared segment be-
tween haplotypes, a common approach is to identify segments of identity-by-descent
(IBD). A tool for the identi�cation of IBD segments is BEAGLE (Browning and
Browning, 2013), among others. Since IBD is typically calculated between pairs
of individuals, a screening step is used to identify haplotypes that are shared by
multiple individuals, e.g. by the tool IBD-Groupon (He, 2013). A method to detect
IBD segments directly for groups of individuals has been proposed by Moltke et al.
(2011), but is not applicable to datasets with hundreds of haplotypes due to limi-
tations of computing times. A further di�culty is that common methods are not
robust against minor variation, leading to actual IBD segments being broken up by
calling errors (0.2% with the later used A�ymetrix Axiom Maize Genotyping Array
(Unterseer et al., 2014)) and other sources of defects.

The imputation algorithm of BEAGLE uses a haplotype library given by a haplotype
cluster (Browning and Browning, 2007). The haplotype library in BEAGLE, which
is used to initialize a Hidden Markov Model for the imputing step, is only given
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in a probabilistic way. This means that there are no directly underlying haplotype
blocks that could be used for later statistical application.

Our goal is to provide a conceptualization of haplotype blocks that can capture both
population-wide LD and subgroup-speci�c linkage, and does not su�er from some
of the limitations of IBD-based methods. Unlike common de�nitions that consider
haplotype blocks as sets of adjacent markers, we de�ne a haplotype block as an
allelic sequence of arbitrary length.

Haplotypes with a similar sequence are locally assigned to the same block. Haplo-
type blocks are subgroup speci�c, so that a recombination hot spot appearing in a
subgroup of haplotypes does not a�ect the boundaries of other blocks. This leads
to very long blocks, which can cover the same region of the genome, but may vary
in the allelic sequence they represent. Even an overlap between the allelic sequences
represented by di�erent haplotype blocks is possible.

Subsequently, we start with a large set of identi�ed haplotype blocks and reduce this
set to the most relevant blocks and thus generate a condensed representation of the
dataset at hand. We de�ne this representation as a haplotype library and, depending
on the topic of interest, selection criteria for the relevance of each block can be
varied appropriately to identify predominantly longer blocks or focus on segments
shared between di�erent subpopulations. The standard input of HaploBlocker is
a phased SNP-dataset. In the associated R-package HaploBlocker (R Core Team,
2017; Pook and Schlather, 2019) this input can be provided via the variant call
format (VCF, (Danecek et al., 2011)), PLINK Flat �les (PED/MAP, (Purcell et al.,
2007)) or in a plain matrix object with each column containing a haplotype. For
graphical reasons, haplotypes in all examples and �gures in the manuscript are
displayed in a row. The output of HaploBlocker is a haplotype library that in
turn can be used to generate a block dataset. A block dataset contains dummy
variables representing the presence/absence of a given block (0 or 1) or, in case of
heterozygotes, a quanti�cation of the number of times (0, 1 or 2) a block is present
in an individual. The usage of haplotype blocks instead of SNPs allows the use of a
variety of new methods for further genomic analyses since the number of parameters
is usually massively reduced and haplotype blocks provide a natural model for local
epistatic interactions.

2.3 Materials and Methods

The aim of HaploBlocker is to represent genetic variation in a set of haplotypes with
a limited number of haplotype blocks as comprehensively as possible. The main idea
of our method is to �rst consider short windows of a given length and increase the
length of the analyzed segments in an iterative procedure involving the following
steps:

� Cluster-building
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� Cluster-merging

� Block-identi�cation

� Block-�ltering

� Block-extension

� Target-coverage (optional)

� Extended-block-identi�cation (optional)

Before we elaborate on each step in the following subsections, we give an outline of
the three major steps. For a schematic overview of HaploBlocker, we refer to Fig-
ure 2.1. In the �rst step, we derive a graphical representation of the dataset ("window
cluster") in which a node represents an allelic sequence and an edge indicates which
and how many haplotypes transition from node to node (cluster-building). As lo-
cally similar allelic sequences are grouped together, this step also handles robustness
against minor deviations (e.g. calling errors). In the second major step, we identify
candidates for the haplotype library based on the window cluster. We call this step
block-identi�cation and use it to generate a large set of haplotype blocks. In the
third and last major step (block-�ltering), the set of candidates is reduced to the
most relevant haplotype blocks and thereby the haplotype library is generated. In
addition to specifying the physical position of each block, we have to derive which
haplotypes are included. The fact that blocks are subgroup speci�c makes the iden-
ti�cation of the most relevant blocks complicated so that we split this task into two
separate, but closely connected steps (block-identi�cation and block-�ltering).

Minor steps in our procedure are cluster-merging and block-extension. The former
reduces the computing time in the subsequent steps, whereas the latter increases the
precision of the result. However, neither step has a major impact on the resulting
haplotype library. Since various parameters are involved in the procedure, their
value might be chosen by means of an optimization approach and/or a dataset can
be processed with multiple parametrizations in the cluster-building, cluster-merging
and block-identi�cation-step. For more details, we refer to the subsections on target-
coverage (Supplementary Material File S1) and extended-block-identi�cation.

The next subsections deal with the graphical depiction of the haplotype library
and the information loss incurring through the suggested condensation of genomic
data. Subsequently, we discuss possible applications, namely the ability of our
method to recover founder haplotypes of a population and a block-based version
of extended haplotype homozygosity (EHH, (Sabeti et al., 2002)) & integrated ex-
tended haplotype homozygosity (IHH, (Voight et al., 2006)). In the last subsection,
we introduce the datasets used in this study. Our method, as well as all discussed ap-
plications, are available for users by the correspondent R-package HaploBlocker (R
Core Team, 2017; Pook and Schlather, 2019). The default settings of the arguments
in the R-package correspond to the thread of the following subsections.
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Figure 2.1: Schematic overview of the steps of the HaploBlocker method: (1)
Cluster-building: Classifying local allelic sequences in short windows into
groups. (2) Cluster-merging: Simplifying window cluster by merging and
neglecting nodes. (3) Block-identi�cation: Identifying blocks based on
transition probabilities between nodes. (4) Block-�ltering: Creating a
haplotype library by reducing the set of blocks to the most relevant ones
for the later application. (5) Block-extension: Extending blocks by sin-
gle windows and SNPs. The same allelic sequences in di�erent steps are
coded with the same colors in the graph.
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Cluster-building

In the �rst step of HaploBlocker we devide the genome into non-overlapping small
windows of size 20 markers as a default value. Accordingly, each haplotype is split
into short allelic sequences. To account for minor deviations, we merge groups with
similar allelic sequences as follows. For a �xed window, di�erent allelic sequences
are considered successively based on their frequency, starting with the most common
one. In case a less common allelic sequence di�ers only in a single marker, they are
merged to a group. The allelic sequence of a group ("joint allelic sequence") in each
single marker is the most common allele of all contained haplotypes. Usually this will
be the most frequent allelic sequence but when allowing for more than one deviation
per window this is not necessarily the case anymore. As a toy example, consider a
group containing 4x 11111, 3x 10110, 2x 00111 with a resulting joint allelic sequence
of 10111. This robustness against errors may lead to actually di�erent haplotypes
to be grouped together. In later steps, we will introduce methods to split these
haplotypes into di�erent blocks if necessary. The choice of 20 markers as the window
size and a deviation of at most one marker as a default is not crucial and should
not have a major e�ect as long as the window size is much smaller than the later
identi�ed haplotype blocks. We will present ways to use �exible window sizes in the
extended-block-identi�cation-step.

As an example consider a SNP-dataset with 200 haplotypes and 5 markers, given in
Table 2.1. The two most common sequences form separate groups (00011 & 11111).
For graphical reasons in later steps, we assign 11111 to group 3 even though it is the
second group created. The next allelic sequence (11110) is assigned to the group of
11111, as it is only di�erent in a single allele and the joint allelic sequence remains
11111. In case an allelic sequence could join di�erent groups, it is added to the
group containing more haplotypes. Based on the groupings we are able to create a
graph, called window cluster (Figure 2.2, top graph). Here, each node represents a
group (and thus a joint allelic sequence) and the edges indicate how many of the
haplotypes of each node transition into which adjacent node.

Table 2.1: Exemplary dataset of allelic sequences and their assignment according to
the cluster-building-step.

Frequency Allelic sequence Group
101 00011 1
54 11111 3
40 11110 3
3 10011 1
2 01001 2
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Figure 2.2: The four parts of the cluster-merging-step. Haplotype frequencies in the
window A are according to the toy example given in Table 2.1.
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Cluster-merging

A window cluster can be simpli�ed without losing any relevant information for later
steps of the algorithm. We apply three di�erent techniques:

� simple-merge (SM): Combine two nodes if all haplotypes of the �rst node
transition into the same adjacent node and no other haplotypes are in the
destination node.

� split-groups (SG): Split a node into two if haplotypes from di�erent nodes
transition into the same node and split into the same groups afterwards.

� neglect-nodes (NN): Remove a node from the cluster if it contains a very small
number of haplotypes, 5 say. These removed haplotypes are still considered
when calculating transition probabilities between nodes in later steps.

Since the only loss of information in this step stems from neglecting nodes, we �rst
alternately apply SM and SG until no further changes occur. Next, we apply the
sequence of NN, SM, SG, SM until �xation of the window cluster. We neglect
rare nodes, since a block with few haplotypes (in the most extreme case a block
with one haplotype over the whole genome) does not re�ect much of the population
structure and would have little relevance for further genomic analyses. It should be
noted that the minimum number of haplotypes per node in NN does not depend on
the number of haplotypes in the sample. This is mainly done to ensure a similar
structure of the later obtained haplotype library when adding haplotypes from a
di�erent subpopulation. Nevertheless the option to modify this parameter is given,
in case one is mostly interested in more common or even rarer allelic sequences.

As an example for the cluster-merging-step consider a dataset with four windows
and �ve di�erent sequences of groups (104x 1111, 54x 3212, 39x 3223, 2x 2111, 1x
3233, Figure 2.2). Haplotypes in the �rst window are chosen according to Table 2.1.
In the �rst step nodes A3 and B2 are merged by SM. Next, node C1 is split into two
nodes via SG. This triggers additional SMs (B1-C1a-D1 and C1b-D2). Afterwards,
no SM or SG are possible anymore and NN is performed removing A2 and C3. No
further SM or SG are possible after this. Consider that even though D3 is the only
node following C2 no SM is possible because removed haplotypes are still considered
in later transition probabilities and therefore D3 contains one more haplotype than
C2.

Block-identi�cation

In the third step of HaploBlocker we identify the haplotype blocks themselves. As
a haplotype block in HaploBlocker is de�ned as a common allelic sequence in an
arbitrarily large window, we use common sequences of nodes in the previously ob-
tained window cluster as a �rst set of haplotype blocks. The identi�cation process
itself is performed by using each node as a starting block. The boundaries of each
starting block are given by the boundaries of the node and the allelic sequence is
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derived by its joint allelic sequence. A block is iteratively extended if at least 97.5%
of the haplotypes in a block transition into the same node; deviating haplotypes
are removed. Haplotypes �ltered out in this step can rejoin the block if their allelic
sequence matches that of the joint allelic sequence of the �nal haplotype block in
at least 99% of the markers. The joint allelic sequence is derived by computing
the most common allele in each marker for the contained haplotypes. The choices
of 97.5% and 99% worked well in our tests, but any value close but not equal to
100% should work here. This again allows the user some �exibility in how long (in
terms of physical length) the haplotype blocks should be and how di�erent jointly
considered haplotypes are allowed to be. In a similar way, each edge of the window
cluster is used as a starting block. Here, boundaries are given by the boundaries of
the two connected nodes. The haplotype blocks identi�ed here will not all be part
of the �nal haplotype library but instead are just a set of candidates from which the
most relevant ones will be selected in the block-�ltering-step. Note that the share
of allowed deviations in this step (1%) is lower than in the cluster-building (1 of 20
markers - 5%), since the size of the identi�ed segment is longer than a single window
and the total number of deviations should get closer to the expectation (Unterseer
et al., 2014).

To illustrate the method, consider an excerpt of a window cluster given in Figure 2.3.
Nodes 2, 3, 4 represent the sequence of groups 3223 of Figure 2.2. When considering
the second node as a starting block, we cannot extend the block because there are
multiple possible nodes for the contained haplotypes (beforehand: nodes with 88
(93.6%) and 6 (6.4%); afterwards: 54 (57.4%), 1 (1.1%), 39 (41.5%)). When using
the fourth node of the excerpt, the block can be extended till the second and �fth
node of the cluster since 39 of the 40 haplotypes transition (97.5%) into the same
adjacent node. One ends up with the same block when using the third node or the
edges including 39, 39 and 40 haplotypes. In case all included haplotypes transition
into the same node in the �rst window, the block could be extended even further.
Note that in this step di�erent allelic sequences of the same node (cf. cluster-
building-step) can be in di�erent haplotype blocks if they transition into di�erent
nodes in later steps (e.g 11111 (54) and 11110 (39+1) in the �rst window (Table 2.3
& Figure 2.2). For an extension to further increase the size of the set of haplotype
blocks, we refer to the extended-block-identi�cation-step.

Block-�ltering

After the derivation of a set of candidates in the block-identi�cation, we reduce the
set of all haplotype blocks to a haplotype library of the most relevant blocks to
represent a high proportion of the dataset with a small number of blocks. First, we
compute a rating rb for each block b that depends on its length (lb) and the number
of haplotypes (nb) in it:

rb = lb
wl · nbwn .
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Figure 2.3: Excerpt of a window cluster. This included all edges (transitions) from
the nodes of one of the common paths in the example dataset.

Here wl and wn represent weighting factors with default values wl = 1 and wn = 1.
Note that only the ratio between both parameters matters.

Based on these ratings we determine which haplotype block is the most relevant
in each single cell/entry of the SNP-dataset matrix. Iteratively, the blocks with
the lowest number of cells as the most relevant block are removed from the set of
candidates, until all remaining blocks are the most relevant block in a given number
of cells. For this, we will later use the abbreviation MCMB (minimum number of
cells as the most relevant block). For our datasets, 5'000 was a suitable value for
MCMB but without prior information, we recommend to set a target on what share
of the SNP-dataset is represented by at least one block (�coverage�). For details
on the �tting procedure we refer to the Supplementary Material (File S1). In case
of our example given in Figure 2.3 we end up with block b1 (green in Figure 2.4)
including 94 haplotypes ranging from window 2 to 3 (node 2) with a rating rb1 = 940
and block b2 (red in Figure 2.4) ranging from window 2 to 6 (nodes 2,3,4,5) with
a rating rb2 = 975. To simplify the example, we assume that no other blocks have
been identi�ed. b2 has a higher rating, therefore cells containing both blocks are
counted as cells with b2 as the most relevant block. This leads to b1 having 550 cells
of the SNP-dataset as the most relevant block and b2 having 975.

It has to be noted here that the blocks in the �nal haplotype library can overlap. In
case the MCMB is 550 or smaller, overlap occurs in our example and typically can
be observed when a short segment is shared in the majority of the population and
a smaller subgroup shares a longer segment which includes the short segment. This
will lead to dependencies in the presence/absence of blocks that can be addressed
in a similar way as linkage disequilibrium between markers.

Even if wl or wn is set to zero, there is still an implicit weighting on both the length
and the number of haplotypes since each haplotype block has to cover a certain
number of cells of the SNP-dataset (MCMB). The overall e�ect of wl and wn is
higher when more candidates were created in the block-identi�cation-step.
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Figure 2.4: Toy example for the calculation in the block-�ltering-step with wl =
wn = 1.

Block-extension

The haplotype blocks that have been identi�ed in the previous step are limited to
the boundaries of the nodes of the window cluster. Haplotypes in the blocks will
transition into di�erent adjacent nodes since the block was previously not extended
(cf. block-identi�cation). Nevertheless, di�erent nodes can still have the same allelic
sequence in some adjacent windows.

First, haplotype blocks are extended by full windows if all haplotypes are in the
same group (cf. cluster-building) in the adjacent window. If the haplotypes of a
speci�c block transition into di�erent groups in the adjacent window, the block is
still extended if there is no variation in the following 20 windows. By doing this,
we account for possible errors that could have been caused by translocations or
phasing issues, for instance. The choice of 20 windows is again rather arbitrary and
should be chosen according to the minimum length of the blocks one is interested
in. The chosen default results in a relatively large chunk of at least 400 SNPs (20
windows x 20 markers) with all haplotypes of the block required to be classi�ed in the
same group for these windows (cf. cluster-building). These conservative settings are
chosen because the adjacent segment can also be detected as a separate haplotype
block. In any case, all SNPs with variation in a block are identi�ed and reported in
the outcome as a possible important information for later analyses.

Secondly, blocks are extended by single adjacent SNPs following similar rules as
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the window extension. As a default, we do not allow for any di�erences here since
haplotypes in the block must have some di�erence in the adjacent window. In case
of working with a large number of haplotypes and aiming at identifying the exact
end of a block, one might consider allowing for minor di�erences.

Extended-block-identi�cation (optional)

When extending a haplotype block in the block-identi�cation-step, haplotypes tran-
sitioning into a di�erent node are removed. Instead, one could consider both the
short segment with all haplotypes and the long segment with fewer haplotypes. As
the number of candidates is massively increased, it is recommended to consider the
long segment only when at least a share t of haplotypes transition into that node.
In our tests t = 0.95 was a suitable value for this. Overall, this procedure will lead
to the identi�cation of even longer haplotype blocks as candidates for the haplotype
library.

To obtain even more candidates in the block-identi�cation-step, one might compute
multiple window clusters under di�erent parameter settings (especially concerning
window sizes). This provides additional robustness of the method. Especially in
case �nally obtained haplotype blocks are short, the relevant haplotype blocks can
only be identi�ed with a low window size in the cluster-building-step.

Both extensions require substantially more computing time and thus are not included
in the default settings of the associated R-package HaploBlocker (R Core Team, 2017;
Pook and Schlather, 2019). The R-package contains an adaptive mode using window
sizes of 5,10,20,50 markers and a target coverage of 90%.

Graphical representation of haplotype blocks

We suggest a graphical representation of a haplotype library to display transition
rates between blocks in analogy to bifurcation plots (Sabeti et al., 2002; Gautier and
Vitalis, 2012). This requires ordering of the haplotypes according to their similarity
in and around a given marker. For technical details on the sorting procedure we
refer to the Supplementary Material (File S2).

Assessment of information content of haplotype blocks

HaploBlocker provides a condensed representation of the genomic data. We next
discuss how to quantify the amount of information lost in the process of condensing
a SNP-dataset to a block dataset. At a recent conference, de los Campos (2017)
proposed three methods for estimating the proportion of variance of an omics set
(e.g. high-dimensional gene expression data, methylation or markers) that can be
explained by regression on another type of omics data. We used a modi�ed version
of the second method proposed by de los Campos (2017) to estimate the proportion



28 2 HaploBlocker

of variance of the full SNP-set genotypes that can be explained by a regression on
the blocks of a haplotype library. For the computations in this work the R-packages
sommer (R Core Team, 2017; Covarrubias-Pazaran, 2016) and minqa (Powell, 2009)
were used with overall very similar results. The methodology can be brie�y described
as follows:

In traditional SNP-based genomic models (Meuwissen et al., 2001), a phenotype (y)
is regressed on a SNP-dataset (X) using a linear model. Entries in X are usually
0,1,2 with dimensionality being the number of individuals (n) times the number of
markers (p).

y = Xb+ ε,

assuming that the markers only have additive e�ects b. Hence, the vector of genomic
values g = Xb is a linear combination of the SNP genotypes. In order to estimate
the proportion of g explained by the haplotype library, we regress the genomic values
g onto the block dataset represented by a n x q matrix Z, say, of entries 0,1,2. Here
q is the number of blocks, with q usually being much smaller than p:

g = Za+ δ.

From this perspective, genomic prediction based on haplotype blocks searches for a
vector Za that is optimal in some sense. For instance, in ridge regression, such a
vector is obtained by minimizing a penalized residual sum of squares. It has to be
noted that ε is an error term that includes non-genetic e�ects whereas δ is an error
term resulting from genetic e�ects that cannot be explained by additive e�ects (a) of
single blocks. In random e�ect models the proportion of the variance of g explained
by linear regression on the haplotype library can be estimated using either Bayesian
or likelihood methods like REML (Patterson and Thompson, 1971). This proportion
of variance explained will vary from trait to trait. We estimate the distribution of
the proportion of variance of �genomic vectors� (i.e., linear combinations of SNP
genotypes) using a Monte Carlo method. The method proceeds as follows:

1. Sample a vector of weights (bs) completely at random (e.g. from a standard
Gaussian distribution)

2. Compute the underlying genomic value by forming the linear combination:
gs = Xbs

3. Estimate the proportion of variance of gs that can be explained by regression
on haplotype blocks

4. Repeat 1.- 3. for a large number of random vectors bs

In contrast to commonly used methods like canonical correlation (Witten et al.,
2009), this method is asymmetric in that it leads to di�erent results by switching
the roles of X and Z. The underlying genomic value is then generated based on the
block dataset (gs = Zbs) and regressed on the SNP-dataset X. Since we compute
the share of the variance of one dataset explained by the other dataset, the share
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of variation that is not explained can be interpreted as previously underused infor-
mation. An example for underused information are local epistatic interactions that
can be modeled via a block but are usually not fully captured by linear regression
on single markers.

Recent work has suggested that the direct estimation of the heritability using REML
variance components is biased (Schreck and Schlather, 2018), so we use their pro-
posed estimator. For the traditional estimates using REML estimates as proposed in
the conference talk by de los Campos (2017) we refer to the Supplemental Material
(Table S1). Overall, results were similar.

Recovering founder haplotypes

HaploBlocker does not require or make use of pedigree or founder haplotypes,
but rather provides a method to recover haplotypes from the founders (or a ge-
netic bottleneck) just based on a genetic dataset of the current generation. To
evaluate the ability to recover founder haplotypes, we simulated the generation
of a multiparent advanced generation intercross population (MAGIC) based on
the breeding scheme given in Zheng et al. (2015). Simulations were performed
with the R-package MoBPS (R Core Team, 2017; Pook et al., 2018) (available at
https://github.com/tpook92/MoBPS) with 19 founding haplotypes, intercrossing
with a diallel design, four generations of random mating and ten generations of self-
fertilization (Zheng et al., 2015). Each generation contains 19·18

2 = 171 o�spring.
Genotypes of founders were assumed to be fully homozygous with uniformly dis-
tributed minor allele frequencies and under the assumption of equidistant markers
(50k markers, 1 chromosome with a length of 3 Morgan, mutation rate of 10−4 in
each marker). The haplotype phase of the �nal generation of o�spring was assumed
to be known.

Block-based EHH & IHH

Depending on the application, the resulting block dataset can not directly be used,
instead slight modi�cations of the original methodology are needed to adapt com-
putational techniques to the structure of the dataset. An example for this is the
extended haplotype homozygosity statistic (EHH, (Sabeti et al., 2002, 2007)). EHH
based on SNPs is de�ned as the probability of a segment between two markers to
be in IBD and can be estimated as:

EHH =

∑
i (

ni
2 )(

N
2

) .

Here N is the total number of haplotypes and ni is the number of occurrences of
a given allelic sequence between the markers. In a second step, IHH (Voight et al.,
2006) for a single marker is de�ned as the integral when calculating EHH of that
marker to adjacent markers (until EHH reaches 0.05).

https://github.com/tpook92/MoBPS
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This concept can be extended to an EHH that is based on haplotype blocks (bEHH).
Instead of calculating EHH for each marker, segments between the block boundaries
(a1, a2, a3, ...) of haplotype blocks are considered jointly. Here ai is a physical po-
sitions (e.g. in base pairs) in the genome. The set of block boundaries contains all
start points of blocks, as well as, all markers directly after a block (and not the end
point itself). bEHH between segments [ai, ai+1 − 1] and [aj , aj+1 − 1] is then de-
�ned as the probability of two randomly sampled haplotypes to belong to the same
haplotype block, or at least a block with the same allelic sequence in the window
[ai, aj+1−1] (with i ≤ j). bEHH between two markers is set equal to bEHH between
the two respective segments. IHH and derived test statistics like XP-EHH or iHs
(Sabeti et al., 2007) can then be de�ned along the same lines as with single marker
EHH. For a toy example on the computations necessary to compute EHH and bEHH
we refer to the Supplementary Material (File S3 & Figure S1).

Overall, bEHH can be seen as an approximation of EHH. Computing times are
massively reduced since bEHH scores only need to be computed between pairs of
segments instead of SNPs, overall leading to p·(p+1)

2 necessary computations, with
p being the number of segments and SNPs, respectively. Secondly, only allelic se-
quences of di�erent haplotype blocks, instead of individual haplotypes between the
two segments need to be compared for each calculation of bEHH.

As minor deviations from the joint allelic sequence of a haplotype block are possi-
ble, the usage of bEHH also provides robustness against calling errors and minor
deviations.

Genotype data used

We applied HaploBlocker to multiple datasets from di�erent crop, livestock and hu-
man populations. In the following, we report results obtained with a dataset of
doubled haploid (DH) lines of two European maize (Zea mays) landraces (n = 501
Kemater Landmais Gelb (KE) & n = 409 Petkuser Ferdinand Rot (PE)) genotyped
with the 600k A�ymetrix® Axiom Maize Genotyping Array (Unterseer et al., 2014)
containing 616'201 markers (609'442 SNPs and 6'759 short indels). Markers were �l-
tered for being assigned to the best quality class (PolyHighResolution, (Pirani et al.,
2013)) and having a callrate of 90% or higher. Since we do not expect heterozygous
genotypes for DH lines, markers showing an excess of heterozygosity might result
from unspeci�c binding at multiple sites of the genome. Thus, markers were also
�ltered for having less than 5% heterozygous calls. This resulted in a dataset of
501'124 usable markers. The remaining heterozygous calls of the dataset were set to
NA and imputed using BEAGLE 4.0 (Browning and Browning, 2016) with modi�ed
imputing parameters (buildwindow=50, nsamples=50, phase-its=15).

Secondly, we used a dataset containing n = 48 S0 plants from KE being generated
from the same seed batch as the DH-lines. Since S0 are heterozygous this corre-
sponds to n = 96 haplotypes. Genotyping and quality control was performed in
the same way as for the DH-lines, without heterozygosity �lters. After imputation,
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an additional phasing step for the S0 using BEAGLE 4.1 (niterations=15) was per-
formed. In both steps the DH-lines were used as a reference panel. Only markers
overlapping with the DH dataset were included. This resulted in a second dataset
containing n = 96 S0 and n = 501 DH haplotypes of KE and 487'462 markers.

Additionally, we used datasets from the 1000 Genomes Project phase 3 reference
panel (1000 Genomes Project Consortium, 2015) containing 5'008 haplotypes with
a total of 88.3 million markers.

Data Availability

The genetic data for maize, the associated R-package, the source code and a de-
tailed documentation of the package is available at https://github.com/tpook92/
HaploBlocker. Genetic data from the 1000 Genomes Project (1000 Genomes Project
Consortium, 2015) is available at ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/
release/20130502/.

Supplemental �les are available at FigShare. File S1 provides an additional method
section on the �tting procedure to obtain a certain target-coverage. File S2 contains
an additional method section on how to sort haplotypes for the graphical represen-
tation of haplotype blocks. File S3 provides an additional method section in which
a toy example for the calculation of bEHH is discussed. File S4 includes the R-code
used to generate an exemplary MAGIC population for the section on recovering
founder haplotypes. Table S1 contains the proportion of variance explained between
the full SNP-dataset, a SNP-subset and the block dataset using traditional heritabil-
ity estimation as in de los Campos (2017). Table S2,S3,S4 contain results obtained
in Table 2.3,2.4,2.5 when additionally using a target coverage of 95%. Figure S1
contains the dataset used in File S3. Figure S2 gives a comparison of the block
structure in HaploBlocker and a bifurcation plot (Sabeti et al., 2002; Gautier and
Vitalis, 2012). Finally, Figure S3 provides a comparison of the block structure for
di�erent parameter settings of MCMB.

2.4 Results and Discussion

Here, we will focus on the results obtained for chromosome 1 (80'200 SNPs) of the
landrace KE. All evaluations were also performed for all other chromosomes and the
second landrace (PE) with similar results.

Using the previously described default settings of HaploBlocker, we identi�ed 477
blocks which represent a coverage of 94.4% of the dataset and have an average
length of 2'575 SNPs (median: 1'632 SNPs). For the whole genome, we identi�ed
2'991 blocks representing 94.1% of the dataset with an average/median length of
2'685/1'301 SNPs. A graphical representation of the block structure for the �rst
20'000 markers of the set is given in Figure 2.5. Haplotypes were sorted according
to their similarity at SNP 10'000. Since there is only limited linkage between markers

https://github.com/tpook92/HaploBlocker
https://github.com/tpook92/HaploBlocker
ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/
ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/
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Figure 2.5: Graphical representation of the block structure for the �rst 20'000 SNPs
of chromosome 1 in the KE DH-lines. Haplotypes are sorted for similarity
in SNP 10'000. In that region block structures are most visible and
transitions between blocks can be tracked easily. Further away from the
centre the representation gets fuzzy.

further apart, the graphical representation gets increasingly fuzzy with increasing
distance from the target SNP. For a comparison to a bifurcation plot (Sabeti et al.,
2002; Gautier and Vitalis, 2012) of that marker, we refer to the Supplementary
Material (Figure S2).

When further investigating cells of the SNP-dataset that are not covered by any of
the haplotype blocks, one can typically observe that in the associated segments the
allelic sequence of the haplotype is a combination of multiple identi�ed haplotype
blocks, and by this indicating a recent recombination. Start and end points of
blocks can be seen as candidates for positions of ancient (or at least non-recent)
recombination, especially when multiple blocks start and end in the same region
(e.g between markers 8'572 and 8'601 in Figure 2.5).

In the following, we will show and discuss the in�uence of certain parameter settings
on the resulting haplotype library. Results will be evaluated according to the number
of blocks, their length and the coverage of the haplotype library. Note that even
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though di�erences seem quite substantial, most haplotype libraries actually contain
the same core set of haplotype blocks, which are the most relevant under basically
any parameter setting. Parameter settings mostly in�uence which of the less relevant
blocks are included. By this one can explicitly include a higher share of longer blocks,
obtain a certain coverage or similar. For most routine applications, the use of the
default settings with a target coverage should be su�cient.

E�ect of change in the MCMB

The MCMB a�ects both the number of blocks and the coverage of the dataset (Ta-
ble 2.2). Higher MCMB leads to a stronger �ltering of the haplotype blocks and thus
to a haplotype library with lower coverage and decreased number of larger blocks.
Overall, MCMB is the most important parameter to balance between conservation
of information (coverage) and dimension reduction (number of blocks). It should be
noted that the ideal parametrization of MCMB highly depends on data structure
(e.g. marker density). Instead of using a set value for MCMB we recommend to �t
the parameter automatically by setting a target coverage. For a graphical compar-
ison of the structure of haplotype libraries with MCMB equal to 1'000, 5'000 and
20'000 we refer to the Supplementary Material (Figure S3).

Table 2.2: In�uence of MCMB on the haplotype library for chromosome 1 in the KE
DH-lines.

MCMB Number of
Blocks

Average block
length (# of
SNPs)

Haplotypes
per Block

Coverage

1 1'720 1'117 159.9 97.2%
1'000 878 1'892 132.1 96.5%
2'500 621 2'345 120.3 95.6%
5'000 477 2'575 114.9 94.4%
10'000 362 3'022 103.9 92.7%
20'000 274 3'339 99.2 90.1%
50'000 150 3'894 98.5 81.2%

Controlling length and number of haplotypes per block

The window size chosen in the cluster-building-step has a noteworthy in�uence on
the window cluster. By using a smaller window size in the cluster-building-step,
the resulting groups are bigger, leading to more and shorter (in terms of physical
length) haplotype blocks in the block-identi�cation-step (Table 2.3). As haplotype
blocks are much larger than the window size in this case, the e�ects on the resulting
haplotype library are only minor.
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Table 2.3: In�uence of the window size on the haplotype library for chromosome 1
in the KE DH-lines.

Window size Number of
Blocks

Average block
length (# of
SNPs)

Haplotypes
per Block

Coverage

5 488 2'489 121.8 93.5%
10 482 2'544 113.7 93.6%
20 477 2'575 114.9 94.4%
50 474 2'615 101.4 95.0%

In the block-�ltering-step the weighting between segment length (wl) and number of
haplotypes (wn) in each block in�uences the structure of the later obtained haplotype
library (Table 2.4). As one would expect, a higher weighting for the length of a
block leads to longer blocks that include fewer haplotypes. The e�ect of a lower
relative weighting for the number of haplotypes in each block was found to have
only a minor e�ect in our maize data. A possible reason for this is that even when
using wl = wn the longest blocks previously identi�ed were already selected in the
haplotype library.

Table 2.4: In�uence of the weighting of block length (wl) and number of haplotypes
(wn) on the haplotype library for chromosome 1 in the KE DH-lines.

wl wn Number of
Blocks

Average
block
length (#
of SNPs)

Haplotypes
per Block

Coverage

1 0 470 2'902 89.3 94.4%
1 0.2 464 2'900 94.1 94.4%
1 0.5 463 2'900 98.4 94.4%
1 1 477 2'575 114.9 94.4%
0.5 1 532 2'218 139.0 94.6%
0.2 1 803 1'518 189.5 95.5%
0 1 1313 934 208.2 96.1%

When using the extended-block-identi�cation method the average length of �nally
obtained haplotype blocks is massively increased in the obtained haplotype library
(Table 2.5). Additionally, overlap between blocks is increased. Using this proce-
dure will lead to the identi�cation of the longest possible IBD segments, making it
especially useful for applications like bEHH & IHH.

Evaluations in this subsection were also performed when using a target coverage of
95%. For results on this we refer to the Supplemental Material (Table S2,S3,S4).
Overall, results are similar.
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Table 2.5: In�uence of using the extended-block-identi�cation on the haplotype
library in dependency of the parameter t of the extended-block-
identi�cation-step for chromosome 1 in the KE DH-lines.

t Number of
Blocks

Average block
length (# of
SNPs)

Haplotypes
per Block

Coverage

1 477 2'575 114.9 94.4%
0.95 603 5'659 89.8 94.6%
0.9 788 9'371 70.2 95.2%
0.8 916 11'716 60.9 95.5%
0.6 970 12'430 58.5 95.7%

Haplotypes out of the sample

To assess how well HaploBlocker identi�es haplotype block structures that also per-
tain to haplotype structures of other datasets, we split the maize data into a training
and testing set and compared the share of both datasets represented by a haplotype
library based on the training set alone. In all cases the coverage in the test set
was below that of the training set, but with higher numbers of haplotypes in the
training set the di�erences gets smaller. In case of 400 haplotypes in the training
set and 101 haplotypes in the test set, the di�erence in coverage is as low as 2.7%
(Figure 2.6) indicating that haplotype libraries derived in a su�ciently large dataset
can be extended to individuals outside of the sample if they have similar genetic
origin. Similar results were obtained when setting a target coverage (90%) for the
test set.

Figure 2.6: Proportion of the dataset represented by the haplotype library (cover-
age) of the training and test set in regard to size of the training set for
chromosome 1 in the KE DH-lines.
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Information content

We investigated the information content between SNP- and block-dataset accord-
ing to the method described above (de los Campos, 2017), where bs was sampled
from a standard Gaussian distribution. A REML approach was used for �tting the
model. We found that, on average, 96.0% of the variance of the SNP-dataset can
be explained by the default haplotype library (Table 2.6). As one would expect, the
share of variance explained is increasing when increasing the number of blocks in
the haplotype library. On the other hand, the share of the variance of the haplotype
library that can be explained by the SNP-dataset is 95.2%. Even though the number
of parameters in the block dataset (Z) is much smaller than in the full SNP set (X),
the share of the variance explained by the respective other dataset is similar.

Table 2.6: Proportion of variance explained between the full SNP-dataset (X), a
SNP-subset (Xs) and the block dataset (Z). For comparability the num-
ber of parameters in Xs and Z were chosen equally.

Number of
Blocks/SNPs

X ∼ Z Z ∼ X X ∼ Xs

1'720 99.6% 97.8% 99.2%
878 98.6% 96.9% 98.0%
621 97.5% 95.8% 96.8%
477 96.2% 95.3% 95.4%
362 94.8% 94.5% 93.5%
274 92.8% 93.8% 91.0%
150 86.7% 92.0% 82.7%

When using a subset of markers (Xs) with the same number of SNPs as haplotype
blocks in the haplotype library, the share of variation explained is slightly lower
(95.1%) than for the block dataset. In contrary to the haplotype library, the variation
of the SNP-subset is basically fully explained by the full SNP-dataset (≥ 99.99%).
This should not be surprising since Xs is a genuine subset of X. Even though a
similar share in variation of the SNP-dataset is preserved, the block dataset should
be preferred as it is able to incorporate e�ects that are not explained by linear e�ects
of single markers.

With the following toy example, we illustrate what kind of e�ects can be grasped by a
block dataset compared to a model that is only assigning e�ects to single markers, as
is done in GBLUP (Meuwissen et al., 2001) using the traditional genomic relationship
matrix (VanRaden, 2008). Consider a dataset (Table 2.7) with three markers, �ve
haplotypes and a genomic value of 1 for the allelic sequence 111. When assuming no
environmental e�ects, phenotypes equal to genomic values and �tting an ordinary
least squares model (OLS) on single markers, the resulting model estimates e�ects
of 0.75, 0.5, and 0.5 for the three respective alleles with an intercept of -1. Overall,
single marker e�ects can approximate but not fully explain an underlying epistatic
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genomic value (Table 2.7), whereas a block dataset allows for a natural model of
e�ects caused by local interactions.

Table 2.7: Estimated genomic values using an OLS model assuming additive e�ects
of single markers.

Allelic sequence Genomic value Estimated genomic value
111 1 0.75
100 0 -0.25
011 0 0
110 0 0.25
101 0 0.25

Overlapping segments in multiple landraces

When using HaploBlocker on the joint dataset of both landraces (KE & PE), the
resulting haplotype library contains essentially the same haplotype blocks that were
identi�ed in the haplotype libraries derived for the two landraces individually. The
reason for this is that segments shared between landraces are often short, leading
to a small rating rb and thus removal in the block-�ltering-step. To speci�cally
identify those sequences that are present in both landraces, we added the constraint
that each block had to be present in at least �ve haplotypes of both landraces. This
results in the identi�cation of 1'655 blocks which are present in both landraces.
Those blocks are much shorter (avg. length: 207 SNPs) and represent only 62.7% of
the genetic diversity of the dataset. This is not too surprising since the haplotypes
of a single landrace are expected to be much more similar than haplotypes from
di�erent landraces. Explicitly, this is not an indicator for 62.7% of the chromosome
of both landraces to be the same. Shared haplotype blocks can be found across
the whole chromosome but only some haplotypes of the landraces have those shared
segments.

Comparison with the results of HaploView

Overall, the structure of the haplotype blocks generated with our approach is vastly
di�erent from blocks obtained with LD-based approaches such as HaploView (Bar-
rett et al., 2005). When applying HaploView on default settings (Gabriel et al., 2002)
to chromosome 1 of the maize data, 2'666 blocks are identi�ed (average length: 27.8
SNPs, median: 20 SNPs) and 4'865 SNPs (6.1%) are not contained in any block. If
one would use a similar coding to the blocks obtained in HaploBlocker and use a
separate variable for each allelic sequence in a block, one would have to account for
12'550 di�erent allelic sequences (excluding singletons). For the whole genome this
would result in 16'904 blocks with 79'718 allelic sequences. When using a dataset
with both landraces (or in general more diversity), LD-based blocks get even smaller
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(for chromosome 1: 4'367 blocks, 24'511 di�erent allelic sequences, average length:
17.3 SNPs, median: 9 SNPs, 4'718 SNPs in no block). In comparison, the haplotype
library identi�ed in HaploBlocker with multiple landraces is, with minor exceptions,
a combination of the two single landrace haplotype libraries (1'112 blocks, average
length: 2'294 SNPs, median: 1'402 SNPs, coverage: 94.4%). Overall, the potential
to detect long range associations between markers and to reduce the number of pa-
rameters in the dataset is much higher when using haplotype blocks generated by
HaploBlocker.

Di�erences between the two methods become even more drastic when applying
HaploView to the human datasets generated in the 1000 Genomes Project Phase
3 (1000 Genomes Project Consortium, 2015). For chromosome 22 there were 49'504
blocks with an average length of 199 SNPs (median: 81 SNPs) that cover 92.9% of
the dataset in HaploBlocker. In contrast, there were only 12'304 blocks (excluding
singletons) identi�ed in HaploView (average length: 8.1 SNPs, median: 4 SNPs) but
only 99'130 of the 424'147 markers were assigned to a block (23.4%). In total, there
were still 544'038 di�erent allelic sequences in the identi�ed blocks in HaploView.
We noted that all alternative variants were coded as the same allele, as HaploView
is only able to handle two alleles per marker, while HaploBlocker is able to handle
up to 255 di�erent alleles per marker. When allowing for more than two alleles
per marker in HaploBlocker we obtain 49'500 blocks with an average length of 200
SNPs (median: 81 SNPs) that cover 93.0% of the dataset. It should be noted that
HaploView was developed with di�erent objectives in mind (Barrett et al., 2005).

In�uence of marker density

A common feature of conventional approaches to identify haplotype blocks is that
with increasing marker density the physical size of blocks is strongly decreasing
(Sun et al., 2004; Kim and Yoo, 2016). To assess this, we executed HaploBlocker
on datasets with di�erent marker densities by only including every second/�fth/ten-
th/fortieth marker of the maize dataset in the model. Since the physical size of a
window with a �xed number of markers is vastly di�erent, we compared the structure
of the obtained haplotype library using the adaptive mode in HaploBlocker (multi-
ple window clusters with window sizes 5,10,20,50 and adaptive MCMB to obtain a
target coverage of 95%) instead of default settings. As there are far fewer markers
with possible variation, fewer blocks are needed to obtain the same coverage in the
low-density datasets (Table 2.8). Since windows in the cluster-building-step span
over a longer part of the genome, the considered groups contain fewer haplotypes
leading to less frequent nodes in the window cluster. Since the haplotypes in a node
are on average more related to each other, the identi�ed blocks tend to be longer
and include fewer haplotypes.

In a second step, we manually adapted the window size (50/25/10/5/5) and the
MCMB (5000/2500/1000/500/125) according to the marker density of the dataset.
When manually adapting the parameters, the number of blocks in the haplotype
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Table 2.8: Structure of the haplotype library under di�erent marker densities us-
ing the adaptive mode in HaploBlocker with target coverage of 95% for
chromosome 1 in the KE DH-lines.

Density Number of
Blocks

Average block
length (# of
SNPs on full
array)

Haplotypes
per Block

Used MCMB

Every SNP 534 2'317 116.4 2'813
Every second
SNP

523 2'281 112.7 1'563

Every �fth
SNP

450 2'557 96.9 945

Every tenth
SNP

401 2'811 90.6 758

Every fortieth
SNP

319 3'637 79.9 294

library is largely independent of the marker density (Table 2.9). The length of
the blocks is decreasing, whereas the number of haplotypes per block is increasing
with decreasing marker density. A possible reason for this is that haplotypes in
the same node of the window cluster are less similar in the region than when using
bigger window sizes. This will lead to shorter haplotype blocks which are carried
by more but less related haplotypes. In case of the dataset in which we used every
fortieth marker, we additionally considered a value of 250 for the MCMB since the
resulting coverage was a lot higher, indicating that less overall variation is present
in the dataset. This also results in fewer overall blocks needed to obtain similar
coverage.

Haplotype libraries for all considered marker densities were similar, indicating that
for our landrace population a much lower marker density would have been su�cient
to derive haplotype blocks via HaploBlocker. In case the physical size of haplotype
blocks is smaller, a higher marker density is needed.

Recovering founder haplotypes

HaploBlocker was applied to the �nal generation of the dataset simulated in analogy
to the breeding scheme for the MAGIC population given in (Zheng et al., 2015). On
average, we obtained 827 haplotype blocks with a length of 1'420 markers covering
82.8% of the dataset. 96.0% of the allelic sequences of haplotype blocks are at
least 99% the same as an allelic sequence of a founder haplotype of that segment.
Overall 86.6% of all cells in the SNP-dataset of the founders are recovered by the
resulting haplotype library. When using a target coverage of 95%, the share of the
allelic sequences of the blocks that are the same as a founder haplotype are quite
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Table 2.9: Structure of the haplotype library under di�erent marker densities when
adjusting parameters according to data structure for chromosome 1 in the
KE DH-lines.

Density Number of
Blocks

Average block
length (# of
SNPs on full
array)

Haplotypes
per Block

Coverage

Every SNP 474 2'615 101.4 95.0%
Every second
SNP

474 2'720 108.1 95.1%

Every �fth
SNP

481 2'557 115.4 95.1%

Every tenth
SNP

520 2'174 142.7 95.8%

Every fortieth
SNP
(MCMB=125)

522 2'056 172.9 97.9%

Every fortieth
SNP
(MCMB=250)

404 2'287 166.0 96.6%

similar (96.6%) but 93.6% of all cells of the SNP-dataset of the founders can be
recovered. Note that identi�ed haplotype blocks, on default, have a minimum size
of �ve haplotypes, leading to the loss of rarely inherited haplotypes.

It should be noted that our approach is not constructed to detect the exact bound-
aries of IBD segments between founders and single o�spring but instead is detecting
commonly presented allelic sequences. In a population with limited founders (e.g.
caused by a genetic bottleneck), those common allelic sequences most likely stem
from the founders of the population. For a plot comparing the true and estimated
genetic origin of the �nal generation we refer to Figure 2.7. Here, estimation means
that in case a haplotype block completely stems from a single founder that particular
founder is used as the origin. Note that haplotype blocks are much shorter than the
size of segments originating from a particular founder, leading to multiple haplotype
blocks that all correspond to a part of a segment inherited from a particular founder
and therefore same coloring in Figure 2.7. For details on the whole selection proce-
dure we refer to Supplementary File S4. In practice non-overlapping blocks can of
course not be assigned to the same founder. Main bene�t of our method is that in
contrast to commonly used methods only phased genotype data is needed to recover
founder haplotypes. When interest is in the exact boundaries of IBD segments for
single haplotypes and founders (with known pedigree), we recommend the usage of
methods like RABBIT (Zheng et al., 2015).
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Figure 2.7: Estimated and true founders for �ve representative haplotypes of the
last generation of a MAGIC population simulated according to breeding
scheme given in (Zheng et al., 2015) using a target coverage of 95% in
the generation of the haplotype library. Segments are colored according
to the originating/estimated haplotype of the founder generation.

Block-based selection signatures

When deriving EHH and bEHH scores, we can observe that curves are quite similar
for DH-lines (Figure 2.8). Most apparent di�erence is a much higher EHH score in
the directly surrounding region of the marker. Those segments are typically much
smaller than the segments considered jointly in the bEHH approach. Note that
the same allelic sequence in such a small region can not only occur based on IBD
but also by chance. On the contrary, scores between distant markers for the S0
plants are much lower when using EHH (Figure 2.8). This is mainly caused by the
incorporated robustness of bEHH, since the S0 dataset tends to contain a higher
share of minor deviations between haplotypes.

Figure 2.8: Comparision of EHH and bEHH scores for DH-lines (A) and S0 (B) for
marker 30'000 of chromosome 1 in the KE DH-lines.
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When using EHH (Sabeti et al., 2002) to derive IHH (Voight et al., 2006), the
selection pressure on DH-lines is estimated to be much higher, whereas scores are
quite similar between the two groups when using bEHH (Figure 2.9). IHH scores
based on bEHH are in concordance with previous research, as we would expect little
to no loss of diversity or selection in the process of generating DH-lines (Melchinger
et al., 2017). Results in Melchinger et al. (2017) were derived by the use of Fst

(Holsinger and Weir, 2009) and analysis of molecular diversity in single markers. As
presented at a recent conference (Mayer et al., 2018), similar studies with matching
results were also performed for KE and PE.

Figure 2.9: IHH scores based on SNPs (A) and haplotype blocks (B) for DH-lines
and S0 for chromosome 1 in the KE.

Computing time

Overall computing times were not an issue for the considered datasets when using
the associated R-package HaploBlocker (R Core Team, 2017; Pook and Schlather,
2019) with the full dataset (501 haplotypes, 80'200 SNPs) needing 55 seconds on
default, 75 seconds with a target coverage and 13.3 minutes in the adaptive mode.
Computations were performed on a single core of a server cluster with Broadwell Intel
E5-2650 (2X12 core 2.2 GHz) processors. Most crucial parts in terms of computing
time are written in C.

For our datasets, computing time scaled approximately linear in both the number of
haplotypes and the physical size of the genome analyzed (Figure 2.10). Especially for
the number of haplotypes it is di�cult to generalize because the number of nodes in
the window cluster is mainly causal for the increase in computing time. The marker
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density only had a minor e�ect. Even a panel containing just every tenth marker,
on average, needed 99.3% of the computing time of the full dataset.

Figure 2.10: Comparison of computing times for datasets of various sizes for chro-
mosome 1 in the KE DH-lines.

Conclusions and Outlook

HaploBlocker provides a natural technique to model local epistasis and thereby solves
some of the general problems of markers being correlated but not causal individually
(He et al., 2017; Akdemir et al., 2017). This can be seen as one of the factors
contributing to the �missing heritability� phenomenon in genetic datasets (Manolio
et al., 2009). Obtained haplotype blocks are a concise representation of the variation
present in a SNP-dataset. The block assignment in HaploBlocker is deterministic
and does not incorporate uncertainty, although the algorithm provides �exibility to
control the structure of the haplotype library via parameter tuning.

Even though results were mainly presented for a maize dataset containing DH-lines,
methods are not species-dependent nor limited to fully homozygous individuals.
Methods were also applied to livestock and human data. As HaploBlocker is not
able to handle uncertainty in haplotype phase assignment an initial phasing step
is mandatory. For human data in particular, this can be a substantial applica-
tion problem and therefore requiring triplet data or high quality phase like in the
1000 Genomes Project (1000 Genomes Project Consortium, 2015). Overall, the
opportunities for identifying long shared segments will be higher in SNP-datasets
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from populations subjected to a recent history of intensive selection as is commonly
present in livestock and crop datasets. Recent work has suggested that the phasing
accuracy for these kinds of datasets is extremely high (Pook, 2019b) and should
therefore be su�cient for the application of HaploBlocker. For datasets containing
less related individuals, as commonly present in human data, poor phasing accuracy
can limit the applicability and usefulness of HaploBlocker.

It should be noted that by using blocks, an assignment of e�ects to physical positions
(like in a typical GWAS study) is not obtained. A subsequent analysis is needed to
identify which segment of the signi�cantly trait-associated haplotype block is causal
for a trait and/or which parts of that block di�er from the other blocks in that
region.

A future topic of research is the explicit inclusion of larger structural variation like
duplications, insertions or deletions as is done in methods to generate a pangenome
(Eggertsson et al., 2017). Since blocks in HaploBlocker are of large physical size
most structural variation should still be modelled implicitly and an application to
sequence data is perfectly possible.

HaploBlocker provides an innovative and �exible approach to screen a dataset for
block structure. The representation and condensation of a SNP-dataset as a block
dataset is enabling new methods for further genomic analyses. For some applications,
already existing techniques for a SNP-dataset can directly be applied by using a block
dataset instead (e.g. genomic prediction). For other applications, like the detection
of selection signatures via EHH/IHH, modi�cations of the original methodology are
needed. Features of HaploBlocker can even enhance existing methods and lead to
improvements like an increased robustness of the methods against minor variation
or a massively reduced computing time. Additionally, problems regarding typical
p� n� settings in genetic datasets (Fan et al., 2014) can be heavily reduced, allowing
for the usage of more complex statistical models that include epistasis or even apply
deep learning methods with a reduced risk of over-�tting.
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2.5 Supplementary Material

The numbering of the Supplementary material corresponds to the order in which
they are listed in this section.

2.5.1 Supplementary �les

Target-coverage (optional)

In the following, we will denote the share of the dataset that is represented by the
haplotype library as the coverage of the dataset. To control the coverage, we pro-
pose an adaptive �tting of the MCMB. Especially for di�erent marker densities the
choice of the MCMB is relevant to control the minimum size of each block and thus
the resulting obtained coverage. The MCMB is �tted by iteratively increasing/de-
creasing the MCMB when the coverage is too high/low. We double/halve the value
of the MCMB from step to step until both a haplotype library with a higher and
lower coverage than the target exists. Afterwards the mean of the MCMB values of
the two libraries with coverage closes (one above/below) to the target are used next.
This procedure is repeated until the MCMB is 1 or the target coverage is reached.

Graphical representation of haplotype blocks

We suggest a graphical representation of haplotype blocks to show transition rates
between blocks in analogy to bifurcation plots (Sabeti et al., 2002; Gautier and
Vitalis, 2012). To this end, we �rst sort the blocks of the haplotype library according
to the physical position of the �rst SNP of the block. In case of identical starting
points the shorter block is considered �rst. Our aim in sorting the haplotypes is to
cluster haplotypes according to their similarity around a speci�c physical position
(default: SNP in the middle of the dataset). The sorting process itself is executed
in two alternating steps:

Step 1: Adding new haplotypes In the �rst iteration of this step we select
all haplotypes in the most common block that includes the marker we want to align
against. In later iterations, we add the haplotypes of the block with the biggest
overlap of haplotypes with the previously considered block. In case no block has
any overlapping haplotypes, the block with the most haplotypes not considered so
far is used next.
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Step 2: Sorting new haplotypes The newly added haplotypes are ordered
according to their presence in physically close blocks. We do this by iteratively
comparing the haplotypes of other blocks, starting with the directly adjacent ones.
Whenever only some of the currently considered haplotypes are in an adjacent block,
we split haplotypes into two groups and proceed with both groups separately. This
procedure is stopped when every group has either exactly one haplotype left or the
end of the haplotype library has been reached.

Toy example bEHH

As a toy example consider a dataset with 9 haplotypes and 4 haplotype blocks
(Supplementary Material Figure S1): green (markers: 1-16), blue (5-16), red (1-20)
and purple (11-20). For simplicity we are using marker numbers as physical positions
in this example. Resulting block boundaries to consider are 1,5,11,17,21.

EHH between markers 1 and 4 is higher than bEHH for the segment:

bEHH([1, 4], [1, 4]) =
(42)

(92)
=

1

6

EHH(1, 4) =
(42) + (22) + (22)

(92)
=

2

9

The higher score is caused by the allelic sequences 0101 and 0110 that both occur
twice. Those haplotypes are not part of a haplotype block and thus are ignored in
bEHH. For both scores the allelic sequence 0000 and the associated haplotype are
present four times.

When considering EHH between markers 5 and 16 or segments [5,10] and [11,16]
following scores are obtained:

bEHH([5, 10], [11, 16]) =
(42) + (52)

(92)
=

4

9

EHH(5, 16) =
(22) + (22) + (52)

(92)
=

1

3

Allelic sequences 00100111111 and 00000111111 are considered jointly in bEHH, as
they are part of the same haplotype block. For EHH, the two allelic sequences are
considered separately. Note that this is toy example and in reality blocks are much
longer. Haplotypes that are not contained in any block can be considered separated.
As this massively increases computing time, this is not done by default.
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Script to simulate a diallel design in MoBPS

1 s e t . seed (7)
2 n ind i <− 19
3 l i b r a r y (MoBPS) # MoBPS i s a v a i l a b l e at https : // github . com/tpook92/
4 # Al t e rna t i v e l y use devtoo l s : : i n s t a l l_github (" tpook92/MoBPS" , subdi r="pkg ") to i n s t a l l
5
6 # Generate a base−populat ion with 50k SNPs , 3 Morgan genome ,
7 # f u l l y homozygous ind i v idua l s ,
8 # a l l p lant s are s to r ed as male i nd i v i du a l s ( sex=0)
9 populat ion <− c r e a t i ng . d i p l o i d ( n ind i = nindi , nsnp =50000 , sex . quota = 0 ,
10 chromosome . l ength = 3 , datase t="homorandom" )
11
12 # Simulate matings between a l l founders
13 populat ion <− breeding . d i p l o i d ( populat ion , breed ing . s i z e = c ( n ind i * ( nindi −1)/ 2 ,0 ) ,
14 s e l e c t i o n . s i z e = c ( nindi , 0 ) ,
15 breeding . a l l . combination = TRUE,
16 mutation . ra t e = 10^−4)
17
18 # Simulat ion o f 4 gene ra t i on s o f random mating o f the p r i o r genera t i on
19 f o r ( index in 1 : 4 ){
20 populat ion <− breeding . d i p l o i d ( populat ion , breed ing . s i z e = c ( n ind i * ( nindi −1)/ 2 ,0 ) ,
21 s e l e c t i o n . s i z e = c ( n ind i * ( nindi −1)/ 2 ,0 ) ,
22 same . sex . a c t i v = TRUE, same . sex . sex = 0 ,
23 mutation . ra t e = 10^−4)
24 }
25
26 # Simulat ion o f 10 gene ra t i on s o f s e l f− f e r t i l i z a t i o n
27 # Only one o f f s p r i n g per p lant
28 f o r ( index in 1 :10 ){
29 populat ion <− breeding . d i p l o i d ( populat ion , breed ing . s i z e = c ( n ind i * ( nindi −1)/ 2 ,0 ) ,
30 s e l e c t i o n . s i z e = c ( n ind i * ( nindi −1)/ 2 ,0 ) ,
31 s e l f i n g . mating = TRUE, s e l f i n g . sex = 0 ,
32 max . o f f s p r i n g = 1 , mutation . ra t e = 10^−4)
33 }
34
35 # Derive haplotypes o f l a s t genera t i on and founders
36 # Founders are double haplo id ( only one haplotype by plant needed )
37 haplos <− get . haplo ( populat ion , gen = 16)
38 founderhaplo <− get . haplo ( populat ion , gen = 1 ) [ , 1 : n ind i * 2 ]
39
40 # Der ivat ion o f the haplotype l i b r a r y
41 l i b r a r y ( HaploBlocker )
42 b l o ck l <− block_ca l c u l a t i o n ( haplos , t a r g e t_coverage = 0 .95 )
43
44 # Extract po in t s o f recombinat ion f o r f i n a l genera t i on in MoBPS:
45 recombinat ion <− get . recombi ( populat ion , gen = 16)
46 # Compare founder haplotypes to haplotype b locks :
47 s t a r t <− b l o ck l [ [ 1 ] ] [ [ 2 ] ] $ snp
48 end <− b l o ck l [ [ 1 ] ] [ [ 3 ] ] $ snp
49 concordance <− colMeans ( founderhaplo [ s t a r t : end ,]== b l o ck l [ [ 1 ] ] [ [ 7 ] ] $ snp )
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2.5.2 Supplementary tables

Table 2.10: Proportion of variance explained between the full SNP-dataset (X), a
SNP-subset (Xs) and the block dataset (Z). For comparability the num-
ber of parameters in Xs and Z were chosen equally using traditionally
heritability estimation as in (de los Campos, 2017).

Number of
Blocks/SNPs

X ∼ Z Z ∼ X X ∼ Xs

1'720 99.56% 98.14% 99.39%
878 98.59% 97.56% 98.43%
621 97.47% 96.66% 97.51%
477 96.24% 96.20% 96.47%
362 94.79% 95.32% 94.96%
274 92.74% 94.56% 92.94%
150 86.15% 92.68% 86.07%

Table 2.11: In�uence of the window size on the haplotype library for chromosome 1
in the KE DH-lines with a target coverage of 95%.

Window size Number of
Blocks

Average block
length (# of
SNPs)

Haplotypes
per Block

Used MCMB

5 682 2'020 138.0 2344
10 646 2'157 125.5 2500
20 537 2'440 119.1 3750
50 474 2'615 101.4 5000
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Table 2.12: In�uence of the weighting of block length (wl) and number of haplotypes
(wn) on the haplotype library for chromosome 1 in the KE DH-lines with
a target coverage of 95%.

wl wn Number of
Blocks

Average
block
length (#
of SNPs)

Haplotypes
per Block

Used
MCMB

1 0 530 2'699 96.3 3750
1 0.2 522 2'700 100.3 3750
1 0.5 511 2'694 104.9 3750
1 1 537 2'440 119.1 3750
0.5 1 575 2'136 143.4 4375
0.2 1 722 1'614 186.4 6250
0 1 1030 1'056 206.7 7813

Table 2.13: In�uence of using the extended-block-identi�cation on the haplotype
library in dependency of the parameter t of the extended-block-
identi�cation-step for chromosome 1 in the KE DH-lines with a target
coverage of 95%.

t Number of
Blocks

Average block
length (# of
SNPs)

Haplotypes
per Block

Used MCMB

1 537 2'440 119.1 3750
0.95 642 5'484 91.8 4375
0.9 763 9'417 70.1 5313
0.8 848 11'779 62.2 5625
0.6 852 12'576 59.0 6485
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2.5.3 Supplementary �gures

Figure 2.11: Dataset for the toy example used in File S3
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Figure 2.12: Comparison of the block structure and an bifurcation plot (Sabeti et al.,
2002; Gautier and Vitalis, 2012) according SNP 10'000 on chromosome
1 in the KE DH-lines.
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Figure 2.13: Comparision of the block structure for MCMB=1'000 (A),
MCMB=5'000 (B), MCMB=20'000 (C) for the �rst 20'000 SNPs
of chromosome 1 in the KE DH-lines.
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3.1 Abstract

Imputation is one of the key steps in the preprocessing and quality control protocol
of any genetic study. Most imputation algorithms were originally developed for the
use in human genetics and thus are optimized for a high level of genetic diversity.
Di�erent versions of BEAGLE were evaluated on genetic datasets of doubled hap-
loids of two European maize landraces, a commercial breeding line and a diversity
panel in chicken, respectively, with di�erent levels of genetic diversity and structure
which can be taken into account in BEAGLE by parameter tuning. Especially for
phasing BEAGLE 5.0 outperformed the newest version (5.1) which in turn also lead
to improved imputation. Earlier versions were far more dependent on the adaption
of parameters in all our tests. For all versions, the parameter ne (e�ective population
size) had a major e�ect on the error rate for imputation of ungenotyped markers,
reducing error rates by up to 98.5%. Further improvement was obtained by tuning
of the parameters a�ecting the structure of the haplotype cluster that is used to ini-
tialize the underlying Hidden Markov Model of BEAGLE. The number of markers
with extremely high error rates for the maize datasets were more than halved by
the use of a �int reference genome (F7, PE0075 etc.) instead of the commonly used
B73. On average, error rates for imputation of ungenotyped markers were reduced
by 8.5% by excluding genetically distant individuals from the reference panel for the
chicken diversity panel. To optimize imputation accuracy one has to �nd a balance
between representing as much of the genetic diversity as possible while avoiding the
introduction of noise by including genetically distant individuals.

3.2 Introduction

Imputation is one of the key steps in preprocessing genetic data generated by SNP-
chips or DNA sequencing, as follow-up applications like genomic prediction (Meuwis-
sen et al., 2001) often do not allow for missing values. In some applications the use
of a higher marker density can lead to better results even though individuals were
not genotyped for most markers (e.g. in genome-wide association studies previously
not identi�ed regions can be detected (Yan et al., 2017)).
The imputation of genotype data was �rst introduced by Li and Stephens (2003).
The basic idea of the algorithm is the �tting of a Hidden Markov Model (HMM,
(Baum and Petrie, 1966; Rabiner, 1989)) to the sequence of alleles of a haplotype.
Over the years, a wide variety of tools with similar basic frameworks, but improve-
ments to the computational e�ciency for larger datasets (Howie et al., 2009), ref-
erence panels (Browning et al., 2018) or modi�cations for improved modeling have
been developed. Among others, improvements to the modeling include the use of
coalescent trees (Marchini et al., 2007), haplotype clusters (Scheet and Stephens,
2006) and pre-phasing steps (Scott et al., 2007; Howie et al., 2012; Loh et al., 2016).
To account for the speci�c structure of livestock and crop datasets, special tools for
both cases have been developed. As fully homozygous lines are commonly present in
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crops, the software TASSEL (Bradbury et al., 2007) was developed to work well on
this data structure (Swarts et al., 2014). Since pedigrees in animal breeding can be
much denser than in human populations (both w.r.t. depth and family size), tools
like FImpute (Sargolzaei et al., 2014) and AlphaImpute (Hickey et al., 2011) have
been developed to fully utilize this information.
In the imputation process all those methods use the fact that physically close markers
are likely inherited together, resulting in non-random associations of alleles. These
methods thereby rely on the knowledge of the physical position or at least the order
of markers for modeling linkage and thus the resulting linkage disequilibrium (LD).
In contrast, the software LinkImpute (Money et al., 2015) accounts for LD between
pairs of markers and not their physical positions. This can be particularly relevant
for species in which no reference sequence is available or whose genomes are known
for a high amount of translocations and inversions.
In contrast to other methods using a HMM, the Markov chain in BEAGLE is not ini-
tialized by the genotypes or haplotypes themselves, but instead the genetic dataset is
used to initialize a haplotype cluster (Browning and Browning, 2007), which subse-
quently initializes the HMM. In essence, imputation is then performed by identifying
the most likely path through the haplotype cluster based on the non-missing geno-
types. As BEAGLE was originally developed for application in human genetics,
default settings are chosen to work well for imputation in outbred human popula-
tions. Nevertheless, the user still has considerable �exibility to tune the algorithm
to the speci�c genetic structure of the respective dataset. As imputation is usually
just a step in the preprocessing and quality control protocol, authors tend to use
the default settings of a recent version of some imputation software.
To increase the operational marker density via imputation an additional dataset (ref-
erence panel) that is genotyped under a higher density can be used. With increasing
computational power and more e�cient methods available the common advice here
is to use as many individuals as possible to get a good representation of the popu-
lation (Zhang et al., 2013; Browning et al., 2018).
In this paper, we compare di�erent BEAGLE versions (4.0 / 4.1 / 5.0 / 5.1) and
perform bench-marking tests in regard to imputation quality on virtually all param-
eters in BEAGLE for a variety of livestock and crop datasets, as it is one of the most
frequently used tools in both animal and plant breeding and a new version of the
tool has been recently published (Browning et al., 2018). We further evaluate which
individuals to include in a reference panel when aiming at increasing the marker
density of a dataset.
Since imputation algorithms like BEAGLE rely on the assumed physical order of
markers, the used reference genome in�uences the imputation quality. Recently, a
variety of new maize reference genomes have been made public (Unterseer et al.,
2017). We here compare the imputation performance of the commonly used B73v4
(Schnable et al., 2009; Jiao et al., 2017) and new reference genomes from �int lines
in maize that should be genetically closer to our material. To this day, all refer-
ence genomes derived in chicken were generated based on an inbred Red Jungle
Fowl (Gallus gallus gallus; (International Chicken Genome Sequencing Consortium,
2004; Bellott et al., 2010).
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3.3 Materials and Methods

Genotype data used

In the following, we will consider genotypic data of 910 doubled haploid (DH) lines
of two European maize (Zea mays) landraces (n = 501 Kemater Landmais Gelb
(KE) and n = 409 Petkuser Ferdinand Rot (PE), (Hölker et al., 2019)) genotyped
using the 600k A�ymetrix® Axiom® Maize Array (Unterseer et al., 2014). Mark-
ers were �ltered for being assigned to the highest quality class (Poly High Resolution
(Pirani et al., 2013)), having a callrate of at least 90%, and for having at most 5%
heterozygous calls, as no heterozygous calls are expected for DH lines. The remain-
ing heterozygous calls were set to NA and subsequently imputed using BEAGLE 4.0
with nsamples = 50, resulting in a dataset of 501'124 markers with known haplotype
phases.
We further considered two chicken (Gallus gallus) datasets genotyped with the
580k SNP A�ymetrix® Axiom® Genome-Wide Chicken Genotyping Array (Kra-
nis et al., 2013). Firstly, a chicken diversity panel containing 1'810 chicken of 82
breeds including Asian types, European types, wild types, commercial broilers and
layers (Weigend et al., 2014; Malomane et al., 2019). Secondly, a dataset containing
888 chicken of a commercial breeding program from Lohmann Tierzucht GmbH. For
quality control SNPs / animals with less than 99% / 95% callrate were removed.
We will here focus on chromosome 1, 7 and 20 with 56'773 / 65'177, 12'585 / 13'533
and 5'539 / 5'940 SNPs representing cases for large, medium and small size chro-
mosomes. Remaining missing genotypes for both chicken panels were imputed using
BEAGLE 4.1 default.
For tests regarding imputation of ungenotyped markers in maize we used the overlap-
ping markers (45'655 SNPs) of the Illumina® MaizeSNP50 BeadChip chip (Ganal
et al., 2011) as a smaller SNP array. As there is no similar public smaller array with
a majority of overlapping markers for the chicken panels, we simply used a subset
of every tenth marker. All tests regarding imputation quality were performed on
imputed datasets. This might favor the respective method used for the imputation.
As the missingness in the maize data (1.20%), diversity panel (0.27%) and commer-
cial chicken breeding line (0.32%) were low in the raw data, this e�ect should only
be minor and is neglected here.
To assess the genetic diversity of the three datasets, we derived the LD decay (Figure
3.1) resulting in the highest rates of association for the European maize landraces,
followed by the commercial chicken dataset and the chicken diversity panel. The
overall genetic diversity in all used datasets should be far smaller than in an outbred
human population, which is the data structure BEAGLE was originally developed
for. It should be noted that this comparison does not account for possible di�erences
in ascertainment bias (Albrechtsen et al., 2010) between the arrays or the genetic
diversity of species and their genomes. Since BEAGLE (and other HMM based
imputation methods) are relying on local associations between markers this should
still be a good indication for potential imputation performance.
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Figure 3.1: LD decay based on physical length (A) and marker distance (B) for
chromosome 1 for all considered datasets. Outliers in (A) are corrected
for by using a Nadaraya-Watson-estimator (Nadaraya, 1964), using a
Gaussian kernel and a bandwidth of 50 kb. (B) is using averaged values
for each SNP distance.

Evaluation Pipeline

The imputation process itself can be split up into three internally linked steps which
can be of di�erent importance based on the data at hand and, in the following, will
be analyzed separately:

1. Inference: All partly or fully missing individual genotypes in the actual dataset
are completed, but no additional markers are added.

2. Imputation of ungenotyped markers (UM imputation): Additional markers are
added to the genetic data based on information provided by a second dataset
(reference panel) with higher marker density.

3. Phasing: The two haplotypes of diploid individuals, i.e. their gametic phases,
are estimated from genotype data.

To assess the quality of inference and UM imputation we used the following testing
pipeline and repeated the procedure 100 times for each test. We start from a com-
pleted dataset in which missing genotypes have been imputed, and consider this as
the "true" genotype dataset:

1. Randomly generate missing values (NAs) in the "true" genotype dataset.

� In case of inference set randomly chosen alleles of all genotypes to NA (in
our case: 1% of all alleles with no partly missing genotypes).

� In case of UM imputation additionally set all entries in a particular
marker to NA (maize: according to existing low density array (Ganal
et al., 2011); chicken: 90% of all markers).
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2. Perform the imputation procedure under a given parameter setting, software
and potential use of a reference panel.

3. Evaluation of performance by comparison to the "true" dataset. For more on
this we refer to the following subsections.

3.3.1 Evaluation of inference and UM imputation quality

To evaluate the quality of inference and UM imputation we count the total number
of entries in the genotype matrix that are di�erent to the "true" dataset (allelic er-
ror rate). In this procedure, markers with a low minor allele frequency have a lower
impact on the overall quality than in the commonly used practice of calculating the
correlation between imputed and "true" dataset (Hickey et al., 2012). To account
for this, we will provide error rates depending on the allele frequency as well. A
disadvantage of using a correlation is that it does not account for �xed markers as
correlation is not de�ned for those markers, leading to them being excluded from
the analysis. As rare variants tend to be more di�cult to impute and those variants
tend to be �xed at a higher rate, this leads to lower average correlations for meth-
ods imputing a rare allele (instead of just imputing the same variant everywhere).
Therefore, a fair comparison should only consider those markers that are not �xed
over all settings and di�erent software. Especially for UM imputation this would
lead to a much smaller set of markers to be considered.

3.3.2 Evaluation of phasing quality

To evaluate phasing quality we use the switch error rate as de�ned in Lin et al.
(2002), which evaluates the number of switches between neighboring heterozygous
sites to recover the true haplotype phase compared to the total number of heterozy-
gous markers. Since the true haplotype phase is usually not known the assessment of
phasing quality is usually not as straight forward. As we are working with doubled
haploid lines in the maize dataset, the true gametic phase is known and a "true"
dataset for testing was generated by randomly combining two doubled haploid lines
to a Pseudo S0. The rest of the pipeline can be performed in the same way as
for the inference testing. For this analysis, we considered datasets with no missing
genotypes to remove any potential noise caused by inference errors.

3.3.3 Choice of reference panel in UM imputation

A common �rst question when planning to generate genetic data is how many in-
dividuals need to be genotyped with high marker density to obtain su�cient im-
putation quality for individuals genotyped with lower marker density. To evaluate
this, we performed imputation on datasets containing 50 individuals as the "true"
dataset in our pipeline and generated reference panels containing 25, 50, 100, 150,
200, 250, 300, and 350 individuals, respectively.
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Furthermore, we investigate how to chose the individuals to include in a reference
panel. This is especially relevant when potential candidates for the reference panel
vary in their relationship to the dataset itself. For this, we split the chicken diversity
panel into ten subpopulations by iteratively minimizing the total sum of squared ge-
netic distances between breeds within the subpopulations. Distances between the
breeds were calculated as Nei standard genetic distances (Nei, 1972). In a �rst step,
the custom made algorithm randomly assigned the breeds to ten equal sized sub-
populations. The contribution of each breed to the sum of squared distances was
calculated and the algorithm started iteratively exchanging the most noisy breeds to
other subpopulations. If there was a reduction of the total sum of squared distances
within the subpopulations, the exchange was accepted and the contributions were
calculated again. The process was repeated until no exchange could improve the
�t. To overcome results depending on speci�c starting positions, the process was re-
peated for 60 random starting points. Nei standard genetic distances for evaluation
of UM imputation quality of BEAGLE were calculated based on the subpopulation
assignment of individuals and UM imputation was performed using the following
reference panels:

1. All other individuals of the same subpopulation

2. All individuals of one other subpopulation

3. All individuals of all other subpopulations

4. All individuals of subpopulations with below-average Nei standard genetic dis-
tance to the dataset

5. All individuals of those subpopulations with reduced error rates when testing
A + B compared to A as the reference panel

Additionally combinations of panels A + B, A + C, A + D and A + E were tested.
Tests were repeated 20 times for each subpopulation with datasets containing 50
randomly sampled individuals. For each dataset, all di�erent reference panels were
tested. The interested reader is referred to Supplementary Table 3.7 for a detailed
list of the used subpopulation assignments and Supplementary Figure 3.11 for the
resulting neighbor-joining-tree.

3.3.4 Data Availability

Genetic data for chromosome 1 for all three panels used are available at https:

//github.com/tpook92/HaploBlocker. Table S1 and S2 contains error rates of
UM imputation for the commercial breeding line and the diversity panel in chicken.
Table S3 provides phasing error rates for the set of Pseudo S0 with no missing data.
Table S4 contains inference error rates for the PE DH-lines using di�erent reference
genomes. Table S5 and S6 contain lists of "critical" markers for KE and PE. Table
S7 gives error rates of UM imputation using di�erent reference panels for the sub-
populations. Table S8 contains the subpopulation assignments for all chicken from

https://github.com/tpook92/HaploBlocker
https://github.com/tpook92/HaploBlocker
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the diversity panel. Table S9 contains the minimal error rates and used parameter
settings for all performed tests.
Figure S1 provides the neighbor-joining-tree for the ten subpopulations of the chicken
diversity panel. Figure S2 displays the relation between local LD and error rate for
chromosome 9 in maize. Figure S3 displays the change in the number of errors in
each marker by using low values of buildwindow. Figure S4 and S5 display the rela-
tion between DR2 and the number of errors per marker. Figure 3.16 - 3.34 display
the relation between input parameters and error rates for inference in the maize
data. Figure 3.35 - 3.55 display the relation between input parameters and error
rates for inference and phasing for the set of Pseudo S0. Figure 3.56 - 3.84 display
the relation between input parameters and error rates for UM imputation for the
maize data, the commercial chicken line and the chicken diversity panel.
Supplemental �les are available at FigShare: https://gsajournals.figshare.

com/s/4c6ceaa7fe834f0700a3.

3.4 Results

In the following, obtained error rates of the imputation under a variety of tuning
option in BEAGLE are discussed. Here, we consider virtually all available param-
eters in BEAGLE, the size of the reference panel, and the underlying genetic map.
The e�ect on the error rate of di�erent tuning options are somewhat independent
from each other as they commonly a�ect di�erent parts of the imputation algorithm.
Therefore, we will �rst consider each tuning option individually and later discuss
suggested imputation pipelines for the di�erent use cases.
Unless otherwise mentioned, we will report for maize the error rates in the landrace
KE averaged over all chromosomes. Results for PE were similar with, on average,
slightly increased error rates.

3.4.1 Inference quality

On default, BEAGLE 5.0 (error rate: 0.0142%) and BEAGLE 5.1 (0.0127%) both
clearly outperform BEAGLE 4.1 (0.255%) and BEAGLE 4.0 (0.201%) for the maize
data. For all four versions the error rates are signi�cantly higher for alleles with
low frequency (Figure 3.2). In regard to the location of inference errors one can
observe a high volatility with a tendency to have increased error rates in telomeric
regions (Figure 3.3). Additionally, error rates in regions of high LD tend to be lower
(Supplementary Figure 3.12).

For all four versions the biggest improvement was obtained by tuning parameters
that are a�ecting the structure of the haplotype cluster. The optimal parameter val-
ues (Table 3.1) for buildwindow (4.0), singlescale (4.0), modelscale (4.1) lead to less
similar haplotypes being clustered jointly. Phase-segment (5.0), phase-states (5.0 /
5.1) a�ect the minimum length and number of di�erent haplotypes in the haplotype
cluster. Overall, all these settings lead to longer and/or less related haplotypes to

https://gsajournals.figshare.com/s/4c6ceaa7fe834f0700a3
https://gsajournals.figshare.com/s/4c6ceaa7fe834f0700a3
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Figure 3.2: Allele speci�c error rate depending on the allele frequency under di�erent
BEAGLE settings for the maize data. Only those dataset entries with
the respective allele in the "true" dataset are considered when deriving
the allele speci�c error rate. Y-axis is log-scaled.

be considered jointly. The gains by �tting those parameters are much higher in
BEAGLE 4.0 and 4.1 but overall error rates are still higher than in BEAGLE 5.0
and 5.1 (Table 3.1) with BEAGLE 5.1 performing best. Improvements in overall
inference quality can be observed for all allele frequency classes and regions in the
genome (Figures 3.2 & 3.3). It should be noted that in contrast to later tests in
UM imputation the use of low (and probably more realistic) values for ne (e�ective
population size) can lead to substantially increased error rates (Figure 3.4). The
interested reader is referred to Supplementary Figures 3.16 - 3.34 for the e�ect on
the inference error rate for di�erent parameters. For the maize data the inference
error rates were basically una�ected by the number of iterations performed in any
of the imputation steps in BEAGLE (Table 3.1). Since the haplotype phase in DH-
lines is known and the main purpose of further iterations in BEAGLE is to improve
that haplotype phase, this should not be that surprising. After parameter tuning
error rates are still lowest in BEAGLE 5.1 with 0.0122% but di�erences are con-
siderably reduced (BEAGLE 4.0: 0.0307%, BEAGLE 4.1: 0.0436%, BEAGLE 5.0:
0.0132%, Supplementary Table 3.13). Tuning of both singlescale and buildwindow in
BEAGLE 4.0 jointly did not further improve performance with buildwindow overall
performing better for inference. Even though error rates for extremely low values for
buildwindow are lowest, this change is not recommended as some markers do show
massively increased error rates (Supplementary Figure 3.13).

The inference error rates for the chicken diversity panel are much higher for all ver-
sions (~1%) and the relative improvement obtained by adapting parameter settings
is lower. As the chicken diversity panel contains more variation and is structurally
more similar to outbred human data than the European landraces in maize, this
should not be that surprising. With the exception of the parameter err the change
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Table 3.1: Inference error for the KE DH-lines by changing a single imputing pa-
rameter.

Parameter default range tested best overall impact

BEAGLE 5.1 - - default
(0.0127%)

-

ne 1'000'000 1 - 1'000'000 100'000
(0.0125%)

Figure 3.17

err 0.000067 0.01 - 0.00001 0.001
(0.0125%)

Figure 3.19

window 40 10 - 1'000 100 (0.0125%) Figure 3.21

burnin 6 2 - 50 50 (0.0126%) Figure 3.23

iterations 12 2 - 40 40 (0.0127%) Figure 3.25

phase-states 280 50 - 10'000 default Figure 3.28

imp-states,
imp-segment,
cluster, imp-
step, imp-
nsteps

1'600, 6, 0.005,
0.1, 7

- - only impacts
UM imputation

BEAGLE 5.0 - - default
(0.0142%)

-

ne 1'000'000 1 - 1'000'000 30'000
(0.132%)

Figure 3.16

err 0.0001 0.01 - 0.00001 0.005
(0.0141%)

Figure 3.18

window 40 10 - 1'000 200 (0.0140%) Figure 3.20

burnin 6 2 - 50 default Figure 3.22

iterations 12 2 - 50 25 (0.0141%) Figure 3.24

phase-segment 4 1 - 25 10 (0.0135%) Figure 3.26

phase-states 280 50 - 1'000 100 (0.0136%) Figure 3.27

imp-states,
imp-segment,
cluster, imp-
step

1'600, 6, 0.005,
0.1

- - only impacts
UM imputation

BEAGLE 4.1 - - default
(0.255%)

-

niterations 5 0 - 25 - virtually no
di�erences for
DHs

modelscale 0.8 0.5 - 5 1.5 (0.0438%) Figure 3.29

ne 1'000'000 1 - 1'000'000 10'000
(0.254%)

Figure 3.30

BEAGLE 4.0 - - default
(0.201%)

-

buildwindow 1'200 1 - 2'500 5 (0.028%) Figure 3.31

singlescale 0.8 0.5 - 5 1.5 (0.066%) Figure 3.32

nsamples 4 1 - 50 50 (0.152%) Figure 3.33

burnin-its 5 2 - 25 25 (0.199%) Figure 3.34

phase-its 5 2 - 25 - virtually no
di�erences for
DHs

impute-its 6 2 - 25 - only impacts
UM imputation
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Figure 3.3: Inference error rate based on the location of the genome. Outliers are
corrected for by using a Nadaraya-Watson-estimator (Nadaraya, 1964),
using a Gaussian kernel and a bandwidth of 3'000 markers for the maize
data. Y-axis is log-scaled.

from the default was always in the same direction as for the maize data. As err
is controlling the allele mismatch probability of known alleles when identifying the
most likely path through the haplotype cluster (Browning et al., 2018) this can be
seen as an indicator for a higher overall data quality for the maize data. Lowest
obtained error rates are 1.01% for BEAGLE 4, 0.80% for BEAGLE 4.1, 0.81% for
BEAGLE 5.0 and 0.82% for BEAGLE 5.1 (Supplementary Table 3.13).
Inference error rates for the datasets from the commercial chicken breeding program
are between 0.20% and 0.23% for basically all tested settings, leading us to conclude
that for inference on this dataset there is not much potential to decrease error rates.
A potential reason for this is that other error sources like SNP calling errors may be
higher than inference error rates.
When working with the Pseudo S0 in maize instead, ideal parameter settings are
very similar with the key di�erence of additional gains by increasing the number
of iterations performed (Table 3.2). As the algorithm starts with randomly phased
genotypes and improves the phase in each iteration, this should again not be sur-
prising. However, excessive burnin iterations prior to the actual algorithm only
worsened results. The interested reader is referred to Supplementary Figure 3.35 -
3.55 for parameter in�uences on both inference and phasing quality for the Pseudo
S0. Inference accuracies after parameter tuning are again similar with BEAGLE
5.0 performing best (BEAGLE 4.0: 0.0193%, BEAGLE 4.1: 0.0168%, BEAGLE
5.0: 0.0109%, BEAGLE 5.1: 0.0148%). Note that error rates given in Table 3.2
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Figure 3.4: E�ect of the parameter ne on the inference error rates for the maize data
in BEAGLE 5.0 and 5.1. Default settings are indicated by the vertical
line.

are just for chromosome 10, as not all tests were performed in su�cient sample size
for all chromosomes but e�ect of parameters results should be very similar for all
chromosomes. For all three datasets containing heterozygous individuals BEAGLE
5.0 outperformed BEAGLE 5.1, with di�erences being highest for the set of Pseudo
S0.

3.4.2 Phasing quality

The number of phasing errors for the set of Pseudo S0 in maize is extremely low with
just one phasing error per 2'540 heterozygous markers in BEAGLE 5.1, which should
be su�cient for most applications, and the obtainable improvements by parameter
tuning were relatively low (Table 3.2). Error rates in BEAGLE 5.0 were about 10%
lower (2'716). Biggest improvements in both BEAGLE 5.0 and 5.1 were obtained
by adaptation of ne. For S0 the ideal parametrization in BEAGLE 5.0 for phasing
is much higher than for inference (Figure 3.35). Especially for BEAGLE 4.0 and
4.1 parameters in�uencing the structure of the haplotype library had substantial
impact on the error rates. In contrast to inference and UM imputation the ideal
parametrization for buildwindow (4.0) and phase-states (5.0 / 5.1) are higher than
the default settings (Table 3.10). This in turn leads to only highly related haplotypes
to be considered jointly.
To further isolate the structure of phasing errors the same tests were performed on
a set of Pseudo S0 without missing alleles. The interested reader is referred to the
Supplementary Table 3.10 for detailed results on this. As phasing is not a�ected
by potential inference errors in this case, error rates are even lower (BEAGLE 5.1
default: one error per 5'756 heterozygous markers, BEAGLE 5.0: 6'141) but the
direction of improvement for all parameters stays the same. It should be noted
that the maize dataset considered in this study contains highly related individuals
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Table 3.2: Inference and phasing error for the 250 Pseudo S0 lines based on the KE
DH-lines for chromosome 10. * BEAGLE crashed for this dataset when
using phase-segment > 10, phase-states < 100 or phase-states > 10'000.

Parameter default range tested best inference best phasing overall impact

BEAGLE 5.1 - - default
(0.0239%)

default (2'540) -

ne 1'000'000 1 - 1'000'000 30 (0.0168%) 10 (3'206) Figure 3.36
err 0.00015 0.05 - 0.00001 0.0005 (0.0229%) 0.05 (2'556) Figure 3.38
window 40 10 - 1'000 200 (0.0179%) 200 (2'581) Figure 3.40
burnin 6 2 - 25 25 (0.0229%) 2 (2'555) Figure 3.42
iterations 12 2 - 40 default 40 (2'638) Figure 3.44
phase-states 280 100* - 10'000* 10'000 (0.0168%) 5'000 (2'675) Figure 3.47
imp-states, imp-
segment, cluster,
imp-step, imp-
nsteps

1'600, 6, 0.005,
0.1, 7

- - - only impacts UM
imputation

BEAGLE 5.0 - - default
(0.0138%)

default (2'716) -

ne 1'000'000 1 - 1'000'000 1 (0.0111%) 30'000 (3'136) Figure 3.35
err 0.0001 0.05 - 0.00001 0.005 (0.133%) 0.001 (2'747) Figure 3.37
window 40 10 - 200 100 (0.0139%) 200 (2'737) Figure 3.39
burnin 6 2 - 25 2 (0.0136%) 2 (2'748) Figure 3.41
iterations 12 2 - 40 20 (0.0135%) 40 (2'760) Figure 3.43
phase-segment 4 1 - 10* 10 (0.132%) 10 (2'758) Figure 3.45
phase-states 280 100* - 10'000* 10'000 (0.0130%) 5'000 (2'815) Figure 3.46
imp-states, imp-
segment, cluster

1'600, 6, 0.005 - - - only impacts UM
imputation

BEAGLE 4.1 - - default
(0.0345%)

default (2'617) -

niterations 5 0 - 25 25 (0.0249%) 25 (3'392) Figure 3.48
modelscale 0.8 0.5 - 5 1 (0.0198%) 1 (3'223) Figure 3.49
ne 1'000'000 1 - 1'000'000 30 (0.0325%) 30'000 (2'999) Figure 3.50

BEAGLE 4.0 - - default (0.119%) default (1'240) -
buildwindow 1'200 1 - 5'000 50 (0.0316%) 5'000 (1'618) Figure 3.51
singlescale 0.8 0.5 - 5 1.0 (0.0626%) 1.25 (1'955) Figure 3.52
nsamples 4 1 - 50 50 (0.0780%) 50 (2'308) Figure 3.53
burnin-its 5 2 - 50 50 (0.108%) 50 (1'599) Figure 3.54
phase-its 5 2 - 50 50 (0.0944%) 50 (2'320) Figure 3.55
impute-its 5 2 - 50 - - only impacts UM

imputation
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Figure 3.5: E�ect of the parameter ne on the UM imputation error rate for the
maize data, the commercial chicken line and the chicken diversity panel
in BEAGLE 5.0. Default settings are indicated by the vertical line.

and a substantial ascertainment bias towards markers with medium allele frequency
(Albrechtsen et al., 2010) which both should improve phasing accuracy. For datasets
containing less related individuals and sequence data, phasing accuracies can be
substantially worse.

3.4.3 UM Imputation quality

The algorithm used for UM imputation in BEAGLE 5.0 and 5.1 is the same, thereby
di�erences are only caused because of slightly di�erent techniques for phasing (B.
Browning, personal communication). As no phasing is required for the DH-lines
error rates never di�ered by more than 0.001% and are here reported jointly. When
performing UM imputation, error rates were much higher than in the inference case.
For all considered datasets tuning of ne was absolutely essential (Table 3.3, Figure
3.5), because individuals in the considered livestock and crop datasets are far more
related than in an outbred human population with an e�ective population size of
1'000'000 that is assumed in BEAGLE as default. In the imputation algorithm a low
value for ne is leading to a reduced probability to switch to a random node in the
haplotype cluster and should therefore be bene�cial for highly related individuals
(Browning and Browning, 2016; Browning et al., 2018). BEAGLE 4.0 does not
provide a parameter for the e�ective population size and is just assuming equidistant
markers and �xed switch rates.

All other parameter settings were tested with adapted ne, as relative e�ects were
virtually zero otherwise. Appropriate parameter settings for the other parameters
were similar to the inference case (Table 3.3) but the overall deviations from the de-
fault for buildwindow, singlescale and modelscale were slightly lower. As the number
of informative markers in a window with a set number of markers is lower than in
the inference case this also makes sense from a modeling perspective. In BEAGLE



3.4 Results 67

Table 3.3: UM imputation error for the KE DH-lines by changing a single imputing
parameter with ne = 1'000 for BEAGLE 5.0 / 5.1 and ne = 300 for
BEAGLE 4.1.

Parameter default range tested best overall impact

BEAGLE 5.0 /
5.1

- - default (3.09%) -

ne 1'000'000 1 - 1'000'000 1'000
(0.0877%)

Figure 3.5 and
3.56

err 0.01 (5.0) /
0.00098 (5.1)

0.001 - 0.00001 0.00005
(0.0877%)

Figure 3.57 and
3.58

window 40 10 - 1'000 200 (0.0868%) Figure 3.59 and
3.60

burnin 6 2 - 25 default
(0.0877%)

Figure 3.61 and
3.62

iterations 12 2 - 25 default
(0.0877%)

Figure 3.63 and
3.64

phase-segment
(5.0)

4 1 - 100 50 (0.0873%) Figure 3.65

phase-states 280 50 - 1'000 default
(0.0877%)

Figure 3.66 and
3.67

imp-states 1'600 100 - 5'000 250 (0.0873%) Figure 3.68 and
3.69

imp-segment 6 2 - 100 50 (0.0874%) Figure 3.70 and
3.71

imp-step (5.1) 0.1 0.001 - 20 0.05 (0.0876%) Figure 3.72

imp-nsteps
(5.1)

7 1 - 50 50 (0.875%) Figure 3.73

cluster 0.005 0.1 - 0.00001 0.00005
(0.0868%)

Figure 3.74 and
3.75

BEAGLE 4.1 - - default (6.59%) -

ne 1'000'000 1 - 1'000'000 300 (0.0958%) Figure 3.76

niterations 5 0 - 25 - Figure 3.78

modelscale 0.8 0.5 - 5 2 (0.0886%) Figure 3.77

BEAGLE 4.0 - - default (5.15%) -

buildwindow 1'200 1 - 2'500 100 (0.799%) Figure 3.79

singlescale 0.8 0.5 - 5 1.5 (0.188%) Figure 3.80

nsamples 4 1 - 25 2 (4.36%) Figure 3.81

burnin-its 5 2 - 50 default Figure 3.82

phase-its 5 2 - 50 25 (5.071%) Figure 3.83

impute-its 5 2 - 50 50 (0.189%) Figure 3.84
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5.0 and 5.1 there are additional parameters to control the structure of the haplo-
type cluster that are only available for UM imputation (imp-segment, imp-states,
cluster). Similar to inference, the optimized parameter settings lead to longer and
less related haplotypes to be considered jointly. Furthermore, a method to detect
identity-by-state (IBS) segments (imp-step, imp-nsteps) has been added in BEAGLE
5.1 but defaults are already adequately chosen for the maize data. After parameter
adaptation error rates in BEAGLE 5.0 and 5.1 were lowest (0.0856% / 0.0857%),
followed by BEAGLE 4.1 (0.0887%) and BEAGLE 4.0 (0.139%) (Supplementary
Table 3.13).
For both chicken datasets similar results were obtained with BEAGLE 5.0 slightly
outperforming BEAGLE 5.1 in for these sets. The interested reader is referred to
Supplementary Table 3.8 and 3.9 for detailed results for UM imputation for the
chicken panels. Overall, the relative gains by adaptation of ne for both the com-
mercial breeding line (0.774% to 0.280% in BEAGLE 5.0) and the diversity chicken
panel (3.313% to 2.484% in BEAGLE 5.0) were lower than for the maize data. The
optimal parametrization for the e�ective population for the diversity panel was high-
est (ne = 3'000). With this, the smaller gains by tuning the e�ective population
size nicely support our expectation of the e�ective population sizes of the underlying
populations. It should still be noted that especially BEAGLE 5.0 and 5.1 were very
robust to changes in the e�ective population size (Figure 3.5 and 3.56) and overall
error rates di�er by only 0.013% for an e�ective population size between ne = 1 and
ne = 10'000 for the maize dataset, indicating that the use of any reasonable value
should work here. As the default of 1'000'000 is not realistic for most livestock and
crop datasets, adaptation is necessary and critical when performing UM imputation.
For BEAGLE 4.1 there were usually no statistically signi�cant di�erences between
reasonable ne values and overall variance in error rates between runs was slightly
higher.
As one would expect a larger reference panel leads to smaller error rates for UM im-
putation (Figure 3.6). Overall, the e�ect of a larger reference panel in BEAGLE 5.0
was higher than for BEAGLE 4.1. It should still be noted that even for a reference
panel with 20 individuals error rates after parameter tuning were below 1% for the
maize data and overall error rates only reduce slightly after reaching a size of 150.
With higher amounts of overall genetic diversity, the required size of the reference
panel should be increasing (Zhang et al., 2013).

3.4.4 Comparison of reference genomes

The most commonly used reference genome in maize genetics is the dent line B73
(Schnable et al., 2009; Jiao et al., 2017). The European maize landraces tested here
are considered as �int germplasm with potential major di�erences in the physical
map (Unterseer et al., 2016). After reducing error rates of inference by choosing
appropriate parameter settings, markers with high error rates tend to be clustered
(Figure 3.7). Markers and regions with high inference error rate can be considered as
candidates for misalignment in the genetic map. We compared our results obtained
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Figure 3.6: Error rates for UM imputation depending on the size of the reference
panel in the maize data. Y-axis is log-scaled.

with B73v4 (Jiao et al., 2017) to those obtained with reference genomes of the �int
lines F7, EP1, DK105 and PE0075 (Unterseer et al., 2017). Since the array itself was
constructed using B73 as a reference (Unterseer et al., 2014) more markers can be
mapped to the B73 reference than to the other reference genomes. For those markers
mapped to both B73 and the respective �int reference genomes average error rates
for inference are reduced by 3-5% (Table 3.4). This improvement is mainly caused by
a much reduced number of markers with extremely high error rates. On average, the
overall number of markers with error rates above 10% (here referred to as: "critical"
markers) is reduced by 57%. For a detailed list of the "critical" markers for all
reference genomes mapped on the 600k array (Unterseer et al., 2014), we refer to
Supplementary Table 3.5 and 3.6. No notable di�erence in inference quality for
PE when using PE0075 as the reference genome compared to other �int references
(Supplementary Table 3.11) was found.

3.4.5 Use of a genetic map

Up to BEAGLE 4.0 all markers are assumed to be equidistant, whereas in BEA-
GLE 4.1, 5.0 and 5.1 the genetic distance between markers can be provided. On
default, the position in base pairs is converted by a ration of 100'000'000 base pairs
per Morgan. This might be realistic for human genetics but for chicken a ratio of
41'203'130 / 33'955'860 / 26'631'160 base pairs per Morgan for chromosomes 1 /
7 / 20 is more realistic (Groenen et al., 2009). However, the use of those genetic
maps without any further parameter adaptation leads to massively increased error
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Figure 3.7: Error rate per marker for the �rst 100'000 SNPs according to physical
position (starting with chromosome 1) using BEAGLE 5.0 default with
B73v4 (Jiao et al., 2017) as a reference genome.

rates. Error rates for UM imputation increased to 3.23% for the commercial line
and 15.8% for the diversity panel compared to the 0.774% and 3.313% without a
provided genetic map in BEAGLE 5.0. A potential reason for this is that other
parameters like ne and imp-segment are implicitly a�ected by the higher distance
between markers, leading to smaller segments being considered jointly in the hap-
lotype cluster. After additional �tting of ne error rates reduced to values (0.276%
/ 2.50%) which were very similar to those obtained without use of a genetic map
(0.280% / 2.48%; Supplementary Table 3.8 and 3.9).

3.4.6 Quality control using Dosage R-Squared

When performing UM imputation BEAGLE is providing the measurement Dosage
R-Squared (DR2; (Browning and Browning, 2009)) as an estimate for the uncertainty
for the imputation quality in each respective marker. When using BEAGLE 5.0 with
adapted ne, only some markers have low DR2 values and the observed error rates in
those markers are highly increased (Figure 3.8.A). Markers with DR2 values below
0.8 on average had 140 times as many imputing errors for UM imputation. Note that
no scaling for the allele frequency was performed here and no apparent correlation
between DR2 values and minor allele frequencies could be observed. In case of
no adaption of the e�ective population size, the number of markers with low DR2
values is massively increased. Even though error rates are still a higher for markers
with low DR2, the relative di�erences are much lower (18 times as many errors for
markers with DR2 < 0.8). Even more problematic for �ltering is that in contrast
to the 44 problematic markers after parameter adaptation, a total of 31'635 of the
62'986 markers in the panel have DR2 values below 0.8 (Figure 3.8.B). Results for
the commercial chicken line (Supplementary Figure 3.14) and the diversity panel
(Figure Supplementary Figure 3.15) are similar even though di�erences in DR2 are
not as distinct for adapted parameter settings.
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Table 3.4: Inference error rates using di�erent reference genomes compared to B73
for KE DH-lines. Only markers mapped on both the �int reference
genome & B73v4 (Jiao et al., 2017) are considered for "critical" markers
(error rate > 10%).

Reference
genome

F7 EP1 DK105 PE0075

Overlapping
markers to
B73v4

352'326 342'037 338'882 338'244

"Critical"
markers when
using this
map

109 113 115 114

"Critical"
markers when
using B73v4

271 264 262 262

Relative
change in
error rate

- 5.11% -3.87% -4.68% -3.32%

3.4.7 Choice of the reference panel

In case the reference population has a lot of strati�cation, the design of a good ref-
erence panel for UM imputation is more di�cult, as genetically distant individuals
may introduce more noise than relevant information to the model. When comparing
results for all considered reference datasets for UM imputation of a single subpopu-
lation it becomes apparent that UM imputation without other individuals from the
same subpopulation leads to extremely high error rates (>15%) and thus should
in practice only be performed with extreme caution. In contrast, the decision to
include other subpopulations in the reference panel is not as clear. When including
single other subpopulations in the reference panel we observe signi�cant e�ects on
the overall error rate of UM imputation. Absolute di�erences of UM imputation
error rates are between -0.307% and +0.604% with overall error rates between 1%
and 4%. For a detailed list containing all changes in error rates when including a
single other subpopulation in the reference panel, we refer to Supplementary Table
3.12. It should be noted that subpopulations with lower genetic distance to the
dataset tend to reduce the error rate and a less related subpopulation leads to an
increased error rate (Figure 3.9). For all ten subpopulations the slope of the er-
ror rate in regard to distance to the subgroup is statistically signi�cantly positive
with the main di�erence between the subpopulations being the intercept. The most
extreme case for this is subpopulation 6 (turquoise 4 in Figure 3.9; including all
wild types). For this group the inclusion of any other subpopulation in the reference
panel decreases the imputation quality and is ignored for all averages and statistics



72 3 Improving imputation quality in BEAGLE

Figure 3.8: DR2 values in relation to the obtained number of error per marker after
�tting of ne (A) and on default (B) in BEAGLE 5.0 for the maize data.
50 / 350 DH-lines were used for study / reference sample.

in this subsection. Even though SNP-based genetic distances to other subgroups are
relatively low, the time to the last common ancestor of any other subpopulation is
most likely relatively high. Overall imputation quality when using a reference panel
containing all subpopulations is worse than when using a reference panel with only
those subpopulation with below average genetic distance (Nei, 1972) to the dataset
(2.25% vs. 2.18% - Figure 3.10).
Even though results are statistically signi�cant (two-sample t-test: p-value: 0.0117),
di�erences are only minor and of limited practical relevance for most applications.
In our analysis a reference panel containing only the individuals of the same sub-
population on average lead to an UM imputation error of 2.26% with no statistically
signi�cant di�erence to reference panels containing all subpopulations. When per-
forming in-depth analysis for which regions of the dataset UM imputation quality is
improved, we observed that especially those individuals with rare variants and over-
all higher error rates bene�ted from including more samples in the reference. On the
contrary, already well imputed individuals usually had similar or slightly increased
error rates. When using a reference panel containing all those subpopulations that
individually lead to reduced error rates, average error rates are reduced to 2.06%. It
should be noted that a selection based on error rates in UM imputation is usually not
possible in practice. Nevertheless, this result demonstrates that there is potential in
the use of more sophisticated approaches than just selecting all subpopulation with
below average Nei distance (Nei, 1972) as the reference panel. For a detailed list
containing error rates for all four di�erent structures of reference panels, we refer to
Supplementary Table 3.12.
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Figure 3.9: E�ect of the inclusion of a single subpopulation in the reference panel
based on their genetic distance to the dataset for the chicken diversity
panel. Colors according to the subpopulation used as the real dataset in
Supplementary Figure 3.11. For a detailed list of subpopulation assign-
ment we refer to Supplementary Table 3.7. Subpopulation 6 (including
wild types - turquoise 4) is ignored in the regression.

3.5 Discussion and Conclusions

3.5.1 Signi�cance of improvement

When comparing error rates under di�erent parameter settings one has to keep in
mind the relevance of that optimization. A di�erence in error rates of 1% in a dataset
containing 1% missing genotypes will only result in an improved overall data quality
of 0.01% and thus might be negligible compared to other error sources like calling
errors (Unterseer et al., 2014). If those improvements would mainly occur in the
markers of interest (e.g. markers with low minor allele frequency) or the overall
share of missing positions is high (as in UM imputation), this improvement could
still be signi�cant for later steps of the analysis.
It should be noted that positions set to NA in this study are chosen at random
whereas in a real dataset there might be causal reasons like deletions, leading to
some markers with much higher missing rates. When performing imputation on
the actual NAs, we observed a higher variance in the imputed allele under di�erent
random seeds. As all considered methods always input one of the two allelic variants,
this is ignored here but it should be noted that actual error rates are probably a bit
higher than reported in this study.
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3.5.2 Genetic map and DR2

The used reference genome only mildly a�ected overall error rates in maize. As the
number of markers with extremely high error rates is reduced, we still recommend
the use of a reference genome of a more related individual. This of course requires its
existence and similar overall quality. The overall gains should not be high enough
to justify the generation of a new reference genome just for imputation. Instead
one could consider either removing critical markers from the set or use imputation
methods like LinkImpute (Money et al., 2015) that do not rely on a genetic map.
We highly recommend the use of DR2 to check validity of results obtained in BEA-
GLE 5.0 and 5.1. Firstly, observation of a high number of low values of DR2 can
be seen as an indicator of overall poor imputation quality. Secondly, one should
consider removing markers with low values for DR2 as error rates of UM imputation
are typically massively increased. Here, one has to �nd a balance between removing
potentially informative high quality markers and working with low quality markers
that could potentially lead to false positive results in later steps of an analysis. In
any case, markers that tend to have large e�ects (e.g. in a genome-wide association
study) should be checked for their DR2 value.

3.5.3 Reference panel

Without any knowledge of the genetic structure or excessive testing of genetic relat-
edness, we recommend to use all available individuals genotyped under high marker
density for the reference panel, as the BEAGLE algorithm seems to be quite good
at �ltering out irrelevant information. However, in case most of the genetic diversity
of the study sample can be represented in a subset of the individuals in a reference
panel (e.g. a reference panel containing all founder individuals), signi�cant improve-
ments to UM imputation performance can be made by excluding genetically distant
individuals. Representing a high share of the genetic diversity of a dataset however
is far more important as error rates increase massively if no genomic data of highly
related individuals is available in the reference.

3.5.4 Parameter adaptation

Overall, we can conclude that the quality for inference, UM imputation and phasing
in BEAGLE 5.0 and 5.1 was better or at least as good as in BEAGLE 4.0 and 4.1
and less tuning of parameters is necessary to obtain good performance for livestock
and crop datasets. However, even in BEAGLE 5.0 and 5.1 the adaptation of the
parameter ne is absolutely necessary when working with genetic datasets with less
diversity than a human outbred population. Especially when no parameter tuning
in BEAGLE 4.0 and 4.1 was done, one should consider re-running previous pre-
processing and quality control protocols. However, a switch from BEAGLE 5.0 to
5.1 is not necessary, nor even recommended as error rates for phasing (and thereby
inference and UM imputation) were lower in BEAGLE 5.0. It should be noted
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that all datasets in this study contain less genetic diversity than an outbred human
population and for datasets with higher genetic diversity like those of UK Biobank
(http://www.ukbiobank.ac.uk/) BEAGLE 5.1 is supposed to have around 25%
lower error rates (B. Browning, personal communications).
Especially for UM imputation and in case of heterozygous individuals an increase
of the number of iterations improved results slightly. As long as computing time is
no issue we suggest to increase the number of iterations. As the gains by a higher
number of iterations is relatively low one can also consider reducing the number of
iterations to 4 (or in case of DHs to 2) for large datasets which will dramatically
reduce computing time.
Other than in the case of ne for UM imputation, improvements in BEAGLE 5.0 and
5.1 by parameter tuning are relatively small, leading us to conclude that the use
of default settings should be enough for most applications. Especially for datasets
with relatively low genetic diversity one should consider increasing the parameters
phase-segments, imp-segments and window while reducing imp-states and ne. For
substantial changes of the imputing parameters and for maximizing the imputing
accuracy we strongly suggest to apply a testing pipeline similar to the one suggested
in the methods section. As potential gains should not be much higher than 5-10%
one has to decide based on the application if this additional e�ort is worth it. Ob-
tainable improvements in BEAGLE 4.0 and 4.1 are high but we do not recommend
to use these versions anymore. Additional bene�ts of the use of BEAGLE 5.0 and
5.1 are massively reduced computing times and memory requirements. Two poten-
tial exceptions to this are if high quality pedigree is available, as only BEAGLE 4.0
is able to incorporate pedigree data in its imputation algorithm and in case only
genotype likelihoods are available as input as BEAGLE 5.0 and 5.1 only allow for
genotypes as input.
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Figure 3.10: Comparison of error rates of UM imputation for di�erent reference pan-
els for the di�erent subpopulations in the chicken diversity panel. Y-
axis is log-scaled. For a detailed list on which individual is assigned to
which subpopulation we refer to Supplementary Table 3.7.
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3.6 Supplementary Material

The numbering of the Supplementary material corresponds to the order in which
they are listed in this section.

3.6.1 Supplementary tables

As both Table S2 and Table S3 of the submitted manuscript contain lists of the
"critical" markers for Kemater Landmais Gelb and Petkuser Ferdinand Rot for the
di�erent reference panels (B73, F7, EP1, DK105, PE0075). As both lists contain
more than 700 SNPs each, they are not displayed here. For similar reason Table
S8 that is containing the subpopulation assignment for each of the 1'810 chicken is
not displayed here. Table captions are still provided in Table 3.5, 3.6 and 3.7. The
interested reader is referred to FigShare (https://gsajournals.figshare.com/s/
4c6ceaa7fe834f0700a3) for the complete �les.

Table 3.5: List of "critical" markers for Kemater Landmais Gelb using di�erent ref-
erence genomes.

Table 3.6: List of "critical" markers for Petkuser Ferdinand Rot using di�erent ref-
erence genomes.

Table 3.7: Assignments to subpopulations for the chicken diversity panel based on
Nei standard genetic distances (Nei, 1972).

https://gsajournals.figshare.com/s/4c6ceaa7fe834f0700a3
https://gsajournals.figshare.com/s/4c6ceaa7fe834f0700a3
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Table 3.8: UM imputation error for the commercial breeding line in chicken by
changing a single imputing parameter with ne = 100 for BEAGLE 5.1, ne
= 300 for BEAGLE 5.0 and ne = 10'000 for BEAGLE 4.1. * BEAGLE
crashed for this dataset when using phase-segment > 10, phase-states <
100 or imp-step > 5.

Parameter default range tested best overall impact

BEAGLE 5.1 - - default
(0.774%)

-

ne 1'000'000 1 - 1'000'000 100 (0.282%) Figure 3.56

err 0.00043 0.01 - 0.00001 0.001 (0.280%) Figure 3.58

window 40 5 - 200 10 (0.260%) Figure 3.60

burnin 6 2 - 50 50 (0.282%) Figure 3.62

iterations 12 2 - 50 50 (0.282%) Figure 3.64

phase-states 280 100* - 1'000 default Figure 3.67

imp-states 1'600 100 - 5'000 default Figure 3.69

imp-segment 6 2 - 100 20 (0.282%) Figure 3.71

imp-step 0.1 0.01 - 5* 5 (0.270%) Figure 3.72

imp-nsteps 7 1 - 50 50 (0.282%) Figure 3.73

cluster 0.005 0.1 - 0.0001 default Figure 3.75

BEAGLE 5.0 - - default
(0.774%)

-

ne 1'000'000 1 - 1'000'000 300 (0.280%) Figure 3.5

err 0.0001 0.01 - 0.00001 0.005 (0.276%) Figure 3.57

window 40 5 - 200 10 (0.267%) Figure 3.59

burnin 6 2 - 50 50 (0.279%) Figure 3.61

iterations 12 2 - 50 50 (0.279%) Figure 3.63

phase-segment 4 1-10* 10 (0.279%) Figure 3.65

phase-states 280 100* - 1'000 500 (0.280%) Figure 3.66

imp-states 1'600 100 - 5'000 1'000 (0.278%) Figure 3.68

imp-segment 6 2 - 100 20 (0.280%) Figure 3.70

cluster 0.005 0.1 - 0.0001 default Figure 3.74

BEAGLE 4.1 - - default
(0.955%)

-

ne 1'000'000 1 - 1'000'000 30'000
(0.277%)

Figure 3.76

niterations 5 0 - 25 50 (0.276%) Figure 3.78

modelscale 0.8 0.5 - 5 1.5 (0.276%) Figure 3.77

BEAGLE 4.0 - - default
(0.286%)

-

buildwindow 1'200 1 - 2'500 default Figure 3.79

singlescale 0.8 0.5 - 5 1.25 (0'281%) Figure 3.80

nsamples 4 1 - 25 25 (0.276%) Figure 3.81

burnin-its 5 2 - 50 50 (0.282%) Figure 3.82

phase-its 5 2 - 50 50 (0.278%) Figure 3.83

impute-its 5 2 - 50 50 (0.268%) Figure 3.84
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Table 3.9: UM imputation error for the diversity panel in chicken by changing a
single imputing parameter with ne = 300 for BEAGLE 5.1, ne = 3'000
for BEAGLE 5.0 and ne = 10'000 for BEAGLE 4.1. * BEAGLE crashed
for this dataset when using phase-segment > 10 or phase-states < 100.

Parameter default range tested best overall impact

BEAGLE 5.1 - - default
(3.399%)

-

ne 1'000'000 1 - 1'000'000 300 (2.572%) Figure 3.56

err 0.00043 0.01 - 0.00001 0.001 (2.542%) Figure 3.58

window 40 5 - 200 5 (2.543%) Figure 3.60

burnin 6 2 - 50 50 (2.568%) Figure 3.62

iterations 12 2 - 50 50 (2.549%) Figure 3.64

phase-states 280 10* - 1'000 1'000 (2.552%) Figure 3.67

imp-states 1'600 100 - 5'000 250 (2.552%) Figure 3.69

imp-segment 6 2 - 100 50 (2.542%) Figure 3.71

imp-step 0.1 0.005 - 5 0.01 (2.550%) Figure 3.72

imp-nsteps 7 1 - 50 2 (2.569%) Figure 3.73

cluster 0.005 0.1 - 0.0001 default Figure 3.75

BEAGLE 5.0 - - default
(3.313%)

-

ne 1'000'000 1 - 1'000'000 3'000 (2.484%) Figure 3.5

err 0.0001 0.01 - 0.00001 0.005 (2.454%) Figure 3.57

window 40 10 - 200 10 (2.479%) Figure 3.59

burnin 6 2 - 50 50 (2.464%) Figure 3.61

iterations 12 2 - 50 50 (2.472%) Figure 3.63

phase-segment 4 1-10* 10 (2.457%) Figure 3.65

phase-states 280 10* - 1'000 100 (2.475%) Figure 3.66

imp-states 1'600 100 - 5'000 250 (2.483%) Figure 3.68

imp-segment 6 2 - 100 50 (2.471%) Figure 3.70

cluster 0.005 0.1 - 0.0001 default Figure 3.74

BEAGLE 4.1 - - default
(3.695%)

-

ne 1'000'000 1 - 1'000'000 1'000 (2.722%) Figure 3.76

niterations 5 0 - 50 50 (2.592%) Figure 3.78

modelscale 0.8 0.5 - 5 default Figure 3.77

BEAGLE 4.0 - - default
(4.207%)

-

buildwindow 1'200 1 - 2'500 50 (3.962%) Figure 3.79

singlescale 0.8 0.5 - 5 default Figure 3.80

nsamples 4 1 - 25 25 (3.892%) Figure 3.81

burnin-its 5 2 - 50 50 (4.169%) Figure 3.82

phase-its 5 2 - 50 50 (3.928%) Figure 3.83

impute-its 5 2 - 50 50 (3.820%) Figure 3.84



80 3 Improving imputation quality in BEAGLE

Table 3.10: Phasing error, as number of heterozygous markers per switch error, for
Pseudo S0 generated based on the KE DH-lines by changing a single
imputing parameter.

Parameter default range tested best

BEAGLE 5.1 - - default (5'756)

ne 1'000'000 1 - 1'000'000 1 (8'171)

err 0.0001 0.001 - 0.00001 0.0005 (5'768)

window 40 10 - 1'000 200 (6'147)

burnin 6 2 - 50 default

iterations 12 2 - 40 40 (5'938)

phase-states 280 100 - 10'000 10'000 (6'227)

imp-states, imp-
segment, cluster,
imp-step, imp-
nsteps

1'600, 6, 0.005, 0.1,
7

- only impacts UM
imputation

BEAGLE 5.0 - - default (6'141)

ne 1'000'000 1 - 1'000'000 10'000 (9'008)

err 0.0001 0.001 - 0.00001 0.005 (6'203)

window 40 10 - 200 default

burnin 6 2 - 50 2 (6'412)

iterations 12 2 - 40 40 (6'239)

phase-segment 4 1 - 10 10 (6'805)

imp-states, imp-
segment, cluster

1'600, 6, 0.005 - only impacts UM
imputation

BEAGLE 4.1 - - default (5'876)

niterations 5 0 - 50 50 (6'651)

modelscale 0.8 0.5 - 5 1.25 (10'643)

ne 1'000'000 1 - 1'000'000 -

BEAGLE 4.0 - - default (2'466)

buildwindow 1'200 1 - 2'500 2'500 (2'588)

singlescale 0.8 0.5 - 5 1.25 (3'624)

nsamples 4 1 - 50 50 (4'392)

burnin-its 5 2 - 50 50 (3'082)

phase-its 5 2 - 50 25 (2'644)

impute-its 5 2 - 50 50 (3'228)
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Table 3.11: Inference error rates using di�erent reference genomes compared to B73
for PE DH-lines. Only markers mapped on both the �int reference
genome & B73v4 (Jiao et al., 2017) are considered for "critical" markers
(error rate > 10%).

Reference
genome

F7 EP1 DK105 PE0075

Overlapping
markers to
B73v4

357'757 357'191 353'834 352'514

"Critical"
markers when
using this
map

96 118 114 107

"Critical"
markers when
using B73v4

239 236 233 233

Relative
change in
error rate

- 6.94% -0.98% -3.84% -1.90%

Table 3.12: Error rates for UM imputation for di�erent reference panels, including
A (same subpopulation), C (all other subpopulation), D (below average
Nei distant subpopulations), E (All subpopulation with reduced error
rate when testing A + B compared to A as the reference panel).

SubpopulationA A + C A + D A + E Population
in E

1 2.345% 1.932% 2.050% 1.909% 2, 5, 7, 9
2 2.280% 2.172% 2.020% 1.931% 1, 7
3 1.324% 1.498% 1.352% 1.168% 1
4 1.713% 1.794% 1.846% 1.697% 7
5 2.225% 2.456% 2.245% 2.110% 7, 8, 9
6 9.162% 9.858% 9.737% 9.162% -
7 3.089% 2.571% 2.652% 2.587% 1, 2, 6, 8, 9
8 1.630% 1.831% 1.609% 1.452% 5, 7, 9
9 3.295% 3.400% 3.256% 3.194% 7, 8
10 2.474% 2.585% 2.574% 2.479% 4, 6, 7, 9
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Table 3.13: Minimal obtained error rates and used parameter settings for inference
and UM imputation. Deviations from the ideal single parameter settings
are caused by BEAGLE crashing when changing parameters jointly.

Dataset Imputation
type

BEAGLE ver-
sion

Error rate Parameter settings

Maize DH-lines Inference 4.0 0.0307% buildwindow = 25, nsamples = 25
Maize DH-lines Inference 4.1 0.0436% modelscale = 1.5, ne = 10'000
Maize DH-lines Inference 5.0 0.0132% window = 150, ne = 10'000, phase-

segment = 6, phase-states = 150
Maize DH-lines Inference 5.1 0.0122% window = 200, ne = 100'000, err = 0.001
Maize Pseudo
S0

Inference 4.0 0.0193% (2'670) buildwindow = 50, nsamples = 50, burnin-
its = 50, phase-its = 50

Maize Pseudo
S0

Inference 4.1 0.0168% (3'563) modelscale = 1, ne = 30, niterations = 25

Maize Pseudo
S0

Inference 5.0 0.0109% (3'429) ne = 1, err = 0.0005, window = 100,
burnin = 2, phase-states = 5'000

Maize Pseudo
S0

Inference 5.1 0.0148% (3'438) ne = 30, err = 0.005, window = 200,
burnin = 2, phase-states = 25'000

Maize Pseudo
S0

Phasing 4.0 0.0644% (4'180) buildwindow = 5'000, nsamples = 50,
burnin-its = 50, phase-its = 50

Maize Pseudo
S0

Phasing 4.1 0.0177% (3'684) modelscale = 1, ne = 30'000, niterations
= 25

Maize Pseudo
S0

Phasing 5.0 0.0109% (3'457) ne = 30'000, err = 0.001, window = 200,
burnin = 2, phase-states = 500, iterations
= 40

Maize Pseudo
S0

Phasing 5.1 0.0159% (3'524) ne = 30, err = 0.05, window = 200, burnin
= 2, phase-states = 5'000, iterations = 40

Maize DH-lines UM imputation 4.0 0.139% singlescale = 1.5, impute-its = 50, phase-
its = 50

Maize DH-lines UM imputation 4.1 0.0887% modelscale = 1.5, ne = 300
Maize DH-lines UM imputation 5.0 0.0856% ne = 1'000, window = 200, phase-segment

= 50, imp-states = 250, imp-segment = 50,
cluster = 0.00005

Maize DH-lines UM imputation 5.1 0.0857% ne = 1'000, window = 200, imp-nsteps=
50, imp-states = 250, imp-segment = 50,
cluster = 0.00005

Commercial
chicken

UM imputation 4.0 0.262% nsamples=25, singlescale = 1.25, burnin-
its = 50, phase-its = 50, impute-its = 50

Commercial
chicken

UM imputation 4.1 0.274% ne = 30'000, niterations = 50, modelscale
= 1.5

Commercial
chicken

UM imputation 5.0 0.261% ne = 300, err = 0.005 window = 10, burnin
= 50, iterations = 50, phase-segment = 10,
imp-states = 1'000

Commercial
chicken

UM imputation 5.1 0.252% ne = 100, err = 0.001, window = 10,
burnin = 50, iterations = 50, imp-step=5,
imp-nsteps=50

Chicken diver-
sity panel

UM imputation 4.0 3.302% buildwindow = 50, nsamples = 25, burnin-
its = 50, phase-its = 50, impute-its = 50

Chicken diver-
sity panel

UM imputation 4.1 2.592% ne = 1'000, niterations = 50

Chicken diver-
sity panel

UM imputation 5.0 2.409% ne = 3'000, err = 0.005, window = 10,
burnin = 50, iterations = 50, phase-
segment = 8, phase-states = 125, imp-
segment = 50

Chicken diver-
sity panel

UM imputation 5.1 2.525% ne = 300, err = 0.001, window = 20,
burnin = 50, iterations = 50, imp-states
= 800, imp-segment = 10, imp-nsteps =
50
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Figure 3.11: Neighbor-joining-tree for ten subpopulations in the chicken diversity
panel. For a detailed list on which individual is assigned to which
subpopulation we refer to Supplementary Table 3.7.

3.6.2 Supplementary �gures
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Figure 3.12: Relationship between region error rate and LD (r2) on chromosome 9 in
the maize data. Outliers are corrected for by using a Nadaraya-Watson-
estimator (Nadaraya, 1964), using a Gaussian kernel and a bandwidth
of 3'000 markers in both cases.

Figure 3.13: Total number of errors per marker (50 repetitions) for BEAGLE 4.0
using buildwindow of 10 and 1200 (default) in the maize data.
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Figure 3.14: DR2 values in relation to the obtained number of error per marker after
�tting of ne (A) and on default (B) in BEAGLE 5.0 for the commercial
chicken line. 100 / 788 lines were used for study / reference sample.

Figure 3.15: DR2 values in relation to the obtained number of error per marker
after �tting of ne (A) and on default (B) in BEAGLE 5.0 for the chicken
diversity panel. 100 / 1710 lines were used for study / reference sample.
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Figure 3.16: E�ect of the parameter ne on the inference error rates for the maize
data in BEAGLE 5.0. Default settings are indicated by the vertical
line.

Figure 3.17: E�ect of the parameter ne on the inference error rates for the maize
data in BEAGLE 5.1. Default settings are indicated by the vertical
line.
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Figure 3.18: E�ect of the parameter err on the inference error rates for the maize
data in BEAGLE 5.0. Default settings are indicated by the vertical
line.

Figure 3.19: E�ect of the parameter err on the inference error rates for the maize
data in BEAGLE 5.1. Default settings are indicated by the vertical
line.
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Figure 3.20: E�ect of the parameter window on the inference error rates for the maize
data in BEAGLE 5.0. Default settings are indicated by the vertical line.

Figure 3.21: E�ect of the parameter window on the inference error rates for the maize
data in BEAGLE 5.1. Default settings are indicated by the vertical line.
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Figure 3.22: E�ect of the parameter phase-stages on the inference error rates for
the maize data in BEAGLE 5.0. Default settings are indicated by the
vertical line.

Figure 3.23: E�ect of the parameter phase-stages on the inference error rates for
the maize data in BEAGLE 5.1. Default settings are indicated by the
vertical line.
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Figure 3.24: E�ect of the parameter phase-stages on the inference error rates for
the maize data in BEAGLE 5.0. Default settings are indicated by the
vertical line.

Figure 3.25: E�ect of the parameter phase-stages on the inference error rates for
the maize data in BEAGLE 5.1. Default settings are indicated by the
vertical line.
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Figure 3.26: E�ect of the parameter phase-segment on the inference error rates for
the maize data in BEAGLE 5.0. Default settings are indicated by the
vertical line.

Figure 3.27: E�ect of the parameter phase-stages on the inference error rates for
the maize data in BEAGLE 5.0. Default settings are indicated by the
vertical line.
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Figure 3.28: E�ect of the parameter phase-stages on the inference error rates for
the maize data in BEAGLE 5.1. Default settings are indicated by the
vertical line.

Figure 3.29: E�ect of the parameter modelscale on the inference error rates for the
maize data in BEAGLE 4.1. Default settings are indicated by the
vertical line.
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Figure 3.30: E�ect of the parameter ne on the inference error rates for the maize
data in BEAGLE 4.1. Default settings are indicated by the vertical
line.

Figure 3.31: E�ect of the parameter buildwindow on the inference error rates for
the maize data in BEAGLE 4.0. Default settings are indicated by the
vertical line.
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Figure 3.32: E�ect of the parameter singlescale on the inference error rates for the
maize data in BEAGLE 4.0. Default settings are indicated by the
vertical line.

Figure 3.33: E�ect of the parameter nsamples on the inference error rates for the
maize data in BEAGLE 4.0. Default settings are indicated by the
vertical line.
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Figure 3.34: E�ect of the parameter burnin-its on the inference error rates for the
maize data in BEAGLE 4.0. Default settings are indicated by the
vertical line.
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Figure 3.35: E�ect of the parameter ne on the inference and phasing error rates for
chromosome 10 of 250 Pseudo S0 generated based on the maize data in
BEAGLE 5.0. Default settings are indicated by the vertical line.

Figure 3.36: E�ect of the parameter ne on the inference and phasing error rates for
chromosome 10 of 250 Pseudo S0 generated based on the maize data in
BEAGLE 5.1. Default settings are indicated by the vertical line.
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Figure 3.37: E�ect of the parameter err on the inference and phasing error rates for
chromosome 10 of 250 Pseudo S0 generated based on the maize data in
BEAGLE 5.0. Default settings are indicated by the vertical line.

Figure 3.38: E�ect of the parameter err on the inference and phasing error rates for
chromosome 10 of 250 Pseudo S0 generated based on the maize data in
BEAGLE 5.1. Default settings are indicated by the vertical line.
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Figure 3.39: E�ect of the parameter window on the inference and phasing error rates
for chromosome 10 of 250 Pseudo S0 generated based on the maize data
in BEAGLE 5.0. Default settings are indicated by the vertical line.

Figure 3.40: E�ect of the parameter window on the inference and phasing error rates
for chromosome 10 of 250 Pseudo S0 generated based on the maize data
in BEAGLE 5.1. Default settings are indicated by the vertical line.
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Figure 3.41: E�ect of the parameter burnin on the inference and phasing error rates
for chromosome 10 of 250 Pseudo S0 generated based on the maize data
in BEAGLE 5.0. Default settings are indicated by the vertical line.

Figure 3.42: E�ect of the parameter burnin on the inference and phasing error rates
for chromosome 10 of 250 Pseudo S0 generated based on the maize data
in BEAGLE 5.1. Default settings are indicated by the vertical line.
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Figure 3.43: E�ect of the parameter iterations on the inference and phasing error
rates for chromosome 10 of 250 Pseudo S0 generated based on the maize
data in BEAGLE 5.0. Default settings are indicated by the vertical line.

Figure 3.44: E�ect of the parameter iterations on the inference and phasing error
rates for chromosome 10 of 250 Pseudo S0 generated based on the maize
data in BEAGLE 5.1. Default settings are indicated by the vertical line.
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Figure 3.45: E�ect of the parameter phase-segment on the inference and phasing
error rates for chromosome 10 of 250 Pseudo S0 generated based on
the maize data in BEAGLE 5.0. Default settings are indicated by the
vertical line.

Figure 3.46: E�ect of the parameter phase-states on the inference and phasing error
rates for chromosome 10 of 250 Pseudo S0 generated based on the maize
data in BEAGLE 5.0. Default settings are indicated by the vertical line.
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Figure 3.47: E�ect of the parameter phase-states on the inference and phasing error
rates for chromosome 10 of 250 Pseudo S0 generated based on the maize
data in BEAGLE 5.1. Default settings are indicated by the vertical line.

Figure 3.48: E�ect of the parameter niterations on the inference and phasing error
rates for chromosome 10 of 250 Pseudo S0 generated based on the maize
data in BEAGLE 4.1. Default settings are indicated by the vertical line.
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Figure 3.49: E�ect of the parameter modelscale on the inference and phasing error
rates for chromosome 10 of 250 Pseudo S0 generated based on the maize
data in BEAGLE 4.1. Default settings are indicated by the vertical line.

Figure 3.50: E�ect of the parameter ne on the inference and phasing error rates for
chromosome 10 of 250 Pseudo S0 generated based on the maize data in
BEAGLE 4.1. Default settings are indicated by the vertical line.
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Figure 3.51: E�ect of the parameter buildwindow on the inference and phasing error
rates for chromosome 10 of 250 Pseudo S0 generated based on the maize
data in BEAGLE 4.0. Default settings are indicated by the vertical line.

Figure 3.52: E�ect of the parameter singlescale on the inference and phasing error
rates for chromosome 10 of 250 Pseudo S0 generated based on the maize
data in BEAGLE 4.0. Default settings are indicated by the vertical line.
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Figure 3.53: E�ect of the parameter nsamples on the inference and phasing error
rates for chromosome 10 of 250 Pseudo S0 generated based on the maize
data in BEAGLE 4.0. Default settings are indicated by the vertical line.

Figure 3.54: E�ect of the parameter burnin-its on the inference and phasing error
rates for chromosome 10 of 250 Pseudo S0 generated based on the maize
data in BEAGLE 4.0. Default settings are indicated by the vertical line.
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Figure 3.55: E�ect of the parameter phase-its on the inference and phasing error
rates for chromosome 10 of 250 Pseudo S0 generated based on the maize
data in BEAGLE 4.0. Default settings are indicated by the vertical line.
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Figure 3.56: E�ect of the parameter ne on the UM imputation error rate for the
maize data, the commercial chicken line and the chicken diversity panel
in BEAGLE 5.1. Default settings are indicated by the vertical line.

Figure 3.57: E�ect of the parameter err on the UM imputation error rate for the
maize data, the commercial chicken line and the chicken diversity panel
in BEAGLE 5.0. Default settings are indicated by the vertical line.
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Figure 3.58: E�ect of the parameter err on the UM imputation error rate for the
maize data, the commercial chicken line and the chicken diversity panel
in BEAGLE 5.1. Default settings are indicated by the vertical lines
(black for chicken, red for maize).

Figure 3.59: E�ect of the parameter window on the UM imputation error rate for
the maize data, the commercial chicken line and the chicken diversity
panel in BEAGLE 5.0. Default settings are indicated by the vertical
line.
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Figure 3.60: E�ect of the parameter window on the UM imputation error rate for
the maize data, the commercial chicken line and the chicken diversity
panel in BEAGLE 5.1. Default settings are indicated by the vertical
line.

Figure 3.61: E�ect of the parameter burnin on the UM imputation error rate for the
maize data, the commercial chicken line and the chicken diversity panel
in BEAGLE 5.0. Default settings are indicated by the vertical line.
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Figure 3.62: E�ect of the parameter burnin on the UM imputation error rate for the
maize data, the commercial chicken line and the chicken diversity panel
in BEAGLE 5.1. Default settings are indicated by the vertical line.

Figure 3.63: E�ect of the parameter iterations on the UM imputation error rate for
the maize data, the commercial chicken line and the chicken diversity
panel in BEAGLE 5.0. Default settings are indicated by the vertical
line.
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Figure 3.64: E�ect of the parameter iterations on the UM imputation error rate for
the maize data, the commercial chicken line and the chicken diversity
panel in BEAGLE 5.1. Default settings are indicated by the vertical
line.

Figure 3.65: E�ect of the parameter phase-segment on the UM imputation error
rate for the maize data, the commercial chicken line and the chicken
diversity panel in BEAGLE 5.0. Default settings are indicated by the
vertical line.
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Figure 3.66: E�ect of the parameter phase-states on the UM imputation error rate
for the maize data, the commercial chicken line and the chicken diversity
panel in BEAGLE 5.0. Default settings are indicated by the vertical
line.

Figure 3.67: E�ect of the parameter phase-states on the UM imputation error rate
for the maize data, the commercial chicken line and the chicken diversity
panel in BEAGLE 5.1. Default settings are indicated by the vertical
line.
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Figure 3.68: E�ect of the parameter imp-states on the UM imputation error rate for
the maize data, the commercial chicken line and the chicken diversity
panel in BEAGLE 5.0. Default settings are indicated by the vertical
line.

Figure 3.69: E�ect of the parameter imp-states on the UM imputation error rate for
the maize data, the commercial chicken line and the chicken diversity
panel in BEAGLE 5.1. Default settings are indicated by the vertical
line.
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Figure 3.70: E�ect of the parameter imp-segment on the UM imputation error rate
for the maize data, the commercial chicken line and the chicken diversity
panel in BEAGLE 5.0. Default settings are indicated by the vertical
line.

Figure 3.71: E�ect of the parameter imp-segment on the UM imputation error rate
for the maize data, the commercial chicken line and the chicken diversity
panel in BEAGLE 5.1. Default settings are indicated by the vertical
line.
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Figure 3.72: E�ect of the parameter imp-step on the UM imputation error rate for
the maize data, the commercial chicken line and the chicken diversity
panel in BEAGLE 5.1. Default settings are indicated by the vertical
line.

Figure 3.73: E�ect of the parameter imp-nsteps on the UM imputation error rate for
the maize data, the commercial chicken line and the chicken diversity
panel in BEAGLE 5.1. Default settings are indicated by the vertical
line.
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Figure 3.74: E�ect of the parameter cluster on the UM imputation error rate for the
maize data, the commercial chicken line and the chicken diversity panel
in BEAGLE 5.0. Default settings are indicated by the vertical line.

Figure 3.75: E�ect of the parameter cluster on the UM imputation error rate for the
maize data, the commercial chicken line and the chicken diversity panel
in BEAGLE 5.1. Default settings are indicated by the vertical line.
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Figure 3.76: E�ect of the parameter ne on the UM imputation error rate for the
maize data, the commercial chicken line and the chicken diversity panel
in BEAGLE 4.1. Default settings are indicated by the vertical line.

Figure 3.77: E�ect of the parameter modelscale on the UM imputation error rate for
the maize data, the commercial chicken line and the chicken diversity
panel in BEAGLE 4.1. Default settings are indicated by the vertical
line.
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Figure 3.78: E�ect of the parameter niterations on the UM imputation error rate for
the maize data, the commercial chicken line and the chicken diversity
panel in BEAGLE 4.1. Default settings are indicated by the vertical
line.

Figure 3.79: E�ect of the parameter buildwindow on the UM imputation error rate
for the maize data, the commercial chicken line and the chicken diversity
panel in BEAGLE 4.0. Default settings are indicated by the vertical
line.
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Figure 3.80: E�ect of the parameter singlescale on the UM imputation error rate for
the maize data, the commercial chicken line and the chicken diversity
panel in BEAGLE 4.0. Default settings are indicated by the vertical
line.

Figure 3.81: E�ect of the parameter nsamples on the UM imputation error rate for
the maize data, the commercial chicken line and the chicken diversity
panel in BEAGLE 4.0. Default settings are indicated by the vertical
line.
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Figure 3.82: E�ect of the parameter burnin-its on the UM imputation error rate for
the maize data, the commercial chicken line and the chicken diversity
panel in BEAGLE 4.0. Default settings are indicated by the vertical
line.

Figure 3.83: E�ect of the parameter phase-its on the UM imputation error rate for
the maize data, the commercial chicken line and the chicken diversity
panel in BEAGLE 4.0. Default settings are indicated by the vertical
line.
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Figure 3.84: E�ect of the parameter impute-its on the UM imputation error rate for
the maize data, the commercial chicken line and the chicken diversity
panel in BEAGLE 4.0. Default settings are indicated by the vertical
line.
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4 MoBPS - Modular Breeding

Program Simulator

"An idea not coupled with action will never get any bigger than the
brain cell it occupied."

Arnold Glasow

This chapter contains the manuscript "MoBPS - Modular Breeding Program Sim-
ulator" that is currently in review at the journal G3: Genes, Genome, Genet-
ics. For reasons of uniformity in this thesis, the journal style is not used in this
chapter. The manuscript is an application note for the R-package MoBPS (R
Core Team, 2017; Pook et al., 2018). For an overview of exemplary simulations
that can be performed the interested reader is referred to Chapter 5.3 and 5.4.
The current version of the R-package and an in-depth user manual is available at
https://github.com/tpook92/MoBPS and Supplementary B.

MoBPS: R-package

This work is a joined work of Torsten Pook1,2, Martin Schlather2,3 and Henner
Simianer1,2.
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the associated R-package (C parts written by MS), wrote the initial manuscript and
led the revision of the manuscript.
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4.1 Abstract

The R-package MoBPS provides a computationally e�cient and �exible framework
to simulate complex breeding programs and compare their economic and genetic
impact. Simulations are performed on the base of individuals and haplotypes are
calculated on-the-�y by only saving founder haplotypes, points of recombination and
mutations. MoBPS utilizes a highly e�cient implementation with bit-wise storage
of data and matrix multiplications from the associated R-package miraculix allow-
ing to handle large scale populations. The modular structure of MoBPS allows to
combine rather coarse simulations, as needed to generate founder populations, with
a very detailed modeling of todays' complex breeding programs, making use of all
available biotechnologies. MoBPS provides pre-implemented functions for common
breeding practices such as optimum genetic contributions and single-step GBLUP
but also allows the user to replace certain steps with personalized and/or self-written
solutions.

4.2 Introduction

Breeding programs aim at improving the genetic properties of livestock and crop
populations w.r.t. productivity, �tness and adaptation. Progress towards the target
is limited by the available resources, but also negative e�ects, such as inbreeding
depression or health issues, have to be avoided or at least controlled. Hence, the
allocation of resources in a breeding program is a complex optimization problem.
Additionally, population history, such as �uctuating population sizes and selection
pressures, has an impact on the current genomic architecture and thus the potential
for future improvement.
Over the years a variety of simulation tools have been developed to assist breeders
to evaluate and optimize their breeding programs. A general problem of simulation
studies is that the underlying genomic processes are highly complex and have to be
simpli�ed for modeling. In addition, users often have rather di�erent objectives in
mind when setting up their simulation studies. Since tools often do not provide the
necessary �exibility to execute the speci�c breeding actions and/or it is not possible
to export all necessary outputs, this commonly leads to the use of self-developed
solutions that tend to be more error-prone, less sophisticated and computationally
ine�cient. The functionality of existing software ranges from cohort based deter-
ministic simulation that relies on expected gains like ZPLAN+ (Täubert et al., 2010)
to applications on the base of the stochastic simulation of single individuals such
as QMSim (Sargolzaei and Schenkel, 2009) and AlphaSim (Faux et al., 2016). The
functionality of each of these tools highly depends on the intended use. ZPLAN+
(Täubert et al., 2010) focuses on the economic impact from a macro-perspective.
Since analytic formulas for cohorts are required, it has limitations when simulat-
ing complex mating schemes or when focusing on other quantities than genetic or
economic gain. QMSim (Sargolzaei and Schenkel, 2009) is able to simulate each



4.3 Methods 125

individual meiosis but is limited in the options for the design of the breeding pro-
gram itself. As QMSim is mostly designed for population genetic studies, a typical
application of the tool is the generation of a historical population, often followed by
self-developed solution in later steps. On the contrary, AlphaSim (Faux et al., 2016)
provides a lot of �exibility in term of the design of the breeding program, especially
for plant breeding and when the number of cohorts in the breeding program is small.
However, AlphaSim lacks the e�ciency and �exibility to simulate complex and large
scale populations.
Our goal was to develop a tool that combines the simulation of a historical population
and the evaluation of a subsequent complex breeding program in a computationally
e�cient way. The Modular Breeding Program Simulator (MoBPS) is not only �exi-
ble in terms of parameters and design of breeding programs, but also allows the user
to replace standard procedures of the package with own ones.

4.3 Methods

Simulations in MoBPS are ultimately based on the simulation of single individu-
als. In principle, this allows the user to control each singular mating and modify
recombination or mutation rates for the respective meiosis. Breeding programs are
constructed in a modular form as a combination of cohorts (Hill, 1974), representing
a group of contemporary individuals with similar characteristics, and transforma-
tions, which link one or several parent cohorts to a child cohort. Examples for such
transformations are aging, selection, or reproduction, and each transformation re-
�ects a set of rules how the characteristics of the parent cohort(s) are transformed
into the characteristics of the child cohort. Cohorts and transformations are de�ned
in a generic way and are parametrized, so that any breeding program of arbitrary
complexity can be modeled as a suitable sequence of cohorts and transformations.
All data for a population is stored in a list that contains general and individual
information. The general part provides information on the underlying genetics like
the physical position of each marker, allelic variants or structure of the underlying
genetic traits. The individual part contains information that is speci�c to the indi-
vidual. Haplotypes are stored for founder individuals only. For all other individuals
only points of recombination and mutation and their genetic origins are stored and
haplotypes are derived on-the-�y. Therefore, the required memory is minimized and
only increases slightly with increasing marker density. When thousands of genera-
tions are simulated it is advisable to classify additional generations as new founders
to reduce the number of recombinations and mutations to be stored in subsequent
generations.
Simulation of multiple correlated traits with and without underlying QTL is sup-
ported. Classical additive, dominant and epistatic or pleiotropic QTL can be de�ned
and any e�ect structure of multiple interacting loci is supported. Each locus has to be
assigned with a position in Morgan and di�erent recombination rates for subgroups
(e.g. males/females) are supported. Information on the number of markers can be
manually entered or imported via a database (Ensemble, (Zerbino et al., 2017)),
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a map-�le (Purcell et al., 2007) or a vcf-�le (Danecek et al., 2011). For common
species, exemplary map �les are provided in the associated package MoBPSmaps
(Pook, 2019b). Genotype data for a base population can be imported via PLINK
(Purcell et al., 2007) and/or vcf-format (Danecek et al., 2011), sampled internally or
generated by executing prior simulation in MoBPS and/or other tools (Chen et al.,
2009; Sargolzaei and Schenkel, 2009) to generate the required population structure.
All breeding actions performed in the simulation can be tracked and assigned with
costs to derive the expenses of the program. Di�erent breeding programs can be
compared in terms of their economic revenue or other target functions (e.g. devel-
opment of the inbreeding rate) one is interested in.
Common methods for selection such as optimal genetic contributions (Meuwissen,
1997) are implemented and a variety of di�erent packages for breeding value esti-
mation can be switched on. This includes BGLR (Pérez and de los Campos, 2014),
sommer (Covarrubias-Pazaran, 2016) and rrBLUP (Endelman, 2011), as well as an
e�cient implementation for solving the mixed model (Henderson, 1975) in the tra-
ditional GBLUP model (Meuwissen et al., 2001; VanRaden, 2008) that is assuming
known heritability and is using the R-package RandomFieldsUtils (Schlather et al.,
2019b) for the matrix inversion. Inputs for these packages such as the di�erent
pedigree and genomic relationship matrices (VanRaden, 2008; Legarra et al., 2014;
Martini et al., 2017) can be derived via highly e�cient and fully-parallelized bit-wise
matrix multiplications (R-package miraculix (Schlather et al., 2019a)). Non of the
mentioned packages, however, is required to execute simulations in MoBPS. In par-
ticular all functionality of the MoBPS R-package is still available when miraculix is
not installed, with the downside of higher computing times and memory demands.
The simulations in MoBPS are based on two main functions: creating.diploid() and
breeding.diploid(). Here, creating.diploid() initializes the base-line population and
breeding.diploid() performs breeding actions on an existing population list. As a
simple example consider the following script:

1 l i b r a r y (MoBPS)
2 pop <− c r e a t i ng . d i p l o i d ( nsnp = 10000 , n ind i = 50 , chr . nr = 5 , chromosome . l ength = 2 ,
3 n . add i t i v e = 25 , n . dominant = 5 , name . cohort = "Founder" )
4 pop <− breeding . d i p l o i d (pop , h e r i t a b i l i t y = 0 .5 , new . bv . obse rvat ion = " a l l " )
5 pop <− breeding . d i p l o i d (pop , bve = TRUE)
6 pop <− breeding . d i p l o i d (pop , breeding . s i z e = 50 , s e l e c t i o n . s i z e = c (5 , 10 ) ,
7 s e l e c t i o n .m = " func t i on " , s e l e c t i o n .m. cohor t s = "Founder_M" ,
8 s e l e c t i o n . f . cohor t s = "Founder_F" , name . cohort = "Of f sp r ing " )

Via this code, we �rst generate a base population containing 50 individuals with
10'000 markers. The underlying genome consists of 5 chromosomes with a length of
2 Morgan each and equidistant markers. Furthermore, we generated a single trait
that is impacted by 25 purely additive QTLs and 5 dominant QTLs.
In the next step, we initialize a breeding action to generate phenotypes for all in-
dividuals in the population with an assumed heritability of 0.5. Next, a breeding
value estimation is performed. Since no cohorts are selected, the last (and only)
generation of the population list will be considered for the breeding value estima-
tion. Lastly, we generate 50 o�spring by randomly mating the top 5 male and
top 10 female individuals. In principle, all three breeding actions performed via
breeding.diploid() could have also been executed in a joint step. For a full list of
all possible breeding actions and available parameters we refer to our user manual
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(available at https://github.com/tpook92/MoBPS).
For a quick overview of the simulated population, the function summary() can be
used:

1 > summary( pop )
2 Populat ion s i z e :
3 Total : 100 Ind i v i dua l s
4 Of which 50 are male and 50 are female .
5 There are 2 gene ra t i on s
6 and 4 unique cohor t s .
7
8 Genome In fo :
9 There are 5 unique chromosomes .
10 In t o t a l there are 10000 SNPs .
11 The genome has a t o t a l l ength o f 10 Morgan .
12 No phys i c a l p o s i t i o n s are s to red .
13
14 Tra it In f o :
15 There i s 1 modelled t r a i t .
16 The t r a i t has under ly ing QTL
17 The t r a i t i s named : Tra i t 1

A variety of functions is provided to export required information such as the phe-
notypes (get.pheno()), the genotypes (get.geno()) and the pedigree (get.pedigree())
for selected individuals from the population list. These functions are thoroughly de-
scribed in chapter 9 of the user manual (available at https://github.com/tpook92/
MoBPS). Furthermore, functions to derive rates of inbreeding (kinship.emp()), de-
velopment of breeding values (bv.development()) or changes in allele frequency over
time (analyze.population()) are provided to further analyze the resulting population
list.

4.4 Results and Discussion

The package MoBPS is completely written in R (R Core Team, 2017) so that all
functionalities for genetic applications are platform independent. The R-packages
miraculix (Schlather et al., 2019a) can be activated in MoBPS and leads to more
e�cient data storage and shorter simulation times. In particular vector multipli-
cations with genetics data (0,1,2) are performed via bitwise operations on a whole
register (128/256 bit) using SSE2/AVX2. Computing times are similar to the ones
in PLINK (Purcell et al., 2007) with one fourth of the memory usage.
Even though basically all information regarding each individual is stored, the re-
quired memory in MoBPS is still relatively low as a highly e�cient storage structure
is used. Haplotypes of founders and details on the origin of the segment between
points of recombination are stored bitwise. E.g. the simulation of 20 generations
with 50'000 cows with 50'000 markers and breeding value estimation via GBLUP
takes 26.2 hours using 24 cores on a server cluster with Intel E5-2650 (2X12 core
2.2GHz) processors. At peak, 65 GB of memory was used. The main share of this
was required for the storage of the genomic relationship matrix whereas the resulting
population list, containing more than a million individuals, only had a size of about
0.44 GB. The biggest proportion of the computing time is used for breeding value
estimation (25.3 hours, 96.4%). The generation of new animals took 55 minutes

https://github.com/tpook92/MoBPS
https://github.com/tpook92/MoBPS
https://github.com/tpook92/MoBPS
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(3.5%, 304 animals per second using a single core). All other parts needed negligi-
ble computing time (132 seconds, 0.1%). Computing times for most parts (except
breeding value estimation) increase linearly with the number of individuals. This
highly e�cient storage structure therefore also allows for the simulation of historical
populations with thousands of generations and undergone population dynamics such
as genetic bottlenecks, migration or mutational drift.
The �exible and e�cient enviroment of MoBPS allows for the simulation of a variety
of di�erent and potential large-scale breeding programs. For exemplary scripts of
more complex breeding programs we refer to the user manual. Exemplary simula-
tions are given for the e�ect of gene editing in a cattle breeding program (Simianer
et al., 2018), the simulation of a multi-parent advanced generation intercross in
maize (Pook et al., 2019), an introgression scheme in chicken (Ha et al., 2017) and
the generation of a base population with a hard sweep. A further advantage of
MoBPS in comparison to other simulation tools is its �exible structure that al-
lows the user to substitute single steps of the breeding program with a personalized
and/or self-written solution. For this consider the following example to execute one
owns breeding value estimation:

1 genos <− get . geno (pop , gen=1)
2 y <− get . pheno (pop , gen=1)
3 i nd i_names <− colnames ( genos )
4
5 # Execute one owns func t i on to perform the breed ing value e s t imat ion
6 y_hat <− own . method . f o r . bve ( genos , y )
7
8 # Enter BVEs in the populat ion− l i s t
9 pop <− i n s e r t . bve (pop , bves = cbind ( i nd i_names , y_hat ) )

Even though a simulation study can never fully re�ect reality and is relying on model
assumptions, the use of a simulation study comes with major bene�ts and still allows
the user to draw important conclusions. In contrast to reality the underlying truth in
a simulation study is known, and therefore new methods can be thoroughly evaluated
and compared to existing ones. Furthermore, the e�ects of particular breeding
actions on a variety of output dimension can be assessed and compared. This in
turn can be used to derive an ideal resource allocation and optimize potentially
highly complex breeding scenarios in a setting that can be evaluated multiple times
and without constrains both in terms of money and time.

4.5 Web resources

An executable version of MoBPS and the associated R-packages miraculix (Schlather
et al., 2019a), RandomFieldsUtils (Schlather et al., 2019b) and MoBPSmaps (Pook,
2019b) for Windows and Linux are freely available at https://github.com/tpook92/
MoBPS. This directory also contains an comprehensive user manual explaining the
functionality of all input parameters and utility functions in MoBPS. A frozen ver-
sion of the R-packages MoBPS (v1.4.15), MoBPSmaps (v0.1.7), miraculix (v0.9.7),
RandomFieldsUtils (v0.5.9), and our user manual at submission are also provided
there. The MoBPS R-package can be directly installed within your R session via
following commands:

https://github.com/tpook92/MoBPS
https://github.com/tpook92/MoBPS
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1 i n s t a l l . packages ( " devtoo l s " )
2 devtoo l s : : i n s t a l l_github ( " tpook92/MoBPS" , subdi r = "pkg" )
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5 Discussion

"Imagination is more important than knowledge. Knowledge is limited.
Imagination encircles the world."

Albert Einstein

5.1 In�uence of imputation quality on haplotyping

methods

The in�uence of imputation quality has to be assessed with respect to the application
the resulting data are used with. Since missing data usually leads to problems in
the computations, inference is needed for basically all applications. In contrast,
imputation of ungenotyped markers (UM imputation) and phasing can sometimes
be neglected. Whereas UM imputation has been shown to be a powerful tool for
GWAS (Klein et al., 2005; Yan et al., 2017), the bene�t for genomic prediction
is often not given and obtained results can sometimes even be improved by LD
pruning (Barrett et al., 2005) to reduce the dimensionality of the dataset (Chapter
5.2). Overall, the higher number of markers has to be weighted against a potential
higher proportion of errors via UM imputation. The accuracy of phasing has an
impact on inference and UM imputation, but the phase itself is often not required
for further analysis.

LD-based haplotyping approaches do not utilize the haplotype phase, therefore phas-
ing errors can be neglected. Especially for pairs of markers of medium allele fre-
quency the correlation, and thus LD (r2), is robust against minor deviations. For
this reason, inference errors should not heavily in�uence the results of LD-based
haplotyping. Depending on the algorithm used for the derivation of blocks, the
marker density and thus UM imputation can have a major impact on the block
structure. Using a method like the one proposed in Gabriel et al. (2002) that is
implemented in HaploView (Barrett et al., 2005), blocks are generated by merging
all markers with a certain pairwise minimum of D′ (Lewontin, 1964; Falconer and
Mackay, 1996). Since imputation leads to a higher number of potential pairs for
evaluation, it is commonly observed that the physical length of blocks decreases
with increasing marker density. The interested reader is referred to Kim and Yoo
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(2016) for a detailed analysis of the in�uence of the marker density on the resulting
haplotype blocks.

The detection of IBD is heavily in�uenced by the phasing accuracy as haplotypes are
required in the detection process. When allowing for minor deviations of the allelic
sequences, inference and UM imputation should both only have a minor impact on
the detection procedure. Especially for relatively short IBD segments, a high marker
density can lead to more accurate detection of the segment boundaries. It should be
noted that regions with high inference error tend to be prone to phasing errors and
vice versa. Depending on the method used, IBD detection, phasing, inference and
UM imputation can be heavily connected (Browning and Browning, 2011, 2013).

Since HaploBlocker is rather robust to minor deviations, both inference and UM
imputation error only have a minor impact on the resulting haplotype blocks. As
shown in Chapter 2, the structure of the haplotype library is basically independent
of the marker density. The obtainable phasing accuracy in most livestock and crop
datasets should be su�cient to detect long-range haplotype blocks. Besides the
already low phasing error rates (Chapter 3), the actually occurring phasing errors
tend to be clustered locally. Most phasing errors occur in rare variants that would
not be part of a haplotype block with a high number of haplotypes in it or are even
ignored because of the robustness of HaploBlocker. The use of BEAGLE for the im-
putation procedure can further enhance the identi�cation of haplotype blocks since
the overall structure of the haplotype cluster (Browning, 2006) used in BEAGLE
(Browning et al., 2018) and the window cluster used in HaploBlocker (Chapter 2)
are structurally similar. After deriving haplotype blocks, one could even consider
performing an additional screening step to determine which haplotype blocks are
potentially present in an individual based on both of its haplotypes.

In case of livestock and crop datasets with less related individuals or human datasets,
phasing can become a substantial problem for the application of HaploBlocker. For
datasets of high overall quality and sample size like those of the 1000 Genomes
Project Consortium (2015), application is possible, but overall phasing accuracy
for datasets of lower quality is potentially not su�cient and needs to be checked. It
should be noted that ultra-long read sequencing techniques like nanopore sequencing
(Branton et al., 2010; Jain et al., 2018) may help to solve these phasing problems in
the future.

5.2 Genomic prediction using haplotype blocks

The haplotype library derived in HaploBlocker (Chapter 2) can be used to gener-
ate a block dataset. A block dataset contains dummy variables representing the
presence/absence of a particular block (0 or 1) for each haplotype. In case of het-
erozygotes, the two haplotypes of an individual can be merged, resulting in a block
dataset that encodes the number of times (0, 1 or 2) a haplotype block is present in
each individual. Since the structure of this dataset is very similar to a SNP-dataset,
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routine application like genomic prediction can be performed in a similar way. A
potential bene�t of using a block dataset is that local epistatic interactions, which
cannot be captured by additive single marker e�ects, can be modelled. In addition,
the chance of long segments like haplotype blocks to be the same by chance is sub-
stantially lower than for a single SNP, and by this potential noise can be reduced.
This may be particularly relevant for datasets that contain less related individuals
than those considered in this section.

The accuracy of genomic prediction for the European maize landraces Kemater
Landmais Gelb (KE) and Petkuser Ferdinand Rot (PE) was evaluated using the
traditional GBLUP model (Meuwissen et al., 2001) with the genomic relationship
matrix according to VanRaden (2008). The DH-lines generated in the MAZE project
were used here (Chapter 2) and prediction accuracies were derived for nine traits,
including early vigor (EV) and plant height (PH) at di�erent growing stages, days
to silking (DtSILK), days to tassel (DtTAS) and root lodging (RL). Three di�erent
datasets were used to derive the genomic relationship matrix: The full SNP-dataset
(501'124 SNPs), a pruned dataset (29'833 SNPs) and the block dataset containing
2'859 blocks for KE and 3'352 blocks for PE. For both landraces default settings of
HaploBlocker were used to derive the haplotype libraries. All datasets were divided
into a training set (80% of the lines) and a test set (20%). The sampling procedure
was repeated 200 times.

For �ve of the nine traits, the block dataset resulted in the highest prediction ac-
curacy for the test set but di�erences overall were small (Figure 5.1). The average
prediction accuracy of the pruned dataset was higher than for the full SNP-panel
for all traits. The full SNP-panel performed worst for seven of out the nine traits.
Overall, results for PE were similar with slightly better performance of the full
SNP-dataset (Supplementary C).

Figure 5.1: Accuracy of genomic prediction on the test set using di�erent datasets to
derive the genomic relationship matrix (VanRaden, 2008) for Kemater
Landmais Gelb.

By reducing the haplotype library to a set of dummy variables, potentially valuable
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information on the haplotype blocks themselves get lost. To incorporate information
about the length of each block one could consider to modify the traditional formula
to derive the genomic relationship matrix (VanRaden, 2008) to account for the length
of each haplotype block:

G =
ZW sZ ′

2
∑

b lb
s · pb (1− pb)

,

where Z is the block dataset, W is a diagonal matrix with entries lb indicating the
length of block b. The parameter s is a scaling factor for the relative weighting of
the blocks depending on their length. Using s = 0 would result in the traditional
genomic relationship matrix according to VanRaden (2008). For eight out of the nine
traits a slightly increased weighting for longer haplotype blocks (s ≈ 0.5) performed
best for PE (Figure 5.2). An increased weighting of the block length had no positive
e�ect in terms of prediction accuracy for KE (Supplementary C).

Figure 5.2: Accuracy of genomic prediction using di�erent weightings s for the block
length when deriving the genomic relationship matrix for Petkuser Ferdi-
nand Rot. Each line is representing one trait and the red dot is indicating
the maximum of the respective curve.

Overall, prediction accuracies when using haplotype blocks instead of a SNP-dataset
were similar when performing within breed prediction. It can be concluded that ei-
ther the share of epistatic e�ects for the traits considered is relatively low or that
e�ects can at least be well approximated in the linear model. For the traits and
landraces considered in this thesis, there was no gain in the use of high-density data
over a smaller marker panel for genomic prediction. In addition, the much lower
number of variables in the block dataset can enable a wide variety of new meth-
ods. In case of working with epistatic models (Vogjani et al., 2019) that include
pairwise interactions between variables a model with 600'000 SNPs would lead to
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almost 180 billion pairwise interactions to account for while 3'000 blocks result in
about 4.5 million pairwise interactions. One might consider working with a model to
combine the advantageous properties of both datasets. The most straight-forward
implementation for this would be the use of a mixed model including two random
e�ects (Henderson, 1975; Zhu, 1995) with variances according to the SNP and block
dataset. This is particularly relevant if there are substantial di�erences in the two ge-
nomic relationship matrices (e.g. use haplotype blocks for the epistatic interactions
(Martini et al., 2017) and use SNPs for additive e�ects). The results in this section
indicate some potential of the haplotype block framework to improve prediction, but
more work is required to investigate appropriate parameter settings and utilize more
information contained in the blocks besides simple presence and absence.

5.3 Design of breeding programs

In this section, potential breeding schemes that can be simulated via the R-package
MoBPS (R Core Team, 2017; Pook et al., 2018) are showcased. All examples listed
here correspond to those in the user manual of MoBPS (Supplementary B). In addi-
tion, potential analyses that can be performed based on these simulations are brie�y
discussed.

Although given simulations are based on cohorts, internally all simulations are per-
formed on the base of individuals, allowing for a high �exibility in design and op-
portunities in a subsequent analysis. Note that all results shown in this section
are based on a single simulation (using set.seed(1)). For extended evaluation and
comparison between breeding schemes and methods, more replicates are highly rec-
ommended and, in contrast to real-world applications, can be provided in the setting
of a simulation study (Chapter 1.5).

5.3.1 Introgression of a single QTL in chicken

Introducing genetic variation that is not present in an elite line is common practice in
a breeding program. Among others, other elite lines, landraces or material from gene
banks (La Mara et al., 2013; McCouch et al., 2012) can be used to increase the genetic
variation. Variation can be increased in terms of overall genetic variance but also in
regard to a local variant with positive features like resistance to speci�c diseases. In
the following, programming code is given to simulate a simple introgression scheme
with a single bene�cial QTL, as used in similar form in Ha et al. (2017) for the
introgression of a blue eggshell QTL in chicken. Note that in this example no
traditional SNPs are used but instead it is just distinguished between the genetic
origin from the elite line (0) and the wild population (1):

50 # Generate an input SNP−datase t
51 # 10 White−Layer (0) (20 haplotypes , 5 '000 SNPs)
52 # 10 Wild populat ion (1) (20 haplotypes , 5 '000 SNPs)
53 dataset1 <− matrix (0 , nrow = 5000 , nco l = 20)
54 dataset2 <− matrix (1 , nrow = 5000 , nco l = 20)
55
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56 # Generation o f a t r a i t
57 # Colums code : SNP, chromosome , e f f e c t 00 , e f f e c t 01 , e f f e c t 11
58 # Blue Eggshe l l QTL i s po s i t i oned on SNP 2000 , chromosome 1
59 major_q t l <− c (2000 , 1 , 0 , 10000 , 20000)
60 # In a l l other p o s i t i o n s the white l ay e r genome i s assumed to be f avo rab l e
61 # Al l marker e f f e c t s combiened are sma l l e r than the blue e g g s h e l l QTL
62 r e s t <− cbind (1 : 5000 , 1 , 1 , 0 . 5 , 0)
63 t r a i t <− rbind (major_qt l , r e s t )
64
65 # Generation o f the base−populat ion
66 # F i r s t 10 i nd i v i du a l s are female ( sex=2)
67 # Next 10 i nd i v i du a l s are male ( sex=1)
68 populat ion <− c r e a t i ng . d i p l o i d ( datase t = cbind ( dataset1 , dataset2 ) ,
69 r e a l . bv . add = t r a i t , name . cohort = "Founders" ,
70 sex . s = c ( rep (2 , 10 ) , rep ( 1 , 1 0 ) ) )
71
72 # Simulate random mating :
73 populat ion <− breeding . d i p l o i d ( populat ion , breed ing . s i z e = c (100 ,100) ,
74 s e l e c t i o n . s i z e = c (10 ,10 ) ,
75 best1 . from . cohort = "Founders_M" ,
76 best2 . from . cohort = "Founders_F" ,
77 name . cohort = "F1" )
78
79 # Simuation o f matings with s e l e c t i o n :
80 # Top 50 cocks are mated to the 10 founder hens
81 # Se l e c t i o n o f the cocks based on t h e i r genomic value ("bv")
82 # Target : I n c r ea s e share o f white l ay e r whi le p r e s e rv ing blue egg s h e l l QTL
83
84 populat ion <− breeding . d i p l o i d ( populat ion , breed ing . s i z e = c (100 ,100) ,
85 s e l e c t i o n . s i z e = c (50 ,10 ) ,
86 best1 . from . cohort = "F1_M" ,
87 best2 . from . cohort = "Founders_F" ,
88 name . cohort = "BC1" , s e l e c t i o n .m = " func t i on " ,
89 s e l e c t i o n . c r i t e r i a . type = "bv" )
90 populat ion <− breeding . d i p l o i d ( populat ion , breed ing . s i z e = c (100 ,100) ,
91 s e l e c t i o n . s i z e = c (50 ,10 ) ,
92 best1 . from . cohort = "BC1_M" ,
93 best2 . from . cohort = "Founders_F" ,
94 name . cohort = "BC2" , s e l e c t i o n .m = " func t i on " ,
95 s e l e c t i o n . c r i t e r i a . type = "bv" )
96 populat ion <− breeding . d i p l o i d ( populat ion , breed ing . s i z e = c (100 ,100) ,
97 s e l e c t i o n . s i z e = c (50 ,10 ) ,
98 best1 . from . cohort = "BC2_M" ,
99 best2 . from . cohort = "Founders_F" ,
100 name . cohort = "BC3" , s e l e c t i o n .m = " func t i on " ,
101 s e l e c t i o n . c r i t e r i a . type = "bv" )
102
103 # Mating o f cocks and hens that are heterozygous in blue egg s h e l l QTL
104 # 25% of r e s u l t i n g o f f s p r i n g should be homozygous in blue egg s h e l l QTL
105
106 populat ion <− breeding . d i p l o i d ( populat ion , breed ing . s i z e = c (100 ,100) ,
107 s e l e c t i o n . s i z e = c (50 ,50 ) ,
108 best1 . from . cohort = "BC3_M" ,
109 best2 . from . cohort = "BC3_F" ,
110 name . cohort = "IC" , s e l e c t i o n .m = " func t i on " ,
111 s e l e c t i o n . c r i t e r i a . type = "bv" )

As one would expect, the rate of genetic material originating from the wild popula-
tion is much higher in the QTL region (Figure 5.3). Subsequently, di�erent potential
selection techniques could be compared to make the introgression scheme more e�-
cient (Ha et al., 2017). Depending on the breeding objective e�ciency stands for a
variety of things, ranging from maintaining genetic diversity to increasing the share
of material of the elite line to minimizing the number of individuals used to obtain
a particular breeding objective.

5.3.2 Performing a cock rotation to avoid inbreeding in chicken

There are a variety of di�erent techniques to preserve genetic variation, ranging
from the storage of genetic material in gene banks to speci�c breeding schemes. One
of these breeding methods is a cock rotation in chicken. Here, hens are kept in
separated boxes and all hens of one box are mated to the same cock from a di�erent
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Figure 5.3: Frequency of genetic material stemming from the wild population af-
ter completion of the introgression scheme. The region of the QTL is
indicated in red.

box. Exemplary, a program with seven boxes containing �ve hen and one cock each,
can be simulated using MoBPS via the following programming code:

112 # Generate i n i t i a l boxes with 5 hens ( sex=2) and 1 cock ( sex=1) each
113 populat ion <− NULL
114 f o r ( index in 1 : 7 ){
115 populat ion <− c r e a t i ng . d i p l o i d ( populat ion = populat ion , n ind i = 6 ,
116 nsnp = 5000 , sex . s = c (1 , 2 , 2 , 2 , 2 , 2 ) ,
117 name . cohort = paste0 ( "Box_" , index , "gen_0" ) )
118 }
119
120 # Simulate 25 gene ra t i on s o f matings .
121 # Hens are rotated by one box per genera t i on .
122 # best1 . from . cohort i s the cohort used as s i r e s
123 # best2 . from . cohort i s the cohort used as dams
124 f o r ( gen in 1 :25 ){
125 f o r ( index in 1 : 7 ){
126 populat ion <− breeding . d i p l o i d ( populat ion , breed ing . s i z e = c (1 , 5 ) ,
127 s e l e c t i o n . s i z e = c (1 , 5 ) ,
128 best1 . from . cohort = paste0 ( "Box_" ,
129 i f ( index==1){7} e l s e { index−1},"gen_" , gen−1,"_M" ) ,
130 best2 . from . cohort = paste0 ( "Box_" , index , "gen_" , gen−1,"_F" ) ,
131 name . cohort = paste0 ( "Box_" , index , "gen_" , gen ) ,
132 add . gen=gen+1
133 )
134 }
135 }
136
137 # Generate a populat ion o f same s i z e without cock r o t a t i on
138 pop1 <− c r e a t i ng . d i p l o i d ( n ind i = 42 , nsnp = 5000 ,
139 sex . s = c ( rep (1 , 7 ) , rep ( 2 , 3 5 ) ) )
140
141 # Simulate 25 gene ra t i on s o f random mating
142 f o r ( gen in 1 :25 ){
143 pop1 <− breeding . d i p l o i d ( pop1 , breeding . s i z e = c (7 , 35 ) ,
144 s e l e c t i o n . s i z e = c (7 , 35 ) )
145 }

The inbreeding levels in terms of IBD (Donnelly, 1983) when using a cock rotation
are lower than in a random mating setup with the same number of animals (Figure
5.4). This can also be con�rmed by deterministic formulas (Pook et al., 2017a).
For further comparisons of more sophisticated mating schemes and deterministic
formulas to derive expected inbreeding levels the interested reader is referred to
Pook et al. (2017a,b).
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Figure 5.4: Realized kinship when using a cock rotation and a random mating breed-
ing scheme with the same number of chicken.

5.3.3 Gene editing in a cow breeding program

With the development of biotechnologies like zinc-finger nucleases (ZFNs, (Carroll,
2011)), transcription activator-like e�ector nucleases (TALEN, (Bogdanove and Voy-
tas, 2011)) and clustered regularly interspaced short palindromic repeats systems
(CRISPR, (Jinek et al., 2012)) to modify speci�c loci of the DNA, potential use for
breeding in both plants (Shan et al., 2014) and animals (Jenko et al., 2015) is of
great interest. For the simulation of an exemplary breeding program that is utilizing
such biotechnologies the following script can be used:

146 # Generation o f a base populat ion :
147 # 1 '000 Founder i nd i v i dua l s
148 # 5 '000 SNPs
149 # 100 add i t i v e s i n g l e marker QTL
150 populat ion <− c r e a t i ng . d i p l o i d ( n ind i = 1000 , nsnp = 5000 ,
151 n . add i t i v e = 100 , name . cohort = "Founders" )
152
153 # Simulat ion o f a random mating generat i on
154 # 100 bu l l s ( sex=1) , 1 '000 cows ( sex=2) are generated
155 populat ion <− breeding . d i p l o i d ( populat ion , breed ing . s i z e = c (100 ,1000) ,
156 s e l e c t i o n . s i z e = c (500 ,500) ,
157 best1 . from . cohort = "Founders_M" ,
158 best2 . from . cohort = "Founders_F" ,
159 name . cohort = "Random" )
160
161 # Generate 200 o f f s p r i n g o f both from the top 5 bu l l s / 200 cows
162 # He r i t a b i l i t y o f the t r a i t i s s e t to 0 .5
163 # only phenotypes p r ev i ou s l y unobserved cows are generated
164 populat ion <− breeding . d i p l o i d ( populat ion , breed ing . s i z e = 200 ,
165 s e l e c t i o n . s i z e = c (5 ,200) , bve = TRUE,
166 h e r i t a b i l i t y = 0 .5 , new . bv . obse rvat ion = "non_obs_f " ,
167 s e l e c t i o n .m = " func t i on " , name . cohort = "Top" ,
168 best1 . from . cohort = "Random_M" ,
169 best2 . from . cohort = "Random_F" )
170
171 # Generate add i t i ona l cows us ing a l l cows o f the prev ious genera t i on
172 # Cows are added to the same generat i on as the prev ious s imu lat ion
173 populat ion <− breeding . d i p l o i d ( populat ion , breed ing . s i z e = c (0 ,900) ,
174 s e l e c t i o n . s i z e = c (5 ,1000) ,
175 s e l e c t i o n .m = " func t i on " , name . cohort = "Sec_F" ,
176 best1 . from . cohort = "Random_M" ,
177 best2 . from . cohort = "Random_F" ,
178 use . l a s t . sigma . e = TRUE,
179 add . gen = 3)
180
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181 # Same cyc l e as be f o r e with add i t i ona l genome ed i t i n g
182 # Edits are chosen based on h ighe s t e f f e c t s in rrBLUP
183 populat ion <− breeding . d i p l o i d ( populat ion , breed ing . s i z e = c (100 ,100) ,
184 s e l e c t i o n . s i z e = c (5 ,200) , bve = TRUE,
185 new . bv . obse rvat ion = "non_obs_f " ,
186 s e l e c t i o n .m = " func t i on " ,
187 name . cohort = "Top_Edit " ,
188 best1 . from . cohort = "Top_M" ,
189 best2 . from . cohort = c ( "Top_F" , "Sec_F" ) ,
190 nr . e d i t s = 20 , e s t imate . u = TRUE,
191 use . l a s t . sigma . e = TRUE)
192
193 populat ion <− breeding . d i p l o i d ( populat ion , breed ing . s i z e = c (0 ,900) ,
194 s e l e c t i o n . s i z e = c (5 ,1000) ,
195 s e l e c t i o n .m = " func t i on " , name . cohort = "Sec_Edit " ,
196 best1 . from . cohort = "Top_M" ,
197 best2 . from . cohort = c ( "Top_F" , "Sec_F" ) ,
198 use . l a s t . sigma . e = TRUE, add . gen = 4)

The potential of genetic improvement via genome editing is closely linked to the
ability to identify the edits that need to be performed to increase the genomic
value of the o�spring. In case of additive e�ects of single markers this implies the
identi�cation of causal variants. For a detailed discussion on the potential use of
genome editing techniques in practice, the interested reader is referred to Chapter
5.4.

5.3.4 Generation of MAGIC population in maize

Especially for crops it is common practice to generate multi-parent advanced generation
inter-cross (MAGIC) populations to improve the power of QTL mapping and variety
development (Bandillo et al., 2013). The following script can be used to simulate
the generation of a MAGIC population in MoBPS (R Core Team, 2017; Pook et al.,
2018). A similar design was also used in Chapter 2 to derive the ability of Hap-
loBlocker to recover founder haplotypes.

199 # Generation o f 20 f u l l y−homozygous founders l i n e s
200 # Al l p lant s are s to r ed as male i nd i v i du a l s ( sex=0)
201 populat ion <− c r e a t i ng . d i p l o i d ( n ind i = 20 , sex . quota = 0 , template . chip = "maize" ,
202 datase t = "homorandom" , name . cohort = "F0" )
203
204 # Simulate matings between a l l founders .
205 # Each plan i s invo lved in exac t l y 19 matings .
206 populat ion <− breeding . d i p l o i d ( populat ion , breed ing . s i z e = c (190 ,0 ) ,
207 breeding . a l l . combination = TRUE,
208 s e l e c t i o n . s i z e = c (20 , 0 ) ,
209 best1 . from . cohort = "F0" , name . cohort = "F1" )
210
211 # Simulate matings between p lant s o f the l a s t genera t i on .
212 # Each plant i s invo lved in exac t l y 2 matings .
213
214 populat ion <− breeding . d i p l o i d ( populat ion , breed ing . s i z e = c (190 ,0 ) ,
215 s e l e c t i o n . s i z e = c (190 ,0 ) , same . sex . a c t i v = TRUE,
216 same . sex . sex = 0 , max . o f f s p r i n g = c (2 , 0 ) ,
217 best1 . from . cohort = "F1" , name . cohort = "F2" )
218 populat ion <− breeding . d i p l o i d ( populat ion , breed ing . s i z e = c (190 ,0 ) ,
219 s e l e c t i o n . s i z e = c (190 ,0 ) , same . sex . a c t i v = TRUE,
220 same . sex . sex = 0 , max . o f f s p r i n g = c (2 , 0 ) ,
221 best1 . from . cohort = "F2" , name . cohort = "F3" )
222 populat ion <− breeding . d i p l o i d ( populat ion , breed ing . s i z e = c (190 ,0 ) ,
223 s e l e c t i o n . s i z e = c (190 ,0 ) , same . sex . a c t i v = TRUE,
224 same . sex . sex = 0 , max . o f f s p r i n g = c (2 , 0 ) ,
225 best1 . from . cohort = "F3" , name . cohort = "F4" )



140 5 Discussion

5.3.5 Generation of a base population with LD and a hard sweep

Unless a real dataset is imported in MoBPS, markers in the �rst generation are not
linked. In order to perform analysis on a dataset with association between physically
linked markers one can consider generating such data in tools like MaCS (Chen et al.,
2009) and QMSim (Sargolzaei and Schenkel, 2009) or �rst simulating a couple of
generations of matings to generate these associations. A simulation to build up LD
in MoBPS (R Core Team, 2017; Pook et al., 2018) can be performed as follows:

226 # Generate a s t a r t i n g populat ion with 5000 SNPs and 200 i nd i v i du a l s
227 # and a s i n g l e chromosome o f l ength 2 Morgan .
228 populat ion <− c r e a t i ng . d i p l o i d ( nsnp = 5000 , n ind i = 200 , chromosome . l ength = 2)
229
230 # LD bui ld up via 100 gene ra t i on s o f random mating
231 # Each genera t i on conta ins 200 i nd i v i du a l s
232 f o r ( index in 1 :100){
233 populat ion <− breeding . d i p l o i d ( populat ion , breed ing . s i z e = 200 ,
234 s e l e c t i o n . s i z e = c (100 ,100) )
235 }
236
237 # Derive a l l e l e f requency and check LD fo r the l a s t genera t i on :
238 genotype . check <− get . geno ( populat ion , gen = length ( populat ion $ breed ing ) )
239 p_i <− rowMeans ( genotype . check ) /2
240 ld . decay ( populat ion , genotype . datase t = genotype . check , s tep = 10 , max = 500)

As shown by the LD-decay (Figure 5.5), signi�cant associations between physically
linked markers arise after 100 generations of random mating. The simulation of
a base population can be made arbitrarily more complicated to account for the
speci�c population history one wants to work with. In the following, exemplary
programming code to generate a single hard sweep (Walsh and Lynch, 2018) is
given:

Figure 5.5: LD-decay of the base population after 100 generations of random mating
via the MoBPS utility function ld.decay().

241 # Simulate a f avo rab l e mutation in a p r ev i ou s l y f i x ed marker
242 f i x a t ed_markers <− which (p_i==0) # Which markers are f i x a t ed
243 q t l_pos i <− sample ( f i x a t ed_markers , 1) # Se l e c t ed a f i x a t ed marker in A
244 t r a i t <− cbind ( q t l_posi , 1 , 0 , 1 , 2) # SNP, Chromosome , E f f e c t AA, E f f e c t AB, E f f e c t BB
245 populat ion <− c r e a t i ng . t r a i t ( populat ion , r e a l . bv . add = t r a i t )
246
247 # Generate a mutation in the f i r s t male i nd i v i dua l
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248 populat ion <− mutation . i n t r o ( populat ion , 101 , 1 , 1 , q t l_pos i )
249
250 # Simulate gene ra t i on s with s e l e c t i o n pre s su r e
251 # Ind i v i dua l s with the f avo rab l e SNP are picked 5 times as o f t en
252 f o r ( index in 1 :25 ){
253 populat ion <− breeding . d i p l o i d ( populat ion , breed ing . s i z e = 200 ,
254 s e l e c t i o n . s i z e = c (100 ,100) ,
255 best . s e l e c t i o n . r a t i o .m = 5 ,
256 best . s e l e c t i o n . r a t i o . f = 5)
257 }

The allele frequency at the location of the hard sweep over time can be analyzed
via the MoBPS utility function analyze.population() (Figure 5.6, Supplementary
B). The analysis of the dataset of the last generation of this simulation reveals
structural di�erences in the sweep area. IHH scores based on EHH (Sabeti et al.,
2002; Voight et al., 2006) and bEHH (Chapter 2) show clear signs of selection (Figure
5.7). Both IHH curves are very similar, showing that the block based approach is
a good approximation of the traditional approach. In case the simulated mutation
rate is drastically increased (e.g. 1 · 10−3), IHH scores are reduced in both cases
(Figure 5.8).

Figure 5.6: Plot of the allele frequency in the QTL undergoing a hard sweep via the
MoBPS utility function analyze.population(). Allele B is favorable and
the �rst mutation is simulated to occur in generation 101.

In studies like Islam et al. (2016) it is commonly observed that the use of haplotype
blocks can increase the mapping power for QTLs. The simulation performed there
shows slightly more pronounced peaks in the region of the hard sweep but more
research and repetitions are needed to draw statistically sound conclusions for this.

5.4 Potential of gene editing in breeding

In this section, the potential of gene editing for quantitative traits in breeding is dis-
cussed. In this context, Jenko et al. (2015) proposed an approach for the promotion
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Figure 5.7: IHH scores of selection based on EHH (A) and bEHH (B). The location
of the sweep is indicated in red.

Figure 5.8: IHH scores of selection based on EHH (A) and bEHH (B) for an increased
mutation rate. The location of the sweep is indicated in red.



5.4 Potential of gene editing in breeding 143

of alleles by genome editing (PAGE) to accelerate the genetic progress in a cow
breeding program and results were critically analyzed by Simianer et al. (2018). In
this section, the manuscript by Simianer et al. (2018) is given �rst. Subsequently,
the general usefulness and potential of genome editing in breeding for both livestock
and crops is discussed.

5.4.1 Turning the PAGE - the potential of genome editing in
breeding for complex traits revisited

This manuscript is a joint work of Henner Simianer1, Torsten Pook1 and Martin
Schlather2 and was presented at the World Congress on Genetics Applied to Live-
stock Production 2018. For reasons of uniformity in this thesis, the conference/jour-
nal style is not used in this section.

1: University of Goettingen, Animal Breeding and Genetics Group, Albrecht-Thaer-
Weg 3, 37075 Goettingen, Germany
2: School of Business Informatics and Mathematics, University of Mannheim, A5,
68131 Mannheim, Germany

Author contributions by TP

TP performed the simulations for the study, contributed in the analysis and partic-
ipated in revision of the manuscript.

Summary

In a recent study, Jenko et al. (2015) proposed to accelerate genetic progress by
integrating a genome editing (GE) step in genomic breeding programs. This con-
cept, called "promotion of alleles by genome editing" (PAGE) was implemented in
a simulation study suggesting a substantial extra increase of genetic gain. As an
example, editing in each generation the top 25 sires at the 20 quantitative trait
nucleotides (QTN) with the highest e�ect was found to increase the genetic progress
by 100% compared to genomic selection alone. We conducted a complex simulation
study in which selection was on estimated GBLUP breeding values, the causal QTN
were assumed unknown, and SNPs to be edited were identi�ed by statistical means
from the simulated data. We found the extra genetic progress due to PAGE to be
be-tween 2 and 20 per cent, thus only a fraction of what was reported by Jenko et al.
(2015). The observed di�erence is mainly attributed to the low power to detect true
QTN. The best results were obtained with highly heritable traits, larger mapping
populations and a limited number of true QTN, while performance was inferior both
with low heritability traits and when QTN to be edited were identi�ed by GWAS
rather than by random regression BLUP. We argue that the true genetic architecture
of complex traits will likely be much more complex than simulated here, which will
further compromise the power of detecting true QTN and the predictability of the
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e�ects of GE steps. These considerations together with the reported results indicate
that overly optimistic expectations regarding the potential of PAGE should be taken
with a pinch of salt.

Introduction

The concept of genome editing (GE) was �rst successfully demonstrated in mammals
in the 1970s, but only had a breakthrough with the introduction of the CRISPR-
Cas9 system (Jinek et al., 2012). This approach combines simplicity, high accuracy,
high e�ciency and limited o�-target e�ects and has a considerable potential for mul-
tiplexing. Based on this technological perspective Jenko et al. (2015) proposed to
accelerate genetic progress by integrating a genome editing step in genomic breeding
programs. The basic idea was to augment a genomic dairy cattle breeding scheme as
originally suggested by Schae�er (2006) by changing a limited number of quantitative
trait nucleotides (QTN) towards the most advantageous genotype in a given number
of selected individuals via GE. This concept, called "promotion of alleles by genome
editing" (PAGE), was demonstrated in a simulation study suggesting that, com-
pared to a classical genomic selection (GS) scheme without a GE step, the expected
response to selection with PAGE was between 1.08 and 4.12 times higher. As an
example, editing in each generation the top 25 sires at the 20 QTN with the highest
e�ect was found to double the genetic progress compared to GS alone.

While these results appear quite promising, a number of caveats must be made.
Most importantly, it was assumed that the true e�ects of segregating QTN were
known and could be used to identify those QTN with the largest e�ects to be edited
in the top sires. Also, selection was assumed to be based on known true breeding
values.

The aim of our study was to assess the expected bene�t of PAGE with a somewhat
more realistic scenario. For this, we set up a similar (but not completely identi-
cal) simulation scheme and used genomic best linear unbiased prediction (GBLUP,
(VanRaden, 2008)) for the selection step and estimated SNP e�ects from random
regression BLUP (RRBLUP, (Meuwissen et al., 2001)) or alternatively GWAS re-
sults to identify the top QTNs to be edited.

Simulation scheme

We started with a high density SNP data set from a real dairy cattle population
which is assumed to re�ect the major characteristics of a breeding population under
selection w.r.t. linkage disequilibrium, allele frequency spectra etc.. In the reference
scenario we generated a base population of 500 male and N = 10′000 female individ-
uals. We selected 50'000 SNPs, of which 1000 SNPs (2%) were randomly assigned
to be QTN with an additive e�ect drawn from a standard normal distribution. Phe-
notypes of females were calculated as the sum of the genotype values across all QTN
plus a random number sampled from a normal distribution such that the heritability
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had the desired value. We then used GBLUP to select the top 25 sires and 500 cows
as potential bull sires (BS) and bull dams (BD), the remaining cows were used as
cow dams (CD). In the �rst ten generations, the 25 BS were randomly mated to the
500 BD to produce 500 male selection candidates for the next generation. The 25
BS were also mated to the 10'000 females (BD and CD) to produce 10'000 female
selection candidates for the next generation.

Starting from generation 11, the 25 selected BS underwent a genome editing step
in the PAGE approach: �rst, e�ects were estimated for all SNPs using RRBLUP.
Next, each of the 25 BS was genome edited in that he was made homozygous for the
favourable allele at those loci which had the highest estimated absolute SNP e�ects
and for which he wasn't already carrying the most bene�cial genotype. These "edited
bull sires" (eBS) were used in the same way as the BS in generation one to ten for
ten more generations (11 � 20) (Figure 5.9)

Figure 5.9: One generation of the PAGE selection scheme (reference scenario).

Starting from this reference scenario, a number of parameters were varied, one at a
time (reference value underlined):

� the heritability: h2= 0.05, 0.3, 0.6

� the number of true QTN: 1000, 500, 250

� the number of SNPs: 50'000, 100'000, 200'000

� the cow population size N: 10'000, 25'000

� selection of target SNPs for editing: RRBLUP or GWAS
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For each scenario we generated and analysed 100 replicates. The main criterion of
interest was the change of genetic progress from generation 11 to 20 when using the
PAGE approach compared to using genomic selection without GE in the same gen-
erations. We also recorded the success rate of QTN identi�cation as the proportion
of edits that were made on true QTNs in each generation. The simulations were
performed using the R-package RekomBre (Pook, unpublished) 1 on a server cluster
with Intel E5-2670 (2X8 core 2.6 GHz) and AMD Opteron 6378 (4X16 2.4 GHz)
processors.

Results and Discussion

Compared to selection based on GBLUP, we found that the PAGE approach led
to an 11.6 per cent increase of the genetic progress in the reference scenario (Fig.
5.10 and 5.11), which is about one tenth of the improvement predicted by Jenko
et al. (2015) for a similar scenario with 20 edits per top bull. Our implementation
di�ers from the one described in Jenko et al. (2015) in many details, but we suspect
two major causes for the observed discrepancy in the results: (i) while in Jenko
et al. (2015) candidates are selected on their true breeding values, selection in our
implementation is based on genomic breeding values, which are less accurate, but
this a�ects selection based on GBLUP and PAGE both in a similar way; (ii) while
loci to be edited are selected based on their true (but in reality unknown) e�ects in
Jenko et al. (2015), selection is based on estimated allele e�ects from RRBLUP in
our implementation. Especially the second discrepancy has a major e�ect, since in
the �rst generation of PAGE only 10 per cent of the edits are done on real QTN
(see. Fig. 5.10), i.e. on average just 2 of the 20 loci edited in a bull were on target,
while 18 edits were made on non-causal SNPs and thus had no consequence for the
true genetic values of the edited bulls. This success rate even drops to 6.2 per cent
in generation 20, since the detectable large e�ect QTNs tend to become �xed in the
�rst generations of PAGE and the remaining polymorphic QTNs in later generations
have smaller e�ects and are thus even more di�cult to detect.

Varying some of the parameters in the reference scenario yielded the following obser-
vations (Fig. 5.11): with a reduced number of QTN (500 or 250) the extra genetic
progress due to PAGE increased to 14.5 and 15.5%, respectively, which can be ex-
plained by the relatively larger e�ects and thus better detectability of true QTN.
However, with a smaller number of true QTN the success rate of QTN detection also
tended to deteriorate faster. Increasing the number of SNPs had a slightly negative
e�ect on the expected genetic progress. Increasing the population size to 25'000
cows led to a higher success rate in QTN detection and increased the extra genetic
progress due to PAGE to 14.2%. Varying the heritability yielded the strongest ef-
fects: while doubling h2 to 0.6 led to an extra genetic progress of 20.7%, the latter
was only 4.9% with h2 = 0.05. An even more dramatic e�ect was observed when
SNPs to be edited were identi�ed based on GWAS results rather than RRBLUP
1RekomBre was used as the internal development title of MoBPS (Chapter 4)
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Figure 5.10: Genetic progress with PAGE (20 edits) vs. the pure GS variant (0
edits) and the proportion of edits on target in the GE generations (inner
�gure) in the reference scenario.

Figure 5.11: Extra genetic progress of PAGE vs. GS (left) and proportion of edits
on target in generations 11 and 20 (right) for the di�erent scenarios.
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results. In this case, the proportion of edits of true QTN was between 3.2% and
3.7% and thus only marginally above the 2% expected when SNPs to be edited were
selected completely at random, and consequently the extra genetic progress due to
PAGE was only 2.5% in this scenario.

Conclusions

Across all scenarios studied, the increase of e�ciency due to PAGE didn't even
get close to the rates suggested by the simulation study of Jenko et al. (2015),
which can be mainly attributed to the low success rate of identifying true QTN
for the editing step. One might expect that with increasing numbers of genotyped
individuals the power to detect causal QTN will increase. However, the "true"
genetic model underlying our study as well as the one by Jenko et al. (2015) is heavily
simplistic by assuming complete additivity. Genetic architecture of complex traits is
expected to be far more complex in reality and will comprise epistatic interactions,
complex nonlinear regulation processes and redundancies, genotype by environment
and genotype by sex interactions etc. (Mackay, 2004). Causal variants will also be
of more complex nature than being just single SNPs. All this will further reduce the
power of �nding true causal variants as targets for GE. Even if such a causal variant
is detected and edited, the e�ect of this modi�cation on the phenotype will be hardly
predictable under such a complex genetic trait architecture. While GE presumably
has some potential in breeding for monogenic traits, all these considerations together
with the reported results indicate that overly optimistic expectations regarding the
potential of PAGE in breeding for complex traits should be taken with a pinch of
salt.

5.4.2 Further thoughts

In addition to the concerns already expressed in the previous subsection, there are
further things to consider when it comes to the use of gene editing in breeding for
quantitative traits. At the current state of research, any application of the CRISPR-
Cas9 system (Jinek et al., 2012) will lead to o�-target mutation. Especially for the
use in animal and human genetics these o�-target mutations can lead to an increased
risk of introducing cancer (Zhang et al., 2015; Haapaniemi et al., 2018). Combined
with the possibility of target regions not being successful edited (Hai et al., 2014), it
has to be conclude that further improvements to editing technologies are necessary.

Furthermore, it must be taken into account that the functionality of a gene is usually
far more complex than the assumed additive e�ects of single loci (Simianer, 2018). It
should be noted that the computational techniques for QTL identi�cation used here
(rrBLUP, GWAS) do not utilize protein coding (Davydov et al., 2010; Siepel et al.,
2005) or the like but achieving a signi�cantly higher proportion of edits on target
still seems unrealistic for quantitative traits today. It should be noted that in recent
years, more and more work has been done to improve the functional understanding
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of the genome (Washburn et al., 2019; Robinson, 2019) and �ne-mapping of QTL
(Kichaev et al., 2017). Genome editing itself can even be used as a tool to improve
the identi�cation process of functional variants (Knott and Doudna, 2018).

In addition to the scienti�c concerns, the application of biotechnologies in practice
comes with problems of social acceptance and legal questions. In Europe the ap-
plication of CRISPR-Cas9 leads to resulting plants being classi�ed as genetically
modi�ed organisms (CJEU, 2018; Gelinsky and Hilbeck, 2018).

Nevertheless, there is considerable potential in the use of the CRISPR-Cas9 system
in breeding. Instead of focusing on the biggest positive e�ects as in Jenko et al.
(2015), one could instead speci�cally targeting deleterious variants as suggested in
Johnsson et al. (2019) and thereby reduce the genetic load (Crnokrak and Bar-
rett, 2002). These deleterious variants can be identi�ed in a variety of methods
(Daetwyler et al., 2014; Ramu et al., 2017; Mezmouk and Ross-Ibarra, 2014). In-
stead of focusing on quantitative traits one could instead consider using genome
editing for simpler traits with limited number of loci like the polled locus in cattle
(Mueller et al., 2019). In plant breeding there are even examples of genome editing
procedures that are already implemented in breeding (Waltz, 2018; Zsögön et al.,
2018).

5.5 Outlook & Conclusions

5.5.1 Outlook for HaploBlocker

The main focus of the development of HaploBlocker in this thesis was the establish-
ment of the methodology itself. Even though some �rst applications were shown,
more research is needed to fully exploit the potential of the haplotype block derived
in HaploBlocker.

Potential �elds of applications for HaploBlocker in quantitative genetics are man-
ifold. Most existing methods that use SNPs need to be slightly modi�ed to use
haplotype blocks instead of SNPs. It should be noted that the block structure
in HaploBlocker di�ers substantially from traditional haplotype block approaches.
Among others, more sophisticated approaches for the detection of selection sig-
natures in tests as suggested by Beissinger et al. (2018) and genomic prediction
(Chapter 5.2, (Meuwissen et al., 2014; Jiang et al., 2018)) can be considered here.
In addition, haplotype blocks can potentially be used for the imputation of sequence
data by merging reads of haplotypes with the same haplotype block. In contrast to
commonly used methods like Li and Stephens (2003); Howie et al. (2009); Das et al.
(2016); Browning et al. (2018) the read depth in sequence data could be utilized by
this and potentially even be increased.
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5.5.2 Outlook for MoBPS

Both the data storage and the modular design to carry out simulations in MoBPS
provide a lot of �exibility and thus enables a multitude of possible extensions to the
simulation framework. Even though the user can, in principle, already use his own
estimation techniques, commonly applied methods like single-step GBLUP (Aguilar
et al., 2010) have to be implemented in a computationally e�cient way. In particular
for the use in plant genetics the inclusion of environmental e�ects and all available
and upcoming breeding technologies need proper implementation.

The data storage of haplotypes is highly e�cient, thus enabling the simulation of
full sequence data to potentially account for more complex e�ect structures and
simulate genetic e�ects that re�ect actual gene/genome functionality better.

In addition to the technical side of the implementation, the use of MoBPS for sci-
entists and breeders with limited programming background is a key concern. A
web-based application for MoBPS is currently under development to achieve the re-
quired user-friendliness. This is a joint project of Torsten Pook, Amudha Ganesan,
Ngoc-Thuy Ha, Lisa Büttgen and Henner Simianer (all: Department of Animal Sci-
ences, Center for Integrated Breeding Research, University of Goettingen, Goettin-
gen, 37075, Germany). The interested reader is referred the user manual of MoBPS
for details on this (Supplementary B and https://github.com/tpook92/MoBPS).

5.5.3 Concluding remarks

HaploBlocker and MoBPS provide powerful tools for breeding and quantitative ge-
netics. Both tools are designed to process datasets with a high number of individuals
and markers, and computation times for most potential bottlenecks scale linearly
in both dimensions. HaploBlocker and MoBPS therefore provide valuable tools to
assist in solving large scale problems of high complexity.

In addition, both tools provide the �exibility to customize the algorithm and design
space. For HaploBlocker, this implies tuning of the input parameter to adjust the
structure of obtained haplotype library according to the individual needs for sub-
sequent analyses. For MoBPS, this �exibility not only allows for a �exible design
of the breeding program itself but also the modi�cation of certain steps of the sim-
ulation procedure to test own methodology such as a new estimator for breeding
values. A potential method that could be considered for this purpose are arti�cial
neural networks (ANN, (Bellot et al., 2018; Pook, 2019a)). ANN not only have the
potential to improve the breeding value estimation in terms of accuracy but also
have the decisive advantage of linearly scaling in the number of individuals and thus
o�er further opportunities for the �eld of big data analysis in general.

https://github.com/tpook92/MoBPS
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1 Preface 

HaploBlocker is an R-package to compute a haplotype block library according to our paper 

“HaploBlocker: Creation of subgroup specific haplotype blocks and libraries”. The publication is 

currently available on biorvix (https://www.biorxiv.org/content/10.1101/339788v2) and submitted to 

Genetics. In the following, we will give some short guidelines on how to use the package and introduce 

input parameters to change the structure of the resulting haplotype library. 

2 Installation  

HaploBlocker requires R 3.0+ (and the included graphics and stats package) as well as the R-package 

RandomFieldsUtils (version 0.4.0+). RandomFieldsUtils is available on CRAN and at 

https://github.com/tpook92/HaploBlocker. HaploBlocker can directly be installed via the function 

install_github from the package devtools: 

Devtools::install_github(tpook92/HaploBlocker”, subdir=”pkg”) 

 

For manual installation of the package, use the R usage the R function install.packages (under windows 

set type=”source”, repo=NULL). Usage was tested on Linux and Windows. The usage on Mac OS is 

currently not recommended. 

For Windows the installation of Rtools is required. Some machines additionally require devtools.  

3 Citation 

There is currently no published version of our manuscript in a peer-reviewed journal. This will hopefully 

change soon. For so long we suggest using following the citations for the preprint on biorvix and the 

R-packages HaploBlocker: 

 

@article{Pook.2018, 

 author = {Pook, Torsten and Schlather, Martin and {de los Campos}, Gustavo 
and Mayer, Manfred and Schoen, Chris Carolin and Simianer, Henner}, 

 year = {2019}, 

 title = {HaploBlocker: Creation of subgroup specific haplotype blocks and 
libraries}, 

 doi = {10.1101/339788} 

 journal = {bioRxiv} 

} 

 

@misc{Pook.2018b, 

 author = {Pook, Torsten and Schlather, Martin}, 

 year = {2018}, 

 title = {HaploBlocker: An R package for the Creation of Haplotype Libraries 
for DHs and Highly Inbreed Lines}, 

 url = {https://github.com/tpook92/HaploBlocker} 

} 
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4 General 

The main function of HaploBlocker is block_calculation() and the only mandatory input of the function 

is a dataset (parameter: dhm) containing haplotypes or a path to a vcf/ped-file to import – inputs can 

contain up to 256 different characters/numeric/integer values. For maximum internal efficiency use 

just two variants: 

 

Figure 1: Excerpt of the dataset ex_maze 

When running, the user is receives updates regarding the currently stage of the algorithm: 

 

Figure 2: Example usage of the function block_calculation in Haploblocker 

5 Parameters of the main function (block_calculation) 

In the following, we will discuss the parameters for tuning of the structure of the derived haplotype 

library according to the step they are occurring in the algorithm. For exemplary inputs, we refer to 

section 6. As the default settings are chosen to work for most dataset but still perform fast we 

recommend the usage of our adaptive mode (adaptive_mode=TRUE) to create a haplotype library 

without modifying parameters. The interested reader is referred to the manuscript for a more detailed 

discussion and comparison of the structure of different haplotype libraries obtained under different 

parameter settings. 

5.1 Prefilters 

Parameters: prefilter, maf, equal_remove 
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Before the actual algorithm is executed, one can remove non-informative SNPs of the dataset. Firstly, 

filtering can be performed according to a minor allele frequency filter (parameter maf). Secondly, one 

can remove all SNPs in perfect LD to the previous one by activating equal_remove. On default, no 

filtering is done and it has to be activated via the parameter prefilter. 

5.2 Cluster-building 

Parameters: window_sequence, window_size, merging_error, max_groups, bp_map, 

window_anchor_gens, blockinfo_mode, at_least_one, multi_window_mode, blockinfo_mode_na, 

na_snp_weight, na_seq_weight, actual_snp_weight 

On default, the windows of the dataset are of equal length (window_size) and in every window the 

same number of errors (merging_error) is allowed. In case one wants to use different window sizes 

and number of errors per region (e.g. to exactly span windows according to the position of genes) one 

can manual set this up via the parameter window_sequence.  To include the position in base pairs one 

has to enter the position of each SNP via the parameter bp_map. 

Since the manual input can be tiring, we offer an additional possibility to generate a 

window_sequence. The parameter max_groups can be used to chose the window boundaries to 

obtain a certain number of variants per window (Next window starts whenever the previous block 

would have more variants than max_groups).  

When providing the physical position of wanted window boundaries (e.g. start/end point of genes) 

provide them in the parameter window_anchor_gens and the resulting window_sequence is 

automatically calculated. Note that no overlapping windows are supported! 

To minimize the number of groups in each window one can use the parameter blockinfo_mode (on 

default the groups are derived according to the most common haplotypes in the window). 

At_least_one is an utility parameter to make sure that in each window at least one SNP has to be the 

same (only relevant for window_size ≤ merging_error) 

To use multiple window clusters in the fitting procedure set multi_window_mode to TRUE. By doing 

this window_size, merging_error and min_share are able to process vectors as input and/or 

window_sequence can be just as a list of different window sequences. Each element is processed 

separately. In case no vector/list is provided the input is used for all cases. 

In case the dataset contains missing values, those on default will be modelled as another allelic variant 

(“9”) in the analysis. To count differences between NAs and allelic variants with different weighting 

activate block_mode_na. The difference between NA and an allelic variant is counted as 

na_snp_weight merging errors whereas different allelic variants are counted as actual_snp_weight 

merging errors. In case a marker contains only one allelic variant and NAs differences are counted as 

na_sep_weight merging errors. It has to be noted there that this mode is significantly more time 

consuming and still open to some change. Note that the required input of our tool are haplotypes – so 

phasing is required before application. 

5.3 Cluster-merging 

Parameters: node_min, gap, min_reduction_cross, min_reduction_neglet, early_remove, 

node_min_early 
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In the cluster-merging the number of haplotypes per node can be controlled via node_min. To avoid 

short segments between removed nodes, all haplotypes are in a common variant for less than gap 

windows are removed from the window cluster. 

To reduce computing time in the SG,SM and NN,SG,SM, SG cycles one can use min_reduction_cross 

and min_reduction_neglet to stop the cycles when there are less than that many merges occuring in 

one cycle of the algorithm. In case there is a high number of nodes with few haplotypes in it, one can 

consider removing them before the SG, SM cycle via early_remove and node_min_early.  

5.4 Block-identification 

Parameters: min_share, subgroups, consider_nodes, consider_edge, min_per_subgroup, 

consider_multi, multi_min, node_min, edge_min, double_share 

To not consider nodes or edges as starting blocks in the identification step one can set the 

consider_nodes, consider_edge to FALSE. Both those changes are not recommended (setting one to 

FALSE will decrease computing time). To additionally screen for blocks based on haplotypes in two 

adjacent edges use consider_multi (only recommened for small dataset & use multi_window_mode 

first). To change the minimum number of haplotypes per block one can use edge_min (Blocks by Edge), 

node_min (Blocks by node) and multi_min (multiple edges).  

To change the minimum proportion of a block transitioning in the same node required to extend the 

block one can use the parameter min_share. By doing this one can control the average length of each 

block and the similarity between haplotypes from a block. A higher value leads to shorter blocks and 

therefore leads to a higher similarity between the haplotypes in a block and a higher number of blocks 

overall. Additionally, the number of overlapping blocks is heavily reduced. 

To form blocks not only for the whole dataset but also for subgroups one can use the parameter 

subgroups and set the minimum number haplotypes of each subgroup to be in each block 

(min_per_subgroup).  A change in this parameter leads to blocks which are in all subgroups of the 

dataset and therefore can lead to low coverages. A change here is only recommended when one is 

explicitly interested in overlapping regions of multiple subgroups.  

To consider both the long and the short segments in the block-identification (extended-block-

identification) set double_share to the minimum share of the haplotypes required to transition in the 

same longer segment.  

5.5 Block-filtering 

Parameters: min_majorblock, min_majorblock_steps, min_similarity, save_allblock, consider_all, 

merge_closeblock, max_diff_i, max_diff_l, off_lines, weighting_length, weighting_size, 

target_coverage, target_stop 

The main filtering process is performed by identifying the number of cells in which each block is the 

most relevant block of the dataset. This number can be changed via min_majorblock and should be 

used to find a balance between the number of blocks and the coverage of the block library. To obtain 

a haplotype library with a specific coverage we recommend the use of the parameter target_coverage 

to initialize an automatic fitting procedure to determine a good choice for min_majorblock. To control 

the number of iterations performed to fit min_majorblock in target_coverage use max_iteration with 
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min_step_size controlling the minimal difference in min_majorblock per step and target_stop 

providing a maximum difference to the target. 

To control which block is the most relevant block in each cell one can control the weighting between 

the length and number of haplotypes in each block by using the parameters weighting_length and 

weighting_size. 

To avoid excluding important blocks, the minimum number is increased slowly (in 

min_majorblock_steps linear increasing steps). The minimum similarity of a haplotype with a block to 

be included can be set via the parameter min_similarity. By doing this, one can control the minimum 

similarity between two haplotypes of the same block. Haplotypes not fulfilling min_similarity but being 

in all node used to identify the block are not removed unless the parameter save_allblock is set to 

FALSE. 

Additionally, there are some minor parameters in the filtering process. To not consider haplotypes 

which are not in the block one has to set consider_all to FALSE. To allow blocks with similar haplotypes 

and location to be merged one has to activate merge_closeblock and set the maximum differences 

between them via max_diff_i (different haplotypes) and max_diff_l (differences between both). The 

minimum number of additional haplotypes a block has to have compared to another block when the 

sequence of windows is the same can be controlled via off_lines. 

5.6 Block-extending 

Parameters: block_extending, max_extending_diff, extending_ratio, snp_extending, 

max_extending_diff_snp, extending_ratio_snp 

If one does not want the block and SNP extension to be performed set block_extending and/or 

snp_extending to FALSE. If one wants to use it one can control the maximum number of windows that 

are different in some haplotypes (max_extending_diff, max_extending_diff_snp) and ratio between 

windows with and without variation (extending_ratio, extending_ratio_snp).  

5.7 Off-variant-identification (optional) 

This step is not executed on default as its application is only recommend to obtain an absolute 

maximum coverage for a dataset. Here, in addition to the window cluster additional blocks are 

generated based on those entries/cells of the dataset not included in the block library before.  

Parameters: off_node_addition, raster, off_node_minimum_blocklength, off_node_minimum_size 

Set off_node_addition to TRUE to active this step. In this step each cell is screen for a section of  

off_node_minimum_size haplotypes with the same sequence in off_node_minimum_blocklength 

windows. Afterward all other steps are executed again (especially filtering for min_majorblock). 

To reduce computing time not every window is consider, but instead only each raster window (this 

should be a value smaller than off_node_minimum_blocklength).  

5.8 Performance parameters – computing time:  

Parameters:  recoding, recoding_notneeded, fast_compiler, intersect_func, c_dhm_mode, 

parallel_window, window_overlap, window_cores 
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Internal computations are faster when a low number of different characters is use is the input dataset 

(dhm). To change the coding to major_variant “A”, minor_variant “C” in every SNP set the parameter 

recoding to TRUE. If this is already done you can further use recoding_notneeded to skip the recoding 

step and still profit from the advantages of the recoding. 

To further reduce computing time one can active parallel computing via parallel_window. Here the 

dataset is split into windows containing parallel_window markers. On defaults, window do not overlap 

but in principle can via window_overlap. The number of cores used is controlled via window_cores. 

Fast_compiler enables the compiler-packages and just-in-time computing. Intersect_func loads in a 

more efficient variant of base::intersect and c_dhm_mode controls if bitwise coding is used internally 

(don’t see a reason why you would not want this). 

6 Exemplary inputs 

Parameter-name Default Other option: 

prefilter FALSE TRUE 

maf 0.00 Value between 0 and 0.5 

equal_remove FALSE TRUE 

window_sequence NULL 

(automatically 

generated) 

window_size 20 Natural number (1,2,3,…) 

merging_error 1 Natural number (1,2,3,…)  - lower than window_size! 

max_groups 0 to active: Natural number >= 2  

bp_map NULL 

window_anchor_gens NULL 

 

blockinfo_mode 0 1 to minimize groups per window 

at_least_one TRUE FALSE 

multi_window_mode FALSE TRUE (use e.g. window_size=c(5,10,20,50))  

blockinfo_mode_na FALSE TRUE (adjust merging_error ! ) 

na_snp_weight 2 Numeric value >0 

na_seq_weight 0 Numeric value > 0 

actual_snp_weight 5 Numeric value > 0  

gap 10 Natural number (1,2,3,…) 

min_share 0.975 Value between 0.5 and 1 (highly recommend to not use 

small values! 
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node_min 5 Natural number (1,2,3,…) 

edge_min 5 Natural number (1,2,3,…) 

multi_min 5 Natural number (1,2,3,…) 

consider_nodes TRUE FALSE 

consider_edge TRUE FALSE 

consider_multi FALSE TRUE 

subgroups NULL 

(automatic 

generated) 

List(1:500, 1:200, 1:300)  

Subpopulation 1 in first 200 colums 

Subpopulation 2 in last 300 colums 

min_per_subgroup 0 Natural number (1,2,3,…) 

Only when one is explicitly interested in the overlap 

between both populations! 

min_majorblock 5’000 Non-negativ-number (0,1,2,…) 

 

min_majorblock_steps 4 Non-negativ-number (0,1,2,…) 

min_similarity 0.99 Value between 0 and 1 (highly recommend to not use 

values below 0.9! 

save_allblock TRUE FALSE 

consider_all TRUE FALSE 

merge_closeblock FALSE TRUE 

max_diff_i 1 Non-negative-number (0,2,3,…) 

max_diff_l 1 Non-negative-number (0,2,3,…) 

off_lines 2 Natural number (1,3,4m…) 

weighting_length 1 Numeric value (<0 not recommended) 

weighting_size 1 Numeric value (<0 not recommended) 

block_extending TRUE FALSE 

snp_extending TRUE FALSE 

max_extending_diff 1 Non-negative-number (0,2,3,…) 

max_extending_diff_snp 0 Non-negative-number (1,2,3,…) 

extending_ratio 20 Natural number (1,2,3,…) Avoid low values 

extending_ratio_snp Inf Naturual number (1,2,3,…) Only change for long 

windows and high number of haplotypes in blocks 

off_node_addition FALSE TRUE 

raster 5 Natural number (1,2,3,…) 

recoding FALSE TRUE 

recoding_notneeded FALSE TRUE 

fast_compiler TRUE FALSE 

intersect_func TRUE FALSE will use base::intersect 

HaploBlocker::intersect requires that vector in an 

ascending sequence of numerics 
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c_dhm_mode TRUE FALSE 

big_output FALSE TRUE 

target_coverage NULL Value between 0 and 1 

max_iteration 10 Natural number (1,2,3,…) 

min_step_size 25 Natural number (1,2,3,…) 

target_stop 0.001 Value between 0 and 1 (recommend close to 0) 

multi_window_mode FALSE TRUE; 

Can be actived by using a vector for window_size; 

merging_error or min_share 

adaptive_mode FALSE TRUE; 

Sets window_size = c(5,10,20,50) and 

Target_coverage = 0.9 

developer_mode FALSE TRUE 

parallel_window Inf Natural number – bigger than the biggest blocks one 

wants to identify 

window_overlap 0 Natural number – nothing bigger than the size of the 

largest block is needed 

window_cores 1 Natural number (2,3,4,…) 

double_share 1 Value between 0 and 1 (nothing below 0.5 is 

recommended) 

min_reduction_cross -Inf Non-negative-number (0,1,2,3,…) 

min_reduction_neglet -Inf Non-negative-number (0,1,2,3,…) 

early_remove FALSE TRUE 

node_min_early NULL Natural number (1,2,3,…) – e.g. node_min / edge_min 

7 Output 

The output of block_calculation() is a list containing a block in each element. For each block the 

following information are stored: 

1. Sequence of nodes in the window cluster 

2. Start of the block (in windows, SNPs and bp) 

3. End of the block (in windows, SNPs and bp) 

4. Sequence of the group in each window 

5. Number of haplotypes in the block 

6. List of Haplotypes in the block 

7. 1.  Sequence of alleles in the block (joint allelic sequence) 

7. 2. Frequency of the joint allelic sequence per marker 

8. – 12. Internal stuff to save computing time in the algorithm (Only in the output using 

developer-mode) 

 

To not only generate the haplotype library but additionally the window-dataset, the window-cluster 

and general information on each window get the parameter big_output to TRUE. 
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8 Data Availability 

A full dataset containing 80’200 markers for 910 individuals is provided with the publication and is 

included in our GitHub repository (https://github.com/tpook92/HaploBlocker). All results presented in 

the publication are limited to chromosome 1. Datasets for other chromosomes will be made available 

with publication of other project partners and hopefully then included in the package. The package 

itself contains a dataset of the first 9’999 SNPs of 313 KE DH-lines (ex_maze). 

9 Functions for later analysis 

So far, we have only implemented smaller utility functions to assess the relevant parts of the output 

and generate basic plots to get an overview of the structure of the blocks. We are always happy for 

feedback on additional wishes for possible outputs or other options to include in our algorithm.  

Usage of function 9.1, 9.2, 9.3 is encouraged to get a general feeling about the structure of the 

haplotype library. Both 9.4 and 9.5 can be used the generated block datasets for later analysis. 9.6 and 

9.7 contain function to derive bEHH and iHH scores for the haplotype library. 9.8, 9.9, 9.10 are old 

utility functions to get a generate feeling about the structure of the haplotype library. 

9.1 plot_block() 

Parameter: blocklist, type=”snp”, orientation=”snp”, include=TRUE, indi=NULL, min_to_plot=5, 

intensity=0.5, add_sort=TRUE, max_step=500, snp_ori=NULL, export_order=FALSE, 

import_order=FALSE 

This function can be used to generate a graphical representation of a blocklist. Use type to select 

scaling of the x-axis (“bp”, “snp”, “window”). To sort haplotypes use the parameter orientation – To 

align against blocks in set orientation to “front”, “mid” or “back”. We recommend aligning against a 

location in SNPs. On default the middle of the dataset is used but can be manually set using snp_ori. 

For ordering haplotypes only the adjacent max_step blocks are considered – the default of 500 should 

be more than enough for all applications. Instead of using our sorting algorithm one can import the 

order of haplotypes using import_order (or export using export_order=TRUE). 

Only those blocks are displayed with at least min_to_plot haplotypes in it. To show overlap, blocks are 

displayed with a low color intensity. 
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Figure 3: Exemplary output of plot_block for the ex_maze blocklist. 

9.2 blocklist_startend() 

Parameters: blocklist, type=”snp”, first_block=1 

Calculate the start and endpoint of each block. Select the type (“window”, “snp”, “bp”) accordingly. 

Use first_block to skip deriving start/endpoints of the first blocks (this is needed internally). 

 

Figure 4: Exemplary output of blocklist_startend for the ex_maze blocklist. 

9.3 coverage_test() 

Parameters: blocklist, indi=NULL, type=”snp”, max=1 

Calculate which cells of the dataset are covered by any block. Set max to a value above 1 to display 

how many blocks are presented in each cell. For big datasets setting type to ”window” is recommended 

to reduce computing time. 
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9.4 block_matrix_construction() 

Parameter: blocklist 

Calculate a block-dataset according to the block library 

 

Figure 5: Exemplary output of block_matrix_construction for the ex_maze blocklist 

9.5 block_windowdataset() 

Parameter: blocklist=NULL, data=NULL, consider_nonblock=FALSE, return_dataset=FALSE, 

non_haploblocker=FALSE 

Generate a window-based block dataset. Blocks span over the same windows of markers for better 

comparability to other block based approaches. Overall, windows are much shorter than HaploBlocker 

blocks. Set consider_nonblock to TRUE to haplotypes in no haplotype block in HaploBlocker to be in 

blocks. Set return_dataset to TRUE to instead of a dataset coding presence/absence allow for more 

variants in each window. 

To ignore the haplotype blocks derived and just compute all variants set non_haploblocker to TRUE. 

In case consider_nonblock or non_haploblocker are used, the original dataset has to be provided via 

data. 

 

Figure 6: Exemplary output of block_windowdataset for the ex_maze blocklist 
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Figure 7: Exemplary output of block_windowdataset for the ex_maze blocklist considering all variants. 

9.6 block_ehh() 

Parameters: blocklist, data=NULL, marker, plot=FALSE, position1=NULL, standardization=3, 

group=NULL, return_ehh=TRUE 

This function can be used to derive bEHH scores for a given blocklist. In case no blocklist is provided a 

SNP-dataset can be provided in data. bEHH is computed the marker given in marker. To plot the bEHH 

curve set plot to TRUE. On default, distance between markers are assumed to be equidistant. Position 

of markers can be provided via position1. 

A change of standardization is not recommended for external use. To compute bEHH scores for 

different subgroups use group. To instead of bEHH return iHH set return_ehh to FALSE. 

 

Figure 8: Exemplary output of block_ehh (marker=5000, plot=TRUE). 

9.7 block_ihh() 

Parameters: blocklist, data=NULL, plot=FALSE, position1=NULL, standardization=3, group=NULL 

This function can be used to compute iHH scores for the whole genome – input parameters work in 

the same way as block_ehh (9.6). 
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Figure 9: Exemplary output of block_ihh (plot=TRUE). 

9.8 block_plot() 

Parameters: blocklist, indi=NULL, type=”snp”, bw=1 

This function can be used to generate a plot of each blocks position (x-axis length, y-axis number of 

haplotypes in block). The red lines indicated the coverage of the full block library per region. 

The parameter indi is automatically calculated. Type can be set to “window”, “snp” or “bp” depending 

on the desired scaling. The use of “window” is not recommended when using multiple window sizes. 

For smoothing of the coverage curve a Nadaraya-Watson estimator with bandwidth bw can be used 

(default: no smoothing). 

 

Figure 10: Exemplary output of block_plot for the ex_maze blocklist 

 

9.9 blocklist_plot() 

Parameters: blocklist, cutoff2=5, bound_weighted=TRUE, type=”snp” 

197



15 

 

The location of the blocks is given according to the y-axis. Additionally, recombination hotspots are 

indicated by horizontal lines. Cutoff2 (for the example 3 was used) is the minimum number of blocks 

that are required in that region to mark a position as a hotspot and bound_weighted scales blocks 

according to the size of the block. We do not only count the position itself but adjacent markers via a 

kernel regression method. 

 

Figure 11: Exemplary output of blocklist_plot for the ex_maze blocklist (cutoff2=3) 

9.10 blocklist_plot_xsize() 

Parameters: blocklist, cutoff2=5, bound_weighted=TRUE, type=”snp” 

Plot of the blocks with width according to the number of haplotypes in the respective block. Location 

according to the y-axis. Additionally recombination hotspots are indicated by horizontal lines. Cutoff2 

is the minimum number of blocks to end to mark a position as a hotspot and bound_weighted scales 

blocks according to the size of the block. 

 

Figure 12: Exemplary output of blocklist_plot_xsize for the ex_maze blocklist (cutoff2=3) 
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1 General 

MoBPS is an R-package to simulate complex and large scale breeding programs with focus on livestock 

and crop populations. Simulations are performed on an individual basis. MoBPS is a versatile tool, 

providing standard procedures applied in animal and plant breeding like GBLUP and OGC, but also 

allowing to use own selection schemes while still controlling the simulation of phenotypes, meiosis 

and costs of the simulated scheme.  The actual process of the simulation can be split up into two steps: 

the creation of a starting population and the simulation of breeding processes.  

As it is our goal to provide a lot of flexibility while performing the simulation, there is a need of many 

parameters – luckily only a few of those will be needed for most simulations. For a better 

understanding of the workflow required to set up a simulation, we refer to section 16 for exemplary 

simulations. For a list of all input parameters and possible initializations, we refer to section 11. 

For questions regarding the tool or how to set up your simulation feel free to contact me 

(Torsten.pook@uni-goettingen.de). We are always happy for questions as it really helps improve the 

tool and its documentation. For quick reply, it would help to provide a small example of our problem. 

In addition, we are currently in the process of developing a graphical interface for the R-package 

(available at www.mobps.de). Note that this interface is still in active development and not part of the 

MoBPS paper. The use of the interface is still encouraged, but for major projects we highly recommend 

(and are looking for) close collaboration for the further development.  

2 Installation  

The current version of MoBPS requires R 3.0 or higher. We highly recommend the use of the packages 

RandomFieldsUtils (version 0.5.9+) and miraculix (0.9.7+) as they significantly reduce computing time 

when working with a high number of markers and individuals. All functionality is available without both 

package, but simulations can be significantly slower. For direct install via GitHub use the following line 

of code (this requires the R-package devtools): 

devtools::install_github("tpook92/MoBPS", subdir="pkg") 
 

 

This option is currently not available for miraculix and RandomFieldsUtils. RandomFieldsUtils is 

available on CRAN, miraculix will hopefully soon follow. As updates to CRAN are only possible every 

few month we highly recommend to use the version available on GitHub itself. Packages can be 

downloaded at https://github.com/tpook92/MoBPS and directly install via the R function 

install.packages(). Usage was tested on Linux and Windows (under windows set type=”source”, 

repo=NULL). The usage on Mac OS is currently not recommended. Commonly used Ensembl-maps 

(Zerbino et al. 2017) are available in the associated R-package MoBPSmaps. 

devtools::install_github("tpook92/MoBPS", subdir="pkg-maps") 

 

For Windows the installation of Rtools is required. RandomFieldsUtils does require the package spam.  

3 Citation 

There is currently no paper published on our R-package. This will hopefully soon change. For so long 

we suggest using following to citations for the R-packages MoBPS and miraculix: 

  @Manual{, 
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    title = {MoBPS: Modular Breeding Program Simulator}, 
    author = {Torsten Pook}, 
    year = {2019}, 
    note = { Available at https://github.com/tpook92/MoBPS; R-package versi
on 1.4.15}, 
  } 
 
  @Manual{, 
    title = {miraculix: Statistical Functions for Animal Breeding}, 
    author = {Malena Erbe and Martin Schlather and Florian Skene and Alexan
der Freudenberg}, 
    year = {2019}, 
    note = { Available at https://github.com/tpook92/MoBPS; R-package versi
on 0.9.6}, 
  } 

 

4 Creation of the starting population (creating.diploid()) 

The input for the simulation of a breeding process is a population list. This list is created via 

creating.diploid(). 

We provide exemplary genetic maps for some common species, which can be selected via the 

parameter template.chip. Note that primary the number of chromosomes and their genetic length is 

imported at this step (especially not real markers with known allele frequencies, effects or base pairs). 

The maps provided via template.chip are “cattle” (Ma et al. 2015), “pig” (Rohrer et al. 1994), “chicken” 

(Groenen et al. 2009), “sheep” (Prieur et al. 2017) and “maize” (Lee et al. 2002). Alternatively, a 

genomic map can be inserted via the parameter map with exemplary maps being provide in the 

package itself or via import from Ensembl (section 9.9). 

4.1 Importing/Generating of a genetic dataset 

In case one has haplotype data for the founders/starting population this can be imported via the 

parameter dataset in form of a haplotype dataset: 
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Datasets can also be imported via entering the path of the vcf file in the parameter vcfpath. The R-

package vcfR is needed for this. Otherwise, a dataset can be generated by setting the number of SNPs 

(nsnp) and individuals (nindi) – we offer four possible modes to simulate starting haplotypes (“all0”, 

“allhetero”, “random”, “homorandom") leading to haplotypes (000…/000…, 000…/111…,X_1 X_2 

X_3… /X_4 X_5 X_6 … with X_i~B(freq) X_1 X_2 X_3 … /X_1 X_2 X_3… with X_i~B(freq)). On default 

“random” is used. The allele frequencies for each marker are enter via the parameter freq and are 

sampled from a beta distribution with beta_shape1 and beta_shape2 (default: 1,1; leading to a 

uniform distribution of allele frequencies.  

To generate an LD and haplotype structure 

without using real data we recommend to start 

with one of the simple datasets and simulate 

some random/non-random mating generations 

using breeding.diploid() (cf. section 5). Wrapper 

functions for the automatic generation of those 

base populations in MoBPS are planned but not 

yet implemented. 

If a vcf file is used for data import or a map is 

provided, the chromosome, marker name and 

base pair position are automatically imported. 

Alternatively, those can be provided via chr.nr, bp 

and snp.name. By doing this, multiple chromosomes can be inputted jointly. If no input for chr.nr is 

provided all markers are assumed to be on the same chromosome (for more on the usage of a genetic 

map, we refer to section 4.2).  

In case more markers are to be added to and existing population list set add.chromosome to TRUE 

and repeat the previous process with the population list as an additional input. 

To specify the sex of each sample either assign each individual a probability to be female (sex.quota) 

or alternatively use a vector (sex.s) assigning each individual its sex (M=1, F=2). 

4.2 Importing a genetic map 

The user can provide a genetic map of up to five colums via the parameter map. The first column 

contains the chromosome of the respective marker, the second column the name of the marker, the 

third column the physical position of the marker, the forth column the position in centimorgan and the 

last column the allele frequency in the population. All values not provided are automatically set to NA 

and values are used as input for chr.nr, snp.name, bp, snp.position, freq. 

Alternatively maps can be imported via ensembl.map(). For more on this we refer to Chapter 9.9. 

4.3 Simulating/Generating the genetic architecture underlying each trait 

As the manual input of effects can be tiring, we provide some automated procedures to simulate some 

common effect structures (additive, dominant, qualitative and quantitative epistasis) – if you do not 

need more, you can just skip to section 4.3.2). 

Note that this is the generation of an actual genetic value that is underlying each individual of the 

population. In reality you cannot observe this, as traits will be caused by far more complex interactions 

Figure 1: https://en.wikipedia.org/wiki/Beta_distribution 
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and effects are not known. This, on the other hand, enables opportunities to evaluate a model fit given 

a known structure (e.g. GWAS hits can be compared to actual effect markers instead of previously 

identified markers or similar). Traits can be named via the parameter trait.name. 

4.3.1 Custom-made genetic architectures 

To simulate a custom-made genetic architecture we allow for effects caused by one (real.bv.add), two 

(real.bv.mult) or more SNPs (real.bv.dice).  These effects can either be added directly while using 

creating.diploid() or added later using creating.trait(). To delete previously existing effects set 

replace.real.bv to TRUE. For multiple traits use lists as inputs for all parameters in this section with 

each list element containing information for one trait. 

Input structure for the first two is a matrix with each row coding a single effect: 

 

real.bv.add should be able to model any additive or dominance effects of single markers. 

 

real.bv.mult should be able to model any epistatic interaction between two markers. 

To simulate even more complex effect structures use the parameter real.bv.dice allowing the 

modelling of effects caused by more than two SNPs. 

Input for real.bv.dice is a list containing a list of all locations and a list of all effects: 

 

Each network of interacting markers is giving in the first list (location) and their effects are given in a 

second list (effects). Effects are sorted in following order: 0…0, 0…01, … 2…2 – resulting in a vector 

with 3� elements, where n is the number of markers involved in the effect. 

Marker effects assign to positions that currently do not exist (e.g. SNP 100 on chromosome 1 in case 

chromosome 1 only contains 50 SNPs) are automatically removed from the stored effects unless 

remove.invalid.qtl is set to FALSE. 
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4.3.2 Predefined genetic architectures 

In case of a predefined genetic architecture, all markers are assigned with the same probability to be 

drawn as effect markers. To exclude markers use a parameter exclude.snps containing a vector of all 

numeric positions of excluded markers. Numbering is consecutively starting with chromosome 1. Note 

that only markers, that are already included in the dataset, can be chosen as effect markers – so in 

case of more than one chromosome with no generation via chr.nr the effects should be added using 

creating.trait() (cf. section 9.2) or in the last run of creating.diploid(). 

The number of additive (n.additive) and dominate (n.dominant) QTL as well as effects caused by 

qualitative (n.qualitative) and quantitative (n.quantitative) epistasis can be included directly. To 

assign the variance, one can input a vector containing the variance for each effect (var.additive, 

var.dominant,…). On default, each variance is set to 1 and effects are drawn from a Gaussian 

distribution.  

Qualitative epistasis is simulated by drawing 3 random effects for both involved markers, taking the 

absolute values from those, sorting them from low (0) to high (2) and multiplying those effects with 

each other. By this, we obtain the lowest effect for 00 and the highest for 22 with selection for 

alternative allele to be beneficial in all cases. 

Quantitative epistasis is simulated by drawing 9 random effects and assigning the absolute values of 

two of those to the corner 02 and 20. All other combinations are assigned the minus absolute values 

of drawn random number. 

To simulate more than one trait use vectors for n.XXX and lists for var.XXX instead. 

4.3.3 Correlated Traits 

To generate correlated quantitative traits selected the traits that should be correlated via shuffle.traits 

and provide the needed correlation in shuffle.cor. Note that QTLs are then assigned to the same 

markers to get correlations independent of the underlying LD structure. To set a correlation for traits 

with no underlying QTL, use new.breeding.correlation.  As simulation is done via sampling from a 

Gaussian distribution and genetic traits do not fulfil all requirements of a dependent multivariate 

Gaussian distribution (which is here used to model dependency), the obtained resulting correlations 

can be different to the correlation set in new.breeding.correlation if non-QTL traits have correlations 

with QTL-traits. We are currently working on alternatives for this. 

4.4 Position of Markers 

For our simulations, the physical position in base pairs does not really matter as we are interested in a 

position in Morgan internally. We assume points of recombination to be distributed according to a 

Poisson distribution. On default, we assume markers to be equidistant with the total length of the 

chromosome in Morgan given by the parameter chromosome.length (default: 5). When performing a 

joint generation of multiple chromosomes with different sizes enter a vector instead. If non of the 

following options for the position of each marker are provides, markers are assumed to be equidistant. 

This will also minimize computation time and therefore should only be changed if needed. 

Based on the physical positions entered in the parameter bp the position in Morgan can be derived by 

providing a conversion rate in bpcm.conversion. Note that tools like BEAGLE (Browning et al. 2018) 
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assume 100.000.000 bp per Morgan. For chicken, we would recommend the use of 30.000.000 bp per 

Morgan. 

Another way of entering the genetic position (in M) is via the parameter snp.position manually. Scaling 

can be performed internally by activating the parameter position.scaling and the chromosome.length. 

In addition, one should input a value for the number of base pairs before and after the last position 

(length.before, length.behind). Both should be chosen to be larger zero (default: 5) if scaling is 

performed.  

For some applications, the recombination rate might not be the same for all individuals (e.g. 

male/female differences). To input an additional recombination map enter alternative positions in the 

parameter add.architecture. You can select which architecture is used for every parent in the actual 

simulation process. 

5 Simulation of breeding processes (breeding.diploid()) 

To perform the actual simulation of matings the function breeding.diploid() is used. Especially for that 

step, the sheer amount of different options can be deterring – in reality only a few parameters will 

actually be relevant. In this section, we will first discuss absolutely necessary parameters, their default 

options and afterwards discuss possible deviations. For exemplary simulation we refer to section 16. 

Note that you most likely can skip through some of the sections if you are not interested in changes in 

that dimension. There will be a lot of cases where there is the same parameter for the male and female 

part of the breeding program. We will limit ourselves here to the male parameter (parametername.m) 

– usage of the female version (parametername.f) will always be the same. The default setting for the 

female parameter is to be the same as the male parameter (NOT the default of the male parameter). 

Exception to this is course the case in when groups of individuals are selected to be used as parents 

and similar (e.g. selection.f.cohorts). 

5.1 General setup 

The output of breeding.diploid() is an updated population list. All newly generated individuals are 

added as an additional generation – to add them to a previously existing generation set add.gen to the 

generation you want to add to. 

The number of newly generated individuals can be chosen via breeding.size. Input for this is a numeric 

value and sex of each offspring is randomly determined via breeding.sex (probability of a male 

offspring). To remove randomness set breeding.sex.random to FALSE or input a vector containing the 

number of new male/female individuals in breeding.sex instead. 

To control which individuals are used in the mating procedure use the parameter selection.size (vector 

of size 2, containing the number of used male/female individuals). By default only the individuals of 

the last generation and class 0 (this is usually all and you will realize when this is not the case) are used. 

Classes can be used to model migration in store groups of different genetic origin but same sex and 

generation or to just remove individuals from the pool of individuals considered for selection. 

To control which individuals are used every cohort generated can be named via name.cohort in 

breeding.diploid() & creating.diploid(). The individuals used in the selection procedure can be chosen 

via selection.m.gen, selection.m.database and selection.m.cohorts (paternal side) and same syntax 

for the maternal side. In the old version of the code, this is equivalent to the use of best1.from.cohorts 
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and best1.from.groups that are still alternative input parameters for selection.m.database and 

selection.m.cohorts.  

To combine individuals to a new cohorts of individuals set combine to TRUE. This will generate a new 

cohort of all selected individuals - do not combine male and females individuals!  

On default, the selection of individuals is done at random (For more on this we refer to 3.4). 

To select the individuals of which class to consider in the selection procedure, use the parameter 

class.m, containing a vector of all usable classes. To control the class of the new individuals use the 

parameter new.class (default 0). Classes of all cohorts added are automatically added to the vector of 

considered classes (class.m) unless add.class.cohorts is set to FALSE. 

To generate multiple offspring from the same dam/sire pair set repeat.mating to the desired number. 

Both the time of the generation of new individuals (time.point) and the type of the mating 

(creating.type) can be stored. Both parameters are mostly used internally in the web-based application 

and are automatically tracked internally. 

5.2 Control of heritability, breeding values, genotypes and phenotypes 

For each individual, an underlying true genetic value is calculated for each trait. Based on this, 

phenotypes can be generated. For which individuals to generate new phenotypes can be controlled 

via new.bv.observation.gen, new.bv.observation.database and new.bv.observation.cohorts. For a 

quick input of all individuals previously not phenotyped set new.bv.observation to “all”, “non_obs”, 

“non_obs_m” or “non_obs_f” for all or all previously not phenotyped individuals (potential of only one 

sex). On default, for each individual at most one phenotype is generate. Set multiple.observation to 

TRUE to allow for more than one observation per individual. To generate multiple observations in a 

single run of breeding.diploid() set n.observation to that number. Note that the number of times an 

observation for an individual is generated does matter since the environmental variance will be 

reduced with each observation as observations are assumed to be independet. To model a correlation 

between the environmental variances for different traits set provide the desired correlation matrix via 

new.phenotyp.correlation (this can also be done in creating.diploid()). For the simulation of correlated 

genetic values we refer to section 4.3.3.  

The environmental variance �� can be controlled by the usage of sigma.e. This can either be set to a 

fixed numeric value or be estimated to fulfill a target heritability. For the second possibility, the genetic 

variance is calculated based on the individuals specified in sigma.e.gen, sigma.e.database and 

sigma.e.cohorts and the needed environmental variance is then calculated by the usage of a 

predefined heritability. You can also use the environmental variance of the previous simulation by 

setting use.last.sigma.e to TRUE. A manual change of the genetic variance sigma.g is not 

recommended but in principle possible (this will only affect the breeding value estimation). On default 

it is estimated using all individuals used in the current breeding value estimation (set forecast.sigma.g 

to FALSE to deactivate). To specify which groups to use to estimate �� use sigma.g.gen, 

sigma.g.database, sigma.g.cohorts. 

For newly created individuals the phenotype is set to 0. Alternatively, one can it to the mean of the 

parents or create an observation by setting new.bv.child to “mean” or “obs” instead of “zero”. In case 

of generating individuals via copy.individual one can also use “addobs” to import existing observations 

but also potential generate additional ones via n.observation. Estimated breeding values are also kept 

unless copy.individual.keep.bve is set to FALSE. 
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To select the share of individuals genotyped use the parameter share.genotyped or select it manually 

via genotyped.s (in concordance to sex.s in creating.diploid()). In case an individual is generated via 

copy.individual the genotyping state is keep and the share of previously not genotyped individuals 

that is now genotyped can be controlled via added.genotyped. 

In some applications, the genetic value of the individual itself is not of importance – instead the 

performance of its offspring is of relevancy. To select for which individuals to import offspring 

phenotypes use offspring.bve.parent.gen, offspring.bve.parent.database and 

offspring.bve.parent.cohorts. Unless specified in offspring.bve.offspring.gen, 

offspring.bve.offspring.database and  offspring.bve.offspring.cohorts all offspring are considered 

here. 

For better comparison of and between breeding values it is possible to standardizing breeding values 

before the first generation by activating standardize.bv. By this the average breeding value is set to 

standardize.bv.level (default: 100) – for the calculation of this, the average of the individuals in 

generation standardize.bv.gen (default: 1) is used. 

Scaling in case of index selection with multiple traits is performed in the selection process itself. 

5.3 Breeding value estimation 

To perform selection one can perform breeding value estimation. To activate this set bve to TRUE. In 

the simplest case, one has to input which groups to use in the breeding value estimation via the 

parameters bve.gen, bve.database and bve.cohorts. 

As there are a lot of different ways to perform breeding value estimation, we implemented multiple 

variants: 

1. GBLUP with assumed known heritability and direct solving of the mixed model without REML 

variance component estimation  

2. Bayesian approaches implemented in BGLR  

3. GBLUP using EMMREML 

4. GBLUP using sommer 

5. Pedigree-based BLUP via breedR 

6. Parent/Grandparent mean 

7. Own function 

In any case estimated breeding values are entered for all individuals unless bve.insert.gen, 

bve.insert.database or bve.insert.cohorts directly classifies for which groups breeding values are to 

be entered. The accuracy of the breeding value estimation is automatically reported unless 

report.accuracy is set to FALSE. 

For the calculation of G we offer multiple methods with computation.A=”vanRaden” being the default 

(VanRaden 2008). Alternatives include “kinship”, “CM”, “CE” (Martini et al. 2017) and the non-Z-

standardized version of the vanRaden method (“non_stand”). In case “kinship” is selected the depth 

of the pedigree has to be provided via the parameter depth.pedigree (default: 7). Note that these 

individuals are just used to calculate the A matrix. Individuals used in the actual breeding value 

estimation still need to be selected via bve.gen, bve.database and bve.cohorts. Individuals with no 

observed phenotype start with a value of 0. Internally all phenotypes that are exactly 0 are handled as 

an NA – suppress this by setting bve.0isNA to FALSE (note that only methods 1./2./4. are able to handle 

NAs in the data).  To active the use of the single step genomic relationship matrix set singlestep.active 
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to TRUE – otherwise non-genotyped individuals are not considered in the breeding value estimation 

unless remove.non.genotyped is set to FALSE (Legarra et al. 2014). 

 

To not perform statistical breeding value estimation but instead using the phenotypes as breeding 

value estimates set phenotype.bv to TRUE. 

As the presence of true effect markers in the dataset might be a strong assumption one can set 

remove.effect.position to not use markers associated with any traits in the breeding value estimation. 

To only included individuals with a certain class set bve.class to a vector containing all classes to 

consider. 

In case individuals were generated via copy.individual (this is especially relevant for the web-based 

application) each individuals is only used at most once. To consider the same individual multiple times 

set bve.avoid.duplicates to FALSE. Note that cloning will not lead to the same ID. 

5.3.1 Direct approach with known heritability 

Main advantage of a direct estimation is a massive improvement in computation time as the usually 

necessary REML estimation takes most of the time. In practice, it might not be realistic but since 

genetic values are known it is possible. Note that this is still an empirical measure that can change 

when using different individuals in the estimation process. Especially for bigger populations heritability 

estimation should not be problematic and is not performed in each breeding value estimation in 

practice as well. To instead estimate the additive genetic variance using a parental model activate 

estimate.add.gen.var.  

In case of missing phenotypes, estimates will be based on (VanRaden 2008) method 2. This will also be 

used in case of the use of single step. Alternatively one can use rrBLUP based estimates by setting 

bve.direct.est to FALSE. Note that this second version is slower and requires the presence of 

individuals that are phenotyped and genotyped. 

5.3.2 Bayesian approaches (BGLR) 

For performing Bayesian methods we are using the R-package BGLR. To activate the usage of BGLR set 

BGLR.bve to TRUE. On default a Reproducing-kernel-hilbert-space is used – alternatively one can use 

BayesA, BayesB, BayesC by setting BGLR.model to “BayesA”, “BayesB”, “BayesC”, “BRR”, or “BL” 

instead of “RKHS”. Other parameter values will all be chosen according to the defaults of the BGLR 

package. If you want to test alternative parameter settings or use other methods implemented in BGLR 

either do the estimation manually (Chapter 5.3.8) or contact the me to add it to the package. 

To control the number of the burn-in and iterations use BGLR.burnin and BGLR.iteration. To deactivate 

printing of results of interim steps set BGLR.print to FALSE (equal to verbose=FALSE in BGLR). On 

default BGLR will generate some internal files in its computations. To select a path of where to store 

them chose it via BGLR.save. Especially when parallelizing thousands of simulations BGLR tents to 

crash when the same path is used multiple times. Activating BGLR.save.random will hinder this. 
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5.3.3 GBLUP (EMMREML) 

Traditional GBLUP including variance component estimation using REML is performed by using the 

package EMMREML. To activate the usage set emmreml.bve to TRUE. EMMREML does not support 

missing phenotypes and therefore can only be used if phenotypes for all individuals in the BVE are 

available (if not use the direct approach, sommer or rrBLUP). 

5.3.4 GBLUP (sommer) 

Traditional GBLUP including variance component estimation using REML is performed by using the 

package sommer. To activate the usage set sommer.bve to TRUE. Sommer does support missing 

phenotypes. 

To activate the use of the multi-trait model implemented in sommer use sommer.multi.bve to TRUE. 

Note that this will take substantially longer than single trait models. 

5.3.5 GBLUP (rrBLUP) 

Traditional GBLUP including variance component estimation using REML is performed by using the 

package rrBLUP. To activate the usage set rrBLUP.bve to TRUE. rrBLUP is about 2.5 times as fast as 

sommer for breeding value estimation. 

5.3.6 Pedigree-based (breedR) 

Traditional breeding value estimation using pedigree data. To activate set breedR.bve to TRUE – 

especially for bigger populations this is much faster computation wise. Overall heritabilities in breedR 

seem to be underestimated and accuracies slightly lower. Alternatively, the pedigree-based 

relationship matrix can also be used in all other methods by setting computation.A to “kinship”. This 

procedure takes about the same time as with other relationship matrices (No usage of high number of 

zeros in the relationship matrix or the direct inverse of the pedigree matrix).  

5.3.7 Parent/Grandparent mean 

To use the mean performance of the parents / grandparents as the breeding value use 

bve.parent.mean / bve.grandparent.mean. On default breeding value estimates for the parents are 

used and if those are not available phenotypes. Alternatively on can select to use breeding values 

only (“bve”), phenotypes only (“pheno”) or genomic values (“bv”) via the parameter 

bve.mean.between. 

5.3.8 Own function 

Instead of performing breeding value estimation inside of breeding.diploid() one can implement his 

own methodology by exporting all information needed to those computations and inserting own 

breeding values estimates via the function insert.bve(). 

According code could look like this: 

# Simulate Phenotypes for generation 4 with heritability 0.4 
population <- breeding.diploid(population, heritability = 0.4, 
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                               sigma.e.gen = 4, 
                               new.bv.observation.gen = 4) 
# Export genotypes and phenotypes for generation 4 
genos <- get.geno(population, gen = 4) 
phenos <- get.pheno(population, gen = 4) 
 
# Here you perform your own method to assign breeding values to each individual 
bve <- runif(ncol(genos)) # This is probably not the best technique for this =) 
 
# Import breeding values estimated for generation 4 
bves <- cbind(colnames(genos), bve) 
population <- insert.bve(population, bves=bves) 

 

For details on exporting functions, we refer to section 6. For details on importing function, we refer to 

section 7. 

5.3.9 Calculating marker effects & GWAS 

For some applications (e.g. gene editing) it is necessary to identify causal markers. Although marker 

effects are known in a simulation, in practice one has to identify them. Options here are either a direct 

calculation of the effect size of each marker based on the computations performed in 5.3.1 (rrBLUP) 

or the performance of a GWAS-study without correction for population structure. Methods can be 

activated by setting estimate.u or gwas.u to TRUE. 

In case of a GWAS study one can additionally select the groups used in the study by setting gwas.gen, 

gwas.database and gwas.cohorts (default is same as for breeding value estimation). As a value for y, 

one can use the phenotype (“pheno”), true breeding value (“bv”) or the estimated breeding value 

(“bve”). Additionally it might be necessary to standardize the y value by the mean of the group by 

activating gwas.group.standard.  Note that this is a basic implementation of GWAS with no correction 

for population structure or similar.  

5.3.10 Calculation of reliabilities 

Reliabilities are not derived in any of the used R-packages. In the direct approach (Chapter 5.3.1), 

they can be derived by setting calculate.reliability to TRUE according to (VanRaden 2008). 

5.4 Selection techniques & mating strategies 

Selection of the individuals for matings in the following generations is of key importance for any 

breeding program. Especially here, one is limited to the techniques that work in the species one wants 

to simulate. On default settings, the selection of the new founders is done at random. To use estimated 

breeding values as a selection criteria set selection.m to “function”. To ignore the best selected 

individuals set ignore.best to that value – note that this value will be internally subtracted from 

selection.size. E.g. to simulate mating between the top 100 female individuals with the third and fourth 

best male individual set selection.size = c(4,100) and ignore.best=c(2,0). To exclude specific individuals 

from the set of individuals to select from use reduced.selection.panel.m. The vector should contain all 

individuals to use (e.g. 1:10 when selecting from the first ten individuals). 

To store details on which individuals were selected, which mating were performed and the currently 

estimated breeding values activate store.breeding.totals. 
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Selection can be performed based on the phenotype, genetic value or the breeding value estimates. 

To select what to use set selection.criteria.type to “pheno”, “bv” or “bve” (default: “bve”). 

5.4.1 Multiple traits 

When working with multiple traits, the selection of the best individuals is typically done by the use of 

a combination of those traits. All single values can either be added up directly (multiple.bve=”add”) or 

one can use a selection index just accounting for the ranking (multiple.bve=”ranking”). To reduce 

scaling problems for different traits one can use multiple.bve.scale.m to standardize the variance in 

each trait. Note that this scaling in the cohort mode is for all individuals together whereas in the old 

selection modes it is done per group (! – needs to be the same!!!). Additionally, each trait can be 

assigned a weighting via multiple.bve.weights.m.  

To derive the ideal index based on phenotypic/genotypic variance, reliabilities and economic gains per 

unit according to (Miesenberger 1997) set selection.m.miesenberger to TRUE. Economic gains can be 

provided in multiple.bve.weights.m. On default, the gain has to be provided per standard deviation of 

the breeding value estimations. Alternatives can be provided in selection.miesenberger.w (default: 

“bve_sd”) and are per unit (“unit”) and per phenotypic standard deviation (“pheno_sd”). 

In case reliabilities are not derived (Chapter 5.3.10), they need to be estimated. On default, this is done 

by dividing the standard deviation of the breeding value estimation by the standard deviation of the 

phenotypes. Alternatives can be entered in selection.miesenberger.reliability.est, as the direct use of 

the heritability (“heritability”) or the actual calculation according to the correlation between breeding 

value estimates and true underlying genomic values (“derived”) which is of course not possible in 

practice but should be the most accurate.  

5.4.2 Higher procreation of genetically favored individuals 

Genetically favored individuals tend to procreate more often. To model this set a ratio between the 

likelihood of the best individual to mate compared to the worst individual (in the group of selected 

individuals) in best.selection.ratio.m. This ratio is the ratio between the frequency the best selected 

individual and the worst selected individual. All other frequencies are then calculated linearly. E.g. in a 

group of selected individuals with breeding values 105, 103 and 100 with a ratio of 6 the relative 

frequencies are of 6,4,1 (this just is a linear function – comp for individual 2: (103 – 100)/ (105-100) * 

(6-1) +1). Criteria behind can be either “bv”, “bve” or “pheno” and can be entered in 

best.selection.criteria.m.  To manually enter the probability of each individual in the group of selected 

individuals input a vector with frequencies for each individual in best.selection.manual.ratio.m. 

Individuals selected are sorted with the individual with the highest estimated breeding value being the 

first one. 

This does not require breeding value estimation and can also be used to simulate slow natural selection 

processes over thousands of generations. 

Higher procreation is also relevant for optimum genetic contribution theory and the use of ogc will 

automatically change these parameters accordingly (section 5.4.8). 
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5.4.3 Maximum number of offspring per individual 

To control the maximum number of times each individual is used for reproduction set max.offspring. 

Either enter a numeric if that boundary is for both sexes or a vector with the first value coding the 

maximum for male and the second the one for female. 

5.4.4 Plant breeding (no-sexes & selfing & DH-production & cloning) 

For some applications the sex of an individuals is not relevant (or an individual does not even have a 

sex). Even though a sex is still stored internal it might be neglectable for the application at hand. In this 

case, one can allow matings between individuals from the same sex by usage of same.sex.activ. The 

probability to select a female individuals as a parent can be set via same.sex.sex (default=0.5). To 

additionally allow for selfing set same.sex.selfing to TRUE. The probability for this mating is the same 

as any other mating combination. 

To perform exclusively selfings, activate selfing.mating and selected the probability to use a female 

parent via selfing.sex. 

To generate doubled haploid lines active dh.mating and selected the probability to use a female parent 

via dh.sex. 

To generate and exact copy of an individual to copy.individual to TRUE. Instead of simulating the 

meiosis both chromosome sets of the selected first parent (usually father) will be copied (to copy 

female individuals use same.sex.activ and set the probability to use females to 1 (same.sex.sex=1). 

5.4.5 Generate offspring for all sire combination 

To generate offspring from each possible parental combination set breeding.all.combination to TRUE. 

In case only individuals from one sex are selected sex is ignored when deriving potential matings. 

Breeding.size still has to be set. 

 

5.4.6 Targeted/Fixed mating/Manual selection of individuals 

If none of the previously described methods works for your simulation, you can also manually enter a 

list of all matings that should be performed. For this, use the parameter fixed.breeding. To perform 

targeted mating in the group of the best individuals use fixed.breeding.best. Here each row just 

contains the sex and position in the list of selected individuals. In both cases, an additional column can 

be added that is coding the likelihood of the offspring being female. 

5.4.7 Gene-Editing 

With increasing popularity of methods like CRISPR/Cas9 one might be interested in performing gene 

editing to increase the genetic gain. Gene editing can be activated by setting gene.editing to TRUE. 

The number of edits can be controlled via nr.edits and effect markers are picked via usage of the 

predictions via rrBLUP/GWAS in section 5.3.9. We only count actually performed edits – if an allele is 

already beneficial, the next best marker is edited instead. Although such a procedure is not possible  
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in practice, the first integrated way of editing is to edit all selected individuals – this technique is also 

performed in the approach PAGE (Jenko et al. 2015) and our counter version (Simianer et al. 2018). 

As a more realistic scenario, we also allow for the editing of offspring via gene.editing.offspring. To 

only perform editing on male or female individuals set gene.editing.offspring.sex / 

gene.editing.best.sex to 1 (male) or 2 (female). 

Note that traditionally modelled effects often neglected strongly deleterious mutations and we are 

here assuming that 100% of all edits to work, all possible offspring will survive the procedure and traits 

are as simple as designed (usually single marker QTL).  

5.4.8 Optimum genetic contribution 

To use optimum genetic contribution theory from the group of selected individuals set ogc to TRUE. 

The target increase of the average relationship can be selected via ogc.cAc. On default, the increase is 

minimized. MoBPS is used the traditional formula according to (Meuwissen 1997) and a pedigree based 

relationship (change via the parameter computation.A.ogc). One can also provide on weightings via 

best.selection.manual.ratio.m (Chapter 5.4.2) and/or fixed.breeding (Chapter 5.4.6). We are also 

willing to implemented alternatives if they are needed/wanted. 

5.5 Genetic architecture 

When simulating meiosis, we are accounting for recombination and mutation. We are assuming  that 

recombination points are Poisson distributed with one expected point of recombination per 1 Morgan. 

To change this, set recombination.rate to the needed value. To not use, a fixed value but a step-

function instead use recom.f.indicator. Additional genetic architectures can be added the same way 

as in creating.diploid() via add.architecture. To select the genetic architecture of recombination for set 

gen.archicture.m to the architecture that should be used for males. 

Regarding mutation rates we are assuming that each marker has the same probability for a mutation 

– this can be changed via mutation.rate (default: 10-5). A mutation back to the reference is assigned 

the probability of remutation.rate (default: 10-5). Those values tend to be a lot higher than what you 

would expect in nature. Depending on the base pair one would expect something around 10-8 for a 

random loci. 

Duplications are implemented but the modelling is absolutely adhoc and probably needs refinement – 

talk to me if you plan to do something in that direction! 

5.6 Other 

5.6.1 Culling / Death 

5.6.1.1 Culling module (Web-interface) 

The new culling module is currently only available for cohorts and mainly intended for interface 

users. Here, parameters settings will take care of itself. To manually execute this in R use 

culling.cohort to select for which cohort to execute the module. The age of the individual can be 

provided in culling.time. The name of the culling reason can be provided in culling.name. Additional 

one can provide two breeding values (culling.bv1, culling.bv2) and two culling probabilities 
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(culling.share1, culling.share2). For all other genomic values the probability of culling this then 

derived with linear extension.  

An index of weighting between traits can be selected via culling.index (similar to 

multiple.bve.weights.m – Chapter 5.4.1). On default, no genomic influence is assumed and all 

individuals are culled with the same probability (culling.share1). 

5.6.1.2 Old module 

Especially for cost calculation it might be necessary to know the time of death for each individual. A 

group of individuals can be reduced to reduce.group with each row coding generation, sex, number of 

individuals to keep, class. To set the selection criteria use reduce.group.selection (default: “random”). 

5.6.2 Parameter for target-mating with J.W.R. Martini 

Don’t think anyone needs documentation here – code is specific to the planned paper with Johannes 

and does not generalize (quick and dirty - https://github.com/Droogans/unmaintainable-code) 

martini.selection / Special.comp / Special.comp.add / Max_auswahl / Predict.effects / SNP.density 

/ Use.effect.markers / Use.effect.combination 

5.6.3 Allele-frequency per generation 

To store the frequency of each allele per generation activate store.effect.freq. 

5.6.4 Set a random seed 

For repeatability it might be helpful to set a random seed in R. This can be done via the parameter 

randomSeed or directly performed in R using set.seed(). 

5.6.5 save.recombination.history 

To store the time of occurance of each point of recombination activate save.recombination.history. 

This has to be done starting with the first generation and currently crashes after setting a new founder 

population (Currently nobody needs it! – but should be an easy fix!) 

5.7 Storage & computing time 

Computing time for the whole simulation (population$info$comp.times), the steps of the breeding 

value estimation (population$info$comp.times.bve) and the generation of new individuals 

(population$info$comp.times.generation) are stored in the population list. If this is not required you 

can deactive this by setting store.comp.times, store.comp.times.bve and 

store.comp.times.generation to FALSE.  Unless verbose is set to FALSE you should automatically 

receive notifications on the current step of the algorithm and computing times of individual steps. 

Activation of Rprof can provide even more information. 
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5.7.1 Reducing the size of the population list 

Especially when simulating populations with lots of markers, individuals and/or generations, data 

storage can become a problem. As the internal structure of a population list is complex and manually 

deleting of things is not recommended – use following settings in breeding.diploid() instead: 

delete.haplotypes: Vector containing all generations for which haplotypes no longer need to be stored 

(note that only founder generations are stored anyway – everything else is calculated on-the-fly) 

delete.same.origin: Merge two adjacent segments with the same founding haplotypes (deletion of a 

recombination point with no influence)  

delete.individuals: Vector containing all generations for complete deletion– to only delete one sex use 

delete.sex (vector contain sex to delete – 1 (male), 2 (female). Especially when the number of 

recombinations stored per individual, becomes bigger this is of relevancy. 

5.7.2 Reducing memory needs in the BVE 

To calculate the genomic relationship matrix, one has to perform matrix multiplication of a matrix 

containing n*p entries (individuals x markers). Note that for every entry only 2 bits are needed when 

using miraculix. Nevertheless, this can become extremely big – to reduce this, one can perform the 

calculation of G sequentially and only load a part of Z into memory at any time. 

To activate this, set sequenceZ to TRUE. The number of markers in memory can be controlled via maxZ 

(default: 5000). Alternatively, one can put maxZtotal to control the total number of entries instead. As 

this is increasing the computation time, we first recommend to activation of miraculix. As long as 

miraculix is installed this will happen automatically unless the parameter miraculix in creating.diploid() 

is set to FALSE. For more on this we refer to section 9.12. 

To speed up commutation one can use multiple cores by the usage of miraculix.cores (default: 1) or in 

case miraculix is not active ncore. The backend outside of miraculix is using doParallel and mclapply 

but doMPI is supported as well – we highly recommend the use of miraculix instead. 

Setting fast.compiler to TRUE will additionally activate a just-in-time-compiler (enableJIT(3)). 

To save computation speed in the GWAS, one can use approx.residuals – this does not influence the 

order of the predicted effect markers but will influence p-values slightly. 

5.7.3 Inverting G using miraculix 

The inversion of (� + 	� ⋅ �) can take a lot of time, is numerically unstable and might not even be 

possible at all if the matrix is not invertible at all. Instead of the standard cholesky procedure using 

chol2inv(chol()), the inversion can also be done in RandomFieldsUtils/miraculix by activating 

chol.miraculix. Leading to slightly reduced computing times – but also includes screening for semi 

definite matrices and an automatically changed algorithm, if needed, and thus proceeding without 

error. 

5.7.4 On-the-fly calculation of haplotypes 

To save memory, haplotypes are calculated on-the-fly. For this, the location of each recombination 

point (between which markers) has to be stored. In case one is working with equidistant markers, it 
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basically takes no time. For other cM-positions it might increase computation speed to provide a 

function that derives the last marker in front of a certain position in Morgan. This function can be 

entered via import.position.calculation. Only in extreme cases (lots of markers) this should even 

matter! 

6 Exporting information from the population-list (get.XXXX) 

Most of the data stored in a population list is highly compressed since saving haplotypes of all 

individuals of the dataset for all generations would often exceed most local machines or even servers. 

For some applications (especially if one wants to perform his own fancy simulations without contacting 

the author and asking him to extent the package) it might be useful to understand the data structure 

behind. For that, we refer to section 8. In most cases, using our predefined export functions should be 

enough: 

In what individuals one is interested in can be controlled by usage of the parameter gen, database 

and/or cohorts. Here cohorts and gen are vectors containing all generations/cohort to include whereas 

database contains a matrix with each row coding a group to export:  

   

This database will export the information for all female individuals from generation 1 and all male 

individuals from generation 5. If require a third and fourth column in database can be added to indicate 

the first and last individual of the group to consider. MoBPS will automatically add this to be the full 

group when get.database() is used. 

6.1 get.genos 

This function will export genotypes. To additionally output the base pair of the minor/major allele set 

the parameter export.alleles to TRUE. Each column contains one genotype with column names 

indicating sex, individual number and generation. 

 

6.2 get.haplos 

This function will export haplotypes. To additionally output the base pair of the minor/major allele set 

the parameter export.alleles to TRUE. Each column contains one haplotype with column names 

indicating sex, individual number, chromosome set (currently only diploid individuals) and generation. 
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6.3 get.bv / get.bve / get.pheno / get.reliability / get.selectionindex 

These functions will export the true underlying breeding value (“bv”), the estimated breeding value 

(“bve”), the phenotype (“pheno”), the reliability for each breeding value estimation/trait (“reliability”) 

and the selection index used in the last selection procedure (“selectionindex”).  

 

6.4 get.recombi  

This function will export all points of recombination and the genetic origin of each segment. The 

structure here is a list of 4 elements with elements 1 (paternal) and 2 (maternal) containing 

recombination points and elements 3 (paternal) and 4 (maternal) containing the genetic origin. 

Each row is coding the genetic origin between two points (generation, sex, individual number, 

chromosome set). In the example provided this would mean that the segment between 0.000 and 

0.218 of the paternal chromosome originates from the second chromosome set of the 532nd female 

individual of the first generation. 

Note that in addition to all recombination points the start and end points of chromosomes are also 

exported. 

 

6.5 get.pedigree (1/2/3) 

This function will export the pedigree. Individuals are coded by sex, individual number and generation. 
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Instead of character string with “M”/”W” indicting sex, one can also directly export a table with 9 

colums indicating Sex (1/2), Generation(1,2,3,…) and individidal number (1,2,3,…) in a numeric format 

by setting raw to TRUE.  

To export grandparents use get.pedigree2(), to get both get.pedigree3(). In get.pedigree2() one can 

additionally export the share of the genome inherited by which grandparent by setting the parameter 

shares to TRUE. 

 

6.6 get.cohorts 

This function extracts all existing cohorts from the population list. Set extended to TRUE to also extract 

further information on the cohorts: 

 

6.7 get.class 

This function extracts the class of each individual: 

 

… 
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6.8 get.genotyped 

This function extracts if an individual is genotyped or not (mostly relevant for cost calculation and/or 

use in Single Step GBLUP (Legarra et al. 2014). 

 

6.9 get.time.point 

This function extract the time point of generation – this is mostly applicable when using the web-based 

application since there the first possible time point of generation is automatically calculated. 

 

… 

 

6.10 get.creating.type  

This function extracts the creating type of each individual – this is mostly applicable when using the 

web-based application of the package. Here following coding is used: 

0 – Founder 

1 – Selection 

2 – Reproduction 

3 – Recombination 

4 – Selfing 

5 – DH-Production 

6 – Cloning 

7 – Combine 
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8 – Aging 

9 – Split 

 

… 

 

6.11 get.cullingtime 

This function extracts the time of culling of each individual – this is mostly applicable when using the 

web-based application of the package. 

 

6.12 get.individual.loc 

Function to derive the position in the stored population-list. 

 

6.13 get.vcf 

Function to export genomic data in a vcf-file (currently using the synbreed-package but more efficient 

implementation including stored bp etc. is planned). Set path to the path you want to write to: 

 

6.14 get.pedmap 

Function to export genomic data in a ped and a map-file (PLINK format (Purcell et al. 2007)). The first 

of the two colums of each marker is representing the first haplotype of the individual. Set path to the 

path you want to write to: 
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6.15 get.database 

Function to merge gen, database and cohorts –info into a joint database. This is only needed internally 

– as it is the only internal get.X() function it is still mentioned here for completeness. 

 

7 Importing information to the population-list 

7.1 Insert.bve 

To manually insert breeding values (type=”bve”), true genetic values (type=”bv”) or phenotypes 

(type=”pheno”) use the function insert.bve. Output is a modified population list. In case new 

phenotypes are observed this is counted as count observations. In case bve are changed it is assumed 

that genotyping was necessary unless count is set to 0. This is only relevant for economic calculations. 

New observations are entered in the parameter bves with the first column coding the individual and 

the others containing values for the traits: 
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Structure of individual names is the same in all export functions (sex [“M”/”F”], individual number 

[1,2,…], and generation [1,2,…]). It is recommend to just use the names as they are exported via 

get.geno() ect.. 

8 Data structure of the population list 

All information regarding the breeding program are stored in a population list (R-object: list) which is 

modified by each run of breeding.diploid() and creating.diploid(). The population list contains matrices, 

inside of lists, inside of lists, inside of lists, inside of lists, inside of lists, inside of lists (you get the point!) 

– when understanding the structure behind it is actually not that bad, luckily you do not have to 

understand the structure behind for most applications since you can use exporting function discussed 

in section 6. 

 The list contains two major parts - $info ((or [[1]])) and $breeding ((or[[2]]): 

8.1 $info 

$info contains all general information concerning genetic architecture, size of the program and internal 

information needed to perform the simulations. Each entry is names according to what it is supposed 

to contain. 

schlather.slot1 Internal variable for miraculix (cre: M. Schlather) 

chromosome Number of chromosomes in the population list 

snp Number of SNPs per chromosome 

position Position (in Morgan) on the chromosome for each marker 

snp.base Major/Minor Allele (e.g. characters since internally 0/1 is used) 

snp.position Overall position in the genome (ongoing over chromosomes 

length Length of each chromosome 

length.total Cumulative length of chromosomes 

func It’s just FALSE – placeholder for later 

size Size of each group (generation/sex) 

bve Coding if breeding values are simulated 

bv.calculated Coding if breeding values are calculated for the founders (will be after 

first run of breeding.diploid()) 

breeding.totals Recap of each run of breeding.diploid() (if stored) 

bve.data Recap of each breeding value estimation (if stored) 

bve.nr Number of traits (with QTLs behind) to consider 
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bv.random Coding which traits have underlying QTLs behind 

bv.random.variance Genetic variance for traits with no QTLs behind 

snps.equidistant Are SNPs equidistant on every chromosome (speed up!) 

origin.gen List of founding generations (with stored haplotypes) 

cumsnp Cumulative sum  of SNP number (just to save computational time) 

bp Physical position of each marker (bp) 

snp.name Name of each marker 

next.animal ID of the next individual to generate 

bve.mult.factor (bv) * this 

bve.poly.factor (bv) ^ this 

base.bv This + QTL_effects 

bv.calc Number of total traits (including those with no QTL behind) 

real.bv.length Traits with (additive/multiplicative/dice-effects) 

sex Sex of the founders added in creation.diploid 

real.bv.add Lists with an overview of all single marker QTLs for each trait 

real.bv.mult Lists with an overview of all two marker QTLs for each trait 

real.bv.dice Lists with an overview of all three+ marker QTLs for each trait 

pheno.correlation Correlation matrix of the environmental variance between traits 

bv.correlation Correlation matrix of the genetic variance between traits (only for 

non-QTL traits) 

miraculix Coding if miraculix was used to generate the data – only miraculix 

users will be able to work with those population lists 

cohorts List of all cohorts with name and position in the population list 

effect.p.add Markers involved as QTL in the single QTL proportion 

effect.p.mult1 Markers involved as QTL in the two-SNP QTL proportion 

effect.p.mult2 Markers involved as QTL in the two-SNP QTL proportion 

effect.p Markers involved as QTL in any trait 

store.effect.freq Frequency of each marker in each generation 

last.sigma.e.database Database to derive the last used environmental variance 

last.sigma.e.value Last used environmental variance 

last.sigma.e.heritabilty Heritability assumed to derive last used environmental variance 

comp.times Computation times needed in each use of breeding.diploid() (if stored) 

comp.times.bve Computation times needed in the breeding value estimation in each 

use of breeding.diploid() (if stored) 

comp.times.generation Computation times needed in for the generation of new individuals in 

each use of breeding.diploid() (if stored) 

Culling.stats Information on the culling reason of each individual (mostly releveant 

for the web-interface) 
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8.2 $breeding 

$breeding contains all relevant information concerning the individuals of the breeding scheme. For 

efficiency purposes a lot of this is internally coded or computed on-the-fly.  

Individuals are sorted according to generation, sex and individual number. In case data has to be stored 

for both male and female (or father/mother) there will be two entries with the first one being the male 

(Have to talk with the equality commissioner about that!). 

$breeding[[generation]][[sex]][[ individual nr.]] (( or [[2]][[generation]][[sex]][[ individual nr.]])) 

8.2.1 Storage per generation 

$breeding[[generation]][[3,4]] Estimated breeding values of males (3) and females (4) 

$breeding[[generation]][[5,6]] Class of males (5) and females (6) 

$breeding[[generation]][[7,8]] Underlying “true” genetic values of males (7) and females (8) 

$breeding[[generation]][[9,10]] Observed phenotypes for males (9) and females (10) 

$breeding[[generation]][[11,12]] Time point of generation for male (11) and females (12) 

$breeding[[generation]][[13,14]] Creating type of generation for males(13) and females (13)  

This is only relevant for the web-based application 

$breeding[[generation]][[15,16]] Individual IDs for male (15) and females (16) 

$breeding[[generation]][[17,18]] Time of culling for male(17) and female (18) individuals 

$breeding[[generation]][[19,20]] Reliability estimated for male (19) and females (20) 

$breeding[[generation]][[21,22]] Last applied selection index (mostly relevant for complex 

selection indices like (Miesenberger 1997) 

 

8.2.2 Storage per individual 

$breeding[[generation]][[sex]][[ individual nr.]]… 

[[1,2]] Points of recombination on the first (1) and second (2) chromosome set 

[[3,4]] Points of mutations 

[[5,6]] Efficiently stored origins of segments between two points of recombination. Decoding 

using decodeOrigins() (miraculix) / decodeOriginsR() (else).  

Output in get.recombi() is automatically decoded 

[[7,8]] Father / Mother 

[[9,10]] Efficiently stored haplotypes (if it is a founder – else empty) 

[[11,12]] Storage of duplications (long not used!) 
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[[13,14]] Storage of history of recombinations 

[[15]] How often a phenotype was generated for the individual 

[[16]] Is the individual genotyped 

[[17]] True breeding value before gene editing 

[[18]] Generation of death and previous class 

[[19]] Share of the genetic material of the grandfather of the father inherited 

[[20]] Share of the genetic material of the grandfather of the mother inherited 

[[21]] List of all individuals with the same id. 

 

 

9 Utility functions 

Since the inclusion of miraculix, I did not need many utility functions any more – older version of 

function to show development of allele frequencies and others still exists but need modifications. Just 

tell me if you wish to have a certain function to help you with the package. 

9.1 bv.development 

This function will generate a plot showing the development of breeding values and phenotypes over 

generations.  95% confidence bands are included in a dotted line:  
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Which groups to display is selected via the parameters gen, database & cohorts. In case the user 

interface was used to generate the population list set json to TRUE to automatically display all selected 

cohorts. Confidence bands are drawn for “bv” (1), “bve” (2) & “pheno”(3) – to change the quantile use 

the parameter quantile (default: 0.95), to exclude selected the for with to draw a confidence band via 

the parameter confidence (default: c(1,2,3)). Groups with only zeros are ignored on default – if you 

want lines to be included for all selected cohorts set ignore.zero to FALSE. 

To display the time point, the creating type, the sex, and cohort name set display.time.point, 

display.creating.type, display.cohort.name, display.sex to TRUE. In case the generating interface 

between groups is highly heterozygous it might be useful to use equal.spacing between displayed 

cohorts. To not display the line displaying a long-term trend of the breeding values set display.line to 

FALSE. 

population <- json.simulation(total = ex_json) 

bv.development(population, json=TRUE, bvrow=1, confidence = 1, development = 1, 
               display.creating.type = TRUE, display.sex = TRUE, 
               display.cohort.name = TRUE) 

 

9.2 bv.development.box 

This function will generate a plot displaying the development of breeding values with a boxplot for 

each selected gen, database, cohorts. In case the user-interface was used to generate the population 

set json to TRUE to automatically display all selected cohorts. To only display a subset of trait set bvrow 

to those traits. To display phenotypes or breeding value estimations for the individuals instead of 

breeding values, set display to “pheno” / “bve”. 

In case the user interface was used to generate the population, one can display which cohorts where 

generated by which other cohort (via selection or reproduction) by setting display.selection and 

display.reproduction to TRUE. 

population <- json.simulation(total = ex_json) 

bv.development.box(population, json = TRUE, bvrow = 1) 
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9.3 Kinship.development 

Function to display the development of kinship over different gen, database, cohorts. Internally 

kinship.emp.fast is used and same optional parameters can be used to improve computation time / 

accuracy. 

population <- json.simulation(total = ex_json) 

kinship.development(population, json = TRUE, display.cohort.name = TRUE) 

 

 

9.4 Kinship.emp / kinship.emp.fast 

These functions can be used to derive empirical kinship between a set of individuals. Either directly 

supply a list containing all stored information for the respective individuals via the parameter animals 

or selected them by usage of gen, database, cohorts. In that case the population list needs to also be 

provided. 
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On default this call lead to all pairwise relations being evaluated. For a quick evaluation use 

kinship.emp.fast() and provide the total number of pairwise relationships (ibd.obs) and relations with 

the individual with itself (hbd.obs). 

9.5 Kinship.exp 

This function can be used to derive the expected kinship between individuals. To how many 

generations are used back use prev.gen. On default it’s assumed all individuals before are unrelated. 

Alternatively, one can provide a kinship.matrix the individuals of the first generation via 

first.individuals. It should be noted that there are more efficient ways to derive a pedigree matrix than 

this – alternatively one can export the pedigree via get.pedigree() and use that as input for breedR or 

tools outside of R. 

9.6 analyze.population 

With this function, one can analyze the allele frequency of a specific marker over time. Select the 

marker to analyze via parameters chromosome & snp. To selected with generations to compare use 

gen, database, cohorts. 

population <- json.simulation(total = ex_json) 

analyze.population(population,5,2, gen=1:8) 
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9.7 new.base.generation 

With rising number of generations the number of points of recombinations to store is increasing. For 

efficient storing it can make sense to compute and store haplotypes for a later generation and use 

those individuals as a new founder generation. For this use new.base.generation() and select the new 

base generation via the parameter base.gen. To further reduce memory needs and computation time 

you can additionally delete data of previous generations via delete.previous.gen, 

delete.breeding.totals and delete.bve.data. 

9.8 creating.trait 

With this function one can generate additional traits for the base population without the need to add 

genetic datasets. Functionality is the same as creating.diploid() otherwise. 

9.9 ensembl.map 

Via this functions genetic maps provided in Ensembl (https://www.ensembl.org/index.html & 

http://plants.ensembl.org/index.html) can be imported. Internally the package biomaRt is used – for 

guidelines on how to install this package we refer to 

https://bioconductor.org/packages/release/bioc/html/biomaRt.html. 

Naming of parameters is orientated according to the biomaRt package. Set dataset to the dataset you 

want to access (e.g. for cattle-SNPs: “btaurus_snp”) – for a list of possible datasets run this function 

with export.datasets set to TRUE. 

To import a subset of all markers use the parameter filter and filter.values. To limited the markers to 

a specific SNP-chip just set filter.values to the name of the chip (e.g. filter.values=”Illumina 

BovineSNP50 BeadChip”). Names of potential filters for a dataset can be exported by setting 

export.filters to TRUE. 

For us the direct export in R via Ensembl was painfully slow and the package did not always do what 

we intended it to do. Therefore, we are providing exemplary map files for most common species in the 

associated R-package MoBPSmaps. For a list of map that are already included in MoBPS and the 

associated data package MoBPS_maps we refer to section 12.  
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9.10 compute.costs 

To calculate the costs of the currently simulated breeding program use the function compute.costs(). 

Currently implemented cost factors include the following: 

Cost factor MoBPS -Parameter Default 

Phenotyping phenotyping.costs 10 

Genotyping genotyping.costs 100 

Housing/Field costs Housing.costs 0 

Fixed costs fix.costs 0 

Annual costs fix.costs.annual 0 

Profit per BV profit.per.bv 1 

 

Note that all default settings are basically chosen at random and should be modified when analyzing a 

real breeding program. In case costs/gains between sexes are different, use a vector. To separate 

between generations use a matrix with each row coding costs/gains per generation. 

To only calculate the resulting costs of some generations/cohorts use database/gen. 

To model an interest rate set interest.rate (default: 1 – meaning i = 0%. We here assume inputs of the 

form 1 + i) – with costs/gain changed according to a base generation (base.gen – default: 1) 

 

 

9.11 compute.costs.cohorts 

The functionally of compute.costs.cohorts() is similar to compute.costs() with the added benefit of 

usability with input parameters provided in our user-interface. Input parameters include 

phenotyping.costs, genotyping.costs, housing.costs, fix.costs, fix.costs.annual, profit.per.bv, 

interest.rate. In case the user interface is provided considered groups (gen, database, cohorts) are 

automatically assigned to their time point of creation for discounting. 
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9.12 summary 

The population list generated via creating.diploid() and breeding.diploid() is of class “population”. 

Application of the generic function summary leads to an overview of the population list including the 

number of individuals, cohorts, structure of the genome and traits: 

 

9.13 pedmap.to.phasedbeaglevcf 

The standard input of MoBPS are haplotypes (not genotypes!). In case of using own genomic data it is 

highly encourages to perform genomic phased before using the dataset as an input. In this function a 

routine pipeline to generate a phased dataset is executed. In this pipeline BEAGLE 5.0 

(https://faculty.washington.edu/browning/beagle/beagle.html) and PLINK 1.9 (https://www.cog-

genomics.org/plink/1.9/) are used. Additional file are generated in a selected directory. Path for all 

three have to be provided in beagle_jar, plink_dir, db_dir. Input can either be a dataset in PLINK 

format (ped_path, map_path) or a vcf-file (vcf_path). Defaults are all chosen to work on the 
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webserver for our web-interface (Chapter 14). Phasing can also be directly performed in the web-

interface. 

10 Memory and computation times 

Critical parts of MoBPS concerning memory requirements and computation times can be performed 

using the associated R-package miraculix. By using SSE2 operations and bit-wise storing computation 

speed can be massively increased leading to about 10 times faster matrix multiplications than the 

regular R implementation while needing only 1/16 of the regularly needed memory.  

To speed up commutation of the breeding value estimation one can use multiple cores by the usage 

of miraculix.cores (default: 1) or in case miraculix is not active ncore. To parallelize generation of new 

individuals set parallel.generation to TRUE and set the number of cores used via ncore.generation. 

This will only lead to significant improvement in computation time for the generation of a lot of 

individuals. Even when using a single core ~1’000 individuals are generated per second. The packages 

doParallel (Microsoft Corporation and Steve Weston 2018) and doRNG (Renaud Gaujoux 2018) are 

used for parallelization in R. 

11 List of input parameters in breeding.diploid() 

For a description of each parameter we refer to the use of the help function in R (?breeding.diploid) 

and/or other sections of this Guidelines. 

Parameter Default options 

population NULL A previous population list 

mutation.rate 10^-5 Value between 0 and 1 

remutation.rate 10^-5 Value between 0 and 1 

recombination.rate 1 Any positive numeric 

selection.m “random” “function” 

selection.f NULL (selection.m) “random”, “function” 

new.selection.calculation TRUE FALSE 

selection.function.matrix NULL Don’t touch – will be removed 

selection.size C(0,0) Vector with two non-negative 

values 

breeding.size 0 Positive number // 2 element 

vector (male/female) 

breeding.sex 0.5 Value between 0 and 1 

breeding.sex.random FALSE TRUE 

class.m 0 Vector with all classes to 

consider 

class.f NULL (class.m) Vector with all classes to 

consider 

add.gen 0 (will lead to added 

generation) 

Value between 1 and number of 

generations 
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recom.f.indicator NULL Not necessary (use modified 

marker position instead!) 

recom.f.polynom NULL Not necessary (use modified 

marker position instead!) 

duplication.rate 0  

duplication.length 0.01 Duplication modelling needs 

changes! 

duplication.recombination 1  

same.sex.active FALSE TRUE 

new.class 0 Numeric value (ideally positive 

integer; -1 is reserved for dead 

individuals) 

bve FALSE TRUE 

bve.direct.est TRUE FALSE 

bve.gen NULL 1:3 

bve.database NULL 

 

bve.cohorts NULL c(“Founder_M“, “F1“) 

bve.avoid.duplicates TRUE FALSE 

report.accuracy TRUE FALSE 

sigma.e NULL Numeric value above 0 

sigma.s 100 Numeric value above 0 

new.bv.observation NULL  “all“ for all individuals 

“non_obs” for all previously not 

observed 

“non_obs_m” for all previously 

not observed male individuals 

“non_obs_f” for all previously 

not observed female individuals 

new.bv.observation.gen NULL 1:3 

new.bv.observation.database NULL 

 

new.bv.observation.cohorts NULL c(“Founder_M“, “F1“) 

new.bv.child “zero” “mean”, “obs” 

computation.A “vanRaden” “kinship”, “CE”, “CM”, 

“non_stand” 

depth.pedigree 7 Positive Integer 

delete.haplotypes NULL Vector of all generations to 

delete (natural number) 

delete.individuals NULL Vector of all generations to 

delete (natural number) 
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fixed.breeding NULL matrix with each row containing 

(gen1,sex1,nr1, gen2,sex2,nr2, 

sex.probability) with 1 being 

father, 2 being mother)  

fixed.breeding.best NULL matrix with each row containing 

(sex1, nr1, sex2, nr2, 

sex.probability) chosen from 

the group of selected 

individuals 

max.offspring C(Inf,Inf) vector with two natural 

numbers (first male, second 

female) 

store.breeding.totals FALSE TRUE 

forecast.sigma.s TRUE FALSE 

multiple.bve “add” “ranking” 

multiple.bve.weights.m 1 Any weights – use a vector with 

length equal to number of traits 

multiple.bve.weights.f NULL 

(multiple.bve.weights.m) 

Any weights – use a vector with 

length equal to number of traits 

store.bve.data FALSE TRUE 

fixed.assignment FALSE “bestworst”, “worstbest” 

reduce.group NULL Per row: Generation, Sex, 

Individuals to survive, class of 

individuals 

reduce.group.selection “random” “function” 

selection.criteria c(TRUE,TRUE) C(FALSE/TRUE,FALSE/TRUE) 

same.sex.sex 0.5 Numeric value between 0 and 1 

same.sex.selfing TRUE FALSE 

selfing.mating FALSE TRUE 

selfing.sex 0.5 Numeric value between 0 and 1 

praeimplantation NULL No use currently recommended 

sigma.e.gen NULL 1:3 

sigma.e.database NULL 

 

sigma.e.cohorts NULL c(“Founder_M“, “F1“) 

heritability NULL Numeric value between 0 and 1 

multiple.bve.scale.m FALSE TRUE 

multiple.bve.scale.f NULL (multiple.bve.scale.m) TRUE 

use.last.sigma.e FALSE TRUE 

save.recombination.history FALSE TRUE 

martini.selection FALSE TRUE 
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BGLR.bve FALSE TRUE 

BGLR.model “RKHS” “BRR”, “BL”, “BayesA”, 

“BayesB”, “BayesC” 

BGLR.burnin 500 natural number 

BGLR.iteration 5000 natural number 

BGLR.save “RKHS” any path you want 

BGLR.save.random FALSE TRUE 

BGLR.print FALSE TRUE 

copy.individual FALSE TRUE 

copy.individual.keep.bve TRUE FALSE 

dh.mating FALSE TRUE 

dh.sex 0.5 Numeric value between 0 and 1 

offspring.bve.parents.gen NULL 1:3 

offspring.bve.parents.database NULL 

 

offspring.bve.parents.cohorts NULL c(“Founder_M“, “F1“) 

offspring.bve.offspring.gen NULL 1:3 

offspring.bve.offspring.databas

e 

NULL 

 

offspring.bve.offspring.cohorts NULL  c(“Founder_M“, “F1“) 

bve.parent.mean FALSE TRUE 

bve.grandparent.mean FALSE TRUE 

bve.mean.between “bvepheno” „bve“, „pheno“, „bv“ 

n.observation 1 Natural number 

share.genotyped 1 Numeric value between 0 and 1 

added.genotyped 0 Numeric value between 0 and 1 

remove.non.genotyped TRUE FALSE 

Singlestep.active FALSE TRUE 

bve.0isNA TRUE FALSE 

phenotype.bv FALSE TRUE 

standardize.bv FALSE TRUE 

standardize.bv.level 100 Numeric value 

standardize.bv.gen 1 Natural number <= generation 

number 

delete.same.origin FALSE TRUE 

remove.effect.position FALSE TRUE 

estimate.u FALSE TRUE 

fast.uhat TRUE FALSE 
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new.phenotyp.correlation NULL Positive definite matrix 

new.breeding.correlation NULL Positive definite matrix 

recalculate.bv.var.correlation FALSE TRUE 

new.bv.random.correlated TRUE FALSE 

estimate.add.gen.var FALSE TRUE 

estimate.pheno.var FALSE TRUE 

selection.m.gen NULL 1:3 

selection.f.gen NULL 1:3 

selection.m.database NULL 

 

selection.f.database NULL 

 

selection.m.cohorts NULL c(“Founder_M“, “F1“) 

selection.f.cohorts NULL c(“Founder_M“, “F1“) 

best1.from.group NULL Matrix with one group per row 

best2.from.group NULL Matrix with one group per row 

best1.from.cohort NULL Vector containing names of 

cohorts 

best2.from.cohort NULL Vector containing names of 

cohorts 

Reduced.selection.panel.m NULL Vector containing numeric 

values 

Reduced.selection.panel.f NULL Vector containing numeric 

values 

store.comp.times TRUE FALSE 

store.comp.times.bve TRUE FALSE 

special.comb FALSE Part of martini selection – do 

not use! 

max.auswahl Inf Part of martini selection – do 

not use! 

predict.effects FALSE Part of martini selection – do 

not use! 

SNP.density 10 Part of martini selection – do 

not use! 

use.effect.markers FALSE Part of martini selection – do 

not use! 

use.effect.combination FALSE Part of martini selection – do 

not use! 

import.position.calculation NULL Function f(cm_position) = Last 

previous SNP 
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special.comb.add FALSE Part of martini selection – dont 

use! 

ogc FALSE TRUE 

ogc.cAc NA (minimal gain in 

inbreeding) 

Numeric value between 0 and 1 

computation.A.ogc “kinship” “vanRaden” (see 

computation.A) 

depth.pedigree.ogc 7 Positive Integer 

emmreml.bve FALSE TRUE 

nr.edits 0 any natural number 

gene.editing FALSE TRUE 

gene.editing.offspring FALSE TRUE 

gene.editing.best FALSE TRUE 

gene.editing.offspring.sex c(TRUE,TRUE) Vector with two boole variables 

gene.editing.best.sex c(TRUE,TRUE) vector with two boole variables 

gwas.u FALSE TRUE 

approx.residuals TRUE FALSE 

sequenceZ FALSE TRUE 

maxZ 5000 Any natural number 

maxZtotal 0 Any natural number 

gwas.gen NULL 1:3 

gwas.database NULL 

 

gwas.cohorts NULL c(“Founder_M“, “F1“) 

delete.sex c(1,2) 1 (male), 2 (female) 

gwas.group.standard FALSE TRUE 

y.gwas.used “pheno” “bv“, “bve“ 

culling.cohort NULL Any cohort name 

culling.time Inf Numeric value 

culling.name “Not_named” Any character string 

culling.bv1 100 numeric value 

culling.share1 0 Probability between 0 and 1 

culling.bv2 110 numeric value 

culling.share2 0 Probability between 0 and 1 

culling.index 0 Any weights – use a vector with 

length equal to number of traits, 

“lastindex” 

gen.architecture.m 0 Natural number (select one of 

the previously stored 

architectures) 
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gen.architecture.f NULL (gen.architecture.m) Natural number (select one of 

the previously stored 

architectures) 

ncore 1 Natural number 

Z.integer FALSE TRUE 

store.effect.freq TRUE FALSE 

backend “doParallel” „doMPI“ 

randomSeed NULL natural number 

randomSeed.generation NULL  Natural number 

Rprof FALSE TRUE 

miraculix FALSE  TRUE (automatically activated 

when miraculix is used is 

creating.diploid()) 

miraculix.mult NULL (leading to FALSE) TRUE / FALSE 

fast.compiler 0 3 (For R >= 3.4 this is default in 

R) 

miraculix.cores 1 natrual number 

store.bve.parameter FALSE TRUE 

print.error.sources FALSE TRUE 

chol.miraculix FALSE TRUE 

bve.insert.gen NULL 1:3 

bve.insert.database NULL 

 

bve.insert.cohorts NULL c(“Founder_M“, “F1“) 

best.selection.ratio.m 1 positive numeric value 

best.selection.ratio.f NULL (best.selection.ratio.m) positive numeric value 

best.selection.criteria.m “bv” “bve“, “pheno“ 

best.selection.criteria.f NULL 

(best.selection.criteria.m) 

“bve“, “pheno“ 

best.selection.manual.ratio.m NULL positive numeric value 

best.selection.manual.ratio.f NULL 

(best.selection.manual.ratio.

m) 

positive numeric value 

bve.class NULL (take all!)  vector containing numeric 

values 

parallel.generation FALSE TRUE 

ncore.generation 1 Positive numeric value 

name.cohort NULL “Founders” or any other 

character string 

add.class.cohorts TRUE FALSE 

display.progress TRUE FALSE 
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ignore.best C(0,0) Any two element vector (first 

male, second female) 

combine FALSE TRUE 

repeat.mating 1 Positive numeric value 

time.point 0 Positive numeric value (this will 

be automatically processed in 

the web-based-application) 

creating.type 0  This is automatically stored in 

the web-based-application 

# 0 – Founder 

# 1 – Selection 

# 2 – Reproduction 

# 3 – Recombination 

# 4 – Selfing 

# 5 – DH-Production 

# 6 – Cloning 

# 7 – Combine 

# 8 – Aging 

# 9 – Split 

12 List of input parameters in creating.diploid() 

For a description of each parameter we refer to the use of the help function in R (?creating.diploid) 

and/or other sections of this Guidelines. 

Parameter Default options 

population NULL (will lead to “random”) A previous population list 

dataset “random” SNP-dataset (One haplotype per 

colum), “random”, “all0”, 

“homorandom”, “allhetero” 

nsnp 0 Positive integer value 

nindi 0 Positive integer value 

vcf NULL Path to a vcf-file 

map NULL Matrix with up to 5 colums containing 

(chr.nr, snp.name, bp, position in 

Morgan, allele freq). Rest will be set to 

NULL/NA. 

For more see section 13  

chr.nr NULL (all markers on the 

same chromosome) 

Vector containing the chromosome for 

each generated marker, or natural 

number with the number of 

chromosomes 

bp NULL  Vector containing the base-pair for 

each generated marker 
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snp.name NULL Vector containing the snp-name for 

each generated marker 

bpcm.conversion 0 Recommendations: 

For human: 100.000.000 

For chicken: 30.000.000 

chromosome.length NULL (will lead to 5M) Positive numeric value 

freq “beta” Numeric value or vector for each 

marker 

beta.shape1 1 Positive numeric value 

beta.shape2 1 Positive numeric value 

sex.s “fixed” “random”, vector containing the sex of 

each newly added individual. 

share.genotyped 1 Numeric value between 0 and 1 

genotyped.s NULL vector containing the sex of each newly 

added individual. 

add.chromosome FALSE TRUE 

generation 1 Positive integer value (no empty 

generations inbetween!) 

class 0 Numeric value (positive integer 

recommended) 

sex.quota 0.5 Numeric value between 0 and 1 

snps.equidistant NULL (will be TRUE if no other 

way to derive Morgan-

position is provided) 

FALSE/TRUE 

change.order FALSE TRUE 

position.scaling FALSE TRUE 

length.before 5 Positive numeric value 

length.behind 5 Positive numeric value 

hom0 NULL (automatically derived) Vector containing major allele for each 

generated marker. 

hom1 NULL (automatically derived) Vector containing minor allele for each 

generated marker. 

miraculix TRUE FALSE 

bit.storing FALSE TRUE (this is less efficient than 

miraculix but does not rely on C-code) 

nbits 30 Integer value between 1 and 30 

bv.total 0 (automatically set 

according to traits provided) 

Integer value. If higher than the 

number of traits simulate traits based 

on pedigree/inbreeding rates 

trait.name NULL Vector containing the names of the 

traits (e.g. “milk”) 

real.bv.add NULL List with each element containing 

effect matrices 
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real.bv.mult NULL List with each element containing 

effect matrices 

real.bv.dice NULL List with each element containing 

effect lists 

n.additive 0 Positive integer value 

n.dominant 0 Positive integer value 

n.qualitative 0 Positive integer value 

n.quantitative 0 Positive integer value 

var.additive.l NULL List containing a single numeric value 

or vector with variances for each trait 

var.dominant.l NULL List containing a single numeric value 

or vector with variances for each trait 

var.qualitative.l NULL List containing a single numeric value 

or vector with variances for each trait 

var.quantitative.l NULL List containing a single numeric value 

or vector with variances for each trait 

exclude.snps NULL Vector containing marker positions 

with no simulated random effects 

shuffle.traits NULL TRUE 

shuffle.cor NULL Correlation matrix for the traits to 

shuffle 

replace.real.bv FALSE TRUE 

name.cohort NULL Character string 

skip.rest FALSE TRUE (INTERNAL PARAMETER!) 

randomSeed NULL Integer value 

template.chip NULL “cattle”, “chicken”, “pig”, “sheep”, 

“maize” 

time.point 0 Positive numeric value (this will be 

automatically processed in the web-

based-application) 

creating.type 0  This is automatically stored in the web-

based-application 

# 0 – Founder 

# 1 – Selection 

# 2 – Reproduction 

# 3 – Recombination 

# 4 – Selfing 

# 5 – DH-Production 

# 6 – Cloning 

# 7 – Combine 

# 8 – Aging 

# 9 – Split 
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remove.invalid.qtl TRUE FALSE 

 

13 List of datasets included in the package 

MoBPS does contain a variety of maps that are preimported from Ensembl since the actual import 

takes quite long for bigger map-files. In case you feel a certain map is missing feel free to contact us to 

we can add it to the tool. Maps are available in the associated R-package MoBPS_maps. Only 

map_chicken1, map_cattle1 and map_maize1 are included in MoBPS itself. To use a specific map use 

it as an input for the parameter map in creating.diploid(). 

In addition to all those maps an exemplary json-file (ex_json) generated by a recent version of our 

interface is included for text use in json.simulation() and other function that utilize datasets generated 

by json.simulation(). Note that this file is automatically generated via the user-interface and you do 

not have to worry about its structure. 

Dataset name Corresponding Chip Number 

of 

Markers 

Contains: 

1. Physical position 

2. Morgan position 

3. allele frequency 

Map_pig1 Axiom Genotyping Array 590‘318    

Map_pig2 GGP Porcine HD 63’113    

Map_pig3 GGP Porcine LD 8’624    

Map_pig4 Illumina_PorcineSNP60 55‘684    

Map_chicken1 Affymetrix Chicken600K Array 547’024    

Map_chicken2 Affymetrix Chicken600K Array 

(diversity subset) 

293’251    

Map_chicken3 Affymetrix Chicken600K Array (50k 

subset) 

50’000    

Map_cattle1 Illumina BovineSNP50 BeadChip 45’613    

Map_cattle2 Illumina BovineHD BeadChip 727‘605    

Map_cattle3 Illumina BovineLD BeadChip 6’600    

Map_cattle4 Genotyping chip variations 732‘645    

Map_horse1 Illumina EquineSNP50 BeadChip 51’105    

Map_sheep1 IlluminaOvineHDSNP 575‘256    

Map_sheep2 IlluminaOvineSNP50 46‘545    

Map_sheep3 Genotyping chip variants 580‘661    

Map_goat1 Illumina_GoatSNP50 55‘050    

Map_human1 Affy GeneChip500K 483‘418    

Map_human2 Illumina_1M-duo 1‘122‘013    

Map_human3 Illumina_HumanHap550 545‘902    

Map_maize1 Affymetrix Axiom Maize Genotyping 

Array 

501’124    
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Map_wheat1 Subset of a 55k chip from (Liu et al. 

2018) 

12’109    

Map_wheat2 Subset of a 90K chip from (Wen et al. 

2017) 

29’692    

Map_sorghum1 Subset of a 90k chip from (Bekele et 

al. 2013) 

3’000    

 

Ex_json – the first few rows. Do not bother trying to understand it. Json.simulation() will do the job for 

you: 

 

14 User-interface 

The development of the user-interface of MoBPS is a joint project of Torsten Pook, Amudha Ganesa, 

Ngoc-Thuy Ha, Lisa Büttgen, Johannes Geibel and Henner Simianer (All: Department of Animal 

Sciences, Center for Integrated Breeding Research, University of Goettingen, Goettingen, 37075, 

Germany). The user-interface is currently in active development and available at www.mobps.de. Note 

that this is still a development version and is constantly undergoing change.  

There will be a separate publication for the user interface that is in preparation but this will still take 

a while. The user-interface will take more developing to fulfil our standards for publication! In case 

you have a given simulation you want to perform feel free to contact us for possible collaboration 

(Torsten.pook@uni-goettingen.de). When looking through the openly-available code you will find 

code snippets that are only relevant for the interface (json.simulation()). At the current state, this 

chapter can mostly be seen as a news page on the current stage of development. 

Main goal of the user-interface is the usage of the R-package without the need of programming skills 

in R or knowledge of the details of the package to set up your simulation. Note that the interface will 

not be able to grasp the full functionality/efficiency of the R-package but the goal is to get close. Input 

parameters can be entered in a web-based application (java-script) – especially the breeding scheme 

can be entered in an intuitive way via nodes (cohorts of individuals) and edges (breeding & selection 

processes). 

Simulations can be directly started via the web-interface with a VM server hosted from Goettingen. AT 

the current state we can provide computational resource for smaller generations (20 CPU, 64 GB 

Memory), but it is also population to download the json-file containing all information of the user 

interface and run the simulation via json.simulation() in R. The global test account (EAAPguest) has no 

permission to use our computing resources but scripts can still be exported. Student-Users are allowed 

to use up to five cores and are limited to 6 hour simulations, professional users are allowed up to 10 
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cores with no time limit for simulations. To generate an account or upgrade your available resources 

contact me (Torsten.pook@uni-goettingen.de). 

To input information in regard to the breeding program in a user friendly way we provide the following 

module: 

1. Design you Genome 

2. Design your Traits 

3. Multiple Subpopulations 

4. Design your Selection Index 

5. Reasons for Culling 

6. Economic Parameters 

7. Draw your Breeding Scheme 

8. Analyze your Population 

For most inputs we provide implemented help buttons to briefly explain what kind of input is expected. 

The exemplary json-script provided in the R-package would look like this (note that all advanced 

parameter options are deactivate to not further complicate things):  
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After the simulations are execute the resulting, population-list can be download in R and then be 

manually analyzed. Alternatively, we also provide some basic evaluation functions. In case multiple 
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simulations are performed it is also possible to analyze average between multiple runs of the 

simulation: 
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15 Commonly used word definitions 

Group: Group of individuals with the same sex and belonging to the same generation 

Cohorts: Group of individuals with the same sex generated in a single run of breeding.diploid() 

Class: Auxiliary variable to classify individuals in an additional dimension (besides sex & generation) 

Founder: Founder individuals are the start-point of a simulation and all individuals in the population 

can be traced back to the founders. Because of this only for those individuals genotype/haplotype data 

has to be saved. 

16 Exemplary scripts 

16.1 Simulation of a MAGIC population in maize 

We here show how to perform an exemplary simulation of a 

MAGIC population in maize with a mating scheme given in  

(Zheng et al. 2015) – cf. adjacent Figure. 

Since default settings in MoBPS are to always use the last 

generation anyway the needed code is quite short even without 

cohort mode. For the sake of completeness, we provide a cohort 

version for the script as well.  

In term of computation time this simulation with a 15.3M 

genome, 31k SNPs and a total of 780 individuals took 1.6 

seconds on one core of my local maschine. 

Non-cohort-modus: 

# Generation of 20 fully-homozygous founders lines 
# All plants are stored as male individuals (sex=0) 
population <- creating.diploid(nindi = 20, sex.quota = 0, template.chip = "maize", 
                               dataset = "homorandom") 
 
# Simulate matings between all founders. 
# Each plan is involved in exactly 19 matings. 
population <- breeding.diploid(population, breeding.size = c(190,0), 
                               breeding.all.combination = TRUE, 
                               selection.size = c(20,0), max.offspring = 19) 
 
# Simulate matings between plants of the last generation. 
# Each plant is involved in exactly 2 matings. 
 
population <- breeding.diploid(population, breeding.size = c(190,0), 
                               selection.size = c(190,0), same.sex.activ = TRUE, 
                               same.sex.sex = 0, max.offspring = 2) 
population <- breeding.diploid(population, breeding.size = c(190,0), 
                               selection.size = c(190,0), same.sex.activ = TRUE, 
                               same.sex.sex = 0, max.offspring = 2) 
population <- breeding.diploid(population, breeding.size = c(190,0), 
                               selection.size = c(190,0), same.sex.activ = TRUE, 
                               same.sex.sex = 0, max.offspring = 2) 

Cohort-modus: 

# Generation of 20 fully-homozygous founders lines 
# All plants are stored as male individuals (sex=0) 
population <- creating.diploid(nindi = 20, sex.quota = 0, template.chip = "maize", 
                               dataset = "homorandom", name.cohort = "F0") 
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# Simulate matings between all founders. 
# Each plan is involved in exactly 19 matings. 
population <- breeding.diploid(population, breeding.size = c(190,0), 
                               breeding.all.combination = TRUE, 
                               selection.size = c(20,0), 
                               selection.m.cohort = "F0", name.cohort = "F1") 
 
# Simulate matings between plants of the last generation. 
# Each plant is involved in exactly 2 matings. 
 
population <- breeding.diploid(population, breeding.size = c(190,0), 
                               selection.size = c(190,0), same.sex.activ = TRUE, 
                               same.sex.sex = 0, max.offspring = c(2,0), 
                               selection.m.cohort = "F1", name.cohort = "F2") 
population <- breeding.diploid(population, breeding.size = c(190,0), 
                               selection.size = c(190,0), same.sex.activ = TRUE, 
                               same.sex.sex = 0, max.offspring = c(2,0), 
                               selection.m.cohort = "F2", name.cohort = "F3") 
population <- breeding.diploid(population, breeding.size = c(190,0), 
                               selection.size = c(190,0), same.sex.activ = TRUE, 
                               same.sex.sex = 0, max.offspring = c(2,0), 
                               selection.m.cohort = "F3", name.cohort = "F4") 

 

16.2  Simulation of Introgression on blue eggshell QTL 

We here show how to perform an exemplary simulation of a breeding scheme to perform introgression 

of a single QTL. In term of computing time this simulation with a 5M genome, 5k SNPs and a total of 

520 individuals took 1.2 seconds on one core of my local maschine without the usage of miraculix. 

 
# Generate an input SNP-dataset 

# 10 White-Layer (0) (20 haplotypes, 5'000 SNPs) 
# 10 Wild population (1) (20 haplotypes, 5'000 SNPs) 
dataset1 <- matrix(0, nrow = 5000, ncol = 20) 
dataset2 <- matrix(1, nrow = 5000, ncol = 20) 
 
# Generation of a trait 
# Colums code: SNP, chromosome, effect 00, effect 01, effect 11 
# Blue Eggshell QTL is positioned on SNP 2000, chromosome 1 
major_qtl <- c(2000, 1, 0, 10000, 20000) 
# In all other positions the white layer genome is assumed to be favorable 
# All marker effects combiened are smaller than the blue eggshell QTL 
rest <- cbind(1:5000, 1, 1, 0.5, 0) 
trait <- rbind(major_qtl, rest) 
 
# Generation of the base-population 
# First 10 individuals are female (sex=2) 
# Next 10 individuals are male (sex=1) 
population <- creating.diploid(dataset = cbind(dataset1, dataset2), 
                               real.bv.add = trait, name.cohort = "Founders", 
                               sex.s = c(rep(2,10), rep(1,10))) 
 
# Simulate random mating: 
population <- breeding.diploid(population, breeding.size = c(100,100), 
                               selection.size = c(10,10), 
                               selection.m.cohorts = "Founders_M", 
                               selection.f.cohorts = "Founders_F", 
                               name.cohort = "F1") 
 
# Simuation of matings with selection: 
# Top 50 cocks are mated to the 10 founder hens 
# Selection of the cocks based on their genomic value ("bv") 
# Target: Increase share of white layer while preserving blue egg shell QTL 
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population <- breeding.diploid(population, breeding.size = c(100,100), 
                               selection.size = c(50,10), 
                               selection.m.cohorts = "F1_M", 
                               selection.f.cohorts = "Founders_F", 
                               name.cohort = "BC1", selection.m = "function", 
                               selection.criteria.type = "bv") 
population <- breeding.diploid(population, breeding.size = c(100,100), 
                               selection.size = c(50,10), 
                               selection.m.cohorts = "BC1_M", 
                               selection.f.cohorts = "Founders_F", 
                               name.cohort = "BC2", selection.m = "function", 
                               selection.criteria.type = "bv") 
population <- breeding.diploid(population, breeding.size = c(100,100), 
                               selection.size = c(50,10), 
                               selection.m.cohorts = "BC2_M", 
                               selection.f.cohorts = "Founders_F", 
                               name.cohort = "BC3", selection.m = "function", 
                               selection.criteria.type = "bv") 
 
# Mating of cocks and hens that are heterozygous in blue egg shell QTL 
# 25% of resulting offspring should be homozygous in blue egg shell QTL 
 
population <- breeding.diploid(population, breeding.size = c(100,100), 
                               selection.size = c(50,50), 
                               selection.m.cohorts = "BC3_M", 
                               selection.f.cohorts = "BC3_F", 
                               name.cohort = "IC", selection.m = "function", 
                               selection.criteria.type = "bv") 
 
# Check genomic share of wild race in the final generation 
genoIC <- get.geno(population, cohorts = "IC_F") 
plot(rowSums(genoIC)/200, xlab = "genome", ylab = "frequency of wild allele", type 
= "l") 
abline(v = 2000, lwd = 2, col = "red") 
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As expected, the frequency of 

genetic material stemming from 

the wild type is higher in the region 

of the QTL.   

Figure 2: Mating Scheme for Introgression 

of the blue-egg-shell QTL. Graph is 

generated via user-interface in MoBPS 
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16.3 Simulation of gene editing in a cow breeding program 

The following script can be used to simulate a breeding program that is utilizing genome editing. Design 

is chosen according to  (Jenko et al. 2015; Simianer et al. 2018). Note that individual numbers are much 

smaller than in the two references to ensure low computation times. Simulation of 20 generations with 

50’000 cows per generation would take 26.3 hours using 24 cores on the gwdg-hpc (Intel E5-2650 

(2X12 core 2.2GHz)). This small example with a 5 Morgan chromosome, 5k SNPs and 4300 individuals 

took 7.4 seconds. 

 
# Generation of a base population: 
# 1'000 Founder individuals 
# 5'000 SNPs 
# 100 additive single marker QTL 
population <- creating.diploid(nindi = 1000, nsnp = 5000, 
                               n.additive = 100, name.cohort = "Founders") 
 
# Simulation of a random mating generation 
# 100 bulls (sex=1), 1'000 cows (sex=2) are generated 
population <- breeding.diploid(population, breeding.size = c(100,1000), 
                               selection.size = c(500,500), 
                               selection.m.cohorts = "Founders_M", 
                               selection.f.cohorts = "Founders_F", 
                               name.cohort = "Random") 
 
# Generate 200 offspring of both from the top 5 bulls / 200 cows 
# Heritability of the trait is set to 0.5 
# only phenotypes previously unobserved cows are generated 
population <- breeding.diploid(population, breeding.size = 200, 
                               selection.size = c(5,200), bve = TRUE, 
                               heritability = 0.5, 
                               new.bv.observation = "non_obs_f", 
                               selection.m = "function", name.cohort = "Top", 
                               selection.m.cohorts = "Random_M", 
                               selection.f.cohorts = "Random_F") 
 
# Generate additional cows using all cows of the previous generation 
# Cows are added to the same generation as the previous simulation 
population <- breeding.diploid(population, breeding.size = c(0,900), 
                               selection.size = c(5,1000), 
                               selection.m = "function", name.cohort = "Sec_F", 
                               selection.m.cohorts = "Random_M", 
                               selection.f.cohorts = "Random_F", 
                               add.gen = 3) 
 
# Same cycle as before with additional genome editing 
# Edits are chosen based on highest effects in rrBLUP 
population <- breeding.diploid(population, breeding.size = c(100,100), 
                               selection.size = c(5,200), bve = TRUE, 
                               new.bv.observation = "non_obs_f", 
                               selection.m = "function", 
                               name.cohort = "Top_Edit", 
                               selection.m.cohorts = "Top_M", 
                               selection.f.cohorts = c("Top_F","Sec_F"), 
                               nr.edits = 20, estimate.u = TRUE) 
 
population <- breeding.diploid(population, breeding.size = c(0,900), 
                               selection.size = c(5,1000), 
                               selection.m = "function", name.cohort = "Sec_Edit", 
                               selection.m.cohorts = "Top_M", 
                               selection.f.cohorts = c("Top_F","Sec_F"), 
                               add.gen = 4) 
 
 
bv.development(population, cohorts = c("Founders_F", "Random_F", "Sec_F", 
                                       "Top_F", "Sec_Edit", "Top_Edit_F"), 
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               display.cohort.name = TRUE, display.sex = TRUE, development = 1) 

 

 

16.4 Simulation of a base population with a hard sweep 

We here show how to perform an exemplary simulation to generate a base population and a hard 

sweep.  

# Generate a starting population with 5000 SNPs and 200 individuals 
# and a single chromosome of length 2 Morgan. 
population <- creating.diploid(nsnp = 5000, nindi = 200, chromosome.length = 2) 
 
# LD build up via 100 generations of random mating 
# Each generation contains 200 individuals 
for(index in 1:100){ 
  population <- breeding.diploid(population, breeding.size = 200, 
                                 selection.size = c(100,100)) 
} 
 
# Derive allele frequency and check LD for the last generation: 
genotype.check <- get.geno(population, gen = length(population$breeding)) 
p_i <- rowMeans(genotype.check)/2 
ld.decay(population, genotype.dataset = genotype.check, step = 10, max = 500) 

 
# Simulate a favorable mutation in a previously fixed marker 
fixated_markers <- which(p_i==0) # Which markers are fixated 
qtl_posi <- sample(fixated_markers, 1) # Selected a fixated marker in A 
trait <- cbind(qtl_posi, 1, 0, 1, 2) # SNP, Chromosome, Effect AA, Effect AB, 
Effect BB 
population <- creating.trait(population, real.bv.add = trait) 
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# Generate a mutation in the first male individual 
population <- mutation.intro(population, 101, 1, 1, qtl_posi) 
 
# Simulate generations with selection pressure 
# Individuals with the favorable SNP are picked 5 times as often 
for(index in 1:25){ 
  population <- breeding.diploid(population, breeding.size = 200, 
                                 selection.size = c(100,100), 
                                 best.selection.ratio.m = 5, 
                                 best.selection.ratio.f = 5) 
} 
 
analyze.population(population, gen = 98:115, chromosome = 1, snp = qtl_posi) 
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Figure C.1: Accuracy of genomic prediction on the test set using di�erent genomic
datasets to derive the genomic relationship matrix (VanRaden, 2008)
for Petkuser Ferdinand Rot.

Figure C.2: Accuracy of genomic prediction using di�erent weightings s for the block
length when deriving the genomic relationship matrix for Kemater Land-
mais Gelb. Each line is representing one trait and the red dot is indi-
cating the maximum of the respective curve.
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