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1. Summary 

Brains are conserved between insect species, as they consist of a set of anatomically similar 

areas, or neuropils. Simultaneously, these neuropils differ in size, shape, position and 

developmental timing between insect species, thus reflecting evolutionary adaptations to specific 

sensory cues and behavioural repertoires. Although divergences in a common framework are 

intriguing, the developmental mechanisms underlying the evolution of insect brains are hardly 

understood. One phenomenon in the evolution of development is heterochrony, i.e. a shift in 

relative developmental timing of morphological structures between species. The central complex, 

a neuropil in the insect brain that enables spatial orientation, appears at different developmental 

stages in different species. In this work, I compare central complex development between the 

fruit fly Drosophila melanogaster and the red flour beetle Tribolium castaneum. In Drosophila, the central 

complex is functionally an adult structure as it only appears during late larval and pupal stages. In 

Tribolium, however, parts of the central complex are already present at the end of embryogenesis. 

Here, I show work that establishes, uses and expands a new method to mark and compare 

homologous neurons throughout development in different species.  

The main work is presented in manuscript 1, where I used a novel method of marking and 

comparing developing, homologous cell groups of the central complex of Drosophila and 

Tribolium. For this, I generated and characterized transgenic lines specific for the conserved 

transcription factor retinal homeobox (rx). I then determined which Rx-positive cell groups in the 

adult brain of Drosophila and Tribolium are homologous. These were then followed throughout 

development. We were able to identify a complex pattern of heterochronic events between 

Drosophila and Tribolium central complex development. Most importantly, we found that Tribolium 

precociously acquires a functional central complex neuropil that has distinct anatomical 

characteristics and thus represents an immature form of the central body. 

Manuscript 2 describes two ways to construct transgenic lines, like the ones used in 

manuscript 1, through CRISPR/Cas mediated genome editing. One relies on homology-directed 

repair of a bicistronic construct, and results in an exact monitoring of a gene of choice, while the 

other is mediated by non-homologous end-joining to generate a gene-specific enhancer trap.  

Manuscript 3 describes methods on how to dissect and stain Tribolium castaneum brains of 

different developmental periods. It describes how to perform in situ hybridisation and 

immunohistochemistry in adult and larval brains. 

Generating tools such as genetic neural lineage marking (manuscript 1, 2) and establishing 

protocols that can be used in alternative model organisms (manuscripts 2 and 3) can facilitate 

more detailed understandings of the genetic and developmental underpinnings of brain evolution. 
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2. Introduction 

2.1. The diversity of brain evolution 

The brain is the organ in animals that integrates a multitude of information to coordinate 

behavioural output. It is the primary structure that governs the processing of sensory input and 

internal states to direct behavioural output and in consequence the interaction with the 

environment. Hence, a brain is essential to an animal’s survival by controlling the behavioural 

repertoire and together with other factors defining a species’ habitat and niche construction. As 

it is such an important entity in each individual, its evolution is a crucial question in every species’ 

evolutionary history. 

Brain evolution has been approached from multiple angles (Figure 1). Any listing of 

approaches and publications likely fails to be complete, but the selection provided here still 

highlights the diversity of facets of the evolution of brains and nervous systems (Figure 1). 

 

 
Figure 1: The evolution of brains is studied using various overlapping approaches. Different approaches are represented 

by exemplary publications and are arranged in non-specific order around a simplified insect phylogeny (based on Misof et al., 

2014) with 3D reconstructed brains of representative species (www.insectbraindb.org), displaying anatomical differences in brains. 

For details see Figure 2. 
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The most common approach, often involving studies of allometry, is the comparison of 

species’ whole brains or gross subareas that can be easily distinguished anatomically (Chittka and 

Niven, 2009; Gonzalez-Voyer et al., 2009; Montgomery et al., 2016; Striedter, 2005; Tsuboi et al., 

2018). Such comparisons are not necessarily limited to extant species as insights into the origin 

of brains of specific clades were gained through endocast volume reconstruction (Neubauer et 

al., 2018) and fossil reconstruction in arthropods (Strausfeld et al., 2016) as well. 

Information about sensory systems (Barton, 2004; Prieto-Godino et al., 2017), life history 

(Isler and van Schaik, 2012; Powell et al., 2017), ecological (DeCasien et al., 2017; Schulz-Mirbach 

et al., 2016), social (Dunbar and Shultz, 2017; Godfrey and Gronenberg, 2019) and 

behavioural/cognitive factors (Chittka and Niven, 2009; Logan et al., 2018; Stöckl et al., 2016; 

van Schaik et al., 2012) as well metabolic correlates (Isler and van Schaik, 2006; Tsuboi et al., 

2014) have been included in such analyses to generate and test specific evolutionary hypotheses. 

For example, two not mutually exclusive hypotheses are the visual brain (Barton, 2004, 1998) and 

social brain hypothesis. (Dunbar, 1998; Dunbar and Shultz, 2007). The visual brain hypothesis 

emphasizes that increased visual specialisation including binocularity has caused the evolution of 

large brains in primates, while the social brain hypothesis posits that social factors such as group 

size have been the main drivers in this animal group. 

An alternative correlate to brain area size for all these factors is cell number (Herculano-

Houzel, 2017). For instance, Herculano-Houzel (2012) shows that the human brain is not 

especially large but scaled up in comparison to other mammals, as the number of neurons fit into 

allometric predictions. 

As data of whole brain and brain area sizes is now available for many, particularly mammalian, 

species, phylogenetic comparative analyses can be performed to account for the underlying 

phylogenetic history (DeCasien et al., 2017; Miller et al., 2019; Nunn and Barton, 2001; Powell et 

al., 2017). For example, Miller et al. (2019) have revealed that an evolutionary shift in the 

relationship of brain and body size has occurred when hominids split from other primates. 

Analogous analyses using phylogenetic comparative methods on a large scale are still missing in 

arthropods (see 4. Discussion), although suitable volumetric data sets are available (see e.g. 

www.insectbraindb.org). 

Underlying brain area size differences are genetic and developmental differences that have 

contributed to evolutionary transitions (Enard, 2016; Florio et al., 2015; Harrison and 

Montgomery, 2017; Hartenstein and Stollewerk, 2015; Khaitovich et al., 2005; Namba and 

Huttner, 2017; Stollewerk, 2016; Zwarts et al., 2015). For example, Zwarts et al. (2015) have 



INTRODUCTION  

- 4 - 

revealed over hundred genes that underlie natural variation in the morphology of an area in the 

insect brain.  

In addition, the origin of nervous systems has been intensely studied (Arendt et al., 2015; 

Edgecombe et al., 2015; Hartenstein and Stollewerk, 2015; Martín-Durán et al., 2018; Moroz et 

al., 2014), including the evolution of cell types (Arendt et al., 2019, 2016). For example, such 

investigations include whether nervous systems have evolved once in an early common ancestor 

sharing homology or several times independently (Arendt et al., 2016; Martín-Durán et al., 2017; 

Moroz et al., 2014). 

In summary, various approaches, methods and starting points exist to study the evolution of 

brains. 

 

2.2. Insect brains are suitable subjects for evolutionary research 

Many studies on brain evolution were performed on vertebrates, particularly primates, despite 

relatively low species number and important ethical concerns regarding invasive lab work (brain 

organoids elegantly circumvent ethical concerns; see Giandomenico and Lancaster, 2017; Pollen 

et al., 2019). An alternative are fish, because they show huge diversity in brain anatomy (Kotrschal 

et al., 1998). Through particularly pronounced adult neurogenesis in fish (Zupanc, 2001), studies 

on plastic versus evolutionary modification were made (Eifert et al., 2015; Herczeg et al., 2019; 

Sherwood and Gómez-Robles, 2017). The most species-rich group of animals, however, are 

arthropods (in particular, holometabolous insects, Stork, 2018; Stork et al., 2015). If diversity and 

experimental accessibility are used as primary reasoning for selecting model systems to study brain 

evolution, insects, particularly holometabolans, are most suited (see Figure 2 for exemplary 

diversity). 

Studies dedicated to insect brains and their evolution have the potential to reveal genetic and 

cellular factors underlying brain evolution, because insects have brains with a relatively low 

number of cells, but still exhibiting behavioural complexity and diversity among species. Further, 

insects are experimentally very accessible, for instance for whole-mount immunohistochemistry 

and transgenic approaches. Specifically, their short developmental times and relatively small size 

make insects particularly easy to keep in the lab and hence, multigenerational research required 

for mapping or transgenesis as well as molecular work are facilitated by their small size. Their 

small brain sizes make them especially tractable for evolutionary research as they allow whole 

mount preparations and highly detailed anatomical descriptions with relative ease (el Jundi et al., 

2018; el Jundi and Heinze, 2016; Stöckl et al., 2016), that go beyond the level of detail of most 

vertebrate anatomical descriptions (Striedter, 2005). Such studies performed so far show that all 
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insect (and arthropod; see Strausfeld, 2012) brains consist of the same set of brain areas, or 

neuropils (some color-coded in Figure 2, Strausfeld, 2009; Strausfeld et al., 2009). However, size, 

shape and position vary substantially (Figure 2, (Farris, 2013; Keesey et al., 2019; Montgomery 

and Merrill, 2016; Stöckl et al., 2016; Strausfeld, 2009, 2005; Strausfeld et al., 2009). Hence, they 

are conserved and divergent at the same time. 

Finding factors underlying their immense diversity in behaviour, locomotion and habitat 

occupation (Whitfield et al., 2013) has the potential to reveal general principles of brain evolution. 

Studies of brain evolution in different clades can inform each other by the testing of general 

hypotheses, for example (such as mosaic brain evolution in Muscedere et al., 2014, or the social 

brain hypothesis in Lihoreau et al., 2012). Moreover, homologous structures were revealed by 

comparing vertebrate and insect brains which give insights into the evolution of bilaterians in 

general (Farris, 2008; Strausfeld and Hirth, 2013a; Wolff and Strausfeld, 2016). 

 

 

Figure 2: Diversity of insect brains in a common anatomical framework. 3D reconstructed brains (not to scale) 

of representative species of five orders in Insecta illustrate diversity in size, shape and position of neuropils that are 

common to all insects. Four neuropils are shown, besides unidentified neuropils (grey): These are central complex 

(green), mushroom bodies (red), antennal lobes (blue), optic lobes (yellow, orange). An example for the diversity 

displayed are mushroom bodies of Apis mellifera being large and having multiple calyces compared to the Dipteran 
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Aedes aegypti. Note also that the cerebrum of the Coleopteran Scarabaeus lamarcki is connected to distantly positioned 

optic lobes via optic stalks (not shown, see Immonen et al. 2017 for detail). All pictures were taken from 

www.insectbraindb.org. Source data is from Kurylas et al. 2008 (Schistocerca gregaria), Brandt et al. 2005 (Apis mellifera), 

Immonen et al. 2017 (Scarabaeus lamarcki), el Jundi et al. 2009 (Manduca sexta) and courtesy of Prof. L. Vosshall (Aedes 

aegypti). The strongly simplified phylogeny is based on Misof et al. (2014). 

 

In summary, insect brains are well-suited for evolutionary research, with their diversity and 

ease of handling enabling approaches which are more difficult to perform in most vertebrate 

clades. 

 

2.3. Comparing development of brains between insect species 

Differences between brains of different insect species need to arise during development (see, 

however, adult neurogenesis in insects, Simões and Rhiner, 2017). Studying insect brain 

development on the level of anatomy (Farris and Sinakevitch, 2003), cell behaviour like 

proliferation (Boyan and Reichert, 2011) and sequencing data (Konstantinides et al., 2018) should 

reveal insights into how differences between brains arise. 

The number of species available for detailed developmental studies is growing in the evo-

devo field (Bolker, 2014; Jenner and Wills, 2007; Raff, 2000; Sommer, 2009), particularly through 

the increased possibility of genome and transcriptome sequencing (e.g. Martín-Durán et al., 2017), 

transgenesis (e.g. Berghammer et al., 1999) and genome editing in several species (Chen et al., 

2016; Gilles and Averof, 2014). 

The importance of developmental research for brain evolution combined with the availability 

of suitable tools in several species would theoretically allow for extensive studies. However, this 

potential is rarely used such that studies on brain development and evolution are scarce. While 

common developmental mechanisms such as asymmetric division of neuroblasts, neural lineage 

formation and development (Boyan and Williams, 2011; Boyan and Reichert, 2011; Ito and 

Awasaki, 2008; Reichert and Boyan, 1997; Stollewerk, 2016), as well as fascicle switching (Boyan 

et al., 2015) have been identified independently in several species, a direct comparison, i.e. of 

homologous cells throughout development, has been lacking. Hence, there have been 

homologous comparisons of adult brains between species on the one hand (e.g. through the 

shared expression of conserved neurotransmitters such as GABA, Homberg et al., 2018), and on 

the other hand detailed developmental studies in few model species, i.e. Schistocerca gregaria and 

Drosophila melanogaster. However, no studies at present have been conducted that compare the 

development of homologous cells between species. 

This might be because of two reasons, i.e. the identification of homologous cells and the 

comparison of developmental periods in different species. First, a comparison of developmental 
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processes needs to rely on shared ancestry of investigated entities, i.e. cells or organs, such that 

detected differences reflect differences specific for each compared species lineage. Determining 

homologous cells, however, is far from trivial (see 4. Discussion, Arendt, 2005; Farries, 2013; 

Katz, 2007; Strausfeld and Hirth, 2013b; Striedter, 2002). Several arguments to assess homology 

have been used – especially shared gene expression (Arendt, 2005) and shared morphology (Wolff 

and Strausfeld, 2015) – and a comparison likely needs to incorporate several to claim deep 

homology (Strausfeld and Hirth, 2013a; but see Farries, 2013). Hence, homologous comparisons 

are quite difficult and require several preceding steps. 

Second, species can differ strongly regarding absolute developmental time, the portion they 

remain in developmental stages (i.e. embryo, larva and pupa), and the timing of characteristic 

morphological events (Strobl and Stelzer, 2016). A comparison of developmental events in the 

brain needs to be based on a unified time metric to correct for differences in timing and 

morphology of the whole animal. For this, relative developmental time might be a first good 

measure, thus accounting for different metabolic rates that might underlie differences in absolute 

developmental time. However, without morphological criteria as addition, comparisons might be 

less meaningful (Smith, 2001). For example, a major developmental period like dorsal closure 

happens in Tribolium and Drosophila at different relative time windows (Strobl and Stelzer, 2016). 

Hence, the percentage at embryogenesis might be the same, but morphologically they might be 

different. 

To conclude, while comparative developmental research is important to understand the 

evolution of insect brains, it is rarely done, as homologous structures and a comparative metric 

for development are difficult to identify. In this work, a suitable framework of comparison was 

employed and methods shown to facilitate comparative development on a cellular level. 

 

2.4. The use of genetic neural lineages and alternative marking strategies 

Insect neural stem cells produce all their progeny in a stereotypical fashion. Their cell bodies 

stay closely associated and their projections build one or a few common projections (e.g. Omoto 

et al., 2017). Such ‘units’ (Ito and Awasaki, 2008) have been identified as conserved in embryos 

of different insect species (Urbach and Technau, 2003a), and a specific set was compared during 

development between phylogenetically distant species as the desert locust and fruit fly (Boyan et 

al., 2017; Boyan and Williams, 2011; Boyan and Reichert, 2011). Hence, the conserved mechanism 

of neural lineage development makes insect brains suitable for comparative development (see 

manuscript 1, Boyan and Reichert, 2011; Hartenstein, 2019; Hartenstein et al., 2008; Ito and 

Awasaki, 2008; Spindler and Hartenstein, 2010; Urbach and Technau, 2003a). Moreover, neural 



INTRODUCTION  

- 8 - 

lineages as units are easier to define (e.g. by location; Lovick et al., 2013; Wong et al., 2013) than 

distributed cell bodies and projections. The conserved character of these units (Boyan et al., 2017; 

Boyan and Williams, 2011; Hartenstein, 2019; Urbach and Technau, 2003a) increase the 

likelihood of comparing homologous cells. 

Three prerequisites need to be fulfilled to compare such neural lineages between species 

(Koniszewski et al., 2016). First, marking of complete development from neuroblast to adult 

structure needs to be possible. Second, a method needs to be technically transferrable to other 

species to be widely applicable. Third, it needs to be based on structures that are likely 

homologous. 

The marking of a neural lineage (i.e. a neuroblast and all its offspring) from embryo to adult 

has remained challenging even in Drosophila melanogaster. Several methods have been used, i.e. DiI 

labelling (Bossing and Technau, 1994), MARCM (mosaic analysis with a repressible cell marker, 

Lee and Luo, 2001), gene-specific GAL4 lines (Jenett et al., 2012; Pfeiffer et al., 2010, 2008), and 

anatomical descriptions (Boyan and Williams, 2011, 1997). However, all these techniques come 

with restrictions. DiI labelling comprises the application of a lipophilic dye early in embryonic 

development that gets incorporated in a neuroblast and all its offspring in a non-invasive fashion, 

applicable in several arthropod species (Bossing and Technau, 1994; Kraft and Urbach, 2014; 

Scholtz and Gerberding, 2002). DiI labelling is, however, lost over time so that the method is 

limited to a small time-window. MARCM relies on a detailed crossing scheme to generate 

stochastically but permanently labelled offspring (Lee and Luo, 2001; Viktorin, 2014). Great 

insights have been generated with this method (Ito et al., 2013; Yang et al., 2013; Yu et al., 2013). 

However, the stochastic basis means that even in Drosophila the same cells are not always marked. 

Also, it is only established in Drosophila as several genetic tools are required to facilitate such a 

method. Along with the lack of marking of complete development, this method is not suited for 

comparative development. Gene-specific GAL4 lines contain small fragments of regulatory 

regions of genes, with the purpose of marking a few cells per line (Jenett et al., 2012; Pfeiffer et 

al., 2010, 2008). Such transgenic lines can be used to identify certain neuroblasts based on 

previous knowledge, and most parts of development can be monitored (Riebli et al., 2013). 

However, constructing such lines in several species involves establishing several techniques first, 

without the guarantee of suitable comparative labelling (similar limitations are valid for the 

‘flybow’ technique; Hadjieconomou et al., 2011), because enhancers, particularly, can diverge 

substantially between species (Buffry et al., 2016; Khoueiry et al., 2017; Maeso et al., 2013). 

Anatomical descriptions can allow identification from neuroblast to adult structure and can be 

performed with relative ease in other species (Boyan and Williams, 2011, 1997). A morphological 
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criterion on its own, however, is not sufficient to claim homology (Arendt, 2005; Strausfeld and 

Hirth, 2013a). 

Hence, the methods illustrated here do not satisfy the criteria described above, i.e. continuous 

marking, technical universality and marking of homologous cells, that would allow comparative 

developmental research based on homologous cells. Therefore, our lab has proposed an 

alternative method (Koniszewski et al., 2016) which I have used for the first time in manuscript 1: 

In this framework, the level of comparison is not the neural lineage but the so-called ‘genetic 

neural lineage’. It is defined to comprise all cells that express the same transcription factor. While 

this is not sufficient to claim homology on its own it is very likely that genetic neural lineages 

contain or are even built predominantly by homologous cells. The concept exploits the 

conservation of a set of transcription factors expressed in a mostly restricted way in the anterior 

developing brain in most bilaterians (Arendt, 2008; Arendt et al., 2004; Davis et al., 2003; Denes 

et al., 2007; Eggert et al., 1998; Janssen, 2017; Kitzmann et al., 2017; Lichtneckert and Reichert, 

2008; Lowe et al., 2003; Mathers et al., 1997; Mazza et al., 2010; Posnien et al., 2011; Steinmetz 

et al., 2010; Urbach and Technau, 2008). This conserved pattern suggests that molecularly 

homologous regions exist throughout bilaterians that give rise to structurally homologous brain 

structures and cell types.  Hence, monitoring expression of such a gene likely marks cells that 

share ancestry. Moreover, several such genes are expressed from embryo to adult (Gold and 

Brand, 2014; Kraft et al., 2016; Kumar et al., 2009), thus fulfilling the criterion of continuous 

marking throughout development.  

The common expression in bilaterian animals makes this basis also technically universal 

because customised antibodies can be produced for each species (see manuscript 1 for an 

example) and standard immunohistochemistry (see manuscript 3 for details). However, 

transcription factor expression is limited to nuclei and projections of marked cells would not be 

visualized. To allow such visualisation, gene-specific transgenic lines need to be designed that 

contain a fluorescent protein under the shared transcriptional control of such a conserved 

transcription factor (He et al., 2019; manuscript 1 and 2). Through the universally applicable 

system of CRISPR/Cas, any animal suitable for microinjection and rearing from eggs can be 

genomically edited (Gilles and Averof, 2014). 

While the marking and comparison of neural lineages remains technically difficult, the 

concept of genetic neural lineages promises to reveal homologous cells that can be traced from 

embryo to the adult in several species. 
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2.5. Using CRIPSR/Cas to generate transgenic lines in alternative model 

organisms 

Genetic neural lineages need to be labelled by transgenic lines that reflect the expression of 

one conserved transcription factor (Koniszewski et al., 2016). Generation of such transgenic lines 

has been done mainly through two strategies in two species, Drosophila melanogaster and Tribolium 

castaneum, i.e. enhancer traps and constructs containing gene regulatory regions (Hayashi et al., 

2002; He et al., 2019; Jenett et al., 2012; Trauner et al., 2009). Enhancer traps in insects are (so 

far) based on random insertion via transposase activity (Johnston, 2002; Manseau et al., 1997; 

Trauner et al., 2009). Constructs that contain parts of the regulatory region of the gene of choice 

(Jenett et al., 2012; Pfeiffer et al., 2010, 2008) often show unspecific labelling as result of not 

containing all enhancers and random insertion into the genome (see manuscript 2 for details). 

While both strategies are suitable for a suite of choices, the development of CRIPSR/Cas as the 

main method to modify the genome offers an elegant way to produce more reliable results, and, 

in our case to construct gene-specific labelling of cells, thus avoiding stochasticity and most 

positional effects of previous methods. 

CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats)/Cas (CRISPR-

associated) genome editing is based on the inert bacterial system for adaptive immunity (Jinek et 

al., 2012; for more details see manuscript 2 and Doudna and Charpentier, 2014; Hsu et al., 2014). 

A modification and simplification of this approach has allowed to exploit this system to modify 

nearly any genomic region in a specific manner (Gratz et al., 2014, 2013; Hsu et al., 2014; Port et 

al., 2014). Hence, also an expression marker such as EGFP can be edited into the region of a 

gene of interest, such as a conserved transcription factor (He et al., 2019; manuscript 1 and 2).  

CRISPR/Cas has been used widely in insect organisms, where microinjection and 

multigeneration rearing is possible (Gilles and Averof, 2014). Because comparable transgenic lines 

can be generated in many species, this promises contributions to evo-devo research. Genetic 

neural lineages, as they have been used here in Drosophila and Tribolium (see manuscript 1), can at 

least in theory be generated in a similar way in several species where CRISPR/Cas is already 

established (e.g. Gryllus; Watanabe et al., 2017). 

 

2.6. A beetle – fly comparison 

Drosophila melanogaster is a gold standard when it comes to the number of tools developed 

(Çelik and Wernet, 2017; Hales et al., 2015). Second with regards to genetic amenability is the red 

flour beetle Tribolium castaneum (Pai, 2019; manuscript 1 and 2 for details). CRISPR is established 

(Gilles et al., 2015) and has been employed successfully for brain development topics (He et al., 
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2019). Hence, a comparison of brain development in these two species is a suitable starting point, 

conducted in manuscript 1. 

 

2.7. My doctoral work contained in three manuscripts and their 

contributions 

This work presented in three manuscripts may possibly contribute to the field of brain evo-

devo through a fly-beetle comparison and in turn to brain evolution in general as follows (for 

authors, contributions and status of the manuscript see introductory page before each 

manuscript): 

The main experimental work is presented in manuscript 1 ‘Sequence heterochrony between 

Drosophila and Tribolium causes emergence of a precocious larval form of the central complex’, in final 

preparations for submission to BioRxiv and eLife. Here, I employ the novel idea of genetic neural 

lineages (Koniszewski et al., 2016). We generated the respective tools and showed for the first 

time that this approach works. Specifically, we describe the heterochrony of one brain area, the 

central complex, between Drosophila melanogaster and Tribolium castaneum. Unexpectedly, two levels 

of heterochrony were revealed, i.e. shifts in embryonic and pupal development and changes in 

sequence of developmental events. We show that the larval central complex of Tribolium is distinct 

and precocious in its cellular architecture compared to the adult. These results have implications 

for central complex development and evolution. The approach of genetic neural lineages has 

implications for brain evolution and development in general. 

Manuscript 2 ‘The red flour beetle as model for comparative neural development: Genome editing to mark 

neural cells in Tribolium brain development’ and 3 ‘Immunohistochemistry and fluorescent whole mount RNA 

in situ hybridization in larval and adult brains of Tribolium’ are methodological works and are in press 

for the book ‘Brain Development: Methods and Protocols, 2nd version’. 

Manuscript 2 describes two methods to mark genetic neural lineages using CRISPR/Cas in 

Tribolium. One approach is based on a bicistronic construct, of which the construction is labour-

intensive, but results in exact labelling of the expression of a gene of choice (an example in 

Drosophila is presented in manuscript 1). The other approach is to construct an enhancer trap 

specific for the gene of choice, of which the construction is faster, albeit less exact in labelling 

(He et al., 2019). These methods have implications for the evo-devo field, as we describe ways to 

use the benefits of CRISPR in a model organism second to Drosophila, i.e. Tribolium. Such methods 

can be transferred to other insects (Gilles and Averof, 2014) and can generate new insights into 

the evolution and development of insects. 
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Manuscript 3, to which I contributed as co-author, describes how to use 

immunohistochemistry and in situ hybridisation in larval and adult brains of Tribolium castaneum. 

Such methods can be used in other labs as part of brain development and evolutionary research, 

and thus contribute to insect brain evo-devo as well. 

I am co-author on two additional publications not included here (He et al., 2019; Koniszewski 

et al., 2016). Koniszewski et al. (2016) present tools for neurobiological research in Tribolium 

castaneum and propose the strategy of genetic neural lineages, which I verified through manuscript 

1 and 2. He et al. (2019) explore the functional role of the conserved transcription factor foxQ2 

in brain and central complex development of Tribolium.
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3. Results 

Each manuscript starts with a description of the main aim in context of the whole thesis, the list 

of authors, my contributions and the manuscript status. 

 

Manuscript 1: Sequence heterochrony between Drosophila and 

Tribolium causes emergence of a precocious larval form of the 

central complex 

Pages 14-88 

 

Manuscript 2: The red flour beetle as model for comparative neural 

development: Genome editing to mark neural cells in Tribolium 

brain development 

Pages 89-119 

 

Manuscript 3: Immunohistochemistry and fluorescent whole mount 

RNA in situ hybridization in larval and adult brains of Tribolium 

Pages 120-144 
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3.1. Manuscript 1: Sequence heterochrony between Drosophila 

and Tribolium causes emergence of a precocious larval form of 

the central complex 

This manuscript is the main part of primary data generated and illustrates that the approach 

of using genetic neural lineages, that the Bucher lab has developed previously, is functional and 

generates new insight. It is also a starting point of further similar analyses to generate additional 

comparative and highly useful analyses. In detail, the manuscript illustrates for the first time the 

usefulness of genetic neural lineages in brain evo-devo research, it characterises the heterochronic 

shift in central complex development between Tribolium and Drosophila and reveals a distinct larval 

form of the central body. 

 

Authors 

Max S. Farnworth, Kolja N. Eckermann, Gregor Bucher* 

* = corresponding author 

 

Status 

in preparation for BioRxiv and eLife 

 

My contributions 

- Conceptualisation of the project and iteration of original idea1 

- Conceptualisation of new established techniques used2 

- Performed experiments3 

- Data analysis and interpretation and figure generation4 

- Writing of the manuscript5 

 

1 = together with GB, original idea by GB 

2 = experimental design of bicistronic line with KNE 

3 = together with LM (see Acknowledgements) who performed experiments for Supplementary 

Figures 3.1-1 and 3.1-3 

4 = aided by GB 

5 = together with GB 
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3.1.1. ABSTRACT  

The central complex is a brain area found in nearly all arthropod species. It facilitates a 

multitude of functions, most involving spatial orientation, and is remarkably similar in adults of 

different species of insects. Interestingly, while being conserved in adults, its appearance during 

development diverges between species. In the hemimetabolous desert locust all neuropils are 

present in an adult-like form directly after embryogenesis. In holometabolous insects, 

development is starkly modified such that, in the fruit fly Drosophila melanogaster, the central 

complex is an adult structure, as it is prefigured during embryonic and larval stages but only 

becomes functional in pupal stages. In the red flour beetle Tribolium castaneum some parts of the 

central complex are present already at the end of embryogenesis while others appear 

postembryonically. Such differences in developmental timing between species are coined 

heterochrony. A comprehensive understanding of this central complex heterochrony based on 

the comparison of homologous cells and throughout all developmental periods has been missing. 

However, a detailed comparison could identify the underlying cellular mechanisms and any 

modifications of conserved developmental programs. 

Here we mark and compare the development of central complex columnar neurons of the 

DM1-4 lineage group in Drosophila and Tribolium from late embryogenesis to adulthood, using 

genetic neural lineages. For this, we generated antibodies and transgenic lines marking cells that 

express the conserved transcription factor retinal homeobox (rx). This comparative genetic approach 

revealed that heterochrony between Drosophila and Tribolium consists of multiple dimensions on 

a cellular level. We observed shifts in embryonic and pupal central complex development. 

Moreover, we saw a modification in the order of developmental events – or sequence 

heterochrony – that causes early emergence of an anatomically distinct larval central body and 

protocerebral bridge. This immature larval central body is functional, contains a small array of 

decussated fibres, and is morphologically distinct from any adult neuropil. Hence, in contrast to 

current understanding, this neuropil does not represent an adult-like upper division of the central 

body. Beyond the specific question of central complex heterochrony, we demonstrate a 

comparison of genetically and anatomically homologous cell groups using the approach of genetic 

neural lineages. We expect that our data and approach will be starting point for studies on the 

specific behavioural function of the larval central body of Tribolium to understand divergent 

patterns of central complex function, development and evolution. Moreover, with the rise of 

genetically tractable model organisms, our working approach of genetic neural lineages promises 

further comparisons of brain development on a cellular level, to further understand the 

developmental origins of brains and their evolution.
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3.1.2. INTRODUCTION  

3.1.2.1. Insect brain evolution – Diversity in a conserved architecture 

Insect (and indeed arthropod) brains are conserved and at the same time highly divergent. 

Each species interacts with an environment that provides similar sets of stimuli. Hence, each 

species requires the same set of tools such as areas of neural processing (neuropils) directly 

connected to optic and olfactory sensory organs (i.e. optic and antennal lobes), a centre for 

learning and memory, the mushroom bodies, and a centre to integrate sensory information and 

control behavioural output, the central complex (Strausfeld, 2012, 2009). In contrast, how each 

species has developed their niche and adapted to specific environmental needs with specific 

behaviour and anatomy is reflected in differences in brain anatomy (Keesey et al., 2019; 

Montgomery and Merrill, 2016; Stöckl et al., 2016; Strausfeld, 2012). For example, insects such 

as aquatic beetles, who do not detect volatile odors, lack antennal lobes and have modified 

mushroom bodies (Strausfeld et al., 2009). 

The diversity of brain structures is even larger when considering metamorphosis, particularly 

in the case of complete metamorphosis (holometaboly). Through the presence of a larval form 

in each holometabolous species, two life stages of each individual insect interact with the 

environment (Truman and Riddiford, 1999). Therefore, natural selection can cause modifications 

on behaviour, sensory detection and brain anatomy in each stage. A Drosophila larval brain, for 

example, differs strongly from the adult stage, because morphology and behavioural repertoire 

differ so much (Hartenstein et al., 2008; Ito and Awasaki, 2008; Maddrell, 2018). Moreover, in a 

number of insects, particularly hymenopterans, individuals of the same species have distinct brain 

anatomies, reflecting their tasks in the society (Gordon et al., 2019; Mysore et al., 2009; Zube and 

Rössler, 2008). 

In summary, brains of different insect species consist of the same areas but differ in their size 

and shape of neuropils. Even within species, different life stages of individual and individuals of 

different castes can have different brain morphologies. How and why deviations from a common 

architecture in insect brains arise is one of the most interesting questions in insect evolution 

(Strausfeld, 2012). 

Nearly all these differences need to be achieved during an individual’s development (but see 

Simões and Rhiner, 2017 on adult neurogenesis). Examining developmental processes, 

comparing them between species and identifying commonalities and differences is therefore 

required to gain insight into how the selected anatomical differences are constructed 

(Konstantinides et al., 2018). 



MANUSCRIPT 1  –  INTRODUCTION  

- 18 - 

When comparing several insect species, the development of one set of insect brain neuropils, 

the central complex, is particularly intriguing: The appearance of central complex neuropils 

diverges between species (Koniszewski et al., 2016; Panov, 1959; Pfeiffer and Homberg, 2014). 

In hemimetabolous insects, such as the desert locust, all neuropils of the central complex are 

present after embryogenesis. In holometabolous species, development is either partially or 

completely shifted to pupal stages. Alterations when a central complex neuropil appears reflects 

the evolutionary phenomenon of heterochrony. 

 

3.1.2.2. Heterochrony is a mechanism in the evolution of development with a 

largely unknown cellular basis 

Heterochrony is an evolutionary phenomenon that connects development, i.e. ontogeny, with 

phylogeny (Gould, 1977; Raff and Wray, 1989; Smith, 2002). Specifically, it describes evolutionary 

shifts in relative developmental time through which differences in structure and function of 

organs can arise (Gould, 1977; Smith, 2001). For example, humans, compared to other great apes, 

retain juvenile features such as hairlessness into adulthood (Gould, 1977). Heterochronic 

differences can be apparent during development itself, as is the case for the central complex 

(Koniszewski et al., 2016; see Keyte and Smith, 2014 for limb development in marsupials, Nii et 

al., 2019 for termite caste development), or differences can translate into differences in the adult 

so that they are apparent there (neoteny in humans; Gould, 1977). Heterochrony is well-studied 

on a morphological level (Gould, 1977; Luque et al., 2019; Nii et al., 2019). However, in most 

studies on heterochrony the genetic or cellular bases are unknown (but see Keyte and Smith, 2014 

for recent insights), particularly in the brain.  

Hence, how cellular mechanisms of the brain such as cell proliferation and apoptosis, 

axogenesis, axon pruning, and functionalisation are modified to generate heterochrony remains 

elusive. Similarly, while basic differences in the appearance of neuropils of the central complex 

have been described (Koniszewski et al., 2016; Panov, 1959; Pfeiffer and Homberg, 2014), the 

cellular mechanisms involved are largely unknown. 

 

3.1.2.3. Structure and function of the central complex 

The central complex is a set of neuropils positioned in the middle of insect and arthropod 

brains (Loesel et al., 2002; Strausfeld, 2012; Thoen et al., 2017). It consists of four midline-

spanning neuropils, i.e. the protocerebral bridge, the central body, comprised of upper and lower 

division (also referred to as fan-shaped and ellipsoid body, respectively), and paired noduli 

(Pfeiffer and Homberg, 2014). Except for the noduli, neuropils are vertically divided into columns 
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(or slices; Ito et al., 2014). The central body can further be divided into horizontally orientated 

layers. These subdivisions are indicators of its underlying neural connections and function 

(Honkanen et al., 2019; Pfeiffer and Homberg, 2014). 

While the central complex consists of tracts and synaptic structures from several distinct cell 

types (Franconville et al., 2018; Wolff et al., 2015; Wolff and Rubin, 2018), two major types which 

explain its structure and function best are tangential and columnar neurons (el Jundi et al., 2018; 

Pfeiffer and Homberg, 2014). Tangential neurons have their cell bodies distant from the midline 

and project laterally into a given neuropil with large-field ramifications (el Jundi et al., 2018; 

Pfeiffer and Homberg, 2014). They connect other brain areas with the central complex. For 

example, the visual pathway from optic lobes to the ellipsoid body contains neurites of tangential 

neurons (Lovick et al., 2017). Columnar neurons, on the other hand, have their cell bodies near 

the protocerebral bridge (Andrade et al., 2019; el Jundi et al., 2018). Neurites connect the 

protocerebral bridge to other neuropils of the central complex, so that a high number of different 

types of columnar neurons can be classified. One example are PFN (protocerebral bridge – fan-

shaped body – nodulus) neurons that connect three of the four neuropils with each other through 

small-field ramifications (Sullivan et al., 2019). An additional type of neurons, the CPU2 neurons 

(for nomenclature see Honkanen et al., 2019), then connects the central complex to the lateral 

complex, a set of neuropils that is further connected to other ganglia of the nervous system. From 

there neurites build a pathway into the thoracic ganglia to facilitate motor movement (Homberg, 

1994). 

Such small-field ramifications of columnar neurons divide neuropils of the central complex 

into 16 to 18 slices (Heinze and Homberg, 2008; Williams, 1975; Wolff et al., 2015). Together 

with a pattern of crossing fibres, comprising the anterior and posterior chiasma of the central 

complex, these divisions build the anatomical basis for central complex function (Honkanen et 

al., 2019). 

The central complex has been linked to a multitude of functions from different domains of 

behavioural and sensory repertoires (see Honkanen et al., 2019; Pfeiffer and Homberg, 2014 for 

extensive reviews). However, the ancestral function of it is proposed to be navigational control 

(Heinze, 2017; Honkanen et al., 2019) where sensory information needs to be processed, 

compared to an internal state and output motor control constructed (e.g. Heinze and Homberg, 

2007; Neuser et al., 2008; Strausfeld, 1999). 
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3.1.2.4. The central complex is developed by conserved cellular mechanisms 

Comparative developmental research in insect brains is rare (Boyan et al., 2017; Farris and 

Sinakevitch, 2003). However, common cellular mechanisms, particularly well-studied for the 

central complex, have been identified that underlie development of brains in likely all insects. 

These are the development of clonally defined neural lineages (Boyan and Reichert, 2011; Ito and 

Awasaki, 2008; Stollewerk, 2016) and mechanisms of axogenesis (Boyan et al., 2015; Strausfeld, 

2012). 

Insect central brains are built up by about 100 neural stem cells (or neuroblasts) per 

hemisphere. Each neuroblast expresses a unique cocktail of transcription factors that is believed 

to cause production of a specific fate of the stem cell’s offspring (Urbach and Technau, 2003b). 

Each of these 100 neuroblasts produces neural cells in a very stereotypical fashion (Izergina et 

al., 2009). Neuroblasts sit on the surface of the prospective brain cell body rind and produce 

progeny that are progressively more located into the middle of the brain (Hartenstein et al., 2008; 

Spindler and Hartenstein, 2010). Therefore, all offspring comprise a string of neural cells 

(Spindler and Hartenstein, 2010). Importantly, these neural cells stay in their position and produce 

common axonal projections that target similar functional areas of the brain (Williams and Boyan, 

2008). Four of those 100 neuroblasts that are particularly well understood produce progeny that 

build up major parts of the central complex (Andrade et al., 2019; Boyan and Williams, 2011; 

Boyan and Reichert, 2011). These neuroblasts and their progeny carry synonymous names: DM1 

(DPMm1, Z), DM2 (DPMpm1, Y), DM3 (DPMpm2, X), DM4 (CM4, W; Bello et al., 2008; 

Pereanu and Hartenstein, 2006; Williams and Boyan, 2008). DM1-4 produce nearly all columnar 

neurons of the central complex (Andrade et al., 2019). To achieve this high number of cells with 

only four neuroblasts, these neuroblasts have a specific mode of division. In contrast to other 

neuroblasts, they produce several intermediate progenitors that each produce ganglion mother 

cells that in turn divide into approximately 450 postmitotic cells per neuroblast (Bello et al., 2008; 

Boone and Doe, 2008; Boyan et al., 2010). Such neuroblasts, including DM1 - 4 (Boyan and 

Reichert, 2011; Izergina et al., 2009; Walsh and Doe, 2017), are referred to as type II neuroblasts. 

A second conserved aspect of central complex development regards axogenesis of midline-

positioned cells (Boyan et al., 2015, 2008). In all arthropods investigated, axons of cells likely 

belonging to homologs of the DM1-4 cluster, fasciculate in parallel commissures across the 

midline at the beginning of development. At 55 % of embryogenesis in Schistocerca and during 

early pupal phases in Drosophila (Boyan et al., 2017), axons particularly of DM1-3 defasciculate at 

stereotyped locations and re-fasciculate at more posterior points, i.e. they leave their axon bundle 

of origin to join another one. Because this pattern is repeated on both sides of the midline, the 
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result is a system of X-shaped, or decussating, tracts (Boyan et al., 2017). This pattern of 

axogenesis likely occurs in all arthropods, even independent of deviating mechanisms of neural 

stem cell development (Boyan et al., 2015). 

These DM1-4 neural lineages have been compared and homologized between the prime 

model organisms for the central complex, Schistocerca gregaria and Drosophila melanogaster (Boyan et 

al., 2017; Boyan and Williams, 2011; Boyan and Reichert, 2011). Their development highlights 

the heterochronic shift between these species (Koniszewski et al., 2016; Pfeiffer and Homberg, 

2014). 

 

3.1.2.5. Central complex heterochrony – deviation from a common program? 

The central complex of Drosophila is functionally an adult structure. While its structure is 

prefigured during embryonic and larval stages (Andrade et al., 2019; Riebli et al., 2013), it only 

acquires functionality during metamorphosis (Riebli et al., 2013; Young and Armstrong, 2010). 

Hence, larvae do not contain a functional central complex neuropil. In contrast, Schistocerca, an 

insect with incomplete metamorphosis (i.e. hemimetaboly), the central complex is functional and 

adult-like already after embryogenesis is completed (Boyan et al., 2017; Boyan and Liu, 2016). 

An intermediate position is taken by a number of species (Panov, 1959), but best understood 

in the beetles Tenebrio molitor (Wegerhoff et al., 1996; Wegerhoff and Breidbach, 1992) and 

Tribolium castaneum (Koniszewski et al., 2016). Here, the upper division of the central body (CBU) 

was described to be present directly after embryogenesis, while lower division and noduli are still 

absent. The details of heterochronic appearance of central complex neuropils in such species are 

still not well described, however. This includes analysis of morphology and appearance of the 

protocerebral bridge, lower division of the central body and noduli, as well as pupal development. 

Further, most analyses so far were largely based on gross morphology of the neuropil but lacked 

cellular resolution. 

While comparisons of central complex lineages have been made before (Boyan et al., 2017; 

Boyan and Reichert, 2011), a direct comparison of homologous neural cells over developmental time 

has been missing.  

The wealth of knowledge on a) function, b) anatomy and c) the conserved cellular 

mechanisms behind the central complex and the lack of knowledge regarding cellular 

underpinnings of heterochrony offer the unique opportunity to investigate how modifications of 

common cellular mechanisms translate into heterochronic development. Such a comparative 

development needs to be based on the comparison of homologous cells. 
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3.1.2.6. A comparison of the development of insect brains using genetic 

neural lineages 

How do we compare the development of insect brains, particularly the central complex? 

Through the conserved clonal architecture of the insect brain, comparison on the level of 

homologous neural lineages would promise to yield the most meaningful results (Boyan et al., 

2017). Optimal requirements are a) marking development from neuroblast to adult structure (to 

monitor the complete developmental process) and b) marking of homologous cells (Koniszewski 

et al., 2016). 

Both requirements can be fulfilled by using genetic neural lineages, an approach suggested by 

Koniszewski et al. (2016) and used for the first time in this study. Here, marking is based on the 

expression of a highly conserved transcription factor. A set of such transcription factors is almost 

exclusively expressed in anterior regions in embryos of evolutionary distant animals among the 

whole bilaterian clade (Arendt, 2008; Arendt et al., 2004; Davis et al., 2003; Denes et al., 2007; 

Eggert et al., 1998; Janssen, 2017; Kitzmann et al., 2017; Lichtneckert and Reichert, 2008; Lowe 

et al., 2003; Mathers et al., 1997; Mazza et al., 2010; Posnien et al., 2011; Steinmetz et al., 2010; 

Tosches and Arendt, 2013; Urbach and Technau, 2008). Because of this high degree of 

conservation between such divergent animals, we assume that expression patterns between 

different species of insects are especially conserved. Lastly, these transcription factors give 

identity to neuroblasts and resulting neural cells (Urbach and Technau, 2003b). Moreover, early 

development of the embryonic brain is likely conserved (Reichert, 2009; Urbach and Technau, 

2003a). Taken together, marking all cells expressing such a conserved factor is likely to mark 

homologous cells from neuroblast to adult brain (Koniszewski et al., 2016). In order to mark 

such genetic neural lineages (i.e. cells marked by the same transcription factor), antibodies against 

transcriptions factors of choice need to be generated. To mark their projections, transgenic lines 

with a cytoplasmic fluorescent signal under control of a transcription factor need to be 

constructed (Koniszewski et al., 2016). The assumption is that by using genetic neural lineages 

we will mark homologous cells (Arendt, 2005; Reichert, 2009) from embryo to adult (Gold and 

Brand, 2014; Kraft et al., 2016; Kumar et al., 2009) such that development of these cells can be 

followed throughout large parts of development. 

How homology of brain structures can be tested has been subject of long-standing debates 

(Arendt, 2005; Katz, 2007; Strausfeld and Hirth, 2016, and articles in the same issue). This 

includes that shared expression of a conserved transcription factor might not necessarily imply 

homology, as independent cooption of the same gene regulatory network is possible (Katz, 2007; 

Nielsen and Martinez, 2003). Therefore, to corroborate basic homology through conserved gene 
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expression, morphological criteria should be included (Koniszewski et al., 2016). For neurons in 

the brain, further criteria are cell body location and projection pattern. While the location of single 

cell bodies might be variable to some degree, through the clonal architecture of the insect brain 

we assume that if we compare groups of cell bodies instead of single cells, a conserved picture 

can be identified (such as in Boyan et al., 2017). Projection pattern is the third criterion. The 

central complex is a highly conserved neuropil, and its function is determined by conserved 

projection patterns (Boyan et al., 2017, 2015; Heinze and Homberg, 2008). Hence, a substantial 

deviation from a conserved pattern seems unlikely. Taken together, these three criteria allow us 

to formulate robust hypotheses of likely homology.  

Neural lineages are challenging to mark from neuroblast to adult, even with a toolbox as large 

as in Drosophila. Hence, alternatives employed are mostly MARCM lineage marking or 

morphological identification using specific GAL4 lines (Larsen et al., 2009; Riebli et al., 2013). 

Although these tools yield exceptional results, they are not easily transferrable to other species. 

Alternatively, homology has been based previously on the expression of certain neuromodulators 

(Katz, 2007; Katz and Harris-Warrick, 1999). However, neuromodulators in insect brains are 

expressed late (Boyan and Liu, 2016; Herbert et al., 2010; Pfeiffer and Homberg, 2014) and their 

expression would not mark earlier developmental stages. 

Therefore, as previously suggested (Koniszewski et al., 2016), we will display data identifying 

genetic neural lineages in genetic and morphological homologous cell groups in the two species 

Tribolium and Drosophila. 

 

3.1.2.7. Using Tribolium and Drosophila as model systems for a comparison 

based on a common toolkit 

This strategy can be only achieved in particularly genetically amenable species. While 

Drosophila is the gold standard with reference to the plethora of tools available (Çelik and Wernet, 

2017; Hales et al., 2015), Tribolium castaneum, the red flour beetle, has been developed as an 

alternative genetic insect model species in recent years (Pai, 2019). A well-annotated genome 

Richards et al., 2008), systemic RNAi (Bucher et al., 2002), piggyBac transposition (Berghammer 

et al., 1999; Trauner et al., 2009), UAS-GAL4 system (Schinko et al., 2010), in-vivo imaging 

(Sarrazin et al., 2012; Strobl and Stelzer, 2014) and CRISPR (Gilles et al., 2015) are all established.  

Similar tools are therefore available in both species to mark the same genetic neural lineages. 
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3.1.2.8. Retinal homeobox as a marker of genetic neural lineages 

A set of conserved transcription factors has been previously identified (e.g. (Posnien et al., 

2011). Of those, the paired-like homeobox protein retinal homeobox (rx, Drosophila: CG10052; 

Tribolium: TC009911) is particularly useful to identify homologous lineages contributing to the 

central complex. It is expressed in the anterior median region in all bilaterian embryos investigated 

(Arendt, 2008; Arendt et al., 2004; Davis et al., 2003; Eggert et al., 1998; Janssen, 2017; Mathers 

et al., 1997; Mazza et al., 2010; Posnien et al., 2011). Moreover, loss-of-function phenotypes 

include a modification of the central complex in both Drosophila and Tribolium (Davis et al., 2003; 

Koniszewski, 2011), making it likely that rx is expressed in central complex contributing cells. 

Interestingly, lethality of loss-of-function animals corresponds to the heterochrony observed as 

Tribolium individuals die as L1 larvae, which already show a functional central complex neuropil 

while Drosophila specimens die as pharate adults where the central complex becomes functional 

for the first time. Therefore, rx is a suitable gene to mark genetic neural lineages by generating 

specific antibodies and transgenic lines.  

 

3.1.2.9. Homologous Rx genetic neural lineages mark the developing central 

complex and illustrate the complex nature of the heterochronic shift 

In this work we developed tools for comparative Rx labelling and used these to follow 

columnar neurons contributing to the central complex throughout development. Using this 

approach, we determined several heterochronic shifts in certain steps of central complex 

development. Unexpectedly, we also found a deviation from the order of conserved events. 

Against previous assumptions, we propose that the Tribolium larval central body is distinct to the 

adult form in its anatomical characteristics and the developmental events that cause its 

appearance. Hence, from our data we conclude that the larval central body is a precociously 

developed form, present before any larval growth period, but being functional already. Data 

provided will contribute to the question how conserved cellular mechanisms of central complex 

development are and offer a new approach of marking neural lineages to identify homologous 

neurons across species (Boyan and Reichert, 2011). Moreover, our investigations open up the 

larval central complex of Tribolium castaneum as a target of future scrutinized examination to 

further the understanding of central complex development and evolution.  



MANUSCRIPT 1  –  RESULTS  

- 25 - 

3.1.3. RESULTS  

3.1.3.1. Tools that mark Rx genetic neural lineages in two species 

In order to identify homologous genetic neural lineages, we first needed to mark Rx 

expressing cells and their projections in both Drosophila melanogaster and Tribolium castaneum. To 

that end, we developed and characterised suitable tools. First, we generated and validated an 

antibody for Tribolium Rx (Tc-Rx) (Supplementary Figure 3.1–1) and used a previously published 

antibody targeting Drosophila Rx (Dm-Rx) (Davis et al., 2003). Next, we identified an enhancer 

trap in the Tc-rx locus from the GEKU enhancer trap screen (Trauner et al., 2009) and confirmed 

coexpression of EGFP with Tc-Rx (Supplementary Figure 3.1–1). The enhancer trap marked 

only a 5-10 % subset of Tc-Rx-positive cells but all EGFP-positive cells – except the eye marker 

– were Tc-Rx positive as well (Supplementary Figure 3.1–2). As appropriate imaging lines were 

missing in Drosophila (see 3.1.5 Material and Methods), we generated an imaging line using 

CRISPR/Cas9 mediated homology-directed repair. We replaced the endogenous stop codon with 

a P2A peptide followed by an EGFP coding sequence. Hence, a bicistronic mRNA had been 

transcribed and subsequently translated into separate Dm-Rx and EGFP proteins 

(Supplementary Figure 3.1–3). These tools allowed us to identify Rx expressing cells and their 

projections in order to reveal a specific group of homologous lineages. 

 

3.1.3.2. Rx is expressed in conserved domains in adult brain and embryo 

We first wanted to identify conserved and potentially homologous domains of Rx expression 

in the brain of Drosophila and Tribolium in general, and particularly those associated with the central 

complex. For this, we performed antibody stainings against Rx in the adult brain (Figure 3.1–1A, 

B) and embryo (Figure 3.1–1C, D). Note that axes of the brain relative to body axes are not 

conserved in insects. Hence, our comparison between species was based on the neuraxis. 

Essentially, ‘Drosophila posterior’ becomes neuraxis-dorsal while ‘Drosophila anterior’ equals 

neuraxis-ventral (Figure 3.1–1, Supplementary Figure 3.1–4 for orientation of brains and 

definitions of neuraxes in both species). 

Antibody staining revealed a conserved pattern of Rx-positive neural cells in both species at 

both time points. We identified four Rx-positive domains at similar regions in both species’ adult 

brains (Figure 3.1–1A, B). In the n-ventral fraction of the brain (Figure 3.1–1 Ai and Bi), there 

was an n-anterior-lateral domain (I). Another domain was positioned n-anterior-medially to the 

antennal lobe (II). In the n-dorsal fraction (Figure 3.1–1 Aii and Bii), there was a domain lateral to 

the protocerebral bridge (III) and a fourth near the midline adjacent to the protocerebral bridge 
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(IV). The large degree of similarity of the location of Rx-positive neural cell groups suggested 

that these domains could be homologous between the species. 

In embryos of both species, Rx was expressed in the labrum (white arrowheads in Figure 3.1–

1 C, D) as well as the anterior-lateral part of the neuroectoderm and the prospective brain (white 

arrows in Figure 3.1–1 C, D). Note that while Tribolium embryos were prepared such that the 

prospective brain hemispheres lied flat, the Drosophila head remained in its original position. Brain 

lobes were folded and thus nearer to each other than in Tribolium (bend and zipper model, Posnien 

et al., 2010). Considering these morphological differences, the expression patterns were very 

similar. 

In summary, Rx antibody staining revealed domains of expression in the embryo and adult 

brain that were conserved between both species at both the start and endpoint of development. 

 

 

Figure 3.1–1: Rx expression is conserved in Drosophila and Tribolium adult brains (A, B) and embryos (C, 

D). A, B: Immunostainings against Rx and synapsin in both species revealed four large domains of Rx expression 

(I-IV, dotted white lines). These were characterized by their shape and position relative to the rest of the brain, 

revealed by synapsin-positive areas. Two domains were found on the n-ventral side (i) and two on the n-dorsal side 

(ii). For a more detailed description and tentative links of these transcription factor expression domains to known 

neural lineages, see Supplementary Figure 3.1–5 and Supplementary Table 3.1–1. C, D: In the Drosophila (S14) and 
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Tribolium embryo (NS11), two main conserved domains of Rx expression were detected. There was strong expression 

in the labrum (arrowhead), in the neuroectoderm and prospective larval brain (arrow). In addition, single cells were 

marked in the peripheral nervous system and ventral nerve cord (asterisk; for Tribolium see Supplementary Figure 

3.1–1). Abbreviations: AL antennal lobes, PB protocerebral bridge, CB central body, n neuraxis-referring, S stage 

(Campos-Ortega and Hartenstein, 1985), NS neurogenesis stage (Biffar and Stollewerk, 2014). Scale bars represent 

100 µm. 

 

3.1.3.3. Identification of Rx-positive neural cell clusters and a group of 

homologous lineages 

We then sought to identify homologous cell clusters contained in the four Rx domains. For 

this, we mapped cell body locations and projection patterns to previously described neural 

lineages of the Drosophila brain (Supplementary Figure 3.1–5, Supplementary Table 3.1–1; Lovick 

et al., 2013; Wong et al., 2013). Neural lineages constitute developmental and functional units of 

the brain (e.g. Omoto et al., 2017) and are suitable identifiers for further characterisation and 

identification of homology (Boyan et al., 2017). The assignment was based on location of Rx-

positive cell clusters– relative to each other and to synapsin-marked neuropils – and their 

projection patterns visualized by EGFP from our transgenic lines. Thus, three criteria were used 

to then identify cell clusters homologous between Drosophila and Tribolium: Rx expression, cell 

body location and projection pattern. 

We identified Rx-positive cell clusters in eleven previously characterised neural lineages 

(Lovick et al., 2013; Wong et al., 2013; Supplementary Figure 3.1–5, Supplementary Table 3.1–

1). All of them were present in both species’ brains, hence no species-unique lineages were 

identifiable. Of these eleven lineages, four in Drosophila and seven in Tribolium were only partially 

or not at all marked by pronounced projections (Supplementary Table 3.1–1). The identification 

of these seven in Tribolium was based mainly on knowledge of Drosophila neuronal lineages and is 

therefore tentative (see 3.1.9.3 Supplementary Results for details on assignments). 

We thus propose that Rx expression can be linked to eleven neural lineages in the adult 

Drosophila brain and tentatively also to the Tribolium brain. Lineages had similar cell body positions, 

and – where visible – projection patterns. The lineages DM1-4 (Supplementary Figure 3.1–5, 

Supplementary Table 3.1–1) were particularly well marked in both species with prominent 

projections into all neuropils of the central complex. Hence, they were subjected to a detailed 

analysis of cell body location and patterns of projections, to in turn corroborate their homology 

between Drosophila and Tribolium. 
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3.1.3.4. Rx transgenic lines mark homologous groups of columnar neurons 

belonging to lineages DM1-4 

To test the provisional homology of Rx-positive DM1-4 cell clusters established before and 

to offer a basis for a subsequent comparison throughout development, we made detailed scans 

and 3D reconstructions. With these, we were able to confirm a similar cell body location (Figure 

3.1–2 A, B, Gi, Hi, see 3.1.9.3 Supplementary Results for a detailed description of their sub-

groups) and similar projection pattern (Figure 3.1–2 C-F, Gii, Hii) of Rx-positive cell clusters 

belonging to the DM1-4 lineages. In both species Rx-positive DM1-4 cell clusters projected from 

stereotypical cell body positions around the protocerebral bridge into distinct fibre bundles and 

into the central body and noduli. In detail (see Figure 3.1–2 A, B, G, H), DM4 cell bodies lay 

around the lateral tip of the protocerebral bridge and their axons projected n-ventrally through 

the medial equatorial fascicle (MEF) (Note that partially overlapping with the DM4 cell group 

were cell clusters belonging to lineages DM5/6, with only faintly visible projections, however; 

Supplementary Figure 3.1–5, Supplementary Table 3.1–1; 3.1.9.3 Supplementary Results). Cell 

bodies of DM2/3 were near each other at the more n-antero-lateral point of the protocerebral 

bridge. Their axons both projected in distinct tracts through the dorsal root of the CBU (dlrCBU, 

also dlrFB; Riebli et al., 2013). Cell bodies of the DM1 lineage lay next to the midline and 

particularly in Drosophila more n-antero-laterally to the protocerebral bridge. They projected 

through the medial root of the CBU (mrCBU, also mrFB, Riebli et al., 2013). Note that the fibre 

bundles MEF, dlrCBU and mrCBU have not been annotated previously in the Tribolium brain. 

We based our annotations on the characterisation of DM1-4 lineage group projections, as well as 

the typical anatomical position of fibre bundles (see Dreyer et al., 2010 for previously annotated 

regions and neuropils in the Tribolium brain). In both species, fascicles of these cell clusters 

projected into the CBU sequentially from n-dorsal to n-ventral (first DM1, then DM2, DM3 and 

most n-ventrally, DM4; see Figure 3.1–2 Gii and Hii) and made up the posterior plexus of the 

CBU (CBUppl, FBppl in Andrade et al., 2019). 

The DM1-4 lineage group make up the columnar neurons of the central complex almost 

exclusively (Andrade et al., 2019; Boyan and Williams, 2011) and have been homologized 

previously between Schistocerca gregaria and Drosophila melanogaster (Boyan et al., 2017). Indeed, all 

cell clusters connected the protocerebral bridge, where each cell cluster had parts of their 

dendrites, to the other parts of the central complex, in particular the CBU and noduli (Figure 

3.1–2 C, D) and to lesser extent the CBL (Figure 3.1–2 E, F). Note that the Drosophila bicistronic 

line marked all Rx-positive cell bodies resulting in thicker tracts, while the Tribolium enhancer trap  
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Figure 3.1–2: Homologous Rx cell clusters contribute to the central complex columnar neurons of lineages 

DM1-4. A to F depict parts of stacks on which the 3D reconstructions in G and H are based. Homology of cell 

clusters (and simultaneous identification of the respective lineages) was established using three criteria. First, cells 

needed to express Rx so that clusters qualified as genetic neural lineages. All cells depicted and reconstructed 
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expressed Rx. Second, these cell groups shared distinct cell body locations and third, they needed to share similar 

projection patterns. A, B: The stereotypical positioning of cell groups of lineages DM1-4 around the protocerebral 

bridge (marked by yellow dotted line in Ai and Bi) are shown for Drosophila (A) and Tribolium (B). C, D: The resulting 

pattern of GFP expressing neurites of these cell groups is depicted for the CBU and NO fraction. E, F: Much less 

signal was found in the CBL fraction. Note that the Tribolium DM4 group had a very high GFP expression level, so 

that those projections were particularly visible in the CBL (see Supplementary Figure 3.1–2 for transgenic line 

information). Respective central complex neuropils are outlined with yellow dotted lines and identified by yellow 

descriptors. G, H: 3D reconstructions of a synapsin background stain in grey-transparent and of those homologous 

cell clusters where we could clearly identify connections between neurites and cell bodies. G depicts an n-dorsal view 

as this is the same plane as shown in A-F, and H depicts an n-posterior view, and thus the similarity in projection 

into the central complex. In both species each cell cluster belonging to a certain lineage had a stereotypical position. 

DM1 (green) projected from a medial position at the protocerebral bridge through the mrCBU; DM2/3 (blue shades) 

shared a fibre tract coming from the n-antero-lateral tip of the protocerebral bridge through the dlrCBU. DM4 

(orange) projected from the n-postero-lateral tip of the protocerebral bridge through the MEF into the central 

complex. Due to the large number of marked cells, the projections could not be followed further. GFP channels (i) 

are maximum intensity projections, while synapsin channels (ii) are SMEs (Shihavuddin et al., 2017). Abbreviations: 

DM dorso-medial lineage, CBU upper division of the central body, dlrCBU dorsal root of the CBU (in other 

publications, dlrFB, see Andrade et al., 2019), mrCBU medial root of the CBU (in other publications, mrFB, see 

Andrade et al., 2019), MEF medial equatorial fascicle, NO noduli, CBL lower division of the central body. Scale bars 

represent 25 µm and apply to all panels of each species. 

 

marked only a subset of the Rx expressing DM1-4 cells. The projections were, thus, fewer and 

marked tracts thinner. During development, though, the number of Rx/GFP-positive DM1-4 

cell clusters increased in Tribolium (see Figure 3.1–5 and 7 in particular), resulting in thicker 

projections. Notably, the Tribolium DM4 Rx expressing group showed a very high GFP 

expression, so that the projections into the CBU, noduli and CBL as well as the connections to 

the LAL (lateral accessory lobes) appeared much stronger than in Drosophila (Figure 3.1–2 

B/D/Fi). Rather than reflecting a different projection pattern, it was likely a particularity of the 

Tribolium enhancer trap. Note also that single tracts could hardly be assigned when inside the 

neuropils. 

Classification of Rx expressing cell clusters in the Drosophila brain was aided additionally by 

performing Rx immunostainings in the R45F08-GAL4 line (Supplementary Figure 3.1–6), a 

pointed GAL4 enhancer construct that marks secondary neurons of the DM1-3 and 6 lineages 

(Riebli et al., 2013). This analysis revealed that approximately 90 % of R45F08-GAL4 marked 

cells also express Rx. Further, we crossed the Rx-GFP bicistronic line to the R45F08-GAL4 line 

to score overlap in projections. Indeed, R45F08 projections seemed to be a subset of Rx-GFP 

projections. 

In summary, 3D reconstructions revealed that transgenic lines of both species mark Rx 

expressing cell clusters that share a similar cell body location and show similar stereotypical 

projection patterns. They connect the different neuropils of the central complex with each other 
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and are thus classified as columnar neurons and hence part of the DM1-4 lineage group. We 

conclude that these Rx expressing cell clusters are homologous between both species and 

therefore suitable to compare heterochronic central complex development. 

 

3.1.3.5. Comparison of developmental time between Drosophila and 

Tribolium 

For the cross-species comparison of central complex development, we examined how long 

Drosophila and Tribolium occupied the phases of embryogenesis, larval stage and metamorphosis. 

Drosophila completes its development at 25°C in nine days (24 hours in embryogenesis, 75 hours 

in larval and 100 hours in pupal development, in our transgenic line) while Tribolium takes 

approximately 27 days at 32°C (72 hours in embryogenesis, 432 hours/18 days as larva and 

approximately 140 hours/six days in pupation, in our transgenic line), hence three times as long 

as Drosophila. The relative portion each animal stays in larval development and pupation are 

divergent as well. While larval development in Tribolium takes 65 % of total developmental time, 

for Drosophila it takes 40 %. As a result, Tribolium pupation is shorter, spanning approximately 

21 % of development time while Drosophila pupation occupies 50 %. 

 

3.1.3.6. DM1-4 lineages produce divergent central complex structures in the 

freshly hatched L1 larva of Drosophila and Tribolium 

We revealed that Rx-positive cell clusters belonging to DM1-4 lineages build up a very similar 

projection of the adult central complex, with similar cell body location and typical projection. We 

then asked how this conserved picture was reflected in the larval hatchling and how it related to 

the central complex heterochrony, i.e. the early appearance of a central body in Tribolium and the 

absence of functional central complex neuropils in Drosophila larvae (Andrade et al., 2019; 

Koniszewski et al., 2016). For this, we examined the DM1-4 group and their projections in the 

first instar larval brain. 

For this we dissected L1 larvae, less than one hour old, and stained brains in similar fashion 

as adult brains (see 3.1.5 Material and Methods). The position of brains and scans differed 

between species (Figure 3.1–3 A-D), and thus also the position of DM1-4 cell clusters (Figure 

3.1–3 E/Fi). The Drosophila brain was scanned from dorsal and respective n-anterior surface to 

ventral/n-posterior, while Tribolium was scanned from n-dorsal to n-ventral. In Drosophila L1 

larvae, spatial arrangement of cell bodies and projections of the DM1-4 group differed from the 

adult (Figure 3.1–3 Ei) and no functional neuropil was present (Figure 3.1–3 Eii), which could  
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Figure 3.1–3: Rx cell clusters of the DM1-4 lineages in L1 brains of Drosophila and Tribolium show a 

different pattern of projection and innervate a differently developed central complex. A, C: The Drosophila 

(A, B, E, G, I, K) and Tribolium (C, D, F, H, J, L) L1 brain is positioned differently in the respective head, as displayed 

by a sketch of a lateral view. Indicated are body and neuraxes, with additional indication of the larval MB (magenta), 
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AL (blue), CB and PB (green) and the neuraxis position (yellow arrow). A thick orange arrow indicates the direction 

of the performed scan starting from n-anterior in Drosophila and n-dorsal in Tribolium displayed in panels E,G,I,Ki 

and F,H,J,Li, respectively. A thick green arrow indicates the orientation in I/Jii which is displayed such that in both 

cases the central complex structure is in front. B, D: The resulting scan orientation is depicted with a rough sketch 

of the outlines of the respective L1 brains. E-L: Analysis of Rx cell clusters of the DM1-4 lineage group and 

underlying structures revealed species differences in cell cluster position and projection as well as neuropil 

architecture. In Tribolium, arrangement and projection were similar to the adult, while in Drosophila it differed strongly. 

Synapsin staining revealed absence of any central complex neuropils in Drosophila and presence of larval central body 

and protocerebal bridge in Tribolium, while acetylated α-Tubulin staining revealed a stack of parallel fibers in Drosophila 

and an already decussated structure in Tribolium. E-H: Projections (SME, Shihavuddin et al., 2017) of a L1 brain 

stained against GFP (i) and synapsin (ii) were depicted to show position of cells and tracts belonging to the 

homologized DM1-4 lineages (E, F) as well as their projection into the prospective central body (G, H). In Fi/ii, 

dotted lines indicate synapsin-positive central complex neuropils in Tribolium (dotted lines in Fi indicates interpreted 

projection) and in Gi/ii approximate position of the primordium in Drosophila. In addition, in Ei the approximate 

position of other lineage groups of the Drosophila brain are shown, i.e. dorso-antero-lateral (DAL), dorso-posterior 

(DP) and centro-medial (CM) lineages (yellow). I, J: Anti-acetylated-α-Tubulin immunostaining (N=2 for Drosophila 

stainings) revealed globally a differing architecture of the central body region in both species, mirroring the data 

revealed by anti-GFP and anti-synapsin stainings. While the Drosophila midline-spanning fibers build up a thick stack 

of fascicles, containing the future central body, in Tribolium the functional central body contains already decussated 

fibers (note, however, the differing degrees of such pattern in comparison to decussated fibers during 

metamorphosis, Fig. 8). K, L: Cells indicated in E and F and their projections were 3D-reconstructed to depict the 

spatial relationship between the lineages and highlight the differences between the species. Since the brains were 

scanned from different positions, the resulting positioning of the 3D reconstructed surface was different. Upper 

panels (i) are the same orientation as in the projections in E-H, while the lower panels (ii) are oriented such that the 

prCBU and lvCBU are in front (see green arrow in A and C). Synapsin-positive neuropils are depicted in grey 

transparent in L. Abbreviations: n neuraxis-referring, D dorsal, A anterior, V ventral, P posterior, MB mushroom 

bodies, prCBU primordium of the CBU (in other publications prFB, Andrade et al., 2019), CBU upper division of 

the central body, PB protocerebral bridge, AL antennal lobes, DM dorso-medial lineage group, lv larval. Scale bars 

represent 25 µm. 

 

have aided the localization of respective cell clusters. Further, many other lineages were marked 

as well, such as the dorso-antero-lateral (DAL), dorsoposterior (DP) and centromedial (CM) 

lineages (Figure 3.1–3Ei). This made the assignment of cell clusters to DM1-4 lineages more 

difficult. We therefore used recent lineage classifications based on EM data as guide (Andrade et 

al., 2019), with emphasis on their anatomical position to each other and how they are situated in 

the brain (Figure 3.1–3E/Ki) and were thus able to identify cell clusters belonging to the DM1-4 

lineage group. In specific, lineages DM2 and 3 lay more dorsal than DM1 and 4, with DM1 being 

anterior and DM4 most posterior (Figure 3.1–3E/K, in accordance with Andrade et al., 2019). 

Note that DM1 cells lay n-ventral/anterior (up in panels E and G) to the midline projections, 

while DM2-4 cells lay n-dorsal/posterior (below). DM2 and 3 were situated more medially while 

DM4 lay slightly more lateral with the other lineages belonging to the CM cluster. 

In Tribolium, we observed an arrangement of cell clusters similar to the adult, close to a larval 

protocerebral bridge (Figure 3.1–3F). We could therefore assign cell clusters to the DM1-4 
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lineages. Specifically, DM4 was the most lateral and most n-dorsal, DM2/3 were n-ventro-medial 

to the DM4 group, and most n-ventro medial lay DM1 (Figure 3.1–3F/Ki). 

The projections these cell groups produced were very different in the two species (Figure 3.1–

3 G/H). In Tribolium, the columnar neurons crossed through a functional, albeit unfused, larval 

protocerebral bridge (lvPB, see Figure 3.1–3 F) and formed a common projection across the 

midline that consisted of fascicles n-dorsally, and slightly more n-ventrally formed a synapsin 

expressing functional neuropil, the larval central body (lvCB, see Figure 3.1–3 H). Note that we 

were not able to detect any synapsin-negative fibre bundles that would be reminiscent of the 

mrCBU, dlrCBU and MEF through which the DM1-4 lineages project in the adult. In contrast 

to Tribolium, DM1-4 groups in Drosophila formed a common projection that crossed the midline 

forming later the primordium of the CBU (prCBU, or prFB, see Andrade et al., 2019, Figure 3.1–

3 G), constituting a bundle of fascicles. This structure was not functional judged by the absence 

of any presynaptic sites (see absence of synapsin staining in Figure 3.1–3 E/Gii). Likewise, we did 

not detect a synapsin-positive structure, which could represent a larval PB (synapsin marked lvPB 

and lvCB are marked in grey in Figure 3.1–3 L; due to their absence in Drosophila there was no 

grey neuropil marked). Moreover, a staining against the global axonal marker acetylated α-Tubulin 

revealed that all midline-spanning structures in Drosophila resemble a stack of parallel fibres, 

confirming what we detected with an anti-GFP staining (Figure 3.1–3 I). The same staining in 

Tribolium revealed a pattern of crossing, decussated fibres in the larval central body, corroborating 

the necessity of decussation for a functional neuropil ((Figure 3.1–3 J). Importantly, these 

decussations were not detectable in the anti-GFP staining, in contrast to pupal decussation 

patterns (Figure 3.1–8), highlighting that larval decussation possibly resembles a lower degree of 

crossing. 

A comparative analysis of Rx-positive cell clusters belonging to the DM1-4 lineage thus 

revealed that these cells make up a previously described primordium for the CBU in Drosophila, 

but in Tribolium make up a functional larval central body with small decussations, and project 

through a functional larval protocerebral bridge. Hence, while adult structures of the central 

complex are highly similar, structures in the L1 brain are different. 

 

3.1.3.7. Comparative late embryonic development reveals a delay in 

Tribolium to build up midline-crossing structures 

We next asked when the differences in the larval central complex emerge during embryonic 

development in Rx-positive DM1-4 cell clusters. 
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For this, we defined three main events as most relevant for subsequent central complex 

development, i.e. a first axon projection emerging from marked cell groups, first midline-crossing 

projection and first emergence of a projection that is comparable to the larval projection pattern. 

We then screened embryos for the first occurrence of said events in Rx/GFP double-positive 

cells. Note that a staging of late embryonic development after 48 hours (Biffar and Stollewerk, 

2014) is missing so far in Tribolium, so that we speak of ‘at least’ NS15 in Fii and use the relative 

developmental time of 81 % preferentially. In both species we saw first axons forming at similar 

points in relative embryonic development (Figure 3.1–4 A, B, Drosophila 37 %, Tribolium 39 %). 

The appearance of a first midline-crossing projection appeared earlier in Drosophila than in 

Tribolium (Figure 3.1–4 C, D, Drosophila 43 %, Tribolium 58 %). Also, a first larval-like projection, 

based on which Rx/GFP-positive cell clusters could again be assigned to DM1-4 lineages, 

appeared earlier in Drosophila (Figure 3.1–4 E/F, Drosophila 51 %, Tribolium 81 %). Assigning Rx-

positive cell clusters to the DM1-4 lineage group before late embryonic stages such as 51 % (S15) 

was not unambiguously possible in neither species. We tentatively indicated the location of DM1 

in Figure 3.1–4C. Also, we indicated the location of a medial cell, which could belong to the DM1 

group in Figure 3.1–4Bi and Di. 

We conclude that while both species start with axonal projections at a similar relative point 

in time, they diverge from each other at crucial events of central body development. Specifically, 

midline-crossing events and further development to a larval-like structure are delayed in Tribolium 

embryonic development compared to Drosophila. 
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Figure 3.1–4: Comparison of late embryonic development of Rx cell clusters that contribute to midline-

crossing groups reveals a partial delay of projection development in Tribolium embryos. A, B: Development 

of first axons happened at similar time frames in Drosophila and Tribolium. C-D: First midline-crossing fibers appeared 

earlier in Drosophila than in Tribolium. E-F: A development of a larva-like projection was delayed in Tribolium. Where 

possible, we assigned cell clusters to DM1-4 lineages (colour-coded as previously). Shown are projections (SME in 

Dii, Ei) of stainings against GFP (i) and acetylated α-Tubulin (ii). Stages and the percentage of embryogenesis 

completed are shown in the upper right corner of acetylated α-Tubulin (ii) panels. Stages in Drosophila correspond to 

Campos-Ortega and Hartenstein (1985) and in Tribolium to Biffar and Stollewerk (2014). Yellow arrowheads indicate 

first axons in A and B, verified by acetylated α-Tubulin staining, and show midline-crossing tracts that belong to Rx 

expressing cell groups in C and D. Asterisks in Bi and Di likely indicate the same group of cells present at both stages. 

In Ci the likely position of lineages DM1 (green) and DM2-4 (blue oval form) are indicated. In E and F, identified 

Rx cell clusters belonging to DM1-4 lineages are indicated (green, light blue, dark blue and orange) as well as the 

formed tracts into the embryonic anlagen of the central body (yellow dashed line). Posterior is up, except for in panel 

F. Scale bars represent 25 µm and apply to panels i and ii. 

 

3.1.3.8. During the larval period, central complex structures grow but do not 

change basic morphology 

We asked next how the structures of the central complex built during embryogenesis (Figures 

3 and 4) change during the larval period. 

We examined the position of cell clusters and their projections at 50 % (Figure 3.1–5 A-D) 

and at the end of the larval period (Figure 3.1–5 E-H). In both species, we observed growth of 

central complex structures. In Drosophila, the primordium of the CBU increased in thickness, 

particularly from 50 % to the end of larval development (compare Figure 3.1–5Ci to Gi). The 

prCBU remained devoid of synapsin-positive staining (Figure 3.1–5 Cii, Gii). The position of cell 

body groups changed, however. From L1 (Figure 3.1–3 Ei) into 50 % of larval development 

(Figure 3.1–5 Ai), cell groups belonging to the DM2 and 3 lineages got shifted n-ventrally, taking  
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Figure 3.1–5: Comparison of development of DM1-4 Rx cell clusters shows substantial growth of the prCBU 

and larval central complex neuropils, alongside an increase of DM1-4 offspring. During larval stages the 

identified cell clusters and their projections retained their position, but proliferated so that larger cell clusters and 

thicker and larger projections were built. Depicted are projections (SMEs in A, B ii, C, D, Fii, Hii, Shihavuddin et al., 

2017) of immunostainings against GFP (i) and synapsin (ii) at mid-larval stages (A-D, 50 % of larval developmental 

time) as well as late larval stages before pupation (E-H). Tribolium mid-larval stage is represented by N = 2 

individuals. Approximate position of cells and their tracts belonging to each lineage of the DM1-4 cluster are marked 

in respective colors (DM1 green, DM2 light blue, DM3 dark blue, DM4 orange). In addition, neuropils of the 

Tribolium larval central complex are contoured by yellow dotted lines (B, D, F, H). The primordial CBU (prCBU, 

previously prFB, see e.g. Andrade et al., 2019) of the Drosophila larval brain is contoured at the late larval stage (E, 

G), and its position is marked by a yellow arrow at 50 % larval development (A, C). Bars in C, D, G and H indicate 

the size increase of midline structures. In Drosophila, the prCBU increased in width from 2.5 to 17µm from 50 to 95 

% of larval development. In L1, the prCBU is non-distinguishable from other midline-crossing structures using the 

Rx-GFP line. The Tribolium central body of the L1 brain displayed in Figure 3.1–3 was 51.6 µm long, the mid-larval 

lvCB was 58.7 µm and the late larval lvCB was 100.9 µm long. For Drosophila n-ventral and for Tribolium n-anterior 

is up (see Figure 3.1–3 for details). Abbreviations: prCBU primordium of the upper division of the central body, 

lvPB larval protocerebral bridge, lvCB larval central body. Scale bars represent 25 µm and apply to panels i and ii 

and in case of Tribolium to D and H respectively. 
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a position in between DM1 and DM4. DM2 shifted the most, so that it was situated lateral to 

DM1 at 50 %. The positions changed again from 50 % to the end of larval development (~ 95 %) 

(Figure 3.1–5 Ei) where cell clusters became arranged in one line along the neuraxis, DM1 most 

n-ventral, DM4 most n-dorsal.  

In Tribolium, the projection grew in length and thickness (Figure 3.1–5 Di, and 5 Hi) as did 

synapsin-positive central complex neuropils (Figure 3.1–3 F/Hii, 5 B/Dii, and 5 F/Hii). In 

addition, the position and shape of the protocerebral bridge changed. Specifically, while in L1 

and 50 % larval brains the protocerebral bridge was more oriented along the n-anterior/posterior 

axis, in late larval brains, it was shifted more into a perpendicular position. In addition, a lateral 

bend formed (arrowhead in Figure 3.1–5 Fii). The modification of shape during the larval period 

corresponded with changes observed in the DM1-4 cell clusters. From L1 to 50 %, the positions 

remained highly similar (Figure 3.1–3 Fi, 5 Bi, and 5 Hi). From 50 % to the end of the larval 

period, DM4 got positioned at the lateral bend of the protocerebral bridge most laterally while 

DM1 became located most medially. In both species’ larval brains, we qualitatively observed an 

increase in number of cells contributing to central complex projections (e.g. compare right 

hemispheres in Figure 3.1–5 Ai to Ei and Bi to Fi). 

We conclude that the larval period of central complex development is mainly characterised 

by an increase in cell number and growth of the innervated central complex structures. Apart 

from a minor shift of cell bodies, the established structure of the L1 brain is mostly maintained 

during the larval period. Importantly, the Drosophila central complex precursor structures remain 

synapsin-negative while in Tribolium both the lvCB and lvPB are synapsin-positive. 

 

3.1.3.9. The Drosophila central complex acquires functionality at later stages 

of pupal development compared to Tribolium 

Last, we examined Rx expressing DM1-4 cell clusters at different pupal stages to reveal how 

the underlying neuropils develop (Figure 3.1–6) and how the projections observed in the adult 

(Figure 3.1–2) are established during metamorphosis (Figure 3.1–7 and 8). 

To that end, we first determined the duration of pupation in the used Rx-specific transgenic 

lines. Pupation in the Tribolium Rx-GFP line took approximately 140 h, while pupation in the 

Drosophila Rx-GFP line took approximately 100 h. A developmental progress of 5 % equals 7 h 

in Tribolium, and 5 h in Drosophila. We dissected brains of equal relative developmental times (e.g. 

15 % equalled 15 h in Drosophila and 21 h in Tribolium). Specifically, we included 0 (prepupal 

stage), 5, 15, 20, 30 and 50 % (see 3.1.5 Material and Methods for details on staging).  
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To observe when central complex neuropils acquire their functionality, we performed anti-

synapsin stainings (co-stained with Rx/GFP, see Figure 3.1–7 and 8).  

In Drosophila, the protocerebral bridge appeared first at 5 % of pupal development, as thin paired 

protrusions with a wide gap between them (Figure 3.1–6Ci), developed further in thickness and 

grew medially until it fused between 30 and 50 % of the pupation process (Figure 3.1–6 I/Ki). A 

division into slices became most visible at 50 % (Figure 3.1–6 Ki). The upper division of the 

central body in Drosophila appeared first at 5 % of pupal development as a slightly bent bar with 

only low concentration of pre-synaptic sites (Figure 3.1–6 Cii). Strength of synapsin staining 

increased considerably at the 15 % stage, coinciding with the emergence of layers and slices (or 

columns, (Ito et al., 2014), visible as horizontally and vertically oriented heterogeneous structures 

inside the CBU (arrows and bars, respectively, Figure 3.1–6 Eii). This coincided with projections 

forming a columnar division (Figure 3.1–7 Cii). Thickness increased from 30 % onwards resulting 

in the appearance of a fan-like structure typical for the Drosophila CBU (Figure 3.1–6 G/I/Kii). 

The Drosophila CBL occurred first n-ventral to the CBU as a bent bar at 15 % pupation, coinciding 

with the appearance of noduli (Figure 3.1–6 Eiii). The CBL then continuously bent further until 

it formed a toroid form that is nearly closed at 50 % pupation (Figure 3.1–6 Kii). At 30 and 50 % 

pupation the structure thickened as well. Noduli appeared as one small paired subunit at 15 % of 

pupation (Figure 3.1–6 Eii), and only at 50 % an additional discernible subunit was added (Figure 

3.1–6 Kii. Note that adult noduli are comprised of three to six subunits (Wolff and Rubin, 2018), 

i.e. there is additional development after 50 % of pupation. 

In Tribolium, the larval protocerebral bridge developed further by reducing the gap at the 

midline from late larval stages (Figure 3.1–6 B/D/Fi) and fusing between 5 and 20 % (Figure 

3.1–6 D/F/Hi; note that we observed considerable heterogeneity in our dataset with respect to 

protocerebral bridge fusion). A division into slices indicating a columnar innervation by DM1-4 

cell clusters was only faintly visible at any stage, including the adult (see Figure 3.1–2), in form of 

indentations in the bar-like structure as well as different staining strengths (exemplary indication 
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Figure 3.1–6: Pupal development of central complex neuropils of Drosophila (A, C, E, G, I, K) is delayed 

approximately 10 % in comparison to Tribolium (B, D, F, H, J, L). Displayed are substack projections of an anti-

synapsin staining of the same brain used for tracing Rx-positive cell clusters (see Figures 3.1–7, 8) to highlight the 

development of the PB, CBU, CBL and NO. Neuropils are contoured by yellow dotted lines. Following events in 

the Drosophila pupal brain are particularly highlighted by yellow arrowheads: Appearance of a functional PB (C i), 

CBU (Cii), NO (Eii/iii) and CBL (Eiii), as well as the last stage of an unfused PB (Ii). Following events in the Tribolium 

pupal brain are particularly highlighted by yellow arrowheads: The last stage of an unfused PB (B i, Fi, note the 

variability in the timing of fusion), appearance of NO (Bii) and CBL (Biii). A division into distinct layers in the CBU 

are marked by horizontal bars. A division into slices in the PB and CBU is marked by asterisks. Abbreviations: CBU 

upper division of the central body, CBL lower division of the central body, PB protocerebral bridge, NO noduli. 

Scale bars represent 25 µm. 

 

in Figure 3.1–6 Ji; differing degrees of columnar divisions of the central complex of insects has 

also been noticed by Strausfeld, 2012). The larval central body of Tribolium divided into an upper 

and lower division at the beginning of pupation (Figure 3.1–6 Bii/iii). The CBU then increased in 
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size, and a distinct layering into at least two layers began at 5 % where the bar-like structure from 

the larval CB was modified (Figure 3.1–6 Dii), so that it got widened in the n-anterior/posterior 

axis. In addition, division into slices was visible from 20 % onwards (asterisks in Figure 3.1–6 

Hii). Note that through slight deviations in positioning of the pupal brains, the CBU appears 

thicker in some stages than in others (compare 20 % with 30 % in Figure 3.1–6 H to J). This 

difference is, however, related to the angle of imaging, not a morphological feature. The CBL 

appeared right at the beginning of pupation, as a gap between the mushroom body medial lobes 

and the prospective CBU, with weak synapsin signal intensity (Figure 3.1–6 Biii). Increase in 

strength of synapsin staining was most notable from 15 to 20 % of pupation (Figure 3.1–6 F/Hiii). 

The form remained bar-shaped and was positioned n-postero-ventrally to the CBU. Noduli 

appeared as longitudinal segments at the prepupal stage, n-posterior to the CBU and more n-

dorsally than the CBL (Figure 3.1–6 Bii). They thickened considerably in the n-anterior/posterior 

axis at 20 % pupation (Figure 3.1–6 Hii). They built up into two subunits distinguishable by 

synapsin staining between 30 and 50 % (Figure 3.1–6 J/Lii) and developed further until eclosion 

into likely three subunits (data not shown). 

We conclude that there is a delay in the appearance of the protocerebral bridge, central body 

and noduli in the Drosophila pupal brain in comparison to Tribolium. There seems to be a more 

complex pattern in the appearance of slices and layers in the CBU which together appear in 

Drosophila at 15 % while layers appear in Tribolium first, at 5 %, and slices most visibly at 20 %. 

Most notably, the Tribolium larval central body undergoes substantial remodelling into upper and 

lower division and the CBU develops further into a structure with different layers. This structure 

is therefore distinct from the larval central body neuropil (Figures 3.1–3 and 3.1–5). 

 

3.1.3.10. Rx expressing DM1-4 cell clusters project into and build the central 

complex during metamorphosis similarly in both species 

We next examined the pupal development of Rx DM1-4 cell clusters and their projections 

contributing to the central complex. Figures 3.1–7 and 3.1–8 display the same brains displayed in 

Figure 3.1–6. In Drosophila pupal brains, we observed a shift in cell cluster position along with the 

changes in brain shape. Specifically, the larval brain with paired spheres nearly touching each 

other is modified to the adult-like structure where the central complex lies between the two 

hemispheres. As a result, the larval array of DM1-4 cell clusters on a line along the n-

anterior/posterior axis changed, recreating the shape of the protocerebral bridge (Figure 3.1–7 

A-Fi). DM1-3 moved to n-anterior on a curved line, oriented horizontally and DM4 n-posterior 

to DM2 and 3. The corresponding tracts underwent massive rearrangement. Most notably, 
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crossings were created by fascicle switching of the DM1-3 tracts (Boyan et al., 2017). This 

occurred first laterally at 5 % of pupal development (Figure 3.1–7Bii) coinciding with the 

occurrence of the CBU but became most notable at 15 % (Figure 3.1–7Cii). This resulted in a 

columnar organisation of the tracts themselves at 20 % (Figure 3.1–7Dii) and in the projection 

into the CBU at 15 and 20 % (Figure 3.1–7C/Diii). DM2-4 contributed most likely to the noduli 

(most notably visible at 20 and 30 %, Figure 3.1–7 D/Eii). Following single tracts, however, was 

not possible because several tracts project close to each other. Rx-marked projections into the 

central body and noduli reflected the overall neuropil shape (Figure 3.1–6). One exception is that 

we saw a lot of Rx-positive tracts at the prospective noduli, which were not yet synapsin-positive 

(see Figure 3.1–7 Biii). Also, we were not able to see a pronounced projection into the CBL, 

already present at 15 % pupation (Figure 3.1–6 Eiii). Although later on, there was a visible 

projection into the CBL, it seemed to be relatively low in intensity, when compared to the 

projections and the neuropil at 50 % (Figure 3.1–6 Kiii, Figure 3.1–7 Fiv). 

In Tribolium pupal brains, the cell bodies of the Rx expressing DM1-4 clusters remained in 

similar spatial arrangement contrasting the finding in Drosophila (Figure 3.1–8 A-Fi; note, however, 

slight deviations in positioning of the brain during imaging, at 30 %). Most notably from 0-15 %, 

DM1-3 cells formed tracts, which partially underwent fascicle switching, from the n-anterior 

region of the central body to n-posterior half of the prospective CBU, to the most n-posterior 

fraction, the prospective CBL, and n-dorsally, where fibres likely projected into the LAL and into 

regions in the superior protocerebrum (Figure 3.1–8 A-Cii). The resulting division into slices was 

most visible at 15 % in the CBU (Figure 3.1–8 Ciii) and 30 % in the CBL by dense points of 

staining (Figure 3.1–8 Eiv). Projections into the CBU and CBL were most prominent throughout, 

while projections into the noduli were of lower intensity (see Figure D-Fiii). Note that, similar to 

the adult (Figure 3.1–2), there was a very strongly marked projection likely coming from the DM4 

group in the central body that was connected to the lateral accessory lobes (e.g. Figure 3.1–8Fiv). 

We conclude that during metamorphosis, the projections belonging to DM1-4 Rx cell clusters 

recapitulate the development of the neuropils and their heterochronic differences (Figure 3.1–6). 

While development differs in detail, most steps occur in the same sequence of events in both 

species. Fascicle switching and building of decussated fibres is visible in both species, though 

delayed in Drosophila, alongside the resulting organisation in distinct slices. Importantly, while 

low-degree fascicle switching has already occurred during Tribolium embryogenesis, not detectable 

in Rx expressing cells (Figure 3.1–3), in the pupa it was prominently visible in Rx cells, indicating 

that there might be two differing degrees of fascicle switching per developmental period. 

Moreover,  Drosophila DM1-4 projections into the CBL were visible after the neuropil was 
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distinguishable in synapsin stainings. The reverse happened in the noduli, where projections 

appeared before the neuropil. 

 

 

Figure 3.1–7: Pupal development of Drosophila Rx DM1-4 cell clusters illustrates fascicle switching events 

with resulting columnar fibre organisation and development of central complex neuropils. Displayed are 
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sub-projections of an anti-GFP staining of the same brain per time point (A 0 % pupa, B 5 % pupa, C 15 % pupa, 

D 20 % pupa, E 30 % pupa, F 50 % pupa), to display the development and positioning of cell clusters (i) belonging 

to the DM1-4 lineage and their tracts (ii) (DM1 green, DM2 light blue, DM3 dark blue, DM4 orange) and final 

projections into the developing central complex neuropils (CBU iii, CBL iv). In addition, following events are 

highlighted: Fascicle switching (fs) of DM1-3 was visible from 5 % onwards (Bii, Cii), with the formation of four 

columns of the CBU per hemisphere (asterisks in Ciii Dii, Diii). Connections to the developing NO appeared at 20 

and 30 % of pupal development (yellow arrowheads, in Dii, Eii). Abbreviations: CBU upper division of the central 

body, CBL lower division of the central body, PB protocerebral bridge, NO noduli, prCBU primordium of the CBU 

(in other publications prFB, Andrade et al., 2019), prNO primordium of the NO, fs fascicle switching event. Scale 

bars represent 25 µm. 

 

 

Figure 3.1–8: Pupal development of Tribolium Rx DM1-4 cell clusters illustrates fascicle switching events 

and columnar fibre organisation, and thus shows that the developing adult central body is distinct from the 

larval form. Displayed are sub-projections of an anti-GFP staining of the same brain per time point (A 0 % pupa, 

B 5 % pupa, C 15 % pupa, D 20 % pupa, E 30 % pupa, F 50 % pupa), to display the development and positioning 
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of cell clusters (i) belonging to the DM1-4 lineage and their tracts (ii) (DM1 green, DM2 light blue, DM3 dark blue, 

DM4 orange) and final projections into the developing central complex neuropils (CBU iii, CBL iv). In addition, 

following events are particularly highlighted: Fascicle switching (fs) of DM1-3 was visible from 0 % onwards (Aii, Bii, 

Cii), with a resulting formation of four columns of the CBU and CBL per hemisphere (most clearly visible in Ciii and 

Eiv, marked by asterisks). Abbreviations: CBU upper division of the central body, CBL lower division of the central 

body, PB protocerebral bridge, NO noduli, prCBL primordium of the CBL, fs fascicle switching event. Scale bars 

represent 25 µm. 
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3.1.4. DISCUSSION  

3.1.4.1. Shifted timing of conserved series of events and precocious 

acquisition of functionality underlie central complex heterochrony 

In this work, we identified conserved Rx expressing cells belonging to the DM1-4 lineage 

group (Figure 3.1–1), identified them as homologous in both species (Figure 3.1–2) and followed 

their development from late embryogenesis into the adult (Figures 3.1–3 to 8). This allowed us 

to compare differences and similarities of homologous neurons during heterochronic 

development of the central complex. 

In order to summarize differences in central complex development, we defined fourteen 

events, where Tribolium and Drosophila differ in absolute and relative timing as well as order (Figure 

3.1–9). To illustrate these differences, we have plotted events of central complex development 

on an absolute and relative time scale (Figure 3.1–9). Note that Drosophila and Tribolium differ 

strongly in absolute time and in the relative portions of their ontogenetic stages (see x-axis in 

Figure 3.1–9A, see 3 Results). Also, some events appear to be simultaneous (e.g. events 9-11), 

which is more likely a result of a low resolution in time increments rather than a morphological 

trait (Fritsch et al., 2013; Nunn and Smith, 1998). 

We identified two different types of changes in the sequence of the fourteen events of central 

complex development (Figure 3.1–9): First, some events change their position within the 

sequence. Second, some developmental events remain in sequence, but shift their developmental 

timing. 

A crucial change in sequence position, and the most notable difference between Drosophila 

and Tribolium central complex development, regards the stage when synapsin staining indicates 

functionality of central complex neuropils (Figure 3.1–9). In Tribolium, functionality in the 

protocerebral bridge and central body is acquired at the end of embryogenesis (event 7 and 8), 

together with a low degree of fascicle switching (event 6). Importantly, this occurs before the 

growth period during larval development (events 4 and 5 in Figure 3.1–9). Hence, in Tribolium a 

central body is functional at a precocious stage before larval development where the central body 

still resembles a broad commissure with only a low degree of fascicle switching having occurred, 

lacking apparent columnar structure and thus, not resembling an adult counterpart neuropil. It 

has a specifically larval, i.e. immature, morphology. In Drosophila, in contrast, functionality is 

acquired during metamorphosis, in early pupal stages, after the larval growth period (Figure 3.1–

6, 7, 9). Hence, the sequence is modified, from event sequence 4-5-6-7-8 in Drosophila to event 

sequence 4-6-7-8-5 in Tribolium (Figure 3.1–9). 
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Figure 3.1–9: Summarizing scheme illustrating the changes of developmental events underlying central 

complex heterochrony. A depicts heterochronic differences on an absolute time scale and B on a relative time scale 

of fourteen events (C). These fourteen events are plotted on the y axis and displayed as small sketches next to the 

time points (circles). Time points and durations for Drosophila (D.m.) are displayed in blue, for Tribolium (T.c.) in pink 

and for Schistocerca gregaria (S.g.) in green (see below for details). Red contours in circles and red lines on the top x-

axis indicates the presence of a functional central complex neuropil, i.e. synapsin-positivity. Sequence heterochronies 

are indicated by orange lines and arrows, while heterochronic shifts are indicated by black arrows. The progression 

from one event to the next is indicated by a thin line. This highlights the sequence heterochrony between the larval 

growth period and early acquisition of functionality including fascicle switching. Moreover, we observed sequence 

heterochrony with respect to the fusion of the protocerebral bridge, heterochronic shifts with respect to the larval 



MANUSCRIPT 1  –  D ISCUSSION  

- 48 - 

central complex (events 6-8), embryonic events 2-3 and pupal events 9 and 10. Schistocerca data – when available – 

was taken from Boyan et al. (2017, 2008) and Herbert et al. (2010). Developmental periods, i.e. embryo, larva and 

pupa are indicated by vertical dotted lines and horizontal arrows. Events were defined as (1) the first axonal 

projection of Rx-positive cells in the prospective central complex region, (2) the first projection of Rx-positive cells 

that spans over the midline, (3) a pattern of projections and cell body location that allows clear identification of 

DM1-4 lineage origin and is thus similar to the larval pattern, (4) the beginning of larval growth in the L1 larva, (5) 

the end of larval growth at the end of development of the last larval instar, correlated with an increase in size of 

central complex structures, (6) the first occurrence of fascicle switching, causing a decussated fibre pattern, (7) the 

first synapsin-positive structure identifiable as protocerebral bridge, (8) the first synapsin-positive structure 

identifiable as a central body, (9) the first synapsin-positive structure identifiable as a lower division of the central 

body, i.e. the first division into lower and upper central body part, (10) the first synapsin-positive structure identifiable 

as nodulus, (11) a first division into columns, either in a GFP or synapsin signal, (12) the fusion of the protocerebral 

bridge at the midline, (13) an anatomy that grossly resembles the adult pattern, particularly with respect to the DM1-

4 cell bodies and tracts and, (14) central complex anatomy in the adult. 

 

An additional change in sequence regards the fusion of the protocerebral bridge (event 12) 

and columnar organization of the central body (event 11). In Tribolium, the protocerebral bridge 

first fuses and then the central body develops slices, or columns (Ito et al., 2014), while in 

Drosophila columns become visible first while the fusion follows delayed (see events 11 and 12 in 

Figure 3.1–9). In summary, these data show that even within a sequence of stereotypical 

developmental events selected steps can change their position. Unexpectedly, these sequence 

changes cause formation of a functional, but precocious form of the Tribolium central body. 

Differences in timing but not in event order are apparent as well. In the embryo, we observed 

a delay in development of midline-crossing projections of Rx cell clusters in Tribolium embryos in 

comparison to Drosophila (events 2 and 3, Figure 3.1–4, 3.1–9). These differences are pronounced 

in comparisons of relative developmental time (i.e. 58 and 81 % in Tribolium versus 43 % and 

51 % in Drosophila). We have no a priori explanation for the delay in event 3 in Tribolium 

embryogenesis. Inclusion of available data from the hemimetabolous insect Schistocerca makes the 

picture even more intriguing, as here all events we defined are likely to happen during 

embryogenesis (Boyan et al., 2017, Figure 9). 

Another delay in a conserved sequence of events is found during pupal development. 

Drosophila pupae have an approximate delay of 10 % in events 9 to 13 compared to Tribolium in 

relative developmental time (Figures 3.1–6 to 9). A possible explanation is a corresponding 

relative delay in eye development which in Drosophila starts with the appearance of an eye patch 

at 12-15 % of pupal development (Bainbridge and Bownes, 1981). An analogous development 

starts in Tribolium pupae already at approximately 5 % (this study, Ho, 1961 and Dippel, 

unpublished).  

Our analysis of DM1-4 lineages in Drosophila fits to previous accounts of Drosophila central 

complex metamorphosis (Riebli et al., 2013; Young and Armstrong, 2010). Both works, however, 
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used DN-Cadherin as marker for fasciculating axons (Iwai et al., 1997), to indicate functionality 

and thus concluded that a fan-shaped body primordium and protocerebral bridge are present as 

early as the third larval instar (Andrade et al., 2019). We were not able to detect any synapsin-

positive structures during that time, however. In this study we see presence of synapses as the 

primary sign of a functional neuropil. Moreover, we identified a CBL earlier than Riebli et al. 

(2013), Young and Armstrong (2010). A phenotype as underlying reason seems unlikely, since 

the other events and the total pupation time are comparable to wild type and are similar to these 

works. A misassignment is possible but notice that first identification in both works are when a 

toroid shape is already nearly closed. Neuromodulator stainings (e.g. Homberg et al., 2018) might 

come to aid to verify our assignment. 

To summarize, we conclude that central complex heterochrony (reviewed in Koniszewski et 

al., 2016; Pfeiffer and Homberg, 2014) between Tribolium and Drosophila is not only the late 

acquisition of functionality in Drosophila (Young and Armstrong, 2010) and the larval presence of 

the central body in Tribolium (Koniszewski et al., 2016), but includes delays in Tribolium 

embryogenesis, simultaneous reshuffling of event order, and an acceleration of events during 

pupal stages when compared to Drosophila. 

 

3.1.4.2. Absolute and relative developmental time as well as morphological 

events as metrics for comparative central complex development 

We employ mostly relative developmental time as metric to compare central complex 

development in Tribolium and Drosophila. The inclusion of data on morphological events in the 

whole embryo (Strobl and Stelzer, 2016), however, changes our interpretation of heterochrony 

with differences being less pronounced: First axonal growth (event 1) occurs in the phase of germ 

band retraction in both species. Rx-positive midline-crossing projections (event 2) are built in 

both species at the end of germ band retraction, although there is a 15 % difference in 

developmental time. The final stage of central complex development included in our analysis 

shows a difference not only time-wise (51 versus 81 % of embryogenesis) but also with respect 

to overall embryonic development, because at 51 %, Drosophila is in dorsal closure phase, while 

Tribolium is already in the final muscle development phase at 81 % (Strobl and Stelzer, 2016). 

We thus find that possible heterochronies (when measured along relative time) reflect overall 

embryonic development and are not organ specific. Although we still find specific central 

complex heterochrony in the delay of event 3 in Tribolium, the changes in shift interpretation by 

including descriptions of morphological events (Strobl and Stelzer, 2016) highlight that, if 
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possible, developmental comparisons should rely on time and morphological events (as proposed 

by Smith, 2001). 

For pupation, we use absolute and relative time as a comparative developmental metric, with 

defined start and end points, i.e. restricted movement at the end of larval development and 

eclosion. Additional comparable morphological events (as suggested by Smith, 2001) would 

potentially modify our impression of heterochrony (like in the mapping of embryonic 

heterochrony above). However, mechanisms of Tribolium and Drosophila pupation show some 

pronounced differences, which make such a comparison challenging. For example, Drosophila 

retains its larval cuticle and forms it to a pupal case (Bainbridge and Bownes, 1981), while 

Tribolium hatches from the last larval cuticle at the start of pupation (for basic information on 

Tribolium pupae, Sokoloff, 1972). This means that determining and including a comparative 

morphological event metric might not be possible or feasible. A detailed comparative study on 

the morphological development of different organ systems in whole pupae of both species would 

be necessary to identify potentially conserved sets of events that can be homologized. 

In our summarizing analysis, we used absolute as well as relative times (Figure 3.1–9). 

Absolute time has been described to be of limited use for evo-devo research (Jeffery et al., 2002a, 

2002b). Substantial differences in absolute time can occur because of different developmental 

rates which are dependent on several factors such as temperature and nutrition. Hence, some 

studies have come to distinct conclusions looking at both metrics (Gomez et al., 2008; in Keyte 

and Smith, 2014). We see value to mention both metrics, with the usefulness depending on which 

aspect of development is chosen. While embryogenesis and the larval period differ so strongly, 

pupal development differs only by a factor of 1.4 (100 versus 140 hours in Drosophila and Tribolium, 

respectively): Hence, the conclusion of a small delay in Drosophila could have been drawn from 

both absolute and relative time (see Figure 3.1–9, e.g. events 9 and 10, 15 h/ % in Drosophila 

versus 7 h/5 % in Tribolium). 

 

3.1.4.3. The larval central complex of Tribolium represents a distinct 

functional form to the adult structure 

The most pronounced heterochronic shift in central complex development causes the early 

appearance of a partial larval central complex in the Tribolium L1 larva (Koniszewski et al., 2016). 

We describe here that the larval protocerebral bridge and central body are structurally different 

forms to their adult counterparts. 
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3.1.4.3.1. Morphological differences between larval and adult form 

In the first instar larva, we observed a protocerebral bridge that is not yet fused at the midline, 

tilted at 30-45° angle, and a central body of a simple bar shape. The innervation of these structures 

by the marked lineages is such that we can see tracts from n-anterior to n-posterior, then jointly 

projecting into the central body and subsequent ‘dotted’ labelling, overlapping with the synapse-

rich area of the central body. We found weakly decussated fibres in this larval central body, so 

that fascicle switching must have occurred (Boyan et al., 2008). However, columns were not 

visible in synapsin and α-Tubulin stainings or in cell projections. The pattern of innervation and 

neuropil structure is maintained and extended during larval stages, highlighting that the structure 

serves a function specific for the larval stage of Tribolium. During pupal stages this larval form 

gets strongly modified through pronounced fascicle switching, a subdivision into lower and upper 

division (but see section below), a distinct forming of layers stereotypical for every adult upper 

division of the central body (e.g. el Jundi et al., 2018), and a pronounced division into slices (or 

columns, but see Ito et al., 2014) with synapsin-negative spaces as well. The protocerebral bridge 

gets longer, fuses at the midline, and receives its handlebar shape on which the investigated 

lineage groups are positioned. These events during metamorphosis are similar to Drosophila central 

complex development. 

 

3.1.4.3.2. Is the larval form a precocious upper or lower division of the central body? 

The common conclusion is that the fan-shaped body/upper division of the central body 

develops first (Andrade et al., 2019; Koniszewski et al., 2016; Panov, 1959; Riebli et al., 2013; 

Wegerhoff and Breidbach, 1992; Young and Armstrong, 2010). Huetteroth et al. (2010) speak 

only of a larval central body, not specifying whether it is lower or upper division. Also, one of 

the earliest publications on this topic (Pereanu and Hartenstein, 2006) only refers to a primordium 

of the central complex. We did not find any evidence in the Drosophila literature verifying upper 

division identity, exclusion of lower division identity or data that shows a distinction of larval to 

adult structure. Panov (1959) made the conclusion of a larval CBU because of the presence of a 

small tract of commissural fibres below the CBU, i.e. a prospective CBL. A similar observation 

was done by Wegerhoff and Breidbach (1992). Koniszewski et al. (2016) and Homberg et al. 

(2018) have characterized neuromodulator profiles that aid this discussion. Koniszewski et al. 

(2016) characterized the neuromodulator profile of the larval and adult central body of Tribolium 

and have observed similarity between both, which lead the authors to conclude that the structure 

is most likely the upper division. Complementary to that, Homberg et al. (2018) have investigated 

GABA immunostainings – a characteristic neurotransmitter for the CBL - in a diving beetle larva 
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and observed that only low immunostaining is present in a subset of cells. They thus come to a 

similar conclusion as Koniszewski et al. (2016). Moreover, they conclude from the fact that diving 

beetle larvae have articulated legs, that a lower division might not be essential for coordinated leg 

movement. A GABA staining in the larval central body of Tribolium would be necessary to 

corroborate the findings, thus far. 

Nevertheless, the adult and larval upper division are different units, as we have shown in this 

work, particularly through the reduced pattern of decussated fascicles and a lack of 

columns/slices and layers. This raises the question whether the structure can be defined as future 

upper division, or just as larval central body, distinct from any of the adult structures. We propose 

to speak of ‘larval central body’, avoiding any speculation. 

 

3.1.4.3.3. Functional and evolutionary implications of the existence of a specific larval 

central body 

The distinct morphological differences found in our study leads us to conclude that there are 

two forms of the central body and protocerebral bridge, one for each period of an animal’s life 

of locomotion, feeding, predator evasion and other direct environmental interactions. Hence, two 

forms of a neural circuits may exist in the central body, which might lead to different behavioural 

outputs and on which modification through natural selection can occur separately. 

A functional synapsin-positive central body in freshly hatched larvae has been reported only 

in Tribolium castaneum (this study, and Koniszewski et al., 2016). Previous publications show the 

presence of such a functional structure in another Coleopteran, Tenebrio molitor, using 

neuromodulator expression and classic stains such as Bodian and Golgi stain (Panov, 1959; 

Wegerhoff, 1999; Wegerhoff et al., 1996; Wegerhoff and Breidbach, 1992). A central body in later 

larval stages was reported for Lepidopterans (Huetteroth et al., 2010; Panov, 1959; S.H. 

Montgomery, personal communication) and Hymenopterans (Hähnlein and Bicker, 1997; Panov, 

1959). Panov (1959) presents data from late larvae of a diverse range of species of other orders 

as well, leaving the impression that one cannot see a clear pattern of absence or presence of a 

larval central body in a specific order (note, however, that it might be worthwhile to confirm 

analyses with standard immunostainings and confocal microscopy). 

However, a clear distinction to the adult structure and description of the anatomical 

differences has been lacking. We offer this necessary detail of central complex development and 

evolution in Tribolium. It is likely that a similar morphological distinction is possible in other 

species. For example, the shape of the larval central body of Manduca sexta (Huetteroth et al., 

2010) and Tenebrio molitor (Wegerhoff et al., 1996; Wegerhoff and Breidbach, 1992) and the 
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Tribolium neuropil seem very similar in their simple bar shape. A similarity between the larval 

central complex of Tenebrio molitor and of the larval structure in the Branchiopod Triops cancriformis 

(Fritsch and Richter, 2010) has been noticed (Strausfeld, 2012). A uniform non-layered central 

body and a simplified protocerebral bridge in the Tribolium larval brain is indeed like the larval 

form of Triops, which possess a rudimentary protocerebral bridge and a non-columnar central 

body (Fritsch and Richter, 2010; Strausfeld, 2012) or indeed similar to a crayfish brain (e.g. Figure 

4 in Homberg, 2008).  

The novel information of two distinct degrees of fascicle switching in two developmental 

periods heightens the importance of this mechanism to generate a functional neuropil (Boyan et 

al., 2015). Which functions can be generated with a weakly decussated neuropil? Decussated 

fibres have been linked to the necessity of coordinating multi-joint legs (Strausfeld, 2012). Also, 

the degree of columnar divisions has been linked to differing degrees of motor repertoire 

(Strausfeld, 2012, see Figure 11.12). Whether the similarity in central complex structures between 

larvae of a Branchiopod and a Tribolium larva also reflects a similarity in motor repertoire can only 

be speculated. Hence, how do Tribolium larvae coordinate their multi-joint larval legs with a weakly 

decussated and possibly non-columnar central body? In order to answer questions of the specific 

function of the larval central complex, also in distinction from adult functions, behavioural assays 

would need to be performed, focusing on leg movement patterns and whether they are able to 

make turns in response to stimuli. For example, a split protocerebral bridge also occurs in species 

who perform simple bilateral movements (Strausfeld, 1999). Hence, how do Tribolium larvae 

move in contrast to adults? 

Tribolium larvae have a range of requirements for larval central complex function likely distinct 

from the adult form, with the absence of wings, shorter multi-joint legs and no faceted eyes, only 

having stemmata (Ho, 1961). A correlation between the presence of walking legs and presence of 

central body and the well-studied function of the central complex in motor control, indicates a 

possible causal link (Strausfeld, 1999). Note, however, that the data by Panov (1959) tentatively 

illustrates that the presence of walking legs cannot be the only correlate of a larval central body, 

as larvae of Pieris brassicae, for example, have shortened multi-joint legs (Kim, 1959), but possibly 

no central body neuropil (Panov, 1959). Panov (1959) presents a correlation between larvae of 

species with poorly developed vision. Note still that evidence of blind adult arthropods having a 

columnar central complex (Böhm et al., 2012; Boyan et al., 2015; Strausfeld, 2012, 1998) make 

the picture more complex. For a clearer illustration of such correlations, presence of larval central 

bodies would need to be confirmed by comparative methods, in larvae of a range species from 
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which basic information regarding appendage and visual organ development as well as range of 

motion is known. 

What are the possible underlying factors causing an early appearance of a functional neuropil 

in Tribolium? As a heterochronic shift in juvenile hormone secretion is one main possible factor 

in the evolution of metamorphosis (Truman and Riddiford, 1999), a similar role of juvenile 

hormone and candidate transcription factors (e.g. Kr-h1, Jindra, Truman and Riddiford, 

unpublished) in the early central complex appearance is plausible. 

 

3.1.4.3.4. Are DM1-4 cells of the larval central body pontine neurons? 

A question with regard to cell types and their distinct morphology is whether the neurons of 

DM1-4 at the end of embryogenesis are pontine neurons that connect different columns of the 

upper division of the central body with each other (Andrade et al., 2019). In Drosophila pontine 

neurons are born first as primary neurons – specifically, small undifferentiated neurons – that 

comprise the early primordial fan-shaped body (Andrade et al., 2019). Secondary neurons then 

fasciculate with these pontine neurons and comprise unicolumnar neurons that we mainly 

investigated in this study. Hence are all larval central body neurons belonging to DM1-4 pontine 

neurons? Can they on their own generate a functional neuropil? Alternatively, is there a deviation 

from Drosophila so that we observe not only pontine but other types of neurons built by DM1-4 

lineages? A detailed analysis with similar methods as in Andrade et al. (2019) can contribute 

answers to these questions. These may be FIB-SEM (focused ion-beam scanning electron 

microscopy), in combination with an HRP-coupled GFP antibody so that a brown precipitate via 

DAB incubation can visualize projections of the approximately 50 x 15 x 13 µm (x, y, z) large 

larval central body of Tribolium. As alternative, expansion microscopy (Cahoon et al., 2017; Jiang 

et al., 2018) in combination with more limited marking of fewer cells might help with questions 

regarding distinct central complex cell types . 

 

3.1.4.4. Central complex heterochrony is defined by a complex set of growth 

and sequence heterochronies 

Heterochrony is a major evolutionary phenomenon connecting ontogeny and phylogeny 

(Gould, 1977; Raff and Wray, 1989; Smith, 2003, 2002, 2001) through ‘phyletic alterations based 

upon changes in developmental timing of ancestral features’ (Gould, 2000). Most often, a direct 

comparison to the ancestor is not possible (but see Fritsch et al., 2013), also in the case of central 

complex heterochrony, where only extant species have been compared (this study, Koniszewski 

et al., 2016; Panov, 1959).  
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Gould (1977) has characterized heterochrony in terms of differences in size and shape, while 

Alberch et al. (1979) added dimensions of growth and differentiation (both described in Smith, 

2001 as growth heterochrony). De Beer et al. (1951) and Smith (2003, 2002, 2001) have added 

developmental sequence modifications as heterochrony, and coined it sequence heterochrony. 

How do the changes described in this study fit these definitions? Differences in timing in 

embryonic and pupal development can be most easily described in terms of growth heterochrony, 

with delayed embryonic development in Tribolium and a delayed pupal development in Drosophila 

being a paedomorphosis (a juvenilized shape, e.g. Gould, 2000, see Figure 3.1–9). Although we 

define embryonic and pupal central complex development in events and not in growth 

parameters, the fact that the order of these events is conserved and only shifted is most easily 

understood in terms of growth heterochrony. Sequence heterochrony (Keyte and Smith, 2014; 

Smith, 2001) has happened in the appearance of a larval central complex in Tribolium before the 

larval growth period (Figure 3.1–9). The developmental sequence of the central complex has been 

modified such that a protocerebral bridge and a central body with specific larval morphology 

appear at the end of embryogenesis in Tribolium. This would equal a peramorphosis in 

morphological terms (Gould, 2000; Smith, 2001). However, with the correlation of a larval central 

complex and the presence of larval walking legs (Strausfeld, 1999; see section on the larval central 

complex) and the likeliness that the basic groundplan of all holometabolan larvae contains 

walking legs (Peters et al., 2014), we conclude that – in comparison to a hypothesized ancestor – 

Drosophila larval development of the central complex is a paedomorphic phenomenon.  

An additional aspect of central complex heterochrony is that adult structures are highly similar 

in all investigated species (Figure 3.1–2, e.g. Honkanen et al., 2019). In some cases, adult 

structures differ, because of the heterochronic shifts during development (such as the prominent 

example of human neoteny, described in Gould, 1977, or also recently in Luque et al., 2019). 

Examples like central complex development include therian limb development (Keyte and Smith, 

2014 and references therein) as well as differential development of termite castes (Nii et al., 2019). 

The phenomenon of a conserved adult structure after heterochronic development likely illustrates 

evolvability in development of involved structures. Development of limbs in marsupials and 

placental mammals (Keyte and Smith, 2014), wings in termites (Nii et al., 2019) and the central 

complex in Drosophila and Tribolium illustrate modifications in bauplan development with a similar 

conserved outcome. 

Moreover, if we adapt the hypothesis that a pronymphal stage in Schistocerca equals all larval 

stages in Drosophila and Tribolium (Truman and Riddiford, 1999), the complete heterochronic shift 

would be less pronounced, but still present. While Schistocerca would still have a completely 
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functional central complex in a pronymphal stage (Boyan and Reichert, 2011), Drosophila would 

have a protocerebral bridge and upper division of the central body as structures comprised of 

fasciculated axons (DN-Cadherin-positive; Young and Armstrong, 2010). Tribolium would have a 

large nearly fused protocerebral bridge and a larval central body, both synapsin-positive (see 

Figure 3.1–5). 

 

3.1.4.5. Inclusion of Schistocerca data indicates a conserved sequence of 

central complex development 

To get a more complete picture of central complex heterochrony it is necessary to include 

analogous analyses in Schistocerca gregaria or other hemimetabolous species. Data available (Boyan 

et al., 2017, 2008; Herbert et al., 2010) possibly suggest that, with regard to the sequence of events, 

Drosophila is more similar to Schistocerca than Tribolium. 

In Schistocerca, midline-crossing fibres build a complex set of parallel commissures (at 50 % 

embryogenesis, Boyan et al., 2008). Subsequently, fascicle switching starts at 55 % with columns 

developed at 80 % (Boyan et al., 2008). In parallel functionality is acquired, with evidence based 

on several neuromodulators (Herbert et al., 2010). This would be like the pattern of crossing 

fascicles and synapsin acquisition in Drosophila pupae. Hence, the phase that is achieved at 50 % 

embryogenesis in Schistocerca seems to be extended into pupal stages in Drosophila. Although 

functionality has not been shown with synapsin staining, thus far (G. Boyan, personal 

communication), data present indicates that there is no sequence heterochrony between 

Drosophila and Schistocerca, hence no precocious acquisition of functionality with a low degree of 

fascicle switching, like in Tribolium. 

This finding could lead to a complete re-interpretation of heterochronic events. So far, it was 

believed that Drosophila was most derived in shifting central complex development completely to 

the adult while some species retained aspects of the central complex in the embryo (Koniszewski 

et al., 2016; Pfeiffer and Homberg, 2014). Drosophila might still show a derived mode, but only 

when comparing to a possibly more basal Holometabolan like Tribolium, where larvae have 

walking legs and outward mouthparts (Peters et al., 2014). In comparison to Schistocerca, it has 

possibly regained a more conserved sequence of central complex developmental events, and has 

only shifted the acquisition of functionality to metamorphosis. Hence, a possible scenario would 

be that through the evolution of a larval period came a distinctly larval central complex, visible in 

Tribolium, which was then secondarily lost in Drosophila, which consequently regained a more 

ancestral sequence of events.  
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3.1.4.6. Central complex development can be divided into developmental 

modules of associated and dissociated events 

Modifications in sequence of processes such as central complex development may not have 

endless variations in the insect world (e.g. Conway Morris et al., 2015; Nijhout and Emlen, 1998 

and articles in the same issue). It is more likely that certain constraints play a role in the 

development and evolution of the central complex, as is likely true in brains in general 

(Montgomery et al., 2016). We suspect that some events must be followed by others, thereby 

comprising developmental modules (as formulated by Raff and Raff, 2000; Raff, 1996; Smith, 

2001, figure 7). These events are, therefore, associated due to specific underlying molecular and 

cellular mechanisms. In contrast, dissociation occurs to allow novel elements to be introduced by 

natural selection (Raff, 1996; Smith, 2001). Our data allow first insights into which events may be 

linked and which can be dissociated, i.e. how large the portion of developmental constraints is 

that restrict the variability of phenotypes for selection (Smith, 2002). The sequence of building 

midline structures by first forming axons, followed by first midline crossing fascicles with more 

additional fascicles crossing the midline subsequently (events 1-3) build a consecutive sequence 

in both species. These could therefore equal a developmental module, as single events are closely 

associated. In addition to associated events, we observe a dissociation of larval growth (events 4 

and 5) from subsequent fascicle switching and acquisition of a functional (i.e. synapsin-positive) 

neuropil (events 6-8). Events 4-5 and 6-8 would be in themselves associated, but from each other 

dissociated. Dissociation then causes the precocious appearance of functional neuropils in 

Tribolium. Development of noduli and the lower division of the central body (events 9 and 10) 

seem to be another module, as they happen in both species in the same time frame. Fusion of 

the protocerebral bridge (12) and the acquisition of a visible columnar architecture (11) seem to 

be dissociated, as the order has been reversed in Tribolium compared to Drosophila. 

We speculate, that event modules could have a common underlying genetic factor or cellular 

mechanism that drives or causes a cascade of subevents. The next module, dissociated from the 

first, would have a distinct mechanism from the first. An example of dissociated modules may be 

that the ablation of fan-shaped body pioneers does not influence the next developmental module, 

i.e. the developing unicolumnar neurons (Andrade et al., 2019). 

The interpretation by Raff and Raff (2000), Raff (1996) and Smith (2001) of development 

consisting of associated modules and variability in the program being produced by dissociated 

events, is reminiscent of longstanding discussions regarding the evolution of mammalian brains 

(e.g. reviewed in Montgomery et al., 2016). Here, allometric scaling relationships of brain regions 

have been interpreted as the result of developmental constraints, with only basic developmental 
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programs being modified (concerted evolution, Finlay and Darlington, 1995) or functional 

constraints, where selection acts on functionally interconnected parts of the brain (mosaic 

evolution, Barton and Harvey, 2000). In the case of central complex development, we find 

indication for both original theories: While there are specific modules and events that seem 

unmodified in order – at least in the two species investigated – , but shifted in timing, there are 

other events that differ in their order between both species. 

The pattern of associated and dissociated events as well their differences in order and time 

point in central complex development can be interpreted as morphological indicators of 

robustness as well as evolvability (Alberch, 1991; Losos, 2014; Payne and Wagner, 2019; Pigliucci, 

2008; Wagner, 2008). Specifically, developmental modules would overlap with the concept of 

modularity, i.e. the measure of how much a system can be subdivided into independent parts, 

while the association of certain events would indicate a robustness to modifications. Our data 

give insight into the evolvability of the central complex: The end point of central complex 

development is similar and thus conserved in both species. The developmental programs govern 

the same set of robust modules. However, time shifts and reshuffling of event order demonstrate 

evolvability of a developmental program in reaching a conserved end point. 

 

3.1.4.7. Use of genetic neural lineages facilitates insights into Brain evo-devo 

Our finding that the larval central body is not just a precociously formed copy of the adult 

neuropil, but a distinct but functional larval form illustrates the importance of conducting 

developmental studies of homologous cells in different species as part of evolutionary research. 

Without developmental research, a comparison of Tribolium and Drosophila would have yielded a 

very similar result of conserved adult neuropils. Simultaneously the lack of a Drosophila central 

complex larval form (at least a functional, i.e. synapsin-positive one) and the presence of a 

Tribolium form illustrates the importance of conducting comparative research as part of 

developmental studies.  

Our approach of using genetic neural lineages, in which homology can be established on a 

conserved genetic basis with the addition of morphological criteria, and cells can be followed 

throughout development, is particularly useful for detailed comparative investigations on a 

cellular level, that require to be based on homology. This includes the analysis of projection 

patterns, which are essential for neuropil function and thus most relevant for the evolution of the 

brain. The alternative approach of single cell sequencing (Konstantinides et al., 2018) is 

fascinating indeed and will hopefully complement study of cells in their native environment such 

as ours and offer new questions.  
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Our approach, however, has limits as well. The use of transcription factors as markers, 

requires the use and generation of suitable transgenic lines and is therefore work-intensive and 

restricted to organisms with sufficient genomic information and established genome editing tools. 

However, with the simultaneous rise of tractable genetic models, particularly through the 

relative ease of the CRIPSR/Cas system (Gilles and Averof, 2014), we hope that our idea further 

offers an opportunity that can be used in a multitude of species. A direct possibility would be to 

include Gryllus bimaculatus (Watanabe et al., 2017) and perform identical transgenic line 

construction, Rx stainings and subsequent characterisation of the DM1-4 lineage cluster 

expressing Rx throughout development. Gryllus would be a suitable representative of a 

hemimetabolous species. 

 

3.1.4.8. Conclusion & Outlook 

To summarize, we were able to compare for the first time homologous genetic neural lineages 

from embryogenesis to adult, establishing the use of genetic neural lineages as a suitable method 

transferrable to most insect species and relevant for brain evo-devo. We illustrate two aspects of 

central complex development and evolution: First, we characterised central complex 

heterochrony in detail and highlighted that likely developmental modules, disentangled from each 

other, can be shifted and modified during central complex evolution. Second, Tribolium and likely 

other insects have two distinct functional forms of the central complex on which selection can 

act, with a specific non-columnar and weakly decussated architecture 

Possible future topics have opened with this, to further the understanding of central complex 

development and evolution: The larval central body can be used to determine alternative ways to 

build a functioning central complex neuropil, with FIB-SEM, as complementary study to e.g. 

Andrade et al. (2019). Also, the behavioural consequences of a larva-specific central body are 

fascinating indeed. In addition, with emphasis on rx we observed that while rx is expressed in 

DM1-4 lineage offspring, it is likely not expressed in the respective type II neuroblasts (Bayraktar 

and Doe, 2013 for antibody screening; Posnien et al., 2011a, Figure 2). This is complementary to 

the expression in mushroom body neuroblasts where rx is expressed in neuroblasts and first 

postmitotic neurons (Kraft et al., 2016). Hence, like others, we were not able to bridge the gap 

between neuroectoderm neuroblast maps (Urbach and Technau, 2003b) and the type II DM1-4 

lineages (Izergina et al., 2009; Walsh and Doe, 2017). A molecular examination of whether type 

II neuroblasts (Boyan and Reichert, 2011) are also present in Tribolium would help to understand 

central complex development in this species and overall.  
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3.1.5. MATERIAL AND METHODS  

3.1.5.1. General considerations 

We adhered to the nomenclature presented in Ito et al. (2014), except for our reference to the 

DM4 ipsilateral fascicle as tract. With this we stay in tradition of referring to the fascicle as W tract 

(Boyan et al., 2017). In addition, we referred to central body divisions as upper and lower division, 

instead of fan-shaped and ellipsoid, to facilitate cross-species comparison and avoid confusion 

regarding the form of these structures.  

Animals were reared under each species’ respective standard conditions (Brown et al., 2009; 

Roberts, 1998). Timed stages were determined at 32°C for Tribolium castaneum and 25°C for 

Drosophila melanogaster, which corresponds to the respective upper limit of rearing temperature. 

Where possible, females were selected for stainings to minimize variability and exclude sex 

differences. Specifically, only female brains were used in all pupal stages (through pre-selection 

of Drosophila larvae, and direct analysis of Tribolium pupae), late larval stages in Drosophila and adult 

stages. 

If not otherwise specified, depicted tissues are representatives of a dataset of at least N=3 

brains that was checked for consistency of the respective labelling.  

All stacks from which figures were created can be found under figshare 

(https://figshare.com/account/home#/projects/64799). 

All Drosophila and Tribolium stocks, antibodies and dyes, as well as primers that we used in this 

study can be found in the Supplementary Tables 3.1–2-4. 

 

3.1.5.2. Tc-Rx antibody generation and verification 

To identify Rx-positive cell groups, protein detection through antibody staining is necessary. 

An antibody for the Drosophila Rx (Dm-Rx) protein was kindly gifted by Dr. Uwe Walldorf (Davis 

et al., 2003). Its specificity was verified by absence of staining in Dm-Rx null mutant brains and 

by a similar expression pattern as Dm-rx RNA (Davis et al., 2003; Eggert et al., 1998).  

We tested cross-specificity of this antibody to the Tribolium Rx (Tc-Rx) protein. However, no 

staining was detected (data not shown). As the antigenic region of Dm-Rx used for antibody 

generation by Davis et al. (2003) is absent or highly diverged in the Tribolium Rx protein (like in a 

number of other species, see Supplementary Figure 3.1–1A), we used the Tc-Rx N-terminal 

region (amino acids 1-107), avoiding highly conserved homeobox and OAR domains 

(Supplementary Figure 3.1–1A) to generate a suitable antibody. This 321 bp long region was 

amplified (primers including linker sequences: Tc-rx-N_fw and Tc-rx-N_rev, Supplementary Table 
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3.1–2) from wildtype cDNA and cloned into a Golden Gate vector containing a 6x His-Tag and 

a sequence encoding for a SUMO polypeptide (KNE001, pET SUMO-GoldenGate) with a molar 

ratio of 1:5 of insert to vector (see 3.1.9.4 Supplementary Material and Methods for source, 

modifications and cloning information).  

For subsequent protein expression and purification, we essentially followed Monecke et al. 

(2014). The vector was transformed into bacteria of the BL21-DE3 Rosetta strain. The peptide 

was expressed in TB (Terrific Broth) medium with the addition of 15 mM Glucose by 0.8 mM 

IPTG induction at an OD600 of 0.8 for four hours, harvested (5,000×g, 20 min, 4°C), resuspended 

in lysis buffer (50 mM Tris-HCl pH=7.5, 150 mM NaCl, 10 mM Imidazole) fractionated using a 

microfluidizer 110S (Microfluidics, MA, USA) and cell debris removed by centrifugation 

(30,000×g, 30 min, 4°C). The peptide was subsequently purified by immobilized metal ion affinity 

chromatography using an ÄKTAprime plus and Nickel-charged affinity columns (both GE 

Healthcare Lifesciences, Chicago, USA). Main steps included affinity chromatography with a 

linear gradient of elution buffer (50 mM Tris-HCl pH=7.5, 150 mM NaCl, 400 mM Imidazole), 

cleavage of the His6-SUMO tag with SUMO protease (1:50 molar ratio protease to peptide) with 

simultaneous dialysis (50 mM Tris-HCl pH=7.5, 150 mM NaCl) over night at 4°C, a second 

affinity chromatography to remove the His6-SUMO tag and finally a size exclusion 

chromatography with the Superdex 30 16/60 (GE Healthcare) and storage in 1X PBS. The 

purified protein fragment was used for polyclonal antibody generation and subsequent affinity 

purification of the antibody (Kaneka Eurogentec S.A., Belgium). 

To exclude possible off-targets of the antibody and to validate whether the protein was 

correctly detected by the antibody (Uhlen et al., 2016), we performed a combination of Tc-rx in 

situ hybridisation (DIG-labelled full length probe, 0.4 µl in 30 µl hybridisation buffer) and Tc-Rx 

antibody staining in Tribolium embryos (as in Posnien et al., 2009, Buescher et al., in press; 

Supplementary Figure 3.1–1B, C). We found a high degree of overlap between the antibody 

staining and in situ hybridisation (Supplementary Figure 3.1–1B). No additional staining in the 

embryo was observed, so that off-targets seem unlikely. To confirm specificity for the 

endogenous protein, we performed parental RNAi against Tc-rx (1.5 µg/µl) following standard 

procedures (Posnien et al., 2009). We then performed antibody stainings, including a control 

staining against Engrailed (to exclude differences in staining intensity) in knockdown and wildtype 

animals (Supplementary Figure 3.1–1C). All steps from fixation to imaging were performed using 

a standardized protocol. Maximum intensity projections of 34 animals were grouped into three 

different Tc-Rx staining intensity groups. A blinded categorisation into wildtype and knockdown 

animals was performed and revealed that all knockdown animals belonged to middle or low 
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strength categories confirming a reduction of Tc-Rx. Hence, the new antibody against Tc-Rx is 

highly specific for the provided antigen (affinity purification) and the endogenous protein 

(Supplementary Figure 3.1–1B and C). 

 

3.1.5.3. Generation of a Drosophila bicistronic Rx transgenic line 

In order to generate a comprehensive picture of projections of all Dm-Rx-positive cells and 

to enable subsequent comparative development of Rx-positive cell groups, we generated a 

bicistronic line (Supplementary Figure 3.1–3, see also Farnworth et al., in press) using the 

CRISPR/Cas9 technique (e.g. Gratz et al., 2013). We also screened available transgenic lines, i.e. 

two VT-GAL4 lines (https://stockcenter.vdrc.at) that include small fragments of the Dm-Rx 

regulatory region and hence only covered very small portions of Dm-Rx expression (data not 

shown). 

We built a bicistronic construct as part of the CRISPR repair template, consisting of the C-

terminal part of the Dm-rx gene, the CDS encoding for EGFP and a P2A peptide (Kim et al., 

2011; Szymczak-Workman et al., 2012), The 22 amino acid long peptide (Kim et al., 2011) is 

suggested to cause ribosomal skipping (Donnelly et al., 2001). This sequence, if placed between 

two genes or CDS enables the transcription of one long mRNA of Dm-rx-P2A-EGFP, but the 

translation of two separate proteins. The P2A and EGFP sequences were inserted by using a 

guide RNA with the target sequence near the Dm-rx STOP codon (guide A, Supplementary Figure 

3.1–3). This should result in a common expression of Dm-Rx and EGFP in the same cells, 

without disturbing the function of either gene through e.g., a fusion product, but with EGFP 

being in the cytoplasm and Dm-Rx retaining its nuclear localisation.  

We included the fluorescent eye marker 3XP3-DsRed (Berghammer et al., 1999) for the 

identification of positive transformants after transgenesis. Note that we avoided other eye or 

body markers, such as mini-white because of their size, to keep the likelihood of homology-

directed repair as high as possible. In order to reduce the possible influence of the 3XP3 

promotor on Dm-Rx or GFP we inserted the eye marker in the downstream intergenic region, 

by using a guide RNA targeting the intergenic region (guide B, Supplementary Figure 3.1–3). To 

facilitate homology-directed repair we included two flanking homology arms (Supplementary 

Figure 3.1–3; see 3.1.9.4 Supplementary Material and Methods for the vector map of MF01). As 

a result, our repair template consisted of seven fragments, which we assembled using a Gibson 

Assembly® kit (New England Biolabs, MA, USA), following the manufacturer’s instructions: 

1. Backbone: pJET 1.2/blunt (K1231, ThermoFisher Scientific, MA, USA), EcoRV 

linearized 
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2. left homology arm (F (Fragment) 1): 1 kb (kilobases) of the C-terminus of Dm-rx 

(CG10052) excluding STOP codon 

3. P2A peptide (F2): insect codon-optimized sequence (see 3.1.9.4 Supplementary Material 

and Methods) from KNE020 (unpublished) 

4. EGFP (F3): from plasmid gifted by the Wimmer department, University of Göttingen 

5. 3’ UTR and intergenic region (F4): is the region between guide A and B3 (see 

Supplementary Figure 3.1–3) 

6. 3XP3-dsRED-SV40 (F5): eye marker, from plasmid gifted by the Wimmer department, 

University of Göttingen 

7. Right homology arm (F6): 1 kb downstream of guide B3 cut site (three base pairs upstream 

of its PAM (protospacer adjacent motif)) 

The target for guide A would thus be between F1 and F2, and the target for guide B between 

F5 and F6.  

In order to identify single nucleotide polymorphisms in the target strain, integrate the right 

sequences for F1, F4, F6 and to identify suitable target sites and guide RNAs, we isolated genomic 

DNA (as described in Farnworth et al., in press) from the Act5C-Cas9, Lig4[169] donor stock 

(Zhang et al., 2014), and PCR amplified and sequenced the Dm-rx C-terminal region, 3’ UTR and 

intergenic region (primers DmRx_CDS_3'UTR_fw, DmRx_CDS_3'UTR_rev, DmRx_3'UTR_int-

region_fw, DmRx_3'UTR_int-region_rev, Supplementary Table 3.1–2). These regions were used to 

locate target sites (see Supplementary Figure 3.1–3 Aiii) via the CRISPR Optimal Target Finder 

(http://targetfinder.flycrispr.neuro.brown.edu/). No off targets were present for all targets 

selected. Annealed oligonucleotides were cloned into a U6:3-BbsI vector (based on pCFD3-

dU6:3gRNA, Addgene #49410, Port et al. (2014), kindly provided by Hassan M.M. Ahmed 

(Wimmer department, University of Göttingen, unpublished)) via a GoldenGate reaction, 

following procedures in Farnworth et al. (in press) but using BbsI (New England Biolabs, MA, 

USA). Successful cloning was verified by sequencing the complete chimeric RNA scaffold 

(including trans-activating crRNA, Port et al., 2014). guideRNAs were quality controlled by using 

a T7 Endonuclease I assay (see Farnworth et al., in press for procedure). Injection procedures 

followed descriptions in Eckermann et al. (2018). 

Based on the T7 Endonuclease I assay, we selected one guide for the guide A target site, and 

three with overlapping target sites for the target of guide B (B1-3) (Supplementary Figure 3.1–3 

Aiii). 

Next, we designed a 1 kb long F1 (left homology arm) so that it ended before the STOP of 

Dm-rx, as Guide A caused a Cas9 cut only 8 bp downstream of the Dm-rx STOP. F4 was designed 



MANUSCRIPT 1  –  MATERIAL AND METHODS  

- 64 - 

from the 3’UTR start to the cut site of guide B3 (note that guide B1 and B2 were near B3), with 

modifications of all PAMs in primers P7 and P8. F6 was 1 kb long, starting at the cut site of guide 

B3.  

All fragments for the Gibson Assembly® were amplified using the primers P1 to P12 (see 

3.1.9.4 Supplementary Material and Methods), containing overlaps to the neighbouring fragment. 

F1, 4 and 6 were amplified from the previously isolated genomic DNA of Act5C-Cas9, Lig4[169]. 

We then used three assembly reactions (roman numerals in primers P1 to P12). The first 

assembled F1 to F3, the second F4 to F6, and the third assembled the products of the first two 

reactions.  

The four plasmids containing guides and MF01 were precipitated (Eckermann et al., 2018; 

Farnworth et al., in press) to ensure DNA purity and increase viability of embryos after injection. 

We then made three injection mixes, each containing one of the guides B1 to B3 (250 ng/µl), 

guide A (250 ng/µl) and MF01 (400 ng/µl), diluted in 1x injection buffer (Eckermann et al., 

2018). Subsequent injections followed descriptions in Eckermann et al. (2018). 

We injected 1203 embryos of which 424 G0 adults survived. We crossed them singly to three 

w1118 virgins of the opposite sex and received 224 F1 stocks. We then screened them under a 

fluorescence stereo microscope (Leica M205 FA, Leica, Wetzlar, Germany) for the presence of 

the 3XP3-DsRed eye marker. We detected 27 positive stocks. Note, however, that we observed 

heritable variability in strength and location of DsRed inside the Drosophila eye. We thus took four 

of the 27 positive stocks, with varying degree of eye marker strength and screened wandering 

third instar larval brains for any detectable differences in the presence of a GFP fluorescence 

signal resembling known Dm-Rx antibody staining (Davis et al., 2003). All four stocks did not 

vary in GFP expression and showed equal similarity to a Dm-Rx antibody staining. To verify this 

tendency, we performed immunostainings in offspring embryos of these four lines and detected 

GFP and Dm-Rx signal through a GFP antibody staining. Embryos of all four stocks showed 

near 100 % overlap to Dm-Rx and a cytoplasmic signal. Finally, to verify that insertion was 

performed as planned (Supplementary Figure 3.1–3 Aii), we isolated genomic DNA from one 

whole adult male of each of the four stocks using the Zymo Research Quick-DNA Miniprep Plus 

kit (Zimo Research, Irvine, CA, USA) following the manufacturer’s Solid Tissues Protocol. We 

then amplified DNA fragments containing the whole region by nested PCR (primers DmRx_trans-

ver_fw, DmRx_trans-ver_rev, DmRx_trans-ver_nested_fw, DmRx_trans-ver_nested_rev, Supplementary 

Table 3.1–2). We sequenced the regions surrounding the cut sites with primers 

DmRx_trans_seq_Ct_fw and DmRx_trans_seq_iRe_rev (Supplementary Table 3.1–2). All four stocks 

showed correct sequencing at guide A cut sites, but only the line used in this study showed 
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completely correct sequences, thus allowing us to perform suitable experiments and closer 

characterisation (Supplementary Figure 3.1–3 C-F). 

To verify that EGFP is indeed localised in the cytoplasm, we performed immunostainings for 

Dm-Rx and GFP in embryos. With higher magnification we were able to see a substantial amount 

of GFP in the cytoplasm surrounding the nuclei marked by Dm-Rx (see Supplementary Figure 

3.1–3 C) and DAPI (not shown). We also wanted to know whether expression from the 

transgenic Dm-Rx locus was qualitatively different from the endogenous expression as to ensure 

that we investigated Dm-Rx expression similar to a wildtype situation. For this we performed 

immunostainings against Dm-Rx in the adult Drosophila brain with identical settings and imaged 

them identically (see Supplementary Figure 3.1–3 D). We were not able to detect any absence of 

domains (see Supplementary Figure 3.1–3 D). Differences between the wildtype strain w1118 and 

our transgenic line were – if present – as large as differences between individual brains of the 

same genetic background.  

We then tested whether the expression of Dm-Rx and EGFP in the same cells is maintained 

in the adult brain (Supplementary Figure 3.1–3 E and F). Indeed, by qualitative assessment we 

were able to see an approximately 100 % coexpression, with prominent projections marked as 

well (see Figure 3.1–2).  

We thus concluded that the Rx-GFP bicistronic line was suited for our use. 

 

3.1.5.4. Characterisation and validation Tribolium Rx-GFP enhancer trap 

We identified a suitable Tribolium transgenic line in the GEKU base website (# E01101, 

http://www.geku-base.uni-goettingen.de/; Trauner et al., 2009). Insertion had been mapped to 

the upstream region of Tc-rx (Trauner et al., 2009; Supplementary Figure 3.1–2 A). To identify to 

which degree Tc-Rx expressing cells also express GFP we performed co-stainings in adult brains. 

We found that n-ventral Tc-Rx-positive cells were not marked by the line at all (see 

Supplementary Figure 3.1–5) while n-dorsal domains were only partially marked (see 

Supplementary Figure 3.1–5 B). However, by manually checking each GFP expressing cell, we 

found that all cells expressing GFP in the region surrounding the protocerebral bridge, also 

expressed Tc-Rx (Supplementary Figure 3.1–2 B, D). Hence, there were no cells that were marked 

false-positively. Interestingly, there were more GFP expressing cells showing overlap to Tc-Rx 

expression in all other stages of development (Supplementary Figure 3.1–2 E). To ensure that 

Tc-Rx was expressed similar to the wildtype situation, we performed identical immunostainings 

against Tc-Rx and imaging with identical settings in the transgenic line and wildtype vw 

background (Lorenzen et al., 2002; Supplementary Figure 3.1–2 C). We found that differences 
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between conditions were no larger than the differences observed between individuals of the same 

condition. We thus concluded that the Rx-GFP enhancer trap was suitable for further 

experiments. 

 

3.1.5.5. Generation of homozygous stocks of Rx-GFP transgenic lines 

A homozygous stock of the Tribolium Rx-GFP enhancer trap was generated by genotyping 

adult wing tissue (as described in Strobl et al.,  2017; Farnworth et al., in press), with primers 

GEKU-Rx-GFP_wt_fw, GEKU-Rx-GFP_wt_rev, GEKU-Rx-GFP_trans_rev (Supplementary Table 

3.1–2).  

A homozygous stock of the Drosophila Rx-GFP bicistronic line was generated by crossing the 

male offspring (G2) of the G1 cross to female virgins of a w-; wgGla-1/CyO balancer (a kind gift 

by the Wimmer department, University of Göttingen). CyO positive animals (G3) were selected 

and crossed to each other, to create homozygous positive animals (G4) for the transformation 

marker (3XP3-dsRed-SV40). 

Both transgenic lines were homozygous viable. 

 

3.1.5.6. R45F08-GAL4 crosses 

To reveal the overlap of secondary cells of the DM1-3 and 6 lineages marked by the R45F08-

GAL4 line (Jenett et al., 2012; Riebli et al., 2013) with Dm-Rx expressing cells we performed two 

crosses and subsequent immunostainings (Supplementary Figure 3.1–6). 

First, we crossed the R45F08-GAL4 line with a UAS-mcD8::GFP line and investigated 

offspring third instar larvae to visualize the characterized cells and subsequently stained with anti-

GFP and anti-Rx antibodies (Supplementary Figure 3.1–6 A/B). 

Second, to visualize an overlap of Dm-Rx expressing cells and R45F08 labelled cells, we first 

crossed the Drosophila Rx-GFP bicistronic line each separately with R45F08-GAL4 and UAS-

mcD8::RFP. The respective offspring was then crossed to each other. We then dissected 15 brains 

of third instar larvae, stained them with anti-RFP and anti-GFP, screened for the presence of 

RFP and GFP label and imaged double-positive brains (Supplementary Figure 3.1–6 C). 

 

3.1.5.7. Staging of Tribolium and Drosophila animals 

Table 3.1–1 displays all stages and their description included in our study. Particularly pupal 

staging and the late larval stages were determined using time (which allowed us to calculate relative 

times of pupation) and morphology as criteria to confirm the timed staging.  
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Drosophila embryonic stages were determined using the staging of Campos-Ortega and 

Hartenstein (1985) and pupal stages using staging in Bainbridge and Bownes (1981) (Table 1 

displays the most important pupal selection criteria). Eye colouring and morphology were not 

included in staging due to the w1118 background (see 3.1.9.4 Supplementary Material and 

Methods). Information on the length of embryonic development used in Figure 3.1–9 was 

derived from Campos-Ortega and Hartenstein (1985). Length of larval development and 

pupation was measured for our Rx-GFP bicistronic line specifically. 

Tribolium embryonic stages were determined using the staging of Biffar and Stollewerk (2014) 

and for late embryonic stages using staging of Scholten and Klingler (unpublished). Tribolium 

pupal and late larval staging was aided by Ho (1961) and Dippel (unpublished). Information on 

length of embryonic development used in Figure 3.1–9 was derived from Biffar and Stollewerk 

(2014) and Scholten and Klingler (unpublished). Total developmental time was taken from 

Sokoloff (1974). Larval and pupal developmental length was measured for our Rx-GFP enhancer 

trap specifically. 

 

Table 3.1–1: Stages and their definition included in this study.  

 

 

Stage Time (h) Description Time (h) Description

Embryos  variable All staging follows Campos-Ortega and Hartenstein 

1985

 variable Staging to 48 h: Biffar and Stollewerk 2014; >48 h: 

Scholten and Klingler (unpublished)

L1  ≤ 1 after 

hatching

selection after removing any previously hatched 

larvae on apple agar plate

 ≤ 1 after 

hatching

selection by falling through 300 µm gaze sieve on 

which embryos were kept

50 % (mid-) larva 37.5 timing started after selection like for L1, end of L2 

larval development

 ~ 216     

(9 d)

timing started after selection like for L1, 

approximately L4 stage

95 % (late-) larva  70-75 up to event 2 (see Bainbridge and Bownes 1981), 

crawled to top, no movement 

 410-432  

(17-18 d)

last larval stage, stemmata migration started, see 

Ho 1961

0 % pupa 0 up to event 8 (see Bainbridge and Bownes 1981), 

particularly shortened body, white puparium

0 stemmata migration ended (medial position near 

vertex), see Ho 1961

5 % pupa 5 up to event 14 (see Bainbridge and Bownes 1981), 

operculum ridge visible, abdominal gas bubble

7 2 rows of ommatidia, shiny cuticle, see Ho 1961, 

and Dippel (unpublished)

15 % pupa 15 up to event 25 (see Bainbridge and Bownes 1981), 

particularly anterior bubble, expelled armature

21 4 rows of ommatidia, mandible tip sclerotized, see 

Ho 1961, and Dippel (unpublished)

20 % pupa 20 up to event 26 (see Bainbridge and Bownes 1981), 

criteria of 15 % and prominent Malphigian tubules

28 4-6 rows of ommatidia, mandible tip sclerotized, 

see Ho 1961, and Dippel (unpublished)

30 % pupa 30 up to event 27 (see Bainbridge and Bownes 1981), 

criteria of 20 %, yellow body, eyes not included

42 6 rows of ommatidia, mandible tip sclerotized, see 

Ho 1961, and Dippel (unpublished)

50 % pupa 50 criteria of 30 %, otherwise only time 70 7 rows of ommatidia, see Ho 1961, and Dippel 

(unpublished)

adult  ≤ 12 after 

eclosion

eclosed with signs of virgin females (light body 

coloring)

 ≤ 24 after 

eclosion

eclosed with light brown body coloring

Drosophila Tribolium
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3.1.5.8. Specimen fixation and immunohistochemistry 

Methanol fixation of Drosophila embryos was performed following standard protocols 

(Rothwell and Sullivan, 2007). Fixation of Tribolium embryos was based on Schinko et al. (2009a) 

with following modifications: Fixation was performed with 2 ml of fixation buffer PEMS (0.1 M 

PIPES, 2 mM MgCl, 5 mM EGTA, pH = 6.9); we added 180 µl of 37 % formaldehyde (F 1635, 

Merck, Darmstadt, Germany) and fixed embryos between 25 and 32 min; devitellinisation was 

first conducted with a 0.9 µm canula, for older stages (> 40 h) we followed with a 0.8 µm canula. 

Immunohistochemistry of embryos was based on procedures in Buescher et al. (in press), 

with the addition of preceding washes in a descending methanol series (75, 50 and 25 % Methanol 

with PBS-T 0.1 %), followed by two rinse steps and three 10 min washes. 

For all stainings normal goat serum was used as blocking solution (NGS, G9023, Merck, 

Darmstadt Germany, see Table 3.1–2). Fixative for all other stages except for embryos was 4 % 

PFA (wt/vol, paraformaldehyde, (e.g. P6148, Merck, Darmstadt, Germany) in PBS, 130 mM 

NaCl, 7 mM Na2HPO4, 3 mM KH2PO4, Riemensperger et al., 2011). Washing buffer for all stages 

except embryos was phosphate buffer (PB, see Ostrovsky et al., 2013 for recipe). Brains were 

dissected using Dumont No. 5 forceps in ice-cold PB. All steps were performed in 180 µl volume 

in 9-well PYREX™ Spot Plates (ThermoFisher Scientific, MA, USA) on an orbital shaker. 

Protocols were adapted from Riemensperger et al. (2011) and Ostrovsky et al. (2013). 
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Table 2: Immunohistochemistry in stages (excluding embryos) of both species. There are two variations of 

adult stainings. Antibodies were used as in 3.1.9.4 Supplementary Material and Methods except for synapsin. PB 

phosphate buffer (Ostrovsky et al., 2013), T Triton-X-100 with % in PB, PFA paraformaldehyde, NGS normal goat 

serum. 

 

3.1.5.9. Image acquisition, and processing and 3D reconstruction 

If not otherwise specified, imaging was performed at a Leica SP8 confocal microscope 

(Wetzlar, Germany). Objectives used were either a Leica apochromat 20x (NA = 0.75) or a 63x 

HC PL APO CS2 (NA = 1.30) glycerol-immersion objective. DAPI was excited by a Diode laser 

(405 nm), Alexafluor 488 (ThermoFisher Scientific, MA, USA) by an Argon laser (488 nm), 

Alexafluor 555 by a DPSS laser (561 nm) and Alexafluor 647 by a HeNe laser (633 nm). Detection 

was performed with Hybrid detectors and photomultipliers, at an 8-bit depth. Averaging was 

depending on which staining was performed, set on line or frame averaging of 4. Step size was 

set to system optimized values defined by the LASX software. Image size was set between 

1,024 x 1,024 and 2,048 x 2,048 pixels. Images were processed, adjusted for brightness and 

contrast, cropped, merged and rotated using the Fiji software (Schindelin et al., 2012). Maximum 

Preparation steps L1 larvae Larvae Pupae Adults

Fixation 1 h on ice, in 4 % PFA 50 % larva: 1 h on ice, in 4 

% PFA,                       

other: 1.5 h on ice, in 4 % 

PFA

1.5 h on ice, in 4 % PFA 1.5-2 h on ice, in 4 % PFA

Post-fixation 

washes

1 rinse, 3 30 min washes in 

PB-T 0.1 %

50 % larva: 1 rinse, 3-4 30 

min washes in PB-T 0.1 %, 

other: 1 rinse, 3-4 30 min 

washes in PB-T 0.3 %

1 rinse, 3-4 30 min washes 

in PB-T 0.2-0.3 %

I: 1 rinse, 3-4 30 min 

washes in PB-T 0.3 %,       

II: 1 rinse, 3-4 30 min 

washes in PB-T 0.5 %

Blocking o/n at 4°C in 4 % NGS in 

PB-T 0.1 %

o/n at 4°C in 5 % NGS in 

PB-T 0.1 % (50% larva), or 

0.3 % (other)

o/n at 4°C in 5 % NGS in 

PB-T 0.2-0.3 %

I: o/n at 4°C in 5 % NGS in 

PB-T 0.5 %                       

II: 24 h at 4°C in 5 % NGS 

in PB-T 0.3 %

First antibody 4 h at RT in 2 % NGS in PB-

T 0.1 %, Synapsin 1:30 

(Dm), 1:20 (Tc)

4-6 h at RT in 2 % NGS in 

PB-T 0.1 % (50%), 0.3 % 

(other), Dm Synapsin 1:30, 

Tc 1:20-30 

5 h at RT or 40-48 h at 4°C 

in 2 % NGS in PB-T 0.2-0.3 

%, Synapsin 1:25 (Dm), 

1:15 (Tc)

I: 6 h at RT in 2 % NGS in 

PB-T 0.5 %,                       

II: 72 h at 4°C in 2 % NGS 

in PB-T 0.3 %, Synapsin 

1:25 (Dm), 1:15 (Tc)

Post-1st antibody 

washes

1 rinse, 3 30 min washes in 

PB-T 0.1 %

1 rinse, 4 30 min washes in 

PB-T 0.1 % (50%), 0.3 % 

(other)

1 rinse, 4 40 min washes in 

PB-T 0.2-0.3 %

1 rinse, 4 50 min washes in 

PB-T 0.3/0.5 %

Secondary 

antibody

o/n at 4°C in 2 % NGS in 

PB-T 0.1 %

o/n at 4°C in 2 % NGS in 

PB-T 0.1 % (50%), 0.3 % 

(other)

o/n to 24 h at 4°C in 2 % 

NGS in PB-T 0.2-0.3 %

I: 24 h at 4°C in 2 % NGS in 

PB-T 0.5 %                       

II: 48 h at 4°C in 2 % NGS 

in PB-T 0.3 %

Post-2nd antibody 

washes

1 rinse, 1 30 min wash 

including DAPI, 1 rinse, 3 

30 min washes, all in PB-T 

0.1 %

1 rinse, 1 30 min wash 

including DAPI, 1 rinse, 3 

30 min washes, all in PB-T 

0.1 % (50%), 0.3 % (other), 

2 h wash in PB

1 rinse, 1 30 min wash 

including DAPI, 1 rinse, 3 

30 min washes, all in PB-T 

0.2-0.3 %, 2 h wash in PB

1 rinse, 1 30 min wash 

including DAPI, 1 rinse, 4 

30 min washes, all in PB-T 

0.3/0.5 %, 3 h wash in PB

Embedding 

medium

VectaShield H-1000 (Vector 

Laboratories)

RapiClear 1.47 (SUNjin Lab, 

Hsinchu City, Taiwan)

RapiClear 1.47 (SUNjin Lab, 

Hsinchu City, Taiwan)

RapiClear 1.47 (SUNjin Lab, 

Hsinchu City, Taiwan)
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intensity projections and smooth manifold extractions (SMEs; Shihavuddin et al., 2017) to retain 

3D spatial relationships were calculated using Fiji as well (Schindelin et al., 2012). 

3D reconstructions were performed in Amira 5.4.1 (Visage Imaging, Fürth, Germany). We 

created Labelfield data with the same pixel and voxel size resolution as the original data set. We 

then used the Segmentation Editor to identify and create material for each tract and central 

complex neuropils by employing the Wand tool. Subsequent marking was modified for visual 

ease using the grow, fill holes and smooth functions of the Segmentation Editor. We then created 

3D surfaces with the Surface Generator.  

In some cases, projections were too thin to be recapitulated in the 3D surface. For this, where 

we logically inferred a connection of axons that was only faintly marked by the original file, we 

used the Brush tool. 

We only reconstructed the axon connections to certain cell bodies where we were sure that 

they are directly connected. This excluded a few cell bodies from the analysis, particularly in the 

Drosophila adult brain. 
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3.1.9. SUPPLEMENTARY INFORMATION  

3.1.9.1. Supplementary Figures 

 
Supplementary Figure 3.1–1: Generation and validation of the Tc-Rx antibody. A. Alignment (Geneious 

11.1.5, Geneious Alignment) of Rx proteins of Drosophila and Tribolium as well as representative species. The 

conserved homeobox and OAR (O) domains (grey) are present in all proteins. Antigenic regions for the Dm-Rx 

(Davis et al., 2003; Eggert et al., 1998) and the Tc-Rx antibody are displayed in magenta. The Dm-Rx protein was 

shortened for better display (amino acids 1 to 200 and most between 800 and 900 are not displayed). Notice that the 

Drosophila melanogaster (D. melanogaster) antigenic region appears to be absent in Tribolium castaneum (T. castaneum) and 

all other species. B-C. Tc-Rx protein and Tc-rx RNA expression in Tribolium embryos of neurogenesis stages 3 and 

11 (Biffar and Stollewerk, 2014) were depicted (Zeiss LSM510, 40x immersion objective) as maximum intensity 

projections (DAPI for structure as average projection). Anterior is to the top. Animals were mounted dorsal up. The 

signal detected in the antibody staining against Tc-Rx protein (magenta) overlapped to a high degree with the signal 

detected in the in situ hybridization (green). Note that while the protein of Tc-Rx was located in the nucleus, Tc-rx 

RNA was also in the cytoplasm of the cell soma which resulted in a different cellular localisation. D. To validate the 

specificity of the Tc-Rx antibody, we performed a RNAi mediated Tc-rx knockdown. Indeed, Tc-Rx expression was 
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reduced in knockdown embryos. Depicted are three categories of Tc-Rx expression (i.e. Tc-Rx antibody staining 

intensity, magenta, as maximum intensity projections) after knockdown (strong, equalling wildtype, in D i, 

intermediate in Dii, weak in Diii. To accommodate for differences in intensity of staining, a co-staining against 

Invected/Engrailed with the respective antibody was performed. E. 34 RNAi embryos were categorized into the 

three expression intensity groups in a blinded experiment. Wildtype animals showed a high level of expression and 

were mostly grouped in category ‘strong’ with some in category ‘intermediate’. No knockdown animals were grouped 

into the ‘strong’ category, most in ‘intermediate’ and some in ‘weak’ (Fisher‘s exact test, P<0.001). Scale bars 

represent 100 µm. 

 

 
Supplementary Figure 3.1–2: Characterisation and validation of Tribolium Rx-GFP enhancer trap line. A. 

The Tribolium Rx-GFP enhancer trap was taken from the GEKU screen collection (Trauner et al., 2009) where 

enhancer traps were generated by piggyBac-mediated transposition. A 3XP3-EGFP-SV40 cassette randomly inserted 

upstream of the Tc-rx gene in opposite direction (insertion site mapped by Trauner et al., 2009). B. Maximum 

intensity projections of immunostainings against GFP and Tc-Rx in adult brains of the Rx-GFP enhancer trap line. 

The enhancer trap only marked a small subset (approximately 5-10 %) of Tc-Rx expressing cells in the adult. This 

also applies to the n-dorsal region (Bii). However, all GFP expressing cells also expressed Tc-Rx. Coexpression was 

verified manually. C. The introduction of the enhancer trap cassette did not visually influence Tc-Rx expression, as 

domains were highly similar between transgenic Rx-GFP (Bi) and wildtype vermillion-white (vw, Bii) animals, as visualised 

by color-coded maximum intensity projections. Observed qualitative differences in Tc-Rx expression in the 

transgenic or wildtype condition (N=3 each) were approximately as large as the differences between the genetic 

backgrounds. D. A crop of a maximum intensity projection of cells surrounding the adult protocerebral bridge 

(yellow arrowhead, Di) shows the coexpression of GFP (Dii) and Tc-Rx (Diii) in a subset of cells that were 

subsequently used in this study. E. An analogous analysis in young pupal brains of cells surrounding the protocerebral 

bridge (Ei) revealed more GFP expressing cells (Eii) with overlap to Tc-Rx cells (Eiii) than in the adult (D). Scale bars 

in B and C represent 100 µm and in D and E 50 µm. 
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Supplementary Figure 3.1–3: Strategy, generation and validation of Drosophila bicistronic Rx-GFP 

transgenic line. Ai. Strategy of building an Rx-GFP bicistronic line (modified from Farnworth et al., in press). Two 

gRNAs next to the endogenous STOP codon (guide A, brown) and downstream of the Dm-rx 3’UTR (guide B, blue) 

were used. The repair template included a P2A peptide, EGFP, the endogenous region between guide A and B (Dm-

rx 3’UTR and a fraction of intergenic region), and the 3xP3-DsRed-SV40 eye marker, as well as 1 kB homology arms 

flanking the insertion sites. Aii. The resulting transgenic locus formed a common open reading frame of both Dm-rx 
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and gfp with a STOP after gfp. Aiii. Four gRNAs were used in different combinations to generate independent 

transgenic lines. The gRNAs inducing the transgenic line used in this study are marked in bold (guide A and B3). B. 

gRNA sequences and transgenesis statistics for the Drosophila Rx-GFP transgenic line. Ci. Immunostaining of anti-

Dm-Rx (magenta) and anti-GFP (green) in the Rx-GFP transgenic line showed that all visible cells that expressed 

Dm-Rx also expressed GFP, shown in a smooth manifold extension (SME) projection (Shihavuddin et al., 2017) of 

a brain hemisphere of a S16 embryo. The region marked with a dotted line in C i is shown in Cii as a single slice. 

Here, the different cellular localisations are visible. Dm-Rx retained its nuclear localisation, while GFP located to the 

cytoplasm. Hence, the P2A peptide of the inserted construct was functional. D. The transgenic line had normal Dm-

Rx expression, shown by anti-Dm-Rx immunostaining and depth color-coded maximum intensity projection in the 

Rx-GFP line (Di) and the origin wildtype strain w1118 (Dii). Observed qualitative differences in Dm-Rx expression in 

the transgenic or wildtype condition (N=3 each) were approximately as large as the differences between the genetic 

backgrounds. E and F. Dm-Rx and EGFP expression matched in adult brains (see yellow arrowheads for exemplary 

double-positive areas). Maximum intensity projections of synapsin immunostainings (Ei, Fi), GFP (Eii, Fii) and Dm-

Rx (Eiii, Fiii) in an adult Drosophila brain. Anti-synapsin (Ei, Fi) marked brain position. E is n (neuraxis)-ventral and F 

is n-dorsal (Ito et al., 2014). Scale bars in D-F represent 100 µm and in C 25 µm. 

 

 

 

Supplementary Figure 3.1–4: Illustration of the body- and neuraxes in Drosophila and Tribolium brains, as 

seen from a lateral view. The Drosophila (A) and Tribolium (B) brains differ in their orientation within the head. 

While the Drosophila brain is oriented perpendicular to the ventral nerve cord, the Tribolium brain (or specifically the 

cerebral ganglia, excluding the GNG) is oriented more than 90° with respect to the ventral nerve cord and appears 

‘bent’ towards posterior. This leads to discrepancies in the axis description of neuropils such as the AL being anterior 

in Drosophila, while it is more dorsal in Tribolium. Similarly, the PB is posterior in Drosophila but more ventral in 

Tribolium. To facilitate cross-species comparisons, Ito et al. (2014) have suggested to use the neuraxis nomenclature 

which we follow throughout, to make consistent axis statements. In this system, the AL are n-ventral (NV) and the 

PB n-dorsal in both species. Depicted is a simplified schematic of an adult Drosophila central brain (excluding the 

optic lobes) in lateral view including the approximate position of the fused GNG (A). Axis assignment follows Ito 

et al. 2014. The shape of the Drosophila brain and the three neuropils (CX, MB, AL) was generated from the adult 

brain at https://v2.virtualflybrain.org/, while the shape of the Tribolium cerebrum (central brain not fused to the 

GNG, see Ito et al., 2014) and neuropils (B) was generated from a volume-rendered Phalloidin stain (original data 

not shown). The approximate shape and position of the GNG was recreated from Dippel et al. (2016). Abbreviations: 

AL antennal lobes, PB protocerebral bridge, CB central body, NO noduli, MB mushroom body (excluding CA), CA 

calyx, n neuraxis-referring, D dorsal, A anterior, V ventral, P posterior, GNG gnathal ganglia. 
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Supplementary Figure 3.1–5: Conserved expression of Rx protein in the adult brain of Drosophila 

melanogaster (A, C) and Tribolium castaneum (B, D) as well as lineages marked by Rx expression. We 

mapped the marked Rx-positive cells to previously described lineages of the Drosophila brain using locations relative 

to other brain structures and their projection pattern as criterion (Lovick et al., 2013; Wong et al., 2013; 

www.mcdb.ucla.edu/Research/Hartenstein/dbla/index.html and references therein). We tentatively named 

Tribolium cell clusters by using similar locations and projections as compared to the Drosophila atlas, used as guide. A 

list of all lineages with names and descriptions can be found in Supplementary Table 3.1–1. Hemispheres are 

separated by a red dotted line for orientation. Due to the cell body rind expression of Rx, domains and proposed 

lineages could be separated into two fractions, n-ventral and n-dorsal, corresponding to each half of the insects’ 

brains (Ito et al., 2014). For each species, one image stack was used and separated into two fractions. Rx expression 

is displayed by a maximum intensity projection of a sub-stack of an anti-Rx immunostaining (i). Basic anatomical 

structure of the insects’ brains is displayed by a SME projection (Shihavuddin et al., 2017) of synapsin 

immunostaining (ii). On this projection, in the left hemisphere the locations of the proposed lineages are shown 

colour-coded, while on the right hemispheres, basic anatomical structures are annotated that assist understanding 
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differences in domain position between the species (yellow). Abbreviations: VL vertical lobe, ML medial lobe, PED 

peduncle, LAL lateral accessory lobes, mrCBU medial root of the upper division of the central body, dlrFB dorso-

lateral root of the CBU, PB protocerebral bridge, MEF medial equatorial fascicle. Scale bars represent 100 µm. 

 

 

Supplementary Figure 3.1–6: Previously described pointed-positive cells of the central complex are a subset 

of Dm-Rx-positive cells. Displayed is co-localisation of Dm-Rx-positive neural cells and cells under the control of 

R45F08-GAL4 (Jenett et al., 2012; Riebli et al., 2013) shown in brains of Drosophila wandering third instar larvae. A-

Aii and B-Bii: Antibody staining in a cross of the R45F08-GAL4 line and UAS-mCD8::GFP was performed against 

Dm-Rx (depicted in magenta) and GFP (green) to reveal the coexpression of cell bodies of lineages DM1-3/6, 

marked through the R45F08-GAL4 line, and Dm-Rx. Approximately 90% of the R45F08-GAL4 GFP positive cells 

were Dm-Rx-positive as well (A-Aii first half, B-Bii second half of the stack). C-Cii: Antibody staining in animals 

(N=2) of the respective cross from subcrosses of the Rx-GFP line each with R45F08-GAL4 line and the UAS-

mCD8::RFP (SMEs, see Shihavuddin et al. 2017). This resulted in a coexpression of GFP in a Dm-Rx expression 

pattern and RFP under control of R45F08-GAL4. Antibody staining against GFP (cyan) and RFP (red) revealed 

coexpression of both fluorescent proteins in midline crossing projections. Although RFP is membrane-bound and 

GFP cytoplasmic, there were several fascicles showing coexpression of RFP and GFP. This corroborated the high 

degree of overlap of Dm-Rx and DM1-3/6 lineage offspring shown in panels A and B. Scale bars represent 50 µm. 
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3.1.9.2. Supplementary Tables 

Supplementary Table 3.1–1: Proposed lineages expressing Rx in the adult Drosophila (Dm) and Tribolium 

(Tc) brain. Listed are eleven lineages with identifier, name and description relative to the neuroaxis, as well as the 

position in Figure 3.1–1 and Supplementary Figure 3.1–5 and the degree how unequivocally the assignment of their 

stereotypical projections was. Identification of lineages is based on Lovick et al. (2013), Wong et al. (2013), 

https://www.mcdb.ucla.edu/Research/Hartenstein/dbla/index.html, and references therein. Abbreviations: PED 

peduncle, LAL lateral accessory lobes, AVLP anterior ventrolateral protocerebrum, SLP superior lateral 

protocerebrum, SMP superior medial protocerebrum, PB protocerebral bridge, MEF medial equatorial fascicle, CA 

calyx. 

 
  

Lineage 

identifier 

(alternative) Lineage name Description (relative to neuraxis) Fraction

Dm: projections 

identifiable?

Tc: projections 

identifiable?

DALcl1/2 dorso-anterior lateral, centro-lateral 1/2 n-ventro-lateral to PED, n-anterior to LAL n-ventral yes no

DALl1/2 dorso-anterior lateral, lateral 1/2
n-anterior to AVLP, n-ventral and lateral to 

PED
n-ventral yes, DALl1 no

DALv1/3 dorso-anterior lateral, ventral n-ventral to AVLP, lateral to LAL n-ventral no no

DPLal1-3 dorso-posterior lateral, antero-lateral 1-3 lateral to anterior SLP n-ventral partially, DPLal2/3 no

DPLc dorso-posterior lateral, central n-anterior to posterior SLP n-ventral yes no

DAMv1/2 dorso-anterior medial ventral 1/2 n-anterior to SMP n-ventral yes no

DM1 (DPMm1)
dorso-medial 1 (dorso-posterior 

medial, medial 1)

n-anterio-dorsal (Tc)/n-anterio-ventral 

(Dm) and medial to PB
n-dorsal yes yes

DM2/3 (DPMpm1/2)
dorso-medial 2/3 (dorso-posterior 

medial, postero-medial 1/2)
n-dorso-medial to PB n-dorsal yes yes

DM4 (CM4) dorso-medial 4 (centromedial 4) n-posterio-lateral to PB, n-dorsal to MEF n-dorsal yes yes

DM5/6 (CM1/3) dorso-medial 5/6 (centromedial 1/3)
n-posterio-lateral to PB, n-posterio-dorsal 

to MEF
n-dorsal no no

CP2/3 (DL1/2) centroposterior 2/3 (dorsolateral 1/2)
n-posterio-lateral to CA and n-dorsal to 

posterior PED
n-dorsal yes yes
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Supplementary Table 3.1–2: Primer used in this study. For P1 to P12: black writing – annealing part, red – 

overlapping part, green – PAM modification 

  

Name Sequence Purpose

Tc-rx-N_fw ATGGAATCGGACCGTTGTGAAG protein expression

Tc-rx-N_rev CTTGCATCCGTCTCCCTC protein expression

Golden Gate linker sequence fw CCAGGTCTCATGGT protein expression

Golden Gate linker sequence rev GGGGGTCTCCTCGAGTCA protein expression

GG_ccdB_F ACATGATTGCGGCGTTGCC KNE001 vector

GG_ccdB_R TGTCTCTCGAGGAGACCGTCGACCTGCAGACT KNE001 vector

GEKU-Rx-GFP_wt_fw AGTTGCGAGATGTGCGAGT homozygous stock generation

GEKU-Rx-GFP_wt_rev CGTCCAGACTTGCCACTTTG homozygous stock generation

GEKU-Rx-GFP_trans_rev CTCTAAAATAAGGCGAAAGGC homozygous stock generation

Tc-rx-probe-fw ATGGAATCGGACCGTTGTGAAGA full length rx probe

Tc-rx-probe-rev GCAGTCCTTTGGTGATGTTCTCC full length rx probe

I_P1_Back-F1
CCGGATGGCTCGAGTTTTTCAGCAAGATCACATCG

CCTGGGATGCG
rx bicistronic construct

I_P2_Rev_F1 GACAATGGATACCATTCCCTTGTTCAGG rx bicistronic construct

I_P3_F1-F2
CCTGAACAAGGGAATGGTATCCATTGTCGGGTCCG

GCGCCACCAAC
rx bicistronic construct

I_P4_Rev_F2-F3
GTGAACAGCTCCTCGCCCTTGCTCACCATGGGGCC

GGGGTTCTCCTCC
rx bicistronic construct

I_P5_F2-F3
GACGTGGAGGAGAACCCCGGCCCCATGGTGAGCAA

GGGCGAGGAG
rx bicistronic construct

I_P6_Rev_Back-F3
AGAATATTGTAGGAGATCTTCTAGAAAGATCTACT

TGTACAGCTCGTCCATGCCGAG
rx bicistronic construct

II_P7_Back-F4
CCGGATGGCTCGAGTTTTTCAGCAAGATCGTTAGT

CGGTTCCTAGCTAAGTG

rx bicistronic construct, PAM 

of guide A modified

II_P8_Rev_F4-F5
CTCTAATTGAATTAGATCACATACGATTAGTATAA

CAGATAAGCATTCC

rx bicistronic construct, PAM 

of guides B1-3 modified

II_P9_F4-F5
GCTTATCTGTTATACTAATCGTATGTGATCTAATT

CAATTAGAGACTAATTCAATTAGAGC

rx bicistronic construct, PAM 

of guides B1-3 modified

II_P10_Rev_F5-F6
CATTAAGTAGCCTTGGATACATTGATGAGTTTGGA

CAAAC
rx bicistronic construct

II_P11_F5-F6
GTCCAAACTCATCAATGTATCCAAGGCTACTTAAT

GAGTTGATTAATAAG
rx bicistronic construct

II_P12_Rev_Ba-F6
GAATATTGTAGGAGATCTTCTAGAAAGATGTTCTT

TCAATTTGTAAGACATAGGTTTTTAG
rx bicistronic construct

III_P13_Rev_F3 CTACTTGTACAGCTCGTCCATGCCGAG rx bicistronic construct

III_P14_F3-F4
CTCGGCATGGACGAGCTGTACAAGTAGCGTTAGTC

GGTTCCTAGCTAAGTG
rx bicistronic construct

DmRx_CDS_3'UTR_fw CGTCTCTGCCACTAATTAGACAGC
rx SNP sequencing

DmRx_CDS_3'UTR_rev GAATAGACTTCTTCGTCAGCCG
rx SNP sequencing

DmRx_3'UTR_int-region_fw CGTGTTGTAAGTACATATTTCTGAGGCAG
rx SNP sequencing

DmRx_3'UTR_int-region_rev CTTGAGGAGCGAGGCACAC
rx SNP sequencing

DmRx_trans-ver_fw GTCGCCGCAGAACCTGAG
rx molecular screening

DmRx_trans-ver_rev CATGGAGCCAGTAGTTCATGC
rx molecular screening

DmRx_trans-ver_nested_fw CATAGAACTGCTCGATGTGG
rx molecular screening

DmRx_trans-ver_nested_rev GATTCAACTGCGGCTACTGC
rx molecular screening

DmRx_trans_seq_Ct_fw GACTGGCAAGGGTTCGAG
rx molecular screening

DmRx_trans_seq_iRe_rev CATGTGAGTCCTTTGTTTGC
rx molecular screening
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Supplementary Table 3.1–3: List of primary and secondary antibodies as well as dyes used in this study. 

  

Antibody name Antigen / Immunogen Origin species Source Dilution

anti-Dm-Rx Drosophila Rx N-terminal fragment rabbit gift from Dr. Uwe Walldorf 

(Saarbrücken, Germany), Davis et 

al. 2003

1:1000

anti-Tc-Rx Tribolium  Rx N-terminal fragment guinea pig this paper 1:750

anti-Engrailed 4D9 Engrailed/invected (Immunogen: Invected (C-

terminal two-thirds of the invected protein); 

recombinant)

mouse gift from Dr. Marita Buescher 

(Göttingen, Germany), DSHB

1:10

chk-anti-GFP GFP (Aequorea victoria ) chicken ab13970, Abcam (Cambridge, UK), 

used in Supplementary Figure 3 

and 6

1:1500

rab-anti-GFP GFP (Aequorea victoria ) rabbit A11122, ThermoFisher 

Scientific/Invitrogen (MA, USA)

1:1000

anti-RFP RFP (full length) rabbit ab62341, Abcam (Cambridge, UK) 1:1000

anti-Synapsin Synapsin (Immunogen: GST-Synapsin-GST 

fusion protein expressed in E. coli and 

purified by glutathione affinity)

mouse gift from Dr. Christian Wegener 

(Würzburg, Germany), DSHB

1:15-1:40

anti-α-acetylated Tubulin α-acetylated Tubulin (Immunogen: 

acetylated tubulin from the outer arm of 

Strongylocentrotus purpuratus (sea urchin)

mouse T7451, MERCK/Sigma-Aldrich 

(Darmstadt, Germany)

1:40

anti-rab-Alexafluor 488 rabbit (Gamma Immunoglobins Heavy and 

Light chains)

goat A11070, ThermoFisher 

Scientific/Invitrogen (MA, USA)

1:1000 embryos, 

1:500 other stages

anti-chk-Alexafluor 488 chicken (Gamma Immunoglobins Heavy and 

Light chains)

goat A11039, ThermoFisher 

Scientific/Invitrogen (MA, USA)

1:1000 embryos, 

1:500 other stages

anti-mou-Alexafluor 555 mouse (Gamma Immunoglobins Heavy and 

Light chains)

goat A21425, ThermoFisher 

Scientific/Invitrogen (MA, USA)

1:1000 embryos, 

1:500 other stages

anti-rab-Alexafluor 555 rabbit (Gamma Immunoglobins Heavy and 

Light chains)

goat A21430, ThermoFisher 

Scientific/Invitrogen (MA, USA)

1:1000 embryos, 

1:500 other stages

anti-rab-Alexafluor 647 rabbit (Gamma Immunoglobins Heavy and 

Light chains)

goat A21245, ThermoFisher 

Scientific/Invitrogen (MA, USA)

1:1000 embryos, 

1:500 other stages

anti-gp-Alexafluor 647 guinea pig (Gamma Immunoglobins Heavy 

and Light chains)

goat A21450, ThermoFisher 

Scientific/Invitrogen (MA, USA)

1:1000 embryos, 

1:500 other stages

Dye name Source Dilution

DAPI  D1306, ThermoFisher Scientific (MA, USA) 1:1000
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Supplementary Table 3.1–4: Drosophila and Tribolium stocks used in this study.  

  

Species Stock name
Stock 

Number
Source Description

Rx-GFP - this paper Genotype: w1118, 3XP3-dsRED, rx GFP ; founder 

374.2; primary line

w1118 e.g. 3605 e.g. Bloomington Drosophila Stock 

Center

used for control experiments (Supplementary Figure 3)

Act5C-Cas9, Lig4[169] 58492 Bloomington Drosophila Stock 

Center

Zhang et al. 2014, Cas9 line used for generation of Rx-

GFP bicistronic line (Supplementary Figure 3)

w1118; wgGla-1/CyO - Wimmer Department, Göttingen (gift) used to generate homozygous stocks of the Rx-GFP 

bicistronic line (Supplementary Figure 3)

R45F08-Gal4 49565 Bloomington Drosophila Stock 

Center

Jenett et al. 2012, Riebli et al. 2013; used to 

determine overlap of lineages Dm1-3/6 to Rx 

expressing cells (Supplementary Figure 6)

20xUAS-mCD8::GFP 32194 Bloomington Drosophila Stock 

Center

Chromosome 3, used to determine overlap of lineages 

Dm1-3/6 to Rx expressing cells (Supplementary 

Figure 6)

UAS-mCD8::ChRFP 27392 Bloomington Drosophila Stock 

Center

Chromosome 3, used to determine overlap of lineages 

Dm1-3/6 to Rx expressing cells (Supplementary 

Figure 6)

Rx-GFP E01101 GEKU-base Trauner et al. 2009, primary line

vw - Lorenzen et al. 2002 vermilionwhite, Lorenzen et al. 2002, used for control 

experiments (Supplementary Figure 2)
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3.1.9.3. Supplementary Results 

3.1.9.3.1. Mapping of Rx-positive cell groups to known lineages of the insect adult brain 

We aimed at determining to which previously described lineages the Rx-positive cells 

belonged. The lineages in Drosophila had been described in Lovick et al. (2013), Wong et al. (2013) 

and the accompanying atlas. We reassigned them in the Drosophila brain and transferred the 

Drosophila knowledge to the Tribolium brain. Assignments of conserved Rx expressing cell groups 

in the cell body rind in both species’ brains were based on two aspects. First, synapsin staining 

revealed common synapse-rich neuropils as well as synapse-absent tracts and fascicles that can 

be homologized between the two species. With this, domains of the Tribolium brain could be 

linked to domains and known lineages in Drosophila. Second, since Rx-positive lineages were 

defined by stereotypical projections, an additional antibody staining against GFP in the 

characterized Rx transgenic lines (Supplementary Figures 3.1–2 and 3.1–3) revealed some lineage-

typical projections. Therefore, projections helped in some cases to verify lineage identity beyond 

cell body position (original stacks are deposited in the Supplementary data). However, for most 

lineages, projections were not distinguishable. We identified eleven lineages in both species that 

cover most of the Rx expressing cell groups in the adult brain (DALcl1/2, DALl1/2, DALv1/3, 

DPLal1-3, DPLc, DAMv1/2, DM1 (DPMm1), DM2/3 (DPMpm1/2), DM4 (CM4), DM5/6 

(CM1/3), CP2/3 (DL1/2, Supplementary Figure 3.1–5, Supplementary Table 3.1–1): In the 

Tribolium brain, all n-ventral lineages were not marked by projections through our transgenic line. 

They have been identified due to the basic anatomical position of the cell bodies that was very 

similar to Rx expressing lineages in the Drosophila brain. In the Drosophila Rx-GFP line all n-ventral 

lineages were – if at all – only faintly marked by projections. Visible were projections (see 

Supplementary Table 3.1–1) of the lineage group DALc1/2 that projected n-posterior to the 

peduncle into the central complex, the likely dorsal tract of the DPLal2/3 lineage that projected 

into the superior lateral protocerebrum, the short projection of the DPLc1 sublineage and the 

dorso-medial projection of the DAMv1/2 lineage into the superior medial protocerebrum (see 

original data stacks). In the n-dorsal fraction, both projections of hemilineages of the CP2/3 

lineage were visible in both species, one reaching n-anterior over the peduncle and projecting into 

the superior medial protocerebrum, one starting n-posterior of the peduncle and projecting n-

ventro-anterior to it. With the available tools, we could not determine homology of lineages 

further. To verify this tentative lineage identification, based mostly on cell body location, specific 

transgenic lines need to be generated and subsequent antibody stainings need to be performed, 

particularly in Tribolium, to further reveal the characteristic projection patterns of each lineage. 
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3.1.9.3.2. Description of Rx-positive subgroups of DM1-4 lineages in Tribolium and 

Drosophila 

In addition to the general descriptions of cell body location and projections on a lineage level 

(Figure 3.1–1, 2), DM1-4 lineages were previously divided into sub-groups and single tracts 

(Wong et al., 2013).We wanted to describe which of those sub-groups and tracts are visible in the 

Drosophila adult brain and describe analogous sub-groups and tracts in Tribolium. These groups 

were differently marked in the imaging lines in both species due to the different design of the 

transgenic lines (see Supplementary Figures 3.1–2 and 3.1–3). Note that the projections of 

individual tracts or neurons in the respective neuropils were hard to distinguish because a high 

number of cells were marked. 

In Drosophila, the DM4 Rx expressing cell group consisted of three subgroups, one localized 

n-anterior, and two n-posterior to the lateral tip of the PB. They projected axons to form a 

common projection as part of the MEF which bifurcated near the midline, where parts went into 

a n-ventral midline crossing projection n-ventral to the whole CX. This projection might be 

partially shared by the upper intermediate tract of CM3 or the dorsal tract of CM1 (Wong et al., 

2013). The other part projected mainly into the CBU (‘intermediate tract; Wong et al., 2013). The 

DM3 Rx expressing group consisted of two groups, one more n-anterior, one n-posterior to the 

lateral side of the PB. The group’s axons formed parts of the dlrCBU together with DM2 in the 

’anterior-ventral tract’ (Wong et al., 2013). Parts of these cells’ axons projected into the n-dorsal 

plexus (also CBUppl, or FBppl, see e.g. Riebli et al., 2013), while substantial parts went in a more 

n-ventro-posterior part together with DM4. DM2 consisted of three groups, two n-anterior (one 

of which is more n-dorsal), one n-posterior to the PB. They projected together into the n-dorsal 

plexus of CBU (’anterior-ventral tract’; Wong et al., 2013), slightly more n-dorsal than DM3. The 

projection bifurcated, one more n-anterior, one more n-posterior. The DM1 group consisted of 

three subgroups, all n-anterior to the protocerebral bridge. One more n-ventral and slightly more 

lateral, two were more n-dorsal, of which one was n-anterior to the other. The n-ventral group 

formed a separate more lateral projection (potentially the ‘anterior descending tract’; Wong et al., 

2013) in comparison to the common projection of the other group (‘anterior-ventral tract’; Wong 

et al., 2013). 

In Tribolium, DM4 consisted of two groups localized n-anterior to the PB tip and one n-

posterior to the PB tip. The bifurcation of the tract from both groups was similar to Drosophila, 

and they thus could also share a projection with a CM3 tract. A division into an n-anterior and n-

posterior part was similar to Drosophila. A third group present in Drosophila was not marked or 

was not present in Tribolium. DM3 consisted of two main groups, one more n-anterior to the PB, 
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one n-posterior to the PB, an arrangement similar to Drosophila. They projected together with 

DM2 and 1 into the n-dorsal fraction of the CBU, while sharing the dlrCBU tunnel with DM3, 

with projections very similar to Drosophila. Cell bodies of DM2 were difficult to visualize but were 

slightly more medial to the DM3 belonging group. Hence approximate position was similar, but 

a subdivision in groups was hardly possible. Cell bodies of DM1 were sparse, with some n-

anterior and some n-posterior to the protocerebral bridge, like Drosophila without a subdivision 

into groups possible. The projection into the CBU was very similar. Note that, in general, cell 

groups of DM1-3 were n-dorsal, and not like in Drosophila n-anterior to the PB. 
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3.1.9.4. Supplementary Material and Methods 

3.1.9.4.1. KNE001 cloning and map (Eckermann, in preparation) 

The vector KNE001 (pET SUMO-GoldenGate) was based on pET SUMOadapt (Bosse-

Doenecke et al., 2008; modified from the pET SUMO expression vector; Hanington et al., 2006; 

Mossessova and Lima, 2000; material transfer agreement with Cornell University, U.S.A., 

ThermoFisher Scientific, MA, USA). The vector was extended by MSC-adapter sequences, 

containing most importantly BsaI type IIS recognition sites, allowing residue-free cloning of the 

CDS of interest in-frame with the ATG::6xHis::SUMO open reading frame, Chloramphenicol 

resistance and a ccdB death cassette (Bernard et al., 1994; Engler et al., 2008). By adding 

GoldenGate-linker sequences that contain BsaI cleavage sites (which do not equal the enzyme’s 

recognition site) to the gene-specific forward and reverse primer, pET SUMO-GoldenGate and 

the CDS of in our case the N-terminal part of Tc-Rx can be cut and ligated into a product lacking 

the original restriction sites. The ccdB cassette in the original KNE001 vector ensured growth in 

successfully transformed colonies only. 

For these modifications, a fragment containing lac promoter, CAT gene and ccdB death 

cassette was amplified with primers GG_ccdB_F and GG_ccdB_R (containing a XhoI-site) from 

pTALEN(NI)v2 (gift from Feng Zhang, Addgene Plasmid # 32189, Sanjana et al., 2012). Second, 

a NotI/XhoI digestion resulted in a 1.5 kb NotI_lacP-CAT_ccdB_XhoI fragment, which was 

ligated in the NotI/XhoI linearized pET SUMOadapt. Third, the new pET SUMO-GoldenGate 

was transformed in ccdB Survival™ 2 T1R Competent Cells (ThermoFisher Scientific, MA, 

USA). 
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Vector map 1: KNE001 vector map (displayed with Geneious 11.1.5, https://www.geneious.com). 
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3.1.9.4.2. MF01 cloning and map 

In the construct, we included an insect codon-optimized version of the P2A peptide (Kim et 

al., 2011), with following sequence: 

GGGTCCGGCGCCACCAACTTCTCCCTGCTGAAGCAGGCCGGCGACGTGGAGGAGAACCCCG

GCCCC 

 

 

Vector map 2: MF01 vector map (displayed with Geneious 11.1.5, https://www.geneious.com). 
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3.2. Manuscript 2: The red flour beetle as model for comparative 

neural development: Genome editing to mark neural cells in 

Tribolium brain development 

This manuscript is the methodological link between the main topic brain evolution and 

development and the new direction we propose. Through the generation of transgenic lines via 

genome editing we can mark genetic neural lineages, and subsequently, compare the development 

of marked cells. Thus far, Gilles et al. (2015) have shown that CRISPR in Tribolium castaneum is 

functional in several publications with specific applications. We complement this work by 

providing a manual on how to generate suitable CRISPR transgenic lines in Tribolium in a detailed 

fashion. With this work, we hope to provide a protocol that facilitates generation of CRISPR 

lines in Tribolium and possibly also non-model organisms that subsequently can be used to 

generate new insights into brain evolution. 

 

Authors 

Max S. Farnworth*, Kolja N. Eckermann, Hassan M. M. Ahmed, Dominik S. Mühlen, Bicheng 

He, Gregor Bucher* 

* = corresponding authors 

 

Status 

in press in Brain Development: Methods and Protocols, Second Edition (Springer Nature) 

 

My contributions 

- Conceptualisation of the method1 

- Writing of the manuscript2 

- Generation of data on which the method and protocol is based3 

- Generation of figures4 

 

1 = together with KNE, HMMA, GB 

2 = together with KNE, HMMA, DSM, GB 

3 = together with DSM, BH 

4 = together with KNE  
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3.2.1 ABSTRACT  

With CRISPR/Cas (Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR-

associated) scientists working with Tribolium castaneum can now generate transgenic lines with site-

specific insertions at their region of interest. We present two methods to generate in vivo imaging 

lines suitable for marking subsets of neurons with fluorescent proteins. The first method relies 

on homologous recombination and uses the self-cleaving 2A peptide to create a bicistronic 

mRNA. In such lines the target and the marker proteins are not fused but produced at equal 

amounts. This work-intensive method is compared with creating gene-specific enhancer traps 

that do not rely on homologous recombination. These are faster to generate but reflect the 

expression of the target gene less precisely. Which method to choose strongly depends on the 

aims of each research project and in turn impacts of how neural cells and their development are 

marked. We describe the necessary steps from designing constructs and guide RNAs to 

embryonic injection and making homozygous stocks. 
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3.2.2 INTRODUCTION  

3.2.2.1 The red flour beetle as model for brain development and evolution 

The brain is among the most complex structures of an organism and understanding its 

development has been a major challenge in developmental biology. highly advanced model 

systems with their plethora of tools and resources are spearheading this research and these 

ongoing efforts have been revealing basic principles of neural development of both 

deuterostomes and protostomes with the dipteran Drosophila melanogaster being the model for 

arthropods (Doe, 2017; Perry et al., 2017; Urbach and Technau, 2004). Another major enigma in 

the field is the developmental basis of the evolution of brain diversity (Arendt et al., 2016; 

Hartenstein and Stollewerk, 2015). In insects, for instance, the basic neuropil structure is highly 

conserved, but there is great variety of absolute brain size, relative size and shape of homologous 

neuropils (el Jundi and Heinze, 2016), in addition to heterochronic development (Koniszewski et 

al., 2016). In order to study evolutionary differences on a genetic and developmental level within 

insects a comparison of Drosophila to another insect species is required. Such a species should 

provide the tools for functional genetic work and transgenic approaches and as many resources 

as possible. While no insect species is in sight that will match the resources and the tool kit of 

Drosophila melanogaster, the red flour beetle Tribolium castaneum fulfils all necessary requirements. 

RNAi is strong and systemic such that all cells are targeted and the effect is transmitted to the 

offspring (Brown et al., 1999; Bucher et al., 2002; Tomoyasu and Denell, 2004). A genome-wide 

RNAi screen is being performed (Schmitt-Engel et al., 2015), transgenesis is well established 

(Berghammer et al., 1999) and enhancer trap screens have been performed (Lorenzen et al., 2007; 

Trauner et al., 2009). Recently, genome editing via CRISPR/Cas9 has been established in this 

species (Gilles et al., 2015). 

Given this availability of robust tools for functional genetics in Tribolium, we think that this 

beetle has the potential to become the main comparative organism for studying the mechanisms 

of brain diversification in insects. One approach is to mark homologous cells in both species and 

compare similarities and differences throughout development (Koniszewski et al., 2016). We 

want to elaborate here on the possibilities of CRISPR/Cas to extend the Tribolium toolkit for 

brain development and evolution research. 

For protocols about immunostaining and in situ hybridisation of embryonic, larval and adult 

brains in Tribolium please consult respective chapters in this book. 
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3.2.2.2 Using transgenic lines to study Tribolium castaneum brain 

development 

In order to study the development of the Tribolium brain, subsets of neural cells need to be 

visualized. Of particular use is the visualization of whole neural cells including soma, projections 

and fine arborizations. In Drosophila, extensive enhancer trap screens (Hayashi et al., 2002; 

Mollereau et al., 2000; O’Kane and Gehring, 1987) have created collections of transgenic lines 

where the expression of genes and the respective anatomical structures are marked with 

expression of fluorescent proteins. In addition, large collections of lines have been generated 

where markers are under the control of specific enhancers and promotors (Pfeiffer et al., 2008). 

Subsequent immunostaining (e.g. Wu and Luo, 2006) or live-imaging (e.g. Jin et al., 2018) can 

generate fascinating insights into neural morphology and development. 

An enhancer trap screen has been performed in Tribolium castaneum and some transgenic brain 

imaging lines have become available (Koniszewski et al., 2016; Trauner et al., 2009). However, 

the collection is comparably small such that transgenic lines suited for individual research projects 

will in many cases have to be generated. 

Before the advent of CRISPR/Cas Tribolium transgenic lines were generated by enhancer 

trapping (Trauner et al., 2009) or by insertion of constructs containing a gene’s regulatory regions 

(Koniszewski et al., 2016). In both cases the genetic construct is randomly integrated into the 

genome by transposon-mediated mutagenesis (Berghammer et al., 1999). In case of enhancer trap 

experiments, a construct devoid of enhancers, but comprising a basal promoter and reporter gene 

jumps randomly into a gene locus. Because of the proximity, the enhancers that control the 

expression of that gene start to regulate the reporter gene as well. In case of genes involved in 

brain development  neural expression patterns are observed (Trauner et al., 2009). An alternative 

approach is to identify a gene of interest (GOI) and include parts of the regulatory region of this 

GOI in front of a reporter gene and let it integrate randomly (Eckert et al., 2004; Koniszewski et 

al., 2016). If functional enhancers are included in the construct, expression is at least partially 

similar to the one of the GOI. In both approaches, position effects are a major issue (John et al., 

2016; Wilson et al., 1990). Depending on where the construct is inserted, reporter gene expression 

can be influenced by additional enhancer elements and/or loose regulation by others. In case of 

reporter constructs, only parts of the regulatory region are usually included leading to loss of 

important enhancers besides position effects. As consequence, the marker gene expression 

usually does not precisely reflect the GOI’s expression.  

CRISPR/Cas mediated genome editing can be used to in two ways to mark neural cells in 

Tribolium: First, enhancer trap constructs can specifically be targeted to loci of genes with 
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interesting neural expression obviating the need of time-consuming random screens. Second, 

homologous recombination allows engineering transgenic lines where the reporter is encoded by 

the same mRNA as the GOI. It therefore exactly mirrors GOI expression. 

 

3.2.2.3 CRISPR/Cas 

CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR-associated) 

loci are repetitive elements that are part of the bacterial and archaeal adaptive immunity system 

(Jinek et al., 2012). They contain CRISPR-associated (Cas) genes that encode for endonucleases. 

One of those genes encodes for Cas9 which is part of the type II adaptive immunity response. 

This system is most widely exploited in genome editing, because it only requires one Cas protein, 

making the system more easy to use than type I and III (Hsu et al., 2014). The second major part 

of CRISPR loci are CRISPR arrays. They consist of repeat sequences and spacers which vary in 

sequence and correspond to foreign genetic elements (protospacers) of e.g. phages (Jinek et al., 

2012). These arrays are transcribed as single RNA and further processed to CRISPR RNAs 

(crRNAs) (Hsu et al., 2014). Associated trans-activating CRISPR RNAs (tracrRNAs) hybridize 

with the repeat sequences, are cleaved to include only one spacer sequence per duplex which 

subsequently form a complex with the Cas9 protein (Hsu et al., 2014). This active complex is also 

referred to as chimeric RNA or guide RNA and uses the spacer sequence to bind to 

complementary DNA and the Cas9 protein cuts the foreign DNA three base pairs upstream of 

the PAM (protospacer adjacent motif) which is a nucleotide triplet specific for each Cas protein. 

The resulting double strand breaks (DSBs) can be repaired by two cellular repair mechanisms. 

The first mechanism is the error-prone non-homologous end joining (NHEJ). here, free DNA 

ends are fused often resulting in indels (insertion-deletions) that frequently cause frameshift 

mutations and gene disruption. Importantly, besides indels, available linear DNA fragments can 

be inserted during NHEJ repair as well. The second mechanism is homology-directed repair 

(HDR) where the DSB is repaired using homologous sequences as template such that indels are 

avoided.  

The CRISPR/Cas9 system has been modified to edit genomes of diverse species at specific 

locations (Doudna and Charpentier, 2014; Gratz et al., 2013; Jinek et al., 2012) including Tribolium 

(Gilles et al., 2015). Genome editing can on one hand be used to generate mutations of a specific 

gene or to remove whole genes or other DNA elements. On the other hand, directed insertion 

of linear DNA fragments at specific loci by NHEJ is feasible. In addition, HDR allows tailoring 

genetic modifications with single base precision. hence, gene loci can be modified in multiple 
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ways including imaging lines suitable for neurodevelopmental research and other purposes (Gilles 

et al., 2015; Gratz et al., 2013; Hsu et al., 2014; Jinek et al., 2012). 

 

3.2.2.4 Two major strategies to generate imaging lines using CRISPR/Cas9 

In this chapter we highlight two strategies to make transgenic lines suitable for 

neurodevelopmental research in Tribolium. The first approach is the generation of enhancer traps 

in selected loci by NHEJ. Technically, this is the simpler approach, but the resulting reporter 

expression may lack precision. The second approach consists of the generation of bicistronic 

reporter lines using HDR. While the design is more demanding the reporter will reflect the 

expression of the targeted gene with high precision. The transformation efficiencies appear to be 

in a similar range in both approaches (Johannes Schinko, TriGenes, personal communication). 

Specifically for HDR observed rates (i.e. number of positive G0 founders of fertile injected 

animals) are 0.5 % (Johannes Schinko, TriGenes, personal communication) and 0.65 % (Rylee et 

al., 2018). Hence, we strongly advise to inject high numbers of embryos to counteract the 

relatively low rates of integration. 

 

3.2.2.5 Prerequisite: Selection of the gene of interest 

Depending on the cells that one would like to mark, the GOI could for instance be a neural 

differentiation gene that marks certain cell types, e.g. an enzyme involved in the production of 

certain neurotransmitters. When using such differentiation markers, the expression of the 

respective reporter is expected to emerge rather late in development, i.e. during cell 

differentiation. Alternative GOIs are neural patterning genes that mark certain neuroblasts 

and/or neuroectodermal regions and later subsets of neural cells (Koniszewski et al., 2016). Here, 

reporter expression is expected both early in embryogenesis and later in the differentiated brain 

reflecting both early and late functions of such transcription factors. Due to the dynamics of 

patterning gene expression, the loss of expression in subsets of cells at certain stages might be 

observed as well. 

 

3.2.2.6 Gene-specific enhancer traps via NHEJ: 

3.2.2.6.1 Selecting the insertion sites within the GOI locus 

The first strategy exploits NHEJ to generate enhancer traps in the regulatory region of a gene 

of interest (Trauner et al., 2009). Sites of insertion can greatly influence reporter gene expression. 

Therefore, mindful choice of target sites is crucial. The exact location of the insertion within the 
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locus of the GOI is defined by the DSBs which depends on appropriate guide RNAs. A mutation 

of the GOI might interfere with proper brain development or morphology, so that the insertion 

should not interrupt exons. Likewise, disruption of regulatory elements should be avoided, 

because these may lead to a mutant phenotype as well. As regulatory elements are difficult to 

predict based on DNA sequence, data on putative enhancers based on Faire or ATACseq 

experiments might be used to further exclude insertion sites (Dönitz et al., 2018, 2015; Lai et al., 

2018). Unfortunately, it is unpredictable what location of an insertion will produce a good 

enhancer trap. In previous screens a large portion of enhancer traps identified was located 

upstream of the transcription start site (TSS) or in the first intron (Trauner et al., 2009; Häcker et 

al., 2003) reflecting the predominant location of enhancers around the TSS (Kvon et al., 2014). 

However, insertions downstream of the polyA signal are producing enhancer trap patterns as 

well. Given these uncertainties, it is recommended to design guide RNAs for at least two to three 

different insertion sites per GOI and produce independent lines for each. Note that gene 

annotations found on genome browsers (e.g. J-Browse at iBeetle-Base http://ibeetle-base.uni-

goettingen.de/jbrowse/) were generated automatically and may contain errors. Hence, the 

annotation needs to be checked manually and in case of doubt, the TSS needs to be identified 

e.g. by RACE reactions. 

 

3.2.2.6.2 Generation of the enhancer trap construct 

Depending on needs, enhancer trap constructs to be inserted may have different designs. For 

imaging, the construct must contain a reporter gene, e.g. encoding EGFP (or a transactivator like 

GAL4; Schinko et al., 2010) under the control of a basal promotor. A basal promoter is a 300-

400 bp region around the TSS which enables the binding of the polymerase but does not initiate 

transcription on its own (Figure 3.2–1A). Upon insertion into the genome, close-by enhancers 

will activate transcription from that promoter. In Drosophila, the basal heat shock promoter (bhsp) 

has been widely used in constructs and enhancer trap screens and a respective Tribolium bhsp has 

been successfully tested for that purpose (Schinko et al., 2012). Sequences of core promoters 

influence the interaction with enhancer elements modulating the expression of the reporter 

(Pfeiffer et al., 2008; Smale and Kadonaga, 2003). hence, using respective core promoters from 

neural genes might be an option. However, each new core promoter under consideration has to 

be functionally tested first. Next, the construct needs a transformation marker (Figure 3.2–1A) 

allowing for the identification of the few transformants between hundreds or thousands of non-

transformed animals. The currently best option for brain imaging is the use of the 3XP3-Tc-

vermilion marker which rescues the white eyes of the Tribolium vermilion white mutation to black eyes 
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(Lorenzen et al., 2002). This marker is easy to screen without epifluorescence and does not 

interfere with fluorescent brain imaging. Note that the artificial 3XP3-EGFP marker often used 

as transformation marker in beetles does not only drive expression in the eyes, but also in glia 

cells (Koniszewski et al., 2016). hence, if a fluorescent eye marker is used one has to choose a 

fluorophore such that overlap with the reporter protein is minimized. 

Importantly, the construct needs to be linearized in order to be inserted into a double strand 

break (Figure 3.2–1A). This can be facilitated by flanking the construct with sequences that are 

targeted by additional guide RNAs that do not match the genome of Tribolium. Previously tested 

guide RNA sequences from other species are a good option. A guide RNA targeting the ebony 

locus from Drosophila was successfully tested (Klingler, personal communication and own 

experience), although an alternative target site to Dm-yellow was also used previously and is an 

alternative (Klingler, personal communication). 

 

 

Figure 3.2–1: Strategy to generate gene-specific enhancer traps via CRISPR-based NHEJ. A. The repair 

template contains an enhancer trap cassette consisting of a basal promotor (bhsp68), a sequence encoding for EGFP 

and a SV40 3’UTR as termination sequence. The construct also contains an eye marker consisting of a 3XP3 

promotor and the Tc-v gene and is oriented in the opposite direction so that the SV40 3’UTR can terminate 

transcription for both genes. A Dm-ebony sequence facilitates linearization of the construct upon Cas9 activity, when 

a Ribonucleoprotein (RNP) complex is formed in vivo. B. For insertion at a specific site of the gene locus an RNP 

is formed in vivo which contains a guide RNA sequence that mediates an exemplary cut upstream of the transcription 

start site of the targeted locus (blue scissor). In parallel experiments, insertions in the first intron and downstream of 

the GOI should be used (depicted as grey scissors). C. During the repair of the DSB in the genome the entire linear 
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enhancer trap construct including the backbone is integrated into the genomic locus at the DSB site. It can be 

integrated in both directions. 

 

Such a construct has been cloned and used successfully for generating a number of enhancer 

traps of neural cells in Tribolium and is available from the authors and in the future via Addgene. 

It contains the abovementioned components, but in addition to EGFP drives the Cre 

recombinase in the same pattern. Judging from our still limited experience we tend to believe that 

simply linearizing the plasmid close to the basal promotor of the construct may be more efficient 

than cutting out the construct at both sides. The disadvantage of simple linearization is that the 

plasmid-backbone is still in the genome and might generate an artificial situation at the locus. 

Comparing different insertion sites in one GOI locus we found that the reporter patterns were 

in most cases related to the GOI, but also showed quite some differences probably depending 

on insertion site and orientation. 

 

3.2.2.6.3 When to use this strategy 

The enhancer trap approach has the advantage that the same construct can be used for all loci 

and does not need to be adopted specifically for each gene, substantially reducing the effort for 

cloning. A disadvantage can be that not the entire expression is captured by reporter expression 

and/or ectopic expression may occur. Hence, the resulting EGFP pattern may not be an exact 

copy of the GOI’s expression. This can actually turn into an advantage when only a small subset 

of cells is marked such that following neural projections can be easier. 

 

3.2.2.7 Bicistronic lines via HDR: 

3.2.2.7.1 Principle of bicistronic expression by using 2A peptides 

If a precise copy of the GOI expression is required, the more laborious generation of 

bicistronic lines is the option to choose. Essentially, the genome is edited such that an mRNA 

encoding both GOI and reporter gene is transcribed. The consequence of the fused mRNA is 

that both GOI and reporter are regulated from the same promoter in identical patterns and 

dynamics. This can be realized on one hand by constructing fusion proteins (Sarov et al., 2016). 

here, a reporter gene is inserted in frame with the GOI extending its ORF. however, the resulting 

fusion protein may have a strongly modified 3D structure and thus, may not function properly. 

Further, the signal of the reporter will only be present at the target protein’s cellular location. In 

case of transcription factors, the nucleus would be marked, but not the projections. To avoid 

these restrictions, 2A peptides can be used to generate two separate proteins from one mRNA. 
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2A peptides are short, approximately 20 amino acid long peptides that cause ‘ribosomal skipping’ 

(Donnelly et al., 2001). An mRNA where the sequence of the GOI is separated from the reporter 

by a 2A sequence will lead to the translation of the GOI, interruption of the polypeptide chain 

within the 2A sequence and to subsequent translation of the reporter by the same ribosome (Kim 

et al., 2011; Szymczak-Workman et al., 2012). Hence, a reporter gene such as EGFP is expressed 

alongside the GOI in the same cells, in the same amount and without affecting GOI function. 

Importantly, it is expected that EGFP will be located in the cytoplasm resulting in marking of the 

whole neural cells including projections. 

 

3.2.2.7.2 Design of the repair template 

In the construct for the repair template, parts of the GOI, the 2A peptide and a reporter gene, 

e.g. EGFP, need to be cloned in-frame before a STOP codon (Figure 3.2–2). The original STOP 

codon of the GOI needs to be removed. The new STOP is followed by the 3’UTR containing 

the polyA signal of the endogenous gene. Upon integration, such a construct leads to the 

production of one mRNA which apart from its extension by the reporter is identical to the 

endogenous GOI mRNA. Downstream of the 3’UTR, a transformation marker needs to be 

included (see above for criteria for selection). The purpose of putting the artificial eye promotor 

3XP3 (Berghammer et al., 1999) downstream of the bicistronic gene locus (Figure 3.2–2) is to 

reduce the chance of interference of these two transcription units. 

In order to allow for homology dependent integration, sequences homologous to the DNA 

up- and downstream of the sequence to be edited need to be included. One sequence contains 

parts of the GOI sequence upstream of the STOP codon (5’ homology arm) and the other is 

identical to sequences downstream of the 3’UTR (3’ homology arm) (Figure 3.2–2B). hence, these 

homology arms flank the construct and serve for alignment of the construct to the chromosome 

during HDR. The construct does not need to be linearized for integration. 

 

3.2.2.7.3 Selection of the guide RNAs 

Homology dependent repair only occurs efficiently after DSBs initiate the repair process. For 

efficient insertion of the construct, the sequence to be replaced is cut out by two guide RNAs via 

CRISPR/Cas9: guide RNA 1 induces a DSB as close to the STOP codon of the GOI as possible 

(Figure 3.2–2A). The second guide RNA 2 introduces a DSB in the intergenic region downstream 

of but close to the 3’UTR. Using both guide RNAs at the same time will delete the entire 3’UTR 

(Figure 3.2–2A) and substitute it with the cassette including the 2A peptide, the reporter, the 

endogenous 3’UTR and the transformation marker (Figure 3.2–2C). It is important to make sure 
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that the guide RNAs do not target the homology arms or any other part of the repair template, 

because this would lead to fragmentation of the repair template prohibiting proper integration. 

hence, it is necessary to modify the PAM sequence in the repair template plasmid for both guide 

RNAs. 

 

 
Figure 3.2–2: Strategy to generate bicistronic lines via CRISPR-based HDR. A. Two Ribonucleoprotein 

(RNP) complexes with guide RNA sequences 1 and 2 mediate double strand breaks (DSBs) in the genomic locus of 

the GOI. Guide RNA 1 mediates a cut near the STOP codon, guide RNA 2 right after the 3’UTR in the adjacent 

intergenic sequence. When both DSBs are induced the 3’UTR including the STOP codon gets excised. B. A repair 

template plasmid is provided containing homologous sequences 5’ (5’ homology arm) and 3’ (3’ homology arm) of 
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the DSBs, as well as sequences encoding a 2A peptide and EGFP cloned in frame to the GOI’s last exon. Further, 

it contains the endogenous sequence that was excised containing the 3’UTR and an eye marker (3XP3-Tc-v-SV40). 

The repair template flanked by the homology arms gets integrated into the genomic locus via HDR. C. The modified 

transgenic locus contains two cistrons encoding for two distinct proteins, the endogenous 3’UTR and a subsequent 

eye marker. 

 

3.2.2.7.4 When to use this strategy 

The strategy of a bicistronic line should be chosen when the expression dynamics of the GOI 

have to be copied as exactly and comprehensively as possible. It also is a method with a very 

small chance of disrupting a gene’s function. Disadvantages are that the strategy is much more 

work-intensive, because repair templates need to be cloned individually for each gene. Also, the 

size of the gene’s 3’UTR might be a limiting factor, since larger constructs are more difficult to 

be inserted via HDR. To generate transgenic lines, the following steps need to be performed: 

1. Sequencing of insertion locus 

2. guide RNA design 

3. guide RNA cloning 

4. guide RNA efficiency test 

5. Repair template and enhancer trap construct cloning 

6. Embryonic injection 

7. (Back-) Crossings of G0 to wildtype 

8. Screening for transgenics in F1 

9. Characterization of the integration event 

10. Generating homozygous stocks
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3.2.3 MATERIALS 

3.2.3.1 Tribolium husbandry 

Standard equipment and supplies for molecular work as well as knowledge of Tribolium 

castaneum husbandry (Brown et al., 2009) are implied and not listed. For experiments beetles of 

vermilionwhite (vw) strain should be used (Lorenzen et al., 2002). Double-deionized water should be 

used at all steps, as well as analysis-grade Ethanol.  

 

3.2.3.2 Genomic DNA extraction (see Note 1): 

1. DNA extraction buffer (80 mM EDTA pH=8, 100 mM Tris pH=8, 0.5 % SDS, 

100 µg/ml Proteinase K, added freshly) 

2. Micro-Pestle suited for 1.5 ml tubes 

3. Squishing buffer (10 mM Tris pH=8.2, 1 mM EDTA, 25 mM NaCl, 200 µg/ml 

Proteinase K, added freshly) 

4. 10 mg/ml BSA 

5. Wing buffer (10 mM Tris pH=8.2, 1 mM EDTA, 25 mM NaCl, 500 µg/ml Proteinase K, 

added freshly) 

6. 24-well plates or similar 

7. Dumont No. 5 forceps 

 

3.2.3.3. DNA plasmid vectors and cloning 

1. p(U6b-BsaI-gRNA), Addgene plasmid #65956 

2. p(bhsp68-Cas9), Addgene plasmid # 65959 

3. pBac[3xP3 g Tc' v], Addgene plasmid #86446 

4. pCR™II vector or pJET1.2/blunt (Thermo Fisher Scientific, Waltham, U.S.A.) 

5. BsaI restriction enzyme 

6. T4 DNA ligase and buffer 

7. Transfection-grade plasmid-prep kits for purification 

8. T7 Endonuclease I 

9. DNA Assembly kit (e.g., Gibson Assembly® Cloning Kit (New England Biolabs, 

Ipswich, U.S.A.) or In-Fusion Cloning kit (Takara Bio Inc., Kusatsu, Japan)) 

10. DpnI restriction enzyme 
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3.2.3.4. Embryonic injections 

1. Borosilicate capillaries (e.g. from Ligenberg GmbH, Malsfeld, Germany) 10 mm x 1 mm 

2. P-2000 micropipette puller (Sutter Instrument, Novato, U.S.A.) or similar 

3. Optional: Microelectrode beveler (e.g. from Bachofer GmbH, Reutlingen, Germany) 

4. FemtoJet® Microinjector (Eppendorf, Hamburg, Germany) 

5. 0.45 µm (for 0.5 ml tubes) and 0.22 µm filters 

6. 10x injection buffer (14 mM NaCl, 0.7 mM Na2HPO4 x 2H2O, 0.3 mM KH2PO4, 40 mM 

KCl, filter-sterilize with 0.22 µm filter, aliquot and store at -20°C) 

7. Phenol red 

8. Apple agar plates 

9. bleach (DanKlorix, CP GABA GmbH, Hamburg, Germany) 

10. Voltalef 10 S oil (Lehmann & Voss & Co., Hamburg, Germany)
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3.2.4. METHODS  

3.2.4.1. Sequencing of insertion locus 

Even though the genome of Tribolium is available Richards et al., 2008) it is still necessary to 

sequence the regions to be targeted by Cas9, since beetle strains and laboratory stocks differ in 

sequence. Single nucleotide polymorphisms (SNPs) can occur in a potential target sequence and 

a different nucleotide in the PAM usually abolishes Cas9 function. In addition, differences in the 

rest of the target sequence can drastically reduce Cas9 efficiency (Hsu et al., 2014). For gene-

specific enhancer traps the regions to be sequenced should comprise the potential insertion sites, 

thus mainly the region upstream of the transcription start site and first intron (Figure 3.2–1). In 

the case of bicistronic lines, we advise to sequence around 1 kB upstream of the STOP codon 

reaching 250 bp into the 3’UTR after the STOP for guide RNA 1, and 250 bp of the 3’UTR end 

as well as 1 kB of the downstream intergenic region for guide RNA 2 (Figure 3.2–2).  

First, extract genomic DNA of adult vw beetles (i.e. the strain in which you later want to 

integrate your CRISPR construct):  

1. Put ~10 cold-anaesthetised adult beetles in a 1.5 ml tube, add 200 µl DNA extraction 

buffer. 

2. Homogenize using a pestle suited for 1.5 ml tubes. 

3. Put the homogenate in a heat block at 50°C for 1 h, mix by pipetting every 20 min. 

4. Add 200 μl 5 M NaCl, mix, add 300 μl Chloroform and mix by inverting. 

5. Spin down at 16,000 g for 15 min at RT. 

6. Transfer 300 μl of the upper (aqueous) phase to a 1.5 ml tube. 

7. Add 30 μl 7.8 M ammonium acetate, mix by pipetting and add ice-cold 600 μl 100 % 

Ethanol, invert 5-10x. 

8. Keep at -20°C for at least 1 h. 

9. Spin down at 16,000 g for 20 min at 4°C. 

10. Discard supernatant. 

11. Wash pellet with 300 μl 70 % Ethanol. 

12. Spin pellet down at 16,000 g for 5 min at 4°C. 

13. Repeat steps 10-12. 

14. Remove as much of the supernatant as possible and air dry the pellet for ~10 min. 

15. Resuspend DNA in 20 μl double-deionized H2O. 

 

Design suitable sets of primers to cover the areas to be sequenced (see Note 2). These should 

include primers to amplify the regions of interest (see Note 3) and sequencing primers that bind 
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within this amplicon. Sequencing results should be compared with the Tribolium reference genome 

(currently, GCF_000002335.3 Tcas5.2; please check http://ibeetle-base.uni-goettingen.de) (see 

Note 4). 

 

3.2.4.2. guide RNA design 

guide RNA sequences can be determined with the CRISPR Optimal Target Finder (see Note 

5) at http://tools.flycrispr.molbio.wisc.edu/targetFinder/ (Gratz et al., 2014). The aim is to find 

target sites at the location where DSBs should be induced and that occur only at this location in 

order to avoid off-target effects (see Notes 6 to 9). For the generation of bicistronic lines two 

guide RNAs are used to excise the 3’UTR and substitute it with the construct. Hence, guide RNA 

1 should cut as close to the gene’s STOP codon as possible and guide RNA 2 downstream of but 

as near as possible to the end of the 3’UTR (Figure 3.2–2). These guide RNAs will likely bind to 

both the genome and the repair template. In order to avoid destruction of the latter, the respective 

sequence in the repair template should be modified (see section 3.2.4.5), but without affecting 

the encoded amino acid sequence. Unfortunately, this can further restrict suitable guide RNAs. 

In case of gene-specific enhancer traps, any target sites outside the exons and apart from putative 

regulatory elements can be chosen, but we recommend targets not too far from the transcription 

start site (Figure 3.2–1). 

We recommend following settings for the target finder tool: 

1. Set to finding all CRISPR targets. The U6 promotors needs a 5’ Guanine for proper 

transcription (Mali et al., 2013) and a respective G is contained in the plasmid vector the 

guide RNA will be cloned in (see purple G in Figure 3.2–3). It is advisable to search for 

guide sequences that have a G at the 5’ end in order to match the U6 promoter 

requirement. However, one mismatch at the 5’ end of the guide has been shown to not 

much reduce efficiency. Hence, this is not an absolute requirement, especially because a 

G is available in the plasmid vector. 

2. Guide RNA length of 20 bp is suitable in our experience. 

3. Check for and use the latest released Tribolium genome release (check http://ibeetle-

base.uni-goettingen.de). 

4. It is advisable to restrict the search to target sites with only ‘NGG’ PAMs as ‘NAG’ PAMs 

have reduced efficiency (Hsu et al., 2013). 

5. We use high stringency settings since maximum stringency criteria are based on cleavage 

effects in cell lines only. 
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The ‘Design Experiment’ button is helpful to extract the actual oligonucleotide sequences to 

be ordered. It automatically adds Gs if necessary. However, the overhangs generated will not be 

the correct ones for the plasmid containing the Tribolium U6 promotor (p(U6b-BsaI-gRNA, see 

Figure 3.2–3). To generate the correct overhangs, we recommend using the TriGenes guide RNA 

oligo design tool at https://trigenes.com/crispr/grna-oligo-design-tool/. 

 

 

Figure 3.2–3: guide RNA design and cloning (figure partially modified from Gilles et al., 2015a): First a 

suitable target sequence is selected containing a ‘NGG’ PAM and with a seed sequence that does not occur elsewhere 

in the genome and, hence, cannot mediate off-target DSBs. The guide RNA sequence should be 20 bp long and does 

not contain the PAM which is already present in the construct. This guide RNA sequence will be synthesized by 

annealing two oligonucleotides that include suitable overhangs for the restriction enzyme BsaI. Annealed 

oligonucleotides (oligos) will be cloned into the plasmid p(U6b-BsaI-gRNA) containing a Tc-U6b promotor 

sequence and a downstream chiRNA scaffold (crRNA and tracrRNA) by Golden Gate cloning or regular ligation. 

The U6 promoter needs a G as the first base for transcription. As the backbone already contains a G 5’ of the target 

sequence (purple G), a G does not need to be part of the original target sequence in order to facilitate proper 

transcription by the U6 promotor. 

 

3.2.4.3. guide RNA cloning 

We recommend using Golden Gate reactions to clone guide RNAs (Figure 3.2–3). An 

alternative protocol can be found under https://trigenes.com/crispr/grna-oligo-design-tool/. 

1. Anneal oligonucleotides by mixing 10 μL of the forward and reverse oligonucleotide 

(100 µM) each with 80 μL double-deionized h2O. heat to 98°C for 5 min on a heat 

block and let cool down slowly to approximately 40°C by switching off the heat block 
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and leaving the tubes in the block for 45-60 min (see Note 10). Monitor the 

temperature. 

2. Set up following Golden Gate reaction for one guide RNA (scale up as master mix for 

all guide RNAs): 

a. 50 ng p(U6b-BsaI-gRNA) vector (see Note 11) 

b. 1 μL annealed oligonucleotides (10 μM) 

c. 1 μL ATP (10 mM) 

d. 1x Enzyme buffer 

e. 0.3 μL BsaI 

f. 0.3 μL T4 DNA Ligase 

g. X μL double-deionized H2O up to 10 μL total volume  

3. Perform Golden Gate reaction in thermocycler: 

a. heat lid to 40°C 

b. 37°C for 5 min 

c. 20°C for 10 min 

d. repeat ii. and iii. 10 to 15 times 

4. Transform 5 μL of the reaction in chemically competent bacterial cells. 

5. Sequence guide RNA sequence of each guide RNA plasmid including the U6 

promotor and the whole chiRNA scaffold (guide RNA and tracrRNA) (Figure 3.2–3). 

6. Prepare transfection-grade mini-preps of all guide RNA plasmids (midi-preps are not 

necessary for the testing stage) (see Note 12). 

 

3.2.4.4. guide RNA efficiency test 

Efficiency to guide the Cas9 nuclease can differ for each guide RNA. hence, before moving 

on to the next steps, especially for the HDR approach, efficiency needs to be tested (see Note 

13). There are different methods to test guide RNA efficiency. However, in this chapter we focus 

on the T7 Endonuclease I (T7 Endo I) assay, since it only requires standard lab equipment (see 

Note 14). 

The assay involves embryonic injection of guide RNAs individually along with Cas9 which 

will lead to different indels in variety of cells of the developing embryo. A PCR reaction is used 

to amplify the sequence encompassing the target site(s). Upon denaturing the PCR product and 

reannealing the single strands heteroduplexes are formed. At the site of an indel, the base pairing 

is disturbed such that a T7 Endo I digest will cut both strands at those non-annealed regions. 
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This can be visualised by gel-electrophoresis: If two fragments smaller than the amplicon are 

visible, the guide RNA has successfully mediated Cas9 targeting. 

The protocol is very similar to the one at www.crisprflydesign.org. 

Perform following steps: 

1. Co-inject the combination of guide RNA (400 ng/µl) and Cas9 plasmid (500 ng/µl) 

into 100 embryos (needs to be done for each potential guide RNA) (see section 3.2.4.8 

for injection procedure). 

2. Incubate them for three days at 32°C (see section 3.2.4.8). Alongside the injected 

embryos, uninjected embryos of the same strain should be incubated and DNA 

isolated identically to the injected condition as control for potential differences in the 

sequence of individuals that will also result in heteroduplexes without a Cas9 cut. 

3. Extract genomic DNA from injected embryos 

a. Collect 15-20 L1 larvae that survived and transfer to a 1.5 ml tube. 

b. Add 100 µl squishing buffer and homogenize with a yellow tip at the sides of 

the tube. Make sure to not use the same tip for a different guide RNA batch. 

c. Incubate the homogenate for 1 h at 55°C. 

d. Inactivate the Proteinase K at 95°C for 6-8 min. 

e. Spin the homogenate down for 15 min at 16,000 g at 4°C. 

f. Use 5 µl supernatant as template for a 50 µl PCR reaction. It is recommended 

to add 2.5 µl of a 10 mg/ml BSA solution. 

4. PCR amplify sequence encompassing target site and perform T7 endo I assay (see 

Note 15) 

a. Design primers to amplify ~700 bp, flanking target sites asymmetrically, 

resulting in two distinguishable bands after T7 endo I treatment. 

b. Run two 50 µl PCR reactions to generate enough material and gel-purify the 

kit of choice. 

c. Denature and reanneal 400 ng of the PCR product in 1x T7 endo I buffer 

(total volume 19 µl) as described under 3.2.4.3 with a heat block. 

d. Add 0.7 µl (7 U) T7 Endo I. 

e. Incubate at 37°C for 20 min. 

f. Stop the reaction immediately by adding 2 µl of 0.25 M EDTA. 

g. Run the assay on a 1.5 % agarose gel alongside the same amount of DNA of 

uncut DNA as control. 
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If the guide RNA is highly efficient, bands corresponding to the sequence upstream and 

downstream of the target will be seen. An uncut fraction will be visible as well. Successful genome 

editing has been performed with guide RNAs where the cut bands were much weaker than the 

main band at the size of the PCR product. The intensity of uncut and cut bands can thus vary, 

but do not directly relate to whether the guide RNA works in effect. 

 

3.2.4.5. Repair template and enhancer trap construct cloning 

The construct will be provided in form of a plasmid. Construct cloning greatly differs between 

the two strategies, and in themselves strategies can be adapted to personal needs and situations 

(see Notes 16-22). 

We recommend assembling the repair template not with classic restriction digest/ ligation 

cloning, but using DNA assembly cloning kits (e.g., Gibson Assembly® Cloning Kit (New 

England Biolabs, Ipswich, U.S.A.) or In-Fusion Cloning kit (Takara Bio Inc., Kusatsu, Japan)). 

This is especially beneficial when cloning repair templates for bicistronic lines. 

 

3.2.4.6. Generation of enhancer trap construct: 

To generate a universally usable enhancer trap construct following parts should be assembled:  

1. 3XP3-Tc’v-SV40: The recommended eye marker consists of the eye-specific promotor 

3XP3 (Berghammer et al., 1999), the rescue genomic Tc-vermillion gene and the termination 

sequence SV40 (Horn et al., 2002). This can be retrieved from plasmid #86446 from 

Addgene. SV40 will work bidirectionally and thus does not need to be included in the 

enhancer trap cassette. 

2. bhsp68-EGFP: The enhancer trap cassette consists of EGFP and the basal promoter of 

the heat-shock protein 68 (bhsp68) which acts as basal promotor. This cassette should be 

oriented in the opposite direction to the eye marker, so that SV40 can act as terminal 

sequence for both parts. Sequences can be retrieved from plasmids at Addgene.  

3. Exogenous guide RNA target site (Figure 3.2–1): Using megapriming cloning (Ulrich 

et al., 2012), a guide RNA target site should be included that is not found in the Tribolium 

genome. We used a guide RNA sequence from the Drosophila ebony gene, specifically 

(GAACCGGGCAGCCCGCCTCC TGG). This sequence should be located near the 

ends of the construct to be inserted and will lead to linearization of the plasmid thereby 

facilitating the integration of the repair template by NHEJ (Martin Klingler, personal 

communication). 



MANUSCRIPT 2  –  METHODS  

- 110 - 

Such a construct has been assembled and successfully tested by the authors. In addition to 

the abovementioned components, it contains a bicistronic mRNA encoding for EGFP and the 

Cre recombinase. The plasmid can be obtained from the authors. 

Prepare transfection-grade midi-preps of all constructs. Check for integrity of these 

preparations by sequencing at least the coding regions of the repair template or enhancer trap 

construct. 

 

3.2.4.7. Generation of bicistronic repair template: 

The generation of a bicistronic repair template depends on the guide RNAs of choice and its 

design needs to await the successful testing and selection of the guide RNAs to be used. See 

above and Figure 3.2.–2 for basic design.  

Following parts need to be assembled: 

1. Backbone: We recommend using pCR™II vector or pJET1.2/blunt (Thermo Fisher 

Scientific, Waltham, U.S.A.) as these are small vectors. The size of the complete repair 

template can be quite large. 

2. 5’ homology arm: The ~1 kB 5’ homology arm (see Beumer et al., 2013 for a detailed 

analysis on the efficiency of differently long homology arms) should always end right 

before the gene’s STOP codon irrespective of which guide RNA is used (see Note 23), so 

that in the repair template sequence you will have 1 kB of ORF sequence fused to the 2A 

sequence (instead of the STOP) followed by the reporter sequence – all in frame (Figure 

3.2–2).  

3. 2A peptide: We recommend using the P2A peptide sequence as this was shown to be 

most efficient (Kim et al., 2011). You can introduce this ~70 bp sequence either similar to 

the others by amplifying it from a donor plasmid or by having the sequence as part of the 

primer/oligonucleotide for the assembly reaction. Both have proven to work (see Note 

24). 

4. EGFP: This sequence can be retrieved from numerous sources. Make sure that the STOP 

codon is included or that you include it as part of the assembly primer. 

5. 3’UTR: This part also includes parts of the intergenic region. It starts after the gene’s 

STOP and ends at the cut position of guide RNA 2. Cut positions are always 3 bp 

upstream of the PAM (Tycko et al., 2016). 

6. 3XP3-Tc’v-SV40: The recommended eye marker consists of the eye-specific promotor 

3XP3 (Berghammer et al., 1999), the rescue genomic Tc-vermillion gene and the termination 
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sequence SV40 (Horn et al., 2002). This can be retrieved from plasmid #86446 from 

Addgene. 

7. 3’ homology arm: The ~1 kB 3’ homology arm will start at the guide RNA 2 cut site 

(Figure 3.2–2). 

To avoid that the repair template itself will be targeted by Cas9, PAMs must be mutated in 

the repair template, removing the PAM sequence ‘NAG’ or ‘NGG’. If the PAM is located in a 

coding sequence, mutations must be chosen such that the amino acid sequence is not changed. 

This mutation can be introduced during the amplification processes for the homology arms and 

3’ UTR by simply including these modified sequences in the primer sequence. This can be also 

achieved with a separate PCR mutagenesis or megapriming (see e.g. Ulrich et al., 2012 for details). 

Both processes involve amplification of the whole plasmid and a subsequent DpnI digestion to 

remove the original methylated plasmid which does not contain the intended modification. 

 

3.2.4.8. Embryonic injection 

The procedure for embryonic injections is based on standard protocols (Berghammer et al., 

1999; Eckermann et al., 2018; Posnien et al., 2009). 

1. Prepare injection needles (Use Borosiliate capillaries for injections). Use a P-2000 

micropipette puller to form the needle applying the following settings: heat=350, Fil=4, 

Vel=50, Del=225, PUL=150 or other pullers with respective settings. The capillaries 

should be similar to those used for Drosophila injection. Open and sharpen the needle either 

manually using a tweezer or a scissor or by using a microelectrode beveler and check after 

each sharpening step (see Note 25). 

2. Prepare injection mix: Mix all purified plasmids to following concentrations and a volume 

of 10-20 µl: Repair template and p(bhsp68-Cas9) 500 ng/µl; Inject individual guide RNAs 

with 400 ng/ µl and guide RNA 1 and 2 simultaneously with a concentration of 250 ng/µl 

each. Mix 8 µl plasmid mix with 1 µl 10X injection buffer and 1 µl Phenol red. Filter-

sterilize with a 0.45 µm filter for 0.5 ml tubes by putting mixtures on the filter inside a tube 

and centrifuge for 5 min at 11,000 g. 

3. Place vw beetles on white flour and let them lay eggs for 1 h at 28°C. 

4. Remove embryos and let them develop further for 1 h at 28°C. 

5. This can be repeated to get fresh embryos as often as necessary. 

6. Wash embryos in 1 % bleach (equivalent to 0.05% sodium hypochlorite) for up to 3 min 

in a 150 µm gaze sieve. Extended bleaching can lead to mortality. 

7. Wash embryos thoroughly in room temperature water. 
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8. Make sure that all flour is removed. 

9. Moisten an object slide with water. 

10. Transfer embryos on the object slide with a fine brush, arrange them in a line near the 

long edge of the slide (90 embryos can fit on one side). The more pointed posterior side 

of the egg should point towards the outside (see Note 26). 

11. Place slide on an apple agar plate. 

12. Load needle with 4 µl of injection mix. 

13. Place needle in the microinjector. 

14. Test the needle position and opening by placing it into a drop of Voltalef® oil (VWR) on 

a slide. 

15. The droplet size should be roughly a 5th of the embryo size. 

16. Constant pressure should be adjusted so that no liquid is leaking. 

17. Inject into first posterior third so that you see either movement in the embryo or red stain. 

18. Do not move the needle inside the embryo and do not inject too deeply and not too much, 

there should be no leakage. 

19. Put the slide back on an apple agar plate and collect in an airtight box and keep them at 

32°C for 72 h. high humidity is required for the injected embryos to survive. However, 

drops of water are deleterious for hatched larvae. Hence, it is important to keep the 

embryos as long as possible under high humidity, but upon hatching of the first animal 

they should be dried. 

20. Transfer larvae to whole grain flour. 

 

3.2.4.9. (Back-) Crossings of G0 to wildtype 

1. Rear injected animals at 32°C until they pupate, sex them and keep them separately. 

2. Set up single crosses by crossing each injected adult to three vw wildtype animals of the 

opposite sex. 

3. Rear single crosses at 32°C and remove the parental generation when the next generation 

starts to pupate. 

 

3.2.4.10. Screening for transgenics in G1 

1. Using a suitable stereomicroscope, screen G1 animals for black eyes. The pupal stage is 

best as these do not move. When screening adults, they have to be anesthetised either by 

CO2 or by placing them on ice. 
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2. For both strategies, keep all positive animals and subsequent offspring as founder lines, as 

they can differ in quality and strength of the signal. This is especially true for gene-specific 

enhancer traps.  

3. Cross each positive G1 separately to vw to generate offspring that can be screened for the 

expression in the (developing) brain. 

4. Depending on your GOI, its expression amount and timing, choose a time point where 

individuals can be easily prepared in a larger scale. 

5. Prepare embryos for anti-GFP immunostaining (see Buescher et al. in this book), larvae 

or adults accordingly to detect native GFP expression (after preparation, directly put in 

mounting medium and imaged), or anti-GFP immunostaining (see Hunnekuhl et al. in this 

book). 

6. Overlap to the GOI can be tested with an antibody against the protein of interest, if 

available, or alternatively with in situ hybridisation (see Hunnekuhl et al. in this book). 

Select 3-5 founder lines which have the strongest expression, with the highest degree of 

overlap to the GOI. 

 

3.2.4.11. Characterization of the integration event 

1. Check for proper integration at the expected location by designing primers for amplicons 

spanning at least the regions surrounding the DSBs or the whole inserted construct. 

2. Extract genomic DNA similar to 3.2.4.1. 

3. Perform standard PCR. 

4. Make homozygous stocks of all of the selected. 

 

3.2.4.12. Generating homozygous stocks 

Having homozygous stocks makes subsequent experiments much easier, be it live-imaging or 

subsequent genetics. The following protocol is based on genotyping individuals using DNA 

extracted from wing tissue (Strobl et al., 2017): 

1. Sex individuals as pupae and rear sexes separately until adult stage. 

2. On the experiment day, prepare ice, wing buffer, glass slides, forceps, as well as a 24-

well plate with small amounts of flour in the wells. 

3. Put 0.5 ml tubes on ice, put beetles in a vial on ice for cold anaesthetisation. 

4. Prepare glass side for preparation by wrapping it in parafilm. 

5. Put a beetle with one forceps on its right side, head to the left, left elytron up. 

6. Hold at the thorax and try to enter under elytra with other forceps carefully. 
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7. If the elytron lifts, take out hindwing, and rip and cut first at thicker more distal dark 

part of the wing and then rip carefully at more proximal parts. 

8. Be careful to not remove the whole hindwing as this might leave a wound in the thorax. 

9. Put the wing in the tube keeping it cool at all times, put the beetle in a well, both well 

and tube marked with a unique identifier for each beetle. 

10. Repeat preparation for all. 

11. Put wings on -80°C for 15 min. 

12. Add 10 µl of buffer to the wing, and crushing it on the tube wall, rolling it and pushing 

tissue up and down with a thin pipette tip (this can take 2 min per wing). 

13. Spin down shortly. 

14. Put tubes on 37°C for 1 h. 

15. Put wings on 75°C for 20 min. 

16. Spin down the evaporated water. 

17. Perform PCR. 

- The wildtype (wt) amplicon (hence the insertion area without inserted construct) 

should be always smaller so that you always see the wt band at least if its heterozygous 

(since smaller amplicons will outcompete bigger ones in PCR); this makes the PCR 

less error prone. 

- Amplicon size difference should be at least 200 bp and amplicon size between 300-

800 bp. We recommend ~40 cycles to promote the amplification of the smaller wt 

band. 

18. Put beetles that are homozygous for marker all together and raise homozygous stocks.
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3.2.5. NOTES 

1. Any method for genomic DNA isolation will suffice (e.g. kits). These are the protocols we 

used. 

2. Primers should be designed carefully so that unique sites are amplified, the melting 

temperature is high, and no secondary structures are likely to form. For sequencing 

primers and the sequencing reactions themselves, please consult the company you are 

using. If recommendations are followed, mistakes or suboptimal sequencing results may 

be avoided. 

3. The areas to be sequenced can also be subcloned into a blunt cloning vector, such as 

pJET1.2, if sequencing from an amplicon does not yield good results. 

4. It is highly recommended to use a suitable software that allows in silico cloning, analysis 

of sequencing data, etc. Use of such will greatly aid the cloning work. 

5. There are other design tools available. We have used the one mentioned above nearly 

exclusively, but we recommend considering other tool websites as well. 

6. If a region is particulary low in GC-content, an alternative to Cas9 is CPf1 where the PAM 

is needs to be T-rich (‘TTN’) (Zetsche et al., 2015). 

7. If there is an otherwise suitable guide RNA sequence which would mediate cuts in one off 

target, a T7 Endo I assay can be performed with two regions to be amplified for this guide 

RNA, one for the aimed target region, one for the off-target region. If the guide RNA 

mediates DSBs also in the off-target, this will be seen in the T7 endo I assay and the guide 

RNA can be discarded. 

8. Guide RNAs can also be chosen by investigating whether the sequence can form hairpins, 

including the tracrRNA as this can greatly influence efficiency of the guide RNA. This can 

be done by the tool http://chopchop.cbu.uib.no/ (Labun et al., 2016; Montague et al., 

2014). So far, the Tribolium genome cannot be used as reference, but you can ask the 

website administrators to include the genome of choice. 

9. It might be advantageous to restrictively target the template strand with a guide RNA of 

choice, see (Clarke et al., 2018). 

10. Oligo annealing can be alternatively achieved by programming a thermocycler to ramp 

down to 25°C with a rate of -0.1°C/s. This follows the advice found at 

http://flycrispr.molbio.wisc.edu/protocols/gRNA. 

11. It would be worthwhile to test which of the three U6 promotors in the Tribolium genome 

is the most effective in driving Cas9 transcription, similar to (Port et al., 2014). Two were 
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cloned and no pronounced difference was observed (Gilles et al., 2015). We have only 

used p(U6b-BsaI-gRNA). 

12. In case transfection-grade kits are not available, use normal kits, but add a precipitation 

step to increase DNA purity and remove salts: 

- Mix ~50 µg DNA with 10 µl 3 M Sodium acetate pH=5.2 (NaOAc) and fill up with 

H2O to a total volume of 100 µl. 

- Add 800 µl 100 % Ethanol (analysis grade). 

- Keep at -80°C for 2 h or o/n. 

- Centrifuge at 4°C at maximum speed for 30 min. 

- Remove supernatant. 

- Wash with 500 µl pre-cooled 70 % Ethanol. 

- Centrifuge at 4°C at maximum speed for 15 min. 

- Repeat steps e) to g) once. 

- Remove as much of the supernatant as possible and air dry the pellet for ~10 min. 

- Resuspend in 15-30 µl h2O. 

13. If you design gene-specific enhancer traps, you could also skip this part and inject mixes 

with all available guide RNAs. You would need to inject more embryos but save time 

potentially by avoiding this assay. The same is true for when guide RNAs of choice are 

really close to each other or even overlapping, this is even true for building a bicistronic 

line. For example, if three guide RNAs for cut-site A and two for cut-site B are strongly 

overlapping to each other, it might be a good alternative to prepare six different injection 

mixes instead of testing them beforehand. This is an issue of personal preference and 

should not be considered as a rule, as it is also dependent on each individual experiment.  

14. An alternative to T7 Endonuclease I assays is high resolution melting analysis (Bassett et 

al., 2013) which requires a qPCR machine, but is more sensitive to detect guide RNA 

functionality. Both methods can be used.  

15. The T7 Endonuclease I assay is very sensitive to the amount of enzyme added, the 

temperature, as well as the length of incubation. So, make sure that the amounts as well as 

the timing are exact. 

16. It could be advantageous to design a way to remove the eye marker after stocks are made 

homozygous. In Drosophila this is usually achieved by introducing loxP sites (Gratz et al., 

2013). In Tribolium the option is to introduce exogenous sequences from Drosophila such 

as guide RNAs of ebony on both sides of the eye marker via PCR mutagenesis. Then after 

the Tribolium stock was made homozygous using the eye marker, it can be removed by 
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injecting the line with the suitable guide RNAs for the introduced target sequences. A 

fraction of injected embryos will lose the eye marker and those can be used for further 

experiments. This strategy reduces the potential influence of the 3XP3 promotor on the 

gene’s and marker gene’s expression. We note, however, that we have so far not observed 

strong influence of the eye marker.  

17. An alternative bicistronic repair template could be using only guide RNA 1 and putting 

the eye marker directly after a SV40 sequence following the fluorescent protein. This is 

especially useful if the 3’UTR of your gene of interest is too big to be considered as part 

of the construct. The eye marker influence can then be reduced by cutting the eye marker 

out (as in Note 16).  

18. The repair templates can be modified in multiple fashions. One could substitute EGFP 

with other fluorescent proteins of other colours or brightness, or with GAL4 to cross with 

suitable UAS lines. Also, tricistronic lines with the gene, a fluorescent protein and GAL4 

are possible. However, the size can be a constraint for cloning and HDR and can be a 

potential disadvantage. Ideas for multiple variations can be potentially gathered in (Gratz 

et al., 2013). 

19. Repair template size can be a constraint, as rates of integration might decrease. We have 

successfully integrated 2.5 kB, but the homologous recombination mechanism itself was 

employed integrating constructs as big as 13 kB (Keeler et al., 1996). 

20. You can also provide Cas9 as protein which is more efficient than providing Cas9 via a 

plasmid (Zuris et al., 2015). 

21. Cas9 expression is driven by bhsp68. It would be better to have Cas9 under control of a 

germ-line specific promoter. This is actually under construction in our lab. 

22. Providing guide RNA and a repair template as single stranded DNA can increase CRISPR 

efficiency drastically (Gratz et al., 2013). In most cases, single stranded repair template had 

strong size restrictions, so that our strategies could not have worked. However, using a 

production system especially for long single stranded DNAs can circumvent these 

limitations (e.g. https://www.takarabio.com/products/gene-function/gene-

editing/crispr-cas9/long-ssdna-for-knockins). 

23. For bicistronic construct cloning, you can already start amplifying the 5’ homology arm as 

this always ends with the last codon before the STOP and is, hence, independent of guide 

RNA choice. The design of 3’ UTR and 3’ homology arm depends on the chosen guide 

RNA, so this needs to be postponed to after guide RNA tests (but see Note 13). 
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24. The sequence for the P2A peptide is <70 bp in size, so using a Megapriming protocol, you 

could also introduce this sequence not as part of the assembly mix, but afterwards, with 

very long primers. 

25. Sharpening needles carefully takes longer but increases survival rate substantially.  

26. To easily transfer embryos from sieve to object slide, they should be kept wet and should 

be moved on the shortest distances as possible. 
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3.3. Manuscript 3: Immunohistochemistry and fluorescent whole 

mount RNA in situ hybridization in larval and adult brains of 

Tribolium 

This manuscript offers a detailed description of basic methods of immunohistochemistry and 

in situ hybridisation but in larval and adult brain, so far undescribed in Tribolium. This work 

complements the CRISPR-related manuscript 2 and builds and describes the methods that were 

partially employed in manuscript 1. Proper immunohistochemistry in different stages is adamant 

for a proper generation of images, which in turn are the basis for all analyses. Hence, this 

manuscript offers further methodological support establishing Tribolium as a model system 

suitable for multi-faceted neurobiological work. We hope that methods described help and 

support the neurobiological research in Tribolium and neuroevolutionary research in general. 

 

Authors 

Vera S. Hunnekuhl*, Janna Siemanowski, Max S. Farnworth, Bicheng He, Gregor Bucher* 

* = corresponding authors 

 

Status 

in press in Brain Development: Methods and Protocols, Second Edition (Springer Nature) 

 

My contributions 

- Conceptualisation of the immunohistochemistry methodology1 

- Writing of the manuscript2 

- Generation of data for figures3 

 

1 = together with VSH, JS, BH 

2 = together with VSH, GB 

3 = together with VSH 
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3.3.1. ABSTRACT  

Arthropod brains are fascinating structures that exhibit great complexity but also contain 

conserved elements that can be recognized between species. There is a long tradition of research 

in insect neuroanatomy, cell biology and in studying the genetics of insect brain development. 

Recently, the beetle Tribolium castaneum has gained attention as a model for insect head and brain 

development and many anterior patterning genes have so far been characterized in beetle 

embryos. The outcome of embryonic anterior development is the larval, and subsequently, the 

adult brain. A basic requirement to understand genetic cell type diversity within these structures 

is the ability to localize mRNA and protein of neural genes. here we detail our protocols for RNA 

in situ hybridization in combination with immunohistochemistry, optimized for dissected brains 

of larval and adult beetles. 
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3.3.2. INTRODUCTION  

Traditionally most research in insect brain development has focused on the fly Drosophila 

melanogaster as a genetically tractable organism (Hirth, 2003; Lichtneckert and Reichert, 2005; 

Younossi-Hartenstein et al., 1997). In addition, research on the orthopteran species Schistocerca 

gregaria has offered insights into the cellular composition of the developing brain of a 

hemimetabolous insect, and on the origin of specific brain structures, such as the central complex, 

from identified cell lineages (Boyan and Williams, 2011; Boyan and Reichert, 2011; Ludwig et al., 

1999). More recently, the beetle Tribolium castaneum has been introduced as a third model for 

studying arthropod brain development (Koniszewski et al., 2016; Posnien et al., 2011). The 

species has a sequenced genome (Richards et al., 2008) and is amenable to RNA interference, 

CRISPR genome editing and other functional genetic techniques (Gilles et al., 2015; Schinko et 

al., 2012, 2010; Schmitt-Engel et al., 2015) (for a detailed protocol for performing CRISPR in 

Tribolium please see Farnworth et al., in press in this issue). Therefore, Tribolium can be regarded 

as an insect genetic model second only to Drosophila. Moreover, some aspects of head and brain 

development seem to be more conservative in this beetle, as it  does not undergo the process of 

head involution known from Drosophila (Posnien et al., 2010). In addition, large parts of the 

Tribolium brain are already developed at the beginning of the first larval stage, whereas in Drosophila 

the development of some brain structures, such as the central complex, is shifted to late larval 

and pupal stages (Koniszewski et al., 2016).  

In particular the central complex (CX), an intriguing anterior brain structure that is conserved 

among insects and beyond (Loesel et al., 2002; Strausfeld, 2012), has become subject of studies 

on Tribolium brain development. Parts of the CX derive from the six3-positive anterior median 

region, and a number of additional transcription factors have been implicated in the patterning 

of neuropils deriving from this region (Koniszewski et al., 2016; Posnien et al., 2011). Current 

research aims to connect specific structures of the brain (such as the CX and its substructures, 

but also others as for example mushroom bodies or antennal lobes) to their embryonic 

progenitors (see Buescher et al., in press of this issue for embryonic in situ hybridization). 

Characterizing the transcriptional profile of neural cells in the larval and adult brain allows 

identifying continuity with embryonic cells, which in turn can imply a common developmental 

origin of these cells. Furthermore, characterization of the neurotransmitter and neuropeptide 

content of neural cells will lead to a better understanding of the cellular composition of brain 

structures and will open new avenues for cross species comparisons of neural organization, and 

will hence contribute to a better understanding of brain evolution in general (Koniszewski et al., 

2016). In addition, transgenic beetles that carry fluorescent reporters (mostly GFP) linked to a 
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gene locus are becoming available. Antibodies binding the GFP reporter help to enhance visibility 

of this reporter in fixed material, and they can be combined with a second antibody that stains 

the axonal scaffold as a reference. 

To follow up these leads of research, our lab has established protocols for the dissection of 

larval and adult brains, for fluorescent RNA in situ staining and for antibody labelling. 
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3.3.3. MATERIALS 

3.3.3.1. Beetle stock keeping and generation of larvae 

We keep adult beetles of the wild type San Bernadino (SB) strain and of transgenic reporter 

lines on whole grain flour (including 50 g yeast per kg flour) at 23°C. For experiments on adult 

brains individuals are directly taken from the stock and are dissected. 

To raise larvae to a defined age, timed egg collections are set up. For that the beetles are 

separated from the flour using an 800 µm pore width sieve and are then put on white flour, the 

time pointed noted, and kept at 32°, e.g. over night. The eggs are collected by first separating the 

beetles from the flour (using the 800 µm sieve) and then separating the eggs from the white flour 

using a 300 µm sieve. Eggs are transferred into a fresh container and kept at 32°C until they reach 

the desired age. If enough flour is present in the container, they do not need any further care. It 

is however important to make sure that larvae are not too dense as overcrowding will limit food 

supply and lead to non-synchronized and delayed growth. 

 

3.3.3.2. Dissections and fixations 

We use autoclaved bottles or sterile tubes for all buffers and solutions. All aqueous buffers 

are made with double deionized water (ddH2O) and are either autoclaved or filter-sterilized before 

use. The formaldehyde containing fixation, methanol for dehydration and hybridization buffers 

are harmful and must be used under a fume hood. 

 

1. PBS (phosphate buffered saline): Prepare a stock solution of 10x PBS by dissolving 80 g 

NaCl, 2 g KCl, 2 g KH2PO4 and 11.5 g Na3HPO4 in 1 l double distilled water (ddH2O). 

The pH is adjusted to 7.4 using NaOH. To make 1x PBS, 100 ml of 10x PBS are added to 

900 ml of ddH2O. 

2. PBT (phosphate buffer saline plus 0.1 % Triton): We use PBT made with Triton rather 

than Tween-20 for all our washing and incubation steps as we think this harsher detergent 

may improve permeability, without having adverse effects on tissue integrity. Prepare a 

stock of 10 % Triton in 1x PBS. For the final working solution combine 100 ml 1x PBS, 

10 ml 10 % Triton and 890 ml ddH2O.  

3. Fixation: To make a solution of 4 % formaldehyde in PBT provide 1 ml PBT in a small 

1.5 ml centrifuge tube and add 140 µl of a 37 % commercially available formaldehyde 

solution (Merck). The dissected brains can be directly transferred into this tube for fixation. 

Brains that are supposed to be stained with Phalloidin require a fixative free of methanol. 
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Prepare a 4 % formaldehyde/PBT solution using 16 % methanol-free formaldehyde 

(Thermo Scientific) and dissolve 1:4 in PBT. 

 

3.3.3.3. Antibody labelling 

4. Blocking solution: For blocking prior and during antibody incubation use 3 % albumin 

fraction of bovine origin (AppliChem) in PBT. We avoid using any preservatives such as 

sodium azide since they can damage some enzyme-conjugated antibodies. Instead we 

always prepare the blocking solution freshly on the day of use. Also see NOTE 1 for 

blocking of secondary antibodies. 

5. DAPI stock solution: Add 5 mg of DAPI powder (Merck) to 1 ml of ddH2O and dissolve 

(vortexing or sonication may be required). Aliquots can be stored in the freezer for several 

months. Use at a working concentration of 1:1000 v/v. 

 

3.3.3.4. in situ hybridization 

6. Saline Sodium Citrate buffer (SSC): To make a stock of 20x SSC buffer dissolve 175 g 

NaCl and 88.2 g trisodium citrate (Na3C6H5O7) in 800 ml ddH2O. Adjust to pH 5.5 by 

using HCl and fill to 1 l. This buffer is used in the hybridization buffers at a 5x 

concentration (see below), the stock can be stored at room temperature. 

7. Hybridization buffer BT (Hybe-BT): Our basic hybridization buffer for dissected brains 

contains 500 ml formamide, 250 ml SSC (pH 5.5), 250 ml ddH2O and 0.15 % Triton 

(1.5 ml of the 100 % stock per 1 l of Hybe-BT buffer). Hybe-AT can be stored at room 

temperature. 

8. Hybridization buffer AT (Hybe-AT): To make Hybe-AT buffer first combine 2 ml yeast 

RNA, 400 µl heparin (50 mg/ml) and 8 ml salmon sperm DNA (10 mg/ml) in a falcon 

tube and boil the mixture at a minimum of 95°C in a water bath for 10 minutes. Then, 

the falcon tube is put on ice for 3 minutes and then the solution is combined with 400 ml 

Hybe-AT in a bottle and is thoroughly mixed. For long term storage Hybe-AT is 

aliquoted into 15 ml falcon tubes and kept in the freezer at -20°C. 

9. Maleic acid buffer with Triton (MAB-T): Dissolve 11.6 g maleic acid, 8.76 g NaCl and 

8.6 g NaOH (to pH 7.5) in 1 l ddH2O. 

10. MAB-T and 2 % Roche blocking reagent: Add 2 mg Roche blocking reagent powder in 

10 ml MAB-T. heat up the tube to about 60°C and invert for approximately 1 h on a 

rotating wheel for the reagent to dissolve. Make fresh solution for every day of use.  
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3.3.3.5. Mounting medium 

11. For microscopic inspection of fluorescently labelled specimens we preferentially mount 

the brains in Vectashield (Vector Laboratories), which is a marketed medium with 

fluorescence preserving properties. It is very important to choose a mounting medium 

corresponding to immersion media used later during microscopy. The refraction indices 

of mounting and immersion medium need to be as similar as possible. Clearing media 

like RapiClear (SunJin, Taiwan) enhance the penetration of tissues and resolution by 

confocal microscopy but do not preserve the fluorescence as well (see NOTE 2).  
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3.3.4. METHODS  

3.3.4.1. Planning experiments 

3.3.4.1.1. Choosing suitable antibodies 

We normally design our experiments in the way that we use a general axonal marker such as 

antibodies against acetylated Tubulin (mouse, Sigma) (figure 3.3–1A) or synapsin (mouse, DHSB 

Hybridoma Bank) (figure 3.3–1B) in combination with a more specific antigen of interest, which 

may only stain a small subset of neurons (figure 3.3–1C). To stain against endogenous GFP 

expression present in transgenic lines, we use a GFP antibody (rabbit, Invitrogen or chicken, 

Abcam) (figure 3.3–1E). We use synapsin and anti-acetylated Tubulin produced in mice, so that 

the other primary antibody used on the same specimen must come from a different host species. 

If that is not the case, alternative cross-reactive neural markers are commercially available. 

Another possibility to stain the nervous system is to use primary conjugated Phalloidin (binding 

to F-actin) (see figure 3.3–1D and see below for notes on Phalloidin stainings). Secondary 

antibodies must be chosen based on the host species of the primary antibodies and on the 

available imaging setup.  

 

3.3.4.1.2. Probes for RNA in situ hybridization 

In our experience probes of a length of about 800 bp to 1.2 kb work well in in situ 

hybridizations on brains. We follow standard protocols for probe synthesis using the Roche RNA 

labelling kit. For one-colour in situs, we normally work with probes that are DIG labelled, but 

Fluorescein labelled probes also work well. 

 

3.3.4.1.3. Considerations on material preparation before starting 

Dissecting brains from adults and larvae of Tribolium is not difficult but may require a bit of 

practice and is time consuming if large numbers of brains are required. After fixation, brains that 

are destined for RNA in situ hybridization need to be dehydrated and stored in methanol for at 

least one night (or long term) before proceeding with the staining protocol. We recommend to 

also dehydrate the brains that are used for immunohistochemistry. We noticed that for example 

the antibody against synapsin that we use as a default neural marker works better after methanol 

storage and rehydration. 
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Figure 3.3–1: Immunohistochemistry in larval and adult brains. Z-projections of confocal microscopy image 

stacks. A) A larval brain is labelled with an anti-acetylated-Tubulin antibody. This type of staining often suffers from 

poor depth penetration, but nervous connections and cell borders in the periphery are well stained. B) Larval brain 

labelled with anti-synapsin. The neuropil of the brain is labelled. Staining with this marker works very robustly and 

with good depth penetration. No single neuron can be distinguished. C) An antibody against AVP (a neuropeptide) 

stains single branching neurons in each brain half. D) Adult brain stained with Phalloidin (an F-actin label) and an 

antibody raised against Rx-protein. Phalloidin can be used as neural marker on specimens that were not dehydrated 

in methanol. E) Adult brain from a transgenic line carrying a GFP reporter upstream of the rx gene coding sequence, 

labelled with a combination of anti-synapsin for brain morphology and an antibody against GFP. 
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3.3.4.2. Dissections and fixation (1 day) 

3.3.4.2.1. Larval brains dissection  

If larvae are kept on white flour, they are best separated from the flour with a 300 µm sieve. 

Larvae kept on full grain flour have to be picked one by one using forceps or a fine wet 

paintbrush.  

1. Place a 10 ml falcon with PBT on ice and wait for it to cool down. Also put a 1.5 ml 

centrifuge tube with the fixation solution and three black glass dishes on ice (see figure 

3.3–2A). Fill dishes with ice-cold PBT. 

2. Now place a tube with larvae on ice (figure 3.3–2A). After a few minutes the larvae 

become immobile and can be picked up with forceps or a fine wet paintbrush. 

3. Take the whole larvae through 1-3 rinsing steps in ice cold PBT to get rid of flour and 

dirt.  

4. Now place one of the cold dishes with PBT under a dissection microscope and transfer 

the larvae into it one at a time.  

5. Using a black dish (figure 3.3–2A) is recommended to best see the white brains (figure 

3.3–2C). If that is not available, place a transparent dish on a black background. 

6. To dissect brains, use two extra-fine and sharp Dumont No. 5 tweezers for the 

dissections.  

7. Place one pair of tweezers at the level of the last pair of walking legs, vertical to the 

longitudinal axis (figure 3.3–2B). Now apply firm pressure and cut along the edge with 

the second pair of tweezers to separate the anterior part of the larvae from the remaining 

body with a clean cut.  

8. Remove the trunk from the dish to keep the buffer clean.  

9. Now hold the head of the larva between one pair of tweezers without squashing it and 

gently knock against the anterior head capsule with the second pair. This will make the 

contents of the anterior body come out (mainly anterior gut, some glandular tissue and 

the nervous system). 

10. Once you have identified the brain among these tissues (see figure 3.3–2C), gently 

remove any additional tissues that may be attached to it.  

11. Now push the freed brain to a location with clean buffer and suck it up with a pipette 

fitted with a 1 ml blue tip.  

12. Directly transfer the brain into the fixation solution with the pipette. Try to transfer as 

little dissection buffer as possible into the tube for fixation.  
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13. We allow maximal 45 minutes for a batch of brains to be dissected and fixed together in 

one tube to not extend the time of fixation for too long. 

 

 

Figure 3.3–2: Dissection of larval and adult brains. A) Black dissection dishes are placed on ice to cool down, 

together with larvae (left vial) and adult beetles (right vial). After few minutes on ice the beetles become immobile 

and can be transferred into a dissection dish with ice cold PBT and placed under a dissection microscope. B) Larvae 

are held with one pair of sharp forceps at the level of the third legs. Use a second pair of tweezers (not shown) to 

cut along the edge of the first pair to remove the trunk of the larvae. Now the nervous system can be pushed out by 

holding the head and knocking against it with tweezers. C) The anterior nervous system (brain and suboesophageal 

ganglion (sog)) as seen on a black background through a dissection microscope. D) An adult beetle head is cut off 

from the thorax with forceps and placed on the dorsal side. Place tips of tweezers on the eyes and dissect off the 

head capsule with a second pair. E) An adult brain on black background as seen through a dissection microscope. 

 

3.3.4.2.2. Larval brains fixation and dehydration 

1. After the brains are transferred into the 4 % formaldehyde solution, keep them on ice 

for one hour (the brains dissected first will hence be fixed up to 1 h 45 min, which in 

our experience is tolerable). 

2. Remove the formaldehyde solution from the tube and replace by 1 ml PBT.  

3. Proceed with six washing steps in PBT on ice (without agitation), including 5 minutes 

incubation each. Also see NOTE 3. 

4. Take the brains through a series of increasing methanol concentrations: first take off 

250 µl and add the same volume of methanol. Invert and let the brains sink. Proceed by 
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taking off and replacing 500 µl, 750 µl and 1000 µl. In the higher concentrations the 

brains will sink more slowly, allow a few minutes between the steps. Wash one additional 

time in 100 % methanol. Also see NOTE 3. 

5. Place tube with brains in 100 % methanol to -20°C for short or long-time storage. 

 

3.3.4.2.3. Adult brains dissection  

1. A 1.5 ml centrifuge tube filled with 4 % formaldehyde solution (in PBT) is placed on ice 

and is cooled down. 

2. The adult beetles are put on a plastic dish and placed on ice until the animals become 

immobile (figure 3.3–2A).  

3. Then single specimens are picked up with forceps and transferred into a black dissection 

dish filled with ice cold PBT. The dish is placed under the stereomicroscope for 

dissection. 

4. To dissect brains from the adult beetles first separated the head is from the body with a 

sharp cut using tweezers. 

5. Place the head with the ventral site up (figure 3.3–2D). Then one pair of forceps 

(Dumont No. 5) is used to hold the head down by inserting it into the eyes, while another 

pair of forceps is used to remove the ventral cuticle of the head capsule beginning from 

the side close to the thorax and thus exposes the brain. 

6. Then the remaining head capsule and tissues around the brain are carefully removed.  

7. Once the brain is freed from all surrounding cuticle and tissues (figure 3.3–2E), it is 

transferred into a tube with 4 % formaldehyde solution on ice.  

8. Aim to process beetle brains to be fixed in one batch within 45 min to avoid adding too 

much extra time to the fixation. 

 

3.3.4.2.4. Adult brains fixation and dehydration 

1. The duration of the fixation for adult brains to be used in RNA in situ hybridization is 

2 h (plus maximal 45 min duration of the dissections, see above). 

2. Washing and dehydration is carried out in the same way as with the larval brains (see 

3.3.4.2.2). Also see NOTE 3. 
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3.3.4.3. Immunostaining of brains using a cell specific antigen in combination 

with a ubiquitous neural marker 

For immunostaining of larval brains use the following protocol. Adult brains are processed 

in the same way as larval brains, the only difference is that many antibodies need significantly 

longer incubation times. For example, staining an adult brain with the synaptic marker anti-

synapsin worked best when incubated for 72 h, with an addition of 0.3 % Triton to the medium. 

Incubation of the secondary (anti-mouse-A555, anti-rabbit-A488, etc.) works well at 4-8°C 

overnight, or up to 48 h. Also see NOTE 4, 5, 6, 7 and 8. 

 

Day 1 

1. Fixed brains stored in methanol are rehydrated in a series of ascending methanol 

concentration.  

2. First make sure that the volume of methanol in the tube with the brains is 1 ml. Remove 

250 µl of the methanol and add 250 µl PBT. Invert the tube a few times and wait for the 

brains to sink to the bottom. 

3. Remove 500 µl solution from the tube and replace by 500 µl PBT. Invert tube and let 

the brains sink. 

4. Remove 750 µl solution and replace by 750 µl PBT. Invert and let brains sink. 

5. Remove 900 µl (or as much volume as possible without sucking up any brains) and 

replace by the same volume of PBT. Invert and let brains sink. 

6. Carry out 6 x 5 min washes in PBT. 

7. Block brains for at least 1 h in PBT + 3 % BSA. 

8. Dissolve the first primary antibody (normally the one against the cell specific antigen) at 

an appropriate concentration in PBT + 3 % BSA (see NOTE 8). A small volume of 

app. 100 µl is enough to stain a large number of brains dissected brains in a 1.5 ml tube. 

We stain app. 30 brains in one incubation, but this can be upscaled if required. The time 

required for dissection is the limiting factor to the number of brains used. 

9. Remove the blocking solution and add the antibody solution. 

10. Incubate in the antibody for 3-4 h at room temperature or overnight at 4-8°C.  

 

Day 2 

11. Remove solution with the primary antibody and replace by one 1 ml PBT. 

12. Proceed with 4 x 20 min washes in PBT.  

13. Block for 1 h in PBT + 3 % BSA.  
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14. Dissolve second primary antibody (normally a neural marker, e.g. anti-synapsin from 

mouse) in PBT + 3 % BSA at an appropriate solution (1:40 v/v for anti-synapsin serum). 

15. Incubate the antibody at 4-8°C overnight.  

Also see NOTE 8 and 9. 

 

Day 3 

16. Remove primary antibody solution and replace by 1 ml PBT. 

17. Perform 4 x 20 min washes in PBT.  

18. Block for 1 h in PBT + 3 % BSA. 

19. Dissolve appropriate secondary antibodies against your primary markers in one solution 

(in PBT); use a concentration of 1:500 v/v of each. Use alternatively labelled secondary 

antibodies, e.g. anti-rabbit-A488 in combination with anti-mouse-A555, depending on 

the primary antibodies used and on your imaging setup. 

20. Remove blocking solution and replace by antibody solution. Incubate at 4-8°C 

overnight.  

 

Day 4 

21. Final washing steps and DAPI staining. 

22. Remove secondary antibody solution and replace by 1 ml PBT. 

23. Include DAPI 1:1000 v/v of stock solution in PBT in your first washing step (20 min). 

24. Perform 4 x 20 min washes in PBT. 

25. Now the staining is complete. Proceed to mounting (see 3.3.4.6) on the same day. Stained 

specimens can be stored in PBT at 4°C for few days, but are ideally mounted soon after 

completion of the staining protocol. 

 

3.3.4.4. Phalloidin staining of larvae and adult brains 

1. Brains fixed for 1 h (larvae) or 2 h (adults) are washed in PBT (6x) after fixation. They 

are not dehydrated but directly taken through the staining process.  

2. If Phalloidin staining is combined with a specific antibody, the brains should first be 

taken through the antibody staining protocol (steps described under 3.3.4.3, day 1 and 

3) using only one primary and one suitable secondary secondary). 

3. A Phalloidin staining solution with a concentration of 1:40 - 1:100 v/v is prepared in 

PBT (use 0.3 % Triton for adult brains, and see NOTE 10).  
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4. Following the washing steps after fixation (or after incubation of the secondary 

antibody) as much PBT as possible is removed and the Phalloidin staining solution is 

added to the tube with the brains.  

5. Incubate at 4-8°C overnight. Alternatively, combine the Phalloidin incubation with the 

over-night incubation of the secondary antibody. 

6. Wash 4 x 20 min, include DAPI 1:1000 v/v in one of the first washing steps if desired. 

 

3.3.4.5. Fluorescent RNA in situ hybridization (ISH) followed by antibody 

labelling of the axonal scaffold 

The protocol for fluorescent ISH followed by antibody labelling (see figure 3.3–3) is the same 

for larval and adult brains, with exception of different fixation times. Also, as outlined above, 

staining of the axonal scaffold with anti-synapsin (figure 3.3–3C) requires a longer incubation 

time of app. 72 h (see NOTES 5 and 7).  

 

 

Figure 3.3–3: Fluorescent RNA in situ hybridization on larval and adult beetle brains. Z-projections of 

confocal microscopy image stacks. A) Larval brain stained against synapsin and in situ labelled against fmfr, a gene 

encoding neuropeptides that is expressed in few individual cells of the brain. B) Larval brain stained with the neural 
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marker anti-ac.-Tubulin and against RNA of PC2, a neural protein convertase. C) Adult brain stained against synapsin 

and PC2-RNA that is expressed in many of the brain neurons. C.b shows an enlarged substack of C.a, focusing on 

the central brain. The combination with DAPI staining of nuclei shows that many but not all brain neurons are in 

situ stained, reflecting differential expression of the gene. 

 

Day 1 

1. Rehydrate brains stored in methanol through a series of increasing PBT concentration 

as described above (3.3.4.3, steps 1-5). 

2. Wash 4 x 5 min in PBT.  

3. Prepare a 4 % formaldehyde solution in PBT. 

4. Postfix the brains for 15 minutes in 4 % formaldehyde. 

5. Remove fixation solution and perform 6 x 5 min washes in PBT. 

6. For prehybridization take off the larger part of the PBT in the tube with the sample, 

only leaving 250 µl. Add 250 µl Hybe-BT buffer (so that the ratio of Hybe-BT: PBT is 

1:1).  

7. Mix gently and let brains sink. 

8. Take off the solution and replace by 500 µl Hybe-BT. 

9. Incubate for 10 min, mix gently after 5 min and let the brains sink. 

10. Remove Hybe-BT and replace by 500 µl Hybe-AT. 

11. Incubate for 1 h at 65°C. 

12. While specimens are taken through the pre-hybridization step, dilute probes in 30 µl of 

Hybe-AT (typically 1 µl probe/ 30 µl Hybe-AT but see NOTE 11). 

13. Heat probes to 95°C for 2 min on a heat block or in a water bath to remove potential 

secondary structures. 

14. Put on ice for 1 min, then pre-warm to 65°C in the incubator. 

15. After the 1 h pre-hybridization step, aspirate as much of the Hybe-AT from the tube as 

possible. 

16. Add probe dilution to the brains and incubate overnight at 65°C. 

 

Day 2 

17. Pre-warm PBT and Hybe-BT for the washing steps to 65°C. 

18. Add 500 µl Hybe-BT to the samples, keep at 65°C until specimens settle down. 

19. Take off solution and replace by 500 µl Hybe-BT, let specimens sink.  

20. Take off solution and replace by 500 µl fresh Hybe-BT, incubate for 15 min. 

21. Add 500 µl PBT to the sample (so that PBT: Hybe-BT ratio is 1:1). Keep at 65°C until 

brains settle down.  



MANUSCRIPT 3  –  METHODS  

- 137 - 

22. Perform one more wash in PBT at 65°C (15 min). 

23. Now proceed at room temperature. Perform 3 x 15 min washes in PBT. 

24. Replace PBT by MAB-T and incubate for 15 min. 

25. Prepare blocking solution by dissolving Roche blocking reagent in MAB-T (2 % w/v).  

26. Replace MAB-T buffer in the tube with the specimens by the blocking solution and 

incubate for 1 h. 

27. Prepare antibody solution by dissolving an anti-DIG-peroxidase (POD) antibody (see 

note below) 1:2000 v/v in the MAB-T-blocking solution. Also see NOTE 12 for 

antibodies used for in situ.  

28. Remove blocking solution from the brains and replace by the antibody solution.  

29. Incubate overnight at 4-8°C. 

 

Day 3 

Fluorescent labelling reaction: An enzymatic labelling reaction is used to fluorescently 

visualize gene expression (figure 3.3–3). We normally conduct a peroxidase dependent tyramide 

signal amplification (TSA) reaction (see figure 3.3–3). The preparation of the reagents is described 

in the accompanying protocol for embryonic in situs of this issue (Buescher et al., in press). 

Alternatively, a commercial TSA-kit can be used (e.g. Perkin Elmer). Instructions below are based 

on the use of self-made reagents, if you are using a kit, follow instructions given in the manual. 

See NOTE 13 for alternatively performing a Fast Red reaction and see NOTE 14 on performing 

two-colour in situ hybridization (figure 3.3–4C). 

 

 

Figure 3.3–4: Potential modifications to our recommended standard protocol. Z-projections of confocal 

microscopy image stacks. A) Adult brain treated with clearing medium prior to imaging. Shown is a color-coded 

projection of a Z-stack created with FIJI (Schindelin et al., 2012). B) Larval brain hybridized with a dachshund (dac) 

RNA probe and stained with Fast Red. Expression is predominantly seen in the cells associated with the mushroom 

bodies. C) Larval brain taken through double in situ hybridization against PC2 and avp (which is only expressed in 

one single cell in each brain half) using TSA reactions with different colour reactions (A488 and A555). The staining 
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that is carried out first (here: PC2) often suffers from reduced intensity, likely caused by the acidic treatment for 

enzyme inactivation. 

 

30. Remove antibody solution from the specimens and replace by 1 ml MAB-T. Let brains 

sink and exchange solution against fresh MAB-T. 

31. Perform 3 x 1 h washes in MAB-T. 

32. During the last washing step, prepare the TSA staining solution. Combine 250 µl MAB-

T with 2.5 µl 4-iodophenol (of the 100x stock), 2.5 µl of a 0.3 % H2O2 solution (final 

concentration of H2O2 in the staining solution is 0,003 %) and 1 µl of the tyramide 

conjugate -555 (red) or -488 (green). Keep in the dark. 

33. Remove MAB-T and add the staining solution to the brains, keep in the dark for 30 min. 

34. Remove staining solution and add 1 ml MAB-T. Let brains sink and exchange solution 

one more time. 

35. Exchange MAB-T by 1 ml PBT. Perform 2 x 20 min washes in PBT. If no further 

antibody labelling is conducted, a nuclear staining using DAPI (1:1000 v/v) can be 

included in the first wash and the specimens can be mounted subsequently (see 3.3.4.6). 

36. If the brain neurons are to be immunolabelled, proceed with the blocking step and with 

subsequent primary antibody incubation (anti-synapsin: figure 3.3–3A, 3.3–3C; anti-ac.-

Tubulin: figure 3.3–3B) of the IHC protocol 3.3.4.3. 

 

3.3.4.6. Mounting for fluorescence- or confocal microscopy. 

To mount stained larval and adult brains place a microscope slide under a dissection 

microscope and add a drop of mounting medium (see materials and also see NOTE 2) on the 

slide. Now, with a pipette, transfer a single brain into the drop with as little solution as possible. 

Use fine tweezers or similar tools to layout the brain flat and to remove all dirt or attached tissues. 

Now prepare a cover slip (18 x 18 mm or 22 x 22 mm) with small plasticine feet on the edges 

and gently lower it on the medium. Apply as much pressure on the slide as required for the brain 

to lie flat but be careful not to squeeze it. Alternatively, transparent, ring-shaped stickers can be 

used to create a more standardized distance between slide and cover slip. Add transparent nail 

polish over the corners of the cover slip to fix it to the slide. Proceed to microscopic inspection. 
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3.3.5. NOTES 

1: Blocking for antibody stainings 

As a default blocking agent, we use 3 % BSA/PBT (see Materials) prior to and during 

antibody incubations. It is possible to improve the blocking effect (and hence reduce background) 

by using serum derived from the animal that the secondary antibody was raised in if available. 

E.g. use goat serum as a blocking reagent for goat-anti mouse antibodies (use at 5 % for pre-

incubation blocking and at 2 % during antibody incubation). 

 

2: Use of a clearing medium  

We have used RapiClear 1.47 (SunJin Lab) as a clearing medium with a refraction index suited 

for the immersion media we use and for the size of Tribolium brains. Warm the RapiClear medium 

to 37°C and apply to brains after removing the washing buffer beforehand. It will completely 

clear the brains at room temperature in 1-5 minutes with only remaining trachea visible. 

Diffraction of light through the white tissue is strongly reduced, increasing the signal to noise 

ratio. There is no need for linear Z compensation, even in thick adult brains (see figure 3.3–4A). 

You will notice an increase in the visibility of cell projections. however, we find that repeated 

imaging of the same specimen quickly decreases signal intensity, hinting that the anti-fade 

properties of RapiClear are not as strong as of Vectashield and other fluorescence preserving 

media. 

 

3: Check discarded buffer 

During all washing steps, make sure that the brains sink to the bottom of the tube before you 

change the solution. Pipette every solution that you take off from the tube into a black dish and 

check under a dissection microscope that no brain has been sucked up. If a brain is seen in the 

dish, transfer it back into the tube. The brains sink relatively well in aqueous solution, but tend 

to float more in the methanol containing solutions used for dehydration and in the hybridization, 

buffers used during the RNA in situ protocol.  

 

4: Avoid intense agitation during washing steps 

Dissected brains, especially from larvae, are small and fragile. Therefore, we avoid too much 

agitation of the sample and do not use rotating wheel shakers, which can cause the brain to get 

stuck to the lid of the tubes. If available, use a horizontal shaker at a low speed, but we regularly 

perform the washing steps without agitation and just slightly shake the tubes by hand from time 

to time. 
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5: Antibody incubation 

Antibody penetration into adult brains may sometimes be difficult and some antibodies work 

better with a milder fixation (40 minutes in 4 % formaldehyde). Another mean to improve 

permeability in adult brains is to increase the proportion of Triton in the PTB used for all steps 

from 0.1 % to up to 0.3 %. 

 

6: Brains used for Phalloidin staining  

These brains are fixed for 1 h in a 4 % methanol-free formaldehyde solution. Use PBT with 

0.3 % Triton for subsequent washing steps. Do not dehydrate the brains but directly proceed to 

the staining reaction.  

 

7: Timing of the antibody staining 

We have lined out the protocol here in a way that primary and secondary antibodies are 

incubated overnight in cold conditions. This is however flexible and has to be optimized for each 

antibody combination. Some primary antibodies work well when incubated only for a few hours 

at room temperature, while others may need significantly longer. hence, the protocol given here 

spans several days, but the workload on each day is relatively low. 

 

8: Concentrations of primary antibodies  

The concentration depends on the specific antibody and is either defined by prior experience 

or trial and error. Monoclonals are normally efficient at lower concentrations than polyclonals. 

The antibodies that we often use and that are commercially available are used at the following 

concentrations (v/v): mouse anti-ac.-Tubulin (Sigma) 1:50, mouse anti-synapsin (DHSB 

Hybridoma Bank) 1:40, rabbit anti-AVP (Calbiochem) 1:200 and chicken anti-GFP (Abcam) 

1:1000. 

 

9: Combining primary antibodies in one incubation 

When using a specific combination of antibody labelling for the first time we normally 

incubate both primary antibodies sequentially as described. After this many antibody solutions 

can also be re-used multiple times. With many combinations it is possible to incubate both 

primaries in one solution, but this has to be tried out for each individual reaction.   
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10: Phalloidin  

Phalloidin is available from different suppliers with different primary fluorescent labels. We 

successfully used green Phalloidin (A488 conjugated, life technologies) and the red Phalloidin 

(A568, from Thermofisher Scientific). The stock solution is prepared according to the supplier’s 

instructions. We are getting good results by using a concentration of 1:40 v/v (Phalloidin 

stock/PBT) for adult brains and 1:100 v/v for larval brains.  

 

11: RNA probe concentration 

We adjust our probes to a concentration of 100 ng/µl and start using 1 µl in 30 µl 

hybridization buffer. After the first reaction this concentration can be adjusted for each individual 

probe depending on signal strength and signal to background ratio. We use concentrations 

ranging from 0.1 µl to 2 µl in 30 µl reactions. 

 

12: Antibodies used in in situ hybridization 

The choice of antibody used in the in situ hybridization depends on the label of the RNA 

probe (DIG; Fluorescein; etc.) and on the type of colour-producing reaction that is used for 

visualization. We use anti-DIG-POD (Roche) for TSA reactions and anti-DIG-AP (Roche) 

antibodies for Fast Red reactions (see NOTE 13 below).  

 

13: Using Fast Red as an alternative dye for RNA visualization 

An alkaline phosphatase dependent Fast Red reaction, producing a red fluorescent signal can 

be used as an alternative to TSA (see figure 3.3–4B). The Fast Red staining can also be seen under 

a stereomicroscope without fluorescence light setup. It has been reported that Fast Red labelling 

works in species where a TSA reaction does not produce any result, suggesting it may be more 

robust or more sensitive. however, because it takes significantly longer than TSA and is prone to 

produce unspecific staining in surface tissues and general background, it is not our preferred 

staining reaction and we have so far not established protocols to combine it with antibody 

labelling. Data from other species does however suggest, that a combinatorial stain is well possible 

(Hunnekuhl and Akam, 2014).  

To perform a Fast Red reaction on your specimens under point 3.3.4.5 you have to use an 

alkaline phosphatase coupled antibody against your probe label (e.g.: anti-DIG-AP, Roche). 

Following antibody incubation proceed with the following steps: 

37. Remove antibody solution from the specimens and replace by 1 ml PBT. Let brains sink 

and exchange solution against fresh PBT. 
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38. Perform 3x 1 h washes in PBT. 

39. Remove PBT and replace by 1 ml 0.1 M Tris-HCl (incl. 0.1 % Triton, pH 8.2).  

40. Exchange Tris-HCl solution three more times.  

41. While the embryos are washing, prepare the Fast Red staining solution by dissolving 1 

Fast Red tablet (Roche) in 2 ml 0.1 M Tris-HCl (incl. 0.1 % Triton, pH 8.2). Spin down 

the solution at 15.000 rpm for 2 min, transfer supernatant into a fresh tube and discard 

pellet. Note that the Fast Red chemicals age over time such that stock solutions cannot 

be kept for long time. Prepare staining solutions freshly on the day of use. 

42. To start the staining reaction remove Tris-HCl buffer from the brains and add sufficient 

amount of the staining solution.  

43. Keep in the dark, but periodically monitor the reaction under a dissection microscope. 

It may take several hours for the staining to develop. If necessary, it can be put to 4°C 

overnight and development can be continued the following day. Exchange staining 

solution if very long reaction times are required. 

44. When the staining is developed, stop reaction by 3 x 5 minutes in PBT.  

45. Use DAPI for 20 min (1:1000 v/v in PBT), wash 3 x 5 min and proceed to mounting 

for microscopic inspection. 

 

14: Two-colour in situ hybridization 

It is possible to perform two-colour in situ hybridization using two RNA probes with different 

labels (e.g. DIG and Fluorescein). Incubate both probes together (under 3.3.4.5) and then first 

use an anti-DIG-POD antibody. Perform a first TSA staining reaction using a green substrate 

(A488). After this the POD conjugate of the antibody needs to be deactivated by acidic treatment 

(e.g. 3 x 5 min washes in 0.1 M glycine, pH 2.2). After washing in PBT, incubate a second anti-

Fluorescein-POD antibody overnight. Carry out a second TSA reaction using a red dye (A555).  

However, when performing two-colour in situ labelling on brains we experience problems 

with the intensity and quality of the stains (see figure 3.3–4C) and the protocols to perform this 

in Tribolium brains still requires improvement. 

 

15: Poor signal in antibody staining 

A poor signal in antibody staining can often be improved by adjusting time and concentration 

of the primary antibodies used. This is mostly done by trial and error. Some of the antibodies we 

use are incubated up to three days at 4°C, and with an increased concentration of Triton (0.3 %) 

in the incubation buffer.  
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Another mean to increase antibody penetration is by digesting specimens with proteinase K, 

trypsin, or mercaptoethanol containing reductive buffers. We do not normally perform such 

digestions on dissected brains as they are likely to have an impact on the tissues and cells, but 

protocols are widely available in the literature if required (Bodies et al., 2014; Hunnekuhl and 

Akam, 2014; Schinko et al., 2009; Yoshida-Noro et al., 2000).  

 

16: Poor signal in RNA in situ hybridization 

A weak signal in in situ staining can be due to low expression levels of the gene or to poor 

probe penetration. If you suspect that the gene of interest is only weakly expressed, design a 

probe that covers as much of the open reading frame and untranslated regions as possible. It is 

also possible to design two or more non-overlapping probes against the same gene and mix them 

prior to hybridization. Long probes can be digested to smaller fragments in carbonate buffer 

(80 mM NaHCO3, 120 mM Na2CO3) at 65°C for improved penetration (Dearden and Akam, 

2001). Add required volume of probe to 30 µl carbonate buffer and incubate at 65°C for 5-

10 min. To stop the reaction, remove carbonate buffer and add 30 µl Hybe-AT. Proceed with 

probe incubation (step 13, 3.3.4.5, day 1).  
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4. Discussion 

4.1. Implications of presented work 

4.1.1. Implications for central complex development and evolution 

Manuscript 1 provides the first detailed account of heterochrony in central complex 

development between Tribolium and Drosophila. As such, the analysis is starting point for a 

multitude of questions (see below). The most unexpected finding was the precocious gain of 

functionality of the larval central body that results in an immature developmental form of the 

central body. This form does not equal an adult form and hence, calls the current view into 

question that a fully formed adult-like upper division of the central body is present in larvae of 

some species. Further, this finding raises questions about the behavioural links and anatomy of 

said structure, to be answered in future studies. Moreover, central complex heterochrony not only 

consists of several shifts, but also a change in sequence of an otherwise conserved order. 

 

4.1.2. Implications for studies in brain evolution and development 

With this work I introduce genetic neural lineages as tools to generate insights into brain 

development and evolution (manuscript 1). Constructing transgenic lines that mark such lineages 

in Tribolium has been described in manuscript 2. Manuscript 3 has provided additional methods 

to perform staining techniques at several stages of development in Tribolium and allows data on 

brain development to be generated in the future. With these contributions, we first provide a 

method of lineage marking that is relatively easy to transfer to additional species, in contrast to 

other methods used (see Introduction). Therefore, multi-species comparisons on the level of cell 

development can be performed in the future. Second, we provide tools that further establish 

Tribolium castaneum as a neurobiological model organism (see Koniszewski et al., 2016 for 

additional tools) providing an alternative model system beside Drosophila that allows to study 

central complex development in a less derived species (Koniszewski et al., 2016). 

In the following, I will illustrate further points that can be answered, with emphasis on the 

question of central complex heterochrony. Further questions that warrant answering from 

manuscripts 2 and 3 can be found in this segment as well. 
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4.2. Open questions on the Drosophila – Tribolium comparison 

4.2.1. Is the definition of homologous cells by similar morphology and single gene 

expression sufficient? 

We have based our homology statement in manuscript 1 on the morphological similarity of 

central complex neurons of DM1-4 lineages and their shared expression of rx. We concluded 

that, in the framework of the overall homologous central complex, observed similarities of these 

cell groups strongly indicate homology. Moreover, the conserved nature of DM1-4 neural 

lineages in insect brains corroborated homology (e.g. Boyan et al. 2017).  

Previous comparisons between highly divergent animal clades used morphological similarity 

of cells as basis for subsequent testing of homology by shared gene expression. For example, 

Wolff and Strausfeld (2016; 2015) have identified shared morphological commonalities between 

arthropod mushroom bodies, invertebrate brain centres and vertebrate hippocampus by a shared 

set of morphological characters and shared expression of a set of proteins. Similarly, Strausfeld 

and Hirth (2013a) identified a correspondence of vertebrate basal ganglia and the insect central 

complex by using morphological criteria, shared gene expression and neuromodulator content. 

Neuromodulators (i.e. neurotransmitters and – peptides) are highly conserved in some cases 

(Katz and Lillvis, 2014) and have been used to identify corresponding morphological domains 

(Homberg et al., 2018). Moreover, they often maintain their cellular localisation through 

development, as is the case for several neuromodulators in the developing Schistocerca central 

complex (Herbert et al., 2010). In some cases, however, they can also deviate strongly between 

species as is the case for nitric oxide (Rabinovich et al., 2016). 

Although we approach homology in a similar way to previous accounts, we deviate in two 

aspects from these descriptions (Arendt, 2005; Strausfeld and Hirth, 2013a; Thoen et al., 2017; 

Wolff and Strausfeld, 2016; 2015). First, we use only one gene to determine genetically based 

homology. However, the use of one gene to identify homology can be problematic (Arendt, 2005; 

Janssen, 2017; Scholtz, 2001). Genes such as engrailed are not only part of a conserved gene 

network but also expressed in other regions that might not be homologous. This is, however, a 

specific issue of identifying homologous structures in early development, as their regions of 

distinct adult anatomical structures might still overlap. We determine shared rx expression in the 

brain, however. Moreover, adding a second gene to our strategy would result in considerable 

additional efforts to be made, as our strategy is based on gene-specific transgenic lines. Hence, a 

possibility to further verify homology would be to construct an additional transgenic line marking 

expression of a second gene, with a different fluorescent protein as marker. These transgenic lines 
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would first need to be generated, then crossed, potentially leading to fitness effects, and hence, 

additional effort would need to be considered for such steps. 

Second, we refrained from using neuromodulator expression as an identifier of homologous 

cells. Pfeiffer and Homberg (2014) have reviewed the use of neuromodulators for certain cell 

groups of the central complex in various species. Their summarizing table highlights that some 

neuromodulators are expressed in highly different structures in some animals. Hence, while some 

neuromodulators (such as GABA, Homberg et al., 2018; or Serotonin, Katz and Harris-Warrick, 

1999) are conserved, others are not, e.g. Octopamine (Pfeiffer and Homberg, 2014). Moreover, 

our observation was that most neuromodulators do not mark the cell body of expressing neurons 

sufficiently (Koniszewski et al., 2016). Hence, they are useful to determine anatomical 

correspondences (e.g. Strausfeld and Hirth, 2013a), but not cell body groups. In that sense, in 

manuscript 1 we proposed to use GABA staining to confirm that the larval central body of 

Tribolium does not contain characteristics of a lower division of the central body on the gross level 

(Homberg et al., 2018).  

To conclude, we used several criteria to determine homologous cell groups, but determining 

homology remains a critical issue for these kinds of studies.  

 

4.2.2. Is a comparison of two distant species useful in evolutionary research? 

In manuscript 1 we compared the development of the central complex between two distant 

holometabolous species which shared a common ancestor approximately 300 million years ago 

(Misof et al., 2014). Important insights into brain morphology have been made by comparison of 

species even within the same genus (Keesey et al., 2019) or order (Kollmann et al., 2016). We 

have opted for a comparison between orders of insects, i.e. Coleoptera and Diptera, because the 

divergence of central complex timing was thought to be pronounced between the two species 

(Koniszewski et al., 2016). This difference was the desired model to investigate how heterochrony 

in general is achieved on a cellular level. 

It is possible that differences in central complex heterochrony are also present in more closely 

related species, as Panov (1959) has indicated, for example, that some Coleopteran species have 

a larval central body while others have not. A comparison of these species within one order can 

be used to further study the variation in central complex development. However, the level of 

detail that is achievable is the important criterion for such experiments. Only a few species are 

genetically amenable (Chen et al., 2016). While we claim that CRISPR/Cas9 makes genetic 

amenability relatively easy to achieve (through its adaptability, e.g. loss-of-function, gain-of-

function, knock-ins; Gratz et al., 2013; manuscript 1 and 2), it would still require several preceding 
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experiments of transgenic line construction that require a lot of time. Moreover, micro-injection 

of eggs and multi-generational rearing are prerequisites for every species to construct transgenic 

lines analogously usable for genetic neural lineage marking (manuscript 1 and 2). For example, 

multi-generational rearing is hardly possible in Heliconius butterflies, limiting CRISPR/Cas use to 

mosaically modified animals (S.H. Montgomery, personal communication). Therefore, drawbacks 

for some species are whether CRISPR-mediated transgenesis is possible, while for all species time 

required for transgenic lines and possibly establishing CRISPR techniques can be a significant 

drawback. This means that an ad hoc comparison of central complex development and evolution 

in e.g. several Coleopteran species is only possible on the level of basic immunohistochemical 

staining, but less so on the level of genetic neural lineages marked through specific transgenic 

lines. I propose to perform such experiments as well, because such data can identify the degree 

of variability regarding central complex development and brain evolution between more closely 

related species, and more orders of insects. Hence, a more descriptive comparison in many 

species compared with deeper genetic and cellular analysis in few genetically tractable model 

organisms appears to be a fruitful mix of approaches. 

Nevertheless, one hemimetabolous insect as outgroup for comparative functional studies is 

badly missing. One of the best choices, Gryllus bimaculatus where CRIPSR has been used before 

(Watanabe et al., 2017), would help to answer questions on the previously illustrated third mode 

of central complex developmental timing, i.e. complete embryonic development (Koniszewski et 

al., 2016). We discuss the possibility that Tribolium shows a derived mode of sequence 

heterochrony in central complex development that causes precocious presence of a functional 

central body, while Schistocerca and Drosophila might show a more ancestral state of central complex 

development (manuscript 1). Schistocerca data (Boyan et al., 2017; Boyan and Liu, 2016) indicate 

this interpretation, but so far, the literature lacks synapsin staining and comparable time steps, 

which would be necessary to make firm conclusions. In Schistocerca some functional genetic 

approaches like RNAi have been used successfully (Wynant et al., 2012) and the immense amount 

of data on brain development would be an advantage (see e.g. Boyan and Liu, 2016). However, 

so far, a genome, CRISPR and thus, transgenesis are missing. Therefore, the genetically amenable 

Gryllus would be used as proxy for a hemimetabolous insect to construct a rx transgenic line and 

mark genetic neural lineages. 

To deepen the level of central complex heterochrony characterisation, and thus equal efforts 

on other heterochronies (Fritsch et al., 2013), more species can be added, with transgenic lines 

for rx constructed. With this, the use of phylogenetic approaches with event assignment along a 
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phylogenetic tree or quantitative approaches can be used (both reviewed in Smith, 2001; Fritsch 

et al., 2013). 

To summarize, the number of species included in manuscript 1 is justified by technical 

limitations but is also not yet enough to convincingly support all hypotheses stated. Adding one 

hemimetabolous functional model organism and a number of more species for descriptive 

purposes would be a reasonable approach to complement the picture. 

 

4.3. Modifications of transgenic lines to expand the toolbox 

We used a rx enhancer trap of Tribolium to compare to a rx bicistronic line in Drosophila. 

Through the more restricted marking of rx expression in this enhancer trap, a limited number of 

cells and projections could be studied. A construction of a bicistronic line in Tribolium – analogous 

to the Drosophila rx line – would allow to mark all rx expressing cells. Insights from manuscript 1 

may then be expanded from a subset of lineages to the entire genetic neural lineage. Such a 

bicistronic line is currently generated in our lab using the methods described in manuscript 2. 

With it, more global analyses – particularly regarding the role of rx-positive cells – can be 

answered (see below). 

Moreover, modifications of the strategy used in manuscript 1 and in detail described in 

manuscript 2 could be first, to remove the eye transformation marker. With this, any influence of 

the 3XP3 promotor can be excluded. This would also alleviate the need to use two guides. It 

would, however, require either loxP sites flanking the marker and Cre recombinase to excise it 

(e.g. see Figure 3 in Gratz et al., 2013; or analogous techniques) or exogenous guide RNAs 

flanking the eye transformation marker (see manuscript 2, will be attempted for the Tc-rx 

bicistronic line). Moreover, GFP could be substituted with membrane bound EGFP, potentially 

making identification of coexpression easier and increasing fluorescent signal through more 

specific localisation. Recently, membrane-bound fluorescent proteins were used in Tribolium (G. 

Bucher personal communication) – these would have to be tested for marking axons before they 

could be used. 

 

4.4. Questions regarding central complex development and evolution 

4.4.1. What is the functional role of rx in central complex development? 

In manuscript 1, we have used the transcription factor rx only as marker of homologous cell 

groups. However, previous work illustrates important roles of this gene in insect brain 

development and other developmental processes. Rx is expressed in all bilaterians nearly 

exclusively in the anterior-median region of the embryo head and was therefore suitable to mark 
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homologous genetic neural lineages in manuscript 1 (e.g. Tosches and Arendt, 2013). In 

vertebrates, rx orthologs are mostly involved in eye development (Furukawa et al., 1997; London 

et al., 2009; Martinez-De Luna et al., 2011; Nelson et al., 2009; Pan et al., 2010; Strickler et al., 

2002; Zilinski et al., 2004) and partially required for brain development as well (Lu et al., 2013; 

Mathers et al., 1997; Medina-Martinez et al., 2009). Functions in the developing eye are shared 

only with some invertebrates, particularly Platynereis dumerilii (Arendt et al., 2004; Tessmar-Raible 

et al., 2007), while Drosophila deviates to vertebrates regarding rx function: Davis et al. (2003) have 

shown that Drosophila rx is not required for eye but for brain development, specifically for the 

central complex (note, however, expression of rx in the developing medulla and optic lobe; Erclik 

et al., 2017; Suzuki and Sato, 2017, respectively). Moreover, Kraft et al. (2016) illustrate that rx is 

involved in mushroom body lineages, including roles in proliferation, further confirmed in part 

by a transgenic RNAi screen (Neumüller et al., 2011). Expression in the clypeo-labral domain of 

the insect head has been reported as well, including phenotypes of such (Davis et al., 2003; Eggert 

et al., 1998; Posnien et al., 2011). In contrast to such labral expression stands a lack of it in 

onychophorans (Janssen et al., 2017). Therefore, the wealth of data about rx indicates that some 

functions and expression regions may be conserved across bilaterians, while others might not. 

Rx is involved in central complex development (de Velasco et al., 2007), confirmed through 

phenotypic modification of central complex structures (Davis et al., 2003; Koniszewski, 2011). 

Most notably, the time point of lethality of rx loss-of-function phenotypes corresponds with the 

appearance of a functional central complex neuropil. Both phenotypes, however, are not well 

understood. In Tribolium, a RNAi-mediated knockdown causes modification and midline-splitting 

of brain structures, marked with a transgenic line labelling neuropil-ensheathing glia. Hence, the 

phenotype was described by an indirect marker for rx and central complex modification, which 

lacks the resolution to really understand the origin of the phenotype (Koniszewski, 2011). In 

Drosophila, modification of the ellipsoid body has been observed in a null mutant with basic 

histology and a GAL4 transgenic line (not specific for rx) marking a small set of neurons 

projecting into the ellipsoid body (Davis et al., 2003). Again, phenotypic description appears not 

be complete, even more so, since manuscript 1 illustrates that rx expressing cells mark all 

neuropils of the central complex at least partially, with the ellipsoid body marked weaker than the 

other neuropils. Moreover, Erclik et al. (2017), Suzuki and Sato (2017) indicate a role of rx in the 

developing eye, possibly contradicting the main finding of Davis et al. (2003) of rx function in 

the Drosophila eye. Hence, more detailed analyses of the rx phenotype should help clarify possible 

contradictions and investigate the specific role for central complex development.  
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For Tribolium, a more detailed analysis might require the generation of CRISPR-mediated rx 

knockout (as described in Gilles et al., 2015; Gratz et al., 2013). For Drosophila, the available null 

mutant might be used to verify, and add, roles of rx in development. A useful alternative would 

be a T2A-GAL4 knockdown line which leads to GAL4 expression in the pattern of the 

endogenous gene while at the same time generating strong mutants, achieved by stalling 

expression of the endogenous gene through the insertion of a polyadenylation signal in the gene’s 

intron (Lee et al., 2018; BDSC # 79247, FBti0199573). Expression of rx cells could thus be 

monitored in a rx mutant background.  

Hence, while basic knowledge of rx function in insects is available, detailed descriptions of 

loss-of-function phenotypes would be necessary to understand the function of this gene, and to 

shed light on the possible differences of its function between Drosophila and Tribolium, and 

deviations between insects and other animal clades.  

 

4.4.2. Why is there central complex heterochrony? 

In manuscript 1 we have described the pattern of central complex heterochrony between 

Drosophila and Tribolium in detail. Why such heterochrony occurs can only be speculated, as 

causality is hard to prove in brain evolution (Northcutt, 2002), since it must involve 

multidisciplinary approaches including behavioural analysis. Following projects could be 

performed to at least contribute to answering why heterochrony arises. 

Strausfeld (1999, 2012) has noted a correlation between the presence of walking legs and 

presence of the central body, thus indicating that the ability to move by using legs (in contrast to 

crawling through wave-like contractions of Drosophila larvae) requires a central complex neuropil. 

In addition, Strausfeld (2012, see figure 11.12) also correlates differences in central complex 

anatomy with motor repertoire. Several questions arise from these correlations and the work in 

manuscript 1, of which answers can help understand why heterochrony appears: 

What is the motor repertoire of Tribolium larvae? How does it differ to Drosophila larvae, i.e. is 

it more complex, reflecting the early presence of a larval central complex and walking legs? Can 

Tribolium larvae make specific turns, i.e. shortening the stride of one side of the leg while 

lengthening the other? Are they able to orient their movement in a more sophisticated way than 

Drosophila larvae? Also, what can they perform in loss of function phenotypes of genes that 

modify the larval central body, and what does the identical mutation lead to in Drosophila larvae, 

lacking larval central complex structures? The motor (and behavioural) repertoire of an animal 

form with a larva-specific central complex with a low degree of decussated fibres has not been 

described so far, but might be compared to Diplopods (Millipedes) and Chilopods (Centipedes), 
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as these only contract longitudinal muscles of their body wall to move their appendages, but still 

have decussated midline brain structures, or even other basal arthropod groups (Boyan et al., 

2015; Loesel et al., 2002; Strausfeld, 2012). Investigating the behaviour of Tribolium larvae in 

connection with the knowledge presented in manuscript 1 might modify longstanding 

assumptions of the role of central complex for insect behaviour and evolution. Behavioural tests 

of Drosophila (e.g. Strauss and Heisenberg, 1993) can be adapted to Tribolium to detect movement 

patterns including turns. Such tests can also be used in a loss-of-function background where the 

larval central body is modified or missing. rx knockdown might not be suitable as there are rx-

positive cells in many neuropils of the brain and L1 larvae die early after hatching (Koniszewski, 

2011). Genes with a more specific expression and phenotype in the central complex might be 

more suited for such experiments through which the function of the larval central body can be 

studied simultaneously (M. Buescher, personal communication). 

In addition, larvae of holometabolous insects have walking legs in differing degree of 

elaboration (compare for example walking legs of the lady bird Coccinella magnifica with those of 

Tribolium castaneum or Lepidopterans such as Manduca sexta). Is this divergence also reflected in 

differences in larval central body anatomy? If so, this would deepen the tentative correlations 

described earlier. For this, brains of freshly hatched larvae of several species (e.g. ten) would be 

dissected and stained, possibly with a common set of antibodies, e.g. synapsin (to indicate 

functionality), acetylated α-Tubulin (to indicate tracts) and several neuromodulators such as 

GABA (Homberg et al., 2018), Serotonin (5-HT) and Tachykinin-related peptide (see 

Koniszewski et al., 2016). These should highlight, in the tradition of previous anatomical 

descriptions (Strausfeld, 2012), details of elaboration and anatomy of the central body and their 

correlation with complexity of leg morphology and walking behaviour. 

 

4.5. Which genetic and cellular processes cause heterochrony? 

4.5.1. Species differences in DM1-4 proliferation and quiescence during 

embryogenesis and larval phase 

Columnar neurons, like the described Rx-positive neurons of this work, are thought to arise 

from type II neuroblasts of the DM1-4 lineages. Hence, these neuroblasts need to be examined 

regarding the question of neuroblast proliferation patterns and quiescence in the central complex. 

The most obvious mechanism behind central complex heterochrony would be that the lineages 

of DM1-4 that build this structure proliferate at different times or with different rates in Drosophila 

and Tribolium. DM1-4 neuroblasts (Álvarez and Díaz-Benjumea, 2018; Andrade et al., 2019; Riebli 

et al., 2013; Sullivan et al., 2019; Walsh and Doe, 2017) are type II neuroblasts that undergo an 
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amplificative proliferation pattern (Boyan and Reichert, 2011; Homem and Knoblich, 2012). 

They generate a series of intermediate neural progenitors producing 4-6 ganglion mother cells 

(GMCs) which produce 8-12 neurons (Boone and Doe, 2008; Walsh and Doe, 2017). Type I 

neuroblasts do not have this intermediate form, and produce a series of ganglion mother cells, 

that then produce postmitotic neurons (Boyan and Reichert, 2011; Homem and Knoblich, 2012). 

The resulting number of cells is approximately three times smaller (110 vs 450 cells, (Bello et al., 

2008; Boone and Doe, 2008; Boyan and Reichert, 2011). Hence, DM1-4 undergo specific modes 

of proliferation. Moreover, while neuroblasts such as mushroom body neuroblasts can proliferate 

continuously (Ito and Hotta, 1992; Kraft et al., 2016; Kunz et al., 2012; Prokop and Technau, 

1994), neuroblasts such as DM1-4 undergo a phase of quiescence in Drosophila that starts at the 

end of embryogenesis and ceases at the end of the first larval instar developmental period 

(Homem and Knoblich, 2012; Ito and Hotta, 1992). 

While manuscript 1 shows the position of cell bodies and projection patterns, it can reveal 

patterns of proliferation and quiescence only indirectly, and not at all patterns of apoptosis. Do 

DM1-4 neuroblasts proliferate at different rates? Do they undergo quiescence in Tribolium like in 

Drosophila and at similar stages of development? Do they have differing apoptosis patterns? A 

proliferation assay and screening for apoptotic cells would answer these questions and shed light 

on evolutionary modifications in proliferative modes and quiescence. 

A proliferation assay can be performed with tools available in both species (through cross-

reacting antibodies; Koniszewski et al., 2016). Proliferation is best investigated using EdU (5-

ethynyl-2’-deoxyuridine) incorporation assays (Cappella et al., 2008; similar to Poon et al., 2016; 

Siemanowski et al., 2015). Alternatives are antibodies against Phospho-Histone-H3 and Cyclin A 

or E. Phospho-Histone-H3 is known to cross react in Tribolium (Koniszewski et al., 2016) but it 

marks only a fraction of dividing cells. EdU, in contrast, can be used such that a long phase of 

incorporation precedes staining, thus marking all cells that divided in a set time window (e.g. 

Poon et al., 2016). Such an assay is currently performed in our lab for embryos and early larvae. 

For this, embryos of both species are micro-injected with EdU, allowed to develop further for 

the same amount of relative developmental time, fixed and stained for EdU and suitable genes, 

for instance Rx (but, see below). Subsequent imaging and quantification of EdU double-positive 

cells in the area of DM1-4 neuroblasts promises to reveal whether there are different patterns of 

proliferation in embryonic development for the entire lineages or restricted to the rx-positive 

cells. For later stages, we will perform either feeding assays or injection of larvae for both species 

(Poon et al., 2016). Alternatively, larval brains can be dissected and incubated for a short amount 

of time (Poon et al., 2016). 
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Apoptosis in insect brains can involve either the neuroblast, marking the end of proliferation, 

or offspring cells, leading to a reshaping of neuronal circuits (Pinto‐Teixeira et al., 2017). Both 

can be detected using a cross-reacting Death Caspase-1 antibody (Kitzmann et al., 2017).  

In summary, cross-reacting antibodies and EdU incorporation assays can answer questions 

about how heterochrony is facilitated on a cellular level.  

One drawback of our rx imaging lines is, however, that they appear not to mark the DM1-4 

neuroblasts neither in Drosophila nor in Tribolium. Hence, to determine quiescence, other markers 

need to be established. Even in Drosophila, DM1-4 neuroblasts have not been unequivocally linked 

to the embryonic neuroblast map by Urbach and Technau (2003b) (V. Hartenstein, personal 

communication), although pointed and two transgenic lines seem to be a promising start (Riebli 

et al., 2013). Here, DM1-4 neuroblasts have possibly been identified (line GAL414-94), but not 

linked to an embryonic expression yet. These transgenic lines might not be specific enough for 

clear identification in the embryo, however. Hence, how to identify DM1-4 neuroblasts, 

intermediate progenitors and ganglion mother cells, i.e. proliferating cell types (Homem and 

Knoblich, 2012), is a challenge across species. Current efforts in our lab are likely to reveal such 

factors, which could then be used to compare division patterns in both species. A possibility 

would be to combine a candidate gene with rx to identify DM1-4 neuroblasts. Using rx, DM1-4 

lineages can be identified in the middle to late embryo (see manuscript 1). A staining against rx 

and an alternative gene going back from middle to late embryo into earlier stages consecutively, 

should then allow to see an overlap in marked cells and lineage offspring at some stage. 

Overlapping cells can then be followed back without Rx staining, to the start of DM1-4 

neuroblast delamination. 

Alternative markers that characterise type II neuroblasts generally such as pointed, deadpan and 

absence of staining of asense (He et al., 2019, Walsh and Doe, 2017) would be suitable to identify 

DM1-4 and answer the separate question whether type II neuroblasts exist in Tribolium (a question 

that might also be answered using mostly morphological means, see Boyan et al., 2010). However, 

for DM1-4 neuroblast identification, they might not be specific enough, making interpretations 

more difficult.  

In summary, methods involving EdU proliferation assays promise to answer questions 

regarding the cellular cause of heterochrony between the Drosophila and Tribolium central complex 

neuropils. The identification of neuroblasts belonging to DM1-4 that develop the central 

complex, however, still requires the establishment of respective tools and markers. 

 



DISCUSSION  

- 155 - 

4.5.2. Which genes and hormones cause heterochrony?  

If the cellular mechanisms underlying heterochrony involve proliferation and apoptosis, genes 

that regulate these processes should be involved in the genetic mechanism of central complex 

heterochrony. Such genes are partially reviewed in Homem and Knoblich (2012), and include 

genes of the hippo pathway (Ding et al., 2016; Poon et al., 2016), grainy head (Almeida and Bray, 

2005), prospero (Bayraktar et al., 2010; Lai and Doe, 2014), neuroblast temporal identity factors 

(Kang and Reichert, 2015; Maurange et al., 2008; Tsuji et al., 2008), eyeless (Sipe and Siegrist, 2017), 

the brain tumor gene (Bello et al., 2006), RhoA (Lee et al., 2000b), DE-Cadherin (Dumstrei et al., 

2003) and genes involved in axon pruning (Schuldiner and Yaron, 2015), spindle orientation 

(Cabernard and Doe, 2009; Lee et al., 2006) and nitric oxide processing (Rabinovich et al., 2016). 

Additional genes of interest might be included in screen data (Moda et al., 2013; Reuter et al., 

2003). 

Besides genes, hormones are also involved in neural development, particularly insulin, juvenile 

hormone and ecdysone (Cayre et al., 2000, p. 200, 2005; Chell and Brand, 2010; Lee et al., 2000a; 

Malaterre et al., 2003; Malun et al., 2003; Sousa-Nunes et al., 2011). Juvenile hormone and 

ecdysone are involved in several processes of insect development, including the regulation of 

metamorphosis (Jindra et al., 2013; Truman and Riddiford, 2002, 1999). Since a hemimetabolous 

insect like Schistocerca gregaria develops its central complex neuropils during embryogenesis, while 

the holometabolous Drosophila and Tribolium develop only parts of the central complex during 

embryogenesis, hormones involved in metamorphosis might influence central complex 

heterochrony as well. Importantly, these hormones are indeed involved in neural development. 

For example, ecdysone receptors are required for neural remodelling (Lee et al., 2000a; Schubiger 

et al., 1998). Juvenile hormone is involved in development of the optic lobe (Riddiford et al., 

2018, 2010), while Insulin is involved in quiescence (Sousa-Nunes et al., 2011). 

All these candidates can be confirmed by loss of function approaches. For hormones, their 

respective receptors can be targeted by RNAi. In Tribolium, large scale RNAi screens have been 

performed (Schmitt-Engel et al., 2015). In a similar fashion, but on a smaller scale, a selection of 

genes and hormone receptors can be targeted at specific points during development. RNAi can 

be performed in the rx transgenic line background used in manuscript 1 to visualize the potentially 

shifted development. In Drosophila, several available libraries of transgenic tools can be used, i.e. 

mutant transgenic lines (Lee et al., 2018), transgenic RNAi lines (Dietzl et al., 2007) and 

temperature-inducible transgenic lines to knock down genes at specific time points (McGuire et 

al., 2004). 
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Upon RNAi, brains of first instar larvae and later stages can be dissected, and stained for the 

transgenic lines and/or structural markers such as synapsin and acetylated α-Tubulin to reveal 

any effects on central complex development. For example, it is possible that knockdown of genes 

involved in quiescence might cause premature proliferation in Drosophila (Ding et al., 2016), but 

a differing result in Tribolium. If quiescence occurs only in some parts of the central complex 

neuroblasts or not at all, a knockdown of a quiescence gene might either reveal that such genes 

have acquired a different function if the phenotype is not at all relatable to Drosophila. 

Alternatively, the phenotype might be comparable to Drosophila, but less severe. Another 

exemplary scenario might be that modifying the Ecdysone pathway through knockdown of its 

receptors results in shifted development of the central complex. 

 

4.6. Future studies 

4.6.1. What is the cell type composition of the larval central body of Tribolium? 

Manuscript 1 revealed that Tribolium central complex development involves a precocious 

presence of a functional central body and protocerebral bridge neuropil. Both neuropils are 

distinct in anatomy from their adult counterpart. Various cell types have been characterized in 

adults but not in larval central complex neuropils. Investigating the larval central body can reveal 

new or larva-specific cell types or projection patterns. 

While our analyses revealed unique anatomical characters of the larval central body, they did 

not include anatomical descriptions on a single-cell or high-resolution level that could reveal what 

kind of cell types occur in this structure. For example, single cell resolution can help to answer 

the question whether the larval central body of Tribolium also consists of pontine neurons (i.e. 

such columnar neurons that connect several columns in the upper division of the central body 

with each other), with specific anatomical characteristics of small undifferentiated neurons, as 

found in Drosophila (Andrade et al., 2019; manuscript 1). 

There are several techniques in Drosophila that result in labelling of a few cells including their 

detailed projections. Most suited is the ‘flybow’ technique (Hadjieconomou et al., 2011) as it can 

be used in combination with the existing transgenic lines, e.g. for rx, that mark genetic neural 

lineages, to generate single cell marked clones in permanent, but rx-specific, fashion. The 

combination of less cells marked, but still retaining rx specificity should answer questions about 

cell types and decussation patterns in the larval central complex. 

‘Flybow’ comprises previously characterised GAL4 lines that can be modified by removal of 

a set of up to four fluorescent proteins with Cre/LoxP recombination (Hadjieconomou et al., 

2011). One of four fluorescent proteins is activated, and a subset of cells marked. Cre 
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recombination is efficient in Tribolium and an alternative CRISPR-mediated excision of loxP sites 

has been successfully employed (Gilles et al., 2019). For ‘flybow’ to work, the rx transgenic lines 

or other lines such as in He et al. (2019) need to contain the Cre recombinase and loxP sites. Such 

modifications can be conducted with techniques described in manuscript 1 and 2. 

The application of clonal labelling might be aided by expansion microscopy. Here, tissue can 

be enlarged in a hydrogel and imaged with higher resolution without requiring additional 

microscopes beyond standard confocal microscopes (Cahoon et al., 2017; Jiang et al., 2018). This 

might be used for the thick and stacked fascicles in the late Tribolium embryo, containing the 

DM1-4 tracts, as these are hardly distinguishable through standard imaging (manuscript 1). 

Expansion microscopy might resolve this stack of fibres in combination with clonal analysis and 

thus reveal whether fascicle switching has occurred. Similarly, ramifications in two different 

columns typical for pontine neurons might be revealed through this technique. 

Alternatively, FIB-SEM (focused ion-beam scanning electron microscopy) can be used in 

combination with an HRP-coupled GFP antibody in the transgenic line background. The brown 

precipitate of the HRP-based reaction will label where GFP is expressed and thus where the larval 

central body is. This structure can then be scanned, and specific cells reconstructed. 

Hence, techniques are available to characterize the larval central body on a higher resolution 

level. Moreover, the use of these techniques can be expanded to other stages of Tribolium brain 

development. 

 

4.6.2. Atlas of Tribolium brain development contrasted to Drosophila 

An insect brain can be divided into synapse-rich compartments, tunnels that are devoid of 

synapses and the cell body rind consisting of cell bodies (Ito et al., 2014; Pereanu et al., 2010). 

The Drosophila brain has been globally characterised not only in the adult stage (Lovick et al., 

2013; Pereanu et al., 2010; Wong et al., 2013), but also larval stages (Andrade et al., 2019; 

Hartenstein et al., 2015). Such descriptions of compartments and fascicle tunnels can be the basis 

of mechanistic and functional approaches (Omoto et al., 2017).  

Similar descriptions can be performed in the Tribolium brain, building on the present basic 

anatomical descriptions (Dreyer et al., 2010; Koniszewski et al., 2016). Moreover, such 

comparative descriptions can be extended to developmental periods. It would be interesting to 

detect any deviations between Tribolium and the already published compartments and tunnels and 

their developmental periods of the Drosophila brain. Such comparative descriptions in high 

anatomical detail throughout the developing brain are rare, if at all available in insects (see 
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accounts on an adult ant brain; Bressan et al., 2015), but also in all animals, to the best of my 

knowledge. 

Description of compartments can be based on synapsin stains (as in manuscript 1, potentially 

reusing the same data). Description of tunnels can be based on acetylated α-Tubulin and 

transgenic lines such as the rx transgenic line (He et al., 2019; M. Buescher, unpublished, 

manuscript 1) that also mark fractions of tunnels. However, tracts have usually been detected and 

described with two different antibodies, against neurotactin and neuroglian (e.g. Wong et al., 

2013). Neuroglian labels secondary lineages, hence cells produced by neuroblasts after quiescence 

(Homem and Knoblich, 2012), while neurotactin labels primary lineages. A distinction of primary 

and secondary tracts in Tribolium could illustrate a quiescence phase (or the absence of it). 

Moreover, both antibodies are more specific for neuronal tracts than acetylated α-Tubulin (V. 

Hartenstein, personal communication). Unfortunately, the Drosophila antibodies do not cross-

react with the Tribolium antigens and thus, analogous antibodies would need to be generated, if 

the antigen is present and annotated in Tribolium.  

Nevertheless, available antibodies and the transgenic lines already allow a detailed account of 

Tribolium brain development. This can then be contrasted to Drosophila brain development and 

give a global analysis of any deviations, including deviations on timing of functional appearance 

of neuropils besides the central complex. 

 

4.6.3. Volumetric data of insect brains can be used in phylogenetic comparative 

analyses 

Data on mammalian brains including brain area sizes of several hundred species have been 

analysed using phylogenetic comparative methods (e.g. DeCasien et al., 2017; Isler and van 

Schaik, 2012; Powell et al., 2017). Inclusion of social, ecological and life history data have been 

used to test specific hypotheses of brain evolution. Phylogenetic comparative analysis is regularly 

included in analyses of brain sizes of several species to account for phylogenetic history (Nunn 

and Barton, 2001). Nunn and Barton (2001) illustrate the necessity including phylogenetic data 

into comparisons of data points such as brain sizes.  

Analogous analyses in insects are mostly missing thus far (but see Dreyer et al., 2010; 

Montgomery and Merrill, 2016; for analyses on a limited number of species without inclusion of 

any ecological, social or life history information) although volumetric data on brain areas is 

available for several species (e.g. www.insectbraindb.org; el Jundi and Heinze, 2016). Without the 

necessity of generating new data, phylogenetic comparative analyses could be performed in a 

short time frame. An important drawback is whether these brains have been fixed and imaged 
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identically, as this can modify the absolute volume of the brains. Montgomery and Merrill (2016) 

have used corrective values for differences in imaging. Possibly, similar corrections can be 

included for fixation differences. Such differences need to be considered as potential error 

sources. 

Nevertheless, the opportunity is there to correlate phylogenetically corrected brain and 

neuropil volumes with social, ecological and life history traits, if available (such as for Heliconius 

butterflies, Jiggins, 2017). With this, specific hypotheses can be tested. For example, what are the 

influences of home range size on brain and mushroom body size in all available insects? 

 

4.7. Future directions for brain development and evolution 

I have illustrated the advantages of using insect brains for evolutionary research (2.2 

Introduction). Nevertheless, studies on brain evolution in insects are relatively rare. This is 

particularly true for evolutionary developmental research, although such analyses can reveal 

mechanisms underlying brain evolution, such as the precocious development of the central body 

in Tribolium. This doctoral thesis contributes an aspect to the understanding of insect brain 

development and evolution, particularly for the central complex. I think that the use of genetic 

neural lineages and their further elaboration for single cell marking opens a field of research on 

this topic. Alternative approaches to the ones presented in manuscripts 1-3 are single-cell 

sequencing (Konstantinides et al., 2018) which hopefully complement approaches proposed here. 

In any case, the inclusion of more species with functional genetic tools, such as Tribolium and 

others that represent the diversity in the phylogeny, can contribute to reveal the cellular and 

genetic mechanisms of brain evolution. 
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