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Chapter 1: General introduction 
 

1.1. Plant viruses 

Plant viruses are the cause of many crop diseases worldwide, leading to both yield 

and quality losses e.g., reduction in growth, vigour and market value (Bos, 1982; Hull, 

2014). The type and severity of the host reactions to virus infections are very variable 

(Hull, 2014). They depend greatly on the virus strains, sources of infection, the time of 

infection, the crop genotypes and also influenced by environmental conditions (Hull, 

2014). Several plant viruses are highly contagious and their effects on plants are often 

drastic. The losses caused by plant virus infections can have severe financial implications 

or have socio-economic effects (Anderson et al., 2004; Hull, 2009; Patil et al., 2015; 

Pechinger et al., 2019). 

Virus infection can cause histological changes to the cells and the intracellular 

structure (Hull, 2009). The symptoms caused by virus infection vary from necrotic or 

chlorotic lesions on inoculated leaves to systemic e.g., mosaic, mottle, stunting and leaves 

distortions (Hull, 2014). Nevertheless, some virus infections cause mild or no symptoms. 

Infection agents e.g., viroids and phytoplasma can induce diseases that resemble virus 

infections (Hull, 2014). Also, virus associated nucleic acids can alter the disease symptoms 

(Roossinck et al., 1992; Ziebell & Carr, 2010). Some virus-like symptoms e.g., yellowing 

and necrosis, can easily be confused with non-viral disorders. Additionally, complex or 

multiple infections in plants are very common (Bos, 1982; Al Rwahnih et al., 2009; 

Carvajal-Yepes et al., 2014). These can consist of different viruses, or viruses with other 

pathogens, pests or abiotic factors. Such infections generally alter the plant physiology 

and in consequence the susceptibility and sensitivity to other infecting agents in an 

additive or synergistic effect or non-additive effect resulting in changes in the displayed 

symptoms (Bos, 1982; Syller, 2012). Furthermore, there are no simple relationships 

between virus content within a plant or virus incidence within a crop and the yield losses 

(Bos, 1982). Thus, detecting and identifying the exact virus causing the disease can be 

difficult.  

However, determining the exact disease causative agent (known viruses, new 

viruses or virus strains) is necessary to decide which management strategy (e.g., insect 

vector control, resistance breeding, provision of virus-free germplasm etc) could be 

applied. In addition, it is important to detect quarantine viruses and prevent them from 

entering a country and becoming established. Therefore, it helps also in deciding on 

monitoring and preventive strategies, and in the prediction of plant diseases in annual 

crops.  

1.2. Plant virus diagnostics: 

Plant virus diagnosis often starts with spotting suspicious plants with "virus-like" 

symptoms in a field or greenhouse and sending it to diagnostics laboratories for analysis. 
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A range of techniques are available to detect and confirm the aetiology of the disease 

(Hamilton et al., 1981; Hull, 2009). Important factors are taken in consideration when 

choosing the detection methods i.e., the sensitivity of the method to small amounts of 

viruses, accuracy, reproducibility, cost, time required, level of expertise needed and ability 

to perform in field (Hull, 2009). Additionally, the choice of test will determine the outcome 

i.e., whether only a virus family can be determined or a virus species or if strain-specific 

detection is possible. 

1.2.1. Conventional detection methods: 

Conventional detection methods have been developed and successfully 

implemented for a long time as virus detection tools and are widely used in many 

laboratories. Virus diagnosis has been relying on experienced specialists who can 

recognize and describe the disease causal agent from the symptoms on hosts, 

complemented with methods e.g., bioassays on indicator plants and electron microscopy 

(Boonham et al., 2014). Conventional methods include bioassays, electron microscopy 

(EM), enzyme-linked immunosorbent assay (ELISA), Western, Northern and Southern 

blotting and polymerase chain reaction (PCR)-based methods. They provide rapid and 

inexpensive diagnoses for known viruses and viroids (Wu et al., 2015). The following are 

descriptions of the commonly used methods in virus/viroid diagnosis. 

1.2.1.1. Bioassays 

Indicator plants have been used from the early ages of plant virology for 

propagation of plant viruses. Based on symptoms and host range reactions, differential 

host plants were used for the identification and classification of a number of plant viruses 

(Kirby et al., 2001; Hull, 2014). However, a correct diagnosis based on symptoms is not 

possible and these days indicator plants are mainly used for virus propagation and 

enrichment for the subsequent use in different tests (e.g., electron microscopy).  

1.2.1.2. Electron microscopy 

Due to the small size of plant viruses, EM is the only technology that can directly 

visualise virus particles. The high resolution power of EM provides direct images at 

nanometre scale for virus diagnosis and research (Richert-Pöggeler et al., 2018). 

Transmission electron microscopy (TEM) can be used as initial step in virus diagnosis from 

crud plant extracts without the necessity of viral enrichment (Bawden & Nixon, 1951; 

Gentile & Gelderblom, 2014; Richert-Pöggeler et al., 2018). A main advantage of EM for 

viral diagnosis is that it does not require virus-specific reagents thus it provides an open 

view on the sample (Goldsmith & Miller, 2009). EM may not be able to identify a virus 

beyond the family level, thus additional assays can be performed which require virus-

specific reagents e.g., antibodies. Immunosorbent electron microscopy (ISEM), as an 

example, increases the sensitivity of EM by virus trapping (Debrick, 1973; Roberts & 

Harrison, 1979). If specific antibodies are available, they can be used to “decorate” the 
virus particles and therefore differentiate between different species depending on the 

specificity of these antibodies. However, not always are specific antibodies available for 

all viruses. Additionally, an enrichment step is required for phloem restricted and low titre 

viruses, viruses without virions and viroids e.g., ultracentrifugation (Richert-Pöggeler et 
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al., 2018). Moreover, EM requires expertise, and EM facilities are not widely available 

(Naidu & Hughes, 2003). Thus, other methods such as serological or molecular assays can 

be performed additionally for specific virus identification and characterisation e.g., ELISA 

and PCR-based methods. 

1.2.1.3. Enzyme-linked immunosorbent assay 

The establishment of the ELISA assay was a revolution in virus diagnostics by 

simplifying virus detection and shortening the time required to reach conclusive results 

(Clark & Adams, 1977; Torrance & Jones, 1981). ELISA assays target proteins e.g., viral coat 

and movement proteins by antibodies. As a routine virus diagnostics test, ELISA is easy to 

use, cost effective, robust and scalable (Casper & Meyer, 1981; Torrance & Jones, 1981; 

Koenig & Paul, 1982). However, it requires the production of high-quality antisera which 

requires viral protein purification and expertise which can be lengthy procedure 

(Boonham et al., 2014). Moreover, the antisera are often lack the sensitivity to correctly 

identify closely related virus strains, and in several cases it is not possible to differentiate 

viruses from the same genus due to cross-reactivity of antisera (Boonham et al., 2014). 

ELISA is also difficult to use for multiple-target detection from one sample, as several tests 

need to be set up (Boonham et al., 2014). 

1.2.1.4. PCR-based methods 

PCR-based methods e.g., classical PCR, reverse-transcription (RT)-PCR and real-

time (or quantitative RCR [qPCR]) have been used for the diagnosis of plant viruses and 

viroids, and many assays have been published (Boonham et al., 2014). PCR-based 

methods target nucleic acid sequences by primers. They require a reliable nucleic acid 

extraction method and sequence information of the viruses for primer design. PCR-based 

methods can be sensitive, inexpensive and require minimal skill to be performed. They 

have been used for plant virus detection since early 1990s (Vunsh et al., 1990). PCR 

multiplexing allows the detection of multiple species or strains in a single reaction by 

combining specific primers for different viruses (Webster et al., 2004). The specificity of 

PCR-based methods depends on the design of proper primers that are unique to the target 

virus/viroid. Moreover, virus-specific primers or probes can detect virus up to limited 

sequence variation, however new viruses, strains or divergent isolates will not be 

detected. 

In general, molecular or serological testing are targeted methods which means 

they are limited to detecting the knowns. Additionally, in cases of mixed infections, such 

methods would likely miss the other disease causal agent. Therefore, virology 

diagnosticians need additional tools for diagnosing the unknowns and the variants.  

1.2.2. Sequencing 

1.2.2.1. Sanger chain termination 

The Sanger chain termination method was developed in 1977 (Sanger et al., 1977). 

This method uses labelled dideoxynucleotide (ddATP, ddGTP, ddCTP, or ddTTP) in four 

separated sequencing reactions which terminate DNA synthesis upon incorporation. The 
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generated sequences are then denatured and visualised by gel electrophoresis. In virus 

diagnostics, Sanger sequencing is commonly used to sequence PCR amplicons directly 

(Bernad & Duran-Vila, 2006; Hoang et al., 2011). When multiple PCR amplicons are 

present in one reaction or sequence variation within one amplicon is suspected, PCR 

products can be cloned in bacterial cells, followed by selection and propagation of 

bacterial colonies followed by plasmids purification and Sanger sequencing. These 

sequences can be used for bioinformatic analysis and comparison with sequences 

available in public databases. Another application when using generic primers for the 

identification of more than one virus from the same genus or family (Abraham et al., 

2007). For unknown virus identification, a random-PCR method (rPCR) to construct whole 

cDNA library from sample RNA or dsRNA extracts, or library from rolling circle 

amplification (RCA) for circular DNA and enzymatic fragmentation are performed (Dodds 

et al., 1984; Haan et al., 1989; Froussard, 1992; Johne et al., 2009). These approaches 

helped in the detection of many virus including new ones. 

For long time, a typical Sanger sequencing reaction included the use of 

radioisotopes and other harsh chemicals (Wu et al., 2015). This sequencing method was 

a labour-intensive process and only determined few hundred nucleotides (nt) at a time 

(Kircher & Kelso, 2010). With the development of capillary array electrophoresis and other 

detection systems, the production of 96-channel capillary HTS sequencers was possible 

e.g., 3730xl DNA Analyzer (Applied Biosystems, Inc) (Kambara & Takahashi, 1993; Kircher 

& Kelso, 2010). Such sequencer yield 96 or 384 sequences of about 600 to 1,000 nt per 

run and a maximum of about 1.5 Mb sequences per day with single-pass error rate of 0.1 

to 1% (Wu et al., 2015). 

1.2.2.2. High-throughput sequencing 

Over 15 years ago high-throughput sequencing (HTS), formerly known as next-

generation sequencing (NGS) appeared on the market and revolutionized sequencing 

capabilities (van Dijk et al., 2014a). It enabled parallel sequencing of millions of nucleic 

acid sequences in short time for comparatively low cost. Since then, a lot of progress has 

been made in read length, speed, throughput, and in costs reduction (van Dijk et al., 

2014a). These advances paved the way for the development of novel HTS applications in 

life sciences such as in diagnostics and metagenomics (Roossinck et al., 2010; Roossinck 

et al., 2015). 

HTS was first applied for plant virus identification in 2009 using different 

preparation approaches and different sequencing platforms (Adams et al., 2009; Al 

Rwahnih et al., 2009; Kreuze et al., 2009). It has proven very successful for virus discovery 

to resolve the disease aetiology in many agricultural crops (Roossinck et al., 2015). It 

enables the simultaneous sequencing of total nucleic acid content of a sample, and thus 

detection, of any organism present in this sample. HTS carries the promise of generic and 

routine tool for virus detection. However, several steps need to be taken into 

consideration when applying HTS technologies: a) nucleic acid extraction and virus 

sequences enrichment; b) library preparation; c) automated sequencing; d) data analysis. 
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a) Nucleic acid extraction and virus sequences enrichment: 

Viruses possess different genomes i.e., DNA (single or double stranded, circular or 

linear) or RNA (single [negative or positive sense] or double stranded, circular or linear) 

(Hull, 2009). Additionally, viroids possess circular single stranded RNA. Total DNA, total 

RNA, double stranded RNA (dsRNA) or small RNA (sRNA) extraction can be used for HTS 

detection of plant viruses and viroids. Therefore, many extraction protocols are available 

depending on the target nucleic acid. 

For plant virus detection by HTS, virus sequence enrichment is required prior to 

sequencing to relatively increase the virus sequences in comparison to the host sequences 

(Wu et al., 2015). Although the sizes of the virus/viroid genomes are small in comparison 

to other organisms, to achieve full genome coverage, the number of virus sequence reads 

must be high in order to trace their sequences that can be undetectable within the host 

overrepresented sequences which is challenging for bioinformatic analysis (Wu et al., 

2015; Adams & Fox, 2016). Additionally, there is no single reference gene or marker 

sequence shared by all viruses that could be used for virus identification as in case of other 

organisms such as fungi or bacteria where the internal transcribed spacer (ITS) or 16S 

ribosomal RNA can be used for general detection of these pathogens (Leff et al., 2017). 

There are different methods available for virus enrichment with the most common 

ones dsRNA, ribosomal RNA (rRNA) depletion, rolling circle amplification (RCA) and sRNA 

enrichments (Dodds et al., 1984; Kreuze et al., 2009; Roossinck et al., 2010; Idris et al., 

2014; Knierim et al., 2017). Each enrichment method has its advantages and 

disadvantages i.e., some are time consuming, some require large amounts of sample 

starting material, others may cause bias in the detection (not suitable for all viruses) (Wu 

et al., 2015; Visser et al., 2016; Pecman et al., 2017).  

The extraction and analysis of dsRNA has been used for plant virus detection for a 

long time (Morris, 1979; Tzanetakis & Martin, 2008; Okada et al., 2015). dsRNA is 

produced as an intermediate during replication of RNA viruses and viroids and not 

“naturally” occurring in plants (Wu et al., 2015). Extraction of dsRNA molecules is 

relatively easy, and the molecules are quite stable. Al Rwahnih and colleague compared 

HTS sequences derived from dsRNA or total RNA extracts from the same plant samples 

and found that virus reads increased from 2% to 53% with dsRNA enrichment (Al Rwahnih 

et al., 2009). However, not all RNA viruses accumulate high concentrations of dsRNA, and 

DNA viruses have a different mode of replication, but few DNA virus sequences could also 

be recovered (Wu et al., 2015). Depending on the dsRNA extraction method, high 

amounts of plant material may be required, other protocols are time consuming, or 

requiring an extra amplification step (Roossinck et al., 2010; Romanovskaya et al., 2013; 

Blouin et al., 2016). 

rRNA depletion of total RNA is useful for reducing the host sequences by removing 

the majority of the rRNAs which are highly abundant from the plant sample before further 

preparations (Adams & Fox, 2016). This can result in a 10-fold virus RNA enrichment 

(Adams & Fox, 2016). An additional step may be applied by selecting poly (A) tailed RNAs 
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(Visser et al., 2016). However, this additional step is not useful for the identification of 

viruses that do not possess poly (A) tails.  

Plants produce virus-derived small interfering RNAs (vsiRNAs) in response to virus 

infection (Ding & Lu, 2011). Moreover, the dsRNA replicative intermediates produced 

during the replication of viruses and viriods can also be processed into small interfering 

RNA in plants (Ding, 2010). Thus, all replicating viruses and viroids in a diseased plant can 

be detected by sRNA extraction. sRNA extraction by gel purification requires long time (up 

to two weeks). Nevertheless, a new extraction method was developed which can be 

performed within a day (Li et al., 2013). 

RCA approach takes the advantage of Phi 29 DNA polymerase and amplify circular 

DNA molecules in a given sample (Dean et al., 2001; Idris et al., 2014). Thus, RNA and non-

circular DNA viruses cannot be amplified with this approach. Moreover, the Phi 29 

polymerase may induce errors at early stages of amplification. 

It is therefore desired to identify a generic approach in which it is possible to detect 

and identify all viruses and viroids with different genomes that can be easily used in 

diagnostic laboratories. 

b) Library preparation: 

The quality of sequencing data depends on the quality of the sequenced material. 

Thus, the library preparation must guarantee low bias and high complexity in order to 

achieve the most genomic coverage (van Dijk et al., 2014b). Many library preparation 

protocols are available and most of them are compatible with the Illumina system 

(described later) (van Dijk et al., 2014a; van Dijk et al., 2014b).  

General steps for library preparation i.e., the fragmentation of the nucleic acid, 

reverse transcription of RNA and dscDNA synthesis (when RNA is the starting material), 

adaptors and barcodes/indexes ligation, and with or without size selection and 

amplification (van Dijk et al., 2014b). The library design may allow sequencing of both 

strands of DNA which increases accuracy. For single‐molecule sequencing platforms 
(described later), the library preparation is minimal, where it involves template 

fragmentation, adapters ligation with or without amplification step (van Dijk et al., 2014a). 

The choice of the protocol depends on the platform on which the sequencing will be run, 

and the performed study. 

c) Sequencing platforms: 

Roche 454 system was the first commercially HTS platform (Liu et al., 2012). This 

platform uses the pyrosequencing technology and emulsion PCR as amplification 

approach (Margulies et al., 2005). It produced initially 100–150 bp of sequence lengths 

and improved to 1 kb but with relatively low throughput (700 Mb per run), high error rates 

and high reagent cost (Metzker, 2010). Now the production of 454 is shut down and no 

more supporting by the company since 2016 (van Dijk et al., 2014a). Following 454, several 

platforms were developed including Solexa/Illumina, SOLiD, Ion Torrent, PacBio and 

MinION platforms.  
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The Solexa/Illumina GA platform adopted sequencing by synthesis (SBS) 

technology and generated larger number (1Gb per run) but shorter reads compared to 

454 platform (Liu et al., 2012). Illumina SBS uses a proprietary reversible terminator-based 

method that detects single bases as they are incorporated into DNA template strands. 

Prior to sequencing, clonal clusters of amplified DNA fragments are generated through 

bridge amplification. Sequencing then starts with sequencing reagents containing a 

polymerase and fluorescently labelled nucleotides. Each nucleotide base is added, and the 

flow cell is photographed and the emission from each cluster is recorded. Each base is 

identified by the intensity and wavelength of the emission. This cycle is repeated to create 

the read length specified. Illumina SBS technology results in highly accurate base-by-base 

sequencing compared to other technologies. With the improvements in polymerases, 

buffers, flowcells, and software, several platforms from Illumina are currently available 

e.g., HiSeq, MiSeq and NextSeq. The size of the generated reads, their quality and 

amounts vary from device to another (Liu et al., 2012; Reuter et al., 2015).  

The HiSeq and MiSeq platforms are the most established sequencers (Reuter et 

al., 2015). MiSeq is a fast, benchtop sequencer, generates reads of 300 bp in length and 

up to 15 Gb per run (Illumina). HiSeq produces maximum read length of 150 bp and over 

1 Tb per run (Illumina). NextSeq produces up 120 Gb per run and maximum read length 

of 150 bp (Illumina). Their error rate of Illumina platforms is <1% and the quality of the 

generated reads decreases with increasing the read length (Liu et al., 2012; Reuter et al., 

2015). In general, Illumina platforms offer the highest throughput and the lowest cost per-

base compare to other platforms (Liu et al., 2012).  

Sequencing by Oligo Ligation Detection (SOLiD) by Applied Biosystems uses 

Ligation-based sequencing technology and emulsion PCR for amplification (Mardis, 2008). 

On a SOLiD flowcell, the libraries are sequenced by 8 base-probes ligation which contains 

ligation site, cleavage site and fluorescent dyes. The fluorescent signals are recorded 

during the probes binding to the template strand then cleaved (Mardis, 2008). The cycle 

is repeated four times using ladder primer sets. SOLiD initially generated average read 

length of 25-35 bp (3 Gb data per run) and could reach a high accuracy of 99.85% after 

filtering (Mardis, 2008). Later other SOLiD sequencing systems were released with 

improvements in read length, data output and accuracy (Liu et al., 2012). SOLiD 5500xl, 

for example, generates reads with 85 bp length (30 Gb per run) and 99.99% accuracy (Liu 

et al., 2012). 

Ion Torrent Personal Genome Machine (PGM) uses semiconductor sequencing 

technology (Flusberg et al., 2010). PGM detects the changes in pH induced by the release 

of hydrogen ions with the incorporation of each nucleotide (Rothberg et al., 2011). It does 

not require fluorescence and camera scanning, resulting in higher speed, lower cost, and 

smaller instrument size (Liu et al., 2012). PGM generates reads with up to 400 bp length (1 

Gb per run) with high error rates in homopolymers and insertions and deletions (Liu et al., 

2012; van Dijk et al., 2014b). Ion Proton, the second Ion Torrent platform, increased the 

output compared to the PGM with 10 Gb per run and maximum read length was 200 bp 

(Reuter et al., 2015). 
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Pacific Bioscience (PacBio) produced the single-molecule real-time (SMRT) 

sequencing platform. In this technology the clonal amplification is avoided, allowing direct 

sequencing of the DNA (Reuter et al., 2015). The sequencing is performed with continuous 

polymerisation of the template in a zero-mode waveguides (ZMWs) with a single 

polymerase is positioned at its bottom and the presence of labelled nucleotides. With 

each incorporated base, fluorescent signals are captured in a video in real-time (Levene 

et al., 2003; Eid et al., 2009). It produces very long reads (60 kb; with >14 kb average read 

lengths) about 50k reads (up to 1 Gb of data in 4 hr). However, it has high error rates 

(about 11%) which are dominated by indels (Reuter et al., 2015). 

MinION nanopore sequencer is a single‐molecule sequencing platform produced 

by Oxford Nanopore Technologies (ONT) (Ip et al., 2015). On the membrane with 

nanopores “transmembrane proteins with nanoscale pore” incorporated, a voltage can 
be applied to drive DNA through the pore and an ion current flow can be measured. When 

a DNA molecule passes through the nanopore, a change of the current in pattern or 

magnitude can be observed and characterised. The nanopore can then discriminate 

individual nucleotides by measuring the change in electrical conductivity as DNA 

molecules pass through the pore (Lu et al., 2016). The current in the nanopore is 

measured by a sensor several thousand times per second, and the data streams are 

passed to a microchip called the application-specific integrated circuit (ASIC) (Lu et al., 

2016). Finally, data processing is carried out by the MinKNOW software, which deals with 

data acquisition and analysis (Lu et al., 2016). 

The MinION device attracted considerable interest by scientists particularly in the 

fields of pathogen surveillance and diagnostics applications. MinION is the smallest 

sequencing device available, portable, and can produce sequence data in real-time 

(theoretically) (Lu et al., 2016). It can be powered by the Universal Serial Bus (USB) ports 

of a computer with low hardware requirements and simple configurations but portable 

devices to operate MinION are now being offered by the ONT company. The main 

advantage of MinION sequencing is that it can generate longer reads of up to 100 Kb (Lu 

et al., 2016). Additionally, the device has a low capital cost and its sequencing is cheap (Lu 

et al., 2016). However, it has rather higher error rates (up 45%) (Lu et al., 2016). 

d) Data analysis: 

Bioinformatic analysis is a crucial step in virus detection using HTS. There are 

several commercial software e.g., Geneious Prime and CLC genomic workbench, and open 

platforms such as Galaxy which can be used for HTS data analysis (Massart et al., 2014). 

Automated bioinformatic pipelines for viruses detection are also available e.g., 

VirusDetect and Virtool (Rott et al., 2017; Zheng et al., 2017). The high efficiency and 

sensitivity of the different analysis pipelines in detecting known and novel virus are 

variable. Several available tools are designed for the detection of certain viruses using 

mapping to reference or for certain enrichment approach or for certain sequencing 

platforms e.g., Paparazzi (Vodovar et al., 2011). 
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In general, the raw data generated from the sequencing platforms are then 

subjected to quality trimming to remove the adaptor sequences and low-quality 

nucleotides (Fig. 1) (Ho & Tzanetakis, 2014). This is followed by two ways based on the 

experimental design and the reason for sequencing. If the virus in the sample is known, 

the reference genome of the virus can be used for mapping the virus reads (Ho & 

Tzanetakis, 2014). However, when the cause of the disease is unknown, a de novo 

assembly is required (Zheng et al., 2017). This is followed by searching the nucleotide 

and protein databases using Basic Local Alignment Search Tool (BLAST) to detect the 

closest sequences to the searched reads. Removing the host sequences by mapping to 

the host genome can be used to reduce the number of reads for the following analyses 

(Zheng et al., 2017).  

Massart and colleagues identified four crucial factors influencing the sensitivity 

of the bioinformatic analysis for virus/viroid detection i.e., the abundance of virus reads 

and the novelty of the virus, the assembly and annotation parameters, the 

completeness of the reference databases and the expertise in results interpretation 

(Massart et al., 2019). The bioinformatic tools for HTS data analysis are under constant 

development and these efforts will improve, facilitate and speed up the application of 

HTS as a diagnostics tool in laboratories. 

 

 

Figure 1: A diagram of two general strategies for HTS data analysis for known and unknown viruses 

 

 

 

 

 



 

10 | P a g e  

C
h

a
p

te
r 

1
: 

G
e

n
e

ra
l 

in
tr

o
d

u
ct

io
n

 

1.3. Plant virus transmission  

Plant viruses possess many routes of transmission; they can be transmitted 

mechanically, by pollen, seeds or vectors such as nematodes, aphids and other insects. 

Aphids (Hemiptera, Aphididae) are the most common vector of plant viruses with fifty 

percent of the insect‐vectored plant viruses are transmitted by aphids  (Nault, 1997). 

The successful transport and transmission of viruses may be relying on aphids’ high 
reproduction rates and their ability to spread for long distances.  

Plant viruses are transmitted by aphids via different transmission modes 

depending on the aphid and the virus species: circulative or non-circulative, persistent, 

semi-persistent or non-persistent, propagative or non-propagative manners (Watson & 

Roberts, 1939; Sylvester, 1956; Harris, 1977; Ng & Perry, 2004; Ng & Falk, 2006) . 

Depending on the mode of transmission, different strategies for preventing the spread 

of plant viruses need to be taken into consideration. 

Many of the aphid-plant interactions take place at the cellular and tissue levels, 

especially as a virus vector (Collar et al., 1997). As aphids are phloem feeders, acceptance 

of the phloem sap is an is required for aphid plant selection (Tjallingii, 1994). Changes 

in the chemical composition and physical structure of the plant tissues can affect the 

probing and feeding behaviours of the aphids (Guo et al., 2014). Studying the aphid 

probing and feeding will reveal more details on the events involved in the transmission of 

plant viruses. 

Electrical penetration graphs (EPG) have contributed substantially to the current 

knowledge of stylet penetration events in the plant tissue (Gabrys et al., 1997; Pescod et 

al., 2007; Brunissen et al., 2009). Studying the aphid stylet penetration by electrical 

recording started with the AC system by Mclean and Kinsey and was further developed by 

Tjallingii (Mclean & Kinsey, 1964, 1965; Tjallingii, 1978, 1988). By attaching a gold wire 

electrode to the dorsum of the aphid and inserting the other electrode in the soil near to 

the plant root, once the aphid stylet penetrated the plant tissue the electrical circuit is 

completed (Tjallingii, 1985). The activity of the stylet in the plant tissue can then be 

recorded as waveforms. Each waveform is correlated to a certain stylet activity (Tjallingii, 

1985).  

EPG contributed to our understanding of virus transmission. Studies showed that 

plant virus infection can affect the behaviours and fitness of their vector (Castle & Berger, 

1993; Eigenbrode et al., 2002; Ziebell et al., 2011). These effects are suggested to be 

related to the virus mode of transmission. Potato leafroll virus, a persistent transmitted 

circulative virus, enhanced the feeding behaviour of their aphid vector Myzus persicae 

Sulzer. Only after PLRV-infected potatoes showed visual symptoms, the aphids displayed 

a lower number of short probing periods before the first phloem activity and lower 

number and shorter total duration of derailed stylet mechanic (Alvarez et al., 2007). 

Moreover, PLRV infection improved the aphid fitness by enhancing the aphids acceptance 

to the infected plant, making it more preferred and attractive for the aphid (Castle & 

Berger, 1993; Srinivasan & Alvarez, 2007). No effects were observed in case of potato virus 
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X, which is a mechanically transmissible and transmitted independently from insect 

vectors (Castle et al., 1998; Eigenbrode et al., 2002; Alvarez et al., 2007; Srinivasan & 

Alvarez, 2007). In case of non-persistent virus (less vector-dependent) i.e., potato virus Y, 

it induced various effects on the behaviour of the vector depending on the species e.g., it 

enhanced the growth of M. persicae whereas it had no effect on Macrosiphum euphorbiae 

(Srinivasan & Alvarez, 2007; Boquel et al., 2011). 

In this thesis, the model system nanovirus-Acyrthosiphon pisum-Vicia faba was 

investigated further. Nanoviruses (members of the genus Nanovirus; family Nanoviridae) 

are multipartite viruses with at least eight circular ssDNA (Vetten et al., 2011). They are 

considered a threat to important crops such as legumes (Vetten et al., 2011). They are 

transmitted in circulative, non-propagative manner by various aphid species e.g., A. pisum 

and Aphis craccivora (Vetten et al., 2011). The interactions between nanoviruses and their 

vectors is reviewed in detailed in chapter 5.  

Nanoviruses are interesting model viruses as each genomic component encodes 

one protein, some of which with unknown functions (Vetten et al., 2011). The availability 

of infectious clones for each component helped in understanding the role of each virus 

protein (Timchenko et al., 1999; Timchenko et al., 2000; Timchenko et al., 2006; Grigoras 

et al., 2009). Grigoras and colleagues found that the nuclear shuttle protein (NSP) 

encoded by component DNA-N is essential for aphid transmission (Grigoras et al., 2018). 

The exact role of NSP in transmission is currently unknown. Nevertheless, this protein was 

found to be interacting with the stress granule component G3BP, the master replicase 

encoded by DNA-R and interacts with other NSPs in infected plants (Krapp et al., 2017; 

Krenz et al., 2017). 

For faba bean necrotic yellows virus, a different nanovirus, a shorter plant access 

time is required for the inoculation minimum inoculation access period than for the 

acquisition ranging from 5 and 15min and 15 to 30 minutes, respectively, by both A. 

craccivora and A. pisum (Franz et al., 1998). Phloem restricted plant viruses, such as 

nanoviruses, need to be ingested from the phloem cells in order to be transmitted by 

translocated through the gut, haemolymph and to the saliva for new infections. We 

expect a close relationship between the E2 waveforms (correlated to ingestion) in EPGs 

and nanoviruses acquisition. This could be experimentally confirmed for another 

circulative virus i.e., barely yellow dwarf virus (Prado & Tjallingii, 1994). The amount of 

acquired virus particles and proteins is expected to increase with the increase the E2 time. 

Whether the presence of nanovirus changes the behaviour as it is expected that nanovirus 

interacts with the aphids’ body upon acquisition, or to change the host making it 
favourable by the vector, is currently unknown. Whether the absence of the NSP may also 

affect the behaviour is also unknown.  
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1.4. Aim and scope of the thesis: 

• To identify the aetiology of several plant diseases using conventional and HTS tools 

(to be addressed in Chapter 2) 

• To describe and characterise the viruses causing the disease (to be addressed in 

Chapter 2) 

• To identify the virome of German peas and the spatio-temporal distribution of 

these viruses (to be addressed in Chapter 3) 

• To compare three different viral enrichment approaches for HTS plant 

viruses/viroids detection (to be addressed in Chapter 4) 

• To investigate the effect of nanoviruses infection on the feeding and probing 

behaviours of aphids (to be addressed in Chapter 6) 

• To investigate the effect of FBNSV-NSP on the feeding and probing behaviours of 

aphids (to be addressed in Chapter 6) 
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Chapter 2: Plant disease aetiology 

2.1. Characterisation of a novel 

nucleorhabdovirus infecting alfalfa (Medicago 

sativa) 
Yahya Zakaria Abdou Gaafar, K. R. Richert-Pöggeler, C. Maaß, H.-Josef Vetten and H. 

Ziebell 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This article has been published in a slightly modified version as: 

Gaafar YZA, Richert-Pöggeler KR, Maaß C, 2019. Characterisation of a novel nucleorhabdovirus 

infecting alfalfa (Medicago sativa). Virology Journal 16, 113. doi: 10.1186/s12985-019-1147-3. 
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2.1.1. Abstract 

2.1.1.1. Background 

Nucleorhabdoviruses possess bacilliform particles which contain a single-stranded 

negative-sense RNA genome. They replicate and mature in the nucleus of infected cells. 

Together with viruses of three other genera of the family Rhabdoviridae, they are known 

to infect plants and can be transmitted by arthropod vectors, during vegetative 

propagation, or by mechanical means. In 2010, an alfalfa (Medicago sativa) plant showing 

virus-like symptoms was collected from Stadl-Paura, Austria and sent to Julius Kühn 

Institute for analysis. 

2.1.1.2. Methods 

Electron microscopy (EM) of leaf extracts from infected plants revealed the 

presence of rhabdovirus-like particles and was further used for ultrastructural analyses of 

infected plant tissue. Partially-purified preparations of rhabdovirus nucleocapsids were 

used for raising an antiserum. To determine the virus genome sequence, high throughput 

sequencing (HTS) was performed. RT-PCR primers were designed to confirm virus 

infection and to be used as a diagnostic tool. 

2.1.1.3. Results 

EM revealed bacilliform virions resembling those of plant-infecting rhabdoviruses. 

HTS of ribosomal RNA-depleted total RNA extracts revealed a consensus sequence 

consisting of 13,875 nucleotides (nt) and containing seven open reading frames (ORFs). 

Homology and phylogenetic analyses suggest that this virus isolate represents a new 

species of the genus Nucleorhabdovirus (family Rhabdoviridae). Since the virus originated 

from an alfalfa plant in Austria, the name alfalfa-associated nucleorhabdovirus (AaNV) is 

proposed. Viroplasms (Vp) and budding virions were observed in the nuclei of infected 

cells by EM, thus confirming its taxonomic assignment based on sequence data. 

2.1.1.4. Conclusions 

In this study, we identified and characterised a new nucleorhabdovirus from 

alfalfa. It shared only 39.8% nucleotide sequence identity with its closest known relative, 

black currant-associated rhabdovirus 1. The virus contains an additional open reading 

frame (accessory gene) with unknown function, located between the matrix protein and 

the glycoprotein genes. Serological and molecular diagnostic assays were designed for 

future screening of field samples. Further studies are needed to identify other natural 

hosts and potential vectors. 

 

Keywords 

electron microscopy; high throughput sequencing; Lucerne; rhabdovirus; alfalfa-

associated nucleorhabdovirus 
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2.1.2. Background 

Alfalfa or lucerne (Medicago sativa L.), a member of the Fabaceae family, is used 

as perennial forage crop which is important as fodder for livestock, as green manure for 

soil fertility, and can be used as food and medicine for humans (Marston et al., 1943; 

Douglas et al., 1995; Gray & Flatt, 1997; Peoples et al., 2001). It is grown worldwide in 

temperate zones. Similar to other legumes, alfalfa is susceptible to a range of pests and 

pathogens (Samac et al., 2016). Alfalfa can be infected by a large number of viruses such 

as alfalfa mosaic virus (AMV) (family: Bromoviridae) and two rhabdoviruses (alfalfa dwarf 

virus (ADV) and lucerne enation virus (LEV)) (Hull, 1969; Alliot & Signoret, 1972; Bejerman 

et al., 2011; Bejerman et al., 2015).  

Members of the Rhabdoviridae family (order Mononegavirales) infect humans, 

invertebrates, vertebrates and plants (Augusto Lopez et al., 1992; Longdon et al., 2010; 

Bejerman et al., 2011; Galinier et al., 2012). Typically, their virions are bacilliform or bullet-

shaped, composed of a helical nucleocapsid coated by a matrix layer and a lipid envelope 

while some have non-enveloped filamentous virions. The family has eighteen genera 

including 135 assigned species (Amarasinghe et al., 2018). Sixteen genera have a 

monopartite genome while two are bipartite. Their genomes are linear and consist of 

negative-sense, single-stranded RNA (−ssRNA) (11–16 kb in length) and can comprise up 

to ten or more genes. They have five canonical genes that may be overprinted, overlapped 

or interspersed with additional accessory genes (Fu, 2005; Walker et al., 2011; Walker et 

al., 2015). Viruses of the genera Cytorhabdovirus, Dichorhavirus, Nucleorhabdovirus and 

Varicosavirus are known to infect plants (Walker et al., 2018). 

The genus Nucleorhabdovirus has currently ten assigned species. 

Nucleorhabdoviruses are known to be transmitted by leafhoppers (Cicadellidae), 

planthoppers (Delphacidae) and aphids (Aphididae) (Sylvester & Richardson, 1992; Nault, 

1997; Walker et al., 2018). Additionally, some can also be transmitted during vegetative 

propagation or by mechanical means. They can replicate in both plants and insect vectors 

(Goodin & Min, 2012). In plant cells, they replicate in the nucleus which becomes enlarged 

and develops large granular nuclear inclusions. They have non-segmented genomes, and 

like other rhabdoviruses they have highly conserved regulatory regions separating their 

genes, and complementary 3′ leader (l) and 5′ trailer (t) sequences. The 3’l and 5’t 
complementary sequence has the ability to form a putative panhandle structure 

suggested to be involved in genome replication (Jackson et al., 2005). 

With the advances in molecular techniques and bioinformatic tools, several new 

members of the Rhabdoviridae have been identified recently (Dilcher et al., 2015; Axén et 

al., 2017; Liu et al., 2018; Økland et al., 2018; Wu et al., 2018). In this study, we succeeded 

in sap transmission of a rhabdovirus from M. sativa to Nicotiana benthamiana and 

identified it as a hitherto undescribed nucleorhabdovirus for which we propose the 

tentative name alfalfa-associated nucleorhabdovirus (AaNV). 

 



 

18 | P a g e  

C
h

a
p

te
r 

2
: 

P
la

n
t 

d
is

e
a

se
 a

e
ti

o
lo

g
y

 

2.1.3. Methods 

2.1.3.1. Sample source and virus isolates used 

During a survey in Stadl-Paura (Austria) in May 2010, a sample was collected by 

Dr. Herbert Huss from an alfalfa plant showing virus-like symptoms (symptoms were not 

recorded at the time) and sent to Julius Kühn Institute (JKI) for analysis. In initial attempts 

at virus isolation by sap transmission, the putative virus was transmitted to N. 

benthamiana seedlings as described below for further analysis and virus propagation (JKI 

ID 24249). For comparative studies, physostegia chlorotic mottle virus (PhCMoV; JKI ID 

26372) and eggplant mottled dwarf virus (EMDV; JKI ID 29094) were maintained on N. 

benthamiana under greenhouse conditions by serial mechanical transmission. 

2.1.3.2. Electron microscopy 

For electron microscopy, small pieces (ca. 5 mm in diameter) of symptomatic 

leaves from N. benthamiana (5 to 7 weeks post inoculation) were directly homogenized 

in 2–5-fold volume of negative stain solution. This consisted of 2% ammonium molybdate, 

pH 6.5, with one drop of 0.5% bovine serum albumin (BSA) added. Viral particles were 

adsorbed by floating a pioloform carbon-coated copper grid for 5 min on the crude sap 

preparation. Finally, grids were rinsed with 5 drops of 2% ammonium molybdate and 

dried. The preparations were used for size measurements of virions including spikes. 

Immunosorbent electron microscopy (ISEM) and immunoelectron microscopy 

(IEM) decoration experiments targeting the viral nucleocapsid protein were done as 

described in (Milne, 1984; Milne & Lesemann, 1984), using the JKI-1607 antiserum to 

AaNV. Fragments (ca. 2 mm in diameter) of a younger frizzy leaf from systemically infected 

N. benthamiana were embedded in Epon 812 after consecutive fixation of samples with 

2.5% glutaraldehyde and 0.5% osmium tetroxide. 

Ultrathin sections of 70 nm were prepared with an ultramicrotome UC7 (Leica, 

Germany) using a DiATOME diamond knife (Switzerland) and were placed on 75 mesh 

pioloform carbon-coated nickel grids. The grids were stained with 1% uranyl acetate for 

30 min and grids were examined in a Tecnai G2 Spirit electron microscope at 80 kV. Images 

were taken with a 2 K Veleta camera. Brightness and contrast were adjusted when 

necessary using Adobe Photoshop CS6. 

2.1.3.3. Purification of rhabdovirus nucleocapsids 

Isolation of rhabdovirus nucleocapsids was performed using a modification of a 

method described by Roggero et al. (Roggero et al., 2000; Verbeek et al., 2013). Briefly, 

100 g infected leaf materials of N. benthamiana were blended for 1 min in 500 ml 
homogenisation buffer consisting of 100 mM Tris-HCl, pH 8, containing 20 mM sodium 

sulfite, 10 mM Na-DIECA and 5 mM Na-EDTA. The homogenate was filtered through 

cheesecloth and centrifuged at 3000 rpm for 10 min in a GSA rotor (Sorvall). The 

supernatant was centrifuged at 25,000 rpm for 30 min in a 45 Ti fixed-angle rotor 

(Beckman Coulter), and the pellets were resuspended in 180 ml homogenisation buffer 

plus 2% (w/v) lauryl sulfobetaine and stirred for 1 h at 4 °C, followed by centrifugation at 
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9000 rpm for 10 min in a GSA rotor (Sorvall). The supernatant was placed onto a 20% 

sucrose cushion in homogenisation buffer (3.5 ml/tube) and ultracentrifuged at 

25,000 rpm for 2.5 h in a SW 28 Ti rotor (Beckman Coulter). Then, the pellets were 

resuspended in 1 ml 10 mM Tris-HCl, pH 8, and centrifuged at 14,000 rpm in a MiniSpin 

centrifuge (Eppendorf). The supernatant was then placed onto preformed cesium sulfate-

gradients (260, 405 and 575 mg/ml [w/v], respectively) in 10 mM Tris-HCl, pH 8, and 

ultracentrifuged at 35,000 rpm for 20 h in a SW 55 Ti rotor (Beckman Coulter). Opalescent 

bands were collected with a peristaltic pump, diluted to 25 ml with 10 mM Tris-HCl, pH 8, 
and ultracentrifuged at 40,000 rpm for 3 h in a 70 Ti rotor (Beckman Coulter). The resulting 

pellet was resuspended in 5.5 ml 10 mM Tris-HCl, pH 8, and used for nucleocapsid 

quantification by UV spectroscopy, for EM examination and antiserum production. 

2.1.3.4. Antibody production and serological detection 

For production of an antiserum to AaNV (designated JKI-1607), a purified 

nucleocapsid preparation (approximately 250 μg/ml in 0.01 M Tris-HCl, pH 8.0) was mixed 

with Freund’s complete adjuvant (1:1) and injected directly into the hindleg muscles (IM) 

of a cross-bred rabbit. Such injections were repeated two times using Freund’s incomplete 

adjuvant after 1 week and after 9 weeks. One week after the last injection, the rabbit was 

bled at weekly intervals for 1 month. Immunoglobulin G (IgG) isolation and conjugate 

production were performed according to (Clark & Adams, 1977). The specificity of the 

AaNV IgGs was tested at a dilution of 1:1000 [v/v] in a DAS-ELISA format using extracts 

from EMDV-, PhCMoV- and AaNV-infected N. benthamiana (Clark & Adams, 1977). In 

reciprocal DAS-ELISA experiments, antisera to EMDV (JKI-1073) and PhCMoV (JKI-2051) 

were tested against extracts from AaNV-inoculated plants (upper, non-inoculated leaves). 

DAS-ELISA was also performed to confirm the presence of AaNV in plants inoculated for 

the (limited) host range study. The calculation of cut-off values for each ELISA plate carried 

out according to the Technical Information by Bioreba (Bioreba, 2014). 

2.1.3.5. Whole genome sequencing 

Total RNA (totRNA) was extracted from N. benthamiana infected leaf material 

using innuPREP RNA Mini Kit (Analytik Jena AG, Jena, Germany) following the 

manufacturer’s protocol. Ribosomal RNA (rRNA) was depleted using RiboMinus Plant kit 

(Invitrogen, Carlsbad, CA, USA) according the manufacturer’s protocol. Random cDNA was 

synthesized using ProtoScript II Reverse Transcriptase (New England Biolabs, Beverly, MA, 

USA) and 8 N random primers. The second strand was synthesized with NEBNext Ultra II 

Non-Directional RNA Second Strand Synthesis Module kit (New England Biolabs (NEB), 

Beverly, MA, USA). A library was prepared using Nextera XT Library kit (Illumina) and 

subsequently run on a MiSeq v3 platform as pair-end reads (2 × 301). 

2.1.3.6. Sequencing of 5′ and 3′ ends 

To obtain the 5′ and 3′ ends of the full-length AaNV sequence, RNA ligase mediated 

amplification of cDNA ends (RLM-RACE) (Liu & Gorovsky, 1993; Coutts & Livieratos, 2003; 

Li et al., 2005) and RNA poly A tailing were used, respectively. 
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For the 5′ end, cDNA was produced using a virus specific primer (HZ-454 5′ ACT 

CTT GGT ACA GCA ACT CGT 3′) located 461 bases from the end. The resulting cDNA was 

purified using the DNA Clean & Concentrator kit (Zymo Research, Orange, CA, USA). An 

adaptor (Oligo1rev 5′ PO4-GAT CCA CTA GTT CTA GAG CGG C-AminoC3 cordycepin 3′ 
adapted from (Coutts & Livieratos, 2003)) was ligated to the cDNA using T4 RNA ligase 1 

(NEB) and the ligated cDNA was purified. PCR amplification of the 5′ end was performed 

using a primer (Oligo2for 5′ GCC GCT CTA GAA CTA GTG GAT C 3′) complementary to the 

ligated adaptor and a virus specific primer (HZ-452 5′ TCC ACA AGT TGC AAG CAG GT 3′) 
397 bases from the genome end. A band of approximately 400 bases was obtained. 

For obtaining the 3′ end, totRNA was poly-A tailed with the A-Plus™ Poly(A) 

Polymerase Tailing kit (Cellscript, Madison, WI, USA) and cDNA was synthesized using a 

primer (HZ-413 5′ GGA CAT TGT CCG GAT GGT CT 3′) binding 361 bases from the 3′ end of 

the RNA. The 3′ end was amplified by PCR using HZ-413 and oligo(d)T primer (5′ CCT CGG 

GCA GTC CTT TTT TTT TTT TTT TTT T 3′) (Fletcher et al., 2016). 

The PCR products of both ends were cleaned using the Zymoclean Gel DNA 

Recovery (Zymo Research) and cloned with NEB PCR Cloning Kit (NEB). Cloning and 

plasmid amplification were carried out according to the manufacturer’s instructions. 

Purification of plasmids was carried out using the NucleoSpin Plasmid EasyPure Kit 

(Macherey-Nagel, Düren, Germany); sequencing (ten colonies in both directions) was 

carried out at Macrogen (Seoul, Korea) and Eurofins Genomics (Ebersberg, Germany). 

2.1.3.7. Sequence analysis 

The reads produced from the MiSeq platform were analysed with Geneious 

software (v 11.0.4) (Biomatters Limited, Auckland, New Zealand). The raw reads were 

quality trimmed (error limit = 0.05), size filtered > 99 nt, error corrected and normalised 

using BBNorm (v. 37.64) tool, followed by de novo assembly with Geneious assembler. 

Assembled contigs were then used to search for similar sequences by BLASTn and BLASTx 

using the National Centre for Biotechnology Information (NCBI) GenBank non-redundant 

nucleotide and protein databases, respectively. Mapping of the clean reads to the 

complete viral genome sequence as a reference was performed using the mapping to 

reference tool in Geneious. Open reading frames were identified by Find ORF tool and 

were used to find similar sequences and conserved domains in BLASTp. 

Sequence alignments were done with clustalW and phylogenetic trees 

(Neighbour-Joining algorithm, 1000 bootstrap replications) were created using MEGA 

7.0.26 (Larkin et al., 2007; Kumar et al., 2016). The full genome of the virus was submitted 

to GenBank using Sequin application (v 15.50). Importin-dependent nuclear localisation 

signals were predicted using cNLS Mapper (Kosugi et al., 2009) and nuclear export signals 

(NES) were predicted using NetNES 1.1 (La Cour et al., 2004). 
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2.1.3.8. Reverse transcription polymerase chain reaction (RT-PCR) for detection and 

confirmation 

Two primers (HZ-408 5′ GCA CGA TAA AGG CTG CAT CG 3′ and HZ-409 5′ TTG TGC 

ATC CTC TGT CGG AC 3′) were designed (Geneious design new primer tool) to confirm the 

virus presence by RT-PCR. The primers were designed to amplify a 971 bp fragment of the 

RNA-dependent RNA polymerase gene. 

Extraction of totRNA was done from leaf tissues as described above, and cDNA was 

produced using HZ-409 primer. The cDNA product was used for PCR using OneTaq DNA 

Polymerase kit (NEB) (35 cycles of 30 s at 94 °C, 45 s at 52 °C, 1 min at 68 °C and a final 

elongation step for 4 min at 68 °C). The amplified PCR products were subject to 

electrophoresis on a 1.0% (w/v) agarose gel stained with ethidium bromide. The specificity 

of the designed primers was confirmed by testing EMDV- and PhCMoV-infected plants. 

2.1.3.9. Infectivity assays 

AaNV-infected N. benthamiana leaves were used to inoculate N. benthamiana, M. 

sativa, M. lupulina, Pisum sativum and Vicia faba mechanically. Briefly, symptomatic 

leaves were homogenized in Norit inoculation buffer (50 mM phosphate buffer, pH 7, 
containing 1 mM ethylenediaminetetraacetic acid (Na-EDTA), 20 mM sodium 

diethyldithiocarbamic acid (Na-DIECA), 5 mM thioglycolic acid, 0.75% activated charcoal 

and 30 mg Celite). Using a glass spatula, the homogenate was gently rubbed onto the 

leaves which were then rinsed with water. The inoculated plants were kept under 

greenhouse conditions (at 22 °C; photoperiod of 16 h light [natural daylight with 

additional growth light Phillips IP65, 400 W] and 8 h dark) and regularly inspected for 

symptoms for at least three weeks after inoculation. 

2.1.4. Results 

2.1.4.1. Virus transmission and maintenance 

Upon receiving the infected alfalfa sample, the virus was mechanically inoculated 

onto standard indicator plants including N. benthamiana which were inspected for 

symptoms twice weekly. In N. benthamiana, chlorotic lesions appeared on inoculated 

leaves followed by systemic leaf rolling, mottling and yellowing in week three or four post 

inoculation. The virus was maintained continuously on N. benthamiana by regular 

mechanical passage onto young seedlings. 

2.1.4.2. Virus morphology and cellular localisation 

To elucidate the aetiology of the alfalfa disease, transmission electron microscopy 

(TEM) was performed on infected N. benthamiana plants following mechanical 

inoculation. Bacilliform-shaped virus particles were observed (Fig. 1). Using ammonium 

molybdate instead of uranyl acetate as negative stain was less disruptive on particle 

appearance. Only few mature virions displaying various degrees of disruption were 

detected in adsorption preparates. Preliminary measurements obtained from n = 40 

revealed virion sizes ranging from 180 to 200 nm in length and 85–95 nm in diameter. The 

outer surface of virions is preserved comprising the lipid bilayer carrying the spikes, likely 
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glycoproteins. Virions shown in Fig. 1 are less disrupted with matrix proteins and envelope 

mostly intact. About 15% of the measured particles like those depicted in Fig. 1 were of 

shorter size (average length 167 nm) and may indicate defective particles not comprising 

the complete viral genome. 

 

 

Figure 1: Electron micrograph of crude plant sap preparations of AaNV-infected N. benthamiana 

leaves. Four shorter mature bacilliform virions with average sizes of 167 nm in length and 86 nm 

in diameter 

 

When ultrathin sections of embedded symptomatic N. benthamiana leaf tissue 

were analysed, very few virus particles were found in the cytoplasm only. Figure 2a shows 

two virus particles in epidermal cells. The transversely cut particle seems to be complete 

with attachment of glycoproteins visible (lower arrow, left hand side). Figure 2a (upper 

arrow, right hand side) seems to show two longitudinally particles appearing blunt end to 

blunt end and thus looking like a larger particle. Both epidermal and mesophyl cells were 

infected. 
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Figure 2: Electron micrographs of thin sections of AaNV-infected N. benthamiana cells. (a) 

Arrows indicate transversely (bottom) and longitudinally (upper part) cut particles in the 

cytoplasm located between the cell wall (W) and the vacuole (Va) of an epidermal cell; (b) Non-

infected nucleus with heterochromatin and homogenous nuclear matrix; (c) Electron-dense 

granular areas throughout the nucleus are thought to represent viroplasm (Vp) with virions placed 

next to it; (d) arrays of mature virions budding (Vb) into the perinuclear space surrounded by the 
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nuclear membrane. The cell wall (W), chloroplast with starch granules (Cl), nucleus (Nu), 

mitochondrion (Mt), vacuole (Va), virus budding (Vb) and viroplasm (Vp) are indicated 

In infected cells, the shape of the nucleus can change to a more condensed circular 

or even a distorted shape (Fig. 2c-d) compared to the ellipsoidal form present in healthy 

cells (Fig. 2b). In heavily infected cells, not only the nuclear compartments were affected 

but also chloroplasts were deformed (Fig. 2d). In the nuclei, granular areas distinct from 

heterochromatin were found representing putative virus replication sites known as 

viroplasms (Vp). Adjacent to them virus particles could be found (Fig. 2c and d). In Fig. 2c, 

there are few virions around the Vp and no virions were observed in the cytoplasm. In 

addition, vesicles or virus buddings (Vb) containing one or more complete viruses were 

visualized around the nucleus and in the cytoplasm of infected cells (Fig. 2d). Figure 2d 

also shows virus particles budding from the inner nuclear envelope in the perinuclear 

space. 

2.1.4.3. Sequence analysis 

A total of 1,561,664 reads were generated from the MiSeq sequencing. After 

quality trimming and size filtering, 1,141,662 quality-filtered reads were used for 

normalisation and de novo assembly. From the 23,180 assembled contigs, a contig of 

13,854 nucleotides showed 66.9% identity (7% coverage and 3e-50 E-value) to black 

currant-associated rhabdovirus 1 (BCaRV-1) (MF543022), 66.2% (6% coverage and 2e-45 

E-value) to datura yellow vein virus (DYVV) (NC_028231) and 66.2% (9% coverage and 5e-

41 E-value) to sonchus yellow net virus (SYNV) (NC_001615) using BLASTn. Using BLASTx, 

the contig shared 44.9% (34% coverage and zero E-value) identity to DYVV 

(YP_009176977), 43.62% identity (35% coverage and zero E-value) to SYNV (NP_042286) 

and 43.5% (34% coverage and zero E-value) to BCaRV-1 (AUW36419). To determine the 

5′ and 3’ends, primers were designed to anneal close to the assembled contig ends. The 

sequences of the two ends were assembled to the contig and the full-length genome 

sequence was determined as 13,875 bases in length with 29,727 mapped reads, 40.6% 

G + C content and mean coverage of 586X (GenBank accession number MG948563). The 

sequencing dataset generated in this study is available from the corresponding author 

upon request. 

A pairwise nucleotide sequence alignment of the novel genome to selected 

rhabdoviruses and a phylogenetic tree was generated. ClustalW pairwise analysis showed 

that the AaNV sequence has 39.8% nt identity to BCaRV-1, 38.8% to DYVV and SYNV 

(Supplementary Fig. S1a). Moreover, the AaNV sequence falls within the genus 

Nucleorhabdovirus in a clade with SYNV, BCaRV-1 and DYVV (Supplementary Fig. S1b). 

This clustering was supported by a neighbour joining tree of the L protein amino acid 

sequences of selected members of the family Rhabdoviridae (Fig. 3). 
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Figure 3: Unrooted neighbour-joining phylogenetic tree [Genetic distance model (Jones-Taylor-

Thornton (JTT) model) and 1000 bootstrap replications] based on the amino acid sequence 

alignment of the L protein of selected members of different genera of the family Rhabdoviridae. 

AaNV indicated by a blue solid diamond shape. The bootstrap values above 50% are indicated for 

each node. The names and the accession numbers of the viruses are as follow: Nucleorhabdovirus 

(green): alfalfa-associated nucleorhabdovirus (AaNV; QAB45076), black currant-associated 

rhabdovirus 1 (BCaRV-1; AUW36419), datura yellow vein virus (DYVV; YP_009176977), eggplant 

mottled dwarf virus (EMDV; YP_009094358), maize fine streak virus (MFSV; YP_052849), maize 

Iranian mosaic virus (MIMV; YP_009444713), maize mosaic virus (MMV; YP_052855), physostegia 

chlorotic mottle virus (PhCMoV; ARU77002), potato yellow dwarf virus (PYDV; YP_004927971), 

rice yellow stunt virus (RYSV; NP_620502), sonchus yellow net virus (SYNV; NP_042286) and taro 

vein chlorosis virus (TaVCV; YP_224083). Cytorhabdovirus (red): alfalfa dwarf virus (ADV; 

YP_009177021), barley yellow striate mosaic virus (BYSMV; YP_009177231) and lettuce yellow 

mottle virus (LYMoV; YP_002308376). Dichorhabdovirus (orange): citrus chlorotic spot virus 

(CiCSV; ARJ35804), coffee ringspot virus (CoRSV; YP_009507905), orchid fleck virus (OFV; 

YP_001294929). Varicosavirus (violet): lettuce big-vein associated virus (LBVaV; YP_002308576) 

 

2.1.4.4. The genome organisation of AaNV 

Six putative open reading frames (ORFs) were identified in the antigenomic sense 

based on the genome organisation described for other nucleorhabdoviruses; 

nucleocapsid (N), phosphoprotein (P), putative cell to cell movement protein (P3), matrix 

protein (M), glycoprotein (G) and RNA-dependent RNA polymerase (L). Highly conserved 

regulatory regions separating the genes were identified. At the junctions between the 

genes, the consensus motif is (3′ UAA AUU CUU UUU GGU UG 5′), which slightly differs 

between the 3′ leader and N gene, and between the L gene end and the 5′ trailer (Fig. 4a). 

The presence of a seventh ORF with unknown function (U), between M and G was 
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identified as it is flanked by the intergenic region consensus motif. Moreover, the 3′ leader 

(l) and the 5′ trailer (t) have complementary sequences of 43.1% nt identity (Fig. 4b). 

Therefore, the complete genome organisation was determined as 3′ l–N–P–P3–M–U–G–
L–t 5′ (Fig. 4c). Additionally, comparisons between the consensus sequence of the 

intergenic conserved sequences, the 3′ and the 5′ ends, and the genome organisation of 

AaNV and selective members of the Nucleorhabdovirus genus are shown in 

Supplementary Figure S2. 

 

 

Figure 4: (a) The intergenic regions of the alfalfa-associated nucleorhabdovirus (AaNV) genome; 

the polyadenylation signal, the intergenic spacer and the transcription start site; (b) Alignment of 

ends of AaNV 3′ leader (l) and 5′ trailer (t) sequences (complementary nucleotides are indicated 

by vertical black lines); c Schematic representation of the full sequence of AaNV and its genome 

organisation. The open reading frames N, P, P3, M, U, G, L with their CDS are indicated as green 

and blue block arrows, respectively. The yellow block arrows represent the 3′ leader (l) and the 5′ 
trailer (t). The read map distribution is shown in light blue over the genome 
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2.1.4.5. Predicted protein features in silico 

The AaNV protein sizes range from 113 amino acid (aa) for the U protein to 2038 

aa for the L protein with molecular masses of 12.4 kDa and 234.8 kDa, respectively (Table 

1). The N and G proteins have neutral isoelectric points (IEP) of 7.1 and 7.3. U and P are 

acidic proteins while P3, M and L are basic proteins (Table 1). Comparing the protein 

sequences of AaNV with those of BCaRV-1 and DYVV showed that the predicted proteins 

of AaNV are more closely related to those of DYVV except for the glycoprotein, which is 

more closely related to that of BCaRV-1 (Table 1). The aa sequences identities were 

between 11.5 and 35.8% compared to BCaRV-1 and between 14 and 33.7% for DYVV 

(Table 1). Additionally, the nuclear localisation signals (NLS, or a karyophilic domain) and 

the nuclear export signals (NES) of the proteins were predicted (Table 1). The highest cNLS 

mapper scores were for N, P and L (12.7, 10 and 10, respectively), followed by P3 and G 

with scores of 7 and 6. The M protein had the lowest score with 4.3 while the U ORF did 

not score any NLS. The cNLS scores predicted an exclusive nuclear localisation for N, P and 

L proteins, a partial nuclear localisation for P3 and G proteins, and a nuclear and 

cytoplasmic localisation for M protein (Table 1). Moreover, four of these proteins have a 

detectable NES (Table 1).  
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http://nls-mapper.iab.keio.ac.jp/cgi-bin/NLS_Mapper_form.cgi
http://nls-mapper.iab.keio.ac.jp/cgi-bin/NLS_Mapper_form.cgi
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2.1.4.6. Antiserum production, serological specificity and diagnostic RT-PCR 

The specificity of the AaNV antiserum was confirmed by DAS-ELISA using plant 

material infected with either AaNV or two other rhabdoviruses (EMDV and PhCMoV). The 

AaNV antibodies reacted only with plant material infected with AaNV but neither with 

non-inoculated nor non-infected plant material nor with plants infected with EMDV or 

PhCMoV (Table 1). In reciprocal tests, antisera to EMDV and PhCMoV did not react with 

AaNV-infected plant tissue. Diagnostic primers were designed to confirm the presence of 

AaNV by RT-PCR resulting in a 971 bp amplicon. The primers were specific to the partial 

sequence of the L-ORF of AaNV and did not amplify other nucleorhabdoviruses tested, 

i.e., EMDV and PhCMoV. 

The specific recognition of nucleocapsids by the AaNV antibodies were 

demonstrated using IEM. Only nucleocapsid structures reacted with antibodies but not 

complete virions, see Supplementary Fig. S3a displaying enriched but undecorated 

nucleocapsids from the crude sap samples after the preincubation with antiserum 

(immunosorbent step), and Supplementary Fig. S3b showing nucleocapsids covered with 

antibodies after the decoration step. With antiserum against EMDV, neither enrichment 

nor decoration of nucleocapsids were obtained using IEM (data not shown). 

2.1.4.7. Infectivity tests 

In a limited host range study, the virus was successfully transmitted to N. 

benthamiana, P. sativum, and V. faba. Mechanically inoculated N. benthamiana plants 

showed systemic infection. Systemic symptoms consisted of leaf mottling, yellowing and 

curling at approximately 4 weeks after inoculation (Fig. 5). However, inoculated P. sativum 

and V. faba showed either no symptoms or a slight leaf mottling and the infection rate 

was low on these hosts (only 4 out of 36 V. faba and 1 out of 30 P. sativum plants). To 

confirm the infections, DAS-ELISA and RT-PCR were performed. Use of the AaNV 

antiserum in DAS-ELISA confirmed AaNV infections at high titres in N. benthamiana and 

at lower titres in P. sativum and V. faba and the absence of detectable virus from AaNV-

inoculated M. lupulina, M. sativa, T. pratense, T. repens and C. quinoa (Table 2). Infections 

were also confirmed by RT-PCR. It was not possible to transmit AaNV mechanically to M. 

lupulina and M. sativa (21 and 18 plants tested, respectively). Plants remained 

symptomless and all the samples tested negative in DAS-ELISA and RT-PCR. Additionally, 

mechanical inoculation using fresh material from AaNV-infected V. faba and P. sativum 

plants failed to induce infection in V. faba, P. sativum, M. lupulina and M. sativa. 
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Figure 5: Photo of AaNV-infected N. benthamiana plant. The plant shows systemic leaf rolling, 

mottling, yellowing and curling, and chlorotic lesions on inoculated leaves at approximately 

4 weeks post inoculation. Red arrows indicating inoculated leave 

 

Table 2: DAS-ELISA reactions of various antisera raised against different plant 

nucleorhabdoviruses and limited host range study 

Host species 
Inoculated 

virus 

Antisera 

AaNV (JKI-1607) EMDV (JKI-1073) PhCMoV (JKI-2051) 

N. benthamiana AaNV +++a – – 

P. sativum AaNV + NTb NT 

V. faba AaNV + NT NT 

M. sativa AaNV – NT NT 

M. lupulina AaNV – NT NT 

T. repens AaNV – NT NT 

T. pratense AaNV – NT NT 

C. quinoa AaNV – NT NT 

N. benthamiana EMDV – +++ – 

N. benthamiana PhCMoV – – +++ 

Buffer   – – – 

N. benthamiana 
Non-

inoculated 
– – – 

P. sativum 
Non-

inoculated 
– NT NT 

V. faba 
Non-

inoculated 
– NT NT 

M. sativa 
Non-

inoculated 
– NT NT 
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a Following a substrate incubation for 1 h, DAS-ELISA reactions were classed as follows: negative 

reaction (−): ≤ cut-off point (= ODA405 0.025); weak reaction (+): cut-off point to 1.0, intermediate 

reaction (++): 1.0 to 2.0, strong reaction (+++): > 2.0). bNT = not tested 

 

2.1.5. Discussion 

Using EM and HTS technologies, the presence of a novel nucleorhabdovirus in 

alfalfa was established. The bacilliform appearance of the viral particles observed in 

infected N. benthamiana tissues is consistent with observations on previously described 

plant rhabdoviruses. Preliminary measurements indicated particle sizes within the range 

of the known nucleorhabdoviruses (130 to 300 nm × 45 to 100 nm in diameter (Goodin & 

Jackson, 2002)). The virions of AaNV had an average length of 180–200 nm and measured 

85–95 nm in diameter. The observed ultra-cellular deformations of nuclei and chloroplast 

in epidermis and mesophyl cells are in accordance with the distorted phenotype of 

systemically infected N. benthamiana plants showing leaf rolling, mottling and yellowing. 

The species demarcation criteria for the genus Nucleorhabdovirus state that a new 

species should have three characteristics (Walker et al., 2018); a new species should have 

a minimum nucleotide divergence of 50% in cognate genes, can be clearly distinguished 

in serological tests or by nucleic acid hybridisation, and should occupy a different 

ecological niche (differences in hosts and/or vectors). The AaNV genome shares 39.8% 

nucleotide identity with BCaRV-1, its closest relative in the genus Nucleorhabdovirus. 

Moreover, all its ORFs have less than 40% amino acid sequence identity with their most 

closely related sequences in other rhabdoviruses. In addition, the AaNV antiserum reacted 

specifically with AaNV-infected plant tissue while antisera to EMDV and PhCMoV, two 

other nucleorhabdoviruses, failed to react with AaNV infected plant tissues in DAS-ELISA. 

Furthermore, the primers for RT-PCR are specific for AaNV. As for the third demarcation 

criterium, AaNV was originally identified in Medicago sativa, an important legume crop. 

However, the mode of transmission and/or potential vectors have not yet been identified. 

As a consequence, AaNV should be considered as a new virus species in the 

Nucleorhabdovirus genus. 

As with all rhabdoviruses, the genome of AaNV has highly conserved regulatory 

regions (intergenic regions) separating its ORFs and complementary 3′ leader and 5′ trailer 

sequences. The intergenic regions of AaNV are closely related to those of DYVV, BCaRV-1 

and SYNV (Dietzgen et al., 2015; Wu et al., 2018). The predicted features of AaNV proteins 

are similar to those of related nucleorhabdoviruses. The individual proteins of AaNV are 

similar in size to their homologs in DYVV and BCaRV-1. The predicted isoelectric point (IEP) 

of N protein of AaNV is the same as that of DYVV (Dietzgen et al., 2015). Similar to DYVV, 

P3, M and L are basic proteins and P is an acidic protein. 

The only difference is the G protein which is neutral in case of AaNV and acidic for 

DYVV. In addition to the six main nucleorhabdovirus proteins (N, P, P3, M, G and L), a new 

ORF (U) with unknown function was identified. Its predicted protein has an acidic IEP. All 

https://virologyj.biomedcentral.com/articles/10.1186/s12985-019-1147-3#Discussion
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the seven transcription units and the leader are predicted to be polyadenylated, but its 

functionality still needs to be proven. 

Nucleorhabdoviruses are known to establish virus replication factories in the 

nuclei of infected plant cells (Jackson et al., 2005). All AaNV proteins except U, display 

predicted mono- or bipartite nuclear localisation sequences (NLS) suggesting their 

independent importation into the nucleus. The presence of both the NLSs and the leucine-

rich nuclear export signals (NESs) in N, M and L proteins indicates the ability of these 

proteins to shuttle between the nucleus and the cytoplasm through coordination of these 

transport signals. Although the unknown protein (U) seems to lack a NLS, the observation 

that it has an NES suggests its ability to be exported out of the nucleus. 

AaNV was mechanically transmitted to N. benthaminana, P. sativum and V. faba. 

Although it did not show any noticeable or only slight mottling symptoms on P. sativum 

and V. faba, low infection rates were confirmed by DAS-ELISA. Interestingly, the virus 

could not be mechanically transmitted to M. sativa nor M. lupulina. It is not known if this 

is due to the serial passaging on N. benthamianafor propagation purposes and therefore 

a host adaption effect. The biological impact of the observed smaller sized particles of 

167 nm length for mechanical transmission and host interactions awaits further 

investigation. As a (insect) vector has not been identified yet, it is unclear how the 

transmission from M. sativa to M. sativa would occur naturally or if P. sativum and V. faba 

crops or some weed species could act as natural alternative reservoirs for AaNV. It is also 

unknown if this virus still occurs naturally in alfalfa in the area it was originally found, or 

elsewhere in Europe. As no sequence data nor serological data are available for LEV, it is 

unclear whether these “historic” findings are related to AaNV. 

 

2.1.6. Conclusions 

In the present study, we describe a novel nucleorhabdovirus originating from 

infected M. sativa from Austria. Using HTS, we were able to determine the full-length 

sequence of this virus which was tentatively named AaNV. Since the sequence identity to 

BCaRV-1, its closest known relative, was only 39.8%, AaNV represents a new species 

according to the species demarcation criteria set by the International Committee on 

Taxonomy of Viruses (ICTV) (Walker et al., 2018). The site of virus maturation was 

observed by EM in the nucleus of infected cells thus confirming the phylogenetic 

assignment. It was possible to transfer AaNV experimentally using mechanical inoculation 

to N. benthaminana as well as other members of the Fabaceae family, i.e., P. sativum and 

V. faba. Along with ADV and LEV, this is the third rhabdovirus and the second 

nucleorhabdovirus known to infect M. sativa in nature. However, it was not possible to 

transfer AaNV back to alfalfa by mechanical inoculation. Thus, further research is needed 

to identify natural vectors of this virus as well as other alternative host plants. The 

serological and molecular biological assays developed may aid larger surveys addressing 

these questions. 

  

https://virologyj.biomedcentral.com/articles/10.1186/s12985-019-1147-3#Conclusions
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2.1.7. Supplementary 

 

Figure S1. (a) Pairwise identity matrix of the whole genome sequences of AaNV with selected 

members of the family Rhabdoviridae (ClustalW 2.1); (b) Unrooted neighbour-joining 

phylogenetic tree [Genetic distance model (Jukes-Cantor) and 1,000 bootstrap replications] based 

on the nucleotide alignment of the whole genomes of AaNV and selected members of different 

genera of the family Rhabdoviridae. AaNV indicated by a blue solid diamond shape.  

The names and the accession numbers of the viruses are as follow: Nucleorhabdovirus (green): 

alfalfa-associated nucleorhabdovirus (AaNV; MG948563), black currant-associated rhabdovirus 1 

(BCaRV-1; MF543022), datura yellow vein virus (DYVV; NC_028231), eggplant mottled dwarf virus 

(EMDV; NC_025389), maize fine streak virus (MFSV; NC_005974), maize Iranian mosaic virus 
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(MIMV; NC_036390), maize mosaic virus (MMV; NC_005975), physostegia chlorotic mottle virus 

(PhCMoV; KY859866), potato yellow dwarf virus (PYDV; NC_016136), rice yellow stunt virus (RYSV; 

NC_003746), sonchus yellow net virus (SYNV; NC_001615) and taro vein chlorosis virus (TaVCV; 

NC_006942). Cytorhabdovirus (red): alfalfa dwarf virus (ADV; NC_028237), barley yellow striate 

mosaic virus (BYSMV; NC_028244) and lettuce yellow mottle virus (LYMoV; NC_011532). 

Lyssavirus (black): rabies virus (RV; NC_001542). Perhabdovirus (violet): eel virus European X 

(EVEX; NC_022581). 

 

 

Figure S2. Comparisons between AaNV and selective members of the Nucleorhabdovirus genus. 

The consensus sequence of the intergenic conserved sequences (a), the 3’ and 5’ ends (b), and 

the genome organisation (c). The names and the accession numbers of the viruses can be found 

under figure S1. 
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Figure S3. Electron micrograph of the JKI-1607 reacting with AaNV ribonucleoprotein (RNP). (a) 

Enriched nucleocapsids after immunosorbent step; (b) Enriched nucleocapsids but not virions are 

covered (decorated) with antibodies.  

3.  
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3.1. Caraway yellows virus, a novel 

nepovirus from Carum carvi 
Yahya Zakaria Abdou Gaafar, K. R. Richert-Pöggeler, A. Sieg-Müller, P. Lüddecke, K. Herz, 

J. Hartrick, C. Maaß, R. Ulrich and H. Ziebell 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This article has been published in a slightly modified version as: 

Gaafar YZA, Richert-Pöggeler KR, Sieg-Müller A et al., 2019. Caraway yellows virus, a novel 

nepovirus from Carum carvi. Virology Journal 16, 529. doi: 10.1186/s12985-019-1181-1. 
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3.1.1. Abstract 

A novel nepovirus was identified and characterised from caraway, and tentatively 

named caraway yellows virus (CawYV). Tubular structures with isomeric virus particles 

typical for nepoviruses were observed in infected tissues by electron microscopy. The 

whole genome of CawYV was identified by high throughput sequencing (HTS). It consists 

of two segments with 8026 nt for RNA1 and 6405 nt for RNA2, excluding the poly(A) tails. 

CawYV-RNA1 shared closest nt identity to peach rosette mosaic virus (PRMV) with 63%, 

while RNA2 shared 41.5% with blueberry latent spherical virus (BLSV). The amino acid 

sequences of the CawYV protease-polymerase (Pro-Pol) and capsid protein (CP) regions 

share the highest identities with those of the subgroup C nepoviruses. The Pro-Pol region 

shared highest aa identity with PRMV (80.1%), while the CP region shared 39.6% to 

soybean latent spherical virus. Phylogenetic analysis of the CawYV-Pro-Pol and -CP aa 

sequences provided additional evidence of their association with nepoviruses subgroup 

C. Based on particle morphology, genomic organization and phylogenetic analyses, we 

propose CawYV as a novel species within the genus Nepovirus subgroup C. 

 

Keywords 

Caraway; High throughput sequencing; Bipartite genome; Tubular structures; Nepovirus 

subgroup C 

 

3.1.2. Main text 

Viruses from the genus Nepovirus in the subfamily Comovirinae of the Secoviridae 

family possess a bipartite genome consisting of two positive ssRNAs with a 5′ viral protein 

genome-linked (VPg) and a 3′ poly(A) tail (Thompson et al., 2017). The RNA1 segment 

encodes the helicase, protease and its cofactor, replicase and the viral protein genome 

linked whereas the RNA2 segment encodes the movement and coat proteins (Fuchs et al., 

2017; Thompson et al., 2017). Nepoviruses are the only members of the family Secoviridae 

known to have a single CP (Fuchs et al., 2017). Each of the two RNA segments are 

encapsidated separately in a non-enveloped icosahedral virion of 25-30 nm in diameter 

(Thompson et al., 2017). Nepoviruses can be transmitted non-persistently and non-

circulatively by nematodes, mite and thrips (Bergeson et al., 1964; Thompson et al., 2017). 

Seed and pollen transmissions are well-documented (Fuchs et al., 2017; Thompson et al., 

2017). In herbaceous plants, the symptoms induced are often transient with symptom 

recovery being a common outcome (Fuchs et al., 2017). 

Caraway (Carum carvi L.) is an aromatic biennial plant in the Apiaceae family 

(Iacobellis et al., 2005). It is native to Europe, north Africa and western Asia (Bailer et al., 

2001; Eddouks et al., 2004). Caraway is used as a food flavour, fragrance additive, and for 

medical purposes as an antibacterial agent with antispasmodic, carminative, and appetite 

stimulant properties (Iacobellis et al., 2005). In 2016, an organic caraway field showed 
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crop losses. A caraway plant sample with systemic yellowing was sent to Julius Kuehn-

Institute (JKI) for analysis (Fig. 1a). The sample tested positive by DAS-ELISA using 

antiserum JKI 1283 developed against an uncharacterised nepovirus from carrot which is 

likely a strain of cherry leaf roll virus (CLRV) (unpublished data). The virus was 

mechanically transmitted to Nicotiana benthamiana and chlorotic local lesions were 

observed on inoculated leaves followed by systemic chlorosis and necrosis. Symptom 

recovery was not observed. The virus was provisionally named “caraway yellows virus” 

(CawYV). 

 

Figure 1. (a) Leaf symptoms of caraway yellows virus (CawYV) on caraway plants; (b) Electron 

micrograph of CawYV particles from the original infected caraway sample; (c) Electron micrograph 

showing tubular structure containing virus particles of CawYV in tissue homogenate of infected 

Nicotiana benthamiana 

 

Electron microscopy (EM) revealed the presence of isomeric virus particles of 

about 30 nm in diameter in preparations made from the original infected caraway sample 

(Fig. 1b), indicating the presence of a nepovirus. Additionally, tubules containing virus-like 

particles in tissue homogenate of N. benthamiana infected with the nepovirus were also 
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observed by EM (Fig. 1c). This has also been shown for other nepoviruses e.g., grapevine 

fanleaf virus, where the movement and the capsid proteins act as components of tubular 

structures (required for cell to cell movement) that traverse the cell wall with the virus 

particles (Laporte et al., 2003; Thompson et al., 2017). 

To obtain the full genome of CawYV, double stranded RNA (dsRNA) was extracted 

from infected N. benthamiana using Double-RNA Viral dsRNA Extraction Mini Kit for Plant 

Tissue (iNtRON) following the manufacturer’s instructions. The extracted dsRNA was sent 

for library preparation and high throughput sequencing (HTS) at Eurofins GATC Biotech 

GmbH. The dsRNA was fragmented, strand specific cDNA was synthesized using random 

primers (the dsRNA was denatured at 99 °C for 2 min), followed by adapter ligation and 

adapter specific PCR amplification then sequencing on Illumina NovaSeq 6000 platform 

(2 × 150). 

Using Geneious Prime (v. 2019.0.4), the raw reads (15,468,416) were quality 

trimmed, filtered, normalized, and error corrected followed by de novo assembly using 

Geneious assembler (Medium sensitivity/Fast setting). 36,634 contigs of lengths between 

100 and 23,141 nt were generated. A BLASTn search of the contigs against a local database 

for viruses and viroids downloaded from NCBI showed that two contigs of 7180 and 

6341 nt had 72% identity (73% coverage and zero E-value) to peach rosette mosaic virus 

(PRMV) and 79% (16% coverage and 1e-90 E-value) to blueberry latent spherical virus 

(BLSV), respectively. The 5′ ends of both RNA segments were confirmed using RNA ligase-

mediated amplification of cDNA ends (RLM-RACE) (Coutts & Livieratos, 2003). The 3′ ends 

of the two RNA segments were determined by using an oligo(d)T primer for cDNA 

synthesis followed by PCR using virus specific primers and the oligo(d)T primer. The 

primers used for the 5′ and 3′ ends confirmation are listed in Supplementary Table S1. The 

PCR products were cloned, sequenced and the resulting sequences were assembled using 

the map to reference tool and the original assembled contigs as references. 72,977 of the 

quality trimmed reads were assembled to CawYV complete genome. The assembled 

genome of CawYV was 8026 nt for RNA segment 1 and 6405 nt for RNA segment 2 

(excluding poly(A) tails). The sequences were deposited in the GenBank database under 

accessions MK492273 and MK492274. For diagnostic purposes and to confirm the 

presence of CawYV in symptomatic leaf tissue, a primer pair was designed using Primer 3 

tool in Geneious (HZ-636 5′ TGA AGA TCC GGG AAA GGC AC 3′ and HZ-637 5′ ACG CTT TCC 

ACT CTC ACC TG 3′) (Untergasser et al., 2012). The presence of CawYV was confirmed in 

the infected plants by RT-PCR using OneTaq One-Step RT-PCR Kit (NEB) resulting in 

amplicons of 481 bp (data not shown). 

Further analyses of the CawYV sequence confirmed its identity as a nepovirus. In 

analogy to other nepoviruses, CawYV RNA1 contains an open reading frame (nt position 

92 to 6733) encoding a polyprotein of 2213 aa in length. Pairwise comparisons of nt and 

aa sequences of this ORF to its homologues of the other nepoviruses were performed 

using ClustalW (Larkin et al., 2007). The results show that the highest similarity was shared 

with PRMV at 66.1% on nt and 68.1% aa levels, respectively (Table 1). By searching for the 

different nepovirus motifs using the motif searching tool in Geneious, the locations of the 
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putative protease cofactor (Pro-cof), the NTP-binding helicase domain (Hel), the serine 

protease domain (Pro), and the RNA-dependent RNA polymerase (RdRp) core domain 

were found in the RNA1-encoded polyprotein (Isogai et al., 2012). The putative viral 

protease cofactor motif (FX27WX11LX21LXE) was located at aa residues 438–502. The 

typical NTP-binding helicase motif A (GX4GKS), motif B (D), and motif C (N) were found at 

aa 752-759, 803, and 852, respectively. A serine protease motif was found at aa 1280-

1449 (HX40EX106SGX8GX5GXHX2G) of the CawYV RNA1 polyprotein sequence (Fig. 2a). The 

serine at this position is unusual for members of the Picornavirales(where cysteine is 

usually encoded) but was described for some members of genus Nepovirus subgroup C 

i.e., BLSV, CLRV, PRMV and soybean latent spherical virus (SLSV). The RNA-dependent RNA 

polymerase (RdRp) core domain was located at aa 1774-1880 (DX4DX56GX3TX3NX33GDD). 

Pairwise analysis of the protease-polymerase (Pro-Pol) region aa sequences showed a 

closest identity to PRMV Pro-Pol with 80.1% (Table 1). 

 

Table 1. Characteristics and pairwise nucleotide (nt) and amino acid (aa) alignments of the 

different regions of caraway yellows virus (CawYV) and selected members of subgroup C of the 

genus Nepovirus i.e., blueberry latent spherical virus (BLSV), blackcurrant reversion virus (BCRV), 

cherry leaf roll virus (CLRV), grapevine Bulgarian latent virus (GBLV), peach rosette mosaic virus 

(PRMV), soybean latent spherical virus (SLSV) and tomato ringspot virus (ToRSV) 

 

 

CawYV PRMV BLSV SLSV BCRV GBLV ToRSV CLRV

Accession no. MK492273 NC_034214 NC_038764 NC_032270 NC_003509 NC_015492 NC_003840 NC_015414

Complete -poly(A) 8026 8014 7960 8170 7711 7452 8214 7918

5′UTR 91 41 61 13 66 87 77 11

ORF 6642 6504 6519 6588 6285 6288 6594 6339

3′UTR 1293 1469 1380 1569 1360 1077 1543 1568

Accession no.   MK492274 NC_034215 NC_038763 NC_032271 NC_003502 NC_015493 NC_003839 NC_015415

Complete -poly(A) 6405 5956 6344 5776 6405 5821 7271 6360

5′UTR 94 47 55 23 161 189 75 11

ORF 5022 4425 4896 4197 4881 4500 5649 4770

3′UTR 1289 1484 1393 1556 1363 1132 1547 1579

Complete -poly(A) 63 60.8 49.6 38.5 37 36 33.8

5′UTR 56.1 55.7 30.8 40.9 31.6 52 63.6

ORF 66.1 62.4 53.5 40.4 39.2 36.7 36.3

3′UTR 51.4 53.8 34 40.5 36.5 27 30.9

Complete -poly(A) 41.3 41.5 37.7 35.9 30.9 38.6 35.6

5′UTR 37.2 30.9 34.8 35.9 36.2 41.3 63.6

ORF 39.9 38.5 39 37 31.8 40.9 37.7

3′UTR 51 55.2 33.4 36.1 37.1 29.4 30.6

ORF 68.1 62.5 48.1 24.5 22.8 23.1 22.6

X1 27.9 29.7 22.9 12.2 10.6 10.8 10.8

X2 Pro-cof 52.9 53.2 33.9 25.8 21.4 15.6 18.5

Hel 82.5 75.6 59.3 28 24.1 22.6 23.2

VPg 75 57.6 56.2 6.1 27.3 25.9 37.9

Pro 79 66.8 51.3 27.6 23.5 24.7 23.1

RdRp 75.5 68.6 53.9 33.8 33.6 33.7 30.9

Pro-Pol 80.1 70.2 54.9 7.1 35.3 36.5 34.6

ORF 22.9 20.1 19 13.1 12.2 22.3 19

HP 23.3 13.1 6.5 7.3 7.6 8.2 7

MP 10 8.4 7.5 8.5 4.1 52.2 54.6

CP 36.5 34.7 39.6 24.3 24.8 26.1 20

aa %

RNA 1

RNA 2

Virus

nt length

RNA 1

RNA 2

Pairwise identity %

nt %

RNA 1

RNA 2



 

41 | P a g e  

C
h

a
p

te
r 2

: P
la

n
t d

ise
a

se
 a

e
tio

lo
g

y
 

 

Figure 2. (a) Genome organization of CawYV-RNA1 and -RNA2. Each of RNAs 1 and 2 contain a 

single large open reading frame (in blue). The predicted putative peptides are shown in green, 

separated by the predicted cleavage site (H/S) (red). The RNA1 polyprotein contains X1 protein, 

protease cofactor (Pro-cof/X2), helicase (Hel), viral protein genome-linked (VPg), protease (Pro) 

and RNA-dependent RNA polymerase (RdRP). RNA2 encodes for a polyprotein with hypothetical 

protein (HP), movement protein (MP) and capsid protein (CP). The conserved nepovirus 

sequences (domains and motifs) are shown in violet. The protease-polymerase (Pro-Pol) region of 

CawYV-RNA1 starts with the serine (S) of the protease motif and ends with the (GDD) motif of the 

polymerase (shown in gold). (b) Maximum-likelihood (ML) phylogenetic trees showing the 

relationships between CawYV and members of the genus Nepovirus based on aa alignments of the 

Pro-Pol region and (c) the capsid protein (CP) region. Numbers on branches indicate the bootstrap 

percentages (1000 replicates, ≥50% are shown). Tomato torrado virus (genus Torradovirus, family 

Secoviridae) is an outgroup 

 

CawYV-RNA2 contains an open reading frame (nt position 95 to 5116) encoding a 

polyprotein of 1673 aa in length. Pairwise comparisons of RNA2-ORF nt and aa sequences 

to the homologues of other nepoviruses showed the highest similarity with PRMV with 

31% nt and 21.3% aa identities (Table 1). The conserved movement protein motif (P) was 

found at aa position 962 (Mushegian, 1994). The CP N-terminal five amino acid residues 

(SGLEE) together with an alternate capsid protein (CP) motif (FXFYGWS) were located at 

aa positions 1119–1122 and 1631–1637 (Le Gall et al., 1995; Isogai et al., 2012). Pairwise 

analysis of the CP region showed that it shares highest aa identity to SLSV (39.6%, Table 1). 

Each of the CawYV polypeptides is predicted to be proteolytically cleaved into 

putative peptides by the virus-encoded protease. Sequence alignment of all nepovirus ORF 
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aa sequences suggest a putative proteolytic cleavage sites at dipeptides (H/S). This 

potential cleavage site was not identified before in the Secoviridae members. The 

conserved histidine in the substrate-binding pocket of the protease is known for members 

of the subgroup C, however the known cleavage sites are Q/G, Q/S or D/S (confirmed 

experimentally) (Thompson et al., 2017). The H/S dipeptide is also found in SLSV, BLSV and 

PRMV. Although the VPg motif was not confirmed in the polyprotein of RNA1, the location 

of the putative VPg domain could be determined by the H/S dipeptides between the NTP-

binding helicase and the protease using sequence alignment (Fig. 2a). Additionally, the X1 

putative protein was identified at the N terminus of RNA1 polyprotein by the presence of 

a H/S dipeptide potential cleavage site before the protease cofactor motif of X2 (Fig. 2a). 

The 5′ untranslated regions (UTR) of the two RNAs were 91 nt for RNA1 and 94 nt for RNA2 

and shared 61.3% nt identity to each other. The 3’UTRs (1293 and 1289 nt for RNA 1 and 2 

respectively, excluding the poly(A) tail) are 98.4% identical. 

A maximum likelihood tree using MEGA7 software (v 7.0.26) based on the aa 

alignments of the Pro-Pol and the CP regions were additional evidence for the relatedness 

of CawYV to the Nepovirus subgroup C (Fig. 2b and c) (Kumar et al., 2016). 

The International Committee on Taxonomy of Viruses (ICTV) suggests the following 

criteria for species demarcation (Thompson et al., 2017): distinct host range; distinct 

vector specificity; absence of cross-protection; differences in antigenic reactions; absence 

of reassortment between RNA1 and RNA2; Pro-Pol region aa < 80% and CP region aa < 75% 

identities. Although the host range was not studied, the closest relatives of CawYV, i.e., 

PRMV and BLSV, are not known to infect members of the Apiaceae family. The serological 

cross-reactivity is well known for members of the same genus in the family Secoviridae 

(Thompson et al., 2017). This might explain why our antiserum raised against an 

uncharacterised strain of CLRV reacted with CawYV. Further investigations are necessary 

to test the antiserum against other nepoviruses, and attempts are currently underway to 

develop a CawYV-specific antiserum. When compared to the closest relative PRMV, the 

Pro-Pol region of CawYV is slightly above the species demarcation limit by 0.1%. However, 

this was also observed for other nepoviruses e.g., beet ringspot virus (BRSV) and tomato 

black ring virus (TBRV) that share 89% aa identity at the Pro-Pol but are yet classified as 

distinct species (Thompson et al., 2017). However, the caraway virus-CP region is very 

different to other nepoviruses sharing only 39.6% aa identity with SLSV. Based on these 

results, we propose the assignment of CawYV as a new virus species within the subgroup 

C of the genus Nepovirus. Further studies are needed to investigate the natural mode of 

transmission and the biological characteristics of CawYV. 
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3.1.3. Supplementary 

Table S1: List of the primers used for caraway yellows virus 5’ and 3’ ends confirmation. 

Location 
Virus Specific Primers 

Name Sequence nt position 

RNA1-5’ end 
HZ-648 5’ GCT TGT TTA GTA GCG GCT GC 3’ 504-485 
HZ-649 5‘ GCA ATC TGC AAA TAT CGT GGC T 3‘ 324-303 

RNA2-5’ end 
HZ-644 5’ CAA TGC CCA CAA GCT TAG CG 3’ 464-445 
HZ-645 5’ ACT TTG TCA TAG CGC TCG GC 3’ 321-302 

Adaptor HZ-481 5’ PO4-GAT CCA CTA GTT CTA GAG CGG C-AminoC3 3’ NA 
Adaptor complement HZ-482 5’ GCC GCT CTA GAA CTA GTG GAT C 3’ NA 

RNA1-3’ end 
HZ-670 5’ GGG AGA CAT AGC ACC TCT TCT 3’ 6625-6645 
HZ-671 5’ GAC ATG TCT CCA GAC CTA TTT TCT 3’ 6666-6689 

RNA2-3’ end 
HZ-672 5’ ACC CCA GCA GCT TTC ACT AC 3’ 5024-5043 

HZ-673 5’ CTA AGC CGA GAG AGG AAC GC 3’ 5073-5092 
Poly(T)18 HZ-012 5’ CCT CGG GCA GTC CTT TTT TTT TTT TTT TTT T 3’ NA 

NA: not applicable. 
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3.2. A divergent strain of melon 

chlorotic spot virus isolated from black 

medic (Medicago lupulina) in Austria 
Yahya Zakaria Abdou Gaafar, K. R. Richert-Pöggeler, A. Sieg-Müller, P. Lüddecke, K. Herz, 

J. Hartrick, Y. Seide, H.-Josef Vetten and H. Ziebell 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This article has been published in a slightly modified version as: 

Gaafar YZA, Richert-Pöggeler KR, Sieg-Müller A et al., 2019b. A divergent strain of melon 

chlorotic spot virus isolated from black medic (Medicago lupulina) in Austria. Virology 

Journal 16, 297. doi: 10.1186/s12985-019-1195-8.  
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3.2.1. Abstract 

A tenuivirus, referred to here as JKI 29327, was isolated from a black medic 

(Medicago lupulina) plant collected in Austria. The virus was mechanically transmitted to 

Nicotiana benthamiana, M. lupulina, M. sativa, Pisum sativum and Vicia faba. The 

complete genome was determined by high throughput sequencing. The genome of JKI 

29327 consists of eight RNA segments closely related to those of melon chlorotic spot 

virus (MeCSV) isolate E11–018 from France. Since segments RNA 7 and 8 of JKI 29327 are 

shorter, its genome is slightly smaller (by 247 nts) than that of E11–018. Pairwise 

comparisons between the predicted virus proteins of JKI 29327 and their homologues in 

E11–018 showed aa identities ranging from 80.6 to 97.2%. Plants infected with E11–081 

gave intermediate DAS-ELISA reactions with polyclonal antibodies to JKI 29327. Since JKI 

29327 and E11–018 appear to be closely related both serologically and genetically, we 

propose to regard JKI 29327 as the black medic strain of MeCSV. To our knowledge, JKI 

29327 represents the second tenuivirus identified from a dicotyledonous plant. 

Serological and molecular diagnostic methods were developed for future detection. 

 

Keywords 

High throughput sequencing; Melon chlorotic spot virus; Segmented virus; Medicago 

sativa; Pisum sativum; Vicia faba 

 

3.2.2. Main text 

Members of the genus Tenuivirus, family Phenuiviridae, are plant viruses that 

possess non-enveloped filamentous particles and a genome consisting of four to eight 

single-stranded RNA segments with negative or ambisense polarity. The thin filamentous 

particles consist of ribonucleoprotein (RNP) complexes, measuring 3–10 nm in diameter 

and with lengths proportional to the sizes of the RNAs they contain. Based on the RNA 

sizes, the particles may appear as small, large or even branched circles (Shirako et al., 

2012; Lecoq et al., 2019). Tenuivirus RNAs are neither capped at their 5′ end nor 

polyadenylated at the 3′ end. The nucleotide sequences of the 5′ and 3′ ends of each 

segment are complementary (Shirako et al., 2012). Tenuiviruses are known to be 

transmitted by planthoppers or by mechanical means albeit with difficulty (Shirako et al., 

2012). According to the International Committee on Taxonomy of Viruses (ICTV), seven 

virus species are currently assigned to the genus Tenuivirus: Echinochloa hoja blanca virus 

(EHBV), Iranian wheat stripe virus (IWSV), Maize stripe virus (MSpV), Rice grassy stunt 

virus (RGSV), Rice hoja blanca virus (RHBV), Rice stripe virus (RSV) and Urochloa hoja 

blanca virus (UHBV). In addition, three more species have been proposed and are pending 

recognition by ICTV: melon chlorotic spot virus (MeCSV), Ramu stunt virus (RmSV) and 

wheat yellow head virus (WYHV) (Seifers et al., 2005; Mollov et al., 2016; Lecoq et al., 

2019). The natural host range of tenuiviruses is typically restricted to monocots of the 

Poaceae family causing yield losses in important food crops such as rice (Oryza sativa L.) 
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and maize (Zea mays L.) (Falk & Tsai, 1998). The recent identification of MeCSV from 

melon (Cucumis melo) in France represents the first report of a tenuivirus naturally 

infecting a dicotyledonous plant (Lecoq et al., 2019). 

In 2011, a black medic (Medicago lupulina L.) plant showing virus-like symptoms 

was collected in Stadl-Paura, Austria, but the symptoms were not recorded at the time. 

The sample was sent to Julius Kuehn Institute for analysis. Electron microscopy revealed 

the presence of RNP that appeared to resemble disassembled rhabdovirus particles (Iseni 

et al., 1998; Gaafar et al., 2019d). However, polyclonal antibodies JKI-1607 raised against 

alfalfa-associated nucleorhabdovirus (AaNV) (Gaafar et al., 2019d) failed to react with this 

virus in DAS-ELISA. The virus was transmitted mechanically as described in (Gaafar et al., 

2019d) to Nicotiana benthamiana, M. lupulina, M. sativa, Pisum sativum and Vicia faba, 

and was referred to as JKI 29327. Three weeks post inoculation, N. benthamiana plants 

showed systemic mottling, slight vein clearing and top leaf curling, whilst M. lupulina and 

M. sativa plants showed systemic vein clearing. P. sativum plants showed systemic vein 

clearing and severe yellowing and Vicia faba showed systemic mottling, yellowing and leaf 

rolling (Fig. 1). The virus particles of JKI 29327 were partially purified from infected N. 

benthamiana and used for antiserum production as described before (Gaafar et al., 

2019d). The antibodies (JKI-1608) were used for DAS-ELISA analysis of sap-inoculated 

plants and confirmed infection of symptomatic plants. 

 
Figure 1. Plants infected with the black medic tenuivirus (JKI 29327): (a) Medicago lupulina, (b) 
M. sativa, (c) Vicia faba, (d) Pisum sativum and (e) Nicotiana benthamiana 
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For determination of the complete genome sequence of JKI 29327, total RNA was 

extracted from infected N. benthamiana using innuPREP RNA Mini Kit (Analytik Jena AG) 

followed by ribosomal RNA depletion using the RiboMinus Plant kit (Invitrogen). The ribo-

depleted RNA was used for high throughput sequencing (HTS) on a MiSeq (v3) platform 

(2 × 301) as described before (Gaafar et al., 2019d). A total of 2,056,956 reads were 

obtained. The raw reads were quality trimmed, and size filtered using Geneious Prime (v. 

2019.0.3) (Biomatters Limited). The reads were then de novo assembled using Geneious 

assembler. A total of 53,651 contigs were generated and used for Blastn and Blastx search 

using virus/viroid databases on NCBI. Fifty-eight contigs shared nucleotide (nt) sequence 

identities (from 73.5 to 90.6%) and amino acid (aa) sequence identities from 63.8 to 97.2% 

to MeCSV. No other virus sequences were detected. The reference sequences of MeCSV 

(NC_040448 to NC_040455) were used to map the black medic tenuivirus sequences. The 

complete genome sequence of JKI 29327 (containing eight segments (Fig. 2a)) was 

assembled (19,805 nt; accession nos. MK450511 to MK450518) but segment RNA7 and 

RNA8 were 94 nt and 177 nt shorter than the genome of the isolate E11–018 of MeCSV. 

Analysis of each segment showed the presence of conserved nt sequences which can also 

be observed in other tenuiviruses (ACA CAA AGU C at the 5′ end with its complementary 

sequence UGU GUU UCA G at the 3′ end). Eight primers pairs were designed using Primer 

3 (2.3.7) tool in Geneious (Table 1) to confirm the physical presence of all eight viral 

segments using RT-PCR (OneTaq One-Step RT-PCR Kit; NEB) (Untergasser et al., 2012) on 

fresh RNA extracts from N. benthamiana. The amplicons were gel-purified using 

Zymoclean Gel DNA Recovery Kit (Zymo Research) and Sanger sequenced; sequence 

analyses of these amplicons showed that they were 100% identical to the corresponding 

segment sequences obtained by the HTS analysis and thus confirmed the presence of each 

individual viral segment. 
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Figure 2. (a) Graphical representation of the genome of the black medic tenuivirus isolate JKI 
29327. (b) Maximum-likelihood (ML) phylogenetic tree (using Jones-Taylor-Thornton (JTT) model) 
based on the amino acid sequence alignments of the nucleocapsid proteins (NCp) of JKI 29327 and 
members of the Tenuivirus genus. The GenBank accession nos. are in brackets. Yichang insect virus 
(genus Goukovirus) was used as an outgroup sequence. Numbers on branches indicate the 
bootstrap percentages (1000 replicates, only values ≥50% are shown) and the scale bar represents 
a genetic distance of 0.5 
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To predict the open reading frames’ (ORF) functions, the translation of each ORF 

was used to search for conserved domains on NCBI’s conserved domain database (CDD v 

3.16) (Marchler-Bauer et al., 2017). Only two ORFs matched with entries in the database, 

i.e., RNA1-ORF1 with Bunyavirus RNA-dependent RNA polymerase (accession no.: 

cl20265) and RNA4-ORF1 with Tenuivirus/Phlebovirus nucleocapsid protein (accession 

no.: cl05345) (Table 1). Pairwise alignments for the different regions of each segment of 

JKI 29327 were performed with their homologous sequences of MeCSV using CLUSTALW 

(Table 1) (Larkin et al., 2007). The genome components of JKI 29327 shared nt identities 

ranging from 68.7 to 85.8% with those of the MeCSV isolate E11–0188 (Table 1). The 

proteins potentially encoded by JKI 29327 and E11–018 shared aa sequence identities 

ranging from 80.6 to 97.2% (Table 1). A maximum-likelihood (ML) phylogenetic tree was 

generated using MEGA7 (7.0.26) (Jones-Taylor-Thornton (JTT) model) (Kumar et al., 2016) 

for comparing the aa sequence of nucleocapsid proteins of JKI 29327 and other 

tenuiviruses. This showed a tight clustering of JKI 29327 with the MeCSV nucleoprotein 

(Fig. 2b). Additionally, RNA segments 7 and 8 respectively have shorter intergenic regions 

(IR) (586 and 446 nt) compared with those (680 and 623 nt) on the homologous RNAs of 

E11–018. The nt sequence identities between these IR regions of RNA7 and RNA8 are 55.6 

and 58.3%, respectively. The results indicate that JKI 29327 is closely related to but distinct 

from the MeCSV isolate E11–018. 

For additional confirmation, purified RNP preparations of JKI 29327 were again 

examined by electron microscopy and shown to contain tenuivirus-like circular 

filamentous particles representing the individual genome segments (Fig. 3). 

 

 

Figure 3. (a) Electron micrograph of a purified ribonucleoprotein preparation showing tenuivirus-
like circular filamentous ribonucleoproteins (RNP) of different sizes (red arrows) 
 

To assess the serological relationship between JKI 29327 and E11–018, N. 

benthamiana and Physalis floridana leaves infected with the MeCSV isolate E11–018 

(kindly provided by Dr. C. Desbiez) were tested in DAS-ELISA using the JKI 1608 antibodies 

to JKI 29327. The latter gave strong (A405 nm values: > 2.0) reactions with JKI 29327 (in four 
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different plant spp.) and intermediate reactions (A405 nm: 1.0 to 2.0) with E11–018, 

indicating that the serological relationship between these two isolates is close. 

Additionally, JKI 29327 was mechanically inoculated to melon cv. Védrantais (kindly 

provided by Dr. C. Desbiez). The plants showed chlorotic spots only on inoculated leaves 

and tested positive in DAS-ELISA with the JKI 1608 antibodies. Whilst JKI 29327 could be 

detected in inoculated leaves, no systemic infection was observed (data not shown). 

The species demarcation criteria of ICTV for the genus Tenuivirus suggest that a 

new species should be considered when (i) the aa sequence identities between any 

corresponding gene products is below 85%; (ii) the nt sequence identities between 

corresponding IRs is below 60%; (iii) there are different sizes and/or numbers of genomic 

components; (iv) there are differences in host range; (v) the vectors are different (Shirako 

et al., 2012). For certain tenuiviruses, it has been difficult to decide whether they belong 

to the same or different species because all the five criteria are not always met (Shirako 

et al., 2012). For example, RHBV, EHBV and UHBV have different vectors, different hosts, 

different sizes and numbers of RNA segments and the nt sequence identity of their IR is 

< 60%. Yet, the four protein homologs on their RNA3 and RNA4 are 90% identical in aa 

sequences. 

The black medic tenuivirus isolate JKI 29327 fulfils three out of these five criteria. 

Firstly, its ORF2 of RNA7 shares 80.6% aa identity with its homologue in the E11–081 

genome. Secondly, the IRs of both RNA7 and RNA8 share < 60% nt identities with those of 

E11–081. Thirdly, the overall genome size of JKI 29327 is 247 nt shorter than that of E11–
081. Based on these three criteria, the black medic virus should be considered a new 

species. However, although the host range was not studied in full detail, both JKI 29327 

and E11–081 infected members of the Fabaceae, the Cucurbitaceae and the Solanaceae 

families under experimental conditions. Moreover, these two isolates appear to be 

serologically closely related when tested with the JKI 1608 antibodies. Small differences 

in size, particularly in the intergenic regions, are common and can be observed between 

isolates of RSV (Wei et al., 2009; Lu et al., 2018). Also, segment RNA 7 of MeCSV E11–018 

was shown to present size heterogeneity due to indels in the intergenic region (Lecoq et 

al., 2019). Furthermore, only one protein out of 13 was below the 85% identity threshold. 

Therefore, we propose that the black medic isolate from Austria is a strain of MeCSV and 

is referred to accordingly as black medic strain of MeCSV. Further studies are required to 

identify possible natural hosts and insects that may act as vectors of both JKI 29327 and 

E11–081. Moreover, there is a need to compare the experimental and natural host ranges 

of the two MeCSV strains. The antiserum obtained in this study will help to monitor 

prevalence and geographic distribution of MeCSV as well as its agronomic impact on crop 

plants (e.g., melons, legumes). Furthermore, it is important to study the function of the 

virus proteins that have been predicted in silico. 
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3.3. Complete genome sequence of 

highly divergent carrot torradovirus 1 

strain from Apium graveolens 
Yahya Zakaria Abdou Gaafar and H. Ziebell 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This article has been published in a slightly modified version as: 

Gaafar YZA, Ziebell H, 2019. Complete genome sequence of a highly divergent carrot 

torradovirus 1 strain from Apium graveolens. Archives of virology. doi: 10.1007/s00705-

019-04272-3.  
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3.3.1. Abstract 

A new virus was identified in a celery plant showing chlorotic rings, mosaic and 

strong yellowing symptoms, and its complete genome sequence was determined. The 

genomic organization of this novel virus is analogous to that of known members of the 

genus Torradovirus, consisting of two single-stranded RNAs of 6,823 (RNA1) and 4,263 

nucleotides (RNA2), excluding the poly(A) tails. BLAST searches against the nucleotide 

and protein databases showed that this virus is closely related to but different from 

carrot torradovirus 1 (CaTV1). Comparisons between the two viruses demonstrated 

relatively low levels of nucleotide and amino acid similarity in different parts of their 

genomes, as well as considerable differences in the sizes of their two genomic RNAs. 

However, the protease-polymerase (Pro-Pol) and capsid protein (CP) regions of this virus 

share >80% amino acid identity with the corresponding regions of CaTV1. Therefore, 

based on the current ICTV species demarcation criteria for the family Secoviridae, the 

virus from celery is a divergent strain of CaTV1, named “CaTV1-celery”. Nevertheless, 

differences between CaTV1 and CaTV1-celery in genome size, as well as in biological and 

epidemiological features, may warrant their separation into two distinct species in the 

future. 

3.3.2. Main text 

A celery plant (Apium graveolens variant graveolens) was collected in August 

2017 in the state of Hesse in Germany. The sample displayed mosaic symptoms with 

chlorotic rings and strong yellowing. To identify the possible cause of the disease, leaf 

material was examined by electron microscopy, but no virus particles were observed. 

However, mechanical inoculation of Nicotiana benthamiana, N. clevelandii, N. 

occidentalis-P1 and Coriandrum sativum with the sap of the celery plant resulted in 

systemic infections three weeks after inoculation, with symptoms consisting of chlorosis 

and necrosis. No virus particles could be observed in samples from symptomatic test 

plants. Attempts to transmit the pathogen mechanically to the original host species A. 

graveolens or to Ammi majus, Anethum graveolens, Daucus carota and Petroselinum 

crispum were not successful. 

To characterise the genome of the suspected virus, total RNA was extracted from 

symptomatic N. benthamiana leaves using an innuPREP RNA Mini Kit (Analytik Jena AG). 

The ribosomal RNAs were depleted using a RiboMinus Plant Kit (Invitrogen) and the ribo-

depleted RNA was used for library preparation using a Nextera XT Library Kit (Illumina). 

The library was subjected to high-throughput sequencing (HTS) on a MiSeq v3 platform 

(2x301). The reads were quality trimmed and filtered using Geneious software (version 

11.1.3) (Biomatters Limited). The high-quality reads were assembled using the Geneious 

de novo assembly tool. In BLASTn searches, two assembled contigs of 6,727 and 4,106 

nt shared 71.7% and 70.5% identical nucleotides with the two genomic RNAs of carrot 

torradovirus 1 (CaTV1) (NC_025479 and NC_025480). 
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The 5′ ends of both RNA segments were confirmed using RNA-ligase-mediated 

amplification of cDNA ends (RLM-RACE) (Coutts & Livieratos, 2003). The 3′ ends of the 

two RNA segments were determined via RT-PCR using a virus-specific primer and an 

oligo(d)T primer. The PCR products were cloned and sequenced, and the resulting 

sequences were assembled. The assembled full-length sequences of the two RNA 

segments were 6,823 nt (RNA1) and 4,263 nt (RNA2) in length, excluding their poly(A) 

tails. The complete genome sequences of RNA1 and RNA2 were deposited in the 

GenBank database (accession nos. MK063924 and MK063925, respectively). Diagnostic 

primers (HZ-539 5′ TGT TAG CAG AGC TAC GTC CTC 3′ and HZ-568 5′ CCT GAA TCT GCC 

CAC GAC TT 3′) were designed using the Primer3 v. 2.3.7 tool to amplify a partial 

sequence of RNA2-ORF1 (730 nt) to confirm the presence of this virus in infected plants 

(Untergasser et al., 2012). 

According to the species demarcation criteria proposed by the ICTV Secoviridae 

Study Group, viruses belonging to different species share less than 80% aa sequence 

identity in the protease-polymerase (Pro-Pol) region of the RNA1 polyprotein and less 

than 75% aa sequence identity in the coat protein (CP) region (Sanfaçon et al., 2009). 

The celery virus shares 86.4% aa sequence identity in the Pro-Pol region and 80.3% aa 

sequence identity in the CP region with CaTV1 (Table 1). Based on these criteria, the 

celery virus should be considered a new strain of CaTV1, for which we propose the name 

“CaTV1-celery” (isolate JKI-29346). However, further comparison of the CaTV1-celery 

genome with the reference sequences of CaTV1 revealed considerable differences. 
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The genomic organization of CaTV1-celery is analogous to that of other 

torradoviruses (Thompson et al., 2017). Accordingly, RNA1 contains a single open 

reading frame (ORF1) encoding a polyprotein of 2,076 aa (MW: 237 kDa). A search of 

the Conserved Domain Database (CDD) of NCBI identified the presence of two conserved 

domains: the RNA helicase (Hel) (RNA_helicase; pfam00910) and RNA-dependent RNA 

polymerase (RdRp) (RNA_dep_RNAP; cd01699) in the RNA1 polyprotein. An additional 

motif, characteristic of cysteine proteases (3C), was identified using the Geneious search 

tool (Fig. 1a) (Argos et al., 1984; Gorbalenya et al., 1989; Gorbalenya & Snijder, 1996). 

RNA2 is bicistronic, with RNA2 ORF1 encoding a 201-aa protein (MW: 22.0 kDa) and 

RNA2 ORF2 encoding a predicted polyprotein of 1,057 aa (MW: 117.1 kDa). The protein 

encoded by RNA2 ORF1 did not match any domain in the CDD database. The RNA2 ORF2 

polyprotein contains two conserved domains: the 3A movement protein (MP) family 

domain (3A superfamily; cl02970) and picornavirus capsid protein (CP)-like domain 

(rhv_like superfamily; cl13999). A motif search identified the position of the MP 

conserved motif (LxxPxL) in the RNA2 ORF2 polyprotein (Mushegian, 1994; Verbeek et 

al., 2007). In addition, the MP and the three mature CP subunit peptides were 

determined based on homologies to those of other torradoviruses (Fig. 1a). 
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Figure 1: (a) Schematic representation of the carrot torradovirus 1-celery (isolate JKI 29346) 
genome. RNA1 encodes a polyprotein containing the helicase (Hel), protease and RNA-
dependent RNA polymerase (RdRp). RNA2 has an ORF1 with unknown function and ORF2 
encoding a polyprotein containing the movement protein (MP) and three coat protein subunits 
(CP A = Vp35, CP B = Vp26 and CP C = Vp23). Both strands are flanked by 5′ and 3′ untranslated 
regions (UTR) and are polyadenylated at the 3’ end. The aa sequences of the conserved motifs 
in Hel, RdRp and MP are shown in red. The predicted cleavage sites are shown in purple. 
Taxonomically relevant protein segments are highlighted in yellow (b and c). Neighbour-joining 
trees based on amino acid sequence alignments of the Pro-Pol (b) and CP (c) of CaTV1-celery 
(red diamond) with those of members of the genus Torradovirus, with beet ringspot virus (genus 
Nepovirus) as an outgroup. The GenBank accession numbers are shown in brackets. Bootstrap 
values above 50% (1000 replicates) are indicated for each node, and the scale bar represents a 
genetic distance of 0.1 
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The percentages of identity in a ClustalW 2.1 pairwise alignment between CaTV1-

celery RNAs, ORFs and regions with their cognates in other torradoviruses are listed in 

Table 1. Comparisons of the CP region sequences showed that CaTV1-celery shares 

between 36.6 and 80.3% aa sequence identity with torradoviruses. Additionally, the Pro-

Pol region of CaTV1-celery shares between 57.3 and 86.4% aa sequence identity. 

Neighbour-joining trees based on the aa sequence alignments of the Pro-Pol and CP 

regions showed that the celery virus clusters together with CaTV1 within the genus 

Torradovirus (Fig. 1b and c) (Larkin et al., 2007; Kumar et al., 2016). 

Despite the observed similarities, the lengths of the 5′ and 3′ untranslated 

regions (UTR) of RNA1 are 146 and 449 nt long, respectively, and those of RNA2 are 245 

and 294 nt long. These values differ from the 5’ and 3’ UTRs of CaTV1, which are 126 

and 212 nt long, respectively, in RNA1 and 611 nt and 301 nt long in RNA2. Additionally, 

pairwise alignment of the UTRs with those of other torradoviruses, including CaTV1, 

showed low nt sequence identity values between 24.7% and 68.4% (Table 1). The 

predicted protein encoded by ORF1 of RNA2 of CaTV1-celery shares only 66.8% aa 

sequence identity with its homolog in CaTV1, and the 3′UTRs of both segments share ≤ 

68.4% nt sequence identity with those of CaTV1. Furthermore, RNAs 1 and 2 of CaTV1-

celery are shorter by 96 and 706 nt, respectively, than their CaTV1 counterparts, making 

the CaTV1-celery genome the shortest torradovirus genome identified so far, with a 

total size of 11,086 nt, excluding the poly (A) tail (Table 1). 

Another criterion that is considered for species demarcation in the family 

Secoviridae is vector specificity. The close evolutionary relationships between CaTV1, 

CaTV1-celery and lettuce necrotic leaf curl virus (LNLCV) suggest that CaTV1-celery is 

also an aphid-borne torradovirus (Rozado-Aguirre et al., 2016; Verbeek et al., 2017). To 

test this, Myzus persicae aphids from a single laboratory clone were reared on CaTV1-

celery-infected N. benthamiana for seven days, after which ten aphids were transferred 

to three groups of healthy plants (10 N. benthamiana, 10 A. graveolens and 10 D. 

carota). After an inoculation access period of seven days, the plants were treated with 

the systemic insecticide PIRIMOR (Deutsche ICI) according to the manufacturer’s 

instructions. The plants were incubated under greenhouse conditions (at 22 °C; 

photoperiod of 16 h light and 8 h dark) for two months, but no symptoms were 

observed. The absence of virus infections in acceptor plants was additionally confirmed 

by negative RT-PCR results. Aphid transmission experiments were repeated three times. 

Although CaTV1-celery is considered a divergent strain of CaTV1 based on their 

aa sequence similarity in the Pro-Pol and CP regions, the data suggest that it might also 

be useful to consider other molecular criteria for species demarcation, i.e., the total 

genome size and the size and degree of sequence similarity of the 5’ and 3’ UTR. Taking 

these criteria into consideration, CaTV1-celery might be accepted in the future as a 

member of a novel species. Indeed, Sanfaçon and colleagues have already suggested 

that the current demarcation criteria could be revisited and modified as more viruses 

become characterized (Sanfaçon et al., 2009). Furthermore, Verbeek and colleagues 

have proposed additional criteria, i.e., that the aa sequence identity of the RNA2 ORF1 
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should be less than 75% and that the conservation level in the 3′UTR of both RNAs 

should be less than 85% (Verbeek et al., 2010). 

Further studies are needed to investigate possible vectors of CaTV1-celery and 

its potential impact on celery production. Currently, we are developing antibodies 

against CaTV1-celery as an additional tool for future diagnostic tests and the 

determination of serological relationships of different torradoviruses.  
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3.4. First report of natural infection of 

beetroot with beet soil-borne virus 
Yahya Zakaria Abdou Gaafar, A. Sieg-Müller, P. Lüddecke, J. Hartrick, Y. Seide, Jürgen 

Müller, C. Maaß, S. Schuhmann, K.R. Richert-Pöggeler, A.G. Blouin, S. Massart and H. 

Ziebell 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This article has been published in a slightly modified version as: 

Gaafar Y, Sieg-Müller A, Lüddecke, Hartrick J, Seide Y, Müller J, Maaß C, Schuhmann S, 

Richert-Pöggeler KR, Blouin AG, Massart S, Ziebell H, 2019. First report of natural infection 

of beetroot with Beet soil-borne virus. New Disease Reports 40, 5. doi: 10.5197/j.2044-

0588.2019.040.005.  
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Beetroot (Beta vulgaris subsp. vulgaris) is becoming increasingly popular in 

Germany with an increase in field production from 1,205 ha in 2013 to 1,826 ha in 2018 

(Behr, 2019). It is estimated that EU-wide 24,000 ha of beetroot were produced in 2018 

(Behr, 2019). In contrast, sugarbeet was produced on a substantially larger scale with 

413,900 ha in Germany in 2018 (Kemper et al., 2019).  

A symptomatic beetroot sample was collected in October 2018 from a small field 

(c. 200 m²) in Rhineland-Palatinate, Germany, where several plants displayed virus-like 

symptoms. The sample submitted displayed necrosis, reduced size and in particular root 

proliferation (bearding) resembling the symptoms of rhizomania (Fig. 1). However, 

immunosorbent electron microscopy (ISEM) examination using various antibodies raised 

against the following beet viruses was not successful in identifying any causal agent: beet 

black scorch virus, beet curly top virus, beet necrotic yellow vein virus, beet mosaic virus, 

beet oak-leaf virus, beet soil-borne virus (BSBV), beet soil-borne mosaic virus, beet virus 

Q, beet western yellows virus, beet yellows virus and tobacco rattle virus.  

 

Figure 1: Beetroot sample infected with beet soil-borne virus and beet cryptic virus-2 showing leaf 

necrosis, reduced size and root bearding. 

Total RNA was extracted from the infected beetroot sample using innuPREP RNA 

Mini Kit (Analytik Jena AG, Germany). Ribosomal RNA was depleted using RiboMinus Plant 

Kit for RNA-Seq (ThermoFisher Scientific, USA). A library was prepared using TrueSeq 

Stranded mRNA kit (Illumina, USA). The sequencing was done on a NextSeq 500 platform 
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(2×150). The generated data was analysed on Geneious Prime (2019.1.1). The raw reads 

were quality-trimmed then de novo assembled using SPAdes assembler (3.10.1) 

(Bankevich et al., 2012). The contigs were compared against a local virus reference 

database using tBlastx. Twenty-one contigs showed only similarities to BSBV and Beet 

cryptic virus-2 (BCV-2), respectively; no other virus sequences were found in the data.  

BSBV is a member of the Pomovirus genus (family Virgaviridae) (Adams et al., 

2017). The virus is widely distributed in sugar beet growing areas causing yield losses. BCV-

2, a member of the Deltapartitivirus genus (family Partitiviridae), is a symptomless virus 

that is also common in sugar beet (Antoniw et al., 1990; Vainio et al., 2018). For 

confirmation of BSBV infection, total RNA was re-extracted from the infected beetroot 

sample and RT-PCR was performed using two specific primer pairs targeting the RNA-

dependent RNA polymerase and movement protein regions of BSBV, respectively (HZ772 

5'-GTTGGTGTTGGTCAGTTGGC-3' / HZ773 5'-TGGTCAACGGCGAAATCAGA-3' and HZ774 5'-

GAGGGGTAAGACACAGCGAC-3' / HZ775 5'-CACTTCGTCCTCCTGGTCAC-3'). Two bands of 

the expected sizes (923 and 766 bp, respectively) were produced. 

The almost complete genomes of BSBV and BCV-2 were assembled by Geneious 

mapping using reference sequences (BSBV: Genbank Accession Nos NC_003518-

NC_003520 and BCV-2: NC_038845-NC_038847). The sequences of the beetroot BSBV 

and BCV-2 isolates were submitted to Genbank (MK731954-MK731959). Sequence 

analysis revealed that the BSBV isolate shares 97.3-98.5% nucleotide identity with the 

reference genome (German isolate NC_003518-NC_003520). The BCV-2 isolate shares 

98.7-99.7% nt nucleotide identity with the reference genome (Hungarian isolate 

NC_038845-NC_038847). 

This work provides the first suggestion that BSBV naturally infects beetroot. This 

identification exposes the limit of diagnostic methods such as ISEM, possibly due to low 

titre or the existence of a divergent virus isolate, and also highlights the strength of high 

throughput sequencing to rapidly and accurately diagnose plant viruses. Furthermore, 

these findings demonstrate that high value crops such as beetroot might be affected by 

pathogens of major crops and therefore should be considered in crop rotations.  
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3.5. First report of physostegia 

chlorotic mottle virus on tomato 

(Solanum lycopersicum) in Germany 
Yahya Zakaria Abdou Gaafar, M. A. M. Abdelgalil, D. Knierim, K. R. Richert-Pöggeler, W. 

Menzel, S. Winter and H. Ziebell 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This article has been published in a slightly modified version as: 

Gaafar YZA, Abdelgalil MAM, Knierim D et al., 2018. First report of physostegia chlorotic 

mottle virus on tomato (Solanum lycopersicum) in Germany. Plant Disease 102, 255. 

https://doi.org/10.1094/PDIS-05-17-0737-PDN  
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In September 2015, a tomato sample collected in the German state of Hesse was 

sent to the Julius Kühn-Institut for analysis. While the fruits showed marbling and 

discoloration, the leaf samples from this plant did not show any obvious symptoms (Fig. 

1). Transmission electron microscopy (TEM) revealed the presence of bullet-shaped virus 

particles indicating the presence of a rhabdovirus (Fig. 2). However, immunosorbent 

electron microscopy using antiserum JKI-1073 for Eggplant mottled dwarf virus (EMDV) 

could not confirm EMDV infection. The virus was mechanically transmitted to Nicotiana 

benthamiana, N. clevelandii, and Chenopodium quinoa inducing yellowing and leaf 

deformation, while mechanical transmission to N. occidentalis (P1 and 37b) failed. 

Extraction of double stranded-RNA (dsRNA) followed by random-PCR (Froussard, 1992), 

cloning of PCR products, and sequencing failed to reveal any virus sequences.  

 

Figure 1: Tomato fruit showing marbling, discoloration and leaf distortion whereas leaf symptoms 

consist of mild yellow spots. 

 

Figure 2: Electron microscopy photograph of physostegia chlorotic mottle virus. 
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Total RNA was extracted from infected N. benthamiana, followed by ribo-

depletion, library preparation and submission for next-generation sequencing (NGS) using 

an Illumina MiSeq platform as described by  (Knierim et al., 2017). De novo assembly of 

the trimmed reads was done with Geneious v 10.1.3 (Biomatters LTD, NZ). Using MEGA 

BLAST, 13 contigs showed between 95.6 and 98.5% similarity with physostegia chlorotic 

mottle virus (PhCMoV) isolate PV-1182 (accession no. KX636164). The complete PhCMoV 

genome (13,321 nt length) was assembled by mapping reads to this reference genome 

and used to design PhCMoV-specific RT-PCR primers for detection (HZ-343 5′ CGG TGA 

GTG GGG CAA CTA AT 3′ and HZ-344 5′ AGC GAT GGG GTC TAG TGT CT 3′). RT-PCR 

confirmed the presence of PhCMoV in the test plants resulting in amplicons of 

approximately 875 bp.  

In August 2016, similar symptoms on tomato fruits were observed by a different 

grower in Hesse. The presence of PhCMoV was confirmed by TEM and RT-PCR. 

Additionally, the PCR products were sequenced and showed 97% identity to KX636164. 

Surprisingly, reanalysis of a tomato sample from 2003 that was infected by a hitherto 

unknown rhabdovirus using NGS also confirmed infection with PhCMoV. This sample also 

originated from Hesse although the original grower is unknown. The complete genome of 

the 2003 PhCMoV sample was assembled following the same methods described above. 

Pairwise comparison between the genomes of 2015 and 2003 isolates resulted in 99.7% 

nucleotide identity and 96.9% when compared with KX636164.  

These findings indicate the presence of PhCMoV in tomato in Germany for a long 

time albeit isolated occurrences in different production areas. PhCMoV was recently 

identified from Physostegia virginiana plants showing leaf deformation and severe 

chlorotic and mottle symptoms in Austria (Menzel et al., 2016). However, it is not known 

if there is a link between PhCMoV isolates infecting P. virginiana and tomato as the routes 

of transmission and dissemination are currently unknown. The sequences from this report 

were deposited in GenBank (accession nos. KY706238 and KY859866 [full-length 

sequences], KY882263 and KY882264 [partial sequences]). To our knowledge, this is the 

first host record of PhCMoV in tomato and a new country record for Germany. 
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3.6. First report of turnip crinkle virus 

infecting garlic mustard (Alliaria 

petiolata) in Germany 
Yahya Zakaria Abdou Gaafar, A. Sieg-Müller, P. Lüddecke, K. Herz, J. Hartrick, C. Maaß, S. 

Schuhmann, K. R. Richert-Pöggeler and H. Ziebell 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This article has been published in a slightly modified version as: 

Gaafar Y, Sieg-Müller A, Lüddecke P, Herz K, Hartrick J, Maaß C, Schuhmann S, Richert-

Pöggeler KR, Ziebell H, 2019. First report of Turnip crinkle virus infecting garlic mustard 

(Alliaria petiolata) in Germany. New Disease Reports 39, 9. http://dx.doi.org/10.5197/j.2044-

0588.2019.039.009  

http://dx.doi.org/10.5197/j.2044-0588.2019.039.009
http://dx.doi.org/10.5197/j.2044-0588.2019.039.009
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In May 2018, three samples of wild garlic mustard (Alliaria petiolata, Brassicaceae) 

were collected from a private garden in Koenigslutter, Germany. While sample 

EPV_18_002 was asymptomatic apart from slight yellowing, samples EPV_18_003 and 

EPV_18_004 showed stunting, yellowing, necrosis and severe crinkling (Figs. 1-3). It was 

possible to mechanically transmit the suspected virus from all three samples to Nicotiana 

benthamiana; the same systemic symptoms of leaf crinkling, rolling and yellowing 

appeared seven days post infection on all plants, and the plants died in the second week. 

Infected N. benthamiana leaves were analysed by electron microscopy and icosahedral 

particles of c. 30 nm in diameter were observed that reacted with antibodies (Julius Kuehn 

Institute, reference number JKI-1177) raised against a UK isolate of turnip crinkle virus 

(TCV) (Fig. 4). 

 

Figure 1: Sample EPV_18_002 of garlic mustard infected with turnip crinkle virus. 

 

Figure 2: Sample EPV_18_003 of garlic mustard infected with turnip crinkle virus. 
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Figure 3: Sample EPV_18_004 of garlic mustard infected with turnip crinkle virus. 

 

 

Figure 4: Electron microscope image of turnip crinkle virus (TCV) from infected Nicotiana 

benthamiana leaves. Particles were decorated using a TCV-specific antiserum (JKI-1177). 

 

To obtain the full viral genome, dsRNA was extracted from symptomatic N. 

benthamiana leaves (inoculated from sample EPV_18_002) using a Viral dsRNA Extraction 

Mini Kit for Plant Tissue (iNtRON, South Korea) and sent for library preparation and 

sequencing on Illumina NovaSeq 6000 platform (2x150 bp) at Eurofins GATC Biotech 

GmbH, Germany. Using Geneious Prime (2019.0.4), the raw reads were quality trimmed, 
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filtered, error corrected and normalised, followed by de novo assembly. A BLASTn search 

of the generated contigs confirmed the presence of eight contigs (131 to 4,057nt) with 

nucleotide (nt) identities of 82.3% to 86.7% to TCV (NC_003821); there was no indication 

of the presence of satellite RNAs. The full genome of the German TCV isolate (JKI ID 29306) 

was assembled using this reference genome. The complete genome of TCV-JKI-29306 was 

4,061 nt (accession no. MK301398). The presence of TCV was confirmed in all three 

original samples by RT-PCR using OneTaq One-Step RT-PCR Kit (NEB, USA) with the primer 

pair (HZ632 5' AAA GGC AAA ACT GGG TGG GA 3' and HZ633 5' TAA AGT TTG CGG CTA 

GGG G 3') generating a 339 bp fragment. 

In further comparisons using MUSCLE (3.8.425, (Edgar, 2004)), the German TCV 

isolate shared 82.8% nt identity to NC_003821 and 82.6% to AY312063 (Table 1). 

Additionally, the protein sequences of the different TCV genes shared identities of 75.0 to 

90.7% to the proteins of NC_003821 and AY312063 (Table 1). According to ICTV criteria, 

these data indicate the presence of a novel TCV strain (Rochon et al., 2012). 

 

Table 1. Pairwise identities of the turnip crinkle virus (TCV) strain from garlic mustard in Germany 

with whole TCV genomes from the UK using a multiple sequence alignment tool, MUSCLE. 

Accession 

no. 

Genome 

nucleotide 

identity (%) 

Amino acid identity (%) 

p88 

RP 

p28 

ARP 

p8 

MP 

p9 

MP 

p38 

CP 

NC_003821 82.8 90.5 84.4 75.0 89.4 85.5 
AY312063 82.6 90.7 84.8 76.4 88.2 85.2 

 

TCV belongs to the genus Betacarmovirus (family Tombusviridae). It infects 

members of the Brassicaceae family causing crop losses (Broadbent & Heathcote, 1958; 

Lister, 1958). To our knowledge, this is the first report of a TCV strain from Germany 

occurring on garlic mustard. Although TCV is one of the model organisms in plant virology 

and therefore well studied, there is surprisingly little literature available on occurrence, 

host range and impact of this virus. As the original host plants appeared as weeds in a 

private garden (approximately 40 plants with a minority displaying symptoms), the impact 

of TCV in Germany and other countries on cultivated crop plants is currently unknown. 
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3.7. First report of southern tomato 

virus in German tomatoes  
Yahya Zakaria Abdou Gaafar, P. Lüddecke, C. Heidler, J. Hartrick, A. Sieg-Müller, C. 

Hübert, A. Wichura and H. Ziebell  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This article has been published in a slightly modified version as: 

Gaafar Y, Lüddecke P, Heidler C et al., 2019. First report of Southern tomato virus in 

German tomatoes. New Disease Reports 40, 1. doi: 10.5197/j.2044-0588.2019.040.001. 
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Southern tomato virus (STV) is a member of the genus Amalgavirus (family: 

Amalgaviridae). It has been identified in tomatoes (Solanum lycopersicum) in several 

countries in Asia, Europe, and North and South America (Sabanadzovic et al., 2009; 

Candresse et al., 2013; Padmanabhan et al., 2015). Its genome is composed of a dsRNA of 

~3.5kb. STV is known to be transmitted through seed at high rates (Sabanadzovic et al., 

2009). 

In 2019, greenhouse tomatoes from Lower Saxony, Germany, showed symptoms 

consisting of mottling, yellowing and/or chlorotic spots (Figs. 1-2). Eight samples were 

sent to the Julius Kuehn Institute for analysis. As an infection with Tomato brown fruit 

rugose virus was suspected, the samples were analysed by high throughput sequencing 

on a MinION sequencer (Oxford Nanopore Technologies, UK) for rapid diagnosis. Briefly, 

two samples were pooled, and dsRNA extracted from 100 mg leaf material using the Viral 

dsRNA Extraction Mini Kit for Plant Tissue (iNtRON, South Korea). Random cDNA was 

synthesised using ProtoScript II Reverse Transcriptase (NEB, USA) and 8N random primers 

preceded by a denaturation step at 99°C for two minutes. Second strand synthesis was 

done using a NEBNext Ultra II Non-Directional RNA Second Strand Synthesis Module kit 

(NEB). The samples were end-repaired using the NEBNext End Repair module (NEB), dA 

tailed with NEBNext dA-tailing module (NEB) and the four pools barcoded by native 

barcoding followed by adaptor ligation (Oxford Nanopore Technologies, UK) according to 

the manufacturers’ instructions. All purification steps were performed using a Mag-Bind 

TotalPure NGS kit (Omega Bio-Tek, USA). The libraries were mixed and loaded to a MinION 

flow cell and sequenced for 16 hours using a MinION sequencer connected to a computer 

with MinION software (r18.12.9; ONT). 

 

Figure 1: Chlorotic lesions observed on diseased tomato plants grown in Lower Saxony.   
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Figure 2: Severe chlorotic lesions and mottling of leaves on diseased tomato plants grown in Lower 

Saxony. 

The reads were basecalled and barcode-splitting was done using the Guppy toolkit 

(v2.3.7; ONT). De novo assembly of reads was done using Canu (v1.8) (Koren et al., 2017). 

The unassembled reads and assembled contigs were Blastn searched against a local 

GenBank nt database using Blast+ (v2.9.0) and visualised with Blast Viewer (v5.2.0) 

(Durand et al., 1997; Camacho et al., 2009). STV sequences were detected in two of the 

pools, and no other virus sequences were detected. The full genomes were assembled by 

mapping to STV reference (Genbank Accession no. NC_011591) using mapping to 

reference tool on Geneious Prime (v2019.1.3). The sequences had 99.9% nt identity to 

each other and to STV isolate CH_bpo 163 from Switzerland (MF422618). 

To confirm the findings in the original samples, total RNA was extracted for the 

four samples in the positive pools using an innuPREP RNA MiniKit (Analytik Jena AG, Jena, 

Germany), and RT-PCR was performed using a primer pair (HZ782 5'-

CAAGTGGGCCGTTTCTTTGG-3' and HZ783 5'-TGAAGACCGCCTGGAAAGTC-3'). STV 

infection was confirmed in three samples. The RT-PCR products were purified, and Sanger 

sequenced at Eurofins Genomics (Germany). The sequences had 100% identity to the 

sequences from the MinION. The genomes of the two pools were submitted to Genbank 

(MK948544 and MK948545). To our knowledge, this is the first report of STV infecting 

tomato in Germany. The study also shows the potential to use MinIon technology for rapid 

detection and identification of virus sequences. 
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3.8. Two divergent isolates of turnip 

yellows virus from pea and rapeseed and 

first report of turnip yellows virus-

associated RNA in Germany 
Yahya Zakaria Abdou Gaafar and H. Ziebell 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This article has been published in a slightly modified version as: 

Gaafar YZA, Ziebell H, 2019. Two divergent isolates of turnip yellows virus from pea and 

rapeseed and first report of turnip yellows virus-associated RNA in Germany. Microbiology 

Resource Announcements 8, 2254. doi: 10.1128/MRA.00214-19.  
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3.8.1. Abstract 

Two divergent isolates of turnip yellows virus (TuYV) were identified in pea and 

rapeseed. The nearly complete genome sequences of the virus isolates share 93.3% 

nucleotide identity with each other and 89.7% and 92.9% with their closest isolate from 

South Africa. Additionally, a turnip yellows virus-associated RNA was identified. 

 

3.8.2. Main text 

Turnip yellows virus (TuYV), the non-sugar beet-infecting strain of beet western 

yellows virus (BWYV), is a polerovirus (family Luteoviridae) (Mayo, 2002; Graichen & 

Rabenstein, 1996). TuYV can infect a wide range of crops, predominantly members of the 

Brassicaceae and Fabaceae families. 

Two plant samples (pea [Pisum sativum] and oilseed rape [Brassica napus]) 

displaying yellowing symptoms were collected in Germany (in 2016 and 2006, 

respectively). The samples were tested with a triple antibody sandwich enzyme-linked 

immunosorbent assay (TAS-ELISA) for the presence of luteoviruses/poleroviruses using 

monoclonal antibodies 5G4 and 6G4 (Katul, 1992), as described (Abraham et al., 2006; 

Gaafar et al., 2016). Both samples tested positive for polerovirus infection but showed 

different titers, which prompted us to determine the genomic sequences of these isolates. 

The viruses were maintained on pea (isolate identifier [ID] JKI 29344) and radish (JKI 

29345) by aphid transmission using Myzus persicae. Nonviruliferous aphids were left to 

feed for 3 days on the infected leaves, and then 10 aphids were transferred to healthy 

plants for 3 days (3 cycles for the pea isolate and 33 cycles for the oilseed rape isolate). 

Four weeks post-aphid inoculation, polerovirus infection of plants was confirmed using 

TAS-ELISA and reverse transcription-PCR (RT-PCR) with generic polerovirus primers (S2 

and AS3) (Abraham et al., 2007). The RT-PCR bands were Sanger sequenced, and a BLASTn 

search resulted in the highest hits, with 99% (pea isolate) and 100% (oilseed rape isolate) 

nucleotide identities to the partial coat protein sequences of BWYV (GenBank accession 

no. L39976) and TuYV (GenBank accession no. KU198395). 

For genome sequencing, total RNAs were extracted with the innuPREP RNA minikit 

(Analytik Jena AG), followed by rRNA depletion with the RiboMinus plant kit (Invitrogen). 

cDNAs were synthesized using ProtoScript II reverse transcriptase (NEB) and random 

octanucleotide primers, followed by second-strand synthesis with the NEBNext Ultra II 

nondirectional RNA second-strand synthesis module kit (NEB). The libraries were 

prepared using a Nextera XT library kit (Illumina) and submitted for high-throughput 

sequencing (HTS) on the MiSeq version 3 platform (2 × 301). The raw reads (total 

reads, 1,640,360 for JKI 29344 and 1,648,784 for JKI 29345) were analyzed using the 

Geneious software (11.1.4). The reads were quality trimmed (error limit, 0.05) and size 

filtered to >99 nucleotides (nt), followed by de novo assembly using the Geneious 
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assembler (parameter, medium sensitivity/fast). The assembled contigs were used to 

search the NCBI database using BLASTn. A contig of about 5.6 kb in each sample showed 

90.7% and 93.1% nt identities to TuYV (GenBank accession no. KU198395). Contig 

extension using Geneious mapping to the reference tool (parameter, medium 

sensitivity/fast) resulted in the complete coding sequences and almost-full-genomic 

sequences for both TuYV isolates; they shared 93.3% nt identity to each other while 

sharing 89.7% and 92.9%, respectively, to the most closely related isolate, KU198395. 

Pairwise comparisons of the amino acid sequences using MUSCLE (3.8.425) 

showed that some open reading frames (ORFs) are also highly divergent (P0 and P1), 

whereas others are not (CP and MP) (Table 1) (Edgar, 2004). The pea and the oilseed rape 

isolates’ ORFs shared between 80.9% and 99.5% amino acid (aa) identities to each other 

and between 74.1% and 95.6% in comparison to their homologues of KU198395. 

 

Table 1: Pairwise amino acid comparisons between the predicted proteins of the German TuYV 

isolates and their homologues of KU198395 using MUSCLE 3.8.425 

Protein 

source 

(isolate) 

Amino acid identity (%) by open reading frame(s) Reference isolate or 

accession no. 
P0 P1-P2 P1 P3-P5 CP MP 

Pea  

(JKI 29344) 

80.9 90.6 86.5 97.8 99.5 99.4 JKI 29345 

74.1 89.8 85.3 94.1 93.1 90.9 KU198395 

Oilseed rape 

(JKI 29345) 
85.9 95.6 94.2 93.7 92.6 90.3 KU198395 

 

An additional contig of about 2.8 kb was found in the oilseed rape sample that 

shared 98% nt identity with the partial sequence of beet western yellows virus-associated 

RNA (BWYVaRNA) from the United Kingdom (GenBank accession number KF533709) 

(Adams et al., 2014). Polerovirus-associated RNAs are single-stranded RNAs (ssRNAs) of ∼2.8 to 3 kb and have two major ORFs. They replicate autonomously and appear to 

depend on a helper virus for aphid transmission by encapsidating within the virus coat 

protein (Briddon et al., 2012). They may increase the severity of disease symptoms. The 

full genome of 2,841 nt was assembled by mapping to the reference sequence with NCBI 

RefSeq accession no. NC_004045  (Chin et al., 1993), and we propose the name “turnip 

yellows virus-associated RNA” (TuYVaRNA) for this RNA. While TuYVaRNA shares 93% 

nucleotide identity with NC_004045 and 98% with the partial sequence from the United 

Kingdom, its genomic organization was similar to that of the other polerovirus-associated 

RNAs, containing three ORFs, with the first one containing an amber readthrough ORF. 

To our knowledge, these are the first complete coding sequences of TuYV and the 

first report of TuYVaRNA from Germany.  
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3.8.3. Data availability 

The complete coding sequences of the two German TuYV isolates and the full 

sequence of TuYVaRNA can be found in NCBI GenBank under accession numbers 

MK450519, MK450520, and MK450521. Raw sequence data are available in the Sequence 

Read Archive (SRA) under BioProject accession number PRJNA524397 and under 

BioSample accession numbers SAMN11026350 and SAMN11026351. 
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3.9. Vicia faba, V. sativa and Lens 

culinaris as new hosts for pea necrotic 

yellow dwarf virus in Germany and 

Austria 
Yahya Zakaria Abdou Gaafar, S. Grausgruber-Gröger and H. Ziebell 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This article has been published in a slightly modified version as: 

Gaafar Y, Grausgruber-Gröger S, Ziebell H, 2016. Vicia faba, V. sativa and Lens culinaris as 

new hosts for Pea necrotic yellow dwarf virus in Germany and Austria. New Disease 

Reports 34, 28. doi: 10.5197/j.2044-0588.2016.034.028  
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Pea necrotic yellow dwarf virus (PNYDV) was identified in green peas (Pisum 

sativum) in Germany in 2009 (Grigoras et al., 2010a). In subsequent years, sampling of 

symptomatic green peas showed that PNYDV was restricted to Saxony and Saxony-Anhalt 

(Ziebell, 2015). In Austria, PNYDV was detected in 2010, also in P. sativum (Grigoras et al., 

2014).  

A countrywide outbreak of virus-like disease symptoms on faba beans (Vicia faba) 

was reported in Germany in 2016. Many fields had large patches of yellowish and dwarfed 

plants (Fig. 1). More than 460 samples of P. sativum (green and protein peas) and V. faba 

showing virus-like symptoms (Fig. 2) were analysed using ELISA for Alfalfa mosaic virus, 

Cucumber mosaic virus, Pea enation mosaic virus (PEMV), Red clover vein mosaic virus-

like carlaviruses, and luteo-/poleroviruses, nanoviruses and potyviruses. PEMV was the 

predominant virus found (70.5% of samples) but infection with luteo-/poleroviruses 

(26.7%), potyviruses (4.6%) and carlaviruses (0.9%) was confirmed. More importantly, 

54.7% of samples tested positive with an ELISA designed for broad detection of 

nanoviruses (Grigoras et al., 2010a; Abraham et al., 2012). The same samples did not react 

with an ELISA designed to detect only Faba bean necrotic stunt virus and Faba bean 

necrotic yellows virus, indicating infection with PNYDV. Using PCR with PNYDV-specific 

primers priPeaSdir (5′ AAC CTC CGG ATA TCA CCA GAT 3′) and priPeaSrev (5′ CCG GAG GTT 

TTA TTT CAA AAC CAA C 3′) targeting the coat protein encoding component S of the 

genome (T. Timchenko, pers. comm.), PNYDV infection was confirmed for a subset of 18 

samples. Sequencing of amplicons showed 98.7 to 99.9% nucleotide identity with PNYDV 

(GenBank accession no. JN133279). Three lentil (Lens culinaris) samples from a field trial 

in central Germany also tested positive for PNYDV using differentiating monoclonal 

antibodies with confirmation by PCR and sequencing. Sequences from this study can be 

accessed under accession numbers KY191024 - KY191044.  

 

Figure 1: Faba bean crop with a typical patch of virus-infected plants. In particular, yellowing, 

dwarfing and leaf deformation on the upper parts of the plants indicate nanovirus infection. 



 

79 | P a g e  

C
h

a
p

te
r 2

: P
la

n
t d

ise
a

se
 a

e
tio

lo
g

y
 

 

Figure 2: Faba bean samples with typical symptoms: top yellowing of leaves, leaf rolling and 

dwarfed appearance of leaves and top part of the plant. 

In Austria, nanovirus symptoms appeared first in P. sativum in early June 2016 and 

shortly after in faba bean. In mid-late June, nearly every V. faba crop showed typical 

symptoms of nanovirus infection. In many faba bean and pea crops infection caused 

significant yield losses (Fig. 3). Typical symptoms of stunted growth, chlorosis and poorly 

developed pods were also found in lentils and vetch (V. sativa). Thirty-two samples of L. 

culinaris, P. sativum, V. faba and V. sativa from Burgenland, Styria and Upper and Lower 

Austria were tested for nanovirus infection using PCR primers designed by (Kumari et al., 

2010). The samples consisted of leaves pooled from several symptomatic plants from each 

field. Twenty-seven samples were positive for nanovirus infection. Representative 

amplicons from faba beans, lentils, peas, and vetch were sequenced (KY191009 - 

KY191023) and had 99.6 to 100% identity to PNYDV (KC979043).  

 

Figure 3: Faba bean crop heavily infected with nanoviruses. 
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This is the first report of L. culinaris, V. faba and V. sativa as natural hosts of PNYDV 

in Austria and Germany. Due to changes in government policy, the area of legumes grown 

in Germany doubled from 2012 to 2015 (Table 1) with further increases expected. 

However, limited host range experiments on peas and faba beans have not identified 

PNYDV-resistant accessions in Austria or Germany suggesting that legume production in 

central Europe is threatened by PNYDV infection.  

 

Table 1: Acreages (ha) of selected legumes grown in Germany and Austria in 2012 and 2015. 

Crop 

Germany a Austria b 

2012 2015 2012 2015 

Glycine max 5,000 11,000 36,955 56,867 

Pisum sativum (protein peas only) 44,800 79,100 10,700 7,183 

Vicia faba 15,800 37,700 6,854 10,822 

Total 65,600 127,700 54,509 74,872 

a Anonymous, 2016. Eiweisspflanzenstrategie. 

http://www.bmel.de/DE/Landwirtschaft/Pflanzenbau/Ackerbau/_Texte/Eiweisspflanzen

strategie.html, (Accessed 07 August 2016) 

Burghardt B, Schaack D, Von Schenck W, 2016. AMI Markt Bilanz Getreide Ölsaaten 

Futtermittel 2016. In. Bonn: Agrarmarkt Informations-Gesellschaft mbH, 225 pages. 

www.AMI-informiert.de (Accessed 07.08.2016) 
b Agrar Markt Austria, 2016. Flächenauswertung der Mehrfachanträge (MFA). In. Wien: 

Agrar Markt Austria. www.ama.at/Marktinformationen/Getreide-und-Olsaaten/Aktuelle-

Informationen/2016/AMA-Flaechenauswertung-2016 (Accessed 07 August 2016) 

 

  

http://www.bmel.de/DE/Landwirtschaft/Pflanzenbau/Ackerbau/_Texte/Eiweisspflanzenstrategie.html
http://www.bmel.de/DE/Landwirtschaft/Pflanzenbau/Ackerbau/_Texte/Eiweisspflanzenstrategie.html
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3.10. First report of pea necrotic yellow 

dwarf virus in The Netherlands 
Yahya Zakaria Abdou Gaafar, T. Timchenko and H. Ziebell 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This article has been published in a slightly modified version as: 

Gaafar Y, Timchenko T, Ziebell H, 2017. First report of Pea necrotic yellow dwarf virus in 

The Netherlands. New Disease Reports 35, 23. doi: 10.5197/j.2044-0588.2017.035.023 
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Pea necrotic yellow dwarf virus (PNYDV) is a nanovirus that was first detected in 

pea crops (Pisum sativum) in Saxony-Anhalt, Germany in 2009 (Grigoras et al., 2010a). In 

2016, PNYDV was detected countrywide in both Germany and Austria not only on pea but 

also on faba bean (Vicia faba), vetch (V. sativa) and lentil (Lens culinaris) causing severe 

yield losses (Gaafar et al., 2016).  

During a routine survey of twelve green pea crops in the Province of Flevoland 

(The Netherlands), plants with virus-like symptoms were noticed (Fig. 1). Symptomatic 

plant material was pooled from each field and analysed by ELISA for typical pea viruses: 

Alfalfa mosaic virus, Cucumber mosaic virus, luteo-/poleroviruses, Pea enation mosaic 

virus (PEMV), potyviruses, and Red clover vein mosaic virus-like carlaviruses, and 

nanoviruses. PEMV was detected in all fields while luteo-/poleroviruses were found in one 

field. Two samples each from different pea fields reacted positively using a broad 

nanovirus monoclonal antibody mixture (Gaafar et al., 2016). The lack of reaction with a 

monoclonal antibody mixture designed to detect only Faba bean necrotic stunt virus and 

Faba bean necrotic yellows virus suggested infection with Pea necrotic yellow dwarf virus 

(PNYDV). This was confirmed by PCR using PNYDV specific primers targeting the eight 

PNYDV components producing bands of approximately 1 kb (Table 1). All PCR products 

were cloned using the NEB PCR cloning kit (New England Biolabs, Germany) and at least 

four clones for each component were sequenced in both directions. The sequences of the 

eight components of the two Dutch isolates (NL HZ16-186 and NL HZ16-189) had between 

96.7 and 99.9% identity with the equivalent PNYDV components of an isolate from 

Germany and between 96.7 and 99.8% with an Austrian isolate (Table 1). The sequences 

of the Dutch PNYDV isolates have been deposited in GenBank (KY593279 - KY593294).  

 

Figure 1: Non-infected (left) and virus-infected (right) pea plants. Typical Pea necrotic yellow 

dwarf virus symptoms included severe stunting and dwarfing of plants, yellowing and leaf-rolling. 
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Table 1: List of the primers used for Pea necrotic yellow dwarf virus identification and pairwise 

comparisons between the sequences of the Dutch isolates (NL HZ16-186 and NL HZ16-189) and 

isolates from Austria (GenBank Accession No. KC979043 - KC979050) and Germany (GU553134 

and JN133279 - JN133285). 

 
 

To our knowledge, this is the first report of PNYDV in The Netherlands. This 

indicates that nanoviruses are far more spread throughout Europe than previously 

thought (Grigoras et al., 2014). As PNYDV is aphid-transmitted in a circulative, non-

propagative manner, it is expected that more nanovirus diseases will occur in the future 

as changes in climatic conditions (especially milder winters in Central Europe) favour 

aphid survival thus facilitating the spread of these viruses (Ziebell, 2017). 

 

  

NL HZ16-186 NL HZ16-189

priPeaCdir 5’ GCC GGA AGC TTG CCG GAC TGA CGG AG 3’ KC979045 99.2 99

priPeaCrev 5’ AGC TTC CGG CAA GAC GCA GTA ATT G 3’ JN133280 99.5 99.1

priPeaMdir 5’ TAC CTG AAC GTC CTG TAT CTT 3’ KC979046 98.7 98.3

priPeaMrev 5’ TCA GGT ACT GAA TTA CTT GCC 3’ JN133281 98.3 97.4

priPeaNdir 5’ GAA GAA CCC AGG AAG GTG TTG C 3’ KC979047 99.4 98.9

priPeaNrev 5’ GGT TCT TCC AAT TTA CCT TTC ATG G 3’ JN133282 99.9 99.2

priPeaRdir 5’ GGA ATA CCA AGG TGA GTT ACG G 3’ KC979043 99.8 99.7

priPeaRrev 5’ TAT TCC CTG AGA GTC CCG GAC 3’ GU553134 99.8 99.5

priPeaSdir 5’ AAC CTC CGG ATA TCA CCA GAT 3’ KC979044 99.3 98.7

priPeaSrev 5’ CCG GAG GTT TTA TTT CAA AAC CAA C 3’ JN133279 99.3 99.8

priPeaU1dir 5’ TGG TGA AGA AAT TGC AGG TGA T 3’ KC979048 98 98.7

priPeaU1rev 5’ TTC ACC AGT TTC TCG TCA GAA C 3’ JN133283 98.3 98.8

priPeaU2dir 5’ GAT CAA GAA CAA GGT TAG TTT ATG 3’ KC979049 98.2 96.7

priPeaU2rev 5’ TCT TGA TCG GAG ACG AAC TGG A 3’ JN133284 98.2 96.7

priPeaU4dir 5’ ATC AAG TCT GAA GAT GAT ACG 3’ KC979050 99.1 99.3

priPeaU4rev 5’ GAC TTG ATT TCA ACA TCT CTT TCA C 3’ JN133285 99.8 99.7

DNA-S

DNA-U1

DNA-U2

DNA-U4

PNYDV 

component
Primer name Primer sequence
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3.11. Molecular characterisation of the 

first occurrence of pea necrotic yellow 

dwarf virus in Denmark 
Yahya Zakaria Abdou Gaafar, G. Cordsen Nielsen and H. Ziebell 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This article has been published in a slightly modified version as: 

Gaafar Y, Cordsen Nielsen G, Ziebell H, 2018. Molecular characterisation of the first 

occurrence of Pea necrotic yellow dwarf virus in Denmark. New Disease Reports 37, 16. 

doi: 10.5197/j.2044-0588.2018.037.016   
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Pea necrotic yellow dwarf virus (PNYDV), a member of the Nanovirus genus, has 

been reported from numerous European countries causing yield loss in peas, faba beans, 

vetches and lentils (Grigoras et al., 2010a; Grigoras et al., 2014; Gaafar et al., 2016; Gaafar 

et al., 2017). In July and August 2016, five faba bean (Vicia faba) samples were received 

from five fields in different regions of Denmark, in which 2 to 25% plants were diseased. 

Affected plants displayed leaf-rolling, yellowing, and symptoms of severe stunting (Figs. 

1-2).  

 

Figure 1: Symptoms of Pea necrotic yellow dwarf virus in a faba bean field near Åbenrå, Denmark 

(photograph courtesy Morten Steg). 

 

Figure 2: Map of Pea necrotic yellow dwarf virus-infected faba bean fields in Denmark in 2016. 

The coloured circles indicate the locations of the fields. The percentages represent the proportion 

of symptomatic plants within each field. The map was generated using MapDK (Barfort, 2015. 

mapDK: Maps of Denmark. R Package Version 0.3.0) and ggplot2 (Wickham, 2009. ggplot2: Elegant 
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Graphics for Data Analysis. New York, USA: Springer-Verlag) on R 3.3.2 (R Project for Statistical 

Computing; https://www.r-project.org). 

 

The samples reacted positively when analysed with ELISA using antibodies against 

PNYDV (Gaafar et al., 2016). DNA was extracted and PNYDV infection was confirmed by 

PCR using primer pairs specific for components R and S (Gaafar et al., 2017). Additionally, 

the full genomes of these Danish PNYDV isolates were determined. Rolling circle 

amplification was performed using a TempliPhiTM 100 Amplification Kit (GE Healthcare 

Limited, UK). Libraries were prepared from the products and submitted for high-

throughput sequencing on two Illumina platforms, three samples on HiSeq (2*150) and 

two on MiSeq (2*301). The paired-end reads were analysed using Geneious 11.0.4 

software (Biomatters Limited, NZ). The reads were trimmed, error corrected and 

normalised, then used for de novo assembly. Assembled contigs were compared with the 

GenBank non-redundant nucleotide and protein databases using BLASTn and BLASTx, 

respectively.  

The results confirmed the presence of all eight PNYDV components in all samples. 

Additionally, an alphasatellite 3 sequence was found associated with the DK HZ16-572 and 

DK HZ16-582 isolates, and a satellite DNA-X sequence was found associated with DK HZ16-

572. The PNYDV genome Drohndorf-15 (Germany; GenBank Accession Nos. NC_023154 

to NC_023161) was used to assemble the eight components of the Danish isolates and 

Austrian sequences (Gross-Enzernsdorf_1) for alphasatellite 3 and satellite DNA-X 

(KC979052 and KC979053, respectively) by mapping to reference. The sequences of the 

Danish PNYDV isolates can be accessed on GenBank (MH000227 to MH000269). 

A neighbour-joining tree (Jukes-Cantor genetic distance model and 1000 bootstrap 

replicates) was created using Geneious Tree Builder (Fig. 3) and the alignment (ClustalW 

2.1) of the concatenated genome components (DNA-R, -S, -C, -M, -N, -U1, -U2 and -U4) 

from the Danish PNYDV isolates as well as the Austrian, Dutch and German isolates. 

Additionally, a pairwise comparison between the associated alphasatellite 3 of DK HZ16-

572 and DK HZ16-582 showed 99% nucleotide identity to each other, and 99.1% and 

99.3% identity when compared with the Gross-Enzersdorf_1 isolate, respectively. Finally, 

DNA-X of DK HZ16-572 shared 98.8% identity with Gross-Enzersdorf_1. The tree and the 

sequence alignments indicate that the Danish isolates are very closely related to other 

European isolates of PNYDV.  
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Figure 3: Phylogenetic neighbour-joining tree representing the relationship between the 

concatenated genome components (DNA-R, -S, -C, -M, -N, -U1, -U2 and -U4) of Danish Pea necrotic 

yellow dwarf virus isolates and those from Austria (KC979043 - KC979050), Germany (NC_023154-

NC_023161) and The Netherlands (KY593279 - KY593286). Pea yellow stunt virus (PYSV) 

(NC_023296 - NC_023298, NC_023303 and NC_023308 - NC_023311) was used as an outgroup. 

 

To our knowledge, this is the first report of a nanovirus disease in Denmark 

demonstrating that PNYDV is also widespread throughout Denmark. This is further 

evidence that PNYDV (and possible other nanoviruses) is an emerging threat for legumes 

not only in Denmark which has an increasing area of legume production (Table 1) but also 

in other European countries.  

 

Table 1: Areas of cultivated legumes (hectares) in Denmark from 2014 to 2017 (Statistics Denmark, 

2017. https://www.statbank.dk/. Accessed on 7-3-2018). 

Year 2014 2015 2016 2017 

Total legumes 8,400 11,900 15,700 20,600 

Faba bean 3,900 6,900 10,700 14,800 

Pea 4,200 4,700 4,800 5,400 
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Chapter 3: Investigating the pea virome 

in Germany – old friends and new 

players in the field(s) 
Yahya Zakaria Abdou Gaafar, K. Herz, J. Hartrick, J. Fletcher, A. Blouin, R. MacDiarmid and 

H. Ziebell 
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3.1. Abstract 

Peas are important legumes for human and animal consumption and are also 

being used as green manure or intermediate crops to sustain and improve soil condition. 

Pea production faces different constraints by fungi, bacteria pests and viral diseases. We 

investigated the virome of German pea crops over the course of three successive 

seasons in different regions of pea production in order to get an overview of the existing 

viruses. Pools from 540 plants randomly selected from symptomatic and asymptomatic 

pea, and non-crop plants surrounding the pea fields were used for ribosomal RNA-

depleted total RNA extraction followed by high-throughput sequencing and RT-PCR 

confirmation. Thirty-five different viruses were detected in addition to eight associated 

nucleic acids. From these viruses, 25 are classified as either new viruses, novel strains 

or viruses that have not been reported previously from Germany. Pea enation mosaic 

virus (PEMV) was the most prevalent virus detected in the pea crops followed by turnip 

yellows virus (TuYV) which was also found in the surrounding non-legume weeds. 

Moreover, a new emaravirus was detected in peas in one region for two successive 

seasons. The results revealed a high virodiversity in the German pea fields that poses 

new challenges to diagnosticians, researchers, risk assessors and policy makers as the 

impact of the new findings are currently unknown. 

3.2. Introduction 

Green peas (Pisum sativum L.) are popular vegetables in Germany. The 

production of green peas increased from 4,444 ha in 2010 to 5,488 ha in 2018 (Behr, 

2015, 2019). In addition, due to the “Protein Strategy” of the Federal Government of 

Germany, the production areas of protein peas used as animal fodder, green manure or 

as intermittent crops, increased from 57,200 ha in 2010 to 70,700 ha in 2018 (BMEL, 

2019). However, depending on the intended use of the crop, pea production in Germany 

is highly regionalised. The main green pea production areas are located in Saxony due 

to the nearby frozen foods processing facilities. Seed production of peas is 

predominantly carried out in Saxony-Anhalt. By contrast, green pea production for the 

fresh market or protein pea production for animal fodder/green manure are scattered 

around the country often associated with small scale or organic farming.  

Pea plants are known to be hosts to several viruses from different families e.g. 

Luteoviridae, Nanoviridae and Potyviridae, that often occur in mixed infections (Musil, 

1966; Kraft, 2008; Bos et al., 1988; Gaafar et al., 2016; Gaafar & Ziebell, 2019b). Due to 

the emergence of novel pea-infected viruses such as pea necrotic yellow dwarf virus and 

their subsequent detection across Germany and within neighbouring countries (Grigoras 

et al., 2010a; Gaafar et al., 2016; Gaafar et al., 2017; Gaafar et al., 2018a), we were 

interested to know whether more unknown and or previously undetected viruses were 

present in this high value crop growing in Germany.   
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Conventional virus diagnostics generally depend on serological or molecular 

methods based on prior knowledge of the target virus. These specific tests do not 

address the potential presence of other viruses that may be present or contribute to the 

aetiology of a disease. In recent years, high-throughput sequencing (HTS) enabled 

identification of numerous new viruses from domesticated and wild plants (Roossinck 

et al., 2015; Gaafar et al., 2019f; Gaafar et al., 2019e). HTS allows sequencing of all the 

genetic material in a given sample, therefore there is no need for prior knowledge of 

the infectious agent (Adams et al., 2009; Roossinck et al., 2015; Maree et al., 2018). 

Improvements of HTS technologies and bioinformatic tools have helped to identify the 

virus community or virome of several crops (Coetzee et al., 2010; Czotter et al., 2018; Jo 

et al., 2018b) The generated data permits the description of plant virus biodiversity, 

discovery of new viruses and viroids, identification of genomic variants of the viral 

species and aids the development of specific and sensitive diagnostics (Coetzee et al., 

2010; Gaafar et al., 2019c; Li et al., 2012; Gaafar et al., 2019d). However, the vast 

number of new viruses identified by HTS results in challenges for diagnosticians, pest 

risk assessors and policy makers as the risk to crop plants and alternative hosts by these 

new viruses need to be evaluated and diagnostic protocols developed and validated or 

adapted to these findings (MacDiarmid et al., 2013; Massart et al., 2017; Rott et al., 

2017; Maree et al., 2018). Nevertheless, metagenomics data and biological studies will 

help us understand the viral ecology and evolution as well as epidemiology.  

In this study, we were interested in the spatio-temporal description and changes 

of the pea virome in selected German regions with different pea production aims (fresh 

produce, frozen produce, seed production, etc.) over a period of three years. 

Furthermore, we investigated potential alternative virus reservoirs in terms of legume and 

non-legume groundcover that were associated with the production sites. To our 

knowledge this is the first metagenomics study of a crop plant that takes spatio-temporal 

changes into consideration.  

3.3. Material and Methods 

3.3.1. Sampling 

Six green pea production regions in Germany were chosen for sampling as they 

included sites for human consumption, protein pea production sites, seed production 

sites as well as experimental trial sites. The regions named by their county designation 

were Salzlandkreis-1: pea seed production, Salzlandkreis-2: trial site heritage material, 

Münster: trial site pea breeding, Kreis Stormarn: protein pea production, Landkreis 

Rostock: trial site (green manure mixtures) and Landkreis Meißen: green pea production 

frozen produce for human consumption. 

In each region, one typical production field was chosen randomly. Over three 

successive seasons (2016, 2017 and 2018 between June and July; Figure 1) these regions 

were sampled. From each field, ten symptomatic (showing virus-like symptoms) pea 
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plants (SP) and ten asymptomatic pea plants (aSP), five surrounding non-crop legume 

plants (sL) and five non-legume plants (snL) were collected where possible. The 

metadata were recorded, i.e., the symptoms of each plant sampled, the region, and the 

average temperature of the season for each region (Supplementary Table S1). Any 

deviations from the sampling strategy (i.e., in cases where no non-symptomatic peas or 

no surrounding legume plants could be detected) were also noted in (Supplementary 

Table S1). 

 

 

Figure 1: Map of the six different pea crop sampling regions in Germany and the sample pooling 

strategy used for each of three successive seasons 2016, 2017 and 2018. 

 

Ten sample pools were prepared for each season i.e., six separate pools 

containing material from each of the six regions and four separate pools comprising 

material from all SP, aSP, sL or snL samples, respectively, from all regions (Figure 1). 

From each plant sample, 100 mg of fresh tissue was added to each pool. The samples 

were mixed and ground using a mortar and pestle under liquid nitrogen then collected 

into 50 ml Falcon tubes. The pools were stored at -20oC until RNA extraction. 

Additionally, the remaining material of fresh plant samples were stored at -20oC for 

further analysis. 
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3.3.2. RNA extraction and high throughput sequencing 

Total RNA was extracted using innuPREP Plant RNA Kit (Analytik Jena) from a 

subsample of 300 µg from each pool. Ribosomal RNA (rRNA) was depleted using 

RiboMinus™ Plant Kit for RNA-Seq (Invitrogen). cDNA was synthesized using ProtoScript 

II Reverse Transcriptase (NEB) and random octanucleotide primers (8N), followed by 

second strand synthesis using NEBNext Ultra II Non-Directional RNA Second Strand 

Synthesis Module (NEB). The libraries were prepared from the double-stranded cDNA 

using Nextera XT Library Prep Kit (Illumina). The sequencing was performed on an 

Illumina MiSeq platform (301 x 2). 

3.3.3. Bioinformatic analysis 

Bioinformatic analysis was performed using Geneious Prime software (version 

2019.1.1). The reads were quality trimmed and normalised. De-novo assembly was 

performed and the resulting contigs were searched against a local database of viruses 

and viroids sequences downloaded from NCBI using Blastn and Blastx (downloaded 13 

August 2018). The generated consensus sequences were based on the highest quality 

threshold. Primers for virus validation were designed using a modified version of 

Primer3 (2.3.7) tool in Geneious Prime (Untergasser et al., 2012). Pairwise alignments 

were performed using Clustal W tool (v 2.1) in Geneious (Larkin et al., 2007). Neighbour 

joining phylogenetic trees were constructed using MEGA X software (Kumar et al., 

2018b). The phylogenetic relationships were established according to the species 

demarcation criteria set by International Committee on Taxonomy of Viruses (ICTV), using 

the nucleotide sequences or the amino acid sequences of the capsid protein (CP) or the 

RNA dependent RNA polymerase (RdRP) for the respective families. The isolates were 

named by region number and season e.g., R1_16 stands for region one and the season 

2016. The assembled virus sequences can be accessed in GenBank under accession nos. 

(MN314973, MN399680-MN399748, MN412725-MN412751 and MN497793-

MN497846). 

3.3.4. RT-PCR confirmations 

For virus confirmation, total RNA was re-extracted from each pool as described 

above, followed by RT-PCR with the primers listed in Supplementary Table S2 and using 

the OneTaq One-Step RT-PCR Kit (NEB). The products were purified using Zymoclean Gel 

DNA Recovery Kit (Zymo Research) and Sanger sequenced using both RT-PCR primers. 

3.3.5. Statistical analysis 

Statistical analysis was performed using scripts written on R (version 3.5.3) (R Core 

Team, 2019) The virus relative abundance (VRA) was calculated for each virus. VRA = the 

sum of the virus detections in each region in all season divided by the total of possible 

detection (3 seasons x 6 regions x 4 categories =72). The virus relative abundance was 0 

for not detected to 1 for detected in all categories in all region in all seasons. Additionally, 
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the virus incidence was calculated for the regions and the seasons. The Venn diagram was 

generated using Venny tool (Oliveros, 2015). 

3.4. Results 

3.4.1. Collected metadata and HTS raw data 

General symptoms observed on peas were typical of PEMV such as translucent 

spots and leaf enations, stunting of top leaves, dwarfed plants, severe yellowing, mottling 

and leaf rolling. Interestingly, in 2016 it was not possible to find legumes in fields 

surrounding Salzlandkreis-1 and no asymptomatic peas were found in Salzlandkreis-2. 

Moreover, no surrounding legumes were collected in Landkreis Meißen 2018. Therefore, 

they were not included in the analyses. The details of the raw data generated from the 

HTS MiSeq platform are in Supplementary Table S3. 

3.4.2. Assignment of identified virus families 

A total of thirty-five viruses were detected by HTS and confirmed by RT-PCR in the 

different pools over the three seasons representing 14 different families in addition to 

several unassigned viruses (Figure 2a and b). The family Luteoviridae was represented by 

seven species members, followed by the Secoviridae with six species members, then the 

Potyviridae with five members. During the three seasons, the highest virus diversity was 

in the SP pools with sixteen different virus species present, while the sL contained twelve 

different virus species. The snL pools included eleven virus species and the aSP had seven 

virus species (Figure 2 a and b).  
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Figure 2: The virus species found in the four sampling categories symptomatic peas (SP), 

asymptomatic peas (aSP), surrounding legumes (sL) and surrounding non-legumes (snL). 

Samples were collected in six pea growing regions in Germany over three successive seasons 

2016, 2017 and 2018. a) Venn diagram representing the number of virus species to each category 

and shared between the four categories. b) network illustration of virus species of each category 

and shared viruses between them. Background colours of virus acronyms correspond to the 

background colours of the respective virus family. The virus names are: BVG: barley virus G, BCMV: 

bean common mosaic virus, BLRV: bean leafroll virus, BYMV: bean yellow mosaic virus, BGCV2: 

black grass cryptic virus 2, CaTV1: carrot torradovirus 1, CLRV: cherry leaf roll virus, ClYVV: clover 
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yellow vein virus, CMV: cucumber mosaic virus, HLV: Heracleum latent virus , PaMV1: pea 

associated mitovirus 1, PaMV2: pea associated mitovirus 2, PaMV3: pea associated mitovirus 3, 

PaEV: pea associatted emaravirus, PEMV1: pea enation mosaic virus 1, PEMV2: pea enation 

mosaic virus 2, PNYDV: pea necrotic yellow dwarf virus, PSbMV: pea seed-borne mosaic virus, 

RCCV1: red clover carlavirus 1, RCEV1: red clover enamovirus 1, RCNVA: red clover nepovirus a, 

RCUV: red clover umbravirus, SsMV4: Sclerotinia sclerotiorum mitovirus 4, sLaIV: sL associated 

ilarvirus, snLaCV: snL associated chordovirus, snLaIV: snL associated ilarvirus, snLaSV: snL 

associated secoviridae, snLaWV: snL associated waikavirus, SbDV: soybean dwarf virus, SMV: 

soybean mosaic virus, TVCV: turnip vein-clearing virus, TuYV: turnip yellows virus, WCCV2: white 

clover cryptic virus 2, WClMV: white clover mosaic virus, WHIV21: Wuhan insect virus 21. 

All identified viruses, the regions in which they were found and the pools from 

which they were identified are listed in Supplementary Table S4. The virus relative 

abundance (VRA) was calculated for each virus (Supplementary Table S4), showing that 

turnip yellows virus (TuYV) was the most abundant virus with a score of 0.472 followed by 

pea enation mosaic virus 2 (PEMV2) with a score of 0.444 and PEMV1 scoring 0.417. Pea 

necrotic yellow dwarf virus (PNYDV) was the fourth most abundant virus in the study with 

a score of 0.153 and pea seed borne mosaic virus (PSbMV) was the fifth most abundant 

one with 0.139. 

Out of the viral reads identified from HTS, Figure 3 shows the percentage of each 

virus family in each region pool during the three seasons. Overall, the read percentage of 

the luteovirids was the highest, mainly because of high percentage of reads assigned to 

PEMV1 and TuYV. The second highest percentage was for the tombusvirids, due to the 

presence of PEMV2 reads, followed by the potyvirids, mainly because of PSbMV. 
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Figure 3: The read percentage of the different virus families identified in six different German pea 

growing regions over the three seasons 2016, 2017 and 2018. 

3.4.3. Detailed description of the viruses detected in German pea fields 

3.4.3.1. Viruses of the Luteoviridae family 

Pea enation mosaic virus-1 (PEMV1) is a member of the genus: Enamovirus, family: 

Luteoviridae. PEMV1 was detected in all fields in almost all the three seasons in SP and 

aSP. The complete coding sequences of the PEMV1 isolates from each of the positive pools 

were assembled. The amino acid (aa) sequences of the RNA dependant RNA polymerases 

(RdRp) (used for taxonomic classification of luteovirids) shared between 96.9% to 98.4% 

aa identity with the RdRp of PEMV1 (NC_003629). They shared between 99.6% and 99.4% 

aa identity to each other.  

In Münster 2016, a new strain of red clover enamovirus 1 (RCEV1) was identified 

in the sL samples. Its RdRp aa sequence showed 86.6% identity to a Czech strain 

(MG596229). Another isolate was detected in Landkreis Meißen in 2017, with 87.6% aa 

identity to the other German strain and 95.3% to the Czech strain. The viruses grouped 

together within the Enamovirus genus clade (Figure 4). 
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Figure 4: Neighbour joining trees (NJ) of virus isolates from the Luteoviridae family detected in 

German pea fields. The phylogenetic tree is based on amino acid sequence alignments of the 

readthrough RdRps and includes representatives of other viruses from the family Luteoviridae. 

Amino acid sequences were aligned with Clustal W and NJ trees constructed with MEGA X. The 

percentage of the bootstrap values above 50% (1,000 replications) are shown at the nodes. The 

names of the viruses are as follow: AEV1: alfalfa enamovirus 1, ALV1: apple luteovirus 1, BLRV: 



 

98 | P a g e  

C
h

a
p

te
r 

3
: 

P
e

a
 v

ir
o

m
e

 

bean leafroll virus, BMYV: beet mild yellowing virus, BYDV: barley yellow dwarf virus, BWYV: beet 

western yellows virus, CABYV: cucurbit aphid-borne yellows virus, ChALV: cherry associated 

luteovirus, CRLV: carrot red leaf virus, CVEV: citrus vein enation virus, CYDV: cereal yellow dwarf 

virus, GEV1: grapevine enamovirus-1, MYDV: maize yellow dwarf virus, NSPaV: nectarine stem 

pitting-associated virus, PEMV1: pea enation mosaic virus 1, PLRV: potato leafroll virus, RCEV1: 

red clover enamovirus 1, SbDV: soybean dwarf virus and TuYV: turnip yellows virus. The Genbank 

accession numbers are mentioned in brackets. 

Bean leafroll virus (BLRV) was detected in Salzlandkreis-2 for two successive 

seasons (2016 and 2017) in SP in addition to the sL pool in 2017. The isolates of BLRV were 

closely related to strain Manfredi from Argentina (KR261610); the RdRp aa sequences of 

the two isolates shared 99.1% identity to each other and 99.7% to the Argentinian strain. 

Turnip yellows virus (TuYV) was detected in SP, aSP and snL pools over the three 

seasons. Pairwise aa alignments for the RdRp of the TuYV isolates showed that eight 

isolates were 95.6% to 97.1% identical to TuYV isolate JKI 29345 (MK450519). However, 

two isolates from Salzlandkreis-2 and Salzlandkreis-1 showed higher identities with 98.8% 

and 99.1% to isolate JKI 29344 (MK450520). Moreover, the isolate from Münster 2017 

was closely related to TuYV (LR584027) with 95.3% aa identity. 

Soybean dwarf virus (SbDV) was detected in peas and surrounding legumes in two 

regions i.e., Münster and Kreis Stormarn. The Kreis Stormarn SbDV RdRp aa sequences 

found in the survey were 98% aa identical to each other and shared closest aa identity to 

SDV-HZ1 isolate from the Czech Republic (MG600299) with 98.9% and 99.1% identity. In 

contrast, the isolate from Münster showed the closest identity to a SbDV isolate 

(LR584029) from Australia with 99.1% and only shared 89.8% and 90.2% identities to the 

isolates from Kreis Stormarn.  

In addition, PEMV satellite RNAs (PEMVSatRNAs), TuYV associated RNAs 

(TuYVaRNAs) and a potential new associated RNA (TuYVaRNA2) were detected. The PEMV 

satellite RNA isolates had 95.6% to 97.9% nt identity to PEMVSatRNA (NC_003854, from 

the USA) and between 95.5% and 98.7% to each other. The TuYVaRNA isolates were 97.8% 

to 98.2% nt identical to TuYVaRNA isolate JKI 29345 (MK450521). The TuYVaRNA2 isolates 

were closely related to cucurbit aphid borne virus associated RNA (CABYVaRNA; 

KM486094, from the USA) with 79.8% to 81.9% nt identity. 

3.4.3.2. Tombusviridae (subfamily: Calvusvirinae) 

PEMV2 was associated with PEMV1 in almost all fields during the three seasons. 

The aa sequences of the RdRp of the PEMV2 isolates grouped together in a clade within 

the genus Umbravirus (Figure 4b). They showed 97.1% to 99.7% identity to each other 

and 93.3% to 94.1% identity to PEMV2 isolate (NC_003853) from USA. A new strain of red 

clover umbravirus (RCUV), a novel umbravirus found in red clover from the Czech Republic 

(Koloniuk, pers. comm.), was detected in the sL in Münster 2016 and the SP in Landkreis 
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Meißen 2017. The complete coding sequence (CDS) shared 87.1% nt identity and the aa 

sequence of the RdRp shared to 91.6% aa identity to this Czech isolate (MG596234). 

3.4.3.3. Potyviridae 

Five potyviruses were present in the pea fields as well as in surrounding 

leguminous weeds. Bean common mosaic virus (BCMV) was identified in Salzlandkreis-2 

in 2017. The isolate shared 98.9% nt identity with to BCMV strain NL1 from The 

Netherlands (AY112735). Bean yellow mosaic virus (BYMV) was identified in Salzlandkreis-

2 and Salzlandkreis-1 in 2018. The isolates shared 83.9% aa identity to each other and 

89.4% to BYMV strain MB4 (NC_003492) from Japan. Clover yellow vein virus (ClYVV) was 

identified in Salzlandkreis-1 and Münster in 2018 in SP. Their polyproteins shared 95% aa 

identity to each other and 95.5% and 93%, respectively, to ClYVV strain No.30 

(NC_003536, probably from Japan). Pea seed-borne mosaic virus (PSbMV) was found in 

two regions in Germany i.e., Salzlandkreis-2 and Kreis Stormarn in all three seasons of the 

study. The virus was detected in SP and in aSP, respectively. The polyproteins of the 

isolates had 97.7% to 100% aa identity to each other and had 98% to 99.7% aa identity to 

PSbMV strain DPD1 (NC_001671) from Denmark. Another potyvirus, soybean mosaic virus 

(SMV), could be detected in Salzlandkreis-2 in 2017. The Salzlandkreis-2 isolate of SMV 

was very closely related to strain G4 from South Korea with 99.5% aa identity (FJ640979). 

Figure 5 shows a neighbour-joining tree representing the relationship between the 

polyproteins of the different potyviruses identified in the survey. 

 

Figure 5: Neighbour joining trees (NJ) of Potyviridae virus isolates detected in German peas. The 

phylogenetic trees are based on amino acid sequence alignments of the polyproteins of the 
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potyviruses found in this survey and includes representative species from the family Potyviridae. 

Amino acid sequences were aligned using Clustal W and NJ trees were constructed with MEGA X. 

The percentage of the bootstrap values above 50% (1,000 replications) are shown at the nodes. 

The names of the viruses are as follow: BCMV: bean common mosaic virus, BYMV: bean yellow 

mosaic virus, ClYVV: clover yellow vein virus, PSbMV: pea seed-borne mosaic virus, SMV: soybean 

mosaic virus and SPMMV: sweet potato mild mottle virus. The Genbank accession numbers are 

mentioned in the brackets. 

3.4.3.4. Nanoviridae: Pea necrotic yellow dwarf virus and its associated 

alphasatellites 

Pea necrotic yellow dwarf virus (PNYDV) was only detected in symptomatic peas. 

There was no indication of the presence of other nanoviruses such as black medic leafroll 

virus or pea yellow stunt virus (include Grigoras et al. 2016 here). All DNA-S components 

shared between 97 and 99.9% nt identities with the on NCBI available PNYDV DNA-S 

sequences (originating from Germany and Austria). Additionally, six PNYDV alphasatellites 

(PNYDVαSat) were identified in the survey i.e., alphasatellites 1 and 3, and four new 
alphasatellites, tentatively named PNYDV-associated alphasatellites 4, 5, 6 and 7. 

The PNYDVαSat1 isolate shared 99.6% nt identity with PNYDVαSat1 isolate Gross-

Enzersdorf_1 (accession no. NC_038958) from Austria. The three isolates of PNYDVαSat3 
shared between 99.3% and 99.4 % nt identities to PNYDVαSat3 isolates Gross-

Enzersdorf_1 (Austria) and DK HZ16-582 from Denmark (NC_038959 and MH000253, 

respectively). The isolates of PNYDVαSat4, PNYDVαSat5, PNYDVαSat6 and PNYDVαSat7 
were 1,030 nt, 991 nt, 1,037 nt and 1,015 nt in length, respectively. PNYDVαSat4 showed 
closest nt identities to faba bean necrotic yellows virus C7 alphasatellite (FBNYC7αSat; 
NC_003565) from Egypt and milk vetch dwarf virus C10 alphasatellite (MVDVC10αSat; 
NC_003647) from Japan with 82.3% to 82.9%. PNYDVαSat5 isolates shared the highest 
identities with 81.1% to 81.3% with parsley severe stunt virus alphasatellite 1 (PSSVαSat1; 
MK039138, from Germany). PNYDVαSat6 isolates had 82.8% identity to cow vetch latent 
virus alphasatellite (CvLVαSat; MF535455) from France and the PNYDVαSat7 isolate had 
84.4% identity to the same CvLVαSat isolate. The phylogenetic relationships of those 
alphasatellites are shown in Figure 6a and b. 
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Figure 6: Neighbour joining trees (NJ) of PNYDV alphasatellites (PNYDVαSat) detected in 

German peas. The phylogenetic trees are based alignments of: (a) the nucleotide sequences (b) 

the amino acid sequences of the alphasatellite sequences identified in this study and include 

selected representatives of other alphasatellites. The sequences were aligned with Clustal W and 

NJ trees constructed with MEGA X. The percentage of the bootstrap values above 50% (1,000 

replications) are shown at the nodes. The names of the alphasatellites are as follow: BBTVαSat2: 
banana bunchy top virus alphasatellite 2, BBTVαSat3: banana bunchy top virus alphasatellite 3, 
FBNSVαSat1: faba bean necrotic stunt virus alphasatellite 1, FBNSVαSat2: faba bean necrotic stunt 
virus alphasatellite 2, FBNYVαSat1: faba bean necrotic yellows virus alphasatellite 1, FBNYVαSat2: 
faba bean necrotic yellows virus alphasatellite 2, FBNYVC7αSat: faba bean necrotic yellows virus 
C7 alphasatellite, FBNYVC9αSat: faba bean necrotic yellows virus C9 alphasatellite, FBNYC11αSat: 
faba bean necrotic yellows virus C11 alphasatellite, MVDVC1αSat: milk vetch dwarf virus C1 
alphasatellite, MVDVC2αSat: milk vetch dwarf virus C2 alphasatellite, MVDVC3αSat: milk vetch 
dwarf virus C3 alphasatellite, MVDVC10αSat: milk vetch dwarf virus C10 alphasatellite, 
OYCrCMVαSat: Okra yellow crinkle Cameroon virus alphasatellite, PNYDVαSat1: pea necrotic 
yellow dwarf virus alphasatellite 1, PNYDVαSat3: pea necrotic yellow dwarf virus alphasatellite 3, 

PNYDVαSat4: pea necrotic yellow dwarf virus alphasatellite 4, PNYDVαSat5: pea necrotic yellow 
dwarf virus alphasatellite 5, PNYDVαSat6: pea necrotic yellow dwarf virus alphasatellite 6, 
PNYDVαSat7: pea necrotic yellow dwarf virus alphasatellite 7, SCSVC2αSat: subterranean clover 
stunt virus C2 alphasatellite, SCSVC6αSat: subterranean clover stunt virus C6 alphasatellite, 
SnLCuKVαSat: alphasatellite, SyLCVαSat: Synedrella leaf curl virus alphasatellite, SYSaVαSat1a: 
Sophora yellow stunt associated virus alphasatellite 1a, SYSaVαSat4: Sophora yellow stunt 
associated virus alphasatellite 4, SYSaVαSat7a: Sophora yellow stunt associated virus 
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alphasatellite 7a, SYSaVαSat8: Sophora yellow stunt associated virus alphasatellite 8, SYSaVαSat9: 
Sophora yellow stunt associated virus alphasatellite 9, TbCSVαSat: tobacco curly shoot virus 
alphasatellite, TbLCPuVαSat: tobacco leaf curl Pusa virus alphasatellite, ToLCCMVαSat: tomato 
leaf curl Cameroon virus alphasatellite and ToLCVαSat: tomato leaf curl virus alphasatellite. The 

Genbank accession numbers are mentioned in the brackets. 

 

3.4.3.5. Fimoviridae: Pea associated emaravirus (New virus) 

A new emaravirus was identified in symptomatic peas in Landkreis Meißen for two 

successive season 2017 and 2018. The virus showed high similarity to other members of 

genus Emaravirus i.e., fig mosaic virus (FMV), pigeonpea sterility mosaic virus 2 (PPSMV2) 

and rose rosette virus (RRV). Members of the genus Emaravirus (family Fimoviridae, order 

Bunyavirales) have segmented, linear, single-stranded, negative-sense RNA genomes 

(Elbeaino et al., 2018). Their genomes are composed of up to 8 segments. The partial 

sequences of segments RNA1 to 6 were assembled from the two isolates discovered from 

the two seasons. An NJ tree of the nucleocapsid protein (NP) aa sequences of the two 

isolates was constructed, and those isolates grouped together in a clade with PPSMV2 and 

FMV (Figure 7). The aa sequence of the NP shared the highest identity with PPSMV2 with 

71.7%. According to the species demarcation of ICTV, a difference of 25% in the aa 

sequence of the NP indicates a new species (Elbeaino et al., 2018). Therefore, this virus 

represents a new emaravirus species and was tentatively called pea associated 

emaravirus (PaEV). 

 

 

Figure 7: Neighbour joining trees (NJ) of the nucleocapsid protein (NP) of the two isolates of pea 

associated emaravirus (PaEV) and representative emaraviruses detected in German pea. The 

phylogenetic trees are based alignments of the amino acid sequences. The sequences were 
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aligned with Clustal W and NJ trees constructed with MEGA X. The percentage of the bootstrap 

values above 50% (1,000 replications) are shown at the nodes. The names of the viruses are as 

follow: AcCRaV: actinidia chlorotic ringspot-associated emaravirus, EMARaV: European mountain 

ash ringspot-associated emaravirus, FMV: fig mosaic emaravirus, HPWMEV: high plains wheat 

mosaic emaravirus, PaEV: pea associated emaravirus, PPSMV1: pigeonpea sterility mosaic 

emaravirus 1, PPSMV2: pigeonpea sterility mosaic emaravirus 2, RLBV: raspberry leaf blotch 

emaravirus, RRV: rose rosette emaravirus, RSV: rice stripe virus (Tenuivirus, Phenuiviridae) and 

RYRSaV: redbud yellow ringspot-associated emaravirus. The Genbank accession numbers are 

mentioned in the brackets. 

3.4.3.6. Narnaviridae: Pea associated mitoviruses  

In Landkreis Rostock, four mitoviruses (family: Narnaviridae) were detected in the 

SP and aSP in 2017. An isolate of Sclerotinia sclerotiorum mitovirus 4 (SsMV4) was also 

identified in the same region. The isolate shared 96.3% aa identity to SsMV4 from New 

Zealand (AGC24233). In addition, three mitoviruses provisionally called pea associated 

mitovirus 1, 2 and 3 (PaMV1, PaMV2 and PaMV3) were identified. The PaMV1-CDS shared 

68.8% nt identity to its closest match Erysiphe necator mitovirus 3 (EnMV3; KY420040), 

that was identified from the grape powdery mildew fungus Erysiphe necator (Schwein.) 

(syn. Uncinula necator (Schw.)) that was described in the USA recently (Pandey et al., 

2018). Based on the RdRp region, PaMV1 shared 65.1% aa identity with EnMV3. PaMV2-

CDS had 36% nt identity to Rhizoctonia solani mitovirus 6 (RsMV6; KP900915 from the 

USA). Based on the aa sequences, PaMV1 and RsMV6 share only 40.2% aa identity. 

PaMV3-CDS was closely related to Entomophthora muscae mitovirus 5 (EnmuMV5; 

MK682524) with 40% nt identity and 24.3% aa identity in the RdRp region. 

3.4.3.7. Secoviridae 

In Münster 2017, a new putative member of the family Secoviridae was identified. 

The virus was closely related to strawberry mottle virus (SMoV) and lettuce secovirus 1 

(LSV1), two unassigned putative Secoviridae viruses. The virus was tentatively called 

surrounding non-Legume secovirus (snLSV). Based on the protease-polymerase region 

(Pro-Pol), this virus shared the closest aa identity to LSV1 with 67.3% identity while the CP 

region showed only 31.6% aa identity to LSV1. In addition, a new strain of carrot 

torradovirus 1 (CaTV1) was discovered that shared 95.9% aa identity based on the Pro-Pol 

region and 95.4% identity based on the CP region with the CaTV1 strain celery that was 

recently identified from Germany (MK063924 and MK063925).  

A new strain of red clover nepovirus A (RCNVA) (genus: Nepovirus; subfamily: 

Comovirinae; family: Secoviridae) was detected in Landkreis Rostock 2017. This new strain 

had 96.5% identity based on the aa sequence of the Pro-Pol region with RCNVA-B46 from 

the Czech Republic (MG253828) and a CP aa identity of 83.2% (MG253829). 

A divergent cherry leaf roll virus (CLRV) (genus: Nepovirus) was identified in 

Salzlandkreis-1 in 2018. The virus shared closest identity with CLRV isolates from New 

Zealand, with RNA1 sharing 82.4% nt identity to CLRV isolate KC937022 and RNA2 sharing 
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80% nt identity to KC937029. The aa sequence of the Pro-Pol region shared 97% identity 

to KC937022 while the CP region had only 89.8% aa identity with KC937029.  

3.4.3.8. Betaflexiviridae 

A divergent strain of red clover carlavirus 1 (RCCV1) (genus: Carlavirus; subfamily: 

Quinvirinae; family: Betaflexiviridae), was identified only once in 2018 in one location 

(Kreis Stormarn). The partial RdRp sequence shared 85.3% aa identity with RCCV1 

(MG596238 and MG596239) from the Czech Republic. Interestingly, the complete coding 

sequence of an isolate of Heracleum latent virus (HLV) (genus: Vitivirus; subfamily: 

Trivirinae, family: Betaflexiviridae), was identified in snL of Münster 2017. Based on the 

CP sequence, this isolate shared 90.9% identity to HLV from Scotland (NC_039087) on the 

nt level and 96.4% identity based on the aa sequence. The RdRp region shared only 58.4% 

nt identity to grapevine virus B (GVB; MF991949) and 58.9% aa identity, respectively. A 

partial sequence of a chordovirus (subfamily: Trivirinae) was also detected in the snL of 

Münster 2017, tentatively called snL chordovirus (snLCV). The partial sequence shared 

73.2% nt identity with carrot chordovirus 1 (CaChV1; NC_025469). Additionally, a partial 

waikavirus sequence was detected in the snL of Kreis Stormarn in 2018 with that showed 

73.9% nt identity to bellflower vein chlorosis virus (BVCV; NC_027915) from South Korea. 

3.4.3.9. Bromoviridae 

Cucumber mosaic virus (CMV) (genus: Cucumovirus; family: Bromoviridae) was 

found in Salzlandkreis-2’s sL in 2018. The three viral RNAs shared 99.1 to 99.5% nt identity 
to various CMV isolates (HE793685 from France, AF416900 from USA, EF202597 from 

China). Additionally, two new ilarviruses were identified in the snL samples of Trenthorst 

in 2016 and the sL of Landkreis Rostock in 2018. The putative CP aa sequence of the snL 

ilarvirus shared closest identity to asparagus virus 2 (AV2; NC_011807, from Mexico) with 

81.1% aa identity. The sL ilarvirus CP was closely related to ageratum latent virus from 

Australia (AgLV; NC_022129) with 60.3% aa identity. 

3.4.3.10. Other viruses 

Black grass cryptic virus 2 (BGCV2) was detected in Salzlandkreis-1 in 2016; RNA1 

shared 99% nt identity with an isolate probably from the UK (NC_026799) while its RdRp 

shared 100% aa identity. A turnip vein-clearing virus (TVCV), member of subgroup 3 of the 

genus Tobamovirus (family: Virgaviridae), was identified in Salzlandkreis-2’s snL in 2018. 
The assembled complete CDS of Salzlandkreis-2 TVCV isolate shared 95.5% nt identity with 

TVCV strain NZ-587 from New Zealand (accession no. JN205074). The amino acid 

sequences shared between 97.7 and 99.4% with their homologs of strain NZ-587. White 

clover cryptic virus 2 (WCCV-2; genus Betapartitivirus) was identified in sL of Kreis 

Stormarn 2017 and Münster 2018, with 98.6% and 98.5% nt identity to WCCV-2 from 

Australia (MH427306). Six white clover mosaic virus (WClMV) isolates, genus: Potexvirus; 

family: Alphaflexiviridae, were identified in the sL namely in white clover (Trifolium 
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repens) and shared 99.2 to 99.3 to the WCMV-PV1 isolate from the Czech Republic 

(MG600296). Finally, a sequence with 81.3% nt identity to Wuhan insect virus 21 

(WHIV21) (KX883227) from China was detected in sL of Salzlandkreis-1 2018. 

3.4.4. Spatial and temporal differences in viral populations 

The spatial and temporal compositions of the viromes in the different regions over 

a period of three growing seasons show, perhaps not unsurprisingly, similarities as well as 

fundamental differences. For example, PEMV1, PEMV2 and PNYDV were the viruses that 

could be located in all regions (but not in every season; Figure 8). The polerovirus TuYV 

was detected in all regions except for the Landkreis Rostock region (Figure 8). This location 

is close to the Baltic Sea with winds blown inland from the seaside; therefore, aphids as 

virus vectors are unlikely to carry viruses into the crops. 

Interestingly, some viruses could only be located in very few regions. For example, 

WCMV was detected in four regions i.e., Salzlandkreis-2, Münster, Kreis Stormarn and 

Landkreis Rostock whereas several other viruses were only present in two different 

regions. BYMV was detected in two regions i.e., Salzlandkreis-1 and Salzlandkreis-2. 

BGCV2 was in Salzlandkreis-1 and Landkreis Rostock. ClYVV was in Salzlandkreis-2 and 

Münster. PSbMV was detected Salzlandkreis-2 and Kreis Stormarn. RCEV 1 and RCUV 

were detected in two regions i.e., Münster and Landkreis Meißen. SbDV and WCCV2 were 

detected Münster and Kreis Stormarn. Furthermore, BLRV and PaEV were detected only 

in one region (Salzlandkreis-2 and Landkreis Meißen, respectively).  
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Figure 8: List of viruses and their associated nucleic acids detected in each of the six German pea 

growing regions sampled over three seasons 2016, 2017 and 2018. The seasons in which the 

viruses were detected are mentioned in brackets. The names of the viruses and their associated 

nucleic acids are: BVG: barley virus G, BCMV: bean common mosaic virus, BLRV: bean leafroll virus, 

BYMV: bean yellow mosaic virus, BGCV2: black grass cryptic virus 2, CaTV1: carrot torradovirus 1, 

CLRV: cherry leaf roll virus, ClYVV: clover yellow vein virus, CMV: cucumber mosaic virus, HLV: 

Heracleum latent virus , PaMV1: pea associated mitovirus 1, PaMV2: pea associated mitovirus 2, 

PaMV3: pea associated mitovirus 3, PaEV: pea associatted emaravirus, PEMV1: pea enation 

mosaic virus 1, PEMV2: pea enation mosaic virus 2, PEMVsatRNA: pea enation mosaic virus 

satellite RNA, PNYDVαSat1: pea necrotic yellow dwarf alphasatellite 1, PNYDVαSat3: pea necrotic 
yellow dwarf alphasatellite 3, PNYDVαSat4: pea necrotic yellow dwarf alphasatellite 4, 

PNYDVαSat5: pea necrotic yellow dwarf alphasatellite 5, PNYDVαSat6: pea necrotic yellow dwarf 
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alphasatellite 6, PNYDVαSat7: pea necrotic yellow dwarf alphasatellite 7, PNYDV: pea necrotic 
yellow dwarf virus, PSbMV: pea seed-borne mosaic virus, RCCV1: red clover carlavirus 1, RCEV1: 

red clover enamovirus 1, RCNVA: red clover nepovirus a, RCUV: red clover umbravirus, SsMV4: 

Sclerotinia sclerotiorum mitovirus 4, sLaIV: sL associated ilarvirus, snLaCV: snL associated 

chordovirus, snLaIV: snL associated ilarvirus, snLaSV: snL associated secoviridae, snLaWV: snL 

associated waikavirus, SbDV: soybean dwarf virus, SMV: soybean mosaic virus, TVCV: turnip vein-

clearing virus, TuYV: turnip yellows virus, TuYVaRNA: turnip yellows virus associated RNA, 

TuYVaRNA2: turnip yellows virus associated RNA 2, WCCV2: white clover cryptic virus 2, WClMV: 

white clover mosaic virus, WHIV21: Wuhan insect virus 21. 

Other viruses were found in only one season in one region i.e., BVG, BCMV, CaTV1, 

CLRV, CMV, HLV, RCCV1, RCNVA, SMV, TVCV, WHIV21 and all mitoviruses. So far, many of 

these viruses have not yet been included in standard monitoring programs of pea 

diseases, therefore the incidence and impact of these viruses on pea and other legume 

crops is currently unknown.  

PEMV1, PEMV2 and their satellites were not detected in 2017 in Landkreis Rostock 

and in 2018 in Kreis Stormarn. In 2018, PEMV1 was not detected in Landkreis Rostock, 

however PEMV2 and the satellite RNA were present. TuYV was detected in all three 

seasons in Salzlandkreis-1, Münster and Landkreis Meißen, however after its detection in 

Kreis Stormarn in 2016, it could not be detected in 2017 and 2018. Meanwhile, TuYV could 

not be identified in Salzlandkreis-2 in 2017.  

PNYDV, an emerging nanovirus in Germany, was detected in all the regions in 2016 

(Figure 8). PNYDV was detected during in all three seasons in Salzlandkreis-1 and 

Landkreis Meißen, consistent with previous monitoring. PNYDV was not detected in the 

other four regions in 2017; however, in 2018, it was again detected in Salzlandkreis-2. In 

2016 and 2017, WClMV could be found in Salzlandkreis-2 and Kreis Stormarn while in 

2018 it was detected again in Kreis Stormarn with additional confirmations in Münster 

and Landkreis Rostock. PSbMV was detected in all seasons in Salzlandkreis-2 and Kreis 

Stormarn. Although BLRV in one region, it was detected for two successive season 2016 

and 2017 but could not be found in 2018. PaEV was also detected for two seasons in 2017 

and 2018.  

Taken together, when we look at the spatial distribution of viruses, we can only 

observe minor differences in the viral community compositions. No major differences 

could be observed between the regions as e.g., a total of 36 virus incidences were 

detected in Salzlandkreis-2 followed by Münster with 33 virus incidences (over the three 

seasons). A total of 28 virus incidences were reported from Salzlandkreis-1, 25 for both 

Kreis Stormarn and Landkreis Meißen and the lowest rate for Landkreis Rostock (20).  

The temporal virus incidences appear to be relatively stable over the successive 

seasons 2016, 2017 and 2018 with 53, 56 and 54 virus incidences, respectively 

(Supplementary Table S4). 
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3.5. Discussion 

This is the first HTS-based study designed to describe the pea virome in Germany. 

In addition to the focus on viruses infecting pea crops, we also explored spatio-temporal 

aspects across six different production regions in Germany over three years. We also 

examined as potential virus reservoirs non-pea plants surrounding the pea crops, 

including those related to peas (belonging to the Fabaceae) and plants that were 

completely unrelated. This distinguishes our study from many metagenomics studies that 

focused on either just one crop plant, one production area, one season or combination 

thereof. We believe that this study demonstrates the importance of spatio-temporal 

aspects into metagenomics studies in order to draw a more complete picture of all the 

viruses present. 

To discover viruses with different genomes and prevent bias we used a ribosomal 

RNA depleted total RNA (Pecman et al., 2017). As demonstrated, this method detected 

RNA viruses with both a plus and negative sense genome, and viruses with a DNA genome, 

namely PNYDV and its associated satellites. We discovered a surprisingly high number of 

viruses in the different pools with some present in high abundance, i.e., CMV, PEMV1, 

PEMV2, PEMVSatRNA, TuYV, TuYVaRNA1 and TuYVaRNA2. The recovered reads were 

pool-dependent as well as dependent on the viral genome, virus titre and incidence within 

the pool (Supplementary Table S3, Figure 3). All these viruses are positive single-stranded 

viruses. Interestingly, dsRNA viruses, i.e., partitivirids, and the new negative sense RNA 

emaravirus were also detected using the ribo-depletion method, despite a low number of 

reads.  

3.5.1. Detection of known viruses in the pea pools 

As expected, we were able to detect and confirm by RT-PCR the presence of many 

known pea viruses that have been described for Germany previously, i.e., PEMV1, PEMV2, 

TuYV, PNYDV, BLRV, SbDV, PSbMV and CMV. This is in line with previous surveys and 

observations (data not shown). PEMV1 and PEMV2 are usually the most commonly found 

viruses in German pea crops (Ziebell, 2017). PEMV is associated with enation and mosaic 

symptoms on infected plants and can lead to severe yield losses (Clement, 2006). 

Furthermore, mixed infections of PEMV1 and PEMV2 are well documented in pea samples 

(Hagedorn & Khan, 1984; Brault et al., 2010).  

The second most prevalent virus detected was TuYV. It was found in peas and 

also in the snL pools. TuYV is known to infect peas but is of major concern for rapeseed 

in Germany (Graichen & Schliephake, 1999; Gaafar & Ziebell, 2019b). Although, we have 

no direct evidence that surrounding non-legumes are reservoirs for TuYV isolates that 

infect peas, in greenhouse experiments we demonstrated that TuYV isolates originating 

from peas can infect rapeseed and vice versa (data not shown). It is therefore very likely 

that rapeseed crops, other members of the Brassicaceae family as well as a large number 
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of common weeds and wild species host range are alternative hosts for pea-infecting 

poleroviruses such as TuYV (Stevens et al., 1994). 

BLRV is another luteovirus that has been known for a long time to infect peas in 

Germany (Quantz & Volk, 1954). It has been reported from many other countries e.g., 

Australia, Greece, India and USA and can infect various other legumes causing symptoms 

of stunting and leaf rolling (Reddy et al., 1979; Vemulapati et al., 2010; van Leur & Kumari, 

2011; Chatzivassiliou et al., 2016). Control of BLRV is best managed using host plant 

resistance (van Leur et al., 2013), however, BLRV-resistant green and protein pea varieties 

may not be widely available at the present. As with other phloem-limited luteoviruses, 

BLRV is transmitted by aphids in a non-persistent manner with pea aphids (Acyrthosiphon 

pisum) being one of the most efficient vectors (Clement, 2006). Another luteovirus, SbDV, 

is also known to infect peas and other legumes in Germany (Grigoras et al., 2010a; 

Abraham et al., 2007). The virus was reported from many countries causing economic 

losses on soybean (Glycine max L.) (Phibbs et al., 2004; Tamada et al., 1969). The virus can 

cause several symptoms e.g., yellowing, dwarfing, downward curling, rugosity and 

reduction in growth (Tamada et al., 1969; Abraham et al., 2007) but it is unclear whether 

peas with BLRV resistance can be infected with other closely-related poleroviruses. 

Ten years ago, PNYDV was first discovered in Germany (Grigoras et al., 2010a). In 

the following years, PNYDV was only detected in two German regions in Saxony and 

Saxony-Anhalt, as well as in neighbouring Austria. However, 2016 saw the first country-

wide outbreak of this virus in Germany and PNYDV was detected also in other European 

countries (e.g. Denmark and The Netherlands) (Gaafar et al., 2016; Gaafar et al., 2017; 

Ziebell, 2017; Gaafar et al., 2018a). Effects on infected plants are severe and can cause 

high yield losses (Saucke et al., 2019). PNYDV is an increasing threat to legume production 

in Europe as no PNYDV-resistant plant varieties have been identified yet (data not shown). 

Additionally, we believe the high mutation rate, reassortment and recombination rates of 

nanoviruses like PNYDV may lead to the appearance of novel strains (Grigoras et al., 

2010b; Grigoras et al., 2014). An increasing number of nanovirus-associated single-

stranded circular DNA alphasatellites have been reported in recent years in legumes such 

as Sophora alopecuroides L., Vicia cracca L. and Apiaceae members such as Petroselinum 

crispum (Mill.) Fuss, although their biological relevance is still unclear (Gallet et al., 2018; 

Vetten et al., 2019; Heydarnejad et al., 2017).  

The seed- and aphid-transmissible PSbMV has also been reported from many 

countries, including Germany (Khetarpal & Maury, 1987; Latham & Jones, 2001). 

However, in Germany, PSbMV is not seen as a major constraint of pea production as the 

provision of “clean” seed material and close surveillance of pea seed production sites has 
helped to reduce PSbMV incidence below those described for other countries. It is 

interesting that one of the two sites in which we detected PSbMV is a trial site for heritage 

material. The second region in which we detected PSbMV is in closer proximity to a 

protein pea breeding site in which we detected PSbMV in previous surveys (data not 
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shown) therefore viruliferous aphids may be vectors in this region. The symptoms of 

PSbMV are reported to be mild and transitory in pea resulting in limited detection of the 

virus in the field (Khetarpal & Maury, 1987). Other symptoms can include slight chlorosis, 

stunting, shortening, veins swelling and leaflets’ downward rolling (Khetarpal & Maury, 

1987). Seed symptoms of coat staining, coat splitting, and reduced seed size caused by 

PSbMV were observed in New Zealand, USA and Australia in the 1980s. As a result, a 

program to breed resistance was initiated leading to the release of pea varieties highly 

tolerant to PSbMV (Fletcher et al., 1989; Russell, 1994). Similar breeding programs were 

also successfully developed in Australia (van Leur et al., 2013). 

The presence of CMV in the sL was not surprising, as CMV is a wide-spread virus, 

with an extremely wide host range; CMV can be transmitted by many aphid species, and 

cause severe losses in legumes (Palukaitis et al., 1992; Fletcher, 1993; Garcıa-Arenal & 

Palukaitis, 2009; Tao et al., 2002). CMV was reported before in German peas and other 

legumes but does not seem to be of major concern (Schmidt, 1981). 

Although as being reported as present in Germany e.g., widespread on faba beans 

or clover plants, we could not find any detailed information on BYMV or ClYVV naturally 

infecting peas in Germany. BYMV has a wide host range compared to other potyviruses 

including legumes and ornamentals (Guyatt et al., 1996; Nakazono-Nagaoka et al., 2009). 

Additionally, it can be transmitted by more than 20 aphid species causing symptoms 

including mosaic, necrosis and yellowing resulting in severe yield losses (Guyatt et al., 

1996; Nakazono-Nagaoka et al., 2009). The pathogenicity and serotypes of the BYMV 

differ from one strain to another (Bos, 1970; Barnett, 1987). Clover yellow vein virus 

(ClYVV) has a host range overlapping with BYMV and often confused with it as they are 

closed serologically (Barnett, 1987; Nakazono-Nagaoka et al., 2009). 

3.5.2. New players in German peas 

Our study highlights that there are many pea viruses present in Germany that have 

neither been described previously and are not being monitored: RCEV1, RCUV, SsMV4, 

and two associated nucleic acids i.e., PEMVSatRNA and TuYVaRNA.  

Interestingly, RCEV1 and RCUV were not only detected in peas but also in the sL 

(but not in the same location and not in the same season) which might indicate that 

surrounding, perennial legumes can be a virus reservoir for peas. The possibility of a mixed 

infection with both viruses was confirmed for red clover (Trifolium pratense L.) in the 

Czech Republic (Koloniuk et al. personal comm.). Such mixed infections between 

luteovirids and umbraviruses is common i.e., PEMV1 and PEMV2.  

The mitovirus SsMV4 was found to infect Sclerotinia sclerotiorum (Lib.) de Bary, a 

widespread plant pathogenic fungus causing white mould disease especially in peas, 

lentils and beans (McKenzie & Morrall, 1975; Purdy, 1979; Bardin & Huang, 2001; Bolton 

et al., 2006; Nibert et al., 2018). . A study showed that SsMV4 in combination with two 
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other mitoviruses i.e., Sclerotinia sclerotiorum mitovirus 2 (SsMV2) and Sclerotinia 

sclerotiorum mitovirus 3 (SsMV3), reduced the in-vitro growth and virulence of S. 

sclerotiorum on cabbage, common bean, oilseed rape and tomato (Khalifa & Pearson, 

2013).  

For the first time in Germany we also discovered numerous virus associated 

nucleic acid sequences. PEMVSatRNA, a small linear single stranded RNA satellite, has also 

been extracted from peas in the USA (Demler & Zoeten, 1989). PEMVSatRNA appears not 

influence aphid transmission, particle morphology, or symptom expression in peas but 

can reduce the severity of symptoms on the indicator plant Nicotiana benthamiana 

(Demler & Zoeten, 1989; Demler et al., 1994). Whether the PEMVSatRNA detected in 

Germany can modulate symptom expression of PEMV in its natural host P. sativum 

remains to be investigated. We also discovered PNYDV-associated alphasatellites 1 and 3. 

PNYDVαSat1 was previously detected in Austria, while PNYDVαSat3 was detected in both 
Austria and  Denmark (Gaafar et al., 2018a) In addition, four new alphasatellites were 

detected (discussed later). Finally, TuYVaRNA was also detected in association with TuYV. 

We discovered TuYVaRNA recently associated with TuYV from rapeseed in Germany 

(Gaafar & Ziebell, 2019b) but its role in symptom modulation, host range determination 

or vector transmission also remains to be investigated. 

3.5.3. New viruses and associated satellites – what are the risks? 

A new emaravirus i.e., PaEV, three new mitoviruses associated with peas i.e., 

PaMV1, PaMV2 and PaMV3, and novel associated nucleic acids in peas PNYDVαSat4, 
PNYDVαSat5, PNYDVαSat6 and TuYVaRNA2 were detected in this survey. PaEV was 
detected in German peas for two successive seasons in Landkreis Meißen, therefore we a 

quite confident that this virus is established in this region and might pose a risk. However, 

due to our pooling strategy, we are unable to attribute symptoms associated with PaEMV 

or to recover infectious virus material from the samples. Generally, emaraviruses can 

infect trees and deciduous shrubs. In the USA and Canada, the emaravirus rose rosette 

virus (RRV), mite-transmitted by Phyllocoptes fructiphilus Kiefer (Acari: Eriophyidae), 

causes extreme damage to roses leading to plant death within a short period of time 

(Olson et al., 2017). RRV and its vector were placed on the A1 alert list by the European 

and Mediterranean Plant Protection Organisation (EPPO, 2019). Two other emaraviruses 

have been reported from legumes. On pigeonpea (Cajanus cajan L.; Fabaceae) sterility 

mosaic disease (SMD) is caused by pigeonpea sterility mosaic emaravirus 1 and pigeonpea 

sterility mosaic emaravirus 2 (Elbeaino et al., 2014, 2015). These emaraviruses can also be 

transmitted by eriophyid mites (Aceria cajani Chann.) (Elbeaino et al., 2015; Patil & Kumar, 

2015). The total number of segments of our PaEV isolate are unknown as the virus full 

genome could not be recovered due to its low number of reads in the pools. In future 

monitoring programs, the distribution of PaEV will be evaluated to assess the risk that this 

virus might pose.  
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Three new mitoviruses were found in the pea pools i.e., PaMV1, PaMV2 and 

PaMV3. Mitoviruses are wide spread in plants and their infection to pathogenic fungi is 

often associated with virulence reduction (Bruenn et al., 2015; Wu et al., 2007; Xie & 

Ghabrial, 2012). The fungi which these new mitoviruses can infect are currently unknown 

and need more investigation. Also, it is important to understand the role of these 

mitoviruses as they may be used as biocontrol for fungal infections that in future could 

help to reduce the impact of fungal diseases in peas (powdery mildew, downy mildew, 

Aphanomyces, fusarium root rot). 

In addition to the previously described PNYDV alphasatellites 1 and 3, we 

discovered four new PNYDV-associated alphasatellites. Alphasatellites rely on their helper 

virus for spread as they do not encode a coat protein (Briddon et al., 2018). The presence 

of alphasatellites is associated with reduced infectivity of faba bean necrotic yellows virus 

(a nanovirus) or in the case of begomoviruses alphasatellites reduced or intensified 

symptoms and/or reduced virus genomic titre or betasatellite (Timchenko et al., 2006; 

Paprotka et al., 2010; Mar et al., 2017; Idris et al., 2011; Kon et al., 2009). The Rep proteins 

encoded by begomoviruses’ alphasatellites were found to suppress transcriptional gene 
silencing or post-transcriptional gene silencing (Nawaz-Ul-Rehman et al., 2010; Abbas et 

al., 2019). The role of these alphasatellites in unknown and their association with 

nanoviruses and other viruses e.g., babuviruses and begomoviruses require clarification. 

Additional to the reported TuYVaRNA1, we detected a new TuYV associated RNA, 

TuYVaRNA2. The effects of these associated RNAs on TuYV transmission and infection 

need more investigation as previous studies showed that beet western yellows associated 

RNA (strain ST9) increases the severity of on beet western yellows virus and is not 

associated with the virions’ escaping the phloem (Sanger et al., 1994).  

3.5.4. Non-crop plants: Reservoirs for viruses infected crops 

In our study, we analysed plants (leguminous and non-leguminous plants) 

surrounding the pea fields to investigate potential virus reservoirs. We were able to detect 

various viruses in those plant pools that may pose a threat to peas as well as production 

of other crops.  

3.5.4.1. In the surrounding legumes: 

Not surprisingly, in surrounding legumes we were able to detect viruses which are 

known to infect other legumes i.e., BCMV, SMV, WCCV2 and WClMV in addition to CMV 

and SbDV (discussed above). BCMV is well known to infect Phaseolus beans causing 

common mosaic or black root disease depending on the host, virus strain and the 

environmental conditions (Drijfhout & Bos, 1977). BCMV is a seed-borne virus, aphid 

transmissible and can be transmitted mechanically. A previous study showed that BCMV 

NL1 strain could not infect peas (Drijfhout & Bos, 1977).  
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SMV is also distributed worldwide and is a main threat for soybean production in 

many countries e.g., Japan and USA (Hill & Whitham, 2014). Its symptoms including 

mosaic, leaf distortion, leaf deformation and seed damage. SMV reduces germination, 

seed size, oil content and nodulation, and total yield in soybean (Hill & Whitham, 2014; 

Ross, 1977). SMV can be seed transmitted or by aphid vectors (Li et al., 2018). Besides 

soybean, it can infect other legumes including pea and was found in German faba beans 

before (Nandakishor et al., 2017). WCCV2, a symptomless cryptic virus, has been 

previously detected in German in white clover (Trifolium repens) (Lesker et al., 2013) and 

in many other countries like Japan, Korea, New Zealand and USA (Zhao et al., 2016; Ido et 

al., 2012; Park et al., 2017; Nakabayashi et al., 2002; Bos et al., 1959). The virus can infect 

several legumes including pea, white clover, red clover (Trifolium pratense) and non-

legumes e.g., garlic mustard (Alliaria petiolata) causing mosaic symptoms. Interestingly, 

this virus was also detected by HTS in Australian honey bee populations (Roberts et al., 

2018). WClMV is usually mechanically transmitted and may be seed transmitted with few 

records of insect transmission (Garrett, 1991). 

In our survey, we identified new viruses in the surrounding legumes; i.e., RCCV1, RCNVA, 

WClMoV and WHIV21 in addition to RCEV1 and RCUV (discussed above). RCCV1 is avirus 

which was present in the sL pool and which may also infect peas. In a previous 2016 survey 

using antibodies developed for detection of red clover vein mosaic virus (RCVMV)-like 

carlaviruses, the presence of a carlavirus was suggested in several pea samples but the 

exact virus species was not determined (Ziebell, 2017). Koloniuk and colleagues recently 

identified the genome of RCCV1 and found that it shares the capsid protein sequence with 

RCVMV (Koloniuk et al., personal comm.). RCNVA is a new virus that was identified in red 

clover (Trifolium pratense L.) plant in the Czech Republic (Koloniuk et al., 2018). It was 

detected only once in 2018 in the sL pool of Landkreis Rostock. The host range of RCNVA 

is currently unknown.  

Based on the sequences available on NCBI, WClMoV was only detected in Korea in white 

clover, however no more information is available. The finding of WHIV21 in a plant is 

interesting as another strain (WHCCII13077) was only reported in China from insect 

tissues (Shi et al., 2016a). The virus is taxonomically unassigned to any virus family and its 

role is currently unknown. 

A new ilarvirus, which we named sLaIV was detected in the sL. Although the exact 

host of sLaIV is currently unknown due to our pooling strategy, this virus will be included 

in future surveys to investigate incidence and potential host plants. To our best 

knowledge, sLaIV is only the second ilarvirus to naturally infect legumes after tobacco 

streak virus (Kaiser, 1982). 

3.5.4.2. In the surrounding non-legumes: 

In the pools of surrounding non-legume plants, we were able to detect various 

viruses that were described previously for Germany i.e., CaTV1, CLRV and TuYV. CaTV1 

was detected recently in celery plants exhibiting chlorotic ringspots, mosaic and strong 
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yellowing symptoms (Gaafar & Ziebell, 2019a) Similarly, the divergent strain of CLRV 

detected in this study is not new to Germany, as it has been previously detected in carrots 

(data not published). The presence of other strains of CLRV have been previously reported 

from German forest trees (beech and birch) (Jones et al., 1990; Rebenstorf, 2005). This 

virus is widely distributed and has a wide natural host range including woody and 

herbaceous plants (Büttner et al., 2011). CLRV may be transmitted by seed, pollen, as well 

mechanically including grafting. CLRV can cause a wide range of symptoms depending on 

the host and strain, for example in cherry trees it can cause a delay in leaf formation, 

upward leaf rolling, it can also delay flowering, reduce fruit production and can eventually 

kill the tree (Cropley, 1961) Finding CLRV in the surrounding non-legumes is not surprising 

as it was also detected previously in rhubarb (Rheum rhaponticum; family: Polygonaceae) 

in Britain (Tomlinson & Walkey, 1967). CLRV was also transmitted mechanically to peas 

and French beans in addition to many other economically important plants (Tomlinson & 

Walkey, 1967). 

BVG, BGCV2, HLV and TVCV are new reports for Germany. BVG was detected recently in 

the Netherlands, a neighbouring country of Germany, and infects switchgrass (Panicum 

virgatum L.) (Kumar et al., 2018a). The presence of this virus in Germany may be 

important for the production of barley and other cereal crops (Jo et al., 2018a). Another 

cryptic virus i.e., BGCV2 was detected in the snL. BGCV2 is a recently identified virus 

sequence from black grass (Alopecurus myosuroides Huds.) based on NCBI data (no 

publication available).  

Viruses belonging to the Betaflexiviridae family were also detected in the “non-legume 

weed pools”. We were able to determine the complete coding sequence of HLV for the 
first time. This virus was only detected once before in Scotland and appears to be widely 

spread in wild hogweed (Heracleum sphondylium L.; Apiaceae), with no obvious leaf 

symptoms (Bem & Murant, 1979). However, it was possible to infect many other plants 

experimentally including carrot (Daucus carota L.), maize (Zea mays L.), and cowpea 

(Vigna unguiculata (L.) Walp.), another legume. HLV can be transmitted mechanically or 

by aphids (Bem & Murant, 1979) On experimental plants symptoms such as chlorosis, 

mottling, necrotic rings or spots or vein clearing could be observed (Bem & Murant, 1979). 

Although the virus did not show symptoms on most of the infected plants, the effect of 

the virus on plant production is currently unknown.  

TVCV was detected one time in the snL of Salzlandkreis-2. Previously, TVCV was 

detected in several countries e.g., France, New Zealand and USA (Cardin et al., 2009; 

Cohen et al., 2012; Lockhart et al., 2008). It infects different species including turnip 

(Brassica rapa L.), penstemon (Penstemon digitalis Nutt. ex Sims.) Plantago major L., and 

kidney weed (Dichondra repens L.) and the crop plant Actinidia chinensis Planch. (kiwifruit) 

causing different symptoms including vein clearing, red foliar ringspots, leaf deformation 

and plant stunting (Dorokhov et al., 1994; Cohen et al., 2012; Lartey et al., 1994; Cardin 

et al., 2009; Lockhart et al., 2008; Blouin et al., 2013).  
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We also detected several new viruses in the snL i.e., snLaCV, snLaIV, snLaSV and snLaWV. 

As the hosts of these viruses are not yet defined, the importance of these newly identified 

virus sequences i.e., sLaIV, snLaCV, snLaIV, snLaSV and snLaWV is unknown.  

Our study identified several new viruses, virus strains and isolates that had not 

been reported before. Our findings help to improve pea virus surveys as the range of 

target viruses needs to be extended and the sequence data that we generated helps to 

improve our knowledge about virus variation thus improving taxonomy and finetuning of 

species demarcation criteria. The detection of another divergent CaTV1 (a torradovirus) 

as well as the divergent nepoviruses CLRV and RCNVA, indicate that the ICTV species 

demarcation criteria set for the family Secoviridae may require alteration. The criteria 

might also consider other genomic regions e.g., the full aa sequence of the poly proteins 

and the nt sequences of the untranslated regions as suggested by (Verbeek et al., 2010; 

Gaafar & Ziebell, 2019a). 

Our sequence data may also help to improve public databases as we were able to supply 

several full-length genomes. Since our BLAST results and phylogenetic trees indicate 

closest sequence matches from isolates that were described only from other continents 

more HTS studies are needed in Europe to improve local sequence databases and 

subsequent sequence analyses. 

Whilst we acknowledge the strength of HTS in identifying known and unknown viruses of 

crops, our pooling strategy also has disadvantages. Firstly, we cannot obtain detailed 

information on the viruses infecting a single plant without back testing each specimen in 

the pool. Secondly, in some case it was not possible to recover the full-length viral 

sequence using this method. Thirdly, this approach does not allow us to link symptom 

data on individual plants with the viruses found in the pooled samples without back 

testing each specimen in the pool although subsequent testing of retained plant tissue 

will be insightful.  

We believe that our survey data is of great interest for plant breeders (breeding 

for virus resistance), diagnosticians and pest risk analysist but it also demonstrates clearly 

the challenges of metagenomic HTS studies in the framework of virus diagnostics 

(laboratory and bioinformatics challenges, result interpretation, biological significance, 

pest risk analyses and data sharing) (Olmos et al., 2018). 

3.6. Conclusions 

In conclusion, our method of using rRNA-depleted total RNA extracts from pooled 

plant tissue in combination with HTS, bioinformatic analysis and molecular confirmation 

has increased the speed and breadth of virus detection in one crop species in Germany 

over three seasons. This method enabled the detection of a range of viruses regardless of 

their genome type. After sequencing pea samples, we identified sequences representing 

thirty-five viruses, many of which were represented by nearly full genomes. As expected, 

well recognised pea viruses were detected in this study, including members of the 
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Luteoviridae, Nanoviridae, Potyviridae and Tombusviridae families. In addition, 25 new 

viruses associated with pea, non-crop legumes and non-legume plants were revealed, 

some unexpected and as yet unexplained. Much work is still needed to reveal the 

importance and context of these new host /virus associations. 

We found PEMV1 and PEMV2 were the dominant virus species in pea which is 

consistent with what has been observed in the past. We also found some viruses had little 

similarity with known viruses and suggest they could be categorized as new viruses. For 

example, a new emaravirus was consistently detected in peas over two of the survey 

seasons. Other viruses were also detected in pea or in Germany first time and their 

importance to pea has yet to be determined. We believe the data from this study provides 

a comprehensive and improved overview of viruses present in German pea fields. For the 

newly detected viruses, further work is needed to determine the complete host range of 

these viruses, their effect on hosts and their likely vectors. It is also necessary to further 

investigate different locations and environments to increase our understanding of the 

virodiversity of these new viruses not only of pea but other legumes globally. The 

information produced on the long list of important viral pathogens and new virus species 

and strains present in the German pea fields should contribute to alert local governments 

and to establish sanitation measures to prevent viral transmission. Moreover, this study 

provides more evidence on the benefits of HTS and metagenomics in an important crop 

such as pea and the potential to develop similar virus databases in different crop fields. 
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3.7. Supplementary 

Table S1: The metadata records (the plant, symptoms, and the average temperature) of the six 

German pea growing regions sampled over three seasons 2016, 2017 and 2018. 

Salzlandkreis-1 (seed production site) 

Sample Season Category Plant Symptoms Temperature 

R1-16-01 2016 SP Pisum sativum severe dwarfing, yellowing 

19°C 

R1-16-02 2016 SP Pisum sativum yellowing, top stunting, crippled pods 

R1-16-03 2016 SP Pisum sativum yellowing, top stunting, crippled pods 

R1-16-04 2016 SP Pisum sativum severe dwarfing, chlorotic spots 

R1-16-05 2016 SP Pisum sativum top yellowing, chlorotic spots 

R1-16-06 2016 SP Pisum sativum 
top yellowing, chlorotic spots, top 

stunting 

R1-16-07 2016 SP Pisum sativum 
top yellowing, vein clearing, top 

dwarfing 

R1-16-08 2016 SP Pisum sativum yellowing, top stunting 

R1-16-09 2016 SP Pisum sativum 
enation symptoms on top, top 

yellowing, crippled pods 

R1-16-10 2016 SP Pisum sativum 
severe dwarfing, yellowing, vein 

clearing 

R1-16-11 2016 aSP Pisum sativum no obvious symptoms 

R1-16-12 2016 aSP Pisum sativum no obvious symptoms 

R1-16-13 2016 aSP Pisum sativum no obvious symptoms 

R1-16-14 2016 aSP Pisum sativum no obvious symptoms 

R1-16-15 2016 aSP Pisum sativum no obvious symptoms 

R1-16-16 2016 aSP Pisum sativum no obvious symptoms 

R1-16-17 2016 aSP Pisum sativum no obvious symptoms 

R1-16-18 2016 aSP Pisum sativum no obvious symptoms 

R1-16-19 2016 aSP Pisum sativum no obvious symptoms 

R1-16-20 2016 aSP Pisum sativum no obvious symptoms 

R1-16-21 2016 sL NA* NA 

R1-16-22 2016 sL NA NA 

R1-16-23 2016 sL NA NA 

R1-16-24 2016 sL NA NA 

R1-16-25 2016 sL NA NA 

R1-16-26 2016 snL Euphorbia sp. no obvious symptoms 

R1-16-27 2016 snL Poacae sp. no obvious symptoms 

R1-16-28 2016 snL Viola sp. no obvious symptoms 

R1-16-29 2016 snL Unknown mottling, chlorotic spots 

R1-16-30 2016 snL Chenopodium sp. chlorotic spots, chlorotic rings 

R1-17-01 2017 SP Pisum sativum dwarfing, pod deformation 

18°C 

R1-17-02 2017 SP Pisum sativum 
top dwarfing, mottling, pod 

deformation 

R1-17-03 2017 SP Pisum sativum mottling 

R1-17-04 2017 SP Pisum sativum top yellowing and dwarfing 

R1-17-05 2017 SP Pisum sativum top yellowing and dwarfing, mottling 
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R1-17-06 2017 SP Pisum sativum top yellowing and dwarfing, mottling 

R1-17-07 2017 SP Pisum sativum top dwarfing, mottling 

R1-17-08 2017 SP Pisum sativum 
top dwarfing, mottling, pod 

deformation 

R1-17-09 2017 SP Pisum sativum top yellowing and dwarfing 

R1-17-10 2017 SP Pisum sativum top dwarfing, yellowing 

R1-17-11 2017 aSP Pisum sativum no obvious symptoms 

R1-17-12 2017 aSP Pisum sativum no obvious symptoms 

R1-17-13 2017 aSP Pisum sativum no obvious symptoms 

R1-17-14 2017 aSP Pisum sativum no obvious symptoms 

R1-17-15 2017 aSP Pisum sativum no obvious symptoms 

R1-17-16 2017 aSP Pisum sativum no obvious symptoms 

R1-17-17 2017 aSP Pisum sativum no obvious symptoms 

R1-17-18 2017 aSP Pisum sativum no obvious symptoms 

R1-17-19 2017 aSP Pisum sativum no obvious symptoms 

R1-17-20 2017 aSP Pisum sativum no obvious symptoms 

R1-17-21 2017 sL Trifolium sp. no obvious symptoms 

R1-17-22 2017 sL Trifolium sp. no obvious symptoms 

R1-17-23 2017 sL Trifolium sp. no obvious symptoms 

R1-17-24 2017 sL Trifolium sp. no obvious symptoms 

R1-17-25 2017 sL Melilotus sp. no obvious symptoms 

R1-17-26 2017 snL Euphorbia sp. no obvious symptoms 

R1-17-27 2017 snL Chenopodium sp. no obvious symptoms 

R1-17-28 2017 snL Brassica napus chlorotic spots, reddening 

R1-17-29 2017 snL Poacae sp. no obvious symptoms 

R1-17-30 2017 snL Brassica napus chlorotic spots 

R1-18-01 2018 SP Pisum sativum top dwarfing 

22°C 

R1-18-02 2018 SP Pisum sativum dwarfing 

R1-18-03 2018 SP Pisum sativum top dwarfing 

R1-18-04 2018 SP Pisum sativum top yellowing, pod deformation 

R1-18-05 2018 SP Pisum sativum short internodes  

R1-18-06 2018 SP Pisum sativum dwarfing 

R1-18-07 2018 SP Pisum sativum top dwarfing 

R1-18-08 2018 SP Pisum sativum enation, top yellowing 

R1-18-09 2018 SP Pisum sativum leaf rolling, stunting 

R1-18-10 2018 SP Pisum sativum short internodes  

R1-18-11 2018 aSP Pisum sativum no obvious symptoms 

R1-18-12 2018 aSP Pisum sativum no obvious symptoms 

R1-18-13 2018 aSP Pisum sativum no obvious symptoms 

R1-18-14 2018 aSP Pisum sativum no obvious symptoms 

R1-18-15 2018 aSP Pisum sativum no obvious symptoms 

R1-18-16 2018 aSP Pisum sativum no obvious symptoms 

R1-18-17 2018 aSP Pisum sativum no obvious symptoms 

R1-18-18 2018 aSP Pisum sativum no obvious symptoms 

R1-18-19 2018 aSP Pisum sativum no obvious symptoms 
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R1-18-20 2018 aSP Pisum sativum no obvious symptoms 

R1-18-21 2018 sL Chenopodium sp. no obvious symptoms 

R1-18-22 2018 sL Robinia sp. no obvious symptoms 

R1-18-23 2018 sL Robinia sp. no obvious symptoms 

R1-18-24 2018 sL Lathyrus sp. no obvious symptoms 

R1-18-25 2018 sL Robinia sp. no obvious symptoms 

R1-18-26 2018 snL Brassica napus no obvious symptoms 

R1-18-27 2018 snL Sambucus nigra mosaic 

R1-18-28 2018 snL Convolvulaceae sp. red ring spots 

R1-18-29 2018 snL Chenopodium sp. leaf reddening, mottling 

R1-18-30 2018 snL Unknown no obvious symptoms 

Salzlandkreis-2 (pea heritage collection site) 

Sample Season Category Plant Symptoms Temperature 

R2-16-01 2016 SP Pisum sativum yellowing, enation, dwarfing 

19°C 

R2-16-02 2016 SP Pisum sativum top yellowing, severe leaf rolling 

R2-16-03 2016 SP Pisum sativum yellowing, severe dwarfing 

R2-16-04 2016 SP Pisum sativum vein clearing, enation, leaf deformation 

R2-16-05 2016 SP Pisum sativum enation 

R2-16-06 2016 SP Pisum sativum top yellowing, leaf rolling, vein clearing 

R2-16-07 2016 SP Pisum sativum yellowing, severe dwarfing, necrosis 

R2-16-08 2016 SP Pisum sativum top yellowing, top dwarfing 

R2-16-09 2016 SP Pisum sativum 
leaf deformation, red edges, chlorotic 

spots 

R2-16-10 2016 SP Pisum sativum enation 

R2-16-11 2016 aSP NA NA 

R2-16-12 2016 aSP NA NA 

R2-16-13 2016 aSP NA NA 

R2-16-14 2016 aSP NA NA 

R2-16-15 2016 aSP NA NA 

R2-16-16 2016 aSP NA NA 

R2-16-17 2016 aSP NA NA 

R2-16-18 2016 aSP NA NA 

R2-16-19 2016 aSP NA NA 

R2-16-20 2016 aSP NA NA 

R2-16-21 2016 sL Medicago doliata no obvious symptoms 

R2-16-22 2016 sL 
Trifolium 

tomentosum 
no obvious symptoms 

R2-16-23 2016 sL 
Robinia 

pseudoacacia 
mottling, mosaic 

R2-16-24 2016 sL Trifolium sp. no obvious symptoms 

R2-16-25 2016 sL 
Trifolium 

squarrosum 
leaf reddening 

R2-16-26 2016 snL Amaranthus sp. no obvious symptoms 

R2-16-27 2016 snL Galium aparine red midrib 

R2-16-28 2016 snL Fumaria vaillantii yellowing, leaf reddening 

R2-16-29 2016 snL Chenopodium sp. chlorotic spots 
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R2-16-30 2016 snL 
Taraxacum 

officinale 
no obvious symptoms 

R2-17-01 2017 SP Pisum sativum 
top dwarfing, chlorotic spots, pod 

deformation 

19°C 

R2-17-02 2017 SP Pisum sativum leaf deformation 

R2-17-03 2017 SP Pisum sativum yellowing, leaf and pod deformantion 

R2-17-04 2017 SP Pisum sativum dwarfing 

R2-17-05 2017 SP Pisum sativum mosaic, top dwarfing 

R2-17-06 2017 SP Pisum sativum chlorotic spots 

R2-17-07 2017 SP Pisum sativum yellowing 

R2-17-08 2017 SP Pisum sativum yellowing, pod deformation 

R2-17-09 2017 SP Pisum sativum mosaic, pod deformation 

R2-17-10 2017 SP Pisum sativum severe yellowing, pod deformation 

R2-17-11 2017 aSP Pisum sativum no obvious symptoms 

R2-17-12 2017 aSP Pisum sativum no obvious symptoms 

R2-17-13 2017 aSP Pisum sativum no obvious symptoms 

R2-17-14 2017 aSP Pisum sativum no obvious symptoms 

R2-17-15 2017 aSP Pisum sativum no obvious symptoms 

R2-17-16 2017 aSP Pisum sativum no obvious symptoms 

R2-17-17 2017 aSP Pisum sativum no obvious symptoms 

R2-17-18 2017 aSP Pisum sativum no obvious symptoms 

R2-17-19 2017 aSP Pisum sativum no obvious symptoms 

R2-17-20 2017 aSP Pisum sativum no obvious symptoms 

R2-17-21 2017 sL Vicia sp. yellowing, mottling 

R2-17-22 2017 sL Vicia sp. yellowing, mottling 

R2-17-23 2017 sL Trifolium sp. no obvious symptoms 

R2-17-24 2017 sL Trifolium sp. no obvious symptoms 

R2-17-25 2017 sL Vicia sp. no obvious symptoms 

R2-17-26 2017 snL Chenopodium sp. yellowing, mottling 

R2-17-27 2017 snL Polygonaceae sp. chlorotic spots 

R2-17-28 2017 snL Apiaceae sp. no obvious symptoms 

R2-17-29 2017 snL Apiaceae sp. no obvious symptoms 

R2-17-30 2017 snL Anethum sp. no obvious symptoms 

R3-18-01 2018 SP Pisum sativum enation 

22°C 

R3-18-02 2018 SP Pisum sativum enation 

R3-18-03 2018 SP Pisum sativum enation 

R3-18-04 2018 SP Pisum sativum enation 

R3-18-05 2018 SP Pisum sativum chlorosis, yellowing 

R3-18-06 2018 SP Pisum sativum enation 

R3-18-07 2018 SP Pisum sativum enation 

R3-18-08 2018 SP Pisum sativum enation 

R3-18-09 2018 SP Pisum sativum enation 

R3-18-10 2018 SP Pisum sativum enation 

R3-18-11 2018 aSP Pisum sativum no obvious symptoms 

R3-18-12 2018 aSP Pisum sativum no obvious symptoms 
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R3-18-13 2018 aSP Pisum sativum no obvious symptoms 

R3-18-14 2018 aSP Pisum sativum no obvious symptoms 

R3-18-15 2018 aSP Pisum sativum no obvious symptoms 

R3-18-16 2018 aSP Pisum sativum no obvious symptoms 

R3-18-17 2018 aSP Pisum sativum no obvious symptoms 

R3-18-18 2018 aSP Pisum sativum no obvious symptoms 

R3-18-19 2018 aSP Pisum sativum no obvious symptoms 

R3-18-20 2018 aSP Pisum sativum no obvious symptoms 

R3-18-21 2018 sL Medicago doliata no obvious symptoms 

R3-18-22 2018 sL 
Trifolium 

incarnatum 
no obvious symptoms 

R3-18-23 2018 sL Trifolium pratense no obvious symptoms 

R3-18-24 2018 sL Trigonella caerulea no obvious symptoms 

R3-18-25 2018 sL 
Medicago 

muricoleptis 
no obvious symptoms 

R3-18-26 2018 snL Phacelia sp. no obvious symptoms 

R3-18-27 2018 snL 
Taraxacum 

officinalis 
leaf reddening 

R3-18-28 2018 snL Plantago major no obvious symptoms 

R3-18-29 2018 snL Brassica oleracea yellowing 

R3-18-30 2018 snL Brassica oleracea mottling, leaf reddening 

Münster (pea breeding site) 

Sample Season Category Plant Symptoms Temperature 

R3-16-01 2016 SP Pisum sativum top yellowing 

17°C 

R3-16-02 2016 SP Pisum sativum 
severe chlorosis, top stunting, leaf 

deformation 

R3-16-03 2016 SP Pisum sativum chlorotic spots, top dwarfing, enation 

R3-16-04 2016 SP Pisum sativum curly pods, necrosis, top yellowing 

R3-16-05 2016 SP Pisum sativum enation, yellowing 

R3-16-06 2016 SP Pisum sativum 
vein clearing, deformation, necrosis, 

enation 

R3-16-07 2016 SP Pisum sativum 
vein clearing, chlorotic spots, necrosis, 

enation 

R3-16-08 2016 SP Pisum sativum enation, mosaic 

R3-16-09 2016 SP Pisum sativum 
severe dwarfing, yellowing, pod 

deformation, enation 

R3-16-10 2016 SP Pisum sativum severe stunting, yellowing 

R3-16-11 2016 aSP Pisum sativum no obvious symptoms 

R3-16-12 2016 aSP Pisum sativum no obvious symptoms 

R3-16-13 2016 aSP Pisum sativum no obvious symptoms 

R3-16-14 2016 aSP Pisum sativum no obvious symptoms 

R3-16-15 2016 aSP Pisum sativum no obvious symptoms 

R3-16-16 2016 aSP Pisum sativum no obvious symptoms 

R3-16-17 2016 aSP Pisum sativum no obvious symptoms 

R3-16-18 2016 aSP Pisum sativum no obvious symptoms 

R3-16-19 2016 aSP Pisum sativum no obvious symptoms 

R3-16-20 2016 aSP Pisum sativum no obvious symptoms 

R3-16-21 2016 sL Vicia sp. no obvious symptoms 
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R3-16-22 2016 sL Vicia sp. no obvious symptoms 

R3-16-23 2016 sL Trifolium pratense no obvious symptoms 

R3-16-24 2016 sL Trifolium repens no obvious symptoms 

R3-16-25 2016 sL Vicia sp. reddish pods 

R3-16-26 2016 snL Chenopodium sp. chlorotic spots 

R3-16-27 2016 snL Galinsoga parviflora  no obvious symptoms 

R3-16-28 2016 snL Rumex sp. no obvious symptoms 

R3-16-29 2016 snL 
Capsella bursa-

pastoris 
no obvious symptoms 

R3-16-30 2016 snL 
Matricaria 

chamomilla 
no obvious symptoms 

R3-17-01 2017 SP Pisum sativum yellowing, mottling 

19°C 

R3-17-02 2017 SP Pisum sativum enation, mottling, pod deformation 

R3-17-03 2017 SP Pisum sativum enation, yellowing 

R3-17-04 2017 SP Pisum sativum top dwarfing, pod deformation 

R3-17-05 2017 SP Pisum sativum enation 

R3-17-06 2017 SP Pisum sativum severe mottling 

R3-17-07 2017 SP Pisum sativum enation 

R3-17-08 2017 SP Pisum sativum top dwarfing and mottling 

R3-17-09 2017 SP Pisum sativum top dwarfing, pod deformation 

R3-17-10 2017 SP Pisum sativum yellowing, enation 

R3-17-11 2017 aSP Pisum sativum no obvious symptoms 

R3-17-12 2017 aSP Pisum sativum no obvious symptoms 

R3-17-13 2017 aSP Pisum sativum no obvious symptoms 

R3-17-14 2017 aSP Pisum sativum no obvious symptoms 

R3-17-15 2017 aSP Pisum sativum no obvious symptoms 

R3-17-16 2017 aSP Pisum sativum no obvious symptoms 

R3-17-17 2017 aSP Pisum sativum no obvious symptoms 

R3-17-18 2017 aSP Pisum sativum no obvious symptoms 

R3-17-19 2017 aSP Pisum sativum no obvious symptoms 

R3-17-20 2017 aSP Pisum sativum no obvious symptoms 

R3-17-21 2017 sL Trifolium sp. no obvious symptoms 

R3-17-22 2017 sL Melilotus sp. no obvious symptoms 

R3-17-23 2017 sL Trifolium sp. no obvious symptoms 

R3-17-24 2017 sL Trifolium sp. no obvious symptoms 

R3-17-25 2017 sL Vicia sp. no obvious symptoms 

R3-17-26 2017 snL Unknown yellowing, mottling 

R3-17-27 2017 snL Galium sp. chlorotic spots 

R3-17-28 2017 snL Geranium sp. yellowing 

R3-17-29 2017 snL Aegopodium sp. no obvious symptoms 

R3-17-30 2017 snL Chenopodium sp. chlorotic spots 

R3-18-01 2018 SP Pisum sativum enation, mosaic, leaf deformation 

22°C 
R3-18-02 2018 SP Pisum sativum enation, mosaic 

R3-18-03 2018 SP Pisum sativum enation, mosaic 

R3-18-04 2018 SP Pisum sativum yellowing, mottling, pod deformation 

https://en.wikipedia.org/wiki/Galinsoga_parviflora
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R3-18-05 2018 SP Pisum sativum enation, mosaic, leaf deformation 

R3-18-06 2018 SP Pisum sativum enation, mosaic, leaf rolling 

R3-18-07 2018 SP Pisum sativum enation, mosaic 

R3-18-08 2018 SP Pisum sativum yellowing, mottling 

R3-18-09 2018 SP Pisum sativum chlorotic spots, mosaic 

R3-18-10 2018 SP Pisum sativum chlorotic spots, mosaic 

R3-18-11 2018 aSP Pisum sativum no obvious symptoms 

R3-18-12 2018 aSP Pisum sativum no obvious symptoms 

R3-18-13 2018 aSP Pisum sativum no obvious symptoms 

R3-18-14 2018 aSP Pisum sativum no obvious symptoms 

R3-18-15 2018 aSP Pisum sativum no obvious symptoms 

R3-18-16 2018 aSP Pisum sativum no obvious symptoms 

R3-18-17 2018 aSP Pisum sativum no obvious symptoms 

R3-18-18 2018 aSP Pisum sativum no obvious symptoms 

R3-18-19 2018 aSP Pisum sativum no obvious symptoms 

R3-18-20 2018 aSP Pisum sativum no obvious symptoms 

R3-18-21 2018 sL Oxalis stricta no obvious symptoms 

R3-18-22 2018 sL Trifolium repens no obvious symptoms 

R3-18-23 2018 sL Trifolium repens mottling 

R3-18-24 2018 sL Vicia sp. no obvious symptoms 

R3-18-25 2018 sL Vicia sp. chlorotic lesions 

R3-18-26 2018 snL Solanum nigrum no obvious symptoms 

R3-18-27 2018 snL 
Hypericum 

officinalis 
no obvious symptoms 

R3-18-28 2018 snL Unknown no obvious symptoms 

R3-18-29 2018 snL Chenopodium sp. chlorotic spots 

R3-18-30 2018 snL Euphorbia sp. no obvious symptoms 

Kreis Stormarn (organic farming site) 

Sample Season Category Plant Symptoms Temperature 

R4-16-01 2016 SP Pisum sativum top yellowing, leaf deformation 

17°C 

R4-16-02 2016 SP Pisum sativum top mottling, leaf deformation 

R4-16-03 2016 SP Pisum sativum vein clearing 

R4-16-04 2016 SP Pisum sativum top yellowing, dwarfing, mottling 

R4-16-05 2016 SP Pisum sativum 
stunting, top yellowing, leaf 

deformation 

R4-16-06 2016 SP Pisum sativum yellowing, leaf rolling 

R4-16-07 2016 SP Pisum sativum stunting, top yellowing, leaf rolling 

R4-16-08 2016 SP Pisum sativum top yellowing, dwarfing 

R4-16-09 2016 SP Pisum sativum leaf mottling, yellowing, brittle leaves 

R4-16-10 2016 SP Pisum sativum enation 

R4-16-11 2016 aSP Pisum sativum no obvious symptoms 

R4-16-12 2016 aSP Pisum sativum no obvious symptoms 

R4-16-13 2016 aSP Pisum sativum no obvious symptoms 

R4-16-14 2016 aSP Pisum sativum no obvious symptoms 

R4-16-15 2016 aSP Pisum sativum no obvious symptoms 
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R4-16-16 2016 aSP Pisum sativum no obvious symptoms 

R4-16-17 2016 aSP Pisum sativum no obvious symptoms 

R4-16-18 2016 aSP Pisum sativum no obvious symptoms 

R4-16-19 2016 aSP Pisum sativum no obvious symptoms 

R4-16-20 2016 aSP Pisum sativum no obvious symptoms 

R4-16-21 2016 sL Trifolium repens no obvious symptoms 

R4-16-22 2016 sL Trifolium repens no obvious symptoms 

R4-16-23 2016 sL Trifolium repens no obvious symptoms 

R4-16-24 2016 sL Trifolium repens no obvious symptoms 

R4-16-25 2016 sL Trifolium repens no obvious symptoms 

R4-16-26 2016 snL Chenopodium sp. chlorotic spots 

R4-16-27 2016 snL Apiaceae sp. no obvious symptoms 

R4-16-28 2016 snL Apiaceae sp. no obvious symptoms 

R4-16-29 2016 snL Lamiaceae sp. no obvious symptoms 

R4-16-30 2016 snL Urtica sp. no obvious symptoms 

R4-17-01 2017 SP Pisum sativum top dwarfing, pod deformation 

17°C 

R4-17-02 2017 SP Pisum sativum mottling, pod deformation 

R4-17-03 2017 SP Pisum sativum yellowing 

R4-17-04 2017 SP Pisum sativum top dwarfing, pod deformation 

R4-17-05 2017 SP Pisum sativum yellowing 

R4-17-06 2017 SP Pisum sativum yellowing, pod deformation 

R4-17-07 2017 SP Pisum sativum mottling, pod deformation 

R4-17-08 2017 SP Pisum sativum 
yellowing, leaf hardening and rolling, 

pod deformation 

R4-17-09 2017 SP Pisum sativum yellowing, chlorotic spots 

R4-17-10 2017 SP Pisum sativum top dwarfing, pod deformation 

R4-17-11 2017 aSP Pisum sativum no obvious symptoms 

R4-17-12 2017 aSP Pisum sativum no obvious symptoms 

R4-17-13 2017 aSP Pisum sativum no obvious symptoms 

R4-17-14 2017 aSP Pisum sativum no obvious symptoms 

R4-17-15 2017 aSP Pisum sativum no obvious symptoms 

R4-17-16 2017 aSP Pisum sativum no obvious symptoms 

R4-17-17 2017 aSP Pisum sativum no obvious symptoms 

R4-17-18 2017 aSP Pisum sativum no obvious symptoms 

R4-17-19 2017 aSP Pisum sativum no obvious symptoms 

R4-17-20 2017 aSP Pisum sativum no obvious symptoms 

R4-17-21 2017 sL Trifolium sp. no obvious symptoms 

R4-17-22 2017 sL Trifolium sp. leaf reddening 

R4-17-23 2017 sL Trifolium sp. yellowing, leaf reddening 

R4-17-24 2017 sL Trifolium sp. no obvious symptoms 

R4-17-25 2017 sL Trifolium sp. yellowing, leaf reddening 

R4-17-26 2017 snL Rumex sp. red ring spots 

R4-17-27 2017 snL Unknown yellowing 

R4-17-28 2017 snL Unknown no obvious symptoms 

R4-17-29 2017 snL Aegopodium sp. red ring spots 
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R4-17-30 2017 snL Aegopodium sp. severe yellowing 

R4-18-01 2018 SP Pisum sativum yellowing 

20°C 

R4-18-02 2018 SP Pisum sativum yellowing, leaf and pod deformation 

R4-18-03 2018 SP Pisum sativum yellowing, leaf and pod deformation 

R4-18-04 2018 SP Pisum sativum yellowing, mottling 

R4-18-05 2018 SP Pisum sativum yellowing, mottling, leaf rolling 

R4-18-06 2018 SP Pisum sativum severe yellowing, pod deformation 

R4-18-07 2018 SP Pisum sativum yellowing, mottling, top dwarfing 

R4-18-08 2018 SP Pisum sativum yellowing, mottling 

R4-18-09 2018 SP Pisum sativum chlorotic spots 

R4-18-10 2018 SP Pisum sativum yellowing, mottling, leaf rolling 

R4-18-11 2018 aSP Pisum sativum no obvious symptoms 

R4-18-12 2018 aSP Pisum sativum no obvious symptoms 

R4-18-13 2018 aSP Pisum sativum no obvious symptoms 

R4-18-14 2018 aSP Pisum sativum no obvious symptoms 

R4-18-15 2018 aSP Pisum sativum no obvious symptoms 

R4-18-16 2018 aSP Pisum sativum no obvious symptoms 

R4-18-17 2018 aSP Pisum sativum no obvious symptoms 

R4-18-18 2018 aSP Pisum sativum no obvious symptoms 

R4-18-19 2018 aSP Pisum sativum no obvious symptoms 

R4-18-20 2018 aSP Pisum sativum no obvious symptoms 

R4-18-21 2018 sL Trifolium pratense no obvious symptoms 

R4-18-22 2018 sL Trifolium pratense no obvious symptoms 

R4-18-23 2018 sL Trifolium pratense no obvious symptoms 

R4-18-24 2018 sL Trifolium repens chlorotic spots 

R4-18-25 2018 sL Trifolium pratense no obvious symptoms 

R4-18-26 2018 snL Poacae sp. no obvious symptoms 

R4-18-27 2018 snL Chenopodium sp. no obvious symptoms 

R4-18-28 2018 snL Brassica napus leaf reddening 

R4-18-29 2018 snL 
Matricaria 

chamomilla 
no obvious symptoms 

R4-18-30 2018 snL Polygonaceae sp. mottling 

Landkreis Rostock (experimental field station, peas as green manure) 

Sample Season Category Plant Symptoms Temperature 

R5-16-01 2016 SP Pisum sativum 
top yellowing, pod deformation, 

dwarfing 

18°C 

R5-16-02 2016 SP Pisum sativum top yellowing 

R5-16-03 2016 SP Pisum sativum top yellowing 

R5-16-04 2016 SP Pisum sativum top yellowing 

R5-16-05 2016 SP Pisum sativum top yellowing 

R5-16-06 2016 SP Pisum sativum severe yellowing 

R5-16-07 2016 SP Pisum sativum enation, vein clearing 

R5-16-08 2016 SP Pisum sativum top deformation 

R5-16-09 2016 SP Pisum sativum severe dwarfing 

R5-16-10 2016 SP Pisum sativum top yellowing 
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R5-16-11 2016 aSP Pisum sativum no obvious symptoms 

R5-16-12 2016 aSP Pisum sativum no obvious symptoms 

R5-16-13 2016 aSP Pisum sativum no obvious symptoms 

R5-16-14 2016 aSP Pisum sativum no obvious symptoms 

R5-16-15 2016 aSP Pisum sativum no obvious symptoms 

R5-16-16 2016 aSP Pisum sativum no obvious symptoms 

R5-16-17 2016 aSP Pisum sativum no obvious symptoms 

R5-16-18 2016 aSP Pisum sativum no obvious symptoms 

R5-16-19 2016 aSP Pisum sativum no obvious symptoms 

R5-16-20 2016 aSP Pisum sativum no obvious symptoms 

R5-16-21 2016 sL Lupinus albus no obvious symptoms 

R5-16-22 2016 sL Lupinus albus no obvious symptoms 

R5-16-23 2016 sL 
Lupinus 

angustifolius 
no obvious symptoms 

R5-16-24 2016 sL 
Lupinus 

angustifolius 
no obvious symptoms 

R5-16-25 2016 sL Lupinus albus no obvious symptoms 

R5-16-26 2016 snL Unknown no obvious symptoms 

R5-16-27 2016 snL Phacelia sp. no obvious symptoms 

R5-16-28 2016 snL Convolvulaceae sp. no obvious symptoms 

R5-16-29 2016 snL 
Matricaria 

chamomilla 
no obvious symptoms 

R5-16-30 2016 snL Chenopodium sp. no obvious symptoms 

R5-17-01 2017 SP Pisum sativum dwarfing 

16°C 

R5-17-02 2017 SP Pisum sativum dwarfing 

R5-17-03 2017 SP Pisum sativum dwarfing 

R5-17-04 2017 SP Pisum sativum dwarfing 

R5-17-05 2017 SP Pisum sativum dwarfing 

R5-17-06 2017 SP Pisum sativum dwarfing 

R5-17-07 2017 SP Pisum sativum dwarfing 

R5-17-08 2017 SP Pisum sativum dwarfing 

R5-17-09 2017 SP Pisum sativum dwarfing 

R5-17-10 2017 SP Pisum sativum dwarfing 

R5-17-11 2017 aSP Pisum sativum no obvious symptoms 

R5-17-12 2017 aSP Pisum sativum no obvious symptoms 

R5-17-13 2017 aSP Pisum sativum no obvious symptoms 

R5-17-14 2017 aSP Pisum sativum no obvious symptoms 

R5-17-15 2017 aSP Pisum sativum no obvious symptoms 

R5-17-16 2017 aSP Pisum sativum no obvious symptoms 

R5-17-17 2017 aSP Pisum sativum no obvious symptoms 

R5-17-18 2017 aSP Pisum sativum no obvious symptoms 

R5-17-19 2017 aSP Pisum sativum no obvious symptoms 

R5-17-20 2017 aSP Pisum sativum no obvious symptoms 

R5-17-21 2017 sL Vicia faba leaf deformation and rolling 

R5-17-22 2017 sL Trifolium sp. no obvious symptoms 

R5-17-23 2017 sL Lupinus sp. no obvious symptoms 
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R5-17-24 2017 sL Vicia sp. no obvious symptoms 

R5-17-25 2017 sL Trifolium sp. no obvious symptoms 

R5-17-26 2017 snL Borago officinalis no obvious symptoms 

R5-17-27 2017 snL Malva sp. no obvious symptoms 

R5-17-28 2017 snL Phacelia sp. no obvious symptoms 

R5-17-29 2017 snL Unknown no obvious symptoms 

R5-17-30 2017 snL 
Matricaria 

chamomilla 
no obvious symptoms 

R5-18-01 2018 SP Pisum sativum mottling 

20°C 

R5-18-02 2018 SP Pisum sativum top yellowing 

R5-18-03 2018 SP Pisum sativum top yellowing 

R5-18-04 2018 SP Pisum sativum yellowing, mottling 

R5-18-05 2018 SP Pisum sativum yellowing, mottling 

R5-18-06 2018 SP Pisum sativum yellowing, mottling 

R5-18-07 2018 SP Pisum sativum yellowing, mottling 

R5-18-08 2018 SP Pisum sativum yellowing, mottling 

R5-18-09 2018 SP Pisum sativum yellowing, mottling 

R5-18-10 2018 SP Pisum sativum yellowing, mottling 

R5-18-11 2018 aSP Pisum sativum no obvious symptoms 

R5-18-12 2018 aSP Pisum sativum no obvious symptoms 

R5-18-13 2018 aSP Pisum sativum no obvious symptoms 

R5-18-14 2018 aSP Pisum sativum no obvious symptoms 

R5-18-15 2018 aSP Pisum sativum no obvious symptoms 

R5-18-16 2018 aSP Pisum sativum no obvious symptoms 

R5-18-17 2018 aSP Pisum sativum no obvious symptoms 

R5-18-18 2018 aSP Pisum sativum no obvious symptoms 

R5-18-19 2018 aSP Pisum sativum no obvious symptoms 

R5-18-20 2018 aSP Pisum sativum no obvious symptoms 

R5-18-21 2018 sL 
Trifolium 

incarnatum 
chlorotic spots 

R5-18-22 2018 sL Trifolium repens yellowing, mottling 

R5-18-23 2018 sL Vicia sp. chlorotic spots 

R5-18-24 2018 sL Trifolium sp. yellowing, mottling 

R5-18-25 2018 sL Trifolium repens yellowing, mottling, leaf reddening 

R5-18-26 2018 snL Chenopodium sp. chlorotic spots 

R5-18-27 2018 snL Solanum sp. yellowing, mottling 

R5-18-28 2018 snL Chenopodium sp. leaf reddening, red ring spots 

R5-18-29 2018 snL Brassicaceae sp. yellowing, mottling 

R5-18-30 2018 snL Unknown no obvious symptoms 

Landkreis Meißen (green pea production site) 

Sample Season Category Plant Symptoms Temperature 

R6-16-01 2016 SP Pisum sativum yellowing 

18°C 
R6-16-02 2016 SP Pisum sativum enation 

R6-16-03 2016 SP Pisum sativum 
mottling, mosaic, yellowing, vein 

clearing 

R6-16-04 2016 SP Pisum sativum mottling, yellowing 
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R6-16-05 2016 SP Pisum sativum yellowing, pod deformation 

R6-16-06 2016 SP Pisum sativum enation, pod deformation, mottling 

R6-16-07 2016 SP Pisum sativum enation, rusting 

R6-16-08 2016 SP Pisum sativum severe yellowing 

R6-16-09 2016 SP Pisum sativum 
top dwarfing, leaf deformation, 

yellowing, vein clearing, mottling 

R6-16-10 2016 SP Pisum sativum 
severe yellowing, top deformation, 

mottling 

R6-16-11 2016 aSP Pisum sativum no obvious symptoms 

R6-16-12 2016 aSP Pisum sativum no obvious symptoms 

R6-16-13 2016 aSP Pisum sativum no obvious symptoms 

R6-16-14 2016 aSP Pisum sativum no obvious symptoms 

R6-16-15 2016 aSP Pisum sativum no obvious symptoms 

R6-16-16 2016 aSP Pisum sativum no obvious symptoms 

R6-16-17 2016 aSP Pisum sativum no obvious symptoms 

R6-16-18 2016 aSP Pisum sativum no obvious symptoms 

R6-16-19 2016 aSP Pisum sativum no obvious symptoms 

R6-16-20 2016 aSP Pisum sativum no obvious symptoms 

R6-16-21 2016 sL Trifolium sp. mottling 

R6-16-22 2016 sL Vicia sp. no obvious symptoms 

R6-16-23 2016 sL Trifolium sp. no obvious symptoms 

R6-16-24 2016 sL Vicia sp. no obvious symptoms 

R6-16-25 2016 sL Vicia sp. no obvious symptoms 

R6-16-26 2016 snL Solanum sp. no obvious symptoms 

R6-16-27 2016 snL Poacae sp. no obvious symptoms 

R6-16-28 2016 snL Triticum sp. no obvious symptoms 

R6-16-29 2016 snL Brassicaceae sp. no obvious symptoms 

R6-16-30 2016 snL Unknown no obvious symptoms 

R6-17-01 2017 SP Pisum sativum mosaic, mottling 

18°C 

R6-17-02 2017 SP Pisum sativum pod deformation 

R6-17-03 2017 SP Pisum sativum dwarfing 

R6-17-04 2017 SP Pisum sativum mottling, pod deformation, dwarfing 

R6-17-05 2017 SP Pisum sativum dwarfing 

R6-17-06 2017 SP Pisum sativum severe yellowing, mosaic 

R6-17-07 2017 SP Pisum sativum yellowing 

R6-17-08 2017 SP Pisum sativum yellowing, mottling 

R6-17-09 2017 SP Pisum sativum yellowing, mosaic, leaf rolling 

R6-17-10 2017 SP Pisum sativum pod deformation 

R6-17-11 2017 aSP Pisum sativum no obvious symptoms 

R6-17-12 2017 aSP Pisum sativum no obvious symptoms 

R6-17-13 2017 aSP Pisum sativum no obvious symptoms 

R6-17-14 2017 aSP Pisum sativum no obvious symptoms 

R6-17-15 2017 aSP Pisum sativum no obvious symptoms 

R6-17-16 2017 aSP Pisum sativum no obvious symptoms 

R6-17-17 2017 aSP Pisum sativum no obvious symptoms 
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R6-17-18 2017 aSP Pisum sativum no obvious symptoms 

R6-17-19 2017 aSP Pisum sativum no obvious symptoms 

R6-17-20 2017 aSP Pisum sativum no obvious symptoms 

R6-17-21 2017 sL Trifolium repens no obvious symptoms 

R6-17-22 2017 sL Trifolium sp. no obvious symptoms 

R6-17-23 2017 sL Trifolium sp. no obvious symptoms 

R6-17-24 2017 sL Melilotus sp. no obvious symptoms 

R6-17-25 2017 sL Trifolium repens no obvious symptoms 

R6-17-26 2017 snL Chenopodium sp. no obvious symptoms 

R6-17-27 2017 snL Brassica napus chlorotic spots, leaf deformation 

R6-17-28 2017 snL Chenopodium sp. no obvious symptoms 

R6-17-29 2017 snL Poacae sp. no obvious symptoms 

R6-17-30 2017 snL Apiaceae sp. no obvious symptoms 

R6-18-01 2018 SP Pisum sativum chlorosis 

21°C 

R6-18-02 2018 SP Pisum sativum dwarfing 

R6-18-03 2018 SP Pisum sativum chlorosis 

R6-18-04 2018 SP Pisum sativum chlorotic spots 

R6-18-05 2018 SP Pisum sativum chlorosis 

R6-18-06 2018 SP Pisum sativum chlorosis, mosaic 

R6-18-07 2018 SP Pisum sativum chlorosis, mosaic 

R6-18-08 2018 SP Pisum sativum chlorosis, leaf rolling 

R6-18-09 2018 SP Pisum sativum yellowing, dwarfing of side shoots 

R6-18-10 2018 SP Pisum sativum severe yellowing 

R6-18-11 2018 aSP Pisum sativum no obvious symptoms 

R6-18-12 2018 aSP Pisum sativum no obvious symptoms 

R6-18-13 2018 aSP Pisum sativum no obvious symptoms 

R6-18-14 2018 aSP Pisum sativum no obvious symptoms 

R6-18-15 2018 aSP Pisum sativum no obvious symptoms 

R6-18-16 2018 aSP Pisum sativum no obvious symptoms 

R6-18-17 2018 aSP Pisum sativum no obvious symptoms 

R6-18-18 2018 aSP Pisum sativum no obvious symptoms 

R6-18-19 2018 aSP Pisum sativum no obvious symptoms 

R6-18-20 2018 aSP Pisum sativum no obvious symptoms 

R6-18-21 2018 sL Polygonaceae sp. no obvious symptoms 

R6-18-22 2018 sL Polygonaceae sp. no obvious symptoms 

R6-18-23 2018 sL Polygonaceae sp. no obvious symptoms 

R6-18-24 2018 sL Polygonaceae sp. no obvious symptoms 

R6-18-25 2018 sL Polygonaceae sp. no obvious symptoms 

R6-18-26 2018 snL Poacae sp. chlorotic spots, leaf reddening 

R6-18-27 2018 snL Brassica napus chlorotic spots 

R6-18-28 2018 snL Helianthus annuus chlorotic spots 

R6-18-29 2018 snL Chenopodium sp. chlorotic spots, mottling 

R6-18-30 2018 snL Phacelia sp. no obvious symptoms 

*NA = no plants from the category were found at sampling. 
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Table S2: List of primers used to confirm each virus detected by HTS. 

 

Virus 
Primer 

Name Sequence Reference 

1 Barley virus G 
HZ-714 TGAGTCTCGCCAAACTCCAC 

This article 
HZ-715 GATTGGGATCCTCGTAGCGG 

2 
Bean common 

mosaic virus 

HZ-483 TGCAACATGGCACTTGAAGC 
This article 

HZ-484 ACGCATTCTGAGTGTGACGT 

3 
Bean leafroll 

virus 

S2 ATCACITTCGGGCCGWSTCTATCAGA (Abraham et al., 
2007) AS3 CACGCGTCIACCTATTTIGGRTTITG 

4 
Bean yellow 

mosaic virus 

HZ-704 TGATGGATGTTGCGACAGCT 
This article 

HZ-705 GCCATTGCCGATCCAAATCC 

5 
Black grass 

cryptic virus 2 

HZ-791 CGCTGATTGGTCCGAATTCG 
This article 

HZ-792 AACGTCCCATTAGTGAGGCG 

6 
Carrot 

torradovirus 1 

HZ-682 TGCTAGCACACAAGGACAGG 
This article 

HZ-683 AGAGGCTGGGGAAAAAGTGG 

7 
Cherry leaf roll 

virus 

HZ-710 GCTGAATTGATGCGAGCCTG 
This article 

HZ-711 TCGGGAGTGTCAATCCAAGC 

8 
Clover yellow 

vein virus 

HZ-702 CCGGGTTTAGTGACTCCAGC 
This article 

HZ-703 ACTAGCCCAGAGAGACGAGC 

9 
Cucumber 

mosaic virus 

CMV 5'CP  CTCGAATTCGGATCCGCTTCTCCGCGAG 
(Rizos et al., 1992) 

CMV 3'CP  GGCGAATTCGAGCTCGCCGTAAGCTGGATGGAC 

10 
Heracleum 

latent virus  

HZ-696 AGTTACTACCCCCAGAGCGT 
This article 

HZ-697 TGGGTACTTCGAATAGGCGC 

11 
Pea associatted 

emaravirus 

HZ-692 TGGTCTCTTGCATGTTGCCT 
This article 

HZ-693 TAAAGCAACCTCAGCTGGCA 

12 
Pea associated 

mitovirus 1 

HZ-674 AGGTTTACCGCGATGGCTAG 
This article 

HZ-675 CAGGGGCGTGAACAAGAGAT 

13 
Pea associated 

mitovirus 2 

HZ-803 ACCGTCTTGTCTCAATCCCG 
This article 

HZ-804 TGACCTTTTTCGGGGCCAAT 

14 
Pea associated 

mitovirus 3 

HZ-805 AAGCCGAATGAGGTGGGAAG 
This article 

HZ-806 GCATACGATCTGTTGCTGCG 

15 
Pea enation 

mosaic virus 1 

HZ-355 TCAGAAATGACGCCGGAACA  
Chapter 4 

HZ-356 GCGGAACAACCTGTCTCTGA  

16 
Pea enation 

mosaic virus 2 

HZ-363 GTTGTGCGTCCTCTTGGAGA  
Chapter 4 

HZ-366 CCCAAGGAGGTGTCCATGTC 

17 
Pea enation 

mosaic virus 

satellite RNA 

HZ-698 CCACGTTGAGATACCTCGCA 
This article 

HZ-699 CCCCTGACACAATGCCATCT 

18 
Pea necrotic 

yellow dwarf 

alphasatellite 1 

HZ-799 TCTCTGGCGATACCCCTCTT 
This article 

HZ-800 CCTCCACGCGTGTAGAAGAA 
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19 
Pea necrotic 

yellow dwarf 

alphasatellite 3 

HZ-801 TTGTCCTTGGATACGCGTGT 
This article 

HZ-802 CTTCACCACCATTAGGGCCA 

20 
Pea necrotic 

yellow dwarf 

alphasatellite 4 

HZ-740 TGAAAGAGCTCCTTCCAGGC 
This article 

HZ-741 TGTCGATTTCCCTCCAGCTG 

21 
Pea necrotic 

yellow dwarf 

alphasatellite 5 

HZ-742 TGGCGAGACGGTATTGTTTCA 
This article 

HZ-743 ATCTGGGTTTTGTCGCGGAT 

22 
Pea necrotic 

yellow dwarf 

alphasatellite 6 

HZ-744 GGGCCAGAAGTCCAATATGCT 
This article 

HZ-745 TGCATCCGCCATTAGAGCTT 

23 
Pea necrotic 

yellow dwarf 

alphasatellite 7 

HZ-824 ATGAAGATGGAGGACCCCGA 
This article 

HZ-825 GCGCTACAGTTTGTCCGTTG 

24 
Pea necrotic 

yellow dwarf 

virus 

priPeaRdir GGAATACCAAGGTGAGTTACGG 
This article 

priPeaRrev TATTCCCTGAGAGTCCCGGAC 

25 
Pea seed-borne 

mosaic virus 

PSbMV P1 
forward 

GCTTCATGGTTGGAACTATTAAATG 
(Giakountis et al., 

2015) PSbMV P1 
reverse 

AAAGTTACTTGTTTTGCATGCTTTC 

26 
Red clover 

carlavirus 1 

HZ-708 ACAGCATGGGTGGGAATGAG 
This article 

HZ-709 ACACTCCGTCGCGCTTATAG 

27 
Red clover 

enamovirus 1 

HZ-686 CGTTTTCGGCTCTATGCAGC 
This article 

HZ-687 GGAGACTTTCTTGCCTCGCT 

28 
Red clover 

nepovirus A 

HZ-676 GTCGCTGTCAGGAGTGGAAA 
This article 

HZ-677 CCGTCAAATTGTGCAGCACA 

29 
Red clover 

umbravirus 

HZ-688 CTTTTGGTGTGCCAGGAACG 
This article 

HZ-689 TGATAGCAGAGGCAGGGACT 

30 
Sclerotinia 

sclerotiorum 

mitovirus 4 

HZ-690 AGCCGCCTTTACCATATCGC 
This article 

HZ-691 TGCTTCAGACACCATTCCTCC 

31 
sL associated 

Ilarvirus 

HZ-724 AGACGAGCTTCCCTGGTTTG 
This article 

HZ-725 TTCCTCACACCACGCCTTAC 

32 
snL associated 

Chordovirus 

HZ-718 TGGAGAGCATGACAGGCTTG 
This article 

HZ-719 TTGACGGCCATCCAGAAAGT 

33 
snL associated 

Ilarvirus 

HZ-730 CACCCAATAATGCCCCGACT 
This article 

HZ-731 GCGCAGTACTTCCCCTTCTT 

34 
snL associated 

Secoviridae 

HZ-694 AGCTGCACATCCGAAACTGA 
This article 

HZ-695 CGCCATTTCAGCAAAACCCA 

35 
snL associated 

Waikavirus 

HZ-738 ATCTTGGAAGGCTGTGTCCC 
This article 

HZ-739 AACAATGCCTGGCTCTAGCA 

36 
Soybean dwarf 

virus 

SbDVf GTCTACCTAAAAATTTCAAAGAATCTG (Abraham et al., 
2007) SbDVas CGGACCCGGTTCTCCGTCTA 

37 
Soybean mosaic 

virus 

HZ-493 GACAAGTGGGTTTGCGTTCC 
This article 

HZ-494 TAAGCCTGGATTTGCGCTCA 

38 HZ-716 ATTGCTCGCCATGAAGGACA This article 
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Turnip vein-

clearing virus 
HZ-717 TGGGTGTAATTGAGCGTGCT 

39 
Turnip yellows 

virus 

HZ-809 ACCGTGGGTGGGTAGAAGAT 
This article 

HZ-810 ACTTTTCTGAACGCCCGGAT 

40 
Turnip yellows 

virus associated 

RNA 

HZ-654 TGGACCGATACTTGCCCCTA 
This article 

HZ-655 AAGTGGGTATGCTGGAGTGC 

41 
Turnip yellows 

virus associated 

RNA 2 

HZ-807 CCCGTCTGCTTCAAAGGACT 
This article 

HZ-808 CTCGTGGACCGGTTCTTCAA 

42 
White clover 

cryptic virus 2 

HZ-797 CCATCCCTGAAGATGCTGCT 
This article 

HZ-798 AGCGGAAGATAAGGCTGAGC 

43 
White clover 

mosaic virus 

HZ-793 TGATTGGTTACCAGTGGCCC 
This article 

HZ-794 GGTGTATTTCAGGGCACGGA 

44 
Wuhan insect 

virus 21 

HZ-732 AGATCGACGCGTCAGACATC 
This article 

HZ-733 TGGTTCCCTGTCGTACGTTG 
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Table S3: Statistics of the raw data of the generated reads from each pool of the six German 

pea growing regions sampled over three seasons 2016, 2017 and 2018. 

Pool Season Raw reads Quality >Q30 
Quality 

controlled reads 

Generated 

contigs 

Region 1 2016 831076 90.0% 689540 10457 

Region 2 2016 814314 87.4% 650346 18207 

Region 3 2016 863642 89.6% 700264 21660 

Region 4 2016 900214 89.7% 716702 21342 

Region 5 2016 687850 89.0% 502260 14335 

Region 6 2016 885666 88.0% 697544 16865 

Symptomatic pea 2016 931992 88.5% 741390 16095 

Asymptomatic pea 2016 886412 88.0% 699910 4258 

surrounding legumes 2016 1346156 87.4% 1029344 23577 

surrounding non-legumes 2016 1102776 87.4% 819312 33895 

Region 1 2017 2032192 76.1% 1103590 39489 

Region 2 2017 2106164 76.5% 1178880 30649 

Region 3 2017 1616044 84.7% 894074 38079 

Region 4 2017 200210 59.3% 91166 2297 

Region 5 2017 2177380 78.2% 1083988 47335 

Region 6 2017 1123864 77.8% 576750 24920 

Symptomatic pea 2017 1979682 79.0% 1157966 36645 

Asymptomatic pea 2017 1931294 77.8% 1045932 30680 

surrounding legumes 2017 1215960 82.2% 684066 29305 

surrounding non-legumes 2017 1455624 77.7% 754550 28433 

Region 1 2018 1877930 84.2% 815626 47637 

Region 2 2018 2414122 86.8% 1326580 67186 

Region 3 2018 2511364 85.4% 1354858 31197 

Region 4 2018 3056130 83.9% 1565932 113465 

Region 5 2018 3404406 86.0% 1794174 42290 

Region 6 2018 2739384 84.7% 1410600 31100 

Symptomatic pea 2018 2203570 88.4% 1220234 80298 

Asymptomatic pea 2018 2125576 84.4% 1264694 87403 

surrounding legumes 2018 2393184 88.9% 1192422 11814 

surrounding non-legumes 2018 3299964 84.5% 1832160 112211 
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Table S4: List of the viruses and their associated nucleic acid satellites detected by HTS and 

confirmed by RT-PCR in each pool of the six German pea growing regions sampled over three 

seasons 2016, 2017 and 2018. 

 

 

 

 

 

 

 

 

 



2016 2017 2018 2016 2017 2018 2016 2017 2018 2016 2017 2018 2016 2017 2018 2016 2017 2018

Barley virus G BVG Polerovirus Luteoviridae snL 0.014

Bean common mosaic virus BCMV Potyvirus Potyviridae sL 0.014

Bean leafroll virus BLRV Luteovirus Luteoviridae SP SP 0.028

Bean yellow mosaic virus BYMV Potyvirus Potyviridae SP SP, aSP 0.042

Black grass cryptic virus 2 BGCV2 snL snL snL 0.014

Carrot torradovirus 1 CaTV1 Torradovirus  Secoviridae snL 0.014

Cherry leaf roll virus CLRV Nepovirus Secoviridae snL 0.014

Clover yellow vein virus ClYVV Potyvirus Potyviridae SP SP 0.028

Cucumber mosaic virus CMV Cucumovirus Bromoviridae sL 0.014

Heracleum latent virus HLV Vitivirus Betaflexiviridae snL 0.014

Pea associated mitovirus 1 PaMV1 Mitovirus  Narnaviridae SP, aSP 0.028

Pea associated mitovirus 2 PaMV2 Mitovirus  Narnaviridae SP, aSP 0.028

Pea associated mitovirus 3 PaMV3 Mitovirus  Narnaviridae SP 0.014

Pea associatted emaravirus PaEV Emaravirus Fimoviridae SP SP 0.028

Pea enation mosaic virus 1 PEMV1 Enamovirus Luteoviridae SP, aSP SP, aSP SP, aSP SP SP, aSP SP, aSP SP, aSP SP, aSP SP, aSP SP, aSP SP, aSP SP, aSP SP, aSP SP, aSP SP, aSP 0.417

Pea enation mosaic virus 2 PEMV2 Umbravirus  Tombusviridae SP, aSP SP, aSP SP, aSP SP SP, aSP SP, aSP SP, aSP SP, aSP SP, aSP SP, aSP SP, aSP SP, aSP SP, aSP SP, aSP SP, aSP SP, aSP 0.444

Pea enation mosaic virus satellite RNA PEMVsatRNA SP, aSP SP, aSP SP SP, aSP SP, aSP SP, aSP SP, aSP SP, aSP SP, aSP SP, aSP SP, aSP SP, aSP SP, aSP 0.361

Pea necrotic yellow dwarf alphasatellite 1 PNYDVαSat1 SP SP 0.028

Pea necrotic yellow dwarf alphasatellite 3 PNYDVαSat3 SP SP SP 0.042

Pea necrotic yellow dwarf alphasatellite 4 PNYDVαSat4 SP SP 0.028

Pea necrotic yellow dwarf alphasatellite 5 PNYDVαSat5 SP SP SP SP 0.056

Pea necrotic yellow dwarf alphasatellite 6 PNYDVαSat6 SP SP SP 0.042

Pea necrotic yellow dwarf alphasatellite 7 PNYDVαSat7 SP 0.014

Pea necrotic yellow dwarf virus PNYDV Nanovirus Nanoviridae SP SP SP SP SP SP SP SP SP SP SP 0.153

Pea seed-borne mosaic virus PSbMV Potyvirus Potyviridae SP SP, aSP SP, aSP SP SP, aSP SP, aSP 0.139

Red clover carlavirus 1 RCCV1 Carlavirus Betaflexiviridae sL 0.014

Red clover enamovirus 1 RCEV1 Enamovirus Luteoviridae sL SP 0.028

Red clover nepovirus A RCNVA Nepovirus Secoviridae sL 0.014

Red clover umbravirus RCUV Umbravirus Tombusviridae sL SP 0.014

Sclerotinia sclerotiorum mitovirus 4 SsMV4 Mitovirus  Narnaviridae SP 0.014

sL associated Ilarvirus sLaIV Ilarvirus Bromoviridae  sL 0.014

snL associated Chordovirus snLaCV Chordovirus Betaflexiviridae  snL 0.014

snL associated Ilarvirus snLaIV Ilarvirus Bromoviridae  snL 0.014

snL associated Secoviridae snLaSV Secoviridae snL 0.014

snL associated Waikavirus snLaWV Waikavirus Secoviridae snL 0.014

Soybean dwarf virus SbDV Luteovirus Luteoviridae SP sL sL 0.042

Soybean mosaic virus SMV Potyvirus Potyviridae sL 0.014

Turnip vein-clearing virus TVCV Tobamovirus Virgaviridae snL 0.014

Turnip yellows virus TuYV Polerovirus Luteoviridae SP, aSP, snL SP, aSP, snL SP, aSP, snL SP, snL SP, aSP, snL SP, aSP, snL SP, aSP, snL SP, aSP, snL SP, aSP, snL SP, aSP, snL SP, aSP, snL snL 0.472

Turnip yellows virus associated RNA TuYVaRNA snL SP, snL snL snL snL 0.083

Turnip yellows virus associated RNA 2 TuYVaRNA2 snL SP SP, snL SP, snL 0.083

White clover cryptic virus 2 WCCV2 Betapartitivirus Partitiviridae sL sL 0.028

White clover mosaic virus WClMV Potexvirus Alphaflexiviridae sL sL sL sL sL 0.069

Wuhan insect virus 21 WHIV21 sL 0.014

Unclassified virus

alphasatellite

Münster

Unclassified virus

Acronym

Small linear single stranded RNA satellites

alphasatellite

alphasatellite

alphasatellite

alphasatellite

Unclassified ssRNA positive-strand viruses

Unclassified ssRNA positive-strand viruses

alphasatellite

Virus relative 

abundance
Virus Genus Family

Salzlandkreis-1 Salzlandkreis-2 Kreis Stormarn Landkreis Rostock Landkreis Meißen
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Chapter 4: Comparative study on three 
viral enrichment procedures based on 
RNA extraction for plant viruses/viroids 
detection using high throughput 
sequencing 
Yahya Zakaria Abdou Gaafar and H. Ziebell 
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4.1. Abstract 

High throughput sequencing (HTS) has become increasingly popular as virus 

diagnostic tool. It was used to detect and identify plant viruses and viroids in different 

types of samples. A virus sequence enrichment method prior to HTS is required to increase 

the viral reads in the generated data. In this study, we compared the sensitivity of three 

viral enrichment approaches i.e., double stranded RNA (dsRNA), ribosomal RNA depleted 

total RNA (ribo-depleted totRNA) and small RNA (sRNA) for plant virus/viroid detection. 

The three viral enrichment approaches used here enabled the detection of all known 

viruses/viroid, in the study, with different amounts of viral/viroid nucleotides and depths. 

Interestingly, both dsRNA and ribo-depleted totRNA approaches detected a divergent 

strain of Wuhan aphid virus 2 as well. Moreover, Vicia cryptic virus was detected in the 

data of dsRNA and sRNA approaches only. These results support the ability of HTS for the 

detection of plant viruses/viroids using RNA extracts from different plant samples. The 

dsRNA approach used here detected all viruses/viroid, consumed less time, is lower in 

cost, and required less starting material. This study can serve as guidelines for starting 

virus diagnostics laboratories. 

4.2. Introduction 

Viruses and viroids are one of the major emerging threats to agricultural and 

horticultural production (Anderson et al., 2004). Climate change and increasing global 

trade are only two factors accelerating the dispersal of plant viruses by vectors into new 

geographic areas where they can potentially cause greater damage thus threating food 

supplying for humans and animals (Canto et al., 2009; Hulme, 2017; Jones, 2016; Myers 

et al., 2017). Correct identification of the underlaying causes of the diseases is important 

for correct management procedures, such as switching to virus-resistant cultivars (where 

available), quarantine or eradication measures or vector control. In the past, traditional 

detection methods such as serological (i.e., ELISA, Tissue blot-ELISA) or nucleic acid-based 

(PCR, probe-based methods) detection methods required priori knowledge of the 

pathogen that needed to be detected, such as previously purified virus particles used for 

raising antibodies or nucleic acid sequences for the design of specific primers or target 

probes (Ward et al., 2004). However, divergent sequences or virus variants with different 

antigenic epitopes on the virion surface would not be detected using these methods. 

Additionally, using electron microscopy often failed to detect low titre viruses or viruses 

that are phloem-based; disease-causing entities without protein shells such as viroids or 

satellite RNAs would not be detected at all. 

The development and evolution of novel high throughput sequencing (HTS) 

technologies has revolutionised virus discovery, plant virus diagnostics as well as 

metagenomic, evolutionary and community studies in recent years (Roossinck, 2017; 

Villamor et al., 2019). Unlike the methods described above, no prior knowledge about the 

pathogen is needed for HTS since all the nucleic acid (viral or non-viral) in the sample can 
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be sequenced. Many new viruses and viroids have been discovered using HTS and the 

number is increasing (Elbeaino et al., 2015; Chen et al., 2016; Villamor et al., 2017). 

However, HTS-based approaches for virus/viroid detection is facing several challenges in 

order to be validated for routine diagnostic laboratories (Maree et al., 2018). As HTS can 

sequence all nucleic acids within the given sample, no matter if of plant or pathogen 

origin, suitable enrichment strategies should be used to minimise the generated host 

reads that reduces the pathogen reads and may interfere with subsequent bioinformatic 

analyses. Additionally, there is no universal sequence that can be used for the analysis of 

virus/viroid communities in contrast to fungi or bacteria where the internal transcribed 

spacer (ITS) or 16S ribosomal RNA can be used in amplicon sequencing manner for the 

general detection of these pathogens (Leff et al., 2017). Thus, in case of unknown 

virus/viroid infections, studies relay on untargeted identification approaches utilizing 

random primers for detection (Gaafar et al., 2018b). 

As viruses/viroids have different genome types i.e., single- or double-stranded 

DNA, single- (positive [+ve] or negative [-ve]) or double-stranded RNA, circular or non-

circular nucleic acids, there are various extraction methods and enrichment strategies 

available for these molecules. For example, the extraction of dsRNA (the replicative form 

of most plant viruses) has been used for a long time to generate sequence information 

from plant viruses and can be used for the enrichment of viral sequences for HTS (Morris, 

1979; Bar-Joseph et al., 1983; Roossinck et al., 2010; Gaafar et al., 2019c). 

More recently, virus-derived small RNAs (vsRNAs) or ribo-depleted total RNA 

extracts have been used to prepare samples for HTS (Kreuze et al., 2009; Gaafar et al., 

2019d). Alternatively, rolling circle amplification and subsequent sequencing worked well 

for viruses with circular DNA genomes (Wyant et al., 2012; Gaafar et al., 2018a). Few 

studies have directly compared different enrichment strategies and their ability to detect 

plant virus sequences through HTS (Visser et al., 2016; Pecman et al., 2017). In this study, 

we compare the virus/viroid detection, their genome coverage recovery and depth from 

the reads produced using three RNA based-enrichment strategies, i.e., dsRNA extraction, 

ribo-depleted totRNA and sRNA extraction. We included viruses with different genomes 

((+ve) ssRNA, (-ve) ssRNA and ssDNA) as well as a viroid. 
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4.3. Material and methods 

4.3.1. Plant cultivation 

Four plant species (Nicotiana benthamiana [cultivar: JKI-Wild], Pisum sativum 

[cultivar: Rainier], Solanum lycopersicum [cultivar: Linda] and Vicia faba [cultivar: Tattoo]) 

were used (Table 1). In addition, Phaseolus vulgaris (cultivar: Black Turtle) seed infected 

with the cryptic virus phaseolus vulgaris alphaendornavirus 1 and 2 (PvEV1 and PvEV2 JKI 

ID 31403) were also sown to spike the samples during extraction (kindly provided by Dr. 

Mike Rott). The plants were kept under greenhouse conditions (at 22°C; photoperiod of 

16 h light [natural daylight with additional growth light Phillips IP65, 400 Watt] and 8 h 

dark). 
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4.3.2. Viruses and viroid isolates 

Four viruses with different genomes and one viroid were used in this research 

(Table 1). Pea enation mosaic virus 1 (PEMV1) originally from a P. sativum plant showing 

enation symptoms, collected in 2011 from Hondeghem, northern France. Pea necrotic 

yellow dwarf virus (PNYDV), Elbtal isolate, originally from infected P. sativum sample 

showing top leaves dwarfing and yellowing and leaf rolling symptoms, from Saxony, 

Germany in 2011. The original physostegia chlorotic mottle virus (PhCMoV), HZ16-558 

isolate, was from infected S. lycopersicum plant, collected from Hesse state in Germany 

with fruits marbling and discoloration symptoms in 2016 (Gaafar et al., 2018a). The potato 

spindle tuber viroid (PSTVd), isolate PV-0950, was kindly provided by DSMZ (German 

collection of microorganisms and cell cultures) in the form of lyophilized infected S. 

lycopersicum plant leaves in 2014. 

4.3.3. Virus maintenance 

PEMV1 and PNYDV were maintained by aphid transmission using Acyrthosiphon 

pisum. The aphids were reared for five days on infected P. sativum and V. faba, 

respectively, and ten viruliferous aphids were transferred onto healthy plants. The 

inoculation access period was five days. The aphids were killed using a non-systemic 

insecticide (Spruzit Schädlingsfrei, Neudorff GmbH KG, Germany).  

PhCMoV and PSTVd were maintained by mechanical transmission to N. 

benthamiana and S. lycopersicum, respectively. For mechanical transmission, 100 mg of 

infected plant material was ground in Norit buffer (0.05M phosphate buffer [pH 7.0]; 

0.001M ethylenediaminetetraacetic acid; 0.02M sodium diethyldithiocarbamic acid; 

0.005M thioglycolic acid; 0.75% activated charcoal [Norit]) and 30 mg of diatomaceous 

earth (Celite) was added. The homogenate was rubbed gently on healthy plants’ leaves 
using glass rods. The inoculated leaves were rinsed with water within 5 min. After 

inoculation, all plants were kept under greenhouse conditions for four weeks until virus 

symptoms were observed (except for PSTVd; no symptoms). 

4.3.4. Confirmation of infection by DAS-ELISA and/or PCR/RT-PCR  

To confirm infection, all plants were tested by ELISA and/or RT-PCR or PCR (Table 

2), ELISA tests were performed, except for PSTVd infected plants, using antibodies 

mentioned in Table 2 as described in (Clark & Adams, 1977; Fletcher et al., 2016). 

Additionally, to confirm infections with PEMV1, PEMV2, PhCMoV and PSTVd, RT-PCR was 

performed using total RNA extracted with innuPREP Plant RNA Kit (Analytik Jena, 

Germany), following the manufacturer’s instructions. cDNA was synthesised using 
ProtoScript II Reverse Transcriptase (New England Biolabs) using the reverse primer of the 

primer pairs mentioned for each virus (Table 2). PNYDV infection was confirmed by DNA 

extraction according to Edward’s method for plant DNA extraction with 0.1% 
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Mercaptoethanol added to the extraction buffer followed by PCR using PNYDV specific 

primers (Edwards et al., 1991). 
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4.3.5. Nucleic acid extraction and virus/viroid enrichment 

Five grams of leaf tissue from each infected plant were ground in liquid nitrogen 

and stored at -80oC until further extraction. For extraction, 100 mg leaf materials were 

mixed 20 mg leaf disc from P. vulgaris infected with PvEV1 and PvEV2. The mix was used 

for three different RNA extraction methods (Fig 1): 

a) Double-stranded RNA extraction (dsRNA): 

dsRNA was extracted using Double-RNA Viral dsRNA Extraction Mini Kit (iNtRON 

Biotechnology, USA) according the manufacturer’s protocol. 

b) Total RNA extraction followed by ribo-depletion (ribo-depleted totRNA): 

Total RNA extraction was performed using innuPREP Plant RNA Kit as described by 

the manufacturers’ instructions. The ribosomal RNA (rRNA) was depleted using the 

RiboMinus™ Plant Kit for RNA-Seq (Invitrogen) according the manufacturers’ protocol. 

c) Total RNA extraction followed by small RNA extraction (sRNA): 

Total RNA was extracted as described above, then DNase treated using innuPREP 

DNase I Digest Kit (Analytik Jena AG) according the manufacturers’ protocol. sRNA was 
extracted using polyacrylamide gel selection at Fasteris Life Sciences SA (Plan-les-Ouates, 

Switzerland). 

 

 

Figure 1: Graphical representation of the three RNA approaches used in this research i.e., 

dsRNA, ribo-depleted totRNA and sRNA. The steps are mentioned in orange boxes. The 

sequencing Illumina platforms are in green. 

 

Additionally, DNA extraction followed by rolling circle amplification (RCA) was 

carried out for the nanovirus infected plants. Genomic DNA was extracted as described 
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before. The extracted DNA was treated by RNase A followed by RCA using TempliPhiTM 

100 Amplification Kit (GE Healthcare Limited, UK). 

4.3.6. Nucleic acid preparations for HTS  

For dsRNA and ribo-depleted totRNA, random cDNA was synthesized using 

ProtoScript II Reverse Transcriptase and random octamer primers (8N). A denaturation 

step of 99°C for 2 min for the dsRNA and 65°C for 5 min for the ribo-depleted totRNA. ds-

cDNA was synthesized using NEBNext Ultra II Non-Directional RNA Second Strand 

Synthesis Module (New England Biolabs). Libraries were prepared using Nextera DNA 

Library Prep Kit (Illumina) following the manufacturer protocol. The quantification was 

done using Qubit dsDNA HS Assay Kit (Life Technologies) and quality analysis was done 

using High Sensitivity DNA Chips on Agilent 2100 Bioanalyzer (Agilent Technologies) 

following the manufacturers’ protocols. Subsequently, the libraries were sequenced on a 
MiSeq Illumine platform v.3 pair-end reads (2x301) at DSMZ, Germany. For the sRNA, 

libraries were prepared from sRNA extracted using TruSeq small RNA kit (Illumina) at 

Fasteris Life Sciences SA (Plan-les-Ouates, Switzerland) and sequenced on a NextSeq 

Illumine platform single-end reads (1x50). For the RCA products, the library was also 

prepared using Nextera DNA Library Prep Kit and run on a NextSeq Illumine platform 

(2x151) at DSMZ. 

4.3.7. Bioinformatic data analysis 

The data analysis was performed using Geneious (version 11.1.5) (Biomatters 

Limited, Auckland, New Zealand). The adaptors and low-quality nucleotides were trimmed 

from the raw reads (quality score set to 0.05), then the trimmed reads were filtered by 

length (100 to 301nt for dsRNA and ribo-depleted totRNA; 20 to 24nt for sRNA). The 

filtered trimmed reads were de novo assembled using Geneious (parameters; Medium 

Sensitivity/Fast). Moreover, sRNA reads were also assembled using Velvet (kmer = 13/ 

minimum contig length = 30) (Zerbino & Birney, 2008). 

The filtered-quality trimmed reads were also kmer normalised using BBNorm tool 

37.64 (Brian Bushnell within Geneious) (parameters: Minimum depth = 5/ Target coverage 

level = 40 for MiSeq reads, and Minimum depth = 5/ Target coverage level = 100 for 

NextSeq reads). After that, the reads were de novo assembled as described above. 

Assembled contigs were compared against a local database for viruses and viroids 

reference sequences using BLASTn (maximum E-value: 1e-5) downloaded 18 August 2018. 

To confirm the virus/viroid presence in each sample, the contigs were mapped to 

references (accession no. in Table 2). Additionally, filtered and trimmed reads were 

mapped to the reference sequences (Geneious; Medium Sensitivity/Fast and 5 iterations 

for dsRNA and ribo-depleted totRNA, and Medium-low Sensitivity/Fast and 5 iterations 

for sRNA). A cut-off for virus/viroid detection was set at ≥ 40% recovery of the reference 
sequence (for viruses) and ≥ 80% (for viroids). The consensus sequences were generated 
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from the quality trimmed reads by mapping to reference sequences. The results were 

manually inspected to refine the ends of the genomes and consensus sequences were 

generated based on the quality of the nucleotides. 

Pairwise nucleotide alignments were performed with ClustalW 2.1 (Cost matrix: 

CLUSTALW/ Gap open cost: 15/ Gap extend cost: 6.66) on Geneious. While for protein 

alignments Clustal W 2.1 with parameters (Cost matrix: BLOSUM/ Gap open cost: 10/ Gap 

extend cost: 0.1). 

4.3.8. Comparing the three RNA-based approaches 

The quality-controlled reads of each dataset were randomly subsampled (10 

replicates) into the same number of reads (equal to approximately the same number of 

nucleotides 1, 10, 20, 30, 40 and 50 million nt). Resulting in a total of 720 subsets, each 

was used for de novo assembly and mapping to its reciprocal consensus sequence 

generated from the total reads. The number of nucleotides matched the references, 

percentage of the reference sequence recovered, and mean depth were calculated for 

each. Furthermore, de novo assembly (Geneious parameters; Medium Sensitivity/Fast) 

was performed for each subset and the resulting contigs were mapped to the 

corresponding consensus virus/viroid sequence and the percentages of whole genome 

was generated. 

4.3.9. Statistical analysis 

The generated data from the bioinformatic analysis was statistically analysed using 

R version 3.5.1 (R Core Team, 2014). The number of nucleotides matched the references, 

percentage of the reference sequence recovered by both reads and de novo assembled 

contigs, and mean depth were statistically compared. The data were visualized by ggplot2 

and VennDiagram packages (Chen & Boutros, 2011; Ginestet, 2011). 

 

4.4. Results 

4.4.1. Raw data 

The statistics of the raw data generated from the HTS platforms of the three RNA-

based approaches are mentioned in S1 Table. As we used restricted quality and length of 

the reads, part of the generated datasets was less quality than expected, these can be 

shown by the number of reads after trimming and filtering and by the mean read length. 

Nevertheless, the datasets were still used for bioinformatic analysis. Furthermore, the 

spiked internal control viruses PvEV1 and PvEV2 were detected in all the samples with all 

the different approaches in different amounts of reads and depths (S2 Table). 

The costs of each approach on were calculated on average based on our 

experience and the prices until early 2019 (S3 Table). The average cost of the dsRNA 
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approach was about 307 Euros, the ribo-depleted totRNA cost 380 Euro, while sRNA 

approach cost about 348 Euro on average. 

4.4.2. Virus/viroid detection 

Using BLASTn search, all three known viruses and the viroid in this study were 

detected with all three RNA approaches i.e., dsRNA, ribo-depleted totRNA and sRNA. 

Surprisingly, other viruses were detected in sample 1 and sample 2. In sample 1, in 

addition to PEMV1, a divergent isolate of pea enation mosaic virus 2 (PEMV2) (Genus: 

Umbravirus/ Family: Tombusviridae) was detected using all three approaches, and a 

divergent strain of Wuhan aphid virus 2 (WHAV2) was detected by dsRNA and ribo-

depleted totRNA approaches (Fig 2). In sample 2, in addition to PNYDV, Vicia cryptic virus 

(VCV) (Genus: Alphacryptovirus/ Family: Partitiviridae) was also detected by dsRNA and 

sRNA approaches (Fig 2). These results showed that all viruses (Known and unknown) 

were detected by the dsRNA approach while ribo-depleted RNA and sRNA approaches 

detected either WHAV2 or VCV, respectively. No associated RNAs or alphasatellites DNAs 

were identified in the different samples. The presence of PEMV2, WHAV2 and VCV were 

confirmed using RT-PCR and virus specific primers as listed in Table 2. 

 

 

Figure 2: Venn diagram showing the viruses/viroid detected in all samples using different viral 

enrichment approaches (dsRNA, ribo-depleted totRNA and sRNA). The overlapping regions 

correspond to the number of viruses/viroid detected by more than one approach. The detected 

viruses were PEMV1: pea enation mosaic virus 1, PEMV2: pea enation mosaic virus 2, WHAV2: 

Wuhan aphid virus 2, PNYDV: pea necrotic yellow dwarf virus, VCV: Vicia cryptic virus and 

PhCMoV: physostegia chlorotic mottle virus, PSTVd: potato spindle tuber viroid, PvEV1: phaseolus 

vulgaris alphaendornavirus 1, and PvEV2:  phaseolus vulgaris alphaendornavirus 2. 

 



 

147 | P a g e  

C
h

a
p

te
r 4

: V
ira

l e
n

rich
m

e
n

t co
m

p
a

riso
n

 

4.4.3. Virus/viroid recovery 

The total filter and trimmed reads of each dataset were mapped to the different 

reference genome of the nine viruses in the samples (six viruses, a viroid and the two 

spiked internal control viruses). The total mapped reads and the percentage of the 

reference coverage can be found in Table 3. The numbers of mapped reads are different 

from one approach to another and from one virus to another. The full genomes of PEMV2, 

PhCMoV and PSTVd was recovered in the datasets by all three viral enrichment 

approaches. While the almost complete genomes of PEMV1 (missing the ends [not 

confirmed]) was detected by the three approaches. The almost complete genome of 

WHAV2 (missing the ends of some segments [not confirmed]) was identified by both 

dsRNA and ribo-depleted totRNA approaches. For VCV, less than 90% of the genome was 

assembled by ribo-depleted totRNA and sRNA approaches, but for PNYDV, less than 80% 

of the genome was assembled by the three approaches (Table 3). Therefore, to obtain the 

full genome of PNYDV, RCA enrichment was used. All virus sequences were submitted to 

GenBank (accession no. MK948524 to MK948543).
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4.4.4. Virus/viroid sequences characterisation  

Pairwise nucleotide comparison between the sequences of PEMV1, PNYDV, 

PhCMoV and PSTVd showed nt identities range between 95.7% and 100% to their closest 

sequences. The French isolates of PEMV1 resulted in 95.7% identity with the ID isolate 

from Idaho USA (accession no. HM439775). The 8 segments of PNYDV Elbtal isolate shared 

between 97.9% to 99.9% nt identities to their closest sequences on NCBI. Segments DNA-

N, -R, -S, -U4 shared 99.6% to 99.9% nt identities to the German isolate 110726 (accession 

no. KY810776 to KY810778 and KY810781). While segments DNA-C, -U1 and -U2 were 

close to the Danish isolate DK HZ16-582 by 97.9% to 99.4% (accession no. MH000257, 

MH000258 and MH000260), and segment DNA-M is closer to the Danish isolate DK HZ16-

573 by 98.6% (accession no. MH000250). PhCMoV HZ16-558 isolate shared 99.6% nt 

identity to HZ15-192 isolate (accession no. KY859866). The PSTVd isolate shared 100% nt 

identity with isolates 6718566 from Netherlands and 07087900 from Belgium (accession 

no. KX370618 and FM998548, respectively). The sequences of PEMV2 and WHAV2 

isolates were divergent from the reference sequences (S4 and S5 Tables). PEMV2 

predicted proteins shared between 92.5% to 97.6% aa identities to their analogues of the 

closest isolate from the UK (S4 Table) whereas WHAV2 proteins shared 90.2% to 96.8% aa 

identities to the Chinese strain WHYC-2 predicted proteins (S5 Table). PvEV1 shared 99.7% 

nt identity to the Mexican isolate INIFAP CG1 (accession no. MG640415) and PvEV2 shared 

closest nt identity with a Brazilian isolate with 99.4% (accession no. AB719398). 

4.4.5. The sensitivity of the three approaches (virus nucleotides and average depth) 

The sensitivity of each approach for the detection of the viruses/viroid in this study 

was analysed using normalised subsamples (sizes: 1M, 10M, 20M, 30M, 40M and 50M nt). 

Each of the normalised subsamples from the different sizes was mapped to the consensus 

sequences of the detected viruses/viroid. The percentages of recovered references (here 

the consensus sequences) by the viral/viroid nt of each subsample are shown in Fig 3. 

With the dsRNA approach, the recovered percentages of the genomes reached 100% at 

10M nt for PEMV2 and PhCMoV, whereas PEMV1 recovered at 20M nt. In cases of PSTVd, 

the full genome was recovered in some replicates from 20M to 50M nt, but the means 

were lower than 80%. However, for the segmented viruses WHAV2, PNYDV and VCV, the 

whole genomes could not be recovered even when using 50M nt. Using ribo-depleted 

totRNA, the full genomes of PEMV1, PEMV2 and PhCMoV recovered at 10M nt (Fig 3). The 

full genome of PSTVd was recovered at 1M nt. Similar to dsRNA approach, the genomes 

of WHAV2 and PNYDV were not recovered in all the subsamples. sRNA behaved similar to 

dsRNA approach with the viruses they both detected. PSTVd recovered at 1M nt, PEMV2 

and PhCMoV at 10M, PEMV1 at 20M, and PNYDV reached about 60% of the genomes at 

50M nt. Additionally, VCV also reached about 60% of the genomes at 50M nt. 
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Figure 3: Percentage of reference sequences recovered by the reads of the RNA-based 

approaches on each of the normalised nucleotide subsamples (sizes: 1M, 10M, 20M, 30M, 40M 

and 50M nt). The means of each approach are shown as (blue circle: dsRNA, red triangle: ribo-

depleted totRNA and yellow square: sRNA). The means are joined by lines with same colours. The 

vertical lines represent the standard deviation of the ten replicates. The strips over each graph are 

divided into two parts (upper: sample number, lower: virus/viroid acronym). 

 

The dsRNA normalised subsamples had low variation for PEMV1, PEMV2, WHAV2 

and PhCMoV, slight variation for PNYDV and VCV, and high variation in case of PSTVd (Fig 

3). For ribo-depleted totRNA, all the replicates in all the viruses had low variation except 
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for PNYDV showed slight variation. sRNA had low variation except in one subsample of 

PEMV1 i.e., size 40M nt. The generated contigs by de novo assembly of each normalised 

subsamples showed the same results (S1 Fig). In Fig 4, the mean depth increased with the 

size of subsamples in all the three RNA approaches. Regarding the variation, it was the 

same as the percentages of recovered references of Fig 3.  

 

 

Figure 4: Mean depth of the RNA-based approaches for the detection of the viruses/viroid in 

this study on each of the normalised nucleotide depth (1M, 10M, 20M, 30M, 40M and 50M nt) 

for each subsample. The means of each approach are shown as (blue circle: dsRNA, red triangle: 

ribo-depleted totRNA and yellow square: sRNA). The means are joined by lines with same colours. 
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The vertical lines represent the standard deviation of the ten replicates. The strips over each graph 

are divided into two parts (upper: sample number, lower: virus/viroid acronym). 

4.5. Discussion 

The three viral enrichment approaches (dsRNA, ribo-depleted totRNA and sRNA) 

used here enabled the detection of the known and unknown plant viruses/viroid in the 

study. The efficiency of the approaches from extraction to analysis were confirmed by the 

detection of the spiked viruses (PvEV1 and PvEV2) in all samples by all approaches. dsRNA 

approach was more efficient than ribo-depleted totRNA and sRNA approaches in terms of 

virus detection. This is because all the eight viruses and the viroid in this study were 

detected by the dsRNA approach. While ribo-depleted totRNA and sRNA approaches, each 

detected seven viruses and the viroid. Three unknown viruses were detected i.e., PEMV2, 

VCV and WHAV2.  

The detection of PEMV2 in mixed infection with PEMV1, is well documented 

(Doumayrou et al., 2017). Both viruses’ genome recoveries were high with the three 
approaches. VCV is a cryptic (symptomless) virus which occur at very low concentrations 

in infected tissues of several German varieties of V. faba (Blawid et al., 2007). VCV was 

detected by the dsRNA and sRNA approaches. Furthermore, the ability of HTS to detect 

cryptic viruses was reported before in (Roossinck, 2011). Interestingly, the four segments 

of a divergent strain of WHAV2 was identified in sample 1 by dsRNA and ribo-depleted 

totRNA. WHAV2 was discovered in Hyalopterus pruni and Aulacorthum magnoliae aphids 

from Wuhan, Hubei province, China in 2013 (Li et al., 2015; Shi et al., 2016b). It has a 

segmented linear (+ve) ssRNA genome, its virion structure is unknown, and it is not 

assigned to a virus family yet. However, WHAV2 was phylogenetically grouped in the 

Jingmenviruses clade (Shi et al., 2016b). Moreover, WHAV2 segments were also detected 

in three other pea samples collected from Germany and Austria in 2012 and 2013 (data 

not published). This considered the first detection of WHAV2 sequences in plant tissues 

and in Europe. 

Concerning the recovered number of viral/viroid nt and the mean depth, in 

general, their amounts were different depends on the species, the sample and the 

approach. All viral/viroid nt were low in the data of the three approaches, this can be 

explained by a low virus titre in plant tissues at the time of sampling. As expected, the 

number of viral/viroid nt and the mean depth increased with the increase in the size of 

subsample. Same for the generated contigs, their genome coverage increased with the 

size of the subsamples. 

Linear monopartite ssRNA genomes i.e., PEMV1, PEMV2 and PhCMoV, were 

detected by all approaches. When the viral nt were mapped to the single stranded linear 

non-segmented genomes (positive or negative), 10M to 20M nt were enough to recover 

the complete viral genomes. The reasons for the complete recovery at small amount of nt 



 

153 | P a g e  

C
h

a
p

te
r 4

: V
ira

l e
n

rich
m

e
n

t co
m

p
a

riso
n

 

that, dsRNA is generated by RNA viruses as an intermediate in their life cycle, additionally, 

the removal of ribosomal RNA increases the viral/viroid reads. Regarding viral small RNAs, 

they are known to be produced during RNA silencing defence of infected plants. 

Segmented viruses, regardless of the genomic nature (nucleic acid type, and size 

and number of the segments), did not recover totally by the three approaches up to 50M 

nt. The DNA virus in this study, PNYDV, was not recovered totally by the three RNA 

approaches, with a slightly higher nt in case of sRNA. As PNYDV has a circular ssDNA 

multipartite genome, mRNA is synthesised for protein translation. Furthermore, a long 

dsRNA covering the full-genome is not produced as an intermediate replication by DNA 

viruses (Wu et al., 2015). As the virus is a phloem restricted virus, a low titre is expected 

(Vetten et al., 2011). These might be the reasons for the lower recovery of the virus nt. 

Same conclusion was suggested by (Pecman et al., 2017). VCV was detected by the dsRNA 

and sRNA approaches. The number of viral nt in the two methods was not significantly 

different. The low concentration of cryptic viruses such as VCV and its dsRNA nature could 

be the main reasons that it was not recovered by ribo-depleted totRNA approach. 

Specially that the denaturation step of dsRNA was 65 oC for ribo-depleted totRNA 

approach. WHAV2 might be an aphid virus that is circulating in plant tissues as a vector, 

this may explain its low titre (Shi et al., 2016b). 

For the viroid PSTVd, as it has a short nt sequence (360nt), 1M nt was enough in 

cases of ribo-depleted totRNA and sRNA, but not for the dsRNA, it required more than 

20M nt. Higher viroid titres in infected tissues may reflect a higher viroid ssRNA and dsRNA 

(produced during replication) concentrations. Both RNA forms can serve as templates for 

the Dicer of the RNA silencing (Markarian et al., 2004). These may explain the very high 

PSTVd nt recovered by the sRNA approach than by dsRNA and ribo-depleted totRNA.  

dsRNA extraction consumed less time (<1 hour) in compare to total RNA followed 

by ribodepletion (about 4 hours) and total RNA followed by sRNA extraction (about 6 

hours). Furthermore, the costs of dsRNA extraction per sample was less than the other 

two approaches (S2 Table). The costs were calculated based on our experience and the 

prices until early 2019. The main difference between the costs was the cost of the 

enrichment step.  

Additionally, the libraries were sequenced on Illumina platforms MiSeq for both 

dsRNA and ribo-depleted totRNA, while sRNA on a NextSeq platform. In general, the three 

approaches generate enough reads to detect the plant viruses and viroid in a given 

sample. Increasing the number of samples per lane will reduce the costs of platform runs 

as the generated read, this was also concluded by (Pecman et al., 2017). Moreover, 

multiplexing by additional barcodes before library preparation can sequence more 

samples per run and consequently reduce the costs to a more comparable price 

(Roossinck et al., 2010). 
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From these, we recommend sequencing dsRNA for plant virus/viroid detection by 

HTS, and at least 130 thousand of high-quality reads. The ability of dsRNA enrichment to 

detect ssRNA (positive and negative), dsRNA and DNA viruses, and viroids was reported 

before (Rott et al., 2017; Rott et al., 2018). Since most plant viruses produce an 

intermediate dsRNA or their genome consists of dsRNA and that dsRNA is very stable and 

can be easily purified, sequencing of dsRNA is therefore a very powerful method for 

detecting all virus types. There are different dsRNA extraction methods used for HTS. The 

reasons for using the dsRNA extraction kit mentioned here that it consumes less time (<1 

hour), uses less milligrams (50 to 200) of plant tissue starting material, does not require 

PCR amplification in compare to other dsRNA methods extraction methods, in addition to 

its comparable cost per sample (Kesanakurti et al., 2016; Yanagisawa et al., 2016; Blouin 

et al., 2016). 

Regarding bioinformatic analysis, we recommend after quality control, reads 

normalisation, followed by de novo assembly of the reads, then BLAST search and 

mapping to reference based on the BLAST results. The results should be additionally 

confirmed by RT-PCR. These recommendations can be used as guidelines for 

viruses/viroids diagnostic. 

The study further concludes the ability of HTS to detect known and unknown plant 

viruses and viroids. This study showed that the performance of the three RNA-based 

approaches is virus/viroid and sample dependent. We conclude that HTS generated data 

from the dsRNA approach outcompeted the ones generated from ribo-depleted totRNA 

and sRNA, and potentially can be used for the detection of all plant viruses and viroids. 

We also suggest comparing between the different available dsRNA extraction methods to 

reach the best method. 
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Table S3: Pairwise comparisons of the nucleotide (nt) sequences and the amino acid (aa) 

sequence identities of Fr HZ11-065 isolates of PEMV1 and PEMV2 proteins with their closest 

known isolates 

 

PEMV 

Fr HZ11-065 

Nucleotides Proteins 

Identity Reference ORF Identity Reference 

PEMV1 95.7% HM439775 

ORF1 hypothetical 34 kDa protein 96.0% ADO86938 

ORF2 hypothetical protein 96.1% ADO86939 

ORF3 RNA-dependent RNA polymerase 96.4% ADO86940 

ORF4 coat protein 99.5% ADO86941 

ORF5 aphid transmission protein 97.6% ADO86942 

PEMV2 93.5% AY714213 

ORF1 hypothetical protein 92.5% ALP43778 

ORF2 RNA-dependent RNA polymerase 95.6% AAU20330 

ORF3 phloem RNA movement protein 96.5% AAU20331 

ORF4 cell-to-cell RNA movement protein 97.6% AAU20332 

 

 

Table S4: Pairwise comparisons of the four segments’ nucleotide sequences and the amino acid 

(aa) sequences of the predicted proteins of the French isolate of WHAV2 (Fr HZ11-065) 

 

WHAV2 

Fr HZ11-065 

Nucleotides Proteins 

Identity Reference ORF Identity Reference 

Segment 1 86.4% NC_028382 ORF1 NS5-like 96.8% YP_009179378 

Segment 2 90.7% NC_028386 
ORF1 VP4 96.9% YP_009179384 

ORF2 VP1 90.2% YP_009179385 

Segment 3 85.2% NC_028383 ORF1 NS3-like 95.5% YP_009179379 

Segment 4 85.6% NC_028387 
ORF1 VP2 92.0% YP_009179386 

ORF2 VP3 96.6% YP_009179387 
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Figure S1: Percentage of reference sequences recovered by the produced contigs of the RNA-

based approaches on each of the normalised nucleotide subsamples (sizes: 1M, 10M, 20M, 30M, 

40M and 50M nt). The means of each approach are shown as (blue circle: dsRNA, red triangle: 

ribo-depleted totRNA and yellow square: sRNA). The means are joined by lines with same colours. 

The vertical lines represent the standard deviation of the ten replicates. The strips over each graph 

are divided into two parts (upper: sample number, lower: virus/viroid acronym). 
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5.1. Abstract 

The genus Nanovirus is composed of plant viruses that predominantly infect 

legumes and can cause devastating crop losses. Nanoviruses are vectored by various aphid 

species. The transmission occurs in a circulative, non-propagative manner. It was long 

suspected that a virus-encoded helper factor would be needed for successful transmission 

by aphids. Recently, this helper factor was identified as the nanovirus-encoded nuclear 

shuttle protein (NSP). The mode of action of NSP is currently unknown – in contrast to 

other helper factors that e.g., facilitate binding of virus particles to receptors within the 

aphids’ stylets. In this review, we are summarizing the current knowledge about 
nanovirus-aphid vector interactions. 

5.2. Introduction 

Viruses are one of the main constraints for successful and sustainable crop 

production. Viral infections can reduce both yield and quality of the produce but may also 

cause total crop losses. Plant viruses can be transmitted from plant to plant via different 

routes of transmission; they can be transmitted mechanically (i.e., handling of plants or 

harvesting of fruits, root contacts, nutrient solutions within closed cropping systems etc.), 

by seeds, pollen, or vectors such as fungi, mites, nematodes, aphids and other insects. 

Phloem-feeding insects such as aphids (Hemiptera, Aphididae) are the most common 

vectors of plant viruses (Hogenhout et al., 2008). Aphids can be found worldwide, and 

many aphid species are able to act as virus vectors for one or more virus species (Stevens 

& Lacomme, 2017). Half of the insect‐vectored known plant viruses depend on aphids for 

their transmission (Nault, 1997).  

Traditionally, four different mechanisms are used to describe virus transmission 

by aphids (Hogenhout et al., 2008): non-persistent transmission (NP), semi-persistent (SP) 

transmission, persistent circulative (non-propagative) transmission (PC) and persistent 

propagative (PP) transmission. Viruses that are transmitted NP are retained in the stylets 

and can only be transmitted for a few minutes after acquisition; the ability to transmit the 

viruses are lost within a few minutes and upon insect molting. Most SP viruses are 

retained in the foregut while some are retained in the stylets. and transmission can occur 

minutes to hours to a few days after acquisition; again, viruses are lost upon molting. 

However, some SP transmitted viruses are retained in stylets (Uzest et al., 2007). No latent 

period (the time between acquisition access period [AAP] and inoculation access period 

[IAP]) is required for the transmission of NP or SP viruses contrary to persistently-

transmitted viruses (Nault, 1997; Hogenhout et al., 2008). Persistently transmitted viruses 

are classified as either circulative (and mainly non-propagative) viruses and propagative 

viruses. Upon acquisition, these viruses circulate through the insect vectors, moving from 

the gut lumen into the hemolymph and from there into the salivary glands from which the 

virus particles can be inoculated into new plants upon feeding. In addition, while non-
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propagative viruses are assumed not to replicate within their insect vectors, viruses 

transmitted in a persistently propagative manner do. 

Most knowledge about virus translocation pathways of PC transmitted viruses 

within aphids comes from research on members of the Luteoviridae family (Garret et al., 

1993; Gray & Gildow, 2003). It is suspected that luteovirids enter the gut epithelium by 

endocytosis before being released into the hemocoel by (Figure 1) (Garret et al., 1993; 

Gray & Gildow, 2003). For some luteovirids, such as beet western yellows virus, a minor 

read-through protein (RTP) has been shown to be involved in aphid transmission together 

with the coat protein (CP); determining whether the virions can accumulate in the midguts 

or in both midguts and hindguts of aphids (Brault et al., 1995; Brault et al., 2000; Brault et 

al., 2005). 
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The virions are then acquired through into the hemocoel, regardless whether the 

aphid was a vector of particular species (Gildow, 1993; Gildow et al., 2000). The virus 

particles are transported in vesicles through the cytoplasm of epithelial cells. Then the 

vesicles fuse with the basal plasmalemma and release particles into the interspace 

between the membrane and the basal lamina (Gray et al., 2014). The virions move across 

the basal lamina into the hemocoel. Within four hours of the viroins’ arrival in the 
alimentary canal lumen, they could be observed in the gut epithelial cells and within 8 

hours they were detected in the hemolymph (Garret et al., 1996). Luteovirids then move 

across the accessory salivary gland (ASG) cells in a pathway similar to that used to cross 

the gut (Gray & Gildow, 2003). In non-vector aphids, luteovirids are unable to penetrate 

the ASG suggesting that the basal lamina and the basal plasmalemma act as barriers to 

transmission (Gray et al., 2014). With longer feeding periods, the number of epithelial 

cells containing the virions increased (Garret et al., 1996). Mutational analysis of the CP 

and the RTP of turnip yellows virus (TuYV) and potato leafroll virus (PLRV), both 

poleroviruses, identified that they affected both aphid transmission and/or plant-virus-

interactions (Bruyère et al., 1997; Brault et al., 2000; Lee et al., 2005; Kaplan et al., 2007; 

Peter et al., 2008). CP was sufficient to transcytose virions of the gut to the hemocoel 

while it was suggested that the RTP facilitate the docking of the virions to the epithelial 

cells (Brault et al., 2005; Chavez et al., 2012). Moreover, the CP-RTP appeared to be 

required for interacting and passing through the ASG membranes (Bruyère et al., 1997; 

Brault et al., 2000; Peter et al., 2008). Furthermore, Cilia and colleagues suggested critical 

virion-host protein interactions required for aphid transmission of cereal yellow dwarf 

virus (CYDV), or that the virus infection modulates phloem protein expression to favor 

aphid virus uptake (Cilia et al., 2012). Investigating the particles of luteoviruses, which are 

transmitted in a circulative non-propagative manner, showed that they are transported 

across cells through membrane vesicles, preventing any contact between the virus and 

the cytoplasm of aphid’s cells (Brault et al., 2007). Yet there is no evidence that 

nanoviruses have the same manner. 

5.3. Nanoviruses 

The genus Nanovirus (family: Nanoviridae) currently comprises eight species 

accepted by the International Committee on the Taxonomy of Viruses (ICTV). Nanoviruses 

predominantly infect legumes which are important crops for human and animal 

consumption and are also used to improve soil health or as green manures (Johnstone & 

Mclean, 1987; Vetten et al., 2011; Foyer et al., 2016; Gaafar et al., 2016). Two potentially 

new nanovirus species have been recently discovered from Sophora alopecuroides L. (also 

a legume) and Petroselinum crispum (Mill.) Fuss (belonging to the family of Apicacea) 

(Heydarnejad et al., 2017; Vetten et al., 2019). Nanovirus infection can cause a variety of 

different symptoms e.g., severe yellowing and dwarfing of plants or necrosis of plant 

tissues (Vetten et al., 2011; Saucke et al., 2019). In some cases, the infection can lead to 

early death of the host plants thus leading to crop failures (Grylls & Butler, 1956; Makkouk 
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et al., 1994; Makkouk et al., 1998; Kumari & Makkouk, 2007; Saucke et al., 2019). 

Nanoviruses have been found in Australia, Asia, Northern Africa and the Middle East 

(Grylls & Butler, 1956; Chu & Helms, 1988; Makkouk et al., 1994; Sano et al., 1998; 

Abraham et al., 2012); a sporadic outbreak of faba bean necrotic yellows virus (FBNYV) 

has been reported in Spain (Ortiz et al., 2006). In 2009, the nanovirus pea necrotic yellow 

dwarf virus was discovered for the first time in Central Europe (Germany) (Grigoras et al., 

2010a); in subsequent surveys this and other nanovirus species were discovered in Europe 

(Grigoras et al., 2014; Gaafar et al., 2016; Gaafar et al., 2017; Gaafar et al., 2018a; Vetten 

et al., 2019).   

Nanoviruses possess a multipartite single-stranded circular DNA genome of at 

least eight components (Vetten et al., 2011). Each component is about 1kb nucleotides in 

size and encodes a single protein. Each DNA component is encapsidated separately in a 

single non-enveloped icosahedral virion (T=1 symmetry) (Vetten et al., 2011). Several 

nanovirus-associated alphasatellite DNAs occur frequently with natural infection of 

nanoviruses; however, their biological function is unclear (do they impact infectivity and 

symptomology? Do they influence the host range or aphid transmissibility?) (Gaafar et al., 

2018a; Gallet et al., 2018; Heydarnejad et al., 2017). Nanoviruses can evolve rapidly by 

mutations, recombination and reassortment (Grigoras et al., 2010b; Grigoras et al., 2014) 

and are closely related to babuviruses, the second accepted genus in the Nanoviridae 

family (Vetten et al., 2011). Only six genomic components are known for babuviruses, 

which infect banana and cardamom. 

5.4. Aphid transmission of nanoviruses 

Nanoviruses are restricted to the phloem of infected host plants and are therefore 

not transmissible by seeds or mechanical means (Vetten et al., 2011). They are dependent 

on vectors for the transmission from plant to plant. In nature, they are transmitted by a 

range of aphid species, e.g., the pea aphid Acyrthosiphon pisum Harris, the cowpea aphid 

Aphis craccivora C.L. Koch or the bean aphid A. fabae Scopoli. It is unclear whether 

nanoviruses can be transmitted by other aphid species such as Aphis gossypii Glover or 

Macrosiphum euphorbiae Thomas (Vetten et al., 2016). Nanoviruses are transmitted in a 

PC manner (Franz et al., 1998; Vetten et al., 2011). This means that aphids can only ingest 

the virus particles from infected plants when they are actively feeding on phloem sap. The 

viral particles need to cross the cellular barriers from the aphids’ gut epithelium into the 
hemolymph; from the hemolymph, translocation to the salivary glands needs to occur 

(Figure 1) (Blanc et al., 2014). The viruliferous aphid can then inject the particles with 

saliva during feeding on new plants. 

For successful transmission of wild-type virus to new host plants, all eight genomic 

components need to be acquired, translocated within the vector and transmitted to new 

hosts. Interesting, Sicard and colleagues discovered that the relative frequencies of 

certain components of faba bean necrotic stunt virus (FBNSV) changed reproducibly, not 



 

169 | P a g e  

C
h

a
p

te
r 5

: A
p

h
id

 tra
n

sm
issio

n
 o

f n
a

n
o

v
iru

se
s

 

only depending on the host plant but also within different aphid vectors (Sicard et al., 

2013; Sicard et al., 2015). It appears that these changes occur in early stages of the virus 

cycle in aphids but there were no further changes in the segment relative frequencies 

thereafter when the virions are translocated into the salivary glands (Sicard et al., 2015). 

These frequencies were affected partially by the initial genomic formula from the source 

plant. These effects were observed in three FBNSV vector species A. pisum, A. craccivora 

and Myzus persicae Sulzer. Interestingly, similar amounts of FBNSV gene copy numbers 

(GCN)  accumulated and changes in the FBNSV genomic formula were also observed in 

the non-vector species A. gossypii (Sicard et al., 2015). 

The most detailed transmission studies have been carried out with FBNYV. FBNYV 

infects several food and fodder legumes in west Asia and North Africa and Europe, and 

has caused huge epidemics in the past (Makkouk et al., 1994; Kumari et al., 2009; Ortiz et 

al., 2006). Franz and colleagues investigated the minimum AAP of FBNYV for two vector 

species, A. craccivora and A. pisum. They found that the AAPs were similar for both 

species, ranging from 15 to 30 minutes. Additionally, the minimum IAP was determined 

for both aphid species and ranged between 5 and 15 minutes. However, longer AAPs and 

IAPs resulted in higher virus transmission rates. After 72 hours of feeding on infected 

plants, many aphids retained and transmitted FBNYV throughout their life in an erratic 

manner (Franz et al., 1998). FBNYV particles were not lost during molts, i.e., the aphids 

remained viruliferous for up to one month, but FBNYV was not passed on to 

parthenogenetic offspring and no indication for viral replication within the aphids was 

found. Interestingly, nymphs were more efficient in transmitting FBNYV than adult aphids, 

a phenomenon also observed in other persistently transmitted viruses (Simons, 1953; 

Zhou & Rochow, 1984; Damsteegt & Hewings, 1986; van den J. M. Heuvel, 1991). 

In further studies, Franz and colleagues have shown that no transmission occurred 

when using purified virions from artificial diets or directly microinjected into the vector’s 
hemocoel would lead to successful transmission of FBNYV (Franz et al., 1999) It was, 

however, possible to infect plants directly with purified virions using gold particle 

bombardment (Franz et al., 1999). These bombarded plants acted as reservoir of FBNYV 

for further successful virus acquisition by aphid and FBNYV transmission to uninfected 

target plants (Franz et al., 1999). Franz and colleagues (1999) suggested that a helper 

factor (HF) was required for successful aphid transmission and that the HF was either 

absent or non-functional in purified virus solution. Their hypothesis was supported by 

complementation experiments using two different FBNYV strains: when feeding on plants 

infected with one strain, acquisition and transmission of the second strain from artificial 

diets was possible (Franz et al., 1999). Similarly, microinjection of a second, purified, strain 

into aphids that had fed on plants infected with the first strain led to successful 

transmission. The authors speculated that the HF would be an intermediate viral protein, 

attaching the virus capsid protein (CP) to receptors in the vector to facilitate virus 
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transport across the hemolymph - salivary gland interface (Franz et al., 1999). However, 

at the time they were unable to identify the nature of the HF. 

The availability of infectious clones for nanoviruses including FBNYV and FBNSV 

allowed to study the functions of the genomic components of nanoviruses in more details 

(Timchenko et al., 2006; Grigoras et al., 2009; Grigoras et al., 2018). Using agroinoculation 

of all eight components of FBNSV, plants showed severe symptoms 10 to 14 days post 

inoculation (Grigoras et al., 2018). Omitting one component at a time, no change in 

infectivity or symptomology was found for DNA-C (encoding a cell-cycle-link protein [C-

link]) or DNA-U4 (encoding for a protein of unknown function). Omission of DNA-R 

(encoding the master replicase protein [M-Rep]), DNA-S (coat protein) or DNA-M 

(movement protein [MP]) resulted in the absence of infection on inoculated plants, 

therefore no symptoms could be observed. Omission of DNA-U2 or DNA-U1 (both 

encoding hypothetical proteins of unknown function) lead to reduced symptom severity, 

but virus transmission from inoculated plants by cowpea aphids was still possible. More 

strikingly, by omitting DNA-N (encoding for the nuclear shuttle protein (NSP)), plants 

became infected showing similar symptoms as when all eight viral components were 

inoculated, whereas the aphid transmission was completely abolished (Grigoras et al., 

2018). The virions that were produced within the plants inoculated with the seven 

components excluding DNA-N, accumulated to similar titers and were virtually 

morphologically and structurally indistinguishable from wild-type FBNSV particles. 

Introduction of a 13 amino acid tag at the carboxy-terminus of NSP also abolished aphid 

transmission. Interestingly, when the seven FBNSV components minus NSP were 

combined with DNA-N from a different nanovirus, pea necrotic yellow dwarf virus 

(PNYDV), the aphid transmission was restored indicating that this protein is the helper 

factor that has been previously proposed by Franz and colleagues (1999). 

5.5. What do we know about NSP? 

DNA-N of both nano- and babuviruses encodes the NSP. NSP of the babuvirus 

banana bunchy top virus (BBTV) was preferentially targeted to the nucleus of infected 

cells when expressed alone, but in the presence of the viral movement protein, NSP was 

relocalized to the cell periphery (Wanitchakorn et al., 2000). Its function has been mainly 

inferred from comparisons with the homologue proteins of the closely related 

geminiviruses (Wanitchakorn et al., 2000; Krapp et al., 2017). Supposedly, NSP shuttles 

replicated viral DNA out of the nucleus of infected cell. NSPs of geminiviruses i.e., cabbage 

leaf curl virus (CaLCuV), tomato golden mosaic virus (TGMV) and tomato crinkle leaf 

yellows virus (TCrLYV) were found to interact with NSP-interacting kinases (NIKs) in vitro 

(Fontes et al., 2004; Mariano et al., 2004). NIKs are leucine-rich-repeat (LRR) receptor-

like-kinases (RLKs) and are membrane localized protein. LRR-RLKs are involved in plant 

developmental processes and/or resistance response (Gómez-Gómez & Boller, 2000; Jinn 

et al., 2000; Fontes et al., 2004). Fontes and colleagues found a positive correlation 

between infection rate and loss of NIK function (Fontes et al., 2004). In vitro binding 
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between the NSPs and NIKs inhibit NIK kinase activity and prevent the signal transduction 

pathway activation that would trigger an antiviral defense response (Fontes et al., 2004; 

Carvalho et al., 2008; Santos et al., 2009; Santos et al., 2010). 

In infected faba beans, FBNSV-NSP could only be localized in the phloem-tissue 

where also FBNSV-CP was detected (Grigoras et al., 2018). Using green fluorescence 

protein tagging and bimolecular fluorescence complementation (BiFC), Krenz and 

colleagues were able to localize NSP of PNYDV in the nucleus and in the cytoplasm of 

infected plant cells (Krenz et al., 2017). Using BiFC, PNYDV-NSP was found to interact with 

the stress granule component G3BP which led to a speculation of the involvement of NSP 

in modulation of the plant stress response pathway (Krapp et al., 2017). Additionally, NSP 

was found to interact with the M-Rep, encoded by DNA-R, which may affect the virus 

infection cycle (Krapp et al., 2017). Krenz and colleagues hypothesized that NSP may 

regulate the virus replication by interacting with M-Rep as in the case of the geminivirus 

REn (Hanley-Bowdoin et al., 2013; Krapp et al., 2017). Furthermore, the NSP was found to 

self-interact in BiFC experiment in a yeast two-hybrid assay (Krenz et al., 2017). 

A recent study on the closely related BBTV found that NSP was located in both the 

nucleus and the cytoplasm of infected Nicotiana benthamiana Domin (Ji et al., 2019). The 

presence of BBTV-NSP affected the cellular distribution of BBTV-CP in colocalization 

experiments in planta. Co-immunoprecipitation verified the interaction between the 

BBTV-NSP and BBTV-CP suggesting that BBTV-NSP relocates BBTV-CP in infected cells (Ji 

et al., 2019). The direct role of NSP in nanovirus acquisition, translocation within aphids 

and/or inoculation of uninfected plants is currently unknown. It is also unclear how NSP 

does interact with nanovirus virions or other viral proteins in planta, as these interactions 

were only shown in model plants.  

5.6. Virus translocation within aphids 

Using immunofluorescence, Watanabe and colleagues showed that BBTV coat 

protein (CP), encoded by DNA-S, localizes in the anterior midgut cells of Pentalonia 

nigronervosa Coquerel aphids (Bressan & Watanabe, 2011). The labelling intensity 

suggested high concentration accumulation in epithelial cells, but no accumulation could 

be observed in the posterior midgut or hindgut of aphids. In addition, accumulation was 

observed in principal salivary glands but not in the accessory salivary glands (Bressan & 

Watanabe, 2011) In further studies, Bressan and Watanabe used PCR and 

immunofluorescent assays to examine possible translocation pathways over time 

(Watanabe & Bressan, 2013). They observed a progressive internalization of BBTV from 

the gut lumen to the anterior midgut, where accumulation occurred, followed by 

translocation into the principal salivary glands via the hemolymph (Watanabe & Bressan, 

2013). However, they suggested also an alternative route whereby direct movement of 

BBTV from the anterior midgut to the principal salivary gland would be possible.  
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To address these possibilities, they used co-labelling assays of BBTV and cellular 

compartments of the aphid vectors (Watanabe et al., 2016). These experiments suggest 

that an endosome-independent process is used by BBTV for internalization through the 

gut tissue. In contrast to the cellular translocation mechanisms used by luteovirids, BBTV 

appears to use endocytosis-independent processes for internalization that does not 

include endosomes, clathrin- and caveolae-mediated endocytosis, phagocytic uptake or 

raft-mediated cytosis (Watanabe et al., 2016). In transmission electron microscopy 

studies, large numbers of vesicles were observed in the anterior midgut of BBTV-carrying 

aphids but not in aphids that were reared on healthy banana plants (Vetten et al., 

2016)However, it needed to be confirmed that these vesicles contain BBTV particles.  

Circulative plant viruses such as luteovirids and geminiviruses were found to bind 

to GroEL proteins, produced by endosymbiotic bacteria (Buchnera aphidicola) inhabiting 

their vectors (Munson et al., 1991; Kliot & Ghanim, 2013). Such interaction seems to 

protect the virus particles from degradation in the aphids’ haemocoel. To date, there is 
no evidence that nanovirids interact with the GroEL proteins. Although GroEL proteins 

from Buchnera were detected in the hemolymph of P. nigronervosa, no interactions with 

BBTV virions could be observed using immunocapture PCR, dot blot and far-western blot 

analyses (Watanabe et al., 2013). Nanovirids translocate in large clusters of virions which 

may protect individual virions from degradation and could prevent them from interacting 

with proteins such as GroEL (Vetten et al., 2011; Watanabe et al., 2013; Vetten et al., 

2016). It is also possible that NSP assists in preventing degradation in the hemocoel. To 

date, the interactions of BBTV-NSP and the translocation of virions through the aphid 

vector have not been investigated. 

5.7. Concluding remarks 

Even though we have seen a huge advancement in nanovirus research in the 

recent years, many questions regarding the interactions of nanoviruses with their hosts 

and vectors remain. As more and more nanoviruses and nanovirus-associated satellites 

are being discovered, it is necessary to understand these interactions in order to prevent 

nanovirus epidemics as we have seen in the past. As with all plant virus diseases, no 

curative methods are available once a plant is infected; preventive measures such as 

planting virus-resistant varieties (if available) or preventing spread by vectors by 

decreasing vector population for example. It appears that the mode of nanovirus 

transmission by aphids is more complicated than previously thought. It is noteworthy that 

NSP has been described as helper factor necessary for successful transmission by aphids. 

However, its role and mode of action during the transmission process currently remains a 

mystery. Additionally, it needs to be confirmed whether on the self-interaction between 

NSPs found in in vitro studies play a role within the aphids or within the transmission 

process. We also do not know if other viral proteins such as the products of DNA-U1, -U2 

and -U4 or the associated alphasatellites influence aphid transmission or virus-vector 

interactions. It was shown that M-Rep interacts with both the CP and NSP and may 
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therefore also influence virus-aphid interactions. It is even more important to identify the 

motifs which interact with the aphid and host cells for trafficking.  

It appears that the mode of nanoviruses aphid transmission not as trivial than it 

was suggested before. Although both CP and NSP are required for successful transmission, 

the observation that the GCN of the different segments are host-dependent and can 

change in aphid vectors raises the question whether these “virus formulas” are a type of 
host/vector adaptation and whether these changes are necessary for virus transmission 

or not. Additional studies on the relation of these changes and the erratic retention and 

transmission of nanoviruses by aphids are clearly required.  

Furthermore, studying aphid probing and feeding activities on nanovirus-infected 

plants (before, during, or after virus acquisition) is crucial. In addition, we need data on 

aphid fitness on nanovirus-infected plants as it is currently not known if and how 

nanovirus infection influences its vectors, something which has been shown for other 

viruses (Alvarez et al., 2007; Ziebell et al., 2011). There are many more research questions 

that need to be addressed in this exciting topic of nanovirus-vector-host plant 

interactions.  
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Chapter 6: Probing and feeding 

behaviours of Acyrthosiphon pisum 

change on nanoviruses-infected faba 

beans 
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6.1. Abstract 

The probing and feeding behaviours of the pea aphid, Acyrthosiphon pisum 

(Hemiptera: Aphididae) on nanoviruses- infected faba bean (Vicia faba) were investigated 

using electrical penetration graph (EPG). We assessed the behaviours of A. pisum on V. 

faba each infected with a different nanovirus i.e., FBNYV and PNYDV. Moreover, we 

studied the effect of DNA-N, the aphid transmission helper component, on the aphid 

probing and feeding behaviours. The results showed that nanovirus infection changes the 

behaviours of A. pisum, by making the plants less attractive to the aphids. Moreover, the 

absence of DNA-N did not affect the behaviour of the aphids.  

6.2. Introduction 

Viruses of the genus Nanovirus (family: Nanoviridae) are multipartite plant DNA 

viruses that infect predominantly legumes and can cause crop losses (Vetten et al., 2011; 

Makkouk et al., 2014). Nanoviruses have been reported from Asia, Australia, Europe, and 

Africa (Gutierrez et al., 1971; Makkouk et al., 1994; Ortiz et al., 2006; Kumari et al., 2009). 

The genus Nanovirus has eight assigned species recognized by the International 

Committee on Taxonomy of Viruses i.e., Black medic leaf roll virus (BMLRV), Faba bean 

necrotic stunt virus (FBNSV), Faba bean necrotic yellows virus (FBNYV), Faba bean yellow 

leaf virus (FBYLV), Milk vetch dwarf virus (MVDV), Pea necrotic yellow dwarf virus (PNYDV), 

Pea yellow stunt virus (PYSV) and Subterranean clover stunt virus (SCSV). Their genomes 

consist of eight circular ssDNA components (DNA-C, -M, -N, -R, -S, -U1, -U2 and -U4) of 

about 1kb each (Vetten et al., 2011). Each component is encapsidated separately in non-

enveloped virions (Vetten et al., 2011). Additionally, several associated alphasatellite 

DNAs can also be detected (Gaafar et al., 2018a; Gallet et al., 2018). 

Nanoviruses are phloem-restricted and are transmitted by aphids e.g., Aphis 

craccivora and Acyrthosiphon pisum (Franz et al., 1998; Vetten et al., 2016). Nanovirus 

aphid transmission occurs in a circulative non-propagative manner, though a recent study 

showed a more complex manner (Sicard et al., 2015). When the aphids feed on infected 

plants, the viruses are acquired with the phloem sap, then translocate from the gut to the 

haemolymph to the salivary glands in unknown mechanism without replicating or 

expressing their genes.  Sicard and colleagues found reproducible changes in the relative 

frequencies of some of the FBNSV components in A. pisum, A. craccivora, and Myzus 

persicae aphids compared to the host plants they fed on (Sicard et al., 2015). These 

changes occurred inside the gut but did not change later when the virus particles are in 

the salivary glands (Sicard et al., 2015). Thus, they suggested that the canonical circulative 

non-propagative transmission might not fit with nanoviruses. 

Franz and colleagues suggested that a virus helper factor (HF) is required for 

FBNYV aphid transmission (Franz et al., 1999). They also suggested that the HF might 

attach the nanovirus coat protein to receptors in the aphids (Franz et al., 1999). Grigoras 
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and colleagues found that the nuclear shuttle protein (NSP) encoded by DNA-N is the 

required HF for PNYDV aphid transmission (Grigoras et al., 2018). However, it is currently 

unclear at which step of the transmission pathway NSP is involved. 

Several factors can influence the virus-aphid-plant interactions, including the 

chemical composition and physical structure of the plant (Guo et al., 2014). It has also 

been shown that virus infection can affect the feeding behaviour of their vectors and 

therefore the transmission (Ziebell et al., 2011). Electrical penetration graph (EPG) is a 

powerful tool for investigating feeding behaviour of aphids (Tjallingii, 1978, 1985). It has 

been used to demonstrate that the feeding behaviour of non-viruliferous Myzus persicae 

was enhanced on potato leafroll virus (PLRV) infected potato plants (Alvarez et al., 2007).  

With the recent advancement of nanovirus research, we were interested whether 

nanovirus infection would alter the feeding behaviour of non-viruliferious aphids. We 

therefore aimed to study the effects of nanoviruses infection on aphid probing and 

feeding behaviours using the EPG technique, comparing the effects of two nanoviruses 

(FBNYV and PNYDV) on the feeding and probing behaviour of A. pisum on faba beans (Vicia 

faba). Moreover, to assess the effect of DNA-N absence on these behaviours. 

6.3. Materials and methods 

6.3.1. Plants and aphids: 

V. faba plants (variety: Tattoo) were grown in a greenhouse at 16/8 h light/dark 

(natural daylight with additional growth light Phillips IP65, 400 W) and 22°C. In all 
experiments, 11 days old seedlings were used.  

The pea aphids, A. pisum (Harris) (JKI clone), used in this study were reared 

continuously in an insect-proof cage on faba bean plants in a climate chamber at 22°C and 

16/8 light/dark (sodium high pressure lamps). Fresh plants were added frequently to the 

cage to prevent overcrowding. 

To synchronize the aphids for the experiments, 10 viviparous adults were placed 

on V. faba plants in a cage in greenhouse chamber at 22°C 16/8 h light/dark. After 24 

hours, the adults were removed, and the newly born nymphs were left for about 13 days. 

This was repeated daily to have enough aphids of almost the same age (about 24 h 

difference) for each day of recording. 

6.3.2. Endosymbiont detection and confirmation: 

DNA was extracted from three sets of 10 aphids collected in a 2ml tube according 

to (Shahjahan et al., 1995). PCR was performed using primers for A. pisum endosymbionts 

(Tsuchida et al., 2002). 
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6.3.3. Virus isolates maintenance and confirmation: 

Three nanoviruses were used in this study i.e., faba bean necrotic stunt virus 

(FBNSV) isolate JKI-2000 from Ethiopia, faba bean necrotic yellows virus (FBNYV) isolate 

AZ originally from Azerbaijan (Grigoras et al., 2014), and pea necrotic yellow dwarf virus 

(PNYDV) isolate Drohndorf-15 originally from Germany (Grigoras et al., 2010a). FBNYV and 

PNYDV were propagated by aphid transmission using A. pisum from infected plants. For 

FBNSV, agrobacteria containing infectious clones constructed as described in (Grigoras et 

al., 2009) (kindly provided by Prof. Stephane Blanc) were agro-inoculated to V. faba plants 

as described in (Timchenko et al., 2006). 

For all three viruses, infection was confirmed by ELISA (Gaafar et al., 2016; Gaafar 

et al., 2017). However, for confirmation of FBNSV infection an additional PCR was carried 

out using FBNSV specific primers for DNA-R and DNA-N as described in (Grigoras et al., 

2018). 

6.3.4. Electrical penetration graph (EPG) monitoring: 

Adult apterae A. pisum were starved for about 1 hour before the recording. Each 

aphid was immobilized using a vacuum-operated plate under a binocular microscope. A 

gold wire (insect electrode), 18μm in diameter and about 3cm long, was glued to the aphid 

dorsum using a small drop of water-based silver glue and connected to the EPG probe 

(EPG Systems, Wageningen, The Netherlands). A copper wire, 0.2 cm in diameter and 

10cm long, was inserted into soil near to the plant root (plant electrode). The two 

electrodes were connected to an eight-channel GIGA-8 direct current amplifier (EPG 

Systems). The wired insect was placed on the stabilised abaxial surface of a faba bean leaf. 

The signal was digitized (100 Hz) using a DI-710 board (Dataq Instruments, Akron, OH, 

USA) and analysed with Stylet+ d software (EPG Systems). The experiment was carried out 

in an electrically grounded Faraday cage at a room temperature maintained around 22°C. 

After starting the recording, the output voltage was optimized during the first probes for 

each channel by adjusting the plant voltage and gain (Giga manual; EPG Systems). The 

probing and feeding behaviours of individual aphids on faba bean plants was monitored 

for 9 hours. 

6.3.5. EPG parameters: 

The recorded waveforms were analysed with Assisted Analysis of Electrical 

Penetration Graph (A2EPG) software (Adasme-Carreño et al., 2015). For the calculation of 

the EPG parameters, the Excel‐VBA macro prepared by Prof. Edgar Schliephake was used 
(Schliephake et al., 2013). Eighty-nine parameters were estimated and used for statistical 

analysis. 

6.3.6. Statistical analysis: 

The statistical analysis was carried out using scripts written on R software (version 

3.5.1) (R Core Team, 2019). The EPG data were not normally distributed, thus non-
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parametric Kruskal-Wallis test was used for analysis. For significant different parameters, 

Pairwise Wilcox test was used to know which pairs of groups are different (P value 

adjustment method: BH). Plotting was done using ggplot package.  

6.3.7. Experimental design: 

6.3.7.1. Effect of nanovirus infection on the behavioural responses of A. pisum during 

probing and feeding on faba beans: 

Ten viruliferous aphids per plant were placed on 11-day old V. faba seedlings and 

let to feed on the plants for five days. The aphids were gently removed using water 

without any insecticides, and the plants were checked to confirm that no aphids (adult or 

nymph) were still present. Ten days after removing the aphid the plants were used for 

EPG experiments. Healthy control plants were sown the same time with the other plants 

and used for EPG experiments 26 days from sowing. At this stage, synchronised non-

viruliferous adult aphids were used (with a maximum 24 hours age difference). After EPG 

recording, the exposed leaves were cut and used for ELISA confirmation tests. The 

recording was done for 9 hours, with all the four experimental parameters were present 

at the same time.  

The four treatments in this experiment: 

1- A. pisum feeding on FBNYV infected V. faba (I-FBNYV) 

2- A. pisum feeding on PNYDV infected V. faba (I-PNYDV) 

3- A. pisum feeding on V. faba pre-treated with A. pisum (H-Aphid) 

4- A. pisum feeding on healthy V. faba without treatments (Healthy) 
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Figure 1: Experimental design to investigate the effect of nanovirus infection on probing and 

feeding behaviour of A. pisum on faba beans. I-FBNYV: FBNYV infected plants, I-PNYDV: plants 

infected with PNYDV, H-Aphid: plants pre-treated with aphids, and Healthy: plants without 

treatments. 

 

6.3.7.2. Effect of the nuclear shuttle protein (NSP) of FBNSV on the behavioural 

responses of A. pisum during probing and feeding on faba bean: 

After 11 days from seeds’ sowing, the plants were agroinoculated as described 
before using these parameters: a) a mix of agrobacteria carrying all eight FBNSV 

components, b) a mix of agrobacteria carrying seven components of FBNSV (missing DNA-

N), and c) agrobacteria not containing any FBNSV infectious clones. Fifteen days from 

agroinoculation, the plants were used for EPG. Healthy control plants were sown the same 

time with the other plants and used for EPG 26 days from sowing. Non-viruliferous adult 

aphids were used. After recording, the leaves where the aphid probed were cut and used 

for ELISA and PCR confirmation tests. The recording was done for 9 hours, with all the four 

experimental parameters present at the same time. 
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The four treatments in this experiment: 

1- A. pisum feeding on V. faba agroinoculated with agrobacteria containing the 

infectious clones of the eight components of FBNSV (I-FBNSV) 

2- A. pisum feeding on V. faba agroinoculated with agrobacteria containing the 

infectious clones of the seven components of FBNSV without component DNA-

N (I-FBNSV/-N) 

3- A. pisum feeding on V. faba agroinoculated with agrobacteria without any 

infectious clones (H-Agro) 

4- A. pisum feeding on healthy V. faba without treatments (Healthy) 

 

Figure 2: Graphical illustration of the experimental design for the effect of NSP absence 

experiment. I-FBNSV: plants agroinoculated with the eight components of FBNSV, I-FBNSV/-N: 

plants agroinoculated with seven components of FBNSV without DNA-N, H-Agro: plants 

agroinoculated with agrobacteria without infectious clones, and Healthy: plants without 

treatments. 
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6.4. Results 
6.4.1. Endosymbiotic bacteria: 

PCR analyses confirmed the presence of endosymbiotic bacteria in the JKI clone of 

the A. pisum colony. The bacteria belonged to the genera: Buchnera, Hamiltonella and 

Spiroplasma. 

6.4.2. Virus-induced symptoms: 

The faba bean plants infected with FBNYV isolate AZ showed strong symptoms of 

top leaf carling and hardening, and the plants were severely dwarfed compared to the 

controls at the time of the EPG recording. The plants infected with PNYDV Drohndorf-15 

showed only slight yellowing at the time of recording. In addition, the agroinoculated 

plants with FBNSV and FBNSV/-N showed top leaf carling and the plants were more 

stunted than control plants. Plants that were agroinoculated without the virus infectious 

clones showed no obvious symptoms. 

6.4.3. EPG probing and feeding behaviour: 

6.4.3.1. Effect of nanovirus infection on the behavioural responses of A. pisum during 

probing and feeding on faba bean: 

On the non‐treated healthy controls (Healthy), A. pisum spent 93.1 % of the 

recorded time probing while the phloem activity was 67.5 % (Figure 3). The time to first 

probing was 4623.8 ± 776.7 sec (Table 1). The average number of pathways (n_C) was 25.4 

± 3.4 and the average number of intracellular punctures (n_pd) was 149.1 ± 21.8 (Table 

1). The average total derailed stylet mechanics (s_F) was 1244.0 ± 535.2 sec (Table 1). The 

salivation period (s_E1) was 468.8 ± 160.7 sec and the time to start the first feeding 

(t_1E2) was 4011.9 ± 698.5 sec (Table 1). The average total duration of sustained (>10 

min) phloem sap ingestion (s_sE2) was 21428.4 ± 1611.3 sec. 
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Figure 3: Percentages of the main parameters recorded for A. pisum feeding on FBNYV and 

PNYDV infected V. faba (I-FBNYV and I-PNYDV, respectively), aphid pre-treated healthy plants 

(H-Aphid) and healthy plants using EPG. The parameters are Np: non probing, C: pathway, pd: 

intracellular puncture, E1: salivation, E2: ingestion, F: derailed stylet mechanics. 
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On plants pre-treated with aphids (H-Aphid), the EPG parameters were not 

significantly different from those on the Healthy plants. The probing time of A. pisum was 

86.6% and phloem activity was recorded (57.5%) (Figure 3). The n_C was 37.6 ± 10.2, n_pd 

was 112.2 ± 24.5, and the s_F was 2747.0 ± 916.5 sec (Table 1). The s_E1 was 466.9 ± 

108.6 sec and the t_1E2 took 6369.7 ± 987.6 sec on average (Table 1). The s_sE2 was 

18128 ± 2750.7 sec. 

When A. pisum feed on V. faba infected with FBNYV (I-FBNYV), the EPG 

parameters were significantly different in many cases than those recorded when feeding 

on healthy plants H-Aphid and the Healthy. The aphids probed and fed on I-FBNYV for 

69.5% of the recording time (9 hours) on average, shorter than the other treatments and 

spent shorter time on the phloem, only 26.4% of the recording time (Figure 3). Once the 

stylet reached the phloem, the salivation was not significantly different from the other 

three treatments. Interestingly, the t_1E2 was significantly longer than the other 

treatments 11450.3 ± 2250.2 seconds (Table 1). Outside the phloem, the n_C was 

significantly different with the Healthy but not with H-Aphid (Table 1). The derailed stylet 

mechanics was also not significantly different between the different treatments. The 

s_sE2 (8269.8 ± 2546.7 sec) also significantly decreased.  

On PNYDV-infected plants (I-PNYDV), the EPG parameters were significantly 

different in several phloem related activities compared to I-FBNYV and Healthy plants but 

did not differ from the H-Aphid. A. pisum’s probing time was 83.8% significantly higher 
than I-FBNYV but lower than the H plants, but not significantly different from H-Aphid 

plants (Figure 3). The phloem activity on the I-PNYDV was 50.7% of the recorded time 

(Figure 3) also significantly higher than the I-FBNYV, lower than the Healthy, and not 

different from H-Aphid. The salivation activity was not significantly different between I-

PNYDV and the other treatments. The t_1E2 (5090.3 ± 657.8 seconds) was significantly 

shorter than I-FBNYV but not significantly different form the controls (Table 1). The n_C 

was significantly lower than I-FBNYV but not different from both controls. The s_sE2 was 

16100.2 ± 1594.6 sec, significantly higher than I-FBNYV but not different from Healthy and 

H-Aphid. 

6.4.3.2. Effect of the nuclear shuttle protein (NSP) of FBNSV on the behavioural 

responses of A. pisum during probing and feeding on faba bean: 

In general, the EPG parameters for A. pisum feeding on the four different V. faba 

plants were not significantly different (Table 2). A. pisum probed and fed on average on 

Healthy plants for 81.1% of the recording time (Figure 4). The aphids spent 45.4% phloem 

feeding and 1.9% salivating on H plants (Figure 4). The n_C, n_pd and t_1E2 were 36.1 ± 

5.6, 193.8 ± 26.2 and 9286.4 ± 1771.9 sec, respectively (Table 4). The n_E1 and n_E2 of A. 

pisum were 6.0 ± 0.9 and 3.4 ± 0.6, respectively. The n_F and s_F were 0.5 ± 0.3 and 981.4 

± 482.1 sec, respectively. The s_sE2 was 14395.3 ± 2037.3 sec. 
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Figure 4: Percentages of the main parameters recorded for A. pisum feeding on I-FBNSV and I-

FBNSV/-N infected V. faba, agrobacteria pre-treated healthy plants (H-Agro), and healthy plants 

using EPG. The parameters are Np: non probing, C: pathway, pd: intracellular puncture, E1: 

salivation, E2: ingestion, and F: derailed stylet mechanics. 

The aphids spent 70.8% of the recorded time probing on agrobacteria treated 

plants (H-Agro), which was not significantly different from on Healthy control (Figure 4). 

A. pisum spent 25.4% phloem feeding on H-Agro plants and 0.9% salivation. The n_C was 

57.0 ± 6.6, the n_pd was 169.5 ± 19.9 and t_1E2 was 11986.6 ± 3009.8 sec (Table 4). The 

n_E1 and n_E2 were 4.0 ± 0.7 and 3.3 ± 0.4, respectively. The n_F and s_F of A. pisum on 

H-Agro were significantly higher than from on Healthy plants with 2.1 ± 0.5 and 5893.4 ± 

1165.8 sec, respectively (Table 4). The s_sE2 was 7827.2 ± 2075.2 sec, not significantly 

different from on the Healthy. 

A. pisum probed and fed on FBNSV-infected plants (I-FBNSV) for 75.9% of the 

recording time on average. On average, the aphids spent less than 50% of the recording 

time (9 hours) on the phloem of I-FBNSV with 45.4% ingestion and 0.6% salivation (Figure 

4). The n_C on I-FBNSV was 49.5 ± 10.2 and the n_pd was 122.5 ± 31.1 (Table 2). The n_F 

and s_F (2.5 ± 0.6 and 4277 ± 929, respectively) were significantly different from the H-

Agro, but not from the Healthy. The t_1E2 was 14267.7 ± 3965.3 sec (Table 2). Although 

the s_E2 (14697 ± 3858 sec) was not significantly different from the other treatments, the 

n_E2 was 1.2 ± 0.3 significantly lower than on H-Agro and on Healthy plants. The s_sE2 

was 14669.1 ± 3865.8 sec. 
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On I-FBNSV/-N plants, the aphids spent 72.5% of the recorded time probing, not 

significantly different from the other treatments (Figure 4). Aphids spent only 28.8% of 

the recording time phloem feeding and 0.9% salivating (Figure 4). The n_C was 56.0 ± 6.8, 

the n_pd was 201.1 ± 24.2 and the t_1E2 was 14824.4 ± 3047.8 sec (Table 4). None of the 

phloem activities were significantly different from the other treatments. The n_F and s_F 

(2.5 ± 0.6 and 4277 ± 929 sec, respectively) were significantly higher than on Healthy 

plants.  

6.5. Discussion 
6.5.1. Endosymbionts of the JKI A. pisum clone  

There is evidence that microbial symbioses influence aphid-plant interactions 

(Frago et al., 2012). It was therefore necessary to identify the symbionts in the A. pisum 

clone JKI used in this study. In the JKI A. pisum clone, the essential intracellular symbiotic 

bacterium Buchnera was detected. The primary symbiont (P‐symbiont) Buchnera is 

present in almost all aphids in the cytoplasm of their mycetocytes (or bacteriocytes) in 

their abdomen (Buchner, 1965; Baumann et al., 1995). Buchnera is tightly restricted to 

the aphid’s body cavity. Buchnera symbionts and their aphids are intimately mutualistic 

(Houk & Griffiths, 1980; Ishikawa & Yamaji, 1985; Ohtaka, 1991). It was found that the 

Buchnera cannot survive when removed from their host cells, and that aphids suffer 

sterility or even death when deprived of Buchnera (Houk & Griffiths, 1980; Ishikawa & 

Yamaji, 1985; Ohtaka, 1991). Thus, it is not surprising to detect such intimately mutualistic 

symbionts in the JKI aphid clone.  

In addition to Buchnera, two facultative secondary symbionts (S‐symbiont) were 
detected in the aphids. These are a pea aphid Bemisia‐type symbiont (PABS) “Hamiltonella 

defensa”, and the Spiroplasma symbiont (Fukatsu et al., 2001; Moran et al., 2005). PABS 

was detected before in both the gut and the ovaries of aphids; in contrast with the primary 

symbiont Buchnera which is restricted to cytoplasm of the bacteriocytes (Munson et al., 

1991; Wilkinson & Douglas, 1998). The removal of H. defensa from A. pisum led to 

decrease in the fecundity rate by about 20% (McLean et al., 2011). Moreover, H. defensa-

infected A. craccivora exhibiting depressed probing behaviour when tested with EPG 

(Angelella et al., 2018). Spiroplasma symbionts can negatively affect the growth, longevity 

and reproduction of A. pisum (Fukatsu et al., 2001). No information about the interaction 

between Spiroplasma sp. and plant viruses is available. Therefore, the endosymbiotic 

organization of the JKI clone of A. pisum is Buchnera (P-symbiont) and both Hamiltonella 

and Spiroplasma (S‐symbiont). The presence of other genera in the clone is still possible, 
thus for additional confirmation, we suggest using high throughput sequencing (HTS) to 

detect all the endosymbionts in the clone. 

The importance of endosymbiotic activity for virus transmission has been 

described for few systems. For example, virus particles of potato leafroll virus (PLRV; 

genus: Polerovirus, family: Luteoviridae), also a circulative, persistently-transmitted virus, 
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bind to the chaperonin protein “GroEL” produced by Buchnera aphidicola. This binding 

seems to protect the virus particles from degradation in the aphid's haemocoel (van den 

Heuvel et al., 1994). Feeding of antibiotics to Myzus persicae nymphs prior PLRV 

acquisition reduced the virus transmission by more than 70% (van den Heuvel et al., 

1994). A study on tomato yellow leaf curl virus (TYLCV) (genus: Begomovirus, family: 

Geminiviridae) using yeast two-hybrid and protein pulldown assays showed that GroEL 

protein produced by Hamiltonella interacts with the coat protein of TYLCV and facilitates 

the virus transmission (Gottlieb et al., 2010). The virus particles binding to the GroEL 

produced by symbionts seems to protect the viruses’ particles from degradation in the 
aphid's haemocoel (van den Heuvel et al., 1994; Gottlieb et al., 2010). In case of banana 

bunchy top virus (genus: Babuvirus, family Nanoviridae), there was no interaction of virus 

particles with Buchnera GroEL (Watanabe et al., 2013) and there is currently no evidence 

that nanoviruses interact with their vectors’ endosymbionts. It is suggested that 

nanovirids translocate in large clusters of virions in aphid (Watanabe & Bressan, 2013; 

Vetten et al., 2016). This might protect the individual particle from degradation and might 

be the reason that prevents the virions interaction with the GroEL (Watanabe et al., 2013). 

The biological effect of the S-symbionts and their interactions with nanoviruses are 

unknown and it is of interest to investigate these interactions. 

6.5.2. Experiment 1: Effect of nanovirus infection on the behavioural responses of A. 

pisum during probing and feeding on faba bean: 

In this study, we used EPG to evaluate whether the infection of nanoviruses to 

faba beans can change the feeding and probing behaviours of A. pisum.  

6.5.2.1. The behaviour of A. pisum changed on FBNYV and PNYDV infected faba 

beans: 

At the time of recording, FBNYV infected plants were dwarfed with top leaf carling 

and hardening. As the aphid feed on the lower surface of the top leaves with these severe 

symptoms, these cytological changes of the host plant might explain the change in the 

feeding and probing behaviour of A. pisum. The probing period on I-FBNYV was 

significantly shorter than on other treatments and aphids spent less time on phloem 

feeding (26.4% of the recording time). Persistently transmitted plant viruses such as 

nanoviruses are restricted to the phloem tissue. Thus, early phloem sap ingestion (E2) on 

virus‐infected plants will enhance transmission of phloem-restricted viruses, as aphids will 

acquire the virus faster and potentially with longer acquisition times, therefore allowing 

the acquisition of all viral components and helper factors need for successful virus 

transmission. However, the time to start the first feeding was significantly longer than the 

other treatments and the total duration of sustained phloem sap ingestion also 

decreased. The period before the first phloem activity is determined by epidermal, 

mesophyll, general vascular, and early phloem factors (Schwarzkopf et al., 2013). The 
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significantly longer t_1E2 on FBNYV‐infected plants suggests increased resistance to 
aphids in these tissues. Additionally, an increased number of probing was detected. From 

these, the manipulation of FBNYV to the infected plants appeared to be less attractive to 

A. pisum.  

In contrast to FBNYV infected plants, the symptoms induced by PNYDV on infected 

plants were mild (slight yellowing compared to the healthy plants). Yet, the probing time 

of A. pisum was significantly higher than I-FBNYV and lower than the Healthy plants and 

it was not different from H-Aphid plants. The same results were obtained for the phloem 

activity. We also observed at a later stage of the disease, that infected plants with PNYDV 

isolate Drohndorf-15 showed top leaf dwarfing, leaf curling and whole plant yellowing. 

We assume that at a later recording time with the disease development, the effect of 

PNYDV on the feeding and probing behaviours of A. pisum will increase.  

These results contradict previous studies on other circulative viruses i.e., PLRV and 

tomato yellow leaf curl virus (TYLCV), where virus infections reduced the resistance and 

increased the feeding and probing behaviours (Alvarez et al., 2007; Liu et al., 2013). 

6.5.2.2. Aphid behaviours on aphid pre-treated plants were not different from those 

on healthy and PNYDV infected plants: 

Aphid infestation is known to induce local and systemic changes to plant 

consequently the plants develop defences to limit the damage caused by aphid (Moran & 

Thompson, 2001; Cooper & Goggin, 2005; Thompson & Goggin, 2006). Moreover, 

previous infestation could affect subsequent aphid performance positively or negatively. 

For example, Aphis gossypii pre-infestation of cotton plants decreased recolonization by 

aphids (Wool & Hales, 1996). On the other hand, M. persicae pre-infestation led to an 

improvement of subsequent same aphid species performance (Sauge et al., 2002). To 

compare whether the aphid inoculation had effects on any change in behaviour of A. 

pisum on nanoviruses infected plants, additional control of plants pre-treated with aphid 

was also tested. There were no major differences between healthy untreated plants and 

aphid pre-treated plants. It was only different from I-FBNYV as other treatments with 

higher phloem activity and faster feeding starting time.  

These behavioural changes can be correlated to the visual symptoms of the virus 

disease. This is in consistence with previous finding where M. persicae only exhibit 

differences in feeding behaviour on PLRV-infected potato plants after the disease 

symptoms were observed (Alvarez et al., 2007). To confirm this hypothesis, additional 

studies are required to determine the structural and metabolic changes of nanoviruses 

infected plants during the development of the disease symptoms. Whether this is due to 

a change in the phloem sap quality or the structure of the plant tissues remains unclear 

as there is no study on the effect of nanovirus infection on the structure and metabolic 

components of the host plant. 
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6.5.3. Experiment 2: Effect of NSP on the behavioural responses of A. pisum during 

probing and feeding on faba bean: 

In general, the EPG parameters for A. pisum feeding on the four different V. faba 

plants were not significantly different (Table 2). Our results showed no differences in the 

behaviours of A. pisum’s on FBNSV infected plants or FBNSV missing component DNA-N 

infected plants. Although the NSP produced by DNA-N is required for nanoviruses 

transmission, our results suggest that it does not affect the aphid feeding behaviour. A 

previous study showed that DNA-N is not essential for symptoms development, and the 

combination of the other seven DNAs was still able to cause the disease symptoms 

(Timchenko et al., 2006). Surprisingly, the aphid behaviours on I-FBNSV were not different 

from those on H plants. The only difference was the number of salivations and ingestions 

where they were significantly lower on I-FBNSV.  

The derailed stylet mechanics (F) on Healthy and I-FBNSV plants were significantly 

different from I-FBNSV/-N and H-Agro. The derailed stylet occurs when a stylet protruded 

much further than the other three stylets thus loses the bundle formation which occurs 

at low frequency (Tjallingii, 1988). It is suggested that the intercellular structural 

composition is responsible for such derailments (Tjallingii, 1988). Here, an increase in 

derailing of the stylet with the presence of agrobacteria, although in case of I-FBNSV the 

virus infection seems to reduce such effect. This could be due to the presence of the 

agrobacteria in the plants. As there is no study on the effect of agrobacteria on the aphid 

behaviours, suggesting adding an extra control with infiltration buffer and no 

agrobacteria, or using plants from successive aphid transmissions to reduce the effect of 

the agroinoculation. 

It was important to identify and characterise the genomes of the viruses in the 

study, as the presence of different components and any of the satellite DNAs can affect 

the virus disease severity and the virus transmission. Previous study on FBNYV suggested 

that the presence of faba bean necrotic yellows C11 alphasatellite cause reduction in 

infected plants due to competition between the different components on the resources, 

encapsidation and movement (Timchenko et al., 2006). The isolate of FBNYV in this study 

contains in addition to the eight components, an alphasatellite i.e., faba bean necrotic 

yellows C1 alphasatellite, while both PNYDV and FBNSV each contains only their eight 

components. Whether there is an effect “positive or negative” for the alphasatellite on 
the severity of the nanoviruses diseases or on their aphid vectors, and consequently the 

aphid behaviour, is currently unknown.  

The effect of the plant variety and whether the aphid behaviour will be different 

from a variety to another. Comparing the Healthy plants in both experiments showed the 

probing time was significantly different between both experiments. The reason for that is 

unknown as we used the same growing conditions for both experiments. Other aphid 

biotypes should be considered in future testing. Additional studies will be required to 
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determine the structural and metabolic changes of nanoviruses infected plants during the 

development of the disease symptoms to confirm the relation between the change in the 

behaviour and symptoms. Suggesting studying the dynamic of aphid behaviour on plants 

with series of infection periods. Therefore, this study needs follow up with further 

investigations to confirm the findings. 
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Chapter 7: General discussion 
7.1. Part 1: Plant virus identification  

A prerequisite to the control of a plant viral disease is the proper detection and 

identification of its causal agent. Thus, a sensitive and reliable detection is crucial for plant 

protection. To identify the aetiology of a viral disease, there are different diagnostics tools 

used e.g., electron microscopy (EM), serology-based methods such as enzyme linked 

immunosorbent assays (ELISA), molecular biology-based methods such as polymerase 

chain reaction (PCR) and high throughput sequencing (HTS). 

7.1.1. Disease aetiology of several plants using conventional and HTS methods 

In a legume survey, several viruses were detected in many plant samples from 

Germany and Austria in 2016 using conventional methods (PCR and ELISA) ((Gaafar et al., 

2016), Chapter 2). We could identify pea enation mosaic virus (PEMV) as the predominant 

virus followed by pea necrotic yellow dwarf virus (PNYDV). Viruses from other genera e.g., 

potyviruses, poleroviruses and luteoviruses could be also detected by ELISA; however, the 

exact virus species could not be confirmed. The antibodies used for ELISA were 

preselected for the commonly known legume viruses. Thus, we could not confirm whether 

other viruses were present in the samples or not, especially when several symptomatic 

samples tested negative with ELISA.  

Additionally, in two samples from the Netherlands, we could detect by ELISA and 

PCR the presence of PNYDV for the first time ((Gaafar et al., 2017), Chapter 2). We could 

confirm the presence of the eight genomic components of PNYDV by PCR amplification of 

each component, cloning in Escherichia coli, extracting the plasmids followed by Sanger 

sequencing. This approach was laborious and time consuming. Moreover, we could not 

confirm this way whether there were PNYDV-associated alphasatellites present or not.  

High throughput sequencing (HTS) gave us the ability to sequence all the nucleic 

acids present in a given sample (Adams & Fox, 2016). Using HTS, we were able to detect 

the full genomes of different PNYDV isolates from five samples from Denmark, and also 

we detected their associated alphasatellites ((Gaafar et al., 2018a), Chapter 2).  

Other legume and vegetable samples were also analysed by conventional methods 

and HTS. Using EM and ELISA, we were able to identify viruses from different families and 

genera. However, without the presence of species-specific antibodies, we could not 

confirm the virus species and in some cases the virus genus. For example, using 

immunosorbent electron microscopy (ISEM) and ELISA, we detected the presence of 

turnip crinkle virus (TCV) in wild garlic mustard ((Gaafar & Ziebell, 2019a), Chapter 2). 

Using HTS, a new strain of TCV was identified as being a highly divergent sequence 

(Rochon et al., 2012). Such divergence could not be detected by ISEM or ELISA. In a similar 
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case we investigated a new nepovirus in a caraway sample where nepoviruses-specific 

antibodies developed against a divergent strain of cherry leafroll virus (CLRV) infecting 

carrot (unpublished) was used in ELISA and ISEM, and confirmed the presence of a 

nepovirus but could not identify the virus species ((Gaafar et al., 2019f), Chapter 2). Using 

HTS, we identified the presence of a novel nepovirus, tentatively called caraway yellows 

virus (CawYV).  

Also, we could detect the presence of rhabdovirus-like particles in tomato samples 

from Germany, alfalfa and black medic samples from Austria. Physostigia chlorotic mottle 

virus (PhCMoV; a nucleorhabdovirus) in the tomato sample and a novel 

nucleorhabdovirus, tentatively called alfalfa associated nucleorhabdovirus (AaNV) in 

alfalfa sample were identified using HTS, confirming the findings of EM ((Gaafar et al., 

2018b; Gaafar et al., 2019d), Chapter 2). However, in the black medic sample, the 

presence of a rhabdovirus could not be confirmed; surprisingly a tenuivirus was detected 

(melon chlorotic spot virus; MeCSV) ((Gaafar et al., 2019e), Chapter 2). The observed 

ribonucleoproteins (RNP) by EM in the original black medic sample were confused with 

the disassembled particles of rhabdoviruses. Nevertheless, these RNPs were the virions 

of the tenuivirus which are later confirmed in partially- purified virion preparations from 

infected plants. 

The limitation of the conventional methods was further demonstrated with a 

beetroot sample with leaf necrosis, reduced size and root bearding: Using ISEM with 

various antibodies for the detection of various beetroot and sugar beet viruses, no virus 

could be detected ((Gaafar et al., 2019b), Chapter 2). Using HTS however, the full-length 

sequences of beet soil-borne virus and beet cryptic virus 2 could be recovered although 

BSBV specific-antibodies were also used in the ISEM. A similar example is represented by 

a celery sample where no virus particles could be observed with EM, and ELISA tests with 

antibodies against carrot red leaf virus and CLRV were negative ((Gaafar & Ziebell, 2019a), 

Chapter 2). Nevertheless, we could detect a divergent strain of carrot torradovirus 1 

(CaTV1) using HTS. 

Furthermore, using MinION sequencer allowed us to rapidly identify the virus 

infecting several tomato samples i.e., Southern tomato virus ((Gaafar et al., 2019a), 

Chapter 2). Using dsRNA enrichment approach followed by MinION sequencing saved 

time allowing us to identify the virus in less than 24 hours. The speed at which this method 

was able to produce reads suggesting that it could be used in the future to as a laboratory 

diagnostic tool with a room for improvement in the quality of the produced raw reads and 

the costs of the platform and the sequencing kits. 

7.1.2. Pea survey in Germany using HTS 

In our survey on pea fields in Germany, HTS was used to detect viruses in peas and 

surrounding plants. In this survey, the plants were sampled from six different regions for 

three successive growing seasons. The samples were pooled together in ten pools i.e., 
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region 1 to 6, and all symptomatic peas (SP), asymptomatic peas (aSP), surrounding 

legumes (sL) and surrounding non-legumes (snL) for each season. Thirty-five viruses could 

be detected in addition to associated satellite nucleic acids and each finding was 

confirmed by RT-PCR. In addition to eleven known pea and legume viruses, nine new 

viruses and thirteen viruses new to Germany were reported (Chapter 3). Interestingly, 

new emaravirus provisionally called pea associated emaravirus, with close relationship to 

rose rosette virus, a quarantine pathogen, was detected in symptomatic peas in two 

seasons. The pooling strategy minimised the number of samples for HTS, nevertheless 

could not assist in identifying the exact host sample for each virus. Due to low virus titre 

or biased amplification of other nucleic acids, not all complete genomes of the viruses 

could be recovered demonstrating some limitations of the HTS-based study. Nevertheless, 

the discovery of nine novel viruses on one crop and its surrounding weeds imposes new 

challenges for diagnosticians, risk assessors and policy makers. Specific detection tests 

would need to be developed and implemented in future pea surveys to assess the 

presence of these viruses. As required by law, for each newly described virus a pest risk 

analysis would have to be carried out and policy makers would need to decide how to deal 

with these new viruses with respect to quarantine regulations and import/export 

restrictions. 

7.1.3. Virus characterisation 

Each newly identified virus was characterised molecularly (Chapter 2, 3 and 4). This 

was necessary for taxonomic assignment of these viruses and to characterise their 

potential open reading frames (ORF), motifs and domains in the viral sequences. For 

example, the isolates of pea enation mosaic virus 2 (PEMV2) from France and Germany 

have slightly shorter ORF3 (encoding a putative long-distance movement protein) than 

the PEMV2 reference sequence from the USA. This is due to a nucleotide substitution “A 
to T” at nt position 2783 in the French isolate and at nt position 2755 in German isolates. 
The first ORF (encoding a putative RNA-dependent RNA polymerase) of TuYVaRNA has an 

amber codon similar to other poleroviruses-associated RNAs which was not detected 

before in the available TuYVaRNA sequences on NCBI. Another example, is the potential 

new protease cleavage site “HS” that was identified in both predicted polyproteins of 
CawYV ((Gaafar et al., 2019f), Chapter 2).  

These variations can contribute to the fitness and virulence of each virus. Such 

characteristics can be beneficial, neutral, deleterious or even lethal to the virus (Sanjuán, 

2010). However, very little is known about the fitness and virulence costs of these 

characteristics. Therefore, it is important to confirm these molecular characteristics 

experimentally and to study their effects on virus infectivity, symptomology and fitness.  

Moreover, EM helped us to study the virus particles morphology and with thin 

sections we could study the virion locations in infected cells. We could also confirm the 

relatedness of the novel viruses to their respective genera or family e.g., the presence of 
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the replication factories in the nucleus of cells infected with AaNV (a feature of 

nucleorhabdoviruses) and the presence of tubular structure containing virus particles in 

CawYV infected plants (a feature of nepoviruses).   

7.1.4. Species demarcations set by ICTV 

Many new viruses were discovered in recent years using HTS technology. An 

advantage of these discoveries is the improvement of virus taxonomy. For example, in the 

Secoviridae family, all the members of the different genera are following the same 

“suggested” demarcations i.e., the conserved protease-polymerase (Pro-Pol) and the 

capsid protein (CP) regions share aa sequence identity < 80% and < 75% respectively, 

differences in antigenic reactions, distinct host range and vector specificity, absence of 

cross-protection and absence of re-assortment between RNA-1 and RNA-2 (for bipartite 

genome). Sanfaçon and colleagues suggested that these criteria need to be improved with 

more viral sequences of this family (Sanfaçon et al., 2009).  

These criteria are challenging as not all of them are met at the same time. The 

novel CawYV ((Gaafar et al., 2019f); Chapter 2) had a Pro-Pol region which shared 80.1% 

amino acid (aa) identity to the closest virus, i.e., the value is 0.1% above the threshold set 

for Secoviridae species criteria therefore suggesting the presence of a novel strain of an 

existing species. In contrast, the CP region shared only 39.6% aa identity to its closest virus 

therefore this isolate should have been considered as new species. Other researchers face 

similar challenges, e.g., the discovery of red clover nepovirus A (RCNVA) (Koloniuk et al., 

2018). The Pro-Pol region of RCNVA was 86% aa identical to artichoke Italian latent virus 

(AILV) and tomato black ring virus whereas the CP region was 64.4% aa to AILV. Moreover, 

the conserved regions i.e., the Pro-Pol and the CP regions of CLRV from carrot and CaTV1 

(a torradovirus) from celery, both were detected again in the pea virome survey, also did 

not meet the Secoviridae species demarcations. However, they are divergent from their 

closest sequences in the other regions of the genomes e.g., genome length, whole ORFs 

and untranslated regions sequence identities (Chapter 2). This was also the same for other 

viruses e.g., tomato chocolate virus (torradovirus) (Verbeek et al., 2010). 

We suggest that the ICTV Secoviridae study group revises the species demarcation 

criteria of Torradovirus and Nepovirus genera. We suggested not only reconsider the 

conserved regions but adding other criteria e.g., the identity of the nucleotide sequences 

of the untranslated regions and the amino acid identity of the whole predicted products 

of the ORFs. Verbeek and colleagues also suggested newly proposed additional 

demarcation criteria for the genus Torradovirus (Verbeek et al., 2010). 

7.1.5. Which viral enrichment approach is the best? 

Building on the success of HTS for plant virus and viroid detection, it is time to 

apply HTS for routine detection in laboratories. As with other new methods, HTS as a 

virus/viroid detection tool has some challenges. Firstly, due to their different genomic 
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characteristics, there is no universal extraction method to fit all viruses/viroids. Secondly, 

there are no universal sequence for all viruses/viroids that can be amplified and used for 

sequencing such as the internal transcribed spacer (ITS) or 16S ribosomal RNA can be used 

for general detection of pathogens i.e., fungi and bacteria (Leff et al., 2017).Thirdly, viral 

enrichment is required during the sample preparation for HTS as the viral reads can be 

relatively very low compared to the host sequences (Adams & Fox, 2016). 

There are different enrichment methods are being used for virus/viroid detection 

by HTS. Each can differ in its efficiency and can have specific strengths and weaknesses 

(Adams & Fox, 2016). In the performed studies (Chapter 2 and 3), different viral 

enrichment approaches have been used i.e., dsRNA extraction, ribosomal RNA depleted 

total RNA (ribo-depleted totRNA) extraction, small RNA extraction and rolling circle 

amplification (RCA). DsRNA extraction, ribo-depleted totRNA and small RNA (sRNA) viral 

enrichment approaches seem to be the most generic approaches recovering a range of 

plant viruses/viroids with different genome types and could be integrated in workflows in 

diagnostic laboratories.  

A comparison between the three approaches was performed (Chapter 4). All 

known viruses were detected using the three viral enrichment methods. Surprisingly, two 

unknown viruses were detected by the dsRNA approach i.e., Vicia cryptic virus (VCV) and 

Wuhan aphid virus 2 (WHAV2), whereas only one of the two viruses was detected by the 

ribo-depleted totRNA and sRNA enrichment approaches, WHAV2 and VCV, respectively. 

The number of recovered viral reads were different from one method to another and were 

also virus dependent. The dsRNA approach used in this study detected all viruses (knowns 

and unknowns). It was cheaper, faster and easier compared to the other two approaches. 

Moreover, in comparison with other available dsRNA extraction methods, the dsRNA 

extraction kit used in this study is also faster, does not require a large amount of plant 

starting material and does not require an extra amplification step as in (Kesanakurti et al., 

2016; Yanagisawa et al., 2016; Blouin et al., 2016). 

The main limitation of this approach is the low concentration of extracted dsRNA 

which can be challenging for some library preparations. It is unclear whether PNYDV 

sequences (a DNA virus) were recovered as RNA/DNA hybrid molecule and amplified by 

HTS or if contaminating DNA was carried over in the dsRNA preparations (Knierim et al., 

2019). 

7.1.6. Data analysis  

There are different software and tools used for bioinformatic analyses e.g., HTS 

data analysis and molecular characterisation of the findings (Bao et al., 2014). The 

algorithms used for analysis are different from one bioinformatic tool to another (Miller 

et al., 2010; Li & Homer, 2010; Narzisi & Mishra, 2011). Changing the parameters used in 

the analyses can be beneficial where unknown findings can be detected or can be 

incorrect thus some data might be concealed (Del Fabbro et al., 2013; Massart et al., 
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2019). For virus/viroid detection, there are different thresholds set by each laboratory and 

there are no generic criteria set for all. Some laboratories a very strict with the number of 

reads and coverage to consider a finding and thus confirm it. Such restrictions can cause 

the ignorance of some findings e.g., viruses with low titre. We confirmed all the findings 

even with low number of reads and coverage. This led to the identification and 

confirmation of many viruses (Chapter 2, 3 and 4). 

The computer facility was a limitation with large data and with some tools i.e., the 

analysis of sRNA data required a strong hardware computer with larger memory and 

stronger processor. Thus, we tend to normalise the reads and remove duplicated reads. 

This facilitated the subsequent analyses e.g., de novo assembly on such low hardware 

specifications computer. 

Additionally, in some of our analysed samples no viruses or viroids were detected. 

As our focus is plant viruses and viroids, our Basic Local Alignment Search Tool (BLAST) 

databases do not contain sequences of other pathogens e.g., phytoplasma or fungi. 

7.2. Part 2: Virus-vector-host interactions  

7.2.1. Nanoviruses infection change the probing and feeding behaviours of aphids 

To investigate the effect of nanoviruses infection on the probing and feeding 

behaviours of pea aphids (Acyrthosiphon pisum) on faba beans (Vicia faba), electrical 

penetration graph (EPG) was used (Chapter 6). Our results showed that infections of V. 

faba plants with nanoviruses i.e., faba bean necrotic yellows virus (FBNYV) and PNYDV 

changed the feeding and probing behaviours of A. pisum where the aphids spent less 

probing time on infected plants compared to those on healthy plants. Furthermore, 

aphids spent less time phloem feeding compared to those on healthy plants. The FBNYV-

infected plants displayed severe disease symptoms compared to PNYDV-infected plants 

and the changes in the behaviours of the aphids were higher on FBNYV-infected than 

those on PNYDV-infected. It is possible that these behavioural changes are correlated to 

the disease development (changes in the chemical composition and physical structure of 

infected plant tissue). 

7.2.2. Absence of the nuclear shuttle protein does not affect the aphid probing and 

feeding behaviours 

The nuclear shuttle protein (NSP) is encoded by DNA-N of nanoviruses and is 

required for the aphid transmission (Grigoras et al., 2018). To investigate the effect of NSP 

on the probing and feeding behaviours of the aphids, plants were agroinoculated with 

infectious clones of all eight components of faba bean necrotic stunt virus (FBNSV) i.e., 

DNA-C, -M, -N, -R, -S, -U1, -U2 and -U4. In addition, other plants were agroinoculated with 

seven components omitting DNA-N (FBNSV/-N). Two additional controls were used i.e., 

plants inoculated with agrobacteria without the infectious clones and healthy plants 

without agroinoculation. No significant changes in feeding behaviour could be observed 
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when A. pisum fed on FBNSV/-N-infected plants compared to those fed on FBNSV-infected 

plants (Chapter 6). This can be due to that nanoviruses symptoms can be developed 

without DNA-N (Timchenko et al., 2006). The only significant difference from the healthy 

control was derailed stylet mechanics (F) which was higher on FBNSV/-N infected plants. 

We also found significant effects for the agrobacteria on the behaviours where F was 

higher than on healthy plants “without agroinoculation”. The intercellular structural 
composition is suggested to be responsible for these derailments (Tjallingii, 1988). The 

increase in derailing of the stylet with the presence of agrobacteria was reduced in case 

of FBNSV-infected plants. This suggests that the agrobacteria may have altered the effect 

of the virus.  

7.3. General conclusion and future perspectives 

I have demonstrated the strength of HTS as a rapid and accurate diagnostics tool 

for plant virus discovery, characterisation and for metagenomics studies. During the 

optimisation process I found out that viral enrichment based on dsRNA approach were 

better than the ribo-depleted totRNA and sRNA approaches for HTS virus/viroid 

detection. It is important to follow-up with a comparison of different dsRNA enrichment 

approaches to reach the most reliable viral enrichment approach. This will help fastening 

the application of HTS as a diagnostic tool in laboratories. Further research is needed to 

identify the natural vectors and mode of transmission of the new viruses as well as their 

host range. Moreover, it is important to test experimentally the molecular characteristics 

of the new viruses and their effect on virulence and fitness. 

Aphid-borne nanoviruses are threatening legume production in different 

countries. Infection of nanoviruses of V. faba caused reduction in A. pisum’s probing and 
feeding behaviours which may be related to changes in the chemical composition and 

physical structure of plant tissues during disease development. Consequently, the aphids 

may not develop colonies on the infected plants and will spread wider within the field. It 

is recommended testing the dynamic of changes in these behaviours with the disease 

development and to relate them to the virus titres and to compare the behaviours on 

symptomatic and asymptomatic leaves. Furthermore, the absence of the NSP did not 

affect the feeding behaviour of A. pisum, however there was an effect of agroinoculation 

observed. Thus, we recommend experimenting with additional controls i.e., FBNSV-

infected plants after successive aphid transmission to eliminate or reduce the effect of 

agrobacteria, plants inoculated with inoculation buffer without bacteria and plants with 

needle injection only. 
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Summary 
The overall aim of this dissertation was the implementation of high-throughput 

sequencing (HTS) technologies for plant viruses’ identification and characterisation. 
Different viral enrichment approaches were tested to optimise a tool that would detect a 

broad range of different viruses and that can be used as a generic, reliable and cost-

effective strategy for virus diagnostics. Moreover, the interactions of aphid vectors of 

nanoviruses with infected plants were investigated and the effect of NSP on aphid feeding 

behaviour were closely observed. 

Chapter 1 gives a general introduction to the concept of this research, and it also 

outlines the aims of this work. Currently used plant virus diagnostics methods are 

described with a focus on HTS for virus detection using different enrichment and 

platforms. It also covers the virus-vector-host interactions with focus on the model system 

nanoviruses-aphid-host used in this research. 

In addition, this thesis is divided into two parts (part one and part two). Part one 

focuses on the plant virus identification and describes the discovery and characterisation 

of new viruses, divergent strains and isolates from new virus hosts or geographical 

locations. The virome of peas was investigated over a period of three growing seasons in 

six different German regions. Furthermore, three viral enrichment approaches for plant 

viruses and viroids detection by HTS were compared. Part one contains three chapters (2, 

3 and 4). In Chapter 2, the discovery and characterisation of two new viruses i.e., alfalfa 

associated nucleorhabdovirus from Medicago sativa (Austria) and caraway yellows virus 

from Carum carvi (Germany)are described. 

Moreover, the reports on the identification and characterisation of the causal 

agent of several diseases in legumes and vegetables. HTS in combination with 

conventional diagnostic methods (ELISA, EM, PCR-based methods and Sanger sequencing) 

were applied to various plant virus samples in the JKI selection. The following viruses were 

described: 

• Divergent strains of:  

1. Melon chlorotic spot virus from M. lupulina from Austria 

2. Carrot torradovirus 1 from Apium graveolens from Germany 

3. Turnip crinkle virus from Alliaria petiolata from Germany 

• Divergent isolates of turnip yellows virus (TuYV) from pea and rapeseed oil, in 

addition to a first report of turnip yellows associated RNA from Germany 

• First reports of:  

1. Beet soil borne virus and beet cryptic virus 2 from Beta vulgaris subsp. vulgaris 

2. Physostegia chlorotic mottle virus from Solanum lycopersicum from Germany 

3. Southern tomato virus from S. lycopersicum from Germany (new MinION 

approach was described) 
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4. Pea necrotic yellow dwarf virus (PNYDV) was detected for the first time 

infecting Vicia faba, V. sativa and Lens culinaris in Austria and Germany, and 

for the first time in Denmark and the Netherlands. 

The focus in chapter 3 is set on the identification and characterisation of viruses 

in German pea fields. For three successive seasons, pea fields in six different regions were 

surveyed. Samples were taken from symptomatic pea and asymptomatic pea plants, in 

addition, samples from surrounding non-crop legume and non-legumes weeds were 

taken. The samples were analysed using HTS and the presence of all detected viruses was 

confirmed by RT-PCR. Thirty-five viruses in total were detected during this survey, 

including nine new viruses, thirteen viruses new for Germany. In addition to plant viruses, 

virus associated nucleic acids were also detected. Pea enation mosaic virus 1 and 2, TuYV, 

and PNYDV were the most common viruses in the German pea fields. Interestingly a new 

emaravirus was detected for two successive seasons in the same region, tentatively called 

pea associated emaravirus. Additionally, several new virus sequences and divergent 

sequences were detected in the surrounding legumes and non-legumes. By analysing the 

data spatially and temporally, no differences were observed.  

Chapter 4 describes the comparison of three different viral enrichment 

approaches for virus discovery by HTS. Double stranded (dsRNA), ribosomal RNA depleted 

total RNA (ribo-depleted totRNA) and small RNA (sRNA) enrichment approaches were 

compared for the detection of viruses and a viroid representing different genomes i.e., 

ssRNA [(+ve) and (-ve) senses], DNA and a viroid. The dsRNA approach in this study was 

better compared to the other two approaches as it is faster, cheaper and all the known 

and unknown viruses/viroid in the study were detected. However, the number of reads 

from dsRNA approach were lower when compared to the other two methods. 

Interestingly, two additional unknown viruses were discovered with the dsRNA 

enrichment approach i.e., Vicia cryptic virus and Wuhan aphid virus 2 (WHAV2) but only 

one of them was discovered with sRNA or ribo-depleted totRNA, respectively. To our 

knowledge this is the first detection of WHAV2, a recently discovered virus from aphids in 

China, from plant tissues. 

In the second part of this thesis (part two), the interactions of nanoviruses with 

their insect vectors and their hosts were studied. Chapter 5 reviews the current 

knowledge about nanovirus-vector interactions. In chapter 6, the probing and feeding 

behaviours of Acyrthosiphon pisum on nanoviruses-infected faba beans were investigated 

using electrical penetration graph. The probing and feeding behaviours of A. pisum 

changed on faba bean necrotic yellows virus and PNYDV-infected plants. Additionally, the 

effect of the absence of the nuclear shuttle protein of FBNSV on the feeding and probing 

behaviours of A. pisum was tested. Additionally, few significant differences were 

detected, however no clear differences could be concluded.  
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A general discussion of the findings of this thesis is laid out in the final chapter (7), 

and a prospect for future research is given. 
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