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Abstract

In applications such as nondestructive testing, geophysical exploration or medical
imaging one often aims to reconstruct the boundary curve of a smooth bounded
domain from indirect measurements. As a typical example we concentrate here on
inverse obstacle scattering problems.

We introduce a class of shape manifolds for describing admissible obstacles and
we allow the reconstruction of general, not necessarily star-shaped, curves. By
applying the bending energy as regularization term the Tikhonov regularization gain
independence of the parameterization.

Moreover, the structure of the shape manifold is investigated. It turns out to
be a in�nite-dimensional Riemannian manifold and therefore, geometry provides
several tools, such as Levi-Civita connection, geodesics, Riemannian exponential
map, Riemannian Hessian of a functional and parallel transport. One construction,
we focus on, is the second fundamental form for which we give explicit formulas and
prove local bounds.

Furthermore, we introduce an iteratively regularized Gauss-Newton method on
Riemannian manifolds. In each step we compute an update direction as an element
in the tangent space using the derivative of the forward operator, the gradient
and the Hessian of a regularizing functional. This update direction is mapped by
the Riemannian exponential map onto the manifold. Under a general framework
we prove convergence rates of this algorithm for exact and perturbed data. The
assumptions appearing in the proof are discussed and mostly veri�ed for inverse
obstacle scattering problems.

Numerical simulations demonstrate the bene�ts of the geometrical approach
by using shape manifolds and bending-energy-based regularization to reconstruct
non-star-shaped obstacles.
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1 Inverse obstacle
scattering problems

“Begin at the beginning,” the King said, very gravely,
“and go on till you come to the end: then stop."
— Lewis Carroll, Alice’s Adventures in Wonderland

This thesis is motivated by inverse obstacle problems, which is a class problems
arising in real life, where one seeks to reconstruct information about an obstacle
from physical measurements. Here we only consider scattering problems as a generic
example, but the principles investigated in the following should also be applicable to
other inverse obstacle problems, for example in potential theory (see e.g. [22, 50]).

In inverse obstacle scattering problems one tries to reconstruct the shape of
an obstacle from measurements of scattered waves. Such problems, occurring for
example in nondestructive testing, geophysical exploration, structural health mon-
itoring or medical imaging, have been studied intensively, see the monographs
[8, 9, 32, 48] and references therein.

In practice objects in R3 are more relevant, but nevertheless we consider only
the two-dimensional case in this work. Both it is a more simpler test problem and in
parts it can be seen as the limit case of an obstacle in R3. One example is a three-
dimensional shape, which does not change in one coordinate direction. Then a cross
section approximates such a cylindric obstacle in R2.

We start by brie�y recalling the physical background for the mathematical for-
mulation of the direct and inverse scattering problems. Assume that the object can
be described by a bounded, connected, and simply connected Hölder C1,β -smooth
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domain Ωint (β > 0). Then its unbounded complement Ω B R2 \Ωint is connected,
and the boundary curve will be denoted by Γ = ∂Ω = ∂Ωint. The propagation of
an acoustic wave in a homogeneous, isotropic and inviscid �uid is approximately
described by a velocity potential U (x, t) that satis�es the wave equation

1
c2
∂2U

∂t2 = ∆U ,

where c denotes the speed of sound and p = − ∂U∂t the pressure. In the monograph [9]
one can �nd more information about the physical background. We consider only the
time-harmonic case, i.e.

U (x, t) = Re
(
u(x) e−iω t ),

for ω > 0, and the spatial complex valued function u satis�es the Helmholtz equation

∆u + k2u = 0 in Ω, (1.1)

where k := ω
c is the wave number. Depending on the physical context the total �eld

u satis�es some boundary condition at Γ . We consider in our generic problem only
so-called sound-soft obstacles, i.e. the pressure p vanishes on the boundary Γ , which

(a)

(b)

(c)

Figure 1.1: Example for a total wave (a) with incident wave (b) and scattered wave (c) which is
scattered by the obstacle indicated by the red line. For more details of the numerical simulations we
refer to the Section 6.2.
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can be written as a homogeneous Dirichlet boundary condition

u = 0 on Γ . (1.2)

Motivated by experimental setups we are interested in case, where we decompose
the total �eld u into a known incident plane wave ui(x) = eik 〈x,d〉 coming from the
direction d ∈ S1, and a scattered wave us ∈ H

2
loc(Ω), i.e. the total wave u B ui + us

solves (1.1) with (1.2). Additionally the scattered wave satis�es the Sommer�eld
radiation condition

lim
|x |→0

√
|x |

(∂us(x)

∂ |x |
− ik us(x)

)
= 0 (1.3)

uniformly for all directions. This condition is on the one hand reasonable to assume
from the physical point of view since it means that energy is carried away from the
scatterer and on the other hand guarantees uniqueness of us. An example for an total,
incident and scattered wave is shown in Figure 1.1.

We recall that solutions to the Helmholtz equation which satisfy the Sommer�eld
radiation condition (1.3) have the asymptotic behavior

us(x) =
eik |x |√
|x |

(
u∞

( x
|x | ,d

)
+ O

( 1
|x |

) )
, |x | → ∞ (1.4)

(see [9, Sect. 2.2 and 3.4]). The function u∞(·,d) is analytic on S1 and known as the
far �eld pattern of the scattered wave us. Often the far �eld pattern u∞ ∈ L

2(S1 × S1)

can only be measured on some submanifold M ⊂ S1 × S1, e.g. M = S1 × {d} for
one incident �eld orM = {(d,−d) : d ∈ S1} for backscattering data. In Figure 1.2
we illustrate two full far �eld patterns of the obstacle shown in Figure 1.1 for two
di�erent wavelengths.

Using the notions introduced above, we can state the direct problem of obstacle
scattering:

Problem 1.1 (Direct obstacle scattering problem). For given Γ and ui compute the
far �eld pattern u∞ of the scattered wave us, such that u = ui + us solves the Helm-
holtz equation (1.1) with boundary condition (1.2) and the scattered wave satis�es the
Sommer�eld radiation condition (1.3).

This problem is well studied (see e.g. [40]). Numerically, it can be solved for
example using a boundary integral equation ansatz (see [9]).

However, in applications the boundary Γ is usually unknown while the far �eld
pattern can be obtained from measurements. Therefore more relevant task is the
corresponding inverse problem:
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Problem 1.2 (Inverse obstacle scattering problem). Given the incident wave ui and
either the exact far �eld pattern u∞ or perturbed measured data uδ∞, compute the
corresponding boundary Γ of an obstacle or an approximation to it.

Solving this problem is challenging by the nonlinearity and ill-posedness. In
this thesis we concentrate on so-called parameterization-based methods. For these
one seeks approximate parameterizations of the unknown shape within a chosen
class of boundary curves. One frequently used class in the literature are star-shaped

(a)

(b)

Figure 1.2: The real parts of the far �eld pattern for the scattered wave in Figure 1.1 under two
di�erent wavelength - in (a) we used a shorter one and in (b) the same one as in Figure 1.1. For more
details of the numerical simulations we refer to the Section 6.2.
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obstacles with respect to a known point such that the boundary can be described by
a positive, periodic radial function. In this manner, one can formulate the inverse
problem as an operator equation in Hilbert spaces, see Chapter 2. The problem can
be solved for example using a Tikhonov regularization penalizing Sobolev norms of
the parameterization, see e.g. [9, 24].

To understand this state-of-the-art approach in detail, we will recall some known
facts from the literature concerning regularization theory in Chapter 2. In particular
we highlight the theory of convergence rates in a general setting both for linear and
nonlinear problems. At the end of the chapter we point out how to apply this general
setup to inverse obstacle scattering problems.

Note the following: The Sobolev norms or any other regularizing term de�ned
in terms of the radial functions crucially depend on the choice of the parameteriz-
ation and thus disregard the geometry of the shape to be reconstructed. Indeed, a
single curve S1 → R2 admits a continuum of possible parameterizations and there-
fore, parameterization-dependent norms break symmetry in an unnatural manner.
Moreover, the assumption of star-shaped obstacles is severely restrictive.

In Chapter 3 therefore we introduce a space describing the set of admissible
boundaries as a shape manifold from a purely geometric point of view. In the context
of shape spaces it is mandatory to consider a set of curves as geometric objects,
independent of any particular parameterization. It is shown by Michor and Mumford
in [41] that the space of closed and su�ciently regular curves carries a Riemannian
manifold structure. Our shape manifolds carry also a natural Riemannian metric and
in the rest of the chapter we investigate this structure and state new explicit formulas
for the curvature of these shape manifolds.

The following Chapter 4 introduces the scaling invariant bending energy of bound-
ary curves as a regularizing term. This continues the purely geometric approach,
which guarantees independence of the choice of any parameterization. The bending
energy is a second order curvature-based formulation. It has been considered in
order to get physically plausible simulations of thin elastic rods and threads [3, 5, 52].

In particular the use of shape manifolds in combination with the bending energy
as regularization is preferable over parameterization-dependent methods to overcome
the restriction to a subclass of boundary curves and the dependencies arising within.
In Chapter 4 we focus on Tikhonov regularization and show that a penalty functional
based on shape manifolds and the bending energy is regularizing. However the
resulting optimization problem is nonconvex due to the nonlinearity of the forward
operator and the bending energy. Hence we do not get a numerically robust algorithm.

This motivates to consider iteratively regularized Gauss-Newton methods as an
alternative. Thus we introduce a general algorithmic framework to solve a nonlinear
ill-posed operator equation on an in�nite-dimensional Riemannian manifold by such
an approach in Chapter 5. The main contribution is to prove convergence rates of
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the algorithm if a source condition is satis�ed.
Afterwards we discuss in how far the required assumptions for the general

convergence result can be veri�ed for the considered inverse obstacle scattering
problems.

Finally in Chapter 6 we give a discretization of the setting in order to solve the
problem numerically. The shapes are discretized using polygonal (piecewise straight)
curves. Convergence in Hausdor� distance of the resulting minimizers (under suit-
able boundary conditions and a length constraint) to their smooth counterparts
was recently proven in [55], which shows the validity of the chosen discretization
approach.

In the second part of the chapter we illustrate practical bene�ts of our geometrical
approach for solving inverse obstacle scattering problems by numerical simulations.

The necessary background from in�nite-dimensional Riemannian geometry is
provided in the Appendix A.



2 On regularization
theory in Hilbert spaces

The formulation of the problem is often more
essential than its solution, which may be merely a
matter of mathematical or experimental skill.

— Albert Einstein, The Evolution of Physics

2.1 Inverse problems and regularization

The concept of calling two problems inverse to each other was introduced in [31].
Following this de�nition one calls a problem inverse to another one if the �rst
problem contains the solution to the second one. Such kind of problems arise in
various applications in physics. There one usually wants to determine a cause from
an observation. In most cases the other problem - predict the observation from a
cause - is better understood and hence it is called the direct problem.

Hadamard suggested (see [19]) the following de�nition to classify problems.

De�nition 2.1. A problem is called well-posed if

1. there exists a solution.

2. the solution is unique.

3. the solution depends continuously on the data.

A problem that is not well-posed is called ill-posed.
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Either for historical reasons or because of a better understanding of one problem,
usually this one is chosen to be the direct problem. In applications it turns out that
this one is well-posed most of the time while a corresponding inverse problem is
ill-posed. Concerning the ill-posed character of a problem the existence and the
uniqueness of a problem is often controllable by either shrinking or enlarging the set
of possible solutions, whereas the discontinuous dependence, often referred to the
term of stability, is the crucial issue of solving an ill-posed problem. In practice every
kind of measurement is a�ected by noise and therefore data errors have to be taken
into account for reconstructing a cause.

In the following we always assume that the forward problem can be written as
an operator equation

F (f ) = д, (2.1)

where F : dom(F ) ⊂ X → Y is called the forward operator between the topological
spaces X, Y. Using this formulation the criteria for well-posedness can be written as

1. F is surjective,

2. F is injective,

3. F−1 is continuous.

If F−1 is not continuous, small perturbations of д may lead to arbitrarily large per-
turbations of f . Theoretically one could choose either a �ner topology in Y or a
coarser topology in X to gain continuity of F−1, but in actual applications this does
not solve the problem of instability. By choosing di�erent topologies one has to
measure the corresponding errors in X and Y with respect to these constructed
topologies. In applications, the natural choice usually arises from a metric or even a
norm. Boundedness of the error can usually be only obtained in certain metrics or
norms determined by the measurements process or model. Stronger metrics - which
lead to �ner topologies - on the other hand lead to unbounded errors.

Therefore one inverts the operator F approximately by a family of continuous
operators {Rα }α>0 such that

Rα (д) → F−1(д) as α → 0

if the right-hand side is well-de�ned. For a more general notion of an inverse operator,
we use the following de�nition.

De�nition 2.2. Let F : A → B be a mapping between sets. A mapping G : B → A
is called generalized inverse of F if

F ◦G ◦ F = F , (2.2a)
G ◦ F ◦G = G . (2.2b)
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This enables the de�nition of a regularization method as follows.

De�nition 2.3. Let (X,dX), (Y,dY) be metric spaces, F : dom(F ) ⊂ X → Y a forward
operator and F † : dom(F †) ⊂ Y → dom(F ) a generalized inverse of F . A pair
({Rα }α>0,α ) of a family of continuous operators Rα : Y → X and a parameter choice
rule α : (0,∞) × Y → R+ is called a (deterministic) regularization method if

lim sup
δ→0

{
dX

(
Rα (δ ,дδ )(д

δ ), F †(д)
) ��дδ ∈ Y, dY(дδ ,д) ≤ δ} = 0 (2.3)

for all д ∈ dom(F †). α is called an a-priori parameter choice rule if α only depends
on δ , otherwise it is called an a-posteriori choice rule.

In the de�nition above (2.3) is assumed to hold true for each д ∈ dom(F †). The
next theorem shows that (2.3) cannot be formulated uniformly and there is no uniform
convergence rate. This means the convergence in (2.3) can be arbitrarily slow. For a
proof see for example [13, Prop. 3.11].

Theorem 2.4. Let F : X → Y be injective. Assume for a regularization method
({Rα }α>0,α ) of F † that there is a continuous function φ : [0,∞) → [0,∞) with φ(0) = 0
such that

sup
{
dX

(
Rα (δ ,дδ )(д

δ ), F †(д)
) ��дδ ∈ Y, dY(дδ ,д) ≤ δ} ≤ φ(δ ) (2.4)

for all δ > 0. Then F † is continuous.

One of the most prominent examples of a regularization method is Tikhonov
regularization. Since it is also the starting point for our approach it will be studied
brie�y in the following.

2.2 Tikhonov regularization

In this part X, Y are assumed to be Hilbert spaces and the forward operator to be
an injective linear map. To highlight this restriction - also in notation - the forward
operator is denoted byT , whenever F is assumed to be linear. The operator equation,
to be solved is given by

T f † = д† (2.5)

with the assumption д† ∈ ran(T ). Here f † always denotes the exact solution in X
and д† its corresponding data. In this setting the ill-posedness, i.e. discontinuous
dependence on the data, is characterized by ‖T −1‖ = ∞. Throughout this thesis the
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data is assumed to be a�ected by noise. The standard model is to assume the observed
data дδ satis�es

‖дδ − д†‖Y ≤ δ , (2.6)

where δ ≥ 0 is some error bound. Solving the equation (2.5) with perturbed data is
equivalent to �nding the minimum

f̂ ∈ argmin
f ∈X

‖T f − дδ ‖2Y .

This problem is clearly still ill-posed. It corresponds to solving the normal equation
T ∗T f̂ = T ∗дδ . A well-known idea to stabilize this problem is to add a penalty term
in the variational formulation, which goes back to Tikhonov and was proposed in
[57, 58]:

f̂α ∈ argmin
f ∈X

Jдδ ,α (f ), with Jдδ ,α (f ) := ‖T f − дδ ‖2Y + α ‖ f − f0‖
2
X . (2.7)

Today the functional Jдδ ,α is known as Tikhonov functional and α as the regularization
parameter. The �rst term, also called the data �delity term, measures how close one
approximates the data, whereas the second term, known as regularizing term, imposes
a-priori knowledge of the problem - here one computes a smooth solution that is close
to a given point f0. The minimizer f̂α is only an approximate solution to the problem
(2.5), but it turns out that for α → 0 the sequence of minimizers can converge to the
exact solution f †.

The rest of this section is concerned with proving that the approach (2.7) forms a
regularization method.

The following theorem is well-known in the literature and states that the approach
(2.7) is well-de�ned and a stable approximation. A proof can be found for example in
[13, Thm. 5.1].

Theorem 2.5. The Tikhonov function Jдδ ,α has a unique minimum f̂α for all α > 0,
дδ ∈ Y and f0 ∈ X, and it is given by

f̂α =
(
α I +T ∗T

)−1
(T ∗дδ + α f0). (2.8)

Furthermore f̂α depends continuously on the data дδ .

The next theorem veri�es that this forms indeed a regularization method in
the sense of De�nition 2.3 with the following generalized inverse. The operator
T † : dom(T †) ⊂ Y → X is called the Moore-Penrose inverse of T if it is a generalized
inverse of T and satis�es

(T T †)∗ = T T †, (2.9a)
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(T †T )∗ = T †T . (2.9b)

A proof for the theorem can be found in [13, Thm. 5.2].

Theorem2.6. Letд† ∈ dom(T †) ⊂ Y be given, whereT † is theMoore-Penrose inverse of
T , and denote f † = T †д†. Let (δn)n∈N ⊂ R+ be a given sequence such that limn→∞ δn =

0 and (дδn )n∈N ⊂ Y a corresponding sequence of perturbed data satisfying (2.6). Assume
that the regularization parameters are chosen such that

lim
n→∞

αn = 0 and lim
n→∞

δn
√
αn
= 0.

Then for f̂n := f̂αn the minimizer of Jдδn ,αn it holds that

lim
n→∞
‖T f̂n − д

†‖Y = 0 and lim
n→∞
‖ f̂n − f †‖X = 0 (2.10)

and therefore (2.7) forms a regularization method.

In recent years various kinds of approaches came up to generalizes Tikhonov
regularization, for example with di�erent regularizing or data �delity terms as well
as extensions to more general spaces such as Banach spaces or even in parts locally
convex vector spaces.

For this thesis we want to point out one variation of Tikhonov regularization,
since it will play a role in the later work: using weighted norms. Consider the
minimization problem

f̂α,W ∈ argmin
f ∈dom(W )

J
W
дδ ,α
(f ), with J

W
дδ ,α
(f ) := ‖T f −дδ ‖2Y + α ‖W (f − f0)‖

2
W (2.11)

for a linear operatorW on X into a Hilbert spaceW. One standard choice forW is a
di�erentiation operator, for example the gradient or Laplace operator. Already from
the example it highlights thatW does not need to have a trivial null space, which
makes this approach challenging. In [13] the theoretical foundations can be found. A
necessary assumption is the so-called complementation condition (see [43]): There is
a constant c > 0 such that

‖T f ‖2Y + ‖W f ‖2W ≥ c ‖ f ‖2X

for all f ∈ X. Further the minimizer for (2.11) has the form

f̂α,W =
(
αW ∗W +T ∗T

)−1
(T ∗дδ + αW ∗W f0). (2.12)
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2.3 Convergence rates theory

In Theorem 2.4 it was shown that for an ill-posed operator equation there can be
no uniform convergence rate in the noise level δ . Therefore the approximation by
a regularization method, i.e. the convergence in (2.10), can become arbitrarily bad
without additional a-priori information.

This motivates to investigate properties of elements f † in the solution space to
the equation (2.5) for which one can control the rate of convergence.

De�nition 2.7. A function φ : [0,∞) → [0,∞) that is continuous and monotonically
increasing with φ(0) = 0 is called an index function.

An element f † ∈ X is said to satisfy a spectral source condition if there is an index
function φ and an element v ∈ X such that

f † = φ(T ∗T )v . (2.13)

Here φ(T ∗T ) is de�ned by the spectral calculus, see e.g. [49]. In literature the two
most commonly used index functions are on the one hand

φν (λ) = λ
ν (2.14)

with ν > 0 is called Hölder source conditions and on the other hand for the logarithmic
source conditions the index functions

φp(λ) =

{(
− log max{λ, λ0}

)−p
λ > 0,

0 λ = 0,
(2.15)

with p > 0 and some λ0 ∈ (0, 1).
If X is a function space the condition (2.13) together with (2.14) or (2.15) can often

be interpreted as a smoothness condition on f †. In [26] with the forward operator
T solving a heat equation it was shown that f † ∈ ran(φp(T ∗T )) if and only if f † is
in a Sobolev space of smoothness 2p for all p > 0. There are also other examples of
operators for which one can prove such a statement, see for example [39].

The following notion de�nes a quasiorder on the set of index functions.

De�nition 2.8. An index function φ0 covers an index function φ if there is a constant
C > 0 such that

C
φ0(α)

φ(α)
≤ inf

α≤λ≤1

φ0(λ)

φ(λ)
, for all α ∈ (0, 1].

In this case one writes φ < φ0.
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In this way one sorts the index functions by their behavior around zero, i.e. φ0
covers φ if φ0 decays faster to zero than φ.

The next theorem is the main result of this section. Under a source condition one
gets a rate of convergence of the approximation to the exact solution. The proof can
be found in [39, Thm. 5.2].

Theorem 2.9. Let f † satisfy (2.13) for some index functionφ andv ∈ X with ‖v ‖X ≤ ρ.
Assume φ < id and denoteΨ(λ) :=

√
λφ(λ). If α is chosen by the parameter choice rule

α :=Ψ−1
(δ
ρ

)
, (2.16)

then there is a constant C > 0 such that the minimizer f̂α of the Tikhonov functional
(2.7) with f0 = 0 satis�es the error estimate

‖ f̂α − f †‖X ≤ C ρ φ
(
Ψ−1

(δ
ρ

))
(2.17)

for all δ ∈ (0, ρ].

The main idea how to prove this is splitting the error into

‖ f̂α − f †‖X ≤ ‖ f̂α − fα ‖X + ‖ fα − f †‖X

where fα is the minimizer for the noiseless Tikhonov functional Jд†,α . The terms on
the right-hand side are called the propagated data noise error and the approximation
error respectively. One can estimate these two by

‖ f̂α − fα ‖X ≤ C
δ
√
α

and
‖ fα − f †‖X ≤ Cρφ(α)

under the assumptions of Theorem 2.9. Then the parameter choice rule α from above
balances the two terms, which yields the estimate above.

Note that the index function φν in (2.14) satis�es φν < id if and only if ν ≤ 1.
Recall that in the case ν > 1 the additional smoothness will not improve convergence
rates by the saturation limit of Tikhonov regularization (see [46]). If one wants to get
faster convergence rates, other methods have to been used, which are not covered
here.

Concerning the logarithmic source conditions φp from (2.15) the covering φp < id
is true for all p > 0 and λ0 ∈ (0, 1).

From Theorem 2.9 the natural question arises whether all elements f † ∈ X satisfy
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a source condition. In the case of injective operators the proof for the following
theorem can be found in [23].

Theorem 2.10. Let T be injective and f † ∈ X be given. Then there exists an index
function φ and an element v ∈ X, such that (2.13) holds true and ‖v ‖X ≤ 2‖ f †‖X.

To conclude this section we shortly come back to the case of Tikhonov regulariz-
ation with a weighted norm (2.11) with f0 = 0. AssumeW is self-adjoint on a dense
domain dom(W ) ⊂ X and there is a positive constant c > 0 such that

‖W f ‖2W ≥ c‖ f ‖2X

for all f ∈ dom(W ). Then we de�ne the weighted forward operator

L B TW −1 (2.18)

and write for the minimizer f̂α,W of the Tikhonov functional (2.11) with f0 = 0

f̂α,W =W
−1 (

α I + L∗L
)−1

L∗дδ . (2.19)

We can prove an analog to Theorem 2.9.

Theorem 2.11. Let f † satisfy a source condition

f † =W −1 φ(L∗L)v =W −1 φ(W T ∗T W )v (2.20)

for some index function φ and v ∈ X with ‖v ‖X ≤ ρ. Assume φ < id and denote
Ψ(λ) :=

√
λφ(λ). If α is chosen by the parameter choice rule

α :=Ψ−1
(δ
ρ

)
, (2.21)

then there is a constant C > 0 such that f̂α ,W satis�es the error estimate

‖ f̂α ,W − f †‖X ≤ C ρ φ
(
Ψ−1

(δ
ρ

))
(2.22)

for all δ ∈ (0, ρ].

Proof. First denote

fα,W BW −1 (
α I + L∗L

)−1
(L∗T f † +Wα f0)

and decompose into approximation and noise error

‖ f̂α ,W − f †‖X ≤ ‖ f̂α ,W − fα,W ‖X + ‖ fα,W − f †‖X .
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For the noise error one can estimate using ‖(α I + L∗L)−1L∗‖ ≤ 1
2
√
α

‖ f̂α ,W − fα,W ‖X =
W −1 (

α I + L∗L
)−1

L∗ (дδ −T f †)

X
≤ ‖W −1‖

δ

2
√
α
.

Concerning the approximation error denote qα (λ) B 1
α+λ and rα (λ) B 1 − λqα (λ). By

the assumption φ < id it follows (see [39]) that there is a constant Cφ < max{1, 1
C },

where C is given by the covering φ < id, such that

sup
λ∈[0,Λ]

|rα (λ)| φ(λ) ≤ Cφ φ(α) for all 0 < α ≤ Λ. (2.23)

Therefore with the functional calculus it follows that

‖ fα,W − f †‖X = ‖W
−1 (

α I + L∗L
)−1

L∗T f † − f †‖X

= ‖W −1 (
qα (L

∗L)L∗LW f † −W f †
)
‖X

= ‖W −1 rα (L
∗L)φ(L∗L)v ‖X

≤ Cφ ‖W
−1‖ ‖v ‖X φ(α).

The application of the parameter choice rule (2.21) yields the assertion. �

2.4 Iteratively regularized Gauß-Newton method

In this section it will be discussed how one can extend some tools and parts of the
theory for linear operators T to nonlinear forward maps F : X → Y.

Whenever the forward operator is di�erentiable a widely used approach to solve
the operator equation (2.1) is via an iterative linearization. In one step one solves the
linear equation

F (f ) ≈ F (fk) + DF (fk) (f − fk) = д
δ

to get fk+1 = f with DF (f ) : X → Y the Fréchet derivative of F at f . This linearized
equation is in general still ill-posed and can be treated as (2.5).

If one applies Tikhonov regularization with parameters αk > 0 to this linearized
equation one obtains iterations (fk)k∈N given by

fk+1 = fk +
(
αkI + DF (fk)

∗ DF (fk)
)−1 DF (fk)

∗ (дδ − F (fk)). (2.24)

By reformulating it as a minimization problem one can write it as

fk+1 = argmin
f ∈X

J
fk ,fk
дδ ,αk
(f ) (2.25a)
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with

J
fk ,fk
дδ ,αk
(f ) B ‖F (fk) + DF (fk) (f − fk) − д

δ ‖2Y + αk ‖ f − fk ‖
2
X . (2.25b)

This method is known as Levenberg-Marquardt algorithm.
A related algorithm, which was suggested �rst by Bakushinskii in [4], is given by

fk+1 = argmin
f ∈X

J
fk ,f0
дδ ,αk
(f ) (2.26a)

with

J
fk ,f0
дδ ,αk
(f ) = ‖F (fk) + DF (fk) (f − fk) − д

δ ‖2Y + αk ‖ f − f0‖
2
X . (2.26b)

Today this algorithm is known as iteratively regularized Gauss-Newton method. To
ensure convergence the regularization parameters αk must tend to zero as k →∞.

One further ingredient to prove convergence or even rates is the notion of a
stopping rule k(δ ,дδ ) = k . The presence of noise in the data makes it appropriate
to stop the iteration at some point, since otherwise the impact of the noise would
become dominant. Therefore if one deals with the noise-free case, i.e. δ = 0, usually
K = ∞. If K does not depend on дδ it is called an a-priori stopping rule and otherwise
an a-posteriori stopping rule.

The spectral source condition that is typically assumed for the above linearized
problems has the form

f † − f0 = φ
(
DF (f †)∗ DF (f †)

)
v (2.27)

for some v ∈ X.
In order to prove convergence one needs a nonlinearity condition for the forward

operator to guarantee that the local linearizations describe the problem well enough.
In the literature there are several approaches. In principle it depends also on the
index function in the source condition how restrictive the nonlinearity condition has
to be. Using general source conditions of the form (2.27) one needs the following:

Assumption 2.12. Let f̂ , f ∈ Bϱ(f †) = { f ∈ X | ‖ f − f †‖X ≤ ϱ}. There are operators
S( f̂ , f ) ∈ L(Y) and Q( f̂ , f ) ∈ L(X,Y) and constants CS,CQ > 0 such that

DF ( f̂ ) = S( f̂ , f )DF (f ) +Q( f̂ , f ), (2.28)

‖I − S( f̂ , f )‖Y ≤ CS, (2.29)

‖Q( f̂ , f )‖ ≤ CQ ‖DF (f †) ( f̂ − f )‖Y . (2.30)

In principle one assumes that the derivative of the forward operator at two points
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di�ers only up to an operator S , which is not far away from the identity and an
additional deviation operator Q , which will be assumed to be su�ciently small.

One can formulate simpler and less restrictive nonlinearity conditions if one deals
with less general source conditions. For example if one only assumes a Hölder source
condition (2.14) with ν ≥ 1

2 then it su�ces to assume Lipschitz continuity of DF

instead of Assumption 2.12.
The next theorem contains the main convergence statement for the iteratively

regularized Gauss-Newton method. The proof can be found in [37].

Theorem 2.13. Let f † − f0 satisfy (2.27) for some concave index function φ <
√

id and
an element v ∈ X. The sequence of regularization parameters are chosen such that

1 ≤
αk
αk+1

≤ Cα , lim
k→∞

αk = 0, αk > 0 (2.31)

with someCα > 1. Moreover the a-priori stopping rule k(δ ,дδ ) is given by the �rst index
k such that

τ
√
αkφ(αk) ≤ δ ≤ τ

√
αkφ(αk), 0 ≤ k < k, (2.32)

for some τ > 0. Then in the noiseless case we have

‖ fk − f †‖X = O
(
φ(αk)

)
, k →∞. (2.33)

Furthermore in the case of perturbed data one gets the convergence rate

‖ fk − f †‖X = O
(
Ψ−1

(δ
τ

))
, δ → 0 (2.34)

withΨ(λ) B
√
λφ(λ).

Let us sketch the proof of this result. In analogy to the case of linear Tikhonov
regularization the main idea how to prove this is to split the error in di�erent types:
The error ek+1 B fk+1− f

† is decomposed into approximation, noise and nonlinearity
errors by

‖ek+1‖X ≤ ‖e
app
k+1‖X + ‖e

noi
k+1‖X + ‖e

nl
k+1‖X

with

e
app
k+1 B −αk(αkI +T

∗T )−1 f †,

enoi
k+1 B (αkI +T

∗
k Tk)

−1T ∗k
(
дδ − F (f †)

)
,

enl
k+1 B (αkI +T

∗
k Tk)

−1T ∗k
(
F (f †) − F (fk) −Tkek

)
− αk(αkI +T

∗
k Tk)

−1 (
T ∗k (T −Tk) + (T

∗ −T ∗k )T
)
(αkI +T

∗T )−1 f †,
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where Tk B DF (fk), and similarly for the image space errors

‖Tk+1ek+1‖Y ≤ ‖Tk+1e
app
k+1‖Y + ‖Tk+1e

noi
k+1‖Y + ‖Tk+1e

nl
k+1‖Y .

Further estimating these di�erent errors leads to an inequality of the form

‖Tk+1ek+1‖Y ≤ ã
√
αkφ(αk) + b̃‖Tkek ‖Y + c̃

‖Tkek ‖
2
Y

√
αk
,

where the coe�cients ã, b̃ and c̃ depend on the constants CS,CQ, ‖v ‖X and ϱ which
can be chosen small enough if one starts at f0 close enough to the exact solution f †.
From this one can now derive conditions (see for details [37]) to obtain an image
space rate

‖Tk+1ek+1‖Y ≤ C
√
αkφ(αk)

and therefore get the convergence rate for noiseless case in the theorem. By applying
the stopping rule one gets directly the rate with respect the noise level.

2.5 Application to inverse obstacle scattering prob-
lems

In this section we describe how one can apply the general framework of regularization
theory to inverse obstacle scattering problems described in Problem 1.2.

A common and crucial assumption is that one restricts the set of admissible
obstacles to star-shaped domains. For every star-shaped obstacle Ω there is reference
point x0 and a positive periodic radial function r : [0, 2π ] → R+ such that

γΩ(t) = x0 + r (t)

(
cos t
sin t

)
(2.35)

for all t ∈ [0, 2π ], is a parameterization of ∂Ω. For a sake of simplicity one can always
assume that x0 = (0, 0)> by a shift of coordinates if x0 is known. In this manner
we identify the admissible obstacles with the positive periodic radial functions with
respect to the origin. One chooses the solution spaceX ⊂ C1,β ([0, 2π ]) to be subspace
of su�cient regularity.

Under this assumption one can de�ne the forward operator

F : dom(F ) ⊂ X → L2(S1), r 7→ u∞ (2.36)
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mapping a radial function to the solution of the corresponding direct problem 1.1.
This approach is intensively discussed in [9]. There it is shown that F is compact,
continuous and Fréchet di�erentiable and even that the derivative DF (r ) is injective.

These properties allows to apply the iteratively regularized Gauss-Newton method
to solve the nonlinear ill-posed operator equation.

Apart from the applicability of the algorithm the more interesting part is again
the question of convergence, convergence rates and source conditions. It is well-
known that this problem is exponentially ill-posed. That means that the only source
conditions one can expect to be satis�ed for a su�ciently general class of objects
are of the logarithmic form (2.15). In [25] it is proved that these source conditions

(a) (b)

(c) (d)

Figure 2.1: Reconstruction of a star-shape domain with respect to di�erent origins with 1% Gaussian
white noise. We use in all examples 8 equidistant incident waves, where the half of a wavelength is
illustrated by the black plotting scale. Red dotted lines indicate the exact solution, blue solid line the
reconstruction and yellow dashed lines initial guesses and the black cross highlights the origin of
the radial functions. The radial functions are represented by their �rst 64 Fourier coe�cients. For
more details about the simulations itself we refer to the Section 6.2. The reconstruction in (a) is very
good and in (b) it becomes worse at the boundary. But the examples in (c) contains unreasonable
deformations and (d) is even a complete Failure as the computed curve contains a self-intersection.
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imposed on f † − f0 roughly correspond to a Sobolev smoothness. The index function
(2.15) used in the proof of [25] is equivalent to

φ(λ) B
(
log(3 + λ−1)

)−p (2.37)

for some p > 0.
Nevertheless this whole approach for inverse obstacle scattering problems con-

tains two major disadvantages. The �rst is the dependence on the parameterization.
For one reconstruction process �x the origin or the point x0 and then compute the
unique parameterization given by (2.35). Such an approach necessitates a-priori
knowledge: One needs to know an appropriate inner point of the obstacle to be
able to state the mathematical model in the above sense. Note that the numerical
reconstruction can fail if the origin is chosen badly. For an illustration see Figure 2.1.
We can observe unwanted deformations in the reconstruction or even a failure if
the center point is chosen too close to the boundary of the exact domain. This is
expected since the penalty term corresponding to the exact solution explodes as the
origin tends to the boundary.

Second it is obvious that the assumption on the domains to be star-shape is too
restrictive. In Figure 2.2 we shown that one cannot compute the shape of a nonstar-
shaped domain using this approach. The exclusion of many interesting classes of
domains, which are not star-shaped limits the usage for practical purposes.

Therefore it is preferable to establish a new approach to model a space of admiss-

Figure 2.2: Failure of reconstructing a nonstar-shape domain by using radial functions. Parameters,
line styles and colors are chosen as in Figure 2.1.
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ible curves to overcome these disadvantages.
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3 A class of
shape manifolds

We become what we behold. We shape our tools and
then our tools shape us.

— Marshall McLuhan, Understanding media

In this chapter we introduce a new shape space emerging from the geometrical
description of curves in R2. As a preliminary result we introduce the construction of
shape manifolds of closed curves. Moreover we give the de�nition of the attached tan-
gent spaces including their Riemannian metric. Furthermore, the extrinsic curvature
of the shape space is given explicitly. This is the second main result of this chapter,
enlarging the investigation of shape manifolds in Section 3.1. It is known that from an
extrinsic description of the curvature one can deduce the intrinsic curvature tensor.
Nevertheless we prove also a bound on the curvature tensor without using a bound
on the second fundamental form in Section 3.4.

In the following many notions and constructions from Riemannian geometry play
a major role. We refer the reader for details to the Appendix A, where the needed
concepts are recalled.

3.1 Construction of shape manifolds

The main parts of this section are published in the article [12].



34 3. A class of shape manifolds

Let Γ ⊂ R2 be a regular, closed curve of class H 2 of length L. That is, there is
a parameterization γ ∈ H 2([0, 1];R2) satisfying γ ′(t) , 0 for all t ∈ [0, 1] and the
closing conditions

γ (0) = γ (1) and γ ′(0) = γ ′(1). (3.1)

Without loss of generality, we assume that γ is of constant speed, i.e., |γ ′(t)| = L for
all t ∈ (0, 1). This parameterization is well-known as arc-length parameterization.
Thus, we represent γ by a triple m = (θ, L,p) with a base point p B γ (0), curve’s
length L, and angle function θ ∈ H 1([0, 1]) via

γ (t) = γm(t) B p +

∫ t

0
γ ′(τ ) dτ = p + L

∫ t

0

(
cos(θ (τ )), sin(θ (τ ))

)
dτ . (3.2)

In order to meet the closing conditions (3.1), θ needs to satisfy∫ 1

0
cos(θ (t)) dt = 0,

∫ 1

0
sin(θ (t)) dt = 0 and θ (1) − θ (0) ∈ 2π Z. (3.3)

The number θ (1)−θ (0)
2π is called the turning number of γ (not to be confused with the

winding number). The mapγ is an embedding of Γ if it is a di�eomorphism onto Γ and
a necessary (but not su�cient) condition for Γ to be embedded is that γ has turning
number ±1, see [11, Sec. 5.7, Thm. 2]. Since our application focuses on boundary
curves of simply connected domains, we restrict the curves turning number to be +1
and de�ne the space:

Θ B
{
θ ∈ H 1([0, 1])

�� ∫ 1
0

(
cos(θ (t)), sin(θ (t))

)
dt = 0, θ (1) − θ (0) = 2π

}
. (3.4)

The nonlinear equations in the de�nition of Θ prevent any kind of linear space
structure. Nevertheless,Θ is a manifold as we show in the next theorem.

Theorem 3.1. The spaceΘ is an embedded submanifold of H 1([0, 1]).

Proof. First we de�ne a constraint mappingΦ : H 1([0, 1]) → R2 × R given by

Φ(θ ) := (Φcld(θ ),Φper(θ )) (3.5a)

where

Φcld : H 1([0, 1]) → R2, θ 7→

(∫ 1
0 cos(θ (s)) ds∫ 1
0 sin(θ (s)) ds

)
(3.5b)

Φper : H 1([0, 1]) → R, θ 7→ θ (1) − θ (0) − 2π . (3.5c)
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Using this notation we rewriteΘ as follows

Θ =
{
θ ∈ H 1([0, 1])

�� Φ(θ ) = 0
}
.

By the implicit function theorem we have to show thatΦ is a submersion to show
that Θ is a submanifold. That is, DΦ(θ ) admits a bounded linear right inverse for
each θ ∈ Φ−1(0) (see section A.1 or [36, II.2]).

First, we calculate derivatives of the functionsΦcld andΦper used in the de�nition
ofΦ. Let θ ∈ H 1([0, 1]) be given. Then for u ∈ H 1([0, 1]) we deduce

DΦcld(θ )u =

(
−

∫ 1
0 sin(θ (t))u(t) dt∫ 1
0 cos(θ (t))u(t) dt

)
=

(
−〈sθ ,u〉L2

〈cθ ,u〉L2

)
and

DΦper(θ )u = u(1) − u(0).

Here we used the notation

sθ (t) B sin(θ (t)) and cθ (t) B cos(θ (t)) for t ∈ [0, 1]. (3.6)

To prove the subjectivity of DΦ(θ ) for θ ∈ Θ it su�ces to construct a function
u ∈ H 1([0, 1]) such that it solves DΦ(θ )u = λ and depends linearly on λ ∈ R3. For
this de�ne

u(t) B asθ (t) + bcθ (t) + ct .

For θ ∈ Φ−1(0) the function u is a pre-image of λ, if the coe�cients a,b and c solve
the linear system

DΦ(θ )u =
©«
−〈sθ , sθ 〉L2 −〈sθ , cθ 〉L2 −〈sθ , t〉L2

〈cθ , sθ 〉L2 〈cθ , cθ 〉L2 〈cθ , t〉L2

0 0 1

ª®®¬
©«
a

b

c

ª®®¬ =
©«
λ1
λ2
λ3

ª®®¬ .
The determinant D of the matrix given by D = −‖sθ ‖

2
L2 ‖cθ ‖

2
L2 + |〈sθ , cθ 〉L2 |2 is negative

by the Cauchy-Schwarz inequality. It attains zero if and only if sθ and cθ are linearly
dependent. This is a contradiction since θ ∈ Φ−1(0) is continuous, but never constant.
The result follows because this proves surjectivity of DΦ(θ ). �

As pointed out in the Appendix A the tangent space of a manifold is essential for
di�erential geometry. The tangent space TθΘ ofΘ is given by 1

1In this thesis we use calligraphic letters asM, T , E or exp to denote sets, functions or constructions
arising from di�erential geometry to incorporate well-established notations from the two �elds of
Riemannian geometry and regularization theory.
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TθΘ =
{
u ∈ H 1([0, 1])

�� DΦ(θ )u = 0
}
.

The family of inner products (дθ )θ∈Θ de�ned by

дθ (u,v) B

∫ 1

0

(
u(t)v(t) + u′(t)v′(t)

)
dt for u, v ∈ TθΘ

turns (Θ,д) into a in�nite-dimensional Riemannian manifold (in the sense of [36],
see Section A.1 for details).

Remark 3.2. From the proof of Theorem 3.1 and the construction of the constraint
mappingΦ one can see that the structure ofΘ is almost only in�uenced by the closure
constraintΦcld. Indeed we can describe the manifold structure also slightly di�erently.
Note that

Φ−1
per(0) =

{
θ ∈ H 1([0, 1])

��θ (1) − θ (0) = 2π
}

is an a�ne subspace in H 1([0, 1]). Thus, it su�ces to consider the constraint mapping

Φ : H 1
per([0, 1]) → R

2, θ 7→

(∫ 1
0 cθ (t) dt∫ 1
0 sθ (t) dt

)
(3.7)

with
H 1

per([0, 1]) B
{
u ∈ H 1([0, 1])

��u(0) = u(1)}.
Especially for the tangent space the equivalent description is useful

TθΘ =
{
u ∈ H 1

per([0, 1])
�� DΦ(θ )u = 0

}
. (3.8)

For a compact, convex set of base points B ⊂ R2 and for bounds of acceptable
curve lengths L1, L2, we de�ne the space of feasible curves by

M B Θ × [L1, L2] × B.

ThenM is a smooth submanifold with corners in the Hilbert space

X B H 1([0, 1]) × R × R2

and its tangent space at an interior pointm = (θ, L,p) is given by

TmM = TθΘ ⊕ R ⊕ R
2.
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3.2 The second fundamental form

The following sections are dedicated to the investigation of the constraint function
Φ : H 1

per([0, 1]) → R2 de�ned in (3.7). The main result of this section is the proof of an
explicit formula for the second fundamental form of the submanifoldΘ in H 1([0, 1]).
By the proof of Theorem 3.1 and Remark 3.2Θ is given by the submersionΦ. It is a
well-known fact from Riemannian geometry that in this case the second fundamental
form IIΘ is given by the formula (A.26) in terms of derivatives and a Moore-Penrose
inverse.

The next lemma shows the smoothness of the constraint operatorΦ.

Lemma 3.3. The map Φ : H 1
per([0, 1]) → R2 is a C∞ operator and for n ∈ N0 the

derivative of an odd order

D2n+1Φ(θ ) :
(
H 1

per([0, 1])
)2n+1

→ R2

is given by

D2n+1Φ(θ ) (u1, . . . ,u2n+1) =

(
(−1)n+1

∫ 1
0 sθ (t)u1(t) · · ·u2n+1(t) dt

(−1)n
∫ 1

0 cθ (t)u1(t) · · ·u2n+1(t) dt

)
.

In the even case, the derivative

D2nΦ(θ ) :
(
H 1

per([0, 1])
)2n
→ R2

is given by

D2nΦ(θ ) (u1, . . . ,u2n) = (−1)n
(∫ 1

0 cθ (t)u1(t) · · ·u2n+1(t) dt∫ 1
0 sθ (t)u1(t) · · ·u2n+1(t) dt

)
.

Furthermore,
|DkΦ(θ ) (u1, . . . ,uk)|R2 ≤ ‖u1‖H 1 · · · ‖uk ‖H 1 (3.9)

for all u1, . . . ,uk ∈ H
1
per([0, 1]) and all k ∈ N. 2

Proof. The stated formulas are proven by a straight forward calculation. We prove
(3.9) for k odd. The even case can be proven analogously. Let n ∈ N0, then it follows

|D2n+1Φ(θ ) (u1, . . . ,u2n+1)|
2
R2 =

��� ∫ 1

0
sθ (t)u1(t) · · ·u2n+1(t) dt

���2
2Note that in this thesis norms and inner product in Hilbert spaces X are denoted by ‖·‖X and

〈·, ·〉X , where we use the notation |·|Rn and (·, ·)Rn for norms and inner products in Rn .
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+

��� ∫ 1

0
cθ (t)u1(t) · · ·u2n+1(t) dt

���2
≤

∫ 1

0
(s2
θ (t) + c

2
θ (t))

(
u1(t) · · ·u2n+1(t)

)2 dt

≤ ‖u1‖
2
L2 · · · ‖u2n+1‖

2
L2

and by taking the square root on both side one can deduce ‖DkΦ(θ )‖ ≤ 1 for all
k ∈ N0. �

Next, we prove an expression for the Moore-Penrose inverse of the derivative
DΦ.

Lemma 3.4. The Moore-Penrose inverse DΦ(θ )† : R2 → H 1
per([0, 1]) for θ ∈ Θ is given

by

DΦ(θ )† (x) =
−
(
‖дθ ‖

2
H 1 x1 + 〈fθ ,дθ 〉H 1 x2

)
Dθ

fθ +
〈дθ , fθ 〉H 1 x1 + ‖ fθ ‖H 1 x2

Dθ
дθ (3.10)

for x = (x1, x2)
> ∈ R2, where

Dθ B ‖ fθ ‖
2
H 1 ‖дθ ‖

2
H 1 − |〈fθ ,дθ 〉|

2 (3.11)

with fθ , дθ ∈ H 2
per([0, 1]) = { f ∈ H 1([0, 1]) | f (0) = f (1), f ′(0) = f ′(1)} solving the

ordinary di�erential equations
fθ − f ′′θ = sθ (3.12a)

and
дθ − д

′′
θ = cθ . (3.12b)

Proof. In the following we need the existence of the functions fθ , дθ ∈ H 2
per([0, 1]) as

solutions of the ordinary di�erential equations (3.12). At the end of the proof we give
the explicit formulas for them, but �rst we construct the generalized inverse. We
compute the adjoint operator DΦ(θ )∗ : R2 → H 1

per([0, 1]) satisfying the equation

(DΦ(θ )u, x)R2 = 〈u,DΦ(θ )∗ x〉H 1

for all u ∈ H 1
per([0, 1]) and x ∈ R2. Note that by (3.12) and integration by parts for

u ∈ H 1
per([0, 1]) it follows that

〈fθ ,u〉H 1 = 〈fθ ,u〉L2 + 〈f ′θ ,u
′〉L2 = 〈fθ − f ′′θ ,u〉L2

= 〈sθ ,u〉L2
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and analogously 〈дθ ,u〉H 1 = 〈cθ ,u〉L2 . Therefore with x = (x1, x2)
> ∈ R2 we get

〈u,DΦ(θ )∗ x〉H 1 = (DΦ(θ )u, x)R2 = −〈sθ ,u〉L2 x1 + 〈cθ ,u〉L2 x2

= −〈fθ ,u〉H 1 x1 + 〈дθ ,u〉H 1 x2

= 〈u,−fθ x1 + дθ x2〉H 1

and thus

DΦ(θ )∗
(
x1
x2

)
= −fθ x1 + дθ x2. (3.13)

Since DΦ(θ ) is surjective as seen in Remark 3.2, we can compute the Moore-Penrose
inverse via

DΦ(θ )† = DΦ(θ )∗
(
DΦ(θ )DΦ(θ )∗

)−1
. (3.14)

This formula is true for all linear surjective operators and can be found for example
in [45]. DΦ(θ )DΦ(θ )∗ : R2 → R2 is given by the matrix expression

DΦ(θ )DΦ(θ )∗
(
x1
x2

)
=

(
〈sθ , fθ 〉L2 −〈sθ ,дθ 〉L2

−〈cθ , fθ 〉L2 〈cθ ,дθ 〉L2

) (
x1
x2

)
=

(
〈fθ , fθ 〉H 1 −〈fθ ,дθ 〉H 1

−〈дθ , fθ 〉H 1 〈дθ ,дθ 〉H 1

) (
x1
x2

)
with the identities as above. The determinant Dθ of this matrix is given in (3.11). Note
that Dθ ≥ 0 by the Cauchy-Schwarz inequality. To prove that it never attains zero
assume the contrary. Then fθ and дθ have to be linearly dependent, i.e. there is a
λ ∈ R \ {0} such that fθ = λдθ . Plugging this in the equations (3.12), we deduce linear
dependence between sθ and cθ , which cannot be the case, since θ ∈ Θ is continuous
and not constant. Therefore, Dθ > 0 and the inverse matrix is given by

(
DΦ(θ )DΦ(θ )∗

)−1
(
x1
x2

)
=

1
Dθ

(
〈дθ ,дθ 〉H 1 〈fθ ,дθ 〉H 1

〈дθ , fθ 〉H 1 〈fθ , fθ 〉H 1

) (
x1
x2

)
.

By combining this matrix with the adjoint operator we obtain the stated formula for
the generalized inverse.

For the sake of completeness we give here explicit formulas for fθ and дθ , which
solves the equations (3.12). We consider the function

fθ (t) B as,θ (t)et + bs,θ (t)e−t (3.15a)

with

as,θ (t) B ãs,θ (t) +
e

1 − e
ãs,θ (1) and bs,θ (t) B b̃s,θ (t) +

e−1

1 − e−1 b̃s,θ (1) (3.15b)
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where

ãs,θ (t) B −
1
2

∫ t

0
e−ξsθ (ξ ) dξ and b̃s,θ (t) B

1
2

∫ t

0
eξsθ (ξ ) dξ . (3.15c)

We verify that this function indeed solves the equation (3.12a). Note that a′s,θ (t) =
1
2sθ (t)e

−t and b′s,θ (t) = −
1
2sθ (t)e

t . Using this we deduce for the �rst derivative

f ′θ (t) = a′s,θ (t)e
t + as,θ (t)et + b′s,θ (t)e

−t − bs,θ (t)e−t = as,θ (t)et − bs,θ (t)e−t

and for the second derivative

f ′′θ (t) = a′s,θ (t)e
t + as,θ (t)et − b′s,θ (t)e

−t + bs,θ (t)e−t = fθ (t) − sθ (t),

which shows that fθ is a solution of the ordinary di�erential equation (3.12a).
To verify that this function also satis�es the periodic boundary condition we

compute directly

fθ (1) = as,θ (1)e + bs,θ (0)e−1 =
(
1 +

e

1 − e

)
ãs,θ (1)e +

(
1 +

e−1

1 − e−1

)
b̃s,θ (1)e−1

=
e

1 − e
ãs,θ (1) +

e−1

1 − e−1 b̃s,θ (1)

= as,θ (0) + bs,θ (0) = fθ (0).

Thus fθ solves equation (3.12a) and satis�es the boundary conditions. Completely
analogously it holds that

дθ (t) B ac,θ (t)et + bc,θ (t)e−t (3.16a)

with

ac,θ (t) B ãc,θ (t) +
e

1 − e
ãc,θ (1) and ãc,θ (t) B −

1
2

∫ t

0
e−ξcθ (ξ ) dξ , (3.16b)

and

bc,θ (t) B b̃c,θ (t) +
e−1

1 − e−1 b̃c,θ (1) and b̃c,θ (t) B
1
2

∫ t

0
eξcθ (ξ ) dξ . (3.16c)

By an analog argument one veri�es that дθ solves (3.12b). �

In order to derive a concrete bound of the Moore-Penrose inverse DΦ(θ )†, which
will play a major role in later computations, one needs to bound Dθ from below. This
is done in the following lemma.
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Lemma 3.5. For θ ∈ Θ and fθ , дθ ∈ H 2
per([0, 1]) de�ned in Lemma 3.4 it holds the lower

bound
Dθ = ‖ fθ ‖

2
H 1 ‖дθ ‖

2
H 1 − |〈fθ ,дθ 〉H 1 |2 ≥

1
CD(θ )

(3.17)

with
CD(θ ) B

16
π 2 ‖θ

′‖2L2

(
1 + ‖θ ′‖L2

)4 (
1 +

2
√

2
(
1 + ‖θ ′‖L2

) )2
. (3.18)

Proof. From (3.12a) we deduce by integration by parts

‖sθ ‖
2
L2 = ‖ fθ ‖

2
L2 + 2‖ f ′θ ‖

2
L2 + ‖ f

′′
θ ‖

2
L2 = ‖ fθ ‖

2
H 1 + ‖ f

′
θ ‖

2
H 1 . (3.19)

By leaving out the last term on the right-hand side implies immediately the upper
bound

‖ fθ ‖H 1 ≤ ‖sθ ‖L2 ≤ 1. (3.20)

Furthermore, by using again once more integration by parts and Cauchy-Schwarz
inequality we arrive at

‖ f ′θ ‖
2
H 1 = 〈f

′
θ , f
′
θ 〉L2 + 〈f ′′θ , f

′′
θ 〉L2 (3.21)

= 〈f ′′θ ,−fθ + f ′′θ 〉L2 = −〈f ′′θ , sθ 〉L2 = 〈f ′θ , θ
′cθ 〉L2 ≤ ‖ f ′θ ‖L2 ‖θ ′cθ ‖L2 .

Thus, we deduce

‖sθ ‖
2
L2 ≤ ‖ fθ ‖

2
H 1 + ‖ f

′
θ ‖L2 ‖θ ′‖L2 ≤

(
1 + ‖θ ′‖L2

)
‖ fθ ‖H 1 .

By (3.12) cθ and дθ are connected by an analogous equation than sθ and fθ . This
implies that an analogous result holds true by exchanging sθ with cθ and fθ with дθ .
Because of the identity

‖sθ ‖
2
L2 + ‖cθ ‖

2
L2 =

∫ 1

0

(
sin(θ (t))

)2
+

(
cos(θ (t))

)2 dt = 1 (3.22)

one of the summands on the left-hand side of (3.22) has to be larger than 1
2 . Thus,

we assume without loss of generality that ‖sθ ‖2L2 ≥
1
2 . Otherwise we change in the

following the roles of cθ and sθ respectively дθ and fθ . Therefore we get the lower
estimate

‖ fθ ‖H 1 ≥
1

2
(
1 + ‖θ ′‖L2

) . (3.23)

On the other hand by (3.20) and (3.22) it holds that ‖дθ ‖2H 1 ≤ ‖cθ ‖
2
L2 ≤

1
2 . Next, we

de�ne
λ B

〈fθ ,дθ 〉H 1

‖ fθ ‖
2
H 1

. (3.24)
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Then by straightforward computations and (3.23) we can estimate

‖дθ − λ fθ ‖
2
H 1 = ‖дθ ‖

2
H 1 − 2λ〈дθ , fθ 〉H 1 + λ2‖ fθ ‖

2
H 1

= ‖дθ ‖
2
H 1 − 2

��〈fθ ,дθ 〉H 1
��2

‖ fθ ‖
2
H 1

+

��〈fθ ,дθ 〉H 1
��2

‖ fθ ‖
2
H 1

=
‖дθ ‖

2
H 1 ‖ fθ ‖

2
H 1 −

��〈fθ ,дθ 〉H 1
��2

‖ fθ ‖
2
H 1

=
Dθ

‖ fθ ‖
2
H 1

≤ 4
(
1 + ‖θ ′‖L2

)2
Dθ .

To continue with a lower bound of ‖дθ − λ fθ ‖H 1 we use the same strategy as in (3.19)
to get

‖cθ − λsθ ‖
2
L2 = ‖дθ − λ fθ ‖

2
H 1 + ‖д

′
θ − λ f

′
θ ‖

2
H 1 .

In analogy to (3.21)

‖д′θ − λ f
′
θ ‖

2
H 1 = 〈д

′
θ − λ f

′
θ , θ
′
(
− sθ − λcθ

)
〉L2 ≤ ‖дθ − λ fθ ‖H 1 ‖θ ′‖L2

(
1 + λ

)
.

Further, it follows from (3.23) and ‖д‖2
H 1 ≤

1
2 that

λ =
〈fθ ,дθ 〉H 1

‖ fθ ‖
2
H 1

≤
‖дθ ‖H 1

‖ fθ ‖H 1
≤

2
√

2
(
1 + ‖θ ′‖L2

)
. (3.25)

The bound (3.20) implies ‖дθ − λ fθ ‖H 1 ≤ 1 + λ and therefore

‖cθ − λsθ ‖
2
L2 ≤

(
1 + ‖θ ′‖L2

) (
1 + λ

)
‖дθ − λ fθ ‖H 1

≤
(
1 + ‖θ ′‖L2

) (
1 +

2
√

2
(
1 + ‖θ ′‖L2

) )
‖дθ − λ fθ ‖H 1 .

Next, we continue the estimate from below and derive a lower bound on ‖cθ − λsθ ‖L2 .
Thus, de�ne φ ∈ (0, π ) such that

cotφ = λ. (3.26)

Denote the bound on the right-hand side in (3.25) withCθ . Since 0 < |λ | ≤ Cθ < ∞ it
is |φ | ≤ arccot(Cθ ) < ∞. Further by |sinφ | ≤ 1 it is 1

|sinφ | ≥ 1. By applying (3.26) and
an angle addition theorem for the sine one obtains the estimate

‖cθ − λsθ ‖
2
L2 =

∫ 1

0

�� cosθ (t) − cotφ sinθ (t)
��2 dt

=
1

|sinφ |2

∫ 1

0

�� cosθ (t) sinφ − cosφ sinθ (t)
��2 dt
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≥

∫ 1

0

�� cosθ (t) sinφ − cosφ sinθ (t)
��2 dt

=

∫ 1

0

�� sin
(
θ (t) − φ

) ��2 dt

Next we introduce a shifted version θ̃ : [0, 1] → [φ,φ+2π ) of θ such that θ̃ (t)−θ (t) ∈
2πZ for all t ∈ [0, 1]. Since θ ∈ Θ, i.e. θ ∈ H 1([0, 1]) and θ (1) − θ (0) = 2π there exist
t0 < t1 such that

θ̃ (t) ∈
[
φ +

π

4
,φ +

3π
4

]
for all t ∈ [t0, t1]

and θ̃ (t0) = φ + π
4 and θ̃ (t1) = φ + 3π

4 . It holds that θ̃ ′(t) = θ ′(t) for all t ∈ [0, 1] and
by fundamental theorem of calculus and Cauchy-Schwarz

π

2
=

��θ̃ (t1) − θ̃ (t0)�� = ��� ∫ t1

t0

1 · θ̃ ′(t) dt
��� ≤ √t1 − t0 ( ∫ t1

t0

|θ̃ ′(t)|2 dt
) 1

2

≤
√
t1 − t0‖θ

′‖L2 .

By the choice of the interval one can bound from below |sin(φ − θ̃ (t))| ≥ 1√
2

for all
t ∈ [t0, t1] and we can use the above to estimate∫ t1

t0

|sin(φ − θ (t))|2 dt ≥
t1 − t0

2
≥

π 2

8‖θ ′‖2
L2

.

Further there exists also t2 < t3 such that

θ̃ (t) ∈
[
φ +

5π
4
,φ +

7π
4

]
for all t ∈ [t2, t3]

and now analogously as above it holds that t3 − t2 ≥ π 2/(4‖θ ′‖2
L2) and also the

corresponding lower estimate for the integral over the interval [t2, t3]. Now the
combination of the last arguments yields

‖cθ − λsθ ‖
2
L2 ≥

∫ t1

t0

|sin(φ − θ (t))|2 dt +
∫ t3

t2

|sin(φ − θ (t))|2 dt ≥
π 2

4‖θ ′‖2
L2

.

By putting the above estimates together we obtain the assertion. �

Using the last lemma one proves a bound of the operator norm of the Moore-
Penrose inverse.

Lemma 3.6. The map DΦ(θ )† : R2 → H 1([0, 1]) is bounded in terms of θ , i.e. it holds

‖DΦ(θ )† (x)‖H 1 ≤ 2
√

2CD(θ ) |x |R2 (3.27)
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for all x = (x1, x2)
> ∈ R2, where CD(θ ) is de�ned in (3.18).

Proof. Plugging in the formula (3.10), we obtain by straightforward manipulations
and ‖ fθ ‖H 1 , ‖дθ ‖H 1 ≤ 1 that

‖DΦ(θ )† (x)‖H 1 ≤
1
Dθ

(��‖дθ ‖2H 1 x1 + 〈fθ ,дθ 〉H 1 x2
�� ‖ fθ ‖H 1

+
��〈дθ , fθ 〉H 1 x1 + ‖ fθ ‖

2
H 1 x2

�� ‖дθ ‖H 1
)

≤
2
Dθ

(
|x1 | + |x2 |

)
.

Using that |x1 | + |x2 | ≤
√

2 |x |R2 together with Lemma 3.5, the statement follows. �

For the description of the extrinsic curvature of a submanifold the notion of the
second fundamental form is essential. We apply the formulas from Section A.5 and
and results above to get the following theorem.

Theorem 3.7. The second fundamental form IIΘ
θ
at θ of the submanifoldΘ in H 1([0, 1])

is given by

IIΘθ (u,v) = −
‖дθ ‖

2
H 1 〈cθ ,uv〉L2 + 〈fθ ,дθ 〉H 1 〈sθ ,uv〉L2

Dθ
fθ

+
〈дθ , fθ 〉H 1 〈cθ ,uv〉L2 + ‖ fθ ‖

2
H 1 〈sθ ,uv〉L2

Dθ
дθ . (3.28)

and it holds that
‖IIΘθ (u,v)‖H 1 ≤ CII(θ ) ‖u‖H 1 ‖v ‖H 1 (3.29)

with
CII(θ ) B 2

√
2CD(θ ), (3.30)

for all u,v ∈ TθΘ, where CD(θ ) is de�ned in (3.18).

Proof. SinceΘ is an embedded submanifold of H 1([0, 1]) we can apply the character-
ization (A.26) of the second fundamental form by the submersionΦ. This gives

IIΘθ (u,v) = −DΦ(θ )†D2Φ(θ )(u,v). (3.31)

From Lemma 3.3 we know that

D2Φ(θ )(u,v) = −

(
〈cθ ,uv〉L2

〈sθ ,uv〉L2

)
.

Substituting this into the formula (3.10) yields the statement (3.28).
The inequality (3.29) follows by applying the bounds in the Lemmas 3.3 and 3.6

to (3.31), which �nishes the proof. �
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As an immediately consequence the next corollary provides a local bound on the
curvature tensor.

Corollary 3.8. Let θ ∈ Θ and u, v ∈ TθΘ. Then it holds that

|〈Rθ (u,v)u,v〉H 1 | ≤ 2
(
CII(θ )

)2
‖u‖2H 1 ‖v ‖

2
H 1 . (3.32)

Proof. Recall the Gauss equation A.24

〈Rθ (u,v)u,v〉H 1 = 〈IIΘθ (u,v), II
Θ
θ (v,u)〉H 1 − 〈IIΘθ (u,u), II

Θ
θ (v,v)〉H 1 .

By using Cauchy-Schwarz and Theorem 3.7 the statement follows. �

3.3 Lipschitz-type properties

In this part we prove some properties and estimates as preparations for later usage.
Mostly they are local Lipschitz continuity properties. For this we use geodesic balls
inΘ. That is, for θ ∈ Θ and ϱ ≥ 0 the geodesic ball BΘϱ (θ ) at θ of radius ϱ is given by

BΘϱ (θ ) B
{
γ (1) ∈ Θ | γ is a geodesic, γ (0) = θ , ‖γ ′(0)‖γ (0) ≤ ϱ

}
. (3.33)

For a sake of simplicity we always assume that ϱ is su�ciently small to guarantee
the existence of minimizing geodesics between θ and θ̂ for all θ̂ ∈ BΘϱ (θ ).

Lemma 3.9. Let θ ∈ Θ, ϱ ≥ 0 and θ̂ ∈ BΘϱ (θ ). We denote the parallel transport along

the minimizing geodesic between θ to θ̂ by Pθ̂
θ

: TθΘ → Tθ̂Θ. Then there is a bound
CP depending on θ and ϱ (explicit formula given in the proof), such thatu − Pθ̂θu 

H 1 ≤ CP(θ, ϱ) dist(θ, θ̂ ) ‖u‖H 1 for all u ∈ TθΘ . (3.34)

Before we prove the statement it is to emphasizes that the left-hand side in (3.34)
is a di�erence of elements in the surrounding space H 1([0, 1]).

Proof. Let γ be the minimizing geodesic connecting θ and θ̂ with γ (a) = θ and
γ (b) = θ̂ , where its length L is given by L =

∫ b

a
‖γ ′(t)‖H 1 dt . It follows immediately

that γ (t) ∈ BΘϱ (θ ) for all t . Furthermore we can assume that it is parameterized by
the arc-length, i.e. ‖γ ′(t)‖H 1 = 1 for all t ∈ [a,b]. Therefore, it holds that

L =

∫ b

a
‖γ ′(t)‖H 1 dt = |b − a |. (3.35)
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Let u ∈ TθΘ and de�ne the tangential vector �eld V

V (γ (t)) B P
γ (t)
γ (0)u ∈ Tγ (t)Θ

along γ . For a normal �eld N along γ , de�ned by N (γ (t)) ∈ Nγ (t)Θ = Tγ (t)Θ
⊥, it

holds therefore that
〈V (γ (t)),N (γ (t))〉H 1 = 0

for all t ∈ [a,b] and by taking the derivative with respect to t , one gets〈 d
dt
V (γ (t)),N (γ (t))

〉
H 1 = −

〈
V (γ (t)),

d
dt
N (γ (t))

〉
H 1 . (3.36)

The expression d
dtV (γ (t)) is a short version of the derivative DV (γ (t)) (γ ′(t)) of V

along the direction γ ′. Since V (γ (t)) is γ -parallel it holds that〈 d
dt
V (γ (t)),W (γ (t))

〉
H 1 = 0 (3.37)

for all vector �eldsW (γ (t)) ∈ Tγ (t)Θ, which is equivalent to d
dtV (γ (t)) being a normal

�eld. De�ne for θ ∈ Θ the orthogonal projection Pθ : H 1([0, 1]) → TθΘ and note that

V (γ (t)) = Pγ (t)
(
V (γ (t))

)
. (3.38)

Combining these facts with (3.36) and using that the projection is idempotent and
self-adjoint, we can conclude d

dt
V (γ (t))

2
H 1 = −

〈
Pγ (t)

(
V (γ (t))

)
, Pγ (t)

( d2

dt2V (γ (t))
)〉

H 1

≤ ‖V (γ (t))‖H 1
Pγ (t) ( d2

dt2V
(
γ (t)

) )
H 1 . (3.39)

Recall that the derivative of a normal �eld corresponds to the Weingarten map given
by (A.22). Furthermore the equation (A.23) connects it with the second fundamental
form. Using those, Cauchy-Schwarz and Theorem 3.7 it follows thatPγ (t) ( d2

dt2V
(
γ (t)

) )2
H 1 =

S d
dtV (γ (t))

(γ ′(t))
2
H 1

=
〈 d

dt
V (γ (t)), II

(
γ ′(t),S d

dtV (γ (t))
(γ ′(t))

)〉
H 1

≤ CII(γ (t))
 d

dt
V (γ (t))


H 1

S d
dtV (γ (t))

(γ ′(t))

H 1

where ‖γ ′(t)‖H 1 = 1 holds by construction as the arc length derivative. Dividing by
the norm of the Weingarten map gives the bound for the left-hand side. The parallel
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transport maps isometrically through the tangent spaces and thusV (γ (t))
H 1 = ‖P

γ (t)
γ (a)

u‖H 1 = ‖u‖H 1 .

By combining this with the last two inequalities gives d
dt
V (γ (t))

2
H 1 ≤ CII(γ (t))

 d
dt
V (γ (t))


H 1 ‖V (γ (t))‖H 1

= CII(γ (t))
 d

dt
V (γ (t))


H 1 ‖u‖H 1 (3.40)

which can divided by the norm of d
dtV (γ (t)) to obtain a bound for the left-hand side.

Now by using the above constructions we deduceu − Pθ̂θu 
H 1 =

Pγ (a)
γ (a)

u − P
γ (b)
γ (a)

u

H 1

=
V (γ (b)) −V (γ (a))

H 1

≤

∫ b

a

 d
dt
V (γ (t))


H 1 dt ≤ sup

t∈[a,b]

{
CII(γ (t))

}
|b − a | ‖u‖H 1 . (3.41)

Since γ connects θ and θ̂ as a geodesic path of length L it is by (3.35)

|b − a | = L = dist(θ , θ̂ ). (3.42)

Only the consideration of the term CII(γ (t)) is left. Recall the de�nition of this bound
CII(γ (t)) = 2

√
2CD(γ (t)) in (3.30). The term CD given in (3.18) can be written as a

polynomial pD in ‖θ ′‖L2 by pD(‖θ
′‖L2) B CD(θ ). The derivative of pD

p′D(t) =
16
π 2 2t

(√
2 t +

√
2 + 1

) (
4
√

2 t2 +
(
3 + 5
√

2
)
t +
√

2 + 1
)
(1 + t)3

in monotonous increasing in the positive reals and thus we can estimate

CD(γ (t)) = CD(θ ) + pD(‖γ
′(t)‖L2) − pD(‖θ

′‖L2)

= CD(θ ) +

∫ ‖γ ′(t)‖L2

‖θ ′‖L2

p′D(ξ ) dξ

≤ CD(θ ) +
(

sup
ξ∈[‖θ ′‖L2 ,‖γ ′(t)‖L2 ]

p′D(ξ )
) ��‖γ ′(t)‖L2 − ‖θ ′‖L2

��
for ‖θ ′‖L2 ≤ ‖γ ′(t)‖L2 . In the other case we obtain the analog inequality by exchanging
the roles of ‖θ ′‖L2 and ‖γ ′(t)‖L2 . Since γ is parameterized by the arc-length and thus
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‖γ ′(t)‖L2 ≤ ‖γ ′(t)‖H 1 ≤ 1, it follows that

max
{

sup
ξ∈[‖θ ′‖L2 ,‖γ ′(t)‖L2 ]

p′D(ξ ) , sup
ξ∈[‖γ ′(t)‖L2 ,‖θ ′‖L2 ]

p′D(ξ )
}
≤ max

{
p′D(‖θ

′‖L2) , 1
}
.

By using that the norm di�erence in the surrounding Hilbert space is always a lower
bound on the Riemannian distance and that γ (t) ∈ BΘϱ (θ ) we deduce��‖γ ′(t)‖L2 − ‖θ ′‖L2

�� ≤ ‖γ ′(t) − θ ′‖L2 ≤ ‖γ (t) − θ ‖H 1 ≤ dist(γ (t), θ ) ≤ ϱ .

By combining (3.30) with the estimates (3.41), (3.42) and

CP(θ, ϱ) B 2
√

2
(
CD(θ ) +max

{
p′D(‖θ

′‖L2) , 1
}
ϱ
)

(3.43)

the statement follows. �

We use now the last lemma to prove in the following local Lipschitz continuity
of D2Φ.

Lemma 3.10. The operator D2Φ : Θ → L(TΘ×TΘ,R2) is locally Lipschitz continuous,
i.e. for all θ ∈ Θ and su�ciently small ϱ ≥ 0 there is a boundCD2Φ(θ, ϱ) > 0 depending
on θ and ϱ (explicit formula in the proof) such that

|D2Φ(θ )(u,u) − D2Φ(θ̂ )(Pθ̂θu,P
θ̂
θu)|R2 ≤ CD2Φ(θ, ϱ) dist(θ, θ̂ ) ‖u‖2H 1 (3.44)

for all u ∈ TθΘ and all θ̂ ∈ BΘϱ (θ ).

Proof. Let θ ∈ Θ, θ̂ ∈ BΘϱ (θ ) for a ϱ ≥ 0 and u ∈ TθΘ be given. Then it is

|D2Φ(θ )(u,u) − D2Φ(θ̂ )(Pθ̂θu,P
θ̂
θu)|

2
R2

=
( ∫ 1

0
cθ (s) (u(s))

2 − c
θ̂
(s)

(
P
θ̂
θu(s)

)2 ds
)2

(3.45)

+
( ∫ 1

0
sθ (s) (u(s))

2 − s
θ̂
(s)

(
P
θ̂
θu(s)

)2 ds
)2
.

Here the �rst term can be bounded as follows:( ∫ 1

0
cθ (s) (u(s))

2 − c
θ̂
(s)

(
P
θ̂
θu(s)

)2 ds
)2

≤

∫ 1

0

(
cθ (s) (u(s))

2 − c
θ̂
(s)

(
P
θ̂
θu(s)

)2)2 ds

≤2
∫ 1

0

(
cθ (s) − cθ̂ (s)

)2 (
u(s)

)4 ds + 2
∫ 1

0

(
c
θ̂
(s)

)2 (
u2(s) −

(
P
θ̂
θu(s)

)2)2 ds . (3.46)
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Recall the Morrey embedding H 1
per([0, 1]) ↪→ C0([0, 1]), see for example [33, Thm.

8.4]. Therefore, there is a constant C∞ such that

‖v ‖∞ ≤ C∞‖v ‖H 1 (3.47)

for v ∈ H 1
per([0, 1]) . The �rst term on the right-hand side of (3.46) can be bounded

using standard estimates, sid(t) = sin(t) and (3.47) by∫ 1

0

(
cθ (s) − cθ̂ (s)

)2 (
u(s)

)4 ds ≤ ‖u‖4∞
∫ 1

0

(
cos(θ (s)) − cos(θ̂ (s))

)2 ds

≤ C4
∞ ‖u‖

4
H 1

∫ 1

0

( ∫ θ (s)

θ̂ (s)
sin(ξ ) dξ

)2
ds

≤ C4
∞ ‖u‖

4
H 1

∫ 1

0
‖sid‖

2
∞

(
θ (s) − θ̂ (s)

)2 ds

= C4
∞ ‖u‖

4
H 1 ‖θ − θ̂ ‖

2
L2

≤ C4
∞ dist(θ, θ̂ )2 ‖u‖4H 1 .

In the last step we used that the norm distance in a submanifold is always a lower
bound to the Riemannian distance, i.e. ‖θ − θ̂ ‖H 1 ≤ dist(θ , θ̂ ). Further we use (3.34)
from Lemma 3.9 to obtain∫ 1

0

(
c
θ̂
(s)

)2 (
u2(s) −

(
P
θ̂
θu(s)

)2
)
)2 ds ≤ ‖c

θ̂
‖2∞

(u − Pθ̂θu)u + (Pθ̂θu) (u − Pθ̂θu)2
L2

≤ 2
(
‖u‖2∞ +

Pθ̂θu2
∞

) u − Pθ̂θu 2
L2

≤ 4C2
∞(CP(θ, ϱ))

2dist(θ , θ̂ )2 ‖u‖4H 1 .

The sum of the last two estimates provides a bound of the �rst term on the right-hand
side in (3.45). For the second term one proves the analogous estimates by replacing
cosine with sine. Therefore, by using

CD2Φ(θ , ϱ) B
√
C4
∞ + 8C2

∞(CP(θ , ϱ))2.

we obtain the statement. �

Before we can prove a Lipschitz property of DΦ(θ )† we need the following pro-
position as preparation.

Proposition 3.11. The maps д : Θ → H 1
per([0, 1]), θ 7→ дθ and f : Θ → H 1

per([0, 1]),
θ 7→ fθ are di�erentiable and the derivatives can be bounded independently of θ , i.e.
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there is a constant Ce > 0 such that for all θ ∈ Θ

‖Dд(θ ) (u)‖H 1 ≤ Ce ‖u‖H 1 (3.48)

and
‖Df (θ ) (u)‖H 1 ≤ Ce ‖u‖H 1 (3.49)

for all u ∈ TθΘ.

Proof. Recall that

дθ (t) = −
1
2

( ∫ t

0
e−ξcθ (ξ ) dξ +

e

1 − e

∫ 1

0
e−ξcθ (ξ ) dξ

)
et

+
1
2

( ∫ t

0
eξcθ (ξ ) dξ +

e−1

1 − e−1

∫ 1

0
eξcθ (ξ ) dξ

)
e−t .

This is clearly di�erentiable in θ with derivative

Dд(θ ) (u)(t) =
1
2

( ∫ t

0
e−ξsθ (ξ )u(ξ ) dξ +

e

1 − e

∫ 1

0
e−ξsθ (ξ )u(ξ ) dξ

)
et

−
1
2

( ∫ t

0
eξsθ (ξ )u(ξ ) dξ +

e−1

1 − e−1

∫ 1

0
eξsθ (ξ )u(ξ ) dξ

)
e−t

and its derivative with respect to t is given by(
Dд(θ ) (u)

)′
(t) =

1
2

( ∫ t

0
e−ξsθ (ξ )u(ξ ) dξ +

e

1 − e

∫ 1

0
e−ξsθ (ξ )u(ξ ) dξ

)
et

+
1
2

( ∫ t

0
eξsθ (ξ )u(ξ ) dξ +

e−1

1 − e−1

∫ 1

0
eξsθ (ξ )u(ξ ) dξ

)
e−t .

Using (a + b)2 ≤ 2a2 + 2b2, we can derive bounds for these expressions:

‖Dд(θ ) (u)‖2H 1 ≤ 2
∫ 1

0

( ∫ t

0
e−ξsθ (ξ )u(ξ ) dξ +

e

1 − e

∫ 1

0
e−ξsθ (ξ )u(ξ ) dξ

)2
e2t dt

+ 2
∫ 1

0

( ∫ t

0
eξsθ (ξ )u(ξ ) dξ +

e−1

1 − e−1

∫ 1

0
eξsθ (ξ )u(ξ ) dξ

)2
e−2t dt

≤ 2
(
1 +

( e

1 − e

)2) ∫ 1

0

(
e−ξsθ (ξ )u(ξ )

)2 dξ
∫ 1

0
e2t dt

+ 2
(
1 +

( e−1

1 − e−1

)2) ∫ 1

0

(
eξsθ (ξ )u(ξ )

)2 dξ
∫ 1

0
e−2t dt

≤

(
2 +

( e

1 − e

)2
+

( e−1

1 − e−1

)2)
e2‖sθu‖

2
L2 .

By using ‖sθu‖L2 ≤ ‖sθ ‖∞ ‖u‖L2 ≤ ‖u‖H 1 bound in the statement follows with the
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constant

Ce B e
√

2 +
( e

1 − e

)2
+

( e−1

1 − e−1

)2
.

By complete analogous computations for fθ one obtains the same bound, which
�nishes the proof. �

In the last lemma of this section we prove that the Moore-Penrose inverse of DΦ
is also locally Lipschitz continuous.

Lemma 3.12. The operator θ 7→ DΦ(θ )† is locally Lipschitz continuous, i.e. for all
θ ∈ Θ and su�ciently small ϱ ≥ 0 there exists a positive bound CDΦ†(θ , ϱ) > 0 such
that  DΦ(θ )†(x) − DΦ(θ̂ )†(x)


H 1 ≤ CDΦ†(θ , ϱ) dist(θ , θ̂ ) |x |R2 (3.50)

for all x ∈ R2 and θ̂ ∈ BΘϱ (θ )

Proof. Let θ ∈ Θ, ϱ ≥ 0, θ̂ ∈ BΘϱ (θ ) and x = (x1, x2)
> ∈ R2 be given. From the

expression (3.10) we add suitable zero terms and obtain a decomposition for the
estimate as follows:DΦ(θ )†(x) − DΦ(θ̂ )†(x)


H 1

=

−
(
‖дθ ‖

2
H 1 x1 + 〈дθ , fθ 〉H 1 x2

)
Dθ

fθ +
〈fθ ,дθ 〉H 1 x1 + ‖ fθ ‖

2
H 1 x2

Dθ
дθ

−
−
(
‖д

θ̂
‖2
H 1 x1 + 〈дθ̂ , fθ̂ 〉H 1 x2

)
D
θ̂

f
θ̂
−
〈f
θ̂
,д
θ̂
〉H 1 x1 + ‖ fθ̂ ‖

2
H 1 x2

D
θ̂

д
θ̂


H 1

≤Σ1 + Σ2 + Σ3 + Σ4 + Σ5,

where we de�ne

Σ1 B
��� 1
Dθ
−

1
D
θ̂

��� (‖дθ ‖2H 1 x1 + 〈дθ , fθ 〉H 1 x2
)
fθ −

(
〈fθ ,дθ 〉H 1 x1 + ‖ fθ ‖

2
H 1 x2

)
дθ


H 1,

Σ2 B
1
D
θ̂

( (‖дθ ‖2H 1 x1 + 〈дθ , fθ 〉H 1 x2
)
−

(
‖д

θ̂
‖2H 1 x1 + 〈дθ̂ , fθ̂ 〉H 1 x2

) )
fθ


H 1,

Σ3 B
1
D
θ̂

( (〈fθ ,дθ 〉H 1 x1 + ‖ fθ ‖
2
H 1 x2

)
−

(
〈f
θ̂
,д
θ̂
〉H 1 x1 + ‖ fθ̂ ‖

2
H 1 x2

) )
дθ


H 1,

Σ4 B
1
D
θ̂

(‖д
θ̂
‖2H 1 x1 + 〈дθ̂ , fθ̂ 〉H 1 x2

) (
fθ − f

θ̂

)
H 1,

Σ5 B
1
D
θ̂

(〈f
θ̂
,д
θ̂
〉H 1 x1 + ‖ fθ̂ ‖

2
H 1 x2

) (
дθ − дθ̂

)
H 1 .
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In the following we estimate all �ve summands Σj such that

Σj ≤ CΣj (θ , θ̂ ) dist(θ, θ̂ ) |x |R2 .

Starting with the �rst it is��� 1
Dθ
−

1
D
θ̂

��� = |Dθ̂
− Dθ |

DθDθ̂

=
1

DθDθ̂

��‖ f
θ̂
‖2H 1 ‖дθ̂ ‖

2
H 1 − |〈fθ̂ ,дθ̂ 〉H 1 |2

− ‖ fθ ‖
2
H 1 ‖дθ ‖

2
H 1 + |〈fθ ,дθ 〉H 1 |2

��
≤

1
DθDθ̂

(��‖ f
θ̂
‖2H 1 − ‖ fθ ‖

2
H 1

�� ‖д
θ̂
‖2H 1 + ‖ fθ ‖

2
H 1

��‖д
θ̂
‖2H 1 − ‖дθ ‖

2
H 1

��
+

��〈fθ ,дθ 〉H 1 + 〈f
θ̂
,д
θ̂
〉H 1

�� ��〈fθ ,дθ 〉H 1 − 〈f
θ̂
,д
θ̂
〉H 1

��) .
Here we can use ‖ fθ ‖H 1 ≤ 1 to obtain that��‖ f

θ̂
‖2H 1 − ‖ fθ ‖

2
H 1

�� = ��� ∫ 1

0
(f
θ̂
(t))2 − (fθ (t))

2 + (f ′
θ̂
(t))2 − (f ′θ (t))

2 dt
���

=

��� ∫ 1

0
(f
θ̂
(t) − fθ (t))fθ̂ (t) + fθ (t)(fθ̂ (t) − fθ (t))

+ (f ′
θ̂
(t) − f ′θ (t))f

′

θ̂
(t) + f ′θ (t)(f

′

θ̂
(t) − f ′θ (t)) dt

���
≤ |‖ f

θ̂
− fθ ‖L2

(
‖ f
θ̂
‖L2 + ‖ fθ ‖L2

)
+ ‖ f ′

θ̂
− f ′θ ‖L2

(
‖ f ′
θ̂
‖L2 + ‖ f ′θ ‖L2

)
|

≤ 2‖ f
θ̂
− fθ ‖H 1 .

Now we can apply Proposition 3.11 as follows: using γ (t) := expθ (texp−1
θ
(θ̂ )), we get

2‖ f
θ̂
− fθ ‖H 1 ≤ 2

∫ 1

0
‖Df (γ (t)) (exp−1

θ (θ̂ ))‖H 1 dt ≤ 2Ce ‖exp−1
θ (θ̂ )‖H 1

= 2Ce dist(θ , θ̂ ),

where the inequality follows by Proposition 3.11 and the equality is due to (A.9). The
analog estimate holds true for the terms with дθ and д

θ̂
: Similarly to above, it holds

that ��‖д
θ̂
‖2H 1 − ‖дθ ‖

2
H 1

�� ≤ 2Ce dist(θ, θ̂ ).

Similar to above it is��〈fθ ,дθ 〉H 1 − 〈f
θ̂
,д
θ̂
〉H 1

�� ≤ ��〈fθ − f
θ̂
,дθ 〉H 1

�� + ��〈f
θ̂
,дθ − дθ̂ 〉H 1

��
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≤ ‖ fθ − f
θ̂
‖H 1 + ‖дθ − дθ̂ ‖H 1 ≤ 2Ce dist(θ , θ̂ ).

The other part of Σ1 can be estimated using ‖ fθ ‖H 1 ≤ 1 and ‖дθ ‖H 1 ≤ 1 by(‖дθ ‖2H 1 x1 + 〈дθ , fθ 〉H 1 x2
)
fθ −

(
〈fθ ,дθ 〉H 1 x1 + ‖ fθ ‖

2
H 1 x2

)
дθ


H 1 ≤ 2

(
|x1 | + |x2 |

)
≤ 2
√

2 |x |R2

Thus we de�ne

CΣ1(θ , θ̂ ) B
16
√

2Ce

Dθ Dθ̂

.

The side computations for Σ1 can also be used in the following estimates. We obtain

Σ2 =
1
D
θ̂

((‖дθ ‖2H 1 x1 + 〈дθ , fθ 〉H 1 x2
)
−

(
‖д

θ̂
‖2H 1 x1 + 〈дθ̂ , fθ̂ 〉H 1 x2

) )
fθ


H 1

≤
1
D
θ̂

(��‖д
θ̂
‖2H 1 − ‖дθ ‖

2
H 1

�� |x1 | +
��〈дθ , fθ 〉H 1 − 〈д

θ̂
, f
θ̂
〉H 1

�� |x2 |
)

≤
1
D
θ̂

4Ce dist(θ , θ̂ )
(
|x1 | + |x2 |

)
and thus we de�ne

CΣ2(θ , θ̂ ) B
4
√

2Ce

D
θ̂

.

The computations for Σ3 work completely analogously and we de�ne the same
constant

CΣ3(θ , θ̂ ) B
4
√

2Ce

D
θ̂

.

Also for the last two terms Σ4 and Σ5 the estimates are straightforward and by
applying the above estimates one obtains

CΣ4(θ , θ̂ ) B
4
√

2Ce

D
θ̂

and CΣ5(θ, θ̂ ) B
4
√

2Ce

D
θ̂

.

Now we can apply the lower bound from Lemma 3.5 to obtain

C(θ, θ̂ ) B 16
√

2Ce
(
CD(θ ) + 1

)
CD(θ̂ ). (3.51)

As last step we estimate the term CD(θ̂ ). Recall the notation at the end of the proof
of Lemma 3.9 and write pD(‖θ̂ ′‖L2) = CD(θ̂ ). Analogously to the proof of Lemma 3.9
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we deduce

CD(θ̂ ) ≤ CD(θ ) +max
{ ∫ ‖θ̂ ′‖L2

‖θ ′‖L2

p′D(ξ ) dξ ,
∫ ‖θ ′‖L2

‖θ̂ ′‖L2

p′D(ξ ) dξ
}

≤ CD(θ ) +max
{
p′D(‖θ

′‖L2) , p′D(‖θ̂
′‖L2)

}
.

From

‖θ̂ ′‖L2 − ‖θ ′‖L2 ≤ ‖θ̂ ′ − θ ′‖L2 ≤ ‖θ̂ − θ ‖H 1 ≤ dist(θ̂, θ ) ≤ ϱ (3.52)

and the monotonicity of p′D in the positive real numbers we follow that

CD(θ̂ ) ≤ CD(θ ) +max
{
p′D(‖θ

′‖L2) , p′D(‖θ
′‖L2 + ϱ)

}
≤ CD(θ ) + p

′
D(‖θ

′‖L2 + ϱ). (3.53)

Therefore, the combination of the inequality (3.51) with (3.53) and

CDΦ†(θ, ϱ) B 16
√

2Ce
(
CD(θ ) + 1

) (
CD(θ ) + p

′
D(‖θ

′‖L2 + ϱ)
)

(3.54)

proves the statement. �

3.4 Intrinsic curvature

In the last section of the chapter we derived a formula for the second fundamental
form, which measures the extrinsic curvature of a submanifold. The well-known
Gauss equation (A.24) is a formula for the intrinsic curvature tensorR on the manifold
in terms of the extrinsic curvature. Therefore by Theorem 3.7 one can derive an
explicit formula forR. Nevertheless in this section we derive a bound on the curvature
tensor without using the second fundamental form. Recall �rst the de�nition (A.10)
for θ ∈ Θ

Rθ (u,v)w = ∇U∇VW (θ ) − ∇V∇UW (θ ) − ∇[U ,V ]W (θ )

and u,v,w ∈ TθΘ and their corresponding U ,V ,W vector �elds with U (θ ) = u,
V (θ ) = v andW (θ ) = w , also shortly written as Uθ = u. Furthermore from (A.19)

∇VW (θ ) = Pθ
(
DW (θ ) (V (θ ))

)
where Pθ : H 1([0, 1]) → TθΘ is the orthogonal projection. In the article [17] it was
already shown that in this case the curvature tensor can be written as

Rθ (u,v)w =
(
DP(θ ) (Vθ ) DP(θ ) (Uθ ) − DP(θ ) (Uθ ) DP(θ ) (Vθ )

)
Wθ (3.55)
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where we de�ned the map P(θ ) B Pθ . The idea to handle this expression is to �nd a
suitable way to express and estimate the derivative of P .

Recall that the tangent space can be written as

TθΘ =
{
u ∈ H 1

per([0, 1])
�� 〈sθ ,u〉L2 = 〈cθ ,u〉L2 = 0

}
(3.56)

where sθ (t) B sin(θ (t)) and cθ (t) B cos(θ (t)). The expression above is written using
the orthogonal projection P 1

θ
= Pθ : H 1([0, 1]) → TθΘ with respect to the H 1 norm.

Instead of using this we de�ne a projection operator with respect to the L2 norm and
show afterwards how one can use it to estimate the derivative of P .

First we derive a formula for the orthogonal projection P0
θ

: H 1
per([0, 1]) → TθΘ

with respect to the L2 norm. Remark that intuitively such kind of an operator does
not need to exists, since TθΘ is not closed with respect to L2. Nevertheless we can
de�ne it as follows.

Lemma 3.13. The orthogonal projection P0
θ

: H 1
per([0, 1]) → TθΘ with respect to the L2

norm exists and is uniquely given by the following formula

P0
θv = v + αθsθ + βθcθ (3.57a)

where

αθ B
〈cθ , sθ 〉L2 〈cθ ,v〉L2 − ‖cθ ‖

2
L2 〈sθ ,v〉L2

D0
θ

(3.57b)

and

βθ B
〈sθ , cθ 〉L2 〈sθ ,v〉L2 − ‖sθ ‖

2
L2 〈cθ ,v〉L2

D0(θ )
(3.57c)

with
D0
θ B ‖sθ ‖

2
L2 ‖cθ ‖

2
L2 − |〈sθ , cθ 〉L2 |2. (3.57d)

Proof. Let
Uθ B {u ∈ L

2([0, 1]) | 〈sθ ,u〉L2 = 〈cθ ,u〉L2 = 0}.

First we check that this is a closed subspace. From the linear condition the subspace
property is clear. For the closeness let (un)n∈N ⊂ Uθ a convergent sequence with
respect to L2 with limit u ∈ L2([0, 1]). We verify that 〈sθ ,u〉L2 = 0. Remark �rst that
〈sθ ,u〉L2 = 〈sθ ,u − un〉L2 for all n ∈ N, since un ∈ Uθ . Now by Cauchy-Schwarz

|〈sθ ,u〉L2 | = |〈sθ ,u − un〉L2 | ≤ ‖sθ ‖L2 ‖u − un‖L2 .

The right-hand side is always bounded since sθ ∈ H 1([0, 1]) and θ ∈ H 1([0, 1]). Sinceun
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converges tou with respect to L2 it follows that the right-hand side converges to 0 and
therefore the left-hand side has to be zero independently of n. Thus 〈sθ ,u〉L2 = 0. Ana-
logously, 〈cθ ,u〉L2 = 0 and we conclude that u ∈ Uθ and hence Uθ is closed. For every
closed subspace the orthogonal projection exists and we de�ne PUθ : L2([0, 1]) → Uθ
the orthogonal projection with respect to the L2 norm.

Let v ∈ L2([0, 1]) be given. We de�ne

w B v + αsθ + βcθ (3.58)

with some constants α , β ∈ R. Obviously w satis�es the orthogonality property of a
projection onto a subspace:

〈w −v,u〉L2 = α 〈sθ ,u〉L2 + β 〈cθ ,u〉L2 = 0

for all u ∈ Uθ . Now we choose the constants α and β such that w ∈ Uθ and then
w is the orthogonal projection of v onto Uθ , i.e. PUθv B w . Thus w has to satisfy
〈sθ ,w〉L2 = 〈cθ ,w〉L2 = 0, which can be written as the linear system(

〈sθ , sθ 〉L2 〈sθ , cθ 〉L2

〈cθ , sθ 〉L2 〈cθ , cθ 〉L2

) (
α

β

)
= −

(
〈sθ ,v〉L2

〈cθ ,v〉L2

)
. (3.59)

The matrix is invertible since the determinate D0
θ

given by

D0
θ = ‖sθ ‖

2
L2 ‖cθ ‖

2
L2 − |〈sθ , cθ 〉L2 |2, (3.60)

is never equal to zero. We have already seen this in the proof of Theorem 3.1. Then
the solution of the system (3.59) is given by(

α

β

)
= −

1
D0
θ

(
〈cθ , cθ 〉L2 −〈sθ , cθ 〉L2

−〈cθ , sθ 〉L2 〈sθ , sθ 〉L2

) (
〈sθ ,v〉L2

〈cθ ,v〉L2

)
. (3.61)

This proves PUθv = w with w given in (3.58) together with (3.61).

From θ ∈ Θ it follows that

sθ (1) = sin(θ (1)) = sin(θ (0) + 2π ) = sθ (0)

and thus sθ ∈ H 1
per([0, 1]). Analogously cθ ∈ H

1
per([0, 1]). Therefore if v ∈ H 1

per([0, 1])
one can conclude from the expression (3.58) that even PUθv ∈ H

1
per([0, 1]). Using this

we de�ne
P0
θ B PUθ |H 1

per
(3.62)

the projection in H 1 just as a restriction of the L2 projection. �
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To shorten the notation we write in the rest of this section H B H 1
per([0, 1]). Now

we consider the operators

P j : Θ → L(H ,H ), θ 7→ P j
θ
, j = 0, 1, (3.63)

which maps θ to the projections with respect to L2 respectivelyH 1 norm on the corres-
ponding tangent spaces. From the expression (3.57) it is clear that P0 is di�erentiable.
Concerning P 1 recall form the last section that on the one hand TθΘ = ker(DΦ(θ ))
and the projection onto it is given by P 1(θ ) = I−DΦ(θ )† DΦ(θ ), which is di�erentiable
as one can directly see from the Lemmas 3.3 and 3.4.

Knowing the di�erentiability of the two families of projection operators the next
lemma provides a formula for combining their derivatives.

Lemma 3.14. The derivative of P 1 at θ ∈ Θ into the direction u ∈ H evaluated at
v ∈ H is given by

DP 1(θ ) (P0
θu) = (1 − P

1
θ )DP

0(θ ) (P0
θu). (3.64)

The explicit formula for the derivative P0 on the whole space is given in the proof. For
u,v ∈ TθΘ it furthermore holds that

(DP0(θ )u)v =
1
D0
θ

( (
‖sθ ‖

2
L2 〈sθu,v〉L2 + 〈sθ , cθ 〉L2 〈cθu,v〉L2

)
cθ

−
(
‖cθ ‖

2
L2 〈cθu,v〉L2 + 〈cθ , sθ 〉L2 〈sθu,v〉L2

)
sθ

)
(3.65)

Proof. Recall that both projections map onto the same space TθΘ but with respect to
di�erent norms. From this analogously to the facts already used in [17] it is

P 1
θ = P0

θ P
1
θ and P0

θ = P 1
θ P

0
θ (3.66)

and thus

DP0(θ ) = D(P 1 P0)(θ ) = DP 1(θ ) P0
θ + P

1
θ DP0(θ ).

After rearrangement and multiplying both sides from the right with P0
θ

we obtain
the formula (3.64).

The derivative can be computed straight forward from the expression (3.57):

(DP0(θ )u)v =
(
(Dαθ u)v

)
sθ + αθ cθ u +

(
(Dβθ u)v

)
cθ − βθ sθ u .

Here we used that the derivative of sθ in the direction u is given by (Dsθ u)(t) =
cos(θ (t))u(t) and analogously (Dcθ u)(t) = − sin(θ (t))u(t). Further by writing αθ B
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Nα (θ )/D
0
θ
, where Nα (θ ) is the numerator in (3.57b) and (3.57c), we get

(Dαθ u)v =
1
(D0

θ
)2

( (
(DNα (θ )u)v

)
D0
θ − Nα (θ )

(
(DD0

θ u)v
) )

where

(DNα (θ )u)v =
(
〈cθu, cθ 〉L2 − 〈sθu, sθ 〉L2

)
〈cθ ,v〉L2 − 〈cθ , sθ 〉L2 〈sθu,v〉L2

+ 2〈sθu, cθ 〉L2 〈sθ ,v〉L2 − ‖cθ ‖
2
L2 〈cθu,v〉L2

and

(DD0
θ u)v = 2

(
‖cθ ‖

2
L2 − ‖sθ ‖

2
L2

)
〈sθu, cθ 〉L2 − 2〈sθ , cθ 〉L2

(
〈cθu, cθ 〉L2 − 〈sθu, sθ 〉L2

)
.

Now we write βθ B Nβ (θ )/D
0
θ

analogously as in (3.57b) and (3.57c) and compute

(Dβθ u)v =
1
(D0

θ
)2

( (
(DNβ (θ )u)v

)
D0
θ − Nβ (θ )

(
(DD0

θ u)v
) )

with

(DNβ (θ )u)v =
(
〈cθu, cθ 〉L2 − 〈sθu, sθ 〉L2

)
〈sθ ,v〉L2 + 〈sθ , cθ 〉L2 〈cθu,v〉L2

− 2〈cθu, sθ 〉L2 〈cθ ,v〉L2 + ‖sθ ‖
2
L2 〈sθu,v〉L2

Remark that this function is indeed an element of H . Since u, v ∈ H = H 1
per([0, 1])

it is (sθ u)(0) = sin(θ (0))u(0) = sin(θ (1) − 2π )u(1) = (sθ u)(1) and analogously
cθ u ∈ H and thus (DP0(θ )u)v ∈ H 1

per([0, 1]).
Now let u,v ∈ TθΘ. From this we know 〈cθ ,v〉L2 = 〈sθ ,v〉L2 = 0. Then Nα (θ ) =

Nβ (θ ) = 0 and hence αθ = βθ = 0. By leaving out all zero terms we get the formula
in (3.65). �

By applying the Lemma 3.14 to (3.55) the next lemma follows.

Lemma 3.15. Let θ ∈ Θ and u,v ∈ TθΘ. Then it holds that

〈Rθ (u,v)u,v〉H 1 =
〈
(1 − P 1

θ ) (DP
0(θ )u)u, (1 − P 1

θ ) (DP
0(θ )v)v

〉
H 1

−
〈
(1 − P 1

θ ) (DP
0(θ )v)u, (1 − P 1

θ ) (DP
0(θ )u)v

〉
H 1 . (3.67)

Proof. The derivative DP 1(θ )u inherits the self-adjointness of the projection operat-
ors: by taking the derivative of the equation 〈P 1

θ
u,w〉H 1 = 〈u, P 1

θ
w〉H 1 one gets

〈(DP 1(θ )u)v,w〉H 1 = 〈v, (DP 1(θ )u)w〉H 1 .

The formula (3.67) follows by combining this self-adjointness with (3.64) in (3.55). �
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Before we can prove a bound on the curvature tensor we need the following
lower bound.

Lemma 3.16. Let θ ∈ Θ. Then the lower estimate

D0
θ = ‖sθ ‖

2
L2 ‖cθ ‖

2
L2 − |〈sθ , cθ 〉L2 |2 ≥

π 2

8‖θ ′‖2
L2

(3.68)

holds true.

Proof. Note that the main idea of this proof is similar to the proof of Lemma 3.5. By
the identity

‖sθ ‖
2
L2 + ‖cθ ‖

2
L2 =

∫ 1

0

(
sinθ (t)

)2
+

(
cosθ (t)

)2 dt = 1 (3.69)

we can assume without loss of generality that ‖sθ ‖2L2 ≥
1
2 . By setting

λ B
〈sθ , cθ 〉L2

‖sθ ‖
2
L2

we obtain

‖cθ − λsθ ‖
2
L2 = ‖sθ ‖

2
L2 − 2λ〈cθ , sθ 〉L2 + λ2‖sθ ‖

2
L2

= ‖sθ ‖
2
L2 −
|〈cθ , sθ 〉L2 |2

‖sθ ‖
2
L2

=
D0
θ

‖sθ ‖
2
L2

≤ 2D0
θ . (3.70)

Next we introduce φ ∈ (0, π ) such that

cotφ = λ.

By Cauchy-Schwarz and (3.69) it follows that |λ | ≤ 1 and hence φ ∈ [π4 ,
3π
4 ]. Thus on

the one hand sinφ ≥ 1√
2

and on the other 1
|sin(φ)| ≥ 1. Therefore by an angle addition

theorem for the sinus

‖cθ − λsθ ‖
2
L2 =

∫ 1

0
|cosθ (t) − cotφ sinθ (t)|2 dt

=
1

|sinφ |2

∫ 1

0
|cosθ (t) sinφ − cosφ sinθ (t)|2 dt

≥

∫ 1

0
|sin(φ − θ (t))|2 dt .

Next we introduce a shifted version θ̃ : [0, 1] → [φ,φ+2π ) of θ such that θ̃ (t)−θ (t) ∈
2πZ for all t ∈ [0, 1]. Since θ ∈ Θ, i.e. θ ∈ H 1([0, 1]) and θ (1) − θ (0) = 2π there exist
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t0 < t1 such that

θ̃ (t) ∈
[
φ +

π

4
,φ +

3π
4

]
for all t ∈ [t0, t1]

and θ̃ (t0) = φ + π
4 and θ̃ (t1) = φ + 3π

4 . It holds that θ̃ ′(t) = θ ′(t) for all t ∈ [0, 1] and
by the fundamental theorem of calculus and Cauchy-Schwarz, it follows that

π

2
=

��θ̃ (t1) − θ̃ (t0)�� = ��� ∫ t1

t0

1 · θ̃ ′(t) dt
��� ≤ √t1 − t0 ( ∫ t1

t0

|θ̃ ′(t)|2 dt
) 1

2

≤
√
t1 − t0 ‖θ

′‖L2 .

By the choice of the interval it holds that |sin(φ − θ̃ (t))| ≥ 1/
√

2 for all t ∈ [t0, t1] and
we can use the above to estimate∫ t1

t0

|sin(φ − θ (t))|2 dt ≥
t1 − t0

2
≥

π 2

8‖θ ′‖2
L2

.

Further there exists also t2 < t3 such that

θ̃ (t) ∈
[
φ +

5π
4
,φ +

7π
4

]
for all t ∈ [t2, t3]

and now analogously as above it holds that t3 − t2 ≥ π 2/(4‖θ ′‖2
L2) and also the

corresponding lower estimate for the integral over the interval [t2, t3]. Now the
combination of the last arguments yields

‖cθ − λsθ ‖
2
L2 ≥

1
2

∫ t1

t0

|sin(φ − θ (t))|2 dt +
1
2

∫ t3

t2

|sin(φ − θ (t))|2 dt ≥
π 2

8‖θ ′‖2
L2

.

By putting the above estimates together we obtain the assertion. �

The main result of this section is the following theorem. We prove an alternative
local bound on the intrinsic curvature inΘ without using the bound on the second
fundamental form in Theorem 3.7.

Theorem 3.17. Let θ ∈ Θ and u,v ∈ TθΘ. Then there is bound CR(θ ) depending only
on θ (explicit formula in the proof) such that

|〈Rθ (u,v)u,v〉H 1 | ≤ CR(θ ) ‖u‖
2
H 1 ‖v ‖

2
H 1 . (3.71)

Proof. First we denote (DP0(θ )u)v = c1 sθ + c2 cθ with c1, c2 ∈ R the values in the
formula (3.65). Then the following holds:

‖(DP0(θ )u)v ‖2H 1 = ‖c1 sθ + c2 cθ ‖
2
L2 + ‖c1 θ

′ cθ − c2 θ
′ sθ ‖

2
L2
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≤ 2
(
|c1 |

2 (
‖sθ ‖

2
L2 + ‖θ

′cθ ‖
2
L2

)
+ |c2 |

2 (
‖cθ ‖

2
L2 + ‖θ

′sθ ‖
2
L2

) )
≤ 2

(
1 +

1
(2π )2

)
‖θ ′‖2L2

(
|c1 |

2 + |c2 |
2) .

Here we used the Almansi inequality (see [42]),

‖sθ ‖L2 =

∫ 1

0
|sinθ (t)|2 dt ≤

1
(2π )2

∫ 1

0
|θ ′(t) cosθ (t)|2 dt,

which holds since sθ ∈ H 1
per([0, 1]) and

∫ 1
0 sinθ (t) dt = 〈sθ , 1〉L2 = 0. Clearly it is

‖cθ ‖∞ ≤ 1 and so ‖θ ′cθ ‖2L2 ≤ ‖θ
′‖2
L2 . The analog estimate for cθ holds true.

We estimate

|〈cθu,v〉L2 |2 =
( ∫ 1

0
cos(θ (t))u(t)v(t) dt

)2
≤ ‖cθ ‖

2
∞ |〈u,v〉L2 |2

≤ ‖u‖2L2 ‖v ‖
2
L2 ≤ ‖u‖

2
H 1 ‖v ‖

2
H 1

and analogously |〈sθu,v〉L2 |2 ≤ ‖u‖2
H 1 ‖v ‖

2
H 1 . Next we apply this together with

‖cθ ‖
2
L2 ≤ ‖cθ ‖

2
∞ ≤ 1 and 〈cθ , sθ 〉L2 ≤ ‖cθ ‖L2 ‖sθ ‖L2 ≤ 1 and combine it with (3.68)

to get

|c1 |
2 =

1
(D0

θ
)2

(
‖cθ ‖

2
L2 〈cθu,v〉L2 + 〈cθ , sθ 〉L2 〈sθu,v〉L2

)2
≤ 2

( 8
π 2 ‖θ

′‖2L2

)2
‖u‖2H 1 ‖v ‖

2
H 1 .

By the same approach, we obtain the estimate

|c2 |
2 =

1
(D0

θ
)2

(
‖sθ ‖

2
L2 〈sθu,v〉L2 + 〈sθ , cθ 〉L2 〈cθu,v〉L2

)2
≤ 2

( 8
π 2 ‖θ

′‖2L2

)2
‖u‖2H 1 ‖v ‖

2
H 1 .

Finally, by substituting all of the above estimates into (3.67) and de�ning

CR(θ ) B 8
(
1 +

1
(2π )2

) ( 8
π 2 ‖θ

′‖2L2

)2
‖θ ′‖2L2 .

the assertion in (3.71) is proved. �
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4 Bending energy
regularization

You get tragedy where the tree, instead of bending,
breaks.

— Ludwig Wittgenstein, Culture and Value

This chapter is dedicated to energy functionals for measuring geometric prop-
erties. We focus on the bending energy or elasticae, but we take also the Möbius
energy into account. Some properties are investigated, especially on shape manifolds
as constructed in Chapter 3. Furthermore, as a preparation for the next chapter, we
take a closer look at the intrinsic Hessian of bending energy.

Subsequently to this we consider a Tikhonov regularization approach to inverse
obstacle problems on shape manifolds penalizing with energy functionals. The
fundamental regularizing property is shown and afterwards we prove applicability
of the concept to inverse obstacle scattering problems.

4.1 Elastic and Möbius energy

Most parts of this section are published in the article [12].
Recall that the Euler-Bernoulli bending energy (see [14]) of a planar curve Γ is

given by ∫
Γ
κ2 ds,
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where ds is the line element and κ denotes the (signed) curvature of Γ . The bending
energy, or more precisely the curvature, is a geometrical invariant of the curve Γ and
thus we gain independence under reparameterizations, which is the main bene�t of
our approach. The bending energy models the stored deformation energy of Γ under
the assumption of an undeformed straight rest state of the same length as Γ .

Let Γ be parameterized by γ that is represented bym = (θ , L,p) ∈M as in (3.2).
Then we have κ(t) = θ ′(t)

L and ds = L dt . This shows that bending energy scales with
1/λ when Γ is re-scaled by a factor λ > 0. Thus, without any additional constraints,
minimizers of this energy do not exist (the energy of γm converges to 0 for L→∞).
We therefore consider the following scale-invariant version Eb : M → [0,∞) of
bending energy which is simply the H 1-seminorm:

Eb(m) B

∫ 1

0

(
θ ′(t)

)2 dt . (4.1)

As mentioned above, Eb(m) describes the energy required to deform a straight
elastic rod of length L into Γ . More generally, consider an undeformed rest state Γ∗
of non-vanishing curvature (i.e., if Γ∗ is pre-curved). Assuming that Γ∗ is deformed
into Γ by a di�eomorphism φ : Γ∗ → Γ that does not change the line element1, the
bending energy is given by ∫

Γ∗

(
κ∗(s) − κ(φ(s))

)2 ds .

Representing Γ∗ bym∗ = (θ∗, L,p∗) as above, the scale-invariant version of this energy
is given by

Eb(m,m∗) =

∫ 1

0

(
θ ′(t) − θ ′∗(t)

)2 dt . (4.2)

This formulation is useful when Γ∗ represents a reasonable initial guess that is further
optimized in order to obtain the desired solution.

While reconstructing a domain, one requires a boundary curve that is free of
self-intersections. In this context, the following lemma is useful.

Lemma 4.1. The set of non-self-intersecting curves is open in the X-topology.

Proof. First notice that curves of �nite bending energy correspond to elements of
the Sobolev space H 2([0, 1];R2). Furthermore, by construction, each point of M
represents a C1-immersion γ : S1 → R2; indeed, due to periodic boundary conditions
we can take S1 as the domain for γ . Since injective immersions of compact domains

1Notice that for any two (su�ciently regular) planar curves of the same total length L, there exists
a di�eomorphism between them that preserves in�nitesimal length at every point. In particular, such
a mapping is not necessarily a Euclidean motion.
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are embeddings, we may employ Theorem 3.10 from [44], stating that the set of C1-
embeddings is open inC1(S1;R2). Now, the fact that H 2(S1;R2) embeds continuously
into C1(S1;R2) implies the result. �

Remark 4.2. If a su�ciently good initial guessm∗ ∈M of the true solution is available
and ifm∗ is free of self-intersections, then Lemma 4.1 ensures that we can choose

M0 B {m ∈M | ‖m −m∗‖X ≤ δ } (4.3)

containing only non-self-intersecting curves.

Although we have not encountered the problem of self-intersections in practice
for our method, we brie�y outline how to avoid this issue whenever needed. A popular
and widely studied energy that is self-avoiding (i.e., �nite energy guarantees that the
curve is free of self-intersections) is the so-called Möbius energy de�ned as

EM(Γ ) B

∫
Γ

∫
Γ

(
1

|x − y |2
−

1
distΓ (x,y)2

)
ds(x) ds(y), (4.4)

where distΓ (x,y) denotes the geodesic distance between x and y along the curve Γ
as a one dimensional manifold in R2 and integration is performed with respect to the
line elements. This parameterization-invariant energy was introduced by O’Hara [47]
and its analytical properties have been studied by several authors [6, 7, 16, 20, 34, 35].
The self-avoiding property is ensured by the �rst summand of the integrand, while
the second summand is introduced in order to remove the singularity along the
diagonal x = y. The Möbius energy is invariant under Möbius transformations (i.e.,
under conformal transformations of C � R2) and thus in particular scale-invariant.
We will show in Section 4.4 that using the Möbius energy as an additional penalty
term ensures that minimizers of the regularized problem are indeed free of self-
intersections.

4.2 Properties of the energy functionals

Most parts of this section are published in the article [12].
The analysis of well-posedness and convergence properties of Tikhonov regular-

ization in Section 4.4 requires some properties of the energy functionals Eb and EM
on the Riemannian manifoldM. For showing existence of solutions via the direct
method of the calculus of variations, weakly sequential lower semi-continuity of the
objective functional is a desirable property. Weak convergence, however, is a concept
that is not invariant under nonlinear changes of coordinates. Since we parameterized
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M as in (3.2), the bending energy becomes a convex quadratic functional, enabling us
to derive the following result.

Proposition 4.3. Let E ∈ { Eb, Eb(·,m∗) }. With respect to the X-topology, we have:

(i) M ⊂ X is weakly sequentially closed.

(ii) E is weakly sequentially lower semi-continuous.

(iii) Modulo shifts by elements of 2π Z , the sublevel sets E−1([0,a]) ⊂M are weakly
sequentially compact.

Proof. We proceed in the usual manner of the direct method of calculus of variations.
In order to show (i), consider a sequence (mn = (θn, Ln,pn))n∈N inM that converges
weakly to some m = (θ, L,p) ∈M. By the Rellich compactness theorem, H 1([0, 1]) is
compactly embedded in C([0, 1]) equipped with the supremum norm. Thus, weak
convergence of θn ⇀ θ in H 1([0, 1]) implies strong convergence inC([0, 1]). Since the
closing conditions (3.3) are continuous on C([0, 1]), this implies that θ ∈ Θ and thus
m ∈M.
In order to show (ii), notice that E is de�ned in terms of a squared seminorm on X,
which is a continuous and convex functional, whose sublevel sets are therefore
sequentially closed and convex. The fact that sequentially closed convex sets are
weakly sequentially closed implies (ii).
For showing (iii), we �rst observe that for each z ∈ 2π Z, the curve represented by
(θ + z, L,p) is the same as the one represented by (θ , L,p). Now letmn = (θn, Ln,pn)

be a sequence in a sublevel set E−1([0,a]). Modulo shifting by zn ∈ 2π Z, we may
assume that θn(0) ∈ [0, 2π ]. We may de�ne an equivalent norm on H 1([0, 1]) by
‖θ ‖∗ B |θ (0)| + ‖θ ′‖L2 . We then either have ‖θn‖H 1 ≤ 2π +

√
E(θn) (for the case of

E = Eb) or ‖θn − θ∗‖H 1 ≤ 2π + |θ∗(0)| +
√
E(θn) (for the case of E = Eb(·,m∗)). In

either case, the sequence (mn)n∈N is bounded in H 1, and hence it has a subsequence
(θnk ) converging weakly to some θ ∈ H 1([0, 1]). Moreover, [L1, L2] × B is compact
so that we may �nd a further subsequence so that mnk converges weakly to some
m = (θ , L,p) ∈ H 1([0, 1]) × [L1, L2] ×B. Because of (ii), we have E(m) ≤ a and because
of (i),m is indeed an element ofM. �

Lemma 4.4. The Möbius energy EM : M → [0,∞] de�ned by (4.4) is weakly sequen-
tially lower semi-continuous with respect to the weak topology of X.

Proof. Recall that (3.2) constitutes a smooth mapping from M to H 2(S1;R2). As
shown in [7], the Möbius energy is continuously di�erentiable (and thus continuous)
on the space of embeddings of class C0,1(S1;R2) ∩ H 3/2(S1;R2). Now the statement
follows from the compactness of the embedding of H 2(S1;R2) into this space. More
precisely, let mn, m ∈ M with mn ⇀ m. We have to show that EM(m) ≤ c B

lim infn→∞ EM(mn). In the case of c = ∞, there is nothing to show, so assume that
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c < ∞. Since EM is invariant under scaling and translation, we may assume that
Ln = L = 1 and pn = p = 0. Denote by γn, γ ∈ H 2(S1;R2) the corresponding
parameterizations. Due to the Rellich embedding, we may pick a subsequence such
that c = limk→∞ EM(mnk ) and such that γnk → γ strongly in C0,1 ∩ H 3/2. The latter
shows that

EM(m) = lim
k→∞

EM(mnk ) = c,

which proves the claim. �

4.3 Hessian of the bending energy

In this section we investigate the Hessian of the bending energy. Recall that the
Hessian of a functional is the covariant derivative of the gradient �eld, see Chapter A
for details. Furthermore we prove that this Hessian is locally Lipschitz continuous.

In the following lemma we compute the �rst and second derivative of the bending
energy (4.2). Recall that the energy for a curvem = (θ , L,p) is given by

Eb(m,m∗) =

∫ 1

0
(θ ′(s) − θ ′∗(s))

2 ds .

Lemma 4.5. The �rst and second derivative of Eb(·,m∗) atm are given by

DEb(m,m∗) (v) = 2
∫ 1

0

(
θ ′(s) − θ ′∗(s))

)
v′(s) ds, (4.5)

D2
Eb(m,m∗) (v,v) = 2

∫ 1

0

(
v′(s)

)2 ds (4.6)

withv = (v,vL,v0) ∈ TmM and they are bounded operators on TmM and the bound
only depends on θ , i.e. it holds that

|DEb(m,m∗) (v)| ≤ 2‖θ ′ − θ ′∗‖L2 ‖v ‖m (4.7)

and
|D2
Eb(m,m∗) (v,v)| ≤ 2‖v ‖2m (4.8)

for allv ∈ TmM.

Proof. The formulas for the derivatives as well as the estimates are straightforward
to compute. �

The next theorem states an explicit formula for the Hessian of the bending energy.
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Theorem 4.6. Letm = (θ, L,p) ∈ M and v = (v,vL,v0) ∈ TmM be given. Then the
intrinsic Hessian of the bending energy atm is given by

Hess Eb(m,m∗) (v,v) = D2
Eb(m,m∗) (v,v) − DEb(m,m∗)DΦ(θ )†D2Φ(θ ) (v,v).

(4.9)
Here the second fundamental form DΦ(θ )†D2Φ(θ ) (v,v) = IIΘ

θ
(v,v) as an element of

H 1([0, 1]) (see Theorem 3.7) is canonically embedded into X.

Proof. From basic Riemannian geometry it is known that the intrinsic Hessian of a
functional on a submanifold can be expressed using the second fundamental form.
The general equation (A.25) is in this case given by

Hess Eb(m,m∗) (v,v) = D2
Eb(m,m∗) (v,v) + DEb(m,m∗) IIMm (v,v).

Recall thatM = Θ×[L1, L2]×B. Here [L1, L2] is a trivial submanifold (with boundary)
inR. Since we always assume L ∈ [L1, L2] to be an inner point, the curvature vanishes
there. One can see this as follows: Since the tangent space at any inner point is
isomorphic to R itself, the orthogonal space is just zero and therefore the second
fundamental form as an element in the normal bundle is always zero. For B with
nonempty interior with any inner point the argumentation works analogously. Thus
we have

IIMm (v,v) = (II
Θ
θ (v,v), 0, 0).

By applying the results of Theorem 3.7 we obtain the statement. �

By combining Lemma 4.5 and the Theorems 3.7 and 4.6 one can derive upper and
lower bounds as follows.

Lemma 4.7. The bilinear form Hess Eb(m,m∗) on TmM is bounded and the bound
only depends on θ :

Hess Eb(m,m∗) (v,v) ≤ 2
(
1 + ‖θ ′ − θ ′∗‖L2 CII(θ )

)
‖v ‖2m (4.10)

for allv ∈ TmM. Furthermore we can also bound the operator from below by

Hess Eb(m,m∗) (v,v) ≥ 2
(
1 − 2 ‖θ ′ − θ ′∗‖L2 CII(θ )

)
‖v′‖2θ (4.11)

for allv ∈ TmM.

Proof. Both statements follows directly by applying Cauchy-Schwarz and then using
Theorem 3.7. For the second one we also used ‖v ‖2

L2 ≤ ‖v
′‖2
L2 . �

In the assumptions of the convergence analysis in the next chapter we need local
Lipschitz continuity of the Hessian. As preparation for it the corresponding local
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Lipschitz property is proven for the �rst and second derivatives of the bending energy
in the next lemma.

Lemma 4.8. Letm = (θ , L,p), ϱ ≥ 0 and BMϱ (m) be a geodesic ball (in the sense of
(3.33)). For m̂ = (θ̂ , L̂, p̂) ∈ BMϱ (m) denote the parallel transport along the minimizing
geodesic connectingm and m̂ by Pm̂m . Then the �rst and second derivative of Eb are
locally Lipschitz continuous with respect tom. That is, for allm = (θ , L,p) ∈ M and
su�ciently small ϱ ≥ 0 it holds that��DEb(m,m∗) (v) − DEb(m̂,m∗) (P

m̂
mv)

�� ≤ 2
(
1 +CP(θ, ϱ)

)
dist(m,m̂) ‖v ‖m (4.12)

and��D2
Eb(m,m∗) (v,v) − D2

Eb(m̂,m∗) (P
m̂
mv,P

m̂
mv)

�� ≤ 4CP(θ, ϱ) dist(m,m̂) ‖v ‖2m
(4.13)

for allv ∈ TmM and all m̂ ∈ BMϱ (m), whereCP(θ, ϱ) is de�ned in (3.43) in the proof of
Lemma 3.9.

Proof. By plugging in the explicit formulas and using standard estimates we get��DEb(m,m∗) (v) − DEb(m̂,m∗) (P
m̂
mv)

��
=2

��〈θ ′ − θ ′∗,v′〉L2 − 〈θ̂ ′ − θ ′∗, (P
θ̂
θv)
′〉L2

��
≤2

��〈θ ′ − θ ′∗ − (θ̂ ′ − θ ′∗),v′〉L2
�� + 2

��〈θ̂ ′ − θ ′∗,v′ − (Pθ̂θv)′〉L2
��

≤2
(
‖θ ′ − θ̂ ′‖L2 ‖v′‖L2 + ‖θ̂ ′ − θ ′∗‖L2 ‖v′ − (Pθ̂θv)

′‖L2
)
.

Note that ‖θ ′− θ̂ ′‖L2 ≤ distΘ(θ , θ̂ ) ≤ distM(m,m̂), where distΘ indicates the Rieman-
nian distance only on the submanifoldΘ in H 1([0, 1]) and ‖v′‖L2 ≤ ‖v ‖θ ≤ ‖v ‖m. By
using the result of Lemma 3.9 we obtain the statement.

Concerning the second derivative we can estimate similarly to the above:��D2
Eb(m,m∗) (v,v) − D2

Eb(m̂,m∗) (P
m̂
mv,P

m̂
mv)

��
=2

��‖v′‖2L2 − ‖(P
θ̂
θv)
′‖2L2

��
≤2

��〈v′ − (Pθ̂θv)′,v′〉L2
�� + 2

��〈(Pθ̂θv)′,v′ − (Pθ̂θv)′〉L2
��

≤2
(
‖v ‖H 1 + ‖Pθ̂θv ‖H 1

)
‖v − (Pθ̂θv)‖H 1 .

Using that Pθ̂
θ

is an isometry (see Section A.3) and Lemma 3.9 the bound (4.13) follows
as well. �

Theorem 4.9. Letm = (p, L, θ ) ∈ M, ϱ ≥ 0 and m̂ = (p̂, L̂, θ̂ ) ∈ BMϱ (m) and P
m̂
m be

the parallel transport along the minimizing geodesic connectingm and m̂. Then the
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Hessian onM of Eb is locally Lipschitz continuous with respect tom. That is, for all
m ∈M and su�ciently small ϱ ≥ 0 it holds that that��Hess Eb(m,m∗)(v,v) −Hess Eb(m̂,m∗)(P

m̂
mv,P

m̂
mv)

�� ≤ CHess (m, ϱ) dist(m,m̂) ‖v ‖2m
(4.14)

with

CHess (m, ϱ) B 2
(
1 +CP(θ , ϱ)

)
+ 4CP(θ, ϱ)CII(θ ) + 2

(
‖θ ′ − θ ′∗‖L2 + ϱ

)
(4.15)

×

(
CDΦ†(θ, ϱ) + 2

√
2
(
CD(θ ) + p

′
D(‖θ

′‖L2 + ϱ)
)
CD2Φ(θ , ϱ)

)
for allv ∈ TmM and m̂ ∈ BMϱ (m).

Proof. It holds that��Hess Eb(m,m∗)(v,v) −Hess Eb(m̂,m∗)(P
m̂
mv,P

m̂
mv)

��
=
��D2
Eb(m,m∗) (v,v) − DEb(m,m∗)DΦ(θ )†D2Φ(θ ) (v,v)

− D2
Eb(m̂,m∗) (P

m̂
mv,P

m̂
mv) + DEb(m̂,m∗)DΦ(θ̂ )†D2Φ(θ̂ ) (Pθ̂θv,P

θ̂
θv)

��
≤
��D2
Eb(m,m∗) (v,v) − D2

Eb(m̂,m∗) (P
m̂
mv,P

m̂
mv)

��
+

�� (DEb(m,m∗) − DEb(m̂,m∗)P
m̂
m

)
DΦ(θ )†D2Φ(θ ) (v,v)

��
+

��DEb(m̂,m∗)P
m̂
m

(
DΦ(θ )† − DΦ(θ̂ )†

)
D2Φ(θ ) (v,v)

��
+

��DEb(m̂,m∗)P
m̂
m DΦ(θ̂ )†

(
D2Φ(θ ) (v,v) − D2Φ(θ̂ ) (Pθ̂θv,P

θ̂
θv)

) ��.
The �rst term on the right-hand side can directly be estimated by Lemma 4.8 via
(4.13). The second term is controlled by the same lemma using (4.12) together with
the upper bound for the second fundamental form (3.29). For the third term we use
the Lemmas 3.3,3.12 and 4.5 and the fact that Pθ̂

θ
is an isometry. To estimate the last

expression we apply the Lemmas 3.6, 3.10 and 4.5.

Therefore one obtains the bound

C B 2
(
1 +CP(θ, ϱ)

)
+ 4CP(θ , ϱ)CII(θ ) (4.16)

+ 2 ‖θ̂ ′ − θ ′∗‖L2
(
CDΦ†(θ , ϱ) + 2

√
2CD(θ̂ )CD2Φ(θ , ϱ)

)
.

By (3.52) It holds that it

‖θ̂ ′ − θ ′∗‖L2 ≤ ‖θ ′ − θ ′∗‖L2 + ‖θ̂ ′ − θ ′‖L2 ≤ ‖θ ′ − θ ′∗‖L2 + ϱ .

By using the notation pD(‖θ̂
′‖L2) = CD(θ̂ ) from the proof of Lemma 3.12 we can use
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the estimate (3.53) given by

CD(θ̂ ) ≤ CD(θ ) + p
′
D(‖θ

′‖L2 + ϱ)

to obtain the statement. �

4.4 Tikhonov regularization

The main parts of this section are published in the article [12].
In this section we consider a general injective operator

F : M0 ⊂M → Y

mapping a set of embedded curvesM0 into a Hilbert space Y. The unknown exact
solution will be denoted by m† ∈ M0. Noisy data is described by a vector yδ ∈ Y
satisfying

‖yδ − F (m†)‖Y ≤ δ .

In order to approximately recover m† from the data yδ , we use Tikhonov regular-
ization with some regularization parameter α > 0:

mδ
α ∈ argmin

m∈M0

[
‖F (m) − yδ ‖2Y + α Eb(m,m∗)

]
. (4.17)

Herem∗ denotes an initial guess ofm† and may be set to 0 if no such initial guess is
available. If no appropriate submanifold of embedded curvesM0 containing the true
solution is known, we may chooseM0 by settingM0 B {m ∈M | EM(m) ≤ c } for
su�ciently large c > 0 or alternatively consider Tikhonov regularization of the form

mδ
α ∈ argmin

m∈M

[
‖F (m) − yδ ‖2Y + α Eb(m,m∗) + α EM(m)

]
. (4.18)

Since EM(m) = ∞ if m is self-intersecting, EM acts as a barrier function: Only
the values of F on the set of embedded curves are relevant and each curve γmδ

α
is

guaranteed to be embedded.
With the properties of the energy functionals established in the previous section,

the following convergence properties follow from the general theory of nonlinear
Tikhonov regularization.

Theorem 4.10. Assume thatM0 ⊂ M contains only non-self-intersecting elements
and letm† ∈ M0. Suppose that F : M0 → Y is weakly sequentially continuous (with
respect to the topologies of X and Y) and injective andM0 is weakly closed in the case
of (4.17).
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1. (existence) The minimum of the Tikhonov functionals in (4.17) and (4.18) is
attained for any α > 0.

2. (regularizing property) Suppose that F is injective. Moreover, consider a sequence
of data (yδn ) with ‖yδn − F (m†)‖ ≤ δn → 0 as n → ∞. Assume that the
regularization parameters are chosen such that

αn → 0 and
δn
√
αn
→ 0 .

Then for any sequence of minimizers of the Tikhonov functionals we have

lim
n→∞

mδn
αn −m

†

X
= lim

n→∞

γ
mδn

αn
− γm†


∞
= 0, (4.19)

lim
n→∞

F (
mδn
αn

)
− F

(
m†

)
Y
= 0. (4.20)

3. (convergence rates) Suppose in the case of (4.17) that there exists a loss function
l : M ×M → [0,∞) and a concave, increasing function φ : [0,∞) → [0,∞) with
φ(0) = 0 such thatm† satis�es the variational source condition

l(m,m†) ≤ Eb(m,m∗) − Eb(m
†,m∗) + φ

(
‖F (m) − F (m†)‖2Y

)
(4.21)

for allm ∈ M0. Then the reconstruction error for an optimal choice α of α is
bounded by

l
(
mδ
α ,m

†
)
≤ 2φ(δ 2). (4.22)

Proof. We de�ne a functional E : X → [0,∞) by

E(m) B

{
Eb(m,m∗), ifm ∈M0,

∞, else
or

E(m) B

{
Eb(m,m∗) + EM(m), ifm ∈M,
∞, else

in the case of (4.17) or (4.18), respectively. We show that in both cases E is weakly
sequentially lower semi-compact, i.e. sublevel-sets of E are weakly sequentially
compact. In the �rst case this follows from Proposition 4.3, part ((iii)) and the
assumption that M0 is weakly sequentially closed. In the second case this is a
straightforward consequence of Proposition 4.3, part ((iii)) and Lemma 4.4.

Extending F to an operator F̃ : X → Y in an arbitrary fashion, we can formally
write the Tikhonov regularizations (4.17) and (4.18) as a minimization problem over
X,

mδ
α ∈ argmin

m∈X

[
‖F̃ (m) − yδ ‖2Y + α E(m)

]
.
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and apply standard convergence results for generalized Tikhonov regularization. The
�rst statement now follows from [53, Thm. 3.22] or [15, Thm. 3.2].

To prove the second statement, let m† = (θ†, L†,p†) and mδn
αn = (θn, Ln,pn) and

recall from [53, Thm. 3.26] or [15, Thm. 3.4] that (4.20) holds true, and for an injective
operator we have weak convergence ofmδn

αn tom† as well as limn→∞ E(m
δn
αn ) = E(m

†).
Since Eb and EM are both weakly sequentially lower semicontinuous it follows that
limn→∞ ‖θ

′
n − θ

′
∗‖

2
L2 = ‖(θ

† − θ∗)
′‖2
L2 . This implies

‖(θn − θ
†)′‖2L2 = ‖(θn − θ∗)

′‖2L2 − ‖(θ
† − θ∗)

′‖2L2 + 〈(θ
† − θ∗)

′, (θn − θ
†)′〉L2

→ 0 as n →∞.

Modulo shifts in 2π Z, we may assume that θn(0) ∈ [−π , π ]. By passing to a
subsequence, we may assume that θnk (0) → θ†(0). Using the equivalent norm
‖θ ‖∗ B |θ (0)| + ‖θ ′‖L2 on H 1([0, 1]) this yields strong convergence of (θnk ) to θ† in
H 1([0, 1]). As weak convergence in R2 is equivalent to strong convergence, (Lnk ,pnk )
also converges strongly to (L†,p†). As this holds true for any subsequence, the whole
sequence (mδn

αn ) converges strongly tom† in X. This implies strong convergence of
the corresponding curves in the supremum norm.

The third statement follows from [18] or [15, Thm. 4.11]. �

We point out that the variational source condition (4.21) is related to stability
results as worked out for inverse medium scattering problems in [28] where such
conditions with logarithmic functions φ hold true under Sobolev smoothness con-
ditions on the solution. However, for inverse obstacle scattering problems no such
veri�cations of variational source conditions are known so far.

Remark 4.11. It can be seen from the references cited in the proof of Theorem 4.10 that
the results can be extended to the case where Y is a Banach space and ‖F (m) − yδ ‖2Y
is replaced by more general data �delity terms S(F (m),yδ ).

4.5 Application to inverse obstacle scattering prob-
lems

In this section we model the Problem 1.2 on the shape manifold introduced in Chap-
ter 3 and apply the regularization approach using the bending energy discussed in
the last section. One may describe the inverse problems as operator equation: We
introduce the operator F : M → L2(M) mappingm ∈M to the far �eld pattern u∞
of the scattered �eld in Problem 1.1 for the domain Ω corresponding to m. More
precisely, the boundary Γ is given by the image of the curve parameterization γm(S1)
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and Ω is the unbounded component of R2 \ γm(S
1). The inverse problem is described

by the operator equation
F (m) = u∞. (4.23)

By Schi�er’s uniqueness result ([9, Thm. 5.1]) F is injective ifM = S1 × S1, and by
the uniqueness result of Colton and Sleeman ([9, Thm. 5.1]) it is also injective ifM is
the product of S1 with some �nite set and if all curves γm form ∈M0 are contained
in a ball of a certain size. (Both results are stated in [9] for R3, but also hold true in
R2.)

Let us show that the operator F also satis�es the remaining assumptions of
Theorem 4.10:

Proposition 4.12. The operator F maps weakly convergent sequences inM0 (with
respect to the topology of X) to strongly convergent sequences in L2(S1) and is continu-
ously Fréchet di�erentiable.
In particular, F is strongly and weakly continuous.

Proof. Notice that the linear mapping X → C1(S1;R2), m 7→ γm de�ned by (3.2)
is compact by embedding theorems for Sobolev spaces, and hence it maps weakly
convergent sequences to strongly convergent sequences. Moreover, the forward scat-
tering operator C1(S1;R2) → L2(S1), γm 7→ u∞ is continuously Fréchet di�erentiable,
and in particular continuous by [25, Thm. 1.9]. Therefore, the composition of these
two mappings is continuously Fréchet di�erentiable and maps weakly convergent to
strongly convergent sequences. �

Notice that by the last proposition the operator equation (4.23) on an in�nite-
dimensional manifoldM0 is ill-posed in the sense that there cannot exist a strongly
continuous inverse of F . Otherwise every weakly convergent sequence inM0 would
be strongly convergent.) This implies the need for regularization to solve this equa-
tion.

It has to be remarked that on the one hand this proves a new geometrically
conform regularization method for solving inverse obstacle scattering problems, but
on the other hand solving the minimization problem (4.17) is a challenging task. The
functional is smooth, but nonconvex and therefore an algorithm to compute (4.17)
can easily get stuck in a local minima. This motivates to develop and investigate an
algorithm, which can overcome such di�culties.



5 Iteratively regularized
Gauss-Newton methods

on manifolds

Few ideas work on the �rst try. Iteration is key to
innovation.

— Sebastian Thrun

In the last chapter we introduced a variational regularization approach on shape
manifolds based on the bending energy for penalizing. Unfortunately, using this
approach one has to solve a smooth, but highly nonconvex optimization problem
on a manifold. The numerical minimization is challenging because of local minima.
This motivates to investigate an iteratively regularized algorithm in analogy to
the iteratively regularized Gauss-Newton algorithm introduced in Section 2.4 for
nonlinear operators on Hilbert spaces.

A general framework for such algorithms is introduced in the following. Further-
more, the assumptions on the space, the operator and the regularization term are
presented and discussed. Moreover, we prove convergence rates of the algorithm for
exact and perturbed data.

Finally the general framework is applied to inverse obstacle scattering problems,
using shape manifolds and the bending energy introduced in Chapters 3 and 4. The
assumptions made in the general case are discussed and partly veri�ed. Unfortu-
nately, the assumption to control the nonlinearity of the forward operator could
not be veri�ed. The analogous assumption in the Hilbert space setting described
in Section 2.5 could not yet be proven, either. Nevertheless, this drawback in the
theory is discussed in Section 5.5. We emphasize that all assumptions can be veri�ed,
which arise newly from the generalization of the algorithm from Hilbert spaces to
Riemannian manifolds.
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5.1 A general Newton-type algorithm

Let F : dom(F ) ⊂M → Y be a general Fréchet di�erentiable operator with injective
derivative DF (m) for all elementsm ∈ dom(F ). Denote an unknown exact solution
bym† ∈ dom(F ) and let the noisy data yδ ∈ Y satisfy

‖F (m†) − yδ ‖Y ≤ δ (5.1)

with an error bound δ ≥ 0.
Let E : M → R be a C2 functional incorporating a-priori information. In the

following, we will examine an iteratively regularized method given by a sequence
(mk)k∈M . In each Newton-type iteration we solve the minimization problem

vk B argmin
v∈TmkM

J
mk

yδ ,αk
(v) (5.2a)

with

J
mk

yδ ,αk
(v) B

F (mk)+DF (mk)v−y
δ
2
Y
+αk

〈
Hess E(mk)v,v

〉
mk
+αk

〈
grad E(mk),v

〉
mk

(5.2b)
in order to obtain the update direction vk ∈ TmkM and compute the next iterate

mk+1 B expmk
(vk), (5.2c)

by the Riemannian exponential map (see Section A.3 for details). Here, TmM denotes
the tangent space ofM at the point m ∈ M, the Riemannian metric is denoted by
〈·, ·〉m and the induced norm by ‖·‖m.

In addition, we choose a sequence of regularization parameters (αk)k∈N ⊂ R such
that

αk > 0, 1 ≤
αk
αk+1

≤ Cα , lim
k→∞

αk = 0. (5.3)

This is a generalization to in�nite-dimensional manifolds of the iteratively regu-
larized Gauss-Newton method (IRGNM), which was �rst introduced by Bakushinskii
[4] in the case for Hilbert spaces. Assuming that the Hessian of E is positive de�nite
(see Assumption 5.8) the minimizer of (5.2a) is given by

vk =
(
αk Hess E(mk) + DF (mk)

∗DF (mk)

)−1
(5.4)

×

(
DF (mk)

∗
(
yδ − F (mk)

)
− αk grad E(mk)

)
.

Remark 5.1. In comparison to the iteratively regularized Gauss-Newton method
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(2.26) on Hilbert spaces, in the algorithm (5.2) both the data �delity term and the
regularization term is replaced by a Taylor approximation. This arises naturally
by the generalization to the manifold setting and will play a role in the following
convergence analysis in the Sections 5.3 and 5.4.

5.2 Spectral source conditions

As in Section 2.4 we will prove convergence rates using a-priori knowledge about
the solution decoded by source conditions. In this section we generalize the notion
of source conditions to manifolds.

We will use the following notation

g B grad E(m†) ∈ Tm†M, H B Hess E(m†) : Tm†M → Tm†M, WB H−
1
2

and
T B DF (m†) : Tm†M → Y, L B TW.

We generalize the notion of source conditions to the context of Riemannian
manifolds as follows:

Assumption 5.2. There is some v ∈ Tm†M such that

g = W−1 φ(L∗ L)v (5.5)

for an index function φ (in the sense of De�nition 2.7).

In [38] it was shown that an index function of the form (5.5) always exists. Recall
that in the case of mildly ill-posed problems the index function can be expected to be
of Hölder-type

φν (λ) = λ
ν (5.6)

for ν > 0, and in the case of severely ill-posed problems of logarithmic form

φp(λ) =

{
(− ln λ)−p, 0 < λ ≤ exp(−1)
0, λ = 0

(5.7)

with p > 0, which was already discussed in Section 2.3. Here we will assume that
‖T ∗T ‖ ≤ exp(−1), which can always be achieved by rescaling the norm ‖·‖Y . In
general we can assume without loss of generality that

φ(λ) ≤ 1 for all λ ∈ (0, ‖L ‖2]. (5.8)
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Remark 5.3. One can see that (5.5) is a natural choice for generalization into a
manifold setting. Consider the special case that the manifold is itself a Hilbert space,
i.e.M = X. Then every tangent space can be identi�ed with the model space. If
we use the variable transformation x 7→ x̃ = H−

1
2x or the weighted inner product

〈x,y〉M B 〈x, Hy〉X then the source condition (5.5) is equivalent to

g̃ = φ(H−
1
2 T ∗ T H−

1
2 )v,

which coincides with the known source conditions for weighted operators over
Hilbert spaces (see (2.20) in Theorem 2.11).

In order to prove convergence of the algorithm 5.2 using general source conditions,
we apply additional assumptions used in the literature for the index function φ, see
[39, 38]. For this, denote the �lter functions corresponding to Tikhonov regularization
by

qk(λ) B
1

αk + λ
and rk(λ) B 1 − λqk(λ). (5.9)

In the following, we only consider �lter functions which are covered by the identity,
i.e. φ < id with some constant C > 0 as used in the De�nition 2.8. In [39] it is shown
that in this case there is a constant cφ > 0 with cφ < max{1, 1

C } such that

sup
0<λ≤‖L ‖2

|rk(λ)| φ(λ) ≤ cφ φ(αk), k ∈ N. (5.10a)

If, in addition, φ <
√

id is satis�ed, then it holds that

sup
0<λ≤‖L ‖2

√
λ |rk(λ)| φ(λ) ≤ cφ

√
αk φ(αk), k ∈ N. (5.10b)

Provided the index function is concave (which is the case for Hölder index functions
with ν < 1 and logarithmic index functions), we get by

φ(λ) = φ

(
1
Cα

(
Cα λ

)
+

(
1 −

1
Cα

)
0
)
≥

1
Cα

φ
(
Cα λ

)
+

(
1 −

1
Cα

)
φ(0)

and the fact that φ(0) = 0 in addition the estimate

φ
(
Cα λ

)
φ(λ)

≤ Cα for all λ ∈ (0, ‖L ‖2/Cα ]. (5.11)

As in Chapter 2 we use the a-priori stopping rule (see (2.32): the iteration stops
at the �rst index k = k(α, δ ) such that τ√αkφ(αk) is less or equal than δ , for some
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τ > 0, i.e.

τ
√
αkφ(αk) < δ ≤ τ

√
αkφ(αk), 0 ≤ k < k . (5.12)

5.3 Spatial and nonlinearity assumptions

Being able to change between di�erent tangent spaces is necessary to prove con-
vergence rates. We will use two slightly di�erent maps which encode this behavior:
the parallel transport and the derivative of the exponential map (see Section A.3
for details). These maps are closely related and in parts they map identically. From
now on, we denote by Pm̂m : TmM → Tm̂M the parallel transport along the unique
geodesic fromm to m̂. Uniqueness is guaranteed by restricting to a su�ciently small
set, as discussed below. In our setting Pm̂m becomes unitary, i.e. the inverses and
adjoint mappings satisfy

P
m
m̂
= (Pm̂m )

∗ = (Pm̂m )
−1.

Here, Pm
m̂

transports vectors along the geodesic starting from m̂ tom, the reversed
geodesic ([51, Sec. 2]). Furthermore, we use the derivative of the exponential map
Dexpm(v) : TmM → Tm̂M with v B exp−1

m (m̂) ∈ TmM. Note that the derivative of
the exponential map and the parallel transport coincide along the direction v :

Dexpm(v) (v) = P
m̂
mv .

In section 5.4 we prove convergence of the algorithm (5.2) under the source
condition (5.5) and the stopping rule introduced in (5.12). This is done locally in a
neighborhood of the exact solution m†. In fact, we consider a ball Bϱ(m†) = {m ∈
M | dist(m,m†) ≤ ϱ} of radius ϱ > 0 contained in dom(F ). In the following we
need the crucial assumption that the curvature of the manifold is bounded in the ball
Bϱ(m

†).

Assumption 5.4. There is constant CD > 0 depending on ϱ andm† such that

‖Rm(u,v)w ‖m ≤ CD ‖u‖m ‖v ‖m ‖w ‖m (5.13)

for all m ∈ Bϱ(m
†) and u,v,w ∈ TmM. For all m ∈ Bϱ(m

†) the map expm is a
di�eomorphism.

On �nite-dimensional manifolds the �rst part of this assumptions is always
satis�ed. To see this, note that the ball is compact on �nite dimensional manifolds.
Therefore the curvature tensor can be bounded uniformly in this ball. In in�nite
dimension one cannot expect to get a uniform bound and has to verify the assumption
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locally. The second part of the assumption guarantees that for every two points
in the ball Bϱ(m†) there exists a unique connecting geodesic. By choosing ϱ small
enough we can always guarantee the existence of a minimizing geodesic between
two points in the ball.

From literature (see e.g. [30]) we know that the replacement of the data �del-
ity term by a Taylor approximation implies the need for a condition to treat the
nonlinearity of the operator F .

Assumption 5.5. There are mappings S(m̂,m) ∈ L(Y,Y) and Q(m̂,m) ∈ L(TmM,Y)
for m̂,m ∈ Bϱ(m†) and constants CS,CQ > 0 such that

DF (m̂)Dexpm(v) = S(m̂,m)DF (m) +Q(m̂,m) (5.14a)
‖I − S(m̂,m)‖Y ≤ CS (5.14b)
‖Q(m̂,m)‖ ≤ CQ ‖DF (m†)Dexpm(exp−1

m (m
†)) (v)‖Y (5.14c)

for all m̂,m ∈ Bϱ(m†) where v B exp−1
m (m̂) or equivalently expm(v) = m̂.

Remark 5.6. Note that ifM is a Hilbert space X, then (5.14) reduces to a widely used
nonlinearity Assumption 2.12, see also [29, 30]. In the �at space the exponential map
is given by the translation operator whose derivative is the identity mapping.

Remark 5.7. The operator Dexpm(v) is a map from one tangent space to another,
which is called a vector transport. The choice of Dexp is not arbitrary and arises from
using exp in the algorithm (5.2) as update step. Although we know from di�erential
geometry that the parallel transport map behaves identically to the exponential
map in one direction, see (A.13). By applying Assumption 5.4 and Lemma 3.9, the
di�erence of the operators is controlled by a bound on the curvature. Whereas we
cannot exchange the choice of vector transport when it is composed with an ill-posed
operator.

We illustrate this fact in the following example. Consider a linear, injective,
compact and exponentially ill-posed operator T : X → Y between Hilbert spaces.
Assume there is a linear operator J : X → X satisfying ‖ J − idX‖ ≤ c for c small. In
general, there does not exist an operator A : Y → Y such that

AT = T J

with ‖A − idY‖ ≤ C for a constant C > 0. One can see this as follows: Denote with
(fn,дn,σn) the singular system of T (see [13]) and assume that T is exponentially
ill-posed in the sense that σn = exp(−np) for some p > 0. Consider the operator

J :

{
f2n 7→ f2n +

1
2 fn,

f2n+1 7→ f2n+1 +
1
2 fn
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which satis�es ‖ J − idX ‖ = 1
2 . Assume that a operator A satisfying the above identity

exists, then it follows

A :

{
д2n 7→ д2n +

1
2
σn
σ2n

дn

д2n+1 7→ д2n+1 +
1
2

σn
σ2n+1

дn .

As one gets

σn
σ2n
=

exp(−np)
exp(−2pnp)

= exp
(
(2p − 1)np

)
the right-hand side tends to in�nity for n →∞. Therefore, the operator A is unboun-
ded, which contradicts the assumption.

This shows that one cannot simply replace Dexpmwith the parallel transport in the
decomposition (5.14), just because their di�erence is small in a small neighborhood.

To ensure the existence of the direction vk given by (5.2a), we assume that the
Hessian of the bending energy is bounded, boundedly invertible and strictly positive
de�nite:

Assumption 5.8. There are constants CU
H
,CL
H
> 0, such that the family of operators

Hess E(m) : TmM → TmM satis�es

‖Hess E(m)v ‖m ≤ CU
H
‖v ‖m and 〈(Hess E(m))v,v〉m ≥

1
CL
H

‖v ‖2m (5.15)

for allm ∈ Bϱ(m†) and v ∈ TmM and de�ne the constant

CH B max
{√

CU
H
,
√
CL
H

}
.

We will use the notation

gk B grad E(mk) ∈ TmkM, Hk B Hess E(mk) : TmkM → TmkM

and

Wk B H
− 1

2
k
, Tk B DF (mk) : TmkM → Y, Lk B TkWk .

Note that the Assumption 5.8 is necessary for de�ning W and Wk and in this case
we can rewrite (5.4) as

vk = Wk
(
αkI + L

∗
k Lk

)−1
(
L∗k

(
yδ − F (mk)

)
− αkWkgk

)
. (5.16)

Likewise, note that the regularization functional E is nonlinear. Similar to the
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assumption for the forward operator, we need to impose a condition E to control the
nonlinearity.

Assumption 5.9. The Hessian of E is locally Lipschitz continuous, i.e. there is a constant
CE > 0 such thatPm

m̂
Hess E(m̂)Pm̂m v −Hess E(m)v


m
≤ CE dist(m,m̂) ‖v ‖m (5.17)

for all v ∈ TmM andm, m̂ ∈ Bϱ(m†).

5.4 Convergence analysis on in�nite-dimensional
manifolds

In the following we will use the notation:

e†
k
B exp−1

mk
(m†) ∈ TmkM, ek

†
B exp−1

m†
(mk) ∈ Tm†M.

Note these two tangent vectors are elements of di�erent tangent spaces and connected
by the identity

ek
†
= −Pm

†

mk
e†
k
. (5.18)

The main strategy for the proof of local convergence is based on the proof of local
convergence in the Hilbert space setting, see Theorem 2.13. In the �rst four lemmas we
establish bounds for the distance between the exact solution and the (k + 1)-th iterate
in terms of the k-th iterate. Using general source conditions this is not su�cient
to prove convergence rates, which is discussed for the Hilbert space setting in [30].
We examine the corresponding errors in the observation space as well. From these
recursive formulas, we prove convergence rates �rst for exact data and afterwards
for noisy data.

Lemma 5.10. Suppose the Assumptions 5.4 and 5.8 hold true andmk ∈ Bϱ(m
†). Then

‖ek+1
†
‖m† = ‖e

†

k+1‖mk+1 ≤
(
1 +CD ‖e†k ‖

2
mk

)
‖vk − e

†

k
‖mk +

1
3
CD ‖vk − e

†

k
‖3mk
. (5.19)

Proof. The tangent vectors above measure the distance between the k-th iterate and
the exact solution in di�erent tangent spaces, i.e.

‖e†
k
‖mk = dist(mk, expmk

(e†
k
)) = dist(mk,m

†) = dist(expm†(e
k
†
),m†) = ‖ek

†
‖m†,
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due to (A.9). On the other hand, the distance between mk+1 = expmk
(vk) and m† =

expmk
(e†
k
) is given by the in�mum of the length of all path connecting these two

points. Therefore, we choose the path γ (t) B expmk
(e†
k
+ t(vk − e

†

k
)) and estimate

dist(mk+1,m
†) = dist(expmk

(vk), expmk
(e†
k
))

≤

∫ 1

0
‖Dexpmk

(e†
k
+ t(vk − e

†

k
)) (vk − e

†

k
)‖γ (t) dt .

Usingwk B e†
k
+t(vk −e

†

k
)we apply (A.18), Assumption 5.4 and the isometry property

of parallel transport (see Section A.3) to get

‖Dexpmk
(wk) (vk − e

†

k
)‖γ (t) ≤ ‖P

γ (t)
mk (vk − e

†

k
)‖γ (t) +

1
2
‖Rmk (wk,vk − e

†

k
)wk ‖mk

≤ ‖vk − e
†

k
‖mk +

1
2
CD ‖vk − e

†

k
‖mk ‖wk ‖

2
mk
.

Since (a + b)2 ≤ 2a2 + 2b2, it therefore follows that

dist(mk+1,m
†) ≤ ‖vk − e

†

k
‖mk +

1
2
CD ‖vk − e

†

k
‖mk

∫ 1

0
2
(
‖e†

k
‖2mk
+ t2 ‖vk − e

†

k
‖2mk

)
dt

≤
(
1 +CD ‖e†k ‖

2
mk

)
‖vk − e

†

k
‖mk +

1
3
CD ‖vk − e

†

k
‖3mk

and together with the above identity we deduce (5.19). �

Lemma 5.11. Suppose the Assumptions 5.4 and 5.8 hold true andmk ∈ Bϱ(m
†). Then

‖Tek+1
†
‖Y ≤

1 + 1
2CQ ‖vk − e

†

k
‖mk

1 −CS −
1
2CQ ‖e

k+1
†
‖m†

(
(1 +CS )‖Tk(vk − e

†

k
)‖Y +CQ ‖vk − e

†

k
‖mk ‖Te

k
†
‖Y

)
(5.20)

if CS +
1
2CQ ‖e

k+1
†
‖m† < 1.

Proof. The proof of (5.20) in analogous to the proof of (5.19). We start by estimating
the distance in Y by two di�erent integrals. Firstly, for the lower bound we use the
nonlinearity decomposition (5.14) of F using the path t 7→ F (expm†(te

k+1
†
)):F (mk+1) − F (m

†)

Y

=

 ∫ 1

0
DF (expm†(te

k+1
†
))Dexpm†(te

k+1
†
) (ek+1
†
) dt


Y

=

 ∫ 1

0
S(expm†(te

k+1
†
),m†)Tek+1

†
+Q(expm†(te

k+1
†
),m†) ek+1

†
dt


Y

≥

(
1 −CS −

1
2
CQ ‖e

k+1
†
‖m†

)
‖Tek+1
†
‖Y .
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The positivity of the right-hand side is guaranteed if CS +
1
2CQ ‖e

k+1
†
‖m† < 1 holds

true.
We deduce the upper bound using the path γ (t) B expmk

(wk(t)) with wk(t) B

e†
k
+ t(vk − e

†

k
) by

F (mk+1) − F (m
†)

Y
≤

∫ 1

0

DF (γ (t))Dexpmk
(wk(t)) (vk − e

†

k
)

Y

dt

=

∫ 1

0

(S(γ (t),mk)Tk +Q(γ (t),mk)
)
(vk − e

†

k
)

Y

dt

≤

∫ 1

0

S(γ (t),mk)Tk(vk − e
†

k
)

Y
+ ‖Q(γ (t),mk) (vk − e

†

k
)‖Y dt

≤ (1 +CS )
Tk(vk − e†k )Y

+CQ ‖vk − e
†

k
‖mk

∫ 1

0

T Dexpmk
(e†
k
) (exp−1

mk
(γ (t)))


Y

dt .

Note that exp−1
mk
(γ (t)) = wk(t) and by (A.13), (A.15) and (5.18) we conclude that

Dexpmk
(e†
k
) (e†

k
) = Pm

†

mk
e†
k
= −ek

†
.

Using this together with (5.14) we obtain for the last integral∫ 1

0
‖T Dexpmk

(e†
k
) (wk(t))‖Y dt

≤ ‖Tek
†
‖Y +

∫ 1

0
t ‖T Dexpmk

(e†
k
) (vk − e

†

k
)‖Y dt

≤ ‖Tek
†
‖Y +

1
2

((I − S(m†,mk)
)
Tk (vk − e

†

k
)

Y
+

S(m†,mk)Tk (vk − e
†

k
)

Y

+
Q(m†,mk) (vk − e

†

k
)

Y

)
≤ ‖Tek

†
‖Y +

1
2

(
(1 +CS ) ‖Tk(vk − e

†

k
)‖Y +CQ ‖Te

k
†
‖Y ‖vk − e

†

k
‖mk

)
=

1 +CS

2
‖Tk(vk − e

†

k
)‖Y +

(
1 +

1
2
CQ ‖vk − e

†

k
‖mk

)
‖Tek
†
‖Y .

Combining the lower and the upper bound yields the stated inequality (5.20). �

We denote

D
†

k
B Dexpmk

(e†
k
) and D

k
†
B Dexpm†(e

k
†
).

Then due to (A.16) and (5.18) the identity
(
Dk
†

)∗
= D

†

k
holds true. By (A.18) and (5.13),
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we can derive a bound for these operators:D†
k
w


m†
≤

(
1 +

1
2
CD ‖e

†

k
‖2mk

)
‖w ‖mk . (5.21)

Concerning the invertibility of these operators note the following: Similarly as above,
we can derive the lower boundD†

k
w


m†
≥

(
1 −

1
2
CD ‖e

†

k
‖2mk

)
‖w ‖mk

for w ∈ TmkM. Ifmk ∈ Bϱ(m
†) and ϱ are su�ciently small this guarantees invertibil-

ity and bounds the norm. The estimates for Dk
†

work analogously.

Recall that (5.9) is given by qk(L
∗L) = (αkI + L

∗L)−1 using the functional calculus.
Then from (5.16) we obtain

vk − e
†

k
= Wkqk(L

∗
kLk)L

∗
k

(
yδ − F (m†)

)
+Wkqk(L

∗
kLk)L

∗
k

(
F (m†) − F (mk) −Tke

†

k

)
− αkWkqk(L

∗
kLk)Wkgk − αkWkqk(L

∗
kLk)WkHke

†

k
.

Furthermore, recalling that rk(λ) = αk qk(λ), we can write

Wkrk(L
∗
kLk)Wkgk = Dk

†
Wrk(L

∗L)Wg +Wkrk(L
∗
kLk)Wk

(
gk −Dk

†
g
)

+Wkqk(L
∗
kLk)Wk

(
D

k
†
W
−1(αkI + L

∗L)W−1 (
D

k
†

)−1

−W−1
k (αkI + L

∗
kLk)W

−1
k

)
D

k
†
Wrk(L

∗L)Wg

= Dk
†
Wrk(L

∗L)Wg +Wkrk(L
∗
kLk)Wk(gk −Dk

†
g)

+ αkWkqk(L
∗
kLk)Wk

(
D

k
†
H

(
D

k
†

)−1
− Hk

)
D

k
†
Wrk(L

∗L)Wg

+Wkqk(L
∗
kLk)Wk

(
D

k
†
T ∗T

(
D

k
†

)−1
−T ∗kTk

)
D

k
†
Wrk(L

∗L)Wg.

From this decomposition we can distinguish general types of errors: approxima-
tion, noise, nonlinearity and Taylor remainder. Both of the latter two are split further
into terms arising from the forward operator and the regularization functional. We
denote them by

vk − e
†

k
=

(
e†
k+1

)app
+

(
e†
k+1

)noi
+

(
e†
k+1

)nl-F
+

(
e†
k+1

) tay-F
+

(
e†
k+1

)nl-E
+

(
e†
k+1

) tay-E
,

(5.22a)

where(
e†
k+1

)app
B −Dk

†
Wrk(L

∗L)Wg, (5.22b)(
e†
k+1

)noi
B Wkqk(L

∗
kLk)L

∗
k

(
yδ − F (m†)

)
, (5.22c)
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(
e†
k+1

) tay-F
B Wkqk(L

∗
kLk)L

∗
k

(
F (m†) − F (mk) −Tke

†

k

)
, (5.22d)(

e†
k+1

)nl-F
B −Wkqk(L

∗
kLk)Wk

(
D

k
†
T ∗T

(
D

k
†

)−1
−T ∗kTk

)
D

k
†
Wrk(L

∗L)Wg, (5.22e)(
e†
k+1

) tay-E
B Wkrk(L

∗
kLk)Wk

(
D

k
†
g − gk − Hke

†

k

)
, (5.22f)(

e†
k+1

)nl-E
B −Wkrk(L

∗
kLk)Wk

(
D

k
†
H

(
D

k
†

)−1
− Hk

)
D

k
†
Wrk(L

∗L)Wg. (5.22g)

Note that since vk − e†k ∈ TmkM also the error pieces are elements of the tangent
space TmkM. In general the terms (e†

k+1)
app, (e†

k+1)
noi , (e†

k+1)
tay-F , (e†

k+1)
nl-F , (e†

k+1)
tay-E

and (e†
k+1)

nl-E do not form a decomposition of e†
k+1 ∈ Tmk+1M. Although this is true

ifM is �at as for example a Hilbert space.
Moreover, we denote (

ek+1
†

)app
B Wrk(L

∗L)Wg.

In the following lemma we derive error estimates using this decomposition.

Lemma 5.12. Suppose the Assumptions 5.2, 5.4, 5.5, 5.8, 5.9 with φ <
√

id hold true and
assume (5.1) andmk ∈ Bϱ(m

†). Then we obtain(e†
k+1

)app
mk
≤

(
1 +

1
2
CD

e†
k

2
m

) (ek+1
†

)app
m†
, (5.23a)(e†

k+1
)noi

mk
≤ CH

1
2√αk

δ , (5.23b)

(e†
k+1

) tay-F
mk
≤ CH

1
2

(3
2
CQ

ek
†


m†
+ 2CS

) Tek
†


Y

√
αk
, (5.23c)

(e†
k+1

)nl-F
mk
≤ CHCS

T (
ek+1
†

)app
Y

√
αk

(5.23d)

+C2
H
CQ

(
1
2
(ek+1
†

)app
m†
+

T (
ek+1
†

)app
Y

√
αk

) Tek
†


Y

√
αk
,(e†

k+1
) tay-E

mk
≤

1
2
C2
H

(
CE +CDCH ‖v ‖m†

) e†
k

2
mk
, (5.23e)(e†

k+1
)nl-E

mk
≤ C2

H

(
CE +CHCD ‖e

†

k
‖mk

) (ek+1
†

)app
m†

e†
k


mk

(5.23f)

and (ek+1
†

)app
m†
≤ CH cφ ‖v ‖m†φ(αk). (5.23g)

Proof. In the following we use the standard estimates as already used in Section 2.3(αkI + L∗k Lk )−1 ≤ 1
αk

and
(αkI + L∗k Lk )−1

L∗k
 ≤ 1

2√αk
. (5.24)
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The estimate (5.23a) follows by (5.21) and (5.23g) from (5.5), (5.10a) and (5.15). The
inequality (5.23b) can be derived from (5.1), (5.15) and (5.24).

Now let us study the errors arising from the nonlinearity of F . First the Taylor
remainder:Tke†k + F (mk) − F (m

†)

Y

≤

∫ 1

0

Tke†k + DF
(
expm†(te

k
†
)
)

Dexpm†(te
k
†
) (ek
†
)

Y

dt

=

∫ 1

0

DF
(
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k
†
)
)

Dexpm†(te
k
†
) (ek
†
) −Tk Dexpm†(e

k
†
) (ek
†
)

Y

dt

=

∫ 1

0

(S(expm†(te
k
†
),m†) − S(mk,m

†)

)
Tek
†

+Q(expm†(te
k
†
),m†)ek

†
−Q(mk,m

†)ek
†


Y

dt

≤ 2CS

Tek
†


Y
+

∫ 1

0

(
CQ

T (
tek
†

)
Y

ek
†


m†
+CQ

Tek
†


Y

ek
†


m†

)
dt

≤

(3
2
CQ

ek
†


m†
+ 2CS

) Tek
†


Y
. (5.25)

Inequality (5.25) provides the estimate for (5.23c). For the nonlinearity error we use
the identity

D
k
†
T ∗T −T ∗kTkD

k
†
= (TD†

k
)∗T −T ∗kTkD

k
†

= T ∗k (S
∗(m†,mk) − S(mk,m

†))T +Q∗(m†,mk)T +T
∗
kQ(mk,m

†).

By straightforward computations using (5.10) and (5.14) we obtain the estimate (5.23d).
Next we consider the errors arising from the approximation of E. Using (A.18)

and (5.13) we get

‖Dexpmk
(e†
k
) (w) − Pm

†

mk
w ‖m† ≤

1
2
CD ‖e

†

k
‖2mk
‖w ‖mk . (5.26)

Recall that the Hessian is given as the covariant derivative of the gradient �eld (A.4)
and that the covariant derivative can be written as a limit of di�erence quotients
using parallel transport (A.6). Due to this, the fundamental theorem of calculus and
(5.17) using the path t 7→ expmk

(te†
k
) impliesPmk

m†
g − gk − Hke

†

k


mk

=

 ∫ 1

0
P
mk

expmk
(te†k )
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))Dexpmk
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) (e†
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) − Hke

†
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≤
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0

(Pmk
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(te†k )
Hess E(expmk

(te†
k
))P
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(te†k )

mk − Hk

)
e†
k


mk

dt



88 5. Iteratively regularized Gauss-Newton methods on manifolds

≤CE
e†

k


mk

∫ 1

0
dist

(
mk, expmk

(te†
k
)
)

dt

=
1
2
CE

e†
k

2
mk
.

Thus, together with (5.5), (5.8) and since rk(λ) ≤ 1 we derive the estimate (5.23e) for
the Taylor remainder arising from the regularization functional. Only (5.23f) is left
to show. By the decomposition(
D

k
†
H

(
D

k
†

)−1
− Hk

)
D

k
†
= P

mk
m†
H − HkP

mk
m†
+

(
D

k
†
− P

mk
m†

)
H − Hk

(
D

k
†
− P

mk
m†

)
and (5.10a), (5.17) and (5.26) the inequality (5.23f) follows. �

The next lemma provides us error estimates in the observation space under
DF (mk).

Lemma 5.13. Let the same assumptions as in Lemma 5.12 hold. ThenTk (e†k+1
)app

Y
≤ (1 +CS )

T (
ek+1
†

)app
Y
+CQ

(ek+1
†

)app
m†

Tek
†


Y

(5.27a)Tk (e†k+1
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(5.27f)

and T (
ek+1
†

)app
Y
≤ cφ ‖v ‖m†

√
αkφ(αk). (5.28)

Proof. (5.28) follows from (5.10b) and (5.5). To prove (5.27a), we apply (5.14). ByLk (
αkI + L

∗
kLk

)−1
L∗k

 ≤ 1

we have (5.27b). Next we can combine again (5.24) with (5.25) to obtain (5.27c).
For the nonlinearity error with respect to F we apply the same decomposition as

above and obtain the estimate (5.27d). The combination of the estimate for the Taylor
remainder of the bending energy with (5.26) induces (5.27e). The nonlinearity error
from the bending energy can be estimated by (5.10a), (5.17) and (5.26) to conclude
(5.27f). �
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We combine the Lemmas 5.12 and 5.13 in the next result to sort the upper bounds
as preparation for the main theorem.

Lemma 5.14. Let the assumptions of Lemma 5.12 hold true. Then using the stopping
rule (5.12) the inequalities

vk − e†kmk
≤ ã φ(αk) + 2â

e†
k


mk
+ c̃

Tek
†


Y

√
αk
, (5.29)Tk (vk − e†k )Y ≤ a
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√
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e†
k


mk
+ b̃

Tek
†


Y

(5.30)

follow, where

ã B CH
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)
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CHτ

â B
1
4
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c̃ B
1
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( (3
2
CQϱ + 2CS

)
+CHCQ

(
2 +CH

)
cφ ‖v ‖m†

)
a B

( (
1 + 3CS

)
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2
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H

(
CE +CHCDϱ

)
ϱ
)
cφ ‖v ‖m† + τ

b̃ B 2CS +
3
2
CQϱ +

5
2
CQCHcφ ‖v ‖m† .

Proof. We sum up the estimates in Lemma 5.12 and 5.13 and apply (5.10) and (5.12) to
obtain the stated formulas. �

Now we are able to state the main result of this chapter and prove convergence
rates for exact data.

Theorem 5.15. Suppose the Assumptions 5.2, 5.4, 5.5, 5.8, 5.9 with concave φ <
√

id
hold true and assume (5.1). Assume CS , CQ , Cα , τ and ‖v ‖m† are su�ciently small and
α0 su�ciently large as speci�ed in the proof. Then there exits ϱ > 0 such that the iterates
mk , 0 ≤ k ≤ k , de�ned by (5.2) are well de�ned for everym0 ∈ D(F ) satisfying

dist(m0,m
†) ≤ ϱφ(α0), (5.31)

if the stopping index k = k(δ ,yδ ) is given by (5.12). Moreover, it holds that

dist(mk,m
†) ≤ ϱφ(αk), 0 ≤ k ≤ k . (5.32)

If δ = 0 and k = ∞, (5.32) holds true for all k ∈ N.
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Proof. The combination of the Lemmas 5.10 and 5.11 provides the estimate
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In this case we denote
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and by application of Lemma 5.14 we obtain
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Using the notation

χk B
‖Tek
†
‖

Ψ(αk)
and Ψ(α) B

√
αφ(α)

we prove by induction that

χk ≤ Cχ (5.35a)
dist(mk,m

†) ≤ ϱφ(αk) (5.35b)

for 0 ≤ k ≤ k for some Cχ > 0. We will show in Proposition 5.16 below that there
exist positive constants Cχ , a, b, cχ , Cb satisfying the system of equations

Cχ = max
{
χ0,

2a
1 − b +

√
(1 − b)2 − 4ac

}
, (5.36a)

a = cχ (1 +CS )(ā + âϱ), (5.36b)
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b = cχ
(
(1 +CS )b̃ +CQ (ã + 2âϱ)

)
, (5.36c)

c = cχCQc̃, (5.36d)

cχ =
√
CαCα

1 + 1
2CQCb

1 −CS −
1
2CQ

(
(1 +CDϱ2)Cb +

1
3CDC

3
b

) , (5.36e)

Cb = ã + 2âϱ + c̃Cχ (5.36f)

with the constants from Lemma 5.14 as well as the inequalities

CS +
1
2
CQ

( (
1 +CDϱ2)Cb +

1
3
CDC

3
b

)
< 1, (5.37a)

b + 2
√
ac < 1, (5.37b)

χ0 ≤
1 − b +

√
(1 − b)2 − 4ac
2c

, (5.37c)(
1 +CDϱ2 +

1
3
CD C

2
b

) (
ã + 2âϱ + c̃Cχ

)
Cα ≤ ϱ . (5.37d)

By construction (5.35), for k = 0, follows from (5.31) and (5.36a). Assume now that
(5.35) is true for some k < k . Thus the assumptions of the Lemma 5.10 are satis�ed
and by the choice of Cb it holds that ‖vk − e†k ‖mk ≤ Cb . Therefore, (5.33) is satis�ed
by (5.37a) and cχ > 0.

From (5.35a) and (5.35b) we havemk ∈ Bϱ(m
†) and by (5.11) it holds that

‖e†
k
‖ ≤ ϱφ(αk),

√
αk

√
αk+1

≤
√
Cα ,

φ(αk)

φ(αk+1)
≤
φ(Cααk+1)

φ(αk+1)
≤ Cα

and therefore with (5.36e) it is

ξk
Ψ(αk+1)

≤
cχ

Ψ(αk)

By combining these with (5.34) and (5.36) we get the recursive error inequality

χk+1 ≤ a + bχk + cχ
2
k .

Denote by t1 and t2 the solutions to t = a + bt + ct2, i.e.

t1 =
2a

1 − b +
√
(1 − b)2 − 4ac

, t2 =
1 − b +

√
(1 − b)2 − 4ac
2c

,

where the expression for t1 follows by a binomial identity (x − y)(x + y) = x2 − y2.
By (5.37b) the values t1 and t2 satisfy t1, t2 ∈ R and t1 < t2. By construction ofCχ and
(5.35a) either 0 ≤ χk ≤ t1 or t1 < χk ≤ χ0. If 0 ≤ χk ≤ t1 holds true, then a,b, c ≥ 0



92 5. Iteratively regularized Gauss-Newton methods on manifolds

implies
χk+1 ≤ a + bχk + cχ

2
k ≤ a + bt1 + ct

2
1 = t1.

In the second case (5.37c) and a + (b − 1)t + ct2 ≤ 0, for t1 ≤ t ≤ t2 implies

χk+1 ≤ a + bχk + cχ
2
k ≤ χk ≤ χ0.

This proves (5.35a) in the induction step. Now (5.19) and (5.29) implye†
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This together with the smallness condition (5.37d) show (5.35b) and in total (5.32). �

Proposition 5.16. There are positive constants satisfying (5.36) and (5.37) if one assumes
CS , CQ , ‖v ‖m† and ϱ to be small enough and α0 to be big enough.

Proof. We can replace (5.36a) by

Cχ =
2a

1 − b +
√
(1 − b)2 − 4ac

(5.38)

since χ0 is smaller than the right-hand side of (5.38) ifα0 is su�ciently large. Therefore
we start showing that there are constants solving (5.36) with (5.36a) replaced by (5.38).
To prove the existence of such a constant one has to solve the equation with respect
to Cχ and show that this solution is a positive real number. De�ne

A B
√
CαCα (1 +CS )(ā + âϱ),

B B
√
CαCα
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)
,

C B
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and functions for the nominator and denominator of the fraction in (5.36e) with Cb

replaced by (5.36f)
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.
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We may write D in the form

D(Cχ ) = 1 −CS −
1
2
CQ

(
d0 + d1Cχ + d2C

2
χ + d3C

3
χ

)
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ã + 2âϱ
)2
c̃,

d2 B CD
(
ã + 2âϱ

)
c̃2,

d3 B
1
3
CD c̃3.

Note that dj , j = 0, 1, 2, 3, tend to 0 as CS , CQ , ‖v ‖m† and ϱ tend to 0. Using this
notation, we choose

a = A
N (Cχ )

D(Cχ )
, b = B

N (Cχ )

D(Cχ )
, c = C

N (Cχ )

D(Cχ )
.

Now we can reformulate the equation (5.38) by multiplying with the denominator,
substracting Cχ (1 − b) and squaring the equation to obtain

C2
χ

(
(1 − b)2 − 4ac

)
= 4a2 − 4aCχ (1 − b) +C2

χ (1 − b)
2. (5.39)

Note that by squaring we enlarge the solution set of the equation by allowing the
right-hand side to become smaller than zero, i.e. 2a −Cχ (1 − b) < 0. Plugging in the
notation for a and b and multiplying with the denominator function we obtain

0 < Cχ
(
D(Cχ ) − B N (Cχ )

)
− 2AN (Cχ )

For the right-hand side we get a polynomial expression such that

0 < q0 + q1Cχ + q2C
2
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3
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4
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1
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1
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q3 B −
1
2
CQ d2
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q4 B −
1
2
CQ d3.

ForCS ,CQ , ‖v ‖m† and ϱ tending to 0 the coe�cients q0, q2, q3, q4 are all negative and
tend to zero and on the other hand q1 is positive and tend to 1. Therefore the only
real solutions of the inequality are in the negative axis for choosing the parameters
small enough, which consequently cannot be a solution of the whole system.

Back to the equation (5.39), which is equivalent to

0 = 4(a2 + acC2
χ ) − 4aCχ (1 − b).

We divide this equation by a, since a = 0 if and only if N (Cχ ) = 0 and this is only the
case for

Cχ =
−2(1 + 1

2CD(ã + 2âϱ))
CDc̃

< 0.

Using the representation of a, b and c by nominator and denominator functions, we
multiply equation with D(Cχ )/4 and obtain

0 = N (Cχ )(A +CC
2
χ ) −Cχ (D(Cχ ) − BN (Cχ )).

As above using the expression for N (Cχ ) and D(Cχ ) we get the polynomial equation

0 = p0 + p1Cχ + p2C
2
χ + p3C

3
χ + p4C

4
χ

with coe�cients

p0 B
(
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1
2
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(
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A
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1
2
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(
1 +

1
2
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B +CS +

1
2
CQd0 − 1

p2 B
(
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1
2
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(
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1
2
CQd1 +

1
2
CQc̃B

p3 B
1
2
CQc̃C +

1
2
CQd2

p4 B
1
2
CQd3.

Now if the polynomial on the right-hand side has a root in the positive real numbers,
we can choose this point as the constant Cχ .

Note that the coe�cients p0,p2,p3 and p4 are positive can be chosen arbitrarily
small by su�ciently decreasing CS,CQ, ‖v ‖m† and ϱ. In this case the last coe�cient
p1 becomes negative and tends to −1. Hence, the polynomial on the right-hand side
is monotonically decreasing in a neighborhood of 0 for positive real numbers so that
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it has a zero if CS , CQ , ‖v ‖m† and ϱ are chosen su�ciently small.
Now we consider the inequalities (5.37). By choosing CS , CQ , ‖v ‖m† and ϱ small

enough the conditions (5.37a), (5.37b) and (5.37d) follow and selecting α0 big enough
one can satisfy (5.37c). �

In the case of noisy data for a-priori stopping rules: the algorithm has the following
convergence rate.

Corollary 5.17. Let the assumptions of Theorem 5.15 hold true. Then the convergence
rate of the algorithm (5.2)

dist(mk,m
†) < ϱ φ

(
Ψ−1

(δ
τ

))
(5.40)

in the noise level δ follows, whereΨ(λ) =
√
λφ(λ).

Proof. From (5.12) we obtain the estimate

αk < Ψ
−1

(δ
τ

)
.

From this, (5.32) and the monotonicity of φ the statement follows. �

Remark 5.18. Under the above assumptions with source conditions of the same form in
our case (5.5) and in the Hilbert space case (2.27), our iteratively regularized algorithm
has the same convergence rates as the iteratively regularized Gauss-Newton method
in a Hilbert space setting, as discussed in Theorem 2.13.

5.5 Application to inverse obstacle scattering prob-
lems: the BERGN method

In Section 4.5 we proved that the forward operator F de�ned by the Problem 1.1 is
continuous and compact. Furthermore, in [25, Thm. 1.9] it is shown that this operator
is di�erentiable on general non-self-intersecting C2 curves, which includes the class
of shape manifoldsM introduced in Chapter 3. Besides this the injectivity of DF (m)

was proven in [25, Lem. 1.25].
Recall that by Lemma 4.5, the bending energy functional Eb is twice continuously

di�erentiable onM. Hence, we can apply the algorithm (5.2) to our setting using
E(·) B Eb(·,m0) for a given initial curvem0 ∈M. In this context we call the algorithm
iteratively bending energy regularized Gauss-Newton method (BERGN method).
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In this section we discuss the assumptions we made for the general framework to
conclude that the convergence statements of the last section applies to the BERGN
method. In fact, all assumptions arising by the generalization from Hilbert spaces to
Riemannian manifolds are veri�ed.

Concerning Assumption 5.2: As already mentioned in Section 2.3 it was proven
in [23] that there always exists a source condition. It is known that inverse obstacle
scattering problems are exponentially ill-posed and as pointed out in Section 2.5.
One observes heuristically that for these problems a source condition of logarithmic
type (5.7) is typically satis�ed. The weight operator in (5.5) is less important in this
context, since we assumed (see discussion below) that W is boundedly invertible.

The a-priori stopping rule (5.12) we used in the theory has a major drawback in
applications: one needs to know the index function from (5.5). One can interpret
this as the a-priori knowledge of the smoothness order ofm† (or more precisely of
grad Eb(m

†,m0)). Unfortunately, in application the smoothness of the obstacle to be
reconstructed is typically unknown. To prevent this disadvantage we may exchange
the stopping rule (5.12) by the discrepancy principle

ταk < δ ≤ ταk, 0 ≤ k < k . (5.41)

Here, no prior knowledge of the index function is needed anymore, which improves
the usability of this stopping rule. Assuming that a logarithmic source condition with
index function φ is satis�ed we obtain �niteness of

γφ B sup
0<λ≤‖L ‖2

√
λ

φ(λ)
< ∞ (5.42)

which implies an estimate δ ≤ τγφΨ(αk). Using this inequality, we can prove results
similar to the ones in the previous section. In analogy to Corollary 5.17 we obtain the
convergence rate

dist(mk,m
†) < ϱ φ

(
Ψ−1

(δ
τ

))
.

One key ingredient in the general framework is Assumption 5.4, that one can
bound the curvature tensor in a ball Bϱ(m†). From Theorem 3.7 we know that the
second fundamental form IIMm can be bounded by CII(θ ), which is by construction
bounded in Bϱ(m

†) in terms of ϱ and ‖m†‖H 1 . Then by applying the Gauss-equation
(A.24) one gets a local bound on the curvature tensor. Alternatively we can apply
Theorem 3.17, which directly gives a bound of Rm in Bϱ(m

†) in terms of ϱ and ‖m†‖H 1 .
We could not verify Assumption 5.5 dealing with the nonlinearity of F by a

decomposition of DF . Even in the case of star-shaped obstacles and F operating on
Hilbert spaces (compare Section 2.5) the original nonlinearity assumption could not be
veri�ed yet. This is discussed in [24, 25] for inverse obstacle scattering problems. In
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the case of nonlinear ill-posed operators on Hilbert spaces there are many interesting
forward mappings arising from applications for which there is no veri�cation of
such an assumption available. But there are also forward operator, which satis�es
a nonlinearity condition. A list of examples can be found in [27, Ex. 2.8]. At least
empirically one can observe the theoretical convergence rates under the nonlinearity
assumption in simulations, see [24]. Even it could not yet be veri�ed, this kind of
assumption is widely used in the literature and accepted by the community.

The local bound on Hess Eb(m,m0) on Bϱ(m
†) in Assumption 5.8 is satis�ed by

Lemma 4.7. Moreover, if one chooses ϱ small enough and m0 = (θ0, L0,p0) close
enough tom† such that

2 ‖θ ′ − θ ′0‖L2 CII(θ ) < 1 (5.43)

for all m = (θ , L,p) ∈ Bϱ(m†), then the operator Hess Eb(m,m0) is positive de�nite
on Bϱ(m

†) by the second part of Lemma 4.7. If this holds, Assumption 5.8 is satis�ed.
Assumption 5.9 to controlling the nonlinearity of the regularization term follows

from Theorem 4.9. Here the function CHess (m) is bounded in Bϱ(m
†) in terms of ϱ

and ‖m†‖H 1 following from its de�nition in the theorem.
Summarizing this discussion, all assumptions are veri�ed, which arise new in

our framework on shape manifolds with bending-energy-based regularization in
comparison to standard concepts in Hilbert spaces.
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6 Implementation
and numerical results

Today’s scientists have substituted mathematics for
experiments, and they wander o� through equation
after equation, and eventually build a structure
which has no relation to reality.

— Nikola Tesla

In the �rst part of this chapter we establish a discrete version of our setting
introduced in Chapter 3 and explain how one can �nd minimizers to the Tikhonov
functional proposed in Chapter 4. By small changes one obtains directly the discrete
version of the BERGN method introduced in Chapter 5.

We demonstrate on simulations that the geometrical approach for solving inverse
obstacle scattering problems using the bending energy functional works for several
examples of shapes. The two major bene�ts of our concept in comparison with the
star-shape approach (see Section 2.5), i.e. the independence of the parametrization and
the extension to nonstar-shape obstacles, are emphasized by examples. Furthermore
we highlight the convergence behavior of our algorithm with on the one hand exact
data and on the other hand di�erent noise levels.

6.1 Discrete setting

The main part of this section is published in the article [12].



100 6. Implementation and numerical results

In order to treat bending energy computationally, we represent closed curves
by closed polygons. To this end, consider an arbitrary (but �xed) partition (0 =
τ0 < τ1 < · · · < τn = 1) of the unit interval and let the angle variable be given by a
piecewise constant function represented by a vector θ = (θ1, . . . , θn), i.e. θ (t) = θj for
t ∈ (θj−1, θj]. In perfect analogy to (3.2), we then de�ne a polygon of length L by

γ (t) B p + L

∫ t

0

(
cos(θ (τ )), sin(θ (τ ))

)
dτ . (6.1)

Analogously to the smooth case, in order to ful�ll the closing conditions (3.1), θ needs
to satisfy

Φ(θ ) = 0, where Φ(θ ) =

∫ 1

0

(
cos(θ (t)), sin(θ (t))

)
dt . (6.2)

De�ne the turning angles by [θ ]i B (θi+1 − θi), where indices are taken modulo n and
[θ ]i is shifted such that [θ ]i ∈ (−π , π ] for all i . The number (

∑
i[θ ]i) /2π is known as

the discrete turning number of γ .
LetΘn B {θ ∈ Rn |Φ(θ ) = 0} and de�ne the space of discrete curves by

Mn B Θn × [L1, L2] × B ⊂ Xn B R
n × R × R2,

for a compact, convex set of base points B ⊂ R2 and minimal and maximal acceptable
curve lengths 0 < L1 ≤ L2 < ∞. On this space, the scale-invariant version of discrete
bending energy for a curvem ∈Mn is readily de�ned as

Eb,n(m) B
n∑
i=1

(
[θ ]i
hi

)2
hi =

n∑
i=1

([θ ]i)2

hi
, (6.3)

see, e.g. [21]. Here the dual edge lengths are given by hi B (τi+1 − τi−1)/2 for
i ∈ {1, . . . ,n}, where we set τn+1 = 1 + τ1. This expression provides the natural
analogue1 of the smooth version (4.1). It goes back to the work of Hencky in his
1921 PhD thesis [21] and is in the spirit of discontinuous Galerkin (DG) methods (see
[2]). A completely analogous discrete version of this energy can be de�ned for open
polygons. In this case, for clamped boundary conditions and under the constraint
of �xed total curve length, the set of minimizers of this discrete energy converges
in Hausdor� distance to the corresponding set of smooth minimizers under mesh
re�nement, see [55]. More speci�cally, the angle variables converge in L∞ and inW 1,p

for p ∈ [2,∞) under a suitable smoothing operator for the angle variables. Finally, a

1Notice that discrete bending energy corresponds to its smooth counterpart in the sense that turning
angles at vertices correspond to curvatures integrated over dual edges, i.e., [θ ]i �

∫ (τi+1+τi )/2
(τi+τi−1)/2

κ(s) ds .
This perspective naturally leads to formulation (6.3).
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discrete analogue Eb,n(m,m∗) of the smooth pre-curved energy Eb(m,m∗) is readily
obtained by replacing [θ ] by ([θ ] − [θ ]∗) in (6.3).

For convenience, we brie�y sketch here the implementation of an algorithm
arising from Tikhonov regularization (see Section 4.5), which will turn out to be
applicable to the BERGN method (see Section 5.5). The regularized functional that
we seek to minimize on the spaceMn ⊂ Xn is of the form

J
α : Mn → R, m 7→ 1

2

Fn(m) −yδ2
Yn
+ α En(m). (6.4)

Here, Fn :Mn → Yn is some discretization for polygonal closed curves of the forward
operator F , the termyδ ∈ Yn represents the measured data in some �nite dimensional
Euclidean space Yn, the scalar α ≥ 0 is the regularization parameter, and En = Eb,n
or En = Eb,n + EM,n with a discrete approximation EM,n of the Möbius energy EM.

Remark 6.1. We skip the requisite details on the de�nition of EM,n since our numerical
experiments show that in practice the tracking term 1

2

Fn(m)−yδ2
Yn

(see (6.4) below)
is su�cient to prevent iterates from developing self-intersections. Notwithstanding,
for details on discrete Möbius energy, see [34, 35], and for Γ -convergence to the
smooth case see [54].

The discrete nonlinear Tikhonov regularization onMn may then be written as
the following constrained minimization problem:

Minimize J α (m) subject to Φ(m) = 0 and (L,p) ∈ [L1, L2] × B. (6.5)

We will ignore the inequality constraints (L,p) ∈ [L1, L2] × B for simplicity, although
it would not be di�cult to include them. In particular, these constraints never became
active in our numerical experiments. We only require these constraints for the
theoretical analysis in Section 4.4.

Since Fn does not have a natural extension outside the discrete shape space
Mn = {m |Φ(m) = 0}, standard methods of constrained nonlinear programming
are not applicable. When using iterative methods for minimizing J α , we require
an intrinsic stepping method on the constraint manifoldMn in order to supply the
forward operator Fn with meaningful input. Prominent examples of such methods
are intrinsic Newton-type algorithms on Riemannian manifolds, see, e.g. [51]. In
such methods, one determines the update direction u ∈ Xn by solving a saddle point
system of the form (

H (m) DΦ>(m)

DΦ(m) 0

) (
u

µ

)
=

(
−DJ α (m)

0

)
, (6.6)

whereH is (a surrogate for) the Hessian of the objective functional, the manifoldMn is
given by the constraint equations (6.2), which we encode by a functionΦ : Xn → R

2,
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and µ ∈ R2 denotes a Lagrange multiplier. The resulting linear systems have roughly
the size n × n and can be solved using a direct solver. In our implementation, we
usually use n = 150.

A �rst example is the full intrinsic Hessian, which can be obtained from the
Lagrange function L(m, λ) B J α (m) + λ>Φ(m) of (6.5) as

H (m) = D2
mL(m, λm) = D2

J
α (m) + λ>mD

2Φ(m). (6.7)

The requisite Lagrange multiplier λ>m ∈ R2 is obtained by multiplying the equation
DmL(m, λ) = 0 by DΦ†(m) from the right, i.e.,

λ>m = −DJ
α (m)DΦ†(m).

Here DΦ†(m) denotes the Moore-Penrose inverse with respect to a �nite di�erence
approximation of the H 1-inner product.

Notice that assembling the system with the full intrinsic Hessian contains a
contribution of the form 〈Fn(m) −yδ ,D2Fn(m)(·, ·)〉Yn , which is dense and costly to
compute. We therefore use a Gauß-Newton inspired surrogate, which is given in
bilinear form as2

H (m) = 〈DFn(m) · ,DFn(m) · 〉Yn + αHess En(m), (6.8)

where we identify matrices with bilinear forms and where the intrinsic energy Hessian
has the form

Hess En(m) = D2
En(m) − DEn(m)DΦ

†(m)D2Φ(m). (6.9)

Notice that the second term on the right-hand side of this equation arises from the
second term on the right-hand side of (6.7). In the language of di�erential geometry
(see Section A.5), the term DΦ†(m)D2Φ(m) encodes the second fundamental form of
the discrete constraint manifold. In the continuous case we computed this explicitly
and proved local bounds, see Section 3.2. The quantities on the right-hand side of
(6.9) are easy to assemble for En = Eb,n due to the quadratic nature of Eb,n.

Another attractive alternative is to use

H (m) = 〈DFn(m) · ,DFn(m) · 〉Yn + α 〈·, ·〉X .

This way, H (m) is always positive de�nite on the null space of DΦ(m) and the saddle-
point matrix from (6.6) is guaranteed to be continuously invertible. Thus, in this case,
the method boils down to a gradient descent in the manifoldMn with respect to the

2Notice that in this formulation we have also dropped the additional term of the form 〈Fn(m) −
yδ ,DFn(m)DΦ†(m)D2Φ(m)〉Yn since it does not lead to improved convergence rates.
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Riemannian metric induced by H .
Once an update direction u has been computed in the above fashion, the next

iterate is found by �rst setting x0 =m+t u for some small t > 0. Restoring feasibility
(i.e., ensuring that the next iterate resides on the constraint manifold) is then achieved
by iterating

xk+1 = xk − DΦ
†(xk)Φ(xk), (6.10)

until Φ(xk) is su�ciently small.3 The step size t can be determined by a standard
backtracking line search, while the matrix-vector product ũ = DΦ†(x) ṽ is computed
by solving the saddle point problem(

GXn DΦ>(x)

DΦ(x) 0

) (
ũ

µ̃

)
=

(
0
ṽ

)
.

Here GXn is the Gram matrix of the discrete H 1-inner product on Xn, the upper left
n×n block of which is a �nite-di�erence Laplacian. Analogously, DEb,n(m)DΦ

†(m) =

(DΦ†(m))>DEb,n(m) can be computed this way by utilizing the dual saddle point
system. Finally, one updatesm to the last iterate xk .

In this discrete setting the BERGN algorithm (5.2) can be computed analogously
as above. The update direction is computed using (6.8) with α = αk in each step
k . The evaluation of the Riemannian exponential map (5.2c) is simulated by the
projection on the constraint manifold, which can be computed as above by (6.10).

6.2 Numerical simulations

In this section we demonstrate the bene�ts of our geometrical approach in numerical
experiments for inverse obstacle scattering problems introduced in Section 4.5 and
5.5. The forward scattering problems were solved by a boundary integral equation
method using a Nyström method with n points as described in [9, Sec. 3.6]. To
this end we interpolated the polygonal curve approximations described in Section
6.1 trigonometrically. Both the evaluation of discrete forward operator Fn and the
evaluation of its Jacobian DFn as described e.g. in [25] require O(n3) �ops.

We always use 8 equidistant incident plane waves and n = 150 points for the
reconstructed curves; the far �eld pattern is measured at 16 equidistant measurement
directions. The wavelength is chosen of the same order of magnitude as the diameter

3Notice that the Newton-type method (6.10) for underdetermined systems would correspond to a
nearest point projection if the constraint were linear.
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(a)
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Figure 6.1: Reconstruction of a smooth nonstar-shaped domain (a) by Tikhonov regularization (dark
green line) and the BERGN method (blue line) with exact data after 100 iterations. The light green
plot (nearly identical to the blue one) indicates the reconstruction of Tikhonov regularization after
100 times decreasing α in 537 iterations. We use 8 equidistant incident waves, where the half of a
wavelength is illustrated by the black scale bar. Red dotted lines indicate the exact solution, blue and
green solid lines the reconstructions and yellow dashed lines initial guesses. In Panel (b) the error
‖Fn(mk ) −y

†‖Yn in the observation space (y-axis) is illustrated in the iterations k (x-axis). In Panel (c)
the error in the solution space: on the y-axis the Hausdor� error distH(mk ,m

†) over the iterations k
(x-axis).

of the obstacle highlighted in every plot by a black scale bar, which highlights always
the half of the wavelength.

For the following experiments we use simulated data, which is produced by
evaluation of the forward operator described above. To make our numerical examples
reliable we use a di�erent discretization for the integral equation and therefore
prevent an inverse crime.

The computation with Tikhonov regularization we do as follows. We �rst minim-
ize the Tikhonov functional for a large α by an intrinsic Gauss-Newton-type method
as described in Section 6.1 with update direction u de�ned by (6.6), (6.8), (6.9). The
Gauss-Newton iteration is stopped when ‖u‖ or the norm of the gradient of the
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(a) (b)

Figure 6.2: Reconstruction of a smooth nonstar-shaped domain by Tikhonov regularization (a) and
the BERGN method (b) with 1% Gaussian white noise. We use 8 equidistant incident waves, where the
half of a wavelength is illustrated by the black scale bar. Red dotted lines indicate the exact solution
and yellow dashed lines initial guesses. The green line indicates in (a) the local minimum of J α0 (m)
and the blue line the minimum of J α10 (m). Note that independent of how long we continue this
iteration the lower concave part of the obstacle is not reconstructible. In (b) analogously the green
solid line illustratesm1 and the blue line the reconstructionm10.

Tikhonov functional ‖DJ α (m)‖ is smaller than 10−5. Then we decrease α by a factor
of 2/3 and minimize the Tikhonov functional for this smaller α using the previous
minimizer as an initial guess.

Moreover, the BERGN method is computed as described in the last section by using
αk = α0 · (2/3)k (if not stated otherwise). In Figure 6.1 we demonstrate the behavior
of the algorithm with exact data. We can achieve a reasonable good reconstruction of
a nonstar-shape domain by both algorithms, but the BERGN method is much faster
than iteratively minimizing the Tikhonov functional. Note that (b) illustrates the
good reconstruction in the observation space and from (c) one sees that the error
in the solution space decreases over the iterations. Here the distance between two
discrete curves is measured by the Hausdor� distance of point clouds.

In the rest of our examples we add independent, identically distributed, centered
Gaussian random variables to the simulated far �eld data at each sampling point
such that the relative noise level in the l2-norm is 1%. Only in Figure 6.7 we use the
higher noise levels 10% and 20%.

For the Tikhonov regularization the regularization parameter α was determined
by the discrepancy principle. More precisely we iterate as described above as long
as the condition ‖Fn(mα ) −yδ ‖ ≥ τδ was satis�ed. In most of the experiments τ is
chosen to be 1.1.

In Section 4.5 it is already mentioned that purely minimizing the Tikhonov
functional has the drawback that one can get stuck in a local minima. This is
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(a) (b)

Figure 6.3: Reconstruction of a smooth non-star-shaped domain by BERGN method with 1% Gaussian
white noise. Red dotted lines indicate the exact solution, blue solid lines the reconstructions and
yellow dashed lines initial guesses. The half of the used wavelength is illustrated by the black scale
bar. Panel (b) shows a magni�cation of reconstructions for di�erent numbers of points (n = 60, 80,
100, 150, and 200) illustrating the asymptotic independence of the results on the choice of n.

illustrated in Figure 6.2. Using the wavelength and initial guess in Panel (a) by
�nding the minimum of J α for a �xed α one cannot compute the lower concave part.
On the other hand in Panel (b) of the same �gure the reconstruction by the BERGN
method under the same parameters works out.

As a last part of the comparison between Tikhonov regularization and the BERGN
method we point out the large number of iterations one needs for iteratively min-
imizing the Tikhonov functional compared to BERGN. In Table 6.1 the number of
iterations needed by these algorithms is shown stopped by the discrepancy principle
above. The BERGN method is clearly faster than the other one where the quality of
the results are of the same order.

In Figure 6.3 we show a reconstruction of another non-star-shaped domain.
Moreover, we demonstrate in (b) that the reconstructions are almost independent of
the choice of the number n of points on the curves as long as n is large enough. Also
the number of Gauß-Newton steps and the regularization parameter α determined
by the discrepancy principle do not depend on n. Note that concave parts of the
boundary where multiple re�ections occur in a geometrical optics approximation are
more di�cult to reconstruct than convex parts.

In view of the fact that we use only one wave length which is almost of the size
of the obstacle and a noise level of 1%, these reconstructions for this exponentially
ill-posed problem are already remarkably good. The reconstructions could be further
improved by using shorter wave lengths as illustrated in Figure 6.9 (b).

Figure 2.2 already illustrated the obvious limitation of the commonly used radial
function parameterizations to star-shaped domains. In Figure 2.1 we demonstrated
a further disadvantage of such parameterizations, which is the dependence on the
choice of the center point. In comparison to this the BERGN method is independent
of the parameterization of the curves. Indeed this is illustrated in the Figures 6.4
and 6.5. In both �gures we computed for two di�erent obstacles the reconstruction
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from respectively the same initial curves, but we used di�erent parameterizations.
Through all examples we gain the same quality of reconstructions.

In the theoretical investigation of the algorithm in Chapter 5 all statements
are only locally and the assumption of starting close enough to the exact shape is
elementary for the convergence analysis. Nevertheless, in Figure 6.6 it is shown that
to some extent one can get the same quality of reconstruction for di�erent initial
guesses. Of course this will not hold true for arbitrary initial guesses.

Up to now all computations are done either without noise or with a relative noise
level of 1%. It is reasonable to show the abilities of the BERGN method under idealized
conditions. To be slightly more realistic in Figure 6.7 we demonstrate our algorithm
performing with 10% respectively 20% relative noise. For illustration of the e�ect of
the noise to the reconstruction we computed for each noise level and di�erent domain
the algorithm ten times and plot in all cases the best and the worst reconstruction.

(a) (b) (c)

Figure 6.4: Comparison of reconstructions of a star-shaped domain by BERGN method with 1%
Gaussian white noise using the same initial curve, but with di�erent parametrizations. Parameters,
line styles and colors are chosen as in Figure 6.3. The colored cross indicates the basepoint of the
corresponding parametrization in the sense of (3.2).

(a) (b) (c)

Figure 6.5: Comparison of reconstructions of a nonstar-shaped domain by BERGN method with 1%
Gaussian white noise using the same initial curve, but with di�erent parametrizations. Parameters,
line styles and colors are chosen as in Figure 6.4.
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Tikhonov regularization BERGN method
iteration αk decreased iteration

letter C 479 22 28
letter S 271 25 25
letter M 324 18 20

Table 6.1: Comparison of number of iterations needed for reconstructing by iteratively minimizing
the Tikhonov functional and BERGN method with 1% Gaussian white noise for di�erent nonstar-shape
obstacles. The reconstructed obstacles are plotted in the Figures 6.1, 6.3 and 6.6. In the �rst and the
last column the number of iterations steps needed to reach the stopping criteria is written down. For
Tikhonov regularization every step is counted independent if ones decreases α or not. The second
row shows how often α is decreased while reconstructing.

One can see a signi�cant di�erence to the quality of the reconstructions from less
perturbed data, but by using such high noise levels the computations are exceptionally
good.

In the Figures 6.8 and 6.9 further reconstructions of more complicated domains
are shown. Even for these example the BERGN method is able to calculate very
precise and detailed reconstructions.

We summarize that the proposed approach for solving inverse obstacle problems
on a shape manifold with bending energy penalization provides considerably better
reconstructions than radial function parameterizations even for star-shaped obstacles
and allows the reconstruction of more complicated curves.

(a) (b) (c)

Figure 6.6: Comparison of reconstructions of a nonstar-shaped domain by BERGN method with 1%
Gaussian white noise using di�erent initial guesses. Parameters, line styles and colors are chosen as
in Figure 6.3.
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(a) (b)

(c) (d)

(e) (f)

Figure 6.7: Comparison of reconstructions of di�erent nonstar-shaped domains by BERGN method
with higher noise levels. Parameters, line styles and colors are chosen as in Figure 6.3. In the Panels
(a), (c) and (e) we used 10% and in (b), (d) and (f) 20% Gaussian white noise. Each reconstruction is
simulated ten times and the blue line indicates the best reconstruction of them and the green the
worst one out of the ten times.
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(a) (b)

Figure 6.8: Reconstructions of nonstar-shaped domains by BERGN method with 1% Gaussian white
noise. Parameters, line styles and colors are chosen as in Figure 6.3. For the reconstruction in Panel
(b) we used αk = 0.01 · (5/6)k .

(a) (b)

Figure 6.9: Reconstructions of a nonstar-shaped domain by BERGN method with 1% Gaussian white
noise but di�erent initial guesses and wavelengths. Parameters, line styles and colors are chosen as in
Figure 6.3. The reconstruction in Panel (b) used αk = 0.0001 · (.97)k and stopped with τ = 9.



A Tools from
infinite dimensional
Riemannian geometry

There is no royal road to geometry.

— Euclid of Alexandria

In the following appendix we give a brief introduction to the essential basics and
tools from Riemannian geometry used in this thesis. For more details we refer to the
monographs [10, 36].

A.1 Riemannian manifolds

Let ({Ui}i∈I, {φi}i∈I) be aCp-atlas onM over some index setI, where {Ui}i∈I forms a
cover ofM andφi mapsUi bijectively onto an open subsetφi(Ui) of some Banach space
X for all i ∈ I. Further φi(Ui ∩Uj) is open inX and φj ◦φ−1

i : φi(Ui ∩Uj) → φj(Ui ∩Uj)

is a Cp-isomorphism for any i , j ∈ I. Each pair (Ui,φi) is called a chart.
A setM with a Cp-atlas ({Ui}i∈I, {φi}i∈I) is called a Cp-manifold. Moreover the

manifoldM is said to be modeled on X. This structure describes the setM locally
since a chart Ui inherits the properties of the model space X.

The notion of di�erentiability inM carries over from �nite dimensional geometry.
A path γ : (−ϵ, ϵ) → M with γ (0) = x is called di�erentiable if it is di�erentiable
in the local structure, i.e. if φ ◦ γ : (−ϵ, ϵ) → φ(U ) is di�erentiable where (U ,φ) is a
chart with x ∈ U . The element (φ ◦ γ )′(0) in X is called a tangent vector and the
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space of all such tangent vectors at x forms the tangent space TxM. The tangent
bundle TM is the set of pairs (x,v) with x ∈M and v ∈ TxM.

A function f : M → N between manifolds is called di�erentiable if the composi-
tion with the corresponding charts is di�erentiable. Therefore one can introduce the
derivative of f by the linear map Df (x) : TxM → Tf (x)N between the corresponding
tangent spaces.

One standard way for proving that a set has a manifold structure is characterizing
it by a submersion. A function f : M → N is called a submersion at x ∈ M if
the derivative Df (x) is surjective and its kernel splits, which means that one can
decompose TxM into the splitting ker(Df (x)) ×W for some subspaceW or in other
words Df (x) restricted toW is an isomorphism. In this case for all y ∈ f (M) the set
U B f −1(y) is a submanifold inM and the tangent space equals the kernel of Df (x),
i.e. TxU = ker(Df (x)) (see [36, II.2] and [59, Thm. 73.C]).

In the in�nite dimensional setting a manifold is called Riemannian if it is modeled
over a Hilbert space X and the topology on the tangent space TxM is induced by
a nonsingular symmetric bilinear positive de�nite inner product дx (·, ·) or 〈·, ·〉x for
all x ∈ M. Such a family of inner products is called the Riemannian metric. The
corresponding norms are denoted by ‖·‖x .

The major advantage of having an inner product is the ability of measure distances
and angles. The length of a curve γ : [0, 1] →M on a Riemannian manifold is given
by

L(γ ) :=
∫ 1

0

√
〈γ ′(t),γ ′(t)〉γ (t) dt =

∫ 1

0
‖γ ′(t)‖γ (t) dt . (A.1)

This endowsM with a distance function distM : M ×M → R via

distM(x,y) = inf
{
L(γ )

�� γ is a path with γ (0) = x and γ (1) = y
}
. (A.2)

It is a well-known fact thatM with this distance function becomes a metric space.

For a mapping f as above if N = Y is itself a Hilbert space, one can give a
de�nition of Fréchet di�erentiability using curves in M as follows. A function
f : M → Y is called Fréchet di�erentiable at x if there exists a linear operator
Df (x) : TxM → Y such that

lim
t→0

sup
‖v ‖x=1

‖ f (γv(t)) − f (γv(0)) − Df (x) (γ ′v(0))‖Y
t

= 0 (A.3)

where the paths γv : (−ϵ, ϵ) →M satisfy γv(0) = x and γ ′v(0) = v .
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A.2 Vector �elds and covariant derivatives

One key bene�t of Riemannian geometry is that one can de�ne a gradient. For a
real valued di�erentiable function f onM the derivative Df (x) : TxM → R is a
bounded linear map on a Hilbert space. Consequently by the Riesz theorem there is
an element grad f (x) ∈ TxM such that Df (x)v = 〈grad f (x),v〉x for all v ∈ TxM.
The gradient �eld grad f : M → TM, x 7→ grad f (x) is one example for a vector
�eld onM. In general a vector �eld is a map of the form V : M → TM and for
convenience writeVx ∈ TxM forV (x). Let Γ (M;TM) denote the vector space of all
smooth vector �elds onM into the tangent bundle TM.

Furthermore, one can de�ne a derivative of a vector �eld into a direction of a
vector �eld. A mapping ∇ : Γ (M;TM)×Γ (M;TM) → Γ (M;TM), (W ,V ) 7→ ∇WV

is called an a�ne connection if

1. ∇f W+дUV = f ∇WV + д ∇UV

2. ∇W (aV + b U ) = a ∇WV + b ∇WU

3. (Leibniz’ law) ∇W (f V ) = (W f )V + f ∇WV ,

where V ,W ,U ∈ Γ (M;TM), f ,д : M → R and a,b ∈ R. The expressionW f is a
short notation for the real valued function (W f )(x) :=Wx (f ) = 〈grad f (x),Wx〉 on
M. The vector �eld ∇WV is called the covariant derivative ofV with respect toW for
the a�ne connection ∇. For a real valued function f and vector �eldsW , V de�ne
the vector �eld [W ,V ] by evaluation [W ,V ] f :=W (V f ) −V (W f ). It can be shown
that this de�nes a derivation of real valued functions, i.e. it satis�es the Leibniz’ Law
[W ,V ] (f д) = f ([W ,V ]д) + ([W ,V ] f )д for f and д real valued functions onM
(see [36, Prop. V.1.3]).

TheoremA.1 ([36, Thm. VIII.4.1]). On a Riemannian manifoldM there exists a unique
a�ne connection ∇ that satis�es

1. ∇WV − ∇VW = [W ,V ] (symmetry)

2. U 〈W ,V 〉 = 〈∇UW ,V 〉 + 〈W ,∇UV 〉 (compatibility with the Riemannian metric),

where V ,W ,U ∈ Γ (M;TM). This a�ne connection, called Levi-Civita connection or
Riemannian connection, is characterized by the Koszul formula

2〈∇UW ,V 〉 = U 〈W ,V 〉 +W 〈V ,U 〉 −V 〈U ,W 〉
− 〈U , [W ,V ]〉 + 〈W , [V ,U ]〉 + 〈V , [U ,W ]〉.
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For a real valued smooth function f onM the Riemannian Hessian of f at x in
M as the linear mapping Hess f (x) : TxM → TxM by

Hess f (x) (v) := ∇vgrad f (x) (A.4)

for all v ∈ TxM, where ∇ is the Riemannian connection on M. For the sake of
simplicity of notation in this thesis this operator is identi�ed with the corresponding
bilinear form Hess f (x) : TxM × TxM → R given by

Hess f (x) (v,w) = 〈∇vgrad f (x),w〉x

for all x ∈M and v , w ∈ TxM.

A.3 Parallelism and the exponential map

Let γ : [0, 1] →M be a C2 curve. We call a map β : [0, 1] → TM a vector �eld along
γ if β(t) ∈ Tγ (t)M for all t and V ∈ Γ (M;TM) can be restricted to a vector �eld
along γ by β(t) B V (γ (t)). A vector �eld V along γ is called γ -parallel if ∇γ ′(t)V = 0
for all t , where γ ′(t) ∈ Tγ (t)M. The de�nition of parallel transport along a path γ is
given as follows. Let v ∈ Tγ (0)M be given. There is a unique γ -parallel vector �eld
t 7→ ζ (t,v) along γ with ζ (0,v) = v . The parallel transport map is de�ned by

P
γ (t)
γ (0) : Tγ (0)M → Tγ (t)M, P

γ (t)
γ (0)(v) = ζ (t,v). (A.5)

The map v 7→ Pγ (t)
γ (0)(v) is a linear isometric isomorphism between the tangent spaces

(see [36, Thm. VIII.3.4]).
This vector transport is even connected to the covariant derivative. For U ,V ∈

Γ (M, TM) and a path γ with γ (0) = x and γ ′(0) = Ux and P maps along γ then

∇UV (x) = lim
t→0

Px
γ (t)

Vγ (t) −Vx

t
=

d
dt
P
x
γ (t)Vγ (t)

���
t=0

(A.6)

(see [10, Ch. 2, Ex.2]). In this manner, given the parallel transport of a manifold, the
covariant derivative is reobtainable from it.

A curve γ onM is called a geodesic if it solves the di�erential equation

∇γ ′γ
′ = 0. (A.7)

Therefore these objects have zero acceleration and in this sense they are the natural
generalization of straight lines to nonlinear spaces.
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Recall the construction of the exponential map which turns out to be one of the
key tools in de�ning and analyzing algorithms on manifolds. For every v ∈ TxM
there exists a unique geodesic γ , such that γ (0) = x and γ ′(0) = v . The Riemannian
exponential map is de�ned by

expx : TxM →M, v 7→ expx (v) := γ (1) (A.8)

(see [36, Cor. VIII.5.2]). It is a well-known fact that locally the unique geodesic given
in the construction of the exponential map is also the geodesic which minimizes the
Riemannian distance. That means if for x , y ∈M there is exactly one v ∈ TxM such
that expx (v) = y, then the distance between x and y is given by the norm of v :

dist(x,y) = dist(x, expx (v)) = L(γ ) =

∫ 1

0
‖γ ′(t)‖γ (t) dt = ‖v ‖x , (A.9)

where the last identity holds since geodesics have a vanishing second derivative and
therefore a constant �rst derivative, which is here given by the initial direction v .

A.4 Curvature

The notion of curvature arises from investigating how the covariant derivative is
in�uenced by the geometry of the manifold. Let V , W , Z ∈ Γ (M;TM) be vector
�elds. The operator

R(V ,W ) : Γ (M;TM) → Γ (M;TM), R(V ,W )Z = ∇V∇WZ − ∇W∇VZ − ∇[V ,W ]Z

(A.10)
is called the curvature tensor and measures how curved the manifold is. If v , w ,
z ∈ TxM then this simpli�es to

Rx (v,w) z = R(V (x),W (x))Z (x) = (R(V ,W )Z ) (x)

for any vector �elds V ,W , Z which satisfy V (x) = v ,W (x) = w and Z (x) = z. The
functional

Rx (v,w, z,u) = 〈Rx (v,w) z,u〉x , v,w, z,u ∈ TxM (A.11)

is called the Riemannian 4-tensor. This tensor satis�es the four identities

1. Rx (v,w, z,u) = −Rx (w,v, z,u)

2. Rx (v,w, z,u) = −Rx (v,w,u, z)
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3. Rx (v,w, z,u) + Rx (w, z,v,u) + Rx (z,v,w,u) = 0 (Bianchi identity)

4. Rx (v,w, z,u) = Rx (z,u,v,w).

Letγ : [0, 1] →M be a curve andW be a vector �eld alongγ , i.e.W : [0, 1] → TM,
W (t) =W (γ (t)). ThenW is called a Jacobi �eld if it satis�es the Jacobi di�erential
equation

∇2
γ ′W = R(γ

′,W )γ ′. (A.12)

If γ is a geodesic, then for any v , w ∈ Tγ (0)M there exists a unique Jacobi �eld
W =Wv,w such thatW (0) = v and ∇γ ′W (0) = w (see [36, Thm. IX.2.1]).

Let v ∈ TxM be given and consider the construction above using the geodesic
γ (t) = expx (tv). Then γ (0) = x and γ ′(0) = v by de�nition. If w ∈ TxM is an
additional tangent, denoteWw as the Jacobi �eld withWw (0) = 0 and ∇γ ′Ww (0) = w .
In the special case w = v it follows immediately that

Wv(t) = tγ ′(t) = t P
γ (t)
γ (0)v, (A.13)

since γ ′(t) transports v parallel along γ . Therefore the Jacobi �eld corresponds to the
parallel transport in at least one direction.

For a given v ∈ TxM every element w ∈ TxM can be decomposed orthogonally
by w = cv + w̃ with 〈w̃,v〉x = 0. From this one obtains the decomposition

Ww (t) = ctγ
′(t) +Ww̃ (t), (A.14)

where 〈Ww̃ (t),γ
′(t)〉γ (t) = 0 for all t .

By keeping the notation above the Jacobi �eld is equivalent to the derivative of
the exponential map

Dexpx (tv) (w) =
1
t
Ww (t) (A.15)

for t > 0 (see [36, Thm. IX.3.1]). For y = expx (v) the operator Dexpx (v) maps
from TxM to TyM. Thus a notion of an adjoint operator is applicable and its
characterization is as follows. Let z ∈ TyM, w ∈ TxM and v∗ = −γ ′(1) = −Pyxv ,
where Pyx maps parallel along γ . Then the equation

〈Dexpx (v) (w), z〉y = 〈w,Dexpy(v
∗) (z)〉x (A.16)

holds true (see [36, Lem. IX.3.5]).
A Taylor expansion of the Jacobi �eld can be given as follows. The proof can be

found in [36, Prop. IX.5.3]. For γ (t) = expx (tv) and w ∈ TxM denote againWw as
the corresponding Jacobi lift. Then

Ww (t) = P
γ (t)
x

(
wt + Rx (v,w)v

t3

3!

)
+ O(t4) t → 0. (A.17)
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The Jacobi �eld and the parallel transport can map between tangent spaces,
but they do it in di�erent ways. The di�erence between these two di�erent vector
transport mappings can be controlled by the curvature tensor.

Lemma A.2. For all v ,w ∈ TxM and γ (t) = expx (tv) the inequality Dexpx (v) (w) − P
expx (v)
x w


expx (v)

≤
1
2
‖Rx (v,w)v ‖x (A.18)

holds true.

Proof. By using Dexpx (v) (w) is equal to the Jacobi �eld Ww on the curve γ and
applying the de�ning di�erential equation (A.12) it isWw (1) −Ww (0) − P

γ (1)
γ (0)w


γ (1) ≤

∫ 1

0

Pγ (1)
γ (t)
∇γ ′Ww (t) − P

γ (1)
γ (0)∇γ ′Ww (0)


γ (1) dt

≤

∫ 1

0

∫ t

0

Pγ (1)
γ (s)
∇2
γ ′Ww (s)


γ (1) ds dt

≤
1
2
‖Rx (v,w)v ‖x

which proves the statement. �

A.5 Covariant derivatives on submanifolds

Let X be Hilbert space and ι : M → X be a submanifold. For x ∈ M let Px : X →
TxM be the orthogonal projection. Then the Levi-Civita connection ∇ onM is given
by

∇WV (x) = Px
(
DV (x) (W (x))

)
(A.19)

for V ,W ∈ Γ (X;TX), where TX = X × X. Denote the normal bundle NM ofM
component wise via NxM = TxM

⊥.
The second fundamental form II is a symmetric bilinear map II : TM×TM → NM

given by
II(V ,W ) (x) = II(V (x),W (x)) = (I − Px )

(
DV (x) (W (x))

)
. (A.20)

For v,w ∈ TxM such that V (x) = x andW (x) one can write the fundamental form
tensorial by

IIx (v,w) = II(V ,W ) (x).

The Weingarten equation is the combination of (A.19) and (A.20) given by

∇WV (x) = DV (x) (W (x)) + II(V ,W ) (x). (A.21)
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Closely related to this is the so-called Weingarten map S, which is a bilinear map
S : NM × TM → TM with

SN (V ) (x) = SN (x)(V (x)) = Px
(
DN (x) (V (x))

)
(A.22)

with N ∈ Γ (M;NM) and V ∈ Γ (M;TM) or respectively for vectors n ∈ NxM

and v ∈ TxM such that N (x) = n and V (x) = x one writes it tensorial by Sn(v) =
SN (V )(x) (see [36, Thm. XIV.1.1]). These two maps are related through the equation

〈Sn(v),w〉X = 〈n, IIx (v,w)〉X (A.23)

for all n ∈ NxM and v,w ∈ TxM.
The operator II measures the curvature of the manifold from an outside or ex-

trinsic point of view and there is a well-known connection to the interior or intrinsic
perspective: The so-called Gauss-equation connects II with the curvature tensor R by

〈Rx (v,w) z,u〉x = 〈IIx (v,u), IIx (w, z)〉x − 〈IIx (v, z), IIx (w,u)〉x (A.24)

for all u,v,w, z ∈ TxM (see [36, Thm. XIV.5.1]).
Let f : X → Y be a smooth function with values in another Hilbert space Y. Then

the Hessian of f at x ∈M is given by

Hess f (x) (u,v) = D2 f (x) (u,v) + Df (x) IIx (u,v) (A.25)

for all u, v ∈ TxM (see [36, Prop. XIV.2.1]).
In the following lemma the second fundamental form is characterized in the case

thatM is given by a submersion.

Lemma A.3. For an open neighborhood U ⊂ X ofM and a submersionΦ : U → Y
such thatM = Φ−1(0). Then

IIx (u,v) = −DΦ(x)†D2Φ(x) (u,v) (A.26)

holds true for all u,v ∈ TxM. Here DΦ(x)† denotes the Moore-Penrose pseudoinverse.

Proof. By using (A.25) withΦ one gets

HessΦ(x) (u,v) = D2Φ(x) (u,v) + DΦ(x) IIx (u,v).

Since M = Φ−1(0) the mapΦ restricted toM is constant and thereforeHessΦ(x) = 0
for x ∈M and obtain the equation

DΦ(x) IIx (u,v) = −D2Φ(x) (u,v).
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Recall that for a submersion the tangent space is given by the kernel of DΦ, i.e.
TxM = ker(DΦ(x)). From IIx (u,v) ∈ NxM = ker(DΦ(x))⊥ and the fact that the
Moore-Penrose inverse is an isomorphism from ker(DΦ(x))⊥ onto Y one gets the
statement. �

Under the assumptions of Lemma A.3 for a smooth real valued function F on M

one obtains the expression

Hess f (x) (u,v) = D2 f (x) (u,v) − Df (x)DΦ(x)†D2Φ(x) (u,v) (A.27)

for the intrinsic Hessian of f at x ∈M in terms of extrinsic operations in the Hilbert
space X.

A.6 Optimization on manifolds

LetM be a Riemannian manifold and f a smooth positive real valued function. The
problem of �nding a minimum of

min
x∈M

f (x) (A.28)

looks similar to known smooth optimization problems in Hilbert spaces and even
the principle ideas for solving it carry over to curved spaces. Assume for a moment
thatM = X is itself a Hilbert space and recall that the most common algorithms
can be written as follows: Starting at some point x0 in each iteration one chooses an
update direction vk ∈ X and computes the next iterate by xk+1 = xk + tk vk with an
appropriate step size tk > 0.

Back to the case ofM a general Riemannian manifold. The concept above can be
formulated also in the language of di�erential geometry. Let x0 ∈ M be given. In
each iteration k = 1, 2, 3, . . . one chooses an update direction

vk ∈ TxkM (A.29)

and compute the next iterate via

xk+1 = expxk (tk vk). (A.30)

Of course there are a lot of possibilities how to choose the update direction in a
suitable way depending on the problem. One typical example would be to take it as
the solution of a Newton equation

Hess f (xk) (v,v) = −〈grad f (xk),v〉xk (A.31)
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with v ∈ TxkM. There is a large amount of literature dealing with such kind of
optimization algorithms. For example the monograph [1] gives an extensive overview
on di�erent types of algorithms on �nite dimensional manifolds, including proofs
of convergence and possible modi�cations. In the paper [56] some Newton-type
algorithms are also presented on in�nite dimensional Riemannian manifolds applied
to shape optimization.

One important new feature in the theoretical convergence investigations of
algorithms on Riemannian manifolds is the incorporation of the curvature. Especially
on in�nite dimensional manifolds most of the interesting examples do not have a
uniform bound on the curvature. In the paper [51] convergence of two Newton-
type algorithms on in�nite dimensional Riemannian manifolds is shown under local
bounds on the intrinsic curvature.

This motivates the investigation in the second fundamental form in Chapter 3
such that we can obtain local bounds on the extrinsic curvature which are used in
the convergence analysis in Chapter 5.
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