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Abstract 1

Abstract

Mitochondria are highly dynamic organelles with a distinct morphological membrane
ultrastructure. The mayor protein complex responsible for the formation and mainte-
nance of the inner mitochondrial membrane is the mitochondrial contact site and cristae
organizing system (MICOS). This complex consists of 6 constituents in Saccharomyces
cerevisiae and 7 in the mammalian system, with Mic60 and Mic10 being the core com-
ponents. MICOS has been predominantly investigated in S. cerevisiae and studies in
human cells have focussed mainly on MIC60.
In this study, a CRISPR/CAS9 mediated MIC10 knock-out cell-line was generated

and further characterized. Herby MIC10 could be identified to be essential for forming
and maintaining proper mitochondrial morphology in mammalian cells. However, the
loss of inner membrane ultrastructure did not have an impact on mitochondrial function
and health.
To better understand MICOS function in human, two different proximity biotinylation

approaches were undertaken and compared to determine novel interaction partners. The
first approach involved using an enhanced ascorbate C peroxidase APEX fused to MIC10
and the second approach made use of a promiscuous biotin ligase BioID2. The usage of
the BioID2 enzyme proved to be more suitable since it already produced a distinct set
of mutual interaction partners together with already known interaction partners. On
the other hand, the active labelling reagent using the APEX enzyme proved to be more
reactive than anticipated and would need a more thorough control system to identify
background labelling.
Recent findings reported a connection between MICOS via Mic60 and protein translo-

cation through the TOM complex and the MIA-pathway (von der Malsburg et al., 2011).
In this study, a spatial connection between MICOS and the TIM23 complex mediated
via Mic60 could be found. Performing import studies in two different yeast strains with
impaired inner membrane ultrastructure mic10∆ and atp20∆ revealed, that independent
from MICOS, proper inner mitochondrial membrane morphology is essential for efficient
precursor protein translocation via the TIM23-complex. In contrast to the mammalian
system, carrier import via the TIM22 complex was verified to be independent of morpho-
logical alterations in yeast, thus further confirming the immense evolutionary divergence
between the human and yeast TIM22 carrier translocase.
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1. Introduction

1.1. The eukaryotic cell
The basic building block of each living organism is the cell. They can be divided into two
major groups, prokaryotic cells, which are usually single-celled organisms and eukaryotic
cells, which can either be single-celled or be part of multicellular organisms (Palade,
1964).
The different types of organelles in the cell lead to a compartmentalization of the cell,

which allows to physical separate many different biological processes from each other
and enlarges the internal membrane surface. This benefits vital biochemical processes,
which take place in or on membrane surfaces. For example, the lipid metabolism is
catalysed mostly by membrane-bound enzymes, also, oxidative phosphorylation and
photosynthesis both require a membrane to couple the transport of protons to the ATP
synthesis. Furthermore, enclosed compartments, which are separated from the cytosol
are created, thereby providing the cell with functionally specialized aqueous space. This
way, processes with different requirements can take place simultaneously. Moreover,
anabolic and metabolic reactions like glycolysis and gluconeogenesis can be separated
from each other, in that regard eliminating the danger of futile cycles. Due to the semi-
permeable nature of cellular membranes, specific transport mechanisms for both charged
and uncharged molecules are necessary to achieve a specialized aqueous environment
within each organelle .
The largest organelle in the cell is the nucleus where the key synthesis of DNA and

RNA takes place. Connected to the outer nuclear membrane is the tubular network
of the largest cellular organelle termed endoplasmic reticulum. Bound to its cytosolic
surface, the ribosomes of the ER are responsible for the synthesis of soluble proteins
as well as proteins being destined to be integrated into a membranes, The majority of
these proteins are intended for either to the extracellular space or other compartments
within the cell. Further organelles inside the cells are lysosomes. This vesicles play an
important role during autophagy for the degradation of defective intracellular organs
as well as in the demolition of particles and macromolecules that had been uptaken
by the cell during endocytosis (heterophagy) by harbouring the the essential enzymes
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required for the digestion of these particles. Small, membrane-enclosed organelles called
peroxisomes are involved in multitudes of metabolic reactions.
Although a variation of abundance and special properties can occur depending on the

specialized function of the cell, the basic functions of each membrane-enclosed organelle
are executed similarly in each cell type. The position of the different organelles within
the cytosol variates from condensed as in case of the Golgi apparatus, which is exclusively
located close to the nucleus, to expanded like the ER, whose tubular network spread
through the whole cytosol.
These characteristic locations are evoked by interactions between organelles and the

cytoskeleton. Furthermore, the cytoskeleton is involved in intracellular transport, cell
motility, mitosis and meiosis. These functions are provided by microtubules and actin
filaments, which are part of the cytoskeletal network. Microtubules consist of a polymer
of the protein tubulin, which can be rapidly assembled or disassembled depending on
the needs of the cell. In order to reposition cellular compartments, chemical energy has
to be converted into mechanical energy. This is achieved by specific interaction of the
three mechanochemical proteins myosin, dynesin and kinesin (Lamond, 2002).

1.2. Mitochondria
Mitochondria play a major role in cellular energy metabolism. For example, they can
use oxygen as a terminal electron acceptor for the production of adenosin triphosphate
(ATP) by oxidative phosphorylation (Saraste, 1999). Furthermore, mitochondria are
essential even for organisms that do not respire due to their role in the iron sulphur
cluster biogenesis, which are essential cofactors for many enzmyes (Lill, 2009). Because
of its role in signalling, mitochondria also play a role in apoptosis. A key checkpoint
during programmed cell death is the release of cytochrome c from mitochondria, leading
to the formation of the apoptosome (Wang & Youle, 2009). Moreover, at least parts of
essential metabolic pathways like the tricarboxylic acid (TCA) cycle or the urea cycle
take place in mitochondria and they are also involved in β-oxidation and amino acid
synthesis. Due to there essential role in energy production, mitochondrial malfunction
can be cause of several diseases.
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1.2.1. Structure and dynamics of mitochondria

Mitochondria have been proved to be present as a connected network rather than single
entities (Friedman & Nunnari, 2014). Furthermore, mitochondria are highly dynamic
organelles, the whole mitochondrial network undergoes permanent fission and fusion
to satisfy the metabolic parts of the cell, to separate damaged parts for mitophagy
(Mueller & Reski, 2015) and to distribute mitochondria during cell division (Mishra &
Chan, 2014).
Due to their dual origin, mitochondria still contain their own genome, although dur-

ing evolution most of the original α-proteobacterial DNA was lost or transferred to the
nucles (Gabaldón & Huynen, 2004). Located in the mitochondrial matrix, the mitochon-
drial DNA encodes for 8 proteins in yeast an 13 in the mammalian system, additionally
to tRNAs and rRNAs for them mitochondrial translation machinery. Biogenesis of mito-
chondrial encoded proteins takes place at ribosomes attached to the inner mitochondrial
membrane, due to the fact that most proteins encoded on the mitochondrial genome
are highly hydrophobic and are cotranslationally inserted into the inner mitochondrial
membrane (M. Ott & Herrmann, 2010).
The internal matrix is surrounded by two phospholipid membranes (Hackenbrock,

1968), which are distinctively different in appearance and biochemical function due to
their endosymbiotic origin (Fig. 1.1). The outer membrane (OM) originates from the
host cell, whereas the inner mitochondrial membrane (IMM) originates from the mem-
brane of a proteobacterium (Gray, Burger, & Lang, 1999). The surrounding OM is
relatively permeable for ions and metabolites due to the presence of the β-barrel protein
porin (VDAC in higher eukaryotes), which is the most abundant protein in the OM
(Benz, 1994). However, recent studies revelead novel channel proteins that are selective
for either anions or cations, implying a more regulatory role of the OM in terms of
metabolite flux (Krüger et al., 2017). In contrast, the IMM is highly selective. It forms
a diffusion barrier for ions, proteins and metabolites, contains a number of transmem-
brane transport systems and is also the protein richest membrane known (Simbeni, Pon,
Zinser, Paltauf, & Daum, 1991). This is important for maintaining a proton gradient,
built up by the mitochondrial respiratory chain using electrons derived from catabolic
reactions and used as a driving force for generating ATP out of ADP and Pi by the
F1F0ATPase (Martin, Mahlke, & Pfanner, 1991; Saraste, 1999).
The inner membrane of mitochondria displays a unique morphology due to its for-

mation of sub-compartments. The inner boundary membrane (IBM) is in proximity
to the OM. Furthermore, the IMM forms large invaginations, called the mitochondrial
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Figure 1.1.: Schematic cross-section of a mitochondrion.
Outer and inner mitochondrial membranes separate two distinct aqueous compartments: intermembrane
space and matrix. The inner membrane forms invaginations (cristae), that significantly increase the
total inner mitochondrial membrane surface.

cristae, which are connected to the IBM by tubular openings, the cristae junctions. The
distribution of proteins in the IM appears not evenly, but instead organize into function-
ally distinct subcompartments (Werner & Neupert, 1972; Vogel, Bornhövd, Neupert, &
Reichert, 2006).

1.2.2. Mitochondrial oxidative phosphorylation

The mitochondrion is the main energy-producing organelle in the eukaryotic cell. It
converts energy of reducing equivalents (NADH, FADH2) into the form of macroergic
ATP bonds. Five different enzyme complexes (I-V) forming the OXPHOS machinery
are the driving force in this process and are located in the IMM.
Four enzyme complexes (I-IV) transfer electrons to acceptor molecules and pump pro-

tons from the matrix to the IMS, thereby generating a proton gradient. The last enzyme
complex, complex V or F1FoATPase, uses this proton gradient to generate ATP from
ADP and Pi. All enzymes involved are composed of multiple subunits of different ge-
netic origin. Assembly of these complexes is a multistep process that requires numerous
assembly factors and a sophisticated regulation mechanism. There are two ways for elec-
trons to enter the electron transport chain. The first is to be transferred from NADH,
through complex I (NADH:ubiquinone oxidoreductase), to ubiquinone. The second is a
transfer of electrons from succinate to complex II (succinate:ubiqiunone oxidoreductase)
from which they are subsequently passed on to ubiquinone. Electrons travel from ubiqi-
unone through complex III (ubiquinol:ferricytochrome c oxidoreductase) to cytochrome
c and, finally, passing complex IV (cytochrome c oxidase) to reach oxygen. Only electron
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transfer through complex II is not coupled with proton pumping to the IMS.
The first proton-pumping complex in the respiratory chain is complex I or NADH

dehydrogenase. During transfer of two electrons from NADH, four protons from the
matrix are pumped to the IMS. One molecule of FMN and several iron-sulfur clusters
participate in the redox reactions catalyzed by complex I (Weiss, Friedrich, Hofhaus, &
Preis, 1991). In S. cerevisiae, this type of multiprotein enzyme is missing, therefore not
assembled monomeric enzymes undertake this work. This enzymes have a single nuclear-
encoded subunit and do not possess a proton-pumping function (Lenaz & Genova, 2010).
Complex II (succinat dehydrogenase, SDH) is highly conserved among all aerobic

organisms and is a membrane-bound enzyme of the Krebs cycle that catalyses the oxi-
dation of succinate to fumarate and transfers electrons to ubiquinone. It is also the only
complex of the respiratory chain that does not contain structural subunits encoded in
the mitochondrial genome. SDH is considered to be the smallest enzyme of the respira-
tory chain and transfers two electrons to ubiquinone without the need of pumping them
to the IMS (Hatefi, 1985; Lenaz & Genova, 2010).
An essential part of the respiratory chain is ubiquinone. Reduced by complexes I

and II and oxidized by complex III during electron transfer, ubiquinone is a small hy-
drophilic mobile electron carrier (Genova & Lenaz, 2011). It exists in three oxidation
states: fully oxidized (ubiquinone), semiquinone (ubisemiquinone) and fully reduced
(ubiquinol). Ubiquinol passes on its electrons to complex II (ubiquinol-cytochrome c oxi-
doreductase) (Hatefi, 1985). Only one of its 10 different subunits in yeast, cytochrome b,
is encoded by the mitochondrial genome (Tzagoloff, 1995).
The electrons are passed on to another mobile electron carrier, cytochrome c. Cy-

tochrome c belongs to the cytochrome protein family, however, in contrast to its other
members, it is hydrophilic and loosely associated with the inner mitochondrial mem-
brane. The main function of this protein is to shuttle electrons between complex II and
IV of the respiratory chain (Volkov & van Nuland, 2012).
The next enzyme in the respiratory chain is the heme-copper oxygen reductase (cy-

tochrome c oxidase, COX), or complex IV. By pumping protons across the IM, it trans-
fers electrons from cytochrome c to molecular oxygen, thereby generating water (Capaldi,
1990). Complex IV consists of 11 - 14 subunits, of which the three subunits Cox1, Cox2
and Cox3 are mitochondrially encoded (Mick, Fox, & Rehling, 2011; Balsa et al., 2012).
The generated proton gradient of the respiratory chain is used by the F1Fo ATPase

(complex V) to hydrolyse ATP from ADP and Pi in an exergonic process (Martin et al.,
1991). The respiratory chain complexes are preferentially located in the cristae mem-
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branes, whereas presequence protein translocases are enriched in the inner boundary
membrane (Vogel et al., 2006). This leads to an increased efficiency of ATP genera-
tion and simultaneously to a closer contact of translocating complexes to the OM. The
F1FoATPase is a multisubunit enzyme (Collinson et al., 1994; Boyer, 1997) which can
be divided into the membrane-spanning Fo subcomplex responsible for H+ transloca-
tion, and the F1 domain containing the catalytic sites for ATP synthesis (Boyer, 1997;
Fillingame & Divall, 1999; Velours et al., 2000). Whereas the enzymatic function of
the F1FoATPase has been extensively investigated, recent studies revealed a second
important role of the F1FoATPase in organization of the inner mitochondrial mem-
brane (Giraud et al., 2002; Paumard et al., 2002; Gavin, Prescott, Luff, & Devenish,
2004; Thomas et al., 2008; Velours, Dautant, Salin, Sagot, & Br e thes, 2009; De los
Rios Castillo et al., 2011). It is believed that this complex is critical for the forma-
tion and stabilization of the cristae tip by promoting positive curvature of the inner
membrane.
The F1FoATPase occurs predominantly as a monomer or a homodimer (Arnold, Pfeif-

fer, Neupert, Stuart, & Sch a gger, 1998; Nijtmans, Taanman, Muijsers, Speijer, &
Van den Bogert, 1998; Wittig, Velours, Stuart, & Schägger, 2008). However, various
organisms were found to contain in addition higher oligomeric forms of the F1FoATPase
homodimer (Eubel, 2003; Krause, Reifschneider, Goto, & Dencher, 2005; Thomas et al.,
2008; De los Rios Castillo et al., 2011). The membrane curvature in the cristae tips is
induced by the formation of ribbons of the 1FoATPase homodimers (Strauss, Hofhaus,
Schröder, & Kühlbrandt, 2008; Rabl et al., 2009; Davies et al., 2011). Essential for the
dimerization of the F1FoATPase are the small membrane proteins Atp20 (subunit g)
and Atp21 (subunit e; Tim11) which have a characteristic glycin-rich region.

1.3. Mitochondrial protein import
The mitochondrial proteasome comprises about 1000 (yeast) to 1500 (human) different
proteins (Sickmann et al., 2003; Perocchi et al., 2006; Pagliarini et al., 2008). However,
only 1% of these are encoded in the mitochondrial genome. The majority is encoded in
the nuclear genome and synthesized on ribosomes in the cytosol (Komiya, 1997). There-
fore, a sophisticated import and distribution mechanism is needed to transport proteins
to their destined location (Chacinska, Koehler, Milenkovic, Lithgow, & Pfanner, 2009;
Becker, Böttinger, & Pfanner, 2012). To ascertain correct sub-mitochondrial localisa-
tions, they contain different targeting signals, recognized by specific receptors in the OM.
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The imported proteins can be separated into proteins containing a cleavable N-terminal
amphiphatic α-helix (presequence), internal hydrophobic motifs or N- and C-terminal
signals that do not undergo processing (Chacinska et al., 2009; Dudek, Rehling, &
van der Laan, 2013; Sjuts, Soll, science, & 2017, n.d.; Endo, Yamano, & Kawano, 2011).
To ensure correct translocation, a plethora of different import machineries are present
in mitochondria to maintain mitochondrial functions and dynamics (Fig. 1.2).

Figure 1.2.: Overview of the transport machinery in mitochondria.
Nearly all proteins have to pass the translocase of the outer membrane (TOM) complex, from where
they follow different pathways. β-barrel proteins are shielded by small TIM chaperones in the IMS and
transported to the sorting and assembly (SAM) complex. For some IMS proteins, oxidative folding by
the mitochondrial intermembrane space assembly (MIA) is coupled to import. Transport across the
IMM is potential dependent. Transmembrane proteins of the carrier family are bound by small TIM
proteins and sorted into the inner membrane by the TIM22 complex. The presequence translocase of the
inner membrane TIM23 mediates the transport of presequence containing proteins (presequence-cont.)
into the IMM and the matrix. Additionally, transport into the matrix requires the association of the
presequence translocase associated motor complex (PAM). Cleavage of the presequences in the matrix
is supported by the mitochondrial processing peptidase (MPP).
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1.3.1. Translocase of the outer membrane: The TOM complex

Ions and metabolites can freely diffuse through the outer mitochondrial membrane by
passing pores of the voltage-dependent anion channel (VDAC)-porin superfamily. Pro-
teins however are mainly transported into mitochondria through the TOM complex
(Mokranjac & Neupert, 2015). It consists of the main channel Tom40 (Kiebler et al.,
1990; Lackey et al., 2014) and three receptor proteins Tom20, Tom22 and Tom70 (Brix,
Dietmeier, & Pfanner, 1997). The protein-conducting channel is formed by three copies
of Tom40 (Model, Meisinger, & Kühlbrandt, 2008; Shiota et al., 2015) but is not only
able to act as a passive channel but can furthermore bind to hydrophobic parts of the
precursor, thus preventing aggregation (Esaki et al., 2003). Tom20 is responsible for
initial presequence recognition and bind the hydrophobic surface of of the presequence
(Abe et al., 2000), whereas Tom22 binds to the positively charged surface of the prese-
quence (Shiota, Mabuchi, Tanaka-Yamano, Yamano, & Endo, 2011). Its IMS domain is
assisting in the handover of precursor from the TOM complex to the TIM23 complex by
binding soluble presequences, additionally to its essential role in TOM oligomerisation
(van Wilpe et al., 1999). Hydrophobic proteins are recognized by Tom70 (Schlossmann,
Dietmeier, Pfanner, & Neupert, 1994). Chaperones of the Hsp70 family bind to hy-
drophobic proteins in the aqueous cytosol and are recognized by the cytosolic domain
of Tom70 (Schlossmann et al., 1994). Moreover, it could be shown that Tom70 plays a
role in presequence binding (Melin et al., 2015) and recognition of internal MTS (matrix
targeting signal)-like signals (iMTS-Ls) (Backes et al., 2018). Further constituents are
the proteins Tom5, Tom6 and Tom7, who are essential for assembly, stability and the
dynamics of the TOM complex (Wiedemann & Pfanner, 2017). However, an assort-
ment of α-helical proteins are not imported via the TOM-complex but utilize the MIM
complex. Its constituents are Mim1 and Mim2 and form together a 200 kDa complex
(Dimmer & Rapaport, 2012; Popov-Celeketić, Waizenegger, & Rapaport, 2008). Sub-
strates bind via their transmembrane segment to Mim1, which forms oligomers with the
help of GXXXG/A motifs. Substrates of the MIM complex are for example Tom20,
Tom70 and the outer membrane protein Ugo1 (Hulett et al., 2008; Papic, Krumpe,
Dukanovic, Dimmer, & Rapaport, 2011) and are inserted into the outer membrane
without a protein-aqueous pore.
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1.3.2. The SAM complex

Mitochondria have their origin in Gram-negative bacteria, thus they contain mainly
β-barrel proteins in the outer membrane. Prime examples are the channel proteins
Porin/VDAC, Tom40 and Sam50 itself. Proteins of this pathway are recognized by a
β-hairpin motif at the very C-Terminus, consisting of two adjacent β-strands (Jores et
al., 2016). The core component of the sorting and assembly machinery (SAM com-
plex) is the channel Sam50 together with two peripheral proteins Sam35 and Sam37
(Wiedemann & Pfanner, 2017). Substrates of the SAM complex are recognized by
Tom20 and are translocated across the OM by the TOM-complex. To avoid aggrega-
tion, small soluble TIM chaperons bind to the hydrophobic patches of the imported
protein in the IMS (Curran, Leuenberger, Oppliger, & Koehler, 2002; S. C. Hoppins
& Nargang, 2004; Wiedemann et al., 2004) before they are inserted into the OM via
Sam50. In the mammalian system however the process is still unclear (Kang, Fielden,
& Stojanovski, 2018). SAM50 itself is highly conserved (Paschen et al., 2003) but no
clear homologues for Sam35 and Sam37 are identified so far. Evidence suggests that
the Metaxins MTX1 and MTX2 fulfil the role in human cells (Kozjak-Pavlovic et al.,
2007). Additionally to forming a complex with SAM50, MTX1 was also found to be in-
volved in cristae structure maintenance and OXPHOS assembly (Huynen, Mühlmeister,
Gotthardt, Guerrero-Castillo, & Brandt, 2016).

1.3.3. The MIA pathway transport into the intermembrane space

Proteins located in the intermembrane space often contain characteristic cystein motifs
(i.e. CX3C or CX9C) which are able to form disulfid bonds and serve as targeting signals
(Dudek et al., 2013). Furthermore, the import signal includes two hydrophobic residues
in close proximity which are recognized by Mia40, one of the components of the MIA
complex. In yeast, MIA is anchored into the IMM with the soluble domain facing the
IMS whereas in mammalian cells it is a soluble intermembrane space protein itself, their
function however is similar in both organisms (Chacinska et al., 2004, 2008; Hofmann
et al., 2005). The cystein residues of the substrates are kept in a reduced state while
crossing the outer membrane, after recognition of Mia40 it oxidizes their substrates and
aids in the correct formation of disulfid bonds and folding of the protein (Gornicka et al.,
2014; Milenkovic et al., 2009; Sideris et al., 2009). After releasing the substrate, Mia40
is reoxidized by another key component of the MIA pathway, Erv1 (ALR in human)
(Chacinska et al., 2004; Daithankar, Farrell, & Thorpe, 2009; Kang et al., 2018; Rissler
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et al., 2005).

1.3.4. Carrier import via the TIM22 complex

Metabolite carries like the ADP/ATP carrier (AAC) or phosphate carrier (PiC) typi-
cally consist of 6 transmembrane domains, shielded by cytosolic chaperones to prevent
misfolding (Young, Hoogenraad, & Hartl, 2003). But also four transmembrane span-
ning translocase components Tim23, Tim22 and Tim17 are known substrates of the
TIM22-complex (Curran et al., 2002). The precursor proteins are recognized via inter-
nal targeting signals by Tom70 and handover through the IMS is mediated by small
TIM chaperons to prevent misfolding of the proteins (Davis, Alder, Jensen, & Johnson,
2007). The core component in yeast is the channel Tim22, whereas Tim54 is responsible
for recruitment of the chaperone complex (Wagner, Mick, & Rehling, 2009) and Tim18
and Sdh3 are responsible for assembly of the TIM22 complex. Interestingly, Sdh3 dis-
plays dual localization not only in the TIM22 complex, but also in complex II of the
respiratory chain (Gebert et al., 2011).
In the mammalian system however, the complex consists of TIM22, TIM29, TIM10B

and AGK, thus being the most evolutionary diverged translocase with having two meta-
zoan specific components (Wiedemann & Pfanner, 2017; Kang et al., 2018). Whereas
neither Tim54 and Tim18 are conserved in human, the recently found TIM29 is respon-
sible for assembling the TIM22 complex (Callegari et al., 2016; Kang et al., 2016). In
addition, TIM29 mediates membrane insertion of TIM22 substrates and forms a con-
tact site to the outer membrane via interaction with the TOM complex. The second
metazoan specific constituent AGK is a lipid kinase associated with Sengers syndrome,
but also stabilizes the TIM22 complex independent of its kinase function and mediates
import of various carrier proteins (Kang et al., 2017; Vukotic et al., 2017).

1.3.5. Importing presequence proteins via the TIM23 complex

Nearly 70 % of proteins are targeted via N-terminal targeting signals called presequences
to the inner mitochondrial membrane or the matrix (Vögtle et al., 2009). Import is
mediated by the TIM23-complex, thus being by far the most important import pathway.
Presequence can vary significantly in length, although they are typically 15-55 amino
acids long, form an amphipatic α-helix with net positive charge and are usually cleaved
off after import by the matrix processing peptidase (MPP) (Hawlitschek et al., 1988).
Translocation across the inner mitochondrial membrane is membrane potential driven
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and reliant on the overall positiv charge of the presequence (Martin et al., 1991), although
recent studies also revealed an impact of the mature protein form on the membrane
potential dependency (Schendzielorz et al., 2017).
Presequence containing proteins are recognized by the TIM23CORE complex. After

passing the TOM-complex, the N-terminus of the imported protein is handed over to the
protein conducting pore of TIM23CORE, thus generating a TOM-TIM23 supercomplex
(Dudek et al., 2013). For proteins sorted into the IMM, Mgr2 recrutes Tim21 to the
TIM23CORE to form the TIM23SORT complex and lateral releases the precursor into the
IMM after arresting the imported protein due to downstream hydrophobic stop transfer
signals (Bohnert et al., 2010; Bömer et al., 1997; Glick, Beasley, & Schatz, 1992; van der
Laan et al., 2007).
Soluble proteins of the mitochondrial matrix are also translocated via TIM23CORE.

However, in contrast to lateral sorted proteins, membrane potential is not sufficient for
full matrix import (Dudek et al., 2013). To ensure complete translocation, the prese-
quence translocase associated import motor (PAM) is recruited to the TIM23CORE and
mediates matrix import by providing additional inward-directed force on the incoming
protein by Hsp70-mediated hydrolysis of ATP (Schulz, Schendzielorz, & Rehling, 2015).

1.4. Mitochondrial dynamics and inner mitochondrial
membrane morphology

Mitochondria form highly ramified tubular networks that can extend through nearly
the whole cytosol and are remarkably dynamic (Nunnari & Suomalainen, 2012). Each
mitochondria itself exhibits a ultrastructure of high complexity, with the outer membrane
enclosing the whole mitochondria and thus shielding it from the rest of the cell, whereas
the inner mitochondrial membrane forms patches of highly specialized membrane regions
and concentrating distinct interacting protein complexes in a close spatial manner to
enhance the efficiency of mitochondrial function.

1.4.1. The ATP synthase stabilizes cristae tips

The most important role in this ultrastructure fill the tubular invaginations within the
mitochondrial matrix called cristae. They predominantly harbour the complexes of the
oxidative phosphorylation machinery OXPHOS which generates ATP via the F1FO-
ATPase. Because of their spatial restriction due to a fusion barrier created by the
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cristae junctions, they can be found in high concentration in this regions (Gilkerson,
Selker, & Capaldi, 2003; Frey & Mannella, 2000; Mannella, 2006). The inner boundary
membrane (IBM) is close to the outer membrane and can be described as flat, whereas
the connection between cristae and IBM, termed cristae junction, is a region with a high
degree of curvature. The size and shape of cristae is vastly dynamic and adapts to the
energetic needs of the cell (Fawcett, 1981). The mitochondria of S.cerevisiae for example
contain only a few small cristae when grown under fermentable condition, thus relying on
ATP production via glycolysis in the cytosol. Whereas yeast grown in media containing
a non-fermentable carbon source produce more proteins of the OXPHOS, hence the inner
membrane expands and cristae becoming bigger (Renken et al., 2002). Well established
key players in stabilizing the cristae tip are the dimers and oligomers of the F1FO-
ATPase. Fundamental for this membrane shaping is the ability to form dimers, which is
mediated by highly conserved glycine-rich GXXXG motifs (Arnold et al., 1998; Arselin
et al., 2003; Saddar & Stuart, 2005; Wagner et al., 2009) that can also be found in various
other oligomerizating proteins (Alavian et al., 2014; Barbot et al., 2015; Bohnert et al.,
2015; Demishtein-Zohary, Marom, Neupert, Mokranjac, & Azem, 2015). Depletion of
the ATP synthase or inhibition of dimerisation led to a lack of cristae tips (Paumard et
al., 2002), thus confirming the dual role of the protein complex. Surprsingly, despite their
importance for normal cristae morphology maintenance, ablation of dimerization units
in the ATP synthase although displaying reduced membrane potential and respirational
activity, did not lead to immediate cell death (Bornhövd, Vogel, Neupert, & Reichert,
2006; Boyle, Roucou, Nagley, Devenish, & Prescott, 1999). Furthermore, the highly
curved cristae junctions seem to be unaffected upon the loss of F1FO-ATPase dimers,
indicating that although the ATP synthase dimers are necessary for physiological cristae
membrane morphology, the formation and stabilization of cristae junctions is performed
by other proteins.

1.4.2. Regulation of cristae junctions

The large dynamine-like GTPAse Mgm1 in yeast and OPA1 in mammalian cells were
originally identified as part of the mitochondrial fission and fusion machinery (Cipolat,
Martins de Brito, Dal Zilio, & Scorrano, 2004; Meeusen et al., 2006; Wong et al., 2003).
However, ablation of Mgm1/OPA1 led to an reduction and widening of cristae junctions
(Amutha & Pain, 2003; Olichon et al., 2003; Sesaki, Southard, Yaffe, & Jensen, 2003),
whereas an overexpression is reducing the diameter of the cristae junctions and is believed
to have an anti-apoptotic effect (Cipolat et al., 2006; Frezza et al., 2006; Olichon et al.,



1. Introduction 14

2003). OPA1 forms high molecular weight complexes which are located at the cristae
junctions and preventing protein and metabolite diffusion from the cristae to the IBM
and vice versa (Frezza et al., 2006). Recent studies could show, that on the other hand
Mgm1/OPA1 is not strictly required for the formation of cristae junctions (Barrera,
Koob, Dikov, Vogel, & Reichert, 2016).

1.4.3. The Mitochondrial Contact site and cristae Organizing
System MICOS

A vast step towards unveiling the mechanisms of cristae and cristae junction formation
and maintenance was done by revealing the evolutionary conserved mitochondrial con-
tact site and cristae organizing system MICOS (John et al., 2005; Rabl et al., 2009;
Harner et al., 2011; S. Hoppins et al., 2011; von der Malsburg et al., 2011; Alkhaja
et al., 2012; Bohnert et al., 2015). MICOS is a approximately 700-1200 kDa complex,
consistent of 5 annotated homologues constituents in yeast hand human (Mic60, Mic19,
Mic10, Mic26, Mic27), two metazoan specific proteins (MIC13, MIC25) and on protein
only found in yeast (Mic12) (Fig. 1.3). However, the exact stoichiometry of the complex
is not known.
Depletion of either one of the two core components Mic60 or Mic10 resulted in a

drastic reduction of cristae junctions, the consecutive alteration of inner mitochondrial
membranes led to lamellar like stacks of the inner membrane in the matrix (John et al.,
2005; von der Malsburg et al., 2011; Harner et al., 2011; S. Hoppins et al., 2011; Alkhaja
et al., 2012). In mammalian cells, MICOS was found to interact with the SAM complex
and together with DNAJC11 forming the mitochondrial intermembrane space bridging
complex (MIB) (Darshi et al., 2011; C. Ott et al., 2012; Xie, Marusich, Souda, White-
legge, & Capaldi, 2007). The MICOS complex can be divided into two subcomplexes,
the MIC60 subcomplex (MIC60, MIC19, MIC25) and the MIC10 subcomplex (MIC13,
MIC10, MIC26, MIC27).

1.4.3.1. The MIC60 subcomplex

MIC60 is one of the major proteins of the MICOS complex with the human MIC60
being on an evolutionary scale one of the oldest. Homologues could be found in α-
proteobacteria which are presumed to be the ancestors of mitochondria (Huynen et al.,
2016; Muñoz-Gómez et al., 2015). It exists in two isoforms and is preferentially localized
at the cristae junctions (Jans et al., 2013) and forms a subcomplex together with MIC19
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Figure 1.3.: The constituents of the MICOS complex.
The mammalian MICOS complex (hypothetical model) with its five integral inner membrane proteins
(MIC10, MIC13, MIC26, MIC27, MIC60) and one peripheral inner membrane proteins MIC19 and
MIC25. MICOS is thought to interact with different complexes of the protein translocase machinery
and is vital for maintaining the unique morphology of the inner membrane.

and MIC25. The exact mechanism on how MIC60 influences membrane morphology is
still unknown, although overexpression if Mic60 in yeast led to highly branched cristae
membranes, thus suggesting a direct involvement in cristae shaping (Bohnert et al.,
2015; Rabl et al., 2009). Recent in vitro studies revealed that purified yeast Mic60
demonstrated membrane bending ability, thus suggesting a direct mechanistical influence
of yeast Mic60 on membrane morphology (Tarasenko et al., 2017). Kock-down of the
human MIC60 strongly decreased the protein levels of other MICOS constituents as well
as amounts of SAM complex constituents (C. Ott, Dorsch, Fraunholz, Straub, & Kozjak-
Pavlovic, 2015). Furthermore it negatively effected the amount of OPA1 (Ding et al.,
2015) and even mitochondrial fission and fusion proteins (Li et al., 2016) were decreased.
The mitochondrial proteas Yme1L is likely to be involved in the homeostasis of MIC60
(Li et al., 2016). In addition, MIC60 was found to have a role in lipid trafficking in
plants via MIC60 mediated contact sites (Michaud et al., 2016). Mitochondria membrane
biogenesis requires lipid trafficking between different organelles, thus this finding adds
an essential physiological role of contact sites.
A further constituent of this subcomplex is MIC19, a 26 kDa soluble protein in the

IMS with a characteristic coiled-coil helix coiled coil helix (CHCH) domain which har-
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bour two cystein rich CX9C motifs. This CHCH domain acted as the binding site to
MIC60 (Darshi et al., 2011) and it was recently found that MIC19 further interacts with
components of the whole MICOS complex (Friedman, Mourier, Yamada, McCaffery, &
Nunnari, 2015). Hence, MIC19 seem to be important for MICOS integrity and phys-
ically linking both subcomplexes. Deletion of MIC19 led to partial disruption of the
MICOS complex and altered membrane morphology displayed by stacked cristae mem-
branes in addition to a decreased OPA1 level (Darshi et al., 2011; Harner et al., 2011;
S. Hoppins et al., 2011; von der Malsburg et al., 2011; Sakowska et al., 2015). Further-
more, it was found that MIC19 is able to be redox-regulated and its oxidation status
has an influence on the MICOS complex (Sakowska et al., 2015) in addition to prevent
MIC60 degradation via Yme1L (Li et al., 2016). This suggested that it is highly likely
MIC19 influences the inner membrane morphology by regulating the MICOS complex
by conducting the ratio between the sub-complexes rather than having a direct function
of shaping membranes.
MIC25 belongs together with MIC19 to the CHCHD family of proteins and has no

yeast homologue. Its structure resembles that of MIC19, however ablation of MIC25
only has a slight effect on inner mitochondrial ultrastructure and the levels of other
MICOS components were unaffected (C. Ott et al., 2015). Interestingly, MIC25 is the
only protein not affected in a MIC19 depletion, a simultaneous deletion however displays
the same effects as a MIC19 single depletion (Li et al., 2016; C. Ott et al., 2015). This
indicates that MIC25 is stabilized in the absence of MIC19, although a link to a function
of MIC25 is yet to discover.

1.4.3.2. The MIC10 subcomplex

The second core component of the MICOS complex is a small hairpin-like protein called
MIC10 and was identified due to its severe impact on inner mitochondrial ultrastructure
upon deletion, simliar to ablation of MIC60, in addition to a strong growth defect in yeast
cells, indicating the importance on cell viability (Harner et al., 2011; von der Malsburg
et al., 2011; Alkhaja et al., 2012; van der Laan, Bohnert, Wiedemann, & Pfanner, 2012).
In vitro studies proved that in yeast, Mic10 has membrane shaping abilities mediated
by oligomerisation via its characteristic glycine-rich motifs (Barbot et al., 2015; Bohnert
et al., 2015). Whether this mechanism is the same in mammalian cells is unknown so
far. Recent studies found the dimeric form of the F1FO-ATPase interacting with yeast
Mic10, but not Mic60. The mechanism behind this interaction though is still unknown.
This suggested an even greater role of Mic10 in membrane architecture besides its own
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membrane shaping ability.
Further constitutents of this subcomplex are two membrane integral proteins of the

apolipoprotein family, MIC26 and MIC27. Although it was shown that they are compo-
nents of the MICOS complex in human (C. Ott et al., 2015; Koob, Barrera, Anand, &
Reichert, 2015b) and yeast (Harner et al., 2011; S. Hoppins et al., 2011; von der Malsburg
et al., 2011), their exact function is unknown. In yeast, deletion of neither Mic26 nor
Mic27 demonstrated a strong morphological phenotype (Harner et al., 2011; S. Hoppins
et al., 2011; von der Malsburg et al., 2011), in mammalian cells downregulation of MIC27
likewise displayed only a mild alteration of inner mitochondrial ultrastructure (C. Ott
et al., 2015) whereas the impact of a downregulation or depletion of human MIC26 is
inconclusive (C. Ott et al., 2015; Koob et al., 2015b). Though in both organisms the
effect of a loss of MIC26 is less severe than lower protein levels of MIC27. Recent studies
revealed that in yeast as well as in human cells, MIC26 and MIC27 have an antagonizing
role (Koob et al., 2015b; Rampelt et al., 2018). In yeast, Mic27 directly stabilizes the
oligomerisation of Mic10 whereas higher levels of Mic26 exert a destabilizing effect on
Mic10 oligomerisation (Rampelt, Zerbes, van der Laan, & Pfanner, 2016). In mam-
malian cells the interaction appear to happen in a more direct matter, overexpression
of MIC26 led to a decrease in MIC27 amounts whereas its protein levels increased in a
downregulation of MIC26 and vice versa (Koob, Barrera, Anand, & Reichert, 2015a).
Both protein levels however positively correlate with protein levels of MIC10 in addition
to tafazzin, a protein involved in cardiolipin biosynthesis. It is proposed, that both
proteins are linked to cardiolipin metabolism, thus in protein complex stabilization via
cardiolipin regiulation, since MIC27 is capable of binding cardiolipin (Weber et al., 2013)
and MIC26 effects the levels of cardiolipin (Koob et al., 2015b).
Essential for the assembly of both subcomplex with each other is the human pro-

tein termed MIC13 (Guarani et al., 2015). It was demonstrated that downregulation
of MIC13 alters inner mitochondrial membrane morphology and led to a reduction in
protein levels of MIC10, MIC26 and MIC27, the MIC60 subcomplex however seemed to
accumulate. Thus, MIC13 appears to act as a scaffold protein required for the assembly
of the mature MICOS complex. The yeast Mic12 only appears to be distantly related
to the human MIC13 to be a evident homologue (Huynen et al., 2016), although studies
suggested that they fulfil a similar function (Zerbes, Höß, Pfanner, van der Laan, &
Bohnert, 2016).
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1.4.4. MICOS is connect to various mitochondrial processes

As previously described (chapter 1.4.3) it is well established that MICOS has a key
role in forming and maintaining inner mitochondrial ultrastructure. In addition, various
alterations of the MICOS complex were demonstrated to have an impact on a plethora
of mitochondrial function.
Deletion of yeast Mic60 led to a decrease in protein import via the MIA pathway

and β-barrel protein insertion into the outer membrane via SAM (von der Malsburg
et al., 2011; Bohnert et al., 2012). In addition it was demonstrated in human cells
that a knock-down of MIC60 dysregulated the mitochondrial fission and fusion and
mitochondrial translation was impaired due to clustered mtDNA nucleoids (Li et al.,
2016).
The endoplasmic-reticulum-mitochondria encounter structure (ERMES) is likely in-

volved in lipid trafficking in yeast between the ER and mitochondria (S. E. Horvath &
Daum, 2013; Osman, Voelker, & Langer, 2011; Tatsuta & Langer, 2017) and genetic
interactions linked ERMES to the MICOS complex (S. Hoppins et al., 2011), thus sug-
gesting an ER mitochondria organizing network (ERMIONE) which links biogenesis and
transport of phospholipids to membrane architecture. Further findings supporting the
role of MICOS in phosholipid metabolism linked MICOS to yeast tafazzin in remodelling
cardiolipin (Harner et al., 2014), similar to human MIC26 (Koob et al., 2015b). In ad-
dition, MIC27 shows distinct cardiolipin binding abilities (Weber et al., 2013) and plant
MIC60 demonstrated to be linked to lipid trafficking (Michaud et al., 2016). Although
the exact mechanisms still need to be assessed, a clear trend of MICOS involvement in
phospholipid biogenesis and trafficking is evident.
The importance of MICOS and the ensuing mitochondrial health can be further ac-

centuated by involvement of MICOS in various diseases. A mutation in the MIC13
gene was found to be responsible for liver disease and severe neurological retardation
(Gödiker et al., 2018). MIC60 has been shown to be either directly or indirectly involved
in numerous diseases caused in various tissues like Down syndrome or Parkinson’s dis-
ease in brain, diabetes mellitus in heart and liver, mtDNA related renal diseas in kidney
and various forms of cancer (Feng, Madungwe, & Bopassa, 2018). In addition, Barth
syndrome, caused by a mutation in the cardiolipin remodelling protein tafazzin, demon-
strated altered levels of MICOS amounts (Chatzispyrou et al., 2018).

In conclusion, MICOS acts as a central organizer for mitochondrial membrane archi-
tecture and physiology. Several pathways and mitochondrial and cellular functions seem
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to merge at cristae junctions, thus proper formation and maintenance is critical for cell
and mitochondrial health. The mechanistic details of the various functions of MICOS
are still vastly unknown and arduous to address since techniques need to be found to fo-
cus on one specific role without altering a vast number of different factors and rendering
the obtained data inconclusive.

1.5. Aim of this study
The composition of the MICOS complex is well known and its impact on membrane
morphology has been shown. Further function of the MICOS complex and its individual
constituents are still in focus of ongoing research. The majority of studies investigating
the role of MICOS was done in yeast so far. To further investigate function of the
mammalian MICOS, one aim of this study was the generation a MIC10 knock-out cell
line to verify MIC10 as a core component for the membrane shaping ability of MICOS
in human cells. This cell line was used to investigate the functional connection between
MICOS and further mitochondrial functions and protein-/ protein complexes.
In addition, a proximity labelling approach was established to investigate novel in-

teraction partners of MICOS subunits. Therefore, different proximity biotinylation ap-
proaches were applied.
Studies of the MICOS complex in yeast revealed either a potential functional in-

teraction between MICOS and the translocase in yeast or a connection of membrane
morphology to protein translocation (von der Malsburg et al., 2011). Therefore, this
study will analyze a functional relation between the TIM complexes and MICOS in
yeast as well as in human. To investigate the interplay of MICOS and the translocase
in yeast more thoroughly, the third part of this work focused on establishing a connec-
tion between MICOS and the different mitochondrial translocase complexes of the inner
membrane as well as the functional connection between MICOS, inner mitochondrial
membrane morphology and protein translocation in mitochondria.
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2. Materials and Methods

2.1. Materials

2.1.1. Chemicals

Chemicals were used at analytical grade in this study and obtained from AppliChem
(Darmstadt, Germany), BD (Heidelberg, Germany), Bio-Rad (Richmond, USA), Merck,
Novagen and Calbiochem (Darmstadt, Germany), Roth (Karlsruhe, Germany), Serva
(Heidelberg, Germany), Sigma-Aldrich (Taufkirchen, Germany), Thermo Scientific (Schw-
erte, Germany). The biotin phenol was synthesized by the Max Planck institute for
biophysical chemistry, Göttingen.

Table 2.1.: List of chemicals
Chemical Supplier

[35S]-methionine Hartmann Analytic
2-mercaptoethanol Sigma-Aldrich
6-aminocaproic acid Sigma-Aldrich
Acetic acid Roth
Acetone Roth
Acrylamid/bisacrylamide (37.5:1) solution Merck
Acrylamid 2x crytallised Roth
Agarose NEEO ultra-quality Roth
Ammonium acetate Merck
Ampicilin AppliChem
Antimycine Sigma-Aldrich
ATP Roche
Avidin agarose Thermo Scientific
Bacto Yeast Extract BD
Bacto Agar BD
Bacto Peptone BD
Bacto Tryptone BD
Bio-Rad Protein Assay Bio-Rad
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Table 2.1.: List of chemicals (continued)
Chemical Supplier

Bis-Acrylamide Roth
Bis-Tris Buffer grade AppliChem
Bovine IgG Bio-Rad
Bovine Serum Albumin Sigmal-Aldrich
Bromophenol blue Merck
Chloroform Roth
Complete EDTA.free protease inhibitor mix Roche
Coomassie Brilliant Blue G-250 Serva
Coomassie Brilliant Blue R-250 Serva
Copper(II)sulfate pentahydrate Merck
Creatine kinase Roche
Creatine phosphate Roche
Deoxynucleotide triphoshphate mix (dNTPs) New England Bio Labs
Digitonin Calbiochem
DMSO AppliChem
DNA ladder mix "Gene Ruler" Thermo Scientific
DTT (1,4-dithiothretol) Roth
EDTA (ethylendiamintetraacetic acid) Roth
EGTA Roth
Ethanol Roth
Ethidium bromide 0.025% Roth
GeneJuice Merck
d(+)-Glucose Roth
Glutamine LifeTechnologies
Glycerol Sigma-Aldrich
Glycine Roth
HEPES Roth
Herring sperm DNA Roth
Hydrochloric acid 37% Roth
IgG from human serum Sigma-Aldrich
IgG protein standard BioRad
Imidazole Sigma-Aldrich
Immobilon-P PVDF membrane Millipore/Merck
Lithium acetate AppliChem
Magnesium acetate Merck
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Table 2.1.: List of chemicals (continued)
Chemical Supplier

Magnesium chloride Merck
Magnesium sulfate Appplichem
Methanol Roth
Methionine Roth
MitoTracker Oragne CMTMRos Thermo Scientific
MOPS Sigma-Aldrich
NADH Roche
Ni2+-NTA agarose Macherey Nagel
Olygomycin Sigma-Aldrich
ortho-Phosphoric acid Merck
OptiMem LifeTechnologies
PEG-4000 (polyethylene glycol 4000) Merck
Penicillin Streptomycine LifeTechnologies
PMSF (polymethanesulfonylfluorid) Roth
Potassium chloride Roth
Potassium dihydrogen phosphate Roth
Potassium hydrogen diphosphate Roth
Protein A sepharose GE Healthcare
Proteinase K Roche
Roti-Quant Roth
Saccharose Roth
SDS (sodium dodecyl sulfate) Serva
SDS-PAGE Protein Standard Bio-Rad
Sodium chloride Sigma-Aldrich
Sodium hydroxide AppliChem
Sorbitol Merck
Strep-Tactin agarose IBA Science
Streptavidin agarose Thermo Scientific
Streptavidin HRP Dianova
Sucrose Roth
TCA Merck
TEMED (tetramethylethylenediamine) Roth
Tetracycline hydrochloride Sigma-Aldrich
Trehalose Roth
Tris (tris(hydroxymethyl)aminomethane) Roth
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Table 2.1.: List of chemicals (continued)
Chemical Supplier

Triton X-100 Sigma-Aldrich
Tween-20 Roth
Urea Roth
Uridine Sigma Aldrich
Valinomycin Sigma-Aldrich
X-Ray films Foma Bohemia (Czech Republic)
Yeast nitrogen base without amino acids BD
Zymolyase 20 T Seikagaku Biobusiness

2.1.2. Solutions

All solutions are given in 1x concentration and were prepared with desalted water. Yeast
and bacteria medium and solutions for cellculture were autoclaved before use and kept
under sterile conditions.

Table 2.2.: List of solutions
Solutions Components

AVO mix 0.8 mM antmycin, 0.1 valinomycin, 2 mM
oligomycin in ethanol

Blotting buffer 25 mm Tris, 192 mm glycine, 10% methanol
BN anode buffer 50 mM Bis-Tris/HCl pH 7.0
BN cathode buffer 50 mM tricine, pH 7.0, 15 mM Bis-Tris, with or

without 0.02 % Coomassie Brilliant Blue G-250
BN gel buffer 66.67 mM 6-aminocaproic acid, 50 mM Bis-

Tris/HCl 7.0
BN sample loading buffer 0.5 % Coomassie Brilliant Blue G-250, 50 mM 6-

aminocaproic acid, pH 7.0
BN solubilzation buffer 1 % digitonin, 20 mM Tris/HCl pH 7.4, 0.1 mM

EDTA pH 8.0, 50 mM NaCl, 10 % Glycerol, 1 mM
PMSF

Carrier-DNA herring sperm DNA (10 mg/mL) in TE buffer
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Table 2.2.: List of solutions (continued)
Solutions Components

Cell culture medium DMEM (Dubelco’s modified Eagle Medium) sup-
plemented with 10 % (v/v) fetal calf serum (FCS),
1 mM sodium pyruvate, 2 mM L-gluatamine,
50 µg/mL uridin and with or without penicillin
streptomycine (filtered)

Colloidal Coomassie Staining solution 0.1% (w/v) Coomassie Brilliant Blue G-250, 2%
(w/v) phosphoric acid, 10% ammonium sulfate,
20% methanol

Coomassie staining solution 2.5 g/L Coomassie Brilliant Blue G-250, 40%
ethanol, 10% acetic acid

Destaining solution 30% ethanol, 10% acetic acid
DTT buffer 10 mm DTT, 100 mm Tris/H2SO4 pH 9.4
EM buffer 10 mm MOPS-KOH pH 7.2, 1 mm EDTA
Import buffer 3 % fatty acid free bovine serum albumin, 250 mM

sucrise, 80 mM KCl, 5 mM MgCl, 10 mM MOPS-
KOH pH 7.2, 5 mMmethionine, 2 mM NADH, with
or without 100 µg/mL creatine kinase and 5 mM
creatine phosphate

Homogenization buffer 0.6 m sorbitol, 10 mm Tris/HCl pH 7.4, 1 mm
EDTA, 0.2% (w/v) fatty acid free BSA, 1 mm
PMSF

LiAc/PEG 0.1 m Li-Acetate, 40% polyethylene glycol 400 in
water, filtersterilized

LiAc-TE 0.1 m Li-Acetate, 10 mm Tris pH 8.0, 1 mm EDTA
LB medium 1% (w/v) tryptone, 0.5% (wt/v) yeast extract, 1%

(wt/v) NaCl
PBS 137 mm NaCl, 2.7 mm KCl, 10 mm Na2HPO4,

1.8 mm KH2PO4

PMSF stock 0.2 m PMSF in ethanol
Resolving gel 14-16% acrylamide, 0.1 SDS, 80 mm Tris/HCl

pH 6.8, 0.1% ammoniumperoxodisulfate, 0.05%
TEMED

SEM buffer 250 mM sucrose, 10 mm MOPS-KOH pH 7.2, 1 mm
EDTA
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Table 2.2.: List of solutions (continued)
Solutions Components

SDS sample buffer 10% glycerol, 2% SDS, 0.01% bromophenole blue,
60 mm Tris/HCl pH 6.8

SDS running buffer 25 mm Tris, 192 mm glycine, 0.1% SDS
Stacking gel 4% acrylamide, 0.1% SDS, 380 mm Tris/HCl

pH 8.8, 0.1% ammoniumperoxodisulfate, 0.05%
TEMED

SEM buffer 250 mm sucrose, 10 mm MOPS-KOH pH 7.2, 1 mm
EDTA

TBS-T 50 mm Tris, 150 mm NaCl, 0.05% Tween-20
TE buffer 10 mm Tris pH 8.0, 1 mm EDTA
TAE buffer 40 mM Tris/acetate pH 8.0, 2 mM EDTA
TCA solution 72 % trichloroacetic acid in water
YPD medium 1 % yeast extract, 2 % peptone, 2 % glucose
YPG medium 1 % yeast extract, 2 % peptone, 3 % glycerol
Zymolyase buffer 1.2 m sorbitol, 20 mm K3PO4

2.1.3. Microorganism and cell lines

E. coli, S. cerevisiae and human strains used for expression and cloning are listed in
Table 2.3.

Table 2.3.: List of strains
Strains Genotype Reference
XL1-blue (E. coli) Stratagene
YPH499 (yeast) MATa ura3-52 lys2-801_amber

ade2-101_ochre trp1-∆63 his3-
∆200 leu2-∆1

Sikorski and Hieter (1989)
Genetics 122 : 19− 27

BY4741 MATa ura3−∆0 his3-∆1 leu2-
∆0 met15-∆0

Euroscarf

mic10∆ MATa ura3−∆0 his3-
∆1 leu2-∆0 met15-∆0;
mio10::kanMX4

Alkhaja et al. 2012

Tim18ZZ MATa ura3-52 lys2-801_amber
ade2-101_ochre trp1-∆63 his3-
∆200 leu2-∆1, tim18::tim18-
protAHIS3MX6

Rehling et al. 2002
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Table 2.3.: List of strains (continued)
Strains Genotype Reference
Mic60EPEA MATa ura3-52 lys2-801_amber

ade2-101_ochre trp1-∆63 his3-
∆200 leu2-∆1 mic60::MIC60-
EPEA-HIS3MX6

This study

Flp-In T-Rex-293
(HEK293T-REx; human)

life technologies

2.1.4. Oligonucleotides and Plasmids

Table 2.4.: List of oligonucleotides
Purpose Primers
oMD581 GCCGAATTCATGCTGGCCACCCGCGTGTTCAGC
SP6 TCTATAGTGTCACCTAAAT
oMD479 GTGGCGCGCTTAGGCATCAGCAAACCCAAGC
oMD490 ATATGTCAAAGAGCAGGAGCAGAAGGATCCA
oTM01 CACCGTGTCTGAGTCGGAGCTCGGC
oTM05 GGTGAGGAGGAAAGGCCTGGTCACG
oTM06 TTCCACTCAAGAGCTCTGCGACTCT

Table 2.5.: List of plasmids
Plasmid Purpose

pcDNA5/FRT/TO human expression plasmid
pcDNA5/FRT/TO-mitoAPEX Expression of APEX in mitochondrial matrix
pcDNA5/FRT/TO-Mic10-APEX Expression of MIC10-APEX
pcDNA3/FRT/TO-Mic10-BioID2 Expression of MIC10-BioID2
pYES2 yeast expression plasmid
pYES2-EPEA Expression of Mic60-EPEA

2.1.5. Antibodies

Primary antibodies used in this study were generated by injection of peptides or pu-
rified proteins into rabbits. Goat anti-rabbit HRP conjugate (Dianova) was used as a
secondary antibody.
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2.1.6. Kits

Commercial kits used in this study together with suppliers are listed in Table 2.6. Kits
were used and stored according to the manufactures’ instructions.

Table 2.6.: List of Kits
Kits Supplier

Complex IV Human Specific Activity Mi-
croplate Assay Kit

Thermo Scientific

FastDigest restriction enzymes Fermentas/Thermo Scientific
Flexi R©Rabbit reticulocyte Lysate System Promega
KOD Hot Start DNA Polymerase Novagen/Merck
TNT Quick coupled Transcrip-
tion/Translation system

Promega

QIAamp DNA Mini Kit Quagen
Wizard SV Gel and PCR Clean Up Promega
Wizard SV Mini-Prep Promega

2.1.7. Equipment

Laboratory equipment used in this study and suppliers are listed in Table 2.7.

Table 2.7.: List of Equipment
Product Model Supplier

Eletctrophoresis and blotting
EPS 601 power supply GE Healthcare
PowerPac HC Power supply Bio-Rad
Semi Dry Blotting Chamber PEQLAB Biotechnologie

Centrifuges

5415R Eppendorf
5417R Eppendorf
5424 Eppendorf
5804R Eppendorf
Sorvall RC 12BP Thermo Scientific
Sorvall RC6 Plus Thermo Scientific
Avanti J-26XP Beckmann Coulter

Imaging
Agfa Curix 60 Developing machine Agfa
Amersham Typhoon PhosphorImager GE Healthcare
Autoradiography Storage Phosphor Screen GE Healthcare
Delta Vision Fluorescence Microscope Applied Precision



2. Materials and Methods 28

Table 2.7.: List of Equipment (continued)
Product Model Supplier

Fluorescence Scanner FLA-9000 Fujifilm
V750 Pro Epson

Other

Autoclave Systec DX-200 Systec
Hoefer SE600 Ruby Blue native system GE Healthcare
Magnetic Stirrer MR 3001 Heidolph
MilliQ water purification system Millipore
NanoVue Spectrophotometer GE Healthcare
pH-meter InoLab
Pipettes Gilson
Potter S glass-Teflon Homogenizer Satorius AG
Thermomixer Comfort Eppendorf
Vortex-Genie 2 Scienticic Industries

2.1.8. Software

Table 2.8.: Software used in this study
Software Producer

ChemBioDraw Ultra 13.0 CambridgeSoft
ChemSketch 12.0 ACD Labs
DataGraph 4.3 Visual Data Tools, Inc.
Geneious Prime Biomatters, Auckland, New Zealand
Fiji Image Processing Johannes Schindelin, Albert Cardona, Mark

Longair, Benjamin Schmid, and others
Illustrator CS5.3 Adobe Systems
ImageQuant TL GE Healthcare
Microsoft Office 2013 Microsoft Corporations
mikTEX Christian Schenk
Papers 3 Mekentosj, Aalsmeer, Netherlands
Photoshop CS5.1 Adobe Systems
Softworx Image Acquisition Software Applied Precision, Bratislava, Slovakia
Texmaker Pascal Brachet
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2.2. Cell cultivation and isolation of mitochondria

2.2.1. Transformation of HEK-cells

For the transformation, HEK293T-REx cells were grown on a 6 well plate. To 100 µL
Opti-MEM were added 5 µL Lipofectamine solution, 400 ng pcDNA5 and 1200 ng
pOG44. The solution was mixed by pipetting and incubated for 20 min at RT to
form the reagent complexes. 600 µL DMEM-medium were added and the solution was
given drop-by-drop to the cells. After incubation for 3 h at 37 ◦C and 5% CO2, 4 mL
DMEM-medium were added and the cells grown for two days. Subsequently, selection
was started by adding 2 mL fresh DMEM-medium with 4 µL hygromycin. After one
week of selection, single cells were pipetted and grown on new wells in selective medium.

2.2.2. Isolation of human mitochondria

For isolation of human mitochondria (Mick et al., 2012), cells were grown on a 14 cm
TC-plate. To start proteinbiosynthesis of modified proteins, the cells were induced for
at least 12 h with tetracyclin (final concentration of 0.001 mg/mL). The medium was
removed, the cells washed with 10 mL PBS and removed from the plate with 2x 5
mL PBS + 1 mm EDTA followed by centrifugation for 10 min at 1500 rpm and 4 ◦C.
The pellets were resuspended in 2 mL cold THE-buffer containing 1% BSA and 1 mm
PMSF. The cells were opened by 3 cycles of pottering 25x in a Potter S homogenizer,
centrifugation for 10 min at 4000 g, keeping the supernatant and resuspending the
pellet again in THE-buffer. The supernatant again was centrifuged for 5 min at 8000 g,
transferred into new tubes and centrifuged for 10 min at 11000 g and the pellets were
resuspended in 100 µL THE without BSA.
Using a 10% Bradford-based reagent Roti-Quant solution and Bovine IgG as a stan-

dard protein, the mitochondrial protein concentration was determined. Absorption at a
wavelength of 595 nm was measured after 5 min of incubation using a GeneQuant 1300
Spectrophotometer. Isolated mitochondria were adjusted to 5 mg/mL in THE, flash
frozen in liquid nitrogen and stored at -80◦C.

2.2.3. Isolation of yeast mitochondria

For isolation of mitochondria as published (Meisinger, Pfanner, & Truscott, 2006), Yeast
were grown at 30 ◦C in YPG medium to an OD600 of 2-3. Cells were pelleted and
resuspended in buffer A (10 mM DTT, 100 mM Tris/H2SO4 pH 9.4) and incubated for
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30 min at 30 ◦C. To remove the cell wall, cells were incubated after washing in zymolase
buffer (20 mMKPO4 pH 7.4, 1.2 M sorbitol and 0.57 mg/L zymolase) for 1 h at 30 ◦C and
subsequently opened in cold homogenization buffer (600 mM sorbitol, 10 mM Tris/HCl
pH 7.4, 1 g/L BSA, 1 mM PMSF and 1 mM EDTA) with a cell homogenizer. Differential
centrifugation lead to a mitochondrial fraction, which was resuspended in SEM buffer
and frozen in liquid nitrogen.

2.2.4. Transformation of E. coli

For transformation, frozen bacteria were thawed on ice, 100 ng of DNA was added and
incubated for 10 min on ice. Then, bacteria were heat-shocked at 42 ◦C for 1 min and
put back on ice for 1 min. Afterwards, 1 mL LB medium was added and bacteria were
incubated for 1 h at 37 ◦C, 1000 rpm. After centrifugation for 1 min at 16000 g, the
pellet was resuspended in 100 µL medium and plated out on LBamp plates.

2.2.5. Transformation of Saccharomyces cerevisiae

Yeast cells YPH499 were grown over night in 2x YPD Medium and harvested by cen-
trifugation for 5 min at 4000 rpm. Subsequently, cells were washed 2x with 5 mL 0.1 m
LiAc-TE buffer and were gathered in 2 mL buffer. To 50 µL of yeast cells were added
5 µL of Hering sperm DNA in TE buffer as carrier DNA, 1.5 µL of purified DNA or
plasmid pYES2 and 300 µL of 0.1 m LiAc/PEG-4000 medium. After incubation for
30 min at 30 ◦C, 36 µL DMSO were added, the cells heat-shocked for 15 min at 41 ◦

and pelleted at 4000 rpm for 5 min. Cells were resuspended in 75 µL DNase free water
and plated on seletive plaets and incubated at 30 ◦C.

2.2.6. Isolation of Yeast mitochondria

Mitochondria from yeast were isolated essentially as described before (Stojanovski, Pfan-
ner, &Wiedemann, 2007). Yeast strains were grown in selective YNB-URAmedium with
2% raffinose or 2% galactose to an OD600=1.5-2.0 and pelleted for 15 min at 18 ◦C, 4000
rpm. Cells were washed with H2O, pooled, re-pelleted and incubated at 30 ◦, 90 rpm
in DTT buffer (2 mL per gram wet cell mass) for 30 min. After DTT treatment, cells
were centrifuged at 18 ◦C for 8 min at 4000 rpm, washed with 1.2 m d(+)-Sorbitol and
re-pelleted. Next, cells were resuspended in zymolyase buffer (7 mL per gram wet cell
mass), 4 mg Zymolyase per gram wet cell mass in sorbitol was added and the yeast
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was incubated at 90 rpm for 60 min at 30 ◦C. Afterwards, zymolyase treated cells were
pelleted at 18 ◦C for 10 min at 3000 rpm and washed with 100 mL zymolyase buffer.
Next, cells were resuspended in homogenization buffer in a volume of 7 mL/g of yeast
and opened using a pre-cooled Potter S homogenizer at 700 rpm for 15 cycles. The
homogenate was centrifuged at 4 ◦C for 5 min at 3000 rpm and the supernatant was
collected and re-centrifuged at 4 ◦C for 10 min at 4000 rpm. Subsequently, mitochon-
dria were pelleted at 4 ◦C for 15 min at 12000 rpm, pellets pooled in ice cold SEM
containing 1 mm PMSF, re-centrifuged using the same conditions and resuspended in
an appropriate amount of SEM buffer.
Using a 10% Bradford-based reagent Roti-Quant solution and Bovine IgGs as a stan-

dard protein, the mitochondrial protein concentration was determined. Absorption at a
wavelength of 595 nm was measured after 5 min of incubation using a GeneQuant 1300
Spectrophotometer. Isolated mitochondria were adjusted to 10 mg/mL in SEM, flash
frozen in liquid nitrogen and stored at -80◦C.

2.3. Molecular biology methods

2.3.1. Isolation of plasmids from E. coli

A Wizard R© Plus SV Minipreps DNA purification Kit (Promega) was used to isolate
plasmids from E. coli strains according to the manual. Therefore, an overnight culture
of bacteria harbouring the plasmid of interest were pelleted and resuspended in 250
µL resuspension buffer. Next, 250 µL of lysis buffer and 10 µL of alkaline protease
were added and mixed by inverting for 4 times. Subsequently, 350 µL of neutralizing
solution were added and the lysate was cleared by centrifugation for 10 min at 21000 g.
The supernatant was loaded on columns and washed with 700 µL and 400 µL washing
buffer supplemented with ethanol. Residual ethanol was removed by centrifugation of
the columns without buffer and finally, DNA was eluted with 50 µL of DNase free water.

2.3.2. Polymerase chain reaction (PCR)

DNA fragments for molecular cloning and yeast transformation were amplified using
KOD Hot Start DNA polymerase (Novagen) according to manufactures protocol. Each
50 µL reaction mix contained 200 ng of genomic DNA, 0.2 mm dNTP, 1 mm MgSO4,
0.3 µm forward and reverse primers and 1 U KOD polymerase in 1x KOD reaction
buffer. First, template DNA was denatured at 95 ◦C for 2 min. After this, 9 cycles of
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polymerase chain reaction were performed. PCR products were analysed by agarose gel
electrophoresis with ethidium bromide staining followed by exposure to UV light.

2.3.3. Agarose gel electrophoresis

For the visualization and purification of PCR products of different length, agarose gel
electrophoresis was used. 1% agarose solution was freshly prepared by dissolving an
appropriate amount of dry agarose in TAE buffer. The mixture was heated until agarose
dissolved completely and then cooled to approximately 50 ◦C. Ethidium bromide was
added to the final concentration of 1 mug/mL and solid gel was prepared. Samples were
mixed with DNA loading dye, loaded on the solid gel and run at 8 V/cm. Separated
DNA fragments were visualized by illuminating the gel with UV-light.

2.3.4. Gel purification of DNA

DNA was analysed on agarose gels, cut out and purified using the Wizard R© SV Gel and
PCR Clean-Up System Kit. For this, 10 µL membrane binding buffer per 10 mg excised
gel was added and the gel was dissolved at 55 ◦C and 800 rpm for 10 min. The solution
was than loaded on a column, incubated for 1 min and centrifuged for 1 min at 16000 g.
Next, the columns were washed with 700 µL and 500 µL washing solution and dried for
2 min at 16000 g and for 5 min at 37 ◦C. The DNA was eluted with 50 µL DNase free
water.

2.3.5. Molecular cloning

For cloning of DNA fragments into plasmids, Fast Digest restriction enzymes (Fermentas)
were used as prescribed before (Sambrook & Russel, 2001). Therefore, the plasmid and
the corresponding PCR product were digested with the respevtive FastDigest restriction
enzyme (ThermoScientific). In 1x FastDigest buffer, 500 - 800 ng DNA were mixed with
1 µL of both restriction enzymes in a total reaction volume of 30 µL. After incubation for
30 min at 37 ◦C, digested fragments were purified as described before (see section 2.3.4).
The ligation mix contained 5 µL digested plasmid, 10 µL digested insert, 4 µL DNA
Ligation buffer and 1 µL T4 DNA Ligase (Rapid DNA Ligation Kit, Thermo Scientific)
and was incuabted for 30 min at 22 ◦C. For bacterial expression, 10 µL of the mixture
were transformed into competent E. coli XL1 cells (see section 2.2.4). Collected clones
were confirmed by restriction digestion and sequencing (SeqLab, Göttingen).
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2.4. Biochemical methods

2.4.1. Immunofluorescence of U2OS-Cells

For microscoping the cells, an immunofluorescence protocol had to be done. Therefore,
the cells were grown on a cover slip and transfected 24 h before. Cells were incubated
for 20 min with MitoTracker Orange CMTMRos (Life Technologies). The slips were
gently washed with PBS and incubated with 4% PFA in PBS for 20 min at 37 ◦C. After
washing 5x with PBS they were incubated in 0.2% Triton X-100 for 20 min at rt. They
were washed again 5x with PBS and incubated another 20 min at rt in 1% BSA and
washed again 5x with PBS.
The samples were placed in a dark humid chamber and 40 µL of monoclonal anti-HA

antibody were applied. After incubation for 1 h at rt and washing 5x with PBS 40 µL
second antibody (AlexaFlour488 GαM 1:200 in PBS) were applied and incubated for
another 30 min. The samples were washed 5x with PBS and 1x with H2O. One drop
DAPI/mowiol solution was applied on a glass slide and the cover slip put upside down
onto the drop. After drying over night at rt in the dark the samples were stored at
4◦C and analysed by fluorescence microscopy. Electron microscopy was performed as
previously described (Richter et al., 2019).

2.4.2. Swelling of mitochondria

For swelling, aliquots of 2 x 11 µL and 1 x 5.5 µL mitochondria (10mg/mL) were
prepared. In order to get fully intact mitochondria, 100 µL SEM-buffer were added to
one 11 µL aliqout and split into 4 25 µL aliquots.
To prepare mitoplasts, 50 µL EM-buffer were added to the second 11 µL/g aliquot and

gently pipetted 20 times, than another 50 µL EM-buffer were added and again followed
by gently pipetting and aliquotation into 25 µL aliquots. This leads to a rupture of
the outer mitochondrial membrane due to absence of an osmotic support. Subsequently,
both samples were swollen for 25 min on ice and 0, 3, 6, or 9 µL proteinase K (1mg/mL)
were added. After 10 min incubation on ice, 1.5 µL PMSF (0.2 m) were added to each
sample to inhibit the proteinase and incubate again for 10 min on ice. The mitochondria
and mitoplasts were spinned out for 10 min at 13.200 rpm and 4 ◦C and the pellets were
resuspended in 30 µL 1x SDS sample buffer (+1% β-Mercaptoethanol and 1 mm PMSF).
To rupture both, the outer and inner mitochondrial membrane, 34.5 µL EM-buffer

were added to the 5.5 µL aliquot, split into 2 x 20 µL and mixed with 0 or 9 µL proteinase
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K. The samples were subjected to 3 x 20 sec indirect ultra sound pulses and 10 µL 4x
SDS sample buffer were added. All samples were analysed by SDS-PAGE.

2.4.3. Affinity purifications

Isolated mitochondria were solubilized in buffer (20 mM Tris-HCl, pH 7.4, 100 mM
NaCl, 0.5 mM EDTA, 10 % (w/v) glycerol, 1 mM PMSF, 1 % digitonin) at a final
concentration of 1 mg/mL and incubated at 4 ◦C for 30 min. Lysates were cleared
by centrifugation at 14,000 g for 10 min at 4 ◦C and applied to affinity matrices. For
FLAG immunoprecipitations, anti-FLAG agarose affinity resin (Sigma-Aldrich) and for
immuoprecipitations of MIC10BioID2, anti-HA agarose affinity resin (Sigma-Aldrich) were
used. For protein A and EPEA isolations, human-IgG sepharose (MP Biomedicals) or
purified EPEA nanobody, respectively, were coupled to CNBr-Activated sepharose 4B
(GE Healthcare) according to the manufacturers protocol. Affinity columns for Tim21
and Tim23 immunoisolations were prepared by crosslinking protein A-sepharose beads to
Tim21 or Tim23 antisera. Protein lysates were incubated with affinity resins for 1 hour
at 4 ◦C on an end-over-end shaker. Unbound proteins were removed by centrifugation
(100 x g, 1 min, 4 ◦C) through a minicolumn fitted with a filter. The beads were washed
10 times with W-buffer (25 mM Tris/pH7.4, 150 mM NaCl, 1 mM EDTA, 10 %(w/v)
Glycerol, 0.3 % (w/v) Digitonin, 1mM PMSF). Samples were eluted with 0.1M glycine
(pH 2.8), except in the case of EPEA isolation (W-buffer + 0.5 mg/ml EPEA peptide
for 10 min at RT), protein A isolation (cleaved overnight at 4 ◦C with 0.4 mg/mL
acetylated tobacco etch virus (AcTEV; Thermo Fisher Scientific) protease), or native
elution of MIC10FLAG (W-buffer + 5 µg/mL FLAG peptide (Sigma)).

2.4.4. In vitro mitochondrial import

Radiolabeled precursor proteins were synthesized using rabbit reticulocyte lysate (Promega)
in the presence of [35S]methionine. Isolated mitochondria were diluted in import buffer
for yeast (250 mM sucrose, 10 mM MOPS/KOH pH 7.2, 80 mM KCl, 2 mM KH2PO4,
5 mM MgCl2, 5 mM methionine, 2 mM ATP, 2 mM NADH and 3 % BSA supplemented
with 5 mM creatin phosphate and 0.1 mg/mL creatine kinase for TIM22 substrates).
Import reactions were initiated by addition of 2 % or 5 % lysate for TIM23 substrates
and TIM22 substrates respectively. Samples were incubated with radiolabelled proteins
for the indicated times. To stop the reaction, membrane potential was dissipated on
ice using 8 mM antimycin A, 1 mM valinomycin and 10 mM oligomycin. Non-imported
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proteins were removed by Proteinase K (20 µg/mL) treatment for 10 minutes on ice.
2mM PMSF was added to inactivate Proteinase K for 10 minutes on ice. Mitochondria
were collected, washed with SEM buffer (250 mM sucrose, 1 mM EDTA, 20 mM MOPS,
pH 7.2) and used for SDS-PAGE analyses or BN-PAGE analyses. Results were visual-
ized using digital autoradiography. Quantifications were performed using ImageQuant
TL (GE Healthcare) using rolling ball background subtraction.

2.4.5. Generating and isolating the TOM-TIM23 supercomplex

For arresting the supercomplex, Prec-sfGFP was imported in isolated mitochondria as
described before. After import, mitochondria were pelleted for 10 min, 16,000 x g, 4 ◦C
and washed once with SEM. Mitochondria were solubilized in digitonin-containing buffer
as prescribed before. For affinity purification, Strep-Tactin sepharose beads (IBA) were
pre-incubated with purified GFP nanobody for 1 h at RT and washed with 2X buffer
(40 mM HEPES/KOH pH 7.4, 300 mM NaCl, 40 % glycerol, 0.2 mM EDTA). Cleared
mitochondrial lysate was incubated for 1 h at 4 ◦C on a rotating wheel. Beads were
washed with W-buffer as prescribed before (see 2.4.3) followed by elution with 7.5 mM
desthiobiotin in wash buffer. Samples were analysed by SDS-PAGE and western blotting.

2.4.6. In organello biotinylation

Adapted from (Rhee et al., 2013). For biotinylation, 1 mg of mitochondria were cen-
trifuged for 5 min at 13200 rpm and 4 ◦C and the pellet resuspended in 1 mL buffer
(THE for human mitochondria, SEM for yeast mitochondria). This was aliquoted into
2 x 500 µL (positive and negative sample), to the positive-sample 500 µm biotin-phenol
were added and to the negative-sample the equivalent amount of buffer. Both samples
incubated 10 min at 25 ◦C and 400 rpm before addition of H2O2 (final concentration of
1 mm) and incubation for 1 min. The samples were centrifuged for 5 min at 13200 rpm,
the supernatant was discarded and the pellet resuspended in 600 µL quenching solution
(10 mm NaN3, 10 mm Na-Ascorbat, 5 mm Trolox) followed by again centrifugation.
These step was repeated three times. Subsequently, the pellet was resuspended in 500
µL extraction buffer (20 mm Tris/HCl pH 7.4, 50 mm NaCl, 0.5 mm EDTA, 10% glyc-
erol, 1% Triton X-100, 1 mm PMSF) and incubate short time at rt. After centrifugation
for 10 min at 13200 rpm the supernatant was loaded on equilibrated containing 80 µL
slurry matrix material and incubate for 30 min on an end-over-end shaker. The columns
were centrifuged for 1 min at 1000 g and washed 10x with 400 µL washing buffer (20
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mm Tris/HCl pH 7.4, 50 mm NaCl, 0.5 mm EDTA, 10% glycerol, 0.5% Triton X-100, 1
mm PMSF) and dried for 2 min at 2000 g. For elution, depending on column material,
either 2 mm d-Biotin (2 x 40 µL, incubation for 5 min at rt), 0.1 m glycin pH 2.8 (2 x
40 µL, incubation for 5 min at rt) or hot SDS sample buffer with 5 mm desthiobiotin
(80 µL, incubation for 5 min at 95 ◦C). All samples were analysed by SDS-PAGE.

2.4.7. In vivo biotinylation of HEK-cells

For in vivo biotinylation of HEK-cells as published (Roux, Kim, Burke, & May, 2018),
those were grown on a 14 cm TC-plate. To start proteinbiosynthesis of modified pro-
teins, the cells were induced for at least 12 h with tetracyclin (final concentration of 1
mug/mL). 500 µm biotin phenol in DMEM-medium was added to the cells and incubate
for 30 min at 37 ◦C before addition of H2O2 (final concentration of 1 mm) for 1 min
at rt. The cells were washed twice with 10 mL quenching solution (see in organello
biotinylation) and once with PBS. 10 mL quenching solution were added and the cells
were collected by gently pipetting followed by centrifugation for 5 min at 2000 rpm.
The pellet was frozen for at least 0 min at -80◦C. Subsequently, the cell pellets were
lysed by thawing on ice, followed by addition of 400 µL fresh RIPA lysis buffer (0.5%
Na-deoxycholat, 5 mm Trolox, 50 mm Tris/HCl pH 7.4, 150 mm NaCl, 0.1% SDS, 1%
Triton X-100, 1 mm PMSF, 10 mm NaN3, 10 mm Na-ascorbate, protease-cocktail) and
incubation for 5 min on ice. The lysates were clarified by centrifugation for 10 min at
13000 rpm. The supernatant was loaded on the columns and incubated for 30 min on an
end-over-end-shaker. The flow-through was removed for 30 sec at 100 g and the beads
washed 2x with RIPA lysis buffer, 1x with 2 m urea in 10 mm Tris/HCl pH 8.0 and
again 2x with RIPA lysis buffer. For elution, depending on column material, either 2
mm d-Biotin (2 x 75 µL, incubation for 5 min at rt), 0.1 m glycin pH 2.8 (2 x 75 µL, in-
cubation for 5 min at rt) or hot SDS sample buffer with 5 mm desthiobiotin (2x 125 µL,
incubation for 5 min at 95 ◦C). All samples were analysed by SDS-PAGE.

2.4.8. Measurement of mitochondrial membrane potential

Mitochondrial membrane potential in human cells was assessed using the fluorescent
dye Tetramethylrhodamine-methylester (TMRM). Cells were incubated for 30 min at
37◦C with staining solution (0.1 µM TMRM in DMEM) and subsequently washed, har-
vested and then fixed for 10 min in 2 % PFA in PBS. Cells were then measured in
PBS supplemented with 10 % FBS, using a BD-Canto flow cytometer (Becton Dick-
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inson), with excitation at 488 nm and detection with a 570 ± 10 nm emission filter.
Mitochondrial membrane potential in yeast was measured using a potential-sensitive
dye 3,3â-dipropylthiadicarocyanine iodide (DiSC3(5)). Mitochondria were diluted in a
buffer containing 600 mM sorbitol, 1 % (wt/vol) BSA, 10 mM MgCl2 and 20 mM KPi
(pH7.4) to a concentration of 166 µg/mL. Changes in fluorescence were assessed with
an F-7000 fluorescence spectrophotometer (Hitachi, JP), at room temperature, with ex-
citation of 622 nm, emission at 670 nm and slits of 5 nm. After reaching a stable signal,
components were added to the cuvette in the following order: 500 µL of buffer, DiSC3(5),
15 µg of mitochondria, 1 µM valinomycin (to compare relative differences in membrane
potential, the difference in fluorescence before and after addition of valinomycin was
used).

2.4.9. TCA precipitation of Saccharomyces cerevisiae

In order to verify the transformation, a TCA precipitation was performed. Therefore,
one colony per culture was inoculated in 4 mL YNB-ura medium with 1% raffinose.
After growing over night each culture was split into two and to one half 1% galactose
was added. The cells were pelleted for 2 min at 13200 rpm and resuspended in 300 µL
PBS. 100 µL TCA were added and mixed well. Cells were frozen for 20 min at -80 ◦C
and thawed at rt. After centrifugation for 15 min at 13200 rpm and 4 ◦C the supernatant
was discarded and the pellet was washed with 500 µL cold 80% acetone and centrifuged
again for 15 min at 13200 rpm and 4 ◦ and dried for 15 min at rt. Subsequently, the
pellet was resuspended in 150 µ 1x pellucid Laemmli and incubated for 20 min at 30 ◦C.
Next, 50 µL 4x Laemmli (+ 1% β-Mercaptoethanol) were added and incubated for 5 min
at 95 ◦C. The samples were analysed by SDS-PAGE.

2.4.10. SDS-PAGE

Denaturing SDS-PAGE was performed similar as described by Laemmli (1970). For this,
gels with 0.1% SDS were used with a stacking gel containing 4% acrylamide (37.5:1 ratio
of acrylamide to bisacrylamide), 80 mm Tris/HCl pH 6.8 and a separating gel containing
14 or 16% acrylamide, 385 mm Tris/HCl pH 8.8. Experiments were done using running
buffer containing 190 mm glycine, 25 mm Tris/HCl pH 6.8 and 0.1% SDS (w/v). Before
loading, samples were incubated for 5 min at 95 ◦C in SDS sample buffer and run in a
custom-made midi gel system at 25 mA or 30 mA per gel respectively.
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2.4.11. Western blotting and immunodecoration

Proteins were transferred to polyvinylidene fluoride (PVDF) membranes after SDS-
PAGE by semi-dry blotting using PREQLAB chambers. The membranes were activated
in ethanol and washed in transfer buffer (20 mm Tris, 150 mm glycine, 0.02% SDS (w/v),
20% ethanol). Next, the membrane was placed on top of three Whatman papers soaked
in transfer buffer, the gel was placed on the membrane and topped with three additional
Whatman papers. Blotting was done for 2.5 h at 250 mA. Subsequently, the membranes
were stained with coomassie R-250, destained with methanol and blocked in 5% milk in
TBS-T for 1 h at rt. After that, the membranes were washed with TBS-T and incubated
with the primary antibody for 1 h at rt oder over night at 4 ◦C. The membranes were
washed 3x for 10 min each with TBS-T and 1:10000 diluted HRP coupled secondary an-
tibody was added and incubated for 1 h at rt. After another 3 washing steps in TBS-T,
ECL was added and the signals were detected using x-ray films.

2.4.12. Coomassie Brilliant Blue staining

Proteins in SDS gels and PFDV membranes were stained using a solution containing
2.5 g/mL Coomassie Brilliant Blue R-250, 40% (w/v) ethanol and 10% acetic acid at
room temperature for 5 minutes (PVDF) oder 1 h (gels). Washing with 30% ethanol,
10% acetic acid reduced background staining.

2.4.13. Colloidal Coomassie staining

Colloidal coomassie staining for subsequent MS analysis was performed similar as de-
scribed by Neuhoff et al. (1988). In order to stain acrylamide gels which were used
for MS analysis, gels were fixed at least 60 min in 40% (v/v) ethanol and 10% acetic
acid. After washing with MilliQ water for 2 times, the gels were stained at least over
night with a dye solution containing 0.1% (w/v) Coomassie Brilliant Blue G250, 2%
(w/v) ortho-phosphoric acid, 10% (w/v) ammonium sulfate and 20% (v/v) methanol.
Background staining was removed with 1% (v/v) acetic acid.

2.4.14. Mass-spectrometry

2.4.14.1. Sample preparation for mass spectrometry

Samples were separated on 4-12% NuPAGE Novex Bis-Tris Minigels (Invitrogen). After
staining with Coomassie blue, each lane was sliced into 23 equdistand slices. To per-
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form protein digestion, gel slices were washed, reduced with DTT and alkylated with
2-iodoacetamide followed by digestion with En7dopeptidase Trypsin (sequencing grade,
Promega) overnight. The extracted peptide mix was dried in a SpeedVac and resus-
pended in 2% acetonitrile/0.1% formic acid/ (v:v) to be analysed by nanoLC-MS/MS
as described previously (Atanassov & Urlaub, 2013).
Sample preparation and data analysis were performed by ThierryWasselin and Christof

Lenz of the Bioanalytical Mass Spectrometry Group at the Max-Planck Institute for Bio-
physical Chemistry in Göttingen.



3. Results 40

3. Results

3.1. Deletion of MIC10 alters inner mitochondrial
membrane morphology

3.1.1. Generation of MIC10 knock-out using the CRISPR/Cas9
system

The MICOS complex is crucial for forming and maintaining cristae junctions. Since
initial studies in mammalian cells revealed MIC60 being essential for proper inner mi-
tochondrial membrane morphology (John et al., 2005) it could also be shown that the
same is observed for Mic10 in yeast (Alkhaja et al., 2012; von der Malsburg et al., 2011;
Harner et al., 2011). The most insight about the function and necessity of Mic10 in
mitochondrial ultrastructure come from various studies in yeast S. cerevisiae (Friedman
et al., 2015; Barbot et al., 2015; Milenkovic & Larsson, 2015; Bohnert et al., 2015).
So far, only studies of MICOS in knock-down cells were published and revealed an im-
pact of the individual subunits on the mitochondrial membrane ultrastructure (Li et al.,
2016). To investigate the necessity of the MICOS complex and the unique morphology
of the mitochondrial inner membrane for proper functionality of mitochondria in the
mammalian system, a MIC10-/- cell-line using the CRISPR/Cas9 system was generated.
Therefore a MIC10 specific guide RNA was identified by online software prediction tools
and cloned. The system is based on the guide RNA targeting the genomic locus of inter-
est using the bacterial Cas9 nuclease, it induced a double-stranded breake (P. Horvath
& Barrangou, 2010; Ran et al., 2013), which resulted in the recruitment of the cell’s
DNA repair machinery. The repair mechanism is very error-prone, leading mostly to a
disrupted gene which results in a loss of protein expression (Ran et al., 2013).
To achieve this, for MIC10 specific primers were designed targeting the first exon

of the gene and cloned into the CRISPR/Cas9 vector pX458. The cloned plasmid was
transiently transfected into HEK293T-REx cells and single cells expressing the additional
GFP-protein from the plasmid were sorted. To confirm the deletion of the protein,
western-blot analysis of cell lysates with antibody against MIC10 was performed and
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the clone missing the protein signal was used for further studies. To verify the knock-
out on a genomic level, genomic DNA was isolated and PCR amplification of the open
reading frame (ORF) of the MIC10 gene (EXON1) was carried out (Fig.3.1). The initial
CRISPR induced double strand break at the designed target region led to multiple
incorrect inserted base pairs (bp) after the first 18 bp of the ORF during the repair
event. This resulted in an shortened protein after 126 bp by a premature stop codon.
Thus, transcription and translation of this altered ORF led to a completely different
protein after the first 6 amino-acids and no biosynthesis of a functional MIC10 is taking
place in these cells.

Figure 3.1.: CRISPR/Cas9 mediated knock-out leads to cancellation of WT MIC10
sequence in the first exon.
Sequencing of isolated genomic DNA from WT and MIC10-/- cells revealed a failed repair attempt after
CRISPR/Cas9 treatment, thus leading to an abolition of the WT MIC10 sequence after the first 18
nucleotides.

3.1.2. Ablation of MIC10 affects mitochondrial inner membrane
morphology

In yeast, deletion of Mic10 leads to a loss in cristae junctions, due to which the inner
membrane loses its unique shape with distinct sections. Therefore resulting in onion-
like shaped rings of the inner membrane (von der Malsburg et al., 2011; Alkhaja et al.,
2012). To assess the ultrastructure in mitochondria from the MIC10-/- cells, an electron
microscopy analysis was carried out in collaboration with Daniel C. Jans and Stefan
Jakobs of the Max Planck institute for Biophysical Chemistry in Göttingen. Cells were
fixed with glutaraldehyde and embedded in agarose, sections of WT and MIC10-/- cells
were analysed using transmission electron microscopy. Whereas the WT cells displayed
proper cristae junctions and distinctly long-shaped cristae, the deletion of MIC10 in
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HEK-cells resulted in loss of cristae junctions, no formation of precise cristae and only
ring-shaped inner mitochondrial membrane could be observed (Fig. 3.2) as shown for
mic10∆ cells in yeast and MEF cells treated with shRNA against MIC10.

Figure 3.2.: Ablation of MIC10 leads to loss of cristae junctions and alteration of
mitochondrial morphology.
WT, MIC10-/- and MIC10-/- cells expressing MIC10FLAG were analysed using transmission electron
microscopy to asses inner mitochondrial membrane morphology. Scale bar 1 µm. Courtesy of Daniel
C. Jans and Stefan Jakobs.

To confirm that the observed morphological phenotype was based on the absence of
MIC10 and was not an off-target effect of the CRISPR-approach, MIC10-/- cells were
transfected with a MIC10FLAG coding vector and the mitochondrial structure analysed.
Bringing back the protein in the background of the knock-out could rescue the mor-
phological phenotype (Fig. 3.2). This proved that also in mammalian cells MIC10 is
crucial for maintaining and forming cristae junctions, thus important for proper inner
mitochondrial membrane formation. For further investigation of the effect of alteration
in the inner membrane structure, a cell proliferation assay was performed. For this pur-
pose, 50,000 cells of WT and MIC10-/- were seeded and grown for three days on media
containing either glucose or galactose. Cells were counted using a Neubauer chamber.
However, neither growth on glucose nor galactose displayed a difference in cell prolifer-
ation after loss of MIC10 (Fig 3.3).
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Figure 3.3.: Ablation of MIC10 does not influence
cell proliferation.
Cell proliferation assay of WT and MIC10-/- cells grown in
media containing either glucose or galactose. (mean ± SEM;
n=3)

3.1.3. MIC10-/- mitochondria showed altered protein levels for
MIC13

In spite of loosing their unique inner morphology, mitochondria lacking MIC10 seem to be
able to maintain their function to not influence cell growth and health. To assess whether
there is an impact of the altered morphology on the protein level, mitochondria from
WT and MIC10-/- were isolated and steady state levels of various inner mitochondrial
membrane proteins were evaluated by western-blot analysis (Fig. 3.4).

Figure 3.4.: MIC10-/- exhibits minor changes in protein steady state levels.
Mitochondria isolated from WT and MIC10-/- cells were analysed by western blot probing with various
antibodies against MICOS, OXPHOS and translocases of the inner membrane.

Probing with antibodies against various MICOS components revealed that MIC60 and
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MIC19, as part of the MIC60 subcomplex (Friedman et al., 2015), were slightly more
abundant in the MIC10-/- cells then in the WT cells, whereas MIC13 was not present
anymore in the MIC10-/- mitochondria. Thus led to the conclusion, that indeed the
MIC60 subcomplex is able to function independently from the MIC10 subcomplex and
upon loss of MIC10, MIC13 as an assembly factor of those two subcomplexes was not
required anymore. Expression of MIC10FLAG in MIC10-/- cells could rescue the protein
levels of MIC10 and MIC10 (Fig. 3.5).

Figure 3.5.: MIC10FLAG expression rescues MIC10-/-

phenotype.
MIC10-/- were transiently transfected with a MIC10FLAG coding vec-
tor and protein expression was assesed using western blot analysis.

Interestingly, only COX1 as part of the complex IV was affected of the OXPHOS
machinery and its level slightly decreased, whereas COX6A as part of the same complex
was not affected. Additionally, subunits of complex 1 (NDUFA9, NDUFB8), complex
III (RIESKE) and complex V (ATP5B) were unaffected. Furthermore, translocase com-
ponent TIM21 of the TIM23 complex did not show an effect upon the absence of MIC10.
However, probing for components of the TIM22 complex revealed a slight decrease in
TIM29 and an even more pronounced decrease in TIM22, two core components of the
translocase. An effect of MIC10 ablation on the function of the TIM22 complex was
confirmed by co-workers (Callegari et al., 2019).
To assess additional potential effects of a changed inner membrane structure, mito-

chondrial membrane potential was measured using the fluorescent dye tetramethylrho-
damin methylester (TMRM). Being generated by proton pumps of the OXPHOS, it is
essential for various mitochondrial functions, for example energy storage during oxidative
phosporylation, protein import into mitochondria (Zorova et al., 2018). Furthermore, it
is an indicator for mitochondrial health. To that end, cells were incubated for 30 min
with a staining solution containing the dye and afterwards fixed with paraformaldehyde
(PFA). The uptake of the membrane potential sensitive dye was measured using fluores-
cent activated flow cytometry and the fluorescent intensity of 10,000 cells was recorded.
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Figure 3.6.: Deletion of MIC10 does not result in an al-
teration of membrane potential.
WT and MIC10-/- cells were stained with membrane potential sen-
sitive dye TMRM. After fixation the fluorescence of 10,000 cells was
measured using flow cytometry. (mean ± SEM, n=6)

Compared to the WT cells, MIC10-/- cells did not display a change in fluorescent
intensity (Fig. 3.6), thus the membrane potential was not affected despite the loss of
cristae junctions. This lead to the conclusion that even though no distinct cristae are
formed, the respiratory chain seem to operate appropriately to maintain mitochondrial
function.

3.1.4. Respiration rate of MIC10-/- cells

Since COX1 levels in MIC10-/- mitochondria were reduced, this finding was indicative
of an effect on the mitochondrial respiratory chain, although mitochondrial membrane
potential was unaffected.
To adress a malfunction of respiration in the MIC10-/- cells, the amount and activity

of complex IV was addressed using a complex IV Human Specific Activity Microplate
Assay Kit. Cells were solubilized and applied to the provided plate to immunocapture
complex IV. To colorimetrically asses the activity, reduced cytochrome c was added,
whose oxidation by the complex can be measured by an absorbance at 500 nm. Subse-
quently, the amount of enzyme complex was assessed by adding a complex IV specific
antibody conjugated with alkaline phosphatase. The phosphatase reacts with the sub-
strate and changed it from colorless to yellow at 405 nm. The changes is colour time and
complex IV amount dependent, thus can also be assessed colorimetrically. This analysis
revealed, that indeed the overall amount of complex IV was reduced by nearly 50 %.
However, the CIV activity in MIC10-/- cells was nearly at WT level and only reduced
by about 10 % (Fig. 3.7 A).
To examine the entire OXPHOS activity, oxygen consumption measurements of whole

cells using an OROBOROS2k system were performed. In this setup, the amount of
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aqueous oxygen in the sample solution is evaluated by a Clark-type polarographic sensor
inside the chamber and the specially designed software DatLab compute the oxygen
uptake of the cells accordingly.
To pursue this analysis, WT and MIC10-/- cells were grown on DMEM media con-

taining galactose and harvested. A cell suspension of 1 million cells in DMEM with
galactose was transferred to the measuring chamber and the amount of oxygen over
time in this suspension was monitored. The oxygen uptake of the cells without further
addition resembled the basal respiration of cells. Oligomycine was added to block the
proton channel of complex V, thus inhibiting the proton flow and slowing down the
ATP synthesis and oxygen consumption. This state is termed "leaky respiration" seeing
that only leaked protons can be used in the reaction of ADP to ATP. Subsequently, the
protonophor carbonyl cyanide m-chlorophenyl hydrazone (CCCP) was added to uncou-
ple the protein gradient and stimulate the maximum capacity of the respiratory chain
(ETC). The measurements revealed that the overall oxygen consumption in MIC10-/-

Figure 3.7.: Respirational activity is not affected in MIC10-/- cells.
A Enzyme activity and relativ amount of cytochrome C oxidase (CIV) of WT and MIC10-/- cells were
measured by a Complex IV Human Specific Activity Microplate Essay Kit. (n=4, mean ± SEM)
B Relative oxygen consumption of WT and MIC10-/- cells using the OROBOROS. Basal respiration
was measured in DMEM media containing glucose. Addition of oligomycin resulted in leaky respiration,
full capacity of the electron transfer chain (ETC) was addressed by addition of CCCP. (n=3, mean ±
SEM)

cells was not significantly reduced compared to WT cells (Fig 3.7 B), reflecting the find-
ings of the complex IV activity assay. Hence, the ablation of MIC10-/- led to a reduced
amount of complex IV, nevertheless the activity was not significantly affected and mi-
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tochondrial respiration functions were at nearly full capacity.

In conclusion, this data set confirmed the necessity for human MIC10 to be present
to build and maintain cristae junctions. Despite altering the unique morphological
structure of the inner mitochondrial membrane, protein levels of various complexes with
miscellaneous functionality and respirational activity did not seem to be affected.
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3.2. Proximity labelling: A powerful tool to investigate
transient interactions

In order to fully understand the mechanisms in cells, it is crucial to investigate the
location of proteins and enzymes and their interactions amongst each other. There-
fore, mainly two techniques were used: microscopy and mass spectrometry (MS). With
microscopy it is possible to provide spatiotemporal information of living cells, but only
about a small number of proteins at the same time. In contrast, MS is capable of detect-
ing thousands of endogenous proteins simultaneously, for which lysed samples purified
with immunprecipitation isolation are needed. Nevertheless, only the core complex is
purified, providing no information about weak or transient interactions with other com-
plexes and location. One approach to address transient interactions is to first perform
a spatially restricted enzymatic labelling of specific proteins in living cells and to subse-
quently analyse the purified proteins with MS. Therefore, labelling substrates that are
not harmful for the living cell are needed to preserve all membranes, complexes and
spatial relationships during the tagging, and likewise an enzyme that covalently tags
its neighbours, but no further proteins. Furthermore, the tagging process shall not be
dependent on strong intermolecular interactions between enzyme and interactor.
Since mitochondria undergo permanent fission and fusion, thus being highly dynamic

organelles, it only seems natural that not all protein-protein interactions are quite strong
but only transient, nevertheless they are still important. MICOS for example seems
to be involved in many diverse interactions with proteins of different mitochondrial
compartments like the TOM and SAM-complex of the outer mitochondrial membrane
(C. Ott et al., 2012; von der Malsburg et al., 2011) or the F1Fo-ATPase in the cristae tip
(Rampelt et al., 2017; Rampelt & van der Laan, 2017). Therefore it is highly likely that
it has also some yet undetected transient interactions with protein complexes involved in
various mitochondrial functions. To assess these further mutual interactors, a proximity
labelling approach was performed.
A substrate that fulfils the proposed requirements is biotin. To date, two major

enzymes are used to utilize this approach and activate biotin for tagging, an enhanced
ascorbate C peroxidase (APEX) (Rhee et al., 2013) and a promiscuous biotin ligase
(BirA*, BioID) (Roux, Kim, Raida, & Burke, 2012). Both enzymes were fused to the
C-terminus of MIC10 and individual labelling experiments were performed. The biotin
labelled proteins were isolated and analysed by mass-spectrometry.
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3.2.1. Biotin-labelling using an enhanced ascorbate C peroxidase

APEX is derived from the ascorbate peroxidase (APX), a class I peroxidase which natu-
rally occurs as a homodimer (Mandelman, Jamal, & Poulos, 1998). Because oligomeric
tags can peturb the natural localization and function of a protein, a monomeric homo-
logue was created (Martell et al., 2012). Three mutations (K14D, E112K and W41F)
led to a predominantly monomeric peroxidase. As a positive side-effect, APEX shows
an improved activity in Michaelis-Menten kinetics, approximately a 8-fold enhancement
over WT-APX in terms of kcat

KM
. Additionally not just l-ascorbate, but also nitrogen-

containing compounds like diaminobenzidine (DAB) can be used as a substrate and
various phenol derivatives can be oxidized to phenoxyl radicals. The advantage of rad-
icals is their short lifetime (<1 ms), their small labelling radius (<20 nm) and their
reactivity with electron-rich amino-acids like Tyr, Trp, His and Cys.
APEX utilizes a common porphyrin-based radical as a compound I intermediate,

as observed in many other peroxidases (e.g. HRP) and uses small organic substrates.
Although it has a high sequence identity with the well-investigated cytochrome c peroxi-
dase (CcP), it does not share its anomalous features of building a protein-based radical as
a compound I intermediate and the usage of protein substrates (Sharp, Mewies, Moody,
& Raven, 2003). The oxidation of the substrate via APEX is achieved by means of a
compound I intermediate, which is subsequently reduced by the substrate (HS) in two
sequential single-electron-transfer steps:

APEX + H2O2
k1−→ Compound I + H2O

Compound I + HS k2−→ Compound II + S•

Compound II + HS k3−→ APEX + S• + H2O

where S• is the one-electron oxidized form of the substrate (Raven, Lad, Sharp, Mewies,
& Moody, 2004). This reaction takes place at the central haem c unit of the peroxidase.
In order to use it for enzymatic tagging, APEX can be targeted to a designated region,

e.g. the mitochondrial matrix by fusing it to specifc targeting signals. Furthermore, to
get more specific labeling, it can also be fused to single proteins. Biotin phenol is used as
a tagging substrate to obtain reactive phenoxyl radicals. Only proteins in close vicinity
to the APEX domain are proposed get biotinylated, and in addition, phenoxyl radicals
are reported to not be membrane permeable, so biotinylation is compartment-specific
(Rhee et al., 2013).
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Already in previous work (Müller, 2014) a MIC10APEX fusion construct was generated,
stably transfected in HEK293T-REx cells, characterized and biotinylation protocols op-
timized. Mitochondrial localization was confirmed by incubating PFA fixed cells with
antibodies against the APEX-tag and cyclophilin as mitochondrial marker and analysis
via fluorescent microscopy (Fig. 3.8 A). To determine the right sub-mitochondrial lo-

Figure 3.8.: Stable transfected MIC10APEX cell-line.
A PFA fixed cells were permeabilized with Triton X-100 and incubated with α-cyclophilin as a mi-
tochondrial marker and α-APEX. After applying fluorescent secondary antibodies DAPI staining was
performed and the samples were analysed with fluorescent microscopy.
B Analysis of submitochondrial localization of MIC10APEX by western-blotting confirmed the exposure
of the enzyme to the IMS. Sm indicates sonicated mitochondria.
C In vivo biotinylation followed by affinity chromatography on streptavidin beads and western-blot
analysis with SA-HRP confirmed functionality of the APEX. DB indicates elution with desthiobiotin,
SDS indicates elution with SDS Laemmli buffer and heating at 95◦ C.

calization of the enzyme, MIC10APEX mitochondria were tested for the accessibility of
protease to the tag in mitoplasts and in intact mitochondria. Analysing the samples on
western blot revealed that the enzyme is facing the IMS (Fig. 3.8 B). Functionality of the
fusion construct was assessed by inducing labelling with H2O2 in isolated MIC10APEX
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mitochondria supplemented with or without biotin phenol. Labelled proteins were en-
riched by incubation with streptavidin beads. To investigate milder elution conditions,
a first elution step with desthiobiotin containing buffer was performed followed by in-
cubation with SDS containing laemmli buffer at 95 ◦. Western blot analysis confirmed
successful biotinylation and isolation of proteins (Fig. 3.8 C).
In this work, an in organello labelling approach with subsequent Mass-Spectrometry

analysis of WT and MIC10APEX was performed as published (Rhee et al., 2013). There-
fore, isolated mitochondria were labelled with biotinphenol and after solubilisation, bi-
otinylated proteins were isolated using streptavidin beads. Samples were prepared for
MS analysis by SDS-PAGE and subsequent trypsin digestion. To assess enrichment of
proteins within the achieved dataset, peptide count of proteins in WT and MIC10APEX

samples were compared and an at least two-fold higher peptide count in the MIC10APEX

sample was accounted as an enrichment of the protein. Subsequently, the data was
analysed via bioinformatic tools for subcellular localisation (Fig. 3.9).

Figure 3.9.: MIC10APEX Mass Spectrome-
try results classified according to subcel-
lular compartments.
Proteins with peptide counts at least two-fold en-
riched in MIC10APEX over WT sample were cate-
gorized into cellular compartments using the on-line
bioinformatic tool on the website webgestalt.org.

Of the 1119 proteins enriched in the dataset, most of these were cytosolic, but further-
more a high number of proteins of the endoplasmic reticulum were found to be enriched.
32 % of the toal amount of enriched proteins were mitochondrial. Within this fraction,
proteins of all mitochondrial compartments could be detected, although proteins located
in the IMM and IMS represented the majority of labelled proteins. Besides all known
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components of the MICOS complex and as well as published interactors like SAMM50,
a large portion of matrix-located proteins, mainly mitochondrial ribosomal constituents,
were obtained. These findings suggested, that the radical form of biotin-phenol was able
to cross the mitochondrial membranes. Moreover, the total amount of enriched mito-
chondrial proteins covered nearly 40 % of the whole mitochondrial proteome, whereas
its highly unlikely that MIC10 was interacting with such a large subset of proteins. This
demonstrated, that not only MICOS interacting proteins were biotinylated, but that
the active biotinphenol radical was more reactive than anticipated and most likely also
labelled proteins that were not in direct vicinity to the protein of interest and even in the
same compartment. Hence, a less reactive method for proximity labelling was needed
and a different approach of activating biotin by using a promiscuous biotin-ligase was
taken.

3.2.2. BioID: a milder form of proximity labelling

Since the proximity labelling using the APEX-approach seemed to lead to a high amount
of background labelling, a second approach was adapted using a promiscuous bioting
ligase. First introduced as a labeling technique in 2012 with a modified version of
the biotin-ligase of Escherichia coli (Roux et al., 2012), the ligase termed first BirA*
and later BioID activates the biotin by coupling AMP to the carboxyl-group of biotin,
forming a biotinyl-AMP (bioAMP) and thus making it reactive against primary amines
(e.g. lysines). Whereas the wild-type BirA releases the bioAMP only upon reaction
with a specific biotin acceptor tag (BAT) (Beckett, Kovaleva, & Schatz, 1999) and being
higly specific in labelling, a mutation in the BioID (R118G) led to a lower affinity to
biotin but also to bioAMP, hence promoting a promiscuous release of the reactive biotin
species. The estimated labelling range is 1̃0 to 15 nm (Kim et al., 2014) and could be
successfully applied to investigations in many different organisms, even labelling in living
mice for tumor xenograft sutdies is possible (Chan et al., 2014; Uezu et al., 2016), also
a split version of BioID (Schopp & Béthune, 2018) is availabble by now. Furthemore, a
smaller and more active version was found in 2016 (Kim et al., 2016). This enzyme called
BioID2 was the mutated biotin-ligase of Aquifex aeolicus and lacked the DNA-binding
domain of the E. coli version of the enzyme, thus being smaller in size (27 kD versus
35 kD) and, as tests revealed, also more efficient in labelling.
To purify biotinylated proteins, one takes advantage of the high affinity of biotin to

streptavidin (KD = 10−14 M) (Green, 1963), one of the strongest non-covalent affin-
ity between two molecules. Subsequently, proteins were typically analysed via mass-
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spectrometry after either liquid on-bead trypsin digestion or in-gel digestion (Roux et
al., 2018).

3.2.2.1. Expression of MIC10BioID2

To compare the different proximity labeling approaches, the enzyme BioID2 was fused
to MIC10 using the commercially available vector for human expression of BioID2-HA
with a pcDNA3 backbone. After transient transfection, the expression and mitochon-
drial localisation of MIC10BioID2 was verified with immunfluorescent staining of fixed
U2OS cells using HA-antibody for detection of the fusion protein and mito-tracker as a
mitochondrial marker (Fig. 3.10 A).

Figure 3.10.: Function of transient transfected MIC10BioID2 was verified by im-
munostaining and immuno-precipitation.
A Cells were incubated with MitoTracker.Subsequently fixation using PFA was followed by permeabil-
isation with Triton X-100 and incubation with α-HA antibody. After applying fluorescent secondary
antibodies DAPI staining was performed and the samples were analysed with fluorescent microscopy.
B Transient transfected cells with MIC10BioID2 were solubilized using digitonin and incubated with
HA-beads. After glycine elution, interaction partners were analysed by SDS-PAGE and immunoblot-
ting with indicated antibodies.
C Cells transiently expressing MIC10BioID2 were supplied with excess biotin for 24 h. After solubilisa-
tion, the cell lysate was incubated with streptavidin beads and biotinylated proteins were detected on
western blot after elution with SA-HRP.
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To adress the functional incorporation of the fusion protein into MICOS, an immuno-
precipitation of WT and transient transfected MIC10BioID2 using anti-HA beads was per-
formed (Fig. 3.10 B). Western blot analysis revealed that the fusion-construct was able to
co-isolate components of the MICOS, therefore it was functional incorporated. Further-
more, the function of the promiscuous biotin-ligase needed to be confirmed. Therefore,
transient transfected MIC10BioID2 cells as well as non-transfected cells were supplemented
for 24 h with 50 µM biotin. Subsequently, to enrich the biotinylated proteins for western-
blot analysis, the cells were lysed and incubated with streptavidin beads. Upon analysis
of the eluate sample with immunoblotting using HRP coupled streptavidin, a pattern of
biotinylated proteins in the MIC10BioID2 sample could be observed (Fig. 3.10 C).
Hence, MIC10BioID2 was successful incorporated into MICOS and able to biotinylate

proteins in close vicinity.

3.2.2.2. Identification of biotinylated proteins marked by MIC10BioID2 via
mass-spectrometry

To analyse biotin-labelled proteins via Mass-Spectrometry, eluted proteins of WT and
MIC10BioID2 cells after streptavidin-immunoprecipitation were sent to the proteomics
service facility of the UMG (Hennig Urlaub and Christof Lenz) and analyzed by mass-
spectrometry. To identify enriched proteins in the MIC10BioID2-sample, the average
peptide count was calculated and compared to the WT-sample. Enriched proteins were
analysed via an online-bioinformatics tool (webgestalt.org)(Fig. 3.11) to sort them into
their subcellular fractions.
To identify possible interactors of MICOS, only mitochondrial proteins were consid-

ered. Since in this analysis no cytosolic negative control was included and one cannot be
sure whether non-mitochondrial biotinylated proteins were labelled due to close proxim-
ity and interactions with MIC10 or during the biosynthesis and transport to mitochon-
dria of the fusion protein. The list of 86 mitochondrial annotated proteins was further
manually curated and narrowed down to 37 proteins with published mitochondrial lo-
calization (Fig. 3.12).
As expected, among the enriched proteins nearly the whole MICOS complex was

obtained, only with MIC13 and MIC26 absent. Additionally, proteins involved in mito-
chondrial membrane organization and known interactors with MICOS, like OPA1 and
TMEM11, could be enriched (Barrera et al., 2016). Components of the SAM-complex
SAMM50, DNJAC11 and MTX2 together with TOMM70, as part of the protein trans-
port of the outer membrane, have been previously reported to interact with MICOS
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Figure 3.11.: Bioinformatical
analysis of MIC10BioID2 mass
spectrometry results.
Enriched proteins of the MIC10BioID2

sample were categorized for cellular
localisation using the webgestalt.org
online bioinformatics tool.

through MIC60 (Zerbes et al., 2012; Xie et al., 2007; Körner et al., 2012). These could
also be isolated in this labelling approach, indicating that MIC10BioID2 was indeed able
to label MICOS interactors. Since various interactions could be observed between the IM
located MICOS and OM located proteins, also further functional interactions to proteins
involved in mitochondrial fission and fusion MFF1 and DNM1L are possible and would
need further rectification in future studies. In addition, the porins VDAC2 and VDAC3
were found enriched in the dataset, but no experimental evidence is published so far that
confirmed an interaction of MICOS with this protein family. In yeast it was reported that
MICOS interacts with components of complex V of the OXPHOS machinery (Rampelt
et al., 2017; Rampelt & van der Laan, 2017), so the enrichment of ATP5F1A, ATP5F1B
and ATP5F1C as part of the human complex V could hint towards a similar interaction
in the human system. Further OXPHOS components were NDUFS1 (complex I) and
UQCRC2 (complex III), though no direct interactions to these with MICOS has been
reported so far. Whether these are novel direct interactors of MICOS or background
labelling would need further experimental assessment.
In addition, the Carrier protein family detected are predicted substrates of the TIM22-

complex with TIM29 as one of the core components of the translocase. Recent studies
based on this finding could demonstrate an impact of a lack of MIC10 in a knock-out
mutant on the proper functionality of the TIM22-complex (Callegari et al., 2019), thus
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Figure 3.12.: MIC10 induced biotinylated mitochondrial proteins obtained by mass
spectrometry analysis.
Biotinylated proteins isolated after labelling of WT and MIC10BioID2 cells were analysed by mass-
spectrometry. Results of obtained mitochondrial proteins enriched in the MIC10BioID2 sample were
grouped according to their reported function. Published interactors with MICOS were labelled with a
*.

confirmed the finding in this analysis. Moreover, TIM50, a component of the TIM23
complex, was also enriched. However, no functional connection between MIC10 and
TIM23 has been discovered so far. Additionally, in contrast to the labelling using the
enhanced ascorbate C peroxidase (see chapter 3.2.1), no mitochondrial matrix-located
proteins could be detected, thus leading to the conclusion that the reactive Biotin-AMP
was not able to freely cross the inner membrane, hence the labelling was compartment
specific.
To conclude, proximity labelling via biotin using a promiscuous biotin ligase is a

powerful tool to investigate for novel and transient interaction partners of a protein of
interest. Using the enhanced ascorbate C peroxidase APEX for labelling approaches
seem at first glance more promising, having a significant shorter time of labelling and
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also the possibility of performing time-dependent labelling experiments. But the analysis
revealed, that the highly reactive biotin phenol radical led to a high amount of unspecific
labelling, thus needing a rigid set-up of control samples to narrow down the dataset to
proteins with a high probability of interacting with the target protein. Furthermore,
not being compartment specific and apparently able to cross the inner mitochondrial
membrane even more controls are needed. In contrast, with a quite simple experimental
set-up of one tagged protein of interest with BioID2 in the closed environment of the
intermembrane space within mitochondria, a quite specific dataset of labelled proteins
after in vivo biotinylation and analysis of whole cell samples could be achieved. Thus
providing directions for possible future studies.
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3.3. Alteration of the inner mitochondrial morphology
affects precursor protein import in S. cerevisiae

The MICOS complex has been extensively studied in yeast where it has been found to
have a large interaction network. Several interaction partners are components of the mi-
tochondrial translocase machineries such as the TOM and SAM complexes. MICOS is
also required for the import of MIA substrates (von der Malsburg et al., 2011). Contacts
between the inner and outer mitochondrial membrane are important for the presequence
pathway since the TOM and TIM23 complexes must form transient supercomplexes to
allow efficient precursor handover. Therefore one aim of this work was to characterise
whether MICOS has a role for the import of presequence containing proteins. Previ-
ous studies concluded that upon Mic60 deletion, not only the membrane morphology is
affected but also the import of precursor proteins is dependent on proper MICOS func-
tionality, due to its interaction with the TOM complexes and Mia40 (von der Malsburg
et al., 2011). Although a clear reduction in imported proteins could be observed, the
data is not conclusive since the mitochondrial membrane potential ∆Ψ is significantly
decreased in mic60∆ mitochondria, thus affecting the membrane potential dependent
imports of proteins. A clear distinction of whether there is a functional connection of
MICOS to the translocase machinery or the observed phenotype is due to secondary
effects of altered inner mitochondrial membrane morphology cannot be made.
To assess this question from a different point of view, a characterisation of MICOS on

protein import was carried out using a mic10∆ strain.Tthis strain has been characterised
before (von der Malsburg et al., 2011; Alkhaja et al., 2012), but under the reported
conditions, no interactions between MICOS and TIM23 were detected (von der Malsburg
et al., 2011).

3.3.1. Deletion of Mic10 does not effect translocase components

To determine whether steady state levels of translocase components were affected in
mitochondria lacking Mic10, cells were grown on non-fermentable media, mitochondria
were isolated and western-blot analysis was performed probing for various components
of diverse mitochondrial protein complexes (Fig. 3.13). In contrast to the findings in
mammalian cells which displayed a complete loss of MIC13, the yeast homologue Mic12
is only reduced, but still present in mic10∆ cells. However, the levels of Mic19 remain
consistent. This verifies that the Mic60-subcomplex is unaffected.
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Figure 3.13.: Protein levels of translocase components are not affected in mic10∆.
Mitochondria were isolated from WT and mic10∆ cells after growth on non-fermentable media and
subsequently analysed on western-blot using various antibodies against proteins of interest.

Furthermore, protein levels of complex V components Atp5 and Atp20 are not affected,
as reported (Alkhaja et al., 2012). Detection of Tim22 revealed no reduction in TIM22
complex levels, therefore not resembling the findings in human isolated mitochondria of
MIC10-/-. Moreover, constituents of the presequence translocase TIM23 are not reduced
in protein level, although Tim17 levels are slightly reduced. Levels of TOM-complex
components Tom70 and Tom40 are unaltered upon Mic10 deletion, only the receptor
protein Tom22 displays a minor decrease in protein levels. Since steady state analysis
of protein levels did not reveal any major changes in the mic10∆ strain, a closer look
was taken into a MICOS-translocase interaction.

3.3.2. Ablation of Mic10 influences the activity of the TIM23
complex

Based on the observation that import of precursor-containing proteins was impared in
mic60∆ mitochondria (von der Malsburg et al., 2011), the question arose, whether in
yeast indeed there might be a functional interaction between MICOS and the TIM23-
complex.
To investigate for protein-protein interactions, an immunoprecipitation using IgG-

sepharose, coupled with antibody against Tim21 or Tim23, was performed. Isolated
WT and mic10∆ mitochondria were solubilized in a digitonin containing buffer and
incubated with the beads. After elution at low pH, western blot analysis was performed.
The Tim21, Tim23 and Tim44 proteins were co-isolated, verifying the success of the
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isolation of the translocase complex (Fig. 3.14). Furthermore, Mic60 and Mic10 could
be co-purified with both Tim21 and Tim23. Interestingly, the interaction of Mic60
and Tim21/Tim23 is Mic10 independent, since the interaction is maintained in the
mic10∆ sample. Therefore, Tim21/Tim23 seem to interact with the MICOS complex
through Mic60, but whether it is the only direct interaction partner would need further
investigation.

Figure 3.14.: MICOS interacts with the TIM23
complex.
Digitonin solubilized mitochondria of WT and mic10∆ were
used for immunoprecipitation of Tim21 and Tim23.* indicates
cross reaction of the antibody.

To assess, if there is a functional influence of MICOS on the translocation of presequence-
containing proteins, import experiments of radiolabelled matrix proteins F1β and Atp14
along with inner mitochdrial membrane sorted Ina22 and Atp4 into mic10∆ mitochon-
dria were carried out, with all four proteins being substrates of the TIM23 complex.
Translocation via the TIM23 complex requires mitochondrial membrane potential. To

ascertain, that the isolated WT and mic10∆ mitochondria have equivalent membrane
potentials, measurements were made using the potential sensitive dye 3,3’-dipropylthia-
dicarocyanine iodide (DiSC3(5)) (Fig. 3.15 A and B). The quenching of the dye as it
is taken up into mitochondria reflects the membrane potential, and comparison of the
quenching in the mic10∆ sample compared to the WT displayed no significant potential
phenotype.
For the import assays, precursor proteins were synthesized in vitro in the presence of

[35S] methionine and added to WT and mic10∆ mitochondria resuspended in import
buffer. After stopping the import reaction by dissipating the membrane potential ∆Ψ
using AVO (antimycin, valinomycin and oligomycin), samples were treated with pro-
teinase K (pK) to digest non-imported precursor proteins. Import was monitored by
assessing levels of the processed precursor (mature protein) at increasing time points.
Quantification of mature imported protein was carried out after analysis by SDS-PAGE
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Figure 3.15.: Membrane potential in mic10∆ is not reduced.
AMembrane potential ∆Ψ was assessed by adding WT (black line) or mic10∆ mitochondria to the
fluorophore DiSC3(5).∆Ψ was dissipated using valinomycin and the amount of fluorophore quenching
was determined. Arrow indicates parameter quantified in (B).
B Relative fluorophore quenching was determined from three independent experiments and quantified
as indicated in (A). (mean ± SEM)

and digital autoradiography. In this study, a reduction of import efficiency could be
observed in mitochondria from mic10∆ cells.
The highest reduction of imported precursor proteins could be observed using the

matrix-proteins F1β and Atp14 as substrates Both exhibit a 50-60 % reduction ath the
15 min time point in mic10∆ mitochondria (Fig. 3.16). The radiolabelled precursor
proteins, Ina22 and Atp4, sorted into the inner mitochondrial membrane by the Tim21
containing TIM23SORT complex, were also imported into mitochondria. Again, a defect
of 40 % and 20 % respectively could be observed.
As no impact on the steady state level of individual translocase proteins could be ob-

served in mic10∆ mitochondria, the amount and composition of the functional translo-
case complex needed to be assessed in the deletion strain, to determine whether MICOS
affects formation of the TOM-TIM23 supercomplex during precursor handover and if the
MICOS interaction is strengthened upon supercomplex formation. Therefore, a recently
published Method (Gomkale, 2018) to isolate the TOM-TIM23 supercomplex was used.
In this assay, a modified precursor protein fused to a superfolded GFP moiety sfGFP
(Prec-sfGFP) was in vitro imported into isolated mitochondria. The sfGFP acts as a
blocking moiety and stalls the precursor protein in the TOM and TIM23 complex while
being imported (Fig. 3.17 A), thus enabling the isolation of the translocase supercomplex
using GFP nanobodies.
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Figure 3.16.: Deletion of
mic10 reduces the amount
of imported precursor pro-
teins.
Radiolabelled precursor proteins
were imported into isolated WT
and mic10∆ mitochondria for the
indicated time in the presence or
absence of membrane potential
(∆Ψ). Proteinase K treated samples
were analysed by SDS-PAGE. Graph
indicates quantification of at least 3
independent experiments, therefore
import of precursor proteins in WT
at 15 min was set to 100 %. p,
precursor; m, mature; mean ± SEM.

Western-Blot analysis revealed that in mic10∆ mitochondria the composition of the
translocase supercomplex is largely unchanged (Fig. 3.17 B). Probing with antibodies
against GFP confirmed, that both WT and mic10∆ imported the Prec-GFP with the
same efficiency and could also be isolated in equal amounts. Isolated amounts of Tim50,
Tim23, Tim21 and Tim17 all components of the TIM23-complex where the same in both
samples. Also, Tom40 as part of the TOM-complex was present in identical amounts.
Only Tom22, a receptor protein of the TOM-complex was slightly reduced already in
the total sample of the mic10 deletion strain, conclusive with steady state analysis and
subsequently co-isolated in lower amounts (Fig. 3.13). Interestingly, Mic10 could not
be isolated together with the TOM-TIM23 supercomplex, in contrast to isolation of the
TIM23 complex using endogenous antibodies against Tim21 and Tim23 (Fig. 3.14 C).
This lad to the conclusion that the import defect in mitochondria lacking Mic10
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Figure 3.17.: The TOM-TIM23 supercomplex does not exhibit an altered composi-
tion upon Mic10 deletion.
A Overview of supercomplex generation using a precursor and a spacer protein fused to sfGFP as
blocking moiety.
B TOM-TIM23 supercomplex generated by importing a modified precursor protein with sfGFP (Prec-
sfGFP) into WT and mic10∆ mitochondria. Mitochondria were solubilized in digitonin containing
buffer and the formed supercomplex was isolated using GFP nanobodies (nb).

does not stem from an altered composition of the translocase supercomplex, nor the
amount of translocase proteins. The reduced amount of the receptor protein Tom22
suggests that the reduced import could derive from impaired recognition of presequence-
containing proteins on the outer mitochondrial membrane and not from a more inefficient
translocation through the inner membrane. However, since mic10∆ mitochondria have
a vastly altered cristae morphology, it is possible that the disruption of cristae junctions
also impacts in the translocation of presequence-containing precursors.
To verify, that the observed import phenotype in MICOS altered mitochondria is

derived from a functional association between MICOS and the TIM23-complex, imports
into membrane morphology altered mitochondria with an intact MICOS complex were
performed. Therefore, an atp20∆ strain was used. Atp20 is required for dimerisation
of the ATPase. Dimerisation is responsible for the membrane curving properties of the
ATPase which generates cristae tips (Paumard et al., 2002). As published (Alkhaja
et al., 2012; Paumard et al., 2002), this strain also lacks cristae and has the typical
onion-shaped ring structure of the inner membrane, although the MICOS complex is
unaffected.
Using the same radiolabelled presequence-containing precursor proteins revealed that
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Figure 3.18.: Import into
atp20∆ mitochondria is also
affected.
Radiolabelled precursor proteins
were imported into isolated WT
and atp20∆ mitochondria for the
indicated time points in the presence
or absence of membrane potential
(∆Ψ). Proteinase K treated samples
were analysed by SDS-PAGE. Graph
indicates quantification of at least 3
independent experiments, therefore
import of precursor proteins in WT at
15 min was set to 100 %. p, precursor;
m, mature; mean ± SEM.

the import in atp20∆ mitochondria is reduced for most of the tested proteins (Fig. 3.18).
Matrix targeted precursor protein F1β displayed a reduction of imported proteins of over
50 % at 15 min time point, whereas Atp14 of the same mitochondrial compartment is
imported with around 30 % less efficiency. Furthermore, proteins sorted into the inner
mitochondrial membrane via the TIM23SORT complexes are also affected, assessed by a
40 % reduction in importing Ina22 after 15 min. Surprisingly, only import Atp4, also
a protein located in the IMM, is not reduced upon the loss of Atp20 and an altered
mitochondrial ultrastructure These results show that altered cristae morphology can
indeed impact on the efficiency of translocation via the TIM23-pathway.
Thus, the import defect observed in Mic10 deficient cells likely does not stem from a

functional deficit between MICOS and TIM23, but from the altered morphology of the
inner mitochondrial membrane in mic10∆ cells, considering a similar phenotype could
be observed in atp20∆ mitochondria.



3. Results 65

3.3.3. MICOS does not interact with the carrier translocase in yeast

To determine whether MICOS interacts with the TIM22-complex in yeast, a TIM22-
complex isolation was performed using a Tim18ZZ strain. The complex was isolated
by incubating digitonin solubilised WT and mic10∆ mitochondria with IgG-Sepharose.
Proteins were eluted via TEV-cleavage of the ZZ-tag on the beads, thus resulting in a
low possibility of eluting non-specifically bound proteins.

Figure 3.19.: TIM22 and MICOS can-
not be co-isolated.
A TIM22 complex isolation using the Tim18ZZ

strain. Digitonin solubilized mitochondria
were incubated with IgG sepharose. For elu-
tion, TEV-protease was added to the beads
and the eluate analysed on western blot. *
indicates cross-reaction with the antibody, **
the size of Tim18ZZ after TEV-protease cleav-
age.
B WT and Mic60EPEA mitochondria sol-
ubilized in digitonin were incubated with
EPEA nano bodies coupled to CNBr-activated
sepharose. After eluution with 2x EPEA pep-
tide samples were analysed on SDS-PAGE.

Interestingly, neither Mic60 nor Mic10 could be co-isolated with Tim18 (Fig. 3.19
A). Thus neither subcomplexes seem to interact with the TIM22 complex, which is in
contrast to findings in mammalian cells (see 3.1.3.). To verify these findings, a yeast
strain expressing a genomically integrated Mic60 fused to an EPEA tag was generated.
A Mic60EPEA isolation was performed to assess if the interaction could be detected from
a MICOS isolation (Fig. 3.19 B). Although the MICOS complex could be isolated,
Tim18 was not co-purified.
In human cells the functional interaction of MICOS and the TIM22-complex was

demonstrated by importing radiolabelled carrier proteins, which are transported by the
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TIM22-complex, in WT and MIC10-/- mitochondria (Callegari et al., 2019). To exclude
a MICOS/TIM22 interaction in yeast, a similar approach was undertaken in S. cerevisae,
involving the import and assembly of the ADP/ATP carrier Aac1, a known substrate of
the yeast TIM22 complex. Therefore, radiolabelled AAC was imported into isolated WT
and mic10∆ mitochondria. After mild digitonin solubilisation to maintain intact protein
complexes, the samples were analysed using digital autoradiography after Blue-Native
PAGE separation of the complexes. The assembly of AAC was neither affected by the
absence of Mic10 (Fig. 3.20 A) nor Atp20 (Fig. 3.20 B).

Figure 3.20.: AAC assembly is not affected by altered inner mitochdondrial mem-
brane morphology.
Radiolabelled Aac1 was imported in WT and mic10∆ (A) or atp20∆ (B) mitochondria for indicated
time in the presence ore absence of membrane potential (∆Ψ). Samples were analysed with BN-PAGE
and digital autoradiography.

This finding demonstrates that the MICOS-TIM22 interaction observed in human is
not conserved in yeast and is therefore likely specific to higher eukaryotes. Furthermore
it could be proved that protein import by the TIM22 complex is not dependent on inner
mitochondrial membrane morphology and precursor protein handover likely solely relies
on soluble TIM chaperones in the IMS.
In conclusion, in S. cerevisiae there seems to be a spacial connection between MI-

COS and the TIM23-complex, but no specific functional co-dependency between these
two distinct complexes could be observed. Furthermore, the intact inner mitochon-
drial membrane morphology seems to be crucial for efficient precursor protein import
via the TIM23-complex. On the other hand the TIM22 carrier pathway is not affected
by the absence of the Mic10 subcomplex and does not appear to require proper inner



3. Results 67

mitochondrial membrane morphology.
These findings build upon the previously reported results by vonderMalsburg:2011fa

where presequence import was investigated in a mic60∆ strain. In this case, the results
were inconclusive due to the reduced mitochondrial membrane potential of mic60∆ mi-
tochondria. Here, it is evident that the role of MICOS for maintaining mitochondrial
ultrastructure is essential for efficient translocation via the TIM23 pathway. The obser-
vation that Mic10 is dispensable for carrier import is consistent with von der Malsburg
which show that Mic60 is also dispensable for import via the TIM22 pathway, suggesting
that MICOS and cristae ultrastructure play less of a role for the carrier import in yeast.
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4. Discussion

Mitochondria have a unique inner membrane structure, consisting of a inner boundary
membrane and cristae, which are connected by the cristae junctions. Over the years
different proteins and protein complexes were found to be crucial for building and main-
taining this structure. In bakers yeast S. cerevisiae the tips of the cristae are stabilized
by the formation of the F1FoATPase dimers (Paumard et al., 2002; van der Laan et al.,
2012). Furthermore, the GTP-binding portein Mgm1(yeast)/OPA1(human) (Meeusen
et al., 2006; DeVay et al., 2009; Frezza et al., 2006) are also reported to have an im-
pact on inner mitochondrial membrane topology. Since knock-down studies revealed
MIC60/Mitofilin and its yeast homologue Mic60/Fcj1 being crucial for proper cristae
junction formation (John et al., 2005; Rabl et al., 2009), a deletion of Mic10 in yeast
displayed the same phenotype (von der Malsburg et al., 2011; Harner et al., 2011; S. Hop-
pins et al., 2011; Alkhaja et al., 2012) and a human homologue was identified (Alkhaja
et al., 2012). It was also shown, that the oligomerization of Mic10, induced by the char-
acteristical glycin rich GXGXGXG motif in both transmembrane regions plays a mayor
role in the membrane shaping ability (Barbot et al., 2015). Considering that deletion
of further MICOS components only led to less severe alteration of the inner mitochon-
drial membrane (Harner et al., 2011; von der Malsburg et al., 2011; S. Hoppins et al.,
2011), Mic60 and Mic10 are considered the core components of MICOS. However, ex-
perimental data on the mammalian MIC10 are scarce and only knock-down experiments
in mouse embryonic fibroblasts (MEF) cells found it to be involved in cristae formation
and stabilisation (Li et al., 2016).

4.1. MIC10 is involved in cristae junction formation and
stabilisation

Using the CRISPR/Cas9 system, a widely used approach to genetically modify human
cells, a MIC10-/- cell line was generated to investigate the function of MIC10 and its
influence on mitochondrial function and membrane morphology. Analysis on the ge-
nomic and protein level could proof, that the approach was a success and no MIC10
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was further expressed. A clear impact on mitochondrial morphology was evident after
electron-microscopy of these cells, displaying the ring-like structure of inner membrane
as in yeast mic10∆ and mic60∆ as well as in MIC60 deficient human cells, confirming
MIC10 fulfilling the same role in cristae junction formation and stabilisation as its yeast
homologue. The observed phenotype is specific for MIC10, since protein levels of MIC60
and other components of the MICOS complex, excluding MIC13, are not reduced and
can be reversed by reexpressing MIC10 from a plasmid. Furthermore, processing of
OPA1, a reported regulator of cristae and cristae junction morphology, is not affected
(Data not shown).

4.2. Altering the inner membrane morphology does not
impact on mitochondrial function

Cristae are believed to be needed to enlarge the surface of the inner mitochondrial mem-
brane, with the cristae junctions to function as a barrier between IMS and cristae, thus
creating highly specialized sub-compartments of different protein contents to maximise
the efficiency of mitochondrial functions like ATP production via respiration. Thus,
disturbing the morphology is expected to display defects in mitochondrial bioenergetics.
Indeed, it was shown that yeast cells lacking Mic60 or Mic10 display a reduced oxygen
consumption, reduced growth under conditions demanding a high mitochondrial activity
and in terms of lacking Mic60 also reduced membrane potential.
However, this seemed not to be the case in mammalian cells. Ablation of the human

MIC10 did not revealed to have an impact on cell growth and mitochondrial health
seemed not be affected, as the mitochondrial membrane potential is unchanged compared
to control cells. In contrast, down-regulation of MIC60 led to a decreased cell number
after 48 h of treatment, increased membrane potential and apoptosis (John et al., 2005).
Furthermore, overall oxygen consumption was not significantly altered. Although taking
a closer look on complex IV revealed that the amount of complex IV was reduced to
nearly 50 %, the complex IV specific activity remained nearly unchanged. Assessing
protein levels of complex IV constituents revealed a slight reduction of the mitochondrial
encoded subunit COX1, but no effect on the nuclear encoded COX6A. It was shown that
assembly of complex IV via MITRAC is dependent on TIM21 (Mick et al., 2012), however
no reduction of TIM21 was found on the protein level after deletion of MIC10. The
translocation activity of the TIM23 complex was unaffected and therefore a secondary
effect of MIC10 deletion via the TIM23 complex is highly unlikely. Studies in MEF cells



4. Discussion 70

could show that the MIC60 together with MIC19 plays a role in mitochondrial DNA
organization and translation of mitochondrial encoded proteins is impaired in MIC60
knock-down cells (Li et al., 2016). Still, whether the observed translation deficiency
was due to a disruption of the MICOS complex, alteration of the inner mitochondrial
morhpology or specifically linked to ablation of MIC60 remains unclear. For MIC10-/- an
of the effect on mitochondrial translation is not reported so far and should be adressed
in the future.
In conclusion, it could be shown that MIC10 is involved in forming and maintaining

proper mitochondrial ultrastructure in mammalian cells, however the general mitochon-
drial function and health is not affected by the change in inner mitochondrial membrane
morphology. Since some of the various phenotypes observed in already MIC60 deficient
cells could not be reproduced in cells lacking MIC10 proved further that the MIC60
subcomplex can interact independently from the MIC10 subcomplex and is not only re-
quired for proper mitochondrial ultrastructure but is involved in assorted mitochondrial
functions by so far unknown mechanisms.

4.3. Unveiling novel MICOS interaction partners via
proximity labelling

In general, biological functions are carried out by proteins as components of complexes,
organelles or other assemblies. Although the human genome project provided informa-
tion of plenty of proteins encoded in the genome, the arrangement, organization and
function of these proteins is largely unknown. Several biochemical techniques have been
developed and are constantly evolved to characterise protein location and to identify
there function and interactions. Biochemical approaches like immunoprecipitation and
cross-linking are established to uncover protein-protein interactions. To identify associ-
ated proteins, Mass-Spectrometry is the method widely used to analyse a large dataset
of proteins. In the classical approach, a sample is lysed using mild detergent condi-
tions followed by immunoprecipitation of the protein of interest. However, many crucial
protein interactions are only weak and transient (Nooren & Thornton, 2003), therefore
arduous to maintain during even mild purification and washing steps. An idea to over-
come these boundaries is either cross-linking or proximity labelling to label proteins of
close vicinity with a purifiable tag. Such a broadly used tag is biotin, its strength being
usable in living cells and preserving membranes, complexes and spatial relationships.
Moreover, both soluble and insoluble proteins tagged with biotin can be purified with
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efficient high-stringency using streptavidin while minimizing the background without
loosing proteins during the process.
Since its first introduction in 2012, two main means of enzymatic activation of biotin

are used, BioID (Roux et al., 2012) and APEX (Rhee et al., 2013). While the general
concept is equivalent in both attempts, they differ in their initial activation step. BioID
utilize endogenous biotin with labelling times around 18-24 h in a proximity of estimated
10 nm, although exact confirmations of these radius is still ongoing. Publications re-
vealed that it can be applied to a great variety of cellular proteins not only in cultured
cells, but also in yeast, protozoa, embryonic stem cells and in living mice (Trinkle-
Mulcahy, 2019). The functionally related method APEX was originally designed to pro-
vide high-resolution images for cellular structures by electron-microscopy (Martell et al.,
2012) but was later adapted for proximity labelling in living cells. Using biotin-phenol
as a substrate the labelling is radical driven, thus only short labelling time is needed
(around 1 min) and enables the utilization of biotin-labelling in a time-dependent man-
ner to investigate complex dynamics. Although due to the higher hydrophobicity of
biotin-phenol compared with biotin, there is a possibility of affecting the bioviability of
the substrate in every cellular compartment. Both reactive biotin species biotin-AMP
and the biotin-phenol radical are proposed to be compartment specific and not able to
cross cellular membranes, although the latter is controversial discussed in the field.
In this study, both techniques were applied to attempt to investigate interaction part-

ners of a mitochondrial inner membrane protein complex, MICOS. The enzymes BioID2
and APEX were both fused to MIC10 and expressed in HEK293T-REx cells and correct
localisation of the enzyme in the IMS could be confirmed. Since the labelling times us-
ing APEX were remarkably short, the labelling was carried out in organello in isolated
mitochondria to reduce possible background from whole cell labelling, nevertheless over
50 % of the 1119 biotinylated proteins were not mitochondrial. Although mitochondrial
purification was performed by sequential centrifugation, the mitochondrial fraction still
contained membranes of the endoplasmic reticulum and the golgi apparatus. Further-
more, background localisation of MIC10APEX in the cytosol could not be excluded by
immunofluorescence microscopy due to background staining of the antibody, thus bi-
otinylation outside mitochondria was not completely unexpected. Concentrating on the
mitochondrial fraction, a striking number of 357 mitochondrial located proteins could
be isolated, with the majority resided in the inner mitochondrial membrane or the inter
membrane space. Moreover, roughly the same amount of matrix proteins was found en-
riched, including 62 out of 67 mitochondrial ribosomal constituents. In conclusion, the
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biotin-phenol radical indeed seemed to have crossed the inner mitochondrial membrane
and entered the mitochondrial matrix. Whether this is due to possible side-effects of
the highly reactive H2O2 treatment or the radical despite different proposals is possible
to cross the inner mitochondrial membrane remains unclear. Nevertheless, the APEX
approach seemed not favourable for the desired purpose without the implementation of
rigorous controls such as matrix-located APEX and APEX on the outer mitochondrial
membrane facing the cytosol, as the active labelling species appeared to be more reactive
than anticipated.
However, the BioID approach already resulted in a more distinct biotinylation pat-

tern after western-blot analysis and MIC10BioID2 and wild-type MIC10 could be clearly
detected by probing for biotinylated proteins with HRP-coupled streptavidin. Mass-
spectrometry analysis after in vivo labelling revealed 551 biotinylated proteins enriched,
only 50 % of the enriched proteins using the APEX approach despite the fact that in
this analysis whole cell lysates were analysed. As expected, most proteins were non-
mitochondrial, due to the fact that the fully synthesised protein has a certein dwell
time within the cytosol with the BioID enzyme already active before it is fully imported
into mitochondria. To additionally search for mutual interaction partners outside of
mitochondria, a cytosolic control would need to be implemented to be able to identify
background labelling. Focusing on the labelled mitochondrial proteins, a subset of 37 bi-
otinylated proteins could be identified, apart from known MICOS components published
interactors were found on this list, such as constituents of the mitochondrial intermem-
brane space bridging (MIB) complex (Barrera et al., 2016) and proteins involved in inner
mitochondrial membrane organization (Zerbes et al., 2012; Xie et al., 2007; Körner et
al., 2012). TIM29, a constituent of the carrier translocase TIM22 and an assortment of
its substrates were found to be mutual novel interactors. Further investigations could
prove that indeed the TIM22 complex is a novel interactor of the MICOS complex and
they share a functional connection (Callegari et al., 2019).
These findings confirm that this approach indeed was able to label interacting partners

of MICOS. Surprisingly, not every constituent of an interacting protein complex could be
labelled. MIC13 and MIC26 could not be identified by mass-spectrometry and likewise
TIM29 is the only labelled component of the TIM22 complex, although it could be clearly
shown that MIC10 interacts additionally with TIM22 and AGK. This demonstrates, that
there is a limitation of proteins being accessible for labelling with biotin-AMP. However,
using BioID analysis provided already without further control labelling experiments a
manageable set of proteins for further investigations. Nevertheless, further analysis
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would need to be done to provide a definite answer whether proteins interact with each
other.
In conclusion, proximity biotinylation is a powerful tool to screen for mutual interac-

tion partners. BioID is a more sensitive approach which is able to provide even with
little controls a solid list of interaction partners, although the reactivity seems not to
be high enough to label all proteins in vicinity. Whereas APEX is also able to provide
a time-resolution of protein interactions, the background labelling of non-interacting
proteins is significantly higher and more stringent labelling controls are needed.

4.4. MICOS interacts with the TIM23-complex
The impact of MICOS on mitochondrial ultrastructure in yeast have been studied thor-
oughly. Furthermore, MICOS via Mic60 seems to be involved in various other mito-
chondrial functions, like phospholipid metabolism (Harner et al., 2014; Aaltonen et al.,
2016). Moreover, it was reported that loss of Mic60 has an impact on protein translo-
cation into mitochondria (von der Malsburg et al., 2011). However, this data is not
quite conclusive since also the membrane potential is affected in this strain, which is
the mayor driving force of precursor-containing protein translocation. Nevertheless, a
possible interaction of MICOS and the translocase machinery is likely, considering the
TOM and TIM23 complex need to be in close spatial proximity for efficient precursor
handover and MICOS is proved to be involved in forming contact sites between the outer
and inner mitochondrial membrane. Therefore this study was designed to have a closer
look on a mutual MICOS/translocase interaction and characterize protein translocation
in a mic10∆ strain.
So far, a direct interaction of MICOS to constituents of the TIM23 complex could not

be observed. Performing a Tim21 and Tim23 immunoprecipitation, MICOS components
Mic60 and Mic10 could be co-isolated. Additionally, specific amounts of TIM23 compo-
nents were co-purified by a reversed experiment where MICOS is isolated via Mic60EPEA.
This correlates with the finding of enriched TOM-TIM23 supercomplex clusters at cristae
junctions (Gold et al., 2014; Harner et al., 2011), thus an interaction between these two
distinct protein complexes is likely. Interestingly, the interaction is also maintained in a
mic10∆ strain, indicating that the interaction is Mic60 mediated and independent from
the Mic10 subcomplex. This is supported by numerous findings of MICOS interacting
with further translocase complexes SAM and TOM via Mic60 (von der Malsburg et al.,
2011; C. Ott et al., 2012; Körner et al., 2012; Xie et al., 2007; Zerbes et al., 2012).
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In contrast, no interactions between MICOS and the carrier translocase TIM22 were
found in yeast, neither in TIM22 isolations nor in MICOS purifications. Interestingly,
its contrary in mammalian cells. Although whether MICOS interacts with the TIM23
complex in human is still controversial, a clear interaction to the TIM22-complex could
be established (Callegari et al., 2019)

4.5. Inner mitochondrial ultrastructure affects import of
precursor-containing proteins in yeast

Past studies of protein import into MICOS deficient mitochondria revealed a decrease
in protein translocation via TIM23 and Mia40 in mic60∆. However, also membrane
potential was deficient, thus the observed phenotype is likely an indirect effect (von der
Malsburg et al., 2011). Translocation via Mia40 in mic10∆ mitochondria was not im-
paired. Since no protein import experiments with precursor-containing proteins have
been performed so far, radiolabelled substrates of the TIM23 complex were used in this
study to explore possible connection of MICOS to protein translocation.
Importing precursor proteins into isolated WT and mic10∆ revealed a decrease from

20 % (Atp4) to 60 % (F1β) upon loss of Mic10. To rule out secondary effects, membrane
potential measurements in mic10∆ mitochondria were performed and proofed to be
equivalent to the control. Due to accumulation of the TOM-TIM23 supercomplex at
cristae junctions and thus close vicinity to MICOS, a functional interaction between
these two is likely and might be the basis of the observed phenotype. However, isolating
translocase-arrested TOM-TIM23 supercomplex unveiled no change in the composition
of the complex in mic10∆ mitochondria. Surprisingly, also no Mic10 was found to
be isolated together with the supercomplex. This led to the conclusion that MICOS
interacts with different pool of TIM23 complex, which is likely since both the TOM and
the TIM23 complex were found to be associated with other complexes in an independent
manner (Qiu et al., 2013; Mehnert et al., 2014; Kulawiak et al., 2013).
Similar to mic10∆, atp20∆ also displayed an altered mitochondrial inner membrane

morphology (Alkhaja et al., 2012; Paumard et al., 2002). Performing the same import
experiments as in mic10∆ revealed that precursor-containing protein translocation is
not functionally linked to MICOS, but to the membrane morphology. Thus, it could be
proved that precursor handover indeed is mediated by close proximity of the outer and
the inner mitochondrial membrane and proper mitochondrial ultrastructure is important
for efficient precursor translocation. The connection of MICOS to the TIM23-complex
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however seemed just to be spatial, lacking a direct influence on their respective function.

4.6. Carrier import via TIM22 does not depend on
proper mitochondrial morphology in yeast

The TIM22 carrier translocase is specialized in insertion of hydrophobic, multi trans-
membrane domain proteins with internal targeting signals. Typically, these substrates
are either metabolite carriers which possess 6 transmembrane spanes or four transmem-
brane spanning components if the different translocases such as Tim23, Tim22 and
Tim17. Handover from the TOM complex to the TIM22 complex is mediatet by small
TIM chaperones in the IMS to stabilize the hydrophobic parts of the substrates while
being transportet through the aqueous IMS. However, the exact mechanism how the
TOM complex and the TIM22 complex interact with each other is not known. To date,
no direct interactions between components of the TOM complex have been reported to
constituents of the TIM22 complex, although recent studies revealed an interaction of
Porin with carrier precursors followed by recruitment of the TIM22 complex (Ellenrieder
et al., 2019).
In contrast to translocation of TIM23 dependent proteins, import of the carrier pro-

tein Aac1 as a substrate of the TIM22 complex was unaffected by the altered inner
mitochondrial membrane morphology in mic10∆ and atp20∆ mitochondria. This is so-
lified by the finding that the handover from the TOM complex to the TIM22 complex is
facilitated by the soluble small TIM chaperons in the IMS (Koehler et al., 1998; Wein-
häupl et al., 2018), thus not relying on close proximity of both translocases and therefore
proper mitochondrial morphology. Although the small TIM chaperones are conserved
in the mammalian system, the human TIM22 complex itself harbours metazoan-specific
constituents and its architecture is poorly conserved betwween human and yeast. Fur-
thermore, in human cells lacking MIC10 the TIM22 complex facilitated import is im-
paired in contrast to the findings in yeast (Callegari et al., 2019). It has been shown
that in human mitochondria the small TIM chaperones are more closely associated to
the inner mitochondrial membrane and are not present as a soluble complex in the IMS.
Moreover, TOM40 as constituent of the TOM complex has been found to interact with
the TIM22 complex via TIM29.
Combining these findings revealed that the mechanism of precursor handover from the

TOM complex to the TIM22 complex is opposite from human to yeast. Whereas in the
mammalian system MICOS and TIM22 work synergistically to drive translocation via
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close spatial connection of the outer and the inner mitochondrial membrane, in yeast the
transport through the IMS is independent from outer and inner mitochondrial membrane
contact sites and MICOS and solely relies on the soluble TIM chaperones.



5. Conclusion and future perspective 77

5. Conclusion and future perspective

MICOS is an essential multisubunit protein complex responsible for forming and main-
taining inner mitochondrial ultrastructure. By generation of a MIC10 knock-out cell
line in mammalian cells it was proven that the human MIC10 protein is essential for
maintaining inner mitochondrial membrane structure similar to its yeast homologue.
Although the cell growth and membrane potential in addition to oxygen consumption of
mitochondria were not impaired, a specific reduction in the amounts of complex IV were
detected. Whether this is caused by a potential phenotype in mitochondrial translation
or has a diverse cause would need to be assessed in further studies. Strikingly, there was
also a reduction in the levels of components of the TIM22 complex and its substrates.
In the second part of the study it was shown that proximity biotinylation, mediated

via a promiscuous biotin ligase, is a feasible approach to investigate novel interaction
partners. In contrast, using the APEX approach for biotin labelling led to a high amount
of background labelling and there was poor compartment specificity of the reactive la-
belling substrate. Aside from known interactors, a number of mutual novel interaction
partners were found. Out of these, the carrier TIM22 complex was proved in further
studies to functionally interact with the MICOS complex. To confirm interplay of MI-
COS to other proteins found in this study, additional biochemical analysis would need
to be done.
It was shown in the past that loss of Mic60 in yeast has an impact on protein translo-

cation, a direct link between MICOS and the translocases of the inner membrane could
not be established so far. In this study Mic60 and Mic10 were co-isolated with Tim21
and Tim23 in a Mic10 independent manner. Import of precursor-containing substrates
of the TIM23 complex in mic10∆ mitochondria demonstrated a reduction in import
efficiency. This defect however could also be reproduced in atp20∆ mitochondria, which
has a similar defect in mitochondrial morphology. Thus, precursor import via the TIM23
complex is linked to inner mitochondrial membrane morphology. The function of the
association between MICOS and the TIM23 complex would need to be assessed in future
studies. In contrast, carrier translocation via the TIM22 complex proved to be unaf-
fected by the altered inner mitochondrial ultrastructure in yeast and is less reliant on
contacts between the inner and outer mitochondrial membrane.
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AAC ADP/ATP carrier
APEX enhanced ascorbate peroxidase
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ATP adenosine triphosphate
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BN-PAGE blue native polyacrylamid gel electrophoresis
bp base pairs
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BTS biotinylation targeting signal
Cas9 CRISPR associated protein 9
CK creatine kinase
CP Creatine phosphate
COX cytochrome c oxidase
CRISPR clustered regularly interspaced short palindromic repeats
DMSO Dimethylsulfoxid
DNA deoxyribonucleic acid
dNTP 2’-deoxynucleoside-5’-triphosphate
DTT dithiothreitol
E. coli escherichia coli
EDTA ethylenediaminetetraacetic acid
EM electron microscopy
ER endoplasmic reticulum
ERMIONE ER mitochondria organizing network
ERMES ER-mitochondria encounter structure
EtBr Ethidium bromide
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FMN flavin mononucleotide
HEK human embryonic kidney
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HEPES 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid
HRP Horseradish peroxidase
IBM inner boundary membrane
IgG immunoglobulin G
IMM inner mitochondrial membrame
IMS intermembrane space
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LB lysogeny broth
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MIA Mitochondrial intermembrane space assembly machinery
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MITRAC mitochondrial translation regulation assembly intermediate of cytochrome c oxidase
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MS mass-spectrometry
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PAGE polyacrylamide gel electrophoresis
PAM presequence translocase assosiated motor
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Pi inorganic phosphate
PCR polymerase chain reaction
PEG polyethylene glycol
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PVDF polyvinylidene fluoride
RNA ribonucleic acid
rpm rotations per minute
S. cerevisiae Saccharomyces cerevisiae
SAM sorting and assembly machinery of the outer membrane
SA-HRP streptavidin coupled to horseradish peroxidase
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TIM22 carrier translocase of the inner mitochondrial membrane
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TOM translocase of the outer mitochondrial membrane
WT wild type
YPG Yeast Extract, peptone, glucose
∆Ψ membrane potential
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