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Abstract

Rovibrational spectroscopy is a prime tool for the indirect investigation of molecular potential
energy surfaces (PES). Naturally, theoretical predictions of molecular spectra have been the focus
of numerous works since the early days of quantum chemistry. With the formulation of modern
ab initio methods and ever increasing computing power of modern high-performance computing
facilities it has become possible to calculate the PES with unprecedented accuracy. On the other
hand, such a high-level PES requires also an accurate treatment of the rovibrational problem. For
molecules with up to 3 atoms such methods have been know for quite some time and are available
in different formulations but going beyond that still poses a challenge. In this thesis, methods for
calculating rovibrational spectra of linear molecules with up to four atoms are presented, rivaling
with experimental lab accuracy.
As a first step towards a general procedure for high-level theoretical spectroscopy of linear molecules
a composite ab initio approach to the construction of a PES is presented. The method is tested on
two experimentally well known triatomic linear molecules hydrogen cyanide (HCN) and tricarbon
(C3). For HCN, the composite PES reproduces the experimental results with standard deviations
of 0.33 cm−1 and 0.00009 cm−1 in the vibrational term energies and rotational constants, respec-
tively, considering all 113 vibrational states up to about 6500 cm−1 above the ground state. A new
electric dipole moment function, which has been constructed also in a composite manner, yields
accurate rovibrational intensities for a large variety of HCN transitions ranging form the strong
CH stretching and bending fundamentals to very weak ∆` > 1 overtone transitions. The intensity
of the peculiar CN stretching fundamental of HCN is in much better agreement with experiment
than previous theoretical results.
For the very flexible C3 molecule the presented composite PES yields fundamental vibrational
transition frequencies which are within 1 cm−1 compared to experiment. The rovibrational calcu-
lations on C3 highlight the necessity of an accurate rovibrational treatment. Common perturba-
tional approaches based on contact transformation of the Hamiltonian fail to describe the strong
rovibrational couplings in C3. Employing the variational ground state rotational constants a mixed
experimental/theoretical equilibrium geometry is determined and shown to be superior to results
obtained from experimental results only. In cooperation with the Linnartz group for laboratory
astrophysics a joint experimental/theoretical investigation of highly excited stretching state is pre-
sented.
In order to increase the size of linear molecules which can be studied by such composite approaches
a new method (C8v4) has been developed. C8v4 is based on the exact kinetic energy operator
formulated in normal coordinates and the rovibrational term energies and wave functions of linear
tetra atomic molecules are calculated by a variational ansatz. Products of harmonic oscillator and
rigid-rotor functions are used to expand the rovibrational wave function. Intricacies related to the
vibrational angular momentum in linear molecules require a careful study of symmetry properties
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to set up a symmetry adapted basis set. Kinetic energy matrix elements can be evaluated in a fast
mixed numerical/analytical fashion. The main computational bottlenecks are the integration of
the potential energy matrix and the diagonalisation of the Hamiltonian. These can be overcome by
exploiting the block structure of the Hamiltonian. Benchmark calculations on acetylene (HCCH)
and boranimine (HBNH) are presented which perfectly reproduce previous variational calculations
based on a different Hamiltonian formulated in internal coordinates.
Using the C8v4 program and a composite quartic force field obtained earlier, variational rovi-
brational calculations for the interesting astromolecule propynylidynium (l-C3H+) are carried out.
The results of these calculations rectify long standing discrepancies between theory and exper-
iment. The need for high-order correlation contributions to the composite force field is clearly
highlighted. The new composite PES yields a ground state rotational constant based on C8v4

variational term energies which is within 5 MHz of the experimental result and a quartic centrifugal
distortion constant in virtual agreement with experiment. Spectroscopic parameters for low-lying
excited vibrational states are presented which should provide a starting point in forthcoming ex-
perimental studies on l-C3H+. A close relationship can be established by comparing the properties
of the l-C3H+ composite PES with the composite PES of C3. An analysis of differences in ro-
tational parameters calculated variationally and by perturbation theory confirms the assumption
that l-C3H+ behaves like a "protonated", albeit more rigid, C3.
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Chapter 1

Introduction

Theoretical spectroscopy is among the core competences of quantum chemistry. It aims at the
accurate calculation of spectroscopic properties like transition frequencies between molecular en-
ergy levels and/or the intensities of such transitions. This requires a detailed knowledge of the
potential energy surface (PES) of the molecule under study. The development of new theoretical
techniques and subsequent implementation in software for numerical calculations coupled with the
advancement in computing hardware nowadays allows the determination of the molecular PES to
unprecedented accuracy. For small polyatomic molecules the transition frequencies obtained from
such ab initio calculations can routinely reach what is called "spectroscopic accuracy" of ∼ 1 cm−1

when comparing to known experimental results.

While calculations for experimentally well studied systems provide a consistent way to assess and
benchmark the accuracy of an ab initio approach, the real power of theoretical spectroscopy lays
in its ability to produce such data for any molecular system without prior knowledge of laboratory
data. In a similar vein, the intensities of spectroscopic transitions can be obtained ab initio by
studying the electronic properties of a molecule which govern its interaction with electromagnetic
radiation. Within the dipole approximation, which is usually well-satisfied, the intensities of, e.g.,
rovibrational transitions are determined from the electric dipole moment surface (EDMS). Here
the situation is more in favour of theory since accurate experimental determination of intensities
can be a formidable undertaking due to the requirement of well defined and precise experimental
conditions like the temperature and the concentration of the absorbing molecules. On the other
hand, for a theoretician it is relatively easy to calculate the intensity of such transitions once the
rovibrational problem is solved. Depending on the employed PES and EDMS the accuracy of
theoretical results can rival those obtained in experiment. Of course, this neglects the possible
effort needed to develop such an approach. However, modern theoretical spectroscopy can provide
reliable data which leads to a fruitful interplay between theory and experiment.

1



2 CHAPTER 1. INTRODUCTION

A general procedure for obtaining theoretical rovibrational spectroscopic parameters of molecu-
lar systems can be divided into two sections and Figure 1.1 summarizes the individual steps in
a flowchart diagram. The underlying assumption for almost all theoretical spectroscopic inves-
tigations is the validity of the Born-Oppenheimer-Approximation [1, 2] by which the electronic
motion is separated from the nuclear motion. This defines the first phase wherein the electronic
Schrödinger equation is solved for a set of nuclear arrangements to scan the PES of the molecule.
Additionally, the dipole moments of the molecule can be obtained in a similar fashion. From this
set of data points a functional relationship has to be derived between a suitable set of coordinates
that correspond to the nuclear arrangement and the electronic energy and dipole moments of the
system. Such a relation is usually called a potential energy function (PEF) V (R) or electric dipole
moment function (EDMF) µ(R). The second phase is the solution of the nuclear Schrödinger
equation to obtain the rovibrational wavefunctions ΨVR and term energies Tv(J). The former,
when combined with the EDMF, gives access to squared transition dipole moments µ2

if between
rovibrational states which determine the intensities Aif of rovibrational transitions. The term en-

Figure 1.1: Workflow of a theoretical rovibrational spectroscopic investigation showing the different
steps involved in obtaining accurate theoretical spectra.
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ergies or transition frequencies νif between rovibrational states as well as the intensities can then
be compared to available experimental data. A direct line-by-line comparison is only occasionally
done. Instead, one resorts to comparing spectroscopic parameters which are derived from the line
frequencies or term energies. This allows to judge the quality of the underlying PEF and EDMF.

In case a disagreement between theory and experiment is found, a critical assessment of the pos-
sible cause is required. This can originate on both ends either the theoretical treatment or the
experimental analysis. From the theoretical point of view, the main sources of error can be divided
further into those from an insufficient treatment of the electronic structure problem yielding a
poor PEF/EDMF and those arising from an inadequate treatment of the nuclear motion. The
former can be remedied by improving the ab initio description of the PES. Modern quantum
chemistry offers a plethora of methods each with their individual strengths and weaknesses. The
task thus is to find a general procedure to produce reliable PEFs and EDMFs for a variety of
molecular systems by combining different levels of sophistication. Errors arising from an inappro-
priate treatment of the rovibrational problem usually indicate a distinctive feature of the molecule
under study. For example, a simplistic harmonic treatment of vibration in polyatomic molecules
can not be expected to reach spectroscopic accuracy when comparing to experimental results which
are inherently anharmonic. Yet, inclusion of anharmonic effects also poses the risk of producing
erroneous theoretical results since the treatment of anharmonicity is in many cases done under the
assumption that the latter is a small effect compared to the harmonic solution. Once an accurate
theoretical PEF and rovibrational treatment is employed, it becomes possible to point out errors
or misinterpretations of experimental results. But theory and experiment should not be viewed as
mutually opposing fields of research. They are meant to complement each other with on the one
hand experiment providing definite reliable data for benchmarking the theoretical approaches and
on the other hand theory providing further insight into aspects of a molecule which are not or only
very difficult to access with experiment. Theoretical spectroscopy can further provide guidance for
new experimental studies regarding the spectral range where a molecular transition might occur.

Many of the ca. 200 molecules which have been detected in the interstellar medium or circumstellar
shells [3–5] are highly reactive species such as radicals, carbenes or molecular ions. These may be
very diffcult to study spectroscopically in the laboratory since the obtainable concentrations are
often too low for conventional absorption spectroscopy. Therefore, highly accurate predictions of
spectroscopic parameters based on theory are desirable [6]. Unidentified features in interstellar
spectra have persisted almost from the beginning of the field of astrospectroscopy. A famous ex-
ample is the fortuitous detection of the formyl cation HCO+ by Buhl and Snyder [7] in 1970. The
spectral features detected towards different galactic sources were attributed to what they called the
X-ogen molecule because of its unknown extraterrestrial origin. Klemperer [8] immediately spec-
ulated that the signal at 89.190 GHz could be due to protonated carbon monoxide on the basis of
theoretical considerations. Only five years later, Woods and coworkers [9] confirmed Klemperers
initial suggestion by recording the first laboratory rotational spectrum of HCO+. More recent
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examples are the detection of C6H− [10] and C5N− [11] in the evolved carbon star IRC+10216. In
1995 Kawaguchi et al. [10] detected a series of unidentified lines (B1377) in the microwave region
with a rotational constant B of 1377 MHz. As a possible carrier of B1377 the cyanobutadiynyl
radical C5N was investigated by Botschwina [12]. On the basis of ab initio calculations a ro-
tational constant of B0 = 1397 ± 3 MHz was obtained, thereby ruling out C5N as a candidate
for B1377. But these results were not in vain, because they served as excellent guides for Kasai
and coworkers [13] who detected the rotational transitions of C5N using a Fourier transform (FT)
microwave spectrometer equipped with a pulsed-discharge-nozzle. The experimental data subse-
quently enabled the detection of C5N in the Taurus molecular cloud TMC-1 by Guélin et al. [14]
using the 30-m and the 100-m radiotelescopes situated at IRAM and Effelsberg, respectively. The
matter of the unassigned B1377 lines was ultimately resolved by McCarthy and coworkers [15]
who recorded the centimeter- and millimeter-wave spectrum of C6H− which reproduced the lines
observed by Kawaguchi et al.. Finally, the assignment of C5N− to the B1389 series of lines detected
toward IRC+10216 [11] is exclusively based on comparison with theoretical data. The latter were
again provided by the Botschwina group [16] who obtained ab initio values of B0 = 1389± 1 MHz
and De = 30 Hz for the ground state rotational constant and the equilibrium quartic centrifugal
distortion constant, respectively. The latter value is expected to be slightly too small compared to
the vibrationally averaged D0 which is determined experimentally. Botschwina and Oswald [16]
estimated a value of D0 = 33.8 Hz (uncertainty ∼ 2%) by comparison to D0/De ratios for the
HC2n+1N cyanopolyynes. These theoretical values for B0 and D0 are in excellent agreement with
their astronomical counterparts of 1388.860(2) MHz and 33(1) Hz [11] with the uncertainty with
respect to the last significant digit given in parentheses.

Clearly, theoretical spectroscopy can be a major asset in the understanding of the internal dy-
namics of molecular systems and the prediction of yet unobserved rovibrational transitions. The
purpose of this thesis therefore is the application of modern ab initio quantum chemistry to study
the rovibrational spectrum of small polyatomic linear molecules. The theoretical groundwork is
presented in Chapter 2. Wave function based methods will be presented which are required to ob-
tain highly accurate representations of the molecular PES. Additivity based composite schemes are
highlighted for this purpose. Theoretical methods to obtain spectroscopic parameters for molec-
ular rovibrational transitions are presented. Such methods are either based on a perturbational
expansion of the rovibrational Hamiltonian or employ a variational description of the nuclear wave
function and their merits are reviewed.

Chapter 3 presents the application of composite approaches to triatomic systems. The benchmark
molecule hydrogen cyanide (HCN) provides an excellent test case since experimental information on
a large number of rovibrational states [17] and the intensities of transitions between the energy levels
is available [18–24]. It will be shown that an accurate description of the dominant spectral features
as well as the more subtle rovibrational interactions governing the weaker bands requires converged
descriptions of both the PEF and EDMF. In a second part, the very flexible tricarbon molecule
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C3 is investigated. This system has always attracted the interest of both theoreticians [25,26] and
experimentalists [27] because of the strong rovibrational coupling. The theoretical study of the C3

rovibrational spectrum illustrates the necessity of an accurate description of the molecular motion
since simple approaches like perturbation theory are bound to fail when strong interactions are
present [28]. In a combined experimental/theoretical study together with the Linnartz group for
laboratory astrophysics at the University of Leiden on stretch-stretch combination bands in C3 [29]
the fruitful interplay between theory and experiment will be highlighted.

In order to extend the established composite approach tetraatomic molecular species the develop-
ment of a new variational program (C8v4) is outlined in Chapter 4. Starting from the definition
of the rovibrational wave function ansatz and the constituent basis functions, the additional the-
oretical groundwork for variational calculations on linear molecules with more than three atoms
are presented. A detailed study of symmetry aspects and the non-vanishing matrix elements of
the Hamiltonian in the chosen harmonic oscillator and rigid rotor product basis helps to establish
the basic structure of the Hamiltonian matrix. The latter is important in the implementation of
an efficient program to carry out actual numerical calculations. One faces the common "curse of
dimensionality" in quantum chemistry, i.e., the size of the problem grows exponentially with the
system size. While for triatomic systems converged variational rovibrational calculations can be
carried out with basis sets of about 1000 to 4000 primitive functions for tetraatomic molecules
this number grows by at least an order of magnitude. A key feature of C8v4 therefore is the
use of a hybrid parallelisation making use of Message Passing Interface (MPI) and Open Multi-
Processing (OMP) standards which exploits the block structure of the Hamiltonian for the com-
putational bottleneck of Gaussian integration of the matrix representation. The program is tested
on two systems where results of variational calculations using a different formulation based on an
internal coordinate Hamiltonian are available.

Chapter 5 combines the results and conclusions of the previous chapters and presents rovibrational
calculations on the tetraatomic linear propynylidynium molecular ion l-C3H+, a species of inter-
est to astrochemistry. Previous theoretical calculations [30] on l-C3H+ have provided somewhat
doubtful results concerning certain rotational spectroscopic parameters. Using C8v4 variational
calculations it will be conclusively shown that the previous results are in error. Additionally, a
new full dimensional composite PEF is presented that allows variational calculations for low-lying
rovibrational states. The derived spectroscopic parameters should provide valuable information
for forthcoming experimental studies.





Chapter 2

Theoretical Background

In this chapter the theoretical groundwork of this thesis is reviewed. Starting from the fundamen-
tal Born-Oppenheimer approximation (Section 2.1) methods for solving the electronic Schrödinger
equation are presented in Section 2.2. State-of-the-art ab initio theory for both single-reference
(Section 2.2.1) and multi-reference (Section 2.2.2) approaches is introduced. Explicit correlation as
a mean to speed up electronic structure calculations is discussed in Section 2.2.3. Special attention
is given to the convergence of the one- and N -particle functions (Section 2.2.5) and the calculation
of molecular properties (Section 2.2.4). The nuclear Schrödinger equation is considered in Sec-
tion 2.3. Focusing on the rovibrational problem formulated in normal coordinates (Section 2.3.1)
perturbational (Section 2.3.2) and variational (Section 2.3.3) methods for obtaining rovibrational
spectra (Section 2.3.4) from first principles are presented.

7



8 CHAPTER 2. THEORETICAL BACKGROUND

2.1 The Born-Oppenheimer Approximation

The notion of a PES arises under the Born-Oppenheimer (BO) approximation [1,2] that separates
the motion of the electrons from that of the nuclei. Then, the PES En(R) is obtained from the
solution of the time-independent electronic Schrödinger equation

Ĥe |Ψn(r; R)〉 = En(R) |Ψn(r; R)〉 , (2.1)

where R and r are the coordinates of the nuclei and electrons, respectively, relative to the center
of mass (CoM) of the molecule. The index n signifies the electronic state of the molecule with
n = 0 being the so called electronic ground state. The electronic Hamilton operator for a system
composed of ne electrons and Nat nuclei represented as point charges {ZI} in the clamped nuclei
approximation is given by

Ĥe = − 1

2

ne∑
i

∇2
ri︸ ︷︷ ︸

T̂e

−
ne∑
i

Nat∑
I

ZI

|RI − ri|︸ ︷︷ ︸
V̂eN

+

ne∑
i

ne∑
j>i

1

|ri − rj |︸ ︷︷ ︸
V̂ee

+

Nat∑
I

Nat∑
J>I

ZIZJ

|RI −RJ|︸ ︷︷ ︸
V̂NN

. (2.2)

Operators T̂e, V̂NN, V̂eN and V̂ee occuring in Equation (2.2) are the kinetic energy operator
(KEO) of the electrons and the three Coulomb potential terms for nuclei-nuclei, nuclei-electron
and electron-electron interaction, respectively. Although V̂NN only depends on nuclear coordinates
it is usually added to the electronic solution, since it constitutes a contribution to the potential
energy in which the nuclei move.
The time-independent Schrödinger equation for the nuclear motion in the electronic ground state
is given by

ĤN︷ ︸︸ ︷[
−
Nat∑

I

1

2MI
∇2

RI︸ ︷︷ ︸
T̂N

+E0(R)︸ ︷︷ ︸
V

]
|ΨVR(R)〉 = Tv(J) |ΨVR(R)〉 (2.3)

with the nuclear KEO T̂N and E0(R) acting as the potential energy (also denoted as V in the
following) for the internal movement of the nuclei. Since the separation of translational (external)
CoM movement and internal (rotational and vibrational) degrees of freedom is always possible
and exact, the eigenfunctions and -values of the nuclear Hamiltonian are the rovibrational wave
function |ΨVR(R)〉 and term energies Tv(J) , respectively.
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2.2 Ab initio electronic structure methods

Analytic solution of the electronic Schrödinger equation Equation (2.1) for all but the simplest
systems of interest to chemistry is not possible. Therefore, approximations have to be introduced
which can be separated into two classes:

1. The one-particle basis which corresponds to the use of atom centered basis functions termed
atomic orbitals (AOs). Molecular wave functions are then built up from molecular or-
bitals (MOs) as one-electron functions obtained by linear combinations of the AOs. This
is commonly referred to as linear combination of atomic orbitals (LCAO).

2. The N -particle space which describes the extension of the wave function beyond that of a
single Slater determinant (anti-symmetric product of spin MOs). Using the formalism of
Configuration Interaction (CI) methods [31] the electronic wave function can be expanded in
the following way:

|Ψ〉 = |Φ0〉+
∑
i,a

Cai |Φai 〉+
∑
i>j

∑
a>b

Cabij |Φabij 〉+ . . . , (2.4)

where |Φ0〉 is the reference determinant, |Φai 〉 and
∣∣Φabij 〉 are singly and doubly excited deter-

minants, respectively, in which an electron (or multiple) has been excited from an occupied
spin orbital labeled with letters i, j, k, . . . to an unoccupied (virtual) spin orbital labeled
with letters a, b, c, . . . The coefficients Cvirt

occ then give the weight of the individual determi-
nants to the wave function.

Both, the one-particle and N -particle space have well defined, albeit impractical, limiting cases.
In the former case this is called the complete basis set (CBS) limit and in the latter case the full
configuration interaction (FCI) limit. The exact solution of the electronic Schrödinger equation is
thus given by the Full Configuration Interaction (FCI)/complete basis set (CBS) wavefuncion/en-
ergy.
The simplest method for obtaining a solution of the electronic Schrödinger equation is the Hartree-
Fock (HF) method [32–36]. In HF theory the wave functions is given by a single Slater determinant
built up from MOs. The motion of an electron is described in an averaged field of all other elec-
trons (mean field theory). HF is able to recover about 99 % of the total electronic energy. The
remaining 1 % is commonly referred to as correlation energy as it results from the instantaneous
reaction of the motion of an electron to that of another electron which is not covered by the mean
field approach of HF.
One way of recovering the correlation energy is by the use of the CI method outlined above. In
practical calculations the expansion has to be truncated at a certain order of excitation. Due to
the Brillouin Theorem [37, 38] at least double excitations are required to obtain a contribution to
the electronic ground state energy since matrix elements of the Hamilton operator between single
excitations and the reference configuration vanish. This leads to the CISD (Configuration Interac-
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tion with Single and Double excitations) method [39,40]. While in general improving upon the HF
solution, this truncated form of CI has the major drawback of not being size consistent. This error
relates to the electronic energy calculated for a supersystem A+B consisting of the non-interacting
subsystems A and B (for example achieved by sufficiently large distance) being different to the
sum of the electronic energies of the individual subsystems.
Although CI offers a systematic way of improving the wave function and energy by inclusion
of higher than double excitations, more powerful methods have emerged over the years to treat
electron-electron correlation. Among those, Coupled-Cluster (CC) theory [41, 42] is probably the
most successful one based on a single HF reference Slater determinant. Through the use of a
non-linear ansatz for the wave function a larger part of the correlation energy can be recovered
by CC methods of a certain order compared to a CI expansion of that same order. CC methods
therefore offer a cost-efficient and accurate way of treating molecular problems.
The use of a single reference determinant somewhat limits the range of a PES that can be sampled
since effects like bond dissociation can not be described by a single determinant. Additionally, in
regions away from the minimum of the PES the influence of excited states of the molecule on the
ground state electronic wave function might become very large thereby making a single reference
ansatz questionable. In order to treat such effects of non-dynamical or static correlation one has
to resort to approaches which account for the multi-reference nature of the problem. The Mul-
tireference Configuration Interaction (MRCI) method is the most prominent method that aims at
incorporating both static and dynamic correlation effects.
On the other side of the coin, the extension of the one-particle basis plays an important role in
accurate ab initio calculations. A particularly noteworthy breakthrough was the introduction of
the correlations-consistent basis sets cc-pVnZ (correlation-consistent polarized valence n-tuple ζ)
by Dunning and coworkers [43] which systematically converge the electronic energy towards the
CBS limit. This has lead to the development of extrapolation protocols which approximate the
CBS limit from a small number of calculations [44–50]. A second approach is the inclusion of terms
in the wave function which explicitly depend on the interelectronic distance. Such methods, called
R12 or F12 explicitly correlated depending on the formulation [51,52], have become very successful
in recent years.
In addition to the energy of a molecular system its physical properties pertaining to a perturbation
by an external field (e.g. a magnetic or an electric field) are of interest to theoretical spectroscopy
and quantum chemistry in general (see e.g. [53] for a review). First-order properties like the dipole
moment or higher moments are key in understanding various spectroscopic techniques since they
determine the coupling between the electromagnetic radiation and the molecular system. Further
spectroscopically relevant properties include the spin densities at the nuclei for electron-spin reso-
nance (ESR) spectroscopy or the field grandient at the nucleus for nuclear quadrupole couplings
(NQC). Such properties can be calculated following different procedures, these include perturba-
tion theory and response theory [54]. The latter approach is especially suited in the study of
time-dependent properties. Here, the perturbational approach will be the main focus since the
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interest is on static properties and the latter is well suited to evaluate molecular dipole moments
that determine the intensity of rovibrational transitions.
A quantitative description of the rovibrational spectrum of a molecule requires precise knowledge
of the molecular PES. Ab initio methods like CCSD(T) can routinely achieve an accuracy of
5-10 cm−1 in the calculation of fundamental vibrational transitions [55–58]. However, modern IR
spectroscopy can easily reach an accuracy of 0.0001 cm−1 in determining rovibrational transition
frequencies [17] which corresponds to an energy on the order of 10−10 Eh. Reaching such a level
of agreement ab initio would be rather ambitious. Then again, the separations between adjacent
rovibrational transitions for small polyatomic molecules are on the order of 2B ∼ 1 cm−1 where B
is the rotational constant. This suggests that in order to provide useful quantitative spectroscopic
information for the assignment of lines, a target accuracy of ∼ 1 cm−1 (spectroscopic accuracy)
is desirable. Composite ab initio methods [50, 59] aim at converging the PES description to this
level of agreement by inclusion of various contributions that account for typical sources of error of
standard frozen core CCSD(T) (coupled-cluster with singles, doubles and a perturbative treatment
of triple excitations). These encompass but are not limited to core-valence correlation effects, rel-
ativistic corrections and higher-order correlation beyond CCSD(T). The inclusion of corrections
beyond the BO approximation [60] can also be important especially for molecules containing hy-
drogen atoms.
The following sections give a more detailed account of the ab initio methods that are relevant
for this work. Section 2.2.1 and Section 2.2.2 summarize the coupled-cluster and multi-reference
methods for correlated ab initio calculations. Explicit correlation mainly in the F12 formulation
of Werner and coworkers [52, 61] is covered in Section 2.2.3. Details on the calculation of electric
molecular dipole moments are given in Section 2.2.4 and composite approaches to the construction
of highly accurate potential energy and property surfaces in Section 2.2.5.

2.2.1 Coupled-cluster theory

The main problems of truncated CI methods can be linked to the linear parametrization of the CI
wave function according to the expansion Equation (2.4). The CI expansion can be rewritten by
introducing the excitation (cluster) operator T̂ according to

T̂ =

ne∑
i

T̂i , (2.5)

where the T̂i are excitation operators which generate all i-fold excitations from the reference wave
function. For example the effect of T̂2 on |Φ0〉 is

T̂2 |Φ0〉 =
∑
i>j

∑
a>b

tabij |Φabij 〉 , (2.6)
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where the coefficients tvirt
occ are called amplitudes within CC theory. In CI expansions the latter are

usually denoted as Cvirt
occ . The CISD expansion (T̂ = T̂1 + T̂2) is then given by

|ΨCI〉 =
(

1 + T̂
)
|Ψ0〉

= |Ψ0〉+ T̂1 |Ψ0〉+ T̂2 |Ψ0〉
= |Φ0〉+

∑
i,a

Cai |Φai 〉+
∑
i>j

∑
a>b

Cabij |Φabij 〉 . (2.7)

A more efficient parameterization can be achieved by using a non-linear ansatz for the generation
of the excited determinants. This idea leads to the Coupled-Cluster wave function which is given
in the following form

|ΨCC〉 = eT̂ |Φ0〉 . (2.8)

The power of this approach can be realized from the Taylor expansion of the exponential function:

eT̂ = 1 + T̂ +
T̂2

2
+

T̂3

6
+ . . . =

∑
k=0

T̂k

k!
, (2.9)

showing that upon truncation of the cluster operator (Equation (2.5)) at an order i < ne the wave
function still contains contributions from higher substitutions. Taking T̂ = T̂2 (Coupled-Cluster
Doubles, CCD) as an example, the exponential expansion contains the term 1

2 T̂2 that, when acting
on |Φ0〉, yields

1

2
T̂2

2 |Φ0〉 =
1

2

∑
i>j

∑
a>b

∑
k>l

∑
c>d

tabij t
cd
kl |Φabcdijkl 〉 . (2.10)

The operator T̂2
2 thus generates a so called disconnected fourfold excitation

∣∣∣Φabcdijkl

〉
. With this a

direct comparison of CI and CC methods is possible. For example the CCSD (Coupled-Cluster
with singles and doubles) and CISD wave functions with T̂ = T̂1 + T̂2 are:

|ΨCC〉 = |Ψ0〉 +
∑
i,a

tai |Φai 〉 +
∑
i>j

∑
a>b

(tabij +
1

2
tai t

b
j) |Φabij 〉 + . . . ,

|ΨCI〉 = |Ψ0〉 +
∑
i,a

Cai |Φai 〉 +
∑
i>j

∑
a>b

Cabij |Φabij 〉 .

showing the connection between the cluster amplitudes tvirt
occ and the CI coefficients Cvirt

occ . The
disconneted higher-order terms in the CCSD expansion (not shown) ensure the size consistency
of the CC approach. In fact, a CCSD wave functions includes all excited determinants which are
present in an FCI expansion.
The determination of the cluster amplitudes tvirt

occ proceeds via the electronic Schrödinger equation

ĤeeT̂ |Φ0〉 = E0eT̂ |Φ0〉 , (2.11)
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which upon multiplication with e−T̂ yields

e−T̂ĤeeT̂ |Φ0〉 = E0 |Φ0〉 . (2.12)

Using the Baker-Campbell-Hausdorff formula [62] for the similarity transformed Hamilton operator
in the right hand side of Equation (2.12) one obtains [63](

Ĥe +
[
Ĥe, T̂

]
+

1

2!

[[
Ĥe, T̂

]
, T̂
]

+
1

3!

[[[
Ĥe, T̂

]
, T̂
]
, T̂
]

+
1

4!

[[[[
Ĥe, T̂

]
, T̂
]
, T̂
]
, T̂
])
|Φ0〉 = E0 |Φ0〉 . (2.13)

Multiplying this equation from the left with 〈Φ0|, 〈Φai |, 〈Φabij |, . . . and requiring orthonormality of
the configurations yields a set of coupled non-linear equations that determine the energy E and
cluster amplitudes tvirt

occ . This formulation of CC theory is not variational and the equations have to
be solved in an iterative fashion. However, since the wave function includes all higher excitations
due to the exponential ansatz the method is size consistent. In an actual calculation one usually
restricts the space of occupied orbitals from which electrons can be excited to the valence electrons
leading to the so called frozen-core (fc) approximation.
Coupled-Cluster approaches are classified according to the order at which the cluster operator T̂

is truncated. The most common approach includes T̂ = T̂1 + T̂2 the coupled cluster singles and
doubles method (CCSD) [64, 65]. Further adding T̂3 yields CCSDT (coupled cluster with singles,
doubles and triples) [66,67]. This series can be continued including ever higher levels of excitation
up till T̂n, where n is the number of electrons, which is equivalent to FCI as outlined above. The
CCSD(T) method introduced by Raghavachari et al. [68] includes a perturbative treatment of T̂3

on top of a converged CCSD calculation. This method has been shown to provide excellent results
for a large range of systems [16, 26, 50, 55–58, 69–71], leading to it being referred to as the "gold
standard" of quantum chemistry [70]. Of course, this is partially due to a fortuitous cancellation of
errors arising from the perturbative treatment of the triples, the incomplete basis set, the neglect
of core electrons and higher-order correlation effects. The advancement in computing power has
enabled the implementation and application of CC methods of high order such as CCSDTQ [72] or
its non-iterative perturbational counterpart CCSDT(Q) [73] for example in the MRCC program by
Kállay [74,75]. With this a systematic way of accounting for missing correlation effects is possible
going well beyond fc-CCSD(T) and will be further addressed in Section 2.2.5.

2.2.2 Multi-reference methods

The wave functions presented so far have been based on single reference methods that construct
the excited configurations from a single determinant (in most cases the HF ground state). By
virtue of this approach the orbitals or more precisely the linear combinations of AO basis functions
that make up the substitutions are the same as in the HF reference determinant. For electronic
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wave functions dominated by more than one electronic configuration such an ansatz is of course
inappropriate even when applying a CI or CC calculation on top of the HF solution since the
orbitals generated by HF might not be suitable for the excited configuration. Examples for chemical
problems that are inherently multi-configurational are the dissociation of molecules [76–78], low
lying excited electronic states [79] or conical intersections which are regions of a PES where two
or more electronic states of a molecule are nearly degenerate [80–85].
A better solution to such multi reference problems is provided by constructing the wave function
in a CI fashion and at the same time variationally optimizing the MOs of each configuration.
This approach is called the multi-configurational self-consistent field (MCSCF) method. A rather
compact formulation of the MCSCF wave function is [63]

|ΨMCSCF〉 = e−κ̂
∑
i

Ci |Φi〉 , (2.14)

where e−κ̂ is the orbital-rotation operator that performs unitary transformations of the orbitals
and Ci are CI coefficients. The wave function is then obtained by minimizing the expectation value
of the energy

E0 = min
κ,C

〈
ΨMCSCF

∣∣∣ Ĥe

∣∣∣ΨMCSCF

〉
〈ΨMCSCF |ΨMCSCF〉

, (2.15)

with respect to the parameters given above.
Different schemes exist for the selection of the configurations |Φi〉 that are included in a MCSCF
calculation. The complete active space (CASSCF) method [86–90] partitions the orbital space
into a set of inactive orbitals which are doubly occupied in all configurations, active orbitals
with no restriction of the occupation of these orbitals and external orbitals which are unoccupied
in all configurations. For a given molecular system the available electrons are then distributed
into the occupied orbitals consisting of the inactive and active orbitals. In the space spanned
by the active orbitals the CASSCF wave function corresponds to a FCI wave function with all
possible configurations included. This latter feature already shows that CASSCF is a size consistent
method. Besides the CASSCF method more intricate methods exist like the restricted active space
(RAS) scheme [91] which further divides the active space based on certain restrictions. MCSCF
methods already include some dynamical correlation compared to a HF calculation through the
underlying CI approach. Using the MCSCF solution as reference in a, e.g., 2nd order perturbational
treatment (CASPT2) [92–101] or in a variational CI calculation (MRCI) allows to recover an even
larger fraction. Besides that, there are also some non-variational MRCI variants like the multi-
reference averaged coupled pair functional (MR-ACPF) method [102] which is size consistent by
construction. Attempts at the formulation of multi-reference versions of CC theory [103–109] are
still rather scarce and not widely applicable and suffer from technical complications [110, 111]. In
the following the focus will be on the MRCI and Multireference Averaged Coupled-Pair Functional
(MR-ACPF) method since these will be used for the construction of PEFs in this work.
MRCI calculations are basically an extension of the CI method to a reference that consists of more
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than one configuration. The CI expansion is usually truncated after the double excitations and
the wave function can then be written [31,112–114]

|ΨMRCI〉 =
∑
I

CI |ΦI〉+
∑
S

∑
a

CaS |ΦaS〉+
∑
P

∑
ab

CabP |ΦabP 〉 . (2.16)

In Equation (2.16) the |ΦI〉 are the configurations that can be constructed from the occupied
orbitals in the reference wave function. Therefore, the first term can be identical to the reference
wave function and will be so when employing a full valence CASSCF reference. The singly external
configuration state functions (CSFs) |ΦaS〉 are the single substitutions obtained by placing one
electron in an external orbital a. Analogously the

∣∣ΦabP 〉 are doubly external CSFs. The index P
designates an orbital pair P = (i, j, p) with p characterizing the spin state of the CSF(p = 1− 2S,
i.e. p = 1 for singlet and p = −1 for triplet).
Considering all single and double excitations from the reference |Φ0〉 can lead to a huge number
of configurations which makes the calculations very demanding with large AO basis sets. A more
efficient formulation is obtained by applying the double excitation operator to the total reference
wave function. This approach is known as internally contracted (ic-)MRCI and was developed by
Meyer [115] as well as Werner and Reinsch [116]. The doubly excited configurations are then given
by

|Φabij 〉 = T̂2

∑
R

CR |ΦR〉 =
∑
R

CR |ΦabijR〉 , (2.17)

whereR runs over the number of configurations in the reference function. Contracted configurations
contain the same external orbitals a, b but differ in the internal (active) orbitals. With this the
number of double substitutions in the CI expansion is independent of the number of reference
configurations. The introduction of the contraction introduces a small loss of about 0.3-0.5 %
on the recovered correlation energy [117] but this is significantly smaller than the difference of
MRCISD with respect to a FCI treatment.
In analogy to truncated single reference CI , MRCISD is not size consistent. This can lead to
problems in describing dissociation curves or molecular clusters. A cheap a posteriori method to
obtain approximate size consistency is called the "Davidson correction" following Davidson and
Silver [118]. The correction term ∆EQ to the correlation energy Ecorr is then given by

∆EQ = Ecorr
1− C2

0

C2
0

, (2.18)

where C0 is the coefficient of the reference wave function in the converged MRCI wave function
C0 =

∑
R CR. Applications that employ the Davidson method are usually termed MRCI+Q since

the correction mainly accounts for neglected quadruple excitation which are important for achiev-
ing (approximate) size consistency.
A multi-reference approach that is size-consistent by construction is the ACPF method first in-
troduced by Gdanitz and Ahlrichs [102]. The ne electrons in the molecule are divided into 1

2ne
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non-interacting pairs and the energy of the system is then obtained by minimizing the functional

E = E0 +

〈
Φ0 + Φc

∣∣∣ Ĥe − E0

∣∣∣Φ0 + Φc

〉
1 + ga 〈Φa |Φa〉+ ge 〈Φe |Φe〉

. (2.19)

In Equation (2.19) |Φ0〉 and |Φc〉 are the normalized reference and the correlation functions, respec-
tively. The latter are the functions created by the single and double excitation operators acting
on the reference. Wave functions |Φa〉 occuring in the denominator of Equation (2.19) are CSFs in
the set |Φc〉 that have, outside of the active orbitals, the same occupation as the reference and |Φe〉
are all the remaining external CSFs contributing to |Φc〉. The parameters ga = 1 and ge = 2/ne

then provides the ACPF method. The choice ga = ge = 1 will yield the MRCI solution.

2.2.3 Explicitly correlated methods

The electron-electron interaction potential Vee in Equation (2.1) is singular when the electron-
electron distance r12 of an electron pair tends towards zero. This is called the Coulomb cusp and
the condition imposed on the wave function have been worked out by Kato [119](

∂Ψ

∂r12

)
r12=0

=
1

2
Ψ(r12 = 0) . (2.20)

A wave function expanded in terms of MOs constructed from contracted Gaussian-type orbitals
(cGTOs) requires a large number of those basis functions to describe the shape of the Coulomb cusp.
This is of course due to the basis set not depending on the interelectronic distance r12. Already
in 1929 Hylleraas [120] in his seminal paper on the ground state of the Helium atom included
the interelectronic distance r12 (geminals) directly into his basis functions. This idea was later
picked up by Kutzelnigg and coworkers [51, 121, 122] leading to the developement of the so called
R12 methods. A different approach termed F12 was introduced by Werner and coworkers [52, 61]
employing Slater-type geminals

f(r12) = − 1

β
e−βr12 , (2.21)

follwing Ten-no’s suggestion [123]. The parameter β in Equation (2.21) has the dimension of an
inverse length and common recommended values are in the range 0.9-1.5 Å−1 depending on the
employed basis set [124]. A complication arising in explicitly correlated methods is that computa-
tionally demanding three- and four-electron integrals have to be evaluated. This can be circum-
vented by introducing the resolution-of-the-identity (RI) approximation [51], which reduces the
many-electron integrals to products of no more than two-electron integrals. The RI approxima-
tion requires a complementary auxilliary basis set (ABS) which together with the AO basis forms
the complementary auxilliary basis set (CABS) and together with density fitting (DF) techniques
the CCSD(T)-F12 methods [52, 61] as implemented in Molpro [125] provide efficient explicitly
correlated coupled-cluster approaches. Explicitly correlated MRCI-F12 and MR-ACPF-F12 meth-
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ods [83, 126, 127] have also been introduced by the group of Werner employing approximations
similar to CCSD(T)-F12.
The perturbative (T) contribution is treated in the standard manner in CCSD(T)-F12 and to
approximate a fully explicit correlation treatment a triples scaling scheme has been proposed by
Werner et al. [61,128]. In the so called (T*) approach the contribution of triples to the correlation
energy ∆Ecorr

(T∗) is calculated according to

∆Ecorr
(T∗) = ∆Ecorr

(T)

Ecorr
MP2-F12
Ecorr

MP2

. (2.22)

In Equation (2.22) ∆Ecorr
(T) is the triples energy which is scaled by the ratio of the correlation

energy obtained from 2nd order Møller-Plesset perturbation theory (MP2) [129] employing explicit
correlation Ecorr

MP2-F12 [130–132] and in the standard MP2 formulation Ecorr
MP2.

The various approximations that are involved in CCSD(T)-F12 calculations demand a careful
assessment of the method with respect to canonical CCSD(T) calculations with large AO basis
sets. For example, the recent extensive study by Feller [133] indicated that the use of the (T*)
scheme can lead to poorer results especially for larger AO basis sets. He suggested that, until a
complete explicitly correlated treatment of the connected triples in the spirit of (T) is available, the
use of the Ecorr

CCSD-F12/E
corr
CCSD ratio to scale triples energies might provide a more robust estimate

to explicitly correlated triples contributions.

2.2.4 The electric dipole moment

The dipole moment can be interpreted as the response of a molecular system to an external field
acting as a perturbation [134]. Using a Taylor expansion of the energy with respect to a static
electric field F expanded around the field-free case one obtains

E(F) = E0 +
∑
α

(
∂E

∂Fα

)
0

Fα +
1

2

∑
αβ

(
∂2E

∂Fα∂Fβ

)
0

FαFβ + . . . , (2.23)

where the summations are carried out over the cartesian components {α, β} = {x, y, z}. The
multipole expansion of the interaction energy of a charge distribution with a uniform electric field
is given by

E = qtotVel − µF− 1

2
ΘF

′ − . . . , (2.24)

where qtot is the total charge of the molecule and Vel the electric potential. The symbols µ and Θ

designate the electric dipole and quadrupole moment, respectively, and the electric field gradient is
F
′
. The presence of an electric field further induces a dipole moment which can be approximated

by a Taylor expansion of µ

µ = µ0 + αF +
1

2
βF2 + . . . (2.25)
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Equation (2.25) defines the permanent dipole moment µ0, the dipole polarizability α and the first
hyperpolarizability β. In a homogenous electric field the term F

′
in Equation (2.24) and all higher

derivatives vanish. Then, one can identify the derivatives in Equation (2.23) with the derivatives
of the dipole moment:

µ0α = −
(
∂E

∂Fα

)
0

, (2.26)

ααβ = −
(

∂2E

∂Fα∂Fβ

)
0

. (2.27)

In the context of molecular rovibrational spectroscopy both these quantities are important. The
permanent dipole moment and its variation with the molecular geometry (electric dipole moment
function, EDMF) determines the intensity of rotational and rovibrational spectra in the microwave
and infrared and the polarizability tensor α determines the intensities in Raman spectroscopy.
Determination of µα via ab initio methods is predominantly performed by simple numerical differ-
entiation

µα ≈
E(fα)− E(−fα)

2fα
. (2.28)

This is termed finite field approach, since it involves including a finite electric field as an operator
fαα̂ in determining the ab initio energies E(±fα). The numerical approach requires a field that
is sufficiently small to approximate the differential ∂Fα and still large enough for the calculated
fraction to be numerically stable. A typical value employed in this thesis is fα = ±0.0003 in atomic
units.
The dipole moment is a vector in cartesian space and per convention the individual components
are assigned a positive sign if the dipole points from the negative end to the positive end in
the direction of the cartesian axis. This is important in understanding the signs of the dipole
moments given in this thesis. They are given with respect to the molecule being aligned along
the z-axis in their equilibrium configuration according to the molecular formula. As an example,
for hydrogen cyanide HCN a negative sign of the permanent dipole moment µz corresponds to a
polarity +HCN−. For the application in variational rovibrational calculations the ab initio dipole
moment vectors is transformed locally to the Eckart frame [135]. Then, the dipole vector of linear

molecules µ =

(
µ‖
µ⊥

)
has the two components µ‖ along the molecular symmetry axis (z) and µ⊥

perpendicular to the molecular axis.

2.2.5 Composite approaches

A comprehensive review of composite approaches is beyond the scope of this work and the reader
is refered to the reviews by Feller, Peterson and Dixon [136] and Karton [59]. The schemes which
have become quite popular in recent years are the Gaussian-n (Gn) methods [137–144] originally
introduced by Pople and coworkers, the highly accurate extrapolated ab initio thermochemistry
(HEAT) methods of Stanton and coworkers [69, 145, 146], the Weizmann-n (Wn) family of meth-
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ods by Martin et al. [48, 147, 148], the work of Allen and coworkers on the Focal-Point-Analysis
(FPA) [149–153] or the correlation consistent composite approach (ccCA) developed by the Wilson
group [154–158]. The method probably closest related to the present composite approach is the
Feller-Peterson-Dixion (FPD) approach [50,136,159–162]. Starting from coupled-cluster CCSD(T)
calculations with large Gaussian basis sets (including up to aug-cc-pV8Z) the method accounts for
effects due to core-core and core-valence correlation, scalar relativistic effects and higher-order cor-
relation beyond CCSD(T). When necessary even smaller effects like spin-orbit coupling or adiabatic
corrections are also taken into account. Especially designed for high accuracy atomization energies
the FPD method is able to achieve root-mean-square (RMS) deviations of about 0.30 kcal/mol
compared to experiment. As a by product the FPD approach yields molecular equilibrium geome-
tries and harmonic vibrational frequencies that are within 0.002-0.003 Å and 1-2 cm−1 of their
experimental counterparts. This level of agreement makes FPD a promising approach for the con-
struction of potential energy functions.
As with all composite methods the basic idea of the present ansatz is based on the assumption
of additivity for the various corrections that enter the PEF. That implies that the PEF can be
represented as a simple sum according to

V =
∑
(α)

V (α) = V (F12b) + V (CV) + V (SR) + V (HC) + V (DBOC) , (2.29)

where the contributions are designated by (α) (for an explanation of the used abbreviations see
below). In addition to composite PEFs, the scheme can be applied to any molecular property and
will be used to construct composite EDMFs

µ =
∑
(α)

µ(α) = µ(F12b) + µ(CV) + µ(SR) + µ(HC) . (2.30)

The basic contribution to the PEF and EDMF is chosen such that it already incorporates a large
fraction of the correlation contribution at or very close to CBS limit. Therefore, the explicitly
correlated fc-CCSD(T)-F12b method (abbreviated F12b) will be employed to provide such results.
The individual corrections which are added to this term are discussed in the following.

Core-valence correlation

Core-core and core-valence correlation (CV) are among the most important contributions to the
composite scheme. The influence on bond lengths and harmonic vibrational frequencies is on
the order of 0.001 Å and up to 10 cm−1, respectively, depending on the molecule under study.
Conventional coupled-cluster CCSD(T) calculations are employed to correct the PEF for CV effects
and the contribution is obtained as the energy difference of CCSD(T) with all electrons correlated
and fc-CCSD(T). This requires large AO basis sets of the (aug-)cc-pCVnZ family [163–165] that are
specifically designed to recover CV effects. In order to reach near CBS quality at least quintuple
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ζ (n = 5) basis sets are required. This makes the CV contribution rather expensive especially for
regions of low symmetry on the PES of a linear molecule. The recent development by Peterson
and coworkers [166] of specialized cc-pCVnZ-F12 basis sets for all electrons explicitly correlated
calculations will help to mitigate this cost in the future. For example, a ae-CCSD(T)-F12b/CVQZ-
F12 calculation offers CBS quality electronic energies for the combined F12b+CV contribution at
a fraction of the cost required when combining e.g. a F12b/VQZ-F12 basic contribution with CV
calculated with a large CV6Z basis set [167].

Scalar relativistic effects

The electronic Hamiltonian of Equation (2.2) is strictly non-relativistic. The neglect of scalar
relativisitc (SR) effects introduces a comparably small error on the spectroscopic parameters of
molecules consisting of light first- and second-row elements. However, to reach spectroscopic
accuracy it is still necessary to account for this contribution. To this end CCSD(T) calculations
employing the 2nd order Douglas-Kroll-Hess (DKH) Hamiltonian [168,169] are performed. Again,
the SR contribution is obtained as the energy difference of two calculations at the DKH2 fc-
CCSD(T) and standard fc-CCSD(T) level of theory. The former employ the recontracted (aug-)cc-
pVnZ-DK basis sets [170] designed for DKH applications and the latter utilize standard Dunning
type basis sets.

Higher-order correlation

Higher-order correlation (HC) of the valence electrons beyond the basic contribution fc-CCSD(T)
is incorporated in a series of calculations. The employed decomposition of the CC correlation
energy corresponds to

Ecorr = ∆ESD+∆E(T)+

HC︷ ︸︸ ︷[
∆ET −∆E(T)

]
+ ∆E(Q)︸ ︷︷ ︸

(Q)-(T)

+
[
∆EQ −∆E(Q)

]︸ ︷︷ ︸
Q-(Q)

+ ∆EP︸ ︷︷ ︸
P-Q

+ ∆ES︸︷︷︸
S-P

+ . . . , (2.31)

where each term corresponds to the contribution of a different excitation operator T̂i. The first two
terms correspond to the CCSD(T) correlation energy. The first HC contribution termed (Q)-(T) in
fact incorporates two effects. It corrects the perturbative triples to the full CCSDT result and adds
the quadruples effect via (Q) calculated with the converged CCSDT amplitudes [73]. The (Q)-(T)
contribution is therefore obtained from the difference CCSDT(Q)-CCSD(T) and constitutes the
largest HC effect. From the energy difference CCSDTQ-CCSDT(Q) the corrections to the full
iterative quadruples is obtained (termed Q-(Q)). The influences of T̂5 and T̂6 are calculated from
CCSDTQP-CCSDTQ (P-Q) and CCSDTQPS-CCSDTQP (S-P) [72].
The first HC contribution (Q)-(T) usually has an opposite effect compared to the CV contribution
and a at least partial compensation has been observed for a number of systems [48,50,159,171–173].
An important factor supporting the success of composite methods is the finding that HC effects
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show much faster convergence with respect to the AO basis as shown by Karton and coworkers
[48,174]. This enables the inclusion of computationally demanding contributions like P-Q and S-P
evaluated with small cc-pVDZ basis sets, yet still providing reasonably converged results.

Diagonal Born-Oppenheimer correction

The first correction for effects beyond the Born-Oppenheimer approximation can be calculated
from the electronic ground state wave function |Ψ0(r; R)〉 (diagonal Born-Oppenheimer correction
DBOC) and is given by [60,175]

∆EDBOC(R) = −
∑

I

∑
α

1

2MI

〈
Ψ0(r; R)

∣∣∇2
RIα

∣∣Ψ0(r; R)
〉
. (2.32)

The summations in Equation (2.32) run over all atoms I with nuclear massMI in the molecule and
the cartesian coordinates α = {x, y, z}. The operator ∇2

RAα
is the second derivative with respect

to the nuclear coordinates acting on |Ψ0(r; R〉. Due to the parametric dependence of the wave
function on the nuclear coordinates, ∆EDBOC also depends slightly on the internal coordinates of
the molecule resulting in small changes of the equilibrium geometry and the shape of the potential
energy. Evaluation of the DBOC is enabled by analytic gradient techniques and has been imple-
mented in Cfour [176] for CCSD wave functions [177].
The DBOC constitutes a mass-dependent contribution to the PEF. Due to the nuclear mass en-
tering as a denominator it is most important for light nuclei especially hydrogen. Converting
the DBOC between isotopologues of a molecule presents no challenge once the integrals in Equa-
tion (2.32) are evaluated. Potential energy surfaces incorporating DBOC effects are also referred
to as adiabatic surfaces since they still preserve the concept of a single adiabatic potential for a
molecule. Higher-order effects beyond DBOC are therefore often called non-Born-Oppenheimer
(NBO) or non-adiabatic effects that require integrals of the ground state with excited electronic
states coupled through derivatives with respect to the nuclear coordinates [178,179].

2.3 Nuclear motion calculations

The nuclear Hamiltonian ĤN in Equation (2.3) is given with respect to cartesian coordinates of the
atoms in a space fixed (SF) coordinate system. This choice of coordinates is inconvenient for the
study of rovibrational energy levels because of the huge degree of coupling between rotational and
vibrational motion in SF-coordinates. Therefore, a new set of coordinates is introduced termed
normal coordinates by invoking the Eckart conditions [135]. This then relates normal coordinates
to the cartesian coordinates of the atoms in a molecule fixed (MF) coordinate system that rotates
(and translates) with the molecular inertial frame. The complete separation of vibrational and
rotational motion is not possible but the Eckart frame minimizes the coupling between these co-
ordinates. Wilson and Howard [180] were the first to derive the general rovibrational Hamiltonian



22 CHAPTER 2. THEORETICAL BACKGROUND

for polyatomic molecules in terms of normal coordinates which was later refined by Darling and
Dennison [181]. Todays commonly accepted form is that due to Watson [182]. By use of commuta-
tion relations and sum rules for molecular parameters he greatly simplified the Darling-Dennison
Hamiltonian. A more detailed discussion of the specific form of the Watson Hamiltonian for linear
molecules will be given in Section 2.3.1.
Analogous to the electronic Schrödinger equation, a general analytic solution of Equation (2.3) is
not possible and one has to resort to approximate solutions of the rovibrational problems. The
two most common approaches are the perturbational and the variational approach. The former is
based on a perturbation expansion of the rovibrational Hamiltonian [183–187] and at least second
order vibrational perturbation theory is required to obtain anharmonic corrections to the zeroth or-
der (harmonic) vibrational energies. Employing a contact transformation of the Hamiltonian and
evaluating matrix elements with respect to the zeroth order wave functions yields spectroscopic
parameters which depend on the molecular geometry as well as the (an)harmonic PES. These pa-
rameters can therefore be calculated ab initio or, in a reverse process, extracted from molecular
spectra. The standard perturbational approach is based on the assumption of small amplitude
vibrations. This is not always valid and VPT is therefore prone to failure in case of e.g. "floppy"
molecules with large amplitude motions.
The second approach is based on variational theory [188–190] employing the exact KEO for the
rovibrational problem. In case of linear variational calculations the nuclear wave function |ΨVR(R)〉
is approximated as a linear combination of basis functions whose coefficients are varied in order
to minimize the expectation value over the rovibrational Hamiltonian. By increasing the size of
the basis set, the latter value will approach Tv(J) from above. Once convergence up to a desired
accuracy with respect to the basis set size is reached all differences that remain compared to ex-
periment must originate from the PES and thus from the method used for its calculation (either ab
initio or from fitting to spectroscopic data). The variational calculation of rovibrational properties
therefore provides a means to accurately assess the performance of an ab initio method.
In the following sections a more detailed discussion of linear-molecule nuclear motion calculations
is presented. First, Section 2.3.1 introduces the rovibrational Hamiltonian for linear molecules
in Watson’s formulation. Then, Section 2.3.2 and Section 2.3.3 review the basic aspects of the
perturbational and variational solution of the nuclear Schrödinger equation. Finally, Section 2.3.4
gives a general overview of rovibrational transitions, the determination of spectroscopic parameters
and the calculation of rovibrational intensities.

2.3.1 Watson’s isomorphic Hamiltonian

The rovibrational Hamiltonian for linear molecules as given by Watson [191] following the initial
simplification of the Darling-Dennison Hamiltonian by the same author for non-linear molecules
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Figure 2.1: Definition of the molecule fixed axes system (x′, y′, z′) and the Euler angles that relate
it to the space fixed axes (X,Y, Z) via an intermediate system (x, y, z) with Euler angles (θ, φ, 0).

[182] is:

ĤW =
1

2

∑
i

P̂2
i +

1

2
µ
(
π̂2
x + π̂2

y

)
︸ ︷︷ ︸

T̂V

+
1

2
µ
(

Π̂
′2
x + Π̂

′2
y

)
︸ ︷︷ ︸

T̂R

− µ
(

Π̂
′

xπ̂x + Π̂
′

yπ̂y

)
︸ ︷︷ ︸

T̂VR

+V , (2.33)

where the summation i runs over all 3Nat− 5 vibrations of a linear molecule. For linear molecules
the first Nat − 1 vibrations are stretching vibrations labeled by index s. The remaining 2N − 4

are doubly degenerate bending vibrations labeled tα (α = {x, y}) or where appropriate without α
designating the individual components.
Individual terms in the Hamiltonian Equation (2.33) can be identified with different contributions
to the rovibrational term energy Tv(J) of the molecule. The first two terms are the vibrational
KEO T̂V and together with the potential energy V constitute the vibrational Hamiltonian. The
third term is the rotational KEO T̂R and the operator T̂VR couples rotation and vibration and is
commonly referred to as the Coriolis coupling operator.
The Hamiltonian in Equation (2.33) is formulated in normal coordinates Qi and their conjugate
linear momenta P̂i = −i~ ∂

∂Qi
. Normal coordinates are defined with respect to a molecule fixed

coordinate system whose origin is the CoM and its orientation with respect to the space fixed
coordinate system (X,Y, Z) is defined by Euler angles (θ, φ, χ). A molecule fixed coordinate system
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(x, y, z) is required to fullfil the Eckart conditions [135]:∑
I

MIRI = 0 , (2.34)∑
I

MI(R
e
I ×RI) = 0 . (2.35)

In Equation (2.34) and (2.35) the vectors Re
I and RI are the equilibrium and the instantaneous

cartesian coordinate vector in the molecule fixed axes system, respectively. By setting up the axis
system in this way, the (x, y, z) axes coincide with the principal inertia axes of the molecule. For
linear molecules the symmetry axis is commonly chosen to be along the z axis. This results in one
of the Euler angles (χ) which describes the rotation of the x- and y-axis around z being undefined.
This problem is rectified by introducing a new axis system (x′, y′, z′) which is obtained by the
following procedure. First one sets χ = 0◦ and then introduces a new angle χ′ that rotates the
(x′, y′, z′) axes from the (x, y, z) axes about z(= z′). The actual value of the angle χ′ is arbitrary.
It is the (x′, y′, z′) axis system in which the normal coordinates are defined. In the following the
primes will be omitted for clarity except for cases where explicit relations between the two axes
systems are described by the angle χ′. The three discussed axis systems together with the Euler
angles (θ, φ, χ′) that relate them to each other are graphically displayed in Figure 2.1.
The vibrational KEO T̂V in Equation (2.33) can be separated into two terms, one for the squared
linear momenta of the vibrations T̂P and the second term T̂π which accounts for the vibrational
angular momentum

T̂V = T̂P + T̂π

=
1

2

∑
i

P̂2
i +

1

2
µ
(
π̂2
x + π̂2

y

)
. (2.36)

The quantity µ can be interpreted as the inverse effective moment of inertia of the molecule and
is given by [191]

µ =
Ie(

Ie +
∑

I,i

√
MIre

IzlIz,iQi

)2 , (2.37)

where Ie is the equilibrium moment of inertia and lIz,i is an element of the 3Nat × 3Nat − 5

matrixL that transforms the normal coordinate vector Q to mass weighted cartesian displacement
coordinates uIα =

√
MI(RIα −Re

Iα) according to

u = LQ . (2.38)
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By introducing the coefficients ak = 2
∑

I

√
MIR

e
IzlIz,i and recognizing that the latter are only

non-zero for stretching vibrations [192] on can rewrite Equation (2.37) yielding

µ =
Ie(

Ie + 1
2

∑
s asQs

)2 . (2.39)

The operators π̂α occuring in Equation (2.36) are the vibrational angular momentum operators
defined as

π̂α =
∑
ij

ζαijQiP̂j , (2.40)

where ζαij is an element of the Coriolis coupling matrix ζα that represents the coupling of the
vibrations i and j via rotation about the α-axis. The elements of these matrices are defined
according to

ζαij =
∑

I

lIβ,ilIγ,j − lIγ,ilIβ,j , (2.41)

where (α, β, γ) are cyclic permutations of (x, y, z). The matrices ζα are skew symmetric and the
following relations hold:

ζαij = −ζβij = ζβji = −ζαji . (2.42)

Furthermore, the ζαij are only non-vanishing when the direct product of the symmetry species for
normal coordinate Qi and Qj contains the symmetry species for rotation about the α-axis [192].
Therefore, for a linear molecule the non-zero ζαij are those with {i, j} = {s, ty} and {i, j} = {s, tx}
for α = x and α = y, respectively.
The operators Π̂

′

α occuring in T̂R and T̂VR of Equation (2.33) are components of the total angular
momentum operator Π̂

′
with associated quantum number J . They are obtained by the above

mentioned change of coordinates from (φ, θ, χ) to (φ, θ, χ′) [191]. Another effect of this change
of coordinates is that the operators ĤW and (Π̂

′

z − π̂z) commute and thus have a common set
of eigenfunctions. In order to obtain physical meaningful eigenvalues of ĤW one requires the
eigenfunctions to have eigenvalue 0 for the operator (Π̂

′

z− π̂z). Therefore, basis functions employed
in calculations have to obey the Sayvetz relation [193]

k = ` =
∑
t

`t , (2.43)

where k and ` are the quantum numbers of the operators Π̂
′

z and π̂z, respectively. For a given
value of J the quantum number k can take values of k = 0,±1, . . . ,±J . The Sayvetz relation
Equation (2.43) is tantamount to stating that in linear molecules the angular momentum around
the z-axis with operator Π̂

′

z is carried by the vibrations alone with operator π̂z.
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2.3.2 (Ro-)Vibrational perturbation theory

The perturbational treatment of the rovibrational problem has been discussed by numerous au-
thors. Following the seminal work of Nielsen [183, 184] the formulas of vibrational perturbation
theory (VPT) have been worked out for example by Aliev & Watson [187] or in the monograph
by Papoušek & Aliev [186]. Probably the most complete (although rather complicated to follow)
account of VPT up to 4th order was given by Amat, Nielsen and Tarrago [185]. In the following a
short summary of VPT2 will be given as this is the common approach to the anharmonic treatment
of rovibrational spectra used by both theoreticians and experimentalists. The formulation closely
follows that given by Allen et al. [194] as it gives rather compact formulas.
Using the usual perturbational expansion of the Hamiltonian in orders of magnitude one obtains

ĤN = Ĥ0 + λĤ1 + λ2Ĥ2 + λ3Ĥ3 + . . . (2.44)

The individual operators Ĥ0, Ĥ1, . . . collect terms in the expanded Hamiltonian containing increas-
ing potencies and/or combinations of vibrational and rotational operators. For example, quartic
terms in the potential energy φijklqiqjqkql will contribute to Ĥ2. Evaluating matrix elements of
this operator up to 2nd order with respect to the (harmonic) eigenfunctions of Ĥ0 shows that Ĥ1

results in a large number of off-diagonal matrix elements. In order to diagonalize the Hamiltonian
a contact transformation up to 2nd order is employed

eiλSĤe−iλS = Ĥ′ = Ĥ0 + λĤ
′

1 + λ2Ĥ
′

2 . (2.45)

The transformation function S is chosen such that Ĥ0 + λĤ
′

1 only has diagonal matrix elements
yielding

Ĥ1 = i
(

Ĥ0S − SĤ0

)
(2.46)

and the exact form of S has been derived by Herman and Shaffer [195]. Finally, the contact
transformed second order Hamiltonian is given by

Ĥ
′

2 = Ĥ2 +
[
iS, Ĥ

′′

1

]
V

+
[
iS, Ĥ0

]
R
, (2.47)

where the indices V and R refer to vibrational and rotational contributions. Evaluating the matrix
elements of Ĥ′ with respect to the harmonic eigenfunctions and collecting terms of like powers in
the vi, `t and J one arrives at the term formula for linear molecules:

Tv(J) = Gv + Fv(J) , (2.48)

where Gv is the vibrational term energy

Gv = E0 +
∑
i

ωi

(
vi +

di
2

)
+
∑
i≤j

xij

(
vi +

di
2

)(
vj +

dj
2

)
+
∑
t≤t′

x`t`t′ `t`t′ (2.49)
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and Fv(J) the rotational term energy

Fv(J) = Bv
[
J(J + 1)− `2

]
−De

[
J(J + 1)− `2

]2
+He

[
J(J + 1)− `2

]3
. (2.50)

In Equation (2.49) ωi are the harmonic vibrational frequencies, xij and x`t`t′ are anharmonicity
constants and di the degeneracy of ith normal mode. Term E0 is usually neglected in anharmonic
calculations since it does not contribute to rovibrational transition frequencies but is important
when absolute energies are of interest. Bv, De and He in Equation (2.50) are the rotational param-
eter, the equilibrium quartic and equilibrium sextic centrifugal distortion parameters, respectively.
Although the latter parameter arises only in VPT4 it contains only contributions of second order
importance.
Using the quartic expansion of the potential energy with respect to the dimensionless normal
coordinates qi given by Allen et al. [194]

V =
1

2

∑
i

ωiq
2
i +

1

6

∑
ijk

φijkqiqjqk +
1

24

∑
ijkl

φijklqiqjqkql (2.51)

the spectroscopic parameters can be expressed with respect to the potential parameters and the
equilibrium rotational constant Be

Be =
~2

2hcIe
. (2.52)

In Equation (2.52) Ie is the the equilibrium moment of inertia

Ie =
∑

I

MIR
e
Iz . (2.53)

For the constant term in Gv one finds

E0 =
1

64

∑
i

σiφiiii −
7

576

∑
i

φ2
iii

1

ωi
+

3

64

∑
i 6=j

σiφ
2
iij

ωj
4ω2

i − ω2
j

− 1

4

∑
i<j<k

djφ
2
ijk

ωiωjωk
∆ijk

−Be

∑
st

ζ2
st , (2.54)

with a constant factor σi that is 1 for i = s and 4/3 for i = t and the usual degeneracy factor
dj for mode j. The denominator ∆ijk is qiven below in Equation (2.59). It is important to note
that the summations in Equation (2.54) run only over stretching indeces s and one component
of the degenerate bending vibration ty (using the definition of the ζst given in Equation (2.42)).
The fourth term in Equation (2.54) vanishes for triatomic molecules. A similar formula has been
given by Stanton and coworkers [196] for a general non-linear molecule in which case the factors
σi and dj do not appear in E0. The Coriolis contribution (second to last term in eq. (26) of [196])
for non-linear molecules is written slightly different compared to the last term in Equation (2.54).
However, when realizing that for linear molecules Bxe = Bye = Be (Bze = 0) and the restrictions on
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the ζαij introduced in Section 2.3.1 both formulations are found to yield the same result. The last
term in Equation (26) of Ref. [196] is due to the so called Watson pseudo-potential term in the
Hamiltonian [182] which vanishes for linear molecules.
The diagonal anharmonicity constants xss, xtt and x`t`t are given by

xss =
1

16
φssss −

1

16

∑
s′

φ2
sss′

8ω2
s − 3ω2

s′

ωs′(4ω2
s − ω2

s′)
, (2.55)

xtt =
1

16
φtttt −

1

16

∑
s

φ2
stt

8ω2
t − 3ω2

s

ωs(4ω2
t − ω2

s)
(2.56)

and
x`t`t = − 1

48
φtttt −

1

16

∑
s

φ2
stt

ωs
4ω2

t − ω2
s

. (2.57)

The off-diagonal contribution xss′ is calculated according to

xss′ =
1

4
φsss′s′ −

1

4

∑
s′′

φsss′′φs′′s′s′
1

ωs′′
− 1

2

∑
s′′

φ2
ss′s′′

ωs′′(ω
2
s′′ − ω2

s − ω2
s′)

∆ss′s′′
, (2.58)

where the denominator ∆ijk is defined as

∆ijk = (ωi + ωj + ωk)(ωi + ωj − ωk)(ωi − ωj + ωk)(ωi − ωj − ωk). (2.59)

Stretch-bend coupling through the anharmonicity constant xst is obtained via

xst =
1

4
φsstt −

1

4

∑
s′

φsss′φs′tt
1

ωs′
− 1

2

∑
t′

φ2
stt′

ωt′(ω
2
t′ − ω2

s − ω2
t )

∆stt′
+Beζ

2
st

(
ωs
ωt

+
ωt
ωs

)
. (2.60)

For linear molecules with more than 3 atoms two additional types of anharmonicity constants
contribute to Gv. The off-diagonal bend-bend coupling xtt′ is given by

xtt′ =
1

4
φ

(+)
ttt′t′ −

1

4

∑
s

φsttφst′t′
1

ωs′
− 1

4

∑
s

φ2
stt′

ωs(ω
2
s − ω2

t − ω2
t′)

∆stt′
, (2.61)

where the semi-diagonal force constant in xtt′ is calculated from two force constant contributions
φ

(+)
ttt′t′ = 1/2

(
φtxtxt′xt′x + φtxtxt′yt′y

)
. Off-diagonal vibrational angular momentum anharmonicity

can be calculated according to

x`t`t′ =
1

2

∑
s

φ2
stt′

ωsωtωt′

∆stt′
. (2.62)

The summations in all the formulae given above and in the following are unrestricted in the specified
space of stretching s and bending t vibrations unless otherwise noted.
The anharmonic zero-point vibrational energy (ZPE) of a linear molecule up to 2nd order in VPT
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can be obtained by setting the {vi, `t} = 0 in Equation (2.49) and inserting the above formulae for
E0 and the anharmonicity constants. After sorting terms one obtains

ZPE =
∑
i

ωi
di
2

}
ZPEh

+
1

32

∑
ij

φiijj −
1

48

∑
ijk

φ2
ijk

1

ωi + ωj + ωk
− 1

32

∑
ijk

φiikφkjj
1

ωk

ZPEa

+
1

2
Be

∑
st

ζ2
st

(ωs − ωt)2

ωsωt

}
ZPEk . (2.63)

In Equation (2.63) ZPEh is the harmonic ZPE, ZPEa the VPT2 anharmonic contribution and
ZPEk the VPT2 kinetic (Coriolis) contribution. The summations in ZPEa run over all 3Nat − 5

normal coordinates.
Formulae for the parameters entering the rotational term energy in Equation (2.50) are defined
using the derivatives of the equilibrium moment of inertia as = (∂Ie/∂Qs)e defined in Section 2.3.1
and the rotational derivatives

Bs = − ~3

2h3/2c3/2ω
1/2
s

as
I2
e

. (2.64)

Within VPT2 the rotational constant in a vibrational state v is calculated according to

Bv = Be −
∑
i

αi

(
vi +

di
2

)
, (2.65)

where αi are the vibration-rotatioan interaction constants. The latter are given by

αs = −2B2
e

ωs

[
3a2
s

4Ie
+
∑
t

ζ2
st

3ω2
s + ω2

t

ω2
s − ω2

t

+ π

√
c

h

∑
s

φsss′as′
ωs

ω
3/2
s′

]
(2.66)

and

αt = −2B2
e

ωt

[
1

2

∑
s

ζ2
st

3ω2
t + ω2

s

ω2
t − ω2

s

+ π

√
c

h

∑
s

φsttas
ωt

ω
3/2
s

]
. (2.67)

Following Herzberg [197], the three terms in αs can be characterized as a harmonic, a Coriolis and
an anharmonic contribution, respectively. The bending vibration-rotation interaction constants αt
contain only Coriolis and anharmonic contributions. Centrifugal distortion constants De, He and
terms of higher order have been worked out by Aliev and Watson [187]. According to these authors
De is given by

De =
1

2

∑
s

B2
s

ωs
, (2.68)
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and the VPT4 formula for the sextic centrifugal distortion constant is

He =
4D2

e

Be
− 2B2

e

∑
s

B2
s

ω3
s

− 1

6

∑
ss′s′′

φss′s′′
BsBs′Bs′′

ωsωs′ωs′′
, (2.69)

where only totally symmetric normal modes contribute. Close inspection of these equations show
that the perturbational treatment of quartic and sextic centrifugal effects only accounts for the
influence of stretching vibrations. In fact, the effect of bending normal modes on these parameters
can be rather drastic and such effects will be discussed in more detail in the following chapters.
The effect of `-type doubling caused by the coupling of the degenerate bending and the stretching
vibrations through the Coriolis operator is represented by parameters qt in VPT2 [198]. Following
the work of Watson [199] the splitting of the e/f -parity [200] states in the fundamental bending
states is given by qtJ(J + 1) and

qt ≈ qe
t + qJt J(J + 1) . (2.70)

The equilibrium `-type doubling parameter qe
t is given by

qe
t = −2B2

e

ωt

∑
s

ζ2
st

3ω2
t + ω2

s

ω2
t − ω2

s

(2.71)

and is on the order of a vibration-rotation interaction constant αi. Centrifugal distortion results in
the l-type doubling parameter termed qJt which upon introducing Cs = −Bs/ωs can be calculated
as

qJt =− 4Deq
e
t
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+

2B4
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(2.72)

For linear molecules with at least two bending vibrations the effect of vibrational `-type doubling
has to be considered. Vibrational states where two bending vibrations are excited (v`tt , v

`t′
t′ ) =

(1±1, 1±1) can be classified according to the sum ` =
∑
t `t and the symmetry species: two ∆

states with ` = ±2 which will be further split by rotational `-type resonance and two Σ states with
` = 0 which are degenerate when neglecting vibrational `-type doubling. The latter will cause a
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Figure 2.2: Influence of vibrational anharmonicity on bend-bend combination states according to
2nd order vibrational perturbation theory. The scheme assumes positive values for the anharmonic-
ity constants x`t`t′ and rtt′ .

splitting of the Σ+ and Σ− states proportional to

re
tt′ =

1

2
φ

(−)
ttt′t′ −

1

2

∑
s

φ2
stt′

ωs(ω
2
s − ω2

t − ω2
t′)

∆stt′
. (2.73)

In Equation (2.73) the off-diagonal quartic coupling force constant is calculated according to
φ

(−)
ttt′t′ = 1/2

(
φtxtxt′xt

′
x
− φtxtxt′yt′y

)
. As an example Figure 2.2 depicts the energetic relationships

for a (1±1, 1±1) vibrational state.
VPT2 and perturbation theory in general is prone to failure in cases where 0th order vibrational
states are energetically close to each other. There are 2 types of such so called Fermi-resonances
in VPT2 which occur if the following conditions are fulfilled:

Type-I: ωi ≈ 2ωj and φijj 6= 0 , (2.74)

Type-II: ωi ≈ ωj + ωk and φijk 6= 0 . (2.75)

As a consequence of these accidental degeneracies the resonance denominators in the anharmonicity
constants that involve harmonic vibrational frequency differences of the resonant modes become
very large leading to unphysical values of the xij . The origin of these resonance denominators
is the transformation function S and in order to remove these a modification of the latter to
a new function S∗ is required [185]. This leads to so called deperturbed parameters which are
commonly marked with an asterisk. The first order transformed Hamiltonian Ĥ

′

1 then has off-
diagonal matrix elements due to the use of the S∗ function and to obtain the VPT2 term energies
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Table 2.1: Quantum number dependence and spectroscopic parameters for linear molecules derived
from diagonal matrix elements of the twice contact transformed rovibrational Hamiltonian up to
4th order (VPT4).a

Term Dependence ĥ†0 + ĥ†2 + ĥ†3 + ĥ†4

Gv
(
vi + di

2

)
ωi – – ∆ωi(

vi + di
2

) (
vj +

dj
2

)
– xij – –

`t`t′ – x`t`t′ – –(
vi + di

2

) (
vj +

dj
2

) (
vk + dk

2

)
– – – yijk(

vi + di
2

)
`t`t′ – – y

(3)
s`t`t′

y
(4)
s`t`t′

+ yt`t`t′

Bv
[
J(J + 1)− `2

]
Be – – ∆Be[

J(J + 1)− `2
] (
vi + di

2

)
– αi – ∆αi[

J(J + 1)− `2
] (
vi + di

2

) (
vi + di

2

)
– – – γij[

J(J + 1)− `2
]
`t`t′ – – – γ`t`t′

Dv

[
J(J + 1)− `2

]2 – De – ∆De[
J(J + 1)− `2

]2 (
vi + di

2

)
– – – βi

Hv

[
J(J + 1)− `2

]3 – – – He

a Diagonal matrix elements of VPT2 are obtained by neglecting ĥ†3 + ĥ†4

matrix representations for interacting states with the new Ĥ
′
have to be diagonalized.

As an example related to this thesis, the following will outline the treatment required for l-C3H+

where a resonance between the fundamental stretching vibration ν1 (i) and the stretch-stretch
combination band ν2 + ν3 (j & k) occurs (cf. Chapter 5). For this Type-I Fermi-resonance the
anharmonicity constants xij , xik and xjk are affected. The deperturbation of the latter can be
formulated with respect to the perturbed values xss′ according to

x∗ss′ = xss′ ±
1

8

φ2
ijk

ωi − ωj − ωk
{s, s′} = {i, j, k} . (2.76)

In Equation (2.76) the positive sign refers to the case (s, s′) = (j, k) and the negative sign to
the other two cases. The constant factor E0 is also affected by resonances and in this particular
example the deperturbation is achieved by

E∗0 = E0 +
1

32

φ2
ijk

ωi − ωj − ωk
. (2.77)

The deperturbation of E∗0 ensures that absolute term energies for states not involved in resonances
are unchanged by the unitary transformation from S to S∗. The off-diagonal matrix element of
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the operator Ĥ
′

1 = φijkqiqjqk is given by〈
vi, vj , vk

∣∣∣ Ĥ′1 ∣∣∣ vi ± 1, vj ∓ 1, vk ∓ 1
〉

=
1√
8
φijk . (2.78)

For the so called dyad νi//νj + νk the effective Hamiltonian to be diagonalized corresponds to the
2× 2 matrix

HF−I =

(
G∗i

1√
8
φijk

1√
8
φijk G∗j+k

)
, (2.79)

where G∗v are the vibrational term energies of the interacting states evaluated using the deperturbed
spectroscopic parameters.
The presented formulae comprise the 2nd order contribution to the rovibrational energy. This
approach however is only valid up to a certain degree of excitation in the vi and J . This has
been discussed in some detail by Aliev & Watson [187] and Amat, Nielsen and Tarrago [185].
Extending the treatment up to the full 4th order requires a much greater computational effort, since
a second contact transformation is required. The complete fourth order twice contact transformed
Hamiltonian has been obtained by Amat, Nielsen and Tarrago [185] and the diagonal matrix
elements with their dependence on the linear molecule quantum numbers as given by the latter
authors are summarized in Table 2.1. An important conclusion to be drawn from Table 2.1 is that
an analysis of rovibrational spectra based on VPT4 will yield harmonic frequencies ω′i = ωi + ∆ωi

and an equilibrium rotational constant B′e = Be + ∆Be which are different from the respective
parameter obtained from the harmonic potential and the equilibrium geometry.

2.3.3 Variational rovibrational calculations

The basic idea of variational rovibrational calculations is to expand the unknown eigenfunctions of
the nuclear Hamiltonian |ΨVR〉 as a linear combination of a suitable set of basis functions

{∣∣∣φ(J)
i

〉}
.

Since the total angular momentum quantum number J is strictly conserved the eigenfunctions for
each value of J can be determined individually (cf. also Section 4.1.4). The approximate wave
function

∣∣ψJv 〉 for rovibrational state (v, J) is then∣∣∣ψ(J)
v

〉
=
∑
i

c
(v,J)
i

∣∣∣φ(J)
i

〉
. (2.80)

In general rovibrational basis functions for linear molecule are formulated as a product of a vi-
brational and a rotational basis function

∣∣∣φ(J)
i

〉
= |φvi〉

∣∣φJkmR

〉
depending on a set of vibrational

quantum numbers {vk} and vibrational angular momentum quantum numbers {`t} summarized
in the vector vi as well as the rigid rotor (RR) quantum numbers J , k and m (for further details
on rovibrational basis functions cf. Section 4.1.1). The product basis functions, when employing
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e.g. harmonic oscillator vibrational functions, form an orthonormal system of functions〈
φ

(J)
i

∣∣∣φ(J)
j

〉
=
〈
φvi

∣∣φvj〉 〈φJkmR

∣∣φJkmR

〉
= δij . (2.81)

The coefficients c(v,J)
i are determined by minimizing the expectation value of the nuclear Hamil-

tonian ĤN with the approximate wave function〈
ĤN

〉
v,J

=
〈
ψ(J)
v

∣∣∣ ĤN

∣∣∣ψ(J)
v

〉
=
∑
ij

c
(v,J)
i c

(v,J)
j

〈
φ

(J)
i

∣∣∣ ĤN

∣∣∣φ(J)
j

〉
︸ ︷︷ ︸

H
(J)
ij

, (2.82)

where the shorthand notation for matrix elements of the nuclear Hamiltonian in the chosen basis
H

(J)
ij is introduced. The eigenfunctions

∣∣∣ψ(J)
v

〉
are required to be orthonormal

〈
ψ(J)
v

∣∣∣ψ(J)
v′

〉
=
∑
ij

c
(v,J)
i c

(v′,J)
j

〈
φ

(J)
i

∣∣∣φ(J)
j

〉
=
∑
ij

c
(v,J)
i c

(v′,J)
j δij =

∑
i

c
(v,J)
i c

(v′,J)
i = δvv′ . (2.83)

In order to obtain energy optimized wave functions
∣∣∣ψ(J)
v

〉
and simultaneously keeping the wave

function orthonormal with respect to all eigenfunctions of the Hamiltonian, Lagrange multiplier
λ

(J)
v for each rovibrational state are introduced. The Lagrangian for state (v, J) is then given by

L({c(v,J)
k }, λ(J)

v ) =
∑
ij

c
(v,J)
i c

(v,J)
j H

(J)
ij −

∑
v′

∑
i

λ
(J)
v′ (c

(v,J)
i c

(v′,J)
i − δvv′) . (2.84)

The necessary conditions for the coefficients are

∂L
∂c

(v,J)
k

= 0 ∀ k . (2.85)

Carrying out the differentiation yields

∂L
∂c

(v,J)
k

= 0 =
∑
i 6=k

c
(v,J)
i H

(J)
ik +

∑
j 6=k

c
(v,J)
j H

(J)
kj + 2c

(v,J)
k H

(J)
kk − 2

∑
i6=k

c
(v,J)
i λ(J)

v − 2c
(v,J)
k λ(J)

v

=
∑
j

H
(J)
kj c

(v,J)
j −

∑
j

c
(v,J)
j λ(J)

v , (2.86)

where the hermitian property of the Hamiltonian H
(J)
ij = H

(J)
ji is used. One thus arrives at a set of

k linear equations ∑
j

[
H

(J)
kj − λ(J)

v

]
c
(v,J)
j = 0 , (2.87)
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which when written in matrix-vector form reads

H(J)c(v,J) = c(v,J)λ(J)
v (2.88)

and constitutes an eigenvalue equation of the hermitian matrix H(J) with eigenvector c(v,J) and
eigenvalue λ(J)

v . The Lagrange multiplier thus is the (approximate) rovibrational term energy
for state (v, J). Formulating the Lagrangian Equation (2.84) for each vibrational state, collect-
ing the resulting eigenvectors in a matrix X(J) such that they are the columns of this matrix(
X(J)

)
iv

= c
(v,J)
i and the eigenvalues in the diagonal matrix (Λ(J))vv′ = λ

(J)
v δvv′ the final form of

the variational formulation is obtained

H(J)X(J) = X(J)Λ(J) . (2.89)

The solution of the rovibrational problem thus reduces to finding the matrix X(J) which diagonal-
izes H(J).
The introduced basis set

{∣∣∣φ(J)
v

〉}
forms a complete set which is unpractical in a numerical calcu-

lation. Therefore, the set is truncated at a certain number N (J)
VR of rovibrational basis functions.

By monitoring the convergence of the λ(J)
v with respect to N

(J)
VR one obtains upper bounds to

the rovibrational term energies Tv(J) (Hylleraas-Undheim-MacDonald theorem [201, 202]). This
approach is also commonly referred to as finite basis set representation (FBR). The details of vari-
ational rovibrational calculations depends on the form of ĤN and the basis functions. Over the
years different formulations of variational rovibrational calculations have been presented for linear
molecules of which some will be shortly reviewed in the following.
For general (bent and linear) triatomic molecules Carter and Handy introduced the Rvib3 pro-
gram based on a Hamiltonian formulated in internal coordinates [203, 204]. The wave function
is expanded in harmonic oscillator (HO) or Morse-oscillator functions for stretching coordinates,
Legendre polynomials for the bond angle coordinate and RR functions for the the rotational mo-
tion. A similar programm called Triatom was introduced by Tennyson et al. [205–208] based on a
Hamiltonian formulated in Jacobi coordinates [205]. For a triatomic molecule A-B-C the latter can
be defined as the vector rBC between atom B and C, the vector RA-BC between the atom A and
the CoM of the BC subsystem and the angle θ between these two vectors. The basis functions are
are constructed from Morse-oscillator or spherical oscillator functions for radial degrees of freedom,
Legendre polynomials for the bending angle and RR functions. Following the pioneering work by
Whitehead and Handy [209] Sebald [210] developed a variational program for rovibrational energies
and wave functions of triatomic linear molecules based on the Watson Hamiltonian (C8vpro). The
Hamiltonian is diagonalized in a (symmetrized) basis of products of 1D (stretch) and 2D (bending)
HO basis functions for vibrational degrees of freedom as well as rigid rotor functions.
Bramley and Handy [211] developed the Vista program, a variational approach which is based
on a KEO for sequentially bonded tetra-atomic molecules expressed in internal coordinates and
product basis functions of HO stretching basis functions, Legendre polynomials for the two bond
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angle coordinates, Fourier components eiωφ for the torsion and rigid rotor functions. The method
was later extended by the former authors in collaboration with Stuart Carter [212] resulting in the
Rvib4 program, that additionally allows for least squares refinement of potential energy surfaces
based on experimental results. The most recent FBR variational method developed for tetraatomic
linear molecules [213] is bases on the Theoretical ROVibrational Energies (Trove) approach by
Yurchenko, Thiel and Jensen [214]. The key feature of Trove is a numerical representation of
the KEO in terms of internal coordinates which requires no analytic pre-derivation of the Hamil-
tonian. While Trove is generally applicable to any molecule, extensive symmetrisation of the
primitive rovibrational (1D HO and RR) basis is required for calculating rovibrational eigenener-
gies [213,215,216].
Besides the FBR approach, discrete variable representation (DVR) methods [217–221] have be-
come quite successful for rovibrational calculations. In DVR the representation of the basis func-
tions is changed from the spectral form {φFBR

i } = {|φi〉} of FBR to a point-wise discrete form
{φDVR

α } = { 1√
Nα
φi(xα)}. Both approaches are related since on the one hand the DVR grid points

xα in a certain vibrational degree of freedom q are chosen as zeros of a suitable orthogonal polyno-
mial pn(q) and on the other hand the |φi〉 can be expressed as the product of that same polynomial
and a suitable weight function W (q). A very general approach has been worked out by Mladen-
ović [222–224]. Employing an internal coordinate Hamiltonian [225–227], a combination of DVR
with a FBR solution for certain degrees of freedom is used to solve the eigenvalue problem. Ten-
nyson and coworkers [228] developed the Wide Amplitude Vibration-Rotation 4-atomic (Wavr4)
method, which is also capable of treating tetraatomic linear molecules [229, 230] using a Hamil-
tonian based on polyspherical coordinates [225]. A DVR approach to calculate vibrational term
energies based on the Watson Hamiltonian for both linear and non-linear molecules (called Dewe)
was introduced by the group of Császár [231]. The DVR grids are constructed from 1D HO func-
tions for all 3Nat − 5 vibrational coordinates in case of linear molecules. The approach thus does
not take full account of the degeneracy of the bending vibrations and the Sayvetz condition (cf.
Equation (2.43)) is not fulfilled. This results in unphysical k 6= 0 states which are obtained from
a J = 0 calculation.

2.3.4 Calculation of spectroscopic parameters and rovibrational inten-
sities

The rovibrational spectra of linear molecules consist of bands corresponding to transitions between
different vibrational states. Fundamental transitions νi originating from from the vibrational
ground state have singly excited final states with ∆vi = 1. Overtones nνi are bands with ∆vi ≥ 2

and combination bands νi+νj occur when more than one vibrational mode is excited. Rovibrational
transitions between excited vibrational states are usually referred to as hot band transition (e.g.
νi + νj − νj). The individual bands show a rotational fine structure with so called P-, R- and Q-
branches according to the rotational selection rules ∆J = −1, +1 and 0, respectively. Furthermore,
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Figure 2.3: Schematical representation of various types of rovibrational transitions and the as-
sociated selection rules observed for linear molecules. Effects due to `-type doubling are greatly
exaggerated for clarity.

the selection rules for parity components of the involved states are for P- and R-branches e ↔ e

and f ↔ f . Q-branches with ∆J = 0 occur for perpendicular bands that involve a change in K
between initial and final state (angular momentum conservation) and follow the parity selection
rule e ← f . Weak Q-branches due to Coriolis coupling can also occur for ∆K = 0 bands in case
of hot bands involving K 6= 0 states. A summary of rovibrational transitions in linear molecules is
depicted in Figure 2.3.
The line frequencies are the differences of the rovibrational term energy in the upper state (v′, J

′
)

and the lower state (v′′, J
′′
)

ν = Tv′(J
′
)− Tv′′(J

′′
) . (2.90)

The experimental analysis of rovibrational spectra generally proceeds via assuming the expansion
of Tv(J) according to VPT (cf. Section 2.3.2) yielding

Tv(J) = Gv +Bv
[
J(J + 1)− `2

]
−Dv

[
J(J + 1)− `2

]2
+Hv

[
J(J + 1)− `2

]3
+ . . . (2.91)
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Spectroscopic parameters Gv, Bv, Dv, . . . are then determined by least-squares fitting of the ob-
served line frequencies. In case observed bands share an initial or final state these are usually fitted
simultaneously.
For bands that involve only K = 0 states the presented procedure is rather straightforward. The
analysis of K 6= 0 states is more involved and is performed by setting up effective Hamiltonian ma-
trices for the involved states to describe the effects of rovibrational `-type doubling and resonance.
Following the work of Papoušek and Aliev [186] the diagonal matrix elements are given by〈

v, J,K
∣∣∣ Ĥeff

∣∣∣ v, J,K〉 = Gv +Bv
[
J(J + 1)−K2

]
−Dv

[
J(J + 1)−K2

]2
+Hv

[
J(J + 1)−K2

]3
+ . . . (2.92)

and off-diagonal matrix elements by〈
v`tt , J,K

∣∣∣ Ĥeff

∣∣∣ v`t±2
t , J,K ± 2

〉
=

1

4

[
qv + qJv J(J + 1) + qJJv J2(J + 1)2 + . . .

]
×
{[

(v2
t + 1)2 − (`t ± 1)2

]
[J(J + 1)−K(K ± 1)]

× [J(J + 1)− (K ± 1)(K ± 2)]}1/2 . (2.93)

The determination of the parameters of such effective Hamiltonians then involves diagonalization
of Heff and least-squares fitting.
The outlined techniques for determining rovibrational parameters rely on the validity of the per-
turbational expansions presented in Section 2.3.2. In case the requirements of VPT of any order
are not fulfilled for a certain molecule, discrepancies in spectroscopic parameters determined from
experiment and by theoretical methods will arise. These errors will persist even for highly accurate
variational rovibrational calculations employing composite potential energy surfaces that provide
the line frequencies ν of rovibrational transitions with an accuracy of 1 cm−1 or better. Examples
for such deviations from the usual behaviour will be presented in Section 3.2 and Section 5.2.
The intensity of a rovibrational transition between initial state i and final state f is given by

Aif =
1

p·l

∫
ln
I0
I

dν

=
8π3νifg

3hcZRT

[
1− exp

(
− νif
kBT

)]
exp

(
− Ei
kBT

)
µ2
if , (2.94)

where the integration of the absorption coefficient k(ν) = ln(I0/I) is performed over the entire
absorption line. In Equation (2.94) p is the partial pressure of the absorbing species and l the optical
pathlength of the absorption cell. The frequency of the transition is given by νif and the energy
of the lower state by Ei. Z designates the total internal partition sum at the temperature T and
g is the statistical weight factor that accounts for nuclear spin statistics and isotopic abundance.
Natural constants occuring in Equation (2.94), whose values are taken from [232], are Planck’s
constant h, the speed of light in vacuum c, the universal gas constant R and Boltzmann’s constant
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kB.
Within the dipole approximation the squared transition dipole moment µ2

if is defined as (see
e.g. [233] for a derivation)

µ2
if = |〈ΨVRi|µ(R)|ΨVRf 〉|2 , (2.95)

where |ΨVRi〉 and |ΨVRf 〉 are the rovibrational wave functions of the initial and final state, respec-
tively and µ(R) is the electric dipole moment function (EDMF) with respect to the SF-coordinate
system (X,Y, Z) (cf. the definition of the Euler angles in Section 2.3.1). In the absence of an
external field each rotational level is 2J + 1 times degenerate and (2.95) can be rewritten:

µ2
if = 3

∑
m

∑
m′

∣∣∣〈Ψ
(Jm)
VRi

∣∣∣µZ(R)
∣∣∣Ψ(J′m′)

VRf

〉∣∣∣2 , (2.96)

where the explicit m dependence of the rovibrational wave function is recovered. The components
of the dipole moment in the MF-axes system µα (α = x, y, z) can be written as the elements of a
first rank spherical tensor [186]

µ(1, 1) = − 1√
2

(µx + iµy) , (2.97)

µ(1, 0) = µz , (2.98)

µ(1,−1) =
1√
2

(µx − iµy) . (2.99)

A short sketch of the subsequent steps will then be as follows: first the relation between the SF
dipole moment µZ and the MF dipole moment components in tensor formulation µ(1, q) (q =

{−1, 0, 1}) are established through rotation matrices DJ
mk(φ, θ, χ′) [234] and the Eckart conditions

that define the (x, y, z) MF coordinate system. Then, the (symmetrized) variational expansion is
inserted (cf. (4.85)). The resulting multiple sum over vibrational basis functions and K in the
initial and final state then involves two types of integrals:

• integrals of the tensor components µ(1, q) over vibrational basis functions

〈
φvj

∣∣µ(1, q)
∣∣φvj〉

• integrals over rotational basis functions and the rotation matrices DJ
mk〈

φJkmR

∣∣∣D1
0q

∣∣∣φJ′k′m′R

〉

The latter can be evaluated via the 3j-symbols [234] for RR rotational basis functions and will
fix the selection rules ∆J = 0,±1. Furthermore, only those 3j-symbols for which k − k′ = q are
non-zero and thus only matrix elements

〈
φvj

∣∣µ(1, q)
∣∣φvj〉 with ∆k = 0,±1 need to be calculated.

This approach has been implemented for triatomic molecules into the C8vpro program [210] and
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will be used for intensity calculations.
The squared dipole transition dipole moments can be approximated according to

µ2
if ≈ µ2

vFHLFHW , (2.100)

where µv is the vibrational transition dipole moment, FHL the rotational contribution to the
intensity known as Hönl-London factor [235, 236] and FHW the Herman-Wallis factor [237] which
is due to rovibrational coupling. Following the work of Watson [238] the latter can be expanded
as

FPR
HW =

[
1 +A1m+APR

2 m2
]2

(2.101)

for P- and R-branch transitions and

FQ
HW =

[
1 +AQ

2 J
′′
(J
′′

+ 1)
]2

(2.102)

for Q-branch transitions. In Equation (2.101) m is the usual running number of rovibrational
transitions within a band (P-branches: m = −J ′′ ; R-branches m = J

′′
+ 1). Watson [239] also

developed the necessary formulae needed to analyze |∆K| = 2 transition intensities which have
been observed for e.g. in hydrogen cyanide [20] and nitrous oxide [240]. For such bands µv = 0

and the intensity is caused by rovibrational interactions only.
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Chapter 3

High accuracy composite potential energy
functions for triatomic molecules

This chapter presents the application of the outlined composite approach to triatomic linear
molecules. In Section 3.1 near-equilibrium PEFs for the electronic ground state of hydrogen cyanide
(HCN) are constructed from both single and multi reference based composite approaches. A highly
accurate EDMF obtained from a CC based composite approach is also developed. Comparisons of
large-scale variational rovibrational calculations to experimental results demonstrate the accuracy
of the composite approach for obtaining rovibrational term energies and transition intensities. Re-
cent theoretical results [241,242] are compared to the present ones and commented on. Section 3.2
covers the development of a highly-accurate PEF for the challenging tricarbon (C3) molecule in
its electronic ground state. This section highlights the necessity of a proper treatment of both the
electronic structure calculations and the rovibrational treatment to obtain the desired accuracy of
1 cm−1 in the vibrational term energies. The interplay of theory and experiment is illustrated in
a combined study on the 3 µm spectrum of C3 produced in a propyne plasma.

43
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3.1 Hydrogen Cyanide - HCN

3.1.1 Introduction

Hydrogen cyanide (HCN, X̃1Σ+) is one of the best studied linear triatomic species. The 2016
version of the high-resolution transmission molecular absorption database (HITRAN) [243] in-
cludes about 58000 rovibrational transitions up to transition frequencies of 18000 cm−1. HCN
also serves as a key tracer molecule in astrophysical studies (cf. e.g. [244] and references therein).
Following its first detection by Snyder and Buhl [245], HCN has been detected toward numerous
sources like molecular clouds [246–248], comets [249, 250], carbon stars [251, 252], protoplanetary
disks [253, 254] and very recently in the atmosphere of the exoplanet 55 Cancri E [255]. Owing
to the large dipole moment in the vibrational ground state µ0 = −2.98519(1) D [256] HCN is
mainly observed in emission of the J = 0 ← 1 transition [257]. Nevertheless, the importance
of its rovibrational spectrum in modeling cool carbon star atmospheres has been demonstrated
by Jørgensen and coworkers [258, 259]. Lab based spectroscopic studies on HCN can be traced
back to 1913 and the work of Burmeister [260] who recorded the first IR spectrum using a prism
spectrometer. He detected the three fundamental transtions ν1 (CH stretch), ν2 (bending) and
ν3 (CN stretch) at wavelengths around 3, 14 and 5 µm, respectively. Since then, the invention
of modern high-resolution spectroscopic techniques has provided a very detailed picture of the
HCN rovibrational spectrum [17]. Enabled by the huge amount of experimental data HCN clearly
is one of the benchmark systems of quantum chemistry that is used to test modern ab initio ap-
proaches [145,261,262]. There is also considerable interest in the isomerisation process to hydrogen
isocyanide HNC [263, 264]. The work of Mellau and coworkers [264] showed that in the vicinity
of the transition state the rovibrational wave functions of HCN and HNC would coalesce into a
saddle point localized wave function.
An exhaustive review of both the experimental high-resolution and ab initio theoretical spec-
troscopy studies on hydrogen cyanide is beyond the scope of the present work. Therefore, the
following paragraphs will focus on the most relevant studies in the context of this thesis. The most
extensive experimental spectroscopic characterisation of HCN has been provided by Mellau [17].
His work compiles data on HCN spanning more than 30 years of research from rotational, infrared
absorption, hot gas molecular emission (HOTGAME) spectroscopy and laser photoacoustic mea-
surements (cf. [17] and references therein). From this vast amount of precise line frequencies spec-
troscopic parameters for the lowest 71 vibrational states of HCN up to (0, 100, 0) at 6855.44 cm−1

including vibrational term energies, rotational parameters as well as l-type doubling and resonance
parameters were determined. Furthermore, the work provides a complete list of rovibrational term
energies relative to the experimentally not determinable zero-point energy up to 6880 cm−1. This
corresponds to slightly more than 3800 rovibrational states which are assigned an upper limit of
uncertainty in the Tv(J) typically on the order of 10−4 to 10−3 cm−1.
Intensity measurements have been performed on quite a large number of rovibrational transitions
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in HCN. The intensities of individual bands in the HCN spectrum were first studied by Hyde and
Horning [265] in 1952 who determined an integrated intensity of 222.40, 188.15 and 0.59 cm−2atm−1

for the fundamental bands ν1, ν2 and ν3, respectively. In the following years the intensity of the
ν1 band was remeasured by several authors resulting in integrated band intensities that spread a
quite large range between 219 and 256 cm−2atm−1 [18,19,21,265–269]. Probably the most accurate
analysis was provided by Devi et al. [21] using a multispectrum fitting technique employing 40 dif-
ferent high-resolution spectra with various experimental conditions. The integrated band intensity
was determined to be 225.73 cm−2atm−1. Devi and coworkers also provided a precise intensity
investigation of the bending fundamental and the corresponding overtone [22–24]. Similar to ν1,
measurements of the ν2 intensity show a broad distribution of 188 to 266 cm−2atm−1 in the value
of the band intensity [19, 23, 24, 265, 266]. Again using a multispectrum fitting approach Smith et
al. [24] obtained the most reliable band intensity of 266.15±0.15 cm−2atm−1 for ν2. The unusual
intensity of the ν3 CN stretch fundamental of hydrogen cyanide has attracted quite some interest
by experimentalists [18, 265, 266]. Hyde and Horning [265] showed that this band is exceptionally
weak and the excellent work of Maki and coworkers [18] established that the combination of the
small transition dipole moment and the large permanent dipole moment causes a minimum in the
R-branch of the ν3 band at the R(7) transition. The selection rule ∆` = 0,±1 for rovibrational
transitions of linear molecules can be lifted by rovibrational interactions that mix states with differ-
ent `. This results in transitions e.g. from the vibrational ground state to the ` = 2 component of
the excited bending state (0, 2`, 0) to be observable, albeit rather weak. Such transitions have been
measured in HCN by Maki et al. [20] who linked the intensity of the P- and R-branch to `-type
resonance in the (0, 2`, 0) manifold and the occurrence of an even weaker Q-branch to Coriolis-type
interactions with the fundamental bending transition ν2 and the 2nd overtone 3ν1

2 . Watson later
provided a theoretical analysis of the intensities of such transitions [239].
PEFs for the electronic ground state of HCN have been determined by various authors employing
ab initio calculations [58, 241, 270–273], by fitting to experimental term energies in rovibrational
calculations [274, 275] or by a combination of both [242, 276]. Carter, Handy and Mills [275] de-
veloped a PEF for HCN based on variational rovibrational calculations. By fitting term energies
of J = 0, 1 and 2 rovibrational states up to about 19000 cm−1 53 expansion coefficients of a PEF
expressed in Morse coordinates for the stretches and the deviation from linearity for the bending
were determined. The experimental vibrational energies are reproduced with an accuracy of about
0.5 cm−1 and rotational parameters Bv with ∼ 0.0001 cm−1. In 1997 Botschwina and coworkers
presented a thorough analysis of HCN based on large-scale ab initio calculations. The PEF was ob-
tained from least-squares fits to ae-CCSD(T)/CVQZ calculations and expanded with respect to the
simple internal bond-stretching coordinates ∆r (CH-stretch), ∆R (CN-stretch) and θ (deviation
from linearity). The fundamental transition frequencies, as obtained from variational rovibrational
calculations using Sebalds program [210], were 3313.6, 713.3 and 2102.6 cm−1 for ν1, ν2 and ν3,
respectively. These values are too large by 2.1, 1.3 and 5.8 cm−1 compared with experimental
results [17]. Additionally, Botschwina et al. [58] developed the bending and stretch-bend coupling
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part of an EDMF for HCN based on fc-CCSD(T) calculations with a basis set of 110 cGTOs which
extends earlier work [277] on the stretch-only dependence of the EDMF. In combination with the
fitted PEF of Carter, Handy and Mills [278] this EDMF reproduced the transition dipole moment
of the ν3 band to within experimental accuracy in variational calculations. However, due to a too
large first Herman-Wallis coefficient A1 the R-branch minimum occurs at a too low J ′′ = 4. A
global HCN/HNC potential energy surface has been presented by van Mourik et al. [272] on the
basis of ae-CCSD(T)/CVQZ calculations that also incorporate the results by Bowman et al. [271]
obtained with a smaller basis set. The PEF further includes corrections for scalar relativistic ef-
fects and the DBOC. Vibrational term energies for the 16 ` = 0 states up to (2, 00, 0) obtained
with Tennysons Dvr3d progam reproduced the experimental values with a standard deviation of
7.2 cm−1. Transition dipole moments for the fundamental bands of 0.0853, 0.1996 and 0.0018 D
were calculated from the PEF and EDMF to be compared with the experimental values [18,19] of
0.0824(5), 0.189(1) and 0.00136(1) D. Harris et al. [279] later extended the rovibrational calcula-
tions to compute a line list for HCN and obtained the ν3 R-branch minimum at R(8).
Recently Makhnev et al. [241] reinvestigated the HCN system. They developed a local HCN PEF
as well as a global HCN/HNC surface from ic-MRCI calculations with a large ACV6Z basis set
and all electrons correlated. The reference for the MRCI calculations and the size consitency cor-
rection were chosen in an ad hoc manner by extending the full-valence CASSCF active space by
an additional a′ orbital and including the relaxed reference Pople size-consistency correction [39]
such that the resulting PES reproduces the experimental term energies best. Furthermore, the ab
initio surface is augmented by the inclusion of scalar relativistic and adiabatic corrections. For
vibrational states up to 15600 cm−1 a standard deviation of σ = 2.1 cm−1 is obtained. Calculations
with the local HCN PEF included opportune so called non-Born-Oppenheimer (NBO) terms in the
Hamiltonian (cf. eq. (8) and (9) in [241]) which were empirically adjusted using two parameters to
best reproduce low lying J = 0 rovibrational states. From these calculations a standard deviation
of σ = 0.3 cm−1 was obtained for all vibrational states with J = 0 and the lowest bending states
with ` = J up to J = 9. In a second study by the same authors [242] the ab initio data was refit to
a PEF expansion for HCN only in terms of the simple internal stretching coordinates ∆r, ∆R and
the cosine transformed bond angle coordinate. This PEF was adjusted by least-squares fitting to
the experimental data of Mellau [17] which resulted in a standard deviation of σ = 0.0373 cm−1 for
rovibrational levels with J = 0, 2, 5, 9 and 10. A new HCN dipole moment surface was developed
by Makhnev and coworkers on the basis of ic-MRCI/ACV5Z calculations (CASSCF reference as
employed in [241]). Absolute intensities calculated the fundamental transitions up to J = 20 show
relative errors of 1.24, 1.48 and 16.58 % for ν1, ν2 and ν3 (P-branch only). In terms of the ν3

R-branch minimum the spectroscopically determined PEF and ab initio EMDF fail in reproducing
the observed intensity minimum instead predicting the minimum for the R(6) line.
Despite considerable computational effort dipole surfaces presented until now fail to accurately
describe the intensity of both the strong fundamental bands and the weak ν3 band in a balanced
matter. Calculations of PEFs for HCN have been somewhat more successful with the recent study
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by Makhnev and coworkers [241] surpassing the accuracy mark of < 1 cm−1 in the fundamental
transition frequency. The latter study suggested that in order to reach such a level of agreement
with experiment NBO effects have to be considered. As has been shown previously [173], em-
ploying a composite approach for PEFs and EDMFs alike can yield highly accurate spectroscopic
parameters and absolute rovibrational intensities close to experimental accuracy without the need
to include NBO effects. Therefore it seems only logical to apply that same approach to HCN. Sec-
tion 3.1.2 presents the details of the composite approach and the employed ab initio methods. The
construction of the PEF and EDMF is described in Section 3.1.3 also highlighting the importance
of the individual contributions. In Section 3.1.4 results of large-scale variational rovibrational
calculations are given that demonstrate the capability of the underlying composite approach in
obtaining highly accurate PEFs and EDMFs.

3.1.2 Composite ansatz

The composite ansatz chosen for HCN follows the one used by Schröder et al. [173] for the N2O
molecule. Both the PEF and the EDMF are constructed by combining different levels of theory.
The detailed components of the former (termed Comp I) are:

• The basic F12b contribution is calculated at the fc-CCSD(T)-F12b level of theory with a F12-
optimized VQZ-F12 basis set. The CABS and DF basis sets correspond to the default choice
of Molpro: VQZ-F12/OPTRI, VQZ/JKFIT, AVQZ/MP2FIT [280–282]. The geminal β is
set to the recommended value of 1.0 Å−1 [124].

• The CV is accounted for by conventional CCSD(T) with a CV6Z basis set. The energy
difference of calculations with all electron correlated and frozen core calculations provides
this contribution to the composite PEF.

• SR effects are obtained from CCSD(T) calculations with a recontracted VQZ-DK ba-
sis [170] corresponding to the energy difference of DKH2 fc-CCSD(T)/VQZ-DK and fc-
CCSD(T)/VQZ.

• HC effects of the valence electrons are included via four contributions with up to sextuple
excitations (CCSDTQPS in coupled-cluster nomenclature):

– Effects up to perturbative quadruples are incorporated by the (Q)-(T) contribution,
which is calculated as the difference CCSDT(Q) – CCSD(T) using a VTZ basis set

– Correction to the full iterative quadruples is achieved via the difference CCSDTQ –
CCSDT(Q) and a VDZ basis set is used for this contribution termed Q-(Q)

– Contributions due to iterative pentuple excitations (P-Q) employ a VDZ basis set and
are calculated as the difference CCSDTQP – CCSDTQ.

– The S-P contribution, which accounts for sextuple substitutions, is obtained from the
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CCSDTQPS – CCSDTQP difference calculated with a VDZ basis set

• The adiabatic DBOC correction for the individual HCN isotopologues is calculated at the
ae-CCSD/CVQZ level of theory.

Additionally two MR based PEFs are constructed for comparison. The PEF Comp II uses explicitly
correlated fc-MRCI-F12+Q (abbreviated MR-F12) as basic contribution, where as a reminder +Q
signifies the inclusion of the a posteriori Davidson correction [118]. MR-F12 is calculated using a
VQZ-F12 basis set. The basic contribution to the Comp III PEF is provided by fc-ACPF-F12/cc-
pVQZ-F12 (AC-F12) calculations. Both multi-reference approaches employ a full-valence CASSCF
reference wave function and the same β, CABS and DF basis sets as the F12b contribution.
Corrections due to CV, SR and DBOC are taken from the contributions detailed above for the
Comp I PEF.
The EDMF of HCN is calculated using the approach for the Comp I PEF but excludes the DBOC
correction. Due to the dipole operator sampling mainly the outer valence region of the molecule,
the basis sets for the individual contributions include additional diffuse basis functions. In detail
the contribution to the Comp EDMF are:

F12b fc-CCSD(T)-F12b/AV5Z
β = 1.5 Å−1 as recommended by Peterson and coworkers [124] for AV5Z
basis sets
CABS: AV5Z/OPTRI, AV5Z/JKFIT, AV5Z/MP2FIT [281–283]

CV [ae-CCSD(T) – fc-CCSD(T)]/ACV6Z

SR DKH2 fc-CCSD(T)/AVQZ-DK – fc-CCSD(T)/AVQZ

(Q)-(T) [CCSDT(Q) – CCSD(T)]/AVTZ

Q-(Q) [CCSDTQ – CCSDT(Q)]/VTZ(H: sp; C,N: spd)
VTZ(H: sp; C,N: spd): standard VTZ basis without d-functions on hydrogen
and without f -functions on carbon and nitrogen

P-Q [CCSDTQP – CCSDTQ]/VDZ

S-P [CCSDTQPS – CCSDTQP]/VDZ

3.1.3 Construction of an accurate PES and EDMF for HCN

Within the present composite methodology the basic contribution to the PEF is chosen to pro-
vide near CBS results at the respective level of theory. Performance of the explicitly correlated
fc-CCSD(T)-F12b variant in providing such results is studied in Table 3.1 (obvious shorthand
notations are used for describing the employed basis sets). Results of conventional fc-CCSD(T)
calculations with basis sets up to AV8Z (1000 cGTOs) are given for comparison. The latter calcula-
tions should provide equilibrium bond lengths converged to within 10−4 Å and harmonic vibrational
frequencies to within 1 cm−1. The equilibrium bond lengths obtained with fc-CCSD(T)-F12b and
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Table 3.1: Frozen core CCSD(T) and CCSD(T)-F12b equilibrium bond lengths (in Å) and har-
monic vibratonal frequencies (in cm−1) of HCN.

Method Basis re Re ω1 ω2 ω3

CCSD(T) AVTZ 1.06711 1.16010 3433.3 716.8 2107.9
AVQZ 1.06707 1.15673 3435.5 721.3 2121.0
AV5Z 1.06669 1.15573 3436.6 725.9 2124.5
AV6Z 1.06665 1.15543 3437.1 727.2 2125.6
AV7Z 1.06652 1.15527 3437.5 727.6 2126.5
AV8Z 1.06656 1.15519 3437.7 728.0 2126.8

CCSD(T)-F12b VDZ-F12 1.06698 1.15605 3438.7 724.2 2125.0
VTZ-F12 1.06672 1.15540 3437.2 727.4 2126.6
VQZ-F12 1.06660 1.15508 3438.2 728.0 2127.8

CCSD(T*)-F12b VQZ-F12 1.06664 1.15522 3437.5 727.5 2126.7

a VQZ-F12 basis show a close agreement with the AV8Z results. Triples scaling according to the
recipe of Werner and coworkers [61, 128] leads to equilibrium bond lengths which are slightly to
long especially for the CN-bond (Re). The convergence of the harmonic vibrational frequencies
given in Table 3.1 is graphically displayed in Figure 3.1. From the trend of the CCSD(T)/AVnZ
results it is clear that the F12b/VQZ-F12 ωi provide excellent near CBS results. Again, triples
scaling with VnZ-F12 basis sets appears to slightly underestimate the CBS-limit.
The variation of the spectroscopic parameters re, Re and ωi upon inclusion of the smaller contri-
butions to the composite PEFs is presented in Table 3.2. The dominant corrections are provided
by the CV and the first HC contribution (Q)-(T). The former leads to a contraction of the bond
lengths by −0.00140 and −0.00259 Å for re and Re, respectively. In case of the Re this effect is
somewhat compensated by HC effect with a combined contribution of +0.00094 Å. Conversely,
while the CV contribution increase the harmonic vibrational frequencies HC effects lead too larger
values of the ωi. Interestingly, for ω3 a near cancelation of contributions is observed, such that
F12b/VQZ-F12 and Comp I agree to within 0.3 cm−1.
The trends described in the preceding discussion can also be inferred from Figure 3.2 where the
dependence of the relative contributions on the three internal coordinates ∆r (CH-stretch), ∆R

(CN-stretch) and θ (deviation from linearity) is shown. For the ∆r coordinate only CV contributes
significantly to the energy. HC effects are much more pronounced for the CN-stretching coordinate
and are of opposite sign to the strong CV contribution. Except for (Q)-(T) the smaller contribu-
tions vary only slightly by about ±10 cm−1 with θ up to 80◦. Perturbative quadruples via the
(Q)-(T) contribution show a strong non-linear dependence on θ and appear to approach a max-
imum at around 80-90◦. However, due to the steep bending potential of HCN the ∼ 67 cm−1

(Q)-(T) contribution to the bending potential correspond to only 0.5 % at 80◦.
The final composite results of the three PEFs (cf. Table 3.2) can be compared to literature re-
sults. Carter, Mills and Handy [284] used variationally determined differences B0 − Be, based
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Figure 3.1: Dependence of the HCN harmonic vibrational frequencies on the size of the basis set
for standard and explicitly correlated CC calculations. The horizontal line corresponds to the
CCSD(T)-F12b/VQZ-F12 result.
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on a PEF fitted to reproduce experimental results [275], to correct the accurate experimental B0

values for vibrational effects yielding mixed experimental/theoretical Be. These Be values calcu-
lated for eight different isotopologues of HCN were then used to determine re = 1.06501(8) Å and
Re = 1.15324(2) Å. The latter results are in good agreement with the equilibrium geometry of the
H12C14N Comp I PEF re = 1.06518 Å and Re = 1.15325 Å. The agreement becomes almost perfect
when one considers the Born-Oppenheimer result re = 1.06502 Å and Re = 1.15324 Å obtained
upon neglecting the adiabatic correction in the present composite PEF. Maki and coworkers per-
formed extensive studies of HCN isotopologues in the infrared [285,286]. Based on the determined
rotational parameters Bv for a large number of vibrationally excited states, fits according to the
expansion (2.65) were performed to determine equilibrium rotational constants Be for eight HCN
isotopologues. From these an equilibrium geometry of re = 1.06511(5) and Re = 1.15328(1) Å
was determined. Finally, using the spectroscopically determined PEF by Makhnev et al. [242]
adiabatic equilibrium bond lengths of re = 1.06513 and Re = 1.15333 Å are obtained for H12C14N.
These bond lengths appear to be slightly too short in case of re and slightly too long in case of Re

compared with the Comp I adiabatic results.

Table 3.2: Influence of smaller contributions to the composite PEFs on the equilibrium bond
lengths (in Å) and harmonic vibrational frequencies (in cm−1) for HCN.

PEF Contribution re Re ω1 ω2 ω3

Comp I F12b 1.06660 1.15508 3438.1 728.0 2127.8
CV −0.00140 −0.00259 +7.2 +3.2 +9.5
SR −0.00014 −0.00019 +0.1 −0.1 −0.4
(Q)-(T) +0.00001 +0.00101 −2.1 −4.4 −10.7
Q-(Q) −0.00006 −0.00030 +1.0 +0.6 4.0
P-Q +0.00001 +0.00021 −0.4 −0.6 −2.5
S-P ±0.00000 +0.00002 ±0.0 −0.1 −0.3
DBOCa +0.00016 +0.00001 −0.6 +0.1 +0.1

Total 1.06518 1.15325 3443.3 726.7 2127.5

Comp II MR-F12 1.06445 1.15772 3460.1 708.2 2109.6
CV −0.00142 −0.00261 +7.4 +3.2 +9.6
SR −0.00014 −0.00019 +0.1 −0.1 −0.4
DBOCa +0.00015 +0.00001 −0.6 +0.1 +0.1

Total 1.06304 1.15493 3467.0 711.4 2118.9

Comp III AC-F12 1.06416 1.15761 3463.1 709.5 2110.6
CV −0.00140 −0.00259 +7.4 +3.2 +9.6
SR −0.00014 −0.00019 +0.1 −0.1 −0.4
DBOCa +0.00016 +0.00001 −0.6 +0.1 +0.1

Total 1.06275 1.15482 3470.1 712.6 2119.8
a Diagonal Born-Oppenheimer correction for the H12C14N isotopologue.
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Figure 3.2: Dependence of smaller contributions to the HCN Comp I PEF on the internal coordi-
nates ∆r (CH-stretch, upper panel), ∆R (CN-stretch, lower panel) and θ (deviation from linearity,
inset to lower panel). The DBOC contribution corresponds to the H12C14N isotopologue.
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Considering the harmonic vibrational frequencies, values of 3443.3, 726.7 and 2127.5 cm−1 are
obtained for ω1, ω2 and ω3, respectively, from the Comp I ansatz. These can be compared to
the values derived from the PEF of Carter et al. [278]: 3441.2, 727.0 and 2127.0 cm−1 and the
experimental values due to Maki and coworkers [286]: 3443.1, 727.0 and 2127.4 cm−1. All ωi are
in close agreement between theory and experiment, with the larger spread in the CH stretching
frequency due to anharmonicity effect in this mode. The PEF of Makhnev et al. [242] yields
harmonic vibrational frequencies of 3443.8, 726.8 and 2127.1 cm−1, with a somewhat surprisingly
large ω1 considering that the PEF is fitted to reproduce experimental rovibrational term energies
below 6880 cm−1 with a standard deviation of 0.0373 cm−1.
Up until this point comparisons have only been made with the Comp I PEF. The two multi-
reference based PEFs Comp II and Comp III yield CH bond lengths of 1.06304 and 1.06275 Å,
respectively, and CN bond lengths of 1.15493 and 1.15482 Å, respectively. Compared to the
probably most accurate results of Carter et al. [284] the CH bond lenghts are clearly to short by
about 0.002 Å and the CN bond lengths to long by about 0.0015 Å. These errors in the bond
lengths transfer to the harmonic vibrational frequencies with large differences of almost 27 cm−1

(Comp III) observed for the CH stretching frequency compared to the Comp I result which almost
coincides with the result of 3443.1 cm−1 determined experimentally by Maki et al. [286]. Differences
in the bending and CN stretching harmonic frequencies with respect to experimental results are
only slightly less pronounced. For ω2 differences of −15.6 and −14.4 cm−1 are calculated and
for ω3 −8.5 and −7.6 cm−1 from Comp II and Comp III, respectively, compared to Maki et
al. [286]. These large differences are well beyond the accuracy of 1 cm−1 typically achieved in
single-reference based composite approaches and are even larger than those obtained for MR based
composite approaches [173,287]. For example in the case of N2O maximum deviations of 2-4 cm−1

were calculated in Ref. [173] based on the same MR approach as adopted here. The main source
of errors appears to be the basic contributions provided by explicitly correlated MRCI-F12 and
ACPF-F12. Makhnev et al. [241] in their study of the HCN/HNC system already noted the
deficiencies of MRCI calculations with a full valence CASSCF reference, resulting in differences of
up to 26 cm−1 for the second overtone of the anharmonic CH-stretching vibration 2ν1.
Individual contributions (α) to the composite PEFs are represented by polynomials according to

V (α) − V (α)
ref =

∑
ijk

C
(α)
ijk∆ri∆Rjθk (k: even) , (3.1)

where the coefficients C(α)
ijk are determined by least-squares fitting. The adopted reference geometry

is rref = 1.0650 and Rref = 1.1532 Å close to the final equilibrium BO geometry given above. In
order to provide an accurate local PEF valid up to energies ≈ 10000 cm−1 above the minimum,
the contributions are calculated in the following coordinate ranges: −0.225 Å ≤ ∆r ≤ 0.4 Å,
−0.15 Å ≤ ∆R ≤ 0.225 Å and 0◦ ≤ θ ≤ 80◦. After carrying out the individual least-squares fits
which yield standard deviations on the order of 0.001 cm−1 the resulting polynomials (cf. Table A.1
and Table A.2 in Section A) are combined according to Equation (2.29). Residual gradient terms
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are removed by transforming the polynomials to their respective minimum. This finally yields the
composite PEFs Comp I, II, and III which are summarized in Table A.4.
The fc-CCSD(T) and fc-CCSD(T)-F12b basis set dependence of spectroscopic properties related
to the EDMF are investigated in Table 3.3. Equilibrium dipole moments µe and intensities of
fundamental vibrational transitions I(ωi) evaluated in double-harmonic approximation (DHA)

I(ωi) =
4π3NAdi

3hc
ωiµ

2
i (3.2)

are calculated from dipole moment functions expanded around the Comp I adiabatic equilibrium
geometry. In Equation (3.2), NA is the Avogadro constant and µi =

(
∂µ
∂qi

)
e
the derivatives of the

dipole moment vector with respect to the dimensionless normal coordinates. The Comp I PEF
also provides the L-matrix elements necessary to transform the dipole derivatives from internal to
normal coordinates and the harmonic frequencies. Standard CCSD(T) equilibrium dipole moments
obtained with the AV6Z basis set appear to be converged to within 0.001 D. While the band
intensity of the bending vibration converges rather fast in DHA, convergence of the stretching
intensities is slower especially for the weak ν3 fundamental. Following the scheme of Halkier et
al. [288] a CBS extrapolation of the AV5Z and AV6Z dipole moments is carried out. The resulting
equilibrium dipole moment are expected to be accurate to within 10−3 D and DHA intensities

Table 3.3: Frozen core CCSD(T) and CCSD(T)-F12b HCN equilibrium dipole moments (in D) and
intensities of the fundamental bands (in km ·mol−1) obtained in double harmonic approximationa .

Method Basis µe
b I(ω1) I(ω2) I(ω3)

CCSD(T) AVTZ −3.0079 64.16 69.97 0.1223
AVQZ −3.0159 64.72 69.61 0.1537
AV5Z −3.0189 65.17 69.34 0.1742
AV6Z −3.0205 65.36 69.38 0.1823
AV[56]Zc −3.0227 65.60 69.34 0.1938

CCSD(T)-F12b VDZ-F12 −3.0162 64.75 71.39 0.1496
VTZ-F12 −3.0195 65.32 70.16 0.1789
VQZ-F12 −3.0223 65.64 70.16 0.1909

CCSD(T*)-F12b VQZ-F12 −3.0216 65.57 70.16 0.1901

CCSD(T)-F12b AVTZ −3.0223 65.56 69.82 0.1755
AVQZ −3.0235 65.61 69.42 0.1954
AV5Z −3.0234 65.62 69.34 0.1975

CCSD(T*)-F12b AV5Z −3.0230 65.62 69.34 0.1972
a Using the Comp I PEF and expanding dipole moment around
the adiabtic Comp I equilibrium geometry for H12C14N.
b Equilibrium dipole moments are quoted with the present sign
convention corresponding to a polarity +HCN−.
c Results obtained from CBS extrapolation of AV5Z and AV6Z
results.
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are expected to be accurate to within 10−2 km·mol−1. Explicitly correlated fc-CCSD(T)-F12b
with a VQZ-F12 shows a good agreement for µe, I(ω1) and I(ω3) compared to the CBS values.
Triples scaling has nearly no influence on the obtained results. However, the DHA intensity of
the bending fundamental 70.16 km·mol−1 is larger by 1.2 % compared to CCSD(T)/AV[56]Z. This
difference is rectified by the use of AVnZ type basis functions which are more diffuse than the
VnZ-F12 type basis sets. The triples unscaled fc-CCSD(T)-F12b/AV5Z method yields the over
all best performance in providing near CBS quality dipole moments and therefore is used as basic
contribution to the composite EDMF.
Figure 3.3 depicts the dependence of the smaller contributions to dipole moment components µ‖

and µ⊥ on the internal coordinates. The CV and SR contributions show a slight linear dependence
with respect to the stretching coordinates. In contrast, the dominant HC contribution (Q)-(T)
provides the largest contribution to the dipole moment and varies non-linear as a function of the
internal coordinates. Numerical values for the influence of the individual contributions on µe and
the DHA intensities I(ωi) are given in Table 3.4. The equilibrium dipole moment changes by only
0.35 % upon inclusion of the smaller effects. The magnitudes of the individual contributions are
comparable to those calculated for N2O [173] but due to the larger permanent dipole moment their
relative importance is lower for HCN. The final composite equilibrium value of µe = −3.0127 D
is given with a negative sign which corresponds to a polarity of +HCN−. This is in agreement
with the experimental results of Muenter and coworkers [256,289]. The value of µe = −3.016(2) D
(adjusted for the present sign convention, one standard deviation in the last significant digit in
parentheses) obtained by DeLeon and Muenter [289] agrees to within 0.1 % with the composite
result and the mixed experimental/theoretical result of Botschwina et al. [58] µe = −3.0146(5) D

Table 3.4: Influence of smaller contributions to the HCN EDMF on the equilibrium dipole moment
(in D) and intensities of the fundamental bands (in km · mol−1) obtained in double harmonic
approximationa .

Contribution µe
b I(ω1) I(ω2) I(ω3)

F12b −3.0234 65.62 69.34 0.1975
CV −0.0014 +0.96 +0.06 0.0280
SR +0.0030 −0.05 +0.36 −0.0146
(Q)-(T) +0.0080 −0.54 +0.43 −0.0802
Q-(Q) −0.0005 +0.26 +0.07 0.0160
P-Q +0.0014 +0.05 +0.03 −0.0190
S-P +0.0002 +0.02 ±0.00 −0.0028

Total −3.0127 66.32 70.29 0.1249
a Using the Comp I PEF and expanding dipole
moment around the adiabatic Comp I equilibrium
geometry for H12C14N.
b Equilibrium dipole moments are quoted with
the present sign convention corresponding to a
polarity +HCN−.
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Figure 3.3: Dependence of smaller contributions to the HCN composite EDMF on the internal
coordinates ∆r (CH-stretch, upper panel) and ∆R (CN-stretch, lower panel) for the parallel com-
ponent µ‖ and θ (deviation from linearity, inset to lower panel) for the perpendicular component
µ⊥.
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to within 0.6 h.
With respect to the DHA intensities, CV effects provide the dominant contribution to I(ω1) and
are slightly counterbalanced by HC effects. The overall modification of I(ω1) due to the composite
approach is only +1.1 %. A similar correction of +1.4 % is calculated for the bending fundamental
I(ω2) and in accordance with the inset of Figure 3.3 all effects provide a positive contribution in
DHA. The CN-stretching fundamental is heavily influenced by the inclusion of CV, SR and HC
with relative contributions of +14.2 %, −7.4 % and -43.5 %, respectively, compared to the F12b
reference intensity of I(ω3) = 0.1975 km·mol−1. Further taking the non-linear shape of the HC
contributions into account (cf. Figure 3.3), it is clear that the inclusion of effect beyond CCSD(T)
is of utmost importance to accurately describe the intensity of the ν3 band.
The polynomial representations of the contributions (α) to the composite PEFs are

µ
(α)
‖ =

∑
ijk

D
(α)
ijk∆ri∆Rjθk (k: even) (3.3)

and
µ

(α)
⊥ =

∑
ijk

D
(α)
ijk∆ri∆Rjθk (k: odd). (3.4)

Coefficients D(α)
ijk are determined by least-squares fitting of dipole moments in the same coordinate

ranges as employed for the PEF fits: −0.225 Å ≤ ∆r ≤ 0.4 Å, −0.15 Å ≤ ∆R ≤ 0.225 Å and 0◦ ≤
θ ≤ 80◦. The H12C14N adiabatic Comp I equilibrium geometry re = 1.06518 Å and Re = 1.15325 Å
is used as a reference in these calculations. The specific coefficients D(α)

ijk coefficients included in
the fits are carefully chosen to yield standard deviations on the order of 10−5 D. They are given in
Section A in Table A.5 - A.8. Summation of the polynomials according to Equation (2.30) gives
the final composite EDMF (Table A.9 in Section A).

3.1.4 Variational rovibrational calculations on HCN

The PEFs of Table A.4 and EDMF of Table A.9 are employed in variational rovibrational calcu-
lations using Sebalds C8vpro program [210]. The vibrational basis set consists of 1925 HO/RR
product functions and provides all vibrational term energies up to the first overtone of the CH-
stretching vibration (2, 00, 0) converged to within 10−2 cm−1 or better. Calculations are carried
out up to a total angular momentum quantum number of Jmax = 50 and the vibrational angular
momentum quantum number was restricted to ` = K ≤ 17.

Rovibrational term energies

The calculated rovibrational term energies Tv(J) were least-squares fit according to Equation (2.91)
employing term energies up to J = 20. This restriction to low J values allows to safely neglect
higher-order terms in Equation (2.91) like the sextic centrifugal distortion constant Hv. For states
with ` > 0 effective spectroscopic parameters were determined by setting ` = 0 in Equation (2.91)
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Table 3.5: Experimentala and calculated spectroscopic parameters (in cm−1) for HCN.
State Method Gv

b Bv 106Dv

(0, 00, 0) exp. − 1.47822 2.909
Comp I 3476.6 1.47825 2.907
Comp II 3468.4 1.47570 2.918
Comp III 3471.7 1.47606 2.917

(0, 11, 0)e exp. 711.9 1.47803 2.932
Comp I 711.9 1.47807 2.930
Comp II 696.6 1.47575 2.942
Comp III 697.8 1.47610 2.941

(0, 11, 0)f exp. 711.9 1.48552 3.019
Comp I 711.9 1.48556 3.018
Comp II 696.6 1.48331 3.035
Comp III 697.8 1.48364 3.033

(0, 00, 1) exp. 2096.8 1.46814 2.916
Comp I 2097.1 1.46817 2.912
Comp II 2088.7 1.46564 2.923
Comp III 2089.7 1.46600 2.922

(1, 00, 0) exp. 3311.5 1.46780 2.884
Comp I 3311.8 1.46783 2.882
Comp II 3333.6 1.46516 2.899
Comp III 3336.6 1.46552 2.898

a Obtained by effective fits of the experimental
rovibrational term energies by Mellau [17] up to
Jmax = 20.
b For the vibrational ground state the quoted Gv
corresponds to the zero-point energy (ZPE).

and performing individual fits of the e- and f -parity components. This avoids complications due
to the non-linear fitting required to account for l-type doubling and l-type resonance, as outline
in Section 2.3.4. A detailed listing of calculated spectroscopic parameters is given in Table A.10
of Section A. In case of HCN one is in the rather unique situation that an extensive database of
experimental rovibrational term energies is available from the excellent work by Mellau [17]. All
experimental reference Tv(J) employed in the following were taken from that work and the quoted
spectroscopic parameters were obtained by fitting the experimental term values analogous to the
theoretical results. This provides an almost one-to-one comparison between theory and experi-
ment.
Table 3.5 compares spectroscopic parameters for the vibrational ground state and singly excited
vibrational states obtained with the three Comp PEFs. The vibrational term energies obtained
with Comp I show almost perfect agreement with experiment [17], errors not exceeding 0.3 cm−1.
Given this accuracy the for the fundamental transitions the zero-point energy (ZPE) of 3476.6 cm−1
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should be accurate to within 0.1 cm−1. Using the VPT2 formula for the ZPE (given in Equa-
tion (2.63)) and the Comp I PEF transformed via numerical differentiation to an expansion in
dimensionless normal coordinates yields a value 3476.5 cm−1 in close agreement with the varia-
tional calculations. The latter value includes the E0 = −2.9 cm−1 term. Rotational parameters
obtained with the Comp I PEF agree to within 0.03 h and 0.1 % for Bv and Dv, respectively.
Performance of the MR based PEFs Comp II and III is far worse. Vibrational term energies for
the (0, 11, 0), (0, 00, 1) and (1, 00, 0) differ from experiment [17] by −15.3, −8.1 and +22.1 cm−1,
respectively, for the Comp II PEF and −14.1, −7.1 and +25.1 cm−1, respectively, for Comp III.
These differences closely mirror the errors obtained for the harmonic frequencies in Table 3.2. This
suggests that, while the anharmonic part of the Comp II and Comp II PEFs gives a reasonable
description of the true HCN potential, the main source of error lies in the description of the har-
monic potential. While the 0.3-0.5 % deviation from experiment [17] of the Comp II and Comp III
quartic centrifugal distortion constants is somewhat acceptable, the rotational parameters Bv are
far to small by as much as 0.2 %, two orders of magnitude larger than the error of the Comp I PEF.
A closer look at the differences of the rotational parameters helps to elucidate these deficiencies.
From the experimental results [17] ∆Bv = Bv − B0 values of −0.01042, +0.00730 and
−0.01008 cm−1 can be calculated for the (1, 00, 0), (0, 11, 0)f and (0, 00, 1) state, respectively.
The results for Comp II are in that same order: −0.01054, +0.00763, −0.01006 cm−1 and that
for Comp III: −0.01054, +0.00758, −0.01006 cm−1. From the perturbational expansion of Bv
(cf. Equation (2.65)) one finds that these differences are effective values for the rotation-vibration
interaction constants ∆Bv ≈ −αv. The acceptable agreement between the MR based composite
approaches and the experimental values again shows that the shortcomings of the former are within
the description of the harmonic problem, in this case the equilibrium rotational constant Be and
thus the molecular geometry. For comparison Comp I yields the ∆Bv values of −0.01042, +0.00731

and −0.01008 cm−1 in virtually perfect agreement with experiment. The preceding paragraphs
show that the MR based approaches relying on a full valence CASSCF reference do not result in
HCN PEFs that provide the desired accuracy of 1 cm−1. Therefore, the following discussion will
focus exclusively on results obtained with the Comp I PEF.
Figure 3.4 compares the differences with respect to experiment [17] in the lowest possible rovibra-
tional term energy for all 63 HCN vibrational states up to (2, 00, 0) obtained with the Comp I PEF
and those obtained by Makhnev et al. [241]. For states with ` 6= 0 these are rotationally excited
states with J = `. In the upper part of Figure 3.4 the whole covered energetic range and all 63
states are shown. The errors obtained with the Comp I PEF are all within 1 cm−1 and from them
a standard deviation of σ = 0.34 cm−1. Results by Maknev et al. [241] show a similar agreement
with σ = 0.26 cm−1. However, the latter values include a so called non-Born-Oppenheimer con-
tribution in the Hamiltonian (cf. eq. (8) and (9) in Ref. [241]). The parameters a and b in these
additional Hamiltonian terms were fitted to experimental results. Therefore, the results termed
BO+rel+ad+NBO by Makhnev et al. [241] do not constitute purely ab initio results. Without
the NBO correction the errors of the Makhnev et al. [241] results are much worse compared to the
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Figure 3.4: Comparison of errors in rovibrational term energies with respect to the experimental
results by Mellau [17] calculated with the Comp I PEF and the those reported by Makhnev et
al. [241].

(purely ab initio ) Comp I results. For the 17 J = 0 states given in Ref. [241] σ = 1.26 cm−1 is
obtained, whereas Comp I yields σ = 0.44 cm−1. The main source of error in the former results
stems from states with excited stretching vibrations. For example, the (1, 00, 0) state is calculated
1.41 cm−1 too high compared to experiment [17]. This error reduces to obs− calc = −0.18 cm−1

upon inclusion of the so called NBO effects, yielding a NBO correction of −1.23 cm−1 on the cal-
culated term energy. This is a surprisingly large value considering that Comp I places the (1, 00, 0)

state at 3311.84 cm−1 above the ground vibrational state, only 0.36 cm−1 too large.
In Figure 3.5 the vi quantum number dependence of the calculated errors for the (0, v`2, 0),
(v1, 0

0, 00) and (0, 00, v3) series of states is depicted. The value of ` for the bending states corre-
sponds to the lowest possible value so that either ` = 0 or ` = 1 for even or odd v2, respectively.
For a semi-rigid molecule one would expect the errors obtained from variational calculations to be a
linear function of the quantum number as long as the employed potential describes the anharmonic
shape of the "true" potential correctly. This can formally be realized by considering the VPT2
expansion of the vibrational term energy given in Equation (2.49). Subtracting ZPE = E0 + G0

and setting all other quantum numbers vj = 0 yields the vibrational term energies Gvi,` for states
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Figure 3.5: Quantum number dependence of errors in rovibrational term energies with respect to
the experimental results by Mellau [17] calculated with the Comp I PEF and the those reported
by Makhnev et al. [241].

with excitation only in vi according to

Gvi,` = ωivi + xiivi (vi + di) +
1

2

∑
j 6=i

xijvidj + x```
2 . (3.5)

Terms in Equation (3.5) depending on anharmonicity parameters xij are mainly determined by the
anharmonic shape of the potential. The error in the calculated vibrational term energies ∆Gvi,`

is then given by

∆Gvi,` =

∆ωi + ∆xiidi +
1

2

∑
j 6=i

∆xij

 vi + ∆xiiv
2
i + ∆x```

2 , (3.6)

where the ∆ signifies the error in the respective spectroscopic parameter. Since differences in rota-
tional parameters are only on the order of the error in Be and the αi which both are much smaller
than the ∆ωi it is safe to set the error in the total rovibrational term energies ∆Tvi(J) to ∆Gvi,`.
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Now, if the PEF describes the anharmonicity correctly one has ∆xij � ∆ωi in Equation (3.6) and
∆Gvi,` ≈ ∆ωivi + ∆xiiv

2
i . The slope of the error ∆Tv(J) for the three series of states mentioned

above is thus given by the error in the harmonic vibrational frequency for low values of vi. Only for
higher values of vi deviations are to be expected due to the errors in the anharmonicity parameters
and also higher order terms neglected in the expansion given in Equation (3.5).
The linear dependence can clearly be observed for the stretching states calculated with the Comp I
PEF. For the bending states deviations from this linear relationship emerge for states with v2 > 4.
From the form of this curve some conclusions can be drawn on the bending potential of the Comp
I PEF which mainly determines these errors. In the low energy region the potential is too steep,
resulting in term energies that are too large compared to experiment [17]. With increasing energy
the potential becomes wider leading to the decrease in the errors and beyond v2 = 8 it is too wide
compared to the "true" bending potential of HCN. In contrast, the errors for (0, v`2, 0) states of

Figure 3.6: Errors in rotational parameters Bv and Dv calculated with the Comp I (left) and the
F12b (right) PEF compared to results derived from the experimental results by Mellau [17].
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Makhnev et al.show a rather unsystematic behaviour, this suggests problems in the form of the ab
initio PEF of Makhnev et al. [241]. Similarly, the error for stretching term energies calculated by
Makhnev et al. [241] show a non-linear dependence on v1 and v3 already for low excitations.
Calculated rotational parameters Bv and Dv for vibrational states up to (2, 00, 0) are compared to
values derived from the experimental term energies reported by Mellau (Figure 3.6). This encom-
passes the analysis of 1960 individual rovibrational states. The upper two panels depict Bexp

v −Bcalc
v

for the Comp I and the F12b PEF. The latter results show an error of −0.00448 cm−1 in the
ground state rotational parameter B0. This is almost equal to the difference of −0.00459 cm−1

in the equilibrium rotational constants for the Comp I and F12b PEF. The error of the F12b
rotational parameters show a larger spread compared to the Comp I results, which is due to the
differences/errors in the vibration-rotation interaction parameters. The Comp I results produce
somewhat outlying errors for the e and f components of (0, 86, 0). This state shows an experi-
mentally observed local resonance with the (0, 55, 1) state. Mellau [17] places the avoided crossing
at J = 8. The crossing point is reproduced by the Comp I PEF but the perturbed separation is
slightly larger when comparing to experiment. This slight mismatch in the energy for low J values
causes the Bv for the (0, 86, 0) to show the largest error of the calculated values. In the lower

Table 3.6: Comparison of experimentala and calculated J = 0 vibrational term energies (in cm−1)
for higher lying states in HCN up to 15600 cm−1.

obs-calc obs-calc

State Gv this workb Ref. [241] State Gv this workb Ref. [241]

(1, 20, 1) 6761.33 0.09 −1.24 (2, 00, 2) 10631.40 −1.24 −2.16
(0, 100, 0) 6855.53 −0.71 −2.89 (0, 40, 4) 11015.90 1.21 −0.78
(0, 40, 2) 6951.68 0.04 1.58 (1, 00, 4) 11516.60 −1.42 −0.70
(1, 00, 2) 7455.42 −0.93 −0.49 (0, 20, 5) 11654.59 0.11
(0, 20, 3) 7620.22 −0.53 0.09 (3, 00, 1) 11674.50 −1.30 −3.13
(2, 20, 0) 7853.51 −0.74 −4.25 (0, 60, 4) 12364.42 1.14 3.51
(1, 40, 1) 8107.97 −0.52 −0.40 (4, 00, 0) 12635.89 −1.94 −2.84
(0, 00, 4) 8263.12 −1.44 1.24 (2, 00, 3) 12657.88 −1.38 −2.36
(0, 60, 2) 8313.53 1.27 2.33 (0, 40, 5) 13014.80 0.80 4.23
(2, 00, 1) 8585.58 −1.00 −2.17 (0, 20, 6) 13638.03 −1.50 0.86
(1, 20, 2) 8816.00 −0.78 −1.93 (0, 80, 4) 13693.87 0.23
(0, 40, 3) 8995.22 1.30 3.39 (3, 00, 2) 13702.25 −1.31 −3.23
(2, 40, 0) 9166.62 −1.64 −1.98 (0, 60, 5) 14357.05 0.64 3.88
(1, 00, 3) 9496.44 −1.20 −0.54 (2, 00, 4) 14653.66 −1.53 −2.63
(0, 20, 4) 9648.65 0.41 (4, 00, 1) 14670.45 −1.68 −3.14
(3, 00, 0) 9627.09 −1.27 −3.30 (3, 20, 2) 14988.20 −0.18 1.10
(2, 20, 1) 9914.40 −1.01 −4.07 (0, 40, 6) 14992.06 −0.61 −1.81
(0, 20, 4) 10350.11 1.49 (5, 00, 0) 15551.94 −3.24 −1.11
a Experimental values from Yang et al. [290] and Smith et al. [291].
b Obtained from J = 0 variational calculations with the Comp I PEF using 3641 vibrational
basis function.
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panels of Figure 3.6 the absolute errors |Dexp
v −Dcalc

v | are given. Again, the overall agreement with
experiment is improved by the inclusion of the smaller contributions in the Comp I PEF compared
to F12b. Standard deviations calculated for the Bv and Dv with the F12b PEF compared to
experiment amount to 0.00442 and 0.118 · 10−6 cm−1, respectively. An analogous analysis for the
Comp I results yields 0.00009 cm−1 and 0.093 · 10−6 cm−1.
The coordinate range employed in the construction of the composite PEFs covers energies up to
about 10000 cm−1 above the minimum. To test the reliability of the Comp I PEF above the
(2, 00, 0) state and its extrapolating capabilities beyond the aforementioned energy range J = 0

variational calculations are performed. The high degree of excitation in the vibrational modes (up
to v1 = 5, v2 = 10 and v3 = 6) requires a larger vibrational basis set to achieve convergence. A
carefully selected basis comprising 3641 HO product functions gives the term energies converged
to within 0.01 cm−1. Results of these calculations for states up to (5, 00, 0) at about 15600 cm−1

are compared in Table 3.6 to the experimental results of Smith et al. [291] from Fourier transform
absorption spectroscopy and those obtained by Wodtke and coworkers [290] using stimulated emis-
sion pumping spectroscopy in the A − X̃ electronic band system of HCN. The observed absolute
differences are in the range of up to 2 cm−1 with the exception of the highest lying state (5, 00, 0)

which deviates from experiment by as much as −3.24 cm−1. The total standard deviation over the
36 states given in Table 3.6 is 1.24 cm−1 which is a factor of two better than the results obtained by
Makhnev et al. [241] with their global HCN/HNC PES (σ = 2.48 cm−1; results given in Table 3.6).
In summary, the developed Comp I PEF is shown to provide highly accurate spectroscopic param-
eters for a large number of rovibrational states in HCN. In the energetic range up to the second
overtone 2ν1 of the CH stretching vibration, spectroscopic accuracy < 1 cm−1 is obtained for vi-
brational term energies and rotational paramters Bv are calculated that are within a few tenth of
a percent of their experimental counterparts. In higher energetic regimes up to about 15600 cm−1

deviations in the vibrational terms increase to about 1-3 cm−1 which is still good considering that
the PEF is designed for near-equilibrium applications up to ∼ 10000 cm−1.

Rovibrational intensities

A first test of the quality of the composite EDMF is achieved by comparing calculated dipole mo-
ments in the ground vibrational state and excited vibrational states to experimental measurements.
Table 3.7 presents results obtained for low lying vibrational states of H12C14N from analysis using
different numbers of rovibrational states. A vibrationally averaged ground state dipole moment of
−2.9834 D is obtained which can be compared to the experimental value of −2.98519(1) D deter-
mined by Ebenstein & Muenter [256]. The corresponding relative error amounts to only 0.6 %.
The vibrational dependence of the dipole moment ∆µv = µv −µ0 shows almost perfect agreement
with the available experimental values with a maximum absolute deviation of 0.0007 D or 0.8 %
obtained for the (0, 22, 0) state. The latter value is comparable to the experimental uncertainty
of 0.6 %. This level of agreement should allow a rather precise mixed experimental/theoretical
estimate of the equilibrium dipole moment of HCN. Using the composite results for µe and µ0 a
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Table 3.7: Calculateda and experimental dependence of HCN electric dipole moments on vibra-
tional excitation ∆µv = µv − µ0 (in D).

∆µv

State Jmax = 5 Jmax = 15 Jmax = 30 exp.b

(0, 00, 0)c −2.9834 −2.9834 −2.9834 −2.98519(1)
(0, 11, 0) 0.0437 0.0437 0.0437 0.0432(0)
(0, 20, 0) 0.0860 0.0860 0.0859 0.0862(1)
(0, 22, 0) 0.0875 0.0875 0.0874 0.0867(5)

(0, 00, 1) 0.0048 0.0048 0.0048 0.0047(1)
(0, 11, 1)e 0.0492 −0.2169 0.0362
(0, 11, 1)f 0.0492 0.0492 0.0492
(0, 20, 1) 0.0919 0.0919 0.1263
(0, 22, 1)e 0.0937 0.0937 0.0936
(0, 22, 1)f 0.0937 0.0937 0.0991

(1, 00, 0) −0.0321 −0.0321 −0.0321 −0.0322(0)
(1, 11, 0) 0.0122 0.0122 0.0122
(1, 20, 0) 0.0553 0.0553 0.0551
(1, 22, 0) 0.0566 0.0566 0.0565
a Obtained from squared transition dipoles for rotational tran-
sitions (cf. Equation (2.100) and Equation (2.101)) up to the
quoted Jmax.
b Experimental values from [256,289].
c For the (0, 00, 0) the quoted values correspond to the dipole
moment in the vibrational ground state µ0.

Figure 3.7: J dependence of the expectation value 〈|`|〉 for HCN rovibrational states involved in
local Coriolis resonances (v1, v

`
2, v3) // (v1, (v2 + 3)`±1, v3 − 1).
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theoretical vibrational correction of ∆µ0 = µe−µ0 = −0.0293 D is obtained. By adding the latter
value to the experimental vibrational ground state dipole moment an equilibrium dipole moment of
−3.0145(3) D can be derived, where the error in parentheses is obtained by assuming a conservative
error of 1 % in ∆µ0. This value is slightly larger than the Comp I equilibrium dipole moment of
−3.0127 D but agrees perfectly with the value of −3.0146(5) D derived by Botschwina et al. [58].
The latter was obtained in a similar mixed experimental/theoretical approach by calculating ∆µ0

based on the fitted PEF of Carter, Mills and Handy and an EDMF calculated using fc-CCSD(T)
and a basis set of quadruple-zeta quality.
The calculated dipole moments of the (0, v`2, 1) states with v2 > 0 show signs of local anharmonic
resonances through a strong dependence of the obtained ∆µv on the number of analysed rota-
tional transitions which differs between the e and f components. This can be understood from
Figure 3.7. There, expectation values of the vibrational angular momentum quantum number 〈|`|〉
are depicted which have been shown [292,293] to provide a good indicator of the strength of Coriolis
interactions. For the (0, v`2, 1) states in question and the perturber states (0, (v2 + 3)`±1, 0) 〈|`|〉 is
given in Figure 3.7 up to J = 30. The (0, 11, 1)e state shows a local and pronounced anharmonic
interaction with the (0, 40, 0) state between J = 10 and 12 which results in the drastic change of
the fitted dipole moment difference in the former state from 0.0492 to −0.2169 D. The crossing
point has also been determined by Mellau [17] to occur at J = 10 which agrees with the present
results. Similarly, local resonances are predicted for the (0, 20, 1) and (0, 22, 1)f which interact with
the e and f component of (0, 51, 0), respectively, at J = 26 (experimentally determined avoided
crossing [17] at J = 25 and J = 26, respectively). The remaining variation of 〈|`|〉 with J observed
in Figure 3.7 can be attributed to normal `-type resonance which mixes rovibrational states with
the same vibrational quantum numbers vi but different `.
Turning toward absolute rovibrational line intensities, in Table 3.8 the results obtained with the
present composite EDMF are compared to experiment [18, 19, 21–24] and the recent calculations
of Makhnev et al. [242] (columns 2-3 in Table 3.8). The latter study is based on a PEF fitted to
experimental results and an EDMF obtained at the ic-MRCI/ACV5Z level of theory with all elec-
trons correlated that further includes a relativistic correction. root mean squared relative errors
(RMSRE) for various rovibrational bands in HCN are given. They are calculated using the Comp
I PEF and composite EDMF with different numbers of lines considered (columns 4-7 in Table 3.8).
On the one hand results are quoted that take all the available experimental intensities into account
(column 6-7) and on the other hand RMSRE values for the same lines considered by Makhnev et
al. [242] are given in column 4-5. Additionally, calculated and experimental band intensities

Av =
∑
(i,f)

Aif (3.7)

obtained by summing over a sufficient number of individual line intensities within a band are pre-
sented (column 8-9). Quoting both the RMSRE of individual lines and Av helps to distinguish
between systematic errors in the prediction of certain intensities and errors in experimental mea-
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Table 3.8: Comparison of calculateda and experimental individual line intensities (root mean
squared relative errors RMSRE in %) and band intensitiesb Av (in cm−2atm−1) for transitions in
HCN.

Ref. [242] J ′′max = 20 all exp. lines Av

Band RMSRE Nlines RMSREa Nlines RMSREa Nlines calc. exp.

ν1 1.24 40 2.31 40 2.20 67 230.6 225.7(2)
ν2 1.48 50 1.31 50 4.16 85 261.5 266.4(2)
ν3 16.58 19 10.26 19 9.80 62 0.1108 0.1006

ν1 + ν2 − ν2 5.14 76 5.06 76 9.53 107 13.24 13.27
2ν0

2 0.98 40 1.15 40 6.13 59 31.00 30.82(5)
2ν0

2 − ν2 5.80 36 5.79 37 10.01 48 4.08 4.15
2ν2

2 − ν2 6.59 45 4.63 45 10.15 114 12.09 12.69
3ν1

2 − ν2 4.35 68 4.74 68 5.81 70 3.289 3.289

2ν2
2 6.74 37 8.07 37 10.99 67 0.2189 0.2356

3ν3
2 15.39 14 11.99 14 18.33 42 2.370·10−4 2.210·10−4

ν1 + ν2
2 23.95 19 23.02 19 25.97 38 2.307·10−4 1.963·10−4

ν2
2 + ν3 14.10 30 15.55 30 15.53 49 2.282·10−3 2.699·10−3

a Obtained from calculations using the Comp I PEF and composite EDMF.
b Calculated by summation of individual line intensities. For bands with quoted experimental
uncertainties the calculated Av values employ line intensities up to J = 50. All other experimental
and theoretical band intensities obtained by summing up the available experimental intensities and
the corresponding theoretical results, respectively.

surements. The latter will lead to differences in the RMSRE and the relative error of the calculated
Av with respect to experiment.
The strongest bands in the H12C14N spectrum at about 296 K are the bending [24] and CH stretch-
ing fundamental [24]. Graphical comparisons of the composite results and the experimental line
intensities for ν1 and ν2 are provided in Figure 3.8. The RMSRE of the present work amounts to
about 2.2 % for ν1 irrespective of the number of lines considered and the calculated band intensity
of 230.6 cm−2atm−1 is in error by that same amount. Results for ν1 of Makhnev et al. [242]
are slightly better with a RMSRE of 1.24 % for the lowest 20 transitions in each the P- and the
R-branch. For the bending fundamental ν2 the largest errors are observed for high J ′′ lines. This
leads to the difference in the calculated RMSRE values of 1.32 % and 4.16 % when considering
the 50 lowest (J ′′max = 20) and all 85 line intensities reported by Smith et al. [24]. Furthermore,
the calculated band intensity of 261.5 cm−2atm−1 agrees to within 1.9 % with the experimental
value [24].
The observed differences between calculated RMSRE from different sets of line intensities on the
one hand and the error in the band intensities is especially pronounced for the weaker bending
overton ν0

2 (∆` = 0) and hot bands associated with ν1, ν2 and 2ν2. The overtone 2ν0
2 presents an

extreme example. Considering 40 lines with J ′′max = 20 yields an RMSRE of 1.15 % which increases
to 6.13 % upon inclusion of the remaining 19 lines reported in Ref. [22]. Then again, the calcu-
lated and experimental band intensities agree to within 0.6 %. A closer look at the experimental
results reveals that the measured P(30) and P(31) intensities are responsible for the almost sixfold
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Figure 3.8: Comparison of experimental [21,24] and calculated absolute intensities for the bending
(ν2) and CH-stretching (ν1) fundamental bands in H12C14N at T = 296 K.

increase in the RMSRE. The former line deviates by as much as 43.5 % from the present ab initio
value of 7.674 ·10−3 cm−2atm−1. This clearly indicates an error in the experimental determination
considering the overall accuracy of the composite results.
The CN stretch fundamental ν3 of HCN deserves special attention. This band is exceptionally
weak [18], which can be understood in the DHA by considering the contributions to the dipole
moment derivative with respect to the normal coordinate Q3 (in atomic units) according to(

∂µ

∂Q3

)
e

= L13

(
∂µ‖
∂∆r

)
e

+ L33

(
∂µ‖
∂∆R

)
e

(3.8)

= 0.0038 · (−0.2442) + 0.0086 · 0.0763

= −0.0003,

where Lij are elements of the orthogonal matrix that transforms normal coordinates to internal
coordinates. The presented numerical values are for H12C14N and obtained from the Comp I PEF
that defines the Lij and the composite EDMF whose linear terms in ∆r and ∆R give the required
dipole derivatives. A near cancellation of the terms in Equation (3.8) is observed resulting a small
value for the DHA transition dipole moment of µDHA

3 = −0.0068 D. The further peculiar feature
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Figure 3.9: Comparison of experimental [18] and calculated absolute intensities for the CN-
stretching (ν3) fundamental band in H12C14N at T = 298 K. Calculated results employ the rovibra-
tional wavefunctions obtained with the Comp I and F12b PEFs in combination with the composite
EDMF or the basic F12b contribution. In the lower panel the relative errors of calculated abso-
lute intensities are given. For the combinations employing the F12b EDMF errors in the Range
m = −10 tom = 10 are off scale. The inset depicts them dependence of the Herman-Wallis factors
obtained from the parameters of Table 3.9 in the R-branch region of the experimental intensity
gap.

of the ν3 band is a minimum in intensity of the R-branch which is due to the squared transition
dipole moment µ2

if becoming zero for a certain value of m. This has been explained both experi-
mentally [18] and theoretically [58] by the combination of a low vibrational transition moment and
a relatively large first Herman-Wallis coefficient A1 (cf. Equation (2.101)). A theoretical treatment
therefore requires a highly accurate PEF and EDMF to reproduce this features.
A stick spectrum representation of the HCN ν3 band is given in Figure 3.9. Theoretical absolute
intensities obtained from different combinations of the PEF and EDMF employed in the varia-
tional calculations are compared to the experimental results of Maki and coworkers [18]. The
best agreement is provided by the Comp I PEF + composite EDMF combination. The RMSRE
calculated over the whole band system yields a value of 9.8 % which is significantly better than
the recent theoretical study by Makhnev et al. [242] with a value of 16.58 % obtained from the
P-branch transitions only. Changing only the PEF to F12b and thus the rovibrational wave func-
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Table 3.9: Calculateda and experimental vibrational transition dipole moment µ3 (in D), Herman-
Wallis coefficients Ai and position of the R-branch intensity minimum for the ν3 CN-stretching
fundamental transition in HCN.

PEF EDMF µ3 A1 103A2 103µ3A1 Rmin(J)

F12b F12b 0.00300 −0.0597 −0.11 −0.1791 R(15)
Comp I F12b 0.00284 −0.0632 −0.12 −0.1795 R(14)
F12b Comp 0.00161 −0.1108 −0.23 −0.1784 R(8)
Comp I Comp 0.00143 −0.1250 −0.26 −0.1788 R(7)

expb 0.00136(1) −0.1254(2) −0.25(1) −0.1708 R(7)
a Obtained from least-squares fits of squared transition dipoles ac-
cording to Equation (2.100) and Equation (2.101) in the range
|m| ≤ 30.
b Experimental results from Ref. [18] with one standard deviation
uncertainty in the last digit given in parentheses.

tions worsens the results especially for the P-branch transitions but the overall shape of the band
is still reasonably reproduced. In contrast, changing the EDMF has a much more dramatic effect.
P-branch transitions are obtained with intensities that are too large by a factor of about 2 and the
minimum in the R-branch is shifted to higher m.
In order to provide a more detailed analysis, the calculated transition dipole moments in the range
|m| ≤ 30 were least-squares fit according to Equation (2.100) and 2.101. The results of these fits
for the 4 PEF/EDMF combinations of Figure 3.9 are given in Table 3.9 together with the exper-
imental results reported by Maki and coworkers [18]. Additionally the position of the R-branch
minimum is quoted. Clearly, best performance is provided by the composite approach (PEF &
EDMF). The transition dipole moment µ3 is calculated to be 0.00143 D only 5 % larger than the
experimental value of 0.00136(1) D. Comparing the former value to the DHA result of −0.0068 D
shows that anharmonicity effects are important for a quantitative description of the ν3 intensity.
The experimental values for the first and second Herman-Wallis coefficients A1 and A2 are al-
most perfectly reproduced by the composite based calculations. Consequently, the theoretical and
experimental [18] R-branch intensity minimum is observed for the same line, namely R(7). The
calculations by Makhnev et al. [242] placed the minimum to low at R(6). Results obtained with the
F12b EDMF are much worse with too large µ3 values of and too small Herman-Wallis coefficients.

Interestingly, the slope of the effective transition dipole moment curves
√

µ2
if

FHL
with respect to m,

which is given by the product µ3A1, is nearly independent of the PEF/EDMF combination. The
individual values vary by only 0.4 % between the different combinations and the mean value of
−0.1790 · 10−3 D. This can also be observed from the inset of Figure 3.9 where the calculated
and experimental effective transition dipole moments are depicted in the region of the R-branch
minimum. The experimentally derived slope is −0.1708 · 10−3 D [18] about 5 % lower than the
theoretical value due to the difference in the transition dipole moment µ3. According to the work of
Watson [238] on the Herman-Wallis factor, by employing a perturbational expansion of the dipole
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operator [187] the product µ3A1 for the ν3 band can be calculated by

µ3A1 = −2

(
2Be

ω3

) 3
2

ζ12µe + 4Be

√
ω3ω2

ω2
3 − ω2

2

ζ32µ2 , (3.9)

where µ2 is the DHA transition dipole moment for the bending fundamental ν2. The perturbational
result calculated with the Comp I PEF and the composite EDMF is −0.1803 · 10−3 D in good
agreement with the variational result. Since spectroscopic parameters related to the PEF (Be
and ωi) as well as the EDMF (µe and µ2) contribute to µ3A1 the observed independence can be
attributed to a compensation effect when changing the PEF and/or EDMF.
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3.2 Tricarbon - C3

This Section is partly reproduced from References:

[294] B. Schröder, P. Sebald
High-level theoretical rovibrational spectroscopy beyond fc-CCSD(T): The C3 molecule,
The Journal of Chemical Physics, 2016, 7, 044307 (DOI: 10.1063/1.4940780),

[29] B. Schröder, K. D. Doney, P. Sebald, D. Zhao, H. Linnartz,
Stretching our understanding of C3: Experimental and theoretical spectroscopy of highly excited
nν1 +mν3 states (n ≤ 7 and m ≤ 3),
The Journal of Chemical Physics, 2018, 149, 014302 (DOI: 10.1063/1.5034092),

with the permission of AIP Publishing. All theoretical computations were calculated on my own.
The discussion of the equilibirum bond length in C3 has been extended to include the recent
results of Breier et al. [295]. Implementation of the integrated vibrational densities into C8vpro

was performed by P. Sebald. The spectra were recorded, assigned and fitted by Kirstin D. Doney
of the Linnartz group.

3.2.1 Introduction

Tricarbon C3 (X̃1Σ+
g ) is an abundant species in astronomical environments, such as cool carbon

stars and interstellar clouds, and has been identified in a number of sources [296–306]. The first
astronomical observation of C3 resulted from an investigation on the spectral lines of the Tebbutt
comet around 4050 Å [296]. Unambigous assignment of these observations to the C3 Ã

1Πu−X̃1Σ+
g

electronic transition took more than 80 years. Spectral features of the 4050 Å band were first ob-
served by Raffety [307] and Herzberg [308] in laboratory studies on discharges through methane,
the latter initially attributing it CH2. This was followed by the work of Douglas [168] who cor-
rectly assigned the 4050 Å band to C3 based on a study of the spectrum obtained from discharges
through 13C labeled methane. Finally, flash photolysis of diazomethane carried out by Herzberg
and coworkers [309, 310] revealed the origin of the bands as being due to the Ã1Πu − X̃1Σ+

g elec-
tronic transition. Compared to other pure carbon chains with an odd number of carbon atoms
(cf. Ref. [311] and references therein), C3 is very "floppy", as seen by the extremely low lying
bending vibrational frequency (ν2) of 63 cm−1 [312]. As such, C3 has attracted the interest of
both experimentalists [295,312–323] and theoreticians [25,26,84,324]. Excellent accounts of earlier
work on C3 were compiled in the reviews by Weltner and Van Zee [325] as well as Van Orden and
Saykally [326] and the reader is referred to these articles for an overview.
The first high-resolution spectroscopic study on C3 was reported by Matsumura et al. in 1988 [313].
Using IR diode laser spectroscopy 28 lines within the antisymmetric stretching vibration ν3 band
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were observed and the band origin was determined to be 2040.0198(8) cm−1 with the error (1σ) in
terms of the last significant digit being given in parentheses. Only one year later the same group
extended their measurements of the ν3 fundamental [314] and additionally detected the associated
hot bands ν2 +ν3−ν2, 2ν2 +ν3−2ν2 originating from excited bending vibrational states as well as
the combination band 2ν2 + ν3. In 1990 Schmuttenmaer et al. were able to observe the exception-
ally low-lying bending fundamental transition ν2 at 63.416529(40) cm−1 by tunable Far-IR laser
spectroscopy of jet-cooled C3 molecules. Recently, Breier et al. [295] extended the ν2 spectrum
of the main C3 species with spectra of all possible 13C isotopologues using a terahertz-supersonic
jet spectrometer in combination with a laser ablation source. Information on the IR inactive
symmetric vibrational modes is available from studies on electronic transitions in the early 1990s
employing laser induced flourescence and stimulated emission pumping spectroscopy [315–319]. In
2005 Zhang et al. [321] provided an accurate experimental characterisation of the first excited sym-
metric stretch vibrational state, yielding ν1 = 1224.4933(29) cm−1 with three standard deviations
in the last significant digit given in parentheses. Krieg et al. [322] reported a high-resolution study
on the spectrum of C3 in the 3 µm region. An optical parametric oscillator (OPO) was employed to
probe C3 molecules in a supersonic jet expansion enabling the detection of the ν1 +ν3 combination
band and the associated hot band ν1 + ν2 + ν3 − ν2.
Besides the work of Breier et al. [295] on the ν2 fundamental of C3 isotopologues, experimental
spectroscopic information on 13C substituted C3 is rather scarce. Moazzen-Ahmadi and McKel-
lar [320] detected the the ν3 fundamental of 13C3 and 13C12C12C and the ν2 + ν3− ν2 hot band of
13C3 around 5 µm by tunable diode laser spectroscopy in a hollow-cathode discharge. In their 2013
study on the ν1 + ν3 transition of 12C3 Krieg et al. [322] were also able to detect this transition for
the 13C12C12C and 12C13C12C isotopologues, providing the first spectroscopic information for the
latter species. Finally, following an extensive study of the 4051 Å electronic transition, Haddad et
al. [323] quoted for the first time the ground state rotational constants for all six 12C and 13C
isotopologues.
Earlier ab initio studies and experimental analysis suggested that the C3 PES might show a small
barrier to linearity [327]. Even more, Matsumura et al. [313] concluded from an analysis of the
ν3 fundamental spectrum that this barrier increases when the antisymmetric stretching vibration
is excited. This was based on the observation that the rotational parameter Bv increases relative
to the ground state parameter when the antisymmetric stretching vibration is excited. These ob-
servations motivated further theoretical investigations of C3. In 1992 Jensen and coworkers [25]
published a study of the C3 ground state PES. This PES is based on CASSCF calculations with a
basis set that comprises 102 cGTOs. The rovibrational term energies were subsequently calculated
using the Morse oscillator rigid bender internal dynamics (MORBID) Hamiltonian [328]. For the
three singly excited vibrational states term energies (in cm−1) of 1191.9 (ν1), 70.2 (ν2) and 2007.3
(ν3) were calculated. Compared to experiment they deviate by −34.7, 6.8 and −32.7 cm−1, re-
spectively. Two years later Botschwina and coworkers [26] published an extensive theoretical study
of C3 based on CCSD(T) coupled cluster calculations and a basis set of approximately quadruple-
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zeta quality. The errors in the fundamental transition frequencies amount to −5.7 (ν1), 0.9 (ν2)
and 0.6 (ν3) obtained from DVR calculations [220]. However, the very good agreement in ν2 and
ν3 is due to a fortuitous error compensation in the electronic structure calculations. Both these
theoretical studies [25, 26] and the experimental work by Northrup [27] conclusively showed that
C3 has a linear equilibrium structure. The strong coupling between the stretching and the bending
vibrational motions in C3 which is responsible for the observed uncommon spectral features was
clearly demonstrated by theory and experiment alike. Because of this unusual PES, perturba-
tional methods even when employing an accurate PES were not able to reproduce experimental
spectroscopic parameters with the same level of accuracy as seen for other molecules. Ahmed et
al. [324] published a PES that employs MRCI+Q calculations with a VTZ basis set. The ab ini-
tio results are rather poor with differences in the fundamentals amounting to as much as −60.4,
−27.3 and −44.2 cm−1 for ν1, ν2 and ν3, respectively. These deficiencies were partly remedied by
fitting the potential to experimental data reducing the above errors to −5.2, −2.9 and −2.0 cm−1,
respectively. A thorough theoretical study of C3 was also performed by Rocha and Varandas [84].
They constructed a global C3 PES within the double many-body expansion framework taking
into account Jahn-Teller and pseudo-Jahn-Teller interactions occuring in the vicinity of equilateral
triangular geometries. The PES is based on ic-MRCI calculations with a full valence CASSCF ref-
erence and employ the AVTZ basis set. Although this PES correctly describes the overall topology
of the electronic ground state of C3, the agreement of the calculated rovibrational term energies is
rather poor. For the 53 calculated levels a RMS deviation of 50.4 cm−1 was obtained. While the
agreement for the pure bending states is quite good, the description of the stretching vibrations
is less accurate. The calculated term energies of the first excited symmetric and antisymmetric
stretching vibrational states differ from the experimental values by as much as 63.2 and 53.9 cm−1,
respectively. One should note, however, that the latter quantities were not the main focus of that
work.
Clearly the rovibrational spectrum of C3 is dominated by anharmonic effects. Therefore, a theoret-
ical spectroscopic treatment of C3 will require both an accurate PES and an accurate treatment of
the rovibrational problem. Section 3.2.2 summarizes the ab initio methods employed to construct
such a PES for C3 and Section 3.2.3 presents the results of extensive electronic structure and vari-
ational rovibrational calculations on C3. Special attention on the interplay between experiment
and theory will also be given, exemplified by a combined study of the C3 spectrum in the region
of the ν1 + ν3 combination band (Section 3.2.4).

3.2.2 Composite ansatz

For C3 slightly different basis sets for some of the contributions employed for HCN were used
enabled by the higher symmetry of the system (D∞h(M)). The detailed components of the PEF
are:

• Explicitly correlated fc-CCSD(T*)-F12b/AV5Z (abbreviated F12bs) calculations provide the
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basic contribtution to the PEF. The AO basis set is combined with the sets AV5Z/OPTRI,
AV5Z/JKFIT and AV5Z/MP2FIT [281–283] to provide the CABS and DF set. A geminal β
of 1.5 Å−1 is employed as recommended by Peterson and coworkers for AV5Z basis sets [124].

• The CV of the six inner shell electrons with themselves and the 12 valence electrons is
obtained with a ACV5Z basis set (543 cGTOs) from conventional CCSD(T) as outlined in
Section 2.2.5.

• SR effects are obtained from DKH2 CCSD(T) calculations using AVQZ-DK and AVQZ basis
sets.

• Three HC contributions are included in the C3 PEF:

– The perturbative quadruples and full triples correction from the (Q)-(T) contribution
is calculated as the CCSDT(Q) – CCSD(T) energy difference using a VQZ basis set

– The tendency of CCSDT(Q) to overestimate the full CCSDTQ correlation energy [73]
is corrected by the Q-(Q) contribution using a VTZ(spd) basis set (without f -functions
on carbon).

– Effects due to pentuple excitations are obtained from the P-Q contribution and a VDZ
basis set.

The absence of light hydrogen atoms in the C3 molecule justifies the neglect of the DBOC correc-
tion. Nevertheless, from all electron CCSD/CVQZ calculations on 12C3 DBOC corrections to the
equilibrium bond length Re of +0.00004 Å and the harmonic vibrational frequencies of -0.03, -0.16,
and -0.08 cm−1 for ω1, ω2 and ω3, respectively, are calculated. This is reasonably well below the
desired accuracy. Further non-adiabatic corrections (beyond DBOC) should have an even lower
impact and, therefore, none of these corrections are included.
An EDMF is also calculated at the fc-CCSD(T*)-F12b/AV5Z level of theory with the finite field
approach outlined in Section 2.2.4 using a field strength in atomic units of ±0.0003 and local trans-
formation to the Eckart system. No high-level corrections to the EDMF (cf. Section 3.1.2) were
included. The experimental determination of absolute rovibrational intensities requires a precise
knowledge of the concentration of absorbing molecules over the optical path length (compare also
Equation (2.94)). In fact, uncertainties in the partial pressure of the absorber are one of the main
sources of error in gas phase intensity measurements. Given the highly reactive nature of C3 as
well as the rather harsh conditions for producing this transient molecule, it is virtually impossible
to determine reliable estimate of p in Equation (2.94) and thus absolute line intensities. However,
the relative intensities of rovibrational transitions can be rather reliably obtained for such systems.
Therefore, in order to give a sound qualitative picture of the intensities from ab initio calculations,
the chosen level of theory appears to be sufficient.
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3.2.3 Construction of an accurate PES for C3

Electronic structure calculations

The basis set dependence of the equilibrium bond length Re and the two harmonic stretching
vibrational wavenumbers ω1 and ω3 is investigated in Table 3.10 Either standard or explicitly
correlated frozen core coupled cluster theory up to non-iterative triples has been employed in the
calculations. As observed in previous studies [173,287,329] very similar results are obtained by fc-
CCSD(T)/AV5Z and fc-CCSD(T)-F12b/AVTZ. Likewise, only very small differences are observed
between fc-CCSD(T)/AV7Z and fc-CCSD(T*)-F12b/AV5Z. Comparing the different values in the
table, the results for both Re and the harmonic stretching vibrational frequencies ωi appear to
be well converged for the fc-CCSD(T) series, so that no further extrapolation beyond AV7Z is
required. Without the use of triples scaling, a slight underestimation of the bond length can be
observed, resulting in an overestimation of ωs. Although the effect is rather small, better agreement
between large-basis set calculations and explicitly correlated CCSD(T) is obtained with use of the
(T*) correction [173,287,329,330].
Figure 3.10 displays the dependence of the C3 bending potential on the AVnZ basis set size. Basis
sets of at least AV5Z quality are needed in order to converge the bending potential in the range
0◦ ≤ θ ≤ 90◦. The inset of Figure 3.10 depicts the low θ region of the potential energy curves up
to 25◦. With increasing basis set size the potential becomes flatter leading to tiny values of the
harmonic bending vibrational frequency (e.g. ω2 = 13.1 cm−1 for AV7Z).
The significance of smaller contributions to Re and ωi (i = 1, 3) of C3 is quoted in Table 3.11
which includes the F12bs results (corresponding to fc-CCSD(T*)-F12b/AV5Z) in the first line.
As expected, CV effects have the largest influence of all the contributions. The calculated CV

Table 3.10: Frozen core CCSD(T) and CCSD(T)-F12b equilibrium bond length (in Å) and har-
monic stretching vibratonal frequencies (in cm−1) of C3. Reproduced from Ref. [28] with the
permission of AIP Publishing.

Method Basis Re ω1 ω3

CCSD(T) AVTZ 1.30174 1191.5 2090.8
AVQZ 1.29816 1200.6 2097.2
AV5Z 1.29733 1202.0 2099.5
AV6Z 1.29705 1202.6 2100.3
AV7Z 1.29687 1203.0 2100.9

CCSD(T)-F12ba AVTZ 1.29785 1201.5 2098.9
AVQZ 1.29673 1203.6 2101.8
AV5Z 1.29666 1203.5 2101.8

CCSD(T*)-F12ba AV5Z 1.29681 1202.7 2100.4

a Geminal exponents (in Å−1) chosen are 1.2, 1.4
and 1.5 for AVTZ, AVQZ and AV5Z, respectively.
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◦

Figure 3.10: Basis set dependence of the C3 bending potential. Reproduced from Ref. [28] with
the permission of AIP Publishing.

Table 3.11: Influence of smaller contributions on the equilibrium bond length (in Å) and harmonic
stretching vibrational fequencies (in cm−1) of C3. Reproduced from Ref. [28] with the permission
of AIP Publishing.

Contribution Re ω1 ω3

F12bs 1.29681 1202.7 2100.4
+ CV −0.00349 +7.4 +10.8
+ SR −0.00019 −0.3 −0.3
+ (Q)-(T) +0.00103 −4.6 −15.1
+ Q-(Q) −0.00029 +2.6 +4.4
+ P-Q +0.00010 −0.7 +1.1

composite 1.29397 1206.7 2101.3
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corrections ∆Re = −0.00349 Å and ∆ω1 = +7.4 cm−1, respectively, are in reasonable agreement
with the values reported by Mladenović et al. [26]. They obtained ∆Re = −0.00319 Å and
∆ω1 = +6.0 cm−1 from all electron CCSD(T) calculations compared to standard fc-CCSD(T)
with a basis set of approximately ACVQZ quality. Scalar relativity leads only to slight, but
still significant reductions in both Re and ωi. Among the contributions of higher-order electron
correlation beyond CCSD(T), the difference (Q)-(T) plays the dominant role. The difference Q-(Q)
corrects for the tendency of CCSDT(Q) to overestimate the effect of quadruples excitations. [73]
The pentuples are still important when one is aiming at accuracies of 1 · 10−4 Å in Re and 1 cm−1

in the ωi.
Figure 3.11 gives an impression of the dependence of the smaller contributions (CV, SR, (Q)-(T),
Q-(Q) and P-Q) on the internal coordinates. In the upper part of Figure 3.11 the variation of the
various contributions with ∆R (single CC stretch) is displayed. The above discussed effects of the
contributions on Re and the ωi can be clearly observed.
The angular dependence of the smaller contributions is shown in the lower part of Figure 3.11.
A blow up of the low θ region up to 50◦ is given as an inset. All contributions are rather small
for low values of θ. However, considering the very flat bending potential they are still significant.
The dominant contributions in this region are the CV and the Q-(Q) contribution. There is a
drastic increase in the effects of quadruple excitations accounted for by the (Q)-(T) contribution.
A maximum of 237 cm−1 in the relative (Q)-(T) contribution is observed for θ ≈ 98◦. Such an
increase in the effect of higher-order excitations indicates a higher multi-reference character. As
has been shown by Rocha and Varandas, [84] there is a conical intersection in the region of θ = 120◦

on the C3 ground state PES.
All contributions (denoted by the superscript α) are analytically represented as polynomials of the
form

V (α) − V (α)
ref =

∑
ijk

C
(α)
ijk∆Ri1∆Rj2θ

k (k: even) . (3.10)

In Equation (3.10), ∆Ri (i = 1, 2) are the single CC bond stretching coordinates, θ measures the
deviation from linearity and C

(α)
ijk are the coefficients determined through least-squares fits. All

calculations employ the coordinate ranges −0.15 Å ≤ ∆Ri ≤ 0.20 Å and 0◦ ≤ θ ≤ 100◦. The
recommended equilibrium bond length of Mladenović et al. [26] Re = 1.2945 Å is used as reference
structure in the ab initio calculations.
Due to the strong stretch-bend coupling in C3, the construction of the PES has to be carried out
in a series of steps. The least-squares fits of the basic contribution include terms up to powers of 8
and 14 in ∆Ri and θ, respectively in the diagonal PES terms. Stretch-stretch coupling terms C(α)

ij0

were considered up to sextic order. For the stretch-bend coupling terms the following scheme was
employed: for every even power in θ (up to eight) all single stretch-bend and stretch-stretch-bend
coupling terms of type C(α)

ijk with i+ j ≤ 4 were included. Fewer terms are needed to properly fit
the smaller contributions. In order to obtain numerically stable results all contributions are put
together from individual least-squares fits of the diagonal, stretch-stretch coupling and stretch-bend
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◦

Figure 3.11: Dependence of the smaller contributions on the internal coordinates ∆R and θ.
Reproduced from Ref. [28] with the permission of AIP Publishing.
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coupling part. The standard deviation of the fit of the combined basic contribution is 0.05 cm−1,
which is better by a factor of about 40 compared the most accurate PES in the literature reported
by Mladenović et al. [26]. The parameters of the various relative contributions V (α) − V (α)

ref are
supplied in Appendix B (Table B.1 and B.2). After summation of the individual contributions the
resulting polynomial is transformed to its true minimum. The final composite PES thus obtained
is given in Table B.3.
The EDMF of C3 is constructed from calculations at 372 symmetry-unique nuclear configurations.
Least-squares fits of the parallel (µ‖) and perpendicular (µ⊥) component of the electric dipole
moment vector according to

µ‖ =
∑
ijk

D
‖
ijkS̃

i
1S̃

j
3θ
k j: odd, k: even (3.11)

and

µ⊥ =
∑
ijk

D⊥ijkS̃
i
1S̃

j
3θ
k j: even, k: odd (3.12)

have been carried out. In Equation (3.11) and (3.12) the coordinates S̃1 and S̃3 are defined as
S̃1 = 2−1/2(∆R1 + ∆R2) and S̃3 = 2−1/2(∆R1 − ∆R2). Dipole moments are evaluated in the
coordinate ranges −0.1Å ≤ S̃1 ≤ 0.2 Å, 0.00Å ≤ S̃3 ≤ 0.15 Å and 0◦ ≤ θ ≤ 60◦. The coefficients
of the fits are provided in Table B.4.

Spectroscopic parameters

The PES and EDMF in Table B.3 and Table B.4 are employed in variational calculations of
low-lying rovibrational states and electric transition dipole moments. Following the study on the
"floppy" CNC+ cation [167] a two step approach is employed. First, the Rvib3 program developed
by Carter and Handy [203,204] is used to calculate the term energies. By optimizing the basis set
and the size of the final rovibrational Hamiltonian matrix a convergence of all rovibrational states
of interest to within 10−4 cm−1 is achieved. Similar to the calculations on CNC+ [167] the conver-
gence of the rotational levels depends strongly on the size of the final rovibrational Hamiltonian
matrix.
In a second step rovibrational wave functions are calculated using Sebald’s C8vpro program [210].
Very large basis sets of harmonic oscillator/rigid rotor product functions (about 4000 per K = `)
are required to obtain converged results for C3. This due to the curvilinear nature of the bending
vibration which is difficult to describe using rectilinear normal modes and a large number of basis
functions that couple the bending and symmetric stretching vibration are needed. Additionally
one-dimensional contractions of the bending basis functions are employed. Convergence of the
wavefunction is monitored by comparing the calculated term energies for the states of interest
with those of the Rvib3 program. Agreement to within some hundreths of a wavenumber or better
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is observed. Squared transition dipole moments µ2
if between rovibrational states are evaluated

following the procedure outlined in Section 2.3.4 up to a rotational quantum number of J = 75.
The spectroscopic parameters obtained from fitting the term energies calculated with both pro-
grams show only very small differences. In contrast, much larger differences are obtained when
changing the range of J values considered in the fits (see below). This is a common phenomenon
when even low lying vibrational states are influenced by avoided crossings or highly anharmonic
vibrations are present. This issue has been studied in considerable detail for example in [293].
Therefore, only term energies calculated with Rvib3 in the range J = 0 to 30 are considered for
the determination of spectroscopic parameters according to Equation (2.92) and Equation (2.93).
Table 3.12 summarizes the calculated vibrational term energies and rotational constants as well as
the quartic and sextic centrifugal distortion constants obtained for 12C3. Where available experi-
mental values are given for comparison. However, due to differences in the fitting procedures [314]
care has to be taken when comparing some of the parameters.
For the vibrational ground state, the calculated rotational constants are B0 = 0.43063 cm−1,
D0 = 1.537 · 10−6 cm−1 and H0 = 1.77 · 10−10 cm−1. The relative deviations from the experimen-
tal values amount to no more than 0.01%, 4% and 33% for B0, D0 and H0,respectively. Notice
that the sextic centrifugal distortion parameter Hv is strongly dependent on the number of rovi-
brational states included in the fit. For example, a fit of the rovibrational ground state in the
range 0 ≤ J ≤ 20 yields H0 = 2.11 ·10−10 cm−1. However, the above mentioned level of agreement
is an obvious improvement relative to previous theoretical works. Mladenović et al. [26] obtained
B0 = 0.42767 cm−1 (0.67 %) and Jensen et al. [25] calculated a B0 of 0.4191 cm−1 (2.64 %) with
the relative deviation given in parentheses.
For the first excited state of the bending vibration (0, 11, 0) a vibrational term energy of 63.26 cm−1

is calculated only 0.16 cm−1 lower compared to experiment [322]. The Bv is overestimated by
0.007 %. Centrifugal distortion parameterss in the (0, 11, 0) state differ from experiment [322] by
0.6 % and 2 % for Dv and Hv, respectively. The deviation from experiment [314] of the vibrational
term energies Gv of the ` = 0 and ` = 2 components of the first overtone of the bending vibration
(0, 2`, 0) are calculated to be 0.04 and −0.18 cm−1, respectively. Agreement between the present
and the experimental rotational parameters Bv, Dv and Hv is again excellent.
Calculate vibrational term energies for the two first excited stretching vibrational states are 1224.57
and 2039.60 cm−1 for ν1 and ν3, respectively. The corresponding absolute deviations from experi-
ment are uniformly below 1 cm−1. Calculated rotational constants for the two states show relative
deviations of no more than 0.03 %. While the centrifugal distortion constants of the (0, 11, 0) and
(1, 00, 0) states are in good agreement with experiment, the situation is slightly different for the
first excited antisymmetric stretching vibrational state, again especially in case of Hv. Compared
to experiment the calculations underestimate Hv by about 25 %. This is due to two reasons:
the experimental fit includes terms up to Mv (tenth order in J) and covers the range P(40) to
R(52) [314]. Refitting the line positions reported by Kawaguchi et al. [314] in the range P(30) to
R(30) yields Bv = 0.43571 cm−1, Dv = 4.262 · 10−6 cm−1 and Hv = 7.57 · 10−10 cm−1 now in
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Table 3.12: Calculated and experimentala spectroscopic parameters (in cm−1) of 12C3. Reproduced
from Ref. [28] with the permission of AIP Publishing.

State Gv Bv 106Dv 1010Hv

(0, 00, 0) 1705.06b 0.43063(0.43057) 1.537(1.471) 1.77(1.33)
(0, 11, 0) 63.26(63.42) 0.44243(0.44240) 2.349(2.336) 2.49(2.44)
(0, 20, 0) 132.84(132.80) 0.45155(0.45163) 2.349(2.57) 2.00
(0, 22, 0) 132.89(133.07) 0.45306(0.45304) 2.483(2.623) 2.79
(0, 31, 0) 207.66 0.46044 2.755 2.13
(0, 33, 0) 208.36 0.46284 3.256 2.72
(1, 00, 0) 1224.57(1224.49) 0.42501(0.42495) 0.719(0.52) 0.45
(1, 11, 0) 1315.19 0.43417 1.194 0.84
(1, 20, 0) 1404.87 0.44282 1.577 1.09
(1, 22, 0) 1408.79 0.44309 1.622 1.16
(1, 31, 0) 1498.29 0.45116 1.939 1.61
(1, 33, 0) 1505.51 0.45175 1.976 1.09
(0, 00, 1) 2039.60(2040.02) 0.43559(0.43570) 4.165(4.312) 7.42(9.84)
(0, 11, 1) 2078.27(2078.50) 0.44965(0.44992) 4.809(4.919) 6.67(7.38)
(0, 22, 1) 2127.56(2127.41) 0.46117(0.46157) 4.983(4.850) 5.29(1.40)
(0, 20, 1) 2134.40(2133.89) 0.45573(0.45607) 3.044(0.97) 1.50(-1.11)
(0, 33, 1) 2185.34 0.47136 4.935 2.92
(0, 31, 1) 2193.74 0.46521 3.786 4.74
(1, 00, 1) 3259.79(3260.13) 0.42424(0.42420) 1.210(1.076) 1.24
(1, 11, 1) 3330.17(3330.51) 0.43536(0.43542) 1.966(1.955) 1.98
(1, 20, 1) 3403.02 0.44487 2.331 2.28
(1, 22, 1) 3405.12 0.44574 2.550 2.51
(1, 31, 1) 3480.79 0.45392 2.654 2.58
(1, 33, 1) 3484.63 0.45550 3.024 2.81
a Experimental values from Ref. 322, 314 and 321 in parentheses.
b Zero-point energy (ZPE).

better agreement with the calculated values.
The vibrational term energy of the (0, 11, 1) combination state is obtained as Gv = 2078.27 cm−1

only 0.23 cm−1 lower than the experimental value [322] of Gv = 2078.50 cm−1. For the (1, 00, 1)

state the absolute difference in Gv compared to experiment [322] is 0.34 cm−1. Furthermore, the
rotational parameters Bv, Dv and Hv are in good agreement with the experimental values. Fi-
nally, for the stretch-bend combination state (0, 2`, 1) the calculated Gv values are 2133.89 and
2127.41 cm−1 for ` = 0 and ` = 2, respectively. As has been observed experimentally, [314] the
energetic ordering of the ` = 0 and ` = 2 components is inverted compared to the (0, 2`, 0) manifold
of states. Similar accuracy as discussed above is expected for the remaining states in Table 3.12.
Calculated l-type doubling parameters for 12C3 are given in Table 3.13. Excellent agreement with
the available experimental values for qv and qvJ is observed. The qv parameters deviate by no more
than 2 × 10−5 cm−1 from experiment. For the quartic qvJ the mean relative deviation is about
10%. The sextic qvJJ values agree less favourably with experiment with a rather large deviation
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Table 3.13: Calculated and experimentala `-type doubling parameters (in cm−1) of 12C3. Repro-
duced from Ref. [28] with the permission of AIP Publishing.

State 103qv 106qvJ 1010qvJJ

(0, 1, 0) 5.70(5.69) −0.952(−0.89) 1.52(0.6)
(0, 2, 0) 5.41 −0.743 0.94
(0, 3, 0) 5.19 −0.600 0.53
(1, 1, 0) 4.16 −0.430 0.50
(1, 2, 0) 4.20 −0.420 0.47
(1, 3, 0) 4.22 −0.396 0.45
(0, 1, 1) 8.20(8.25) −2.100(−2.00) 4.09(2.77)
(0, 2, 1) 6.69 −0.851 2.12
(0, 3, 1) 6.27 −0.786 0.17
(1, 1, 1) 5.19(5.18) −0.790(−0.66) 1.10
(1, 2, 1) 5.09 −0.690 0.73
(1, 3, 1) 4.99 −0.617 0.48
a Experimental values from [322] in parentheses.

of ca. 150 % in case of the (0, 11, 0) state. However, this parameter is also very sensitive to the
number of states used in the fit. Furthermore, the experimental value of 0.60× 10−10 cm−1 has a
rather large error of 0.23× 10−10 cm−1 or 38%.
It is well known that the PES of the electronic ground state of C3 exhibits exceptionally strong
stretch-bend couplings [25–27]. For ab initio methods it is a great challenge to precisely describe
these couplings. A sensitive measure for these couplings is the `-dependent splitting of vibrational
states which according to VPT2 equals to x```2 (cf. Equation (2.49)). Although the usage of x`` is
prohibitive for a floppy molecule like C3, Equation (2.57) indicates that the `-dependent splitting
strongly depends on stretch-bend coupling terms in the PES. The present composite PEF yields
a value of x`` = −2.12 cm−1. From experiment the splitting between some rovibrational levels
(v1, v

`=0,2
2 , 0) with J = 2 are known (cf. Ref. [25] and references therein). In Table 3.14 these

splittings are compared with the present calculations and values obtained from the ab initio PES
by Mladenović et al. [26].
The absolute value of the splittings decreases with increasing v2. For states with v1 = v3 = 0

experimental differences become smaller from v2 = 2 to v2 = 16 by 1.01 cm−1. While with the
present composite PEF a reduction of 1.34 cm−1 is obtained, from the potential of Ref. [26] one
yields a decrease of only 0.32 cm−1. In case of states with v1 = 1 one finds over the range of given
v2 values a decrease of 1.29 cm−1 in experiment. Calculations with the composite PEF yield a
difference of 1.00 cm−1 and from the PES of Mladenović et al. [26] a slightly smaller value (0.83
cm−1) is obtained. No experimental values are known for states with v3 = 1. However, the two
ab initio potentials again show large differences in the calculated splittings and the present results
are expected to lie closer to forthcoming experimental results.
The calculated and experimental spectroscopic parameters of the vibrational ground state and the
singly excited vibrational states in the five 13C substituted C3 isotopologues are given in Table 3.15.
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Table 3.14: Splitting between rovibrational levels T(v1,v02 ,v3)(J) and T(v1,v22 ,v3)(J) (in cm−1) for
J = 2. Reproduced from Ref. [28] with the permission of AIP Publishing.

v2 T(v1,v02 ,v3)(J) - T(v1,v22 ,v3)(J)

Exp.a this work Ref. 26

v1 = 0 v3 = 0
2 1.56 1.75 0.85
4 1.25 1.26 0.67
6 1.05 0.97 0.67
8 0.86 0.77 0.65
10 0.73 0.63 0.61
12 0.68 0.49 0.58
14 0.61 0.46 0.55
16 0.55 0.41 0.53

v1 = 1 v3 = 0
2 −2.26 −2.14 −2.16
4 −1.74 −1.63 −2.06
6 −1.23 −1.33 −1.68
8 −0.97 −1.14 −1.33

v1 = 0 v3 = 1
2 8.65 5.96
4 4.89 3.70
6 3.28 2.72
8 2.38 2.17

a Ref. 316 and 318.

Available experimental values are given in parentheses. Notice that the experimental values given
for the (0, 11, 0) state of 13C13C12C were originally assigned to 13C12C12C. Based on the present
results, this assignment turned out to be wrong which has also been confirmed experimentally by
the work of Breier et al. [295]. Again, excellent agreement with available experimental date is
observed and the calculated parameters for yet unobserved states should provide reliable predic-
tions. The `-type doubling parameters for the first excited bending state in 13C substituted C3

isotopologues are quoted in Table 3.16. Experimental information for the bending fundamental of
the 13C isotopologues has been made available by the work of Breier et al. [295].

The equilibrium bond length of C3

The near perfect agreement between calculated and experimental rotational constants for all the
isotopologues considered suggests that the ab initio equilibrium bond length is correct to within
1·10−4 Å. Hinkle et al. [301] determined an experimental equilibrium bond length of Re = 1.2968 Å
largely different from our best ab initio value. However, their analysis was based on the less reliable
rotational constants available at that time. Using the accurate B0 values reported by Breier et
al. [295] given in Table 3.17 and the differences ∆B0 = Be − B0 from the variational calculations
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Table 3.15: Calculated and experimentala spectroscopic parameters (in cm−1) of 13C substituted
C3 isotopologues. Reproduced from Ref. [28] with the permission of AIP Publishing.
Isotopologue State Gv Bv 106Dv 1010Hv

13C12C12C (0, 00, 0) 1686.44b 0.41376(0.41373) 1.416(1.367) 1.59(1.14)
(0, 11, 0) 62.98(63.14) 0.42509(0.42508) 2.170(2.055) 2.24
(1, 00, 0) 1201.43 0.40837 0.655 0.40
(0, 00, 1) 2026.79(2027.21) 0.41861(0.41874) 3.930(4.164) 7.34(10.44)

13C13C12C (0, 00, 0) 1656.70b 0.41350(0.41345) 1.408[1.459] 1.60
(0, 11, 0) 60.56(60.75) 0.42452(0.42449) 2.146[2.305] 2.24(1.50)
(1, 00, 0) 1198.78 0.40834 0.673 0.43
(0, 00, 1) 1975.37 0.41786 3.728 6.81

12C13C12C (0, 00, 0) 1675.54b 0.43037(0.43031) 1.527(1.487) 1.79
(0, 11, 0) 60.86(61.05) 0.44184(0.44181) 2.322(2.726) 2.49
(1, 00, 0) 1221.99 0.42499 0.738 0.48
(0, 00, 1) 1988.53 0.43482 3.965 7.05

13C12C13C (0, 00, 0) 1667.74b 0.39733(0.39730) 1.303[1.404] 1.42
(0, 11, 0) 62.71(62.86) 0.40820(0.40819) 2.003(2.510) 2.00
(1, 00, 0) 1178.74 0.39215 0.595 0.34
(0, 00, 1) 2013.33 0.40204 3.620 6.46

13C13C13C (0, 00, 0) 1637.79b 0.39710(0.39706) 1.296(1.281) 1.43(1.05)
(0, 11, 0) 60.26(60.45) 0.40767(0.40764) 1.981(2.011) 2.00(2.88)
(1, 00, 0) 1176.10 0.39213 0.612 0.37
(0, 00, 1) 1961.48(1961.95) 0.40135(0.40138) 3.450(3.470) 5.88(6.69)

a Experimental values from Ref. [320] and [295] are given in parentheses. Values in square brackets
have been fixed in the experimental determination.
bZero-point energy (ZPE).

Table 3.16: Calculated and experimentala `-type doubling parameters (in cm−1) for the first excited
bending state of 13C substituted C3 isotopologues. Reproduced from Ref. [28] with the permission
of AIP Publishing.

Isotopologue 103qv 106qvJ 1010qvJJ
13C12C12C 5.29(5.29) −0.852(−1.024) 1.31
12C13C12C 5.91(5.89) −0.987 1.56
13C13C12C 5.48(5.78) −0.888(−0.726) 1.37
13C12C13C 4.91(4.90) −0.764 1.15
13C13C13C 5.09(5.08) −0.797(−0.746) 1.20

a Experimental values from Breier et al. 295 in parentheses.
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Table 3.17: Calculated and experimental rotational parameters (in cm−1) of C3 isotopologues.
Isotopologue Be

a B0
a ∆B0

a B0
b Be

c

12-12-12 0.419505 0.430633 −0.011128 0.430587 0.419459
13-12-12 0.403109 0.413763 −0.010654 0.413725 0.403071
12-13-12 0.419505 0.430366 −0.010861 0.430309 0.419448
13-13-12 0.403098 0.413503 −0.010405 0.413454 0.403049
13-12-13 0.387135 0.397335 −0.010200 0.397301 0.387101
13-13-13 0.387135 0.397099 −0.009964 0.397059 0.387095

a Calculated values from the composite PEF corresponding to a bond length
of Re = 1.29397 Å.
b Experimental results from [295].
c Mixed experimental/theoretical result yielding a fitted equilibrium bond
length of Re = 1.29404(10) Å.

(also given in Table 3.17) a mixed theoretical/experimental Re for these isotopologues can be ob-
tained in a well established approach [331, 332]. From the results of Table 3.17 the equilibrium
bond length of C3 is determined to be 1.29404(10) Å with a conservative error estimate in units of
the last significant digit given in parentheses. This is corresponds to a slight update compared to
the original determination in [28] by using improved B0 values of all 6 12C and 13C isotopologues.
From an experimental point of view ∆B0 can only be determined in an indirect way by appropri-
ately summing up the differences between rotational parameters in the three fundamental vibra-
tional states and the vibrational ground state provided that an analysis within the framework of
VPT2 is aimed at. Such an analysis for the main isotopologue of C3 using the computed Bv values
yields ∆B0 = −0.011467 cm−1 and a mixed experimental/theoretical equilibrium bond length of
1.29459 Å. Similarly, if one calculates ∆B0 for 12C3 from the available experimental rotational
constants [321,322] ∆B0 = −0.011582 cm−1 is obtained and a fully experimental Re of 1.29476 Å.
Both results for Re are longer by 0.00052 Å and 0.00069 Å, respectively, compared to the value
determined from Table 3.17 in a more direct way by subtracting the variationally calculated value
for B0 from Be. The preceding discussion indicates that the bond length of 12C3 determined with
the aid of formulas according to 2nd order perturbation theory will be longer than the present
Born-Oppenheimer bond length by about 0.0006 Å (see also [311] for a detailed discussion of this
issue).
In their work on the ν2 band Breier et al. [295] attempted to determine a bond length only from the
experimental high-resolution THz data. Two assumptions were made: the rotational parameter Bv
follows the VPT2 expansion according to Equation (2.65) and the contribution from the stretching
vibrations α1 and α3 cancel each other. The approximate equilibrium rotational constant is then
given by B(0e0) = B0 + α2. From the six experimental B(0e0) values an approximate equilibrium
bond length R(0e0) = 1.29511(5) Å is obtained [295] which is larger by as much as 0.00107 Å
compared to the present mixed experimental/theoretical value. It should be noted that the quoted
uncertainty in R(0e0) is only the statistical error obtained from the spread of R(0e0) values for the
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isotopologues and does not account for the error introduced through the approximations. The
latter thus require some clarification.
From the rotational parameters for the (1, 00, 0) and (0, 00, 1) states the sum α1 +α3 within VPT2
can be calculated according to α1 + α3 = 2B0 − B(1,00,0) − B(0,00,1) . Using the experimental Bv
values given in Table 3.12 one yields α1 + α3 = 0.00049 cm−1 from theoretical and experimental
results, respectively. This translates to a contribution of -0.00035 Å to the equilibrium bond length.
Neglect of the stretching vibrations thus yields bond lengths which are too large by 0.00035 Å. The
error due to the VPT2 based approach can be deduced by comparing ∆B(0e0) = B(0e0)−B0 = α2

with the theoretical value for ∆B0 obtained variationally in this work. For 12C3 one obtains
from α2 = −0.011828 cm−1 [295] and ∆B0 = −0.011128 cm−1 (cf. Table 3.17) a difference of
∆B0 −∆B(0e0 = +0.0007 cm−1 which corresponds to an error of +0.00107 Å exactly the differ-
ence between the mixed experimental/theoretical result and B(0e0). After subtracting the error
due to the neglect of α1 and α3 the error of the VPT2 ansatz in B(0e0) is obtained with a value of
+0.00072 Å. This matches the error deduced above which is introduced by assuming the validity
of VPT2.

Rovibrational intensities

Using the analytical PES and EDMF given in Table B.3 and Table B.4 squared transition dipole mo-
ments between rovibrational states were calculated using C8vpro. By employing Equation (2.100)
and Equation (2.101), pure vibrational transition dipole moments µvv′ are obtained from least-
squares fits. Results for selected transitions in the main isotopologue of C3 are quoted in Table 3.18
together with calculated band intensities Av according to Equation (3.7). The two infrared active
fundamental transitions as well as the two lowest combination bands together with associated hot
bands originating from the first excited bending state are quoted in Table 3.18.
For the two fundamental transitions ν2 and ν3 values of 0.4320 and 0.3445 D, respectively, are calcu-
lated for |µvv′ |. The corresponding band intensities are calculated to be 0.90 and 60.99 cm−2/atm
for ν2 and ν3, respectively. Both IR active combination bands ν1 +ν2 and ν1 +ν3 show |µvv′ | values
that are lower by an order of magnitude compared to the fundamental transitions. However, due
to the higher transition frequencies the band intensities are comparable to that of the ν2 transition.
Based on the present results the ν1 + ν2 transition should also be observable albeit rather weak.
The intensity pattern of hot bands that involve a final state with v2 = 2 show signs of a strong
Coriolis interaction. For example, in the case of the (0, 2`, 0) ← (0, 11, 0) transitions, Figure 3.12

depicts the variation of
√

µ2
if

FHL
with m. While the f component of the (0, 22, 0)← (0, 11, 0) transi-

tion may be accurately represented by Equation (2.101), the corresponding e component and the
(0, 20, 0)← (0, 11, 0) band clearly can not. As has been shown before, the expectation value of the
vibrational angular momentum quantum number 〈|`|〉 provides a good indicator for the strength
of Coriolis interactions. For the e components of the (0, 2l, 0) manifold 〈|`|〉 changes strongly with
J as can be seen from the inset of Figure 3.12. At J = 40 a common value of 1.00 is calculated for
(0, 20, 0) and (0, 22, 0)e. This strong Coriolis resonance has already been observed experimentally
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Table 3.18: Calculated vibrational term differences (in cm−1), transition dipole moments (in D)
and band intensities (in km/mol) for selected transitions of 12C3. Reproduced from Ref. [28] with
the permission of AIP Publishing.

Transition ∆G |µvv′ | Av

(0, 11, 0)← (0, 00, 0) 63.2 0.4320 0.90
(0, 20, 0)← (0, 11, 0) 69.6 0.3680 0.55
(0, 22, 0)← (0, 11, 0)e 69.6 0.4118 1.27
(0, 22, 0)← (0, 11, 0)f 69.6 0.4010

(1, 11, 0)← (0, 00, 0) 1315.2 0.0197 0.12
(1, 20, 0)← (0, 11, 0) 1341.6 0.0234 0.12
(1, 22, 0)← (0, 11, 0)e 1345.5 0.0205 0.19
(1, 22, 0)← (0, 11, 0)f 1345.5 0.0201

(0, 00, 1)← (0, 00, 0) 2039.6 0.3445 60.99
(0, 11, 1)← (0, 11, 0)e 2015.0 0.3306 79.97
(0, 11, 1)← (0, 11, 0)f 2015.0 0.3315

(1, 00, 1)← (0, 00, 0) 3259.8 0.0431 1.52
(1, 11, 1)← (0, 11, 0)e 3266.9 0.0419 2.07
(1, 11, 1)← (0, 11, 0)f 3266.9 0.0419

(0, 20, 0)← (0, 11, 0)

(0, 22, 0)f ← (0, 11, 0)f

(0, 22, 0)e← (0, 11, 0)e

〈| l |〉

Figure 3.12: Variation of the expression
√

µ2
if

FHL
with m for 12C3. The inset shows the variation of

〈|`|〉 with J for the interacting bending states (0, 20, 0) and (0, 22, 0). Reproduced from Ref. [294]
with the permission of AIP Publishing.
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by Herzberg and coworkers 50 years ago [310].

3.2.4 Highly excited stretching states in C3

A complete understanding of the C3 PES requires that highly excited vibrational states, partic-
ularly those involving multiple vibrational modes, need to be studied. This requires high resolu-
tion IR measurements. In experimental measurements, C3 molecules are commonly formed either
through 1) photolysis of diacetylene, allene or furan, [313,314,318,321] 2) laser ablation of a carbon
rod, [312,322] or 3) a discharge through acetylene [323,333]. To date, these methods have allowed
measurements of vibrational states in the electronic ground state up to v2 = 34, v1 = 3, and v3 = 1.

Experimental details

In the experimental study conducted by the Linnartz group, the vibrationally excited C3 molecules
are generated in a pulsed supersonically expanding planar plasma [334], using a precursor gas
mixture of 0.5% propyne in 1:1 helium:argon mixture with a 5 bar backing pressure. The gas is
expanded into the vacuum chamber through a slit discharge nozzle with an applied high voltage
of ∼ −550 V at the exit. In the past it was shown that such plasma sources are useful to study
vibrationally highly excited species without losing much of the rotational cooling properties in the
expansion typical for this type of adiabatic expansions [335,336]. The experimental setup has been
described in detail in Ref. [337], and a similar setup working in the optical has been used to study
the Ã1Πu ← X̃1Σ+

g (0, 00, 0) - (0, 00, 0) band [306,323].
The high resolution infrared spectrum of the plasma products is recorded using continuous wave
cavity ring-down spectroscopy (cw-CRDS), using a commercial cw-OPO that covers ∼ 3110 -
4200 cm−1. The IR laser path intersects the expansion roughly 1 cm downstream from the nozzle
body. The resulting spectrum is recorded in a series of ∼ 1.2 cm−1 parts that partially overlap
to guarantee that spectra can be directly compared. In total some 170 cm−1 are covered. The
Doppler width of the recorded transitions is about 0.004 cm−1. At the same time the spectrum is
recorded, the laser frequency is measured using a wavemeter, with a resulting maximum frequency
uncertainty of ± 0.002 cm−1. The frequency accuracy is independently checked by comparing the
recorded absorption lines of trace water in the chamber against the corresponding Hitran values
[338], and typical frequency accuracies of the recorded transitions are better than 0.001 cm−1.

Theoretical calculations

In order to provide the same level of convergence for higher lying excited rovibrational states, the
basis set in the Rvib3 calculations is increased compared to the previous calculations presented
above. The primitive basis set for the stretching vibrations comprised 200 symmetrized basis
functions constructed from 20 functions for both the symmetric and antisymmetric stretching
vibration. For the bending motion 42 basis functions per `-block are employed. Combining 47
contractions for stretching vibrations per symmetry species with 33 contracted functions for the
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bending vibration leads to Hamiltonian matrices of dimension 1551 for every value of `. The size
of the final Hamiltonian matrix for each symmetry species is adjusted appropriately in order to
provide converged results.
Since all bands observed in the cw-CRDS spectrum are Σ - Σ bands, the vibrational angular
momentum quantum number ` in the term energy formula Equation (2.91) equals to 0. Higher-
order terms beyondDv in the expansion Equation (2.91) are neglected due to the strong dependence
of such terms on employed J values as has been shown above and this issue will also be addressed
in more detail in the following. The transition frequencies between rovibrational states (v′, J ′) and
(v′′, J ′′) can be calculated according to

ν = Tv′(J
′)− Tv′′(J ′′) = ν0 + (Bv′ +Bv′′)m+ [(Bv′ −Bv′′)− (Dv′ −Dv′′)]m

2

− 2(Dv′ +Dv′′)m
3 − (Dv′ −Dv′′)m

4 , (3.13)

where ν0 = Gv′ −Gv′′ is the vibrational band origin (VBO).
While experimentally determined transition frequencies can only be fitted according to Equa-
tion (3.13) the variationally calculated term energies of an individual vibrational state can also be
fitted according to Equation (2.91). The results of the latter procedure are termed Calc. I where
ro-vibrational states up to Jmax = 20 were employed. Fits of the variationally calculated transition
energies according to Equation (3.13) employing the same transitions as in the experimental fits
are termed Calc. II.

Band assignment and spectroscopic parameters

The high resolution C3 plasma spectrum is recorded between 3110 - 3341 cm−1. Additional lines
are observed which are due to other propyne plasma products, as well as C3H4 precursor material.
Fifteen bands are observed between 3110 - 3280 cm−1, with a rotational spacing of ∼ 1.6 cm−1,
which is consistent with a 1:0 intensity alternation of ro-vibrational transitions originating from
stretching vibrations of C3; no ro-vibrational bands are observed that can be assigned to transitions
involving the bending states. An overview of the C3 spectra is given in Fig. 3.13; the observed
intensities cannot be directly compared, as these depend, for example, on small variations in the
experimental plasma conditions, but general trends can be seen. For example, the C3 band inten-
sities decrease quickly with decreasing frequency. Assuming a Boltzmann population distribution,
this suggests that the lower frequency bands involve transitions starting from higher quanta vibra-
tional states relative to bands at higher frequencies.
The effective experimental band origin and rotational parameters for the lower and upper state of
each band are determined using the spectral fitting software Pgopher [339]. Preliminary spectral
analysis of the fifteen bands is performed by fitting the observed transitions to simulated spectra
assuming Bv ∼ 0.4 cm−1 and using transition intensities near the band origins to determine the
state symmetry (either Σ+

g or Σ+
u ). For most of the bands, transitions could be assigned up to

J” = 20 (see supplementary material). From the rotational profiles, the rotational temperature
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Figure 3.13: The experimental (in black) spectrum of the propyne plasma products showing a
series of bands, which are assigned to vibrationally excited C3 (simulated bands from Pgopher,
inverted). The strong bands at frequencies higher than 3275 cm−1 are assigned to propyne. The
bands are assigned to the transitions: A) (1, 00, 1) - (0, 00, 0), B) (2, 00, 1) - (1, 00, 0), C) (1, 00, 2)
- (0, 00, 1), D) (3, 00, 1) - (2, 00, 0), E) (2, 00, 2) - (1, 00, 1), F) (4, 00, 1) - (3, 00, 0), G) (3, 00, 2)
- (2, 00, 1), H) (2, 00, 3) - (1, 00, 2), I) (5, 00, 1) - (4, 00, 0), J) (4, 00, 2) - (3, 00, 1), K) (3, 00, 3) -
(2, 00, 2), L) (6, 00, 1) - (5, 00, 0), M) (5, 00, 2) - (4, 00, 1), N) (7, 00, 1) - (6, 00, 0), and O) (4, 00, 3) -
(3, 00, 2). Reproduced from Ref. [29] with the permission of AIP Publishing.

of C3 is determined to be about 55 K. This is slightly higher than typical for the plasma source
in use [340, 341]. A least-squares fit analysis based on Equation (3.13) is then used to determine
tentative vibrational band origins (VBOs) and lower and upper rotational parameters, Bv′′ and
Bv′ , respectively. The bands are labeled A - O in descending value of their VBO.
Initial fits of the bands showed that some of them share vibrational states, i.e., the determined Bv′
for one band is the same as the Bv′′ for another band. Based on the rotational parameters and
state symmetry, twelve of the bands can be grouped into five vibrational series involving common
states: A - E - K; B - G - O; C - H; D - J; and F - M. The other bands do not share common
states. VBOs of each band in a series, regardless of the series, are separated by about 60 cm−1,
suggesting that in all five series the lower state of each band is increasing by the same number of
quanta, which based on frequency region, is likely ∆v1 = 1 and ∆v3 = 1. This is also clearly visible
from Fig. 3.13. In addition, seven of the bands: A, B, D, F, I, L, and N are evenly separated by
about 23 cm−1, suggesting that they are also part of a different progression that increases by ∆v1

= 1 in the lower state.
In order to confirm the initial assignment the experimental line positions are compared to the
results of the variational calculations. Figure 3.14 depicts the difference between experimental and
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Figure 3.14: Comparison of experimental and variationally calculated line positions, ∆ν, for the
fifteen observed combination bands of C3 showing the accuracy in predicting the vibrational energy.
The J dependent accuracy is highlighted in the plot of ∆ν - ∆ν0. Identical colors refer to bands in
one series with the circle, square, and triangle markers referring to the first, second, and third band
in the series, respectively. The larger deviations seen for bands L and M are due to a difference
in the determined location of state crossings, as discussed in the text. Reproduced from Ref. [29]
with the permission of AIP Publishing.
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Table 3.19: Band origins (in cm−1) and assignments (v1, v
`
2, v3) of the observed C3 combination

bands. Reproduced from Ref. [29] with the permission of AIP Publishing.
ν0

Label Assignment Expt.a Calc. II

A (1, 00, 1) - (0, 00, 0) 3260.1265(4) 3259.79
B (2, 00, 1) - (1, 00, 0) 3235.0964(4) 3234.77
C (1, 00, 2) - (0, 00, 1) 3228.3796(4) 3228.46
D (3, 00, 1) - (2, 00, 0) 3211.2653(4) 3210.92
E (2, 00, 2) - (1, 00, 1) 3200.5361(4) 3200.66
F (4, 00, 1) - (3, 00, 0) 3187.8158(4) 3187.37
G (3, 00, 2) - (2, 00, 1) 3175.9066(4) 3176.05
H (2, 00, 3) - (1, 00, 2) 3167.7016(4) 3168.46
I (5, 00, 1) - (4, 00, 0) 3164.4665(4) 3163.82
J (4, 00, 2) - (3, 00, 1) 3152.1415(4) 3152.22
K (3, 00, 3) - (2, 00, 2) 3141.1229(4) 3142.03
L (6, 00, 1) - (5, 00, 0) 3141.0896(4) 3140.11
M (5, 00, 2) - (4, 00, 1) 3128.7178(4) 3128.66
N (7, 00, 1) - (6, 00, 0) 3117.6110(5) 3116.18
O (4, 00, 3) - (3, 00, 2) 3116.7759(5) 3117.74

a Experimental uncertainties are given in parentheses
in units of the last significant digits.

variationally calculated line positions, ∆ν. For all bands the differences are smaller than 1 cm−1,
except for band N which has a difference of 1.5 cm−1. This agreement confirms the vibrational as-
signment of the observed bands. Additionally, the lower panel of Figure 3.14 shows the differences
when the error in the VBOs is subtracted, ∆ν - ∆ν0. The errors are decreased by more than an
order of magnitude, unambiguously confirming the rotational assignment of the individual lines
within the bands. For two of the observed bands, bands L and M, deviations from the expected
independence of the errors from the rotational quantum number are observed. This indicates a
local anharmonic resonance, which will be discussed in detail below.
Systematic rotational analysis of the observed bands is carried out by fitting the experimental tran-
sitions with linked states simultaneously according to Equation (3.13). The resulting experimental
VBOs of the fifteen bands are given in Table 3.19 together with the corresponding variational
results (Calc. II). The experimental and theoretical (Calc. I and Calc. II) rotational parameters
are summarized in Table 3.20. Typically the results of the latter two fits are observed to deviate
by less than 1% in the quartic centrifugal distortion parameter.
The strongest transitions in the experimental spectrum associated with C3 (band A), belong to the
known combination band (1, 00, 1) - (0, 00, 0) with a band origin at 3260.13 cm−1 [322]. The ground
state rotational parameter is determined to be 0.430569(3) cm−1, which is in agreement with the lit-
erature values [312,314,322,333] and the quartic centrifugal distortion parameter, Dv, is 1.399(12)
× 10−6 cm−1, smaller by about 5% compared to the value by Krieg et al. [322] of 1.471(13) ×
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Table 3.20: Effective experimental and theoretical spectroscopic parameters of C3 (in cm−1).
Reproduced from Ref. [29] with the permission of AIP Publishing.

Bv 106Dv
State Expt.a Calc. I Calc. II Expt.a Calc. I Calc. II

(0, 00, 0) 0.430569(3) 0.43061 0.43062 1.399(12) 1.437 1.450
(1, 00, 1) 0.424211(8) 0.42423 0.42423 1.110(27) 1.143 1.144
(2, 00, 2) 0.418208(9) 0.41824 0.41823 0.894(21) 0.946 0.936
(3, 00, 3) 0.412448(8) 0.41252 0.41251 0.737(18) 0.812 0.806

(1, 00, 0) 0.424997(5) 0.42501 0.42501 0.704(16) 0.693 0.708
(2, 00, 1) 0.419489(5) 0.41950 0.41950 0.610(14) 0.613 0.614
(3, 00, 2) 0.414065(8) 0.41410 0.41412 0.530(28) 0.550 0.607
(4, 00, 3) 0.408807(14) 0.40880 0.40880 0.565(48) 0.499 0.520

(0, 00, 1) 0.435664(8) 0.43554 0.43556 3.890(10) 3.763 3.825
(1, 00, 2) 0.427040(6) 0.42690 0.42690 2.749(17) 2.691 2.696
(2, 00, 3) 0.419519(7) 0.41943 0.41643 2.035(17) 1.998 1.987

(2, 00, 0) 0.421603(6) 0.42164 0.42164 0.441(14) 0.462 0.461
(3, 00, 1) 0.416385(4) 0.41641 0.41642 0.416(9) 0.438 0.439
(4, 00, 2) 0.411212(6) 0.41123 0.41124 0.392(14) 0.406 0.410

(3, 00, 0) 0.419074(8) 0.41907 0.41908 0.467(21) 0.372 0.395
(4, 00, 1) 0.413969(6) 0.41395 0.41396 0.439(14) 0.355 0.372
(5, 00, 2) 0.408958(11) 0.40870 0.40876 0.529(33) −0.195 0.023

(4, 00, 0) 0.416862(6) 0.41686 0.41687 0.345(14) 0.324 0.328
(5, 00, 1) 0.411807(6) 0.41180 0.41180 0.310(12) 0.314 0.314

(5, 00, 0) 0.414818(55) 0.41486 0.41487 0.292 0.316
(6, 00, 1) 0.409740(51) 0.41010 0.41027 1.056 1.797

(6, 00, 0) 0.412989(9) 0.41298 0.41299 0.743(24) 0.276 0.577
(7, 00, 1) 0.408009(8) 0.40795 0.40797 0.699(20) 0.276 0.540
a Experimental uncertainties are given in parentheses in units of the last
significant digits.
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10−6 cm−1. Similarly, the VBO, which in this case is equal to Gv, and (1, 00, 1) state rotational
parameter are determined to be 3260.1265(4) and 0.424211(8) cm−1, respectively, in agreement
with the values determined by Krieg et al. [322] 3260.127048(91) and 0.4241990(25) cm−1, respec-
tively. Dv for the (1, 00, 1) agrees to within 3% with the previous value [322]. Both the ground
and (1, 00, 1) state VBO and Bv agree to within 0.01% with the theoretical values (Tables 3.19
and 3.20). Notice that in the present spectrum and that of Krieg et al. [322] the best fit observed -
calculated (o-c) values suggest a small perturbation around J’ = 9. This slight anharmonic inter-
action in the (1, 00, 1) state is successfully predicted by the present variational calculation, which
is seen by no noticeable deviation in the ∆ν - ∆ν0 plot in Figure 3.14. An analysis of the term
energies and state orderings showed that the most likely state responsible is the (1, 191, 0) state,
which crosses the (1, 00, 1) state between J = 8 and 9. Simultaneous fitting of bands A, E, and
K, gives VBOs for bands E and K of 3200.5361(4) and 3141.1229(4) cm−1, which translate into
upper state term energies of 6460.6640(3) and 9601.7887(5) cm−1, respectively. The assignment is
confirmed by comparing the experimental rotational parameters for the (2, 00, 2) and the (3, 00, 3)

states to the corresponding values obtained variationally (cf. Table 3.19). The Bv values are in
almost perfect agreement, with differences of less than 0.002%. Likewise, agreement of experimen-
tal and theoretical quartic centrifugal distortion, Dv, parameters is good except for the (3, 00, 3)

which might indicate a perturbation.
Based on the VBO and rotational parameter determined from the least-squares fitting, the lower
state of the second strongest band (band B) is assigned to (1, 00, 0). The rotational parameter, Bv,
is determined to be 0.424997(5) cm−1 and agrees with the value of 0.424950(62) cm−1 determined
for the ν1 fundamental from the electronic spectra by Zhang et al. [321] as well as the current
calculations (0.42501 cm−1). A value of 0.704(16) × 10−6 cm−1 is obtained for the (1, 00, 0) state
Dv. This value is within the somewhat larger error bars of Dv determined from the electronic
spectra [321] of 0.52(23) × 10−6 cm−1. Assuming an increase of ∆v1 = 1 and ∆v3 = 1 in the
quantum numbers, the bands in this series: B, G, and O are assigned to the (2, 00, 1) - (1, 00, 0),
(3, 00, 2) - (2, 00, 1) and (4, 00, 3) - (3, 00, 2) combination bands, respectively. Simultaneous fitting
of bands B, G, and O, gives VBOs consistent with those expected for all three bands according to
the variational results in Table 3.19. Furthermore, the experimentally determined and variationally
calculated rotational parameters Bv agree to within 0.002%. However, for the (4, 00, 3) level, both
theoretical fits (Calc. I and Calc. II) predict a Dv value smaller than that for (3, 00, 2), which is
not observed experimentally. This discrepancy is caused by the fact that band O is only observed
up to P(8). While the spectroscopic parameters of the (3, 00, 2) are constrained by transitions
in band G, (4, 00, 3) has no such additional information, and the limited observed transitions for
band O severely skews the experimental fit, resulting in a large uncertainty in the determined Dv

value. This effect can also be observed by comparing the Dv obtained from Calc. I and Calc. II. By
employing the same lines as observed experimentally and fitting bands B, G and O simultaneously
(Calc. II), Dv of (4, 00, 3) increases by about 4% compared to the Calc. I result. A similar but
less pronounced effect is also observed for the Dv of (1, 00, 0), where the Calc. II is larger than
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the Calc. I result almost coinciding with the experimental value, see Table 3.20. As such, the
calculated values (Calc. I) are likely closer to the true value for the (4, 00, 3) state.
Band D starts the next series of bands and is the third band in the large progression. From the
least-squares fit analysis the VBO is determined to be 3211.2653(4) cm−1, which agrees to within
about 0.3 cm−1 with the variational result for the (3, 00, 1) - (2, 00, 0) band (Table 3.19). This
assignment is further confirmed by the agreement of the experimental and theoretical rotational
parameters (Table 3.20). Simultaneous fitting of transitions in band D and band J confirm that
they share a common energy level, (3, 00, 1). Consequently, band J is assigned to the (4, 00, 2) -
(3, 00, 1) combination band. The experimental VBO is 3152.1415(4) cm−1 only 0.08 cm−1 lower
than the value calculated variationally. For both bands D and J the experimental and calculated
rotational Bv parameters differ by no more than 0.01% (Table 3.20).
As with the last series, the F-M series is assumed to start with the lower state of the first band
being a vibrationally excited state of type (v1, 0

0, 0). Based on the comparison of experimental and
theoretical VBO and rotational parameters (Table 3.19 and Table 3.20), band F is assigned to the
(4, 00, 1) - (3, 00, 0) combination band. Simultaneous fitting of bands F and M confirms that they
share an energy level, (4, 00, 1), and band M is assigned to the (5, 00, 2) - (4, 00, 1) combination
band. Band M shows signs of a small local anharmonic resonance likely within the (5, 00, 2) state,
which can be further deduced from the larger deviations in the Dv parameter for the (5, 00, 2)

state. Based on the (o-c) value of the experimental line positions, a perturbation occurs at around
J = 3. According to the variational calculations, the (5, 00, 2) state is expected to be crossed by
the (4, 102, 2) state between J = 6 and 7, and by the (4, 100, 2) state between J = 8 and 9. The
mismatch in the position of the crossing results in the observed down-up-down deviation seen in
the ∆ν - ∆ν0 plot in Figure 3.14. The state density near 9900 cm−1 is extremely high, there are
about 6 states for J = 6 and 8 states for J = 8 within ± 10 cm−1 of the (5, 00, 2) state. Therefore,
the influence of other nearby states might be non-negligible. However, inspection of expansion
coefficients of the rovibrational wavefunction makes the two (4, 10`, 2) states the most likely ones
that cause the local anharmonic resonances.
The bands I, L, and N do not share a state with any other observed band, but they are part of
the larger (v1, 0

0, 0) progression. Based on their VBOs and relative intensities in the progression,
the three bands are assigned to the (5, 00, 1) - (4, 00, 0), (6, 00, 1) - (5, 00, 0) and (7, 00, 1) - (6, 00, 0)

bands, respectively. The experimental VBOs of 3164.4665(4), 3141.0896(4) and 3117.6110(5) for
bands I, L and N, respectively, agree to within 0.65, 0.98 and 1.43 cm−1 with the variational VBOs
(Table 3.19). The experimental Bv values for each band show differences of 0.0004% to 0.09%
compared to the values obtained in the variational calculations, confirming the assignment. As
seen with band O, the disagreement between the experimental and theoretical Dv values for band
N is a result of the limited observation of P-branch transitions. Unlike any of the other observed
bands, band L is heavily perturbed, with a strong perturbation in the form of an avoided crossing
seen in the (o-c) values at J ′ = 13 and 15. In fact, for the J ′ = 15 transitions, the best fit o-c
values are about -0.04 cm−1, almost two orders of magnitude larger than the average residuals for
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all other C3 transitions. Because the perturbation occurs at a higher J”, no Dv parameter can
reliably be determined from our experimental fit. Indeed, an avoided crossing is predicted by the
variational calculations for the (6, 00, 1) state. The perturbing (4, 31, 2) state lies at a frequency
lower than the (6, 00, 1) state for J ≤ 18, and crosses to a higher frequency between J = 18 and 19.
As discussed for the (5, 00, 2) state, the down-up deviation seen in the ∆ν - ∆ν0 plot in Figure 3.14
for band L is due to a disagreement in the position of the crossing. Furthermore, the interaction
between the (6, 00, 1) and (4, 31, 2) states is much stronger than that predicted for the (5, 00, 2)

state, which is seen in the larger magnitude of the deviations in the ∆ν - ∆ν0 plot in Figure 3.14.
The last of the vibrational series, comprised of bands C and H, is unconnected to the other se-
ries. Based on the least-squares fit of band C, the lower state is assigned to (0, 00, 1). The
rotational parameter, Bv, is determined to be 0.435664(8) cm−1 to be compared with the value of
0.4356969(56) cm−1 obtained by Krieg and coworkers [322]. For the quartic centrifugal distortion
parameter Dv a value of 3.890(10) · 10−6 cm−1 is obtained, which is lower by 11 % compared to
previous studies [322]. These discrepancies can be explained by the different truncations of the
J(J + 1) expansion of the rotational energy employed in this study (up to Dv) and previously
(up to Mv) [322] as well as different J levels observed in both experiments. However, the strong
increase in Dv by factor of about 3 compared to the vibrational ground state is consistent with an
excited state of the antisymmetric stretching vibration. Therefore, band C is assigned the (1, 00, 2)

- (0, 00, 1) transition. The assignment is also confirmed by comparing experimental and theoreti-
cal lower and upper state rotational parameters which agree to with 0.03 % and 3 % for Bv and
Dv, respectively. Simultaneous fitting of bands C and H confirms a shared state, (1, 00, 2). As
such, band H is assigned to the (2, 00, 3) - (1, 00, 2) combination band. The corresponding VBO of
3167.7016(4) cm−1 agrees to within 0.76 cm−1 with the Calc. II value (Table 3.19). Both the upper
and lower state rotational parameters, Bv, agree with the present variational results. In fact, the
differences do not exceed 0.03% for the Bv and 2% for the centrifugal distortion parameter Dv.

Discussion

Fifteen combination bands of vibrationally excited gas-phase C3 have been measured at high res-
olution; fourteen of which are reported for the first time. Fig 3.15 presents an energy level scheme
of the detected vibrational states. Previously observed transitions are represented by dashed ar-
rows. All term energies include the variationally calculated zero-point energy of 1705.06 cm−1.
VBOs of the fifteen observed bands as well as rotational and centrifugal distortion parameters
for all twenty-three involved states have been determined. The present variational ro-vibrational
calculations of the stretching modes give remarkable agreement between experimental values and
theoretical estimates; the typical accuracy of the rotational parameters is a few 0.001 %. The
experimental results offer a significant extension of the available data set for the C3 molecule, since
they extend the observed number of quanta in both v1 and v3.
Given the excellent agreement between the experimental and theoretical spectroscopic parameters
a closer look at the trends observed for said parameters appears promising. Furthermore, the
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results can also be discussed with respect to a VPT2 treatment. Therefore, using finite differ-
ences the PES (Table B.3) is transformed to a QFF in normal coordinates given in Table 3.21 and
various spectroscopic parameters calculated from the QFF within VPT2 are given in Table 3.22.
The normal coordinate force constants reflect the highly anharmonic nature of the C3 molecule.
For example, the diagonal quartic bending force constant k2222 is calculated to be 724.835 cm−1,
which is larger by a factor of about 17 compared to the harmonic bending frequency of ω2 =
42.773 cm−1. The strong coupling between the symmetric stretching and the bending vibration

Figure 3.15: Energy level scheme of observed stretching states in C3, including the variationally
calculated zero-point energy. For the series of bands originating from the (1, 00, 0) and (0, 00, 1)
states the lowest level is placed at the experimentally known term energy. [313,321] In case of bands
D, F, I, L and N, the lower state term energy corresponds to the Gv of the present calculations:
2435.8, 3637.1, 4830.0, 6015.1, and 7192.9 cm−1, respectively. The latter values are attributed
a conservative error estimate of 3 cm−1. Reproduced from Ref. [29] with the permission of AIP
Publishing.

Table 3.21: Parameters (in cm−1) of the quartic force fielda in dimensionless normal coordinates
for C3. Reproduced from Ref. [29] with the permission of AIP Publishing.

Parameterb Value Parameterb Value

ω1 1206.698 k1111 1.717
ω2 42.773 k1122 −177.462
ω3 2101.276 k1133 17.789
k111 −41.975 k2222 724.835
k122 1315.426 k2233 −294.533
k133 −211.964 k3333 5.131
a The equilibrium bond length is Re = 1.29397 Å.
b The cubic kijk and quartic kijkl force field parameters
are defined according to Nielsen [184].
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Table 3.22: VPT2 spectroscopic parameters (in cm−1) for C3.
Parameter Value Parameter Value

E0 4.26 Be 0.41950
x11 −2.90 α1 0.00143
x22 9.98 α2 −0.02000
x33 −10.08 α3 0.00338
x12 61.98 ∆B0 −0.01760
x13 −15.98 106De 0.203
x23 −42.85 1013He 0.35
x`` −2.12 103qe

2 8.242
ZPE 1713.32 106qJ2 −3.858

is apparent from the value of the cubic coupling constant k122 = 1315.426 cm−1, which is even
larger than the harmonic frequency of the symmetric stretching vibration (ω1 = 1206.698 cm−1).
These large third and fourth order force constants clearly show that a perturbational treatment
of any order for the vibration-rotation problem in C3 is problematic. This can also be observed
when comparing the rotational parameters, e.g. De, He and qe

2 in Table 3.22 to the variational
and experimental results for D0 and H0 (vibrational ground state) and qv in the (0, 11, 0) state
presented above.
In Fig. 3.16, the differences ∆Bv = Bv − B0 for selected vibrational states of C3 are depicted,
where B0 corresponds to the rotational parameter Bv of the vibrational ground state. Near perfect
agreement of the experimental and theoretical results is observed, except for the perturbed states
(5, 00, 2) and (6, 00, 1). In the case of a well behaved semi-rigid molecule this difference can be
written within VPT2 as ∆Bv = −∑i αi · vi. Hence, ∆Bv is a linear function of the quantum
numbers vi, and in general one observes only small deviations from linearity for higher values of
vi as a result of higher order perturbation effects. In C3 strong deviations from linearity can be
observed for low values of v1 while for higher values of v1 a near linear dependency is found (see
left panel of Figure 3.16). In fact, a linear fit of the (v1, 0, 0) series from v1 = 3 to 6 results in
an effective α1 of 0.0020 cm−1 for both the experimental and theoretical ∆Bv values. However,
employing the standard procedure of determining an effective α1 as the difference of Bv between
the vibrational ground and (1, 00, 0) state results in 0.0056 cm−1 from experimental and variational
results. Finally, α1 calculated within VPT2 using the present QFF is 0.0014 cm−1. The latter
value is close:nr to the results from the linear range than α1 calculated from Bv in the (0, 00, 0)

and (1, 00, 0) state. This behaviour will be explained below.
In the right panel of Figure 3.16 the variation of ∆Bv with v3 is depicted. Again, a strong nonlinear
dependency on v3 can be seen. Here, even the sign of the slope changes when an excitation in v1 is
added. From the experimental and variationally calculated (4, 00, v3) ∆Bv series (v3 = 0 to 3), an
effective α3 of 0.0027 cm−1 is obtained. Again, this value is intermediate between the VPT2 result
of α3 = 0.0034 cm−1 and the α3 values of -0.0051 and -0.0050 cm−1 (experimental and variational
result, respectively) obtained by considering only the (0, 00, 0) and (0, 00, 1) states. Both findings
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Figure 3.16: Left panel: variation of Bv with increasing stretching quantum numbers v1 for different
series of fixed quantum numbers v3, and right panel: variation of Bv with increasing stretching
quantum numbers v3 for different series of fixed quantum numbers v1. Reproduced from Ref. [29]
with the permission of AIP Publishing.

can be explained by the fact that the bending part of the PES becomes more stiff upon excitation
of the symmetric stretching vibration. From certain values of v1 on a linear dependency of Bv with
respect to the vi can be observed which is characteristic for semi-rigid molecules.
The dependence of Bv on the stretching quantum numbers v1 and v3 can be understood by con-
sidering the vibrational wavefunctions. In order to quantify the relation between the vibrational
wavefunctions and the rotational parameters, we have calculated the integrated density of the
vibrational wavefunction as a function of the bond angle according to:

Þv(t) =

t∫
q2=0

q2dq2

∞∫
q1=−∞

dq1

∞∫
q3=−∞

dq3Ψ∗v(q1, q3, q2)Ψv(q1, q3, q2) . (3.14)

In Equation (3.14) Ψv is the normalized vibrational wavefunction of the vibrational state under
consideration obtained variationally with the C8vpro program [210]. Integration over the complete
configuration space of vibrational coordinates yields a value of 1. If one treats the upper limit t of
the integration over q2 as a parameter it is possible to calculate the dependency of the integrated
density on the deviation of the bond angle from linearity, θ. The value of q2 = t can be connected
to θ by

θ = 2 arctan

(
γ2q2(m

− 1
2

1 l1x,2 −m−
1
2

2 l2x,2)

Re

)
. (3.15)
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Figure 3.17: Integrated densities of vibrational wavefunctions as a function of the deviation from
linearity θ for three series of C3 states: top) (v1, 0

0, 0), middle) (v1, 0
0, 1), and bottom) (v1, 0

0, 2),
using the (0, 11, 0) and (0, 20, 0) states as reference. Reproduced from Ref. [29] with the permission
of AIP Publishing.
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Here, γ2 is the scaling parameter that defines the dimensionless normal coordinate (cf. Equa-
tion (4.3) and Equation (4.4)) and lIα,j are appropriate L -matrix elements. Thus, Þv(t) gives a
qualitative impression how the probability density accumulates as a function of the bond angle.
The larger the angle where Þv(t) reaches the region of the asymptotic value of 1 the greater is the
bent character of the state under consideration. In Fig. 3.17 Þv(t) is depicted for fifteen states
investigated experimentally in this work and for a further four states, namely (0, 11, 0), (0, 20, 0),
(0, 20, 2) and (0, 00, 2), for a better understanding. In a well behaved semi-rigid molecule, like CO2,
Þv(t) for a stretching vibrational state reaches a value close to the asymptote quite early (θ ≈ 15◦),
and nearly independent of the combination of stretching vibrational quantum numbers. A value
of θ > 0 is always to be expected because of the zero point motion of the molecule. In contrast, in
C3 one finds a strong dependence on the stretching vibrational quantum numbers.
In the upper panel of Figure 3.17 the vibrational ground state clearly exhibits the most bent char-
acter among the pure symmetric stretching states. In the middle panel one can observe that the
fundamental antisymmetric stretching state (0, 00, 1) reaches the asymptotic value as late as the
fundamental bending state. Consequently Bv of the (0, 00, 1) state is larger than the rotational
parameter in the vibrational ground state. Figure 3.17 also suggests that the state (1, 00, 2) collects
its density at larger angles than (1, 00, 1). Indeed, the state (1, 00, 2) is a further example where
the rotational parameter Bv becomes larger upon excitation of one quanta in the antisymmetric
stretching vibration. In the lower panel of Figure 3.17 it can be seen that the first overtone of
the antisymmetric stretching vibration (0, 00, 2) accumulates most of its density at even larger θ
values than the first overtone of the bending vibration (0, 20, 0). The lower panel of Fig. 3.17 also
suggests that the (0, 20, 2) state accumulates most of its density at smaller angles than the (0, 00, 2)

state, resulting in a smaller rotational parameter for an excited bending state. This is really found
from the variational calculations assuming the rotational pattern of a linear molecule in the range
J = 0 to 10 with Bv of 0.4575 and 0.4565 cm−1 for (0, 00, 2) and (0, 20, 2), respectively.
These observations are in line with the well known fact that C3 exhibits more and more the prop-
erties of a bent molecule with increasing excitation of the antisymmetric stretching vibration. [315]
Therefore, the rotational pattern of stretching vibrational states which show more or less bent char-
acter cannot accurately be described by neither the formulas for a linear molecule (see Eq. 2.91)
nor those of an asymmetric top molecule. Hence, more or less long progressions in J(J + 1) are
necessary to fit the rotational energies with the same accuracy as those states which are not af-
fected by this issue. This has been done in previous experimental work [313, 314, 322] resulting in
slightly different rotational parameters compared to those obtained in the present work. As C3 has
a linear equilibrium structure it is definitely no quasilinear molecule. The quasilinearity parameter
γ0 introduced by [342] equals to -0.91 which corresponds to an almost linear molecule. Given the
growing bent character with increasing excitation of the antisymmetric stretching vibration it is
more obvious to call it a "quasi-bent" molecule. By analogy γ0 = −0.64 is obtained when consid-
ering the (0, 11, 1) and (0, 20, 1) states.
Using the VPT2 expansion of the vibrational term energy given by Equation (2.49) the VBOs
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can be obtained by subtracting the Gv′′ for a lower vibrational state from the Gv′ in the upper
state. For example, the symmetric stretching fundamental frequency ν1 can be calculated as the
difference of the Gv in the (0, 00, 0) and (1, 00, 0) state according to:

G(0,00,0) = E0 +
1

2
ω1 + ω2 +

1

2
ω3 +

1

4
x11 +

1

2
x12 +

1

4
x13 + x22 +

1

2
x23 +

1

4
x33 , (3.16)

G(1,00,0) = E0 +
3

2
ω1 + ω2 +

1

2
ω3 +

9

4
x11 +

3

2
x12 +

3

4
x13 + x22 +

1

2
x23 +

1

4
x33 , (3.17)

ν1 = G(1,00,0) −G(0,00,0) = ω1 + 2x11 + x12 +
1

2
x13 . (3.18)

and the anti-symmetric stretching fundamental frequency ν3 according to

ν3 = ω3 + 2x33 + x23 +
1

2
x13 . (3.19)

By subtracting appropriate VBOs one obtains formulas for the xij . Within the context of the
present study two routes will be shown to obtain values for the anharmonicity parameters x11, x33

and x13.
The first route is termed Method xij → xii since first the offdiagonal parameter x13 is determined
which then is used for obtaining the diagonal x11 and x22. This involves the transitions (1, 00, 1)

- (0, 00, 0) (band A), (2, 00, 1) - (1, 00, 0) (band B) and (1, 00, 2) - (0, 00, 1) (band C) with VBOs
according to:

νA = ω1 + ω3 + 2x11 + x12 + 2x13 + x23 + 2x33 , (3.20)

νB = ω1 + ω3 + 4x11 + x12 + 3x13 + x23 + 2x33 (3.21)

and
νC = ω1 + ω3 + 2x11 + x12 + 3x13 + x23 + 4x33 (3.22)

for band A, B and C, respectively. Then, the first step is calculating x13 via:

x13 = νA − ν1 − ν3 . (3.23)

The difference νB − νA is:
νB − νA = 2x11 + x13 , (3.24)

which can be solved for x11 to yield

x11 =
νB − νA − x13

2
(3.25)

and in a similar manner x33 is obtained according to

x33 =
νC − νA − x13

2
. (3.26)



104 CHAPTER 3. HIGH ACCURACY COMPOSITE POTENTIAL ENERGY FUNCTIONS

Table 3.23: Determination of anharmonicity parameters x11, x13 and x33 from experimental and
theoretical vibrational band origins by two different methods (see text for details). All values are
given in units of cm−1.

xij → xii xii → xij

Parameter Exp. Calc.c Parameter Calc.c

ν1 1224.49a 1224.57 ν1 1224.57
ν3 2040.02b 2039.60 ν3 2039.60
νA 3260.13c 3259.79 2ν1 2435.77
νB 3235.10c 3234.77 2ν3 4032.30
νC 3228.38c 3228.46 νA 3259.79

νE 3200.66

x11 −10.32 −10.32 x11 −6.69
x13 −4.38 −4.38 x13 0.34
x33 −13.68 −13.47 x33 −23.45

a From Ref. [321]
b From Ref. [322]
c This work.

The second route termed Method xii → xij starts by determining x11 and x33 and then determines
x13. This involves the overtones 2νi of the two stretching vibrations, which can be calculated
according to

2ν1 = 2ω1 + 6x11 + 2x12 + x13 (3.27)

and
2ν3 = 2ω3 + 6x33 + 2x23 + x13. (3.28)

The diagonal anharmonicity parameters x11 and x33 are then obtained as

x11 =
2ν1 − 2 · ν1

2
(3.29)

and

x33 =
2ν3 − 2 · ν3

2
, (3.30)

where 2·νi corresponds to twice the VBO of the fundamental transition. The VBO of the (2, 00, 2)

- (1, 00, 1) (band E) transition is:

νE = ω1 + ω3 + 4x11 + x12 + 4x13 + x23 + 4x13 . (3.31)

Hence, the difference νE − νA can be used to determine x13 according to:

x13 =
νE − νA − 2x11 − 2x33

2
. (3.32)
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The results of calculations following the Methods xij → xii and xii → xij as well as the employed
VBOs are summarized in Table 3.23. Since no reliable experimental VBOs are available for 2ν1

and 2ν3, results are based on the present variational calculations only.
The anharmonicity parameters x11, x33 and x13 determined from the experimental VBOs by
Method xij → xii are x11 = −10.32 cm−1, x33 = −13.68 cm−1 and x13 = −4.38 cm−1. Em-
ploying the variational VBOs almost identical values are obtained. However, by combining the
theoretical VBOs for ν1, ν3, 2ν1, 2ν3 as well as bands A and E in Method xii → xij one arrives
at a different set of parameters: x11 = −6.69 cm−1, x33 = −23.45 cm−1 and x13 = 0.34 cm−1. Fi-
nally, the VPT2 result employing the QFF (Table 3.22) is x11 = −2.90 cm−1, x33 = −10.08 cm−1

and x13 = −15.98 cm−1. The strong variation of the anharmonicity parameters with the type of
calculation used to obtain them shows that the underlying assumption of perturbation theory of
any order, i.e. perturbations are small compared to the zeroth order (harmonic) solution, is not
fulfilled for C3, and hence, Equation (2.49) does not apply.





Chapter 4

C8v4: A variational program for tetraatomic
linear molecules using Watsons isomorphic
Hamiltonian

This chapter presents the development of a variational approach to obtain rovibrational term
energies and wave functions for tetraatomic linear molecules. The basic form of the rovibrational
Hamiltonian has been presented in Section 2.3.1. In Section 4.1 the theoretical considerations of
a variational approach specific for tetraatomic linear molecules is presented. First, the employed
basis functions and the subsequent transformation of the Hamiltonian are presented in Section 4.1.1
and 4.1.2, respectively. Details of the potential energy of a tetraatomic linear molecule are given in
Section 4.1.3. Section 4.1.4 analyzes the structure of the Hamiltonian matrix and Section 4.1.5 gives
the necessary discussion of symmetry related to the present approach. The implementation into the
Fortran program C8v4 is described in Section 4.2. Special attention is given to the parallelization
of the code (Section 4.2.6). Finally, Section 4.3 presents proof-of-principle calculations on two
example molecules where results obtained with C8v4 are compared to literature.
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4.1 Theoretical considerations

4.1.1 Variational ansatz and basis functions

The first step in the development of a variational approach is the choice of basis functions to
represent the rovibrational wave functions. The ansatz adopted here is given by

∣∣∣ψ(J)
v

〉
=

J∑
k=−J

Nk∑
i

c
(v,J)
ki |Vi`Jk〉 , (4.1)

where Nk is the number of employed vibrational basis functions in each k-block (cf. Section 4.2.3),
c
(v,J)
ki the coefficients of the linear combination and |Vi`Jk〉 is a product of harmonic oscillator
and symmetric rotor functions:

|Vi`Jk〉 = |Vi`〉 |Jk〉 . (4.2)

In Equation (4.1) and (4.2) Vi is a collective variable for the vibrational quantum numbers Vi =

(v1, v2, v3, v4, v5) and ` = (`4, `5). This choice of basis functions is advantageous since it allows
almost all of the integrals needed for the KEO to be evaluated analytically, as will be discussed
below.

Vibrational basis functions

The vibrational basis function |Vi`〉 is a product of harmonic oscillator functions. The individual
functions are setup with respect to dimensionless normal coordinates qi which are defined using a
scaling factor

γi =

√
~

2πcωi
, (4.3)

where ~ is Planck’s constant divided by 2π, c is the speed of light and ωi is the harmonic vibrational
frequency. Then, the qi and their conjugate momenta p̂i are given by

Qi = γiqi (4.4)

and

P̂i =
1

γi
p̂i . (4.5)

For the stretching vibrations s the basis functions are the eigenfunctions of the one dimensional
harmonic oscillator Hamiltonian

ĥ1D
s =

1

2
ωs
(
p̂2
s + q2

s

)
. (4.6)

They are given by [343]
|vs〉 = Hvs(qs)e

− 1
2 q

2
s . (4.7)
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Table 4.1: Matrix elements of the one dimentional harmonic oscillator

〈vs|qs|vs + 1〉 =
√

vs+1
2 = i 〈vs|p̂s|vs + 1〉

〈vs|qs|vs − 1〉 =
√

vs
2 = −i 〈vs|p̂s|vs − 1〉

〈vs|q2
s |vs + 2〉 = 1

2

√
(vs + 1)(vs + 2) = −〈vs|p̂2

s|vs + 2〉
〈vs|q2

s |vs〉 = vs + 1
2 = 〈vs|p̂2

s|vs〉
〈vs|q2

s |vs − 2〉 = 1
2

√
vs(vs − 1) = −〈vs|p̂2

s|vs − 2〉

〈vs|qsp̂s|vs + 2〉 = − 1
2 i
√

(vs + 1)(vs + 2) = 〈vs|p̂sqs|vs + 2〉
〈vs|qsp̂s|vs〉 = 1

2 i = −〈vs|p̂sqs|vs〉
〈vs|qsp̂s|vs − 2〉 = 1

2 i
√
vs(vs − 1) = 〈vs|p̂sqs|vs − 2〉

In Equation (4.7) Hn(x) is a (normalized) Hermite polynomial of degree n = vs [344]. The use
of such a basis function enables the analytic evaluation of matrix elements when employing the
Watson KEO and all the required one dimensional integrals are taken from [343] and summarized
in Table 4.1.
The bending vibrations in a linear molecule are doubly degenerate with normal coordinates qt1
and qt2. It is convenient to identify the directions 1 and 2 with the cartesian x and y directions
such that qt1 = qtx and qt2 = qty. The vibrational Hamiltonian set up in these coordinates is

ĥ2D,xy
t =

1

2
ωt[(p̂

2
tx + p̂2

ty) + (q2
tx + q2

ty)] (4.8)

with eigenfunctions
|vt〉 = |vtx〉 |vty〉 , (4.9)

where the |vtα〉 are one dimensional harmonic oscillators given in Equation (4.7) and vt = vtx+vty.
The energy eigenvalue associated with such a basis function is

ĥ2D,xy
t |vt〉 = ωt

[(
vtx +

1

2

)
+

(
vtx +

1

2

)]
|vt〉 = ωt(vt + 1) |vt〉 . (4.10)

This choice of basis functions could in principal be used with the Hamiltonian in Equation (2.33).
However, it would involve rather complicated transformations to select the correct functions ac-
cording to Equation (2.43). Therefore, it is more convenient to set up the 2D Hamiltonian in polar
coordinates that already incorporates the symmetry of the bending vibration

ρt = q2
t = q2

tx + q2
ty (4.11)
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Figure 4.1: Representation of the relation between the set of degenerate coordinates (qtx, qtx) and
the polar coordinates (ρt, χt) of a two-dimensional isotropic harmonic oscillator.

and

tan(χt) =
qtx
qty

, (4.12)

which implies

qtx = qt cosχt =
√
ρt cosχt (4.13)

and

qty = qt sinχt =
√
ρt sinχt . (4.14)

The relation between the coordinates (qtx, qty), the radial component ρt and the phase angle χt is
graphically displayed in Figure 4.1. This change of coordinates results in the 2D isotropic harmonic
oscillator Hamiltonian [233]

ĥ2D,iso
t = −1

2
ωt

[
1

qt

∂

∂qt

(
qt

∂

∂qt

)
+

1

q2
t

∂2

∂χ2
t

− q2
t

]
(4.15)

and by making a product ansatz of the form ψ = F (qt)G(χt) the desired basis functions are
obtained as [345]

|v`tt 〉 = |vt`t〉 =

√
1

2π
L|`t|nt (ρt) ρ

|`t|
2
t e−

1
2ρtei`tχt , (4.16)

where the substitution according to Equation (4.11) has been included. In Equation (4.16), the
L
|`t|
nt (ρt) are (normalized) associated Laguerre polynomials [344] with nt = (vt + |`t|)/2. The order
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of the polynomial is given by nt − |`t| = (vt − |`t|)/2. The energy eigenvalue is given by

ĥ2D,iso
t |v`tt 〉 = ωt(vt + 1) |v`tt 〉 . (4.17)

The factor of (2π)−
1
2 in Equation (4.16) originates from normalizing the χt phase factor of the

basis function

|`t〉 =

√
1

2π
ei`tχt , (4.18)

where `t is the vibrational angular momentum quantum number that can take the values `t =

±vt,±(vt − 2),±(vt − 4), . . . ,±1 or 0. Matrix elements of Equation (4.16) will be evaluated with
respect to the ladder-like operators q±t and p̂±t which are defined as

q±t = qtx ± iqty (4.19)

and

p̂±t = p̂tx ± ip̂ty . (4.20)

They have been worked out for example by Shaffer [345], Yamada [346] or in the monograph by
Papoušek and Aliev [186]. Table 4.2 summarizes the necessary matrix elements for the integration
of the KEO. The above transformation (Equation (4.19) and (4.20)) has to be applied accordingly
also to the Hamiltonian in Equation (2.33) which will be presented in Section 4.1.2.

Rotational basis functions

Rigid rotor functions are used as basis functions for the rotation of the molecule. It can be shown
that these functions are given by

|Jkm〉 =

√
2J + 1

8π2
DJ∗
mk(φ, θ, χ′)

=

√
1

2π
SJkm(θ, φ)eikχ′ , (4.21)

where DJ∗
mk(φ, θ, χ′) is a rotation matrix [234]. Matrix elements of the functions Equation (4.21)

are obtained with respect to the angular momentum ladder operators

Π̂
′

± = Π̂
′

x ± iΠ̂
′

y (4.22)

and for the integration of the KEO the following analytic integrals are needed [347]

〈Jk|Π̂′±Π̂
′

∓|Jk〉 =
[
J (J + 1)− k2

]
, (4.23)

〈Jk ∓ 1|Π̂′±|Jk〉 =
√
J (J + 1)− k (k ∓ 1) . (4.24)
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Table 4.2: Matrix elements of the two-dimentional isotropic harmonic oscillator.

〈vt, `t|q±t |vt + 1, `t∓1〉 = ±
√

1
2 (vt ∓ `t)

〈vt, `t|p̂±t |vt + 1, `t∓1〉 = i 〈vt, `t|q±t |vt + 1, `t∓1〉

〈vt, `t|q±t |vt − 1, `t∓1〉 = ∓
√

1
2 (vt ± `t + 2)

〈vt, `t|p̂±t |vt − 1, `t∓1〉 = −i 〈vt, `t|q±t |vt + 1, `t∓1〉
〈vt, `t|q±t q∓t |vt + 2, `t〉 = − 1

2

√
(vt + `t + 2)(vt − `t + 2)

〈vt, `t|p̂±t p̂∓t |vt + 2, `t〉 = −〈vt, `t|q±t q∓t |vt + 2, `t〉
〈vt, `t|q±t q∓t |vt, `t〉 = vt + 1

〈vt, `t|p̂±t p̂∓t |vt, `t〉 = 〈vt, `t|q±t q∓t |vt, `t〉
〈vt, `t|q±t q∓t |vt − 2, `t〉 = − 1

2

√
v2
t − `2t

〈vt, `t|p̂±t p̂∓t |vt − 2, `t〉 = −〈vt, `t|q±t q∓t |vt − 2, `t〉
〈vt, `t|q±t p̂∓t |vt + 2, `t〉 = 1

2

√
(vt + `t + 2)(vt − `t + 2)

〈vt, `t|p̂±t q∓t |vt + 2, `t〉 = 〈vt, `t|q±t q∓t |vt + 2, `t〉
〈vt, `t|q±t p̂∓t |vt, `t〉 = ∓i(`t ∓ 1)

〈vt, `t|p̂±t q∓t |vt, `t〉 = −〈vt, `t|q±t q∓t |vt, `t〉
〈vt, `t|q±t p̂∓t |vt − 2, `t〉 = − 1

2

√
v2
t − `2t

〈vt, `t|p̂±t q∓t |vt − 2, `t〉 = 〈vt, `t|q±t q∓t |vt − 2, `t〉

No term in the Hamiltonian involving the operators Π̂
′

± has matrix element that are off-diagonal
in J and since the basis functions Equation (4.21) are orthonormal J is a good quantum number,
separating the Hamiltonian matrix in independent blocks for each J value.

4.1.2 Transformation of the Hamiltonian

In order to evaluate the necessary integrals efficiently, the coordinates and the individual operators
of the KEO need to be transformed to those defined in Equation (4.19), (4.20) and (4.22). This is
done in a term by term fashion.
For the linear vibrational momentum term T̂P the operators for the degenerate bending vibrations
are straightforward to rewrite by using Equation (4.19) and (4.20) to give

T̂P =
1

2

∑
s

1

γ2
s

p̂2
s +

1

2

∑
t

1

γ2
t

p̂±t p̂∓t , (4.25)
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where the two summations run over stretching (s) and bending vibrations (t).
The first step in rewriting the term T̂π is the definition of the ladder-like operator

π̂± = π̂x ± iπ̂y , (4.26)

which after insertion yields

T̂π =
1

2
µ
(
π̂2
x + π̂2

y

)
=

1

4
µ (π̂+π̂− + π̂−π̂+) . (4.27)

In Equation (4.26) the π̂α have been defined previously in Equation (2.40) and by insertion one
obtains in terms of dimensionless normal coordinates

π̂± =
∑
ij

ζxij
γj
γi
qip̂j ± i

∑
kl

ζykl
γl
γk
qkp̂l . (4.28)

As discussed in Section 2.3.1 the only non-vanishing ζαij for linear molecules are those with {i, j} =

{s, ty} and {i, j} = {s, tx} for α = x and α = y, respectively. Thus, terms in Equation (4.28) can
be grouped according to the summation indices into two cases:

1. (ij, kl) = (sty, stx)

2. (ij, kl) = (tys, txs)

Considering case 1. such a term can be rearranged by use of Equation (2.42) and Equation (4.20)

ζxsty
γt
γs
qsp̂ty ± iζystx

γt
γs
qsp̂tx = ∓iζst

γt
γs
qsp̂
±
t . (4.29)

Analogously case 2. can be rearranged according to

ζxtys
γs
γt
qty p̂s ± iζytxs

γs
γt
qtx p̂s = ±iζst

γs
γt
q±t p̂s , (4.30)

where now Equation (4.19) has been used in the last step. Combining Equation (4.29) and Equa-
tion (4.30) one arrives at the final form of π̂±

π̂± = ∓i
∑
(st)

ζst

(
γt
γs
qsp̂
±
t −

γs
γt
q±t p̂s

)
(4.31)

and the summation runs over all possible stretch-bend pairs (st). The same general result has been
obtained by Suzuki [348] but with the sign exchanged since his formula uses ζts = −ζst. Using
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Equation (4.31) the sum π̂+π̂− + π̂−π̂+ is obtained as

(π̂+π̂− + π̂−π̂+) =∑
(st)

∑
(st)′

ζstζs′t′

[
γtγt′

γsγs′
qsqs′

(
p̂+
t p̂−t′ + p̂−t p̂+

t′

)
− γtγs′

γsγt′
qsp̂s′

(
p̂+
t q
−
t′ + p̂−t q

+
t′

)
− γsγt′

γtγs′
p̂sqs′

(
q+
t p̂−t′ + q−t p̂+

t′

)
+
γsγs′

γtγt′
p̂sp̂s′

(
q+
t q
−
t′ + q−t q

+
t′

)]
. (4.32)

The rotational KEO is rewritten by use of Equation (4.22) which yields

T̂R =
1

2
µ
(

Π̂
′2
x + Π̂

′2
y

)
=

1

2
µΠ̂
′

±Π̂
′

∓ . (4.33)

Finally, the Coriolis term that couples rotation and vibration T̂VR is obtained by employing Equa-
tion (4.31) together with Equation (4.22)

T̂VR = −µ
(

Π̂
′

xπ̂x + Π̂
′

yπ̂y

)
= −1

2
µ
(

Π̂
′

+π̂− + Π̂
′

−π̂+

)
= −1

2
µΠ̂
′

±π̂∓ , (4.34)

where the last equality results from the fact that either Π̂
′

+ or Π̂
′

− will have a non-vanishing matrix
element with the rotational basis functions depending on the value of k in the bra and ket.

4.1.3 The potential energy

The potential energy can be expressed as a Taylor expansion in terms of the dimensionless normal
coordinates

V =
1

2

∑
i

ωiq
2
i +

1

6

∑
ijk

φijkqiqjqk +
1

24

∑
ijkl

φijklqiqjqkql + . . . (4.35)

where φijk and φijkl are cubic and quartic force constants, respectively. The summations in
Equation (4.35) are again over all 3Nat − 5 normal coordinates.
An important aspect of the potential energy in linear molecules with more than three atoms is
the coupling between basis functions of different (`t, `t′). This can be realized by considering for
example the following cubic terms in the potential energy of a tetraatomic linear molecule

1

6
φs4x5xqsq4xq5x +

1

6
φs4y4yqsq4yq5y ,

where due to symmetry φs4x5x = φs4y5y = φs45. This sum can be rewritten by employing Equa-
tion (4.13) and (4.14) as well as introducing the difference of the phase angles ξ = χ5 − χ4

1

6
φs45qsq4q5 cos ξ =

1

6
φs45qsq

±
4 q
∓
5 ,
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where the right-hand side follows from Euler’s formula and Equation (4.19). Forming a matrix
element with a vibrational basis functions |Vi`〉 over the operators occurring in this term yields

〈Vi`|qsq±4 q∓5 |Vj`
′〉 = 〈vsv4`4v5`5|qsq±4 q∓5 |vsv′4`

′

4v
′
5`
′

5〉
∏
s′ 6=s

δvs′v′s′

= 〈vs|qs|v′s〉 〈v4`4|q±4 |v′4`
′

4〉 〈v5`5|q∓5 |v′5`
′

5〉
∏
s′ 6=s

δvs′v′s′ . (4.36)

Such a matrix element will only then be different from zero when the `t differ by ±1. The potential
energy thus can couple basis functions with different (`t, `t′) combinations. Similar terms can be
obtained from quartic potential energy terms, which then have cos 2ξ dependence and therefore
couple basis functions differing in the `t by ±2. By using this finding the potential energy can be
rewritten to yield

V =

nmax∑
n

V (n) cosnξ , (4.37)

where V (n) can then be expressed again as a Taylor expansion (cf. Equation (4.35)) and the
summations now run over the indices s and t. The number n indicates the ∆`t that can be coupled
and the maximum value nmax is determined by half the maximum degree of expansion employed
in the coupling terms of the bending normal coordinates in the original potential Equation (4.35).
Thus, for a so called quartic force field (QFF) which is a common degree of expansion nmax = 2

and basis functions with at max ∆`t = ±2 are coupled through the potential energy. All higher
∆`t couplings due to V vanish for a QFF.
The expansion of V in terms of the qi is advantageous as this would allow the 〈Vi`|V |Vj`

′〉 integrals
to be reduced to sums of products of simple one dimensional integrals, which could be evaluated
analytically. However, in most cases the potential energy is expanded in terms of geometrically
defined curvilinear internal coordinates Ri again as a Taylor expansion

V =
1

2

∑
ij

fij Ri Rj +
1

6

∑
ijk

fijk Ri Rj Rk +
1

24
fijkl Ri Rj Rk Rl + . . . (4.38)

The transformation from normal coordinates to curvilinear internal coordinates is non-linear [233]

Rn =
∑
i

γiL
n
i qi +

1

2

∑
ij

γiγjL
n
ijqiqj +

1

6

∑
ijk

γiγjγkLnijkqiqjqk + . . . , (4.39)

where the Lni , Lnij and Lnijk are elements of the L-tensors [349] and the summations run over
the 3Nat − 5 normal coordinate indices. Cartesian displacement coordinates of nuclear positions
xIα = RIα −Re

Iα, where RIα and Re
Iα are the instantaneous and equilibrium cartesian coordinates

of nucleus I, respectively, are also related to the Rn via a non-linear transformation [233]

Rn =
∑
i

Bni xi +
1

2

∑
ij

Bnijxixj +
1

6

∑
ijk

Bnijkxixjxk + . . . (4.40)



116 CHAPTER 4. THE C8V4 PROGRAM

In Equation (4.40), the summations run over all atoms I and cartesian components α. Inserting the
definition of the Rn according to Equation (4.39) into Equation (4.38) shows that, when employing
an curvilinear internal coordinate potential energy surface the expansion with respect to normal
coordinates is infinite. This has important implications for the evaluation of potential energy
matrix elements which will be discussed in Section 4.2.2 and the structure of the Hamiltonian
matrix (cf. Section 4.1.4).
Hoy, Strey and Mills [349] have shown that it is possible to transform force constants from internal
coordinates to normal coordinates and vice versa by use of only the Lni . The derivative of the
potential energy with respect to the qi (ωi, φijk, . . .) can be related to the derivates with respect
to the Ri (fii, fijk, . . .). For example the cubic force constants ∂3V

∂qi∂qj∂qj
= φijk can be obtained

via [233]

∂3V

∂qi∂qj∂qk
=
∑
lmn

(
∂3V

∂ Rl∂ Rm∂ Rn

)(
∂ Rl
∂qi

∂ Rm
∂qj

∂ Rn
∂qk

)
+
∑
lm

(
∂2V

∂ Rl∂ Rm

)(
∂2 Rl
∂qi∂qj

∂ Rm
∂qk

+
∂2 Rl
∂qi∂qk

∂ Rm
∂qj

+
∂2 Rl
∂qj∂qk

∂ Rm
∂qi

)
+
∑
l

(
∂V

∂ Rl

)(
∂3 Rl

∂qi∂qj∂qk

)
. (4.41)

The order of expansion that can be transformed exactly thus is the same before and after, e.g. a
QFF in internal coordinates determines the QFF in normal coordinates. Such an approach would
allow a PEF to be first transformed to normal coordinates before usage in a variational calculation.
All matrix elements could then be evaluted analytically. Expressions for force constants up to
fourth order (φijkl) have been developed by Hoy, Strey and Mills [349]. Expanding the approach
up to arbitrary order, depending on the expansion of the provided internal coordinate PEF, would
involve complicated transformations to be implemented.
Employing an internal coordinate PEF together with a KEO formulated in normal coordinates
has the consequence that the potential energy matrix elements have to be evaluated numerically.
Then, the potential energy needs to be evaluated at specific grid points of a numerical integration
scheme. The transformation form normal coordinates to cartesian displacement coordinates x is
linear

x = M− 1
2 u = M− 1

2LQ , (4.42)

where M is thr 3Nat×3Nat diagonal matrix of the atomic masses. Therefore, as long as the relation
of the cartesian coordinates RI to the internal coordinates Ris known, any potential formulated
in curvilinear coordinates can be employed in the calculation following the transformation scheme

Q
M−

1
2L−−−−−→ xI

Re
I−−→ RI −→ R. (4.43)
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Internal coordinates for tetraatomic linear molecules

A common set of curvilinear internal coordinates for tetraatomic linear A-B-C-D molecules is

{ Rn} = {∆R1,∆R2,∆R3, θ4, θ5, τ} , (4.44)

where ∆Rs are the bond stretching coordinates, θt the deviations from linearity of the A-B-C and
B-C-D units, respectively, and τ is the dihedral (torsional) angle between the A-B-C and B-C-D
planes. Figure 4.2 shows the definition of the internal coordinates for a displaced tetraatomic linear
molecule. Due to symmetry requirements the sum of exponents occurring in Equation (4.38) for
the bending coordinates θl4θm5 have to be an even number. The internal coordinates are obtained
from the instantaneous cartesian coordinates RI by introducing three bond vectors Rs according
to

R1 = RB −RA , (4.45)

R2 = RC −RB (4.46)

and

R3 = RD −RB . (4.47)

The bond stretching coordinates are then

∆Rs = ‖Rs‖ − ‖Re
s‖ = Rs −Re

s . (4.48)

z

R

R

R

Figure 4.2: Definition of internal coordinates for a tetra atomic linear molecule based on three
bond vectors Rs.
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where Re
s are the bond vectors for the equilibrium cartesian coordinates Re

I . The angles θt are
obtained via vector products of the bond vectors according to

sin(θ4) =
‖R2 ×R1‖
‖R1‖‖R2‖

(4.49)

sin(θ5) =
‖R2 ×R3‖
‖R2‖‖R3‖

(4.50)

Finally, the torsional angle τ is obtained from the normal vectors R4 and R5 of the A-B-C and
B-C-D planes, respectively. The latter are obtained from the vector products

R4 = R1 ×R2 (4.51)

and

R5 = R3 ×R2 (4.52)

and τ is given by

cos(τ) =
R4 ·R5

‖R4‖‖R5‖
. (4.53)

These geometric definitions of the internal coordinates Rare valid for any nuclear configuration
expressed in cartesian coordinates RIa.
Hoy, Strey and Mills [349] have introduced a different set of bending coordinates{

RHSM
t

}
= {θ4x, θ5x, θ4y, θ5y}

defined according to

θ4x = −ex · (R2 ×R1)

‖R1‖‖R2‖
, (4.54)

θ4y =
ey · (R2 ×R1)

‖R1‖‖R2‖
, (4.55)

θ5x = −ex · (R3 ×R2)

‖R1‖‖R2‖
(4.56)

and

θ5y =
ey · (R3 ×R2)

‖R1‖‖R2‖
. (4.57)

where ex and ey are the unit vectors of the molecule fixed reference system in x- and y-direction,
respectively. These coordinates are defined for the linear equilibrium structure of the molecule such
that the bond vectors are Rs = Rsez. Displacements in the HSM bending coordinates corresponds
to displacement of atoms A or D out of the linear geometry. Then the HSM coordinates are the
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projections of R1 and R3 on the xz- and yz-planes

θ4x = sin(θ4) cos(χ4) , (4.58)

θ4y = sin(θ4) sin(χ4) , (4.59)

θ5x = sin(θ5) cos(χ5) (4.60)

and

θ5y = sin(θ5) sin(χ5) . (4.61)

The angles χt are the polar angles of vectors R1 and R3 around the z-axis measured in a positive
sense from the x-axis.
The HSM coordinates can be related to the curvilinear coordinates defined in (4.49), (4.50) and
(4.53) by introducing the torsional angle as τ = χ5 − χ4 yielding the relation

sin(θ′t) =
√
θ2
tx + θ2

ty . (4.62)

For the torsional angle τ one finds that it can be obtained from the HSM coordinates according to

cos(τ ′) =
θ4xθ5x + θ4yθ5y√
θ2

4x + θ2
4y

√
θ2

5x + θ2
5y

. (4.63)

A detailed analysis of the HSM coordinates shows that they yield the same values for the angles
θ′t = θt and the torsional angle τ ′ = τ only in cases where the BC-bond is either parallel to the
molecule fixed z-axis or lies in a plane that contains the z-axis. The latter conditions are not
necessarily fulfilled when using normal coordinates. As an example, Figure 4.3 compares the de-
pendence of the differences ∆θt = θ′t − θt and ∆τ = τ ′ − τ on the bending normal coordinate q4

of a linear A-B-C-D system (l-C3H+). The second bending normal coordinate is fixed to a value
of q5 = 2.5 with phase angle difference ξ = χ5 − χ4 = π

2 . Details on the form of the normal
coordinates can be found in Section 5.2. For small displacements in q4 only small differences can
be observed. This is due to the fact that the HSM coordinates are linearized internal coordinates.
With increasing q4 also the differences between the two sets of coordinates increase. The main
reason for the differences arises from the inclusion of the normal vectors ex and ey in the defini-
tion of the HSM coordinates which are no longer orthogonal to an arbitrarily oriented R2. This
problem is circumvented by using the geometrically defined coordinates in Equation (4.49), (4.50)
and (4.53) which will also be used in the present variational approach to transform from normal
coordinates to internal coordinates.
Comparison with the bending normal coordinates {q4x, q4y, q5x, q5y} shows that HSM coordi-
nates have Π-symmetry in the linear molecule point groups C∞v and D∞h [349]. The prod-
uct θl4xθm5xθn4yθo5y is then only allowed for specific combinations (l,m, n, o) such that it transforms
according to the totally symmetric representation of the molecular point group. Combining Equa-
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Figure 4.3: Differences in internal bending coordinates for tetraatomic linear molecules obtained
from vector relations and from the definition of Hoy et al. [349].

tion (4.62) with the symmetry requirements on the products θl4xθm5xθn4yθo5y leads to the following
rules for the products θl4θm5 cos(nτ) that represent the bending-torsional dependence of the poten-
tial energy:

1. the sum l +m is an even number

2. allowed values for the torsional part are n =

[0,min(l,m)] for l ·m = even

[1,min(l,m)] for l ·m = odd

3. n increments in units of 2 for a specific combination (l,m)

For example the allowed bending-torsion terms in a sextic force field are:

l +m = 2 l +m = 4 l +m = 6

θ2
4 θ4

4 θ6
4

θ1
4θ
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5 cos(τ) θ3

4θ
1
5 cos(τ) θ5

4θ
1
5 cos(τ)

θ2
4 θ2

4θ
2
5 θ4

4θ
2
5

θ2
4θ

2
5 cos(2τ) θ4

4θ
2
5 cos(2τ)

θ1
4θ

3
5 cos(τ) θ3

4θ
3
5 cos(τ)

θ4
5 θ3

4θ
3
5 cos(3τ)

θ2
4θ

4
5

θ2
4θ

4
5 cos(2τ)
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4θ

5
5 cos(τ)
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4.1.4 Structure of the Hamiltonian matrix

The structure of the Hamiltonian matrix set up using basis functions of type Equation (4.2) can be
inferred from an analysis of the possible matrix elements. This allows to on the one hand identify
blocks where all the possible matrix elements are zero which thus need not to be considered during
the integration and on the other hand determine the specific terms which contribute to the matrix
elements of the non-zero blocks.
As pointed out in Section 2.3.1 no operator in the Hamiltonian can couple basis functions differing
in J which is an indication of a good quantum number that is strictly conserved. The matrix
representation of the Hamiltonian will therefore have a block structure with unconnected blocks
differing in J .
Analysis of the possible matrix elements of the Coriolis operator T̂VR show that it couples basis
functions within a J-block differing in k by ±1. The J-block Hamiltonian will then have almost
block-diagonal structure with the primary diagonal blocks formed by matrix elements diagonal in
k and the secondary diagonal above and below coupling them through T̂VR.
The Sayvetz condition Equation (2.43) requires that the sum of vibrational angular momentum
quantum numbers ` =

∑
t `t has to be equal to k. Basis functions for a given k can therefore

be grouped in blocks of equal vibrational angular momentum quantum number pairs (`4, `5).
Equation (2.43) further implies that the presented basis set is not completable. For example when
treating tetraatomic linear molecules and k = 0 an infinite number of possible combinations e.g.
(0, 0) (1,−1), (−1, 1) . . . can be constructed. It is therefore necessary that, for a given k, one
chooses a maximum absolute value `kmax for the `t occurring within the respective block. The
operator π̂± in T̂VR couples basis functions differing in exactly one of the `t by ±1. Thus, choosing
`kmax = `0max + |k| ensures that for J ≥ |k| ≥ 1 all basis functions within such a block are coupled
to the necessary functions in the |k| − 1 block and the remaining choice is the maximum value of
|`t| for k = 0 (`0max).
The grouping of basis functions within a k block according to (`4, `5) leads to a block structure
with increasing differences in (`4, `5) but opposite signs in ∆`4 = `4− `

′

4 and ∆`5 = `5− `
′

5, where
`t and `

′

t are the vibrational angular momentum quantum numbers in the bra and ket, respectively.
In a diagonal block (∆`4,∆`5) = (0, 0) all operators in the Hamiltonian except T̂VR can contribute
to a matrix element. The main contribution to off-diagonal k-subblocks are matrix elements of the
potential energy (cf. Section 4.1.3). Additionally, for blocks with (∆`4,∆`5) = (±1,∓1) terms in
T̂π with differing bending indices contribute to the matrix elements. As a summary, the individual
contributions to the blocks of a Hamiltonian with Jmax = 1 and `0max = 1 are schematically
presented in Figure 4.4.

4.1.5 Symmetry considerations

The classification of the basis functions with respect to symmetry is an important step for the
development of a variational procedure to treat the rovibrational problem in molecules. In case
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J k

V

Figure 4.4: Block structure of a Hamiltonian matrix with Jmax = 1 and `0max = 1. Colors indicate
the different terms in the Hamiltonian that contribute to a specific block. Non colored blocks are
zero.

of linear molecules two molecular symmetry (MS) groups are possible C∞v(M) and D∞h(M), de-
pending on whether an inversion center is present or not.
The MS group C∞v(M) has two symmetry operations E and E∗, which are the identity and the
space inversion (parity), respectively. This gives rise to two irreducible representations Σ+ and
Σ−, depending on the behaviour under the operation E∗. The behaviour of a rovibrational basis
function under E∗ determines the parity, which is a strictly conserved quantity. Therefore, basis
functions that are eigenfunctions of E∗ with eigenvalue +1 have positive parity (+) and functions
with eigenvalue −1 have negative parity (−). Table 4.3 gives the character table of the MS group
C∞v(M).

Table 4.3: Character table of the MS group C∞v(M).
C∞v(M) E E∗

Σ+ 1 1
Σ− 1 −1
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To characterize the basis functions with respect to symmetry operations of the MS group C∞v(M)

the behaviour of the coordinates (normal coordinates, phase angles, Euler angles) has to be de-
termined. The operation E∗ has the effect of inverting the molecule fixed z and y-axis as well as
the radial components of the bending vibrations through the center of the space fixed coordinate
system. This leaves all normal coordinate values unaffected and the set of normal coordinates
transforms under E∗ like

E∗(q1, q2, q3, ρ4, ρ5) = (q1, q2, q3, ρ4, ρ5) (4.64)

and the Euler angles (θ, φ) transform under E∗ according to

E∗(θ, φ) = (π − θ, φ+ π) . (4.65)

The part of a rovibrational basisfunction |Vi`Jk〉 that depends on the phase angles χt and the
Euler angles (θ, φ, χ′) is given by

|`4`5Jk〉 =

√
1

8π3
SJkm(φ, θ)eikχ′ei`4χ4ei`5χ5 . (4.66)

The Sayvetz condition (Equation (2.43)) shows the relation between the `t and k, so that for any
given numerical combination of two of the quantum numbers `4, `5 or k the third one is fixed. One
therefore can reformulate the bending-rotation basis function in a non-direct product form by, for
example, requiring `4 = k − `5. Inserting this into Equation (4.66) yields

|(k − `5)`5Jk〉 =

√
1

8π3
SJkm(φ, θ)eikχ′ei(k−`5)χ4ei`5χ5

=

√
1

8π3
SJkm(φ, θ)eik(χ′+χ4)ei`5(χ5−χ4)

=

√
1

8π3
SJkm(φ, θ)eik(χ′4)ei`5ξ , (4.67)

where the phase angle difference ξ = χ5 − χ4 defined earlier has been used and a new angle
χ′4 = χ′+χ4 is introduced. Figure 4.5 graphically displays the relation between the different phase
angles for a tetraatomic linear molecule.
Equation (4.67) shows that the wave function depends only on the difference of the phase angles
ξ and the sum χ′4 = χ′ + χ4. For fixed (non zero) values of all other coordinates the angle χ′4
has the same effect as the angle χ′ on the cartesian coordinates of the molecule, resulting in a
rotation about the z-axis with angular momentum k~. Since χ′ is arbitrary in the isomorphic
Hamiltonian [191] so is the sum χ′4 and thus also χ4. A rotation about an axis does not change
the potential energy, the PES of linear molecules (Nat > 2) do not depend on the phase angles χt
independently but on Nat − 3 differences χt − χt′ . This has also been pointed out by Watson in
his discussion of the cylindrical symmetry of linear molecules and the relation between 3Nat − 5
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Figure 4.5: Graphical representation of the relation between the different phase angles of the
rovibrational coordinates in a tetraatomic linear molecule.

and 3Nat − 6 approaches to the rovibrational problem in linear molecules [350].
The effect of E∗ on the angles (χ′4, ξ) can be inferred from Figure 4.6 where the effect of E∗

has been applied to the molecule fixed axes and bending normal coordinates (inverting y and the
direction of the ρt). In summary the transformation properties of the phase angles are

E∗χ
′

4 = π − χ′4 (4.68)

and

E∗ξ = −ξ (4.69)

The transformation properties of the rovibrational basis functions under E∗ can now be determined
and one obtains

E∗ |V`Jk〉 = (−1)J+k |V − `J − k〉 . (4.70)

In Equation (4.70) the V is the vector containing all quantum numbers V = (v1, v2, v3, v4, v5) and
` = (`4, `5) collects all `t.
The MS group D∞h(M) cotains two additional symmetry operations (p) and (p)∗, which are the
permutation of all pairs of like nuclei and the combination of (p) and E∗ according to (p)∗ = (p)E∗,
respectively. The operation (p)∗ has the same effect on the rovibrational coordinates as the point
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Figure 4.6: Effect of the parity operator E∗ on the phase angles of rovibrational coordinates in a
tetraatomic linear molecule.

group operation i (inversion operator) and thus determines whether the basis function is gerade
(g) or ungerade (u). Table 4.4 gives the character table of the MS group.
A tetraatomic molecule A-B-B-A belongs to the MS group D∞h(M) and has three totally sym-
metric vibrations: two stretching vibrations (symmetric A-B stretch q1 and B-B stretch q2) and
one bending vibration (trans-bending ρ4). The remaining two vibrations are antisymmetric (an-
tisymmetric A-B stretch q3 and cis-bending ρ5). The transformation of the normal coordinates
under the operation (p)∗ are then given by

(p)∗(q1, q2, q3, ρ4, ρ5) = (q1, q2, −q3, ρ4, ρ5) . (4.71)

Table 4.4: Character table of the MS group D∞h(M).
D∞h(M) E (p) E∗ (p)∗

Σ+
g 1 1 1 1

Σ−u 1 −1 1 −1
Σ−g 1 −1 −1 1
Σ+
u 1 1 −1 −1
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The transformation properties of the phase angles are

(p)∗χ′4 = χ′4 , (4.72)

(p)∗ξ = ξ + π (4.73)

and finally the transformation of the Euler angles (θ, φ)

(p)∗(θ, φ) = (θ, φ) . (4.74)

From these transformations the effect of (p)∗ on the rovibrational basis functions can be deduced.
For the HO basis function of the antisymmetric stretching vibrational one obtains

(p)∗ |v3〉 = Hv3(−q3)e−
1
2 (−q3)2

= (−1)v3Hv3(q3)e−
1
2 q

2
3

= (−1)v3 |v3〉 , (4.75)

where the fact has been used that the Hermite polynomials Hn(x) are even functions in x when
n is even or odd functions otherwise. The 2D HO basis function of the cis-bending vibration ρ5

transforms under (p)∗ according to

(p)∗ |v5, `5〉 =

√
1

2π
(ρ5)

|`5|
2 L|`5|n5

(ρ5)e−
1
2ρ5ei`5(ξ+π)

= (−1)|`5|
√

1

2π
(ρ5)

|`5|
2 L|`5|n5

(ρ5)e−
1
2ρ5ei`5ξ

= (−1)|`5| |v5, `5〉 . (4.76)

The effect of (p)∗ on a rovibrational basis function |V`Jk〉 is then

(p)∗ |V`Jk〉 = (−1)v3+|`5| |V`Jk〉 , (4.77)

showing that the basis functions are eigenfunctions of (p)∗. From Equation (4.70), Equation (4.77)
and the definition (p)∗ = E∗(p) follows directly the effect of (p) on the basis functions

(p) |V`Jk〉 = (−1)v3+|`5|+J+k |V − `J − k〉 . (4.78)

The transformation of the rovibrational basis functions under the symmetry operations E∗ (Equa-
tion (4.70)) and (p) (Equation (4.78)) reveal that they are not eigenfunctions of the symmetry
operations. Since the Hamiltonian (Equation (2.33)) commutes with all symmetry operations of
the MS group [347] they have a common set of eigenfunctions and an additional symmetrization
of the basis functions is needed. This is achieved by forming Wang-type [351] linear combinations
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Table 4.5: Parity and e/f assignment of symmetrized basis functions adopted in this work.
J K κ partiy e/f

even even 0 + e
even even 1 − f
even odd 0 − f
even odd 1 + e
odd even 0 − e
odd even 1 + f
odd odd 0 + f
odd odd 1 − e

of the basis functions

|V`JKκ) =
1√
2

[|V`JK〉+ (−1)κ |V−`J−K〉] , (4.79)

where κ = 0 or 1 and K = |k|. In the special case that ` = (0, 0) no symmetrization is needed

|V0J0κ) = |V0J0〉 . (4.80)

and κ = 0 by definition. These functions are now eigenfunctions of the MS group operations

E|V`JKκ) = |V`JKκ) , (4.81)

(p)|V`JKκ) = (−1)v3+|`5|+J+K+κ|V`JKκ) , (4.82)

E∗|V`JKκ) = (−1)J+K+κ|V`JKκ) (4.83)

and

(p)∗|V`JKκ) = (−1)v3+|`5||V`JKκ) , (4.84)

which is readily verified by applying Equation (4.70), (4.77) and (4.78) to Equation (4.79). The
effect of this symmetrization is the separation of basis functions into blocks of well determined
parity (+/−). The labeling of rovibrational states with respect to parity is done in the e/f
scheme introduced by Brown et al. [200]. For molecules with an even number of electrons e-levels
have parity +(−1)J and f -levels −(−1)J . The assignment of the symmetrized basis functions
(Equation (4.79)) is given in Table 4.5. Figure 4.7 shows the effect of this blockwise separation
for the Hamiltonian presented in Figure 4.4. Equation (4.84) allows for a complete separation of
the Hamiltonian matrix into blocks of gerade (g) and ungerade (u) symmetry by selecting only
functions with an even or odd value for the sum v3 + |`5|, respectively.
With the basis functions now correctly symmetrized, the rovibrational wave functions can be
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Figure 4.7: Structure of a Hamiltonian matrix with Jmax = 1 and `0max = 1 before (upper part)
and after (lower part) symmetrization. Colors indicate the different terms in the Hamiltonian that
contribute to a specific block. Non colored blocks are zero.
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written in the following form

∣∣∣ψ(J,p)
v

〉
=

J∑
K=0

σ∑
`5=−`0max

Nv∑
i

c
(J,p)
K`5i
|Vi`JKκ) , (4.85)

where

σ =

{
−p for K = 0

`Kmax for K 6= 0
. (4.86)

In Equation (4.85) and (4.86) p is either 0 or 1 for the e- and f -type wave functions, respectively,
and Nv is the size of a (`4, `5)-block. The value of κ is determined by J , K and p combined with
Table 4.5.

4.2 Implementation

The following section describes the implementation of the variational approach for rovibrational
calculations on linear tetraatomic molecules into the Fortran program C8v4. A calculation can
be divided into three steps. First a harmonic treatment of the vibrational problem is performed
to determine the parameters that appear in the Hamiltonian and details are described in section
Section 4.2.1. In the second step the matrix elements of the Hamiltonian in the chosen basis set
are constructed as presented in Section 4.2.2. Finally, the Hamiltonian is diagonalised to obtain
rovibrational term energies and wave functions (cf. Section 4.2.5). An important part of the
implementation is the parallelisation of the program in order for the calculations to be feasible and
the necessary considerations are presented in Section 4.2.6.

4.2.1 Solving the harmonic problem

The first step in the variational procedure is the determination of the various molecular parame-
ters that appear in the Hamiltonian operator. From the equilibrium cartesian coordinates re the
equilibrium moment of inertia is calculated according to Equation (2.53). Harmonic vibrational
frequencies ωi and the L -matrix are obtained by the GF-method [343]

GFL = Lλ , (4.87)

where G is the inverse kinetic energy matrix

G = BM−1B
T (4.88)

and F the internal coordinate potential energy matrix

F =
(
B−1

)T
fxB−1 . (4.89)
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In Equation (4.89) fx is the 3Nat × 3Nat force constant matrix in cartesian coordinates (Hessian).
The F-matrix can be obtained by collecting all quadratic force constants fij for simple Taylor
expansions (cf. Equation (4.38)) or by numerical differentiation for more complex PEF forms.
The B matrix defines the transformation from the 3Nat cartesian displacement coordinates to the
3Nat − 5 linearized internal coordinates {sn} of the tetraatomic linear molecule. The relation is
obtained by truncating Equation (4.40) after the linear term which yields

sn =
∑

I

∑
α

BnIαxIα (4.90)

or in matrix vector notation
s = Bx . (4.91)

The solution to the eigenvalue problem in Equation (4.87) are the harmonic frequencies ωi =
√
λi

and the eigenvectors L that transform the normal coordinates to the linearized internal coordinates

s = Bx = BM− 1
2 u = BM− 1

2LQ = LQ (4.92)

From Equation (4.92) the definition of the L -matrix is obtained

LT = L−1BM− 1
2 (4.93)

With the L matrix the ζx matrix and ak parameters can be calculated by the formulas given in
Section 2.3.1.

4.2.2 Integration of the Hamiltonian

The next step in performing a FBR variational calculation is to build up the representation of the
Hamiltonian in the chosen basis set

H
(J,p)
ij = (Vi`JKκ|ĤW|Vj`

′
JK

′
κ′) . (4.94)

Such matrix elements can either be evaluated directly in the symmetrized basis set or in an unsym-
metrized basis and the resulting blocks are combined afterwards when building the Hamiltonian
that is to be diagonalised. The latter approach has been chosen here.
As outlined above most of the KEO matrix elements can be evaluated analytically with the em-
ployed basis functions. Matrix elements of the linear momentum term T̂P are straight forward to
evaluate by use of the analytic matrix elements presented in Section 4.1.1. Complications arise for
the terms involving µ since there are no analytic matrix elements for the inverse effective moment
of inertia. Consequentially a numerical integration has to be employed. The same is true for the
generalized potential energy V (although analytic evaluation would be possible for a PES expanded
with respect to normal coordinates).
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First consider the pure rotational kinetic energy T̂R. A matrix element of this operator is given by(
T

(J)
R

)
ij

= 〈Vi`Jk|T̂R|Vj`
′
Jk〉

=
1

2
〈Vi`|µ|Vj`

′〉 〈Jk|Π̂′±Π̂
′

∓|Jk〉

=
1

2
µij
[
J (J + 1)− k2

]
. (4.95)

In Equation (4.95) the second braket has been evaluated analytically and the first braket corre-
sponds to a matrix representation µ in the chosen vibrational basis. The latter has to be evaluated
numerically and in principle would require a six dimensional (3 stretch qs, 2 bend ρt and the
phase angle difference ξ) numerical integration. Equation (2.39) shows that µ depends only on the
stretching normal coordinates qs and a matrix element µij can therefore be rewritten

µij = 〈Vi`|µ|Vj`
′〉

= 〈v1v2v3|µ|v
′

1v
′

2v
′

3〉 〈v4v5`4`5|v
′

4v
′

5`
′

4`
′

5〉
= 〈v1v2v3|µ|v

′

1v
′

2v
′

3〉 δv4v′4δv5v′5δ`4`′4δ`5`′5 , (4.96)

indicating that the contribution of term T̂R to a Hamiltonian matrix element is diagonal with
respect to all vt and `t. Therefore, the matrix representation µ needs only to be evaluated once
in the chosen primitive vibrational basis set and can then be added to the diagonal (`4, `5) blocks
after appropriately scaling the matrix according the values of J and K. The evaluation of µ is
straight forward in a 3D Gauss-Hermite integration scheme that takes the orthogonality of the
bending basis functions into account.
Evaluation of matrix elements due to T̂π is also complicated by the fact that it involves products
of µ (depending only on the qs) with the operators π̂± that involve all normal coordinates qi and
momenta p̂i. A matrix element would then be(

T(J)
π

)
ij

= 〈Vi`Jk|T̂π|Vj`
′
Jk〉

=
1

4
〈Vi`|µ (π̂+π̂− + π̂−π̂+) |Vj`

′〉 〈Jk|Jk〉

=
1

4
〈Vi`|µ (π̂+π̂− + π̂−π̂+) |Vj`

′〉 , (4.97)

where the orthonormality of the rotational basis functions has been used. The integration would
therefore need to proceed via an expensive six dimensional numerical integration. This can be
avoided by introducing a truncated resolution-of-identity (RI)

1 =

NRI
v∑
k

|VRI
k `

RI〉 〈VRI
k `

RI| (4.98)
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where NRI
v is the size of the RI basis and the |VRI

k `
RI〉 are products of HO basis functions (cf.

Section 4.1.1). Insertion of Equation (4.98) into Equation (4.97) yields

(
T(J)
π

)
ij

=
1

4

NRI
v∑
k

〈Vi`|µ|VRI
k `

RI〉︸ ︷︷ ︸
µRI
ik

〈VRI
k `

RI|(π̂+π̂− + π̂−π̂+)|Vj`
′〉︸ ︷︷ ︸

πRI
kj

. (4.99)

This shows that the matrix representation of T̂π can be reduced to a product of the matrices
µRI and πRI which are the Nv × NRI

v and NRI
v × Nv matrices, respectively, evaluated in the

mixed primitive vibrational and RI basis set. This ansatz for matrix elements of T̂π has also been
employed by Császár and coworkers in their DVR based Dewe program [231].
The same approach as presented above for µ can be applied to µRI reducing the integration to
a three dimensional Gauss-Hermite integration that only needs to be done once. Since matrix
elements of πRI depend on the combination of the `t in the bra and ket, they have to be evaluated
for all required combinations (`4, `5//`

′

4, `
′

5). Furthermore, the RI approximation can also be
applied to evaluate the matrix elements due to T̂VR according to(

T
(J)
VR

)
ij

= 〈Vi`Jk ∓ 1|T̂VR|Vj`
′
Jk〉

= −1

2
〈Vi`|µπ̂∓|Vj`

′〉 〈Jk ∓ 1|Π̂′±|Jk〉

= −1

2

√
J (J + 1)− k (k ∓ 1)

NRI
v∑
k

〈Vi`|µ|VRI
k `

RI〉︸ ︷︷ ︸
µRI
ik

〈VRI
k `

RI|π̂∓|Vj`
′〉︸ ︷︷ ︸

(πRI
C )

kj

. (4.100)

The remaining question is the size of the RI basis. The RI presented in Equation (4.98) is exact
for a complete basis. However, since π̂±π̂∓ in Equation (4.99) and π̂∓ in Equation (4.100) can
only couple vibrational basis functions that differ in the quantum numbers vi by at max ±2

(cf. Section 4.1.1), the RI basis can be truncated by requiring all quantum numbers vRI
i occuring

in the RI basis to fulfill vRI
i ≤ vi + 2. The `RI

t used in the evaluation of πRI is determined by the
`t in the 〈Vi`| of Equation (4.97).
Potential energy matrix elements are most expensive to calculate. They have to be evaluated
using a six dimensional Gaussian integration. The use of HO basis functions for the vibrational
degrees of freedom directly results in the use of Gauss-Hermite and Gauss-Laguerre integration
for the stretching and bending modes, respectively. This accounts for the integration over the qs
and ρt. What remains to be chosen is the type of integration for the phase angles χ4 and χ5.
Following Section 4.1.5 the χt dependent part of a basis function can be written in terms of χ4

and ξ = χ5 − χ4 according to

|`4`5〉 = |(k − `5)`5〉 =

√
1

4π2
eikχ4ei`5ξ . (4.101)
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which is obtained from Equation (4.67) after multiplying with 〈Jk| and integrating over the Euler
angles (θ, φ, χ′) since V does not depend on the Euler angles. On the other hand, Equation (4.37)
shows that V depends on cos(nξ) even when an internal coordinate potential is employed (cf.
Equation (4.39)). An integral of cos(nξ) over the functions |`4`5〉 is then

〈(k − `5)`5| cos(nξ)|(k′ − `′5)`′5〉 =
1

4π2

∫ 2π

0

∫ 2π

0

e−ikχ4e−i`5χ5 cos(nξ)eik′χ4ei`′5ξdχ4dξ (4.102)

and integration over dχ4 yields

〈(k − `5)`5| cos(nξ)|(k′ − `′5)`
′

5〉 =
1

2π

∫ 2π

0

e−i`5χ5 cos(nξ)ei`
′
5ξdξδkk′ . (4.103)

Equation (4.103) implies that the integration over the phase angle χ4 can always be done analyti-
cally. The remaining integration over dξ can be rewritten by use of Euler’s formula

1

2π

∫ 2π

0

e−i`5χ5 cos(nξ)ei`
′
5ξdξ =

1

2π

∫ 2π

0

cos(nξ)ei(`
′
5−`5)ξdξ

=
1

2π

∫ 2π

0

cos(nξ)ei∆`5ξdξ

=
1

4π

[∫ 2π

0

cos(nξ) cos(∆`5ξ)dξ

+i

∫ 2π

0

cos(nξ) sin(∆`5ξ)dξ

]
(4.104)

The second integral vanishes due to the orthogonality of the cos and sin functions. Introducing
the Chebyshev polynomials Ta(cos(x)) = cos(ax) where a ∈ N0 [344] gives

1

2π

∫ 2π

0

e−i`5χ5 cos(nξ)ei`
′
5ξdξ =

1

4π

∫ 2π

0

cos(nξ) cos(∆`5ξ)dξ

=
1

4π

∫ 2π

0

Tn(cos(ξ))T∆`5(cos(ξ))dξ . (4.105)

The final step now is to change the integration coordinate to Ξ = cos(ξ) according to

dξ = − d cos(ξ)√
1− cos2(ξ)

= − dΞ√
1− Ξ2

. (4.106)
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Inserting into Equation (4.105) and integrating over dx yields

1

4π

∫ 2π

0

Tn(cos(ξ))T∆`5(cos(ξ))dξ = − 1

2π

∫ −1

1

Tn(Ξ)T∆`5(Ξ)
dΞ√

1− Ξ2

=
1

2π

∫ 1

−1

Tn(Ξ)T∆`5(Ξ)
dΞ√

1− Ξ2

=


1
2 for n = ∆`5 = 0
1
4 for n = ∆`5 6= 0

0 for n 6= ∆`5

, (4.107)

where the orthogonality relations of the Chebyshev polinomials has been used [344]. This shows
that for the integration over dξ a Gauss-Chebyshev integration is possible.
In summary the integration of the potential energy V over the basis functions is done via six dimen-
sional Gaussian integration. The 1D HO stretching basis functions are integrated by Gauss-Hermite
integration over the qs, 2D HO bending basis functions employ Gauss-Laguerre for integration of
the ρt and the integration over the phase angle difference ξ is performed using Gauss-Chebyshev
integration. A general overview of the integration scheme employed by C8v4 is depicted in Fig-
ure 4.8. Further details of the approach related to the construction of the primitive vibrational
basis set and the Gaussian integration grids as well as the parallelisation will be discussed in the
following.

4.2.3 Basis set design

The primitive vibrational basis set that defines the size of a (`4, `5) block Nv is constructed from
a direct product of sets of functions for each vibrational coordinate {|v1〉} × {|v2〉} × {|v3〉} ×{
|v`44 〉

}
×
{
|v`55 〉

}
. The size of the individual sets is controlled by setting a maximum quantum

number vmax
i . For the stretching basis functions |vs〉 this directly corresponds to the maximum

degree of the employed Hermite polynomial and (vmax
s + 1) basis functions are used. In case of the

bending basis functions (vmax
t + 1) corresponds to the number of Laguerre polynomials used. The

size of the basis set is then given by Nv =
∏
i(v

max
i + 1). A typical calculation employs 10 basis

functions per coordinate (vmax
i = vmax = 9) resulting in a product basis set of Nv = 105 basis

functions. Storing a single (`4, `5) block of this size using double precision would require about
75 GB of RAM making the calculation not feasible.
It is therefore necessary to reduce the size of the basis set. This can be done for example by so
called pruning schemes (cf. e.g. Ref. [190, 352] and references therein). This places the following
restriction on the quantum numbers of a product basis function∑

i

gi(vi) ≤ P . (4.108)
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Figure 4.8: Flowchart representation of integration procedure implemented in C8v4 (see text for
details). The scratch data (integral records) is read in the diagonalisation procedure.

In Equation (4.108) g(vi) is a suitable function that depends on the quantum number(s) vi and P
(sometimes called the polyad number) has to be chosen accordingly. In the present work P is set
to 1 and the g-function is defined as

g(vi) =
vi
vmax
i

. (4.109)

This can be interpreted in the following way. Each basis function is assigned a vector η in the
vector space R5 with components ηi =

√
vi/vmax

i . For a basis function to be accepted the scalar
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product of such a vector with itself has to fulfill 〈η,η〉 ≤ 1. A graphical example in two dimensions
R2 is shown in Figure 4.9 with vmax

i = vmax = 3.
Figure 4.10 displays the performance of the pruning scheme compared to a direct product basis
set. In the left panel Nv of the basis sets obtained for different values of vmax

i = vmax are compared
on a logarithmic scale showing the reduced scaling of the basis set with vmax. For the largest
basis set vmax = 9 the number of retained basis functions is lower by a factor almost two orders
of magnitude. In the right panels the harmonic vibrational density of states (DOS) for basis sets
with vmax = 9 is given. Inspection of the upper right panel shows that, while the overall number
of functions is reduced, the DOS for the pruned basis at the lower end of the spectrum is equal to
the direct product basis set. This is desirable since it results in a comparable performance of the
basis sets for low lying rovibrational states and the reduced Nv makes the calculation feasible.
Besides pruning the basis set based on the quantum numbers of the basis function an energy
criterion could be used. Then, functions are selected based on whether their harmonic vibrational
energy is below a cutoff energy Ebas

cut and is straightforward to implement in a variational method.
This pruning would then correspond to cutting off the DOS, as shown in Figure 4.10, above Ebas

cut .
While the reduction in Nv would be significant, such a scheme can lead to an unbalanced basis set
by favouring basis functions with high excitations in the low lying bending modes compared to the
stretching vibrations.
The size of the rovibrational basis set depends on the rotational quantum number J , the e/f -parity
block labeled by p = 0 or 1, respectively, the threshold on the vibrational angular momentum
quantum number `max

0 and the size of the primitive vibrational basis set Nv. As discussed in
Section 4.1.4, each Hamiltonian matrix H(J,p) can be decomposed into J + 1 blocks H

(J,p)
K with

quantum numbers K ≤ J and Coriolis blocks C
(J,p)
K that couple K and K − 1. For example the

block matrix form of H(J,p) for J = 2 in the e-block (p = 0) would be

H(2,0) =


H

(2,0)
2

(
C

(2,0)
1

)T

0

C
(2,0)
2 H

(2,0)
1

(
C

(2,0)
1

)T

0 C
(2,0)
1 H

(2,0)
0

 . (4.110)

The dimension of this matrix and thus the size of the rovibrational basis set can be obtained by
summation over the K-block dimensions N (p)

K according to

N
(J,p)
VR =

J∑
K=0

N
(p)
K . (4.111)

The size of the H
(J,p)
K blocks N (p)

K can be calculated as the product

N
(p)
K = N

(p)
` Nv (4.112)



4.2. IMPLEMENTATION 137

|v1〉

|v2〉
|0, 0〉 |0, 1〉 |0, 2〉 |0, 3〉

|1, 0〉 |1, 1〉

|2, 0〉

|3, 0〉

|1, 2〉

|2, 1〉

|1, 3〉

|2, 2〉

|3, 1〉

|2, 3〉

|3, 2〉 |3, 3〉

Figure 4.9: Schematic example of the pruning scheme applied to a 2D basis set with vmax
i = vmax =

3. Basis functions that are retained are represented by green circles and rejected basis functions
by red crosses.

Figure 4.10: Comparison of direct product basis sets and pruned basis sets. Left: basis set sizes on
a logarithmic scale with respect to vmax

i = vmax. Right: number densities of harmonic vibrational
states for direct product (red) and pruned (blue) basis sets with vmax = 9.
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where N (p)
` and Nv are the number and size of the (`4, `5)-block, respectively. The former is given

by

N
(p)
` =

{
2`0max + 1− p for K = 0

2`0max +K + 1 for K 6= 0
(4.113)

4.2.4 Gaussian integration grids

With the primitive basis set defined the next step is to set up the Gaussian integration grid. In
Gaussian integration the integral of a function is replaced by a weighted sum∫ b

a

f(x)dx ≈
m∑
i=1

f(xi)wi . (4.114)

It can be shown [353] that this summation can be made exact when f(x) is represented as a prod-
uct f(x) = pn(x)W (x) where pn(x) is a polynomial of degree n and W (x) is a weight function.
Depending on the form of W (x) there is an associated class of orthogonal polynomials hm(x).
Choosing the xi to be the m roots of polynomial hm(x) makes the Gaussian integration Equa-
tion (4.114) exact for all polynomials pn(x) with n ≤ 2m − 1. In order to determine the number
of integration points needed to integrate the Hamiltonian first consider the overlap integral of two
orthonormal 1D HO basis functions

〈v|v′〉 =

∫ ∞
−∞

Hv(q)Hv′(q)︸ ︷︷ ︸
pn(q)

e−q
2︸︷︷︸

W (q)

dq
!
= δvv′ (4.115)

The product of the polynomials is again a polynomial now of degree n = v + v′. To make this
integral exact m ≥ (v + v

′
+ 1)/2 Gauss-Hermite integration points are needed and they are the

roots of the Hermite polynomial Hm(q). The maximum order of Hermite polynomials employed
for the stretching basis functions is vmax

s and the number of Gaussian integration points needed to
make the overlap integrals exact is therefore ms ≥ (2vmax

s + 1)/2.
The same argument can be applied to the Gauss-Laguerre integration

〈v`|v′`′〉 =
1

4π

∫ ∞
0

L|`|n (ρ)L
|`′ |
n′ (ρ)︸ ︷︷ ︸

pn(ρ)

ρ
(|`|+|`

′
|)

2 e−ρ︸ ︷︷ ︸
W (ρ)

dρ

∫ 2π

0

ei(`
′−`)χdχ

!
= δnn′δ``′ . (4.116)

In this case the polynomial pn(ρ) is of order n = (v − |`|+ v′ − |`′ |)/2. Then, in order for the first
integral to be exact m ≥ (v − |`| + v′ − |`′ | + 2)/4 Gauss-Laguerre integration points are needed.

The latter are the roots of the associated Laguerre polynomial L
(|`|+|`′ |)
m (ρ).

Here it is important to consider the restrictions on the quantum numbers of the bending vibrations
vt ≥ |`t| ↔ vt − |`t| ≥ 0 and since only |`t| = vt, vt − 2, vt − 4, . . . 1 or 0 are the only allowed
values for `t the degrees of the polynomials L

|`t|
nt (ρ) are nt − |`t| = 2k ∀ k ∈ N0 independent of

`t. For bending vibrations vmax
t corresponds to the number of basis functions which following the
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above discussion then yields nmax
t − |`t| = 2vmax

t . Therefore mt ≥ (4vmax
t + 2)/4 Gauss-Laguerre

integration points are needed for all overlap integrals.
So far only the overlap integrals of the basis set would be exact. The numerical integration of
V , µ and µRI have to be taken into consideration. For the two latter matrices one considers an
Taylor expansion of µ in terms of the (stretching) normal coordinates up to an order nmax

µ . The
integration of µ over the stretching coordinates then contains at max the one dimensional integrals

〈vmax
s |qn

max
µ

s |vmax
s 〉 =

∫ ∞
−∞

q
nmax
µ

s Hvmax
s

(qs)Hvmax
s

(qs)e
−q2sdqs (4.117)

and to make the above integral exact a Gauss-Hermite integration of order ms ≥ (2vmax
s + nmax

µ +

1)/2 is sufficient. Since the RI basis contains 1D HO basis functions up to order vmax
s + 2 the

integration of µRI requires ms + 2 points in the Gauss-Hermite grids. The same approach can be
applied to potential energy integrals. In case of normal coordinate PEFs the value of nmax

V is given
by the maximum order of expansion in the qi (e.g. nmax

V = 4 for a QFF). For PEFs expanded in
terms of curvilinear internal coordinates Ri the situation is more complicated since even a finite
order expansion of V in the internal coordinate space corresponds to an infinite order expansion in
normal coordinate space due to Equation (4.39). One therefore has to determine a suitable value
of nmax

V and subsequently mi. This can be done by monitoring the convergence of matrix elements
with respect to ms and mt in a trial and error fashion. Unfortunately such an approach is rather
expensive, since it would require repeated six dimensional numerical integrations.
A more efficient way of estimating a suitable nmax

V is by use of the chain rule as described in
Section 4.1.3. A truncated internal coordinate expansion of order nmax

V defines the corresponding
normal coordinate potential only up to the same order exactly. To obtain accurate matrix elements
the mi are therefore calculated for each normal coordinate individually via

ms ≥
1

2
(2vmax

s + nmax
Vs + 1)⇒ ms = vmax

s +
1

2
nmax

Vs + 1 (4.118)

and

mt ≥
1

4
(4vmax

t + nmax
Vt + 2)⇒ mt = vmax

t +
1

4
nmax

Vt + 1 , (4.119)

where the nmax
Vs and nmax

Vt are the maximum expansion orders in V for the stretching and angle
bending internal coordinates. This directly ensures that integration of µ/µRI over basis functions
|vmax
s 〉 is also exact up to order nmax

Vs in the qs.
For the Gauss-Chebyshev integration over dξ (cf. Equation (4.102) to (4.107)) the order of the
Chebyshev polynomials n and ∆`5 are defined by the term in the potential expansion Equa-
tion (4.37) and the basis functions, respectively. The maximum values nmax and ∆`max

5 that can
occur in a given calculation can be derived from the maximum angular momentum quantum number
Jmax = Kmax and `0max. By analyzing the possible (`4, `5) combinations in the Jmax Hamiltonian
(excluding vanishing blocks) one finds that ∆`max

5 = nmax = 2`0max +Kmax. Therefore, the number
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of Gauss-Chebyshev integration points needed is

mξ ≥ 2`0max +Kmax +
1

2
⇒ mξ = 2`0max +Kmax + 1 . (4.120)

The presented rules for ms, mt and mξ pertain to the evaluation of matrix elements of basis
functions with the maximum value for the respective quantum numbers involved. Evaluating
matrix elements between functions with a lower quantum number then is accurate to a higher
degree than assumed to determine the m’s. This is best understood by examining an example and
for simplicity restricting the setup to a 1D case. Consider a basis of stretching functions {|vs〉}
with vmax

s = 10. When requiring the matrix element 〈vmax
s |V | vmax

s 〉 over the generalized potential
V to be accurate up to 4th order in qs (nmax

Vs = 4) the required number of Gauss-Hermite points is
(Equation (4.118)) ms = 10 + 1

24 + 1 = 13. Then, the matrix element 〈0 |V | 0〉 for vs = 0 will be
accurate up to nVs = 2 (ms − vs − 1) which yields the 24th order in qs for the present example.

4.2.5 Diagonalisation

With the matrix representation of the Hamiltonian H(J,p) set up in a suitable basis set, the rovi-
brational term energies and wave functions are obtained by diagonalisation. This corresponds to
finding the orthogonal matrix X(J,p) such that(

X(J,p)
)T

H(J,p)
(
X(J,p)

)
= Λ(J,p) , (4.121)

where Λ(J,p) is the diagonal matrix of the rovibrational term energies Tv(J). The size of the
matrix H(J,p) typically is too large for direct eigensolvers, e.g. as implemented in Lapack [354].
For example, a modest sized primitive basis set of Nv = 2500 and vibrational angular momentum
threshold of `0max = 3 leads to e-parity matrices of order 10000, 35000 and 62500 for J = 0, 1 and
2, respectively. The calculation of all eigenpairs of such large matrices is prohibitive. In order to
reduce the matrix size a prediagonalisation scheme has been implemented. The approach is based
on the fact that the matrix elements of Coriolis-blocks C

(J,p)
K are small compared to H

(J,p)
K and

can thus be treated as perturbations to the K-diagonal eigenstates.
To this end, the H

(J,p)
K blocks are diagonalised first

(
X

(J,p)
K

)T

H
(J,p)
K X

(J,p)
K = Λ

(J,p)
K , (4.122)

where X
(J,p)
K are the obtained eigenvectors and Λ

(J,p)
K the corresponding eigenvalues. From this

set of eigenpairs N red
K are kept. This selection can be either based on a fixed number of eigenfunc-

tions/eigenvalues or an energy criterion Ered
cut . In the latter case N red

K is determined once based on
the eigenvalues of H

(K,p)
K eigenvalues.

After collecting the N red =
∑
K N

red
K eigenpairs X

(J,p)
K and Λ

(J,p)
K , the full Hamiltonian matrix
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H(J,p) is transformed to the reduced basis H̃(J,p)

H̃(J,p) =
(
S(J,p)

)T

H(J,p)S(J,p) , (4.123)

where a transformation matrix S(J,p) is introduced according to

S(J,p) =


X

(J,p)
J 0 · · · 0

0 X
(J,p)
J−1

...
...

. . . 0

0 · · · 0 X
(J,p)
0

 . (4.124)

Since the X
(J,p)
K are orthonormal

(
X

(J,p)
K

)T

X
(J,p)
K = I , (4.125)

where I is the identity matrix (Iij = δij), the block diagonal matrix S(J,p) is also orthonormal

(
S(J,p)

)T

S(J,p) = I . (4.126)

Inserting Equation (4.123) into Equation (4.121) yields the secular equation for the reduced Hamil-
tonian matrix(

S(J,p)
)T

H(J,p)S(J,p)

((
S(J,p)

)−1

X(J,p)

)
=

((
S(J,p)

)−1

X(J,p)

)
Λ̃(J,p) (4.127)

or
H̃(J,p)X̃(J,p) = X̃(J,p)Λ̃(J,p) . (4.128)

The matrix H̃(J,p) is now small enough that it can be diagonalised by a direct eigensolver to yield
eigenvalues Λ̃(J,p) and eigenvectors X̃(J,p) with respect to the contracted functions X

(J,p)
K . Using

the latter, back transformation according to

X(J,p) = S(J,p)X̃(J,p) (4.129)

yields the desired rovibrational wave functions in the original basis set. The eigenpairs obtained in
this way are approximations to the exact results, but in the limit N red

K → N
(p)
K they are identical.

For J = 0 calculations the presented scheme always yields exact eigenvalues/eigenvectors since
H(0,p) = H

(0,p)
0 . Due to the underlying assumption on the numerical size relation between C

(J,p)
K

and H
(J,p)
K matrix elements, this approach is best suited for low values of rotational excitation,

since C
(J,p)
K scale with both J and K (cf. Equation (4.23)). The general procedure is summarized

in Figure 4.11 which depicts a flowchart representation of the diagonalisation. Details of the shown



142 CHAPTER 4. THE C8V4 PROGRAM

Figure 4.11: Flowchart representation of diagonalisation procedure implemented in C8v4 (see text
for details). The scratch data contains the integral records determined during the integration.



4.2. IMPLEMENTATION 143

parallelisation approach will be discussed in Section 4.2.6.
So far the computational effort of diagonalising the H(J,p) Hamiltonian has been reduced from
O((N

(J,p)
VR )3) to 2J diagonalisations with O((N

(p)
K )3), where N (J,p)

VR � N
(p)
K . Furthermore, since

the diagonal K-blocks H
(J,p)
K with p = 0 and 1 are identical for K > 0 they have to be diagonalised

only once for each J . The p = 1 Hamiltonians then require only an additional prediagonalisation
of the H

(J,1)
0 block and in total J + 1 matrices of order N (p)

K have to be diagonalised for each
J . A further reduction by applying the prediagonalisation scheme also to the H

(J,p)
K blocks is

problematic since basis functions with different (`4, `5) combinations show strong coupling among
each other due to the potential energy terms V (n) (cf. Equation (4.37)) especially for low values
of n = ∆`t.
Since only a limited number of diagonal K-block eigenvalues are needed for the prediagonalisation,
an iterative eigensolver based on the Davidson algorithm [355] is used to determine Λ

(J,p)
K and

X
(J,p)
K in Equation (4.122). The Davidson method operates in the following manner. Given a

matrix H, a true eigenvector is denoted as v, an approximate eigenvector as x and the error vector
is δ = v − x. The eigenvalue equation is given by

H(x + δ) = λ(x + δ) . (4.130)

In Equation (4.130) λ is the true eigenvalue which can be written as λ = ρ+ ε, with the Rayleigh
quotient ρ = xTHx and error ε. Equation (4.130) can be rewritten as

(H− ρ− ε)δ = = −(H− ρ− ε)x
= −r + εx , (4.131)

where the residue vector r = (H− ρI)x has been introduced. Solving Equation (4.131) for δ and
updating the subspace in which H is diagonalised results in an iterative procedure for obtaining
eigenvectors and eigenvalues of the Matrix H. The present implementation is taken from the
Jadamilu program [356]. It uses a diagonal preconditioner where H in Equation (4.131) is replaced
by its diagonal (D)ij = Hijδij and assume the error ε is negligible. The correction vector δ then
becomes

δ = −(D− ρI)−1r . (4.132)

Since D and ρI are diagonal matrices, the inversion in Equation (4.132) is trivial. The algorithm
outlined so far can now be extended to the solution of the Neig lowest eigenvalues.

Initialisation
Build a guess eigenspace of dimension l ≥ Neig with orthonormal vectors b1,b2, . . . ,bl.

Build Subspace
Form matrix vector products Hb1,Hb2, . . . ,Hbl, calculate H̃ij = bT

i Hbj and solve for
approximate eigenvalues {ρi} and eigenvectors {xi}.
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Residues
Calculate the k residue vectors ri = (H − ρiI)xi and check for convergence via ‖ri‖ ≤
tolerance. When no convergence for all Neig eigenvectors is achieved, continue with next
step.

Correction vectors
Calculate the correction vectors δi based on Equation (4.132). This is done only for those
eigenvectors that are unconverged.

Subspace expansion
Orthogonalize the δi to the previous sub space, append the orthonormal correction vectors
to the subspace and start from step 2 (only matrix elements involving the new vector need
to be calculated).

For the present application Neig is in general much smaller than the matrix dimensions N (p)
K . The

diagonalization of the subspace therefore does not contribute significant to the computational
cost. Forming the matrix vector products Hx of the trial vectors with the matrix is the main
computational bottleneck. Then, the computational cost of the Davidson algorithm scales ap-
proximately like NeigNitCMX, where Nit is the number of iterations needed to achieve convergence
and the cost of a single matrix vector product is CMX ∼ (N

(p)
K )2.

4.2.6 Parallelisation

The block structure of the Hamiltonian can be exploited for the parallelisation of the program.
In order to maximize the usage of todays high performance computing facilities that consist of a
network of compute nodes each representing a multi-CPU machine, a hybrid parallelisation scheme
is implemented in the C8v4 variational program. Intuitively a distributed memory approach based
on the Message Passing Interface (MPI) is applicable to the integration of the Hamiltonian matrix
by distributing blocks among the network. Furthermore, the numerical Gaussian integration of µ,
µRI and potential energy matrix elements lends itself to a further layer of parallelisation. This is
done with shared memory parallelisation based on OpenMP (OMP) routines.
The hybrid MPI/OMP integration of the Hamiltonian can be described by the following workflow
(cf. also Figure 4.8):

Tasklist
First the list of Ntask non-vanishing (k, `4, `5//k

′
, `
′

4, `
′

5) blocks is constructed based on the
values of Jmax, Kmax and `0max employed in the calculations. The list is distributed by MPI
to the NMPI shared memory machines (ranks).

Integrate KEO
Each rank performs the necessary integration of KEO terms for a combination
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(k, `4, `5//k
′
, `
′

4, `
′

5) assigned to it. This involves also a parallelised µ (µRI) integration and
matrix multiplication for combinations coupled by T̂π (T̂VR).

Integrate V
The potential energy integration (if needed) is distributed among the NOMP compute units
(threads) of the shared memory machines. This can be done with different orderings of the
loops over intergration points and matrix elements. Different choices of these loop orders are
studied below.

Communication
After finishing integration of one (k, `4, `5//k

′
, `
′

4, `
′

5) block, each rank sends the matrix rep-
resentation to the root rank (rank 0) which writes the data to temporary files (scratch). The
ranks now proceed to integrate the next (k, `4, `5//k

′
, `
′

4, `
′

5) block.

This workflow only requires minor modification compared to a serial version of the program. The
main addition is the communication that has to be done after each batch of blocks has been
integrated by the ranks.
In order to reduce idling of the nodes when waiting for communication with rank 0 to transfer
the finished blocks, work balancing is required. From the analysis of the block structure of the
Hamiltonian one can deduce an ordering of different types of blocks with respect to the needed
computational time. The most expensive blocks are the diagonal K-blocks for which ∆` = ±1.
These blocks involve integration over both T̂π and V . Furthermore, they are not symmetric and
thus require the fullNv×Nv matrix to be calculated. Integration of blocks with ∆` = 0 is the fastest

Figure 4.12: Relative speedup for the integration of a K = 0 block with `0max = 8 (81 blocks) with
respect to the number of MPI nodes NMPI. The speed up is obtained either by comparing total run
times (Total) or the actual computation time obtained after subtracting the MPI communication
time (Total−Comm).



146 CHAPTER 4. THE C8V4 PROGRAM

among the diagonal K-blocks although the full vibrational KEO and V have to be considered. The
computational time is sped up by the symmetry of the blocks such that only half of the matrix
needs to be calculated explicitly. Blocks with |∆`| > 1 fall in between these extreme cases. Only
V needs to be integrated for such a block. Finally, Coriolis blocks with ∆k = k

′ − k = ±1 are also
fast to construct once the matrix µRI is available and the required matrix multiplication µRIπRI

has been parallelised using OMP. Using these expected calculation times the task list can be sorted
to balance the work load that is done for each batch of blocks across the nodes. The MPI based
parallelisation of the Hamiltonian matrix integration is fully task parallel and should show almost
linear speed up with increasing number of nodes NMPI. Figure 4.12 clearly depicts this behaviour
for the integration of a K = 0 block with `max = 8. Calculations were performed using up to 8
nodes (Intel E5-2670 v2) of the GWDG HPC cluster.
The OMP based parallelisation of the V integration can be done in different ways, depending on
the order of loops (integration points and matrix elements) and which loop is distributed between
the threads. Three different approaches have been tested:

Algorithm 1
Each thread performs part of the loop over the integration points and evaluates the full
matrix V. For each integration point the thread needs to first calculate the value of the
potential energy at the integration point and then performes a rank-1 update (using Blas

routines dsyr or dger) of the private V(NOMP) matrix. In the end the individual matrices
are reduced to yield the final matrix V.

Algorithm 2
In this case the loops are ordered such that the integration routine passes over the matrix V

once. Each matrix element is then integrated by distributing the integration points among
the threads. The weighted potential energy at the integration points is stored by each thread
individually and thus needs only to be explicitly calculated once for the first matrix element.

Algorithm 3
This algorithm uses the same loop order as algorithm 2 but now the matrix elements that are
calculated are distributed between threads. Again, the weighted potential energy is calculated
only once but each thread performs the full summation over the integration points.

In order to judge the performance of the three algorithms, test calculations have been perfomed.
Two primitive basis sets were used with vmax

i = vmax = 7 and 8 corresponding to about 800 and
1300 basis functions, respectively. Calculations were performed on a single node (Intel E5-2670 v2)
of the GWDG HPC cluster. Figure 4.13 compares the relative speed ups t1/tn where t1 and tn
are the wall times using 1 and n threads, respectively. While algorithm 1 achieves the highest peak
ηs of about 10 for the smaller basis set and using 14 threads, the performance deteriorates with
more threads and for larger basis sets. This is due to the high memory demand of the algorithm.
For a fixed matrix size, the required memory scales linearly with the number of threads used and
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Figure 4.13: Comparison of relative speedups with respect to the number of OMP threads NOMP

for different potential energy integration algorithms. Calculations employ different numbers of
basis functions determined by the vmax and are either performed for a symmetric (sym) block or
a an unsymmetric (unsym) block. For details on the algorithms see text.
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Figure 4.14: Comparison of wall times with respect to the size of the primitive vibrational basis
set Nv for potential energy integration algorithms 1 and 2.Results are shown for symmetric (sym)
and unsymmetric (unsym) blocks. For details on the algorithms see text.

for a fixed number of threads scales quadratically with the basis size. Algorithm 2 and 3 show
somewhat similar speed up behaviour but algorithm 2 performs better. In that case, a peak speed
up of about 7 is achieved when using all available CPUs of the node, a factor of 2 larger than
algorithm 1. Furthermore, no strong dependence on the matrix size is observed. While these
results suggest that algorithm 2 should be the preferred choice, analysis of the wall time scaling
with respect to the size of the primitive vibrational basis Nv when NOMP = 1 contradicts this
choice. Figure 4.14 compares this scaling behaviour for basis set sizes up to about 2000. Clearly,
algorithm 2 shows a much worse scaling. Already for small basis sets of about 200 functions the
wall time of algorithm 2 is orders of magnitude larger compared to 1 and thus overcompensating
the possible increased speed up through parallelisation. Judging from these observations algorithm
1 should be preferred, since it gives the best over all performance in light of a typical basis set size
exceeding 2000 functions.
The critical step in speeding up the Davidson diagonalisation of the H

(J,p)
K blocks is the matrix-

vector multiplication (MXMPY). Again, a hybrid MPI/OMP partitioning of the calculation has
been implemented in C8v4. Figure 4.15 shows a graphical representation of the scheme (also cf.
Figure 4.11). The H

(J,p)
K blocks are constructed on each node individually and then the workload

is distributed in a row-striped fashion to the individual ranks. The input vector is broadcasted by
the root rank 0 which does all necessary calls to Jadamilu. Each rank thus calculates only a part
of the product vector. Dot products (ddot) of the matrix rows with the input vector are split up
between the OMP threads of each MPI rank to further reduce the computational workload done
by each CPU. The result vector is then gathered on rank 0 which enters the Jadamilu program
again. This cycle repeats until convergence on all the desired eigenvalues/eigenvectors is achieved.
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Figure 4.15: Schematic representation of the hybrid MPI/OMP parallelisation of the matrix-vector
multplication (MXMPY) used within the Davidson diagonalisation.

The performance of the MXMPY parallelisation is shown in Figure 4.16. As a test case a J = 0

e-parity diagonalisation with `max = 6 and Nv = 792 was chosen, yielding a Hamiltonian of
dimension N (0,0)

VR = 5544. In total 200 CPUs (10 nodes with 20 cores each) were employed in the
test. The pure MPI based speed up (red data lower panel of Figure 4.16) shows a near linear
speedup. Parallelisation of the ddot based on OMP shows a speedup by a factor of about 4 for
NMPI = 1 (red date upper panel of Figure 4.16). Increasing the number of threads per node leads
to a super linear speed up of the MXMPY shown in the lower panel of Figure 4.16 which can be
understood from the employed partitioning scheme. Increasing NMPI reduces the number of rows
of H

(J,p)
K each node has to multiply with the input vector and thus the size of the partial output

vector. The latter reduces the overhead of the OMP parallelisation leading to the observed scaling.
The OMP based parallelisation shows a drastic performance degradation when NOMP is equal to
the number of physical cores present on the nodes. This is likely due to background processes that
take up CPU time during the excecution of C8v4.

4.3 Example calculations

The following sections present results of benchmark calculations in comparison to previously pub-
lished variational calculations on tetraatomic linear molecules. In Section 4.3.1 the classic internal
coordinate QFF for the acetylene electronic ground state (HCCH, X1Σ+

g ) by Strey and Mills [357]
is employed and results are compared to those reported by Bramley and Handy [211] on the ba-
sis of an internal coordinate rovibrational Hamiltonian [358]. The second molecule is boranimine
(X1Σ+), where a PEF based on ab initio calculations is available [359]. Spectroscopic parameters
calculated using C8v4 are checked by comparison to values published by Brites and Léonard [359]
using the variational method developed by Bramley and Handy [212].
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Figure 4.16: Relative speedups for the diagonalisation of a J = 0 e-parity Hamiltonian with
`max = 6 and Nv = 792 (N (0,0)

VR = 5544) with respect to the number of MPI nodes NMPI and OMP
threads per node NOMP.
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4.3.1 Acetylene - HCCH

Acetylen is one of the simplest tetraatomic molecules. Because of its importance it has been
subject to a tremendous amount of both experimental and theoretical spectroscopic investigations.
A thorough review of the rovibrational spectrum of acetylene has been provided by Herman in the
book by Quack and Merkt [360] and the reader is referred there for an overview.
Already in 1976 SM [357] developed a quartic force field for HCCH on the basis of available
experimental spectroscopic data, using formulas of second order vibrational perturbation theory in
normal coordinate space (VPT2). The QFF is expanded in the internal coordinates ∆R1, ∆R2 and
∆R3 (stretching coordinates for the first CH, CC and the second CH bond, respectively). Angular
coordinates are sin(θt) which results from the symmetry requirements as discussed in Section 4.1.3
and the torsional angle enters as cos(nτ). Bramley and Handy made two modifications to the SM
QFF in their work

• The angular coordinates are transformed from sin(θt) to θt. By use of the series expansion of
the sin-functions one finds that this affects only quartic force constants of type ftttt and ftttt′ .
The relations between the ftttt/ftttt′ (sin(θt) expansion) and the Ftttt/Ftttt′ (θt expansion)
are found to be [194]

Ftttt = ftttt − 4ftt (4.133)

and

Ftttt′ = ftttt′ − ftt′ (4.134)

• The stretching coordinates are transformed to so called morse coordinates, first advocated
by Dateo, Lee and Schwenke [361] for use in variational calculations

ys = [1− exp(−βs(∆Rs))] , (4.135)

where βs = −fsss/(3fss). Force constants with respect to the ys (Fij , Fijk and Fijkl) are
then combinations of the simple internal coordinate force constants (fij , fijk and fijkl). The
special choice of βs causes the diagonal cubic force constants Fsss with respect to the ys to
vanish.

Both these changes yield the morse transformed QFF SM(M) [211] and have also been applied in
the present work in order to facilitate comparison to the results by Bramley and Handy.
The {vmax

i } that define the primitive vibrational basis set were chosen after extensive convergence
tests to be {14, 9, 11, 9, 9} for the symmetric CH stretching vibration, CC stretching vibra-
tion, anti-symmetric CH stretching vibration, trans-bending vibration and cis-bending vibration,
respectively. The direct product basis using this parameters would contain 180000 basis functions
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and after pruning (cf. Section 4.2.3) a manageable size of 2785 is obtained. For the vibrational
angular momentum threshold a value of `0max = 5 has been chosen and is comparable to the 6
torsional basis functions (nbft = 6) used by Bramley and Handy [211]. These parameters provide
fundamental vibrational term energies converged to 0.01 cm−1. Calculations were performed up to
Jmax = 2 in both g- and u-symmetry. For the prediagonalisation (cf. Section 4.2.5) a fixed number
of K-diagonal eigenvalues of N red

K = 200 was employed.
From the rovibrational term energies Tv(J) approximate rotational constants Bv were calculated
from half the difference of J = 0 and 1 term energies for states of Σ symmetry, or from the
J = 1 and 2 difference divided by 4 for Π states. The latter are evaluated for e- and f -parity

Table 4.6: Calculated spectroscopic parameters (in cm−1) for HCCH obtained from C8v4 and by
Bramley and Handy (Ref. [211]) using the morse transformed quartic force field SM(M) [357].

State Symmetry Method Gv Bv qv

(0, 0, 0, 00, 00) Σ+
g C8v4 5766.436a 1.17662

Ref. [211] 5766.433a 1.1766

(0, 0, 0, 11, 00)e Πg C8v4 615.18 1.17526 0.00519
Ref. [211] 615.18 1.1753 0.00519

(0, 0, 0, 11, 00)f C8v4 615.18 1.18044
Ref. [211] 615.18 1.1804

(0, 0, 0, 00, 11)e Πu C8v4 732.61 1.17641 0.00471
Ref. [211] 732.61 1.1764 0.00471

(0, 0, 0, 00, 11)f C8v4 732.61 1.18112
Ref. [211] 732.61 1.1811

(0, 0, 0, 20, 00) Σ+
g C8v4 1237.67 1.17908

Ref. [211] 1237.67 1.1790

(0, 0, 0, 11, 1−1) Σ+
u C8v4 1331.51 1.18032

Ref. [211] 1331.50 1.1803
(0, 0, 0, 11, 1−1) Σ−u C8v4 1347.79 1.17998

Ref. [211] 1347.79 1.1800

(0, 0, 0, 00, 20) Σ+
g C8v4 1453.41 1.18120

Ref. [211] 1453.41 1.1810

(0, 1, 0, 00, 00) Σ+
g C8v4 1972.92 1.17046

Ref. [211] 1972.92 1.1704

(0, 1, 0, 11, 1−1) Σ+
u C8v4 3271.34 1.17248

Ref. [211] 3271.33 1.1723

(0, 0, 1, 00, 00) Σ+
u C8v4 3303.09 1.17271

Ref. [211] 3303.08 1.1724

(1, 0, 0, 00, 00) Σ+
g C8v4 3373.27 1.16988

Ref. [211] 3373.30 1.1698
a Zero-point energy.
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individually and the difference in these effective rotational constants is used to approximate the
`-type doubling parameter qv. Results are given in Table 4.6. Excellent agreement between the
present calculations and the values reported by Bramley and Handy [211] is observed. Differ-
ences in the vibrational term energies Gv are almost negligible except for the (1, 0, 0, 00, 00) state,
where the term energy calculated from the C8v4 eigenvalues is smaller by 0.03 cm−1. This can
probably be atributed to a slightly better convergence. The present calculations use 15 basis
functions for the symmetric stretching vibration compared to 10 functions which were included
in the calculations by Bramley and Handy [211]. Rotational parameters Bv show the same level
of agreement with all present values within the convergence range of 0.0003 cm−1 reported for
the results of Bramley and Handy [211]. The largest differences are observed for the Σ+

u pair of
states (0, 1, 0, 11, 1−1)/(0, 0, 1, 00, 00) which are in strong resonance. Since the Bv of these states
are mixed by this resonance, the small variations in the energetic position of these states lead to
the observed differences compared to the previous results. Finally, the `-type doubling parame-
ters qv for the fundamental bending vibrations exactly match those calculated by Bramley and
Handy [211].

Table 4.7: Convergence of calculated vibrational term energies Gv (in cm−1) for HCCH with
respect to the vibrational angular momentum threshold `0max.

∆Gv = GC8v4
v −GBH

v

state GBH
v `0max = 1 2 3 4 5

(0, 0, 0, 00, 00) 5766.43a 1.10 0.05 0.00 0.00 0.00

(0, 0, 0, 11, 00) 615.18 1.58 0.08 0.00 0.00 0.00

(0, 0, 0, 00, 11) 731.61 1.60 0.08 0.00 0.00 0.00

(0, 0, 0, 20, 00) 1237.67 7.29 0.53 0.04 0.01 0.00

(0, 0, 0, 11, 1−1)e 1331.50 68.96 3.38 0.22 0.02 0.01

(0, 0, 0, 11, 1−1)f 1347.79 83.22 4.53 0.31 0.03 0.01

(0, 0, 0, 00, 20) 1453.41 7.81 0.55 0.04 0.01 0.00

(0, 1, 0, 00, 00) 1972.92 1.22 0.06 0.01 0.00 0.00

(0, 1, 0, 11, 1−1)e 3271.33 15.88 1.47 0.11 0.02 0.01

(0, 0, 1, 00, 00) 3303.08 62.36 2.60 0.19 0.03 0.01

(1, 0, 0, 00, 00) 3373.30 1.10 0.03 −0.02 −0.02 −0.02
a Zero-point energy.
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The rather modest size of the primitve vibrational basis set allows to efficiently study the behaviour
of some of the thresholds that are used in a C8v4 calculation. Table 4.7 presents the results of
these tests for the vibrational angular momentum threshold `0max. Since this determines the size of
the diagonal K-blocks it is primarily a vibrational effect through the potential energy term V . Its
effect can be observed in the convergence of the C8v4 vibrational term energies towards the values
reported by Bramley and Handy [211] which is calculated as ∆Gv = GC8v4

v − GBH
v . Inspection

of Table 4.7 shows that for the zero-point energy (ZPE) and the singly excited vibrational states
convergence to within 0.1 cm−1 or better is achieved for `0max > 3. The strong dependence in the
∆Gv for the first excited anti-symmetric stretching state (0, 0, 1, 00, 00) is due to the resonance
with the (0, 1, 0, 11, 1−1) (Σ+

u ) state. As a general assumption a value of `0max > 2 max(`t) + 3−K
appears appropriate, where max(`t) is the largest value of `t in the states that one seeks to converge.
This pattern of convergence will vary depending on the magnitude of the off-diagonal potential
energy coupling blocks and thereby increasing or decreasing the value of `0max needed to converge
a max(`t) state. A possible indicator might be deduced from the size of the rtt′ spectroscopic
parameter, which determines the e/f -splitting for bend-bend combination states with vt = 1 and
vt′ = 1. According to VPT2 rtt′ is directly proportional to the normal coordinate force constant
φ

(−)

ttt′ t′
(cf. Section 2.3.2) which occurs in the potential energy via a term φ

(−)

ttt′ t′
q2
t q

2
t′ cos(2(χt′−χt)).

This shows that rtt′ can be used as a measure for the ∆` = 2 off-diagonal potential energy coupling
and a large value may indicate slow convergence with respect to `0max. Using the results of Table 4.6
r45 is calculated to be −8.4 cm−1 from both variational approaches. A VPT2 treatment employing
the SM force field yields a slightly lower value of −7.4 cm−1 and the corresponding experimental
value is -6.24 cm−1 [360].
Figure 4.17 shows the convergence of the rotational parameters ∆Bv = BC8v4

v −BBH
v with respect

to the prediagonalisation parameters N red
K (right panel) and Ered

cut (left panel) for the rovibrational
ground state and the singly excited states. The prediagonalisation scheme affects only contributions
due to the Coriolis operator and therefore the rotational parameters Bv. Both selection methods
converge to the same value above Ered

cut = 13750 cm−1 or N red
K = 125. An analysis of the calculation

timings reveals that for such low values Jmax ≤ 2 both approaches take approximately the same
amount of wall time e.g. the J = 2 diagonalisation took twall = 6766 and 7690 s for N red

K = 125

and Ered
cut = 13750 cm−1, respectively. The energy based selection is favoured for calculations that

target low lying vibrational states (e.g. fundamentals) but high rotational excitations. In this case,
the number of retained states N red

K will decrease/vanish for the higher K-blocks, since the lowest
lying K-diagonal eigenvalue increases in energy until it finally is above the threshold. Beyond
this value the size of the reduced Hamiltonian N red remains constant. This is not the case for
the fixed number selection, where N red increases linearly with J . However, the latter approach
has the advantage that the number of eigenvalues that need to be determined is exactly know
before entering the Davidson diagonalisation. For the energy based approach this value has to be
estimated, for example, by inspection of the diagonal matrix elements that are below Ered

cut .
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Figure 4.17: Convergence of the rotational parameters towards the BH [211] results with respect
to the applied prediagonalisation scheme. Left panel: Energy threshold for selecting K-diagonal
eigenvalues, right panel: fixed number of N red

K eigenvalues per K-diagonal block.

4.3.2 Boranimine - HBNH

The boranimine molecule HBNH in its Σ+ electronic ground state is the second example molecule
used to test the C8v4 program. There is little experimental spectroscopic results on this
tetraatomic system. Kawashima, Kawaguchi and Hirota [362] recorded the first gas phase infrared
spectrum of the ν3 fundamental band. The band origin and the ground state as well as excited
state rotational constants of the H11BNH isotopologue were determined to be ν3 = 1786.19308(72)

, B0 = 1.099335(81), and B3 = 1.093481(72) cm−1, respectively. In 2012 Brites and Léonard [359]
engaged in the first full dimensional variational calculation of HBNH based on explicitly corre-
lated coupled cluster calculations at the CCSD(T)-F12a level of theory in conjunction with an
aug-cc-pVTZ basis set. The resulting PEF was expanded in so called Simons-Parr-Finlan (SPF)
coordinates [363] Ss = (Rs − Re

s)/Rs for the bond stretches, deviations from linearity θt for the
bending of the H-B-N and B-N-H angles and τ the torsional (dihedral) angle between the planes
formed by the H-B-N and B-N-H subunits. Variational calculations were perfomed with the method
developed by Bramley and Handy [211,212] for J = 0 and J = 1.
The present calculations make use of a primitive vibrational basis set described by quantum num-
bers {vmax

i } = {17, 10, 9, 10, 14} for the N-H, H-B and B-N stretching vibrations and the B-N-H
and H-B-N bending vibrations, respectively. Pruning reduces the direct product basis set from
326700 to 4728. This is roughly 2 times larger than the basis set used for HCCH and is in line with
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Table 4.8: Comparison of rovibrational term energies (in cm−1) for H11BNH obtained from C8v4
and by Brites and Léonard [359].

J = 0 (e) (Σ+) J = 0 (f) (Σ−)

state C8v4 Ref. [359] state C8v4 Ref. [359]

(0, 0, 0, 00, 00) 5427.1a 5427.0a (0, 0, 0, 11, 11) 1185.5 1185.4

(0, 0, 0, 00, 20) 921.8 921.0 (0, 0, 1, 11, 11) 2953.8 2953.4

(0, 0, 0, 11, 11) 1185.2 1185.0 J = 1 (e) (Σ−)

(0, 0, 0, 20, 00) 1428.4 1428.4 state C8v4 Ref. [359]

(0, 0, 1, 00, 00) 1780.3 1780.2 (0, 0, 0, 00, 11) 465.9 465.9

(0, 0, 0, 20, 20) 2349.6 2347.3 (0, 0, 0, 11, 00) 723.1 723.2

(0, 1, 0, 00, 00) 2773.6 2773.5 (0, 0, 1, 00, 11) 2232.9 2232.7

(0, 0, 1, 11, 11) 2953.1 2952.5 (0, 0, 1, 11, 00) 2504.6 2504.6

(0, 0, 2, 00, 00) 3545.7 3545.2 (0, 1, 0, 00, 11) 3236.9 3236.7

(1, 0, 0, 00, 00) 3711.2 3711.0 (0, 1, 0, 11, 00) 3480.4 3480.4
a Zero-point energy.

the lower symmetry which requires more vibrational basis functions to describe the rovibrational
wave functions. Using the experience obtained from the acetylene calculations, the vibrational
angular momentum threshold was set to `0max = 4. This choice is based on the observation that
the vibrational `-type doubling parameter r45 is calculated to be 0.4 cm−1 from the variational
calculations by Brites and Léonard [359] and 0.1 cm−1 via VPT2. This is an order of magnitude
smaller than the value of r45 for HCCH. Therefore, a less pronounced coupling between the (`4, `5)

is expected for HBNH and `0max can be reduced compared to HCCH when calculating low lying
rovibrational state. Calculations were performed up to Jmax = 1 and the fixed K-diagonal eigen-
value scheme (N red

K = 200) was employed in the prediagonalisation.
Table 4.8 compares rovibrational term energies obtained with C8v4 and by Brites and L [359]. The
observed differences are small. For the fundamental vibrations the largest deviation of 0.2 cm−1 is
calculated for the (1, 0, 0, 00, 00) state. The (0, 0, 0, 11, 00) state is predicted by the C8v4 calcula-
tions to be slightly below the result by Brites and Léonard [359]. From the J = 1 and J = 0 term
energies rotational constants Bv can be calculated analogous to the acetylene treatment. Brites and
Léonard only quoted the ground state J = 1 ← 0 transition frequency of 65.555 GHz [359] which
corresponds to an approximate rotational constant of B0 = 1.09334 cm−1. The C8v4 calculations
exactly reproduce this value. For the (0, 0, 1, 00, 00) state a rotational constant B3 of 1.08762 cm−1

is calculated with C8v4, to be compared to the experimental value of 1.093481(72) cm−1. The
differences B3−B0 obtained from the C8v4 and in experiment are −0.00572 and −0.00585 cm−1,
respectively, which are in good agreement. Therefore, the rather large differences observed for B0

and B3 can be attributed to the error in Be and thus in the equilibrium geometry.
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Chapter 5

Propynylidynium (l-C3H+) –
the B11244 story retold

This chapter presents the results of a study on the rovibrational spectrum of l-C3H+. Using the
composite approach presented in Chapter 3 the development of a six-dimensional PEF for this
interesting molecular ion is detailed in Section 5.2. The results of variational rovibrational calcula-
tions using the C8v4 programm developed in Chapter 4 are presented in Section 5.3 which either
focus on the vibrational ground state (Section 5.3.1) or excited vibrational states (Section 5.3.2).

159
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5.1 Introduction

The linear propynylidynium l-C3H+ (X̃1Σ+) is part of the select group of interstellar cations.
Its discovery was accompanied by a controversy in the astrophysical community [364–369]. In
a line survey of the photo-dissociation region (PDR) of the Horsehead neubla Pety and cowork-
ers [364] detected 9 harmonically related lines using the IRAM 30 m telescope. The spectral
features were fit to the rotational term energy formula of a closed shell linear molecule according
to Equation (2.50). Including terms up to the sextic centrifugal distortion parameter they ob-
tained 11244.9512(15) MHz, 7.766(40) kHz and 0.56(19) Hz for B0, D0 and H0. On the basis of
somewhat older theoretical calculations [370–373] the carrier of the B11244 termed series of lines
was tentatively assigned to l-C3H+.
The assignment was subsequently questioned by Huang et al. [365] who carried out ab initio cal-
culations on l-C3H+. A composite QFF that combines CBS-extrapolated fc-CCSD(T) results with
corrections for scalar relativistic effects and core-valence correlation was developed and spectro-
scopic parameters for various isotopologues of l-C3H+ were obtained from VPT2 calculations.
Although the resulting ground state rotational constant of B0 = 11262.68 MHz was only 0.16 %
larger than the astronomical value, the quartic centrifugual distortion parameter De = 4.248 kHz
was too small by as much as 45.3 %. Huang et al. [365] compared the deviation of De with respect
to D0 in presumed related molecules HCN (3.5 %, [374,375]), HCC− (2.1 %, [376,377]) and HCCH
(2.27 %, [56, 378]) from which they concluded that l-C3H+ might not be the carrier of B11244.
Shortly afterwards Fortenberry et al. [379] suggested C3H− in its first excited 11A′ electronic state
as a possible candidate based on spectroscopic parameters calculated with an ab initio QFF ob-
tained at the same level of theory as employed for l-C3H+.
This triggered further astronomical studies on the origin of B11244 by McGuire et al. [366] who
detected B11244 toward Sgr B2(N), Sgr B2(OH) and TMC-1 as part of the PRebiotic Interstellar
MOlecular Survey (PRIMOS) [380]. The J = 6→ 5 and 7→ 6 transitions were observed at exactly
the same frequency as obtained by Pety and coworkers [364]. Additionally, the J = 1 → 0 and
J = 2→ 1 were detected leading to improved rotational parameters of B0 = 11244.9571(41) MHz,
D0 = 7.745(80) kHz and H0 = 0.49(37) Hz from a combined fit of all observed emission lines. In
a second study McGuire and coworkers [367] specifically searched for C3H− toward sources where
B11244 has previously been observed. However, no evidence of the necessary Ka = 1 transitions
of an asymmetric top where found which makes C3H− unlikely to be the source of B11244. The
assignment of B11244 to l-C3H+ was ultimately confirmed by laboratory studies carried out by
Brünken et al. [368]. Using a novel mass-selective action spectroscopy based on light induced
reactions in the millimeter-wave band the rotational spectrum of l-C3H+ was obtained. Transi-
tion frequencies for J = 1 → 2 to J = 4 → 5 were recorded that agree with the astronomical
data [364,366] to within their respective error bars.
Theory and astronomical observation were reconciled by the group of Botschwina [369]. Combin-
ing explicitly correlated coupled-cluster calculations with corrections for core-valence correlation,
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scalar relativity, higher-order correlation up to CCSDTQ and the DBOC in a composite scheme
they developed a force field for l-C3H+ which includes coupling between the internal coordinates
up to cubic terms. The corresponding VPT2 ground state rotational constant B0 = 11246.4 MHz
is in excellent agreement with the astronomical observation but the De = 4.229 kHz is again lower
by 45.5 %. The explanation for this large deviation can be realized when considering the VPT2 for-
mula for De (Equation (2.68)) which does not include contributions from bending vibrations. Much
like the floppy C3 molecule, l-C3H+ has a low-lying bending vibration (ω5 = 129.6 cm−1 [369]) as-
sociated with a shallow CCC bending potential. By correlating the ratio fD = D0(exp.)/De(theor.)
with the flatness of the CCC bending potential of C3N− (fD = 1.08), C3O (fD = 1.44), l-C3H+

(fD = 1.80) and C3 (fD = 7.26) Botschwina et al. [369] showed that the large fD is a consequence
of the floppiness of l-C3H+. The calculations were later extended [381] to a QFF that supports
anharmonic VPT2 vibrational frequencies which were calculated to be (in cm−1): ν1 = 3168.9,
ν2 = 2090.3, ν3 = 1186.7, ν4 = 783.0 and ν5 = 125.7.
Besides the work of the Botschwina group [369,381] there has been another theoretical treatment
of the rovibrational problem in l-C3H+. Mladenović [30] reported results of DVR(+R)+FBR
[222–224] calculations based on the Morse-transformed QFF constructed by Huang, Fortenberry
and Lee [365] and a Hamiltonian set up in internal coordinates. The latter are of diatom+diatom
type: three radial coordinates dHC (H-Ca), dCC (Cb-Cc) and RHC−CC the latter between the centers
of mass of the two diatom subunits, the angles θHC and θCC between the vectors di and RHC−CC

and the torsional coordinate χHC−CC. Calculations were performed with two different rovibrational
basis sets. The first one termed Basis1 is characterized by the basis set (nd1 , nd2) = (3, 5) for 2D
stretching basis functions and the truncation recoupling parameters Nmax

k = 200 and Nmax
z = 750

and the second larger set Basis2 employs (nd1 , nd2) = (4, 6), Nmax
k = 300 and Nmax

z = 900.
Rovibrational parameter were then obtained from calculations up to Jmax = 20. The vibrational
frequencies ν1 = 3167.8, ν2 = 2096.1, ν3 = 1192.5, ν4 = 784.4 and ν5 = 117.6 cm−1 agree well
with the VPT2 results of Huang, Fortenberry and Lee [365]. However, the calculated rotational
parameters B0 = 11271.84 MHz, D0 = 8.992 kHz and H0 = 9.894 reveal a surprisingly large
difference in H0 with respect to the astronomical value of H0 = 0.49 Hz.
Mladenović [30] also provided a comparison between theoretical and experimental line frequencies
of rotational transitions up to J = 11→ 12. A closer look at the J = 0→ 1 theoretical transition
frequencies 22544 MHz and 22548 MHz calculated with Basis1 and Basis2, respectively, reveals
the rather strange behaviour that the transition frequency increases when employing the larger
Basis2. The vibrational ground state (0, 0, 0, 00, 00) corresponds to the lowest possible eigenvalue
of the rovibrational Hamiltonian for every value of J . From the variational principle [201, 202]
follows that an increase of the basis set will always lead to a lowering of the term energy. Since
the size of Basis2 is larger than Basis1 in the DVR calculations, there is only one possible scenario
that can lead to this increase in the transition frequency while fulfilling the variational principle.
This would require both term energies to be lowered by the increased basis set but the shift in the
J = 0 level to be larger than that in J = 1 leading to a net increase in the energy difference of the
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two levels which appears unexpected. However, the preceding discussion clearly shows the need to
revisit the theoretical spectroscopy of l-C3H+.
A new full dimensional PEF for l-C3H+ will be presented in Section 5.2 that is based upon the
previous work of Stein et al. [381] but extends the employed coordinate ranges. Results of vari-
ational rovibrational calculations using the newly developed C8v4 program will be presented in
Section 5.3. Section 5.3.1 focuses on the accurate calculation of rotational parameters in the rovi-
brational ground state of l-C3H+ bases on the QFF developed by Huang, Fortenberry and Lee [365]
and the new composite PEF. In Section 5.3.2 results for excited vibrational states in l-C3H+ on the
basis of the composite PEF are presented which should provide reliable predictions of spectroscopic
parameters in such states.

5.2 An accurate composite PEF for l-C3H+

The work of Botschwina et al. [369] and Stein et al. [381] has shown that the main source of
error in the l-C3H+ QFF constructed by Huang, Fortenberry and Lee [365] is the neglect of
HC contributions to the PEF. The study of Stein et al. [381] yielded a QFF for l-C3H+ which is
sufficient for VPT2 calculations but not well suited for variational calculations. In order to support
the latter type of calculations an accurate description of the PEF over a large coordinate space is
required. Therefore, in the following a new PEF for l-C3H+ will be developed which extends upon
the earlier calculations of Stein and coworkers [381]. The detailed components of the PEF are:

• Explicitly correlated fc-CCSD(T)-F12b/VQZ-F12 (abbreviated F12b) is employed as ba-
sic contribtution. The CABS and DF sets use the Molpro defaults of VQZ-F12/OPTRI,
VQZ/JKFIT and AVQZ/MP2FIT and a geminal β of 1.0 Å−1 [124].

• The CV contribtuion is calculated with the CV6Z basis set (543 cGTOs) using conventional
CCSD(T).

• DKH2 CCSD(T) calculations with VQZ-DK and VQZ basis sets provide the SR contribution
to the PEF.

• The following HC contributions are included in the l-C3H+ PEF:

– The (Q)-(T) contribution is calculated as the CCSDT(Q) – CCSD(T) energy difference
using a VTZ basis set

– The Q-(Q) contribution employs the smaller VDZ basis set and is obtained from the
difference CCSDTQ – CCSDT(Q).

• The adiabatic DBOC for the main isotopologue of l-C3H+ is calculated at the ae-
CCSD/CVQZ level of theory using the Cfour [176] program.

Compared to the work of Stein et al. [381] the present PEF uses a different basic contribution that
does not apply triples scaling in the explicitly correlated coupled-cluster calculations. Arguments
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for this change can be drawn from close inspection of the basis set studies carried out by Botschwina
and coworkers on the equilibrium bond lengths and the harmonic vibrational frequencies in l-C3H+

(Table 2 and 3 in Ref. [369]). The fc-CCSD(T*)-F12b/VQZ-F12 harmonic frequencies appear to
show better agreement than the triples unscaled variant when compared with the results of standard
fc-CCSD(T) obtained with a large V8Z basis set. However, the latter set does not include k- and
l-type functions and the basis is therefore not exactly an octuple-zeta basis. Furthermore, the
harmonic frequencies calculated with standard fc-CCSD(T) also do not show a smooth convergence.
The effect of increasing the basis from V6Z to V7Z (no k-functions) is in all cases compensated
when further increasing to the V8Z basis set. Considering this, fc-CCSD(T)-F12b/VQZ-F12 seems
to provide somewhat better near-CBS results especially for ω2 where triples scaling results in the
largest difference of more than 1 cm−1.
A polynomial representation of the contributions (α) is used, according to

V (α) − V (α)
ref =

∑
ijklmn

C
(α)
ijklmn∆ri∆Rj1∆Rk2θ

l
4θ
m
5 cos(nτ) (l,m: even). (5.1)

In Equation (5.1) the internal coordinates are defined, following Section 4.1.3, as the H-Ca, Ca-Cb

and Cb-Cc bond stretching coordinates ∆r, ∆R1 and ∆R2, respectively, and the angular coor-
dinates θ4 (HCaCb deviation from linearity), θ5 (CCC deviation from linearity) and the dihedral
angle τ between the planes spanned by the HCaCb and CCC subunits (per definition τ = 0◦ for
cis-like displacements). The following coordinate ranges are employed:

−0.225 Å ≤ ∆r ≤ 0.375 Å

−0.150 Å ≤ ∆R1 ≤ 0.225 Å

−0.200 Å ≤ ∆R2 ≤ 0.300 Å

0◦ ≤ θ4 ≤ 70◦

0◦ ≤ θ5 ≤ 90◦

0◦ ≤ τ ≤ 180◦ .

These ranges span energies of ∼ 10000 cm−1 above the minimum in the diagonal cuts along
∆r, ∆R1, ∆R2 and θ4. For the diagonal cut along the shallow θ5 potential about 2700 cm−1

above the minimum are covered. The linear reference geometry is the same as used before [381]:
rref = 1.079 Å, Rref

1 = 1.236 Å and Rref
2 = 1.340 Å.

Table 5.1 presents the dependence of l-C3H+ equilibrium bond lengths and harmonic vibrational
frequencies on the smaller contributions. For the equilibrium bond lengths and stretching vibra-
tions this has been discussed by Stein et al. [381] and the numerical values given here are in virtual
agreement with the latter results. For the bending vibrations ω4 and ω5 the observed frequency
shifts due to the smaller effects match the trends observed for HCN and C3. The final equilibrium
distances re = 1.07896, Re

1 = 1.23540 and Re
2 = 1.34080 Å agree to within 0.00002, 0.00022 and
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Table 5.1: Influence of smaller contributions to the composite PEF on the equilibrium bond lengths
(in Å) and harmonic vibrational frequencies (in cm−1) for l-C3H+.
Contribution re Re

1 Re
2 ω1 ω2 ω3 ω4 ω5

F12b 1.08042 1.23806 1.34318 3303.0 2134.2 1184.0 802.8 123.7
CV −0.00131 −0.00301 −0.00357 +5.7 +9.3 +6.2 +4.2 +3.1
SR −0.00014 −0.00024 −0.00015 +0.2 ±0.0 −0.2 +0.2 −0.2
(Q)-(T) −0.00019 +0.00096 +0.00181 +0.1 −11.4 −10.1 −4.4 +1.9
Q-(Q) −0.00002 −0.00040 −0.00051 +0.9 +5.3 +4.0 +1.2 +1.1
DBOCa +0.00021 +0.00003 +0.00004 −1.0 ±0.0 ±0.0 +0.2 −0.1

Total 1.07896 1.23540 1.34080 3308.9 2137.4 1183.9 804.2 129.5
Stein et al. [381] 1.07898 1.23562 1.34086 3308.4 2135.8 1183.0 803.2 129.6
Huang et al. [365] 1.07896 1.23536 1.33984 3309.7 2142.7 1189.3 805.8 124.0

a Diagonal Born-Oppenheimer correction for the 12C3H+ isotopologue.

0.00006 Å with the results of Stein et al. [381]. Of course, the main difference in Re
1 originates

from the scaled perturbative triples fc-CCSD(T)-F12b contribution. These differences in the bond
length translate into differences in the composite harmonic vibrational frequencies of 0.5 cm−1,
1.6 cm−1 and 0.9 cm−1 for ω1, ω2 and ω3, respectively. These latter values again reflect the effect of
triples scaling (cf. also Tab. 3 in Ref. [369]). While the present CCC-bending harmonic frequency
is almost unchanged compared to the work of Stein and coworkers [381], a somewhat larger differ-
ence of 1.0 cm−1 is observed for the HCC bend due to triples scaling. This is even larger then the
effect of triples scaling observed for HCN. The differences obtained when comparing the present
composite results with those of Huang et al. [365] are all significantly larger than those presented
in the preceding discussion which is due to the neglect of higher-order correlation contributions in
the latter work.
Figure 5.1 depicts the angular dependence of the smaller contributions for l-C3H+. The top left
panel presents the θ4 (HCC bend) dependence. The largest contributions are provided by the HC
effects. (Q)-(T) shows a strong dependence on θ4 reaching a relative energy of about −250 cm−1 at
70◦. This is a surprisingly large effect. For comparison, in HCN (Q)-(T) reaches a relative contri-
bution of only −60 cm−1 in the same coordinate range (cf. Figure 3.2). The increased importance
of HC effects might be explained with a recent study on the collision of H+ and C3 by Chhabra
and Dhilip Kumar [382]. On the basis of ic-MRCI/AVQZ calculations ground and excited state
potential energy surfaces of H+ and rigid C3 (fixed at an approximate CC equilibrium distance
of 1.279 Å [326]) were calculated with respect to Jacobi-type coordinates for the distance of H+

to the CoM of C3 RH−CCC and the angular displacement of H+ around C3 γH−CCC. Inspection
of Figure 4 in Ref. [382] shows that there are low-lying excited electronic states whose energy
separation relative to the ground state decrease with increasing γH−CCC. While the angle γH−CCC

is not equal to θ4 this behaviour could still explain the observed trends in the HC contributions for
HCC bent l-C3H+. The top right graph of Figure 5.1 shows the dependence on the CCC bending
angle θ5. An almost exact coincidence with the θ dependence in C3 (Figure 3.11) is observed which
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Figure 5.1: Dependence of contributions to the composite l-C3H+ PEF on the angular coordinates
θ4 (HCC), θ5 (CCC) and τ (torsion).
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further suggest a close relationship between l-C3H+ and C3. Finally, the lower panel of Figure 5.1
depicts the dependence on the torsional angle τ for θ4 = θ5 = 2.5◦. The overall dependency is
weak with an F12b separation of only −1 cm−1 of the trans-like displacement with respect to the
cis form. The effects of the smaller contributions are even weaker and compensate each other to a
large degree, except for the Q-(Q) contribution which increases the cis/trans separation by about
10 %.
Coefficients C(α)

ijklmn in Equation (5.1) are determined by least-squares fitting of the individual
components. The F12b contribution is obtained from 3569 symmetry unique nuclear configura-
tions. Adding the smaller contributions to this, in total about 7200 individual ab initio energies
contribute to the composite PEF. The highest order diagonal polynomials employed in the fits are
10, 8, 8, 16 and 18 for ∆r, ∆R1, ∆R2, θ4 and θ5, respectively. Coupling terms are considered
up to sextic order in stretch-stretch, bend-bend and stretch-bend coupling. The rules outlined
in Section 4.1.3 are to be applied to the bending indices {l,m, n} from which follows that the
highest n allowed is 3 corresponding to a term with coefficient C(α)

000333. The PEF defined in this
way has 278 coefficients and yields a root-mean-square deviation of 0.002 cm−1 for fc-CCSD(T)-
F12b/VQZ-F12. CV, SR, HC and DBOC contributions require less terms for an accurate fit to
comparable accuracy. Individual coefficients contributing to the final composite PEF are given in
Table C.1 and C.2 of Section C and the PEF obtained after summation and transformation to the
minimum in Table C.3.
A direct comparison of harmonic spectroscopic properties in C3 and l-C3H+ is provided in Fig-

Figure 5.2: Comparison of equilibrium bond lengths Re (in Å), harmonic vibrational frequencies
ωi and normal coordinates lIαi for l-C3H+ and C3.
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ure 5.2. Addition of a proton contracts the Ca-Cb by 0.05857 Å and widens the Cb-Cc bond
by 0.04683 Å compared to centro-symmetric C3. The resulting CC bond lengths 1.23540 and
1.34080 Å are closer to what one would expect for a CC triple and a CC single bond for example in
C4H− (1.2221 Å and 1.3680 Å [16]). From the normal coordinates the 2 CCC vibrations in l-C3H+

can be clearly identified as a pseudo-antisymmetric and a pseudo-symmetric stretching vibration
for ω2 and ω3. The latter are shifted from the C3 stretching vibrations ω3 and ω1 by +31.3 cm−1

and and −22.8 cm−1, respectively. Because of the large mass differences between the proton and
the C3 unit as well as a small quadratic coupling force constant fθ4θ5 the two bending vibrations
are rather localized as a CH bending (ω4) and CCC bending (ω5). In fact, displacement of q5 has
almost no effect on the HCC angle θ4. The largest relative effect due to the proton is calculated
for the ω5 bending vibration which has a harmonic vibrational frequency of 129.5 cm−1 about 3
times the value in C3.
Going beyond the harmonic picture, Table 5.2 compares related anharmonic force constants with
respect to dimensionless normal coordinates in l-C3H+ and C3. The main differences occur for
force constants that couple stretching and bending normal modes as well as the quartic CCC
bending force constant. The exceptionally strong coupling between the symmetric stretching and

Table 5.2: Comparison of related anharmonic force constants (in cm−1) in the quartic dimensionless
normal coordinate force fields for l-C3H+ and C3.

l-C3H+ C3

ka,c Value Ratio Value kb,c

k222 41.252 − 0.000 k333

k223 −177.605 1.19 −211.964 k133

k233 −15.674 − 0.000 k113

k333 −43.888 0.96 −41.975 k111

k255 −133.333 − 0.000 k223

k355 383.084 3.43 1315.426 k122

k2222 4.709 1.09 5.131 k3333

k2233 14.266 1.25 17.789 k1133

k3333 2.080 0.83 1.717 k1111

k2255 −82.761 3.55 −293.533 k2233

k3355 −51.009 3.48 −177.462 k1122

k5555 71.624 10.12 724.835 k2222

a Indices for l-C3H+ correspond to: i = 2 pseudo-
antisymmetric stretch, i = 3 pseudo-symmetric
stretch and i = 5 CCC bending.
b Indices for C3 correspond to the usual ordering
for centro-symmetric linear molecules: i = 1 sym-
metric stretch, i = 2 bending and i = 3 antisym-
metric stretch.
c The cubic kijk and quartic kijkl force field pa-
rameters are defined according to Nielsen [184].
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bending vibration in C3 (k122 and k1122) is reduced by more than a factor of 3 in l-C3H+ (k355 and
k3355). A similar ratio is observed for k2255 which couples the pseudo-antisymmetric stretching
and CCC bending. The latter vibration is also much more harmonic in l-C3H+ compared to C3.
The ratio of harmonic frequency to diagonal quartic force constant in l-C3H+ is ω5/k5555 = 1.8

whereas in C3 it is as low as ω2/k2222 = 0.06. Figure 5.3 further investigates the coupling between
stretching and bending vibrations in l-C3H+ and C3. The bending potential with respect to q4 is
almost unaffected by the CCC stretching normal coordinates q2 and q3 but shows a pronounced
coupling with the CH stretching q1 which is a consequence of the curvilinear nature of the HCC
bending vibration. Comparing the q5 potentials for l-C3H+ (middle row) and C3 (bottom row)

Figure 5.3: Variations of normal coordinate bending potentials in l-C3H+ (first and second row)
and C3 (third row) with different stretching normal coordinates.



5.3. ROVIBRATIONAL CALCULATIONS FOR L-C3H+ 169

they appear rather similar. The CCC stretching normal coordinates have the same effect on the
q5 potential as one observes for the corresponding potential curves in C3. However, the effects
are less pronounced in l-C3H+ which is a direct consequence of the reduced stretch-bend coupling
force constants discussed above. From the preceeding discussion one can already make an impor-
tant prediction about the rovibrational spectroscopy of l-C3H+: while effects due to rovibrational
coupling as observed in C3 (cf. e.g. Figure 3.16) are to be expected, they will be less pronounced.

5.3 Rovibrational calculations for l-C3H+

The aim of the present investigation of l-C3H+ is to put the results of Mladenović [30] under
scrutiny. Therefore, the rovibrational calculations are required to be of the same quality as those
presented earlier. The primitive vibrational basis set contains 5570 functions per (`4, `5//`

′
4, `
′
5)-

block obtained from pruning the set {vmax
i } = {13, 10, 16, 9, 14}. This set is chosen following

extensive convergence tests on the Huang et al. QFF [365] that aim at converging the zero-point
energy to within 0.005 cm−1 and the fundamental stretching vibrations and bending overtones
to within 0.05 cm−1. The latter corresponds to the convergence claimed by Mladenović [30].
For the vibrational angular momentum threshold a value of `0max = 4 was chosen. Comparing
re
45 = 2.17 cm−1 calculated via VPT2 from the l-C3H+ QFF [365] with the value of −8.34 cm−1

obtained from the QFF for HCCH determined by Strey and Mills [357] justifies this choice. In
the latter case convergence is observed for `0max ≥ 3 (cf. Section 4.2.3 and Section 4.3). These
parameters yield a vibrational Hamiltonian for J = 0 of dimension 27850 in e-parity. While this
is an order of magnitude smaller than the primary basis employed by Mladenović (∼ 300000 to
700000) [30] it will be shown below that C8v4 results are in close agreement with the vibrational
term energies reported by Mladenović for the QFF [30,365]. In the following vibrational states will
be designate as (v1, v2, v3, v

`4
4 , v

`5
5 )K± where the sign is used to distinguish e (+) and f (−) parity

states for K = 0. Results for the QFF [365] and the new composite PEF obtained with C8v4

will be denoted as QFF-C8v4 and Comp-C8v4, respectively. The DVR based results reported by
Mladenović [30] are denoted as QFF-DVR accordingly.
Two series of J > 0 calculations are carried out. The first series focuses on the vibrational ground
state (0, 0, 0, 00, 00)0 and low-lying bending states (0, 0, 0, v`44 , v

`5
5 )K with v4 + v5 ≤ 2. These

calculations employ a maximum rotational quantum number of Jmax = 12. Because of the high
computational cost of integrating and diagonalising the K-diagonal blocks with the above given
vibrational basis set parameters the maximum value for the projection quantum number Kmax

is set to a value lower than Jmax. The offdiagonal Coriolis operator given in Equation (4.34)
only couples basis functions with ∆K = ±1. From a perturbational point of view, this means
that the lowest order contribution of T̂VR on a specific K-state is second order for coupling to
K ′ = K ± 1 states, third order for K ± 2 and so on. Therefore, the influence of K ′ = 2 basis
functions on the rovibrational term energies of the rovibrational ground state (K = 0) is expected
to be small and forK ≥ 3 should be negligible. On the other hand, for the bending statesKmax = 3
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Table 5.3: Comparison of theoretical vibrational term energies for l-C3H+ calculated from the HFL
QFF [365].

Gv / cm−1

State HFL-C8v4 HFL-DVRa VPT2

(0, 0, 0, 00, 00)0b 4204.62 4204.62 4201.85
(0, 0, 0, 00, 11)1 117.6 117.6 114.2
(0, 0, 0, 11, 00)1 784.4 784.4 782.3
(0, 0, 1, 00, 00)0 1192.4 1192.5 1194.1
(0, 1, 0, 00, 00)0 2095.6 2096.1 2096.3
(1, 0, 0, 00, 00)0 3168.0 3167.8 3167.8
a Values reported by Mladenović [30].
b Zero-point energy (ZPE).

is the minimum value required to include Coriolis contributions to spectroscopic parameters for
K = 2 states like the bend-bend combination state (0, 0, 0, 11, 11)2. The prediagonalisation of the
rovibrational Hamiltonian employs a fixed number of K-diagonal eigenvalues N red

K = 200. These
parameters then provide converged rotational parameters up to Hv as well as rotational `-type
doubling paramters up to qJJv in the target vibrational states.
The second series of calculations aims at the prediction of reliable parameters for excited stretching
vibrational states in l-C3H+ based on the new composite PEF. Because of the low-lying CCC
bending vibration the density of states in l-C3H+ for J > 0 is high which makes these calculations
rather expensive and Jmax is reduced to a value of 5 accordingly (Kmax = 3). The main reason
for the increased cost is an increase in the prediagonalisation parameter which is needed to obtain
converged rotational parameters for excited stretching states, especially the CH stretching state
(1, 0, 0, 00, 00)0 around 3170 cm−1. Analysis of the offdiagonal matrix elements in the contracted
Hamiltonian H̃(1,0) shows that in order to describe the Coriolis contribution to the former state
correctly it is necessary to include the K-diagonal state corresponding to (2, 0, 0, 11, 00)1. This can
be understood by considering the form of T̂VR which contains vibrational operators qsp̂±t and q±t p̂s

(cf. Equation (4.31)). The combinations have only offdiagonal matrix elements in the vibrational
quantum numbers with ∆vs = ±1 and simultaneously ∆vt = ±1 (the signs are to be understood
as independent). The strength of the coupling is then largely determined by the Coriolis coupling
constant ζst. For the CH stretching fundamental ζ14 = 0.98614 is the dominant contribution from
which directly follows the importance of the (2, 0, 0, 11, 00)1 and also (0, 0, 0, 11, 00)1. A systematic
analysis of all stretching vibrational states of interest yields a value of N red

K = 1000, in order to
converge the rotational parameters. As will be shown, term energies up to Jmax = 5 only allows
for the accurate determination of Bv and Dv.
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5.3.1 Ground state rotational parameters in l-C3H+

Table 5.3 compares the ZPE and the vibrational term energies of the singly excited states in l-
C3H+ determined from different rovibrational calculations and the Huang et al. QFF [365]. For
the bending states (0, 0, 0, 11, 00)1 and (0, 0, 0, 00, 11)1 the QFF-C8v4 and QFF-DVR results cor-
respond to the J = 1 term energy Tv(J) and thus are larger by Bv ∼ 0.4 cm−1 compared to
Gv. The present C8v4 result for the ZPE (4204.62 cm−1) perfectly reproduces the value deter-
mined by Mladenović [30], which gives confidence in the rotational parameters obtained with the
former method. A rather large difference of 2.77 cm−1 is observed for the QFF-C8v4 ZPE with
respect to the VPT2 result as a consequence of the anharmonicity of the system which makes a
VPT2 treatment at least questionable [369]. The composite PEF yields a ZPE of 4208.97 cm−1

and 4205.47 cm−1 from variational C8v4 and VPT2 calculations, resulting in a slightly larger
difference of 3.50 cm−1. For comparison, in C3 the difference in the ZPE between variational
calculations and VPT2 amounts to as much as 7.31 cm−1. Bending term energies agree to within
the quoted accuracy between the QFF-C8v4 and -DVR results. Minor differences can be observed
for the stretching term energies with the largest difference for the (0, 1, 0, 00, 00)0 state obtained
0.5 cm−1 lower than the DVR calculations. The normal mode q2 corresponding to the harmonic ω2

can be characterized as a pseudo-antisymmetric CCC stretching vibration (cf. Figure 5.2). This
motion expressed in terms of the diatom+diatom coordinates is highly coupled and all internal
radial coordinates dHC, dCC and RHC−CC change significantly with displacement according to q2.
Given the truncation/recoupling scheme employed Ref. [30] the difference in ν2 might be attributed
to a better description of this particular mode when employing normal coordinates and thus better
convergence.
Rotational transition frequencies J − 1→J in the vibrational ground state of linear molecules can
be obtained from Equation (2.90) upon inserting Equation (2.48) up to H0 according to

νrot = 2B0J − 4D0J
3 + 2H0J

3(3J2 + 1) (5.2)

Table 5.4 presents an overview of the experimental (astronomical & laboratory) rotational line fre-
quencies [364,366,368] known for l-C3H+ as well as theoretical values obtained with the Huang et
al. QFF [365] in this work using C8v4 (QFF-C8V4) and by Mladenović [30] (QFF-DVR) as well
as the results of the new composite PEF (Comp-C8V4). Comparing the QFF-C8v4 and -DVR
results shows that the C8v4 frequencies are uniformly lower than the DVR resulst with a difference
of 0.12 MHz already for the J = 0 → 1 transition up to as much as 15.45 MHz for J = 11 → 12.
Taking the difference 0.12 MHz as the approximate difference in the rotational parameters ∆B

for the two theoretical methods accounts for only 2.64 MHz (= 22∆B) of the difference in the
J = 11 → 12 transition frequency according to Equation (5.2). This shows that the centrifugal
distortion parameters D0 and H0 are also expected to differ between QFF-DVR and QFF-C8v4

results. In contrast, the Comp-C8v4 line frequencies show good agreement with the experimental
results. The J = 0 → 1 transition is predicted only 8.5 MHz higher than the astronomical value.
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Table 5.4: Comparison of experimental and theoretical rotational transition frequencies (in MHz)
for l-C3H+ in its vibrational ground state.
Transition Experiment Theoretical

J − 1→ J Petya McGuireb Brünkenc QFF-C8v4d QFF-DVRe Comp-C8v4d

1 22489.86 22543.52 22543.64 22498.36
2 44979.54 44979.54 45086.84 45087.07 44996.54
3 67468.87 67629.72 67630.08 67494.34
4 89957.63 89957.64 90171.95 90172.48 89991.59
5 112445.64 112445.65 112713.34 112714.09 112488.09
6 134932.73 134932.73 135253.65 135254.78 134983.67
7 157418.72 157418.72 157792.68 157794.43 157478.14
8 179903.43 180330.23 180332.98 179971.31
9 202386.68 202866.07 202870.42 202463.01
10 224868.30 225400.02 225406.79 224953.05
11 247348.13 247931.84 247942.19 247441.25
12 269826.00 270461.35 270476.81 269927.43

a Astronomical data by Pety et al. [364].
b Astronomical data by McGuire et al. [366].
c Laboratory data by Brünken et al. [368].
d This work, see text for details.
e Derived from spectroscopic parameters reported by Mladenovć [30].

Table 5.5: Comparison of rotational parameters and fit root-mean-squared (rms) deviations for
l-C3H+ in its vibrational ground statea obtained by different methods.

Method Kmax B0 / MHz D0 / kHz H0 / Hz rms / kHz

QFF-DVRb 12 11271.67 6.439 678
11271.84 8.992 9.89 35

QFF-C8v4c 0 11304.73 11.305 37.6
11304.73 10.873 0.42 0.1

1 11271.78 8.692 21.9
11271.78 8.746 0.24 2.7

2 11271.78 8.876 23.4
11271.78 8.935 0.26 1.2

Comp-C8v4d 3 11249.19 7.681 72.4
11249.20 7.741 0.15 0.4

exp.e 11244.96 7.745 0.49 31.9

a Theoretical results are obtained from calculations up to Jmax = 12.
b Results reported by Mladenović [30].
c Obtained using C8v4 (N red

K = 200) and the Huang et al. QFF [365].
d Obtained using C8v4 (N red

K = 200) and the composite PEF (Table C.3).
e Astronomical data by McGuire et al. [366].
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Based on this an, error in B0 of about 4.25 MHz is to be expected for the composite PEF.
Fitting the rotational line frequencies according to Equation (5.2) confirms the observations from
comparing the rotational transition frequencies. The results of such fits are given in Table 5.5 and
for QFF-C8v4 the convergence of the spectroscopic parameters with respect to Kmax is shown
additionally. Coriolis coupling reduces B0 by about 33 MHz. The lowering of B0 is straightfor-
ward to understand when remembering that the lowest J > 0 eigenvalues corresponding to the
(0, 0, 0, 00, 00)0 state will always be lowered upon inclusion of offdiagonal Coriolis matrix elements.
The effect on D0 and H0 is somewhat more complicated. The differences in the spectroscopic
parameters obtained from Kmax = 1 and 2 confirm the small indirect influence of K ≥ 2 basis
functions. Comparing QFF-C8v4 and QFF-DVR results shows that the latter grossly overesti-
mated H0. In fact, all rotational parameters obtained from the QFF-DVR calculations appear to
be too large. Furthermore, the numerical accuracy of the least-squares fits according to the root-
mean-squared (rms) deviation is at least one order of magnitude better for C8v4 results compared
to DVR fits. Using the composite PEF the ground state rotational parameter B0 is calculated to
be 11249.20 MHz only 4.26 MHz (0.04 %) larger than the astronomical value [366]. The centrifu-
gal distortion parameter D0 = 7.741 kHz is in excellent agreement with the value determined by
McGuire and coworkers [366] and the value of 0.15 Hz obtained for H0 is within the error bounds
of the experimental value H0 = 0.49± 0.37 Hz.
By combining the results of Table 5.4 and Table 5.5 another strong argument against the large H0

obtained by Mladenović [30] can be made. To this end, the quantity ∆νH is introduced according
to

∆νH =
νrot − 2B0J

−4J3
= D0 −

1

2
H0 −

3

2
H0J

2 . (5.3)

If the contribution of H0 can be neglected a graph depicting the variation of ∆νH with J will
yield a straight line corresponding to D0. In case the contribution of H0 is non-negligible ∆νH

will have a parabolic shape according to Equation (5.3). Figure 5.4 depicts the variation of ∆νH

with J for the experimental and the theoretical results. The B0 used in the calculation of ∆νH

corresponds to the respective value given in Table 5.5. For comparison the D0 values are depicted
by dashed lines. In the case of the QFF-C8v4, Comp-C8v4 and experimental result ∆νH in the
range J = 4 - 7 is close to the corresponding D0, as expected. Only for larger values of J a small
parabolic deviation of ∆νH from D0 can be observed indicating a small contribution from H0.
Notice that the experimental data originates from different sources. The employed experimental
line frequencies for J ≥ 5 are from Pety et al. [364], J = 3 and 4 from Brünken et al. [368] and
J = 2 from McGuire et al. [366] (J = 1 given in the latter study yields a ∆νH which is outside
the depicted range and is not shown). Jumps in ∆νH are observed when switching the underlying
experimental data set which indicates some inconsistencies between the different sources. However,
the data by Pety et al. is the most extensive and shows an internally consistent trend in ∆νH . As
is obvious from the QFF-DVR results in Figure 5.4 H0 determined by Mladenović [30] is way too
large with ∆νH showing a considerable parabolic shape already for low values of J .
Giving an explanation for the deviations in the DVR results is difficult since different factors may



174 CHAPTER 5. THE B11244 STORY RETOLD

Figure 5.4: Variation of ∆νH (see Equation (5.3) for definition) with J obtained from different sets
of ground state rotational line frequencies (Table 5.4 and rotational parameters (Table 5.5). The
dashed lines correspond to the respective value of the quartic centrifugal distortion parameter D0.

add to them. One possibility could be the underlying DVR truncation/recoupling algorithm. At
each step in such a scheme a Hamiltonian is obtained by neglecting certain degrees of freedom,
subsequently diagonalised and eigenpairs are selected based on a given criterium. The following
recoupling step then builds the Hamiltonian in an extended coordinate space using the eigenvalues
and -vectors of the truncation step to couple the previous subspace with the added coordinate space.
The accuracy of the off-diagonal coupling matrix elements in the extended Hamiltonian are largely
defined by the accuracy of the eigenvectors. The former can be interpreted as linear combinations of
the Hamiltonian matrix elements expressed in the primitive basis set with coefficients according to
the elements of the eigenvectors. This scheme is repeated multiple times which emphasizes the need
for accurate eigenvectors since numerical errors can be amplified by the subsequent steps. Another
factor adding to the accuracy of the truncation/recoupling scheme is the intrinsic coupling of the
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subspaces. The underlying assumption of the scheme is that each truncation of the Hamiltonian
is a more or less good approximation to the motion described by the Hamiltonian. Specifically,
for l-C3H+ Mladenović [30] used a diatom+diatom embedding of the rovibrational problem. This
assumes that the molecule is accurately described by a CH and CC subsystem coupled by a
intersystem coordinate RHC−CC. As has been pointed out before, this appears unfavourable for
l-C3H+ which behaves more like a C3 system with an added proton H+. However, the numerical
results presented above clearly show that the DVR results are less accurate than the C8v4 ones.

5.3.2 Vibrationally excited states in l-C3H+

The preceding discussion of the rotational parameters in the vibrational ground state has shown
that due to the low value of H0 high excitation in J is required to obtain a noticeable contribution
to the term energy. Since reliable term energies up to only Jmax = 5 are available for the excited
stretching states, the contribution of Hv can be neglected for these states. Following a similar
argument, the quartic centrifugal distortion parameter Dv appear to be reasonably well deter-
mined from this number of rational states. Except for the erroneous QFF-DVR results the ∆νH

graphs in Figure 5.4 reach the maximum corresponding to D0 for J ≈ 5. Since no experimental
results on vibrationally excited states in l-C3H+ are available for comparison the following results
stand as predictions of forthcoming experimental results. Based on the previous results for the
(0, 0, 0, 00, 00)0 state (Table 5.5) the rotational parameters of the excited states are expected to be
of similar accuracy.
The determination of spectroscopic parameters for bending states (0, 0, 0, v`44 , v

`5
5 )K± in l-C3H+

has to take into account `-type doubling and `-type resonance effects. This is rather straightfor-
ward for states involving excitation in only one of the bending modes and can be done with the
methods outlined in Section 2.3.4. The resulting least-squares fitting procedure then is the same as
employed for linear triatomic molecules where effective Hamiltonians are set up and diagonalized
for each J with matrix elements given by Equation (2.92) and Equation (2.93). For the bend-bend
combination states (0, 0, 0, 1`4 , 1`5)|`4+`5|± the vibrational `-type doubling has to be also taken
into account. This has been discussed by Amat and Nielsen [383] and the presented analysis fol-
lows their work. In an unsymmetrized basis the states belonging to (0, 0, 0, 1`4 , 1`5)|`4+`5|± with
{`t} = ±1 can be described in an abbreviated form by

∣∣∣v`44 , v
`5
5 , J, k

〉
which gives the 4 required

states:
∣∣11, 1−1, J, 0

〉
,
∣∣1−1, 11, J, 0

〉
,
∣∣11, 11, J,+2

〉
and

∣∣1−1, 1−1, J,−2
〉
. The effective Hamiltonian

using this basis functions has the following form [383]:



∣∣11, 11, J,+2
〉 ∣∣1−1, 11, J, 0

〉 ∣∣11, 1−1, J, 0
〉 ∣∣1−1, 1−1, J,−2

〉〈
11, 11, J + 2

∣∣ E2
45(J) KC

4 KC
5 0〈

1−1, 11, J 0
∣∣ KC

4 E0
45(J) KV

45 KC
5〈

11, 1−1, J 0
∣∣ KC

5 KV
45 E0

45(J) KC
4〈

1−1, 1−1, J − 2
∣∣ 0 KC

5 KC
4 E2

45(J)

 = H
(J)
eff . (5.4)
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where E|k|45 (J) are the diagonal matrix elements of the k = ±2 (±,±) and k = 0 (±,∓) states.
According to Equation (2.92) one has

E0
45(J) = G45 − x`4`5 + (B45 − γ`4`5)J(J + 1)

−D [J(J + 1)]
2

+H [J(J + 1)]
3 (5.5)

E2
45(J) = G45 + x`4`5 + (B45 + γ`4`5) [J(J + 1)− 4]

−D [J(J + 1)− 4]
2

+H [J(J + 1)− 4]
3
. (5.6)

The off-diagonal `-type resonance matrix elements KC
t are given by

KC
4 =

1

2

[
q4 + qJ4 J(J + 1) + qJJ4 J2(J + 1)2

]√
[J(J + 1)] [J(J + 1)− 2] (5.7)

KC
5 =

1

2

[
q5 + qJ5 J(J + 1) + qJJ5 J2(J + 1)2

]√
[J(J + 1)] [J(J + 1)− 2] . (5.8)

Comparison with Equation (2.93) shows that the previous two equations describe the `-type reso-
nance of the individual bending modes contributing to the combination state. Notice that Amat
and Nielsen [383] neglect the explicit K dependence in their offdiagonal matrix elements. The
vibrational `-type doubling matrix element KV

45 is given by [383]

KV
45 =

〈
v`44 , v

`5
5

∣∣∣ Ĥeff

∣∣∣ v`4±2
4 , v`5∓2

5

〉
=

1

4
r45

√
[v4 ± `4 + 2] [v4 ∓ `4] [v5 ∓ `5 + 2] [v5 ± `5]

= r45 , (5.9)

where r45 contains additional rotational and centrifugal distortion contributions according to

r45 = r0
45 + rJ45J(J + 1) + rJJ45 J

2(J + 1)2 + rJJJ45 J3(J + 1)3 . (5.10)

In Equation (5.10), the spectroscopic paramter r0
45 can be compared with the VPT2 parameter re

45.
The parameters rJ45, rJJ45 and rJJJ45 are responsible for differences in Bv, Dv and Hv, respectively,
between the +/− parity states for K = 0. This becomes obvious when factoring the Hamiltonian
into said parity blocks by introducing the symmetrized wave functions |11, 11, J,K,±) following
Equation (4.79) which yields



|11, 11, J, 2,+) |11, 11, J, 0,+) |11, 11, J, 0,−) |11, 11, J, 2,−)

(11, 11, J, 2,+| E2
45(J) KC

4 +KC
5 0 0

(11, 11, J, 0,+| KC
4 +KC

5 E0
45(J) +KV

45 0 0

(11, 11, J, 0,−| 0 0 E0
45(J)−KV

45 KC
4 −KC

5

(11, 11, J, 2,−| 0 0 KC
4 −KC

5 E2
45(J)

 = H
(J)
eff . (5.11)
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Table 5.6: Calculated spectroscopic parameters for low lying bending states in l-C3H+.a

State Gv / cm−1 Bv / MHz Dv / kHz Hv / Hz

(0, 0, 0, 00, 11)1 128.90 11403.35 11.451 0.32
(0, 0, 0, 00, 20)0 252.65 11560.65 15.017 0.45
(0, 0, 0, 00, 22)2 258.22 11560.05 14.758 0.42
(0, 0, 0, 11, 00)1 788.86 11253.15 7.593 0.14
(0, 0, 0, 11, 11)0+ 915.57 11407.41 11.018 0.08
(0, 0, 0, 11, 11)0− 918.00 11406.92 11.090 0.43
(0, 0, 0, 11, 11)2 919.29 11407.91 11.054 0.26
(0, 0, 0, 20, 00)0 1562.43 11260.59 7.673 0.14
(0, 0, 0, 22, 00)2 1582.65 11254.98 7.222 0.11

State qt qv / MHz qJv / kHz qJJv / Hz

(0, 0, 0, 0, 1) q5 68.57 −2.993 0.19
(0, 0, 0, 0, 2) q5 70.63 −3.144 0.17
(0, 0, 0, 1, 0) q4 14.19 −0.092 0.002
(0, 0, 0, 1, 1) q4 16.10 −4.750 13.74
(0, 0, 0, 1, 1) q5 65.93 −9.729 21.49
(0, 0, 0, 2, 0) q4 12.26 −0.181 0.65

a Obtained from C8v4 variational calculations (N red
K = 200) up to

Jmax = 12 using the present l-C3H+composite PEF (Table C.3).

The results of least-squares fits to the variational rovibrational term energies for bending states
(0, 0, 0, v`44 , v

`5
5 )K± with v4 + v5 ≤ 2 are given in Table 5.6. In the upper part the parameters that

enter the diagonal matrix elements are given. Compared to the ground state parameters (Table 5.7)
excitation of the CCC bend v5 leads to larger changes in the rotational parameters then the HCC
bend which is in line with the higher flexibility of the former mode. From the vibrational term
energies for the overtone and bend-bend combination states effective anharmonicity constants (in
cm−1) can be calculated following Equation (2.49): x`4`4 = 5.04, x`5`5 = 1.39, x`4`5 = 1.25 cm−1 as
well as the vibrational `-type doubling parameter r0

45 = −1.22 cm−1. While the variational results
for the x`t`t′ parameters are in good agreement with the VPT2 result of 5.23, 1.55 and 1.29 cm−1,
the vibrational `-type doubling parameter re

45 = 5.23 cm−1 predicts a too large splitting (= 2re
45)

by a factor of about 5 and even more severe reverses the energetic order of (+) and (−) parity
states.
In the lower part of Table 5.6 the determined `-type doubling parameters are quoted. These
parameters take the phase choice made for the rovibrational wave functions into account. This
issue has been discussed in detail by Yamada [346] and Sebald [384]. The qv values only vary
slightly with respect to the bending quantum numbers. From the normal coordinate transformed
potential VPT2 values of qe

4 = 13.21 MHz and qe
5 = 65.28 MHz are obtained which are in quite

good agreement with the qv values given in Table 5.6. The centrifugal distortion contribution
qJv shows larger variations with vibrational excitation. For the bending fundamentals ν4 and ν5

the `-type doubling parameters qJt obtained with VPT2 (Equation (2.72)) are qJ4 = −0.02 kHz



178 CHAPTER 5. THE B11244 STORY RETOLD

Figure 5.5: Effects of `-type resonance in the bend-bend combination states (0, 0, 0, 1`4 , 1`5)K±

of l-C3H+. The left part gives an term energy diagram for rovibrational states up to J = 2.
Dashed lines correspond to intermediate vibrational levels which are shown to display the different
energy terms contributing to the rovibrational term energies. The right part gives the splitting
∆Eqv between the diagonal matrix elements of the effective Hamiltonian Equation (5.11) and the
variationally calculated term energies. The inset shows the expectation value of 〈|K|〉 evaluated
with the eigenvectors of the effective Hamiltonian.

and qJ5 = −2.5 kHz which again agree rather well with the variational results of −0.092 kHz
and −2.992 kHz, respectively. For C3, on the other hand, still larger differences between VPT2
and variational results are observed as a consequence of the larger anharmonicity of the bending
motion. For example, qe

2 = 247.10 MHz in C3 is larger by a factor of about 1.45 compared to qv in
the ν2 fundamental (Table 3.13).
Amat and Nielsen [383] have shown that the separation between the diagonal matrix elements in
the individual parity blocks for the (0, 0, 0, 1`4 , 1`5)K± states (Equation (5.11)) for low values of
J is approximately ∆± = 2x`4`4 ∓ r0

45 − 4B and thus independent of J . The rotational parameter
of the bend-bend combination states expressed in units of cm−1 is B ∼ 0.38 cm−1. Using the
parameters x`4`4 and r0

45 given above one obtains |∆+| = 2.2 and |∆−| = 0.24 cm−1 showing that
the diagonal elements corresponding to |11, 11, J,K,−) functions are very close in energy. Up to
J = 2 the energetic situation is graphically displayed in the left part of Figure 5.5. Notice that
on the shown energy scale the splitting of the ∆± states due to `-type resonance is not resolvable.
Nevertheless, since the offdiagonal matrix elements KC

4 ±KC
5 scale with ∼ J(J + 1) [383] a quite

pronounced `-type resonance for the f -block states is observed. This is depicted on the right
side of Figure 5.5 where the splitting ∆Eqv between the diagonal matrix elements of the effective
Hamiltonian Equation (5.5) and Equation (5.6) and the respective variational rovibrational term
energy is given. The shift ∆Eqv for the f (−) levels is larger by a factor of about 3 compared to
the e (+) levels at J = 12. Due to the non-linear J scaling of the `-type resonance matrix elements
this difference will increase with J . The mixing of the K = 0 and K = 2 states is obvious from
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the J-dependence of the expectation value 〈|K|〉 evaluated from the eigenvectors of the effective
Hamiltonian shown in the inset in Figure 5.5. The situation is similar to the 2ν`2 bending overtone
in C3 which also shows a strong `-type resonance due to the difference of the vibrational term
energies (≈ 4x``) of the (0, 20, 0) and (0, 22, 0) state being almost zero (cf. Table 3.12 and the
inset of Figure 3.12). In contrast, in l-C3H+ the 2νK5 bending overtone does not show such a
strong resonance, since a) x`5`5 = 1.39 leads to a significantly larger splitting of the l-C3H+ 2νK5

sub-levels and b) |q5| ≈ 70 MHz in l-C3H+ is less than half the size of |q2| ≈ 170 cm−1 observed
in C3 [295,322].
Table 5.7 summarizes spectroscopic parameters determined for low-lying stretching states in l-
C3H+ obtained from calculations with N red

K = 1000 and up to Jmax = 5. For the vibrational
term energies results obtained from a VPT2 treatment are also given in Table 5.7 for comparison.
Differences between variational and and VPT2 results are small for the singly excited states except
for the pseudo-symmetric CCC stretch fundamental (0, 0, 1, 00, 00)0. In the latter case a difference
of 1.96 cm−1 is observed and might be explained by a stronger coupling of q3 and the CCC bending
q5 which is not well reproduced in a VPT2 treatment (cf. Figure 5.3). The VPT2+Fermi approach
for the ω1 ≈ ω2 + ω3 type-I Fermi resonance yields a quite good agreement in the vibrational
term energies compared to the variational result indicating that the perturbational treament is
applicable at least for the lowest dyade (1, 0, 0, 00, 00)0//(0, 1, 1, 00, 00)0.
Interestingly, ∆Bv = Bv −B0 for both CCC stretching states is calculated to be negative which is
different from C3 where a sign change is observed between the ∆Bv of the two stretching vibrations.
A more detailed discussion of the rotational parameters Bv and their differences with respect to
the ground vibrational state will be given below. The centrifugal distortion parameters show a
pronounced dependence on vibrational excitation. For the pseudo-symmetric stretching vibration
a decrease in Dv by a factor of 0.38 is observed whereas for the pseudo-antisymmetric stretching
vibration the results show an increase by a factor of 1.20. The direction of these changes are the
same as observed for C3.

Table 5.7: Calculated spectroscopic parameters for selected stretching states in l-C3H+.
Gv / cm−1

State VPT2a C8v4b Bv / MHz Dv / kHz

(0, 0, 1, 00, 00)0 1187.59 1185.63 11198.20 2.569
(0, 1, 0, 00, 00)0 2091.81 2092.00 11188.93 9.344
(0, 0, 2, 00, 00)0 2370.45 2364.22 11146.69 7.029
(1, 0, 0, 00, 00)0 3169.86 3170.15 11215.85 7.982
(0, 1, 1, 00, 00)0 3267.79 3267.51 11133.91 11.937
(0, 2, 0, 00, 00)0 4166.20 4165.39 11137.26 10.466

a VPT2+Fermi vibrational term energies.
b Obtained from C8v4 variational calculations (N red

K = 1000) up
to Jmax = 5 using the present l-C3H+composite PEF (Table C.3).
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The rotational parameters of the CH stretching fundamental are influenced by the Fermi-resonance
coupling to (0, 1, 1, 00, 00)0+, therefore a more detailed analysis of this resonance is warranted. The
resonance in the Fermi-dyad (1, 0, 0, 00, 00)0 (State I) and (0, 1, 1, 00, 00)0 (State II) can be modeled
by setting up effective Hamiltonian matrices for each value of J according to

H
(J)
eff =

(
TI(J) KF

KF TII(J)

)
, (5.12)

where TI(J) and TII(J) are the deperturbed rovibrational term energies which follow the expansion
in Equation (2.92)

TI(J) = GI +BIJ(J + 1)−DIJ
2(J + 1)2 (5.13)

TII(J) = GII +BIIJ(J + 1)−DIIJ
2(J + 1)2 (5.14)

and the offdiagonal matrix element KF is given by Equation (2.78) within VPT2. It is not possible
to determine deperturbed GI, GII and KF from the perturbed (variational) term energies alone.
Given the good agreement of the VPT2 results in Table 5.7 for the two states in question, KF

is fixed to the VPT2 value of φ123/
√

8 = −20.64 cm−1. Matrix diagonalisation and least-squares
fitting then yield the deperturbed spectroscopic parameters which are summarized in Table 5.8
together with the corresponding VPT2 vibrational term energies. Comparison of the deperturbed
vibrational term energies shows excellent agreement between VPT2 and variational results with
absolute differences of 0.32 and 0.69 cm−1 for GI and GII, respectively. The mixing ratio based
on the eigenvectors obtained for J = 0 in the variational calculation is 96:4 which is in virtual

Table 5.8: Spectroscopic parameters for the lowest l-C3H+ Fermi resonance pair (1, 0, 0, 00, 00)0+

(State I) and (0, 1, 1, 00, 00)0+ (State II) obtained from VPT2 and variationally calculated term
energies.

Perturbed Deperturbed

VPT2a VPT2 + Fermib Variationalc VPT2+Fermid Variationalc

GI / cm−1 3139.84 3170.15 3169.86 3174.42 3174.74

GII / cm−1 3297.81 3267.51 3267.79 3263.23 3262.92

φ123 / cm−1 −58.39 [−58.39]e

BI / MHz 11215.85 11220.11

DI / kHz 7.982 7.637

BII / MHz 11133.91 11129.64

DII / kHz 11.937 12.283
a Standard VPT2 treatment.
b VPT2 treatment accounting for the Fermi resonance.
c Results obtained from variational calculations.
d Matrix elements in the VPT2+Fermi treatment.
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Table 5.9: Differences of rotational parameters in various vibrational states of l-C3H+ and C3

obtained from VPT2 and variational calculations using the present composite PEFs.
∆Bv l-C3H+ C3

(0, 0, 0, 00, 00)0+ (0, 00, 0)

VPT2 −81.78 −527.33
Variational −81.80 −333.62
Difference −0.02 +193.71

(0, 0, 0, 11, 00)1 (0, 0, 0, 00, 11)1 (0, 11, 0)

VPT2 +3.19 +151.27 +599.53
Variational +3.95 +154.29 +353.70
Difference +0.76 +3.02 −245.83

(0, 0, 1, 00, 00)0+ (0, 0, 2, 00, 00)0+ (1, 00, 0) (2, 00, 0)

VPT2 −37.82 −75.64 −101.43 −202.86
Variational −51.00 −102.51 −168.60 −269.60
Difference −13.18 −26.87 −67.17 −66.74

(0, 1, 0, 00, 00)0+ (0, 2, 0, 00, 00)0+ (0, 00, 1) (0, 00, 2)

VPT2 −74.67 −149.34 −42.98 −85.96
Variational −60.27 −111.95 +147.14 +775.47
Difference +14.40 +37.39 +190.12 +861.43

(1, 0, 0, 00, 00)0+ (0, 1, 1, 00, 00)0+ (1, 00, 1)

VPT2 −32.87 −112.49 −144.41
Variational −29.09 −119.55 −191.93
Difference +3.78 −7.06 −47.52

agreement with the mixing predicted by a VPT2+Fermi treatment.
An important question to consider is how accurate the fundamental transition frequencies are with
respect to the convergence of the PEF description. Compared to the triatomic molecules presented
in Chapter 3 the l-C3H+ composite approach does not include the effect of pentuple excitations
via the P-Q contribution. On the basis of the triatomic results an estimate of the importance of
connected pentuples might be derived. Considering the P-Q corrections for ω1 and ω2 in HCN and
for ω1 and ω3 in C3 an error of ±1 cm−1 for the corresponding fundamental transitions in l-C3H+

appears to be appropriate. Furthermore, the close agreement of angular dependence of smaller
contributions with respect to θ5 in l-C3H+ and θ in C3 (compare Figure 5.1 and Figure 3.11,
respectively) suggests that P-Q is only of minor importance for the CCC bending in l-C3H+.
Nevertheless, a conservative error estimate of ±1 cm−1 should be attributed to ν5. In summary
the fundamental transitions of l-C3H+ νi (in cm−1) are predicted to occur at ν1 = 3170 ± 1,
ν2 = 2092± 1, ν3 = 1186± 1, ν4 = 789± 1 and ν5 = 129± 1.
With the rotational parameters determined for l-C3H+ a closer look at the vibrational dependence
of Bv is possible. Table 5.9 compares ∆B0 = Be − B0 and ∆Bv = Bv − B0 obtained from varia-
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tionally determined term energies and by VPT2 for both l-C3H+ and C3. As has been pointed out
before, within VPT2 the two differences can be calculated from the rotation-vibration interaction
constants αi according to ∆B0 = −∑i diαi and ∆Bv = −∑i viαi. ∆B0 for l-C3H+ shows almost
perfect agreement between VPT2 and variational calculations. In contrast, for C3 a significant
difference of +193.71 MHz can be observed. Similarly, in the singly excited l-C3H+ HCC bending
state (0, 0, 0, 11, 00)1 the difference between variational calculations and VPT2 does not exceed
1 MHz and for the low lying CCC bending fundamental a difference of +3.02 MHz is obtained.
The latter value is much smaller and of opposite sign than the difference for ν2 in C3 where the
variational ∆Bv is lower by as much as −245.53 MHz compared to VPT2. These observations are
a direct consequence of the more harmonic CCC bending vibration in l-C3H+ which appears to be
better described by VPT2 than ν2 in C3.
The differences between VPT2 and variational ∆Bv for stretching states are considerably smaller
in l-C3H+ than in C3. Nevertheless, the signs of the differences for the CCC stretching vibrations
in l-C3H+ are the same as for the corresponding C3 vibrations which follows from the similar al-
beit weaker stretch-bend couplings. A closer look at the changes when increasing the CCC stretch
excitations from 1 to 2 shows an interesting effect. From ∆Bv = −∑i viαi one would expect the
differences between variational and VPT2 results to also be a linear function of the vs. This is
approximately the case for l-C3H+ with excitation in a single CCC vibrational mode but not for C3

which shows a significant non-linear behaviour for low values of vs (cf. also Figure 3.16). In addi-
tion, the variational ∆Bv in l-C3H+ also does not show linear behaviour for the combination state
(0, 1, 1, 00, 00)0 which based on the differences for (0, 0, 1, 00, 00)0 (−13.18 MHz) and (0, 1, 0, 00, 00)

(+14.40 MHz) should show nearly no difference between VPT2 and the variational result. Instead
a difference of −7.06 MHz is obtained.
Adding up the variational ∆Bv for the singly excited vibrational states multiplied by the degen-
eracy factors di yields an approximate value ∆B0 value of −88.06 MHz which is different form
the value obtained directly from the variational B0. This further indicates that the agreement of
the variational and perturbational ∆B0 is due to error compensation effects in the VPT2 treat-
ment. Similar to C3, these observations directly influence the quality of an equilibrium geometry
determined from experimental results alone which relies on effective rotation-vibration interaction
constants αi determined from appropriate experimental ∆Bv values.
The preceding discussions confirms the presumption of Section 5.2 that rovibrational coupling in
l-C3H+ will show similar albeit weaker effects compared to C3. Furthermore, the vibrational term
energies presented in Tables 5.6 and 5.7 also reveal difficulties in the description of the vibrational
motion when a standard VPT2 treatment is applied together with an accurate PEF. Clearly,
l-C3H+ is a rather flexible tetraatomic linear molecule evident from the fD ratio of 1.80 which re-
quires an exact treatment of the rovibrational problem beyond VPT2. A complete understanding
of l-C3H+ thus will always require theoretical insight from variational calculations since the usual
(perturbation theory-based) formulae for the interpretation of experimental rovibrational spectra
are to be applied with caution.
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Chapter 6

Summary and Outlook

Theoretical rovibrational spectroscopy of small polyatomic molecules yields some of the most im-
pressive agreements between experiment and theory. By using modern ab initio methods the PES
and EDMS can be sampled to very high accuracy yielding rovibrational transitions and intensi-
ties that allow direct comparison with experimental spectra. This enhances the capabilities of
experimentalists to unambigously assign new lines in an otherwise dense spectrum which contains
spectral signatures of a variety molecular species such as obtained from, e.g., plasma sources [29].
A theoretical treatment can also provide insight into aspects which are difficult address from an
experimental point of view. This thesis has presented methods to generate such information ab
initio with an accuracy of ∼ 1 cm−1 in the fundamental transition frequencies and a few MHz in
rotational constants Bv. For triatomic systems this has become a routine task in recent years [189].
Here, the focus is on linear species which require a special treatment of the rovibrational prob-
lem [191] compared to nonlinear systems [182]. Ultimately, the aim is to extend the range of
accessible molecular systems to a larger size.

In Chapter 3 a high-level composite procedure for the generation of near-equilibrium PEFs and
EDMFs has been applied to two molecules of great interest to astrochemistry, i.e., hydrogen cyanide
HCN and the tricarbon molecule C3. In the case of HCN three different PEFs were calculated
that are based on either single-reference coupled-cluster theory or the multi-reference methods
MRCI and MR-ACPF. The comparison with experimental data for the fundamental transitions in
HCN [17] has shown that the single-reference based PEF is clearly superior to the MR based ones
due to the need for higher-order excitations in the treatment of dynamical correlation. Large-scale
variational calculations with the single-reference PEF for states up to the first overtone of the CH
streching vibrational (2, 00, 0) and rotational excitation up to J = 20 yield almost perfect agree-
ment with experiment. This encompasses term energies for more than 3000 rovibrational states.
The results have also been compared to those presented by Makhnev and coworkers [241]. The
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latter work claimed that it is important to include non-Born-Oppenheimer effects in order to reach
an accuracy of better than 1 cm−1 in the vibrational term energies. However, the comparison with
the present results has shown that the non-Born-Oppenheimer contribution used by Makhnev et
al. is better understood as an empirical correction to the PEF which accounts for shortcomings of
their ab initio treatment. The intensities of rovibrational transitions calculated with the present
composite EDMF show excellent agreement with experiment even better than the second work
by Makhnev et al. [242] on rovibrational intensities in HCN. Specifically, the strong CH stretch-
ing and bending fundamental intensities are within about 2 % of the experimental results [21, 23]
thereby reaching the accuracy of experimental intensity measurments. The weak CN fundamental
band with its R-branch intensity minimum is accurately reproduced by the present calculations.
A comparison of different PEF/EDMF combinations has shown that the smaller contributions are
of utmost importance to give quantitative agreement with experiment.
The rovibrational spectrum of C3 is dominated by anharmonic effects and strong rovibrational
coupling. As such it demonstrates the necessity of an appropriate treatment of the rovibrational
problem. The PEF developed for C3 when employed in variational calculations yields accurate
spectroscopic parameters for low-lying vibrational states in comparison with experiment. In con-
trast, spectroscopic parameters obtained with VPT2 using the composite PEF results in large
discrepancies with the variational calculations and the experimental data. The high quality of the
PEF has allowed accurate predictions of spectroscopic parameters for virbational states previously
unobserved. In a combined experimental/theoretical study 14 new nν1 +mν3 combination bands
of C3 (n ≤ 7 and m ≤ 3) have been detected in a supersonically expanding propyne plasma [29].
The excellent agreement between theory and experiment has justified taking the understanding of
the rovibrational coupling present in C3 a step further. This has been achieved by investigating the
angular dependence of the integrated vibrational density (Equation (3.14)). The main conclusion
is that, depending on the degree of stretching vibrational excitation (v1 symmetric stretching, v3

antisymmetric stretching) the vibrational wave function accumulates most of its density at larger
(v3 > v1) or smaller (v1 > v3) deviations from linearity θ. Because of the growing bent character
when the antisymmetric stretching vibration is excited C3 might be referred to as a "quasi-bent"
molecule.

With a reliable composite approach established the next step in this thesis has been the develop-
ment of a variational program for tetraatomic linear molecules as presented in Chapter 4 where
the implementation of C8v4 is discussed. The choice for a normal coordinate based approach is
predicated on the requirement of simultaneously treating vibrational and rotational motion. While
internal coordinates often lend themselves to a description of vibrational motion which converges
faster in variational calculations [211], the kinetic coupling to the rotational motion is complicated.
In case of normal coordinates, which are determined from the Eckart conditions [135], rovibrational
coupling is minimized. In fact, the term T̂VR in the Hamiltonian (Equation (4.34)) is the small-
est contribution to the rovibrational term energy. The variational ansatz of the presented C8v4

program employs harmonic oscillator and rigid rotor product functions. The intricacies of the
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vibrational angular momentum require a careful study of the symmetry properties of the rovibra-
tional coordinates. This has lead to the formulation of a symmetry adapted basis which takes full
account of the linear molecule MS groups C∞v(M) or D∞h(M).
An efficient integration of the Hamiltonian has been a key point in the development of C8v4. A
typical calculation employs about 3000 to 5000 primitive vibrational basis functions and a max-
imum vibrational angular momentum `Kmax = 4 + K which results in a J = 1 Hamiltonian with
ca. 60000 basis functions. This requires the accurate evaluation of more than 5 · 108 matrix ele-
ments. Kinetic energy matrix elements can be evaluated either by analytical integration or by a
fast mixed numerical/analytical scheme based on a truncated resolution-of-the-identity approach.
The main computational bottleneck is the calculation of potential energy matrix elements which
is performed by six-dimensional Hermite-Laguerre-Chebyshev-Gaussian integration. To reduce
the computational effort a hybrid parallelisation has been implemented. It is based on the block
structure of the Hamiltonian Matrix and uses MPI to distribute the blocks between the nodes of
a compute cluster as well as OMP to parallelize the the numerical integration. Analysis of the
achievable speed ups has allowed to decide between three different implementations of the latter
parallelisation.
The diagonalisation of the Hamiltonian presents another bottleneck in the variational procedure.
The largest Hamiltonian encountered in this work contains about 180000 basis functions. Using
double precision arithmetics this requires ca. 240 GB of memory to keep the full Hamiltonian in
RAM which clearly is too large. Therefore, the block structure of the Hamiltonian is again exploited
to reduce this number. As pointed out before, the Coriolis operator T̂VR is the smallest contribu-
tion to the term energy and it only couples basis functions with ∆K = ±1. A prediagonalisation
scheme has been presented which reduces the diagonalisation of the full Hamiltonian for a given
value of J > 0 into J + 1 diagonalisations of the much smaller K-diagonal blocks. Using a subset
of the eigenvalues in each block the Coriolis matrix is transformed to the new basis. This effects a
reduction of the rovibrational basis set by at least two orders of magnitude. The reduced Hamil-
tonian is then small enough to employ conventional dense matrix diagonalisers. The convergence
of this approximation is controlled by the number of retained K-diagonal eigenvalue/eigenvector
pairs. To further reduce the wall time of the diagonalisation, the K-block contraction is based on
Davidson diagonalisation as implemented in the Jadamilu diagonaliser [355, 356] and has been
hybrid parallelised with respect to the required matrix-vector products. Finally, example calcula-
tions for two linear tetraatomic molecules have been presented which confirm the correctness of
the implementation.
Going forward, further developments of the C8v4 program are possible and would allow the ex-
tension of its capabilities. In its current implementation the rovibrational wave functions are only
used to analyze the character of the rovibrational states and assign approximate quantum numbers
on the basis of the dominant harmonic basis functions. The next step would be the calculation
of squared transition dipole moments and the theoretical groundwork for this has been presented
in Section 2.3.4. The main problem will be the calculation of the matrix elements of the dipole
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operator (Equation (2.97) - (2.99)) over vibrational basis functions. By analysis of the expansion
of dipole moment with respect to the normal coordinates the non-vanishing matrix elements can be
worked out which could be evaluated by analytical integration. In the expansion of the EDMF in
internal coordinates Ra similar treatment as presented in Section 4.1.3 is needed for the evaluation
of the matrix elements. This raises an important challenge in the implementation of rovibrational
intensities for tetraatomic linear molecules. With respect to the calculation of term energies the
potential energy which requires numerical integration only contributes to the K-diagonal blocks.
This is not the case for dipole moment matrix elements where |∆K| = 1 matrix elements are
required. Furthermore, the non-linear transformation between Rand the normal coordinates does
not allow to neglect certain blocks characterized by combinations (`4, `5,K//`

′
4, `
′
5,K ± 1) since

these matrix elements will not be zero as was the case with the Coriolis operator T̂VR. The num-
ber of blocks to be evaluated with the numerical integration is then significantly larger than for
the potential energy. A possible solution to this would be to transform the internal coordinate
EDMF into a truncated normal coordinate expansion beforehand. This is similar to the approach
commonly used in VPT applications where an arbitrary order internal coordinate PEF expansion
is transformed to a finite order expansion normal coordinates. By truncating the EDMF in normal
coordinates at a certain order n also the number of blocks to be evaluated is reduced since now
matrix elements for certain combinations with ∆`5 > n will vanish. Even more significant, the
non-zero matrix elements can now be evaluated by fast analytical integration.
With the methods developed here, variational calculations beyond tetraatomic molecules becomes
at least theoretically possible. Increasing the number of atoms from 4 to 5 results in 3Nat−5 = 10

vibrational degrees of freedom where 3 are bending modes. The latter will thus result in 3 phase
angles χt. Analogous to the tetraatomic case, only two differences of the χt are independent and
one of the angles can be chosen to have the same effect on the rigid molecule as the Euler angle
χ′ (cf. Figure 4.5). The problem is again the Sayvetz condition Equation (2.43) which leads to a
non-direct product basis structure (not all combinations of the `t are allowed for a given K). Re-
stricting the vibrational angular moment quantum numbers for K = 0 to a value of, e.g., `0max = 2

the number of possible (symmetry adapted) triples (`5, `6, `7) is 10: (0, 0, 0) as well as three permu-
tations each for the combinations (1,−1, 0), (2,−2, 0) and (2,−1,−1). The number of K-diagonal
blocks is therefore almost the same as for the J = 1 e-parity Hamiltonian in the tetraatomic case
with `0max = 2 which on top of it has been shown to be insufficient for converged results. Further
taking the required size of the primitive vibrational basis set for converged calculations in the 5
atoms case into account, which could very well reach more 10000 even for pruned basis sets, renders
an FBR approach and employing a Davidson diagonalisation unfeasible. A possible solution would
be to change to an iterative eigensolver based on the Lanczos algorithm [385]. The eigenvalues of
the Hamiltonian are then obtained by evaluating matrix-vector products with the ML so called
Lanczos-vectors to obtain a ML ×ML tridiagonal matrix whose eigenvalue spectrum will contain
the eigenvalues of the Hamiltonian. The matrix-vector products can then be formulated using for
example Gaussian integration and does not require the explicit construction of the Hamiltonian
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matrix. The Lanczos approach has been applied for example by Carrington et al. to calculate
rovibrational energy levels of methane isotopologues [386] with 3Nat − 6 = 9 vibrational degrees
of freedom.

Combining the results of Chapter 3 and 4 a study of the rovibrational spectrum of l-C3H+ has been
presented in Chapter 5. The C8v4 calculations employing the QFF constructed by Huang et al.
[365] conclusively show that the large H0 value obtained by Mladenović [30] is incorrect. Building
up on the previous work by Stein et al. [381] a full dimensional PEF designed for variational
applications has been developed. Variational calculations yield ground state rotational parameters
in excellent agreement with the astronomical data. For B0 a deviation of less than 5 MHz is
obtained. A close relation to "floppy" C3 has been established by comparing the PEFs in both
systems. This has lead to the assumption that l-C3H+ behaves in a sense like a “protonated” albeit
much more rigid C3. An analysis of the rotational parameters and their vibrational dependence has
confirmed this expectation. The calculated spectroscopic parameters of excited vibrational states
should facilitate forthcoming experimental spectroscopic studies on l-C3H+. In fact, the propyne
plasma spectrum presented in Section 3.2.4 might contain transitions due to l-C3H+. The ν1 CH
fundamental around 3170 cm−1 and its Fermi-resonance partner ν2 + ν3 around 3268 cm−1 are
well within the covered spectral range and the work of Stein and coworkers [381] suggested that ν1

should have an intensity that allows detection. A search for l-C3H+ ν1 and ν2 + ν3 rovibrational
transitions in the propyne plasma spectrum informed by the results of Chapter 5 is currently
underway in the Linnartz group. A positive detection of l-C3H+ will provide another example of
the spectacular interplay of theory and experiment in rovibrational spectroscopy.
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Appendix A

Supplemental material for hydrogen cyanide
HCN

Table A.1: Basic (F12b), core-valence correlation (CV), scalar relativisitic (SR) and diagonal Born-
Oppenheimer correction (DBOC) contributions to the composite potential energy function (PEF)
of HCN.a

C
(α)
ijk

i j k F12bb CVc SRd DBOCe

1 0 0 −0.00116912 0.00100145 0.00010266 −0.00011639

2 0 0 0.20197271 −0.00077485 −0.00014996 0.00009530

3 0 0 −0.20226561 0.00048225 0.00009294 −0.00004102

4 0 0 0.13690782 −0.00020827 −0.00004920 0.00002056

5 0 0 −0.07977321 0.00003107 0.00002147 −0.00001110

6 0 0 0.04237125 −0.00006207 −0.00000625 0.00000458

7 0 0 −0.02139640 0.00016910 0.00000156 0.00000066

8 0 0 0.01108800 −0.00009889 −0.00000072 −0.00000132

9 0 0 −0.00540408

10 0 0 0.00150074

0 1 0 −0.00425664 0.00587638 0.00043363 −0.00001886

0 2 0 0.60802976 −0.00492761 −0.00098987 0.00009279

0 3 0 −0.70969765 0.00277814 0.00077348 −0.00005046

0 4 0 0.50776193 −0.00124084 −0.00038498 0.00002713

0 5 0 −0.29401587 0.00060466 0.00018278 −0.00002112

0 6 0 0.15249370 −0.00023131 −0.00005919 0.00000871

To be continued on next page
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Table A.1: Continued from previous page

i j k F12bb CVc SRd DBOCe

0 7 0 −0.07242603

0 8 0 0.02426924

0 0 2 0.03009963 −0.00004358 −0.00003170 0.00001473

0 0 4 0.00021860 0.00001484 0.00000115 −0.00000613

0 0 6 −0.00017278 0.00002471 −0.00000332 0.00000005

0 0 8 0.00006146 −0.00003429 0.00000130 0.00000111

0 0 10 −0.00021166 0.00002342 −0.00000039 −0.00000018

0 0 12 0.00014270 −0.00000807 0.00000006

0 0 14 −0.00005041 0.00000112

0 0 16 0.00000691

1 1 0 −0.01371002 0.00019761 −0.00004437 −0.00001665

2 1 0 0.00377003 −0.00007075 −0.00001313 0.00002854

1 2 0 0.00019181 −0.00008152 −0.00000324 0.00000522

3 1 0 −0.00464398 0.00002832 0.00001233 −0.00002290

2 2 0 −0.00649325 0.00005696 0.00001493 0.00000089

1 3 0 −0.00042478 0.00005849 0.00001033 −0.00000903

4 1 0 0.00329840 −0.00002191 −0.00000359 0.00001222

3 2 0 0.00529365 −0.00003040 −0.00000345 0.00000120

2 3 0 0.00385709 −0.00004097 −0.00000679 0.00000178

1 4 0 0.00142678 −0.00004995 0.00000383 0.00000114

5 1 0 −0.00186863

4 2 0 −0.00281481

3 3 0 −0.00286502

2 4 0 −0.00210504

1 5 0 0.00023421

1 0 2 −0.00889861 0.00002914 −0.00000251 0.00000416

0 1 2 −0.04013552 0.00008586 0.00001439 0.00002023

2 0 2 −0.00067626 −0.00001290 0.00001198 −0.00000184

1 1 2 0.01030078 0.00001699 0.00000372 −0.00002349

0 2 2 0.00481683 0.00000457 0.00001780 0.00000307

3 0 2 0.00107576 0.00002210 −0.00000250 0.00000089

2 1 2 0.00182247 −0.00003150 −0.00000148 0.00001007

1 2 2 −0.00446861 0.00007289 −0.00000801 −0.00000346

0 3 2 −0.00114852 0.00018544 0.00002221 −0.00001252

1 0 4 −0.00188796 0.00005543 −0.00000256 0.00000425

To be continued on next page
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Table A.1: Continued from previous page

i j k F12bb CVc SRd DBOCe

0 1 4 0.00554524 0.00003633 0.00000519 −0.00000869

4 0 2 −0.00030827

3 1 2 −0.00047450

2 2 2 −0.00109319

1 3 2 0.00154862

0 4 2 0.00437934

2 0 4 0.00084497

1 1 4 −0.00222173

0 2 4 0.00092086

a PEF coefficients are quoted in atomic units; see Equation (3.1) for their
definition. Expanded around rref = 1.0650 and Rref = 1.1532 Å.
b F12b: fc-CCSD(T)-F12b/VQZ-F12.
c CV: [ae-CCSD(T) − fc-CCSD(T)]/CV6Z.
d SR: DKH2-fc-CCSD(T)/VQZ-DK − fc-CCSD(T)/VQZ.
e DBOC (H12C14N): ae-CCSD/CVQZ.
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Table A.2: Higher-order correlation (HC) contributions to the composite potential energy function
(PEF) of HCN.a

C
(α)
ijk

i j k (Q)-(T)b Q-(Q)c P-Qd S-Pe

1 0 0 0.00001656 0.00003551 −0.00000513 0.00000023

2 0 0 −0.00012037 0.00002797 −0.00001052 −0.00000077

3 0 0 −0.00005433 0.00001108 0.00000093 −0.00000012

4 0 0 −0.00001877 0.00000349 −0.00000091 −0.00000018

5 0 0 0.00002552 0.00000062 0.00000011 0.00000005

6 0 0 −0.00001548 0.00000311 −0.00000028 −0.00000005

7 0 0 −0.00001766 0.00000225 −0.00000028

8 0 0 0.00001711 −0.00000202 0.00000024

0 1 0 −0.00231045 0.00068707 −0.00047291 −0.00005284

0 2 0 −0.00233715 0.00111642 −0.00064471 −0.00010642

0 3 0 −0.00157199 0.00123247 −0.00048098 −0.00013748

0 4 0 −0.00068487 0.00094603 −0.00007575 −0.00011589

0 5 0 0.00014061 0.00031730 0.00025199 −0.00003663

0 6 0 0.00068692 −0.00037527 0.00027632 0.00005990

0 0 2 −0.00027652 0.00002211 −0.00003391 −0.00000344

0 0 4 0.00003220 −0.00000673 0.00000641 0.00000052

0 0 6 0.00000146 0.00000390 0.00000436 0.00000027

0 0 8 0.00002932 −0.00000250 −0.00000205 0.00000004

0 0 10 −0.00001766 0.00000038 0.00000102

0 0 12 0.00000322 −0.00000004 −0.00000019

1 1 0 0.00008995 0.00008351 −0.00000570 −0.00000038

2 1 0 −0.00017042 0.00008109 −0.00002818 −0.00000399

1 2 0 0.00008031 0.00006565 −0.00000553 −0.00000437

3 1 0 −0.00006965 0.00001529 0.00000597 −0.00001338

2 2 0 −0.00003580 0.00009297 −0.00004259 −0.00001343

1 3 0 0.00008277 −0.00002113 −0.00000205 −0.00000836

4 1 0 −0.00003348 0.00001277 −0.00000396

3 2 0 0.00003861 −0.00001864 0.00000725

2 3 0 0.00008994 0.00003045 −0.00002588

1 4 0 0.00001126 −0.00010597 0.00001074

1 0 2 −0.00004013 −0.00001047 −0.00000581 −0.00000204

0 1 2 −0.00037033 0.00003508 −0.00007082 −0.00000965

To be continued on next page
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Table A.2: Continued from previous page

i j k (Q)-(T)b Q-(Q)c P-Qd S-Pe

2 0 2 −0.00000039 −0.00000812 −0.00001072 0.00000375

1 1 2 −0.00002702 −0.00003541 −0.00001239 0.00000530

0 2 2 0.00007870 −0.00002443 0.00002807 −0.00001297

3 0 2 0.00004240 −0.00000556 0.00000506

2 1 2 0.00001359 −0.00004104 −0.00002000

1 2 2 −0.00005089 −0.00008531 0.00001248

0 3 2 0.00055855 −0.00015168 0.00024902

1 0 4 −0.00003655 −0.00000129 −0.00000446

0 1 4 0.00019657 −0.00000426 0.00006011

a PEF coefficients are quoted in atomic units; see Equation (3.1) for their
definition. Expanded around rref = 1.0650 and Rref = 1.1532 Å.
b (Q)-(T): [CCSDT(Q) − CCSD(T)]/VTZ.
c Q-(Q): [CCSDTQ − CCSDT(Q)]/VDZ.
d P-Q: [CCSDTQP − CCSDTQ]/VDZ.
e S-P: [CCSDTQPS − CCSDTQP]/VDZ.
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Table A.3: Basic contributions to the multi-reference based composite potential energy functions (PEF) of HCN.a

C
(α)
ijk C

(α)
ijk

i j k MR-F12b AC-F12c i j k MR-F12b AC-F12c

1 0 0 0.00056545 0.00078610 2 2 0 −0.00498928 −0.00492849

2 0 0 0.20198573 0.20202689 1 3 0 −0.00143568 −0.00137559

3 0 0 −0.20239983 −0.20250331 4 1 0 0.00271637 0.00267088

4 0 0 0.13642868 0.13662391 3 2 0 0.00498593 0.00526697

5 0 0 −0.08023057 −0.07992443 2 3 0 0.00303279 0.00306132

6 0 0 0.04409142 0.04220139 1 4 0 −0.00015833 −0.00027818

7 0 0 −0.02167561 −0.02151887 5 1 0 −0.00247533 −0.00253062

8 0 0 0.00589788 0.01108851 4 2 0 −0.00168987 −0.00342995

9 0 0 −0.00524868 3 3 0 −0.00303016 −0.00322601

10 0 0 0.00115256 2 4 0 −0.00269636 −0.00292343

0 1 0 −0.01026532 −0.01003347 1 5 0 0.00312699 0.00295688

0 2 0 0.60860430 0.60866085 1 0 2 −0.01035744 −0.01034393

0 3 0 −0.70963826 −0.70971306 0 1 2 −0.03738453 −0.03755904

0 4 0 0.50454728 0.50458590 2 0 2 −0.00134155 −0.00126944

0 5 0 −0.28997715 −0.28989707 1 1 2 0.01422533 0.01413685

0 6 0 0.14994384 0.14990963 0 2 2 0.00273121 0.00275336

0 7 0 −0.06857133 −0.07029248 3 0 2 0.00090315 0.00112877

0 8 0 0.02096874 0.02351016 2 1 2 0.00362616 0.00358693

0 0 2 0.02855601 0.02862887 1 2 2 −0.00724080 −0.00712036

0 0 4 0.00032039 0.00033183 0 3 2 −0.00221073 −0.00216466

0 0 6 0.00005305 −0.00001734 1 0 4 −0.00156230 −0.00151914

0 0 8 −0.00009742 0.00005242 0 1 4 0.00597078 0.00606814

0 0 10 −0.00006607 −0.00023504 4 0 2 0.00105439 −0.00024560

0 0 12 0.00004725 0.00015086 3 1 2 −0.00029645 −0.00023622

0 0 14 −0.00001914 −0.00005194 2 2 2 −0.00013900 −0.00124620

0 0 16 0.00000293 0.00000713 1 3 2 0.00069770 0.00045718

1 1 0 −0.01693529 −0.01684458 0 4 2 0.01004115 0.00994179

2 1 0 0.00206170 0.00204767 2 0 4 0.00159004 0.00111664

1 2 0 0.00350451 0.00341900 1 1 4 −0.00255435 −0.00272873

3 1 0 −0.00528095 −0.00531778 0 2 4 0.00083351 0.00094154

a PEF coefficients are quoted in atomic units; see Equation (3.1) for their definition.
Expanded around rref = 1.0650 and Rref = 1.1532 Å.
b MR-F12: fc-MRCI-F12+Q/VQZ-F12 (full-valence CASSCF reference).
c AC-F12: fc-MRACPF-F12/VQZ-F12 (full-valence CASSCF reference).
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Table A.4: Adiabatic composite potential energy functions for H12C14N.a

Cijk

i j k Comp Ib Comp IIc Comp IIId

2 0 0 0.20083522 0.20341705 0.20379582

3 0 0 −0.20159018 −0.20391158 −0.20432057

4 0 0 0.13654049 0.13769472 0.13810569

5 0 0 −0.07964376 −0.08118152 −0.08097406

6 0 0 0.04209174 0.04458740 0.04277888

7 0 0 −0.02092684 −0.02167672 −0.02172555

8 0 0 0.01126159 0.00579748 0.01118998

9 0 0 −0.00629466 −0.00529770

10 0 0 0.00200900 0.00115256

0 2 0 0.60002232 0.59588523 0.59636403

0 3 0 −0.70695780 −0.69959688 −0.70007376

0 4 0 0.50612613 0.49825356 0.49858352

0 5 0 −0.29243803 −0.28630712 −0.28640873

0 6 0 0.15240104 0.14810170 0.14812758

0 7 0 −0.07254773 −0.06802385 −0.06971668

0 8 0 0.02548365 0.02096874 0.02351016

0 0 2 0.02974019 0.02841196 0.02849742

0 0 4 0.00026095 0.00035530 0.00036647

0 0 6 −0.00013791 0.00007496 0.00000457

0 0 8 0.00004028 −0.00012980 0.00002004

0 0 10 −0.00018243 −0.00004298 −0.00021195

0 0 12 0.00011994 0.00003920 0.00014282

0 0 14 −0.00004250 −0.00001802 −0.00005082

0 0 16 0.00000590 0.00000293 0.00000713

1 1 0 −0.01340313 −0.01679122 −0.01670455

2 1 0 0.00358819 0.00203271 0.00203020

1 2 0 0.00024451 0.00344789 0.00336871

3 1 0 −0.00470311 −0.00527118 −0.00531339

2 2 0 −0.00643242 −0.00494233 −0.00489502

1 3 0 −0.00031599 −0.00140020 −0.00134501

4 1 0 0.00324981 0.00273789 0.00269041

3 2 0 0.00528407 0.00494873 0.00526314

2 3 0 0.00388754 0.00298526 0.00302069

To be continued on next page
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Table A.4: Continued from previous page

i j k Comp Ib Comp IIc Comp IIId

1 4 0 0.00128691 −0.00013235 −0.00025306

5 1 0 −0.00168461 −0.00247533 −0.00253062

4 2 0 −0.00266485 −0.00168987 −0.00342995

3 3 0 −0.00267942 −0.00303016 −0.00322601

2 4 0 −0.00194360 −0.00269636 −0.00292343

1 5 0 0.00020335 0.00312699 0.00295688

1 0 2 −0.00892587 −0.01027039 −0.01025913

0 1 2 −0.04043397 −0.03729857 −0.03748147

2 0 2 −0.00070119 −0.00134308 −0.00127635

1 1 2 0.01026294 0.01414902 0.01406059

0 2 2 0.00481749 0.00276376 0.00279089

3 0 2 0.00116731 0.00090713 0.00115280

2 1 2 0.00184090 0.00360565 0.00355942

1 2 2 −0.00462987 −0.00717150 −0.00704412

0 3 2 −0.00015910 −0.00188705 −0.00184968

1 0 4 −0.00187218 −0.00152528 −0.00147986

0 1 4 0.00593142 0.00601852 0.00611836

4 0 2 −0.00009980 0.00105439 −0.00024560

3 1 2 −0.00059637 −0.00029645 −0.00023622

2 2 2 −0.00074087 −0.00013900 −0.00124620

1 3 2 0.00108839 0.00069770 0.00045718

0 4 2 0.00566913 0.01004115 0.00994179

2 0 4 0.00075011 0.00159004 0.00111664

1 1 4 −0.00309489 −0.00255435 −0.00272873

0 2 4 0.00202416 0.00083351 0.00094154

a PEF coefficients are quoted in atomic units; see Equa-
tion (3.1) for their definition.
b Equilibrium geometry: re = 1.06518 and Re = 1.15325 Å.
c Equilibrium geometry: re = 1.06304 and Re = 1.15493 Å.
d Equilibrium geometry: re = 1.06275 and Re = 1.15482 Å.
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Table A.5: Basic (F12b), core-valence correlation (CV) and scalar relativisitic (SR) contributions
to the parallel component of the composite electric dipole moment function (EDMF) of HCN.a

D
(α)
ijk

i j k F12bb CVc SRd

0 0 0 −1.18949174 −0.00053667 0.00117691

1 0 0 −0.24399323 −0.00209792 0.00027657

2 0 0 0.00548214 −0.00064584 0.00022127

3 0 0 0.02012629 0.00008863 0.00014486

4 0 0 0.02178174 0.00008292 −0.00002121

5 0 0 −0.00464751

6 0 0 0.00488381

7 0 0 −0.00578131

8 0 0 0.00262302

0 1 0 0.06797994 −0.00178167 0.00123295

0 2 0 0.13203384 0.00036472 −0.00037834

0 3 0 −0.00678975 −0.00034491 −0.00016132

0 4 0 −0.00221881 −0.00031823 0.00002894

0 5 0 0.01541951 −0.00193781 −0.00007748

0 6 0 −0.00143455

0 0 2 0.32648394 0.00012526 −0.00007472

0 0 4 −0.01540756 0.00002052 0.00000286

0 0 6 0.00508354 −0.00002174 −0.00000408

0 0 8 −0.00073688

0 0 10 0.00041841

0 0 12 −0.00010365

1 1 0 −0.00020553 −0.00077624 0.00040331

2 1 0 0.03564703 −0.00008437 0.00019467

1 2 0 0.05167953 0.00058743 −0.00030395

3 1 0 0.02799005

2 2 0 0.01516749

1 3 0 −0.02424434

4 1 0 0.00345838

3 2 0 −0.00711140

2 3 0 −0.01710382

1 4 0 0.03665014

5 1 0 −0.01662741

To be continued on next page



232 APPENDIX A. SUPPLEMENTAL MATERIAL FOR HYDROGEN CYANIDE HCN

Table A.5: Continued from previous page

i j k F12bb CVc SRd

4 2 0 −0.00635046

3 3 0 −0.01596217

2 4 0 0.01707007

1 5 0 −0.02721503

1 0 2 0.06673151 0.00049727 −0.00008968

0 1 2 0.06989130 −0.00024501 −0.00038266

2 0 2 −0.03276690

1 1 2 0.11496275

0 2 2 −0.08195165

3 0 2 −0.01570139

2 1 2 0.00547634

1 2 2 −0.01902668

0 3 2 −0.02605798

1 0 4 −0.01539005

0 1 4 −0.06889530

4 0 2 0.00982692

3 1 2 −0.06503746

2 2 2 0.06479547

1 3 2 −0.03435372

0 4 2 0.03465946

2 0 4 0.01430168

1 1 4 −0.01848149

0 2 4 0.01868350

a EDMF coefficients are quoted in atomic units; see Equation (3.3) for their
definition. Expanded around re = 1.06518 and Re = 1.15325 Å.
b Basic contribution calculated using fc-CCSD(T)-F12b/AV5Z.
c CV contribution: [ae-CCSD(T) − fc-CCSD(T)]/ACV6Z.
d SR contribution: DKH2-fc-CCSD(T)/AVQZ-DK − fc-CCSD(T)/AVQZ.
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Table A.6: Higher-order correlation (HC) contributions to the perpendicular component of the
composite electric dipole moment function (EDMF) of HCN.a

D
(α)
ijk

i j k (Q)-(T)b Q-(Q)c P-Qd S-Pe

0 0 0 0.00313225 −0.00019976 0.00055618 0.00006233

1 0 0 0.00208280 −0.00072321 0.00018757 0.00004146

2 0 0 0.00217750 −0.00062574 0.00006011 0.00001408

3 0 0 0.00160178 −0.00039519 0.00003740 0.00008897

4 0 0 0.00106781 −0.00018771 −0.00000210 −0.00001045

0 1 0 0.00760111 −0.00156488 0.00215881 0.00063964

0 2 0 0.01092062 −0.00471590 0.00319996 0.00306174

0 3 0 0.01500450 −0.00810803 0.00161952 0.00917050

0 4 0 0.01743273 −0.01028927 −0.00247467 0.01436590

0 5 0 0.01075631 −0.01133754 −0.00519122

0 0 2 −0.00005938 0.00035851 −0.00000404

0 0 4 −0.00003669 −0.00017241 −0.00021753

0 0 6 −0.00238279 0.00023377 0.00003200

0 0 8 0.00212001 −0.00025721 0.00000372

0 0 10 −0.00069787 0.00012781

0 0 12 0.00008135 −0.00002235

1 1 0 0.00470461 −0.00306622 0.00093836 0.00040143

2 1 0 0.00440244 −0.00215042 0.00040394 −0.00099218

1 2 0 0.00366507 −0.00507449 0.00149556 0.00896146

1 0 2 −0.00086870 0.00036867 0.00011028

0 1 2 −0.00301246 0.00207564 −0.00062107

a EDMF coefficients are quoted in atomic units; see Equation (3.3) for their
definition. Expanded around re = 1.06518 and Re = 1.15325 Å.
b (Q)-(T) contribution: [CCSDT(Q) − CCSD(T)]/AVTZ.
c Q-(Q) contribution: [CCSDTQ − CCSDT(Q)]/VTZ(H: sp; C,N: spd).
d P-Q contribution: [CCSDTQP − CCSDTQ]/VDZ.
e S-P contribution: [CCSDTQPS − CCSDTQP]/VDZ.
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Table A.7: Basic (F12b), core-valence correlation (CV) and scalar relativisitic (SR) contributions to
the perpendicular component of the composite electric dipole moment function (EDMF) of HCN.a

D
(α)
ijk

i j k F12bb CVc SRd

0 0 1 0.32531217 0.00013822 0.00084932

0 0 3 −0.04390968 0.00009202 −0.00030593

0 0 5 −0.00429512 0.00014892 0.00004877

0 0 7 0.00464616 −0.00004553 −0.00000875

0 0 9 −0.00168032

0 0 11 0.00061728

0 0 13 −0.00010725

1 0 1 0.17272654 0.00109839 −0.00000420

0 1 1 0.22228125 −0.00050285 −0.00027956

2 0 1 0.01693034 0.00017564 −0.00013308

1 1 1 0.04180358 0.00023877 −0.00025929

0 2 1 −0.09404360 0.00049243 −0.00039765

3 0 1 −0.03918161

2 1 1 0.00653699

1 2 1 −0.09168395

0 3 1 −0.00665124

1 0 3 −0.02058270

0 1 3 −0.14997535

4 0 1 −0.00546913

3 1 1 −0.00872279

2 2 1 −0.01583606

1 3 1 0.00395622

0 4 1 −0.00050651

2 0 3 0.00445088

1 1 3 −0.06965528

0 2 3 0.02124966

5 0 1 −0.00200378

4 1 1 −0.01841213

3 2 1 0.01136647

2 3 1 −0.00362564

1 4 1 0.01826154

0 5 1 0.01955804

To be continued on next page
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Table A.7: Continued from previous page

i j k F12bb CVc SRd

3 0 3 0.01338442

2 1 3 0.01939271

1 2 3 −0.02821246

0 3 3 0.07927730

1 0 5 0.01376848

0 1 5 0.02434506

a EDMF coefficients are quoted in atomic units; see Equation (3.4) for their
definition. Expanded around re = 1.06518 and Re = 1.15325 Å.
b Basic contribution calculated using fc-CCSD(T)-F12b/AV5Z.
c CV contribution: [ae-CCSD(T) − fc-CCSD(T)]/ACV6Z.
d SR contribution: DKH2-fc-CCSD(T)/AVQZ-DK − fc-CCSD(T)/AVQZ.
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Table A.8: Higher-order correlation (HC) contributions to the perpendicular component of the
composite electric dipole moment function (EDMF) of HCN.a

D
(α)
ijk

i j k (Q)-(T)b Q-(Q)c P-Qd

0 0 1 0.00100713 0.00017191 0.00004963

0 0 3 −0.00170811 0.00033749 −0.00029893

0 0 5 −0.00085467 −0.00017075 0.00002176

0 0 7 0.00102802 0.00006473 0.00003008

0 0 9 −0.00022808 −0.00001232 −0.00000501

1 0 1 0.00005826 0.00012222 0.00000983

0 1 1 0.00094391 0.00091739 −0.00009326

2 0 1 −0.00092417 0.00016839 −0.00002604

1 1 1 0.00055891 0.00053482 0.00018711

0 2 1 −0.00121810 0.00212096 −0.00074306

a EDMF coefficients are quoted in atomic units; see Equation (3.4) for their
definition. Expanded around re = 1.06518 and Re = 1.15325 Å.
b (Q)-(T) contribution: [CCSDT(Q) − CCSD(T)]/AVTZ.
c Q-(Q) contribution: [CCSDTQ − CCSDT(Q)]/VTZ(H: sp; C,N: spd).
d P-Q contribution: [CCSDTQP − CCSDTQ]/VDZ.
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Table A.9: Composite electric dipole moment function for HCN.a

µ‖ µ⊥

i j k Dijk i j k Dijk

0 0 0 -1.18530049 0 0 1 0.32752838
1 0 0 -0.24422597 0 0 3 -0.04579315
2 0 0 0.00668353 0 0 5 -0.00510109
3 0 0 0.02169275 0 0 7 0.00571470
4 0 0 0.02271099 0 0 9 -0.00192573
5 0 0 -0.00464751 0 0 11 0.00061728
6 0 0 0.00488381 0 0 13 -0.00010725
7 0 0 -0.00578131 1 0 1 0.17401103
8 0 0 0.00262302 0 1 1 0.22326688
0 1 0 0.07626591 2 0 1 0.01619108
0 2 0 0.14448664 1 1 1 0.04306390
0 3 0 0.01039050 0 2 1 -0.09378903
0 4 0 0.01652658 3 0 1 -0.03918161
0 5 0 0.00763177 2 1 1 0.00653699
0 6 0 -0.00143455 1 2 1 -0.09168395
0 0 2 0.32682956 0 3 1 -0.00665124
0 0 4 -0.01581080 1 0 3 -0.02058270
0 0 6 0.00294069 0 1 3 -0.14997535
0 0 8 0.00112965 4 0 1 -0.00546913
0 0 10 -0.00015165 3 1 1 -0.00872279
0 0 12 -0.00004465 2 2 1 -0.01583606
1 1 0 0.00239972 1 3 1 0.00395622
2 1 0 0.03742111 0 4 1 -0.00050651
1 2 0 0.06101060 2 0 3 0.00445088
3 1 0 0.02799005 1 1 3 -0.06965528
2 2 0 0.01516749 0 2 3 0.02124966
1 3 0 -0.02424434 5 0 1 -0.00200378
4 1 0 0.00345838 4 1 1 -0.01841213
3 2 0 -0.00711140 3 2 1 0.01136647
2 3 0 -0.01710382 2 3 1 -0.00362564
1 4 0 0.03665014 1 4 1 0.01826154
5 1 0 -0.01662741 0 5 1 0.01955804
4 2 0 -0.00635046 3 0 3 0.01338442

To be continued on next page
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Table A.9: Continued from previous page

i j k Dijk i j k Dijk

3 3 0 -0.01596217 2 1 3 0.01939271
2 4 0 0.01707007 1 2 3 -0.02821246
1 5 0 -0.02721503 0 3 3 0.07927730
1 0 2 0.06674935 1 0 5 0.01376848
0 1 2 0.06770574 0 1 5 0.02434506
2 0 2 -0.03276690
1 1 2 0.11496275
0 2 2 -0.08195165
3 0 2 -0.01570139
2 1 2 0.00547634
1 2 2 -0.01902668
0 3 2 -0.02605798
1 0 4 -0.01539005
0 1 4 -0.06889530
4 0 2 0.00982692
3 1 2 -0.06503746
2 2 2 0.06479547
1 3 2 -0.03435372
0 4 2 0.03465946
2 0 4 0.01430168
1 1 4 -0.01848149
0 2 4 0.01868350

a EDMF coefficients are quoted in atomic units; see Equa-
tion (3.3) and (3.4) for their definitions. Expanded around
re = 1.06518 and Re = 1.15325 Å.
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Table A.10: Calculateda and experimentalb spectroscopic parameters (in cm−1) for H12C14N up to
the first overtone of the CH stretching vibrationa (2, 00, 0).

State Method Gv Bv 106Dv

(0, 00, 0)e calc. 0.00 1.47825 -2.907
exp. 0.00 1.47822 -2.909

(0, 11, 0)e calc. 711.89 1.47807 -2.930
exp. 711.98 1.47804 -2.932

(0, 11, 0)f calc. 711.89 1.48556 -3.018
exp. 711.98 1.48552 -3.019

(0, 20, 0)e calc. 1411.21 1.48584 -6.673
exp. 1411.41 1.48580 -6.679

(0, 22, 0)e calc. 1426.34 1.48510 0.573
exp. 1426.53 1.48506 0.576

(0, 22, 0)f calc. 1426.34 1.48507 -3.028
exp. 1426.53 1.48502 -3.030

(0, 00, 1)e calc. 2097.13 1.46817 -2.912
exp. 2096.85 1.46814 -2.916

(0, 31, 0)e calc. 2113.14 1.48191 -4.301
exp. 2113.45 1.48186 -4.304

(0, 31, 0)f calc. 2113.14 1.49740 -4.946
exp. 2113.45 1.49734 -4.948

(0, 33, 0)e calc. 2143.48 1.48800 -1.814
exp. 2143.76 1.48795 -1.815

(0, 33, 0)f calc. 2143.48 1.48792 -1.349
exp. 2143.76 1.48787 -1.348

(0, 40, 0)e calc. 2802.57 1.49368 -13.616
exp. 2802.97 1.49357 -13.535

(0, 11, 1)e calc. 2805.78 1.46782 -2.782
exp. 2805.58 1.46782 -2.881

(0, 11, 1)f calc. 2805.78 1.47536 -3.022
exp. 2805.58 1.47532 -3.024

(0, 42, 0)e calc. 2817.78 1.49347 5.599
exp. 2818.16 1.49340 5.602

(0, 42, 0)f calc. 2817.79 1.49311 -4.522
exp. 2818.18 1.49304 -4.523

(0, 44, 0)e calc. 2863.42 1.49049 -1.743

To be continued on next page
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exp. 2863.78 1.49043 -1.744
(0, 44, 0)f calc. 2863.42 1.49050 -1.770

exp. 2863.78 1.49044 -1.771
(1, 00, 0)e calc. 3311.85 1.46783 -2.882

exp. 3311.48 1.46780 -2.884
(0, 51, 0)e calc. 3494.69 1.48592 -6.432

exp. 3495.12 1.48586 -6.484
(0, 51, 0)f calc. 3494.68 1.51004 -8.639

exp. 3495.11 1.50996 -8.637
(0, 20, 1)e calc. 3502.18 1.47551 -6.717

exp. 3502.12 1.47545 -6.711
(0, 22, 1)e calc. 3516.96 1.47479 0.626

exp. 3516.87 1.47474 0.633
(0, 22, 1)f calc. 3516.97 1.47475 -3.028

exp. 3516.87 1.47470 -3.022
(0, 53, 0)e calc. 3525.24 1.49632 -1.282

exp. 3525.67 1.49624 -1.283
(0, 53, 0)f calc. 3525.25 1.49600 0.676

exp. 3525.68 1.49592 0.675
(0, 55, 0)e calc. 3586.28 1.49263 -1.837

exp. 3586.70 1.49256 -1.841
(0, 55, 0)f calc. 3586.28 1.49263 -1.836

exp. 3586.70 1.49256 -1.840
(1, 11, 0)e calc. 4004.49 1.46780 -2.907

exp. 4004.16 1.46776 -2.908
(1, 11, 0)f calc. 4004.49 1.47541 -3.001

exp. 4004.16 1.47537 -3.003
(0, 00, 2)e calc. 4173.65 1.45804 -2.919

exp. 4173.07 1.45800 -2.921
(0, 60, 0)e calc. 4174.23 1.50134 -22.110

exp. 4174.64 1.50124 -22.101
(0, 62, 0)e calc. 4189.52 1.50298 11.403

exp. 4189.93 1.50288 11.404
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(0, 62, 0)f calc. 4189.56 1.50166 -6.849
exp. 4189.97 1.50156 -6.846

(0, 31, 1)e calc. 4201.14 1.47148 -4.315
exp. 4201.21 1.47143 -4.330

(0, 31, 1)f calc. 4201.14 1.48690 -4.969
exp. 4201.20 1.48684 -4.979

(0, 33, 1)e calc. 4230.81 1.47756 -1.801
exp. 4230.84 1.47750 -1.801

(0, 33, 1)f calc. 4230.82 1.47748 -1.321
exp. 4230.84 1.47742 -1.320

(0, 64, 0)e calc. 4235.61 1.49885 -0.890
exp. 4236.02 1.49876 -0.889

(0, 64, 0)f calc. 4235.61 1.49889 -1.038
exp. 4236.02 1.49880 -1.038

(0, 66, 0)e calc. 4312.18 1.49432 -1.870
exp. 4312.62 1.49424 -1.871

(0, 66, 0)f calc. 4312.18 1.49432 -1.870
exp. 4312.62 1.49424 -1.871

(1, 20, 0)e calc. 4684.59 1.47585 -6.827
exp. 4684.31 1.47580 -6.830

(1, 22, 0)e calc. 4699.50 1.47511 0.754
exp. 4699.21 1.47506 0.754

(1, 22, 0)f calc. 4699.50 1.47507 -3.013
exp. 4699.21 1.47502 -3.014

(0, 71, 0)e calc. 4856.39 1.49012 -9.190
exp. 4856.70 1.48999 -9.177

(0, 71, 0)f calc. 4856.37 1.52364 -14.574
exp. 4856.68 1.52352 -14.561

(0, 11, 2)e calc. 4878.78 1.45763 -2.938
exp. 4878.29 1.45759 -2.943

(0, 11, 2)f calc. 4878.78 1.46510 -3.027
exp. 4878.29 1.46506 -3.029

(0, 73, 0)e calc. 4887.26 1.50530 -0.821
exp. 4887.58 1.50520 -0.825
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(0, 73, 0)f calc. 4887.29 1.50449 4.238
exp. 4887.61 1.50438 4.242

(0, 40, 1)e calc. 4887.85 1.48300 -13.514
exp. 4888.05 1.48292 -13.517

(0, 42, 1)e calc. 4902.75 1.48288 5.638
exp. 4902.93 1.48282 5.635

(0, 42, 1)f calc. 4902.76 1.48251 -4.528
exp. 4902.94 1.48244 -4.539

(0, 44, 1)e calc. 4947.47 1.47992 -1.722
exp. 4947.60 1.47985 -1.725

(0, 44, 1)f calc. 4947.47 1.47992 -1.750
exp. 4947.60 1.47986 -1.753

(0, 75, 0)e calc. 4948.96 1.50116 -1.278
exp. 4949.31 1.50105 -1.273

(0, 75, 0)f calc. 4948.96 1.50115 -1.271
exp. 4949.31 1.50105 -1.266

(0, 77, 0)e calc. 5041.24 1.49555 -1.871
exp. 5041.65 1.49547 -1.875

(0, 77, 0)f calc. 5041.24 1.49555 -1.871
exp. 5041.65 1.49547 -1.875

(1, 31, 0)e calc. 5367.16 1.47200 -4.348
exp. 5366.88 1.47194 -4.350

(1, 31, 0)f calc. 5367.15 1.48778 -5.051
exp. 5366.87 1.48772 -5.051

(1, 00, 1)e calc. 5394.35 1.45797 -2.891
exp. 5393.70 1.45793 -2.892

(1, 33, 0)e calc. 5396.97 1.47821 -1.743
exp. 5396.70 1.47816 -1.744

(1, 33, 0)f calc. 5396.98 1.47813 -1.235
exp. 5396.71 1.47808 -1.236

(0, 80, 0)e calc. 5525.83 1.50886 -31.593
exp. 5525.87 1.50878 -31.598

(0, 82, 0)e calc. 5541.19 1.51397 16.748
exp. 5541.29 1.51385 16.747
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(0, 82, 0)f calc. 5541.29 1.51079 -10.086
exp. 5541.38 1.51068 -10.094

(0, 20, 2)e calc. 5572.05 1.46511 -6.796
exp. 5571.74 1.46506 -6.813

(0, 51, 1)e calc. 5577.18 1.47525 -6.426
exp. 5577.45 1.47516 -6.421

(0, 51, 1)f calc. 5577.17 1.49915 -8.499
exp. 5577.44 1.49913 -8.656

(0, 22, 2)e calc. 5586.43 1.46442 0.688
exp. 5586.06 1.46437 0.697

(0, 22, 2)f calc. 5586.43 1.46445 -3.211
exp. 5586.07 1.46432 -3.030

(0, 84, 0)e calc. 5587.89 1.50776 0.473
exp. 5588.03 1.50764 0.466

(0, 84, 0)f calc. 5587.89 1.50787 -0.008
exp. 5588.03 1.50775 -0.016

(0, 53, 1)e calc. 5607.16 1.48559 -1.268
exp. 5607.41 1.48552 -1.284

(0, 53, 1)f calc. 5607.17 1.48527 0.724
exp. 5607.42 1.48520 0.709

(0, 86, 0)e calc. 5665.40 1.50307 -1.613
exp. 5665.64 1.50269 -1.133

(0, 86, 0)f calc. 5665.40 1.50307 -1.613
exp. 5665.64 1.50269 -1.133

(0, 55, 1)e calc. 5667.05 1.48184 -1.669
exp. 5667.27 1.48187 -1.836

(0, 55, 1)f calc. 5667.05 1.48184 -1.668
exp. 5667.27 1.48187 -1.835

(0, 88, 0)e calc. 5773.58 1.49628 -1.845
exp. 5773.90 1.49618 -1.846

(0, 88, 0)f calc. 5773.58 1.49628 -1.845
exp. 5773.90 1.49618 -1.846

(1, 40, 0)e calc. 6037.31 1.48403 -13.936
exp. 6036.97 1.48397 -13.941
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(1, 42, 0)e calc. 6052.23 1.48397 5.975
exp. 6051.90 1.48391 5.975

(1, 42, 0)f calc. 6052.25 1.48356 -4.597
exp. 6051.92 1.48349 -4.598

(1, 11, 1)e calc. 6083.95 1.45780 -2.914
exp. 6083.35 1.45776 -2.917

(1, 11, 1)f calc. 6083.95 1.46547 -3.014
exp. 6083.35 1.46543 -3.015

(1, 44, 0)e calc. 6097.02 1.48091 -1.655
exp. 6096.73 1.48085 -1.657

(1, 44, 0)f calc. 6097.02 1.48092 -1.686
exp. 6096.73 1.48086 -1.688

(0, 91, 0)e calc. 6197.82 1.49451 -12.563
exp. 6197.36 1.49441 -12.544

(0, 91, 0)f calc. 6197.79 1.53825 -23.238
exp. 6197.32 1.53826 -23.242

(0, 93, 0)e calc. 6228.97 1.51507 -0.606
exp. 6228.68 1.51493 -0.586

(0, 93, 0)f calc. 6229.02 1.51347 9.717
exp. 6228.73 1.51333 9.714

(0, 00, 3)e calc. 6229.48 1.44785 -2.925
exp. 6228.60 1.44781 -2.928

(0, 60, 1)e calc. 6254.15 1.49042 -22.093
exp. 6254.43 1.49038 -22.200

(0, 31, 2)e calc. 6267.82 1.46100 -4.292
exp. 6267.66 1.46099 -4.397

(0, 31, 2)f calc. 6267.81 1.47633 -4.997
exp. 6267.66 1.47630 -5.026

(0, 62, 1)e calc. 6269.17 1.49211 11.356
exp. 6269.44 1.49225 10.905

(0, 62, 1)f calc. 6269.21 1.49077 -6.847
exp. 6269.48 1.49093 -6.926

(0, 95, 0)e calc. 6291.48 1.51028 -0.457
exp. 6291.33 1.51018 -0.492
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(0, 95, 0)f calc. 6291.48 1.51028 -0.430
exp. 6291.33 1.51017 -0.465

(0, 33, 2)e calc. 6296.73 1.46707 -1.785
exp. 6296.51 1.46702 -1.802

(0, 33, 2)f calc. 6296.74 1.46699 -1.289
exp. 6296.52 1.46694 -1.303

(0, 64, 1)e calc. 6314.44 1.48799 -0.860
exp. 6314.73 1.48790 -0.863

(0, 64, 1)f calc. 6314.44 1.48802 -1.012
exp. 6314.73 1.48793 -1.012

(0, 97, 0)e calc. 6385.03 1.50433 -1.344
exp. 6385.04 1.50416 -1.488

(0, 97, 0)f calc. 6385.03 1.50433 -1.344
exp. 6385.04 1.50416 -1.488

(0, 66, 1)e calc. 6389.70 1.48351 -2.104
exp. 6389.96 1.48343 -1.867

(0, 66, 1)f calc. 6389.70 1.48351 -2.104
exp. 6389.96 1.48343 -1.867

(0, 99, 0)e calc. 6509.31 1.49646 -1.797
exp. 6509.47 1.49636 -1.791

(0, 99, 0)f calc. 6509.31 1.49646 -1.792
exp. 6509.47 1.49636 -1.791

(2, 00, 0)e calc. 6520.39 1.45710 -2.858
exp. 6519.61 1.45707 -2.859

a Calculated results are obtained from least-squares fits of
variational rovibrational term energies up to Jmax = 20

using the Comp I adiabatic composite PEF (Table A.4).
b Experimental results are obtained from least-squares fits
of rovibrational term energies up to Jmax = 20 obtained by
Mellau [17].





Appendix B

Supplemental material for tricarbon C3

Table B.1: Basic (F12bs), core-valence correlation (CV) and scalar relativisitic (SR) contributions
to the composite potential energy function (PEF) of C3.a

C
(α)
ijk

i j k F12bsb CVc SRd

1 0 0 -0.0028875 0.0043655 0.0002307
2 0 0 0.3357898 -0.0032620 -0.0004915
3 0 0 -0.3510619 0.0016107 0.0003300
4 0 0 0.2271546 -0.0007214 -0.0001359
5 0 0 -0.1186061 0.0003230 0.0000740
6 0 0 0.0534505 -0.0002632 -0.0000958
7 0 0 -0.0283396
8 0 0 0.0200149
0 1 0 -0.0028875 0.0043655 0.0002307
0 2 0 0.3357898 -0.0032620 -0.0004915
0 3 0 -0.3510619 0.0016107 0.0003300
0 4 0 0.2271546 -0.0007214 -0.0001359
0 5 0 -0.1186061 0.0003230 0.0000740
0 6 0 0.0534505 -0.0002632 -0.0000958
0 7 0 -0.0283396
0 8 0 0.0200149
0 0 2 0.0001519 0.0001133 -0.0000335
0 0 4 0.0005108 -0.0000376 0.0000077
0 0 6 0.0001849 0.0000034 -0.0000003

To be continued on next page
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Table B.1: Continued from previous page

i j k F12bsb CVc SRd

0 0 8 -0.0000446 -0.0000043 0.0000018
0 0 10 0.0001077 -0.0000002 -0.0000003
0 0 12 -0.0000425
0 0 14 0.0000064
1 1 0 -0.0053392 0.0003523 -0.0000801
2 1 0 -0.0072080 -0.0001697 -0.0000095
1 2 0 -0.0072080 -0.0001697 -0.0000095
3 1 0 -0.0020469 0.0000764 0.0000126
2 2 0 -0.0016429 0.0002075 0.0000588
1 3 0 -0.0020469 0.0000764 0.0000126
4 1 0 -0.0006525 0.0000468 0.0000385
3 2 0 0.0066329 0.0000742 0.0000285
2 3 0 0.0066329 0.0000742 0.0000285
1 4 0 -0.0006525 0.0000468 0.0000385
5 1 0 -0.0285676
4 2 0 0.0017669
3 3 0 0.0139377
2 4 0 0.0017669
1 5 0 -0.0285676
1 0 2 -0.0039282 -0.0001100 -0.0000084
2 0 2 -0.0005903 0.0001519 0.0000561
3 0 2 0.0014869 0.0000855 0.0000266
4 0 2 0.0157070
0 1 2 -0.0039282 -0.0001100 -0.0000084
0 2 2 -0.0005903 0.0001519 0.0000561
0 3 2 0.0014869 0.0000855 0.0000266
0 4 2 0.0157070
1 0 4 -0.0007876 0.0000306 -0.0000028
2 0 4 0.0031384 -0.0009064 -0.0001983
3 0 4 -0.0029060 -0.0003173 -0.0001859
4 0 4 -0.0655003
0 1 4 -0.0007876 0.0000306 -0.0000028
0 2 4 0.0031384 -0.0009064 -0.0001983
0 3 4 -0.0029060 -0.0003173 -0.0001859
0 4 4 -0.0655003
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i j k F12bsb CVc SRd

1 0 6 0.0003513 0.0001074 -0.0000192
2 0 6 -0.0029532 0.0021190 0.0003979
3 0 6 0.0043157 0.0007170 0.0005250
4 0 6 0.0631468
0 1 6 0.0003513 0.0001074 -0.0000192
0 2 6 -0.0029532 0.0021190 0.0003979
0 3 6 0.0043157 0.0007170 0.0005250
0 4 6 0.0631468
1 0 8 -0.0001258 -0.0001003 0.0000147
2 0 8 0.0003646 -0.0016881 -0.0002633
3 0 8 -0.0011589 -0.0005697 -0.0005116
4 0 8 -0.0093522
0 1 8 -0.0001258 -0.0001003 0.0000147
0 2 8 0.0003646 -0.0016881 -0.0002633
0 3 8 -0.0011589 -0.0005697 -0.0005116
0 4 8 -0.0093522
1 1 2 -0.0120698 -0.0000628 0.0000700
1 1 4 -0.0010039 0.0002671 -0.0000042
1 1 6 0.0016727 -0.0007474 0.0000127
1 1 8 0.0000442 0.0006512 -0.0000141
2 1 2 0.0139168 0.0000558 0.0000033
1 2 2 0.0139168 0.0000558 0.0000033
2 1 4 0.0028004 -0.0002731 -0.0001524
1 2 4 0.0028004 -0.0002731 -0.0001524
2 1 6 -0.0041475 0.0009738 0.0004150
1 2 6 -0.0041475 0.0009738 0.0004150
2 1 8 0.0009567 -0.0010832 -0.0003794
1 2 8 0.0009567 -0.0010832 -0.0003794
3 1 2 -0.0194853
2 2 2 0.0057677
1 3 2 -0.0194853
3 1 4 0.0696818
2 2 4 -0.0575769
1 3 4 0.0696818
3 1 6 -0.0669321
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i j k F12bsb CVc SRd

2 2 6 0.0170508
1 3 6 -0.0669321
3 1 8 0.0010702
2 2 8 0.0452248
1 3 8 0.0010702

a PEF coefficients are quoted in atomic units; see Equation (3.10) for
their definition. Expanded around Rref = 1.2945 Å.
b F12bs: fc-CCSD(T*)-F12b/AV5Z.
c CV: [ae-CCSD(T) − fc-CCSD(T)]/ACV5Z.
d SR: DKH2-fc-CCSD(T)/AVQZ-DK − fc-CCSD(T)/AVQZ.
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Table B.2: Higher-order correlation (HC) contributions to the composite potential energy function
(PEF) of C3.a

C
(α)
ijk

i j k (Q)-(T)b Q-(Q)c P-Qd

1 0 0 -0.0012793 0.0003587 -0.0001271
2 0 0 -0.0016191 0.0007631 0.0001700
3 0 0 -0.0015734 0.0009553 0.0000457
4 0 0 -0.0010091 0.0011411 -0.0001958
5 0 0 -0.0008052 0.0011922 -0.0001718
6 0 0 -0.0001866 0.0003032 0.0008097
0 1 0 -0.0012793 0.0003587 -0.0001271
0 2 0 -0.0016191 0.0007631 0.0001700
0 3 0 -0.0015734 0.0009553 0.0000457
0 4 0 -0.0010091 0.0011411 -0.0001958
0 5 0 -0.0008052 0.0011922 -0.0001718
0 6 0 -0.0001866 0.0003032 0.0008097
0 0 2 -0.0000921 0.0002634 0.0000018
0 0 4 0.0004139 -0.0002808 0.0000317
0 0 6 -0.0000758 0.0000694 -0.0000153
0 0 8 -0.0000045 0.0000012 0.0000015
0 0 10 0.0000001 -0.0000013
1 1 0 0.0023443 -0.0001146 -0.0007504
2 1 0 0.0017886 -0.0001996 -0.0003582
1 2 0 0.0017886 -0.0001996 -0.0003582
3 1 0 0.0023813 -0.0010748
2 2 0 -0.0012834 0.0024423
1 3 0 0.0023813 -0.0010748
4 1 0 0.0025877
3 2 0 -0.0012377
2 3 0 -0.0012377
1 4 0 0.0025877
1 0 2 -0.0009057 0.0004465
2 0 2 -0.0013219 0.0006921
0 1 2 -0.0009057 0.0004465
0 2 2 -0.0013219 0.0006921
1 0 4 0.0003350
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i j k (Q)-(T)b Q-(Q)c P-Qd

2 0 4 0.0012310
0 1 4 0.0003350
0 2 4 0.0012310
1 0 6 0.0000161
2 0 6 -0.0002979
0 1 6 0.0000161
0 2 6 -0.0002979
1 1 2 -0.0001548 0.0000549
1 1 4 -0.0018988
1 1 6 0.0006759
2 1 2 0.0005795
1 2 2 0.0005795
2 1 4 -0.0023265
1 2 4 -0.0023265
2 1 6 0.0008621
1 2 6 0.0008621

a PEF coefficients are quoted in atomic units; see Equation (3.10) for
their definition. Expanded around Rref = 1.2945 Å.
b (Q)-(T): [CCSDT(Q) − CCSD(T)]/VQZ.
c Q-(Q): [CCSDTQ − CCSDT(Q)]/VTZ(spd).
d P-Q: [CCSDTQP − CCSDTQ]/VDZ.
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Table B.3: Non-redundant coefficients of the composite potential energy function for C3.a

i j k Cijk i j k Cijk

2 0 0 0.33240693 4 0 2 0.01570702
3 0 0 -0.35060064 3 1 2 -0.01948533
4 0 0 0.22690209 2 2 2 0.00576765
5 0 0 -0.11822982 1 0 4 -0.00042866
6 0 0 0.05358855 2 0 4 0.00327471
7 0 0 -0.02849987 1 1 4 -0.00263969
8 0 0 0.02001495 3 0 4 -0.00321668
0 0 2 0.00041387 2 1 4 -0.00004568
0 0 4 0.00064654 4 0 4 -0.06550030
0 0 6 0.00016547 3 1 4 0.06968179
0 0 8 -0.00004851 2 2 4 -0.05757693
0 0 10 0.00010604 1 0 6 0.00045529
0 0 12 -0.00004245 2 0 6 -0.00074881
0 0 14 0.00000644 1 1 6 0.00162108
1 1 0 -0.00355710 3 0 6 0.00537182
2 1 0 -0.00614366 2 1 6 -0.00172969
3 1 0 -0.00075277 4 0 6 0.06314677
2 2 0 0.00039680 3 1 6 -0.06693212
4 1 0 0.00215995 2 2 6 0.01705080
3 2 0 0.00544895 1 0 8 -0.00020893
5 1 0 -0.02856759 2 0 8 -0.00157956
4 2 0 0.00176688 1 1 8 0.00068353
3 3 0 0.01393769 3 0 8 -0.00220384
1 0 2 -0.00449159 2 1 8 -0.00059965
2 0 2 -0.00103148 4 0 8 -0.00935219
1 1 2 -0.01222084 3 1 8 0.00107021
3 0 2 0.00155557 2 2 8 0.04522482
2 1 2 0.01460243 1 3 8 0.00107021

a PEF coefficients are quoted in atomic units; see Equa-
tion (3.10) for their definition. Equilibrium geometry:
Re = 1.29397 Å.
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Table B.4: Composite electric dipole moment function for HCN.a

µ‖ µ⊥

i j k D
‖
ijk i j k D⊥ijk

0 1 0 -1.741218 0 0 1 -0.491612
0 3 0 -0.010408 0 0 3 0.198205
0 5 0 -0.233818 0 0 5 -0.084483
0 7 0 0.373720 0 0 7 0.014691
1 1 0 0.602984 0 0 9 -0.003926
2 1 0 0.188517 0 0 11 0.000908
3 1 0 -0.003804 0 0 13 -0.000053
1 3 0 0.142400 1 0 1 0.484434
2 3 0 -0.003239 1 0 3 -0.146079
3 3 0 -0.077812 1 0 5 0.087463
1 5 0 0.066664 1 0 7 -0.020468
0 1 2 0.484160 2 0 1 -0.012485
0 1 4 -0.233765 2 0 3 -0.049476
0 1 6 0.098495 2 0 5 0.020932
0 1 8 -0.013023 3 0 1 -0.086571
0 3 2 0.088176 3 0 3 0.009446
0 3 4 -0.092395 4 0 1 0.010684
0 5 2 0.222388 0 2 1 -0.228093
1 1 2 -0.179100 0 2 3 0.256229
1 1 4 0.219666 0 2 5 -0.161277
1 1 6 -0.188606 0 2 7 0.047227
1 1 8 0.032524 0 4 1 -0.117837
2 1 2 -0.059962 0 4 3 0.148244
2 1 4 0.053437 0 4 5 -0.067480
2 1 6 0.045937 0 6 1 0.040903
3 1 2 -0.045672 1 2 1 0.038507
3 1 4 -0.080090 1 2 3 -0.191834
1 3 2 0.176341 1 2 5 0.214740
1 3 4 -0.118169 1 2 7 -0.089206
2 3 2 0.109405 2 2 1 -0.029806

2 2 3 0.067138
3 2 1 -0.019096
1 4 1 0.034292

a EDMF coefficients are quoted in atomic units; see
Equation (3.11) and (3.12) for their definitions. Ex-
panded around Re = 1.29397 Å.
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Appendix C

Supplemental material for propynylidynium
l-C3H+

Table C.1: Basic contributiona to the composite potential energy function (PEF) of l-C3H+.b

i j k l m n C
(α)
ijk i j k l m n C

(α)
ijk

1 0 0 0 0 0 -0.00098249 1 1 3 0 0 0 -0.00049978
2 0 0 0 0 0 0.18743885 1 1 4 0 0 0 0.00000954
3 0 0 0 0 0 -0.18885997 1 2 1 0 0 0 -0.00100314
4 0 0 0 0 0 0.12801934 1 2 2 0 0 0 0.00091998
5 0 0 0 0 0 -0.07391227 1 2 3 0 0 0 -0.00003533
6 0 0 0 0 0 0.03902163 1 3 1 0 0 0 0.00034593
7 0 0 0 0 0 -0.01900879 1 3 2 0 0 0 0.00032821
8 0 0 0 0 0 0.00950084 1 4 1 0 0 0 -0.00016070
9 0 0 0 0 0 -0.00532379 2 1 1 0 0 0 0.00035228

10 0 0 0 0 0 0.00189872 2 1 2 0 0 0 -0.00020656
0 1 0 0 0 0 -0.00346423 2 1 3 0 0 0 -0.00013604
0 2 0 0 0 0 0.44636346 2 2 1 0 0 0 -0.00040566
0 3 0 0 0 0 -0.46574790 2 2 2 0 0 0 -0.00024220
0 4 0 0 0 0 0.29947767 2 3 1 0 0 0 0.00023487
0 5 0 0 0 0 -0.15894938 3 1 1 0 0 0 -0.00024704
0 6 0 0 0 0 0.07379974 3 1 2 0 0 0 0.00032533
0 7 0 0 0 0 -0.03060395 3 2 1 0 0 0 0.00027526
0 8 0 0 0 0 0.00965334 4 1 1 0 0 0 0.00016022
0 0 1 0 0 0 -0.00332752 1 1 0 2 0 0 0.01179665

To be continued on next page
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Table C.1: Continued from previous page

i j k l m n C
(α)
ijk i j k l m n C

(α)
ijk

0 0 2 0 0 0 0.27616446 2 1 0 2 0 0 0.00244742
0 0 3 0 0 0 -0.28057671 1 2 0 2 0 0 -0.00400316
0 0 4 0 0 0 0.18242127 3 1 0 2 0 0 0.00454354
0 0 5 0 0 0 -0.09491890 2 2 0 2 0 0 0.01349126
0 0 6 0 0 0 0.04400772 1 3 0 2 0 0 -0.00001544
0 0 7 0 0 0 -0.01898566 1 0 1 2 0 0 0.00130424
0 0 8 0 0 0 0.00575521 2 0 1 2 0 0 0.00112793
0 0 0 2 0 0 0.03804410 1 0 2 2 0 0 -0.00091805
0 0 0 4 0 0 -0.00019261 3 0 1 2 0 0 0.00060819
0 0 0 6 0 0 0.00059808 2 0 2 2 0 0 0.01381179
0 0 0 8 0 0 -0.00043214 1 0 3 2 0 0 0.00137130
0 0 0 10 0 0 0.00027386 0 1 1 2 0 0 -0.00404108
0 0 0 12 0 0 -0.00018318 0 2 1 2 0 0 0.00529045
0 0 0 14 0 0 0.00008238 0 1 2 2 0 0 -0.00013600
0 0 0 16 0 0 -0.00001565 0 3 1 2 0 0 0.00185593
0 0 0 0 2 0 0.00403306 0 2 2 2 0 0 0.00342656
0 0 0 0 4 0 -0.00018498 0 1 3 2 0 0 0.00036065
0 0 0 0 6 0 0.00013263 1 1 0 4 0 0 0.00767870
0 0 0 0 8 0 -0.00024314 1 0 1 4 0 0 0.00040782
0 0 0 0 10 0 0.00041954 0 1 1 4 0 0 -0.00034512
0 0 0 0 12 0 -0.00029958 1 1 0 0 2 0 0.00072412
0 0 0 0 14 0 0.00012171 2 1 0 0 2 0 0.00015864
0 0 0 0 16 0 -0.00002644 1 2 0 0 2 0 0.00076714
0 0 0 0 18 0 0.00000244 3 1 0 0 2 0 0.00047706
1 1 0 0 0 0 -0.01329228 2 2 0 0 2 0 -0.01455038
2 1 0 0 0 0 0.00236236 1 3 0 0 2 0 0.00335464
1 2 0 0 0 0 0.00077668 1 0 1 0 2 0 -0.00035367
3 1 0 0 0 0 -0.00294012 2 0 1 0 2 0 0.00015385
2 2 0 0 0 0 -0.00461540 1 0 2 0 2 0 0.00092631
1 3 0 0 0 0 -0.00086321 3 0 1 0 2 0 -0.00144150
4 1 0 0 0 0 0.00268955 2 0 2 0 2 0 -0.01682393
3 2 0 0 0 0 0.00385732 1 0 3 0 2 0 -0.00313611
2 3 0 0 0 0 0.00251883 0 1 1 0 2 0 -0.01735139
1 4 0 0 0 0 0.00131308 0 2 1 0 2 0 0.01739003
5 1 0 0 0 0 -0.00122371 0 1 2 0 2 0 0.00700185

To be continued on next page
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Table C.1: Continued from previous page

i j k l m n C
(α)
ijk i j k l m n C

(α)
ijk

4 2 0 0 0 0 -0.00232862 0 3 1 0 2 0 0.00439940
3 3 0 0 0 0 -0.00179371 0 2 2 0 2 0 -0.03645257
2 4 0 0 0 0 -0.00174415 0 1 3 0 2 0 0.01369046
1 5 0 0 0 0 -0.00025716 1 1 0 0 4 0 0.00192881
1 0 1 0 0 0 0.00490167 1 0 1 0 4 0 -0.00478273
2 0 1 0 0 0 -0.00026435 0 1 1 0 4 0 0.00033225
1 0 2 0 0 0 -0.00240709 1 0 0 1 1 1 -0.00048528
3 0 1 0 0 0 0.00033883 2 0 0 1 1 1 -0.00069255
2 0 2 0 0 0 0.00012267 3 0 0 1 1 1 -0.00009932
1 0 3 0 0 0 0.00047115 4 0 0 1 1 1 0.01067593
4 0 1 0 0 0 -0.00033762 0 1 0 1 1 1 0.00423786
3 0 2 0 0 0 -0.00018906 0 2 0 1 1 1 -0.00799769
2 0 3 0 0 0 -0.00014494 0 3 0 1 1 1 -0.00427906
1 0 4 0 0 0 -0.00024738 0 4 0 1 1 1 0.00664445
5 0 1 0 0 0 0.00003222 0 0 1 1 1 1 0.01635910
4 0 2 0 0 0 -0.00018672 0 0 2 1 1 1 -0.00999281
3 0 3 0 0 0 0.00007668 0 0 3 1 1 1 0.00420788
2 0 4 0 0 0 0.00006346 0 0 4 1 1 1 0.00688904
1 0 5 0 0 0 0.00020993 1 0 0 3 1 1 0.00067369
0 1 1 0 0 0 0.00753095 2 0 0 3 1 1 0.00650387
0 2 1 0 0 0 -0.01180174 0 1 0 3 1 1 -0.00466069
0 1 2 0 0 0 -0.00678852 0 2 0 3 1 1 -0.00901044
0 3 1 0 0 0 0.00334001 0 0 1 3 1 1 0.00015304
0 2 2 0 0 0 -0.00931401 0 0 2 3 1 1 0.00409368
0 1 3 0 0 0 -0.00406745 1 0 0 2 2 0 -0.00050621
0 4 1 0 0 0 -0.00286668 2 0 0 2 2 0 0.01294572
0 3 2 0 0 0 0.00886821 0 1 0 2 2 0 0.00118961
0 2 3 0 0 0 0.00279688 0 2 0 2 2 0 0.01079344
0 1 4 0 0 0 0.00067524 0 0 1 2 2 0 0.00143455
0 5 1 0 0 0 0.00372334 0 0 2 2 2 0 0.01816487
0 4 2 0 0 0 -0.00420891 1 0 0 2 2 2 0.00010867
0 3 3 0 0 0 -0.00118173 2 0 0 2 2 2 -0.00367626
0 2 4 0 0 0 -0.00436835 0 1 0 2 2 2 -0.00316732
0 1 5 0 0 0 0.00184341 0 2 0 2 2 2 -0.01025613
1 0 0 2 0 0 -0.00929267 0 0 1 2 2 2 0.00255286

To be continued on next page
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Table C.1: Continued from previous page

i j k l m n C
(α)
ijk i j k l m n C

(α)
ijk

2 0 0 2 0 0 -0.00258418 0 0 2 2 2 2 -0.00716006
3 0 0 2 0 0 0.00122436 1 0 0 1 3 1 0.00085873
4 0 0 2 0 0 0.00741127 2 0 0 1 3 1 0.00749245
0 1 0 2 0 0 -0.03875616 0 1 0 1 3 1 0.00030175
0 2 0 2 0 0 -0.00189932 0 2 0 1 3 1 0.01414570
0 3 0 2 0 0 -0.00430929 0 0 1 1 3 1 -0.00487030
0 4 0 2 0 0 0.01043487 0 0 2 1 3 1 0.01070791
0 0 1 2 0 0 -0.00702436 1 1 1 2 0 0 -0.00131618
0 0 2 2 0 0 0.00141736 1 1 2 2 0 0 0.00712249
0 0 3 2 0 0 -0.00080444 1 2 1 2 0 0 -0.00415296
0 0 4 2 0 0 0.00927163 2 1 1 2 0 0 -0.00400242
1 0 0 4 0 0 -0.00113290 1 1 1 0 2 0 -0.00066854
2 0 0 4 0 0 0.00421952 1 1 2 0 2 0 0.00109165
0 1 0 4 0 0 0.00269623 1 2 1 0 2 0 -0.00167744
0 2 0 4 0 0 0.00881127 2 1 1 0 2 0 0.00670916
0 0 1 4 0 0 0.00029574 1 1 0 1 1 1 -0.00143185
0 0 2 4 0 0 0.00467583 2 1 0 1 1 1 -0.00079187
1 0 0 0 2 0 -0.00067714 1 2 0 1 1 1 0.00142293
2 0 0 0 2 0 0.00033767 3 1 0 1 1 1 -0.00067463
3 0 0 0 2 0 0.00018734 2 2 0 1 1 1 0.01891353
4 0 0 0 2 0 -0.01034093 1 3 0 1 1 1 -0.00317190
0 1 0 0 2 0 -0.01472522 1 0 1 1 1 1 -0.00131140
0 2 0 0 2 0 0.00390884 2 0 1 1 1 1 -0.00124648
0 3 0 0 2 0 -0.00464768 1 0 2 1 1 1 0.00167741
0 4 0 0 2 0 -0.00620064 3 0 1 1 1 1 0.00056768
0 0 1 0 2 0 0.00328796 2 0 2 1 1 1 0.01881086
0 0 2 0 2 0 -0.00561882 1 0 3 1 1 1 -0.00384161
0 0 3 0 2 0 0.00546401 0 1 1 1 1 1 0.01275368
0 0 4 0 2 0 -0.01182640 0 2 1 1 1 1 0.01243315
1 0 0 0 4 0 -0.00002296 0 1 2 1 1 1 -0.01544964
2 0 0 0 4 0 -0.00325209 0 3 1 1 1 1 0.01100483
0 1 0 0 4 0 0.00267857 0 2 2 1 1 1 -0.00622110
0 2 0 0 4 0 -0.00065643 0 1 3 1 1 1 0.01486193
0 0 1 0 4 0 -0.00305842 1 1 0 3 1 1 -0.00338753
0 0 2 0 4 0 0.01113482 1 0 1 3 1 1 -0.00334327

To be continued on next page
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i j k l m n C
(α)
ijk i j k l m n C

(α)
ijk

0 0 0 1 1 1 0.00123853 0 1 1 3 1 1 0.00085985
0 0 0 3 1 1 -0.00229301 1 1 0 2 2 0 -0.00032638
0 0 0 2 2 0 0.00118956 1 0 1 2 2 0 -0.00421174
0 0 0 2 2 2 -0.00024762 0 1 1 2 2 0 0.00085966
0 0 0 1 3 1 -0.00017294 1 1 0 2 2 2 -0.00060169
0 0 0 5 1 1 -0.00030631 1 0 1 2 2 2 -0.00176789
0 0 0 4 2 0 -0.00024010 0 1 1 2 2 2 0.00603540
0 0 0 4 2 2 -0.00000723 1 1 0 1 3 1 -0.00911274
0 0 0 3 3 1 0.00047186 1 0 1 1 3 1 -0.00198495
0 0 0 3 3 3 0.00003515 0 1 1 1 3 1 -0.01038817
0 0 0 2 4 0 0.00055012 1 1 1 1 1 1 0.00097111
0 0 0 2 4 2 0.00058868 1 1 2 1 1 1 0.00325780
0 0 0 1 5 1 -0.00064639 1 2 1 1 1 1 0.00369857
1 1 1 0 0 0 -0.00075973 2 1 1 1 1 1 0.00112922
1 1 2 0 0 0 -0.00040499

a F12b: fc-CCSD(T)-F12b/VQZ-F12.
b PEF coefficients are quoted in atomic units; see Equation (5.1) for their definition.
Expanded around rref = 1.079 Å, Rref

1 = 1.236 Å and Rref
2 = 1.340 Å
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Table C.2: Core-valence (CV), scalar relativistic (SR), higher-order correlation (HC) and diagonal
Born-Oppenheimer correction (DBOC) contributions to the composite potential energy function
(PEF) of l-C3H+.a

C
(α)
ijk

i j k l m n CVb SRc (Q)-(T)d Q-(Q)e DBOCf

1 0 0 0 0 0 0.00088213 0.00009911 0.00014070 0.00001244 -0.00014691
2 0 0 0 0 0 -0.00077402 -0.00013841 -0.00008890 0.00002630 0.00010392
3 0 0 0 0 0 0.00048081 0.00010116 -0.00004432 -0.00001386 -0.00004851
4 0 0 0 0 0 -0.00020215 -0.00004691 -0.00001143 -0.00001010 0.00002341
5 0 0 0 0 0 -0.00000445 -0.00000068 0.00003775 0.00002267 -0.00001275
6 0 0 0 0 0 -0.00003045 -0.00000514 -0.00002254 0.00002749 0.00000439
7 0 0 0 0 0 0.00023211 0.00003567 -0.00001864 -0.00007073
8 0 0 0 0 0 -0.00017082 -0.00002106 0.00002255 0.00003407
0 1 0 0 0 0 0.00506436 0.00040983 -0.00165046 0.00068107 -0.00004958
0 2 0 0 0 0 -0.00387652 -0.00058733 -0.00005179 0.00085015 0.00008914
0 3 0 0 0 0 0.00211116 0.00035334 0.00003924 0.00045284 -0.00002946
0 4 0 0 0 0 -0.00085134 -0.00027025 0.00050215 -0.00026666 0.00003499
0 5 0 0 0 0 0.00034363 0.00037262 0.00024886 -0.00010085 -0.00001050
0 6 0 0 0 0 -0.00020177 -0.00033980 -0.00031336 0.00058594 0.00000418
0 7 0 0 0 0 -0.00046037 -0.00035959
0 0 1 0 0 0 0.00374236 0.00016105 -0.00185967 0.00052225 -0.00004255
0 0 2 0 0 0 -0.00291738 -0.00037959 -0.00315411 0.00122546 0.00005650
0 0 3 0 0 0 0.00142450 0.00029569 -0.00259810 0.00150918 -0.00004360
0 0 4 0 0 0 -0.00063591 -0.00010387 -0.00169234 0.00115450 0.00004027
0 0 5 0 0 0 0.00025078 0.00003937 -0.00108489 0.00110967 -0.00004324
0 0 6 0 0 0 -0.00006279 -0.00006116 -0.00043781 0.00071943 0.00002716
0 0 7 0 0 0 0.00051901 -0.00036384
0 0 8 0 0 0 -0.00130458 0.00093057
0 0 0 2 0 0 -0.00003541 -0.00001556 -0.00032887 0.00010133 0.00003158
0 0 0 4 0 0 0.00000633 -0.00000779 -0.00025791 0.00006313 0.00000322
0 0 0 6 0 0 -0.00000088 0.00000217 -0.00021008 0.00002082 -0.00000972
0 0 0 8 0 0 0.00009761 -0.00000146 0.00000313
0 0 0 10 0 0 0.00008914 0.00003587
0 0 0 12 0 0 -0.00004749 -0.00006212
0 0 0 14 0 0 -0.00000734 0.00003589
0 0 0 16 0 0 0.00000519 -0.00000720
0 0 0 0 2 0 0.00012149 -0.00002669 0.00015007 0.00006406 -0.00000585
0 0 0 0 4 0 -0.00000680 -0.00001039 0.00018828 -0.00006054 0.00000134
0 0 0 0 6 0 -0.00000464 0.00001000 0.00001374 -0.00003444 -0.00000101
0 0 0 0 8 0 -0.00000229 -0.00000275 -0.00003290 0.00003184 0.00000048
0 0 0 0 10 0 -0.00000052 0.00000051 0.00000912 -0.00000907
0 0 0 0 12 0 -0.00000114 0.00000104
1 1 0 0 0 0 0.00011611 -0.00003094 0.00028777 -0.00008927 -0.00002600
2 1 0 0 0 0 -0.00002966 -0.00001885 -0.00004245 0.00008626 0.00002005
1 2 0 0 0 0 -0.00000161 -0.00002302 0.00001176 -0.00017459 0.00000125
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Table C.2: Continued from previous page

i j k l m n CVb SRc (Q)-(T)d Q-(Q)e DBOCf

3 1 0 0 0 0 0.00001166 0.00001928 -0.00005672 0.00001763 -0.00001780
2 2 0 0 0 0 0.00002510 0.00001153 -0.00002284 0.00001469 0.00000046
1 3 0 0 0 0 -0.00000899 -0.00002074 -0.00023363 -0.00012540 -0.00001378
4 1 0 0 0 0 -0.00000775 0.00001250
3 2 0 0 0 0 0.00005712 0.00001910
2 3 0 0 0 0 -0.00008664 0.00003773
1 4 0 0 0 0 0.00003634 0.00006834
1 0 1 0 0 0 0.00002284 0.00000012 -0.00003405 0.00005654 0.00001383
2 0 1 0 0 0 0.00000210 -0.00000067 0.00002177 -0.00002056 -0.00000737
1 0 2 0 0 0 -0.00001189 -0.00000491 -0.00006055 0.00003743 -0.00000644
3 0 1 0 0 0 -0.00000286 0.00000095 0.00000903 -0.00002841 0.00000442
2 0 2 0 0 0 -0.00000338 0.00001748 0.00000847 -0.00004959 0.00000555
1 0 3 0 0 0 0.00000329 0.00000086 -0.00021037 0.00018014 0.00000459
4 0 1 0 0 0 0.00011143 -0.00000120
3 0 2 0 0 0 0.00012447 -0.00000182
2 0 3 0 0 0 0.00016677 0.00001759
1 0 4 0 0 0 0.00005169 0.00000242
0 1 1 0 0 0 0.00034247 -0.00007256 0.00021599 0.00006531 0.00000371
0 2 1 0 0 0 -0.00010616 -0.00001134 0.00196827 0.00037791 -0.00000664
0 1 2 0 0 0 -0.00018437 -0.00002363 -0.00156557 0.00025629 0.00002027
0 3 1 0 0 0 0.00008798 -0.00000083 -0.00104798 0.00146467 -0.00001978
0 2 2 0 0 0 0.00013645 0.00002389 0.00346775 -0.00180208 0.00005566
0 1 3 0 0 0 0.00006753 0.00000307 -0.00229728 0.00168967 -0.00004453
0 4 1 0 0 0 0.00008778 0.00002412
0 3 2 0 0 0 -0.00012251 0.00004415
0 2 3 0 0 0 0.00012533 -0.00001087
0 1 4 0 0 0 -0.00001319 -0.00003264
1 0 0 2 0 0 0.00004021 -0.00001004 -0.00004460 -0.00001254 -0.00000645
2 0 0 2 0 0 0.00002887 0.00013683 -0.00004509 0.00007886 -0.00003432
3 0 0 2 0 0 0.00014143 -0.00005840
0 1 0 2 0 0 0.00015606 -0.00004447 -0.00035689 0.00036140 0.00008124
0 2 0 2 0 0 0.00009201 0.00009657 -0.00038966 0.00049077 0.00013741
0 3 0 2 0 0 0.00006757 0.00005084
0 0 1 2 0 0 0.00002715 -0.00001047 0.00000622 -0.00001862 -0.00000221
0 0 2 2 0 0 0.00009103 0.00006273 -0.00009525 0.00007168 0.00000866
0 0 3 2 0 0 0.00009392 0.00019619
1 0 0 4 0 0 0.00011229 -0.00001629
0 1 0 4 0 0 -0.00010792 -0.00004747
0 0 1 4 0 0 0.00018040 0.00014850
1 0 0 0 2 0 0.00000228 -0.00000453 -0.00002040 -0.00000299 -0.00000107
2 0 0 0 2 0 -0.00003344 0.00001236 -0.00001706 -0.00032112 -0.00000669
3 0 0 0 2 0 0.00015954 -0.00005956
0 1 0 0 2 0 -0.00004570 -0.00002503 -0.00112748 0.00051774 0.00002579
0 2 0 0 2 0 -0.00001052 0.00002007 -0.00204526 0.00047098 0.00001385
0 3 0 0 2 0 -0.00003406 0.00005861

To be continued on next page
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Table C.2: Continued from previous page

i j k l m n CVb SRc (Q)-(T)d Q-(Q)e DBOCf

0 0 1 0 2 0 -0.00010507 -0.00000789 0.00051963 -0.00036454 0.00003102
0 0 2 0 2 0 0.00009265 -0.00000333 -0.00020366 -0.00046008 -0.00001211
0 0 3 0 2 0 0.00005128 0.00020320
1 0 0 0 4 0 0.00011998 -0.00001724
0 1 0 0 4 0 -0.00000765 -0.00002850
0 0 1 0 4 0 0.00017631 0.00012945
0 0 0 1 1 1 -0.00001705 0.00001694 -0.00005317 0.00017554 -0.00001065
0 0 0 3 1 1 0.00004452 0.00001499 0.00019620 -0.00007712 -0.00000035
0 0 0 2 2 0 0.00000666 0.00000120 -0.00017980 -0.00005587 0.00005325
0 0 0 2 2 2 0.00000860 -0.00000484 0.00014605 0.00005846 0.00001394
0 0 0 1 3 1 -0.00000825 0.00001779 -0.00023191 -0.00008717 -0.00000096
1 1 1 0 0 0 0.00000237 0.00000325 0.00022120 0.00006856 0.00000462
1 1 2 0 0 0 0.00000198 -0.00000327 0.00035141 -0.00019857 -0.00000102
1 1 3 0 0 0 -0.00006888 -0.00000047
1 2 1 0 0 0 0.00001518 0.00000065 0.00021381 0.00011296 0.00001658
1 2 2 0 0 0 0.00006928 0.00000565
1 3 1 0 0 0 -0.00002108 -0.00001542
2 1 1 0 0 0 0.00000925 0.00000395 0.00000019 -0.00002805 -0.00001455
2 1 2 0 0 0 0.00001538 -0.00000314
2 2 1 0 0 0 0.00011696 -0.00000876
3 1 1 0 0 0 -0.00000514 -0.00000877
1 1 0 2 0 0 0.00000195 0.00000612 -0.00008267 -0.00000276 -0.00007543
2 1 0 2 0 0 -0.00001682 -0.00002871
1 2 0 2 0 0 0.00013956 -0.00008892
1 0 1 2 0 0 -0.00000359 -0.00000626 -0.00003337 0.00006488 0.00000232
2 0 1 2 0 0 0.00034013 0.00003331
1 0 2 2 0 0 0.00006022 0.00002857
0 1 1 2 0 0 -0.00004561 0.00002239 0.00024964 -0.00011195 0.00000177
0 2 1 2 0 0 0.00024471 0.00002712
0 1 2 2 0 0 0.00021411 -0.00007810
1 1 0 0 2 0 0.00000048 -0.00000742 -0.00001181 -0.00000896 -0.00000483
2 1 0 0 2 0 -0.00014388 -0.00003211
1 2 0 0 2 0 0.00013273 -0.00004014
1 0 1 0 2 0 0.00002003 0.00000358 -0.00002020 0.00000325 -0.00000356
2 0 1 0 2 0 0.00031901 0.00003970
1 0 2 0 2 0 0.00015730 0.00003224
0 1 1 0 2 0 0.00002420 0.00004656 0.00168903 -0.00053150 -0.00001588
0 2 1 0 2 0 -0.00003585 -0.00003672
0 1 2 0 2 0 0.00033508 -0.00004703
1 0 0 1 1 1 0.00000352 -0.00000066 -0.00007619 0.00002247 0.00000437
2 0 0 1 1 1 0.00000188 -0.00011643 -0.00003691 0.00000317 -0.00000241
3 0 0 1 1 1 0.00003323 0.00000310
0 1 0 1 1 1 0.00010966 -0.00002137 -0.00030091 0.00059431 -0.00001751
0 2 0 1 1 1 0.00008294 -0.00013133 -0.00093413 0.00106675 -0.00002289
0 3 0 1 1 1 0.00014782 0.00005334
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Table C.2: Continued from previous page

i j k l m n CVb SRc (Q)-(T)d Q-(Q)e DBOCf

0 0 1 1 1 1 -0.00016527 0.00001769 0.00010125 -0.00004412 -0.00000361
0 0 2 1 1 1 0.00014098 -0.00013678 -0.00091105 0.00040318 0.00000413
0 0 3 1 1 1 -0.00010086 0.00007235
1 0 0 3 1 1 0.00000582 -0.00001928
0 1 0 3 1 1 0.00017534 0.00003675
0 0 1 3 1 1 -0.00010612 0.00020601
1 0 0 2 2 0 0.00020955 -0.00004060
0 1 0 2 2 0 -0.00013834 -0.00003697
0 0 1 2 2 0 0.00043338 0.00048025
1 0 0 2 2 2 0.00005852 0.00001652
0 1 0 2 2 2 0.00013797 -0.00000254
0 0 1 2 2 2 -0.00005047 -0.00008149
1 0 0 1 3 1 0.00004138 -0.00002922
0 1 0 1 3 1 0.00007053 0.00007954
0 0 1 1 3 1 -0.00018286 0.00018235
1 1 1 2 0 0 -0.00002263 -0.00003595
1 1 1 0 2 0 0.00006737 -0.00005305
1 1 0 1 1 1 -0.00000242 -0.00000176 -0.00020407 0.00014616 0.00001177
2 1 0 1 1 1 0.00007373 0.00001942
1 2 0 1 1 1 0.00013957 0.00005334
1 0 1 1 1 1 0.00000133 0.00001482 0.00006997 -0.00000723 0.00000883
2 0 1 1 1 1 0.00004992 0.00001066
1 0 2 1 1 1 0.00010140 -0.00002949
0 1 1 1 1 1 -0.00013370 0.00003100 0.00201523 -0.00064717 -0.00005883
0 2 1 1 1 1 -0.00016232 0.00005726
0 1 2 1 1 1 0.00044867 -0.00001151
1 1 1 1 1 1 -0.00017642 0.00001555

a PEF coefficients are quoted in atomic units; see Equation (5.1) for their definition.
Expanded around rref = 1.079 Å, Rref

1 = 1.236 Å and Rref
2 = 1.340 Å

b CV: [ae-CCSD(T) − fc-CCSD(T)]/CV6Z.
c SR: DKH2-fc-CCSD(T)/VQZ-DK − fc-CCSD(T)/VQZ.
d (Q)-(T): [CCSDT(Q) − CCSD(T)]/VTZ.
e Q-(Q): [CCSDTQ − CCSDT(Q)]/VDZ.
f DBOC (l-12C3H+): ae-CCSD/CVQZ.



266 APPENDIX C. SUPPLEMENTAL MATERIAL FOR PROPYNYLIDYNIUM L-C3H+

Table C.3: Adiabatic composite potential energy functions for l-12C3H+.a

i j k l m n Cijk i j k l m n Cijk

2 0 0 0 0 0 0.18660581 1 1 4 0 0 0 0.00000954
3 0 0 0 0 0 -0.18841809 1 2 1 0 0 0 -0.00064198
4 0 0 0 0 0 0.12779567 1 2 2 0 0 0 0.00099367
5 0 0 0 0 0 -0.07388536 1 2 3 0 0 0 -0.00003533
6 0 0 0 0 0 0.03900499 1 3 1 0 0 0 0.00031112
7 0 0 0 0 0 -0.01883585 1 3 2 0 0 0 0.00032821
8 0 0 0 0 0 0.00936906 1 4 1 0 0 0 -0.00016070
9 0 0 0 0 0 -0.00532518 2 1 1 0 0 0 0.00032321
10 0 0 0 0 0 0.00189872 2 1 2 0 0 0 -0.00019446
0 2 0 0 0 0 0.44434645 2 1 3 0 0 0 -0.00013604
0 3 0 0 0 0 -0.46416893 2 2 1 0 0 0 -0.00029905
0 4 0 0 0 0 0.29951839 2 2 2 0 0 0 -0.00024220
0 5 0 0 0 0 -0.15859023 2 3 1 0 0 0 0.00023487
0 6 0 0 0 0 0.07378424 3 1 1 0 0 0 -0.00026064
0 7 0 0 0 0 -0.03151133 3 1 2 0 0 0 0.00032533
0 8 0 0 0 0 0.00965334 3 2 1 0 0 0 0.00027526
0 0 2 0 0 0 0.26974355 4 1 1 0 0 0 0.00016022
0 0 3 0 0 0 -0.27889552 1 1 0 2 0 0 0.01165042
0 0 4 0 0 0 0.18047266 2 1 0 2 0 0 0.00236433
0 0 5 0 0 0 -0.09425125 1 2 0 2 0 0 -0.00396069
0 0 6 0 0 0 0.04399458 3 1 0 2 0 0 0.00454354
0 0 7 0 0 0 -0.01876572 2 2 0 2 0 0 0.01349126
0 0 8 0 0 0 0.00538120 1 3 0 2 0 0 -0.00001544
0 0 0 2 0 0 0.03783093 1 0 1 2 0 0 0.00132704
0 0 0 4 0 0 -0.00038748 2 0 1 2 0 0 0.00154733
0 0 0 6 0 0 0.00040039 1 0 2 2 0 0 -0.00083315
0 0 0 8 0 0 -0.00033287 3 0 1 2 0 0 0.00060819
0 0 0 10 0 0 0.00039887 2 0 2 2 0 0 0.01381179
0 0 0 12 0 0 -0.00029280 1 0 3 2 0 0 0.00137130
0 0 0 14 0 0 0.00011093 0 1 1 2 0 0 -0.00393735
0 0 0 16 0 0 -0.00001767 0 2 1 2 0 0 0.00556659
0 0 0 0 2 0 0.00435867 0 1 2 2 0 0 -0.00000663
0 0 0 0 4 0 -0.00008020 0 3 1 2 0 0 0.00185593
0 0 0 0 6 0 0.00011629 0 2 2 2 0 0 0.00342656

To be continued on next page
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Table C.3: Continued from previous page

i j k l m n Cijk i j k l m n Cijk

0 0 0 0 8 0 -0.00024876 0 1 3 2 0 0 0.00036065
0 0 0 0 10 0 0.00041958 1 1 0 4 0 0 0.00767870
0 0 0 0 12 0 -0.00029968 1 0 1 4 0 0 0.00040782
0 0 0 0 14 0 0.00012171 0 1 1 4 0 0 -0.00034512
0 0 0 0 16 0 -0.00002644 1 1 0 0 2 0 0.00068868
0 0 0 0 18 0 0.00000244 2 1 0 0 2 0 0.00002557
1 1 0 0 0 0 -0.01303699 1 2 0 0 2 0 0.00084793
2 1 0 0 0 0 0.00238924 3 1 0 0 2 0 0.00047706
1 2 0 0 0 0 0.00059449 2 2 0 0 2 0 -0.01455038
3 1 0 0 0 0 -0.00297616 1 3 0 0 2 0 0.00335464
2 2 0 0 0 0 -0.00459616 1 0 1 0 2 0 -0.00034657
1 3 0 0 0 0 -0.00127206 2 0 1 0 2 0 0.00045465
4 1 0 0 0 0 0.00270025 1 0 2 0 2 0 0.00110291
3 2 0 0 0 0 0.00394073 3 0 1 0 2 0 -0.00144150
2 3 0 0 0 0 0.00247856 2 0 2 0 2 0 -0.01682393
1 4 0 0 0 0 0.00141923 1 0 3 0 2 0 -0.00313611
5 1 0 0 0 0 -0.00122371 0 1 1 0 2 0 -0.01615583
4 2 0 0 0 0 -0.00232862 0 2 1 0 2 0 0.01719294
3 3 0 0 0 0 -0.00179371 0 1 2 0 2 0 0.00743413
2 4 0 0 0 0 -0.00174415 0 3 1 0 2 0 0.00439940
1 5 0 0 0 0 -0.00025716 0 2 2 0 2 0 -0.03645257
1 0 1 0 0 0 0.00495414 0 1 3 0 2 0 0.01369046
2 0 1 0 0 0 -0.00026922 1 1 0 0 4 0 0.00192881
1 0 2 0 0 0 -0.00245115 1 0 1 0 4 0 -0.00478273
3 0 1 0 0 0 0.00032211 0 1 1 0 4 0 0.00033225
2 0 2 0 0 0 0.00010162 1 0 0 1 1 1 -0.00053182
1 0 3 0 0 0 0.00044913 2 0 0 1 1 1 -0.00084417
4 0 1 0 0 0 -0.00022814 3 0 0 1 1 1 -0.00006448
3 0 2 0 0 0 -0.00006638 4 0 0 1 1 1 0.01067593
2 0 3 0 0 0 0.00003994 0 1 0 1 1 1 0.00464102
1 0 4 0 0 0 -0.00019171 0 2 0 1 1 1 -0.00790410
5 0 1 0 0 0 0.00003222 0 3 0 1 1 1 -0.00409120
4 0 2 0 0 0 -0.00018672 0 4 0 1 1 1 0.00664445
3 0 3 0 0 0 0.00007668 0 0 1 1 1 1 0.01621785
2 0 4 0 0 0 0.00006346 0 0 2 1 1 1 -0.01045660

To be continued on next page
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Table C.3: Continued from previous page

i j k l m n Cijk i j k l m n Cijk

1 0 5 0 0 0 0.00020993 0 0 3 1 1 1 0.00420429
0 1 1 0 0 0 0.00808269 0 0 4 1 1 1 0.00688904
0 2 1 0 0 0 -0.00961510 1 0 0 3 1 1 0.00065809
0 1 2 0 0 0 -0.00828965 2 0 0 3 1 1 0.00650387
0 3 1 0 0 0 0.00386307 0 1 0 3 1 1 -0.00442667
0 2 2 0 0 0 -0.00744918 0 2 0 3 1 1 -0.00901044
0 1 3 0 0 0 -0.00465165 0 0 1 3 1 1 0.00026452
0 4 1 0 0 0 -0.00278851 0 0 2 3 1 1 0.00409368
0 3 2 0 0 0 0.00880355 1 0 0 2 2 0 -0.00034511
0 2 3 0 0 0 0.00288906 2 0 0 2 2 0 0.01294572
0 1 4 0 0 0 0.00065317 0 1 0 2 2 0 0.00099117
0 5 1 0 0 0 0.00372334 0 2 0 2 2 0 0.01079344
0 4 2 0 0 0 -0.00420891 0 0 1 2 2 0 0.00240217
0 3 3 0 0 0 -0.00118173 0 0 2 2 2 0 0.01816487
0 2 4 0 0 0 -0.00436835 1 0 0 2 2 2 0.00018227
0 1 5 0 0 0 0.00184341 2 0 0 2 2 2 -0.00367626
1 0 0 2 0 0 -0.00933692 0 1 0 2 2 2 -0.00299955
2 0 0 2 0 0 -0.00241971 0 2 0 2 2 2 -0.01025613
3 0 0 2 0 0 0.00130100 0 0 1 2 2 2 0.00239265
4 0 0 2 0 0 0.00741127 0 0 2 2 2 2 -0.00716006
0 1 0 2 0 0 -0.03856228 1 0 0 1 3 1 0.00087713
0 2 0 2 0 0 -0.00144926 2 0 0 1 3 1 0.00749245
0 3 0 2 0 0 -0.00423533 0 1 0 1 3 1 0.00040483
0 4 0 2 0 0 0.01043487 0 2 0 1 3 1 0.01414570
0 0 1 2 0 0 -0.00701326 0 0 1 1 3 1 -0.00482668
0 0 2 2 0 0 0.00155408 0 0 2 1 3 1 0.01070791
0 0 3 2 0 0 -0.00045904 1 1 1 2 0 0 -0.00134335
0 0 4 2 0 0 0.00927163 1 1 2 2 0 0 0.00712249
1 0 0 4 0 0 -0.00104559 1 2 1 2 0 0 -0.00415296
2 0 0 4 0 0 0.00421952 2 1 1 2 0 0 -0.00400242
0 1 0 4 0 0 0.00251981 1 1 1 0 2 0 -0.00064812
0 2 0 4 0 0 0.00881127 1 1 2 0 2 0 0.00109165
0 0 1 4 0 0 0.00063907 1 2 1 0 2 0 -0.00167744
0 0 2 4 0 0 0.00467583 2 1 1 0 2 0 0.00670916
1 0 0 0 2 0 -0.00070515 1 1 0 1 1 1 -0.00148453

To be continued on next page
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Table C.3: Continued from previous page

i j k l m n Cijk i j k l m n Cijk

2 0 0 0 2 0 -0.00002762 2 1 0 1 1 1 -0.00073969
3 0 0 0 2 0 0.00028762 1 2 0 1 1 1 0.00162942
4 0 0 0 2 0 -0.01034093 3 1 0 1 1 1 -0.00067463
0 1 0 0 2 0 -0.01540963 2 2 0 1 1 1 0.01891353
0 2 0 0 2 0 0.00239950 1 3 0 1 1 1 -0.00317190
0 3 0 0 2 0 -0.00458868 1 0 1 1 1 1 -0.00121921
0 4 0 0 2 0 -0.00620064 2 0 1 1 1 1 -0.00113070
0 0 1 0 2 0 0.00336075 1 0 2 1 1 1 0.00172556
0 0 2 0 2 0 -0.00618815 3 0 1 1 1 1 0.00056768
0 0 3 0 2 0 0.00563204 2 0 2 1 1 1 0.01881086
0 0 4 0 2 0 -0.01182640 1 0 3 1 1 1 -0.00384161
1 0 0 0 4 0 0.00007088 0 1 1 1 1 1 0.01388724
2 0 0 0 4 0 -0.00325209 0 2 1 1 1 1 0.01227173
0 1 0 0 4 0 0.00264426 0 1 2 1 1 1 -0.01493154
0 2 0 0 4 0 -0.00065643 0 3 1 1 1 1 0.01100483
0 0 1 0 4 0 -0.00271919 0 2 2 1 1 1 -0.00622110
0 0 2 0 4 0 0.01113482 0 1 3 1 1 1 0.01486193
0 0 0 1 1 1 0.00136939 1 1 0 3 1 1 -0.00338753
0 0 0 3 1 1 -0.00210941 1 0 1 3 1 1 -0.00334327
0 0 0 2 2 0 0.00101746 0 1 1 3 1 1 0.00085985
0 0 0 2 2 2 -0.00001840 1 1 0 2 2 0 -0.00032638
0 0 0 1 3 1 -0.00049128 1 0 1 2 2 0 -0.00421174
0 0 0 5 1 1 -0.00030631 0 1 1 2 2 0 0.00085966
0 0 0 4 2 0 -0.00024010 1 1 0 2 2 2 -0.00060169
0 0 0 4 2 2 -0.00000723 1 0 1 2 2 2 -0.00176789
0 0 0 3 3 1 0.00047186 0 1 1 2 2 2 0.00603540
0 0 0 3 3 3 0.00003515 1 1 0 1 3 1 -0.00911274
0 0 0 2 4 0 0.00055012 1 0 1 1 3 1 -0.00198495
0 0 0 2 4 2 0.00058868 0 1 1 1 3 1 -0.01038817
0 0 0 1 5 1 -0.00064639 1 1 1 1 1 1 0.00081151
1 1 1 0 0 0 -0.00045909 1 1 2 1 1 1 0.00325780
1 1 2 0 0 0 -0.00025926 1 2 1 1 1 1 0.00369857
1 1 3 0 0 0 -0.00056898 2 1 1 1 1 1 0.00112922

a PEF coefficients are quoted in atomic units; see Equation (5.1) for their definition.
Equilibrium geometry: re = 1.07896 Å, Re

1 = 1.23540 Å and Re
2 = 1.34080 Å.
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