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ABSTRACT 

Within the mammalian inner ear, sensory inner hair cells (IHCs) of the organ of Corti are required 

to transduce sound waves into electrical signals. Specialized synapses at the IHC basal pole, so-called 

ribbon synapses, facilitate the vivid release of the neurotransmitter glutamate over long time periods. 

Not only the exocytic release machinery but also the organization of the synaptic vesicle (SV) pools 

are adapted in these cells. SV release in IHCs is further balanced by robust membrane retrieval and 

SV reformation. Even though fast and slow forms of endocytosis have been described, to date, little 

is known about the molecular entities regulating SV recycling in IHCs.  

In the here presented two studies, I examined the roles of two key players in neuronal endocytosis, 

namely endophilin-A1-3 and AP180, in IHC synaptic transmission. Combining various 

methodologies, I could show together with my collaborators, that both proteins seem to have several 

functions along the SV cycle. Both, endophilin-A and AP180, are involved in clathrin-dependent 

processes in IHCs: while AP180 recruits clathrin, endophilin-A regulates the fission and uncoating 

of clathrin-coated pits and vesicles. Especially for the clathrin-dependent reformation of SVs from 

endosome-like vacuoles (ELVs), the actions of those two proteins appear rate-limiting. The two 

proteins endophilin-A and AP180 seem further required for the tight coupling of exo- and 

endocytosis. We could show that absence of endophilin-A results in impaired sustained exocytosis, 

which points towards a deficit in SV replenishment or SV recruitment to the ribbon, or to impaired 

release site clearance. In either of these processes, endophilin-A may interact with otoferlin. Absence 

of AP180 resulted in a defect downstream of docking, which we attribute to a function of AP180 in 

release site clearance. Finally, we could for the first time show that endophilin-A functionally 

modulates presynaptic Ca2+-channels and promotes Ca2+-channel clustering at IHC active zones.  

Taken together, these two studies on the endocytic proteins endophilin-A and AP180 demonstrate 

that the different processes mediating the SV cycle in IHCs are tightly coupled and balanced. 

However, they also illustrate the robustness of the SV recycling and transmitter release of the first 

auditory synapse towards molecular disruption of genes coding for endocytic proteins, as none of the 

examined mouse mutants exhibited severe hearing deficits.  
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1.1 INNER HAIR CELLS - AN INTRIGUING MODEL SYSTEM 

A key characteristic of every living individuum is the ability to interact with its environment. 

Particularly in animals, this interaction does not only include the sensation of stimuli, but also 

communication with each other. For this purpose, environmental information is detected through 

sensory cells, e.g. retinal or inner ear cells, transduced into chemical or electrical signals, and 

transferred into the respective brain areas. Synapses formed between sensory cells and neurons, or 

between different neurons, form the basis for signal transmission within the sensory system. At these 

synapses, neurotransmitter-filled synaptic vesicles (SVs) undergo a cycle of release and recycling: 

Exocytosis at the presynaptic active zone (AZ) is induced by cell depolarization and results in the 

integration of the SV membrane into the cellular plasma membrane. This process goes along with 

the release of neurotransmitters into the synaptic cleft formed between pre- and postsynapse. 

Exocytosis is accompanied by SV recycling, which includes the internalization of membrane 

(endocytosis) and the reformation of new SVs. Endocytosis is not only required to balance the 

increase in the cell surface following exocytosis, but also to clear release sites at the AZ from vesicular 

proteolipids. Moreover, the endocytosed membrane material builds the basis for newly formed SVs. 

These general steps within the SV cycle are conserved between different cell types and within 

different species. The molecular composition and architecture of synapses, though, are heterogenous 

within the animal body and individually adapted to the specific demands of each respective synapse. 

One example for such a specialization are the so-called ribbon synapses within inner hair cells (IHCs) 

of the inner ear. In the first part of my introduction, I will summarize anatomical features of IHCs, 

followed by an extensive morphological and functional characterization of their ribbon synapses. In 

the third part of my introduction, I will compare synaptic transmission in neurons and in IHCs. 

Especially in comparison to neurons, IHCs serve as an interesting model system for exo- and 

endocytic processes: here, synaptic transmission is adapted to the edge of synaptic capabilities. 

Beyond that, understanding molecular processes in IHCs provides a basis for the development of 

therapeutic strategies for the treatment of hearing impairments associated with the inner ear.  

1.1.1 THE MAMMALIAN INNER EAR 

The mammalian ear consists of the outer ear, the middle ear, and the inner ear (Fig. 1-1A). While the 

outer ear is required for the bundling and filtering of incoming sound pressure waves, the middle 
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ear, harboring the ear drum and the ossicles, matches the different impedance of sound conduction 

in the air and the fluid-filled inner ear. Within the inner ear, the mechanical information is 

transduced into electrical signals, which are transmitted via auditory nerves formed by the bipolar 

spiral ganglion neurons (SGNs) and perceived by the respective brain areas.  

 

Fig. 1-1: The anatomy of the mammalian inner ear. (A) Overview of outer ear, middle ear and inner ear. 

(B) Cross-section through the cochlea with the three fluid-filled cavities, the organ of Corti on top of the 

basilar membrane, and the auditory nerve. (C) The organ of Corti contains three rows of OHCs with 

stereocilia embedded in the tectorial membrane, and one row of IHCs, as well as different types of 

supporting cells. Images modified from Pearson Education 2012.  

The inner ear is formed by the vestibular apparatus with its three semicircular canals and two macula 

organs, which are required for balance, and by the cochlea, which is a bony structure resembling a 

 and displays the end-organ for hearing (Fig. 1-1A). The cochlea contains three fluid-filled 

compartments, which wind up along the cochlea: the scala media, scala vestibuli and scala tympani. 

(Fig. 1-1B). These cavities contain solutions of different composition. The scala vestibuli and scala 
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tympani contain low-K+ perilymph with a composition closely matching typical extracellular saline, 

whereas the scala media contains a high-K+ fluid called endolymph. When sound enters the inner 

ear, the basilar membrane, which borders the scala media, vibrates in form of a travelling wave. This 

wave reaches its maximal amplitude at a specific region along the longitudinal axis of the cochlea 

depending on the frequency of the sound. This frequency-place-relationship is called tonotopy and 

leads to low-frequency signals having their maxima at the apex of the cochlea and high-frequency 

signals reaching their maxima at the base according to the varying micromechanical properties of the 

basilar membrane along the tonotopic axis. At this specific position, the organ of Corti, which is the 

sensory epithelium of the cochlea and located on top of the basilar membrane, processes the given 

sound stimulus (Fettiplace, 2017). The organ of Corti is formed by three rows of outer hair cells 

(OHCs) and one row of IHCs, as well as by different types of supporting cells (Fig. 1-1C). OHCs are 

studded with stereocilia that project not only into the scala media but are, at least partially, also 

embedded into the tectorial membrane that covers the organ of Corti. Sound-induced movements of 

basilar membrane and tectorial membrane relative to each other induce deflections of the stereociliar 

hair bundles of the OHCs. The OHCs now contract and expand in response to the sound stimuli, 

which further amplifies the relative movements of the basilar membrane and tectorial membrane and 

also the resulting radial flux of the endolymph between the tectorial membrane and the surface of the 

organ of Corti (Fettiplace, 2017). The flux now causes displacements of hair bundles of the IHCs and 

eventually results in the opening of mechano-electrical transduction channels located within the 

membrane of the stereocilia (Assad et al., 1991; Howard and Hudspeth, 1988). These nonselective 

cation channels show ultrafast activation and closing kinetics and provide graded cell depolarization 

or hyperpolarization through K+ influx dependent on intensity and direction of stereociliar 

deflections (Beurg et al., 2006; Corey and Hudspeth, 1979; Fettiplace, 2017).  

1.1.2 INNER HAIR CELLS SHOW A POLARIZED CELLULAR ORGANIZATION 

Like in OHCs, hair bundles of IHCs are located at the top of the cells, whereas voltage-gated CaV1.3 

Ca2+-channels, which open upon depolarization of the cell, are exclusively found in the basal half of 

IHCs (see Fig. 1-2; Brandt et al., 2003; Platzer et al., 2000; Roberts et al., 1990). Generally, IHCs show 

a strong polarization along the apicobasal axis: Stereocilia at the apex of IHCs are anchored in the 

cuticular plate, which is an amorphous network of cytoskeletal proteins like actin (Slepecky and 

Chamberlain, 1985). Golgi complexes as well as LAMP1-positive structures likely displaying 

lysosomes have exclusively been detected in the apical half of IHCs (Revelo et al., 2014; Siegel and 
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Brownell, 1986). Even though endosome-like vacuoles (ELVs) can be observed in all parts of IHCs, 

markers for early endosomes (EEA1) and late endosomes (syntaxin 16) have only been visible in the 

apical and nuclear region, but not beneath (Revelo et al., 2014).  

Contrarily, synaptic transmission from IHCs to SGNs is restricted to the basal region of IHCs. Not 

only neurotransmitter release, but also stimulus-evoked endocytic processes and SV reformation 

were detected in the IHC base (Kamin et al., 2014; Kantardzhieva et al., 2013; Revelo et al., 2014). 

Here, the specialized ribbon synapses are located to facilitate the Ca2+-induced release of glutamate 

(see Fig. 1-2C). Depending on the tonotopic position along the basilar membrane, individual cochlear 

IHCs harbor between 5 and 20 ribbon synapses (Meyer et al., 2009). Each of these synapses is thought 

to be innervated by a single afferent SGN (Liberman, 1978). After the onset of hearing at ~P12 in 

mice (Mikaelian and Ruben, 1965), usually one electron-dense structure named synaptic ribbon (see 

1.2.2 Peculiarities of Inner Hair Cell Ribbon Synapses) can be detected per AZ, rarely two or even 

three (Sobkowicz et al., 1986; Wong et al., 2014). Interestingly, the size of synaptic ribbons and active 

zones as well as the Ca2+-influx and rates of spontaneous neurotransmitter release are heterogenous 

between individual AZs within the same IHC (Frank et al., 2009; Meyer et al., 2009; Ohn et al., 2016). 

Likewise, SGNs that innervate the IHCs differ in their diameter (Liberman, 1982a; Merchan-Perez 

and Liberman, 1996; Ohn et al., 2016). Ribbon synapses containing a larger synaptic ribbon, more 

Ca2+-channels, and a high number of SVs are predominantly found at the modiolar side (facing the 

spiral ganglion), whereas smaller ribbons connected to a higher rate of spontaneous release are 

preferentially located at the pillar side (facing the OHCs) of IHCs (Frank et al., 2009; Meyer et al., 

2009; Ohn et al., 2016). It has been suggested that the heterogeneity of ribbon synapses and SGNs is 

required for the encoding of different sound pressure levels (Liberman, 1982a; Liberman, 1982b; 

Merchan-Perez and Liberman, 1996; Moser and Vogl, 2016).  
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Fig. 1-2: Morphological characteristics of IHCs and ribbon synapses. (A) Overview of two IHCs. Cell 

borders are highlighted in blue, afferent (violet) and efferent (red) nerve terminals are shaded. Scale bar 

2 µm. (B) Higher magnification of an IHC base containing a ribbon synapse. Scale bar 500 nm. (C) Cross-

section of a synaptic ribbon (R) surrounded by SVs opposed to an afferent bouton. Scale bar 200 nm. (D-F) 

Schematic drawings of an IHC (D), a cross-section of a ribbon synapse (E) and the top view of an active zone 

without the ribbon (F). RA-SV ribbon-associated SV; MP-SV membrane-proximal SV; PD presysnaptic 

density; AMPA -amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor. 
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1.2 WHAT MAKES RIBBON SYNAPSES SO SPECIAL? 

1.2.1 THE GENERAL ARCHITECTURE OF SYNAPSES 

Examining peculiarities of IHC ribbon synapses does not work without understanding the 

fundamental characteristics of synapses: A presynapse containing SVs to be released at the active 

zone, a postsynapse containing receptors for neurotransmitter perception, and a synaptic cleft. These 

features are conserved not only between different species from invertebrates to mammals, but also 

between different cell types. AZs of neuronal synapses, which are probably the best-understood type 

of synapses, are covered by small dense projections, which are in close proximity to Ca2+-channels 

and SVs (Oheim et al., 2006; Zhai and Bellen, 2004). A meshwork of multi-domain proteins forms 

the cytomatrix at the active zone (CAZ) that is crucial for the maintenance of synaptic transmission 

(Südhof, 2012). Depending on the specific demands, architecture and molecular composition of 

synapses may differ enormously between different cell types and in different species, though. In 

invertebrates, a specialized, well-studied synapse can be found at neuromuscular junctions of 

Drosophila melanogaster. Instead of small dense projections, these synapses contain an electron-

dense three-dimensional structure extending from the AZ membrane called T-bar, which is formed 

by the protein bruchpilot and supports fast SV release (Kittel et al., 2006; Wagh et al., 2006). In hair 

cells and retinal cells of vertebrates, e.g. of fishes, frogs, guinea pigs and mice, electron-dense 

presynaptic structures have likewise been detected that are named synaptic ribbons (Dowling, 1968; 

Flock and Duvall, 1965; Gray and Pease, 1971; Sjostrand, 1958; Smith and Sjöstrand, 1961). 

1.2.2 PECULIARITIES OF INNER HAIR CELL RIBBON SYNAPSES 

Synaptic ribbons are the hallmark of ribbon synapses and are mainly composed of the protein 

RIBEYE (see 1.2.2.2 The Molecular Composition of Inner Hair Cell Ribbon Synapses). A halo of SVs 

is tethered to the ribbon as well as to the AZ membrane in close proximity to the ribbon (see Fig. 1-

2E and F; Frank et al., 2010; Matthews and Fuchs, 2010; Zhai and Bellen, 2004). In saccular hair cells, 

ribbons are spherical while they are reminiscent of a horse shoe in murine retinal photoreceptor cells 

(Dick et al., 2003; Lenzi and von Gersdorff, 2001; Zhai and Bellen, 2004). In cochlear IHCs, ribbons 

are oval- or droplet-shaped in cross-section and elongated in the longitudinal direction (Sobkowicz 

et al., 1982; Wong et al., 2014).   
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A number of putative functions for ribbon synapses have been postulated not only in cochlear IHCs, 

but also in retinal photoreceptor or bipolar cells, as well as in zebrafish hair cells: (i) Tethering of a 

large SV pool in close vicinity to the AZ, the ribbon could play an essential role in the replenishment 

of SVs in the course of continuous exocytosis (Becker et al., 2018; Frank et al., 2010; Jean et al., 2018; 

Maxeiner et al., 2016; Snellman et al., 2011). Whether SVs are passively delivered to the release sites 

(Graydon et al., 2014), or if the ribbon actively regulates 

SV resupply, is not fully understood yet (Lenzi and von Gersdorff, 2001; Maxeiner et al., 2016). (ii) 

At photoreceptor ribbon synapses, a direct involvement of the ribbon in priming of SVs, or at least 

in the recruitment of priming factors, has been suggested (Snellman et al., 2011). Even though 

functions of the ribbon in SV priming in IHCs still lack verification, it could be shown that (iii) 

ribbons likely facilitate exocytosis through the provision of multiple release sites and co-localizing of 

SVs to Ca2+-channels (Edmonds, 2004; Fuchs, 2005; Glowatzki and Fuchs, 2002; Khimich et al., 2005; 

Li et al., 2009). (iv) Absence of the ribbon resulted in impaired clustering of Ca2+-channels (Frank et 

al., 2010; Jean et al., 2018; Khimich et al., 2005; Sheets et al., 2011). Hence, the ribbon seems to also 

be involved in the organization and/or functional modulation of Ca2+-channels at the AZ. (v) Last 

but not least, the ribbon may form a Ca2+ diffusion barrier, thus generating very high local Ca2+ 

concentrations (Graydon et al., 2011). 

1.2.2.1 ADJUSTED VESICLE POOL ORGANIZATION IN INNER HAIR CELLS  

Neurotransmitter release in IHCs is supposed to be highly organized, meaning that different stimuli 

can induce exocytosis of distinct SV pools. In neuronal synapses, three main SV pools have been 

characterized morphologically and physiologically (Elmqvist and Quastel, 1965; Liley and North, 

1953; Neher, 1998; Rizzoli and Betz, 2005): (i) The readily-releasable pool (RRP) is located just above 

the AZ plasma membrane and can be released as soon as a stimulus reaches the nerve terminal 

(Rosenmund and Stevens, 1996; Schikorski and Stevens, 2001; Schneggenburger et al., 1999). (ii) 

Continuous stimulation leads to the depletion of the RRP, which is subsequently refilled by SVs from 

the recycling pool (also termed slowly-releasable pool; SRP) located in the vicinity of the AZ 

membrane (Harata et al., 2001; Neher, 1998; Rizzoli and Betz, 2005). (iii) Strong stimulation 

ultimately induces the mobilization of the cytosolic reserve pool of SVs for release (Harata et al., 2001; 

Neher, 1998; Rizzoli and Betz, 2005). While the reserve pool is sparsely utilized in neuronal synaptic 
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transmission under physiological conditions, other synapses may more frequently make use of this 

SV pool (Denker and Rizzoli, 2010; Truckenbrodt et al., 2018).  

Electrophysiological recordings in IHCs revealed two phases of SV exocytosis: a short phase with 

exponential release and a later phase with a continuous, linear rate of release (Moser and Beutner, 

2000; Rutherford and Roberts, 2006). The initial phase that can already be induced by brief 

depolarizations (upto 20 ms) likely reflects the RRP of SVs and comprises one to two dozens of SVs 

per AZ (Moser and Beutner, 2000;  et al., 2010). Several studies, not only in cochlear IHCs 

but also in saccular hair cells, have suggested that the RRP is formed by SVs lining up directly below 

the ribbon base (Frank et al., 2010; Lenzi et al., 1999; Moser and Beutner, 2000; Rutherford and 

Roberts, 2006; Sobkowicz et al., 1982). The SVs forming the physiological RRP have been suggested 

to be part of the morphological membrane-proximal SV pool (MP-SV) at IHC ribbon synapses 

(Chakrabarti et al., 2018; Frank et al., 2010; Jung et al., 2015a). Due to the length of tethers, i.e. 

filamentous connectors (also see below), between SVs and the AZ membrane examined via high-

pressure freezing (HPF), a max. distance of MP-SVs to the AZ membrane of roughly 50 nm has been 

established (Chakrabarti et al., 2018; Jung et al., 2015a). Upon stimulation, the MP-SV pool was 

shown to be more strongly depleted at different ribbon synapses than the SVs around the ribbon 

(Frank et al., 2010; Lenzi et al., 2002;  et al., 2010). Stronger depolarizations (longer than 

50 ms) were shown to induce the sustained phase of release, which is required for processing 

continued sound stimuli (  et al., 2010). SVs required for the tonic release of 

neurotransmitters have been suggested to be recruited to the release sites from potential SV pools 

around the ribbon, in direct vicinity to the ribbon, or even within the cytosol in ribbon proximity at 

different ribbon synapses (Frank et al., 2010; Glowatzki and Fuchs, 2002; Lenzi et al., 1999; Moser 

and Beutner, 2000; Schnee et al., 2005). Previous studies further indicated that the SVs around the 

ribbon are released prior to cytosolic SVs (Frank et al., 2010; Jean et al., 2018; Lenzi et al., 1999; Lenzi 

et al., 2002; Schnee et al., 2005). Although an allocation of SVs within the IHC base to SV pools 

reflecting the recycling pool and the reserve pool in neurons has not been possible, a morphological 

pool of ribbon-associated SVs (RA-SVs) in cochlear IHCs has been defined (Chakrabarti et al., 2018; 

Frank et al., 2010; Jung et al., 2015a; Wong et al., 2014). This RA-SV pool harbors SVs in the first row 

around the ribbon, usually with a tethering filament formed between SV and ribbon. 

Not only at ribbon synapses, but also at central synapses, SVs are linked to each other as well as to 

scaffolding proteins and the AZ membrane via filamentous tethers. Filaments connecting SVs with 
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each other (interconnectors) support the mobilization of SVs as well as their stay within defined SV 

pools (Cole et al., 2016; Fernández-Busnadiego et al., 2010; Hallermann and Silver, 2013; Siksou et 

al., 2007). Likewise, tethers formed between SVs and the ribbon in IHCs could be required for the 

organized, continuous release of neurotransmitters (Chakrabarti et al., 2018). To date, the protein 

composition of filaments between SVs and the ribbon in IHCs, as well as of interconnectors, is 

elusive. Tether formation between SVs and the AZ membrane is supposed to be an essential step in 

the initiation of SV exocytosis (Chakrabarti et al., 2018; Imig et al., 2014). These tethers vary in length 

and morphology, whereby more multi-tethered SVs have been observed in IHCs after stimulation 

(Chakrabarti et al., 2018). It has therefore been proposed that the formation of multiple short tethers 

between SVs and AZ precedes docking and fusion, as previously described in neurons (Chakrabarti 

et al., 2018; Cole et al., 2016; Fernández-Busnadiego et al., 2013). In neurons and at IHC ribbon 

synapses, RIMs have been suggested to play a role in the tethering of SVs to the AZ (Betz et al., 2001; 

Fernández-Busnadiego et al., 2013; Imig et al., 2014; Jung et al., 2015a). Whether also SNARE (soluble 

N-ethylmaleimide-sensitive factor (NSF) attachment protein receptors) protein interaction is part of 

the tethering process at least at central synapses, is still under debate (Fernández-Busnadiego et al., 

2010; Imig et al., 2014). Although IHCs seem to operate without neuronal SNARE proteins (see 1.3.1 

A Comparison of Exocytosis at CNS and IHC Synapses; Nouvian et al., 2011), a partial requirement of 

the IHC exocytic protein otoferlin for the formation of short tethers has been described (Vogl et al., 

2015).   

1.2.2.2 THE MOLECULAR COMPOSITION OF INNER HAIR CELL RIBBON SYNAPSES 

Ribbon synapses, as well as synapses at neuronal nerve terminals, are designed for Ca2+-induced 

neurotransmitter release. Developmentally, IHCs and neurons are formed from different embryonic 

compartments, though. IHCs derive from placodes formed within the epithelial part of the ectoderm, 

whereas neurons of the central nervous system originate from the neural tube (Graham and Shimeld, 

2013). Therefore, it is plausible that the molecular composition of the AZ and of the release 

machinery partially differ between IHC ribbon synapses and neuronal synapses.  

SCAFFOLDING PROTEINS 

The cytomatrix protein RIBEYE represents the main organizational compound of synaptic ribbons 

not only at IHC ribbon synapses but also in the retina. RIBEYE consists of an A domain involved in 
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the assembly of the ribbon and a B domain with enzymatic activity (Khimich et al., 2005; Schmitz et 

al., 2000; Schwarz et al., 2011). The B domain is structurally almost identical to the transcription 

repressor C-terminal binding protein 2 (CtBP2) and may facilitate the tethering of SVs to the ribbon 

(Schmitz et al., 2000). Knockout of the RIBEYE A domain was found to severely impair synaptic 

function in the retina, whereas IHC synaptic transmission was shown to be rather mildly affected 

(Becker et al., 2018; Jean et al., 2018; Maxeiner et al., 2016). Impressive developmental modifications 

- including the re-shaping of the AZ with several small presynaptic densities that were shown to 

tether SVs in RIBEYE-knockout (KO) IHCs - may here compensate in part for the absence of the 

synaptic ribbons (Jean et al., 2018).  

The scaffolding protein bassoon has originally been described as one major component of the CAZ 

at central synapses (Südhof, 2012; tom Dieck et al., 1998). Immunogold electron microscopy revealed 

that bassoon is also present at IHC and retinal AZs and here forms a component of the presynaptic 

density anchoring the synaptic ribbon (Dick et al., 2003; tom Dieck et al., 2005; Wong et al., 2014). 

Consequently, ribbons are not attached to the AZ in bassoon-KO mice but free-floating in the cytosol 

(Dick et al., 2003; Frank et al., 2010; Khimich et al., 2005). In addition, bassoon was shown to be 

required for the stabilization of the RRP and for the clustering of Ca2+-channels (Frank et al., 2010; 

Jean et al., 2018; Jing et al., 2013; Khimich et al., 2005; Neef et al., 2018). At central synapses, bassoon 

and piccolo mostly act together in the assembly of the AZ and in scaffolding, as well as in SV 

replenishment (Butola et al., 2017; Fenster et al., 2000; Mendoza Schulz et al., 2014; Südhof, 2012; 

tom Dieck et al., 1998), but seem to have distinct functions at ribbon synapses. At retinal and IHC 

ribbon synapses, only a truncated form of piccolo called piccolino could be substantiated, which is 

missing the C-terminal binding sites for bassoon and RIM (Regus-Leidig et al., 2013). Immunogold 

labeling revealed the localization of piccolino exclusively around the ribbon (reminiscent of RIBEYE 

staining); and knockdown of piccolo/ piccolino in the retina was shown to result in impaired ribbon 

formation (Limbach et al., 2011; Regus-Leidig et al., 2014). It remains to be investigated if piccolino 

is involved in ribbon assembly, if it has a function in organizing CAZ or fusion proteins, or if 

piccolino contributes to the formation of tethers. Based on the localization, piccolino could be 

involved in tethering SVs to the ribbon. In contrast, RIMs were shown to play a role in the tethering 

of SVs to the AZ (Jung et al., 2015a). Moreover, RIMs can interact with CaV1.3 Ca2+-channels and, 

accompanied by RIM-binding protein (RIM-BP), regulate the clustering of these channels (Jung et 

al., 2015a; Krinner et al., 2017, 201; Picher et al., 2017).  
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CALCIUM CHANNELS 

In IHCs, CaV1.3 is the almost exclusively present subtype of Ca2+-channels (Brandt et al., 2003; Platzer 

et al., 2000). Approx. 50-80% of these channels in a cell form dense clusters at the AZ, with each 

cluster consisting of 80-120 individual channels on average (Brandt et al., 2005; Neef et al., 2018; 

Roberts et al., 1990; Wong et al., 2014; Zampini et al., 2013). Still, numbers of channels and cluster 

lengths can vary greatly depending on the localization of the AZ within the IHC (Frank et al., 2010; 

Neef et al., 2018; Ohn et al., 2016; Wong et al., 2014). In general, Ca2+-channels are organized in a 

comparably higher density within the clusters at IHC ribbon synapses than at central synapses, and 

provide ultrafast activation and very slow inactivation kinetics (Neef et al., 2018; Zampini et al., 

2013). Mostly, these clusters form a stripe- or double stripe-like pattern that closely conforms the 

distribution of bassoon (Frank et al., 2010; Neef et al., 2018; Wong et al., 2014). Ca2+-channels are 

tightly coupled to SVs, and it seems as if a single channel controls the release of one SV (Brandt et 

al., 2005; Wong et al., 2014). 

THE MULTI-C2 DOMAIN PROTEIN OTOFERLIN 

In IHCs after the onset of hearing, Ca2+-sensing for exocytosis apparently does not require the 

neuronal Ca2+ sensor synaptotagmin-1 (Beurg et al., 2010; Reisinger et al., 2011; Safieddine and 

Wenthold, 1999). However, the IHC-specific protein otoferlin harbors 6-7 C2 domains, which are 

structurally related to those of synaptotagmin-1 (Helfmann et al., 2011;  et al., 2012; 

Reisinger et al., 2011; Roux et al., 2006). Apart from the C2 domains, most of which can bind Ca2+, 

otoferlin possesses a C-terminal trans-membrane domain, as well as a Fer domain and a coiled-coil 

domain (Johnson and Chapman, 2010;  et al., 2012; Roux et al., 2006). Even though otoferlin 

has been suggested to act as a Ca2+-sensor for exocytosis in IHCs (Johnson and Chapman, 2010; 

Michalski et al., 2017; Roux et al., 2006), transgenic expression of synaptotagmin-1 in otoferlin-KO 

mice could not restore exocytosis (Reisinger et al., 2011). These and further studies on otoferlin-KO 

mice led to the assumption that otoferlin is moreover crucial for subsequent steps of exocytosis like 

SV tethering and priming (  et al., 2010; Roux et al., 2006; Strenzke et al., 2016; Vogl et al., 

2015). Even though otoferlin seems not to be a main component of short tethers, it may aid their 

formation  potentially as a priming factor (Vogl et al., 2015). In this regard, multiple binding sites 

for Ca2+-channels, phospholipids and adaptor proteins may allow otoferlin to link fusion-competent 

SVs and exocytic proteins in close proximity to the release sites (Hams et al., 2017; Padmanarayana 
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et al., 2014; Ramakrishnan et al., 2009). Alternatively or in addition, functions of otoferlin in SV 

replenishment and/ or release site clearance have been suggested (Chakrabarti et al., 2018; Jung et al., 

2015b;  et al., 2010). Direct interactions of otoferlin and the adaptor protein AP-2 have been 

interpreted as indicators for a role of otoferlin in SV reformation, in endocytosis and/ or in the 

coupling of exocytosis and endocytosis (Duncker et al., 2013; Jung et al., 2015b; Strenzke et al., 2016).   
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1.3 IHC SYNAPSES SHOW ADAPTIVE NEUROTRANSMISSION  

To sustain transmission rates of up to hundreds of Hz as long as a sound stimulus continues, in 

combination with high temporal precision, ultrafast exocytosis needs to be perpetuated by extremely 

efficient SV replenishment and tightly balanced by compensatory membrane retrieval and SV 

reformation (Beutner et al., 2001; Jung et al., 2015b; Lenzi et al., 2002; Moser and Beutner, 2000; Neef 

et al., 2014; Parsons et al., 1994; Siegel and Brownell, 1986; Trapani et al., 2009). While mechanisms 

and molecular entities of endocytosis seem to be at least partially preserved between IHCs and 

neurons, the exocytic release machinery in IHCs is unique in many aspects.  

1.3.1 A COMPARISON OF EXOCYTOSIS AT CNS AND IHC SYNAPSES 

1.3.1.1 SNARE-MEDIATED EXOCYTOSIS IS PREVALENT IN NEURONS BUT NOT IN IHCS 

A key feature of central synapses is the SNARE-mediated release of neurotransmitters. SNARE 

proteins are subdivided into two sub-groups: v-SNAREs like vesicle-associated protein 2 (VAMP2) 

are located at the vesicular membrane whereas t-SNARES like synaptosomal-associated protein 25 

(SNAP-25) and syntaxin-1 are connected to the target membrane/ the AZ (reviewed in Südhof and 

Rothman, 2009). VAMP2, syntaxin-1 and SNAP-25 together form the trans-SNARE complex, which 

brings the membranes of the AZ and of the SV tightly together (Jahn and Fasshauer, 2012; Söllner et 

al., 1993; Sutton et al., 1998). Once those membranes are in direct contact, they are defined as 

morphologically docked (Verhage and Sørensen, 2008). Whether SV priming is a distinct step 

following docking or whether docking and priming are morphologically and physiologically 

indistinguishable processes is currently under debate (Imig et al., 2014; Verhage and Sørensen, 2008). 

Electron tomography has revealed that SVs are brought into close proximity to the AZ via tethers in 

neurons as well as in IHCs (Chakrabarti et al., 2018; Fernández-Busnadiego et al., 2013). However, 

the docking process in IHCs is apparently orchestrated by a different set of proteins, as synaptic 

transmission in IHCs was shown to be insensitive towards the treatment with neurotoxins which 

cleave the neuronal SNARE proteins SNAP-25, syntaxin-1 and VAMP1-3 (Nouvian et al., 2011). In 

the same study, immunohistochemical staining revealed the presence of all these SNARE proteins in 

efferent synapses near the IHCs but not at the IHC synapse. Even though mRNA of SNAP-25, 

syntaxins and VAMP1-3 could be detected in IHCs, the authors questioned their physiological 
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relevance (Nouvian et al., 2011; Safieddine and Wenthold, 1999). Consequently, IHC exocytosis 

either works completely independent of SNARE complex formation, or it is mediated by non-

neuronal SNARE proteins. Moreover, different studies were showing that complexins, Munc13, and 

CAPS, which regulate docking, priming, and fusion in neurons (Brose, 2008; Chen et al., 2002; Hata 

et al., 1993), do not operate at IHC ribbon synapses (Strenzke et al., 2009; Vogl et al., 2015).  

1.3.1.2 RELEASE MECHANISMS AT CENTRAL SYNAPSES AND RIBBON SYNAPSES 

In neurons, the Ca2+-dependent trans-SNARE complex formation goes along with the release of 

energy that is thought to finally initiate the fusion of SV membrane and AZ membrane via formation 

of a fusion pore (Wiederhold and Fasshauer, 2009). The subsequent full integration of SV membrane 

into the AZ has been the favored model in neurons as well as at IHC ribbon synapses. Particularly in 

IHCs, the simultaneous fusion of multiple SVs facilitated through the ribbon could serve as an 

explanation for fast and strong neurotransmission (Glowatzki and Fuchs, 2002). An alternative 

mechanism is the univesicular release with a strong postsynaptic AMPA receptor complement, 

whereby the repetitive opening and closing of the fusion pore, called fusion pore flickering, might 

explain the occurrence of multiphasic excitatory postsynaptic currents (EPSCs; Chapochnikov et al., 

2014). During fusion pore flickering, only parts of the neurotransmitter are released during every 

opening, before the SV is finally fully integrated into the AZ membrane (Alés et al., 1999). Fusion 

pore flickering was initially examined in chromaffin cells (Chow et al., 1992; Zhou et al., 1996), but 

has also been proposed to occur in IHCs (Chapochnikov et al., 2014). Here, the univesicular release 

has been proposed as an alternative explanation for differences between individual release events at 

an AZ (Chapochnikov et al., 2014). Whether the repetitive opening and closing of a fusion pore plays 

a physiological role in neurotransmission at central synapses is still under debate (Fernández-Alfonso 

and Ryan, 2004; Klingauf et al., 1998; Rizzoli and Jahn, 2007).  

1.3.1.3 RELEASE SITE CLEARANCE 

After the full integration of SV membrane into the AZ plasma membrane, the release machinery, and 

in particular the trans-SNARE complex in neurons, has to be disassembled (Clary et al., 1990; Söllner 

et al., 1993). While SNAP-25 and syntaxin-1 seem to stay in or at the plasma membrane, VAMP2 is 

supposed to be retrieved and re-used in future rounds of SV exocytosis. Not only SNAREs but also 

other proteins involved in exocytosis have to be retrieved from the AZ membrane. In this process 
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called release site clearance, exocytic key proteins and adaptor proteins, which have originally been 

characterized as endocytic proteins, act together in the tight coupling of exo- and endocytosis 

(Haucke et al., 2011; Neher, 2010). For instance the neuronal assembly protein 180 (AP180) and its 

ubiquitously expressed homolog CALM (clathrin assembly lymphoid myeloid leukemia), were 

shown to specifically target VAMP2 and other members of the VAMP family, as more extensively 

recapitulated in chapter 1.3.3.2 The Adaptor Protein AP180 (Koo et al., 2011; Koo et al., 2015). 

Another adaptor protein, AP-2, was shown to play a role in release site clearance in neurons via 

interaction with synaptotagmin-1 (Haucke et al., 2000; Kononenko et al., 2013) and in IHCs via 

interaction with otoferlin (Duncker et al., 2013; Jung et al., 2015b). In AP-2µ KO mice, otoferlin levels 

were shown to be more than 70% reduced and the remaining otoferlin staining was found relatively 

more prominent at the plasma membrane (Jung et al., 2015b).  

1.3.2 THE DIFFERENT STEPS AND FORMS OF VESICLE RECYCLING 

Not only proteins and proteolipids at the AZ surface finally induce endocytosis. Another factor that 

serves as an initiator for membrane internalization is the increase in membrane tension following SV 

fusion events (Kononenko and Haucke, 2015). Furthermore, Ca2+-binding proteins like calmodulin 

as well as phospholipids binding to endocytic proteins have been discussed to induce endocytosis in 

neurons and potentially also at non-neuronal synapses (Dittman and Ryan, 2009; Maritzen and 

Haucke, 2018; Puchkov and Haucke, 2013; Wu et al., 2009).  

To date, it is not clear if the different modes of endocytosis  in neuronal cells, these are clathrin-

mediated endocytosis (CME), activity-dependent bulk endocytosis (ADBE), ultrafast endocytosis 

-and- see Fig. 1-3) - are initiated via different triggers. There is some 

evidence that particularly changes of membrane tension induce UFE (see 1.3.2.3 Ultrafast 

Endocytosis; Watanabe et al., 2013; Watanabe et al., 2018). It is likely that also the prompt clearance 

of release sites, which seems to be a prerequisite for sustained SV release, serves as an initiator for 

UFE (Gan and Watanabe, 2018; Maritzen and Haucke, 2018; Neher, 2010; Watanabe et al., 2013). 

However, the full retrieval of SV cargo proteins does not appear to be obligatory for sustained 

exocytosis due to the availability of cytosolic SV pools. Thus, the sorting of membrane-stranded SV 

cargo is rather a trigger for the slower CME (Denker et al., 2011; Gan and Watanabe, 2018; Rizzoli 

and Betz, 2005).  
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Fig. 1-3: Endocytic mechanisms at synapses. (A) CME is the most-studied form of endocytosis and is 

defined by the formation of clathrin-coated pits in the peri-active zone (in neurons), which are 

subsequently fissioned and uncoated. (B -and- is characterized by the opening and closing of a 

fusion pore without full integration into the AZ membrane. (C) ADBE is induced by strong stimulation. Large 

membrane compartments are internalized, of which SVs are reformed via clathrin-dependent and/or -

independent mechanisms. (D) UFE has been observed less than 100 ms after stimulation. In direct vicinity 

of the AZ, endocytic vesicles are internalized. These fuse with endosomes, followed by clathrin-dependent 

SV reformation. Illustration from (Watanabe and Boucrot, 2017). 

 

It has further been shown that intensity and duration of a stimulus as well as temperature play a role 

in the induction of different endocytic mechanisms. Few action potentials at physiological 

temperature were shown to be sufficient to trigger UFE in neurons (Watanabe et al., 2013). Already 

at room temperature and upon low to moderate stimulation, CME has been ascertained in neurons 

(Granseth et al., 2006; Kononenko et al., 2014; Saheki and Camilli, 2012), as well as in IHCs (Neef et 

al., 2014; Siegel and Brownell, 1986). Additionally, stimulation with a high frequency or with high-

K+ was shown to induce the clathrin-independent internalization of bulk membrane, from which SVs 

are subsequently reformed (Clayton and Cousin, 2009; Clayton et al., 2008; Kantardzhieva et al., 

2013; Neef et al., 2014; Revelo et al., 2014). Particularly at synapses with very fast and continuous SV 

turnover  not only in IHC and retinal ribbon synapses (Moser and Beutner, 2000; Neef et al., 2014; 

A B 

C D 
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Paillart et al., 2003) but also at central synapses like the calyx of Held (Clayton et al., 2008; Lange et 

al., 2003; Wu and Wu, 2007)  bulk-like membrane retrieval (e.g. ADBE) has been observed.  

For more than three decades, CME has broadly been accepted as the predominant mode of 

endocytosis in neurons and sensory cells (Granseth et al., 2006; Saheki and Camilli, 2012). Recent 

studies propose that clathrin-independent pathways have a major role in endocytosis whereas CME 

is more important for cargo sorting than for membrane retrieval (Gimber et al., 2015; Kononenko et 

al., 2014; Soykan et al., 2017; Watanabe et al., 2013). In these studies, the authors argue that knockouts 

of clathrin adaptor proteins like AP-2 (Gu et al., 2008; Jung et al., 2015b; Kononenko et al., 2014), 

stonin2 (Kononenko et al., 2013), and AP180 (Koo et al., 2015) as well as absence or inhibition of 

clathrin heavy chain (Neef et al., 2014; Sato et al., 2009) only mildly impair the kinetics of membrane 

retrieval but result in a greater diffusional spread of proteins that were undergoing exocytic processes 

(Gimber et al., 2015; Soykan et al., 2017). However, absence of clathrin or its adaptors also resulted 

in accumulations of ELVs, which are interpreted as endocytic intermediates. Therefore, it was 

proposed that the reformation of SVs from ELVs following ADBE or UFE in neurons as well as in 

IHCs is at least in parts dependent on clathrin and on AP-2 (Jung et al., 2015b; Kononenko et al., 

2014; Watanabe et al., 2014). 

-dependent SV reformation seem to be at least in part identical (Gan and 

Watanabe, 2018). It has even been hypothesized that CME and clathrin-dependent SV-reformation 

are in principle the same mechanism, only that strong stimulation induces bulk endocytosis and 

concomitantly results in an increase in accessible surface area, so that adaptors can more easily recruit 

clathrin (Watanabe and Boucrot, 2017).  

1.3.2.1 CLATHRIN-DEPENDENT SV RECYCLING 

Even though future studies will be required to exhibit the physiological relevance of CME, molecular 

mechanisms of clathrin-coated pit (CCP) formation, fission and uncoating have extensively been 

examined in neurons. Whether CME is executed in the same molecular manner in IHCs is not clear 

yet. Neuronal CME and clathrin-dependent SV reformation are initiated by the binding of adaptor 

proteins to SV cargo (Edeling et al., 2006; Kononenko et al., 2014). Binding sites for clathrin, 

phospholipids like PI(4,5)P2, and SV cargo facilitate the recruitment of clathrin light chain and 

clathrin heavy chain triskelia to the periactive zone, where CME in neurons is supposed to take place, 

as well as to ELVs (Ford et al., 2001; Koo et al., 2011). Self-polymerization of clathrin around the 
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nucleation site results in the assembly of a distinctive lattice, the clathrin coat (Kirchhausen, 2000). 

The clathrin coat-induced membrane curvature is stabilized and intensified by curvature-sensing 

proteins like endophilin-A, resulting in a deeply-invaginated CCP connected to the membrane via a 

neck (Farsad et al., 2001; Gallop et al., 2006, 2006). Endophilin-A, henceforth endophilin, coordinates 

further steps of CME via recruitment of the GTPase dynamin and the phosphatase synaptojanin-1 

(Anggono and Robinson, 2007; Verstreken et al., 2003). When located at the neck of the CCP, 

dynamin polymerizes and thus induces fission of the pit (Ferguson et al., 2007). The now cytosolic, 

unbound clathrin-coated vesicle (CCV) has to be uncoated. Synaptojanin-1 hydrolyzes PI(4,5)P2 and 

thus causes dissociation of clathrin adaptors bound to the phospholipid (Cremona et al., 1999; 

Pechstein et al., 2015; Schuske et al., 2003; Verstreken et al., 2003). The ATPase Hsc70 and its cofactor 

auxilin further support the disassembly of the clathrin coat (Guan et al., 2010; Xing et al., 2010).  

Membrane capacitance (Cm) recordings in IHCs revealed that brief depolarizations activate a slow 

form of endocytosis with a linear return to baseline (Neef et al., 2014). Both, the clathrin-inhibitor 

pitstop-2 and the pharmacological and genetic disruption of the GTPase dynamin1 were shown to 

further slow this already slow mode of endocytosis, which has thus been associated with CME (Neef 

et al., 2014). Absence of the adaptor protein AP-2 did not result in significantly impaired endocytosis 

but in impaired clathrin-dependent SV reformation (Jung et al., 2015b). Therefore, it is not clear yet 

if CME plays a minor role in IHCs or if the absence of AP-2 could e.g. be partially compensated by 

other clathrin-recruiting adaptor proteins like AP-1, AP-3, or AP180 at least for the formation of 

CCPs at the plasma membrane. Apart from clathrin, dynamin, AP-2, and amphiphysin (as well as 

synaptojanin-1, which was shown to play a role in IHC endocytosis in zebrafish), knowledge on the 

molecular entities mediating SV recycling in IHCs remains sparse (Boumil et al., 2010; Duncker et 

al., 2013; Jung et al., 2015b; Neef et al., 2014; Siegel and Brownell, 1986; Trapani et al., 2009). 

Controversial hypotheses have been postulated regarding the further steps an uncoated vesicle has to 

undergo in order to become fusion-ready. Observations of endosomal structures with budding CCPs 

in the cytosol led to the original hypothesis that all CCVs fuse with endosomes, which serve as sorting 

stations for SV proteins (Heuser and Reese, 1973). However, it could be shown that CCVs are first 

uncoated  (Rothman and Schmid, 1986), which clearly speaks against the initial hypothesis of Heuser 

and Reese. Instead, it was suggested that uncoated vesicles directly undergo new rounds of exo- and 

endocytosis (Takei, 1996). More recent studies showed that endosomes are indeed involved in the 

sorting of SV cargo and potentially of SV membranes, as e.g. endosomal SNARE proteins have been 
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identified on the surface of SVs (Jähne et al., 2015, 201; Rizzoli et al., 2006). However, it is not clear 

if fusion of uncoated vesicles to endosomes is a common process following CME/ clathrin-dependent 

SV reformation, or if this pathway is predominantly involved in the degradation of vesicles that 

contain wrong, old, or damaged proteins (Jähne et al., 2015; Truckenbrodt et al., 2018). In any case, 

the uncoated vesicles following CME seem to fuse with bona fide endosomes rather than with 

endocytic intermediates observed during ADBE and during UFE (Jähne et al., 2015). Whether SV 

maturation in neurons and sensory hair cells follows similar pathways, is not known.  

1.3.2.2 ACTIVITY-DEPENDENT BULK ENDOCYTOSIS 

Few seconds up to minutes after intense stimulation, ELVs, probably originating from bulk 

endocytosis, have been observed in the cytosol of neurons as well as of IHCs. These ELVs are 

heterogeneous in size, probably correlating with the amount of exocytosed membrane material 

(Clayton and Cousin, 2009; Kamin et al., 2014; Neef et al., 2014; Revelo et al., 2014; Watanabe and 

Boucrot, 2017). Experiments using the membrane marker mCLING or FM-dyes in combination with 

photo-oxidation and subsequent electron microscopy imaging, both after high-K+ stimulation, 

indicated that SVs are subsequently reformed from the internalized ELVs (Kamin et al., 2014; Revelo 

et al., 2014). Electrophysiological recordings revealed that harsh stimulation, exceeding three to four 

RRP equivalents, induces a brief, exponential Cm decline in IHCs that likely reflects ADBE (Beutner 

et al., 2001; Moser and Beutner, 2000; Neef et al., 2014). Even though bulk-like membrane 

internalization was shown to be almost exclusively performed at the IHC base and in particular in 

close proximity to the ribbon synapses, a distinct area of endocytosis could not be identified yet in 

those cells (Kantardzhieva et al., 2013; Revelo et al., 2014; Siegel and Brownell, 1986; Wichmann and 

Moser, 2015). In contrast, photoreceptor ribbon synapses clearly exhibit a periactive zone, as seen by 

a the high prevalence of endocytic proteins in proximity to the AZ (Wahl et al., 2013).  

Not only increased membrane tension but also Ca2+-influx seem to induce ADBE at room 

temperature as well as at physiological conditions (Wu et al., 2009). Even though the mechanisms 

involved in ADBE are not fully understood yet, recent studies have propagated a model in which 

assembly of actin organized by formins is crucial for activity-driven membrane invaginations in 

neurons (Soykan et al., 2017). It is not clear if membrane fission is mediated by dynamins (Soykan et 

al., 2017), works independent of dynamin (Wu et al., 2014), or if different dynamin-dependent and 

-independent pathways are present e.g. at different synapses (Gan and Watanabe, 2018).  
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At this point, it has to be mentioned that the physiological relevance of ADBE in hippocampal 

neurons has been under discussion (Gan and Watanabe, 2018; Kononenko and Haucke, 2015) for 

several reasons: (i) freshly recycled SVs are preferentially used for exocytosis, SVs in the reserve pool 

are significantly older (Truckenbrodt et al., 2018), going along with the observation that (ii) the 

reserve pool is not mobilized under physiological conditions but activated during very intense 

stimulation due to depletion of recycling pools (Rizzoli and Betz, 2005), and (iii) that ELVs formed 

during ADBE are randomly sized and retrieved in a rather uncoordinated manner (Gan and 

Watanabe, 2018). Therefore, ADBE may display an emergency pathway in which the cell tries to 

counteract the drastic increase in cell membrane accompanied by accumulations of exocytosis-

related proteins (Gan and Watanabe, 2018). However, particularly synapses with extremely fast and 

continuous SV turnover, e.g. IHC ribbon synapses as well as synapses at the Calyx of Held, may 

require bulk-like endocytosis mechanisms rather than UFE to keep SV pool sizes stable and thus 

synapse function viable.  

1.3.2.3 ULTRAFAST ENDOCYTOSIS 

In contrast to ADBE, UFE seems not suitable for compensation of high endocytosis rates over longer 

time periods, as the capacity of this process is limited to few action potentials (Soykan et al., 2017; 

Watanabe et al., 2013). UFE was originally described by Watanabe et al., 2013 in a novel approach 

combining flash and freeze (light stimulation of channelrhodopsin-expressing hippocampal neurons 

at physiological temperatures followed by HPF) with high-resolution electron tomography. The 

authors could show that endocytic vesicles with a diameter of 60-80 nm are formed within 30-50 ms 

in hippocampal neurons (Watanabe et al., 2013; Watanabe et al., 2018). This process seems to carry 

on for roughly one second and takes place in direct vicinity of the active zone, whereas neuronal 

CME and ADBE are typically detected in the periactive zone (Watanabe et al., 2013). Whether limited 

diffusion of exocytic proteins due to the very short time span or a specialized protein/ lipid 

composition of the AZ borders are responsible for the untypical localization of this endocytic event 

is not clear yet (Gimber et al., 2015; Watanabe and Boucrot, 2017). The volume of one endocytic 

vesicle matches approximately four SVs, the total volume of the UFE-mediated membrane 

internalization is equal to the surface extension following few action potentials, which indicates a 

direct compensatory effect of UFE (Watanabe et al., 2013).  This hypothesis is supported by the fact 
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that Ca2+-influx without fusion events cannot trigger UFE, as seen in exocytosis-deficient Munc13 

mutants (Watanabe et al., 2013).  

The formation of membrane invagination requires filamentous actin; either for the maintenance of 

surface tension while other factors initiate membrane bending, or via active polymerization 

(Watanabe and Boucrot, 2017; Watanabe et al., 2013). Once the endocytic pit is formed, endophilin 

and synaptojanin-1 facilitate the constriction of the neck, which is eventually cleaved by dynamin 

(Watanabe et al., 2013; Watanabe et al., 2018). However, absence of endophilin and/ or 

synaptojanin-1 does not block scission of the endocytic pit but rather slows down this process 

(Watanabe et al., 2018). The endocytic vesicles fuse with endosomes, which may be required for 

protein sorting, followed by subsequent clathrin-dependent SV reformation (Kononenko et al., 2014; 

Watanabe et al., 2014). The whole process from invagination to SV reformation takes roughly 10-

20 seconds and is suggested to display the predominant form of endocytosis in neurons under 

physiological conditions (Watanabe and Boucrot, 2017; Watanabe et al., 2014). In IHCs, UFE has 

not been observed yet.  

1.3.3 ENDOPHILIN-A AND AP180 - KEY PLAYERS IN SYNAPTIC TRANSMISSION 

As already described in the previous chapters, dynamin plays a key role in fission of CCPs from the 

plasma membrane and from ELVs, as well as in the cleavage of endocytic vesicles during ultrafast 

endocytosis. Dynamin contains a pleckstrin homology domain that is involved in phospholipid 

binding. Oligomerization of the GTPase dynamin at the neck of an endocytic or coated pit results in 

energy-releasing GTP hydrolysis und ultimately in membrane cleavage (Hinshaw, 2000). Through 

its SRC homology 3 (SH3) domain, dynamin is recruited by e.g. endophilin, whereby endophilin 

absence does not result in a complete block of dynamin function but rather in slowed kinetics 

(Milosevic et al., 2011; Watanabe et al., 2018). Recent studies suggest that endophilin, when present 

in excess, can inhibit dynamin action, pointing towards a regulating function of endophilin in 

endocytic fission (Hohendahl et al., 2017).   
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1.3.3.1 THE KEY REGULATOR ENDOPHILIN-A 

ENDOPHILINS BAR AND SH3 DOMAINS ARE REQUIRED DIVERSE FUNCTIONS 

Through interactions with a large number of proteins predominantly involved in endocytic 

processes, endophilin is seen as a hub that orchestrates the induction and stabilization of membrane 

curvature, bud constriction, fission, and uncoating in neurons (see Fig. 1-4B; Saheki and Camilli, 

2012). In vertebrates, three members of the endophilin-A family have been identified, of which 

endophilin-A1 is brain specific, endophilin-A2 is ubiquitously expressed, and endophilin-A3 is 

enriched in brain and testis (Giachino et al., 1997; Ringstad et al., 1997). The three endophilin genes 

are highly similar, which allows for partial compensation if one or more endophilin alleles are absent 

( see Fig. 1-4A; Milosevic et al., 2011; Murdoch et al., 2016).   

In general, endophilins contain an N-terminal BAR (Bin-Amphiphysin-Rvs) domain and a C-

terminal SH3 domain and form crescent-shaped homodimers (Gallop et al., 2006; Ringstad et al., 

1997). The BAR domain of endophilin was shown to induce membrane curvature, to stabilize 

existing membrane invaginations, and to sense membrane curvature in order to recruit further 

proteins to the neck of CCPs (Farsad et al., 2001; Gallop et al., 2006; Masuda et al., 2006). Recent 

studies suggest that the organized recruitment of endophilin to the nucleation sites in neurons is 

facilitated by the multi-domain scaffolding protein intersectin-1 via interaction of their SH3 domains 

(Pechstein et al., 2015). The SH3 domain of endophilin further interacts with the proline-rich 

domains of dynamin (Ferguson et al., 2009; Ringstad et al., 1997) and of synaptojanin-1 (Perera et 

al., 2006; Schuske et al., 2003; Verstreken et al., 2003).  
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Fig. 1-4: Absence of endophilin-A results in disturbed SV recycling. (A) The three mammalian 

endophilin-As show a high similarity. All three contain a BAR domain and an SH3 domain. (B) Endophilin-A 

is involved in different steps of CME via regulating the fission and uncoating process. (C) Endophilin 1/3-

DKOs show increasing motor defects with age, 1/2-DKOs have a truncated life expectancy paired with 

major neurological and motor defects. TKOs survive few hours after birth. (D) Absence of endophilins leads 

to accumulations of CCVs and reduced numbers in SVs in 1/2-DKOs and even more prominently in TKOs. 

Images modified from (Milosevic et al., 2011; Murdoch et al., 2016). 

KNOCKOUT MODELS FOR ENDOPHILIN 

Even though endophilin is active in different steps of CME/ clathrin-dependent SV reformation, 

particularly the uncoating process seems to be of physiological relevance, as studied in diverse animal 

models: Genetic studies in Drosophilia, C. elegans and mice revealed accumulations of CCVs 

accompanied by impaired synaptic transmission in absence of endophilins (see Fig. 1-4D; Dickman 
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et al., 2005; Milosevic et al., 2011; Schuske et al., 2003; Verstreken et al., 2003). A similar phenotype 

has been described for synaptojanin-1 KO models (Cremona et al., 1999; Milosevic et al., 2011). 

Absence of all three endophilins in mice (see Fig. 1-4C; triple-knockouts; TKOs) was shown result in 

a life expectancy of only few hours after birth, likely induced by impaired synaptic transmission, 

breathing problems, and the inability to drink milk (Milosevic et al., 2011). Hippocampal neurons of 

TKOs exhibit accumulations of CCVs, whereas numbers of uncoated SVs are significantly decreased 

(Milosevic et al., 2011). Electrophysiological recordings in those TKO cells further indicated reduced 

rates of sustained exocytosis, which may be a result of impaired SV recycling or indicate a potential 

involvement of endophilin in SV fusion and/ or SV replenishment (Milosevic et al., 2011). Double 

knockouts lacking endophilin A1 and A2 (1/2-DKOs) have a drastically truncated life expectancy of 

only 2-3 weeks, a strong growth delay, as well as major neurological and motor impairments 

(Milosevic et al., 2011). Mutants missing endophilin A1 and A3 (1/3-DKOs) display motor 

impairments and epileptic seizures with age-dependent increasing severity (Milosevic et al., 2011; 

Murdoch et al., 2016). Additional heterozygous deletion of endophilin A2 further increases these 

symptoms. Eventually, these observations have been linked to increased apoptosis rates in neurons 

(Milosevic et al., 2011; Murdoch et al., 2016). Whether absence of endophilins results in hearing 

defects and impaired endocytosis in IHCs has been investigated in the first chapter of my studies. 

FUNCTIONS OF ENDOPHILIN BEYOND ENDOCYTOSIS 

It has been ascertained that not only defective endocytosis, but also disturbed protein homeostasis 

via upregulation of the cellular protein degradation system (autophagy) are responsible for 

neurodegenerative processes in endophilin mutants (Murdoch et al., 2016). This finding goes along 

with previous studies, in which interactions of endophilin with proteins involved in Park

disease, namely parkin and LRRK2, have been identified (Cao et al., 2014; Soukup et al., 2016).  

Endophilin has furthermore been shown to interact with voltage-gated Ca2+-channels (Chen et al., 

2003). Performing co-immunoprecipitations and pull-downs, the authors detected a Ca2+-dependent 

formation of complexes formed by endophilin and Ca2+-channels. Therefore, they concluded that 

endophilin is involved in the coupling of exo- and endocytosis (Chen et al., 2003).  

Lastly, we could show in work not included in this thesis that endophilin is involved in the 

recruitment, priming, and fusion of large dense core vesicles (LDCVs) in chromaffin cells 
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(Gowrisankaran et al., unpublished). These neuroendocrine cells are a favored model system to study 

neurosecretion, as key players in Ca2+-induced neurotransmitter release are identical in chromaffin 

cells and in neurons (De Camilli and Jahn, 1990; Neher, 2006). We could show that exocytosis in 

endophilin TKOs is reduced while numbers of LDCVs and cell size as well as SV recycling are 

unaffected. However, distances of LDCVs to the cell membrane, where release takes place, were 

found to be increased in adrenal gland tissue of TKOs pointing towards deficits in SV replenishment. 

In a multi-methodological approach, we could show that this novel role of endophilin in LDCV 

recruitment and release is, at least in parts, achieved by the interaction of endophilin and intersectin.  

1.3.3.2 THE ADAPTOR PROTEIN AP180 

AP180 IS REQUIRED FOR CLATHRIN RECRUITMENT AND VAMP2 SORTING 

While endophilin is active in multiple steps of clathrin-mediated membrane retrieval, adaptor 

proteins have a major role in the recruitment and assembly of clathrin molecules to the nucleation 

sites. The brain-enriched AP180 and its ubiquitously expressed homolog CALM both contain an 

ANTH (AP180 N-terminal homology) domain and an unstructured sequence with multiple binding 

motifs for clathrin and AP-2 (see Fig. 1-5A; Hao et al., 1999; Lindner and Ungewickell, 1992; Morris 

et al., 1993; Moshkanbaryans et al., 2016). The C-terminus differs in length and binding sites for 

endocytic proteins, whereas the ANTH domain is highly conserved between AP180 and CALM 

(Maritzen et al., 2012). This domain harbors an -helical structure capable of binding lipids and 

therefore serves as connection to the PI(4,5)P2-containing plasma membrane (Ford et al., 2001). 

Furthermore, AP180 and CALM act in the sorting of the SNARE protein VAMP2, as seen in neurons 

with AP180 depletion, where VAMP2 is stranded at the plasma membrane (Koo et al., 2011). 

Interestingly, in contrast to many other interactions between cargo proteins and their adaptors, the 

SNARE motif of VAMP2 itself binds to the ANTH domain of AP180 and CALM (Koo et al., 2011; 

Miller et al., 2011). Also other proteins of the VAMP family like VAMP3 and VAMP8, which are 

involved in endosomal sorting, are capable of binding to the ANTH domain (Maritzen et al., 2012; 

Miller et al., 2011). In any case, the disassembly of the trans-SNARE complex must precede the 

binding of AP180/CALM, as both events utilize the same binding site of the VAMPs (see Fig. 1-5C; 

Miller et al., 2011). Therefore, AP180 and CALM may also have a function in preventing VAMPs 

from undergoing unwanted SNARE complex formations, e.g. directly after fusion (Kaempf and 

Maritzen, 2017).  
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Fig. 1-5: AP180 is involved in neuronal SV reformation and release site clearance. (A) AP180 and CALM 

contain a highly conserved ANTH domain involved in VAMP2 binding. Within the unstructured C-terminal 

domain, both proteins contain binding sites for clathrin and AP-2. (B) AP180-KO mice have a truncated life 

expectancy of max. 1-2 months paired with severe behavioral abnormalities including epileptic seizures. 

(C) AP180 is involved in clathrin-dependent SV reformation and in the sorting of VAMP2 post-fusion. (D) 

Absence of AP180 leads to reduced numbers of SVs particularly in synapses of inhibitory hippocampal 

neurons. Scale bar 500 nm. (E) Fluorescence intensity of VAMP2-pHluorin over a time course of 200 ms after 

stimulation indicates that unretrieved VAMP2 (but no other SV proteins) was found to be stranded at the 

surface of cultured hippocampal neurons from AP180-KO mice. Images modified from (Koo et al., 2015; 

Maritzen et al., 2012). 

KNOCKOUT MODEL FOR AP180 

Despite evidence that sorting of VAMPs depends on AP180, the physiological relevance of AP180 

for synaptic transmission has been questioned. The main reason is, that the formation of only few 

SNARE complexes is essential for SV fusion whereas roughly 70 VAMP2 proteins are located at one 

SV (Mohrmann et al., 2010; Sinha et al., 2011; Takamori et al., 2006; van den Bogaart et al., 2010; 

Wilhelm et al., 2014). Studies on AP180-KO mice revealed that AP180 does indeed play a crucial role 

in vivo, as those mutants suffer from a growth delay, a truncated life expectancy of only few months 

or even less, as well as hyperactivity and epileptic seizures (see Fig. 1-5B; Koo et al., 2015). Particularly 
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in inhibitory neurons, which are supposed to be more persistently active than excitatory neurons, 

sustained neurotransmission was impaired. The synaptic rundown in response to repeated 

stimulation has been explained by impaired AP180-dependent SV reformation as well as by disturbed 

le in 

docking/priming (Koo et al., 2015). Impaired release site clearance, as ascertained by membrane-

stranded VAMP2 accumulations in AP180-KO mice (see Fig. 1-5E), may additionally contribute to 

the observed defects in exocytosis following repeated stimulation (Gimber et al., 2015; Kaempf and 

Maritzen, 2017; Neher, 2010). Notably, even though CALM was upregulated in AP180-KO mice, this 

protein could not fully compensate for the loss of AP180 (Koo et al., 2015). Whether IHCs, which 

show remarkably high rates of SV turnover and continuous neurotransmitter release, but operate 

without VAMP2, require AP180, will be investigated in the second chapter of my studies. 
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1.4 AIMS AND EXPERIMENTAL APPROACH 

1.4.1 AIMS OF MY STUDY 

In the past, proteins and mechanisms involved in IHC exocytosis have extensively been examined. 

However, knowledge about SV recycling in these highly adapted sensory cells remained sparse. Few 

studies have shown that endocytic mechanisms in IHCs are activity-dependent and contain clathrin-

dependent as well as clathrin-independent pathways (Jung et al., 2015b; Kamin et al., 2014; Moser 

and Beutner, 2000; Neef et al., 2014; Revelo et al., 2014). Yet, molecular key players in IHC 

endocytosis are largely unknown. Neither do we currently understand, how exo- and endocytosis are 

balanced and coupled in IHCs, although deficits in SV replenishment were shown to go along with 

severe hearing impairments (  et al., 2010; Strenzke et al., 2016). Studies in CNS synapses 

have not only focused on the characterization of endocytic proteins mediating different steps and 

mechanisms of SV recycling; they also demonstrated that proteins originally identified as endocytic 

factors are involved in release site clearance, protein sorting and coupling of different steps within 

the SV cycle (for review see Maritzen and Haucke, 2018). Endophilin-A has originally been described 

as hub orchestrating different steps of CME with a rate-limiting function in the uncoating of CCVs 

(Milosevic et al., 2011). Recently, endophilin-A was additionally shown to act in clathrin-

independent endocytosis via regulating the fission of endocytic vesicles during UFE (Watanabe et al., 

2018). The adaptor protein AP180 is not only required for the recruitment of clathrin, but has also a 

function in release site clearance via sorting of VAMP2 (Koo et al., 2015).  

In the here presented two studies, I combined a set of advanced imaging techniques to characterize 

morphological changes in mouse mutants missing different endophilin-A genes or AP180. This way, 

I coul examine the distinct roles of these two proteins/ protein families in IHCs with a focus on their 

functions in SV recycling. Combining the two studies, I could compare different endocytic steps 

being dependent on either of the two proteins. This way, I gained deeper insights into the relevance 

of the different endocytic mechanisms for IHC synaptic transmission.  

1.4.2 EXPERIMENTAL APPROACH  

In the first study presented, I examined a set of mutants lacking different endophilin genes. In detail, 

I compared Wt mice with mutants missing endophilin-A1 and -A2 (1/2-DKOs) as well as their 

littermates missing only endophilin-A1 (1-SKOs), all with the same mixed genetic background 
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(approx. 80% Bl6/J and 20% S-129). Moreover, I analyzed endophilin A1 and A3 mutants that were 

heterozygous or wildtype for endophilin A2. Since neither microscopical nor physiological analyses 

revealed any differences in IHCs if endophilin A2 was heterozygously expressed, we pooled those 

two mutants as one group of 1/3-DKOs. I used all of these mutants to perform electron microscopy 

experiments. Due to our interest in the general organization of the AZ including endocytic 

intermediates, and to guarantee for comparability with a previous study on AP-2µ in IHCs (Jung et 

al., 2015b), I performed conventional EM embeddings including chemical fixation, partially with 

preceding 15 min high-K+ stimulation. Like in the AP-2µ study, I mainly performed my analyses on 

images from random ultrathin sections acquired with 12,000 x magnification (for analysis of RA-SV 

and MP-SV numbers) and with 5,000 x magnification (to analyze the ribbon proximity within 1 µm 

radius from the ribbon) on a JEOL JEM1011 electron microscope. I additionally performed electron 

tomography on 1/2-DKOs and 1/3-DKOs in comparison to Wt. Only with the 3D information of the 

acquired tomograms I could m -

observed in absence of dynamins (Ferguson et al., 2007; Ferguson et al., 2009), nor malformed SVs 

(as e.g. detected in mutants harboring a point mutation within the otoferlin gene (Strenzke et al., 

2016)) were present in the endophilin mutants. Moreover, I could reliably analyze the diameter of 

SVs. Nonetheless, even with the increased resolution and 3D information of tomograms, 

examinations on ELVs, which can expand for more than 250 nm in each direction (thickness of 

sections for electron tomography used here), are difficult to interpret. I could for example not always 

clearly state if an ELV is connected to the plasma membrane or not. Neither was it possible to 

differentiate between newly formed ELVs and bona fide endosomes based on their morphology. 

Therefore, I categorized all large membranous organelles without clathrin-coat as ELVs in my 

quantifications. I combined my comprehensive electron microscopy analyses with confocal 

microscopy. Since we observed impairments in the sustained phase of exocytosis in 1/3-DKOs, we 

were curious if these changes are caused by reduced otoferlin levels. To test this, I used well-

established immunostaining protocols and analysis routines (Strenzke et al., 2016). Moreover, I 

analyzed the area of Ca2+-channel clusters beneath the ribbon from 2D STED microscopy images as 

previously described for IHC ribbon synapses (Jean et al., 2018; Krinner et al., 2017; Neef et al., 2018), 

since we observed slightly decreased Ca2+-currents in several endophilin mutants. My collaborators 

performed electrophysiology, biochemistry and systems physiology experiments to generate a 

wholesome characterization of the IHC phenotype in absence of the different endophilins. 
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For my second study, I performed HPF and freeze substitution combined with electron tomography 

in Wt and AP180-KO mice. It is commonly accepted, that this method allows for a near-to-native 

state structural preservation of filamentous and membranous structures. Yet, identifying clathrin-

coated structures in high-pressure frozen samples is more challenging than in conventionally 

embedded tissue. We used HPF since AP180 

was also shown to be involved in release site clearance in neurons (Koo et al., 2015) and we were thus 

particularly interested in the AZ membrane and tethered SVs. The combination of HPF and electron 

tomography allows for a thorough analysis of tethers connecting SVs. Variations in tether numbers 

and tether lengths have previously been studied to morphologically characterize potential defects up- 

or downstream of docking (Chakrabarti et al., 2018; Vogl et al., 2015). Furthermore, electron 

tomography allowed me to more reliably quantify ELV volumes and numbers of budding CCPs, both 

indicators for clathrin-dependent SV reformation. I additionally performed immunohistochemical 

stainings following standard protocols and using well-established IHC markers. Together, my 

morphological studies gave new insights also into the potential functions of AP180 in IHCs. 
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FIG. 1, 2, 4, 6 - 

FIG.  3 o Panel D: Contribution to immunohistochemical staining of CtBP2 

o Panels C and E: immunohistochemical staining of CtBP2 and CaV1.3, STED 

microscopy and analysis using Igor Pro6 software (initially with the help of 

J.N.), statistics using Graphpad prism 

o Figure design together with L.M.J.T. 

FIG. 5 o Panel A: immunohistochemical staining of otoferlin, confocal microscopy 

o Panel B: Otoferlin fluorescence intensity analysis using Imaris and Matlab (the 

respective analysis routine was previously established (Strenzke et al., 2016), 

statistics 

o Panel C: Intensity profile line scan analysis using ImageJ software  

o Figure design 

FIG. 7 o Conventional electron microscopy embeddings, sectioning, staining, imaging 

o Analysis using ImageJ software and statistics using Graphpad prism 

o Figure design 

FIG. 8 o Electron microscopy and analysis (like Fig. 7) 

o Electron tomography imaging, reconstruction of tomograms and analysis 

using IMOD software (initially with the help of C.W.), statistics 

o Figure design 

FIG. 9 o Sample preparation (with K+ stimulation), imaging and analysis like Fig. 7 

o Figure design 

FIG. 10 Figure design (with help of C.V.) 

FIG. EV1,2,4 - 

FIG. EV3 o Panel B: Myosin6 fluorescence intensity analysis using Imaris and Matlab, 

statistics (immunohistochemical staining and imaging performed by C.V.) 

o Figure design 

MANUSCRIPT Intensive editing (original draft written by T.M. and I.M.) 
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Endophilin-A regulates presynaptic Ca2+ influx and
synaptic vesicle recycling in auditory hair cells
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Abstract

Ribbon synapses of cochlear inner hair cells (IHCs) operate with
high rates of neurotransmission; yet, the molecular regulation of
synaptic vesicle (SV) recycling at these synapses remains poorly
understood. Here, we studied the role of endophilins-A1-3, endo-
cytic adaptors with curvature-sensing and curvature-generating
properties, in mouse IHCs. Single-cell RT–PCR indicated the expres-
sion of endophilins-A1-3 in IHCs, and immunoblotting confirmed
the presence of endophilin-A1 and endophilin-A2 in the cochlea.
Patch-clamp recordings from endophilin-A-deficient IHCs revealed
a reduction of Ca2+ influx and exocytosis, which we attribute to a
decreased abundance of presynaptic Ca2+ channels and impaired
SV replenishment. Slow endocytic membrane retrieval, thought to
reflect clathrin-mediated endocytosis, was impaired. Otoferlin,
essential for IHC exocytosis, co-immunoprecipitated with purified
endophilin-A1 protein, suggestive of a molecular interaction that
might aid exocytosis–endocytosis coupling. Electron microscopy
revealed lower SV numbers, but an increased occurrence of coated
structures and endosome-like vacuoles at IHC active zones. In
summary, endophilins regulate Ca2+ influx and promote SV recy-
cling in IHCs, likely via coupling exocytosis to endocytosis, and
contributing to membrane retrieval and SV reformation.

Keywords electron microscopy; endocytosis; membrane capacitance; ribbon

synapse; super-resolution microscopy
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DOI 10.15252/embj.2018100116 | Received 22 June 2018 | Revised 17

December 2018 | Accepted 20 December 2018

The EMBO Journal (2019) e100116

Introduction

Ribbon synapses of auditory IHCs faithfully convert acoustic signals

into an action potential code in spiral ganglion neurons (SGNs).

Individual presynaptic active zones (AZs) of IHCs are thought to

drive firing in a single SGN at rates of up to hundreds of Hz for as

long as the sound continues (Safieddine et al, 2012; Wichmann &

Moser, 2015; Rutherford & Moser, 2016). Exocytosis of synaptic

vesicles (SVs) at IHC AZs is both, fast and indefatigable. It seems to

operate independently of classical neuronal SNARE proteins,

Munc13-like priming factors, or complexins (Strenzke et al, 2009;

Nouvian et al, 2011; Vogl et al, 2015), but, instead, involves the

deafness gene product otoferlin (Roux et al, 2006; Pangrsic et al,

2010). Probably the most important coordinator of synaptic trans-

mission is Ca2+ that enters IHCs primarily through presynaptic volt-

age-gated CaV1.3 Ca2+ channels and mediates excitation–secretion

coupling (Platzer et al, 2000; Brandt et al, 2003, 2005; Weiler et al,

2014; Wong et al, 2014). At IHC AZs, Ca2+ channels are present in

defined numbers, organized in a stripe-like manner, and show little

inactivation, which enables reliable information transfer during

sustained stimulation (Brandt et al, 2005; Frank et al, 2009, 2010;

Ohn et al, 2016; Neef et al, 2018). Interestingly, Ca2+ channels have

been reported to interact with otoferlin (Ramakrishnan et al, 2009)

and with endophilins (Chen et al, 2003), the protein family under

study here.

To sustain high transmission rates, IHCs need to balance exocy-

tosis by equally efficient SV recycling (Siegel & Brownell, 1986;

Parsons et al, 1994; Moser & Beutner, 2000; Beutner et al, 2001;

Lenzi et al, 2002; Trapani et al, 2009; Neef et al, 2014; Revelo et al,

2014; Jung et al, 2015). Here, at least three kinetically distinct forms
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of endocytic membrane retrieval—rapid (300 ms), fast (4 s), and

slow (20 s half-time recovery)—have been described for IHCs

(Moser & Beutner, 2000; Beutner et al, 2001; Neef et al, 2014).

However, to date, knowledge of the molecular entities mediating

these kinetically distinct forms of endocytosis in IHCs remains

scarce. In line with findings at conventional synapses (Ferguson &

De Camilli, 2012; Kononenko & Haucke, 2015), work on endocytosis

in IHCs has indicated a role of dynamins (Boumil et al, 2010; Neef

et al, 2014), synaptojanin-1 (Trapani et al, 2009), and clathrin

(Siegel & Brownell, 1986; Neef et al, 2014; Jung et al, 2015) in slow

endocytosis that most likely represents clathrin-mediated endocyto-

sis [CME, recently reviewed in Pangrsic and Vogl (2018)].

Surprisingly, genetic disruption of the clathrin adaptor AP-2 did

not noticeably affect endocytic membrane retrieval in IHCs (Jung

et al, 2015). However, in AP-2l mutants, the abundance of clathrin-

coated structures near the presynaptic AZs was reduced and large

membranous organelles (endosome-like vacuoles, ELVs) accumu-

lated after stimulation (Jung et al, 2015) similar to findings at

conventional synapses (Kononenko et al, 2014). This supports the

notion that, next to CME, bulk retrieval (reviewed in Kokotos and

Cousin (2015)) may play a prominent role in hair cells (Lenzi et al,

2002; Neef et al, 2014; Revelo et al, 2014; Jung et al, 2015). SVs are

then rapidly reformed from endocytosed membranes (Kamin et al,

2014; Revelo et al, 2014), which seems to employ clathrin-depen-

dent and clathrin-independent mechanisms (Jung et al, 2015).

Importantly, the processes of exocytosis and endocytosis are inti-

mately coupled and tightly coordinated—both at classical neuronal

and IHC ribbon synapses—and the proper function of both types of

synapses depends on this coupling (Haucke et al, 2011; Wichmann

& Moser, 2015; Milosevic, 2018). In IHCs, AP-2, which interacts

with otoferlin (Duncker et al, 2013; Jung et al, 2015), has been

implicated in exocytosis and endocytosis coupling (Jung et al,

2015).

In neurons, a range of molecular key players have been identified

that orchestrate endocytic membrane retrieval and SV reformation

(Kononenko & Haucke, 2015; Milosevic, 2018); yet, their respective

relevance for these processes in IHCs remains unclear. In this

context, one interesting molecular target is the evolutionary

conserved family of endophilin-A proteins (henceforth “endo-

philin”), which are involved in endocytic membrane retrieval and

uncoating in neurons of invertebrates (Verstreken et al, 2002, 2003;

Schuske et al, 2003) and mammals (Milosevic et al, 2011;

Watanabe et al, 2018). The current view on mammalian endophi-

lins (A1-A3) pictures them as hubs of a protein network that co-

ordinates cargo packing, bud constriction, actin assembly, and

recruitment of factors needed for fission and uncoating (Saheki &

Camilli, 2012). Structurally, endophilins contain a BAR domain that

senses and induces membrane curvature, as well as a SH3 domain

that recruits the GTPase dynamin and the PI(4,5)P2 phosphatase

synaptojanin-1 to clathrin-coated pits (Verstreken et al, 2002, 2003;

Schuske et al, 2003; Perera et al, 2006; Ferguson et al, 2009;

Simunovic et al, 2017). Upon fission, PI(4,5)P2 degradation initiates

the shedding of clathrin adaptor proteins from the endocytosed

membranes, ultimately leading to the uncoating of SVs (Schuske

et al, 2003; Verstreken et al, 2003; Milosevic et al, 2011; Pechstein

et al, 2015; Watanabe et al, 2018).

To clarify a potential contribution of endophilins in IHC pre-

synaptic physiology, we performed a comprehensive functional and

morphological analysis encompassing single-cell RT–PCR,

immunoblotting, electron microscopy, immunohistochemistry,

patch-clamp recordings, biochemical interaction studies, and audi-

tory systems physiology using constitutive endophilin knockout

mice.

Results

All three endophilins are expressed in the cochlea

To investigate the expression of endophilin genes in the organ of

Corti and, more specifically, in IHCs, we collected mRNA from IHCs

of the apical cochlear coil of Wt mice (C57BL/6J, 2 weeks old, i.e.,

right after hearing onset). After reverse transcription, we performed

single-cell multiplex-nested real-time PCR. In these experiments, all

three endophilin-A transcripts (i.e., A1, A2, and A3; Fig 1A and B)

could be detected in all tested single IHC samples that were also

positive for the housekeeping gene HPRT (see Appendix Table S1

for primer sequences). Importantly, we could not detect endophilin

mRNAs in our negative control samples, i.e., a small volume of bath

solution that was collected in close proximity to the IHC row prior

to and directly after the extraction of the IHC cytoplasm. We note

that, while this approach does not provide a quantitative assessment

of expression levels due to the nature of the amplification procedure

with nested primer pairs, it reliably indicates the presence of endo-

philin-A1-3 mRNAs in IHCs.

To further investigate endophilin protein expression in situ, we

have tested several commercially available as well as custom-made

anti-endophilin-A antibodies (see Materials and Methods) in various

fixation and permeabilization conditions; yet, we did not obtain

specific immunolabeling in the organ of Corti. Therefore, we

proceeded to perform immunoblotting with KO-verified antibodies

(Milosevic et al, 2011) on cochlear samples of all genotypes using

hippocampal and cerebellar tissue extracts as positive controls.

Here, we detected bands with the expected molecular weight of

endophilin-A1 (~39 kD) and endophilin-A2 (~42 kD) in Wt

cochleae. These bands were absent in cochlear lysates of the respec-

tive KO genotypes, hence strongly suggesting target specificity

(Fig 1C–C0; c-adaptin was used as an independent loading control).

Taken together, these data indicate the expression of endophilins-

A1-3 in IHCs and show the presence of endophilin-A1 and endo-

philin-A2 protein in the murine cochlea.

Endophilin promotes Ca2+ influx and efficient SV replenishment
in IHCs

Next, we employed perforated patch-clamp recordings to assess

the role of endophilins in presynaptic IHC function. Since the

cumulative loss of all three endophilin genes is perinatally lethal,

we first prepared organotypic cultures of organs of Corti

harvested from endophilin-A1/2/3 triple KO (TKO; see Materials

and Methods for exact genetic descriptions and breeding schemes

of endophilin mutants) and endophilin-A1/3 double KO (1/3-

DKO) mice, as well as C57BL/6J pups within 3–8 h after birth.

Thereafter, organs of Corti were maintained in culture for 1 week

to enable synaptic maturation and the otoferlin-dependence of

exocytosis to be established (Sobkowicz et al, 1982; Vogl et al,
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2015) prior to detailed electrophysiological analysis (Fig 2A0). In

order to boost depolarization-induced exocytosis, whole-cell Ca2+

currents (ICa) and the ensuing exocytic membrane capacitance

changes (DCm) were recorded at an elevated extracellular Ca2+

concentration of 10 mM ([Ca2+]e; 1.3 mM is considered physio-

logical). In these experiments, IHCs of 1/3-DKOs exhibited a 25%

reduction of the presynaptic ICa and TKO IHCs showed a non-

significant trend toward smaller ICa (Fig 2A and A″, Imax:

�317 � 27.3 pA for TKO IHCs, �298 � 22.9 pA for 1/3-DKO,

and �403 � 32.2 pA for Wt; one-way ANOVA, F(2, 26) = 3.89,

P = 0.0334; post hoc Tukey’s test: P = 0.046 Wt versus 1/3-DKO;

P = 0.103 Wt versus TKO for the maximal ICa elicited by depolar-

ization to –17 mV). Interestingly, ICa of TKO IHCs showed

enhanced inactivation, as evident from a significantly reduced

fraction of ICa remaining at 100 ms of depolarization, which was

not found in 1/3-DKO IHCs (Fig 2B–B0, Inorm, res 100 ms: 0.65 � 0.02

for TKO IHCs, 0.73 � 0.02 for 1/3-DKO, and 0.71 � 0.02 for Wt;

one-way ANOVA, F(2, 26) = 4.89, P = 0.0158; post hoc Tukey’s

test: P = 0.046 for TKO versus Wt; P = 0.794 for 1/3-DKO versus

Wt). Such ICa reduction and enhanced ICa inactivation suggest a

functional interaction of endophilins and Ca2+ channel complexes,

which is in line with previous biochemical interaction studies

(Chen et al, 2003).

Recordings of exocytic changes in membrane capacitance

(DCm) showed impaired exocytosis. Exocytosis of the readily

releasable pool (RRP), as approximated by DCm responses to 20-

ms depolarizations, was significantly attenuated in 1/3 DKO IHCs

and tended to be reduced in TKO IHCs (one-way ANOVA, F(3,

33) = 5.35, P = 0.0041; post hoc Tukey’s test: P = 0.075 for Wt

versus TKO; P = 0.006 for Wt versus 1/3-DKO). Similarly,

sustained exocytosis, probed by 100-ms-long depolarizations,

tended to be attenuated in both genotypes (Fig 2C–C″, Kruskal–

Wallis statistic (KWS) = 10.93, P = 0.0121; post hoc Dunn’s test:

P = 0.220 for Wt versus TKO; P = 0.025 for Wt versus 1/3-DKO).

In contrast, no significant difference was found for responses to

short stimuli (< 10 ms, also see Appendix Tables S2 and S3),

indicating that endophilins are dispensable for SV fusion. In order

to disentangle the reduction of exocytosis caused by diminished

ICa from a potential impairment of SV replenishment in the

absence of endophilin-A1 and endophilin-A3, we attempted to

match the decreased ICa amplitudes by performing additional

recordings from Wt (C57BL/6J) IHCs at lower [Ca2+]e (i.e., 6 mM

instead of 10 mM; Fig 2C0–D). Under these conditions, ICa of Wt

IHCs closely resembled the ones of endophilin-deficient mutant

IHCs. However, the extent of exocytosis from Wt IHCs still

exceeded that of cultured 1/3-DKO and TKO IHCs for depolariza-

tions ≥ 10 ms and remained comparable to the data acquired at

10 mM [Ca2+]e (Fig 2C0–C″). Hence, the reduction in ICa in the

endophilin mutants cannot fully account for the observed impair-

ment of exocytosis, suggesting an additional requirement for

Figure 1. Endophilin-A expression in the cochlea.

A Schematic domain overview of endophilins-A1-3, highlighting the BAR
and SH3 domains.

B–B0 Schematic overview of the sample collection procedure for single-cell
RT-PCR (scPCR). Single IHC cytoplasms from acutely dissected organs of
Corti of C57BL/6J (Wt) mice after hearing onset were aspirated and
processed for scPCR as depicted. (B0) Expression analysis of endophilins-
A1-3 from individually isolated IHC cytoplasms using RT–PCR from a
representative experimental run. Please note that for these experiments,
negative bath control samples from before and after the isolation
procedure were an essential requirement to ensure lack of
contamination from cellular debris in the bath solution. HPRT was used
as a housekeeping gene.

C–C0 Immunoblotting of tissue lysates from postnatal day (p)15 Wt (C57BL/6J),
1-SKO, 1/2-DKO, and 1/3-DKO revealed protein expression of endophilin-
A1 and endophilin-A2 in the murine cochlea and ensured antibody
specificity. Unfortunately, none of the commercially available
endophilin-A3 antibodies we tested in these experiments gave a specific
signal for A3 in cochlear extracts, but rather appeared to (also) detect
A1. c-Adaptin was used as loading control. All antibody epitopes localize
to the distinct C-terminal regions of the different endophilin-A family
members. Hi, hippocampus; Ce, cerebellum; Co, pooled cochleae from a
single individual of the indicated genotype; Md, modioli (micro-dissected
and pooled from 10 Wt animals); OC, organs of Corti (micro-dissected
and pooled from 10 Wt animals).

Source data are available online for this figure.
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endophilin-A1 and endophilin-A3 in exocytosis, e.g., in vesicle

replenishment. This is further illustrated by plotting DCm versus

the corresponding charge of ICa, which shows a reduced efficiency

of ICa to drive exocytosis (Fig 2D; individual statistics for all

depolarization durations can be found in Appendix Table S4).

Taken together, patch-clamp analysis of organotypically cultured

IHCs from endophilin mutants revealed reduced ICa amplitudes

alongside altered ICa inactivation and impaired exocytosis. More-

over, our data imply a partial functional dispensability of endo-

philin-A2 in the presence of endophilin-A1 and endophilin-A3,

since both ICa and DCm amplitudes were statistically indistinguish-

able between 1/3-DKO and TKO IHCs.

Guided by these results, we focused our further perforated patch-

clamp studies on ICa and exocytosis of 1-SKO and 1/3-DKO IHCs

after hearing onset (at p14-17) and at near physiological [Ca2+]e
(2 mM). Analogous to our observations from cultured immature

IHCs, we found a statistically significant reduction of ICa of ~20%

for 1-SKO and 1/3-DKO IHCs under these conditions (Fig 3A–A0;
Imax: �128 � 5.0 pA for 1-SKO IHCs, �129 � 2.1 pA for 1/3-DKO,

and �153 � 5.0 pA for Wt; KWS = 18.72; P < 0.0001; post hoc

Figure 2. Reduced presynaptic Ca2+ currents and exocytosis in endophilin-deficient IHCs maintained in organotypic culture.

A–A″ Ca2+ current–voltage relationships evoked by incremental 15-ms step depolarizations from �87 mV to +58 mV revealed a ~25% reduction of ICa in 1/3 DKO and
TKO mice. (A0) Due to the perinatal lethality of TKO mice, detailed electrophysiological characterization of TKO IHCs had to be performed on organotypically
cultured organs of Corti after 7 days in vitro (DIV). C57BL/6J (Wt) and 1/3-DKO served as controls. Please note that all recordings from cultured IHCs
were performed at [Ca2+]e of 10 mM to maximize IHC exocytic performance. (A″) Quantification and statistical analysis of individual maximum ICa amplitudes
(Imax) of the respective genotypes revealed a significant reduction in Imax in both endophilin mutant genotypes (*P = 0.046, one-way ANOVA with post hoc
Tukey’s test).

B–B0 Ca2+ current inactivation was probed by test pulses of 100 ms to the Imax potential and revealed a significantly stronger inactivation phenotype in TKO IHCs when
directly compared to Wt and 1/3-DKO cells. (B0) Quantification and statistical analysis of the residual current (Ires 100 ms) at the end of the test pulse (*P = 0.046,
one-way ANOVA with post hoc Tukey’s test).

C–C″ Representative ICa (upper panel) and Cm (lower panel) in response to a 50 ms depolarizing step to the potential eliciting Imax. (C0) Exocytic DCm and corresponding
QCa elicited by depolarizations of stimulus durations from 2 to 100 ms for all respective genotypes and at [Ca2+]e = 6 mM for a second set of recordings from
wild-type IHCs to experimentally approximate the decreased ICa observed in the endophilin mutants. (C″) Magnification of the initial, short depolarizing steps (2–
20 ms) for clarity. Exocytic DCm of cultured endophilin-deficient IHCs was strongly reduced (*P < 0.05; **P < 0.01; one-way ANOVA with post hoc Tukey’s or non-
parametric K–W with post hoc Dunn’s test; please also refer to Appendix Tables S2 and S3 for detailed statistical analysis).

D The reduced Ca2+ efficiency of exocytosis (DCm/QCa) in endophilin-deficient IHCs indicates that diminished Ca2+ influx cannot fully account for the reduction of
exocytosis (*P < 0.05; **P < 0.01; one-way ANOVA with post hoc Tukey’s or non-parametric K–W with post hoc Dunn’s test; please also refer to Appendix Table S4
for detailed statistical analysis).

Data information: For panels (A–D), the following numbers of replicates were used: Wt 10 mM [Ca2+]e number of cells (n) = 12, number of animals (N) = 9, number of
organotypic cultures (C) = 5; Wt 6 mM [Ca2+]e n = 8/N = 5/C = 4; 1/3-DKO 10 mM [Ca2+]e n = 8/N = 7/C = 3; TKO 10 mM [Ca2+]e n = 9/N = 7/C = 4. Error bars in (C0–D)
indicate the SEM; box plots in (A″) and (B0) illustrate the median with the interquartile range, whiskers indicate 10–90% of data points, and the squares present the
respective mean value.
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Figure 3. Disruption of endophilins reduces Ca2+ influx of IHCs after hearing onset.

A Ca2+ current–voltage relationships in response to 10-ms step depolarizations. (A0) The peak of Ca2+ influx was significantly reduced in endophilin 1-SKO
(**P = 0.0024) and 1/3-DKO (***P = 0.0003) when compared to Wt (Wt n = 30/N = 20; 1-SKO n = 15/N = 9; 1/3-DKO n = 39/N = 20; non-parametric K–W with post
hoc Dunn’s correction).

B Quantification of CtBP2-labeled ribbons revealed a number of approximately 14–15 ribbon synapses per IHC comparable across all genotypes (Wt n = 12/N = 9; 1-
SKO n = 6/N = 4; 1/3-DKO n = 8/N = 6; one-way ANOVA, P = 0.717).

C Quantification of the cross-sectional area of CaV1.3 immunofluorescence revealed approx. 34% smaller clusters in 1-SKOs and 24% smaller clusters in 1/3-DKOs (Wt
n = 153/N = 2; 1-SKO n = 102/N = 2; 1/3-DKO n = 441/N = 4; ***P < 0.0001; K-W and post hoc Dunn’s test).

D Representative maximum projections of confocal sections from organs of Corti of p15 Wt, 1-SKO, and 1/3-DKO mice stained for CtBP2 to label synaptic ribbons. Please
note that CtBP2 expression is also found in the nucleus (nuclei are highlighted by dashed circles in the individual panels). Scale bars: 10 lm.

E 2D STED images of IHC ribbon synapses stained for CtBP2 (magenta) and CaV1.3 (green). CaV1.3 Ca
2+ channels remain clustered at AZs of 1-SKO and 1/3-DKO IHCs.

Scale bars: 1 lm.

Data information: Box plots in (A0–C) illustrate the median with the interquartile range, whiskers indicate 10–90% of data points, and the squares present the respective
mean value.
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Dunn’s test: P = 0.0024 for Wt versus 1-SKO and P = 0.0003 for Wt

versus 1/3-DKO for the maximal ICa elicited by depolarization to

�14 mV). ICa inactivation at 200 ms of depolarization was

not altered in 1-SKO, 1/2 DKO, and 1/3-DKO IHCs (Fig EV1;

Inorm, res 200 ms: 0.72 � 0.02 for 1-SKO IHCs, 0.74 � 0.01 for 1/2-DKO,

0.73 � 0.02 for 1/3-DKO, and 0.70 � 0.02 for Wt; one-way ANOVA,

F(3, 55) = 0.95, P = 0.4218), likely suggesting functional redundancy

between the different endophilin genes.

In order to explore potential reasons for the observed reduction of

ICa, such as a decreased number of IHC synapses or a lower abun-

dance of CaV1.3 Ca2+ channels per AZ, we performed semi-quantita-

tive immunohistochemistry on IHCs from 2-week-old Wt, 1-SKO, and

1/3-DKO mice. Firstly, we counted the number of synaptic ribbons

per IHC as a proxy of the number of afferent synapses (Khimich et al,

2005; Meyer et al, 2009, Fig 3B and D) and found no difference

between the genotypes (one-way ANOVA, F(2, 23) = 0.337,

P = 0.717). Secondly, all ribbons appeared anchored at the AZ

(Fig 3E and electron microscopy data in Fig 8A, see below), where

presynaptic Ca2+ channels remained clustered (Fig 3E). In line with

the reduced ICa amplitudes, super-resolution 2D STED imaging of

CaV1.3 immunofluorescence revealed a significant decrease in cross-

sectional area of presynaptic Ca2+ channel clusters of 1-SKO and 1/3-

DKO IHCs (Fig 3C and E; Wt: 0.032 � 0.001 lm2 versus 1-SKO:

0.021 � 0.001 lm2 versus 1/3-DKO: 0.024 � 0.001 lm2; KWS =

76.14, P < 0.0001; post hoc Dunn’s test: P < 0.0001 for Wt versus

1-SKO and P < 0.0001 for Wt versus 1/3-DKO).

Next, we tested the exocytic capacity of endophilin-deficient IHC

ribbon synapses after the onset of hearing by measuring exocytic

DCm in response to step depolarizations to –14 mV eliciting maximal

ICa at near physiological [Ca2+]e (2 mM, Fig 4). In line with our

observations from organotypically cultured IHCs, we found

sustained exocytosis to be reduced in 1/3-DKO IHCs (Fig 4A and B;

e.g., DCm, 200 ms for 1/3-DKO IHCs was 55.11 � 4.8 fF versus

88.16 � 13.11 fF for Wt IHCs; KWS = 6.03, P = 0.0490; post hoc

Dunn’s test: P = 0.0470 for 1/3-DKO versus Wt; individual Tukey’s/

post hoc Dunn’s results for all other depolarization durations can be

found in Appendix Tables S5 and S6). Likewise, when approximat-

ing the rate of sustained exocytosis as (DCm, 200 ms - DCm, 20 ms)/

180 ms, we found a tendency for lower rates in endophilin-deficient

IHCs (0.25 � 0.02 fF/ms for 1/3-DKO, 0.27 � 0.03 fF/ms for 1-SKO

versus 0.42 � 0.06 fF/ms for Wt; KWS = 5.223, P = 0.0734). This

trend remained also after normalizing to the integrated ICa (QCa),

suggesting an exocytic deficit beyond that explained by reduced

Ca2+ influx, as already seen in cultured IHCs (Fig 4C; e.g., for

200 ms: 2.54 � 0.19 fF/pC for 1/3-DKO versus 3.34 � 0.52 fF/pC

for 1-SKO versus 3.81 � 0.45 fF/pC for Wt; KWS = 6.70, P = 0.0352,

post hoc Dunn’s test: P = 0.0323 for 1/3-DKO versus Wt and

P > 0.99 for 1-SKO versus Wt; individual post hoc Tukey’s/Dunn’s

results for all other depolarization durations can be found in

Appendix Table S7).

Finally, to assess the consequences of endophilin disruption at the

level of the auditory system, we recorded auditory brainstem

responses (ABRs) from 1-SKO, 1/3-DKO and Wt mice at 6 weeks of

age. ABRs reflect the synchronous activation of auditory neurons of

the various stages of the early auditory pathway; e.g., Jewett wave 1

represents the compound action potential of the SGNs, and Jewett

waves 2 and 3 reflect signal propagation in the cochlear nucleus

(Melcher et al, 1996). Curiously, despite the morphological and

physiological deficiencies found at the synapses of endophilin-defi-

cient IHCs, ABR thresholds and amplitudes were comparable between

Wt, 1-SKO and 1/3 DKO mice (Fig EV2; note that 1/2-DKO and TKO

mice could not be tested due to their premature lethality).

In summary, our combined functional and morphological data

indicate a role of endophilins in promoting the abundance of CaV1.3

Ca2+ channels at IHC AZs. In addition, our data suggest that endo-

philins are required for efficient SV replenishment to IHC AZs as

required for sustained exocytosis.

Endophilin-A1 interacts with otoferlin, a key player in hair
cell exocytosis

Our patch-clamp recordings implied that the reduced Ca2+ currents

seen in endophilin mutants cannot fully account for the deficits in

SV replenishment, and hence, we focused our search on putative

presynaptic effector molecules that may be regulated by endophi-

lins. One such potential candidate is the multi-C2 domain protein

otoferlin—a key player that is essentially required for IHC exocyto-

sis (Roux et al, 2006; Pangrsic et al, 2010; Vogl et al, 2016). Otofer-

lin has previously been shown to interact with endocytic adaptor

protein AP-2 (Duncker et al, 2013; Jung et al, 2015), and this inter-

action might serve the clearance of release sites after SV fusion

(Jung et al, 2015), therefore placing otoferlin in the same subcellu-

lar framework where endophilins are thought to operate. We char-

acterized otoferlin levels and its subcellular distribution in

endophilin mutant IHCs using semi-quantitative immunohistochem-

istry (Fig 5). Interestingly, our analysis revealed a reduction of over-

all IHC otoferlin immunofluorescence intensity by 28.4 � 3.5% in

1/3-DKOs (Fig 5A–C; unpaired t-test, t = 6.71, P < 0.0001 Wt versus

1/3-DKO) that however was much less pronounced than in IHCs of

AP-2l mutants (by approximately 70%) (Jung et al, 2015). Further-

more, when assessing the subcellular distribution pattern of otofer-

lin in mutant IHCs via line profile analysis along the longitudinal

IHC axis, we found comparable patterns of otoferlin distribution,

but a reduction in the overall signal intensity in 1/3 DKO IHCs

(Fig 5C). In contrast, the fluorescence intensity of myosin 6, previ-

ously characterized as regulator of IHC maturation and interaction

partner of otoferlin (Roux et al, 2009) as well as of AP-2, seemed

unchanged in response to the disruption of endophilins (Fig EV3

and Appendix Fig S1, respectively).

In light of the reduction of otoferlin even in the partial absence of

endophilin, we aimed to better understand the relation of these

proteins. Thus, we tested whether otoferlin interacts with endo-

philin-A1 by immunoprecipitation. An interaction between otoferlin

and endophilin-A1 in vitro was revealed by specific enrichment of

endophilin in anti-GFP immunoprecipitates from HeLa cells express-

ing endophilin-A1-mRFP and EGFP-otoferlin (Fig 5D and D0).
Notably, using an alternative experimental approach, bead-coupled

EGFP-otoferlin was able to bind highly purified endophilin-A1

(Fig 5E and E0), thereby suggesting an interaction of endophilin-A1

and otoferlin in both systems. In IHCs, such an interaction might aid

the coupling of exocytosis and endocytosis.

Endophilin is involved in endocytic membrane retrieval in IHCs

Next, we performed Cm measurements to study whether endophilin

deficiency alters endocytic membrane retrieval following
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depolarization-induced exocytosis in IHCs after hearing onset. We

employed short and long step depolarizations to �14 mV to trigger

different amounts of exocytosis (Fig 6). In IHCs, short depolariza-

tions (20 ms, recruiting the RRP) predominantly result in a slow,

near linear post-stimulus Cm decline back to baseline, which we

assume to reflect CME (Neef et al, 2014). Long depolarizations

(200 ms)—turning over in excess of 3–4 times the equivalent of the

RRP—additionally evoke an exponentially decaying Cm component

that likely involves bulk retrieval (Neef et al, 2014). In these

experiments, we also included 1/2-DKO IHCs into the analysis of

the endocytic membrane retrieval as a prominent role of endo-

philin-A2 in scission and SV reformation had been reported

previously (Renard et al, 2015). After a 20-ms depolarization, the

endocytic Cm decline was significantly slowed in IHCs of both 1/2-

DKO and 1/3-DKO (Fig 6A, C and D). Here, the mean slope of a

line fit to the endocytic Cm decline amounted to �0.51 fF/s and

�0.50 fF/s for 1/2-DKO and 1/3-DKO IHCs, respectively, compared

to �0.84 fF/s in Wt IHCs (Fig 6D; one-way ANOVA, F(2,

35) = 5.87, P = 0.0063; post hoc Tukey’s test: P = 0.0144 for 1/2-

DKO versus Wt and P = 0.0144 for 1/3-DKO versus Wt). More-

over, there was a trend toward a delayed Cm return to baseline for

IHCs of both mutants that did not reach statistical significance

(Fig 6C, one-way ANOVA, F(2, 35) = 1.67, P = 0.2025). A trend

toward slower linear Cm decline was also observed in the

responses to a 200-ms depolarization (following the exponential

phase of retrieval; Fig 6B and D; individual statistics for all endo-

cytosis parameters can be found in Appendix Table S8). These

data suggest a reduced rate of membrane retrieval by CME in the

absence of endophilins-A1/2 or endophilins-A1/3 in IHCs. In addi-

tion, we found a trend toward a smaller and slower exponential

phase of Cm decline in 1/2-DKO and 1/3-DKO IHCs following

200 ms of depolarization, which however did not reach statistical

significance (Fig 6E and F; yet, these data reach statistical signifi-

cance, if statistical outliers are excluded for the time constant,

KWS = 8.52 and P = 0.0141). In conclusion, our Cm measurements

indicate a role of endophilins particularly in the slow component

of IHC endocytic membrane retrieval, likely reflecting CME.

Endophilin deficiency impairs vesicle uncoating and synaptic
vesicle reformation

In order to further characterize the deficits in endocytosis revealed

by electrophysiology, we performed extensive morphological analy-

ses using electron microscopy and electron tomography. Consistent

with the immunohistochemical data, the general morphology and

plasma membrane anchoring of synaptic ribbons at presynaptic AZs

of all genotypes appeared normal (Fig 8A).

In a first step, we used random ultrathin sections to explore

the abundance of small, clear, and uncoated vesicles (diameter

< 70 nm, likely representing SVs), endosome-like vacuoles (ELVs),
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Figure 4. Sustained exocytosis is impaired in endophilin-deficient IHCs.

A Representative Ca2+ currents (upper panel) and exocytic membrane
capacitance increments (DCm; lower panel) in response to a 200-ms
depolarizing step to �14 mV.

B Exocytic ΔCm (top) and corresponding Ca2+ current integrals QCa (bottom)
of Wt and endophilin-deficient IHCs in response to voltage steps from �84
to �14 mV of variable stimulus duration (5–200 ms). In 1/3-DKO IHCs, our
data indicate reduced sustained exocytosis to a strong depolarization
(200 ms; *P = 0.0470, K-W with post hoc Dunn’s test; please also refer to
Appendix Tables S5 and S6 for detailed statistical analysis). Inset: Initial
ΔCm showed comparable RRP exocytosis in endophilin-deficient IHCs.

C Ca2+ efficiency to drive exocytosis was reduced for strong depolarizations
(200 ms) in 1/3-DKO IHCs (*P = 0.0323, K–W with post hoc Dunn’s test;
please also refer to Appendix Table S7 for detailed statistical analysis).

Data information: For panels (A-C), the numbers of replicates were Wt n = 20/
N = 8; 1-SKO n = 10/N = 7; 1/3-DKO n = 28/N = 17. Data represent
averages � SEM.
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and clathrin-coated membrane profiles within a radius of 1 lm
from the synaptic ribbon (Fig 7A). For this analysis, we excluded

the SVs directly adjacent to the presynaptic ribbon and considered

them in a separate analysis (see below). The total number of small

uncoated cytosolic vesicles was elevated in 1-SKO IHCs, but

reduced in 1/2-DKO IHCs, while 1/3-DKOs displayed unaltered

vesicle counts compared to Wt (Fig 7B; KWS = 130, P < 0.0001;

post hoc Dunn’s results can be found in Appendix Table S9).

Additionally, the area covered by ELVs was increased in 1/2-DKO

and 1/3-DKO (Fig 7C; KWS = 70.17, P < 0.0001; post hoc Dunn’s

results can be found in Appendix Table S9), suggesting compro-

mised reformation of SVs from ELVs in these genotypes. Quan-

tification of clathrin-coated profiles included the following: (i)

coated vesicles with diameters < 70 nm, (ii) fully coated vacuoles

with diameters > 70 nm, (iii) coated pits at the plasma membrane,

and (iv) coated pits budding from ELVs. We observed an overall

significantly increased number of coated structures in IHCs of 1-

SKOs, and, even more prevalently, in 1/3-DKOs and 1/2-DKO

compared to Wt (Fig 7D; KWS = 66.1, P < 0.0001). While 1-SKO

AZs exhibited more coated vesicles, numbers of coated vacuoles

and coated pits budding from the plasma membrane were

increased at AZs of both DKOs (Fig 7D0; coated SVs: KWS = 27.13,

P < 0.0001; coated vacuoles: KWS = 33, P < 0.0001; coated pits:

KWS = 79.67, P < 0.0001; coated pits at ELVs: KWS = 6.503,

P = 0.0895; post hoc Dunn’s results for all data sets can be found

in Appendix Table S9). These data point towards impaired SV

uncoating, taking effect already in 1-SKOs as well as additional

deficits in fission and/or membrane bending in 1/2-DKOs and 1/3-

DKOs during CME.

Secondly, we analyzed small vesicles in direct ribbon proximity

(diameters < 70 nm, clear, and uncoated), hereafter categorized as

SVs, using electron microscopy of random ultrathin sections
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Figure 5. Disruption of endophilins causes a reduction of IHC otoferlin levels.

A Confocal maximum projections of otoferlin-immunolabeled IHCs from p15 Wt and 1/3-DKO mice illustrated with an intensity-coded lookup table where brighter
colors indicate higher intensity. Scale bars: 5 lm.

B Otoferlin levels were reduced by approx. 28.4 � 3.5% in 1/3-DKO IHCs compared to Wt IHCs (relative intensities normalized to Wtavg; Wt n = 31 images (229 IHCs)/
N = 5 organs of Corti (three animals); 1/3-DKO n = 20 images (196 IHCs)/N = 5 organs of Corti (four animals); unpaired Student’s t-test; ***P < 0.001; box plots
illustrate the median with the interquartile range, whiskers indicate 10–90% of data points, and the squares present the respective mean value).

C Normalized otoferlin intensity line profiles through single IHCs of the respective genotypes at a longitudinal central plane through the nucleus from apical (0.0) to
basal (1.0) revealed similar distribution patterns of otoferlin in IHCs of Wt and 1/3-DKO, but an overall reduction of otoferlin levels throughout the entire cell in 1/3-
DKOs. Traces indicate the mean pixel intensity � SEM; Wt n = 123/N = 3; 1/3-DKO n = 124/N = 3.

D, E Otoferlin interacts with endophilin-A1. (D, D0) Interaction of otoferlin and endophilin-A1 detected by co-IP in HeLa cells co-expressing GFP-otoferlin and RFP-
endophilin-A1. Otoferlin-GFP was immunoprecipitated (IP) by GFP-Trap beads, and blots were probed with a KO-validated anti-endophilin-A1 antibody. (E, E0)
Exogenously overexpressed GFP-otoferlin was immunoprecipitated using GFP-Trap beads and incubated with purified endophilin-A1 (pA1). IP was then followed by
immunoblotting with an anti-endophilin-A1 antibody.

Source data are available online for this figure.
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(Fig 8A–D). Here, we observed an overall reduction of SVs at the

AZs of 1/2-DKO and 1/3-DKO IHCs. We further categorized SVs into

ribbon-associated SVs (RA-SVs) and membrane-proximal SVs (MP-

SVs) (Fig 8B). The number of RA-SVs was significantly reduced in

1/2-DKO and 1/3-DKO IHCs compared to Wt (Fig 8C: one-way

ANOVA, F(3, 417) = 38.4, P < 0.0001; post hoc Tukey’s analysis for

all data sets can be found in Appendix Table S11) with the

membrane-distal half of the ribbon being affected to a greater extent

than the membrane-proximal half (Fig 8C0: KWS = 82.4,

P < 0.0001; post hoc Dunn’s analysis can be found in

Appendix Table S11). Likewise, the number of MP-SVs was reduced

in IHCs lacking endophilins-A1/A2 or endophilins-A1/A3 (Fig 8D:

one-way ANOVA, F(3, 425) = 17.6, P < 0.0001; post hoc Tukey’s

results for all data sets can be found in Appendix Table S11).

In order to further decipher the distribution of vesicles and ELVs

at the ribbon in 3D, we additionally performed 3D electron tomogra-

phy, which offers an improved axial resolution to revisit our analysis

of 1/2-DKO and 1/3-DKO IHCs (Fig 8E–J). Here, the reconstruction

of the electron tomograms (Fig 8E, an overview of the analysis

parameters and criteria can be found in Fig 8F) corroborated the

above notions and revealed a statistically significant reduction of

RA-SVs (Fig 8G: one-way ANOVA, F(2, 21) = 3.899, P = 0.036; post

hoc Tukey’s test: P = 0.023 for 1/2-DKO versus Wt and P = 0.14 for

1/3-DKO versus Wt) and of MP-SVs (Fig 8H; one-way ANOVA,

Figure 6. Slowed endocytic membrane retrieval in endophilin-deficient IHCs.

A, B Endocytosis was assessed by determining the decrease in Cm during 20 s post-depolarization in perforated patch-clamp recordings from Wt, 1/2-DKO and 1/3-DKO
IHCs. The two kinetic components are presented as average ΔCm recordings after (A) 20 ms (Wt n = 12/N = 8; 1/2-DKO n = 13/N = 7; 1/3-DKO n = 13/N = 10) and
(B) 200 ms (Wt n = 12/N = 8; 1/2-DKO n = 13/N = 6; 1/3-DKO n = 14/N = 10) depolarization stimuli.

C Average time of return to baseline obtained by fitting a linear function to the Cm data following a 20-ms depolarization.
D Average slope of the linear component of endocytosis for 20-ms and 200-ms depolarizing pulses, obtained from fitting Cm data for 20 s after cessation of the 20-

ms depolarizations or for the last 10 s of the Cm recording for 200-ms depolarizations (*P < 0.05; one-way ANOVA with post hoc Tukey’s or non-parametric K-W
with post hoc Dunn’s test).

E, F Average amplitude (E) and time constant (F) of the exponential component obtained from fits to Cm data following 200-ms depolarization (nexp fit = 11 for Wt, 10
for 1/2-DKO, and 11 for 1/3-DKO; x data points in (E) correspond to IHCs with no exponential component in Cm). ⊗ corresponds to statistically identified outliers.

Data information: For panels (A, B), data represent grand averages � SEM; for (C–F), box plots illustrate the median with the interquartile range, whiskers indicate 10–
90% of data points, and the squares present the respective mean value. Please also refer to Appendix Table S8 for detailed statistical analysis.
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F(2, 21) = 4.912, P = 0.0178; post hoc Tukey’s test: P = 0.014 for 1/

2-DKO versus Wt and P = 0.051 for 1/3-DKO versus Wt) in 1/2-DKO

IHCs. The fraction of RA-SVs of the total count of SVs at the AZ was

not significantly affected (one-way ANOVA; F(2,21) = 0.4416,

P = 0.6488; see Appendix Fig S2B). Studying SV diameters with the

greater precision of tomography, we found larger SVs at 1/2-DKO

AZs, but not at 1/3-DKO AZs (Fig 8I; one-way ANOVA,

F(2, 21) = 11.59, P = 0.0004; post hoc Tukey’s test: P = 0.0215 for

1/2-DKO versus Wt; P = 0.176 for 1/3-DKO versus Wt; P = 0.0003

for 1/2-DKO versus 1/3-DKO). Moreover, tomograms showed an

increased abundance of ELVs at 1/2-DKO AZs and a non-significant

trend for more ELVs at 1/3-DKO AZs (Fig 8J; one-way ANOVA,

F(2, 21) = 11.59, P = 0.0004; post hoc Tukey’s test: P = 0.015 for 1/

2-DKO versus Wt; P = 0.136 for 1/3-DKO versus Wt).

Finally, we examined the effects of potassium stimulation on the

ultrastructure of endophilin-deficient IHCs. In these experiments,

we subjected acutely dissected 1/2-DKOs—the genotype with the

most perturbed presynaptic morphology—and Wt organs of Corti to

a stimulatory solution (15 min, 50 mM KCl, 5 mM CaCl2) prior to

immediate chemical fixation (Fig 9A). Analogous to the

Figure 7. Decreased number of small vesicles, accumulations of coated structures and ELVs at IHC synapses of endophilin mutants.

A Representative electron micrograph illustrating the region of interest for analysis within a radius of r = 1 lm from the ribbon center (exemplary for a 1/3-DKO
specimen). Graphical aids indicate small vesicles, ELVs, and different subpopulations of coated structures quantified in (B–D). Scale bar: 500 nm.

B While an increased number of small uncoated vesicles could be observed at 1-SKO AZs, reduced numbers of uncoated vesicles were present in a 1 lm radius around
the ribbon of 1/2-DKOs. RA-SVs and MP-SVs were excluded from this quantification.

C Accumulations of ELVs occurred in 1/2-DKO and 1/3-DKO IHCs, as measured by the relative cumulative ELV area per section.
D Increased overall number of coated structures in endophilin mutants. (D0) Prominent accumulations of coated pits could be observed in 1/2-DKO and 1/3-DKO IHCs

alongside a shift toward more coated vacuoles (d > 70 nm) in 1/2-DKO IHCs and 1/3-DKO IHCs.

Data information: For panels (B–D), the following numbers of replicates were used: Wt n = 72/N = 2; 1-SKO n = 106/N = 3; 1/2-DKO n = 129/N = 3; 1/3-DKO n = 172/
N = 6. Box plots illustrate the median with the interquartile range, whiskers indicate 10–90% of data points, and the squares present the respective mean value; K–W
followed by Dunn’s test; *P < 0.05; **P < 0.01; ***P < 0.001. Please also refer to Appendix Tables S9 and S10 for detailed statistical analysis.
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unstimulated probes, we compared SV pools in direct vicinity of the

ribbon. Here, both, RA- and MP-SV numbers were significantly

lower in stimulated 1/2-DKO compared to stimulated Wt (Fig 9B

and C; Mann–Whitney test, for RA-SVs: U = 368, P < 0.0001; for

MP-SVs: U = 783, P = 0.0438). Moreover, all findings made within

the analyzed 1 lm perimeter of the ribbon of unstimulated 1/2-DKO

IHCs compared to unstimulated Wt IHCs were also present in the

stimulated IHCs of 1/2-DKO (compared to stimulated Wt IHCs), but

to a greater extent. We found (i) reduced numbers of small uncoated

cytosolic vesicles (Fig 9D; Student’s t-test, t = 4.67; P < 0.0001) and

(ii) vast accumulations of ELVs (Fig 9E; Mann–Whitney test,

U = 264; P < 0.0001). The formation of coated pits at ELVs was

more frequently seen in stimulated 1/2-DKO than in stimulated Wt

or unstimulated samples (Fig 9A and F0; Mann–Whitney test,

U = 623, P = 0.001; see also Appendix Table S13 for the compar-

isons of other coated structures), again pointing toward a function

of endophilin in clathrin-dependent SV reformation from ELVs.

In summary, our electrophysiological and ultrastructural analy-

ses indicate that loss of endophilins from IHCs impaired, but did not

abolish, presynaptic endocytosis. Fission and uncoating of clathrin-

coated membranous structures, e.g., processes such as clathrin-

dependent SV reformation, seem to be facilitated by—but do not

essentially require—endophilins in IHCs.

Discussion

The presented morphological and physiological analysis of IHC

ribbon synapses lacking endophilins provides novel insights into the

molecular regulation of transmitter release and membrane retrieval

in IHCs. Based on our findings, we propose that the main functions

of the endophilin family at IHC synapses are to promote (i) the orga-

nization of Ca2+ channel clusters and presynaptic Ca2+ influx, (ii)

replenishment of SVs to the release sites, (iii) coupling of exocytosis

and endocytosis, probably via interaction with otoferlin, (iv) endo-

cytic membrane retrieval, and (v) SV reformation from clathrin-

coated structures (summarized in the cartoon in Fig 10).

Endophilin-A1 positively regulates the abundance and modulates
the function of CaV1.3 channels at IHC synapses

While endophilins are indispensable for life, they do not seem to be

required for the development and survival of the organ of Corti,

even though single-cell RT–PCR indicated the expression of all three

endophilins in IHCs. Given the perinatal lethality of endophilin TKO

mice, we analyzed their IHCs in organotypic cultures, which did not

show obvious developmental or gross morphological deficits. They

did, however, show a reduction of depolarization-evoked Ca2+

currents and enhanced inactivation kinetics (in the TKO), features

that could partly also be recapitulated in the viable 1-SKOs and 1/3-

DKO mice after hearing onset. Moreover, STED microscopy of

CaV1.3 immunofluorescence indicated a reduction in Ca2+ channel

cluster size at the presynaptic AZ membrane of endophilin mutants.

These observations provide insights into the functional conse-

quences of the interaction of endophilins with Ca2+ channels that

had previously been reported by biochemistry (Chen et al, 2003).

To our knowledge, this is the first report showing such a positive

regulation of Ca2+ channel abundance and function (i.e., inhibiting

inactivation) by endophilins. The Ca2+ current inactivation pheno-

type we observed in organotypically cultured IHCs of TKO mice

appeared to be compensated in the other mutants studied—likely by

expression of the remaining endophilins—and hence seems to

require the complete loss of all endophilins to become apparent.

Notably, the observed decrease in whole-cell ICa was not accompa-

nied by (i) detachment of synaptic ribbons, (ii) loss of afferent

synapses, or (iii) mislocalization of presynaptic CaV1.3 Ca2+ chan-

nels. Indeed, the channels remained tightly clustered in the AZ

membrane underneath the normally sized synaptic ribbon, as

shown by super-resolution microscopy. Instead, our data reflect a

reduced presynaptic abundance of CaV1.3 Ca2+ channels, as demon-

strated by the decreased size of presynaptic Ca2+ channel clusters

of 1-SKOs and 1/3-DKOs. Future studies should test how endophi-

lins promote a large Ca2+ channel complement at the IHC AZ and

whether such positive regulation of Ca2+ channel abundance is

found also at other synapses.

◀ Figure 8. Absence of endophilins causes changes in SV number and distribution at IHC ribbon synapses.

A Representative electron micrographs of random ultrathin sections from IHC ribbon synapses of p15 mutants lacking different endophilin-A alleles. Scale bars:
200 nm.

B Schematic illustration depicting the analysis criteria for random section electron micrographs (not drawn to scale). Synaptic vesicles (SVs) were categorized as
ribbon-associated SVs (RA-SVs, green) or membrane-proximal SVs (MP-SVs, yellow).

C, D Reduced numbers of RA-SVs (C) and of MP-SVs (D) in IHCs of endophilin mutants with the strongest reduction observed in 1/2-DKO mice. One-way ANOVA
followed by post hoc Tukey’s test; **P < 0.01; ***P < 0.001.

C0 Reduced ratio of RA-SVs in the distal half of the ribbon over RA-SVs in its proximal half in 1/2-DKO and 1/3-DKO IHCs. K–W followed by Dunn’s test;
***P < 0.001.

E Representative 3D reconstructions of EM tomograms of 250-nm sections from Wt and endophilin DKO mutants. Please note the accumulations of ELVs in IHCs of
endophilin 1/2-DKOs. Analysis was performed on eight tomograms from two animals per genotype. Scale bars: 100 nm.

F Schematic illustration depicting the analysis criteria for tomograms (not drawn to scale). SVs were categorized as RA-SVs (green) and as MP-SVs (yellow). ELVs
(light blue) were counted if the smallest distance between ELV and ribbon was < 200 nm.

G Significantly reduced numbers of RA-SVs in 1/2-DKO IHCs (one-way ANOVA followed by post hoc Tukey’s test; *P = 0.0229).
H Significantly reduced numbers of MP-SVs in 1/2-DKO and a strong trend (P = 0.0511) toward less MP-SVs in 1/3-DKO IHCs (one-way ANOVA followed by post hoc

Tukey’s test; *P = 0.0138).
I Increased SV diameter in 1/2-DKOs, but unchanged SV diameter in 1/3-DKOs (one-way ANOVA followed by post hoc Tukey’s test; *P = 0.0154).
J Accumulation of ELVs with a minimal distance to the ribbon of less than 200 nm in 1/2-DKOs (one-way ANOVA followed by post hoc Tukey’s test; ***P = 0.0002).

Data information: Analysis was performed on random sections of ribbon-occupied AZs derived from several IHCs per genotype; the following numbers of replicates were
used: Wt n = 78 sections from N = 2 animals; 1-SKO n = 95, N = 3; 1/2-DKO n = 135, N = 3; 1/3-DKO n = 176, N = 6. Box plots illustrate the median with the
interquartile range, whiskers indicate 10–90% of data points, and the squares present the respective mean value. For panels (C-E), please also refer to Appendix Tables
S11 and S12 for detailed statistical analysis.
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Endophilins facilitate endocytic membrane retrieval and
reformation of SVs

Our focus on mature IHCs, moving away from cultured TKO cells,

leaves room for functional compensation given that endophilins have

previously been shown to exhibit redundancy for several cellular

functions (Milosevic et al, 2011; Murdoch et al, 2016). Nonetheless,

we found a modest accumulation of clathrin-coated pits (CCPs) in the

proximity of IHC ribbon-type AZs, suggesting that even partial

absence of endophilins becomes rate-limiting for the fission process at

IHC synapses. Indeed, this hypothesis is strongly supported by our

finding of a reduced rate in the slow (linear) component of endocytic

membrane retrieval in 1/2-DKO and 1/3-DKO IHCs that has previ-

ously been attributed to CME (Neef et al, 2014). In neurons, endo-

philin is recruited to CCPs prior to membrane fission (Ringstad et al,

1999; Perera et al, 2006; Ferguson et al, 2009; Milosevic et al, 2011;

Sundborger et al, 2011), and several other studies have reported

an accumulation of CCPs following perturbation of endophilin func-

tion (Ringstad et al, 1999; Gad et al, 2000; Schuske et al, 2003;

Verstreken et al, 2003; Sundborger et al, 2011). Yet, no significant
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Figure 9. High K+ stimulation leads to accumulations of ELVs and an increased occurrence of coated pits at ELVs in endophilin 1/2-DKOs.

A Representative electron micrographs of Wt and 1/2-DKO specimen indicate accumulations of ELVs and high numbers of coated pits forming from ELVs in ribbon
proximity (radius r = 1 lm from the center of the ribbon) in 1/2-DKOs after 15-min stimulation with extracellular solution supplemented with 50 mM K+. Scale bars:
200 nm.

B Significantly reduced numbers of RA-SVs in IHCs of 1/2-DKO compared to Wt after stimulation, as quantified using random ultrathin sections of ribbon-occupied AZs
from several IHCs per genotype. Mann–Whitney test; ***P < 0.001.

C Numbers of MP-SVs were slightly reduced in stimulated 1/2-DKOs compared to stimulated Wt. Mann–Whitney test; *P < 0.05.
D Numbers of small uncoated vesicles were reduced in a 1 lm radius around the ribbon of 1/2-DKOs compared to Wt after stimulation. RA-SVs and MP-SVs were

excluded from this quantification. Student’s t-test; ***P < 0.001.
E Stimulated 1/2-DKOs exhibited accumulations of ELVs in comparison with stimulated Wt. Mann–Whitney test; ***P < 0.001.
F Increased overall number of coated structures in stimulated endophilin 1/2-DKOs compared to stimulated Wt. (F0) Both, coated vesicles and coated pits forming at

ELVs, were significantly increased in 1/2-DKOs after stimulation. Mann–Whitney test; **P < 0.01; ***P < 0.001.

Data information: Stimulated Wt n = 36 sections from N = 2 animals; stimulated 1/2-DKO n = 76/N = 3; dashed lines indicate mean values of the unstimulated
conditions from the respective genotypes for reference. Box plots illustrate the median with the interquartile range, whiskers indicate 10–90% of data points, and the
squares present the respective mean value. For panels (B–F), please also refer to Appendix Table S13 for detailed statistical analysis.
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accumulation of CCPs was detected at cortical synapses at rest in

endophilin 1/2-DKO and TKO mice (Milosevic et al, 2011), suggesting

that fission was not rate-limiting in this model. Given that endophilins

interact directly with dynamin 1 (Ringstad et al, 1999; Anggono &

Robinson, 2007), they likely promote dynamin’s recruitment to the

neck of CCPs in IHCs, as they do in neurons (Perera et al, 2006; Fergu-

son et al, 2009; Milosevic et al, 2011). Furthermore, endophilins have

been reported to have a direct role in dynamin-independent scission

of tubular membrane necks in vitro (Renard et al, 2015; Simunovic

et al, 2017). It is therefore likely that endophilin promotes fission in

IHCs via recruitment of dynamins; however, a dynamin-independent

role of endophilin in fission remains possible.

Not only the higher numbers of coated pits but also larger coated

vacuoles in IHCs of both endophilin DKOs may serve as an indicator

for the impaired fission. Alternatively or in addition, endophilin

may, as previously reported in invertebrates (Bai et al, 2010), be

required for membrane bending prior to the pit formation, thus

resulting in larger coated structures. Curiously, the number of

coated vesicles was significantly increased in 1-SKO IHCs, but not in

1/2-DKO or 1/3-DKO IHCs, which have an overall much stronger

phenotype. Yet, if the numbers of coated vesicles and coated

vacuoles are pulled together, one can notice a shift toward larger

coated structures in the endophilin 1/2-DKO and 1/3-DKO IHCs.

One possible explanation here is that the recruitment of dynamin(s)

and/or the fission process may not be rate-limiting in the absence of

endophilin-A1 alone. The recruitment of synaptojanin-1 and/or

other factors involved in uncoating is already disturbed in synapses

of endophilin A1-SKOs, though. This finding is in agreement with

Milosevic et al (2011) who reported accumulations of CCVs at

murine cortical synapses of 1/2-DKO and TKO mice.

In addition to the increased occurrence of coated pits and coated

vesicles in the proximity of IHC ribbon synapses, we observed a
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clathrin
CaV1.3 channel
endophilin A
otoferlin

SV uncoating

4

accumulations of coated 
structures in proximity of the 

ribbon

CCP fission

3

increased numbers of coated pits and 
slower rates of IHC endocytic 

membrane retrieval 

CaV1.3 functional modulation

1

reductions of Ca2+ influx alongside a 
reduced size but preserved shape of CaV1.3 

clusters

SV formation from ELVs
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reduced SV numbers, ELV accumulations and 
reduction of sustained exocytosis beyond what is 

expected based on lowered Ca2+ influx

Coupling of exo- and endocytosis
direct interaction of endophilin and otoferlin

2

Figure 10. Putative functions of endophilins in IHCs.

All three endophilin-A genes are present in IHCs. We found two novel functions of endophilin-A1: a positive regulation of IHC presynaptic Ca2+ influx and Ca2+ channel
abundance (1) and a physical interaction of endophilin-A1 with the exocytic protein otoferlin that might contribute to exocytosis–endocytosis coupling (2). Moreover, like in
neurons, all endophilins in IHCs seem to be involved in fission (3) and uncoating (4) of clathrin-coated organelles supporting CME, and, furthermore, promote SV reformation
from endosomal intermediates (5).

14 of 22 The EMBO Journal e100116 | 2019 ª 2019 The Authors

The EMBO Journal Endophilins modulate hair cell synapses Jana Kroll et al



prominent accumulation of other recycling intermediates with a

clathrin coat. Most strikingly in stimulated 1/2-DKO IHCs, coated

pits accumulated at ELVs, indicating that fission also displays the

rate-limiting step here. Consistent with a role of endophilins in SV

reformation, we further found an increased occurrence of ELVs at

endophilin 1/2-DKO mutant AZs and a larger area covered by ELVs

in both DKO IHCs. Similar accumulation of ELVs can also be found

in AP-2-deficient IHCs, which however, unlike endophilin mutants,

showed a clear reduction of coated structures in the ribbon’s vicinity

(Jung et al, 2015). One likely hypothesis is that clathrin recruitment

is disturbed in AP-2 mutants, whereas in endophilin mutants,

fission and/or uncoating limits endocytic membrane retrieval and

SV reformation.

Future studies should address to which extent the impaired SV

reformation contributes to the reduction of vesicle replenishment

during sustained exocytosis observed in our Cm recordings in endo-

philin-deficient IHCs (see below). Importantly, while a prominent

reduction in the number of SVs and protein levels of several main

SV proteins had been observed at cortical synapses, we detected

only mild—albeit statistically significant—alterations in vesicle

numbers of endophilin mutants (as reported in Figs 7 and 8). It is

not trivial to test the levels and distribution of proteins in this

system, in part since IHCs do not use the same molecular machinery

as cortical neurons: for example, (i) IHC exocytosis operates without

classical neuronal SNAREs including synaptobrevin-2 (Nouvian

et al, 2011) and (ii) since various antibodies against SV proteins are

found to be non-specific in our hands in IHCs (e.g., synaptojanin-1),

thus limiting the tools available to examine SV proteins in IHCs.

Nevertheless, while we observed altered levels/distribution of

otoferlin and Ca2+ channels, we did not detect obvious differences

in the levels and/or distribution of AP-2 or myosin 6, which has

previously been reported to be required for ribbon synapse matura-

tion and function (Roux et al, 2009), or AP-2.

Endophilins are involved in SV replenishment at IHC AZs

Double and triple mutants of endophilins showed reduced sustained

exocytosis, likely caused by impaired recruitment of SVs to the

release sites of the IHC AZ. It is unlikely that the deficits in

sustained exocytosis solely reflect the slowed reformation of SVs

(see above), as the overall numbers of small, uncoated vesicles were

unaltered in 1/3-DKOs. Here, to our knowledge for the first time, we

describe an interaction of endophilin-A1 with otoferlin, a critical

component in the processes of synaptic release and SV replenish-

ment in IHCs (Roux et al, 2006; Pangrsic et al, 2010; Vogl et al,

2016). This interaction appears especially relevant in light of the

previously described observations. In fact, in mouse mutants suf-

fering from reduced otoferlin levels, such as the otoferlin mutants

pachanga (Pangrsic et al, 2010) or otoferlin Ile515Thr (Strenzke

et al, 2016), as well as a knockout mouse model for AP-2l (Jung

et al, 2015), sustained exocytosis is likewise disturbed.

However, the mechanism at work here seems to be different

from what was observed in AP-2l KO. While endophilin-A1, like

AP-2, is an interaction partner of otoferlin (Duncker et al, 2013;

Jung et al, 2015), lack of endophilin does not cause a drastic

decrease in IHC otoferlin levels or alter the subcellular distribution

of otoferlin, as seen in AP-2l-deficient IHCs. In fact, genetic loss of

AP-2l results in dramatically decreased otoferlin expression and a

significant reduction in sustained exocytosis, as well as a profound

hearing loss, as assessed by ABR recordings. Importantly, AAV-

mediated AP-2l rescue succeeded in restoring otoferlin levels of AP-

2l mutant IHCs to ~50% of Wt levels, which sufficed to fully restore

the observed exocytosis phenotype and drastically improved ABR

performance. Based on these findings, we would suspect that the

overall reduction of ~25% of otoferlin levels in endophilin 1/3-DKO

should not have any major effects on IHC exocytic performance in

the endophilin mutants. Therefore, we propose that the impairment

of sustained exocytosis is not due to the reduction of otoferlin

levels. The precise mechanism(s) by which endophilins promote

replenishment of SVs to the release site remain to be investigated in

future studies. The reduced number of RA-SVs at endophilin-defi-

cient AZs might indicate that endophilins are required for efficient

resupply of SVs to the ribbon. Given that endophilins are capable of

interacting with actin and/or actin-modifying proteins such as inter-

sectin (Ferguson et al, 2009; Soda et al, 2012; Vehlow et al, 2013;

Pechstein et al, 2015; Yang et al, 2015), as well as that the F-actin

cytoskeleton is important for SV exocytosis in IHCs (Vincent et al,

2015; Guillet et al, 2016), an additional role of endophilin in SV

resupply to the ribbon appears likely. Alternatively or in addition,

endophilin binding to otoferlin at the release site might facilitate the

lateral diffusion of fused vesicular proteolipids (site clearance) as

proposed for AP-2 (Jung et al, 2015).

Materials and Methods

Animals

All experiments complied with national animal care guidelines and

were approved by the University Medical Center Göttingen Board

for animal welfare and the animal welfare office of the state of

Lower Saxony. Constitutive knockout mice for endophilin-A1

(E1�/�), endophilin-A2 (E2�/�), endophilin-A3 (E3�/�), described

in Milosevic et al (2011), were employed in two separate breeding

schemes: (i) perinatally lethal E1�/�E2�/�E3�/� (hereafter dubbed

TKO) mice, as well as viable E1�/�E2+/�E3�/� and E1�/�E2+/

+E3�/� mice (hereafter pooled, as we did not find significant dif-

ferences in IHC physiology and morphology and dubbed 1/3-

DKOs), were obtained from breeding E1�/�E2+/�E3�/� mice and

(ii) mating of E1�/�E2+/� mice yielded E1�/�E2�/� mice (here-

after dubbed 1/2-DKOs), and E1�/�E2+/� and E1�/�E2+/+ (here-

after pooled and dubbed 1-SKOs). E1+/+E2+/+E3+/+ with the

same genetic background (approximately 80% C57BL/6J + 20%

SV129) were bred to generate wild-type controls (Wt) for electron

microscopy, immunohistochemistry, and physiology experiments.

For gene expression studies and a set of cell physiology experi-

ments, we employed C57BL/6J mice as Wt controls. Most experi-

ments were performed at 2–3 weeks of age (after hearing onset

around postnatal day p12 in mice; Mikaelian & Ruben, 1965),

except for (i) cell physiology on TKO mice, which due to perinatal

lethality were used within hours after birth to prepare organotypic

cultures of organs of Corti, and (ii) auditory brainstem responses

that were recorded at 6–8 weeks (taking into consideration that

the C57BL/6J background is genetically predisposed for early onset

age-related hearing loss; Shnerson & Pujol, 1981). Both male and

female mice were used for all experimental paradigms.
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Single-cell RT–PCR

To determine the expression of the three endophilin-A genes in

IHCs, we isolated mRNA from single IHCs of C57BL/6J mice at

p14-16. In these experiments, individual IHCs were harvested from

the apical coils of freshly dissected organs of Corti after cleaning

off supporting cells. The filtered bath solution contained (in mM)

5.36 KCl, 141 NaCl, 0.5 MgSO4�7H2O, 10 HEPES, 1 MgCl2, 1.3

CaCl2 (pH 7.2, ~300 mOsm/l) and was continuously perfused at

high rate (1.7–3.3 ml/min) to clear off cell debris. Individual IHCs

were aspirated into a glass pipette containing 8 ll of intracellular

solution (135 mM KCl, 10 mM HEPES, 0.5 mM MgCl2�6H2O). The

pipette content was then transferred into first-strand cDNA synthe-

sis mix containing after dilution (in mM): 50 Tris–HCl (pH 8.4), 50

KCl, 5 MgCl2, 10 DTT, and 50 units of SuperScript II Reverse Tran-

scriptase (Invitrogen, Carlsbad, CA) and 40 units of RNaseOUT

ribonuclease inhibitor (Invitrogen). Aspirated bath solution in close

proximity to the IHCs before and after IHC harvesting was used as

a negative control. Reverse transcription (RT) was performed with

SuperScriptTM II RT and SuperScript� First-Strand Synthesis System

for RT–PCR according to the manufacturer’s instructions using

oligo(dT) primers and random hexamers (Invitrogen). After

ethanol precipitation, cDNA was pre-amplified with 20 cycles of a

multiplex PCR, and the reaction product was used to perform

quantitative real-time polymerase chain reaction (qPCR) using

SYBR� Green (Thermo Fisher). Sequences of endophilin-A-specific

primers are listed in Appendix Table S1. Each sample was

processed as technical duplicates using QuantStudioTM 6 Flex (Life

Technologies). Data were analyzed with QuantStudioTM Real-Time

PCR software.

Immunoblotting of cochlear extracts

Detection of endophilin-A1-3 protein from cochlear lysates was

performed by Western blotting essentially as described in Vogl et al

(2017). In brief, p15 animals of all respective genotypes were sacri-

ficed and cochleae, hippocampi, and cerebellar fragments were

dissected in ice-cold PBS. Additionally, modioli and organs of Corti

were carefully micro-dissected and respectively pooled from 10 Wt

animals to assess expression in the two tissue fractions. Pooled

cochleae of individual animals as well as the selected other tissue

samples were transferred to fresh tubes containing a modified RIPA

lysis buffer with the following composition (in mM): Tris–HCl (pH

7.5) (50), NaCl (150), Na-deoxycholate (1), EDTA (1), PMSF (1),

NaF (1), 1% IGEPAL (v/v), 0.25% (w/v), PhosSTOP phosphatase

inhibitors, and complete protease inhibitors (Roche Holding AG,

Basel, Switzerland). After manual homogenization of the tissue with

a Teflon plunger and initial incubation for 30 min on ice, samples

were transferred to a rotating wheel and gently lysed for an addi-

tional 2.5 h at 4°C. Subsequently, samples were centrifuged at

1,000 g for 15 min at 4°C to precipitate large cell debris and bone

fragments. Thereafter, the protein concentrations of the sample

supernatants were determined using a BCA protein determination

assay (Thermo Fisher) and the remaining samples were boiled for

6 min at 95°C in SDS sample buffer (62.5 mM Tris–HCl (pH 6.8),

10% (v/v) glycerin, 2% SDS (w/v), 5% (v/v) b-mercaptoethanol,

0.002% (w/v) brome phenol blue). Then, 10 lg of protein per

sample was subjected to 12% SDS–PAGE, transferred onto PVDF

membranes, and—after blocking with 5% (w/v) milk powder

dissolved in TBS-Tween—probed with the following primary anti-

bodies: goat anti-endophilin-A1 (sc-10875; Santa Cruz), rabbit anti-

endophilin-A2 (a kind gift of Pietro de Camilli, Yale University,

USA), goat anti-endophilin-A3 (sc-10880; Santa Cruz or Abcam,

ab184008), and mouse anti-c-adaptin (Cat. No.: 610386; BD Trans-

duction Laboratories). After extensive washing, species-specific

peroxidase-conjugated secondary antibodies were applied for chemi-

luminescent detection on an Intas ChemoCam imaging platform. In

our experiments, none of the tested A3 antibodies showed selectiv-

ity for A3 but rather appeared to (also) detect A1.

Immunohistochemistry and confocal microscopy of
immunolabeled hair cells

Freshly dissected apical cochlear turns of 2-week-old mice were

fixed with (i) 4% formaldehyde (FA) in phosphate-buffered saline

(PBS)—depending on the experimental paradigm either for 20 or

for 60 min—on ice, or (ii) for 20 min in methanol at �20°C

(CaV1.3-staining). Thereafter, specimens were washed in PBS and

incubated for 1 h in goat serum dilution buffer (GSDB: 16% normal

goat serum, 450 mM NaCl, 0.3% Triton X-100, 20 mM phosphate

buffer, pH 7.4) in a wet chamber at room temperature. Primary

antibodies were dissolved in GSDB and applied for 3 h at room

temperature (CaV1.3-staining), or overnight at 4°C in a wet cham-

ber. After washing 3 × 10 min (wash buffer: 450 mM NaCl, 20 mM

phosphate buffer, 0.3% Triton X-100), the tissue was incubated

with GSDB-diluted secondary antibodies in a light-protected wet

chamber for 1 h at room temperature. Then, the specimens were

washed in wash buffer and finally in 5 mM phosphate buffer and

mounted onto glass microscope slides with mounting medium

(Mowiol). The following primary antibodies were used: mouse

monoclonal anti-CtBP2 (also recognizing the ribbon protein

RIBEYE, 1:200, BD Biosciences, Cat. No. 612044), mouse anti-

otoferlin (1:300, Abcam, Cat. No. ab53233), rabbit anti-vGlut3

(1:300, Synaptic Systems, Cat. No. 135 203), rabbit anti-CaV1.3

(1:30, Alomone Labs, Cat. No. ACC 005), and rabbit polyclonal

myosin 6 (1:300, Proteus Biosciences Inc., #25-6791). The

secondary antibodies used for (i) confocal microscopy were goat

anti-rabbit Alexa Fluor 488 and goat anti-mouse Alexa Fluor 568

(1:200, Invitrogen, Cat. No. A 11008 and A 11004, respectively),

and (ii) STED were STAR 580-tagged goat anti-mouse (1:200, Abbe-

rior, Cat. No. 2-0002-005-1) and STAR 635P-tagged goat anti-rabbit

(1:200, Abberior, Cat. No. 2-0012-007-2). Confocal images were

acquired using a laser scanning confocal microscope (Leica TCS

SP5, Leica Microsystems GmbH, Mannheim, Germany, and Zeiss

LSM800, Carl Zeiss AG, Oberkochen, Germany) with 488 nm (Ar)

and 561 nm (He-Ne) lasers for excitation and 1.4 NA 63× oil

immersion objectives. Z-axis stacks from comparable tonotopic

regions were acquired with a pixel size of 80 × 80 nm and step size

of (i) 0.6 lm for otoferlin quantifications and (ii) 0.25 lm for

ribbon counting. 2D STED images were acquired with a pixel size

of 15 × 15 nm using an Abberior Instruments Expert Line 775 nm

2-color STED microscope (Abberior Instruments, Göttingen,

Germany), with excitation lasers at 561 and 640 nm and a STED

laser at 775 nm, 1.2 W, using a 1.4 NA 100× oil immersion objec-

tive. Images were processed using ImageJ (http://imagej.net/) and

assembled for display in Adobe Illustrator software.
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Patch clamp of IHCs from cultured neonatal organs of Corti

Organotypic cultures of perinatal (p0) mice were prepared as

described previously (Nouvian et al, 2011; Reisinger et al, 2011;

Vogl et al, 2015). Briefly, organs of Corti were dissected from TKO,

1/3-DKO, or C57BL/6J mice in HEPES-HBSS supplemented with

250 ng/ml fungizone (Life Technologies) and 10 lg/ml Penicillin G

(Sigma-Aldrich), mounted on Cell-TakTM-coated coverslips (BD Bios-

ciences) and incubated in DMEM/F12 with 5% FBS. During the

culture period of 1 week, half of the medium was replaced with

fresh culture medium every second day. After 7 days in culture,

perforated patch-clamp recordings were performed on apical coil

IHCs using an extracellular solution containing (in mM) 103 NaCl,

2.8 KCl, 1 MgCl2, 10 HEPES, 35 TEA-Cl, 11.2 D-glucose, 10 CaCl2,

and apamin (100 nM) to inhibit small conductance (SK) K+ chan-

nels (pH 7.2, ~300 mOsm/l), and an intracellular solution contain-

ing (in mM) 129 Cs-gluconate, 10 TEA-Cl, 10 4-AP, 10 HEPES, 1

MgCl2, and amphotericin B (300 lg/ml) (pH 7.2, ~280 mOsm/l). In

a subset of experiments, the extracellular Ca2+ concentration

([Ca2+]e) was lowered to 6 mM to reduce presynaptic Ca2+ influx

in C57BL/6J mice; this was balanced by a complementary increase

in NaCl to maintain overall ionic strength. All experiments were

done at room temperature (22–24°C) using an EPC10 amplifier with

PatchMaster software (HEKA, Elektronik, Lambrecht, Germany).

Ca2+ current and membrane capacitance measurements were

performed using the Lindau–Neher technique (Lindau & Neher,

1988; Moser & Beutner, 2000). Currents were leak-subtracted with a

p/10 protocol. Liquid junction potentials (17 mV) were corrected

offline.

Patch clamp of IHCs in acutely dissected organs of Corti

Patch-clamp recordings from IHCs of freshly dissected organs of

Corti (apical coil) from p14-18 mice were essentially performed as

described previously (Moser & Beutner, 2000). For recordings of

Ca2+ current, exocytosis, and endocytosis, the pipette solution

contained (in mM) 129 Cs-gluconate, 10 TEA-Cl, 10 4-AP, 10

HEPES, 1 MgCl2, and amphotericin B (300 lg/ml) (pH 7.2,

~280 mOsm/l). The extracellular solution contained (in mM) 105

NaCl, 35 TEA-Cl, 2.8 KCl, 2 CaCl2, 1 MgCl2, 5 4-AP, 1 CsCl, 10

HEPES, and 11.1 D-glucose (pH 7.2, ~300 mOsm/l). EPC-9 ampli-

fiers (HEKA) controlled by Pulse software (HEKA) were used for

measurements. All voltages were corrected offline for the liquid

junction potential (14 mV). Currents were leak-corrected using a p/

10 protocol for exocytosis or a p/20 protocol for endocytosis. Cells

with leak currents exceeding �35 pA at �84 mV holding potential

or with a series resistance higher than 30 MΩ were excluded from

the analysis. Current–voltage (IV) relationships were obtained by

applying 10-ms pulses of increasing voltage. For capacitance (Cm)

measurements, IHCs were stimulated by depolarizations of different

durations to �14 mV at intervals of 20–120 s.

Electron microscopy and tomography

Conventionally embedded samples for electron microscopy and

tomography were prepared as described previously (Jung et al,

2015). Apical turns of the organ of Corti were acutely dissected and

either stimulated for 15 min at room temperature with a solution

containing (in mM) 50 KCl, 95 NaCl, 1 MgCl2, 5 CaCl2, 10 HEPES

and subsequently fixed for 1 h on ice with 4% PFA and 0.5%

glutaraldehyde in PBS, or immediately fixed for 1 h on ice with the

same fixative. Subsequently, samples were post-fixed overnight on

ice with secondary fixative comprising 2% glutaraldehyde in 0.1 M

sodium cacodylate buffer, pH 7.2. The next day, samples were

washed thrice in sodium cacodylate buffer, before 1% osmium

tetroxide ((v/v) in 0.1 M sodium cacodylate buffer) was applied for

post-fixation for 1 h on ice. After 2 × 10 min washing steps in

sodium cacodylate buffer and three brief washing steps in distilled

water, the samples were stained en bloc with 1% uranyl acetate

((v/v) in distilled water) for 1 h on ice and briefly washed with

distilled water. The dehydration was performed on ice in solutions

with increasing ethanol concentrations, and the samples were

subsequently infiltrated in Epon resin (100% EtOH/Epon 1:1 (v/v),

30 and 90 min; 100% Epon, overnight), placed into embedding

molds, and polymerized for 48 h at 70°C. 65-nm sections of the

embedded samples were obtained approaching from the anterior

edge using an ultramicrotome (UC6, Leica Microsystems) and

placed on formvar-coated 2 × 1 mm copper slot grids. Sections were

post-fixed and post-stained with uranyl acetate or uranyl acetate

replacement (Science Services, Munich) and lead citrate following

standard protocols. Micrographs were acquired with a JEM 1011

electron microscope (JEOL) equipped with a Gatan Orius 1200A

camera using the Digital Micrograph software package at a 5,000-

fold to 12,000-fold magnification.

Electron tomography was essentially performed as described

previously (Jung et al, 2015; Strenzke et al, 2016). Briefly, 250-nm

sections were applied to formvar-coated copper mesh grids and

post-stained as described above. 10 nm gold beads were applied to

both sides of the grid as fiducial markers. Tilt series were acquired

with a JEOL electron microscope (JEM 2100) from �60° to +60° with

an increment of 1° using Serial-EM software. Tomograms were

generated using the IMOD package etomo, and models were gener-

ated using 3dmod (bio3d.colorado.edu/imod/).

Auditory brainstem responses

Recordings of ABRs (auditory brainstem responses) and DPOAE

(distortion product otoacoustic emissions) were performed as previ-

ously described (Jing et al, 2013). In brief, mice were anesthetized

with a combination of ketamine (125 mg/kg) and xylazine (2.5 mg/

kg) i.p. The core temperature was maintained constant at 37°C

using a heat blanket (Hugo Sachs Elektronik–Harvard Apparatus).

For stimulus generation, presentation, and data acquisition, we used

the TDT II system run by BioSig software (Tucker Davis Technolo-

gies) (MathWorks). Tone bursts (4/6/8/12/16/24/32 kHz, 10 ms

plateau, 1 ms cos2 rise/fall) or clicks of 0.03 ms were presented at

40 Hz (tone bursts) or 20 Hz (clicks) in the free field ipsilaterally

using a JBL 2402 speaker. The difference potential between vertex

and mastoid subdermal needles was amplified 50,000 times, filtered

(400–4,000 Hz), and sampled at a rate of 50 kHz for 20 ms, 1,300

times, to obtain two mean ABR traces for each sound intensity.

Purification of recombinant endophilin-A1

Plasmid pGEX6P-endopilin-A1 (rat) was a kind gift of Prof. P. De

Camilli (Yale University, New Haven CT, USA). After an overnight

ª 2019 The Authors The EMBO Journal e100116 | 2019 17 of 22

Jana Kroll et al Endophilins modulate hair cell synapses The EMBO Journal



expression (16°C for ~9 h), in E. coli BL21(DE3) (Sigma) the protein

was purified on a GST-glutathione affinity column (GE Healthcare,

Piscataway, NJ). The GST-tag was cleaved using PreScission

protease (GE Healthcare, Piscataway, NJ), and the sample was then

subjected to gel filtration chromatography (Superdex 200 10/300

GL; Amersham Pharmacia Biosciences, Piscataway, NJ) in 20 mM

Tris (pH 7.4), 300 mM KCl, 5 mM imidazole, 1 mM DTT. The

protein concentration was determined (14.5 mg/ml), and aliquots

of the purified protein were stored at �80°C until being used as

detailed below.

Immunoprecipitation experiments

The immunoprecipitation experiments were performed as described

in Murdoch et al (2016). Briefly, HeLa cells (ATCC� CCL-2;

1.5 × 106) were plated in a Ø10-cm plate and transfected with

pmRFP-endophilin-A1 (a gift of P. De Camilli, Yale University, New

Haven, CT, USA) and pEGFP-otoferlin (gift of T. Weber, University

Medical Center Göttingen), or pEGFP-N1 (Clontech) for control,

using Fugene (Invitrogen) 3 h after plating (the total DNA amount

was 8 lg/plate). On average, 75–80% of HeLa cells were trans-

fected. Cells were harvested 72 h after transfection and lysed in

10 mM Tris/Cl (pH 7.5), 150 mM NaCl, 0.5 mM EDTA, 0.5% NP-

40. The lysates were then incubated for 2 h at 4°C with ChromoTek

Trap�-GFP agarose beads (ChromoTek, Germany) following manu-

facturer’s protocol (GFP-Trap�_A for immunoprecipitation of GFP-

fusion proteins from mammalian cell extract). After binding, protein

GST-Trap_A beads were resuspended in ice-cold dilution buffer and

centrifuged. The washing step was repeated twice according to the

standard protocol. Fractions (input = cell lysate; bound = beads

with bound proteins, non-bound = supernatant) were loaded onto

SDS–PAGE gel followed by an immunoblot analysis against endo-

philin-A1 (Endo A1 antibody, L-18, Santa Cruz, USA), RFP (5F8;

ChromoTek, Germany), using standard procedure and Odyssey�

imaging system (LI-COR, Lincoln, NE, USA). Three independent

experiments were performed.

To check whether otoferlin binds directly to endophilin, HeLa

cells (ATCC� CCL-2; 1.2x106) were plated in a Ø10-cm plate and

transfected with pEGFP or pEGFP-otoferlin (7 lg/plate in total)

using Fugene (Invitrogen). 75–80% of HeLa cells were transfected

on average. Cells were harvested 72 h after transfection and lysed in

10 mM Tris/Cl (pH 7.5), 150 mM NaCl, 0.5 mM EDTA, 0.5% NP-40.

EGFP or otoferlin-EGFP was then bound to Trap�-GFP agarose beads

(ChromoTek) following manufacturer’s instructions, and the beads

were incubated with 50 lg of purified endophilin-A1 protein for 2 h

at 4°C. After centrifugation (2,500 g, 2 min, 4°C), two fractions were

obtained: beads with bound proteins (bound) and supernatant (non-

bound). In addition to cell lysates (input), these fractions were

loaded onto SDS–PAGE gel followed by an immunoblot analysis

against endophilin-A1 (EndoA1 antibody L-18, Santa Cruz, USA)

using standard procedure and Odyssey� imaging system (LI-COR,

Lincoln, NE, USA). Two independent experiments were made.

Data analysis

Immunohistochemistry

IHC synaptic ribbons were manually counted in confocal z-projec-

tions of immunolabeled organs of Corti using ImageJ software.

Analysis of CaV1.3 STED imaging data was performed in Igor Pro

6.3 software (Wavemetrics). The area of spot- and line-shaped Ca2+

channel clusters was estimated by fitting a 2D Gaussian function

(genetic fit algorithm; Sanchez del Rio & Pareschi, 2001) to the indi-

vidual clusters in 2D STED images to obtain the full width at half

maximum (FWHM) of the long and short axes. Subsequently, areas

of the clusters were calculated by the following formula:

area = p × (long axis/2) × (short axis/2). Otoferlin levels of IHCs

were semi-quantitatively assessed as immunofluorescence intensity

values and analyzed using Imaris (Bitplane) and MATLAB (Math-

Works) as described before (Strenzke et al, 2016). Otoferlin inten-

sity line scans along the longitudinal axis of IHCs were generated

from single sections using ImageJ; Igor Pro 6.3 software was used to

generate average intensity profiles after normalizing the intensity

profiles of the individual cells to their lengths.

Patch-clamp electrophysiology

Electrophysiological data were analyzed using custom-written

programs in Igor Pro 6.3. For analysis of IV curves, the last 5 ms of

the evoked Ca2+ current was averaged. For measurements of

exocytosis, total Ca2+ charge (QCa) was estimated by taking the

integral of the leak-subtracted current during the depolarization

step and the exocytic increment in capacitance (DCm) was quanti-

fied as the difference in the averaged Cm 400 ms before and after

(skipping the first 60 or 100 ms) the depolarization. Mean estimates

of individual IHCs were calculated from two to four rounds of

exocytosis, and were used to calculate grand averages of IHCs per

genotype. This avoided dominance of IHCs contributing more

sweeps. Only IHCs with reproducible DCm among the individual

rounds were included.

Endocytosis was assessed as described previously (Neef et al,

2014). IHCs showed a slow depolarization-independent decrease in

Cm during the perforated patch-clamp recording. To correct for this,

we used two independent methods: (i) by fitting and subtracting an

exponential function to the baseline Cm as recorded during the

entire experiment (Fig EV4A, C and C0) or (ii) by fitting and

subtracting a linear function to the last 10 s of a non-depolarizing

pulse recorded before the actual trace (Fig EV4D and D0). The

results obtained using both methods were comparable (Fig EV4C″

and D″). We favor the first method, which seems to perform a better

correction, evident from the least divergence of the recorded traces

for each individual IHC (for an example, see Fig EV4C).

The endocytic decline in Cm following a depolarization-induced

exocytic DCm was measured over 20 s following a 2-s-long recording

of Cm baseline and 20 or 200 ms of depolarization. After correction,

we determined the residual slope of the 2 s preceding the depolar-

ization (residual pre-slope) and excluded those IHCs where the

residual pre-slope exceeded the average � 2 times the standard

deviation for each genotype (for 20 ms, one cell was excluded for

each genotype; for 200 ms, one cell was excluded for the Wt and for

the 1/3-DKO). Even though the residual pre-slope exhibits a nega-

tive trend (for 20 ms: �0.51 � 0.24 fF/s for Wt, �0.20 � 0.28 fF/s

for 1/2-DKO, and �0.62 � 0.22 fF/s for 1/3-DKO; for 200 ms:

�0.27 � 0.37 fF/s for Wt, �0.28 � 0.23 fF/s for 1/2-DKO, and

0.036 � 0.22 fF/s for 1/3-DKO), it is not statistically different

between the genotypes (for 20 ms: one-way ANOVA, F(2, 35) =

0.80, P = 0.4507; for 200 ms: one-way ANOVA, F(2, 36) = 0.45,

P = 0.6391).
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Analysis of the linear component of endocytosis following brief

depolarizations (20 ms) was performed by fitting a linear function

to the post-depolarization Cm data, skipping the first 200 ms, and

noting the point at which the line fit or its extrapolation in time

returned to baseline Cm. Responses in which Cm did not return to

baseline within 80 s were excluded from this analysis. The number

of IHCs where Cm did not return to baseline was low for all geno-

types: Wt (3 out of 17 recorded IHCs), 1/2-DKO (0 cells out of 14),

and 1/3-DKO (3 cells out of 17), but many IHCs regardless of geno-

type showed at least one trace without Cm return within 80 s.

We analyzed the exponential component of Cm decline following

200-ms-long depolarization by fitting a linear function to the final

10 s of Cm data and subtracting the extrapolated fit. The residual

was then fitted with an exponential function using a genetic curve

fitting algorithm (Sanchez del Rio & Pareschi, 2001). In few cases,

the fitting window for the linear component was slightly adjusted to

exclude Cm artifacts. For some cells, the Cm decline did not exhibit

an exponential component (1 out of 12 IHCs for Wt, 3 out of 13 for

1/2-DKO, and 3 out of 14 for 1/3-DKO). Therefore, they were

excluded from the statistical analysis of the amplitude or time

constant of the exponential component; yet, they are still included

for the slope of the linear component for 200 ms.

Auditory brainstem recordings

Recordings were performed as described (Jing et al, 2013). In brief,

hearing threshold was determined with 10 dB precision as the

lowest stimulus intensity that evoked a reproducible response wave-

form in both traces by visual inspection.

Transmission electron microscopy (TEM)

Quantification of electron microscopy data was performed with

ImageJ for random sections, and with IMOD software for tomo-

grams. In random sections, the ribbon proximity (Fig 7) was defined

as area around the ribbon in 1 lm distance from the center of the

synaptic ribbon. For each section, the exact area of the intracellular

cytoplasm was measured, whereby the area of mitochondria was

excluded. Numbers of small, clear vesicles (max. diameter 70 nm

between outer leaflets of the vesicle membrane; Figs 7B and 9D)—

except of the vesicles in the first row around the ribbon—were

counted and divided by the respective area. For quantification of

endosome-like vacuoles (ELVs), the area of all ELVs per section was

cumulated and divided by the cytoplasmic area (Figs 7C and 9E).

For coated structures, the following subgroups were defined: (i)

coated vesicles with a maximum outer diameter of 70 nm; (ii)

coated vacuoles with an outer diameter of more than 70 nm as well

as tubular structures fully covered by a coat; (iii) coated pits

containing a connection to the plasma membrane; and (iv) coated

pits on otherwise uncoated ELVs. For quantification of SVs around

the ribbon, the following analysis criteria were used for random

sections: Ribbon height was measured from the top of the ribbon to

the bottom excluding the presynaptic density; the distal half of the

ribbon was defined as the upper 50% of the total ribbon length. SVs

were allocated to the distal or proximal halves of the ribbon if more

than 50% of the SV area were located in the respective region

(Fig 8C0). Moreover, two distinct SV pools were defined: (i) The

ribbon-associated pool contained all SVs in the first row around the

ribbon with a maximum distance of 80 nm (RA-SVs, Figs 8C and

9B) and (ii) the membrane-proximal SV pool (MP-SVs), which was

formed by SVs in the first layer above the AZ membrane within a

maximum distance of < 25 nm to the plasma membrane and a

maximum lateral distance of < 100 nm to the presynaptic density

(Figs 8D and 9C).

Electron tomography

For quantification of tomograms, the definition of MP-SVs was

adjusted to include all SVs with a maximal distance of 50 nm to the

AZ membrane that were no more than 100 nm apart from the presy-

naptic density (all criteria being valid at the maximum projection of

the respective SV in the tomogram, no changes to RA-SV definition).

This adjustment was made not only to guarantee for comparability

with other recent ultrastructural studies of SV pools at ribbon

synapses, but also because the high z-resolution of virtual sections

from tomograms facilitates the identification of tethers (also includ-

ing lengths > 25 nm) linking MP-SVs to the presynaptic density and

to the AZ membrane. Since 65-nm random sections do not provide

visualization of tethers, we chose a stricter criterion of 25 nm maxi-

mal distance to avoid over-interpretation of the MP-SV pool. Never-

theless, we re-quantified all tomography data also with the criteria

used for random sections resulting in overall unchanged significance

values. For quantification of ELVs, the minimal distance between

ELV and ribbon was measured; only ELVs within a distance of

200 nm were included. All distances for random sections and for

tomograms were measured between the outer membrane of SVs and

the respective structure.

Experimental design and statistical analysis

Sample sizes were chosen according to typical observation numbers

used on each respective field (e.g., immunohistochemistry, cellular

or systems electrophysiology, electron microscopy), and can be

found both in the respective figures and in the corresponding figure

legends. Data were analyzed using MATLAB (MathWorks), Excel

(Microsoft), Igor Pro 6 (Wavemetrics), Origin 9.0 (Microcal soft-

ware), and GraphPad Prism (GraphPad software). Averages are

expressed as mean � SEM or mean � SD, as specified. Data sets

were tested for normal distribution (Jarque–Bera test, D’Agostino

and Pearson omnibus normality test, or the Shapiro–Wilk test) and

equality of variances. Statistical significance was calculated using

one-way ANOVA test followed by Tukey’s test for normally distrib-

uted data, or Kruskal–Wallis (K–W) test followed by post hoc

Dunn’s test for non-normally distributed data. Significant dif-

ferences are reported as *P < 0.05, **P < 0.01, and ***P < 0.001.

Box plots are drawn from 25 to 75%, whiskers indicate 10–90% of

data points, and squares show the averages. For the endocytosis

data (Fig 6), the ROUT method from GraphPad Prism was used to

identify outliers (Q = 1%).

Expanded View for this article is available online.
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Figure EV1. Ca2+ inactivation remains unaffected in endophilin-
deficient IHCs after hearing onset.

A Ca2+ current inactivation was probed by test pulses of 200 ms to the Imax

potential. No inactivation phenotype was present in endophilin-deficient
IHCs. Data represent grand averages � SEM.

B Quantification and statistical analysis of the residual current at the end of
the test pulse. (Wt n = 18; 1-SKO n = 9; 1/2-DKO n = 7; 1/3-DKO n = 22;
one-way ANOVA; box plots illustrate the median with the interquartile
range, whiskers indicate 10–90% of data points, and the squares present
the respective mean value).
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Figure EV2. Normal auditory brainstem responses (ABRs) in 1-SKO and 1/
3-DKO mice.

A Sound thresholds of ABRs of 6-week-old 1-SKO, 1/3-DKO, and Wt mice.
Thresholds are displayed versus tone frequency or click (broadband). Error
bars indicate the SEM. For (A) and (B), the following numbers of animals
were tested: Wt N = 8; 1-SKO N = 9; 1/3-DKO N = 18.

B ABR waveforms elicited by 80 dB clicks in mice of the respective genotypes.
Roman numbers indicate the peaks of Jewett Waves I-IV. Data represent
grand averages (� SEM) of the ABRs, whereby each animal contributed the
average of 1,000 responses to the click. One-way ANOVA followed by post
hoc Tukey’s test; *P = 0.0134.
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unaltered in the absence of endophilins.

A Confocal maximum projections of myo6-
immunolabeled organs of Corti from p16 Wt and
1/3-DKO mice illustrated with an intensity-coded
lookup table. Scale bars: 5 lm.

B Myo6 levels were unaltered in 1/3-DKO IHCs
compared to Wt IHCs (relative intensities
normalized to Wt; mean � SEM; Wt n = 6
images (45 IHCs)/N = 6 organs of Corti (three
animals); 1/3-DKO n = 6 images (43 IHCs)/N = 6
organs of Corti (three animals); unpaired
Student’s t-test; box plots illustrate the median
with the interquartile range, whiskers indicate
10–90% of data points, and the squares present
the respective mean value).

◀ Figure EV4. Methods to correct for the depolarization-independent decrease of Cm in endocytosis measurements.

A Representative example of the slow depolarization-independent decrease of baseline Cm (circles) during a perforated patch-clamp recording of one Wt IHC. This
decline can be fitted by an exponential function (black trace).

B Uncorrected 20-ms depolarization traces recorded from one Wt IHC. Traces are color-coded based on the order of acquisition, corresponding to the color-
matching circles in panel (A).

C Method 1 to correct for the stimulus-independent decrease in baseline Cm: The fitted exponential function from panel (A) was subtracted from the individual raw
traces. The average trace is shown in black.

C0–C‴ Results obtained after performing the correction method 1 and fitting a linear function to the Cm data following a 20-ms depolarization: (C0) average ΔCm
recordings (� SEM) for Wt, 1/2-DKO, and 1/3-DKO IHCs, (C″) average time of return to baseline, and (C‴) average slope of the linear component of endocytosis.
*P < 0.05; one-way ANOVA with post hoc Tukey’s test. Please also refer to Appendix Table S8 for detailed statistical analysis.

D Method 2 to correct for the stimulus-independent decrease of baseline Cm: A linear function was fitted to the last 10 s of a non-depolarizing pulse recorded
before the actual trace. The fit was subtracted from each corresponding raw trace. The average trace is shown in black.

D0–D‴ Results obtained after performing the correction method 2 and fitting a linear function to the Cm data following a 20-ms depolarization: (D0) average ΔCm
recordings (� SEM) for Wt, 1/2-DKO, and 1/3-DKO IHCs, (D″) average time of return to baseline, and (D‴) average slope of the linear component of endocytosis.
*P < 0.05; one-way ANOVA with post hoc Tukey’s test: P = 0.0206 for Wt versus 1/2-DKO and P = 0.0274 for Wt versus 1/3-DKO.

Data information: Box plots in panels (C″–D‴) illustrate the median with the interquartile range, whiskers indicate 10–90% of data points, and the squares present the
respective mean value.
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MY CONTRIBUTIONS TO THE MANUSCRIPT:  

 MY CONTRIBUTIONS 

FIG. 3-1 o Immunohistochemical staining (AP180, CtBP2, Otoferlin, Synapsin1/2) and 

confocal microscopy 

o Panel Bii: Intensity profile line scan analysis using ImageJ software  

o Figure design 

FIG. 3-2 o Immunohistochemical staining of otoferlin and AP180 after K+ stimulation 

and confocal microscopy 

o Panel C-Cii: Intensity profile line scan analysis using ImageJ software, statistics 

o Panel D-Di: High-intensity cluster analysis using ImageJ software, statistics 

o Figure design 

FIG. 3-3 o Immunohistochemical staining (Otoferlin + Vglut3, CtBP2 + Homer1) and 

confocal microscopy 

o Panels Ai and Bi: Otoferlin and Vglut3 fluorescence intensity analysis using 

Imaris and Matlab (as described for otoferlin in the endophilin study), 

statistics 

o Panel Ci: Manual quantification of ribbon synapses using imageJ software 

o Figure design  

FIG. 3-4 o Sample preparation including HPF, freeze substitution, sectioning and 

staining 

o Electron tomography, reconstruction of tomograms, analysis using IMOD 

software, statistics  

o Figure design 

 o Sample preparation (with K+ stimulation), electron tomography, analysis and 

statistics like for Fig. 3-4 

FIG. 3-6 Figure design 

MANUSCRIPT Writing of the here presented manuscript draft (edited by T.M. and C.W.) 
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3.2 MANUSCRIPT 

3.2.1 ABSTRACT 

High-throughput neurotransmission at ribbon synapses of cochlear inner hair cells (IHCs) requires 

tight coupling of neurotransmitter release and balanced recycling of synaptic vesicles (SVs) as well 

as rapid restoration of release sites. Here, we examined the role of the adaptor protein AP180 (also 

known as SNAP91) for IHC synaptic transmission by comparing AP180-knockout (KO) and 

wildtype mice using high-pressure freezing and electron tomography, as well as confocal microscopy. 

AP180 was found predominantly at the synaptic pole of IHCs. AP180-deficient IHCs had severely 

reduced SV numbers and accumulated endocytic intermediates near ribbon synapses, indicating that 

AP180 is required for clathrin-dependent endocytosis and SV reformation in IHCs. Moreover, 

AP180 deletion led to a high prevalence of SVs in a multi-tethered or docked state after stimulation. 

We conclude that, in addition to its role in clathrin recruitment, AP180 contributes to release site 

clearance in IHCs. 
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3.2.2 INTRODUCTION 

Ribbon synapses of inner hair cells (IHCs) of the cochlea with spiral ganglion neurons feature one of 

the highest rates of continuous neurotransmitter release in the mammalian body in order to 

indefatigably encode sound (  et al., 2012). Hence, hearing requires on the one hand the very 

fast exocytosis of neurotransmitter-containing SVs and on the other hand a highly efficient 

endocytosis and reformation of fusion-competent synaptic vesicles (SVs) to balance the massive SV 

exocytosis. The specialized structure of the IHC active zone (AZ) - notably the electron-dense ribbon 

that is made of RIBEYE (an isoform of CtBP2, herein denoted RIBEYE/CtBP2) and tethers a halo of 

SVs (Becker et al., 2018; Jean et al., 2018; Khimich et al., 2005; Schmitz et al., 2000) - and a unique 

protein composition of release machinery and AZ cytomatrix are thought to accomplish these tasks 

(reviewed in: Moser et al., 2019; Rutherford and Moser, 2016; Safieddine et al., 2012; Wichmann and 

Moser, 2015). Interestingly, IHC exocytosis seems to operate without the neuronal soluble N-

ethylmaleimide-sensitive-factor attachment receptor (SNARE) proteins SNAP25, syntaxin-1 and 

VAMP2 (Nouvian et al., 2011). Instead, the multi-C2 domain protein otoferlin, loss of which causes 

human genetic deafness (Yasunaga et al., 1999), serves as a key molecule in IHC exocytosis. After the 

onset of hearing in mice, otoferlin is thought to be the Ca2+-sensor of exocytosis in IHCs, and also to 

mediate efficient SV replenishment, possibly by advancing SV tethering and release site clearance 

(Chakrabarti et al., 2018; Duncker et al., 2013; Johnson and Chapman, 2010; Jung et al., 2015b; Kroll 

et al., 2019; Michalski et al., 2017;  et al., 2010; Roux et al., 2006; Strenzke et al., 2016; Vogl 

et al., 2015, 2016). Clearance of previously exocytosed proteins and lipids from the release sites is 

considered a critical step in preparing the next round of SV exocytosis (Haucke et al., 2011; Neher 

and Sakaba, 2008). is likely achieved through binding to 

the adaptor protein 2 (AP-2) (Duncker et al., 2013; Jung et al., 2015b) and/or endophilin A1 (Kroll 

et al., 2019). Like in neurons (Kononenko et al., 2014), absence of AP-2 from IHCs compromises the 

clathrin-dependent reformation of SVs from endosome-like vacuoles (ELVs), but, surprisingly, does 

not significantly impair endocytic membrane retrieval (Jung et al., 2015b).  

Endocytic membrane retrieval in IHCs comprises a slow, linear component that likely reflects 

clathrin-mediated endocytosis (CME), and a fast, exponential component thought to represent bulk 

retrieval (Moser and Beutner, 2000; Neef et al., 2014). Morphological evidence for CME and bulk 

retrieval in hair cells has been reported previously (e.g., Jung et al., 2015b; Lenzi et al., 2002; Neef et 

al., 2014; Siegel and Brownell, 1986). Molecular entities identified to mediate SV recycling in hair 

https://de.wikipedia.org/wiki/N-Ethylmaleinimid
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cells include dynamins, endophilin-As, clathrin and synaptojanin-1 (Boumil et al., 2010; Jung et al., 

2015b; Kroll et al., 2019; Neef et al., 2014; Trapani et al., 2009). Their disruption primarily affected 

the slow component of IHC membrane retrieval, i.e. CME. So far, little is known about whether the 

molecular regulation of bulk retrieval at hair cell synapses is similar to that described for other 

synapses and neuroendocrine cells (for review see, e.g. Cousin, 2017; Wu et al., 2014) 

A further dissection of the molecular physiology of IHC SV recycling is key to comprehending 

indefatigable sound encoding. In this context, the neuronal endocytic adaptor protein AP180 is an 

interesting candidate protein. Through binding of clathrin, AP-2 and the phospholipid 

phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2], AP180 was shown to be involved in the early steps 

of clathrin-coated pit (CCP) formation in neurons (Ford et al., 2001; Hao et al., 1999; Lindner and 

Ungewickell, 1992; Morris et al., 1993; Moshkanbaryans et al., 2016). In AP180 knock-out (AP180-

KO) mice, accumulations of ELVs and lower numbers of clathrin-coated structures have been 

observed, underlining the importance of AP180 for CME as well as for clathrin-dependent SV 

reformation from ELVs (Koo et al., 2015). Through its AP180 N-terminal homology (ANTH) 

domain, AP180 binds to the SNARE domain of VAMP2 and other members of the VAMP family 

(Koo et al., 2011; Maritzen et al., 2012). This way, AP180, as well as its ubiquitously expressed 

homolog CALM, organize the recycling of VAMP2 from the plasma membrane after SNARE 

complex disassembly following SV fusion and, thereby, contribute to the clearance of release sites in 

neurons (Koo et al., 2011, 2015; Maritzen et al., 2012; Miller et al., 2011). AP180-dependent clearance 

of release sites seems to be of greater importance in inhibitory neurons that show higher rates of 

transmitter release than excitatory neurons (Koo et al., 2015). However, the relevance of AP180 for 

high-throughput synaptic transmission of sensory ribbon synapses is unclear, especially at IHCs, 

which seem to operate without the AP180 cargo protein VAMP2 (Nouvian et al., 2011).  

Here, we studied the role of AP180 at murine IHC ribbon synapses by combining confocal 

microscopy, chemical depolarization of IHCs, high-pressure freezing and electron tomography. We 

discovered that AP180 has a role in release site clearance, clathrin assembly for CME, as well as SV 

reformation following bulk retrieval in IHCs.  
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3.2.3 METHODS 

ANIMALS 

Constitutive knockout mice for AP180 as well as their wildtype littermates, previously described in 

(Koo et al., 2015) were used in this study. For all experiments, mice of either sex were examined 

shortly after the onset of hearing (P15-P16). For the analysis of AP180 localization and distribution, 

C57BL6/J mice were used. All experiments complied with national animal care guidelines and were 

approved by the University Medical Center Göttingen board for animal welfare and the animal 

welfare office of the state of Lower Saxony.  

IMMUNOHISTOCHEMISTRY AND CONFOCAL MICROSCOPY 

Freshly dissected apical turns of organs of Corti from two-weeks old mice were (i) chemically 

stimulated for 1 min using high-K+ stimulation solution (65.36 mM KCl, 79.7 mM NaCl, 2 mM 

CaCl2, 1 mM MgCl2, 0.5 mM MgSO4, 10 mM HEPES, 3.4 mM L-glutamine, and 6.9 mM D-glucose, 

pH 7.4) or incubated in a high Ca2+, low K+ solution for control (5.36 mM KCl, 139.7 mM NaCl, 2 

mM CaCl2, 1 mM MgCl2, 0.5 mM MgSO4, 10 mM HEPES, 3.4 mM L-glutamine, and 6.9 mM 

D-glucose, pH 7.4; also see (Revelo et al., 2014) at room temperature followed by fixation using 4% 

formaldehyde (FA) in phosphate buffered saline (PBS) on ice, or (ii) were directly fixed with 4% FA 

in PBS for 10 min (for RIBEYE/CtBP2 and Homer1) or for 60 min (for otoferlin, Vglut3 and AP180) 

on ice. After 3x10 min washing in PBS, blocking solution (goat serum dilution buffer (GSDB); 16% 

normal goat serum, 450 mM NaCl, 0.3% Triton X-100, 20 mM phosphate buffer, pH 7.4) was applied 

for 1 h in a wet chamber at room temperature. Primary antibodies were diluted in GSDB and applied 

overnight at 4°C in a wet chamber. After three 10 min washes (wash buffer: 450 mM NaCl, 20 mM 

phosphate buffer, 0.3% Triton X-100), secondary antibodies diluted in GSDB were applied in a light-

protected wet chamber for 1 h at room temperature. Then, the specimens were washed three times 

in wash buffer and finally in 5 mM phosphate buffer and mounted onto glass microscope slides with 

mounting medium (Mowiol 4-88, Sigma). The following primary antibodies were used: rabbit anti-

AP180 (1:300, Synaptic Systems, cat. No. 155 003), mouse anti-CtBP2 (also recognizing the ribbon 

protein ribeye, 1:200, BD Biosciences, cat. No. 612044), mouse anti-otoferlin (1:300, Abcam, cat. No. 

ab53233), rabbit anti-Vglut3 (1:300, Synaptic Systems, cat. No. 135 203), rabbit anti-Homer1 (1:200, 

Synaptic Systems, cat. No. 160 002) and guinea pig anti-synapsin1/2 (Synaptic Systems, cat. No. 106 
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002). The secondary antibodies used for confocal microscopy were goat anti-rabbit-IgG conjugated 

to AlexaFluor488 (1:200, Invitrogen, cat. No. A 11008), goat anti-mouse-IgG conjugated to 

AlexaFluor568 (1:200, Invitrogen, cat. No. A 11004), goat anti-mouse-IgG conjugated to 

AlexaFluor633 (1:200, Invitrogen, cat. No. A 21136), and goat anti-guinea pig-IgG conjugated to 

AlexaFluor568 (1:200, Invitrogen, cat. No.  A 11075). Confocal images were acquired using a laser 

scanning confocal microscope (Zeiss LSM800, Carl Zeiss AG, Oberkochen, Germany) with 488 nm 

(Ar) and 561 nm (He-Ne) lasers for excitation and 1.4 NA 63x oil immersion objectives. Z-axis stacks 

of 2D images were generated with a step size of 0.6 µm from comparable tonotopic regions. Images 

were processed using ImageJ (http://imagej.net/) and assembled for display in Adobe Illustrator 

software. For semiquantitative analysis of immunofluorescence, samples of AP180-KO and control/ 

unstimulated and stimulated probes were processed identically and in parallel throughout 

immunohistochemistry, confocal imaging, and analysis. 

HIGH-PRESSURE FREEZING AND FREEZE SUBSTITUTION 

HPF and FS were essentially performed as described previously (Chakrabarti et al., 2018; Jung et al., 

2015a; Wong et al., 2014). Briefly, for HPF, the apical cochlear turns from P15-P16 Wt and AP180-

KO mice were dissected in Ca2+-free Hanks' balanced salt solution (HBSS) and carefully placed on 

aluminium specimen carriers in the 0.2 mm cavity (type A, 0.1 mm and 0.2 mm cavity, Leica 

Microsystems, Wetzlar, Germany) filled with HBSS solution. A second specimen carrier (0.3 mm 

cavity, type B, Leica Microsystems) was dipped in hexadecene and placed onto the first specimen 

carrier with the cavity upwards. An EM HPM100 (Leica Microsystems) high-pressure freezer was 

used for sample freezing. Immediately afterwards, samples were transferred into liquid nitrogen and 

stored until freeze substitution was performed. For stimulation, organs of Corti were dissected in 

Ca2+-free HBSS solution and transferred into stimulation solution (identical with the solution used 

for immunohistochemistry experiments). Within the stimulation solution, samples were placed on 

specimen carriers and frozen exactly 5 min after the transfer.  

Freeze substitution was performed with an EM AFS2 (Leica Microsystems) freeze substitution device. 

Organs of Corti were transferred into the AFS2 precooled to -90°C. After 4 d incubation in 0.1% 

tannic acid in acetone, samples were washed three times for 1 h each time in acetone before 2% (w/v) 

osmium tetroxide in acetone was applied at -90°C. The temperature was increased from -90°C 

to -20°C (5°C/h), maintained at -20°C for 17 h and was further increased from -20°C to +4°C 
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(10°C/h). Osmium tetroxide was removed at 4°C and samples were washed three times for 1 h each 

time with acetone. Subsequently, samples were slowly warmed to room temperature. Finally, organs 

of Corti were infiltrated with Epon resin (acetone/Epon 1:1 (v/v) for 2h, 100% Epon overnight), 

placed into embedding molds and polymerized for 48 h at 70°C. 

ELECTRON TOMOGRAPHY 

Electron tomography of ribbon synapses was performed as described previously (Jung et al., 2015b; 

Strenzke et al., 2016). 250 nm sections of the embedded samples were obtained approaching from the 

anterior edge using an ultramicrotome (UC6, Leica Microsystems, Wetzlar, Germany) with a 35° 

diamond knife (Diatome, Nidau, Switzerland) and applied to formvar-coated copper 75-mesh grids. 

Sections were post-stained with uranyl acetate replacement (Science services, Munich, Germany) for 

40 min and lead citrate for 1 min following standard protocols. To both sides of the grids, 10 nm gold 

beads (British Bio Cell, Crumlin, UK) were applied as fiducial markers. Using Serial-EM software, 

single tilt series from -60° to +60° (increment 1°) were acquired with a JEM2100 (JEOL, Freising, 

Germany) electron microscope at 200 kV and 10,000x magnification. For tomogram generation, the 

IMOD package etomo was used, models were generated with 3dmod (bio3d.colorado.edu/imod/). 

DATA ANALYSIS 

Immunohistochemistry. The intensities of AP180, otoferlin and synapsin1/2 fluorescence signals 

along the longitudinal axis of IHCs (Fig. 3-1) were measured via line profiles using ImageJ software. 

Igor Pro 6.3 software was used to generate average intensity profiles. The distribution of AP180 in 

the cytosol and in membrane proximity was assessed from intensity line scans reaching from the 

basal plasma membrane towards the cytosol along the longitudinal axis of IHCs (Fig. 3-2C-Cii) and 

from a high-intensity fluorescence cluster analysis (Fig. 3-2D-Di): Using ImageJ software, middle 

planes of IHCs were selected and cell borders were defined via otoferlin co-staining. In the otoferlin 

channel, lines from the cell membrane towards the nucleus were drawn and fluorescence intensity 

was measured in the AP180 channel (pixel intensity values ranging from 0 to 255) to avoid bias. Igor 

Pro 6.3 software was used to generate average intensity profiles of the individual cells. Separated 

clusters of high AP180 immunofluorescence intensity were defined by application of an intensity 

threshold (the threshold was adjusted once for clusters in a stimulated example image and then used 

for all images) using ImageJ software. Within each IHC (as defined by otoferlin co-staining), the 
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Only clusters with a size of  0.04 µm² were included because of the resolution limit of 

confocal microscopy (approx. 200-250 nm for the here used fluorophores). IHC ribbon synapses 

were manually counted in z-projections of confocal sections from RIBEYE/CtBP2 and Homer1 

immunolabeled organs of Corti using ImageJ software. Otoferlin and Vglut3 levels of IHCs were 

semi-quantitatively assessed as immunofluorescence intensity values and analyzed using Imaris 

(Bitplane) and Matlab (Mathworks), as described previously (Strenzke et al., 2016). Intensities of each 

cell are normalized to the average intensity of the Wt group for otoferlin or for Vglut3. 

Electron tomography. Only tomograms with a single ribbon synapse clearly anchored to the AZ were 

selected for quantification using the IMOD package 3dmod (bio3d.colorado.edu/imod/) and as 

described previously (Chakrabarti et al., 2018; Kroll et al., 2019). Small, clear vesicles were classified 

as synaptic vesicles (SVs) if they appeared round and if their outer diameter (defined by fitting a circle 

to the borders at the maximum projection of the respective SV) was smaller than 70 nm. SVs were 

categorized as belonging to one of three groups: (i) ribbon-associated SVs (RA-SVs), if they were 

located in the first row around the synaptic ribbon and with a max. distance of 80 nm from the ribbon, 

(ii) membrane-proximal SVs (MP-SVs) if the distance between SV and plasma membrane was less 

than 50 nm and if the distance between SV and presynaptic density was less than 100 nm, and (iii) 

cytosolic SVs if the distance between SV and ribbon was less than 500 nm thereby excluding RA-SVs 

and MP-SVs (all criteria being valid at maximum projection of the respective SV). MP-SVs were 

further subdivided into four groups depending on their connection to the AZ plasma membrane as 

described in a previous study (Chakrabarti et al., 2018): SVs were counted as docked, if the distance 

between SV outer membrane and AZ membrane was 0-2 nm. Single-tethered SVs were defined as all 

SVs with only one tether reaching from the SV to the AZ membrane. Multi-tethered SVs were defined 

as all SVs with more than one tether from the SV to the AZ membrane. SVs were categorized as 

untethered if no filament was observed between SV and plasma membrane (thereby ignoring possible 

filamentous connections between SVs, as well as between SVs and presynaptic density or between 

SV and ribbon). Furthermore, all structures containing a clathrin-coat were counted as coated 

structures if the minimal distance between organelle and ribbon was less than 500 nm. This 

quantification includes structures with a coat around the entire clathrin-coated SV (independent of 

its size), coated pits budding from the plasma membrane, and endosome-like vacuoles (ELVs) with 

at least one budding coated pit (in this case, the ELV with pit was only counted once and not included 



Chapter Two   |   Manuscript 

 

80 

 

in the additional ELV quantification). All membranous organelles were defined as ELVs and counted, 

if their max. diameter was larger than 70 nm and/or if they were tubular, and if the minimal distance 

between ELV and ribbon was less than 500 nm. The volume of each ELV was assessed from a 

modelled mesh calculated from contours drawn in every virtual section of the ELV in 3dmod.  

Statistical analysis. Sample sizes were chosen according to typical observation numbers used on each 

respective field and can be found in the respective figures and/or corresponding figure legends. For 

quantification, the following software was used: Matlab (Mathworks), Excel (Microsoft), Igor Pro 6 

(Wavemetrics), Origin 9.0 (Microcal Software) and GraphPad Prism (GraphPad Software). Averages 

are expressed as mean ± SEM, boxes in box plots show the 25-75quartiles with the median, whiskers 

extend from the 10th-90th percentile; the mean is indicated by a square or cross. Data sets were tested 

for normal distribution ( with GraphPad Prism 

software) and equality of variances (F-test). Statistical significance was calculated using unpaired, 

two-  t-test for normally distributed data, Mann-Whitney U test for non-normally 

distributed data and Kolmogorov Smirnov test to compare data distribution. For Fig. 3-5G, one-way 

ANOVA followed -hoc test was used to compare multiple groups. Significant 

differences are reported as *p<0.05, **p<0.01 and ***p<0.001. 

3.2.4 RESULTS 

AP180 IS PRESENT AT IHC SYNAPSES OF THE MURINE COCHLEA AND REDISTRIBUTES UPON STIMULATION 

First, we aimed to identify if the adaptor protein AP180 is present in the murine organ of Corti, and, 

more specifically, in IHCs. Therefore, we performed immunohistochemistry in apical cochlear turns 

(~2-12 kHz) of wildtype mice (Wt) acutely explanted after the onset of hearing, as well as of age-

matched AP180-KO mice (used as a control for antibody specificity). We immunostained for AP180 

in combination with markers for efferent synapses (synapsin1/2; note that IHCs do not contain 

synapsins 1 and 2), the synaptic ribbon (RIBEYE/CtBP2), and hair cells (otoferlin). 

Immunofluorescence (Fig. 3-1A left panel) revealed the presence of AP180 in IHCs and outer hair 

cells (OHCs), as well as in efferent synapses underneath the hair cells and possibly in spiral ganglion 

neurons (see their somata in the inset to Fig. 3-1A). A lack of AP180 staining in organs of Corti from 

AP180-KO mice confirmed the high specificity of the AP180 antibody (Fig. 3-2A).  
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Fig. 3-1: AP180 is present in the murine organ of Corti. (A) Maximum intensity z-projection of 

confocal sections of an apical cochlear turn (left) and higher magnification of IHCs and OHCs (right) from 

a P15 Wt animal immunolabeled for AP180, RIBEYE/CtBP2 (staining ribbons and nuclei) and synapsin 1/2 

(found in the nerve terminals of lateral olivocochlear efferents but not in IHCs). Scale bars: 200 m (left); 

50 µm (inset left); 10 m (right). The inset in (A) represents a magnification into the spiral ganglion area 

and shows AP180 immunofluorescence in the somata of spiral ganglion neurons. (B) Single confocal 

sections from a synaptic pole of an IHC (Wt, P15) using markers for AP180, otoferlin and synapsin 1/2. 

Scale bars: 5 µm. (Bi, Bii) Average fluorescence intensity line profiles through the longitudinal axis of 

seven IHCs from apical to basal. AP180 fluorescence is strongest in proximity to the IHC basal membrane, 

as indicated by yellow arrows (thereby overlapping with the otoferlin signal), but can also be detected 

in efferent nerve terminals (overlapping with the synapsin 1/2 signal) and potentially in the postsynaptic 

boutons of spiral ganglion neurons.  
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Higher magnifications of maximum intensity z-projections (Fig. 3-1A right panel) revealed that 

AP180 is most prevalent in the basal half of IHCs where the ribbon synapses are located 

. Single xy-sections through the synaptic pole of immunolabeled IHCs show an intracellular as 

well as plasma membrane distribution of AP180. Line profiles through the longitudinal axis of IHCs 

(Fig. 3-1Bii) revealed that the highest fluorescence intensity levels were at the IHC plasma membrane, 

followed by the IHC lumen and efferent presynaptic terminals. 

The distribution of AP180 immunofluorescence was altered upon high-K+ depolarization (65 mM 

for 1 min, Fig. 3-2B). Compared to the resting condition, the average intensity of AP180 fluorescence 

was significantly reduced in a distance of 2 µm from the plasma membrane (Fig. 3-2Cii; p = 0.0003, 

unpaired st -test) after high-K+ stimulation, whereas the staining near the membrane was 

preserved (Fig. 3-2Ci; p = 0.5468, -test). We further observed that high-intensity 

AP180 immunofluorescence clusters were already present in the proximity of the plasma membrane 

at the synaptic pole in the resting condition, but appeared even more intense after stimulation (Fig. 

3-2Bi). While the size of the clusters did not differ after 1 min of high-K+ stimulation compared to 

the resting condition (Fig. 3-2D; p = 0.105, Mann-Whitney U test), we found a higher mean intensity 

of AP180 immunofluorescence clusters after stimulation (Fig. 3-2Di; p < 0.0001, Mann-Whitney U 

test). These data indicate a stimulation-induced recruitment of AP180 to the plasma membrane, 

pointing towards a relevance of AP180 for IHC synaptic transmission.  

AP180 ABSENCE DOES NOT ALTER OTOFERLIN LEVELS BUT VGLUT3 FLUORESCENCE 

In IHCs of mice with a knockout of the AP-2 subunit AP-2µ (also known as AP2M1), otoferlin levels 

are known to be strongly reduced, with the reduction being less pronounced at the plasma 

membrane, suggesting impaired sorting of otoferlin (Jung et al., 2015b). Therefore, we tested by semi-

quantitative analysis of otoferlin immunofluorescence if deletion of AP180 likewise changes otoferlin 

levels and/or distribution (Fig. 3-3A and Ai). Yet, neither otoferlin distribution, nor total fluorescence 

intensity, were altered in IHCs of AP180-KO mice compared to Wt (p = 0.17, -

test). However, we noted that the immunofluorescence intensity of the vesicular glutamate 

transporter of IHCs, Vglut3 (also known as SLC17A8), was reduced by 17.1 ± 3.2% throughout the 

IHC in AP180-KO mice compared to Wt (Fig. 3-3B and Bi; p < 0.0001, unpaired -test). 

Notably, co-staining for RIBEYE/CtBP2 and Homer1 (a marker for the postsynaptic density; Fig. 3-

3C) indicated an unaltered ribbon anchorage to the AZ as well as a normal number of ribbon 
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synapses (Fig. 3-3Ci; ribbon synapses per IHC for Wt: 14.5 ± 0.4, for AP180-KO: 14.5 ± 0. 5 synapses 

per IHC; p = 0.96, -test) in AP180-KO mice. 

 

Fig. 3-2: Subcellular distribution of AP180 changes after stimulation. (A) AP180 immunofluorescence 

in maximum intensity z-projections of confocal sections of apical cochlear turns from Wt and AP180-KO 

mice (both P15). Scale bar: B) Exemplary single confocal sections from synaptic pole of IHCs from Wt 

P15 mice after 1 min high K+ stimulation compared to IHCs after 1 min in low K+ control solution. Scale bars: 

5 Bi) Visualization of analysis approaches to determine AP180 immunofluorescence. Left: cell borders 

and a vertical line from the basal IHC pole towards the cytosol were defined according to otoferlin co-

staining. Middle: in the AP180 channel, immunofluorescence intensities along the line scans were 

measured. Right: High-intensity AP180 immunofluorescence clusters were defined using an intensity 

threshold. (C) Average AP180 intensity line scans from confocal sections measured from the basal IHC 

membrane towards the nucleus reveal unchanged max. intensities in membrane proximity (Ci) and 

ce from the membrane (Cii) after stimulation (n = 93 IHCs 

from N = 3 mice) compared to resting condition (n = 73 IHCs from N = 3 mice). (D) The average size of high-

intensity AP180 clusters did not differ between resting and stimulated condition, whereas stimulation led 

to an increase in average cluster fluorescence intensity (Di). ** p < 0.01; *** p < 0.001. 
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In summary, deletion of AP-180 did not alter otoferlin levels, synapse number or ribbon anchorage, 

but it reduced Vglut3 protein levels, potentially via diminishing SV numbers. 

 

Fig. 3-3: Reduced Vglut3 levels, but unaltered otoferlin levels in AP180-deficient IHCs. (A) Maximum 

intensity z-projections of otoferlin-stained apical cochlear turns from AP180-KO and Wt littermate controls. 

(Ai) Unaltered otoferlin levels in AP180-KO (n = 114 IHCs from N = 4 mice) compared to Wt (n = 107 IHCs 

from N = 4 mice). (B) Maximum intensity z-projections of confocal sections of Wt and AP180-KO IHCs 

stained for Vglut3. (Bi) Intracellular Vglut3 levels were reduced by ~17% in AP180-KO IHCs (n = 114 IHCs 

from 4 mice) compared to Wt (n = 107 IHCs from N = 4 mice). (C) Exemplary confocal sections of 

RIBEYE/CtBP2 (magenta) labeling the synaptic ribbon and Homer1 (green) staining labeling the 

postsynaptic density. Dashed circles highlight the nuclei. (Ci) Equal numbers of ribbon synapses in Wt (6 

images from 3 animals, approx. 10 cells per image) and in AP180-KO (6 images from 3 animals, approx. 10 

cells per image). *** p < 0.001. Scale bars: . 

 

NUMBERS OF SVS AND CLATHRIN-COATED STRUCTURES ARE REDUCED IN IHCS OF AP180-KO MICE 

Next, we performed high-pressure freezing followed by freeze substitution and electron tomography 

of ribbon synapses from P15-P16 mice (shortly after the onset of hearing) to assess the synaptic 
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ultrastructure. Exemplary virtual sections (Fig. 3-4A), obtained from semi-thin sections via 

tomogram generation, as well as 3D models of reconstructed ribbon synapses from Wt and AP180-

KO IHCs (Fig. 3-4B) revealed reduced numbers of SVs not only in direct vicinity to the ribbon, but 

also in the cytoplasm. We investigated the following three morphological pools of SVs, as defined 

previously (Kroll et al., 2019) and indicated in the schematic drawing (Fig. 3-4D): (i) ribbon-

associated SVs (RA-SVs) in a maximum distance of 80 nm to the ribbon, (ii) membrane-proximal 

SVs (MP-SVs) that are within a 50 nm distance from the plasma membrane and 100 nm laterally 

from the presynaptic density, and (iii) cytosolic SVs (operationally defined as all uncoated vesicles 

with a maximum outer diameter of 70 nm and a maximum distance of 500 nm to the ribbon, 

excluding the aforementioned SV pools). In all three pools, numbers of SVs were reduced in IHCs of 

AP180-KO mice compared to Wt. The strongest reduction by ~60% was observed for the pool of 

cytosolic SVs (Fig. 3-4I; p < 0.0001, -test). Numbers of RA-SVs (Fig. 3-4E; p = 

0.0062, -test) and of MP-SVs (Fig. 3-4F; p = 0.0328, unpai -test) 

were reduced by approximately 24% and 22%, respectively. The reduction of SVs, found in electron 

tomography, exceeded the expectation based on Vglut3 immunofluorescence (reduction by ~17%). 

The outer diameter of the cytosolic SVs, on the other hand, was increased on average (Fig. 3-4J; p < 

0.0001, -test) and more variable in IHCs of AP180-KO mice compared to Wt (p 

< 0.0001, Kolmogorov-Smirnov test), which may account for the modest reduction of Vglut3 

fluorescence intensity. The observed increase of the SV diameter is consistent with results of previous 

studies on mice and invertebrates missing AP180 or its homolog UNC-11 (Koo et al., 2015; Nonet et 

al., 1999; Vanlandingham et al., 2014; Zhang et al., 1998). Interestingly, the average distance of MP-

SVs to the AZ plasma membrane was slightly increased in IHCs from AP180-KO mice compared to 

Wt (Fig. 3-4G; p = 0.0288, Mann-Whitney U test). 

We further quantified numbers of clathrin-coated structures in proximity to the ribbon, including 

coated vesicles and coated pits budding from the plasma membrane or from ELVs, examples of which 

can be seen in Fig. 3-4C. The numbers of coated structures in total (Fig. 3-4H; p = 0.0002, unpaired 

-test), and of coated vesicles in particular (p < 0.0001, Mann-Whitney U test, please also 

see Appendix Table S16 for further information on statistical analyses), were strongly reduced in 

AP180-KO mice compared to Wt. This suggests an involvement of AP180 in the early steps of 

clathrin-mediated membrane retrieval. While numbers of ELVs were not significantly increased in 

tomograms of AP180-KO mice (Fig. 3-4K; p = 0.7645, -test), we found a strong 
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increase in their average volume (Fig. 3-4L; p = 0.0043, Mann-Whitney U test). Therefore, it is likely 

that the reduced numbers and increased size of SVs are a consequence of impaired clathrin- and 

AP180-dependent SV reformation from ELVs.   

DELETION OF AP180 IMPAIRS CME AND CLATHRIN-DEPENDENT SV REFORMATION IN IHCS 

Given the role of AP180 in CME and clathrin-dependent SV reformation at conventional synapses 

(Koo et al., 2015; Zhang et al., 1998), we investigated the morphology of IHCs from AP180-KO mice 

after stimulation. For that, we stimulated freshly dissected P15-P16 organs of Corti for 5 min using 

high-K+ followed by high-pressure freezing, freeze substitution and electron tomography (Fig. 3-5).  
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Fig. 3-4: Ultrastructural changes of IHC ribbon synapses in AP180-KO mice. (A) Representative virtual 

sections of tomograms from P15 Wt and AP180-KO ribbon synapses. Scale bars: 100 nm. (B) Reconstructed 

models of the area around the ribbon from P15 Wt and AP180-KO IHCs. Scale bars: 200 nm. (C) Exemplary 

coated structures observed at the IHC base. Scale bars: 100 nm. (D) Schematic drawing illustrating 

parameters for the quantifications in (E-L); n for all quantifications = 10 tomograms from 2 different animals 

in each group. (E) Numbers (N) of RA-SVs were reduced by ~24% in AP180-KO mice. (F) The number of MP-

SVs was likewise reduced, and (G) the distance of MP-SVs to the AZ plasma membrane was increased. (H) 

Numbers of coated structures were decreased with the number of coated vesicles being most strongly 

affected. (I) In the cytosol, numbers of small uncoated vesicles were drastically (>60%) reduced in absence 

of AP180. (J) The average diameter of cytosolic SVs was increased. Generally, SV diameters were more 

heterogeneous in absence of AP180. (K) Numbers of ELVs were unaltered, (L) while the average volume per 

ELV was strongly increased in AP180-KO mice. * p < 0.05; ** p < 0.01; *** p < 0.001; ns, not significant. 

  

Similar to what is found in resting conditions, we observed a lower total number of coated structures 

in IHCs of AP180-KO mice (Fig. 3-5I, p = 0.002, Mann-Whitney U test). We detected several ELVs 

with multiple budding CCPs in proximity to ribbon synapses in Wt, indicative of active SV 

reformation following bulk endocytosis (an example is shown in the virtual section and in the 3D 

model in Fig. 3-5C). However, in AP180-KO mice, we did not observe ELVs with more than one or 

two budding CCPs. Moreover, the number of ELVs with one or more budding CCPs was reduced in 

AP180-KO IHCs compared to Wt (Fig. 3-5I; p = 0.006, Mann-Whitney U test, also see Appendix 

Table S17). As seen at rest, the total number of ELVs was unaltered in AP180-KO IHCs compared to 

Wt (p = 0.113 -test, Appendix Table S17) whereas the average ELV volume was again 

increased (Fig. 3-5H; p = 0.0355, Mann-Whitney U test).  

The number of cytosolic SVs was decreased by more than 40% in AP180-KO IHCs (Fig. 3-5F; p = 

0.0026, Mann-Whitney U test), and, hence, did not go beyond the reduction found at resting 

conditions. Interestingly, we neither observed a difference in the number of RA-SVs (Fig. 3-5D; p = 

0.445, Mann-Whitney U test) nor in the number of MP-SVs (Fig. 3-5E; p = 0.721, Mann-Whitney U 

test) between Wt and AP180-KO mice after stimulation. These data indicate that AP180- and 

clathrin-dependent reformation of SVs is required for maintaining high numbers of cytosolic SVs in 

the synaptic pole of the IHC. Still, even in absence of AP180, endocytic SV recycling was sufficient to 

provide enough SVs for refilling the pools of RA-SVs and MP-SVs. 
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AFTER STIMULATION, SVS REMAIN IN A MULTI-TETHERED STATE AT THE AZ OF AP180-KO IHCS 

We examined the MP-SV pool further by electron tomography (Fig. 3-5A and 3-5B). As mentioned 

above (Fig. 3-4G), the distance of MP-SVs to the AZ membrane was increased in AP180-KO IHCs 

under resting conditions. After stimulation, we did not observe significant differences in the average 

distance to the AZ membrane for MP-SVs between Wt and AP180-KO IHCs (Appendix Table S17; 

p = 0.451 -test). Since SV tethering to the AZ membrane has been suggested to 

influence the distance between MP-SVs and AZ membrane (e.g. Chakrabarti et al., 2018; Fernández-

Busnadiego et al., 2013), we quantified the numbers of tethers to the AZ membrane under resting 

conditions and after stimulation. For that purpose, we defined the following SV groups: (i) SVs 

without such tethers, (ii) SVs with a single tether, (iii) SVs with multiple tethers, and (iv) docked SVs, 

where the distance between SV outer membrane and AZ membrane was 0-2 nm in electron 

tomography virtual sections, as previously described for IHCs and neurons (Chakrabarti et al., 2018; 

Imig et al., 2014).  

In resting conditions, we did not observe any significant differences in the tethering of MP-SVs in 

AP180-KO IHCs compared to the Wt situation (Fig. 3-5G, one- s 

post-hoc test; for individual p-values see Appendix Table S18). In line with a previous study of IHCs, 

high-K+ stimulation resulted in relatively more tethered SVs (Chakrabarti et al., 2018). This was the 

case in both, Wt and AP180-KO IHCs (Fig. 3-5G; for the fraction of untethered SVs, resting Wt vs. 

stimulated Wt p = 0.001, resting Wt vs. stimulated AP180-KO p = 0.001, one-way ANOVA followed 

by -hoc test). However, we noticed a shift towards an increase in multi-tethered SVs in 

AP180-KO IHCs after stimulation, whereas most SVs in stimulated Wt IHCs remained connected 

via a single tether (p = 0.008 for the fraction of multi-tethered MP-SVs in stimulated Wt vs. 

stimulated AP180-KO IHCs). Furthermore, we observed significantly more docked SVs in 

stimulated AP180-KO IHCs compared to resting conditions (Wt resting condition vs. AP180-KO 

stimulated condition: p = 0.004, one-way ANOVA followed b -hoc test; AP180-KO 

rest. vs. AP180-KO stim: p = 0.002, one- -hoc test), as well as 

compared to stimulated Wt (p = 0.037, one- post-hoc test). 

Together, these observations indicate that MP-SVs in IHCs of AP180-KO mice remain in the multi-

tethered or docked state prior to fusion, which has previously been designated as a morphological 

correlate of impaired release site clearance in IHCs (Chakrabarti et al., 2018). 
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Fig. 3-5: SV-tethering to the AZ and SV reformation are altered in stimulated IHCs from AP180-KO 

mice. (A) Reconstructed models of the AZ from P15 Wt and AP180-KO IHCs after 5 min K+ stimulation 

showing the presynaptic density and MP-SVs. Colors of different classes of MP-SVs are as highlighted in (B). 

Scale bars: 200 nm. (B) Exemplary virtual sections of MP-SVs in untethered, tethered or docked state. Scale 

bars: 50 nm. (C) Virtual section and 3D model of an ELV containing multiple CCPs, as exclusively observed 

in Wt. Scale bar: 100 nm. (D) Numbers (N) of RA-SVs were unaltered in P15 AP180-KO mice compared to Wt 

(n for D-I = 10 tomograms from 2 different animals per group). (E) The number of MP-SVs was likewise 

unaltered in absence of AP180 compared to Wt, whereas numbers of small uncoated vesicles were strongly 

reduced (F). (G) Examining numbers of tethers, a significantly higher proportion of multi-tethered and 

docked MP-SVs have been observed combined with a relatively lower number of single-tethered SVs in 

absence of AP180 after stimulation compared to stimulated Wt as well as compared to resting condition in 

Wt and AP180-KO. (H) The volume of ELVs was increased in the AP180-KO mice. (I) Numbers of coated 

structures were decreased with numbers of coated vesicles and coated pits at ELVs being most strongly 

affected. * p < 0.05; ** p < 0.01; ns, not significant. 
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3.2.5 DISCUSSION 

In the present study, we addressed a role of the endocytic adaptor protein AP180 in synaptic sound 

encoding in the cochlea. There, IHC ribbon synapses must sustain high rates of SV release for reliable 

transmission of auditory information. When investigating IHC ribbon synapses of AP180-KO mice 

by performing a combination of immunohistochemistry and electron tomography, we found 

evidence for a dual function of AP180. Firstly, AP180 is required for clathrin-dependent SV 

reformation from ELVs and aids in the early steps of classical CME. Secondly, AP180 plays a role in 

efficient replenishment of SVs to the release site, likely via promoting the clearance of the release site 

from proteins and lipids added by preceding SV fusion events.  

AP180 IS REQUIRED FOR CLATHRIN-DEPENDENT ENDOCYTOSIS AND SV REFORMATION FOLLOWING BULK 

RETRIEVAL IN IHCS 

The reduction of clathrin-coated SVs in resting and stimulated AP180-KO IHCs support a role of 

AP180 in CME. Beyond that, we observed less budding of CCPs from enlarged ELVs in AP180-KO 

IHCs after high-K+ stimulation, suggesting that SV reformation from ELVs following bulk retrieval 

operates in an AP180-dependent manner. Clathrin-dependent SV reformation from ELVs was also 

impaired in AP-2 KO IHCs (Jung et al., 2015b). Therefore, like in hippocampal neurons (Kononenko 

et al., 2014; Koo et al., 2015), both adaptor proteins seem to be required for the recruitment of clathrin 

triskelia not only to the plasma membrane, but also to ELVs. Notably, SV numbers were more 

robustly reduced in AP180-deficient IHCs (~60%) than in AP180-deficient inhibitory CNS neurons 

(~33%; note that no SV reduction was found in excitatory neurons, Koo et al., 2015). This underlines 

the importance of clathrin- und AP180-dependent SV reformation from endocytic intermediates for 

the restoration of SV pools particularly in cells with a high SV turnover rate like the IHCs. 

Nonetheless, CME still occurred. Moreover, prolonged stimulation by high-K+ left the RA- and MP-

SVs pools unchanged and did not further reduce the number of cytosolic SVs in AP180-KO IHCs. 

Therefore, AP180-independent forms of membrane retrieval must exist in IHCs, and other adaptor 

proteins like the AP180 homolog CALM, AP-2 or AP-3 may contribute to the recruitment of clathrin. 

The precise interplay of adapter proteins and membrane retrieval mechanisms in IHCs requires 

further investigation. Also, future studies might address the question whether accumulation of 

exocytosed proteins and lipids at the plasma membrane, or increased membrane tension, shift 

membrane retrieval towards clathrin-independent forms (Maritzen and Haucke, 2018).  
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A ROLE OF AP180 IN RELEASE SITE CLEARANCE AT IHC ACTIVE ZONES 

Notwithstanding the SV reformation deficit, the number of MP-SVs at the AZ was not significantly 

reduced in AP180 KO IHCs during strong stimulation. Still, the measured rate of SV replenishment 

during trains of brief depolarizations was reduced in AP180-KO IHCs, while Ca2+ triggered fusion of 

the RRP of SVs seemed intact (data not shown in this chapter). These findings suggest that slowed 

SV replenishment of the release sites was primarily due to impaired AZ clearance rather than to 

insufficient SV resupply to the AZ. Effective release site clearance has previously been discussed as a 

determinant of sustained exocytosis in hair cells (Chakrabarti et al., 2018; Cho et al., 2011; Jung et al., 

2015b; Kroll et al., 2019;  et al., 2010). Further support for this hypothesis comes from the 

observation of an increased number of multi-tethered and docked SVs in the AP180-KO IHCs. 

Similarly, in IHCs of the otoferlin mouse mutant pachanga, which has been shown to be profoundly 

deaf with a reduced rate of SV replenishment to the RRP (  et al., 2010), the number of multi-

tethered SVs was significantly higher than in Wt after stimulation (Chakrabarti et al., 2018). Multi-

tethered SVs in neurons were also shown to be  closer to the AZ membrane compared to single-

tethered or untethered SVs and probably display a prerequisite for SV docking and priming 

(Fernández-Busnadiego et al., 2013). As SV fusion was intact in AP180 KO IHCs, we take the higher 

prevalence of multi-tethered SVs as a potential morphological correlate of unproductive release sites 

due to impaired clearance. 

In a previous study, absence of RIM-binding protein 2 (RIM-BP2) likewise resulted in an increased 

distance of MP-SVs to the AZ-membrane in IHCs at resting conditions, which has been attributed 

to disturbances in the composition of the cytomatrix of the AZ (Krinner et al., 2017). Changes in the 

cytomatrix or in the AZ plasma membrane itself may also serve as an explanation for the increased 

distance of MP-SVs in absence of AP180. More precisely, the absence of AP180 could lead to an 

accumulation of proteins or lipids at the membrane of the release sites, which possibly causes an 

energetically unfavorable environment, ultimately slowing down exocytic processes after prolonged 

stimulation.  

AP180 has previously been identified as a key sorting factor for VAMP2. Consequently, AP180 

deficiency causes an accumulation of VAMP2 at the plasma membrane of neurons (Koo et al., 2015). 

Even though IHCs seem to operate without VAMP2 and other neuronal SNARE proteins (Nouvian 

et al., 2011), AP180 could be required for the sorting of other members of the VAMP family that were 
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previously identified as additional interaction partners of AP180/CALM (Maritzen et al., 2012; Miller 

et al., 2011; Sahlender et al., 2013). Alternatively, an as-yet unknown exocytic IHC protein may 

interact with AP180 and accumulate at the plasma membrane in the absence of AP180. Importantly, 

unaltered otoferlin levels suggest that otoferlin sorting does not depend on AP180 and consequently 

allow us to attribute the IHC phenotype to AP180 deficiency itself rather than to the concomitant 

loss of otoferlin. 
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4.1 NEW INSIGHTS INTO SV RECYCLING IN IHCS 

Over the last two decades, IHCs have not only been investigated to identify causes for hearing 

impairments and to examine deafness genes. The extraordinarily high rates of SV turnover and the 

unique features of ribbon synapses made IHCs also become a model system for synaptic 

transmission. Previous studies have shown that exocytosis in IHCs is specialized, meaning that SV 

release seems to operate without classical SNARE proteins (Nouvian et al., 2011) and neuronal Ca2+-

sensors (Beurg et al., 2010; Reisinger et al., 2011; Safieddine and Wenthold, 1999). Instead, otoferlin 

and other yet to be identified proteins mediate exocytosis (  et al., 2010; Roux et al., 2006). 

Moreover, otoferlin was shown to play a role in the coupling of exo- and endocytosis, in release site 

clearance, and potentially also directly in endocytosis (Chakrabarti et al., 2018; Duncker et al., 2013; 

Jung et al., 2015b;  et al., 2010). SV recycling may therefore likewise be adapted to the very 

high demands of IHCs. Apart from roles of dynamin and clathrin in CME and from the importance 

of AP-2 in SV reformation following bulk-like membrane retrieval, little has been known about the 

peculiarities of IHC endocytosis. Therefore, I focused my studies on two proteins that were 

characterized in depth as key players in neuronal endocytosis: While AP180 is involved in the early 

steps of CME and clathrin-dependent SV reformation (Lindner and Ungewickell, 1992; Morris et al., 

1993), endophilin was shown to be essential for fission and uncoating (Milosevic et al., 2011; Ringstad 

et al., 1997; Schuske et al., 2003; Verstreken et al., 2002). Moreover, roles of endophilin in clathrin-

independent forms of endocytosis have been described not only in neurons (Watanabe et al., 2018) 

but also in non-neuronal cells (Boucrot et al., 2015; Renard et al., 2015). Studying the functions of 

both proteins, I could not only assess their putative roles in IHCs endocytosis. I further gained 

information on the prevalence of different endocytic mechanisms in IHCs, which I will address in 

the first part of my discussion. In addition, I could show together with the co-authors of the here 

presented studies that both proteins, AP180 and endophilin, are involved in processes beyond 

classical endocytosis, that partially differ from their functions in neurons. In the second part of my 

discussion, I will elaborate the putative roles of AP180 and endophilin in the coupling of exo- and 

endocytosis, in release site clearance and in SV resupply in more detail.  
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4.1.1 ENDOPHILIN AND AP180 ARE INVOLVED IN CLATHRIN-MEDIATED 

ENDOCYTOSIS IN IHCS  

Previous studies have shown that the slow mode of endocytosis observed via electrophysiological 

recordings in IHCs is clathrin- and dynamin-dependent (Moser and Beutner, 2000; Neef et al., 2014). 

In the here presented two studies, I could show together with my collaborators, that the formation of 

endocytic intermediates is also affected by the absence of endophilin or AP180. In the first part, we 

examined a number of mutants missing different combinations of the three endophilin-A genes. 

Electron microscopy of conventionally embedded organs of Corti revealed higher numbers of typical 

CME intermediates: Particularly in DKOs of endophilin A1 and A2 (1/2-DKOs) and of endophilin 

A1 and A3 (1/3-DKOs), I observed accumulations of CCVs and coated vacuoles (larger organelles 

with a diameter of more than 70 nm and entirely covered by a clathrin coat) as well as CCPs not only 

at the plasma membrane but also at ELVs. Furthermore, I found a greater area covered by ELVs in 

both DKOs and a reduced number of cytosolic vesicles in 1/2-DKOs. The number of RA-SVs and 

MP-SVs was lower in both DKOs with the RA-SVs of the distal half of the ribbon being more strongly 

affected than those of the proximal half. The findings regarding endocytic intermediates and SV 

numbers are in-line with previous studies, in which accumulations of CCVs and ELVs, paired with 

reduced numbers of SVs, have been described for neurons of endophilin 1/2-DKOs and TKOs 

(Milosevic et al., 2011). Despite the significant ultrastructural changes in the endophilin mutants, 

patch-clamp recordings of endocytosis revealed an only mildly decreased rate of the linear 

component that likely reflects CME. Furthermore, amplitude and time constant of the exponential 

phase, likely reflecting bulk-like retrieval, were slightly affected.  

In AP180-KO mice, electron tomography following HPF and freeze substitution revealed a 

significantly lower number of coated structures in proximity to the ribbon. Particularly the number 

of CCVs was reduced whereas we could not detect strong effects on the number of CCPs. Even 

though the number of ELVs was unchanged in AP180-KOs, we detected a significantly increased 

average ELV volume. Furthermore, the number of vesicles was drastically reduced in the cytosol (by 

roughly 60%) and slightly reduced around the ribbon (by approx. 20%). These data are partially in 

agreement with previous studies of neurons from AP180-KO mice (Koo et al., 2015): here, excitatory 

neurons exhibited unchanged SV numbers while inhibitory neurons showed a slight reduction. 

However, numbers of coated structures were likewise decreased whereas the total ELV volume per 
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nerve terminal was elevated. m recordings from mouse IHCs following 20 ms or 200 ms long 

stimulation indicated that the exponential phase of endocytosis is not at all, and the linear phase of 

endocytosis is only slightly affected by AP180 absence (experiments performed by Özge Demet 

Özçete, Institute for Auditory Neuroscience, Göttingen).  

4.1.1.1 AP180 HAS A ROLE IN CLATHRIN RECRUITMENT IN IHCS 

It is widely accepted that the adaptor protein-mediated recruitment of clathrin represents the early 

phase of CME (Haucke and Kozlov, 2018; Saheki and Camilli, 2012). Through binding sites for 

clathrin, PI(4,5)P2 and for each other, AP180 and AP-2 are supposed to bring clathrin triskelia to the 

nucleation sites, at which CCPs are formed in neurons (Ford et al., 2001; Hao et al., 1999). The 

depletion of AP-2 was shown to cause reductions in numbers of coated structures in neurons 

(McMahon and Boucrot, 2011) as well as in IHCs (Jung et al., 2015b), comparable to what was 

observed in neurons lacking AP180 (Koo et al., 2015). I could show that absence of AP180 in IHCs 

results in a similar phenotype. Given that AP-2 (Jung et al., 2015b and recent observations of Dr. 

Christian Vogl, Institute for Auditory Neuroscience, Göttingen, see Appendix Fig. S1) and AP180 (see 

Fig. 3-1) are highly prevalent in the basal part of IHCs, I suggest that these proteins together are 

involved in the recruitment of clathrin also in IHCs. Of note, AP-2 and AP180 seem to benefit from 

the presence of the respective other protein, meaning that they do not only work in similar directions 

but probably boost each other (Hao et al., 1999). Thus, AP-2 or AP180 alone may be less efficient, 

resulting in lower numbers of CCVs in IHCs as well as in neurons. In neurons from AP180-KO mice, 

even the concomitantly seen upregulation of the ubiquitously expressed AP180-homolog CALM was 

not sufficient to restore clathrin-dependent processes (Koo et al., 2015). In contrast to AP180, which 

harbors more than ten clathrin binding sites within the C-terminal unstructured domain, only one 

to two clathrin binding motifs have been identified in CALM (see Fig. 1-5), possibly resulting in a 

lower clathrin binding affinity of CALM (Meyerholz et al., 2005; Morgan et al., 2000; 

Moshkanbaryans et al., 2014; Zhuo et al., 2010). Even though the expression of CALM was not part 

of my examinations, it is unlikely that an upregulation of this protein could sufficiently overtake all 

functions of AP180 in IHCs.  

Prior or in parallel to the recruitment of clathrin triskelia, CALM is also involved in membrane 

bending (Haucke and Kozlov, 2018; Miller et al., 2015). In HeLa cells with depleted CALM 

expression, CCPs were flattened and CCV diameters were enlarged (Meyerholz et al., 2005; Miller et 
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al., 2015). In vitro studies revealed that the ANTH domain, which is much more highly conserved 

between CALM and AP180 than the unstructured C-terminus, is crucial for membrane bending 

(Miller et al., 2015). An additional role of AP180 in membrane bending would explain the stronger 

heterogeneity of SV diameters and the overall increased size of SVs in absence of AP180 not only in 

neurons (Koo et al., 2015) but also at IHC ribbon synapses (see Fig. 3-4), as well as at Drosophila 

neuromuscular junctions missing the AP180 homolog LAP (Zhang et al., 1998). However, apart from 

CALM, other proteins like epsin (Chen et al., 1998; Ford et al., 2002) and BAR domain proteins 

(Gallop et al., 2006; Henne et al., 2010) were shown to act in membrane bending at different time 

points during pit formation. It is therefore unlikely that a potential role of AP180 in membrane 

bending and not the AP180-dependent recruitment of clathrin would be rate-limiting for the 

formation of CCPs.  

4.1.1.2 ENDOPHILIN IS REQUIRED FOR FISSION AND UNCOATING IN IHCS 

Whether the membrane bending abilities of endophilin, which have been characterized in depth in 

vitro (Gallop et al., 2006; Mim et al., 2012), indeed play a role in vivo is still under debate (Saheki and 

Camilli, 2012). Studies in mouse neurons revealed a rate-limiting role of endophilin in the uncoating 

step (Milosevic et al., 2011). Even though CCP numbers were not elevated in endophilin 1/2-DKOs 

and TKOs, endophilin has also been detected at CCPs in neurons before fission, where it is supposed 

to recruit dynamin (Ferguson et al., 2009; Milosevic et al., 2011; Perera et al., 2006). Studies in 

C. elegans  and Drosophila likewise point towards key roles of endophilin in fission and uncoating 

(Schuske et al., 2003; Verstreken et al., 2002; Verstreken et al., 2003). However, another study has 

substantiated an important role of endophilin in membrane bending in Drosophila (Bai et al., 2010), 

suggesting that endophilin may be involved in different steps of CME depending on species and cell 

type.  

In IHCs of endophilin DKOs, I did not only observe more coated structures in total, but more 

specifically accumulations of CCPs at the plasma membrane (see Fig. 2-7). I therefore propose that 

endophilin is not only required for uncoating, e.g. via recruitment of synaptojanin and/ or other 

uncoating factors, but has also a key role in membrane fission in IHCs. Whether dynamin, which has 

already been shown to be involved in IHC endocytosis (Neef et al., 2014), and endophilin act in 

concert, e.g. through endophilin-mediated dynamin recruitment, remains to be examined. 

Furthermore, I observed a shift towards larger coated structures in mutants missing two endophilin 
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genes. In endophilin 1-SKOs, I observed significantly more CCVs that however had a comparable 

size to CCVs in Wt IHCs. In contrast, both DKOs harbored more coated vacuoles but unchanged 

numbers of CCVs compared to Wt. Thus, the uncoating of the CCVs seems already impaired in 

absence of one endophilin gene, whereas depletion of two endophilins is required to generate changes 

in the size of the coated structures. Whether the increased occurrence of coated vacuoles originates 

from disturbances in the fission process or from impaired membrane bending, comparable to what 

has been observed in absence of CALM, cannot fully be elucidated at this point. Accumulations of 

coated structures especially in both examined endophilin DKOs speak against a rate-limiting role of 

endophilin in membrane bending prior to the formation of the CCPs. However, it cannot be ruled 

out that more severe impairments of fission and uncoating mask potential defects in the stabilization 

of membrane curvature in the endophilin mutants in IHCs.  

4.1.2 BULK-LIKE MEMBRANE RETRIEVAL  

Several studies have shown that IHCs are capable of performing bulk-like endocytosis, meaning that 

ELVs are formed through invaginations of the cell membrane after stimulation (Chakrabarti et al., 

2018; Kamin et al., 2014; Neef et al., 2014; Revelo et al., 2014). Electrophysiological recordings 

revealed that strong stimulation induces an exponential Cm reduction that has been associated with 

bulk endocytosis (Moser and Beutner, 2000; Neef et al., 2014). Moreover, after several minutes of K+ 

stimulation (Fig. 2-9), the number of ELVs, which can be heterogenous in size and partially contain 

budding CCPs, was shown to be increased drastically (Jung et al., 2015b; Neef et al., 2014). Even 

though 15 min of continuous stimulation appear harsh, IHCs did not show depletions of SV pools in 

particular at the ribbon. It seems as if IHCs are prepared for these continuous stimulation conditions. 

Physiologically, the bulk-like membrane retrieval may be required for mammals to repetitively 

perceive sound stimuli of the same frequency over a course of several seconds or even minutes. Not 

only the faster kinetics compared to CME, but also the greater volume of the internalized membrane, 

as well as the better accessibility of internalized membranes for cytosolic proteins involved in SV 

reformation, may display advantages of bulk-like membrane retrieval (see 4.1.4 Do IHCs Need 

Clathrin-mediated Endocytosis?). 
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4.1.2.1 BULK RETRIEVAL MAY SUFFICIENTLY RECOVER MEMBRANES IN ABSENCE OF AP180 

In AP-2µ KO mice, increased numbers of ELVs have been observed after stimulation (Jung et al., 

2015b). The authors argued that increased membrane tension and/ or accumulations of stranded 

proteins led to elevated levels of bulk-like membrane retrieval. In contrast to these findings, I did not 

observe more ELVs in AP180-KO; however, the ELV volume was on average increased (see Fig. 3-4). 

Not only different mechanisms or differing relevance of the two adaptor proteins for IHC 

endocytosis, but also the different technical approaches may have caused the discrepancy regarding 

the ELV numbers between the two studies. I performed electron tomography to accurately determine 

ELV numbers and volumes in absence of AP180, whereas in the AP-2 study, only numbers of ELVs 

were counted. It is therefore possible, that ELVs were also enlarged in AP-2µ KO mice. Larger ELVs 

may even have influenced the counts of these structures, as the probability of cutting through an ELV 

increases with the size of the respective ELV. A direct comparison of ELV numbers may therefore 

not be meaningful at this point. However, what can surely be concluded, is, that after 5 min of 

continuous stimulation, defects in AP180-mediated clathrin recruitment did not elevate the number 

of bulk internalization events significantly compared to stimulated Wt (see Fig. 3-5). It is likely that 

the increased ELV volume results from a prominent role of AP180 in SV reformation, as I will more 

comprehensively discuss in the chapter 4.1.3 Endophilin and AP180 are Involved in SV reformation.  

4.1.2.2 ENDOPHILIN MAY HAVE A ROLE IN CLATHRIN-INDEPENDENT ENDOCYTOSIS IN IHCS 

In random sections from endophilin mutants, I observed that a larger area of the section within 1 µm 

around the synaptic ribbon is covered by ELVs. This mainly resulted from larger ELVs, but also from 

a higher number of ELVs at least in 1/2-DKO (see Appendix Fig. S2). On the one side, the larger ELV 

area observe in both, AP180 and endophilin mutants, could be explained by disturbed clathrin-

dependent SV reformation, as discussed in more detail in the following section. On the other side, 

endophilin may play a regulatory role in the fission of bulk-like membrane invaginations. Previous 

studies have shown that endophilin, dynamin and actin jointly act in the fission of membranous 

tubular invaginations in non-neuronal mammalian cells (Boucrot et al., 2015; Renard et al., 2015). 

And also in neuronal ADBE, dynamin and actin-nucleating formins were shown to play an essential 

role (Soykan et al., 2017). During UFE in neurons, endophilin likewise mediates the recruitment of 

dynamin to the neck of endocytic vesicles with a volume equal to several SVs (Watanabe et al., 2018). 

In this process, absence of endophilin does not completely block fission but only affects the kinetics 
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of dynamin-mediated fission of endocytic vesicles. Apart from the dynamin-mediated fission 

processes described in neuronal and non-neuronal clathrin-independent endocytic pathways, a 

recent study has examined a dynamin-independent mechanism (Simunovic et al., 2017): here, N-

BAR domain proteins like endophilin, together with cytoskeletal and/ or motor proteins, enable the 

scission of membrane tubes. Thus, also in IHCs, endophilin may be involved in the scission of 

membranous invaginations, either via directly mediating the scission process, or via recruitment of 

dynamins. In the here presented study, I observed changes especially in the size of ELVs, that can not 

only be attributed to impaired SV reformation, but also to defects in the constriction of membrane 

invaginations. Although the fission of the narrow neck of such a membrane invagination is probably 

not visible during patch-clamp recordings (Neef et al., 2014), we further observed a strong trend 

towards a slower Cm decline in the exponential phase of endocytosis in both endophilin DKOs. This 

reduction may display a general slowdown of the internalization process prior to fission. It is 

therefore possible, that endophilin acts as a wider-span regulator of bulk-like membrane retrieval in 

IHCs including e.g. the fission process and/ or preceding steps. However, the effects of knocking out 

m after 200 ms stimulation were mild. This indicates that 

one remaining endophilin gene could still be sufficient. Alternatively or in addition, endophilin-

independent forms of bulk endocytosis may exist in IHCs.  

To date, little is known about the mechanisms of bulk-like retrieval in IHCs, except that it appears  

to be activity-dependent (Neef et al., 2014) and that bulk-like membrane retrieval can probably 

compensate very high rates of SV exocytosis. Even if endophilin is involved in the formation and/or 

fission of membranous invaginations, we do not know if the mechanisms in IHCs are similar to 

ADBE, to neuronal UFE or to mechanisms in non-neuronal cells. Furthermore, different 

combinations of the afore-mentioned mechanisms are conceivable. Future studies will be required 

to identify further key players in bulk-like membrane retrieval in IHCs. Due to their co-actions with 

endophilin, actin and actin-modifying proteins like formins, as well as dynamins, serve as interesting 

candidate proteins (Boucrot et al., 2015; Renard et al., 2015; Soykan et al., 2017). Moreover, patch-

clamp experiments at physiological temperature will be required, as UFE could not be detected at 

room temperature in neurons (Watanabe et al., 2018). 

Additionally, determining the molecular composition of ELVs in the IHC base, where the ribbon 

synapses are located, may be a promising approach. Markers for early endosomes (e.g. EEA1) as well 

as for late endosomes (VAMP7) or lysosomes (Lamp1) have exclusively been detected in the apical, 
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ribbon-free half of the IHC (Revelo et al., 2014; own observations). Whether ELVs seen in the base 

of IHCs all derive from bulk-like membrane retrieval or whether a fraction of those ELVs is made up 

by bona fide endosomes is not clear to date. Neither has been investigated yet in detail if phagosomes, 

which may also appear as round- to oval-shaped cytosolic membranous vacuoles in EM sections (de 

Chastellier, 2008), can be detected in the IHC base. A possible (alternative) explanation for the slight 

increase in the number of ELVs in the endophilin 1/2-DKOs, but not in 1/3-DKOs or 1-SKOs, and 

neither in AP180-KOs, could be that protein homeostasis is more severely disturbed in those 

mutants. A recent study revealed that endophilin is involved in autophagy, whereby absence of 

endophilins results in cell death and neurodegeneration (Murdoch et al., 2016). The authors could 

show that apoptosis rates were elevated in the motor cortex and hippocampus of TKOs short after 

birth and in 1/2-DKOs at P18, but only at 18 months in 1/3-DKOs. Furthermore, 1/2-DKOs suffer 

from a general growth delay, major neurological and motor impairments as well as from epileptic 

seizures and ataxia. Even though synaptic function was not severely impaired in those 1/2-DKOs at 

P15-P18, one may speculate that first signs of disturbed protein homeostasis have also arisen in IHCs 

at that age. More precisely, membranous structures involved in protein degradation may have 

formed, that are morphologically indistinguishable from ELVs. However, these assumptions are 

highly speculative and future studies including membrane markers like mCLING as well as mRNA/ 

protein analyses of autophagy markers will be required to test if protein homeostasis indeed starts to 

be disturbed in IHCs from two weeks old 1/2-DKOs.  

4.1.3 AP180 AND ENDOPHILIN ARE INVOLVED IN SV REFORMATION 

Apart from the changes in number and/ or size of coated structures and the size of ELVs, also 

numbers of SVs have been affected by the absence of endophilins or AP180. Numbers of SVs in 

ribbon proximity in endophilin 1/2-DKOs were approx. 34% reduced (analysis from random 

sections), whereas SV numbers in AP180-KOs were more than 60% lower when compared to Wt 

(examined from tomograms). Electron tomography following 5 min high-K+ stimulation revealed 

that multiple CCPs can bud from a single ELV in IHCs. Similar observations have previously been 

made after 2 min K+ stimulation at physiological temperature followed by conventional embedding 

and analysis of random sections (Neef et al., 2014). In endophilin-KOs, the number of coated pits at 

ELVs was even higher than in Wt. In contrast, the number of ELVs with budding pits was much 

lower in AP180-KOs. Furthermore, if an ELV in an AP180-KO IHC contained CCPs, then usually 

one, and in few cases two. It is therefore likely that both proteins are required for clathrin-dependent 



Discussion   |   New Insights into SV Recycling in IHCs 

 

103 

 

SV reformation following bulk-like membrane retrieval, whereby AP180 recruits clathrin to the ELV 

and endophilin mediates fission and probably also uncoating.  

The strong reduction of SV numbers in AP180-KOs on the one side and the (almost) unaffected 

kinetics of slow endocytosis likely representing CME on the other side indicate that clathrin-

dependent processes are more important for the reformation of SVs than for the restoration of cell 

membranes after exocytosis. The adaptor protein-mediated recruitment of clathrin seems to depend 

on the exocytic proteins but not on the targeted membrane itself (either the cell membrane or ELVs), 

which indicates that mechanisms of CME and of clathrin-dependent SV reformation may be 

overlapping or even identical. Especially during strong, continuous stimulation, bulk-like retrieval 

seems more effective in clearing release sites from exocytic proteins (Gimber et al., 2015; Neher, 2010) 

and may thus be favored in IHCs. Indeed, we observed morphological alterations regarding ELV size 

and numbers of CCPs at ELVs in absence of AP180 and also AP-2, whereas physiological recordings 

revealed unchanged kinetics of the slow mode of endocytosis likely reflecting CME. Consequently, 

both adaptor proteins seem to be essential for clathrin-dependent SV reformation following bulk-

like membrane retrieval in IHCs, as well as after ADBE or UFE in neurons (Jung et al., 2015b; 

Kononenko et al., 2014; Koo et al., 2015; Neef et al., 2014; Watanabe et al., 2014). However, also yet 

to be identified clathrin-independent mechanisms of SV reformation following e.g. bulk endocytosis 

may be active not only in neurons (for review see Milosevic, 2018) but also in IHCs.  

4.1.4 DO IHCS NEED CLATHRIN-MEDIATED ENDOCYTOSIS? 

Given that IHCs show very high rates of continuous SV turnover (  et al., 2010), one may 

hypothesize that CME, which is the slowest known mode of endocytosis in cells with synaptic activity, 

plays a minor role in IHC membrane retrieval. In neurons, the role of CME has likewise been 

questioned: several studies have instead identified UFE followed by subsequent clathrin-dependent 

SV reformation -  and not CME - as the predominant path of SV recycling at least after mild 

stimulation (Delvendahl et al., 2016; Kononenko et al., 2014; Watanabe et al., 2013; Watanabe et al., 

2014).  

Still, CCPs at the plasma membrane of IHCs have been observed previously (Frank et al., 2010; Jung 

et al., 2015b; Neef et al., 2014; Sendin et al., 2007; Siegel and Brownell, 1986) and also in the studies 

presented here. These pits serve as a strong indicator for the capability of IHCs to inherently perform 

CME. Yet, the number of CCPs was per se low compared to the number of CCVs and not much 
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elevated in Wt mice after 5 min (for AP180, in combination with HPF) or 15 min (for endophilin, in 

combination with chemical fixation) of K+ stimulation compared to resting condition. In endophilin 

DKO mutants, the number of CCPs at the plasma membrane was slightly higher compared to Wt in 

resting condition but not additionally increased upon stimulation despite the deficits in fission. In 

AP180-KO mice, I did not observe any significant changes in the number of CCPs compared to Wt 

in the resting condition and after stimulation. Moreover, patch-clamp recordings revealed unaltered 

endocytosis rates in AP-2µ KOs (Jung et al., 2015b) or only slight disturbances in either the return to 

baseline or the slope of the linear component in endophilin and fitful dynamin-KO mice as well as in 

IHCs treated with the clathrin blocker pitstop 2 (Neef et al., 2014).  

So, how physiologically relevant is CME for IHCs? Primarily, unaltered endocytosis rates in AP-2µ 

KO mice and unchanged numbers of CCPs in AP180-KO mice point towards very low levels of CME 

that can be compensated if just one of the adaptor proteins is present (in contrast to the AP-2 and 

AP180-dependent reformation of SVs), or by a redundancy of CME in membrane retrieval in IHCs. 

One may argue that exocytosis-induced increased membrane tension and/ or membrane-stranded 

proteins, that are recycled via CME in Wt, slightly increase bulk-like membrane retrieval of uncoated 

membrane compartments, and thus stabilize endocytosis rates in absence of AP-2 or AP180. 

However, since the number of ELVs in AP180-KO mice was neither increased in resting condition 

nor after stimulation, the rates of such a compensatory mechanism, and hence the impact of CME, 

would probably be low.  

Notably, endophilin and dynamin become active when a coated pit is already formed, whereas AP-2 

and AP180 are required for the early steps of CME. One may argue that the formation of CCPs helps 

to decrease membrane tension via small invaginations that are still connected to the plasma 

membrane. This way, bulk-like endocytosis would less likely be induced in absence of endophilin 

compared to AP-2µ and AP180-KO mice, albeit slow endocytosis appears impaired. However, slower 

Cm reductions after application of pitstop2 speak against this hypothesis (Neef et al., 2014). Moreover, 

previous studies have shown that endophilin and/ or dynamin are involved in clathrin-independent 

forms of endocytosis like bulk retrieval and UFE in neurons as well as in non-neuronal mammalian 

cells (Boucrot et al., 2015; Renard et al., 2015; Simunovic et al., 2017; Soykan et al., 2017; Watanabe 

et al., 2018). In consideration of the above-noted observations, one may presume that endophilin, 

and possibly also dynamin, are also involved in clathrin-independent forms of endocytosis in IHCs 

(see 4.1.2.2 Endophilin May Have a Role in Clathrin-independent Endocytosis in IHCs). However, this 
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form of endophilin-dependent bulk-like membrane retrieval is probably either of limited capacity or 

can easily be compensated, since a trend towards only mild impairment of the exponential phase of 

endocytosis has been observed in absence of endophilin. Notably, recent studies have questioned the 

specificity of the clathrin blocker pitstop 2 (Dutta et al., 2012; Willox et al., 2014), indicating that the 

slight impairments in the slow mode of endocytosis seen in Neef et al., 2014 may be ambiguous. 

These findings indicate, that the deficits in the slow mode of endocytosis, observed in absence of 

endophilins and dynamin, as well as after pitstop 2 application, cannot with certainty be related to 

deficits in CME only, but may also result from deficits in clathrin-independent forms of endocytosis.  

Together with the observations made in AP-2µ and AP180-KO mice, one may therefore conclude 

that CME has a minor relevance for membrane retrieval following exocytosis at least under our 

experimental conditions. After moderate to strong stimulation, bulk-like membrane-retrieval 

followed by clathrin-dependent SV reformation seems to be the preferred pathway. However, 

recordings of IHC endocytosis have so far been performed at room temperature. Not only the 

detectability of UFE but also the kinetics of clathrin-dependent steps seem to dependent highly on 

the temperature (Delvendahl et al., 2016; Nouvian, 2007; Renden and von Gersdorff, 2007; Soykan et 

al., 2017; Watanabe et al., 2013). Therefore, it is necessary to perform studies at physiological 

temperature to comprehensively re-evaluate the role of CME in IHC endocytosis. Even though the 

physiological relevance of CME for IHC endocytosis may at least be questioned, this mechanism 

could still be required for the long-term restoration of cell membranes in IHCs. More precisely, CME 

could be essential for the slow recycling of cargo stranded at the plasma membrane after exocytosis, 

as previously reported for neurons (Gimber et al., 2015; Soykan et al., 2017). Here, binding motifs at 

adaptor proteins for clathrin and PI(4,5)P2 on the one side and for exocytic proteins on the other side 

seem to facilitate release site clearance and clathrin-dependent protein sorting (see 4.2.1 AP180 May 

Play A Role Downstream of Docking in IHCs). 
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4.2 AP180 AND ENDOPHILIN ACT BEYOND SV RECYCLING  

Both here presented studies indicate that endophilin and AP180, both originally described as key 

players in different steps of CME in neurons (Lindner and Ungewickell, 1992; Milosevic et al., 2011; 

Morris et al., 1993; Ringstad et al., 1997; Schuske et al., 2003; Verstreken et al., 2002), may act in 

processes beyond classical endocytosis. To our surprise, we detected a mild, but significant 

impairment of sustained exocytosis in IHCs of endophilin 1/3-DKOs, that could not entirely be 

explained by the small concomitant decrease in Ca2+-currents. It is unlikely that the smaller changes 

in Cm after 200 ms stimulation resulted exclusively from impaired endocytic capabilities, as e.g. the 

number of cytosolic SVs in endophilin 1/3-DKOs has been unchanged compared to Wt. Moreover, 

even after UFE, the reformation of SVs requires approx. 20 s (Watanabe et al., 2013). Consequently, 

defects in endocytosis and/ or SV reformation alone cannot explain the slight deficits in exocytosis 

already after 200 ms. Previous studies have shown that problems in SV replenishment, in scaffolding 

of CAZ proteins and Ca2+-channels, as well as in release site clearance can lead to impaired sustained 

exocytosis in IHCs (Jung et al., 2015b; Krinner et al., 2017;  et al., 2010; Vogl et al., 2015). In 

endophilin 1-SKOs as well as in 1/3-DKOs, Ca2+-influx was impaired. STED microscopy of CaV1.3 

channels revealed a reduction of the area of Ca2+-channel clusters beneath the ribbon in those two 

mutants that nicely matches the reduced Ca2+-influx. However, the decrease in sustained exocytosis 

was beyond what would be expected from the impaired Ca2+-influx in the 1/3-DKO mutants. 

Additionally, I observed morphological changes in AP180-KOs that cannot be explained by 

disturbed endocytosis alone. The high structural preservation that we received from HPF and freeze 

substitution combined with electron tomography allowed me to analyze tethers connecting MP-SVs 

to the plasma membrane. After 5 min of K+ stimulation, I detected a higher number of multi-tethered 

SVs and docked SVs in AP180-KOs compared to Wt (Fig. 3-5). Comparable changes in tether 

formation have previously been brought into connection with deficits in sustained exocytosis in IHCs 

of otoferlin mutant mice (Chakrabarti et al., 2018).  

Interestingly, endophilin- and AP180-KOs differed in the distribution of SVs in the different 

morphological SV pools: 1/3-DKOs possessed a relatively lower number of RA-SVs than cytosolic 

SVs compared to the respective SV pools in Wt. In AP180-KO mice it has been the other way around: 

Here, the number of SVs in the cytosol has been drastically reduced in resting condition as well as 

after stimulation. RA-SVs and MP-SVs were only slightly (20%) lower compared to Wt in resting 
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condition and unchanged after stimulation. It is therefore likely that different factors have led to the 

deficits in sustained exocytosis in endophilin mutants and to morphological observations suggesting 

deficits in exocytosis in AP180-KO mice.  

4.2.1 AP180 MAY PLAY A ROLE DOWNSTREAM OF DOCKING IN IHCS 

In inhibitory neurons, which show a more tonic release than excitatory neurons, three mechanisms 

were found to be affected by AP180 absence, ultimately leading to impaired exocytosis (Koo et al., 

2015): (i) The binding of AP180 to VAMP2 and to other members of the VAMP family was shown 

to be required for protein sorting after SV fusion (Koo et al., 2011; Koo et al., 2015; Miller et al., 2011). 

Elevated levels of surface-stranded VAMP2 in neurons lacking AP180 indicated that the adaptor 

protein has a physiological role in release site clearance (Koo et al., 2015). (ii) Via its ANTH domain, 

AP180 specifically binds to the SNARE domain of VAMP2 after the NSF-mediated disassembly of 

the SNARE complex (see Fig. 1-5; Koo et al., 2011; Miller et al., 2011). This way, AP180 prevents 

VAMP2 from the unwanted re-binding of other SNARE proteins post-fusion and enables efficient 

SV priming. (iii) In neurons of AP180-KO mice, impaired protein sorting led to reduced copy 

numbers of VAMP2 at SVs (Koo et al., 2015). In neurons of Wt mice, SVs contain roughly 70 VAMP2 

molecules (Takamori et al., 2006; Wilhelm et al., 2014), although only few SNARE complexes were 

shown to be required for SV fusion (Mohrmann et al., 2010; Sinha et al., 2011). A recent study has 

suggested that the high number of SNARE proteins is required to stabilize the formation and the size 

of the fusion pore at least in vitro (Bao et al., 2018).  

All these potential defects in priming, fusion and release site clearance are a result of the interaction 

of AP180 with VAMP2. Although IHCs seem to operate without VAMP2 and other neuronal SNARE 

proteins (Nouvian et al., 2011), I observed morphological changes in IHCs from AP180-KO mice 

that may likewise be attributed to deficits downstream of SV docking. The moderate reduction of SV 

numbers around the ribbon compared to the strong reduction in the cytosol indicates that SVs can 

be recruited to the release sites in absence of AP180, but they cannot fuse as easily as in Wt. Moreover, 

I observed a significantly higher number of multi-tethered MP-SVs and a trend towards more 

morphologically docked SVs in the KO, whereas the number of single-tethered MP-SVs was reduced. 

It has recently been suggested that the distance between AZ membrane and SVs is on average shorter 

within the group of multi-tethered SVs than within single-tethered or untethered SVs (Chakrabarti 

et al., 2018; Fernández-Busnadiego et al., 2013), indicating that the formation of multiple tethers 
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between SVs and AZ membrane is a prerequisite for fusion. If one or more steps downstream of 

docking are impaired, SVs consequently accumulate in a preceding state, i.e. one in which they are 

brought close to the AZ membrane via multiple tethers. Chakrabarti et al., 2018 recently examined 

filamentous tethers in pachanga mutants which harbor a point mutation in the C2F-domain of 

otoferlin and show impairments particularly in the sustained phase of exocytosis (  et al., 

2010). Comparable to my observations in AP180-KO mice, they detected increased numbers of 

multi-tethered and docked SVs in IHCs of pachanga mutants, which have been explained by potential 

deficits in priming or release site clearance (Chakrabarti et al., 2018). 

It is therefore tempting to speculate that AP180 also plays a role in the sorting of a yet unknown 

exocytic protein in IHCs. In this scenario, absence of AP180 would lead to accumulations of this 

exocytic protein at the AZ membrane, comparable to the obersved changed distribution of otoferlin 

in IHCs in absence of AP-2 (Jung et al., 2015b). Protein agglomerations at the AZ membrane could 

form a barrier for SVs to come close to the AZ membrane, which would then lead to the observed 

increased average distance of MP-SVs to the AZ membrane in AP180-KO mice in resting condition 

(see Fig. 3-4). Less efficient sorting could further reduce the before-mentioned stabilization of the 

fusion pore, leading to higher numbers of MP-SVs in stages preceding SV fusion. One point that 

speaks for the presence of yet to be identified exocytic proteins, which may even be related to 

neuronal SNARE proteins, is the capability of otoferlin to bind to t-SNAREs in a Ca2+-dependent 

manner (Hams et al., 2017; Ramakrishnan et al., 2009; Roux et al., 2006).  

For the moment, the here presented speculations cannot further be substantiated. Exocytic 

recordings following different stimulation durations, as well as with lower (or higher) Ca2+-

concentrations than used in standard protocols, and ideally in combination with postsynaptic 

recordings, may help to detect potential changes in fusion, also including fusion pore flickering. A 

thorough characterization of the hearing phenotype, including not only ABR but also single-unit 

recordings, may be required to elucidate the physiological relevance of the morphological changes 

observed in the IHCs from AP180-KO mice. Confocal microscopy and biochemical studies may lead 

to the identification of a potential exocytic protein sorted by AP180 in IHCs.  
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4.2.2 ENDOPHILIN REGULATES THE SIZE OF CAV1.3 CLUSTERS AND INTERACTS 

WITH OTOFERLIN 

We detected slight reductions in Ca2+-influx in endophilin 1-SKOs as well as in 1/3-DKOs. However, 

only in 1/3-DKOs, sustained exocytosis was concomitantly reduced. Ratios of Ca2+- m 

revealed that the observed reduction in exocytosis after 200 ms of stimulation was stronger than what 

would be expected from the reduced Ca2+-influx. Therefore, the reduced Ca2+-influx alone cannot 

explain the observed deficit in sustained exocytosis. Still, this finding is remarkable:  We found out, 

that the Ca2+ phenotype results from smaller Ca2+-channel clusters in those mutants, as examined 

using STED microscopy (Fig. 2-3). So far, the interaction of endophilins and voltage-gated Ca2+-

channels has been ascertained only via biochemical studies (Chen et al., 2003). We could now for the 

first time to our knowledge substantiate that endophilins regulate the formation of Ca2+-channel 

clusters in vivo. Moreover, the inactivation of Ca2+-channels was increased in TKOs in organotypic 

cultures, indicating that endophilin may have an indirect or even a direct role in the functional 

modulation of CaV1.3 channels.  

In addition to the interaction with Ca2+-channels, we substantiated an interaction of endophilin-A1 

and otoferlin, paired with a mild reduction of otoferlin levels (approx. 30%) and unchanged otoferlin 

distribution in absence of endophilin A1 and A3 (Fig. 2-5). Absence of the endocytic adaptor protein 

AP-2 has previously been shown to likewise result in impaired sustained exocytosis, paired with a 

strong reduction of otoferlin levels (Jung et al., 2015b). In a rescue experiment, AP-2 levels were 

restored, while otoferlin levels were elevated to 50% of Wt otoferlin levels (Jung et al., 2015b). These 

experiments showed that already those relatively low otoferlin levels were sufficient for maintaining 

normal exocytosis rates (Jung et al., 2015b). It is therefore unlikely that the observed slight otoferlin 

reductions in the endophilin 1/3-DKOs could explain the observed impairments in sustained 

exocytosis.  

Instead, interactions of Ca2+-channels and endophilin as well as of otoferlin and endophilin could be 

relevant for the coupling of exo- and endocytosis. Otoferlin could for example not only recruit AP-2 

to the plasma membrane after fusion (Jung et al., 2015b) but also endophilin. Beyond that, Ca2+-

channels, otoferlin and endophilin could form a network within the CAZ, that is required for the 

tight balancing of the different steps within the SV cycle. Indeed, Ca2+ could directly or indirectly 

induce endophilin-dependent endocytosis in IHCs, since previous studies have shown that Ca2+ is 
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involved in the coupling of exo-and endocytosis not only in IHCs but also at other ribbon and CNS 

synapses (Beutner et al., 2001; Hosoi et al., 2009; Neves et al., 2001; Wu et al., 2009). The slightly 

reduced rates in the exponential phase of endocytosis in endophilin DKOs could serve as another 

indicator for the impaired coupling of exo- and endocytosis. However, more studies will be required 

to examine such a potential interplay of endophilin, otoferlin and Ca2+-channels as well as the Ca2+-

dependence of endophilin-dependent endocytosis in IHCs.  

4.2.3 ENDOPHILIN MAY ACT IN SV RESUPPLY  

Not only defects in release site clearance, but also disturbed SV replenishment, and more generally, 

the recruitment of SVs to the ribbon and/ or the AZ, serve as alternative explanations for the impaired 

sustained exocytosis observed in endophilin 1/3-DKOs (Jean et al., 2018; Jung et al., 2015a; Jung et 

al., 2015b;  et al., 2010; Strenzke et al., 2016). In this DKO, the number of SVs was reduced 

at the ribbon but not in the cytoplasm, indicating that the recruitment of SVs to the release sites is 

more likely affected than docking, priming or fusion (as elucidated for AP180). Interestingly, we 

made similar observations in chromaffin cells from adrenal gland tissue of endophilin TKOs 

(Gowrisankaran et al., unpublished) and, though less severely, in 1/3-DKOs. In those mutants, the 

number of morphologically docked LDCVs was unchanged, whereas fewer LDCVs were present 

between 5 and 10 nm away from the plasma membrane. Like in IHCs, neurotransmitter release was 

impaired in chromaffin cells of TKOs, while exocytic proteins like VAMP2, SNAP-25 and Munc-18 

were unaffected. Therefore, reasons for impaired SV recruitment in IHCs and chromaffin cells of 

endophilin mutants could be problems in the maturation of vesicles, including loading of 

neurotransmitters and equipment of cargo proteins, or impairments in the transport of vesicles to 

the release sites. In IHCs, distribution and levels of the glutamate transporter Vglut3 were unaltered 

in 1/3-DKOs, as qualitatively assessed from immunohistochemical stainings. Thus, at least in IHCs, 

we did not find any obvious indications for deficits in the maturation of SVs.  

In central synapses, actin plays a key role not only in multiple steps of exo- and endocytosis, but also 

in the recruitment of SVs to release sites (Morales et al., 2000; Sakaba and Neher, 2003; Vitale et al., 

1995). Likewise, F-actin was shown to be required for (sustained) exocytosis in IHCs and in 

chromaffin cells (Guillet et al., 2016; Trifaró et al., 1992; Vincent et al., 2015). In IHCs, F-actin forms 

a meshwork (so-

recruitment of SVs to the ribbon and regulates exocytosis (Guillet et al., 2016; Vincent et al., 2015). 
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In different neuronal and non-neuronal cells, endophilin was shown to either interact with 

cytoskeletal proteins like actin or to recruit actin-modifying proteins (Ferguson et al., 2009; 

Simunovic et al., 2017; Soda et al., 2012; Vehlow et al., 2013; Yang et al., 2015). Although these 

interactions were interpreted as steps in endocytosis, an involvement of endophilin and actin in SV 

recruitment cannot be excluded. Therefore, endophilin may, either directly or indirectly through 

interaction with actin-mediating proteins, be required for the organization of F-actin in IHCs and 

potentially also in chromaffin cells. This way, actin-dependent vesicle recruitment in the different 

cell types may at least in parts require endophilin.  

Involvement of endophilin in this step may further explain the discrepancies in numbers of cytosolic 

SVs in the different endophilin mutants (Fig. 2-7 and 2-8): In endophilin 1-SKOs, the number of SVs 

in ribbon proximity may have been increased because SV recruitment has already been slightly 

impaired whereas endocytosis was mostly unaltered. A recent study has shown that SVs may stay in 

the cytosol for days or even weeks before they are degraded (Truckenbrodt et al., 2018). This way, 

SVs that could not be delivered to the ribbon may have accumulated in the 1-SKOs and led to the 

observed increase in SV numbers. In endophilin 1/2-DKOs, the deficits in endocytosis and/ or SV 

reformation may have been way more severe than potential deficits in SV recruitment, ultimately 

leading to reduced numbers of SVs. In 1/3-DKOs, contrary effects of impaired SV reformation and 

impaired SV recruitment may have together resulted in overall unchanged SV numbers, whereby 

SVs have been redistributed between cytosol and ribbon.  

Taken together, the here discussed studies on the roles of AP180 and endophilin in synaptic 

transmission revealed that both proteins are involved in endocytosis and/ or in SV reformation. 

Moreover, slight disturbances in exocytic mechanisms have been observed in AP180 mutants as well 

as in certain endophilin mutants, however with different steps being affected. AP180 seems to be 

relevant for release site clearance, possibly via the sorting of an as-yet to be identified IHC protein. 

Endophilin may be involved in the recruitment of SVs to the ribbon, even though a function in release 

site clearance cannot be ruled out. Moreover, endophilin seems to mediate the coupling of exo- and 

endocytosis through interactions with otoferlin and possibly also with voltage-gated Ca2+-channels. 

This way, both proteins have complementary, multi-faceted roles in the synaptic transmission of 

IHCs.    
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4.3 A PUTATIVE MODEL FOR SYNAPTIC TRANSMISSION IN IHCS 

Based on my findings as well as on the results of previous studies, I propose the following model for 

synaptic transmission in IHCs: 

 

(1) Stimulation induces the tethering of MP-SVs to the presynaptic density and to the AZ 

membrane, which is followed by docking, (priming) and fusion. 

(2) Ca2+ enters the cell through CaV1.3 channels; the formation of Ca2+-channel clusters is 

promoted by endophilin and CAZ proteins. The tight network of CAZ, otoferlin, endophilin, 

CaV1.3 and other exo- and endocytic proteins may be required for the efficient coupling of 

exo- and endocytosis. 
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(3) SV fusion is potentially mediated by so far unknown SNARE-related proteins, of which at 

least one may bind to AP180. Otoferlin may act as Ca2+-sensor and mediates SV fusion. 

(4) Sustained release requires replenishment of the RRP, whereby RA-SVs are probably used first 

and cytosolic SVs later.  

(5) After exocytosis, otoferlin and possibly also so far unknown SNARE-related proteins, are 

prevalent at the plasma membrane.  

(6) The coupling of exo- and endocytosis is mediated by adaptor proteins, of which AP-2 binds 

to otoferlin and AP180 may target a hitherto unknown protein. Concomitantly recruited 

clathrin is required for the early steps of CME. 

(7) Endophilin may further be required for the coupling of exo- and endocytosis, likely via 

binding to otoferlin. Membrane-bending proteins, potentially including endophilin, induce 

membrane curvature.  

(8) Ca2+ likewise induces endocytosis. 

(9) Endophilin is involved in the fission of CCPs from the plasma membrane, possibly together 

with dynamin. In general, CME may particularly be important for the recycling of SV cargo. 

(10) Endophilin mediates the uncoating of CCVs, possibly through the recruitment of uncoating 

factors like synaptojanin. 

(11) Bulk-like endocytosis is prevalent in IHCs and may display a key mechanism especially after 

moderate to strong stimulation. Endophilin (e.g. together with dynamin and/ or actin) may 

be involved in the formation and/ or fission of large membrane invaginations.  

(12) In a separate step, CCPs are formed at ELVs, which is likely required for SV reformation. Like 

in CME, AP-2 and AP180 probably recruit clathrin, whereas endophilin is involved in fission 

and uncoating. Clathrin-independent forms of SV reformation may co-exist in IHCs. 

(13) It is not clear what happens after the uncoating of CCVs. Newly formed small vesicles may 

either be directly re-loaded and used for exocytosis or fuse with bona fide endosomes. Fusion 

with endosomes may either be required for protein sorting or for the degradation of defective 

vesicles. It is neither clear how and if new SVs are later on reformed from endosomes.  

(14) Endophilin is potentially involved in the recruitment of SVs from the cytosol to the ribbon. 

This step may require actin and/ or other cytoskeletal proteins.  
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4.4 FUTURE PERSPECTIVES 

Even though the here presented studies helped to get new insights into the roles of endophilins and 

AP180 in synaptic transmission, we could not yet prove the suggested roles of those two proteins/ 

protein families in detail. In the endophilin study, we already examined four different combinations 

of KOs. However, the fact that three endophilin genes are present in mammals goes along with many 

more theoretical combinations of endophilin-KOs not all of which we could examine. It would e.g. 

be interesting to study morphological and physiological changes in endophilin 2- and 3-SKOs, as 

they would probably allow us to more precisely analyze the specialized or overlapping functions of 

each endophilin gene.  

As already noted in t  in SV 

recycling. Here, it will be exciting to find out if endophilin can indeed regulate the kinetics of the 

fission step in clathrin-independent endocytosis. 3D information gathered from either electron 

tomography or from focused ion beam milling combined with scanning electron microscopy 

(FIB-SEM) may help to examine the connectivity of ELVs to the plasma membrane. Apart from that, 

the combination of millisecond-resolution optogenetic stimulation at physiological temperature and 

HPF may reveal new insights into prevalent modes of endocytosis under different stimulation 

conditions. This way, the question may be answered if UFE or relatable mechanisms are also present 

in IHCs. Moreover, the development of techniques to label membranes and to analyze their path 

ultrastructurally, either via correlative light and electron microscopy or through electron-dense 

membrane tags, may help to shed light on the relevance of different endocytic mechanisms in IHCs. 

They may further help to answer the question of what happens with newly formed vesicles after the 

uncoating step and how they are transported within the cytosol. This way, one may also be able to 

further study the potential role of endophilin in SV recruitment to the ribbon.  

My studies nicely showed that AP180 is involved in SV reformation following bulk-like membrane 

retrieval. However, we just started to examine the potential role of AP180 in release site clearance. It 

will be most thrilling to determine the identity of an as-yet unknown potentially exocytic protein 

targeted by AP180. Since the ANTH domain of AP180 specifically targets a small, conserved helical 

segment within the SNARE domain of e.g. VAMP2 and VAMP8, the next steps will be to test for 

potential interactions of AP180 and VAMPs in IHCs, whereby VAMP1-3 and VAMP7 have already 

been excluded. Given that the motif of the sequence targeted by AP180 is already known (and 
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potentially conserved in IHCs), one may perform single cell mRNA sequencing and screen for 

proteins containing this motif. Moreover, pull-downs using AP180 protein and a homogenate of 

organ of Corti tissue combined with mass spectrometry may help to identify the exocytic protein. 

These experiments may display the first steps in the identification of the hitherto unknown release 

machinery in IHCs. 

I already pointed out that endophilin mutants show disturbances in protein homeostasis due to the 

involvement of endophilin in autophagy. Endophilin 1/2-DKOs may be an interesting candidate to 

study protein homeostasis in IHCs, as the earliest onset of cellular dysregulations may be expected in 

those mutants (except from TKOs). Apart from the very high rates of SV turnover, IHCs have to deal 

with the continuous regeneration of cytomatrix proteins like actin and tubulin, that are not only 

required for SV transport but also for the maintenance of cell tension and cell polarity, as well as for 

the stabilization of stereocilia. Therefore, it is likely that protein formation and degradation systems 

are likewise adapted, which makes IHCs an interesting model to study autophagy.  
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APPENDIX 

a) ADDITIONAL MATERIAL FOR THE ENDOPHILIN-A STUDY 

For Appendix Tables S1-S8 (related to figures created by the coauthors) please see the Supplemental 

Information for Kroll et al., 2019. 

Appendix Table S9. Statistics for quantifications of structures in the ribbon proximity in IHCs from p15-

p17 Wt and endophilin-deficient mice (related to Fig. 2-7). 

N cytosolic SVs Kruskal-Wallis KWS = 130 p < 0.0001 

Post-hoc Dunn's Wt 1-SKO 1/2-DKO 1/3-DKO 

Wt  <0.0001 0.0008 0.6240 

N of ELVs Kruskal-Wallis KWS = 70.17 p < 0.0001 

Post-hoc Dunn's Wt 1-SKO 1/2-DKO 1/3-DKO 

Wt  >0.9999 <0.0001 0.0027 

All coated 

structures 
Kruskal-Wallis KWS = 66.1 p < 0.0001 

Post-hoc Dunn's Wt 1-SKO 1/2-DKO 1/3-DKO 

Wt  0.0252 <0.0001 0.0005 

Coated vesicles Kruskal-Wallis KWS = 27.13 p < 0.0001 

Post-hoc Dunn's Wt 1-SKO 1/2-DKO 1/3-DKO 

Wt  <0.0001 0.2076 >0.9999 

Coated vacuoles Kruskal-Wallis KWS = 33 p < 0.0001 

Post-hoc Dunn's Wt 1-SKO 1/2-DKO 1/3-DKO 

Wt  >0.9999 <0.0001 0.0628 

Coated pits Kruskal-Wallis KWS = 79.67 p < 0.0001 

Post-hoc Dunn's Wt 1-SKO 1/2-DKO 1/3-DKO 

Wt  >0.9999 <0.0001 0.0007 

C. pits at ELVs Kruskal-Wallis KWS = 6.503 p = 0.0895 

 

Appendix Table S10. Statistics for quantifications of structures in the ribbon proximity with comparisons 

of all genotypes with each other in IHCs from p15-p17 Wt and endophilin-deficient mice (related to 

Fig. 2-7). 

N cytosolic SVs Kruskal-Wallis KWS = 130 p < 0.0001 

Post-hoc Dunn's Wt 1-SKO 1/2-DKO 1/3-DKO 

Wt  <0.0001 0.0016 >0.9999 

1-SKO   <0.0001 <0.0001 

1/2-DKO    <0.0001 

N of ELVs Kruskal-Wallis KWS = 70.17 p < 0.0001 

Post-hoc Dunn's Wt 1-SKO 1/2-DKO 1/3-DKO 

Wt  >0.9999 <0.0001 0.0053 

1-SKO   <0.0001 0.0026 

1/2-DKO    <0.0001 
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All coated 

structures 
Kruskal-Wallis KWS = 66.1 p < 0.0001 

Post-hoc Dunn's Wt 1-SKO 1/2-DKO 1/3-DKO 

Wt  0.0505 <0.0001 0.0009 

1-SKO   <0.0001 >0.9999 

1/2-DKO    <0.0001 

Coated vesicles Kruskal-Wallis KWS = 27.13 p < 0.0001 

Post-hoc Dunn's Wt 1-SKO 1/2-DKO 1/3-DKO 

Wt  0.0002 0.4152 >0.9999 

1-SKO   0.0256 <0.0001 

1/2-DKO    0.4251 

Coated vacuoles Kruskal-Wallis KWS = 33 p < 0.0001 

Post-hoc Dunn's Wt 1-SKO 1/2-DKO 1/3-DKO 

Wt  >0.9999 <0.0001 0.1256 

1-SKO   <0.0001 0.3183 

1/2-DKO    0.0053 

Coated pits Kruskal-Wallis KWS = 79.67 p < 0.0001 

Post-hoc Dunn's Wt 1-SKO 1/2-DKO 1/3-DKO 

Wt  >0.9999 <0.0001 0.0014 

1-SKO   <0.0001 <0.0001 

1/2-DKO    0.0004 

C. pits at ELVs Kruskal-Wallis KWS = 6.503 p = 0.0895 

 

Appendix Table S11. Statistics for synaptic vesicles around the synaptic ribbon in IHCs from p15-p17 Wt 

and endophilin-deficient mice (related to Fig. 2-8). 

N of RA-SVs 

(random sections) 
one-way ANOVA F (3, 417) = 38.4 p <0.0001 

Post-hoc Tukey Wt 1-SKO 1/2-DKO 1/3-DKO 

Wt  0.2315 0.0001 0.0012 

N of MP-SVs 

(random sections) 
one-way ANOVA F (3, 425) = 17.6 p <0.0001 

Post-hoc Tukey Wt 1-SKO 1/2-DKO 1/3-DKO 

Wt  0.1959 <0.0001 <0.0001 

Distal:proximal 

(random sections) 
Kruskal-Wallis KWS = 82.4 p <0.0001 

Post-hoc Dunn's Wt 1-SKO 1/2-DKO 1/3-DKO 

Wt  >0.9999 <0.0001 <0.0001 
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Appendix Table S12. Statistics for quantifications of synaptic vesicles around the ribbon with comparisons 

of all genotypes with each other in IHCs from p15-p17 Wt and endophilin-deficient mice (related to 

Fig. 2-8). 

N of RA-SVs 

(random sections) 
one-way ANOVA F (3, 417) = 38.4 p <0.0001 

Post-hoc Tukey Wt 1-SKO 1/2-DKO 1/3-DKO 

Wt  0.3466 <0.0001 0.0022 

1-SKO   <0.0001 <0.0001 

1/2-DKO    <0.0001 

RA-SVs distance 

(random sections) 
Kruskal-Wallis KWS = 15.3 p = 0.0015 

Post-hoc Dunn's Wt 1-SKO 1/2-DKO 1/3-DKO 

Wt  >0.9999 0.5220 0.0746 

1-SKO   0.0548 0.0027 

1/2-DKO    >0.9999 

N of MP-SVs 

(random sections) 
one-way ANOVA F (3, 425) = 17.6 p <0.0001 

Post-hoc Tukey Wt 1-SKO 1/2-DKO 1/3-DKO 

Wt  0.1959 <0.0001 <0.0001 

1-SKO   <0.0001 0.0075 

1/2-DKO    0.0132 

MP-SVs distance 

(random sections) 
one-way ANOVA F (3, 423) = 3.31 p = 0.02 

Post-hoc Tukey Wt 1-SKO 1/2-DKO 1/3-DKO 

Wt  >0.9999 0.2293 0.8930 

1-SKO   0.2334 0.8753 

1/2-DKO    0.0111 

apical-basal 

(random sections) 
Kruskal-Wallis KWS = 82.4 p <0.0001 

Post-hoc Dunn's Wt 1-SKO 1/2-DKO 1/3-DKO 

Wt  >0.9999 <0.0001 0.0002 

1-SKO   <0.0001 <0.0001 

1/2-DKO    0.0019 

 

Appendix Table S13. Statistics for quantifications of EM samples after stimulation in IHCs from p15-p16 

Wt and endophilin-deficient mice (related to Fig. 2-9). 

N of RA-SVs Mann-Whitney test U = 368 p <0.0001 

N of MP-SVs Mann-Whitney test U = 783 p = 0.0438 

cytosolic SVs unpaired t test t = 4.67 p <0.0001 

ELVs Mann-Whitney test U = 264 p <0.0001 

coated structures Mann-Whitney test U = 312 p <0.0001 

Coated vesicles Mann-Whitney test U = 327 p <0.0001 

Coated vacuoles Mann-Whitney test U = 882 p = 0.3707 

Coated pits Mann-Whitney test U = 766 p = 0.0618 

C. pits at ELVs Mann-Whitney test U = 623 p = 0.001 
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Appendix Fig. S1: AP-2 distribution appears unaltered in Endophilin1/3-DKO IHCs. Combined loss of 

endophilin A1 and A3 does not appear to majorly affect AP-2 expression in P15 IHCs or afferent auditory 

nerve fibers. All samples were processed in parallel and imaged with identical settings. Scale bar: 5 µm. 

 

 

Appendix Fig. S2: Additional data from electron microscopy experiments. (A) Electron tomography 

virtual sections from Wt, 1/2-DKO and 1/3-DKO. Scale bar 100 nm. (B) Quantification of distances between 

MP-SV and AZ membrane revealed no significant difference. Wt n=78 sections from N=2 animals; 1-SKO 

n=95, N=3; 1/2-DKO n=135, N=3; 1/3-DKO n=176, N=6. one- -hoc test. 

(C, D) The average area of ELVs was significantly increased in 1/3-DKOs (C), the number of ELVs per area of 

cytosol was higher in 1/2-DKOs compared to Wt, both being valid for all ELVs within 1µm from the ribbon. 

Wt n=72/N=2; 1-SKO n=106/N=3; 1/2-DKO n=129/N=3; 1/3-DKO n=172/N=6; Kruskal-Wallis test followed 

by Du ; **p<0.01; ***p<0.001. 
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b) ADDITIONAL MATERIAL FOR THE AP180 STUDY 

Appendix Table S14. Statistics for quantification of the subcellular distribution of AP180 after stimulation 

(related to Fig. 3-2B). 

Data Wt rest Wt stim Statistical test t/ U p-value 

3-2Bi: Membrane  103 ± 5.7 107 ± 4.8 -test t = 0.604 p = 0.5468 

3-2Bii: Cytosol (2 µm)  53.3 ± 3.6 37 ± 2.7 -test t = 3.69 p = 0.0003 

 

Appendix Table S15. Statistics for Vglut3 and otoferlin fluorescence levels and for numbers of ribbon 

synapses in Wt and AP180-KO mice (related to Fig. 3-3).  

Data Avg. Wt Avg. KO Statistical test t/ U p-value 

3Ai: Otoferlin  100 ± 4.6 95.7 ± 6.0 -test t = 1.37 p = 0.17 

3Bi: Vglut3  100 ± 6.6 82.5 ± 6.1 -test t = 5.34 p < 0.0001 

3Ci: N ribbon synapses 14.5 ± 0.4 14.5 ± 0.4 Stud -test t = 0.054 p = 0.96 

 

Appendix Table S16. Statistics for quantifications of EM tomograms from ribbon synapses of Wt and 

AP180-KO mice (related to Fig. 3-4). 

Data Avg. Wt Avg. KO Statistical test t/ U p-value 

4E: N of RA-SVs 47.7 ± 1.7 36.4 ± 3.2 -test t = 3.1 p = 0.0062  

4F: N of MP-SVs 18.5 ± 1.5 14.4 ± 0.9 -test t = 2.31 p = 0.0328 

4G: Distance to membrane 

(MP-SVs) [nm] 

- - Kolmogorov-

Smirnov test 

D = 0.239 p = 0.0002 

4G: Avg.# distance to 

membrane (MP-SVs) [nm]  

20.1 ± 0.7 26.7 ± 2.1 Mann-Whitney U 

test 

U = 21 p = 0.0288 

4H: N of coated structures 8 ± 0.7 3.6 ± 0.5 -test t = 4.71 p = 0.0002 

4H: N of coated vesicles 6.9 ± 0.8 1.8 ± 0.3 Mann-Whitney U 

test 

U = 1 p < 0.0001 

4H: N of coated pits 0.4 ± 0.2 0.7 ± 0.3 Mann-Whitney U 

test 

U = 40.5 p = 0.4699 

4H: N of coated pits at 

ELVs 

0.7 ± 0.3 1.1 ±0.2 Mann-Whitney U 

test 

U = 34 p = 0.1626 

4I: N of cytosolic SVs 90.2 ± 7.9 37 ± 4.6 -test t = 5.82 p < 0.0001 

4J: Diameter of cytosolic 

SVs [nm] 

- - Kolmogorov-

Smirnov test 

D = 0.44 p < 0.0001 

4J: Avg.# diameter of 

cytosolic SVs [nm] 

44.1 ± 0.4 48.1 ± 0.6 -test t = 5.56 p < 0.0001 

4K: N of ELVs 21.3 ± 2.3 22.2 ± 1.8 -test t = 0.304 p = 0.7645 

4L: Avg.# ELV volume 

[nm³] 

569,333 ± 

28,301 

1,210,064 ± 

225,248 

Mann-Whitney U 

test 

U = 1 p = 0.0043 

#: averages of each tomogram used for statistical analysis 
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Appendix Table S17. Statistics for quantifications of EM tomograms from ribbon synapses of Wt and 

AP180-KO mice after stimulation (related to Fig. 3-5). 

Data Avg. Wt 

stim 

Avg. KO 

stim 

Statistical test t/ U p-value 

7D: N of RA-SVs 38.6 ± 3.6 34.1± 1.6 Mann-Whitney U 

test 

U = 39.5 p = 0.445 

7E: N of MP-SVs 16.1 ± 1.9 16.1 ± 1.3 Mann-Whitney U 

test 

U = 45 p = 0.7207 

Avg.# distance to 

membrane (MP-SVs) [nm] 

22.3 ± 2.3 24.4 ± 1.4 -test t = 0.77 p = 0.4505 

7F: N of cytosolic SVs 58.9 ± 6.1 34.4 ± 2.8 Mann-Whitney U 

test 

U = 12 p = 0.0026 

N of ELVs 17.7 ± 3.0 24.0 ± 2.5 Student -test t = 1.6194 p = 0.1127 

7H: Avg.# ELV volume 

[nm³] 

770,287 ± 

110,267 

1,418,517 ± 

288,188 

Mann-Whitney U 

test 

U = 22 p = 0.0355 

7I: N of coated structures 5.3 ± 0.4 2.3 ± 0.7 Mann-Whitney U 

test 

U = 11.5 p = 0.0022 

7I: N of coated vesicles 3.7 ± 0.4 1.6 ± 0.5 Mann-Whitney U 

test 

U = 12 p = 0.002 

7I: N of coated pits 0.4 ± 0.2 0.3 ± 0.2 Mann-Whitney U 

test 

U = 45 p = > 0.999 

7I: N of coated pits at ELVs 1.2 ± 0.1 0.5 ± 0.2 Mann-Whitney U 

test 

U = 32 p = 0.006  

#: averages of each tomogram used for statistical analysis 
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Appendix Table S18. Statistics for tethering analysis in Wt and AP180-KO mice (related to Fig. 3-5G). 

7G: Untethered SV Single-tethered 

SV 

Multi-tethered SV Docked SV 

Avg. Wt rest 48.0 ± 3.1 % 40.4 ± 1.7 % 10.1 ± 2.1 % 1.6 ± 1.1 % 

Avg. KO rest 46.4 ± 3.9 % 38.0 ± 2.6 % 14.8 ± 3.5 % 0.8 ± 0.8 % 

Avg. Wt stim 22.6 ± 3.6 % 54.1 ± 2.6 % 19.9 ± 3.0 % 3.4 ± 1.9 % 

Avg. KO stim 20.0 ± 5.6 % 30.1 ± 4.3 % 39.6 ± 6.4 % 10.3 ± 2.6 % 

Data Statistical test t/ U/ F p-value 

Untethered SV one-way ANOVA F = 13.2296 p < 0.0001 (***) 

Post-hoc Tukey Wt rest KO rest Wt stim KO stim 

Wt rest  0.8999947 0.0010053 0.0010053 

KO rest   0.0017751 0.0010053 

Wt stim    0.8999947 

Data Statistical test t/ U/ F p-value 

Single-tethered SV one-way ANOVA F = 11.5683 p < 0.0001 (***) 

Post-hoc Tukey Wt rest KO rest Wt stim KO stim 

Wt rest  0.8999947 0.0093707 0.0724638 

KO rest   0.0025877 0.2452059 

Wt stim    0.0010053 

Data Statistical test t/ U/ F p-value 

Multi-tethered SV one-way ANOVA F = 10.5239 p < 0.0001 (***) 

Post-hoc Tukey Wt rest KO rest Wt stim KO stim 

Wt rest  0.8100285 0.3117797 0.0010053 

KO rest   0.7927544 0.0010053 

Wt stim    0.0082096 

Data Statistical test t/ U/ F p-value 

Docked SV one-way ANOVA F = 6.3848 p = 0.0016 (**) 

Post-hoc Tukey Wt rest KO rest Wt stim KO stim 

Wt rest  0.8999947 0.8603228 0.0044824 

KO rest   0.6919083 0.0023884 

Wt stim    0.0368911 
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ABBREVIATIONS 

 

ADBE Activity-dependent bulk endocytosis LRRK2 Leucine-rich repeat kinase 2 

AMPA 

 

-amino-3-hydroxy-5-methyl-4-

isoxazolepropionic acid receptor 

MP-SV Membrane-proximal synaptic vesicle 

ANTH AP180 N-terminal homology NSF N-ethylmaleimide-sensitive factor 

AP-2 Adaptor protein 2 OHC Outer hair cell 

AP180 Assembly protein 180 PI(4,5)P2 Phosphatidylinositol 4,5-bisphosphate 

AZ Active zone RA-SV Ribbon-associated synaptic vesicle 

BAR Bin-Amphiphysin-Rvs RIM Rab3-interacting molecule 

CALM 

 

Clathrin-assembly lymphoid myeloid 

leukaemia protein 

RIM-BP RIM-binding protein 

CAZ Cytomatrix of the active zone RRP Readily-releasable pool 

CCP Clathrin-coated pit SGN Spiralganglion neuron 

CCV Clathrin-coated vesicle SH3 SRC Homology 3 

CME Clathrin-mediated endocytosis SKO Single-knockout 

CtBP2 C-terminal-binding protein 2 SNAP-25 Synaptosomal nerve-associated protein 

25 

DKO Double-knockout SNARE 

 

SNAP (Soluble NSF Attachment 

Protein) Receptor 

EEA1 Early endosomal antibody 1 SRP Slowly-releasable pool 

ELV Endosome-like vacuole SV Synaptic vesicle 

EPSC Excitatory postsynaptic current TKO Triple-knockout 

HPF High-pressure freezing VAMP Vesicle associated membrane protein 

IHC Inner hair cell Vglut3 Vesicular glutamate transporter 3 

KO Knockout UFE Ultrafast endocytosis 

Lamp-1 Lysosomal-associated membrane 

protein 1 

Wt Wildtype 

LDCV Large dense core vesicle   
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