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1. Introduction

Magnetic resonance imaging (MRI) is one of the techniques of choice in clinical radiology.
Since its introduction in the 1980s, its use has been steadily expanded and it is now
routinely prescribed for orthopedic, neurological, gastrointestinal, and cardiac indications.
However, as the number of MRI scanners is limited, waiting times for MRI exams have
remained long.[1]

A large speedup has been achieved in the 1980s by the introduction of faster imaging
sequences, which make use of increased gradient performance, �rst and foremost with
the introduction of fast low-angle shot (FLASH).[2–4]

Since then, MRI has steadily gotten faster and more detailed: the increase in �eld
strength from 1.5 T to 3 T in clinical practice has provided increased signal-to-noise ratio
(SNR), while the better gradient performance in newer scanners has done its share to
reduce acquisition times. Today, the new limit on acquisition speed is no longer the
hardware, but rather the time required for su�cient sampling and physiological limits
on gradient-induced peripheral nerve stimulation and heating of the human body by the
radio frequency (rf) excitation pulses.

The next major innovation came with parallel imaging [5–7]: by using multiple receive
coils and leveraging their inherent spatial redundancy, sampling below the Nyquist limit
(commonly referred to as undersampling) is possible. While FLASH reduced acquisition
times form minutes to seconds [4], parallel imaging allows reconstruction of images
from data acquired at fractions of a second [8]. However, parallel imaging needs accurate
calibration of the coil sensitivity pro�les. Classically, this is done as a pre-processing step
followed by the image reconstruction, which can then be described as a linear inverse
problem for the image. However, this is suboptimal, as it does not make full use of the
available data. Instead, the non-linear problem in which both coil sensitivities and image
are regarded as unknowns can also be solved directly. In particular, regularized non-
linear inverse reconstruction (NLINV) [9] estimates image and coil sensitivity pro�les
simultaneously, thereby making optimal use of the available data.

A further innovation came in the form of compressed sensing (CS): From lossy signal
compression (such as JPEG and mp3), it is known that real signals are compressible.
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1. Introduction

That means that they contain fewer degrees of freedom than, for example, their pixel
count would indicate. More precisely, there is some transformation (such as the discrete
cosine transform used in JPEG and mp3) under which the signal representation is sparse,
meaning that this transformed representation only contains few important coe�cients.
As Block, Uecker, and Frahm [10] and Lustig, Donoho, and Pauly [11] showed, this can
also be exploited in MRI, by using an incoherent acquisition and constraining images to
be sparse under a certain transformation. Compressed sensing can naturally be combined
with parallel imaging, allowing reconstruction form even fewer data.

These approaches all improve on the reconstruction of images in various settings.
Separately, there has been a continuing development of model-based reconstruction
methods [12–14]. Instead of the comparatively simple signal model used in conventional
MRI image reconstruction, more of the physical processes in MRI are modeled1, such as
relaxation constants or magnetic �eld properties like inhomogeneity and o�-resonance.
On one hand, this enables e�cient reconstruction of the corresponding parameter maps,
but on the other hand it leads to a stricter signal model which is more easily violated, if
the actual measurement does not match the assumptions. Since violations of the signal
model, both in imaging and in model-based methods, cause artifacts and unusable results,
avoiding them is paramount.

In this thesis, I will investigate how multi-dimensional extensions to regularized non-
linear inverse reconstruction (NLINV) can be used to increase reliability, �exibility and,
robustness in image reconstruction. In contrast to model-based approaches, this is done
without using speci�c assumptions about the underlying physical laws. This idea will be
explored in di�erent experimental settings such as imaging with phase constraints, phase
singularities, non-Cartesian acquisitions and real-time MRI, and cardiac self-gating.

In Chapter 2, I will provide a short introduction into the physical background of MRI and
into the mathematics needed for MRI reconstruction. Chapter 3 gives basic information
about the experimental setup and the used software environment.

Based on the core idea of adding additional degrees of freedom to make image re-
construction more robust, Chapter 4 introduces extended non-linear inversion based on
ESPIRiT (ENLIVE), a novel method for parallel imaging which relaxes the MRI model by
allowing multiple images and set of coil sensitivity pro�les, increasing the dimensionality
of the problem. It integrates ideas from ESPIRiT [15], into NLINV, substantially improving
upon both of these methods. ENLIVE provides robustness against an insu�cient �eld

1In principle, all MRI methods are necessarily based on some signal model. The term model-based recon-
struction, however, has traditionally been reserved for methods which employ models more complicated
than the simple Fourier-based signal model.
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of view (FOV) in parallel imaging, phase singularities and aliasing in phase-constraint
imaging. As this method is of wider interest, I published it in “Scienti�c Reports” and the
corresponding manuscript is reprinted as Section 4.1.

In Chapter 5, another way of extending image reconstruction is explored. This approach
�rst extends NLINV to arbitrary dimensions, such as time, space shifts and cardiac and
respiratory state. Correlations in the multi-dimensional data are then exploited using
variational regularization terms, without assuming a speci�c model. In particular, this
includes the the extension of NLINV to compressed sensing.

Chapter 6 introduces a method for banding-free reconstruction in balanced steady-state
free precession (bSSFP), by shifting the phase increment of the rf-pulse and including
these phase cycles as additional coils in the reconstruction.

Finally, Chapter 7 summarizes the �ndings of each of the preceding chapter and includes
an outlook towards future work.
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2. Magnetic Resonance and Image
Reconstruction

2.1. Principles of Magnetic Resonance Imaging

This section is based on Chapter 2 of Holme [16], which follows Chapters 1 and 9 of
Haacke et al. [17]. A general introduction into nuclear magnetic resonance (NMR) and
magnetic resonance imaging (MRI) can be found for example in Bernstein, King, and
Zhou [18] or Haacke et al. [17].

Magnetic resonance imaging (MRI) is fundamentally based on the interaction of the
nuclear magnetic moment, generated by the nuclear spin, with an external magnetic �eld
B0. While di�erent nuclei can be used in MRI, the most common one is the hydrogen
nucleus found in water, fat and other molecules.

When such a hydrogen nucleus is placed in an external magnetic �eld B0, there is
an energy di�erence of ~γB0 between the parallel and anti-parallel alignment of the
spin because of the Zeeman e�ect, where ~ is the reduced Planck constant and γ is the
nucleus-dependent gyromagnetic ratio.

With this, the spin, and thereby the magnetic moment of the nucleus, is constrained
to two values in the direction parallel to the external magnetic �eld. There is however,
no constraint on the magnetization orthogonal to the magnetic �eld, which therefore
proceeds to precess around the direction of the external magnetic �eld, analogously to
how a classical magnetic moment would behave. Their precession frequency is the Larmor
frequency ω0 = γB0. However, since there is no imposed coherence on the precession of
di�erent nuclei, they will not superimpose constructively in the transversal plane and
cancel out in a sample made up of a multitude of atoms. But as a consequence of the
aforementioned energy di�erence between parallel and anti-parallel alignment, there will
be a bias towards alignment parallel to the external magnetic �eld, as that is the state of
lower energy. At body temperature, this energy di�erence is small compared to thermal
energy, leading to a spin excess of approximately N ~ω0/2kbT [19, pg. 4], where kb is the
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2. Magnetic Resonance and Image Reconstruction

Boltzmann constant, T the temperature and N the total number of spins in the sample.
For an external �eld of 3 T, for example, the spin excess at body temperature is about 20
per million. While this longitudinal magnetization is small, it is still large enough for
MRI.

Using a second, time-varying magnetic �eld, it is possible to create a macroscopic
transversal magnetization. Resonant excitation of the nuclear spins is necessary for
this, that means that the frequency of the second magnetic �eld B1(t) is the Larmor
frequency. While originally oriented parallel to B0, such an excitation pulse B1(t) tilts
this magnetization towards the transversal plane. As the Larmor frequency is in the radio
frequency range for commonly used �eld strengths and nuclei, such pulses are called
radio frequency (rf) pulses. The angle by which the equilibrium magnetization is de�ected
is proportional to the time integral of the envelope of B1(t) and a pulse with a de�ection
of α is called an α-pulse. Microscopically, the action of an rf pulse can be viewed as
a combination of two e�ects: (1) it imposes phase coherence on the precessing spins,
thereby creating a macroscopic transversal magnetization and (2) it excites spins from the
lower energy parallel state into the higher energy anti-parallel state, thereby reducing
the longitudinal magnetization. The precession of the magnetization after an excitation
pulse induces a time-varying magnetic �ux in nearby coils, which can be detected.

After excitation, however, the system will return into its equilibrium state, where the
bulk magnetization is parallel to the external �eld.

In longitudinal direction, spins excited into the higher-energy anti-parallel state will �ip
back into the parallel state, thereby leading to a recovery of the longitudinal magnetization
according to:

M‖(t) = M0
(
1 − e−

t
T1

)
with the equilibrium magnetization M0 and the spin-lattice relaxation time (T1).

In the transversal plane, individual spins are also a�ected by the magnetic �elds of their
neighbors, leading to slightly di�erent Larmor frequencies for each spin. This in turn
leads to a loss of coherence and thereby to a loss of transversal magnetization according
to:

M⊥(t) = M0e−
t
T2

where T2 is the spin-spin relaxation time (T2).

Typical values ofT2 are between 1 ms to 100 ms; typical values ofT1 are between 100 ms
to 1000 ms.

The excitation process and both T1 and T2 relaxation can be described concisely using
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2.1. Principles of Magnetic Resonance Imaging

the Bloch equation [20], a di�erential equation for the macroscopic magnetization M :

dM
dt = M × γB +

©­­­«
−
Mx
T2

−
My
T2

M0−Mz
T1

ª®®®¬ (2.1)

with B = B0 + B1(t).
Applying an excitation pulse to a sample leads to a signal decaying with T2 called

free induction decay (FID). For imaging, it is often advantageous to create signals at
later points, which are called echoes. The two most important types are spin echoes and
gradient echoes.

Spin Echo After an initial excitation pulse, the spins begin to dephase due to T2 decay.
By then applying a 180°-pulse at a time τ after the excitation pulse, the spins are �ipped
into the transversal plane. This means that spins which accumulated excess phase because
of a locally higher Larmor frequency now lag behind, while spins which precess slower
are now leading. At a time T = 2τ , these spins are exactly in phase again, creating an
echo. The time between initial excitation pulse and the echo is called TE, the echo time.
The echo is still subject to T2 decay, so it is attenuated by a factor e−T E/T2 . A diagram of a
spin echo is shown in Figure 2.1(a).

Gradient Echo Here, a magnetic gradient �eld is applied after the excitation pulse,
dephasing the spins. By then applying a gradient of opposite polarity, they can be rephased
again, creating an echo when the integrated area under the gradients is zero. Here, in
contrast to the spin echo, magnetic �eld inhomogeneities do not cancel out. Therefore,
the echo is attenuated by the shorter e�ective spin-spin relaxation time (T ∗2 ) according to
e−T E/T ∗2 , instead of T2. A diagram depicting a gradient echo is shown in Figure 2.1(b).

To generate an image from these signals it is necessary to relate the signal to spatial
position. This can be done by exploiting the linear dependence of the Larmor frequency
on the magnetic �eld strength: by applying a gradient �eld G(t) varying linearly in,
for example, the x-direction, the total magnetic �eld becomes B(x) = B0 + xG(t). This
changes the Larmor frequency to ω(x) = ω0 + γxG(t). Since the Larmor frequency now
depends on the spatial position, this is called frequency encoding. The recorded signal
s(t) in MRI depends on the spin density ρ(r ) and on the phase ϕ(x,t) = −

∫ t
0ω(r , t) dt of

the spins [17, pg. 141]:

s(t) =

∫
ρ(r )ei(ω0t+ϕ(r ,t)) d3r .

7



2. Magnetic Resonance and Image Reconstruction

(a) (b)

Figure 2.1: Diagram depicting a (a) spin echo and (b) a gradient echo. For the spin
echo in (a), no gradients are needed: the singal decays after an initial
90°. By applying a 180°-pulse after TE/2, the spin rephase at TE , creating an
echo. For the gradient echo in (b), the spins are dephased with a gradient
after the initial 90°-pulse. They are subsequently rephased with a gradient
of opposite polarity, leading to an echo when the total area under the
gradients is zero. Diagrams adapted from [21].

For a one dimensional object in x-direction, the signal after frequency encoding and
demodulation of ω0 reduces to:

s(t) =

∫
ρ(x)e−i

∫ t
0 γxG(t) dt dx .

Introducing 2πk(t) :=γ
∫ t

0G(t) dt leads to:

s(k) =

∫
ρ(x)e−2πikx dx

where the time dependence is now implicit in k . s(k) is exactly the Fourier transform of
ρ(x), and so the spin density can be obtained from a frequency-encoded measurement as
the inverse Fourier transform of s(k):

ρ(x) =

∫
s(k)e2πikx dk

This k can be identi�ed as a vector in the space of spatial frequencies, which is called
k-space in MRI. k can be determined as the integral of the applied gradient; this time-
evolution of k is referred to as the k-space trajectory.

The gradient echo sequence shown in Figure 2.1(b) is already a sequence which includes
frequency encoding: during echo formation, a gradient constant in time is present. This
gradient will encode spatial positions in the frequencies of the resulting signal. The
gradient direction during signal acquisition is called the readout direction. In this view of
the gradient echo sequence, the echo is identi�ed with the central k-space point.

For real three-dimensional objects, the k-space formalism can be used to collect data

8



2.1. Principles of Magnetic Resonance Imaging

along a three-dimensional k-space trajectory, thereby sampling the three-dimensional
spin density

s(k) =

∫
ρ(r )e−2πikr d3r . (2.2)

In practice, it is not possible to sample the signal continuously but only at discrete time
points.

Alternatively, the dimensionality of the problem can be reduced by only exciting a slice
of the object to begin with. This is possible through the same idea: The Larmor frequency
depends linearly on the magnetic �eld. Since excitation needs to be resonant, a gradient
orthogonal to the desired slice is turned on during excitation. By tuning the frequency of
the excitation to the Larmor frequency for the desired slice, only that slice is excited. In
real settings, an excitation pulse will always have a �nite frequency content, leading to
excited slices of a certain thickness.

Two common 2D trajectories including slice selection, Cartesian and radial sampling,
are shown in Figure 2.2. While arbitrarily long trajectories are possible in theory, real
trajectories are limited by T ∗2 decay and o�-resonance e�ects caused by imperfect mag-
netic �elds. Therefore, real trajectories tend to use new magnetization for, for example,
each line in k-space, as shown in Figure 2.2. For fast imaging trajectories, residual mag-
netization after signal acquisition is often purposefully destroyed (spoiled) or rephased,
leading to di�erent acquisition techniques discussed in Section 2.2. However, using new
magnetization for each k-space line necessitates acquisition of a large number excitations,
which is why MRI is generally a comparatively slow technique.

In Cartesian imaging, gradients between excitation and read-out are used to shift
the acquired slice in k-space in a direction orthogonal to the readout direction. This is
called phase encoding. By acquiring lines in k-space with the same separation as the
separation between samples in readout direction, the acquired points lie on a Cartesian
grid, which gives the sequence its name. Instead of slice selection, phase encoding can
also be extended into the third dimension.

In radial encoding instead, a number of lines passing through the center of k-space
(called spokes, because of the analogy to spokes on a wheel) are acquired. This is ad-
vantageous for fast imaging, as the center of k-space is sampled in each acquisition.
Furthermore, each spoke contains image information of equal importance. This is in
contrast to Cartesian imaging, where, for example, the important center of k-space is
only sampled once. This is an advantage when only few radial spokes are acquired, as in
undersampled MRI, which will be explained in the last part of this section. An in-depth
discussion is found, for example, in Block [22].

9



2. Magnetic Resonance and Image Reconstruction

�

(a)

�

(b)

Figure 2.2: Sequence diagram for a single repetition (TR) and the corresponding
k-space diagrams for (a) Cartesian and (b) radial sampling. The dashed
gradient line in the sequence diagram corresponds to the dashed k-space
line in the k-space diagram. Both contain an initial α-pulse for excita-
tion and a slice selection gradient. In (a) Cartesian encoding, only the
phase-encoding gradient changes from TR to TR, the frequency-encoding
gradient stays the same. In (b) radial encoding, the readout gradient is
e�ectively rotated, it therefore has both components in both x in y in
general. Diagrams adapted from [21].
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2.2. Acquisition Sequences

In modern MRI imaging, multiple receive coils are used acquire the signal from an
object. This is advantageous because it increases signal-to-noise ratio (SNR), as smaller
coils can be placed closer to the object and multiple coils can, together, cover the same
area as one larger coil. However, image reconstruction becomes more involved, as each
coil only contains information about the part of the image where it is sensitive. This
changes the signal equation to

sj(k) =

∫
cj(r )ρ(r )e−2πikr d3r . (2.3)

sj is the signal detected by the jth coil and cj is the spatial sensitivity pro�le (also called coil
pro�le or coil sensitivity pro�le) of that coil. To calculate a single image from the individual
coil images, their root-sum-of-squares is normally calculated [23]. The coil sensitivity
pro�les are normally not known beforehand, and can change from measurement to
measurement, since interactions with the imaged object can change the coil sensitivity
pro�les. They are therefore often estimated form speci�cally acquired pre-scans or from
part of the acquired data in a step before reconstruction, called coil sensitivity calibration.

When using multiple coils, part of the spatial information is contained in the spatial
location of the coils. This information can be used to replace time consuming sampling
of k-space in a technique called parallel imaging, discussed in more detail in Section 2.3.1.
In Cartesian imaging, this speedup comes from simply skipping phase-encoding lines; in
radial imaging viewer radial spokes are acquired. Sampling of k-space below the Nyquist
limit is referred to as undersampling and is responsible for a large part of the speedup
MRI has seen in the last 30 years.

Reconstruction of undersampled data requires special techniques to avoid aliasing in
the reconstructed images. Important parallel imaging techniques are sensitivity encoding
(SENSE) [6], generalized autocalibrating partially parallel acquisition (GRAPPA) [7], and,
especially for this thesis, regularized non-linear inverse reconstruction (NLINV) [9].
NLINV is described in more detail in Section 2.3.2.

2.2. Acquisition Sequences

2.2.1. FLASH

Fast low-angle shot (FLASH) is a gradient-echo sequence �rst introduced by Frahm et al.
[2]. It uses excitation pulses with small �ip angles of less that 15°. Combined with fast
(TR is usually less than 10 ms and often close to 2 ms) and continuous imaging, this leads
to the appearance of a steady-state, where the longitudinal magnetization lost to the

11



2. Magnetic Resonance and Image Reconstruction

excitation pulse is recovered over TR. This also explains the small �ip angles: With larger
�ip angles, more of the longitudinal magnetization is available initially, leading to higher
initial signals. However, as T1 recovery over the short TR is not fast enough to build up a
lot of magnetization, leaving less magnetization for the next excitation. Therefore, small
�ip angles often lead to higher steady state signal. The angle which maximizes the signal
for given TR andT1 is the Ernst angle [18, pg. 430] αE = arccos(e−TR/T1). For typical values
of, for example, TR = 3 ms and T1 = 1500 ms, it is αE = 3.6°.

During such short TRs, even the transversal magnetization does not decay completely.
Since this would have undesirable e�ects on the subsequent excitation, the transversal
magnetization needs to be destroyed. This can be achieved by using strong gradients
after readout, called crusher gradients, which destroy the transversal coherence. Another
possibility is rf spoiling: here, the phase of the excitation pulse is changed in each TR,
for example in a random manner [24]. This also prevents the buildup of transversal
magnetization and does not need the time consuming crusher gradients.

2.2.2. Balanced Steady-State Free Precession

While residual transverse magnetization at the end of TR is an issue in FLASH, it is
exploited instead in balanced steady-state free precession (bSSFP): by balancing all gradi-
ents (slice selection gradient, readout gradient and possible phase-encoding gradients)
no gradient dephasing of the transversal magnetization occurs. By applying the next
excitation pulse with opposite phase (phase o�set of 180°), this transversal magnetization
can be reused. By applying successive pulses with 180° phase o�set and generating the
echo at TE = TR/2, the transversal magnetization at the end of TR resembles Figure 2.3a,
jumping from +α to −α and back. This sequence was �rst introduced by Carr [25] and a
detailed overview over bSSFP can be found in Sche�er and Lehnhardt [26].

bSSFP is very attractive because of its increased signal compared to FLASH and because
of its unique T2/T1 contrast. Especially in cardiac MRI, bSSFP is preferred because of its
high contrast between blood and myocard [26].

However, the bSSFP sequence is very sensitive to o�-resonance. This can understood in
the following way: If a spin is o�-resonant by ∆ω, it will precess by an angle θ = ∆ω · TR
in each TR. This leads to a smaller usable transverse magnetization in the next TR
(compare Figure 2.3b) as the o�-resonance increases. When θ = 180°, the signal vanishes.
A simulation showing the dependence of the signal on θ is shown in Figure 2.3c, showing
the signal minima at θ = ±180°. These lead to the appearance of banding artifacts, which
are characteristic for bSSFP. Examples of such banding artifacts are depicted in Figure 2.3d.
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2.3. Image Reconstruction

The banding artifacts are generally smooth signal voids, as the signal curve smoothly
depends θ . As the o�-resonance depends on TR, shorter TRs are desirable in bSSFP
imaging.

Figure 2.3: O�-resonance e�ects in bSSFP imaging. The motion of the magnetization
during one TR is depicted for o�-resonance angles of θ = 0° (a), and θ = 75°
(b). (c): A simulation of the dependence of the signal on the phase o�set θ
for a �ip angle of 70° is shown, showing the characteristic signal minima at
θ = ±180°. (d): Cardiac bSSFP image showing banding artifacts, indicated
by red arrows. Diagram courtesy of Nick Scholand [27].

2.3. Image Reconstruction

2.3.1. Parallel MRI as an Inverse Problem

Mathematically, undersampled parallel MRI with known coil pro�les can be understood
as an inverse problem in the following way: If we are given an object with a certain
spin density and a k-space trajectory, we can use Equation (2.3) to calculate the expected
signal in k-space. However, given a signal evolution s(k) in k-space and the trajectory, it

13



2. Magnetic Resonance and Image Reconstruction

is non-trivial to calculate the proton density ρ(r )which gave rise to this signal. Therefore,
the former is called the forward problem and the latter its inverse problem.

With known coil sensitivity pro�les, Equation (2.3) can be rewritten in vector form.

s = PFCρ (2.4)

where s is the vector of signals from all coils,P is the projection onto the acquired k-space
trajectory, F is a 2D or 3D Fourier transform, C is the vector of coil sensitivity pro�les,
and ρ is the spin density. P is necessary in undersampled MRI, as not all samples of the
Fourier transform were measured.

In real settings, the measured signal will be corrupted by noise n. Rewriting Equa-
tion (2.4) in the conventional form for inverse problems:

y =Ax + n (2.5)

with A = PFC .

Since A is composed of linear operations it is also linear. Equation (2.5) is therefore a
linear inverse problem. This can be solved in a least-squares sense as

x∗ = arg min
x
‖y − Ax ‖22 .

While this solution can, at times, be calculated directly with, for example, the pseudo
inverse A+ = (AHA)−1AH of A, the problem is often ill-conditioned and very large.
Therefore, generally, regularization is added and the problem is solved iteratively [28],
for example with the conjugate gradient method (CG).

2.3.2. NLINV

As we have seen, parallel MRI can be viewed as a linear inverse problem in cases where
the coil sensitivities are either known or identically 1 (in the case of a single coil). However,
with unknown coil pro�les, this can also be viewed as a non-linear inverse problem:

(x∗,C∗) = arg min
(x,C)

‖y − PFCx ‖22 . (2.6)

where the non-linearity presents as the product of the two unknowns, the image x and
the coil sensitivity pro�les C . This approach has �rst been formulated as Joint Image
Reconstruction and Sensitivity Estimation in SENSE (JSENSE) [29] and regularized non-
linear inverse reconstruction (NLINV) [9, 21]. These approaches are useful since they
simultaneously estimate the coil pro�les from the same data, thereby not requiring a
pre-processing step. This also makes better use of all available data compared to linear
parallel imaging approaches, which estimate the coil pro�les in a separate step from a
calibration region, which is just a subset of the data.
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2.3. Image Reconstruction

Equation (2.6) can also be cast as a non-linear operator equation

F (x) = y , with x =

©­­­­­«
ρ

c1
...

cN

ª®®®®®¬
(2.7)

with a non-linear operator F mapping the N unknown coil pro�les and the unknown
proton density onto the measured k-space data y :

F : x 7→
©­­­«
PF c1ρ
...

PF cN ρ

ª®®®¬ (2.8)

In this form Equation (2.7) can be solved using the iteratively regularized Gauss-Newton
method (IRGNM) (see [21, Chapter 5]). The IRGNM work by linearizing the non-linear
problem around the current guess xn

F (xn + dx) ≈ DF (xn) dx + F (xn)

and solving that linearized subproblem with a suitable algorithm. Here, DF (xn) is the
Jacobian of F at xn. It is iteratively regularized in that the regularization is reduced in
each outer iteration (called Newton step). In this way, the regularization is large in the
beginning, when the reconstruction is still far from solution, and small when it is close
to the solution. This makes the algorithm robust when it is far from a solution, and more
accurate when it gets closer. The linearized inner problem can be solved, for example, by
the conjugate gradient method (CG).

A problem in Equation (2.8) is the lack of separation between image and coil pro�les:
if each ci is multiplied by a complex function and ρ divided by the same function, the
result of the operator is unchanged. This can even be taken to the extreme: with ρ ≡ 1,
all proton density information can be absorbed into the coil pro�les. To counteract
this, prior knowledge about the smoothness of the coil pro�les can be used: by adding
a regularization term penalizing high spatial frequencies, for example by including a
suitable Sobolev norm, this symmetry can be broken. This has been shown to be su�cient
to recover proper images and coil pro�les [21].

NLINV was also extended for real-time reconstruction[8, 30], by including a regular-
ization with respect to the previous frame. If the frame rate of the dataset is high enough
to resolve the dynamics of the measured object, this di�erence is bound to be small.
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2. Magnetic Resonance and Image Reconstruction

2.3.3. Compressed Sensing

A recent innovation in MRI is the introduction of compressed sensing (CS) by Block,
Uecker, and Frahm [10] and Lustig, Donoho, and Pauly [11]. It enables reconstruction from
undersampled data even in the case of a single coil, that means without exploiting parallel
imaging. It is based on the fact that transformations Ψ exist such that the number of non-
zero components of ann×n MRI image x , ‖Ψx ‖0, is much less thann×n. Examples for such
sparsifying transforms are the wavelet transform or the computation of �nite di�erences
as used in the total variation semi-norm.. This, however, implies that identifying a small
number of non-zero values of Ψx can be enough to recover an image, suggesting a great
potential for undersampling. Although the transformed samples cannot be measured
directly, it can be shown that under certain assumptions on the measurement operator
A an image can be reconstructed by minimizing

arg min
x
‖Ψx ‖0 (2.9)

subject to ‖y − Ax ‖22 < ε

subject to a data consistency constraint with a certain desired accuracy ε . In practice, to
solve large reconstruction problems one minimizes ‖ · ‖1 instead of ‖ · ‖0 as in

arg min
x
‖Ψx ‖1 (2.10)

subject to ‖y − Ax ‖22 < ε

which, surprisingly, yields the same results [31]. Although convex, Equation (2.10) is
not smooth, since the `1-norm is non-di�erentiable. Algorithms that can solve these
non-smooth optimization problems are, for example, fast iterative shrinkage/thresholding
algorithm (FISTA) [32] and alternating direction methods of multipliers (ADMM) [33, 34].

To make recovery of the sparse coe�cients from undersampled data possible, a certain
incoherency condition between the measurement basis and the sparse representation has
to be ful�lled [35]. In MRI, one possibility is radial imaging, where undersampling leads
to the appearance of streak artifacts, which can be considered incoherent. In 3D Cartesian
acquisitions, incoherent undersampling can be achieved by randomizing acquisitions in
the two phase-encoding directions, for example by utilizing Poisson-disc sampling [36].
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MRI Scanner As explained in Section 2.1, MRI needs a strong static magnetic �eld, time-
varying gradient �elds in arbitrary directions, and coils for rf excitation and data recording.
The MRI system used for most of the data in this thesis is a Siemens MAGNETOM Skyra
whole body human MRI scanner (Siemens Healthineers AG, München, Germany), with a
2.89 T B0 �eld1. The superconducting main magnet is cooled with liquid helium.

A system of gradient coils provides arbitrary magnetic �eld gradients with a maximum
strength of 45 mT

m and a maximum slew rate of 200 T/m/s
A single transmit coil for excitation is integrated into scanner. For data acquisition

and to exploit parallel imaging, di�erent coils for di�erent applications are available: A
30-channel thorax coil, with part of the coil segments integrated into the patient table,
can be used for cardiac and abdominal MRI, while a 20-channel and a 64-channel head
coil are available for imaging of the head and the brain.

Reconstruction Hardware For this thesis, image reconstruction was performed away
from the scanner on separate computers. The �rst system used is a Supermicro Super-
Server (Supermicro Inc., San Jose, USA) with 2 Intel Xeon E5-2650 v3 ten-core CPUs at
2.30 GHz with 512 GiB RAM, running Debian 9.9 “Stretch”2. The second system is a Dell
Optiplex 7020 (Dell Inc., Round Rock, USA) with a single Intel Core) i5-4590 four-core
CPU at 3.30 GHz and 16 GiB RAM also running Debian 9.9 “Stretch”.

Reconstruction So�ware Multiple reconstruction methods were implemented during
the course of this thesis. For quick prototyping and for fast reconstruction, a C-based tool-
box commonly used for parallel and compressed sensing MRI was chosen: The Berkeley
Advanced Reconstruction Toolbox (BART) [37].

This toolbox contains e�cient and parallelized versions of commonly needed oper-
ations, such as matrix-matrix and matrix-vector multiplications, fast (discrete) Fourier

1This is still referred to as a 3 T system
2https://www.debian.org/
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3. MRI System and Hardware

transforms (FFTs) and the non-uniform fast Fourier transform (nuFFT), sparsifying trans-
forms such as di�erent types of wavelets and decompositions such as the singular value
decomposition (SVD) or an eigendecomposition. It does not implement all of these itself,
instead relying on tested libraries such as LAPACK3 and FFTW4. Furthermore, it already
includes generic implementations of commonly used algorithms, such as the conjugate
gradient method (CG), the fast iterative shrinkage/thresholding algorithm (FISTA), the
alternating direction methods of multipliers (ADMM) and the iteratively regularized
Gauss-Newton method (IRGNM). It also includes implementations of common MRI meth-
ods, including ESPIRiT, SENSE and simultaneous autocalibrating and k-space estimation
(SAKE).

Apart from the application programming interface (API) which was used to implement
the methods described in this thesis, it also provides a set of command-line tools for
interactive use.

BART is a widely used software package in MRI research. As it is written in C11 with
GNU extensions, it is easily portable to di�erent computer systems which are capable of
running the GNU compiler collection (GCC)5.

3http://netlib.org/lapack/
4http://www.fftw.org/
5https://gcc.gnu.org/
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4. Rank-relaxed MRI Signal Model
for Robust Reconstruction

The following section will introduce a non-linear method based on a higher-dimensional,
relaxed signal model named extended non-linear inversion based on ESPIRiT (ENLIVE).
ENLIVE has been published in Scienti�c Reports and the corresponding manuscript is
reprinted as Section 4.1. Applications of ENLIVE for the calculation of high-quality coil
pro�les and for robust reconstruction of real-time data are shown in Section 4.2 and
Section 4.3, respectively.

4.1. ENLIVE: An E�icient Nonlinear Method for
Calibrationless and Robust Parallel Imaging

The following is a reprint of the original article

H. C. M. Holme, S. Rosenzweig, F. Ong, R. N. Wilke, M. Lustig, and M. Uecker. “ENLIVE:
An E�cient Nonlinear Method for Calibrationless and Robust Parallel Imaging”. Sci. Rep.
9 (2019), p. 3034. doi: 10.1038/s41598-019-39888-7.

HCMH, SR and MU implemented the method. HCMH performed the numerical exper-
iments. HCMH, RNW and MU contributed to the data analysis. FO and ML provided
guidance on design and implementation. HCMH wrote the majority of the manuscript
and its revisions. All authors contributed to the preparation of the manuscript.
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4. Rank-relaxed MRI Signal Model for Robust Reconstruction

Abstract

Robustness against data inconsistencies, imaging artifacts and acquisition speed are
crucial factors limiting the possible range of applications for magnetic resonance
imaging (MRI). Therefore, we report a novel calibrationless parallel imaging tech-
nique which simultaneously estimates coil pro�les and image content in a relaxed
forward model. Our method is robust against a wide class of data inconsistencies,
minimizes imaging artifacts and is comparably fast combining important advan-
tages of many conceptually di�erent state-of-the-art parallel imaging approaches.
Depending on the experimental setting, data can be undersampled well below
the Nyquist limit. Here, even high acceleration factors yield excellent imaging
results while being robust to noise and the occurrence of phase singularities in the
image domain, as we show on di�erent data. Moreover, our method successfully
reconstructs acquisitions with insu�cient �eld-of-view. We further compare our
approach to ESPIRiT and SAKE using spin-echo and gradient echo MRI data from
the human head and knee. In addition, we show its applicability to non-Cartesian
imaging on radial FLASH cardiac MRI data. Using theoretical considerations, we
show that ENLIVE can be related to a low-rank formulation of blind multi-channel
deconvolution, explaining why it inherently promotes low-rank solutions.
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4.1. ENLIVE: A Nonlinear Method for Calibrationless Parallel Imaging

4.1.1. Introduction

Since acquisition speed is a major issue in MRI, accelerated imaging with multiple receiver
coils has been an active �eld of research since its beginning. Quite rapidly, two main
categories of parallel imaging methods emerged: sensitivity encoding (SENSE) [6] is
the prototypical example and k-space methods, where it is generalized autocalibrating
partially parallel acquisition (GRAPPA) [7]. SENSE-like methods, when the coil sensitivity
pro�les are known, permit a natural description as a linear inverse problem. Incorporating
the estimation of coil sensitivity pro�les into the reconstruction leads to a nonlinear
inverse problem, as formulated in Joint Image Reconstruction and Sensitivity Estimation
in SENSE (JSENSE) [29] and regularized non-linear inverse reconstruction (NLINV) [9].

Additionally, low-rank and subspace methods [39–42] have been proposed to further
increase reliability and acceleration in MRI. These methods exploit prior knowledge
on the structure of the matrices arising in MRI reconstruction. Recently, ESPIRiT [15]
has been shown to provide robustness towards data inconsistencies similar to k-space
methods such as GRAPPA [7]. In particular, in cases where the chosen �eld-of-view
(FOV) is smaller than the object [43] and in phase-constraint imaging [44], it was shown
that methods based on traditional SENSE that only use a single set of coil sensitivity
pro�les exhibit artifacts. In ESPIRiT, robust reconstruction is possible through a relaxed
SENSE-model, which uses multiple images and sets of coil sensitivity pro�les.

ESPIRiT recovers accurate coil sensitivities using an eigenvalue decomposition of an
image-domain operator which projects onto the signal space of the calibration matrix. In
case of inconsistencies, it produces multiple sets of maps which can be used in a relaxed
SENSE reconstruction. ESPIRiT requires a fully-sampled calibration region in the center
of k-space. Additionally, it cannot be applied directly to non-Cartesian data, requiring an
additional gridding step to generate calibration data. A more generic subspace method is
SAKE [39], because it can be directly applied to data without fully-sampled calibration
region or non-Cartesian data. Based on the idea that the signal is contained in a sub-
space of smaller dimensionality which can be recovered, SAKE uses structured low-rank
matrix completion to recover a full k-space from incomplete data. Unfortunately, it
is computationally extremely demanding as each iteration has to perform a singular-
value decomposition (SVD). Furthermore, because it operates completely in k-space,
regularization terms may require additional Fourier transforms and must be applied to
all channels. Calibration-free locally low-rank encouraging reconstruction (CLEAR) [42]
is a related method which uses local low-rankness in the image domain instead of the
global k-space rank penalty used in SAKE. This reduces the computational complexity
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4. Rank-relaxed MRI Signal Model for Robust Reconstruction

by reducing the size of the needed SVDs, although it does increase the number of SVDs
necessary. Furthermore, as it is an image space method, regularization can be integrated
more easily.

Regularized Nonlinear Inversion (NLINV) [9] jointly estimates the image content
and the coil sensitivity pro�les using a nonlinear algorithm. Similar to SAKE, it does
not require a fully-sampled Cartesian calibration region and can be applied directly to
non-Cartesian data.

This work aims at combining the advantages from these di�erent methods. Inspired by
ESPIRiT, we propose an extension to NLINV that extends it beyond the original SENSE-
like model. This method, termed ENLIVE (Extended NonLinear InVersion inspired by
ESPIRiT), can be related to a convex relaxation of the NLINV problem subject to a low-
rank constraint. From NLINV, it inherits its �exibility and suitability for calibrationless
and non-Cartesian imaging; from ESPIRiT it inherits robustness to data inconsistencies.
We apply ENLIVE to several imaging settings covering limited FOV, phase constraints,
phase singularities, and non-Cartesian acquisition. Additionally, we present comparisons
to ESPIRiT and to SAKE.

Initial results have been presented at the 25th Annual Meeting of the International
Society for Magnetic Resonance in Medicine [45].

4.1.2. Theory

Formulation

NLINV recovers the imagem and the coil sensitivity pro�les cj from measurements yj by
solving the regularized nonlinear optimization problem:

arg min
m,c j

NC∑
j=1
‖yj − PF {cj �m}‖

2
2 + α(

NC∑
j=1
‖Wcj ‖

2
2 + ‖m‖

2
2) (4.1)

with NC coils, the two or three dimensional Fourier transform F , the projection P onto
the measured trajectory (or the acquired pattern in Cartesian imaging) and an invertible
weighting matrixW penalizing high frequencies in the coil pro�les. Here, both image
m ∈ Cnx ·ny ·nz and coils cj ∈ Cnx ·ny ·nz are regarded as vectors of size nx · ny · nz =:NI and
� is their element-wise product.

In this work, we propose to extend this model to:

arg min
mi ,cij

NC∑
j=1
‖yj − PF {

k∑
i=1

cij �m
i}‖22 + α

k∑
i=1
(

NC∑
j=1
‖Wcij ‖

2
2 + ‖m

i ‖22) (4.2)

where cij and mi are k sets of unknown coil sensitivity pro�les and unknown images.
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4.1. ENLIVE: A Nonlinear Method for Calibrationless Parallel Imaging

This approach is inspired by ESPIRiT, which uses additional maps to account for model
violations [15].

In the following, we will show that this formulation automatically produces solutions
with rank even smaller than k if one exits. To show this, we �rst relate Equation (4.2) to
a linear inverse problem for matrices with nuclear norm regularization.

From here on, we assume that the variable transformation ĉj =Wcj has been applied
to move the weighting matrix from the regularization into the forward operator. We note
that this problem is equivalent to a corresponding multi-channel blind deconvolution
problem [46] in k-space via the convolution theorem. Using the "lifting" approach used for
such blind deconvolution problems [47], which can also be applied in the image domain,
we now lift the Equation (4.1) into a linear inverse problem in terms of a rank-1 matrix
X = uvT formed by the tensor product of u andv , where u corresponds to m andv is a
stacked vector composed of the weighted coil sensitivity pro�les ĉj . The problem then
becomes:

arg min
u,v

‖y − A{uvT }‖22 + α(‖u‖
2
2 + ‖v ‖

2
2) (4.3)

with a linear operator A mapping uvT to PFcj �m and a vector y containing measure-
ment data of all coils. Such an A exists because uvT contains all possible products of
elements of u and v . Its explicit action is explained in more detail in the Appendix. In
general, all bilinear functions can be expressed as linear functions on the tensor product
of the two vector spaces involved.

As suggested by Ahmed et al. [47] for blind multi-channel deconvolution, we now
relax the rank-1 constraint and allow k sets of images and coil sensitivity pro�les. This
corresponds to using X = UVT ∈ CNI×NC ·NI with U ∈ CNI×k and V ∈ CNC ·NI×k , which
then leads to the optimization problem

arg min
U ,V

‖y − A{UVT }‖22 + α(‖U ‖
2
F + ‖V ‖

2
F ) (4.4)

with the Frobenius norm ‖ · ‖F . In the Appendix we show how this corresponds to ENLIVE
as formulated in Equation (4.2). Under conditions given below, Equation (4.4) is equivalent
to a convex optimization problem for the matrix

arg min
X

‖y − A{X }‖22 + 2α ‖X ‖? (4.5)

with nuclear norm ‖ · ‖? regularization [48, 49]. The nuclear norm promotes low-rank
solutions. Furthermore, if the solution to Equation (4.5) has rank smaller than or equal to
k both problems are equivalent in the sense that from a solutionU ,V of Equation (4.4) one
obtains a solution of Equation (4.5) via X = UVT which attains the same value and from
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a solution X of Equation (4.5) one can construct a solution of Equation (4.4) that attains
the same value. This is achieved by factorizing X using the SVD and by distributing the
singular values in an optimal way, i.e. equally as square roots, to the two factors. Please
note that we do not propose to use this convex formulation for computation as it is very
expensive, instead we propose to use the nonlinear formulation given in Equation (4.2).
Nevertheless, this relationship to nuclear-norm regularization is important as it explains
why ENLIVE produces solutions with low rank even smaller than k , if one exists.

Implementation

Similar to NLINV [9], we solve Equation (4.2) using the iteratively regularized Gauss-
Newton method (IRGNM). The IRGNM solves successive linearizations with the regular-
ization parameter decreasing in each Newton step: Starting from α0, the regularizations
in each step is reduced according to αn = α0q

n−1, 0 < q < 1. As initial guess, we use
mi ≡ 1 for the images and cij ≡ 0 for the coil sensitivity pro�les. Because we initialize
images and sensitivity pro�les for all sets in the same way, the problem is symmetric in
the sets and the algorithm will produce degenerate solutions with identical sets. To break
this symmetry, we require the k sets of coil pro�les to be orthogonal using Gram-Schmidt
orthogonalization after each Newton step. For orthogonalization, the coil pro�les of each
set are treated as stacked one-dimensional vectors.

The weighting matrixW enforcing smoothness in the coil pro�les was chosen as in
[9]. In k-space, this leads to a penalty increasing with distance from the center of k-space
according to (1 + a‖k ‖2)b/2. In this work, a = 240 and b = 40 were used. Furthermore,
k-space is normalized so that it extends from − ni/2 to ni/2 for i ∈ {x,y,z}. AsW applies
weights in k-space, it is the product of a Fourier matrix transforming each coil pro�le to
k-space an of this diagonal weight matrix.

Images and coil pro�les are combined in a post-processing step. This is used to either
create individual images for each set i by combining coil-weighted imagesmicij using

Mi =

√√√ NC∑
j=1
|mi � cij |

2 (4.6)

or to create a single combined image by �rst combining each set to obtain a proper image
for each coil and then doing a �nal coil combination with

M =

√√√ NC∑
j=1

���� k∑
i=1

mi � cij

����2. (4.7)
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4.1.3. Results

Figure 4.1: Comparison of ENLIVE and ESPIRiT reconstructions allowing both one
and two sets of maps (top row) together with individual map images
(bottom row) for the reconstructions using two maps. While the recon-
structions using a single set of maps exhibit strong aliasing artifacts, the
reconstructions allowing two sets of maps are artifact-free. The reason
can be seen in the individual images: A single image with a single set of
coil pro�les cannot resolve the aliasing arising from the infolded sides.
Using two sets of maps, the region causing infolding can be separated into
the second image.

Limited FOV

In the examples with a restricted FOV, both ENLIVE with a single set of maps, i.e. NLINV,
and ESPIRiT reconstructions show a similar central artifact (Figure 4.1). This artifact can
be readily explained as a consequence of the undersampling pattern and the signal model
violation at the edges of the image: Without a parallel imaging reconstruction, we expect
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Figure 4.2: (a): ENLIVE reconstructions of the same data as in Fig. 4.1 using 1, 2, 3
and 4 sets of maps. Di�erence images to fully-sampled reference data are
shown in the bottom row. Using a single map, the central artifact is clearly
visible in the reconstruction as well as in the di�erence image. Using 2
and more maps, the artifact is resolved and the di�erence images show
close to no variation. (b): Individual map images of the reconstruction
using 4 maps. Since 2 sets of maps are su�cient to fully describe the data,
the �rst two maps are similar to the maps depicted in Fig. 4.1 while maps
3 and 4 are close to zero. The corresponding coils pro�les are depicted in
Fig. 4.3.
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Figure 4.3: Calculated coil sensitivity pro�les for the ENLIVE reconstruction using
4 sets of maps shown in Fig. 4.2. The second map is sensitive in the
region which causes infolding in the single-map reconstruction, while
the �rst map is smoothly sensitive over the entire FOV. The third and
fourth map show very little sensitivity anywhere. Magnitude is encoded
in brightness while phase in encoded in the color, according to the cyclic
magenta-yellow-green-blue colormap described in [50].
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Figure 4.4: ENLIVE reconstruction with 2 maps with di�ering number of Newtons
steps (left to right) and di�erent levels of added noise (top to bottom) of
the same dataset as in Figure 4.1. Gaussian white noise was added to the
k-space before reconstruction. The standard deviation of the added noise
was varied between 0 and 5 % of the absolute value of the DC component.
Using too few Newton steps leads to residual infolding artifacts, while
too many Newton steps cause high-frequency artifacts to appear (some
of which are indicated by arrows). Since the number of Newton steps
controls the regularization in the IRGNM, we can understand these two
e�ects as too much and too little regularization. In all cases, the added
noise has no impact on the infolding artifact.
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Figure 4.5: ENLIVE reconstruction with 2 maps of the same dataset as in Figure 4.1
with di�erent parameters for the coil weighting matrixW .W applies a
penalty in k-space according to (1 + a‖k ‖2)b/2. a varies from left to right
while b varies from top to bottom. For all other reconstructions, a = 240
and b = 40 (center image) were used. The infolding artifact does not
appear for any parameter pair, indicating that the reconstruction is not
sensitive to speci�c values of a or b.
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Figure 4.6: ENLIVE reconstructions allowing one and two sets of maps of data ex-
tended with virtual conjugate coils (VCC) and such data with a partial
k-space (PF-VCC). The virtual-conjugate coils impose a real-value con-
straint onto the data. High-frequency phase close to the skull violates
this constraint, leading to artifacts in reconstructions using a single set of
maps. By allowing two sets of maps, these regions with high-frequency
phase variation are separated into the second image, allowing almost
artifact-free reconstruction.
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Figure 4.7: Phase singularities in (a) a numerical phantom, (b) a transversal slice
through the lower jaw and (c) a non-Cartesian short axis-view of the
human heart. Each dataset has been reconstructed with ENLIVE allowing
one and two sets of maps. The phase singularity in (a) was produced
by providing an initial guess containing a singularity. This singularity,
clearly visible in the phase image, leads to artifactual signal loss at the
same position in the post-processed magnitude image. As in (a), the phase
singularities in (b) and (c) lead to signal loss at the corresponding positions
in the magnitude images. By allowing two sets of maps, ENLIVE can
resolve this artifact by using the second set of sensitivities around the
phase singularity, thereby providing an artifact-free combined image.
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Figure 4.8: Variable-density Poisson-disc undersampled data with varying under-
sampling factors reconstructed with ENLIVE allowing two sets of maps
and with SAKE. The same slice as in Fig. 4.6 is used. Since this is a calibra-
tionless parallel imaging reconstruction without additional constraints
and without model violations, a single set of maps is su�cient. For un-
dersampling factors up to R=7.0, ENLIVE therefore leaves the second
allowed set empty, which causes the combined image to be essentially
identical to the �rst set image. For an undersampling factor of R=8.5, the
ENLIVE reconstruction becomes very noisy and some image features start
appearing the second map (indicated by an arrow). For R=4.0, SAKE, too,
provides artifact-free reconstruction. With higher undersampling factors
artifacts appear in the images.
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Figure 4.9: Variable-density Poisson-disc undersampled data of a human knee with
varying undersampling factors reconstructed with ENLIVE allowing two
sets of maps and with SAKE. This, too, is a dataset without model violations.
The second ENLIVE is therefore close to zero. Up to R=3.0, both SAKE and
ENLIVE provide artifact free reconstruction. For R=5.0, ENLIVE provides
a reconstruction with high noise. SAKE, however, produces a large signal
void in the image center (indicated by an arrow).
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Figure 4.10: Comparison of ENLIVE reconstruction using 1 and 2 maps and ESPIRiT
reconstruction using 2 maps of the same dataset as in Figure 4.6 undersam-
pled with Cartesian CAIPIRINHA patterns with di�ering undersampling
factors. Using two maps, ENLIVE and ESPIRiT reconstructions show
comparable quality. Even though noise is increasing with higher under-
sampling, the second map remains close to zero. We conjecture that the
adequate calibration region inhibits undersampling artifacts and ensures
that no signal appears in the second map, in contrast to Figure 4.8.
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aliasing artifacts from all pixels in the FOV. The parallel imaging reconstruction using a
single set of maps can resolve this aliasing only for pixels outside of the regions of model
violation. Since these edge regions alias to the image center, the artifact appears there.
Both ENLIVE and ESPIRiT reconstructions allowing multiple sets of maps (Figures 4.1
and 4.2a) can resolve the aliasing everywhere. For ENLIVE, the coil pro�les (Figure 4.3)
of the second map are sensitive in these regions. For ENLIVE using more than 2 sets
of maps, the third and fourth map are close to zero (Figure 4.2b). Since no thresholding
is used, they cannot be exactly zero. As is common in parallel imaging, tuning of the
regularization is necessary for successful reconstruction: Figure 4.4 shows that using too
high regularization (too few Newton steps) does not eliminate the central infolding artifact,
while too low regularization (too many Newton steps) leads to high-frequency artifacts.
Added noise degrades image quality, especially in the case of too low regularization, but
does not change the appearance of the infolding artifact. Additionally, Figure 4.5 shows
that the reconstruction is not sensitive to speci�c choices for the parameters a and b of
the coil weighting matrixW .

Phase-constrained Imaging

Next, reconstructions for phase-constrained imaging using virtual-conjugate coils with
and without an additional partial-Fourier factor are shown in Figure 4.6. In both cases,
reconstruction using only a single set of maps exhibit aliasing artifacts. These are a
consequence of the real-value constraint imposed by using virtual-conjugate coils together
with high-frequency phase variations caused by o�-resonance from fat: A single real-
valued image cannot account for this high-frequency phase, therefore the aliasing cannot
be resolved. Relaxing the reconstruction by allowing multiple sets of maps resolves this
problem, since the second set of maps can now account for this high-frequency phase
variation.

Phase Singularities

Figure 4.7a shows a phantom example where the initial guess has been intentionally
chosen to induce a phase singularity in the reconstruction. The phase singularity leads
to signal loss using a single set of maps. Using ENLIVE allowing multiple sets of maps,
the a�ected region can be resolved in the second map. By combining the images, a single
image without signal loss can be recovered. This situation can also occur in practice.
Figure 4.7b shows a slice through the throat with large phase variations, while Figure 4.7c
shows a short-axis view of the human heart acquired with radial FLASH. Using ENLIVE
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allowing multiple sets of maps, it is possible to reconstruct artifact-free images.

Low-rank Property

Figure 4.8 and Figure 4.9 show calibrationless variable-density Poisson-disc undersampled
reconstructions with di�ering undersampling factors comparing ENLIVE to SAKE. In
Figure 4.8, both ENLIVE and SAKE provide artifact-free reconstruction for moderate
undersampling up to R = 4.0. At R = 7.0, SAKE shows artifacts while ENLIVE is artifact
free. For these undersampling factors, the second ENLIVE set image is close to zero, while
the �rst set contains the image. For R = 8.5, both ENLIVE and SAKE show strong artifacts.
Additionally, the second ENLIVE map shows some image features. Reconstruction time
for R = 4.0 for this dataset using a single core of an Intel Core i5-4590 CPU was 22 s using
ENLIVE and 6.3 h using SAKE. In Figure 4.9, ENLIVE and SAKE provide artifact-free
reconstruction up to R = 3.0. At R = 5.0, ENLIVE reconstruction is noisy while SAKE
shows a large signal void. Reconstruction time for R = 2.0 for this dataset using a single
core was18.6 s using ENLIVE and 41.5 min using SAKE.

Figure 4.10 shows Cartesian ENLIVE reconstructions of data undersampled using CAI-
PIRINHA patterns with di�erent undersampling factors. As a reference, the corresponding
patterns are shown in the �rst column. For all undersampling factors, the second map
image is close to zero wile the �rst map contains the entire image. With increasing
undersampling, high noise starts to appear in the �rst map and the combined image.
Still, no undersampling artifacts appear even at R = 16. Furthermore, even at this high
undersampling, no image features appear in the second map, in contrast to the result in
Figure 4.8. We conjecture that the adequate calibration region in this datasets prevents
that artifact.

4.1.4. Discussion

This work introduces ENLIVE, a nonlinear reconstruction method for parallel imaging
using a relaxed forward model. Using the IRGNM, ENLIVE simultaneously estimates
multiple sets of images and coil sensitivity pro�les, extending NLINV by ESPIRiT’s
approach of using multiple sets of maps. The resulting bi-linear problem with `2-regula-
rization can be related to a lifted linear formulation using nuclear norm regularization,
which promotes low-rank solutions. From this, it becomes apparent that the method,
while employing a di�erent parametrization, is similar to SAKE and P-LORAKS [40, 41],
which are based on structured low-rank matrix completion in k-space, and to CLEAR [42],
which locally promotes low-rankness in the image domain. Although the low-rankness
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of the matrix considered in the k-space methods is also caused by the fact that the signal
lives in a sub-space spanned by the coil sensitivities [15, 39], it is constructed from many
shifted copies of the signal in k-space. This leads to a huge linear reconstruction problem
with a rank constraint. In contrast, CLEAR uses block-wise reconstruction in the image
domain, which is more similar to ENLIVE, but still requires a large number of small SVDs.
A similar concept has been used to implement other low-rank methods. For example,
building on top of the work on object modeling introduced in [19], several approaches
using annihilating �lters have recently been proposed for combining parallel imaging
with compressed sensing [51–54]. The existence of annihilating �lters implies in turn
the existence of a weighted low-rank Hankel matrix which can be constructed from the
k-space samples. These methods then recover missing samples by structured low-rank
matrix completion. In ENLIVE, the convex matrix completion problem has been replaced
by a much smaller bi-linear problem with simple quadratic penalties [48, 49]. In some
sense, this is similar to the idea of transforming linear problems with `1-regularization
into quadratic problems with `2-regularization [55].

Low-rank approaches have also been proposed for dynamic imaging. One method
for blind compressed sensing [56] estimates both the time series of images as well as
a dictionary which sparsi�es that series. Haldar and Liang [57] introduce a method
which uses partial separability of the signal into functions describing its k-space and its
time dependence. Both of these approaches exploit the low rank of the time-dependent
signal. While structurally similar, Haldar and Liang [57] use an explicitly rank-constraint
formulation while Lingala et al. [56] use an `1-norm to induce sparsity. In contrast,
ENLIVE’s `2-regularization achieves low-rankness even below its constraint on the
maximum rank through the equivalence to a formulation with regularization of the
nuclear norm outlined in the Theory, which forms the core of the proposed method.

ENLIVE can also be related to a previous extension of NLINV proposed for separation of
chemical species[58, 59]. This method is based on the idea that the signal is a superposition
of di�erent images shifted in the spatial domain according to the chemical shift. As
also shown for ESPIRiT, the sensitivities for the shifted signals from di�erent species
also appear to be shifted. They therefore violate the simple SENSE model with a single
set of of maps and, consequently, cause the appearance of a second set of maps. The
previously proposed extension to NLINV can be understood as a version of ENLIVE with
the additional constraint that di�erent sets of sensitivities are shifted versions of each
other.

As shown in this work, small FOV and phase-constrained reconstructions using a single
set of maps show artifacts whenever there are inconsistencies which cannot be explained
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using the simple model, while ENLIVE allowing two sets of maps enables artifact-free
reconstruction in all evaluated cases. When using correct regularization, added noise
does not impede artifact removal either. In cases where reconstruction with a single set
of maps is already free from artifacts, ENLIVE automatically only uses a single set. In
general, though, the maximum number of ENLIVE maps must be speci�ed manually.
This is similar to ESPIRiT where, while theoretically the correct number of maps can
automatically be estimated as the multiplicity of the eigenvalue 1, in practice a maximum
number of maps is set in advance to enable e�cient computation of the eigenvector maps
by power iteration. However, an extension to ENLIVE to automatically adapt the number
of maps during the iteration is also conceivable.

As the distribution of the phase between image and coil sensitivities cannot be deter-
mined from the data alone without additional prior knowledge, choosing a good phase is a
common problem when calibrating sensitivities [60, 61]. This fundamental problem a�ects
di�erent algorithms in di�erent ways. In Walsh’s method [62] or ESPIRiT a pixel-wise
phase across channels simply remains unde�ned and has to be aligned to a reference.
If the reference is not ideal, phase singularities may occur. Phase singularities imply a
non-smooth phase which then reduces sparsity in compressed sensing, preventing an
e�cient and compact representation of the sensitivities in the Fourier domain [63], or
causing problems in post-processing. For example, as Li et al. [64] have shown, phase sin-
gularities can appear as artifactual microhemorrhage in susceptibility weighted imaging.
NLINV and ENLIVE guarantee smooth sensitivities, but this then traps the algorithm in
a local minimum and creates a hole instead [65]. For ENLIVE, the use of a second set of
maps may still avoid signal loss in the reconstruction.

Even though local minima are a general concern with nonlinear methods, in our
experience, the only practically relevant examples are the phase singularities. There,
although the ENLIVE reconstruction is not optimal, use of a second map may mitigate
the resulting artifact.

Compared to ESPIRiT, ENLIVE is more �exible since it has fewer prerequisites for its
use, e.g. no calibration region is necessary. However, in the case of an undersampled
Cartesian acquisition with calibration region, ESPIRiT is still to be preferred in most
cases because of its speed. Only when faced with a very large number of channels might
ESPIRiT lead to longer reconstruction times due to the unfavorable scaling of its SVD
with the number of channels.

In summary, ENLIVE combines di�erent advantages of NLINV, ESPIRiT, and SAKE. As
NLINV and SAKE, it utilizes all available data, can be directly applied to non-Cartesian
data, and does not require a calibration region. As ESPIRiT and SAKE, it is not limited to the
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SENSE model but automatically adapts to certain inconsistencies in the data. As ESPIRiT
and NLINV, it is computationally e�cient and makes use of an explicit image-domain
representation during reconstruction which facilitates the use of advanced regularization
terms.

4.1.5. Conclusion

In this work we propose ENLIVE, a nonlinear method for parallel imaging which seeks
to combine the robustness of ESPIRiT with the �exibility of NLINV. ENLIVE can be
related to a lifted formulation of blind multi-channel deconvolution with nuclear norm
regularization, which show that it belongs to the class of calibrationless parallel imaging
methods based on structured low-rank matrix completion. In imaging settings involving
limited FOV, phase constraints, and phase singularities, it has been shown to provide
artifact-free reconstruction with quality comparable to state-of-the-art methods.

4.1.6. Methods

The proposed method was implemented in the Berkeley Advanced Reconstruction Toolbox
(BART) [37] and all other reconstructions were performed using BART as well. Process-
level parallelization was achieved using GNU parallel [66]. To facilitate the reproducibility
of our research, data and source code used to generate the results of this paper can be
downloaded from https://github.com/mrirecon/enlive.

To test its robustness in case of inconsistencies, ENLIVE was applied in several di�erent
experimental settings: We selected examples for imaging with an FOV smaller than the
extent of the object, phase-constrained imaging, and phase singularities. In all cases,
reconstructions using ENLIVE were performed using one, i.e. NLINV, or two sets of maps
with initial regularization set to α0 = 1. If not stated otherwise, 11 Newton steps and
q = 1/2 were used for the IRGNM. These parameters, as well as the parameters for the
other methods, were chosen according to best visual appearance.

All volunteer imaging for this study was performed with their prior informed written
consent, in accordance with the relevant guidelines and regulations, and with the approval
of the ethics committee of the University Medical Center Göttingen.

In an example without inconsistencies we tested whether ENLIVE produces results
with only one set of maps. Additional examples show ENLIVE’s performance under high
undersampling and in non-Cartesian imaging.
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Limited FOV

We applied ENLIVE to the same dataset used in [15]. This is a retrospectively 2-fold
undersampled 2D spin-echo dataset (TR/TE = 550/14 ms, FA = 90°, BW = 19 kHz, ma-
trix size: 320 × 168, slice thickness: 3 mm, 24 × 24 calibration region) with an FOV of
200 × 150 mm2, acquired at 1.5 T using an 8-channel head coil. The dataset was zero-
padded in k-space to produce square image space pixels. This FOV is smaller than the
head of the subject in the lateral direction which leads to artifacts in a traditional SENSE
reconstruction. These data were reconstructed with ENLIVE using one or two sets of
maps and compared to ESPIRiT using one or two sets of maps. To investigate the e�ect
of additional sets of maps, the data were additionally reconstructed using 1, 2, 3, and 4
sets of maps. For ENLIVE, q = 2/3 was used. To investigate the sensitivity to noise and
to regularization, an additional reconstruction using 13, 16, 19, 22 and 25 Newton steps
and added Gaussian white noise with noise levels of 0 %, 0.1 %, 1 %, 2.5 % and 5 % was
performed. The noise level here is the standard deviation of the added noise as percent of
the magnitude of the DC component. From this, 19 Newton steps was determined as the
optimum and used for reconstruction. For ESPIRiT a kernel size of 6 × 6 and a threshold
of 0.001 was used.

Phase-constrained Imaging

Phase-constrained parallel imaging [67] with virtual conjugate coils [68] is equivalent
to an explicit phase constraint in SENSE, but more robust in GRAPPA and ESPIRiT due
to their ability to adapt to inconsistencies [44, 69]. To assess ENLIVE’s performance in
phase-constrained imaging settings with virtual conjugate coils, we applied it to the same
dataset used in [44]. This is a single slice in readout direction of a retrospectively 3-fold
undersampled 3D FLASH dataset (TR/TE = 11/4.9 ms) acquired at 3 T using a 32-channel
head coil. 24 × 24 auto-calibration lines were used. Additionally, a partial Fourier factor
of 5/8 was applied to the data and evaluated separately.

Phase Singularities

Similar to other algorithms [60, 61, 65] phase singularities can appear in coil sensitivity
pro�les with ENLIVE. As ENLIVE enforces smooth coil sensitivity pro�les, this leads to
an artifactual hole in the sensitivities around the singularity. To demonstrate this e�ect,
we synthetically constructed an example using BART to generate 6-channel k-space data
(matrix size: 256 × 256) of the numerical Shepp-Logan phantom. To get ENLIVE trapped in
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a local minimum with a phase singularity, we provided an initial guess already containing
a phase singularity. In regions with rapid phase variation, such phase singularities can
also appear in ENLIVE reconstructions of in-vivo data. A transversal slice through the
throat containing such a phase singularity was selected from the same dataset used for
phase-constrained imaging.

To further show that ENLIVE can be applied directly to non-Cartesian data, we re-
constructed selected data containing a phase singularity from a real-time FLASH [30]
acquisition using a 30 channel thorax coil of a short-axis view through the heart of a
volunteer with no known illnesses (TR/TE = 2.22/1.32 ms, FA = 10°, matrix size: 160 × 160,
FOV = 256 × 256 mm2, slice thickness: 6 mm, �eld strength: 3.0 T). Five consecutive frames
during diastole, comprising 65 radial spokes, were selected, corrected for gradient de-
lays [70], regridded to a 1.5 times �ner grid and subsequently reconstructed with ENLIVE
using 1 and 2 maps. For this dataset, q = 2/3 and 17 iterations of the IRGNM were used.

Low-rank Property

In order to show that ENLIVE automatically uses only the required number of sets of
maps, we retrospectively undersampled the same 3D dataset used for phase-constrained
imaging using variable-density Poisson-disc sampling [36] with undersampling factors
of R = 4.0, 7.0, 8.5 and without a calibration region, and then extracted the same slice in
readout direction. As a comparison, these data were also reconstructed using SAKE with
50 iterations and a relative size of the signal subspace of 0.05.

Additionally, we applied SAKE and ENLIVE to a 3D fast spin-echo acquisition [71] of a
human knee (TR/TE = 1550/25 ms, FA = 90°, echo train length: 40, matrix size: 320 × 256,
FOV = 160 × 153.6 mm2, �eld strength: 3.0 T) from mridata.org [72]. This dataset was
also undersampled using variable-density Poisson-disc sampling with undersampling
factors of R = 2, 3, 5 and a single slice in readout direction was extracted. These data were
then reconstructed using ENLIVE with 1 and 2 maps and with SAKE with 50 iterations
and a relative size of the signal subspace of 0.125.

To evaluate ENLIVE in settings with high acceleration factors, we undersampled the 3D
dataset used for phase-constrained imaging using Cartesian CAIPIRINHA [73] patterns
with undersampling factors of R = 4, 9, 16 with a 24 × 24 calibration region. These data
were then reconstructed with ENLIVE using 2 maps with q = 1/3 and 8 iterations of the
IRGNM.
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4.1.7. Appendix

Operator A

Here, we show the layout of u,v , and uvT as well as the action of A using an image of
size NI :=nx · ny · nz and NC coils. Then, the vector u ≡m ∈ CNI is de�ned as

uT =
(
m1 . . . mNI

)
and the vectorv ∈ CNC ·NI of stacked, weighted coil sensitivity pro�les ĉj as

vT =
(
ĉ1,1 . . . ĉNI ,1 ĉ2,2 . . . ĉNI ,NC

)
where ĉij is the ith pixel of the jth weighted coil pro�le. Therefore, uvT ∈ CNI×NC ·NI is

uvT =

©­­­­­«
m1ĉ1,1 m1ĉ2,1 . . . m1ĉNI ,1 m1ĉ1,2 m1ĉ2,2 . . . m1ĉNI ,NC

m2ĉ1,1 m2ĉ2,1 . . . m2ĉNI ,1 m2ĉ1,2 m2ĉ2,2 . . . m2ĉNI ,NC
...

...
. . .

...
...

...
...

mNI ĉ1,1 mNI ĉ2,1 . . . mNI ĉNI ,1 mNI ĉ1,2 mNI ĉ2,2 . . . mNI ĉNI ,NC

ª®®®®®¬
Applying the inverse of the weighting matrixW yields

uvTW −1 =

©­­­­­«
m1c1,1 m1c2,1 . . . m1cNI ,1 m1c1,2 m1c2,2 . . . m1cNI ,NC

m2c1,1 m2c2,1 . . . m2cNI ,1 m2c1,2 m2c2,2 . . . m2cNI ,NC
...

...
. . .

...
...

...
...

mNIc1,1 mNIc2,1 . . . mNI cNI ,1 mNIc1,2 mNIc2,2 . . . mNI cNI ,NC

ª®®®®®¬
The diagonals containing products of image pixels with corresponding coil pro�le pixels
are highlighted in bold. The action of the operatorA is to select these highlighted entries
of uvTW −1, apply a two or three dimensional Fourier transform to each coil image and
�nally apply a mask P projecting onto the acquired pattern.

Equivalence of formulations

In the following we will show that the lifted rank-k problem in Equation (4.4) corresponds
to the ENLIVE formulation in Equation (4.2). Using the linearity of the operators, the
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following holds:

A
{
UVT

}
= A

{
k∑
i=1

uiv
T
i

}
=

k∑
i=1
A

{
uiv

T
i

}
=

k∑
i=1

(
PF

{
cij �m

i
})

j=1...Nc

=

(
PF

{
k∑
i=1

cij �m
i

})
j=1...Nc

Here, we make use of the de�nition of the operator A:

A
{
uiv

T
i

}
:=

(
PF

{
cij �m

i
})

j=1...Nc

43



4. Rank-relaxed MRI Signal Model for Robust Reconstruction

4.2. Pre-Calibration of Coil Sensitivities using ENLIVE

Generally, current MRI is a two step process: in a �rst step, coil sensitivity pro�les
are calculated, which are used in the second step, the actual reconstruction. This pre-
calculation converts the generally non-linear MRI problem into a linear inverse problem, so
the resulting reconstruction is also a linear parallel imaging reconstruction or a combined
parallel imaging and compressed sensing (PICS) reconstruction with a linear model.
Splitting the reconstruction into two steps reduces the problem complexity and thereby
improves reconstruction speeds.

While several methods for coil sensitivity calculation exist, ESPIRiT [15] has in recent
years emerged as a de-facto standard in MRI research applications. It is fundamentally
based on a singular value decomposition (SVD) of an image space operator. Since the
SVD has an unfavorable scaling with the size of the matrix 1 and the ESPIRiT operator in
question scales with the number of coil sensitivities that need to be determined, ESPIRiT,
too, scales unfavorably with the number of coils.

Another disadvantage of current methods for coil sensitivity pre-calibration is that
they need a relatively large calibration region in the k-space center to obtain high quality
coil sensitivity pro�les. Iterative SVD-based methods such as SAKE [39] can be applied to
partially undersampled calibration data, but are even more computationally demanding,
as they use the SVD inside of an iterative algorithm. For this reason, the use of non-linear
methods such as NLINV as a calibration step for linear reconstruction methods is an
attractive alternative: For example Roelo�s et al. [74] and Wang et al. [75] used it to
pre-calculate coil sensitivity pro�les for their model-based reconstructions. Still, NLINV
lacks the robustness of ESPIRiT, which can make use of multiple maps.

To explore the use of ENLIVE to provide accurate coil sensitivity pro�les, I applied
ENLIVE and ESPIRiT to the central region of a 3D magnetization-prepared rapid gradient-
echo (MPRAGE) acquisition acquired with a 64-channel head coil. Additional sequence
parameters are B0: 3 T, TR/TE: 2300 ms/2.27 ms, �ip angle: 8°, matrix size: 448 × 224 × 224,
resolution: 1 × 1 × 1 mm3. This dataset was undersampled in the two phase-encoding
directions using Poisson-disc undersampling with a factor of 4. A central region of size
72 × 48 × 48 was extracted for coil sensitivity calculation, compressed with a singular
value decomposition (SVD) to 2 to 64 channels, and then coil sensitivities were calculated
using ESPIRiT with 2 maps and by reconstructing this reduced dataset with ENLIVE
using 2 maps. The resulting sensitivities were then used in a linear parallel imaging
reconstruction. As an example, selected orthogonal slices for 16 channels are shown in

1Computing the SVD of anm × n matrix has a complexity of O(mn min(n,m))
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Figure 4.11 together with their di�erence, showing that both ESPIRiT and ENLIVE provide
accurate coil sensitivity pro�les which enable high-quality reconstruction.

In such settings, ENLIVE can be advantageous because of its speed: to compare ES-
PIRiT calibration to ENLIVE reconstruction, the time needed for both is shown in Fig-
ure 4.122.Even though ESPIRiT is faster for few channels, it scales between quadratically
and cubically with the number of channels, while ENLIVE scales linearly. Therefore,
ENLIVE is signi�cantly faster for a higher number of channels.

This idea of using ENLIVE to calculate coil sensitivity pro�les for later robust linear
reconstruction is already used in a study by Rosenzweig et al. [76]. There, ENLIVE coil
sensitivity pro�les with 2 maps are used to reconstruct self-gated cardiac MRI data. In the
future, ENLIVE might emerge as an alternative to ESPIRiT for coil sensitivity calibration
in settings where high-quality and robust coil pro�les are necessary, but where full
non-linear reconstruction is not needed.

2All times given are with 2 threads on an Intel Core i5-4590 processor.
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(a) transversal

(b) coronal

(c) sagittal

Figure 4.11: Selected orthogonal slices of a linear parallel imaging reconstruction with
coil pro�les calculated by ESPIRiT (left) and ENLIVE (center) together with
their di�erence (right) scaled by a factor of ×2. For this reconstruction,
the original data was compressed to 16 virtual channels using an SVD.
Both reconstructions show comparable and high quality, showing that
both ESPIRiT and ENLIVE provided accurate coil sensitivity pro�les.
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Figure 4.12: Left: Time needed for the calculation of the coil sensitivities using both
ENLIVE and ESPIRiT. Right: log-log-plot of the same data, with lines
showing linear, quadratic and cubic growth. For easier comparison, the
line showing linear growth is scaled to start at the �rst ENLIVE point,
while the lines for quadratic and cubic growth start at the �rst point for
ESPIRiT.
From these results, we can see that ESPIRiT is faster for small numbers
of coils (< 8), but that ENLIVE scales approximately linearly with the
number of coils whereas ESPIRiT scales somewhere between quadrati-
cally and cubically. So for larger numbers of coils, ENLIVE’s favorable
scaling leads to shorter calibration times.
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4.3. ENLIVE with Temporal Regularization: Robust
Reconstruction for real-time MRI

Real-time MRI [30, 77] is any method of acquiring and reconstructing MRI images at
su�cient speed to resolve dynamic processes such as breathing motion or heart movement.
This is desirable since it enables acquisitions of for example cardiac structure and function
without assumptions about beat-to-beat similarity, which are necessary for conventional
CINE MRI. Here, too, regularized non-linear inverse reconstruction (NLINV) has emerged
as a successful technique because of its ability to reconstruct non-Cartesian data without
pre-calibration. Real-time NLINV has so far been used for structural [30, 78] and phase-
contrast �ow [79, 80] imaging of the heart, for MRI-guided biopsy of cardiac tissue in
a pig model [81], for the diagnosis of gastroesophageal re�ux disease [82] and for fast
reconstruction of simultaneous multi-slice data [83]. However, NLINV can su�er from
phase singularities, which manifest as local signal voids (see Figure 4.7 on page 31).
Therefore, I will investigate if an extension of ENLIVE to real-time data can mitigate
these signal voids, analogous to its performance on static images shown in Figure 4.7.

This extension can be done in a way resembling the extension of NLINV to real time
data. For this, Equation (4.2) can be modi�ed to include regularization with respect to the
previous frame:

arg min
mi ,cij

NC∑
j=1
‖yj − PF {

k∑
i=1

cij �m
i}‖22 + α

k∑
i=1
(

NC∑
j=1
‖W (cij − βc

i
j,0)‖

2
2 + ‖(m

i − βmi
0)‖

2
2).

(4.8)
Here, cij,0 and mi

0 are the coil pro�les and images of the previous frame used as a
reference, weighted by a factor β with usually β = 0.9. Additionally, the reconstruction of
each frame is initialized with the results of the previous frame to speed up convergence.

Just as Equation (4.2), Equation (4.8) can also be solved with the IRGNM, and, when
using k = 1, i.e. a single image and a single set of coil sensitivity pro�les, this is identical
to real-time NLINV.

In order to evaluate real-time ENLIVE, I implemented Equation (4.8) in BART and
reconstructed interactive3 real-time MRI data using 1 and 2 maps. I selected a radial FLASH
dataset acquired at 3 T with TR/TE: 2.02 ms/1.3 ms, �ip angle: 8°, FOV = 256 × 256 mm2,
slice thickness: 8 mm, base resolution: 128, with 21 uniformly distributed spokes per
frame. In this dataset, consisting of a total of 4807 frames over 204 s, the slice was moved

3This means that the acquired slice can be freely moved during the acquisition
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4.3. ENLIVE with Temporal Regularization: Robust Reconstruction for real-time MRI

and rotated through a variety of views of the human heart. Selected frames of this
reconstruction are shown in Figure 4.13.

Image quality of both methods is similar (see their windowed di�erence in Figure 4.14),
however, the reconstruction using a single map show obvious signal voids related to
phase singularities (compare Figure 4.7 on 31). A di�erence to the case of static images is
that in real-time NLINV and ENLIVE, phase singularities can move between frames. Also,
even using two maps, they are not immediately resolved: Figure 4.13(b) clearly shows
signal voids even using 2 maps. However, in Figure 4.13(c) ten frames (about 430 ms)
later, the signal voids are removed using 2 maps. Similarly in a later frame shown in
Figure 4.13(d).

This late removal might be due to the temporal regularization: even using 2 maps, each
frame is initialized and regularized with the previous frame. This limits the deviation to
that frame and may slow the removal of the signal void, even though the data �delity
term in Equation (4.8) is certainly smaller without such a void. Additionally, real-time
data is usually reconstructed with fewer Newton steps and therefore with higher �nal
regularization. This, too, might explain the time lag in removing signal voids.

Still, in real-time applications, such short delays are a minor issue and real-time ENLIVE
can be used for more robust reconstruction.
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(a) frame 268 (11.37 s)

(b) frame 284 (12.05 s)

(c) frame 294 (12.47 s)

(d) frame 398 (16.88 s)

Figure 4.13: Reconstruction of selected frames of an interactive real-time acquisition.
Left: phase of real-time NLINV (ENLIVE with 1 map), center: real-time
NLINV, right: ENLIVE with 2 maps. Phase singularities leading to signal
voids are highlighted by red circles. As can be seen, using ENLIVE with 2
maps can remove these signal voids, although this can take some frames
(see (b) to (c), 10 frames later). The unusual rotation of (a) and (d) is due to
the free movement of the slice during acquisition. For better visualization,
Figure 4.14 shows the same frames windowed to highlight low-intensity
regions.
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(a) frame 268 (11.37 s)

(b) frame 284 (12.05 s)

(c) frame 294 (12.47 s)

(d) frame 398 (16.88 s)

Figure 4.14: The same reconstruction as Figure 4.13, windowed to highlight regions
of low intensity. Left: real-time NLINV (ENLIVE with 1 map), center:
ENLIVE with 2 maps, right: their di�erence scaled up by ×5. This allows
easier identi�cation of the signal voids indicated by the red circles.
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5. Nonlinear Reconstruction with
Additional Spatial and Temporal
Dimensions

Since MRI is an inherently slow technique, motion is a common problem. This can be
physical motion such as breathing or cardiac motion, signal response changes due to
injection or ingestion of MRI contrast agents, or even movement of the acquired slice in
dynamic MRI.

The challenges that motion poses in MRI can be illustrated by considering the example
of cardiac exams:

While breathing motion can be suppressed by, e.g. breath-hold exams, cardiac motion
cannot be stopped. Furthermore, this cardiac motion is of interest in itself, since it con-
tains information about the function of the heart, and it is often the primary reason for
performing cardiac MRI. Studying the cardiac motion in real time is especially important
in the presence of arrhythmia.

In general, avoiding breath-holds is desirable because it eliminates a source of error,
since children and otherwise non-compliant patients often fail to hold their breath. This
is particularly true for patients with heart problems, because these patients are often
unable to hold their breath.

Therefore, approaches are needed which ideally resolve both breathing and cardiac
motion. Using a highly undersampled and thereby very fast acquisition can provide data
with a su�cient time-resolution to resolve heart dynamics as well as breathing motion [8,
30].

As for reconstructing these data, there are multiple possible approaches, each making
di�erent assumptions: There are approaches close to classical CINE MRI based on syn-
chronization with an electrocardiogram (ECG) or on self-gating, i.e. extracting cardiac
and respiratory phase from the MRI signal, sorting the data according to these states, and
reconstructing the resulting multidimensional dataset. This approach assumes periodicity
in the cardiac and respiratory states in di�erent cycles. Two examples of such approaches
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are Feng et al.’s [84] XD-GRASP (extra-dimensional GRASP)1 and the method published
by Cheng et al. [85]. An advanced method for self-gating for use with such methods is
Rosenzweig et al.’s [76] SSA-FARY (singular spectrum analysis for advanced reduction of
dimensionalty), which will be used later.

Without this assumption about states, the data can be reconstructed as a time series, for
example by binning a few excitations into time frames and reconstructing these. Here, the
assumption is that adjacent frames contain redundant information and that can be used
to overcome undersampling. Both of these approaches can only be used after acquisition
has �nished, and are therefore no suitable for real-time reconstruction.

Such data can also be reconstructed using a causal reconstruction, that means with
a method which only takes into account already acquired data. This still comes with
the assumption about redundancy in adjacent time frames, but it enables reconstruction
concurrent with the acquisition, which both of the aforementioned methods exclude.
Such methods are therefore the only ones which can enable real-time (i.e. concurrent
with the acquisition) reconstruction (e.g. using NLINV, see [8, 30]). Furthermore, as only
past data, and often only the previous frame, is used for reconstruction, these methods
only slightly increase the problem size.

For non-periodic motion, such as movement of the slice position or orientation during
a scan, or the perfusion of a contrast agent through the body, only reconstruction as a
time series is feasible.

Additionally, since modern MRI generally involves multiple coils, coil sensitivity pro�les
accurate over the entire dataset are necessary for all three approaches. If they can be
assumed to be constant over the dataset, it is simple to pre-calculate sensitivities. However,
in the case of varying coil pro�les, pre-calculation becomes di�cult or infeasible. In such
cases, methods which simultaneously estimate image content and coil sensitivity pro�les
are preferable, such as NLINV.

In the following chapter, I introduce a technique which can be used for reconstruction
of both self-gated data and of time series. This method fully exploits and embraces
the multi-dimensional nature of such datasets, combining the accurate calculation of
multidimensional coil pro�les and images through non-linear inversion with the quality
improvements of compressed sensing.

This technique, termed XD-NLINV is applied to a variety of MRI techniques, starting
with dynamic contrast-enhanced data �rst and then applied to di�erent fast acquisitions
of the head and the heart, along with self-gated cardiac data.

1a multidimensional extension of golden-angle radial sparse parallel MRI (GRASP)
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5.1. Theory and Implementation

5.1. Theory and Implementation

Here, we assume data from NC coils, each consisting of measurements at multiple time-
points t , are stacked into a vector Yt . Then the time-series of imagesmt and of the spatial
coil sensitivities Ct can be recovered by solving

arg min
mt ,Ct

‖Yt − PtFCtmt ‖
2
2 . (5.1)

Here, F is the (2D or 3D) Fourier transform at each time point and Pt the projection onto
the acquired pattern/trajectory in k-space.

Since this problem is highly ill-posed, and to exploit compressed sensing, regularization
is added. As with regular NLINV this will include a term penalizing high spatial frequen-
cies in the coil pro�les. In principle, this problem can also be solved using the IRGNM.
However, I chose an alternating minimization scheme instead. Alternating minimization
has been used before in MRI [29], and one of its qualities is the ease with which di�erent
regularization can be added to the subproblems, since they are linear inverse problems.
This is especially appealing in MRI, since the prior knowledge about images and coil
pro�les is di�erent, as coil pro�les are, for example, known to be smooth in space while
the images, in general, are not. Therefore, the regularization applied to either will, in
general, also be di�erent. While this could be added to an implementation based on the
IRGNM as well2, it is simpler in an alternating minimization formulation, which is why
it is used here.

In order to apply an alternating minimization scheme, we observe that the problem
Equation (5.1) is bilinear: with �xed mt it is linear in Ct and vice versa. This allows a
natural decomposition as two linear inverse problems that have to be solved in tandem:

arg min
Ct

‖Yt −ACtCt ‖
2
2 + αR1(Ct )

with: ACt = PtFmt

arg min
mt

‖Yt −Amtmt ‖
2
2 + βR2(mt )

with: Amt = PtFCt

(5.2)

In case of simple Tikhonov-type `2-regularization, both subproblems can, for example,
be solved with the conjugate gradient method (CG) [86]. In case of a compressed sensing
reconstruction with, e.g. `1-wavelets or total variation (TV) regularization, the problem
becomes non-smooth. Therefore, di�erent reconstruction algorithms are needed which
can properly include such terms, such as FISTA (fast iterative shrinkage/thresholding
algorithm) [32] or ADMM (alternating direction methods of multipliers) [33, 34]. For this
thesis, all XD-NLINV reconstructions were performed with ADMM.

As a post-processing step, image and coil sensitivity pro�les are multiplied to generate

2And this is indeed planned for the future.
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coil images for all time points, which are then combined by calculating their root-sum-of-
squares, analogous to Equation (4.7) on page 24.

Instead of a single time dimension as shown in Equations (5.1) and (5.2), this can
be extended into an arbitrary number of other dimensions, such as additional spatial
dimension or cardiac and/or respiratory state.

5.2. Experiments

To evaluate this method, I applied it to several datasets spanning dynamic contrast
enhanced (DCE) MRI, “virtual moving table”, real-time imaging of the human heart, and
self-gated dataset with both cardiac and respiratory motion dimensions.

A DCE dataset of a human liver3 was acquired at 1.5 T with: TR/TE: 4.27 ms/1.55 ms,
�ip angle: 12°, base resolution: 256, FOV: 385 × 385 mm2, slice thickness: 5 mm. The total
dataset comprises 63120 TRs in 30 slices, from which I extracted a single slice which I
then binned into frames of 21 TRs each. This dataset was then reconstructed using real-
time NLINV and with XD-NLINV. The XD-NLINV reconstruction included a temporal
total-variation penalty.

As an example of an acquisition with naturally changing coil pro�les, I turned to “virtual
moving table” MRI. Here, the acquisition plane is moved in each frame in a direction
orthogonal to the imaged slice, mimicking a movement of the scanner table, albeit with
more degrees of freedom. Such acquisitions can be used for fast localization of structures
of interest. The coil pro�les, of course, change from frame to frame, so constant pro�les
cannot accurately describe the data. However, XD-NLINV can be used to reconstruct
these data. The selected dataset is a 2D FLASH acquisition of a human volunteer with no
known illnesses, starting from the top of the skull in transversal direction and covering
the entire head down to the lower jaw. Acquisition parameters are: TR/TE: 3 ms/1.93 ms,
�ip angle: 15°, FOV: 192 × 192 mm2, resolution: 1 × 1 × 5 mm3, slice shift per frame: 1 mm,
bandwidth per pixel: 840 Hz with random rf spoiling [24]. 43 uniformly distributed radial
spokes per frame were acquired, where 5 successive frames each contain complementary
spokes. This leads to a measurement time of 129 ms per frame and a total measurement
time of 24.75 s for 192 slices (frames). This dataset was then reconstructed using real-time
NLINV and using XD-NLINV with a total-variation penalty in the slice (frame) direction
and with a spatial wavelet penalty.

Another area where XD-NLINV can potentially improve reconstruction quality is real-

3Courtesy of Tobias Block
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time imaging of the human heart. To evaluate XD-NLINV on real-time data, I selected 60
frames from a bSSFP acquisition of the human heart of a volunteer with no known illnesses.
Acquisition parameters are TE/TR: 3.32/1.66 ms, �ip angle: 53°, matrix size: 160 × 160,
FOV: 256 × 256 mm2, slice thickness: 6 mm. These data were reconstructed using XD-
NLINV and using ESPIRiT followed by a PICS with a linear model. Both reconstructions
included a temporal total-variation constraint.

An example where pre-calculated coil pro�les are infeasible is an interactive real-time
acquisition: Here, the slice position and rotation is changed during the scan, so pre-
calculated coil pro�les cannot be valid for the entire reconstruction. Therefore, a portion of
the interactive real-time dataset described in Section 4.3 was extracted and reconstructed
using ESPIRiT followed by a PICS with a linear model, using real-time NLINV and using
XD-NLINV. Both ESPIRiT+PICS and XD-NLINV reconstructions included a temporal total-
variation penalty, with an additional spatial wavelet regularization for the XD-NLINV
reconstruction.

Additionally, an inversion recovery radial FLASH dataset, originally acquired for fast
T1 mapping4, was selected to asses XD-NLINV’s performance. This dataset is a short-axis
view of a human volunteer with no known illnesses, acquired at 3 T. After an initial
adiabatic inversion pulse, 90 frames covering 4.05 s were acquired. Additional sequence
parameters were: TR/TE: 2.67 s/1.67 s, FOV: 256 × 256 mm2, matrix size: 256 × 256, slice
thickness: 8 mm, �ip angle: 6°, bandwidth: 850 Hz per pixel. These data were then recon-
structed using XD-NLINV with a spatial and a temporal total-variation penalty.

Finally, a dataset was binned by SSA-FARY into respiratory and motion states5. This is
a short-axis view of the human heart, acquired using 26 channels of a thorax coil and a
golden-angle radial FLASH trajectory at 3 T. Further acquisition parameters were: TR/TE:
2.60 ms/1.63 ms, �ip angle: 12°, matrix size: 192 × 192, FOV: 256 × 256 mm2, slice thickness:
7 mm, acquisition time: 30 s. This dataset, consisting of 11539 individual TRs, was binned
into 25 cardiac and 9 respiratory states using SSA-FARY [76]. XD-NLINV reconstruction
included a total variation penalty in the cardiac and respiratory dimensions together
with spatial wavelets. As a comparison, Sebastian Rosenzweig’s [76] reconstruction of
this dataset was used. There, coil pro�les for each breathing state were pre-calculated by
ENLIVE followed by a PICS reconstruction with a linear model including a total variation
penalty in the cardiac and respiratory dimensions and a spatial wavelet penalty.

Regularization parameters of the ESPIRiT+PICS and XD-NLINV reconstructions are
collected in Table A.1 in Appendix A.

4Courtesy of Xiaoqing Wang
5Courtesy of Sebastian Rosenzweig
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5.3. Results

Selected frames of the DCE dataset corresponding to pre-contrast, the venous phase,
arterial phase and a late frame of the resulting reconstructions can be seen in Figure 5.1.
Comparing the two reconstructions, we can see that, while the real-time reconstruction
exhibits slight blurring, the XD-NLINV is free of blurring. This can be quanti�ed by
analyzing the signal enhancement in time: Figure 5.2 shows that signal enhancement
for both reconstruction methods. Here, both XD-NLINV and real-time NLINV follow a
similar time course. The time curves for di�erent strengths of the total-variation penalty
in XD-NLINV are shown in Figure 5.4. There we can see that increasing the total-variation
penalty also increases smoothness of the signal curve in XD-NLINV.

The coil pro�les calculated by XD-NLINV corresponding to the frames in Figure 5.1 are
shown in Figure 5.6. For easier visualization, the 6 pro�le are combined as the root-sum-
of-squares of the individual coil pro�les. These coil pro�les exhibit some of the e�ect of
the contrast-agent induced intensity increase, showing that the XD-NLINV model does
not perfectly separate image and coil sensitivities.

Selected slices of the “virtual moving table” reconstruction are shown in Figure 5.7.
Here, while XD-NLINV reconstructs this dataset, no major improvement in quality is
visible. On the contrary, the real-time NLINV reconstruction seems to show superior
in-plane (transversal) image quality. For the sagittal and coronal slices, XD-NLINV shows
less blurring. Close to the spine, this dataset shows a periodic artifact with a period of
about 750 ms. This is likely due to blood �ow, as 750 ms would correspond to a heart rate
of 80 beats per minute, which is in the expected range for an adult at rest.

Selected frames of the XD-NLINV reconstruction of the inversion recovery FLASH
dataset are shown in Figure 5.8, with the time curves of three di�erent tissue types shown
in Figure 5.9. XD-NLINV faithfully reconstructs these data, showing the contrast inversion
between blood and myocard in Figure 5.8(d) compared to Figure 5.8(b) and Figure 5.8(f),
as well as the lack of contrast visible in Figure 5.8(e).

In the real-time cardiac bSSFP reconstruction shown in Figure 5.10, straight nuFFT
leads to unusable image quality, with strong streak artifacts overlaying the entire image.
However, both XD-NLINV and ESPIRiT+PICS reconstruction show high quality. Here,
XD-NLINV resolved more of the blood vessel in the lung, showing better resolution of
small details.

Figure 5.11 shows a comparison of ESPIRiT+PICS, real-time NLINV, and XD-NLINV on
part of an interactive real-time dataset. The �ipped orientation of the �rst images is due
to the slice movement and rotation in interactive real-time. While the image quality for
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the �rst frame (Figure 5.11(b)) is similar for all three methods, with only real-time NLINV
showing slight blurring, the ESPIRiT+PICS reconstruction shows string streak artifacts
and signal loss in the second frame (Figure 5.11(b)). Additionally, real-time NLINV exhibits
a phase singularity leading to a signal void below the right ventricle (see Section 4.3 for
more details on this phenomenon).

Finally, Figure 5.12 shows the results of the cardiac dataset gated with SSA-FARY for four
di�erent cardiac and respiratory states. As can be seen, both the PICS reconstruction with
a linear model and XD-NLINV resolve the papillary muscles inside of the left ventricle
as well as the heart wall, indicating excellent quality of the reconstruction. This is also
indicated by their small di�erence shown in the right column of Figure 5.12.
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(a) pre-contrast (0 s)

(b) arterial phase (11 s)

(c) venous phase (30 s)

(d) late phase (110 s)

Figure 5.1: Selected frames of a DCE acquisition reconstructed with real-time NLINV
(left) and with XD-NLINV including a temporal total-variation constraint
(right). (a): pre-contrast, (b): arterial phase, (c): venous phase, (d): late phase.
The times are time di�erences to the pre-contrast image. While the real-
time NLINV reconstruction shows blurring, XD-NLINV show excellent
image quality.

60



5.3. Results

0 20 40 60 80 100 120
Time [s]

0.20

0.40

0.60

0.80

1.00

Si
gn

al
 in

te
ns

ity
 [a

.u
.]

Aortal Enhancement

0 20 40 60 80 100 120
Time [s]

0.40

0.60

0.80

1.00

Si
gn

al
 in

te
ns

ity
 [a

.u
.]

Portal Vein Enhancement

XD-NLINV
rt-NLINV

Figure 5.2: Signal enhancement in the aorta (top) and the portal vein (bottom) for
real-time NLINV and XD-NLINV. Both XD-NLINV and real-time NLINV
follow a similar curve. For better visualization of the individual curves,
they are shown with o�sets in Figure 5.3.

61



5. Nonlinear Reconstruction with Additional Spatial and Temporal Dimensions

0 20 40 60 80 100 120
Time [s]

0.20

0.40

0.60

0.80

1.00

1.20

Si
gn

al
 in

te
ns

ity
 [a

.u
.]

Aortal Enhancement

0 20 40 60 80 100 120
Time [s]

0.20

0.40

0.60

0.80

1.00

1.20

Si
gn

al
 in

te
ns

ity
 [a

.u
.]

Portal Vein Enhancement

XD-NLINV
rt-NLINV

Figure 5.3: The same signal enhancements as in Figure 5.2 shown with a vertical
o�set.
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Figure 5.4: Signal enhancement in the aorta (top) and the portal vein (bottom) for
XD-NLINV with di�erent regularization parameters for the temporal total-
variation term. With increasing total-variation penalty, the XD-NLINV
shows increasing smoothness as well, smoothing out maxima and minima.
The individual curves are shown with a vertical o�set in Figure 5.3.
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Figure 5.5: The same signal enhancements as in Figure 5.4 shown with a vertical
o�set. As the total-variation penalty decreases from top to bottom, the
curve becomes less smooth.
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5.3. Results

(a) pre-contrast (0 s) (b) arterial phase (11 s)

(c) venous phase (30 s) (d) late phase (110 s)

Figure 5.6: Root-sum-squares of the coil sensitivity pro�les calculated by XD-NLINV
for the DCE dataset shown in Figure 5.1. While overall similar in shape,
variations can be seen at the di�erent time points, showing that XD-
NLINV attributes some intensity variation to the coil sensitivity pro�les.
All images shown with the same absolute windowing.
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(a) transversal

(b) sagittal

(c) coronal

Figure 5.7: Selected orthogonal slices of the “virtual moving table” dataset recon-
structed with real-time NLINV (left) and XD-NLINV (right). The XD-
NLINV reconstruction included a total-variation penalty in the slice di-
rection (superior-inferior) and a spatial wavelet penalty in the transversal
plane. In the transversal slice (a), XD-NLINV does not appear to improve
image quality. In the sagittal and coronal slices, XD-NLINV shows less
blurring in the superior-inferior direction. Both reconstructions show a
periodic artifact close to the spine, with a period of about 750 ms. This is
likely due to blood �ow, as it would correspond to a heart rate of 80 beats
per minute, well within the expected range for an adult at rest.
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(a) Frame 1 (0.06 s) (b) Frame 8 (0.37 s) (c) Frame 20 (0.92 s)

(d) Frame 40 (1.83 s) (e) Frame 57 (2.60 s) (f) Frame 72 (3.28 s)

Figure 5.8: Selected frames of the XD-NLINV reconstruction of the inversion recovery
radial FLASH dataset. Times after inversion are given in parentheses.
This reconstruction includes both a spatial and a temporal total-variation
penalty. The di�ering relaxation times of di�erent tissue types is visible
in the distinct contrast changes: For example, there is a contrast reversal
between blood and myocard between frames (d) and (f).
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Figure 5.9: Signal development over time in static tissue, in blood inside the left
ventricle, and in myocardial tissue. The selected regions of interest are
highlighted in the inset. The contrast reversal between blood and myocard
at about 2.6 s after inversion is also visible in Figure 5.8(d) to Figure 5.8(f).
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(a) end-diastole

(b) end-systole

(c) end-diastole (di�erent cardiac cycle)

Figure 5.10: Selected frames of a cardiac real-time bSSFP dataset reconstructed using
a ramp-�ltered nuFFT (left), ESPIRiT followed by a PICS reconstruc-
tion with a linear model (center) and using XD-NLINV (right). Both
ESPIRiT+PICS and XD-NLINV reconstructions include a total-variation
penalty in time. Direct nuFFT leads to unusable results, but there is little
di�erence in image quality in the heart for ESPIRiT+PICS and XD-NLINV.
However, the XD-NLINV reconstruction resolves more of the blood ves-
sels in the lung.
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(a) frame 268 (11.37 s)

(b) frame 310 (13.15 s)

Figure 5.11: Selected frames of the reconstruction of an interactive real-time acquisi-
tion with ESPIRiT followed by a PICS reconstruction with a linear model
(left), real-time NLINV (center), and XD-NLINV (right). The PICS and
the XD-NLINV reconstruction included a total variation penalty in time,
with an additional a spatial wavelet penalty for the XD-NLINV recon-
struction. The real-time NLINV reconstruction shows slight blurring,
while XD-NLINV resolves more detail, such as blood vessels in the lung.
ESPIRiT+PICS shows good image quality in (a), but fails in (b). This is due
to the static coil pro�les, which do not describe the data recorded after
slice rotation. The unusual rotation of (a) is due to the free movement and
rotation of the slice during acquisition. Real-time NLINV, additionally
shows a signal void in (b) below the apex of the heart, more easily seen
in Figure 4.13(c).
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(a) end-systole end-inhalation

(b) end-diastole end-inhalation

(c) end-systole end-exhalation

(d) end-diastole end-exhalation

Figure 5.12: SSA-FARY reconstruction with ESPIRiT (left) and with XD-NLINV (center)
in di�erent cardiac and respiratory states, together with their di�erence
(right) scaled up by a factor of×10. Both approaches show excellent image
quality, with very little di�erence.

71



5. Nonlinear Reconstruction with Additional Spatial and Temporal Dimensions

5.4. Discussion

The proposed method, XD-NLINV, extends non-linear reconstruction to arbitrary dimen-
sions while including compressed sensing. This allows exploiting prior knowledge about
the acquired data to achieve improved reconstruction. Because of the ease of adding
arbitrary regularization, the bi-linear original problem was formulated as two linear
subproblems, one for the coil sensitivity pro�les and one for the images, which have to
be solved in tandem. As the various reconstructions show, it is applicable to a wide array
of imaging methods.

The results for the DCE dataset (Figure 5.1 - Figure 5.6) show an improved image
quality compared to real-time NLINV. Even though separation between image content
and coil sensitivity pro�les is not perfect (see Figure 5.6), XD-NLINV’s signal development
(Figure 5.2) shows that this is not a problem in practice, even for quantitative analysis.
The imperfect separation is most likely due to the problem formulation: only the added
regularization, especially the enforced smoothness of the coil sensitivity pro�les, dis-
criminates between coil pro�les and images. However, the post-processing described in
Section 5.1 leads to proper �nal results, as the agreement between the real-time NLINV
and the XD-NLINV reconstructions in Figure 5.2 shows.

The ESPIRiT+PICS reconstructions in Figure 5.10 and Figure 5.12 successfully used
lower-dimensional coil pro�les than the reconstructed images: in the former case, a single
set of coil pro�les was used for all frames, so the coil pro�les were time-independent,
while in the later case, the coil pro�les di�ered for each respiratory state but were constant
along cardiac state. This shows that the full dimensionality, as is currently done in XD-
NLINV, is not always needed in the coil pro�les. Therefore, in the future, a version of
XD-NLINV which determines coil pro�les of a lower dimensionality is conceivable and
could reduce the problem size. It must be noted here that ESPIRiT coil pro�les are always
recalculated, while XD-NLINV estimates them during image reconstruction.

However, in cases where the full dimensionality is necessary, such as in the interactive
real-time dataset shown in Figure 5.11, ESPIRiT+PICS leads to artifacts in signal loss. This
is the case since the ESPIRiT calibration was done on the �rst part of the dataset and so
was no longer accurate after the slice movements and rotations between Figure 5.11(a)
and Figure 5.11(b). XD-NLINV in that case, calculates coil pro�les for each time frame,
and therefore manages correct reconstruction.

In conclusion, XD-NLINV has been shown to perform on par with current state-of-the-
art methods where they are applicable. Additionally, it produces high-quality images in
cases where other techniques such as ESPIRiT are not applicable. Because of its �exibility,
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the possible applications of XD-NLINV are numerous. By lifting the limitation on speci�c
data shapes and instead allowing full multi-dimensional reconstruction, XD-NLINV can
be adapted to many image setting in MRI.
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6. Banding-free Balanced
Steady-State Free Precession

6.1. Introduction

In this chapter, a third way to extend the dimensionality of the problem is explored: We
will extend the coil dimension of the reconstruction to integrate parts of the measurements
which have a di�erent weighting due to physical phenomena.

We will explore an example for removal of banding artifacts in balanced steady-state
free precession (bSSFP), which is of practical importance for cardiac imaging at high �eld
strengths.

Initial results for brain imaging have been presented at the 26th Annual Meeting of the
International Society for Magnetic Resonance in Medicine [87].

Balanced steady-state free precession (bSSFP), described in more detail in Section 2.2.2,
is a fast MRI sequence often used in clinical practice because of its high SNR and its
unique T2/T1 contrast. However, it is sensitive to o�-resonances which result in banding
artifacts [26]. Figure 6.1 shows such an artifact in a cardiac bSSFP acquisition. As banding
artifacts worsen with increased �eld strength, banding-free bSSFP is especially challenging
at 3 T and beyond. For this reason, approaches for reducing the impact of banding artifacts
have been developed, �rst among them rf phase cycling, which multiplies the required
scan time. Joint reconstruction approaches, such as those introduced by Ilicak et al. [88]
and Bilgic et al. [89], can decrease this extra scan time. Still, for each phase cycle (typically
between 4 and 8), a new steady state needs to be prepared, requiring a recovery period
between cycles and a setup period into each new steady state.

A di�erent approach is dynamically phase-cycled or frequency-modulated steady-state
free precession (fm-SSFP) [90, 91], where the rf-phase is slightly changed in each excitation,
leading to a time-varying steady state. These approaches often require complicated
reconstruction methods which precisely model the fm-SSFP dynamic [92, 93].

Here, a new method is introduced which can be viewed as a combination of joint
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reconstruction of di�erent phase cycles and fm-SSFP, combining a simple extension of
conventional NLINV reconstruction with a frequency-modulated acquisition. It exploits
the fact that small changes in the rf-phase increment do not strongly distort the signal
response, as Foxall [90] could show by analysis of the bSSFP signal. In exchange for
increasing the dimensionality of the reconstruction problem, it removes banding artifacts
from bSSFP MRI.

Figure 6.1: Selected frame of a short-axis cardiac bSSFP acquisition. A banding artifact
passes through the left ventricle, rendering the image unusable.

6.2. VC-NLINV

This method, termed virtual-coil (VC) NLINV comprises changes in both acquisition and
reconstruction compared to joint reconstruction of phase-cycled bSSFP and frequency-
modulated bSSFP.

In contrast to fm-SSFP, where the rf phase is changed for each excitation, VC-NLINV
acquires a number of radial spokes with the same rf phase before changing it for the next
frame. This is done so that each frame, instead of each excitation, can be regarded as a
separate phase cycle.

These frames, each containing a di�erent phase cycle, are then stacked in the coil
dimension as additional virtual coils and reconstructed using the regularized non-linear
inverse reconstruction (NLINV). This, in e�ect, constrains the single image to simultane-
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ously explain all phase cycles, while the banding artifacts are regarded as changes in the
coil sensitivity pro�les only.

6.3. Methods

I acquired bSSFP data of a transversal slice through the brain of a volunteer with no known
illnesses. These data were acquired at 3 T using a 20-channel head coil. Further sequence
parameters were: TR/TE: 4.4 ms/2.2 ms, �ip angle: 40°, FOV: 192 × 192 mm2, resolution:
1 × 1 × 5 mm3, bandwidth per pixel: 840 Hz. I acquired two datasets with di�ering phase
increments and spokes per frame: dataset a) with 2° phase increment and 43 spokes per
frame, and dataset b) with 5° phase increment and 17 spokes per frame. Each dataset
covers phase cycles between 180° and 360°, leading to acquisition times of 17 s for the 90
frames of dataset a) and 2.7 s for the 36 frames of dataset b).

Both datasets were then reconstructed twice: once with a real-time NLINV reconstruc-
tion, so that each individual phase cycle is reconstructed, and once using the proposed
VC-NLINV. Both reconstruction were done using the Berkeley Advanced Reconstruction
Toolbox (BART) [37].

6.4. Results

The VC-NLINV reconstructions, together with selected phase cycles from the real-time
reconstruction, are shown in Figure 6.2 for dataset a) and in Figure 6.3 for dataset b). In
both cases, banding artifacts are visible in the individual phase cycles. Using VC-NLINV,
however, eliminates those banding artifacts.

Residual streak artifacts remain when using 17 spokes (Figure 6.3); no streak artifacts
appear when using 43 spokes per frame (Figure 6.2).

Figure 6.4 and Figure 6.5 show signal curves of regions-of-interest in the white matter
of the brain and in the cerebrospinal �uid (CSF) for both datasets. Here, we can see that
for the dataset with 17 spokes and 5° phase shift per frame, the signal development is
noisy. Furthermore, for both datasets, the signal curves do not show 180° periodicity.

6.5. Discussion

While the banding artifacts are removed in the VC-NLINV reconstruction, the residual
streak artifacts in Figure 6.3 remain.

77



6. Banding-free Balanced Steady-State Free Precession

Figure 6.2: Two selected phase cycles of the real-time NLINV reconstruction of dataset
a) (left and center) together with the reconstruction using the proposed
VC-NLINV (right). The individual phase cycles show banding artifacts,
which are eliminated using VC-NLINV.

Figure 6.3: Two selected phase cycles of the real-time NLINV reconstruction of dataset
b) (left and center) together with the reconstruction using the proposed
VC-NLINV (right). Here, too, the individual phase cycles show banding
artifacts, which are eliminated using VC-NLINV. Additionally, this dataset
contains streak artifacts in both the real-time NLINV and the VC-NLINV
reconstruction.
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Figure 6.4: Signal development for each frame in regions-of-interest of the real-time
reconstruction of dataset a). According to the theory presented in Sec-
tion 2.2.2, both signal curves should ideally show 180° symmetry, but both
of them do not.
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Figure 6.5: Signal development for each frame in regions-of-interest of the real-time
reconstruction of dataset b). While the signal shows the same overall
structure as Figure 6.4, it also shows more noise. Additionally, is also does
not show the expected 180° symmetry.
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According to Foxall [90], fm-SSFP with phase changes of over 3° shows a distorted
signal response compared to bSSFP. Since this is undesirable in the present application,
only small phase changes are used. Note however, that this limit of 3° is for continual
phase changes, while the rf phase is only changed for each frame in VC-NLINV, so once
every 17 or 43 excitations. This would also explain why the VC-NLINV reconstruction of
the dataset with 5° (Figure 6.3) does not show strong di�erences to the dataset with 2°
phase change per frame. However, the signal curves shown in Figure 6.4 and Figure 6.5
show deviations from the expected 180° symmetry. This would indicate a distorted signal
response even for 2° phase shift every 43 excitations.

Small changes in the phase increment only slightly move the banding artifacts. There-
fore, a much larger number of phase cycles must be combined when using VC-NLINV
compared to traditional phase cycling. Still, by only slightly disturbing the steady state,
the proposed scheme can acquire data continuously without recovery or preparation
periods for each cycle.

The current implementation uses 5 sets of uniformly distributed radial spokes which
repeat every 5 frames. Changing this to acquiring a new set of spokes in each frame, for
example by using the golden angle between spokes, might improve image quality.

In conclusion, VC-NLINV, a high-dimensional extension of NLINV to include phase
cycles as virtual coils, can be used to reconstruct banding free images from data acquired
in less than 3 s. However, the signal response needs further study to con�rm that it is not
unduly changed from regular bSSFP.
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In this thesis, I introduced several higher-dimensional extensions to the signal model of
magnetic resonance imaging relating to artifact mitigation, coil sensitivity calculation,
and improved reconstruction.

Chapter 4 introduced ENLIVE, which relaxes the model by allowing multiple images and
maps, enlarging the problem. This relaxed model can accommodate violations of the sim-
ple MRI signal model, thereby improving its robustness. ENLIVE was evaluated on datasets
covering a number of MRI methods of current interest, including phase-constrained imag-
ing, highly-undersampled acquisitions, along with examples using non-Cartesian and
real-time MRI. In all of these cases and in comparisons with state-of-the-art methods, it
provided robust reconstructions of high quality. In contrast to previously proposed robust
reconstruction approaches which are based on the SVD, it is computationally much more
e�cient making it suitable for applications where SVD-based methods are currently not
feasible, such as large 3D reconstruction and real-time MRI.

Chapter 5 describes the extension of NLINV to data of arbitrary dimensionality. Apart
from improving image quality by leveraging compressed sensing in addition to parallel
imaging, this allows to exploit the correlations in additional dimensions such as space,
time, cardiac state and respiratory state. XD-NLINV is designed as a generic tool for image
reconstruction. Due to its self-calibrating nature it can be applied directly to various
imaging scenarios and was shown to provide image quality on par with state-of-the-art
reconstruction methods in dynamic contrast enhanced (DCE) MRI, virtual moving table,
interactive real-time MRI and the novel self-gating approach SSA-FARY.

Chapter 6 discusses how di�erent smoothly weighted images obtained from the mea-
surement process can be jointly reconstructed as additional virtual channels. This concept
is evaluated on a bSSFP acquisition commonly used in cardiac MRI. Here, together with a
phase-cycled acquisition which provides di�erently weighted images, it can avoid banding
artifacts completely, which are a common problem in clinical practice at higher �eld
strengths.

The common scheme in all extensions is that increasing the dimensionality of the re-
construction allows the exploitation of correlations using regularization schemes without
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assuming a speci�c signal behavior. This is shown to increase reliability of measure-
ments while at the same time reducing the time needed for data acquisition. For image
reconstruction, this comes at the cost of increased model size and problem complexity.
Here, further optimization of the numerical implementation to make better use of the
capabilities of modern high-performance parallel processing platforms is necessary. Nu-
merical algorithms which split the problem into smaller parts will also help to address
this problem. The alternating minimization scheme used for XD-NLINV in this thesis
can serve as a starting point for the development of such algorithms.

Since the formulation of XD-NLINV allows for easy addition of arbitrary regularization,
novel methods such as in�mal convolution of total-generalized variation [94] could be
added in the future. Additionally, methods restricting the rank of the reconstruction, as
explored in Ong [95] would be of high interest and could be integrated as well.

In conclusion, this thesis introduced several extensions to regularized non-linear inverse
reconstruction (NLINV), showing how such extension bene�t the reliability, robustness,
and quality of MRI. Integrating calibrationless parallel imaging, compressed sensing, and
joint reconstruction techniques in a uni�ed framework, these extensions cover a large
range of state-of-the art image reconstruction techniques and open up new opportunities,
speci�cally in cardiac imaging.
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A. Regularization parameters

In Table A.1, the regularization parameters for the ESPIRiT+PICS and XD-NLINV the
reconstructions in this thesis are collected. The vastly di�erent scaling between XD-
NLINV and ESPIRiT+PICS is due to an implementation detail: In the XD-NLINV, the raw
data is scaled to 100 times the sum of the sizes of the extra dimensions (that includes all
dimensions apart from spatial dimensions and the coil pro�les, in particular it includes
time and cardiac and respiratory phase). So for proper compatibility of the data scaling
and the regularization, this extra scaling should also be applied to the regularization
parameters, and indeed this will be the case in the future. Note that this scaling is only
done for the reconstruction, it is removed afterwards.

Table A.1: Regularization parameters used in Chapter 5.

Figure 5.1 XD-NLINV with temporal total variation (TV) of λiTV = 40.0 for the
images and λcTV = 60.0 for the coil pro�les

Figure 5.7 XD-NLINV with spatial wavelets with λW = 6.0, and temporal TV
with λiTV = 60.0 for the images and λcTV = 120.0 for the coil pro�les

Figure 5.8 XD-NLINV with spatial TV with λTV = 4.0 and TV with λTV = 20.0

Figure 5.10 ESPIRiT+PICS with temporal TV with λTV = 0.04. XD-NLINV with
temporal TV with λiTV = 10.0 for the images and λcTV = 20.0 for the
coil pro�les

Figure 5.11 ESPIRiT+PICS with temporal TV with λTV = 0.01. XD-NLINV with
spatial wavelets with λW = 6.0 and temporal TV with λiTV = 60.0
for the images and λcTV = 120.0 for the coil pro�les

Figure 5.12 ESPIRiT+PICS with spatial wavelets with λW = 0.0002, TV in the
cardiac phase dimension with λTV = 0.007 and TV in the respiratory
dimension with λTV = 0.009. XD-NLINV with spatial wavelets with
λW = 60.0, TV in the cardiac and respiratory dimensions with λTV =
300.0 and TV on the coils in cardiac dimension with λcTV = 300.0
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