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Preface

When I started working on my thesis with Michael, it was planned as a comprehensive

statistical characterization of the turbulent phase in active matter, in two as well as

three dimensions. But as is the case with most dissertations, more exciting ideas came

in the way. Michael accidentally came across an interesting vortex crystal solution to

the active matter model that we were looking at. It was about a year later that we

started looking closely at these crystal phases and it proved to be a rich arena with

close connections to solid-state physics. Now, as it stands, the present work is divided

roughly into two halves; one concerned with the active turbulence phase and the other

with active vortex crystals. Put together, this work addresses two of the arguably most

important phases, after the well studied flocking phase, in active matter.

Active matter is an evolving field of physics. Thus it comes with a lot of exciting

opportunities; several new phenomena to study, understand and predict. But there

are also vices associated with a vastly expanding field. Fragmentation and conflicting

approaches to describe the same phenomenon as well as disconnect between theory and

experiments among others. While the present work is not, and cannot be, immune

to these problems, I have tried to explain and address these problems whenever pos-

sible. Perhaps the biggest shortcoming of this work, like in many theoretical works

in active matter, is its lack of direct connection to experiments. But I have discussed

about possible experimental proposals which can prove or disprove the results presen-

ted here. Active vortex crystals, in particular, is a fabulous playground for a rich range

of experiments whose results will be remarkable considering how exciting the field of

two-dimensional crystals is.

This dissertation is styled in the form of a cumulative thesis; with two published

manuscripts and one manuscript prepared for publication forming the bulk of the results.

The first chapter provides a comprehensive introduction to all the results and also

introduces our primary model. The dissertation ends with a discussion, putting the

results from the manuscripts in a wider context.

I would like to express my gratitude to the many people who have made this disser-

tation possible. I am deeply indebted to Michael for his excellent guidance throughout

this project. It was a great pleasure to work with him and his advice, and discus-
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sions with him, have contributed significantly to this work. Comments and suggestions

from the other members of my Thesis Advisory Committee, Stephan Herminghaus and

Marcus Müller, have helped in the timely progress of this work and are gratefully ac-

knowledged. I would also like to thank Stefan Klumpp, Annette Zippelius and David

Zwicker for agreeing to be part of my doctoral examination board.

I am very grateful to the collaborators involved with this study. The work on closure

models for active turbulence was done in collaboration with Wouter Bos and the vortex

crystal project involves collaboration with Jörn Dunkel. I have also had the pleasure

of working with Dominik during his Bachelors thesis, the results of which form part of

the third manuscript. I would like to thank Samriddhi for having introduced me to the

field of turbulence.

Many scientific members at the Institute have contributed to the improvement of

this work and have helped make my stay in Göttingen memorable. I especially thank

the past and current members of the Wilczek group as well as the LFPB department.

I am very grateful to Chichi, Colin, Gerrit, Tobias and Venecia for proofreading this

dissertation. I thank Dario for the wonderful discussions during his many visits to

Göttingen. I express my sincere gratitude to the administrative staff at the Institute for

their invaluable help. I thank Angela for going over and beyond her job requirements

to help me during the initial days of my stay in Göttingen, and also Barbara for her
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Abstract

Living and nonliving active matter, ranging from flocks of birds to active colloids, ex-

hibit a fascinating range of physical phenomena such as order-disorder transitions and

density waves in flocking phases, chaotic states and pattern formation. While the prop-

erties of flocking phases have received considerable attention, other active matter phases

are relatively less explored. In this dissertation, we theoretically and computationally

investigate turbulence and crystalline patterns, as well as transitions between these

phases, in two-dimensional active matter.

In the first half, we study turbulence in active fluids. Important statistical quantities

such as probability density functions of velocity and vorticity as well as velocity correl-

ations and energy spectra are analyzed. We show that active turbulence, in contrast

to hydrodynamic turbulence, is characterized by a strong length-scale selection. We

develop a statistical closure theory for velocity correlations based on the eddy-damped

quasi-normal Markovian approximation from hydrodynamic turbulence theory. This

theory captures the statistical features of active turbulence across a range of activity

values, suggesting the applicability of classical hydrodynamic theory in investigating

the properties of active fluids.

In the second half of this dissertation, we investigate the properties of a spontan-

eously emerging crystalline phase. We show that this nonequilibrium crystal preserves

some of the properties of their equilibrium counterparts. The melting of such active vor-

tex crystals may proceed with a hysteretic transition region, or through an intermediate

hexatic phase, depending on the values of the control parameters. Interestingly, we ob-

serve that the duration of crystallization increases with the domain size. As we approach

the thermodynamic limit, superstructures of vortex crystal domains emerge leading to a

supertransient phase. These superstructures form domains of vortex crystals of opposite

polarity spins, demarcated by a turbulent active fluid. We also discuss generalizations

to the continuum equations used in this work. Advected Swift-Hohenberg equations

form a wider class of models that can qualitatively describe active fluids.

Taken together, the results in this dissertations present an analysis of crystallization

and turbulent dynamics in active matter within one uniform framework.
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1 Introduction

Active matter refers to nonequilibrium collective systems where the constituent particles

continuously convert internal (or external) energy into mechanical energy [1–4]. There

is an abundance of such phenomena in nature ranging from flocks of birds, schools of

fish and herds of animals to swarms of microorganisms and even intra-cellular structures

(Fig. 1.1 (a)-(d)). These phenomena cover length scales spanning a few micrometers to

several kilometers. Apart from such living matter, there are also carefully constructed

nonliving active systems (Fig. 1.1 (e), (f)): for example, rods propelled on a vibrating

membrane, though forced externally, display dynamics qualitatively similar to the living

systems [5]. Another example is an active system of self-propelled colloids of Janus

particles (Fig. 1.1 (f)). These active matter systems form the physical basis for this

study. Before stating the questions addressed in this dissertation, it is instructive to

explain why it is worthwhile to investigate these systems and more importantly, what

role can physicists play in unraveling the questions related to them.

Let us start by looking at the important features exhibited by biological active matter.

Perhaps the most startling observation is the most common one too: flocking. There

exist several examples of flocking in nature: flocks of birds to herds of animals showing

long-range global order. These are surprising since such a global order is prohibited in

two-dimensional equilibrium systems with a finite range of interactions and continuous

symmetry (continuous orientational symmetry of the active agents) [6–8]. To put it

differently, if we prevent all the animals in a herd from moving and force them to order

only by “looking” at the orientation of their neighbors, it would be impossible for them

to do so [9]. This is essentially the two-dimensional XY model of spins on a lattice,

which does not show long-range order. But the addition of a simple nonequilibrium

feature (activity) leads to the emergence of global order. Arguably, the evidence that

a nonequilibrium XY model can exhibit a global order at finite noise constitutes the

starting point of active matter research [10]. A considerable amount of research on

active matter has since been devoted to explain the different properties of this flocking

phase [3, 11].

Apart from flocking states, there are several other phases of active matter (Fig. 1.1

(b)-(f)). For example, spermatozoa suspensions form regular hexagonal lattices of active
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Figure 1.1: Some examples of living and non-living active matter systems. (a) A large sardine school
exhibiting polar order. (b) Self-organized vortex array formed by spermatozoa of sea urchins. An
example of pattern formation in active fluids. (c) Turbulent dynamics in active fluids as exhibited by
a quasi two-dimensional dense suspension of B. Subtilis. (d) Active turbulence in a nematic system
formed by a microtubule-kinesin mixture. (e) Ordering in active granular matter: asymmetric copper
rods in a background of aluminum beads. (f) Another example of inanimate active matter: light
activated active colloids. Panel (a) is from Jon Bertsch photography (jonbertsch.com) and the other
figures are adapted from references [5, 12–15]. All figures are reproduced with permission.
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vortices [12] whereas microtubule systems have been shown to form irregular lattices [16].

There are also many other examples of pattern formation and crystal-like phases in a

variety of active matter systems [15, 17]. These raise many interesting questions: How

general is the pattern formation phenomenon? How can the length scale and the type of

pattern be explained? Can the methods and techniques developed in classical pattern

formation phenomena, like convection, be used to explain pattern formation in active

matter? How does the transition to the crystalline phases contrast with the transition

to the flocking phases? Does it share any properties with equilibrium phase transitions?

Another phase with intriguing features is what is referred to as active turbulence

or turbulent active fluid (Fig. 1.1 (c), (d)). Active turbulence has been observed in

dense bacterial suspensions as well as in several other microswimmer systems [13, 18–

20]. Such turbulent flow in active fluids is characterized by the spontaneous form-

ation of vortices and jets and irregular, “chaotic” dynamics. These phenomena are

termed active turbulence by virtue of their similarity to hydrodynamic turbulence. But

active turbulence differs from hydrodynamic turbulence in several crucial ways. The

instability and transition to turbulence in Newtonian fluids occur at a high value of

the non-dimensional Reynolds number [13]. The Reynolds number characterizes the

relative strength between the inertial forces and the viscous forces. For a pipe flow,

for example, the transition to turbulence occurs at a Reynolds number of the order

of 103 [21]. In contrast, the Reynolds number associated with the swimming microor-

ganisms is usually less than 10−2 [22]. Also, in this low Reynolds number turbulence,

unlike hydrodynamic turbulence, there is a clear length-scale selection characterized by

uniformly sized vortices.

A comprehensive investigation of active matter systems would thus involve combin-

ing techniques from statistical mechanics, pattern formation as well as hydrodynamics.

This dissertation presents such an investigation of these intriguing phases in active

matter systems. In particular, we numerically investigate the pattern formation and

crystallization as well as turbulence-like dynamics. Our objective is to show, given the

insensitivity of these observations to many of the microscopic details of the physical

system, whether these properties can be understood and analyzed through universal,

phenomenological considerations. Such studies have been successfully undertaken for

the flocking phase of active matter [11, 23]. What we present here is a natural extension

of these results, applied to more diverse phenomena.

We can now write down the defining properties of active matter: (a) The basic

dynamics in these systems occur at the scale of the constituent particles. To put it

differently, there is constant energy injection at the length scale of the active agents,

driving the system out of equilibrium. (b) The individual particles may interact with

the neighbors within a finite distance. This interaction may be of hydrodynamic, steric,
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or physiological nature. (c) There is inherent noise in the system which prevents perfect

alignment with neighbors. Put together, the three properties described above would not

only provide a starting point for a theoretical understanding of active matter systems but

also contrast its properties with that of equilibrium systems. It is, of course, property

(a) which distinguishes active matter from its equilibrium counterparts.

Active system Definition Example
Polar Active agents have a preferred orientation and dir-

ection of motion
Bird flocks

Nematic Active agents have no preferred orientation or dir-
ection of motion

Microtubule-kinesin
mixture

Dry active matter Interactions with the solvent flow neglected, no mo-
mentum conservation in the equations of motion

Toner-Tu model [23]

Wet active matter Takes into account hydrodynamic interactions,
equations of motion conserve momentum

Simha-Ramaswami
equations of motion [24]

Table 1.1: Different types of active matter systems and models. See ref. [17] for more details.

Before we delve into more details, let us classify the different types of active matter

systems and models [17]. A continuum theory can capture the large-scale features of

a system at a coarse-grained level and such a physical system may be called an active

fluid. We note that there are conflicting definitions in literature for the term “active

fluid” [3, 13, 25], so we use the following convention. The term active fluid does not

refer to another class of system within active matter, but merely signifies the scale

separation between the scales of interest and length scale associated with the individual

constituents. In terms of the type of interaction between these constituent agents, active

fluids are classified into polar and nematic. Polar active fluids are the ones where the

constituents are asymmetric with a preferential alignment along one direction. Examples

include bacterial suspensions and asymmetric vibrated granular media. Nematic active

fluids, on the other hand, have head-tail symmetry and have no preferred orientation.

Microtubule-kinesin mixture is an example of such systems. Since such systems have

orientational properties similar to that of liquid crystals, they are also called active

liquid crystals. There are also polar active fluids, i.e., with head-tail asymmetry, but

with nematic interactions and vice versa. Also, depending on the model used, a system

can be categorized as wet or dry. A wet model preserves momentum conservation by

taking into account the hydrodynamic interactions with the solvent. A dry model, on

the other hand, does not explicitly take this hydrodynamic coupling into account. Our

focus in this dissertation is on the dynamics of polar active fluids with polar interaction

based on a dry model.

The rest of this introduction is organized as follows. We start with a brief historical

overview of active matter research and review the current research questions in the field.
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Since the phenomenon of active turbulence and its connection to hydrodynamic turbu-

lence occupies a central part of this dissertation, we will then provide a summary of the

important statistical results from hydrodynamic turbulence relevant to our results. This

is followed by a discussion about crystals in two dimensions since we focus on vortex

crystals in active fluids in the latter part of the dissertation. We then introduce the con-

tinuum model for active matter, which is adapted from a theory of active turbulence [13,

26]. We end the introduction with an outline of the rest of the dissertation.

1.1 Active matter

Active matter is a relatively novel branch of physics: the origin of the field, as the term

‘active matter’ is understood today, can be traced back to the work by Tamaz Vicsek

in 1995 on the statistical mechanics of flocking [10]. Today the research on active

matter attempts to explain the collective motion of self-propelled agents over a wide

range of length scales; from microswimmers to animal flocks. The actual mechanism

of self-propulsion varies significantly across this spectrum. We start this overview with

a brief description of a few types of microswimmers and their propulsion mechanisms.

The research into the dynamics of microswimmers has a long and rich history, which

we summarize. We then trace the historical development of the field of active matter

starting with Vicsek’s seminal work and the associated theoretical and experimental

developments in the study of flocking phases. We conclude our overview describing

the recent experimental observations of several novel phases ranging from low Reynolds

number turbulence to crystalline phases in active matter systems.

1.1.1 Microswimmers

Swimming of microswimmers is a fascinating topic, not least because of the low Reyn-

olds number, viscosity-dominated regime they inhabit [27]. While the length scales we

investigate in this dissertation allow us to coarse-grain the dynamics and thus disregard

the locomotion of an individual microswimmer, it is still instructive to discuss the topic

as a starting point. Collective dynamics in bacterial suspensions, as well as spermatozoa

and microtubule systems, form the main motivation for this study. Thus we start by

describing their structures and propulsion mechanisms. (See ref. [28] for a review.)

In bacteria such as E. Coli and B. Subtilis, the primary method of propulsion is by

using a flagellum - a helical organelle attached to the cell wall. The organism moves

by rotating the flagellum (usually in a bundle of multiple flagella) by using a motor

protein embedded in its cell wall, thus creating a pushing (pusher-type such as E. Coli)

or pulling (example C. reinhardtii) force [29]. In a free solution, such bacteria follow

what is referred to as a run-and-tumble motion [30]. The cell, aided by the flagella,

moves (run) along its long axis until it abruptly stops and reorients in a random direc-
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tion (tumble). Tuning the duration of the run and tumble phases allows the organism

to follow environmental cues such as chemical gradients. As opposed to the free motion

in a fluid, the swarming motility of bacteria on a surface involves more complicated

dynamics [31]. It is in this swarming state, at very high concentrations, that we observe

the two-dimensional active turbulence phase. Spermatozoa suspension is another mi-

croswimmer system that shows turbulent dynamics [20]. Sperm cells have a spherical

head attached to a eukaryotic flagellum. As opposed to the bacterial flagella which ro-

tate, the eukaryotic flagellum creates helical waves by a bending motion which provides

the necessary propulsion [29]. The mechanism of this bending may vary depending on

the type of sperm cell and the environment.

One important active matter system which has been extensively studied in the past

few years is the microtubule-motor protein mixture which acts as a model active nematic

fluid [19]. Microtubules, a polymer of globular proteins, are tubular filaments which

form part of the cytoskeleton. When mixed with motor proteins such as kinesin, mi-

crotubules result in a highly dynamic active gel [32]. The motor protein aligns the

filaments together and drives the dynamics based on adenosine triphosphate (ATP)

concentration. While the filaments themselves are neither motile nor microswimmers,

the resulting mixture follows the properties of an active matter system. This system

exhibits a nematic active turbulence phase which has been investigated experimentally

and theoretically in the recent past [19], as we review in the sections below.

There also exists a wide class of synthetic microswimmers. One common example,

in the context of collective motion, is an active colloid system. These are usually

prepared with Janus colloids which can show propulsion in a preferred direction due to

their asymmetry. They are driven by, e.g., chemical gradients [28] or phototaxis [15].

There are also active systems of colloidal rollers driven by an electric field [33]. Apart

from active colloids, some examples of synthetic microswimmers include active bubble

jets [28] or ferromagnetic helices driven by magnetic fields [34].

In the case of the dynamics of microswimmers, the incompressible Navier-Stokes

equation describing the fluid flow (discussed in detail in the next section) can be con-

siderably simplified. The length scales of interest allows us to neglect the inertial effects

and if the viscous time scales are less than the characteristic time scale of the motion,

we are left with a linear Stokes flow approximation for the fluid

∇p− η∇2u = f .

Here u, p and η are the fluid velocity, pressure and viscosity, respectively, and f is the

force exerted by the microswimmer. By virtue of the linearity of the above equation, it

can be solved analytically by using a Green’s function - the Oseen tensor. This can be

obtained from the solution to a point-force field f(r) = δ(r)ê, which in three dimensions

8



is given by

u(r) =
1

8πηr

[
ê+

(r · ê)r

r2

]
.

Perhaps the simplest approximation for a microswimmer, based on the discussion above,

is a force dipole, which is a good model for certain organisms [35]. Under this assump-

tion, the velocity field decays quadratically with distance. More sophisticated point-

force models can be built to take into account anisotropy, flagellar motion and other

effects [28]. Other common theoretical models for microswimmers include squirmers

which are hard spheres with a prescribed tangential surface velocity [36].

Extending the above approach to multiple swimmers will allow us to model collect-

ive motion emerging from hydrodynamic interactions. But as we have already noted,

irrespective of whether the interaction is hydrodynamic, steric or physiological, and ir-

respective of the inhabiting environment, there are several collective states which recur

across a wide spectrum of active agents. This points to simpler and general approxim-

ations for such interactions being able to describe collective phenomena. In the next

section, we discuss such a statistical mechanical theory of active matter and related

developments.

1.1.2 Flocking and statistical mechanics of active matter

As we discussed at the beginning of this chapter, one of the significant results in active

matter is the ferromagnetic order characterized by the long-range correlation of the

orientation of the spins observed in the Vicsek model [10]. To appreciate this, let us start

with a brief reminder about an important result in statistical mechanics, the Mermin-

Wagner-Hohenberg theorem. As originally proven by Mermin and Wagner, it states that

in dimensions d ≤ 2, in the XY model, the continuous orientational symmetry cannot

be spontaneously broken [6–8]. This means that in the two-dimensional XY model, at

any non-zero temperature, the thermal fluctuations destroy the long-range order.

The Vicsek model is a dynamic XY model that shares some properties with the

flocking phases of active matter. The Vicsek model explores this flocking phase by

using a simple nonequilibrium extension of the XY model [10]. Compared to the fixed

spins in the XY model, the spins in the Vicsek model move in the direction they point

to. A noise parameter, which acts like a temperature, randomly changes the direction

of the particles while a short-range interaction parameter aligns them. Thus xi(t+1) =

xi(t) + vêθi where xi is the position of the particles, v is the self-propulsion speed and

θi is the orientation. The time evolution of the orientation angle θ of particle i is given

by

θi(t+ 1) = 〈θi(t)〉R + ηi(t),

where the average is over all particles in radius R and the random vector ηi(t) is the noise

9



Figure 1.2: Transition to a flocking phase in the Vicsek model: Snapshots of the statistically steady
states in the Vicsek model as the magnitude of the noise parameter is decreased. (a) For a large
magnitude for the noise parameter, the system remains in an isotropic phase. The different colors
denote the different orientations of the self-propelled particles. (b), (c) As the magnitude of the noise
is reduced, we observe a transition to a flocking phase. (Here the particle density ρ = 12, the self-
propulsion speed v = 0.03 and the magnitudes of the noise parameter η are 5, 1 and 0.1 for (a), (b)
and (c) respectively.)

parameter drawn from a uniform distribution. As the magnitude of the noise parameter

is reduced, Vicsek et al. [10] noted that the system undergoes a transition from an

isotropic phase to an ordered phase (Fig. 1.2). Although this is a nonequilibrium system,

one can still classify the nature of this transition. In the original work, the transition

was classified as continuous. However, later investigations have shown that the phase

transition in the Vicsek model is discontinuous [37, 38]. Another important feature of

the Vicsek system is that it exhibits the so-called giant number fluctuations [39]. In an

equilibrium system the fluctuations in the number of particles, in the grand canonical

ensemble for instance, usually grow as
√
〈N2〉 − 〈N〉2 ∼

√
N . However, the Vicsek

system shows anomalous scaling of the fluctuations where it grows faster than
√
N , a

property observed in other active matter systems too [17, 38].

Several generalizations to the Vicsek model have been explored. For instance, the

Vicsek model can be modified to account for nematic interactions [40]. Surprisingly

the properties of the nematic system contrast with that of the polar-ordered Vicsek

model since it does not form a phase with long-range order [38, 40]. Another example

is a continuous version of the Vicsek model which takes the form ẋi = êθi [41]. The

orientations evolve according to

dθi
dt

=
∑

j

sin [m (θi − θj)] + ωi (t) .

The summation is over all neighbors within a fixed distance. The noise ωi can be white

noise similar to the original Vicsek model, or a stochastic process with memory such as
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an Ornstein-Uhlenbeck process [41]. The parameter m can take values to enforce polar

or nematic ordering. More realistic models can be constructed by taking into account

the effect of the solvent flow and hydrodynamic interactions [42–44].

So why does the Vicsek model show long-range order? The starting point for such a

theoretical analysis of polar ordering in the dry active matter is the Toner-Tu equations

of motion [9, 11, 23, 45]. It is a continuum model that describes the coarse-grained

velocity field and the density of the active spins. These equations were originally derived

phenomenologically based on symmetry considerations. This implies writing down all

the terms in the evolution equation for the velocity field permitted by the symmetries

and the conservation laws, keeping only the lowest-order terms in the gradients and the

time derivatives. So what are the symmetries of the system? The active spin system

is rotationally and translationally invariant, but it is important to note that it lacks

Galilean invariance. This is because the spins move in a restive medium with a self-

propulsion velocity with respect to a unique frame of reference. So shifting to another

co-moving frame of reference need not render the equations unchanged. With these

details in mind, the Toner-Tu model for polar dry active matter is given by [11, 23, 45]

∂u

∂t
+ λ1(u · ∇)u+ λ2(∇ ·u)u+ λ3∇(|u|)2 =

Uu−∇P +DB∇(∇ ·u) +DT∇2u+D2(u · ∇)2u+ f . (1.1)

Here U is the local alignment function and f is a stochastic noise. All the parameters

are functions of ρ and |u|. The above equation can be closed with a state function for

the pressure P and a continuity equation for the density. The system is made active

by an appropriate choice for U , for instance U = α− β|u|2. The dynamic effect of this

choice is to make the absolute value of the velocity, |u|, evolve towards the stationary

value
√
α/β. To make this clear, note that the term Uu can be written as the derivative

of a functional Uu = −δV [u]/δu, where

V [u] =

ˆ
Ω

[
−1

2
α|u|2 +

1

4
β|u|4

]
dr =

ˆ
Ω

[(√
β

2
|u|2 − α

2
√
β

)2

+
α2

4β

]
dr.

Since V has a minimum at |u| =
√
α/β, |u| evolves towards this stationary value. Thus

this term enforces a self-propulsion speed without picking the direction of the velocity.

In the system of equations described above, the long-range ordered phase does in-

deed remain stable. This can be proved by using a dynamical Renormalization Group

analysis [9, 23]. The stability of the flocking phase is due to the advective nonlinearities

which generate long-range interactions [17]. A qualitative argument for the long-range

order in the active spin system, due to Ramaswamy, is as follows [3]: If u|| denotes

the velocity field in the direction of the flock, then long-wavelength fluctuations δu⊥
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perpendicular to u|| can be excited easily (since it is only the magnitude of the velocity

which is fixed by a self-propulsion speed). Given that δu⊥ is a velocity, this allows the

orienting influence to spread to a distance δu⊥t in time t. This enhances the range of

orienting influence compared to the equilibrium system, thus suppressing orientational

fluctuations and preserving long-range order.

1.1.3 New phases: turbulence and patterns

The past two decades of active matter research has revealed the existence of several novel

phases other than the flocking state, as we briefly noted at the beginning of this chapter.

Here we review experimental results about two such phases: turbulent active fluids and

vortex array systems. We choose these since they form an important motivation for the

present work.

Turbulent active fluid phases have been reported on a variety of systems such as

bacterial fluids (Fig. 1.1 (c)) [13, 18, 46, 47], microtubule-kinesin mixtures (Fig. 1.1

(d)) [32, 48] and sperm cell suspensions [20]. The velocity field in these different systems

appears qualitatively similar and is characterized by an irregular flow. But why do

we not observe polar-ordered phases in these systems? The reason is, as shown by

Simha and Ramaswamy, that the hydrodynamic fluctuations make polar-ordered phases

unstable in such low-Reynolds number systems [24, 49].

An active turbulence state was first realized in a quasi-2D suspension of E. coli, as

reported by Wu and Libchaber [46]. The experimental setup consisted of a thin film

of the bacterial suspension at moderate density supplemented with polystyrene beads

for tracking. Surprisingly, this led to a large-scale coherent motion characterized by

swirls and jets much larger than the individual bacterium. In contrast to bioconvection,

which results from the response of the microorganisms to some taxes, this bacterial

turbulence occurs in the absence of a gradient [22]. Furthermore, the mean-square-

displacement, evaluated by tracking the polystyrene beads, shows superdiffusive motion

for short times. This arises due to the large-scale coherent motion of the bacterial sys-

tem. These observations were reproduced with B. subtilis by Dombrowski et al. [18] and

Wensink et al. [13]. Detailed measurements of velocity correlations and energy spectra

of bacterial turbulence have shown that these statistical properties vary considerably

from hydrodynamic turbulence [13]. It is also important to note that the phenomenon

of bacterial turbulence is not confined to two-dimensional systems; three-dimensional B.

subtilis system also shows spatio-temporal collective motion similar to turbulence [47].

Apart from bacterial systems, active turbulence has also been reported in spermatozoa

suspensions and microtubule-kinesin mixtures. In spermatozoa suspensions, the scaling

of the energy spectrum was found to be similar to hydrodynamic turbulence, in contrast

to bacterial turbulence [20]. Nevertheless, the observation of turbulent dynamics in such
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varying settings suggests that the phenomenon is generic to a wide range of stratified

active matter systems. Turbulent dynamics in a microtubule system is different from

the other examples since microtubule suspensions are nematic active fluids [19, 50, 51]

(See section 1.1.4).

Surprisingly, spermatozoa suspensions and microtubule systems also self-organize

into well-ordered patterns of coherent vortex arrays [12, 16, 52] (Fig. 1.1 (b)). Act-

ive vortex arrays in the spermatozoa system were first reported by Riedel et al. [12].

This experiment involved spermatozoa of sea urchins which self-organize into an array

of vortices. However, the vortex centers themselves were found to be dynamic, with

a diffusion coefficient larger than expected from thermal fluctuations. Notably, their

calculations revealed that the vortex array, although well-structured, does not show

crystalline order. Another example of vortex lattice formation in active matter is mi-

crotubules propelled by surface-bound dyneins [16]. Most of the theoretical attempts at

understanding these patterns have been based on self-propelled-particle models [41, 53].

A field-theoretic treatment of these phases is currently lacking and forms the subject

matter of the second half of this dissertation (Chapter 4).

1.1.4 Active liquid crystals as a model for nematic active matter

Structures formed by stabilized microtubules-kinesin motor protein mixtures were first

realized to study intracellular self-organization [50, 51]. Later experiments have mod-

ified these systems to obtain highly active nematic gels (see Fig. 1.1 (d)) [32]. These

systems are characterized by irregular defect dynamics and form a nonequilibrium ana-

log of liquid crystals. As we have discussed already, this is another example of active

turbulence, active nematic turbulence. A considerable amount of theoretical and nu-

merical work on active nematics has been conducted based on active extensions of the

classical liquid crystal theory [19, 54–57]. Though the physical system as well as the

model studied in this dissertation is different, for completeness, here we provide a brief

overview of the important results from the liquid crystal based theory of active nematics.

We follow the description of active liquid crystals as given in refs. [19, 54]. The equa-

tions of motion for the active liquid crystal theory describes two coarse-grained order

parameter fields, an orientational field Q and a velocity field u, and is a straightfor-

ward extension of the equations of motion for the classical liquid crystal theory. The

orientational field is a traceless tensor that describes the alignment of the liquid crystal

system; traceless since the system has head-tail symmetry. It can be obtained from

the polar orientational vector field (the director field) n by Qij = S(ninj − δij/2) (in

two dimensions). Here S is the magnitude of the order. Then the coupled equations of

motion for both the order parameters is given by
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Figure 1.3: Particle alignments around defects (shown as red dots) in a liquid crystal system. The
image on the left shows a +1/2 defect and the right one shows a −1/2 defect.

ρ(∂tui + uk∂kui) = η∆ui − ∂ip+ ∂kσik,

∂tQij + uk∂kQij = λSeij +Qikωkj − ωikQkj + γ−1Hij.

Here p is the pressure term which can be closed by an equation of state or an incom-

pressibility condition, η is the shear viscosity, λ is the flow alignment parameter and

γ is the rotational diffusivity. e and w are the rate-of-strain and vorticity tensors re-

spectively and σ is the stress tensor which contains the effect of activity. It is given by

the sum of elastic and active stresses σij = σeij + σaij where

σeij = −λHij +QikHkj −HikQkj,

σaij = αQij.

Here H , which appears both in the expression for the stress tensor and the evolution

equation for Q, is the molecular tensor that determines the relaxation dynamics of the

orientational field. It is given by the derivative of the Landau-de Gennes free energy

functional [54]

F =
1

2

ˆ
d2r
[
K|∇Q|2 + CtrQ2(trQ2 − 1)

]
,

where K and C are material constants.

The sole difference which the model described above has with the classical liquid

crystal model is the active stress term given by αQij [19]. The presence of activity leads

to dynamical features that are otherwise absent; for instance, the active liquid crystal
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equations result in a turbulent phase at high activity, similar to the turbulent phase

observed in microtubule-kinesin mixtures. The major distinction between the passive

and the active liquid crystal is that the activity leads to a self-propulsion velocity for the

+1/2 defects (see Fig. 1.3 for a schematic of the defects in liquid crystal systems) [19].

It is the dynamics of these defects which result in this chaotic turbulence phase. Apart

from active turbulence, more ordered phases of active liquid crystals have also been

investigated using the active liquid crystal theory. For instance, it has been shown that

the active liquid crystal model, confined to a channel flow, can result in a vortex array

phase which transitions to turbulence at high activity [56].

1.2 Statistical features of hydrodynamic turbulence

Turbulent phases are exhibited by a variety of active systems ranging from bacterial

fluids to microtubule and spermatozoa suspensions. In the first half of this dissertation,

we characterize this turbulent dynamics in active fluids. Though qualitatively similar to

hydrodynamic turbulence, the properties of active turbulence differ significantly from

it. In this section, we provide a brief review of the important statistical features of

hydrodynamic turbulence. We focus solely on results relevant to our discussion on

active turbulence as presented later in this dissertation (for detailed reviews on the

subject, see refs. [58–60]). Henceforth in this section, the term turbulence refers to

turbulent dynamics in Newtonian fluids unless specified otherwise.

What distinguishes a turbulent flow from a laminar flow is its irregular and chaotic

dynamics. As we noted before, the nature of a fluid flow changes from laminar to

turbulent as the nondimensional Reynolds number is increased [21]. The Reynolds

number, named in the honor of the first physicist to carefully characterize this transition,

is the relative strength of the inertial to the viscous forces, at a particular length scale.

It is defined as

Re =
UL

ν

where L is the length scale of interest, U is the velocity at that scale and ν is the

kinematic viscosity.

Given the irregular nature of the flow, it is clear that any theory aimed at studying

turbulence should be statistical in nature. As we review below, the multipoint velocity

statistics in turbulence are strongly non-Gaussian and lack self-similarity. What makes

turbulence both an interesting and difficult field of physics is this nontrivial statistical

nature. The starting point for theoretical and numerical analysis of hydrodynamic tur-

bulence is the Navier-Stokes equation which describes the evolution of the fluid velocity

field,
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∂tu+ u · ∇u = −∇p
ρ

+ ν∆u+ f ,

∇ ·u = 0. (1.2)

Here u is the velocity field, p the pressure, ν the kinematic viscosity and f the forcing

term. The second equation enforces the incompressibility condition on the velocity field

u, which we assume throughout this section. In this section, we provide a summary of

experimental and numerical results about the statistical features of turbulence, as well

as a description of the turbulence closure model which we make use of in our discussion

of active turbulence. All the discussions in this section concern solely with homogeneous

and isotropic turbulence: turbulence sufficiently far away from the boundaries so that

the effects of the boundary and the anisotropy of the forcing can be ignored.

1.2.1 Velocity statistics and correlations in turbulence

To appreciate the statistical complexity of turbulence, one can look at the scale-dependent

features of velocity and vorticity statistics, structure functions, correlations and energy

spectra. To illuminate these features, we present here numerical (obtained through

direct numerical simulations of Eq. (1.2)) results concerning some of these quantities.

The probability density function (PDF) of the velocity at a single point is close to

Gaussian in both two [64] and three dimensions (Fig. 1.4 (a)). However, deviations

appear when we start probing quantities such as two-point velocity PDFs. The lon-

gitudinal velocity increments, given by δuE = [u(x + δrêi) − u(x)] · êi, show strong

non-Gaussian statistical features for small separations δr (Fig 1.4 (d)). The PDF of

the vorticity field (ω = ∇× u) also shows strong non-Gaussian features (Fig. 1.4 (b)).

The statistical features can also be analyzed within the framework of following a tracer

particle in the fluid, i.e. the so called Lagrangian frame of reference. The Lagrangian

velocity increments are given by δuL = [u(X(x0, t0 + τ), t0 + τ)− u(x0, t0)] · êi, where

X denotes the position of the tracer particle. The Lagrangian velocity increment PDFs

deviates from Gaussian for small values of τ (Fig 1.4 (e)). Mean-squared-displacement

of the tracer particles is another interesting statistical quantity [65]. For short times,

the tracers follow a ballistic trajectory. The mean-square-displacement becomes diffus-

ive for longer times. Given this brief overview of the important statistical results from

hydrodynamic turbulence, the question before us is how they compare in the context of

active turbulence. This forms the subject matter of Chapter 2.
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Figure 1.4: Some important statistical quantities in three-dimensional hydrodynamic turbulence
obtained through direct numerical simulations of the Navier Stokes equation. Single-point velocity
and vorticity distributions are shown in panels (a) and (b), respectively; σu and σω are the standard
deviations of the respective PDFs. The Taylor microscale Reynolds number (see ref. [61] for definition)
Rλ = 330. (c) Energy spectra for different values of Rλ. ν and ε are kinematic viscosity and energy
dissipation rates respectively. The wavenumbers are normalized with η, the Kolmogorov scale, which
denotes the length scale where viscosity becomes dominant [61]. (d) Eulerian longitudinal velocity
increment PDFs (Rλ = 316). (e) Lagrangian velocity increment PDFs (Rλ = 316). The temporal
increments τ are normalized with τη, the Kolmogorov time scale.
Data provided by Cristian Lalescu (MPI DS). Panels (a), (b) and (c) are based on the data analysed
in ref. [62] and panels (d) and (e) are based on the data analysed in ref. [63].
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1.2.2 Kolmogorov’s phenomenological theory of turbulence

Here we present a short review of perhaps the most well-known result in turbulence:

Kolmogorov’s theory of 1941 (K41) [58, 66]. K41 is a phenomenological theory of turbu-

lence which enumerates several important statistical results about isotropic turbulence.

Here we focus on the energy spectrum E(k), the energy density at wavenumber k. In

principle, we can write down the evolution equation for E(k) from the Navier-Stokes

equation, but we run into a closure problem as we explore in Section 1.2.3. K41 is in-

stead a phenomenological theory that makes no connection to the underlying equations

of motion. The starting point is a cascade picture for the energy transfer across scales,

due to Richardson [58]. According to this Richardson cascade, energy is transferred

across scales in turbulence, from the largest to the smallest, by a breakup of large ed-

dies into smaller ones. Thus, the energy injected at the largest scale gets cascaded to

smaller scales, eventually getting dissipated at the smallest scale. K41 assumes that in

the intermediate scales between the scales of energy injection and dissipation, the energy

spectrum depends only on the energy dissipation rate and the wavenumber. With this

assumption, by using dimensional analysis, it follows that E(k) ∝ k−5/3. The results

from experiments as well as numerical simulations (Fig. 1.4 (c)) show that this scaling

relation holds surprisingly well [61].

However, we note that many of the assumptions from K41 need not, and do not,

hold true for active turbulence. An alternate method to study the energy spectrum

and related quantities is by making use of the equations of motion for the fluid, as we

explore in the section below.

1.2.3 Closure models

In Chapter 3, we derive a closure model for the active fluids model inspired by the eddy-

damped quasi-normal Markovian (EDQNM) closure scheme from the hydrodynamic

turbulence theory. In this section, we provide an overview of the results from the

turbulence theory leading to this closure scheme. For detailed reviews on the topic, see

refs. [67–72]. Below, we mostly follow the discussion given in ref. [67].

Our goal is to derive an evolution equation for the energy spectrum density E(k) in

three dimensions in the closed form. This is difficult to achieve due to the nonlinear

terms in the Navier Stokes equation which couples E(k) to higher-order terms. To see

this, let us start by defining E(k) [73]

E(k) =

(
L

2π

)3

2πk2 〈û(k) · û(−k)〉 .

where ûi(k) are the coefficients of the Fourier series expansion of the velocity field given

18



by

ui(x) =
∑

k

ûi(k)eik ·x.

The coefficients ûi(k) can be evaluated as

ûi(k) =
1

L3

ˆ
ui(x)e−ik ·xdx.

where the integration is over the domain dimensions [0, L].

The Navier Stokes equation, in Fourier space, takes the form

∂tûi(k) + νk2ûi(k) = −ikip̂(k)− ikj(ûjui)(k),

where f̂ denotes the Fourier transform of f .

Multiplying the above equation by ûi(−k), and using the corresponding equation for

ûi(−k) the evolution equation for the energy spectrum can be obtained:

∂tE(k) + 2νk2E(k) = −2πik2kj 〈(ûjui)(k)ui(−k)〉 − 2πik2kj 〈(ûjui)(−k)uj(k)〉 . (1.3)

Here the pressure term vanishes due to isotropy [74]. The above equation shows that

the evolution equation for E(k) couples to the third-order terms. An equation for the

third-order term would similarly couple to higher-order terms, illustrating the closure

problem. Thus to arrive at a closed set of equations, we need a closure approximation

at some level.

One of the simplest closure schemes is the quasi-normal (QN) approximation pro-

posed by Millionshtchikov [68, 71, 75]. To start with, let us recall a property of the

moments of Gaussian random functions with zero mean; any odd-order moment of the

random function is zero and any even-order moment can be expanded in terms of second-

order moments. To put it differently, the cumulant, which is the difference between the

actual moment and the corresponding Gaussian factorization, is zero. Assuming that

the velocity field follows a Gaussian distribution, at the level of Eq. (1.3), would dis-

regard the nonlinear advection term entirely and is unphysical. The QN approximation

instead factorizes the fourth-order moments without any approximation on the third-

order moments. To this end, we write down the evolution equation for the third-order

moments and factorize the fourth-order moments assuming Gaussianity.

(∂t + ν(k2 + p2 + q2)) 〈ûi(k)ûj(p)ûl(q)〉 = 〈ûûûû〉 =
∑
〈ûû〉 〈ûû〉 .

Here 〈ûûûû〉 denotes the fourth-order moments arising from the advective term and∑ 〈ûû〉 〈ûû〉 the corresponding factorization [59]. The above equation and Eq. (1.3)

form a closed set of equations which can be numerically solved to obtain the energy

spectrum.
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However, the evaluation of the energy spectrum following this QN approximation

leads to negative energy spectra [69, 70]. This is unphysical since the energy spectrum

is positive by definition. The reason for the energy spectrum becoming negative is the

excessive build-up of the third-order moments in QN approximation [76]. Thus the

discarding of the fourth-order cumulants leads to excessive transfer of energy to smaller

scales.

How do we compensate for the excessive energy transfer? One solution is to add a

damping term to the equations of motion, which accounts for the discarded fourth-order

cumulants. Then the equation for the third-order moment takes the form

(∂t + ν(k2 + p2 + q2) + µkpq) 〈ûi(k)ûj(p)ûl(q)〉 =
∑
〈ûû〉 〈ûû〉 .

Here µkpq = µk + µp + µq is the damping term discussed above. A dimensionally

consistent form of this damping term is µk = γ
(´ k

0
s2E(s, t)ds

)1/2

, where γ is a free

parameter [67]. The physical effect which this term models is the deformation rate of

the eddies of size k−1 by the larger eddies, and consequently can be thought of as an

eddy damping term [67]. Thus this scheme is called the eddy-damped quasi-normal

(EDQN) approximation [76, 77].

The above equation is integrated and substituted in Eq. (1.3) resulting in a closed

expression for the energy spectrum which, in symbolic terms, is given below.

(∂t + 2νk2)E(k) =ˆ t

0

dτ

ˆ
p+q+k=0

exp[−[ν(k2 + p2 + q2) + µkpq](t− τ)]
∑
〈ûû〉 〈ûû〉 (τ)dp.

A further simplification can be made by noting that the integrand term
∑ 〈ûû〉 〈ûû〉

can be pulled out of the time integral assuming that its characteristic time is much larger

than the characteristic time of the exponential term, given by [ν(k2 + p2 + q2) +µkpq]
−1.

Also, another simplification can be made by neglecting the time variation of the µkpq,

allowing us to evaluate the time integral and by taking the long time limit. These

approximations are termed Markovianization. This results in

(∂t + 2νk2)E(k) =

ˆ
p+q+k=0

θkpq
∑
〈ûû〉 〈ûû〉 dp,

where

θkpq =
1

ν(k2 + p2 + q2) + µkpq
. (1.4)

The above approximation, called the eddy-damped quasi-normal Markovian (EDQNM)

scheme, has been successfully used to calculate the energy spectra in hydrodynamic tur-

bulence [67, 72]. In Chapter 3, we use this method to evaluate the energy spectra and
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Figure 1.5: A schematic representation of a spin wave spanning the entire domain length (see also
ref. [78])

velocity correlations in active turbulence.

1.3 Melting in two-dimensions

As we discussed in the previous sections, the fact that an active XY model can show

global order in apparent violation of the Mermin-Wagner-Hohenberg theorem is a sur-

prising result with important ramifications. The vast majority of results in active matter

is centered around studying properties of such globally ordered ‘flocking’ phases in act-

ive matter. A natural follow-up question to these results is whether the active matter

analogs of other phases in condensed matter systems exist too. For instance, how do

the properties of crystals in active systems differ from their equilibrium counterparts?

The second half of this dissertation is concerned primarily with this question. We in-

vestigate a vortex crystal phase in active matter and study its melting into an active

fluid. In this section, we provide an overview of the important results on melting in

two-dimensions, which are relevant to our later discussions. We mostly follow the review

by Strandburg [78].

Before we delve into the properties of two-dimensional crystals, let us start with a

reminder about ordering and phase transitions in the XY model. The Hamiltonian of

the XY model is given by

H = −J
∑

〈ij〉
si · sj

where the spins si are constrained to move only in two dimensions. J is the coupling

constant and the summation is over all the nearest neighbors. It was rigorously proven

by Mermin and Wagner that the long-range order of spin-spin correlations in the XY

model decays to zero in dimensions d ≤ 2 [6]. An approximate way to see how the

long-range order is dimension dependent, due to Peierls, is as follows [78]: Consider

a long-wavelength spin-wave spanning the entire domain L of the system (see Fig. 1.5

for a schematic representation). If we assume the deviations between the neighboring

spins to be small, the energy per spin can be approximated as a quadratic function

of the angular deviation. The energy per spin is then proportional to (2π/L)2, where
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L is normalized with the dimension of each spin. Thus the total energy will be given

by the product of the number of spins with energy per spin. Thus it is proportional

to L(2π/L)2, L2(2π/L)2 and L3(2π/L)2 in one, two and three dimensions respectively.

The total energy being finite in one and two dimensions implies that these spin waves

can destroy long-range order at any non-zero temperature. Note that this is in contrast

to the two-dimensional Ising model, with discrete spins, which shows a phase transition

to ordered state at low temperatures [79].

Although the spin-spin correlations decay to zero in the XY model, it does so al-

gebraically at low temperatures, thus defining a quasi-long range order. Thus, the XY

model exhibits two distinct phases: a quasi-long range ordering of spin-spin correlations

and a disordered phase. A theory describing the phase transition from a quasi-long-

range ordered phase to a short-range ordered phase was advanced by Kosterlitz and

Thoules [66]. According to this theory, the transition occurs when the pairs of topolo-

gical defects formed by the spin vortices of opposite polarity get unbound. It predicts

a continuous transition from the quasi-long range ordered phase at low temperatures to

the short-range ordered phase at a higher temperature.

1.3.1 Phase transitions in equilibrium crystals

The difficulty of defining a crystalline order in two dimensions follows from the Mermin-

Wagner-Hohenberg theorem [7]. In three dimensions, crystals can be defined by identi-

fying a periodic arrangement of the constituent particles. For instance, the positional

correlation function of the constituent particles will show peaks even at arbitrarily large

separations. However, Mermin proved in 1968, as an extension of the results on the XY

model, that such long-range positional order cannot exist in two dimensions at any non-

zero temperature [7]. The positional order in two-dimensional crystals, at sufficiently

low temperatures, decays algebraically thus showing quasi-long range order. So how do

we define crystalline order in two dimensions? Apart from the positional order, crystals

are also characterized by an orientational order. An orientational order parameter cap-

tures the local 6-fold ordering (in the case of a hexagonal crystal) of the neighbors for

every particle in a crystal. It can be defined as ψi =
∑

j exp(6iθij)/N(i) for each lattice

site i. Here, θij is the angle between the line connecting the neighbors i and j and an

arbitrary axis, and N(i) is the number of neighbors. The orientational correlation is

then given by the two-point correlation of this order parameter

G6(r) = 〈ψ∗iψjδ(r − rij)〉 / 〈δ(r − rij)〉 (1.5)

where rij is the distance between i and j, and the average is over all lattice sites i and

j. (See also ref. [78] and Chapter 4). Although two-dimensional crystals do not show

long-range positional order, they do show long-range orientational order [81]. Thus a
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Figure 1.6: Melting process in a two-dimensional polystyrene colloidal system experiment. The
polystyrene spheres are embedded with Fe2O3, making them super-paramagnetic (i.e. there is no spon-
taneous magnetization in the absence of an external magnetic field, however the magnetic susceptibility
is larger than typical paramagnets). The transition is triggered by varying the magnetic field. The
colloidal system in the crystal (a) and fluid (b) phases, at high and low magnetic field respectively,
show considerable qualitative differences. The hexatic phase is not shown since it is difficult to visually
distinguish from the fluid phase. (c) Orientational correlation function and (d) dynamic Lindemann
parameter for crystal, hexatic and fluid phases. Γ is the interaction parameter that characterizes the
relative strength of magnetic energy to thermal energy. Figures reproduced with permission from
ref. [80].
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two-dimensional crystal is characterized by quasi-long range positional order and long-

range orientational order.

Another related parameter in the context of crystalline order is the so-called Lindemann

parameter [82]. It is proportional to the standard deviation of the position of the con-

stituent particles from their mean positions. In a three dimensional crystal, the vi-

brations remain small and the Lindeman parameter is smaller than the lattice spacing.

However, in two-dimensional crystals, the standard Lindemann parameter diverges with

domain size [83]. Alternatively, we can define a modified dynamic Lindemann para-

meter, which evaluates the relative separation of neighboring particles, instead of their

absolute deviation [83, 84]. (See Eq. (4.2) in Chapter 4 for a formal definition). This

dynamic Lindemann parameter remains bounded for crystals in two dimensions.

Fig. 1.6 (a) shows a two dimensional crystal formed in a colloidal system. Fig. 1.6 (c)

and (d) show the orientational correlation function which characterizes the orientational

order and the dynamic Lindemann parameter respectively. For the crystal state, the

orientational correlation function asymptotically reaches a non-zero constant while the

dynamic Lindemann parameter remains bounded.

How do crystals in two dimensions melt? There exist several competing theories on

the melting process of two-dimensional crystals. The most famous of these is an exten-

sion of the Kosterlitz-Thouless theory for the XY model to crystals, called Kosterlitz-

Thouless-Halperin-Nelson-Young (KTHNY) theory [66, 85, 86]. It predicts that the

melting is driven by thermally activated dislocation pairs which get unbound. This

unbinding proceeds through a continuous phase transition and results in a phase with

quasi-long-range orientational order, but no positional order. This is the so-called hex-

atic phase of a two-dimensional crystal. Further increasing the temperature leads to

another continuous transition where the dislocations get unbound, resulting in an iso-

tropic fluid phase. Experiments on colloidal systems as well as numerical simulations

have verified the KTHNY melting theory [78, 83, 84].

There also exist alternate theories on the melting of two-dimensional crystals [87,

88]. One of the examples is a grain-boundary induced melting theory [88]. A grain

boundary in a two-dimensional crystal is a line defect caused by a collective excitation

of dislocations. According to this theory, the melting proceeds through the coupling

of grain boundaries and dislocation pairs, which results in a discontinuous transition

which preempts the KTHNY melting.

1.3.2 Nonequilibrium crystals in active systems

Here we review some of the experimental and numerical results concerning nonequi-

librium crystals. Interestingly, experiments on nonequilibrium crystalline systems have

resulted in melting scenarios similar to the one predicted by the KTHNY theory. One
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example is the melting of ferrofluid spikes. Ferrofluids are colloidal liquids made of ferro-

magnetic particles which in the presence of a magnetic field may form spikes [89]. It has

been shown that the melting of ferrofluid spikes, which self-organize into a hexagonal

crystal, proceeds through an intermediate hexatic phase [89]. Experimental and numer-

ical studies have also been conducted on granular systems and thin films with polymer

additives [90, 91]

Within active matter, experiments have looked at patterns and structures such as

clusters of active particles and vortex arrays. Active colloidal systems have been used

as an experimental framework to study crystallization in active matter. Light mediated

Janus particles (Fig. 1.1 (f)) cluster to form local crystalline structures [15]. These local

clusters break-up and reform elsewhere resulting in “living crystals”. Experiments on

chemically activated colloidal systems have also resulted in crystalline structures [92].

Among biological active matter, T. majus bacteria form local crystalline patches [93].

As we noted before, active vortex arrays form another candidate to study crystalline

states in active matter. Experiments have revealed that microtubule suspensions may

form irregular vortex lattices under suitable conditions [16]. Spermatozoa systems have

been observed to form self-organized well-ordered vortex arrays [12] (Fig. 1.1 (f)). It

is important to note that the measurements in this experiment showed a fluid-like

arrangement of the active vortices rather than hexatic or crystal-like [12]. However,

what is interesting is that spermatozoa suspensions have also been shown to exhibit a

turbulent phase [20], pointing at the possibility of achieving a melting transition in this

system. To the best of author’s knowledge, this is the closest experimental realization

of an active vortex crystal, which we theoretically investigate in Chapter 4.

Modeling of active vortex crystals has been attempted through self-propelled particle

(SPP) models as well as through field theories. Analysis of active crystals in two-

dimensions, by using SPP models, has revealed that the melting proceeds through

an intermediate hexatic phase, like in the KTHNY theory [94]. Apart from these,

continuum models such as active extensions of phase-field crystal models have been

used to investigate crystalline order in active matter [95, 96].

1.4 Continuum model for active turbulence and vortex

crystals

So far we have traced the development of the field of active matter and discussed briefly

some of the main results from hydrodynamic turbulence and two-dimensional crystals.

In the succeeding chapters, we theoretically and numerically investigate turbulent dy-

namics and crystallization in active matter. Our investigations are based on a continuum

theory for active matter adapted from a theory of active turbulence [13, 26].

Let us begin by noting that a possible starting point for a theoretical analysis of active
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matter is a dynamical evolution equation for the order parameter(s). For the dry active

matter, the Toner-Tu equations [11, 23] given by Eq. (1.1) provide such a hydrodynamic

theory; it is called hydrodynamic since the variables of interest evolve slowly at the long-

wavelength limit. This theory successfully explains the emergence of long-range order

in dry active matter. However, as we already noted, in low-Reynolds number systems

where hydrodynamic interactions are important, like in bacterial suspensions, a polar-

ordered phase is unstable [24]. To account for this, a simplified version of the Toner-Tu

equation can be supplemented with linear instability. Such a theory was advanced to

study the active turbulence phase in bacterial systems and forms our main model [13].

In this section, we introduce this main model and provide a phenomenological derivation

arriving at the equations of motion. We end this section by presenting a nonequilibrium

phase diagram detailing the different states of the active matter model.

1.4.1 A phenomenological derivation of the active matter model

One of the ways to arrive at a continuum model describing the active matter dynamics is

to start from a generalized hydrodynamic equation of motion and then incorporate the

stresses resulting from the activity. Here we present such a phenomenological derivation

of the active fluids model following the discussion given in refs. [13, 26]. We start with

a generalized Navier-Stokes equation given by

∇ ·u = 0,

∂tu+ u · ∇u = −∇p− (α + βu2)u+∇ ·E. (1.6)

Here u is the coarse-grained velocity field of the active fluid. The pressure term p is

a Lagrange multiplier that enforces the incompressibility condition. E is a generalized

stress tensor which we discuss below. The term −(α + βu2)u, like in the Toner-Tu

equations, models the driving of the system to a local stationary value for |u|. When

α > 0 the active fluid is damped to a zero velocity state. However, when α < 0 a non-

zero stationary value for the velocity field is selected. But since a global polar order in

low-Reynolds number systems is unstable [24], there are other instability mechanisms at

work. One possible way to incorporate these instabilities is by destabilizing the theory

with a suitable choice for the active stress. To this end, the following form for the stress

tensor, which combines these instabilities together with an active nematic stress term,

can be used.

Eij = −Γ0(∂iuj + ∂jui)− Γ2∆(∂iuj + ∂jui) + Sqij.

Here the Γ terms are the gradient expansion of the stress tensor truncated at second

order. When Γ0 > 0 and Γ2 > 0, this stress tensor could render a band of unstable
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wavenumbers, modeling the effect of the instabilities. Here qij is the Q-tensor and

S is the magnitude of the orientation field (see section 1.1.4). Utilizing a mean field

approximation for the orientation field, results in

qij = uiuj −
δij
d
|u|2.

Substituting this into Eq. (1.6), and after defining λ0 = 1 − S and λ1 = −S/d, we

arrive at the equations of motion describing the active fluid:

∂tu+ λ0u · ∇u = −∇p+ λ1∇u2 − (Γ0∆ + Γ2∆2 + α + βu2)u,

∇ ·u = 0. (1.7)

Here the parameter λ0 incorporates the effect of both passive advection as well as the

active nematic stresses. Thus it can be thought of as an active advection parameter.

The set of equations given by Eq. (1.7) form the starting point for the results presen-

ted in Chapters 2, 3 and 4. To simplify the parameter space, note that the λ1 term

can be absorbed into the pressure term. To nondimensionalize the resulting equation,

we define a timescale T = 4Γ2/Γ
2
0 and a length scale L =

√
−2Γ2/Γ0. The parameters

are mapped according to λ0 → λ, Γ0T/L
2 → −2, Γ2T/L

4 → 1, αT → α + 1 and

βL2/T → β. This results in the following equation

∂tu+ λu · ∇u = −∇p− (1 + ∆)2u− αu− βu2 u. (1.8)

One more parameter can be scaled out from Eq. (1.8), thus the effective parameter

set contains two elements, which we choose to be λ and α. We also note that the active

matter equations of motion presented here can be approximately obtained from the

microscopic dynamics of a dense system of self-propelled particles [97, 98].

At this point, it is instructive to take an alternate look at the active matter model.

The model can be thought of as an advected Swift-Hohenberg-like equation. To see

this, let us write down the equations in the vorticity formulation, obtained by taking

the curl of Eq. (1.8) (we discard the mean velocity for the sake of this discussion),

∂tω + λu · ∇ω = −(1 + ∆)2ω − αω − β∇× u2 u. (1.9)

Thus, the model for the pseudoscalar vorticity field is a Swift-Hohenberg-like equation

advected by a velocity field u where ∇× u = ω (Appendix B).
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Figure 1.7: (a) Nonequilibrium phase diagram of the active fluids model. The red, green and blue
regions correspond to (b) vortex crystal, (c) active turbulence and (d) square lattice phases (as exem-
plified by their vorticity fields) respectively. The grey and the orange regions are the marginal stability
regions for the transition between active turbulence and vortex crystal. See also Chapter 4.

1.4.2 Nonequilibrium phase diagram

Having introduced the active matter model, one of the questions before us is what phases

of the active matter systems does it capture. To answer this, we present in Fig.1.7 (a)

the nonequilibrium phase diagram of the active matter model as a function of the two

free parameters advection λ and activity α. This is obtained through a simulation

of the equations of motion by using a pseudospectral algorithm (Appendix A) on a

20π×20π domain using 256×256 grid points (see Chapter 4 for more details about the

simulations). As Fig. 1.7 (b) and (c) show, the active matter model does capture both

the vortex crystal phase and the active turbulence. Here we provide a short description

of these and other phases shown in the phase diagram. This brief account serves as

a useful pointer to our discussions about the different phases of active matter in the

subsequent chapters.

• Square lattice. When the advection parameter λ is close to zero, Eq. (1.8) results

in a square lattice solution for the vorticity field (Fig. 1.7 (d)). This is shown in blue

in the phase diagram. When λ = 0, the equations of motion reduce to a variant of

the Swift-Hohenberg model which can be analyzed by using the tools from classical

pattern formation theory. We present this analysis in Chapter 3. Interestingly,

these patterns remain stable for non-zero, but small, values of advection. This can

be studied by using linear stability analysis (Appendix C).
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• Active turbulence. As the advection parameter is increased, a dynamic phase

corresponding to active turbulence emerges (Fig. 1.7 (c)). The green region in the

phase diagram corresponds to this active turbulence phase. What characterizes

the active turbulence state is the seemingly chaotic vortex dynamics. Analysis and

characterization of this active turbulence phase is the subject matter of Chapters 2

and 3.

• Active vortex crystal. Fig. 1.7 (b) shows a snapshot of the active vortex crystal

phase. Vortex crystals are a broken symmetry phase of a regular arrangement of

dynamic vortices, which emerge from a turbulent transient. This phase is observed

in the red region in the phase diagram. In Chapter 4 we analyze the properties of

these crystalline phases.

• Transition region. The grey and orange regions in the phase diagram correspond

to the transition between the vortex crystal and the active fluid. In the grey region,

the solutions to the active fluid model are hysteretic - the vortex crystals are stable

solutions but do not spontaneously emerge from random initial conditions. In the

orange region, one the other hand, we observe temporally and spatially intermittent

patterns. The analysis of this transition forms a major part of Chapter 4.

1.5 Outline

In this dissertation, we explore turbulent and crystalline phases in active fluids phe-

nomenologically. Our focus is on the following two questions:

• What are the characteristics of the turbulent phase in active fluids and how does

it compare to hydrodynamic turbulence?

• Do active flows form crystalline phases and how do these nonequilibrium crystals

melt?

We use numerical modeling of active flows as well as theoretical analysis to answer these

questions. The outline of the rest of the dissertation is as follows.

In the next chapter, we conduct a comprehensive statistical characterization of the

active turbulence phase. We study the velocity and the velocity increment statistics

in this phase both in the Eulerian and the Lagrangian framework. Furthermore, devi-

ations in the small-scale statistics from Gaussianity are also investigated. We also study

particle dispersion in active turbulence and characterize vortex dynamics in active tur-

bulence. We end this chapter by comparing the properties of active turbulence with

hydrodynamic turbulence.

The statistical features of the active turbulence phase are further explored in Chapter 3.

We develop a closure theory for velocity correlations and energy spectra in active tur-
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bulence by using the EDQNM closure approximation. We compare the results obtained

through this scheme with the results from full simulations of the equations of motion.

Furthermore, the energetics in the active matter system is also analyzed by quantifying

the contributions to the energy spectrum from different mechanisms.

Chapters 4 is concerned with crystalline phases in active fluids. Here we describe

the properties of the vortex crystal phase which occurs as a solution to the active fluids

model. We analyze the emergence of these crystals and their melting into an active

fluid. The properties of the phase transition in the small domain are compared with

those from large domains. The finite-size effects in this system are explored in the

context of the emergence of the vortex crystal phase. We end this dissertation with a

detailed discussion of all the results.
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Vortex dynamics and Lagrangian

statistics in a model for active

turbulence

2.1 Abstract

Cellular suspensions such as dense bacterial flows exhibit a turbulence-like phase under

certain conditions. We study this phenomenon of “active turbulence” statistically by

using numerical tools. Following Wensink et al. [Proc. Natl. Acad. Sci. U.S.A

109:14308 (2012)], we model active turbulence by means of a generalized Navier Stokes

equation. Two-point velocity statistics of active turbulence, both in the Eulerian and

the Lagrangian frame, is explored. We characterize the scale-dependent features of

two-point statistics in this system. Furthermore, we extend this statistical study with

measurements of vortex dynamics in this system. Our observations suggest that the

large-scale statistics of active turbulence is close to Gaussian with sub-Gaussian tails.

2.2 Introduction

Active systems such as a flock of birds, a swarm of bacteria or active colloids form

fascinating meso-scale structures with long-range order exceeding the sizes of individual

agents by an order of magnitude or more [1, 28, 99–101]. Theories describing the form-

ation and evolution of such meso-scale coherent structures in active systems have been

a topic of active research in the past two decades [1–3, 10, 23, 42, 102, 103]. It is known

that the core features of these diverse phenomena can be modeled by taking into ac-

count just a few dynamical effects such as self-propulsion and inter-particle interactions

[1, 10, 102].

Arguably the most diverse of these phenomena occurs at the smallest of the biological

scales where collective dynamics of microbes or intra-cellular structures results in inter-

esting spatio-temporal patterns and non-trivial dynamical features. Among these is the

phenomenon of “active turbulence” – chaotic dynamics of dense suspensions – which
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has been observed in bacterial as well as microtubule systems [18, 32]. In particular

“bacterial turbulence” has been recently observed in quasi two-dimensional suspensions

of B. Subtilis [13, 104]. While the phenomenon shows considerable qualitative similarity

with hydrodynamic turbulence by virtue of which it gets its name, active turbulence

displays an intrinsic length-scale selection absent in hydrodynamic turbulence, which is

characterized by the formation of stable vortices of approximately constant sizes [13,

105]. This typical scale is larger than the scale on which the driving occurs as the

result of an upscale energy transport. This inverse energy transfer is well-known from

two-dimensional Navier-Stokes turbulence forced at small scales [106, 107]. The main

difference is that in a passive Navier-Stokes fluid, the forcing has to be applied extern-

ally.

The chaotic nature of active turbulence calls for a statistical investigation and forms

the subject matter of this study. Our objective here is to provide an extensive statistical

study of this phenomenon by using numerical simulations. Our analysis is based on a

recently introduced minimal continuum model for active turbulence [13], the details of

which are presented in sect. 2.3. As an example, fig. 2.1(a) shows a snapshot of the

vorticity field of the active turbulent system in the statistically stationary state obtained

through direct numerical simulation. The corresponding supplementary movie 1 shows

the evolution of this field with time. Note that the intense vortices in this system are

stable and have a long lifetime.

In this work, we study both the Eulerian and the Lagrangian properties as well as

the characteristics of vortex dynamics in this system. Previous works on this subject

have dealt with the Eulerian properties of the active turbulence field, see e.g. ref.

[105]. In sect. 2.4 we extend this further with two-point velocity statistics and vorticity

statistics to set a reference for the subsequent investigations after introducing the active

turbulence model in sect. 2.3. In sect. 2.5 we study the transport properties of the

active turbulence field by investigating both the vortex dynamics and the Lagrangian

features.

In the context of active turbulence, Lagrangian measurements describe the properties

of tracer particles of the locally averaged velocity of the bacterial field, providing insights

into transport properties and mixing of bacterial suspensions. Measurements of this

kind provide a framework to better understand the experimental works on bacterial

dispersion [108] and dynamics of small objects in bacterial baths [46].

2.3 The active turbulence model

Regarding the mathematical modeling of active flows, a continuum description appears

suitable whenever larger-scale flow structures compared to the individual extents of

the active agents are of interest. For example, such a continuum description has been
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established based on a coupled set of equations of two order parameter fields – the

velocity field and the local orientation of the active agents [54, 109–111]. This level

of description is particularly useful for characterizing the role of defects on the active

dynamics [55, 112]. An even simpler, minimal model for bacterial turbulence has been

introduced in refs. [13, 26]. We here further investigate this model in two dimensions, in

which the locally coarse-grained bacterial velocity field is considered as the only order

parameter. This assumption is based on the premise that in a dense suspension the

local orientation of bacteria aligns with that of the velocity field. The equations for the

coarse-grained order parameter field u take the form

∂tu+ λ0u · ∇u = −∇p− (Γ0∆ + Γ2∆2 + α + βu2)u

∇ ·u = 0 (2.1)

The pressure gradient ∇p is the Lagrange multiplier ensuring incompressibility of the

velocity field. The assumption of incompressibility is valid for dense suspensions. The

free parameters λ0,Γ0,Γ2, α and β can be chosen to match experimental results [13].

The parameter λ0 is related to the type of the bacteria, i.e. whether they are of pusher

or puller type. For pusher bacteria like B. Subtilis, λ0 > 1. As discussed below, the

number of parameters can be reduced by non-dimensionalizing the equations. The linear

terms in the above equation select a range of scales that are excited to model the forcing

in the bacterial flow, which occurs predominantly at small scales. In Fourier space, the

linear part of the equation can be written as γ(k)ũ(k, t) := (Γ0k
2 − Γ2k

4 − α)ũ(k, t).

Consequently, the excited modes correspond to the ones where γ(k) > 0. The nonlinear

advective term, like in the Navier-Stokes equation, is responsible for the energy transfer

and thus allows for the formation of large-scale structures. The cubic term is a nonlinear

saturation which together with the squared Laplacian term ensures the regularity of

these equations [113]. A detailed description of these equations can be found in refs.

[26, 47].

For the current investigations, we non-dimensionalize the equations following ref.

[105] and then normalize our numerical results based on dynamically emerging length

and time scales. In summary, the procedure is as follows. The fastest growing linear

mode kc =
√

Γ0/(2Γ2) is determined by the maximum of γ(k). Consistent with ref.

[105] we select a length scale l = 5π/kc. A velocity scale can be defined dimensionally

as v0 =
√

Γ3
0/Γ2, which also selects a time-scale l/v0. Non-dimensionalizing eq. (2.1)

using this length scale and time scale reduces the two parameters Γ0 and Γ2 to constant

numbers 0.045 and 9×10−5 respectively, thus decreasing the number of free parameters

to three. If not noted otherwise, we choose the set of parameters λ0 = 3.5, α = −1.0

and β = 0.5, which already has been investigated in [105]. We normalize our numerical

results with respect to the dominant length scale in the system. The wavenumber kmax
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Figure 2.1: Upper row: active turbulence state with broad-band forcing (α = −1). Panel (a) shows
a snapshot of the vorticity field of active turbulence obtained through direct numerical simulation of
eq. (2.1) with parameters chosen according to ref. [105]. Note that the vortices are approximately
of the same size exemplifying the selection of a length scale in this system. The single-point velocity
and vorticity distributions are shown in panels (b) and (c), respectively; σu and σω are the standard
deviations of the respective PDFs. The single-point velocity PDF is close to Gaussian, but has slightly
sub-Gaussian tails. The vorticity PDF deviates considerably from Gaussian. Lower row: weakly excited
case (α = 4). Compared to the active turbulence case, the snapshot (d) shows less pronounced vortex
structures. The single-point velocity and vorticity PDFs, (e) and (f), respectively, are very close to
Gaussian.
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Figure 2.2: Energy spectra of the velocity field for the active turbulence case (blue) and the weakly
excited case (green). The dashed vertical lines indicate the wavenumber corresponding to the dominant
scale in the system. In the active turbulence case, the energy spectrum peaks at a much larger length
scale (lower wavenumber) due to the formation of meso-scale vortices in the system as a result of the
inverse energy transfer.

corresponding to the peak of the energy spectrum (see fig. 2.2) defines the dominant

length scale in the system as L = 2π/kmax. This length scale can also be used to define

a time scale given by T = L/V where V =
√
〈u2〉. Such a procedure characterizes the

significance of the dominant length scale in the system.

We numerically solve these equations in two dimensions by using a standard pseudo-

spectral algorithm (with 1/2 dealiasing to account for the cubic nonlinearity) following a

second-order Runge-Kutta scheme for time stepping with time step 0.0002. We choose a

domain size of 5π×5π with 2048×2048 grid resolution.A large-scale flow is chosen as the

initial condition. By testing different initial conditions, we ensured that the statistically

stationary state is independent of the particular choices. For Lagrangian measurements,

a million tracer particles are advected with the flow. The tracer particles are evolved

according to the Lagrangian equations of motion dX(x0, t)/dt = u(X(x0, t), t), where

X(x0, t) is the position of a tracer particle at time t starting from x0 at time t0. The

velocity u(X(x0, t), t) at inter-grid points is interpolated by using a bicubic scheme.

The system is allowed to evolve until it reaches a statistically stationary state after an

approximate duration of 10T before measurements are taken. To identify and track

vortex cores we follow an algorithm described in ref. [54], details of which are given in

sect. 2.5.
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Figure 2.3: Eulerian longitudinal velocity increment PDFs for (a) the active turbulence case and
(b) the weakly excited case. The small-scale increment PDF for the active turbulent case displays
considerable deviations from Gaussianity. In comparison, the weakly excited case with less pronounced
vortex structures shows a close-to-Gaussian behavior at all scales.

2.4 Eulerian statistics

To connect to previous work [13, 105] as well as to set a reference point for the sub-

sequent investigation of Lagrangian properties of the flow, we start with characterizing

the Eulerian statistics of active turbulence. Figure 2.1(b) shows the single-point velo-

city probability density function (PDF) of the active turbulence field. Since the flow

is isotropic, we use one component of the velocity field to evaluate these PDFs. The

distribution is close to Gaussian with sub-Gaussian tails. Sub-Gaussian tails for the

single-point velocity have also been found for three-dimensional hydrodynamic turbu-

lence [114]. The vorticity PDF, shown in fig. 2.1(c), departs strongly from Gaussianity

with a comparably narrow core and wide tails, which roll off rapidly for large vorticity

values. As is well known from the study of hydrodynamic turbulence, such departures

from Gaussianity can be regarded as a signature of coherent vortex structures [115–117].

For example, they have also been observed in decaying two-dimensional Navier-Stokes

turbulence [118].

The active turbulence model (2.1) gives precise control over the energy injection

mechanism, which motivated us to further investigate the influence of active forcing

on non-Gaussian features of the flow. For the active turbulence case with α = −1,

the linear terms represented through γ(k) introduce an active broadband forcing which

predominantly injects energy at the wavenumber kc. This broadband forcing can be

reduced to a narrow band of wavenumbers with a reduced energy input by increasing

the damping rate. Here, we consider the case with α = 4. The results of this numerical

experiment are shown in the lower row of fig. 2.1. Figure 2.1(d) shows a snapshot

of a vorticity field, which now displays less pronounced vortex structures compared to

the active turbulence case. Still, the dynamics remains non-trivial as documented in
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the supplementary movie 2. The single-point velocity PDF shown in panel (e) is very

close to Gaussian in the weakly excited case. Consistent with the observation of less

pronounced vorticity structures, the vorticity PDF is now much closer to a Gaussian

with slightly super-Gaussian tails.

To characterize multi-scale features of the flow, we obtain PDFs of the longitudinal

velocity increments δuE = [u(x+ r, t)− u(x, t)] · r̂ for both cases as presented in fig.

2.3. Consistent with previously published results [13, 105] we find close-to-Gaussian

PDFs from large to intermediate scales in the active turbulence case (panel (a)). Only

at smaller scales on the order of L we find departures. This change from Gaussian to

non-Gaussian statistics occurs rather abruptly in scale, and can be accounted to the

presence of meso-scale vortices in the flow. Consistent with this picture, the weakly

excited case shows a close-to-Gaussian statistics for all considered cases (panel (b)).

2.5 Vortex dynamics and Lagrangian transport properties

The results of the previous section have pointed out the significance of vortex struc-

tures, which is further investigated here, focusing on the vortex strength, dynamics

and lifetimes. Some of these aspects are closely related to Lagrangian features of the

flow, which are also analyzed in the following, where we restrict ourselves to the active

turbulence case. In the previous section, we analyzed single-time statistical features of

the active turbulence field from an Eulerian point of view. To further characterize the

role of vortex structures, vortex cores are identified as the centers of the cells around

which the velocity vector takes a full rotation [54]. To this end, we calculate the angle

Λ which the velocity vector rotates around center point x of each cell, and vortex cores

are defined as the centers of those cells where Λ(x) = ±2π. This allows us to calculate

vortex cores from the velocity field, although only with an accuracy of the grid resolu-

tion. Having identified the vortex cores, we are able to investigate their typical strength.

Figure 2.4(a) shows the distribution of vorticity at vortex cores. From the distribution

it is clear that there are predominantly two classes - weak and intense vortices. The

intense vortices correspond to the ones clearly identifiable in fig. 2.1(a) whereas the

weak ones correspond to less coherent, not necessarily axisymmetric vorticity patches.

The observation of the distinct large-amplitude vortices explains the sharp roll-off of the

PDF shown in fig. 2.1(c). Assuming a typical profile for vortex structures, the vorticity

PDF can be thought of as a smeared-out version of the vortex-core strength PDF.

The distribution of vortex core lifetimes, shown in fig. 2.4(b), further clarifies the

difference between weak and intense vortices. As can be inferred from the PDF, weak

vortices typically have a much shorter lifetime than intense vortices. Also, the lifetime

statistics for both weak and intense vortices decay to zero rather rapidly. We note

that there are events in which an intense vortex transforms into a weak vortex and
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Figure 2.4: Upper row: statistics and dynamics of active matter vortices. Panel (a) shows the
distribution of vorticity at vortex cores. The different peaks correspond to the vortices of the two
classes - weak and intense. The distribution of vortex lifetimes for weak and intense vortices is shown
in panel (b). Note that the intense vortices have on average longer lifetimes. Some sample vortex
core trajectories are shown in panel (c) (in blue) along with some passive Lagrangian tracer particles
(in green). Lower row: Lagrangian statistics of active turbulence. Panel (d) shows the single-particle
dispersion PDF which is close to Gaussian for all time lags considered. The mean squared displacement,
shown in panel (e), exhibits a cross-over from a ballistic to a diffusive regime. Lagrangian velocity
increment distributions are shown in panel (f).

vice versa, which is one limiting factor of their lifetimes. Figure 2.4(c) shows some

trajectories of vortices with long lifetimes along with some typical Lagrangian tracer

trajectories. In comparison, the vortices appear to have smoother trajectories than

the tracer particles. This is because the vortex core trajectories by design pick out

very specific points in the flow field. In contrast to vortex cores, typical Lagrangian

tracer particles encounter a number of vortex trapping events, which explains their

rapid coiling. Similar observations have been made in two-dimensional turbulence [118,

119].

Proceeding to the characterization of Lagrangian statistics, fig. 2.4(d) shows stand-

ardized PDFs of Lagrangian single-particle dispersion, where R is one component of

X(x0, t0 +τ)−x0. Owing to the approximate Gaussianity of the velocity, the PDFs are

close to Gaussian for short time scales, and the Gaussianity persists up to the largest

time scales, similar to what is found in hydrodynamic turbulence. The mean squared

displacement, which characterizes the variance of this approximately self-similar process

in scale, is shown in fig. 2.4(e). As expected, the displacement is initially ballistic, i.e. it

scales as t2, and then transitions to a diffusive long-time behavior with a scaling propor-

tional to t. The transition occurs on the order of the time scale T which characterizes

approximately the time spent by a tracer particle in a vortex.
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Finally, we wish to characterize temporal velocity fluctuations along Lagrangian

tracer particles. Figure 2.4(f) shows the distribution of Lagrangian velocity increments

δuL, defined as either of the components of u(X(x0, t0 + τ), t0 + τ) − u(x0, t0), for

different values of time lag τ . We observe that for short time scales, the statistics of

the Lagrangian velocity increment shows strong deviations from Gaussianity, consistent

with the observation for the Eulerian increments. In the limit of τ → 0 the velocity

increment is proportional to the single-particle acceleration. Like in the Eulerian frame,

the PDFs relax to a Gaussian shape rather sharply at a value of τ ≈ T , strengthening

the hypothesis that the velocity field in active turbulence has a simple structure beyond

the length scale of the individual strong vortices.

2.6 Summary and conclusions

In this work we have conducted a statistical study of a minimal continuum model for

bacterial turbulence. The numerical and statistical results show that active turbulence

displays close-to-Gaussian statistics both in an Eulerian and a Lagrangian frame when

moderate to large scales are considered. Similar observations can be made in statist-

ically stationary two-dimensional turbulence with large-scale friction. Deviations are

found at the scale where coherent vortices occur, as can be probed with vorticity and

velocity increment statistics. Employing a vortex identification and tracking algorithm,

we find that active turbulence selects intense vortices of rather well-defined magnitude,

which is in contrast to hydrodynamic turbulence. The life-time statistics of the vortices

are investigated and display a rapid fall-off to zero. By increasing the damping rate com-

pared to the active turbulence case, the emergence of meso-scale vortices is found to be

suppressed, which goes along with statistics even closer to Gaussianity, corroborating

the connection between non-Gaussian statistics and vortex structures.

The meso- to large-scale Gaussianity of active turbulence may open avenues for future

analytical modeling approaches. A natural next step in the direction of this work is the

development of a statistical theory of active turbulence, which is the subject of ongoing

research.
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Turbulence and turbulent pattern

formation in a minimal model for

active fluids

3.1 Abstract

Active matter systems display a fascinating range of dynamical states, including sta-

tionary patterns and turbulent phases. While the former can be tackled with methods

from the field of pattern formation, the spatio-temporal disorder of the active turbu-

lence phase calls for a statistical description. Borrowing techniques from turbulence

theory, we here establish a quantitative description of correlation functions and spectra

of a minimal continuum model for active turbulence. Further exploring the parameter

space, we also report on a surprising type of turbulence-driven pattern formation far

beyond linear onset: the emergence of a dynamic hexagonal vortex lattice state after an

extended turbulent transient, which can only be explained taking into account turbulent

energy transfer across scales.

3.2 Introduction

Flows driven by active agents display a rich variety of dynamical states [1, 3, 120]. Act-

ive stresses and hydrodynamics collude to create collective motion, both regular and

chaotic, in systems of motile micro-organisms [18, 121, 122] or artificial self-propelled

agents [123, 124] on scales much larger than the individual. For example, sufficiently

dense suspensions of motile micro-organisms, such as B. Subtilis, exhibit a spatio-

temporally disordered phase. Owing to its reminiscence of hydrodynamic turbulence,

this phenomenon has been termed active turbulence [13, 47, 105, 109, 125, 126]. Similar

observations were also reported in systems dominated by nematic interactions such as

ATP-driven microtubule networks [32]. Besides active turbulence, remarkably ordered

phases were found in a number of systems. Self-organized vortex lattices, for example,

have been discovered both in hydrodynamically interacting systems, such as sperma-
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tozoa [12], as well as in dry microtubule systems [16]. Confinement offers yet another

possibility of organizing flows into regular large-scale flow [127] and vortex patterns

[128].

The occurrence of these phenomena in vastly different systems has motivated the

development and exploration of a range of minimal mathematical models. They can

be broadly categorized into agent-based models of self-propelled particles with nematic

or polar interactions [1, 10, 53, 129, 130] and continuum theories for a small number

of order parameters [13, 26, 54, 111, 125]. These models have been shown to capture

a variety of dynamical phases of active fluids, including active turbulence and vortex

lattice states. For example, in [13] the active turbulence phase was modeled and com-

pared with experiments. Regarding ordered phases, vortex lattices have been observed

and investigated at the crossover from the hydrodynamic to the friction-dominated

regimes of models for confined active fluids [57]. These systems display phases of two-

signed vortices with length scales defined by the dimensions of the system. In a class

of particle-based models for active matter, the emergence of vortex lattices has been

related to a classical pattern formation mechanism as a result of a Turing instability

[53, 129].

While many such models have been shown to capture the dynamics of active systems

qualitatively and quantitatively, the complexity of disordered states like active turbu-

lence eventually calls for a statistical description. The goal of such a non-equilibrium

statistical mechanics of active matter is the computation of fundamental statistical

quantities such as correlation functions without resorting to expensive numerical integ-

ration of systems with thousands or even millions of degrees of freedom.

Recent developments of statistical theories on top of minimal continuum theories

for active matter have provided insights into the small-scale correlation structure of an

active nematic fluid based on a mean field approach for the vorticity field [54], as well

as a theory capturing large-scale features of polar bacterial flows based on analytical

closure techniques [105]. A theoretical framework capturing the correlation function

or equivalently the spectral properties for the full range of scales of such prototypical

active systems, however, is currently lacking.

In this Rapid Communication, we set out to close this gap. Borrowing techniques

from turbulence theory, we derive correlation functions and spectra of the turbulent

phase of the minimal continuum theory recently established in [13] to capture the dy-

namics of dense bacterial suspensions. Further exploring the parameter space, we also

discover a novel phase of turbulent pattern formation, i.e. an extensive turbulent tran-

sient governed by strong advection which eventually results in a highly ordered vortex

lattice state. We demonstrate that turbulence characteristics crucially contribute to

the emergence of this novel pattern through nonlinear advective energy transfer. This
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Figure 3.1: The continuum model Eq. (3.1) displays a range of dynamical phases of the vorticity field
depending on the nonlinear advection: (a) classical pattern formation (λ = 0, simulation 1 in Table 3.1),
(b) active turbulence (λ = 3.5, simulation 2 in Table 3.1) and (c) turbulent pattern formation (λ = 7,
simulation 3 in Table 3.1). Notably, the dispersion relation shown in (d) along with the nonlinear
damping is kept fixed for all examples. The dashed green line corresponds to the most unstable wave
number, given by k = kc, which sets the wave number of the pattern in (a). The horizontal orange
lines in (a) and (c) correspond to five times the length scale of the patterns, i.e. 10π/kc and 10π/k0,
respectively, exemplifying that the wave number selection in the turbulent pattern forming phase (c)
differs from the classical pattern forming phase (a).

mechanism differs profoundly from the classical route to pattern formation. To make

this transparent, we first briefly recapitulate classical pattern formation in this minimal

model for active fluids in absence of nonlinear advection.

3.2.1 Minimal Model for Active Fluids

The starting point is the equation for active turbulence as proposed in [13, 26] for a two-

dimensional incompressible velocity field u(x, t) describing the coarse-grained dynamics

of a dense bacterial suspension. It takes the nondimensionalized form 1

∂tu+ λu · ∇u = −∇p− (1 + ∆)2u− αu− βu2 u (3.1)

and represents a minimal field theory for a polar order parameter field, combining

Navier-Stokes dynamics (advective nonlinearity and nonlocal pressure gradient) with

elements of pattern forming systems (linear wave number selection and a saturating

higher-order nonlinearity). Owing to its similarity to the Navier-Stokes equation, this

minimal model is particularly suited to develop a statistical theory with methods from

turbulence theory.

The dynamical phases of this continuum theory are explored in Fig. 3.1. Unless

otherwise noted, we fix α = −0.8 and β = 0.01 to focus on the role of nonlinear

advection. The results are obtained numerically with a pseudo-spectral code using

1For the nondimensionalization we start from the equation presented in [13] and note that the term involving λ1
can be absorbed into the pressure gradient term. Then we define the time scale T = 4Γ2/Γ2

0 and the length scale

L =
√
−2Γ2/Γ0 to nondimensionalize the equation. To obtain Eq. (3.1), the parameters in the dimensional equation are

mapped to the ones in the nondimensional equation according to λ0 → λ, Γ0T/L2 → −2, Γ2T/L4 → 1, αT → α+ 1 and
βL2/T → β. We note that one additional parameter can be scaled out [131], which we refrain from here for presentation
purposes.
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No. dynamical state λ α β N D ∆t
1 square lattice 0 -0.8 0.01 2048 250 10−2

2 active turbulence 3.5 -0.8 0.01 2048 250 10−3

3 hexagonal lattice 7.0 -0.8 0.01 2048 250 10−3

4 hexagonal lattice 7.0 -0.8 0.01 2048 125 10−3

5 active turbulence 3.5 -0.3 0.01 2048 250 10−3

6 benchmark case [132, 133] 3.5 -1.178 0.01125 2048 250 10−3

Table 3.1: Simulation parameters. The active fluid is characterized through the parameters λ, α and
β. The simulations are run on grids with N2 grid points, discretizing a domain of lateral extent D; ∆t
denotes the time step.

a second-order Runge-Kutta scheme, and an integrating factor is used for treating the

linear terms. More details on the simulations are provided in the supporting information.

Table 3.1 lists the range of parameters explored in this manuscript.

3.2.2 Classical Pattern Formation

For λ = 0 the equation reduces to a vectorial Swift-Hohenberg type system which fol-

lows a gradient dynamics as discussed in the supporting information. In this parameter

regime, we observe the emergence of stationary square lattices consistent with previous

literature [26, 131]. Figure 3.1(a) shows a non-ideal square lattice with defects such as

grain boundaries from our numerical simulations. As expected, the emergence of this

state can be explained with tools from classical pattern formation theory in terms of

amplitude equations. We analyze the corresponding amplitude equations [134] of the

vorticity formulation of Eq. (3.1). The analysis detailed in the SI reveals the stability

of the square lattice state with amplitude A =
√
−αk2

c/(5β), which corresponds to a

maximum value of the field of 4A. In comparison, single-stripe patterns are linearly un-

stable. For the investigated parameters given in Table 3.1 the value of the theoretically

predicted amplitude is 4.00, which is confirmed by our simulations to within 5 percent.

This brief exposition serves to show that the classical pattern formation in absence of

nonlinear advection leads to a stationary square lattice state with wave number kc = 1.

3.3 Active Turbulence

As the advective term is switched on by setting λ = 3.5, the nonlinear energy transfer

sets in, which by generating vortices of larger size renders the stationary square lat-

tice pattern unstable. As a result, a self-sustained turbulence-like phase emerges (see

Fig. 3.1(b)), which has been characterized, e.g. in [13, 105, 135]. Borrowing techniques

from classical turbulence theory, we here establish a statistical description for the two-

point correlation function and energy spectra for the full range of dynamically active

scales.

To this end, we consider the velocity covariance tensor Rij(r) = 〈ui(x, t)uj(x +
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r, t)〉 ≡ 〈uiu′j〉 which is among the most fundamental statistical objects of interest; by

virtue of kinematic relations, it contains the correlation structure of the velocity field as

well as of the vorticity and velocity gradient tensor fields [136]. Its evolution equation

for the statistically homogeneous and isotropic turbulent phase is readily obtained as

∂tRij + λ∂k〈u′kuiu′j − ukuiu′j〉 = −2
[
(1 + ∆)2 + α

]
Rij − β〈ukukuiu′j + u′ku

′
kuiu

′
j〉 .
(3.2)

As a result of statistical isotropy, the pressure contribution vanishes. The quadratic and

cubic nonlinearities result in unclosed terms which obstruct a direct computation of the

covariance without making further assumptions. The main effect of the β-term is to

saturate the velocity growth. Owing to the approximate Gaussianity of the velocity field

[13, 47, 105, 135], the correlator in this term can be factorized using Wick’s theorem,

which yields 〈ukukuiu′j + u′ku
′
kuiu

′
j〉 = 2Rkk(0)Rij(r) + 2Rik(0)Rkj(r) + 2Rik(r)Rkj(0).

An analogous attempt to factorize the triple correlators fails as this amounts to neg-

lecting the energy transfer across scales, a hallmark feature of turbulence [137]. A more

sophisticated closure needs to be established. For the subsequent treatment we choose

a Fourier representation of the covariance tensor Rij(r) in terms of the spectral en-

ergy tensor Φij(k). For a statistically isotropic two-dimensional flow, it takes the form

Φij(k, t) = E(k, t)/(πk) [δij − kikj/k2], where E(k, t) denotes the energy spectrum func-

tion. Starting from Eq. (3.2), an evolution equation for the energy spectrum function

can be derived which takes the form [136–138]

∂tE(k, t) + T (k, t) = 2L(k, t)E(k, t) . (3.3)

Here, T (k, t) is the energy transfer term between different scales which results from the

triple correlators in Eq. (3.2); L(k, t) = −(1− k2)2 − α− 4βE0(t) is the effective linear

term, which represents all linear terms as well as the Gaussian factorization of the cubic

nonlinearity with E0(t) =
´
E(k, t) dk. The effective linear term is responsible for the

energy injection around kc = 1 as well as for the damping at small and large scales. For

the energy transfer term, we adopt the so-called eddy-damped quasi-normal Markovian

(EDQNM) approximation and present here the main steps of the derivation for active

fluids. More details are given in the SI. For a more comprehensive account of this model,

which has been successfully applied to hydrodynamic turbulence, we refer the reader to

[77, 139, 140]. The core idea of this closure scheme is to consider the evolution equation

for the triple correlators in addition to Eq. (3.3), from which T (k, t) can be obtained

straightforwardly. The occurring fourth-order moments are then factorized assuming

Gaussianity, similar to the treatment of the nonlinear damping term in Eq. (3.2), i.e.

〈ûûûû〉 = Σ〈ûû〉〈ûû〉 (written in a symbolic fashion). The influence of the neglected

cumulants is modeled by an additional damping, which leads to an effective damping

49



ηkpq (see SI for more information). As a result we obtain an evolution equation for the

triple correlators of the velocity modes k, p and q:

[∂t + ηkpq] 〈û(k)û(p)û(q)〉 = λΣ〈ûû〉〈ûû〉. (3.4)

As a next step, we apply the so-called Markovianization by assuming that the right-

hand side evolves slowly, such that this equation can be integrated analytically and the

steady state solution can be obtained by taking t → ∞. The energy transfer function,

which is a contraction of the triple velocity tensor, can then be written as

T (k, t) =

¨
∆

λ2

ηkpq

[
a(k, p, q)E(p, t)E(q, t) + b(k, p, q)E(q, t)E(k, t)

]
dpdq . (3.5)

Here 1/ηkpq acts as a characteristic time scale which results from the turbulent damp-

ing. The geometric factors a(k, p, q) and b(k, p, q) are associated to contractions of the

isotropic tensor 〈û(k)û(p)û(q)〉; the exact expressions of the terms are given in the SI.

∆ restricts the integration domain in p, q-space so that the three wave numbers k, p, q

form the sides of a triangle. These triadic interactions are a direct consequence of the

quadratic advective nonlinearity. While technically quite involved, the key feature is

that the energy transfer term is expressed in terms of the energy spectrum only, i.e. we

have obtained a closure. To illustrate the results, the left panel of Fig. 3.2 shows a

comparison of the terms of Eq. (3.3) obtained from the EDQNM closure with a direct

estimation from simulation data for active turbulence. Very good agreement is found

for all wave numbers. Consistent with the observations in [105], the energy transfer

term takes energy from the linear injection scale and transports it upscale. This inverse

energy transfer is typical for two-dimensional flows [61]. Interpreting these results in

the context of bacterial turbulence, the dominant energy injection occurs on a length

scale comparable to the individual bacteria [13], yet their collective motion displays

much larger scales. In the framework of the continuum model Eq. (3.1), this collective

behavior is the result of an energy transfer to larger scales induced by nonlinear ad-

vection. The EDQNM theory captures this effect accurately. Also the effective linear

term, which injects energy in a wave number band around kc = 1, but extracts energy at

large and small scales, is captured accurately, demonstrating the fidelity of the Gaussian

factorization of nonlinear damping. The spectra resulting from the EDQNM closure are

shown in the middle panel of Fig. 3.2. To demonstrate the validity of the closure theory

for a broader parameter range, we additionally varied the α parameter (see Table 3.1).

Furthermore, we also compare with the reference case reported in [13, 105], which in

our normalized set of parameters corresponds to α = −1.178, β = 0.01125. In previous

literature, this reference case has been shown to capture experimental results [13]. As

the value of α is decreased, the energy injection into the system becomes more intense
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Figure 3.2: (a) Energy budget of active turbulence: direct numerical simulation (DNS) results (dashed
lines, simulation 2 in Table 3.1) vs EDQNM closure theory. The black, green and blue curves corres-
pond to the energy spectrum, the transfer term and the effective linear term, respectively. (b) Spectra
from DNS of active turbulence compared to EDQNM closure theory. (c) Longitudinal velocity auto-
correlation of active turbulence: DNS vs EDQNM closure theory. The blue, black and green curves in
(b) and (c) correspond to the simulations 2, 5 and 6, respectively, as listed in Table 3.1.

and acts on a wider range of scales. As a result the energy spectra show an increased

broadband excitation. Due to the inverse energy transfer the spectral peak gradually

shifts from the most unstable wave number to smaller wave numbers, indicating the

emergence of larger-scale flow structures. All of these trends are captured accurately by

EDQNM without further adjustments. The EDQNM theory therefore extends the low-

wave-number theory developed in [105] to the full range of scales. With the full energy

spectra at hand, correlation functions can be computed in a straightforward manner.

The results are shown in the right panel of Fig. 3.2. As the flow becomes increasingly

turbulent, the correlation length increases. This can be understood from the previous

observations in spectral space. Through the inverse energy transfer, larger-scale struc-

tures are excited leading to longer-range correlations. Again, EDQNM captures these

observations accurately. These findings highlight the crucial impact of the nonlinear

advection on the system and motivate the exploration of the dynamics in the parameter

range of strong nonlinear advection.

3.4 Turbulent Pattern Formation

Further increasing the strength of the nonlinear advection to λ = 7 leads to a surprising

new dynamical state emerging from a turbulent transient as visualized in Fig. 3.3. From

random initial conditions vortices arise, triggered by small-scale instabilities. Many vor-

tices are screened by surrounding vorticity of opposite sign, reducing their Biot-Savart

interaction. Some of them, however, form dipoles, which propagate rapidly through the

flow. These dipoles contribute significantly to the turbulent dynamics. In the course of

time, a spontaneous symmetry breaking occurs, such that one sign of vorticity prevails.

As a result, less dipoles form and the dynamics stabilizes. Repeating the numerical ex-

periment with different random initial conditions confirms that both vorticity signs are

equally probable in this spontaneous symmetry breaking. By the continued emergence
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Figure 3.3: Emergence of hexagonal vortex lattice after a turbulent transient (simulation 4 in Table
3.1). (a,b,c): Vorticity field after t = 20, 150, 850. The insets show the two-dimensional vorticity
spectra with the wave vectors corresponding to the most unstable wave number indicated by an orange
circle. The inset (c) clearly shows six isolated peaks at k0 ≈ 0.57 which characterize the vortex lattice.
For visualization purposes, these figures were obtained through a simulation on a smaller domain with
half the domain length compared to Fig. 3.1. Note that the final vortex crystal state selects a sign of
vorticity different from that of Fig. 3.1, exemplifying spontaneous symmetry breaking in this system.
Panel (d) shows the evolution of the enstrophy, as well as the maximum and the minimum vorticity
through the transient to the final quasi-stationary state.

of vortices the system eventually crystallizes into a quasi-stationary hexagonal vortex

lattice state. The wave number characterizing this turbulent pattern is significantly

smaller than näıvely expected based on the linear critical wave number kc = 1 in the

classical pattern formation case. This can be explained as follows: as the turbulent pat-

tern emerges out of a turbulent transient, there is an inverse transfer of energy feeding

larger scales. As a result, the peak energy injection scale in Eq. (3.3) (i.e. the maximum

of 2L(k, t)E(k, t)− T (k, t)) shifts to smaller wave numbers during the transient, giving

rise to larger-scale flow structures. Because
´
T (k, t)dk = 0 by virtue of T (k, t) being

an energy transfer term, Eq. (3.3) implies the constraint
´
L(k, t)E(k, t)dk = 0 once

the statistically stationary state with the vortex lattice is reached. Given the fact that

the system forms a regular vortex pattern with a sharply localized spectrum around the

lattice wave number, this constraint can only be satisfied if the lattice wave number

k0 is close to the zero-crossing of the effective linear term, i.e. close to the wave num-

ber corresponding to the smallest neutral mode. For the current choice of parameters,

this prediction yields k0 ≈ 0.58 in very good agreement with the numerical observa-

tion (k0 ≈ 0.57). To further confirm this prediction, we scanned the entire α-range

[−0.95,−0.75] leading to stable vortex lattices, keeping all other parameters fixed. We

observed a trend of the lattice wave number slowly increasing with α, which is captured

by the prediction to within ten percent (not shown). We conclude that this turbulent

pattern formation selects the neutral mode rather than the fastest growing linear mode.

We stress that this mechanism profoundly differs from the Turing mechanism repor-

ted in [53, 129] due to the extended turbulent transient leading to the selection of the

neutral mode.

It remains to explain the type of lattice. Nonlinear advection favors axisymmetric
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vortices. As these structures populate the domain over time, they form the densest pos-

sible packing consistent with this geometry, resulting in the hexagonal pattern. Unlike

the case of classical pattern formation (λ = 0), this vortex lattice is quasi-stationary

with perturbations from weaker background turbulence. The most striking feature of

this phenomenon is the long turbulent transient phase preceding the formation of the

pattern, which lasts much longer than the typical lifetimes of the vortices in the turbu-

lent phase. Furthermore, unlike classical pattern formation, the dominant length scale

in the system is given by the neutral mode in the effective dispersion relation.

3.5 Conclusions

The correlation functions and spectra of a minimal model for active turbulence de-

veloped in this paper establish a quantitative statistical theory of active turbulence.

We adapted the EDQNM closure scheme for classical hydrodynamic turbulence to cap-

ture the linear driving and damping as well as the nonlinear energy transfer across scales

along with nonlinear damping. For the range of investigated parameters, the theory has

been found to accurately capture simulation results. It revealed that the spectral peak,

associated with the typical size of turbulent flow structures, originates from the interplay

of linear and nonlinear physics: energy is injected in a band of unstable modes which

then cascades uphill before dissipated by linear and nonlinear damping terms. EDQNM

therefore quantitatively captures the statistics of the collective behavior emerging in

the continuum model Eq. (3.1). Having demonstrated the potential of methods from

turbulence theory to capture disordered active matter states, we hope that our findings

may spur further research. For instance, a generalization to active nematics might be

an interesting direction for future research.

Further exploring the parameter space towards strong nonlinear advection, we find a

highly ordered lattice state of dynamically self-organized vortices which emerges from an

extensive turbulent transient. The inverse energy transfer of two-dimensional turbulence

turns out to be a crucial ingredient in this turbulent pattern formation: the same

mechanism leading to the spectral peak in the turbulent phase selects the neutral wave

number in this turbulent pattern formation. While the potential importance of neutral

modes has been pointed out in [141] based on kinematic considerations, our findings

show that they are indeed dynamically relevant.

Regarding possible experimental realizations of the vortex lattice state reported here,

we note that we observe it in a regime of strong nonlinear advection due to active

stresses. Recent research has indicated that such a regime, in which the value of λ is

large, can be achieved by a microstate with strong polar interaction among the act-

ive particles [98]. Furthermore, we observe the vortex lattice in a parameter range

(controlled by α) of both large- and small-scale damping. Thus experiments involving
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active fluids with strong polar interactions and with substrate-mediated friction could

potentially realize this novel “turbulent pattern formation” phenomenon.

Interestingly, the mechanism reported here shares similarity with quasicrystalline

vortex lattices in drift-wave turbulence [142], although their vortex pattern appear less

stable than the ones reported here. Vortex crystals have also been observed in two-

dimensional Navier-Stokes turbulence driven by a combination of deterministic and

stochastic forcings [143], in truncated two-dimensional turbulence [144], in simulations

of quasi-geostrophic turbulence [145] as well as in two-dimensional fluid films with poly-

mer additives [146]. Furthermore, vortex lattices have been predicted [147] and observed

[148] in superconductors. These observations in profoundly different physical systems

point at the ostensibly universal occurrence of highly ordered states in strongly nonlin-

ear regimes. The investigation of this phenomenon in generic systems which combine

features of pattern formation with non-Lyapunov dynamics such as nonlinear advection

appears as one exciting direction for future research.

3.6 Supporting Information

3.6.1 Numerical Simulations

The numerical simulations are performed with a standard pseudospectral scheme for

the vorticity formulation of Eq. (3.1):

∂tω + λu ·∇ω = −(1 + ∆)2ω − αω − β∇×
(
u2 u

)
. (3.6)

Here ω(x, t) = ∇ × u(x, t) is the pseudo-scalar vorticity. In turn, the velocity is

obtained from the vorticity by Biot-Savart’s law. An equation for the spatially constant

velocity contribution u0, which is not contained in the vorticity field, is integrated

simultaneously. Time stepping is performed by means of a second-order Runge-Kutta

scheme, in which the linear term is treated with an integrating factor. To account for the

cubic nonlinearity, the pseudospectral scheme is fully dealiased with a 1/2 dealiasing.

Small-scale, low-amplitude random initial conditions are chosen for all simulations. The

parameters for the various simulations are summarized in Table 3.1.

3.6.2 Classical pattern formation – square lattice state

For λ = 0, Eq. (3.1) follows a gradient dynamics constrained to the sub-space of incom-

pressible velocity fields, ∂tu = −∇p − δL[u]/δu. Here, all terms except the pressure

gradient can be combined into the Lyapunov functional (see also [149, 150])

L[u] =

ˆ
dx
[
(∆u+ u)2/2 + αu2/2 + β

(
u2
)2
/4
]

; (3.7)
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the pressure gradient term is a Lagrange multiplier to ensure ∇ ·u = 0. As a result

of the potential dynamics, a stationary pattern emerges; its wave number kc = 1 is

straightforwardly computed by linear stability analysis.

The pattern forming state can be conveniently analyzed in the vorticity formulation

Eq. (3.6). Motivated by our numerical observations, we investigate a lattice state of the

form

ω(x, t) = ζ1(t) exp[ik1 ·x] + ζ2(t) exp[ik2 ·x] + c.c. (3.8)

with |k1| = |k2| = kc = 1, k1 ·k2/k
2
c = cosϕ and amplitudes ζ1 and ζ2, which we

can choose as real due to translational invariance. Combining this ansatz with the full

nonlinear equations, amplitude equations can be straightforwardly derived, which in

leading order take the form

ζ̇1 = −αζ1 −
β

k2
c

(
3ζ3

1 + 2
[
1 + 2 cos2 ϕ

]
ζ2

2ζ1

)
(3.9)

ζ̇2 = −αζ2 −
β

k2
c

(
3ζ3

2 + 2
[
1 + 2 cos2 ϕ

]
ζ2

1ζ2

)
. (3.10)

These equations can be further analyzed by means of a linear stability analysis. The

analysis shows that the ground state ζ1 = ζ2 = 0 is linearly unstable for α < 0 with

growth rates λ
(0)
1,2 = −α. For a single-stripe pattern with ζ2 = 0 the amplitude equations

yield ζ1 =
√
−αk2

c/(3β) as a stationary solution. A linear stability analysis with small

perturbation of the single-stripe pattern yields growth rates λ
(1)
1 = 2α and λ

(1)
2 =

α [4 cos2 ϕ− 1] /3 (see Fig. 3.4). As expected, small perturbations in the direction of

the single stripe are damped for α < 0. The emergence of a second stripe, however,

is linearly unstable for a small wave number band around ϕ = π/2, which gives a

first hint at the emergence of a square lattice. This can be further corroborated with

a linear stability analysis of a lattice state with ζ1 = ζ2, for which the stationary

solution ζ1 = ζ2 =
√

−αk2c
β[5+4 cos2 ϕ]

is readily obtained from the amplitude equations. Linear

stability analysis, assuming small perturbations in both amplitudes, yields λ
(2)
1 = 2α

and λ
(2)
2 = 2α 1−4 cos2 ϕ

5+4 cos2 ϕ
. For α < 0 a range of lattice states is linearly stable with the

maximum stability reached when ϕ = π/2 (see Fig. 3.4). This analysis renders a clear

picture of the emergence of square lattice states for α < 0: the single-stripe pattern is

unstable with respect to the emergence of a two-stripe lattice with the maximum growth

rate at ϕ = π/2. The resulting square lattice state with ζ1 = ζ2 =
√
−αk2

c/(5β) then

is linearly stable. Minimizing the Lyapunov functional for a square lattice with respect

to the amplitude yields the same result.
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Figure 3.4: Growth rates of the linear stability analysis for α = −0.8. The eigenvalues λ
(1,2)
1 cor-

respond to the stable eigenvalues of the single- and two-stripe pattern, respectively. Starting from a

single-stripe pattern, λ
(1)
2 indicates that a second stripe in a wave-number band around π/2 can be

excited. The eigenvalue λ
(2)
2 shows that the square lattice state is linearly stable.

3.6.3 Active turbulence – EDQNM closure

Developing a statistical theory for the turbulent phase of active fluids requires assump-

tions about the hierarchy of moments. Indeed, the equation for the covariance tensor

Eq. (3.2), or equivalently, for the energy spectrum Eq. (3.3), is unclosed due to the

presence of the higher-order velocity correlations stemming from the nonlinear terms.

To set our theoretical development into context, we start with re-iterating the clas-

sical closure attempts in the context of the active turbulence equations. The classical

closure theory is presented in much more detail in [77, 139, 140]. A Gaussian approxim-

ation is the simplest first choice to close the system, in particular in a random system

like turbulence. Under this cumulant discard hypothesis, one can factorize higher-order

moments in terms of corresponding second-order moments. This allows us to close the

fourth-order term in Eq. (3.2) as described in the main text. However, the third-order

correlations in Eq. (3.3) vanish under such a Gaussian approximation. The third-order

correlations are responsible for the energy transfer between scales and hence are essen-

tial for the dynamics. A logical step towards closure is to write then the equations for

the triple correlation, which in Fourier space take the form

[
∂t + L̃(k) + L̃(p) + L̃(q)

]
〈û(k)û(p)û(q)〉 = F [λ〈ûûûû〉, β〈ûûûûû〉] . (3.11)

In favor of a lighter notation we write these equations rather schematically, suppressing

tensorial notation. Here, L̃(k) = (1−k2)2 +α, and the functional F captures the contri-

butions due to the pressure term as well as the fourth- and the fifth-order correlations

which appear due to the advective and cubic nonlinearities in Eq. (3.1), respectively. To

close this system on the level of the quadruple and fifth-order correlations, one can now

assume a Gaussian factorization of these higher-order moments as the next simplest
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closure. This eliminates the fifth-order correlations and the fourth-order correlation can

now be written in terms of second-order correlations resulting in

[
∂t + L̃(k) + L̃(p) + L̃(q)

]
〈û(k)û(p)û(q)〉 = λΣ〈ûû〉〈ûû〉 (3.12)

so that the Eq. (3.3) for the energy spectrum E(k) is now closed. This procedure is

known as the quasi-normal approximation [71, 75]. This classical approximation for the

energy transfer term has been shown to fail spectacularly for hydrodynamic turbulence

already in the 1960s [70], leading to a realizability problem by the development of

negative energies, since the omission of the cumulants leads to an overprediction of the

transfer term.

To remedy this shortcoming, more sophisticated manners of closure were proposed,

in particular by Kraichnan [151, 152], using renormalized perturbation theories. The

simplest successful derivative of these theories is the eddy-damped quasi-normal Markovian

model [76]. For an extensive account on the matter, we refer to [77, 139, 140]. Here

we adopt this framework to formulate a statistical theory for active turbulence. The

eddy-damped quasi-normal Markovian model generalizes the classical quasi-normal ap-

proximation by modeling the effect of the missing fourth-order cumulants as λ(〈ûûûû〉−
Σ〈ûû〉〈ûû〉) = −µkpq〈û(k)û(p)û(q)〉 where the damping term µkpq = µk + µp + µq is

defined through the contributions

µk = λγ

(ˆ k

0

s2E(s, t)ds

)1/2

. (3.13)

Here, γ is a free parameter which quantifies the strength of the eddy damping. We

can then combine the linear terms to define ηk = µk + |L̃(k)| as the net damping. The

damping of the triple correlation corresponds to the Lagrangian decorrelation of the

Fourier modes [153], and both the positive and the negative linear terms will lead to an

effective decorrelation. Consequently the effect of L̃(k) in damping should be strictly

positive, and hence we take the absolute value of L̃(k). With this assumption, the

evolution equation for the triple correlation can be written as

[∂t + ηkpq] 〈û(k)û(p)û(q)〉 = λΣ〈ûû〉〈ûû〉, (3.14)

where ηkpq = ηk+ηp+ηq. If we neglect the time variation in µk and 〈ûû〉〈ûû〉, the above

expression can be integrated in time, resulting in the following expression for the triple

correlation in terms of the energy spectrum:
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〈û(k)û(p)û(q)〉(t) =
1− e−ηkpqt

ηkpq
λΣ〈ûû〉〈ûû〉. (3.15)

For large time scales, e−ηkpqt can be neglected, and 1/ηkpq defines a characteristic time.

This timescale is associated with the Lagrangian correlation time of the fluid particles

(see for instance [153] for a discussion). The second-order correlations are associated

with the energy spectrum, hence Eq. (3.3) and Eq. (3.15) together result in a closed set of

equations for the evolution of the energy spectrum. Owing to the isotropy of the velocity

field, T (k) in Eq. (3.3) can be calculated from 〈ûl(k)ûm(p)ûn(q)〉 ≡ Tlmn(k,p, q) (in

full tensorial notation) as

T (k) = πkPlmn(k)

ˆ
Im [Tlmn(k,p, q)] dpdq , (3.16)

where Plmn(k) = kn(δlm−klkm/k2)+km(δln−klkn/k2) and Im stands for the imaginary

part. The integration is performed over all triads k,p, q where k+p+q = 0. The final

expression for T (k, t) can then be written as [72]

T (k, t) = − 4

π

¨
∆

λ2

ηkpq

xy − z + 2z3

√
1− x2

[
k2pE(p, t)E(q, t)− kp2E(q, t)E(k, t)

]dpdq
pq

.

(3.17)

Here ∆ is a band in p, q-space so that the three wave numbers k, p, q form the sides

of a triangle. x, y, z are the cosines of the angles opposite to the sides k, p, q in this

triangle. Comparing Eq. (3.17) with Eq. (3.5), we obtain a(k, p, q) = − 4
π
xy−z+2z3√

1−x2
k2

q
and

b(k, p, q) = 4
π
xy−z+2z3√

1−x2
kp
q

.

To generate the results presented in the main text, this closed set of equations for

the energy spectrum function is integrated numerically. Computations are carried out

on a logarithmically spaced mesh on the interval 0.025 ≤ k ≤ 25 using 300 modes. All

results are obtained, using γ = 0.55, after the spectrum reached a steady state.
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4 Manuscript III: Melting of

active vortex crystals

The contents of this chapter is a draft manuscript by M. James, D.A. Suchla, J. Dunkel

and M. Wilczek.

MJ and DAS are joint first authors. MJ and MW designed the research. DAS

wrote the DNS code. DAS and MJ conducted the simulations and analyzed the data.

All authors contributed to the interpretation of the results. MJ and MW wrote the

manuscript with input from coauthors.
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Melting of active vortex crystals

4.1 Abstract

Two-dimensional equilibrium crystals exhibit a complex melting scenario, in which the

fluid phase may be reached through an intermediate hexatic phase characterized by

the loss of long-range orientational order. For nonequilibrium active matter systems,

much less is known about the corresponding phase transition. Here, we study the

emergence of self-organized vortex crystals in a two-dimensional active matter system

by using a generic minimal continuum theory. We characterize the melting of this “active

vortex crystal” into a turbulent active fluid through an extensive computational study.

We report on two different melting scenarios; a discontinuous transition that proceeds

through a hysteretic phase as well as a melting process with an intermediate hexatic

phase. In the thermodynamic limit, we find universal transient features characterized by

meta-stable superstructures of vortex crystal domains of spins with opposite polarity.

Our results establish close analogies between crystalline phases in active matter and

their equilibrium counterparts.

4.2 Introduction

Two-dimensional crystals have played a distinct role in understanding order in equi-

librium systems. While they exhibit orientational order, it was shown that long-range

positional order is suppressed at finite temperatures [6–8]. Melting of two-dimensional

crystals, in particular, continues to raise considerable interest, as multiple competing

theories on the type and nature of the transition have been proposed [78]. A first-order

transition is predicted by the density-functional theory [87] and the grain-boundary

induced melting theory [88], whereas the Kosterlitz, Thouless, Halperin, Nelson, and

Young (KTHNY) theory [85] predicts a two-step continuous melting transition. Ac-

cording to the KTHNY theory, the melting proceeds through an intermediate hexatic

phase with quasi-long-range orientational order, but short-ranged positional order, as

observed in experiments on colloidal systems [84], supercurrent lattices [154] as well as

in numerical simulations of repulsive disks [155]. Given the complexity and richness of

61



two-dimensional melting in equilibrium systems, it remains a fundamental question to

which extent these phenomena translate to nonequilibrium systems.

Indeed, there are indications that out-of-equilibrium crystal phases and their melting

transitions share close analogies to equilibrium crystals [89–91]. For instance, the melt-

ing of an out-of-equilibrium two-dimensional system of ferrofluid spikes has been shown

to proceed with an intermediate hexatic phase [89]. In active matter, crystalline-like

phases have been observed in a variety of systems ranging from active colloids [15, 92,

156] to bacterial and dense cell suspensions [1, 93, 157]. The formation of these active

crystals is mediated by clustering of active particles resulting in an ordered solid-like

state. Their properties have been studied by using both self-propelled particle (SPP)

models [94, 158–163] and field theories [95, 164]. Vortex crystals form yet another

paradigmatic class of active crystals with several distinct features. Unlike particles,

vortices are emergent constituents which can be created or annihilated. As vortices of

both positive or negative polarity exist, the formation of a vortex crystal may involve a

discrete symmetry breaking in which one vortex polarity prevails. Experimental works

on spermatozoa [12] and microtubule systems [16] have reported on symmetry-broken

states of both regular and irregular arrays of vortices in active systems. Spermatozoa

suspensions, in particular, self-organize into a well-ordered hexagonal vortex array un-

der suitable conditions [12]. While the properties of smaller vortex arrays have been

probed by using SPP models [41, 53], a profound analysis of melting of nonequilibrium

vortex crystals in active matter requires large system sizes, which only recently have

become computationally accessible.

Here, we study the spontaneous emergence of active vortex crystals (AVCs) as well

as their melting in a minimal continuum model. This model can be perceived as a

variant of the Toner-Tu equations for active matter [11, 23], which has previously been

instrumental in investigating the properties of turbulent phase in active fluids [13, 105]

and allowed to uncover the emergence of a symmetry-broken vortex crystal phase [165].

By performing a detailed computational analysis at an unprecedented scale, we here

characterize the emergence and melting of AVCs. We find a rich range of transition

phenomena including an intermediate hexatic phase as well as hysteretic liquid-crystal

phase coexistence. As we approach the thermodynamic limit, we observe a supertran-

sient phase of coexisting AVCs of opposite polarity. In the following, by using massive

computational simulations, we systematically characterize this melting of AVCs into a

turbulent active fluid.
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Figure 4.1: Melting of AVC superstructures: (a) A metastable superstructure of opposite-polarity
crystal domains obtained through a simulation on a 1000π × 1000π domain resolved with 8192× 8192
grid points (λ = 7, α = −0.8). The zoom-ins show domains of opposite polarity demarcated by a
boundary layer of active fluid. (b) A snapshot of the superstructure after time t = 800 as it melts at
a reduced value of active advection (λ = 5.6). Notice how the active fluid boundary layer between the
crystal domains has spread in area. (c) Area fraction of the crystal domains as a function of active
advection for different times, starting from the superstructure (a) at time t = 0. Note that the width
of the domain boundaries in the transient superstructures is controlled by the strength of the active
advection.
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4.3 Results

4.3.1 Minimal continuum model

Our starting point is an incompressible version of the Toner-Tu equations [11, 23], with

the active fluid velocity u as the only order parameter field [13, 26, 105]:

∂tu+ λu · ∇u = −∇p− (1 + ∆)2u− (α + β|u|2)u,

∇ ·u = 0. (4.1)

Here p is the pressure term, λ is an active advection parameter which incorporates the

effects of active stresses [26], and α is the activity parameter which is related to the

self-propulsion velocity (the parameter β can be scaled out and is kept for numerical

convenience). Eq. (4.1) is self driven (due to the instability introduced by the linear

Swift-Hohenberg operator) and has no external noise. The resulting model can be

thought of as a minimal continuum theory for active fluids [26], which combines the

self-propulsion of the active particles and their hydrodynamic and steric interactions

into one phenomenological order parameter equation. The statistical properties of this

theory have been favorably compared to the active turbulence phase [13]. Furthermore,

it has been shown that these equations can be derived from microscopic considerations

for bacterial systems [97, 98]. Here, we present results from direct numerical simulation

of the equations of motion in a periodic domain by using a pseudo-spectral method

for the spatial discretization and a fourth-order Runge-Kutta scheme for time stepping

(Methods).

4.3.2 Large-scale active vortex crystals

As an illustration of the active vortex crystals emerging in our system, Fig. 4.1 (a)

shows the vorticity field for a simulation on a 1000π×1000π domain resolved with 81922

grid points. At this very large system size, the system features AVC superstructures,

i.e. crystal domains of opposite polarity. The domain boundaries are comprised of active

turbulence regions. These highly dynamic domain boundaries also play a prominent

role in the AVC melting, which can be induced, for example, by decreasing the active

advection parameter. As active advection is decreased, the superstructures melt, and

the turbulent boundary layers spread in area, destroying the crystal structure (Fig. 4.1

(b)). Since the AVC superstructures are formed by crystal domains demarcated by an

active fluid boundary layer, a natural order parameter for our analysis is the fraction of

area covered by the crystal domain Acrystal/Atotal (Methods).

To illustrate this transition, we evaluate the crystal area fraction as a function of

active advection (at a fixed activity α = −0.8) for different times, which is shown in
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Figure 4.2: Phase diagram and melting transition (L = 20π): (a) Different phases of the active
matter system as a function of activity and active advection, obtained from close to 1000 simulations
(Methods). Red, green, and blue regions correspond to (b) vortex crystal, (c) active fluid and (d)
square lattice, respectively. The grey and orange regions are the marginal stability regions between the
active turbulence phase and the vortex crystal, corresponding to transition regions exhibiting phase
coexistence and hysteresis, respectively. The white dots indicate the parameter configuration used to
obtain the phase diagram. (e) A typical energy density time series for a simulation in the marginal
stability region illustrates the intermittent melting and crystallization of the AVC. The insets show
representative snapshots of the vorticity field. (f) Probability density functions of the energy density
for values of λ = 5 (green), 5.5 (blue) and 6 (orange). (g) Melting transition of the AVC as a function
of active advection (α = −0.8) and (h) transition along the activity (λ=7) axis. The blue and orange
curves correspond to increasing and decreasing values respectively of α and λ.
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Fig. 4.1 (c). Below λ = 5.5, the crystal domains melt completely into a statistically

isotropic active fluid. Above a critical value of λ = 6.0, almost the entire domain

is covered by vortex crystals, with the area between the crystals of different polarity

occupied by a layer of active fluid. There is a consistent, but slow decrease in the area

of this boundary layer as advection is increased. In the following sections, we present a

detailed characterization of the crystalline order and its melting.

4.3.3 Nonequilibrium phase diagram

To map out a detailed phase diagram, we have conducted ∼ 1000 simulations on a

domain of size L = 20π. The resulting nonequilibrium phase diagram of the active fluid

model is presented in Fig. 4.2 (a). The AVC phase spontaneously emerges from random

initial conditions for a narrow range of activity and active advection (indicated by the

red region). Its emergence is preceded by a turbulent active fluid transient driven by

vortices of both polarity [165]. This transient is terminated by a spontaneous symmetry

breaking as a result of which vortices of one polarity prevail. Subsequently, more and

more vortices populate the domain, leading to an eventual crystallization.

Apart from the AVC, the phase diagram demarcates two distinct phases: a turbulent

active fluid (shown in green, see also Fig. 4.2 (c)) and a square lattice (shown in blue,

see also Fig. 4.2 (d)), as well as transitions between them. The square lattice, which

is stable when active advection is close to zero, can be explained with classical pattern

formation theory [165]. Here, we focus on the transition between the turbulent active

fluid and the AVC states.

In the transition region, we observe two different scenarios: phase coexistence (marked

in grey) and hysteresis (marked in orange). To illustrate the transition with phase co-

existence, we decrease the active advection parameter at a fixed value of the activity

parameter (α = 0.8, vertical scan). For intermediate values of the active advection, we

observe an intermittent switching between active turbulence and AVCs, which can be

interpreted as an temporal analogue of the spatial coexistence of opposite-polarity crys-

tal domaines on large domains. The energy time series of a corresponding simulation

is shown in Fig. 4.2 (e). In the vortex crystal state, the energy density is high due to

the close packing of vortices, and the fluctuations are low. In the active fluid phase,

the energy is lower and fluctuations are larger. Fig. 4.2 (f) shows the corresponding

probability density functions (PDFs) for three representative cases from the vertical

scan, clearly demonstrating phase coexistence for intermediate values of active advec-

tion. This is also confirmed by the time fraction of finding the system in the crystal

phase, which is shown for the vertical scan in Fig. 4.2 (g).

To elucidate the hysteretic transition, we keep the active advection fixed and change

the activity parameter (λ = 7, horizontal scan). In the transition region for low activit-
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Figure 4.3: Characterization of the melting transition: Mean position of the vortex cores (red) and the
corresponding trajectories (blue) in the (a) crystal (α = −0.8, λ = 15), (b) hexatic (α = −0.725, λ = 7)
and (c) fluid (α = −0.700, λ = 7) phases. The scale bar denotes L = 50. (d) Dynamic Lindemann
parameter γL(t) as a function of time and (e) orientational correlation function G6(r) for different
parameter choices (Methods) in the crystal (blue), hexatic (orange) and fluid (green) phases. γL(t)
remains bounded for the crystal phase, whereas it diverges for both the hexatic and fluid phases. While
G6(r) remains constant in the crystal phase, it decays algebraically as the crystal melts, demonstrating
the existence of an intermediate hexatic phase. In the fluid phase, G6(r) decays faster than algebraic.
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ies, a vortex crystal will not emerge from random initial conditions for these parameters,

but the crystal itself is a stable solution. This is illustrated by the AVC time fraction

for the horizontal scan shown in Fig. 4.2 (h), which clearly exhibits a hysteresis loop.

As the activity parameter is further increased, a second transition without hysteresis is

observed. As we move closer to the boundary of the active turbulence region, the vor-

tex arrays start showing a fluid-like arrangement of vortices rather than crystal-like or

hexatic. For a systematic characterization, we present results from significantly larger

domains in the following sections.

4.3.4 Hexatic phase

To study the crystalline order in this system, we simulate the active fluids model in

domains of size L = 200π, and track the positions of individual vortices (Methods). Deep

inside the crystal regime (λ = 15, α = −0.8) we observe a well-ordered structure with

minimal vibrations (Figure 4.3 (a)). The oscillations remain very small in amplitude

as can be seen by the position of the trajectories. As we move closer to the active

turbulence region, the order starts unravelling (Fig. 4.3 (b) (λ = 7, α = −0.725) and

(c) (λ = 7, α = −0.715)). The vibrations increase considerably and exceed the lattice

spacing at several sites. As we show below, Fig. 4.3 (b) corresponds to a hexatic phase,

providing crucial connection to equilibrium melting transitions following the KTHNY

scenario.

To characterize the crystalline phase, one can use the dynamic Lindemann parameter,

which is defined as the relative displacement of neighboring vortex cores [83, 84, 166]:

γL(t) =
〈
(∆xi(t)−∆xi+1(t))2

〉
/2a2. (4.2)

Here, ∆xi(t) = xi(t) − xi(0) is the temporal displacement of a vortex core position

xi(t) from its initial position xi(0), i and i + 1 denote neighbors, and a is the lattice

spacing. For a crystal, γL(t) remains bounded whereas for both hexatic and fluid phases,

it diverges with time. Fig. 4.3 (d) shows the dynamic Lindemann parameter evaluated

from our simulations. Indeed, it remains bounded well inside the AVC regime. As we

move close to the transition region, γL(t) diverges, indicating either a hexatic or a fluid

phase.

To map out a possible transition to the hexatic phase, we evaluate the orienta-

tional correlation function G6(r) [78]. To this end, we calculate the orientational order

ψi =
∑

j exp(6iθij)/N(i) for each lattice site i. Here, θij is the angle between the line

connecting the neighbors i and j and an arbitrary axis, and N(i) is the number of

neighbors. The orientational correlation is then defined as

G6(r) = 〈ψ∗iψjδ(r − rij)〉 / 〈δ(r − rij)〉 (4.3)
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Figure 4.4: Transient durations: (a) Duration of the transients leading to the active crystal as
a function of domain size L. The red dots and the green curve are the mean and median values,
respectively. The change in slope at about L = 120π mark the domain size where AVC superstructures
start to become stable. (inset) Probability density function of the transient duration for L = 10π
(blue), 20π (orange) and 40π (green), obtained from 10000 simulations each, and the corresponding fit
with the theoretically proposed PDF Eq. (4.4) (dashed curves). (b) The time series of the number of
positive (red) and negative vortices (blue) for a simulation with large domain size (L = 160π). The
green, grey, and red regions denote the initial transient, coexistence of AVC domains, and uniform
AVC respectively.

where rij is the distance between vortex cores i and j, and the average is over all lattice

sites i and j. Fig. 4.3 (e) shows the orientational correlation function for different

regions in the phase diagram. For the crystal phase, as expected, we observe long-range

orientational order (Fig. 4.3 (e)). As we move closer to the transition region, G6(r)

shows quasi-long-range order characterized by an algebraic decay. This indicates that

the transition to an active fluid, in this region of the phase diagram, proceeds through

an intermediate hexatic phase, suggesting that this nonequilibrium melting scenario

shares similarities with the KTHNY theory of melting in equilibrium systems.

4.3.5 Thermodynamic limit and supertransients

Next, we characterize the emergence of AVCs as a function of system size, eventually

approaching the thermodynamic limit. To this end, we have determined the transient

time until a uniform AVCs is formed for an ensemble of 100 simulations, covering domain

sizes between L = 10π and L = 160π. Fig. 4.4 (a) shows the resulting scatter plot, which

demonstrates that the lifetime of the transient active fluid depends sensitively on the

initial condition and increases considerably with domain size.

For small domains, this is mainly rooted in the fact that the emergence of a uniform

AVC proceeds through a turbulent transient, which renders the transient time a random

variable. In fact, the PDF of transition times can be well captured by

P (T ) =
δ

τ

[
1− e−

T
τ

]δ−1

e−
T
τ , (4.4)
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where τ denotes the vortex lifetime and δ depends the domain size. This expression can

be rationalized from the observation that vortex lifetimes in active turbulence have an

approximately exponential distribution [135]. A good estimate for the transient time is

the time after which the spontaneous symmetry breaking occurs. Its distribution can

be obtained from the PDF of the time it takes for one polarity of vortices to decay,

which amounts to computing the maximum survival time of a set of like-signed vortices.

Assuming statistical independence of the individual decay processes yields the proposed

PDF. Figure 4.4 (inset) shows the corresponding fits for the PDFs of the transient

durations for different domain sizes, demonstrating an excellent agreement.

For sufficiently large domain sizes, an additional effect comes into play: crystal do-

mains with both polarity can coexist, leading to metastable AVC superstructures with

very long lifetimes. This is illustrated in Fig. 4.4 (b), which shows the number of pos-

itive and negative vortices as a function of time (L = 160π). in this example, two

vortex clusters of approximately equal sizes but opposite polarity coexist for more than

8000 nondimensional time units, before a uniform AVC forms. These metastable AVC

superstructures explain the extreme outliers in the transient duration which are the

cause for the sharp increase of the mean duration for system sizes beyond L = 120π.

This divergence of transient durations with domain size, a supertransient feature, is

observed in a variety of dynamical systems such as coupled map lattices and reaction

diffusion systems [167–170]. Unlike supertransient chaos, our transient state is charac-

terized initially by a turbulent regime and then a gradually evolving superstructure. An

extreme example of such a superstructure is shown in Fig. 4.1 (a) for a domain of size

L = 1000π. The crystal domains are separated by a highly dynamic boundary layer of

active turbulence.

4.4 Summary and Discussion

We have characterized the emergence and melting of AVCs through extensive com-

putations of a field-theoretic description of active matter. We evaluate the melting

transition both as a function of activity and active advection, mapping out the detailed

non-equilibrium phase diagram. We observe a stable vortex crystal state for large active

advection and intermediate values of activity, which melts for both lower and higher

values of activity. Notably, we find that the exact type of this melting depends cru-

cially on the region in phase diagram. We observe an intermediate hexatic phase, like

in the equilibrium KTHNY theory, as well as hysteresis depending on the path in the

phase diagram. This points to a nontrivial dependence of the transition on activity and

active advection. Our system therefore exhibits a rich transition scenario from ordered

to disordered states, which complements previous studies on transitions in active fluids

[56, 94, 156, 171]. In the thermodynamic limit, vortex domains of opposite polarity
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emerge, which are separated by domain boundaries exhibiting active turbulence. In

their competition to form a uniform vortex crystal of one polarity, these domains show

features of metastable transient AVC superstructures.

Our results furthermore indicate that the properties of AVCs share close similarity

with equilibrium crystals. One of the most surprising aspects of the melting process

reported here is the coexistence of a discontinuous transition (through hysteresis) and a

KTHNY-like melting scenario. In contrast to the equilibrium analogues of our system,

such as point vortex lattices and their realizations in superconductors and superflu-

ids [154, 172, 173], we observe a dynamic emergence of the vortex crystal from an active

fluid through an extended turbulent transient. Vortex arrays, which share some of the

properties of the AVC that we discuss here, have been observed in a range of systems in-

cluding forced two-dimensional Navier-Stokes system [143], drift-wave turbulence [174]

as well as quasi-geostrophic flows [145], which could motivate the analysis of melting

transitions in a much larger class of systems.

The experimental exploration of the results presented here will be an exciting direc-

tion for future work. Arguably, the best candidate to study the melting of active vortex

crystals is a dense suspension of spermatozoa, which show both, active turbulence [20]

as well as self-organized regular vortex arrays [12]. Although the measurements in this

experiment suggested a fluid-like arrangement of vortices, rather than crystal-like or

hexatic, it may be possible to achieve crystalline ordering through a careful tuning of

experimental conditions. If a vortex crystal phase is achieved in such a system, the

activity can be tuned, for instance, by changing the motility through the ambient tem-

perature [175] to achieve a potential melting transition. It is also worth noting that

the sperm cells on a planar surface have a preferred handedness [176] precluding the

observation of a spontaneously broken rotational symmetry. This could be alleviated

by confinement between two walls. Broken-symmetry states of ferromagnetic and anti-

ferromagnetic ordering of bacterial vortices have been observed in periodically patterned

substrates [128, 177]. We expect that further development of experimental realization

of this system will significantly enhance our knowledge of crystalline order, not just in

active matter, but in out-of-equilibrium systems in general.

4.5 Methods

4.5.1 Simulation details

We perform direct numerical simulations of the vorticity field ω = ∇× u in a periodic

domain by using a fully dealiased pseudo-spectral algorithm. The mean velocity 〈u〉 is

integrated separately. The corresponding evolution equations follow from Eq. (4.1) and
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Figure L λ α N ∆t

4.1(a) 1000π 7.0 −0.800 81922 0.005

4.1(b) 1000π 5.6 −0.800 81922 0.005

4.1(c) 1000π [5, 6.5] −0.800 81922 0.005

4.2(a) 20π [0.0, 15.0] [−1.200, 0.000) 2562 0.005

4.2(b) 20π 8.0 −0.800 10242 0.001

4.2(c) 20π 3.0 −0.800 10242 0.001

4.2(d) 20π 0.1 −0.200 10242 0.001

4.2(e) 20π 5.6 −0.800 2562 0.005

4.2(f) 20π 5.0, 5.6, 6.6 −0.800 2562 0.005

4.2(g) 20π [5.0, 7.0] −0.800 2562 0.005

4.2(h) 20π 7.0 [−1.100, −0.500] 2562 0.005

4.3(a) 200π 15.0 −0.800 10242 0.005

4.3(b) 200π 7.0 -0.725 10242 0.005

4.3(c) 200π 7.0 -0.715 10242 0.005

4.3(d) 200π 7.0 -0.750, -0.725, -0.715, -0.700 10242 0.005

4.3(d) 200π 15.0 -0.800 10242 0.005

4.3(e) 200π 7.0 -0.750, -0.725, -0.715, -0.700 10242 0.005

4.3(e) 200π 15.0 -0.800 10242 0.005

4.4(a) [10π, 160π] 7.0 −0.800 2562, 5122, 10242 0.005

4.4(a) inset 10π, 20π, 40π 7.0 −0.800 2562 0.005

4.4(b) 160π 7.0 −0.800 10242 0.005

4.6 1000π 5.6 −0.800 81922 0.005

Table 4.1: Simulation parameters: Domain size L, active advection parameter λ, activity parameter
α, number of grid points N , time step ∆t. The parameter β is set to 0.01 in all simulations.

take the form:

∂tω + λu · ∇ω = −
(
1 + ∆

)2
ω − αω − β∇×

(∣∣u2
∣∣ u
)

(4.5)

∂t〈u〉 = −
(
1 + α

)
〈u〉 − β

〈
|u|2 u

〉
. (4.6)

We solve Eqs. (4.5) and (4.6) with a fourth-order Runge-Kutta method for time stepping

combined with an integrating factor for the linear terms. Our code is parallelized using

GPUs (graphics processing units) in order to accelerate the computations. For the

results discussed in the main text, the parameter values are listed in table 4.1.

4.5.2 Phase diagram

The phase diagram (Fig. 4.2 (a)) is obtained from simulations of 477 different parameter

configurations as shown in Fig. 4.5 (a). For each configuration, we use two different

initial conditions: a random initial condition (as exemplified in Fig. 4.5 (b)) and a
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Figure 4.5: (a) The parameter configuration used to obtain the phase diagram (Fig. 4.2). Each
cross represents simulations with two different initial conditions as shown in (b) and (c). The PDFs
in Fig. 4.2 (f) are based on simulations with parameters marked in blue. The phase transition curves
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Fig. 4.1 (b) and 4.2 (e) are based on the parameter choice shown in blue circle.

vortex crystal (Fig. 4.5 (c)).

The different phases shown in Fig. 4.2 (a) are defined as follows. The square lat-

tice, active turbulence and vortex crystal phases show obvious qualitative differences

as noted in the main text and are easily distinguished. The hysteresis phase in the

marginal stability region is identified as such when the simulations are bistable; the

simulations starting with random initial conditions result in an active turbulence phase

whereas a vortex crystal initial condition remains stable. The simulations are checked

for convergence until a total simulation time of T=2000 (4× 105 time steps). The coex-

istence region is defined by evaluating the PDF of the energy density. If the PDF has

two peaks (see, e.g., Fig. 4.2 (f)), it is defined as a temporally intermittent pattern.

4.5.3 Phase transition

The phase transition between active turbulence and vortex crystals in small domains

(Fig. 4.2 (g) and (h)) is characterized as follows. For the transition curves in both

increasing and decreasing directions of parameter values, we conduct simulations in the

range 5.0 ≤ λ ≤ 7.0 and −1.1 ≤ α ≤ −0.6. For λ = 5 and α = −1.1, we start

our simulation from random initial conditions. For rest of the simulations, the final

snapshot of the previous simulation is used as the initial condition. Once a statistically

steady state is reached (after about 106 time steps), we collect data for 106 time steps

and evaluate the PDF of the energy density. If the PDF has only one peak, the order

parameter Tcrystal/Ttotal takes the value 0 or 1, depending on the phase. Otherwise, the
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Figure 4.6: Analysis of melting of AVC superstructures: Top row shows the vorticity field for λ = 5.6
at different times (initial condition, at t = 1000 and at t = 2000). Bottom row shows the corresponding
smoothed fields.

energy density at the minimum between the two peaks of the PDF, Emin is evaluated.

The order parameter then takes the value of the probability P > Emin. This process is

repeated 5 times, and the mean and the standard deviations are used to construct the

transition curves and estimate the uncertainties, which are shown in Fig. 4.2 (g) and

(h).

To evaluate the phase transition curve in large domains (Fig. 4.1(c)), we first identify

centers of the strong vortices [54, 135]. Then an order parameter field is obtained by

calculating, for each point (x, y), the difference between the number of positive and

negative vortices within a circle of radius r centered at (x, y) (r is about half the mean

distance between the nearest neighbors and next nearest neighbors). The resulting field

is then smoothed using a Gaussian filter with standard deviation σ = 12. The original

vorticity field and the smoothed field are shown in Fig. 4.6. The turbulent region is then

defined as the area where the absolute value of this smoothed field is less than half the

maximum value of the field. Once this turbulent region is defined, the order parameter

Acrystal/Atotal is calculated by evaluating the fraction of the total area covered by the

vortex crystal.

4.5.4 Transient durations

To evaluate transient durations (Fig. 4.4 (a) and (b)), we conduct simulations starting

with random initial conditions until a converged vortex crystal state is reached for each

domain size. The convergence is defined as follows. By employing a vortex identification

algorithm [54, 135], we obtain a time series of the number of strong vortices of both
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polarity. A converged vortex crystal is obtained when the number of vortices of either

sign reaches 93% of the theoretical maximum number of vortices possible in the domain.

To obtain the mean and median transient durations in Fig. 4.4 (a), the simulations

are repeated 100 times for each domain size and the corresponding mean and median

durations are calculated. The PDFs (inset Fig. 4.4 (a)) are obtained by evaluating

the transient durations for three different domain sizes from 10000 simulations each,

starting from random initial conditions. The error bars correspond to the difference

between the maximum and the minimum from the 5 bootstrapped PDFs obtained from

2000 simulations each. The theoretical curves are obtained by fitting the numerical data

to Eq. (4.4). The corresponding values of the free parameters δ and τ are, respectively,

4.8 and 55 for L = 10π (blue curve), 10 and 73 for L = 20π (orange curve) and 21 and

73 for L = 40π (green curve).

4.5.5 Dynamic Lindemann parameter and orientational correlation

The dynamic Lindemann parameter and the orientational correlations are evaluated as

follows. For each parameter choice in Fig. 4.3, simulations starting from random initial

conditions are run for at least 1.2 × 107 time steps until a statistically steady state is

reached. To evaluate the dynamic Lindemann parameter, we then obtain 500 snapshots

separated by ∆t = 0.1. For each snapshot, we identify the centers of strong vortices [54,

135]. The trajectory of each vortex core is then tracked. Only vortices which survive the

entire duration of the simulation after reaching the statistically steady state are included

in the analysis. The dynamic Lindemann parameter is then evaluated following Eq. (4.2)

in the main text.

The orientational correlation is evaluated according to Eq. (4.3) in the main text,

after identifying the centers of the strong vortices in converged simulations. The results

are averaged across 10 snapshots (with ∆t = 2000) each from three simulations with

different initial conditions.
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5 Summary and Discussions

Active matter is one of the next frontiers in classical physics, where the theories of stat-

istical mechanics can be extended to nonequilibrium systems. Extensive research in the

past two decades in this new field has not only tremendously improved our knowledge

about collective dynamics in biological systems but also has provided a framework to

study systems out of equilibrium. In this work, we have shown that general phenomen-

ological approaches can be used to study the properties of different phases in active

matter. We have explored turbulent dynamics, novel forms of pattern formation and

crystallization as well as phase transitions between them. We have employed tools from

statistical physics, fluid dynamics and classical pattern formation theory, illustrating

the rich interdisciplinary nature of the topic. Our results open up intriguing avenues

for future work on nonequilibrium systems.

Before we conclude, a summary of our results is given below. We end this study with

an outlook on possible directions for future research.

Turbulence in active fluids

One of the striking examples of the rich variety of phases exhibited by active fluids

is the low Reynolds number active turbulence. This active turbulence phase is exhib-

ited by systems ranging from bacterial suspension to microtubule-kinesin mixtures and

spermatozoa suspensions. In Chapter 2, we conducted a statistical characterization of

this dynamical phase. We found that the single-point velocity statistics in the active

turbulence phase is close to Gaussian, similar to hydrodynamic turbulence. As we re-

duce activity, the velocity statistics become closer to Gaussian. The two-point velocity

statistics deviate from Gaussian for length scales smaller than the coherent vortex struc-

tures in the system. This is true for statistical investigations both in the Eulerian as

well as in the Lagrangian frames of reference. For smaller values of the activity, the

multi-point velocity statistics also become close to Gaussian, due to the smaller sizes of

the coherent vortex structures.

One characteristic which contrasts active turbulence from hydrodynamic turbulence

is the sharp selection of the sizes of the vortices as well as the magnitude of the vorticity

at the vortex cores. To quantify this, we investigated the vorticity distribution at the
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vortex cores. We found that this follows a trimodal distribution. This results from

the weak vortices close to zero and the intense ones of both the signs. The PDF falls

off rapidly for the intense vortices. The lifetime of the vortices decays exponentially

for both intense and weak vortices. For strong vortices, the characteristic timescale

of the decay is larger. We also looked at other statistical quantities like the mean

square displacement of the tracers, which shows a ballistic behavior for short times and

diffusive for large times. These statistical characterizations lay the groundwork for the

theoretical analysis of turbulence in active fluids.

In Chapter 3, we developed a theory of velocity correlations in active turbulence.

One of the difficulties of such an analysis is the nonlinear and non-local nature of

the equations of motion describing the active fluid, resulting in a closure problem. The

non-Gaussian statistical features further complicate this analysis since a naive Gaussian

approximation will fail to capture important dynamical features of this system. We used

a closure model from hydrodynamics, called the eddy-damped quasi-normal Markovian

approximation, to develop a theory for the velocity correlations. This theory captures

the statistics of the system very well for different values of activity. Our results on closure

approximation in active turbulence points to the applicability of classical turbulence

theory in explaining the properties of active matter systems.

Active vortex crystals

In the second half of this dissertation, we present the first field-theoretic description

of the active vortex crystal phase. Active vortex crystals are two-dimensional nonequi-

librium crystals formed by vortices of active matter. Our theoretical results on active

vortex crystals are important in the context of the observation of well-ordered vortex

arrays in spermatozoa suspensions. In Chapter 3 we showed that self-organized vortex

crystals are a stable solution to the active matter model that we investigate. The self-

organization of the vortices into a crystalline structure is preceded by a spontaneous

discrete symmetry breaking which results in choosing vortices of one sign over another.

We also found that the inverse energy transfer in this system is important in defining

the characteristics of this vortex crystal phase. The inverse transfer of energy results in

the system selecting the neutral wavenumber over the most unstable wavenumber.

We further characterized the active vortex crystal phase in Chapter 4. Like two-

dimensional crystals in equilibrium, active vortex crystals display long-range orienta-

tional order. We analyzed the melting of active vortex crystals into an active fluid.

By evaluating the nonequilibrium phase diagram of the active matter system, we found

that its melting may proceed through two different mechanisms. In one scenario, the

transition region is characterized by a hysteretic phase. Here, the vortex crystal does

not spontaneously form from an active fluid, but a vortex crystal itself remains stable.

In the second transition scenario, the melting proceeds through an intermediate hex-
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atic phase. This is similar to the predictions of the KTHNY theory of the melting of

two-dimensional crystals in equilibrium.

While investigating the formation of the active vortex crystals, we found an inter-

esting dependence on the domain sizes. The transient duration before the emergence of

the vortex crystals increases with the domain size. Beyond a critical domain size, the

mean transient duration increases considerably. This happens due to the formation of

superstructures of vortex crystal domains of opposite polarity. For very large domains,

these superstructures become metastable leading to the formation of slowly evolving

crystal domain structures.

5.1 Outlook

This work, like many theoretical works in the field of active matter, is based on the

phenomenological modeling of active systems. One of the shortcomings of such an

approach is the difficulty in making exact quantitative comparisons to experiments.

Perhaps the most important development required to substantiate our results is direct

comparisons with experiments. In this context, it is also worth noting that, as we

discussed in the introduction, the active fluids model can be approximately derived

by coarse-graining the microscopic equations of motion. Further development in this

direction could allow the mapping between the theoretical parameters and experimental

conditions.

There are many statistical results that we present which can be tested experimentally.

For instance, one of our important numerical results regarding the statistical features of

active turbulence is the deviation from Gaussian within the length scales of the coherent

vortex structures. It is feasible to do such measurements in bacterial and microtubule

systems and these could give us better information about the statistical nature of the

active turbulence velocity field. The distribution of the lifetimes of the vortices is

another interesting quantity that can be tested experimentally.

One of the central results of this dissertation, the applicability of the classical turbu-

lence closure scheme in active fluids, proves the utility of hydrodynamics as a framework

to explore the dynamics of active fluids. To quote a few examples where this could be

done, boundary layer theories from fluid dynamics can be used to analyze dynamics of

active flows over a substrate and particle transport in such systems can be investigated

utilizing the rich knowledge of particle transport in turbulence.

Crystallization in active matter, that we discuss in Chapter 4, opens up a range of

interesting questions and possibilities for future research. We have reported on spontan-

eous emergence of vortex crystals from turbulent dynamics in active fluids. Although

true vortex crystals have not yet been observed in experiments there are results, such

as in dense spermatozoa suspensions, which suggest that such realizations may indeed
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be possible.

Another direction for future research is the investigation of the compressible version

of the active matter model studied here. A compressible model would allow for more

realistic comparisons with experiments. Such an analysis would open up regimes inac-

cessible in the current model. For example, it is intriguing to analyze how the active

matter density waves’ propagation differs between the active turbulence phase and the

vortex crystal phase.

To conclude, the results presented in this dissertation show that chaotic dynam-

ics and crystallization in active fluids, as well as other features of active matter, are

paradigmatic nonequillibrium phenomena that can be studied using interdisciplinary

tools. Experimental and theoretical work in this direction could substantially increase

our understanding of physics out of equilibrium.
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A Algorithm for numerically

solving the active matter

model

Here we present a pseudospectral algorithm to solve the active fluids model [178]. In a

pseudospectral scheme, parts of the calculations take place in the Fourier space while

the rest takes place in the real space. The rationale behind this is to evaluate the

differential operators in the Fourier space (since differentiations become multiplications

in the Fourier space) and the nonlinear operations in the real space. Thus such an

algorithm would involve, for each time step, the Fourier transform(s) of the solution as

well as its inverse(s). These transforms are usually the computationally most intensive

portion of the algorithm. We utilize a Fast Fourier Transfer scheme (FFTW) to evaluate

the Fourier transforms.

Our goal is to numerically solve Eq. (1.8). Instead of solving the equations for the

velocity field, we use the vorticity formulation of the equations of motion since vorticity

is a pseudoscalar. To this end, consider the vorticity equations obtained by taking the

curl of Eq. (1.8)

∂tω + λu · ∇ω = −(1 + ∆)2ω − αω − β∇× (u2 u),

where ω = ∇× u.

Now we take the Fourier transform of the above equation. This results in

∂tω̂ = ̂N(ω,u;λ, β)− L(k;α)ω̂

where f̂ denotes the Fourier transform of f , N(ω,u;λ, β) = −λu · ∇ω − β∇ × (u2 u)

and L(k;α) = (1− k2)2 + α.

The pseudospectral algorithm proceeds according to the following steps:

Step 1: Start with an initial condition for the vorticity field ω and take its Fourier transform

ω̂.

81



Step 2: Obtain the velocity fields in the Fourier space, ûx and ûy, from the vorticity field

ω̂ as shown below:

ûx = iky
ω̂

k2
,

ûy = −ikx
ω̂

k2
.

Step 3: Inverse Fourier Transform ω̂ to ω, ûx to ux and ûy to uy. Then calculate the

nonlinear terms in the real space. To this end, evaluate uxω, uyω, u2ux and u2uy.

Step 4: Fourier transform uxω, uyω, u2ux and u2uy and then evaluate N( ̂ω,u;λ, β).

Step 5: The evolution equation, given by

∂tω̂ = ̂N(ω,u;λ, β)− L(k;α)ω̂,

can be written as

∂t(e
L(k;α)tω̂) = eL(k;α)t ̂N(ω,u;λ, β).

Now the above equation can be solved, for time n with dt = δt, using second order

Runge-Kutta scheme [179] as given below

ω̂∗ = e−L(k;α)δt/2

[
ω̂n +

δt

2
̂N(ωn,un;λ, β)

]
,

ω̂∗∗ = e−L(k;α)δt/2ω̂n + δte−L(k;α)δt/2 ̂N(ω∗,u∗;λ, β),

ω̂n+1 = ω̂∗∗.

Also, to account for aliasing, we discard half of the Fourier modes after each timestep [77,

135]. Note that by using the vorticity formulation, the information about the mean

velocity is lost. Thus for each timestep, the mean velocity is integrated separately, by

using the following equation, and the corresponding value is added to the numerically

obtained velocity field.

∂t〈u〉 = −
(
1 + α

)
〈u〉 − β

〈
|u|2 u

〉
.
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B A generalization to the active

matter model

So far we have investigated the properties of active matter systems within the confines

of the model introduced by Wensink et al. [13] (Eq. (1.8)). However, as we have already

discussed briefly in the introduction, this model in the vorticity formulation can be

thought of as an advected Swift-Hohenberg-like equation. When the advection is close

to zero, we recover the stationary patterns which can be analyzed by using classical

pattern formation theory (Chapter 3). As the strength of the advection is increased,

an active fluid phase or an active crystal can be observed. This raises the question of

whether these observations can be repeated within the larger class of the advected Swift-

Hohenberg-like equations for different nonlinearities. Here we examine this question by

analyzing the properties of an advected Swift-Hohenberg model and comparing it with

Eq. (1.8). We find that the active fluid phase, the active crystal phase as well as the

different transitions between them can also be observed in this generalized model.

As our starting point, consider a general class of equations describing the evolution of

the vorticity field ω in two dimensions, given by ∂tω+λu · ∇ω = L(∇;α)ω+N(ω,u; β).

Here L is a linear operator, N is a nonlinear functional and the incompressible advecting

field u is such that ∇ × u = ω. λ determines the strength of the advection. The

linear operator may take the form L = −(1 + ∆)2 − α so that a linear instability is

introduced at wavenumber k = 1 and the range and intensity of the unstable modes are

given by the value of the parameter α. For the standard active matter model (SAM)

which we have analyzed in the previous chapters, the nonlinear term takes the form

N(ω,u; β) = −β∇ × u2u. To investigate the generality of our results here, we also

look at an alternate form for the nonlinearity, similar to the standard Swift-Hohenberg

equation, given by N(ω,u; β) = −βω3 [180]. We denote this model as the advected

Swift-Hohenberg (ASH) system.

As we have already described, the equation of motion for the ASH model is given by

∂tω + λu · ∇ω = −(1 + ∆)2ω − αω − βω3. (B.1)
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Figure B.1: Phase diagram of the ASH model on a 20π×20π domain obtained by numerically solving
the ASH equation: (a) Different phases of the ASH system as a function of activity α and advection λ.
Red and blue dots correspond to (b) vortex crystal and (c) active fluid phases, respectively. The green
and yellow regions are the marginal stability regions between the active fluid phase and the vortex
crystal. Note that, unlike the SAM model the regions corresponding to the vortex crystal phase in
the ASH model is quite dispersed. The simulations were conducted on a 256× 256 domain by using a
second-order Runge Kutta scheme for time stepping.

Here the sole order parameter is ω, the vorticity field, and u is the corresponding velocity

field.

Our goal is to compare the properties of the ASH model with that of the SAM model.

To this end, we present the phase diagram of the ASH model in Fig. B.1. The ASH

model also forms the different types of phases exhibited by the SAM model, including

the vortex crystal phase (red dots), the active fluid phase (blue dots) as well as the

two different transition phenomena exhibited in the SAM model. Like the SAM model,

melting can proceed through a hysteretic phase (shown in yellow) or with intermittent

patterns (green dots). It is interesting to note that the regions in the phase diagram

where these different phases are observed also agree between the two models; for instance

the vortex crystal is stable for intermediate activity and high advection. However, the

actual values of the parameters over which we observe the corresponding phases vary

considerably.

There are important differences between the vortex crystal phase in the ASH model

and the SAM model. The vortices in the SAM model are more uniformly sized than the

ASH model as can be observed from Fig. B.1 (b). Furthermore, the crystalline phase

in the ASH model appears less stable than the SAM model. In the phase diagram,

the region corresponding to the vortex crystal phase is more dispersed compared to the

SAM model. Thus unlike the SAM model, the transition region between the vortex
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crystal and the active fluid is not very well defined.

The brief exposition above exemplifies that the vortex crystalline phase that we

observe is not confined to the particular set of equations that we investigated in the

previous chapters. Our observations suggest that the advected Swift-Hohenberg equa-

tions represent a novel class of pattern-forming systems with potential applications to

nonequilibrium phenomena such as active matter.
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C Linear stability analysis of the

stationary patterns

As we noted in Chapter 3, for zero advection the active matter model results in a sta-

tionary pattern that can be analyzed by using the tools from classical pattern formation

theory [165]. This is also true for the ASH model analyzed in Appendix B [134]. Sur-

prisingly, these patterns remain stable for small but finite values of advection. Similar

observations have been made, e.g., in two-dimensional Navier-Stokes systems with spa-

tially periodic forcing [181]. To investigate the stability of these patterns in the presence

of finite advection, here we present a linear stability analysis of the stationary patterns

for both models.

For simplicity, we conduct our analysis by using the stream function formulation of

the equations of motion for the ASH and the SAM model, where the stream function ψ

is given by ∆ψ = −ω.

We start by noting that for small values of advection λ, ψ can be written as

ψ = ψ0 + ψ̃,

where ψ0 is a base state given by the stationary solution and ψ̃ is the fluctuation around

the base state. The stability of the models can be analyzed by linearizing the equations

of motion around the base state. The linearized equations of motion for ψ̃ for the ASH

model is given by,

∂t∆ψ̃ =−
[
(1 + ∆)2 + α

]
∆ψ̃ − λ

[
∂xψ0∂y∆ψ̃ + ∂xψ̃∂y∆ψ0 − ∂yψ0∂x∆ψ̃ − ∂yψ̃∂x∆ψ0

]

− 3β(∆ψ0)2∆ψ̃.

We assume a periodic domain of dimension (2Nπ × 2Nπ), where N is a positive

integer. The ASH model forms a stripe solution for zero advection. With a suitable

choice for the coordinate system, the base state can be written as

ψ0 = Aeix + c.c

[
A =

√−α
3β

]
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Figure C.1: Linear stability of the stationary patterns in the ASH and the SAM model: (a) Stationary
patterns (blue dots, (c)) and distorted patterns (green dots, (b)) in the ASH system as a function of
activity α and advection λ. The black curve is the marginal stability curve for the stationary pattern.
Panel (d) shows the corresponding plot for the SAM system. It is clear that for both the models, the
stationary patterns remain stable for small but finite values of advection. The marginal stability curve,
obtained through a linear stability analysis, captures the transition to distorted patterns.
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This solution including the value of the amplitude can be obtained by solving the cor-

responding amplitude equation (see refs. [134, 165] and Chapter 3). Here we have

truncated the solution at the first harmonic.

The fluctuations ψ̃ can be expanded into Fourier modes, given by

ψ̃ =
M∑

n,m=−M
φnme

inx+my
N + c.c.

Here we have truncated all perturbations above Fourier mode M , since we assume

that the higher order modes do not destabilize the system. Substituting this into the

linearized equations, we obtain the eigenvalue equations

φ̇nm =−
[(

1− k2
nm

)2
+ α

]
φnm +

λA

Nk2
nm

[
φn−N mm(k2

n−N m − 1)− φn+N mm(k2
n+N m − 1)

]

− 3βA2

k2
nm

[
φn−2N mk

2
n−2N m + φn+2N mk

2
n+2N m + 2φnmk

2
nm

]
,

where k2
nm = n2+m2

N2 .

Since we have discarded all higher-order harmonics when considering the base state,

the above eigenvalue equations will result in positive eigenvalues corresponding to the

eigenvectors denoting the exact solution. However, since the amplitudes of the higher

harmonics are much smaller compared to the first harmonic, we assume that including

the entire solution would merely change these eigenvalues without altering others. Thus

we discard the eigenvalues corresponding to the eigenvectors forming the exact solution

and evaluate the next largest eigenvalue. Following this, we can analyze the stability

of the lattice states. By evaluating the values of the parameters where the eigenvalue

reaches zero, we can calculate the marginal stability curve for the stationary patterns.

We have numerically solved this eigenvalue problem for 4π×4π domain (Fig. C.1). The

DNS solutions show good agreement with the results from the stability analysis presen-

ted here. The stationary patterns are stable for finite, but small values of advection,

but as the advection is increased the patterns get distorted eventually resulting in an

active fluid phase.

We present below the corresponding analysis for the SAM model. The linearized

equation of motion around the base state is given by
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∂t∆ψ̃ =−
[
(1 + ∆)2 + α

]
∆ψ̃ − λ

[
∂xψ0∂y∆ψ̃ + ∂xψ̃∂y∆ψ0 − ∂yψ0∂x∆ψ̃ − ∂yψ̃∂x∆ψ0

]

− β
[
∂x
[
∂xψ̃(3(∂xψ0)2 + (∂yψ0)2) + 2∂xψ0∂yψ0∂yψ̃

]

+ ∂y
[
∂yψ̃(3(∂xψ0)2 + (∂yψ0)2) + 2∂xψ0∂yψ0∂yψ̃

]]
.

SAM model results in a square lattice phase for zero advection and the base state

can be written as

ψ0 = A(eix + eiy) + c.c

[
A =

√−α
5β

]
.

Here, again, we have discarded all higher order harmonics.

Then the eigenvalue equations are for the SAM model takes the form

φ̇nm =−
[(

1− k2
nm

)2
+ α

]
φnm +

λA

Nk2
nm

[
φn−N mm(k2

n−N m − 1)− φn+N mm(k2
n+N m − 1)

− φnm−Nn(k2
nm−N − 1) + φnm+Nn(k2

nm+N − 1)

]
+

3βA2

N2k2
nm

[
φn−2N m(3n(n− 2N) +m2)

+ φn+2N m(3n(n+ 2N) +m2)− 8φnm(n2 +m2) + φnm−2N(n2 + 3m(m− 2N))

+ φnm+2N(n2 + 3m(m+ 2N)) + 2φn−N m−N((m−N)n+ (n−N)m)

+ 2φn+N m+N((m+N)n+ (n+N)m)− 2φn−N m+N((m+N)n+ (n−N)m)

− 2φn+N m−N((m−N)n+ (n+N)m)

]

The results for the stability of the square lattice state for the SAM model and the

corresponding comparison with DNS are shown in Fig. C.1. Thus both in the ASH

model and the SAM model, the stationary pattern remains stable for small values of

advection. Interestingly, the stability of these patterns also depends on the value of

the activity. As the activity is reduced, the value of advection required to destabilize

the patterns increases. In conclusion, the stability of stationary patterns in advected

Swift-Hohenberg models can be captured by using a linear stability analysis w.r.t the

corresponding stationary states.
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2.1 Upper row: active turbulence state with broad-band forcing (α = −1).
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tained through direct numerical simulation of eq. (2.1) with parameters

chosen according to ref. [105]. Note that the vortices are approximately
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lence case and (b) the weakly excited case. The small-scale increment

PDF for the active turbulent case displays considerable deviations from

Gaussianity. In comparison, the weakly excited case with less pronounced

vortex structures shows a close-to-Gaussian behavior at all scales. . . . . 38

2.4 Upper row: statistics and dynamics of active matter vortices. Panel (a)

shows the distribution of vorticity at vortex cores. The different peaks

correspond to the vortices of the two classes - weak and intense. The

distribution of vortex lifetimes for weak and intense vortices is shown in

panel (b). Note that the intense vortices have on average longer lifetimes.

Some sample vortex core trajectories are shown in panel (c) (in blue)

along with some passive Lagrangian tracer particles (in green). Lower

row: Lagrangian statistics of active turbulence. Panel (d) shows the

single-particle dispersion PDF which is close to Gaussian for all time

lags considered. The mean squared displacement, shown in panel (e),

exhibits a cross-over from a ballistic to a diffusive regime. Lagrangian

velocity increment distributions are shown in panel (f). . . . . . . . . . . 40
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3.1 The continuum model Eq. (3.1) displays a range of dynamical phases

of the vorticity field depending on the nonlinear advection: (a) classical

pattern formation (λ = 0, simulation 1 in Table 3.1), (b) active turbulence

(λ = 3.5, simulation 2 in Table 3.1) and (c) turbulent pattern formation

(λ = 7, simulation 3 in Table 3.1). Notably, the dispersion relation shown

in (d) along with the nonlinear damping is kept fixed for all examples.

The dashed green line corresponds to the most unstable wave number,

given by k = kc, which sets the wave number of the pattern in (a). The

horizontal orange lines in (a) and (c) correspond to five times the length

scale of the patterns, i.e. 10π/kc and 10π/k0, respectively, exemplifying

that the wave number selection in the turbulent pattern forming phase

(c) differs from the classical pattern forming phase (a). . . . . . . . . . . 47

3.2 (a) Energy budget of active turbulence: direct numerical simulation

(DNS) results (dashed lines, simulation 2 in Table 3.1) vs EDQNM clos-

ure theory. The black, green and blue curves correspond to the energy

spectrum, the transfer term and the effective linear term, respectively.

(b) Spectra from DNS of active turbulence compared to EDQNM closure

theory. (c) Longitudinal velocity autocorrelation of active turbulence:

DNS vs EDQNM closure theory. The blue, black and green curves in (b)

and (c) correspond to the simulations 2, 5 and 6, respectively, as listed

in Table 3.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.3 Emergence of hexagonal vortex lattice after a turbulent transient (simu-

lation 4 in Table 3.1). (a,b,c): Vorticity field after t = 20, 150, 850. The

insets show the two-dimensional vorticity spectra with the wave vectors

corresponding to the most unstable wave number indicated by an orange

circle. The inset (c) clearly shows six isolated peaks at k0 ≈ 0.57 which

characterize the vortex lattice. For visualization purposes, these figures

were obtained through a simulation on a smaller domain with half the

domain length compared to Fig. 3.1. Note that the final vortex crystal

state selects a sign of vorticity different from that of Fig. 3.1, exemplify-

ing spontaneous symmetry breaking in this system. Panel (d) shows the

evolution of the enstrophy, as well as the maximum and the minimum

vorticity through the transient to the final quasi-stationary state. . . . . 52

3.4 Growth rates of the linear stability analysis for α = −0.8. The eigenvalues

λ
(1,2)
1 correspond to the stable eigenvalues of the single- and two-stripe

pattern, respectively. Starting from a single-stripe pattern, λ
(1)
2 indicates

that a second stripe in a wave-number band around π/2 can be excited.

The eigenvalue λ
(2)
2 shows that the square lattice state is linearly stable. . 56
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4.1 Melting of AVC superstructures: (a) A metastable superstructure of

opposite-polarity crystal domains obtained through a simulation on a

1000π × 1000π domain resolved with 8192 × 8192 grid points (λ = 7,

α = −0.8). The zoom-ins show domains of opposite polarity demarcated

by a boundary layer of active fluid. (b) A snapshot of the superstructure

after time t = 800 as it melts at a reduced value of active advection

(λ = 5.6). Notice how the active fluid boundary layer between the crys-

tal domains has spread in area. (c) Area fraction of the crystal domains

as a function of active advection for different times, starting from the

superstructure (a) at time t = 0. Note that the width of the domain

boundaries in the transient superstructures is controlled by the strength

of the active advection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.2 Phase diagram and melting transition (L = 20π): (a) Different phases

of the active matter system as a function of activity and active advec-

tion, obtained from close to 1000 simulations (Methods). Red, green,

and blue regions correspond to (b) vortex crystal, (c) active fluid and (d)

square lattice, respectively. The grey and orange regions are the marginal

stability regions between the active turbulence phase and the vortex crys-

tal, corresponding to transition regions exhibiting phase coexistence and

hysteresis, respectively. The white dots indicate the parameter config-

uration used to obtain the phase diagram. (e) A typical energy density

time series for a simulation in the marginal stability region illustrates

the intermittent melting and crystallization of the AVC. The insets show

representative snapshots of the vorticity field. (f) Probability density

functions of the energy density for values of λ = 5 (green), 5.5 (blue) and

6 (orange). (g) Melting transition of the AVC as a function of active ad-

vection (α = −0.8) and (h) transition along the activity (λ=7) axis. The

blue and orange curves correspond to increasing and decreasing values

respectively of α and λ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
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4.3 Characterization of the melting transition: Mean position of the vortex

cores (red) and the corresponding trajectories (blue) in the (a) crystal

(α = −0.8, λ = 15), (b) hexatic (α = −0.725, λ = 7) and (c) fluid

(α = −0.700, λ = 7) phases. The scale bar denotes L = 50. (d) Dynamic

Lindemann parameter γL(t) as a function of time and (e) orientational

correlation function G6(r) for different parameter choices (Methods) in

the crystal (blue), hexatic (orange) and fluid (green) phases. γL(t) re-

mains bounded for the crystal phase, whereas it diverges for both the

hexatic and fluid phases. While G6(r) remains constant in the crystal

phase, it decays algebraically as the crystal melts, demonstrating the ex-

istence of an intermediate hexatic phase. In the fluid phase, G6(r) decays

faster than algebraic. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.4 Transient durations: (a) Duration of the transients leading to the active

crystal as a function of domain size L. The red dots and the green curve

are the mean and median values, respectively. The change in slope at

about L = 120π mark the domain size where AVC superstructures start

to become stable. (inset) Probability density function of the transient

duration for L = 10π (blue), 20π (orange) and 40π (green), obtained from

10000 simulations each, and the corresponding fit with the theoretically

proposed PDF Eq. (4.4) (dashed curves). (b) The time series of the

number of positive (red) and negative vortices (blue) for a simulation

with large domain size (L = 160π). The green, grey, and red regions

denote the initial transient, coexistence of AVC domains, and uniform

AVC respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.5 (a) The parameter configuration used to obtain the phase diagram (Fig. 4.2).

Each cross represents simulations with two different initial conditions as

shown in (b) and (c). The PDFs in Fig. 4.2 (f) are based on simulations

with parameters marked in blue. The phase transition curves Fig. 4.2 (g)

and (h) are based on simulations with parameters marked in green. The

parameters used in Fig. 4.3 are indicated in red. Fig. 4.4 and 4.1 (a) are

based on the parameter choice shown in yellow. Fig. 4.1 (b) and 4.2 (e)

are based on the parameter choice shown in blue circle. . . . . . . . . . . 73

4.6 Analysis of melting of AVC superstructures: Top row shows the vorticity

field for λ = 5.6 at different times (initial condition, at t = 1000 and at

t = 2000). Bottom row shows the corresponding smoothed fields. . . . . . 74
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B.1 Phase diagram of the ASH model on a 20π × 20π domain obtained by

numerically solving the ASH equation: (a) Different phases of the ASH

system as a function of activity α and advection λ. Red and blue dots

correspond to (b) vortex crystal and (c) active fluid phases, respectively.

The green and yellow regions are the marginal stability regions between

the active fluid phase and the vortex crystal. Note that, unlike the SAM

model the regions corresponding to the vortex crystal phase in the ASH

model is quite dispersed. The simulations were conducted on a 256×256

domain by using a second-order Runge Kutta scheme for time stepping. 84

C.1 Linear stability of the stationary patterns in the ASH and the SAM

model: (a) Stationary patterns (blue dots, (c)) and distorted patterns

(green dots, (b)) in the ASH system as a function of activity α and

advection λ. The black curve is the marginal stability curve for the
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system. It is clear that for both the models, the stationary patterns
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