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1. ABSTRACT 

Breast cancer cell invasion is the initial step of the invasion-metastatic cascade, and 

approximately 90 % of all cancer-related deaths are due to currently incurable cancer 

metastasis (1). Unique features of tumor microenvironment such as growth factors, cytokines, 

and extracellular matrix (ECM) composition modify tumor behavior and drive tumor 

progression (2). Matricellular protein, e.g. Cysteine- Rich Angiogenic Inducer 61 (CYR61), 

Connective Tissue Growth Factor (CTGF), exert their function by altering cell-ECM 

interactions, extracellular signaling, and were reported to facilitate angiogenesis, tumor 

initiation, invasion and progression (3-7). 

The tumor microenvironment (TME) is crucial for tumor progression, drug delivery, therapy 

outcome, and drug efficacy. Identifying drivers that modify TME thereby supporting tumor 

initiation, invasion and progression would be of benefit to design new treatment options for 

metastatic breast cancer. 

We aimed to identify molecular mechanisms underlying reduced breast cancer invasiveness 

due to reduced CYR61 expression. Using 2D transwell invasion and 3D spheroid invasion 

assays to evaluate the effect of CYR61 and downstream targets on the invasiveness of breast 

cancer cell. Furthermore, we wanted to shed light on the unique interaction between breast 

cancer cells and osteosarcoma cells. Combining this co-culture model with mass 

spectrometry–based secretome analysis, we identified potential extracellular secreted drivers 

of breast cancer invasion. Additionally, we wanted to identify molecular mechanisms 

underlying reduced breast cancer invasiveness due to reduced CTGF expression by assessing 

cell–ECM adhesion and proteolytic activity of breast cancer cells and identifying possible 

treatment options targeting CTGF. 

Reduced CYR61 expression led to dephosphorylated ERK1/2 and lower S100A4 expression, 

thereby decreasing 3D spheroid invaded area growth. These results suggest that CYR61 and 

S100A4 are predictive markers and therapeutic targets for advanced breast cancer. Targeting 

CTGF, one potential driver of breast cancer bone-directed invasion, led to reduced proteolytic 

activity, decreased 2D transwell invasion and 3D spheroid invaded area growth, and increased 

cell-ECM invasion. Our results demonstrated a RhoA dependent- CTGF regulation, which 

can be impaired by GnRH agonist treatment. 
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2. INTRODUCTION  

2.1. BREAST CANCER 

Breast cancer is the most prominent cancer found in women. In 2018, every 18 seconds a 

patient was diagnosed with breast cancer. Breast cancer accounts for 626,679 death per year 

worldwide with a predicted annual increase of 3.1% (1). Due to advances in multimodal 

therapy, early-stage breast cancer, defined as cancer that is contained in the breast or has only 

spread to axillary lymph nodes, is curable in 70–80% of all cases (8). Currently, advanced 

breast cancer—cancer with distant metastasis—is not curable, but treatment is available to 

prolong survival and relieve symptoms (8). Treatment strategies differ depending on 

histological subtypes and molecular alterations of this heterogeneous disease (8). Two 

histological subtypes can be distinguished according to carcinoma invasiveness. The pre-

invasive subtype includes ductal carcinoma in situ (DCIS), wherein the tumor spreads through 

the duct, distorts duct architecture, and can progress to invasive disease; and lobular 

carcinoma in situ, wherein lobe architecture is not altered (8). Invasive subtype comprises 

invasive ductal carcinoma (IDC), which develops from DCIS and can metastasize through 

vascular and lymphatic system, and invasive lobular carcinoma, which is an isolated tumor 

mass and metastasizes through viscera (8).  

Molecular alterations in breast cancer led to classification of different subtypes (Figure 1). 

Originally, breast cancer molecular subtypes were classified through gene expression studies 

using isolated RNA from frozen tissue (9). Six intrinsic subtypes were classified through 

qPCR array (PAM50) using isolated RNA from formalin-fixed and paraffin embedded tissue 

(Figure 1) (10-12): 

- Luminal A. Activation of estrogen receptor 1 (ESR1). 

- Luminal B. Mutations in phosphatidylinositol-4, 5-bisphosphate-3 kinase catalytic 

subunit α (PI3KCA), ESR1, erb-B2 receptor tyrosine kinase 2 (ERBB2/HER2), and 

erb-B2 receptor tyrosine kinase 3 (ERBB3) genes; amplification of HER2, growth 

factor receptor bound protein 7 (GRB7), DNA topoisomerase 2 A (TOP2A), and/or 

MYC proto-oncogene (MYC) and mutations in the PI3KCA gene. 

- Basal-like. Mutations in tumor suppressor P53 (TP53) and breast cancer 1 early onset 

(BRCA) genes. 

- Claudine-low. No expression of estrogen receptor (ER) or progesterone receptor (PR) 

and no overexpression of HER2 (triple-negative breast cancer [TNBC]). 

- Normal-like (8). 
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In current clinical practice, breast cancer is classified according to surrogated 

immunohistochemistry (IHC)–based subtypes (Figure 1) (8). Surrogated IHC-based 

subtype classification contains five subtypes based on the histological and immuno-

histochemical expression of ER, PR, HER2, and Ki-67 as markers for proliferation: 

- TNBC. No expression of ER and PR; no amplification of HER2; high Ki-67 

expression; high histology score of special types including metaplastic, adenoid cystic, 

medullary-like, or secretory. Marked by poor prognosis. 

- HER2-enriched (non-luminal). No expression of ER and PR; HER2 amplification; 

high Ki-67 expression. Marked by intermediate prognosis. 

- Luminal A-like. Expression of ER and PR; no amplification of HER2; low Ki-67 

expression. Marked by good prognosis (8). 

- Luminal B-like. Lower expression of ER and PR than luminal A-like; high Ki-67 

expression. May or may not have HER2 amplification. Marked by intermediate 

prognosis. 

 

Figure 1 Characteristics and classification of breast cancer subtypes. Breast cancer can be classified according to 

intrinsic subtypes and PAM50 gene expression signature or surrogated immune-histochemical-based subtypes. Furthermore, 

TNBC can be classified according to Lehmann’s (13) and Burstein’s (14). Scheme illustrates proliferation, tumor grading, 

ER expression, PR expression, HER2 amplification, and expression of basal-like genes. Scheme modified regarding to (8, 15, 
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16). IM immunomodulatory, LAR luminal androgen receptor, M mesenchymal, MSL mesenchymal/ stem-like, TNBC triple 

negative breast cancer 

Prevailing studies have demonstrated discordance of intrinsic subtypes and surrogated IHC-

based subtypes, concluding that IHC-based classification could lead to suboptimal treatment 

discussions and poor outcomes (17). Treatment of heterogeneous TNBC is far behind other 

subtypes and, thus, is associated with the worst prognosis (8). Two different classifications 

were proposed for further classification of TNBC. The first classification was proposed by 

Lehmann et al. with the following six subtypes: 

- Basal-like 1. Molecular alterations in cell cycle and DNA repair signaling, such as 

TP53, BRCA, mitogen-activated protein kinase kinase kinase 1 (MAP3K1/MEKK1), 

and PIK3CA (16). 

- Basal-like 2. Molecular alterations in growth factor and metabolism signaling (13). 

- Mesenchymal. Molecular alterations in cell motility, extracellular matrix (ECM) 

receptor, and cell differentiation signaling (e.g., Rho pathway, TGFβ signaling) (13). 

- Mesenchymal/stem-like (MSL). Low expression of claudins. Molecular alterations are 

versatile and include, but are not limited to, extracellular signaling–related kinase 1/2 

(ERK1/2 or MAPK1), G-protein coupled receptor, and calcium signaling (13). 

- Immunomodulatory (IM). Molecular alteration in cellular immune process (13). 

- Luminal androgen receptor (LAR). Overexpression of LAR. Molecular alterations in, 

but not restricted to, androgen/estrogen metabolism signaling (13). 

Refinement of this classification led to four subtypes with implications for neoadjuvant 

therapy response (18). A similar classification was reported by Burstein et al. with RNA and 

DNA approaches (14). These subtypes are basal-like A (immune-activated), basal-like B 

(immunosuppressed), mesenchymal (mesenchymal and MSL are merged here), and LAR 

(14). Currently, no diagnostic test is routinely used in clinical practice (8). 

Of all patients diagnosed with breast cancer, those with TNBC account for 10–15% of all 

cases. Thus, we want to investigate the drivers of this heterogeneous breast cancer subtype 

with special focus on mesenchymal molecular alterations. Understanding what drives tumor 

progression and advanced breast cancer could lead to the development of specific treatments 

to be able to prolong patient survival, impede metastasis, and cure this specific subtype. 
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2.2.  METASTATIC CASCADE 

To date, advanced cancer with distant metastases is not curable and is the cause of 

approximately 90% of cancer-related deaths (8). The invasion-metastatic cascade leading to 

cancer metastasis is a multistep-process (Figure 2) (19-22). 

 

Figure 2 The Invasion-metastatic cascade. Scheme illustrating progress from tissue homoeostasis towards tumor 

progression and metastasis. Multistage invasion-metastatic cascade comprises dissemination of tumor cell from primary 

tumor site (invasion), migration through extracellular matrix (ECM), intravasation into vascular system, extravasation into 

parenchyma of distant site, colonization at metastatic niche. To proceed, metastatic tumor cells might hijack developmental 

processes like epithelial-mesenchymal transition (EMT) and mesenchymal-epithelial transition (MET). Scheme modified 

regarding to (23-25). 

This process is initiated by local invasion of cancer cells from the primary tumor (carcinoma 

in situ) into the surrounding tissue (IDC). Due to gained motile and invasive properties, tumor 

cells move through the extracellular matrix (ECM) and intravasate into the vascular system. 

However, they need to survive during hematogenous non-adhesive transit. To exit 

hematogenous transit, tumor cells need adhesive properties to extravasate through the 

vascular walls into distant site tissue. Having unique microenvironmental features at the 

distant site, tumor cells need adhesive properties to form micrometastases and induce 

angiogenesis. Tumor metastasis is an inefficient process and needs special cellular features to 

proliferate, invade, intravasate, survive, extravasate, and proliferate again in different 

microenvironments (26). Evaluating which molecular alterations appear during the invasion-

metastatic cascade could help to design treatment options to impede this process. 
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2.2.1. Invasion 

Tumor initiation is a complex biological event. It starts with molecular alterations in normal 

cells, leading to uncontrolled proliferation, resistance to cell death signaling, and hyperplasia 

(27, 28). The tumor mass consists of heterogeneous tumor cells and the tumor 

microenvironment (TME). The TME comprises cancer-associated fibroblasts, immune and 

inflammatory cells, lymphatic vascular and blood networks, adipose cells, neuroendocrine 

cells, and the ECM. This composition has a critical role in malignancy evolution and varies 

depending on tissue site (29, 30). Regarding prognosis of a given tumor, the composition of 

the ECM is of great importance (30, 31). Three-dimensional structure of the ECM contains a 

reservoir of growth factors, collagens, elastin, fibronectin, hyaluronic acid, proteoglycans, and 

glycoproteins; it provides hydration and facilitates pH homeostasis (32-34). Due to 

continuous proliferation, the TME is constantly remodeled, leading to altered paracrine and 

autocrine communication between different cell types, increased interstitial fluid pressure, 

increased ECM stiffness, increased vascular network formation, and tumor progression (27, 

35). Identifying the drivers within the TME, specifically the ECM, that alter tumor cell 

behavior toward invasion could help to design new therapeutic treatments targeting tumor 

progression and tracking tumor stage (30). Adhesion receptors (e.g., integrins, cadherins) 

transform stimuli by extracellular ligands from microenvironment into intracellular signals, 

thereby leading to cellular transformational processes, invasion, proliferation, or survival (36). 

Likewise, cells use adhesion receptors to sense, adapt, and respond to mechanical or 

biophysical signals from the ECM. They interact with the ECM through focal adhesions and 

hemidesmosomes (cell-ECM adhesions) (29). Understanding differences in physiological 

processes such as wound healing regarding adhesion receptor binding and alterations in cell-

ECM adhesion compared to pathological processes such as fibrosis or tumor cell invasion 

could help specify targeted therapy to impede tumor cell invasion. 

To be able to invade into surrounding tissue, molecular alterations are essential for cancer 

cells to drive proteolytic degradation of ECM and alter in cell-cell and cell-ECM adhesion 

(37). Different processes can enable the dissemination of primary tumor cells. Of these, 

collective invasion has been well described (25). In this process, invading cells keep their 

epithelial traits (cell-cell junctions) and disseminate as a collective cohesive cohort (Figure 2) 

(19, 25). Additionally, cells can invade by different types of single-cell invasion. First: in a 

mesenchymal manner, wherein cells are elongated and cell-ECM adhesion remains (25). 

Second: in an amoeboid manner, wherein cells are in rounded shape and rely on the 

contractility of cortical actomyosin (38). And third: cells using intermediate behaviors of the 
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former mentioned single cell invasion types, which were already reported before (38-41). 

Another possible invasion process is the epithelial-mesenchymal transition (EMT). In this 

process, cells invade by gaining mesenchymal traits and losing epithelial traits due to higher 

cellular plasticity. 

2.2.2. EMT during invasion-metastatic cascade 

The EMT is a group of dynamic biological programs employed under physiological 

conditions during embryogenesis and wound healing. These programs are dynamic with 

different intermediated states contributing to cellular plasticity. They are orchestrated through 

a set of transcription factors (EMT-TFs) (23, 42, 43) but are triggered by heterotypic signals 

(19, 23, 42, 43). Tumor cells hijack such physiologic dynamic programs to acquire 

mesenchymal traits and reduce epithelial traits (19, 44). Furthermore, it was suggested that the 

acquisition of mesenchymal traits led to resistance to common cytotoxic therapies and tumor 

initiation (19, 45-47). Currently, the contribution of the EMT to cell dissemination and 

metastasis is highly debated (43). One recent study indicated that acquiring a fully 

mesenchymal state resulted in cells unable to metastasize (48, 49). Cancer cell dissemination 

and intravasation could also be observed by collective invasion. It remains elusive if cells at 

the leading edge of invasive cohorts are in an intermediate state of the EMT due to acquired 

invasive properties (43). Recent studies suggested that cancer-associated fibroblasts or cancer 

cells at the leading edge under dynamic EMT programs led to collective invasion (25, 50). 

Interestingly, remodeling of the ECM during wound healing due to upregulation of 

Transforming Growth Factor β (TGFβ), interleukins, and growth factors results in comparable 

ECM composition (19). It was demonstrated that non-invasive breast cancer cells under 

dynamic EMT programs are able to form distant metastases in vivo and are more invasive in a 

2D transwell invasion assay in vitro (51). Nevertheless, fundamental issues regarding EMT 

contribution to tumor invasion and metastasis remain elusive.  

Regarding tumor initiation, two models currently exist. First clonal evolution: where cells 

gain tumorigenic properties due to molecular alterations leading to tumor initiation. Second: 

the cancer stem cell model, where cancer stem cells are considered as the precursor to initiate 

tumor growth and progression (8, 52). Growing evidence demonstrates that the EMT is able 

to induce stemness in cancer cells. Additionally, stem cells might evolve from clonal 

evolution, which could explain the polyclonal appearance of metastatic colonies (53). Further 

research should aim to reveal intracellular and extracellular signals that can activate, sustain, 

and reverse EMT. Reversion of EMT is also referred as mesenchymal-epithelial transition. 
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Distinguishing between different states could help to track tumor progression. Thus, we want 

to investigate the effect of EMT on breast cancer invasion by identifying intracellular and 

extracellular targets leading to altered EMT-TFs expression and acquired invasive traits. 

Furthermore, we want to target these intracellular and extracellular drivers to impede dynamic 

EMT programs and investigate whether this leads to reduced invasive capacities. 

2.2.3. Breast cancer metastasis 

Currently, metastatic breast cancer is incurable with a median overall survival of less than 

three years (54). De novo breast cancer accounts for more than 25% of all diagnosed 

metastatic breast cancers (8, 55, 56). The most common metastatic sites for breast cancer 

(ranked from highest to lowest percentage) are bone, axillary lymph nodes, liver, lung, and 

brain (Figure 3) (8). 

 

Figure 3 Metastatic sites of breast cancer. Anatomy of mammary duct and lobes in cross-section and cross-section of 

normal mammary duct vs. invasive ductal carcinoma (IDC). Most prominent site for distant metastases drom breast cancer is 

bone, counting for 67 % of all breast cancer metastases. 

Tropism to specific metastatic sites depend on the intrinsic subtype (8).The intrinsic subtypes 

luminal A and B (no HER2 amplification) have a tropism for bone and lymph node 

metastases. TNBC have tropism for lung and brain metastases. Additionally, breast cancers 

with an amplification of HER2 have tropism for brain metastases (8, 57). Molecular 

alterations at the primary tumor site driving tumor progression and metastasis are up to 80% 

conserved at the metastatic site (8). Subclonal diversity differs by intrinsic subtypes of breast 
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cancer when comparing the primary site with the metastatic site. The highest subclonal 

diversity could be detected at PR-expressing tumors (~33%), followed by ER-expressing 

tumors (~20%), and HER2-amplified tumors (~8%). Differences between 

microenvironmental components of the primary site and unique features at the distant 

metastatic site can lead to discordance (8, 58, 59). Despite these findings, specific features 

that lead to metastases remain elusive (8). Bone is the most frequent site for metastases of 

breast cancer, accounting for 67% of all breast cancer-derived metastases (Figure 3) (8). Of 

these, 79% are classified as luminal B subtype, 60% as luminal A subtype, and 40% as HER2-

amplified basal-like subtype (57). Due to unique physical properties, colonization in bone 

only appears in 24% of patients with detected circulating tumor cells (CTC) (60). Even when 

detected in bone marrow, outgrowth of metastatic tumor is not guaranteed (60-62). Bone is 

100,000 times more rigid than soft tissue (58). Previous studies have suggested that rigidity 

facilitates cell transformational processes, leading to osteolytic gene expression in breast 

cancer cells and induced TGFβ signaling (63-66). It remains elusive which specific features of 

disseminated breast cancer cells are indispensable to colonize at the metastatic site.  

Bones are continuously resorbed by osteoclast activity. These multinucleated cells are formed 

upon receptor activator of nuclear factor-κB ligand (RANKL) and the activity of macrophage 

colony-stimulating factor (M-CFS). Due to bone resorption, growth factors are released. 

Recent studies have reported that tumor cells express receptors to facilitate invasion and 

chemotaxis in different metastatic niches such as bone, lymph nodes, and the lungs. One of 

these specific receptors is C-X-C motif chemokine receptor 4 (CXCR4), which is able to bind 

to mesenchymal stem cells close to bone surface with CXCL12 receptors (67-72). Engineered 

bone structures with mesenchymal stem cells deficient of expressing CXCL12 are resistant to 

tumor cell invasion (71). Specific knowledge of bone environmental components and cellular 

interactions of cells that are specific to that location with disseminating tumor cells could help 

impede colonization and tumor cell attraction. However, it remains unclear why luminal 

cancer cells preferentially metastasize to bone and if specific paracrine signals or ECM 

components have an effect on relapse. Thus, we analyzed breast cancer bone-directed 

invasion with cell lines that harbor specific characteristics, including expression of CXCR4 or 

the luminal subtype, that make them preferentially metastasize to bone. 

2.3. MATRICELLULAR PROTEINS 

Unique features of TME such as growth factors, cytokines, chemotactic stimuli, and ECM 

composition modify tumor behavior and drive tumor progression (2). It remains unclear 
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which TME and ECM components alter tumor behavior toward invasion and metastasis. 

Additionally, it is not clear which interactions can be diminished to impede cell invasion 

without impeding physiological processes. Regulation of ECM composition is critical during 

development and fulfills versatile functions, including maintaining tissue homeostasis, 

regulating proliferation and survival signaling, scaffolding cell-cell-interactions, establishing 

ECM- growth factor interactions, and associating with proteins (73, 74). During physiological 

processes such as wound healing, stroma is modulated through TGFβ, interleukins, colony-

stimulating factor 1 (CSF-1), tumor necrosis factor α (TNFα), and ligands of epithelial growth 

factor receptor (EGFR) (75). The basal membrane is the boundary between the duct and the 

adjacent tissue, which can be degraded by proteases (e.g., MMPs) and cause invasive 

programs to be initiated. The deposition of ECM components (e.g., collagens, fibronectin, 

matricellular proteins) leads to matrix remodeling and the release of proteases (76). In 1995, 

Bornstein described for the first time a group of secreted proteins within the ECM that 

facilitate wound healing and inflammation, naming them as matricellular proteins (3, 77). 

These proteins are non- structural components of the ECM; they exert functions on cell-ECM 

interaction, regulatory function of the cell, and act highly tissue and context specific (78). 

More specifically, they form scaffolds by binding to the ECM or cell surface receptors. These 

scaffolds trigger different extracellular signaling pathways to increase growth factors and 

inflammatory cytokines (79). Characteristics of matricellular proteins include: secretion by 

different cell types, counter-adhesiveness, and association with insoluble parts of the ECM 

(80). Originally defined as modulators of cell-ECM interactions, members of the family of 

matricellular proteins were secreted protein acidic and rich in cysteine (SPARC), 

thrombospondine-1 (TSP-1), and tenascin C (TN-C) (3, 4). The expanded family includes 

members of the CCN family, such as Cysteine-Rich Angiogenic Inducer 61 (CYR61) and 

Connective Tissue Growth Factor (CTGF) (80). Several proteins of this family have been 

proposed as therapeutic targets or predictive markers for a variety of pathological incidents 

including cardiovascular diseases, fibrosis, and different cancer entities (81-83). 

2.3.1. CCN Family 

The CCN family contains six homologues proteins, all of which are found in the ECM: 

CYR61, CTGF, nephroblastoma overexpressed (NOV), Wnt-1 induced secreted protein 

(WISP) 1, WISP-2, and WISP-3 (84-86). Each protein constitutes four main domains: 

homologies to insulin-like growth factor binding proteins, Von Willebrand factor type C 

(VWC) repeat, TSP-1 repeat, and carboxyl-terminal domain (CT) (84). Members of this 
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family are reported to be involved in versatile cellular processes, including regulation of 

inflammatory regulators (e.g., TGFβ, prostaglandins), angiogenesis, signal modulation of 

proteins involved in tumor growth, tumor initiation, and tumor progression (e.g., integrins, 

Wnt) (5, 6, 87-91). 

2.3.1.1.CYR61 and cancer invasion 

As a member of the matricellular family, CYR61 is associated with ECM and exerts its 

functions in matrix signaling by binding to integrin receptors (αVβ3, αVβ3, α6β1, αMβ2), 

syndecan 4 (SDC4), and heparan sulfate proteoglycans (HSPGs) (77, 80, 92, 93). CYR61 

exerts its funtion in cell type and tissue specific manner (94). While it acts as a tumor 

suppressor in human hepatocellular carcinoma and non–small cell lung cancer (NSCLC) (95, 

96), CYR61 also acts as an oncogene in the cancers of the breast, ovaries, stomach, and 

pancreas, as well as glioblastoma (97-101). In physiological events, CYR61 exerts functions 

in cardiovascular development during embryogenesis (77). Its binding to integrin αvβ3 

facilitates proliferation, survival, and angiogenesis (73, 77, 102). Additionally, it was 

proposed that CYR61 induces vascular endothelial growth factor A (VEGF-A) and VEGF-C 

expression, which are known angiogenic factors (90, 91). Furthermore, its binding to integrin 

α6β1 and HSPGs induces apoptosis and senescence (77). Diverse signaling pathways induced 

transcriptional activation of CYR61 including TGFβ signaling, growth factors stimulation, 

cytokine stimulation, estrogen signaling, and tamoxifen signaling, as well as bacterial and 

viral infections (77, 87, 103-106). Through the transcriptional activation of yes-associated 

protein (YAP), CYR61 is part of the Hippo signaling pathway (107). Previous studies have 

demonstrated that CYR61 can affect estrogen resistance and resistance to chemotherapy, as 

well as facilitate breast cancer tumor growth, tumor progression, and metastasis, thereby 

leading to poor prognosis (97, 108-111). 

Regarding breast cancer, growing evidence demonstrates that increased CYR61 expression 

led to tumor growth in vivo and poor prognosis (109). Decreased CYR61 expression reduced 

invasion and transendothelial migration in TNBC cells and reduced lung metastasis (112-

114). Additionally, it was proposed that breast cancer cells under dynamic EMT programs 

exhibit increased CYR61 expression, metastasis, and tumor cell invasion (7). Using 

neutralizing CYR61 antibodies, breast cancer invasion and metastasis could be diminished in 

vitro and in vivo (7, 115). Thus, we investigated breast cancer bone-directed invasion and 

reveal the underlying mechanism that led to reduced breast cancer cell invasion due to 

reduced CYR61 expression. Furthermore, we wanted to evaluate whether CYR61 can be used 

as a prognostic marker and therapeutic target for advanced breast cancer. 
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2.3.1.2.CTGF and cancer invasion 

Under physiological incident, CTGF is upregulated during embryogenesis and facilitates 

renal, skeletal, and cardiovascular development (116). CTGF exerts its function context and 

tissue specific. Previous studies have demonstrated that CTGF acts as a tumor suppressor 

regarding advanced colon cancer but acts as a oncogene in other tumor entities (116-120). 

CTGF binding is reported with following receptors: αMβ2, αvβ3, α4β1, α5β1, α5β3, tropomyosin-

related kinase A, tyrosine kinases, low-density receptor-related proteins (LRPs), and HSPGs 

(80, 116, 121-126). Additionally, CTGF binds to cytokines and ECM proteins, thereby 

regulating matrix turnover, cell adhesion, and motility (116). Versatile stimuli lead to 

transcriptional induction of CTGF (e.g., mechanical stress, cytokines, growth factors, and 

oxygen deprivation) (127). Furthermore, CTGF is transcriptionally induced by key regulators 

of the Hippo pathway, which are YAP, transcriptional coactivator with PDZ-binding motif 

(TAZ), and transcriptional enhancer factor TEF-1 (TEAD) (116). Stimulation of ETS proto-

oncogene 1 (ETS1) leads to the induction of CTGF and was reported to remodel the ECM in 

cancer cells, fibroblasts, and endothelial cells (116, 128, 129). Regarding breast cancer, CTGF 

induced motility by binding to integrin α5β3 and ERK1/2 phosphorylation; it also correlates 

with poor prognosis and facilitates osteolytic metastasis (116, 129, 130). Likewise, CTGF 

upregulation led to invasion, migration, and mammosphere formation through the EMT (111). 

It was proposed that CTGF regulation and regulation of other CCN protein or TME 

components result in synergistic effects (131). 

Both CYR61 and CTGF have the ability to interact with different cell types and the ECM, 

making them valuable targets for localized drug delivery (81). Thus, we investigated the 

molecular mechanisms of CYR61 and CTGF with regards to TNBC, cells with high cellular 

plasticity, and breast cancer bone-directed invasion. Identifying prognostic markers and 

therapeutic targets could help to improve the treatment of currently incurable metastatic breast 

cancer. 
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2.4. AIM OF THE THESIS 

The aim of this thesis was to elucidate the mechanism of breast cancer cell invasion to impede 

metastasis. To achieve this aim, the following three tasks were implemented: 

1. Identification of molecular mechanisms underlying reduced breast cancer 

invasiveness due to reduced CYR61 expression. The task was to evaluate whether 

CYR61 could be of value as a prognostic marker and therapeutic target for advanced 

breast cancer. It was demonstrated that CYR61 is upregulated in mesenchymal-

transformed breast cancer cells and that reducing extracellular CYR61 led to reduced 

2D transwell invasion in a co-culture model with osteosarcoma cells (7). In this study, 

transient RNA silencing was used to reduce CYR61 expression and reveal the effects 

on cell signaling.  

2. Identification of the extracellular drivers of invasion to better understand the 

unique interaction between breast cancer cells and osteosarcoma cells. Von Alten 

et al. demonstrated that co-culturing non-invasive breast cancer cells with primary 

osteoblast and osteosarcoma cells led to increased 2D transwell invasion (132). In this 

study, we combined this co-culture model with mass spectrometry based secretome 

analysis to identify potential extracellular secreted drivers of breast cancer invasion. 

3. Identification of molecular mechanisms underlying reduced breast cancer 

invasiveness due to reduced CTGF expression. CTGF expression is induced when 

breast cancer cells are mesenchymal transformed, facilitating invasiveness and 

metastasis (51). In this study, transient RNA silencing was used to reduce CTGF 

expression thereby assessing the effect on invasion by 3D spheroid invasion assay. 

Additionally, cell-ECM adhesion and proteolytic activity of breast cancer cells were 

assessed. Furthermore, possible treatment options targeting CTGF were identified.
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Supplementary Material 

The Supplementary Material for this article can be found online at: 

https://www.frontiersin.org/articles/10.3389/fonc.2019.01074/full#supplementary-material 

 

Figure S1. CYR61 expression correlates with breast cancer cell invasiveness. (A) Relative transforming growth factor beta induced (TGFBI) 

expression of mesenchymal transformed breast cancer cell lines compared to non-invasive controls was assessed using real-time quantitative 

PCR. Data represent mean ± SEM. Using unpaired, two-tailed t-test analysis. MCF-7-EMT n = 3; T47D-EMT n = 6; ***P < 0.0005; ****P < 

0.0001 (B) Relative E-cadherin expression of mesenchymal transformed breast cancer cell lines compared to non-invasive controls was assessed 

using real-time quantitative PCR. Data represent mean ± SEM. Using unpaired, two-tailed t-test analysis. MCF-7-EMT n = 4; T47D-EMT n = 3; 
*P < 0.05; ****P < 0.0001 (C) Relative Vimentin expression of mesenchymal transformed breast cancer cell lines compared to non-invasive 

controls was assessed using real-time quantitative PCR. Data represent mean ± SEM. Using unpaired, two-tailed t-test analysis. MCF-7-EMT n 

= 5; T47D-EMT n = 3; *P < 0.05 (D) Relative Zeb1 expression of mesenchymal transformed breast cancer cell lines compared to non-invasive 

controls was assessed using real-time quantitative PCR. Data represent mean ± SEM. Using unpaired, two-tailed t-test analysis. MCF-7-EMT n 

= 4; T47D-EMT n = 3; *P < 0.05 (E) Relative SNAI1 expression of mesenchymal transformed breast cancer cell lines compared to non-invasive 

https://www.frontiersin.org/articles/10.3389/fonc.2019.01074/full#supplementary-material
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controls was assessed using real-time quantitative PCR. Data represent mean ± SEM. Using unpaired, two-tailed t-test analysis. MCF-7-EMT n 

= 4; T47D-EMT n = 5; ***P < 0.0005 (F) Relative SNAI2 expression of mesenchymal transformed breast cancer cell lines compared to non-

invasive controls was assessed using real-time quantitative PCR. Data represent mean ± SEM. Using unpaired, two-tailed t-test analysis. MCF-

7-EMT n = 3; T47D-EMT n = 4; *P < 0.05. 

 

Figure S2. CYR61 expression correlates with breast cancer cell invasiveness. (A) Relative CYR61 expression 96 h after transient CYR61 

siRNA transfection compared to control was assessed using real-time quantitative PCR. Data represent mean ± SEM. Using unpaired, two-tailed 

t-test analysis. MCF-7-EMT n = 8; T47D-EMT n = 7; MDA-MB-231 n = 3; HCC1806 n = 4; ** P < 0.01; ***P < 0.0001 (B) Analysis of relative 

AlamarBlue reduction as indicator for cell viability. Transient transfected breast cancer cell spheroids were grown and AlamarBlue reduction 

was assessed 48 hours after adding Matrigel at 4 h incubation. Relative AlamarBlue reduction was calculated compared to control spheroids. 

Data represent mean ± SEM. n = 3 (C) Analysis of relative AlamarBlue reduction as indicator for cell viability. Breast cancer cell spheroids 

were grown and AlamarBlue reduction was assessed 48 h after adding Matrigel and 1μg/ml rhCYR61 at 4 h incubation. Relative AlamarBlue 

reduction was calculated compared to control spheroids. Data represent mean ± SEM. n = 3. 
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Figure S3. Suppression of CYR61 reduces S100A4 expression. (A) Immunoblot analysis of S100A4 mRNA expression levels in different breast 

cancer cell lines 96 h after S100A4 siRNA transfection was detected using western blotting. Date represent mean ± SEM. Using unpaired, two-

tailed t-test analysis. MCF-7-EMT n = 4; T47D-EMT n = 4; MDA-MB-231 n = 3; HCC1806 n = 3; *P < 0.05; **P < 0.01; ***P < 0.005 (B) 

Representative experiments of S100A4 protein expression quantification corresponding to (A). (C) S100A4 mRNA expression analysis 96 h 

after siRNA transfection using quantitative PCR. Date represent mean ± SEM. Using unpaired, two-tailed t-test analysis. MCF-7-EMT n = 4; 

T47D-EMT n = 4; MDA-MB-231 n = 3; HCC1806 n = 3; ***P < 0.005; ****P < 0.0001 (D) CYR61 mRNA expression analysis 96 h after 
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S100A4 siRNA transfection using quantitative PCR. Date represent mean ± SEM. MCF-7-EMT n = 5; T47D-EMT n = 6; MDA-MB-231 n = 3; 

HCC1806 n = 3 (E) Analysis of relative AlamarBlue reduction as indicator for cell viability. Breast cancer cell spheroids transient transfected 

with S100A4 siRNA were grown and AlamarBlue reduction was assessed 48 h after adding Matrigel at 4 h incubation. Relative AlamarBlue 

reduction was calculated compared to control spheroids. Data represent mean ± SEM. n = 3. 

 

Figure S4. ERK1/2 activity is transducer of CYR61 mediated S100A4 regulation. (A) ERK1/2 and p-Erk1/2 (Thr202/Tyr204) expression in 

different breast cancer cell lines with or without 10μM U0126 treatment detected by western blotting. (B) ERK1/2 and p-Erk1/2 

(Thr202/Tyr204) expression in non-invasive breast cancer cell lines with or without 1μg/ml rhCYR61 treatment detected by western blotting. 

 

Figure S5. Suppression of YAP reduces invasiveness through blocking CYR61-S100A4-pERK1/2 signaling. (A) Relative YAP expression 96 h 

after transient YAP siRNA transfection compared to control was assessed using real-time quantitative PCR. Data represent mean ± SEM. Using 

unpaired, two-tailed t-test analysis. MCF-7-EMT n = 5; T47D-EMT n = 3; MDA-MB-231 n = 3; HCC1806 n = 3; *P < 0.05; **P < 0.01; ****P < 

0.001 (B) Analysis of relative AlamarBlue reduction as indicator for cell viability. Breast cancer cell spheroids were grown and AlamarBlue 

reduction was assessed 48 hours after adding Matrigel at 4 h incubation. Relative AlamarBlue reduction was calculated compared to control 

spheroids. Data represent mean ± SEM. n = 3. 

Table S6. CYR61 and S100A4 as prognostic markers for breast cancer progression. Cut-off values were downloaded from kmplot.com after 

target (dataset 213226_at = CYR61; dataset 203186_s_at = S100A4) specific analysis. RFS, relapse free survival; DMFS, distant metastasis free 

survival. 

RFS, 213226_at RFS,203186_s_at DMFS, 213226_at DMFS,203186_s_at 

"cutoff value" "p value" "cutoff value" "p value" "cutoff value" "p value" "cutoff value" "p value" 

236 1.19562075974189e-05 1724 0.215266077871679 241 5.66603372054164e-06 1720 0.0851389129703291 

237 9.16064789491244e-06 1726 0.191509442365171 243 4.29158303050237e-06 1730 0.0762015647592793 

237 1.31517158498129e-05 1730 0.215326922690825 244 3.03409633506391e-06 1737 0.0673434160590155 

237 1.03268303958126e-05 1733 0.199535025397062 245 2.20617246315946e-06 1747 0.0556060355003921 

237 1.00797209752201e-05 1737 0.186083604474143 246 4.43337966471447e-06 1748 0.087933906857383 
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238 1.57871180219704e-05 1738 0.165469954866447 247 1.00878139384086e-05 1756 0.0752060763965201 

239 1.3133087896966e-05 1743 0.196401432280997 249 7.66093542547974e-06 1760 0.0684295279604519 

240 2.04982598729364e-05 1744 0.229162350068697 249 5.8403632995363e-06 1761 0.058187868026223 

240 1.82132154802339e-05 1746 0.271702917719659 250 4.06173852962599e-06 1777 0.0513550586893096 

241 2.92356093257728e-05 1747 0.306719419607372 251 3.25679224266739e-06 1789 0.0416604122418941 

241 2.31493902208557e-05 1748 0.359338656499993 251 2.44171086549727e-06 1790 0.0363794114545782 

241 1.76178184373432e-05 1754 0.33247013388508 251 1.70432254920083e-06 1792 0.0292419343852079 

243 1.33655356101547e-05 1756 0.30867274953045 252 1.23662871620578e-06 1799 0.0429254824133023 

243 1.01074182558003e-05 1759 0.297076013999274 252 8.20637044318673e-07 1811 0.0366056590849839 

244 8.05231597533762e-06 1760 0.282453439032526 257 5.63565007549727e-07 1819 0.0604947658664786 

244 6.40227151926798e-06 1760 0.259763610817575 260 3.78015050594982e-07 1839 0.0814051076668032 

245 8.94217762414939e-06 1761 0.295737208212877 260 2.78867625880252e-07 1840 0.0725683150354628 

245 7.10601420161883e-06 1761 0.276436035709882 262 6.62580763810539e-07 1862 0.107455633487161 

245 5.2466149349506e-06 1765 0.262381467087415 267 1.43703413579832e-06 1887 0.0977158797816955 

245 6.92955615444468e-06 1765 0.23526798320554 268 1.03511381610577e-06 1901 0.0849816218819209 

245 5.35539351897985e-06 1765 0.208769914409052 268 7.34527087598025e-07 1912 0.0758511612442003 

246 4.07384862899374e-06 1769 0.236957978028407 269 1.73399462544133e-06 1918 0.104776762227724 

246 3.17352482592792e-06 1772 0.216103513770683 272 3.7616837191834e-06 1921 0.0939248047300196 

246 4.83428874564762e-06 1772 0.198984416826844 272 9.3088758236215e-06 1922 0.128904150968058 

246 6.51540647678139e-06 1777 0.237961479866444 272 1.98618701841013e-05 1942 0.172333234285498 

246 9.60522328286029e-06 1777 0.216140569100701 273 1.39090123512098e-05 1947 0.147449458900218 

246 7.60227337093244e-06 1779 0.196004566051068 273 2.90651110483875e-05 1960 0.131128731953917 

248 6.11384563808937e-06 1779 0.183960951153308 273 2.1610279594908e-05 1970 0.112497065151357 

249 5.52392967401172e-06 1785 0.212511725412508 273 1.48060434349562e-05 1987 0.0956183630635912 

249 4.50373640015211e-06 1786 0.25270823918695 275 1.21762063713948e-05 1992 0.0794500645492436 

249 3.42171236322741e-06 1789 0.23112027846647 275 8.57026095868463e-06 1994 0.106254306905796 

250 2.77973353690619e-06 1789 0.214447470846727 275 5.99395959210991e-06 1999 0.0901955813852092 

250 2.76598099768766e-06 1789 0.194359112734678 277 1.37382970206712e-05 1999 0.0748279991348035 

250 2.02198567778034e-06 1790 0.186889836352773 277 1.15386745084267e-05 2008 0.0617007183075305 

250 1.68050999171943e-06 1790 0.218133359598657 279 2.5296652380713e-05 2011 0.090045061272588 

251 1.40629752065635e-06 1799 0.19392212993269 281 2.05543480013004e-05 2015 0.0760836642596744 

251 1.24119074640383e-06 1800 0.178129139124167 285 4.86238237439318e-05 2015 0.106782995278059 

251 1.70597296855757e-06 1811 0.199602294170614 285 4.09335500751729e-05 2044 0.0891305277018941 

251 1.31653941659593e-06 1811 0.191793866795494 287 7.37085799374926e-05 2063 0.0775417186529733 

252 1.20379161649975e-06 1812 0.231110558427013 289 0.000130883380082825 2095 0.0703899398757712 

252 1.69670519156728e-06 1814 0.211299491514386 291 0.00010703511141319 2100 0.066121449983751 

252 1.25655580240913e-06 1817 0.188598316049836 292 9.25938850192543e-05 2101 0.0584410377368827 

252 9.79088268016071e-07 1819 0.222863161545062 292 6.47255128320978e-05 2102 0.0897470557658191 

252 1.62115713453481e-06 1820 0.250822080526413 293 0.000116182583821955 2122 0.0744985900059224 

253 2.32017150858521e-06 1826 0.229714663031805 294 9.54973299709394e-05 2123 0.0626274422039131 

253 2.30573700354952e-06 1827 0.208763457277195 295 0.000208139612756675 2128 0.0523805135143922 

253 1.82940585258251e-06 1831 0.189273427256919 295 0.000174334483184824 2128 0.0475036128885575 

254 1.43772194205471e-06 1834 0.171195510768562 296 0.000360834213675276 2157 0.0386292387616045 

255 1.00990012930069e-06 1839 0.163869501705034 298 0.000343339337023463 2170 0.0610571335943456 

255 7.67022996450706e-07 1840 0.15194307716761 303 0.000280923155394741 2176 0.0868137561902532 

256 5.72842213331093e-07 1846 0.180511260025027 308 0.000579316402860686 2181 0.0719782664801982 

256 5.12077636849462e-07 1849 0.166161704496115 308 0.00108472383027114 2185 0.10865715156357 
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256 4.18382948619289e-07 1858 0.153668285590497 309 0.000795639197176734 2185 0.14245627598121 

256 3.76138022839534e-07 1859 0.171849271687902 315 0.00118424622265356 2186 0.120210191385983 

256 2.71179761202056e-07 1862 0.203201790486923 317 0.000966155129936141 2217 0.164789660012147 

257 2.08668260892608e-07 1862 0.231961198310353 318 0.000704898666113674 2223 0.143921673503251 

258 1.4838685036267e-07 1865 0.221095888409517 319 0.000647468397959816 2230 0.20275136250539 

259 1.40405063353555e-07 1865 0.255831811329815 320 0.000509583008150516 2234 0.275634979398276 

259 1.2914549019083e-07 1866 0.254123071669478 324 0.0004358655842579 2239 0.345404787345011 

260 1.00031872896089e-07 1874 0.237474329558779 324 0.000370063021993161 2249 0.442542517710701 

260 7.91898819851866e-08 1875 0.222836880414222 325 0.000313584378086373 2254 0.396778781473283 

260 1.19628971284591e-07 1875 0.259743649781649 326 0.000622992311550719 2262 0.366538337268565 

261 9.57591369532551e-08 1878 0.23859204708506 326 0.000457498193164985 2264 0.337220912257099 

261 9.49707348318896e-08 1882 0.22478029135448 330 0.000885063518853757 2279 0.314798263683163 

261 7.36233095599559e-08 1883 0.264621565762214 330 0.000760368780494458 2287 0.284916304363587 

261 1.07718611697116e-07 1886 0.236600847775659 331 0.00140324914659562 2296 0.247357485139009 

262 8.11910031428553e-08 1886 0.236160079816392 331 0.00246679287864937 2303 0.230725590598424 

262 6.10481789564687e-08 1887 0.275324204482123 331 0.00188831275111445 2310 0.223438557821734 

263 4.12928825577197e-08 1888 0.302749313427006 331 0.00158440892511735 2321 0.191954709102051 

263 6.71643917149467e-08 1899 0.340276754214218 332 0.00147475979578715 2326 0.255484682851482 

263 5.88748279017892e-08 1900 0.306940775781175 336 0.00123685500726878 2333 0.229125617947425 

264 1.04193878636138e-07 1901 0.348872456969976 338 0.00220124492747253 2338 0.203003645668535 

264 1.71846160967881e-07 1902 0.328574041869557 338 0.00371272359011954 2341 0.185117873391642 

264 1.32262361285385e-07 1902 0.376916141761159 339 0.00314243956006788 2344 0.159245678113497 

266 9.98524761763875e-08 1904 0.347784490224784 341 0.00462758843392508 2352 0.141132228404744 

266 7.4513990977465e-08 1904 0.317635339967506 341 0.00388676501701501 2354 0.13279180502925 

266 1.21466082303456e-07 1908 0.299826002515624 344 0.00337118731305097 2355 0.119638440562708 

267 1.88390779531922e-07 1916 0.269408317383367 345 0.00256075742349082 2360 0.101254839079628 

267 1.61634415296597e-07 1916 0.314871422095889 345 0.00411263470286305 2367 0.0842681749327846 

267 1.34563795550768e-07 1916 0.289128432144377 348 0.00348007049785326 2371 0.0794864608093663 

268 1.04411183698971e-07 1917 0.319093473252659 349 0.00347445429704873 2372 0.116586066077033 

268 1.65843934030185e-07 1918 0.297618971055644 349 0.00553500357650694 2378 0.103477588588751 

268 1.65023602893832e-07 1919 0.280250300628833 350 0.00897944104750537 2383 0.150449947990125 

269 1.27184828779825e-07 1922 0.258193523198209 354 0.00773100382998504 2392 0.137103793667081 

269 1.1517759490598e-07 1925 0.28610286180373 356 0.0124958659493957 2395 0.19055322547557 

269 1.67981362486636e-07 1935 0.284500175566847 356 0.0104990814929842 2405 0.174812188761902 

269 1.1919691844664e-07 1937 0.326019134433791 359 0.0150389947418161 2415 0.15282904391052 

269 9.0107305950049e-08 1939 0.379820256832246 360 0.0119737554915491 2436 0.13654510473774 

270 6.67132945553206e-08 1942 0.407659741183885 361 0.010255961062127 2442 0.125119126299403 

270 5.82980838048641e-08 1944 0.370533469916463 368 0.0088350470522196 2466 0.110025709304274 

270 8.88747224703224e-08 1947 0.347634265643376 370 0.00674829354262729 2470 0.0988178801976953 

270 7.16454489069207e-08 1948 0.325119523274265 371 0.00524697388947692 2485 0.0835739556345095 

270 5.6170264661759e-08 1950 0.300132013482624 371 0.00861791575945847 2494 0.0689423806353213 

271 4.26608740555778e-08 1953 0.271680666266674 373 0.00656273931468387 2498 0.0677467263103555 

272 3.23272231206317e-08 1954 0.310860984912757 374 0.00640647469531253 2505 0.0592582853170343 

273 2.27221484960793e-08 1955 0.294206314642646 374 0.00537889077755083 2507 0.0532352116546972 

273 1.81173992475081e-08 1964 0.285472328965033 378 0.00421284049805404 2513 0.0461494252525911 

273 2.87305753632339e-08 1965 0.275800091017399 379 0.00325155254065601 2516 0.0380401133620312 

273 2.29393376516285e-08 1970 0.257589142035339 379 0.00239805229412238 2525 0.034214588174705 
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273 3.6288547944352e-08 1972 0.235463643431292 380 0.00430273655416247 2527 0.0545472026566984 

273 3.27387702503401e-08 1973 0.272223516723934 385 0.00374941568100984 2545 0.0447863305895111 

273 2.5119030411247e-08 1975 0.250524999762855 387 0.00314541229009513 2552 0.0393087404175503 

273 2.22065582589082e-08 1979 0.285998768656639 387 0.00235196251809966 2553 0.0571978312041423 

274 1.87687883013155e-08 1985 0.321910692963709 388 0.0042084260996017 2555 0.0534174179934813 

274 1.69538635352851e-08 1987 0.371934370143207 390 0.00338688030159739 2582 0.0761005491107757 

275 1.27514775405402e-08 1987 0.427020288476206 390 0.00264773961984399 2589 0.0649045385775959 

275 9.37434208037047e-09 1990 0.390679006151845 391 0.0019896076297633 2597 0.0587391725181905 

275 6.82632494974911e-09 1992 0.420094001485059 393 0.00163430741441306 2601 0.0518004672962135 

276 1.16068509248279e-08 1993 0.453378553118673 393 0.00280016003421213 2609 0.0462461735235759 

276 1.81584434155724e-08 1994 0.419582528326454 393 0.00456514074505066 2617 0.0699139415927424 

277 1.46770273712349e-08 1995 0.387723377817179 398 0.00698094011181394 2624 0.0698332569322473 

277 1.22636260035947e-08 1997 0.443010880839524 399 0.0057353698952054 2640 0.101246664631641 

277 2.04465617770211e-08 1999 0.503988575557351 399 0.00561091308056894 2641 0.128997252013429 

278 1.5458386903866e-08 2000 0.462307852074369 401 0.00416367708329823 2642 0.182110690382545 

278 2.20976346110291e-08 2008 0.492053878562571 403 0.00345325539946129 2644 0.165447853529337 

279 3.35019040287321e-08 2011 0.548027596120278 403 0.00251829979113749 2646 0.232405307020051 

279 2.7753825126986e-08 2011 0.597503604961244 404 0.0042743888810074 2673 0.200912759040937 

279 4.33388500642451e-08 2014 0.554620059815944 405 0.00627680803791797 2675 0.178629389453745 

279 3.07350176420584e-08 2015 0.600402996216928 407 0.00530522849531012 2704 0.24527543966663 

280 4.61425662123816e-08 2015 0.656365576982325 408 0.00425243634028116 2717 0.213715935925123 

280 7.6995421927073e-08 2021 0.622168570833772 409 0.00310478760628996 2728 0.182237125038688 

280 1.20988626006735e-07 2022 0.590462571278286 409 0.0022397738795944 2729 0.165695060835247 

280 1.00273684133789e-07 2024 0.636788944501883 411 0.00159572693627053 2755 0.152624439741069 

281 7.39575423125416e-08 2024 0.613033005589626 412 0.00112224333580269 2768 0.137611575420534 

281 6.55825826978429e-08 2026 0.576122889153891 413 0.000935693375710089 2776 0.124638967108924 

282 1.13656968170339e-07 2039 0.540066615992411 413 0.00189531492152339 2779 0.103671327307853 

282 8.70573739764069e-08 2041 0.512767860010821 414 0.00133560496850971 2783 0.0935876621967305 

283 6.86509733505147e-08 2044 0.470971143388139 423 0.00113160029658199 2792 0.0850157191357667 

283 6.22386341353476e-08 2049 0.453977649444532 425 0.000975109435587762 2807 0.125953733682631 

286 1.06038442249101e-07 2054 0.429119949133783 428 0.00175124837988438 2817 0.111870405951665 

286 1.76753272906893e-07 2056 0.467999511097211 431 0.00142608167910296 2836 0.150267611241634 

286 1.25325452904335e-07 2056 0.531966784577156 432 0.00126054041139456 2840 0.148254781114133 

287 1.0584352627685e-07 2061 0.495744072867847 432 0.00100564457554897 2846 0.132821882521155 

287 1.46456968219688e-07 2063 0.45720374724927 433 0.000991115121332764 2846 0.186734138291301 

287 1.98223909175788e-07 2064 0.441357235782128 437 0.00158321354894209 2848 0.243251896880292 

287 1.42623854171298e-07 2071 0.487829301255586 437 0.00283170716413961 2849 0.309360698619301 

287 1.20510533219154e-07 2072 0.456850796266864 437 0.00207470401516052 2869 0.277674085018493 

288 9.07188849597063e-08 2073 0.498638809802843 439 0.00148052541997956 2890 0.246034185434486 

288 7.30139807503249e-08 2076 0.557910858378448 444 0.00267885790881428 2907 0.212182802812189 

289 1.04844137482907e-07 2077 0.543993881598222 447 0.00433381606036698 2910 0.190903806408577 

289 1.56868317113812e-07 2086 0.541175598385868 452 0.00331472177865177 2920 0.163762639877945 

289 1.29013594141192e-07 2095 0.50774505900349 452 0.00526404147870352 2920 0.143454884186663 

289 9.176287052437e-08 2095 0.498181442621935 455 0.00920380689482192 2925 0.120593543009316 

289 7.04673652762722e-08 2097 0.533717647396442 458 0.0160618210534534 2951 0.101358604870804 

290 1.00755291665422e-07 2098 0.515607733546018 460 0.0119958935819044 2952 0.0875619860742392 

290 1.46371683218405e-07 2101 0.473938001168804 465 0.0202823747237908 2967 0.0776047290755741 
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290 1.35039699977746e-07 2114 0.537245505172286 465 0.0171370570894152 2979 0.110239215506483 

291 2.29879716928671e-07 2123 0.506195550453999 466 0.0127866434355218 3009 0.0903739953954005 

291 2.08308547300362e-07 2127 0.472546686639048 466 0.00940685821381715 3022 0.0795062886969751 

291 1.63744850789627e-07 2128 0.524587096468455 468 0.014739215951181 3034 0.0716117004809856 

292 1.37104937070198e-07 2128 0.50899846632858 471 0.0224264017550586 3045 0.108641115050008 

292 1.05029175023752e-07 2129 0.467704322326176 472 0.0168089763934393 3055 0.0898641763468526 

292 7.53991763469131e-08 2143 0.437418267890435 473 0.0286855948032703 3068 0.0743141656131258 

292 6.30710489391006e-08 2144 0.411224934581717 475 0.0249866081719786 3072 0.106914612636845 

293 8.74374301851333e-08 2147 0.388109318823133 476 0.0211654895773197 3084 0.087158828203676 

293 7.26779884052675e-08 2148 0.365708059157096 477 0.0181584613585305 3107 0.120696801649496 

294 5.13157436543565e-08 2151 0.344251868288328 477 0.0138343460534508 3109 0.107232571749157 

294 8.77429109369388e-08 2154 0.363163607594829 477 0.0119036337577698 3123 0.106348004865172 

294 1.49547734196176e-07 2155 0.401521648128648 481 0.0201941241871229 3123 0.0958182733410868 

294 2.23924790709873e-07 2162 0.454621306627265 482 0.016901717305413 3150 0.0808487141957904 

294 1.5877542047793e-07 2162 0.512750594460228 486 0.0252462582282001 3169 0.0785618145011202 

295 2.47502582206849e-07 2162 0.565349790397007 487 0.041102024890602 3176 0.108964137429538 

295 2.11965944796333e-07 2163 0.536892071834426 488 0.0658712354984232 3186 0.0936881637696263 

295 3.5108045004506e-07 2165 0.507559034551738 488 0.097055966957743 3206 0.125970352907788 

296 2.64067238631149e-07 2166 0.549637615819215 492 0.0870424308456467 3207 0.10290043621273 

296 2.55138578597602e-07 2169 0.514645790294705 494 0.0839581527225681 3223 0.0831360318383928 

296 2.09823680097365e-07 2175 0.473288096501925 506 0.118130218938485 3255 0.127811843937393 

297 3.17168378005661e-07 2176 0.441088421928376 511 0.179776480337608 3256 0.113797112567825 

297 4.78409231341459e-07 2181 0.404866351470378 512 0.161318915894916 3276 0.0961454833849308 

298 6.79045897511443e-07 2184 0.462794625768934 516 0.146335059435057 3284 0.078884458552078 

298 5.30389107633589e-07 2185 0.525609394566797 523 0.201768263133772 3298 0.0641012916527399 

298 4.33109593189762e-07 2186 0.483819200848602 524 0.289142068203547 3302 0.053795670075411 

298 3.44355362669191e-07 2187 0.537307022040612 525 0.243153260512366 3311 0.0502627549129147 

300 4.63454157717536e-07 2188 0.502103131252314 525 0.218640055843596 3318 0.0717846178995084 

300 4.384678022884e-07 2189 0.54498907422458 526 0.180358577027205 3324 0.0601269881928223 

301 3.52417529270177e-07 2189 0.606247485777509 526 0.161634022812842 3398 0.0522202566408647 

303 3.47003545231317e-07 2192 0.570175904721589 528 0.132286250713154 3399 0.0714642218668313 

303 2.74958287027616e-07 2192 0.62776154074037 528 0.112399527702889 3407 0.0574588969108735 

303 2.07984688804785e-07 2194 0.590535260697454 530 0.172129427675998 3411 0.0501003375143075 

304 1.57607281892069e-07 2196 0.63963083243406 531 0.147711879810305 3422 0.0710371837046017 

304 1.26565121272293e-07 2198 0.600070296777585 532 0.196645048097449 3441 0.056344796844109 

304 1.25032323161633e-07 2202 0.586404402896709 537 0.276069411934701 3445 0.0446062286379904 

305 8.96853348253401e-08 2204 0.553505186049998 537 0.384689933780886 3448 0.0677357403108566 

305 6.4082170236901e-08 2206 0.533588655143947 546 0.335092745753487 3490 0.0583655196928524 

306 5.02250703249274e-08 2208 0.596051458434985 547 0.434304481518211 3533 0.0511817881007089 

306 4.38862803875395e-08 2208 0.567740770636341 548 0.518296247814666 3575 0.0401680320256471 

306 7.68637227199775e-08 2217 0.601276964383235 553 0.647690853284132 3578 0.0318241662094364 

306 6.32590616556072e-08 2222 0.567187422638689 555 0.793981065922219 3599 0.0289617067421652 

306 5.70253781972951e-08 2223 0.539982545143818 556 0.744255490380291 3639 0.0244057288016714 

307 8.56718763708741e-08 2225 0.604953848523326 561 0.849725158350464 3663 0.0392570967679895 

307 5.99269678325243e-08 2230 0.667247971409584 565 0.972093727935338 3675 0.0662750534480202 

308 4.59227142979302e-08 2230 0.736464654299698     

308 7.47291720726295e-08 2230 0.699584054191313     
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309 5.65291037313287e-08 2231 0.663188674451532     

309 9.07394995808275e-08 2232 0.645589006889933     

309 7.10460850150696e-08 2234 0.684114866949018     

311 6.01161453950283e-08 2239 0.732161251268197     

311 4.56429243289591e-08 2239 0.683646504857333     

312 5.72943568144524e-08 2243 0.75096668357643     

312 4.32039538589279e-08 2249 0.731358874882108     

313 6.75223349455578e-08 2251 0.69186958870717     

313 1.12353625958406e-07 2254 0.660148259307044     

313 1.01405392527454e-07 2254 0.714045036190564     

313 1.36244042603373e-07 2255 0.683994188475823     

314 2.33684312123117e-07 2259 0.72518080470681     

314 1.84152153970274e-07 2259 0.692567985488717     

314 1.54729476675719e-07 2262 0.660185406223942     

314 1.16062666366545e-07 2263 0.630193639076053     

315 8.50892014625515e-08 2270 0.62755544713205     

316 1.23521481376621e-07 2273 0.604524919778917     

316 1.11480768172356e-07 2278 0.559930789453068     

317 8.22646908371638e-08 2279 0.518815502657734     

317 1.22693164739118e-07 2281 0.488071334816708     

318 1.99079530971424e-07 2287 0.536859824981744     

318 1.68211424678155e-07 2290 0.494898263287402     

318 2.44498355894684e-07 2295 0.464011224416034     

318 2.29231242210304e-07 2296 0.440605533199355     

319 1.72403442966207e-07 2296 0.426142303837692     

320 1.35358748210024e-07 2300 0.472426069796172     

320 1.18875449262035e-07 2303 0.438806943395914     

320 1.06330925064846e-07 2306 0.433564859825019     

321 8.10611031631936e-08 2309 0.415248557884492     

321 6.81133814905976e-08 2309 0.400099298004771     

322 5.65821922648979e-08 2311 0.36556404117383     

322 4.41349441437922e-08 2312 0.415190059012866     

323 3.93829590050743e-08 2321 0.388339084126502     

324 3.27519225074013e-08 2326 0.442415241394388     

324 2.59044924399987e-08 2333 0.407027322133589     

324 2.22408637062799e-08 2337 0.380504173299217     

325 1.63850699674839e-08 2337 0.409462651656763     

326 2.7946178482452e-08 2338 0.384034702047868     

326 2.02253007675068e-08 2341 0.36439551730728     

328 3.43350168297007e-08 2344 0.334670987671008     

328 2.36352508675708e-08 2345 0.31327258480046     

328 4.02548763211996e-08 2352 0.304349781838656     

328 2.97139928218115e-08 2353 0.296374611934045     

330 2.23606082538907e-08 2354 0.330480205148936     

330 1.94272375964033e-08 2355 0.31135763067887     

331 3.20113309193459e-08 2358 0.285531735555039     

331 5.13132922819182e-08 2358 0.275140198222341     
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331 3.79362735669631e-08 2358 0.307479745222018     

331 3.09147509813812e-08 2360 0.280927089706003     

331 2.04100456535627e-08 2367 0.25301681451987     

332 1.33721669293152e-08 2371 0.232716410197453     

333 1.0846007980625e-08 2378 0.271873747514953     

333 1.90146637324418e-08 2381 0.316623056794478     

333 3.10021524008164e-08 2383 0.293523461856302     

333 4.86731800419804e-08 2388 0.278927647920909     

333 3.56942257973003e-08 2391 0.256185006881525     

334 2.54956171730214e-08 2392 0.238359290194269     

334 1.90846992653704e-08 2393 0.276972743879207     

336 2.88975652296131e-08 2394 0.264012632129704     

336 2.23459492021405e-08 2395 0.291954118003007     

336 3.64128782681661e-08 2405 0.277672001487392     

338 2.3925822212334e-08 2405 0.256547099512873     

338 3.81719051922857e-08 2407 0.230932296391167     

338 3.09308159085475e-08 2420 0.206647846862706     

338 4.72052519295829e-08 2420 0.192482585401954     

339 3.49388125098216e-08 2424 0.177995324025048     

339 3.01293968663074e-08 2426 0.165558714149107     

339 2.13365038970181e-08 2430 0.184928473923862     

339 1.38700426699501e-08 2436 0.174676161727893     

339 1.84938654390621e-08 2437 0.166454066322091     

339 2.56776936380376e-08 2442 0.197595488939309     

340 3.98218016339769e-08 2442 0.182657615452784     

341 6.52504876796911e-08 2443 0.207571928744931     

341 5.16134306405291e-08 2445 0.242230548379286     

341 7.79366653436142e-08 2455 0.221614733882098     

342 6.40309406607642e-08 2466 0.213178900453134     

342 1.10458597601948e-07 2467 0.20026651348789     

342 8.76807536576152e-08 2470 0.178377094848959     

342 7.15139368834272e-08 2474 0.161923306960064     

342 5.8415000503409e-08 2479 0.147298206369622     

343 1.01744852099017e-07 2485 0.133195775620466     

344 7.03043091521138e-08 2487 0.11809515034508     

344 4.83289859243285e-08 2493 0.106144369419761     

344 3.59914612557688e-08 2494 0.121150106664243     

345 5.5783032526513e-08 2498 0.120150753423883     

347 8.05548171500803e-08 2505 0.110395571528574     

349 1.13800004752918e-07 2507 0.104176140162844     

349 1.77433540082816e-07 2511 0.0952456085541571     

349 2.5836314487826e-07 2512 0.114239758038072     

349 3.99356818281404e-07 2514 0.103440648780117     

350 2.68259859437237e-07 2515 0.0906267254202576     

350 2.22143570760558e-07 2516 0.089938331762951     

352 3.08259164860658e-07 2525 0.0855114670825262     

353 2.3069734178538e-07 2525 0.104349957112358     
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353 1.89704727593387e-07 2545 0.127171228625458     

353 2.97430264195597e-07 2552 0.11757695126655     

353 2.52648758580776e-07 2553 0.138011150606725     

353 1.75802860935548e-07 2555 0.133958142126466     

354 1.16216920309498e-07 2561 0.156075612710348     

355 1.77642821674873e-07 2565 0.179954411898895     

356 2.5906512490792e-07 2566 0.157456814464866     

356 2.0370457531893e-07 2570 0.175856502283501     

356 1.87826449393746e-07 2574 0.160625683771714     

356 1.84053501328663e-07 2574 0.153021834201184     

356 2.43992912984936e-07 2581 0.135105007710892     

357 3.48782989600949e-07 2582 0.155096921397809     

357 2.82442746080136e-07 2582 0.141643681009105     

358 4.55670136290109e-07 2583 0.140586217138475     

358 3.18620546835291e-07 2585 0.127309971357685     

358 2.38913614447611e-07 2587 0.149589367243812     

359 3.42340824133203e-07 2589 0.175734747243897     

360 2.58473610736942e-07 2589 0.167908958332189     

360 2.07528594642348e-07 2590 0.148628871341165     

360 1.81247771791071e-07 2591 0.173776376780992     

361 2.97175950292328e-07 2593 0.15864242519535     

361 2.45493689376985e-07 2594 0.143488998405173     

362 3.3418609857172e-07 2597 0.127091608522214     

363 4.16410951054047e-07 2601 0.117496398534827     

365 3.08379391356084e-07 2602 0.110430132710181     

365 5.19411752719634e-07 2609 0.0997189949606494     

366 8.18469549246359e-07 2619 0.120253042483915     

366 1.18320187025844e-06 2624 0.117357500740943     

367 1.86077980912636e-06 2625 0.139762632952047     

368 2.48575271910578e-06 2625 0.130503600419885     

368 1.81529677723002e-06 2626 0.11460501993032     

369 1.28769833984688e-06 2634 0.135737723442596     

369 9.08450879633094e-07 2635 0.130732117013202     

370 6.09206813440011e-07 2640 0.11821958461168     

371 4.338419201666e-07 2641 0.130518110914243     

371 3.83080439481098e-07 2642 0.156186111200466     

371 5.93192188147462e-07 2646 0.14584260326519     

371 4.13068204752065e-07 2646 0.137012211079479     

372 3.05688533264181e-07 2650 0.120452353401661     

373 4.52339418699488e-07 2657 0.146303217841463     

374 4.42188237137486e-07 2659 0.130693239183727     

374 3.51985138480337e-07 2659 0.116895596835257     

374 2.65427686496622e-07 2663 0.106263614741468     

375 1.96837363408697e-07 2663 0.123885675415464     

376 2.60846072075438e-07 2673 0.144149482775821     

377 3.60485223005469e-07 2674 0.132215898368639     

378 5.82092544165747e-07 2675 0.131938455670894     
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379 4.38855400908267e-07 2677 0.157746404679655     

379 3.0800121819663e-07 2677 0.170961318980758     

379 4.48662816565637e-07 2678 0.154783729770627     

380 6.57538526738222e-07 2678 0.145371429607057     

380 5.7044755019664e-07 2679 0.175207066227995     

383 8.51558786929552e-07 2690 0.158961183640501     

383 1.30396045450176e-06 2700 0.147393054686733     

383 1.20892472044165e-06 2702 0.171668013673267     

385 1.89036186026836e-06 2704 0.202987078188986     

385 2.81477348740289e-06 2708 0.184828569511644     

386 2.30851696991774e-06 2713 0.171138513951824     

387 3.72984915952834e-06 2715 0.149152496214251     

387 5.21664959041157e-06 2717 0.138110056605818     

387 3.56755015462618e-06 2724 0.121311852569788     

387 2.58398565833318e-06 2725 0.106997467537576     

387 4.07830092652439e-06 2726 0.100716739128256     

388 5.81186833925607e-06 2728 0.0876290092768094     

390 4.63416563956098e-06 2729 0.081155526706262     

390 6.56492596606828e-06 2734 0.0769512888192267     

390 5.11291060756314e-06 2736 0.0737256583132326     

390 3.90159089513897e-06 2737 0.0697342535592513     

391 2.93546538376876e-06 2737 0.0600363609887522     

391 2.54252834253066e-06 2749 0.0540349430200893     

391 2.27542612563081e-06 2751 0.0516217143236055     

391 1.83573647194457e-06 2755 0.0432595874878264     

392 1.28591070991391e-06 2756 0.0395631318204946     

392 1.1610491108538e-06 2760 0.0343507162247524     

392 8.07061853458357e-07 2763 0.0284318453792395     

393 1.19738626447319e-06 2763 0.0261456782135656     

393 1.81900462870033e-06 2764 0.0336004499497536     

393 2.20395898986592e-06 2765 0.0295954901986812     

394 3.18533569043655e-06 2767 0.0353554767872047     

396 4.96838458874382e-06 2768 0.0337205937930475     

398 3.52274038917244e-06 2768 0.0309813635699269     

398 2.79851489159988e-06 2773 0.0377885160911141     

399 4.22737456240441e-06 2776 0.0334246635026586     

399 6.69742075776192e-06 2779 0.0281890346855138     

401 4.80248439960196e-06 2782 0.0259093662749652     

403 3.8906256347726e-06 2783 0.0224748243569224     

403 2.78299586997655e-06 2783 0.0285939163837601     

404 4.18603279594976e-06 2783 0.0254064997853127     

405 5.35853219052473e-06 2792 0.0237494019751421     

405 4.81834853149898e-06 2793 0.0305358253854715     

405 3.89954706803142e-06 2793 0.0371117553250881     

406 3.23571771321252e-06 2797 0.0439296680537168     

407 4.13963203604872e-06 2798 0.041743071305032     

408 3.35359728598217e-06 2799 0.0365043679532935     
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408 3.02831261933534e-06 2807 0.0449832174695154     

408 2.11928360427383e-06 2809 0.040518832620009     

409 1.68985239890063e-06 2823 0.0459254425879849     

409 1.18051225828086e-06 2836 0.0416077939583002     

409 9.78439551158061e-07 2837 0.0521960300771332     

410 7.93503633245152e-07 2840 0.0641267228871966     

411 1.0637751380882e-06 2846 0.0583823615410862     

411 7.30205872101486e-07 2846 0.0720870571444369     

411 6.38480485148918e-07 2847 0.084876920561774     

412 4.94469533318664e-07 2847 0.0984632110145943     

412 4.22393433896495e-07 2848 0.114222075838437     

413 5.07908493485587e-07 2849 0.131062656777136     

413 8.6587823100448e-07 2869 0.119104706615886     

414 5.90840973369033e-07 2870 0.107485652220362     

414 5.41811650101032e-07 2882 0.123082463789777     

414 4.08267156415398e-07 2883 0.11674202161663     

414 3.14585413829782e-07 2888 0.110840589814175     

414 2.73919274373924e-07 2890 0.106931279544851     

415 2.10125320032617e-07 2894 0.0936831633031918     

415 1.72023891464868e-07 2894 0.0914831948329905     

415 2.6958821230938e-07 2898 0.0870058829244083     

416 4.20867752981557e-07 2901 0.0753628802374946     

416 3.48384792348e-07 2901 0.0677793422479258     

416 2.57747543086495e-07 2902 0.060977834849636     

417 3.50267451820763e-07 2907 0.0585564701204656     

418 4.77067994997249e-07 2914 0.0529097455535787     

420 6.52123258282344e-07 2915 0.0500412186263294     

421 4.1828480046302e-07 2917 0.0448588632221144     

422 6.69574322431643e-07 2919 0.0413961938705086     

422 5.42589326690823e-07 2920 0.0394685889926969     

422 3.64763202087559e-07 2920 0.0351350286352026     

423 4.55363584839219e-07 2924 0.0298633472453669     

423 4.06790322426964e-07 2924 0.0283831362129172     

423 6.69073861980785e-07 2928 0.0275465484021028     

424 5.99434676895605e-07 2933 0.0249817006678249     

425 5.25355287606111e-07 2939 0.0293994803233697     

426 8.20425003045244e-07 2944 0.0365634691015512     

428 5.98809094976005e-07 2946 0.0317880507669215     

428 9.53245049895024e-07 2950 0.0275498944570661     

431 7.65128088775491e-07 2951 0.0338738889289903     

432 6.94182653249165e-07 2952 0.0300859492441451     

432 5.42735652864224e-07 2967 0.0273036476285383     

432 4.24236229701336e-07 2974 0.0338432322094088     

432 4.1812868245561e-07 2979 0.0425431821430295     

432 6.79983070184242e-07 2980 0.0360554111178653     

433 5.0240575200089e-07 2983 0.0316248293906922     

434 8.45060478704696e-07 2994 0.0381021460855113     
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437 1.33628874532388e-06 2994 0.0340568294670234     

437 2.20554520102834e-06 2997 0.0297749791962197     

439 1.50697324108329e-06 3007 0.0356873437622215     

441 2.35986364072183e-06 3009 0.0310659345845803     

441 1.7676356133256e-06 3015 0.0278336850306085     

442 2.57994822283614e-06 3016 0.0336555514761016     

442 2.24084846078831e-06 3017 0.03128092513164     

444 2.18020194386881e-06 3022 0.0261488545470606     

445 1.89139002138017e-06 3023 0.0243446660261168     

445 2.30621395369557e-06 3028 0.0315914033890958     

446 1.77746246787791e-06 3034 0.035027754089937     

447 1.40390687830561e-06 3039 0.0447254568300698     

447 1.05377018744246e-06 3045 0.0385952097016012     

448 7.63781869972391e-07 3048 0.0327599083253273     

448 6.79633996081286e-07 3052 0.0283645057331173     

450 1.02443503080529e-06 3053 0.0338526439384651     

450 1.42401070335474e-06 3058 0.0436364520888933     

450 2.38086570669704e-06 3063 0.0507513051850758     

452 1.78229586045298e-06 3077 0.0443007599709992     

452 2.4151651781823e-06 3078 0.0545639814078858     

452 3.85850291328982e-06 3080 0.0524733768793391     

453 2.98113086205642e-06 3081 0.0448504623044268     

453 2.54446485059567e-06 3082 0.0380550981116599     

454 1.91669952442908e-06 3083 0.0328295297320348     

454 3.07200818794318e-06 3084 0.0280694972539014     

455 2.55572710528007e-06 3085 0.034148507068445     

455 4.20582297055994e-06 3085 0.0295430871974027     

457 5.50325520221051e-06 3088 0.026309446462693     

457 4.63689776852849e-06 3089 0.0281258009721693     

458 6.44741232447288e-06 3089 0.0266666188029576     

459 4.43439808162083e-06 3091 0.0225686205553298     

459 3.52750712462324e-06 3100 0.0273832792763703     

459 3.01802932101136e-06 3107 0.0249709959688152     

462 2.2538142496753e-06 3108 0.0224169837440361     

462 1.79454027948722e-06 3108 0.0277655167253323     

465 2.30439025017404e-06 3109 0.0240148921647898     

465 1.81931132636759e-06 3109 0.0238469621100117     

465 1.21801826935553e-06 3122 0.022353117163246     

466 8.54885460865873e-07 3123 0.0220992809297211     

466 6.30646759147702e-07 3124 0.0204646377927258     

467 9.22904924816059e-07 3129 0.0265177968512536     

468 6.51944110141578e-07 3132 0.0227441923503642     

468 9.36415973762372e-07 3132 0.0210135486648917     

468 1.46452023941368e-06 3136 0.0263118690309897     

468 1.10825225818623e-06 3138 0.0237402456050828     

469 1.22139535674304e-06 3139 0.0209456416976599     

470 1.92905667961707e-06 3146 0.0174126011365295     
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470 3.07589339165748e-06 3148 0.0162421629812356     

471 2.41848218196505e-06 3150 0.0200433633244118     

472 1.77868351403099e-06 3152 0.0197203652615867     

473 2.98788538954931e-06 3158 0.0178311965405292     

473 2.55373095936484e-06 3158 0.0146422812063609     

475 3.90923359239181e-06 3161 0.0123115196521252     

475 3.12625525056287e-06 3166 0.0111663316519693     

477 4.91246222633634e-06 3169 0.014362480219796     

477 3.99327824263107e-06 3173 0.0176194436966183     

477 2.89377626450094e-06 3176 0.0210014465153892     

477 2.48573348748948e-06 3179 0.0183710096760276     

479 4.02198093329975e-06 3183 0.0231355167664156     

479 2.69607035885411e-06 3186 0.0211613953278679     

481 3.74616510889769e-06 3188 0.0248488338679287     

482 2.94263772138148e-06 3199 0.0315791613932749     

482 2.37923849433219e-06 3204 0.0285316181802018     

482 3.22223182946946e-06 3207 0.0368243181233796     

482 2.47810390674452e-06 3209 0.0309690266676365     

483 3.76147279090855e-06 3213 0.0274374128692462     

483 2.55063187748483e-06 3218 0.0238271029915824     

483 2.03587067171274e-06 3220 0.0211464842907252     

483 1.3379205766606e-06 3223 0.0180578067955731     

484 9.51595257259186e-07 3224 0.0240226441329758     

484 1.53541525660383e-06 3235 0.02138792386523     

486 1.10452282253704e-06 3236 0.0283125690437035     

487 1.8441151941051e-06 3248 0.032087070838088     

488 3.10052543761596e-06 3255 0.0303562446996953     

488 4.82909582233404e-06 3262 0.0273476164917753     

490 4.1748886412396e-06 3262 0.0219735389584517     

490 5.93146355931662e-06 3265 0.0189127700971208     

490 4.50591551304225e-06 3276 0.0232423571430063     

490 7.41542043947163e-06 3279 0.0197524516662876     

490 1.25926767852169e-05 3281 0.0162258484680616     

491 1.77088219948107e-05 3284 0.013759681591574     

493 1.5681667309253e-05 3286 0.0115465795246071     

493 2.56122996248331e-05 3289 0.00934258489148776     

494 3.75401112677753e-05 3291 0.0128325904642822     

496 5.9260619468926e-05 3296 0.012192379776463     

497 4.13369381165873e-05 3298 0.0121164066180595     

498 3.23892200873033e-05 3301 0.0104433445013234     

498 2.59573938685698e-05 3302 0.00933384755035493     

498 2.22634706525948e-05 3303 0.00894338476901857     

499 1.5164013719926e-05 3310 0.00764334957045698     

501 1.12517480259644e-05 3311 0.00712768145654885     

502 1.67058997547764e-05 3311 0.00884626003382905     

502 2.6264583367297e-05 3324 0.00757400036203193     

503 3.91425310902749e-05 3341 0.00667723478027027     
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504 3.01474402267798e-05 3367 0.0055112606928982     

504 2.55510527249481e-05 3380 0.00457477573101339     

506 2.29140019107898e-05 3388 0.00567940249481291     

509 3.63711989486148e-05 3389 0.00510286625340406     

511 2.51295739103208e-05 3392 0.00430857276404784     

512 2.07482391663127e-05 3398 0.00581729278311882     

512 1.803060302219e-05 3399 0.00542447684003655     

513 1.21312787535466e-05 3402 0.00445658194649412     

513 8.93546050950711e-06 3407 0.00554439286643127     

515 6.40075939706275e-06 3407 0.00491889679883606     

516 1.05396751678422e-05 3411 0.0068700150076918     

517 1.60022517499137e-05 3422 0.00834661926488389     

519 2.13254293540688e-05 3422 0.00676435991108115     

520 2.66584207552212e-05 3429 0.00560571337056226     

520 3.60407500527016e-05 3430 0.00527255476922495     

521 2.70550873184838e-05 3441 0.00430523039580788     

522 1.99550698772866e-05 3445 0.00375343344246593     

523 1.35714935742826e-05 3445 0.00502395762633323     

523 1.02529671112128e-05 3448 0.00394695391569322     

523 1.76662492615831e-05 3450 0.00340647827852902     

524 2.96331739882971e-05 3452 0.00275114819240196     

525 4.07232818112613e-05 3454 0.00366745288618542     

525 6.71281342009555e-05 3457 0.00310923673987218     

526 5.46262432739031e-05 3459 0.00386694668610088     

526 4.5419182932549e-05 3469 0.00308202320303874     

528 3.2149499740175e-05 3470 0.00247890702657549     

528 2.459735312621e-05 3475 0.00218831881809878     

528 1.74703023302358e-05 3479 0.00285581454564698     

529 2.93823590109543e-05 3480 0.00399224132836917     

529 3.61337837074815e-05 3490 0.00329392030980191     

529 3.07035068973782e-05 3495 0.00295126330397522     

530 2.77190147841555e-05 3501 0.00234469012535543     

531 2.10934529629725e-05 3508 0.001910459828949     

531 2.8878690430445e-05 3512 0.00145542558859091     

532 1.92034224550941e-05 3521 0.00178884549399505     

532 1.71638105597172e-05 3521 0.0016646858206798     

534 2.74951081968844e-05 3525 0.00246544469265153     

535 4.18276171800791e-05 3533 0.00210652284582258     

536 6.2955951193433e-05 3538 0.00167279423678346     

537 6.04540846810275e-05 3548 0.00246757435312339     

537 9.44288307078711e-05 3552 0.00199139215797062     

537 0.0001419551258387 3558 0.00281666551468129     

537 0.000225614593863055 3575 0.0021329800298584     

539 0.000171363500064858 3578 0.00171660343457436     

541 0.000137714467283723 3581 0.00160703440560628     

542 9.44683286101533e-05 3585 0.00119697306081723     
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Table S7. CYR61 and S100A4 are highly expressed in invasive and metastatic Breast cancer patient tissue samples. Expression analysis of 

CYR61 and S100A4 via fluorescence staining using biomax tissue arrays (BR 20837, BR 248a, and T 087a) with paraffin- embedded patient 

samples. Table indicate Array type of analyzed samples, patients age, sex, the organic tissue site, pathology diagnosis, classification of M tumors 

(TNM), grading, stage, type, tissue ID and for most analyzed samples the expression of estrogen (ER), progesterone (PR) and 

Herceptinreceptor2 (Her2). Expression of CYR61 and S100A4 was assessed as (−) not expressed, (+) low expression, (++) medium expression, 

(+++) high expression. B, breast; LN, lymph node. 

Array 

type 
Age Sex 

Organ/ 

Anatomic 

Site 

Pathology 

diagnosis 
TNM Grade Stage Type Tissue ID. ER PR HER2 S100A4 CYR61 

BR 20837 45 F B IDC 
T1N1
M0 

1 IIA M Fmg 100017 - - 0 + + 

BR 20837 45 F LN 
MET CA 

from No.1 
- - - 

MET

. 
Fmg 100017 - - 0 - + 

BR 20837 45 F B IDC 
T2N2
M0 

1 IIIA M Fmg 100096 + - 0 ++ + 

BR 20837 45 F LN 
MET CA 

from No.3 
- - - 

MET

. 
Fmg 100096 - + 0 + ++ 

BR 20837 40 F B IDC 
T2N1

M0 
1 IIB M Fmg 100153 - - 0 + + 

BR 20837 40 F LN 

MET CA 

from No.5 
(LN 

tissue) 

- - - 
MET

. 
Fmg 100153 - - 0 + ++ 

BR 20837 50 F B IDC 
T2N1
M0 

1 IIB M Fmg 070169 - - 1+ + ++ 

BR 20837 50 F LN 
MET CA 

from No.7 
- - - 

MET

. 
Fmg 070169 - - 0 + + 

BR 20837 49 F B IDC 
T3N1
M0 

1 IIIA M Fmg 080061 
++
+ 

- 0 + + 

BR 20837 49 F LN 
MET CA 

from No.9 
- - - 

MET

. 
Fmg 080061 

++

+ 
- 0 ++ ++ 

BR 20837 55 F B IDC 
T4N1
M0 

1 IIIB M Fmg 080090 + - 0 + + 

BR 20837 55 F LN 

MET CA 

from 

No.11 

- - - 
MET

. 
Fmg 080090 

++
+ 

+ 0 + + 

BR 20837 66 F B IDC 
T2N1

M0 
1 IIB M Fmg 050800 + ++ 3+ +++ +++ 

BR 20837 66 F LN 

MET CA 

from 
No.13 

- - - 
MET

. 
Fmg 050800 - - 3+ + + 

BR 20837 54 F B IDC 
T2N1

M0 
1 IIB M Fmg 060589 - - 3+ + + 

BR 20837 54 F LN 
MET CA 

from 

No.15 

- - - 
MET

. 
Fmg 060589 - - 3+ + ++ 

BR 20837 46 F B IDC 
T2N1
M0 

2 IIB M Fmg 060130 - - 0 + ++ 

BR 20837 46 F LN 

MET CA 

from 
No.17 

- - - 
MET

. 
Fmg 060130 - - 2+ +++ ++ 

BR 20837 48 F B IDC 
T2N1

M0 
2 IIB M Fmg 100135 - - 3+ +++ +++ 

BR 20837 48 F LN 
MET CA 

from 

No.19 

- - - 
MET

. 
Fmg 100135 - - 3+ + + 

BR 20837 55 F B IDC 
T2N2

M0 
2 IIIA M Fmg 100230 - - 3+ - + 

BR 20837 55 F LN 

MET CA 

from 

No.21 

- - - 
MET

. 
Fmg 100230 - - 3+ + + 

BR 20837 59 F B 

IDC (fiBR 
fatty 

tissue and 

blood 
vessel) 

T2N1
M0 

- IIB M Fmg 060965 - - * + + 

BR 20837 59 F LN 

MET CA 

from 
No.23 

- - - 
MET

. 
Fmg 060965 - - 3+ + ++ 

BR 20837 50 F B IDC 
T2N2

M0 
2 IIIA M Fmg 060049 ++ - 1+ + + 

BR 20837 50 F LN MET CA - - - MET Fmg 060049 ++ - 1+ + + 
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from 
No.25 

. 

BR 20837 48 F B IDC 
T1N1

M0 
2 IIA M Fmg 100062 ++ - 0 ++ ++ 

BR 20837 48 F LN 
MET CA 

from 

No.27 

- - - 
MET

. 
Fmg 100062 - - 0 + + 

BR 20837 45 F B IDC 
T2N1
M0 

2 IIB M Fmg 100181 - - 3+ +++ +++ 

BR 20837 45 F LN 

MET CA 

from 

No.29 

- - - 
MET

. 
Fmg 100181 - - 3+ + + 

BR 20837 55 F B IDC 
T2N2

M0 
2 IIIA M Fmg 100167 - - 3+ + + 

BR 20837 55 F LN 

MET CA 

from 
No.31 

- - - 
MET

. 
Fmg 100167 - ++ 0 + + 

BR 20837 39 F B IDC 
T3N2

M0 
2 IIIA M Fmg 060256 - + 0 + +++ 

BR 20837 39 F LN 
MET CA 

from 

No.33 

- - - 
MET

. 
Fmg 060256 + ++ 0 + + 

BR 20837 54 F B IDC 
T2N2

M0 
2 IIIA M Fmg 100101 + - 0 + + 

BR 20837 54 F LN 

MET CA 

from 
No.35 

- - - 
MET

. 
Fmg 100101 - - 0 ++ ++ 

BR 20837 38 F B 

IDC 

(tumor 

necrosis) 

T3N1
M0 

- IIB M Fmg 100103 - - * + +++ 

BR 20837 38 F LN 

MET CA 

from 

No.37 

- - - 
MET

. 
Fmg 100103 - - 0 ++ +++ 

BR 20837 49 F B IDC 
T2N1
M0 

2 IIB M Fmg 060127 + - 3+ ++ + 

BR 20837 49 F LN 

MET CA 

from 
No.39 

- - - 
MET

. 
Fmg 060127 - - 3+ +++ + 

BR 20837 56 F B IDC 
T2N1

M0 
2 IIB M Fmg 060146 - - 1+ ++ + 

BR 20837 56 F LN 
MET CA 

from 

No.41 

- - - 
MET

. 
Fmg 060146 - - 0 + + 

BR 20837 39 F B IDC 
T4N2

M0 
2 IIIB M Fmg 060154 - - 0 + + 

BR 20837 39 F LN 

MET CA 

from 

No.43 

- - - 
MET

. 
Fmg 060154 - - 0 - + 

BR 20837 52 F B IDC 
T2N1
M0 

2 IIB M Fmg 060191 - - 0 + + 

BR 20837 52 F LN 

MET CA 

from 
No.45 

- - - 
MET

. 
Fmg 060191 - - 0 + + 

BR 20837 41 F B IDC 
T2N2

M0 
2 IIIA M Fmg 060033 + ++ 0 + ++ 

BR 20837 41 F LN 
MET CA 

from 

No.47 

- - - 
MET

. 
Fmg 060033 ++ ++ 0 - ++ 

BR 20837 69 F B IDC 
T4N1
M0 

2 IIIB M Fmg 050767 
++
+ 

- 2+ ++ ++ 

BR 20837 69 F LN 

MET CA 

from 

No.49 

- - - 
MET

. 
Fmg 050767 

++
+ 

- 2+ ++ + 

BR 20837 53 F B IDC 
T2N2

M0 
2 IIIA M Fmg 060601 - - 3+ + + 

BR 20837 53 F LN 

MET CA 

from 
No.51 

- - - 
MET

. 
Fmg 060601 - - 3+ +++ ++ 

BR 20837 54 F B IDC 
T2N2

M0 
2 IIIA M Fmg 100105 - - 0 +++ + 

BR 20837 54 F LN 

MET CA 
from 

No.53 

(sparse 
carcinoma 

tissue) 

- - - 
MET

. 
Fmg 100105 - - 0 + + 

BR 20837 49 F B IDC T2N2 2 IIIA M Fmg 060741 + + 2+ + +++ 
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M0 

BR 20837 49 F LN 

MET CA 

from 

No.55 

- - - 
MET

. 
Fmg 060741 - - 0 +++ + 

BR 20837 60 F B IDC 
T1N1
M0 

2 IIA M Fmg 060771 ++ + 1+ - + 

BR 20837 60 F LN 

MET CA 

from 
No.57 

- - - 
MET

. 
Fmg 060771 ++ ++ 1+ - - 

BR 20837 50 F B IDC 
T2N1

M0 
2 IIB M Fmg 100224 - - 0 + +++ 

BR 20837 50 F LN 
MET CA 

from 

No.59 

- - - 
MET

. 
Fmg 100224 - - 0 + ++ 

BR 20837 54 F B IDC 
T2N2

M0 
2 IIIA M Fmg 100104 - - 3+ ++ ++ 

BR 20837 54 F LN 

MET CA 

from 

No.61 

- - - 
MET

. 
Fmg 100104 - - 0 + + 

BR 20837 42 F B IDC 
T2N1
M0 

2 IIB M Fmg 100279 * - 3+ + + 

BR 20837 42 F LN 

MET CA 

from 

No.63 

- - - 
MET

. 
Fmg 100279 * - 3+ + + 

BR 20837 52 F B IDC 
T2N1

M0 
3 IIB M Fmg 060773 

++

+ 
+ 1+ ++ ++ 

BR 20837 52 F LN 
MET CA 

from 

No.65 

- - - 
MET

. 
Fmg 060773 

++

+ 
+ 1+ +++ + 

BR 20837 39 F B IDC 
T2N1
M0 

3 IIB M Fmg 060781 - - 3+ + + 

BR 20837 39 F LN 

MET CA 

from 

No.67 

- - - 
MET

. 
Fmg 060781 - - 3+ ++ + 

BR 20837 35 F B IDC 
T1N1

M0 
3 IIA M Fmg 060782 + - 3+ ++ ++ 

BR 20837 35 F LN 

MET CA 

from 
No.69 

- - - 
MET

. 
Fmg 060782 ++ - 3+ + + 

BR 20837 51 F B IDC 
T2N0

M0 
3 IIA M Fmg 061010 + + 1+ ++ +++ 

BR 20837 51 F LN 

MET CA 

from 

No.71 

- - - 
MET

. 
Fmg 061010 + + 1+ +++ ++ 

BR 20837 50 F B IDC 
T4N1
M0 

3 IIIB M Fmg 070122 - * * - ++ 

BR 20837 50 F LN 

MET CA 

from 

No.73 

- - - 
MET

. 
Fmg 070122 - - 1+ - + 

BR 20837 48 F B IDC 
T2N1

M0 
3 IIB M Fmg 050797 + 

++

+ 
2+ - +++ 

BR 20837 48 F LN 
MET CA 

from 

No.75 

- - - 
MET

. 
Fmg 050797 + 

++

+ 
2+ - ++ 

BR 20837 55 F B IDC 
T2N1

M0 
3 IIB M Fmg 060821 + + 0 ++ ++ 

BR 20837 55 F LN 

MET CA 

from 

No.77 

- - - 
MET

. 
Fmg 060821 + + 0 - + 

BR 20837 48 F B IDC 
T2N2
M0 

3 IIIA M Fmg 060999 + ++ 0 - + 

BR 20837 48 F LN 

MET CA 

from 
No.79 

- - - 
MET

. 
Fmg 060999 + + 0 - + 

BR 20837 34 F B IDC 
T2N1

M0 
3 IIB M Fmg 070242 

++

+ 
- 1+ + ++ 

BR 20837 34 F LN 
MET CA 

from 

No.81 

- - - 
MET

. 
Fmg 070242 

++

+ 
- 1+ + + 

BR 20837 50 F B IDC 
T2N1

M0 
3 IIB M Fmg 080055 

++

+ 
- 0 + ++ 

BR 20837 50 F LN 

MET CA 

from 

No.83 

- - - 
MET

. 
Fmg 080055 

++
+ 

- 0 + ++ 

BR 20837 32 F B IDC 
T2N1
M0 

3 IIB M Fmg 050793 - - 0 ++ + 

BR 20837 32 F LN MET CA - - - MET Fmg 050793 - - 0 + ++ 
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from 
No.85 

. 

BR 20837 87 F B IDC 
T2N1

M0 
3 IIB M Fmg 050794 - - 0 - + 

BR 20837 87 F LN 
MET CA 

from 

No.87 

- - - 
MET

. 
Fmg 050794 - - 1+ - + 

BR 20837 50 F B 
IDC 

(degenerat

ion tissue) 

T2N1

M0 
- IIB M Fmg 070167 - - 0 - + 

BR 20837 50 F LN 

MET CA 

from 
No.89 

(degenerat

ion tissue) 

- - - 
MET

. 
Fmg 070167 - - 0 - + 

BR 20837 47 F B IDC 
T2N1

M0 
3 IIB M Fmg 061126 - - 3+ + ++ 

BR 20837 47 F LN 

MET CA 

from 
No.91 

- - - 
MET

. 
Fmg 061126 - - 3+ - + 

BR 20837 52 F B IDC 
T2N1

M0 
3 IIB M Fmg 070124 - - 2+ - ++ 

BR 20837 52 F LN 

MET CA 

from 

No.93 

- - - 
MET

. 
Fmg 070124 - - 2+ - +++ 

BR 20837 68 F B IDC 
T2N1
M0 

3 IIB M Fmg 060779 - - 0 + + 

BR 20837 68 F LN 

MET CA 

from 
No.95 

- - - 
MET

. 
Fmg 060779 - - 0 - ++ 

BR 20837 37 F B IDC 
T3N1

M0 
3 IIIA M Fmg 050765 - - 3+ + ++ 

BR 20837 37 F LN 
MET CA 

from 

No.97 

- - - 
MET

. 
Fmg 050765 - - 3+ ++ + 

BR 20837 52 F B IDC 
T2N1

M0 
3 IIB M Fmg 100132 - - 3+ + ++ 

BR 20837 52 F LN 

MET CA 

from 

No.99 

- - - 
MET

. 
Fmg 100132 - - 3+ ++ +++ 

BR 20837 33 F B IDC 
T3N3
M0 

3 IIIC M Fmg 060568 - - 1+ + ++ 

BR 20837 33 F LN 

MET CA 

from 
No.101 

- - - 
MET

. 
Fmg 060568 + + 1+ + + 

BR 20837 47 F B IDC 
T2N1

M0 
3 IIB M Fmg 060588 - + 2+ + + 

BR 20837 47 F LN 
MET CA 

from 

No.103 

- - - 
MET

. 
Fmg 060588 ++ 

++

+ 
2+ + + 

BR 20837 56 F B IDC 
T2N1
M0 

3 IIB M Fmg 110095 - - 0 + ++ 

BR 20837 56 F LN 

MET CA 

from 

No.105 

- - - 
MET

. 
Fmg 110095 - - 0 + ++ 

BR 20837 42 F B IDC 
T2N1

M0 
3 IIB M Fmg 120083 - - 0 + ++ 

BR 20837 42 F LN 

MET CA 

from 
No.107 

- - - 
MET

. 
Fmg 120083 - - 0 + + 

BR 20837 54 F B IDC 
T2N1

M0 
3 IIB M Fmg 060784 - - 3+ + ++ 

BR 20837 54 F LN 
MET CA 

from 

No.109 

- - - 
MET

. 
Fmg 060784 - - 3+ + + 

BR 20837 42 F B IDC 
T2N2
M0 

3 IIIA M Fmg 060787 - - 3+ + ++ 

BR 20837 42 F LN 

MET CA 

from 

No.111 

- - - 
MET

. 
Fmg 060787 - - 3+ + ++ 

BR 20837 31 F B IDC 
T3N1

M0 
3 IIIA M Fmg 050134 ++ ++ 0 ++ ++ 

BR 20837 31 F LN 

MET CA 

from 
No.113 

(chronic 
inflammat

- - - 
MET

. 
Fmg 050134 - - 0 + + 
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ion with 
fiBR ous 

tissue and 

blood 

vessel) 

BR 20837 40 F B IDC 
T2N1

M0 
3 IIB M Fmg 060963 

++

+ 
++ 2+ ++ ++ 

BR 20837 40 F LN 
MET CA 

from 

No.115 

- - - 
MET

. 
Fmg 060963 - - 0 + + 

BR 20837 50 F B IDC 
T2N1
M0 

3 IIB M Fmg 120115 ++ - 0 + + 

BR 20837 50 F LN 

MET CA 

from 

No.117 

- - - 
MET

. 
Fmg 120115 ++ - 0 + + 

BR 20837 37 F B IDC 
T2N1

M0 
3 IIB M Fmg 080106 - - 1+ - + 

BR 20837 37 F LN 

MET CA 

from 
No.119 

- - - 
MET

. 
Fmg 080106 - - 1+ - + 

BR 20837 32 F B IDC 
T2N1

M0 
3 IIB M Fmg 060594 + ++ 0 +++ ++ 

BR 20837 32 F LN 

MET CA 

from 

No.121 

- - - 
MET

. 
Fmg 060594 - ++ 0 ++ + 

BR 20837 51 F B IDC 
T2N1
M0 

3 IIB M Fmg 060597 - - 3+ + ++ 

BR 20837 51 F LN 

MET CA 

from 
No.123 

- - - 
MET

. 
Fmg 060597 + - 3+ + +++ 

BR 20837 52 F B IDC 
T1N1

M0 
3 IIA M Fmg 100020 

++

+ 
- 0 + + 

BR 20837 52 F LN 

MET CA 
from 

No.125 

(LN 
tissue) 

- - - 
MET

. 
Fmg 100020 - - 0 ++ + 

BR 20837 45 F B IDC 
T2N1

M0 
3 IIB M Fmg 100235 - - 1+ - ++ 

BR 20837 45 F LN 
MET CA 

from 

No.127 

- - - 
MET

. 
Fmg 100235 - - 1+ - + 

BR 20837 49 F B IDC 
T2N2

M0 
3 IIIA M Fmg 100041 - - 0 + + 

BR 20837 49 F LN 

MET CA 

from 

No.129 

- - - 
MET

. 
Fmg 100041 - - 0 - + 

BR 20837 32 F B IDC 
T2N2
M0 

3 IIIA M Fmg 060426 - - 1+ + + 

BR 20837 32 F LN 

MET CA 

from 
No.131 

(LN 

tissue) 

- - - 
MET

. 
Fmg 060426 + - 1+ ++ ++ 

BR 20837 46 F B 
IDC (B 

tissue) 

T2N1

M0 
- IIB M Fmg 060211 - - * - + 

BR 20837 46 F LN 

MET CA 

from 
No.133 

- - - 
MET

. 
Fmg 060211 - - 3+ + ++ 

BR 20837 44 F B IDC 
T2N2

M0 
3 IIIA M Fmg 060391 - - 3+ - + 

BR 20837 44 F LN 
MET CA 

from 

No.135 

- - - 
MET

. 
Fmg 060391 

++

+ 
++ 2+ - + 

BR 20837 45 F B IDC 
T2N1
M0 

1 IIB M Fmg 100069 - - 3+ + + 

BR 20837 45 F LN 

MET CA 

from 

No.137 

- - - 
MET

. 
Fmg 100069 - - 3+ - + 

BR 20837 45 F B IDC 
T2N2

M0 
3 IIIA M Fmg 120025 + - 0 - + 

BR 20837 45 F LN 

MET CA 

from 
No.139 

- - - 
MET

. 
Fmg 120025 ++ - 0 - + 

BR 20837 48 F B IDC 
T2N1

M0 
3 IIB M Fmg 110034 - - 0 +++ ++ 

BR 20837 48 F LN MET CA - - - MET Fmg 110034 - - 0 ++ + 
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from 
No.141 

. 

BR 20837 48 F B IDC 
T2N1

M0 
3 IIB M Fmg 100217 - - 3+ - + 

BR 20837 48 F LN 

MET CA 
from 

No.143 

(necrosis 
tissue) 

- - - 
MET

. 
Fmg 100217 * - * - ++ 

BR 20837 35 F B IDC 
T2N2

M0 
3 IIIA M Fmg 090034 - - 0 ++ +++ 

BR 20837 35 F LN 
MET CA 

from 

No.145 

- - - 
MET

. 
Fmg 090034 - - 1+ +++ +++ 

BR 20837 43 F B IDC 
T2N1
M0 

3 IIB M Fmg 080053 - - 1+ ++ +++ 

BR 20837 43 F LN 

MET CA 

from 

No.147 

- - - 
MET

. 
Fmg 080053 - - 2+ ++ ++ 

BR 20837 51 F B IDC 
T3N2

M0 
3 IIIA M Fmg 070120 - * * - - 

BR 20837 51 F LN 

MET CA 

from 

No.149 

- - - 
MET

. 
Fmg 070120 - * * - - 

BR 20837 50 F B IDC 
T3N1

M0 
3 IIIA M Fmg 100292 ++ + 1+ ++ ++ 

BR 20837 50 F LN 

MET CA 

from 

No.151 

- - - 
MET

. 
Fmg 100292 + - 1+ +++ +++ 

BR 20837 42 F B IDC 
T2N1
M0 

3 IIB M Fmg 100148 - - 2+ + + 

BR 20837 42 F LN 

MET CA 

from 
No.153 

- - - 
MET

. 
Fmg 100148 - ++ 0 + + 

BR 20837 72 F B 
IDC 

(sparse) 

T2N1

M0 
3 IIB M Fmg 080070 - - 0 + + 

BR 20837 72 F LN 
MET CA 

from 

No.155 

- - - 
MET

. 
Fmg 080070 - - 3+ + + 

BR 20837 79 F B IDC 
T2N1

M0 
3 IIB M Fmg 060580 - - 0 + ++ 

BR 20837 79 F LN 

MET CA 

from 

No.157 

- - - 
MET

. 
Fmg 060580 - - 0 ++ + 

BR 20837 50 F B IDC 
T2N1
M0 

3 IIA M Fmg 100164 - - 0 + + 

BR 20837 50 F LN 

MET CA 

from 
No.159 

- - - 
MET

. 
Fmg 100164 - - 0 + + 

BR 20837 48 F B IDC 
T2N1

M0 
3 IIB M Fmg 100067 

++

+ 
- 0 + + 

BR 20837 48 F LN 

MET CA 
from 

No.161 

(MET CA 
of fiBR 

ofatty 

tissue) 

- - - 
MET

. 
Fmg 100067 

++

+ 
- 0 + + 

BR 20837 47 F B IDC 
T4N1

M0 
3 IIIB M Fmg 060077 ++ + 0 + ++ 

BR 20837 47 F LN 

MET CA 

from 
No.163 

- - - 
MET

. 
Fmg 060077 

++

+ 

++

+ 
0 + - 

BR 20837 54 F B IDC 
T2N1

M0 
3 IIB M Fmg 100244 - - 2+ +++ +++ 

BR 20837 54 F LN 
MET CA 

from 

No.165 

- - - 
MET

. 
Fmg 100244 - - 0 - +++ 

BR 20837 54 F B IDC 
T2N2
M0 

3 IIIA M Fmg 100245 
++
+ 

+ 1+ + +++ 

BR 20837 54 F LN 

MET CA 

from 

No.167 

- - - 
MET

. 
Fmg 100245 

++
+ 

+ 1+ + + 

BR 20837 43 F B IDC 
T1N1

M0 
3 IIA M Fmg 100066 

++

+ 
- 0 - - 

BR 20837 43 F LN 
MET CA 

from 
- - - 

MET
. 

Fmg 100066 
++
+ 

- 0 + + 
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No.169 

BR 20837 42 F B IDC 
T2N1

M0 
3 IIB M Fmg 120054 - - 0 - ++ 

BR 20837 42 F LN 

MET CA 

from 
No.171 

- - - 
MET

. 
Fmg 120054 - - 0 + + 

BR 20837 50 F B ILC 
T2N1

M0 
- IIB M Fmg 070246 - - 0 - + 

BR 20837 50 F LN 
MET CA 

from 

No.173 

- - - 
MET

. 
Fmg 070246 - - 0 - ++ 

BR 20837 19 F B ILC 
T2N1
M0 

- IIB M Fmg 070179 + - 2+ - ++ 

BR 20837 19 F LN 

MET CA 

from 

No.175 

- - - 
MET

. 
Fmg 070179 + - 2+ - + 

BR 20837 55 F B ILC 
T2N2

M0 
- IIIA M Fmg 100027 - - 3+ + ++ 

BR 20837 55 F LN 

MET CA 

from 
No.177 

- - - 
MET

. 
Fmg 100027 - - 3+ + +++ 

BR 20837 45 F B ILC 
T2N1

M0 
- IIB M Fmg 100047 - - 0 + ++ 

BR 20837 45 F LN 
MET CA 

from 

No.179 

- - - 
MET

. 
Fmg 100047 - - 0 + ++ 

BR 20837 55 F B ILC 
T2N1
M0 

- IIB M Fmg 110031 + - 0 + +++ 

BR 20837 55 F LN 

MET CA 

from 
No.181 

- - - 
MET

. 
Fmg 110031 ++ - 0 + ++ 

BR 20837 54 F B ILC 
T2N1

M0 
- IIB M Fmg 100044 - - 0 + + 

BR 20837 54 F LN 
MET CA 

from 

No.183 

- - - 
MET

. 
Fmg 100044 - - 0 - + 

BR 20837 74 F B ILC 
T2N1

M0 
- IIB M Fmg 060128 - - 0 + ++ 

BR 20837 74 F LN 

MET CA 

from 

No.185 

- - - 
MET

. 
Fmg 060128 - - 0 + + 

BR 20837 51 F B 

ILC (fiBR 

ofatty 

tissue and 

blood 
vessel) 

T2N1
M0 

- IIB M Fmg 100212 - - * + + 

BR 20837 51 F LN 

MET CA 

from 
No.187 

- - - 
MET

. 
Fmg 100212 - - 0 + - 

BR 20837 50 F B 
Medullary 

carcinoma 

T3N1

M0 
- IIIA M Fmg 080030 - - 0 + + 

BR 20837 50 F LN 
MET CA 

from 

No.189 

- - - 
MET

. 
Fmg 080030 - - 0 + + 

BR 20837 48 F B 

Invasive 
micro 

papillary 

carcinoma 

T2N1

M0 
- IIB M Fmg 120067 ++ + 2+ + + 

BR 20837 48 F LN 
MET CA 

from 

No.191 

- - - 
MET

. 
Fmg 120067 ++ + 2+ - + 

BR 20837 50 F B 

Mixed 
carcinoma 

(IDC and 

ILC ) 

T3N2

M0 
- IIIA M Fmg 060600 ++ - 2+ + + 

BR 20837 50 F LN 
MET CA 

from 

No.193 

- - - 
MET

. 
Fmg 060600 ++ - 2+ + ++ 

BR 20837 65 F B 

Mixed 
carcinoma 

(IDC and 

ILC ) 

T1N1

M0 
- IIA M Fmg 060775 ++ 

++

+ 
2+ +++ + 

BR 20837 65 F LN 
MET CA 

from 

No.195 

- - - 
MET

. 
Fmg 060775 ++ 

++

+ 
2+ +++ + 

BR 20837 54 F B 
Mixed 

carcinoma 
T2N1
M0 

- IIB M Fmg 100221 + - 3+ + + 
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(IDC and 
ILC ) 

BR 20837 54 F LN 

MET CA 

from 

No.197 

- - - 
MET

. 
Fmg 100221 - - 3+ - + 

BR 20837 43 F B 

Mixed 

carcinoma 

(IDC and 
ILC ) 

T2N1

M0 
- IIB M Fmg 070244 ++ - 2+ + + 

BR 20837 43 F LN 

MET CA 

from 
No.199 

- - - 
MET

. 
Fmg 070244 ++ - 2+ + + 

BR 20837 48 F B 

Mixed 

carcinoma 

(IDC and 
ILC ) 

T2N2

M0 
- IIIA M Fmg 110129 - - 3+ - + 

BR 20837 48 F LN 

MET CA 

from 
No.201 

- - - 
MET

. 
Fmg 110129 - - 3+ + + 

BR 20837 45 F B 

Mixed 

carcinoma 

(IDC and 
ILC ) 

T2N1

M0 
- IIB M Fmg 100054 - - 0 + + 

BR 20837 45 F LN 

MET CA 

from 
No.203 

- - - 
MET

. 
Fmg 100054 - - 0 + + 

BR 20837 43 F B 

Mixed 

carcinoma 
(IDC and 

ILC ) 

T2N2
M0 

- IIIA M Fmg 100273 ++ ++ 0 + ++ 

BR 20837 43 F LN 

MET CA 

from 
No.205 

- - - 
MET

. 
Fmg 100273 ++ ++ 0 + ++ 

BR 20837 49 F B 

Mixed 

carcinoma 
(sparse 

IDC and 

ILC ) 

T2N2

M0 
- IIIA M Fmg 060250 - - * - +++ 

BR 20837 49 F LN 
MET CA 

from 

No.207 

- - - 
MET

. 
Fmg 060250 - - 3+ + + 

BR 248a 34 F B IDC 
T3N0

M0 
1--2 IIB M Fmg 040048    +++ + 

BR 248a 37 F B IDC 
T2N0

M0 
1--2 IIA M Fmg 020357    +++ ++ 

BR 248a 60 F B IDC 
T2N0
M0 

2 IIA M Fmg 040031    ++ - 

BR 248a 57 F B IDC 
T2N0

M0 
2 IIA M Fmg 040001    + - 

BR 248a 38 F B IDC 
T1N0
M0 

2 I M Fmg 040052    +++ + 

BR 248a 55 F B IDC 
T2N0

M0 
2 IIA M Fmg 040104    +++ ++ 

BR 248a 45 F B IDC 
T2N0
M0 

2 IIA M Fmg 040113    +++ - 

BR 248a 48 F B IDC 
T2N0

M0 
2 IIA M Fmg 040118    ++ - 

BR 248a 58 F B IDC 
T2N0
M0 

2 IIA M Fmg 040120    ++ + 

BR 248a 34 F B IDC 
T2N0

M0 
2 IIA M Fmg 040123    ++ ++ 

BR 248a 49 F B IDC 
T2N0
M0 

2 IIA M Fmg 040125    ++ ++ 

BR 248a 58 F B IDC 
T2N0

M0 
2 IIA M Fmg 040130    + ++ 

BR 248a 38 F B IDC 
T2N1
M0 

2 IIB M Fmg 040131    ++ +++ 

BR 248a 79 F B IDC 
T2N1

M0 
3 IIB M Fmg 010491    + - 

BR 248a 43 F B IDC 
T2N0
M0 

3 IIA M Fmg 040004    - - 

BR 248a 46 F B IDC 
T3N0

M0 
3 IIB M Fmg 040074    ++ ++ 

BR 248a 76 F B IDC 
T4N0
M0 

3 IIIB M Fmg 010789    + + 

BR 248a 47 F B 
Medullary 

carcinoma 

T2N0

M0 
- IIA M Fmg 040016    ++ ++ 
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BR 248a 21 F B Adenosis - - - N Fmg 06N024    - - 

BR 248a 28 F B 

NBT 

(fiBR 

ofatty 

tissue and 

blood 

vessel) 

- - - N Fmg 11N017    - - 

BR 248a 21 F B NBT - - - N Fmg 12N001    - + 

BR 248a 50 F B Adenosis - - - N Fmg 08N034    - - 

BR 248a 50 F B NBT - - - N Fmg 12N002    - - 

BR 248a 19 F B NBT - - - N Fmg 07N013    - - 

T087a 57 F B IDC 
T2N1

M0 
2 IIb M 183742    ++ + 

T087a 49 F B IDC 
T2N0

M0 
3 IIa M Fmg 040987    + - 

T087a 40 F B ILC 
T2N1

M0 
- IIb M Fmg 060878    + + 

T087a 42 F B 
Apocrine 

carcinoma 

T2N0

M0 
- IIa M Fmg 070034    + + 

T087a 27 F B NBT - - - N Fmg 07N025    - + 

T087a 19 F B Adenosis - - - N Fmg 07N013    - - 
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Abstract  

Altered tumor micro environmental consistency facilitates tumor progression toward 

metastasis. Here, we combine data from secretome and proteome analysis using mass 

spectrometry with microarray data from mesenchymal transformed breast cancer cells (MCF-

7-EMT) to elucidate drivers of epithelial-mesenchymal transition and cell invasion. 

Suppression of growth factor CTGF reduced invasion in 2D and 3D invasion assays and 

expression of TGFBI, ZEB1 and LOX, while cell-extracellular matrix (ECM) adhesion is 

increased in mesenchymal transformed breast cancer cells. Increased expression of CTGF 

leads to an increased 3D invasion, expression of FN1, SPARC and CD44, and decreased cell-

ECM adhesion. GnRH agonist Triptorelin reduces CTGF expression in a RhoA-dependent 

manner. Our results suggest, that CTGF drives breast cancer cell invasion and therefore 

represents an attractive therapeutic target for drug development to prevent breast cancer 

dissemination.  

Introduction  

Metastasis is second leading cause of cancer-related death in the US. Barely 27 % of breast 

cancer patients diagnosed with distant metastasis survive a period of 5 years (133). Breast 

cancer mortality will increase by 46.5% until 2040 to almost 1 million deaths worldwide 

(134). Single most frequent site for breast cancer metastasis is bone, which accounts for 70% 

of all metastatic breast cancer (135). Elucidation of drivers of cancer metastasis is therefore 

pivotal. The metastatic cascade is initiated by dissemination of cancer cells into surrounding 

tissue (136). Micro environments of primary tumor and metastatic niche have shared 

communication networks. Tumor stroma stiffness facilitates deposition and remodeling of 

extracellular matrix (ECM) in breast cancer (2, 63, 64). Cancer cells, cancer associated 

fibroblast, and immune cells modulate ECM by deposition of structural components like 

collagens or fibronectin (FN1), secretion of growth factors (e.g. Transforming growth factor-

beta-induced protein ig-h3, connective tissue growth factor) and ECM-transforming enzymes 

(e.g. Lysyl oxidase) (2). Gene expression studies identified a bone metastatic signature which 

includes expression of connective tissue growth factor (CTGF) and is associated with poor 

patient outcome and metastasis (58, 137). Cancer cells can embrace developmental processes 

like epithelial-mesenchymal transition (EMT) to gain invasive properties and stemness, which 

could help them to disseminate, intravasate, circulate, extravasate and retain during dormancy 

but are in need of mesenchymal-epithelial transition (MET) to reactivate upon cues from 

metastatic niche and outgrow (138). This theory is consistent with observations that clinical 
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samples of human metastasis resemble epithelial phenotype of primary tumors (139). There is 

an urgent need to identify potential drivers of cell invasion, the initial step within metastatic 

cascade, at the primary site and colonization at distant sites. A better understanding of 

transient dynamic processes of high cellular plasticity could help to intercept the metastatic 

cascade, which could in turn lead to identification of targets for new treatment options to 

prevent cancer cell dissemination and metastatic outgrowth. We aim to identify secreted 

proteins priming micro environment resulting in increased cancer cell dissemination and 

driving epithelial-mesenchymal transition. 

We combined co-culture model for bone-directed breast cancer cell invasion with mass 

spectrometry based secretome analysis and identified secreted CTGF is a potential driver for 

breast cancer cell invasion. In this system, CTGF was found to regulate cell-ECM adhesion, 

proteolytic activity and expression of EMT inducing genes. Moreover, CTGF expression is 

dependent on RhoA activity and that treatment of invasive breast cancer cells with 

gonadotropin releasing hormone (GnRH) agonist Triptorelin could increase RhoA activity. 

These data indicate, that CTGF is a promising target to inhibit invasion in highly plastic 

breast cancer cells and aggressive triple negative breast cancer (TNBC) cells. 

Results 

Identifying potential drivers of breast cancer cell invasion 

Up to 13.6% of breast cancer patients (diagnosed in stage I-III) will develop bone metastasis 

within 15 years of follow-up (140). Previous studies demonstrate that co-culture of breast 

cancer cells with osteosarcoma cells (MG-63) or osteoblast-like cells increased invasiveness 

(132). However, mechanisms by which breast cancer cells metastasize to bone remain elusive. 

To shed light on drivers for bone-directed breast cancer invasion, we decided to investigate if 

identified potential drivers by analyzing secretome of co-culture media using mass 

spectrometry. Excluding serum from media and analyzing only secreted proteins, we first 

tested if non-invasive MCF-7 breast cancer cells gain invasive properties when co-cultured 

with osteosarcoma cells without adding serum to media (fig.1 A). Indeed, invasiveness of 

MCF-7 breast cancer cells increased more than 4-fold, when using Matrigel in a transwell co-

culture invasion assay (fig. 1A; co-culture matrigel: 413.7 ± 83.07 % vs. MCF-7 matrigel; P = 

0.0021, n =12) and a more than 7-fold increase of invasiveness, when using gelatin (fig. 1A; 

co-culture gelatin: 737.5 ± 250.9 % vs. MCF-7 gelatin; P= 0.0316, n=6). We next co-cultured 

MCF-7 cells with MG-63 cells and analyzed co-culture media using mass spectrometry 
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secretome analysis to identify proteins that drive bone-directed metastasis. We could identify 

28 secreted potential drivers for bone-directed breast cancer cell invasion (fig. 1 B, C, and 

S1). Gene ontology (GO) enrichment analysis elucidated that observed secreted proteins play 

most prominently roles in extracellular matrix organization (fig. 1 S2, FDR 3.26 x 10-15; 50% 

of detected proteins), extracellular structure organization (fig. 1 S2, FDR 1.52 x 10-14; 50% of 

detected proteins) and wound healing (fig. 1 S2, FDR 8.92 x 10-9; 39% of detected proteins). 

Further classification of observed proteins using Shiny GO indicated that 39% of detected 

proteins are categorized within locomotion and cell motility and 36 % within cell adhesion 

(fig. 1 S3, S4A). Additionally, we could detect that co-culture media in comparison to MG-63 

media a decreases MMP2 protein expression and an increased SPARC expression was 

detected (fig.1 S 4B). To further examine underlying molecular mechanism of breast cancer 

cell invasion we analyzed lysates of co-cultured MCF-7 cells compared to untreated MCF-7 

cells (fig.1 S4 and S5). GO enrichment analysis elucidated that observed regulated proteins 

play most prominently roles in protein folding (fig.1 S6, FDR 7.55 x10 -6; 33% of detected 

proteins), programmed cell death (fig. 1 S6, FDR 1.34 x10 -5; 61% of detected proteins) and 

cellular response to cytokine stimulus (fig.1 S6, FDR 1.34 x10 -5; 50% of detected proteins). 

Interestingly, cell death associated proteins seem to be regulated prominently, including 

HSPA9 (heat shock protein family A (Hsp70) member 9), HSP90B1 (heat shock protein 90 β 

family member 1), HSP90AB1 (heat shock protein 90 α family class B member 1), HSPD1 

(heat shock protein family D (Hsp60) member), and HSPB1 (heat shock protein family B 

member 1) (fig. 1 S4D, S5 and S6). While detected findings from proteome analysis are 

different from detected secretome findings, GO grouping of proteome findings elucidated 

similar results compared to secretome findings. Proteome analysis findings where categorized 

(amongst others) in 33% locomotion, 33% cell motility and 27 % cell adhesion (fig.1 S7).  

Cells undergoing dynamic EMT programs reveal an increased invasive behavior (51). 

Microarray analysis of MCF-7 breast cancer cells within a dynamic TGF-dependent EMT 

program exhibited an increased expression of CTGF, CD44 molecule (CD44), Sushi, von 

Willebrand factor type A, EGF and pentraxin domain containing 1 (SVEP1), Transforming 

growth factor-beta-induced protein ig-h3 (TGFBI), Secreted Protein Acidic And Cysteine 

Rich (SPARC), Lysyl oxidase (LOX), FN1 and Matrix Metallopeptidase 2 (MMP2) and 

Follistatin-like 1(FSTL1) (51). Interestingly, we found these proteins are highly secreted in 

co-culture medium of MCF-7 and MG-63 as elucidated by secretome analysis (fig. 1 D, and 

S1).  
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CTGF expression correlates with invasiveness of mesenchymal transformed and TNBC 

cells 

One of the potential drivers of invasion is CTGF, which is upregulated during wound healing 

and has an impact on osteolytic breast cancer metastasis (111, 141). Using patient data from 

large public cancer genomic datasets CTGF expression was assessed in bone, lung, liver, and 

brain where breast cancer spreads most prominently (142). Expression of CTGF in bone and 

lung appeared to be close to expression in breast tissue, while expression in brain in liver is 

reduced compared to breast (fig. 2 S8). CTGF mRNA expression is upregulated in 

mesenchymal transformed (fig. 2A; MCF-7-EMT: 1.995 ± 0.4356 vs. MCF-7; P = 0.0454; 

n=6) and TNBC cells (fig. 2A; MDA-MB-231: 190.5 ± 45.81 fold change vs. MCF-7; P = 

0.0061; n=4). Protein expression analysis gave similar results (fig. 2B; MCF-7-EMT: 321 ± 

82.6 % vs. M; P=0.0233; n=6 and MDA-MB-231: 213 ± 27.17 %; P=0.002; n=6). To verify 

the potential use of CTGF as a therapeutic target for invasive breast cancer we analyzed 24 

breast tissue sections. Of these, 18 were invasive ductal carcinomas and 88.9% exhibit a 

positive signal (fig. 2 C, D and S 8 indicated by + or ++) for CTGF while 80% of the 6 

analyzed normal breast tissues were negative for CTGF (fig. 2 C, D and S 9 indicated by -).  

Detection of mesenchymal transformed and aggressive breast cancer cells is a major 

requirement to select specific treatment options. Previously, it was demonstrated that cells in 

transient transitional stages express specific cell receptor markers (143). We found, that 

highly plastic breast cancer cells and TNBC do not only express more CTGF but co-express 

CD106 (Vascular cell adhesion molecule 1) and CD51 (Integrin subunit alpha V) in a higher 

probability than non-invasive MCF-7 cells (fig. 2 E and F; MCF-7-EMT 72.67 ± 18.21 counts 

CD106high CD51high vs. MCF-7; P=0.043; n=3; MDA-MB-231 197 ± 49 counts CD106high 

CD51high vs. MCF-7; P = 0.0217, n=3).  

Findings from secretome and proteome analyses prominently grouped into locomotion and 

cell motility categories. Therefore, we assessed impact of CTGF expression on invasiveness 

of mesenchymal transformed and TNBC cells. Using RNA interference CTGF expression was 

transiently suppressed (fig. 3 S10 A and B). Suppression of CTGF leads to reduced invasion 

of mesenchymal transformed (fig. 3 A and B; MCF-7-EMT 61.41 ± 7.427 % vs control; 

P=0.0034; n=18) and TNBC (fig. 3B; MDA-MB-231 79.44 ±4.64 % vs control; P= 0.0258; 

n=17) cells in 2D transwell invasion co-culture assay. Recent reports suggested that YAP-

activation appears differently dependent on dimension model used (144). CTGF is 

transcriptional expressed upon YAP translocation to nucleus. We therefore tested, if effects 
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were reproducible in 3D invasion assay setup (fig. 3 C). Reducing CTGF expression 

transiently reduced invaded area in 3D breast cancer spheroids of mesenchymal transformed 

(fig. 3D and E; MCF-7-EMT 94.25 ± 2.535 % vs control; P=0.032; n=15) and TNBC cells 

(fig. 3 D and E; MDA-MB-231 55.93 ± 13.3 % vs control; P= 0.0044; n=9) cells. 

Upon co-culturing breast cancer cells with osteosarcoma cells, cells gain invasive potential 

and exhibit a specific expression profile. It was suggested earlier, that an increased CTGF 

expression alters expression of matrix metalloproteinases and MMP-2 promotes migration by 

cleaving fibronectin and CTGF (145-147). It remained unclear though, whether extracellular 

MMP2, CTGF and FN1 facilitate invasion in breast cancer interdependently. Consequently, 

we analyzed if spheroid invaded area and proliferation were altered when treated with human 

MMP2, CTGF and FN1. Furthermore, we analyzed if treatment with an MMP2 inhibitor (BB-

94, Batimastat) reduces breast cancer invasiveness. We found that 3D spheroid area growth 

was increased when treated with recombinant human CTGF (rhCTGF; fig. 3F; rhCTGF: 

135.5 ± 35.5 % mean difference vs. untreated; p=0.0006; F= 21.61; n=6), recombinant human 

MMP2 (rhMMP2, fig. 3F; rhMMP2: 137.8 ± 37.8 % mean difference vs. untreated; 

p=0.0003; F= 21.61; n=6), rhCTGF and human FN1 (hFN1) and recombinant human MMP2 

(fig. 3F; rhCTGF+hFN1+rhMMP2: 137 ± 37 % mean difference vs. untreated; p=0.0003; F= 

21.61;  n=6), or rhCTGF and rhMMP2 (fig. 3F; rhCTGF+rhMMP2: 137.2 ± 37.2 % mean 

difference vs. untreated; p=0.0015; F= 21.61;  n=4). Adding hFN1, combination of hFN1 with 

rhCTGF or rhMMP2 does not alter spheroid area growth (fig 3F). In contrast, combining 

hFN1 and BB-94 treatment (fig. 3F; hFN1+BB-94: 68.4 ± 31.6 % mean difference vs. 

untreated; p=0.0028; F= 21.61;  n=4), or rhMMP2 and BB-94 (fig. 3F; rhMMP2+BB-94: 69.4 

± 30.1 % mean difference vs. untreated; p=0.0041; F= 21.61;  n=6) or rhCTGF and hFN1 and 

rhMMP2 and BB-94 (fig. 3F; rhCTGF+hFN1+rhMMP2+BB-94: 75.66 ± 24.34 % mean 

difference vs. untreated control; p=0.0006; F= 21.61;  n=6) results in decreased area growth. 

Combination of rhCTGF with BB-94 did not alter invasive area growth. While none of the 

settings altered proliferation (S10 D). 

CTGF alters cell-ECM adhesion and proteolytic activity of breast cancer cells 

Cell invasion as initial step of metastatic cascade results from suppression of cell-cell 

adhesion modulated by cadherin’s and cell-ECM adhesion promoted through different 

receptors including integrins (148). Secretome- and proteome analysis elucidated that co-

culturing non-invasive MCF-7 breast cancer cells with osteosarcoma cells led to an 

expression alteration of proteins involved in cell adhesion. We tested if cell-ECM adhesion 
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was altered in invasive breast cancer cells (MCF-7-EMT, MDA-MB-231) when intracellular 

CTGF was suppressed by RNA interference, extracellular CTGF was blocked using CTGF-

specific antibodies or non-invasive MCF-7 breast cancer cells were treated with rhCTGF. 

CTGF suppression increased cell-ECM adhesion (fig. 4A, B; MCF-7-EMT: 146.3 ± 12.1 % 

vs. control; p=0.0185; n=3; MDA-MB-231: 168.3 ±14.3% vs. control; p=0.0083; n=3). 

Blocking extracellular CTGF increased cell-ECM adhesion (fig. 4C, D; MCF-7-EMT: 120.6 

± 5.724 % vs. IgG control; p=0.0071; n=5; MDA-MB-231: 110.5 ± 3.776 % vs. IgG control; 

p=0.0493; n=3). Adding rhCTGF to non-invasive MCF-7 breast cancer cells resulted in dose-

dependent decreased cell-ECM adhesion (fig. 4E, F; MCF-7 1µg/ml rhCTGF: 94.2 ± 5.809 % 

mean difference vs. untreated; p=0.0459; F = 6.244; n=3). 

Matrix metalloproteinases contribute to invadopodia formation and tissue invasion through 

proteolytic activity alteration of cells (149). We examined, whether suppression of CTGF or 

treatment with rhCTGF regulates relative proteolytic activity of breast cancer cells. Reduced 

CTGF expression decreased relative proteolytic activity of mesenchymal transformed breast 

cancer cells (fig. 4G; MDA-MB-231 CTGF-: 117 ± 28.92 % vs. control; p=0.0205; n=3), 

while it did not alter relative proteolytic activity of TNBC cells (fig. 4G). Treatment with 

rhCTGF induced proteolytic activity in non-invasive MCF-7 breast cancer cells (fig. 4H; 

MCF-7 rhCTGF: 113.7 ± 4.229 % vs. untreated; p=0.0314; n=3). 

CTGF differentially regulates potential drivers of invasion and EMT-markers in 

mesenchymal transformed and triple negative breast cancer cells 

To further analyze underlying mechanisms of CTGF-induced invasion and suppressed 

adhesion we examined, if reduced CTGF expression alters expression of TGFBI, CD44, 

SPARC, FN1, LOX and FSTL1 which were all identified potential drivers for invasion by 

secretome analysis. We could detect, that reduced CTGF in mesenchymal transformed breast 

cancer cells suppressed expression of TGFBI (fig. 5A; TGFBI CTGF-: 0.6474 ± 0.1107 FC 

vs. TGFBI control; p= 0.0052; n= 6) and LOX (fig. 5A; LOX CTGF-: 0.7933 ± 0.043 FC vs. 

LOX control; p= 0.0088; n= 3), and increased expression of CD44 (fig. 5A; CD44 CTGF-

:1.21 ± 0.045 FC vs. CD44 control; p= 0.0096; n= 3), SPARC (fig. 5A; SPARC CTGF-: 2.083 

± 0.2749 FC vs. SPARC control; p= 0.0169; n= 3) and FN1 (fig. 5A; FN1 CTGF-: 1.41 ± 

0.07234 FC vs. FN1 control; p= 0.0048; n= 3). Suppressed CTGF expression altered FN1 

(fig. 5B; FN1 CTGF-: 1.557 ± 0.1014 FC vs. FN1 control; p= 0.0054; n= 3) expression in 

TNBC cells. 



RESULTS   64 

 
 

We found that CTGF had in impact on TGFBI-expression, and further wanted to test, whether 

a reduced CTGF expression can regulate expression of EMT transcription factors. We 

examined expression of Cadherin 1 (CDH1), Vimentin (Vim), ZEB1 and SNAIl family 

transcriptional repressor 2 (SNAI2) after transient CTGF suppression in mesenchymal 

transformed and TNBC cells. We found that downregulation of CTGF led to reduced ZEB1 

expression in mesenchymal transformed breast cancer cells (fig. 5C; 0.7767 ± 0.063 FC vs. 

control; p=0.0138; n=3). In contrast, suppressed CTGF resulted in downregulated Vimentin 

expression in TNBC cells (fig. 5D; 0.65 ± 0.0985; p=0.0237; n=3). 

GnRH agonist regulates CTGF expression through altered RhoA activity in 

mesenchymal transformed breast cancer cells 

Most luminal breast cancer will metastasize to bone (150). Suppression of ovarian function is 

part of therapy of endocrine-sensitive premenopausal early and advanced hormone breast 

cancer. Triptorelin, a GnRH agonist, revealed clinical benefit in high-risk patients by 

suppressing ovarian steroids and it has been investigated in attempt to preserve ovarian 

function during chemotherapy in young female patients (151). GnRH receptor is expressed in 

50-64% of all human breast cancers (152-156). Around 15% of all human breast cancers are 

stated as TNBC, which is associated with high risk recurrence and metastasis (157, 158). 

Approximately 74 % of all TNBC express GnRH receptor (7, 132, 159). It was observed that 

GnRH agonist Triptorelin has in impact on breast cancer invasiveness (51, 132, 160). 

Accordingly, we wanted to assess whether, Triptorelin treatment suppresses CTGF 

expression. Mesenchymal transformed breast cancer cells were treated for 48 hours with 10-9 

M or 10-7 M Triptorelin every 24 hours. We found that treatment with 10-7 M Triptorelin 

reduced CTGF expression (fig. 6A; Triptorelin 10 -7 M: 0.435 ± 0.565 FC vs. untreated; 

p=0.0052; F= 8.366; n=3; and fig. 6B; 83.67 ± 3.383 % vs. untreated control; p=0.0085; n=3) 

which we could verify in TNBC cell as well (S11 A, B). Furthermore, we analyzed, whether 

Triptorelin treatment altered cell-ECM adhesion. We found that 10-7 M Triptorelin treatment 

increased cell-ECM adhesion (fig. 6 C, D; Triptorelin 10 -7 M: 114.9 ± 3.861 % vs untreated; 

p=0.0049; n=5), which we found to be true for TNBC cells as well (fig. 6 S11 C, D).  

It was suggested earlier that RhoA determines mesenchymal cell fate and regulates CTGF 

cleavage (161). We wanted to test, if GnRH agonist Triptorelin facilitates reduced 

invasiveness and increased adhesion by regulating RhoA activity. We found that Triptorelin 

regulates RhoA activity in a time-dependent manner. After 4 hours Triptorelin treatment (10 -7 

M) no increased RhoA activity could be detected by active RhoA pulldown. After 24 hours a 
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clear increased RhoA activity appeared (fig. 6E). Furthermore, we found that mesenchymal 

transformed breast cancer cells treated with a Rho activator exhibit a decreased invasive 

capacity (fig. 6F; RhoA activator II: 22.99 ± 9.922 % vs. untreated; p=0.0401; n=7), which 

could be verified for TNBC cells as well (fig. 6 S11 E). Besides, non-invasive MCF-7 breast 

cancer cells with transiently suppressed RhoA expression exhibit an increased invasiveness 

(fig. 6G; RhoA-: 123.1± 7.73% vs. control; p= 0.0432; n=18). Furthermore, we tested if this 

increased invasiveness is due to an increased CTGF expression. We could observe that 

through reduction of RhoA expression (verification; fig. 6 S12 A and 6H; RhoA: RhoA-: 

0.7033 ± 0.04702 FC vs. control; p=0.0032; n=3) CTGF expression is increased (fig. 6H; 

CTGF RhoA-: 2.88 ± 0.3143 FC vs. control; p=0.0039; n=3), while proliferation was not 

altered (fig. 6 S12 B). 

Discussion 

Tumor metastasis is highly regulated by micro environmental changes. Drugs are needed to 

modify breast micro environment were tumor cells gain ability to disseminate and bone micro 

environment, which is the niche where breast cancer cells preferentially colonize and remain 

in a state of survival and dormancy. Micro environmental modifications may be lethal for 

isolated, dormant cancer cells, reducing risk of reactivating dormant cells and growth of 

distant metastases over time is a high priority in preventing metastasis. Here we suggest 

potential drivers of initial dissemination of tumor cells with regards to bone-directed 

metastasis. 

An increased CTGF expression in human breast cancer correlates with poor patient outcome 

and drug resistance (6). While it was suggested previously that downregulation of CTGF 

inhibits bone metastasis in a BMP9-dependent manner (162). A major question has remained: 

if targeting CTGF will help to prevent breast cancer cell dissemination into surrounding 

tissue, and which underlying molecular mechanisms are involved in breast cancer directed 

bone metastasis. 

We found that CTGF is highly upregulated in invasive ductal carcinoma (fig. 2C) and during 

co-culture of breast cancer cells with osteosarcoma cells (fig. 1 C, D). Furthermore, CTGF 

expression is comparable in bone and mammary gland tissue (fig. 2 S8).  

Consistent with recent findings we could assess that an elevated expression of CTGF led to 

increased cell invasiveness and correlated with bone-directed metastasis. Reducing CTGF 

expression resulted in a decreased invasion in 2D and 3D invasion assays. It was suggested 
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earlier, that FN1 has a protective function against metastasis when uncleaved (147) and that 

autocrine FN1 inhibits breast cancer metastasis (163). Additionally, it was proposed that 

CTGF is cleaved by MMPs to reactivate angiogenesis (145). Expression of MMP2 was 

upregulated when MCF-7 cells were co-cultured with osteosarcoma cells (fig. 1C, D). We 

tested if 3D MCF-7 spheroid area growth can be altered when CTGF and/or FN1 and/or 

MMP2 and /or a MMP inhibitor are added. Interestingly, we found that spheroid area growth 

was significantly increased when CTGF or MMP2, CTGF and MMP2, and CTGF with FN1 

and MMP2 are added (fig. 3F). But there was no increased area growth when FN1 or FN1 

with CTGF neither FN1 with MMP2 was added. Therefore we could assess that FN1 does not 

alter invasive behavior of breast cancer cells in 3D invasion setup. Also, treatment with CTGF 

and FN1 or MMP2 with FN1 did not alter invasive behavior as well (fig. 1G), which could be 

an indicator for a protective FN1 feature. Only treatment with CTGF, MMP2 and FN1 led to 

an increased area growth. This effect could be reversed by an additional treatment with an 

MMP inhibitor (BB-94). But surprisingly this inhibitor was not effective enough to reverse 

effect of CTGF treatment, which could be an indicator for a MMP2-independent mechanism. 

Loss of intercellular and cell-ECM adhesion allows malignant cells to escape from their site 

of origin (164). To further analyze, why cancer cells treated with extracellular CTGF are 

highly invasive, we analyzed their cell-ECM adhesive and proteolytic abilities. We suggest 

that reduced CTGF increases cell-ECM adhesion (fig. 4-D), while ECM degradation was 

decreased (fig. 4G). Increased extracellular CTGF expression led to decreased cell-ECM 

adhesion (fig. 4E) and increased ECM degradation (fig. 4 H). This is supported by previous 

findings that CTGF induces expression of ECM degradations genes and fibronectin (165). 

MCF-7-EMT cells exhibited increased expression of TGFBI, Twist, Vimentin and N-

cadherin, while E-cadherin expression was reduced. Also MCF-7-EMT cells are more 

invasive (51). We could furthermore identify, that these mesenchymal transformed breast 

cancer cells revealed a high ITGαV (CD51) and VCAM-1 (CD106) co-expression compared 

to non- invasive MCF-7 breast cancer cells (fig. 2 E-F). Interestingly it was suggested, that 

CTGF stimulates osteosarcoma metastasis by upregulating VCAM-1 expression. 

Additionally, VCAM-1 may have a role in activation of dormant micro metastasis (58, 166, 

167). CTGF enhances cell motility in breast cancer through integrinαVβ3-ERK1/2 dependent 

S100A4 upregulation (168). We analyzed impact of CTGF on other secretome analysis 

detected targets and could detect that reducing CTGF expression represses TGFBI, LOX and 

ZEB1 expression in mesenchymal transformed breast cancer cells (fig. 5 A, C). LOX was 
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demonstrated to be involved in collagen I stabilization leading to chemo resistance (169). It 

was proposed previously that EMT-TFs SNAI1 and SNAI2 activate TGBFI signaling in 

breast cancer and that CTGF and SPARC are upregulated as well (170). Reduced CTGF 

expression led to increased CD44, SPARC, and FN1 expression in mesenchymal transformed 

breast cancer cells (fig. 5A). CD44 is a stem cell marker and appears to have a dual nature 

regarding tumor progression and metastasis (171). SPARC has anticancer effects (172), 

inhibits bone metastasis (173) and was suggested to be involved in same biological pathways 

than CTGF (174). We could assess earlier in that study that an increased FN1 expression 

prevents 3D invasion, even when CTGF is added as well. This could indicate that 

downregulation of CTGF leads to an increased FN1 expression. We found that suppressed 

CTGF upregulated FN1 in TNBC cells, and downregulated Vimentin (fig. 5 B, D). Except for 

similar CTGF-dependent FN1 regulation, regulated targets are cell-type specific and could be 

related to expression of hormone- receptors or to MDA-MB-231 cell line specific mutations. 

These interesting observations need further evaluation by analyzing CTGF driven mechanism 

in another TNBC cell line and a hormone receptor positive mesenchymal transformed cell 

line. 

Discovering the prominent role of CTGF during breast cancer invasion by modifying cell 

adhesion, ECM degradation and FN1 expression, we wanted to test if CTGF can be targeted 

and elucidated molecular mechanism by which CTGF can be repressed to suppress cell 

dissemination and colonization at distant sites. We found that GnRH agonist Triptorelin, 

which is in clinical use for ovarian function suppression of premenopausal breast cancer with 

high clinical risk of recurrence (151) and was demonstrated to reduce breast cancer invasion 

(7), reduced CTGF expression in mesenchymal transformed breast cancer in a dose-dependent 

manner (fig. 6A, B). Furthermore, we found that CTGF was downregulated by Triptorelin 

treatment in TNBC cells (fig. 6 S11 A, B). GnRH receptor is expressed in 50-60% of all 

human breast cancer and to a further extent in approximately 74 % of all TNBC (7, 132, 159). 

We could demonstrate that treatment with 10-7 M Triptorelin led to an increased cell-ECM 

adhesion in mesenchymal transformed breast cancer cells (fig. 6 C) and TNBC cells (fig. 6 

S11 C) as it was detected by CTGF suppression as well. 

It was suggested that RhoA determines lineage fate of mesenchymal stem cells in ECM and 

that RhoA activity controls CTGF cleavage (161). Beside, Arguilar-Rojas and colleagues 

found out that Busrelin, a GnRH agonist, regulates RhoA activity in MDA-MB-231 breast 

cancer cells thereby decreasing invasiveness (175). We wanted to examine, if Triptorelin 
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regulates RhoA activity and also if RhoA expression has an impact on CTGF expression. We 

could observe that Triptorelin induces RhoA activity in a time-dependent manner through in 

mesenchymal transformed breast cancer cells (fig. 6E). As expected, invasiveness of 

mesenchymal transformed breast cancer cells was reduced when RhoA was activated. Later 

we wanted to assess if reducing RhoA expression has an impact on invasiveness of non-

invasive MCF-7 breast cancer. We found that transient RhoA suppression led to increased 

invasion (fig. 6G), which is facilitated through upregulation of CTGF (fig. 6H). This led to the 

conclusion that CTGF expression is dynamically regulated through RhoA activation and 

thereby regulates cell-ECM adhesion. 

On molecular level it would be interesting to evaluate, if Triptorelin treatment has an impact 

on cell plasticity by regulating EMT-TF expression. CTGF activates ERK1/2 signaling 

through ITGαV cascade (168) and plastic breast cancer cell co-express higher ITGαV and 

VCAM-1 receptors and exhibit an increased CTGF expression. ERK1/2 appears to be a new 

treatment option with promising preclinical phase I trials (176, 177). Targeting CTGF when 

cancer cells gained drug resistance, could help to identify new treatment options. In addition, 

a new phase III trial study (HOrmonal BOne Effects-2, HOBOE-2) revealed interesting 

results using zoledronic acid which is approved to treat osteoporosis (178). In this context it 

may be worthwhile to examine if zoledronic acid reduces extracellular CTGF, which may 

open up possibilities for preventing bone metastasis. 

Using proteome analysis it was detected, that heat shock proteins (HSP) are dysregulated 

when breast cancer cells are co-cultured with osteosarcoma cells (Supplement 4 C, D and 

Supplement 5). Nonetheless, further evaluation is necessary due to different basal expression 

of detected potential drivers within different cell lines. It was suggested previously, that 

cancer cells are more dependent on heat shock protein chaperonage due to an elevated level of 

misfolded onco-proteins (179, 180). Additionally, inhibiting HSP90 inhibits versatile pro-

invasive and proangiogenic pathways (181). Inhibiting HSP90 led to LATS1 and LATS2 

depletion, which led to reduced YAP phosphorylation and decreased CTGF expression (182). 

Targeting HSP90 could be of great interest to regulate CTGF expression and HSP90 

inhibitors are currently under investigation for metastatic breast cancer (183-185) . 

In summary, we identified a novel mechanism by which extracellular CTGF drives cell 

dissemination by regulating cell adhesion, ECM degradation and regulation of EMT inducing 

factor TGFBI. Furthermore, we propose that CTGF is a versatile regulator in breast cancer 

and facilitates SPARC, LOX, ZEB1, VIM and FN1 expression changes. Moreover, it was 
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assessed that CTGF expression is regulated by RhoA activity. Performed experiments support 

value of CTGF as therapeutic target for invasive breast cancer, and GnRH agonist Triptorelin 

could be of value in clinical applications. 

Methods 

Cell culture 

Human breast cancer cell lines MCF-7, MDA-MB-231 were obtained from the American 

Type Cell Collection (ATCC; Manassas, VA, USA) and cultured in minimum essential 

medium (MEM; biowest, Nuaillé, France) supplemented with 10% fetal bovine serum (FBS; 

biochrom, Berlin, Germany), 1 % Penicillin/Streptomycin (P/S; Gibco, Carlsbad, CA, USA), 

0,1 % Transferrin (Sigma, St. Louis, USA) and 26 IU Insulin (Sanofi, Frankfurt, Germany). 

Human osteosarcoma cell line MG-63 was purchased from ATCC and cultured Dulbecco’s 

modified eagle medium (DMEM; Gibco) supplemented with 10% FBS (biochrom) and 1% 

Penicillin/Streptomycin (Gibco). To retain identity of cell lines, purchased cells were 

expanded and aliquots were frozen in liquid nitrogen. A new frozen stock was used every half 

year and mycoplasma testing of cultured cell lines was performed routinely using PCR 

Mycoplasma Test Kit I/C (PromoCell GmbH, Heidelberg, Germany). All cells were cultured 

in a humidified atmosphere with 5% CO2 at 37 °C. 

Generation of mesenchymal transformed MCF-7 cells 

Mesenchymal transformed MCF-7 breast cancer cells (MCF-7-EMT) were generated as 

described earlier (51). Briefly, 4x 104 cells/ml were cultured in prolonged mammosphere 

culture (5-6 weeks) in ultralow adherence six well plates (Corning, Lowell, MA, USA) in 

DMEM/F12 supplemented with 10% charcoal-stripped fetal calf serum (cs-FCS;PAN-

biotech, Aidenbach, Germany), 2% B27 supplement (Invitrogen, Darmstadt, Germany), 1% 

penicillin/streptomycin, 0.5 mg/ml hydrocortisone (Sigma, St. Louis, MO, USA ), 5 µg/ml 

insulin,  20 ng/ml epidermal growth factor (EGF; Sigma, St. Louis, MO, USA). 

Small interfering RNA transfection 

Breast cancer cell lines MCF-7-EMT (5 x 105 cells/ml), MDA-MB-231 (2.5 x 105 cells/ml) 

were seeded in 2 ml of MEM with 10% FBS (-P/S) in 25 cm2 cell culture flask. Cells were 

transiently transfected with siRNA specific to CTGF (sc-39329 pool of three specific siRNAs; 

Santa Cruz Biotechnology (SCBT), Dallas, USA) or RhoA (sc-44209 pool of three specific 

siRNAs; SCBT) in OPTI-MEM I medium (Gibco, Carlsbad, CA, USA) with siRNA 
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transfection reagent (sc-29528; Santa Cruz Biotechnology, Dallas, USA). A non-targeting 

control was used as control (sc-37007 control-A; Santa Cruz Biotechnology, Dallas, TX, 

USA). After an incubation period of 6 h, MEM supplemented with 20 % FBS and 20% 

penicillin/streptomycin was added. 

Transwell co-culture invasion assay 

Using co-culture transwell assay as describes earlier (132), 1 x 104 breast cancer cells were 

seeded in DMEM w/o phenol red, supplemented with 10% cs-FCS into a cell cultural insert 

(upper well) with a polycarbonate membrane (8 µm pore diameter, Merck Millipore, Cork, 

Ireland) coated with 30µL of a Matrigel® (BD Bioscience, Bedford, MA, USA) solution (1:2 

in serum-free DMEM) or gelatin (1mg/ml in PBS, Sigma). Osteosarcoma cells were seeded 

(2.5 x 104) in DMEM supplemented with or without 10% cs-FCS into the lower well (24-

well-plate). After 24 hours cells were co-cultured for 96 hours or 48 hours when treated with 

RhoA activator II. Invaded cells on lower side of inserts were stained with hematoxylin and 

number of cells in four randomly selected fields of each insert was counted. 

3D spheroid assay 

Assessment of 3D cell invasion was pursued as describes earlier with minor changes (186). 

Briefly 1x103 breast cancer cells were seeded in 100 µL in a well of an ultra-low-adherence 

96-well plate (ULA; Nexcelom, Cenibra GmbH, Bramsche, Germany). After 48 hours 

spheroid formation was visually confirmed and 50 µL of media was removed. Thereafter, 50 

µL Matrigel were added to wells with spheroids. Central position of spheroids was checked 

visually and Matrigel was allowed to solidify for 1 hour at 37°C and 5% CO2. Afterwards 50 

µL media were added to each well and a picture was taken marking time point 0 (t0h). When 

indicated rhCTGF (recombinant human connective tissue growth factor; 1 µg/ml; R&D 

systems), pdhFN1 (plasma-derived human fibronectin 1; 1 µg/ml; R&D systems), rhMMP2 

(recombinant human matrix metalloproteinase 2; 0.01µg/ml; R&D systems, Minneapolis, 

MN, USA), Batimastat (BB-94, 4nM; Selleckchem, Munich, Germany) polyclonal rabbit IgG 

control (15µg/ml; R&D systems) or anti-CTGF (15 µg/ml; Novus Biologicals). Spheroid 

growth area was analyzed using ImageJ polygonal selection and measurement. Mean values 

were calculated and compared to respective control. 
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Adherence Assay 

Cell-ECM adherence was examined by coating 96-well plates with bovine collagen I (30 µL; 

0.04 mg/ml; BD Bioscience) for 12 hours at 4°C. Solution was aspirated and plate was left to 

dry under bench. Cells were washed 3 times with FBS-free DMEM and cultured for 8 hours 

in DMEM-FBS prior to adhesion assessment. Cells were detached using 10mM EDTA-PBS 

solution. Cells were pelleted (1300 rpm for 5 minutes) and washed twice with DMEM 

supplemented with 0.1% BSA. Cells were seeded (2x104) in DMEM supplemented with 0.1% 

BSA, when indicated treated with rhCTGF (1 µg/ml; R&D systems), Triptorelin (10-7 M), 

polyclonal rabbit IgG control (15µg/ml; R&D systems) or anti-CTGF (15 µg/ml; Novus 

Biologicals), and incubated at 37°C with 5% CO2 for 20 min. Non-adherent cells were 

washed of by adding 100 µL of DMEM four times. Adherent cells were counter-stained with 

crystal violet solution (0.5%) for 20 min at RT shaking. Wells were washed four times with 

ddH2O and dried for at least 2 hours. Pictures were taken and afterwards 200 µL Methanol 

were added to each well, incubated for 20 min shaking and absorbance was assessed at 570 

nm using Synergy (BioTek Instruments, Bad Friedrichshall, Germany). Each experiment was 

performed in six replicates. Mean values were compared to respective control. 

ECM degradation 

Degradation of ECM was examined by depriving cell from FBS 12 hours prior to seeding. 

Wells of a 96-well plate were coated with 50 µL FITC-conjugated gelatin (2mg/ml; 

BioVision Inc, Milpitas, CA,USA) diluted 1:5 with unlabeled gelatin (Sigma) and incubated 

for 1 hour at 37°C and 5% CO2. Solution was discarded and plate left to dry under bench. 

FBS deprived cells were seeded (1x104) on gelatin coated wells and when indicated treated 

with rhCTGF (1 µg/ml; R&D systems). After 24 hours proteolytic activity was detected by 

measuring fluorescence (extinction 490nm/emission 520nm) using Synergy (BioTek 

Instruments, Bad Friedrichshall, Germany). Each experiment was performed in three 

replicates. Mean values were compared to respective control. 

AlamarBlue Assay 

Transiently transfected breast cancer cells were seeded in 96- wells (1.25 x 103) in DMEM 

w/o phenol-red supplemented with 10% cs-FBS and relative AlamarBlue reduction (BioRad, 

Hercules, USA) was assessed at 48 hours and/or 120 hours. 3D spheroids were grown as 

described above and 48 hours after seeded in Matrigel AlamarBlue was added and incubated 

for 4 hours. Thereafter, relative AlamarBlue reduction was measured by absorbance reading 
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at 540 nm and 630 nm, using Synergy (BioTek Instruments). Relative AlamarBlue Reduction 

was calculated as indicated by manufacturer.  

Immuno-histochemical staining  

Immuno-histochemical staining of human tissue array slide (BR248a; US Biomax, Derwood, 

MD, USA) was performed as described earlier (7). Sections were deparaffinized and 

rehydrated. Thereafter, antigens were retrieved by slide incubation in 0.01 M citrate buffer 

(pH 6.0) in microwave (700W) for 5 minutes. Using 3% hydrogen peroxidase solution for 6 

min endogenous peroxidase activity was quenched. Sections were incubated over night with 

primary labeled antibodies against CTGF (0.02 mg/ml; Novus Biologicals) in fluorescence 

staining solution (1% BSA + 0.4% TRITON X-100 in PBS) at 4°C. Labeling with secondary 

was performed by incubating slide with secondary rabbit antibody Alexa488 (Invitrogen) and 

DAPI (1µg/ml; Novus Biologicals) in fluorescence staining solution for 30 minutes at room 

temperature protected from light. Staining was visualized using a Zeiss Scope A1 Axio 

microscope (ZEISS, Oberkochen, Germany) with an oil EC PLAN-NEOFLUAR 100x 

(ZEISS, Oberkochen, Germany) objective and ZEN software (ZEISS, Oberkochen, 

Germany). 

Flow Cytometry 

Cells were detached from culture dish with trypsin for 5 min and washed once with PBS. 

1x106 were suspended in pre-cooled flow cytometry staining solution (PBS, 10% FCS, 

1NaN3) and incubated with conjugated primary antibodies (CD51-FITC; CD-106-APC; 

eBioscience Inc., ThermoFisher Scientific, Waltham, MN, USA) for 20 minutes at 4 °C. 

Stained cells were washed twice with flow cytometry staining solution and analyzed 

immediately by BD CANTOII flow cytometer (BD Biosciences). Untreated cells and 

UltraComp compensations beads (Invitrogen) incubated with labeled antibodies were used as 

negative control for determining specificity of signal. 

Western Blot analysis  

In Western Blot analysis, cells were lysed in lyse buffer consisting of cell lytic M buffer 

(Sigma, St. Louis, USA) supplemented with 0.1% phosphatase-inhibitor (Sigma, St. Louis, 

MO, USA) and 0.1% protease-inhibitor (Sigma, St. Louis, MO, USA ). Isolated proteins 

(40µg) were fractioned using 12 % SDS gels and electro-transferred to a polyvinylidene 

difluoride membrane (Merck Millipore, Cork, Ireland). Primary antibodies against CTGF 
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1:1000 (#NB100-724, Novus Biologicals), RhoA 1:500 (#ARH04, Cytoskeleton, Denver, 

CO, USA) and GAPDH 1:2000 (#5174S, Cell Signaling, Danvers, MA, USA) were used. 

Membrane was washed and incubated in horseradish peroxidase-conjugated secondary 

antibody (GE Healthcare, Buckinghamshire, UK). Antibody-bond protein bands were assayed 

using a chemiluminescent luminol enhancer solution (Cyanagen, Bologna, Italy).  

RhoA pull-down 

RhoA pulldown assay was examines using Rho activation assay biochem Kit as describes by 

the manufacturer (BK036-S; Cytoskeleton Inc.). Briefly, 300 µg proteins was loaded with 50 

µg Rhotekin rho binding domain (RBD) glutathione agarose bound beads which 

binds/precipitates specifically active GTP-bond Rho proteins. To quantify active RhoA total 

RhoA protein was determined. A positive cellular control loaded with non-hydrolysable GTP 

analog (GTPS) and a negative control loaded with GDP were determined from each 

examined sample. To assess functionality of assay one sample was treated with RhoA 

activator II (CN03, 1µg/ml, Cytoskeleton). As quantitation estimate for endogenous Rho, His-

RhoA protein was run on gel together with examined samples. 

Mass spectrometric secretome and proteome analysis 

Sample preparation 

Breast cancer cells were seeded (0.75 x 105) in Bio-one ThinCert (Greiner Bio-one, 

Kremsmünster, Austria) and Osteosarcoma cells were seeded (1,3 x105) in 6 wells. After 24 

hours cells were deprived of FBS and co-cultured for 96 hours. Cell medium was precipitated 

with acetone. Medium was centrifuged for 10 minutes at 13300 rpm at 4°C and five times 

volume on pre-cooled (-20°C) was added to samples. Samples were vortexed and protein 

precipitation performed for 2 hours at -20°C. Protein was pelleted by centrifugation for 30 

minutes at 13300 rpm at 4°C. Protein pellets were washed with ethanol (80%, pre-cooled at -

20°C), centrifuged for 30 minutes at 13300 rpm at 4°C, and protein pellets were air dried. 

Cell lysates were generated by cutting membranes from insert and recovering cells with 

Recovery solution (Corning, New York, NY, USA) for 1 hour at 4°C while shaking. Cells 

were pelleted and resuspended in 30 µL lysis buffer. 

MS sample processing 

For generation of a peptide library, equal amount aliquots from comparable samples were 

pooled to a total amount of 100 µg, and separated into eight fractions using a reversed phase 
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spin column (Pierce High pH Reversed-Phase Peptide Fractionation Kit, ThermoFisher 

Scientific). All samples were spiked with a synthetic peptide standard used for retention time 

alignment (iRT Standard, Schlieren, Schweiz).  

Protein digests were analyzed on a nanoflow chromatography system (Eksigent nanoLC425) 

hyphenated to a hybrid triple quadrupole-TOF mass spectrometer (TripleTOF 5600+) 

equipped with a Nanospray III ion source (Ionspray Voltage 2400 V, Interface Heater 

Temperature 150°C, Sheath Gas Setting 12) and controlled by Analyst TF 1.7.1 software 

build 1163 (all AB Sciex). In brief, peptides were dissolved in loading buffer (2% acetonitrile, 

0.1% formic acid in water) to a concentration of 0.42 µg/µl. For each analysis 2.1 µg of 

digested protein were enriched on a precolumn (0.18 mm ID x 20 mm, Symmetry C18, 5 µm, 

Waters, Milford/MA, U.S.A) and separated on an analytical RP-C18 column (0.075 mm ID x 

250 mm, HSS T3, 1.8 µm, Waters) using a 90 min linear gradient of 5-35 % acetonitrile/0.1% 

formic acid (v: v) at 300 nl min-1. 

Qualitative LC/MS/MS analysis was performed using a Top25 data-dependent acquisition 

method with an MS survey scan of m/z 350–1250 accumulated for 350 ms at a resolution of 

30,000 full width at half maximum (FWHM). MS/MS scans of m/z 180–1600 were 

accumulated for 100 ms at a resolution of 17,500 FWHM and a precursor isolation width of 

0.7 FWHM, resulting in a total cycle time of 2.9 s. Precursors above a threshold MS intensity 

of 125 cps with charge states 2+, 3+, and 4+ were selected for MS/MS, the dynamic exclusion 

time was set to 30 s. MS/MS activation was achieved by CID using nitrogen as a collision gas 

and manufacturer’s default rolling collision energy settings. Three technical replicates per 

reversed phase fraction were analyzed to construct a spectral library. 

For quantitative SWATH analysis, MS/MS data were acquired using 65 variable size 

windows (187) across the 400-1,050 m/z range. Fragments were produced using rolling 

collision energy settings for charge state 2+, and fragments acquired over an m/z range of 

350–1400 for 40 ms per segment. Including a 100 ms survey scan this resulted in an overall 

cycle time of 2.75 s. Two replicate injections were acquired for each biological sample. 

Protein identification was achieved using ProteinPilot Software version 5.0 build 4769 (AB 

Sciex) at “thorough” settings. MS/MS spectra from combined qualitative analyses were 

searched against UniProtKB human reference proteome (revision 04-2018, 93.661 entries) 

augmented with a set of 52 known common laboratory contaminants to identify 217 proteins 

at a False Discovery Rate (FDR) of 5% in the secretome, and 2,033 proteins at an FDR of 1% 
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for whole proteome analysis. We consciously allowed for a larger FDR in the secretome 

analysis since identified candidate proteins were further validated during SWATH data 

extraction and by biochemical experimentation. 

Spectral library generation and SWATH peak extraction were achieved in PeakView Software 

version 2.1 build 11041 (AB Sciex) using SWATH quantitation microApp version 2.0 build 

2003. Following retention time correction using iRT standard, peak areas were extracted 

using information from MS/MS library at an FDR of 1% (188). Resulting peak areas were 

then summed to peptide and finally protein area values, which were used for further statistical 

analysis.  

Real-time quantitative PCR analysis 

Total RNA was extracted using an RNeasy mini kit (Qiagen, Hilden, Germany) and 2 µg 

were reverse transcribed with high capacity cDNA reverse transcription kit (Qiagen, Hilden, 

Germany). Real- time qPCR was performed using SYBR green PCR master mix kit (Qiagen, 

Hilden, Germany) and following Primers: CTGF (forward) 5’- 

CTTGCGAAGCTGACCTGGAA-3’, CTGF (reverse) 5’- GTGCAGCCAGAAAGCTCAAA-

3’, TGFBI (forward) 5’- AGGCCTTCGAGAAGATCCCT -3’,  TGFBI (reverse) 5’- 

GAGATGATCGCCTTCCCGTT-3’, CD44 (forward) 5’- CACACCCTCCCCTCATTCAC-

3’, CD44 (reverse) 5’- CAGCTGTCCCTGTTGTCGAA -3’, SPARC (forward) 5’- 

GTGCGAGCTGGATGAGAACA-3’, SPARC (reverse) 5’- 

TTGCAAGGCCCGATGTAGTC-3’, FN1 (forward) 5’- GCTGCACATGTCTTGGGAAC-

3’, FN1 (reverse) 5’- CATGAAGCACTCAATTGGGCA-3’, LOX (forward) 5’- 

GGGCGACGACCCTTACAAC-3’, LOX (reverse) 5’- GCCCTGTATGCTGTACTGGC-3’, 

FSTL1 (forward) 5’- TCTGCCAGCCCAGTTGTTTG-3’, FSTL1 (reverse) 5’- 

GAGTCCAGGCGAGAATCACC-3’, CDH1 (forward) 5’-CCTCCTGAAAAGAGAGTGGA 

-3’, CDH1 (reverse) 5’- GTGTCCGGATTAATCTCCAG-3’, VIM (forward) 5’- 

GCTGCTAACTACCAAGACAC-3’, VIM (reverse) 5’-TCAGGTTCAGGGAGGAAAAG -

3’, ZEB1 (forward) 5’- AAGACAAACTGCATATTGTGGAAG-3’, ZEB1 (reverse) 5’- 

CTGCTTCATCTGCCTGAGCTT-3’, SNAI2 (forward) 5’-GCCAAACTACAGCGAACTGG 

-3’, SNAI2 (reverse) 5’-GAGAGAGGCCATTGGGTAGC -3’, RhoA (forward) 5’-

CAAGGACCAGTTCCCAGAGG -3’, RhoA (reverse) 5’-TGTCCCACAAAGCCAACTCT -

3’, and GAPDH (forward) 5’- GAAGGTCGGAGTCAACGGAT -3’, GAPDH (reverse) 5’- 

TGGAATTTGCCATGGGTGGA -3’ .PCR conditions were: denaturing once at 95°C (2 

minutes), 95°C (5 seconds), 60°C (15 seconds) for 40 cycles.  
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Data analysis 

Gene ontology enrichment analysis, networks summarizing overlapping terms and 

hierarchical lustering trees were conducted using Shiny GO v0.60 with a p-value cutoff 

(FDR) of 0.05 (189). 

CTGF expression analysis in human tissues 

Statistical analysis of tissue-specific CTGF expression was conducted using large public 

cancer genomics datasets (GTEX, TARGET, TCGA) as described previously (190). 

Statistical analysis 

All experiments were performed at least in three biological and technical replicates. Data 

were analyzed by GraphPad Prism Software version 7.03 (GraphPad Software Inc., La Jolla, 

CA/USA) using unpaired, two-tailed, parametric t-test comparing two groups (treatment to 

respective control) by assuming both populations have same standard derivation or ANOVA 

one-way analysis when more than two groups were compared. F-values were recorded and a 

Dunnett‘s multiple comparison test with no matching or pairing between groups was 

calculated. P< 0.05 was considered statistically significant. 

Availability of data and material 

The datasets used and/or analyzed during current study are available from the corresponding 

author on reasonable request. 
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Figures and tables 

 

Graphical abstract Anatomy of mammary duct and lobes (cross-section) vs. anatomy of invasive ductal carcinoma (IDC). 

Connective tissue growth factor (CTGF) expression is downregulated in normal duct. Increased extracellular CTGF 

expression leads to breast cancer bone-directed invasiveness.  
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Figure 1 Identifying drivers of breast cancer cell invasion. A Transwell-invasion co-culture assay of MCF-7 breast cancer 

cells and MG-63 osteosarcoma cells without FBS addition and Matrigel or Collagen I coated insert. Invaded cells under the 

filter were stained and counted in four randomly selected regions after 96 hours in co-culture. Data represent mean ± SEM. 

MCF-7 (Matrigel) n=12, MCF-7 (gelatin) n=6, unpaired, two-sided t-test to respective control. * P< 0.05; ** P<0.01 B 

Volcano plot demonstrating potential bone-directed breast cancer invasiveness related targets using secretome analysis. 

Detected target proteins were stated as discovery when adjusted p-value (adj. p-value) was below 0.0016 (dotted line) with a 

false-discovery rate (FDR) of 1% and a log 2 fold change (FC) higher 1.3 or lower -1.3. Every dot indicates one target, green 

dots indicate upregulated discoveries and red dot indicates downregulated discovery. n=6, discovery determined using the 

two-stage linear step-up procedure of Benjamini, Krieger and Yekutieli, with Q = 1%. Each row was analyzed individually, 

without assuming a consistent SD. C Heat map visualizing all discoveries with a color gradient of log10 integrated area of 

mean values of three biological and two technical replicates corresponding to B. D Scheme of overlapping targets from 

microarray analysis of MCF-7 cells under dynamic EMT program and secretome analysis of co-cultured MCF-7 cells with a 

fold change of higher 1.3 or lower -1.3 and FDR 5% (microarray) and FDR 1% (secretome analysis).  
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Figure 2 CTGF expression correlates with invasiveness of mesenchymal transformed and TNBC cells. A Assessment of 

CTGF mRNA expression in different breast cancer cell lines using quantitative real-time PCR. Data represent mean ± SEM. 

MCF-7-EMT n=6, MDA-MB-231 n=4 using unpaired, two-tailed t-test analysis to respective control (MCF-7). * P< 0.05; 

** P<0.01 B Quantification and representative experiments of CTGF protein expression in different breast cancer cell lines 

compared to non-invasive MCF-7 breast cancer cell line. CTGF band intensity was quantified by densitometry and 

normalized to GAPDH. Data represent mean ± SEM. n=6 using unpaired, two-tailed t-test analysis to respective control 

(MCF-7). * P< 0.05; ** P<0.01 C Patient tissue sections (n=24) were analyzed for CTGF expression. Representative images 

of normal breast tissue (right panel) and IDC (invasive ductal carcinoma, left panel) are illustrated. D Graph illustrating 

distribution of CTGF expression within two different analyzed patient sample categories. E Results of three independent flow 

cytometry experiments of CD51 and CD106 co-expression in MCF-7 (circle), MCF-7-EMT (square) and MDA-MB-231 

(triangle) breast cancer cell lines. Data represent mean ± SEM. MCF-7-EMT, MDA-MB-231 n=3 using unpaired, two-tailed 

t-test analysis to respective control (MCF-7). * P< 0.05 F Proportion of CD51 to CD106 was asses using flow cytometry 

after staining with fluorescence-labeled antibodies. A representative experiment to E is illustrated.  
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Figure 3 CTGF regulates invasiveness in breast cancer cells. A Scheme illustrating 2D invasion experiment using a co-

culture transwell invasion assay. BCR = breast cancer cell, ECM = extracellular matrix B Following CTGF siRNA 

transfection invaded cells under filter were counted in four randomly selected regions, using a co-culture Matrigel invasion 

assay for 96 hours. Data represent mean ± SEM. MCF-7-EMT n=15, MDA-MB-231 n=9 using unpaired, two-tailed t-test 

analysis to respective control. * P< 0.05 C Scheme illustrating 3D spheroid invasion assay. Cells were seeded in ultra-low 

attachment wells and after initial spheroid formation (48 hours), spheroids were surrounded by Matrigel matrix and further 

cultivated. D 3 D spheroid assay was performed after transient CTGF siRNA transfection. Invaded area was assessed using 

ImageJ software and relative area growth was calculated corresponding to respective control. Data represent mean ± 

SEM.MCF-7-EMT n=15, MDA-MB-231 n=9 using unpaired, two-tailed t-test analysis to respective control. * P< 0.05; ** P 
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<0.01 E Representative experiment illustrating area measurement of 3D spheroids. Green shape corresponding to initial 

spheroid size right after adding Matrigel and red shape corresponding to time point 48 hours after Matrigel adding. F 3 D 

spheroid assay of MCF-7 cells treated with different combinations of 1 µg/ml rhCTGF, 1µg/ml hFN1, 1µg/ml rhMMP2, 

and/or 4nM BB-94 (Batimastat) for 48 hours every 24 hours. Area growth of spheroids was assessed using ImageJ software 

and relative area growth was calculated corresponding to untreated control. Data represent mean ± SEM. n=4-6 using one-

way ANOVA and a Dunnett‘s multiple comparison test with no matching or pairing between groups was calculated to assess 

significant differences compared to untreated control. *P<0.05; ** P <0.01; *** P <0.005  
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Figure 4 CTGF alters cell-ECM adhesion and proteolytic activity of breast cancer cells. A Adhesion analysis of 

transiently transfected mesenchymal transformed and triple-negative breast cancer cells. Adhesive cells where counter-

stained with crystal violet and absorption was measured at 570nm. Data represent mean ± SEM. MCF-7-EMT n=3, MDA-

MB-231 n=3 using unpaired, two-tailed t-test analysis to respective control. * P< 0.05; **P<0.01 B Representative images 

corresponding to A. C Extracellular CTGF was reduced using a blocking-antibody against CTGF and cell-ECM adhesion  

was assessed. Data represent mean ± SEM. MCF-7-EMT n=6, MDA-MB-231 n=3 using unpaired, two-tailed t-test analysis 

to respective control (IgG control). * P< 0.05; **P<0.01 D Representative images corresponding to C. E MCF-7 cells where 

treated with recombinant human CTGF (rhCTGF) in different concentrations prior to assessing of cell-ECM adhesion. Data 

represent mean ± SEM. n=3 using one-way ANOVA with F= 6.244 and a Dunnett‘s multiple comparison test with no 

matching or pairing between groups. * P< 0.05 F Representative images corresponding to E. G Following transient 

transfection mesenchymal transformed and triple negative breast cancer cells were seeded on FITC-conjugated gelatin 

(0.2%). Degradation of gelatin /proteolytic activity results in an increase of fluorescence. Data represent mean ± SEM. MCF-

7-EMT n=3, MDA-MB-231 n=3 using unpaired, two-tailed t-test analysis to respective control. * P< 0.05 H Assessment of 

proteolytic activity of MCF-7 breast cancer cells after treatment with rhCTGF. Data represent mean ± SEM. M n=3 using 

unpaired, two-tailed t-test analysis to respective control (untreated).* P< 0.05. Scale bar gauges 200 µm.  

 

 

Figure 5 CTGF regulates expression of potential drivers of invasion and EMT-markers. A Relative quantification of 

TGFBI, CD44, SPARC, FN1, LOX and FSTL1 mRNA expression in mesenchymal transformed breast cancer cells treated 

transiently with CTGF siRNA for 48 hours. Data represent mean ± SEM. MCF-7-EMT n=3 using unpaired, two-tailed t-test 

analysis to respective control. * P< 0.05;** P <0.01 B Relative quantification of TGFBI, CD44, SPARC, FN1, LOX and 

FSTL1 mRNA expression in triple negative breast cancer cells treated transiently with CTGF siRNA for 48 hours. Data 

represent mean ± SEM. MDA-MB-231 n=3 using unpaired, two-tailed t-test analysis to respective control. * P< 0.05 C 

Relative quantification of EMT markers VIM, CDH1, SNAI2 and ZEB1 mRNA expression in mesenchymal transformed 

breast cancer cells treated transiently with CTGF siRNA for 48 hours. Data represent mean ± SEM. MCF-7-EMT n=3 using 
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unpaired, two-tailed t-test analysis to respective control. * P< 0.05 D Relative quantification of EMT markers VIM, CDH1, 

SNAI2 and ZEB1 mRNA expression in triple negative breast cancer cells treated transiently with CTGF siRNA for 48 hours. 

Data represent mean ± SEM. MDA-MB-231 n=3 using unpaired, two-tailed t-test analysis to respective control. * P< 0.05 

 

 

 

Figure 6 GnRH agonist regulates CTGF through RhoA activity in mesenchymal transformed breast cancer cells. A 

Relative quantification of CTGF mRNA expression in mesenchymal transformed breast cancer cells (MCF-7-EMT) treated 
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for 48 hours with 10 -9 M or 10 -7 M Triptorelin. Data represent mean ± SEM. MCF-7-EMT n=3 using one-way ANOVA with 

F= 8.366 and a Dunnett‘s multiple comparison test with no matching or pairing between groups. ** P <0.01 B Quantification 

and representative experiment of CTGF protein expression after Triptorelin treatment for 48 hours (10 -7 M). CTGF band 

intensity was quantified by densitometry and normalized to GAPDH. Data represent mean ± SEM. MCF-7-EMT n=3 using 

unpaired, two-tailed t-test analysis to respective control (untreated). ** P<0.01 (C) Adhesion analysis of mesenchymal 

transformed breast cancer cells treated with 10 -7 M Triptorelin. Adhesive cells where counter-stained with crystal violet and 

absorption was measured at 570nm. Data represent mean ± SEM. MCF-7-EMT n=5 using unpaired, two-tailed t-test analysis 

to respective control (untreated). **P<0.01 D Representative images corresponding to C. Scale bar gauges 200 µm. E RhoA 

activity pull-down of untreated MCF-7-EMT cells, MCF-7-EMT cells treated 3 hours with an specific Rho activator (1µg/ml) 

and MCF-7-EMT cells treated with 10 -7 M Triptorelin for 4 or 24 hours. F 2D invasion assay. After 48 hours treatment with 

or without Rho activator II treatment (1µg/ml) supplement invaded cells under filter were counted in four randomly selected 

regions. Data represent mean ± SEM. MCF-7-EMT n=7 using unpaired, two-tailed t-test analysis to respective control 

(untreated). * P< 0.05 G Following transient RhoA siRNA transfection invaded cells under filter was counted in four 

randomly selected regions. Data represent mean ± SEM. M n=18 using unpaired, two-tailed t-test analysis to respective 

control. * P< 0.05 H Relative quantification of RhoA and CTGF mRNA expression in MCF-7 cells after transient RhoA 

transfection (t0h). Data represent mean ± SEM. M n=3 using unpaired, two-tailed t-test analysis to respective control. ** P 

<0.01  

 

 

Figure 7 Proposed model of CTGF driven invasion in breast cancer. A Mesenchymal transformed breast cancer cells 

with Triptorelin treatment, CTGF blocking antibody or transiently suppressed CTGF expression reduces invasiveness, 

increased cell-ECM adhesion and reduced ECM degradation. On the other hand B co-cultured non-invasive MCF-7 breast 

cancer cells or mesenchymal transformed breast cancer cells exhibit an increased CTGF expression higher invasion, 

decreased cell-ECM adhesion and increased ECM degradation. 
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Identification of breast cancer invasion drivers by secretome analysis: insight into 

CTGF signaling 
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Supplementary figures: fig. 1 S4; fig. 2 S8; fig. 3 S10, fig. 6 S11, fig. 6 S12 

Supplementary tables: fig. 1 S1; fig. 1 S2; fig. 1 S3; fig. 1 S5; fig. 1 S6; fig. 1 S7; fig. 2 S9 

Supplement 1: Protein findings from secretome analysis of co-cultured breast cancer cells with osteosarcoma cells. 

Information is given about gene symbol/User ID, Ensemble Gene ID, p-value and mean values of co-culture media and 

MCF-7 control media. List was used to further examine Gene Ontology (GO) enrichment using Shiny GO v06.0. 

i User ID Ensembl Gene ID p-value 

mean co-

culture 

mean MCF-7 

control 

1 HTRA1 ENSG00000166033 0,00021228 28234 6597 

2 CD44 ENSG00000026508 0,00037961 12615 1688 

3 C1R ENSG00000159403 0,00033183 61150 8715 

4 POSTN ENSG00000133110 0,0011454 95683 18550 

5 HEXA ENSG00000213614 9,7674E-05 16849 2926 

6 B2M ENSG00000166710 0,00135842 70650 3738 

7 LOXL1 ENSG00000129038 3,8422E-10 65281 7724 

8 MMP2 ENSG00000087245 0,00146649 4431667 96000 

9 COL1A1 ENSG00000108821 0,0002255 3191667 78133 

10 NUCB1 ENSG00000104805 0,00158982 120358 12667 

11 CNN2 ENSG00000064666 7,0889E-06 81240 7659 

12 CAB39 ENSG00000135932 0,00129469 45224 143832 

13 SERPINE2 ENSG00000135919 9,9725E-05 7465 1199 

14 FN1 ENSG00000115414 0,00127185 2013667 45350 

15 FSTL1 ENSG00000163430 0,00158654 77483 11262 
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16 IGFBP7 ENSG00000163453 4,6509E-05 8350 1784 

17 TGFBI ENSG00000120708 0,00065803 10008 1168 

18 SPARC ENSG00000113140 0,00082713 2172000 116933 

19 LOX ENSG00000113083 0,00111492 18118 5004 

20 COL23A1 ENSG00000050767 0,00116807 23983 1270 

21 THBS2 ENSG00000186340 0,00035021 59250 8683 

22 COL1A2 ENSG00000164692 0,00108052 5150000 31383 

23 SERPINE1 ENSG00000106366 0,00054046 37167 7040 

24 PCOLCE ENSG00000106333 8,2456E-05 367167 34500 

25 CTSB ENSG00000164733 0,00064317 827167 82000 

26 CLU ENSG00000120885 0,00071045 130026 51465 

27 SVEP1 ENSG00000165124 0,00046555 218000 29017 

28 TIMP1 ENSG00000102265 0,00135049 168650 37333 

 

Supplement 2 GO enrichment analysis of findings from secretome analysis. Protein discoveries listed in Fig. 1 S1 were 

examined for GO enrichment using Shiny GO v06.0. Information is given about enrichment FDR, how many genes within 

the discovery list are enriched within specific functional category, total number of genes within specific functional category, 

functional category and genes listed from discoveries which are enriched in specific category. 

Enrichment 

FDR 

Genes 

in list 

Total 

genes 

Functional 

Category 

Genes 

3,26E-15 14 392 Extracellular 

matrix 

organization  

COL23A1, MMP2 , COL1A1 , TGFBI , POSTN ,  

COL1A2 , LOX , CD44 , TIMP1 , SERPINE1 ,  

SPARC , FN1 , LOXL1 , HTRA1 

1,52E-14 14 460 Extracellular 

structure 

organization  

COL23A1, MMP2, COL1A1, TGFBI, POSTN,  

COL1A2, LOX, CD44, TIMP1, SERPINE1, SPARC,  

FN1, LOXL1, HTRA1 

8,92E-09 11 585 Wound healing SERPINE1, SERPINE2, CNN2, TIMP1, COL1A1,  

LOX, SPARC, FN1, POSTN, CD44, COL1A2 

3,22E-08 11 687 Blood vessel 

development 

COL23A1, COL1A1, THBS2, SPARC, MMP2, LOX, 

 FN1, LOXL1, SERPINE1, TGFBI, COL1A2 

3,22E-08 11 716 Response to 

wounding 

SERPINE1, SERPINE2, CNN2, TIMP1, COL1A1, 

 LOX, SPARC, FN1, POSTN, CD44, COL1A2 

3,22E-08 11 715 Vasculature 

development  

COL23A1,COL1A1,THBS2,SPARC,MMP2,LOX, 

FN1,LOXL1,SERPINE1,TGFBI,COL1A2 

3,22E-08 18 2983 Cellular 

response to 

organic 

substance  

CD44, COL1A2, MMP2, PCOLCE, COL1A1, LOX,  

SPARC, POSTN, IGFBP7, HTRA1, CTSB, SERPINE1,  

CLU, CNN2, TIMP1, FN1, FSTL1, B2M 

3,22E-08 11 724 Cardiovascular 

system 

development  

COL23A1, COL1A1, THBS2, SPARC, MMP2, LOX, 

 FN1, LOXL1, SERPINE1, TGFBI, COL1A2 

5,11E-08 19 3547 Response to 

organic 

substance  

TIMP1, CD44, CLU, COL1A2, MMP2, PCOLCE,  

COL1A1, LOX, SPARC, LOXL1, POSTN, IGFBP7,  

HTRA1, B2M, CTSB, SERPINE1, CNN2, FN1, FSTL1 

3,11E-07 20 4507 Response to 

stress  

CD44, MMP2, SERPINE1, SERPINE2, CAB39, CLU, 

 CNN2, TIMP1, COL1A1, LOX, SPARC, FN1, POSTN,  

C1R, FSTL1, IGFBP7, HTRA1, COL1A2, CTSB, B2M 

4,16E-07 18 3536 Cellular 

response to 

chemical 

stimulus 

CD44, POSTN, COL1A2, MMP2, PCOLCE, COL1A1,  

LOX, SPARC, IGFBP7, HTRA1, B2M, CTSB, SERPINE1, 

 CLU, CNN2, TIMP1, FN1, FSTL1 

1,31E-06 12 1372 Response to 

cytokine  

TIMP1, PCOLCE, COL1A1, LOX, SPARC, POSTN,  

CD44, CNN2, MMP2, FN1, COL1A2, B2M 
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1,31E-06 11 1077 Circulatory 

system 

development  

COL23A1, COL1A1, THBS2, SPARC, MMP2, LOX,  

FN1, LOXL1, SERPINE1, TGFBI, COL1A2 

2,76E-06 10 901 Regulated 

exocytosis  

CD44, CNN2, TIMP1, SERPINE1, SPARC, FN1,  

CLU, CAB39, CTSB, B2M 

6,12E-06 15 2785 Anatomical 

structure 

morphogenesis 

COL23A1, THBS2, SERPINE1, SPARC, FN1, CLU,  

MMP2, COL1A1, LOX, POSTN, SERPINE2, HTRA1,  

TGFBI, CD44, COL1A2 

6,12E-06 11 1278 Cellular 

response to 

cytokine 

stimulus 

PCOLCE, COL1A1, LOX, POSTN, CD44, CNN2, MMP2,  

TIMP1, FN1, COL1A2, B2M 

7,03E-06 10 1023 Exocytosis  CD44, CNN2, TIMP1, SERPINE1, SPARC, FN1,  

CLU, CAB39, CTSB, B2M 

7,03E-06 8 541 Skeletal system 

development  

COL1A1, MMP2, TIMP1, LOX, SPARC, TGFBI,  

CD44, COL1A2 

9,69E-06 12 1704 Response to 

endogenous 

stimulus 

TIMP1, CD44, COL1A2, MMP2, COL1A1, LOX,  

SPARC, POSTN, IGFBP7, HTRA1, CTSB, FSTL1 

9,87E-06 12 1715 Secretion by cell  FN1, POSTN, SERPINE2, CD44, CNN2, TIMP1,  

SERPINE1, SPARC, CLU, CAB39, CTSB, B2M 

1,35E-05 8 603 Blood vessel 

morphogenesis  

COL23A1, THBS2, SPARC, MMP2, LOX, FN1, 

 SERPINE1, TGFBI 

1,39E-05 13 2168 Tissue 

development  

COL23A1, SERPINE1, COL1A1, FN1, TIMP1,  

LOX, TGFBI, POSTN, SERPINE2, COL1A2, CTSB,  

CD44, MMP2 

1,63E-05 5 135 Platelet 

degranulation 

TIMP1, SERPINE1, SPARC, FN1, CLU 

1,94E-05 11 1506 Cell migration  CD44, SERPINE1, COL1A1, SPARC, FN1, CNN2,  

LOX, POSTN, TIMP1, SERPINE2, COL1A2 

1,94E-05 12 1861 Secretion  FN1, POSTN, SERPINE2, CD44, CNN2, TIMP1,  

SERPINE1, SPARC, CLU, CAB39, CTSB, B2M 

3,13E-05 8 694 Cellular 

response to 

growth factor 

stimulus  

CD44, COL1A2, COL1A1, LOX, SPARC, POSTN,  

HTRA1, FSTL1 

4,09E-05 8 723 Response to 

growth factor 

CD44, COL1A2, COL1A1, LOX, SPARC, POSTN,  

HTRA1, FSTL1 

4,53E-05 7 511 Angiogenesis  COL23A1, THBS2, SPARC, MMP2, FN1, SERPINE1, 

 TGFBI 

4,53E-05 11 1670 Cell motility CD44, SERPINE1, COL1A1, SPARC, FN1, CNN2,  

LOX, POSTN, TIMP1, SERPINE2, COL1A2 

4,53E-05 11 1670 Localization of 

cell 

CD44, SERPINE1, COL1A1, SPARC, FN1, CNN2,  

LOX, POSTN, TIMP1, SERPINE2, COL1A2 

 

Supplement 3 GO group enrichment analysis of findings from secretome analysis. Protein discoveries listed in Fig. 1 S1 

were examined for GO group enrichment using Shiny GO v06.0. 

N High level GO category Genes 

20 Response to stress  CD44, MMP2, SERPINE1, SERPINE2, CAB39, CLU, CNN2, TIMP1, COL1A1, 

LOX, SPARC, FN1, POSTN, C1R, FSTL1, IGFBP7, HTRA1, COL1A2, CTSB, 

B2M  

15 Anatomical structure 

morphogenesis  

COL23A1, THBS2, SERPINE1, SPARC, FN1, CLU, MMP2, COL1A1, LOX, 

POSTN, SERPINE2, HTRA1, TGFBI, CD44, COL1A2 

14 Regulation of response to 

stimulus 

CD44, SERPINE1, SERPINE2, COL1A1, FN1, B2M, TIMP1, LOX, CLU, POSTN, 

C1R, HTRA1, COL1A2, CTSB 



RESULTS   89 

 
 

13 Immune system process CD44, CLU, B2M, CNN2, LOX, C1R, HTRA1, SERPINE1, COL1A1, FN1, 

CAB39, COL1A2, CTSB 

13 Response to external 

stimulus 

COL1A1, SERPINE1, SERPINE2, CNN2, POSTN, LOX, SPARC, LOXL1, 

FSTL1, HTRA1, B2M, CLU, C1R 

12 Response to endogenous 

stimulus 

TIMP1, CD44, COL1A2, MMP2, COL1A1, LOX, SPARC, POSTN, IGFBP7, 

HTRA1, CTSB, FSTL1 

12 Regulation of localization  CAB39, SERPINE1, COL1A1, SPARC, FN1, CNN2, NUCB1, POSTN, 

SERPINE2, CLU, B2M, TIMP1 

12 Multi-organism process FN1, MMP2, SPARC, LOXL1, SERPINE2, IGFBP7, CTSB, HTRA1, B2M, CLU, 

SERPINE1, TIMP1 

11 Locomotion  CD44, SERPINE1, COL1A1, SPARC, FN1, CNN2, LOX, POSTN, TIMP1, 

SERPINE2, COL1A2 

11 Cell motility  CD44, SERPINE1, COL1A1, SPARC, FN1, CNN2, LOX, POSTN, TIMP1, 

SERPINE2, COL1A2 

11 Regulation of 

developmental process  

THBS2, SERPINE1, COL1A1, SPARC, SERPINE2, LOX, FN1, POSTN, B2M, 

CD44, TIMP1 

11 Regulation of multicellular 

organismal process  

THBS2, SERPINE1, SERPINE2, COL1A1, SPARC, FN1, CLU, B2M, LOX, 

POSTN, TIMP1 

11 Localization of cell CD44, SERPINE1, COL1A1, SPARC, FN1, CNN2, LOX, POSTN, TIMP1, 

SERPINE2, COL1A2 

11 Regulation of biological 

quality 

B2M, SERPINE1, SERPINE2, CLU, LOX, SPARC, FN1, POSTN, THBS2, 

COL1A2, COL1A1 

11 Regulation of molecular 

function 

TIMP1, SERPINE1, SERPINE2, CAB39, CD44, B2M, PCOLCE, LOX, FN1, 

CTSB, CLU 

10 Cell adhesion CD44, TGFBI, POSTN, SERPINE1, FN1, IGFBP7, COL1A1, SERPINE2, SVEP1, 

THBS2 

10 Cell proliferation TIMP1, SPARC, FN1, CLU, CNN2, MMP2, TGFBI, SERPINE2, HTRA1, IGFBP7 

10 Biological adhesion CD44, TGFBI, POSTN, SERPINE1, FN1, IGFBP7, COL1A1, SERPINE2, SVEP1, 

THBS2 

10 Regulation of signalling CD44, SERPINE1, COL1A1, FN1, TIMP1, LOX, POSTN, SERPINE2, HTRA1, 

CLU 

9 Regulation of immune 

system process 

B2M, LOX, CLU, C1R, HTRA1, SERPINE1, COL1A1, COL1A2, CTSB 

9 Immune response B2M, CLU, C1R, CD44, CNN2, COL1A1, CAB39, COL1A2, CTSB 

9 Anatomical structure 

formation involved in 

morphogenesis 

COL23A1, THBS2, SERPINE1, SPARC, FN1, MMP2, COL1A1, HTRA1, TGFBI 

8 Immune effector process B2M, CLU, C1R, HTRA1, CD44, CNN2, CAB39, CTSB 

8 Response to abiotic 

stimulus 

MMP2, COL1A1, CAB39, CNN2, SPARC, POSTN, SERPINE2, IGFBP7 

8 Regulation of locomotion SERPINE1, COL1A1, SPARC, FN1, CNN2, POSTN, TIMP1, SERPINE2 

7 Catabolic process MMP2, TIMP1, CLU, CTSB, CD44, SERPINE2, HEXA 

7 Regulation of cell adhesion SERPINE1, FN1, COL1A1, POSTN, SERPINE2, CD44, TGFBI 

7 Cellular component 

biogenesis 

CLU, COL1A1, LOX, FN1, CAB39, COL1A2, THBS2 

6 Reproduction  MMP2, SERPINE2, IGFBP7, CTSB, HTRA1, TIMP1 

6 Response to biotic stimulus SPARC, LOXL1, HTRA1, B2M, CLU, SERPINE1 

6 Reproductive process MMP2, SERPINE2, IGFBP7, CTSB, HTRA1, TIMP1 

6 Leukocyte activation  CD44, CLU, B2M, CNN2, CAB39, CTSB 

6 Response to other organism SPARC, LOXL1, HTRA1, B2M, CLU, SERPINE1 

5 System process TGFBI, POSTN, SERPINE2, COL1A1, COL1A2 

5 Macromolecule localization CLU, COL1A1, FN1, NUCB1, POSTN 

5 Multi-organism 

reproductive process 

MMP2, SERPINE2, IGFBP7, CTSB, TIMP1 

5 Multi-multicellular 

organism process  

MMP2, SERPINE2, IGFBP7, CTSB, TIMP1 

5 Leukocyte migration SERPINE1, CD44, COL1A1, FN1, COL1A2 

4 Cell growth FN1, POSTN, SERPINE2, IGFBP7 

4 Growth FN1, POSTN, SERPINE2, IGFBP7 
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3 Activation of immune 

response 

CLU, C1R, CTSB 

3 Immune system 

development 

CNN2, LOX, B2M 

3 Developmental process 

involved in reproduction 

SERPINE2, CTSB, HTRA1 

3 Regulation of growth FN1, SERPINE2, IGFBP7 

3 Interspecies interaction 

between organisms 

FN1, CTSB, B2M 

3 Cellular localization 

","CLU COL1A1 NUCB1" 

CLU, COL1A1, NUCB1 

2 Protein folding CLU, B2M 

2 Multicellular organism 

reproduction 

SERPINE2, CTSB 

2 Taxis  LOX, SERPINE1 

2 Regulation of multi-

organism process 

HTRA1, TIMP1 

2 Regulation of cellular 

component biogenesis 

CLU, THBS2 

2 Developmental growth FN1, POSTN 

2 Multicellular organismal 

reproductive process 

SERPINE2, CTSB 

2 Protein activation cascade CLU, C1R 

2 Regulation of homeostasis  SERPINE1, SERPINE2 
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Supplement 4 Functional analysis of detected discoveries from secretome and proteome analysis of co-cultured breast 

cancer cells. A Hierarchical clustering tree using shiny GO v06.0 Gene ontology enrichment of discoveries from co-culture 

media with corresponding p-values. B Volcano plot demonstrating potential bone-directed breast cancer invasiveness related 

targets using proteome analysis of media from co-cultures MCF-7 cells vs MG-63 control. Detected target proteins were 

stated as discovery when adjusted p-value was below 0.03 (dotted line) with a false-discovery rate (FDR) of 5% and a log 2 

fold change (FC) higher 0.25 or lower -0.25. Every dot indicates one target, green dots indicate upregulated discoveries and 

red dot indicates downregulated discoveries. n=6, discovery determined using two-stage linear step-up procedure of 

Benjamini, Krieger and Yekutieli, with Q = 5%. Each row was analyzed individually, without assuming a consistent SD. C 

Volcano plot demonstrating potential bone-directed breast cancer invasiveness related targets using proteome analysis of 

lysates from co-cultures MCF-7 cells vs MCF-7 control. Detected target proteins were stated as discovery when adjusted p-

value was below 0.05 (dotted line) with a false-discovery rate (FDR) of 1% and a log 2 fold change (FC) higher 0.25 or lower 

-0.25. Every dot indicates one target, green dots indicate upregulated discoveries and red dot indicates downregulated 

discoveries. n=6, discovery determined using two-stage linear step-up procedure of Benjamini, Krieger and Yekutieli, with Q 

= 1%. Each row was analyzed individually, without assuming a consistent SD. D Hierarchical clustering tree using shiny GO 

v06.0 Gene ontology enrichment of discoveries from co-culture lysates with corresponding p-values. 

Supplement 5 Protein findings from proteome analysis of cell lysates from co-cultured breast cancer cells with 

osteosarcoma cells (MG-63) compared to MCF-7 monoculture. Information about gene symbol/User ID, Ensemble Gene 

ID, Gene Type, Chromosome location (Chr) and genomic position is given. List was used to further examine Gene Ontology 

(GO) enrichment using Shiny GO v06.0. 

i User ID Ensembl Gene ID p-value 

mean co-

culture 

mean MCF-7 

control 

1 HIST2H3PS2 ENSG00000203818 <0,000000000000001 711875 1418125 

2 CFL1 ENSG00000172757 3,995E-07 1362500 1800000 
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3 SLC3A2 ENSG00000168003 4,69E-13 1318625 694125 

4 KRT8 ENSG00000170421 <0,000000000000001 2528750 5233750 

5 HSP90B1 ENSG00000166598 <0,000000000000001 3183750 2406250 

6 KRT18 ENSG00000111057 <0,000000000000001 1963750 4050125 

7 ATP5F1B ENSG00000110955 1,11105E-06 1610000 1189625 

8 PDIA3 ENSG00000167004 1,48704E-06 1531250 1115875 

9 KRT19 ENSG00000171345 <0,000000000000001 1441250 2472250 

10 FASN ENSG00000169710 <0,000000000000001 3546250 2232500 

11 ATP5F1A ENSG00000152234 5,68907E-05 1645000 1297625 

12 HSPD1 ENSG00000144381 7,80485E-09 1988750 1490500 

13 PREX1 ENSG00000124126 6,12649E-06 304250 694500 

14 HSPA9 ENSG00000113013 2,96513E-07 1378750 936375 

15 HSP90AB1 ENSG00000096384 2,19282E-08 1622500 1139500 

16 MDH2 ENSG00000146701 7,73663E-08 2807500 2343750 

17 HSPB1 ENSG00000106211 <0,000000000000001 4387500 6976250 

 

Supplement 6 GO enrichment analysis of findings from proteome analysis. Protein discoveries from co-cultured breast 

cancer cell lysates listed in S5 were examined for GO enrichment using Shiny GO v06.0. Information is given about the 

enrichment FDR, how many genes with the discovery list are enriched within specific functional category, total number of 

genes within specific functional category, functional category and genes listed from the discoveries which are enriched in 

specific category. 

Enrichment 

FDR 

Genes 

in list 

Total 

genes 

Functional Category Genes 

7,55E-06 6 245 Protein folding HSPA9, HSPD1, PDIA3, HSP90AB1, HSP90B1, HSPB1 

1,34E-05 11 2257 Programmed cell death  HSPD1, KRT18, HSP90AB1, HSPB1, PDIA3, KRT8, 

HSP90B1, HSPA9, PREX1, KRT19, CFL1 

1,34E-05 9 1278 Cellular response to 

cytokine stimulus 

HSP90AB1, ATP5F1B, KRT18, PDIA3, FASN, KRT8, 

HSPA9, HSP90B1, CFL1 

1,46E-05 11 2415 Cell death HSPD1, KRT18, HSP90AB1, HSPB1, PDIA3, KRT8, 

HSP90B1, HSPA9, PREX1, KRT19, CFL1 

1,48E-05 9 1372 Response to cytokine HSP90AB1, ATP5F1B, KRT18, PDIA3, FASN, KRT8, 

HSPA9, HSP90B1, CFL1 

1,82E-05 5 193 Response to unfolded 

protein 

HSPA9, HSPD1, HSP90AB1, HSPB1, HSP90B1 

2,97E-05 10 2106 Apoptotic process HSPD1, KRT18, HSP90AB1, HSPB1, PDIA3, KRT8, 

HSP90B1, HSPA9, PREX1, CFL1 

2,97E-05 12 3547 Response to organic 

substance 

HSPA9, HSP90AB1, HSPD1, HSP90B1, ATP5F1B, 

KRT18, PDIA3, FASN, KRT8, CFL1, HSPB1, SLC3A2 

2,97E-05 5 227 Response to 

topologically incorrect 

protein  

HSPA9, HSPD1, HSP90AB1, HSPB1, HSP90B1 

3,69E-05 9 1657 Regulation of apoptotic 

process  

KRT18, HSPD1, HSP90AB1, HSPB1, PDIA3, HSP90B1, 

HSPA9, PREX1, CFL1 

3,79E-05 9 1681 Regulation of 

programmed cell death 

KRT18, HSPD1, HSP90AB1, HSPB1, PDIA3, HSP90B1, 

HSPA9, PREX1, CFL1 

7,27E-05 9 1835 Regulation of cell death KRT18, HSPD1, HSP90AB1, HSPB1, PDIA3, HSP90B1, 

HSPA9, PREX1, CFL1 

0,000115066 7 966 Negative regulation of 

apoptotic process 

KRT18, HSP90AB1, HSPB1, HSPD1, HSP90B1, HSPA9, 

CFL1 

0,00012323 7 987 Negative regulation of 

programmed cell death  

KRT18, HSP90AB1, HSPB1, HSPD1, HSP90B1, HSPA9, 

CFL1 

0,000191624 11 3536 Cellular response to 

chemical stimulus 

HSPA9, HSP90AB1, HSP90B1, HSPB1, ATP5F1B, 

KRT18, PREX1, PDIA3, FASN, KRT8, CFL1 

0,000219305 7 1099 Negative regulation of 

cell death 

KRT18, HSP90AB1, HSPB1, HSPD1, HSP90B1, HSPA9, 

CFL1 

0,000225829 6 712 Supramolecular fiber 

organization 

HSP90B1, KRT19, CFL1, PREX1, KRT8, HSP90AB1 
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0,000225829 3 55 Positive regulation of 

blood vessel endothelial 

cell migration 

ATP5F1B, ATP5F1A, HSPB1 

0,000251526 10 2938 Cellular response to 

organic substance 

HSPA9, HSP90AB1, HSP90B1, ATP5F1B, KRT18, PDIA3, 

FASN, KRT8, HSPB1, CFL1 

0,000790234 2 12 Hepatocyte apoptotic 

process 

KRT18, KRT8 

0,000911637 6 951 Viral process KRT18, HSPD1, KRT8, KRT19, HSP90AB1, CFL1 

0,000911637 6 950 Cytokine-mediated 

signalling pathway 

KRT18, KRT8, HSP90AB1, HSPA9, HSP90B1, CFL1 

0,000915372 3 95 Regulation of blood 

vessel endothelial cell 

migration 

ATP5F1B, ATP5F1A, HSPB1 

0,000962601 3 98 Positive regulation of 

endothelial cell 

migration 

ATP5F1B, ATP5F1A, HSPB1 

0,001203543 3 109 Mitochondrial 

transmembrane 

transport 

HSPD1, ATP5F1B, ATP5F1A 

0,001203543 2 17 Protein folding in 

endoplasmic reticulum 

HSP90B1, PDIA3 

0,001203543 6 1024 Symbiont process KRT18, HSPD1, KRT8, KRT19, HSP90AB1, CFL1 

0,001435777 3 119 Blood vessel 

endothelial cell 

migration 

ATP5F1B, ATP5F1A, HSPB1 

0,001435777 6 1084 Interspecies interaction 

between organisms 

KRT18, HSPD1, KRT8, KRT19, HSP90AB1, CFL1 

0,001588854 3 125 Cornification KRT18, KRT8, KRT19 

 

Supplement 7: GO group enrichment analysis of findings from proteome analysis. Protein discoveries listed in S5 were 

examined for GO group enrichment using Shiny GO v06.0. 

N High level GO category Genes 

9 Regulation of biological quality HSPB1, HSP90AB1, PREX1, PDIA3, CFL1, ATP5F1B, HSPA9, HSPD1, 

HSP90B1 

8 Immune system process HSPD1, HSPA9, PREX1, FASN, HSP90AB1, HSP90B1, PDIA3, 

SLC3A2 

8 Response to stress HSPB1, HSPA9, ATP5F1A, HSP90B1, PDIA3, HSPD1, HSP90AB1, 

KRT8 

8 Anatomical structure morphogenesis KRT19, HSP90AB1, PREX1, KRT8, CFL1, HSPB1, ATP5F1B, KRT18 

8 Regulation of multicellular organismal 

process 

HSP90AB1, HSPD1, HSPB1, HSPA9, PREX1, ATP5F1B, ATP5F1A, 

CFL1 

8 Cellular localization HSP90AB1, HSPD1, ATP5F1B, ATP5F1A, KRT18, HSPA9, HSPB1, 

HSP90B1 

7 Cellular component biogenesis HSP90AB1, HSP90B1, KRT19, HSPA9, PREX1, KRT8, HSPD1 

7 Multi-organism process KRT18, HSPD1, KRT8, KRT19, HSPB1, CFL1, HSP90AB1 

6 Protein folding HSPA9, HSPD1, PDIA3, HSP90AB1, HSP90B1, HSPB1 

6 Biological adhesion  HSPB1, HSPD1, ATP5F1B, KRT18, PREX1, HSP90AB1 

6 Macromolecule localization HSP90AB1, HSPD1, KRT18, HSPA9, HSPB1, HSP90B1 

6 Locomotion ATP5F1B, PREX1, CFL1, ATP5F1A, HSPB1, SLC3A2 

6 Interspecies interaction between organisms KRT18, HSPD1, KRT8, KRT19, HSP90AB1, CFL1 

6 Regulation of response to stimulus HSP90AB1, HSPD1, HSPB1, PREX1, PDIA3, HSP90B1 

6 Cell motility ATP5F1B, PREX1, CFL1, ATP5F1A, HSPB1, SLC3A2 

6 Localization of cell  ATP5F1B, PREX1, CFL1, ATP5F1A, HSPB1, SLC3A2 

5 Cell adhesion HSPB1, HSPD1, ATP5F1B, KRT18, PREX1 

5 Response to external stimulus HSP90B1, PREX1, KRT8, HSPB1, CFL1 
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5 Response to abiotic stimulus HSPA9, HSP90B1, HSP90AB1, KRT8, HSPD1 

5 Regulation of localization HSP90AB1, PREX1, ATP5F1B, ATP5F1A, HSPB1 

5 Anatomical structure formation involved in 

morphogenesis 

KRT19, KRT8, CFL1, HSPB1, ATP5F1B 

5 Regulation of developmental process HSPA9, PREX1, HSP90AB1, HSPB1, CFL1 

5 Regulation of molecular function HSP90AB1, HSPD1, HSP90B1, HSPB1, PREX1 

4 Immune system development HSPD1, HSPA9, PREX1, FASN 

4 Regulation of immune system process HSPD1, HSPA9, HSP90AB1, HSP90B1 

4 Response to biotic stimulus HSPD1, KRT8, HSPB1, CFL1 

4 Regulation of signalling HSP90AB1, HSPB1, PREX1, PDIA3 

4 Regulation of locomotion PREX1, ATP5F1B, ATP5F1A, HSPB1 

3 Reproduction HSP90AB1, KRT8, KRT19 

3 Activation of immune response HSPD1, HSP90AB1, HSP90B1 

3 Developmental process involved in 

reproduction 

HSP90AB1, KRT8, KRT19 

3 Immune response  HSPD1, HSP90AB1, HSP90B1 

3 Catabolic process HSP90AB1, HSP90B1, HSPB1 

3 Reproductive process HSP90AB1, KRT8, KRT19 

3 Regulation of cell adhesion HSPD1, ATP5F1B, PREX1 

3 Leukocyte activation HSPD1, PREX1, HSP90AB1 

3 Response to other organism KRT8, HSPB1, CFL1 

2 Immune effector process HSPD1, HSP90AB1 

2 Cell proliferation HSPD1, ATP5F1A 

2 Response to endogenous stimulus HSP90AB1, HSP90B1 

2 Cell cycle process CFL1, HSP90AB1 

2 Taxis PREX1, HSPB1 

2 Leukocyte migration PREX1, SLC3A2 

 

 

Supplement 8 Tissue expression analysis of CTGF. CTGF expression in human bone (n=2), breast (n=179), lung (n=287) 

and brain (n=1136) tissue was assessed using xenabrowse with datasets from GTEX, TARGET, and TCGA. One-way 

ANOVA and a Dunnett‘s multiple comparison test with no matching or pairing between groups was calculated to assess 

significant differences compared to the untreated control. **** P <0.0001 
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Supplement 9: CTGF expression in invasive ductal carcinoma and normal breast tissue. CTGF expression was assessed 

in 24 patient samples from biomax tissue array (BR248a). Following information are given: Sex/Age, pathology diagnosis, 

TNM (Tumor, Node, and Metastasis), Tumor Grading, Stage, Type, Tissue-ID and corresponding detected CTGF expression. 

Sex/ 

Age 

Pathology diagnosis TNM Grade Stage Type Tissue ID. CTGF 

expression 

F/34 Invasive ductal carcinoma T3N0M0 1--2 IIB malignant Fmg040048  +  

F/37 Invasive ductal carcinoma T2N0M0 1--2 IIA malignant Fmg020357  +  

F/60 Invasive ductal carcinoma T2N0M0 2 IIA malignant Fmg040031  +  

F/57 Invasive ductal carcinoma T2N0M0 2 IIA malignant Fmg040001  +  

F/38 Invasive ductal carcinoma T1N0M0 2 I malignant Fmg040052  ++  

F/55 Invasive ductal carcinoma T2N0M0 2 IIA malignant Fmg040104  -  

F/45 Invasive ductal carcinoma T2N0M0 2 IIA malignant Fmg040113  ++  

F/48 Invasive ductal carcinoma T2N0M0 2 IIA malignant Fmg040118  +/++  

F/58 Invasive ductal carcinoma T2N0M0 2 IIA malignant Fmg040120  ++ 

F/34 Invasive ductal carcinoma T2N0M0 2 IIA malignant Fmg040123  ++ 

F/49 Invasive ductal carcinoma T2N0M0 2 IIA malignant Fmg040125  +  

F/58 Invasive ductal carcinoma T2N0M0 2 IIA malignant Fmg040130  ++ 

F/38 Invasive ductal carcinoma T2N1M0 2 IIB malignant Fmg040131  + 

F/79 Invasive ductal carcinoma T2N1M0 3 IIB malignant Fmg010491  +  

F/43 Invasive ductal carcinoma T2N0M0 3 IIA malignant Fmg040004  - 

F/46 Invasive ductal carcinoma T3N0M0 3 IIB malignant Fmg040074  + 

F/76 Invasive ductal carcinoma T4N0M0 3 IIIB malignant Fmg010789  + 

F/47 Medullary carcinoma T2N0M0 - IIA malignant Fmg040016  +  

F/21 Adenosis - - - normal Fmg06N024  -  

F/28 Normal breast tissue (fibro 

fatty tissue and blood vessel) 

- - - normal Fmg11N017  -  

F/21 Normal breast tissue - - - normal Fmg12N001  +  

F/50 Adenosis - - - normal Fmg08N034  - 

F/50 Normal breast tissue - - - normal Fmg12N002  -  

F/19 Normal breast tissue - - - normal Fmg07N013  -  
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Supplement 10: CTGF expression does not alter proliferation in vitro. A CTGF mRNA expression in different breast 

cancer cell lines 120 hours after siRNA transfection was detected by real-time quantitative PCR. Data represent the mean ± 

SEM. MCF-7-EMT n=4, MDA-MB-231 n=5 using unpaired, two-tailed t-test analysis compared to respective control. * 

P<0.05 B CTGF protein expression of different breast cancer cells 48 hours after CTGF siRNA transfection was detected by 

western blotting. The CTGF band intensity was quantified by densitometry and normalized to GAPDH. Data represent the 

mean ± SEM. n=3 using unpaired, two-tailed t-test analysis compared to respective control. ** P<0.01; *** P<0.005 C 

Relative AlamarBlue reduction  in different breast cancer cell lines 48 and 120 hours after CTGF siRNA  transfection at 4 

hours AlamarBlue incubation. Data represent the mean ± SEM. MCF-7-EMT t48h n=3, MCF-7-EMT t120h n=4 and MDA-

MB-231 n=3 using unpaired, two-tailed t-test analysis compared to respective control. D 3D spheroid invasion assay with 

different compounds supplemented. Spheroids were embedded in Matrigel, after 48 hours AlamarBlue was added and 

absorption was measured after 4hours incubation. n = 3 
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Supplement 11: GnRH agonist regulates CTGF expression in TNBC cells. A Relative quantification of CTGF mRNA 

expression in TNBC cells (MDA-MB-231) treated for 48 hours with 10 -9 M or 10 -7 M Triptorelin. Data represent the mean ± 

SEM. MDA-MB-231 n=4 using one-way ANOVA with F= 12.29 and a Dunnett‘s multiple comparison test with no matching 

or pairing between groups. ** P <0.01 B Quantification and representative experiment of CTGF protein expression after 

Triptorelin treatment for 48 hours (10 -7 M). The CTGF band intensity was quantified by densitometry and normalized to 

GAPDH. Data represent the mean ± SEM. MDA-MB-231 n=7 using unpaired, two-tailed t-test analysis to respective control 

(untreated). * P<0.05 C Cell-ECM adhesion analysis of TNBC cells treated with 10 -7 M Triptorelin. Adhesive cells where 

counter-stained with crystal violet and absorption was measured at 570nm. Data represent the mean ± SEM. MDA-MB-231 

n=3 using unpaired, two-tailed t-test analysis to respective control (untreated). *P<0.05 D Representative images 

corresponding to C. F Following RhoA activator II treatment (1µg/ml) invaded MDA-MB-231 cells under the filter were 

counted in four randomly selected regions, using a co-culture Matrigel invasion assay for 48 hours. Data represent the mean ± 

SEM. n=9 Using unpaired, two-tailed t-test analysis to respective control. * P< 0.05 
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Supplement 12: Reducing RhoA expression does not alter proliferation in vitro. (A) RhoA protein expression in MCF-7 

breast cancer cells 48 hours after RhoA siRNA transfection was detected by western blotting. The RhoA band intensity was 

quantified by densitometry and normalized to GAPDH. Data represent the mean ± SEM. n=3 using unpaired, two-tailed t-test 

analysis compared to respective control. * P<0.05 (B) Relative AlamarBlue reduction  in MCF-7 breast cancer cells 48 hours  

after RhoA siRNA  transfection at 4 hours AlamarBlue incubation. Data represent the mean ± SEM. n=3 using unpaired, two-

tailed t-test analysis compared to respective control.  

 

References for this Manuscript are included along with introduction and discussion references 

at the end of the thesis.
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4. DISCUSSION 

In this study, we aimed to identify the molecular mechanisms of reduced breast cancer 

invasion when CYR61 expression was diminished. Additionally, the extracellular drivers of 

breast cancer bone-directed invasion were identified. Furthermore, the molecular mechanism 

of reduced breast cancer invasion during reduced CTGF expression was identified. Main 

findings were as follows: 

1) CYR61 expression correlates with invasiveness of TNBC cells (MDA-MB-231, HCC-

1806) and mesenchymal-transformed breast cancer cells (MCF-7-EMT, T47D-EMT). 

Reduced CYR61 expression led to diminished ERK1/2 phosphorylation, thereby 

reducing S100A4 expression. This signaling cascade could be assured by reduced 

YAP expression, which led to reduced CYR61 expression, reduced ERK1/2 

phosphorylation, and reduced S100A4 expression (Figure 4). 

2) CYR61 and S100A4 can be of value as a prognostic marker and therapeutic target for 

advanced and metastatic breast cancer. 

3) We successfully identified 28 drivers of breast cancer bone-directed invasion by 

combining co-culturing techniques with secretome analysis using mass spectrometry. 

Additionally, nine identified drivers overlapped with genes upregulated during 

mesenchymal transition. 

4) CTGF is one driver of breast cancer bone-directed invasion and is upregulated during 

mesenchymal transition. Reduced CTGF expression increased cell-ECM adhesion and 

decreased proteolytic activity of breast cancer cells. Additionally, CTGF regulates 

Zeb1, vimentin, LOX, SPARC, CD44, and transforming growth factor beta induced 

(TGFBI) expression in a cell-specific manner. 

5) CTGF can be of value as a therapeutic target for advanced and metastatic breast 

cancer. Additionally, breast cancer cells treated with gonadotropin- releasing hormone 

(GnRH) agonist exhibited reduced CTGF expression by induced RhoA activity. These 

results indicate this agonist may be a possible treatment option. 
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Figure 4 Scheme of signaling, that impedes invasion in highly invasive breast cancer cells. Illustration indicates how 

reduction of CYR61 or CTGF reduced breast cancer cell invasion. 

4.1. IDENTIFICATION OF MOLECULAR MECHANISMS UNDERLYING 

REDUCED BREAST CANCER INVASIVENESS DUE TO REDUCED CYR61 

EXPRESSION 

As a matricellular protein, CYR61 acts as link between the ECM and cells within the TME 

(79). It binds to versatile receptors, thereby influencing manifold cellular processes such as 

invasion, migration, proliferation, survival, and wound healing (77, 80, 92, 93). Additionally, 

CYR61 has oncogenic function in several tumor entities including the breast (97, 114, 191, 

192). Invasion is the initial step of the invasion-metastatic cascade. Cells unable to invade will 

not intravasate into the vascular system, extravasate into the distant parenchyma, or form 

metastases at distant sites (19-22). Bone metastasis is the prominent site for metastases in 

cancer, accounting for 70% and more of all metastases primarily located in the breast, 

prostate, and brain (8, 193). Despite having harsh physical environmental circumstances, 

disseminated tumor cells are able to colonize within the bone microenvironment with features 

different from the primary site of tumor growth (60). Identifying targets to stage tumor 

progression and impede invasion of primary breast cancer cells may help to cure currently 

incurable metastatic breast cancer. Our data suggest higher CYR61 expression in invasive 

TNBC cells (MDA-MB-231/basal b-like, HCC1806/ basal a-like) and mesenchymal-

transformed breast cancer cells (MCF-7-EMT, T47D-EMT), which were generated from non-

invasive breast cancer cells from luminal A subtype (MCF-7, T47D) (Manuscript A Figure 1 

A). These mesenchymal-transformed breast cancer cells showed increased expression of 
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TGFBI, vimentin, zinc finger E-box-binding homeobox 1 (Zeb1), Snail family transcriptional 

repressor 2 (SNAI2), and E-cadherin (Manuscript A Figure S1 A-F). It was previously 

demonstrated that targeting extracellular CYR61 through specific antibodies led to reduced 

2D transwell invasion in co-culture with osteosarcoma cells (7). In our study, transient 

reduced intracellular CYR61 expression led to reduced 2D transwell invasion in co-culture 

with osteosarcoma cells and reduced 3D spheroid invaded area growth, which was not due to 

altered proliferation (Manuscript A Figure 1 C-D + Figure S2 B).  

To shed light on the underlying molecular mechanisms of CYR61 related breast cancer 

invasion, we found S100A4 to be a potential target. S100A4, which was already reported to 

affect breast cancer invasion, is regulated through integrin αvβ3 and ERK1/2 (7, 168). 

Additionally, a previous study demonstrated that CYR61 promotes EMT through αvβ3 and 

ERK signaling in osteosarcoma cells (191). In accordance with these findings, we report that 

reduced CYR61 led to decreased S100A4 expression. Reduced S100A4 expression led to 

reduced 2D transwell invasion and 3D spheroid invaded area growth, while additional 

treatment with recombinant CYR61 reversed this effect (Manuscript A Figure 2 D - F). 

Moreover, reduced CYR61 expression led to reduced ERK1/2 phosphorylation. The blocking 

of ERK1/2 phosphorylation with U0126 (inhibitor of MEK1/2 kinase) treatment led to 

reduced S100A4 expression and reduced invasiveness (Manuscript A Figure 3 D, E). In 

accordance with these results, previous studies have reported that S100A4 induces TGFβ 

signaling and the EMT and that targeting S100A4 could help to prevent bone metastasis (194-

196).  

Additionally, we wanted to verify these findings by regulating an upstream target of CYR61: 

YAP. YAP is a key regulator within Hippo signaling that facilitates organ development and 

angiogenesis (197-199). Increased YAP expression was reported to increase EMT marker 

expression (200). In our study, reduced YAP expression led to decreased 3D spheroid invaded 

area growth of invasive breast cancer cells, decreased CYR61 and S100A4 expression, and 

reduced ERK1/2 phosphorylation. Additional treatment with recombinant human CYR61 

neutralized the effect on 3D spheroid invaded area growth. Interestingly, it was reported that 

the inhibition of ERK1/2 led to reduced YAP expression, which suggests a feedback loop 

mechanism (201). Regarding the use of CYR61 as a predictive marker for cancer, it was 

suggested that increased CYR61 expression correlates with poor prognosis in patients with 

esophageal squamous cell carcinoma (202). Moreover, CYR61 was proposed to be of clinical 

relevance regarding hormone receptor–positive early-stage breast cancer (203). Our 
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observations indicate that CYR61, and to a further extent S100A4, may be of value as a 

predictive marker and therapeutic target for advanced and metastatic breast cancer 

(Manuscript A Figure 5, 6). Apart from this, an ongoing prospective trial is aiming to validate 

expression of different mRNA biomarkers in lung cancer including CCN1/CYR61 

(NCT02294578). Another phase I clinical trial indicated a clinical benefit for patients with 

advanced solid tumors treated with cytostatic drug paclitaxel and cilengitide (antagonist of 

integrin αvβ3 and αvβ5) (204). Regarding S100A4, FDA has already approved niclodamide, 

which targets S100A4/NFκB/MMP9 signaling. A phase II clinical trial is aiming to test 

niclodamide for colorectal cancer (NCT02519582), and further applications are suggested for 

NSCLC (205). 

4.2. IDENTIFICATION OF EXTRACELLULAR DRIVERS OF INVASION  

Secreted proteins of different cell types prime and alter the constitution of the TME and ECM 

and drive tumor progression (2). We aimed to identify drivers of breast cancer bone-directed 

invasion by combining a co-culture model of breast cancer cells with osteosarcoma cells and 

secretome analysis using mass spectrometry. Identifying key regulators of the TME including 

the ECM could help to stage tumor progression and impede cancer cell invasion. We 

successfully detected 28 secreted proteins that are upregulated during the co-culture of non-

invasive MCF-7 breast cancer cells and MG-63 osteosarcoma cells, compared with media 

from MCF-7 cells (Manuscript B figure 3 B-D). Additionally, we analyzed the effect of 

fibronectin (FN1), MMP2, and CTGF on invaded area growth due to gene ontology 

enrichment of detected potential drivers of breast cancer bone-directed invasion clustered in, 

but not restricted to, cell motility and cell migration (Manuscript B Supplement 4 A). Treating 

MCF-7 spheroids with human recombinant CTGF or MMP2 resulted in increased invaded 

area growth, whereas treatment with human fibronectin had no effect on the invaded area 

growth (Manuscript B Figure 5 F). Using BB-94, a MMP inhibitor, invaded area growth was 

diminished. Treatment of MCF-7 spheroids with FN1 and CTGF or FN1 with MMP2 had no 

effect on the invaded area growth. Regarding FN1 function in cell invasion and tumor 

progression, it was proposed that FN1 induced EMT through calpain in MCF-7 cells (206). 

Apart from this, it was demonstrated that only cleaved FN1 induced metastasis in human 

melanoma and that autocrine FN1 inhibited breast cancer metastasis (147, 163). Comparing 

the secretome of co-culture media with the media from osteosarcoma cells identified an 

upregulation of SPARC and a downregulation of MMP2 (Manuscript B Supplement 4 B). The 

downregulation of MMP2 may be due to MCF-7 breast cancer cells not expressing MMP2 or 

MMP9 (207). Furthermore, we analyzed the changed proteome by comparing the 
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monoculture of MCF-7 and the co-culture of MCF-7 with osteosarcoma cells (MG-63). We 

found that heat shock proteins are highly dysregulated. Heat shock proteins are upregulated in 

tumor cells due to higher mutational load, resulting in misfolded proteins. Additionally, there 

is a great interest in and ongoing clinical trials on the involvement of heat shock proteins in 

tumor progression (183-185). However, further evaluation is needed to understand how these 

proteins are regulated with regards to the basal expression of different cell lines. Taken 

together, we identified potential drivers of breast cancer bone-directed invasion; however, the 

value of each identified driver needs to be further evaluated. The system we used was a 

simplified 2 D setup without accounting for fibroblasts, immune cells, or the ECM. Signaling 

within the TME and at a metastatic niche is very complex, and cell culture techniques have 

their limitations. 

4.3. IDENTIFICATION OF MOLECULAR MECHANISM UNDERLYING 

REDRUCED BREAST CANCER INVASIVENESS DUE TO REDUCED CTGF 

EXPRESSION  

Mesenchymal transformed breast cancer cells (MCF-7-EMT) exhibit an elevated expression 

of CTGF (51). In addition, secretome analysis of MCF-7 co-cultured with osteosarcoma cells 

revealed that CTGF is upregulated. CTGF increased the invaded area growth and proteolytic 

activity and decreased cell-ECM adhesion (Manuscript B Figure 5 F and Figure 6 E, H). In 

accordance with these observations, reduced CTGF expression decreased the invaded area 

growth and increased cell-ECM adhesion (Manuscript B Figure 5 A, B and Figure 6 A-D). 

The effect of neutralizing CTGF antibodies on cell-ECM adhesion was reported previously, 

indicating comparable results (116). However, the reduction of CTGF was not sufficient to 

reduce the proteolytic activity in TNBC cell line MDA-MB-231 (Manuscript B Figure 6 G). 

This could be due to cell line–specific molecular alterations and would need further 

evaluation using additional TNBC cell lines. Additionally, it could be a cell line–specific 

result regarding reduced proteolytic activity in mesenchymal-transformed breast cancer cells 

after reduced CTGF expression. Therefore, additional experiments should be conducted using 

at least one more mesenchymal transformed luminal A breast cancer cell line. Nonetheless, 

Wang et al. reported that CTGF induced the expression of ECM-degrading genes (165). 

Growing evidence exists that increased expression of one or multiple members of the CCN 

family correlates with poor prognosis in different tumor entities including the breast, prostate, 

bone, and pancreas (192, 208-211). In accordance with these results, our data demonstrated 

that increased CTGF expression correlates with breast cancer invasiveness (Manuscript B 

Figure 4 C, D). Apart from this, our data suggests that mesenchymal-transformed breast 
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cancer cells express a combination of integrin αv receptor (CD51) and vascular cell adhesion 

molecule 1 (VCAM-1/CD106) to a higher extent (Manuscript B Figure 4 E, F). This receptor 

expression combination may be a possible marker for targeting cells with higher plasticity. 

Furthermore, several studies found that VCAM-1 activates indolent micrometastases and 

induces survival signaling in breast cancer cells (58, 167, 212). Previously, Hou et al. 

demonstrated that due to upregulated VCAM-1 expression, CTGF facilitates osteosarcoma 

migration and metastasis (166). Nonetheless, further research is indispensable to detect the 

roles of different integrin β subunits because integrin αv has versatile possible binding β 

subunits determining the binding of extracellular components (213).  

The contribution of EMT to invasiveness and metastasis is still highly debated (24, 43, 214). 

Therefore, we investigated the effect of CTGF expression on the expression of EMT-TFs and 

EMT markers. Our results demonstrated a cell line–specific effect, wherein reduced CTGF 

led to reduced Zeb1 expression in mesenchymal-transformed breast cancer cells. However, in 

TNBC, reduced CTGF expression led to reduced vimentin expression (Manuscript B Figure 7 

C, D). Although SNAI2 did not seem to be regulated through CTGF, a previous study found 

that SNAI1 and SNAI2 induce the EMT in breast cancer through TGFβ signaling, thereby 

regulating CTGF and SPARC (170). In mesenchymal-transformed breast cancer cells, we 

demonstrated that CTFG regulates versatile targets (TGFBI, CD44, SPARC, FN1 and LOX), 

which we identified previously as secreted potential drivers of breast cancer bone-directed 

invasion (Manuscript B Figure 7 A). Lysyl oxidase (LOX) facilitates collagen I stabilization, 

thereby inducing chemo resistance (169). SPARC binds to collagen in a calcium-dependent 

manner and regulates ECM assembly (215). Moreover, SPARC is associated with anti-cancer 

effects, inhibits bone metastasis (172, 173). Decreased CTGF expression, led to reduced 

SPARC expression in mesenchymal-transformed breast cancer cells. Reduced CTGF 

expression led to increased FN1 expression, which was cell line independent (Manuscript B 

Figure 7 A, B). After evaluating, which targets are regulated by CTGF, we wanted to shed 

light on targets regulating CTGF. Moreover, we wanted to investigate a possible treatment 

option targeting CTGF. Li et al. reported that the activity of GTPase RhoA controls CTGF 

cleavage and the fate of mesenchymal stem cells (161). Furthermore, Arguilar-Rojas et al. 

suggested that the treatment with GnRH agonist Busrelin induces RhoA activity in TNBC 

cells, thereby reducing invasiveness (175). Our data suggest that treatment with a GnRH 

agonist reduced CTGF expression and increases cell-ECM adhesion in TNBC cells and 

mesenchymal-transformed breast cancer cells (Manuscript B Figure 8 A-D and Supplement 

11). Additionally, treatment with GnRH agonist Triptorelin induced RhoA activity in 
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mesenchymal-transformed breast cancer cells (Manuscript B Figure 8 E). Induction of RhoA 

activity led to reduced invasiveness, while reduced RhoA expression led to increased invasion 

and expression of CTGF (Manuscript B Figure 8 F-H). Previously reported treatment options 

targeting CTGF include sinomenine, curcumin, caffeine, simvastatin, and DN9693 (216-220). 

Additionally, monoclonal antibodies targeting CTGF are in use for the treatment of fibrosis 

and have been proposed to inhibit the migration of human melanoma cells (221, 222). Taken 

together, CTGF is a promising target regarding invasive breast cancer and metastasis and can 

be used as a prognostic marker. 

4.4. POSSIBLE THERAPEUTIC IMPLEMENTATIONS 

Our results suggest that matricellular proteins CYR61 and CTGF regulate the invasiveness of 

breast cancer cells and can be used as predictive markers and therapeutic targets. As 

previously indicated, different signaling cascades are involved in CYR61- and CTGF-

dependent breast cancer invasion signaling. Different treatment options can be taken into 

account when targeting CYR61 and CTGF, including GnRH agonist, targeting the ERK1/2 

signaling cascade, and targeting the Hippo pathway with key regulators YAP and TAZ. 

4.4.1. Treatment with GnRH agonist may help prevent EMT induction and invasiveness of 

breast cancer cells 

Gonadotropin-releasing hormone receptor (GnRH-R) is expressed in different tumor entities 

dependent or independent of the reproduction system (223). Approximately 50-60% of all 

human breast cancers and to a further extent 74% of breast cancers diagnosed as TNBC 

expressing GnRH-R (7, 132, 159). Breast cancer treatment with GnRH agonist resulted in a 

time- and dose- dependent reduction of in vitro invasion and in vivo metastasis (132, 160). 

Binding to GnRH-R resulted in the activation of phosphotyrosine phosphatases, which 

inhibited G-protein coupled estrogen receptor 1 (GPER)(152). Schubert et al. demonstrated 

that even the binding of antagonists to GnRH-R induced apoptosis in endometrial, ovarian, 

and breast cancer (160). Moreover, Gründker et al. reported that GnRH agonist treatment 

reduced S100A4 and CYR61 expression in mesenchymal-transformed and TNBC cells (7). 

GnRH agonist Triptorelin was reported to regulate RhoA activity in mesenchymal-

transformed breast cancer cells, which was also found for agonist Busrelin in TNBC cells 

(175). In our study, we demonstrated that a GnRH agonist increases cell-ECM adhesion and 

reduced CTGF expression. These mechanisms indicate an advantage of patients with GnRH-

R expression. We were able to demonstrate a correlation of increased invasion, increased 

cellular plasticity, and increased expression of matricellular proteins CYR61 and CTGF. In 

clinical practice, GnRH agonists are used for the suppression of ovarian function of 
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premenopausal breast cancers of a high grade (151). Clinical trials have identified a benefit of 

adjuvant chemotherapy ovarian suppression, which reduced distant metastasis free survival 

and overall survival (8, 224). It would be of high interest to evaluate the effect of GnRH-R 

agonist on EMT markers and EMT-TFs. 

4.4.2. ERK1/2 cascade 

In recent years, targeted therapy improved patient survival in different cancer entities and led 

the way to personalized medicine (225). Molecular alterations of tumors are screened to find 

treatment options that most benefit patients. Monoclonal antibodies are small molecule 

inhibitors designed to interfere with known tumorigenic signaling pathways and aim to target 

tumor cells with special molecular alterations. However, as clonal evolution processes, tumor 

cells gain resistance that makes them harder to target. Preclinical studies revealed manifold 

targetable signaling pathways including the MAPK pathway. Versatile clinical trials have 

aimed to target the kinase Mitogen Activated Protein Kinase Kinase (MEK), which is an 

upstream regulator of ERK1/2, with inhibitors for different cancer entities including breast 

cancer, colorectal cancer, and NSCLC (226). Additionally, MEK kinase inhibitors are 

reported to target cancer with gained resistance to B-Raf proto-oncogene serine/threonine 

kinase (BRAF). In this study, we demonstrated that treatment of breast cancer spheroid with 

U0126, which is an inhibitor of MEK1/2, resulted in decreased invaded area growth, reduced 

S100A4 expression, and decreased proliferation (Manuscript A Figure 3 D-F). ERK1/2 

inhibitors appear to be a new treatment option for cancers with gained resistance to MEK 

kinase inhibitors given its unique position in versatile signaling pathways (176, 177). 

Furthermore, ERK1/2 phosphorylation is increased in mesenchymal-transformed breast 

cancer cells and TNBC cells (Manuscript A Figure 3 B). Hou et al. reported that CYR61 

targets the MEK-ERK pathway in osteosarcoma cells (191). Breast cancer patients with 

detected CYR61 or CTGF overexpression may benefit from ERK1/2 targeted therapy. In this 

study, we demonstrated that reduced CYR61 regulates S100A4 expression through 

dephosphorylation of ERK1/2. It would be of great interest to evaluate whether targeting 

CYR61 or CTGF could be used to treat ERK1/2 resistant cancers. 

4.4.3. Hippo pathway 

The Hippo pathway is evolutionary conserved and regulates key events of development such 

as organ size and angiogenesis. YAP is negatively regulated through the phosphorylation of 

Large Tumor Suppressor Kinase 1/2 (LATS1/2), which results in degradation of protein. 

Dephosphorylation of YAP results in translocation to the nucleus, where it transcriptionally 

activates different target genes including CYR61 and CTGF (197-199). Regarding breast 
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cancer, YAP was reported as an oncogene, as well as tumor suppressor (227). Warren et al. 

reported that increased YAP expression correlates with increased expression of EMT markers 

(200). We demonstrated that reduced YAP expression led to decreased 3D invaded area 

growth by suppression of CYR61, p-ERK1/2, and S100A4. In our study, the effect of reduced 

YAP expression on 3D invasion was restored by extracellular CYR61 addition (Manuscript A 

Figure 4). Mi et al. observed that breast cancer Hippo signaling induces GGylation-dependent 

cell proliferation and migration (228). Additionally, breast cancer subtypes that do not express 

estrogen receptor were more sensitive to the inhibition of GGylation. Moreover, it was 

reported that taxol resistance is mediated through the Hippo pathway (119). Therefore, it was 

proposed to target YAP in TNBC with taxol resistance (229). Currently, there is an ongoing 

clinical trial treating TNBC neoadjuvant with zoledronate and atorvastatin (NCT03358017). 

Zoledronate, a bisphosphate, was observed to interfere with YAP/TAZ signaling and 

mevalonate signaling (230). Part of standard treatment regarding early breast cancer is long-

term endocrine therapy, leading to decreased estrogen level. Estrogen has a prominent role in 

skeletal homeostasis (231). To prevent bone damage bisphosphates are added to treatment 

(232). Different treatment options are necessary to provide patients with different subtypes of 

breast cancer with appropriate treatment, helping to prolong survival and impede progression. 

In our study, we demonstrated that CYR61 and CTGF have versatile effects on breast cancer 

progression and are valuable targets and predictive markers for advanced breast cancer. 
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5. CONCLUSION 

The purpose of this thesis was to target the signaling of invasion to impede breast cancer 

metastasis. We identified molecular mechanisms through which the reduction of CYR61 led 

to reduced invasiveness. Additionally, we examined which unique interactions of breast 

cancer cells with osteosarcoma cells led to increased invasiveness. Furthermore, we evaluated 

the molecular mechanisms of CTGF, thereby identifying possible treatment strategies to 

impede breast cancer invasion. 

We observed that CYR61 is a key regulator of breast cancer invasion. Reduced CYR61 led to 

dephosphorylated ERK1/2 and reduced S100A4 expression, thereby reducing 3D spheroid 

invaded area growth. CYR61 and S100A4 may be utilized as predictive markers and 

therapeutic target for advanced breast cancer. Moreover, signaling of CYR61 may be impeded 

by using MEK1/2 inhibitor U0126 or inhibitors of YAP currently under investigation. 

Furthermore, we identified versatile potential drivers of breast cancer bone-directed invasion 

due to secretome analysis of co-culture media from breast cancer cells and osteosarcoma 

cells. Identification of regulators within TME and ECM, which facilitate tumor initiation, 

invasion, and tumor progression, would be of benefit for future therapy designs. The TME is 

crucial for tumor progression, drug delivery, therapy outcome, and drug efficacy. Designing 

experimental models to better understand the complex interactions appearing in TME would 

be of great benefit. 

Targeting CTGF led to reduced proteolytic activity, decreased 2D transwell invasion and 3D 

spheroid invaded area growth, and increased cell-ECM invasion. Apart from this, CTGF is 

regulated by RhoA activity, which can be regulated with GnRH agonist treatment. 
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7. APPENDIX 

7.1. LIST OF ABBREVIATIONS 

%   percentage 

µg   microgram 

µL   microliter 

µM   micro molar 

BRAF  B-Raf Proto-Oncogene, Serine/Threonine Kinase 

BRCA  Breast Cancer 1, early onset 

CCN  CYR61, CTGF, NOV protein family 

CD44  CD44 molecule (Indian Blood Group) 

CTGF   Connective Tissue Growth Factor 

CXCL12 C-X-C Motif Chemokine Ligand 12 

CXCR4 C-X-C Motif Chemokine Receptor 4 

CYR61  Cysteine- Rich Angiogenic Inducer 61 

DCIS  ductal carcinoma in situ 

DFS  distant-metastasis free survival 

ECM  extracellular matrix 

EMT   epithelial-mesenchymal transition 

ER  estrogen receptor 

ErbB2  Erb-B2 Receptors Tyrosine Kinase 2  

ErbB3  Erb-B2 Receptors Tyrosine Kinase 3 

ERK1/2 Extracellular Signaling Related Kinase 1 / 2 

ESR1  Estrogen Receptor 1 
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ETS1  ETS proto-oncogene 1 

FN1  Fibronectin 1 

GnRH  Gonadotropin Releasing Hormone 

GnRH-R Gonadotropin Releasing Hormone Receptor 

GPER  G-protein coupled estrogen receptor 1  

GRB7  Growth Factor Receptor Bound Protein 7 

HER2  Erb-B2 Receptors Tyrosine Kinase 2 

HSPGs  Heparan Sulfate Proteoglycans 

IDC  invasive ductal carcinoma 

IHC  immunohistochemistry 

ILC  invasive lobular carcinoma 

IM  immunomodulatory 

Ki-67  proliferation marker in clinical practice 

LAR  Luminal Androgen Receptor 

LATS1/2 Large Tumor Suppressor Kinase 1/2 

LOX  Lysyl Oxidase 

LRPs  Low-Density Receptor Related Protein 

M  mesenchymal 

MAP3K1 Mitogen-Activated Protein Kinase Kinase Kinase 1 

MEK  Mitogen-Activated Protein Kinase Kinase 1 

MET   mesenchymal-epithelial transition 

MMP2  Matrix Metallopeptidase 2 

MSL  mesenchymal/stem-like 
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MYC  MYC Proto-Oncogene 

NOV  Nephroblastoma Overexpressed 

PI3KCA Phosphatidylinositol-4, 5-Bisphosphate-3 Kinase Catalytic Subunit α 

PR  progesterone receptor 

RFS  remission-free survival 

SDC4  Syndecan 4 

SNAI1  Snail Family Transcriptional Repressor 1 

SNAI2  Snail family transcriptional repressor 2 

SPARC Secreted protein acidic and cysteine rich 

TAZ  Transcriptional Coactivator with PDZ-Binding Motif 

TEAD  Transcriptional Enhancer Factor TEF-1 

TGFβ  Transforming growth factor β 

TGFBI  Transforming Growth Factor Beta Induced 

TME  tumor micro environment 

TNBC  triple negative breast cancer 

TN-C  Tenascin C 

TOP2A DNA Topoisomerase II α 

TP53  Tumor-Suppressor P53 

TSP-1  Thrombospondine 1 

VCAM-1 Vascular Cell Adhesion Molecule 1 

VEGF  Vascular Endothelial Growth Factor 

VWC  Von Willebrand Factor Type C 

WISP  WNT1-Inducible-Signaling Pathway Protein  
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YAP  Yes Associated Protein 

Zeb1  Zinc finger E box binding home box 1 
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7.2. LIST OF FIGURES 

Figure 1 Characteristics and classification of breast cancer subtypes.   3 

Figure 2 The Invasion-metastatic cascade.       5 

Figure 3 Metastatic sites of breast cancer.        8 

Figure 4 Scheme of signaling, that impedes invasion in highly invasive breast cancer cells.
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