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1. Introduction 

The nervous system, a network of neurons and neuroglia, coordinates the voluntary and 

involuntary actions of an animal, transmits signals to and from different parts of its body, 

and allows communication with its environment. In vertebrates it is divided in a central 

nervous system (CNS) and a peripheral nervous system (PNS). The CNS contains the brain 

and the spinal cord, whereas the PNS consists of nerves and ganglia that connect the CNS 

to the rest of the body.  

Nerve cells, also known as neurons, are specialized cells in the body as they can communi-

cate with each other in a process called neurotransmission. The process involves an electri-

cal signal or axon potential that results in the release of chemicals or neurotransmitters at 

the contact point between the cells, known as the synapse. A nerve cell that receives a syn-

aptic signal may be excited, inhibited, or otherwise modulated. 

Glial cells, i.e. astrocytes, oligodendrocytes and microglia in the CNS, and Schwann cells 

in the PNS, provide structural and metabolic support for neuronal networks. Oligodendro-

cytes and Schwann cells generate a lipid-rich wrapping called myelin around axons, 

providing electrical insulation which allows high speed transmission of electrical signals. 

Oligodendrocytes can wrap around several axons and myelinate them, whereas Schwann 

cells provide insulation to only one axon. Action potentials arise when the neuronal mem-

brane potential reaches a threshold level that changes the permeability of the nerve cell´s 

axonal membranes to specific ions. Action potential generation occurs at specific gaps in 

the myelin wrapping, called nodes of Ranvier, allowing saltatory propagation with repro-

gation at the nodes.  This arrangement greatly enhances the velocity of action potential 

conduction. Not surprisingly, loss of myelin, or alterations in its structure, as occurs in 

many diseases, can cause a variety of neurological defects. 

This thesis focuses on hereditary neuropathy with liability to pressure palsies (HNPP), a 

demyelinating disease characterized by recurrent painless focal neuropathies. At the ge-

nomic level HNPP patients present a loss of the peripheral myelin protein 22 gene 

(PMP22). Treatment of the disease is symptomatic. In this thesis the phenotype of a trans-

genic mouse model for HNPP was reviewed and compared to that of human HNPP patients 

and an experimental therapy study with progesterone was performed on these animals. 
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1.1. HNPP and its prevalence 

Charcot-Marie-Tooth disease (CMT), also known as hereditary motor and sensory neurop-

athy (HMSN), is a heterogenous group of hereditary neuropathies with a population preva-

lence of 1:2500 (Rossor et al. 2016), placing CMT among the most common inherited dis-

eases (Emery 1991). Within the CMT diseases, hereditary neuropathy with liability to 

pressure palsies (HNPP) is an autosomal dominant disorder characterized by episodic, re-

current peripheral sensory and motor neuropathies (Chance et al. 1993) in a single nerve 

(mononeuropathy). Males and females are equally affected by HNPP (Bird 2014). This 

demyelinating disease, first described by de Jong in 1947 (De Jong 1947), is inherited with 

high penetrance but variable expression (Pareyson et al. 1996). The prevalence of HNPP is 

unknown, however, a population study from Finland gives an estimate of 16/100.000 

(Meretoja et al. 1997). Nevertheless, a possible lack of symptoms in patients can lead to an 

underestimation of the disease prevalence (Kramer et al. 2016).  

1.2. Clinical features of HNPP 

The onset of symptoms in patients with HNPP is typically in the second or third decade, 

although the first episode occasionally occurs in childhood (Pareyson et al. 1996). Painless 

nerve palsies and sensory loss characteristic for the neuropathy are often triggered by mi-

nor traumas or compression in various locations (De Jong 1947; Davies 1954; Earl et al. 

1964; Staal et al. 1965), such as the brachial plexus, peroneal, ulnar, radial or median 

nerves (Cho et al. 2014), or provoked by physical activity, including repetitive motions or 

stretching of the affected limb (Li et al. 2004). The clinical symptoms of an undiagnosed 

HNPP can also be manifested after a surgical procedure (Kramer et al. 2016). Carpal tun-

nel syndrome can occur when the median nerve at the wrist is affected, and entrapment of 

the peroneal nerve at the fibular head can cause a foot drop (Del Colle et al. 2003). Pes 

cavus and hammertoes have been described in more severe cases (Amato et al. 1996), as 

have hypo- and areflexia (Pareyson et al. 1996). Pain is rarely reported as a symptom but 

may be an initial or a chronic manifestation of the disease (de Oliveira et al. 2016). The 

clinical progression and severity of HNPP is highly various (Windebank 1993). The symp-

toms are brief and improve generally within days, weeks or months (Pareyson et al. 1996), 

with full recovery occurring in 50 % of episodes. Remaining symptoms are rarely severe 

(Bird 2014). However, the development of a chronic peripheral neuropathy is possible in 
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specific cases (Windebank 1993). Approximately 10-15 % of HNPP patients remain clini-

cally asymptomatic (Gouider et al. 1995; Lenssen et al. 1998). 

The affected limbs usually show significant slowing and conduction blocks in nerve con-

duction velocity (NCV) studies, especially across common pressure sites. Distal motor 

latencies (DML) are increased, in particular of the median and peroneal nerves (Behse et 

al. 1972a; Amato et al. 1996; Hong et al. 2003). In addition, sensory nerve conduction ve-

locities are often decreased and sensory nerve action potential amplitudes are reduced (Li 

et al. 2002; Hong et al. 2003). It is hypothesized that the focal symptoms of HNPP are 

caused by a reversible conduction block (CB), defined by > 50 % reduction of compound 

muscle action potential (CMAP) amplitudes between proximal and distal sites of stimula-

tion (Li et al. 2004; van Paassen et al. 2014). The presence of CB indicates a failure of ax-

on potential propagation at a given site along a structurally intact axon and is consistent 

with a myelinopathy (Lawson and Arnold 2014).  

1.3. Molecular genetics of HNPP 

HNPP is mostly caused by a heterozygous 1.5 Mb deletion on chromosome 17p11.2 that 

includes the peripheral myelin protein 22 (PMP22) gene (Chance et al. 1993). The same 

gene region is duplicated in Charcot-Marie-Tooth disease type 1A (CMT1A) (Lupski et al. 

1991), suggesting that the two disorders may be the reciprocal products of unequal crosso-

ver during meiosis (Chance and Fischbeck 1994). Thus, PMP22 acts in a dose-dependent 

manner, with a 50 % increased gene dosage leading to CMT1A and a 50 % reduction 

found in HNPP (Suter and Snipes 1995b). In addition to deletions, point mutations of 

PMP22 have been recognized in HNPP, leading to a premature stop codon and causing a 

loss-of-function (Nicholson et al. 1994), as have other rare distinct mutations in the 

PMP22 gene, resulting in altered expression of the PMP22 protein (Figure 1) (Stögbauer et 

al. 2000).  
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Figure 1: Schematic representation of the PMP22 mutations associated with HNPP. The PMP22 protein 

consists of two extracellular domains and four transmembrane domains. Three mutations (7fs, 145fs, 

Thr61stop) cause a functional loss of one PMP22 allele through premature termination of translation. A 

frameshift mutation (94fs) causes an elongated, probably nonfunctional PMP22 protein. The 5′-splice site 

mutation affects the normal splicing of PMP22 that leads to a mutant null allele. The de novo missense muta-

tion (Val30Met) causes an amino acid substitution of the PMP22 protein (Stögbauer et al. 2000). Figure 

reproduced with kind permission of the author and the rights holder, Wolters Kluwer Health, Inc.  

PMP22 is a 22 kDa hydrophobic, intrinsic membrane protein made up of 160 amino acids. 

Its precise biological functions are still unknown (Lupski et al. 1991; Jetten and Suter 

2000; Li et al. 2013). This tetra-span protein is primarily expressed in myelinating 

Schwann cells (Chance et al. 1993; Jetten and Suter 2000), however, expression in non-

nervous tissues, like the lung, the gut and the heart has been observed (Welcher et al. 1991; 

Quarles 1997). PMP22 comprises approximately 2-5 % of total myelin protein and is large-

ly confined to compact myelin (Snipes et al. 1992; Pareek et al. 1993). PMP22 upregula-

tion has been shown to be induced during developmental myelination, as well as remye-

lination after peripheral nerve injury (Snipes et al. 1992). It has been suggested that the 

myelin protein serves as a structural component of myelin, responsible for adhesion be-

tween myelin membranes (Suter and Snipes 1995a), or has a role in controlling myelin 

sheath thickness and myelin integrity (Martini and Schachner 1997). Further observations 

have demonstrated that PMP22 and myelin protein zero (MPZ), the most abundant periph-

eral myelin protein (Ishaque et al. 1980) and a specific product of the Schwann cells 

(Brockes et al. 1980), may form complexes in the myelin membranes (D’Urso et al. 1999), 

probably participating in holding adjacent Schwann cells together, as well as in stabilizing 

myelin compaction (Martini et al. 2003). It has also been proposed that PMP22 is involved 

in proliferation, differentiation, and apoptosis of Schwann cells (Amici et al. 2007). More 

recently it has been found that PMP22 also plays a role in the linkage of the actin 
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cytoskeleton with the plasma membrane, possibly by regulating the cholesterol content of 

lipid rafts (Lee et al. 2014). 

1.4. Histological hallmarks of HNPP 

HNPP nerves form focal excessive myelin folds (tomacula) (Figure 2A) by unknown 

mechanism in sensory as well as in motor neurons (Oda et al. 1990). Tomacula are charac-

terized by an extremely thickened myelin sheath wrapping around an axon of reduced di-

ameter. Whether the reduced diameter is caused by a constriction of the axon by the thick-

ened myelin or due to ongoing axonal atrophy is not fully clarified (Stögbauer et al. 2000). 

The sausage shaped swellings of the myelin sheath were first described by Behse et al. in 

1972 (Behse et al. 1972a) and the name tomaculous neuropathy was proposed by Madrid 

and Bradley (Madrid and Bradley 1975), although focal myelin thickening can also be 

found in several other types of hereditary CMT diseases (Nordborg et al. 1984; Thomas et 

al. 1994) and even in IgM paraproteinemic neuropathy (Vital et al. 1985). Segmental de-

myelination (Figure 2B) and remyelination is found in sural nerve biopsies of HNPP pa-

tients (Behse et al. 1972b) and teased fiber preparations from these biopsies show a high 

frequency of tomacula, with over half of the fibers (54 %) affected (Sander et al. 2000). 

Madrid and Bradley described several mechanisms that may lead to the formation of a 

tomaculum, such as hypermyelination with redundant wrappings of the myelin sheath, ex-

cessive loop formation, two Schwann cells forming one myelin sheath and disruption of 

the myelin sheath (Madrid and Bradley 1975). Such abnormal myelin formations may arise 

from invaginations of myelin leading to myelin islands in mutant nerves, as observed in 

Pmp22+/- mice (Figure 3C) (Adlkofer et al. 1997). Studies with these transgenic mice have 

led to the hypothesis that tomacula are unstable structures that predispose to demyelination 

and that PMP22 is required for the flawless development of peripheral nerves, axon 

maintenance, myelin formation and the determination of myelin thickness and stability 

(Adlkofer et al. 1995). 
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Figure 2: Histological features in HNPP.  (A): Sural nerve from a patient with HNPP (transverse section). 

Top arrow: adaxonal myelin breakdown products; bottom arrow: hypermyelinated fibre. (B): Electron micro-

graph: a tomaculum with active myelin breakdown (modified from Sander et al. 2000). Figure reproduced 

with kind permission of the rights holder, BMJ Publishing Group Ltd. 

Onion bulbs, excessive Schwann cell membrane processes around thinly myelinated axons 

(Li et al. 2013), are occasionally observed in HNPP nerves (Schenone 2006). These for-

mations, more frequently observed in CMT1A, are seen as a sign of repeated cycles of de- 

and remyelination (Adlkofer et al. 1997; van Paassen et al. 2014). 

1.5. Diagnostics 

A typical clinical manifestation of HNPP is acute, painless, recurrent peripheral nerve pal-

sies (Van Paassen et al. 2014). Electrophysiological examination is of great importance for 

the diagnostic progress, given the poverty of clinical findings (Dubourg et al. 2000). DNA 

testing for the PMP22 gene deletion can confirm the diagnosis and sequencing of the 

PMP22 gene can be used if no deletion is found. Nerve biopsies are not a standard method 

in establishing the diagnosis of HNPP (Van Paassen et al. 2014). Dubourg et al. have pro-

posed guidelines for the diagnosis of HNPP patients, dividing the diagnostic criteria in 4 

groups; clinical criteria (family history, age at onset, clinical manifestations, location of 

nerve palsies, clinical examination, course and severity and atypical presenting features), 

electrophysiological criteria, neuropathological features and molecular genetics (Dubourg 

et al. 2000).  
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1.6. Treatment 

Treatment of HNPP is currently symptomatic. Transient bracing may be useful during a 

pressure palsy, and in the case of residual symptoms, permanent bracing may be needed 

(Bird 2014). Patients should be informed about avoiding activities that are risk factors for 

pressure palsies, such as prolonged sitting with legs crossed, repetitive movements of the 

wrist, prolonged leaning on elbows and rapid weight loss (Cruz-Martinez et al. 2000; Mar-

riott et al. 2002). Excessive alcohol should be avoided and attention to careful positioning 

should be paid during operations (Rossor et al. 2015). Clinical improvement can be 

achieved through surgical decompression in the case of symptomatic carpal tunnel syn-

drome (Earle and Zochodne 2013). Vincristine used in chemotherapy has been reported to 

exacerbate HNPP (Kalfakis et al. 2002) through neurotoxicity (Zhu et al. 2013). Ethox-

yquin, a synthetic antioxidant (Zhu et al. 2013) has in in vitro and in vivo studies shown to 

offer protection against the toxicity without impacting the effect of the chemotherapy 

(Chittoor-Vinod et al. 2015). 

1.7. Transgenic mouse model for HNPP 

Transgenic animal models serve as a tool for the elucidation of the underlying pathomech-

anisms of several disorders and provide a basis for the development of new therapeutic 

interventions and possible treatments. The genomic structure of the mouse Pmp22 gene, 

situated in chromosome 11 (Suter et al. 1992), has been found to be identical to the human 

PMP22 gene (Suter et al. 1994), which makes it a valuable model to work with for the un-

derstanding of the disease mechanism and to evaluate treatment strategies in peripheral 

neuropathies. Pmp22-deficient mice have been generated using gene targeting in embryon-

ic stem cells (Adlkofer et al. 1995). These heterozygous Pmp22 knock-out mice display 

similar morphological and electrophysiological features as observed in HNPP nerves; 

tomacula, electrophysiological abnormalities, as well as thinly myelinated axons and su-

pernumerary Schwann cells forming onion bulbs (Adlkofer et al. 1997). Young Pmp22+/- 

mice have no electrophysiological abnormalities and lack clinical signs of a developing 

neuropathy. At the age of 12-14 months the mice show reduced amplitudes of the motor 

response (M-response) in the sciatic nerve, however, the NCVs are not significantly al-

tered. Pmp22+/- mice are phenotypically indistinguishable from wild type mice, apart from 

sporadic walking difficulties observed in some individuals. Tomacula are rare in peripheral 
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nerve biopsies at postnatal day 24 but show an increased frequency at the age of 10 weeks 

(Adlkofer et al. 1995). The presence of many thick tomacula is a prominent feature in 10-

month old mutant mice (Figure 3B). These tomacula, observed as sausage-like structures 

caused by focal hypermyelination, show a preferential paranodal location in teased nerve 

fiber preparations. They are unstable and degenerate progressively, culminating in a patho-

logic picture comparable to a demyelinating neuropathy (Suter and Nave 1999). Noncon-

centrically arranged hypermyelinated structures around compressed axons (Figure 3E), as 

well as splitting of the dense line and vacuolation of myelin leading to myelin edema (Fig-

ure 3F) may be seen as early signs of myelin degeneration. The latter characteristic chang-

es are in line with findings in biopsies from HNPP patients (Madrid and Bradley 1975; 

Adlkofer et al. 1997). At the age of 15 months, tomacula are still a prominent feature, but 

significant demyelination and onion bulb formation is also observed (Figure 3G-H) 

(Adlkofer et al. 1995). 

 

Figure 3: Cross sections of quadriceps nerves demonstrating abnormal myelin in Pmp22+/- mice. Pic-

tures obtained by electron microscopy. (A): wild type mouse. (B): a 10-month old Pmp22+/- mouse showing 

hypermyelination by excessive wrapping of the myelin sheath. (C): a 10-month old Pmp22+/- mouse illustrat-

ing invagination of the myelin as a potential start of hypermyelination. (D): a 5-month old Pmp22+/- mouse 

showing intermyelin infolds forming a hypermyelin structure. (E): a 10-month old Pmp22+/- mouse showing 

a hypermyelin structure with a displaced axon. (F): a 10-month old Pmp22+/- mouse showing degenerating 

hypermyelin. (G and H): a 15-month old Pmp22+/- mouse showing onion bulbs (thinly myelinated axons with 

concentric Schwann cell processes (G, arrowheads) and basal laminae (H, arrow)). Markings: axons (A), 

compact myelin (m) and degenerating myelin (d). Scale bar: 2.5 µm (modified from Adlkofer et al. 1997). 

Figure reproduced with kind permission of the author and the rights holder, Society for Neuroscience. 
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It is hypothesized that focal sensory loss and muscle weakness in patients with HNPP are 

caused by reversible conduction block (CB) (Li et al. 2004) and explained by structural 

abnormalities at the nodes of Ranvier that lead to changes in axonal excitability. These 

abnormalities would predispose the nerves to CB when subjected to mechanical stress, 

such as pressure or stretch (Jankelowitz and Burke 2013). Further theories for the devel-

opment of CB are discussed below. Experiments with mice demonstrate that mechanically 

induced CB occurs more rapidly and lasts longer in Pmp22+/- nerves than in wild type 

nerves. These findings are well in line with the focal symptoms, triggered by mild mechan-

ical stress, in HNPP patients (Li et al. 2002; Bai et al. 2010). Focal constrictions in the ax-

onal segments enclosed by, and decompacted myelin within the tomacula, have been ob-

served in Pmp22+/- nerves. Reduced diameter in the constricted axons increases resistance 

to action potential propagation, thus predisposing these axons to CB. Furthermore, com-

pression of the nerve may cause even further thinning of axons (Bai et al. 2010). Poor mye-

lin compaction could impair the insulation of myelin, leading to excessive leakage of cur-

rent. Essentially, decompacted myelin, along with constricted axons in the tomacula could 

predispose Pmp22+/- nerves to action potential propagation failure, enhanced by mechani-

cal stress (Li et al. 2013). These findings suggest that a function of PMP22 is to protect the 

nerve from mechanical injury (Bai et al. 2010). Another possible explanation for CB lies in 

axonal hyperpolarization, found in both motor and sensory axons in HNPP patients. It has 

been hypothesized that the hyperpolarized resting membrane potential may cause changes 

in the nerve structure and could account for the development of CB after mechanical stress 

(Farrar et al. 2014). An alternative explanation for the impaired action potential propaga-

tion and nerve vulnerability to injury in HNPP is offered by impaired myelin junctions. 

The increase in myelin permeability and susceptibility to CB in Pmp22+/- nerves has been 

observed to take place prior to the formation of tomacula and demyelination. Furthermore, 

PMP22 deficiency has been shown to disrupt myelin junctions, such as tight junctions, 

leading to increased myelin permeability. This increased permeability impairs the electrical 

seal of myelin and is functionally comparable to demyelination (Guo et al. 2014). Yet an-

other theory for the development of CB is offered in a study proposing a molecular path-

way for the disrupted myelin junctions, in which myelin junctions were shown to be bro-

ken in regions with elevated p21-activated kinase (PAK1) activity. The enhanced activity 

of PAK1, a regulator of actin polymerization, correlated with increased levels of F-actin. 

Inhibition of PAK1 through pharmacological means normalized the levels of F-actin and 

arrested the progression of the myelin junction disruption and nerve CB (Hu et al. 2016).  
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1.8. Progesterone 

Steroids are synthesized through a cascade of steps, the first being the conversion of cho-

lesterol to pregnenolone, the precursor of all steroid hormones. A limiting step in the preg-

nenolone formation is the transport of cholesterol from intracellular stores to the inner mi-

tochondrial membrane, where the cholesterol side-chain-cleaving cytochrome P450scc is 

located (Schumacher et al. 2012). Progesterone present in the nervous system derives from 

the circulation, but can also be synthesized from pregnenolone by neurons and glial cells. 

Steroids synthesized in the nervous system have been named neurosteroids (Baulieu 1997), 

and several studies in experimental models of peripheral neuropathies indicate that they act 

as protective agents in the CNS as well as the PNS (Giatti et al. 2015). 

Schwann cells synthesize progesterone in the peripheral nervous system (Koenig et al. 

1995), where it plays an important role in the formation of myelin sheats (Koenig et al. 

1995; Schumacher et al. 2001). The promoting effect of progesterone on myelin formation 

has been shown in vitro in co-cultures of Schwann cells and sensory neurons (Chan et al. 

1998), in explant cultures of rat dorsal root ganglia, and in vivo, after cryolesion of the 

mouse sciatic nerve (Koenig et al. 1995). Progesterone increases promoter activity of 

PMP22, acting on promoter 1, but not on promoter 2 of the corresponding gene (Désar-

naud et al. 1998). Transcripts originating from promoter 1 mainly reside in the PNS and 

are associated with myelin formation during development and regeneration, whereas tran-

scripts from promoter 2 are abundant in non-neuronal tissue and less correlated with mye-

lin formation (Bosse et al. 1994; Suter et al. 1994). Furthermore, progesterone and its deri-

vates have been shown to induce PMP22 expression in vitro, as well as in vivo (Melcangi 

et al. 1999; Notterpek et al. 1999; Sereda et al. 2003). 

Progesterone stimulates expression of myelin proteins through interaction with the classi-

cal progesterone receptor (PR) (Meyer zu Hörste et al. 2006; Sereda and Nave 2006) (Fig-

ure 4). Not only do Schwann cells synthesize progesterone, they also express the intracel-

lular receptor for the neurosteroid, indicating its participation in autocrine signaling in the 

PNS (Jung-Testas et al. 1996). The PR, a ligand-induced transcription factor, has been 

shown to be important in the activation of myelin genes (Meyer zu Hörste et al. 2006; 

Sereda and Nave 2006). Binding of progesterone to the progesterone receptor monomer in 

the cytosol leads to the dimerization of the monomer and a translocation to the nucleus 
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(Beato 1989; McKenna and O’Malley 2002). The progesterone-progesterone receptor 

complex binds to specific DNA sequences, called progesterone response elements (PRE), 

and regulates the gene expression together with co-activators and co-repressors (McKenna 

and O’Malley 2002; Wu et al. 2005). An alternative to this classical view of activation is 

offered by evidence that suggest that PR monomers may be even more efficient transacti-

vators of the responsive DNA elements than PR dimers (Jacobsen et al. 2009; Jacobsen 

and Horwitz 2012). 

The effects of progesterone on myelin protein genes seem to be indirect, as their promoter 

regions do not contain classical progesterone response elements. Instead, progesterone may 

induce myelination by increasing the expression of transcription factors involved in 

Schwann cell differentiation and myelination (Guennoun et al. 2001). In fact, progesterone 

has been shown to stimulate the expression of Early Growth Response 2 (EGR2/KROX-20, 

hereafter referred as KROX-20) (Guennoun et al. 2001; Mercier et al. 2001), a transcription 

factor required for PMP22 activation, by binding to its intracellular receptor in Schwann 

cells. Indeed, the promoter sequence of KROX-20 contains regions of high homology for 

the PRE (Guennoun et al. 2001).  
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Figure 4: The effect of progesterone on PMP22.  Schwann cells synthesize progesterone from cholesterol. 

Endogenous and exogenous progesterone bind to the progesterone receptor (PR) and the PR monomers di-

merize. The progesterone-PR-complex translocates to the nucleus of the Schwann cells where it activates the 

transcription factor EGR2/KROX-20, leading to an upregulation of the myelin protein gene PMP22 (Meyer 

zu Hörste et al. 2006). Figure reproduced with kind permission of the author and the rights holder, Springer 

Nature. 

1.9. KROX-20  

KROX-20 is a zinc finger transcription factor expressed in Schwann cells and a key regula-

tor of myelin genes during early development (Topilko et al. 1994; Le et al. 2005; Decker 

et al. 2006). It is activated in Schwann cells after axonal contact, before myelination 

(Topilko et al. 1994; Murphy et al. 1996), and expressed throughout myelination and dur-

ing adult life (Zorick et al. 1996). KROX-20 is required for induction of PMP22 expres-

sion (Nagarajan et al. 2001; Le et al. 2005).  Progesterone stimulates the expression of 

KROX-20 as well as other transcription factors with a key role in Schwann cell physiology 

and myelination (Guennoun et al. 2001; Mercier et al. 2001; Magnaghi et al. 2007). Loss 

of KROX-20 has been shown to lead to myelin breakdown, and inactivation of the tran-

scription factor in adult Schwann cells results in demyelination involving Schwann cell 

dedifferentiation, indicating a role of KROX-20 in maintaining the myelin sheath. Follow-

ing injury, the axon and its myelin sheath distal to the lesion degenerate in a process 

known as Wallerian degeneration (Fawcett and Keynes 1990) and loss of KROX-20 ex-
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pression is likely to constitute a key step in this process (Stoll and Müller 1999). Over-

expression of KROX-20 induces the expression of PMP22 in Schwann cell cultures (Naga-

rajan et al. 2001) and no expression of myelin proteins takes place in Schwann cells of 

Krox-20 -/- mice (Topilko et al. 1994). Studies on these Krox-20 knock-out mice show that 

the differentiation of myelinating Schwann cells arrests at the promyelinating stage, the 

major myelin proteins are not expressed and myelin is not formed (Topilko et al. 1994; 

Zorick et al. 1999). 

1.10. Aims of the study 

Very few publications concerning the HNPP mouse model have been published and hence 

there is little awareness of its features and phenotypic resemblance to human patients. The 

first aim of this thesis is to study the model on a genetic, histological and electrophysiolog-

ical level and to review existing published data and to compare it to the results obtained. 

This data is subsequently used to perform a comparison between the phenotype of the ro-

dent model to the known features in HNPP patients, and to make an estimation of the suit-

ability of the mouse model as a reliable tool for HNPP studies.  

The second aim is to examine the short- and long-term effects of progesterone in the 

mouse model for HNPP. Progesterone has been shown to induce PMP22 expression both 

in vivo and in vitro. Since HNPP is caused by a decreased amount of PMP22, increasing 

the gene dosage may be a therapeutic target, and progesterone a potential substance to 

achieve this. Progesterone exerts its effect on PMP22 expression through activation of the 

transcription factor KROX-20, a necessary step for the initiation of myelin formation in 

peripheral nerves. In this study, the emphasis is laid on observing the therapeutic effects on 

a molecular, histological and electrophysiological level; by measuring the levels of Pmp22 

and Krox-20 mRNA, by quantifying histological features of the peripheral nerve, and by 

performing electrophysiological measurements. To date, no published data exists on the 

effects of a progesterone therapy on Pmp22+/- mice. Moreover, only symptomatic treat-

ment is currently available for patients with HNPP. 
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2. Materials and methods 

2.1. Materials  

2.1.1. Consumables 

CO2 Messer-Griesheim, Krefeld 

Coverplates Menzel-Gläser, Braunschweig 

Disposable gloves (latex, nitril) Hartmann, Heidenheim 

Dry ice Messer-Griesheim, Krefeld 

Eppendorf cups: 0.5 ml, 1.5 ml, 2 ml Eppendorf, Hamburg 

Falcon tubes: 15 ml, 50 ml Beckton & Dickinson, Le Pont De Claix, 

France 

Liquid nitrogen Messer-Griesheim, Krefeld 

Object slides Menzel-Gläser, Braunschweig 

Parafilm “M” American National Can™, Chicago 

PCR microtiter plates ABgene, Surrey, UK 

PCR plate foils “Air Pore Sheet” ABgene, Surrey, UK 

Pipette tips Molecular Bioproducts, San Diego, CA, 

USA 

Sutures Fine Science Tools, Heidelberg 

Syringes Beckton & Dickinson, Le Pont De Claix, 

France 

Tissues Wepa professional, Arnsberg 

2.1.2. Chemicals and reagents 

Acetic acid Merck, Darmstadt 

Agarose AppliChem, Darmstadt 

Ammonium acetate Merck, Darmstadt 

Azure II Merck, Darmstadt 

Beta-Mercaptoethanol Merck, Darmstadt 

Chloroform Merck, Darmstadt 

DDSA (2-Duodecenyl-succinicacidanhydrid) Serva, Heidelberg 
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di-Sodium hydrogen phosphate dihydrate 

(Na2HPO4 *2H2O) 

Merck, Darmstadt 

DMP30 (2,4,6-Tris-dimethylaminomethyl-

phenol) 

Serva, Heidelberg 

DTT (1,4-Dithiotreitol) GibcoBRL, Karlsruhe 

EDTA (Ethylenediaminetetraacetic acid) Merck, Darmstadt 

Ethanol Merck, Darmstadt 

Ethidium bromide Sigma-Aldrich, Schnelldorf 

Eukitt® quick-hardening mounting medium Kindler, Freiburg 

Glutardialdehyde Merck, Darmstadt 

Hydrogen chloride (HCl) Serva, Heidelberg 

Isopropanol Merck, Darmstadt 

Methanol Merck, Darmstadt 

Methyl nadic anhydride (MNA) Serva, Heidelberg 

Methylene blue Merck, Darmstadt 

Osmium tetroxide Serva, Heidelberg 

Paraformaldehyde Serva, Heidelberg 

Pellet Paint® Co-Precipitant Merck, Darmstadt 

Propylene glycol (1,2-Propanediol Rea-

gentPlus®) 

Sigma-Aldrich, Schnelldorf 

Sodium chloride (NaCl) Merck, Darmstadt 

Sodium dihydrogen phosphate monohydrate 

(NaH2PO4 *H20) 

Merck, Darmstadt 

Sodium hydroxide (NaOH) Merck, Darmstadt 

TRIS (Tris-(hydroxymethyl)-aminomethane) Roth, Karlsruhe 

Triton™ X-100 Sigma-Aldrich, Schnelldorf 

Xylol Merck, Darmstadt 

2.1.3. Buffers and solutions 

Epoxy resin embedding solution (Luft 1961) 

Epoxy solution A:  

Glycidyl ether 67.5 g 
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DDSA 88.2 g 

→ Stir with a magnetic stirrer for 1 h  

Epoxy solution B:  

Glycidyl ether 82.3 g 

MNA 73.3 g 

→ Stir with a magnetic stirrer for 1 h  

Epoxy embedding solution:  

→ Mix Epoxy solution A and B and add 1.8 % DMP-30 

Fixation solution (Karlsson and Schultz 1965) 

Sodium dihydrogen phosphate *H20 0.36 g 

Disodium hydrogen phosphate *2H20 3.1 g 

NaCl 1 g 

Glutardialdehyde solution 20 ml 

Paraformaldehyde 8 g 

 

→ Dissolve PFA in 60 ml ddH2O by stirring at 60-70 oC. Add ddH2O to a total volume of 

80 ml. Add 1 M NaOH until the solution is clear. Filter the solution with a sterile filter and 

adjust the pH to 7.4. Dissolve the salts (NaH2PO4, Na2HPO4, NaCl) in 100 ml ddH2O and 

add to the PFA-solution. 

 

Methylene-Azure-II staining solution (Richardson et al. 1960) 

 

Methylene blue solution:  

→ Methylene blue in 1 % Borax solution  

Azure-II solution:  

→ 1 % Azure II in H2O  

Methylene-Azure-II staining solution:  

→ Mix both solutions 1:1  

 

TAE buffer (50x) 

 

TRIS-HCl 242 g 
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Acetic acid 100 % 57.1 g 

EDTA (0.5 M; pH 8) 100 ml 

→ Add ddH2O to a total volume of 1000 ml  

 

5X Green GoTaq® Reaction buffer (Promega, Mannheim) 

2.1.4. Enzymes and reaction kits 

GoTaq® DNA polymerase Promega, Mannheim 

Power Sybr® Green PCR Master Mix Applied Biosystems, UK 

Proteinase K Boehringer, Mannheim 

RNeasy Mini Kit Qiagen, Hilden 

RNA 6000 Nano Assay Agilent Technologies, Böblingen 

Superscript-III-RT Kit Invitrogen, Carlsbad, CA, USA 

TRIzol Reagent GibcoBRL, Karlsruhe 

2.1.5. Pharmaceuticals 

Aureomycin® eye ointment Riemser, Greiswald – Insel Riems 

Ketamine (Ketanest®) Parke-Davis, Berlin 

Progesterone powder Sigma-Aldrich, Schnelldorf 

Time Release Pellets, 60 Day Release (Pro-

gesterone, Placebo) 

Innovative Research of America, Sarasota, 

Florida, USA 

Time Release Pellets, 90 Day Release (Pro-

gesterone, Placebo) 

Innovative Research of America, Sarasota, 

Florida, USA 

Xylazine (Rompun®) Bayer, Leverkusen 

2.1.6. Nucleic acids 

Desoxyribonukleoside triphosphates 

(dNTPs) 

Boehringer, Mannheim 

GeneRuler 100 bp DNA Ladder Thermo Fischer Scientific, Waltham, MA, 

USA 

Random nonamer primers Max-Planck-Institute for Experimental 

Medicine, Göttingen 
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2.1.7. Oligonucleotides 

The primer oligonucleotides were synthesized in the sequencing department of Max-

Planck-Institute for Experimental Medicine (Göttingen). 

 

Primers for genotyping Pmp22+/- mice: 

Pmp22 transgene Forward: 5'-GCATCGAGCGAGCACGTAC-3´ 

Pmp22 transgene Reverse: 5'-ACGGGTAGCCAACGCTATGTC-3' 

 

Primers for genotyping wild type mice: 

Pmp22 wild type Forward: 5'-CAGCCACCATGCTCCTACTC-3' 

Pmp22 wild type Reverse: 5'-CAGCCCTTGCTCACTGTCTAC-3' 

 

Primers for real-time PCR with Sybr®-Green: 

β-actin Forward: 5'-CGCTCAGGAGGAGCAATG -3' 

β-actin Reverse: 5'-TGACAGGATGCAGAAGGAGA -3' 

Cyclophilin Forward: 5'-CACAAACGGTTCCCAGTTTT-3' 

Cyclophilin Reverse: 5'-TTCCCAAAGACCACATGCTT-3' 

Pmp22 Forward: 5'-AATGGACACACGACTGATC-3' 

Pmp22 Reverse: 5'-CCTTTGGTGAGAGTGAAGAG-3' 

Rplp0 Forward: 5'-GATGCCCAGGGAAGACAG-3' 

Rplp0 Reverse: 5'-ACAATGAAGCATTTTGGATAATCA-3' 

Rps20 Forward: 5'-GAACAAGTCGGTCAGGAAGC-3' 
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Rps20 Reverse: 5'-ATTCGGTGAATCGCCACTT-3' 

Krox-20 Forward: 5'-GCAGAGATGGGAGCGAAGC-3' 

Krox-20 Reverse: 5'-AGATGAACGGAGTGGCGG-3' 

2.1.8. Equipment and instrumentation 

Agarose gel chamber and combs Technical department, Max-Planck-Institute 

for Experimental Medicine, Göttingen 

Agarose gel documentation “ImageMaster 

VDS” 

Amersham Pharmacia Biotech, Freiburg 

Agilent Bioanalyzer Agilent Technologies, Böblingen 

Axiophot light microscope Zeiss, Oberkochen 

Centrifuge 4K15C Sigma, Osterode am Harz 

Centrifuge 5403 Eppendorf, Hamburg 

Combi Thermosealer PCR plate sealer Advanced Biotechnologies, Surrey, UK 

Diamond knife Diatome AG, Biel, Switzerland 

Digital camera for light microscope Kappa obstronics GmbH, Gleichen 

Dissection kit Fine Science Tools, Heidelberg 

Electronic 8-channel pipette Eppendorf, Hamburg 

Fridge (+4 °C) Liebherr, Ochsenhausen 

Freezer (-20 °C) Liebherr, Ochsenhausen 

Freezer (-85 °C) Ultra Low Freezer New Brunswick Scentific, Nürtingen 

Jaeger-Toennis Neuroscreen Jaeger-Toennies, Würzburg 

Gel electrophoresis power supply Amersham Pharmacia Biotech, Freiburg 

Glassware Schott, Mainz 

Leica EM Trim Specimen Trimmer Leica Microsystems, Wetzlar 

Innova 4000 Incubator Shaker New Brunswick Scientific, Nürtingen 

LightCycler® 480 Real-Time PCR System Roche Diagnostics, Mannheim 

Lynx el tissue processor Vision Biosystems Inc., Australia 

Magnetic stirrer RCT basic Ikamag Omnilab, Bremen 

Microwave oven AEG, Frankfurt a.M. 

Multipipette® plus Eppendorf, Hamburg 
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PCR Thermocycler T3 Biometra, Göttingen 

Pipettes (2, 10, 100, 200, 1000 μl) Gilson, Middelton, WI, USA 

Precision weighing balance (digital) Sartorius, Göttingen 

Ultracut S microtome Leica, Wetzlar 

Ultrapure water system Arium 611 VF Sartorius, Göttingen 

Ultraturrax T8 tissue homogenisator IKA Labortechnik, Staufen 

Vortex-Genie-2 vortex mixer Bender & Hobein GmbH, München 

Water bath Gesellschaft für Labortechnik, Burgwedel 

2.1.9. Software 

Adobe Photoshop CS5 Adobe Systems Software, Saggart, Ireland 

Excel 2003 Microsoft Europe, Berlin 

geNorm 3.5 Center for Medical Genetics, Ghent, Bel-

gium (Vandesompele et al. 2002) 

GraphPad Prism® 5.0 GraphPad Software, La Jolla, CA, USA 

Image J. 1.40g NIH, USA 

PyRAT  Scionics Computer Innovation, Dresden 

qBase 1.3.5 Center for Medical Genetics, Ghent, Bel-

gium 

Statistica 6.0 StatSoft Europe, Hamburg 

Word 2003 Microsoft Europe, Berlin 
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2.2. Methods 

2.2.1. Animal breeding and maintenance 

2.2.1.1. HNPP mouse model 

An ethical permission for the study was obtained from “Niedersächsisches Landesamt für 

Verbraucherschutz und Lebensmittelsicherheit” (LAVES) (file number: 33.9-42502-04-

10/0285). The mice were bred and maintained in the animal facilities of the Max Planck 

Institute for Experimental Medicine (Göttingen) in accordance with the recommendations 

of the German Society for Laboratory Animal Science (GV-SOLAS). Before and through-

out the study the animals obtained free access to food and water. 

Mice used in the experiments originated from the breeding strain Agouti SV129 

EV/C57BL/6 (Adlkofer et al. 1995), acquired through breeding of wild type females 

(Pmp22+/+) with heterozygous Pmp22+/- males. The offspring were therefore wild type or 

expressed a Pmp22+/- genotype. The wild types served as controls in the subsequent stud-

ies, while the heterozygote Pmp22+/- mice (hereafter referred as HNPP mice) were used 

either as treatment animals or placebo-controls. Male mice were exclusively used in the 

studies in order to avoid the cyclic fluctuating levels of progesterone in female mice. 

2.2.1.2. Identification of the study animals 

The mice were identified through ear markings, consisting of numbers from 1-99 (Figure 

5). These were given under light anesthesia at the age of three weeks. Identification cards 

marked the cages where the mice where kept. These contained information about the iden-

tification number, the date of birth, the gender, the breeding strain, the litter number, and 

the identification number of the parents. Skin biopsies from the tip of the tail were obtained 

at the same time as the ear markings were given. These were stored at -20 oC and subse-

quently used for genotyping with PCR. The mice and the cages were administered with the 

PyRAT Software (Scionics Computer Innovation). 
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Figure 5: Ear markings.  The mice were identified through ear markings. The marks on the left ear (when 

seen from the front) represent numbers from 1-9, the marks on the right ear represent numbers from 10-90. 

2.2.2. Study design and groups  

2.2.2.1. Experimental dosage-finding pilot study with progesterone on HNPP mice 

A short-term pilot study, testing two different dosages of progesterone, was performed on 

HNPP mice before the commencement of the long-term therapy studies. Pmp22 mRNA 

expression served as a surrogate parameter for treatment effectiveness. Injections of the 

steroid were applied subcutaneously in two different dosages (10 mg/kg bw and 40 mg/kg 

bw). Progesterone was dissolved in propylene glycol, and applied in a volume of 100 µl 

every second day for nine days, the daily dosage hence being 5 or 20 mg/kg bw. The 

HNPP controls were similarly given a placebo, i.e. the same amount of propylene glycol. 

The first injections were given to adult mice aged 13 to 16 weeks. The mice were sacri-

ficed eight hours after the last injection through cervical dislocation, and the sciatic nerves 

(N. ischiadici) were resected and stored at -85 oC for subsequent RNA precipitation. The 

treatment groups were as follows: 
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Treatment: Number of animals: 

Progesterone 10 mg/kg bw 5 

Progesterone 40 mg/kg bw 4 

Placebo 7 

No treatment (wild type mice) 4 

2.2.2.2. Long-term therapy studies 

The long-term experiments were performed on male HNPP mice and wild type mice. The 

animals were genotyped at the age of three weeks and divided in a randomized manner into 

three groups. The heterozygote carriers of the Pmp22 gene were either treated with proges-

terone (HNPP treatment group) or with a placebo substance (HNPP control group). The 

third group consisted of wild type mice, which obtained neither progesterone, nor placebo 

(wild type control group). 

Two long-term therapy studies were carried out. In one the animals were treated for 60 

days with a subcutaneous progesterone or placebo pellet (Figure 6A). In the other study the 

animals obtained two subsequent pellets containing the same substance for a total of 150 

days (Figure 6B). The first implanted pellet contained 50 mg progesterone or placebo and 

had a release time of 60 days. The second pellet had a concentration of 75 mg of proges-

terone or placebo and a release time of 90 days. The pellets followed zero order kinetics, 

releasing a constant, even amount of the active product for the designed release time. 

 

Figure 6: Timeline describing the phases of the two long-term studies.  The mice were born at P0 and the 

first pellet was implanted at P30. (A): The treatment period for the first study was 60 days (2-month study) 

and ended at P90. (B): The mice from the second study received their second pellet at P90 and the total 

treatment period of the two subsequent pellets was 150 days (5-month study). The study ended at P180. 
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2.2.2.3. Subcutaneous implantations of progesterone and placebo pellets 

The first pellets were implanted at the age of 30 days and the second ones at the age of 90 

days. A 1 cm incision was made on the back of the neck, 1 cm posterior to the ear, and the 

pellet was inserted in a skin pocket, formed by using a blunt, sterile instrument. The wound 

was closed with sutures. 

2.2.2.4. Anesthesia of the study animals 

The subcutaneous implantations of the pellets, as well as the electrophysiological analysis, 

followed under full anesthesia with intraperitoneal injections of 5 mg/kg bw ketamine 

(Ketanest®) and 2 mg/kg bw xylazine (Rompun®). Aueromycin® eye ointment was applied 

to the eyes of the mice during narcosis in order to prevent drying of the open eyes. 

2.2.2.5. Preparation of peripheral nerves 

The mice were sacrificed through cervical dislocation at the end of the studies, and the N. 

ischiadici were resected. One of the nerves was immediately frozen down and stored at -85 

oC for subsequent RNA precipitation, and the other one was stored at 4 oC posterior to 

fixation with phosphate-buffered glutaraldehyde (Karlsson and Schultz, 1965). 

2.2.3. Molecular biology methods 

2.2.3.1. Genotyping the study animals 

2.2.3.1.1. DNA extraction 

Genomic DNA was extracted from the tail biopsies using a lysis solution (22.92 µl 10x 

MGB, 11.46 µl 10 % Triton X-100, 916.72 µl proteinase K and 194.8 µl distilled water) 

and incubating at 55 oC over night. The extracted DNA was stored at 4 oC and diluted in 

900 µl water prior to the use in the polymerase chain reaction. 

2.2.3.1.2. Polymerase chain reaction (PCR) of genomic DNA 

The genotyping of the mice was performed with polymerase chain reaction, a standardized 

method for amplifying a specific sequence of DNA in vitro. This method, widely used in 

molecular biology and medicine, dates back to 1986 (Mullis et al. 1986). The principle 
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relies on repeated cycles of heating and cooling of the reaction; denaturation of the com-

plementary strands at 94 oC, annealing of the sequence-specific oligonucleotides (primers) 

at 61 oC and elongation of the new DNA strands at 72 oC. A heat-stable DNA polymerase 

(Taq polymerase), originally isolated from the bacterium Thermus aquaticus, enables the 

exponential amplification of the DNA template. 

The specific sequence for the Pmp22 transgene was amplified in order to distinguish the 

HNPP mice (Pmp22+/-) from the wild types (Pmp22+/+). The PCR was carried out with the 

GoTaq® polymerase (Promega), using the following reaction mix and amplification proto-

col: 

DNA 0.5 µl 

5X Green GoTaq® Reaction buffer 4 µl 

dNTPs (2.5 mM each) 1 µl 

3´-Primer 0.1 µl 

5´-Primer 0.1 µl 

GoTaq® DNA Polymerase (1.6 U/50 µl) 0.1 µl 

Aq. dest. 14.2 µl 

 

1 min - 94 oC  

35 cycles: 1 min -  61 oC; 1 min - 72 oC; 1 min -  94 oC 

1 min - 61 oC 

5 min - 72 oC 

2.2.3.1.3. Agarose gel electrophoresis of the PCR products 

Agarose gel electrophoresis is a method for separating DNA fragments according to their 

length. DNA, being negatively charged, moves in an electric field through the agarose ma-

trix in the direction of the positive pole, shorter fragments separating faster than longer 

ones due to the better pore size/mass ratio. The separated fragments can be visualized with 

ethidium bromide under UV-light. 

A 1-1.5 % gel was made by dissolving agarose powder in heated 1x TAE buffer. Ethidium 

bromide (1µl/ml) was added, the gel was poured into a cast, and a comb was placed in the 

chamber to create wells for the samples. 1x TAE buffer was used as running buffer and the 
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probes were run at 90-150 V. The separated fragments were visualized under UV-light, 

using the ability of ethidium bromide to intercalate in DNA. The length of the fragments 

was determined using Generuler 100 bp (Thermo Fischer Scientific) as ladder. The HNPP 

mice presented two bands of the size of 260 bp and 317 bp, whereas the wild type litterma-

tes only showed one 317 bp band. 

2.2.3.2. cDNA transcription and amplification from isolated RNA 

2.2.3.2.1. RNA isolation 

RNA was isolated from the resected N. ischiadici with Qiagens´s “RNeasy Mini Kit”, us-

ing the protocol for small fatty tissues. The frozen samples were transferred into 1 ml TRI-

zol reagent and homogenized with a tissue homogenizator for 30 s (Ultraturrax T8). TRIzol 

works by maintaining RNA integrity during homogenization, while at the same time dis-

rupting and breaking down cells and cell components. The samples were incubated at room 

temperature for 5 min to permit complete dissociation of the nucleoprotein complex, and 

200 µl of chloroform was added. The samples were mixed vigorously, incubated at room 

temperature for 3 min and centrifuged for 15 min at 14000 rpm at 4 oC. The upper aquatic 

phase containing RNA was transferred into a new eppendorf cup. The equal volume unit of 

70 % ethanol (EtOH) was added. 700 µl of this mixture was moved to an RNeasy Mini 

Spin Column. The columns were loaded and washed with 700 µl RW 1 buffer and twice 

with 500 µl RPE buffer. The remaining EtOH was removed through centrifugation for 3 

min at 14000 rpm. The columns were transferred to eppendorf cups and the RNA was elut-

ed from the silicate membrane. This was done by pipetting 50 µl of RNase-free water di-

rectly on the membrane, centrifuging 1 min at 12000 rpm and repeating this step with the 

flow-through. 

2.2.3.2.2. Quantification and qualification of RNA 

RNA quantity, quality (degree of contamination) and integrity (degradation) were meas-

ured with Agilent Bioanalyzer, using the RNA 6000 Nano Assay. Small amounts of RNA 

(1 µl, ca. 50 pg) are sufficient for analysis with this assay, in which microfluidic capillary 

electrophoresis is used to separate total RNA in a sieving polymer matrix according to mo-

lecular weight. As RNA runs through the gel matrix, it binds to a fluorescence dye and 

gives a signal in the form of bands and an electropherogram. Since ribosomal RNA 
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(rRNA) represents over 90 % of the total RNA, the measurements reflect the quality of the 

rRNA. An uncontaminated sample yields two bands, representing the sedimentation coef-

ficients for the rRNA: 18S and 28S. The concentration of the RNA sample is determined 

by comparing the intensity of its signal to that of a ladder with a known concentration. 

A gel was prepared by centrifuging 400 µl RNA gel-matrix through a filter tube at 2500 

rpm and mixing it with 130 µl RNA dye. 9 µl of this mixture was loaded and pressed into 

the capillaries of an RNA chip with a Chip Priming Station (Agilent Technologies). A 

Nano marker was pipetted in each well, and an RNA ladder was used as a reference for the 

quantities and sizes of the RNA samples. The quality of the samples was determined 

through the integrals of the fluorescence signals from the 18S- and 28S RNA, the optimum 

being 28S/18S = 2.1. A degradation of the RNA would have been seen as a dispersion of 

the two peaks, and an increase in the retention time would have reflected contamination of 

the samples. 

2.2.3.2.3. RNA precipitation 

The concentration of the RNA was increased through precipitation, a process in which salts 

are used to neutralize the charge of the nucleic acid backbone, causing RNA to become 

less hydrophilic and fall out of solution. 1.5 µl Pellet Paint®, a glycogen-based co-

precipitant, was added to the samples and the samples were mixed, followed by addition of 

0.5 volume units of 7.5 M ammonium acetate. The RNA was precipitated with 2.5 volume 

units of 100 % EtOH and separated through centrifugation for 2 min at 13000 rpm at 4 oC. 

Due to the pink color given by the Pellet Paint®, the pellet was easily identified, and the 

supernatant could be removed. Remaining salts were removed through washing the pellet 

twice with 200 µl 70 % EtOH and removing the EtOH through suction. The pellet was 

dried for 30 min on ice and thereafter dissolved into 10 µl RNase-free water. 

2.2.3.2.4. cDNA synthesis 

The isolated RNA from the N. ichiadici was converted into complementary DNA (cDNA) 

through reverse transcription PCR (RT-PCR) with the “Superscript-III-RT” kit. This ena-

bled its use as a probe for the subsequent expression analysis with real-time PCR. Oligo-

dT primers (0.6 µM) were used to transcribe mRNA into cDNA, as they only prime at pol-
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yadenylated mRNA, complementary to their poly-T tails. The efficiency of the synthesis 

was increased through the use of random Nonamer primers (N9 primer, 120 µM). 

2 µl Oligo dT primer and 2 µl N9 primer was added to the RNA samples (250 ng), fol-

lowed by an incubation for 1 min at 70 oC, during which the primers annealed to the 

mRNA. The reaction mix was cooled down on ice and a mixture of 4 µl 5x 1st strand buff-

er, 2 µl 1M  dichlordiphenyltrichlorethan (DTT), 1 µl dNTPs (10mM) and 1 µl “Super-

script III” polymerase (200 U/µl) was added. The cDNA synthesis was performed with 

incubation steps as follows: 

10 min - 25 oC 

45 min - 50 oC 

45 min - 55 oC 

2.2.3.2.5. Semiquantitative real-time polymerase chain reaction with Sybr®-Green 

The cDNA was amplified with real-time PCR, a technique that follows the general princi-

ple of polymerase chain reaction and, in addition, detects and quantifies DNA as it is am-

plified. The amplified DNA was detected with Sybr®-Green, a cyanine dye (Morrison et al. 

1998) that emits fluorescence as it binds to double-stranded DNA. The amount of fluores-

cence measured after each PCR cycle correlates to the amount of the DNA product. A dis-

advantage of Sybr®-Green is its ability to bind double-stranded DNA in an unspecific 

manner, including primer dimers and contamination with genomic DNA. This makes the 

design and use of well-designed primers specific to the cDNA utterly important. Primers 

flanking introns prevent the amplification of genomic DNA because the short extension 

time is not sufficient to perform this, however being long enough for the amplification of 

the short cDNA. 

Quantification of the DNA relies on plotting the fluorescence against the number of cycles 

on a logarithmic scale. The threshold cycle (Ct) gives the number of cycles at which the 

fluorescence exceeds a given threshold, the value being lower the higher the concentration 

of the used target DNA is. The Ct value is normalized to the values of “housekeeping 

genes”. These genes have relatively constant expression levels and serve as a measure for 

the amount of cDNA in each sample. The transcription rate of the examined gene is ex-

pressed proportionally to that of the housekeeping genes. The fact that the expression is 
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normalized to that of the housekeeping genes, gives the name “semiquantitative” to this 

type of real-time PCR. 

The validity of the results was augmented by using several housekeeping genes and nor-

malizing the expression rate to that of the mean of these standards. The most suitable com-

bination of housekeeping genes with the smallest variation in expression rates between the 

different samples was identified with the “geNorm 3.5” software (Vandesompele et al. 

2002 #114). The analysis of the Ct raw data was performed with the “q-Base 1.3.5” soft-

ware (Hellemans et al. 2007). The following reaction mix was used: 

cDNA 2 µl 

Sybr®-Green Master mix 5 µl 

5´-Primer (50 µM) 0.2 µl 

3´-Primer (50 µM) 0.2 µl 

Aq. dest.  2.6 µl 

The semiquantitative real-time PCR was performed with LightCycler® 480 Real-Time 

PCR System according to the following amplification protocol: 

2 min - 50 oC 

10 min - 95 oC 

40 cycles: 15 s - 95 °C; 60 s - 60 °C 

2.2.4. Histological methods 

2.2.4.1. Embeddings in epoxy resins 

The resected N. ischiadici stored in gluteraldehyd were embedded in epoxy resins (epon), a 

class of reactive polymers. This enabled the preparation of semithin slices for light mi-

crosopy. First, the samples were fixated and stained with osmium tetroxide (OSO4) and 

dehydrated with a rising concentration of EtOH. The EtOH was washed away with propyl-

ene oxide in order to allow the infiltration of the samples in epoxy. These steps followed 

automatically with a “Lynx el” tissue processor, according to the following program: 
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Solution Time Temperature 

Phosphate buffer (0.1 M) 15 min 4°C 

2 % OSO4 4 h 4°C 

Aq. dest. 20 min RT 

Aq. dest. 20 min RT 

Aq. dest. 20 min RT 

30 % EtOH 30 min RT 

50 % EtOH 30 min RT 

70 % EtOH 30 min RT 

90 % EtOH 30 min RT 

100 % EtOH 30 min RT 

100 % EtOH 15 min RT 

100 % EtOH 15 min RT 

100 % EtOH 15 min RT 

100 % EtOH 15 min RT 

Propylene oxide 15 min RT 

Propylene oxide 15 min RT 

Propylene oxide 15 min RT 

Propylene oxide/Epon 2:1 2 h RT 

Propylene oxide/Epon 1:1 2 h RT 

Propylene oxide/Epon 1:2 4 h RT 

Epon 4 h RT 

The samples were moved into casts and embedded in epon. The polymerization of the epon 

took place at 60 oC for 24 h. 

2.2.4.2. Preparation of semithin slices 

The embedded samples were trimmed with a shaper and sectioned into semithin slices (0.5 

µm) with a microtome (Ultracut S). The slices were transferred onto object slides and dyed 

with freshly prepared and filtrated methylene-azure-II dye for 1 min at 60 oC, following the 

protocol of Richardson et al. (1960). The dye was washed away with distilled water and 

the object slides were dried for 10 min at 60 oC and covered with coverslips, using Eukitt® 

as mounting medium. 
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2.2.4.3. Light microsopy 

Histological characteristics in the peripheral nerve, such as tomacula and their possible 

preforms (myelin invaginations) were quantified on pictures taken of the dyed semithin 

samples of the N. ischiadici using an optical microscope (Axiophot, Zeiss) with a digital 

camera (Kappa). The samples were magnified 100x. The processing of the pictures fol-

lowed with Adobe Photoshop CS5. Plugin Cell Counter (ImageJ) was used to count the 

total amount of axons in each N. ischiadicus, as well as the amount of tomacula and myelin 

invaginations. The characterization of the axons followed in a blinded manner. 

2.2.5. Electrophysiological measurements 

The electrophysiological measurements were performed by Dr. Robert Fledrich in a blind-

ed manner. Hence the genotype of the animals was not known to the examiner. Compound 

muscle action potentials (CMAPs), nerve conduction velocities (NCVs) and distal motor 

latencies (DMLs) were recorded using fine subcutaneous needle electrodes and the results 

were documented with a Jaeger-Toennis Neuroscreen instrument. The CMAPs were 

evoked through electrical stimuli of 0.1 ms of the tail nerve. The muscle responses were 

recorded through electrodes, and the amplitudes between the lowest and the highest values 

were documented. NCVs were calculated from the latency difference between the CMAPs 

after successive proximal stimulation at two sites 2 cm apart. CMAP reflects the degree of 

axonal degeneration and NCV is a measure for myelin defects. In general, a normal NCV 

and a decreased CMAP suggest a purely axonal neuropathy, while a slowing of the NCV 

implies a demyelinating neuropathy (Dyck and Thomas 2005). DMLs were recorded as the 

interval between a stimulation of a compound muscle and the observed response (ms). 

Conduction block (CB) was not provoked but its spontaneous presence, defined by > 50 % 

reduction of CMAP amplitudes between proximal and distal sites of stimulation was calcu-

lated. CB indicates a failure of the action potential propagation along the axon as a conse-

quence of demyelination (Kaji 2003). The data acquired from the electrophysiological 

measurements, performed by the colleague, were used by the author for the statistical anal-

yses and their graphical representation.  
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2.2.6. Statistical analysis 

The data for the statistical analyses were sorted and processed with Excel 2010 and ana-

lyzed with GraphPad Prism® 5.0. The results were evaluated with an unpaired Student´s t-

test, using a significance level of p < 0.05. The mean and standard deviation (SD) is shown 

in the figures.   
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3. Results 

3.1. Identification of an effective progesterone dosage on Pmp22 expres-

sion after short-term application on HNPP mice 

The short-term pilot study was performed with two different dosages of progesterone. The 

amount of Pmp22 mRNA in the N. ischiadici was determined with real-time PCR, in 

which the expression of each sample was normalized to the mean of the best stable house-

keeping genes Rps20 and Rplp0. 

The HNPP mice (Pmp22+/-) showed, in accordance with the patient situation, a significant-

ly reduced level of Pmp22 expression compared to the wild type controls. A therapy at 10 

mg/kg bw of progesterone for nine days did not alter the lower expression level. However, 

a significant increase in Pmp22 expression towards wild type levels was found in the 

HNPP mice at 40 mg/kg bw of progesterone (Figure 7). This dosage was used in the sub-

sequent long-term therapy studies.  

 

Figure 7: Pilot study. Subcutaneous injections of progesterone were given every second day for nine days. 

The HNPP mice expressed a lower amount of Pmp22 than their wild type littermates (p < 0.05. Wild type: n 

= 4, mean = 1.0 ± 0 .05; placebo: n = 7, mean = 0.78 ± 0.14). An increase in the expression was observed 

after injections of 40 mg/kg bw progesterone (p < 0.05, n = 3, mean = 1.01 ± 0.06) but not after that of 10 

mg/kg bw (p > 0.05, n = 6, mean = 0.71 ± 0.21). 
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3.2. Time-dependent normalization of Pmp22 expression levels in HNPP 

mice after long-term therapy with progesterone 

The mean of the best stable housekeeping genes cyclophilin, β-actin, Rplp0 and Rps20 was 

used for normalization in the two long-term therapy studies. Again Pmp22 mRNA levels 

were significantly lower in the HNPP mice compared to their wild type littermates at the 

age of 90 days, as well as 180 days. The long-term therapy with progesterone at 40 mg/kg 

bw was effective in significantly increasing the expression of Pmp22 towards wild type 

levels after a 2-month treatment period (P90) (Figure 8A). However, no significant effects 

were found in the Pmp22 expression after a 5-month progesterone therapy (P180) (Figure 

8B).  

 

Figure 8: Relative Pmp22 expression after long-term treatment.  (A): 2-month study. The placebo-treated 

HNPP mice showed a lower expression level of Pmp22 than the wild type controls (p < 0.05. Wild type: n = 

11, mean = 1.0 ± 0.33; placebo: n = 7, mean = 0.71 ± 0.13). The progesterone-treated HNPP mice expressed 

significantly more  Pmp22 (p < 0.05, n = 12, mean = 0.93 ± 0.22) than the placebo-treated ones. (B): 5-month 

study. The placebo-treated HNPP mice expressed less Pmp22 than the wild types (p < 0.01. Wild type: n = 

11, mean = 1.0 ± 0.29; placebo: n = 16, mean = 0.74 ± 0.19). No significant increase in the expression level 

was seen after five months of treatment with progesterone (p > 0.05, n = 14, mean = 0.78 ± 0.22). 

3.3. Pmp22 and Krox-20 expression levels correlate in HNPP mice after 

treatment with progesterone 

The placebo-treated HNPP mice and the wild type controls showed no significant differ-

ence in the expression of Krox-20 after the 2-month study. However, in accordance with 

the results obtained with Pmp22, Krox-20 mRNA expression was significantly increased in 
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the HNPP mice treated with progesterone for two months at 40 mg/kg bw (Figure 9A), and 

no effect on Krox-20 was observed in the mice treated for five months (Figure 9B). At this 

time point the expression of Krox-20 was found to be significantly lower in the placebo-

treated HNPP mice compared to the wild types.  

 

Figure 9: Relative Krox-20  expression after long-term treatment.  (A): 2-month study. No significant 

difference in the expression levels between the wild types and the placebo-treated HNPP mice was observed 

(p > 0.05. Wild type: n = 11, mean = 1 ± 0.49; placebo: n = 7, mean = 0.74 ± 0.36). The progesterone-treated 

HNPP mice expressed significantly more  Krox-20  than the placebo-treated ones (p < 0.01, n = 12, mean = 

1.50 ± 0.57). (B): 5-month study. The placebo-treated HNPP mice expressed less Krox-20 than the wild types 

(p < 0.05. Wild type: n = 11, mean = 1.0 ± 0.31, placebo:  n = 16, mean = 0.71 ± 0.30). No significant 

increase in the expression level was seen after five months of treatment with progesterone (p > 0.05, n = 13, 

mean = 0.59 ± 0.15). 

The correlation between the expression levels of Pmp22 and Krox-20 was observed by 

plotting the Pmp22 expression of each HNPP mouse against its Krox-20 expression. The 

results showed significant positive correlations in the animals treated for two months 

(Figure 10A) and for five months (Figure 10B) (placebo- and progesterone-treated HNPP 

mice plotted together). 
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Figure 10: Expression levels of Pmp22 and Krox-20 plotted against each other.  A significant  positive 

correlation between the expression levels of  Pmp22 and Krox-20 was found in the placebo- and 

progesterone-treated HNPP mice after the 2-month study (p < 0.05. Placebo: n = 7, progesterone: n = 16, r2 = 

0.23) (A), as well as after the 5-month study (p < 0.01. Placebo: n = 15, progesterone: n = 13, r2 = 0.27) (B).  

3.4. No axonal loss detected in HNPP mice  

The total number of myelinated axons was quantified from the N. ischiadici of the mice 

and was not found to differ between any of the groups (Figure 11A-B).  

 

Figure 11: Total amount of myelinated axons per nerve (N. ischiadicus).  The number of myelinated 

axons was counted from pictures of nerve cross sections obtained by light microsopy. No significant differ-

ence (p > 0.05) existed between the wild types, the placebo-treated HNPP mice and the progesterone-treated 

HNPP mice after the 2-month study (wild type: n = 9, mean = 3679 ± 573; placebo: n = 7, mean = 3961 ± 

163; progesterone: n = 15, mean = 3959 ± 376) (A), nor after the 5-month study (wild type: n = 5, mean 3844 

± 567; placebo: n = 15, mean 3971 ± 281; progesterone: n = 13, mean = 3869 ± 542) (B). 
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3.5. HNPP mice show more tomacula and myelin invaginations and the sit-

uation is not corrected after progesterone therapy 

The peripheral nerves of Pmp22+/- mice show typical characteristics, such as tomacula and 

myelin invaginations (Adlkofer et al. 1997). The amount of these pathological formations 

was quantified from N. ischiadici. Normal axons and tomacula are depicted in Figure 12. 

The HNPP mice showed a significantly larger amount of tomacula (Figure 13) and abnor-

mal myelin invaginations (Figure 14) than the wild type animals and the amount of these 

myelin alterations increased significantly with age. No therapy effect concerning these 

features was observed after progesterone therapy. 

 

Figure 12: Sciatic nerve cross sections of wild type and HNPP mice of different ages (methylene-azure-

II dye).  Pictures obtained by light microsopy. Normal axons of wild type mice at P90 (A) and at P180 (B). 

Normal axons and tomacula (encircled) of placebo-treated HNPP mice at P90 (C) and at P180 (D) and of 

progesterone-treated HNPP mice at P90 (E) and at P180 (F). Scale bar: 10 µm.  
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Figure 13: Total amount of tomacula per nerve (N ischiadicus).  The number of tomacula was counted 

from pictures of nerve cross sections obtained by light microsopy. The HNPP mice showed a significantly 

larger amount of tomacula than the wild types. No significant difference in the numbers was found between 

the placebo- and progesterone-treated HNPP mice. (A): 2-month study (wild type vs. placebo: p < 0.001. 

Wild type: n = 9, mean = 1.0 ± 1.1; placebo: n = 7, mean = 69.9 ± 21.1; progesterone: n = 15, mean = 84.9 ± 

24.2). (B): 5-month study (wild type vs. placebo: p < 0.001. Wild type: n = 5, mean 4.4 ± 5.9; placebo: n = 

15, mean = 151.2 ± 55.0; progesterone: n = 13, mean = 195.2 ± 83.0). The amount of tomacula increased as 

the animals grew older (p < 0.01). 

 

Figure 14: Total amount of myelin invaginations per nerve (N. ischiadicus).  The number of myelin in-

vaginations was counted from pictures of nerve cross sections obtained by light microsopy. The HNPP mice 

showed a significantly larger amount of myelin invaginations than the wild types. No significant difference in 

the numbers was found between the placebo- and progesterone-treated HNPP mice. (A): 2-month study (wild 

type vs. placebo: p < 0.01. Wild type: n = 9, mean 33.0 ± 21.2; placebo: n = 7, mean = 116.0 ± 79.9; proges-

terone: n = 15, mean = 88.4 ± 34.8). (B): 5-month study (wild type vs. placebo: p < 0.001. Wild type: n = 5, 

mean = 40.4 ± 24.8; placebo: n = 15, mean = 209.7 ± 64.4; progesterone: n = 13, mean = 215.5 ± 68.6). The 

amount of myelin invaginations increased as the animals grew older (p < 0.01). 
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3.6. Electrophysiological studies 

Significantly reduced CMAPs and NCVs and increased DMLs were observed in the HNPP 

mice compared to the wild types. No beneficial therapy effects regarding these features 

were obtained with progesterone (Figure 15A-H). CBs were occasionally observed in 

HNPP mice from both the placebo- and the progesterone-treated group after the 2-month 

study (P90) but in neither group after the 5-month study (P180) (Figure 15I-J). 
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Figure 15: Electrophysiological studies performed on HNPP and wild type mice.  Decreased proximal 

and distal CMAPs and NCVs (p < 0.01) were observed in the placebo-treated HNPP mice compared to the 

wild type controls after the 2- and the 5-month studies. No therapy effect was found after treatment with 

progesterone (A-F). The DMLs were significantly increased in the placebo-treated HNPP mice and a further 

increase was observed in the progesterone-treated group after the 5-month study (p < 0.05) (G-H). CB was 

observed in one mouse from the placebo-treated group (CMAP proximal/CMAP distal = 0.19) and in two 

mice from the progesterone-treated group (CMAP proximal/CMAP distal = 0.23 and 0.49) after the 2-month-

study. No CB was detected after the 5-month study.  

Proximal CMAP 2-month study: wt: n = 17, mean = 10.62 ± 2.28; placebo: n = 14, mean = 5.46 ± 2.73; pro-

gesterone: n = 16, mean = 4.27 ± 2.14. Proximal CMAP 5-month study: wt: n = 16, mean = 17.29 ± 6.48; 

placebo: n = 22, mean = 7.11 ± 3.49; progesterone: n = 22, mean = 8.41 ± 3.10. Distal CMAP 2-month study: 

wt: n = 17, mean = 13.26 ± 2.86; placebo: n = 14, mean = 6.27 ± 2.55; progesterone: n = 16, mean = 5.20 ± 

2.60. Distal CMAP 5-month study: wt = 16, mean = 21.25 ± 6.69; placebo: n = 22, mean = 8.22 ± 4.21; pro-

gesterone: n = 22, mean = 9.67 ± 3.47. NCV 2-month study: wt: n = 17, mean = 32.39 ± 5.48; placebo: n = 

14, mean = 26.26 ± 3.76; progesterone: n = 16, mean = 24.89 ± 4.67. NCV 5-month study: wt: n = 16, mean 

= 41.45 ± 10.53; placebo: n = 22, mean = 29.36 ± 5.34; progesterone: n = 22, mean = 31.45 ± 8.82. DML 2-

month study: wt: n = 17, mean = 1.00 ± 0.13; placebo: n = 14, mean = 1.26 ± 0.18; progesterone: n = 16, 

mean = 1.22 ± 0.11. DML 5-month study: wt: n = 16, mean = 1.08 ± 0.12: placebo: n = 26, mean = 1.19 ± 

0.15; progesterone: n = 21, mean = 1.30 ± 0.17. CB 2-month study: wt: n = 17; placebo: n = 14; progester-

one: n = 16. CB 5-month study: wt: n = 16: placebo: n = 22; progesterone: n = 22.  
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3.7. No side-effects on long-term body weight increase after progesterone 

therapy   

The weight of the mice was controlled regularly during the long-term studies in order to 

detect a possible side-effect on the body weight increase during and after therapy with pro-

gesterone. No significant difference was found between the progesterone-treated HNPP 

animals and the placebo-treated HNPP controls, nor between these mice and the wild types 

(Figure 16). 

 

Figure 16: Weight curve.  The mice were weighed regularly. No significant difference in the weights (g) 

was found between any of the groups at any time point (p < 0.05). P30: wild type: n = 1, mean = 17.46 ± 

0.00; placebo: n = 25, mean = 16.54 ± 2.42; progesterone: n = 30, mean = 15.64 ± 3.02. P90:  wild type: n = 

12, mean = 27.10 ± 3.03; placebo: n = 25, mean = 27.83 ± 2.09; progesterone: n = 30, mean = 27.87 ± 2.10. 

P180: wild type: n = 4, mean = 28.78 ± 3.11; placebo: n = 16, mean = 30.85 ± 2.53; progesterone: n = 12, 

mean = 31.49 ± 1.95.  

3.8. Mean progesterone dosage delivered to HNPP mice decreases with 

time 

The body mass of the mice increased as they grew older, and since the amount of proges-

terone was released from the pellets in a constant manner, the dosage of progesterone de-

livered decreased following a reverse pattern, thus being lower than the aimed dosage of 

40 mg/kg bw, as seen in Figure 17.  
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Figure 17: Weight- and dosage curves. The dosage of progesterone (mg/kg bw) decreased as the animals 

gained weight (g) while growing older. The curve with the dots depicts the weights of the mice at time points 

between 30-180 days (x-axis). The curve with the squares represents the dosage of progesterone (mg/kg bw) 

obtained at each time point. Wild type: n = 1-12; placebo: n = 17-25; progesterone: n = 12-13. 
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4. Discussion 

Two goals were set for the thesis: 1) the comparison of the HNPP mouse model at the level 

of Pmp22 expression, axon and myelin pathology, as well as electrophysiological charac-

teristics to the very limited amount of published data regarding these features, and using 

the results of the study to evaluate the similarity of the model to human HNPP patients and 

thus its suitability as a reliable disease model. This is important in the light of the fact that 

when creating a mouse model and building up a colony that will breed, there is a risk of 

loss of the disease phenotype of interest (Perrin et al. 2014). 2) To study whether an in-

crease in Pmp22 expression can be achieved through a therapy with progesterone, with the 

potential of offering a causal pharmacological therapy option in HNPP.  

4.1. Pmp22 expression, histological phenotype and electrophysiological 

features of the HNPP mouse model correlate to a great degree to that of 

human patients 

4.1.1. Decreased Pmp22 expression in HNPP mice 

The transgenic mouse model for HNPP, lacking one functioning allele of the Pmp22 gene, 

is expected to express decreased levels of Pmp22, which was confirmed in this thesis. The 

expression level remained stable at the time points of P90 (0.71-fold of wild type controls) 

and P180 (0.74-fold of wild type controls). Since the rodent model, as well as the human 

patients, has one functioning allele of the Pmp22 gene, one could assume an expression 

level of 0.5. It is possible that the mouse model has certain limitations and that the disease 

is not as marked in the rodents as it is in the human HNPP patients.  

4.1.2. Increased amount of tomacula and myelin invaginations in HNPP mice 

The number of myelinated axons did not differ in the three groups of study animals (wild 

type controls, placebo-treated HNPP mice and progesterone-treated HNPP mice) at neither 

of the time points of P90 and P180 in this study (Figure 11). However, the number of 

tomacula and myelin invaginations was significantly higher in the HNPP mice and in-

creased with age (Figures 13-14). The presence of tomacula is in line with previous data 

from Pmp22+/- mice but a new observation, not seen before when comparing mice of the 
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age of 5, 10 and 15 months (Adlkofer et al. 1997), was that the number of hypermyelinated 

axons increased during aging. Even the number of myelin invaginations increased with 

age. 

Semithin sections of sural nerve biopsies from HNPP patients reveal abnormalities of the 

myelin sheath. The characteristic picture consists of fibres with a thin myelin sheath and 

myelin thickenings with tomaculous and outfolding-like features. Moreover, moderate ax-

onal loss and mild reduction of myelinated fibre density and axonal degeneration is ob-

served (Luigetti et al. 2014). Tomacula are also visible in teased fibres preparations (Behse 

and Buchtal 1971; Koike et al. 2005; Luigetti et al. 2014), as are signs of segmental de/re-

myelination and increased axonal degeneration (Koike et al. 2005). Therefore the HNPP 

mouse model mimics histological features in human patients regarding the presence of 

tomacula. 

4.1.3. Presence of various electrophysiological abnormalities in HNPP mice 

Mild alterations in electrophysiological features (reduction of the M-response) were de-

tected in a previous study on Pmp22+/- mice of 12-14 months of age. However, no changes 

in NCVs, motor and mixed afferent latencies, F-wave latencies and duration of M- and F-

responses were seen. No abnormalities were detectable at the earlier time point of 10 

weeks (Adlkofer et al. 1995). In another study, induced CB has been demonstrated to occur 

more rapidly in Pmp22+/- mice than in wild types (Bai et al. 2010). In the study performed 

for this thesis, distal and proximal CMAPs, NCVs and DMLs were measured in 90- and 

180- day old animals. The HNPP mice displayed significantly reduced CMAPs and NCVs 

and increased DMLs compared to the wild type controls. CB was not provoked in the pre-

sent study but its spontaneous presence was occasionally observed in HNNP mice at P90.  

The neuropathy in humans shows great heterogeneity regarding its clinical and electro-

physiological manifestations (Beydoun and Cho 2013), but patients are mostly, whether 

symptomatic or not (Infante et al. 2001), reported to display characteristic alterations, in-

cluding prolongation of DMLs (Li et al. 2002; Pou Serradell et al. 2002; Yurrebaso et al. 

2014), especially of the median and peroneal nerves (Li et al. 2002), slightly reduced 

NCVs with slowing of motor nerve conduction velocities, mostly at entrapment sites 

(Gouider et al. 1995; Mouton et al. 1999; Infante et al. 2001; Li et al. 2002; Pou Serradell 

et al.2002; Yurrebaso et al. 2014) and occasional CBs (Pou Serradell et al. 2002; Yurreba-
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so et al. 2014). Sensory NCVs and sensory nerve action potentials amplitudes are often 

reduced (Li et al. 2002; Hong et al. 2003). A reduction in CMAP amplitudes can be present 

and has been documented to increase during aging in nerves vulnerable to entrapment 

(Koike et al. 2005), seen as a sign of slowly progressive axonal loss (Herskovitz et al. 

2010). The most affected nerves for electrophysiological alterations seem to be the motor 

and sensory ulnar nerve, the deep fibular nerve, the sensory and motor median nerve, the 

sural nerve and the superficial radial nerve (de Oliveira et al. 2016). 

4.2. A time-dependent normalization of Pmp22 expression without positive 

histological or electrophysiological effects was obtained in the HNPP mouse 

model after therapy with progesterone 

The studies were performed on male HNPP and wild type mice in order to avoid the cyclic 

fluctuations of progesterone in female mice. The application of progesterone and placebo 

followed with subcutaneous injections in the pilot study and with subcutaneous pellets in 

the two long-term studies of two and five months. In the doctoral thesis of Dr. med. Thom-

as Prukop it was shown that progesterone is released from the pellets in a constant manner 

according to the information given by the manufacturer (Prukop 2008). Thus, the amount 

of substance released per kg/bw decreases as the animal gains weight during its develop-

ment from a pup to an adult. This is visualized in Figure17 where the ratio between body 

weight (g) and progesterone dosage (mg/kg bw) is depicted. 

4.2.1. Increased Pmp22 gene expression after therapy with progesterone 

In the present study it was shown that although HNPP mice express decreased levels of 

Pmp22, the expression rate can, however, be altered. In a short dosage finding pilot study 

that lasted for nine days, as well as in a long-term study of two months, a therapy with pro-

gesterone significantly increased the level of Pmp22 to wild type levels. Hence, the study 

provides proof of principle for Pmp22 normalization by a pharmacological drug therapy.   

Interestingly, the increased Pmp22 expression level could no longer be observed in animals 

after a treatment of five months. A range of factors may play a role in this process. This 

could be due to an insufficient amount of progesterone reaching its target as the concentra-

tion of the substance decreases as the weight of the animal increases with aging. The dos-
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age of progesterone had a mean of 56.6 ± 18.6 mg/kg bw in the beginning of the study 

(P30) and decreased continuously, having a mean of 30.0 ± 2.4 mg/kg bw as the 2-month 

study ended (P90) and only 26.6 ± 1.7 mg/kg bw at the end of the 5-month study (P180). 

Another important observation is the local reaction of the subdermal tissue to the implant-

ed pellet. A pellet rejection was observed in many of the animals from the 5-month study, 

possibly due to the longer time that the pellet stayed implanted, and/or the larger size of the 

second implanted pellet. It seems plausible that a capsulation and a rejection of the pellet 

impair blood circulation in that area, leading to a decreased amount of progesterone reach-

ing the circulation and its target tissues. Considering both these observations together; the 

effects of combined rejection of the pellet and the lower dosage of progesterone as the 

weight increases with time, one may hypothesize that this contributed to the low expres-

sion level of Pmp22 in HNPP mice after five months of treatment. 

KROX-20 is a transcription factor stimulated by progesterone (Guennoun et al. 2001; Mer-

cier et al. 2001; Magnaghi et al. 2007) and an inductor of PMP22 expression (Nagarajan et 

al. 2001; Le et al. 2005). This study supports both of these statements. The expression of 

Krox-20 increased in the HNPP mice after treating them for two months with progesterone 

and correlated positively with the expression of Pmp22. Thus, stimulation of Pmp22 

through KROX-20 seems plausible. An increased expression level of Krox-20 was, how-

ever, not seen after a 5-month treatment with progesterone. This observation was in line 

with the unaltered expression of Pmp22 after the long-term treatment.  

4.2.2. No changes in histological features after therapy with progesterone 

No effects regarding the structural changes of axons in the HNPP mice were seen after 

treatment with progesterone; the amount of tomacula and myelin invaginations remained 

unchanged. It is possible that the upregulated Pmp22 mRNA expression, in the case of the 

2-month study, is not sufficient to counteract the formation of these structures long-term, 

and a certain threshold level has to be reached for this to take place. In the case of CMT1A, 

a threshold for therapeutic effectiveness by downregulating Pmp22 overexpression via a 

progesterone antagonist in rats has been discussed (Meyer zu Hörste et al. 2007). 
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4.2.3. No changes in electrophysiological parameters after therapy with proges-

terone 

No positive therapy effect regarding the electrophysiological findings was seen after treat-

ment with progesterone. The CMAPs and NCVs remained reduced and the DMLs were 

still prolonged. Reduced NCVs not being improved by progesterone may reflect the unaf-

fected myelin pathology as shown by the quantification of tomacula and invaginations, and 

missing effects on the axonal number in the peripheral nerve may explain why CMAPs 

were not affected by progesterone therapy in the HNPP mice. On the other hand, CMAPs 

were obviously reduced in the HNPP mice although no axonal degeneration was present. 

Therefore, some axonal damage must be present in the HNPP mice, which however could 

not be demonstrated by the quantification of total axonal number itself. DML abnormali-

ties are currently not well understood in hereditary peripheral neuropathies, however, a 

relation to the end terminal transduction via the neuromuscular junction is discussed 

(Prukop et al. 2017). Although the analysis showed significantly increased DMLs in the 

HNPP mice, the interpretation remains limited due to missing histological correlation data 

with neuromuscular junctions.  

4.3. Suggestions for optimizing future therapy studies in HNPP mice 

Data obtained from the performed study, as well as challenges met during it, serve as valu-

able information for further therapy studies in the HNPP mouse model. It was shown that 

these mice do show pathological features known to the human patients, and that an altera-

tion of Pmp22 expression can in general be gained though treatment with progesterone. 

Regarding the upregulation of Pmp22 using progesterone as a therapeutic substance a few 

alterations and new approaches may be applied in future studies. For one, a study on a 

larger scale, increasing the n-number, would reflect the mean more reliably. 

The difficulty with the decreasing amount of progesterone released as the animals gain 

weight could be tackled using another form of application. Application of the therapeutic 

substance by mixing it in the food allows the optimization of the dosage at any desired 

time point. It is an option widely used, although one can never be certain of the exact 

amount of food consumed by the animal. Nevertheless, the problem with pellet capsulation 

and rejection could be overcome by applying progesterone in the food. Another way of 
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controlling the dosage is by applying progesterone through subcutaneous injections. Expe-

rience from the pilot study taught, however, that regular injections in the subcutis lead to 

an induration of the skin, making it more challenging to perform the injections long-term.  

The dosage of progesterone must be carefully optimized; using a dosage that is not only 

sufficient to stimulate the expression but large enough to achieve a normalization to wild 

type levels, while at the same time not inducing an over-expression comparable to the 

CMT1A phenotype.  

In the case of CMT1A, a disease caused by PMP22 gene duplication, downregulating the 

gene expression is the aim, and several compounds impacting Pmp22 have been tested 

both in vitro and or in vivo. Onapristone (Chabbert-Buffet et al. 2005), a progesterone re-

ceptor antagonist, has been shown to reduce PmpP22 mRNA overexpression and to elimi-

nate the neuropathic phenotype when given to early postnatal CMT1A rats (Sereda et al. 

2003), as well as to older CMT1A rats (Meyer zu Hörste et al. 2007). PXT3003, a combi-

nation of three drugs (baclofen, naltrexone and sorbitol) has been shown to exert its effect 

on CMT1A in cell cultures, in the rodent model for the disease (Chumakov et al. 2014), as 

well as in clinical trials (Attarian et al. 2014). It was shown to lower Pmp22 overexpres-

sion and to improve myelination in vitro and in vivo in the transgenic rats and to amelio-

rate the clinical phenotype in the rodents. The three molecules were separately able to in-

crease myelination as well but had a greater impact when used in combination (Chumakov 

et al. 2014). Overexpressed neuregulin-1 (NRG1), a recombinant human growth factor 

which controls myelin thickness, has been shown to counter the effect of Pmp22 overex-

pression in early postnatal development in a rat model, although not by reducing the over-

expression itself. This appears to occur through modulation of downstream signaling 

through kinases and is shown to improve the differentiation of Schwann cells (Fledrich et 

al. 2014). Protein kinase C (PKC) modulator bryostatin has been shown to lower Pmp22 

expression by first activating PKC and then depressing its activity on a long-term basis 

(Inglese et al. 2014). Other PKC modulating bryostatin-like molecules have also been iden-

tified (Ruan and Zhu 2012). 

An interesting question is if substances that target the molecules mentioned above or other 

molecules that regulate the activity of Pmp22 expression or counter the effects of Pmp22 

underexpression could be applied in the case of the HNPP transgenic model. Onapristone 

works by antagonizing the progesterone receptor (Sereda et al. 2003). Baclofen targets the 
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GABA-B receptor, Naltrexone binds to opioid receptors and sorbitol may bind muscarinic 

acetylcholine G-protein coupled receptors or acts as a chaperone. How PXT-3003, the 

combination of baclofen, naltrexon and sorbitol, exerts its effect on Pmp22 downregulation 

is still not fully understood (Ekins et al. 2015). NRG1 counters the effect of Pmp22 (Fle-

drich et al. 2014) and bryostatin exerts its downregulating effect on Pmp22 expression (In-

glese et al. 2014) through kinases (Fledrich et al. 2014; Inglese et al. 2014).  

In fact, other receptors and substances have been shown to play a role in the activation of 

Pmp22 expression. Pmp22 expression is not only stimulated through activation on PR, but 

also through the interaction with non-classical steroid receptors, such as the GABA-A re-

ceptor (Melcangi et al. 2005), and this activation leads to a higher level of Pmp22 (Caruso 

et al. 2008). Both the sciatic nerve of adult male rats and Schwann cells express several 

subunits of this receptor (Melcangi et al. 1999b; Melcangi et al. 2005). Schwann cells are 

able to actively convert progesterone into dihydroprogesterone (DHP) through the action 

of the 5α-reductase and then through the action of the 3α-reductase into tetrahydroproges-

terone (THP) (Melcangi et al. 1990; Melcangi et al.1998a; Yokoi et al. 1998) and these 

enzymes are present both in the CNS and in the PNS (Celotti et al. 1992; Melcangi et al. 

1999b). THP is not able to directly bind to the PR, unless it is converted back to DHP, but 

interacts directly with some components of the GABA-A receptor (Rupprecht et al. 1993; 

Rupprecht et al. 1996; Melcangi et al. 1999b; Melcangi et al. 2001). The peripheral nerves 

of aged male rats show morphological changes and decreased levels of Pmp22 (Melcangi 

et al. 1998b; Melcangi et al. 1999a; Azcoitia et al. 2003; Melcangi et al. 2003). THP has 

been demonstrated to increase the amount of Pmp22 in Schwann cell cultures, as well as in 

vivo in the sciatic nerve in adult male rats, but not any longer in senescent rats (Melcangi 

et al. 1999a). 

It would be of interest to examine the effects of the progesterone derivates DHP and THP 

in future studies. Furthermore, other molecules that upregulate Pmp22 expression or coun-

teract the loss of Pmp22 by targeting the receptors mentioned above, similar receptors or 

molecular pathways in HNPP mice are worth taking in consideration when planning a 

therapy study on the mouse model.  
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4.4. Conclusions 

The aims set for the thesis: performing a comparison of the mouse model for HNPP to the 

limited amount of published data regarding its characteristics and further evaluating its 

similarity to human patients, as well as performing an expression study of Pmp22 through 

pharmaceutical means with progesterone, were achieved in this study. In summary, apart 

from reproducing data obtained in previous studies with the mouse model, novel infor-

mation on HNPP was gained. On the histological level, the presence of tomacula was reaf-

firmed and the number of tomacula and myelin invaginations was shown to increase with 

aging. The tomaculous formations were in line with findings in human HNPP patients. 

However, while the HNPP mice did not show a reduced number of axons, a decreased ax-

on number is observed in patients. As for the electrophysiological findings, decreased 

NCVs were now for the first time observed in the mouse model. The electrophysiological 

characteristics of the mouse model mimic features in human patients with decreased 

CMAPs and NCVs and increased DMLs, and the presence of CB in a few HNPP mice re-

flects the situation in patients. It was demonstrated that the expression of Pmp22 can be 

augmented with progesterone. Furthermore, the expression of Krox-20 and Pmp22 were 

shown to correlate to another, suggesting the role of KROX-20 as an inductor of Pmp22 

expression. The increased level of Pmp22 expression, however, did not affect the patholog-

ical hallmarks of the HNPP mice.  

The HNPP mouse model was shown to mimic pathological features of human patients to a 

certain extent, however as mentioned above, some issues remain to be resolved. Neverthe-

less, it can be concluded to serve as a valuable tool for future investigations. The results of 

this study can be seen as an excellent platform from which further experiments with pro-

gesterone can be performed, including optimization of the application form and the dosage, 

in order to determine its potential in counteracting the HNPP phenotype. Additionally, test-

ing other substances and receptors able to stimulate Pmp22 expression would be a logical 

step in the attempt to find a means to ameliorate the amount of Pmp22 to wild type levels 

and thus potentially reach a normalization of the phenotype.  
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5. Summary 

Hereditary neuropathy with liability to pressure palsies (HNPP) is an autosomal dominant 

demyelinating disorder characterized by episodic, recurrent peripheral sensory and motor 

neuropathies, triggered by minor traumas or compression in various locations. A typical 

clinical manifestation of HNPP is acute, painless, recurrent peripheral nerve palsies. The 

symptoms are brief and improve generally within days, weeks or months, with full recov-

ery occurring in 50 % of episodes. The affected limbs usually show significant slowing and 

conduction blocks (CB) in nerve conduction velocity (NCV) studies, distal motor latencies 

(DML) are increased and sensory nerve conduction velocities are often decreased. In addi-

tion, sensory nerve action potential amplitudes are reduced. Only symptomatic treatment is 

currently available.  

The majority of cases of HNPP can be attributed to a heterozygous 1.5 Mb deletion on 

chromosome 17p11.2 that includes the peripheral myelin protein 22 (PMP22) gene. 

PMP22 is an intrinsic membrane protein, primarily expressed in myelinating Schwann 

cells. PMP22 comprises approximately 2-5 % of total myelin protein and is largely con-

fined to compact myelin. Its precise biological functions are still unknown but it has been 

proposed to serve as a structural component of myelin, required for the flawless develop-

ment of peripheral nerves, axon maintenance, myelin formation and the determination of 

myelin thickness and stability. 

The histological characteristics of HNPP nerves consist of focal excessive myelin folds 

(tomacula), characterized by an extremely thickened myelin sheath wrapping around an 

axon of reduced diameter, and onion bulbs. Tomacula may initially arise from myelin in-

vaginations. 

The signaling pathway of progesterone is known to regulate the mRNA expression of mye-

lin genes in the peripheral nervous system. In the present study subcutaneous application of 

progesterone for a period of two months increased the Pmp22 expression in the HNPP 

mice (Pmp22+/-) to wild type levels. The expression of Krox-20 and Pmp22 correlated to 

one another, providing evidence for the role of KROX-20 as an inductor of Pmp22 expres-

sion. Surprisingly, the effects of progesterone were not reflected on pathological myelin 

characteristics, which remained unchanged. This could be due to a possible threshold level 

that has to be reached for therapeutic effectiveness to occur. Tomacula and myelin invagi-
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nations were shown to increase in number as the animals grew older. Reduced NCVs were 

detected in electrophysiological studies performed on the HNPP mice and earlier docu-

mented electrophysiological characteristics (decreased CMAPs and NCVs and increased 

DMLs) were reproduced. Even CBs were observed in a few HNPP mice. This mouse mod-

el was, albeit some limitations, shown to largely mimic the pathological features of human 

patients and can therefore be regarded as a valuable tool for future studies aiming to under-

stand the disease mechanisms and could help lead to the development of new therapies.  
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