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Summary

1. Summary 

Males living in multi-male groups display a wide range of  relationships with co-resident males, vary-

ing from high levels of  competition, intolerance and avoidance to cooperation, affiliation and social 

bonds. Despite the wide diversity of  male–male relationship dynamics, the existence of  multi-male 

associations and male–male bonds is puzzling, as males compete over un-sharable fertilization. Multi-

male associations can emerge as a result of  increased between-group competition, which would ne-

cessitate communal defense of  females. In groups characterized by stable male co-residence, social 

bonds are thought to develop in scenarios of  medium to low within-group contest potential, which 

would make it feasible for males to invest in coalitionary support aimed at rank ascension. According-

ly, multi-male alliances and coalitions between strongly bonded males are linked to lower takeover 

likelihoods and/or enhanced male reproductive success in several mammalian species. Female choice 

can also play a role, with increased reproductive success for males that invest in heterosexual bonds 

and provide services like protection from harassment and infanticide, assistance in rearing young, and 

support in conflicts. In this context, male–male ritualized behaviors are crucial behavioral mecha-

nisms that balance the trade-offs imposed by male co-residence and help regulate male–male relation-

ships. These ritualized exchanges are hypothesized to function as a tension buffering mechanism dur-

ing competitive contexts and/or as honest signals used to test relationship quality, maintain social 

bonds, and promote cooperation. Several findings suggest that greeting function varies from species 

to species and that, in some cases, this can be influenced by the level of  male tolerance and coopera-

tion. 

In this thesis I investigate the dynamics and fitness benefits of  male–male sociality in wild Guinea 

baboons by exploring the presence of  strong male–male bonds along with their effect on male re-

productive success and the function of  ritualized greeting behavior between males. Guinea baboons 

live in nested multilevel societies, with several “units” forming a “party”, which regularly aggregate 

into “gangs”. Males engage in highly ritualized greetings with an intense repertoire involving poten-

tially harmful behaviors like genital fondling, which may be crucial to regulating social dynamics in 

such large and fluid communities. The presence of  male–male affiliation and cooperation, combined 

with the relatively high level of  female leverage in intersexual relationships, make this species an in-

triguing model to assess how the advantages conferred by male–male sociality play out in a highly 

tolerant multilevel system. I examine whether number and strength of  social bonds and number of  

associated secondary males are associated with higher average relatedness or enhanced reproductive 

success, using social behavior, genetic relatedness, and paternity of  24 adolescent and adult males. I 
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also investigated the function of  ritualized greetings and whether they are used to buffer tension and/

or assess relationship quality. 

In chapter 3, I show Guinea baboon greetings are crucial in the regulation of  male social dynamics by 

signaling social levels and party membership. I present evidence that within-party greetings are honest 

affiliative signals that test relationship quality with spatially tolerant partners, while accentuating rela-

tionship strength with strongly bonded partners. All my analyses show greetings are not used to buf-

fer tension in this tolerant social system, and describe how they are characterized by high levels of  

reciprocity, physical contact, and intensity. Lastly, I discuss how these findings are in sharp contrast to 

reports from other members of  the genus Papio, which present lower levels of  male tolerance and 

cooperation, while parallel findings are reported for other more tolerant and cooperative species. 

In chapter 4, I show that within-party male–male affiliative relationships are differentiated and stable 

over time, indicating male Guinea baboons form strong bonds. I demonstrate that strongly bonded 

males are more likely to support each other in coalitions and have higher average relatedness. This 

suggests kinship may have facilitated the development of  bonds and cooperation. Interestingly 

though, bonds are neither restricted to kin nor does kinship guarantee stronger bonds, indicating that 

other mechanisms like familiarity may play a more central role in male–male sociality. I show that the 

distribution of  reproduction at the party level is not different from chance, while primary males sire 

89.5% of  offspring at the unit level. Contrary to other species, all three measures of  sociality are not 

positively linked with short-term reproductive success either through number of  associated females 

or sired offspring. Instead, males with stronger bonds actually have significantly fewer associated fe-

males. A post-hoc analysis shows that preferred partners are stable over time, but that the proportion 

of  time males invest in socializing with other males is negatively affected by the number of  associated 

females. Thus, male Guinea baboons appear to face a trade-off  between investing in same-sex bonds 

and heterosexual ones. 

My thesis is the first systematic analysis to demonstrate how co-resident males regulate relationships 

through ritualized greetings and contribute to our understanding of  the dynamics and fitness benefits 

of  male–male sociality in this multilevel and tolerant system. I contribute to the theory that ritualized 

behaviors and rituals developed in parallel with a transition from more aggressive social styles to 

more tolerant and cooperative ones. Future systematic comparative studies will be key to understand-

ing if  these patterns hold across the order Primates. While strong bonds between male Guinea ba-

boons share characteristics with those of  other primates, contrary to evidence from several species 

my findings show sociality need not be directly linked to increased short-term reproductive success. 

Investigating if  and how male–male sociality confers benefits to reproduction over the long-term and 

advantages beyond reproductive success represent crucial steps for future research. 
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General Introduction

2. General Introduction 

Long-term investments in affiliative and cooperative social relationships represent crucial strategies 

towards mitigating the costs of  group-living (reviewed in Ostner and Schülke, 2018; Thompson, 

2019). Such social relationships and bonds, as well as their adaptive benefits, have been broadly inves-

tigated in females (Silk, 2007a). Notwithstanding recent research on male–male affiliation and coop-

eration, however, male social relationships remain less clear (Hill and van Hooff, 1994). As inclusive 

fitness is assumed to have directed the evolution of  female cooperation and bonds (reviewed in Silk, 

2007b), this research bias is often attributed to the predominance of  female philopatry in many social 

mammals, including numerous primates, which sets the scene for male dispersal (reviewed in Clutton-

Brock, 2016). Studies also argue that affiliation and cooperation are more likely to occur among fe-

males, who compete for shareable resources such as food, whereas males compete for un-shareable 

resources such as fertilization (Hill and van Hooff, 1994). Arguing that male cooperation and bonds 

are rare and tend to occur exclusively between kin (van Hooff  and van Schaik, 1994), early studies 

focused on competition, dominance, and aggression (Hill and van Hooff, 1994). However, males can 

display a broad variety of  relationship styles when interacting with other males. 

Investigations of  male–male interactions have moved beyond competition in recent decades. Toler-

ance, cooperation, affiliative interactions and social bonds between males have been reported in sev-

eral species both between kin and non-kin (e.g. African lions, Panthera leo: Grinnell et al., 1995; bot-

tlenose dolphins, Tursiops sp.: Krutzen et al., 2003; chimpanzees, Pan troglodytes: Mitani, 2009; Guinea 

baboons, Papio papio: Patzelt et al., 2014; Barbary macaques, Macaca sylvanus: Young et al., 2014a; As-

samese macaques, Macaca assamensis: Kalbitz et al., 2016). Males have also evolved ritualized affiliative 

behaviors to balance the trade-offs imposed by co-residence. These interactions can vary greatly in 

their features and function and are crucial to help regulate male–male relationships in multi-male 

groups (Whitham and Maestripieri, 2003). Although these recent developments improve our under-

standing of  male–male sociality, our knowledge remains limited compared to females and new find-

ings would advance our understanding of  the proximate and ultimate mechanisms of  such relation-

ships. 

In the following sections, I summarize the evolution of  group-living (2.1) and the adaptive benefits 

of  sociality (2.2). The next section describes the development of  multi-male groups considering both 

male and female perspectives (2.3), followed by male reproductive competition over female monopo-

lization as well as alternative mating strategies (2.4). This is followed by the features and adaptive ben-

efits of  male–male social bonds, their evolution, and underlying mechanisms (2.5) as well as male–
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male ritualized behaviors and their function in regulating relationships (2.5). I finally introduce and 

highlight why Guinea baboons are an ideal and intriguing model for studying the dynamics and fit-

ness benefits of  male sociality (2.6), and conclude with the aims, hypotheses, and predictions ad-

dressed in this thesis (2.7). 

2.1 The evolution of  group-living 

Living in groups can entail significant individual costs, including increased risk of  disease transmis-

sion (Freeland, 1976; Altizer et al., 2003; Kappeler et al., 2015) and competition over food, territories, 

sleeping sites, or mates (Alexander, 1974; Emlen and Oring, 1977; Krause and Ruxton, 2002). In spite 

of  these costs, group-living or gregariousness has evolved in insects (Queller et al., 2000; Hughes et 

al., 2002; Leadbeater and Chittka, 2009), fishes (Wong et al., 2004; Jordan et al., 2010; Heathcote et 

al., 2017), birds (Radford, 2008; Braun and Bugnyar, 2012; Aplin et al., 2014) and various mammalian 

species (Rubenstein and Hack, 2004; Boyd, 2006; Mosser and Packer, 2009; Mitani et al., 2012; Carter 

and Wilkinson, 2015; Connor and Krützen, 2015). While almost a quarter of  mammals are group-

living (Lukas and Clutton-Brock, 2013), it is in the order Primates that an exceptionally high propor-

tion of  species live in groups (van Schaik and Kappeler, 1997; Kappeler and van Schaik, 2002). Thus, 

investigating the evolution of  group-living has been a major focus for both evolutionary ecology and 

primatology. 

The costs imposed by gregariousness can be mitigated by its advantages. Individuals can greatly bene-

fit from stable associations with conspecifics in the form of  lower predation risk through dilution 

effects and communal defense (Williams, 1966; Hamilton, 1971; Alexander, 1974; Rubenstein, 1978; 

van Schaik, 1983), increased access to resources via cooperative hunting (Packer et al., 1990; Boesch, 

1994; Creel and Creel, 1995; Packer and Ruttan, 1998), and the potential for joint territory and re-

source defense (Emlen and Oring, 1977; Wrangham, 1980; Feh, 1999; Williams et al., 2004; Mosser 

and Packer, 2009; Scarry, 2013). Gregariousness can also benefit individuals via increased opportuni-

ties for social thermoregulation via huddling and grooming to help mitigate heat loss in cold envi-

ronments (Andrews and Belknap, 1986; Satinoff, 2011; Terrien et al., 2011; McFarland et al., 2015, 

2016; Henzi et al., 2017). Ultimately, stable group associations evolve when the benefits of  living in 

groups outweigh the costs of  sharing space and resources (Krebs and Davies, 1993; Krause and Rux-

ton, 2002). 

A group or social unit is usually defined as a set of  conspecific individuals who associate and interact 

regularly and do so more frequently than they do with conspecifics of  other groups (Struhsaker, 

1969; Krause and Ruxton, 2002). In many species this results in stable social relationships and coop-

eration (Silk et al., 2010a) that can develop into social bonds over time (Silk, 2002). In order to cope 

with the trade-offs imposed by gregariousness, individuals adopt behavioral strategies to maximize 

benefits and fitness. These strategies result in a broad diversity of  social systems where differences in 
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group size, composition and spatiotemporal cohesiveness (i.e. social organization) are interrelated 

with variations in social structure (i.e. who interacts and has relationships with whom?) and mating 

system (i.e. who mates with whom?) (Kappeler and van Schaik, 2002). Males and females face differ-

ent socioecological pressures and are therefore confronted with different sets of  trade-offs. While 

female reproductive success is largely affected by feeding competition (Wrangham, 1980; Sterck et al., 

1997; Koenig, 2002) and infanticide risk (Sterck et al., 1997; Palombit, 1999), male fitness is shaped by 

access to females and fertilization (Emlen and Oring, 1977; van Hooff, 2000). Due to these different 

selective pressures, social systems result in complex interactions between the distinct behavioral 

strategies of  males and females. 

2.2 The adaptive value of  sociality 

Group-living individuals repeatedly interact with other group members via affiliative/agonistic inter-

actions that, over time, lead to the development of  dyadic social relationships with different tenor 

(Hinde, 1976; Silk et al., 2013). Affiliative relationships are considered social bonds when they are 

stronger than others within the same group, stable over time, and equitable between partners (Silk 

2002). Social bonds were first characterized in studies on philopatric female baboons (Silk et al., 

2006a, 2006b) that determined correlations with short-term variations in well-being (measured as glu-

cocorticoid elevations in response to stressors: Engh et al., 2006a; Crockford et al., 2008; Wittig et al., 

2008) and long-term variations in fitness outcomes (Silk, 2007a). Similar differentiated relationships 

are reported in several other mammals (e.g. feral horses, Equus caballus: Cameron et al., 2009; bot-

tlenose dolphins: Frère et al., 2010; yellow-bellied marmots, Marmota flaviventris: Wey and Blumstein, 

2012) as well as in birds (e.g. common ravens, Corvus corax: Fraser and Bugnyar, 2010; Braun and 

Bugnyar, 2012; greater ani, Crotophaga major: Riehl and Strong, 2018) and fishes (e.g. guppies, Poecilia 

reticulata: Heathcote et al., 2017).  

By now the adaptive value of  differentiated social ties is apparent throughout mammalian species (re-

viewed in Ostner and Schülke, 2018; Thompson, 2019) including humans (Homo sapiens: Holt-Lunstad 

et al., 2010, 2015). Nevertheless, the diversity of  methodologies used to measure sociality makes it 

difficult to draw definitive conclusions about the relative importance of  these various measures of  

sociality (Ostner and Schülke, 2018; Silk et al., 2018). Affiliation strength or bonds strength between 

females is associated with enhanced reproductive success (e.g. house mice, Mus musculus: Weidt et al., 

2008; feral horses: Cameron et al., 2009; bottlenose dolphins: Frère et al., 2010), higher offspring sur-

vival (e.g. yellow baboons, Papio cynocephalus: Silk et al., 2003, chacma baboons, Papio ursinus: Silk et al., 

2009; bottlenose dolphins: Frère et al., 2010) and longer life spans (e.g. chacma baboons: Silk et al., 

2010b; yellow baboons: Archie et al., 2014). In Assamese macaques, the strength of  male–male social 

bonds is associated with enhanced male reproductive success (Schülke et al., 2010). Measures of  so-

cial integration based on the quantity of  social partners are also linked to individual fitness. The 

 7



General Introduction

number of  strong social bonds is associated with higher birth rates in female chacma baboons (Mc-

Farland et al., 2017), increased survival during harsh winters in Barbary macaques (McFarland and 

Majolo, 2013; see also Lehmann et al., 2016), and better thermoregulation in female vervet monkeys 

(Chlorocebus pygerythrus: McFarland et al., 2015). A single study on chacma baboons identified a link 

between number of  weak social bonds and higher offspring survival (McFarland et al., 2017). The 

relative importance of  quantity of  partners and weak ties, however, has been debated as both mea-

sures are heavily affected by sampling effort and group size (Silk et al., 2018). Measures of  indirect 

connectedness have also been used successfully to link sociality with various fitness correlates (e.g. 

Stanton and Mann, 2012; Brent et al., 2013; Gilby et al., 2013; Cheney et al., 2016; Ellis et al., 2017). 

Altogether this evidence emphasizes the need for comprehensive analyses targeted at understanding 

which features are linked to which fitness benefits and if, when, and why different aspects of  sociality 

play a role in different animal societies (Ostner and Schülke, 2018; Silk et al., 2018).  

In spite of  the potential benefits of  sociality, these can be conditional on specific circumstances and 

social ties can even have detrimental effects in some species. Offspring of  strongly bonded females in 

white-faced capuchin monkeys have increased survivorship during demographically stable periods, 

but they are less likely to survive during alpha-male replacement events (Cebus capucinus imitator: Kalb-

itzer et al., 2017). In blue monkeys, the risk of  mortality is increased for females that invest in strong 

bonds with inconsistent partners, indicating that social relationships can be costly when unstable over 

time. Over multiple years this strategy can result in higher mortality than for females that invest in 

either consistent or inconsistent but weaker bonds (Cercopithecus mitis stuhlmanni: Thompson and 

Cords, 2018). In yellow-bellied marmots, a facultatively social mammal, affiliation strength between 

females is negatively associated with reproductive success and individuals with stronger ties have re-

duced longevity and are more likely to die during hibernation (Wey and Blumstein, 2012; Yang et al., 

2016; Blumstein et al., 2018). These results suggest that sociality is not universally beneficial and indi-

viduals likely need to balance the benefits and costs of  these relationship investments. 

2.3 Life in multi-male groups 

As males compete over exclusive access to breeding females, multi-male groups are puzzling consid-

ering the costs of  mating competition and potential repercussions on individual reproductive success 

(Kappeler, 1999; Clutton-brock and Isvaran, 2006). The costs of  these associations can be small for 

males living in all-male or bachelor groups, or in groups where other males are not sexually mature or 

are related to females (reviewed in Clutton-Brock, 2016). Nevertheless, dominant males can pay a 

high price in the form of  loss of  reproduction when living in bisexual groups with sexually mature 

subordinates (reviewed in Clutton-Brock, 2016). Understanding variations in group composition and 

how multi-male associations have evolved is one of  the crucial questions of  socioecological studies 

(Kappeler, 1999). Are dominant males simply unable to exclude others from accessing females, or are 
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these associations a product of  “reproductive transactions” between males? To what extent are these 

associations a product of  specific individual socio-sexual behavioral strategies? The next sub-sections 

address these questions and the benefits males and females derive from multi-male associations. 

2.3.1 Benefits of  “supernumerary males”: male and female perspectives  

Males should generally prefer to live in single-male groups (Clutton-brock and Isvaran, 2006). Multi-

male groups should be favored only when associations between males result in their increased fitness 

(Kappeler, 1999; but see evolutionary demographic models e.g. Port and Johnstone, 2013). Such fit-

ness benefits can include access to more females per male, higher female reproductive success, and 

increased survival for males and their sired offspring. From a female perspective, multi-male associa-

tions can be beneficial, with males providing “social services” that help mitigate socioecological pres-

sures such as predation, inter-group feeding competition, harassment from other males, and infanti-

cide (Kappeler, 1999).  

The trade-offs faced by males with regard to group composition (i.e. single- vs. multi-male groups) 

can be affected by socioecological factors, including predation pressure and inter-group competition. 

Groups with several adult males are common when male population density is high and competition 

is intense (Pope, 1990), or when predation pressure is increased (van Schaik and Hörstermann, 1994; 

Stanford, 1998). Males are crucial to group protection from predators through higher levels of  vigi-

lance, better predator detection, and more engagement in active defense than females (van Schaik and 

van Noordwijk, 1989; Rose, 1994; Stanford, 1998). Thus, higher numbers of  males can directly bene-

fit themselves, their offspring and females. Male vigilance can also be directed at male activities in 

neighboring groups (Baldellou and Henzi, 1992; Steenbeek et al., 1999) and thereby be increased 

when home-ranges overlap (Steenbeek et al., 1999). Males jointly defend group territory/home range 

from conspecifics and play a key role in inter-group encounters (Perry, 1996; Kitchen, 2004; Zhang et 

al., 2006; Talebi et al., 2009; Garber and Kowalewski, 2011; Markham et al., 2012; Wilson et al., 2012). 

As the number of  adult males in the group can affect winning probabilities during intergroup con-

flicts (Kitchen, 2004; Kitchen et al., 2004; Markham et al., 2012; Wilson et al., 2012; Scarry, 2013), 

multi-male associations can greatly benefit males as well as all other group members.  

Males mainly participate in inter-group aggression for mate defense (Trivers, 1972; Emlen and Oring, 

1977). They defend their mates directly by fighting and chasing away male neighbors and by herding 

females to prevent interactions with non-resident males or transfers to other groups (Sicotte, 1993; 

Swedell, 2000; Fashing, 2001; Kitchen et al., 2004). Encounter intensity and number of  participating 

males are associated with the presence of  estrous females (Kitchen et al., 2004), which are most often 

the receivers of  herding behaviors (Sicotte, 1993). By directly defending mates from non-resident ha-

rassing males, resident males also chase away neighboring groups and defend food resources, which 

benefits females and other group members indirectly (“hired-guns”-hypothesis: Wrangham and 
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Rubenstein, 1986; also reviewed in Fashing, 2001). Males can also directly defend food resources to 

attract mates and enhance female reproductive success and offspring survival (reviewed in Fashing, 

2001). Although this dichotomy is often difficult to disentangle (Richter et al., 2016), male communal 

defense is nevertheless associated with both territory expansion and increased access to food re-

sources (Fashing, 2001; Williams et al., 2004; Crofoot, 2007; Harris, 2010; Mitani et al., 2010; Scarry, 

2013, 2017; Richter et al., 2016), which results in higher female reproductive rates/fecundity (Williams 

et al., 2004; Richter et al., 2016; see also Langergraber et al., 2017). Recent studies show that male re-

source defense can also emerge as a by-product of  intersexual cooperation in species where females 

play an active role in intergroup conflicts. In vervet monkeys, males support female instigators against 

simulated intruders, which can increase their social status as cooperative partners and enhance their 

mating success (Arseneau et al., 2015; Arseneau-Robar et al., 2016).  

Multi-male groups are also crucial to offspring survival through male vigilance and communal de-

fense by increasing protection from harassment and infanticide by neighboring males (Sicotte, 1993; 

Robbins, 1995; Steenbeek et al., 1999) and females (Mosser and Packer, 2009). Accordingly, males 

respond more strongly to intruders when younger offspring were present and when calls simulated 

males likely to be infanticidal (Kitchen, 2004; Wich et al., 2004; Arseneau et al., 2015). Male care for 

infants can result in enhanced male reproductive success with males affiliating at higher rates with all 

infants (regardless of  paternity) siring more offspring (Rosenbaum et al., 2018) and can even influ-

ence female fitness through male assistance in multi-male groups (Wright, 1990). 

2.3.2 Male reproductive transactions and monopolization potential 

Although the presence of  supernumerary males can benefit both males and females, it is a matter of  

debate to what extent male co-residence is due to limitations on male monopolization potential or a 

product of  male reproductive transactions. Transactional models presume that male composition is 

the direct outcome of  negotiations between resident males to maximize group stability and related 

benefits (reviewed in Port and Kappeler, 2010; see also Port et al., 2018). Limited control models 

(also “tug-of-war models”) instead argue that dominant males have limited control over monopoliza-

tion and that co-residence results from dominant individuals’ inability to prevent subordinates from 

mating (Reeve et al., 1998). Both models predict similar outcomes in the division of  reproduction 

within the group, making a clear distinction very difficult (Clutton-Brock, 1998; also see Reeve and 

Keller, 1998). The following two paragraphs introduce these two models, considering their theoretical 

and empirical basis as well as their limitations. 

Transactional models argue that reproduction can be controlled and co-resident males share repro-

duction (via concession or restraint) in exchange for mutual benefits (Reeve et al., 1998). According 

to the concession model, dominant males actively share just enough reproduction to keep subordi-

nates from leaving the group while benefitting from their support (Reeve and Ratnieks, 1993; Clut-
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ton-Brock, 1998). In the restraint model, subordinates are able to claim unsanctioned portions of  

reproduction while exhibiting reproductive restraint to avoid eviction from the group (Johnstone and 

Cant, 1999). The magnitude of  concession/restraint is determined by kinship and other social and 

ecological factors (Reeve and Keller, 1998). Several studies report evidence for reproductive transac-

tions in primates (e.g. mountain gorillas, Gorilla beringei: Stoinski et al., 2009; geladas, Theropithecus gela-

da: Snyder-Mackler et al., 2012; chimpanzees: Bray et al., 2016) and other mammals (e.g. dwarf  mon-

gooses, Helogale parvula: Creel and Waser, 1991; Keane et al., 1994; African lions: Packer et al., 1991). 

However, these studies provide no conclusive support as these findings do not preclude alternative 

interpretations (Clutton-Brock, 1998) and most studies fail to fully test predictions (Port et al., 2018). 

Concession models, additionally, are of  limited value in the primate order as their assumptions are not 

likely to apply to male primates, where reproduction is unlikely to be controlled by the dominant male 

alone, sperm competition decreases the ability to assess the value of  reproductive exchanges, and low 

reproductive rates make fine-tuned adjustments of  skew  more difficult (Port and Kappeler, 2010).  

Multi-male associations can alternatively be explained by dominant males’ limited control over mo-

nopolization (Reeve et al., 1998). Indeed, competing for exclusive access to fertile females can be too 

costly for males or otherwise limited by other factors (Mitani et al., 1996). Female number and distri-

bution significantly impact monopolization success (Mitani et al., 1996) and set the stage for male 

mate competition type (i.e. contest/scramble competition: van Schaik, 1989; reviewed in Alberts, 

2012). The number of  resident females is positively associated with the number of  co-resident males 

(Mitani et al., 1996; Nunn, 1999a; Carnes et al., 2011) and a decrease in monopolization success (Kut-

sukake and Nunn, 2006). Although absolute size of  female groups seems to set the limit for male 

monopolization, other factors such as group cohesiveness (van Schaik and van Hooff, 1983), visibility 

(Rowell, 1988), breeding seasonality (Carnes et al., 2011; also see Dunbar and Srivastava, 1996), and 

estrous synchrony (Nunn, 1999a; Ostner et al., 2008b; Carnes et al., 2011) also play a key role. The 

success of  male monopolization strategies, however, also directly depends on the ability to correctly 

detect ovulation. This is contingent on the presence of  signals that indicate female receptivity (e.g. 

perineal swellings: Nunn, 1999b) and, most importantly, the accuracy with which these signals indi-

cate the exact timing of  ovulation (Nunn, 1999b; Higham et al., 2008; Douglas et al., 2016; Street et 

al., 2016). 

In sum, while both models can theoretically play a role in the emergence of  multi-male groups, in the 

primate order more evidence has accumulated in support of  males’ limited monopolization potential. 

Thus, as introduced in the following section, limited male monopolization results in different male 

reproductive strategies, comprising both male direct competition and alternative reproductive strate-

gies (Alberts, 2012). 

 11



General Introduction

2.4 Male reproductive strategies 

Males and females compete over different fitness-limiting resources and, in most species, this leads to 

distinct reproductive strategies (Trivers, 1972). Females can reproduce with only one male at a time 

and provide most of  the parental care through long gestation and lactation periods. Their reproduc-

tive success relies on choosing a high quality mate that provides either direct benefits through food, 

protection, or parental care or indirect benefits through high quality and compatible genes (reviewed 

in Kappeler, 2012). Male reproductive success theoretically depends on the successful fertilization of  

the highest possible number of  females for the longest possible time (Trivers, 1972). Thus, male re-

productive success is associated with time of  male sexual maturation and longevity or, more specifi-

cally, the tenure or breeding lifespan (reviewed in Alberts, 2012). Primate males have evolved various 

strategies to balance the maximization of  their reproductive output and the potential reproductive 

loss imposed by other males. These strategies can lead to skewed breeding distributions, with high 

reproductive skew corresponding to high monopolization by a single male (Keller and Reeve, 1994). 

Ultimately, male reproductive success depends on the interplay between female mate choice, male–

male direct competition, and alternative male reproductive strategies (Alberts, 2012). 

2.4.1 Competition, dominance and priority of  access 

Within-group male–male competition leads to the establishment of  dominance hierarchies, within 

which individuals are ranked based on fighting ability and outcomes of  aggressive interactions 

(Drews, 1993). While there is overwhelming evidence that dominance rank is linked to monopoliza-

tion and reproductive success (Dewsbury, 1982; Cowlishaw and Dunbar, 1991; Ellis, 1995; Kutsukake 

and Nunn, 2006; Majolo et al., 2012), male reproductive skew can vary considerably (Cowlishaw and 

Dunbar, 1991; Bulger, 1993; Alberts et al., 2003, 2006). The priority of  access model attempts to ex-

plain how reproduction is allocated between co-resident males (Altmann, 1962), with higher ranking 

males (i.e. alpha-males) assumed to have priority over mating. As only one female can be monopo-

lized at a time, the proportion of  mating lost to subordinates should depend on the degree of  female 

reproductive synchrony (Altmann, 1962). Several studies support these predictions (Pope, 1990; 

Cowlishaw and Dunbar, 1991; Bulger, 1993; Alberts et al., 2006; Boesch et al., 2006b; Ostner et al., 

2008a; Bissonnette et al., 2011; Young et al., 2013; Bray et al., 2016; but see Newton-Fisher et al., 

2010; Dubuc and Muniz, 2011) and indicate that the number of  co-resident males has a negative ef-

fect on the alpha-male’s mating or reproductive success (Cowlishaw and Dunbar, 1991; Alberts et al., 

2003, 2006; Boesch et al., 2006b; Kutsukake and Nunn, 2006; Ostner et al., 2008b; Bray et al., 2016), 

either due to reduced power differentials or increased frequency of  challenges (Cowlishaw and Dun-

bar, 1991).  

Male dominance rank and related fitness benefits are generally correlated with physical attributes such 

as body size, weight, canine size, and health (Plavcan, 1993; Plavcan et al., 1995; Leigh et al., 2008; 
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Galbany et al., 2015; Georgiev et al., 2015; also reviewed in Clutton-Brock, 2016). Likely due to such 

physical attributes, age-related physical abilities also influence male rank. Subadult males generally 

rank lower than adults, adult males in prime physical condition occupy the highest positions, and rank 

declines consistently with age thereafter (Bercovitch et al., 2003; Widdig et al., 2004; Setchell et al., 

2005; Alberts et al., 2006). Rank does not, however, exclusively depend on physical strength and fight-

ing abilities (de Waal, 1985). Social support by group members, and female behavior can impact rank 

and reproductive success (Furuichi, 1989; Bulger, 1993; Alberts et al., 2003, 2006; Dubuc and Muniz, 

2011; Young et al., 2013; Markham et al., 2015). Coalition formation between males is reported in 

most genera that form multi-male groups (Bissonnette et al., 2014). However, coalition frequency 

varies greatly across species and coalitionary support is most prevalent in groups with larger numbers 

of  co-resident males and a smaller than expected share of  mating for the alpha male(Bissonnette et 

al., 2014). Male coalitionary support has been associated with rank ascension and enhanced reproduc-

tive success in several species (e.g. Schülke et al., 2010; Gilby et al., 2013). Coalitionary strategies may 

also be age-dependent in some species (Noë, 1992; Bissonnette et al., 2009; Rathke et al., 2017) and 

aid post-prime males compensate for the decline in fighting abilities and mating success (Bercovitch, 

1988; Noë, 1992; Kuester et al., 1995; Bissonnette et al., 2009, 2011). While physical attributes and 

direct competition are factors relevant to male reproductive success, coalitionary support and other 

reproductive strategies can greatly influence rank and reproductive success, leading to the adoption of  

a variety of  such alternative strategies. 

2.4.2 Alternative reproductive strategies 

In addition to direct mating competition, males can adopt a series of  alternative reproductive strate-

gies that can impact reproductive skew. Subordinate males can engage in opportunistic “sneaky” cop-

ulations that can result in paternities (Berard et al., 1994; Launhardt et al., 2001; Soltis et al., 2001; 

Alberts et al., 2006; Modolo and Martin, 2008). Alternatively, male investment in heterosexual friend-

ships can result in mutual benefits in the form of  increased male mating success (Kulik et al., 2012; 

Massen and Vries, 2012; Ostner et al., 2013; Städele et al., 2019), enhanced infant protection and 

parental care (Palombit et al., 1997; Buchan et al., 2003; Moscovice et al., 2009, 2010; Nguyen et al., 

2009; Huchard et al., 2010; Ostner et al., 2013; Baniel et al., 2016; Städele et al., 2019), and male ser-

vices toward females such as reduced harassment from conspecifics, support in conflicts, and in-

creased feeding efficiency (Nguyen et al., 2009; Kulik et al., 2012; Arseneau et al., 2015; Haunhorst et 

al., 2017). Subordinates can also gain access to reproduction via dominant reproductive tolerance (sen-

su Port et al., 2018), as reported for chimpanzees (Bray et al., 2016) and chacma baboons (Henzi et al., 

2010). In these species, subordinate mating success is associated with their social investment in the 

alpha male (Bray et al., 2016; also see Duffy et al., 2007) and subordinates access mating opportunities 

in return for protection from infanticide and support during challenges by non-resident males (Henzi 

et al., 2010). 
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Reproductive cooperation, defined as the coordinated effort by two or more males to gain reproduc-

tive advantage over other males (Díaz-Muñoz et al., 2014), also plays a key role in male reproductive 

strategies and success. Subordinate olive and yellow baboons can form opportunistic coalitions to 

interfere with mate guarding by higher ranking males (olive baboons, Papio anubis: Bercovitch, 1988; 

yellow baboons: Noë and Sluijter, 1990). In the Ngogo chimpanzee community, where male density is 

exceptionally high, top-ranking males engage in coalitionary mate guarding, which allows them to 

maximize mating success while minimizing the costs of  monopolization (Watts, 1998). In baboons, 

chimpanzees, and humans, these forms of  cooperation emerge as a result of  a decrease in individual 

competitive potential where partner coalitionary choice depends on combined fighting potential 

(Noë, 1986; Watts, 1998; Benenson et al., 2009). 

Similar forms of  male reproductive cooperation aimed at communal female defense occur in bot-

tlenose dolphins (Connor et al., 2000; Wiszniewski et al., 2012), horses (Equus ferus caballus: Feh, 

1999), as well as other primates characterized by high between-group competition (reviewed in Ost-

ner and Schülke, 2014). In snub-nosed monkeys, unrelated males of  different single-male units en-

gage in cooperative defense against satellite males to increase paternity certainty (Rhinopithecus roxel-

lana: Xiang et al., 2014). Kin-based alliances of  bachelor males, on the other hand, perform joint of-

fensive actions against units to access reproductive opportunities (Qi et al., 2017). In species where 

both single- and multi-male groups are present, take-over probabilities are lower for groups with 

higher numbers of  co-resident males (e.g. white-faced capuchins, Cebus capucinus: Fedigan et al., 2004; 

redfronted lemurs, Eulemur fulvus rufus: Ostner and Kappeler, 2004; geladas: Snyder-Mackler et al., 

2012; hamadryas baboons, Papio hamadryas: Chowdhury et al., 2015). In redfronted lemurs the amount 

of  reproduction lost to subordinates is not affected by increasing number of  co-resident males (Kap-

peler and Port, 2008), indicating that in some species the costs of  accepting additional males can be 

negligible (Port et al., 2010). In geladas, where bachelor males constitute a constant threat (Pappano et 

al., 2012), leader males benefit from leader-follower associations in the form of  longer tenure, access 

to more females, and faster female reproductive rates (Snyder-Mackler et al., 2012). Similarly, in 

hamadryas baboons the number of  associated follower males leads to increased tenure length, num-

ber of  females, and number of  offspring born within the unit (Chowdhury et al., 2015). Despite these 

similarities two different types of  trade-offs seem to operate in the two species. In geladas reproduc-

tion is confined to the unit and unit-followers can directly benefit by gaining a small portion of  pa-

ternities (Snyder-Mackler et al., 2012). In hamadryas baboons, followers may not diminish leader re-

production and, instead, diminish the likelihood of  extra-unit paternities (discussed in Chowdhury et 

al., 2015). Indirect fitness benefits due male kinship and the possibility of  future succession may make 

adopting a follower strategy more beneficial to a non-leader male than a solitary strategy (Chowdhury 

et al., 2015).  
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2.5 Male bonding and male–male ritualized greeting behavior 

2.5.1 Male–male bonds and adaptive benefits  

Co-resident males in multi-male groups were thought to be highly competitive and intolerant towards 

each other due to competition over un-sharable fertilization (van Hooff, 2000). Past studies therefore 

focused largely on competition, dominance, and aggression (Hill and van Hooff, 1994), but this focus 

has recently shifted to social interactions beyond simple competition. Several more recent studies 

found tolerance, cooperation, and affiliation (Boinski, 1994; Silk, 1994; Perry, 1998; Schülke et al., 

2010; Berghänel et al., 2011a; Xia et al., 2013; Schoof  and Jack, 2014; Teichroeb et al., 2014), with 

strong male–male bonds described in chimpanzees (Mitani, 2009) as well as Assamese (Kalbitz et al., 

2016) and Barbary (Young et al., 2014b) macaques (also reviewed in van Hooff  and van Schaik, 1994; 

Ostner and Schülke, 2014). 

Fitness benefits of  male sociality and correlations with well-being are now known for several species. 

Male Assamese macaque investment in strong social bonds is linked to increased coalitionary support, 

rank ascension and, ultimately, enhanced reproductive success (Schülke et al., 2010). Similarly, male 

chimpanzees form bonds (Mitani, 2009) and exchange grooming for coalitionary support during con-

flicts (Watts, 2002). These networks of  coalitions are associated with increased rank and improved 

siring success (Gilby et al., 2013). Male affiliation is linked to coalition formation in other species 

(Silk, 1994; Perry et al., 2004; Berghänel et al., 2011a; Patzelt et al., 2014; Young et al., 2014b) and 

coalitions can also affect rank in Barbary macaques (Young et al., 2014c), where affiliative interaction 

rates during the non-mating season predict coalitions during the following mating season (Berghänel 

et al., 2011a) and males preferentially recruit closely bonded bystanders (Young et al., 2014b). Studies 

on Barbary macaques also show that male bonds can buffer against the adverse effects of  social and 

environmental stressors (Young et al., 2014a) and even be linked directly to survival in harsh winter 

conditions (McFarland and Majolo, 2013; also see Lehmann et al., 2016). 

2.5.2 Male bonding: evolution and mechanisms 

Males can display a broad range of  relationship styles when interacting with same-sex conspecifics. 

The presence of  within-group cooperation, affiliation and bonds, however, is not universal (van 

Hooff  and van Schaik, 1994; Ostner and Schülke, 2014). These variations in male sociality led to the-

oretical frameworks in an attempt to explain the evolution of  male bonding (van Hooff  and van 

Schaik, 1994; Ostner and Schülke, 2014). Due to intense male competition over fertilization, it was 

argued that male bonds should be rare and exclusively occur between kin due to indirect fitness bene-

fits (van Hooff  and van Schaik, 1994). Thus, male bonding was thought to be most likely in three 

scenarios: joint dispersal with kin (natal or secondary), preferential dispersal into groups with resident 

kin and, especially, male philopatry (van Hooff  and van Schaik, 1994; van Hooff, 2000). Behavioral 
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biases toward kin can emerge as a result of  mother- or father-mediated familiarity, familiarity via age 

similarity, and phenotypic matching (Widdig, 2007; Smith, 2014). Recent evidence indicates that, while 

kinship may be a facilitating factor, it is not necessary for the development of  cooperation and bonds 

(Krutzen et al., 2003; Langergraber et al., 2007; Hirsch et al., 2013; Best et al., 2014; Patzelt et al., 

2014). Male bonding occurs in species characterized by male dispersal (e.g. bonnet macaques, Macaca 

radiata: Silk, 1994; Assamese macaques: Schülke et al., 2010; Barbary macaques: Young et al., 2014b) 

as well as male-philopatric species (e.g. chimpanzees: Mitani, 2009; Guinea baboons: Patzelt et al., 

2014). In both types of  societies, bonding occurs between both kin and non-kin (Langergraber et al., 

2007; Schülke et al., 2010; Patzelt et al., 2014). Findings of  low average relatedness within the 

philopatric sex for large groups (Lukas et al., 2005) further corroborate the limited impact of  kinship. 

While facilitated by inclusive fitness when occurring between kin, male–male bonds and cooperation 

likely emerge due to direct benefits of  mutualistic processes, where all contributors gain more than if  

they were acting alone (Clutton-Brock, 2002; Boesch et al., 2006a; Clutton-Brock, 2009; Ostner and 

Schülke, 2014).  

The initial precondition for the development of  bonds is the presence of  stable groups with large 

number of  co-resident males (Ostner and Schülke, 2014). As discussed in previous sections (2.3. and 

2.4), multi-male groups emerge as a result of  increased between-group competition, which necessi-

tates communal defense against take-overs and extra-group paternity. These associations, however, 

benefit all group members, can occur despite high levels of  within-group competition, and can be 

loaded with tension (van Hooff, 2000). Although small-scale relationship differentiation (e.g. by age 

or kin-class) may occur, such group-level cooperation does not require bonds to function (Ostner and 

Schülke, 2014). Instead, cooperation and affiliation with preferred partners are thought to evolve as a 

consequence of  decreased within-group contest potential (Ostner and Schülke, 2014). In scenarios of  

medium to low contest potential, where monopolization is less pronounced, male–male coalitions for 

rank ascension can be crucial to increasing reproductive opportunities (van Schaik et al., 2004, 2006; 

Ostner and Schülke, 2014). Such coalitions can be risky due to the possibility of  retaliation by the 

high-ranking target (van Schaik et al., 2004, 2006). Increased reproductive benefits from priority of  

access to females arise over time and are dependent on the long-term maintenance of  the newly 

achieved rank (van Schaik et al., 2004, 2006), which requires reliable and long-term allies consolidated 

and maintained through strong and stable social bonds (Ostner and Schülke, 2014). Variations in con-

test potential and their association with coalitionary male strategies, male bonding, and the occurrence 

of  ritualized behavior have been reported across the genus Macaca (Ostner and Schülke, 2014). Addi-

tionally, the co-occurrence of  rank-changing coalitions and bonds, as well as related benefits (see sec-

tion 2.5.1), occurs in several species (reviewed in: Ostner and Schülke, 2014; Schülke and Ostner, 

2017). 
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Other mechanisms may also explain the evolution of  social bonds. Individual sociability can result in 

reduced exposure to predation risk, which benefits individuals in the form of  decreased vigilance and 

increased foraging time (Josephs et al., 2016). Similarly, bond strength enhanced individual responses 

to recruitment alarm calls and may relate to increased efficiency in cooperative predator defense via 

better coordination (Micheletta et al., 2012; Kern and Radford, 2016). Sociality may be selected for by 

promoting efficient cooperation (Melis et al., 2006; Massen et al., 2010), through which individuals 

can benefit from defense of  resources, cofeeding and food sharing, support during aggressive con-

flicts, and reduced harassment from conspecifics (Nguyen et al., 2009; Berghänel et al., 2011a; Tiddi 

et al., 2011; Dubuc et al., 2012; Sabbatini et al., 2012; Heesen et al., 2014; Young et al., 2014b; 

Haunhorst et al., 2017; Samuni et al., 2018b). Although such benefits were discussed largely in rela-

tion to female bonds and heterosexual relationships, they may also play a crucial role in favoring the 

development of  male–male social bonds.  

2.5.3 Male–male ritualized greeting behavior 

Group-living requires efficient communication to maintain cohesion and facilitate cooperation (Wat-

son-Jones and Legare, 2016). Ritualized behaviors are stylized, attention-getting and often repetitive 

(Rappaport, 1979; Rossano, 2012, 2015). They are considered particularly effective in regulating social 

relationships (Rossano, 2015), as well as promoting coordination and cooperation between individuals 

conforming to these unambiguous “rule-governed” repertoires (Cullen, 1966; Smuts and Watanabe, 

1990). Ritualized interactions are common among males in multi-male groups (e.g. greeting behaviors: 

Smuts and Watanabe, 1990; Aureli and Schaffner, 2007; De Marco et al., 2014; triadic male-infant in-

teractions: Paul et al., 1996; Kalbitz et al., 2017; Kubenova et al., 2017) and thought to play a role in 

balancing the trade-offs of  male co-residence. These ritualized exchanges should be most frequent in 

species where male coordination and cooperation must be balanced with the potential consequences 

of  severe male–male aggression (Whitham and Maestripieri, 2003). 

Greetings are specific ritualized interactions that are widespread in non-human primates (e.g. Papio 

spp.: Smuts and Watanabe, 1990; Colmenares et al., 2000; bonobos, Pan paniscus: Hohmann and Fruth, 

2000; Macaca spp.: De Marco et al., 2014; Riley et al., 2014) and other mammals (e.g. wild dogs, Lycaon 

pictus: Estes and Goddard, 1967; Creel and Creel, 1995; spotted hyenas, Crocuta crocuta: East et al., 

1993; Smith et al., 2011; African lions: Matoba et al., 2013). These interactions are defined as short 

exchanges of  non-aggressive signals between two individuals (Kutsukake et al., 2006) comprising a 

uni- or bi-directional exchange of  cohesive or affiliative signals (Peláez, 1982). These signals are 

species-specific behavioral patterns that vary in complexity and intensity, ranging from touches and 

embraces (e.g. spider monkeys, Ateles geoffroyi: Aureli and Schaffner, 2007; black-horned capuchin 

monkeys, Cebus nigritus: Lynch Alfaro, 2008) to genital manipulation and same-sex mounting (e.g. 

Guinea baboons: Whitham and Maestripieri, 2003; spotted hyenas: Smith et al., 2011; Tonkean 
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macaques, Macaca Tonkeana: De Marco et al., 2014). Notwithstanding the label “greetings”, they are 

not limited to departures and reunions. Instead, this term is used for a broad variety of  ritualized in-

teractions that occur in diverse contexts and have different functions (De Marco et al., 2014). Greet-

ings are hypothesized to function in promoting coordination and group cohesion (Estes and God-

dard, 1967; Creel and Creel, 1995; Lynch Alfaro, 2008), buffer tension during tense contexts like fu-

sion events (East et al., 1993; Aureli and Schaffner, 2007; Lynch Alfaro, 2008) and competition over 

resources (Colmenares et al., 2000; Hohmann and Fruth, 2000), and assessing dominant status (East 

et al., 1993; Hohmann and Fruth, 2000) and/or relationship quality (Wang and Milton, 2003; 

Whitham and Maestripieri, 2003; De Marco et al., 2014). In some species, greetings also function to 

reinforce and maintain social bonds and promote cooperation (Smuts and Watanabe, 1990; Smith et 

al., 2011; De Marco et al., 2014). In sum, greetings can serve similar functions in different species (e.g. 

Aureli and Schaffner, 2007; Lynch Alfaro, 2008) but also be used differently within the same species 

(e.g. spotted hyenas: East et al., 1993; Smith et al., 2011) and between populations of  the same species 

(e.g. mantled howlers, Alouatta palliata: Wang and Milton, 2003; Dias et al., 2008). 

The genus Papio and some species of  the genus Macaca are characterized by particularly intense and 

highly ritualized male–male greeting repertoires that involve high-risk behaviors like mounting and 

genital manipulations (e.g. olive baboons: Smuts and Watanabe, 1990; crested macaques, Macaca nigra: 

Reed et al., 1997; Guinea baboons: Whitham and Maestripieri, 2003; moor macaques, Macaca maura: 

Riley et al., 2014). The occurrence, context, and function of  greetings vary considerably between 

species in the genus Papio. In chacma baboons, where males avoid each other and affiliation and coali-

tion are non-existent, greetings are virtually absent (Henzi and Barrett, 2005; Henzi et al., 2008; but 

see Saayman, 1971). In hamadryas baboons, where males maintain affiliative relationships and coop-

erate in group defense (Colmenares et al., 2007; Swedell, 2011), greetings are quasi-aggressive and 

occur mainly in competitive contexts allowing males to negotiate and buffer tension (Hall and De-

Vore, 1965; Kummer et al., 1974, 1985; Abegglen, 1984; Colmenares, 1990, 1991a, 1991b; Col-

menares et al., 2000). In this species, greeting initiation and asymmetries are associated with male so-

cial status (Hall and DeVore, 1965; Colmenares, 1990, 1991b). Instead, studies in olive baboons, 

which present opportunistic coalitions but no affiliative relationships (Busse, 1986; Bercovitch, 1988), 

and Guinea baboons, which display spatial tolerance, affiliative relationships and cooperation (Fischer 

et al., 2017), characterized greetings as affiliative signals (Smuts and Watanabe, 1990; Whitham and 

Maestripieri, 2003). While in olive baboons associations between greeting roles and dominance rank 

depend on age and residence status (Smuts and Watanabe, 1990), in Guinea baboons male rank dis-

tance does not predict greeting roles (Whitham and Maestripieri, 2003). In these species, greetings 

allow males to assess relationship quality independent of  context and play a role in bond maintenance 

(Whitham and Maestripieri, 2003) and promoting cooperation (Smuts and Watanabe, 1990).  
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Similar to baboons, the occurrence of  ritualized behavior is associated with male affiliation and coop-

eration in macaques (Ostner and Schülke, 2014; De Marco, 2017), with a lack of  ritualized interac-

tions in intolerant male rhesus (Macaca mulatta) and Japanese macaques (Macaca fuscata), and presence 

of  greetings and/or triadic male-infant interactions in species with male tolerance and coalitions (e.g. 

Silk, 1994; De Marco et al., 2014; Riley et al., 2014; Kalbitz et al., 2017; Kubenova et al., 2017; dis-

cussed in De Marco, 2017). As reported for baboons, the function of  these interactions varies con-

siderably. In some species these ritualized interactions function to assess relationship quality (De 

Marco et al., 2014) and maintain social bonds (Kalbitz et al., 2017) between males. These findings 

suggest that the function of  greetings, and possibly other ritualized interactions, varies between 

species and that, in some cases, this can be associated with the tenor of  male–male relationships and 

level of  male tolerance and cooperation (Henzi et al., 2008; De Marco et al., 2014; De Marco, 2017).  

Much of  the research on greetings, however, is based on data collected in captivity (e.g. Whitham and 

Maestripieri, 2003; De Marco et al., 2014), wild provisioned groups (Riley et al., 2014), few individuals 

(Riley et al., 2014), or mixed species and their hybrids (e.g. Colmenares, 1990, 1991a, 1991b). More 

long-term systematic comparative field studies are required for a deeper understanding of  how these 

ritualized interactions regulate male–male relationships in different social systems. 

2.6 Guinea baboons as a model species 

So far in this thesis I introduced the wide range of  relationship styles displayed by co-resident males, 

emphasized how male–male associations are beneficial in the context of  high inter-group competi-

tion, and highlighted how low to medium within-group contest potential can lead to the development 

of  male–male cooperation and social bonds. I also elucidated how variations in the occurrence and 

role of  ritualized behaviors may depend on the presence of  cooperation and tolerance. The diverse 

social systems of  the genus Papio, characterized by various levels of  male–male competition, coopera-

tion, and tolerance, are an ideal model for examining the presence and role of  social bonds and ritual-

ized greetings. Guinea baboons constitute an ideal test case to address these questions as they present 

high levels of  spatial tolerance, coalition formation, and low competition (Kalbitzer et al., 2015; Fis-

cher et al., 2017). In this thesis I examine the dynamics and fitness benefits of  male–male sociality in 

wild Guinea baboons with a focus on the features and functions of  ritualized greeting behavior and 

the patterns and adaptive benefits of  male–male associations and bonds.  

Guinea baboons live in nested multilevel societies (Patzelt et al., 2014). At the core of  the society are 

“units” composed of  a primary male, associated females, immatures, and sometimes secondary males. 

Several units form stable “parties” and two to three parties regularly aggregate into “gangs” with 

overlapping home ranges (Patzelt et al., 2014; Goffe et al., 2016; Fischer et al., 2017). Genetic data 

shows evidence for female-biased dispersal and males are predominantly philopatric (Kopp et al., 

2015) though sparse male transfers may occur (Dal Pesco & Faraut, personal observation; also dis-
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cussed in Patzelt, 2013). Although male–male average relatedness is higher within than between 

gangs, it is not significantly different between parties of  the same gang (Patzelt et al., 2014). Adult 

males present high levels of  spatial tolerance, form affiliative relationships, and support each other in 

coalitions even after establishing mating relationships (Patzelt et al., 2014). Males of  the same party 

spend a higher proportion of  time in spatial association and exchange significantly higher frequencies 

of  affiliative interactions and coalitionary support (Patzelt et al., 2014). Males often exchange intense 

greeting interactions but their function is still disputed (Fischer et al., 2017). Compared to other 

species of  the genus Papio, adult males show very low aggression rates, no clear dominance hierarchy, 

and rare injuries (Kalbitzer et al., 2015). The interplay between male philopatry and affiliative relation-

ships is proposed as possible explanation for this low level of  competition (Jolly, 2009; Patzelt et al., 

2014). A previous study that focused on male–male relationships at the gang level, however, found 

that affiliation, greetings, and coalitions occurred regardless of  kinship (Patzelt et al., 2014). While 

further corroboration is needed, these findings suggest kinship plays a limited role in male–male rela-

tionships (Fischer et al., 2017). Observations of  early male–male association development in a captive 

population (Boese, 1975) do suggest that male long-term relationships could represent a fundamental 

element in Guinea baboon social dynamics. 

Male tolerance extends to relationships with females and to relationships between females and sec-

ondary males (Goffe et al., 2016). Primary males form stable associations with one to six females and 

these units may include secondary males (Goffe et al., 2016). Females interact significantly more with 

their primaries and their reproductive state has little influence on the frequency of  these interactions 

(Goffe et al., 2016). Relationships between females and associated secondary males are weaker. Sec-

ondary males have social but, usually, no sexual access to females with 98.6% of  copulations occur-

ring between females and their primary (Goffe et al., 2016). Preliminary investigations show female–

female associations and rates of  affiliative and aggressive interactions are significantly greater between 

females of  the same unit (Goffe, 2016), a common feature of  other polygyn-monandrous systems, 

like in hamadryas baboons (Swedell, 2002). Compared to hamadryas baboons, take-over attempts are 

rare and males don’t display “conditioning” aggression or herding toward females (Goffe, 2016; 

Goffe et al., 2016). Guinea baboon females exhibit high spatial freedom, can respond to male aggres-

sion with counter-aggression and female coalitions, and play an active role in intersexual relationship 

maintenance (Goffe et al., 2016). This suggests Guinea baboon females may exhibit a level of  female 

choice (Goffe et al., 2016). The relaxed tenor of  Guinea baboon relationships and high level of  toler-

ance sets them apart from other species within the genus Papio (Fischer et al., 2017). 

2.7 Project aims 

In study 1 (chapter 3) I explore the features and function of  ritualized greeting behavior in wild 

Guinea baboons and provide the first systematic analysis in a wild population. I first explore greeting 
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occurrence at the various levels of  this multilevel society, accounting for the differences in partner 

availability between animals that belong to the inner-most versus outer layers of  the society. Then I 

turn to my core question and investigate the function of  within-party male–male ritualized greetings. 

To determine if  this behavior is simply a literal greeting, I test whether they occur randomly simply 

when individuals are in close proximity (Fraser and Plowman, 2007). Next, I test if  greetings are used 

to assess relationship quality between spatially tolerant and affiliative partners (Smuts and Watanabe, 

1990; Whitham and Maestripieri, 2003), or whether greetings buffer tension between males. For the 

latter I analyze three scenarios: male dyads with higher levels of  aggression, temporal association with 

aggressive episodes, and the presence of  receptive females (reviewed in Colmenares et al., 2000). As 

these two hypotheses are not mutually exclusive, I also investigate if  greetings serve multiple func-

tions depending on the dyadic relationship type (i.e. affiliative/non-affiliative dyads). Lastly, I review 

the features of  Guinea baboon greetings and compare them with other species in this genus. 

In study 2 (chapter 4) I explore the features and adaptive benefits of  male–male sociality in wild 

Guinea baboons and focus on within-party male–male relationships. I first examine the main features 

of  male–male sociality, namely the patterns of  association of  primary and their secondary males and 

male–male affiliative relationships more generally. I examine if  Guinea baboons form social bonds by 

testing the two most common criteria (Silk, 2002): whether affiliative relationships are differentiated 

within the party and whether they are stable over time. This is followed by an investigation of  the role 

of  kinship in male–male sociality. While a previous analysis on a smaller sample at the gang level re-

vealed no correlation between relatedness and affiliation, I return to this question with a larger and 

more detailed dataset at the party level. I also apply this dataset to an investigation of  the link be-

tween coalitionary support and social bonds, as well as a reassessment of  the male dominance hierar-

chy. I then analyzed male reproductive skew in our population for the first time to test whether male–

male sociality enhances male reproductive success in the form of  number of  associated females and 

sired offspring. 
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4.1 Abstract 

Male–male bonds and multi-male associations may confer substantial fitness benefits. The adaptive 

value of  these relationships is often attributed to coalitionary support, which aids in rank ascension 

and female defense. Male Guinea baboons form bonds with other males, but they do not reveal a 

clear rank hierarchy, which allowed us to assess the adaptive value of  male–male sociality in a tolerant 

society. We therefore investigated whether males with strong bonds are more attractive to females. 

Using social behavior, genetic relatedness, and paternity data for 24 males, we here show that male–

male affiliative relationships were differentiated and stable over time. Strongly bonded males revealed 

a higher degree of  relatedness on average and were more likely to support each other in coalitions. 

Contrary to our predictions, male–male sociality had no positive effect on the number of  associated 

females or sired offspring. Instead, males with stronger bonds had significantly lower numbers of  

associated females. Apparently, time constraints affect male investment in different types of  relation-

ships. 

Keywords: Coalitionary support; Kinship; Male-male relationships; Papio papio; Reproductive benefits; 

Social bonds 

4.2 Introduction 

Male–male cooperation (Grinnell et al., 1995; Feh, 1999; Snyder-Mackler et al., 2012; Connor and 

Krützen, 2015), affiliation (Silk, 1994; Perry, 1998; Schoof  and Jack, 2014; Teichroeb et al., 2014) and 

social bonds (Mitani, 2009; Young et al., 2014b; Kalbitz et al., 2016) have been described between 

both kin and non-kin in numerous mammalian species. Adaptive benefits of  these associations have 

been widely reported in the form of  reduced influence of  environmental stressors (Young et al., 

2014a), increased survival (McFarland and Majolo, 2013; Lehmann et al., 2016), and enhanced repro-

ductive success (Schülke et al., 2010; Snyder-Mackler et al., 2012; Wiszniewski et al., 2012; Gilby et al., 

2013; Chowdhury et al., 2015). In particular, the effects on male reproductive success are often at-

tributed to within-group coalitionary support and communal group defense. Investment in social 

bonds for coalitionary support and coalition networks are associated with rank ascension and repro-

ductive success in Assamese macaques (Macaca assamensis: Schülke et al., 2010) and chimpanzees (Pan 

troglodytes: Gilby et al., 2013). In several mammal species, multi-male associations benefit dominant 

males by aiding in female defense, which can result in longer tenure and/or increased number of  fe-

males and offspring (Feh, 1999; Fedigan et al., 2004; Ostner and Kappeler, 2004; Snyder-Mackler et 

al., 2012; Wiszniewski et al., 2012; Chowdhury et al., 2015). Female choice can also be influential with 

males that invest in bonds with females and provide protection, assistance in rearing young, and sup-

port in conflicts also gaining higher reproductive success (Kulik et al., 2012; Massen and Vries, 2012; 
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Ostner et al., 2013; Arseneau et al., 2015; Rosenbaum et al., 2018). Females may additionally prefer 

males with more and stronger intrasexual relationships due to their greater average sociability. 

The presence of  male–male affiliation and cooperation, combined with the relatively high level of  

female leverage in mate choice (reviewed in Fischer et al., 2017), renders Guinea baboons (Papio papio) 

a valuable model to determine how the advantages conferred by male–male sociality play out in a 

highly tolerant multilevel system. Nested within Guinea baboon societies are “units” composed of  a 

“primary” male, 1-6 associated females, immatures, and often “secondary” males that generally inter-

act socially but not sexually with the females (Goffe et al., 2016). Several units make up a “party” and 

2-3 parties regularly aggregate into “gangs” with overlapping home ranges (Patzelt et al., 2014). Males 

are predominately philopatric, maintain high spatial tolerance, exchange affiliation, and support each 

other in coalitions (Patzelt et al., 2014). Compared to other baboon species, adult males show low 

rates of  aggression, no clear dominance hierarchy, and take-over attempts are extremely rare (Kalb-

itzer et al., 2015; Goffe et al., 2016). Females have unusually high levels of  spatial freedom and play 

an active role in the formation and maintenance of  inter-sexual relationships (Goffe et al., 2016).  

Building on the findings of  our initial analyses (Patzelt et al., 2014; Goffe et al., 2016), we here exam-

ine the adaptive benefits of  male–male sociality in wild Guinea baboons. We first tested if  males ful-

fill two of  the most commonly used criteria for identifying “strong bonds” (Silk, 2002), namely 

whether affiliative relationships within parties are differentiated and stable over time. We defined sec-

ondary males as non-primary males that were most frequently in spatial association with a primary 

male and interacted with its females (see Chowdhury et al., 2015). Although our previous analysis 

based on a small sample revealed no correlation between affiliation and relatedness, we returned to 

this question here with a larger dataset and predicted that kinship affects bonds and association with 

secondary males. We also re-evaluated the link between coalitionary support and social bonds and 

predicted that dyads with stronger bonds were more likely to cooperate during conflicts than dyads 

with weaker bonds. Finally, we turned to our core question and tested whether male bond strength, 

number of  friends, and number of  secondary males were linked to enhanced reproductive success in 

the form of  increased numbers of  associated females and sired offspring. 

4.3 Materials and methods 

4.3.1 Field site and study subjects 

Data for this study were collected over 19 months, from April 2014 to October 2015, at the Centre de 

Recherche de Primatologie (CRP) Simenti field station in the Niokolo-Koba National Park (PNNK), 

Senegal (described in Maciej et al., 2013). The Simenti Guinea baboon community comprises over 

400 individuals, including five habituated parties in two gangs, the Mare and the Simenti gang. We 

selected two parties with the highest numbers of  adolescent and adult males as our study groups (par-
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ty 9 from the Mare gang and party 6 from the Simenti gang). Party was used as the group unit in this 

study because males display higher proportions of  time in spatial association (within 20 m) and high-

er rates of  affiliation, greeting, and coalition at the party level (Patzelt et al., 2014; Fischer et al., 2017; 

Dal Pesco and Fischer, 2018). Therefore, our analyses focused on within-party dyads. Party size and 

composition varied during the study period due to maturation, mortality, and dispersal/migration, 

with an average of  44.5 individuals in party 6 (range 2014-2015: 40-48, average adult sex ratio: 88.89) 

and 44.5 individuals in party 9 (range 2014-2015: 38-51, average adult sex ratio: 47.83; see supplemen-

tary table S4.1a). We performed continuous behavioral observations of  all adult and adolescent (i.e. 

large juvenile, small and large subadult) males. Each month, two independent observers differentiated 

developmental stages and assessed age categories using physical markers (see supplementary S4.2a 

and S4.2b). Males were introduced as focal subjects when they reached the status “large juvenile 

male”. Three males disappeared during the study period (likely due to predation), while three males 

that transitioned to large juvenile status were included later in the study. We observed a total of  24 

individuals (average: 21.5, range: 21-22; party 6, n=14; party 9, n=10) during the study period with an 

average observation time per subject of  17 months (range: 3-19). Long-term data from two subse-

quent years (2016 and 2017) were supplemented to investigate male relationship stability (see supple-

mentary tables S4.1a, S4.1b and S4.3 for detailed information about data collection between 2014 and 

2017). 

4.3.2 Data collection 

We conducted behavioral observations during morning (6:30-12:30) and afternoon (15:00-18:00) ses-

sions for a total of  410 observation days (884 contact hours for party 9 and 941 contact hours for 

party 6). All data were collected on Samsung Note 2 handhelds using electronic forms developed for 

our long-term data collection in the Pendragon 7.2 software (Pendragon Software Corporation, 

USA). We recorded census information concerning demographic changes (presence, birth, absence or 

death), health status, and female reproductive state on a daily basis (Goffe et al., 2016). Aggression, 

displace/supplant, avoidance, unprovoked submission, coalitionary support, copulation and groom-

ing were recorded ad libitum. We conducted focal follows (Altmann, 1974) of  20 mins and balanced 

between subjects and morning and afternoon sessions, for an average of  seven monthly protocols per 

individual and a total focal time of  956 h (total number of  focal protocols=2961). Protocols included 

recordings of  continuous focal animal activity (i.e. moving, feeding, resting, and socializing) and all 

occurrences of  social behaviors such as approach (within 1 m), retreat, grooming, contact-sit, and 

greeting. All grooming and contact-sit bout durations were recorded to the nearest second. Scan sam-

pling (Altmann, 1974) was used before and after each focal protocol to record all focal male neigh-

bors within 10 cm, 1 m, 5 m and 10 m (total number of  proximity scans=5911).  
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4.3.3 Data analyses 

Statistical analyses (including figure preparation) were conducted using the R environment (version 

3.4.4; R Development Core Team, 2018) in the RStudio interface (version 1.1.456; RStudioTeam, 

2018). Specific functions and packages are mentioned in each sub-section. All males (n=24) were in-

cluded in all analyses, except those of  reproductive success (i.e. reproductive skew, number of  associ-

ated females, sired offspring) where only large subadult and adult males (n=20) were included. Note 

that no association with females or siring of  offspring were observed in younger age categories (un-

published data). Males were included as large subadult if  recorded in this category for more than half  

of  the observation time in a specific year. 

4.3.4 Male social bonds: strength and stability 

We investigated if  male Guinea baboons form social bonds by assessing whether male–male affiliative 

relationships were differentiated and stable over time (Silk, 2002). We measured the strength of  

dyadic affiliative relationships by computing the dyadic composite sociality index (hereafter DSI; Silk 

et al., 2006b, 2006a, 2010a, 2010b, 2013). Ranging from 0 to infinity, this index measures the deviation 

of  affiliative behavior of  a given dyad compared to all other dyads in the same group. The mean DSI 

value is 1, lower values represent affiliative relationships weaker than average, and higher values indi-

cate stronger than average relationships. We calculated the DSI on a yearly basis (January to Decem-

ber) for each male–male dyad based on the method by Silk et al. (2006a, 2006b). The only exception 

was the analysis of  average dyadic relatedness and male sociality (see section 4.3.10 for details), for 

which the DSI was computed for the whole study duration (i.e. 2014 and 2015 combined). The fol-

lowing behaviors were included in our index calculation: grooming frequency and duration, contact-

sit frequency and duration, and frequency of  within 1 m approaches (see supplementary table S4.4a). 

Note that only approaches that were not followed by social behavior (positive or negative) within 10 

sec were considered in the DSI calculation. Based on Silk et al. (2006a, 2006b) we assessed the corre-

lation between behavioral components in our index. We used the “cor.test” function in the “stats” 

package (R Development Core Team, 2018) to perform a Kendall’s tau correlation test and calculate 

the tau correlation coefficient and respective p-value. All behavioral components included in the 

composite index were positively correlated (see supplementary table S4.4b). Individual social bond 

strength was calculated as the sum of  a male’s top three DSI values (Silk et al., 2003, 2010b). In addi-

tion, based on the methodology by McFarland and colleagues (2013; 2015, 2017), the number of  

strong bonds (hereafter friends) per male was based on the number of  higher than average DSI val-

ues.  

We calculated male–male relationship stability using the Partner Stability Index each year over a 4-year 

period (PSI) (Silk et al., 2006a, 2013). This index measures variation in individual partner preference 

based on each individual’s top partners across several time periods. The PSI ranges from 0 to 1, 
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where 1 is the highest stability value, for individuals with the same top partners over all periods, and 0 

is the lowest stability value, for individuals that changed top partners in every period. All males 

present for at least two consecutive periods (total=23) were included in this analysis (no gaps oc-

curred between observation periods of  individual males). For some males, no single third top partner 

could be identified. We therefore calculated all PSI values using the top two partners. To test if  our 

observed preference patterns were different from those expected by chance, we compared the ob-

served PSI values for each individual male against mean expected PSI values for random partner 

choice calculated from 10.000 permutations (Silk et al., 2012; Kalbitz et al., 2016) using an exact 

Wilcoxon signed rank test (“wilcoxon.test” function in the “stats” package R Development Core 

Team, 2018; two-sided, paired, confidence level = 0.95). 

4.3.5 Unit composition and associated secondary males  

Data on female–male associations were recorded daily. Female unit transfers were recorded and veri-

fied using copulations, grooming bouts, contact-sit bouts, greetings, and aggression events from focal 

and ad libitum data (Dal Pesco and Fischer, 2018). As shown in a previous study, females in a unit 

exchanged significantly higher rates of  interactions with the primary male (Goffe et al., 2016). There-

fore, we used interaction occurrence (see Dal Pesco and Fischer, 2018) to assess female–male associa-

tions and unit composition. 

Following methodologies established for hamadryads baboons (Chowdhury et al., 2015; p. 503), we 

defined secondary males as non-primary adolescent/adult males who were most frequently within 1 

m proximity of  a primary male and who interacted at significantly higher rates and spent a significant-

ly higher proportion of  time within 1 m of  the primary male’s females compared to other co-resident 

males (see supplementary appendix 4.1, related supplementary tables, and supplementary figures S4.1 

and S4.2). All associated males exchanged affiliative interactions (i.e. grooming and contact-sit; associ-

ated males: mean±SD=27.03±26.55; non-associated males: mean±SD=0.82±1.69; see supplementary 

appendix 4.1). Note that in this species, secondary males can be associated with multiple units. To 

control for the influence of  female transfers and demographic changes on secondary male associa-

tions, we calculated the number of  secondary males per unit as a yearly average weighted by the dura-

tion of  the association in days. 

4.3.6 Male dominance assessment 

Ad libitum and focal data on male–male aggression (i.e. threats, lunges, chases, physical fights), dis-

place/supplant, avoidance, and unprovoked submission were used to assess the dominance hierarchy 

among adolescent and adult males of  the same party. Dyadic decided interactions were used to com-

pile a winner/loser matrix to determine dominance relationships for each studied party. We excluded 

any aggressive interaction that followed one or more polyadic interactions within the same aggressive 
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event (polyadic event). When several interactions per dyad occurred within the same aggression 

event, only the highest intensity interaction was considered. As previous investigations in our popula-

tion indicated adult males do not present a clear and significant linear hierarchy (Patzelt et al., 2014; 

Kalbitzer et al., 2015), we used the “aniDom” package (Farine and Sánchez-Tójar, 2018) to calculate 

the randomized Elo-rating scores for males of  each party (Sánchez-Tójar et al., 2018). We chose this 

method as it performed best for both intermediate and low hierarchy steepness in a data simulation 

study (Sánchez-Tójar et al., 2018). This methodological approach also enables the assessment of  hier-

archy steepness and uncertainty independent of  group size and sampling effort. We assessed the de-

gree of  hierarchy orderliness using the triangular transitivity index (Shizuka and McDonald, 2012). 

Compared to others, this index is not influenced by dataset sparseness or variation in group size 

(Shizuka and McDonald, 2012). For methodological details and functions used in this analysis see 

supplementary appendix 4.2a. 

4.3.7 Genetic relatedness and paternity analyses 

We collected fecal samples of  all adolescent/adult males (n=24) and subadult/adult females (n=27) 

of  our two study parties for a total of  51 individuals. All offspring born in 2014 and 2015 were iden-

tified for a total of  24 infants. Of  these, we were able to sample 19 offspring for paternity analysis 

while the 5 remaining offspring were deceased before sampling could occur. We characterized genetic 

variation by assessing the individual allele variation on 24 polymorphic autosomal microsatellite 

markers (see supplementary appendix 4.3 and 4.4 and supplementary table S4.5). We used individual 

genotypes to run male–male dyadic relatedness analyses and paternity analyses. We calculated descrip-

tive statistics for all 24 markers (including FIS, expected and observed heterozygosity) and tested for 

Hardy-Weinberg equilibrium (HWE) and presence of  null alleles in both genotype datasets (see sup-

plementary appendix 4.3 and supplementary tables S4.6a and S4.6b). One locus was excluded and a 

total of  23 loci were included in the following analyses. We estimated dyadic relatedness for all 24 

adolescent and adult males belonging to parties 6 and 9 (total within-party dyads: 134) using the R 

package “related” (Pew et al., 2015; also see Wang, 2011) and chose the Wang relatedness estimator 

(Wang, 2002) (see supplementary appendix 4.3). We estimated paternity for 19 sampled offspring 

born during 2014 and 2015 (see table supplementary table S4.10) and assigned paternity using a like-

lihood approach with the software Cervus (version 3.0.7; Kalinowski et al., 2007). A male was consid-

ered to have sired an offspring when he was assigned as the most likely father, had 0 to maximum 1 

mismatched alleles, and the confidence level for the assignment was more than 95% (“strict” criteri-

on). See supplementary appendix 4.3 for analysis details. 

4.3.8 Analyses of  reproductive skew 

To investigate male reproductive success and skew at the party level we used all offspring born in 

2014 and 2015 with assigned paternity (n=18; one offspring was fathered by a male of  another party; 
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see supplementary appendix 4.3) to calculate the Binomial Skew Index (B index) (Nonacs, 2000) with 

the SKEW CALCULATOR 2013 (Nonacs, 2003). Contrary to other skew indices, the B index can 

account for group demographic changes (Nonacs, 2003) allowing us to include demographic infor-

mation regarding the number of  days each male was present in our studied parties. This index ranges 

from -1 to 1 with positive values indicating a skew greater than expected for a random distribution of  

reproductive benefits and negative values indicating a more equitable sharing of  benefits. The soft-

ware uses a simulation approach (10000 simulations were calculated) to calculate 95% confidence in-

tervals, the maximum possible B value (i.e. “B-monopoly”: reproduction monopolized by one indi-

vidual) and the minimum possible B value (i.e. “B-equal”: equal sharing among all individuals). The 

observed skew is not different from chance if  the confidence intervals include zero. Moreover, if  the 

confidence interval includes the B-equal or the B-monopoly value, then equal distributions of  bene-

fits or total monopoly by one individual cannot be excluded, respectively. 

Moreover, to investigate primary male reproductive success at the unit level, we calculated the per-

centage of  offspring sired by the primary male of  each unit. Note that during the study period no 

mothers transferred to another unit between conception and birth. 

4.3.9 Statistical analyses and modeling 

We ran generalized linear mixed models using the R package “lme4” (Bates et al., 2015). Detailed in-

formation about sample size, data standardization/transformation, model structure, full null model 

comparison, and diagnostics (assumptions, collinearity, overdispersion, model stability) can be found 

in the supplementary appendix 4.5 and in each model table (supplementary tables S4.11-S4.16). P-

values were obtained from the likelihood ratio test performed with the R function “drop1” with ar-

gument “test” set to “chisq” (Barr et al., 2013). Effect sizes were calculated with the “summ” func-

tion of  the “jtools” R package (version 1.1.1; Jacob and Long, 2018). 

4.3.10 The role of  kinship in male sociality 

To investigate if  kinship played a role in male sociality we tested whether average dyadic relatedness 

was significantly higher for friends versus non-friends and primary and their secondary males versus 

all other dyads. Male-male dyads were characterized as friends if  their DSI (calculated over both 

years, 2014 and 2015) was above average (i.e. above 1) and as primary/secondary if  they were count-

ed as primary and associated secondary male at least once during this period. We ran two generalized 

linear mixed models with a Gaussian error structure (Baayen, 2008) with dyadic relatedness estimates 

(wang estimator) as the response and relationship type 1 (friends and non-friends) and type 2 (prima-

ry/secondary and non-primary/secondary) as the main predictor, respectively. In both models we 

included party membership as fixed control factors and male identities as random intercepts. Note 
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that in this analysis the two study years were considered as a single study period due to the fact that 

relatedness estimates (our response) are constant over time. 

4.3.11 Male sociality and coalitionary support 

Coalitionary support was scored every time two or more individuals simultaneously directed aggres-

sion toward a common target that could be a single male or another male–male coalition. All occur-

rences of  aggression events and coalitionary support were recorded ad libitum. We scored male–male 

coalitions within each aggression event with the following criteria: if  two individuals A and B sup-

ported each other in several aggressive interactions within the same aggression event this was scored 

as one coalitionary support (AB); if  A, B and C supported each other during the same aggressive in-

teraction this was scored as three coalitionary supports (AB, BC, AC); if  during the same event, A was 

supported only by B during an aggressive interaction and only by C during a following aggressive in-

teraction, this was scored as two coalitionary supports (AB and AC). 

To investigate whether male–male dyads with stronger bonds were more likely to support each other 

in coalitions we ran a generalized linear mixed model with Poisson error structure and log link func-

tion (McCullagh and Nelder, 1989) where dyadic coalitionary support frequency per year was the 

count response and yearly dyadic DSI was the main predictor of  interest. Due to the very low rate of  

aggression (Patzelt et al., 2014; Kalbitzer et al., 2015), all occurrences of  male–male coalitionary sup-

port recorded both from focal and ad libitum data were included in this analysis. To control for dif-

ferent observation durations per party and dyad we included the log-transformed contact time in 

hours as an offset (McCullagh and Nelder, 1989). Note that this was calculated using the total time 

spent working with the studied parties during each daily working session and for each male–male 

dyad to account for demographic changes. We included year and party membership as fixed control 

factors, and male identities and dyad identity as random intercepts. The following random slope 

components were also included: year and dyadic DSI within male identities. 

4.3.12 Male sociality and reproductive success 

To investigate if  male sociality enhanced male reproductive success in the form of  associated females 

and offspring we calculated the number of  associated females and sired offspring per male per year. 

To control for female transfers and demographic changes we calculated the number of  associated 

females per unit as a yearly average weighted by the duration of  the association in days. Our main 

predictors of  male sociality were yearly male bond strength, number of  friends, and weighted average 

number of  associated secondary males. As by definition only primary males can have secondary 

males, we ran two separate models with different datasets and predictors of  interest for each measure 

of  reproductive success. A first model included all large subadult and adult males (n=20) and both 

bond strength and number of  friends as predictors. A second model only included males that were 
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primary at least once during the study period (n=17) and the predictor of  interest weighted average 

number of  associated secondary males. We ran two generalized linear mixed models with Gaussian 

error structure (Baayen, 2008) where weighted average number of  associated females was the re-

sponse and two generalized linear mixed models with Poisson error structure and log link function 

(McCullagh and Nelder, 1989) where number of  sired offspring per year was the count response. In 

the first two models the gaussian response was log transformed (see details in supplementary table 

S4.14a and S4.14b). In all four models we included year (2014, 2015) as fixed control factor, while 

male identity was included as random intercept. To control for the effect of  group size and available 

partners on the number of  social bonds (Silk et al., 2018), we included male partner availability (i.e. 

total number of  males present within each party per year) as a fixed control variable in all four mod-

els. We did not include party membership due to multicollinearity issues with male partner availability. 

4.3.13 Post-hoc analysis: time males spent socializing with other males by number 
of  associated females 

In light of  the results of  our analysis, we performed a post-hoc investigation of  the effect number of  

associated females had on the proportion of  time males spent socializing (i.e. grooming plus contact-

sit) with other males. We ran a generalized linear mixed model with a Gaussian error structure 

(Baayen, 2008) with the proportion of  time males spent socializing with other males as response and 

number of  associated females as predictor of  interest. The response was square-root transformed 

(see details in supplementary table S4.16). Party membership was included as fixed control factor and 

male identity as random intercept. 

4.4 Results 

4.4.1 Male-male sociality 

Male-male affiliative relationships were differentiated and stable over time. The distribution of  the 

dyadic composite sociality index (DSI) was highly skewed, indicating that relationships were differen-

tiated within the party (see figure 4.1 and supplementary figure S4.3). The DSI for the entire study 

period (see supplementary tables S4.7a and S4.7b for yearly values) ranged from 0.0 to 13.4 with a 

mean of  1 and a median of  0.1. Only 22.4% of  dyads (30/134 dyads) had a DSI above group aver-

age, and the top 10% of  relationships had a DSI above 3.54. To illustrate the variation in behaviors in 

relation to DSI, average approach rates per hour were 0.32 for a DSI of  0.5, 0.73 for a DSI of  1, and 

1.62 for a DSI of  5. Average male bond strength (calculated as the sum of  a male’s top three DSI 

values) was 10.04 for party 6 (SD=4.25; range=0.97-16.89; n=14) and 8.26 for party 9 (SD=5.01; 

range=1.71-15.13; n=10). The average number of  friends per male (calculated as the number of  

higher than average DSI values) was 3.29 for party 6 (SD=2.13; range=0-6; n=14) and 1.40 for party 

9 (SD=0.84; range=0-3; n=10).  

 37



Male–Male Sociality

Partner choice was not random and relation-

ships were stable over time. The average ob-

served partner stability index (PSI) was 0.72 

(SD=0.22; range=0.25-1.00) and 91.3% of  

observed PSI values were above chance. The 

observed PSI values were significantly higher 

than mean permuted PSI values (Wilcoxon 

signed-rank test: V=271, n=23, p<0.001; see 

figure 4.2), which averaged 0.35 (SD=0.06; 

range=0.24-0.42). 

During the study period 76.5% of  primary 

males had at least one secondary male (i.e. 

non-primary male associated to a primary 

male’s unit). Most of  these units had more 

than one secondary male (61.5%) during the 

study period. The weighted average number 

of  secondary males per unit was 1.65 

(SD=1.47; range=0.00-4.08). The weighted average number of  associated secondary males per pri-

mary male was 2.56 (range=0.00-4.08; n=14) for party 6 and 0.62 (range=0.00-1.43; n=10) for party 9 

(see supplementary table S4.7b for yearly values). Conversely, 66.7% of  secondary males interacted 

with females of  and were associated with multiple units (average number of  units 2.60±1.45 SD; 

range=1-5). With only one exception, all secondary males were either adolescents or late prime/old 

males (also see Goffe et al., 2016). Most primary males maintained their status from the acquisition 

of  their first female to late prime/old age (unpublished data, also see Goffe et al., 2016). Strong affil-

iative relationships between males were not restricted to the unit level, with 39.9% of  friends consist-

ing of  non-primary/secondary dyads (i.e. primary/primary and non-primary/non-primary dyads). 

During the study period, all 24 males were either primary or secondary and no unaffiliated male was 

present in either party. Past observations, however, indicate rare occurrences of  unaffiliated males 

(Goffe et al., 2016).  

4.4.2 Male dominance assessment 

Out of  1026 within-party male–male aggressive interactions, only 19.1% (196 interactions) could be 

used to assess dominance because the others were non-decided (42.7% of  1026), non-dyadic (59.7% 

of  1026) or comprised repeated interactions within the same bout of  aggression. These 196 interac-

tions were used in combination with 209 displace/supplant, avoidance, and unprovoked submission 

interactions, for a total of  405 interactions, to determine the rank hierarchy. Both parties showed a 
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hierarchy of  intermediate/low steepness with high variation in randomized Elo-rating scores and 

great overlap between the 95% score range for most males. Hierarchies showed high transitivity, indi-

cating high levels of  orderliness. Yet, due to the very low rate of  aggression (Patzelt et al., 2014; 

Kalbitzer et al., 2015) and usable proportion of  interactions, our attempts to assess dominance yield-

ed highly uncertain estimates. Therefore, dominance could not be included as a predictor in our 

analyses (see supplementary appendix 4.2b and 4.2c supplementary tables S4.8a and S4.8b, and sup-

plementary figures S4.4 and S4.5).  

4.4.3 Analyses of  reproductive skew 

At the party level, reproductive skew (measured using the Binomial Skew Index) was low and the 

share of  reproductive benefit (i.e. sired offspring, n=19) was not significantly different from chance 

in both party 6 (B index obs.=0.028; CI=-0.112-0.246; p=0.273) and party 9 (B index obs.=-0.043; 

CI=-0.087-0.072; p=0.856). Moreover, in both parties equal distributions of  reproduction could not 

be excluded (see supplementary table S4.9). 89.5% of  offspring (n=17) were sired by the primary 

male, suggesting a high mate fidelity in this species. The remaining 10.5% (n=2) of  offspring were 

sired by a subadult male belonging to the same party and an adult male belonging to a different party 

of  the same gang, respectively, indicating that sneaky copulations can even occur across parties (see 

supplementary appendix 4.3 and supplementary table S4.10 for paternity analysis details). 
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Figure 4.2 Male partner stability indices (PSI) over a 4-year period (n=23). Observed PSI values are compared against mean expected PSI for 
random partner choice calculated from 10.000 permutations. Observed PSI values were significantly higher than mean permuted PSI values. A) 
the median, lower and upper quartiles (25% and 75%) and the range excluding outliers (vertical line). B) changes between observed and 
expected PSI values for each individual male.
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4.4.4 The role of  kinship in male 
sociality 

Relatedness estimates for male–male within-

party dyads averaged 0.06 (SD±0.24) and 

ranged from -0.56 to 0.69 (median=0.05). As 

predicted, kinship played a significant role in 

male sociality. Male friends had significantly 

higher average relatedness than non-friends 

(estimate±SE=-0.210±0.045, p<0.001, figure 

4.3, see supplementary table S4.11a). Note 

that dyadic relatedness ranges overlapped to a 

great extent (friends: range=-0.31-0.69; non-

friends: range=-0.56-0.57), suggesting that 

bonds were neither exclusively restricted to kin 

nor did kinship always guarantee stronger so-

cial bonds. The same pattern was found for 

primary males and their associated secondary 

males, where primary/secondary dyads had 

significantly higher average relatedness than 

non-primary/secondary dyads (estimate±SE= 

-0.175±0.045, p<0.001, primary/secondary: 

range=-0.31-0.69; non-primary/secondary: range=-0.56-0.57; supplementary figure S4.6, see supple-

mentary table S4.11b). 

4.4.5 Male sociality and coalitionary support 

A total of  362 dyadic coalitions were recorded between adolescent/adult males during the study dura-

tion (both from focal and ad libitum data). Coalitions regularly included several males and conflicts 

often involved coalitions targeting other coalitions. Dyads supported each other on average 2.70 times  

(SD=5.40; range=0-36) in ca. 1800 contact hours with an average rate per hour and dyad of  0.002 

(SD=0.003; range=0.000 -0.020). Coalitionary support was recorded both within and between units, 

with only 42.0% of  coalitions taking place between primary and their secondary males. Dyads with 

stronger bonds (higher DSI values) were significantly more likely to support each other in coalitions 

(higher dyadic coalition rates; estimate±SE=0.765±0.127, p<0.001, figure 4.4, see supplementary ta-

ble S4.12). 
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4.4.6 Male sociality and reproductive 
success 

The weighted average number of  associated fe-

males per large subadult/adult male was 0.88 for 

party 6 (SD=0.89; range=0.00-2.68; n=14) and 

1.69 for party 9 (SD=1.32; range=0.00-3.15; 

n=10). The full model including the two predic-

tors of  interest (bond strength and number of  

friends) accounted for significantly more variance 

compared to the null model (full null model 

comparison: χ2=7.163, df=2, p=0.028). While 

number of  friends was not associated with the 

number of  associated females (estimate±SE= 

-0.008±0.070, p=0.911), males with stronger 

bonds had significantly fewer females (estimate± 

SE=-0.193 ±0.071, p=0.010; see figure 4.5). Re-

sults remained unchanged if  the strength of  all 

bonds (instead of  male’s top three DSI values) 

was used to calculate male bond strength (data 

not shown). We additionally examined whether 

the weighted average number of  associated sec-

ondary males predicted the number of  females. There was no association between the weighted aver-

age number of  secondary males and the number of  females (estimate±SE= 0.002±0.140, p=0.989; 

see supplementary tables S4.13a and S4.13b). 

The average number of  sired offspring per large subadult/adult male was 0.73 for party 6 (SD=1.01; 

range=0-3; n=14) and 1.11 for party 9 (SD=0.93; range=0-2; n=10). The full model with the two 

predictors of  interest (bond strength and number of  friends) did not account for significantly more 

variance compared to the null model (full null model comparison: χ2=1.658, df=2, p=0.437). Con-

sidering the very low effect size (Pseudo-R²(total)=0.138), this is unlikely to be a type II error. Thus, 

neither the strength of  male social bonds nor the number of  male friends was associated with the 

number of  sired offspring (bond strength: estimate±SE=-0.283±0.320; friends: estimate±SE= 

0.427±0.341). The additional model examining the weighted average number of  associated secondary 

males found that this measure of  male sociality was also not associated with the number of  sired off-

spring (estimate±SE=-0.019 ± 0.338, p=0.955; see supplementary tables S4.14a and S4.14b). 
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Figure 4.4 Effect of  male–male dyadic bond strength (DSI values or 
scores) on rate of  coalitionary support (calculated from ad libitum and 
focal data and corrected by contact time in hours). Dyads with 
stronger bonds were significantly more likely to support each other in 
coalitions. Points depict each dyad twice (2014 and 2015). DSI was log 
transformed and subsequently standardized to a mean of  zero and a 
standard deviation of  one (original means and standard deviations in 
supplementary table S4.12). The solid line depicts the fitted model and 
dashed lines depict the bootstrapped 95% confidence intervals (party 
and year manually dummy coded and centered).
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4.4.7 Post-hoc analysis: effect of  
number of  associated females on time 
spent socializing with other males 

As male bond strength was linked with lower 

numbers of  associated females, we performed a 

post-hoc analysis to explore the effect the num-

ber of  associated females has on time males 

spent socializing (i.e. grooming plus contact-sit) 

with other males. Males with a higher numbers 

of  associated females spent a significantly lower 

proportion of  time socializing with other males 

(estimate±SE=-0.042 ± 0.011, p=0.001; see fig-

ure 4.6 and supplementary table S4.15). The av-

erage proportion of  time spent socializing with 

other males decreased from 0.04 (SD=0.02; 

range=0.01-0.08) for males having no associated 

females to 0.01 (SD = 0.02; range=0.00-0.07) for 

males with one associated female, while the aver-

age proportion of  time spent socializing for 

males with four to five females was only 0.001 

(SD = 0.001; range=0.000-0.003). 

4.5 Discussion  

Guinea baboon males maintain highly differenti-

ated relationships with other males. The differen-

tiated and stable nature of  male–male affiliative 

relationships indicates that male Guinea baboons 

form strong social bonds. Primary males may 

develop strong bonds with other primary males 

as well as with non-primary males associated to 

their unit called “secondary males”. Strong bonds 

were also observed between non-primary males. 

Affiliative relationships and coalitionary support 

between males were not restricted to the unit lev-

el, with 39.9% of  strong bonds (“friendships”) 

and 58% of  coalitions not recorded between 
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Figure 4.5 Effect of  male bond strength (calculated as the sum of  a 
male’s top three DSI values) on average number of  associated females 
(calculated as average weighted by the duration of  the association in 
days). Males with stronger bonds were found to have significantly 
fewer females. Points depict each dyad twice (2014 and 2015). The 
response was log transformed and the covariates standardized to a 
mean of  zero and a standard deviation of  one (original means and 
standard deviations in supplementary table S4.13a). The solid line 
depicts the fitted model and dashed lines depict the bootstrapped 95% 
confidence intervals (year manually dummy coded and centered and 
male partner availability standardized to a mean of  zero and a 
standard deviation of  one).
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primary males and their associated secondary males. Notably, bachelor groups are not characteristic 

of  this species, unaffiliated males (termed “solitary” in hamadryas baboons) occur rarely, and sec-

ondary males can be associated with multiple units at the same time. These results set Guinea baboon 

males apart from hamadryas baboons and geladas. Hamadryas baboon leader males occasionally 

groom with follower/solitary males and do not affiliate with other leaders (Schreier and Swedell, 

2009), while male–male affiliation in geladas is restricted to bachelor group males (Pappano, 2013) or 

to rare interactions between leaders and their followers (Dunbar and Dunbar, 1975). Moreover, most 

primary Guinea baboon males had associated secondary males (76.5% versus 55.4% in hamadryas 

and 33.3% in gelada) and most of  these units had more than one secondary male (61.5% versus 

38.9% in hamadryas; mean n. of  secondaries per unit: 1.65 versus 0.80 in hamadryas) (see Snyder-

Mackler et al., 2012; Chowdhury et al., 2015). Contrary to hamadryas baboons, where follower males 

are mainly associated with a particular unit and further associations are short-term and may not ex-

tend to females (Chowdhury et al., 2015), Guinea baboon secondary males have multiple associations 

that can last several years and involve interactions with primary males as well as associated females. 

These results, in combination with the rarity of  takeover attempts, female spatial freedom, and an 

active female role in intersexual relationships (Goffe et al., 2016), highlight the fluidity and uniqueness 

of  the Guinea baboon social system. 

Within-party male sociality was linked to kinship, which was likely a major mechanism in the evolu-

tion of  male–male social bonds in this species. Guinea baboon males biased their behavior toward 

relatives, with significantly higher average relatedness between friends, as well as between primary and 

their secondary males. However, kinship is not the only driving force as it was associated with some 

bonds but not others. Similar patterns were reported for chimpanzees (Langergraber et al., 2007; Mi-

tani, 2009) and bottlenose dolphins (Tursiops cf. australis: Diaz-Aguirre et al., 2018), where the indirect 

benefit of  male affiliation and cooperation co-occurred with direct benefits obtained through mutual-

istic and reciprocal relationships. The basis of  kin discrimination in this species is, however, still un-

known, so that we cannot exclude that mechanisms such as familiarity might play a more central role 

in shaping patterns of  male social preferences. While age proximity and association with a common 

parent may act as a mechanism for kin discrimination (Smith, 2014) at the unit level due to the high 

likelihood of  being sired by the same father, it is unlikely to be a very reliable indicator of  relatedness 

overall due to the low reproductive skew at the party level. This ambiguity is compounded by the re-

ported female transfers between all social levels, females transferring with their dependent offspring, 

and lack of  evidence for infanticide (Goffe et al., 2016), leading to a scenario where relatedness and 

familiarity do not exactly mirror each other. Therefore, if  familiarity is the major mechanism of  kin 

discrimination in Guinea baboons, unit composition changes during early development might result 

in less overlap between male relatedness and sociality. Indeed, reports from a captive population of  

Guinea baboons suggested that male–male associations may emerge early in life (Boese, 1975).  
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Multi-male associations can confer important benefits in form of  communal defense (Feh, 1999) and 

lower likelihood of  takeovers (Fedigan et al., 2004; Ostner and Kappeler, 2004). In geladas and 

hamadryas baboons, associated males benefit leader males through increased tenure length, number 

of  females or number of  offspring (Theropithecus gelada: Snyder-Mackler et al., 2012; Papio hamadryas: 

Chowdhury et al., 2015). Male cooperative unit defense plays a key role due to the high level of  inter-

group competition characterized by unit takeovers followed by female acquisition and often infanti-

cide (Swedell and Tesfaye, 2003; Beehner and Bergman, 2008; Pappano et al., 2012; Snyder-Mackler et 

al., 2012; Swedell et al., 2014; Pines et al., 2015). Associated males can also benefit from a small pro-

portion of  reproduction, which, as seen in geladas, can be restricted to the unit (Snyder-Mackler et al., 

2012). In contrast, our results showed evidence for occasional extra-unit paternities and, particularly, 

that number of  associated secondary males in Guinea baboons was not linked to higher number of  

females or sired offspring. This is likely the case because 76.5% of  males have secondary males, 

61.5% of  these have more than one secondary male and, most importantly, secondary males have 

stable associations with multiple units, all of  which leaves little room for variation in reproductive 

success. Secondary males may not be as crucial to unit defense as in other species, as takeovers are 

rare (Goffe et al., 2016; Fischer et al., 2017) and male competition is low (Patzelt et al., 2014; Kalb-

itzer et al., 2015; Fischer et al., 2017). This would also mean that Guinea baboon females, unlike 

geladas or hamadryas, do not gain much benefit from preferring males with alliances, and may instead 

prefer males that provide higher levels of  affiliation and spatial freedom (Goffe, 2016) or, as seen in 

mountain gorilla (Rosenbaum et al., 2018), that care more for offspring. 

At the party level, Guinea baboon males cooperated via coalitionary support both within and be-

tween units. Males with stronger bonds supported each other more often during agonistic events, 

which is consistent with findings in several macaque species (Silk, 1994; Schülke et al., 2010; 

Berghänel et al., 2011a; Young et al., 2014b), where sociality predicted levels of  male cooperation. In 

red howler monkeys (Alouatta seniculus) male coalitions were key in establishing and maintaining tenure 

within troops (Pope, 1990), while coalitionary support in Assamese macaques was linked to future 

dominance success and, in turn, to enhanced reproductive success (Schülke et al., 2010). In Guinea 

baboons, however, competition and rank play only a marginal role (Patzelt et al., 2014; Kalbitzer et al., 

2015; Fischer et al., 2017; Dal Pesco and Fischer, 2018; see supplementary appendix 4.2c) and num-

ber of  friends and bond strength were not positively linked to either number of  females or number 

of  sired offspring. Compared to macaques (Schülke et al., 2010; Berghänel et al., 2011a), rates of  

coalitionary support in Guinea baboons are surprisingly low (Guinea baboons: 0.002/hr; Assamese 

macaques: 0.11/hr; Barbary macaques, Macaca sylvanus: 0.01-0.21/hr), mirroring the low aggression 

rate (Kalbitzer et al., 2015). Our results indicate that sociality is not, as reported in other species, 

linked to increased short-term reproductive success. What is still unknown is why Guinea baboon 

males engage in coalitions and whether they confer benefits in the long-term.  
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Contrary to our predictions, males with stronger bonds had significantly lower numbers of  associated 

females. Partner preference was stable over time, but male sociality appeared to be influenced by time 

budget, requiring numbers of  associated females to be balanced out by less time invested in male–

male relationships. As reproduction is non-seasonal (Boese, 1973) and primary males sired 89.5% of  

offspring within their unit, stable and long-term associations with females are likely of  high value, 

and, as male interactions with females are independent of  reproductive state (Goffe et al., 2016), this 

investment needs to be continuous and year-round. In another species presenting male–male bonds, 

the Barbary macaque, time investment in male–male relationships is affected by female reproductive 

state, with grooming interaction rates between males dropping in the mating season (Berghänel et al., 

2011a, 2011b; Young et al., 2014b). Our results show that this effect is not only restricted to seasonal-

ly breeding species. In experimental studies on hamadryas baboons, strong female preferences for the 

leader male have been associated with lower likelihood of  takeover attempts (Bachmann and Kum-

mer, 1980), indicating the crucial role of  pair bond relationship quality for some species. In Guinea 

baboons, rates of  aggression towards females are less than half  of  those in geladas and hamadryas 

baboons (Goffe et al., 2016) and repeated herding behavior (i.e. “conditioning”) has not been report-

ed (Goffe, 2016), suggesting that inter-sexual dynamics are not simply established by coercion. The 

fluidity of  Guinea baboon society, where females interact with secondary males, have high levels of  

spatial freedom, and respond to male aggression with occasional counter-aggression and female–fe-

male coalitions (Goffe, 2016; Goffe et al., 2016), may in fact require higher levels of  male investment 

in the form of  affiliation and vigilance. 

Our study show that male–male sociality did not enhance short-term male reproductive success in 

Guinea baboons opening the door to new research regarding both the influence of  female–male 

bonds in male social dynamics and the possible long-term benefits of  male sociality. While female 

unit size affected male–male relationship investment in the form of  reduced time spent socializing, 

male sociality may vary more generally in relation to male reproductive status, with non-primary 

males investing more in same-sex relationships. This is supported by observations in our population 

where males that lost primary status engaged in frequent affiliation with males that were previously 

close to their unit (unpublished data). What is still unclear is if  male–male relationships are indeed 

maintained over the life time and how this is achieved. One possibility is the use of  the most intense 

forms of  male–male ritualized greetings. A previous study found that these intense ritualized interac-

tions occurred most often between dyads with higher affiliation rates (Dal Pesco and Fischer, 2018), 

while studies on macaques suggest that ritualized interactions might be most efficient in maintaining 

bonds due to time budget constraints (Kalbitz et al., 2017). While bonds with females are crucial, due 

to their direct fitness benefits, male–male bonds may benefit males in the form of  early unit estab-

lishment, delayed loss of  primary status, and increased tolerance and support. Overall, social relation-

ships may also combat the detrimental effects of  social isolation (Hawkley et al., 2012; Holt-Lunstad 
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et al., 2015) regardless of  the sex of  the social partner. Long-term data on this population will be 

fundamental in investigating whether male sociality has long-term effects on male fitness in the form 

of  tenure length and number of  females/offspring over the entire reproductive lifespan. 
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4.10 Supplements 

Appendix 4.1 Methodological assessment of  associated secondary males 

To assess the number of  secondary males associated with a primary male’s unit we considered both 

male–male and male–female perspective. For the male–male perspective, we used spatial association 

to determine associated and non-associated males for each primary male. For the male–female per-

spective, we tested if  associated males interacted/associated at significantly higher rates with the fe-

males of  the primary male in contrast to non-associated males. This analysis was based on the 

methodologies and definitions developed for hamadryas baboons (Chowdhury et al., 2015; p. 503). 

The male perspective: male–male association 

To classify male–male dyadic association strength we conducted a change point analysis to detect dis-

continuities in the distribution of  the rate of  male–male approaches (within 1m). All approaches 

recorded between males of  the same party during the study period were included in this analysis. We 

ran this analysis using the R package “changepoint” (version 2.2.2, Killick et al., 2016; R version 3.4.4 

and RStudio version 1.1.456) and the function “cpt.meanvar” that investigates both mean and vari-

ance changes (method was set to “PELT”,  penalty to “MBIC”, and test statistic to “Exponential”).  

Three different change point locations were identified in the distribution (see supplementary figure 

S4.1). We considered the largest change point (change point at dyad number 34; approach rate=0.402) 

as our association threshold and divided male–male dyads dependent on if  their approach rate was 

above or below this threshold to label them as associated or non-associated, respectively. Associated 

males exchanged an average of  27.03 affiliative interactions (i.e. grooming and contact-sit) during the 

study period (SD=26.55; median=22.50; range=3-139). This indicate that all associated males ex-

changed affiliative interactions. Non-associated males exchanged an average of  0.82 affiliative interac-

tions (SD=1.69; median=0.00; range=0-9). 

The female perspective: behavioral patterns of  associated versus non-associated males and 

the primary male’s associated females 

To take into account unit composition changes due to female transfers, we focused this analysis on all 

periods during which unit composition was stable and split our main dataset accordingly. Further-

more, we restricted our analysis exclusively to stable periods with a duration of  at least 6 weeks (i.e. 

no female transfers from or to the unit recorded for at least 42 days). We identified a total of  34 sta-

ble periods with an average duration of  180.32 days (SD=119.06; range=47-579). These periods in-

clude 15 different primary males with an average of  2.27 (SD=1.1; range=1-4) stable periods per 

male. 

For every stable period of  each unit we counted all occurrences of  copulations, grooming bouts, con-

tact-sit bouts, greetings, and aggression events between the females associated with that unit and 
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every other male of  the party (excluding the primary male of  the unit). These behavioral counts were 

calculated from male focal protocol data and ad libitum data separately. Applying the same method 

on our proximity scan data, we also calculated the number of  times every other male of  the party and 

all females associated with the unit spent in 1 m proximity for every stable period. To correct these 

counts for sampling effort we calculated the focal observation duration, the contact time with the 

party, and the total number of  proximity scans for every stable period. Note that these were calculat-

ed taking into account all male demographic changes that occurred during every stable period. 

To test whether associated males interacted with the primary male’s females at a significantly higher 

rate we ran a generalized linear mixed model with Poisson error structure and log link function (Mc-

Cullagh and Nelder, 1989) where male–male association type (associated vs. non-associated male) was 

the main predictor of  interest. We ran three different models with different count responses: the 

count of  ad libitum interactions with the primary male’s females (model 1a); the count of  focal inter-

actions with the primary male’s females (model 1b); the number of  times recorded in 1 m proximity 

to the primary male’s females (model 1c). To control for sampling effort, we included the log-trans-

formed focal duration (in h), the contact time with the party (in h) and the number of  proximity 

scans as offsets (McCullagh and Nelder, 1989) in models 1a, 1b and 1c, respectively. We included par-

ty membership and number of  females associated with the unit (in each stable period) as fixed con-

trol variables, while male identity, primary male identity, and dyad identity were included as a random 

intercept in the model. The following random slope components were included: male–male associa-

tion type and number of  females associated with the unit within male identity and male–male associa-

tion type within primary male identity. 

Males associated with the primary male exchanged higher rates of  ad libitum and focal interactions 

and spent higher proportions of  time within 1 m of  the primary male’s females compared to males 

not associated with the primary male (see supplementary figure S4.2 and supplementary tables S4.16a, 

S4.16b, S4.16c). 

Definition of  associated secondary males: 

Based on these results and following methodologies established for hamadryads baboons (Chowd-

hury et al., 2015; p. 503), we defined secondary males as non-primary adolescent/adult males who 

were most frequently within 1 m proximity of  a primary male and interacted at significantly higher 

rates and spent a significantly higher proportion of  time within 1 m of  the primary male’s females 

compared to other co-resident males. Note that secondary males could be associated with multiple 

units. 
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Appendix 4.2a Male dominance assessment - methodological details 

Based on Sánchez-Tójar et al. (2018), sampling effort was calculated as the ratio of  interactions to 

individuals (i.e. number of  interactions divided by number of  individuals). Dataset sparseness was 

assessed comparing the proportion of  known dyads (i.e. number of  dyads that interacted / total 

number of  possible dyads) and the expected proportion for a simulated population of  equal group 

size where the probability of  interacting followed a Poisson process. We used the “elo_scores” func-

tion to calculate the randomized Elo-scores (hereafter rElo) and obtain the mean ranks and respective 

95% range of  the rElo score values per individual (i.e. within 2.5% and 97.5% quantiles). We used the 

functions “plot_ranks” and “plot_hierarchy_shape” to plot the individual rElo scores and the hierar-

chy shapes, respectively. As described by Sánchez-Tójar et al. (2018), we quantified the steepness and 

uncertainty of  the hierarchy from the rElo-rating repeatability using the function “estimate_uncer-

tainty_ by_repeatability”, where higher repeatability scores correspond to the steepest hierarchies, and 

the “estimate_uncertainty_by_splitting” function, which splits the dataset in two and compares hier-

archy estimates between the two subsets. 

To assess the degree of  hierarchy orderliness, we used the “ttri_test” function of  the “compete” 

package (Curley, 2016; following the algorithm developed by Shizuka and Mcdonald, 2012;) to calcu-

late the triangular transitivity (i.e. proportion of  transitive closed triads out of  the total number of  

closed triads; note that this calculation is not based on all possible dyads but only on all complete tri-

ads) and the respective p value for each party. 

Appendix 4.2b Male dominance assessment - detailed results 

Sampling effort was within the recommended range of  values of  10 to 20 interactions per individual 

for both parties (but see below), with higher values for party 6 (ratio=18.9; n=14; 264 total interac-

tions) than for party 9 (ratio=14.1; n=10; 141 total interactions). The number of  dyads that never 

interacted during the study period was 8% for party 6 (89 total dyads) and 38% for party 9 (45 total 

dyads) for a total of  134 dyads. For both parties the observed proportion of  known dyads was within 

the expected range predicted by a Poisson process, specifically 0.73 for party 6 and 0.69 for party 9 

with the respective expected average proportion of  0.57 (2.5%-97.5% quantiles=0.38-0.80) and 0.62 

(2.5%-97.5% quantiles=0.42-0.89). This indicates that the data collection was not biased toward spe-

cific dyads for either party. 

Mean randomized Elo-scores for each male of  the two parties can be found in supplementary tables 

S4.8a and S4.8b, while the plot of  the mean rElo scores and the respective 95% range of  rElo scores 

can be found in supplementary figure S4.4. Differences between males of  subsequent ranks were 

small and the 95% ranges of  individual scores overlap to a large extent. Moreover, the large range of  

the 2.5% and 97.5% rElo score’s quantiles indicates that rank varies greatly and/or is highly uncertain. 
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The hierarchy shape plots (supplementary figure S4.5) indicate that neither party had a very steep hi-

erarchy, with party 6 showing intermediate and party 9 low steepness. In party 6 rank predicted the 

winning probability for small rank differences only weakly (e.g. for differences in rank of  1-2 the av-

erage probability was only ~0.55-0.65) while large rank differences were associated with a greater 

probability of  winning (e.g. ~0.80-1.00, but see rank distance=8). In party 9 rank seemed to better 

predict winning probabilities for small rank differences (e.g. for differences in rank of  1 and 2 the 

average probability was ~0.70 and ~0.90 respectively) while larger rank differences seemed to be as-

sociated with a decrease in probability of  winning  (e.g. for differences in rank of  8 the average prob-

ability was ~0.65). Some of  these patterns can be explained by the large size of  the 2.5 % and 97.5 % 

quantile error bars in the plots, that indicate that both datasets could benefit from an increase in sam-

pling effort. This is in accordance with the results of  Sánchez-Tójar et al.’s simulation study (2018), 

which indicated that the general recommendations for a ratio of  10 to 20 interactions per individual 

generates meaningful hierarchy estimations in steep hierarchy scenarios, while more interactions 

might be required for intermediate and flat hierarchies. Specifically, for flat hierarchy scenarios the 

sampling effort should greatly exceed 100 to produce meaningful estimates. 

The steepness/uncertainty assessment based on rElo-rating repeatability corroborates these findings 

with values of  0.817 for party 6 and 0.797 for party 9. With higher repeatability scores (~1) corre-

sponding to the steepest hierarchies, these values confirm that the hierarchies for parties 6 and 9 are 

of  intermediate/low steepness. The hierarchy uncertainty assessment calculated by splitting the 

dataset in two subsets and comparing the respective rank estimates were 0.70 (2.5%-97.5% 

quantiles=0.42-0.89) for party 6 and 0.66 (2.5%-97.5% quantiles=0.26-0.93) for party 9. These values 

and the very large ranges of  the quantiles show that our estimates are uncertain. In summary, the out-

comes from these two methods show that both hierarchies are not steep and that our estimates are 

not very informative and not certain. 

The triangular transitivity indices for both parties indicated that both hierarchies presented high tran-

sitivity (range from 0 to 1 where 1 indicates that all complete triads were transitive), with party 6 hav-

ing an index of  0.82 and party 9 of  1.00. For both parties this value was significantly higher than ex-

pected by chance with p-values of  <0.001 and 0.001 for party 6 and 9, respectively. 

Appendix 4.2c Male dominance assessment - discussion 

Overall, our results are in accordance with previous studies on this population (Patzelt et al., 2014; 

Kalbitzer et al., 2015; Fischer et al., 2017), which found that adult males present less consistent and 

clear dominance patterns compared to other Papio species (Kalbitzer et al., 2015). In our study we 

furthermore showed that male hierarchies were of  intermediate/low steepness, individual rank scores 

were highly variable with great overlap between the 95% score ranges, and, most importantly,  esti-

mates were uncertain. This uncertainty was mainly driven by the very low rate of  aggression (Patzelt 
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et al., 2014; Kalbitzer et al., 2015) and the high proportions of  polyadic events and undecided interac-

tions, that in turn resulted in a limited number of  available interactions for the dominance assess-

ment. Data from many years combined would need to be used in order to attain the adequate sam-

pling power to obtain certain estimates in this species. However, clustering data collected over long 

time spans would not be meaningful as it would fail to take into account the important effect of  de-

mographical and social changes on dominance. These results and other past unsuccessful attempts to 

establish a significant linear hierarchy (Patzelt et al., 2014; Kalbitzer et al., 2015) indicate that steep-

ness and linearity are not a key element of  male dominance in this species. Moreover, the low levels 

of  aggression seems to indicate that male competition and rank do not play a central role (Patzelt et 

al., 2014; Kalbitzer et al., 2015). This is unsurprising considering the social system of  this species and 

the presence of  stable male–female associations where the primary male monopolizes 98.6% of  cop-

ulations (Goffe et al., 2016) and sires 89.5% of  offspring within their unit. 

Appendix 4.3 Genetic relatedness and paternity analyses 

Samples, extraction and genotyping 

We collected fecal samples of  all adolescent/adult males (n=24) and subadult/adult females (n=27) 

belonging to our two study parties for a total of  51 individuals. All offspring born during 2014 and 

2015 were identified for a total of  24 infants. Of  these, we were able to sample 19 offspring for pa-

ternity analyses, while 5 offspring deceased before we could sample them. Fecal samples were stored 

following a 2-step preservation protocol, with an initial phase of  conservation in 90% ethanol fol-

lowed by desiccation and storage with silica beads (Roeder et al., 2004). Samples were shipped to 

the German Primate Center in Germany every year and subsequently stored at −20 °C. 

We extracted DNA from fecal samples using the First-DNA all tissue kit (Genial®). Based on the 

methodologies used in Patzelt et al. (2014), we characterized genetic variation in Guinea baboons by 

assessing the individual allele variation on 24 polymorphic autosomal microsatellite markers. The 24 

markers were amplified in 5 different multiplex systems (mean number of  loci per multiplex, 4.80 ± 

1.10 SD) using the Multiplex PCR Kit (QIAGEN) and fluorescent-labelled primers in concentrations 

ranging from 0.05 to 0.5 µM. PCR cycling conditions included a hot start polymerase activation step 

at 95°C for 15min, followed by 40 cycles with denaturation at 94°C for 30s, primer annealing at 57°C 

for 40s, elongation at 72°C for 40s, and a single final elongation step at 72°C for 30min. Detailed in-

formation regarding loci identities, primer sequences and concentrations, and fluorescent dyes are 

reported in supplementary table S4.5. PCR products were separated and detected through capillary 

gel electrophoresis on an ABI 3130xL Genetic Analyzer (16 capillary sequencer, Applied Biosys-

tems®, USA). Microsatellite allele sizes were evaluated in comparison with the GeneScanTM -400HD 

size standard using Gene Mapper 5 (Applied Biosystems®). Allele calling for each locus was repeated 

until 5 completely consistent calls were achieved. To avoid contamination, every extraction, poly-
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merase chain reaction (PCR) and sequencing was performed in separate rooms and monitored with 

negative controls. 

When tissue samples were available from previous studies (see Patzelt et al., 2014), at least one fecal 

sample was genotyped in order to cross-check individual identity. For all other individuals (except off-

spring) analyses were conducted on at least two independent fecal samples to rule out identification 

errors during sample collection (mean number of  fecal samples: 3 per adolescent/adult male; 2.8 per 

subadult/adult female). As only one sample was collected for some offspring  (mean number of  fecal 

samples: 2.53), these samples were validated using a PCR-based sexing assay to confirm the reported 

sex (see supplementary appendix 4.4). All sexing assessments were in agreement with the known sex 

of  the offspring. 

We calculated descriptive statistics for all 24 markers in both genotype datasets for male–male relat-

edness and paternity analyses. We estimated FIS, expected and observed heterozygosity, and tested for 

Hardy-Weinberg equilibrium (HWE) for all loci using the R package PopGenReport (version 3.0.0; 

Gruber and Adamack, 2015; R version 3.4.4 and RStudio version 1.1.456). We tested for the presence 

of  null alleles using MICRO-CHECKER (version 2.2.3; Van Oosterhout et al., 2004). All loci were 

polymorphic with allele numbers averaging 3.5 (range=2-6) and 3.8 (range=2-7) for the male–male 

relatedness and paternity dataset, respectively. One locus (D1s548) showed signs of  null alleles in 

both datasets and significant deviations from HWE in the relatedness dataset (see supplementary ta-

bles S4.6a and S4.6b). Therefore, this locus was excluded and a total of  23 loci were included in the 

following relatedness and paternity analyses. All details regarding descriptive statistics of  genetic 

markers can be found in the supplementary tables S4.6a and S4.6b. 

Relatedness estimation 

 We estimated dyadic relatedness for all 24 adolescent and adult males belonging to parties 6 and 9 for 

a total of  134 within-party dyads. As relatedness estimators are influenced by the allele-frequency dis-

tributions and the true relationships of  the individuals included in the dataset (Blouin, 2003; Pew et 

al., 2015), we used the R package “related” (Pew et al., 2015; also see Wang, 2011) to choose the best 

estimator. This package provides calculations and comparisons of  five non-likelihood (Queller and 

Goodnight, 1989; Li et al., 1993; Ritland, 1996; Lynch and Ritland, 1999; Wang, 2002) and two likeli-

hood estimators (Milligan, 2003; Wang, 2007). Based on the characteristics of  the molecular markers 

of  our dataset, we simulated 100 pairs of  individuals each of  known relatedness categories (parent-

offspring, full-sibling, half-sibling, and unrelated). We then compared the observed and expected re-

latedness values for each of  the seven relatedness estimators using Spearman’s correlation. The Wang 

estimator (Wang, 2002) showed the best performance with the highest correlation coefficient, and 

was therefore selected as the best relatedness estimator in our male–male relatedness analysis. This 

estimator may range from -1 to 1 and should be interpreted as a correlation as originally conceived by 
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Wright (1921, 1922), where negative estimates indicate pairs that are less related than average (Wang, 

2017). Relatedness estimates for our male–male within party dyads averaged 0.063 (SD±0.237) and 

ranged from -0.558 to 0.691 (median=0.048). Note that pedigree reconstruction analysis was not per-

formed, as our genetic database is too recent to provide information on mother-offspring pairs for 

our adolescent and adult individuals. 

Paternity analysis 

We estimated paternity for all 19 sampled offspring born during 2014 and 2015 in our two parties 

(see table supplementary table S4.10) and assigned paternity using a likelihood approach with Cervus 

(version 3.0.7; Kalinowski et al., 2007). For all analyses we first ran a simulated parentage analysis with 

10000 offspring followed by the actual parentage analysis. Confidence levels of  parent assignments 

were set to 95% (“strict” criterion; while the “relaxed criterion” was 80%). The following parameters 

were used in all calculations: proportion of  potential sires sampled 0.95, proportion of  typed loci 

1.00, and proportion of  mistyped loci 0.01. All 27 females belonging to our two parties were included 

in this analysis. Transfer of  mothers to another primary male’s unit between time of  conception and 

birth did not occur during the study period (see supplementary table S4.10). Identities of  mothers 

were known from field observations, but we further checked all mother/offspring pairs with a mater-

nity likelihood analysis. All known mothers were identified as candidates with 0 mismatches. There-

fore, we ran a paternity analysis with a trio likelihood approach where the identity of  the mother was 

known in order to determine the most likely father. All adolescent and adult males of  our two parties 

were included as potential sires in this analysis. We included additional males from another known 

party of  the same gang (party 4) because all potential sires were excluded for one offspring from par-

ty 9. One of  these sires was identified as the most likely father with 0 mismatches. A male was con-

sidered to have sired an offspring when he was assigned as the most likely father, had 0 to maximum 

1 mismatched alleles, and the confidence level for the assignments was more than 95%, according to 

the “strict” criterion (see supplementary table S4.10). 

Appendix 4.4 Sex-determination protocol 

For sexing, two primers were used to amplify a region of  Dead Box gene (F: GGA CGR ACT CTA 

GAT CGG, R: GTN CAG ATC TAR GAG GAA). The primers amplify one fragment in the female 

and two fragments in the male. Sexing-PCR was carried out in a 20µl volume using the QIAGEN 

Multiplex PCR Kit. Reactions contained 10µl of  2x QIAGEN Multiplex PCR Master Mix, 0.15µl BT, 

1µl of  each primer (10pM) and 0,5-5µl DNA. Water was added as needed to reach the final volume. 

PCR conditions comprised a pre-denaturing and polymerase activation step at 94°C for 15min, fol-

lowed by 40-50 cycles at 94°C for 30sec, annealing at 58°C for 30sec and 72°C for 30sec. A final ex-

tension step was carried out at 72°C for 5 minutes. Negative controls (only water added) and positive 

controls (high quality DNA of  known male and female sex) were carried along for all amplifications. 
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Sex determination was done by visual inspection of  the PCR products on a 2.5% Agarose gel stained 

with ethidium bromide. 

Appendix 4.5 Data analysis and modeling supplementary information 

All statistical analyses and visualizations were conducted using the R environment (version 3.4.4, R 

Development Core Team, 2018) in the RStudio interface (version 1.1.456, RStudio Team, 2018). We 

ran generalized linear mixed models using the R package “lme4” (Bates et al., 2015). 

All covariates were z-transformed to a mean of  zero and a standard deviation of  one prior to fitting 

the models, to make the estimate comparison easier to interpret (Schielzeth, 2010). Information about 

original means and standard deviations can be found in the tables below. In the Gaussian models 4a, 

4b and 6 the response was transformed; details about the transformation type and the means and 

standard deviations of  both original and transformed value can be found in the tables below. The use 

of  non-default lmer/glmer optimizers is mentioned for each model when relevant (see details below). 

In all relevant models the maximal random-effect structure including all possible random slope com-

ponents was used to reduce type I error rates (Barr et al., 2013; see details for each model below). 

While we initially included correlations between random intercept and random slopes in all relevant 

models, these were either “unidentifiable” (i.e. absolute correlation parameter ∼1) or the model did 

not converge. As model performance are similar between models with “fully-maximal” structure and 

models without random correlations and the latter were found to not severely compromise type I 

error rates (Barr et al., 2013), all our final models did not include random correlations. 

Before performing inference all models were validated with several diagnostic checks. We assessed the 

assumption of  normality for random effects components by visually inspecting each random inter-

cept and slope histogram. The stability of  each model was determined by comparing the estimates 

obtained from running models with the levels of  the random effects excluded one at a time with the 

ones of  the full model based on the full dataset (Quinn and Keough, 2002). Variance inflation factors 

for each predictor were calculated using the “vif ” function of  the package car (Fox and Weisberg, 

2011; Field et al., 2012) on reduced general linear models with all random effect structures and opti-

mizers excluded. The overall average VIF value for all our models was 1.363 with a standard deviation 

of  0.290 (range=1.001-1.726). As VIF values below 5 indicate no concern for multicollinearity (Bow-

erman and O’connell, 1990; Wooldridge, 2013), we ruled out collinearity for all our models. For all 

gaussian models the assumption of  residual normality and homogeneity was assessed by visually in-

specting histograms and qq-plots of  residual distribution and scatterplots of  residuals plotted against 

fitted values (Quinn and Keough, 2002). No obvious deviation from these assumptions was recorded. 

To check for potential type I errors due to overdispersion, we checked the dispersion parameter for 

all count models (Young et al., 1999; Crawley, 2002). All final full models were not overdispersed (see 

tables below for details). 
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For all models with multiple predictors of  interest (see details for each model below), we first deter-

mined the significance of  the full model (also including all predictors of  interest) against a null model 

comprising only the control predictors, the random factors (random intercept and random slope), and 

the intercept. 

P-values were obtained from the likelihood ratio test performed with the R function “drop1” with 

argument “test” set to “chisq” (Barr et al., 2013). Effect sizes were calculated with the “summ” func-

tion of  the “jtools” R package (version 1.1.1; Jacob and Long, 2018). 

Figure S4.1 

  

Plot illustrating the results of  the changepoint analysis performed on the male–male approach rate per hour. Three main changepoint locations 
were identified (at dyad numbers 34, 77, and 121). We used the largest changepoint (first point at dyad number 34) as a threshold to identify 
associated and non-associated male–male dyads (see supplementary appendix 4.1).
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Figure S4.2 

  

Figure S4.3 
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Per stable period: male rates of  ad libitum interactions (a), focal interactions (b), and proportion of  time spent in 1 m proximity (c) with the 
primary male’s females by male–male association type (males associated vs. not associated with primary males). Associated males interacted at 
significantly higher rates and spent significantly higher proportions of  time in close spatial association with the primary male’s associated 
females (see supplementary appendix 4.1). Points depict each male for every stable period (total n=24; 34 stable periods). Boxplots depict the 
median, the lower and upper quartiles (25% and 75%), and the range excluding outliers (vertical line). Short horizontal whiskers within each 
box depict the bootstrapped 95% confidence intervals (number of  females associated with the unit and party manually dummy coded and 
centered).
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Distribution of  the dyadic composite sociality index (DSI) calculated for year 2014 (left) and 2015 (right) for all male–male within-party dyads. 
This index measures the strength of  dyadic male–male affiliative social relationships compared to the average of  the group. Here DSI values 
from both study parties are pooled together (2014: mean=1, median=0.115, range=0.000-12.785; 2015: mean=1, median=0.074, 
range=0.000-14.732; see supplementary table S4.7a for more details).
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 Figure S4.4 
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Randomized Elo-rating scores for male Guinea baboons of  our two study parties (party 6, n=14, and party9, n=10, in the upper and lower plot 
respectively). Each point represents the average rElo-rating score per male with the respective 95% score range (i.e. within 2.5% and 97.5% 
quantiles). Note that the y axis representing dominance rank is reversed, with lower ranking individuals (i.e. rank=1) occurring at the top and 
higher ranking individuals (i.e. rank=14 and 10 respectively) at the bottom. Also see supplementary appendix 4.2a and 4.2b.
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Figure S4.5 
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Hierarchy shape plots for male Guinea baboons of  our two study parties (party 6, n=14, and party9, n=10, in the upper and lower plot 
respectively). The plots illustrate the probability of  higher ranking individuals winning dependent on the difference in rank between individuals. 
Also see supplementary appendix 4.2a and 4.2b.
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Figure S4.6 

Supplementary table S4.1a Average group composition of  parties 6 and 9 during 2014 and 2015 

Age/Sex Category Party 6 Party 9

Adult males 8 (range: 7-9) 5.5 (range: 5-6)

Adult females 9 (range: 9-9) 11.5 (range: 8-15)

Adolescent males 4.5 (range: 4-5) 3.5 (range: 3-4)

Subadult females 0.5 (range: 0-1) 2.5 (range: 1-4)

Middle/small juveniles 16 (range: 14-18) 15 (range: 13-17)

Yearlings/infants 6.5 (range: 5-8) 6.5 (range: 4-9)
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Average dyadic male–male relatedness estimates (wang) by relationship 
type 2 (Primary and their secondary males versus other male–male 
dyads, i.e. primary/secondary males versus Non-primary/secondary 
males). Dyads composed of  primary males and their associated 
secondary males had significantly higher average relatedness estimates 
than all other male–male dyads. Points depict within-party male–male 
dyads (134 dyads, 24 males). Boxplots depict the median, the lower 
and upper quartiles (25% and 75%), and the range excluding outliers 
(vertical line). Short horizontal whiskers within each box depict the 
bootstrapped 95% confidence intervals (party manually dummy coded 
and centered).
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Supplementary table S4.1b Average group composition of  parties 6 and 9 during 2016 and 
2017 (this period was only used for the relationship stability analysis) 

Supplementary table S4.2a Table of  sex/age category definitions 

Supplementary table S4.2b Table of  tooth status category definitions (from Kitchen et al., 2003) 

Age/Sex Category Party 6 Party 9

Adult males 10 (range: 10-10) 7 (range: 7-7)

Adult females 8.5 (range: 8-9) 14.5 (range: 14-15)

Adolescent males 2 (range: 2-2) 3.5 (range: 3-4)

Subadult females 1.5 (range: 1-2) 1 (range: 1-1)

Middle/small juveniles 13.5 (range: 7-20) 11.5 (range: 11-12)

Yearlings/infants 5.5 (range: 5-6) 10 (range: 9-11)

“Large juvenile male”

When juvenile males reach a bigger size than mature adult 
females but smaller than adult males (closer in size to adult 
females). They may experience testicular enlargement. Canines 
extending beyond tooth row and mantle starting to develop 
marks the end of  this period.

“Small subadult male”

Not yet attained full body size. Secondary sexual characteristics 
are partially but not fully developed (mantle, canine ridges, long 
canine teeth). The scrotum is enlarged. They are visibly bigger 
than adult females and large juvenile males, but still have a lanky 
appearance and are smaller than adult males.

“Large subadult male”

Begins when individual no longer has a lanky appearance but 
has not yet attained full body size or muscle mass. Body shape is 
more similar to the one of  adult than large juvenile or small 
subadult males.

“Early-prime adult male”

Secondary sexual characteristics and body size fully developed. 
The coat is long and shiny. The ischial callosities become square 
and wide and the butt may take on reddish color. Teeth in 
category 5.

“Mid-prime adult male”
The mantle may show some breaks. The teeth start decaying 
(categories 3 or 4).

“Late-prime adult male”
The mantle starts to thin out. The male has less muscle mass. 
Teeth in categories 2 or 3.

“Old adult male”
The mantle thins out visibly. The male has lost most of  his 
muscle mass. Teeth in categories 1 or 2.

 

A
do

le
sc

en
t

 

A
du

lt

Tooth Category Definition

5 White teeth with sharp unchipped points.

4
White teeth or slight yellowing on one or two teeth, some chipping or 
wear on one tooth.

3
Some discoloration on several teeth, breaks chipping or tooth wear very 
evident.

2 Extensive discoloration, one or both canines missing or broken.

1
Extensive discoloration, one or both canines missing or worn to the level 
of  premolars and substantial damage to other teeth.
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Supplementary table S4.3 Yearly data collection details from 2014 to 2017 

Supplementary table S4.4a Descriptive statistics for all behavioral components included in 
the DSI calculation for each time period. Average, standard deviation, minimum and maximum 
are reported for each behavioral component (mean ± SD (min-max)). Dyadic behavioral rates per 
hour were calculated by dividing the count of  dyadic interactions by the dyadic focal time in hours, 
while dyadic proportions of  time spent performing a certain behavior were calculated by dividing the 
dyadic durations of  the behavior by the dyadic focal time. 

Supplementary table S4.4b Results from the Kendall’s tau correlation test between all 
behavioral components included in the DSI calculation. Average, standard deviation, minimum, 
maximum, and relative p-value of  the Tau coefficients calculated from correlations of  all possible 
component combinations per period. 

Category 2014 2015 2016 2017

Number of  months 9 10 6 9

Focal protocols  
(duration in hours)

318 638 175 243

Focal protocols (number) 994 1967 539 744

Proximity scans (number) 1970 3941 1181 1401

Behavioral component 2014 2015 2014 and 2015

Grooming rate (per h) 0.047 ± 0.123  
(0.000-0.787)

0.043 ± 0.145  
(0.000-1.338)

0.045 ± 0.130  
(0.000-0.993)

Grooming proportion of  time
0.002 ± 0.005  
(0.000-0.042)

0.001 ± 0.004  
(0.000-0.036)

0.002 ± 0.005  
(0.000-0.042)

Contact-sit rate (per h)
0.035 ± 0.075  
(0.000-0.409)

0.061 ± 0.128  
(0.000-0.847)

0.055 ± 0.116  
(0.000-0.594)

Contact-sit proportion of  time 0.001 ± 0.002  
(0.000-0.015)

0.001 ± 0.003  
(0.000-0.020)

0.001 ± 0.002  
(0.000-0.014)

Approach (within 1m) rate (per h)
0.160 ± 0.275  
(0.000-1.465)

0.383 ± 0.571  
(0.000-2.619)

0.318 ± 0.482  
(0.000-2.263)

Kendall’s tau correlation test 2014 2015 2014 and 2015

Tau coefficient

Average 0.62 0.69 0.69

Standard deviation 0.18 0.15 0.14

Minimum 0.51 0.50 0.56

Maximum 0.97 0.98 0.97

P-value All < 0.001 All < 0.001 All < 0.001
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Supplementary table S4.5 List of  24 microsatellite loci used in this study: multiplex-PCR, loci 
identities, primer sequences, fluorescence dye, and primer concentration 

Multiple
x PCR Locus ID Primer 5’-3’ Fluoresc.

Primer  
Conc. (uM)

M1 D6S264F AGC TGA CTT TAC GCT GTT C Fam 0.05

57°C D6S264R TTT TCC ATG CCC TTC TAT CA Fam 0.05

D7S503F ATG ACT TGG AGT AAT GGG  AG Tamra 0.15

D7S503R GTC CCT GAA AAC CTT TAA TCA Tamra 0.15

D12S375F TTG TTG AGG GTC TTT CTC CA Fam 0.09

D12S375R TCT TCT TAT TTG GAA AAG TAA C Fam 0.09

D3S1766F ACC ACA TGA GCC AAT TCT GT Tamra 0.05

D3S1766R ACC CAA TTA TGG TGT TGT TAC Tamra 0.05

M2 D14S306F TCA GCT ACA TCC AAA TTA GGT Tamra 0.05

57°C D14S306R TGA CAA AGA AAC TAA AAT GTC C Tamra 0.05

D1S533F TAT CCC CCC CAA AAA TAT ATA Fam 0.05

D1S533R TTG CTA ACC AAA ATA ACA ATG GG Fam 0.05

D2S1329F TTG TAG AAC CCT CTC AAA TAT Tamra 0.5

D2S1329R GAA ACT TCC ACC CTG GGT T Tamra 0.5

D2S1326F AGA CAG TCA AGA ATA ACT GC Hex 0.05

D2S1326R CTG TGA CCC AAA AGC CGA Hex 0.05

M3 D10S611F TAT ACA GGA AAC TGT GTA GTG Tamra 0.2

57°C D10S611R CTA TAT TTA TGT GTG TGG ATG Tamra 0.2

D8S1106F TTG TTT ACC CCT GCA CCA C Hex 0.2

D8S1106R TTC TCA GAA TTG CTC ATA GTG Hex 0.2

D17S791F ATG TTC TCC AGT TAT TCC CC Tamra 0.5

D17S791R GCT GGT CCT TTG GAA GAG T Tamra 0.5

D6S501F GCT GGA AAC TGA TAA GGG C Hex 0.2

D6S501R GCC ACC CTG GCT AAG TTA Hex 0.2

D17S1290F GAC AAC AGA GCA AGA CTG T Fam 0.25

D17S1290R AGA AGC AGT TAA ATG GCC AAA Fam 0.25

D6S311F ATG TCC TCA TTT GTG TTG TG Tamra 0.3

D6S311R GAT TCA GAG CCC AGG AAG A Tamra 0.3

M4 D5S1457F TAG GTT CTT GGC ATG TCT GT Tamra 0.2

57°C D5S1457R TGC TTG GCA TAC TTC AGG G Tamra 0.2

D8S505F CTA AAG TGA ACC CAA ACC TAA Fam 0.15

D8S505R AGT GCT AAG TCC CAG ACC A Fam 0.15
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Supplementary table S4.6a Characteristics of  the 24 microsatellite loci used to estimate 
male–male dyadic relatedness (calculated using the genotypes of  all males of  parties 6 and 9; 
n=24) 

D10S1432F CAG TGG ACA CCA AAC ACA AT Tamra 0.4

D10S1432R TAG GTT ATC TAA ATA GTG GAT TT Tamra 0.4

D5S820F ATT GCA TGG CAA CTC TTC TC Fam 0.3

D5S820R GTT CTT CAG AGA AAC AGA AC Fam 0.3

D3S1768F GGT TGC TGC CAA AGA TTA GA Hex 0.15

D3S1768R CAC TGT AAT TTG CTG TTG GAT Hex 0.15

D7S2204F TCA TGA CAA AAC AGA AAA TAA GT Fam 0.4

D7S2204R AGT AAA TGG AAT TGC TTG TTA C Fam 0.4

M5 D1S207F CAC TTC TCC TTG AAT CGC TT Hex 0.1

57°C D1S207R GCA AGT CCT GTT CCA AGT C Hex 0.1

D4S243F TCA GTC TCT CTT TCT CCT TG Fam 0.15

D4S243R TAG GAG CCT GAG GTC CTG Fam 0.15

D1S548F GAA CTC ATT GGC AAA AGG AA Hex 0.15

D1S548R GCC TCT TTG TTG CAG TGA TT Hex 0.15

D21S1442F CTC CTC CCC ACT GCA GAT Fam 0.5

D21S1442R TCT CCA GAA TCA CAT GAG C Fam 0.5

Loci Alleles Inbree- 
ding Heterozygosity NAFE Null 

alleles 
Pres- 
ence

Locus 
ID

Locus 
No.

Allele 
range

No. 
All- 
eles

FIS He Ho HWE 
*

Brook 
-field

Chakra- 
borty

D6s264 Locus1 94-98 3 0.045 0.510 0.500 0.648 0.006 0.010 no

D7s503 Locus2 152-166 5 0.043 0.765 0.708 0.501 0.032 0.038 no

D12s375 Locus3 165-181 5 -0.148 0.702 0.792 0.629 -0.053 -0.060 no

D3s1766 Locus4 195-203 2 -0.092 0.187 0.208 1.000 -0.018 -0.055 no

D14s306 Locus5 169-177 3 0.060 0.520 0.500 1.000 0.013 0.020 no

D1s533 Locus6 191-199 3 0.071 0.602 0.583 0.432 0.011 0.015 no

D2s1329 Locus7 212-224 4 -0.006 0.573 0.583 0.039 -0.007 -0.009 no

D2s1326 Locus8 251-255 2 0.005 0.413 0.417 1.000 -0.003 -0.004 no

D10s611 Locus9 133-141 3 -0.085 0.555 0.583 0.057 -0.018 -0.025 no

D8s1106 Locus10 148-156 3 -0.178 0.344 0.417 1.000 -0.054 -0.096 no
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Supplementary table S4.6b Characteristics of  the 24 microsatellite loci used to estimate 
paternity for 19 offspring (calculated using the genotypes of  all males, females and offspring 
included in the analysis; n=74) 

D17s791 Locus11 166-170 3 0.003 0.617 0.625 0.093 -0.005 -0.006 no

D6s501 Locus12 171-188 5 -0.190 0.653 0.792 0.212 -0.084 -0.096 no

D17s1290 Locus13 195-203 3 -0.001 0.369 0.375 1.000 -0.004 -0.008 no

D6s311 Locus14 228-230 2 -0.166 0.430 0.458 1.000 -0.020 -0.032 no

D5s1457 Locus15 128-132 2 -0.269 0.305 0.375 0.557 -0.054 -0.103 no

D8s505 Locus16 147-151 2 -0.095 0.153 0.167 1.000 -0.012 -0.044 no

D10s1432 Locus17 158-170 6 0.022 0.768 0.708 0.199 0.034 0.041 no

D5s820 Locus18 179-199 6 0.108 0.771 0.708 0.903 0.035 0.042 no

D3s1768 Locus19 197-209 3 -0.004 0.617 0.625 0.724 -0.005 -0.006 no

D7s2204 Locus20 232-244 4 0.017 0.689 0.667 0.029 0.013 0.017 no

D1s207 Locus21 133-135 2 -0.441 0.457 0.625 0.184 -0.115 -0.155 no

D4s243 Locus22 151-163 4 -0.201 0.593 0.708 0.084 -0.073 -0.089 no

D1s548 Locus23 192-208 5 0.167 0.667 0.458 0.001 0.125 0.185 yes

D21s1142 Locus24 230-242 4 -0.199 0.655 0.667 0.281 -0.007 -0.009 no

Mean - 3.5 -0.064 0.538 0.552 - -0.011 -0.018 -

SD - 1.3 0.139 0.175 0.168 - 0.048 0.067 -

Min - 2.0 -0.441 0.153 0.167 - -0.115 -0.155 -

Max - 6.0 0.167 0.771 0.792 - 0.125 0.185 -
FIS= inbreeding coefficient according to Nei (1987); He= expected heterozygosity; Ho= observed heterozygosity; HWE= Hardy-Weinberg 
equilibrium (* note that p-value was corrected for multiple testing with the Bonferroni adjustment, α = (0.05/ 24) = 0.00208); NAFE= null 
alleles frequencies estimators calculated based on Brookfield (1996) and Chakraborty et al. (1992) and presence of  null alleles. (see 
supplementary appendix 4.3 for details about these calculations).

Loci Alleles Inbree- 
ding Heterozygosity NAFE Null 

alleles  
Pres- 
ence

Locus 
 ID

Locus 
 No.

Allele 
range

No. 
All- 
eles

FIS He Ho HWE 
*

Brook- 
field

Chakra- 
borty

D6s264 Locus1 94-98 3 0.012 0.524 0.521 0.799 0.005 0.008 no

D7s503 Locus2 152-166 5 -0.033 0.755 0.732 0.458 0.009 0.011 no

D12s375 Locus3 165-181 5 -0.058 0.715 0.761 0.902 -0.031 -0.035 no

D3s1766 Locus4 195-203 2 -0.076 0.262 0.282 1.000 -0.017 -0.039 no
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D14s306 Locus5 169-177 3 0.005 0.533 0.535 0.896 -0.006 -0.009 no

D1s533 Locus6 191-199 3 0.063 0.563 0.535 0.744 0.013 0.019 no

D2s1329 Locus7 212-224 4 0.030 0.560 0.549 0.125 -0.003 -0.004 no

D2s1326 Locus8 251-255 3 -0.036 0.396 0.408 0.348 -0.010 -0.017 no

D10s611 Locus9 133-141 3 -0.189 0.561 0.620 0.008 -0.038 -0.050 no

D8s1106 Locus10 148-156 3 -0.093 0.411 0.437 1.000 -0.023 -0.038 no

D17s791 Locus11 166-170 3 -0.049 0.586 0.606 0.061 -0.007 -0.009 no

D6s501 Locus12 171-188 5 -0.182 0.655 0.775 0.025 -0.067 -0.078 no

D17s1290 Locus13 195-203 4 -0.086 0.428 0.465 0.939 -0.013 -0.020 no

D6s311 Locus14 228-230 2 -0.185 0.371 0.408 0.554 -0.017 -0.030 no

D5s1457 Locus15 128-132 3 -0.231 0.395 0.479 0.107 -0.063 -0.100 no

D8s505 Locus16 147-151 2 -0.110 0.290 0.324 0.654 -0.031 -0.062 no

D10s1432 Locus17 158-170 7 -0.041 0.764 0.746 0.585 0.004 0.004 no

D5s820 Locus18 179-199 6 0.023 0.770 0.746 0.779 0.007 0.008 no

D3s1768 Locus19 197-209 4 0.098 0.550 0.493 0.547 0.047 0.072 no

D7s2204 Locus20 232-244 5 -0.016 0.686 0.676 0.165 0.007 0.009 no

D1s207 Locus21 133-135 2 -0.087 0.464 0.479 1.000 -0.016 -0.024 no

D4s243 Locus22 151-163 5 -0.193 0.585 0.676 0.012 -0.044 -0.056 no

D1s548 Locus23 192-208 5 0.052 0.710 0.592 0.015 0.064 0.083 yes

D21s1142 Locus24 230-242 5 -0.179 0.659 0.690 0.277 -0.011 -0.013 no

Mean - 3.8 -0.065 0.550 0.564 - -0.010 -0.016 -

SD - 1.4 0.092 0.148 0.141 - 0.029 0.041 -

Min - 2.0 -0.231 0.262 0.282 - -0.067 -0.100 -

Max - 7.0 0.098 0.770 0.775 - 0.064 0.083 -
FIS= inbreeding coefficient according to Nei (1987); He= expected heterozygosity; Ho= observed heterozygosity; HWE= Hardy-Weinberg 
equilibrium (* note that p-value was corrected for multiple testing with the Bonferroni adjustment, α = (0.05/ 24) = 0.00208); NAFE= null 
alleles frequencies estimators calculated based on Brookfield (1996) and Chakraborty et al. (1992) and presence of  null alleles. (see 
supplementary appendix 4.3 for details about these calculations).
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Supplementary table S4.7a Descriptive statistics for DSI indices for each time period. 

Supplementary table S4.7b Descriptive statistics for bond strength, number of  friends and  
associated secondary males for all males (n=24). Average, standard deviation, minimum and 
maximum are reported for each behavioral component (mean ± SD (min-max)). Note that number 
of  associated secondary males was calculated considering only primary males (see definition in main 
manuscript) and using averages weighted by the duration of  the association in days. 

Supplementary table S4.8a Mean randomized Elo-rating scores (rElo) of  14 male Guinea 
baboons of  party 6 during the study period. 

Supplementary table S4.8b Mean randomized Elo-rating scores (rElo) of  10 male Guinea 
baboons of  party 9 during the study period. 

2014 2015 2014 and 2015

DSI range 0.000 - 12.785 0.000 - 14.732 0.000 - 13.437

DSI median 0.115 0.074 0.102

DSI value of  top 10% 3.605 3.232 3.539

Total number of  dyads 122 114 134

Number of  dyads above average (DSI > 1) 26 26 30

Percentage of  dyads above average (DSI > 1) 21.3% 22.8% 22.4%

2014 2015 2014 and 2015

Bond strength (sum of  top 3 DSI) 9.40 ± 5.08 
(1.26-19.37)

8.79 ± 5.26 
(0.67-20.27)

9.30 ± 4.56 
(0.97-16.89)

Number of  friends 2.26 ± 1.29  
(0-4)

2.36 ± 2.04  
(0-6)

2.50 ± 1.93  
(0-6)

Number of  associated secondary males 1.67 ± 1.38 
(0.00-4.00)

1.70 ± 1.56 
(0.00-4.25)

1.65 ± 1.47 
(0.00-4.08)

Male ID MLK JKY WLD RDI TBS RBT BEN ASN

rElo 2.141 3.567 3.711 4.128 4.986 5.116 6.932 7.423

Male ID ASN LOU MSA IND RGR CSC CHR

rElo 7.423 8.933 9.232 11.022 11.377 12.732 13.700

Male ID DRK WNT SNE AND MRX BAA RCC HOK EDM VNC

rElo 1.230 3.136 3.679 3.988 4.256 6.131 6.974 7.648 8.836 9.122
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Supplementary table S4.9 Results of  the reproductive skew analysis for parties 6 and 9. 
Results from the reproductive skew analysis conducted with SKEW CALCULATOR 2013 (10000 
permutations). We investigated reproductive skew at the party level using all offspring born in 2014 
and 2015 with assigned paternity within-party (n=18) and calculated the Binomial Skew Index (B 
Obs.), its confidence intervals (0.25% CI and 0.95% CI), the maximum possible B value (B-
monopoly: reproduction monopolized by one individual), the minimum possible B value (B-equal: 
equal sharing among all individuals), and the respective p-values (P). N indicates group size and Nb 
the number of  individuals that gained at least one reproductive benefit. Values for each party and 
mean values are reported. 

Supplementary table S4.10 Results of  the paternity analysis for all offspring born during 2014 
and 2015 in party 6 and 9. Results from the paternity analysis conducted with Cervus 3.0. The 
offspring, mother and most likely father identity are reported in the table per each study party. Date 
(month and year) of  conception, birth and identity of  the primary male at the time of  conception are 
also reported. Transfer of  mother to another primary male’s unit between time of  conception and 
birth never occurred (see “Unit transfer during conception/pregnancy”). Nmis indicates number of  
mismatches; Trio LOD indicates the scores of  the logarithm of  the likelihood ratio; trio Delta is 
defined as the difference in LOD scores between the most likely and the second most likely candidate 
father. The confidence level of  the Cervus paternity assignments was set to 95% (“strict” criterion). 
An asterisk in the confidence level column indicates a statistical confidence on paternity assignment 
higher than 95%. An asterisk in the most likely father column indicates fathers that were not the 
primary male at the time of  conception. In particular, one asterisk indicate a father belonging to the 
same party and two asterisks a father belonging to a different party of  the same gang. 

Party N Nb B-equal 0.25% CI B Obs. 0.95% CI B-monopoly P

9 9 6 -0.087 -0.087 -0.043 0.072 0.777 0.856

6 11 5 -0.112 -0.112 0.028 0.246 0.778 0.273

Means 10 5.5 / / -0.010 / / 0.545

Party
Off- 

spring

Time 
of   

birth

Time  
of   

Conce- 
ption

Mother

Off- 
spring  
sam- 
pling

Most-  
likely  
father

Primary  
male at  
time of   

conception

Unit  
transfer  
during  

conception
/pregnancy

Nmis
Trio  
LOD

Trio  
Delta

Conf- 
level

6 CRS Jan-14 Aug-13 EKA Yes RDI* JKY No 0 1.29E+15 1.29E+15 95%*

9 NOA Mar-14 Oct-13 IGR Yes SNE SNE No 0 9.10E+14 8.50E+14 95%*

6 QNN Apr-14 Nov-13 XNA Yes MLK MLK No 1 8.69E+14 8.69E+14 95%*

6 LNO Jun-14 Jan-14 MCY Yes JKY JKY No 0 9.17E+14 9.17E+14 95%*

6 PTC Jul-14 Feb-14 LCY Yes MLK MLK No 0 8.52E+14 8.52E+14 95%*

9 PCO Jul-14 Mar-14 AMT Yes BAA BAA No 0 1.19E+15 1.19E+15 95%*

9 SPT Aug-14 Apr-14 SND Yes DRK DRK No 0 9.36E+14 9.36E+14 95%*

9 HIK Sep-14 Mar-14 GNR Yes AND AND No 0 7.64E+14 7.64E+14 95%*

9 KTE Oct-14 Apr-14 TBY Yes SNE SNE No 1 4.80E+14 4.80E+14 95%*

6 SRY Jan-15 Sep-14 DSL Yes RBT RBT No 0 1.12E+15 9.91E+14 95%*

9 KKI Feb-15 Sep-14 TAR Yes DRK DRK No 0 6.53E+14 6.53E+14 95%*

9 LLU Mar-15 Sep-14 VTR Yes WNT WNT No 0 1.30E+15 1.30E+15 95%*

9 SBY Apr-15 Nov-14 KIR Yes WNT WNT No 0 1.20E+15 1.20E+15 95%*

9 DJO May-15 Nov-15 RXN Yes NDR** DRK No 0 7.27E+14 7.27E+14 95%*
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Supplementary table S4.11a Model 2a - Kinship and male sociality - Relationship type 1: 
friend versus non-friend dyads. Model table of  male–male relationship type 1’s (friend vs. non-
friend dyads) effect on male–male dyadic relatedness estimates 

Supplementary table S4.11b Model 2b - Kinship and male sociality - Relationship type 2: 
Primary and their secondary males versus other male–male dyads (i.e. Non-
PrimarySecondary) Model table of  male–male relationship type 2’s (Primary and their secondary 
males vs. other male–male dyads) effects on male–male dyadic relatedness estimates. 

6 BIC May-15 Jan-15 EML Yes RBT RBT No 0 9.78E+14 4.06E+14 95%*

6 FIN May-15 Nov-14 SLY Yes MLK MLK No 0 1.04E+15 9.93E+14 95%*

6 MWL Jun-15 Feb-15 LEA Yes WLD WLD No 0 1.04E+15 1.04E+15 95%*

9 THL Aug-15 Mar-15 MMI Yes MRX MRX No 0 9.58E+14 3.64E+14 95%*

9 LEO Dec-15 Jul-15 DPH Yes AND AND No 0 6.90E+14 6.90E+14 95%*

6 EMLi Sep-14 Mar-14 EML No / RBT No / / / /

9 OLV Oct-14 May-14 YKO No / MRX No / / / /

9 GRM May-15 Jan-15 ELI No / MRX No / / / /

9 BMB Jul-15 Jan-15 IGR No / AND No / / / /

6 ATAi Jul-15 Feb-15 ATA No / TBS No / / / /

Model formula: lmer(Relatedness _wang ~ RelationshipType1 + Party +  
(1|Male1_ID) + (1|Male2_ID), data=d, REML=F)

Estimate Std. Error 2.5% CI 97.5 % CI !2 df Pr(Chi)

Intercept 0.216 0.044 0.127 0.303 (2) (2) (2)

RelationshipType1_Non-
Friends(1) -0.210 0.045 -0.300 -0.127 19.193 1 <0.001

Party 9(1) 0.025 0.048 -0.073 0.115 0.268 1 0.604
Estimates calculated from the generalized linear mixed model with standard errors. Models examine the effects of  predictors indicated on the 
left on male–male dyadic relatedness estimates (main predictors above the dotted line; control predictors below). CI = confidence interval.
The sample for this model consisted of: number of  obs: 134; groups: Male1_ID, 22; Male2_ID, 22
(1) RelationshipType1 was dummy coded with “NonFriends” being the reference category. Party was dummy coded with Party 6 being the 
reference category.
(2) Not shown due to very limited interpretability.

Model formula:  
Lmer(Relatedness_wang ~ RelationshipType2 + Party +  
                   (1|Male1_ID) + (1|Male2_ID), data=d, REML=F)

Estimate Std. Error 2.5% CI 97.5 % CI !2 df Pr(Chi)

Intercept 0.183 0.042 0.099 0.268 (2) (2) (2)

RelationshipType2_Non-
PrimarySecondary(1) -0.175 0.045 -0.266 -0.088 12.732 1 <0.001

Party 9(1) 0.024 0.047 -0.066 0.112 0.247 1 0.619
Estimates calculated from the generalized linear mixed model with standard errors. Models examine the effects of  predictors indicated on the 
left on male–male dyadic relatedness estimates (main predictors above the dotted line; control predictors below). CI = confidence interval.
The sample for this model consisted of: number of  obs: 134; groups: Male1_ID, 22; Male2_ID, 22
(1) RelationshipType2 was dummy coded with “NonPrimarySecondary” being the reference category. Party was dummy coded with Party 6 
being the reference category.
(2) Not shown due to  very limited interpretability.

 68



Male–Male Sociality

Supplementary table S4.12 Model 3 - Male-male dyadic composite sociality index and 
coalitionary support. Model table of  male–male DSI’s effect on coalitionary rate per contact hour. 

Supplementary table S4.13a Weighted average of  associated females and male sociality - 
Model 4a - Number of  friends and bond strength - Model table of  male bond strength and 
number of  friends’ effect on number of  associated females (calculated as average weighted by the 
duration of  the association in days to control for female transfer and demographic changes) 

Model formula:  
Glmer(Coalition_Count ~ z.log.DSI + Party + Year +  

(1 + z.log.DSI + Year_code || Male1_ID) + (1 + z.log.DSI + Year_code || Male2_ID) 
+(1|Dyad_ID) + offset(offsetlog_Contact_Hours), family= “poisson", 
data=d, control=contr)contr= glmerControl 
(optimizer=“bobyqa", optCtrl=list(maxfun=100000))

Estimate Std. Error 2.5% CI 97.5 % CI !2 df Pr(Chi)

Intercept -8.645 0.301 -9.270 -8.105 (3) (3) (3)

z.log.DSI(1) 0.765 0.127 0.466 0.978 19.458 1 <0.001

Year_2015(2) 0.293 0.332 -0.371 0.951 0.585 1 0.444

Party 9(2) 1.285 0.292 0.740 1.918 12.413 1 <0.001
Estimates calculated from the generalized linear mixed model with standard errors. Models examine the effects or predictors indicated on the 
left on coalitionary rate per contact hour (main predictors above the dotted line; control predictors below). CI = confidence interval.
The sample for this model consisted of: number of  obs: 236; groups: Dyad_ID, 134; Male1_ID, 22; Male2_ID, 22. 
Dispersion parameter =0.37 (no concern for overdispersion; value < 1.0)
(1) The predictor of  interest was log transformed and afterwards z-transformed to a mean=0 and sd=1; original mean (sd) were: 1.000 (2.179); 
log transformed mean (sd): 0.417 (0.629). 
(2) Year was dummy coded with 2014 being the reference category. Party was dummy coded with Party 6 being the reference category.
(3) Not shown due to very limited interpretability.

Model formula:  
Lmer(log.WeightedAverage_Nfemales ~ z.Bond_Strenght_top3DSI + z.N_Friends + Year +      
z.Male_Partner_Availability + (1|Male_ID), data=d, REML=F)

Estimate Std. Error 2.5% CI 97.5 % CI !2 df Pr(Chi)

Intercept 0.733 0.109 0.525 0.955 (3) (3) (3)

z.Bond_Strenght_top3-
DSI(1) -0.193 0.071 -0.345 -0.045 6.662 1 0.010

z.N_Friends(1) -0.008 0.070 -0.148 0.131 0.012 1 0.911
z.Male_Partner_Availa-
bility(2) -0.137 0.103 -0.326 0.074 1.738 1 0.187

Year_2015(2) -0.090 0.081 -0.254 0.063 1.190 1 0.275
The response (weighted average number of  associated females) was log transformed. 
Original mean (sd), range: 1.374 (1.178),  0.000 - 3.635. 
Transformed mean (sd), range:  0.727 (0.551), 0.000 - 1.534.
Estimates calculated from the generalized linear mixed model with standard errors. Models examine the effects of  predictors indicated on the 
left on number of  associated females (main predictors above the dotted line; control predictors below). CI = confidence interval.
The sample for this model consisted of: number of  obs: 36; groups: Male_ID, 20.
(1) The predictors of  interest were z-transformed to a mean=0 and sd=1; original mean (sd) were:  Bond_Strenght_top3DSI 8.701 (5.529); 
N_Friends 2.111 (1.753). 
(2) The control predictor Male_Partner_Availability was z-transformed to a mean=0 and sd=1; original means (sd) was:  11.444 (1.796). Year 
was dummy coded with 2014 being the reference category.
(3) Not shown due to very limited interpretability.
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Supplementary table S4.13b Weighted average of  associated females and male sociality - 
Model 4b - Weighted average of  secondary males - Model table of  number of  associated 
secondary males’ effect on number of  associated females (calculated as average weighted by the 
duration of  the association in days to control for female transfer and demographic changes) 

Supplementary table S4.14a Number of  sired offspring and male sociality - Model 5a - 
Number of  friends and bond strength - Model table of  male bond strength and number of  
friends’ effect on number of  sired offspring 

Model formula:  
Lmer(log.WeightedAverage_Nfemales ~ z.WeightedAverage_NsecMales + Year +  

z.Male_Partner_Availability + (1|Male_ID), data=d, REML=F)

Estimate Std. Error 2.5% CI 97.5 % CI !2 df Pr(Chi)

Intercept 0.846 0.123 0.597 1.097 (3) (3) (3)

z.WeightedAverage_Nsec-
Males(1) 0.002 0.140 -0.286 0.288 0.000 1 0.989

z.Male_Partner_Availa- 
bility(2) -0.139 0.142 -0.414 0.147 0.927 1 0.336

Year_2015(2) -0.062 0.106 -0.252 0.153 0.343 1 0.558
The response (weighted average number of  associated females) was log transformed. 
Original mean (sd), range: 1.648 (1.099), 0.007-3.635. 
Transformed mean (sd), range: 0.872 (0.484), 0.007-1.534.
Estimates calculated from the generalized linear mixed model with standard errors. Models examine the effects of  predictors indicated on the 
left on number of  associated females (main predictors above the dotted line; control predictors below). CI = confidence interval.
The sample for this model consisted of: number of  obs: 30; groups: Male_ID, 17.
(1) The predictors of  interest were z-transformed to a mean=0 and sd=1; original mean (sd) were:  N_Friends  1.687 (1.455). 
(2) The control predictor Male_Partner_Availability was z-transformed to a mean=0 and sd=1; original means (sd) was:  11.333 (1.845). Year 
was dummy coded with 2014 being the reference category.
(3) Not shown due to very limited interpretability.

Model formula: 
Glmer(NsiredOffspring ~ z.Bond_Strenght_top3DSI + z.N_Friends + Year +      

z.Male_Partner_Availability + (1|Male_ID), family= "poisson", data=d)

Estimate Std. Error 2.5% CI 97.5 % CI !2 df Pr(Chi)

Intercept -0.612 0.336 -1.717 -0.153 (3) (3) (3)

z.Bond_Strenght_top3DSI(1) -0.283 0.320 -1.166 0.347 (4) (4) (4)

z.N_Friends(1) 0.427 0.341 -0.364 1.289 (4) (4) (4)

z.Male_Partner_Availability(2) -0.385 0.299 -1.243 0.185 (4) (4) (4)

Year_2015(2) -0.303 0.495 1.552 0.670 (4) (4) (4)

Estimates calculated from the generalized linear mixed model with standard errors. Models examine the effects of  predictors indicated on the 
left on number of  associated females (main predictors above the dotted line; control predictors below). CI = confidence interval.
The sample for this model consisted of: number of  obs: 36; groups: Male_ID, 20. 
Dispersion parameter = 1.08 (no substantial concern for overdispersion; value ∼1.0)
(1) The predictors of  interest were z-transformed to a mean=0 and sd=1; original mean (sd) were:  Bond_Strenght_top3DSI 8.701 (5.529); 
N_Friends 2.111 (1.753). 
(2) The control predictor Male_Partner_Availability was z-transformed to a mean=0 and sd=1; original means (sd) was:  11.444 (1.796). Year 
was dummy coded with 2014 being the reference category.
(3) Not shown due to very limited interpretability. 
(4) Not shown as full null model comparison was not significant ( = 1.397, df  = 2, p = 0.497).
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Supplementary table S4.14b Number of  sired offspring and male sociality - Model 5b - 
Weighted average of  secondary males - Model table of  number of  associated secondary males’ 
effect on number of  associated females (both measures calculated as weighted average of  number 
and association days to control for female transfer and demographic changes) 

Supplementary table S4.15 Model 6 - Post-hoc test: time males spent socializing with other 
males by number of  associated females - Model table of  focal male’s number of  associated 
females’ effect on proportion of  time spent socializing with other males 

Model formula:  
Glmer(NsiredOffspring ~ z.WeightedAverage_NsecMales + Year + 

z.Male_Partner_Availability + (1|Male_ID), family= "poisson", data=d)

Estimate Std. Error 2.5% CI 97.5 % CI !2 df Pr(Chi)

Intercept -0.418 0.338 -1.600 0.088 (3) (3) (3)

z.WeightedAverage_Nsec-
Males(1) -0.019 0.338 -0.719 0.775 0.003 1 0.955

z.Male_Partner_Availa- 
bility(2) -0.167 0.334 -1.143 0.448 0.261 1 0.609

Year_2015(2) -0.206 0.495 -1.299 0.844 0.174 1 0.677
Estimates calculated from the generalized linear mixed model with standard errors. Models examine the effects of  predictors indicated on the 
left on number of  associated females (main predictors above the dotted line; control predictors below). CI = confidence interval.
The sample for this model consisted of: number of  obs: 30; groups: Male_ID, 17. 
Dispersion parameter =0.98 (no concern for overdispersion; value < 1.0)
(1) The predictors of  interest were z-transformed to a mean=0 and sd=1; original mean (sd) were:  N_Friends  1.687 (1.455). 
(2) The control predictor Male_Partner_Availability was z-transformed to a mean=0 and sd=1; original means (sd) was:  11.333 (1.845). Year 
was dummy coded with 2014 being the reference category.
(3) Not shown due to very limited interpretability.

Model formula: lmer(sqrt.PropTime_Socializing_withOtherMales ~ z.FocalMaleNfemales + Party  
+ (1 |Male_ID), 
data=d, REML=F, control = contr) 
contr = lmerControl(optimizer="bobyqa", optCtrl=list(maxfun=100000))

Estimate Std. Error 2.5% CI 97.5 % CI !2 df Pr(Chi)

Intercept 0.140 0.016 0.107 0.171 (3) (3) (3)

z.FocalMaleNfemales(1) -0.042 0.011 -0.064 -0.019 11.932 1 0.001

Party 9(2) -0.041 0.024 -0.087 0.009 2.735 1 0.098
The response (proportion of  time spent socializing with males) was square-root transformed.
Original mean (sd), range:  0.022 (0.024),  0.000 - 0.083.
Transformed mean (sd), range: 0.120 (0.090), 0.000 - 0.289.
(1) The predictor of  interest was log transformed and afterwards z-transformed to a mean=0 and sd=1; original mean (sd) were: 1.429 (1.354). 
(2) Party was dummy coded with Party 6 being the reference category.
(3) Not shown due to very limited interpretability.
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Supplementary table S4.16a Male-male association type and interaction/association with 
primary’s associated females - Model 1a - Ad libitum interaction - Model table of  male–male 
association type’s (associated vs. non-associated male–male dyads) effect on rate of  male ad libitum 
interactions with primary male’s females (rate = count of  ad libitum interactions recorded by contact 
time with the party) 

Supplementary table S4.16b Male-male association type and interaction/association with 
primary’s associated females - Model 1b - Focal interactions - Model table of  male–male 
association type’s (associated vs. non-associated male–male dyads) effect on rate of  male focal 
interactions with primary male’s females (rate = count of  focal interactions recorded by focal 
duration) 

Model formula: glmer(Beh_adlib_Count ~ MMAssociationType + Party +  
z.Female_number_perPeriod +  
(1 + Male_Type_MMasso_code + z.FemaleNumberPerPeriod ||Male_ID) + 
(1 + Male_Type_MMasso_code ||Primary_Male_ID) + (1|Dyad_ID) +  
offset(offsetlog_Contact_Hours),  
data=d, family="poisson", control = contr) 
contr=glmerControl(optimizer="bobyqa", optCtrl=list(maxfun=100000))

Estimate Std. Error 2.5% CI 97.5 % CI !2 df Pr(Chi)

Intercept -4.161 0.424 -5.014 -3.341 (3) (3) (3)

MMAssociationType_Not-
Associated(1) -3.227 0.397 -4.017 -2.360 22.736 1 <0.001

Party 9(1) -0.443 0.577 -1.624 0.675 0.561 1 0.454
z.FemaleNumberPer- 
Period(2) 0.881 0.225 0.440 1.281 11.402 1 0.001

Estimates calculated from the generalized linear mixed model with standard errors. Models examine the effects of  predictors indicated on the 
left on rate of  ad libitum interactions with females (main predictors above the dotted line; control predictors below). CI = confidence interval.
The sample for this model consisted of: number of  obs: 341; groups: Dyad_ID, 115; Male_ID, 24; Primary_Male_ID, 15 
Dispersion parameter = 0.69 (no concern for overdispersion; value < 1.0).
(1) MMAssociationType was dummy coded with “NotAssociated” being the reference category. Party was dummy coded with Party 6 being 
the reference category. 
(2) The control predictor FemaleNumberPerPeriod was z-transformed to a mean=0 and sd=1; original means (sd) was: 2.038 (0.858).
(3) Not shown due to very limited interpretability.

Model formula: glmer(Beh_focal_Count ~ MMAssociationType + Party +  
z.Female_number_perPeriod + 
(1 + Male_Type_MMasso_code + z.FemaleNumberPerPeriod ||Male_ID) + 
(1 + Male_Type_MMasso_code ||Primary_Male_ID) + (1|Dyad_ID) +  
offset(offsetlog_Contact_Hours),  
data=d, family="poisson", control = contr) 
contr=glmerControl(optimizer="bobyqa", optCtrl=list(maxfun=100000))

Estimate Std. Error 2.5% CI 97.5 % CI !2 df Pr(Chi)

Intercept -2.057 0.444 -2.919 -1.276 (3) (3) (3)

MMAssociationType_Not-
Associated(1) -3.674 0.433 -4.526 -2.822 31.205 1 <0.001

Party 9(1) 0.124 0.620 -1.060 1.332 0.040 1 0.842
z.FemaleNumberPer- 
Period(2) 0.858 0.194 0.497 1.190 14.212 1 <0.001
Estimates calculated from the generalized linear mixed model with standard errors. Models examine the effects of  predictors indicated on the 
left on rate of  focal interactions with females (main predictors above the dotted line; control predictors below). CI = confidence interval.
The sample for this model consisted of: number of  obs: 341; groups: Dyad_ID, 115; Male_ID, 24; Primary_Male_ID, 15 
Dispersion parameter = 0.64 (no concern for overdispersion; value < 1.0).
(1) MMAssociationType was dummy coded with “NotAssociated” being the reference category. Party was dummy coded with Party 6 being 
the reference category. 
(2) The control predictor FemaleNumberPerPeriod was z-transformed to a mean=0 and sd=1; original means (sd) was: 2.038 (0.858).
(3) Not shown due to very limited interpretability.
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Supplementary table S4.16c Male-male association type and interaction/association with 
primary’s associated females - Model 1c - Proportion of  time spent in 1m proximity - Model 
table of  male–male association type’s (associated vs. non-associated male–male dyads) effect on 
proportion of  time males spent within 1 m proximity to the primary male’s females (proportion = 
count of  time recorded within 1 m by total number of  scans) 

Model formula: glmer(Proxy1m_Count ~ MMAssociationType + Party +  
z.Female_number_perPeriod + 
(1 + Male_Type_MMasso_code + z.FemaleNumberPerPeriod ||Male_ID) + 
(1 + Male_Type_MMasso_code ||Primary_Male_ID) + 
(1|Dyad_ID) + offset(offsetlog_Contact_Hours),  
data=d, family="poisson", control = contr) 
contr=glmerControl(optimizer="bobyqa", optCtrl=list(maxfun=100000))

Estimate Std. Error 2.5% CI 97.5 % CI !2 df Pr(Chi)

Intercept -4.233 0.248 -4.770 -3.763 (3) (3) (3)

MMAssociationType_Not-
Associated(1) -2.919 0.316 -3.497 -2.281 27.901 1 <0.001

Party 9(1) 0.406 0.318 -0.187 0.973 1.596 1 0.206
z.FemaleNumberPer- 
Period(2) 0.698 0.101 0.494 0.883 30.148 1 <0.001

Estimates calculated from the generalized linear mixed model with standard errors. Models examine the effects of  predictors indicated on the 
left on rate of  male interaction with females (main predictors above the dotted line; control predictors below). CI = confidence interval.
The sample for this model consisted of: number of  obs: 341; groups: Dyad_ID, 115; Male_ID, 24; Primary_Male_ID, 15 
Dispersion parameter = 0.83 (no concern for overdispersion; value < 1.0).
(1) MMAssociationType was dummy coded with “NotAssociated” being the reference category. Party was dummy coded with Party 6 being 
the reference category. 
(2) The control predictor FemaleNumberPerPeriod was z-transformed to a mean=0 and sd=1; original means (sd) was: 2.038 (0.858).
(3) Not shown due to very limited interpretability.
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6. General Discussion 

This thesis aims to elucidate the dynamics and fitness benefits of  male–male sociality in wild Guinea 

baboons as well as the function of  ritualized greeting behavior. Guinea baboon males display affilia-

tive relationships and cooperation, while females have relatively high leverage in intersexual relation-

ships (Fischer et al., 2017). Combined with high levels of  male–male spatial tolerance, low aggression 

and lack of  a clear dominance hierarchy, the unique characteristics of  Guinea baboons make them an 

intriguing model to investigate how co-resident males regulate their relationships and how the advan-

tages of  male–male sociality play out in a highly tolerant multilevel system.  

5.1 Summary of  results 

In chapter 3, I show ritualized greetings are the most common wild Guinea baboon male interaction 

and describe how they serve an important function in regulating male relationships. Greetings occur 

at all levels of  the society but, controlling for partner availability, males that belong to the same party 

exchange significantly more greetings than males that belong to different parties. I also describe the 

function of  within-party greetings, the lack of  support for the tension-buffering hypothesis, and that 

dyads do not greet due to simply being in close proximity immediately prior to a greeting. Instead, 

greetings are used by males to assess the quality of  relationships with spatially tolerant partners. Al-

though affiliation does not predict greeting rate, intense greetings (i.e. the most intimate and risky 

form of  greetings) are more likely between males with stronger affiliative relationships. In chapter 4, I 

describe within-party male–male social relationships and their adaptive value. I demonstrate that wild 

Guinea baboon males form strong social bonds, and that strongly bonded males are more likely to 

support each other in coalitions and have a higher average degree of  relatedness. I corroborate previ-

ous findings that adult males have no clear linear dominance hierarchy (also see chapter 3) and, using 

recent methodologies, find this is due to intermediate/low steepness, high variation and the uncer-

tainty of  individual rank scores. Paternity data shows the share of  reproduction at the party level is 

not significantly different from chance, while at the unit level 89.5% of  offspring are sired by the 

primary male. Contrary to findings in other species, male–male sociality does not positively affect ei-

ther number of  associated females or sired offspring. Instead, males with stronger bonds have fewer 

associated females and it may be that time constraints affect relationship investment. 
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5.2 Ritualized greeting behavior in a tolerant multilevel society 

Greeting behavior is crucial when balancing the trade-offs imposed by male co-residence (Whitham 

and Maestripieri, 2003). These ritualized exchanges are hypothesized to buffer tension during com-

petitive contexts (Colmenares et al., 2000; Aureli and Schaffner, 2007), signal dominance status (Col-

menares, 1990, 1991b), and/or function as honest signals to test relationship quality, maintain social 

bonds, and promote cooperation (Smuts and Watanabe, 1990; Whitham and Maestripieri, 2003; De 

Marco et al., 2014). The features and functions of  these interactions vary considerably between and 

within species and remain disputed in several cases (see section 2.5.3). The tenor of  male–male rela-

tionships and levels of  tolerance and cooperation may influence this variation (Henzi et al., 2008; De 

Marco et al., 2014; De Marco, 2017b). I contribute to this debate through my findings on greeting 

behavior in wild Guinea baboons (chapter 3), which are characterized by an intense and highly ritual-

ized greeting repertoire involving potentially harmful behaviors such as genital fondling. 

Greetings occur at all levels of  the multilevel society but, controlling for partner availability, their oc-

currence decreases significantly from the inner-most to outer level of  the society. Greetings delineate 

social levels and party membership, as the vast majority of  greetings (94.6%) occur within the same 

party, even when other parties and gangs are adjacent or intermingled (chapter 3). Ritualized greetings 

are also the most common interactions between males, occurring twice as often as affiliation and ten 

times more than aggression. In accordance with the tolerant style of  this species, and in contrast to 

hamadryas baboons (Colmenares et al., 2000), there is no support for tension buffering. Greeting oc-

currence is not temporally associated with tense contexts or the presence of  receptive females, and 

males with higher levels of  dyadic aggression do not greet at a higher rate (chapter 3). The absence 

of  a dominance hierarchy and lack of  strong directionalities in greetings show these ritualized ex-

changes are unlikely to express social status. This is corroborated by Vasey and Sommer (2006), who 

state that dominance expression is unlikely to apply to species with a highly symmetrical greeting 

repertoire. 

Wild Guinea baboon ritualized greetings are friendly interactions that allow males to assess relation-

ship quality independent of  context, confirming findings in species characterized by male coopera-

tion (Smuts and Watanabe, 1990; Whitham and Maestripieri, 2003). Similar to tolerant Tonkean 

macaques (De Marco et al., 2014), male Guinea baboons greet specific individuals to assess relation-

ship quality with spatially tolerant partners (chapter 3). Intense and potentially costly greetings be-

tween strongly bonded males likely play a role in the assessment and maintenance of  relationship 

strength (chapter 3; also see Whitham and Maestripieri, 2003). My findings regarding context and 

function nicely mirror the features of  greetings in Guinea baboons. Most greetings are reciprocated 

(81.9%), involve physical contact (93.4%), and are intense (59.2%). Their positive tenor is in sharp 

contrast to those described for other species of  this genus (chapter 3), where greetings are absent, 
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incomplete, include little physical contact, and may even be associated with submissive behavior (e.g. 

chacma baboons: Henzi et al., 2008; yellow baboons: Hausfater and Takacs, 1987; hamadryas ba-

boons: Kummer, 1968; Abegglen, 1984; Colmenares, 1990; olive baboons: Smuts and Watanabe, 

1990).  

My results show how ritualized greetings allow male Guinea baboons to regulate social dynamics by 

signaling party membership, testing relationships between spatially tolerant partners, and accentuating 

bond strength. Individuals of  the same party associate frequently and share feeding patches, traveling 

routes, and sleeping trees (Fischer et al., 2017). Thus, mechanisms to ensure relationship regulation 

are crucial in reducing the costs of  intra-group competition, while increasing group cohesion. This 

may be especially important in wild Guinea baboons due to their large communities, where individu-

als encounter and mingle with less familiar individuals of  other parties, gangs, or even unfamiliar in-

dividuals from neighboring communities. A brief  “honest communicative exchange” (Whitham and 

Maestripieri, 2003) to test the relationship state may be crucial in such a complex environment. 

Whether ritualized behaviors make a more tolerant social style possible, are an outcome of  more co-

operative and tolerant social systems, or whether these two features coevolved remains an open ques-

tion and an interesting direction for future research. 

5.3 The tolerant baboon: male–male sociality, kinship, and competition  

5.3.1 Male–male sociality and kinship 

My project tests for the presence of  male social bonds (Silk, 2002) in Guinea baboon societies for the 

first time and expands our understanding of  the role of  kinship (chapter 4). Patzelt et al. (20014) in-

vestigated general patterns of  male–male sociality in the same population but focused on male–male 

relationships at different levels of  the society and could not consider male status (primary/secondary 

males) as male-female associations were not known at the time.  Here, I focus on the party level, our 

group unit (Dal Pesco & Fischer, 2018), and provide data on all males of  each party while considering 

male status. Affiliative relationships between males at the party level are differentiated and preferred 

partners are stable over time, which shows that Guinea baboon males form strong social bonds (i.e. 

“friendships”). Primary males form strong bonds with other primaries and with non-primary males 

that are associated with their unit (i.e. “secondary males”). As strong bonds even occur between non-

primary males, friendships are not restricted to any particular kind of  dyad (chapter 4). Strongly 

bonded dyads support each other more often during within-party aggressive events and average relat-

edness is higher for friends and for dyads composed of  primary males and their secondary males 

(chapter 4). Corroborating previous findings (Patzelt et al., 2014), males exhibit high levels of  within-

party spatial tolerance with 67.9% and 98.5% of  dyads recorded at least once within 1 m and 5 m 

proximity, respectively (chapter 3). The presence of  multi-male units is substantial (chapter 4), with 
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most primary males (76.5%) associated with at least one secondary male and more than half  of  these 

with more than one (61.5%; average number secondaries per unit=1.65). Remarkably, secondary 

males have stable associations with multiple units, unaffiliated males (termed “solitary” in hamadryas 

baboons) are rare, and there are no reports of  bachelor groups (chapter 4; also see Goffe et al., 2016). 

My findings highlight the fluidity of  Guinea baboon society through their numerous and dynamic 

inter-unit social ties and spatial tolerance, while strengthening the view that parties are at the core of  

these societies (see chapters 3 and 4). 

Male Guinea baboon sociality sets them apart from multilevel societies in geladas and hamadryas ba-

boons. Gelada unit leaders usually ignore each other except for rare support of  females during inter-

unit disputes (Dunbar, 1983). Multi-male units occur only in 33% of  cases (Snyder-Mackler et al., 

2012; also discussed in Chowdhury et al., 2015) and affiliation between leaders and followers is rare, 

with followers often at the periphery of  units (Dunbar and Dunbar, 1975b). While leaders are some-

times reported jointly confronting bachelor male groups (Dunbar and Dunbar, 1975a), gelada units 

seem to constitute distinct social entities (Bergman, 2010) within loosely associated “bands”. In 

hamadryas baboons, several units comprise a “clan” together with solitary males (Abegglen, 1984; 

Schreier and Swedell, 2009). While occasional alliances occur during inter-clan conflicts (Abegglen, 

1984), inter-unit interactions are sporadic and tend to be limited to threats and avoidance between 

leaders (Kummer, 1968). Leaders never affiliate with other leaders but may groom their unit followers 

(Schreier and Swedell, 2009; Chowdhury et al., 2015). Solitary males are not associated with a unit and 

may exchange grooming with other solitary males (Abegglen, 1984). The occurrence of  multi-male 

units (55.4%) as well as the proportion of  units with more than one secondary male (38.9%; average 

number secondaries per unit=0.80) is lower compared to my findings for Guinea baboons (Chowd-

hury et al., 2015). This is particularly striking considering that I used a much stricter spatial criterion 

to identify secondary males (1 m) than that used in hamadryas baboon studies (5 m) (Chowdhury et 

al., 2015). Hamadryas follower males are also mainly associated with a particular unit and further as-

sociations with other units are rare, short-term, and do not extend to females (Chowdhury et al., 

2015). In contrast, secondary males in Guinea baboons have multiple associations that can last several 

years and involve interactions with primary males and their associated females (chapter 4).  

The striking difference between geladas and Guinea baboons is not surprising given that gelada fe-

males are philopatric and units are based on strong bonds between related females (Dunbar, 1983; le 

Roux et al., 2011). Hamadryas and Guinea baboon societies are characterized by female-biased dis-

persal (Kopp et al., 2015; Städele et al., 2015) with strong bonds between related males hypothesized 

as the reason for the structure of  these societies (Kummer, 1968; Abegglen, 1984; reviewed in 

Grueter et al., 2012). Indeed recent field studies on hamadryas baboons show evidence for male 

philopatry at the clan level and maternal kin biases between leader and their follower males (Städele et 

al., 2015, 2016; also see Colmenares, 1992). A previous analysis in wild Guinea baboons, however, 
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revealed no correlation between affiliation and relatedness at the gang level (Patzelt et al., 2014). With 

a larger dataset, with all adolescent/adult males of  each study party included, I show that average re-

latedness is significantly higher between friends and between primary males and their secondary 

males within the party (chapter 4). The fact that relatedness is similar within and between parties of  

the same gang, but affiliation is significantly higher within parties (Patzelt et al., 2014) may explain the 

differences between these findings. I was able to confirm that kinship likely played a crucial role in 

the evolution of  male–male social bonds.  

However, while kinship influences some bonds, others are independent of  kinship (chapter 4). 

Strongly bonded but weakly related males in our population may be due to lack of  available kin. The 

low reproductive skew at the party level (chapter 4) and potentially low average relatedness for the 

philopatric sex in large groups (Lukas et al., 2005) support this possibility. However, the presence of  

weakly bonded males with a high likelihood of  relatedness (chapter 4) suggest other mechanisms play 

a role. As both males and females care for young (personal observation), father- and mother-mediated 

familiarity may play a role in bond formation (Widdig, 2007; Smith, 2014). At the unit level, mate fi-

delity is high (89.5% of  offspring sired by the primary, chapter 4), indicating that within-unit peers are 

likely to be paternal kin. These mechanisms may work within the unit, but not at the party level due 

to low reproductive skew (chapter 4) and the minor role of  kinship in female associations (Goffe, 

2016). This ambiguity is compounded by several factors, namely female transfers with dependent off-

spring between and within social levels and the lack of  infanticide (Goffe et al., 2016). Thus, related-

ness and familiarity do not mirror each other exactly and lead to a more complex scenario. If  familiar-

ity is the major mechanism of  kin discrimination in Guinea baboons, the partial overlap between 

male relatedness and sociality can be explained by unit composition changes during early develop-

ment. Indeed, reports from a captive population suggest that male–male associations emerge early in 

life (Boese, 1975), and studies on hamadryas multilevel societies suggest familiarity is associated with 

the formation and reinforcement of  groups and subgroups (Kummer et al., 1974). Familiarity may 

even confer important fitness benefits irrespective of  kinship, as seen in female house mice (Koenig, 

1994) and vampire bats where non-kin expand the network of  potential future food donors and help 

cope with the loss of  a partner (Desmodus rotundus: Carter and Wilkinson, 2015; Carter et al., 2017). 

Ties with non-kin may be crucial in dealing with changes in the social environment, especially if  sup-

port from kin is uncertain. Thus, kinship may facilitate the development of  cooperation and bonds 

through inclusive fitness benefits, but is not the only driving force nor a necessary precondition in 

Guinea baboons (Fischer et al., 2017). This parallels evidence from others mammals where male 

bonds are not restricted to kin (Krutzen et al., 2003; Langergraber et al., 2007, 2009; Schülke et al., 

2010; Hirsch et al., 2013; Best et al., 2014). 
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5.3.2 Competition and dominance hierarchy 

Adult male Guinea baboons have lower aggression rates than chacma baboons and no clear linear 

dominance hierarchy (Patzelt et al., 2014; Kalbitzer et al., 2015). In this thesis I concentrate on with-

in-party relationships and include data on all adult and adolescent males in those parties. Using this 

larger dataset, I apply similar (chapter 3) as well as novel methodologies (chapter 4) to assess male 

dominance hierarchies in our population. My study confirms past findings of  low aggression, sup-

plants, and unprovoked submissions and the limits to establishing a clear linear hierarchy for adult 

males (chapter 3). Observations of  a captive population of  Guinea baboons supports this as well, as 

dominance relationships between adult males could not be clearly identified (Whitham and Maestrip-

ieri, 2003).  

I can present novel evidence for significant linear hierarchies once males of  all age classes (i.e. large 

juveniles and small/large subadults) are included in the analysis. While the larger sample size may play 

a role, younger individuals consistently ranked below adult males, which indicates this is likely driven 

by an effect of  age (chapter 3). I additionally apply a recently published approach (Sánchez-Tójar et 

al., 2018) to assess hierarchy steepness and uncertainty and calculate randomized Elo-rating scores 

(see details in chapter 4). I found that male hierarchies are of  intermediate/low steepness with high 

intra-individual variation in randomized Elo-rating scores and great overlap between the 95% score 

ranges for most males (chapter 4). Hierarchy uncertainty tests (Sánchez-Tójar et al., 2018) demon-

strate that estimates are uncertain and, consequently, that dominance cannot be included as a predic-

tor in the analyses (chapter 4). The uncertainty is driven by both the low rate of  aggression and high 

proportions of  polyadic and undecided interactions, which leads to a limited number of  interactions 

available for dominance assessments (see details in chapter 4). 

The absence of  a dominance hierarchy enforced through agonistic interactions shows the limited role 

agonistic competition and rank play in male Guinea baboons (also see Patzelt et al., 2014; Kalbitzer et 

al., 2015). This is not surprising considering access to females is achieved through stable pair bonds 

that allow primary males to monopolize 98.6% of  copulations (Goffe et al., 2016) and sire 89.5% of  

offspring within their units (chapter 4).  Limited roles for contest competition and sperm competition 

are supported by the reduced sexual dimorphism compared to savannah baboons and relatively small 

testis size compared to other species in this genus (Fischer et al., 2017). Although the lack of  domi-

nance hierarchy is striking, similar patterns are also reported for other multilevel societies. In these 

cases male status replaces dominance rank and leaders are considered dominant over non-leaders, 

who tend to be younger males or older ex-leaders (e.g. Colmenares, 1990; Bergman et al., 2009). Sig-

nals of  male status other than rank may play a role in signaling “male condition and stamina”. Male 

geladas with redder chest patches have higher status and larger units (Bergman et al., 2009), while 

mane coloration, size and hind-quarter coloration are proposed as honest signals in hamadryas and 

Guinea baboons (Kummer, 1997; Jolly, 2007; Kalbitzer, 2014; Fischer et al., 2017). Similar to our 
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population, Kummer (1997; p. 166-168) explains hamadryas males lack a rank order, mutually back 

down from confrontations, and rarely display submissive signals. Their greetings often involve hind-

quarter presentations and function as a negotiation mechanism to signal competitive power and dif-

fuse tension in contexts of  rivalry over females (Abegglen, 1984; Kummer et al., 1974; Colmenares, 

1991b; Colmenares et al., 2000; note that Colmenares’s investigation focused on a captive population 

of  hamadryas baboons, yellow baboons, and their hybrids). With their more tolerant social style 

Guinea baboons exchange intense greetings that often involve mutual physical contacts and are not 

related to competition or aggression (chapter 3, section 5.2, also see De Marco et al. 2014; De Marco 

2017). The high proportion of  undecided fights (chapter 4) may also be linked to the more tolerant 

social style (Palagi, 2006; Ciani et al., 2012).  

5.4 The adaptive benefits of  male–male sociality 

Although multi-male associations and male bonds are puzzling due to competition over un-sharable 

fertilization (van Hooff, 2000), recent findings show these relationships can emerge as a result of  in-

creased between-group competition and reduced within-group contest potential and may confer sub-

stantial fitness benefits (Ostner and Schülke, 2014). In several mammal species, multi-male alliances 

and rank-changing coalitions between strongly bonded males are linked with lower takeover likeli-

hoods and/or higher male reproductive success (Feh, 1999; Fedigan et al., 2004; Ostner and Kappel-

er, 2004; Schülke et al., 2010; Snyder-Mackler et al., 2012; Wiszniewski et al., 2012; Gilby et al., 2013; 

Chowdhury et al., 2015). Additionally, male reproductive success can also be affected by female mate 

choice (Kulik et al., 2012; Massen and Vries, 2012; Ostner et al., 2013; Arseneau et al., 2015; Rosen-

baum et al., 2018).  

In geladas and hamadryas baboons, leader males benefit from follower males associated with the unit 

through increased tenure length, number of  females or number of  offspring (Snyder-Mackler et al., 

2012; Chowdhury et al., 2015). In horses, dominant stallions that fail to establish their own group 

form stable male pair alliances that aid in joint female protection and result in increased access to fe-

males and higher offspring survival (Feh, 1999). Similar to the importance of  cooperative defense in 

horses due to year-round challenges (Feh, 1999), followers in geladas and hamadryas baboons reduce 

the likelihood of  unit takeovers, which otherwise lead to male acquisition of  females and infanticide 

(Swedell and Tesfaye, 2003; Beehner and Bergman, 2008; Pappano et al., 2012; Snyder-Mackler et al., 

2012; Swedell et al., 2014; Pines et al., 2015). The associated males, in geladas and horses, benefit 

from a small proportion of  reproduction in the unit (Feh, 1999; Snyder-Mackler et al., 2012).  

My results, however, indicate that these patterns do not apply to wild Guinea baboon male reproduc-

tive success, at least in the short-term. The number of  associated secondary males is not linked to a 

higher number of  associated females or sired offspring (chapter 4). While exceptional, these findings 

may simply reflect the fluidity and tolerance of  this social system. Secondary males may not be as 
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crucial to unit defense, as takeovers are rare (Goffe et al., 2016; Fischer et al., 2017) and male compe-

tition is low (Patzelt et al., 2014; Kalbitzer et al., 2015; Fischer et al., 2017). Most units also have sev-

eral associated secondary males and secondary males are shared by multiple units (chapter 4), all of  

which leaves little room for variation in reproductive success. Moreover, the fact that secondaries are 

associated with multiple units implies that, during challenges between primary males, associated males 

do not directly translate to unconditional support. I also show primary male paternity certainty is high 

and that the remaining 10.5% of  offspring during the study are sired by both a subadult male of  the 

same party and an adult male from a different party (chapter 4). The fact that paternity is not restrict-

ed to the unit indicates concessions by the primary male are unlikely, and monopolization is likely lim-

ited by other factors such as unit cohesion, reproductive synchrony, and visibility (van Schaik and van 

Hooff, 1983; Rowell, 1988; Ostner et al., 2008b; Carnes et al., 2011). In Guinea baboons these limit-

ing factors are intensified by the high level of  female spatial freedom and their active role in intersex-

ual relationships, as well as the extremely poor visibility during the rainy season (Patzelt, 2013; Goffe 

et al., 2016). 

Male reproductive success can also be affected by male–male social bonds and differentiated within-

group coalitionary support. The adaptive value of  cooperation between strongly bonded males is of-

ten attributed to their role in rank ascension and consolidation that ultimately leads to increased re-

production (e.g. Schülke et al., 2010). This kind of  male cooperation is thought to evolve in scenarios 

of  medium to low contest potential and is reported for both philopatric and dispersing males (e.g. 

Schülke et al., 2010; Gilby et al., 2013; reviewed in Ostner and Schülke, 2014). Nevertheless, the via-

bility of  this strategy depends on male time budget and mating strategies, including year-round breed-

ing and pair bonds (Ostner and Schülke, 2014). I show that in wild Guinea baboons, within-party 

coalitionary support is present both within and between units (chapter 4). Parallel to findings in 

macaques, where affiliative relationships predict levels of  male cooperation (Silk, 1994; Schülke et al., 

2010; Berghänel et al., 2011a; Young et al., 2014b), I found that males with stronger bonds support 

each other more often during aggressive events. However, rates of  coalitionary support are surpris-

ingly low compared to macaque species (Guinea baboons: 0.002/hr; Assamese macaques: 0.11/hr; 

Barbary macaques: 0.01-0.21/hr; Schülke et al., 2010; Berghänel et al., 2011a) and mirror the low ag-

gression rate (Kalbitzer et al., 2015). Stable pair bonds (Goffe et al., 2016), non-seasonal reproduction 

(Boese, 1973), and the lack of  rank (chapter 3 and 4, section 5.3.2), suggest rank-changing coalitions 

are not as profitable and may also be limited by male time budget constraints (discussed in Ostner 

and Schülke, 2014). Indeed, while strongly bonded males cooperate more (chapter 4), bond strength 

and number of  friends are not positively linked with number of  associated females or sired offspring 

(chapter 4). Though my study is limited to two years, this study duration is equal to the case of  

Schülke and colleagues (2010), who show direct fitness benefits in male Assamese macaques. Com-

pared to other species, my results show sociality need not be directly linked to increased short-term 

 82



General Discussion

reproductive success, though why male Guinea baboons engage in coalitions, and whether these con-

fer benefits in the long-term, remains unclear.  

Males are thought to exclusively compete over fertilization, while females compete over other re-

sources, but a recent review points out that this dichotomy is overly simplistic (Li and Kokko, 2019). 

Food and other resources may limit females as well as males, and females may also compete over ac-

cess to mates (Li and Kokko, 2019). Strong bonds and cooperation can benefit males beyond repro-

ductive success. Male–male social bonds may promote efficient cooperation and coordination (Melis 

et al., 2006; Massen et al., 2010), which are key to more fluid societies where males cooperate within 

parties as well as across social levels (Patzelt, 2013; Patzelt et al., 2014). Strong bonds and sociability 

are linked to anti-predator behavior and stronger responses to recruitment alarm calls (Micheletta et 

al., 2012; Josephs et al., 2016; Kern and Radford, 2016) and efficient cooperation is crucial during 

cooperative hunting (Drea and Carter, 2009; Samuni et al., 2018a). In fact, male Guinea baboons co-

operate in predator defense and chase predators away in groups (Patzelt, 2013 personal observation), 

and cooperation may increase tolerance during feeding (Tiddi et al., 2011; Dubuc et al., 2012) and 

meat sharing (Wittig et al., 2014; Goffe and Fischer, 2016; Samuni et al., 2018b). Enhanced agonistic 

support can result in decreased risk of  injuries (Ostner and Schülke, 2018 p. 147), which would ex-

plain the rarity of  injuries in this species (Kalbitzer et al., 2015). Overall, male–male sociability may 

reduce aggression and its costs, and result in more time available for pair bonds, which are not main-

tained by coercion (Fischer et al., 2017). 

5.5 The female perspective and the influential role of  pair bonds  

In species characterized by some degree of  female choice, females may prefer males with strong al-

liances as this could reduce harassment from other males and infanticide (Smuts and Smuts, 1993; 

Rubenstein, 1994; Snyder-Mackler et al., 2012; Chowdhury et al., 2015). However, while Guinea ba-

boons present a degree of  female leverage in intersexual relationships (Fischer et al., 2017), my results 

show that males with more friends and higher bond strength and, consequently, higher levels of  sup-

port (see above) are not associated with more females (chapter 4). Unlike geladas or hamadryas ba-

boons (Snyder-Mackler et al., 2012; Chowdhury et al., 2015), females may not gain much from prefer-

ring males with strong bond, which can positively influence takeover outcomes (Altmann, 1990; 

Smuts and Smuts, 1993), as competition is low, takeover occurrence is rare, and infanticide is nonexis-

tent (Kalbitzer et al., 2015; Goffe et al., 2016). Females may instead prefer males that provide higher 

levels of  affiliation and spatial freedom (Goffe, 2016) or, as recently reported in mountain gorillas 

(Rosenbaum et al., 2018), males that care more for offspring. Males also frequently intervene in ago-

nistic disputes to support their females (Faraut & Dal Pesco, personal observation). Males that pro-

vide such support may also be favored, as reported for rhesus macaques and vervet monkeys (Kulik 

et al., 2012; Arseneau et al., 2015). 
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One of  the most interesting findings from my thesis is that males with stronger bonds have signifi-

cantly lower numbers of  associated females, instead of  having a positive effect on short-term male 

reproductive success (chapter 4). Through a post-hoc analysis I additionally show that males with 

more associated females actually spend a significantly lower proportion of  time socializing (grooming 

and contact-sitting) with other males (chapter 4). Guinea baboon males appear to face a trade-off  

between investments in same-sex bonds and heterosexual ones. Evidence of  pair bonds influencing 

same-sex bonds is now reported for female olive baboons (Silk et al., 2017) where pair bonds are cru-

cial in parental care and, during certain female reproductive stages, future male mating success 

(Städele et al., 2019). Male friends shared between females cause female–female bonds to be less bi-

ased toward kin and peers than in other savannah baboons (Silk et al., 2017). Stable pair bonds in 

chimpanzees are also linked to future paternity, suggesting male mating effort can be crucial to the 

emergence of  pair bonds (Langergraber et al., 2013).  

Stable male–female social and breeding bonds in Guinea baboons are of  high value for primary males 

as they confer direct fitness benefits, resulting in 98.6% of  copulations (Goffe et al., 2016) and 89.5% 

of  paternities (chapter 4). As reproduction is non-seasonal (Boese, 1973) and male interactions with 

females are independent of  reproductive state (Goffe et al., 2016), investment in heterosexual bonds 

must be continuous and year-round. While the dynamics of  female transfers are unclear due to rare 

direct observations, transfers do occur across all social levels, usually involve individual females, and 

are unambiguous, with females showing immediate preferences for new male partners (personal ob-

servation; Goffe et al., 2016). The period following a transfer is usually characterized by high rates of  

mutual affiliation and close proximity between newly established partners (Goffe, 2016), likely neces-

sary in establishing the new bond. As male time budget is limited by other activities such as feeding or 

traveling (Dunbar, 1992), social investment in bonds with females is restricted by the time devoted to 

other social partners (Dunbar, 2004; Lehmann et al., 2007) and investment in each female may also be 

affected by the total number of  associated females. Several reports indicate that a female transferring 

to a new unit can be followed shortly by one of  the resident females of  this new unit transferring 

away to another unit (personal observation; Goffe, 2016). High social investment in newly acquired 

females could mean decreased investment in relationships with already bonded females either directly 

causing them to leave or, indirectly, by allowing them to socialize with other males due to decreased 

vigilance. In a few cases a female transfer occurred directly after a short period of  repeated aggres-

sion between a female and her primary male (personal observation), indicative of  decreased bond 

quality. While systematic long-term investigations of  the influence of  pair bond quality and/or mate 

choice on female transfers are needed, this is not unprecedented. In experimental studies on 

hamadryas baboons, female social preference for the leader male lead to fewer takeover attempts by 

other males (Bachmann and Kummer, 1980). 
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The fact that inter-sexual dynamics are not simply established by coercion in Guinea baboons further 

strengthens the importance of  pair bond quality. Rates of  aggression towards females are less than 

half  of  those in geladas and hamadryas baboons (Goffe et al., 2016) and repeated herding behavior 

and “conditioning” of  newly acquired females (as reported in hamadryas baboons Swedell and 

Schreier, 2009) does not occur (Goffe, 2016). On the contrary, pair bonds are characterized by high 

levels of  tolerance (Goffe, 2016; Fischer et al., 2017). Males maintain proximity to their females, but 

females interact with secondary males, have high levels of  spatial freedom, and respond to male ag-

gression with occasional counter-aggression and female–female coalitions (Goffe, 2016; Goffe et al., 

2016; Fischer et al., 2017). Thus, in this fluid and tolerant society where females play an active role in 

intersexual relationships, stable and strong pair bonds may require higher levels of  male investment in 

the form of  affiliation and vigilance, which impose increased limitations on time budget.  

5.6 Male–male relationship dynamics and potential benefits 

Male investment in bonds with males depend on time devoted to other influential activities such as 

sexual consortship or stable bonds with females (Weingrill et al., 2003; Ostner et al., 2013; Girard-

Buttoz et al., 2014b; Schülke et al., 2014; Goffe et al., 2016; Haunhorst et al., 2016), offspring care 

and protection (Buchan et al., 2003; Arseneau et al., 2015; Baniel et al., 2016; Minge et al., 2016; 

Rosenbaum et al., 2018; Städele et al., 2019), and foraging and resting (Dunbar, 1992; Dunbar et al., 

2009; Bettridge et al., 2010; Korstjens et al., 2010; Kulahci et al., 2015). Accordingly, while partner 

preference is stable over time in Guinea baboons, time invested in socializing with other males is neg-

atively affected by number of  associated females (chapter 4). Similar effects are seen in male Barbary 

macaques that also form strong bonds (Young et al., 2014b) with investment in male–male affiliative 

relationships dropping during the mating season (Berghänel et al., 2011b, 2011a; Young et al., 2014b). 

My findings show this effect is not restricted to seasonally breeding species and raises new questions 

regarding if/how these relationships are maintained over time. Several reports of  males engaging in 

frequent affiliation with males close to their unit following the loss of  their primary status indicate 

these relationships could be maintained over time (unpublished data). 

As grooming is time consuming (Dunbar, 2004; Lehmann et al., 2007), different behavioral strategies 

to maintain group cohesion and bonds may be necessary (Dunbar, 2004; Lehmann et al., 2007; Arlet 

et al., 2015; Kulahci et al., 2015; Kalbitz et al., 2017). In Japanese macaques and ringtail lemurs, vocal 

exchanges complement grooming and function as an “at distance” bonding mechanism to overcome 

time constraints and spatial separation (Arlet et al., 2015; Lemur catta: Kulahci et al., 2015). Ritualized 

triadic male-infant interactions are proposed to be most efficient in maintaining bonds in Assamese 

macaques due to their quick and mutual nature (Kalbitz et al., 2017). Guinea baboon males similarly 

exchange ritualized greeting interactions (chapter 3) that involve potentially costly exchanges 

(Whitham and Maestripieri, 2003) such as mutual manipulation of  the genitalia (chapter 3). It is ar-
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gued that these ritualized exchanges constitute honest affiliative signals due to their high potential 

costs and are used to test relationship strength (Whitham and Maestripieri, 2003; p. 856). I similarly 

find that the most intense forms of  male–male ritualized greetings are more likely to occur between 

dyads with higher affiliation rates (chapter 3). Due to their brief  and stylized nature, greetings may be 

an ideal behavioral strategy for Guinea baboon males to assess and maintain relationships after ac-

quiring their own unit. Examining how the dynamics of  male–male greetings and other behavioral 

exchanges play out over time and in relation to social status will be crucial to reveal whether relation-

ships persist throughout male “reproductive careers”. 

Reproductive success in Guinea baboons most likely depends on the number of  associated females 

and the length of  each of  these associations, as well as on how early in life males can acquire a unit 

and how long they maintain primary male status (also see Alberts, 2012 for a review on primates). In 

our population, secondary males are typically either adolescents or older males (chapter 4, also see 

Goffe et al. 2016). Virtually all males in their prime have their own unit and it is very rare to observe 

prime males without associated females (personal observation, chapter 4). Once primary status is es-

tablished, males tend to maintain this status until post-prime/old age, when they start losing their fe-

males one by one (personal observation, chapter 4). The fact that pair bonds require stable year-

round investments independent of  reproductive state (Goffe et al., 2016) suggests there may be an 

upper limit to the number of  females a male can successfully associate with (see section 5.5). Thus, 

establishing units as early as possible and extending the reproductive lifespan as long as possible may 

be the main factors influencing male reproductive success. While male–male sociality does not in-

crease the number of  associated females in the short-term, it may be that strong bonds are beneficial 

in the form of  early unit establishment, delayed loss of  primary status, or number of  females over the 

entire reproductive lifespan. Guinea baboon males could also adopt different long-term reproductive 

strategies, as described in horses (Feh, 1999), that are, in turn, affected by factors such as female 

choice and sex ratio (i.e. female availability). Successful primary males may opt for a “solo strategy” 

by not heavily investing in strong bonds with other males and focusing their social effort almost ex-

clusively on females. Alternatively, primary males that are not successful with a solo strategy may be 

better off  maintaining relationships with other males (i.e. “social strategy”) while balancing time in-

vested in females. This alternative strategy may make the best of  a bad situation or even confer dif-

ferent benefits in the form of  tolerance and support from strongly bonded males and result in longer 

breeding tenure. Male strategies can also vary during life history with investment in strong bonds and 

cooperation being most crucial at specific ages. In Barbary macaques the frequency of  coalitionary 

support is age-dependent, with males relying more heavily on cooperative strategies during their post-

prime phase (Rathke et al., 2017). The fact that female unit size affects male bonds (chapter 4) makes 

this a possibility in Guinea baboons as well. If  male strategies depend on age and stage of  the repro-
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ductive career, this could explain the lack of  a link between male bonds and short-term reproductive 

success in my results and require separate examinations at each of  the different life stages. 

5.7 An evolutionary perspective 

Several theoretical frameworks have been developed to explain the great diversity of  social systems in 

the genus Papio and the emergence of  multilevel societies in hamadryas and Guinea baboons (Grueter 

et al., 2012). According to ecological models, nested societies evolved from ancestral multi-male mul-

ti-female groups in response to harsh environmental conditions, such as semi-desert habitat in the 

case of  hamadryas baboons, where sparse and scarce food resulted in small female groups that could 

be monopolized by a single male (Kummer, 1968; Henzi and Barrett, 2003, 2005; Swedell and Plum-

mer, 2012; reviewed in Grueter et al., 2012). Stable one-male units, characterized by male herding be-

havior, then emerged to benefit from the advantages of  permanent consortships (Bergman, 2006), 

which include high paternity certainty and reduced infanticide (Henzi and Barrett, 2003, 2005; re-

viewed in Grueter et al., 2012). While fission would be key during foraging, several units aggregating 

regularly near sleeping sites and water resources, or due to predation pressure, led to the formation of  

higher, nested social levels (Grueter et al., 2012). While intriguing, models based only on ecological 

factors fail to explain the emergence of  Guinea baboon multilevel societies in a wide range of  diverse 

habitats (Jolly, unpublished manuscript; Galat-Luong et al., 2006). Moreover, multilevel social systems 

did not emerge in chacma or olive baboons even though several chacma baboon populations live in 

semi-desert habitats and olive baboon populations occur in habitats similar to Guinea baboons (Jolly, 

unpublished manuscript; Grueter et al., 2012). 

An alternative was proposed by Jolly (2007, 2009; unpublished manuscript) in his “frontier hypothe-

sis”, which argues that hamadryas and Guinea baboon societies emerged primarily as a result of  de-

mographic factors. A rapid northward expansion into uncontested baboon-free territory resulted in 

high population growth and favored male philopatry in frontier areas where few and distant neigh-

boring groups resulted in higher migration costs (Jolly, 2009; Jolly, unpublished manuscript). Male 

philopatry would be additionally enforced via joint defense with related males against potential immi-

grants (Jolly, 2009). The occupation of  baboon-free territories enabled the emergence of  larger 

groups, which resulted in lower inbreeding risks (Jolly, 2009). Groups would split to forage in periods 

of  poor ecological conditions, but subgroups would interact regularly at sleeping sites and water 

places to maintain critical group breeding size (Jolly, 2009). This led to the multilevel social systems 

of  hamadryas and Guinea baboons (Swedell and Plummer, 2012; Patzelt et al., 2014). In these large 

groups male philopatry facilitates the emergence of  cooperation and tolerance between related/famil-

iar males (chapter 4; Städele et al., 2016; Fischer et al., 2017), while the multilevel social structure re-

duces the costs of  female dispersal due to familiarity between different levels of  the society (Kopp, 

2015; Städele et al., 2015; Fischer et al., 2017). It is within these larger groups that hamadryas and 
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Guinea baboon pair bonds evolved (Swedell and Plummer, 2012; Chowdhury et al., 2015; Goffe et 

al., 2016; also see chapter 4). Henzi and Barrett (2003, 2005) hypothesized that these associations 

originated from intense and continuous male mate guarding of  small female foraging groups. This led 

to high paternity certainty, which forced males to stay close to prevent infanticide. Bergman (2006) 

also found evidence for these pair bonds emerging as a result of  permanent consortships and argued 

that frequent subgrouping led males to develop following and herding strategies outside the fertile 

phase. Grueter and colleagues (2012) hypothesized that male–female bonds emerged as a response to 

life in large groups with many unfamiliar males, which led females to opt for opposite-sex associa-

tions for protection from harassment and infanticide. While these scenarios start from different as-

sumptions, they lead to similar outcomes, with stable pair bonds benefitting both females and males 

(Bergman, 2006).  

According to Jolly, both hamadryas and Guinea baboons are thought to have evolved from popula-

tions at the frontier (Jolly, 2009). Guinea baboons are likely more similar to the ancestral frontier 

populations, while hamadryas baboons are adapted to the harsher semi-desert habitats of  the Horn 

of  Africa (Jolly, unpublished manuscript). In these conditions subgroups would be smaller compared 

to those in less harsh habitats, such as Guinea baboons, resulting in spatially segregated polygynous 

reproductive units characterized by male herding behavior (see above; Jolly, unpublished manuscript). 

At the time Jolly proposed his theory, data on individually identified wild Guinea baboons were not 

available. Now the evidence from our population supports Jolly’s model (2007, 2009; unpublished 

manuscript). Similar to hamadryas baboons (Swedell and Plummer, 2012; Städele et al., 2015), Guinea 

baboons live in multilevel societies characterized by female-biased dispersal and stable units (Patzelt et 

al., 2014; Kopp et al., 2015; Goffe et al., 2016; Fischer et al., 2017). In both species female–female 

associations are primarily affected by unit membership (Schreier and Swedell, 2009; Goffe et al., 

2016), while association and bonding between related/familiar males constitute the core of  these so-

cieties (chapter 4; Städele et al., 2016; also see discussion in Fischer et al. 2017). Moreover, both 

species lack male agonistically-enforced rank, have lower male–male aggression rates, as well as 

greater tolerance compared to other members of  this genus (chapters 3 and 4; Kummer, 1997; 

Swedell and Plummer, 2012; Patzelt et al., 2014; Kalbitzer et al., 2015; Fischer et al., 2017), possibly 

due to the high potential costs of  fighting (Henzi and Barrett, 2003). 

Results from our population additionally support Jolly’s idea that differing social strategies likely re-

flect different ecological conditions (Jolly, unpublished manuscript). Likely due to adaptation to more 

arid habitats, contemporary populations of  hamadryas baboons are strictly modular with high fission-

fusion dynamics, while contemporary populations of  Guinea baboons show weaker fission-fusion 

dynamics (Grueter et al., 2012) and a fluid social system (chapter 4, sections 5.2 and 5.3, also see 

Grueter et al. 2012). Although comparative behavioral studies such as between chacma and Guinea 

baboons (Kalbitzer, 2014; Kalbitzer et al., 2015) are lacking between hamadryas and Guinea baboons, 
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findings suggest differences in spatial and behavioral patterns. Combined with my findings, Guinea 

baboons seem to present higher levels of  spatial tolerance and affiliation than hamadryas baboons 

(chapters 3 and 4, section 5.3). Recent comparisons of  African and Asian elephants find that higher 

availability of  resources in more mesic habitats, combined with increased social fluidity in the latter 

species, led to less despotic and hierarchical social dynamics (Loxodonta africana and Elephas maximus: 

de Silva et al., 2017). Similar factors, combined with differentiated cooperation and strong bonds, may 

have facilitated the emergence of  the relaxed and tolerant system of  Guinea baboons. The differing 

features and functions of  ritualized behaviors in the two species (see section 5.2) also support this 

conclusion. Ritualized greetings in hamadryas are less elaborate and intense and are usually associated 

with male status (Colmenares, 1990, 1991b). These interactions tend to occur in aggressive and com-

petitive contexts and function as a tension buffering mechanism (Colmenares, 1991b; Colmenares et 

al., 2000). Guinea baboon greetings are more elaborate, intense and reciprocated (chapter 3). Most 

importantly, these interactions are not linked to tension or competition, but function to signal party 

membership and assess relationships quality (chapter 3). If  Guinea baboons evolved from similar 

frontier populations (Jolly, 2009; Jolly, unpublished manuscript) characterized by large multilevel soci-

eties, greetings would have been key in regulating relationships between the numerous males in this 

fluid system. As I show for a contemporary population (chapter 3), greetings indeed function to de-

lineate social levels and party membership. This parallels human intense and extreme rituals, which 

are used to signal membership and commitment or in-group values and are linked to the emergence 

of  cooperation and prosociality (Sosis and Bressler, 2003; Boyd, 2006; Henrich, 2009; Xygalatas et al., 

2013). Similarly, the most intense and mutual ritualized greeting behaviors are associated with higher 

levels of  male–male tolerance and cooperation in the genus Papio (chapter 3; also see Henzi et al., 

2008; De Marco et al., 2014; De Marco, 2017a). At this stage, however, it is not clear whether intense 

and ritualized interactions and higher levels of  spatial tolerance and cooperation emerged in response 

to similar evolutionary forces, or one feature promoted the emergence of  the other in Guinea ba-

boons. 

Stable pair bonds also evolved in the mesic and rich habitat of  Guinea baboons (Goffe et al., 2016; 

Fischer et al., 2017), but with different features than hamadryas baboons (Swedell and Saunders, 

2006; Swedell and Schreier, 2009). One of  the most striking differences is the fact that infanticide  

episodes were not observed and therefore seem to be extremely rare or absent (Goffe et al., 2016). In 

Guinea baboon societies, where males are predominantly philopatric and male immigration is rare 

(Kopp et al., 2015), the threat of  infanticide from immigrant males from outer levels of  the society is 

virtually absent. Furthermore, rare “would-be” immigrants are outnumbered by long-term resident 

males who could all be the potential fathers of  these offspring. As the mesic and less arid environ-

ment of  Guinea baboons led to less frequent subgrouping, monopolization of  female groups (result-

ing in more certain paternities) would have been less straightforward compared to hamadryas ba-
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boons, which present frequent subgrouping, intense male coercion, and lower levels of  spatial toler-

ance between units. In conjunction with the higher levels of  spatial tolerance and the more fluid so-

cial system (allowing more female freedom, discussed in Fischer et al. 2017) this may have resulted in 

less certain paternities compared to other baboon species. Combined with male philopatry infanticide 

would not have constituted a beneficial strategy and could have had detrimental effects on indirect 

fitness benefits.  

Another striking difference of  Guinea baboon pair bonds is the lack of  intense male coercion and 

herding behavior typical of  hamadryas baboons (Swedell and Schreier, 2009). Relatedness between 

male competitors is argued to relax competition and decrease levels of  harassment and aggression 

towards females, which otherwise have detrimental effects on female reproductive success and male 

indirect fitness benefits (Rankin, 2011; Wild et al., 2011; Pizzari and Gardner, 2012; Pitnick and Pfen-

nig, 2014). Although there is a lack of  research on the fitness consequences for females, recent re-

search on fruit flies found that relatedness reduced male–male competition and led to less aggressive 

courtship behavior and slower female reproductive senescence (Drosophila melanogaster: Carazo et al., 

2014; also see Pitnick and Pfennig, 2014). Even more interesting, a study trying to replicate these 

findings, found that relatedness alone is insufficient to explain the reduced harassment towards fe-

males and, instead, results from higher familiarity between males reared in the same environment 

(Hollis et al., 2015). This could hint at male–male familiarity in more fluid societies facilitating the 

development of  lower levels of  competition and leading to a lack of  intense herding behavior in 

Guinea baboons. Sexual coercion may constitute a good reproductive strategy for hamadryas ba-

boons, but for Guinea baboons that inhabit less extreme conditions, intense male coercion and herd-

ing is too costly for both females (Beehner et al., 2005; Engh et al., 2006b; Sundaresan et al., 2007; 

Wittig et al., 2008; Swedell and Schreier, 2009; Swedell et al., 2014; Baniel et al., 2017; Zipple et al., 

2017) and males (Alberts et al., 1996; Girard-Buttoz et al., 2014b, 2014a; Lukas et al., 2014). The lack 

of  intense female coercion and herding behavior combined with the tolerant social style (Fischer et 

al., 2017), likely resulted in the higher levels of  spatial freedom and female leverage in intersexual rela-

tionships (Smuts and Smuts, 1993) observed in Guinea baboons (Goffe et al., 2016). While my thesis 

confirms the role for pair bonds in male Guinea baboons due to the high proportion of  sired off-

spring within-units (chapter 4), detailed information regarding female choice and male–female associ-

ation dynamics (including transfers) are still unclear. Moreover, the potential influence of  female qual-

ity and male mate choice in these dynamic remains unexplored. My findings, nevertheless, suggest 

high relationship quality may play a crucial role in these pair bonds (section 5.5). 
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7. Conclusions and Outlook 

By using data on social behavior, genetic relatedness and paternity from adolescent and adult males, 

my thesis provides the first systematic investigation of  the adaptive benefits of  male–male sociality 

and of  the function of  male–male ritualized greeting behavior in wild Guinea baboons. Ritualized 

greeting behavior plays a key role in regulating male social dynamics, signaling commitment within 

parties, testing relationships with spatially tolerant partners, and accentuating relationship strength 

between highly affiliated males. I describe how greetings balance the costs of  male co-residence while 

maintaining group cohesion in this fluid multilevel society. I contribute to current debates regarding 

associations between ritualized behaviors and social systems by showing that Guinea baboon greet-

ings occur independent of  competitive context and are more intense and mutual than in less coopera-

tive and tolerance species. This reinforces the theory that rituals developed in parallel with higher lev-

els of  cooperation and reduced aggression in both non-human primates and humans. 

I contribute to existing evidence that male–male bonds form in species with stable male co-residence 

and low contest potential and are linked to greater levels of  cooperation. I also show that, while kin-

ship facilitated the evolution of  bonds, it is likely not a prerequisite. This corroborates recent asser-

tions that mutualistic processes are a more likely mechanism in the evolution of  social bonds. How-

ever, while male bonds and cooperation result in substantial fitness benefits in many mammalian 

species, I show no positive link between male–male sociality and short-term reproductive success. 

Instead, this first investigation into male Guinea baboon paternity shows the value of  pair bonds in 

securing high paternity certainty. The importance of  pair bonds and relatively high female leverage 

result in males shifting investment towards intersexual relationships resulting in a decrease in time 

spent socializing with other males. My thesis provides an important contribution to the field and our 

understanding of  the Guinea baboon social system. My findings also highlights unresolved questions 

and new avenues for investigation.  

Understanding male–male relationship dynamics over life history and in relation to reproductive sta-

tus is necessary to assess if/how bonds are maintained over time. I discussed (section 5.6) how in-

tense greetings could be crucial to relationship maintenance. It would be important to determine 

whether changes over time in directionality and symmetry of  grooming and approaches are affected 

by male reproductive status of  either partner. While I show investment in male–male affiliation is in-

fluenced by changes in associations with females, whether this pattern holds for coalitionary support 

is not yet known. It would also be key to test whether primary males are differentially interested in the 

affiliative or scream vocalizations of  friends versus non-friends. Playback experiments could be used 

to test reactions to vocalizations of  “ex-friends” (i.e. top partners during adolescence) versus “non-

ex-friends” (i.e. less connected partners during adolescence). 
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My results also open new questions regarding female choice and pair bond dynamics. In particular, 

what female Guinea baboons are attracted to and what factors affect transfers. Possible avenues of  

investigation are to test whether females favor males that provide more conflict support, affiliation, 

tolerance, or infant/yearling care. Investigating the effect of  potential signals of  status, such as mane 

size and hind-quarter coloration, have on female association and reproductive success could help de-

termine if  these advertise male condition, which would highlight a shift from fighting-related physical 

features. Lastly, it is fundamental to investigate if  pair bond quality plays a role in these associations 

by testing if  male investment in affiliation and/or vigilance have an effect on female transfers. To 

achieve this, long-term data could be used to investigate social dynamics in both pre- and post-trans-

fer units and variations in the frequency and equitability of  grooming and approaches with the prima-

ry and other males. Analyses should also include variations in relative frequencies of  affiliative and 

hostile behavior (tenor), comparing pair bonds at 0 month, 3 months and 6 months before transfers. 

While I investigated the short-term reproductive benefits of  sociality in male Guinea baboons, the 

potential long-term benefits remain unclear. Male sociality may result in enhanced fitness in the form 

of  females, offspring and tenure length over the entire reproductive lifespan. Moreover, using cross-

sectional data from the start and end of  male reproductive careers could uncover if  more social males 

gain benefits through early unit establishment or delayed unit loss. It may be that relationships com-

bat the detrimental effects of  isolation regardless of  the sex of  the social partner. Indeed, an unex-

plored area of  Guinea baboon research is any link between sociality and physiological responses to 

social and environmental stressors. One could test whether “social isolation”, measured as lower in-

teraction rates with females, infants, and other males, affects glucocorticoid levels. The physiological 

and social responses to the loss of  a close social partner could also highlight the role of  social ties in 

this species and how individuals cope with drastic changes in social dynamics. Lastly, environmental 

stressors, such as the harsh dry seasons and droughts observed in recent years, may serve to examine 

the effects of  climate change and whether individuals with higher levels of  sociality and support are 

more resilient to such changes. 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…and thank you to the Guinea baboons! 


	1. Summary
	2. General Introduction
	2.1 The evolution of group-living
	2.2 The adaptive value of sociality
	2.3 Life in multi-male groups
	2.4 Male reproductive strategies
	2.5 Male bonding and male–male ritualized greeting behavior
	2.6 Guinea baboons as a model species
	2.7 Project aims
	3. Study I
	4. Study II
	4.1 Abstract
	4.2 Introduction
	4.3 Materials and methods
	4.4 Results
	4.5 Discussion
	4.6 Acknowledgments
	4.7 Compliance with ethical standard
	4.8 Ethical approval
	4.9 Data availability
	4.10 Supplements
	6. General Discussion
	5.1 Summary of results
	5.2 Ritualized greeting behavior in a tolerant multilevel society
	5.3 The tolerant baboon: male–male sociality, kinship, and competition
	5.4 The adaptive benefits of male–male sociality
	5.5 The female perspective and the influential role of pair bonds
	5.6 Male–male relationship dynamics and potential benefits
	5.7 An evolutionary perspective
	7. Conclusions and Outlook
	8. References
	9. Table of Figures
	10. Table of Tables
	11. Acknowledgments
	12. Curriculum Vitae

