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Abstract

Active matter is everywhere, from macroscopic to microscopic scales, we find systems such
as human crowd or flock of birds as well as bacterial colonies. These systems composed of
particles are able to convert their surrounding energy into motion, and naturally exist out of
thermodynamic equilibrium. At the microscopic scale, a specific class of active particles is
particularly interesting: called microswimmers, these are biological or artificial micro-sized
particles able to move in a fluid, such as bacteria or chemically driven Janus particles. In
nature, these microswimmers rarely swim alone and can exhibit intriguing collective behav-
ior at interfaces such as cluster formation, as well as swarming, swirling, raft and biofilm
formation. The fundamental mechanisms of the emergence of collective behavior for living
and inanimate active systems is not yet understood, especially because these systems are far
from equilibrium, where our experimental and theoretical understanding is limited.

This thesis aims to elucidate the impact of the activity on the emergence of collective be-
havior in an active system, at a microscopic level, by using a stochastic approach, over three
works, from active sedimenting particles to early biofilm formation in the case of the bacteria
Pseudomonas aereginosa, via the aggregation formation for the micro-algae Chlamydomonas
reinhardtii.

The first work describes the sedimentation profile of one active particle as a function of its
activity, in three dimensions under the influence of the gravity. The system is described
in terms of two overdamped Langevin equations for the position and the orientation of
the particle. From these equations the associated Fokker-Planck equation is derived. In
this work, we developed an analytical method to study the sedimentation profile and the
analytical solution of the Fokker-Planck equation in 3D for an active particle under gravity
and with a confining wall is derived. We recovered experimental results: first in the steady-
state the sedimentation profile given by an exponential decay of the density profile; second,
the change of the length of the sedimentation by increasing the activity. This analytical
method gave a direct access to the transient dynamics and kept the coupling between the
position and the orientation. In order to study many interacting particles, we developed
active Brownian particles simulations. By comparing the analytical solution for one active
particle to the one obtained from the simulations and experimental results (Janus colloids),
we have shown that our analytical solution was also valid in the dilute case. In addition, the
simulations show the emergence of collective behavior as function of the activity.

The second work characterizes the aggregation of active particles. By means of active Brow-
nian particles simulations, we studied the aggregation phenomena of active particles, for
different activities, under confinement. Moreover, recent experimental results (in the case
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of the algae C. reinhardtii) have shown that the phenomenon could not be described by a
Motility-Induced Phase Separation (MIPS) model and the need of a new model was required.
By varying the activity as well as the diffusion coefficients as functions of the local cell den-
sity and in the case of many interacting active particles, we observed in the steady state
regime the emergence of collective behavior such as an aggregation of particles at the center
of the compartment or a ring pattern. We show that the use of active Brownian particles
simulations designed to describe the effect of the local cell density and confinement on the
dynamics re-create the patterns observed in the experiment.

Finally, we studied the early stage biofilm formation in the case of two canonical strains of the
bacteria family P. aereginosa, PA01 and PA14. Before forming a bacterial biofilm community,
it is commonly observed that free-swimming bacteria initially undergo a phase known as
“reversible attachment”, a random and variable lag period of transient cell attachment.
The population dynamics was described with a ‘birth and death’ process with a temporal
dependence of the rates. These rates describe the reversible attachment by a division rate
and a detachment rate. The division rate was described in terms of lineage time, meaning
the time that the lineage stay continually on the surface. As a conclusion, our results unified
disparate findings in the literature regarding early events in biofilm formation for PA01 and
PA14. Moreover, we have shown that our model gave a framework to characterize different
surface colonization strategies which lead to biofilm formation.
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“Il avait toujours cru que la théorie sortait de l’expérience. Il pensait que les contradictions
entre la théorie et de nouvelles expériences menaient naturellement à l’élaboration d’une

nouvelle théorie, plus large que la précédente.
[...]

La théorie, semblait-il, était née librement du libre jeu de l’intelligence et c’était ce libre jeu
qui se serait comme détaché de l’expérience, et qui avait permis de trouver une explication

à toute la richesse des résultats expérimentaux anciens et nouveaux.
[...]

Et curieusement, dans sa tête de physicien, les processus du monde matériel n’étaient le
reflet de lois engendrées dans le désert mathématique. Dans l’esprit de Sturm, ce n’était
pas la mathématique qui était le reflet du monde, mais le monde qui était une projection

d’équations différentielles, le monde était le reflet de la mathématique”.

— ‘Vie et Destin: roman’. L’age d’homme (2018) p.465-466, Vassili Grossman

“Nobody ever figures out what life is all about, and it doesn’t matter. Explore the world.
Nearly everything is really interesting if you go into it deeply enough.”

— Richard P. Feynman
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Chapter 1

Introduction

Active matter is everywhere. The most obvious examples are living matter, Fig. 1.1:
animals, algae and bacteria, but also inanimate systems, such as vertically vibrated granular
layers, are considered active, and there are many parallels between the behavior of active
and driven matter. We can find active systems also at the mesoscopic scale, such as flocks
of birds or schools of fishes. In the last decades, a significant effort has been made to push
toward this fascinating field and develop its applications in a broad area of topics such as
statistical physics [1, 2], biology [3], soft matter [4, 5], robotics [6]. Among these topics, active
matter has been intensively studied, from many different approaches, such as the dynamics of
microswimmers at low Reynolds numbers [7, 8, 4, 5], which measures quite generally the ratio
between inertial and viscous forces, or the biological implications of collective motion like
school of fishes and flocks of birds [9]. Both can be described by using a stochastic approach
[10, 2, 11, 1]. An important characteristic of active matter systems is the effect of the random
fluctuations, from the surrounding environment to internal mechanisms, on their individual
motion. We can see these fluctuations as a result of abstract decisions, interactions with
the surrounding media, or even between particles, like for instance in a human crowd. In
the following, the general modelling approach is based on the theory of stochastic processes,
especially the Master equation, the Langevin equations and the corresponding Fokker-Planck
equations (FPE) for the evolution of the probability density distribution of finding a particle
at time t in a position between x and x+ dx, will be used.

Equilibirum - Nonequilibrium. Let us first take a step back and describe the motion of
one passive particle as a simple random walk [12, 13]. The position of the particle x(t) takes
values at each time t over a set of N states, S = {1, ..., i, ..., N}, with periodic boundary
conditions at the edges A and B. The particle can move to the right or to the left, by
jumping in a unit time step from site i to site i + 1 with a rate Pr or to site i − 1 with

13



14 CHAPTER 1. INTRODUCTION

Vicsek, T., & Zafeiris, A. (2012). Collective motion. Physics reports, 517(3-4), 71-140.

Hall-Stoodley, L., Costerton, J. W., Stoodley, P. (2004) Nature reviews microbiology, 2(2), 95.

Macroscopic Mesoscopic Microscopic 
Figure 1.1 – Active matter is everywhere. From macroscopic to microscopic scales, we find
systems such as human crowd or flock of birds as well as bacterial colonies, which are classical
examples of active matter.1

a rate Pl, as shown in Fig. 1.2. The quantity that we want to look at is the probability
distribution ν(x(t) = xi), that x(t) is in the state i at time t. When, there is no input
from the surrounding environment, the rates are taken equal Pl = Pr and the probability
distribution is found constant over time or invariant, there is no net flux of probability in
the system and the detailed balance is satisfied: the system is said to be at the equilibrium.

However, now let us assume that close to the edge B, the sun rises. The particle can
take energy from the surrounding environment, convert it into motion and start to move
toward this light source, as shown in Fig. 1.3. As a result, the probability distribution
is found invariant but the rates Pl and Pr change and are not anymore equal, Pl < Pr.
Therefore, there is a net flux of probability in the system and the detailed balance is not
satisfied anymore: the system is said to be out of equilibrium. This system can be taken
as a heuristic definition of active matter. These two simple examples illustrate firstly a
difference between ‘passive’ and ‘active’ particle, and secondly their statistical description,
either equilibrium or nonequilibrium.

1Reprinted from Physics Report, 517(3-4), Vicsek, T. & Zafeiris, A: ’Collective motion’, 71-140, copyright
2019, with permission from Elsevier. DOI: 10.1016/j.physrep.2012.03.004. Reprinted from Nature Reviews
Microbiology (Hall-Stoodley et al., Nature Reviews Microbiology volume 2, pages 95-108(2004)), copyright
2019, with permission from Springer Nature.DOI: 10.1038/nrmicro821
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A B

Pl Pr

Detailed Balance / Equilibrium

Pl = Pr


No net flux
Periodic boundary 
conditions

Passive Particle

Figure 1.2 – Passive Particle - Equilibrium. Motion of one particle describing by a simple
symmetric (Pl = Pr) random walk, with periodic boundary conditions at the edges A and
B. There is no net flux of probability through the system, the detailed balance is satisfied:
the system is said to be at the equilibirum.

Active matter a definition. More precisely, active matter can be specifically defined as
[11, 1, 10, 9, 2] systems composed of particles able to convert their surrounding energy into
motion, and naturally exist out of thermodynamic equilibrium by breaking the time-reversal
symmetry and thus the detailed balance.

Different active particles. One specific class of active particles at the microscopic scale
drew my attention. They are called microswimmers and we can distinguish two main classes:
biological and artificial. Microswimmers have two main categories of propulsion mechanisms
[14, 15]: they can be powered by local conversion of energy (e.g. catalytic processes) or they
can be driven by external (e.g., electric, magnetic, acoustic) fields. There exist an important
distinction between internally driven active matter and particles that are brought out of
equilibirum by external fields: while microswimmers powered by these two mechanisms
feature a motion that can be described with similar effective models, they present quite
different microscopic details in their interaction with their environment. More specifically,
my thesis will be focusing on the microswimmers propelled by local energy conversion.



16 CHAPTER 1. INTRODUCTION

A B

Pl Pr

Periodic boundary 
conditions

Active Particle

Pl  < Pr


Net flux to the right

Detailed Balance / Out of Equilibrium

Figure 1.3 – Active Particle - Nonequilibrium. Motion of one particle describing by an
asymmetric (Pl 6= Pr) random walk, with periodic boundary conditions at the edges A and
B. However, the sun rises close to the edge B, that ’bias’ the motion of the particle which is
able to convert the surrounding energy into motion to move toward (in this case) the light
source. Due to this ‘bias’, there is the emergence of a net flux of probability through the
system, the detailed balance is not satisfied: the system is said to be out of equilibrium.

Biological active particles. There exist many kinds of biological microswimmers, e.g.,
bacteria [16, 17, 18, 19, 20, 21], unicellular protozoa [22, 23, 24], spermatoza [25, 26] and
algae [27, 28, 29, 30]. The swimming motion in the planktonic state of these microswimmers
is essentially powered by flagella or cilia controlled by molecular motors [31, 32, 33, 4].
More specifically, as shown in Fig. 1.4, two really interesting biological microswimmers
draw my attention: the algae Chlamydomonas reinhardtii and the bacteria Pseudomonas
aeruginosa. C. reinhardtii cells are a unicellular soil-dwelling microalgae of about 10µm in
diameter, which swims with two flagella. This swimming mechanism can be described by a
run-and-tumble particle [34]. However, in a crowded environment the swimming mechanism
of a single C. reinhardtii is better approximated by an active Brownian particle, due to
the competition between the mean free path and the tumbling rate. P. aeruginosa is a
common bacterium that can cause disease in plants and animals, including humans [35].
It exhibits, in its planktonic state, a swimming behavior powered by flagella, however at
surfaces and when its motility is suppressed P. aeruginosa can form surface colonies also
called biolfim. As a results, P. aeruginosa is a multidrug resistant pathogen recognized for
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its ubiquity, its intrinsically advanced antibiotic resistance mechanisms, and its association
with serious illnesses. Especially, it plays an important role in hospital-acquired infections
such as ventilator-associated pneumonia and various sepsis syndromes.

Artificial active particles. In order to reproduce the swimming behavior of biological
microswimmers making use of diverse propulsion mechanisms, a broad range of methods
have been used to realize artificial microswimmers. The motivation for these man-made self-
propelling particles is to change the way in which we perform several tasks in, e.g, health care
and environmental applications [36, 37, 38, 39, 40]. The key ingredient of the self-propulsion
of these artificial microswimmers is to break their symmetry to lead to propulsion through
various phoretic mechanisms. In the following, we will not discuss the passive colloidal
particles which move under phoretic motion, but we will focus on the dielectric particles (e.g.
made of silica, polystyrene, or melamine). This class of particles is based on so-called Janus
particles (named after the two-faced Roman god), as shown in Fig. 1.4, where dielectric
colloids are partially coated with thin layers of catalytic materials like platinum (Pt) or
palladium (Pd) [41]. The mechanism is described as follow: by immersing such particles
in an aqueous solution enriched with H2O2, they locally decompose it into H2O and O2,
and thus create a local concentration gradient that eventually leads to self-diffusiophoresis.
This concept was first successfully introduced by Howse et al 2007 and has been used and
modified by many other groups worldwide. An other material than the Pt or Pd, the
hematite has also been used with blue light [42]. The catalytic processes involved in the
H2O2 decomposition are really complex and their details are still under investigation. For
example, the propulsion strength and direction show a strong dependence on added salt and
ionic surfactants [43].

Collective behavior. In nature, microswimmers rarely swim alone. For example, the
competition between the sperm cells, released by the millions, for the egg; bacteria grow
by dividing and invading their surroundings together; or in future the potential transport
of pharmaceuticals treatment or the modification of material properties by a large numbers
of artificial microswimmers [44]. Moreover, biological microswimmers like motile bacteria
can exhibit intriguing collective behavior at interfaces such as cluster formation, observed
for Myxocoscus xanthus [45] or Thiovulum majus [46], as well as swarming, swirling, raft
formation, and the emergence of mesoscale turbulence [47], observed for E. coli [47] or
Bacillus subtilis [48]. One common example of collective behavior is the biofilm. It is an
accumulation of microorganisms, e.g. algae or bacteria, on surfaces where they can stick
and form sedentary communities. Biofilms may form on a wide variety of surfaces, which
include household and industrial pipes, biomaterials such as contact lenses, medical devices
including implants and urinary catheters, as well as living tissues [49]. A similar kind of
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behavior has been shown and studied experimentally in the case of self-phoretic artificial
spherical microswimmers, such as Janus particles, self-propelled liquid droplets, and photo-
activated colloids, exhibit cluster formation and phase separation despite their isotropic
shape and purely repulsive interactions[50].

Biological active particles Artificial active particles

https://fr.wikipedia.org/wiki/Pseudomonasaeruginosa


Elgeti, J., Winkler, R. G., & Gompper, G. (2015). Physics of microswimmers—single 
particle motion and collective behavior: a review. Reports on progress in physics, 
78(5), 056601.

Bechinger, C., Di Leonardo, R., Löwen, H., Reichhardt, C., Volpe, G., & Volpe, G. 
(2016). Active particles in complex and crowded environments. Reviews of Modern 
Physics, 88(4), 045006.

Chlamydomonas P. aeruginosa

Volvox carteri

Figure 1.4 – Different active particles. We can distinguished two main classes of microswim-
mers, one is described as biocological active particles, such as the algae Chlamydomonas
reinhardtii or Volvox carteri, the bacteria P. aeruginosa or E. coli. The other one is described
as artificial active particles, such as the Janus rods or the Janus colloids. The dynamics of
both can be approximated by active Brownian particles, especially the algae C. reinhardtii
(in the case of collective motion or crowded environment, when the mean free path is shorter
than the tumbling time) and the Janus colloids [51]. Moreover, the activity in the cellular
division process e.g. in the case of the bacteria P. aeruginosa can be approximated by a
‘birth and death’ process.1

1Republished with permission of IOP Publishing, LTd, from Physics of microswimmers-single particle
motion and collective behavior a review, Elgeti J. Winkler R.G. & Gompper G., 78(05) 056601, copyright
2019; permission conveyed through Copyright Clearance Center, Inc. DOI: 10.1088/0034-4885/78/5/056601.
Picture P. aeruginosa, source: https : //fr.wikipedia.org/wiki/Pseudomonasaeruginosa. Reprinted figure
with permission from Clemens Bechinger et al., Reviews of Modern Physics, Active particles in complex and
crowded environments, 88, 045006, 2016. Copyright 2019 by the American Physical Society.
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Gap in the field. After almost two decades of study, active matter is still confronted with
many open challenges which keep the research quite active. The fundamental mechanism of
the emergence of collective behavior for living and inanimate active systems is not yet under-
stood, especially because we are far from equilibrium. Moreover, describing the dynamics of
such system in a real-life environment like porous soils or growing systems, where the light
conditions, food sources vary in time, is challenging.

This thesis is focused on the central question: How can the activity affect the emergence of
collective behaviors in an active system ?

Motivation. Active matter can exhibit phases and phase transitions which are absent
in equilibrium system [52, 53]. Active matter is also subject to strong instabilities and
small fluctuations which lead to unusual mechanical properties. Moreover, a fascinating and
challenging aspects of active matter is to be able to use and adapt the ’tools’ for equilibrium
statistical mechanics to intrinsic nonequilibrium systems. The motivation for it is that even
with the inherent nonequilibirum properties of active systems, active matter appears to have
striking similarities to equilibrium systems [54, 55, 56, 57]. As an example, the dynamics
of individual active particles at large scales can be described by passive Brownian diffusion
[58].
Many active systems play an important role on our daily life. Biofilms are encountered
almost everywhere, and they can be beneficial (production of biofuel) or harmful (diseases).
In human body, we generally associate biofilms with pathogenic form, e.g., the cystic fibrosis
which is caused by the infections of the bacteria P. aerugenosa, but they can be beneficial
such as the bacteria Staphylococcus epidermidis, which stop the colonization of potential
bacteria via the stimulation of host-cell immune defenses and the prevention of adhesion in
the biofilms [49, 59, 35]. In marine biology, biofilms have a strong impact, either advantageous
or costly. For examples, due to ocean pollution by plastic one may use biofilms to facilitate
the removal of microplastics from the surface layer of the oceans [60]; the development of
various technics to prevent the biolfilm formation and to clean infected surfaces, lead to
significative costs onto marine transport, aquaculture, oil and gas industries, desalination
plants and other industries as it is well described in [61]. Recently, the production of biofuel
from microalgae has received lot of attention, from the sunlight-driven cell factories, as a
source of energy production. The advantages of using algae for the biomass sources are that
they grow fast, under certain light and nutrition conditions, in a wide range of environments
and only require sunlight and basic nutrients. By using photosynthesis the microalgae convert
the sunlight energy into chemical energy to grow, and have a doubling times as short as half a
day. In comparison to other agriculturally produced biodiesel feedstocks (e.g. corn, soybean,
jatropha, palm oil), microalgae require much less land area and they seem more capable of
displacing fossil fuels [62]. However, the microalgae are also known to form biolfilm, which
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can at some extend reduce the production of energy due to the accumulation of cells at the
surface of the bioreactors.

One key parameter on the formation of such collective behavior is the activity of the cells.
Studying how the activity affects the emergence of collective behaviors can lead to a better
understanding of the early stage biofilm formation and in future to develop better strategies
to control their effects. For examples, due to the increase of antibiotic resistance, the focus
of current research is to target bacterial growth/division that causes cell death or dormancy,
from novel approaches. Moreover, the need of developing clean and renewable energy is one
of the major challenges of the twenty first century to reduce the dependence on fossil fuels.
By looking at the early stage of biofilm formation, we can prevent the maturation of the
biofilm and find new treatment against infectious diseases as well as better energy source
production.

Outline of the thesis. This thesis aims to elucidate the impact of the activity on the
emergence of collective behavior in an active system, at a microscopic level. Three different
works are presented, which approach this problem from both analytical and numerical direc-
tions. The first one describes the sedimentation profile of one active particle as a function of
its activity. The solution of the Fokker–Planck equation, in 3D, matched the results from the
simulation and is in agreement with experimental results found for the Janus particles. This
result showed that the solution is valid for one single active particle but can be extended to
the dilute case. The other two focus on the emergence of collective behaviors. The second
work studies aggregation of cells for the algae Chlamydomonas reinhardtii based on active
Brownian simulations, in which the self-propulsion as well as the diffusion coefficients are
dependent on the local cell density. The third work studies the early stage biofilm formation
for the bacteria Pseudomonas aeruginosa by comparing the probability density distributions
and its moments, obtained experimentally with the analytical solution of the modified ‘birth
and death’ process used to describe the systems. The theoretical background and its nu-
merical implementation necessary for these three works are introduced in Chapter 2. The
results presented in Chapter 3 are ordered from the motion of one single active particle to
the emergence of collective behaviors:

In the first work, I investigate the stochastic dynamics of one sedimenting active Brownian
particle in three dimensions under the influence of gravity and passive fluctuations in the
translational and rotational motion. I present an analytical solution of the Fokker–Planck
equation for the stochastic process which allows us to describe the dynamics of the active
Brownian particle in three dimensions. I address the time evolution of the monopole, the
polarization, and the steady-state solution. I also perform Brownian dynamics simulations
and study the effect of the activity of the particles on their collective motion. These results
qualitatively agree with our model. Finally, I compare our results with experiments [51] and
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find very good agreement.

In the second work, I studied the aggregation of active particles. A collection of self-propelled
particles can undergo complex dynamics due to hydrodynamic and steric interactions. In
highly concentrated suspensions, it is possible for such particles to form large-scale concen-
tration patterns, where the active suspension separates into regions of high and low particle
concentrations. This can be attributed to the interactions of the particles with boundaries,
their specific particle-particle interactions, or other particle specific motility behavior. Since
many biological microswimmers, such as the bacteria E. coli and the algae C. reinhardtii,
are sensitive to a umber of external stimuli, we investigated if this phenomenon is related
to phototactic, gravitactic or chemotactic mechanism. By performing active Brownian sim-
ulations of such active particles with the observed motility characteristics, we show that we
can re-create the pattern observed in recent experiments. The observed pattern formation
is switchable by lights and depends on the geometry of the confinement, both of which are
not captured by current models and thus require a revision of the state-of-the-art theoretical
approach.

In the third work, I studied the early stage biofilm formation in the case of two different
strains of the bacteria Pseudomonas aeruginosa. Before forming a bacterial biofilm commu-
nity, it is commonly observed that free-swimming bacteria initially undergo a phase known
as “reversible attachment”, a random and variable lag period of transient cell attachment.
For example, PAO1 and PA14 are two canonical strains in distinct sub-groups of the Pseu-
domonas aeruginosa phylogeny with different surface sensing circuits. However, they both
exhibit reversible attachment and apparently indistinguishable early biofilm behavior in bulk
and single cell assays. Here, we show that stark differences between these strains are vis-
ible when their behaviors are considered at the lineage level with full family tree analysis.
An exactly solvable “divide-detach” stochastic model provides a unified understanding and
classification of surface colonization strategies. Results suggest two complementary but dis-
tinct strategies, illustrated by PAO1 Wsp-based and PA14 Pil-Chp-based surface sensing
mechanisms, which differ in division and detachment behaviors and are roughly analogous
to “immediate-” vs “deferred-gratification” in a prototypical cognitive-affective processing
system.
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In this Chapter, we briefly recall some known models, results and methods in stochastic
dynamics used during our work. Markov chains were first introduced by A. A. Markov
in 1906 [63], and since then they have been applied to a huge number of situations in
mathematics, physics, biology, financial analysis and computer science [64, 65, 66, 67, 68].
The mathematical foundations of stochastic processes goes back to A. Kolmogorov in 1931
[69], and pursued by W. Feller [70, 71], and J. L. Doob [72] and many others. Currently, in
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modern natural sciences [73] as well as in statistical physics [74, 75, 76], stochastic processes
play an indispensable role.

In the following, the necessary theoretical background for the derivation of the Master,
Langevin and Fokker-Planck equations will be introduced. Following this fundamental theo-
retical framework, the specific model used in this thesis will be presented. Finally, a numerical
integration scheme of the Langevin equations will be presented.

2.1 Random Walks

Let X1, X2 . . . Xt, . . . be a sequence of independent identical distributed random variables,
Xt = +1 with probability 1/2 and Xt = −1 with probability 1/2. We can imagine the
result of a fair coin that is tossed repeatedly. The index t indicates (discrete) time and such
sequence is called a discrete-time stochastic process1. It has mean E(Xt) = 0 and variance
Var(Xt) = 1. For convenience, we define S0 = 0 such that for each positive t

St = Xt + · · ·+X1 . (2.1)

It results that for each t, E(St) = 0 and Var(St) = t. The sequence of random variables
S0, S1, . . . St, . . . , t ∈ Z+ is a discrete-time stochastic process known as the simple symmetric
random walk on Z. Notice that this discrete-time process is a stationary Markov chain on
the infinite countable state space Z with probability transition matrix T

Txy =


1/2 , if y = x− 1
1/2 , if y = x+ 1
0 , otherwise.

(2.2)

A simple random walk models a walker starting at zero on the number line and making a
unit step to the left or to the right with independent and equal probability at each time
step. Variants of this model include the asymmetric random walk made with the sums
corresponding to Xt = +1 with probability p and Xt = −1 with probability (1 − p) and
the lazy random walk where Xt = +1, Xt = 0 or Xt = −1. Another class of simple
random walks, symmetric or asymmetric are defined in a finite interval of integers [0, k]
with periodic, reflecting or absorbing boundary conditions. Notice that in this case the
corresponding Markov chain has a finite number of states and the boundary conditions may
be implemented in the first and last row of the stochastic transition matrix T . As for any
Markov chain the random walk may have two dual readings. In the first one, we may devise

1The readers are referred to the Appendix A for a definition of stochastic process.
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the random trajectory of a single walker, e.g. an active particle, that can only jump to
neighboring sites of a lattice at each time step. Such trajectory is known as a sample path
or realization of the process, see Fig. 2.1.
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Figure 2.1 – A trajectory of a symmetric random walk, representing the time evolution of
the random variable St.

In the second one, the dual notion consists of the time evolution of a distribution ν, for
example a population of bacteria. In this case we fix, for each x ∈ Z, the initial distribution
ν(0), the fraction of the total population being in x at t = 0. The population distribution
evolves then as

ν(t) = ν(0)T t .

Under suitable conditions there is a unique time invariant distribution ν(∞) = ν(∞)T and
moreover for any initial distribution ν(0), lim

t→∞
ν(t) = ν(∞). To illustrate it, let us take the

example of a Markov chain with four states, an initial distribution ν(0) = (1/4, 1/4, 1/4, 1/4)
and transition matrix

T =


0.0 0.9 0.1 0.0
0.8 0.1 0.0 0.1
0.0 0.5 0.3 0.2
0.1 0.0 0.0 0.9

 . (2.3)
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The time evolution of the distribution ν is shown in Fig. 2.2. We remarque that for time
higher than t > 500, the distribution does not change and we can find that ν(t > 500)
satisfies ν(∞) = ν(∞)T .

Figure 2.2 – Time evolution of the distribution ν computed with the transition matrix T , Eq.
(2.3). Top: at time t = 0, 1, 2 (left to right). Bottom: at time t = 500, 503. The stationary
distribution is shown at the bottom right.

Notice that in case of a chain with infinite number of states as the random walk on Z or N
a distance in the set of the distributions is needed, the total variation distance, to properly
define the limit. Moreover, in this case, the invariant distribution may not be normalizable.
Under the invariant distribution, for any time step, the total input of the distribution arriving
in a state is equal to the total output leaving the state. A more restrictive property verified
by some specific Markov chains, the so-called detailed balance condition, tells that for each
pair of connected states the invariant distribution moves as much in one direction as in the
other at each time step. This condition reads

νxTxy = νyTyx , (2.4)

for all pair of states and in fact implies the time invariance of ν. It can be interpreted as
a time reversibility of the chain. Notice that a slight tailoring of this formula may be used
to define a distribution flux per time step from any subset A of states to any other subset
B, namely

∑
x∈A

∑
y∈B

νxTxy. This flux stands for the fraction of the population moving from A
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to B in one time step. For the invariant distribution this migration should be compensate
by an equal incoming flux to A, not necessarily from B except if B is the complement of
A.

2.1.1 Two useful Markov chains

a b

p

q

1-q

1-p

Figure 2.3 – Schematic representation of a two-states Markov chain.

The two-states model. Let us consider a Markov chain of two-states, S = {a, b}, see
Fig. 2.3. The transition matrix has the form

T =

(
1− q q
p 1− p

)
,

with
∑
j

Tij = 1, ∀i. The invariant distribution ν = (n1, n2) should satisfy

ν = νT .

By using 1 = n1 + n2, elementary computations yield to

n1 =
p

p+ q
and n2 =

q

p+ q
.

The system is said to be at the equilibrium if it satisfies the detailed balance

νiTij = νjTji .

Because we only have two states

T12 =
ν2

ν1

T21 = q .

For any values of p and q the system satisfies the detailed balance and the system is said to
be at the equilibrium.
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Figure 2.4 – Schematic representation of a three-states Markov chain.

The three-states model Let us consider a Markov chain of three-states, S = {a, b, c},
Fig. 2.3. The transition matrix has the form

T =

0 p q
q 0 p
p q 0

 ,

with
∑
j

Tij = 1, ∀i. The invariant distribution ν = (n1, n2, n3) should satisfy

ν = νT .

By using 1 = n1 + n2 + n3, elementary computations yield to

n1 = n2 = n3 =
1

3
.

The system is said to be at the equilibrium if it satisfies the detailed balance

νiTij = νjTji .

If only one of the three relations is not satisfied, the system does not satisfied the detailed.
Because n1 = n2 = n3, the detailed balance reads

Tij = Tji .



2.2. JUMP MARKOV PROCESSES 29

The only possibility to satisfy the detailed balance is p = q. Only in this situation, the
system is said to be at the equilibrium, otherwise when p 6= q, the system is said to be out
of equilibrium. The three states model is a special case of a random walk S = {0, 1, 2..., N}
with periodic boundary condition, for which N = 2. In the introduction, we motivated the
difference between ‘passive’ (equilibrium) and ‘active’ (out of equilibrium) particle by using
a random walk S = {0, 1, 2..., N} with periodic boundary condition.

2.2 Jump Markov processes

We can use the continuous Markov chains or jump Markov process to represent population
dynamics, epidemics, queueing models etc. In the jump Markov process, the time evolution is
described by exponentially distributed holding times (to stay in one state before jumping to
another) in each state while the succession of states visited is defined by a Markov chain.

More specifically, in order to define the time duration between two consecutive events, let us
consider a discrete-time Markov chain Ek, k ∈ N on a countable state space S with transition
matrix T . For convenience we suppose that Tnn = 0 for ∀n ∈ S. Furthermore for each n ∈ S,
we define an exponential distributed random variable τn (a clock) with parameter λn

P[τn > t] = exp(−λnt) , (2.5)

with E(τn) = 1
λn

and Var(τ) = 1
λ2
n
. Recall that the counting process associated to an

exponential random variable is a homogeneous Poisson process. A continuous time stochastic
process Xt, called Jump Markov process with state space S associated to the embedded
Markov chain Ek, k ∈ N with transition matrix T and the collection of independent random
variables τn is defined as follow:

Starting in an initial state X0 suppose that the process is in Xt = n at time t. At a random
time τn (when the clock n expires) the chain moves to a new state m with probability Tnm.
This process is a Markov process and, under suitable conditions on the embedded matrix
T and on the collection of rates λn, the realizations of this process may always to be taken
as step functions, see Fig. 2.5, continuous from the right such that the process stays for a
random strictly positive time in each visited state, i.e for almost all realization of the process
and all t ≥ 0 there exists a δ(t) > 0 depending of the realization such that Xt + τ = Xt for
τ ∈ [0, δ(t)[, for an example see [77].

It is worth to notice that, from this point of view, a Markov jump process is completely
defined by a stochastic matrix T with zero diagonal and the set of positive (time) rates



30 CHAPTER 2. METHODS

{λn}, n ∈ S. The exponential distributions with rates λn define the clocks of the events in
the process.
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Figure 2.5 – Step function realization. Example of a trajectory of a jump Markov process
with state space S associated to the embedded Markov Chain Ek, k ∈ N.

Example 1 Uniform Markov jump process with intensity λ > 0 refers to the case
where all the time rates {λn} are equal to λ.

Example 2 Birth-death processes. One important and fairly tractable example of Markov
Jump process is a birth-death process. It combines some properties of a random walk on the
non-negative integers Z+ with reflection on zero and continuous transition time. It aims to
model the evolution of a population whose number of individuals changes at random times
by one unit, either increasing by one, a birth, or decreasing by one, a death.

Back to the general Markov jump process, it is well known that a jump Markov process can
be characterized by the transition probability

Pnm(t) = P[X(t+ u) = m|X(u) = n] ,

and is independent for u > 0. Indeed, P[X(t) = m|X(0) = n] is a function of t and describes
a time homogeneous Markov process2.

2P[X(t+ u) = m|X(u) = n] = P[X(t) = m|X(0) = n].
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By specifying all transition matrices Pnm(t) in 0 < t < t0 for some t0 > 0, all other transition
probabilities can be constructed from these. These transition probability matrices should
satisfy the Chapman-Kolmogorov equation

Pnm(t+ s) =
∞∑
k=0

Pnk(t)Pkm(s) . (2.6)

This equation can be rewritten in matrix notation by the following so-called semigroup
property

P(t+ s) = P(t)P(s) . (2.7)

In the matrix notation, we now synthesize the situation from this point of view:

1. lim
t→0

P(t) = I

2. The infinitesimal generator Q is defined as

Q = lim
t→0

P(t)−P(0)

t
= lim

t→0

P(t)− I
t

, (2.8)

or in components

Qnm = lim
t→0

Pnm(t)− Pnm(0)

t
, ∀n,m and Qnm = lim

t→0

Pnm(t)

t
, n 6= m. (2.9)

3. Q is a matrix with elements Qnm such that Qnn ≤ 0 ≤ Qnm and the sum of the
elements of any row is zero. Moreover Qnn = 0 if and only if n is absorbing.

4. P=e(tQ)

P(t) =
∞∑
k=0

(tQ)k

k!
. (2.10)

5. Under conditions allowing the existence of the product QP or PQ the following dif-
ferential equations apply

dP(t)

dt
= QP(t), t ≥ 0 , (2.11)

known as the Kolmogorov backward equation and

dP(t)

dt
= P(t)Q, t ≥ 0 , (2.12)

known as the Kolmogorov forward equation
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According to Eq. (2.6), giving an initial distribution ν(0) on the state space S we have, at
time t

ν(t) = ν(0)T t . (2.13)

A measure ν on S such that ν = νT for all t ≥ 0 is called an invariant measure. If
this measure is such that ν(S) < ∞ the normalized corresponding measure is called by
some authors stationary distribution. Instead to simplify we call it distribution even in the
non normalizable case. Given an embedded Markov chain with transition matrix T and a
collection of time rates {λn ≥ 0}, n ∈ S defining a jump Markov process, the corresponding
infinitesimal generator Q reads

Qnm =

{
−λn , if n = m
λnTnm , if n 6= m

, (2.14)

Conversely given the infinitesimal generator Q of a jump Markov process the transition
matrix T and the time rates {λn ≥ 0}, n ∈ S are known:

Tnm =

{
0 , if n = m

−(Qnn)−1Qnm , if n 6= m
, (2.15)

and
λn = −Qnn . (2.16)

From the Chapman-Kolmogorov equation, it is possible to derive the Master equation. We
can rewrite Eq. (2.6) as

Pnm(t+ h)− Pnm(t) =
+∞∑
k=0

Pnk(t)Pkm(h)− Pnm(t)

=
+∞∑
k 6=n

Pnk(t+ h)Pkm(h) + [Pnn(h)− 1]Pnm(t) .

By taking the limit when h→ 0, we obtain

lim
h→0

Pnm(t+ h)− Pnm(t)

h
= lim

h→0

1

h

[
+∞∑
k 6=n

Pnk(t)Pkm(h) + [Pnn(h)− 1]Pnm(t)

]
.

By identifying Pnn(h)− 1 = −
+∞∑
k 6=n

Pkn(h) and by rewriting lim
h→0

Pnk(h)/h = Qnk, we obtained

the Master equation

d

dt
Pnm(t) =

+∞∑
k 6=n

[QnkPkm(t)−QknPnm(t)] . (2.17)
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Furthermore, by knowing the relation between the transition probability P and the proba-
bility distribution ν

νn(t) =
∑
m

P t
nmνm(0) ,

we can rewrite the Master equation, Eq. (2.17), with the probability distribution

d

dt
νn =

+∞∑
k 6=n

[Qnkνk −Qknνn] . (2.18)

2.2.1 ‘Birth and death’ process: Bacterial population

Experimentally, we describe the successive bacteria generations in terms of family trees. A
family tree represents all the successive generations of a mother cell, also called lineage.
The time t = 0 is given when a bacterium lands onto a surface and starts to divide. We
describe its lineage with a family tree as shown in Fig. 2.6. At any given time t, we can
count/measure the number of bacteria in the system (family tree).
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Figure 2.6 – Example of family trees. Each family start at tlineage = 0 h when the founder
cell attaches to the surface.

We can imagine the experimental situation described in Fig. 2.6 as a process with ‘division’
or ‘detachment’ at random time. Moreover, at any given time t, we count the number of
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bacteria Xt in the system. Graphically, in Fig. 2.6, by drawing a straight horizontal line at
a given time and counting the number of intersections between this line and the family tree,
gives the number of bacteria in the system. For example, at t = 4, we have two intersections,
we have two bacteria in the system. A family tree represents one independent experiment,
by repeating the experiments N times, meaning having N independent family trees, we can
build the probability distribution of the number of bacteria in a family tree.

nn-1 n+1

Figure 2.7 – ‘Birth and death’ process. The state n ∈ N represents the number of bacteria
in a family tree. The states n + 1 and n − 1 are the neighboring states of n. Only transi-
tions between neighboring states are possible. The number of bacteria (or population size)
increases by +1 with a division rate λn and decreases by −1 with a detachment rate µn.

The question is now how to transcript this picture in terms of a model. We can describe
the increase or decrease of the population size by ±1 at each event with a ‘birth and death’
process, see Fig. 2.7. The assumption consist of considering the duration between two
consecutive events as exponentially distributed. The ‘birth and death’ process is a special
case of jump Markov process, in which the states can represent the current population size
and the transitions are limited to birth and death. When a birth occurs, the process goes
from state n to state n + 1, and when a death occurs, the process goes from state n to
state n− 1. Moreover, this process is characterized by the birth rate {λn}n=0,..,∞ and death
rate {µn}n=0,..,∞, which depend on the state n of the system. The population increases
by one if the birth occurs prior to death and decreases by one otherwise. These dynamics
are analogous to a random walk with the difference that the transition occur at random
times exponentially distributed. A jump Markov process is characterized by the transition
probabilities Pnm(t), which satisfy the forward and backward Kolmogorov equation.

Let us use the Kolmogorov backward equation

d

dt
Pnm(t) = QnkPkm(t) ,
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where P is the transition probability matrix, and Q is the infinitesimal generator. From the
Chapman-Kolmogorov equation

Pnm(t+ h) =
∞∑
k=0

Pnk(t+ h)Pkm(t) ,

and by definition of the time derivative

d

dt
Pnm(t) = lim

h→0

Pnm(t+ h)− Pnm(t)

h
,

the previous equation can be rewritten as

d

dt
Pnm(t) = lim

h→0

1

h

[
∞∑
k=0

Pnk(t+ h)Pkm(t))− Pnm(t)

]
. (2.19)

Because m 6= n − 1, n, n + 1, we can rewrite the sum inside the Chapman-Kolmogorov
equation as

∞∑
k=0

Pnk(t+ h)Pkm(t) = Pnn−1(t+ h)Pn−1m(t) + Pnn(t+ h)Pnm(t) + Pnn+1(t+ h)Pn+1m(t)

+
∞∑
k 6=m

Pnk(t+ h)Pkm(t) .

If all cases are taking into account
∑
k

Pnk(t) = 1, however m 6= n−1, n, n+1 and
∑
k

Pnk(t) =

1− [Pnn−1(t) + Pnn(t) + Pnn+1(t)]. Only neighboring transitions are possible, so every other
elements of the corresponding line are zero. The sum should be equal to 1 and therefore∑

k

Pnk(t) = 1− [Pnn−1(t) + Pnn(t) + Pnn+1(t)]

= 1− 1

= 0 ,

and this lead to
∞∑
k 6=m

Pnk(t+ h)Pkm(t) = 0 .

Equation (2.19) reads

d

dt
Pnm(t) = lim

h→0

1

h
[Pnn−1(t+ h)Pn−1m(t) + Pnn(t+ h)Pnm(t) + Pnn+1(t+ h)Pn+1m(t)− Pnm(t)] .
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Moreover, Pnn−1(t+ h) = µ, Pnn+1(t+ h) = λ and Pnn(t+ h) = 0 = 1− (µ+ λ). Therefore,
the previous equation becomes

d

dt
Pnm(t) = µPn−1m(t) + (1− (µ+ λ))Pnm(t) + λPn+1m(t)− Pnm(t) .

Finally, we obtain the Kolmogorov backward equation, so-called Master equation, for our
process and it is given by

d

dt
Pnm(t) = µPn−1m(t)− (µ+ λ)Pnm(t) + λPn+1m(t) ,

or
dPn
dt

= λPn+1 − (µ+ λ)Pn + λ(n− 1)Pn−1 .

By using the Kolmogorov forward equation, we obtain a similar equation and the Master
equation reads

dPn
dt

= µPn+1 − (λ+ µ)Pn + λPn−1 ,

and when µ = µn and λ = λn, the previous equation reads

dPn
dt

= µ(n+ 1)Pn+1 − (λ+ µ)nPn + λ(n− 1)Pn−1 . (2.20)

The solution of Eq. (2.20) can be found by using the so-called generating function G(z, t) =
+∞∑
n=0

znPn. By plugging the generating function into Eq. (2.20), we find

∂tG(z, t) = −(λ+ µ)
∑
n

nznPn(t) + µ
∑
n

(n+ 1)znPn+1(t) + λ
∑
n

(n− 1)znPn−1(t)

= µ

[∑
n

(n+ 1)znPn+1(t)−
∑
n

nznPn(t)

]
+ λ

[∑
n

(n− 1)znPn−1(t)−
∑
n

nznPn(t)

]
.

By using znPn−1 = zzn−1Pn−1 and znPn+1 =
1

z
zn+1Pn+1, then the previous reads

∂tG(z, t) = µ

[∑
n

(n+ 1)
1

z
zn+1Pn+1(t)−

∑
n

nznPn(t)

]

+ λ

[∑
n

(n− 1)zzn−1Pn−1(t)−
∑
n

nznPn(t)

]
.
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By rewriting n′ = n+ 1 and n′′ = n− 1

∂tG(z, t) = µ

[
1

z

∑
n′

n′zn
′
Pn′(t)−

∑
n

nznPn(t)

]
+ λ

[
z
∑
n′′

n′′zn
′′
Pn′′(t)−

∑
n

nznPn(t)

]

=

[
µ(

1

z
− 1) + λ(z − 1)

]
∂zG(z, t) ,

we finally obtain

∂tG(z, t) = (1− z)(µ− λz)∂zG(z, t) . (2.21)

Equation (2.21) can be rewritten in a Ricatti’s form [78] which reads

dz

dt
= P +Qz +Rz2 ,

where P = −µ, Q = (λ + µ) and R = −λ. A particular solution is given by Y , and the
previous equation can be solved by quadrature z(t) = x(t) + Y (t)

dx

dt
= [P + 2Y Q]x+Qz2 .

A change of variable, u = 1
x

= 1
z−Y , yield to

du

dt
= [P + 2Y Q]u+Q .

Therefore, the solution of the Ricatti’s equation [79] is a homographic function of an arbitrary
constant C

u = Ce
∫

[P+2Y Q]dt + U ,

where U is a particular solution. We can rewrite u as

u = Cψ + φ ,

and the solution for z reads

z = Y +
1

Cψ + φ
=
CψY + φY

Cψ + φ

=
Cα + β

Cγ + δ
.

By using the Palm’s formulae [80, 81, 82], it is possible to express P0 and Pn as a function
of ηt and ξt, two unknown functions, which read
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P0 = ξt, Pn = (1− P0)(1− ηt)ηn−1
t .

We rewrite the previous equation as

(1− ξt)(1− ηt)ηn−1
t = (1− ηt − ξt + ηtξt)

= (1− ηt − ξt)ηn−1
t + ηnt ξt .

By means of geometric series
+∞∑
n=0

aqn = a
1−q and

+∞∑
n=0

(aq)n = 1
1−aq the generating function

G(z, t) reads

G(z, t) =
+∞∑
n=0

znPn(t) =
+∞∑
n=0

(1− ηt − ξt)ηn−1
t zn +

+∞∑
n=0

ηnt ξtz
n ,

where
+∞∑
n=0

ηnt ξtz
n = ξt

1−ηtz and
+∞∑
n=0

ηn−1
t ξtz

n =
+∞∑
n=−1

ηnt ξtz
n+1. Moreover,

+∞∑
n=0

znPn(t) = (1− ηt − ξt)z
+∞∑
n=−1

ηnt z
n +

ξt
1− ηtz

.

We can express the generating function in terms of ξt and ηt

G(z, t) =
ξt + (1− ξt − ηt)z

1− ηtz
.

By plugging back this equation into Eq. (2.21), and after some computations (see Appendix
B), ξt and ηt read

ξt = 1− e−ρ

W
, ηt = 1− 1

W
.

Finally, the solution for P0(t) and Pn(t) when the coefficients µ and λ are time dependent
reads

Pn(t) =
e−ρ

W 2

(
1− 1

W

)n−1

, P0(t) = 1− e−ρ

W
, (2.22)

where

W = e−ρ(t)

1 +

t∫
0

µ(τ)eρ(τ)dτ

 , (2.23)

and

ρ(t) =

t∫
0

(µ(τ)− λ(τ))dτ .
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It is possible to find the probability distribution Pn(t) and P0(t), when the rates are time
independent, by using either the moment generating function, as shown in Appendix B or
by using directly the first and second moments [67]. In order to compare the model with the
experimental results we can use the moments defined as

〈n(t)k〉 =
∞∑
n=0

nkPn .

However, from the master equation, we can find

d

dt
〈n(t)k〉 =

∞∑
n=0

nk
d

dt
Pn

=
∞∑
n=0

[
((n+ 1)k − nk)λ(t)− (nk − (n− 1)k)µ(t)

]
nPn .

The first moment reads

d〈n〉
dt

=
∑
n

n
dPn
dt

= −(λ+ µ)
∑
n

n2Pn + µ
∑
n

(n2 + n)Pn+1 + λ
∑
n

(n2 − n)Pn−1

= λ
∑
n=1

[
(n− 1)2Pn−1 + (n− 1)Pn−1

]
+ µ

∑
n=0

[
(n+ 1)2Pn+1 − (n+ 1)Pn+1

]
− (λ+ µ)

∑
n=0

n2Pn

⇐⇒ d〈n〉
dt

= λ
[
〈n2〉+ 〈n〉

]
+ µ

[
〈n2〉 − 〈n〉

]
− (λ+ µ)〈n2〉

=⇒ d〈n〉
dt

= (λ− µ)〈n〉

〈n〉 = n(0)e−ρ = e−ρ, n(0) = 1 ,

where ρ =
t∫

0

(µ− λ)dt. The first moment reads

〈n〉 = exp(−
t∫

0

(µ− λ)dt) . (2.24)
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The second moment reads

d

dt
〈n2〉 =

∞∑
n=0

[((n+ 1)2 − n2)λ− (n2 − (n− 1)2)µ]nPn(t)

= 〈n〉(λ+ µ) + 2〈n2〉(λ− µ) .

Elementary computations yield

〈n2〉 = e2
∫

(λ−µ)dτ

[
1 +

∫
(λ+ µ)e

−
t∫
0

(µ−λ)dτ
e2

∫
(λ−µ)dτdt

]
. (2.25)

The probability distribution with constant rates is plotted for different times in Fig. 2.8,
for the case where λ > µ. In this case, the probability distribution makes a transition from
an initial exponential form to a flat form. The first form shows an exponential decay of the
population, while the second one shows a constant size population. Figure 2.9 shows results

Figure 2.8 – The growth-dominated distribution, λ = 1.0 > µ = 0.1 where both rates
are constant. Dependence of the probability distribution Pn, in semi-log scale, of the size
population at different times. We observe two slopes for the probability distribution: one
flat, i.e at a time t the population is constant; the other one represent the exponential decay
of the population.
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when a time dependence in the death rate was added. When under some parameters we can
recover the case where λ > µ and we recovered similar results obtained for constant rates.

In the Chapter 3.3 a Master equation with time-dependent rates will be used to describe the
time evolution of the number of bacteria into a system to study different strategies of the
early stage biofilm for different bacteria strains.

2.3 Stochastic differential equations

In the previous sections, we described processes with discrete state and time, or discrete
state and continuous time. Now, we will look at processes continuous in state and time.
In a small time interval such a process can only undergo a small displacement or change
of state. Therefore, the realizations of such processes are given by continuous functions. A
classical example of such processes is given by the motion of micro-sized particles suspended
in a fluid, under the rapid, successive, random collision with neighboring fluid molecules.
This motion is a realization of a stochastic process in continuous time with continuous state.
This phenomenon is known as Brownian motion, first described experimentally by Robert
Brown in 1827 [83] and then by Jean Perrin one hundred years ago [84]. A phenomenological
description was proposed by Paul Langevin [85] and Norbert Wiener, in 1923, who gave a
mathematical definition and developed a rigorous theory based on stochastic processes [86].
Markov processes are strongly connected to the theory of diffusion and the kinetic theory of
matter, which describe the aggregate motion of collections of molecules. Therefore, Markov
processes with continuous state are called diffusion processes. We can define the Brownian
motion or Wiener process as a limit of a random walk. Let us subdivide a unit interval
[0,1] into N ∈ N subintervals of equal length ∆t = 1/N . In order to create continuous step
intervals, we transform N into

√
N ∈ R [87]. The length between the subintervals becomes√

∆t. We can imagine on this interval a sequence of random variable {XN} of probability
distribution with a mean equal to 0 and a variance equal to ∆t. It is possible from this
sequence of random variable {XN} to create a random walk SN

SN =
1√
N

∑
i

Xi .

Its associated probability distribution has a mean equal to 0 and a variance equal to ∆t.
When the number of subintervals N goes to infinity the probability distribution associated
to SN converge to a normal distribution N(0,∆t), by the central limit theorem. Finally, the
random walk SN is called a Wiener process.
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(A) (B)

(C) (D)

Figure 2.9 – The growth-dominated distribution - Exponential decay of the death rate.
Dependence of the probability distribution Pn, in semi-log scale, of the size population
at different times. The growth rate λ = 1.0 and the death rate µ = exp(−ct), where
c = {0.1, 1.0, 5.0}. (A) c = 0.1, (B) c = 1.0, (C) c = 5.0 , and (D) Safety check: λ and µ
are not time dependent. Figure (D) is identical to Fig. 2.8. We observe two slopes for the
probability distribution: one flat, i.e at a time t the population is constant; the other one
represent the exponential decay of the population.
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We just saw that, from a Markov process, called random walk, it was possible to define a
Wiener process. However, let us give a rigorous definition of it.

Definition 1 (Wiener process or Brownian motion) There exist a probability distri-
bution over the set of continuous functions B : R+ → R such that:

1. Start from 0: P(B(0) = 0) = 1, B(0) = 0;

2. Stationary: ∀ 0 6 s 6 t: B(t)−B(s) ∼ N(0, t− s);

3. Independent increment: If intervals [si, ti] and B(ti)−B(si) are independent.

Its realizations are the Brownian trajectories. In the following, we will use B = W and
define dW = ξdt, where ξ is a noise.

Before moving on to a mathematical description of the stochastic differential equations, let
us start with an example. We can imagine an ‘active’ particle, e.g the alga Chlamydomonas,
moving inside a tube in 1D. In order to find more light, the particle moves toward the
surface, however due to gravity, the particle feels a force pushing it in the opposite direction
of its motion. Moreover, due to its size, the particle is subject to random fluctuations due
to the surrounding environment. It is possible to describe its dynamics by the following
equation

dXt = vgdt+ vsdWt, X0 = 0 , (2.26)

where vg is the terminal velocity (effect of the gravity) and vs the self-propulsion velocity.
We now look at the time evolution of the particle’s position given by the random variable Xt,
while the surrounding fluctuations are described by a Wiener process Wt. When the particle
has no activity, vs = 0, the particle sediments due to the gravity, and when the activity of the
particle is much larger than the effect of the gravity, vs � vg, the only external perturbations
on the particle are random fluctuations. Because we consider the evolution of the random
variable Xt, we can build its probability distribution. An easy way to get it, is by means of
simulations. For different times t, one value of the ‘activity’, vs, and a constant value of the
terminal velocity, vg, the probability distributions are shown in Fig. 2.10.

The distribution is shifted by a factor vg∆t and its variance increases as vs
√

∆t. More pre-
cisely, by fixing vg and varying vs, we can obtain the mean and the variance, Fig. 2.11.

This example was used to give an intuition on the role of the factors vg and vs on the
dynamics and the distribution. Now, let me give a more rigorous description of the stochastic
differential equation.
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Mean = -0.02 std = 0.02

PD
F

Position
(a) Distribution at time t = 200×∆t

Mean = -0.06 std = 0.03

PD
F

Position
(b) Standard deviation for a time t = 600×∆t

Mean = -0.08 std = 0.04

PD
F

Position
(c) Distribution at time t = 800×∆t

Mean = -0.1 std = 0.05

PD
F

Position
(d) Standard deviation for a time t = 1000×∆t

Figure 2.10 – Time evolution of the probability distribution. The mean distribution is shifted
by a factor vg∆t and the variance increases by a factor vs

√
∆t. For the simulations, the time

step is given by ∆t = 10−5, the number of iterations is N = 103 and the initial condition is
X0 = x = 0.

Stochastic differential equation. We consider stochastic differential equations (SDEs)
of the form

dXt

dt
= A(Xt, t) + C(Xt, t)ξ(t) , (2.27)
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Figure 2.11 – Mean and standard deviation for different ‘activity’ vs. The symbols are given
by
√

∆t× vs/315 and the lines are given by the simulations; time step ∆t = 1× 10−5.

with initial condition X(t = 0) = X0, and where Xt ∈ Rd is a stochastic process, A :
[0, T ]× Rd → Rd, C : [0, T ]× Rd → Rd × Rm are the coefficients and ξ(t) a noise.
If ξ(t) is a white noise, then we can rewrite ξ(t) as a Brownian motion in Rm: ξ(t) = dW

dt
. A

white noise is a zero-mean Gaussian with variance 〈ξi(t)ξj(s)〉 = δijδ(t− s). In the case of a
white noise we rewrite Eq. (2.27) as

dXt = A(Xt, t)dt+ C(Xt, t)dW , (2.28)

and in terms of components, this equation reads

dXi(t) = Ai(Xt, t)dt+
m∑
j=1

Cij(Xt, t)dWj, i = 1 . . . , d .

The stochastic integration of Eq. (2.28) is given by

Xt = X0 +

∫ t

0

A(Xt, t)dt+

∫ t

0

C(Xt, t)dW .

The difficulty is how to integrate the Brownian motion. We know that the Brownian motion
is not differentiable and for this reason we cannot use the basic rules of calculus. Itô defined
the rule of calculus for the Brownian motion (Itô’s lemma) and used one of its properties the
quadratic variation of the Brownian motion (dW )2 = dt [88, 87]. To evaluate the previous
integral, two interpretations are commonly used in the literature: the Itô interpretation
or the Stratonovich interpretation. Let start with the Itô interpretation. Firstly, we will
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define the Itô’s Lemma and secondly we will discuss the difference between additive and
multiplicative noises.

Let f(t,X) be a function depending on a Brownian motion. We want to differentiate the
Brownian motion and by using a multivariable Taylor expansion, we obtain

f(t+ ∆t,X + ∆X) = f(t,X) + ∂tf(t,X)∆t+ ∂Xf(t,X)∆X

+
1

2
[∂2
t f(t,X)(∆t)2 + 2∂t∂Xf(t,X)∆t∆x+ ∂2

Xf(t,X)(∆X)2]

+ o(∆t2 + ∆X2) .

The previous equation can be rewritten as

∆f(t,X) = ∂tf(t,X)∆t+ ∂Xf(t,X)∆X

+
1

2
[∂2
t f(t,X)(∆t)2 + 2∂t∂Xf(t,X)∆t∆X + ∂2

Xf(t,X)(∆X)2] + o(∆t2 + ∆X2) .

Knowing that f depends of a Brownian motion, f(t,X) reads f(t,W ) and by using (dW )2 =
dt lead to

df(t,W ) = [∂tf(t,W ) +
1

2
∂2
Xf(t,W )]dt+ ∂Xf(t,W )dW ,

where the higher terms in dt are neglected.

Theorem 1 (Itô’s lemma) . Let f(t,X) be a function of two variables, and let Xt be a
stochastic process define by dXt = A(t)dt+ C(t)dW , where W is a Brownian motion. Then

df(t,Xt) = [∂tf(t,Xt) + A(t)∂Xf(t,Xt) +
1

2
C2(t)∂2

Xf(t,Xt)]dt+ ∂Xf(t,Xt)dW . (2.29)

Additive and multiplicative noises. Let a stochastic differential equation

dXt = A(Xt, t)dt+ C(Xt, t)dW , (2.30)

• if C is a constant, then we say that in the Eq. (2.30) the noise is additive and corre-
sponds to thermal fluctuations;

• if C depends on the state of the system, then we say that in the Eq. (2.30) the noise
is multiplicative and can be seen as a control parameter.

A physical application for a multiplicative noise in three dimensions is the rotational diffusion
of a rigid or linear molecule in an external potential [89].

After introducing the Itô interpretation, let us describe the difference between the Itô and
Stratonovich interpretations.
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Itô versus Stratonovich. Consider a stochastic integral of the form

I(t) =

t∫
0

f(s)dW . (2.31)

We want to compute this integral in terms of Riemann sum. The classical Riemann sum is
defined by

b∫
a

f(t)dt = lim
n→+∞

n∑
k=1

f(tk)(xk+1 − xk) , (2.32)

where the subdivision is σ = (a = x0 < · · · < xn = b) and tk ∈ [xk−1, xk].
A way to evaluate a point taken in an interval [0, T ] for the integration is to chose: τk =
(1−λ)tk +λtk+1, k = 0, . . . , K−1. We can rewrite the Riemann sum for a Brownian motion
as

I(t) = lim
k→+∞

K−1∑
k=0

f(τk)(Wk+1 −Wk) . (2.33)

Moreover, we can identify two cases:

• λ = 0, Itô integral
t∫

0

f(s)dW = lim
k→+∞

K−1∑
k=0

f(tk)(Wk+1 −Wk)

• λ = 1/2, Stratonovich integral
t∫

0

f(s) ◦ dW = lim
k→+∞

K−1∑
k=0

f(1
2
(tk + tk+1))(Wk+1 −Wk)

We have just shown the difference for the integration for both Itô and Stratonovich inter-
pretations. Let us move onto the difference in the interpretations from the SDEs and how
to change from one to the other. First, we write a SDE by using Itô interpretation

dXt = A(Xt)dt+ C(Xt)dW . (2.34)

From this interpretation, we want to move onto the Stratonovich interpretation

dXt = A(Xt)dt+ C(Xt) ◦ dW . (2.35)

From Eq. (2.34) and by using a Taylor series expansion, we find

dXt =

(
Â(Xt) +

1

2

dĈ(Xt)

dx
Ĉ(Xt)

)
dt+ Ĉ(Xt)dW , (2.36)

where we can identify Â(Xt) = A(Xt)− 1
2
dC(Xt)
dx

C(Xt) and Ĉ(Xt) = C(Xt). The SDE from
the Itô interpretation Eq. (2.34) is equivalent to the following SDE in the Stratonovich
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interpretation and reads

dXt =

(
A(Xt)−

1

2

dC(Xt)

dXt

C(Xt)

)
dt+ C(Xt) ◦ dW ,

with a correction term −1
2
dC(Xt)
dXt

C(Xt). In the same way, we can start from Eq. (2.35)

dXt = A(Xt)dt+ C(Xt) ◦ dW ,

and by using a Taylor series expansion, we can rewrite it in terms of Itô interpretation

dXt =

(
A(Xt) +

1

2

dC(Xt)

dXt

C(Xt)

)
dt+ C(Xt)dW ,

This correction term 1
2
dC(Xt)
dXt

C(Xt) is called Itô-to-Stratonovich correction. In components,
the Itô-to-Stratonovich correction reads

hi(x) =
1

2

d∑
j=1

m∑
k=1

Cjk(x)
∂Cik
∂xj

(x), i = 1, . . . , d . (2.37)

When the noise is additive, the correction term vanishes. However, when the noise is multi-
plicative, the correction term plays an important role in the dynamics. As an example, let
us consider a stochastic differential equation in the Stratonovich interpretation

de

dt
(t) = ξe(t)× e(t) . (2.38)

We can rewrite this equation in components

dei(t) =
d∑
j=1

m∑
k=1

εijkdW
jek = −

d∑
j=1

m∑
k=1

εikje
kdW j . (2.39)

In order to express the previous equation in Itô interpretation, from Eq. (2.37), we identify
the Itô-to-Stratonovich correction (using the Einstein convention of repeated indices)

Cjk(e) = −εjlkel, Cik(e) = −εilkel,
dCik
dej

= −εilk
del

dej
= −εilkδlj = −εijk .

The Itô-to-Stratonovich correction reads

hi(e) =
1

2
(−)εjlke

l(−)εijk =
1

2
εjlkεijke

l = −1

2
εljkεijke

l = −δliel = −ei

Equation (2.38) in the Itô interpretation reads

de

dt
(t) = ξe(t)× e(t)− e(t) . (2.40)

We obtained an extra term in the equation. As we saw, this correction term plays an
important role in the dynamics and it is important to be careful in the interpretation we
choose.
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2.3.1 Langevin equation

Paul Langevin proposed a phenomenological description of the Brownian motion [85]. Since
the emergence of active matter, three important minimal models, Fig. 2.12, have been stud-
ied and developed: run-and-tumble particles (RTPs), first modeled by Schnitzer in 1993 [90]
and experimentally described by Berg and Brown in 1972 [16, 17, 19, 18, 91]; active Brow-
nian particles (ABPs), first introduced by Schimansky-Geier et al. in 1995 [92]; and active
Ornstein-Uhlenbeck particles (AOUPs) [93]. To understand and compare these models, we
should first start with the classical passive Brownian particle (PBP).

Figure 2.12 – Active particles in complex and crowded environments. (Color online) Sample
trajectories of active Brownian particles corresponding to different mechanisms generating
active motion: (a) rotational diffusion dynamics; (b) run-and-tumble dynamics; and (c)
Gaussian noise dynamics. The dots correspond to the particle position sampled every 5 s 3.

Passive Brownian particles model. Brownian motion can be described by a Langevin
equation which takes into account the effect of the solvent on the colloids with two contribu-
tions: the mean drag force opposed to the direction of motion, and a random force describing
the collisions between the solvent and the colloids. This equation reads

mv̇ = −ζv + ξ , (2.41)

where m is the colloid’s mass, ζ the friction and ξ a Gaussian white noise 〈ξα(t)ξβ(0)〉 =
δαβ2Dδ(t). This is equivalent to look at the time evolution of the position, given by the

3Reprinted figure with permission from Clemens Bechinger et al., Reviews of Modern Physics, Active
particles in complex and crowded environments, 88, 045006, 2016. Copyright 2019 by the American Physical
Society.
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random variable X = r, of a particle and the stochastic differential equation, Eq. (2.27),
can be rewritten as

m
d2

dt2
r = −ζ d

dt
r + ξ ,

where A(Xt, t) = −ζ d
dt
r and B(Xt, t) = 1. In the overdamped limit, Eq. (2.41), reads

ṙ =
1

ζ
ξ . (2.42)

Active Brownian particles model. We can rewrite the previous equation for a self-
propelled particle as

ṙ = u+ η , (2.43)

where u is the self-propulsion and 〈ηα(t)ηβ(0)〉 = δαβ2Dtδ(t) with Dt = D/ζ. In order to
take into account the fluctuations of the orientation, the correlation of the self-propulsion is

defined by 〈uα(t)uβ(0)〉 = δαβ
v2
0

d
e−|t|/τ , with τ is the persistence time.

By introducing a coupling between the self-propulsion term and the orientation of the par-
ticle, Eq. (2.43) reads

ṙ = v0e+ ξ

ė = e× ξe , (2.44)

where 〈ξα(t)ξβ(0)〉 = δαβ2Dtδ(t) and 〈ξeα(t)ξeβ(0)〉 = δαβ2Drδ(t).

Run-and-tumble particles model. The run-and-tumble motion is inspired by the dy-
namics of bacteria [16]. The main feature of this model is the tumbling time of the particle,
in other word, the reorientation of the particle given by a rate ν. The motion of the particle
alternate between two states: when the particle moves in a specific direction at constant
speed v0, (‘run’), and when the particle does not move and reorient with a given rate ν,
(‘tumble’). The particle reorients instantaneously and completely isotropically, occurring
with a given rate ν, thus the typical trajectories are made of straight lines with random
length of typical size v0/ν. In two dimensions, we can rewrite the previous equation in a
more compact way as

ṙ = u+ ξ

θ̇ = γ , (2.45)

where 〈γα(t)γβ(0)〉 = δαβ2Drδ(t) and u = v0(cos(θ), sin(θ))T . The correlation for the self-

propulsion are given by 〈uα(t)uβ(0)〉 = δαβ
v2
0

d
e−|t|/τ , where τ−1 = ν + (d − 1)Dr [94]. The

main difference between RTPs and ABPs is the value of the persistence time τ , which differ
from ν, the tumbling rate.



2.3. STOCHASTIC DIFFERENTIAL EQUATIONS 51

Active Ornstein-Uhlenbeck particles model. The term active Ornstein-Uhlenbeck
particles was recently introduced by Fodor et al. [93]. However, a similar concept was used
to approximate the treatment of ABPs [54, 95]. The equation of motion for an overdamped
active particle with an interaction potential reads

ṙ = −µ∇(Φ) + v .

The activity v has correlations taken as an Ornstein-Uhlenbeck process 〈vα(t)vβ(0)〉 =
δαβΓ(t), and obeys the equation

τ v̇ = −v + η ,

where 〈ηα(t)ηβ(0)〉 = δαβ2Dδ(t). Thus [93, 54]

Γ(t) =
Dac

τ
e
−|t|
τ ,

where Dac = v2
0/d represents an active diffusion coefficient and τ the persistence time (to

remind τ−1 = (d−1)Dr). The limit for vanishing persistence time of AOUPs corresponds to
a passive Brownian particle, since v reduces to a Gaussian white noise. The main difference
between these three minimalist models resides in the interpretation of the orientational
diffusion coefficient. In the rest of my thesis, my attention will be focused on the concept of
‘Active Brownian Particles’ to study the motion of active particles at the microscopic level
under external force and confinement.

2.3.2 Fokker-Planck equation

We want to study the time evolution of the probability distribution associated to the con-
tinuous random variable Xt, in continuous time. Instead of having discrete states in the
Kolmogorov backward equation, the state are now continuous, and the equation obtained
from it, is called Fokker-Planck equation. This equation enables us to calculate the transition
probability, useful to calculate the expectation value of observables of a diffusion process.
It is possible to derive the Fokker-Planck equation from the Chapman-Kolmogorov equa-
tion, by employing a similar method used previously to compute the Master equation but in
the following Itô’s Lemma, Eq. (2.29), will be used. For further details on the Chapmann-
Kolmogorov equation method, the readers are referred to [96]. Let us assume that a function
f(t) does not depend explicitly on t, i.e. ∂tf = 0. By averaging over the Wiener process we
obtain

d

dt
〈f(Xt)〉 = 〈A ∂

∂X
f +

1

2
C2 ∂2

∂X2
f〉 , (2.46)

where 〈dW 〉 = 0. We can rewrite 〈f(Xt)〉 with the transition probability P (X, t). This
expectation value is given by

〈f(Xt)〉 =

∫
dXP (X, t)f(Xt) ,
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and Eq. (2.46) can be rewritten as

d

dt
〈f(Xt)〉 =

∫
dXf(Xt)

∂

∂t
P (X, t)

=

∫
dXP (X, t)A

∂

∂X
f(Xt) +

∫
dXP (X, t)

1

2
C2 ∂2

∂X2
f(Xt) . (2.47)

By integrating by parts the last line 4 , we obtain∫
dXf(Xt)

∂

∂t
P (X, t) = −

∫
dXf(Xt)∂X(P (X, t)A) +

∫
dX

1

2
f(Xt)∂X2(P (X, t)C2) .

(2.48)
This equation hold for any arbitrary function f(Xt) and the Fokker-Planck equation for the
transition probability P (X, t) reads

∂

∂t
P (X, t) = −∂X(P (X, t)A) +

1

2
f∂X2(P (X, t)C2) . (2.49)

The previous equation has been obtained from the SDE in Eq. (2.28), which describes the
evolution of the random variable (e.g. coordinates) Xt. From a mathematical point of view,
the explicit solution of the Fokker-Planck equation, Eq. (2.49), depends on the functional
forms of the drift coefficient A(Xt, t) and of the diffusion coefficient5 C2(Xt, t)/2.

2.3.3 From the Langevin equation to the Fokker-Planck equa-
tion

As we saw, it is possible to derive the Fokker-Planck equation by using Itô’s Lemma in
a general matter. However, it can be difficult to derive the Fokker-Planck equation with

4The first integral reads∫
dXP (X, t)a∂Xf = [AP (X, t)f ]−

∫
dXf∂X(P (X, t)A) ,

and the second one reads∫
dXP (X, t)

1

2
C2∂X2f =

[
1

2
C2P (X, t)f

]
−
∫
dX

1

2
∂Xf∂X(P (X, t)C2)

=

[
1

2
C2P (X, t)f

]
−
[

1

2
C2P (X, t)f

]
+

∫
dX

1

2
f∂X2(P (X, t)C2) .

By using
∫
dAP (A) = 1, we obtain Eq. (2.48).

5Problem of establishing the condition for the existence and the uniqueness of the solution of the FPE
require specific assumption of space and time dependence of A(Xt, t) and C(Xt, t). For further details, the
readers are referred to the Appendix A and [87].
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this method from any Langevin equations, especially when the coefficients A and C are
complicated. Let me present another method based on the variational derivation, which will
be used in the Chapter 3.1.

It is possible to describe the motion of a particle subject to external force and random force
with the Langevin equation

dx

dt
= fextx+ ξ . (2.50)

The probability distribution P (x, t) = 〈δ(x(t)−x)〉 and its temporal derivation reads

d

dt
P (x, t) =

d

dt
〈δ(x(t)− x)〉

= −∇ · 〈δ(x(t)− x)
dx

dt
〉

= −fext∇P (x, t)−∇ · 〈δ(x(t)− x)ξ〉 .

The last term can be found by using a variational derivation or also called Furutsu-Novikov-
Donsker relation [97, 98, 99, 100, 101, 102, 103, 104, 105]

〈δ(x(t)− x)ξ〉 =

+∞∫
−∞

dt′〈ξ(t)ξ(t′)〉〈δδ(x(t)− x)

δξ(t′)
〉 . (2.51)

By using

〈δδ(x(t)− x)

δξ(t′)
〉 = −∇ · δ(x(t)− x) ,

Equation (2.51) reads
〈δ(x(t)− x)ξ〉 = −∇ ·Dδ(x(t)− x) ,

where D =
+∞∫
−∞

dt′〈ξ(t)ξ(t′)〉 is the diffusion coefficient. The Fokker-Planck equation associ-

ated to the Langevin equation in 3D, Eq. (2.50), reads

d

dt
P (x, t) = −fext∇P (x, t) +D∆P (x, t) . (2.52)

In the most simple case, where fext = 0, its solution can be found by moving to the Fourier
space

d

dt
P (k, t) = Dk2P (k, t) ,

and its solution reads
P (k, t) = P (k, 0)e−Dk2t ,
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with the initial condition P (k, 0) = e−ikx0 . Elementary computations lead to

P (x, t) =
1√

4πDt
e−

(x−x0)2

4Dt . (2.53)

Let us imagine the motion a passive particle under the gravity force in 1D. The Fokker-Planck
equation, Eq. (2.52), can be rewritten as

d

dt
P (x, t) = vg

d

dx
P (x, t) +D

d2

dx2
P (x, t) ,

where vg = −fextx̂ represents the effect of the gravity, also called terminal velocity. The
solution can be obtained by moving into the Fourier space

d

dt
P (k, t) = vgkP (k, t)−Dk2P (k, t) ,

and its solution reads
P (k, t) = e−ikx0evgk−Dk

2t .

Elementary computations lead to

P (x, t) =
1√

4πDt
e−

(x−vgt−x0)2

4Dt . (2.54)

2.3.4 Reflective boundary condition: Fokker-Planck equation

In order to include the boundary condition at x = 0, we use the reflective boundary condition.
From the continuity equation

d

dt
P (x, t) = − d

dx
J ,

where J is the probability current or flux of the system. The reflective boundary condition
corresponds to no flux at the boundary, which reads[

D
d

dx
Pr(x, t) + vgPr(x, t)

]
x=0

= 0 .

By using the method of images, see Fig. 2.13, which consists of taking a mirror source at
x = −x0 to reproduce the boundary condition at the wall x = 0 at any time, for a diffusion
process [106, 107, 108, 109, 105]

Pr(x, t) = P (x, t|x0) + AP (x, t| − x0) +

−x0∫
−∞

k(ξ)P (x, t|ξ)dξ . (2.55)
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After some computations, the readers are referred to Chapter 3.1.8 for the intermediate
steps, the solution for Eq. (2.54) with reflective boundary condition reads

Pr(x, t) =
1√

4πDt

[
e−(x−x0)2/4Dt + e−(x+x0)2/4Dt

]
e
−vg(x−x0)

2D
−
v2
gt

4D +
vg

D
√
π
e−vgz/D

+∞∫
x+x0−vgt

2
√
Dt

e−η
2

dη .

This method will be use in the first work of the Chapter 3.1 to find the probability density

-X0 X0

X

P

Figure 2.13 – Reflective boundary conditions. At time t = 0, the particle is at the position
x0 and its mirror image at −x0, with an associated continuous sequence of images located
at all points ξ < −x0.

function in the case of one active particle in 3D.

2.4 Numerical solution

The numerical analysis of SDEs is different from the ordinary differential equation due to
the stochastic calculus of the Wiener process. The stochastic Taylor expansion gives the
foundation of the discrete time numerical methods for differential equations. The simplest
numerical analysis method for the approximation of ordinary differential equation is given
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by Euler’s method [110]. Moreover, in 1955, Maruyama developed a method to approximate
the stochastic differential equation based on Euler’s method. This method is called Euler-
Mayurama method. For more details, the readers are referred to [87, 110].

2.4.1 Discretization scheme

In the following, the Euler-Mayurama method will be used. Let a stochastic differential
equation (in the Itô interpretation)

dXt = a(Xt, t)dt+ b(Xt, t)dWt ,

where dWt = ξdt. The discrete scheme reads

Xn+1 = Xn + a(Xn, tn)∆t+ b(Xn, tn)∆Wn ,

we can express ∆Wn as
√

∆tN(0, 1)6, and then obtain

Xn+1 = Xn + a(Xn, tn)∆t+ n · b(Xn, tn)
√

∆t ,

where n is a number draw from a unit normal distribution N(0, 1).

2.4.2 Molecular Dynamics simulations

In order to investigate the emergence of collective behavior of many interacting active par-
ticles under external forces, we developed molecular dynamics simulations based on the
Euler-Mayurama scheme. To this end, we study the behavior of N particles in two domains:
a cubic box and a cylindrical box. We describe the particle by its position r and its orienta-
tion e with e2 = 1. The particle moves with a self-propulsion speed v0 along its orientation.

6From the theorem of the strong convergence, see Appendix A, the Euler-Mayurama scheme gives

X(t+ ∆t) = x+ vg∆t+ vsn(t)
√

∆t .

Moreover, by knowing that a Wiener process dWt = W (t+ ∆t)−W (t) ∼ N(0,∆t) and by using N(0,∆t)
d
=

N(0, 1)
√

∆t, where
d
= indicates that the random processes follow the same distribution, the discretization

for a Wiener process reads

∆W (∆t) =
√

∆tn(t), n(t) ∈ N(0, 1) .
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Two stochastic differential equations in three dimensions (in the Stratonovich interpretation)
draw our attention and reads

d

dt
ri(t) = v0ei(t) + fexti −∇UWCA(r) + ξri

(t) (2.56)

d

dt
ei(t) = ξei

(t)× ei(t) . (2.57)

The hard core repulsion between the particles is given by Weeks-Chandler-Anderson potential
[111]

UWCA(r) =

{
4ε
[
( σ
rij

)12 − ( σ
rij

)6
]

+ ε for r ≤ 21/6σ

0 for r > 21/6σ
(2.58)

where σ is the particle diameter and ε is the strength of the potential. This potential is
a modified Lennard-Jones potential, shifted by ε and truncated at the minimum 21/6σ. It
is composed of repulsive r−12 and attractive r−6 terms. The Lennard-Jones pair potential
is decomposed into two parts, one repulsive which correspond to the WCA potential and
another one attractive. The term fext gives the external forces applied on the particles, for
example it can represent the gravity.

The previous equation of motion are integrated by using Euler-Mayurama scheme, with
parameters which satisfy the convergence criterion (see Appendix A), and read

ri(t+ ∆t) = ri(t) + (v0ei + fexti − ∂iUWCA(r))∆t+ n(t)
√

∆t (2.59)

ei(t+ ∆t) = ei(t) +
√

∆t(
3∑
l=1

3∑
j=1

3∑
k=1

εljkn
jek)i . (2.60)

The norm of the orientation vector can be kept by means of a Lagrangian multiplier [112]
or by changing the interpretation of the stochastic differential equation as in (2.40).

2.4.3 Boundary conditions

When a confined geometry is considered the Molecular Dynamics simulations require the
definition of the collision dynamics at the boundary. By assuming that the translational
velocity undergoes elastic reflection, two possibilities are considered for the orientation dy-
namics. One is to consider the orientation unchanged during the collision, called sliding
boundary condition described in [113]. The other one is to fix the outside angle at a given
value fixed by the experimental observations. In the following, firstly we discuss the dynam-
ics for flat and curved boundaries. Secondly, the change in the orientation in the case of a
curved boundary.
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Flat boundary The flat boundary condition was considered to study the sedimentation of
active particles such as Janus colloids, in 3D. We considered the sliding boundary condition
and under this assumption, the Janus colloids tend to slide along the boundaries for an
average time of the order of τe, given by the orientational diffusion coefficient. At the
boundary, the reflective implementation is made by modifying the positions computed from
Eqs. (2.59)-(2.60). As shown in Fig. 2.14, the position at time t of the active particle is
defined by [r(t)], the position outside the boundary at t+ ∆t by [r̃(t+ ∆t)] and the reflected
position by [r(t+ ∆t)]. The orientation stays unchanged over this reflecting process.

Boundary

Particle at time Particle reflected

Particle outside

Figure 2.14 – Flat boundary. It simulates a reflection as it can be observed in billiards,
when the balls collide with the border and the angle of reflection is the same as the angle of
incidence. The reflection is realized by taking its image and reflect it by the perpendicular
with the boundary.

Curved boundary The curved boundary condition was considered to study the aggrega-
tion phenomena in the case of the algae C. reinhardtii, in a quasi-2D cylindrical domain. In
that work, we have considered the reflective boundary condition, as shown in Fig. 2.15, with
and without a change in the orientation.

The reflective process is structured as follows for the curved boundary.

1. Compute the position at t+ ∆t, [r̃(t+ ∆t)] according to Eqs. (2.59)-(2.60).

2. If the new position is inside the boundary, then we assign [r̃(t+ ∆t)] = [r(t+ ∆t)].

3. If the new position is outside the boundary, as illustrated in Fig. 2.14 - 2.15, then:
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Outside Outside

P

L

Outside

P

L

or

Outside

P

(a) (b)

(c) (d)

Figure 2.15 – Curved boundary. At each time step, (a) we check if the particle at t + ∆t
is inside or outside of the boundary; (b) if outside, we perform the reflection process by
computing the intersection point P and its associate tangent line L; and either (c) the
particle is reflected via L or (d) the particle is reflected via the radius. Both (c)-(d) obtaining
r(t+ ∆t) after this reflection correction.

(a) Compute the intersection point P : [rp]

(b) Derive the tangent line L

(c) • Unchanged orientation. Take the mirror image from the tangent line of [r̃(t+
∆t)] to find the new position [r(t+ ∆t)]

• Change orientation. Take the mirror image by using the radius. Due to the
small time step ∆t = 10−5 (needed for the convergence criterion), there is
not much difference between the tangent line and the radius. However, the
advantage offered by using the radius is the adjustment of the position to
get the desired outside angle. In the work with the algae C. reinhardtii, this
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angle is found to be 16 degrees [114].

Let me describe in more details the computation for the quasi-2D cylindrical domain. The
system is in quasi-2D, the curved boundary applies in the x, y directions and we have a flat
boundary in the z direction.

• First, we need to compute the intersection point P : [xp, yp].

We start by deriving the line between [x(t), y(t)] and [x̃(t+ ∆t), ỹ(t+ ∆t)]. From the
equation for a line y(t) = ax(t) + b, elementary computations lead to

a =
ỹ(t+ ∆t)− y(t)

x̃(t+ ∆t)− x(t)

b = y(t)−
(
ỹ(t+ ∆t)− y(t)

x̃(t+ ∆t)− x(t)

)
x(t) .

Then, we need to find the intersection between this line and the boundary, which is
given by a circle. The following system of equation need to be solved

(x(t)− xc)2 + (y(t)− yc)2 = R2, with (xc, yc) = (0, 0)

y(t) = ax(t) + b .

By subsitution, the equation for the line into the one for the circle

x2(t)(1 + a2) + 2abx(t) + b2 −R2 = 0 .

The solution of this equation read

– ∆ > 0: xp = −B±
√

∆
2A

and yp = axp + b.

– ∆ = 0: xp = −B
2A

and yp = axy + b.

where A = 1 + a2, B = 2ab, C = b2 −R2 and ∆ = B2 − 4AC.

• Second, in order to use the mirror image by using the tangent line, we need to compute
it. The product of the radius with the gradient of the tangent line gives −1 and reads

mR ·mT = −1 ,

where mR = yp/xp and mT = −1/mR. The tangent line is given by

y = mTx .
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• Third, the reflection of [x̃(t+ ∆t), ỹ(t+ ∆t)] via the tangent line is given by

x(t+ ∆t) =
(1−m2

T )x̃(t+ ∆t) + 2mT ỹ(t+ ∆t)

m2
T + 1

y(t+ ∆t) =
(m2

T − 1)ỹ(t+ ∆t) + 2mT x̃(t+ ∆t)

m2
T + 1

.

The computation of the mirror image by using the radius requires fewer steps. We
compute the distance or radius from the center of the circle with the positions outside
of the boundary and in order to find the distance from the boundary, we take the
difference between this new radius and the one from the boundary. The reflective
image [x(t+ ∆t), y(t+ ∆t)] is found by the subtraction of this distance with the radius
of the boundary.

Outside angle θ From the intersection point P , we compute the outside angle by using
the polar coordinates, see Fig. 2.16, which read

er = ex cos(φ) + ey sin(φ)

eφ = −ex sin(φ) + ey cos(φ) .

Figure 2.16 – Reflection angle. When the reflection process does not keep the angle of
reflection equal to the incident angle, but it is instead fixed at θ = θ0.
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The direction of the orientation is either +eφ or −eφ, and is given by the scalar product:
e(t) · eφ.

If e(t) · eφ > 0, then
e(t+ ∆t) = cos(θ)eφ − sin(θ)er .

The new orientation for an outside angle θ read

ex(t+ ∆t) = − [cos(θ) sin(φ) + sin(θ) cos(φ)]

ey(t+ ∆t) = [cos(θ) cos(φ)− sin(θ) sin(φ)] .

If e(t) · eφ < 0, then
e(t+ ∆t) = − cos(θ)eφ − sin(θ)er .

The new orientation for an outside angle θ read

ex(t+ ∆t) = [cos(θ) sin(φ)− sin(θ) cos(φ)]

ey(t+ ∆t) = − [cos(θ) cos(φ) + sin(θ) sin(φ)] .
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3.1 Dynamics of sedimenting active Brownian parti-

cles

Summary

The motion of active particles under external field can lead to the emergence of collective
behavior. Theoretical studies of active particles, based on the framework of active Brow-
nian particles [10] and stochastic processes, have mostly focused on two-dimensional sys-
tems [103, 115, 102, 116, 117]. A complete description in three dimensions (3D) in terms of
the Fokker–Planck equation is challenging [118, 104] and some recent progress in the theory
of one active particle [119, 120, 121] highlights the fact that many questions are still open, es-
pecially in 3D. In this work, I focused my attention on a dilute suspension of active particles,
e.g. Janus colloids, and characterized the transient sedimentation dynamics. I analytically
characterized the sedimentation of one active Brownian particle in 3D and, by means of
Brownian dynamics simulations for many weakly-interacting particles. Firstly, I developed
a model to described the sedimentation of one active particle under gravity based on two
overdamped Langevin equations and the associated Fokker–Planck equation to obtain the
particles’ density profile in the direction of gravity. The density profile is obtained from the
probability density function P (r, e, t|r0, e0, t0) of finding an active particle at the position r,
with an orientation e at time t, given the initial state (r0, e0, t0). Due to the complexity of
the problem, finding the general expression of P (r, e, t|r0, e0, t0) in 3D is challenging. This
method allows us to maintain the coupling between the orientation and the position obtained
in 3D, which I then specialize in one direction. Furthermore, in comparison with previous
work [119, 122, 120, 118, 117] this method has the additional advantage of providing access
to the full temporal dynamics, and is not limited to steady-state conditions, so that I can
also investigate high Péclet numbers. Secondly, I performed Brownian dynamics simulations
to describe the sedimentation of many particles, where fluid-mediated hydrodynamic inter-
actions are approximated via a short-range potential with up-down symmetry. I did the
computations and I wrote the paper with the support of Dr. Mazza.





66 CHAPTER 3. RESULTS

Dynamics of sedimenting active Brownian particles
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We investigate the stochastic dynamics of one sedimenting active Brownian particle in three
dimensions under the influence of gravity and passive fluctuations in the translational and
rotational motion. We present an analytical solution of the Fokker–Planck equation for the
stochastic process which allows us to describe the dynamics of the active Brownian particle
in three dimensions. We address the time evolution of the monopole, the polarization, and
the steady-state solution. We also perform Brownian dynamics simulations and study the
effect of the activity of the particles on their collective motion. These results qualitatively
agree with our model. Finally, we compare our results with experiments [J. Palacci et al.,
Phys. Rev. Lett. 105, 088304 (2010)] and find very good agreement.

3.1.1 Introduction

Active particles convert energy from chemical, biological, or other processes into motion. The
study of active particles, and especially their collective motion, has received much attention
due to a renewed interest in the physical principles underlying the motion of, e.g., plankton
or bacteria, and also on account of technological applications involving both biological and
artificial controllable active systems [4, 123, 124]. Active particles exhibit a fascinating
multitude of interesting behaviors from the single particle to collective states [125, 126, 127],
due to their nonequilibrium nature.

Typically, active particles move in an aqueous environment, where, because of their size,
viscous forces dominate, and inertial forces are completely negligible. In fact, consideration
of the Navier–Stokes equations identifies that the nature of the dynamics is dictated by the
ratio of viscous to inertial forces, known as the Reynolds number R = σvρ/η, where σ is the
typical size of the microorganism, v its mean velocity, and ρ, η are the fluid’s density and
viscosity, respectively. For motile bacteria R ≈ 10−5. As noted by Purcell [128], this means
that if the propulsion of the active particle were to suddenly disappear, it would only coast
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for 0.1 Å. Thus, the state of motion is only determined by the forces acting at that very
moment, and inertia is negligible.

Even in dilute suspensions, where particle-particle interactions can largely be neglected,
and the dynamics are dominated by the balance of active motion and gravity, interesting
results are found [129, 120, 130, 131]. Palacci et al. [51] showed experimentally with active
Janus colloids that activity increases the sedimentation length, by increasing the effective
diffusivity. More recently, Ginot et al. [132] characterized the equation of state of sedimenting
active colloids as a function of the activity.

Theoretical studies of active particles, based on the framework of active Brownian parti-
cles [10] and stochastic processes, have mostly focused on two-dimensional systems [103,
115, 102, 116, 117]. A complete description in three dimensions (3D) in terms of the Fokker–
Planck equation is challenging [118, 104] and some recent progress in the theory of one active
particle [119, 120, 121] highlights the fact that many questions are still open, especially in
3D. For example, in dilute suspensions, what is the transient sedimenting dynamics? the
emergence of polarization (and possibly higher orders) is intriguing and currently under
investigation [133]; what are the appropriate variables to construct an equation of state?
In denser suspension, the important role of hydrodynamic interactions makes the situation
even more complicated. For what physical conditions is the sedimenting steady state stable?
What are the other possible steady states? Can we write an equation of state in this case?
What are its relevant dynamical variables? In this work, we address the first question, that
is, the transient state.
We aim to analytically characterize the sedimentation of one active Brownian particle in
3D and, by means of Brownian dynamics simulations for many weakly-interacting particles.
First, we analytically describe the sedimentation of one active particle under gravity with two
overdamped Langevin equations and the associated Fokker–Planck equation to obtain the
particles’ density profile in the direction of gravity. The density profile is obtained from the
probability density function P (r, e, t|r0, e0, t0) of finding an active particle at the position r,
with an orientation e at time t, given the initial state (r0, e0, t0). Due to the complexity of
the problem, finding the general expression of P (r, e, t|r0, e0, t0) in 3D is challenging. This
method allows us to maintain coupling between the orientation and the position obtained
in 3D, which we then specialize in one direction. Furthermore, in comparison with previous
work [119, 122, 120, 118, 117] this method has the additional advantage of providing access to
the full temporal dynamics, and is not limited to steady-state conditions, so that we can also
investigate high Péclet numbers. We find an approximate solution for the time-dependent
monopole, polarization and the steady-state solution. Secondly, we perform Brownian dy-
namics simulations to describe the sedimentation of many particles, where fluid-mediated
hydrodynamic interactions are approximated via a short-range potential with up-down sym-
metry.
The remainder of this work is organized as follows. In section 3.1.2, we introduce the
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Figure 3.1 – Perspective view of the 3D motion of a few active Brownian particles under
gravity in the presence of a reflective wall at the bottom. The trajectories are marked by
showing the overlaid particles at subsequent times. The color code of each sphere indicates
the time of that configuration.

stochastic process and solve the associated Fokker–Planck equation for a single, sediment-
ing active Brownian particle. In section 3.1.3, we show the results of Brownian dynamics
simulations of dilute suspensions of active particles. Finally, in section 3.1.4 we discuss our
conclusions.

3.1.2 Analytical solution for a single active Brownian particle

We study analytically the motion of one self-propelled microscopic particle (active particle),
considered as a point particle, in 3D under an external force: gravity. An example of this
motion is shown in the Fig. 3.1. The activity of the particle means that it is able to
convert energy in order to move. We represent the self-propulsion with a constant speed
vs acting on the particle. Typically, an active particle moves inside a fluid and due to
its microscopic size we cannot neglect the influence of thermal fluctuations caused by the
surrounding fluid buffeting the particle. The interactions with the fluid are represented by
stochastic terms as for a Brownian particle. Due to gravity, the suspended active particle
approaches a stationary state where its position has an increased probability of being close to
the confining interface. This phenomenon is called sedimentation. To describe this motion,
we derive a Fokker–Planck equation [134, 135, 96, 136, 137].

We treat the motion of one active particle, described as a point particle, in 3D under gravity
by considering a single active Brownian particle moving with a constant active speed vs along
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a direction represented by the orientation e, subject to random fluctuations. The motion of
the active particle is biased by a drift velocity −vgz in the direction of gravity. Our system
is then described by two overdamped Langevin equations

d

dt
r(t) = vse(t)− vgz + ξ(t) , (3.1)

d

dt
e(t) = ξe(t)× e(t) . (3.2)

The random fluctuations are modeled in terms of the vectors ξ and ξe, with zero-mean, Gaus-
sian white noise components, and with variance 〈ξi(t)ξj(t′)〉 = 2Dtδijδ(t−t′), 〈ξei(t)ξej(t

′)〉 =
2Deδijδ(t−t′), where Dt and De are the translational and rotational diffusivities, respectively,
δij is the Kronecker delta, and δ(t) the Dirac distribution.

From Eqs. (3.1)-(3.2) we can derive a Fokker–Planck equation that accounts for the evo-
lution in time of the one-particle probability density function, P (r, e, t|za, e0, t0), of find-
ing an active particle under gravity diffusing in 3D, with the initial condition P (r, e, t =
t0|za, e0, t0) = δ(r − za)δ(e − e0). In the following, to lighten the notation we will use
P (r, e, t) = P (r, e, t|za, e0, t0).

After some manipulation (see Appendix 3.1.5), we obtain the following Fokker–Planck equa-
tion

∂

∂t
P (r, e, t) = −vse · ∇P (r, e, t) + vg

∂

∂z
P (r, e, t) +Dt∇2P (r, e, t) +DeLeP (r, e, t) ,

(3.3)

with Le ≡
[

1
sin θ

∂
∂θ

(
sin θ ∂

∂θ

)
+ 1

sin2 θ
∂2

∂φ2

]
the Laplace–Beltrami operator on the 2-sphere S2, and

where we expressed e = (sin θ cosφ, sin θ sinφ, cos θ)T in spherical coordinates. Equation 3.3
can be written symbolically as a continuity equation

∂

∂t
P (r, e, t) = −∇ · J , (3.4)

which defines the current J . To solve Eq. (3.3), we proceed in the following way: (i) we
will move to Fourier space; (ii) we will use an expansion in terms of eigenfunctions of the
Fokker–Planck operator; (iii) we will perform a multipole expansion; (iv) we will focus on
the dependence of the probability on the z-direction, along which gravity applies; and (v)
we will perform the inverse-Fourier transform.

The Fourier transform of Eq. (3.3) then reads

∂

∂t
P̂ (k, e, t) = ivse · kP̂ (k, e, t)− ivgkzP̂ (k, e, t)−Dtk

2P̂ (k, e, t) +DeLeP̂ (k, e, t) . (3.5)
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Let us for the moment consider the simple case vs = 0 and vg = 0 which corresponds to a
simple Brownian particle. Because the operator OFP = ( ∂

∂t
+Dtk

2 −DeLe) is Hermitian, its

eigenfunctions e−Dtk2te−λnDetY m
n (θ, φ) form an orthonormal basis of the space of our solu-

tions, where λn = n(n+ 1), Y m
n (θ, φ) = (−1)m

√
2n+1

4π
(n−m)!
(n+m)!

Pm
n (cos(θ))eimφ are the spherical

harmonics including the Condon–Shortley phase factor, and n,m ∈ N, −n ≤ m ≤ n. Addi-
tionally, because Og = ivgkz is simply a multiplicative scalar, an eigenfunction of OFP + Og

is e−(ivgkz+Dtk2)te−λnDetY m
n (θ, φ).

Taking into account the initial condition

P̂ (k, e, t = t0) =
1

(2π)
3
2

∫
d3re−ik·rP (r, e, t = t0) =

1

(2π)
3
2

e−ikza

and the linearity of Eq. (3.5), we will search for solutions of the form

P̂ (k, e, t) = e−(ivgkz+Dtk2)te−ikza
+∞∑
n=0

+n∑
m=−n

P̂m
n (k, t)e−Den(n+1)tY m

n (e) , (3.6)

where the coefficients P̂m
n (k, t) are determined by using the expression in Eq. (3.6) in Eq.

(3.5) (see Appendix 3.1.6). Physically, the infinite sums on the right-hand side of Eq.
(3.6) represent the increasingly faster decay with time of higher-order spherical harmon-
ics [104].

Because of the rotational dynamics in our problem, it is convenient to explicitly highlight
the underlying physical symmetries by expanding the full probability P (r, e, t) in terms
of spherical tensors, that is, the irreducible representations of the rotation operator. Each
spherical tensor transforms like the eigenfunctions of the angular momentum of corresponding
rank n = 0, 1, 2, . . . , where the first three tensors represent the density ρ (monopole, n =
0), the polarization D (dipole, n = 1), and the nematic tensor Q (quadrupole, n = 2),
respectively. The probability can then be expanded as

P (r, e, t) = ρ(r, t) +D(r, t) · e+ e ·Q(r, t) · e+ . . . (3.7)

In the large time limit, the monopole term ρ(r, t) will dominate the sedimentation process
(while higher order terms in Eq. (3.7) are relevant for observables with shorter characteristic
time scales). Its Fourier transform can be found by truncating the sum in Eq. (3.6) at the
n = 0 term, that is

ρ̂(kz, t) =
1√
4π
e−(ivgkz+Dtk2

z)te−ikzaP̂ 0
0 . (3.8)

After some computations (see Appendix 3.1.7), we can work out the equation governing the

dynamics of P̂ 0
0

∂2

∂t2
P̂ 0

0 + 2De
∂

∂t
P̂ 0

0 +
v2
s

3
k2
z P̂

0
0 = 0 , (3.9)



3.1. DYNAMICS OF SEDIMENTING ACTIVE BROWNIAN PARTICLES 71

which is the telegrapher’s equation [138], and accounts for processes with a finite speed of
propagation.

A solution of Eq. (3.9) reads P̂ 0
0 (kz, t) = e−Det[F̂ (kz)e

−iw(kz)t + Ĝ(kz)e
iw(kz)t], where w(kz) =

(k2
z
v2
s

3
−D2

e)1/2, with F̂ (kz) and Ĝ(kz) arbitrary functions of the wavevector in the z-direction
kz. The expression for the monopole is found from the inverse Fourier transform, and
reads

ρ(z, t) =

+∞∫
−∞

dkz√
2π
ρ̂(kz, t)e

ikzz

=
e−Det

π
√

8

+∞∫
−∞

dkze
−ivgkzt−Dtk2

zte−ikzaeikzz[F̂ (kz)e
−iw(kz)t + Ĝ(kz)e

iw(kz)t] .

The term w(kz) = (k2
zv

2
s/3−D2

e)1/2 in the exponential makes it difficult to perform the
inverse Fourier transform. However, because we are interested in the long-wavelength limit
of the sedimentation profile, it is natural to consider a Taylor expansion of w(kz) around
kz = 0

ρ(z, t) =
e−Det

π
√

8

+∞∫
−∞

dkze
−Dtk2

zt−ivgkzteikzze−ikza
[
F̃ e−Det+

v2
sk

2
zt

6De + G̃eDet−
v2
sk

2
zt

6De

]
.

where F̃ and G̃ are defined as follow

F̂ (kz)e
−iw(kz)t = F̂ (kz)e

−Det+
v2
sk

2
zt

6De
−iO((w(kz)t)2)

= e−Det+
v2
sk

2
zt

6De F̂ (kz)e
−iO((w(kz)t)2)

= e−Det+
v2
sk

2
zt

6De F̃

and similarly for G̃. Elementary integration yields

ρ(z, t) =
1√
8π

[
e−2Det

F̃√
D−efft

e−(z−a−vgt)2/(4D−eff t) +
G̃√
D+

efft
e−(z−a−vgt)2/(4D+

eff t)

]
, (3.10)

where we have defined the effective diffusivities D±eff ≡ Dt± v2
s

6De
. That active motion enhances

diffusion has been repeatedly observed in experimental [51] and theoretical works [121, 139].
By imposing that mass is conserved during the sedimentation process

d

dt

∫
dzρ(z, t) = 0 ,
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we can determine the functions F̃ = exp(2Det) and G̃ = 1.

In order to describe the sedimentation phenomena, we need to impose a reflective boundary
condition at the confining wall located at z = 0. By integrating (3.3) over the orientation,
we find

∂

∂t
ρ(z, t) = −1

2
vs
∂

∂z
D(z, t) + vg

∂

∂z
ρ(z, t) +Dt

∂2

∂z2
ρ(z, t) .

The associated continuity equation reads

∂

∂t
ρ(z, t) = − ∂

∂z
Jz ,

and by imposing no flux Jz = 0 at the wall, the boundary condition, of the Robin type,
reads [?] [

Dt
∂

∂z
ρ(z, t) + vgρ(z, t)− 1

2
vsD(z, t)

]
z=0

= 0 . (3.11)

Moreover, in large time limit, the monopole ρ(z, t) dominate the sedimentation process and
therefore the dipole D(z, t) is negligible. Hence,[

Dt
∂

∂z
ρ(z, t) + vgρ(z, t)

]
z=0

= 0 . (3.12)

We rewrite eq.(3.10) as

ρ(z, t) = ρ1(z, t) + ρ2(z, t) ,

where

ρ1(z, t) =
1√
8π

e−(z−a−vgt)2/4D−eff t√
D−efft

,

and

ρ2(z, t) =
1√
8π

e−(z−a−vgt)2/4D+
eff t√

D+
efft

.

In order to impose no net flux across the reflective wall, we use the method of images, but
as known in the theory of partial differential equation [Sommerfeld] the appropriate image
system consists of replacing the wall at z = 0 with a mirror source placed at z = −a (in
addition to the real source at z = a) and a continuous sequence of images which take place at
all points ξ < −a [140, 106, 107, 108, 109]. We can rewrite the probability density as

ρr(z, t) = ρ(z, t|a) + Aρ(z, t| − a) +

−a∫
−∞

k(ξ)ρ(z, t|ξ)dξ , (3.13)
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By applying eq.(3.13) to our system, ρr(z, t) reads

ρr(z, t) = ρr1(z, t|a) + ρr2(z, t|a) + A1ρr1(z, t| − a) + A2ρr2(z, t| − a) +

−a∫
−∞

k1(ξ)ρr1(z, t|ξ)dξ

+

−a∫
−∞

k2(ξ)ρr2(z, t|ξ)dξ , (3.14)

where the coefficients A1, A2, k1(ξ), and k2(ξ) are also found via the Robin boundary con-
dition (see appendix 3.1.8) the solution yields

ρr(z, t) =
vg

D−eff

√
2

erfc

(
z + a− vgt

2
√
D−efft

)
e−vgz/D

−
eff +

1
√

8π
√

2D−efft

[
e
−(z−a)2

4D−
eff
t + e

−(z+a)2

4D−
eff
t

]
e
−vg(z−a)

2D−
eff

−
v2
gt

4D−
eff

+
vg

D+
eff

√
2

erfc

(
z + a− vgt

2
√
D+

efft

)
e−vgz/D

+
eff +

1
√

8π
√

2D+
efft

[
e
−(z−a)2

4D+
eff
t + e

−(z+a)2

4D+
eff
t

]
e
−vg(z−a)

2D+
eff

−
v2
gt

4D+
eff .

(3.15)

The steady state regime is given by taking the limit t→∞ of eq.(3.15) and reads

lim
t→∞

ρr(z, t) =
2vg

D−eff

√
2
e−vgz/D

−
eff +

2vg

D+
eff

√
2
e−vgz/D

+
eff (3.16)

We note that the correct boundary condition is given by eq.(11), but in the large time limit
the dipole term vanishes; additionally, by matching our parameters with the experimental
values in [51], for which D−eff is positive, it follows that Dt > v2

s/6De and D2
t >> v4

s/36D2
e ,

and that the Robin condition is satisfied in the large time limit.

In the following, we take the active particle’s diameter σ, mass m and its translational
diffusion coefficient Dt as the units of length, mass and diffusivity. Thus, we can measure
rotational diffusivity in terms of D̃e = Dt/σ

2. A dimensionless measure of the relative
strength of the self-propulsion to the diffusive behavior, that is, the relative persistence of
the active motion, is given by the Péclet number P = vsσ/Dt.

Figure 3.2 shows the evolution of the density profile ρr(z, t) found from our solution to the
sedimentation process in Eq. (3.15). The initial position of the active particle is chosen at
z/σ = 40. The corresponding initial density ρr(z, t = 0) is a Dirac delta distribution. As
time progresses, we observe the shifting and flattening of the density profile. The steady
state regime, given by Eq. (3.16) is characterized by an exponential decay, which match
the sedimentation profile. We match our parameters with the experimental values given in
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[51], where the Péclet number 0.5 . P . 5, and we find a near-quantitative agreement with
the experiments. As predicted in theoretical works [118, 119], ρr(z, t) decays exponentially
away from the confining surface. Upon increasing the self-propulsion vs, and therefore the
effective diffusivity Deff , the density profile tends to spread away from the wall as observed
in the experiment [51]. This behavior is shown in Fig. 3.3.
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Figure 3.2 – Analytical sedimentation profile. Dependence of the density ρr(z, t) on the po-
sition z, computed from Eq. (3.15), at different times for a system with one active Brownian
particle under gravity in a cubic box of linear size L = 50σ with wall on bottom (z = 0) and
with gravity pointing in negative z-direction. At t = 0, the initial position of the active par-
ticle is at z/σ = 40, and the corresponding probability density is a Dirac delta distribution.
With time we observe a spreading of the density profile and a shift in the direction of gravity.
In the steady state regime, Eq. (3.16), we obtain a sedimentation profile characterized by an
exponential decay with distance. Different curves correspond to different moments during
the time evolution. The model parameters are vs/vg = 1.1, and Deσ

2/Dt = 1.8.

The sedimentation length δeff is the characteristic length scale of the decay of ρr(z, t) with
z. It was found to depend strongly on the activity of the self-propelling particle [51, 118].
In general, we find a linear relationship governing the growth of δeff with Deff/vg, δeff = c0 +
Deff/vg. The constant c0 ≡ c0(vg), and can be chosen to be zero, which is the value consistent
with the experiments in [51]. The relationship between δeff and Deff provides a connection
between the microscopic behavior of the active particle and the long-time emergent dynamics
[51]. The precise nature of the density profile in proximity of the confining surface will be
affected by a number of effects such as: electrostatics, and hydrodynamic interactions of the
active particles with the walls. For example, in a recent work [141], the authors show that
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boundaries can steer Janus colloids, which, as a result, move above the boundary at a fixed
distance. These effects are not taken into account here.
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Figure 3.3 – Normalized sedimentation profile in the steady state regime for a reflective
barrier. Dependence of the normalized density ρr(z)/ρ0 on the position z, in the steady state
regime given by Eq. (3.16). Different curves correspond to the long time behavior of the

sedimentation process for different values of the effective diffusion coefficient D±eff = Dt± v2
s

6De
.

We observe a good match with the experimental results in [51]. The model parameters are
Deσ

2/Dt = 1.8, and vs/vg ∈ [1.2, 6.6].

Additional information about the active sedimentation process can be gained by considering
the next term in the expansion Eq. (3.7), i.e. the polarization. The probability density
function becomes

P (z, cos(θ), t) ' ρ(z, t) +D(z, t) cos(θ) .

We can express the polarization D by means of the Legendre polynomials. Again, we are
only interested in the z-direction. In Fourier space we find

D(kz, t) =

√
3

4π
e−(ivgkz−Dtk2

z)te−ikzaP̂ 0
1 . (3.17)

After some computations and applications of the boundary conditions (at z = 0, J = 0 and



76 CHAPTER 3. RESULTS

0 10 20 30 40 50
position z/σ

0.00

0.05

0.10

0.15

P
(z
,c

os
(θ

),
t)

θ=0
θ=π/2

θ=π

Figure 3.4 – Polarization. Dependence of the probability density function P (z, cos(θ), t) on
the position z, computed at large t for three values of the orientation θ ∈ {0, π/2, π}. The
model parameters are vs/vg = 1.1, and Deσ

2/Dt = 1.8.

θ = π), the probability density function reads

P (z, cos(θ), t) =
1√
8π

[
1√
D−efft

e−(z−a−vgt)2/(4D−eff t) +
1√
D+

efft
e−(z−a−vgt)2/(4D+

eff t)

]

+

√
3

4π

cos(θ)√
2tDt

(
B1 +B2

C
+ 1

)
cos(α)

× e−(a2−2az+z2+2atvg−2tzvg+t2v2
g−ft2D2

ev
2
s)/(4Dtt) . (3.18)

We refer the readers to Appendix 3.1.9 for further details, and for the definition of the
constants B1, B2, C, α and f .

After imposing the condition P (z, cos(θ), t) ≥ 0, we show in Fig. 3.4 P (z, cos(θ), t), at large
t and for three values of the orientation θ ∈ {0, π/2, π}. As predicted in [120], we observe an
accumulation of active particles with a net polarization at the bottom wall, moving againts
the wall (θ = π). The qualitative picture is in agreement with [120].

3.1.3 Simulations of the collective motion

We next investigate a many-particle system composed of active Brownian particles under the
effect of gravity. An analytical approach is a formidable task; thus we turn to numerical sim-
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ulations. Even in the simpler case of passive Brownian particles, sedimentation is a complex
process on account of velocity correlations and hydrodynamic interactions [142, 143, 144].
Because we are interested in the impact of active motion on the sedimentation, we can reduce
the nonlinearities associated to hydrodynamic interactions by working in the dilute limit,
similarly to [51, 120, 119, 118]. We do however consider weak hydrodynamic interactions via
a short-ranged effective potential (see below). We perform Brownian dynamics simulations
in 3D.

We consider again a typical Reynolds number R � 1. An example of such particles in a
biological setting is the microalga Chlamydomonas reinhardtii, which has a typical length
σ = 10 µm and self-propulsion speed vs = 60 µm s−1. In colloidal physics active Janus
particles have a typical linear size σ = 1 µm and self-propulsion speed which can vary as a
function of the chemical gradient. As a reference, we can take the results found in experiment
[51], where the self-propulsion vs = (0.3− 4)µm s−1.

We describe the system by using two first-order stochastic differential equations, for N active
particles

d

dt
ri = vsei −∇φWCA − vgẑ + ξi , (3.19)

d

dt
ei = ξei × ei − γ

∂U

∂ei
, (3.20)

where i = 1, . . . , N , ‖ei‖ = 1 (implemented by means of a Lagrangian multiplier), vg is the
limiting velocity of a particle in the fluid under gravitational acceleration. In Eq. (3.19),
φWCA = 4ε[(σ/rij)

12 − (σ/rij)
6] + ε is the Weeks–Chandler–Anderson potential [111], rij =

|ri − rj|, representing a hard-core repulsion between active particles, where σ is the linear
size of the active particles, and ε is the energy scale of the repulsive interaction. In Eq.
(3.20), U =

∑
i 6=j cos2(θij) is the Lebwohl–Lasher potential, which we use to model to first

approximation the up-down symmetric interaction due to hydrodynamics that tends to align
neighboring particles (see e.g. [145]).

We integrate Eqs. (3.19)-(3.20) with a discretization scheme based on the Euler–Maruyama
algorithm in which we take into account the issue of multiplicative noise. We solve Eqs.
(3.19)-(3.20) in a domain of volume V = L3, with L = 50σ, with a reflective wall at the
bottom at z = 0, and gravity pointing in negative z-direction. The filling fraction of our
system is φ = N π

6
σ3/V = 10−3. Our results shown below are averaged over 104 independent

simulations. Figure 3.5 shows the dependence of the density profile ρr(z, t) on the position
z at different times. At t = 0, the active particles are randomly placed on a plane located
at z/σ = 40. After some time, all the active particles sediment on the bottom wall. We
observe a qualitative agreement of our simulation with our theory. We conclude that, as long
as hydrodynamic interactions are weak, or the system is diluted enough, the theory derived
for a single active particle is also applicable to a many-particle system.
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Figure 3.5 – Sedimentation profile from simulations. Dependence of the density ρr(z) on the
position z at different times from simulations of N = 1000 active particles in a cubic box
of linear size L = 50σ with a wall on bottom (z = 0) and with gravity pointing in negative
z-direction. Results are averaged over 104 independent simulations. At t = 0, the active
particles are randomly placed on a plane located at z/σ = 40. Different curves correspond
to different moments during the time evolution. The model parameters are vs/vg = 0.2.

To measure the importance of the active motion with respect to the diffusion, we vary
the Péclet number P by changing the self-propulsion vs. Figure 3.6 shows the results of
our simulations for the density profile at large t, and at different values of self-propulsion
vs.

When the activity is lower than the sedimentation velocity, vs/vg = 0.2, we observe a clear
sedimentation profile. If vs/vg = 1.0, we observe a weaker sedimentation profile and a peak
appears close to the upper part of the simulated domain. This peak is due to balance of
the weak, effective hydrodynamic interactions introduced in our simulations with the self-
propulsion and the effect of gravity. This is a consequence of the emerging polar order in
sedimenting active particles as discussed in sec. 3.1.2.

Finally, as soon as vs > vg, we observe an accumulation of particles both on the bottom
and top end, which differs from the classical sedimentation profile. We clearly highlight the
importance of the activity of the particles, which allows them to move against an external
force, in our case the gravity. From a biological point of view, this capacity play an important
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Figure 3.6 – Variation of the activity of the particles. Dependence of the density ρr(z) on
the position z for a system with N = 1000 active particles, for large t. Different curves
correspond to different values of vs/vg.

role, e.g. the algae need light to survive and they need to move against gravity to reach the
surface.

3.1.4 Conclusion

The dynamics of sedimenting active particles prove to be an interesting arena where different
nonequilibrium effects are at play, providing a testbed for our understanding of far-from-
equilibrium phenomena. Including a self-propulsion to the motion of sedimenting colloidal
particles ushers in a wealth of intriguing effects unimaginable from the classical results of
Perrin [84]. This is in fact reflected in the considerable interested elicited by this problem [51,
132, 119, 120, 118, 117]. We study the sedimentation process of active Brownian particles
in three dimensions. Firstly, we develop an analytical method describing the sedimentation
profile of one active particle. We solve analytically the Fokker–Planck equation for an active
particle in the presence of gravity and a confining wall at the bottom. We address the time
evolution of the monopole, and find a solution which matches the late-time density profile
in [51, 132]. Furthermore, we calculate the the dipolar term, and find the emergence of
polar order at the bottom wall, with an accumulation of particles moving against the wall,
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and a depletion of particles moving away from it. Imposing the no-flux condition at the
confining bottom wall produces the steady-state solution. This solution is consistent with
a number of previous results (most recently [117], for example). We recover the following
experimental results found in [51, 132]: (i) the exponentially decaying density profile for
the long-time regime and the steady state (ii) the increasing sedimentation length upon
increase of the effective diffusivity. Importantly, our method retains the temporal dynamics
of the sedimentation process, and therefore in addition to the steady state we also have
access to the intermediate states. Our method also allows us to keep the coupling between
the rotational and the positional degrees of freedom. In order to characterize more realistic
conditions for the sedimentation process, we also consider many particles with weak, effective
hydrodynamic interactions and we carry out Brownian dynamics simulations. We are able
to measure the importance of the active motion at large times by varying the Péclet number
P . We recover the density profile, shown in Fig. 3.6, found experimentally in [132] and in
numerical simulations [118] of active bottom-heavy particles. However, our model allows us
to characterize more in details the richness of the sedimentation process of active particles as
function of the activity. Furthermore, the sedimentation profile predicted by our analytical
method for one active particle (see Fig. 3.3) matches our simulations for many particles (see
Fig. 3.5).

3.1.5 Furutsu–Novikov–Donsker relation

To derive the Fokker–Planck equation, we consider the derivative of P (r, e, t) = 〈δ(r(t) −
r)δ(e(t)− e)〉 with respect to time

∂

∂t
P (r, e, t) = − (vse− vgz) · ∇P (r, e, t)−∇ · 〈ξ(t)δ(r(t)− r)δ(e(t)− e)〉

− ∇e · 〈[ξe(t)× e]δ(r(t)− r)δ(e(t)− e)〉 , (3.21)

where ∇e ≡ ( ∂
∂ex
, ∂
∂ey
, ∂
∂ez

)T, where the superscript T indicates transposition. To calculate

the ensemble averages involving the noise ξ and ξe, we use the Furutsu–Novikov–Donsker
relation [97, 98, 99, 100, 101, 102, 103, 104]

〈ξ(t)R[ξ]〉 =

+∞∫
−∞

dt′〈ξ(t)ξ(t′)〉〈δR[ξ]

δξ(t′)
〉 , (3.22)

where R[ξ] is an arbitrary functional of ξ. Physically, relation (3.22) helps obtain the depen-
dence of a stochastic observable (e.g. the position of a colloidal particle) on the properties
of the noise term.
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3.1.6 Eigenfunction expansion

Inserting Eq. (3.6) into Eq. (3.5), and then multiplying by the complex conjugate of the
spherical harmonics Y ∗m

′

n′ and integrating over the solid angle dΩ = sin θdθdφ, we find

∂

∂t
P̂m
n (k, t) = −

∞∑
n′=0

+n′∑
m′=−n′

P̂m′

n′ (k, t)e−De(λn′−λn)t

∫
dΩ Y m′

n′ (e) (ivse · k) Y ∗mn (e) . (3.23)

To proceed we define the following integrals

Jxm,m
′

n,n′ =

∫
dΩ Y m′

n′ (θ, φ) sin θ cosφ Y ∗mn (θ, φ) , (3.24)

Jym,m
′

n,n′ =

∫
dΩ Y m′

n′ (θ, φ) sin θ sinφ Y ∗mn (θ, φ) , (3.25)

Jzm,m
′

n,n′ =

∫
dΩ Y m′

n′ (θ, φ) cos θ Y ∗mn (θ, φ) . (3.26)

Equation (3.23) can then be written as

∂

∂t
P̂m
n (k, t) = −ivs

∞∑
n′=0

+n′∑
m′=−n′

P̂m′

n′ e
−De(λn′−λn)t

[
kxJxm,m

′

n,n′ + kyJym,m
′

n,n′ + kzJzm,m
′

n,n′

]
. (3.27)

The calculation of the integrals Jim,m
′

n,n′ is straightforward [104, 89]. Equation (3.23) be-
comes

∂

∂t
P̂m
n =

vs
2
e−2De(n+1)t

{
(ky − ikx)P̂m+1

n+1

[
(n+m+ 2)(n+m+ 1)

(2n+ 3)(2n+ 1)

]1
2

− 2ikzP̂
m
n+1

[
(n+m+ 1)(n−m+ 1)

(2n+ 3)(2n+ 1)

]1
2

+ P̂m−1
n+1

[
(n−m+ 2)(n−m+ 1)

(2n+ 3)(2n+ 1)

]1
2

(ky + ikx)

}

− vs
2
e2Dent

{
(ky − ikx)P̂m+1

n−1

[
(n−m)(n−m− 1)

(2n+ 1)(2n− 1)

]1
2

+ 2ikzP̂
m
n−1

[
(n+m)(n−m)

(2n+ 1)(2n− 1)

]1
2

+ (ky + ikx)P̂
m−1
n−1

[
(n+m)(n+m− 1)

(2n+ 1)(2n− 1)

]1
2

}
. (3.28)
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We are interested in the dynamics along the direction of gravity, the z-direction; hence we
specialize the previous equation to this case. The equation for the coefficients P̂m

n specialized
to the z-direction reads

∂

∂t
P̂m
n = −vsikz

{
e−2De(n+1)tP̂m

n+1

[
(n+m+ 1)(n−m+ 1)

(2n+ 3)(2n+ 1)

]1
2

+ e2DentP̂m
n−1

[
(n+m)(n−m)

(2n+ 1)(2n− 1)

]1
2

}
.

(3.29)

3.1.7 Telegrapher’s equation

Here we provide details of the computation of the telegrapher’s Eq. (3.9). We start by

considering the equations for the two coefficients P̂ 0
0 and P̂ 0

1

∂

∂t
P̂ 0

0 = − vs√
3
e−2DetikzP̂

0
1 , (3.30)

∂

∂t
P̂ 0

1 = −vse−4Det

√
4

15
ikzP̂

0
2 −

vs√
3
e2DetikzP̂

0
0 , (3.31)

combining these two Eqs. yields

∂2

∂t2
P̂ 0

0 = 2De
vs√

3
e−2DetikzP̂

0
1 −

vs√
3
e−2Detikz

∂

∂t
P̂ 0

1 , (3.32)

and after replacing the last term on the right hand side with Eq. (3.31) we find

∂2

∂t2
P̂ 0

0 + 2De
∂

∂t
P̂ 0

0 +
v2
s

3
k2
z P̂

0
0 = −v2

s

√
4

45
k2
z P̂

0
2 e
−6Det .

Finally, neglecting the higher order yields

∂2

∂t2
P̂ 0

0 + 2De
∂

∂t
P̂ 0

0 +
v2
s

3
k2
z P̂

0
0 = 0 ,

which is the telegrapher’s Eq. (3.9).

3.1.8 Monopole reflective boundary

Let’s start from the solution of a diffusion process

ρ(z, t) =
e−(z−a−vgt)2/4Dt

√
4πDt

.
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It is convenient to introduce a change in the independent variable [109]

ρ(z, t) = Ue
vg(z−a)

2D
−
v2
gt

4D ,

where

U =
1√

4πDt
e−(z−a)2/4Dt .

Finally

ρ(z, t) = Ue
vg(z−a)

2D
−
v2
gt

4D =
1√

4πDt
e−(z−a−vgt)2/4Dt

In order to take into of the reflecting barrier, ρ(r, t) becomes [106, 107, 108, 109]

ρr(z, t) = ρ(z, t|a) + Aρ(z, t| − a) +

−a∫
−∞

k(ξ)ρ(z, t|ξ)dξ , (3.33)

which tells you that an isolated point (image) z = −a is not sufficient, but we need a
continuous sequence of images which take place at all points ξ < −a. The Robin boundary
condition for our system reads[

Dt
∂

∂z
ρr(z, t) + vgρr(z, t)

]
z=0

= 0 ⇐⇒
[
Dt

∂

∂z
Ur +

1

2
vgUr

]
z=0

= 0 ,

then

√
4πDttUr = e−(z−a)2/4Dtt + Ae−(z+a)2/4Dtt +

−a∫
−∞

k(ξ)e−(z−ξ)2/4Dttdξ .

By applying the Robin boundary condition (3.33) reads

a

2t
e−a

2/4Dtt(1− A)−Dtk(−a)e−a
2/4Dtt +Dt

−a∫
∞

∂

∂ξ
k(ξ)e−ξ

2/4Dttdξ − 1

2
vge
−a2/4Dtt(1 + A)

− 1

2
vg

−a∫
∞

k(ξ)e−ξ
2/4Dttdξ = 0 (3.34)

By setting the terms of different time dependance individually equal to zero, the coefficients
A and k(ξ) read
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• A = 1

• k(−a) = − vg
Dt

• k(ξ) = − vg
Dt
e

2vg(ξ+a)

Dt

By replacing the function and coefficient inside the equation, the solution for Ur is given
by

√
4πDttUr = e−(z−a)2/4Dtt + e−(z+a)2/4Dtt −

−a∫
−∞

vg
Dt

e
2vg(ξ+a)

Dt e−(z−ξ)2/4Dttdξ ,

and by rewriting the integral term

−
−a∫
−∞

2vg
Dt

e
vg(ξ+a)

Dt e−(z−a)2/4Dttdξ =
2vg
Dt

∞∫
a

e
vg(ξ−a)

Dt e−(z+ξ)2/4Dttdξ =
vg
Dt

+∞∫
a

e
vg(ξ−a)

2Dt e−(ξ−a)2/4Dttdξ

and by doing a change of variable [109] for the limits of the integral Ur reads

Ur =
1√

4πDtt

[
e−(z−a)2/4Dtt + e−(z+a)2/4Dtt

]
+

vg
Dt

√
π
e

(
v2
gt

4Dt
− vg(z+a)

2Dt
)

+∞∫
z+a−vgt
2
√
Dtt

e−η
2

dη .

Finally, the complete solution reads

ρr(z, t) = Ure
vg(z−a)

2Dt
−
v2
gt

4Dt

=
1√

4πDtt

[
e−(z−a)2/4Dt + e−(z+a)2/4Dtt

]
e

(
vg(z−a)

2Dt
−
v2
gt

4Dt
)
+

vg
Dt

√
π
e−vgz/Dt

+∞∫
z+a−vgt
2
√
Dtt

e−η
2

dη .

(3.35)

3.1.9 Probability density function

We want to take into account the polarization D(z, t), in the probability density function
P (z, cos(θ), t), defined in Fourier space as

D(kz, t) =

√
3

4π
e−(ivgkz−Dtk2

z)te−iakz P̂ 0
1 .
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We can find P̂ 0
1 by using Eq. (3.29). From there, we can work out the associated telegrapher’s

equation and by neglecting the higher orders, we find

∂2

∂2
t

P̂ 0
1 − (4

√
4

15
− 2

3
)v2
sk

2
zDeP̂

0
1 = 0 .

Simple computations yield

P̂ 0
1 = C1e

fvskzDet + C2e
−fvskzDet ,

where f =

√
4
√

4
15
− 2

3
. By applying the inverse Fourier transform

D(z, t) =

√
3

8π2

[
C1√
2tDe

e−(a−z+vgt+fitDevs)2/4tDt +
C2√
2tDe

e−(a−z+vgt−fitDevs)2/4tDt

]
.

We only consider the two first terms of the probability density function

P (z, cos(θ), t) ' ρ(z, t) +D(z, t) cos(θ)

and by plugging in the polarization, and focusing only on the real part of the exponentials,
the probability density function reads

P (z, cos(θ), t) =
1√
8π

[
e−2Det

F̃√
D−efft

e−(z−a−vgt)2/(4D−eff t) +
G̃√
D+

efft
e−(z−a−vgt)2/(4D+

eff t)

]

+

√
3

8π2

cos(θ)√
2tDt

e−(a2−2az+z2+2atvg−2tzvg+t2v2
g−f2t2D2

ev
2
s)/2Dt

[
C1 + C2

]
cos(α) , (3.36)

where

α =
−afDevs + fzDevs − ftDevgvs

2Dt

.

In order to find the coefficients C1 and C2, we apply the Robin boundary conditions at z = 0,
Jz = 0, to eq.(3.4). Moreover, F̃ = e2Det and G̃ = 1 to keep the mass constant over time.
After some computations we find

C1 =
C2B1 +B2

C
, (3.37)
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where

B1 = −(−vs + vg)
−1

4
√
tDt

√
3

π
eΛ cos(Ω)−Dt

√
3

π

cos(π)

8tDt

√
tDt

eΛ cos(Ω)

− −1

4
√
tDt

√
3

π
eΛfDevs sin(Ω) , (3.38)

Ω =
faDevs + ftDevgvs

2Dt

, (3.39)

Λ =
−a2 − 2atvg − t2v2

g + f 2t2D2
ev

2
s

4tDt

, (3.40)

and

B2 = −(−vs + vg)
1√
8π

[
1√
D−efft

e−(z−a−vgt)2/(4D−eff t) +
1√
D+

efft
e−(z−a−vgt)2/(4D+

eff t)

]

−Dt
(a+ vgt)

2
√

2π

[
e(a+vgt)2/(4D−eff t)

2tD−eff

√
tD−eff

+
e(a+vgt)2/(4D+

eff t)

2tD+
eff

√
tD+

eff

]
, (3.41)

and

C = (−vs + vg)
−1

4
√
tDt

√
3

π
eΛ cos(ϕ) +Dt

[
−
√

3

π

(a+ vgt)

8tDt

√
tDt

eΛ cos(ϕ)

−
√

3

π

−1

4t
√
tDt

eΛfDevs sin(ϕ)

]
, (3.42)

ϕ =
−faDevs − ftDevgvs

2Dt

. (3.43)

Finally, the probability density function is given by

P (z, cos(θ), t) =
1√
8π

[
1√
D−efft

e−(z−a−vgt)2/(4D−eff t) +
1√
D+

efft
e−(z−a−vgt)2/(4D+

eff t)

]

+

√
3

4π

cos(θ)√
2tDt

[
C2 cos(α)

(B1

C
+ 1
)

+
B2

C
cos(α)

]
× e−(a2−2az+z2+2atvg−2tzvg+t2v2

g−ft2D2
ev

2
s)/(4Dtt). (3.44)

For the sake of simplicity we set C2 = 1.
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3.2 Light dependent motility of microalgae induces pat-

tern formation in confinement

This work is in collaboration with Dr. Bäumchen, Dr. Mazza, Dr. Wilczek and Dr.
Fragkopoulos. The results presented in this section are mainly from the simulations and
were presented during conferences. Regarding the paragraph ‘Being closer to reality’, the
results are preliminary and soon an arXiv version with the experimental results will be sub-
mitted.
Dr. Fragkopoulos built the experimental set-up and performed the experiments. I developed
and performed the simulations. Dr. Fragkopoulos and I are writing the paper with the
support of Dr. Bäumchen, Dr. Mazza and Dr. Wilczek.

A collection of self-propelled particles can undergo complex dynamics due to hydrodynamic
and steric interactions. In highly concentrated suspensions, it is possible for such particles
to form large-scale concentration patterns, where the suspension separates into regions of
high and low particle concentrations. This can be attributed to the interactions of the
particles with boundaries, their specific particle-particle interactions, or other particle specific
motility behavior. Since many biological microswimmers, such as the bacteria E. coli and
the algae C. reinhardtii, are sensitive to a umber of external stimuli, we investigated if this
phenomenon is related to phototactic, gravitactic or chemotactic mechanism. We found that
these properties are not the principal origin of the emergence of collective behavior, such
as a localized aggregation of particles, and another mechanism is involved: the motility of
the particles. The observed pattern formation is switchable by lights and depends on the
geometry of the confinement, both of which are not captured by current models and thus
require a revision of the state-of-the-art theoretical approach. Moreover, we show that the
use of active Brownian particles simulations designed to describe the effect of the local cell
density and confinement on the dynamics re-create the pattern observed in the experiment.
We represent the alga as an active Brownian particle, which moves with a self-propulsion
function of the local cell density along a direction represented by an orientation subject to
random fluctuation. The dynamics is described by two overdamped Langevin equations for
the position and the orientation. These equations are integrated with a discretization scheme
based on the Euler-Mayurama algorithm.

3.2.1 Introduction

A collection of self-propelled particles can undergo complex dynamics due to hydrodynamic
and steric interactions. Typically, self-propelled particles move in an aqueous medium. Due
to their size, viscous forces dominate, and inertial forces are negligible. We can characterize
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this effect with the so-called Reynolds number, R, which gives the ratio of inertial to viscous
forces. In highly concentrated particle suspensions, it is possible for such particles to form
large-scale concentration patterns, where the active suspension is separated into regions of
high and low particle concentrations [146, 147, 148, 149]. This can be attributed to the
interactions of the particles with boundaries, their specific particle-particle interactions, or
other particle specific motility behavior. It was shown that a suspension of the unicellular
microalgae C. reinhardtii, a biflagellated puller-type miscroswimmer, confined in a quasi-
2D box, may form pattern of high and low particle density regions under certain light and
global particle density. In order to quantify and characterize the relation between the self-
propulsion, tunable by light and the local particle density, we describe the system by means
of active Brownian particles simulations. These simulations are designed to describe the
effect of the local particle density and confinement on the dynamics to characterize the
underlying mechanism of the aggregation pattern formation. We represent, e.g. the algae
C. reinhardtii, as an active Brownian particle, which moves with a self-propulsion speed
depending on the local particle density along a direction represented by an orientation subject
to random fluctuation. The dynamics is described by two overdamped Langevin equations
for the position and the orientation of the particle. These equations are integrated with a
discretization scheme based on the Euler-Mayurama algorithm. The reminder of this work
is organized as follows. Firstly, we introduce the model. Secondly, in the case of a quasi-2D
rectangular box, we show the effects of the velocity and diffusion coefficient on the pattern
formation. Thirdly, the effects of the geometry of the confinement, from quasi-2D rectangular
box to quasi-2D cylindrical box are shown. Finally, as an example, we match our parameters
with recent experimental results for the algae C. reinhardtii.

3.2.2 Minimalist model

We investigate a many-particle system composed of active Brownian particles under con-
finement in quasi-2D and 3D. We consider a typical Reynolds number R � 1, which tells
that due to the micro-size of the particles the viscous force dominate and inertial forces are
negligible. The microalgae C. reinhardtii is an example of such particles, which has typical
length σ = 10µm and self-propulsion speed vs = 60µm.s−1. The system is described by two
overdamped Langevin equation for N active particles

dri
dt

= vsei −∇ΦWCA + ξi (3.45)

dei
dt

= ξei × ei , (3.46)
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where vs is the self-propulsion depending of the local particle density, 〈ξiξj〉 = 2Dδijδ(t −
t′) and 〈ξeiξej〉 = 2Deδijδ(t − t′) modelled the random fluctuations. The particle-particle
interaction is given by the Week-Chandler-Anderson potential [111] ΦWCA = 4ε[(σ/rij)

12−
(σ/rij)

6]+ε, where σ is the particle diameter, ε is the energy scale of the repulsive interaction
and rij = |ri − rj|. In the following, the term velocity is used for the measured speed, vs,
and the term self-propulsion is used for the natural speed, v0, which is a speed of a single
particle without interaction. We consider two kind of fluctuations: one called passive, given
by the translational diffusion coefficient D, and the other one called active, given by the
orientational diffusion coefficient De. The passive fluctuations represent the surrounding
medium, the thermal fluctuation as well as the interactions with the others active particles
[150, 151, 152]. By assuming the shape of the passive fluctuation [150], the translational
diffusion coefficient reads

D =

√
2c0

ρploc
, (3.47)

where c0 is a positive constant and p ∈ {1, 2} determines the dependence on the local particle
density [146], and ρloc gives the number of neighboring particles in a given volume matched
with experimental results. The active fluctuations are obtained from the effective diffusion
coefficient [51, 105]

Deff = D +
v2
s

d(d− 1)De

, (3.48)

where d gives the dimension of the system. From this equation, the active fluctuation
reads

De =
v2
s

d(d− 1)(Deff −D)
. (3.49)

In the following, three approaches will be used. Firstly, in order to describe the effect of the
velocity and diffusion coefficients in a quai-2D rectangular box, we fixed the active fluctuation
to a constant and we use two velocity shapes

• A step function

vs =

{
v0 , if ρloc < ρcri
v0

b
, otherwise ,

(3.50)

where ρloc is the local particle density, ρcri a critical density and b a multiplicative
factor.

• An inverse function

vs =
k0

ρ2
loc

, (3.51)
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where k0 is a positive constant.

In order to characterize the pattern formation, we use the so-called clustering coefficient
[150], CM , based on the Shannon entropy, S. The Shannon entropy gives us the ‘level’ of
information that we have on a process onto the system. Let us imagine that we divide our
system into N states. If a process visit all the states with equal probability, we do not know
in which state the process is. This corresponds to have a ‘low’ information on the process,
the entropy is maximum. However, if a process only visits one specific state, we do know
precisely in which state it is. This corresponds to have a ‘high’ information on the process,
the entropy is minimum.

In order to obtain these states, we divide our system into M boxes and count the number of
particle in each boxes. It is possible to associate a probability to each boxes and compute
the Shannon entropy S

S = −
M∑
i=0

pi log(pi) ,

with pi = mi/N , N the total number of particles, mi the number of particles inside the box
i and M the total number of boxes. The clustering coefficient reads

CM =
exp(S)

M
. (3.52)

From this coefficient we can compute a typical time scale for the pattern formation.

Secondly, in order to describe the effect of the boundary, we move from a quasi-2D rectangular
box fo a quasi-2D cylindrical box, by using the same parameters. Finally, in order to compare
our simulations with a more realistic system, we modify the shape of the velocity as well as
the diffusion coefficients. The velocity reads

vs =
k0√
ρloc

. (3.53)

The effective diffusion coefficient is found

Deff =
1

ρ
3/2
loc

, (3.54)

and the passive fluctuation

D =

√
2c0

ρloc
. (3.55)
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3.2.3 Results

3.2.3.1 Quasi-2D rectangular box

Number of particles
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Figure 3.7 – Critical particle density. Clustering coefficient as a function of the number of
particles.

In order to characterize the critical particle density, for which below a threshold the pattern
cannot emerge, we use the clustering coefficient in Eq. (3.52) and shown in Fig. 3.7. The
inset figures are the top view of the density map, which gives the density of particles in the
system (red: high particle density, blue: low particle density). When the number of particle
is below N = 100, a pattern cannot emerge, independently of the shape of the velocity and
diffusion coefficients.

Velocity as a step function, Eq. (3.50). For the low-light intensity parameter space,
we observe the emergence of a dense region at the center of the compartment, Fig. 3.8, left
figure. By changing the parameters between low (p = 2) to high (p = 1) light intensity, we
observe the emergence and annihilation of the pattern, Fig. 3.9, which is quantified by the
clustering coefficient, CM .

From this figure, we can find a time scale for the dynamics, which for the pattern formation
is around 30s and 50s for the simulations. In comparison to experimental results obtained
for the algae C. reinhardtii, a similar time scale was found, showing that the model can
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Figure 3.8 – Density map of the pattern formation: rectangle. Top view of a quasi-2D
rectangular box with 500 particles, in the steady state regime. (a) Velocity as a step function.
(b) Velocity as an inverse function.
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Figure 3.9 – Clustering coefficient as a function of time and light switchability.

capture multiple aspects of the aggregation phenomenon. As a first conclusion, these obser-
vations support the hypothesis that the interplay between the local particle density and the
velocity as well as the diffusion coefficients is a key mechanism of the aggregation pattern
formation.

In order to explore how the functional dependence of the velocity on density can modify the
shape of the pattern, the velocity is now taken as an inverse function of the local particle
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density.

Velocity as an inverse function of the local particle density, Eq. (3.51). By
changing the shape of the velocity, it is possible to modify the pattern formation. This
result is shown in Fig. 3.8, right panel, and we observe the emergence of a ring.

In this section, we saw the effect of the light intensity, including in the passive fluctuation,
on the emergence and the annihilation of the pattern. Moreover, by changing the shape of
the velocity, the pattern can be modified and we observe the emergence of a ring.

3.2.3.2 Quasi-2D cylindrical box

In order to study the effect of the geometry of the compartment on the pattern formation, we
move from a rectangular box to a cylindrical one. By using a step function for the velocity,
we find a similar behavior to the rectangular box, Fig. 3.10, left panel.

(a) (b)

Figure 3.10 – Density map of the pattern formation: cylinder. Top of view a quasi-2D
cylindrical boy with 500 particles, in the steady state regime. (a) Velocity as a step function.
(b) Velocity as an inverse function.

However, the behavior change when the velocity is taken as an inverse function. We observe
a huge accumulation at the boundary and not any more the emergence of a ring, Fig. 3.10,
right panel.
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3.2.3.3 Being closer to reality

From the previous section, we modify the shape of the velocity by using Eq. (3.53), according
to experimental results vs ∝ ρ−0.5

loc . Moreover, we fix v0 with the self-propulsion speed
measured for the algae C. reinhardtii in the dilute case vs = 60µm.s−1. Experimentally, the
light condition modifies the minimum velocity but not the maximum velocity. As a first
approach, and in order to keep the model as simple as possible, by minimizing the number of
free parameters, we looked at the ratio between the maximum and minimum velocity. The
result in quasi-2D is shown on Fig. 3.11, left figure. We have matched the global particle
density with the experimental results. We observed a strong accumulation at the center of
the compartment.

(a) (b)

Figure 3.11 – Density map of the pattern formation: realistic model. (a) Top view of a
quasi-2D cylindrical box with 300 particles, in the steady state regime. (b) Top view of a
3D cylindrical box with 2000 particles, in the steady state regime.

In order to study the effect of the global particle density on the pattern formation, we
performed simulations with different densities. We show the distribution of the local particle
density in Fig. 3.12. We observe two regions, characterize by two peaks, one at low density
and the other one at high density. These two regions are characteristic of the pattern
formation, with an aggregation at the center of the compartment.

So far, we only modified the geometry in the xy-plane, moving from a rectangular to a
cylindrical box. Experimentally, it was also observed that the pattern is modified by the
height of the compartment. In order to verify if our model capture this effect, we move from
quasi-2D to 3D, Fig. 3.11, right figure.

For the same parameters used in quasi-2D, we observe the emergence of a ring pattern.
Moreover, one can look at the radial distribution of the ring formation, Fig. 3.13, to explore



3.2. LIGHT DEPENDENT MOTILITY INDUCES PATTERN FORMATION 95

0 0.1 0.2 0.3 0.4 0.5 0.6
Local Area Fraction

0

0.1

0.2

0.3

0.4

0.5

P
ro

ba
bi

lit
y

Global Area Fraction=4%
Global Area Fraction=6%
Global Area Fraction=8%
Global Area Fraction=12%
Global Area Fraction=16%
Global Area Fraction=20%
Global Area Fraction=24%

Local particle density

N = 50
N = 75
N = 100
N = 150
N = 200
N = 250
N = 300

Pr
ob

ab
ilit

y

Figure 3.12 – Distribution of the local particle density. For different global particle densities
(from 50 to 300 particles), we observe the emergence of two regions of low and high particle
densities, characteristic of the pattern formation.

and compare with the experimental results the distance between the region of maximum
particle density and the boundary.
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Figure 3.13 – Radial distribution of a 3D cylindrical box. We observe a pic of high particle
density, characteristic of a ring formation.

Again, the model can capture another aspect of the pattern formation. In order to refine
even more the model, the particles are now reflected with an outside angle of 16 degrees
found experimentally in [114], the maximum velocity is fixed and the minimum velocity vary
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accordingly to the light conditions, Fig. 3.14.
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Figure 3.14 – Velocity as a function of the local particle density. After a plateau, fixed by
a critical particle density matched with experimental results, the velocity decay accordingly
to Eq. (3.53) and finally reach a minimum value.

With these new parameters, we can build a phase diagram describing the evolution of the
pattern, from homogeneous to a ring via aggregation as shown in Fig. 3.15. In this figure, we
observe the effects of the global particle density and velocity on the pattern formation. When
the particle density is too low the pattern cannot be formed. However, when the particle
density reaches a critical value, we observe a transition from a large to a small aggregation,
to finally reaches for really high velocity a ring pattern formation.

This phase diagram catches the global picture but some work is still needed to find a better
agreement with the experimental observations.

3.2.4 Conclusion

By means of active Brownian particles simulations, we studied the aggregation phenomena
of active particles, for different activities, under confinement. By varying the activity as
well as the diffusion coefficients as functions of the local cell density and in the case of
many interacting active particles, we observed in the steady state regime the emergence of
collective behaviors such as an aggregation of particles at the center of the compartment or
a ring pattern. Moreover, by identifying the shape of the activity and the effective diffusion
coefficient with the experimental results (in the case of the algae C. reinhardtii) and by using
reflective boundary conditions with an outside angle of 16 degrees found experimentally [114],
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Figure 3.15 – Phase diagram. Global particle density as a function of the velocity for a
quasi-2D cylindrical box.

it made possible to find some underlying mechanisms of the aggregation phenomena. The
key ingredient is the relation between the self-propulsion and diffusion coefficients with the
local cell density. We showed that the use of active Brownian particles simulations designed
to describe the effect of the local cell density and confinement on the dynamics re-create the
patterns observed in the experiment. In comparison to previous work [153, 154], having a
direct access to the shape of the self-propulsion and the effective diffusion coefficient allows
our simulation to be faithful to the experimental observations. Importantly, it was possible
to match the global cell density used experimentally with the one used in the simulations,
while other models need to reach a higher global cell density to describe similar collective
behaviors.
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3.3 Phenotypic differences in reversible attachment be-

havior reveal distinct P. aeruginosa surface colo-

nization strategies

Summary

Biofilms are surface-adhered communities or suspended aggregates of bacteria that have in-
creased tolerance to environmental stresses and antibiotics, and impact human health and the
environment in complex ways. These biofilms can be harmful by causing diseases [155, 59],
and can be beneficial by serving as commensals in various hosts as well as having applica-
tion in bioremediation and energy production[156]. A critical step in forming a bacterial
biofilm is surface sensing [157], where free-swimming planktonic cells detect, attach to, and
physiologically respond to a surface. Moreover, before forming a bacterial biofilm, plank-
tonic bacteria exhibit a random period of transient surface attachment known as ‘reversible
attachment’. For the case of the bacteria P. aeruginosa, there are at least two well-studied
but distinct surface sensing circuits, the Wsp and Pil-Chp systems, that can contribute to
initiating biofilm formation. Different strains of P. aeruginosa, such as PA01 and PA14,
use these surface sensing mechanisms to varying extents. The PA01 strain uses the Wsp
systems [158] leading to the surface deposition of the exopolysaccharide (EPS) Psl [159, 160]
while PA14 uses the Pil-Chp system leading to the suppression of surface motility [161] and
production of a Pel-dominant biofilm matrix [162]. Both strains PA01 and PA14 exhibit
similar exponential trends of surface cell population increase and show different behavior
for the early stage, when the cell are considered at the lineage level. By using community
tracking methods at single-cell resolution, we examine how reversible attachment progresses
during initial stages of surface sensing.

Moreover, we show that the use of an exactly solvable ‘divide-detach’ stochastic model,
designed to examine the reversible attachment behaviors of P. aeruginosa PA01 and PA14
lineages in the form of family trees, reveal differences in their biofilm formation behavior
during reversible attachment. Within this model, reversible attachment is described by two
parameters: the division rate and the detachment rate. The attachment can be understood
in terms of lineage time, meaning the time that lineage stays continually on the surface,
and the detachment rate with the EPS production. Our model provides a framework to
characterize different surface colonization strategies which lead to biofilm formation.

Our results suggest that PA01 and PA14 use two different surface colonization strategies.
For PA01, the result is a steady progressive increase of a surface cell population that is
irreversibly attached, meaning that it will commit to form a biofilm. For PA14, due to the
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high rates of cell detachment, the result is to leave the surface for the early stage. Finally, our
results unify disparate findings in the literature regarding early events in biofilm formation
for PA01 and PA14.

Prof. Golestanian and Prof. Wong conceived the research topic as well as the project.
Prof. Wong designed the experiment, Calvin built the experimental set-up and performed
the experiments with the help of Prof. Wong. Prof. Golestanian designed the models, I
developed and built the stochastic model under his supervision. Prof. Golestanian, Prof.
Wong, Calvin and I interpreted the data and we wrote the paper together with the support
of Prof. O’Toole, Prof. Parsek as well as Prof. Hogan.
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Abstract 27 
Despite possessing the machinery to sense, adhere to, and proliferate on surfaces, it is commonly observed that bacteria 28 
initially have a difficult time attaching to a surface. Before forming a bacterial biofilm, planktonic bacteria exhibit a 29 
random period of transient surface attachment known as “reversible attachment” which is poorly understood. Using 30 
community tracking methods at single-cell resolution, we examine how reversible attachment progresses during initial 31 
stages of surface sensing. Pseudomonas aeruginosa strains PAO1 and PA14, which exhibit similar exponential trends of 32 
surface cell population increase, show unanticipated differences when the behavior of each cell was considered at the 33 
full lineage level and interpreted using the unifying quantitative framework of an exactly solvable stochastic model. 34 
Reversible attachment comprises two regimes of behavior, processive and nonprocessive, corresponding to whether 35 
cells of the lineage stay on the surface long enough to divide, or not, before detaching. Stark differences between PAO1 36 
and PA14 in the processive regime of reversible attachment suggest the existence of two complementary surface 37 
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colonization strategies, which are roughly analogous to “immediate-” vs “deferred-gratification” in a prototypical 38 
cognitive-affective processing system. PAO1 lineages commit relatively quickly to a surface compared to PA14 lineages. 39 
PA14 lineages allow detaching cells to retain memory of the surface so that they are primed for improved subsequent 40 
surface attachment. In fact, it is possible to identify motility suppression events in PA14 lineages in the process of 41 
surface commitment. We hypothesize that these contrasting strategies are rooted in downstream differences between 42 
Wsp-based and Pil-Chp-based surface sensing systems.  43 

Keywords 44 
Bacteria biofilms | Pseudomonas aeruginosa | Reversible attachment | Stochastic model | Surface sensing 45 

Importance 46 
The initial pivotal phase of bacterial biofilm formation known as “reversible attachment,” where cells undergo a period 47 
of transient surface attachment, is at once universal and poorly understood. What is more, although we know that 48 
reversible attachment culminates ultimately in irreversible attachment, it is not clear how reversible attachment 49 
progresses phenotypically as bacterial surface sensing circuits fundamentally alters cellular behavior. We analyze diverse 50 
observed bacterial behavior one family at a time (defined as a full lineage of cells related to one another by division) 51 
using a unifying stochastic model and show that it leads to new insights on the time evolution of reversible attachment. 52 
Our results unify apparently disparate findings in the literature regarding early events in biofilm formation by PAO1 and 53 
PA14 strains.  54 

Introduction 55 
Biofilms are surface-adhered communities or suspended aggregates of bacteria that have increased tolerance to 56 
environmental stresses and antibiotics, and impact human health and the environment in complex ways. These biofilms 57 
can be harmful by causing diseases (1, 2), and can be beneficial by serving as commensals in various hosts as well as 58 
having applications in bioremediation and energy production (3). A critical step in forming a bacterial biofilm is surface 59 
sensing (4), where free-swimming planktonic cells detect, attach to, and physiologically respond to a surface. Recent 60 
work has shown that different appendages or extracellular structures, such as flagella (5, 6) or type IV pili (TFP) (7, 8) are 61 
involved in activating cellular responses (e.g., protein production, motility, and biofilm formation) during surface 62 
sensing. In many bacterial species, these responses are primarily controlled by intracellular secondary messenger 63 
molecules, such as cyclic diguanylate (c-di-GMP) (9-16) and cyclic AMP (cAMP) (8, 17, 18). For the case of Pseudomonas 64 
aeruginosa, a clinically relevant model system (19), there are at least two well-studied but distinct surface sensing 65 
circuits, the Wsp and the Pil-Chp systems, that can contribute to initiating biofilm formation. In our current 66 
understanding, the Wsp system senses through the membrane-bound, chemosensory-like Wsp protein complex which 67 
localizes laterally along the cell body (10), activating the diguanylate cyclases WspR and c-di-GMP synthesis via a 68 
mechanism that requires clustering of (20). On the other hand, the Pil-Chp system senses a surface through polarly-69 
localized TFP, which activates the adenylate cyclases CyaB and results in cAMP synthesis. Increased cAMP levels then 70 
induces the production and secretion of PilY1, which in turn activate the diguanylate cyclases SadC and results in c-di-71 
GMP synthesis (17). Downstream consequences of c-di-GMP synthesis include exopolysaccharide (EPS) production and 72 
motility suppression. Different strains of P. aeruginosa, such as PAO1 and PA14, utilize these surface sensing 73 
mechanisms to varying extents. The PAO1 strain predominantly uses the Wsp system (21) leading to the surface 74 
deposition of the EPS Psl (22, 23), while PA14 predominantly uses the Pil-Chp system leading to the suppression of 75 
surface motility (17) and production of a Pel-dominant biofilm matrix (24).  76 

Despite the existence of diverse machinery to sense, adhere to, and proliferate on surfaces, it is commonly observed 77 
that bacteria initially seem to have a difficult time attaching to a surface, as indicated by typical flow cell studies where 78 
P. aeruginosa often takes >20 h before attaching to the surface in large numbers (25, 26). This phenomenon was first 79 
reports in the 1930s (27, 28). Using high speed microscopy to measure the distribution of surface residence times, it was 80 
previously observed that the overwhelming majority of cells that land on the surface eventually detach, and it is only 81 
after a prolonged and variable time lag that cells begin to rapidly cover the surface (8). Reversible attachment is 82 
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counterintuitive and difficult to understand for a number of reasons. We stress that the low apparent probability of 83 
successful attachment is not simply a matter of cells “bouncing” off the surface. (During reversible attachment, it is not 84 
uncommon for cells to attach and stay long enough to divide but then subsequently detach.) Moreover, the 85 
unpredictability of reversible attachment cannot be circumvented with better measurement statistics: the duration of 86 
reversible attachment always appears random and do not converge to a specific duration for the same initial conditions. 87 
This combination of characteristics in reversible attachment, low probability of success, intrinsic time dependence, and 88 
structurally random outcomes, suggests that use of a stochastic model may lead to new understanding. From a 89 
foundational perspective of surface sensing, although we know that reversible attachment can culminate in irreversible 90 
attachment, it is not clear how reversible attachment progresses phenotypically as bacterial surface sensing circuits 91 
fundamentally alters cellular behavior, and ultimately improve on an initial attachment probability of effectively zero.  92 

Here, we show that the use of an exactly solvable “divide-detach” stochastic model, designed to examine the reversible 93 
attachment behaviors of P. aeruginosa PAO1 and PA14 lineages in the form of family trees, reveals differences in their 94 
biofilm formation behavior during reversible attachment. Within this model, reversible attachment is described by two 95 
parameters: effective division rate and effective detachment rate. We find that reversible attachment can be 96 
understood if we analyze behavior using lineage time (the time a lineage stays continually on the surface) rather than an 97 
experiment time, defined by time from inoculation. Specifically, reversible attachment comprises two regimes of 98 
behavior, defined by whether cells of the lineage stay on the surface long enough to divide, or not, before detaching. For 99 
lineages that detach before dividing at all, both PAO1 and PA14 behave similarly with near certain lineage “extinction,” 100 
wherein the entire lineage detaches. For lineages that stay long enough to divide, PAO1 and PA14 show surprisingly 101 
different behaviors. Our theoretical model provides a framework wherein time-dependent division and detachment 102 
rates and distributions of lineages can be extracted from our experiments. Our results suggest that PAO1 and PA14 103 
utilize two fundamentally different surface colonization strategies. For PAO1, individual lineages commit relatively 104 
quickly to a surface compared to PA14, resulting in a steady progressive increase of a surface cell population that is 105 
irreversibly attached (i.e., committed to forming a biofilm). In contrast, PA14 lineages have high rates of cell detachment 106 
from surfaces. However, these detaching cells retain a memory of the surface (8), and ultimately form a planktonic 107 
population that is primed for attachment, so that sudden increases in irreversibly attached surface cell populations can 108 
occur. Our model provides a framework for categorizing different surface colonization strategies that lead to biofilm 109 
formation, and it is conceivable that in principle each approach has its own advantages under different circumstances.  110 

Results 111 

Two regimes of reversible attachment in PAO1 and PA14 are revealed through lineage analysis 112 
When monitoring the number of cells on the surface as a function of the time from inoculation of the flow cell (denoted 113 
as experiment time), both strains follow a similar pattern (Figure 1). At early times, widespread detachment behavior is 114 
observed. Despite both division and additional attachment, the surface population essentially remains constant for a 115 
long and variable lag period (~10-20 h), after which the surface population will then begin to rise steeply, in a manner 116 
that can be fit to an exponential growth curve. However, further distinguishing their behaviors in a finer pitch of detail is 117 
difficult due to the random nature of reversible attachment. When comparing the surface population increases between 118 
PAO1 and PA14, we observe nearly all possibilities: we either observe that PAO1 has a steeper and earlier rise in the 119 
surface population compared to PA14, that PAO1 and PA14 have similar rises, or that PA14 has an earlier and steeper 120 
rise than PAO1 (Figure S1). Furthermore, it is difficult to correlate these observations with macroscopic crystal violet 121 
biofilm assays, where PAO1 has statistically significantly higher OD550nm values compared to PA14 (Figure S2), which 122 
suggests that PAO1 is capable of forming early biofilms faster than PA14. PAO1 has a mean OD550nm = 0.23 with a 95% 123 
confidence interval of (0.19, 0.26), while PA14 has a mean OD550nm = 0.14 with a 95% confidence interval of (0.099, 124 
0.18). Comparing the bootstrap sampling distributions of the mean OD550nm values (which also generate the 95% 125 
confidence intervals) show that PAO1 has a higher mean OD550nm value than PA14 (p-value of 0.0002).Using the median 126 
instead of the mean gives similar results. PAO1 has a median OD550nm = 0.22 with a 95% confidence interval of (0.17, 127 
0.29), while PA14 has a median OD550nm = 0.12 with a 95% confidence interval of (0.094, 0.21). Comparing the 128 
bootstrap sampling distributions of the median OD550nm values (which also generate the 95% confidence intervals) 129 
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show that PAO1 has a higher median OD550nm value than PA14 (p-value of 0.003). These apparently conflicting 130 
observations are not easily resolved with increased data collection since they arise from the intrinsic randomness of the 131 
process and not from incurring measurement errors. This instrinsic randomness, which is not uncommon in different 132 
aspects of biofilm formation, is usually neglected in analyses. In the present context, these effects complicate any 133 
analysis of the reversible attachment behaviors in PAO1 and PA14, that depend on traditional methods to monitor the 134 
number of surface cells as a function of experiment time or by macroscopic assays.  135 

To account for the random nature of reversible attachment and the large fluctuations in the observations, we 136 
investigate the evolution of bacterial behavior as a function of surface sensing progression using lineage analysis. We 137 
monitor the time that a given isolated family, consisting of an attached cell (founder cell) and its progeny (daughter 138 
cells) via division, stays continually on the surface, which we designate as lineage time �𝑡𝑡 = 𝑡𝑡lineage�. For each family, 139 
we begin tracking at the frame that an individual, founder bacterium attaches and assign this time as 𝑡𝑡lineage = 0 h. We 140 
continue tracking until either the entire family detaches, or until we lose track of that family (where we can no longer 141 
distinguish individual cells, or the cells move out of the recording boundaries). This final time point is recorded as the 142 
family’s residence time. During reversible attachment regimes, families are categorized by whether a division event 143 
occurs or not before detaching. We denote families that detach before dividing at all as the “nonprocessive” regime of 144 
reversible attachment, and families that divide one or more times before detaching as the “processive” regime of 145 
reversible attachment, using language from enzyme kinetics. It is important to note that these regimes are distinct from 146 
irreversible attachment because during both regimes of reversible attachment, detachment is still prominent, while 147 
during irreversible attachment, detachment is much less common. All families analyzed here are shown in Figure 2 and 148 
Figure S3.  149 

Cells in both nonprocessive and processive regimes are present throughout the entire biofilm formation process. 150 
However, during the initial variable lag period, where the total surface population is not increasing, almost all cells are in 151 
the nonprocessive regime, while very few cells are in the processive regime. As experiment time elapses, the general 152 
observed trend is that cells in the processive regime become more common, while cells in the nonprocessive regime 153 
become less common, especially during period of surface population exponential increase. However, it is difficult to 154 
quantify such cellular behavior in this system because both regimes coexist with fluctuating proportions due to the 155 
inherent randomness in single cell behavior, thereby complicating any analysis of biofilm behavior as a function of 156 
experiment time. Thus, we utilize an analysis of lineage time to quantify the behavior of individual families in each 157 
regime.  158 

When comparing the two regimes for either PAO1 or PA14, we find that the residence times are drastically different. In 159 
the nonprocessive regime, ~99% of cells stay on the surface for less than 30s for both strains. Furthermore, of the 160 
~20,000 tracked families in the nonprocessive regime (both PAO1 and PA14), we observe less than 10 families (~0.05%) 161 
that have residence times comparable to the average doubling time of 1-2 h (Figure S4), which is the minimum residence 162 
time for families in the processive regime. Detachment dominates attachment and division in the nonprocessive regime, 163 
and essentially the surface population does not increase over the first 10-20 h of experiment time. In contrast, cells in 164 
the processive regime are in continuous contact with the surface for longer periods of time. Moreover, virtually all of the 165 
cells that remain surface engaged in the processive regime do so longer than cells in the nonprocessive regime. Finally, 166 
cells in the processive regime grow and divide on the surface and have clearly altered their behavior compared to 167 
“surface-naïve” planktonic cells, presumably as a consequence of activating surface sensing pathways.  168 

Interesting trends emerge when comparing PAO1 and PA14 lineages in each regime. In the nonprocessive regime, we 169 
find that PAO1 and PA14 exhibit similar behaviors, where cells experience the surface transiently. However, in the 170 
processive regime, we see stark differences between PAO1 (44 families with 622 total descendants analyzed) and PA14 171 
(31 families with 381 total descendants analyzed) (Figure S3). PAO1 families have more progeny retained on the surface, 172 
while PA14 families have more progeny detaching, which can be seen in a broad range of metrics. For example, we can 173 
compare single cell detachment behavior via the proportion of detachment vs division events. PAO1 has a statistically 174 
significantly lower proportion, with 143 (33%) detachment vs 289 (67%) division events, compared to PA14, with 130 175 
(43%) detachment vs 175 (57%) division events, according to the 𝜒𝜒2 test (p-value of 0.008). We can compare family-176 
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averaged detachment behavior with family tree asymmetry parameter Λ (8). Λ values closer to zero indicate a more 177 
symmetric family tree where more progeny are retained (more “two-legged” division nodes in the family tree, where 178 
both post-division daughter cells stay on the surface), while Λ values closer to one indicate a more asymmetric family 179 
tree where more progeny detach (more “one-legged” division nodes in the family tree, where one of the post-division 180 
daughter cells detach from the surface). PAO1 family trees have a median Λ = 0.33 with a 95% confidence interval of 181 
(0.25, 0.39), while PA14 family trees have a median Λ = 0.42 with a 95% confidence interval of (0.37, 0.52). Comparing 182 
the bootstrap sampling distributions of the median tree asymmetry values (which also generate the 95% confidence 183 
intervals) show that PAO1 family trees have a lower median Λ than PA14 family trees (p-value of 0.015). Overall, our 184 
data show that PAO1 and PA14 display similar behaviors during the nonprocessive regime, but during the processive 185 
regime, PAO1 shows a significantly higher likelihood of remaining surface-associated.  186 

“Divide-detach” stochastic model highlights differences between PAO1 and PA14 in the processive 187 
regime of reversible attachment 188 
Our observations suggest that PAO1 is less prone to detachment than PA14. However, these metrics do not properly 189 
consider the collective time-dependent effects of division and detachment. For example, having more detachment 190 
events earlier in lineage time would have a much greater effect on the resulting family architecture compared to the 191 
same detachment events occurring several generations later. Even at the single cell level, gene expression is stochastic 192 
and can occur in a burst-like, intermittent manner (29), which contributes additional randomness to that cell’s behavior. 193 
Consequently, the behavior of an individual bacterium (in terms of whether or not in every instance they stay on the 194 
surface or detach after a division event) may be completely random and can only be described using statistical metrics. 195 
Since biofilm formation can be seen as an evolution of a population of random individual bacteria, it can be described as 196 
a stochastic process that depends on a number of control parameters as well as random environment variables. 197 
Consistent with that contention, large fluctuations are often observed in measured parameters (e.g., family trees), and 198 
these fluctuations are not easily mitigated with increased data collection since they arise from the intrinsic randomness 199 
of the process and not from incurring measurement errors. In general, although it is acknowledged that the 200 
unpredictability of single cell behavior can be important to surface sensing and biofilm development, this randomness is 201 
rarely accounted for in traditional microbiological studies.  202 

To obtain more time-dependent comparisons that incorporate division and detachment effects, and to help account for 203 
the inherent randomness in observed family trees, we develop a “divide-detach” stochastic model. We use this model to 204 
study the temporal evolution of the expected number of surface cells in a family tree, or population size (30-35). In this 205 
model, the population size can increase or decrease by one bacterium as time evolves, and the population size can be 206 
infinite or null. The corresponding sample space Ω is given by Ω = {0, 1, 2, … ,𝑁𝑁, … }𝑚𝑚, where 𝑚𝑚 is the number of 207 
independent family trees, or different populations of bacteria. As time evolves, the population size can change and 208 
result in a sequence 𝜔𝜔 ∈ Ω, where 𝜔𝜔 is the set of family trees that are in the experiment. For example, if there is 𝑚𝑚 = 1 209 
family tree, then 𝜔𝜔 = {𝜔𝜔1}, and if there are 𝑚𝑚 family trees, then 𝜔𝜔 = {𝜔𝜔1, … ,𝜔𝜔𝑚𝑚}. However, because this is a 210 
stochastic process, we cannot predict ahead of time what 𝜔𝜔 will be. Instead, what we know for 𝜔𝜔 are the set of possible 211 
observations (states) Σ and the actual observations 𝑋𝑋𝑡𝑡 from experiments. The set of states is given by Σ =212 
{0, 1, … ,𝑁𝑁, … }, where 𝑁𝑁 represents the number of surface cells in a family and is infinite. Σ tells us what observations 213 
(number of surface cells) are possible for any family tree during an experiment. The actual observations of 𝜔𝜔 are given 214 
by 𝑋𝑋𝑡𝑡(𝜔𝜔) = {𝑋𝑋𝑡𝑡1(𝜔𝜔1),𝑋𝑋𝑡𝑡2(𝜔𝜔2), … ,𝑋𝑋𝑡𝑡𝑚𝑚(𝜔𝜔𝑚𝑚)}, which is how many surface cells are observed in each of the 𝑚𝑚 family trees 215 
at time point 𝑡𝑡 during an experiment, and 𝑋𝑋𝑡𝑡(𝜔𝜔) is a random variable 𝑋𝑋𝑡𝑡:𝜔𝜔 → Σ that defines this stochastic process. 216 
Having a random variable means that for the family trees 𝜔𝜔 and each time point 𝑡𝑡, we observe 𝑋𝑋𝑡𝑡(𝜔𝜔) taken from the set 217 
of states Σ according to a certain (not necessarily known) probability distribution; but when we repeat the experiment, 218 
we will not necessarily observe the same 𝑋𝑋𝑡𝑡(𝜔𝜔) for the same time point 𝑡𝑡 and family trees 𝜔𝜔. Figure 3 shows examples 219 
of this process for 𝑚𝑚 = 1 family tree (Figure 3a) and for 𝑚𝑚 = 3 family trees (Figure 3b).  220 

The dynamics of such a stochastic process are given by the evolution of the probability distribution 𝑃𝑃(𝑗𝑗, 𝑠𝑠 + 𝑡𝑡|𝑖𝑖, 𝑠𝑠), which 221 
gives the probability of transitions between all states for all 𝑡𝑡 ≥ 0 and can be rewritten as 𝑃𝑃𝑡𝑡(𝑗𝑗|𝑖𝑖). For a family tree, the 222 
only possible transitions are the neighboring transitions, 𝑛𝑛 → 𝑛𝑛 + 1 = (𝑛𝑛 + 1|𝑛𝑛) = 𝜆𝜆𝑛𝑛 and 𝑛𝑛 → 𝑛𝑛 − 1 = (𝑛𝑛 − 1|𝑛𝑛) =223 
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𝜇𝜇𝑛𝑛. As a result, the dynamics of this process can be described by looking only at the evolution of the probability 224 
distribution 𝑃𝑃𝑡𝑡(𝑛𝑛|𝑛𝑛) for state 𝑛𝑛 ∈ Σ. The rates 𝜆𝜆𝑛𝑛 and 𝜇𝜇𝑛𝑛 determine the intensity of increase (i.e., division) or decrease 225 
(i.e., detachment), respectively, for state 𝑛𝑛. In a family tree, each cell can divide (with a division rate 𝜆𝜆) or detach (with a 226 
detachment rate 𝜇𝜇), so the rates become 𝜆𝜆𝑛𝑛 = 𝜆𝜆𝜆𝜆 and 𝜇𝜇𝑛𝑛 = 𝜇𝜇𝜇𝜇. Figure 3c shows a schematic of the dynamics described 227 
here (i.e., how the population size can increase or decrease).  228 

The equation describing the evolution of this process is given by the Kolmogorov backward equation, also called the 229 
master equation, which reads 230 

𝑑𝑑𝑃𝑃0
𝑑𝑑𝑑𝑑

= 𝜇𝜇𝑃𝑃1, 𝑛𝑛 = 0 

and 

𝑑𝑑𝑃𝑃𝑛𝑛
𝑑𝑑𝑑𝑑

= (𝜇𝜇)(𝑛𝑛 + 1)𝑃𝑃𝑛𝑛+1 − (𝜆𝜆 + 𝜇𝜇)(𝑛𝑛)𝑃𝑃𝑛𝑛 + (𝜆𝜆)(𝑛𝑛 − 1)𝑃𝑃𝑛𝑛−1, 𝑛𝑛 > 0, 

1 

where 𝑃𝑃𝑛𝑛 = 𝑃𝑃𝑛𝑛(𝑡𝑡) = 𝑃𝑃𝑡𝑡(𝑛𝑛|𝑛𝑛), 𝑃𝑃𝑛𝑛+1 = 𝑃𝑃𝑛𝑛+1(𝑡𝑡) = 𝑃𝑃𝑡𝑡(𝑛𝑛 + 1|𝑛𝑛), and 𝑃𝑃𝑛𝑛−1 = 𝑃𝑃𝑛𝑛−1(𝑡𝑡) = 𝑃𝑃𝑡𝑡(𝑛𝑛 − 1|𝑛𝑛). We refer the readers 231 
to the methods to find the details of the solution to this equation.  232 

Experimentally, by having access to 𝑚𝑚 independent family trees, it is possible to build the probability distribution by 233 
counting the number of families that have zero cells, one cell, two cells, and so on, at a given lineage time 𝑡𝑡. In other 234 
words, for each time point 𝑡𝑡, we plot the actual observations 𝑋𝑋𝑡𝑡(𝜔𝜔) on a histogram to derive the probability of each of 235 
the states 𝑛𝑛 occurring. For families in the processive regime of reversible attachment, we avoid potential problems 236 
arising from tracking limitations by selecting 𝑚𝑚 = 11 families for PAO1 (out of 44 families) and 𝑚𝑚 = 12 families for PA14 237 
(out of 31 families), with a 𝑡𝑡lineage range of 0-12 h for PAO1 and 0-10 h for PA14 (see Figure S3 caption for family 238 
selection criteria).  239 

Comparing the experimental data with the model is not straightforward when using the probability distributions 240 
directly. In the experimental data, there are a finite number of families and a finite number of cells in a family, which 241 
means that it is difficult to generate distributions that are well populated for quantitative comparisons. To overcome this 242 
limitation, we employ the method of moments, which provides information about the distributions, to fit the model to 243 
experimental data and obtain the rates. Instead of comparing the experimental and model probability distributions 244 
𝑃𝑃𝑛𝑛(𝑡𝑡), we compare the experimental and model moments, �𝑛𝑛(𝑡𝑡)𝑘𝑘�, where 𝑘𝑘 is the k-th moment. We can calculate the 245 
experimental moments directly from the experimental probability distribution, and we can obtain the model moments 246 
from the model probability distribution  (eq. 2) given by the master equation (eq. 1). The equations for the model 247 
moments are shown in the methods (eq. 3-4). To compare experiment with model, we use the first two moments. The 248 
first moment is the mean, and the second moment is related to the variance, since the variance equals the second 249 
moment minus the first moment squared.  250 

When we plot the moments calculated from the experimental data for families in the processive regime of reversible 251 
attachment (Figure 4), striking differences between PAO1 and PA14 are revealed. PAO1 follows an exponential growth 252 
curve, while PA14 follows a Gaussian curve. These curves are consistent with what we see in the family trees. For PAO1, 253 
many of the families have increasing number of cells, while for PA14, fewer of these families are present, and most 254 
families end in detachment. However, as we have previously shown, PA14 cells that detach have already initiated the 255 
surface sensing process, and they retain memory of the surface based on their prior surface residence, which primes 256 
them for subsequent irreversible attachment (8). Also, from our data, the variances for both PAO1 and PA14 can be as 257 
large as the mean population size, indicating that extinction in an individual lineage can happen at any time, even in a 258 
population that is exponentially growing on average. Therefore, it is important to note that individual lineage 259 
“extinction” events (where the entire family detaches) do not indicate a failure to form a biofilm.  260 

With our model, the temporal evolution of a family tree can be described by the single cell division (𝜆𝜆) and detachment 261 
(𝜇𝜇) rates. 𝜆𝜆 is likely related to cellular events that contribute to surface growth, which can be affected by complex 262 
factors such as changes in cellular metabolism or the local availability of nutrients. Likewise, 𝜇𝜇 is likely to be related to 263 
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cellular events that contribute to detachment, such as the production of EPS and the activities of motility appendages. 264 
Both rates can be time-dependent in principle, so 𝜆𝜆 = 𝜆𝜆(𝑡𝑡) and 𝜇𝜇 = 𝜇𝜇(𝑡𝑡). For example, as bacteria continue 265 
proliferating on the surface, they can spend more of their metabolic energy towards EPS production rather than for 266 
division, and they can start detaching less. However, finding the exact functional form of time dependence to use in the 267 
model is difficult. We first start with the simplest form of time-dependence (linear, or first order polynomial), where 268 
𝜆𝜆(𝑡𝑡) = 𝐿𝐿0 + 𝐿𝐿1𝑡𝑡, 𝜇𝜇(𝑡𝑡) = 𝐶𝐶0 + 𝐶𝐶1𝑡𝑡, and {𝐿𝐿0,𝐿𝐿1,𝐶𝐶0,𝐶𝐶1} are the coefficients that we obtain by fitting the experimental 269 
data to the model. 𝜆𝜆(𝑡𝑡) and 𝜇𝜇(𝑡𝑡) are rates that represent probabilities per time unit, which means they are positive and 270 
have dimensions of inverse time, [𝜆𝜆] = [𝜇𝜇] = [time]−1. Therefore, the coefficients 𝐿𝐿0 and 𝐶𝐶0 also have dimensions 271 
[𝐿𝐿0] = [𝐶𝐶0] = [time]−1, and the coefficients 𝐿𝐿1 and 𝐶𝐶1 have dimensions [𝐿𝐿1] = [𝐶𝐶1] = [time]−2. By dimensional 272 
analysis, we can extract time scales for lineage-level growth (via division) and death (via detachment) behaviors from 273 
either the rates (𝜆𝜆−1 and 𝜇𝜇−1) and the coefficients (𝐿𝐿0 𝐿𝐿1⁄  and 𝐶𝐶0 𝐶𝐶1⁄ ). If the experimental data and model do not show 274 
good agreement, then we can reiterate this process with progressively more complicated functions. Additionally, the 275 
shape of the experimental moments can guide us in choosing the correct function for the rates.  276 

With linear time dependence, we already obtain good agreement when fitting using nonlinear least-squares, as shown 277 
by the results of the model fits to the experimental moments in Figure 4. To ensure the fit results give meaningful 278 
coefficient values, we set the following constraints based on experimental data. The rates are positive, so 𝜆𝜆(𝑡𝑡) > 0 and 279 
𝜇𝜇(𝑡𝑡) > 0. As seen in the family trees in Figure 2 and Figure S3, division events are roughly evenly spaced out in time, and 280 
cells are not nutrient-limited inside the experimental system, so 𝜆𝜆(𝑡𝑡) should be constant. Thus, we set 𝐿𝐿1 = 0, and 281 
𝜆𝜆(𝑡𝑡) = 𝐿𝐿0. We consider any coefficient < 10−5 as zero for subsequent analysis based on the precision of the 282 
experimental data. The resulting coefficients from the fits are as follows: for PAO1, 𝐿𝐿0 = 0.136 h−1, 𝐿𝐿1 = 0 h−2, 𝐶𝐶0 =283 
0.0242 h−1, 𝐶𝐶1 = 0.00147 h−2, and for PA14, 𝐿𝐿0 = 0.256 h−1, 𝐿𝐿1 = 0 h−2, 𝐶𝐶0 = 0 h−1, 𝐶𝐶1 = 0.107 h−2.  284 

We find that 𝜇𝜇(𝑡𝑡) is time-dependent for both strains (i.e., 𝐶𝐶1 is non-zero). For PAO1, we find that 𝜇𝜇 is slowly increasing, 285 
since 𝐶𝐶1 is ~1 order of magnitude smaller than 𝐶𝐶0, and both coefficients are positive and smaller than 𝐿𝐿0. For PA14, 𝜇𝜇 is 286 
increasing quite rapidly, since 𝐶𝐶1 is positive and is much greater than 𝐶𝐶0. Because 𝜇𝜇(𝑡𝑡) is time-dependent, the relevant 287 
time scale 𝜏𝜏𝜇𝜇 to extract for time-dependent lineage-level detachment behavior for both PAO1 and PA14 is 𝜏𝜏𝜇𝜇 = 𝐶𝐶0 𝐶𝐶1⁄  288 
(≈16 h for PAO1, and 0 h for PA14). Also, because 𝜆𝜆(𝑡𝑡) is constant, the relevant time scale 𝜏𝜏𝜆𝜆 to extract for time-289 
independent lineage-level division behavior for both PAO1 and PA14 is 𝜏𝜏𝜆𝜆 = 𝐿𝐿0−1 (≈7 h for PAO1, and ≈4 h for PA14). 290 
These values are consistent with the experimental data. Interestingly, for both strains, we find that 𝜏𝜏𝜆𝜆 is bigger than the 291 
average division time by a factor of ~3, which means that 𝜏𝜏𝜆𝜆 corresponds to ~3 generations of division. The value of 𝜏𝜏𝜆𝜆 292 
corresponds closely to the time that a given lineage persists on the surface before ultimately going extinct and detaching 293 
(i.e., residence time). To calculate the mean residence times of the experimental lineages in Figure 2, we only include 294 
lineages that ultimately detach before the cutoff time (12 h for PAO1, 10 h for PA14). This results in ≈6 h for PAO1 and 295 
≈5 h for PA14, which are very close to the 𝜏𝜏𝜆𝜆 values obtained from the coefficients (≈7 h for PAO1, and ≈4 h for PA14, 296 
see above). For PAO1, having a larger 𝜏𝜏𝜆𝜆 and a slowly increasing and relatively small 𝜇𝜇 mean that lineages are division-297 
dominant (𝜆𝜆 > 𝜇𝜇) as they spend more time on the surface. Rather than ultimately detaching, we see many lineages 298 
persist on the surface and increase their number of cells despite having detachment events. At 𝑡𝑡lineage = 12 h, 7 of the 299 
11 families still exist on the surface (Figure 2c, #1-7). For PA14, having a smaller 𝜏𝜏𝜆𝜆 and a rapidly increasing 𝜇𝜇 means that 300 
lineages are initially division-dominant (𝜆𝜆 > 𝜇𝜇), but then become detachment-dominant (𝜇𝜇 > 𝜆𝜆) after a certain amount 301 
of time on the surface, which is also the time scale described by 𝜏𝜏𝜆𝜆. We see that many lineages grow to at least 2-3 302 
generations, which corresponds to the lineage time where 𝜆𝜆 > 𝜇𝜇. Once 𝜇𝜇 > 𝜆𝜆, then many families begin to detach until, 303 
at 𝑡𝑡lineage = 10 h, only 1 of the 12 families still exists on the surface (Figure 2d, #1). Clearly, unlike PAO1, PA14 cells that 304 
have started the surface sensing process do not necessarily stay on the surface. Rather, as we have shown previously (8), 305 
they rejoin the planktonic population as “surface-sentient” cells that are primed for longer surface residence times 306 
during subsequent attachment. Similarly, the value of 𝜏𝜏𝜇𝜇 corresponds closely to cellular activities that affect 307 
detachment, such as, for example, the competition between EPS production and motility appendage activity. EPS is 308 
likely to affect detachment more for PAO1 than for PA14, since PAO1 is known to produce the Psl EPS, while PA14 309 
cannot. On the other hand, presumably because of the Pil-Chp system, motility appendage activity is likely to affect 310 
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detachment more for PA14 than for PAO1. Consistent with this hypothesis, PAO1 has a much larger 𝜏𝜏𝜇𝜇 compared to 311 
PA14 (which is zero).  312 

With these model parameters, we can evaluate the model probability distribution 𝑃𝑃𝑛𝑛(𝑡𝑡) to then compare with the 313 
experimental probability distribution 𝑃𝑃𝑛𝑛(𝑡𝑡). We show the comparisons of the probability distributions with two different 314 
visual representations in Figure 5. The first is plotting 𝑃𝑃𝑛𝑛(𝑡𝑡) vs 𝑛𝑛 for specific lineage times 𝑡𝑡 = {2.5, 5, 7.5, 10} h, and the 315 
second is plotting the entire 𝑃𝑃𝑛𝑛(𝑡𝑡) vs 𝑛𝑛 and 𝑡𝑡 as a contour plot. The plots of the probability distributions also show good 316 
agreement. For the probability contour plots, agreement between experiment and model are assessed as follows. The 317 
regions of high (𝑃𝑃𝑛𝑛(𝑡𝑡) ~ 1) and low (𝑃𝑃𝑛𝑛(𝑡𝑡) ≤ 10−2) probability contours are similar in shape and location (in the 𝑛𝑛, 𝑡𝑡 318 
plot space) between experiment and model. The shapes of the probability contours are consistent with the plots of the 319 
moments in Figure 4. For PAO1, as 𝑡𝑡 progresses, the probability of having more cells per family (higher 𝑛𝑛) increases. For 320 
PA14, the probability of having higher 𝑛𝑛 increases and then decreases as 𝑡𝑡 progresses. However, further direct 321 
comparisons of the probability distributions are difficult. As previously mentioned, the experimental probability 322 
distributions will invariably be sparser than the model probability distributions, which can be seen in the plots as either 323 
jagged lines or holes in the contours. This sparseness comes from having finite experimental data and is not 324 
straightforward to remove (e.g., via interpolation). Nevertheless, the model probability distribution can be used to 325 
describe what family tree architectures we expect to observe during similar experiments.  326 

The model can also be applied for cells in the nonprocessive regime of reversible attachment. We find that for both 327 
PAO1 and PA14, the moments fit to an exponential decay function (Figure 6). This is what the model predicts if there is 328 
only detachment and no division, and it correctly describes the data, because cells in the nonprocessive regime detach 329 
before dividing on the surface. Furthermore, the variances are of the same order of magnitude as the mean population, 330 
which means that lineages can become extinct at any time. Thus, for both processive and nonprocessive regimes of 331 
reversible attachment, the stochastic model described here accurately describes the behaviors of PAO1 and PA14, 332 
including their differential paths to irreversible attachment.  333 

PAO1 and PA14 have distinct progressions of surface colonization, which suggest contrasting surface 334 
engagement strategies 335 
Our observations and results imply that both PAO1 and PA14 start their initial surface engagement with similar behavior 336 
(in terms of surface residence times) in the nonprocessive regime of reversible attachment, but then they diverge 337 
strongly in the processive regime of reversible attachment. PAO1 shows an increase in the number of families that 338 
commit relatively quickly to surface growth, and this is likely a factor that contributes to the trend of PAO1 forming 339 
faster biofilms compared to PA14 as seen in the crystal violet assays (Figure S2). For PAO1, this early attachment 340 
behavior can be more intuitive when correlating with the general progression of biofilm formation. PA14, in contrast, 341 
shows a larger number of detachment-dominated families even though the entire population eventually forms a biofilm, 342 
which can be a counterintuitive result. Compared to PAO1, where production of sticky EPS appears to be the dominant 343 
mechanism driving irreversible attachment (22, 23), PA14 appears to utilize a different surface colonization strategy 344 
dependent on progressive suppression of surface motility appendage activity (8), but it is not obvious is how this motility 345 
suppression strategy can lead to rapid changes in bacteria detachment rates from surfaces, as shown by the model.  346 

We investigated how detachment events occur for PA14 to gain insight into this alternate surface colonization strategy 347 
and why appendages and their activities can give rise to a time-dependent detachment rate 𝜇𝜇. Consistent with previous 348 
results where flagellum-mediated surface spinning generally results in a detachment event (36), we find that ~90% of 349 
detachment events occur when a cell has the mature flagellum inherited from its ancestor, as opposed to that cell 350 
having to form a new flagellum post-division (Figure 7a,c). Interestingly, deleting the pilA gene (ΔpilA, missing the major 351 
subunit of the TFP filament) results in significantly fewer detachment events (𝜒𝜒2 test p-value≪ 10−4) for cells that have 352 
a mature flagellum. Compared to WT, only roughly half of detachment events occur when the cell has a mature 353 
flagellum in the ΔpilA mutant (Figure 7b,c), an observation that suggests that TFP are important to the detachment 354 
process. For the ΔpilA mutant (and to a much lesser extent in WT), we also observe detachment events with cells that 355 
did not have a labeled flagellum, which suggests that non-flagellum-mediated detachment events can also occur.  356 

All rights reserved. No reuse allowed without permission. 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/798843doi: bioRxiv preprint first posted online Oct. 10, 2019; 



9 

To study how TFP can influence flagellum-mediated spinning and detachment, we adapt a previously developed 357 
hydrodynamic model (37). Simulations show that TFP activity (i.e., extension or retraction) can lead to changes in the 358 
cell body tilt angle relative to the surface. In the case where the non-flagellated pole is attached to the surface, TFP 359 
extension during flagellum-mediated spinning results in the cell tilting to near vertical orientations, while retraction 360 
results in a smaller tilt angle (Figure 7d). During flagellum-mediated spinning, near vertical orientations correlate with 361 
higher rates of detachment, while orientations closer to the surface correlate with a decreased likelihood of detachment 362 
(36, 38). Consistent with previous results, the cell without TFP is more likely to assume an orientation closer to the 363 
surface (i.e., horizontal), while the cell with TFP extended the entire time is more likely to assume a near vertical 364 
orientation (8).  365 

These results suggest that detachment rates are higher when TFP activity and flagellum activity are high and/or coincide, 366 
and that detachment rates are lower when the activities are reduced and/or do not coincide. Given that PA14 has small 367 
average family size, small surface residence times, and large surface detachment rates, observations of suppression of 368 
both appendage activity and detachment are expected to be extremely rare during reversible attachment (i.e., while 369 
cells are transiently on the surface). Nevertheless, in our family tree data, we can find examples where we can compare 370 
cells from the same generation but on different branches of the family tree. In these cases, we observe detachment in 371 
branches where appendage activities are high (and/or coincide), and no detachment in branches where appendage 372 
activities are reduced and/or do not coincide (Figure 8). In example (i), we see that appendage activity is reduced around 373 
𝑡𝑡lineage ~ 6 h, which coincides with the presence of a division event where no daughter cells detach. In examples (ii) and 374 
(iii), appendage activity does not become quiescent and detachment continues to occur for subsequent division events. 375 
This appendage activity analysis was repeated with ΔpilA for validation and was consistent with previous results (Figure 376 
S5).  377 

Discussion 378 
Clearly, the application of stochastic models can be quite powerful in understanding microbiological systems that involve 379 
strong fluctuations. The behavior of each lineage is a record of how a specific cell and its progeny managed to stay and 380 
proliferate on the surface during cellular changes induced by surface sensing, which has multigenerational 381 
consequences. Even though the probability of a specific cell attaching to a surface and proliferating successfully is 382 
initially vanishingly small, surface sensing can modify outcomes by changing the structure of family trees, as we can see 383 
from the evolution of reversible attachment from the nonprocessive to processive regimes, for example. Interestingly, 384 
that the process of reversible attachment can be described by a stochastic model is telling: whether a bacterium 385 
encountering a surface makes it to irreversible attachment and eventually participates in biofilm formation may be 386 
quantitatively cognate to the description of whether patient zero’s disease will die out after a few infections, or take 387 
hold and become an epidemic. The fact that biofilm formation seems to inevitably happen is due to factors such as the 388 
large number of lineages that encounter the surface, and the existence of multigenerational memory, which can 389 
mitigate against initial failure to attach by conditioning a planktonic population primed for improved subsequent 390 
attachment.  391 

Indeed, a recent study applied a variation of our approach to antibiotic treatment of bacteria (39). In fact, the 392 
quantitative evolution of bacterial populations in early biofilm formation is analogous to a time-reversed version of 393 
antibiotic treatment: the nonprocessive regime of reversible attachment behaves like bacterial population dynamics for 394 
antibiotic treatment well above the minimum inhibitory concentration (MIC). In the present study, however, we are able 395 
to perform an unprecedented level of longitudinal comparison between theory and experiment. Because we have 396 
information on the fates for every cell in a large number of bacterial lineages that occur during early biofilm formation, 397 
we can directly measure and analyze the time evolution of the system. This analysis provides a conceptual framework 398 
for understanding the taxonomy of surface colonization strategies and reveals an unanticipated difference between 399 
PAO1 and PA14 behavior.  400 

One of the old questions about biofilm formation is whether it is the newly landed cells or the dividing cells on the 401 
surface that contribute more to the biomass increase in the biofilm. Our results suggest that not only is the answer 402 
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species and strain dependent, the question is misleading because of the assumed either-or format of the answer. 403 
Surface sensing can evolve progenitor cells which land on a surface and commit almost its entire division lineage to the 404 
surface, thereby drastically increase biomass.  405 

Complementary surface colonization strategies: immediate vs deferred gratification 406 
The “divide-detach” stochastic model highlights two distinct but complementary strategies for surface colonization that 407 
are illustrated by PAO1 and PA14. For PAO1, surface population increase takes the form of the few families that are 408 
more successful in retaining surface progeny. PAO1 families generally stay on the surface during biofilm formation, likely 409 
due to the Wsp surface sensing system and Psl EPS secretion. Previous work has shown that early surface attachment 410 
behavior depends on EPS production via the Wsp system (9, 23). In contrast, for PA14, surface population increase takes 411 
the form of many families that are less successful in retaining surface progeny due to surface detachment. However, 412 
PA14 cells can “remember” the surface due to the Pil-Chp system and multigenerational cAMP-TFP memory (8), which 413 
primes them for biofilm formation whether they are currently on the surface or not and eventually leads to progressive 414 
suppression of motility appendage activity. Both strategies are viable for surface colonization. PAO1 cells tend to attach, 415 
increase their surface population more quickly, and persist longer on a surface compared to PA14, which suggests that 416 
PAO1 can potentially attach to surfaces even in ecologically crowded environments or successfully form biofilms by 417 
outgrowing competing species. Indeed, this has been experimentally observed: EPS-producing P. aeruginosa strains tend 418 
to persist on surfaces better than EPS nonproducers, despite possible exploitation by “cheaters” that can potentially use 419 
the communal good of EPS (40). In contrast, PA14 exposed to a surface do not initially stay on the surface, and slowly 420 
increase surface coverage. Rather, they form a surface-sentient planktonic population that can quickly attach and 421 
colonize the surface later in time, which may be better adapted for overwhelming host defense (i.e., a naïve surface) 422 
rather than microbial competition. Moreover, it is interesting to note that EPS secretion is extracellular and can be 423 
shared spatially and temporally with both neighbors from different lineages and descendants in close proximity (41), 424 
whereas memory is intracellular and can be only passed down temporally through division.  425 

It is possible that our observations and results with PAO1 and PA14 may be generalizable to other P. aeruginosa strains. 426 
The majority of strains in the International Pseudomonas Consortium Database (IPCD) can be identified as either PAO1-427 
like or PA14-like based on their phylogeny (i.e., same phylogenetic sub-group as either PAO1 or PA14) (42-45). 428 
Consistent with our results, crystal violet biofilm assays show that the PAO1-like strains seem to produce early biofilms 429 
faster than the PA14-like strains (Figure S6). Although it is clear from the data spread that there is more to 430 
Pseudomonad phylogenetic diversity than biofilm behavior, this observation suggests that the phylogenetic distance 431 
from either PAO1 or PA14 could be incorporated into a metric for categorizing a P. aeruginosa strain’s biofilm formation 432 
behavior as either PAO1-like or PA14-like. It is tempting to draw an analogy between differences in these strategies to 433 
differences in “immediate-” vs “deferred-gratification” behavior in a prototypical cognitive-affective processing system, 434 
with the latter correlating to successful outcomes in complex competitions (46). For P. aeruginosa, there is no cognition 435 
of course, but the existence of a specific sensing cascade for PA14 effectively encodes the analog of “deferred-436 
gratification” behavior at a molecular level. Indeed, PA14 is usually considered to be more virulent than PAO1 (47). 437 
However, it is likely that these bacterial strategies have their own advantages under different circumstances. 438 
Furthermore, our model can be applied to other bacterial systems to understand how they utilize their cellular 439 
machinery for various surface colonization strategies.  440 

Materials and Methods 441 

Strains and growth conditions 442 
Pseudomonas aeruginosa PAO1 and PA14 wild type (WT) strains were used in this study. For the flagellum localization 443 
data, PA14 WT and ΔpilA (deleting the major subunit of the TFP filament) (48) with FliC (the major subunit of the 444 
flagellum filament) modified to FliC(T394C) (49) were used. PAO1 was cultured as previously described (21, 23), and 445 
PA14 was cultured as previously described (8). Culturing protocols are summarized as follows. Bacteria were plated on 446 
LB agar plates and incubated at 37 °C overnight. Individual colonies were swabbed from the plate and grown overnight 447 
for ~18 h in an incubator at 37 °C shaking at 220 rpm. Overnight cultures were regrown in the same overnight growth 448 
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conditions to an OD600nm ~ 0.4-0.6. Regrowth cultures were then diluted in flow cell conditions to an OD600nm ~ 0.01-449 
0.03. These final diluted cultures were used for injection into the flow chamber.  450 

Different medium conditions were chosen for PAO1 and PA14 based on the medium optimized for flow cell early biofilm 451 
formation experiments for each individual strain in prior work. For PAO1, overnight and regrowth media consisted of 452 
FAB medium with 30 mM glutamate, while flow cell media consisted of FAB medium with 0.6 mM glutamate (21, 23). 453 
For PA14, overnight and regrowth media consisted of M63 medium with 1 mM magnesium sulfate, 0.2% glucose, and 454 
0.5% casamino acids (CAA), while flow cell media consisted of M63 medium with 1 mM magnesium sulfate, 0.05% 455 
glucose, and 0.125% CAA (8, 48). For flagellum staining experiments, the flow cell media also contained 0.375 μg/mL 456 
Alexa Fluor 488 C5 maleimide dye (Molecular Probes). For more details on the culturing procedures, please refer to the 457 
corresponding references. PAO1 experiments were repeated with the PA14 medium conditions, and the same basic 458 
trends discussed in this paper still hold.  459 

Crystal violet biofilm assays 460 
Biofilm assays were performed as previously described with minor modifications (50, 51). Briefly, culture inocula were 461 
grown in 100 µL of LB medium at 37 oC in a 96-well microtiter plate for ~16 h. Cultures were normalized and diluted 462 
~1:100 in M63 medium with 1 mM magnesium sulfate and 0.4% arginine (instead of glucose and CAA). To a 96-well 463 
microtiter plate, 100 µL of the diluted culture was added to each well. Microtiter plates were then incubated at 37 oC for 464 
24 h in a humidified environment to prevent culture evaporation. To remove unattached bacteria and spent medium, 465 
the microtiter dishes were inverted, then washed twice by gently immersing the plate in tap water followed by removing 466 
the liquid by briskly inverting the plate. Microtiter dish biofilms were stained by addition of 125 µL of 0.1% (w/v) crystal 467 
violet to each well, and incubation for 15 min at room temperature. After the crystal violet solution was removed, the 468 
plates were washed three times, as described above, with tap water. Plates were allowed to airdry overnight. The 469 
amount of crystal violet retained by each biofilm was measured by adding 150 µL of 30% (v/v) glacial acetic acid, 470 
incubating for 15 min at room temperature, and mixing by pipetting. Transfer of 100 µL of this mixture to a 96-well clear 471 
flat-bottom plate enabled spectrophotometric analysis at 550 nm. Each assay included 4 measurements (technical 472 
replicates), which were averaged, and the experiment was performed 5 times (biological replicates). The strains used in 473 
these assays are shown in Table S1. P. aeruginosa strains PAO1 and PA14 were initially described in (52) and (47), 474 
respectively. All clinical and environmental P. aeruginosa isolates were from the International Pseudomonas Consortium 475 
Database (IPCD) (43). These strains have both been phenotypically and genotypically characterized (44, 45). 476 

Flow cell experiments and data acquisition 477 
Flow cells were prepared and inoculated as previously described (8) with the following modifications. Flow cells were 478 
purchased from two sources: Department of Systems Biology, Technical University of Denmark, and Ibidi (sticky-Slide 479 
𝑉𝑉𝑉𝑉0.4 with a glass coverslip). An in-line injection port (Ibidi) was used at the inlet for inoculating bacteria into the flow 480 
cell. For Ibidi flow cells, elbow connectors (Ibidi) were used to connect the chamber with tubing. The diluted bacteria 481 
culture was injected into the flow cell and allowed to incubate for 10-20 min without flow on the heating stage at 30 °C. 482 
Flow was then started at 3 mL/h for the entire acquisition time.  483 

Images were taken using either an Andor iXon EMCCD camera with Andor IQ software on an Olympus IX81 microscope 484 
equipped with a Zero Drift Correction autofocus system or an Andor Neo sCMOS camera with Andor IQ software on an 485 
Olympus IX83 microscope equipped with a Zero Drift Correction 2 continuous autofocus system. Bright-field images 486 
were taken every 3 s (30 ms exposure time) on the IX81 system and every 100 ms (30 ms exposure time) on the IX83 487 
system. For flagellum staining experiments, bright-field images were taken every 3 s (30 ms exposure time) on the IX81 488 
system, and two fluorescence images (+0 and +1 μm above the imaging focal plane) were taken every 15 min (100 ms 489 
exposure time) using a Lambda LS (Sutter Instrument) xenon arc lamp and a GFP filter. On the IX81 system, total 490 
acquisition time was ~40 h, resulting in ~48000 images. On the IX83 system, total acquisition time was ~20 h, resulting in 491 
720000 images. Image size was 67 μm × 67 μm (1024 × 1024 pixels).  492 
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Multigenerational family tracking analysis 493 
Image analysis, family tracking and manual validation, family tree plotting, and tree asymmetry calculations were 494 
performed in MATLAB as previously described (8) without modification. Fluorescence images were processed as follows 495 
to reduce noise and background signals and enhance flagella signals. Bandpass filtering, gamma correction, intensity 496 
percentile normalization, and then a green colormap were applied to the images. Fluorescence images were then 497 
overlaid on top of bright-field images using the lighten opacity setting. Probability distributions were obtained from the 498 
family trees as follows. The experimental probability distribution 𝑃𝑃𝑛𝑛(𝑡𝑡) is a 2D matrix, where the columns represent 𝑛𝑛, 499 
the number of cells present in one family, and each row is a time step 𝑡𝑡, the experimental image data acquisition interval 500 
(either every 3 s or 100 ms, depending on the data). For each time step 𝑡𝑡 (in terms of lineage time, with each family 501 
starting at 𝑡𝑡lineage = 0), we keep track of how many families have 𝑛𝑛 = 0 cells, 𝑛𝑛 = 1 cell, 𝑛𝑛 = 2 cells, and so on. The 502 
proportion of families with 𝑛𝑛 = 0, 1, 2, … cells then become one row in the matrix. This is equivalent to generating a 503 
histogram for 𝑋𝑋𝑡𝑡(𝜔𝜔) using the states Σ as the bins. The full matrix is generated by repeating this for all time steps in the 504 
experimental data. Experimental moments were calculated by the formula ⟨𝑛𝑛(𝑡𝑡)𝑘𝑘〉 = ∑ 𝑛𝑛𝑘𝑘𝑃𝑃𝑛𝑛(𝑡𝑡)∞

𝑛𝑛=0 , where 𝑃𝑃𝑛𝑛(𝑡𝑡) is the 505 
experimental probability distribution. MATLAB functions from the base installation of MATLAB R2015a, Statistics and 506 
Machine Learning Toolbox, Curve Fitting Toolbox, Image Processing Toolbox, Signal Processing Toolbox, and custom 507 
MATLAB functions were used for all analyses. In particular, the MATLAB functions “fit”, “fmincon”, and “ode45” were 508 
used for function fitting, nonlinear least-squares minimization with constraints, and numerical integration.  509 

Divide-detach stochastic model equations 510 
Explanation of the model is given in the main text. The solution for the master equation (eq. 1), which is the model 511 
probability distribution 𝑃𝑃𝑛𝑛(𝑡𝑡), is given by 512 
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and 𝜆𝜆(𝑡𝑡) and 𝜇𝜇(𝑡𝑡) are the single cell division and detachment rates, respectively. Both rates are functions of time and 513 
positive (i.e., 𝜆𝜆(𝑡𝑡) > 0 and 𝜇𝜇(𝑡𝑡) > 0).  514 

The first and second model moments are given by the following equations and the linear form of the rates, 𝜆𝜆(𝑡𝑡) = 𝐿𝐿0 +515 
𝐿𝐿1𝑡𝑡 and 𝜇𝜇(𝑡𝑡) = 𝐶𝐶0 + 𝐶𝐶1𝑡𝑡, which are used for fitting the experimental moments 516 
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𝑡𝑡

0
�. 

4 

Evaluating the integral analytically in eq. 4 depends on the relative signs of {𝐿𝐿0,𝐿𝐿1,𝐶𝐶0,𝐶𝐶1}.  517 

Analytical solutions to the equations in the stochastic model 518 
The solution for the master equation (eq. 1), which is the model probability distribution 𝑃𝑃𝑛𝑛(𝑡𝑡), can be found by using the 519 
so-called generating function 520 
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𝐺𝐺(𝑧𝑧, 𝑡𝑡) = �𝑧𝑧𝑛𝑛𝑃𝑃𝑛𝑛(𝑡𝑡)
+∞

𝑛𝑛=0

. 521 

By plugging in the generating function into eq. 1, we obtain 522 

𝜕𝜕𝑡𝑡𝐺𝐺(𝑧𝑧, 𝑡𝑡) = (1 − 𝑧𝑧)(𝜆𝜆𝜆𝜆 + 𝜇𝜇)𝜕𝜕𝑧𝑧𝐺𝐺(𝑧𝑧, 𝑡𝑡). 5 

We can rewrite the previous equation in a Ricatti’s form, which reads 523 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑆𝑆 + 𝑄𝑄𝑄𝑄 + 𝑅𝑅𝑧𝑧2, 524 

where 𝑆𝑆 = −𝜇𝜇, 𝑄𝑄 = (𝜆𝜆 + 𝜇𝜇), and 𝑅𝑅 = −𝜆𝜆. A particular solution of the previous equation is given by 𝑌𝑌. Then the 525 
previous equation can be solved by quadrature 𝑧𝑧(𝑡𝑡) = 𝑥𝑥(𝑡𝑡) + 𝑌𝑌(𝑡𝑡) and 526 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= [𝑆𝑆 + 2𝑌𝑌𝑌𝑌]𝑥𝑥 + 𝑄𝑄𝑧𝑧2. 527 

A change of variables 𝑢𝑢 = 1
𝑥𝑥

= 1
𝑧𝑧−𝑌𝑌

 yields 528 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= [𝑆𝑆 + 2𝑌𝑌𝑌𝑌]𝑢𝑢 + 𝑄𝑄. 529 

The solution of the Ricatti’s equation (53) is a homographic function 530 

𝑢𝑢 = 𝐶𝐶 exp�∫ [𝑆𝑆 + 2𝑌𝑌𝑌𝑌]𝑑𝑑𝑑𝑑� + 𝑈𝑈, 531 

where 𝐶𝐶 is an arbitrary constant and 𝑈𝑈 is a particular solution. We can rewrite 𝑢𝑢 as 532 

𝑢𝑢 = 𝐶𝐶𝐶𝐶 + 𝜙𝜙, 533 

and the solution for 𝑧𝑧 reads 534 

𝑧𝑧 = 𝑌𝑌 +
1

𝐶𝐶𝐶𝐶 + 𝜙𝜙
=
𝐶𝐶𝐶𝐶𝐶𝐶 + 𝜙𝜙𝜙𝜙
𝐶𝐶𝐶𝐶 + 𝜙𝜙

=
𝐶𝐶𝐶𝐶 + 𝛽𝛽
𝐶𝐶𝐶𝐶 + 𝛿𝛿

. 535 

By using the Palm’s formulae (31-33, 35, 54), it is possible to find 𝑃𝑃0(𝑡𝑡) and 𝑃𝑃𝑛𝑛(𝑡𝑡) as a function of 𝜂𝜂𝑡𝑡 and 𝜉𝜉𝑡𝑡, two 536 
unknown functions, which reads 537 

𝑃𝑃0(𝑡𝑡) = 𝜉𝜉𝑡𝑡 , and 𝑃𝑃𝑛𝑛(𝑡𝑡) = �1 − 𝑃𝑃0(𝑡𝑡)�(1 − 𝜂𝜂𝑡𝑡)𝜂𝜂𝑡𝑡𝑛𝑛−1. 538 

By means of geometric series, the generating function 𝐺𝐺(𝑧𝑧, 𝑡𝑡) reads 539 

𝐺𝐺(𝑧𝑧, 𝑡𝑡) =
𝜉𝜉𝑡𝑡 + (1 − 𝜉𝜉𝑡𝑡 − 𝜂𝜂𝑡𝑡)𝑧𝑧

1 − 𝜂𝜂𝑡𝑡𝑧𝑧
. 540 

By plugging back this equation into eq. 5, we can find 𝜉𝜉𝑡𝑡 and 𝜂𝜂𝑡𝑡 and finally the solution (eq. 2).  541 

To compare the model with the experimental results, we use the model moments defined as 542 

⟨𝑛𝑛(𝑡𝑡)𝑘𝑘〉 = �𝑛𝑛𝑘𝑘𝑃𝑃𝑛𝑛(𝑡𝑡)
∞

𝑛𝑛=0

. 543 

From the master equation (eq. 1), we can find 544 

𝑑𝑑
𝑑𝑑𝑑𝑑
⟨𝑛𝑛(𝑡𝑡)𝑘𝑘〉 = �𝑛𝑛𝑘𝑘

𝑑𝑑
𝑑𝑑𝑑𝑑
𝑃𝑃𝑛𝑛(𝑡𝑡)

∞

𝑛𝑛=0

= ���(𝑛𝑛 + 1)𝑘𝑘 − 𝑛𝑛𝑘𝑘�𝜆𝜆(𝑡𝑡) − �𝑛𝑛𝑘𝑘 − (𝑛𝑛 − 1)𝑘𝑘�𝜇𝜇(𝑡𝑡)�𝑛𝑛𝑃𝑃𝑛𝑛(𝑡𝑡)
∞

𝑛𝑛=0

. 545 
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The first moment reads 546 

𝑑𝑑
𝑑𝑑𝑑𝑑
⟨𝑛𝑛(𝑡𝑡)⟩ = �𝑛𝑛

𝑑𝑑
𝑑𝑑𝑑𝑑
𝑃𝑃𝑛𝑛(𝑡𝑡)

𝑛𝑛

 547 

= −(𝜆𝜆 + 𝜇𝜇)�𝑛𝑛2𝑃𝑃𝑛𝑛(𝑡𝑡)
𝑛𝑛

+ 𝜇𝜇�(𝑛𝑛2 + 𝑛𝑛)𝑃𝑃𝑛𝑛+1(𝑡𝑡)
𝑛𝑛

+ 𝜆𝜆�(𝑛𝑛2 − 𝑛𝑛)𝑃𝑃𝑛𝑛−1(𝑡𝑡)
𝑛𝑛

 548 

= 𝜆𝜆�[(𝑛𝑛 − 1)2𝑃𝑃𝑛𝑛−1(𝑡𝑡) + (𝑛𝑛 − 1)𝑃𝑃𝑛𝑛−1(𝑡𝑡)]
𝑛𝑛=1

+ 𝜇𝜇�[(𝑛𝑛 + 1)2𝑃𝑃𝑛𝑛+1(𝑡𝑡) − (𝑛𝑛 + 1)𝑃𝑃𝑛𝑛+1(𝑡𝑡)]
𝑛𝑛=0

− (𝜆𝜆 + 𝜇𝜇) �𝑛𝑛2𝑃𝑃𝑛𝑛(𝑡𝑡)
𝑛𝑛=0

 549 

⟺
𝑑𝑑
𝑑𝑑𝑑𝑑
⟨𝑛𝑛(𝑡𝑡)〉 = 𝜆𝜆[⟨𝑛𝑛(𝑡𝑡)2⟩ + ⟨𝑛𝑛(𝑡𝑡)⟩] + 𝜇𝜇[⟨𝑛𝑛(𝑡𝑡)2⟩ − ⟨𝑛𝑛(𝑡𝑡)⟩] − (𝜆𝜆 + 𝜇𝜇)⟨𝑛𝑛(𝑡𝑡)2⟩ 550 

⟹
𝑑𝑑
𝑑𝑑𝑑𝑑
⟨𝑛𝑛(𝑡𝑡)⟩ = (𝜆𝜆 − 𝜇𝜇)⟨𝑛𝑛(𝑡𝑡)⟩. 551 

The solution to this differential equation is 552 

⟨𝑛𝑛(𝑡𝑡)〉 = 𝑛𝑛(0) exp(−𝜌𝜌) , 𝑛𝑛(0) = 1, 𝜌𝜌(𝑡𝑡) = � �𝜇𝜇(𝜏𝜏) − 𝜆𝜆(𝜏𝜏)�𝑑𝑑𝑑𝑑
𝑡𝑡

0
. 553 

Plugging in the linear form of the rates, 𝜆𝜆(𝑡𝑡) = 𝐿𝐿0 + 𝐿𝐿1𝑡𝑡 and 𝜇𝜇(𝑡𝑡) = 𝐶𝐶0 + 𝐶𝐶1𝑡𝑡, yields eq. 3.  554 

The second moment (again, using the linear form of the rates, 𝜆𝜆(𝑡𝑡) = 𝐿𝐿0 + 𝐿𝐿1𝑡𝑡 and 𝜇𝜇(𝑡𝑡) = 𝐶𝐶0 + 𝐶𝐶1𝑡𝑡) reads 555 

𝑑𝑑
𝑑𝑑𝑑𝑑
⟨𝑛𝑛(𝑡𝑡)2〉 = �[((𝑛𝑛 + 1)2 − 𝑛𝑛2)(𝐿𝐿0 + 𝐿𝐿1𝑡𝑡) − (𝑛𝑛2 − (𝑛𝑛 − 1)2)(𝐶𝐶0 + 𝐶𝐶1𝑡𝑡)]𝑛𝑛𝑃𝑃𝑛𝑛(𝑡𝑡)

∞

𝑛𝑛=0

 556 

= ⟨𝑛𝑛(𝑡𝑡)⟩(𝐿𝐿0 + 𝐿𝐿1𝑡𝑡 + 𝐶𝐶0 + 𝐶𝐶1𝑡𝑡) + 2⟨𝑛𝑛(𝑡𝑡)2⟩(𝐿𝐿0 + 𝐿𝐿1𝑡𝑡 − 𝐶𝐶0 − 𝐶𝐶1𝑡𝑡). 557 

Elementary computations yield eq. 4.  558 

Hydrodynamic model of TFP retraction during flagellum-mediated spinning 559 
We adapt the hydrodynamic model that we developed previously (37) to investigate the effects of TFP on flagellum-560 
mediated spinning. Here, we consider a bacterium consisting of a cylindrical body attached to the surface at the pole 561 
opposite the flagellum, a helical filament for the flagellum of equal length to the body, and a straight filament 2/3 of the 562 
body length for a pilus protruding from the body. We use resistive force theory (55) to relate the angular velocities of 563 
each component of the bacterium to the torques from the flagellar motor, the viscous resistance from the fluid, and the 564 
flagellar hook which resists bending between the head and the flagellum. The resultant model is used to consider how 565 
TFP affect the angle that the bacterium makes with the surface during flagellum-mediated spinning and thereby “stand 566 
up” to a near vertical orientation commonly observed before detachment.  567 

We use the example where the ratio of hook stiffness to motor torque is 0.5 to show the effects of TFP (see (37) for 568 
details of the stiffness/motor torque ratio). We show time using units of seconds and a torque value of 2 pN μm. We 569 
observe two significant effects on the surface angle when TFP retract during spinning: (i) the bacterium decreases its 570 
surface angle after retraction, (ii) the amplitude of oscillations in surface angle decreases after retraction. The opposite 571 
occurs when TFP extend during spinning: (i) the bacterium increases its surface angle after extension, (ii) the amplitude 572 
of oscillations in surface angle increases after extension. The strength of these effects depends on the choice of value of 573 
the flagellar motor torque and hook stiffness in the hydrodynamic model.  574 

TFP and flagellum activity metrics 575 
To characterize appendage activity during family tree tracking, we use the algorithms previously described (8) for TFP 576 
activity and adapt them for flagellum activity. As previously described, TFP activity is inferred by recognizing surface 577 
translational motion, which is the predominant behavior for TFP-driven motion for P. aeruginosa cells that attach to the 578 
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surface during early biofilm development. Analogous to this, the most common mode of flagellum activity is surface-579 
attached “spinning,” where cells attach via one pole on the surface, and spin at angular velocities consistent with typical 580 
flagellum motor output (~5 rad/s) (36, 37). So, flagellum activity is inferred by recognizing surface rotational motion. 581 
Based on the majority of flagellum-mediated surface spinning behavior producing trajectories that are tightly clustered 582 
together and have strongly subdiffusive MSDs, the multi-parameter metric for flagellum activity is defined as follows. A 583 
bacterium has flagellum activity during a given time point when it is “spinning” and has non-zero displacement over a 𝑤𝑤 584 
frame moving window every 𝑤𝑤 10⁄  frames. A cell that is “spinning” is defined as having the following characteristics 585 
during the 𝑤𝑤 frame window: a Mean Squared Displacement (MSD) slope of less than 0.9 and having the maximum 2 586 
point distance of its trajectory being greater than or equal to 15% of its maximum cell body length and less than its cell 587 
body length. As previously described, a value of 𝑤𝑤 = 100 was used (8).  588 
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Figure Legends 596 

 597 
Figure 1. PAO1 and PA14 can both form biofilms and have similar trends of exponential surface population increase. 598 
Each line reprsents one experiment where we count how many cells are in a single field of view (FoV) for WT PAO1 and 599 
PA14 as experiment time progresses (5 and 7 independent experiments for PAO1 and PA14, respectively). Experiment 600 
time = 0 h corresponds to when imaging commenced after cells were inoculated into the flow cell chamber. Both PAO1 601 
and PA14 have the variable lag period and the exponential increase, which is consistent with the fact that both strains 602 
initially undergo reversible attachment, and then subsequently form biofilms.  603 
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 604 
Figure 2. PAO1 and PA14 family trees in different regimes of reversible attachment. (a,b) Families in the nonprocessive 605 
regime of reversible attachment, which is when cells detach before dividing. Both axes are on a log scale. In this 606 
nonprocessive regime, PAO1 has 𝑚𝑚 = 19353 tracked families, and PA14 has 𝑚𝑚 = 23104 tracked families. Note the 607 
similarities between PAO1 and PA14. (c,d) Families in the processive regime of reversible attachment, which is when 608 
cells divide at least once before detaching. Both axes are on a linear scale. Each family start at 𝑡𝑡lineage = 0 h when the 609 
founder cell attaches to the surface. Tracking continues for that family until either all members detach, or we lose track 610 
of the family (where we can no longer distinguish individual cells, or the cells move out of the recording boundaries). We 611 
then record this time as the family’s residence time. For each regime and strain, we sort families by residence times in 612 
descending order, which sorts them by the amount of time that they have continuously contacted the surface. In this 613 
processive regime, families here are used for the model and are a subset of the full tracked families shown in Figure S3.  614 
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 615 
Figure 3. Family trees are a stochastic process. (a) Example illustrating the stochastic process with 𝑚𝑚 = 1 family tree. In 616 
this case, at time 𝑡𝑡, 𝑋𝑋𝑡𝑡(𝜔𝜔) is the number of observed cells in the family tree 𝜔𝜔 = {𝜔𝜔1} at time 𝑡𝑡. Attachment of the 617 
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founder cell happens just before time 𝑡𝑡 = 𝑡𝑡lineage = 0, so it is not explicitly captured by this process. When a cell 618 
divides, it undergoes a transition 𝑛𝑛 → 𝑛𝑛 + 1 = 𝜆𝜆𝑛𝑛, and when it detaches, it undergoes a transition 𝑛𝑛 → 𝑛𝑛 − 1 = 𝜇𝜇𝑛𝑛, 619 
where 𝑛𝑛 is the state (i.e., number of observed cells) before the transition. (b) Example illustrating the stochastic process 620 
with 𝑚𝑚 = 3 family trees. At time 𝑡𝑡, 𝑋𝑋𝑡𝑡(𝜔𝜔) = {𝑋𝑋𝑡𝑡1(𝜔𝜔1),𝑋𝑋𝑡𝑡2(𝜔𝜔2),𝑋𝑋𝑡𝑡3(𝜔𝜔3)} are the number of observed cells for each of the 621 
family trees 𝜔𝜔 = {𝜔𝜔1,𝜔𝜔2,𝜔𝜔3}. (c) Dynamics of the stochastic process for state 𝑛𝑛. As shown in part (a), a transition 𝑛𝑛 →622 
𝑛𝑛 + 1 = 𝜆𝜆𝑛𝑛 occurs when a cell divides, and a transition 𝑛𝑛 → 𝑛𝑛 − 1 = 𝜇𝜇𝑛𝑛 occurs when a cell detaches.  623 

 624 
Figure 4. Obtaining division (𝜆𝜆) and detachment (𝜇𝜇) rates by fitting experimental and model moments of the number of 625 
cells in a family for families in the processive regime of reversible attachment. Moments and variance calculated from 626 
experimental data are plotted as blue lines, with the relative error (calculated as 1 √𝑚𝑚⁄ , where 𝑚𝑚 is the number of 627 
families used) shown as the light blue shaded area. Variance is defined as the second moment minus the first moment 628 
squared. Red lines show the fits to the first and second moments (eq. 3-4) using nonlinear least-squares. For the model, 629 
we use the linear functional form of the rates, 𝜆𝜆(𝑡𝑡) = 𝐿𝐿0 + 𝐿𝐿1𝑡𝑡 and 𝜇𝜇(𝑡𝑡) = 𝐶𝐶0 + 𝐶𝐶1𝑡𝑡. The resulting coefficients from the 630 
fits are as follows: for PAO1, 𝐿𝐿0 = 0.136 h−1, 𝐿𝐿1 = 0 h−2, 𝐶𝐶0 = 0.0242 h−1, 𝐶𝐶1 = 0.00147 h−2, and for PA14, 𝐿𝐿0 =631 
0.256 h−1, 𝐿𝐿1 = 0 h−2, 𝐶𝐶0 = 0 h−1, 𝐶𝐶1 = 0.107 h−2.  632 
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 633 
Figure 5. Comparing experimental and model probability distributions for the number of cells in a family for families in 634 
the processive regime of reversible attachment. Experimental probability distributions are built directly from the data, 635 
as described in the methods (section “Multigenerational family tracking analysis”). For the model probability distribution 636 
𝑃𝑃𝑛𝑛(𝑡𝑡), we use eq. 2 and the linear functional form of the rates, 𝜆𝜆(𝑡𝑡) = 𝐿𝐿0 + 𝐿𝐿1𝑡𝑡 and 𝜇𝜇(𝑡𝑡) = 𝐶𝐶0 + 𝐶𝐶1𝑡𝑡. The model rate 637 
coefficients used are shown in Figure 4. Probability distributions are compared in two different ways. The left column 638 
shows plots of 𝑃𝑃𝑛𝑛(𝑡𝑡) vs 𝑛𝑛 for specific lineage times 𝑡𝑡 = {2.5, 5, 7.5, 10} h, and the right column shows plots of the entire 639 
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𝑃𝑃𝑛𝑛(𝑡𝑡) vs 𝑛𝑛 and 𝑡𝑡, where the probability is represented by the shades of color in the contour plots. Probabilities are 640 
shown on a log scale.  641 

 642 
Figure 6. Fitting experimental moments show that families in the nonprocessive regime of reversible attachment have 643 
only detachment events. The natural logarithm (log) of the moments and variance calculated from experimental data 644 
are plotted as blue lines. Relative errors (calculated as 1 √𝑚𝑚⁄ , where 𝑚𝑚 is the number of families used) are not plotted 645 
here, as 𝑚𝑚 ~ 20000 for both PAO1 and PA14, and the values are very small. Red lines show the fits of the experimental 646 
data to the function log�𝑦𝑦(𝑡𝑡)� = 𝑎𝑎1𝑡𝑡 + 𝑎𝑎0. For PAO1, fits were performed for 0.2 h ≤ 𝑡𝑡 ≤ 1 h, with the resulting fit 647 
coefficients as 𝑎𝑎1 = −1.61 h−1, 𝑎𝑎0 = −6.19. For PA14, fits were performed for 0.1 h ≤ 𝑡𝑡 ≤ 0.5 h, with the resulting fit 648 
coefficients as 𝑎𝑎1 = −5.55 h−1, 𝑎𝑎0 = −6.19.  649 

 650 
Figure 7. TFP and flagella are both important for the detachment process in PA14. (a,b) The location of the flagellum and 651 
the age of poles (measured in generations) can be tracked across multiple generations. The fluorescence image of the 652 
labeled flagellum is overlaid on top of the bright field image, and the poles are overlaid as colored circles (color 653 
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representing the pole generation 𝐺𝐺). Scale bars for the pictures are 5 μm. (a) Example tracking for WT, where cells with 654 
mature flagella detach. (b) Example tracking for the ΔpilA mutant (deletion of the major subunit for the TFP filament), 655 
where one cell with a mature flagellum and one cell without a flagellum detach. (c) Proportion of detached cells with a 656 
mature flagellum vs a new flagellum (which includes no flagellum), calculated from 154 events for WT and 74 events for 657 
ΔpilA. The proportions are statistically significantly different between the strains according to the 𝜒𝜒2 test (p-value≪658 
10−4). (d) Angle that the bacterium's body makes with the surface for different TFP conditions in the hydrodynamic 659 
model: TFP extension at t = 10 s (top plot, yellow-orange), TFP retraction at t = 10 s (bottom plot, purple), TFP extended 660 
throughout (top plot, blue), and no TFP (bottom plot, red). If the bacterium does not spin, then the angle between the 661 
body and surface will stay at the (arbitrary) initial condition we have chosen in the model. We show time using units of 662 
seconds and a torque value of 2 pN μm (37).  663 

 664 
Figure 8. Family tree architecture controlled by generation-dependent motility activity. (a) TFP and flagellum activities 665 
are plotted for single branches of a family as magenta and red spike plots, with each spike representing one instance of 666 
activity. The colored line on the family tree plot traces the analyzed branch. We plot the corresponding visit map of each 667 
single cell (top, gray boxes), shown as shades of green in a logarithmic color scale with initial (final) positions shown in 668 
blue (red), to show the trajectory history and visual representation of TFP and flagellum activity. The size of each visit 669 
map is roughly proportional to the level of activity: cells with high TFP activity have elongated visit maps, while cells with 670 
high flagellum activity have circular visit maps. For WT, we see one example where TFP and flagellum activity are 671 
reduced and do not coincide, resulting in a division event where no daughter cells detach (i). The other examples show 672 
either higher activities or activities that coincide, resulting in a continuation of division events with detachment 673 
occurring (ii, iii). (b) Plot of the cumulative appendage activity (i.e., the cumulative number of instances of either TFP or 674 
flagellum activity) for the 3 examples in (a). For example (i), the curve plateaus out at 𝑡𝑡lineage ~ 6 h, which is when the 675 
reduction in appendage activity occurs. For examples (ii) and (iii), the curves continue to rise, which shows that the 676 
appendages are continuing to be active.  677 
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Supplementary Materials 813 

Supplementary Figures 814 

 815 
Figure S1. Exponential fits of bacteria count as a function of experiment time. (a) Each line is a fit to the function 𝑁𝑁(𝑡𝑡) =816 
𝑁𝑁(0) exp��𝑡𝑡 − 𝑡𝑡lag� 𝜏𝜏𝑒𝑒⁄ � for data shown in Figure 1. 𝑁𝑁(0) is the number of cells at time 0, 𝑡𝑡lag characterizes the time 817 
scale of the lag period where 𝑁𝑁 is roughly constant, and 𝜏𝜏𝑒𝑒 characterizes the time scale of exponential increase (1 𝜏𝜏𝑒𝑒⁄  818 
characterizes the rate of exponential increase). (b) Plots of 𝜏𝜏𝑒𝑒 vs. 𝑡𝑡lag for the fits in part (a).  819 

 820 
Figure S2. Monitoring biofilm formation via crystal violet assays. The OD550nm values are proportional to the amount of 821 
biofilm stained by crystal violet. Circles represent individual biological replicates, each of which is the mean of 4 822 
technical replicates. Horizontal lines represent the mean OD550nm values. Vertical lines indicate the 95% confidence 823 
interval calculated from the bootstrap sampling distribution of the mean OD550nm values.  824 
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 825 
Figure S3. All families in the processive regime of reversible attachment, which is when cells divide at least once before 826 
detaching. We monitor the time that a given isolated family, consisting of an attached cell (founder cell) and its progeny 827 
(daughter cells), stays continually on the surface, which we designate as lineage time �𝑡𝑡 = 𝑡𝑡lineage�. For each family, we 828 
begin tracking at the frame individual, founder bacteria attach and assign this as 𝑡𝑡lineage = 0 h. We continue tracking 829 
until either the entire family detaches, or until we lose track of that family (where we can no longer distinguish 830 
individual cells, or the cells move out of the recording boundaries). This final time point is recorded as the family’s 831 
residence time. For families that we lose track of, their true residence times can be greater than or equal to these 832 
recorded values, while for families that end in detachment, their recorded and true residence times are equal. Only 833 
families that end in detachment are used for calculating the average residence time to avoid the uncertainty in actual 834 
residence times for families that we lose track of. For each regime and strain, we sort families by residence times in 835 
descending order, which sorts them by the amount of time that they have continuously contacted the surface. Lineage 836 
indices that are boxed and bolded are the families selected for use in the model. The criteria used to select families for 837 
the model are described as follows. We set the minimum number of families required for the model at ≈10 families. 838 
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First, we select all families that result in lineage “extinction” events (where we observe the family ending in a 839 
detachment event), because these families all have defined outcomes (recorded and true residence times are equal). 840 
Conversely, families that we lose track of (where we can no longer distinguish individual cells, or the cells move out of 841 
the recording boundaries) have undefined outcomes (true residence times are greater than or equal to the recorded 842 
residence times). For PA14, this results in 12 selected families (#1, 6, 9, 10, 12, 16, 19, 21, 24, 26, 28, and 31), which 843 
meets the minimum family number requirement. For PAO1, this results in 4 selected families (#11, 34,39, and 40), which 844 
is not enough. To increase the number of selected families for PAO1, we apply a residence time cutoff on the families 845 
with undefined outcomes, so that all selected families have defined outcomes at least in the lineage time window the 846 
analysis is performed on. A residence time cutoff of 𝑡𝑡lineage = 12 h results in an additional 7 families (#1-7) for a total of 847 
11 selected families for PAO1, which meets the minimum family number requirement.  848 

 849 
Figure S4. Distribution of division times for PAO1 and PA14. Division time is calculated as the time between 850 
consecutively observed division events in a family. Distributions are plotted as pdf (probability density function) 851 
calculated via kernel density estimation. PAO1 has a median division time of 1.92 h with a 95% confidence interval of 852 
(1.87 h, 1.96 h), and PA14 has a median division time of 1.42 h with a 95% confidence interval of (1.38 h, 1.45 h). PAO1 853 
has a mean ± standard deviation division time of 1.96 ± 0.44 h, and PA14 has a mean ± standard deviation division time 854 
of 1.48 ± 0.30 h.  855 
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 856 
Figure S5. Appendage activity tracking for the ΔpilA mutant. We repeat the analysis in Figure 8 for the ΔpilA mutant and 857 
find one predominant behavior up the 9 generations shown here, consistent with this strain having predominantly one-858 
legged division branching (8). We observe no TFP activity, which is consistent with this strain having no TFP; we observe 859 
sporadic, but prolonged, flagellum activity, which is consistent with observations of this strain spinning on the surface 860 
for prolonged periods of time; and we observe detachment events without flagellum activity, which is consistent with 861 
observations of detachment events where cells did not have a labeled flagellum. Beyond generation 9, the ΔpilA mutant 862 
continues to have mainly one-legged division-branching for multiple subsequent generations.  863 

 864 
Figure S6. Crystal violet biofilm assay results for 35 P. aeruginosa strains (25 PAO1-like and 10 PA14-like strains, 865 
including PAO1 and PA14 strains) in the International P. aeruginosa Consortium Database (IPCD). These strains are 866 
identified as either PAO1-like or PA14-like based on their phylogeny (i.e., same phylogenetic sub-group as either PAO1 867 
or PA14) (42-45). The OD550nm values are proportional to the amount of biofilm stained by crystal violet. Circles 868 
represent individual biological replicates, each of which is the mean of 4 technical replicates. Longer horizontal lines 869 
represent the mean OD550nm values. Vertical lines and error bars indicate the 95% confidence interval calculated from 870 
the bootstrap sampling distribution of the mean OD550nm values. Comparing these distributions shows that the mean 871 
OD550nm value for the PAO1-like strains are higher than the mean OD550nm value for PA14-like strains (p-value of 0.02).  872 

  873 
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Tables 874 
Table S1. Strains used in the crystal violet biofilm assays. The collection of isolates was described in (43). (CF = cystic 875 
fibrosis) 876 

Strain ID Source ID Local Strain 
collection # Origin and source Original reference 

PA14 WT   DH123 PA14 P. aeruginosa wild type (47) 
PAO1 WT   DH1467 PAO1 P. aeruginosa wild type (56) 
1268 15108-1 DH3446 ICU (acute infection), Spain (57) 

87 679 DH3418 Non CF Urine sample, male, 
Wroclaw Poland, 2011 (43) 

95 CPHL9433 DH3425 Tobacco plant, Philippines (58) 

1103 AUS23 DH3436 Adult CF (2007), Brisbane, 
Australia (59) 

80 AMT0060-1 DH3411 Pediatric CF, Seattle, WA (60) 
1273 TBCF10839 DH3451 CF, Germany (61) 
1260 AMT0023-30 DH3441 Pediatric CF, Seattle, WA (60) 
94 U018A DH3424 Hobart, Australia, CF patient (58) 

92 LMG14084 DH3422 Bucharest, Romania, Water, 
1960-1964 (58) 

85 IST27N DH3416 Lisbon Portugal, CF patient (62) 
1259 AA2 DH3440    

93 Pr335 DH3423 Prague, Czech Republic, Hospital 
environment 1997 (58) 

91 Jpn1563 DH3421 Lake Tamaco, Japan, Lake water, 
2003 (58) 

84 IST27 DH3415 Lisbon Portugal, CF patient (62) 

1258 AUS52 DH3439 Adult CF (2008), Hobart, 
Australia (63, 64) 

1266 Mi162-2 DH3445 Non CF burn, Ann Arbor, MI, 
1997 (58) 

89 1709-12 DH3420 Leuven Belgium Non CF clinical 
2004 (58) 

2495 LES400 DH3459 CF, U.K. (65) 

1272 A5803 DH3450 Community-acquired 
pneumonia (66) 

1264 39016 DH3444 Keratitis eye isolate, U.K. (67) 
88 NH57388A DH3419 CF, Denmark  (68) 

2496 LES431 DH3460 Non CF parent of CF patient, 
U.K. (67) 

1271 KKI DH3449 CF, Germany (69) 

1262 CHA DH3443 CF (70) 

83 PAK DH3414 Clinical non CF (71) 

2617 LESB58 DH3461 CF, U.K., 1988 (72) 

1270 39177 DH3448 Keratitis, Manchester U.K. (67) 
1261 AMT0023-34 DH3442 Pediatric CF, Seattle, WA (60) 
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Strain ID Source ID Local Strain 
collection # Origin and source Original reference 

82 AMT0060-3 DH3413 Pediatric CF, Seattle, WA (60) 
2045 UCBPP-PA14 DH3458 Human Burn isolate (47) 
1269 13121-1 DH3447 ICU (acute infection), France (66) 
1256 C3719 DH3437 CF, Manchester, U.K. (73) 
81 AMT0060-2 DH3412 Pediatric CF, Seattle, WA (60) 

  877 

All rights reserved. No reuse allowed without permission. 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/798843doi: bioRxiv preprint first posted online Oct. 10, 2019; 



31 

Supplementary References 878 
8. Lee CK, de Anda J, Baker AE, Bennett RR, Luo Y, Lee EY, Keefe JA, Helali JS, Ma J, Zhao K, Golestanian R, O’Toole 879 

GA, Wong GCL. 2018. Multigenerational memory and adaptive adhesion in early bacterial biofilm communities. 880 
Proceedings of the National Academy of Sciences 115:4471-4476. 881 

42. Freschi L, Jeukens J, Kukavica-Ibrulj I, Boyle B, Dupont M-J, Laroche J, Larose S, Maaroufi H, Fothergill JL, Moore 882 
M, Winsor GL, Aaron SD, Barbeau J, Bell SC, Burns JL, Camara M, Cantin A, Charette SJ, Dewar K, Déziel É, 883 
Grimwood K, Hancock REW, Harrison JJ, Heeb S, Jelsbak L, Jia B, Kenna DT, Kidd TJ, Klockgether J, Lam JS, Lamont 884 
IL, Lewenza S, Loman N, Malouin F, Manos J, McArthur AG, McKeown J, Milot J, Naghra H, Nguyen D, Pereira SK, 885 
Perron GG, Pirnay J-P, Rainey PB, Rousseau S, Santos PM, Stephenson A, Taylor V, Turton JF, Waglechner N, et al. 886 
2015. Clinical utilization of genomics data produced by the international Pseudomonas aeruginosa consortium. 887 
Frontiers in Microbiology 6:1036. 888 

43. De Soyza A, Hall AJ, Mahenthiralingam E, Drevinek P, Kaca W, Drulis-Kawa Z, Stoitsova SR, Toth V, Coenye T, 889 
Zlosnik JEA, Burns JL, Sá-Correia I, De Vos D, Pirnay J-P, J. Kidd T, Reid D, Manos J, Klockgether J, Wiehlmann L, 890 
Tümmler B, McClean S, Winstanley C, pathogens” EFfCABCsvdocf. 2013. Developing an international 891 
Pseudomonas aeruginosa reference panel. MicrobiologyOpen 2:1010-1023. 892 

44. Cullen L, Weiser R, Olszak T, Maldonado RF, Moreira AS, Slachmuylders L, Brackman G, Paunova-Krasteva TS, 893 
Zarnowiec P, Czerwonka G, Reilly J, Drevinek P, Kaca W, Melter O, De Soyza A, Perry A, Winstanley C, Stoitsova 894 
SR, Lavigne R, Mahenthiralingam E, Sá-Correia I, Coenye T, Drulis-Kawa Z, Augustyniak D, Valvano MA, McClean 895 
S. 2015. Phenotypic characterization of an international Pseudomonas aeruginosa reference panel: strains of 896 
cystic fibrosis (CF) origin show less in vivo virulence than non-CF strains. Microbiology 161:1961-1977. 897 

45. Freschi L, Bertelli C, Jeukens J, Moore MP, Kukavica-Ibrulj I, Emond-Rheault J-G, Hamel J, Fothergill JL, Tucker NP, 898 
McClean S, Klockgether J, de Soyza A, Brinkman FSL, Levesque RC, Winstanley C. 2018. Genomic characterisation 899 
of an international Pseudomonas aeruginosa reference panel indicates that the two major groups draw upon 900 
distinct mobile gene pools. FEMS Microbiology Letters 365. 901 

47. Rahme LG, Stevens EJ, Wolfort SF, Shao J, Tompkins RG, Ausubel FM. 1995. Common virulence factors for 902 
bacterial pathogenicity in plants and animals. Science 268:1899-1902. 903 

56. Stover CK, Pham XQ, Erwin AL, Mizoguchi SD, Warrener P, Hickey MJ, Brinkman FS, Hufnagle WO, Kowalik DJ, 904 
Lagrou M, Garber RL, Goltry L, Tolentino E, Westbrock-Wadman S, Yuan Y, Brody LL, Coulter SN, Folger KR, Kas A, 905 
Larbig K, Lim R, Smith K, Spencer D, Wong GK, Wu Z, Paulsen IT, Reizer J, Saier MH, Hancock RE, Lory S, Olson 906 
MV. 2000. Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen. Nature 907 
406:959-964. 908 

57. Köhler T, Buckling A, van Delden C. 2009. Cooperation and virulence of clinical Pseudomonas aeruginosa 909 
populations. Proceedings of the National Academy of Sciences 106:6339-6344. 910 

58. Pirnay J-P, Bilocq F, Pot B, Cornelis P, Zizi M, Van Eldere J, Deschaght P, Vaneechoutte M, Jennes S, Pitt T, De Vos 911 
D. 2009. Pseudomonas aeruginosa Population Structure Revisited. PLOS ONE 4:e7740. 912 

59. O'Carroll MR, Syrmis MW, Wainwright CE, Greer RM, Mitchell P, Coulter C, Sloots TP, Nissen MD, Bell SC. 2004. 913 
Clonal strains of Pseudomonas aeruginosa in paediatric and adult cystic fibrosis units. European Respiratory 914 
Journal 24:101-106. 915 

60. Mulcahy LR, Burns JL, Lory S, Lewis K. 2010. Emergence of Pseudomonas aeruginosa Strains Producing High 916 
Levels of Persister Cells in Patients with Cystic Fibrosis. Journal of Bacteriology 192:6191-6199. 917 

61. Bezuidt OK, Klockgether J, Elsen S, Attree I, Davenport CF, Tümmler B. 2013. Intraclonal genome diversity of 918 
Pseudomonas aeruginosa clones CHA and TB. BMC Genomics 14:416. 919 

62. Leitão JH, Alvim T, Sá-Correia I. 1996. Ribotyping of Pseudomonas aeruginosa isolates from patients and water 920 
springs and genome fingerprinting of variants concerning mucoidy. Pathogens and Disease 13:287-292. 921 

63. Bradbury R, Champion A, Reid DW. 2008. Poor clinical outcomes associated with a multi-drug resistant clonal 922 
strain of Pseudomonas aeruginosa in the Tasmanian cystic fibrosis population. Respirology 13:886-892. 923 

64. Kidd TJ, Ramsay KA, Hu H, Marks GB, Wainwright CE, Bye PT, Elkins MR, Robinson PJ, Rose BR, Wilson JW, 924 
Grimwood K, Bell SC. 2013. Shared Pseudomonas aeruginosa genotypes are common in Australian cystic fibrosis 925 
centres. European Respiratory Journal 41:1091-1100. 926 

65. Salunkhe P, Smart CHM, Morgan JAW, Panagea S, Walshaw MJ, Hart CA, Geffers R, Tümmler B, Winstanley C. 927 
2005. A Cystic Fibrosis Epidemic Strain of Pseudomonas aeruginosa Displays Enhanced Virulence and 928 
Antimicrobial Resistance. Journal of Bacteriology 187:4908-4920. 929 

All rights reserved. No reuse allowed without permission. 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/798843doi: bioRxiv preprint first posted online Oct. 10, 2019; 



32 

66. Wiehlmann L, Wagner G, Cramer N, Siebert B, Gudowius P, Morales G, Köhler T, van Delden C, Weinel C, Slickers 930 
P, Tümmler B. 2007. Population structure of Pseudomonas aeruginosa. Proceedings of the National Academy of 931 
Sciences 104:8101-8106. 932 

67. Stewart RMK, Wiehlmann L, Ashelford KE, Preston SJ, Frimmersdorf E, Campbell BJ, Neal TJ, Hall N, Tuft S, Kaye 933 
SB, Winstanley C. 2011. Genetic Characterization Indicates that a Specific Subpopulation of Pseudomonas 934 
aeruginosa Is Associated with Keratitis Infections. Journal of Clinical Microbiology 49:993-1003. 935 

68. Hoffmann N, Rasmussen TB, Jensen P, Stub C, Hentzer M, Molin S, Ciofu O, Givskov M, Johansen HK, Høiby N. 936 
2005. Novel Mouse Model of Chronic Pseudomonas aeruginosa Lung Infection Mimicking Cystic Fibrosis. 937 
Infection and Immunity 73:2504-2514. 938 

69. Cramer N, Wiehlmann L, Ciofu O, Tamm S, Høiby N, Tümmler B. 2012. Molecular Epidemiology of Chronic 939 
Pseudomonas aeruginosa Airway Infections in Cystic Fibrosis. PLOS ONE 7:e50731. 940 

70. Toussaint B, Delicattree I, Vignais PM. 1993. Pseudomonas aeruginosa Contains an IHF-like Protein That Binds to 941 
the algD Promoter. Biochemical and Biophysical Research Communications 196:416-421. 942 

71. Totten PA, Lory S. 1990. Characterization of the type a flagellin gene from Pseudomonas aeruginosa PAK. Journal 943 
of Bacteriology 172:7188-7199. 944 

72. Kukavica-Ibrulj I, Bragonzi A, Paroni M, Winstanley C, Sanschagrin F, O'Toole GA, Levesque RC. 2008. In Vivo 945 
Growth of Pseudomonas aeruginosa Strains PAO1 and PA14 and the Hypervirulent Strain LESB58 in a Rat Model 946 
of Chronic Lung Infection. Journal of Bacteriology 190:2804-2813. 947 

73. Jones AM, Dodd ME, Doherty CJ, Govan JR, Webb AK. 2002. Increased treatment requirements of patients with 948 
cystic fibrosis who harbour a highly transmissible strain of Pseudomonas aeruginosa. Thorax 57:924-925. 949 

 950 

All rights reserved. No reuse allowed without permission. 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/798843doi: bioRxiv preprint first posted online Oct. 10, 2019; 



Chapter 4

Conclusion & Outlook

This thesis was focused on the effects of the activity on the emergence of collective behavior
in an active system, at a microscopic level. Over three works, from active sedimenting parti-
cles to early biolfilm formation in the case of the bacteria P. aereginosa, via the aggregation
formation for the micro-algae C. reinhardtii, I studied how the activity at a microscopic level
affects the emergence of collective behaviors.
These results showed that the activity is a critical and decisive parameter in the emergence
of macroscopic structure, characteristic of collective behaviors. The activity triggers some
survival mechanisms for living system such as micro-algae, e.g. moving against the gravity
to reach the surface Chapter 3.1, protection mechanism for the aggregation pattern Chap-
ter 3.2, and the formation of a sustainable biofilm to protect the bacterial colony from the
surrounding environment Chapter 3.3.
The methods used and developed in these three works were based on the theory of stochastic
processes. In Chapters 3.1 and 3.2 the dynamics was described by two overdamped Langevin
equations for the position and orientation of the active particles. Moreover, in Chapter 3.1,
the associated Fokker-Planck equation was derived and solved analytically. In Chapter 3.3,
the population size of bacteria colony was described by a ‘birth and death’ process based on
a master equation. These three works followed a bottom-up approach, from a microscopic
description, at the particle’s level, it was possible to describe macroscopic behaviors, such
as the emergence of polar order, aggregation of particles and formation of biofilm.

In the first work, Chapter 3.1, we described an active sedimentation, in which the activity
was understood as the magnitude of the self-propulsion of the particle. The active particle
is considered as a point particle and moves at a constant speed along a direction given by
the orientation of the particle. Moreover, due to the gravity, the motion of the particle is
biased by a drift velocity pointing in the direction of gravity. The system was described
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in terms of two overdamped Langevin equations for the position and the orientation of
the particle. From these equations the associated Fokker-Planck equation was derived. By
varying the activity, from low to high, the results have shown the emergence of a polar
order and wall accumulation. In this work, we developed an analytical method to study
the sedimentation profile of one active particle and the analytical solution of the Fokker-
Planck equation in 3D for one active particle under gravity and a confining wall was derived.
With this solution, we recovered experimental results observed in [51, 133]: first, in the
steady-state (long time limit) the sedimentation profile given by an exponential decay of
the density profile; second, the change of the length of the sedimentation by increasing the
activity. Moreover, in comparison to previous works [163, 118], this analytical method gave
a direct access to the transient dynamics and kept the coupling between the position and
the orientation. In order to study many interacting particles, we developed active Brownian
particles simulations. By comparing the analytical solution for one active particle to the one
obtained from the simulations and experimental results (Janus colloids), we have shown that
our analytical solution was also valid in the dilute case. In addition, the simulations did show
the emergence of collective behavior as function of the activity. For living organisms, the
activity has different functions. As an example, in the case of the micro-algae C. reinhardtii,
which can be described as an active particle, the algae need light to get energy. By increasing
its activity, the algae can move ‘against’ the gravity and reach the surface to get more light
and thus more energy to survive.

Our simulations were limited to low particle density due to the nonlinearities associated
to hydrodynamics interactions, and the local approximation of the hydrodynamics can be
criticized. However, we showed that the results from the simulations were valid in the dilute
case and gave good quantitative and qualitative agreement with the analytical solution and
experimental results. To overcome the limitation to the local hydrodynamics effect, one
would have to implement a full hydrodynamics model or a hybrid model with steric and
hydrodynamics interactions.
An interesting extension of this work, for the analytical method, would be to incorporate an
anisotropic diffusion behavior at the boundary and compare its results with previous work
done for passive particles [164]. Moreover, in order to study the confinement effect of an
active particle under an external field, it would be good to incorporate a second reflective
boundary condition. From the simulations point of view, in order to study the effect of
the wall on the dynamics of the active particles, it would be interesting to incorporate a
coupling with the hydrodynamics interactions by using Blake’s tensor. However, it might
be really costly in computation time, due to the number of active particles and the number
of boundaries in the systems. To overcome this problem, one could use the GPU (Graph-
ics Processing Unit) computations instead of the classical CPU (Central Processing Unit)
computations used in this work. Finally, it would also be really interesting to study in more
details the effect of the activity on one species like the micro-algae C. reinhardtii to under-
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stand the underlying mechanisms of the emergence of collective behavior such as particle’s
aggregation.

In the second work, Chapter 3.2, we characterized the aggregation of active particles, where
the activity was understood in the same way as in Chapter 3.1. However, the magnitude
of the self-propulsion varies as function of the light condition and the local cell density. By
means of active Brownian particles simulations, we studied the aggregation phenomena of
active particles, for different activities, under confinement. Moreover, recent experimental
results (in the case of the algae C. reinhardtii) obtained by Dr. Fragkopoulos and Dr.
Bäumchen, have shown that the phenomenon could not be described by a Motility-Induced
Phase Separation (MIPS) model and the need of a new model was required. By varying
the activity as well as the diffusion coefficients as functions of the local cell density and in
the case of many interacting active particles, we observed in the steady state regime the
emergence of collective behaviors such as an aggregation of particles at the center of the
compartment or a ring pattern. Moreover, by identifying the shape of the activity and the
effective diffusion coefficient with the experimental results and by using reflective boundary
conditions with an outside angle of 16 degrees found experimentally [114], it made possible
to find the underlying mechanisms of the aggregation phenomena. The key ingredient is
the dependence of the self-propulsion and diffusion coefficients on the local cell density. We
showed that the use of active Brownian particles simulations designed to describe the effect
of the local cell density and confinement on the dynamics re-creates the patterns observed
in the experiment. In comparison to previous work [153, 154], having a direct access to the
shape of the self-propulsion and the effective diffusion coefficient allows our simulation to be
faithful to the experimental observations. Importantly, it was possible to match the global
cell density used experimentally with the one used in the simulations, while other models
need to reach a higher global cell density to describe similar collective behaviors.

We have approximated the algae as interacting spherical active Brownian particles where the
steric interactions are taken as dominant, which could be criticized. The advantages of our
model were a minimum of free parameters, which led to identify the fundamental underlying
mechanism, and the low computation time cost. However, the interaction with the boundary
conditions as well as the long range interaction are idealized. In order to better describe
the interaction with the boundary and the long-range interaction between the particles,
it would be interesting either to implement a coupling with hydrodynamics or a complete
hydrodynamics description by means of MPCD (Multi-Particles Collision Dynamics)[165],
for example. Moreover, it would be interesting to explore the effect of different boundary
conditions on the collective patterns as well as the shape of the particles, for example, to
identify the key parameters which lead to the position at the center of the compartment of
the aggregation pattern. Already, preliminary results from the simulations showed a picture
similar to the one observed experimentally and started to give some answer to this effect. It



136 CHAPTER 4. CONCLUSION

would be nice to use other species, for example E. coli, to try to identify a common biological
mechanism which lead to an aggregation pattern.

Finally, we studied the early stage biofilm formation in the case of two canonical strains
of the bacteria family P. aereginosa, PA01 and PA14. They use different surface sensing
circuits and a ‘reversible attachment’ phase is commonly observed before forming a bacterial
biofilm community. However, both of these strains exhibit reversible attachment and appar-
ently indistinguishable early biofilm behavior in bulk and single cell assays. The population
dynamics were described with a ‘birth and death’ process with a temporal time dependence
of the rates. These rates describe the reversible attachment by a division rate and a detach-
ment rate. The division rate was described in terms of lineage time, meaning the time that
the lineage stays continually on the surface. The detachment rate was connected to the EPS
production. In this work, the activity was seen as detachment events. When the activity, or
motility of a bacterium is suppressed, the bacterium stays at the surface. However, when the
activity is not suppressed, the bacteria can detach from the surface. Previous work have used
either no time dependence for the rates [67, 78, 68] or a linear time dependence only for one
of the rate [80, 81]. The method showed in this work allows a general time dependence, not
only linear, for the rates and it was possible to derive the associated distribution probability
as well as the first moments analytically. Moreover, by including a temporal dependence to
the rates, we have then included an implicit effective ‘age’ dependence, given by the time
spent at the surface. This effect has been shown in recent works, for example [166]. Our
results have suggested that both strains PA01 and PA14 used two different strategies in the
surface colonization. In the case of PA01, the result was in a steady progressive increase of
cell population that was irreversibly attached. In other words as soon as a bacteria attach to
a surface, its lineage will form a biofilm. However, in the case of PA14, due to the high rates
of cell detachment, the result was to leave the surface for the early stage. As a conclusion,
our results unified disparate findings in the literature regarding early events in biofilm for-
mation for PA01 and PA14. Moreover, we have shown that our model gave a framework to
characterize different surface colonization strategies which lead to biofilm formation.

We have reduced the internal machinery for the bacteria division to only two rates, and we
have neglected the possible interactions between individuals as well as a spatial dependence.
Experimentally the duration between two consecutive events follows a distribution which
might not be exponential, while in the model this distribution was taken as an exponential.
One can criticize these approximations, but this model enabled us to connect fundamental
biology to only two parameters, the rates, and it was possible to directly compare the results
obtained experimentally with the one from the model.
It would be interesting to extend this work to other bacteria species, for example Vibrio
cholerae. Already, the first results are promising, but one difficulty resides into the connection
between the rates and the ‘different’ biology of V. cholerae. Moreover it might be interesting
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to couple this model, if possible, with other circuits such as the cyclic AMP (cAMP) or the
c-di-GMP. For example, in order to compare within the same species, the difference in the
two phases: stationary or exponential. From a more mathematical approach, one can try to
derive a thermodynamic description of the early biofilm formation by extending a fluctuation
theorem [167, 168].
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Appendix A

A Methods

A.1 Stochastic processes

The term random experiments is used in experiments for which we cannot surely predict the
output in advance. However, by repeating the same experiment N times, we can observe a
regularity in the average output. An example is when we toss a coin N times (N →∞) and
obtain 50% of ’heads’.

Probability theory describes such phenomena based on a mathematical theory. For it, we
need four ingredients: 1) a set of all possible outcomes or sample space, 2) events, 3) prob-
ability or measure and 4) random variable.

1. The sample space Ω is the set of all possible outcomes of the experiment. For ex-
ample, for the toss of a coin Ω = {h, t}, or for the number of particles in a sys-
tem Ω = {0, · · · , N}. A trajectory in Ω is noted ω and is defined by ω = {ωt} =
{ωt1 , · · · , ωtm , · · · }, Fig. A.1.

2. An event is a property which can be observed either to hold or not to hold after the
experiment is done. An event is a subset of Ω. The set of all the events form a
family A, under some properties [169, 170], called σ-algebra. For example, for a coin,
whose sample space is Ω = {h, t}, A = {{∅}, {h}, {t}, {h, t}, {t, h}, {h, h, t}} can be an
example of σ-algebra1.

1Before moving onto the probability or measure of the trajectories in the sample space Ω, it is important
to identify the ’events’ to be measured. These ’events’ are given by the so-called cylinder set, which is a
sequence ε = ε1, ε2, ..., εm to be the set of all trajectories (sequences) ω ∈ Ω that correspond with ε in the
first m blocks. In other words, the cylinder set is the set of all trajectories which coincide with a given block
of length m, in a given time window. For more details, the readers are referred to [171, 172].

139



140 APPENDIX A. APPENDICES

T

Figure A.1 – Time evolution in the sample space Ω. The time evolution is given by the
application T : Ω→ Ω and T : ωt → ωt+1.

3. The probability (or measure) P(A) associates to each A (A ∈ A) a number in [0, 1],
and measures the likelihood of the event A to be realized before performing the exper-
iment. We can built the probability P(A) by repeating the experiment n times. The
n outcomes might be different. However, if we denote by fn(A), the number of times
that the event A occurs, divided by n, also called the frequency, then we have

P(A) = lim
n→+∞

fn(A) .

Some properties

(a) 0 6 P(A) 6 1

(b) P(Ω) = 1

(c) P(A1 ∪ A2) = P(A1) + P(A2) if A1 ∩ A2 = ∅.

The triple (Ω,A,P) is called a probability space, Fig. A.2.

4. A random variable X is an application from Ω into a state space E, where E =
{R,Rd, · · · }. Let X be a random variable X : Ω→ E. It is then possible to ’transport’
the probabilistic structure onto E

µX(B) = PX(B) = P(X−1(B)), B ⊂ E .
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0 1
Figure A.2 – Probability or measure. The probability is an application P : A3 → [0, 1], where
A3 ∈ A, which measure the likelihood of the event A3 to be realized.

Every random variable induces a probability measure µX or also called the distribution
(law) of X. Fig. A.3.

With these four ingredients, we can define a stochastic process.

Definition 2 (Stochastic process) A stochastic process is a collection of random vari-
ables

{Xt}t∈T ,

defined on a probability space {Ω,A,P} and assuming values in Rd.

Let me give a simple example of stochastic process, encountered in our daily life: tossing a
coin.

Example 3 (Coin: head and tail) Let Ω = {h, t} be the sample sspace and ω = {ωt=n}n∈N =
{h, h, t, h, h} be a trajectory in the sample space. Let E = {0, 1} be the state space and
X : ω → E a random variable, which project the trajectory ω into the state space E, h→ 0
and t → 1. The resulting sequence for the trajectory ω reads {Xt=n}n∈N = {X0 = 0, X1 =
0, X2 = 1, X3 = 0, X4 = 1}. A graphical representation is illustrated in the Fig. A.4.
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0 1

E

B �  E⊂

B

�μX(B) or μX : B → [0,1]

Figure A.3 – Probability distribution associated to the random variable X.

More generally, we can describe the stochastic dynamics of such process by using the Markov
chains.

Xn

1

1 2 3 4 5

0

Time t
Figure A.4 – Toss a Coin. Time evolution of the random variable X.
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Markov chains are stochastic processes discrete in time and state, which described the evo-
lution of a random variable Xt. Before giving a mathematical definition, it is important to
first give an example. In the introduction, we used a random walk to show the difference in
the statistical descriptions of passive and active systems: either equilibrium or nonequilib-
rium.

This picture is similar to one for the coin, Fig. A.4, except that the state space E have more
than two states. We can move to one state to the other according to a transition matrix
P . Its elements P (Xn = j|Xn−1 = i) give the probability to move from a state i to a state
j. The duration between two consecutive events, either going to the right or to the left, is
taken constant. In the case of a Markov process, continuous time and discrete state, the
duration between two consecutive events is exponentially distributed. A Markov chain is
defined as

Definition 3 (Markov chain) Let E = {1, ..., N} be a state space and P a transition
matrix of size N . A Markov chain on E of transition matrix P is a sequence (X0, X1, X2, ...)
of random variables with values in E, satisfying the Markov properties

P (Xn = j|Xn−1 = in−1, Xn−2 = in−2, ..., X0 = i0) = P (Xn = j|Xn−1 = in−1)

= Pin−1j , (A.1)

for all time n > 1 and all (i0, i1, ..., in−1, ..., j) of E. The law or probability distribution
associate to X0, ν, is called the initial probability distribution of the chain.

In other words, if Pin−1j does not depend on the previous history of the stochastic process,
we are dealing with the simple case of a sequence of independent events, like tossing a coin.
It is possible to characterize a Markov chain in terms of its trajectories, properties which
can be easier to proof than the Markov property, and both relations are equivalent.

Theorem 2 Let {Xn}n∈N a sequence of random variables with values in E, ν a probability
distribution on E and P a transition matrix. Then {Xn}n∈N is a Markov chain of transition
matrix P and of initial probability distribution ν if and only if for all n > 0, and for all
(i0, i1, ..., in−1, ..., j) of E, we have

µ(X0 = i0, X1 = i1..., Xn = in) = νi0Pi0i1Pi1i2 ...Pin−1in . (A.2)

A.2 The existence and uniqueness of strong solutions

For the ordinary differential equations, we have properties on the coefficients. We use the
Lipschitz condition which tell us if we have a unique solution or not. We will use the same
logic for the stochastic differential equations (SDEs). In the next section we will distinguish
two kind of solutions: strong and weak. We will focus more on the strong solution.
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Let a general SDE
dXt = a(t,Xt)dt+ b(t,Xt)dWt, Xt0 = x (A.3)

To get the solution we should integrate

Xt = x+

t∫
0

a(s,Xs)ds+

t∫
0

b(s,Xs)dWs (A.4)

The first integral is just a Lebesgue integral, the second one is more tricky because we know
that Wt is not differentiable. In the following, we use the Itô approach and then the Itô
calculus.

For fixed a and b any solution X will depend on the particular initial value x and Wiener
process W under consideration. If there is a solution for each given Wiener process, we say
that the SDE has a strong solution. For the initial instant 0 ≤ t0 ≤ T is arbitrary, but fixed,
and a, b : [t0, T ]×R→ R are given. Most assumptions concern these coefficients

1. Measurability a = a(t,Xt), b = b(t,Xt) are jointly 2 (L2-)measurable in (t, x) ∈ [t0, T ]×
R

2. Lipschitz condition There exist a constant K > 0, such that

|a(t, x)− a(t, y)| ≤ K|x− y|
|b(t, x)− b(t, y)| ≤ K|x− y|

∀t ∈ [t0, T ] and x, y ∈ R. This condition provide the key estimates in both the proofs
of uniqueness and of existence. So if the Lipschitz condition is satisfied, and, and f(x,y)
is bounded, there is a solution and the solution is unique. If the Lipschitz condition is
not satisfied, there is at least one other solution.

3. Linear growth bound There exist a constant K > 0 such that

|a(t, x)|2 ≤ K2(1− |x|2)

|b(t, x)|2 ≤ K2(1− |x|2)

∀t ∈ [t0, T ] and x, y ∈ R.

4. Initial value Xt0 is At0-measurable with E(|Xt0 |2) <∞.

2Let X be a measurable space, Y a separable metric space (or just a second countable topological space)
and f : X ×Y → R a function such that f(x,y) is measurable in x and continuous in y ; then f(x,y) is jointly
measurable in x and y.
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Rk.: Under assumptions A.1−A.4, the solution X of SDE (A.3) is a Markov process on the
interval [t0, T ] with transition probability P (s, x; t, B) = P (XT ∈ B|Xs = x) = P (Xt(s, x) ∈
B), ∀t0 ≤ s ≤ t ≤ T , x ∈ R and Borel subsets3 B of R.

In the cas of autonomous SDE:

dXt = a(Xt)dt+ b(Xt)dWt

the solution X are homogeneous Markov process, means P (x1, t1|x2, t2) = P (x, 0|x, t2 − t1).
General: Solution of SDE (A.3) are diffusion process.

Theorem 3 (Diffusion process) Assume that a and b are continuous and that A.2−A.4
hold. Then, the solution Xt of (A.3) for any fixed initial value Xt0 is a diffusion process on
[t0, T ] with drift a and diffusion b.

Theorem 4 (Pathwise unique strong solution) Under assumptions A.1−A.4 the SDE
(A.3) has a pathwise unique strong solution Xt on [t0, T ] with

sup
t0≤t≤T

E(|Xt|2) <∞

We defined the strong solution and we will give a definition of the weak solution as diffusion
processes. A weak solution is a solution of SDE for which the coefficients a and b of the
equation, but not the Wiener process, are specified.

A.2.1 About the convergence

In the last section we spoke about the importance of the coefficients a and b, in the solution
of Xt. In the following section, we will focus on the simulation of the SDE, especially their
discretization scheme and then the convergence criterion.

A.2.2 Convergence criterion

Strong The goal here is to evaluate the error ε(δ) = E(|XT − YN |). The classical way to
estimate this error is to use the Lyaponov exponents

ε(δ) = E(|XT − YN |) ≤
√
E(|XT − YN |)2

3The primary example are the Borel sets on the real line (or more generally of the euclidean space), which
correspond to choosing as X the space of real numbers R with the usual topology. Borel sets of the real line
(or more generally of a euclidean space) are Lebesgue measurable. Conversely every Lebesgue measurable
subset of the euclidean space coincides with a Borel set up to a set of measure zero.
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An approximation process Y converges in the strong sense with order γ ∈ (0,∞] if there
exists a finite constant K and a positive constant δ0

E(|XT − YN |) ≤ Kδγ

for any time discretization with maximum step size δ ∈ (0, δ0). Usually, the theoretical
error has the form Khp, where K is unknown, for both ODEs and SDEs. For ODEs, to
obtain K, it is either possible to use a smaller step size or to use an adaptative step size
routines to approximate the constant K. For SDEs, to obtain K, we can only decrease
the step size but carefully the noise increments to ensure that the sample path is correctly
approximated.

Theorem 5 (Strong convergence) Suppose that

E(|X0|2) <∞
E(|X0 − Y δ

0 |2)1/2 ≤ K1δ
1/2

|a(t, x)− a(t, y)|+ |b(t, x)− b(t, y)| ≤ K2|x− y|
|a(t, x)|+ |b(t, x)| ≤ K3(1− |x|)
|a(s, x)− a(t, x)|+ |b(s, x)− b(t, x)| ≤ K4(1− |x|)|s− t|1/2

∀ s, t ∈ [0, T ] and x, y ∈ Rd, where the constants K1, ..., K4 do not depend on δ. Then for
the Euler-Mayurama Y δ the estimate

E(|Xt − Y δ(T )|) ≤ K5δ
1/2

holds, where K5 does not depend on δ.

This theorem establish a uniform error bound over the whole time interval [0, T ] rather
than an error bound at just the final instant T. Furthermore, this theorem proof that the
Euler-Mayurama method converges with strong order 1/2 to the true solution.

Important remark: Euler scheme gives good numerical results when the drift and diffusion
coefficients are nearly constant.

Weak A time discrete approximation Y converges in the weak sense with order β ∈ (0∞]
if for any polynomial g there exists a finite constant K and a positive constant δ0 such
that

|E(g(XT ))| − |E(g(YN))| ≤ Kδβ

for any δ ∈ (0, δ0). The Milstein scheme has a weak (convergence) order β = 1.
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A.3 Random vectors on a sphere

There exist an easy way called acceptance-rejection technique made by von Neumann (1951),
based on the following procedure:

1. Generate three uniform random variables ξi, i ∈ [1, 2, 3] on (0, 1)

2. Calculate ζi = 1−2ξi, the vector ζ is distributed uniformly in a cube of side 2 centered
at the origin

3. Form the sum ζ2 = ζ2
1 + ζ2

2 + ζ2
3

4. For ζ2 < 1 (i.e. inside the inscribed sphere), we take ζ = (ζ1/ζ, ζ2/ζ, ζ3/ζ) as the vector

5. For ζ2 > 1 reject the vector an return to step 1

This algorithm is still slow, then we use a slightly different one developed by Marsaglia
(1972), who proposes:

1. Generate two uniform random variables ξi, i ∈ [1, 2] on (0, 1)

2. Calculate ζi = 1− 2ξi

3. Form the sum ζ2 = ζ2
1 + ζ2

2

4. For ζ2 < 1 (i.e. inside the inscribed sphere), we take ζ = (2ζ1(1 − ζ2)1/2, 2ζ2(1 −
ζ2)1/2, (1− ζ2)1/2 as the vector

5. For ζ2 > 1 reject the vector an return to step 1

This method improve by a factor two the computational speed.

B Results

B.1 ‘Birth and death’ process

The master equation for a ’birth and death’ process is given by

dPn
dt

= µ(n+ 1)Pn+1 − (λ+ µ)nPn + λ(n− 1)Pn−1 , (A.5)

elementary calculations yields

∂tG(z, t) =

[
λ(z − 1) + µ(

1

z
− 1)

]
G(z, t) . (A.6)
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A way to solve the previous Eq. (A.6) is to do a change of variable [78], z = eθ and got
M(θ, t). After some computations (see Appendix B.1), Eq. (A.6) reads

∂tM(θ, t) =
[
λ(eθ − 1) + µ(e−θ + 1)

]
∂θM(θ, t) . (A.7)

The previous equation, Eq. (A.7), is a linear partial differential equation and the solutions
for

P
∂f

∂z
+Q

∂f

∂y
= R ,

is known and be rewritten as
dz

P
=
dy

Q
=
df

R
.

Therefore M(θ, t) is a constant and

dt =
−1

λ(eθ − 1) + µ(e−θ + 1)
dθ

⇐⇒ dt =
−eθ

(eθ − 1)(λeθ − µ)
dθ

=⇒
∫
dt = t =

−1

λ− µ
log(

eθ − 1

λeθ − 1
)

⇐⇒ 0 = (λ− µ)t+ log(eθ − 1)− log(λeθ − µ) ⇐⇒ cst = e(λ−µ)t (eθ − 1)

(λeθ − µ)
.

M(θ, t) can be rewritten as a linear form

M(θ, t) = ψ

(
e(λ−µ)t(eθ − 1)

(λeθ − µ)

)
.

By a change of variable u = eθ−1
λeθ−µ and by elementary calculations lead to eθ = µu−1

λu−1
. The

initial condition yields en0θ = M(θ, t = 0) = ψ( eθ−1
λeθ−µ) and ψ is rewritten as

ψ(u) = en0θ =

(
µu− 1

λu− 1

)n0

M(θ, t) = ψ

(
e(λ−µ)t(eθ − 1)

(λeθ − µ)

)
M(θ, t) =

(
µν(θ, t)− 1

λν(θ, t)− 1

)n0

,

where ν(θ, t) = e(λ−µ)t(eθ−1)
(λeθ−µ)

. Then G(z, t) reads

G(z, t) =

(
µw(z, t)− 1

λw(z, t)− 1

)n0

, (A.8)
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where w(z, t) = e(λ−µ)t (z−1)
λz−µ . Moreover, in our case n0 = 1, G(z, t) is easily expressed in

power of zn and the solution of master equation reads

Pn(t) = (1− α)(1− β)βn−1 . (A.9)

where α = µ(e(λ−µ)t−1)

λe(λ−µ)t−µ and β = λ(e(λ−µ)t−1)

λe(λ−µ)t−1
. Elementary calculations yields

Pn(t) =

(
e(λ−µ)t(1− µ

λ
)

e(λ−µ)t − µ
λ

)(
1− µ

λ

e(λ−µ)t − µ
λ

)(
e(λ−µ)t − 1

e(λ−µ)t − µ
λ

)n−1

. (A.10)

In the case of n = 0, Pn(t) reads

P0(t) =
µ(e(λ−µ)t − 1)

λe(λ−µ)t − µ
. (A.11)

The two first moment 〈n〉 and 〈(n − 〈n〉)2〉 = 〈n2〉 − 〈n〉2 give us access to the distribution
of the process as well as the properties of the process(e.g diffusive or ballistic regime).

• First moment: 〈n〉 =
∑
n

nPn

d〈n〉
dt

=
∑
n

n
dPn
dt

= −(λ+ µ)
∑
n

n2Pn + µ
∑
n

(n2 + n)Pn+1 + λ
∑
n

(n2 − n)Pn−1

= λ
∑
n=1

[
(n− 1)2Pn−1 + (n− 1)Pn−1

]
+ µ

∑
n=0

[
(n+ 1)2Pn+1 − (n+ 1)Pn+1

]
− (λ+ µ)

∑
n=0

n2Pn

⇐⇒ d〈n〉
dt

= λ
[
〈n2〉+ 〈n〉

]
+ µ

[
〈n2〉 − 〈n〉

]
− (λ+ µ)〈n2〉

=⇒ d〈n〉
dt

= (λ− µ)〈n〉

〈n〉 = n(0)e(λ−µ)t = e(λ−µ)t, n(0) = 1 . (A.12)

• Second moment: 〈n2〉 =
∑
n

n2Pn

d〈n2〉
dt

=
∑
n

n2dPn
dt

= −(λ+ µ)
∑
n

n3Pn + µ
∑
n

(n3 + n2)Pn+1 + λ
∑
n

(n3 − n2)Pn−1 .
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By rewritting (n3 + n2) = (n − 1)3 + 2(n − 1)2 + (n − 1) and (n3 − n2) = (n + 1)3 −
2(n+ 1)2 + (n− 1), the equation for the second moment becomes

d〈n2〉
dt

= −(λ+ µ)〈n3〉+ µ
[
〈n3〉 − 2〈n2〉+ 〈n〉

]
+ λ

[
〈n3〉+ 2〈n2〉+ 〈n〉

]
d〈n2〉
dt

= 2(λ− µ)〈n2〉+ (λ+ µ)〈n〉 . (A.13)

In order to solve Eq. (A.13), the following method is used

dx

dt
= p(t)x+ q(t)→ x(t) = e

∫
p(t)dt(cst+

∫
e
∫
p(t)dtq(t)dt)

d

dt
e−

∫
p(t)dtx = e−

∫
p(t)dtq(t)→ e−

∫
p(t)dtx =

∫
e−

∫
p(t)dtq(t)dt+ cst .

In our case p = 2(λ− µ), q = (λ+ µ)〈n〉 = (λ+ µ)e(λ+µ)t and n0 = 1.

〈n2〉 = e2(λ−µ)t

cst+

t∫
0

e−2(λ−µ)t(λ+ µ)e(λ−µ)tdt


= e2(λ−µ)t +

(λ+ µ)

(λ− µ)

[
e2(λ−µ)t − e(λ−µ)t

]
〈n2〉 = e2(λ−µ)t +

(λ+ µ)

(λ− µ)
e(λ−µ)t

[
e(λ−µ)t − 1

]
, (A.14)

and the variance reads

∆n2 = 〈n2〉 − 〈n〉2 =
(λ+ µ)

(λ− µ)
e(λ−µ)t

[
e(λ−µ)t − 1

]
. (A.15)

In the specific case when λ = µ, Eq. (A.7) can be rewritten as

∂tM(θ, t) = λ
[
eθ − 1 + e−θ − 1

]
∂θM(θ, t) . (A.16)

Same than before

dt =
−eθ

λ(eθ − 1)2
dθ

U = eθ − 1→ du = eθdθ

dt =
−eθe−θdθ
λU2

= − dθ

λU2

t =

∫
dt = −

∫
dU

λU2
= cst+

1

λ(eθ − 1)
→ λt− 1

eθ − 1
= cst .
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Hence, M(θ, t) can be put in the following form

M(θ, t) = ψ

(
λt− 1

eθ − 1

)
. (A.17)

en0θ = M(θ, t = 0) = ψ

(
− 1

λ(eθ − 1)

)
U =

1

eθ − 1
or (eθ − 1)U = −1 ⇐⇒ eθ =

−1

U
+ 1

en0θ = (
−1

U
+ 1)n0 = ψ(U) .

As a result, M(θ, t) reads

M(θ, t) =

(
1− 1

λt− 1
eθ−1

)n0

=

(
1− 1

λt(eθ−1)−1
eθ−1

)n0

=

(
λt(eθ − 1)− 1− (eθ−1)

λt(eθ − 1)− 1

)n0

M(θ, t) =

(
1− (λt− 1)(eθ − 1)

1− λt(eθ − 1)

)n0

. (A.18)

Then, G(z, t) reads

G(z, t) =

(
1− (λt− 1)(z − 1)

1− λt(z − 1)

)n0

, (A.19)

when n0 = 1, Pn(t) reads

Pn(t) =
(λt)n−1

(1 + λt)n+1
, P0 =

(λt)

(1 + λt)
. (A.20)

Equation (A.20) gives the solution of Pn(t) when the coefficients λ and µ are not time
dependent.

Random variable technique [78] Size of the population of individuals under consid-
eration at time t is given by the random variable X(t). At t + ∆t is X(t + ∆t) and
∆tX(t) = X(t + ∆t) − X(t). The probability-generating function for X(t) is P (x, t) and
for ∆tX(t) = X(t + ∆t) − X(t) is P (x, t + ∆t). When the variable X(t) and ∆X(t) are
independent the nthe probability-generating function of the sum is the product of individual
generating function

P (x, t+ ∆t) = P (x, t)∆P (x, t) . (A.21)
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Knowing that P (x, t) = E[xX(t)]

∆P (x, t) = E[x∆X(t)] =
+∞∑
x=0

p(X)xX ,

where
∑
x

p(x) = 1. In Poissonian case

• probability of having a new addition → λ∆t+ o(∆t)

• probability of having 2 or more simultaneous emission → o(∆t)

• probability of having no change → 1− λ∆t− o(∆t)

These can be rewritten as

λ∆t+ o(∆t) + 1− λ∆t− o(∆t) = 1− λ∆t+ λ∆t

pn(t+ ∆t) = pn−1(t)λ∆t+ pn(t)(1− λ∆t)

∆P (x, t) = [p0−1λ∆t+ p0(1− λ∆t)]x0 + [p1−1λ∆t+ p1(1− λ∆t)]x1 ,

with p−1 = 0.Since if n < 0 the state involving precisely n events in the interval (0, t + ∆t)
arises either from n− 1 in the interval (0, t) with one new emission in ∆t, or from n in (0, t)
with no new emission in ∆t

→ p1 = 0

∆P (x, t) = p0(1− λ∆t)x0 + p0λ∆tx1

= p0 [1 + λ(x− 1)∆t] .

Moreover, ∆P = P (x, t+ ∆t)− P (x, t) and p0(t+ ∆t) = p0(t)

∆P (x, t) = 1 + λ(x− 1)∆t . (A.22)

Plugging Eq. (A.22) in Eq. (A.21) yields to

P (x, t+ ∆t) = P (x, t)(1− λ(x− 1)∆t)

Hence

∂P (x, t)

∂t
= lim

∆t→0

P (x, t+ ∆t)− P (x, t)

∆t

= lim
∆t→0

P (x, t) [1− λ(x− 1)∆t− 1]

∆t
∂P (x, t)

∂t
= λ(x− 1)P (x, t) .
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The moment generating function reads

M(θ, t+ ∆t) = M(θ, t)∆M(θ, t) .

By making a change of variable x = eθ, the moment generating function reads

∆M(θ, t) = E[xθ∆X ]

= (1− λ∆t)e0 + λ∆te0

= 1 + λ(e0 − 1)∆t

∂M(θ, t)

∂t
= lim

∆t→0

M(θ, t+ ∆t)−M(θ, t)

∆t

= lim
∆t→0

M(θ, t)
[
1 + λ(eθ − 1)∆t− 1

]
∆t

∂M(θ, t)

∂t
= λ(eθ − 1)M(θ, t) .

The previous equations are true only if the variables are independent ! But it is not always
true. Extension of the previous example approach will give a more general result. Finite
number of transitions possible in the interval ∆t.
Let

P (∆X(t) = j|X(t)) = fj(X)∆t, j 6= 0 and j = possible transition ,

where fj(X) are suitable non-negative function of X(t). The index j can be positive or
negative. The probability of having of no transition is given by

P (∆X(t) = 0|X(t)) = 1−
∑
j 6=0

fj(X)∆t .

Notations

• E
t

defines the expectations of some functions at time t with respect to variations in

X(t)

• E
t+∆t

defines the expectations of some functions at time t+∆t for variation in X(t+∆t)

• E
∆t|t

defines the conditional expectation at the end of the interval ∆t for variations in

the variable ∆X(t) given the value of X(t) at time t

Moreover

E[E(X|Y )] = E[X] and E
∆t|t

[Φ(X(t+ ∆t))] = E
t
[ E
∆t|t

[Φ(X(t) + ∆X(t)]] ,
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and Φ = M(θ, t) can be replaced by

M(θ, t+ ∆t) = E
∆t|t

[eθX(t+∆t)]

= E
∆t|t

[eθX(t)+θ∆X ]

= E
t
[ E
∆t|t

[eθXeθ∆X ]]

by using E[Xf(Y )|Y ] = f(Y )E[X|Y ]

= E
t
[eθX E

∆t|t
[eθ∆X ]] ,

and the the evolution equation for the moment-generating function M(θ, t) reads

∂M(θ, t)

∂t
= lim

∆t→0

M(θ, t+ ∆t)−M(θ, t)

∆t

= lim
∆t→0

1

∆t

(
E
t
[eθX E

∆t|t
[eθ∆X ]]− E

t
[eθX ]

)
by using E

t
[eθX ] = E

t
[eθX E

∆t|t
[1]]

= lim
∆t→0

1

∆t

(
E
t
[eθX E

∆t|t
[eθ∆X − 1]]

)
= E

t
[eθX lim

∆t→0
E

∆t|t
[
eθ∆X − 1

∆t
]] ,

where E
∆t|t

[ e
θ∆X−1

∆t
]] has a limit, e.g. Φ(θ, t,X) as ∆t→ 0. The evolution equation for M(θ, t)

reads

∂M(θ, t)

∂t
= E

t
[eθXΦ(θ, t,X)] = Φ(θ, t, ∂θ)M(θ, t) .

Then

Φ(θ, t,X) = lim
∆t→0

E
∆t|t

[
eθ∆X − 1

∆t
] .
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Knowing P (∆X = j|X) = fj(X)∆t, this yields to

P (∆X = 0|X) = 1−
∑
j 6=0

fj(X)∆t

E
∆t|t

[X] =
∑
x

xP (∆X|X)

=
∑
x

x(1−
∑
j 6=0

fj(X)∆t)

E
∆t|t

[
eθ∆X − 1

∆t
] =

1

∆t

{∑
x

(eθtP (∆X=x|X))− 1

}

=
1

∆t

{
(1−

∑
j 6=0

fj(X)∆t) +
∑
j 6=0

fj(X)∆tejθ − 1

}

=
1

∆t

{
P (∆X = 0|X) +

∑
x=1

xP (∆X = j|X)

}
.

Thus, Φ(θ, t,X) reads

Φ(θ, t,X) = lim
∆t→0

1

∆t

{
(1−

∑
j 6=0

fj(X)∆t) +
∑
j 6=0

fj(X)∆tejθ − 1

}

= lim
∆t→0

1

∆t

{∑
j 6=0

(ejθ − 1)∆tfj(X)

}
Φ(θ, t,X) =

∑
j 6=0

(ejθ − 1)fj(X) .

The moment generating function reads

∂M(θ, t)

∂t
= Φ(θ, t, ∂θ)M(θ, t)

∂M(θ, t)

∂t
=
∑
j 6=0

(ejθ − 1)fj(∂θ)M(θ, t) .

By doing a change of variable eθ = x and ∂θ = x∂x, then the evolution of the generating
function reads

∂P (x, t)

∂x
=
∑
j 6=0

(xj − 1)fj(x∂x)P (x, t) . (A.23)

Rk.: often j (type of transition) can only takes the values +1 or −1. In the “birth” process
there is only one transition j = 1 and the function f+1(X) is λX. However, in the “birth
and death” process there are two transitions:
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• j = +1→ f+1(X) = λX

• j = −1→ f−1(X) = µX

In the case of the “birth and death” process, the moment generating function reads

∂M(θ, t)

∂t
= (e+θ − 1)λ∂θM(θ, t) + (e−θ − 1)µ∂θM(θ, t)

∂M(θ, t)

∂t
=
[
(eθ − 1)λ+ µ(e−θ − 1)

]
∂θM(θ, t) .
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