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1 GENERAL INTRODUCTION 

1.1 TAXONOMY OF ORTHOPOXVIRUSES  

Poxviruses are double-stranded DNA (dsDNA) viruses with large genomes (130-380 kb) 

(Lefkowitz et al., 2006). They are widely distributed and can be classified into the fol-

lowing two subfamilies: Entomopoxvirinae, infecting insects; and Chordopoxvirinae, in-

fecting vertebrates (Van Regenmortel et al., 2000). The latter includes ten genera: Or-

thopox-, Parapox-, Avipox-, Capripox-, Leporipox-, Suipox-, Molluscipox-, Croco-

dylipox-, Cervidpox- and Yatapoxviruses (Haller et al., 2014). Genetic analysis revealed 

that at least 91 genes are conserved in Chordopoxvirinae (Upton et al., 2003). However, 

the AT- and GC-content of their genomes differ. Therefore, the majority of poxviruses 

contain an AT-rich genome, whereas Crocodylipox-, Molluscipox- and Parapoxviruses 

contain a rather GC-rich genome (Roychoudhury et al., 2011). The genus Orthopoxvirus 

(OPXV) consists of the following 10 species: variola-, vaccinia-, cow-, monkey-, mouse- 

(ectromelia virus), camel-, racoon-, vole-, tatera- and skunkpox viruses (https://talk.ic-

tvonline.org). Members of the OPXVs are morphologically identical and antigenically 

closely related. For these reasons, they induce cross-reactive immune-responses and 

cross-protection due to the stimulation of the specific and the non-specific immune sys-

tem (Czerny and Mahnel, 1990; Essbauer et al., 2010; Fenner et al., 1989). Variola virus 

(VARV), which is the causative agent of smallpox, is the most popular member of 

OPXVs. It supposedly caused more fatalities than all other human infectious diseases 

taken together (McFadden, 2005). However, since 1979, VARV is officially eradicated 

due to strict and highly successful vaccination programs. Moreover, VARV has no known 

natural reservoir in the environment and is not zoonotic (Fenner et al., 1988). There are 

various OPXVs with zoonotic potential like vaccinia virus (VACV), cowpox virus 

(CPXV), buffalopox virus (BPXV), monkeypox virus (MPXV) and camelpox virus 
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(CMLV) (Becker et al., 2009; Bera et al., 2011; Brown and Leggat, 2016; Campe et al., 

2009; Kurth et al., 2008; Pauli et al., 2010; Singh et al., 2012; Singh et al., 2007; Vorou 

et al., 2008). VACV for instance was used as a naturally attenuated live vaccine for the 

smallpox eradication (Fenner et al., 1988). BPXV, a variant of VACV, was first discov-

ered in India (Ramkrishnan and Ananthapadmanabham, 1957), while CPXV is consid-

ered to be the most ancient poxvirus with the widest host range including different heter-

ogeneous strains (Dabrowski et al., 2013; Meyer et al., 1999). Besides cases in cattle, 

CPXV infections could be detected in cats, in rats and in humans as well as in rodents, 

which seem to be their natural reservoir (Baxby, 1977; Chantrey et al., 1999). In healthy 

humans, an infection with CPXV is usually non-lethal and self-limiting (Wolfs et al., 

2002). MPXV infections on the other hand are more severe and may result in death (Frey 

and Belshe, 2004; Likos et al., 2005). Rodents, especially squirrels, seem to be their nat-

ural reservoir (Haller et al., 2014). Moreover, rodents were also found to be vulnerable to 

ectromelia virus (ECTV). The first ECTV case was discovered in 1930, when laboratory 

mice, wild mice and other rodents were infected (Marchal, 1930). Because of the genetic 

similarity to VARV, ECTV infection of laboratory mice is an interesting model for pox-

virus pathogenesis and antibody (Ab) neutralization studies (Esteban and Buller, 2005). 

Taterapox virus (TaPXV) also infects rodents, as it is similar to VARV and VACV. In 

fact, it is considered to be the closest phylogenic relative based on restriction mapping, 

genome sequence and comparisons of conserved genes (Parker et al., 2017). Therefore, 

it has been assumed that VARV was transferred to humans from African rodents 

(Esposito et al., 2006). In phylogenetic analysis, camelpox virus (CMLV) was shown to 

be in this clade as well by clustering with VARV and TaPXV (Hughes et al., 2010). 

The following study will focus on VACV, as it is the best characterized poxvirus (Moss, 

2007). 
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1.2 STRUCTURE OF VACCINIA VIRUS  

VACV, the prototype of OPXV, has a large DNA genome, possessing a GC-content of 

36% and replicating in the cytoplasm (Condit et al., 2006; Goebel et al., 1990; Moss, 

2007). The genome size varies between the different strains from 150 to 300 kb (Esposito 

and Knight, 1985; Esposito et al., 2006; Lefkowitz et al., 2006), encoding approximately 

200 polypeptides (Goebel et al., 1990; Moss, 2007). Around half of them are highly con-

served and involved in cell entry, genome replication, transcription and virion assembly 

(Upton et al., 2003).  

The brick-shaped OPXV virions are present in enveloped as well as non-enveloped form 

(Appleyard et al., 1971; Condit et al., 2006; Payne, 1986) with a size of 250 x 350 nm 

(Moss, 2006). The so-called ellipsoidal shaped lateral bodies (LB), which consist of pro-

teins, are found on both sides of the biconcave DNA-genome-containing core (Cyrklaff 

et al., 2005; Ichihashi et al., 1984) (figure 1). 

	
FIG 1 Schematic IMV virion of VACV. The brick-shaped virion has a size of 250 x 
350 nm. The dumbbell-shaped core is flanked by two lateral bodies (LB). (Modified 
according to (Condit et al., 2006).) 

 
The virions possess a variety of conserved genes as well as various factors and enzymes 

for gene expression which are located within the center of the linear dsDNA genome 

(Haller et al., 2014; Moss, 2013b; Van Vliet et al., 2009). Two hairpin loop termini are 
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attached next to the center, consisting of inverted terminal repeats (ITRs) (Baroudy et al., 

1982) which are highly diverse and are associated to host range or immune evasion 

(Haller et al., 2014; Moss, 2013b; Van Vliet et al., 2009). The majority of these genes are 

essential in virus replication and morphogenesis (Van Vliet et al., 2009). For instance, in 

VACV Western reserve (WR) 118 early, 53 intermediate and 38 late genes can be found 

(Yang et al., 2011).  

 

1.3 MORPHOLOGY  

VACV produces different forms of infectious particles during its replication cycle (Smith 

et al., 2002) (figure 2).  

	

FIG 2 Schematic morphology overview. IMV passes a trans-Golgi network to receive 
a double membrane in order to develop into IEV. IEV is then transported to the cell 
surface where it fuses with the cell membrane to exit the cell. CEV particles are retained 
on the surface membrane, whereas EEV particles are released by actin tails. (Modified 
according to (Smith et al., 2002).) 

 

Intracellular mature virus (IMV), the most abundant infectious form (>90%), is released 

upon cell lysis (Moss, 2012; Smith et al., 2003). The infectious IMV particles are built 

within cytoplasmic factories from non-infectious crescent precursor cells (Smith et al., 
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2002). IMV is composed of a dumbbell-shaped core, including the dsDNA genome, struc-

tural proteins as well as transcription enzymes, LBs and a lipoprotein membrane (Hiller 

and Weber, 1985; Schmelz et al., 1994; Tooze et al., 1993). Up to 25-40% of the total 

IMVs are able to leave the factory and become wrapped by a double layer of membrane, 

which is either derived from early endosomes or from the trans-Golgi network (Hiller 

and Weber, 1985; Payne, 1979). The envelopment of the virion is dependent on different 

proteins (A26, A33, A34, A36, B5 and F13) (Blasco and Moss, 1991; McIntosh and 

Smith, 1996; Parkinson and Smith, 1994; Rodriguez and Smith, 1990; Roper et al., 1998; 

Wolffe et al., 1993). The enveloped virion form is known as intracellular enveloped virus 

(IEV) (Hiller and Weber, 1985). IEV fuses with the plasma membrane at the surface of 

the cell, in order to exit it by exocytosis (Geada et al., 2001). If the particles are retained 

on the surface membrane, they will termed cell-associated enveloped virus (CEV) (Payne, 

1980; Smith et al., 2002). A small proportion of particles known as extracellular envel-

oped virus (EEV), is released by actin tails, which are induced by CEVs (Smith et al., 

2002).  

In the case of VACV WR, only 0.5% of the total strain is present as EEV, in contrast to 

VACV IHD-J, where 8-27% are available as EEV depending on the cell type (Payne, 

1979). This difference in EEV formation is due to one aa difference in the A34 protein, 

being responsible for wrapping (Blasco et al., 1993). CEVs and EEVs are indistinguish-

able and are built like IMVs, apart from having an additional outer membrane (Blasco 

and Moss, 1992). IMVs and EEVs differ in their envelope proteins (Benhnia et al., 2009b; 

Davies et al., 2005; Hsiao et al., 1999; Ichihashi and Oie, 1996; Kaever et al., 2016; Matho 

et al., 2017, 2018; Matho et al., 2015; Moss, 2006, 2011; Rodriguez et al., 1985; Smith 

et al., 2003; Smith et al., 2002; Ulaeto et al., 1996; Wolffe et al., 1995). CEVs and EEVs 

are important for rapid cell-to-cell spread due to their actin tail formation (Blasco and 
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Moss, 1992; Moss, 2012; Payne, 1980; Roper et al., 1998; Smith et al., 2002), whereas 

IMVs mediate host-to-host transmission between hosts (Moss, 2012; Smith et al., 2003).  

 

1.4 ENTRY  

The replication cycle starts with the electrostatic attachment of virions to the cell surface 

of the host cell (Moss, 2016). Because of the above-mentioned differences between IMVs 

and EEVs, diverse attachment factors exist comprising five IMV proteins (Schmidt et al., 

2013). While the proteins A27 and H3 bind to glycosaminoglycans (GAGs) heparan sul-

fate, the D8 protein binds to GAGs chondroitin sulfate (Chung et al., 1998; Hsiao et al., 

1999; Lin et al., 2000; Moss, 2016). A26 protein detects laminin within the extracellular 

matrix (Chiu et al., 2007; Howard et al., 2008; Moss, 2016), whereas L1 protein binds to 

an unknown protein of the cell surface to block the virus entry (Foo et al., 2009).	

After attachment, IEVs either fuse with the plasma membrane or with the membrane of 

an endocytic vesicle to enter the cell (Doms et al., 1990; Earp et al., 2005; Geada et al., 

2001; Mercer and Helenius, 2008, 2009; Smith et al., 2002). The virus entry thereby de-

pends on the environmental pH value, on the cell type as well as on the used virus strain 

(Bengali et al., 2012; Chang et al., 2010; Whitbeck et al., 2009). While low pH values 

(pH 4.5-5.0) trigger endocytosis, membrane fusion requires a neutral pH value (Bengali 

et al., 2012; Chang et al., 2012). Moreover, a complex of conserved proteins is needed 

for membrane fusion (Moss, 2012). This so called entry fusion complex (EFC) consists 

of nine integral proteins (A16, A21, A28, G3, G9, H2, J5, L5 and O3) as well as two 

EFC-associated proteins (L1 and F9) (Bisht et al., 2008; Brown et al., 2006; Diesterbeck 

et al., 2018; Laliberte et al., 2011; Moss, 2012, 2016; Nichols et al., 2008; Satheshkumar 

and Moss, 2009; Senkevich et al., 2005). If any one of the integral EFC proteins is miss-

ing, the EFC is severely destabilized (Moss, 2016). Other investigations showed, that 

besides the EFC, proteins A27 and A17 also play a role in entry fusion (Gong et al., 1990; 
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Kochan et al., 2008; Rodriguez and Esteban, 1987; Rodriguez et al., 1987). However, 

there are no genetic evidences demonstrating the fusion participation (Moss, 2013a). As 

mentioned above, CEVs and EEVs are important for rapid cell-to-cell spread. However, 

cell-to-cell spread was considerably reduced after a loss of A33, A34 or A36 proteins 

during conditional lethal mutant assay by the prevention of actin tail formation (Rottger 

et al., 1999; Wolffe et al., 1997). 

At low pH, both IMVs and EEVs are taken up by macropinocytosis, which is a form of 

endocytosis (Schmidt et al., 2011; Townsley et al., 2006). Thereby, virus particles are 

engulfed with fluid and transported deeper into the cytoplasm in endocytotic vesicles. In 

contrast to the fusion at neutral pH, macropinocytosis requires intense actin dynamics and 

is dependent on cell signaling pathways including epidermal growth factor receptor 

(EGFR) signaling (Mercer and Helenius, 2008, 2009; Schmidt et al., 2012). Externaliza-

tion of the virion core into the cytoplasm occurs through identical fusion mechanisms 

involving the EFC as described for fusion with the plasma membrane (Schmidt et al., 

2012). Despite the more complex mechanism of macropinocytosis, it is suggested to have 

various advantages compared to fusion at the cell membrane. The virus particle is trans-

ported deeper into the cell by the endocytic vesicle and the release takes place directly at 

its final destination, therefore evading cytoskeletal barriers altogether. Furthermore, 

macropinocytosis prevents leaving residues of the viral membrane at the plasma mem-

brane, therefore preventing a detection by the immune system (Schmidt et al., 2012).  

The entry mechanism of VACV not only differs with respect to the pH value, it is also 

dependent on the VACV strain (Mercer et al., 2010; Whitbeck et al., 2009). For instance, 

VACV Western Reserve strain (WR) mainly uses the endocytotic pathway, whereas 

MVA enters HeLa cells via cell membrane fusion (Chang et al., 2010). However, inves-

tigations on MV and EEV entry in CPXV and other OPXV revealed  macropinocytosis 

as the predominant entry pathway (Bengali et al., 2012). It was concluded that low pH 
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macropinocytosis is the original entry pathway of OPXV and that the neutral pH plasma 

fusion pathway of some VACV strains was gained during extensive laboratory passages 

in vitro (Bengali et al., 2012). Additionally, preference of the entry route was shown to 

be correlated with the absence or presence of	A26. VACV strains expressing A26 prefer 

the endocytotic pathway, while strains lacking A26 enter by plasma fusion (Bengali et 

al., 2012; Chang et al., 2010). A26 forms a complex with A25, A27 and A17 and interacts 

with the EFC (Howard et al., 2008) . Since A25 and A26 have to be inactivated for suc-

cessful plasma membrane fusion, they are referred to as fusion suppressors (Chang et al., 

2010). 

 

1.5 PROTEINS OF VACCINIA VIRUS  

The 190 kb genome of VACV encodes more than 200 viral proteins (Goebel et al., 1990). 

Each protein is encoded by an open reading frame (ORF), which is labelled threefold: 

Firstly, it contains a capital letter (A-O), indicating the Hind III DNA fragment, secondly, 

an additional Arabic number, specifying the position within the fragment, and lastly an L 

or R indicating the transcription direction from left to the right or vice versa. The corre-

sponding protein is labelled in the same way but without coding the transcription direction 

(L or R) (Earley et al., 2008; Yoder et al., 2006). Protein expression differs and can be 

divided into three different classes: early class proteins, which are expressed 15 min after 

cell-entry, intermediate class proteins from 2 to 4 hours after cell-entry as well as late 

class proteins from 4 h after entry to cell death (Grosenbach and Hruby, 1998). Several 

structural proteins of immunological relevance have been detected in the envelope of 

IMV (Essani et al., 1982; Hiller and Weber, 1982; Ichihashi and Oie, 1980, 1988; Stern 

and Dales, 1976) and EEV particles (Bell et al., 2004; Benhnia et al., 2009b; Putz et al., 

2006) (figure 3).  
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FIG 3 Schematic representation of a VACV extracellular enveloped virion (EEV) 
showing the distribution of immunogenic envelope proteins. The envelope membranes 
are resized to enhance the clarity.  

 

Importantly, some of these proteins lead to the formation of neutralizing antibodies 

(Ichihashi and Oie, 1988; Oie and Ichihashi, 1987; Rodriguez et al., 1985) and induce 

protective immunity in vivo (Benhnia et al., 2009b; Czerny et al., 1994; Czerny and 

Mahnel, 1990; Galmiche et al., 1999; Hooper et al., 2000; Hsiao et al., 1999; Ichihashi 

and Oie, 1996; Kaever et al., 2016; Lai et al., 1991; Matho et al., 2012; Matho et al., 2015; 

McCausland et al., 2010; Pulford et al., 2004; Ramirez et al., 2002; Reeman et al., 2017; 

Rodriguez et al., 1985). Vaccination stimulates the specific proliferation of B-cells and 

T-cells, hence eliminating the virus during infection (Novembre et al., 1989). Therefore, 

it will be necessary to develop vaccines, which will also stimulate B- and T-cell response 

in order to achieve a powerful level of efficacy. Furthermore, the complement system, 

which is predominantly studied for EEV defense, is an important protection mechanism 

as well. It is involved in the destruction of the EEV membrane, leading to the successful 

access of IMV neutralizing antibodies. Moreover, it is involved in opsonization, which is 

responsible for lysis of infected cells. It is also known, that poxviruses encode a comple-

ment regulatory protein to attenuate the hosts defense response (Moss, 2011). Therefore, 

it is important to identify the major neutralizing targets of virus particles in order to de-

velop safer subunit-based vaccines. In this regard, immunogenic envelope proteins have 
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been studied in IMV and EEV. So far, 13 IMV proteins were shown to be immunogenic 

(A10, A13, A14, A17, A25, A26, A27, A28, C3, D8, D13, H3 and L1 (Davies et al., 

2005; Hsiao et al., 1999; Kaever et al., 2016; Nelson et al., 2008; Rodriguez et al., 1985; 

Wolffe et al., 1995). Immunogenic EEV envelope proteins are A33, A56 and B5 

(Galmiche1999; (Bell et al., 2004; Benhnia et al., 2009b; Putz et al., 2006).  

In the following, this thesis will focus on the immunogenic VACV IMV A27, D8 and H3 

proteins as well as F13, which is incorporated in the EEV envelope. These four chosen 

proteins all have important functions within the VACV replication cycle (figure 3, table 

1). 

Table 1 Protein functions 
Pro-

tein 
Involvement in replication cycle 

Pro-

tein 
Involvement in replication cycle 

A14 
Crescent formation, morphogene-

sis 
A26 Attachment 

A17 
Entry, crescent formation, matura-

tion 
H3 Attachment, morphogenesis 

A27 Entry, egress, wrapping D8 Attachment 

A25 
Fusion suppression; ATI-for-

mation 
F13 Wrapping 

 

1.5.1 A25- A26- A27- A17- A14- Complex  

There is a complex located at the inner side of the IMV membrane composed of A25, 

A26, A27, A17 and A14 (figure 4). 

 

The 84 kDa A25 protein of VACV is a truncated, apparently non-functional homolog of 

the CPXV A-type inclusion (ATI) matrix protein (Amegadzie et al., 1992; Patel and 

Pickup, 1987; Patel et al., 1986). The A25 orthologues of CPXV and ECTV both have 

masses of 160 kDa. An important function of the A25 is fusion suppression, therefore 
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avoiding fusion among MV particles to reserve virion infectivity (Chang et al., 2010). 

The ATI formation is dependent on a full-length ortholog of the truncated A25 protein as 

well as on the A26 protein, which is involved in the embedding of the virions within it 

(McKelvey et al., 2002). So, there is an interaction between the A25 and the A26 proteins. 

 

The 500 aa long A26 protein (4c) of OPXV is one of the structural IMV proteins of VACV 

which was first identified (Katz and Moss, 1970; Ulaeto et al., 1996). A26 (58 kDa) and 

A27 (12.6 kDa) form a disulfide-bonded complex resulting in a band of about 90 kDa in 

SDS-PAGE (Ichihashi, 1981) and hence representing the relationship between these pro-

teins. This intermolecular disulfide bond requires the C-terminal cysteines 441 and 442 

of A26 as well as 71 and 72 of A27 (Ching et al., 2009). It is noticeable that around 44% 

of the C-terminal regions of A26 (aa residues 443-472) and A27 (aa residues 43-85) are 

similar to each other (McKelvey et al., 2002). Without A27, A26 is shown to be unstable 

(Howard et al., 2008). Moreover, on the membrane surface of A26, there is an intramo-

lecular disulfide bond between cysteines 43 and 342, which makes it topologically im-

possible to act as a transmembrane region (Ching et al., 2009). A26 is highly conserved 

in most poxviruses, including OPXVs producing ATIs, such as CPXV, ECTV and 

RCNV, as well as non ATI-producing poxviruses like VARV, VACV, MPXV and 

CMLV (91-95% aa identity) (McKelvey et al., 2002; Shchelkunov et al., 2001). There-

fore, genes direct the inclusion of IMVs within the ATIs (McKelvey et al., 2002). This 

inclusion is important in order to protect the virions and therefore promote the host-to-

host-spread (Howard et al., 2008). Moreover, it is involved in the virus attachment, by 

binding to the cell surfaces extracellular matrix protein laminin (Chiu et al., 2007). A26 

plays an important role in increasing the MV production (Ulaeto et al., 1996). Other stud-

ies have confirmed this by showing an increase of the retrograde transport of MVs 

(McKelvey et al., 2002).  
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The conserved 14 kDa A27 protein is encoded by ORF A27L (Goebel et al., 1990; Kaever 

et al., 2016) and is one of the best characterized IMV envelope proteins (Gong et al., 

1989; Gong et al., 1990; Lai et al., 1990; Rodriguez and Esteban, 1987; Rodriguez et al., 

1985). It is involved in attachment by binding to the glycosaminoglycan heparan sulphate 

on the surface of mammalian cells, which is mediated through a turn-like structure, 

formed by a KKPE segment (Shih et al., 2009). Because the A27 protein has no trans-

membrane domain, it builds a complex with four other membrane proteins (A14, A17, 

A25 and A26) (Howard et al., 2008; Rodriguez et al., 1993; Unger et al., 2013; Vazquez 

et al., 1998). The 110 amino acids (aa) of A27 protein can be divided into four functional 

areas: a N-terminal signal peptide, a Lys/Arg-rich heparin binding domain (HBD), an α-

helical coiled-coil domain (CCD) and a C-terminal leucine zipper motif (LZD) (Vazquez 

et al., 1998). The HBD (aa 21-34), including the KKPE segment (aa 26-29), is essential 

for binding heparan sulphate (Chung et al., 1998; Shih et al., 2009). The CCD (aa 43-84) 

possesses the cysteine residues 71 and 72, which are responsible for forming disulfide 

bonds with the fusion suppressor A26 protein (Ching et al., 2009). Moreover, the CCD is 

responsible to stabilize the protein structure (Wang et al., 2014). The LZD (aa 85-110) is 

considered to be the binding region of the A17 transmembrane protein (Vazquez et al., 

1998). A27 is very important during the virus replication cycle as it regulates cell entry 

and virus egress (Chung et al., 1998; Hsiao et al., 1998; Rodriguez and Smith, 1990). 

Without A27, normal amounts of IMV would be produced, however there is a loss of 

wrapped virions (Rodriguez and Smith, 1990). Moreover, it is an immunogenic protein, 

because anti-A27 antibodies can prevent a VACV infection (He et al., 2007). Interest-

ingly, six epitope regions recognized by different anti-A27 monoclonal antibodies 

(mAbs) were identified and could be mapped by SPOT synthesis: (epitope #1A: aa 32-

39, #1B: aa 28-33, #1C: aa 26-31, #1D: 28-34, #4: aa 9-14, and #5: aa 68-71) (Ahsendorf 
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et al., 2019; Czerny et al., 1994).  

 

The 203 aa long conserved A17 transmembrane protein comprises a mass of 21 kD 

(Rodriguez et al., 1993; Unger et al., 2013; Wang et al., 2014). It is synthesized in the 

rough endoplasmic reticulum (Husain et al., 2006; Rodriguez et al., 1998). The integral 

membrane protein contains two internal hydrophobic domains, which are typical for 

transmembrane proteins (Rodriguez et al., 1993). The N-terminus is exposed to the out-

side, whereas the C-terminus is incorporated into the IMV membrane (Wang et al., 2014).  

The transmembrane regions are located at aa residues 66-86 and 139-159 

(https://www.uniprot.org/uniprot/P68593). The C-terminus of A17 is phosphorylated by 

viral F10 (Unger et al., 2013). A17 is involved in cell entry (Moss, 2012), crescent for-

mation (Unger et al., 2013), IMV assembly (Rodriguez et al., 1995; Wang et al., 2014) 

and virion maturation (Unger et al., 2013). During crescent formation, it anchors D13 to 

the nascent membrane and mediates dissociation of D13 during maturation due to prote-

olytic processing (Erlandson et al., 2014; Unger et al., 2013). Without A17, the virions 

are surrounded with membrane vesicles, but crescents are not formed (Rodriguez et al., 

1995; Rodriguez et al., 1996; Wolffe et al., 1996). Besides the interaction to A27, A17 

also forms a complex with the IMV protein A14, as they are both synthesized in the en-

doplasmic reticulum and incorporated as dimers into the IMV envelope membrane, how-

ever, in opposite polarity (Husain et al., 2006; Rodriguez et al., 1998; Unger et al., 2013). 

It is suggested that they interact via their hydrophobic transmembrane domains, but de-

tailed mechanism of the interaction remain unknown (Unger et al., 2013). 

 

The 15 kDa A14 integral membrane protein consists of 90 aa (Rodriguez et al., 1998; 

Unger et al., 2013). As well as the A17, it is synthesized in the rough endoplasmic retic-

ulum and in the endoplasmic reticulum-Golgi intermediate compartment (Husain et al., 
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2006; Rodriguez et al., 1998). During infection, A14 is myristilated and phosphorylated 

on Ser85 residue (Mercer and Traktman, 2003; Rodriguez et al., 1997). However, a dele-

tion of this aa does not disturb the virion morphogenesis (Mercer and Traktman, 2003). 

Moreover, it generally appears as a disulfide-linked dimer (Rodriguez et al., 1997), which 

is formed by a disulfide bond on Cys71 residue (Mercer and Traktman, 2003). It is a 

transmembrane protein, which anchors the complex to the viral membrane by the aa res-

idues 13-31 (hydrophobic region) and 45-64 (hydrophilic region) (Mercer and Traktman, 

2003). A14 is essential for virus replication and is additionally interfering in crescent 

formation and morphogenesis. Without A14, there is a reduced virus yield and a lesser 

plaque formation (Rodriguez et al., 1998). It is part of the A14-A17-A27 protein complex 

(Rodriguez et al., 1997), however the exact interaction of A14 and A17 is not yet known. 

Conjectures exist, saying that they are linked by their transmembrane regions (Unger et 

al., 2013). 

	
FIG 4 Schematic representation of the A25- A26- A27- A17- A14- complex. The exact 
linkage between A25 and A26 is not clear up to now. A26 and A27 are connected by 
disulfide bonds. A27 is anchored to the viral membrane by binding to the 
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transmembrane protein A17 in the marked area. The exact linkage between A17 and 
A14 is unknown, but it is suggested that they are connected by their transmembrane 
regions. 
 

1.5.2 D8 

The D8L-gene is highly conserved in OPXVs (Goebel et al., 1990). It encodes for a 32-

kDa protein (Goebel et al., 1990; Niles and Seto, 1988), which is a type 1 membrane 

protein (Hsiao et al., 1999) composed of 304 aa (Matho et al., 2012). VACV D8 protein 

consists of one N-terminally ectodomain encompassing a carbonic anhydrase (CAH) do-

main (residues 1-234), a disordered stalk region of unknown function (residues 235-273), 

a helical transmembrane domain (residues 274-294) and an intra-virion tail (residues 295-

304) (Matho et al., 2012). The CAH domain is important for chondroitin sulfate (CS) 

binding, which is essential for the absorption of the virus to the mammalian host cell 

surface (Hsiao et al., 1999; Maa et al., 1990). There are different anti-D8 antibodies tar-

geted at the CAH domain rather than the stalk region (Matho et al., 2014; Matho et al., 

2012). Besides its function in virus attachment, D8 is an immunodominant VACV protein 

that induces a strong antibody response (Sakhatskyy et al., 2006). Antibody pools target-

ing D8, H3 and A27 are able to block the viral adhesion to the host cell and therefor 

protect from infection (Benhnia et al., 2008). However, most anti-D8 antibodies neutral-

ized VACV in vitro only in the presence of a complement (Matho et al., 2012; Matho et 

al., 2017).  

 

1.5.3 H3 

The 35 kDa protein, encoded by the open reading frame (ORF) H3L on the HindIII H-

fragment of VACV, was identified as a part of the viral membrane (Chertov et al., 1991; 

Lin et al., 2000; Stern and Dales, 1976; Takahashi et al., 1994; Zinoviev et al., 1994). It 

consists of 324 amino acids (aa) and seems to be highly conserved (Davies et al., 2005; 
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Lin et al., 2000). C-terminally, two hydrophobic domains were found to be a putative 

membrane anchor (Chertov et al., 1991; Goebel et al., 1990; Rosel et al., 1986; Takahashi 

et al., 1994). This transmembrane region consists of 21 aa (Lin et al., 2000). The N-ter-

minal aa is modified, passively protecting the protein against aminopeptidases (Chertov 

et al., 1991; Zinoviev et al., 1994). H3 binds to the glycosaminoglycan heparan sulfate 

on the surface of mammalian cells and thereby promotes the attachment to the target cell 

(Davies et al., 2005). If H3L is inactivated, the virions are intensely attenuated and the 

infectivity is reduced up to six fold (Lin et al., 2000). H3 is a very crucial IMV envelope 

protein since it is highly immunogenic (Davies et al., 2005). After vaccination with 

Dryvax, the widely used live vaccine against smallpox, anti-H3 was found as the main 

component in the sera of human vaccines. Neutralization capability of anti-H3 has been 

demonstrated in vitro as well as in vivo in mouse models. Mice that were vaccinated with 

recombinant H3 protein also gained a high titer of anti-H3 antibodies (Davies et al., 

2005). Summing up, recombinant H3 seems to be an essential component for the devel-

opment of subunit-based smallpox vaccines.  

 

1.5.4 F13 

The major envelope protein of EEV particles is the not glycosylated 37 kDa F13 mem-

brane protein (Hiller et al., 1981; Hirt et al., 1986), which is encoded by the ORF F13L 

gene and consists of 372 aa (Grosenbach and Hruby, 1998; Hirt et al., 1986). It is highly 

conserved in poxviruses, which leads to the assumption that it plays an important role in 

the life cycle (Blake et al., 1991). It belongs to the late class proteins, so it is expressed 

6-8 h post infection (Hirt et al., 1986). The F13 protein has no transmembrane domain. 

Instead, it is palmitoylated at the	motif	TMDX1-12AAC(C)A	and	the	cysteine residues 

185 and 186 (Grosenbach et al., 1997), which are located within the TGN membrane 

(Hiller and Weber, 1985; Schmutz et al., 1995). Interestingly, nonpalmitylated variants 
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do not produce EEVs and are therefore less effective in cell-to-cell spread. Moreover, 

without palmitic acid, F13 is not able to anchor the virion membrane (Grosenbach and 

Hruby, 1998). The 37 kDa protein is anchored to the outer side of the TGN membrane, 

so that it is located on the inner side of the EEV membrane and the outer side of the IEV 

membrane after wrapping (Husain and Moss, 2003), existing predominantly as a mono-

mer (Schmutz et al., 1995; Schmutz and Wittek, 1995). The conserved histidine-lysine-

aspartate (HKD) phospholipase motif, which contains two 16 aa motifs, is responsible for 

membrane wrapping of IMV (Roper and Moss, 1999). Aa mutations at the K and D po-

sition result in a reduced plaque size (Roper and Moss, 1999), which in turn can cause 

reductions in quality and infectivity, the amount of EEV and a failed actin tail formation 

(Blasco and Moss, 1992; McIntosh and Smith, 1996; Roper et al., 1998). So, the F13 

plays an important role in the membrane association, the virion wrapping progress and 

the EEV production (Borrego et al., 1999; Husain and Moss, 2001). Another interesting 

region is the conserved YPPL motif (aa residues 153-156), which is conserved in all 

strains of OPXVs and is also essential for EEV formation (Honeychurch et al., 2007). 

Moreover, F13 is also involved in cell fusion at low pH (Blasco and Moss, 1991). Inter-

estingly, two antiviral anti-OPXVs-drugs have been identified, targeting the F13 protein. 

Whereas N1-isonicotinoly-N2-3-methyl-4-chlorobenzoylhydrazine (IMCBH) is active in 

vitro, ST-246 (Tecovirimatâ) is also active in vivo (Yang et al., 2005). Both drugs aim to  

inhibit plaque- and EEV formation and therefore also stop the spread of various OPXVs 

(Yang et al., 2005). ST-246 is an orally applied, small nontoxic low-molecular-weight 

molecule (Duraffour et al., 2015; Yang et al., 2005), which is also able to cause changes 

in the intracellular localization of F13L (Yang et al., 2005). Currently, treatment with ST-

246 comprises 14 days of application, but even after only 5 days of treatment, a 80% 

protection from lethal infection was revealed in mice. Surviving mice were resistant to 

reinfection, suggesting that protective immunity was elicited (Yang et al., 2005). So, ST-
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246 is an effective tool in controlling OPXV infections (Grosenbach et al., 2010).  

 

1.6 AIM OF THIS THESIS  

The major scope of this thesis was to map epitopes on immune-protective proteins to 

enlighten OPXV evolution and inform the development of safer vaccines and antivirals. 

It is known, that VARV caused more fatalities than all other human infectious diseases 

together. Although VARV was eradicated in 1979, public health concerns remain, as 

many poxviruses such as MPXV, CPXV, VACV (Cantagalo), BPXV and CMLV have 

significant zoonotic potential. Moreover, there is a fear of using poxviruses as bio-terror-

istic weapons, making research on poxvirus replication a top priority. So, the accurate 

mapping of relevant epitopes on immuno-protective proteins is of high interest. This 

knowledge enables phylogenetic studies and insights into OPXV evolution. Data on virus 

species-specific epitope variations will inform about future development of safer vaccines 

or antivirals. It will also enable a target directed screening of human immunoglobulin 

libraries for the detection of protective recombinant antibodies against OPXV. 
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ABSTRACT 

The vaccinia virus (VACV) A27 protein and its homologs, which are found in a large 

number of members of the genus Orthopoxvirus (OPXV), are targets of viral neutraliza-

tion by host antibodies. We have mapped six binding sites (epitopes #1A: aa 32–39, #1B: 

aa 28–33, #1C: aa 26–31, #1D: 28–34, #4: aa 9–14, and #5: aa 68–71) of A27 specific 

monoclonal antibodies (mAbs) using peptide arrays. MAbs recognizing epitopes #1A–D 

and #4 neutralized VACV Elstree in a complement dependent way (50% plaque-reduc-

tion: 12.5–200 μg/mL). Fusion of VACV at low pH was blocked through inhibition of 

epitope #1A. To determine the sequence variability of the six antigenic sites, 391 se-

quences of A27 protein homologs available were compared. Epitopes #4 and #5 were 

conserved among most of the OPXVs, while the sequential epitope complex #1A–D was 

more variable and, therefore, responsible for species-specific epitope characteristics. The 

accurate and reliable mapping of defined epitopes on immuno-protective proteins such as 

the A27 of VACV enables phylogenetic studies and insights into OPXV evolution as well 

as to pave the way to the development of safer vaccines and chemical or biological anti-

virals.  

KEYWORDS  
Vaccinia virus A27 protein homologs, epitope mapping, phylogenetic epitope variation, 

neutralizing antibodies 

 
1. INTRODUCTION 
The genus Orthopoxvirus (OPXV) contains a group of large and closely related DNA 

viruses within the family Poxviridae, encompassing viruses that replicate in the 

cytoplasm of vertebrate or invertebrate cells (Condit et al., 2006; Kurth et al., 2008). 

Vaccinia virus (VACV), the prototype of the genus, was applied as the vaccine against the 

related Variola virus (VARV). This vaccination campaign led to the eradication of 
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smallpox (Becker et al., 2009; Fenner et al., 1988). Immunization with VACV elicits 

potent B- and T-cell mediated immune responses, which provide cross protection against 

all the other OPXVs (Novembre et al., 1989). Currently, the majority of humans 

worldwide have no longer a protective immunity against poxviruses because of the 

termination of the vaccination campaign four decades ago. Therefore, there is 

considerable concern about the use of VARV and monkeypox virus (MPXV) as potential 

biological weapons (Henderson, 1999; Rimoin et al., 2010), particularly after recent 

outbreaks of MPXV in the Democratic Republic of Congo, the United States of America, 

Nigeria and the United Kingdom (Ladnyj et al., 1972; Reed et al., 2004; Vaughan et al., 

2018) and as well as being reported by the World Health Organization (WHO, 2017). 

Moreover, reservoirs for other closely related OPXVs, e.g. cowpox virus (CPXV), exist 

in the environment and may also endanger human health under certain circumstances 

(Becker et al., 2009; Campe et al., 2009; Howard et al., 2008; Kurth et al., 2008; Vogel et 

al., 2012; Vorou et al., 2008), especially in immuno-compromised humans (Czerny et al., 

1991; Eis-Hubinger et al., 1990; Fassbender et al., 2016; Kinnunen et al., 2015; Redfield 

et al., 1987). Therefore, it is crucial to join forces in the development of safer vaccines, 

antiviral agents, and protective human recombinant antibodies for passive immunization. 

VACV contains a double-stranded DNA genome of approximately 194,000 nt, depending 

on the strain, encoding more than 200 polypeptides (Moss, 2006). Morphogenesis results 

in two distinct infectious forms of virus particles (Smith et al., 2002; Ulaeto et al., 1996). 

The majority consists of the fully functioning intracellular mature virus (IMV) with a 

single envelope, as well as a small proportion of extracellular enveloped virus (EEV), 

which is surrounded by an additional Golgi-derived envelope. IMV is the predominant 

infectious form remaining within the infected cell and mediating host-to-host 

transmission, whereas EEVs, on the other hand, are important for direct cell-to-cell 

transmission inside the host (Appleyard et al., 1971; Blasco and Moss, 1992; Boulter and 
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Appleyard, 1973; Isaacs et al., 1992; Payne, 1978; Payne, 1980; Roper et al., 1998; Smith 

et al., 2003). Viral particles linked to the outer surface of the cell have been visualized by 

electron microscopy and were named cell-associated enveloped virus (CEV) (Blasco and 

Moss, 1992; Smith et al., 2002). 

Vaccination results in the induction of neutralizing antibodies against several VACV 

envelope proteins. Structural proteins of immunological relevance containing targets for 

neutralizing antibodies were identified on both IMV (including A27, D8, H3, A17, and 

L1), and EEV/CEV (including A33 and B5) (Aldaz-Carroll et al., 2005; Hsiao et al., 1998, 

1999; Matho et al., 2015; Moss, 2012, 2016; Rodriguez et al., 1985; Vogel et al., 2012). 

Most importantly, these proteins led to the induction of protective immunity in vivo 

(Benhnia et al., 2009b; Czerny et al., 1994; Czerny and Mahnel, 1990; Galmiche et al., 

1999; Hooper et al., 2000; Hsiao et al., 1999; Ichihashi and Oie, 1996; Kaever et al., 2016; 

Lai et al., 1991; Matho et al., 2012; Matho et al., 2015; McCausland et al., 2010; Pulford 

et al., 2004; Ramirez et al., 2002; Reeman et al., 2017; Rodriguez et al., 1985). One of 

the best characterized and intensively studied IMV envelope proteins is the A27 protein 

(Gong et al., 1989; Gong et al., 1990; Lai et al., 1990; Rodriguez and Esteban, 1987; 

Rodriguez et al., 1985), encoded by a gene corresponding to the VACV Copenhagen open 

reading frame (ORF) A27L (Goebel et al., 1990; Kaever et al., 2016). This protein is 

present in all members of OPXVs, forms a trimeric structure on the surface of IMVs, and 

binds to the glycosaminoglycan (GAG) heparan sulfate on the surface of mammalian cells 

(Campe et al., 2009; Howard et al., 2008) by a turn-like structure, which is formed by a 

KKPE segment (Shih et al., 2009). Additionally, the A27 protein builds a complex 

together with four other membrane proteins (A14, A17, A25 and A26). Because A27 lacks 

its own trans-membrane domain, its association with A17 mediates the anchorage within 

the envelope of IMVs (Howard et al., 2008; Rodriguez et al., 1993; Unger et al., 2013; 

Vazquez et al., 1998). The 110 amino acids of the A27 protein can be divided into four 
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functional areas: an N-terminal signal peptide, a Lys/Arg-rich heparin binding domain 

(HBD), an α-helical coiled-coil domain (CCD), and a C-terminal leucine zipper motif 

(LZD) (Campe et al., 2009; Chang et al., 2013; Vazquez et al., 1998). The HBD (aa 21-

34) including the KKPE segment (aa 26-29), is essential for binding to heparan sulfate 

(Chang et al., 2013; Chung et al., 1998; Hsiao et al., 1998; Shih et al., 2009). The CCD 

(aa 43-84) possesses the two cysteine residues 71 and 72, which are responsible for 

forming disulfide bonds with the A26 protein (Chang et al., 2013; Ching et al., 2009). 

The LZD (aa 85-110) is considered to be the binding region of A17 (Campe et al., 2009; 

Chang et al., 2013; Kochan et al., 2008; Wang et al., 2014). A27 is important for virus 

replication, as it regulates cell entry and virus egress. Conditional lethal mutant 

independent assays like isopropyl-o-thiogalactoside (IPTG)-induced expression of the 

A27 protein during infection restores the interaction of IMV with Golgi-derived 

membranes leading to EEV formation. Thus, the A27 protein is essential for the 

envelopment of IMV by Golgi membrane and for their subsequent egress from the cell 

(Rodriguez and Smith, 1990). The A27 protein was designated as the fusion protein, 

because monoclonal antibodies binding to this protein of 14 kDa were able to block fusion 

(Gong et al., 1990; Rodriguez and Esteban, 1987). However, more recent evidence 

suggests it is more likely that a complex of at least 11 envelope proteins is responsible for 

fusion (Moss, 2012, 2016). The A27 protein, however, is not integrated within this 

complex. 

Here, we have identified six linear epitopes recognized by A27 mAbs (Czerny et al., 1994) 

using SPOT synthesis on cellulose membranes and peptide microarray technology. 

Affinities were investigated and neutralization capabilities of the mAbs were improved 

after the addition of human complement. The identified epitopes toward the far ends of 

A27 were conserved among OPXV upon screening all A27 sequences available in the 

GenBank, while the centrally located epitopes were species-specific.  
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2. MATERIAL AND METHODS 

2.1. Cells and viruses 

The permanent monkey kidney cell line MA-104 cultured in minimum essential medium 

(MEM) (PAN-BIOTECH, Aidenbach, Germany) and supplemented with 7% fetal calf 

serum (FCS), was used to propagate the VACV strains Bern, CVA, Elstree, IHD-J, 

Copenhagen wild type (WT), Copenhagen host range (HR), R325, TT, the neuro-vaccinia 

virus strains Hagen, Levaditi and Munich 1, as well as the OPXV strains camelpox virus 

(CMLV) CP1, CPXV KR2 Brighton, mousepox virus (ectromelia; ECTV) Munich 1, and 

MPXV Copenhagen (for references see (Czerny and Mahnel, 1990)). For virus 

propagation FCS was reduced to 2%. Infectivity titers were determined on 24-well plates 

(Nunc, Wiesbaden, Germany) and calculated as plaque forming units (pfu/ml). For plaque 

reduction tests, Vero cells cultured in MEM, supplemented with 5% FCS were used and 

maintained in the same way as MA-104. For syncytium formation and fusion experiments, 

BS-C-1 cells cultured in MEM, supplemented with 10% FCS were used to propagate the 

VACV strain Western Reserve (WR). Virus multiplication was carried out in MEM with 

2.5% FCS as described before (Roper, 2006; Roper et al., 1998). 

The Modified VACV Ankara (MVA) was grown in primary embryonic chicken fibroblast 

cells (CEF). Due to its micro-plaque generation, infectivity titer was calculated as 

TCID50/ml after titration in 96-well microplates. The culture medium was MEM 

containing 2.5% FCS.  

All virus preparations were purified and concentrated by sucrose gradient centrifugation 

as previously described (Czerny et al., 1994; Joklik, 1962). The purified preparations 

consisted of intracellular mature virus (IMV). Protein contents of the samples were 

determined according to the method of Lowry et al. (Lowry et al., 1951). 
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2.2. Polyclonal and monoclonal antibodies 

Polyclonal rabbit hyperimmune sera and monoclonal BALB/c-mouse antibodies against 

purified VACV MVA, VACV Munich 1, CPXV KR2 Brighton, ECTV Munich 1, and 

MPXV Copenhagen were prepared as described elsewhere (Czerny et al., 1994; Czerny 

and Mahnel, 1990). The monoclonal antibodies (mAbs) were cross-reactive against other 

OPXVs in a species-specific manner. For this study, the cross-reactive but A27-specific 

mAbs anti-VACV 5B4/F2 (epitope #1A), anti-VACV 2C11/1B4 (epitope #1B), anti-

CPXV 3F5/2D5 (epitope #1C), anti-CPXV 1D5/1E10 (epitope #1D), anti-ECTV 

2G8/1E4 (epitope #4), and anti-ECTV 5B1/2G6 (epitope #5) were used. Monoclonal 

antibodies from cell culture supernatants or polyclonal hyper-immune sera were purified 

on Protein G sepharose columns (HiTrap™ 5 ml Protein G HP, Sigma Aldrich, 

Taufkirchen, Germany), dialyzed against phosphate-buffered saline (PBS) and sterilized 

by centrifugation at 20,238 x g. Protein contents of the antibody preparations were 

determined according to the method of Lowry et al. (Lowry et al., 1951). 

 

2.3. Plaque Reduction Test 

The neutralization potency of six A27-specific mAbs was tested by plaque reduction test 

(PRT) against VACV Elstree as reference strain. Purified antibodies were diluted with 

MEM (PAN-BIOTECH, Aidenbach, Germany) and adjusted to a concentration of 400 

µg/ml. A volume of 125 µl of the antibody preparations was titrated in two-fold serial 

dilutions on 96-well microplates containing 125 µl/well MEM supplemented with 2.5% 

FCS to avoid antibody coating. After antibody titration, one dilution series received 1% 

sterile human complement (SIGMA Aldrich, Taufkirchen, Germany) per well, the other 

remained free of complement. Then, 100 pfu (125 µl) of VACV Elstree was added to each 

well. As plaque-forming control, 250 µl MEM/well with or without 0.5% human 
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complement, containing 100 pfu VACV Elstree was used. The virus negative control was 

250 µl MEM/well alone with or without 0.5% human complement. After incubation of 

the 96-well microplates at 37°C for one hour, the mixtures were transferred to 24-well 

plates containing a confluent monolayer of Vero cells. After incubation at 37°C for one 

hour, the supernatants were poured out and replaced by 0.5 ml MEM containing 2.5% 

FCS and 0.5% methyl cellulose (Sigma Aldrich, Taufkirchen, Germany). The plates were 

then incubated at 37°C for 48 hours, before the cells being fixed and stained with a 

solution containing 25% formaldehyde, 8.5% ethanol and 1.5% crystal violet. The 

plaques were counted by visual inspection while illuminated. Neutralization was 

determined as ≥50% plaque reduction compared to the virus control. Each PRT was 

performed in triplicates.  

 

2.4. Inhibition of cell fusion and syncytium formation 

Cell fusion experiments were performed as described before (Roper, 2006; Roper et al., 

1998; Wolffe et al., 1993). Confluent BS-C-1 monolayers cultured in MEM with 2.5% 

FCS in 24-well plates (1 ml/well) were infected with 100 pfu/well VACV WR for 1 h at 

37°C, washed twice and incubated either with warm medium alone or with warm MEM 

containing purified mAbs (200 µg/ml). Then, 24 h post infection, the cells were incubated 

for 3 min at 37°C at pH 4.8 with warm fusion buffer [phosphate-buffered saline with 10 

mM 2-(N-morpholino)ethanesulfonic acid and 10 mM HEPES]. The cells were washed 

twice with warm MEM (treated for two min at 37°C). Afterwards, warm medium (MEM 

+ 1% FCS), with or without mAbs (200 µg/ml), was added again. The cells were 

incubated for 4 h at 37°C and then observed by phase-contrast microscopy. An indicator 

for cell fusion was the formation of syncytia, which are large, structure-less, fused cell 

areas (Gong et al., 1990). 
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2.5. Binding affinities of the mAbs in indirect ELISAs 

For quantification of the binding affinities of mAbs to different OPXVs, an indirect 

ELISA was applied. 96-well microplates were coated with 1 µg/ml of the VACV strains 

Bern, CVA, Elstree, IHD-J, Copenhagen wild type (WT), Copenhagen host range (HR), 

R325, TT, the neuro-vaccinia virus strains Hagen, Levaditi and Munich1, the modified 

VACV Ankara (MVA) as well as the OPXV strains camelpox virus (CMLV) CP1, cowpox 

virus (CPXV) KR2 Brighton, mousepox virus (ectromelia; ECTV) Munich 1, and MPXV 

Copenhagen in carbonate/bicarbonate buffer (pH 9.6; 100 µl/well). After blocking with 

2% skimmed milk and 10% fetal calf serum in PBS, purified mAbs adjusted to a 

concentration of 50 µg/ml were titrated in two-fold serial dilutions (100 µl/well). 

Incubation was performed at 37°C for 1 h. After five washing steps with PBS, the 

peroxidase conjugated goat anti-mouse IgG (whole molecule; Sigma Aldrich, 

Taufkirchen, Germany) was added to the 96-well microplate in a working dilution of 

1:2,000 (100 µl/well) and incubated at 37°C for 1 h. Thereafter, the plate was washed five 

times with PBS again, before the developing solution (3, 3’, 5, 5’ tetramethylbenzidine; 

Abcam, Cambridge, UK) was added (100 µl/well). The reaction was stopped by 1 N 

hydrochloric acid (50 µl/well). The OD-values were measured by a photometric plate 

reader (TECAN Sunrise plate reader with the Magellan complete software, Männedorf, 

Switzerland) at a wavelength of 450 nm. Affinity was calculated from the average 

absorption of the triplicates using Michaelis-Menten kinetics (Michaelis and Menten, 

1913; Michaelis et al., 2011) and the program GraphPad Prism version 7.00 for Mac (La 

Jolla California, USA). 

 

2.6. Epitope mapping by SPOT synthesis on cellulose membranes 

The whole A27 protein of VACV Copenhagen (Goebel et al., 1990; Rodriguez and 
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Esteban, 1987) representing 110 amino acids (Goebel et al., 1990), was directly 

synthesized stepwise on derivatized cellulose membranes through 101 decapeptides with 

an offset of one aa (9 aa overlap). The synthesis on derivatized cellulose membranes using 

Fmoc-protected amino acid pentafluorophenyl or /V-hyroxyoxo-dihydro-benzotriazine 

esters and the screening were performed according to the method described before (Frank, 

1992) and the manufacturer of the SPOTs kit (Cambridge-Research Biochemicals, ICI, 

representative in Germany IC-Chemikalien, Carl-Zeiss-Ring 15, Ismaning). 

The reactivity of the generated peptides with mAbs was tested using β-galactosidase-

labeled goat anti-mouse immunoglobulins (Abcam, Cambridge, UK) as secondary 

antibodies. The color development of the peptide spots occurred after treatment with 5-

bromo-4-chloro-3-indolyl-β-D-galactopyranoside, the substrate for the β-galactosidase-

labeled secondary antibodies. 

 

2.7. Epitope mapping by microarray scanning chips 

An OPXV microarray chip was designed as depicted in Fig. S1. 15-mer peptides 

overlapping by 12 amino acids (3 aa offset) were synthesized via SPOT synthesis on a 

cellulose membrane (Frank, 1992), passed through the SC2 process (Dikmans et al., 2006) 

and spotted onto microscope glass slides. The chip contained eight identical arrays of 521 

peptides each (Fig. S1A). A total of 475 of those overlapping peptides represented the 

entire amino acid sequences of A27, D8, H3, L1, A33, and B5 proteins of VACV Western 

Reserve (Fig. S1B, GenBank accession number: AY243312.1). Forty-six peptides were 

amino acid variations of VACV A27 and D8 proteins to the corresponding homologs of 

other OPXVs (Table S1). In addition, ten cellulose-conjugated biotin spots served as a 

positive control and orientation for the SPOT Calling Program. The OPXV microarray 

chip was designed to screen four samples simultaneously. Therefore, each peptide was 
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printed eight times to obtain technical replicates, which could be divided into 4 identical 

sub-arrays using an adhesive chamber (SecureSeal, Sigma-Aldrich Co. LLC, USA). In 

order to obtain equal antibody concentrations of 2µg/µl per chamber, protein 

concentrations were measured using a NanoDrop ND-1000 Spectrophotometer. The 

screening procedure with the microarray chip was performed as previously reported 

(Hotop et al., 2014). 

 

2.8. DataBase analysis of A27 protein sequences and OPXV phylogeny 

All A27 protein sequences of different OPXV strains available until 31st August 2018 

were downloaded from the NCBI GenBank database (Altschul et al., 1990; Pruitt et al., 

2005, 2007). So, a total of 391 complete and partial A27 sequences were aligned by the 

Clustal W (Thompson et al., 1994) option in the Lasergene MegAlign 12 software 

(DNAStar, Madison, WI, USA). The used data included sequences from Old World 

species such as VARV, VACV, buffalopox virus (BPXV), rabbitpox virus (RPXV), 

horsepox virus (HSPV), MPXV, CPXV, CMLV, ECTV, and taterapox virus (TaPXV) as 

well as the New World species raccoonpox virus (RCNV), volepox virus (VPXV), and 

skunkpox virus (SkPXV). A phylogenic tree was created with Geneious software (version 

9.1.6, Biomatters Inc., Aukland, New Zealand), using not more than five sequences per 

epitope variant. 

 
3. RESULTS 

3.1. Fine mapping of the VACV A27 epitopes by SPOTs membrane 

The targets of six anti-A27 mAbs were mapped by SPOT synthesis (Table S1). The A27 

protein of VACV Copenhagen was synthesized on a SPOTs membrane in form of 101 

decapeptides with 9 aa overlap to cover the whole sequence of 110 aa. Immunodetection 
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was carried out with the six OPXV-specific mAbs (Fig. 1). A positive reaction was 

indicated by blue coloration of those spots binding the corresponding antibody. The 

complex of the four closely related antigenic sites #1A-D was identified and located 

within the range of aa 26–39. Epitope #1A (mAb: 5B4/2F2) was directed against the 

sequence region of eight aa 32-REAIVKAD-39 (Fig. S2). In case of the mAb 5B4/2F2, 

seven spots were recognized (No. 10-16), from which spots 11-13 showed the strongest 

reactivity to the mAb, which indicated an optimal antibody binding condition and only 

these peptides were used for defining the epitope. By the same procedure, epitope #1B 

(mAb 2C11/1B4) was assigned to the six aa 28-PEAKRE-33, epitope #1C (mAb 3F5/2D5) 

to the six aa 26-KKPEAK-31, and epitope #1D (mAb 1D5/2D11) to seven aa 28-

PEAKREA-34 (Fig. 1 and Table S2). Epitope #4 (mAb 2G8/1E4) was located at aa 

positions 9-DDDLAI-14, whereas epitope #5 (mAb 5B1/1A11) was represented by the 

four aa 68-IEKC-71.  

 
FIG 1 Mapping of the antigenic sites of the six A27-specific mAbs on a SPOTs 
membrane. 
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3.2. Fine mapping of the VACV A27 epitopes by microarray analysis 

Similar mapping results were obtained when using the OPXV microarray chip imprinted 

with 521 pentdecapeptides with 12 aa overlap. Epitope #1A (mAb 5B4/2F2) was only 

one aa longer compared to the SPOTs membrane and was, therefore, directed to the 

sequence region aa 31-KREAIVKAD-39. Epitopes #1B (mAb 2C11/1B4), #1C (mAb 

3F5/2D5) and #1D (mAb 1D5/2D11) were all assigned to the aa region 28-PEAKRE-33. 

For epitope #1B, the microarray chip and the SPOTs membrane yielded identical results. 

The epitope #1D was mapped to the same region, but only one aa shorter on the 

microarray chip. Epitope #4 (mAb 2G8/1E4) was allocated to aa 7-PGDDDLAIPATE-18 

and, therefore, by 6 aa longer compared to results from the SPOTs membrane. MAb 

5B1/1A11 (epitope #5), however, did not react with any of the peptides on the chip, 

although the target sequences detected on the SPOTs membranes were present in the 

microarray spots no. 20-23 and 493-496 (Tables S1 and S2 and Fig. S3). In the following 

investigations, we refer, therefore, to the epitope locations provided by the SPOTs 

membrane, because they were regarded to be more accurate due to the shorter aa offset 

of one aa compared to three aa in the microarrays. 

 

3.3. Identification of neutralization-mediating epitopes with/without complement 

Epitopes able to induce neutralizing antibodies were detected by PRT. Protein G purified 

mAbs against the six antigenic sites mapped on the A27 protein were incubated with 

VACV Elstree either in the presence or absence of 1% human complement. Complement 

was used to increase the footprints of the mAbs on the viral surface. The mAbs 5B4/2F2 

(epitope #1A), 2C11/1B4 (epitope #1B), and 2G8/1E4 (epitope #4) neutralized VACV 

Elstree (measured as 50% plaque reduction) in the absence of complement at 

concentrations of 12.5, 25 and 200 µg/ml, respectively (Table 1 and Fig. 2). An eight to 
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sixteen-fold increase in the neutralization strength of these mAbs was observed in the 

presence of complement (5B4/2F2: 1.6 µg/ml; 2C11/1B4: 3.1µg/ml; 2G8/1E4: 12.5 

µg/ml). The mAbs 3F5/2D5 (epitope #1C) and 1D5/1E10 (epitope #1D) neutralized 

VACV Elstree only in the presence of 1% complement at concentrations of 200 µg/ml 

and 100 µg/ml, respectively, while no neutralization was observed with the mAb 

5B1/2G6 (epitope #5). 

Table 1 Neutralization efficiency of six different purified anti-A27 monoclonal antibodies against 
several epitopes with and without complement binding. 

Epitope Position 
(aa) MAb 

Virus strain 
used for 
mAb 
production 

Isotype 

Neutralization 
without 
complement 
(µg/ml) 

Neutralization 
with 1% 
complement 
(µg/ml) 

1A 32-39 5B4/2F2 VACV 
MVA IgG2a 12.5 1.6 

1B 28-33 2C11/1B4 VACV 
MVA IgG2b 25.0 3.1 

1C 26-31 3F5/2D5 CPXV KR2 
Brighton IgG1 - 200.0 

1D 28-34 1D5/2D11 CPXV KR2 
Brighton IgG1 - 100.0 

4 9-14 2G8/1E4 ECTV 
Munich 1 IgG3 200.0 12.5 

5 68-71 5B1/2G6 ECTV 
Munich 1 IgG2a - - 

-: No neutralization observed. 
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FIG 2 Neutralization-mediating epitopes were detected by plaque reduction test (PRT). 
Six mapped anti-A27 mAbs were incubated with VACV Elstree either in the presence 
or absence of 1% human complement. The plaque formation in comparison to virus 
control in percent is shown as a function of the respective concentration in µg/ml of the 
mAbs. The solid line (¨) shows the antibody alone, the dashed line (∎) the antibody 
together with 1% complement. The mAbs 5B4/2F2, 2C11/1B4, and 2G8/1E4 
neutralized VACV Elstree in the absence of complement. Neutralization could be 
improved in the presence of complement. The mAbs 3F5/2D5 and 1D5/1E10 
neutralized the VACV Elstree only in the presence of 1% complement, while no 
neutralization was observed with the mAb 5B1/2G6. 

 

3.4. Inhibition of cell fusion 

A27 was initially designated as the fusion protein (Gong et al., 1990; Moss, 2011; 

Rodriguez et al., 1987). However, more recent evidence indicates that there is not only 

one fusion protein in the envelope of IMV, but rather a fusion complex consisting of at 

least 11 proteins (Diesterbeck et al., 2018; Moss, 2012, 2016). Evidence now suggests 

that the A27 protein is not integrated into the fusion complex (Moss, 2016; Senkevich et 

al., 2005). Other investigations reported a second fusion complex consisting of A17 and 

A27 (Kochan et al., 2008), where the fusion event of VACV WR at pH 4.8 was inhibited 

0
25
50
75

100
125
150
175

200
.0

100
.0

50.0 25.0 12.5 6.3 3.1 1.6 0.8 0.4 0.2 0.1

Pl
aq

ue
 fo

rm
at

io
n 

in
 c

om
pa

ris
on

 
to

 v
iru

s 
co

nt
ro

l (
%

)

MAb concentration (µg/ml)

Epitope 1B (aa 28-33)

0
25
50
75

100
125
150
175

200
.0

100
.0

50.0 25.0 12.5 6.3 3.1 1.6 0.8 0.4 0.2 0.1

Pl
aq

ue
 fo

rm
at

io
n 

in
 c

om
pa

ris
on

 
to

 v
iru

s 
co

nt
ro

l (
%

)

MAb concentration (µg/ml)

Epitope 1C (aa 26-31)

0
25
50
75

100
125
150
175

200
.0

100
.0

50.0 25.0 12.5 6.3 3.1 1.6 0.8 0.4 0.2 0.1

Pl
aq

ue
 fo

rm
at

io
n

in
 c

om
pa

ris
on

to
vi

ru
s

co
nt

ro
l(

%
)

MAb concentration (µg/ml)

Epitope 1D (aa 28-34)

0
25
50
75

100
125
150
175

200
.0

100
.0

50.0 25.0 12.5 6.3 3.1 1.6 0.8 0.4 0.2 0.1

Pl
aq

ue
 fo

rm
at

io
n 

in
 c

om
pa

ris
on

 
to

 v
iru

s 
co

nt
ro

l (
%

)

MAb concentration (µg/ml)

Epitope 4 (aa 9-14)

0
25
50
75

100
125
150
175

200
.0

100
.0

50.0 25.0 12.5 6.3 3.1 1.6 0.8 0.4 0.2 0.1

Pl
aq

ue
 fo

rm
at

io
n 

in
 c

om
pa

ris
on

 
to

 v
iru

s 
co

nt
ro

l (
%

)

MAb concentration (µg/ml)

Epitope 5 (aa 68-71)

0
25
50
75

100
125
150
175

200
.0

100
.0

50.0 25.0 12.5 6.3 3.1 1.6 0.8 0.4 0.2 0.1

Pl
aq

ue
 fo

rm
at

io
n

in
 c

om
pa

ris
on

to
vi

ru
s

co
nt

ro
l(

%
)

MAb concentration (µg/ml)

Epitope 1A (aa 32-39)



STUDIES	PERFORMED	

	 38	

by anti-A27 mAbs. Therefore, we retested this effect using three epitope-mapped anti-

A27 mAbs from our collection to cover the entire target region. Fusion of infected BS-C-

1 cells was indicated by the formation of large areas of fused cells, rather than separate 

individual cells (Fig. 3A). Fusion was inhibited by the mAb 5B4/2F2 directed to epitope 

#1A (aa 32-39) (Fig 3B). The mAb 3F5/2D5 against epitope #1C (aa 26-31) was binding 

upstream of the mAb 5B4/2F2 and was not able to block cell fusion (Fig. 3C). The same 

was observed for mAb 5B1/2G6 binding to the C-terminal epitope #5 (aa 68-71) (Fig. 

3D).  

 
FIG 3 Acid-induced fusion inhibition experiments with VACV WR and three of the six 
anti-A27 mAbs. A: Fusion of infected BS-C-1 cells was indicated by the formation of 
larger, structureless, and fused cell areas. B: Fusion was inhibited by the mAb 5B4/2F2 
directed to epitope #1A (aa 32-39). C: The mAb 3F5/2D5 against epitope #1C (aa 26-
31) was binding upstream of the mAb 5B4/2F2 and not able to block cell fusion. D: The 
mAb 5B1/2G6 binding to the C-terminal epitope #5 (aa 68-71) was also not able to 
inhibit fusion. 

 

3.5. Binding affinities of the mAbs to various variants of OPXVs  

Binding affinities of the purified mAbs to the six A27 epitopes detected in VACV Elstree 

PBS, pH 4.8, 24 h p. inf.

Epitope 1C (aa 26-31): MAb 3F5/2D5

Epitope 1A (aa 32-39): MAb 5B4/2F2 

Epitope 5 (aa 68-71): MAb 5B1/2G6

A B

C D



STUDIES	PERFORMED	

	 39	

were determined by indirect ELISAs on microplates coated with the purified reference 

strains VACV-MVA, VACV, CPXV KR2 Brighton, CMLV CP1, ECTV Munich 1, and 

MPXV Copenhagen. The binding curves were determined in triplicates for each virus 

strain. In case of the VACV strains, with the exception of VACV MVA, all data were 

calculated as mean values. VACV MVA was presented alone in order to compare affinity 

data directly to other VACV strains (Fig. 4). All mAbs directed to epitope complex #1 

showed strong binding activity to VACV, CPXV and CMLV, but did not react with or 

bound only weakly to ECTV and MPXV. In all VACV strains, the mAb 5B4/2F2 bound 

to its epitope #1A equally well. There was no difference in the amino acid sequence of 

the respective epitope. An 11.5-23-fold decrease in binding activity was observed with 

CPXV KR2 Brighton and CMLV CP1. Responsible for this finding were obviously the 

aa exchanges D39E in CPXV and V36I in CMLV. In ECTV Munich 1 and MPXV 

Copenhagen, the epitope #1A could not be detected, apparently due to aa exchanges 

R32H and I35T in ECTV and D39Y in MPXV. Epitope #1B was detected by the mAb 

2C11/1B4 in VACVs, CPXV and CMLV with a similar affinity, whereas aa exchanges 

A30D and R32H in ECTV and A30T in MPXV caused the loss of the mAb reaction. 

Epitope #1C was also detected equally well in VACVs, CPXV and CMLV by the 

corresponding mAb 3F5/2D5. In ECTV, the kinetics of the mAb were reduced 25 – 53-

fold according to the aa exchange A30D. In MPXV, the epitope was only very weakly 

detectable. The mAb 1D5/2D11 against epitope #1D, which is only one aa longer than 

epitope #1B (A at position 34), reacted equally well with VACVs, CPXV and CMLV. 

Despite the aa exchanges A30D and R32H in ECTV, which were also present, the mAb 

detected the epitope with 2.6 to 7.6-fold weaker affinity compared to VACVs, CPXV and 

CMLV. Even in MPXV, the epitope #1D was detected by the mAb, albeit with a 4.6- 

(ECTV) to 34.8-fold (VACVs) weaker intensity. In contrast to the heterogeneous species-

specific binding behavior of mAbs directed to the epitope complex #1A-D, the mAbs 
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targeting epitopes #4 and #5 showed the same strong binding activities to all OPXVs 

tested. Vmax- and Km-values were in the same range.  

 
FIG 4 Binding affinities of the six anti-A27 mAbs determined by indirect ELISAs 
towards the reference strains VACV MVA, a mean of 11 different VACV strains, CPXV 
KR2 Brighton, CMLV CP1, ECTV Munich 1, and MPXV Copenhagen. In case of the 
VACV strains, with the exception of VACV MVA, all data were calculated as mean 
values from the individual binding curves.  The optical density (OD450 nm) is shown as a 
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function of the respective concentration (ng/ml) of the mAb. Moreover, the aa sequence 
matches and differences of the epitopes, as well as the Vmax and Km values are shown. 
All mAbs directed to epitope complex #1A-D showed strong binding activity to VACV, 
CPXV and CMLV, but did not react or bound weakly to ECTV and MPXV. In contrast 
the mAbs targeting epitopes #4 and #5 showed the same strong binding activities to all 
OPXVs tested. All the six antigenic sites were recognized equally well in VACV MVA 
and in all the other VACVs. ♢ = Mean of 11 different VACV strains; ☐ = VACV MVA; 
+ = CPXV KR2 Brighton; △ = CMLV CP1; ◼ = ECTV Munich 1; � = MPXV 
Copenhagen. 

 

3.6. Species-specific epitope conservation and variation among the OPXV members 

A total of 391 amino acid sequences of the OPXV A27 protein homologs from the 

GenBank were analyzed with respect to species-specific conservation or variation of the 

six sequential antigenic sites mapped. 

Epitope #4, located at the N-terminus of the A27 protein between aa residues 9-14 (9-

DDDLAI-14), is highly conserved within the genus OPXV (Tables S3, S4, and S5). This 

motif was found in 372 of the 391 analyzed sequences.  

The motif 68-IEKC-71 of epitope #5 is nearly genus-specific in OPXVs (Tables S4, S5, 

and S6). It was present in almost all OPXV strains (389/391). In case of 3/3 SkPXVs, the 

motif 68-IEKC-71 is postponed backward (94-IEKC-97) due to an insertion of 10 aa in 

the epitope complex #1A-D (as stated below) and 16 aa between epitope complex #1A-

D and #5. The same displaced epitope region (94-IEKC-97) was observed in the case of 

VACV WR 65-16 (P26312.1) as well, because the A27 of this virus strain starts at aa 73L.  

The highest number of variations was found within the four antigenic sites of the epitope 

complex #1A-D located at an A27 surface domain between aa 26–39 

(KKPEAKREAIVKAD; epitope #1A: aa 32-39, #1B: aa 28-33, #1C: aa 26-31, #1D: 28-

34). This complex is highly conserved in sequences of VARV major (66/67), VARV minor 

(2/2), VACVs (59/61), BPXV (26/26), HSPV (2/2), RPXV (2/2) and TaPXV (2/3) (Tables 

S7, S4, and S5). All CMLVs (18/18) showed a unique aa exchange V36I leading to the 

motif 26-KKPEAKREAIIKAD-39. The exchanges A30D, R32H, and I35T (26-
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KKPEDKHEATVKAD-39) were characteristic for ECTV (14/14). The three aa 

exchanges K27N, A30T and D39Y were specific for all MPXVs (57/57) and resulted in 

the motif 26-KNPETKREAIVKAY-39. The New World OPXVs, including RCNV (1/1), 

SkPXV (3/3) and VPXV (1/1) showed the most different, however, species-specifically 

conserved aa sequence. In CPXVs, a much more polyphyletic arrangement was found, 

resulting in seven different CPXV motifs (Fig. 5). These results were confirmed by the 

peptide microarrays including various variants (Fig. S3 and Table S1). 

 
FIG 5 Phylogenetic analysis is based on the different OPXV amino acid sequences of 
the epitope complex #1A-D. The sequences were divided into two distinct groups: the 
monophyletic sequences, including VACV, VARV, ECTV, MPXV, CMLV, HSPV, RPXV, 
TaPXV, SkPXV, RCNV and VPXV are shown in black, as well as the polyphyletic 
CPXVs, which are color coded. The sequence differences compared to VACV/VARV 
are highlighted in red. Because of their polyphyletic behavior, the CPXVs could be 
subdivided into seven different variants. Red CPXV I; green CPXV II; blue CPXV III; 
violet CPXV IV; yellow CPXV V; bright green CPXV VI and CPXV VII. 

 

3.7. Silent mutations in the epitope sequences among the OPXV members 

When looking at the nucleotide sequences within the regions coding for the epitopes #1A-

D, #4, and #5, we also searched for silent mutations in all three epitope regions. VACV 

CMLV: KKPEAKREAIIKAD

SkPXV: 
KKPEEPVKRKVVKNKNKHKVVKAD

MPXV: KNPETKREAIVKAY

CPXV II: 
KKPEAKREAIVKAE

CPXV III:
 

KKQEAKREAIVKAE

ECTV: 
KKPEDKHEATVKAD

VACV: 
KKPEAKREAIVKAD

CPXV I; V
ACV; VARV; TaPXV: 

KKPEAKREAIVKAD

VACV: TSRSSTGSANPSAS
RCNV: _KPEAKRKVVEKAD

VPXV: _KPEEKRKAVVKAE

CPXV IV: KKPEAKREAFVKAE

CPXV VII: K
KPEVKREAIVKAE

CPXV VI: K
RPEAKREAIVKAE

CPXV V: KKPEAKHEAIVKAE

VARV: KKPEAKHEAIVKAD
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(61/61) and its variants including HSPV (2/2), BPXV (26/26) and RPXV (2/2) showed 

no silent mutations. However, within the monophyletic groups such as CMLV (n: 17/18; 

ntx: gac28-30gat), ECTV (n: 12/14; ntx: gac28-30gat and n: 14/14; ntx: ata202-204atc), 

SkPXV (n: 3/3; ntx: gac28-30gat, gat31-33gac, gca37-39gcg, aag79-81aaa, cgc94-

96cgt100-102, gcc112-114gca142-144, gaa283-285gag, aag286-288aaa and tgt289-

291tgc) and VARV major and minor (n: 68/69; ntx: gac28-30gat) a few silent mutations 

were confirmed, and could be used for classification, because they were species-specific. 

In case of the polyphyletic CPXVs we found eight silent mutations in the epitope coding 

regions of the A27L gene (n: 5/134 ntx: gac28-30gat; n: 19/134 ntx: ctt34-36ctc; n: 42/134 

ntx: aaa76-78aag; n: 1/134 ntx: aag79-81aaa; n: 4/134 ntx: cgc94-96cgt; n: 1/134 ntx: 

gca100-102gcc; n: 85/134 ntx: gcc112-114gct; n: 32/134 ntx: ata202-204atc). Due to their 

irregular distribution among the different CPXV strains, they were not suitable for a 

taxonomic classification. 

 

4. DISCUSSION 

The A27 protein is immunogenic and highly conserved within the members of OPXV 

(Chang et al., 2013; Kochan et al., 2008; Rodriguez et al., 1985). In this study, six 

antigenic sites on the A27 protein (epitope #4: aa region 9-14, epitope complex #1A-D: 

between aa 26 and 39 and epitope #5: aa region 68-71) were mapped. With respect to 

epitopes #4 and #1A-D, the mapping with the SPOT synthesis and microarray chip 

showed similar results with only few amino acids divergence. By contrast, epitope #5 

could not be detected when the OPXV microarray chip was employed. Although the 

granularity of membranes is higher with an offset of one, compared to an offset of three 

in the microarrays, also the resolution of the microarray slide is sufficient to detect epitope 

#5 with a length of four spots. One reason may be degradation of the respective antibodies 
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over time, as a time lag >5 years between the former spot measurement and the more 

recent microarrays existed. Another reason may be the use of different side chain 

protection groups. For production of membranes, Cys(acetyl-aminomethyl) was used, 

whereas for peptides in the microarray assay Cys(triphenylmethyl) was used that was 

deprotected during slide preparation via trifluoroacetic acid (TFA). As a cysteine residue 

is involved in binding, a formation of disulfide bonds or incomplete Cys deprotection 

may have altered antibody binding properties, thereby leading to different signals in the 

microarrays compared to the membranes (Abd El Wahed, 2011). The OPXV microarray 

chip, however, was used to screen for additional species-specific epitope variations by aa 

exchanges according to the GenBank database entries. 

Epitope #4 was conserved among all OPXVs and nearly genus-specific, because the main 

motif 9-DDDLAI-14 was found in 372/391 database entries. In 13 OPXV strains, the N-

terminal sequences could not be assessed due to truncations in the sequences uploaded 

from GenBank. In 3/26 BPXVs, the motif was 9-DDDLAT-14, whereas all three SkPXVs 

contain the motif 9-DDDMAI-14. The changed aa sequence (L12M) was represented by 

spot 479 of the OPXV microarray chip and mAb 2G8/1E4 reacted with this spot (Table 

S7). In 2D predictions of the secondary structure of the A27 protein, a b-turn was evident 

in this area with a high antigenicity. This was expected as in previously published data 

epitopes often were identified in the region of b-turns (Chou and Fasman, 1979; Fanning 

et al., 1986; Garnier et al., 1978; Novotny et al., 1986). Predictions on hydrophilicity 

(Kyte and Doolittle, 1982) and surface probability (Emini et al., 1985) did not show any 

special features for this region of the A27 protein. Nevertheless, the mAb 2G8/1E4 

against epitope #4 showed equally well binding affinities to all OPXV reference strains 

tested. Its neutralization capacity could be enhanced by the addition of complement. 

However, in previous studies the mAb 2G8/1E4 showed no neutralizing abilities against 

the tested ECTV M1 (Czerny et al., 1994). The discrepancy is caused by another test setup 
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including another OPXV strain (VACV Elstree instead of ECTV M1) and different cells 

(Vero cells instead of MA-cells) as well as by a 20-fold higher initial concentration of the 

antibody. The same was true for mAbs 3F5/2D5 and 1D5/2D11 (epitope complex #1 as 

mentioned further below). 

Epitope #5 was the most highly conserved one in A27 as the motif 68-IEKC-71 was 

present in 389/391 aa sequences. In all three SkPXVs and 1/61 VACV sequences the 

epitope was shifted downstream to 93-IEKC-96. In 1/134 CPXV strains, the motif was 

68-IEKY-71 while in another CPXV the epitope was missing because the C-terminus was 

truncated. The mAb 5B1/2G6 against epitope #5 was not neutralizing. However, the 

antigenic site is located in a functionally very important area within the C-terminus of the 

A27 protein. In this hydrophilic region, the two cysteines at positions 71 and 72 are 

responsible for formation of disulfide bonds and, therefore, play an important role for a 

functionally active trimeric A27 structure (Rodriguez and Esteban, 1987; Rodriguez et 

al., 1987). In 2D predictions of the secondary structure, a b-sheet (aa 58-83) followed by 

two b-turns (aa 70-75) was evident in this constant area. Two b-turns led generally to a 

high antigenicity (Chou and Fasman, 1979). Predictions on hydrophilicity (Kyte and 

Doolittle, 1982) and surface probability (Emini et al., 1985) did not reveal any special 

features. The mAb 5B1/2G6 showed similar binding affinities to all OPXV reference 

strains tested. This was expected because of the high sequence conservation of the 

targeted epitope among OPXV. 

The most important antigenic region of the A27 protein was confined by aa 26-39. This 

has already been known from a previous investigation that identified functional domains 

in the A27 envelope protein (Vazquez and Esteban, 1999). In our present study, a complex 

of four closely related epitopes (#1A-D) could be allocated to this region. The narrow 

location of these epitopes has already been predicted previously from data obtained with 
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two overlapping oligopeptides (Meyer et al., 1994) and from quantitative competitive 

ELISAs performed with purified mAbs and viruses (Czerny et al., 1994). Two of the four 

mAbs binding to these epitopes were neutralizing in vitro. In this study, the four mAbs 

could enhance virus inhibition after adding complement. Other authors identified this 

region also as a strong target for binding of mAbs (Kaever et al., 2016). An epitope with 

a larger extension (aa 21-40) comprised the area of the epitope complex #1A-D 

completely (aa 26-39). However, those mAbs directed to this epitope region only 

neutralized in the presence of complement. According to 2-D structure predictions and 

published data (Massung et al., 1994; Meyer et al., 1994; Rodriguez and Esteban, 1987), 

the A27 region with the four epitopes #1A-D was classified as hydrophilic. Between aa 

residues 25 and 45 a hypervariable structure region was found. In case of VACV and 

VARV, it started with an a-helix up to aa 40, followed by two b-turns. In CPXV and 

CMLV, however, the a-helix changed at aa 37 into three and four b-turns, respectively. 

MPXV showed two b-turns at aa residues 25-34 followed by an a-helix up to aa 39 and 

three b-turns. In ECTV, the b-sheet structure was found up to aa 30, followed by an a-

helix up to aa 37 and three b-turns. These highly variable structural conditions led to a 

significant species-specific difference in the overall structure of the investigated A27 

proteins. Thus, the proteins of the species VACV, VARV and CMLV had a more linear 

form, while the proteins of the species MPXV, CPXV and ECTV were folded to a larger 

extent. Considering the epitope complex #1A-D, the aa main motif was 26-

KKPEAKREAIVKAD-39. Based on GenBank database entries for 391 A27 protein 

sequences, this motif in the complete form (aa 26-39) was found in 210/391 OPXVs 

(68/69 VARV, 59/61 VACV, 26/26 BPXV, 2/2 HSPV, 2/2 RPXV, 51/134 CPXV, 2/3 

TaPXV). The database entries for the 391 A27 protein sequences also indicated that this 

region could be defined as a very variable area with a lot of aa exchanges and structural 

differences. Affinity experiments showed, that the binding of the four mAbs to their 
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respective targets was different and obviously dependent on aa exchanges. The epitopes 

#1A and #1B were completely absent in MPXV and ECTV. Especially in case of MPXV, 

three aa exchanges led to the motif variation 26-KNPETKREAIVKAY-39, independent 

of the geographic distribution of isolates. In ECTVs, three different aa exchanges in 

comparison to VACV led to the motif to 26-KKPEDKHEATVKAD-39. In both OPXV 

genera, these aa exchanges were absolutely species-specific (57/57 MPXV; 14/14 ECTV). 

To investigate the direct influence of the exchanged amino acids on the binding of the 

corresponding mAbs, the epitope #1A was re-synthesized on a SPOTs membrane in the 

unchanged (VACV) and changed (MPXV and ECTV) design. The aa exchanges led 

unequivocally to the loss of mAb binding to its epitope #1A (Figure S4) which was 

confirmed by lack of binding to spots 488 and 489 on the OPXV microarray chip (Table 

S7). The variations between aa 26 and 39 also led to a significant structural change of the 

A27 protein homologs of MPXV and ECTV. The change of the aspartic acid at position 

39 of MPXV to tyrosine, containing a benzene ring, was mainly responsible for the loss 

of the mAb reactivity. The binding site of the main immunogenic epitope #1A was defined 

as an octapeptide of 31-REAIVKAD-39, when the three decapeptides on the SPOTs 

membrane with the highest spot intensity (No. 11-13) were taken for epitope 

determination (Fig. S2). However, in all seven decapeptides (No. 10-16), even those with 

weaker reactions, used for the evaluation, it became clear that the tetrapeptide 35-IVKA-

38 was the most important factor for binding of the mAb 5B4/2F2 (epitope 1A). It was 

apparent, that the VACV tetrapeptide 35-IVKA-38 was present in the CMLV variation 

35-IIKA-38. If the CMLV specificity is referred to the whole region of epitope complex 

#1A-D, database analysis will reveal that the aa exchange V36I is unique for all 18/18 

CMLVs, independent of their geographical origin (Africa, Asia), thereby leading to the 

two motifs 26-KKPEAKREAIIKAD-39 (17/18) and 26-KRPEAKREAIIKAD-39 (1/18). 

The most prominent but species-specifically conserved aa sequence difference in the 
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epitope complex #1A-D was found in New World OPXVs with the motifs 26-

_KPEAKRKVVEKAD-39 in RCNV (1/1), 26-_KPEEKRKAVVKAE-39 in VPXV (1/1), 

and 26-KKPEEPVKRKVVKNKNKHKVVKAD-49 in SkPXV (3/3). In spite of the 4 aa 

exchanges in RCNV, the mAbs against epitopes #1B-D gave a weak signal on spot 490 

of the OPXV microarray chip (Table S7), whereas the epitope #1A was not detected. In 

VPXV and SkPXV (spots 491 and 492), the epitope complex #1A-D could not be detected 

by any of the mAbs. 

Because of the fact that the sequence differences in the A27 region, representing the 

epitope complex #1A-D, were species-specifically conserved, the Old World OPXVs, 

such as VARV, VACV, HSPV, RPXV, BPXV, ECTV, MPXV, CMLV, and TaPXV, as well 

as the New World OPXVs, like SkPXV, RCNV and VPXV, revealed a monophyletic 

character. The sequence variations in this area, however, were not species-specifically 

conserved in CPXVs, which is why this group was regarded as polyphyletic. This 

taxonomic arrangement was concordant with previous investigations, where CPXVs were 

classified into different clades based on whole genome analysis (Carroll et al., 2011; 

Dabrowski et al., 2013; Franke et al., 2017). According to the most recent findings, 

CPXVs were divided into four clades, CPXV-like 1, CPXV-like 2, VACV-like and VARV-

like (Franke et al., 2017). In our study, we could identify seven CPXV variants when 

referring only to the amino acid sequences of the epitope complex #1A-D (Fig. 5). 

 

The A27 protein was formerly categorized as a fusion protein (Gong et al., 1990; 

Rodriguez and Esteban, 1987; Rodriguez et al., 1985) and believed to mediate the direct 

fusion of virus and cytoplasm membranes (“fusion from without”) (Rodriguez and 

Esteban, 1987; Rodriguez et al., 1987). Hitherto, A27 is not settled to be a part of a fusion 

complex consisting of at least 11 different proteins (A16, A21, A28, F9, G3, G9, H2, J5, 
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L1, L5 and O3), being conserved in all OPXVs (Diesterbeck et al., 2018; Moss, 2012, 

2016). Still, there is also evidence in the literature that the A27 and A17 proteins form a 

second fusion complex (Kochan et al., 2008), which was assigned to fusion proteins type 

I. Typical for type I viral fusion proteins is the presence of a coiled-coil structure (Vazquez 

et al., 1998), which is, beside the A27, also seen in influenza virus HA2 (Chen et al., 

1995), Ebola GP2 (Dessen et al., 2000; Weissenhorn et al., 1998) and HIV gp41 (Skehel 

and Wiley, 1998). The authors suggested that the A17-A27-complex is transported to the 

cell membrane during viral replication and mediates fusion of the infected cells (“fusion 

from within”), meaning that A17 is the membrane-anchoring domain with the fusion 

peptide (aa 18-34) and A27 is responsible for the oligomerization as well as the 

membrane-attachment (Kochan et al., 2008). A27 binds to the GAG heparan sulfate of 

neighboring cells. This binding is mediated through the aa residues 26-KKPE-29 (Chang 

et al., 2013; Chung et al., 1998; Hsiao et al., 1998; Shih et al., 2009), resulting in an 

accumulation of cells in the immediate vicinity (Kochan et al., 2008). In several studies, 

mAbs against the A27 protein were able to block the “fusion from within” in a model 

described previously (Gong et al., 1990; Rodriguez and Esteban, 1987; Rodriguez et al., 

1985). Therefore, we used this model to test inhibition of the fusion by three anti-A27-

mAbs from our collection, whose antigenic sites were exactly mapped. Through low-pH 

treatment (Doms et al., 1990; Gong et al., 1990), we were able to induce fusion of VACV 

infected cells. This “fusion from within” was indicated by the formation of large and 

structureless fused cell areas known as syncytia (Gong et al., 1990). The mAb 3F5/2D5 

directed to epitope #1C (aa 26-KKPEAK-31) was not able to block the fusion, although 

the GAG binding site being inside its epitope. Acid-induced syncytia were formed. By 

adding the mAb 5B4/2F2 directed to epitope #1A (aa 32-REAIVKAD-39) and binding 

just more to the C-terminus of the mAb 3F5/2D5, fusion could be inhibited. The reason 

for the inhibition is not clear at the moment. However, at least a steric hindrance of the 
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mAb could be ascertained. Moreover, antibodies may directly interfere with interactions 

by occupying binding sites or sterically hindering binding sites in close proximity. In 

addition, antibody binding affects protein conformation, and different antibodies have 

different effects on protein conformation that may alter distant interacting sites. The mAb 

5B1/2G6 binding to the C-terminal epitope #5 (aa 68-71) failed to block the fusion by 

showing polykaryon formation, too. The epitope of this mAb is directly related to the 

binding site (aa 71-72) of the A26 fusion suppressor protein to the A27 protein, but there 

was no direct influence on the fusion event. 

In summary, we mapped six antigenic sites on the A27 protein of VACV. This enabled us 

to interpret species-specific epitope variations and conservations of various OPXVs to 

get an impression of their phylogenic relationships. To elucidate structure function 

relationships in more detail, co-crystallization might be helpful for future investigations. 

Moreover, the data on antigenic sites for cross-reacting or monospecific neutralizing 

antibodies are of high relevance for target directed screening of human immunoglobulin 

libraries to generate specifically engineered human recombinant antibodies, which might 

help for controlling any future outbreak of zoonotic orthopoxviruses. 
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SUPPLEMENTAL MATERIAL 
Supplemental figures 

 
FIG S1 Layout of the poxvirus microarray chip. A: The chip contains eight arrays 
arranged in the same manner. B: Arrangement of spots on each array: yellow is peptides 
representing A27 antigen of Vaccinia virus Western Reserve; red, D8; blue, H3; grey, 
L1; green, A33; orange, B5. The lower part of the array contains peptide sequence 
variations of A27 (lilac) and D8 (pink) antigens of the other orthopoxviruses. Sites of 
the sample deposition depicted by the plus symbol. The number serves as the batch 
identification and letters represent the chip name. C: Amino acid sequence of the first 
three peptides covering A27, corresponding to spots #1-#3 in B. 

 

 
FIG S2 The 14 kDa A27 protein of VACV Copenhagen was synthesized on a SPOTs 
membrane as 101 decapeptides with 9 aa overlap to cover the whole sequence of 110 
aa. By immunodetection with the mAb 5B4/2F2 seven spots were identified (No. 10-

Peptide Nr. 10: E A K R E A I V K A

Peptide Nr. 11: A K R E A I V K A D
Peptide Nr. 12: K R E A I V K A D E
Peptide Nr. 13: R E A I V K A D E D

Peptide Nr. 14: E A I V K A D E D D
Peptide Nr. 15: A I V K A D E D D N
Peptide Nr. 16: I V K A D E D D N E
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16) to carry the target sequences spots 11-13 showed the strongest signals. The eight 
amino acids the three peptides had in common were represented to the sequence region 
32-REAIVKAD-39. The minimal sequence essential for binding is 35-IVKA-38 and 
marked in red. 

 

 
FIG S3. The OPXV microarray is based on 521 15-mer peptides overlapping by 12 aa. 
These peptides were spotted by SPOT technique on a chip. After immunodetection, the 
responding spots with the highest common intensity were chosen and outlined. Epitope 
#1A (mAb 5B4/2F2) was directed to a sequence region aa 31-KREAIVKAD-39. 
Epitopes #1B (mAb 2C11/1B4), #1C (mAb 3F5/2D5) and #1D (mAb 1D5/2D11) were 
all assigned to the aa region 28-PEAKRE-33. Epitope #4 (mAb 2G8/1E4) was allocated 
to aa 7-PGDDDLAIPATE-18. MAb 5B1/1A11 (epitope #5), however, did not react with 
any of the peptides on the chip. 

 

 
FIG S4. Immunological detection of ECTV- and MPXV-specific aa exchanges of the 
epitope #1A sequence on SPOTs membrane by the mAb 5B4/2F2. Spot 89: VACV 
epitope #1A (32-REAIVKAD-39). Spot 90: MPXV epitope #1A (32-REAIVKAY-39). 
Spot 91: ECTV epitope #1A (32-HEATVKAD-39). The aa exchanges led unequivocally 
to the loss of the binding of the mAb 5B4/2F2. The weak response on spot 91 was also 
observed with the secondary antibody used for detection. 

Spot 89: Epitope 1A in VACV Copenhagen:  REAIVKAD
Spot 90: Epitope 1A in MPXV Copenhagen: REAIVKAY
Spot 91: Epitope 1A in ECTV Munich 1:        HEATVKAD

aa 32 33 34 35 36 37 38 39

919089
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Supplemental tables 
Table S1 Reactivity of six A27-specific mAbs on the OPXV microarray chip. The amino acids marked in red are species-specific sequence variations to the 
VACV WR or epitope sequence exchanges. 

 
 
 

Spot 
ID 

 
 
 

Spot Designation 

 
 
 

Sequence Variations 

Epitope 

1A 
Epitope 

1B 
Epitope 

1C 
Epitope 

1D 

Epitope 

4 

Epitope 

5 

Epitope sequence according to SPOTs Membrane 

REAIVKAD PEAKRE KKPEAK PEAKREA DDDLAI IEKC 

Epitope sequence according to OPXV Microarray Chip 

KREAIVKAD PEAKRE PEAKRE PEAKRE PGDDDLAIPATE n.d. 

2 VACV WR (AAO89429.1) TLFPGDDDLAIPATE       
3 PGDDDLAIPATEFFS       

478 VACV WR (AAO89429.1) LFPGDDDLAIPATEF       
479 SkPXV (AAQ72922.1)* LFPGDDDMAIPATEF       

7  
 

VACV WR (AAO89429.1) 

FFSTKAAKKPEAKRE       
8 TKAAKKPEAKREAIV       
9 AKKPEAKREAIVKAD       

10 PEAKREAIVKADEDD       
11 KREAIVKADEDDNEE       

481 VARV (ABF26518.1) AKKPEAKHEAIVKAD       
482 VACV (AAA48152.1)* DKKPEAKREAIVKAD       
522 CMLV (CAA52999.1)* AKKPEAKREAIIKAD       
483 CPXV (AAP48887.1)* AKKPEAKREAIVKAE       
484 CPXV (AAP48888.1) AKKPEAKREAFVKAE       
485 CPXV (AAQ72894.1)* AKKQEAKREAIVKAE       
486 CPXV (AAQ72906.1) AKKPEAKHEAIVKAE       
488 ECTV (CAA53000.1)* AKKPEDKHEATVKAD       
489 MPXV (CAA52998.1)* AKNPETKREAIVKAY       
490 RCNV (ABD37609.1) AKKPEAKRKVVEKAD       
491 VPXV (ABD37608.1) AKKPEEKRKAVVKAE       
492 SkPXV (AAQ72922.1)* AKKPEEPVKRKVVKN       
497 VARV (CAA47501.1)* TKFEQIEKCCKRNDE       
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*Accession number is representative for several sequences of this type. All GenBank accession numbers can be found in Table S2. Different shades of grey 
represent strength of the fluorescence intensity. n.d.: not detected 

                                                   Weak reaction 
                                                    Strong reaction 
 
 
 
Table S2 Detection of the six A27 antigenic sites by the corresponding anti-OPXV-mAbs via SPOTs-membrane and OPXV peptide microarray chip.  

Epitope Epitope sequences determined on SPOTs-membrane:           Epitope sequence determined on OPXV peptide micro-
array: 

 AA position AA composition AA position AA composition 

1A 32-39 REAIVKAD 31-39 KREAIVKAD 

1B 28-33 PEAKRE 28-33 PEAKRE 

1C 26-31 KKPEAK 28-33 PEAKRE 

1D 28-34 PEAKREA 28-33 PEAKRE 

4 9-14 DDDLAI 7-18 PGDDDLAIPATE 

5 68-71 IEKC - Not detected 
The matches within the epitope sequence are highlighted and underlined. 

 



STUDIES	PERFORMED	

	 55	

Table S3 Mapping of epitope #4 based on 391 complete and partial amino acid  
sequences from the NCBI GenBank database.  

Linear A27 epitope aa 9-14 OPXV genera Number of DB en-
tries 

DDDLAI  VARV major 66/67 

 VARV minor 2/2 

 VACV 60/61 

 BPXV 23/26 

 HSPV 2/2 

 RPXV 2/2 

 CMLV 17/18 

 CPXV 128/134 

 ECTV 13/14 

 MPXV 57/57 

 TaPXV 2/3 

DDDLAT  BPXV 3/26 

DDDMAI  SkPXV 3/3 

N-Terminus truncated  VARV major 1/67 

CMLV 1/18 

CPXV 6/133 

ECTV 1/14 

TaPXV 1/3 

RCNV 1/1 

VPXV 1/1 

RARSPR  VACV 1/61 
Differences within the epitope sequence are highlighted. 
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Table S4 391 amino acid sequences of the OPXV A27 protein homologs available so far in the GenBank, being analyzed with respect to 
species-specific conservation or variation of the six sequential antigenic sites mapped. 
OPXV 
Species 

 

OPXV Strain/ Isolate 
 

Number 
 

ID Protein 
 

Protein Sequence 
Lengt 
h 

 

Source 
 

Published 

    Epitope 4 Epitopes 1A-1D Epitope 5    

BPXV Aur04 1 AAZ42170.1 MDGTLFPGDDDLAIPATEFFSTKAAKKPEAKREAIVKADEDDNEETLKQRLTNLEKKITNVTTKFEQIEKCCKRNDEVLFRLENHAETLRAAMISLAKKIDVQTGRRPYE 110 DQ117952.1 9/22/2006 

BPXV BP4 2 AAZ42169.1 MDGTLFPGDDDLAIPATEFFSTKAAKKPEAKREAIVKADEDDNEETLKQRLTNLEKKITNVTTKFEQIEKCCKRNDEVLFRLENHAETLRAAMISLAKKIDVQTGRRPYE 110 DQ117951.1 9/22/2006 

BPXV Ind99 3 AAZ42172.1 MDGTLFPGDDDLAIPATEFFSTKAAKKPEAKREAIVKADEDDNEETLKQRLTNLEKKITNVTTKFEQIEKCCKRNDEVLFRLENHAETLRAAMISLAKKIDVQTGRRPYE 110 DQ117954.1 9/22/2006 

BPXV Vij96 4 AAZ42171.1 MDGTLFPGDDDLAIPATEFFSTKAAKKPEAKREAIVKADEDDNEETLKQRLTNLEKKITNVTTKFEQIEKCCKRNDEVLFRLENHAETLRAAMISLAKKIDVQTGRRPYE 110 DQ117953.1 9/22/2006 

BPXV Buffalopox virus clone 1 5 ACR15809.1 MDGTLFPGDDDLAIPATEFFSTKAAKKPEAKREAIVKADEDDNEETLKQRLTNLEKKITNVTTKFEQIEKCCKRNDEVLFRLENHAETLRAAMISLAKKIDVQTGRRPYE 110 FJ748495.1 5/23/2009 

BPXV Buffalopox virus clone 2 6 ACR15810.1 MDGTLFPGDDDLAIPATEFFSTKAAKKPEAKREAIVKADEDDNEETLKQRLTNLEKKITNVTTKFEQIEKCCKRNDEVLFRLENHAETLRAAMISLAKKIDVQTGRRPYE 110 FJ748496.1 5/23/2009 

BPXV Pune/09 7 ACZ06589.1 MDGTLFPGDDDLAIPATEFFSTKAAKKPEAKREAIVKADEDDNEETLKQRLTNLEKKITNVTTKFEQIEKCCKRNDEVLFRLESHAETLRAAMISLAKKIDVQTGRRPYE 110 GQ443265.1 11/30/2009 

BPXV Pune/H/09 8 ACZ06590.1 MDGTLFPGDDDLAIPATEFFSTKAAKKPEAKREAIVKADEDDNEETLKQRLTNLEKKITNVTTKFEQIEKCCKRNDEVLFRLENHAETLRAAMISLAKKIDVQTGRRPYE 110 GQ443266.1 11/30/2009 

BPXV SP69 Gujarat/08 9 ACZ28777.1 MDGTLFPGDDDLAIPATEFFSTKAAKKPEAKREAIVKADEDDNEETLKQRLTNLEKKITNVTTKFEQIEKCCKRNDEVLFRLENHVETLRAAMISLAKKIDVQTGRRPYE 110 GQ464367.1 11/30/2009 

BPXV SP70 Hyderabad/08 10 ACZ28778.1 MDGTLFPGDDDLAIPATEFFSTKAAKKPEAKREAIVKADEDDNEETLKQRLTNLEKKITNVTTKFEQIEKCCKRNDEVLFRLENHAETLRAAMISLAKKIDVQTGRRPYE 110 GQ464368.1 11/30/2009 

BPXV SP66 Pune/08 11 ACZ28776.1 MDGTLFPGDDDLAIPATEFFSTKAAKKPEAKREAIVKADEDDNEETLKQRLTNLEKKITNVTTKFEQIEKCCKRNDEVLFRLENHAETLRAAMISLAKKIDVQTGRRPYE 110 GQ464366.1 11/30/2009 
BPXV Bareilly/99 12 AEA02828.1 MDGTLFPGDDDLAIPATEFFSTKAAKKPEAKREAIVKADEDDNEETLKQRLTNLEKKITNVTTKFEQIEKCCKRNDEVLFRLENHAETLRAAMISLAKKIDVQTGRRPYE 110 HM008906.1 3/31/2011 

BPXV Bareilly/00 13 AEA02829.1 MDGTLFPGDDDLAIPATEFFSTKAAKKPEAKREAIVKADEDDNEETLKQRLTNLEKKITNVTTKFEQIEKCCKRNDEVLFRLENHAETLRAAMISLAKKIDVQTGRRPYE 110 HM008907.1 3/31/2011 

BPXV Bangalore/03 14 AEA02836.1 MDGTLFPGDDDLAIPATEFFSTKAAKKPEAKREAIVKADEDDNEETLKQRLTNLEKKITNVTTKFEQIEKCCKRNDEVLFRLENHAETLRAAMISLAKKIDVQTGRRPYE 110 AEA02836.1 3/31/2011 

BPXV Bangalore/09 15 AEA02832.1 MDGTLFPGDDDLAIPATEFFSTKAAKKPEAKREAIVKADEDDNEETLKQRLTNLEKKITNVTTKFEQIEKCCKRNDEVLFRLENHAETLRAAMISLAKKIDVQTGRRPYE 110 HM008910.1 3/31/2011 

BPXV Vij/97 16 AEA02830.1 MDGTLFPGDDDLAIPATEFFSTKAAKKPEAKREAIVKADEDDNEETLKQRLTNLEKKITNVTTKFEQIEKCCKRNDEVLFRLENHAETLRAAMISLAKKIDVQTGRRPYE 110 HM008908.1 3/31/2011 

BPXV Krisna/07 17 AEA02827.1 MDGTLFPGDDDLAIPATEFFSTKAAKKPEAKREAIVKADEDDNEETLKQRLTNLEKKITNVTTKFEQIEKCCKRNDEVLFRLENHAETLRAAMISLAKKIDVQTGRRPYE 110 HM008905.1 3/31/2011 

BPXV Nel/06 18 AEA02826.1 MDGTLFPGDDDLAIPATEFFSTKAAKKPEAKREAIVKADEDDNEETLKQRLTNLEKKITNVTTKFEQIEKCCKRNDEVLFRLENHAETLRAAMISLAKKIDVQTGRRPYE 110 HM008904.1 3/31/2011 

BPXV Pune 1/04 19 AEA02824.1 MDGTLFPGDDDLAIPATEFFSTKAAKKPEAKREAIVKADEDDNEETLKQRLTNLEKKITNVTTKFEQIEKCCKRNDEVLFRLENHAETLRAAMISLAKKIDVQTGRRPYE 110 HM008902.1 3/31/2011 

BPXV Pune 2/04 20 AEA02825.1 MDGTLFPGDDDLAIPATEFFSTKAAKKPEAKREAIVKADEDDNEETLKQRLTNLEKKITNVTTKFEQIEKCCKRNDEVLFRLENHAETLRAAMISLAKKIDVQTGRRPYE 110 HM008903.1 3/31/2011 

BPXV Pune/06 21 AEA02831.1 MDGTLFPGDDDLAIPATEFFSTKAAKKPEAKREAIVKADEDDNEETLKQRLTNLEKKITNVTTKFEQIEKCCKRNDEVLFRLENHVETLRAAMISLAKKIDVQTGRRPYE 110 HM008909.1 3/31/2011 

BPXV Pune/07 22 AEA02835.1 MDGTLFPGDDDLAIPATEFFSTKAAKKPEAKREAIVKADEDDNEETLKQRLTNLEKKITNVTTKFEQIEKCCKRNDEVLFRLENHAETLRAAMISLAKKIDVQTGRRPYE 110 HM008913.1 3/31/2011 

BPXV Karachi 2005 23 AVO21155.1 MDGTLFPGDDDLAIPATEFFSTKAAKKPEAKREAIVKADEDDNEETLKQRLTNLEKKITNVTTKFEQIEKCCKRNDEVLFRLENHAETLRAAMISLAKKIDVQTGRRPYE 110 MG599038.1 3/21/2018 

BPXV SP56 BPXV Izatnagar/08 24 ACZ28775.1 MDGTLFPGDDDLATPATEFFSTKAAKKPEAKREAIVKADEDDNEETLKQRLTNLEKKITNVTTKFEQIEKCCKRNDEVLFRLENHAETLRAAMISLAKKIDVQTGRRPYE 110 GQ464365.1 11/30/2009 

BPXV Pune/milk 25 AEA02833.1 MDGTLFPGDDDLATPATEFFSTKAAKKPEAKREAIVKADEDDNEETLKQRLTNLEKKITNVTTKFEQIEKCCKRNDEVLFRLENHAETLRAAMISLAKKIDVQTGRRPYE 110 HM008911.1 3/31/2011 

BPXV Hyd 17/04 26 AEA02834.1 MDGTLFPGDDDLATPATEFFSTKAAKKPEAKREAIVKADEDDNEETLKQRLTNLEKKITNVTTKFEQIEKCCKRNDEVLFRLENHAETLRAAMISLAKKIDVQTGRRPYE 110 HM008912.1 3/31/2011 

        

    Epitope 4 Epitopes 1A-1D Epitope 5    

CMLV CMS 1 AAG37638.1 MDGTLFPGDDDLAIPATEFFSTKAAKKPEAKREAIIKADGDDNEETLKQRLTNLEKKITNVTTKFEQIEKCCKRNDEVLFRLENHAETLRAAMISLAKKIDVQTGRRPYDNLTLLFN 117 AY009089.1 7/30/2002 

CMLV Cp-1 2 CAA52999.1 MDGTLFPGDDDLAIPATEFFSTKAAKKPEAKREAIIKADGDDNEETLKQRLTNLEKKITNVTTKFEQIEKCCKRNDEVLFRLENHAETLRAAMISLAKKIDVQTGRRPYDNLTLLFN 117 X75156.1 7/31/2002 

CMLV M-96 3 AAL73853.1 MDGTLFPGDDDLAIPATEFFSTKAAKKPEAKREAIIKADGDDNEETLKQRLTNLEKKITNVTTKFEQIEKCCKRNDEVLFRLENHAETLRAAMISLAKKIDVQTGRRPYDNLTLLFN 117 AF438165.1 6/16/2003 

CMLV Cp-1 4 AAP48881.1 MDGTLFPGDDDLAIPATEFFSTKAAKKPEAKREAIIKADGDDNEETLKQRLTNLEKKITNVTTKFEQIEKCCKRNDEVLFRLENHAETLRAAMISLAKKIDVQTGRRPYDNLTLLFN 117 AY223496.1 5/12/2004 

CMLV NIGER 5 AAQ72915.1 MDGTLFPGDDDLAIPATEFFSTKAAKKPEAKREAIIKADGDDNEETLKQRLTNLEKKITNVTTKFEQIEKCCKRNDEVLFRLENHAETLRAAMISLAKKIDVQTGRRPYDNLTLLFN 117 AY299081.1 6/30/2004 

CMLV SAUDI 6 AAQ72916.1 MDGTLFPGDDDLAIPATEFFSTKAAKKPEAKREAIIKADGDDNEETLKQRLTNLEKKITNVTTKFEQIEKCCKRNDEVLFRLENHAETLRAAMISLAKKIDVQTGRRPYDNLTLLFN 117 AY299082.1 6/30/2004 

CMLV MAURETANIA 7 AAQ72917.1 MDGTLFPGDDDLAIPATEFFSTKAAKKPEAKREAIIKADGDDNEETLKQRLTNLEKKITNVTTKFEQIEKCCKRNDEVLFRLENHAETLRAAMISLAKKIDVQTGRRPYDNLTLLFN 117 AY299083.1 6/30/2004 

CMLV CP-14 8 AAQ72918.1 MDGTLFPGDDDLAIPATEFFSTKAAKKPEAKREAIIKADGDDNEETLKQRLTNLEKKITNVTTKFEQIEKCCKRNDEVLFRLENHAETLRAAMISLAKKIDVQTGRRPYDNLTLLFN 117 AY299084.1 6/30/2004 

CMLV CP-5 9 AAQ72919.1 MDGTLFPGDDDLAIPATEFFSTKAAKKPEAKREAIIKADGDDNEETLKQRLTNLEKKITNVTTKFEQIEKCCKRNDEVLFRLENHAETLRAAMISLAKKIDVQTGRRPYDNLTLLFN 117 AY299085.1 6/30/2004 

CMLV CP-202/95H 10 AAQ72920.1 MDGTLFPGDDDLAIPATEFFSTKAAKKPEAKREAIIKADGDDNEETLKQRLTNLEKKITNVTTKFEQIEKCCKRNDEVLFRLENHAETLRAAMISLAKKIDVQTGRRPYDNLTLLFN 117 AY299086.1 6/30/2004 

CMLV CP-1260 11 AAQ72921.1 MDGTLFPGDDDLAIPATEFFSTKAAKKPEAKREAIIKADGDDNEETLKQRLTNLEKKITNVTTKFEQIEKCCKRNDEVLFRLENHAETLRAAMISLAKKIDVQTGRRPYDNLTLLFN 117 AY299087.1 6/30/2004 

CMLV DEL09 12 ACV88142.1 MDGTLFPGDDDLAIPATEFFSTKAAKKPEAKREAIIKADGDDNEETLKQRLTNLEKKITNVTTKFEQIEKCCKRNDEVLFRLENHAETLRAAMISLAKKIDVQTGRRPYE 110 GQ465930.1 8/16/2011 

CMLV BAR09 13 ACV88140.1 MDGTLFPGDDDLAIPATEFFSTKAAKKPEAKREAIIKADGDDNEETLKQRLTNLEKKITNVTTKFEQIEKCCKRNDEVLFRLENHAETLRAAMVSLAKKIDVQTGRRPYE 110 GQ465928.1 8/16/2011 

CMLV JSL09 14 ACV88141.1 MDGTLFPGDDDLAIPATEFFSTKAAKKPEAKREAIIKADGDDNEETLKQRLTNLEKKITNVTTKFEQIEKCCKRNDEVLFRLENHAETLRAAMISLAKKIDVQTGRRPYE 110 GQ465929.1 8/16/2011 

CMLV Al-Ahsaa 15 AEX54892.1 DLAIPATEFFSTKAAKKPEAKREAIIKADGDDNEETLKQRLTNLEKKITNVTTKFEQIEKCCKRNDEVLFRLENHAETLRAAMISLAKKIDVQTGRRPYE 110 JN805951.1 1/15/2012 

CMLV M-96 16 NP_570536.1 MDGTLFPGDDDLAIPATEFFSTKAAKKPEAKREAIIKADGDDNEETLKQRLTNLEKKITNVTTKFEQIEKCCKRNDEVLFRLENHAETLRAAMISLAKKIDVQTGRRPYDNLTLLFN 117 NC_003391.1 11/22/2012 

CMLV 0408151v 17 AKU40516.1 MDGTLFPGDDDLAIPATEFFSTKAAKKPEAKREAIIKADGDDNEETLKQRLTNLEKKITNVTTKFEQIEKCCKRNDEVLFRLENHAETLRAAMISLAKKIDVQTGRRPYDNLTLLFN 117 KP768318.1 8/9/2015 
CMLV BAR09 18 ACV88139.1 MDGTLFPGDDDLAIPATEFFSTKAAKRPEAKREAIIKADGDDNEETLKQRLTNLEKKITNVTTKFEQIEKCCKRNDEVLFRLENHAETLRAAMISLAKKIDVQTGRRPYE 110 GQ465927.1 8/16/2011 

        

    Epitope 4 Epitopes 1A-1D Epitope 5    

CPXV GRI-90 1 CAB11758.1 MDGTLFPGDDDLAIPATEFFSTKAAKKPEAKREAIVKADGDDNEETLKQRLTNLEKKITNVTTKFEQIEKCCKRNDEVLFRLENHAETLRAAMISLAKKIDVQTGRRPYE 110 Z99060.1 3/19/2003 

CPXV 98/5 2 AAP48885.1 MDGTLFPGDDDLAIPATEFFSTKAAKKPEAKREAIVKADGDDNEETLKQRLTNLEKKITNVTTKFEQIEKCCKRNDEVLFRLENHAETLRAAMISLAKKIDVQTGRRPYE 110 AY223500.1 5/12/2004 

CPXV EP-5 3 AAP48882.1 MDGTLFPGDDDLAIPATEFFSTKAAKKPEAKREAIVKADGDDNEETLKQRLTNLEKKITNVTTKFEQIEKCCKRNDEVLFRLENHAETLRAAMISLAKKIDVQTGRRPYE 110 AY223497.1 5/12/2004 

CPXV EXP-GR 4 AAP48884.1 MDGTLFPGDDDLAIPATEFFSTKAAKKPEAKREAIVKADGDDNEETLKQRLTNLEKKITNVTTKFEQIEKCCKRNDEVLFRLENHAETLRAAMISLAKKIDVQTGRRPYE 110 AY223499.1 5/12/2004 

CPXV Revin 5 AAP48883.1 MDGTLFPGDDDLAIPATEFFSTKAAKKPEAKREAIVKADGDDNEETLKQRLTNLEKKITNVTTKFEQIEKCCKRNDEVLFRLENHAETLRAAMISLAKKIDVQTGRRPYE 110 AY223498.1 5/12/2004 

CPXV EP-1 6 AAQ72874.1 MDGTLFPGDDDLAIPATEFFSTKAAKKPEAKREAIVKADGDDNEETLKQRLTNLEKKITNVTTKFEQIEKCCKRNDEVLFRLENHAETLRAAMISLAKKIDVQTGRRPYE 110 AY299040.1 6/30/2004 

CPXV EP-3 7 AAQ72877.1 MDGTLFPGDDDLAIPATEFFSTKAAKKPEAKREAIVKADGDDNEETLKQRLTNLEKKITNVTTKFEQIEKCCKRNDEVLFRLENHAETLRAAMISLAKKIDVQTGRRPYE 110 AY299043.1 6/30/2004 

CPXV EP-5 8 AAQ72876.1 MDGTLFPGDDDLAIPATEFFSTKAAKKPEAKREAIVKADGDDNEETLKQRLTNLEKKITNVTTKFEQIEKCCKRNDEVLFRLENHAETLRAAMISLAKKIDVQTGRRPYE 110 AY299042.1 6/30/2004 
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CPXV EP-7 9 AAQ72878.1 MDGTLFPGDDDLAIPATEFFSTKAAKKPEAKREAIVKADGDDNEETLKQRLTNLEKKITNVTTKFEQIEKCCKRNDEVLFRLENHAETLRAAMISLAKKIDVQTGRRPYE 110 AY299044.1 6/30/2004 

CPXV EP-8 10 AAQ72879.1 MDGTLFPGDDDLAIPATEFFSTKAAKKPEAKREAIVKADGDDNEETLKQRLTNLEKKITNVTTKFEQIEKCCKRNDEVLFRLENHAETLRAAMISLAKKIDVQTGRRPYE 110 AY299045.1 6/30/2004 

CPXV 28-00 11 AAQ72880.1 MDGTLFPGDDDLAIPATEFFSTKAAKKPEAKREAIVKADGDDNEETLKQRLTNLEKKITNVTTKFEQIEKCCKRNDEVLFRLENHAETLRAAMISLAKKIDVQTGRRPYE 110 AY299046.1 6/30/2004 

CPXV FINNLAND 12 AAQ72914.1 MDGTLFPGDDDLAIPATEFFSTKAAKKPEAKREAIVKADGDDNEETLKQRLTNLEKKITNVTTKFEQIEKCCKRNDEVLFRLENHAETLRAAMISLAKKIDVQTGRRPYE 110 AY299080.1 6/30/2004 

CPXV OPV-89-1 13 AAQ72887.1 MDGTLFPGDDDLAIPATEFFSTKAAKKPEAKREAIVKADGDDNEETLKQRLTNLEKKITNVTTKFEQIEKCCKRNDEVLFRLENHAETLRAAMISLAKKIDVQTGRRPYE 110 AY299053.1 6/30/2004 

CPXV OPV-98-2 14 AAQ72881.1 MDGTLFPGDDDLAIPATEFFSTKAAKKPEAKREAIVKADGDDNEETLKQRLTNLEKKITNVTTKFEQIEKCCKRNDEVLFRLENHAETLRAAMISLAKKIDVQTGRRPYE 110 AY299047.1 6/30/2004 

CPXV OPV-99-1 15 AAQ72882.1 MDGTLFPGDDDLAIPATEFFSTKAAKKPEAKREAIVKADGDDNEETLKQRLTNLEKKITNVTTKFEQIEKCCKRNDEVLFRLENHAETLRAAMISLAKKIDVQTGRRPYE 110 AY299048.1 6/30/2004 

CPXV RAT-MOSCOW 16 AAQ72875.1 MDGTLFPGDDDLAIPATEFFSTKAAKKPEAKREAIVKADGDDNEETLKQRLTNLEKKITNVTTKFEQIEKCCKRNDEVLFRLENHAETLRAAMISLAKKIDVQTGRRPYE 110 AY299041.1 6/30/2004 

CPXV GRI-90 17 CAD90695.1 MDGTLFPGDDDLAIPATEFFSTKAAKKPEAKREAIVKADGDDNEETLKQRLTNLEKKITNVTTKFEQIEKCCKRNDEVLFRLENHAETLRAAMISLAKKIDVQTGRRPYE 110 X94355.2 4/18/2005 

CPXV Austria 1999 18 ADZ24156.1 MDGTLFPGDDDLAIPATEFFSTKAAKKPEAKREAIVKADGDDNEETLKQRLTNLEKKITNVTTKFEQIEKCCKRNDEVLFRLENHAETLRAAMISLAKKIDVQTGRRPYE 110 HQ407377.1 8/9/2011 

CPXV Finland_2000_MAN 19 ADZ29269.1 MDGTLFPGDDDLAIPATEFFSTKAAKKPEAKREAIVKADGDDNEETLKQRLTNLEKKITNVTTKFEQIEKCCKRNDEVLFRLENHAETLRAAMISLAKKIDVQTGRRPYE 110 HQ420893.1 8/9/2011 

CPXV Germany_1998_2 20 ADZ30126.1 MDGTLFPGDDDLAIPATEFFSTKAAKKPEAKREAIVKADGDDNEETLKQRLTNLEKKITNVTTKFEQIEKCCKRNDEVLFRLENHAETLRAAMISLAKKIDVQTGRRPYE 110 HQ420897.1 8/9/2011 

CPXV HumGri07/1 21 AGZ01459.1 MDGTLFPGDDDLAIPATEFFSTKAAKKPEAKREAIVKADGDDNEETLKQRLTNLEKKITNVTTKFEQIEKCCKRNDEVLFRLENHAETLRAAMISLAKKIDVQTGRRPYE 110 KC813511.1 11/3/2013 

CPXV EleGri07/1 22 AGZ00616.1 MDGTLFPGDDDLAIPATEFFSTKAAKKPEAKREAIVKADGDDNEETLKQRLTNLEKKITNVTTKFEQIEKCCKRNDEVLFRLENHAETLRAAMISLAKKIDVQTGRRPYE 110 KC813507.1 11/3/2013 

CPXV HumAac09/1 23 AGZ00825.1 MDGTLFPGDDDLAIPATEFFSTKAAKKPEAKREAIVKADGDDNEETLKQRLTNLEK_ITNVTTKFEQIEKCCKRNDEVLFRLENHAETLRAAMISLAKKIDVQTGRRPYE 109 KC813508.1 11/3/2013 

CPXV HumGra07/1 24 AGZ01246.1 MDGTLFPGDDDLAIPATEFFSTKAAKKPEAKREAIVKADGDDNEETLKQRLTNLEKKITNVTTKFEQIEKCCKRNDEVLFRLENHAETLRAAMISLAKKIDVQTGRRPYE 110 KC813510.1 11/3/2013 

CPXV HumKre08/1 25 AGZ01668.1 MDGTLFPGDDDLAIPATEFFSTKAAKKPEAKREAIVKADGDDNEETLKQRLTNLEKKITNVTTKFEQIEKCCKRNDEVLFRLENHAETLRAAMISLAKKIDVQTGRRPYE 110 KC813512.1 11/3/2013 

CPXV HumLit08/1 26 AGY97627.1 MDGTLFPGDDDLAIPATEFFSTKAAKKPEAKREAIVKADGDDNEETLKQRLTNLEKKITNVTTKFEQIEKCCKRNDEVLFRLENHAETLRAAMISLAKKIDVQTGRRPYE 110 KC813493.1 11/3/2013 

CPXV RatAac09/1 27 AGY99343.1 MDGTLFPGDDDLAIPATEFFSTKAAKKPEAKREAIVKADGDDNEETLKQRLTNLEKKITNVTTKFEQIEKCCKRNDEVLFRLENHAETLRAAMISLAKKIDVQTGRRPYE 110 KC813501.1 11/3/2013 

CPXV RatGer09/1 28 AGY99763.1 MDGTLFPGDDDLAIPATEFFSTKAAKKPEAKREAIVKADGDDNEETLKQRLTNLEKKITNVTTKFEQIEKCCKRNDEVLFRLENHAETLRAAMISLAKKIDVQTGRRPYE 110 KC813503.1 11/3/2013 

CPXV RatKre08/2 29 AGZ00194.1 MDGTLFPGDDDLAIPATEFFSTKAAKKPEAKREAIVKADGDDNEETLKQRLTNLEKKITNVTTKFEQIEKCCKRNDEVLFRLENHAETLRAAMISLAKKIDVQTGRRPYE 110 KC813505.1 11/3/2013 

CPXV CEPAD332 30 AHB89673.1 MDGTLFPGDDDLAIPATEFFSTKAAKKPEAKREAIVKADGDDNEETLKQRLTNLEKKITNVTTKFEQIEKCCKRNDEVLFRLENHAETLRAAMISLAKKIDVQTGRRPYE 110 KC592404.1 12/28/2013 

CPXV CEPAD333 31 AHB89677.1 MDGTLFPGDDDLAIPATEFFSTKAAKKPEAKREAIVKADGDDNEETLKQRLTNLEKKITNVTTKFEQIEKCCKRNDEVLFRLENHAETLRAAMISLAKKIDVQTGRRPYE 110 KC592406.1 12/28/2013 

CPXV CEPAD336 32 AHB89674.1 MDGTLFPGDDDLAIPATEFFSTKAAKKPEAKREAIVKADGDDNEETLKQRLTNLEKKITNVTTKFEQIEKCCKRNDEVLFRLENHAETLRAAMISLAKKIDVQTGRRPYE 110 KC592405.1 12/28/2013 

CPXV RatPox09 33 CRL86650.1 MDGTLFPGDDDLAIPATEFFSTKAAKKPEAKREAIVKADGDDNEETLKQRLTNLEKKITNVTTKFEQIEKCCKRNDEVLFRLENHAETLRAAMISLAKKIDVQTGRRPYE 110 LN864565.1 9/3/2015 

CPXV Ger/2017/Alpaca2 34 SPQ84369.1 MDGTLFPGDDDLAIPATEFFSTKAAKKPEAKREAIVKADGDDNEETLKQRLTNLEKKITNVTTKFEQIEKCCKRNDEVLFRLENHAETLRAAMISLAKKIDVQTGRRPYE 110 LT896732.2 6/15/2018 

CPXV Ger/2015/Human2 35 SPN69117.1 MDGTLFPGDDDLAIPATEFFSTKAAKKPEAKREAIVKADGDDNEETLKQRLTNLEKKITNVTTKFEQIEKCCKRNDEVLFRLENHAETLRAAMISLAKKIDVQTGRRPYE 110 LT993232.1 
LT993231.1 

6/15/2018 

CPXV Ger/2015/Prairie-dog 36 SPN68837.1 MDGTLFPGDDDLAIPATEFFSTKAAKKPEAKREAIVKADGDDNEETLKQRLTNLEKKITNVTTKFEQIEKCCKRNDEVLFRLENHAETLRAAMISLAKKIDVQTGRRPYE 110 6/15/2018 

CPXV Ger/2017/Alpaca1 37 SPN68556.1 MDGTLFPGDDDLAIPATEFFSTKAAKKPEAKREAIVKADGDDNEETLKQRLTNLEKKITNVTTKFEQIEKCCKRNDEVLFRLENHAETLRAAMISLAKKIDVQTGRRPYE 110 LT993230.1 

LT993228.1 
LT896722.1 

6/15/2018 

CPXV Ger/2017/common vole FMEimka 38 SPN68277.1 MDGTLFPGDDDLAIPATEFFSTKAAKKPEAKREAIVKADGDDNEETLKQRLTNLEKKITNVTTKFEQIEKCCKRNDEVLFRLENHAETLRAAMISLAKKIDVQTGRRPYE 110 6/15/2018 

CPXV Ger/2007/Vole 39 SNB49364.1 MDGTLFPGDDDLAIPATEFFSTKAAKKPEAKREAIVKADGDDNEETLKQRLTNLEKKITNVTTKFEQIEKCCKRNDEVLFRLENHAETLRAAMISLAKKIDVQTGRRPYE 110 6/15/2018 

CPXV 89Lcow 40 ABD36429.1 KPEAKREAIVKADGDDNEETLKQRLTNLEKKITNVTTKFEQIEKCCKRNDEV 52 DQ385058.1 7/26/2016 

CPXV A280 41 ABD37539.1 KPEAKREAIVKADGDENEETLKQRLTNLEKKITNVTTKFEQIEKCCKRNDEV 52 DQ374558.1 7/26/2016 

CPXV Kostroma_2015 42 AQQ13014.1 MDGTLFPGDDDLAIPATEFFSTKAAKKPEAKREAIVKADGDDNEETLKQRLTNLEKKITNVTTKFEQIEKCCKRNDEVLFRLENHAETLRAAMISLAKKIDVQTGRRPYE 110 KY369926.1 2/20/2017 

CPXV Germany_1971_EP1 43 ARB50380.1 MDGTLFPGDDDLAIPATEFFSTKAAKKPEAKREAIVKADGDDNEETLKQRLTNLEKKITNVTTKFEQIEKCCKRNDEVLFRLENHAETLRAAMISLAKKIDVQTGRRPYE 110 KY463519.1 4/2/2017 

CPXV Ger/2017/Alpaca2 44 SNB49500.1 MDGTLFPGDDDLAIPATEFFSTKAAKKPEAKREAIVKADGDDNEETLKQRLTNLEKKITNVTTKFEQIEKCCKRNDEVLFRLENHAETLRAAMISLAKKIDVQTGRRPYE 110 LT896732.1 6/23/2017 

CPXV Ger/2012/Alpaca 45 SNB50568.1 MDGTLFPGDDDLAIPATEFFSTKAAKKPEAKREAIVKADGDDNEETLKQRLTNLEKKITNVTTKFEQIEKCCKRNDEVLFRLENHAETLRAAMISLAKKIDVQTGRRPYE 110 LT896726.1 6/15/2018 

CPXV Ger/2015/Human1 46 SNB53463.1 MDGTLFPGDDDLAIPATEFFSTKAAKKPEAKREAIVKADGDDNEETLKQRLTNLEKKITNVTTKFEQIEKCCKRNDEVLFRLENHAETLRAAMISLAKKIDVQTGRRPYE 110 LT896720.1 6/15/2018 

CPXV Ger/2015/Cat2 47 SNB69057.1 MDGTLFPGDDDLAIPATEFFSTKAAKKPEAKREAIVKADGDDNEETLKQRLTNLEKKITNVTTKFEQIEKCCKHNDEVLFRLENHAETLRAAMISLAKKIDVQTGRRPYE 110 LT896727.1 6/15/2018 
CPXV Ger/2015/Cat3 48 SNB51754.1 MDGTLFPGDDDLAIPATEFFSTKAAKKPEAKREAIVKADGDDNEETLKQRLTNLEKKITNVTTKFEQIEKCCKRNDEVLFRLENHAETLRAAMISLAKKIDVQTGRRPYE 110 LT896733.1 6/15/2018 
CPXV Ger/2015/Cat4 49 SNB50797.1 MDGTLFPGDDDLAIPATEFFSTKAAKKPEAKREAIVKADGDDNEETLKQRLTNLEKKITNVTTKFEQIEKCCKRNDEVLFRLENHAETLRAAMISLAKKIDVQTGRRPYE 110 LT896731.1 6/15/2018 

CPXV Ger/2014/Cat2 50 SNB56801.1 MDGTLFPGDDDLAIPATEFFSTKAAKKPEAKREAIVKADGDDNEETLKQRLTNLEKKITNVTTKFEQIEKCCKRNDEVLFRLENHAETLRAAMISLAKKIDVQTGRRPYE 110 LT896725.1 6/15/2018 

CPXV Ger/2010/Cat 51 SNB50433.1 MDGTLFPGDDDLAIPATEFFSTKAAKKPEAKREAIVKADGDDNEETLKQRLTNLEKKITNVTTKFEQIEKCCKRNDEVLFRLENHAETLRAAMISLAKKIDVQTGRRPYE 110 LT896729.1 6/15/2018 

CPXV Ger/2010/Racoon 52 SNB48328.1 MDGTLFPGDDDLAIPATEFFSTKAAKKPEAKREAIVKADGDDNEETLKQRLTNLEKKITNVTTKFEQIEKCCKRNDEVLFRLENHAETLRAAMISLAKKIDVQTGRRPYE 110 LT896730.1 6/15/2018 

CPXV Ger 2010 MKY 53 SNB54163.1 MDGTLFPGDDDLAIPATEFFSTKAAKKPEAKREAIVKADGDENEETLKQRLTNLEKKITNVTTKFEQIEKCCKRNDEVLFRLESHAETLRAAMISLAKKIDVQTGRRPYE 110 LT896721.1 6/15/2018 

CPXV Brighton 54 CAA53001.1 MDGTLFPGDDDLAIPATEFFSTKAAKKPEAKREAIVKAEGDDNEETLKQRLTNLEKKITNVTTKFEQIEKCCKRNDEVLFRLENHAETLRAAMISLAKKIDVQTGRRPYE 110 X75158.1 7/31/2002 

CPXV Hamburg-1985 55 CAB11760.1 MDGTLFPGDDDLAIPATEFFSTKAAKKPEAKREAIVKAEGDDNEETLKQRLTNLEKKITNVTTKFEQIEKCCKRNDEVLFRLENHAETLREAMISLAKEIDVQTGRRPYE 110 Z99062.1 3/19/2003 

CPXV Brighton 56 AAP48887.1 MDGTLFPGDDDLAIPATEFFSTKAAKKPEAKREAIVKAEGDDNEETLKQRLTNLEKKITNVTTKFEQIEKCCKRNDEVLFRLENHAETLRAAMISLAKKIDVQTGRRPYE 110 AY223502.1 5/12/2004 

CPXV EP-2 57 AAP48889.1 MDGTLFPGDDDLAIPATEFFSTKAAKKPEAKREAIVKAEGDDNEETLKQRLTNLEKKITNVTTKFEQIEKCCKRNDEVLFRLENHAETLRAAMISLAKKIDVQTGRRPYE 110 AY223504.1 5/12/2004 

CPXV EP-4 58 AAP48886.1 MDGTLFPGDDDLAIPATEFFSTKAAKKPEAKREAIVKAEGDDNEETLKQRLTNLEKKITNVTTKFEQIEKCCKRNDEVLFRLENHAETLRAAMISLAKKIDVQTGRRPYE 110 AY223501.1 5/12/2004 

CPXV OPV-89-3 59 AAQ72892.1 MDGTLFPGDDDLAIPATEFFSTKAAKKPEAKREAIVKAEGDDNEETLKQRLTNLEKKITNVTTKFEQIEKCCKRNDEVLFRLENHAETLRAAMISLAKKIDVQTGRRPYE 110 AY299058.1 6/30/2004 

CPXV OPV-89-5 60 AAQ72886.1 MDGTLFPGDDDLAIPATEFFSTKAAKKPEAKREAIVKAEGDDNEETLKQRLTNLEKKITNVTTKFEQIEKCCKRNDEVLFRLENHAETLRAAMISLAKKIDVQTGRRPYE 110 AY299052.1 6/30/2004 

CPXV OPV-90-1 61 AAQ72883.1 MDGTLFPGDDDLAIPATEFFSTKAAKKPEAKREAIVKAEGDDNEETLKQRLTNLEKKITNVTTKFEQIEKCCKRNDEVLFRLENHAETLRAAMISLAKKIDVQTGRRPYE 110 AY299049.1 6/30/2004 

CPXV OPV-90-2 62 AAQ72890.1 MDGTLFPGDDDLAIPATEFFSTKAAKKPEAKREAIVKAEGDDNEETLKQRLTNLEKKITNVTTKFEQIEKCCKRNDEVLFRLENHAETLRAAMISLAKKIDVQTGRRPYE 110 AY299056.1 6/30/2004 

CPXV OPV-90-3 63 AAQ72904.1 MDGTLFPGDDDLAIPATEFFSTKAAKKPEAKREAIVKAEGDDNEETLKQRLTNLEKKITNVTTKFEQIEKCCKRNDEVLFRLENHAETLRAAMISLAKKIDVQTGRRPYE 110 AY299070.1 6/30/2004 

CPXV OPV-90-4 64 AAQ72905.1 MDGTLFPGDDDLAIPATEFFSTKAAKKPEAKREAIVKAEGDDNEETLKQRLTNLEKKITNVTTKFEQIEKCCKRNDEVLFRLENHAETLRAAMISLAKKIDVQTGRRPYE 110 AY299071.1 6/30/2004 

CPXV OPV-90-5 65 AAQ72903.1 MDGTLFPGDDDLAIPATEFFSTKAAKKPEAKREAIVKAEGDDNEETLKQRLTNLEKKITNVTTKFEQIEKCCKRNDEVLFRLENHAETLRAAMISLAKKIDVQTGRRPYE 110 AY299069.1 6/30/2004 

CPXV OPV-91-1 66 AAQ72885.1 MDGTLFPGDDDLAIPATEFFSTKAAKKPEAKREAIVKAEGDDNEETLKQRLTNLEKKITNVTTKFEQIEKCCKRNDEVLFRLENHAETLRAAMISLAKKIDVQTGRRPYE 110 AY299051.1 6/30/2004 

CPXV OPV-91-3 67 AAQ72884.1 MDGTLFPGDDDLAIPATEFFSTKAAKKPEAKREAIVKAEGDDNEETLKQRLTNLEKKITNVTTKFEQIEKCCKRNDEVLFRLENHAETLRAAMISLAKKIDVQTGRRPYE 110 AY299050.1 6/30/2004 

CPXV OPV-91-4 68 AAQ72898.1 MDGTLFPGDDDLAIPATEFFSTKAAKKPEAKREAIVKAEGDDNEETLKQRLTNLEKKITNVTTKFEQIEKCCKRNDEVLFRLENHAETLRAAMISLAKKIDVQTGRRPYE 110 AY299064.1 6/30/2004 

CPXV OPV-98-1 69 AAQ72893.1 MDGTLFPGDDDLAIPATEFFSTKAAKKPEAKREAIVKAEGDDNEETLKQRLTNLEKKITNVTTKFEQIEKCCKRNDEVLFRLENHAETLRAAMISLAKKIDVQTGRRPYE 110 AY299059.1 6/30/2004 
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CPXV OPV-98-3 70 AAQ72909.1 MDGTLFPGDDDLAIPATEFFSTKAAKKPEAKREAIVKAEGDDNEETLKQRLTNLEKKITNVTTKFEQIEKCCKRNDEVLFRLENHAETLRAAMISLAKKIDVQTGRRPYE 110 AY299075.1 6/30/2004 

CPXV OPV-98-4 71 AAQ72910.1 MDGTLFPGDDDLAIPATEFFSTKAAKKPEAKREAIVKAEGDDNEETLKQRLTNLEKKITNVTTKFEQIEKCCKRNDEVLFRLENHAETLRAAMISLAKKIDVQTGRRPYE 110 AY299076.1 6/30/2004 

CPXV SWEDENI 72 AAQ72899.1 MDGTLFPGDDDLAIPATEFFSTKAAKKPEAKREAIVKAEGDDNEETLKQRLTNLEKKITNVTTKFEQIEKCCKRNDEVLFRLENHAETLRAAMISLAKKIDVQTGRRPYE 110 AY299065.1 6/30/2004 

CPXV SWEDENII 73 AAQ72901.1 MDGTLFPGDDDLAIPATEFFSTKAAKKPEAKREAIVKAEGDDNEETLKQRLTNLEKKITNVTTKFEQIEKCCKRNDEVLFRLENHAETLRAAMISLAKKIDVQTGRRPYE 110 AY299067.1 6/30/2004 

CPXV NANCY 74 AAQ72908.1 MDGTLFPGDDDLAIPATEFFSTKAAKKPEAKREAIVKAEGDDNEETLKQRLTNLEKKITNVTTKFEQIEKCCKRNDEVLFRLENHAETLRAAMISLAKKIDVQTGRRPYE 110 AY299074.1 6/30/2004 

CPXV NW-MAN 75 AAQ72889.1 MDGTLFPGDDDLAIPATEFFSTKAAKKPEAKREAIVKAEGDDNEETLKQRLTNLEKKITNVTTKFEQIEKCCKRNDEVLFRLENHAETLRAAMISLAKKIDVQTGRRPYE 110 AY299055.1 6/30/2004 

CPXV OPV-88H 76 AAQ72891.1 MDGTLFPGDDDLAIPATEFFSTKAAKKPEAKREAIVKAEGDDNEETLKQRLTNLEKKITNVTTKFEQIEKCCKRNDEVLFRLENHAETLRAAMISLAKKIDVQTGRRPYE 110 AY299057.1 6/30/2004 

CPXV EP-RIEMS 77 AAQ72911.1 MDGTLFPGDDDLAIPATEFFSTKAAKKPEAKREAIVKAEGDDNEETLKQRLTNLEKKITNVTTKFEQIEKCCKHNDEVLFRLENHAETLRAAMISLAKKIDVQTGRRPYE 110 AY299077.1 6/30/2004 

CPXV EP-6 78 AAQ72907.1 MDGTLFPGDDDLAIPATEFFSTKAAKKPEAKREAIVKAEGDDNEETLKQRLTNLEKKITNVTTKFEQIEKCCKRNDEVLFRLENHAETLRAAMISLAKKIDVQTGRRPYE 110 AY299073.1 6/30/2004 

CPXV BIBER 79 AAQ72912.1 MDGTLFPGDDDLAIPATEFFSTKAAKKPEAKREAIVKAEGDDNEETLKQRLTNLEKKITNVTTKFEQIEKCCKRNDEVLFRLENHAETLRAAMISLAKKIDVQTGRRPYE 110 AY299078.1 6/30/2004 

CPXV CATPOX3 80 AAQ72902.1 MDGTLFPGDDDLAIPATEFFSTKAAKKPEAKREAIVKAEGDDNEETLKQRLTNLEKKITNVTTKFEQIEKCCKRNDEVLFRLENHAETLRAAMISLAKKIDVQTGRRPYE 110 AY299068.1 6/30/2004 

CPXV CATPOX5 81 AAQ72897.1 MDGTLFPGDDDLAIPATEFFSTKAAKKPEAKREAIVKAEGDDNEETLKQRLTNLEKKITNVTTKFEQIEKCCKRNDEVLFRLENHAETLRAAMISLAKKIDVQTGRRPYE 110 AY299063.1 6/30/2004 

CPXV NW-CAT 82 AAQ72888.1 MDGTLFPGDDDLAIPATEFFSTKAAKKPEAKREAIVKAEGDDNEETLKQRLTNLEKKITNVTTKFEQIEKCCKRNDEVLFRLENHAETLRAAMISLAKKIDVQTGRRPYE 110 AY299054.1 6/30/2004 

CPXV 780 83 AAQ72913.1 MDGTLFPGDDDLAIPATEFFSTKAAKKPEAKREAIVKAEGDDNEETLKQRLTNLEKKITNVTTKFEQIEKCCKRNDEVLFRLENHAETLRAAMISLAKKIDVQTGRRPYE 110 AY299079.1 6/30/2004 

CPXV Brighton Red 84 AAM13604.1 MDGTLFPGDDDLAIPATEFFSTKAAKKPEAKREAIVKAEGDDNEETLKQRLTNLEKKITNVTTKFEQIEKCCKRNDEVLFRLENHAETLRAAMISLAKKIDVQTGRRPYE 110 AF482758.2 8/1/2006 

CPXV Brighton Red 85 AF482758.2 MDGTLFPGDDDLAIPATEFFSTKAAKKPEAKREAIVKAEGDDNEETLKQRLTNLEKKITNVTTKFEQIEKCCKRNDEVLFRLENHAETLRAAMISLAKKIDVQTGRRPYE 110 AF482758.2 8/1/2006 

CPXV Germany 91-3 86 ABD97498.1 MDGTLFPGDDDLAIPATEFFSTKAAKKPEAKREAIVKAEGDDNEETLKQRLTNLEKKITNVTTKFEQIEKCCKRNDEVLFRLENHAETLRAAMISLAKKIDVQTGRRPYE 110 DQ437593.1 8/19/2006 

CPXV Calpox 87 ADW95399.1 MDGTLFPGDDDLAIPATEFFSTKAAKKPEAKREAIVKAEGDDNEETLKQRLTNLEKKITNVTTKFEQIEKCCKRNDEVLFRLENHAETLRAAMISLAKKIDVQTGRRPYE 110 HQ891540.1 2/12/2011 

CPXV France_2001_Nancy 88 ADZ29482.1 MDGTLFPGDDDLAIPATEFFSTKAAKKPEAKREAIVKAEGDDNEETLKQRLTNLEKKITNVTTKFEQIEKCCKRNDEVLFRLENHAETLRAAMISLAKKIDVQTGRRPYE 110 HQ420894.1 8/9/2011 

CPXV Germany_1980_EP4 89 ADZ29697.1 MDGTLFPGDDDLAIPATEFFSTKAAKKPEAKREAIVKAEGDDNEETLKQRLTNLEKKITNVTTKFEQIEKCCKRNDEVLFRLENHAETLRAAMISLAKKIDVQTGRRPYE 110 HQ420895.1 8/9/2011 

CPXV Germany_1990_2 90 ADZ29910.1 MDGTLFPGDDDLAIPATEFFSTKAAKKPEAKREAIVKAEGDDNEETLKQRLTNLEKKITNVTTKFEQIEKCCKRNDEVLFRLENHAETLRAAMISLAKKIDVQTGRRPYE 110 HQ420896.1 8/9/2011 

CPXV Germany_2002_MKY 91 ADZ30340.1 MDGTLFPGDDDLAIPATEFFSTKAAKKPEAKREAIVKAEGDDNEETLKQRLTNLEKKITNVTTKFEQIEKCCKRNDEVLFRLENHAETLRAAMISLAKKIDVQTGRRPYE 110 HQ420898.1 8/9/2011 

CPXV Norway_1994_MAN 92 ADZ30551.1 MDGTLFPGDDDLAIPATEFFSTKAAKKPEAKREAIVKAEGDDNEETLKQRLTNLEKKITNVTTKFEQIEKCCKRNDEVLFRLENHAETLRAAMISLAKKIDVQTGRRPYE 110 HQ420899.1 8/9/2011 

CPXV RatHei09/1 93 AGY99977.1 MDGTLFPGDDDLAIPATEFFSTKAAKKPEAKREAIVKAEGDDNEETLKQRLTNLEKKITNVTTKFEQIEKCCKHNDEVLFRLENHAETLRAAMISLAKKIDVQTGRRPYE 110 KC813504.1 11/3/2013 

CPXV HumLan08/1 94 AGY97413.1 MDGTLFPGDDDLAIPATEFFSTKAAKKPEAKREAIVKAEGDDNEETLKQRLTNLEKKITNVTTKFEQIEKCCKHNDEVLFRLENHAETLRAAMISLAKKIDVQTGRRPYE 110 KC813492.1 11/3/2013 

CPXV HumLue09/1 95 AGY97847.1 MDGTLFPGDDDLAIPATEFFSTRAAKKPEAKREAIVKAEGDDNEETLKQRLTNLEKKITNVTTKFEQIEKCCKRNDEVLFRLENHAETLRAAMISLAKKIDVQTGRRPYE 110 KC813494.1 11/3/2013 

CPXV HumMag07/1 96 AGY98067.1 MDGTLFPGDDDLAIPATEFFSTKAAKKPEAKREAIVKAEGDDNEETLKQRLTNLEKKITNVTTKFEQIEKCCKRNDEVLFRLENHAETLRAAMISLAKKIDVQTGRRPYE 110 KC813495.1 11/3/2013 

CPXV HumPad07/1 97 AGY98272.1 MDGTLFPGDDDLAIPATEFFSTKAAKKPEAKREAIVKAEGDDNEETLKQRLTNLEKKITNVTTKFEQIEKCCKRNDEVLFRLENHAETLRAAMISLAKKIDVQTGRRPYE 110 KC813496.1 11/3/2013 

CPXV JagKre08/2 98 AGY98704.1 MDGTLFPGDDDLAIPATEFFSTKAAKKPEAKREAIVKAEGDDNEETLKQRLTNLEKKITNVTTKFEQIEKCCKHNDEVLFRLENHAETLRAAMISLAKKIDVQTGRRPYE 110 KC813498.1 11/3/2013 

CPXV MarLei07/1 99 AGY98923.1 MDGTLFPGDDDLAIPATEFFSTKAAKKPEAKREAIVKAEGDDNEETLKQRLTNLEKKITNVTTKFEQIEKCCKRNDEVLFRLENHAETLRAAMISLAKKIDVQTGRRPYE 110 KC813499.1 11/3/2013 

CPXV MonKre08/4 100 AGY99134.1 MDGTLFPGDDDLAIPATEFFSTKAAKKPEAKREAIVKAEGDDNEETLKQRLTNLEKKITNVTTKFEQIEKCCKHNDEVLFRLENHAETLRAAMISLAKKIDVQTGRRPYE 110 KC813500.1 11/3/2013 

CPXV HumBer07/1 101 AGZ01034.1 MDGTLFPGDDDLAIPATEFFSTKAAKKPEAKREAIVKAEGDDNEETLKQRLTNLEKKITNVTTKFEQIEKCCKRNDEVLFRLENHAETLRAAMISLAKKIDVQTGRRPYE 110 KC813509.1 11/3/2013 

CPXV BeaBer04/1 102 AGY97197.1 MDGTLFPGDDDLAIPATEFFSTKAAKKPEAKREAIVKAEGDDNEETLKQRLTNLEKKITNVTTKFEQIEKCCKRNDEVLFRLENHAETLRAAMISLAKKIDVQTGRRPYE 110 KC813491.1 11/3/2013 

CPXV CatBer07/1 103 AGY99547.1 MDGTLFPGDDDLAIPATEFFSTKAAKKPEAKREAIVKAEGDDNEETLKQRLTNLEKKITNVTTKFEQIEKCCKRNDEVLFRLENHAETLRAAMISLAKKIDVQTGRRPYE 110 KC813502.1 11/3/2013 

CPXV CatPot07/1 104 AGZ00407.1 MDGTLFPGDDDLAIPATEFFSTKAAKKPEAKREAIVKAEGDDNEETLKQRLTNLEKKITNVTTKFEQIEKCCKRNDEVLFRLENHAETLRAAMISLAKKIDVQTGRRPYE 110 KC813506.1 11/3/2013 

CPXV JagKre08/1 105 AGY98488.1 MDGTLFPGDDDLAIPATEFFSTKAAKKPEAKREAIVKAEGDDNEETLKQRLTNLEKKITNVTTKFEQIEKCCKHNDEVLFRLENHAETLRAAMISLAKKIDVQTGRRPYE 110 KC813497.1 11/3/2013 

CPXV CEPAD335 106 AHB89678.1 MDGTLFPGDDDLAIPATEFFSTKAAKKPEAKREAIVKAEGDDNEETLKQRLTNLEKKITNVTTKFEQIEKCCKRNDEVLFRLENHAETLRAAMIPLAKKIDVQTGRRPYQ 110 KC592407.1 12/28/2013 

CPXV FM2292 107 CRL86944.1 MDGTLFPGDDDLAIPATEFFSTKAAKKPEAKREAIVKAEGDDNEETLKQRLTNLEKKITNVTTKFEQIEKCCKRNDEVLFRLENHAETLRAAMISLAKKIDVQTGRRPYE 110 LN864566.1 9/3/2015 

CPXV Brighton Red 108 NP_619946.1 MDGTLFPGDDDLAIPATEFFSTKAAKKPEAKREAIVKAEGDDNEETLKQRLTNLEKKITNVTTKFEQIEKCCKRNDEVLFRLENHAETLRAAMISLAKKIDVQTGRRPYE 110 NC_003663.2 1/28/2016 

CPXV A220 109 ABD37523.1 KPEAKREAIVKAEGDDNEETFKQRLTNLEKKITNVTTKFEQIEKCCKRNDEV 52 DQ374542.1 7/26/2016 

CPXV A247 110 ABD37531.1 KPEAKREAIVKAEGDENEETLKQRLTNLEKKITNVTTKFEQIEKCCKRNDEV 52 DQ374550.1 7/26/2016 

CPXV CPXV Amadeus 2015 111 CUI02420.1 MDGTLFPGDDDLAIPATEFFSTKAAKKPEAKREAIVKAEGDDNEETLKQRLTNLEKKITNVTTKFEQIEKCCKRNDEVLFRLENHAETLRAAMISLAKKIDVQTGRRPYE 110 LN879483.1 7/29/2016 

CPXV CPXV_1639 112 ARR30529.1 MDGTLFPGDDDLAIPATEFFSTKAAKKPEAKREAIVKAEGDDNEETLKQRLTNLEKKITNVTTKFEQIEKCCKRNDEVLFRLENHAETLRAAMISLAKKIDVQTGRRPYE 110 KY549148.1 5/21/2017 

CPXV CPXV_Catpox5wv1 113 ARR29908.1 MDGTLFPGDDDLAIPATEFFSTKAAKKPEAKREAIVKAEGDDNEETLKQRLTNLEKKITNVTTKFEQIEKCCKRNDEVLFRLENHAETLRAAMISLAKKIDVQTGRRPYE 110 KY549144.1 5/21/2017 

CPXV Norwayfeline 114 ARR31101.1 MDGTLFPGDDDLAIPATEFFSTKAAKKPEAKREAIVKAEGDDNEETLKQRLTNLEKKITNVTTKFEQIEKCCKRNDEVLFRLENHAETLRAAMISLAKKIDVQTGRRPYE 110 KY549151.1 5/21/2017 

CPXV Ger/2014/Cat1 115 SNB57931.1 MDGTLFPGDDDLAIPATEFFSTKAAKKPEAKREAIVKAEGDDNEETLKQRLTNLEKKITNVTTKFEQIEKCCKRNDEVLFRLENHAETLRAAMISLAKKIDVQTGRRPYE 110 LT896723.1 6/15/2018 

CPXV Ger/2010/Alpaca 116 SNB50383.1 MDGTLFPGDDDLAIPATEFFSTKAAKKPEAKREAIVKAEGDDNEETLKQRLTNLEKKITNVTTKFEQIEKCCKRNDEVLFRLENHAETLRAAMISLAKKIDVQTGRRPYE 110 LT896718.1 6/15/2018 

CPXV Ger/2010/Rat 117 SNB52980.1 MDGTLFPGDDDLAIPATEFFSTKAAKKPEAKREAIVKAEGDDNEETLKQRLINLEKKITNVTTKFEQIEKCCKRNDEVLFRLENHAETLRAAMISLAKKIDVQTGRRPYE 110 LT896728.1 6/23/2017 

CPXV Ger/2013/Alpaca 118 SNB48988.1 MDGTLFPGDDDLAIPATEFFSTKAAKKPEAKREAIVKAEGDDNEETLKQRLTNLEKKITNVTTKFEQIEKCCKRNDEVLFRLENHAETLRAAMISLAKKIDVQTGRRPYE 110 LT896719.1 6/15/2018 

CPXV Ger/2014/Human 119 SPN67997.1 MDGTLFPGDDDLAIPATEFFSTKAAKKPEAKREAIVKAEGDDNEETLKQRLTNLEKKITNVTTKFEQIEKCCKRNDEVLFRLENHAETLRAAMISLAKKIDVQTGRRPYE 110 LT993226.1 6/15/2018 
CPXV 427 120 AAQ72894.1 MDGTLFPGDDDLAIPATEFFSTKAAKKQEAKREAIVKAEGDDNEETLKQRLTNLEKKITNVTTKFEQIEKCCKRNDEVLFRLENHAETLRAAMISLAKKIDVQTGRRPYE 110 AY299060.1 6/30/2004 

CPXV 428 121 AAQ72896.1 MDGTLFPGDDDLAIPATEFFSTKAAKKQEAKREAIVKAEGDDNEETLKQRLTNLEKKITNVTTKFEQIEKCCKRNDEVLFRLENHAETLRAAMISLAKKIDVQTGRRPYE 110 AY299062.1 6/30/2004 

CPXV 2739 122 AAQ72895.1 MDGTLFPGDDDLAIPATEFFSTKAAKKQEAKREAIVKAEGDDNEETLKQRLTNLEKKITNVTTKFEQIEKCCKRNDEVLFRLENHAETLRAAMISLAKKIDVQTGRRPYE 110 AY299061.1 6/30/2004 

CPXV UK2000_K2984 123 ADZ30763.1 MDGTLFPGDDDLAIPATEFFSTKAAKKQEAKREAIVKAEGDDNEETLKQRLTNLEKKITNVTTKFEQIEKCCKRNDEVLFRLENHAETLRAAMISLAKKIDVQTGRRPYE 110 HQ420900.1 8/9/2011 

CPXV A009 124 ABD37458.1 KQEAKREAIVKAEGDDNEETLKQRLTNLEKKITNVTTKFEQIEKCCKRNDEV 110 DQ374477.1 7/26/2016 

CPXV CPXV_K428 125 ARR30112.1 MDGTLFPGDDDLAIPATEFFSTKAAKKQEAKREAIVKAEGDDNEETLKQRLTNLEKKITNVTTKFEQIEKCCKRNDEVLFRLENHAETLRAAMISLAKKIDVQTGRRPYE 110 KY549145.1 5/21/2017 

CPXV CPXV_K2739 126 ARR30729.1 MDGTLFPGDDDLAIPATEFFSTKAAKKQEAKREAIVKAEGDDNEETLKQRLTNLEKKITNVTTKFEQIEKCCKRNDEVLFRLENHAETLRAAMISLAKKIDVQTGRRPYE 110 KY549149.1 5/21/2017 

CPXV CPXV_K4207 127 ARR30930.1 MDGTLFPGDDDLAIPATEFFSTKAAKKQEAKREAIVKAEGDDNEETLKQRLTNLEKKITNVTTKFEQIEKCCKRNDEVLFRLENHAETLRAAMISLAKKIDVQTGRRPYE 110 KY549150.1 5/21/2017 

CPXV CPXV_Catpox3L97 128 ARR29711.1 MDGTLFPGDDDLAIPATEFFSTKAAKKQEAKREAIVKAEGDDNEETLKQRLTNLEKKITNVTTKFEQIEKCCKRNDEVLFRLENHAETLRAAMISLAKKIDVQTGRRPYE 110 KY549143.1 5/21/2017 

CPXV Turkmenia-1974 129 CAB11761.1 MDGTLFPGDDDLAIPATEFFSTKAAKRPEAKREAIVKAEGDDNEETLKQRLTNLEKKITIITTKFEQIEKCCKRNDEVLFRLENHAETLRAAMISLAKKIDVQTGRRPYE 110 Z99063.1 3/19/2003 

CPXV Ger/2015/Cat1 130 SNB48607.1 MDGTLFPGDDDLAIPATEFFSTKAAKKPEVKREAIVKAEGDDNEETLKQRLTNLEKKITNVTTKFEQIEKCCKRNDEVLFRLENHAETLRAAMISLAKKIDVQTGRRPYE 110 LT896724.1 6/15/2018 
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CPXV OPV-89-2 131 AAQ72906.1 MDGTLFPGDDDLAIPATEFFSTKAAKKPEAKHEAIVKAEGDDNEETLKQRLTNLEKKITNVTTKFEQIEKCCKRNDEVLFRLENHAETLRAAMISLAKKIDVQTGRRPYE 110 AY299072.1 6/30/2004 

CPXV 89/4 132 AAP48888.1 MDGTLFPGDDDLAIPATEFFSTKAAKKPEAKREAFVKAEGDDNEETLKQRLTNLEKKITNVTTKFEQIEKCCKRNDEVLFRLENHAETLRAAMISLAKKIDVQTGRRPYE 110 AY223503.1 5/12/2004 

CPXV SWEDENIII 133 AAQ72900.1 MDGTLFPGDDDLAIPATEFFSTKAAKSQRLNAKQLLKLREMTMKKLSNND 50 AY299066.1 6/30/2004 

CPXV A279 134 ABD37537.1 KPEAKREAIVKADGDENEETLKQRLTNLEKKITNVTTKFEQIEKYCKRNDEV 52 DQ374556.1 7/26/2016 

        

    Epitope 4 Epitopes 1A-1D Epitope 5    

ECTV Munich-1 1 CAA53000.1 MDGTLFPGDDDLAIPATEFFSTKAAKKPEDKHEATVKADGDDNEETLKQRLTNLEKKITNVTTKFEQIEKCCKRNDEVLFRLENHAETLRAAMISLAKKIDVQTGRRPYE 110 X75157.1 7/31/2002 

ECTV Moscow 2 AAM92434.1 MDGTLFPGDDDLAIPATEFFSTKAAKKPEDKHEATVKADGDDNEETLKQRLTNLEKKITNVTTKFEQIEKCCKRNDEVLFRLENHAETLRAAMISLAKKIDVQTGRRPYE 110 AF012825.2 8/6/2002 

ECTV K-1 (Ect 3) 3 CAB11753.1 MDGTLFPGDDDLAIPATEFFSTKAAKKPEDKHEATVKADGDDNEETLKQRLTNLEKKITNVTTKFEQIEKCCKRNDEVLFRLENHAETLRAAMISLAKKIDVQTGRRPYE 110 Z99055.1 3/19/2003 

ECTV MP-2 4 AAQ72857.1 MDGTLFPGDDDLAIPATEFFSTKAAKKPEDKHEATVKADGDDNEETLKQRLTNLEKKITNVTTKFEQIEKCCKRNDEVLFRLENHAETLRAAMISLAKKIDVQTGRRPYE 110 AY299023.1 6/30/2004 

ECTV C99-505 5 AAQ72860.1 MDGTLFPGDDDLAIPATEFFSTKAAKKPEDKHEATVKADGDDNEETLKQRLTNLEKKITNVTTKFEQIEKCCKRNDEVLFRLENHAETLRAAMISLAKKIDVQTGRRPYE 110 AY299026.1 6/30/2004 

ECTV MP-5 6 AAQ72858.1 MDGTLFPGDDDLAIPATEFFSTKAAKKPEDKHEATVKADGDDNEETLKQRLTNLEKKITNVTTKFEQIEKCCKRNDEVLFRLENHAETLRAAMISLAKKIDVQTGRRPYE 110 AY299024.1 6/30/2004 

ECTV MP-33221 7 AAQ72859.1 MDGTLFPGDDDLAIPATEFFSTKAAKKPEDKHEATVKADGDDNEETLKQRLTNLEKKITNVTTKFEQIEKCCKRNDEVLFRLENHAETLRAAMISLAKKIDVQTGRRPYE 110 AY299025.1 6/30/2004 

ECTV SILBERFUCHS 8 AAQ72856.1 MDGTLFPGDDDLAIPATEFFSTKAAKKPEDKHEATVKADGDDNEETLKQRLTNLEKKITNVTTKFEQIEKCCKRNDEVLFRLENHAETLRAAMISLAKKIDVQTGRRPYE 110 AY299022.1 6/30/2004 

ECTV MPV-CC 9 AAX73202.1 MDGTLFPGDDDLAIPATEFFSTKAAKKPEDKHEATVKADGDDNEETLKQRLTNLEKKITNVTTKFEQIEKCCKRNDEVLFRLENHAETLRAAMISLAKKIDVQTGRRPYE 110 AY973172.1 4/11/2005 

ECTV Moscow 10 NP_671648.1 MDGTLFPGDDDLAIPATEFFSTKAAKKPEDKHEATVKADGDDNEETLKQRLTNLEKKITNVTTKFEQIEKCCKRNDEVLFRLENHAETLRAAMISLAKKIDVQTGRRPYE 110 NC_004105.1 11/22/2012 

ECTV ERPV 11 AFH54695.1 MDGTLFPGDDDLAIPATEFFSTKAAKKPEDKHEATVKADGDDNEETLKQRLTNLEKKITNVTTKFEQIEKCCKRNDEVLFRLENHAETLRAAMISLAKKIDVQTGRRPYE 110 JQ410350.1 1/24/2014 

ECTV NAVAL 12 AIF30214.1 MDGTLFPGDDDLAIPATEFFSTKAAKKPEDKHEATVKADGDDNEETLKQRLTNLEKKITNVTTKFEQIEKCCKRNDEVLFRLENHAETLRAAMISLAKKIDVQTGRRPYE 110 KJ563295.1 5/11/2015 

ECTV Hamptead 13 AUO16292.1 MDGTLFPGDDDLAIPATEFFSTKAAKKPEDKHEATVKADGDDNEETLKQRLTNLEKKITNVTTKFEQIEKCCKRNDEVLFRLENHAETLRAAMISLAKKIDVQTGRRPYE 110 KY554976.1 1/16/2018 

ECTV Ectromelia virus 14 ABA61050.1 KPEDKHEATVKADGDDNEETLKQRLTNLEKKITNVTTKFEQIEKCCKRNDEV 52 DQ178390.1 7/26/2016 

        

    Epitope 4 Epitopes 1A-1D Epitope 5    

HSPV MNR-76 1 ABH08257.1 MDGTLFPGDDDLAIPATEFFSTKAAKKPEAKREAIVKADEDDNEETLKQRLTNLEKKITNVTTKFEQIEKCCKRNDEVLFRLENHAETLRAAMISLAKKIDVQTGRRPYE 110 DQ792504.1 8/30/2006 

HSPV MNR 2 AUD55313.1 MDGTLFPGDDDLAIPATEFFSTKAAKKPEAKREAIVKADEDDNEETLKQRLTNLEKKITNVTTKFEQIEKCCKRNDEVLFRLENHAETLRAAMISLAKKIDVQTGRRPYE 110 KY349117.1 7/19/2018 

        

    Epitope 4 Epitopes 1A-1D Epitope 5    

MPXV Copenhagen 1 CAA52998.1 MDGTLFPGDDDLAIPATEFFSTKAAKNPETKREAIVKAYGDDNEETLKQRLTNLEKKITNITTKFEQIEKCCKRNDEVLFRLENHAETLRAAMISLAKKIDVQTGRHPYE 110 X75155.1 7/31/2002 

MPXV Zaire 79 2 AAN78220.1 MDGTLFPGDDDLAIPATEFFSTKAAKNPETKREAIVKAYGDDNEETLKQRLTNLEKKITNITTKFEQIEKCCKXNDEVLFRLENHAETLRAAMISLAKKIDVQTGRRPYE 110 AY160186.1 3/18/2003 

MPXV Sierra Leone 70-0666 3 CAB11763.1 MDGTLFPGDDDLAIPATEFFSTKAAKNPETKREAIVKAYGDDNEETLKQRLTNLEKKITNITTKFEQIEKCCKRNDEVLFRLENHAETLRAAMISLAKKIDVQTGRHPYE 110 Z99065.1 3/19/2003 

MPXV DRC 07-0093 4 AGR36218.1 MDGTLFPGDDDLAIPATEFFSTKAAKNPETKREAIVKAYGDDNEETLKQRLTNLEKKITNITTKFEQIEKCCKHNDEVLFRLENHAETLRAAMISLAKKIDVQTGRRPYE 110 JX878416.1 1/14/2004 

MPXV CDC#v70-I-187 5 AAP48866.1 MDGTLFPGDDDLAIPATEFFSTKAAKNPETKREAIVKAYGDDNEETLKQRLTNLEKKITNITTKFEQIEKCCKRNDEVLFRLENHAETLRAAMISLAKKIDVQTGRHPYE 110 AY223481.1 5/12/2004 

MPXV CDC#v78-I-3945 6 AAP48865.1 MDGTLFPGDDDLAIPATEFFSTKAAKNPETKREAIVKAYGDDNEETLKQRLTNLEKKITNITTKFEQIEKCCKRNDEVLFRLENHAETLRAAMISLAKKIDVQTGRHPYE 110 AY223480.1 5/12/2004 

MPXV CDC#v79-I-005 7 AAP48864.1 MDGTLFPGDDDLAIPATEFFSTKAAKNPETKREAIVKAYGDDNEETLKQRLTNLEKKITNITTKFEQIEKCCKHNDEVLFRLENHAETLRAAMISLAKKIDVQTGRRPYE 110 AY223479.1 5/12/2004 

MPXV CDC#v97-I-004 8 AAP48863.1 MDGTLFPGDDDLAIPATEFFSTKAAKNPETKREAIVKAYGDDNEETLKQRLTNLEKKITNITTKFEQIEKCCKHNDEVLFRLENHAETLRAAMISLAKKIDVQTGRRPYE 110 AY223478.1 5/12/2004 

MPXV Congo 8 9 AAP48862.1 MDGTLFPGDDDLAIPATEFFSTKAAKNPETKREAIVKAYGDDNEETLKQRLTNLEKKITNITTKFEQIEKCCKHNDEVLFRLENHAETLRAAMISLAKKIDVQTGRRPYE 110 AY223477.1 5/12/2004 

MPXV AP-4 10 AAQ72865.1 MDGTLFPGDDDLAIPATEFFSTKAAKNPETKREAIVKAYGDDNEETLKQRLTNLEKKITNITTKFEQIEKCCKRNDEVLFRLENHAETLRAAMISLAKKIDVQTGRHPYE 110 AY299031.1 6/30/2004 

MPXV AP-2 11 AAQ72866.1 MDGTLFPGDDDLAIPATEFFSTKAAKNPETKREAIVKAYGDDNEETLKQRLTNLEKKITNITTKFEQIEKCCKRNDEVLFRLENHAETLRAAMISLAKKIDVQTGRHPYE 110 AY299032.1 6/30/2004 

MPXV AP-6 12 AAQ72867.1 MDGTLFPGDDDLAIPATEFFSTKAAKNPETKREAIVKAYGDDNEETLKQRLTNLEKKITNITTKFEQIEKCCKRNDEVLFRLENHAETLRAAMISLAKKIDVQTGRHPYE 110 AY299033.1 6/30/2004 

MPXV AP-5 13 AAQ72868.1 MDGTLFPGDDDLAIPATEFFSTKAAKNPETKREAIVKAYGDDNEETLKQRLTNLEKKITNITTKFEQIEKCCKRNDEVLFRLENHAETLRAAMISLAKKIDVQTGRHPYE 110 AY299034.1 6/30/2004 

MPXV MPXV-WRAIR7-61; Walter Reed 267 14 AAU01342.1 MDGTLFPGDDDLAIPATEFFSTKAAKNPETKREAIVKAYGDDNEETLKQRLTNLEKKITNITTKFEQIEKCCKRNDEVLFRLENHAETLRAAMISLAKKIDVQTGRHPYE 110 AY603973.1 9/2/2005 

MPXV Sierra Leone MPXV-SL-132 15 AAW67890.1 MDGTLFPGDDDLAIPATEFFSTKAAKNPETKREAIVKAYGDDNEETLKQRLTNLEKKITNITTKFEQIEKCCKRNDEVLFRLENHAETLRAAMISLAKKIDVQTGRHPYE 110 AY741551.1 9/7/2005 

MPXV COP-58 16 AAX09233.1 MDGTLFPGDDDLAIPATEFFSTKAAKNPETKREAIVKAYGDDNEETLKQRLTNLEKKITNITTKFEQIEKCCKRNDEVLFRLENHAETLRAAMISLAKKIDVQTGRHPYE 110 AY753185.1 9/7/2005 

MPXV Congo_2003_358 17 AAY97141.1 MDGTLFPGDDDLAIPATEFFSTKAAKNPETKREAIVKAYGDDNEETLKQRLTNLEKKITNITTKFEQIEKCCKHNDEVLFRLENHAETLRAAMISLAKKIDVQTGRRPYE 110 DQ011154.1 9/28/2005 

MPXV Liberia_1970_184 18 AAY97540.1 MDGTLFPGDDDLAIPATEFFSTKAAKNPETKREAIVKAYGDDNEETLKQRLTNLEKKITNITTKFEQIEKCCKRNDEVLFRLENHAETLRAAMISLAKKIDVQTGRHPYE 110 DQ011156.1 9/28/2005 

MPXV USA_2003_039 19 AAY97739.1 MDGTLFPGDDDLAIPATEFFSTKAAKNPETKREAIVKAYGDDNEETLKQRLTNLEKKITNITTKFEQIEKCCKRNDEVLFRLENHAETLRAAMISLAKKIDVQTGRHPYE 110 DQ011157.1 9/28/2005 

MPXV USA_2003_044 20 AAY96941.1 MDGTLFPGDDDLAIPATEFFSTKAAKNPETKREAIVKAYGDDNEETLKQRLTNLEKKITNITTKFEQIEKCCKRNDEVLFRLENHAETLRAAMISLAKKIDVQTGRHPYE 110 DQ011153.1 9/28/2005 

MPXV Zaire_1979-005 21 AAY97342.1 MDGTLFPGDDDLAIPATEFFSTKAAKNPETKREAIVKAYGDDNEETLKQRLTNLEKKITNITTKFEQIEKCCKHNDEVLFRLENHAETLRAAMISLAKKIDVQTGRRPYE 110 DQ011155.1 9/28/2005 

MPXV Zaire-96-I-16 22 AAL40597.1 MDGTLFPGDDDLAIPATEFFSTKAAKNPETKREAIVKAYGDDNEETLKQRLTNLEKKITNITTKFEQIEKCCKHNDEVLFRLENHAETLRAAMISLAKKIDVQTGRRPYE 110 AF380138.1 3/4/2009 

MPXV Zaire 1979-005 23 ADK39167.1 MDGTLFPGDDDLAIPATEFFSTKAAKNPETKREAIVKAYGDDNEETLKQRLTNLEKKITNITTKFEQIEKCCKHNDEVLFRLENHAETLRAAMISLAKKIDVQTGRRPYE 110 HM172544.1 7/25/2010 

MPXV D14L knockout 24 ADX22985.1 MDGTLFPGDDDLAIPATEFFSTKAAKNPETKREAIVKAYGDDNEETLKQRLTNLEKKITNITTKFEQIEKCCKXNDEVLFRLENHAETLRAAMISLAKKIDVQTGRRPYE 110 HQ857563.1 9/2/2011 
MPXV V79-I-005 25 ADX22789.1 MDGTLFPGDDDLAIPATEFFSTKAAKNPETKREAIVKAYGDDNEETLKQRLTNLEKKITNITTKFEQIEKCCKXNDEVLFRLENHAETLRAAMISLAKKIDVQTGRRPYE 110 HQ857562.1 9/2/2011 

MPXV Zaire-96-I-16 26 NP_536566.1 MDGTLFPGDDDLAIPATEFFSTKAAKNPETKREAIVKAYGDDNEETLKQRLTNLEKKITNITTKFEQIEKCCKHNDEVLFRLENHAETLRAAMISLAKKIDVQTGRRPYE 110 NC_003310.1 8/28/2012 

MPXV Sudan 2005_01 27 AGF36698.1 MDGTLFPGDDDLAIPATEFFSTKAAKNPETKREAIVKAYGDDNEETLKQRLTNLEKKITNITTKFEQIEKCCKHNDEVLFRLENHAETLRAAMISLAKKIDVQTGRRPYE 110 KC257459.1 2/20/2013 

MPXV DRC Yandongi 1985 28 AGF36905.1 MDGTLFPGDDDLAIPATEFFSTKAAKNPETKREAIVKAYGDDNEETLKQRLTNLEKKITNITTKFEQIEKCCKHNDEVLFRLENHAETLRAAMISLAKKIDVQTGRRPYE 110 KC257460.1 2/20/2013 

MPXV DRC 06-0950 29 AGR34500.1 MDGTLFPGDDDLAIPATEFFSTKAAKNPETKREAIVKAYGDDNEETLKQRLTNLEKKITNITTKFEQIEKCCKHNDEVLFRLENHAETLRAAMISLAKKIDVQTGRRPYE 110 JX878407.1 1/14/2014 

MPXV DRC 06-0970 30 AGR34690.1 MDGTLFPGDDDLAIPATEFFSTKAAKNPETKREAIVKAYGDDNEETLKQRLTNLEKKITNITTKFEQIEKCCKHNDEVLFRLENHAETLRAAMISLAKKIDVQTGRRPYE 110 JX878408.1 1/14/2014 

MPXV DRC 06-1070 31 AGR35072.1 MDGTLFPGDDDLAIPATEFFSTKAAKNPETKREAIVKAYGDDNEETLKQRLTNLEKKITNITTKFEQIEKCCKHNDEVLFRLENHAETLRAAMISLAKKIDVQTGRRPYE 110 JX878410.1 1/14/2014 

MPXV DRC 07-0120 32 AGR36600.1 MDGTLFPGDDDLAIPATEFFSTKAAKNPETKREAIVKAYGDDNEETLKQRLTNLEKKITNITTKFEQIEKCCKHNDEVLFRLENHAETLRAAMISLAKKIDVQTGRRPYE 110 JX878418.1 1/14/2014 

MPXV DRC 06-0999 33 AGR34881.1 MDGTLFPGDDDLAIPATEFFSTKAAKNPETKREAIVKAYGDDNEETLKQRLTNLEKKITNITTKFEQIEKCCKHNDEVLFRLENHAETLRAAMISLAKKIDVQTGRRPYE 110 JX878409.1 1/14/2014 

MPXV DRC 06-1075 34 AGR35263.1 MDGTLFPGDDDLAIPATEFFSTKAAKNPETKREAIVKAYGDDNEETLKQRLTNLEKKITNITTKFEQIEKCCKHNDEVLFRLENHAETLRAAMISLAKKIDVQTGRRPYE 110 JX878411.1 1/14/2014 

MPXV DRC 06-1076 35 AGR35454.1 MDGTLFPGDDDLAIPATEFFSTKAAKNPETKREAIVKAYGDDNEETLKQRLTNLEKKITNITTKFEQIEKCCKHNDEVLFRLENHAETLRAAMISLAKKIDVQTGRRPYE 110 JX878412.1 1/14/2014 
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MPXV DRC 07-0045 36 AGR35645.1 MDGTLFPGDDDLAIPATEFFSTKAAKNPETKREAIVKAYGDDNEETLKQRLTNLEKKITNITTKFEQIEKCCKHNDEVLFRLENHAETLRAAMISLAKKIDVQTGRRPYE 110 JX878413.1 1/14/2014 

MPXV DRC 07-0046 37 AGR35836.1 MDGTLFPGDDDLAIPATEFFSTKAAKNPETKREAIVKAYGDDNEETLKQRLTNLEKKITNITTKFEQIEKCCKHNDEVLFRLENHAETLRAAMISLAKKIDVQTGRRPYE 110 JX878414.1 1/14/2014 

MPXV DRC 07-0092 38 AGR36027.1 MDGTLFPGDDDLAIPATEFFSTKAAKNPETKREAIVKAYGDDNEETLKQRLTNLEKKITNITTKFEQIEKCCKHNDEVLFRLENHAETLRAAMISLAKKIDVQTGRRPYE 110 JX878415.1 1/14/2014 

MPXV DRC 07-0104 39 AGR36409.1 MDGTLFPGDDDLAIPATEFFSTKAAKNPETKREAIVKAYGDDNEETLKQRLTNLEKKITNITTKFEQIEKCCKHNDEVLFRLENHAETLRAAMISLAKKIDVQTGRRPYE 110 JX878417.1 1/14/2014 

MPXV DRC 07-0275 40 AGR36791.1 MDGTLFPGDDDLAIPATEFFSTKAAKNPETKREAIVKAYGDDNEETLKQRLTNLEKKITNITTKFEQIEKCCKHNDEVLFRLENHAETLRAAMISLAKKIDVQTGRRPYE 110 JX878419.1 1/14/2014 

MPXV DRC 07-0283 41 AGR36982.1 MDGTLFPGDDDLAIPATEFFSTKAAKNPETKREAIVKAYGDDNEETLKQRLTNLEKKITNITTKFEQIEKCCKHNDEVLFRLENHAETLRAAMISLAKKIDVQTGRRPYE 110 JX878420.1 1/14/2014 

MPXV DRC 07-0286 42 AGR37173.1 MDGTLFPGDDDLAIPATEFFSTKAAKNPETKREAIVKAYGDDNEETLKQRLTNLEKKITNITTKFEQIEKCCKHNDEVLFRLENHAETLRAAMISLAKKIDVQTGRRPYE 110 JX878421.1 1/14/2014 

MPXV DRC 07-0287 43 AGR37364.1 MDGTLFPGDDDLAIPATEFFSTKAAKNPETKREAIVKAYGDDNEETLKQRLTNLEKKITNITTKFEQIEKCCKHNDEVLFRLENHAETLRAAMISLAKKIDVQTGRRPYE 110 JX878422.1 1/14/2014 

MPXV DRC 07-0337 44 AGR37555.1 MDGTLFPGDDDLAIPATEFFSTKAAKNPETKREAIVKAYGDDNEETLKQRLTNLEKKITNITTKFEQIEKCCKHNDEVLFRLENHAETLRAAMISLAKKIDVQTGRRPYE 110 JX878423.1 1/14/2014 

MPXV DRC 07-0338 45 AGR37745.1 MDGTLFPGDDDLAIPATEFFSTKAAKNPETKREAIVKAYGDDNEETLKQRLTNLEKKITNITTKFEQIEKCCKHNDEVLFRLENHAETLRAAMISLAKKIDVQTGRRPYE 110 JX878424.1 1/14/2014 

MPXV DRC 07-0354 46 AGR37935.1 MDGTLFPGDDDLAIPATEFFSTKAAKNPETKREAIVKAYGDDNEETLKQRLTNLEKKITNITTKFEQIEKCCKHNDEVLFRLENHAETLRAAMISLAKKIDVQTGRRPYE 110 JX878425.1 1/14/2014 

MPXV DRC 07-0450 47 AGR38125.1 MDGTLFPGDDDLAIPATEFFSTKAAKNPETKREAIVKAYGDDNEETLKQRLTNLEKKITNITTKFEQIEKCCKHNDEVLFRLENHAETLRAAMISLAKKIDVQTGRRPYE 110 JX878426.1 1/14/2014 

MPXV DRC 07-0480 48 AGR38316.1 MDGTLFPGDDDLAIPATEFFSTKAAKNPETKREAIVKAYGDDNEETLKQRLTNLEKKITNITTKFEQIEKCCKHNDEVLFRLENHAETLRAAMISLAKKIDVQTGRRPYE 110 JX878427.1 1/14/2014 

MPXV DRC 07-0514 49 AGR38507.1 MDGTLFPGDDDLAIPATEFFSTKAAKNPETKREAIVKAYGDDNEETLKQRLTNLEKKITNITTKFEQIEKCCKHNDEVLFRLENHAETLRAAMISLAKKIDVQTGRRPYE 110 JX878428.1 1/14/2014 

MPXV DRC 07-0662 50 AGR38698.1 MDGTLFPGDDDLAIPATEFFSTKAAKNPETKREAIVKAYGDDNEETLKQRLTNLEKKITNITTKFEQIEKCCKHNDEVLFRLENHAETLRAAMISLAKKIDVQTGRRPYE 110 JX878429.1 1/14/2014 

MPXV Ivory Coast 2012 51 n.a. MDGTLFPGDDDLAIPATEFFSTKAAKNPETKREAIVKAYGDDNEETLKQRLTNLEKKITNITTKFEQIEKCCKHNDEVLFRLENHAETLRAAMISLAKKIDVQTGRRPYE 110 KJ136820.1 5/29/2014 

MPXV UTC 52 AIE40576.1 MDGTLFPGDDDLAIPATEFFSTKAAKNPETKREAIVKAYGDDNEETLKQRLTNLEKKITNITTKFEQIEKCCKRNDEVLFRLENHAETLRAAMISLAKKIDVQTGRHPYE 110 KJ642614.1 5/11/2015 

MPXV W-Nigeria 53 AIE40752.1 MDGTLFPGDDDLAIPATEFFSTKAAKNPETKREAIVKAYGDDNEETLKQRLTNLEKKITNITTKFEQIEKCCKRNDEVLFRLENHAETLRAAMISLAKKIDVQTGRHPYE 110 KJ642615.1 5/11/2015 

MPXV PCH 54 AIE40930.1 MDGTLFPGDDDLAIPATEFFSTKAAKNPETKREAIVKAYGDDNEETLKQRLTNLEKKITNITTKFEQIEKCCKRNDEVLFRLENHAETLRAAMISLAKKIDVQTGRHPYE 110 KJ642616.1 5/11/2015 

MPXV Nigeria-SE-1971 55 AIE41105.1 MDGTLFPGDDDLAIPATEFFSTKAAKNPETKREAIVKAYGDDNEETLKQRLTNLEKKITNITTKFEQIEKCCKRNDEVLFRLENHAETLRAAMISLAKKIDVQTGRHPYE 110 KJ642617.1 5/11/2015 

MPXV Cote d'Ivoire_1971 56 AKG51301.1 MDGTLFPGDDDLAIPATEFFSTKAAKNPETKREAIVKAYGDDNEETLKQRLTNLEKKITNITTKFEQIEKCCKRNDEVLFRLENHAETLRAAMISLAKKIDVQTGRHPYE 110 KP849470.1 5/13/2015 

MPXV MPXV_Nig_2017_297957 57 AUW64219.1 MDGTLFPGDDDLAIPATEFFSTKAAKNPETKREAIVKAYGDDNEETLKQRLTNLEKKITNITTKFEQIEKCCKRNDEVLFRLENHAETLRAAMISLAKKIDVQTGRHPYE 110 MG693723.1 2/6/2018 

        

    Epitope 4 Epitopes 1A-1D Epitope 5    

RPXV Rabbitpox virus Uttrecht 1 CAB11757.1 MDGTLFPGDDDLAIPATEFFSTKAAKKPEAKREAIVKADGDDNEETLKQRLTNLEKKITNVTTKFEQIEKCCKRNDEVLFRLENHAETLRAAMISLAKKIDVQTGRRPYE 110 Z99059.1 3/19/2003 

RPXV Rabbitpox virus 2 AAS49848.1 MDGTLFPGDDDLAIPATEFFSTKAAKKPEAKREAIVKADGDDNEETLKQRLTNLEKKITNVTTKFEQIEKCCKRNDEVLFRLENHAETLRAAMISLAKKIDVQTGRRPYE 110 AY484669.1 10/21/2005 

        

    Epitope 4 Epitopes 1A-1D Epitope 5    

RCNV Herman 1 AKJ93776.1 MEGTLFPGDDDIAIPATEFFVNKAAKKPEKPAKRKVVKADDAEEKADEEEDAEEDIKGRLTNLEKKITNVTTKFAQIEKCCKRNDEVLFRLENHAETLRVAMLSLAKKIDIQTGRQRYE 119 KP143769.1 6/10/2015 

RCNV Raccoonpoxvirus 2 ABD37609.1 KPEAKRKVVEKADEEEDEEDIKGRLTNLEKKITNVTTKFAQIEKCCKRNDEV 52 DQ374628.1 7/26/2016 

        

    Epitope 4 Epitopes 1A-1D Epitope 5    

SkPXV SKUNK 1 AAQ72922.1 MDGTLFPGDDDMAIPATEFFVTRAAKKPEEPVKRKVVKNKNKHKVVKADGEDDPDEDDEDDDDEEDDDAEETIKHRLTNLEKKITNVTTKFAQIEKCCKRNDEVLFRLENHAETLRAAMLTLAKKIDVQTGRQRYE 136 AY299088.1 6/30/2004 

SkPXV WA 2 YP_009282840.1 MDGTLFPGDDDMAIPATEFFVTRAAKKPEEPVKRKVVKNKNKHKVVKADGEDDPDEDDEDDDDEEDDDAEETIKHRLTNLEKKITNVTTKFAQIEKCCKRNDEVLFRLENHAETLRAAMLTLAKKIDVQTGRQRYE 136 NC_031038.1 9/23/2016 

SkPXV WA 3 AOP31625.1 MDGTLFPGDDDMAIPATEFFVTRAAKKPEEPVKRKVVKNKNKHKVVKADGEDDPDEDDEDDDDEEDDDAEETIKHRLTNLEKKITNVTTKFAQIEKCCKRNDEVLFRLENHAETLRAAMLTLAKKIDVQTGRQRYE 136 KU749310.1 9/21/2016 

        

    Epitope 4 Epitopes 1A-1D Epitope 5    

TaPXV Dahomey 1968 1 YP_717458.1 MDGTLFPGDDDLAIPATEFFSTKAAKKPEAKREAIVKADGYDNEETLKQRLTNLEKKITNVTIKFEQIEKCCKRNDEVLFRLENHAETLRAAMISLAKKIDVQTGRHPYE 110 NC_008291.1 8/19/2006 

TaPXV Dahomey 1968 3 ABD97717.1 MDGTLFPGDDDLAIPATEFFSTKAAKKPEAKREAIVKADGYDNEETLKQRLTNLEKKITNVTIKFEQIEKCCKRNDEVLFRLENHAETLRAAMISLAKKIDVQTGRHPYE 110 DQ437594.1 8/19/2006 

TaPXV Taterapox virus 3 ABD37615.1 KPEAKREAIVKADGYDNEETLKQRLTNLEKKITNVTIKFEQIEKCCKRNDEV 52 DQ374634.1 7/26/2016 

        

    Epitope 4 Epitopes 1A-1D Epitope 5    

VACV Vaccinia virus 1 AAA48248.1 MDGTLFPGDDDLAIPATEFFSTKAAKKPEAKREAIVKADEDDNEETLKQRLTNLEKKITNVTTKFEQIEKCCKRNDEVLFRLENHAETLRAAMISLAKKIDVQTGRRPYE 110 M18173.1 8/3/1993 

VACV Tian Tan 2 AAF34032.1 MDGTLFPGDDDLAIPATEFFSTKAAKKPEAKREAIVKADEDDNEETLKQRLTNLEKKITNVTTKFEQIEKCCKRNDEVLFRLENHAETLRAAMISLAKKIDVQTGRRPYG 110 AF095689.1 2/14/2000 

VACV LIVP-1 3 CAB11755.1 MDGTLFPGDDDLAIPATEFFSTKAAKKPEAKREAIVKADEDDNEETLKQRLTNLEKKITNVTTKFEQIEKCCKRNDEVLFRLENHAETLRAAMISLAKKIDVQTGRRHMSNLTLLLIKSIFKK 123 Z99057.1 3/19/2003 

VACV COP-2 4 CAB11754.1 MDGTLFPGDDDLAIPATEFFSTKADKKPEAKREAIVKADEDDNEETLKQRLTNLEKKITNVTTKFEQIEKCCKRNDEVLFRLENHAETLRAAMISLAKKIDVQTGRRPYE 110 Z99056.1 3/19/2003 

VACV LIVP-2 5 CAB11756.1 MDGTLFPGDDDLAIPATEFFSTKAAKKPEAKREAIVKADVDDNEETLKQRLTNLEKKITNVTTKFKQIEKCCKRNDEVLFRLENHAETLRAAMISLAKKIDVQTGRRPYE 110 Z99058.1 3/19/2003 

VACV Wyeth 6 CAB11762.1 MDGTLFPGDDDLAIPATEFFSTKAAKKPEAKREAIVKADEDDNEETLKQRLTNLEKKITNVTTKFEQIEKCCKRNDEVLFRLENHAETLRAAMISLAKKIDVQTGRRPYE 110 Z99064.1 3/19/2003 

VACV Ankara 7 AAB96472.1 MDGTLFPGDDDLAIPATEFFSTTAAKKPEAKREAIVKADEDDNEETLKQRLTNLEKKITNVTTKFEQIEKCCKRNDEVLFRLENHAETLRAAMISLAKKIDVQTGRRPYE 110 U94848.1 4/14/2003 

VACV Acambis 3000 Modified Virus Ankara (MVA) 8 AAT10536.1 MDGTLFPGDDDLAIPATEFFSTTAAKKPEAKREAIVKADEDDNEETLKQRLTNLEKKITNVTTKFEQIEKCCKRNDEVLFRLENHAETLRAAMISLAKKIDVQTGRRPYE 110 AY603355.1 5/15/2004 

VACV BP-1 9 AAQ72850.1 MDGTLFPGDDDLAIPATEFFSTKAAKKPEAKREAIVKADEDDNEETLKQRLTNLEKKITNVTTKFEQIEKCCKRNDEVLFRLENHAETLRAAMISLAKKIDVQTGRRPYE 110 AY299016.1 6/30/2004 

VACV IHD 10 AAQ72851.1 MDGTLFPGDDDLAIPATEFFSTKAAKKPEAKREAIVKADEDDNEETLKQRLTNLEKKITNVTTKFEQIEKCCKRNDEVLFRLENHAETLRAAMISLAKKIDVQTGRRPYE 110 AY299017.1 6/30/2004 

VACV LEVADITI 11 AAQ72852.1 MDGTLFPGDDDLAIPATEFFSTKAAKKPEAKREAIVKADEDDNEETLKQRLTNLEKKITNVTTKFEQIEKCCKRNDEVLFRLENHAETLRAAMISLAKKIDVQTGRRPYE 110 AY299018.1 6/30/2004 

VACV CVA 12 AAQ72853.1 MDGTLFPGDDDLAIPATEFFSTKAAKKPEAKREAIVKADEDDNEETLKQRLTNLEKKITNVTTKFEQIEKCCKRNDEVLFRLENHAETLRAAMISLAKKIDVQTGRRPYE 110 AY299019.1 6/30/2004 

VACV ELSTREE 13 AAQ72854.1 MDGTLFPGDDDLAIPATEFFSTKAAKKPEAKREAIVKADEDDNEETLKQRLTNLEKKITNVTTKFEQIEKCCKRNDEVLFRLENHAETLRAAMISLAKKIDVQTGRRPYE 110 AY299020.1 6/30/2004 

VACV EP-MARINA 14 AAQ72855.1 MDGTLFPGDDDLAIPATEFFSTKAAKKPEAKREAIVKADEDDNEETLKQRLTNLEKKITNVTTKFEQIEKCCKRNDEVLFRLENHAETLRAAMISLAKKIDVQTGRRPYE 110 AY299021.1 6/30/2004 

VACV Connaught 15 AAN78218.2 MDGTLFPGDDDLAIPATEFFSTKAAKKPEAKREAIVKADEDDNEETLKQRLTNLEKKITNVTTKFEQIEKCCKRNDEVLFRLENHAETLRAAMISLAKKIDVQTGRRPYE 110 AY160184.2 1/25/2005 

VACV LC16m8 16 AAW23581.1 MDGTLFPGDDDLAIPATEFFSTKAAKKPEAKREAIVKADGDDNEETLKQRLTNLEKKITNVTTKFEQIEKCCKRNDEVLFRLENHAETLRAAMISLAKKIDVQTGRRPYE 110 AY678275.1 9/8/2005 

VACV LC16mO 17 AAW23863.1 MDGTLFPGDDDLAIPATEFFSTKAAKKPEAKREAIVKADGDDNEETLKQRLTNLEKKITNVTTKFEQIEKCCKRNDEVLFRLENHAETLRAAMISLAKKIDVQTGRRPYE 110 AY678277.1 9/8/2005 

VACV WR (Western Reserve) 18 AAO89429.1 MDGTLFPGDDDLAIPATEFFSTKAAKKPEAKREAIVKADEDDNEETLKQRLTNLEKKITNVTTKFEQIEKCCKRNDEVLFRLENHAETLRAAMISLAKKIDVQTGRRPYE 110 AY243312.1 3/14/2006 

VACV Copenhagen 19 AAA48152.1 MDGTLFPGDDDLAIPATEFFSTKADKKPEAKREAIVKADEDDNEETLKQRLTNLEKKITNVTTKFEQIEKCCKRNDEVLFRLENHAETLRAAMISLAKKIDVQTGRRPYE 110 M35027.1 3/15/2006 
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VACV 3737 20 ABD57680.1 MDGTLFPGDDDLAIPATEFFSTKAAKKPEAKREAIVKADEDDNEETLKQRLTNLEKKITNVTTKFEQIEKCCKRNDEVLFRLENHAETLRAAMISLAKKIDVQTGRRPYE 110 DQ377945.1 4/19/2006 

VACV DUKE 21 ABD98620.1 MDGTLFPGDDDLAIPATEFFSTKAAKKPEAKREAIVKADEDDNEETLKQRLTNLEKKITNVTTKFEQIEKCCKRNDEVLFRLENHAETLRAAMISLAKKIDVQTGRRPYE 110 DQ439815.1 10/27/2006 

VACV Lister clone VACV107 22 ABD52635.1 MDGTLFPGDDDLAIPATEFFSTKAAKKPEAKREAIVKADEDDNEETLKQRLTNLEKKITNVTTKFEQIEKCCKRNDEVLFRLENHAETLRAAMISLAKKIDVQTGRRPYE 110 DQ121394.1 6/12/2007 

VACV chorioallantois vaccinia virus Ankara (CVA) 23 CAM58321.1 MDGTLFPGDDDLAIPATEFFSTKAAKKPEAKREAIVKADEDDNEETLKQRLTNLEKKITNVTTKFEQIEKCCKRNDEVLFRLENHAETLRAAMISLAKKIDVQTGRRPYE 110 AM501482.1 1/30/2009 

VACV GLV-1h68 24 ABZ80105.1 MDGTLFPGDDDLAIPATEFFSTKAAKKPEAKREAIVKADEDDNEETLKQRLTNLEKKITNVTTKFEQIEKCCKRNDEVLFRLENHAETLRAAMISLAKKIDVQTGRRPYE 110 EU410304.1 9/29/2009 

VACV unknown Sequence 318 from patent US 7645456 25 ADC23632.1 MDGTLFPGDDDLAIPATEFFSTKAAKKPEAKREAIVKADEDDNEETLKQRLTNLEKKITNVTTKFEQIEKCCKRNDEVLFRLENHAETLRAAMISLAKKIDVQTGRRPYE 110 ADC23632.1 1/28/2010 

VACV Acambis clone 3 26 AAQ93247.1 MDGTLFPGDDDLAIPATEFFSTKAAKKPEAKREAIVKADEDDNEETLKQRLTNLEKKITNVTTKFEQIEKCCKRNDEVLFRLENHAETLRAAMISLAKKIDVQTGRRPYE 110 AY313848.1 10/5/2010 

VACV Acambis clone 2000 27 AAR17993.1 MDGTLFPGDDDLAIPATEFFSTKAAKKPEAKREAIVKADEDDNEETLKQRLTNLEKKITNVTTKFEQIEKCCKRNDEVLFRLENHAETLRAAMISLAKKIDVQTGRRPYE 110 AY313847.1 10/5/2010 

VACV unknown Sequence 8 from patent US7807180 28 ADS58159.1 MDGTLFPGDDDLAIPATEFFSTKAAKKPEAKREAIVKADEDDNEETLKQRLTNLEKKITNVTTKFEQIEKCCKRNDEVLFRLENHAETLRAAMISLAKKIDVQTGRRPYE 110 ADS58159.1 12/13/2010 

VACV Dryvax clone DPP12 29 AEY73438.1 MDGTLFPGDDDLAIPATEFFSTKAAKKPEAKREAIVKADEDDNEETLKQRLTNLEKKITNVTTKFEQIEKCCKRNDEVLFRLENHAETLRAAMISLAKKIDVQTGRRPYE 110 JN654979.1 1/28/2012 

VACV Dryvax clone DPP9 30 AEY72723.1 MDGTLFPGDDDLAIPATEFFSTKAAKKPEAKREAIVKADEDDNEETLKQRLTNLEKKITNVTTKFEQIEKCCKRNDEVLFRLENHAETLRAAMISLAKKIDVQTGRRPYE 110 JN654976.1 1/28/2012 

VACV Dryvax clone DPP10 31 AEY72961.1 MDGTLFPGDDDLAIPATEFFSTKAAKKPEAKREAIVKADEDDNEETLKQRLTNLEKKITNVTTKFEQIEKCCKRNDEVLFRLENHAETLRAAMISLAKKIDVQTGRRPYE 110 JN654977.1 1/28/2012 

VACV Dryvax clone DPP11 32 AEY73196.1 MDGTLFPGDDDLAIPATEFFSTKAAKKPEAKREAIVKADEDDNEETLKQRLTNLEKKITNVTTKFEQIEKCCKRNDEVLFRLENHAETLRAAMISLAKKIDVQTGRRPYE 110 JN654978.1 1/28/2012 

VACV Dryvax clone DPP13 33 AEY73678.1 MDGTLFPGDDDLAIPATEFFSTKAAKKPEAKREAIVKADEDDNEETLKQRLTNLEKKITNVTTKFEQIEKCCKRNDEVLFRLENHAETLRAAMISLAKKIDVQTGRRPYE 110 JN654980.1 1/28/2012 

VACV Dryvax clone DPP15 34 AEY73908.1 MDGTLFPGDDDLAIPATEFFSTKAAKKPEAKREAIVKADEDDNEETLKQRLTNLEKKITNVTTKFEQIEKCCKRNDEVLFRLENHAETLRAAMISLAKKIDVQTGRRPYE 110 JN654981.1 1/28/2012 

VACV Dryvax clone DPP16 35 AEY74148.1 MDGTLFPGDDDLAIPATEFFSTKAAKKPEAKREAIVKADEDDNEETLKQRLTNLEKKITNVTTKFEQIEKCCKRNDEVLFRLENHAETLRAAMISLAKKIDVQTGRRPYE 110 JN654982.1 1/28/2012 

VACV Dryvax clone DPP17 36 AEY74389.1 MDGTLFPGDDDLAIPATEFFSTKAAKKPEAKREAIVKADEDDNEETLKQRLTNLEKKITNVTTKFEQIEKCCKRNDEVLFRLENHAETLRAAMISLAKKIDVQTGRRPYE 110 JN654983.1 1/28/2012 

VACV Dryvax clone DPP19 37 AEY74617.1 MDGTLFPGDDDLAIPATEFFSTKAAKKPEAKREAIVKADEDDNEETLKQRLTNLEKKITNVTTKFEQIEKCCKRNDEVLFRLENHAETLRAAMISLAKKIDVQTGRRPYE 110 JN654984.1 1/28/2012 

VACV Dryvax clone DPP20 38 AEY74857.1 MDGTLFPGDDDLAIPATEFFSTKAAKKPEAKREAIVKADEDDNEETLKQRLTNLEKKITNVTTKFEQIEKCCKRNDEVLFRLENHAETLRAAMISLAKKIDVQTGRRPYE 110 JN654985.1 1/28/2012 

VACV Dryvax clone DPP21 39 AEY75097.1 MDGTLFPGDDDLAIPATEFFSTKAAKKPEAKREAIVKADEDDNEETLKQRLTNLEKKITNVTTKFEQIEKCCKRNDEVLFRLENHAETLRAAMISLAKKIDVQTGRRPYE 110 JN654986.1 1/28/2012 

VACV IHD-W 40 AGB75866.1 MDGTLFPGDDDLAIPATEFFSTKAAKKPEAKREAIVKADEDDNEETLKQRLTNLEKKITNVTTKFEQIEKCCKRNDEVLFRLENHAETLRAAMISLAKKIDVQTGRRPYE 110 KC201194.1 1/9/2013 

VACV TianTan clone TP3 41 AGK06618.1 MDGTLFPGDDDLAIPATEFFSTKAAKKPEAKREAIVKADEDDNEETLKQRLTNLEKKITNVTTKFEQIEKCCKRNDEVLFRLENHAETLRAAMISLAKKIDVQTGRRPYE 110 KC207810.1 4/27/2013 

VACV TianTan clone TP5 42 AGK06831.1 MDGTLFPGDDDLAIPATEFFSTKAAKKPEAKREAIVKADEDDNEETLKQRLTNLEKKITNVTTKFEQIEKCCKRNDEVLFRLENHAETLRAAMISLAKKIDVQTGRRPYE 110 KC207811.1 4/27/2013 

VACV TianTan clone TT8 43 AGJ91342.1 MDGTLFPGDDDLAIPATEFFSTKAAKKPEAKREAIVKADEDDNEETLKQRLTNLEKKITNVTTKFEQIEKCCKRNDEVLFRLENHAETLRAAMISLAKKIDVQTGRRPYE 110 JX489135.1 4/24/2013 

VACV TianTan clone TT9 44 AGJ91614.1 MDGTLFPGDDDLAIPATEFFSTKAAKKPEAKREAIVKADEDDNEETLKQRLTNLEKKITNVTTKFEQIEKCCKRNDEVLFRLENHAETLRAAMISLAKKIDVQTGRRPYE 110 JX489136.1 4/24/2013 

VACV TianTan clone TT10 45 AGJ91884.1 MDGTLFPGDDDLAIPATEFFSTKAAKKPEAKREAIVKADEDDNEETLKQRLTNLEKKITNVTTKFEQIEKCCKRNDEVLFRLENHAETLRAAMISLAKKIDVQTGRRPYE 110 JX489137.1 4/24/2013 

VACV TianTan clone TT11 46 AGJ92158.1 MDGTLFPGDDDLAIPATEFFSTKAAKKPEAKREAIVKADEDDNEETLKQRLTNLEKKITNVTTKFEQIEKCCKRNDEVLFRLENHAETLRAAMISLAKKIDVQTGRRPYE 110 JX489138.1 4/24/2013 

VACV TianTan clone TT12 47 AGJ92432.1 MDGTLFPGDDDLAIPATEFFSTKAAKKPEAKREAIVKADEDDNEETLKQRLTNLEKKITNVTTKFEQIEKCCKRNDEVLFRLENHAETLRAAMISLAKKIDVQTGRRPYE 110 JX489139.1 4/24/2013 

VACV Brazil Serro 2 48 AHB35788.1 MDGTLFPGDDDLAIPATEFFSTKAAKKPEAKREAIVKADEDDNEETLKQRLTNLEKKITNVTTKFEQIEKCCKRNDEVLFRLENHAETLRAAMISLAKKIDVQTGRRPYE 110 KF179385.1 12/4/2014 

VACV L-IVP 49 AIZ72898.1 MDGTLFPGDDDLAIPATEFFSTKAAKKPEAKREAIVKADEDDNEETLKQRLTNLEKKITNVTTKFEQIEKCCKRNDEVLFRLENHAETLRAAMISLAKKIDVQTGRRPYE 110 KP233807.1 12/17/2014 

VACV Dryvax clone DPP25 50 AIX98845.1 MDGTLFPGDDDLAIPATEFFSTKAAKKPEAKREAIVKADEDDNEETLKQRLTNLEKKITNVTTKFEQIEKCCKRNDEVLFRLENHAETLRAAMISLAKKIDVQTGRRPYE 110 KJ125438.1 4/21/2015 

VACV Tashkent cloneTKT3 51 AIX99269.1 MDGTLFPGDDDLAIPATEFFSTKAAKKPEAKREAIVKADEDDNEETLKQRLTNLEKKITNVTTKFEQIEKCCKRNDEVLFRLENHAETLRAAMISLAKKIDVQTGRRPYE 110 KM044309.1 4/21/2015 

VACV Tashkent cloneTKT4 52 AIX99474.1 MDGTLFPGDDDLAIPATEFFSTKAAKKPEAKREAIVKADEDDNEETLKQRLTNLEKKITNVTTKFEQIEKCCKRNDEVLFRLENHAETLRAAMISLAKKIDVQTGRRPYE 110 KM044310.1 4/21/2015 

VACV WAU86/88-1 53 AHB23585.1 MDGTLFPGDDDLAIPATEFFSTKAAKKPEAKREAIVKADEDDNEETLKQRLTNLEKKITNVTTKFEQIEKCCKRNDEVLFRLENHAETLRAAMISLAKKIDVQTGRRPYE 110 KF866253.1 5/11/2015 

VACV WR (Western Reserve) 54 YP_233032.1 MDGTLFPGDDDLAIPATEFFSTKAAKKPEAKREAIVKADEDDNEETLKQRLTNLEKKITNVTTKFEQIEKCCKRNDEVLFRLENHAETLRAAMISLAKKIDVQTGRRPYE 110 NC_006998.1 8/6/2015 

VACV IOC cloneB141 55 ALF05145.1 MDGTLFPGDDDLAIPATEFFSTKAAKKPEAKREAIVKADEDDNEETLKQRLTNLEKKITNVTTKFEQIEKCCKRNDEVLFRLENHAETLRAAMISLAKKIDVQTGRRPYE 110 KT184690.1 9/26/2015 

VACV IOC cloneB388 56 ALF05396.1 MDGTLFPGDDDLAIPATEFFSTKAAKKPEAKREAIVKADEDDNEETLKQRLTNLEKKITNVTTKFEQIEKCCKRNDEVLFRLENHAETLRAAMISLAKKIDVQTGRRPYE 110 KT184691.1 9/26/2015 

VACV Cantagalo 57 ALF36307.1 MDGTLFPGDDDLAIPATEFFSTKAAKKPEAKREAIVKADEDDNEETLKQRLTNLEKKITNVTTKFEQIEKCCKRNDEVLFRLENHAETLRAAMISLAKKIDVQTGRRPYE 110 KT013210.1 10/8/2015 

VACV Lister clone: Lister Butantan 58 AND73983.1 MDGTLFPGDDDLAIPATEFFSTKAAKKPEAKREAIVKADEDDNEETLKQRLTNLEKKITNVTTKFEQIEKCCKRNDEVLFRLENHAETLRAAMISLAKKIDVQTGRRPYE 110 KX061501.1 5/10/2016 

VACV Vaccinia virus WR 59 P11258.3 MDGTLFPGDDDLAIPATEFFSTKAAKKPEAKREAIVKADEDDNEETLKQRLTNLEKKITNVTTKFEQIEKCCKRNDEVLFRLENHAETLRAAMISLAKKIDVQTGRRPYE 110 P11258.3 2/15/2017 

VACV Vaccinia virus 60 CAA40577.1 MDGTLFPGDDDLAIPATEFFSTKAAKKPDRKREQIVKADEDDNEETLKQRLTNLEKKITNVTTKFEQIEKCCKRNDEVLFRLENHAETLRAAMISLAKKIDVQTGRRPYE 110 X57318.1 7/26/2016 

VACV WR 65-16 61 P26312.1 MLEFFRPPRARSPRELVQLLPEAWTTSRSSTGSANPSASRKPARYPRIHAPELQSGEARWPLWSRIRPLEDPLKQRLTNLEKKITNVTTKFEQIEKCCKRNDEVLFRLENHAETLRAAMISLAKKIDVQTGRRPYE 136  5/10/2017 

        

    Epitope 4 Epitopes 1A-1D Epitope 5    

VARV major India-1967 1 CAA47501.1 MDGTLFPGDDDLAIPATEFFSTKAAKKPEAKREAIVKADGDNNEETLKQRLTNLEKKITNVTTKFEQIEKCCKRNDDVLFRLENHAETLRAAMISLAKKIDVQTGRRPYE 110 X67115.1 7/26/1994 

VARV major Bangladesh-1975, ssp. major 2 AAA60882.1 MDGTLFPGDDDLAIPATEFFSTKAAKKPEAKREAIVKADGDDNEETLKQRLTNLEKKITNVTTKFEQIEKCCKRNDDVLFRLENHAETLRAAMISLAKKIDVQTGRRPYE 110 L22579.1 1/12/1995 

VARV major Harvey, ssp. major 3 CAA46494.1 MDGTLFPGDDDLAIPATEFFSTKAAKKPEAKREAIVKADGDDNEETLKQRLTNLEKKITNVTTKFEQIEKCCKRNDDVLFRLENHAETLRAAMISLAKKIDVQTGRRPYE 110 X65517.1 1/22/1999 

VARV major India378 4 AAP48868.1 MDGTLFPGDDDLAIPATEFFSTKAAKKPEAKREAIVKADGDDNEETLKQRLTNLEKKITNVTTKFEQIEKCCKRNDDVLFRLENHAETLRAAMISLAKKIDVQTGRRPYE 110 AY223483.1 5/12/2004 

VARV major M-Sur-60 5 AAP48870.1 MDGTLFPGDDDLAIPATEFFSTKAAKKPEAKREAIVKADGDDNEETLKQRLTNLEKKITNVTTKFEQIEKCCKRNDDVLFRLENHAETLRAAMISLAKKIDVQTGRRPYE 110 AY223485.1 5/12/2004 

VARV major 6/58 6 AAP48877.1 MDGTLFPGDDDLAIPATEFFSTKAAKKPEAKREAIVKADGDNNEETLKQRLTNLEKKITNVTTKFEQIEKCCKRNDDVLFRLENHAETLRAAMISLAKKIDVQTGRRPYE 110 AY223492.1 5/12/2004 
VARV major Aslam 7 AAP48875.1 MDGTLFPGDDDLAIPATEFFSTKAAKKPEAKREAIVKADGDDNEETLKQRLTNLEKKITNVTTKFEQIEKCCKRNDDVLFRLENHAETLRAAMISLAKKIDVQTGRRPYE 110 AY223490.1 5/12/2004 

VARV major Brazil128 8 AAP48879.1 MDGTLFPGDDDLAIPATEFFSTKAAKKPEAKREAIVKADGDDNEETLKQRLTNLEKKITNVTTKFEQIEKCCKRNDDVLFRLENHAETLRAAMISLAKKIDVQTGRRPYE 110 AY223494.1 5/12/2004 

VARV major Brazil131 9 AAP48880.1 MDGTLFPGDDDLAIPATEFFSTKAAKKPEAKREAIVKADGDDNEETLKQRLTNLEKKITNVTTKFEQIEKCCKRNDDVLFRLENHAETLRAAMISLAKKIDVQTGRRPYE 110 AY223495.1 5/12/2004 

VARV major Butler 10 AAP48878.1 MDGTLFPGDDDLAIPATEFFSTKAAKKPEAKREAIVKADGDDNEETLKQRLTNLEKKITNVTTKFEQIEKCCKRNDDVLFRLENHAETLRAAMISLAKKIDVQTGRRPYE 110 AY223493.1 5/12/2004 

VARV major India164 11 AAP48869.1 MDGTLFPGDDDLAIPATEFFSTKAAKKPEAKREAIVKADGDDNEETLKQRLTNLEKKITNVTTKFEQIEKCCKRNDDVLFRLENHAETLRAAMISLAKKIDVQTGRRPYE 110 AY223484.1 5/12/2004 

VARV major Khateen 12 AAP48876.1 MDGTLFPGDDDLAIPATEFFSTKAAKKPEAKREAIVKADGDDNEETLKQRLTNLEKKITNVTTKFEQIEKCCKRNDDVLFRLENHAETLRAAMISLAKKIDVQTGRRPYE 110 AY223491.1 5/12/2004 

VARV major M-A-60 13 AAP48872.1 MDGTLFPGDDDLAIPATEFFSTKAAKKPEAKREAIVKADGDDNEETLKQRLTNLEKKITNVTTKFEQIEKCCKRNDDVLFRLENHAETLRAAMISLAKKIDVQTGRRPYE 110 AY223487.1 5/12/2004 

VARV major M-Bl-60 14 AAP48873.1 MDGTLFPGDDDLAIPATEFFSTKAAKKPEAKREAIVKADGDDNEETLKQRLTNLEKKITNVTTKFEQIEKCCKRNDDVLFRLENHAETLRAAMISLAKKIDVQTGRRPYE 110 AY223488.1 5/12/2004 

VARV major M-N-60 15 AAP48874.1 MDGTLFPGDDDLAIPATEFFSTKAAKKPEAKREAIVKADGDDNEETLKQRLTNLEKKITNVTTKFEQIEKCCKRNDDVLFRLENHAETLRAAMISLAKKIDVQTGRRPYE 110 AY223489.1 5/12/2004 

VARV major M-Sok-60 16 AAP48871.1 MDGTLFPGDDDLAIPATEFFSTKAAKKPEAKREAIVKADGDDNEETLKQRLTNLEKKITNVTTKFEQIEKCCKRNDDVLFRLENHAETLRAAMISLAKKIDVQTGRRPYE 110 AY223486.1 5/12/2004 

VARV major TajBarin 17 AAP48867.1 MDGTLFPGDDDLAIPATEFFSTKAAKKPEAKREAIVKADGDDNEETLKQRLTNLEKKITNVTTKFEQIEKCCKRNDDVLFRLENHAETLRAAMISLAKKIDVQTGRRPYE 110 AY223482.1 5/12/2004 
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VARV major India-1967, ssp. major 18 CAA49075.1 MDGTLFPGDDDLAIPATEFFSTKAAKKPEAKREAIVKADGDNNEETLKQRLTNLEKKITNVTTKFEQIEKCCKRNDDVLFRLENHAETLRAAMISLAKKIDVQTGRRPYE 110 X69198.1 4/18/2005 

VARV major United Kingdom 1947 Higgins (Staffordshire) 19 ABF28921.1 MDGTLFPGDDDLAIPATEFFSTKAAKKPEAKREAIVKADGDDNEETLKQRLTNLEKKITNVTTKFEQIEKCCKRNDDVLFRLENHAETLRAAMISLAKKIDVQTGRRPYE 110 DQ441446.1 8/19/2006 

VARV major Afghanistan 1970 Variolator 4 20 ABG43304.1 MDGTLFPGDDDLAIPATEFFSTKAAKKPEAKREAIVKADGDDNEETLKQRLTNLEKKITNVTTKFEQIEKCCKRNDDVLFRLENHAETLRAAMISLAKKIDVQTGRRPYE 110 DQ437580.1 8/19/2006 

VARV major Bangladesh 1974 (nur islam) 21 ABF23711.1 MDGTLFPGDDDLAIPATEFFSTKAAKKPEAKREAIVKADGDDNEETLKQRLTNLEKKITNVTTKFEQIEKCCKRNDDVLFRLENHAETLRAAMISLAKKIDVQTGRRPYE 110 DQ441420.1 8/19/2006 

VARV major Bangladesh 1974 (Shahzaman) 22 ABF23908.1 MDGTLFPGDDDLAIPATEFFSTKAAKKPEAKREAIVKADGDDNEETLKQRLTNLEKKITNVTTKFEQIEKCCKRNDDVLFRLENHAETLRAAMISLAKKIDVQTGRRPYE 110 DQ441421.1 8/19/2006 

VARV major Bangladesh 1974 (Solaiman) 23 ABF24105.1 MDGTLFPGDDDLAIPATEFFSTKAAKKPEAKREAIVKADGDDNEETLKQRLTNLEKKITNVTTKFEQIEKCCKRNDDVLFRLENHAETLRAAMISLAKKIDVQTGRRPYE 110 DQ441422.1 8/19/2006 

VARV major Bangladesh 1975 v75-550 Banu 24 ABG43507.1 MDGTLFPGDDDLAIPATEFFSTKAAKKPEAKREAIVKADGDDNEETLKQRLTNLEKKITNVTTKFEQIEKCCKRNDDVLFRLENHAETLRAAMISLAKKIDVQTGRRPYE 110 DQ437581.1 8/19/2006 

VARV major Benin, Dahomey 1968 (v68-59) 25 ABF22898.1 MDGTLFPGDDDLAIPATEFFSTKAAKKPEAKREAIVKADGDDNEETLKQRLTNLEKKITNVTTKFEQIEKCCKRNDDVLFRLENHAETLRAAMISLAKKIDVQTGRRPYE 110 DQ441416.1 8/19/2006 

VARV major Botswana 1972 (v72-143) 26 ABF23102.1 MDGTLFPGDDDLAIPATEFFSTKAAKKPEAKREAIVKADGDDNEETLKQRLTNLEKKITNVTTKFEQIEKCCKRNDDVLFRLENHAETLRAAMISLAKKIDVQTGRRPYE 110 DQ441417.1 8/19/2006 

VARV major Botswana 1973 (v73-225) 27 ABF23304.1 MDGTLFPGDDDLAIPATEFFSTKAAKKPEAKREAIVKADGDDNEETLKQRLTNLEKKITNVTTKFEQIEKCCKRNDDVLFRLENHAETLRAAMISLAKKIDVQTGRRPYE 110 DQ441418.1 8/19/2006 

VARV major Brazil 1966 (v66-39 Sao Paulo) 28 ABF23508.1 MDGTLFPGDDDLAIPATEFFSTKAAKKPEAKREAIVKADGDDNEETLKQRLTNLEKKITNVTTKFEQIEKCCKRNDDVLFRLENHAETLRAAMISLAKKIDVQTGRRPYE 110 DQ441419.1 8/19/2006 

VARV major China Horn 1948; Sabin Lab July 1948 29 ABG43708.1 MDGTLFPGDDDLAIPATEFFSTKAAKKPEAKREAIVKADGDDNEETLKQRLTNLEKKITNVTTKFEQIEKCCKRNDDVLFRLENHAETLRAAMISLAKKIDVQTGRRPYE 110 DQ437582.1 8/19/2006 

VARV major Congo 9 1970 (v74-227 Gispen) 30 ABF24302.1 MDGTLFPGDDDLAIPATEFFSTKAAKKPEAKREAIVKADGDDNEETLKQRLTNLEKKITNVTTKFEQIEKCCKRNDDVLFRLENHAETLRAAMISLAKKIDVQTGRRPYE 110 DQ441423.1 8/19/2006 

VARV major Congo 1970 v70-46 Kinshasa 31 ABG43912.1 MDGTLFPGDDDLAIPATEFFSTKAAKKPEAKREAIVKADGDDNEETLKQRLTNLEKKITNVTTKFEQIEKCCKRNDDVLFRLENHAETLRAAMISLAKKIDVQTGRRPYE 110 DQ437583.1 8/19/2006 

VARV major Ethiopia 1972 (Eth16 R14-1X-72 Addis) 32 ABF24503.1 MDGTLFPGDDDLAIPATEFFSTKAAKKPEAKREAIVKADGDDNEETLKQRLTNLEKKITNVTTKFEQIEKCCKRNDDVLFRLENHAETLRAAMISLAKKIDVQTGRRPYE 110 DQ441424.1 8/19/2006 

VARV major Ethiopia 1972 (Eth17 R14-1X-72 Addis) 33 ABF24705.1 MDGTLFPGDDDLAIPATEFFSTKAAKKPEAKREAIVKADGDDNEETLKQRLTNLEKKITNVTTKFEQIEKCCKRNDDVLFRLENHAETLRAAMISLAKKIDVQTGRRPYE 110 DQ441425.1 8/19/2006 

VARV major Germany 1958 Heidelberg 34 ABG44114.1 MDGTLFPGDDDLAIPATEFFSTKAAKKPEAKREAIVKADGDDNEETLKQRLTNLEKKITNVTTKFEQIEKCCKRNDDVLFRLENHAETLRAAMISLAKKIDVQTGRRPYE 110 DQ437584.1 8/19/2006 

VARV major Guinea 1969 (005) 35 ABF24906.1 MDGTLFPGDDDLAIPATEFFSTKAAKKPEAKREAIVKADGDDNEETLKQRLTNLEKKITNVTTKFEQIEKCCKRNDDVLFRLENHAETLRAAMISLAKKIDVQTGRRPYE 110 DQ441426.1 8/19/2006 

VARV major India 1953 (Kali-Muthu-M50 Madras) 36 ABF25108.1 MDGTLFPGDDDLAIPATEFFSTKAAKKPEAKREAIVKADGDDNEETLKQRLTNLEKKITNVTTKFEQIEKCCKRNDDVLFRLENHAETLRAAMISLAKKIDVQTGRRPYE 110 DQ441427.1 8/19/2006 

VARV major India 1953 (New Delhi) 37 ABF25308.1 MDGTLFPGDDDLAIPATEFFSTKAAKKPEAKREAIVKADGDDNEETLKQRLTNLEKKITNVTTKFEQIEKCCKRNDDVLFRLENHAETLRAAMISLAKKIDVQTGRRPYE 110 DQ441428.1 8/19/2006 

VARV major India 1964 7124 Vellore 38 ABG44317.1 MDGTLFPGDDDLAIPATEFFSTKAAKKPEAKREAIVKADGDDNEETLKQRLTNLEKKITNVTTKFEQIEKCCKRNDDVLFRLENHAETLRAAMISLAKKIDVQTGRRPYE 110 DQ437585.1 8/19/2006 

VARV major India 1964 7125 Vellore 39 ABG44521.1 MDGTLFPGDDDLAIPATEFFSTKAAKKPEAKREAIVKADGDDNEETLKQRLTNLEKKITNVTTKFEQIEKCCKRNDDVLFRLENHAETLRAAMISLAKKIDVQTGRRPYE 110 DQ437586.1 8/19/2006 

VARV major Iran 1972 2602 Tabriz 40 ABG44723.1 MDGTLFPGDDDLAIPATEFFSTKAAKKPEAKREAIVKADGDDNEETLKQRLTNLEKKITNVTTKFEQIEKCCKRNDDVLFRLENHAETLRAAMISLAKKIDVQTGRRPYE 110 DQ437587.1 8/19/2006 

VARV major Japan 1946 (Yamada MS-2(A) Tokyo) 41 ABF25510.1 MDGTLFPGDDDLAIPATEFFSTKAAKKPEAKREAIVKADGDDNEETLKQRLTNLEKKITNVTTKFEQIEKCCKRNDDVLFRLENHAETLRAAMISLAKKIDVQTGRRPYE 110 DQ441429.1 8/19/2006 

VARV major Japan 1951 (Harper, Masterseed) 42 ABF25712.1 MDGTLFPGDDDLAIPATEFFSTKAAKKPEAKREAIVKADGDDNEETLKQRLTNLEKKITNVTTKFEQIEKCCKRNDDVLFRLENHAETLRAAMISLAKKIDVQTGRRPYE 110 DQ441430.1 8/19/2006 

VARV major Japan 1951 (Stillwell, Masterseed) 43 ABF25913.1 MDGTLFPGDDDLAIPATEFFSTKAAKKPEAKREAIVKADGDDNEETLKQRLTNLEKKITNVTTKFEQIEKCCKRNDDVLFRLENHAETLRAAMISLAKKIDVQTGRRPYE 110 DQ441431.1 8/19/2006 

VARV major Korea 1947 (Lee, Masterseed) 44 ABF26115.1 MDGTLFPGDDDLAIPATEFFSTKAAKKPEAKREAIVKADGDDNEETLKQRLTNLEKKITNVTTKFEQIEKCCKRNDDVLFRLENHAETLRAAMISLAKKIDVQTGRRPYE 110 DQ441432.1 8/19/2006 

VARV major Kuwait 1967 (K1629) 45 ABF26317.1 MDGTLFPGDDDLAIPATEFFSTKAAKKPEAKREAIVKADGDDNEETLKQRLTNLEKKITNVTTKFEQIEKCCKRNDDVLFRLENHAETLRAAMISLAKKIDVQTGRRPYE 110 DQ441433.1 8/19/2006 

VARV major Nepal 1973 V73-175 46 ABG44926.1 MDGTLFPGDDDLAIPATEFFSTKAAKKPEAKREAIVKADGDDNEETLKQRLTNLEKKITNVTTKFEQIEKCCKRNDDVLFRLENHAETLRAAMISLAKKIDVQTGRRPYE 110 DQ437588.1 8/19/2006 

VARV major Pakistan 1969 (Rafig Lahore) 47 ABG45128.1 MDGTLFPGDDDLAIPATEFFSTKAAKKPEAKREAIVKADGDDNEETLKQRLTNLEKKITNVTTKFEQIEKCCKRNDDVLFRLENHAETLRAAMISLAKKIDVQTGRRPYE 110 DQ437589.1 8/19/2006 

VARV major Sierra Leone 1969 (V68-258) 48 ABF27124.1 MDGTLFPGDDDLAIPATEFFSTKAAKKPEAKREAIVKADGDDNEETLKQRLTNLEKKITNVTTKFEQIEKCCKRNDDVLFRLENHAETLRAAMISLAKKIDVQTGRRPYE 110 DQ441437.1 8/19/2006 

VARV major Somalia 1977 (V77-1252) 49 ABF27326.1 MDGTLFPGDDDLAIPATEFFSTKAAKKPEAKREAIVKADGDDNEETLKQRLTNLEKKITNVTTKFEQIEKCCKRNDDVLFRLENHAETLRAAMISLAKKIDVQTGRCPYE 110 DQ441438.1 8/19/2006 

VARV major SOM77_1605_139 50 ABF27525.1 MDGTLFPGDDDLAIPATEFFSTKAAKKPEAKREAIVKADGDDNEETLKQRLTNLEKKITNVTTKFEQIEKCCKRNDDVLFRLENHAETLRAAMISLAKKIDVQTGRCPYE 110 DQ441439.1 8/19/2006 

VARV major Somalia 1977; V77-2479 51 ABG45331.1 MDGTLFPGDDDLAIPATEFFSTKAAKKPEAKREAIVKADGDDNEETLKQRLTNLEKKITNVTTKFEQIEKCCKRNDDVLFRLENHAETLRAAMISLAKKIDVQTGRCPYE 110 DQ437590.1 8/19/2006 

VARV major South Africa 1965 (102 Natal, Ingwavuma) 52 ABF26721.1 MDGTLFPGDDDLAIPATEFFSTKAAKKPEAKREAIVKADGDDNEETLKQRLTNLEKKITNVTTKFEQIEKCCKRNDDVLFRLENHAETLRAAMISLAKKIDVQTGRRPYE 110 DQ441435.1 8/19/2006 

VARV major South Africa 1965 (103 T'vaal, Nelspruit) 53 ABF26921.1 MDGTLFPGDDDLAIPATEFFSTKAAKKPEAKREAIVKADGDDNEETLKQRLTNLEKKITNVTTKFEQIEKCCKRNDDVLFRLENHAETLRAAMISLAKKIDVQTGRRPYE 110 DQ441436.1 8/19/2006 

VARV major United Kingdom 1946 Harvey 54 ABF28521.1 MDGTLFPGDDDLAIPATEFFSTKAAKKPEAKREAIVKADGDDNEETLKQRLTNLEKKITNVTTKFEQIEKCCKRNDDVLFRLENHAETLRAAMISLAKKIDVQTGRRPYE 110 DQ441444.1 8/19/2006 

VARV major Sudan 1947 (Juba) 55 ABF27724.1 MDGTLFPGDDDLAIPATEFFSTKAAKKPEAKREAIVKADGDDNEETLKQRLTNLEKKITNVTTKFEQIEKCCKRNDDVLFRLENHAETLRAAMISLAKKIDVQTGRRPYE 110 DQ441440.1 8/19/2006 

VARV major Sudan 1947 (Rumbec) 56 ABF27924.1 MDGTLFPGDDDLAIPATEFFSTKAAKKPEAKREAIVKADGDDNEETLKQRLTNLEKKITNVTTKFEQIEKCCKRNDDVLFRLENHAETLRAAMISLAKKIDVQTGRRPYE 110 DQ441441.1 8/19/2006 

VARV major Sumatra 1970 V70-228 57 ABF28123.1 MDGTLFPGDDDLAIPATEFFSTKAAKKPEAKREAIVKADGDDNEETLKQRLTNLEKKITNVTTKFEQIEKCCKRNDDVLFRLENHAETLRAAMISLAKKIDVQTGRRPYE 110 DQ441442.1 8/19/2006 

VARV major Syria 1972 V72-199 58 ABG45735.1 MDGTLFPGDDDLAIPATEFFSTKAAKKPEAKREAIVKADGDDNEETLKQRLTNLEKKITNVTTKFEQIEKCCKRNDDVLFRLENHAETLRAAMISLAKKIDVQTGRRPYE 110 DQ437592.1 8/19/2006 

VARV major Tanzania 1965 kembula 59 ABF28322.1 MDGTLFPGDDDLAIPATEFFSTKAAKKPEAKREAIVKADGDDNEETLKQRLTNLEKKITNVTTKFEQIEKCCKRNDDVLFRLENHAETLRAAMISLAKKIDVQTGRRPYE 110 DQ441443.1 8/19/2006 

VARV major United Kingdom 1946 Hinden (Middlesex) 60 ABF28722.1 MDGTLFPGDDDLAIPATEFFSTKAAKKPEAKREAIVKADGDDNEETLKQRLTNLEKKITNVTTKFEQIEKCCKRNDDVLFRLENHAETLRAAMISLAKKIDVQTGRRPYE 110 DQ441445.1 8/19/2006 

VARV major United Kingdom 1952 Butler 61 ABF29124.1 MDGTLFPGDDDLAIPATEFFSTKAAKKPEAKREAIVKADGDDNEETLKQRLTNLEKKITNVTTKFEQIEKCCKRNDDVLFRLENHAETLRAAMISLAKKIDVQTGRRPYE 110 DQ441447.1 8/19/2006 

VARV major Yugoslavia 1972 V72-164 62 ABF29328.1 MDGTLFPGDDDLAIPATEFFSTKAAKKPEAKREAIVKADGDDNEETLKQRLTNLEKKITNVTTKFEQIEKCCKRNDDVLFRLENHAETLRAAMISLAKKIDVQTGRRPYE 110 DQ441448.1 8/19/2006 

VARV major Sumatra 1970 V70-222 63 ABG45532.1 MDGTLFPGDDDLAIPATEFFSTKAAKKPEAKREAIVKADGDDNEETLKQRLTNLEKKITNVTTKFEQIEKCCKRNDDVLFRLENHAETLRAAMISLAKKIDVQTGRRPYE 110 DQ437591.1 8/19/2006 

VARV major India-1967, ssp. major 64 NP_042178.1 MDGTLFPGDDDLAIPATEFFSTKAAKKPEAKREAIVKADGDNNEETLKQRLTNLEKKITNVTTKFEQIEKCCKRNDDVLFRLENHAETLRAAMISLAKKIDVQTGRRPYE 110 NC_001611.1 11/23/2010 

VARV major PoxSib 65 AFX98076.1 TNVTTKFEQIEKCCKRNDDVLFRLENHAETL 31 JX080526.1 12/3/2012 

VARV major VD21, 17th century 66 APR62872.1 MDGTLFPGDDDLAIPATEFFSTKAAKKPEAKREAIVKADGDDNEETLKQRLTNLEKKITNVTTKFEQIEKCCKRNDDVLFRLENHAETLRAAMISLAKKIDVQTGRRPYE 110 KY358055.1 1/3/2017 

VARV major Niger 1969 (001, importation from Nigeria) 67 ABF26518.1 MDGTLFPGDDDLAIPATEFFSTKAAKKPEAKHEAIVKADGDDNEETLKQRLTNLEKKITNVTTKFEQIEKCCKRNDDVLFRLENHAETLRAAMISLAKKIDVQTGRRPYE 110 DQ441434.1 8/19/2006 
        

    Epitope 4 Epitopes 1A-1D Epitope 5    

VARV minor Garcia-1966 1 CAA53856.1 MDGTLFPGDDDLAIPATEFFSTKAAKKPEAKREAIVKADGDDNEETLKQRLTNLEKKITNVTTKFEQIEKCCKRNDDVLFRLENHAETLRAAMISLAKKIDVQTGRRPYE 110 X76266.1 12/31/1995 

VARV minor Garcia-1966 2 CAB54734.1 MDGTLFPGDDDLAIPATEFFSTKAAKKPEAKREAIVKADGDDNEETLKQRLTNLEKKITNVTTKFEQIEKCCKRNDDVLFRLENHAETLRAAMISLAKKIDVQTGRRPYE 110 Y16780.1 4/18/2005 
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    Epitope 4 Epitopes 1A-1D Epitope 5    

Volepox Volepox virus 1 ABD37608.1 KPEEKRKAVVKAEEEEDDETIKDRLTNLEKKITNVTTKFAQIEKCCKRNDEV 52 DQ374627.1 7/26/2016 

 

The epitopes are highlighted in bold. Deviations of VACV/VARV-typical epitopes are marked in red. 
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Table S5 Nucleotide sequences of the OPXV A27 protein homologs available so far in the GenBank, showing mutations which are crucial for amino acid 
exchanges as well as silent mutations. 

 
Num
ber 

OPX
V Strain/Isolate Source 

Epitope 4          
Epitop
e 

Com
plex 

1A-
D                        

Epitop
e 5          

  
      

D D D L A I  K K P E A K R E A I V K A D  I E K C      

  
      

GAT GAC GAT CTT GCA ATT  AAA AAG CCA GAG GCT AAA CGC GAA GCA ATT GTT AAA GCC GAT  ATA GAA AAG TGT      

1 
BPXV 

Aur04 
DQ117952.
1 ... ... ... ... ... ...  ... ... ... ... ... ... ... ... ... ... ... ... ... ...  ... ... ... ...      

2 
BPXV 

BP4 
DQ117951.
1 ... ... ... ... ... ...  ... ... ... ... ... ... ... ... ... ... ... ... ... ...  ... ... ... ...      

3 
BPXV 

Ind99 
DQ117954.
1 ... ... ... ... ... ...  ... ... ... ... ... ... ... ... ... ... ... ... ... ...  ... ... ... ...      

4 
BPXV 

Vij96 
DQ117953.
1 ... ... ... ... ... ...  ... ... ... ... ... ... ... ... ... ... ... ... ... ...  ... ... ... ...      

5 
BPXV 

Buffalopox virus clone 1 FJ748495.1 ... ... ... ... ... ...  ... ... ... ... ... ... ... ... ... ... ... ... ... ...  ... ... ... ...      

6 
BPXV 

Buffalopox virus clone 2 FJ748496.1 ... ... ... ... ... ...  ... ... ... ... ... ... ... ... ... ... ... ... ... ...  ... ... ... ...      

7 
BPXV 

Pune/09  
GQ443265.
1 ... ... ... ... ... ...  ... ... ... ... ... ... ... ... ... ... ... ... ... ...  ... ... ... ...      

8 
BPXV 

Pune/H/09  
GQ443266.
1 ... ... ... ... ... ...  ... ... ... ... ... ... ... ... ... ... ... ... ... ...  ... ... ... ...      

9 
BPXV 

SP69 Gujarat/08  
GQ464367.
1 ... ... ... ... ... ...  ... ... ... ... ... ... ... ... ... ... ... ... ... ...  ... ... ... ...      

10 
BPXV 

SP70 Hyderabad/08  
GQ464368.
1 ... ... ... ... ... ...  ... ... ... ... ... ... ... ... ... ... ... ... ... ...  ... ... ... ...      

11 
BPXV 

SP66 Pune/08  
GQ464366.
1 ... ... ... ... ... ...  ... ... ... ... ... ... ... ... ... ... ... ... ... ...  ... ... ... ...      

12 
BPXV 

Bareilly/99  
HM008906.
1 ... ... ... ... ... ...  ... ... ... ... ... ... ... ... ... ... ... ... ... ...  ... ... ... ...      

13 
BPXV 

Bareilly/00  
HM008907.
1 ... ... ... ... ... ...  ... ... ... ... ... ... ... ... ... ... ... ... ... ...  ... ... ... ...      

14 
BPXV 

Bangalore/03  
HM008914.
1 ... ... ... ... ... ...  ... ... ... ... ... ... ... ... ... ... ... ... ... ...  ... ... ... ...      

15 
BPXV 

Bangalore/09  
HM008910.
1 ... ... ... ... ... ...  ... ... ... ... ... ... ... ... ... ... ... ... ... ...  ... ... ... ...      

16 
BPXV 

Vij/97  
HM008908.
1 ... ... ... ... ... ...  ... ... ... ... ... ... ... ... ... ... ... ... ... ...  ... ... ... ...      
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17 
BPXV 

Krisna/07  
HM008905.
1 ... ... ... ... ... ...  ... ... ... ... ... ... ... ... ... ... ... ... ... ...  ... ... ... ...      

18 
BPXV 

Nel/06  
HM008904.
1 ... ... ... ... ... ...  ... ... ... ... ... ... ... ... ... ... ... ... ... ...  ... ... ... ...      

19 
BPXV 

Pune 1/04  
HM008902.
1 ... ... ... ... ... ...  ... ... ... ... ... ... ... ... ... ... ... ... ... ...  ... ... ... ...      

20 
BPXV 

Pune 2/04  
HM008903.
1 ... ... ... ... ... ...  ... ... ... ... ... ... ... ... ... ... ... ... ... ...  ... ... ... ...      

21 
BPXV 

Pune/06  
HM008909.
1 ... ... ... ... ... ...  ... ... ... ... ... ... ... ... ... ... ... ... ... ...  ... ... ... ...      

22 
BPXV 

Pune/07  
HM008913.
1 ... ... ... ... ... ...  ... ... ... ... ... ... ... ... ... ... ... ... ... ...  ... ... ... ...      

23 
BPXV 

Karachi 2005 
MG599038.
1 ... ... ... ... ... ...  ... ... ... ... ... ... ... ... ... ... ... ... ... ...  ... ... ... ...      

24 
BPXV 

SP56 BPXV Izatnagar/08  
GQ464365.
1 ... ... ... ... ... 

.C. 
(T)   ... ... ... ... ... ... ... ... ... ... ... ... ... ...  ... ... ... ...      

25 
BPXV Pune/milk  HM008911.

1 ... ... ... ... ... 
.C. 
(T)   ... ... ... ... ... ... ... ... ... ... ... ... ... ...  ... ... ... ...      

26 
BPXV 

Hyd 17/04  
HM008912.
1 ... ... ... ... ... 

.C. 
(T)   ... ... ... ... ... ... ... ... ... ... ... ... ... ...  ... ... ... ...      

 

  

                                

  
  

  
  

D D D L A I   K K P E A K R E A I I K A D  I E K C      

  
  

  
  

GAT GAT GAT CTT GCA ATT  AAA AAG CCA GAG GCT AAA CGC GAA GCA ATT ATT AAA GCC GAT  ATA GAA AAG TGT      

1 
CML
V CMS AY009089.1 ... ... ... ... ... ...  ... ... ... ... ... ... ... ... ... ... ... ... ... ...  ... ... ... ...      

2 
CML
V Cp-1 X75156.1 ... ... ... ... ... ...  ... ... ... ... ... ... ... ... ... ... ... ... ... ...  ... ... ... ...      

3 
CML
V M-96  AF438165.1 ... ... ... ... ... ...  ... ... ... ... ... ... ... ... ... ... ... ... ... ...  ... ... ... ...      

4 
CML
V Cp-1 AY223496.1 ... ... ... ... ... ...  ... ... ... ... ... ... ... ... ... ... ... ... ... ...  ... ... ... ...      

5 
CML
V NIGER AY299081.1 ... ... ... ... ... ...  ... ... ... ... ... ... ... ... ... ... ... ... ... ...  ... ... ... ...      

6 
CML
V SAUDI AY299082.1 ... ... ... ... ... ...  ... ... ... ... ... ... ... ... ... ... ... ... ... ...  ... ... ... ...      

7 
CML
V MAURETANIA AY299083.1 ... ... ... ... ... ...  ... ... ... ... ... ... ... ... ... ... ... ... ... ...  ... ... ... ...      

8 
CML
V CP-14 AY299084.1 ... ... ... ... ... ...  ... ... ... ... ... ... ... ... ... ... ... ... ... ...  ... ... ... ...      
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9 
CML
V CP-5 AY299085.1 ... ... ... ... ... ...  ... ... ... ... ... ... ... ... ... ... ... ... ... ...  ... ... ... ...      

10 
CML
V CP-202/95H AY299086.1 ... ... ... ... ... ...  ... ... ... ... ... ... ... ... ... ... ... ... ... ...  ... ... ... ...      

11 
CML
V CP-1260 AY299087.1 ... ... ... ... ... ...  ... ... ... ... ... ... ... ... ... ... ... ... ... ...  ... ... ... ...      

12 
CML
V DEL09  

GQ465930.
1 ... ... ... ... ... ...  ... ... ... ... ... ... ... ... ... ... ... ... ... ...  ... ... ... ...      

13 
CML
V BAR09  

GQ465928.
1 ... ... ... ... ... ...  ... ... ... ... ... ... ... ... ... ... ... ... ... ...  ... ... ... ...      

14 
CML
V JSL09  

GQ465929.
1 ... ... ... ... ... ...  ... ... ... ... ... ... ... ... ... ... ... ... ... ...  ... ... ... ...      

15 
CML
V Al-Ahsaa  JN805951.1 --- --- ... ... ... ...  ... ... ... ... ... ... ... ... ... ... ... ... ... ...  ... ... ... ...      

16 
CML
V M-96   

NC_003391
.1 ... ... ... ... ... ...  ... ... ... ... ... ... ... ... ... ... ... ... ... ...  ... ... ... ...      

17 
CML
V 0408151v KP768318.1 ... ... ... ... ... ...  ... ... ... ... ... ... ... ... ... ... ... ... ... ...  ... ... ... ...      

18 
CML
V BAR09  

GQ465927.
1 ... ... ... ... ... ...  ... 

.G. 
(R) ... ... ... ... ... ... ... ... ... ... ... ...  ... ... ... ...      

                                   

        D D D L A I   K K P E A K R E A I V K A D  I E K C      

      
  

GAT GAC GAT CTT GCA ATT  AAA AAG CCA GAG GCT AAA CGC GAA GCA ATT GTT AAA GCC GAT  ATA GAA AAG TGT      

1 CPXV GRI-90 Z99060.1 ... ... ... ... ... ...  ... ... ... ... ... ... ... ... ... ... ... ... ... ...  ... ... ... ...      

2 CPXV 98/5 AY223500.1 ... ... ... ... ... ...  ... ... ... ... ... ... ... ... ... ... ... ... ... ...  ... ... ... ...      

3 CPXV EP-5 AY223497.1 ... ... ... ... ... ...  ... ... ... ... ... ... ... ... ... ... ... ... ... ...  ... ... ... ...      

4 CPXV EXP-GR AY223499.1 ... ... ... ... ... ...  ... ... ... ... ... ... ... ... ... ... ... ... ... ...  ... ... ... ...      

5 CPXV Revin AY223498.1 ... ... ... ... ... ...  ... ... ... ... ... ... ... ... ... ... ... ... ... ...  ... ... ... ...      

6 CPXV EP-1 AY299040.1 ... ... ... ... ... ...  ... ... ... ... ... ... ... ... ... ... ... ... ... ...  ... ... ... ...      

7 CPXV EP-3 AY299043.1 ... ... ... ... ... ...  ... ... ... ... ... ... ... ... ... ... ... ... ... ...  ... ... ... ...      

8 CPXV EP-5 AY299042.1 ... ... ... ... ... ...  ... ... ... ... ... ... ... ... ... ... ... ... ... ...  ... ... ... ...      
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9 CPXV EP-7 AY299044.1 ... ... ... ... ... ...  ... ... ... ... ... ... ... ... ... ... ... ... ... ...  ... ... ... ...      

10 CPXV EP-8 AY299045.1 ... ... ... ... ... ...  ... ... ... ... ... ... ... ... ... ... ... ... ... ...  ... ... ... ...      

11 CPXV 28-00 AY299046.1 ... ... ... ... ... ...  ... ... ... ... ... ... ... ... ... ... ... ... ... ...  ... ... ... ...      

12 CPXV FINNLAND AY299080.1 ... ... ... ... ... ...  ... ... ... ... ... ... ... ... ... ... ... ... ... ...  ... ... ... ...      

13 CPXV OPV-89-1 AY299053.1 ... ... ... ... ... ...  ..G ... ... ... ... ... ... ... ... ... ... ... ..T ...  ..C ... ... ...      

14 CPXV OPV-98-2 AY299047.1 ... ... ... ... ... ...  ... ... ... ... ... ... ... ... ... ... ... ... ... ...  ..C ... ... ...      

15 CPXV OPV-99-1 AY299048.1 ... ... ... ... ... ...  ... ... ... ... ... ... ... ... ... ... ... ... ... ...  ... ... ... ...      

16 CPXV RAT-MOSCOW AY299041.1 ... ... ... ... ... ...  ... ... ... ... ... ... ... ... ... ... ... ... ... ...  ... ... ... ...      

17 CPXV GRI-90 X94355.2 ... ... ... ... ... ...  ... ... ... ... ... ... ... ... ... ... ... ... ... ...  ... ... ... ...      

18 CPXV Austria 1999 
HQ407377.
1 ... ... ... ... ... ...  ... ... ... ... ... ... ... ... ... ... ... ... ... ...  ... ... ... ...      

19 CPXV Finland_2000_MAN 
HQ420893.
1 ... ... ... ... ... ...  ... ... ... ... ... ... ... ... ... ... ... ... ... ...  ... ... ... ...      

20 CPXV Germany_1998_2 
HQ420897.
1 ... ... ... ... ... ...  ... ... ... ... ... ... ... ... ... ... ... ... ... ...  ..C ... ... ...      

21 CPXV HumGri07/1 KC813511.1 ... ... ... ... ... ...  ... ... ... ... ... ... ... ... ... ... ... ... ... ...  ... ... ... ...      

22 
CPXV 

EleGri07/1 KC813507.1 ... ... ... ... ... ...  ... ... ... ... ... ... ... ... ... ... ... ... ... ...  ... ... ... ...      

23 CPXV HumAac09/1 KC813508.1 ... ... ... ... ... ...  ... ... ... ... ... ... ... ... ... ... ... ... ... ...  ... ... ... ...      

24 CPXV HumGra07/1 KC813510.1 ... ... ... ... ... ...  ... ... ... ... ... ... ... ... ... ... ... ... ... ...  ... ... ... ...      

25 
CPXV 

HumKre08/1 KC813512.1 ... ... ... ... ... ...  ... ... ... ... ... ... ... ... ... ... ... ... ... ...  ... ... ... ...      

26 CPXV HumLit08/1 KC813493.1 ... ... ... ... ... ...  ... ... ... ... ... ... ... ... ... ... ... ... ... ...  ... ... ... ...      

27 
CPXV 

RatAac09/1 KC813501.1 ... ... ... ... ... ...  ... ... ... ... ... ... ... ... ... ... ... ... ... ...  ... ... ... ...      

28 
CPXV 

RatGer09/1 KC813503.1 ... ... ... ... ... ...  ... ... ... ... ... ... ... ... ... ... ... ... ... ...  ... ... ... ...      

29 CPXV RatKre08/2 KC813505.1 ... ... ... ... ... ...  ... ... ... ... ... ... ... ... ... ... ... ... ... ...  ... ... ... ...      
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30 CPXV CEPAD332 KC592404.1 ... ... ... ... ... ...  ... ... ... ... ... ... ... ... ... ... ... ... ... ...  ... ... ... ...      

31 CPXV CEPAD333 KC592406.1 ... ... ... ... ... ...  ... ... ... ... ... ... ... ... ... ... ... ... ... ...  ... ... ... ...      

32 CPXV CEPAD336 KC592405.1 ... ... ... ... ... ...  ... ... ... ... ... ... ... ... ... ... ... ... ... ...  ... ... ... ...      

33 CPXV RatPox09 LN864565.1 ... ... ... ... ... ...  ... ... ... ... ... ... ... ... ... ... ... ... ... ...  ... ... ... ...      

34 CPXV Ger/2017/Alpaca2 LT896732.2 ... ... ... ... ... ...  ... ... ... ... ... ... ... ... ... ... ... ... ... ...  ... ... ... ...      

35 CPXV Ger/2015/Human2 LT993232.1 ... ... ... ... ... ...  ... ... ... ... ... ... ... ... ... ... ... ... ... ...  ... ... ... ...      

36 CPXV Ger/2015/Prairie-dog LT993231.1 ... ... ... ... ... ...  ... ... ... ... ... ... ... ... ... ... ... ... ... ...  ... ... ... ...      

37 CPXV Ger/2017/Alpaca1 LT993230.1 ... ... ... ... ... ...  ... ... ... ... ... ... ... ... ... ... ... ... ... ...  ... ... ... ...      

38 CPXV 
Ger/2017/common vole 
FMEimka LT993228.1 ... ... ... ... ... ...  ... ... ... ... ... ... ... ... ... ... ... ... ... ...  ... ... ... ...      

39 CPXV Ger/2007/Vole LT896722.1 ... ... ... ..C ... ...  ..G ... ... ... ... ... ... ... ... ... ... ... ..T ...  ..C ... ... ...      

40 CPXV 89Lcow 
DQ385058.
1 --- --- --- --- --- ---  --G ... ... ... ... ... ... ... ... ... ... ... ..T ...  ..C ... ... ...      

41 CPXV A280 
DQ374558.
1 --- --- --- --- --- ---  --- ..A ... ... ... ... ... ... ... ... ... ... ..T ...  ..C ... ... ...      

42 CPXV Kostroma_2015 KY369926.1 ... ... ... ... ... ...  ... ... ... ... ... ... ... ... ... ... ... ... ... ...  ... ... ... ...      

43 CPXV Germany_1971_EP1 KY463519.1 ... ... ... ... ... ...  ... ... ... ... ... ... ... ... ... ... ... ... ... ...  ... ... ... ...      

44 CPXV Ger/2017/Alpaca2 LT896732.1 ... ... ... ... ... ...  ... ... ... ... ... ... ... ... ... ... ... ... ... ...  ... ... ... ...      

45 
CPXV 

Ger/2012/Alpaca LT896726.1 ... ... ... ... ... ...  ... ... ... ... ... ... ... ... ... ... ... ... ... ...  ... ... ... ...      

46 
CPXV 

Ger/2015/Human1 LT896720.1 ... ... ... ... ... ...  ... ... ... ... ... ... ... ... ... ... ... ... ... ...  ... ... ... ...      

47 CPXV Ger/2015/Cat2 LT896727.1 ... ... ... ... ... ...  ... ... ... ... ... ... ... ... ... ... ... ... ... ...  ... ... ... ...      

48 CPXV Ger/2015/Cat3 LT896733.1 ... ... ... ... ... ...  ... ... ... ... ... ... ... ... ... ... ... ... ... ...  ... ... ... ...      

49 CPXV Ger/2015/Cat4 LT896731.1 ... ... ... ... ... ...  ... ... ... ... ... ... ... ... ... ... ... ... ... ...  ... ... ... ...      

50 CPXV Ger/2014/Cat2 LT896725.1 ... ... ... ... ... ...  ... ... ... ... ... ... ... ... ... ... ... ... ... ...  ... ... ... ...      
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51 CPXV Ger/2010/Cat LT896729.1 ... ... ... ... ... ...  ... ... ... ... ... ... ... ... ... ... ... ... ... ...  ... ... ... ...      

52 CPXV Ger/2010/Racoon LT896730.1 ... ... ... ... ... ...  ... ... ... ... ... ... ... ... ... ... ... ... ... ...  ... ... ... ...      

53 CPXV Ger 2010 MKY LT896721.1 ... ... ... ... ... ...  ... ... ... ... ... ... ... ... ... ... ... ... ..T ...  ..C ... ... ...      

54 CPXV Brighton X75158.1 ... ... ... ... ... ...  ..G ... ... ... ... ... ... ... ... ... ... ... ..T 
..G 
(E)  ..C ... ... ...      

55 CPXV Hamburg-1985 Z99062.1 ... ... ... ... ... ...  ... ... ... ... ... ... ... ... ... ... ... ... ..T 
..G 
(E)  ..C ... ... ...      

56 CPXV Brighton AY223502.1 ... ... ... ... ... ...  ..G ... ... ... ... ... ... ... ... ... ... ... ..T 
..G 
(E)  ..C ... ... ...      

57 CPXV EP-2 AY223504.1 ... ... ... ... ... ...  ..G ... ... ... ... ... ... ... ... ... ... ... ..T 
..G 
(E)  ..C ... ... ...      

58 CPXV EP-4 AY223501.1 ... ... ... ... ... ...  ... ... ... ... ... ... ... ... ... ... ... ... ..T 
..G 
(E)  ... ... ... ...      

59 CPXV OPV-89-3 AY299058.1 ... ... ... ..C ... ...  ..G ... ... ... ... ... ... ... ... ... ... ... ..T 
..G 
(E)  ... ... ... ...      

60 CPXV OPV-89-5 AY299052.1 ... ... ... ..C ... ...  ..G ... ... ... ... ... ... ... ... ... ... ... ..T 
..G 
(E)  ..C ... ... ...      

61 CPXV OPV-90-1 AY299049.1 ... ... ... ..C ... ...  ..G ... ... ... ... ... ... ... ... ... ... ... ..T 
..G 
(E)  ..C ... ... ...      

62 CPXV OPV-90-2 AY299056.1 ... ... ... ..C ... ...  ..G ... ... ... ... ... ... ... ... ... ... ... ..T 
..G 
(E)  ... ... ... ...      

63 CPXV OPV-90-3 AY299070.1 ... ... ... ... ... ...  ... ... ... ... ... ... ... ... ... ... ... ... ..T 
..G 
(E)  ... ... ... ...      

64 CPXV OPV-90-4 AY299071.1 ... ... ... ... ... ...  ... ... ... ... ... ... ... ... ... ... ... ... ..T 
..G 
(E)  ... ... ... ...      

65 CPXV OPV-90-5 AY299069.1 ... ... ... ... ... ...  ... ... ... ... ... ... ... ... ... ... ... ... ..T 
..G 
(E)  ... ... ... ...      

66 CPXV OPV-91-1 AY299051.1 ... ... ... ..C ... ...  ..G ... ... ... ... ... ... ... ... ... ... ... ..T 
..G 
(E)  ..C ... ... ...      

67 CPXV OPV-91-3 AY299050.1 ... ... ... ..C ... ...  ..G ... ... ... ... ... ... ... ... ... ... ... ..T 
..G 
(E)  ..C ... ... ...      

68 CPXV OPV-91-4 AY299064.1 ... ... ... ... ... ...  ..G ... ... ... ... ... ... ... ... ... ... ... ..T 
..G 
(E)  ..C ... ... ...      

69 CPXV OPV-98-1 AY299059.1 ... ... ... ..C ... ...  ..G ... ... ... ... ... ... ... ... ... ... ... ..T 
..G 
(E)  ... ... ... ...      

70 CPXV OPV-98-3 AY299075.1 ... ... ... ... ... ...  ... ... ... ... ... ... ... ... ... ... ... ... ..T 
..G 
(E)  ... ... ... ...      

71 CPXV OPV-98-4 AY299076.1 ... ... ... ... ... ...  ... ... ... ... ... ... ... ... ... ... ... ... ..T 
..G 
(E)  ... ... ... ...      
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72 CPXV SWEDENI AY299065.1 ... ... ... ... ... ...  ... ... ... ... ... ... ... ... ... ... ... ... ..T 
..G 
(E)  ..C ... ... ...      

73 CPXV SWEDENII AY299067.1 ... ... ... ... ... ...  ... ... ... ... ... ... ... ... ... ... ... ... ..T 
..G 
(E)  ..C ... ... ...      

74 CPXV NANCY AY299074.1 ... ... ... ... ... ...  ..G ... ... ... ... ... ... ... ... ... ... ... ..T 
..G 
(E)  ... ... ... ...      

75 CPXV NW-MAN AY299055.1 ... ... ... ..C ... ...  ..G ... ... ... ... ... ... ... ... ... ... ... ..T 
..G 
(E)  ... ... ... ...      

76 CPXV OPV-88H AY299057.1 ... ... ... ..C ... ...  ..G ... ... ... ... ... ... ... ... ... ... ... ..T 
..G 
(E)  ... ... ... ...      

77 CPXV EP-RIEMS AY299077.1 ... ... ... ... ... ...  ... ... ... ... ... ... ... ... ... ... ... ... ..T 
..G 
(E)  ... ... ... ...      

78 CPXV EP-6 AY299073.1 ... ... ... ... ... ...  ... ... ... ... ... ... ... ... ... ... ... ... ..T 
..G 
(E)  ... ... ... ...      

79 
CPXV 

BIBER AY299078.1 ... ... ... ... ... ...  ... ... ... ... ... ... ... ... ... ... ... ... ..T 
..G 
(E)  ... ... ... ...      

80 CPXV CATPOX3 AY299068.1 ... ... ... ... ... ...  ... ... ... ... ... ... ... ... ... ... ... ... ..T 
..G 
(E)  ... ... ... ...      

81 CPXV CATPOX5 AY299063.1 ... ... ... ... ... ...  ..G ... ... ... ... ... ..T ... ... ... ... ... ..T 
..G 
(E)  ... ... ... ...      

82 CPXV NW-CAT AY299054.1 ... ... ... ..C ... ...  ..G ... ... ... ... ... ... ... ... ... ... ... ..T 
..G 
(E)  ... ... ... ...      

83 CPXV 780 AY299079.1 ... ... ... ... ... ...  ... ... ... ... ... ... ... ... ... ... ... ... ..T 
..G 
(E)  ... ... ... ...      

84 CPXV Brighton Red AF482758.2 ... ... ... ... ... ...  ..G ... ... ... ... ... ... ... ... ... ... ... ..T 
..G 
(E)  ..C ... ... ...      

85 
CPXV 

Brighton Red AF482758.2 ... ... ... ... ... ...  ..G ... ... ... ... ... ... ... ... ... ... ... ..T 
..G 
(E)  ..C ... ... ...      

86 CPXV Germany 91-3 
DQ437593.
1 ... ... ... ..C ... ...  ..G ... ... ... ... ... ... ... ... ... ... ... ..T 

..G 
(E)  ..C ... ... ...      

87 CPXV Calpox 
HQ891540.
1 ... ... ... ... ... ...  ... ... ... ... ... ... ... ... ... ... ... ... ..T 

..G 
(E)  ... ... ... ...      

88 
CPXV 

France_2001_Nancy 
HQ420894.
1 ... ... ... ..C ... ...  ..G ... ... ... ... ... ... ... ... ... ... ... ..T 

..G 
(E)  ... ... ... ...      

89 CPXV Germany_1980_EP4 
HQ420895.
1 ... ... ... ... ... ...  ... ... ... ... ... ... ... ... ... ... ... ... ..T 

..G 
(E)  ... ... ... ...      

90 CPXV Germany_1990_2 
HQ420896.
1 ... ... ... ..C ... ...  ..G ... ... ... ... ... ... ... ... ... ... ... ..T 

..G 
(E)  ... ... ... ...      

91 CPXV Germany_2002_MKY 
HQ420898.
1 ... ... ... ... ... ...  ... ... ... ... ... ... ... ... ... ... ... ... ..T 

..G 
(E)  ... ... ... ...      

92 CPXV Norway_1994_MAN 
HQ420899.
1 ... ... ... ..C ... ...  ..G ... ... ... ... ... ... ... ... ... ... ... ..T 

..G 
(E)  ... ... ... ...      
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93 CPXV RatHei09/1 KC813504.1 ... ..T ... ... ... ...  ... ... ... ... ... ... ... ... ... ... ... ... ..T 
..G 
(E)  ... ... ... ...      

94 CPXV HumLan08/1 KC813492.1 ... ..T ... ... ... ...  ... ... ... ... ... ... ... ... ... ... ... ... ..T 
..G 
(E)  ... ... ... ...      

95 CPXV HumLue09/1 KC813494.1 ... ... ... ... ... ...  ... ... ... ... ... ... ... ... ... ... ... ... ..T 
..G 
(E)  ... ... ... ...      

96 CPXV HumMag07/1 KC813495.1 ... ... ... ... ... ...  ... ... ... ... ... ... ... ... ... ... ... ... ..T 
..G 
(E)  ... ... ... ...      

97 CPXV HumPad07/1 KC813496.1 ... ... ... ... ... ...  ... ... ... ... ... ... ... ... ... ... ... ... ..T 
..G 
(E)  ... ... ... ...      

98 CPXV JagKre08/2 KC813498.1 ... ..T ... ... ... ...  ... ... ... ... ... ... ... ... ... ... ... ... ..T 
..G 
(E)  ... ... ... ...      

99 CPXV MarLei07/1 KC813499.1 ... ... ... ..C ... ...  ..G ... ... ... ... ... ... ... ... ... ... ... ..T 
..G 
(E)  ... ... ... ...      

100 CPXV MonKre08/4 KC813500.1 ... ..T ... ... ... ...  ... ... ... ... ... ... ... ... ... ... ... ... ..T 
..G 
(E)  ... ... ... ...      

101 CPXV HumBer07/1 KC813509.1 ... ... ... ... ... ...  ... ... ... ... ... ... ... ... ... ... ... ... ..T 
..G 
(E)  ... ... ... ...      

102 CPXV BeaBer04/1 KC813491.1 ... ... ... ... ... ...  ... ... ... ... ... ... ... ... ... ... ... ... ..T 
..G 
(E)  ... ... ... ...      

103 CPXV CatBer07/1 KC813502.1 ... ... ... ... ... ...  ... ... ... ... ... ... ... ... ... ... ... ... ..T 
..G 
(E)  ... ... ... ...      

104 CPXV CatPot07/1 KC813506.1 ... ... ... ... ... ...  ... ... ... ... ... ... ... ... ... ... ... ... ..T 
..G 
(E)  ... ... ... ...      

105 CPXV JagKre08/1 KC813497.1 ... ..T ... ... ... ...  ... ... ... ... ... ... ... ... ... ... ... ... ..T 
..G 
(E)  ... ... ... ...      

106 CPXV CEPAD335 KC592407.1 ... ... ... ... ... ...  ... ... ... ... ... ... ... ... ... ... ... ... ..T 
..G 
(E)  ... ... ... ...      

107 CPXV FM2292 LN864566.1 ... ... ... ..C ... ...  ..G ... ... ... ... ... ... ... ... ... ... ... ..T 
..G 
(E)  ..C ... ... ...      

108 
CPXV 

Brighton Red 
NC_003663
.2 ... ... ... ... ... ...  ..G ... ... ... ... ... ... ... ... ... ... ... ..T 

..G 
(E)  ..C ... ... ...      

109 CPXV A220 
DQ374542.
1 --- --- --- --- --- ---  --. ... ... ... ... ... ... ... ... ... ... ... ..T 

..G 
(E)  ... ... ... ...      

110 CPXV A247 
DQ374550.
1 --- --- --- --- --- ---  --G ... ... ... ... ... ... ... ... ... ... ... ..T 

..G 
(E)  ..C ... ... ...      

111 CPXV CPXV Amadeus 2015 LN879483.1 ... ... ... ... ... ...  ... ... ... ... ... ... ... ... ... ... ... ... ..T 
..G 
(E)  ... ... ... ...      

112 CPXV CPXV_1639 KY549148.1 ... ... ... ... ... ...  ..G ... ... ... ... ... ..T ... ... ... ... ... ..T 
..G 
(E)  ... ... ... ...      

113 CPXV CPXV_Catpox5wv1 KY549144.1 ... ... ... ... ... ...  ..G ... ... ... ... ... ..T ... ... ... ... ... ..T 
..G 
(E)  ... ... ... ...      
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114 CPXV Norwayfeline KY549151.1 ... ... ... ..C ... ...  ..G ... ... ... ... ... ..T ... ..C ... ... ... ..T 
..G 
(E)  ... ... ... ...      

115 CPXV Ger/2014/Cat1 LT896723.1 ... ... ... ... ... ...  ... ... ... ... ... ... ... ... ... ... ... ... ..T 
..G 
(E)  ... ... ... ...      

116 CPXV Ger/2010/Alpaca LT896718.1 ... ... ... ... ... ...  ... ... ... ... ... ... ... ... ... ... ... ... ..T 
..G 
(E)  ... ... ... ...      

117 CPXV Ger/2010/Rat LT896728.1 ... ... ... ... ... ...  ... ... ... ... ... ... ... ... ... ... ... ... ..T 
..G 
(E)  ... ... ... ...      

118 CPXV Ger/2013/Alpaca LT896719.1 ... ... ... ... ... ...  ... ... ... ... ... ... ... ... ... ... ... ... ..T 
..G 
(E)  ... ... ... ...      

119 CPXV Ger/2014/Human LT993226.1 ... ... ... ..C ... ...  ..G ... ... ... ... ... … ... ... ... ... ... ..T 
..G 
(E)  ... ... ... ...      

120 CPXV 427 AY299060.1 ... ... ... ... ... ...  ..G ... 
.A. 
(Q) ... ... ... ... ... ... ... ... ... ..T 

..G 
(E)  ..C ... ... ...      

121 CPXV 428 AY299062.1 ... ... ... ... ... ...  ..G ... 
.A. 
(Q) ... ... ... ... ... ... ... ... ... ..T 

..G 
(E)  ..C ... ... ...      

122 CPXV 2739 AY299061.1 ... ... ... ... ... ...  ..G ... 
.A. 
(Q) ... ... ... ... ... ... ... ... ... ..T 

..G 
(E)  ..C ... ... ...      

123 CPXV UK2000_K2984 
HQ420900.
1 ... ... ... ... ... ...  ..G ... 

.A. 
(Q) ... ... ... ... ... ... ... ... ... ..T 

..G 
(E)  ... ... ... ...      

124 CPXV A009 
DQ374477.
1 --- --- --- --- --- ---  --G ... 

.A. 
(Q) ... ... ... ... ... ... ... ... ... ..T 

..G 
(E)  ... ... ... ...      

125 CPXV CPXV_K428 KY549145.1 ... ... ... ... ... ...  ..G ... 
.A. 
(Q) ... ... ... ... ... ... ... ... ... ..T 

..G 
(E)  ..C ... ... ...      

126 CPXV CPXV_K2739 KY549149.1 ... ... ... ... ... ...  ..G ... 
.A. 
(Q) ... ... ... ... ... ... ... ... ... ..T 

..G 
(E)  ..C ... ... ...      

127 CPXV CPXV_K4207 KY549150.1 ... ... ... ... ... ...  ..G ... 
.A. 
(Q) ... ... ... ... ... ... ... ... ... ..T 

..G 
(E)  ... ... ... ...      

128 CPXV CPXV_Catpox3L97 KY549143.1 ... ... ... ... ... ...  ..G ... 
.A. 
(Q) ... ... ... ... ... ... ... ... ... ..T 

..G 
(E)  ... ... ... ...      

129 CPXV Turkmenia-1974 Z99063.1 ... ... ... ... ... ...  ... 
.G. 
(R) ... ... ... ... ... ... ... ... ... ... ..T 

..G 
(E)  ..C ... ... ...      

130 CPXV Ger/2015/Cat1 LT896724.1 ... ... ... ... ... ...  ... ... ... ... 
.T. 
(V) ... ... ... ... ... ... ... ..T 

..G 
(E)  ... ... ... ...      

131 CPXV OPV-89-2 AY299072.1 ... ... ... ... ... ...  ... ... ... ... ... ... 
.A. 
(H) ... ... ... ... ... ..T 

..G 
(E)  ... ... ... ...      

132 CPXV 89/4 AY223503.1 ... ... ... ... ... ...  ... ... ... ... ... ... ... ... ... 
T.. 
(F) ... ... ..T 

..G 
(E)  ..C ... ... ...      

133 CPXV SWEDENIII AY299066.1 ... ... ... ... ... ...  ... 
.GC 
(S) 

.AG 
(Q) 

AG. 
(R) 

CTA 
(L) 

..C 
(N) 

GCG 
(A) 

A.G 
(K) 

CA. 
(Q) 

T.G 
(L) 

T.A 
(L) 

..G 
(K) 

CTG 
(L) 

AGG 
(R)  --- --- --- ---      

134 CPXV A279 
DQ374556.
1 --- --- --- --- --- ---  --. ... ... ... ... ... ... ... ... ... ... ... ..T ...  ..C ... ... 

.A. 
(Y)      
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        D D D L A I  K K P E D K H E A T V K A D  I E K C      

  
  

    GAT GAC GAT CTT GCA ATT  AAA AAG CCA GAG GAT AAA CAC GAA GCA ACT GTT AAA GCC GAT  ATC GAA AAG TGT      

1 ECTV Munich-1 X75157.1 ... ..T ... ... ... ...  ... ... ... ... ... ... ... ... ... ... ... ... ... ...  ... ... ... ...      

2 ECTV Moscow AF012825.2 ... ..T ... ... ... ...  ... ... ... ... ... ... ... ... ... ... ... ... ... ...  ... ... ... ...      

3 ECTV K-1 (Ect 3) Z99055.1 ... ..T ... ... ... ...  ... ... ... ... ... ... ... ... ... ... ... ... ... ...  ... ... ... ...      

4 ECTV MP-2 AY299023.1 ... ..T ... ... ... ...  ... ... ... ... ... ... ... ... ... ... ... ... ... ...  ... ... ... ...      

5 ECTV C99-505 AY299026.1 ... ... ... ... ... ...  ... ... ... ... ... ... ... ... ... ... ... ... ... ...  ... ... ... ...      

6 ECTV MP-5 AY299024.1 ... ..T ... ... ... ...  ... ... ... ... ... ... ... ... ... ... ... ... ... ...  ... ... ... ...      

7 ECTV MP-33221 AY299025.1 ... ..T ... ... ... ...  ... ... ... ... ... ... ... ... ... ... ... ... ... ...  ... ... ... ...      

8 ECTV SILBERFUCHS AY299022.1 ... ..T ... ... ... ...  ... ... ... ... ... ... ... ... ... ... ... ... ... ...  ... ... ... ...      

9 ECTV MPV-CC AY973172.1 ... ..T ... ... ... ...  ... ... ... ... ... ... ... ... ... ... ... ... ... ...  ... ... ... ...      

10 ECTV Moscow 
NC_004105
.1 ... ..T ... ... ... ...  ... ... ... ... ... ... ... ... ... ... ... ... ... ...  ... ... ... ...      

11 ECTV ERPV JQ410350.1 ... ..T ... ... ... ...  ... ... ... ... ... ... ... ... ... ... ... ... ... ...  ... ... ... ...      

12 ECTV NAVAL KJ563295.1 ... ..T ... ... ... ...  ... ... ... ... ... ... ... ... ... ... ... ... ... ...  ... ... ... ...      

13 ECTV Hamptead KY554976.1 ... ..T ... ... ... ...  ... ... ... ... ... ... ... ... ... ... ... ... ... ...  ... ... ... ...      

14 ECTV Ectromelia virus 
DQ178390.
1 --- --- --- --- --- ---  --. ... ... ... ... ... ... ... ... ... ... ... ... ...  ... ... ... ...      

                                   

        D D D L A I   K K P E A K R E A I V K A D  I E K C      

        GAT GAC GAT CTT GCA ATT  AAA AAG CCA GAG GCT AAA CGC GAA GCA ATT GTT AAA GCC GAT  ATA GAA AAG TGT      

1 HSPV MNR-76 
DQ792504.
1 ... ... ... ... ... ...  ... ... ... ... ... ... ... ... ... ... ... ... ... ...  ... ... ... ...      



STUDIES	PERFORMED	

	 74	

2 HSPV MNR KY349117.1 ... ... ... ... ... ...  ... ... ... ... ... ... ... ... ... ... ... ... ... ...  ... ... ... ...      

                                   

        D D D L A I   K N P E T K R E A I V K A Y  I E K C      

        GAT GAC GAT CTT GCA ATT  AAA AAT CCA GAG ACT AAA CGC GAA GCA ATT GTT AAA GCC TAT  ATA GAA AAG TGT      

1 
MPX
V Copenhagen X75155.1 ... ... ... ... ... ...  ... ... ... ... ... ... ... ... ... ... ... ... ... ...  ... ... ... ...      

2 
MPX
V Zaire 79 AY160186.1 ... ... ... ... ... ...  ... ... ... ... ... ... ... ... ... ... ... ... ... ...  ... ... ... ...      

3 
MPX
V Sierra Leone 70-0666 Z99065.1 ... ... ... ... ... ...  ... ... ... ... ... ... ... ... ... ... ... ... ... ...  ... ... ... ...      

4 
MPX
V DRC 07-0093  JX878416.1 ... ... ... ... ... ...  ... ... ... ... ... ... ... ... ... ... ... ... ... ...  ... ... ... ...      

5 
MPX
V CDC#v70-I-187 AY223481.1 ... ... ... ... ... ...  ... ... ... ... ... ... ... ... ... ... ... ... ... ...  ... ... ... ...      

6 
MPX
V CDC#v78-I-3945 AY223480.1 ... ... ... ... ... ...  ... ... ... ... ... ... ... ... ... ... ... ... ... ...  ... ... ... ...      

7 
MPX
V CDC#v79-I-005 AY223479.1 ... ... ... ... ... ...  ... ... ... ... ... ... ... ... ... ... ... ... ... ...  ... ... ... ...      

8 
MPX
V CDC#v97-I-004 AY223478.1 ... ... ... ... ... ...  ... ... ... ... ... ... ... ... ... ... ... ... ... ...  ... ... ... ...      

9 
MPX
V Congo 8 AY223477.1 ... ... ... ... ... ...  ... ... ... ... ... ... ... ... ... ... ... ... ... ...  ... ... ... ...      

10 
MPX
V AP-4 AY299031.1 ... ... ... ... ... ...  ... ... ... ... ... ... ... ... ... ... ... ... ... ...  ... ... ... ...      

11 
MPX
V AP-2 AY299032.1 ... ... ... ... ... ...  ... ... ... ... ... ... ... ... ... ... ... ... ... ...  ... ... ... ...      

12 
MPX
V AP-6 AY299033.1 ... ... ... ... ... ...  ... ... ... ... ... ... ... ... ... ... ... ... ... ...  ... ... ... ...      

13 
MPX
V AP-5 AY299034.1 ... ... ... ... ... ...  ... ... ... ... ... ... ... ... ... ... ... ... ... ...  ... ... ... ...      

14 
MPX
V WRAIR7-61 AY603973.1 ... ... ... ... ... ...  ... ... ... ... ... ... ... ... ... ... ... ... ... ...  ... ... ... ...      

15 
MPX
V 

Sierra Leone MPXV-SL-
132 AY741551.1 ... ... ... ... ... ...  ... ... ... ... ... ... ... ... ... ... ... ... ... ...  ... ... ... ...      

16 
MPX
V COP-58 AY753185.1 ... ... ... ... ... ...  ... ... ... ... ... ... ... ... ... ... ... ... ... ...  ... ... ... ...      

17 
MPX
V Congo_2003_358 

DQ011154.
1 ... ... ... ... ... ...  ... ... ... ... ... ... ... ... ... ... ... ... ... ...  ... ... ... ...      
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18 
MPX
V Liberia_1970_184 

DQ011156.
1 ... ... ... ... ... ...  ... ... ... ... ... ... ... ... ... ... ... ... ... ...  ... ... ... ...      

19 
MPX
V USA_2003_039 

DQ011157.
1 ... ... ... ... ... ...  ... ... ... ... ... ... ... ... ... ... ... ... ... ...  ... ... ... ...      

20 
MPX
V USA_2003_044 

DQ011153.
1 ... ... ... ... ... ...  ... ... ... ... ... ... ... ... ... ... ... ... ... ...  ... ... ... ...      

21 
MPX
V Zaire_1979-005 

DQ011155.
1 ... ... ... ... ... ...  ... ... ... ... ... ... ... ... ... ... ... ... ... ...  ... ... ... ...      

22 
MPX
V Zaire-96-I-16 AF380138.1 ... ... ... ... ... ...  ... ... ... ... ... ... ... ... ... ... ... ... ... ...  ... ... ... ...      

23 
MPX
V Zaire 1979-005 

HM172544.
1 ... ... ... ... ... ...  ... ... ... ... ... ... ... ... ... ... ... ... ... ...  ... ... ... ...      

24 
MPX
V D14L knockout 

HQ857563.
1 ... ... ... ... ... ...  ... ... ... ... ... ... ... ... ... ... ... ... ... ...  ... ... ... ...      

25 
MPX
V V79-I-005 

HQ857562.
1 ... ... ... ... ... ...  ... ... ... ... ... ... ... ... ... ... ... ... ... ...  ... ... ... ...      

26 
MPX
V Zaire-96-I-16 

NC_003310
.1 ... ... ... ... ... ...  ... ... ... ... ... ... ... ... ... ... ... ... ... ...  ... ... ... ...      

27 
MPX
V Sudan 2005_01 KC257459.1 ... ... ... ... ... ...  ... ... ... ... ... ... ... ... ... ... ... ... ... ...  ... ... ... ...      

28 
MPX
V DRC Yandongi 1985  KC257460.1 ... ... ... ... ... ...  ... ... ... ... ... ... ... ... ... ... ... ... ... ...  ... ... ... ...      

29 
MPX
V DRC 06-0950  JX878407.1 ... ... ... ... ... ...  ... ... ... ... ... ... ... ... ... ... ... ... ... ...  ... ... ... ...      

30 
MPX
V DRC 06-0970  JX878408.1 ... ... ... ... ... ...  ... ... ... ... ... ... ... ... ... ... ... ... ... ...  ... ... ... ...      

31 
MPX
V DRC 06-1070  JX878410.1 ... ... ... ... ... ...  ... ... ... ... ... ... ... ... ... ... ... ... ... ...  ... ... ... ...      

32 
MPX
V DRC 07-0120  JX878418.1 ... ... ... ... ... ...  ... ... ... ... ... ... ... ... ... ... ... ... ... ...  ... ... ... ...      

33 
MPX
V DRC 06-0999  JX878409.1 ... ... ... ... ... ...  ... ... ... ... ... ... ... ... ... ... ... ... ... ...  ... ... ... ...      

34 
MPX
V DRC 06-1075  JX878411.1 ... ... ... ... ... ...  ... ... ... ... ... ... ... ... ... ... ... ... ... ...  ... ... ... ...      

35 
MPX
V DRC 06-1076  JX878412.1 ... ... ... ... ... ...  ... ... ... ... ... ... ... ... ... ... ... ... ... ...  ... ... ... ...      

36 
MPX
V DRC 07-0045  JX878413.1 ... ... ... ... ... ...  ... ... ... ... ... ... ... ... ... ... ... ... ... ...  ... ... ... ...      

37 
MPX
V DRC 07-0046  JX878414.1 ... ... ... ... ... ...  ... ... ... ... ... ... ... ... ... ... ... ... ... ...  ... ... ... ...      

38 
MPX
V DRC 07-0092  JX878415.1 ... ... ... ... ... ...  ... ... ... ... ... ... ... ... ... ... ... ... ... ...  ... ... ... ...      
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39 
MPX
V DRC 07-0104  JX878417.1 ... ... ... ... ... ...  ... ... ... ... ... ... ... ... ... ... ... ... ... ...  ... ... ... ...      

40 
MPX
V DRC 07-0275  JX878419.1 ... ... ... ... ... ...  ... ... ... ... ... ... ... ... ... ... ... ... ... ...  ... ... ... ...      

41 
MPX
V DRC 07-0283  JX878420.1 ... ... ... ... ... ...  ... ... ... ... ... ... ... ... ... ... ... ... ... ...  ... ... ... ...      

42 
MPX
V DRC 07-0286  JX878421.1 ... ... ... ... ... ...  ... ... ... ... ... ... ... ... ... ... ... ... ... ...  ... ... ... ...      

43 
MPX
V DRC 07-0287  JX878422.1 ... ... ... ... ... ...  ... ... ... ... ... ... ... ... ... ... ... ... ... ...  ... ... ... ...      

44 
MPX
V DRC 07-0337  JX878423.1 ... ... ... ... ... ...  ... ... ... ... ... ... ... ... ... ... ... ... ... ...  ... ... ... ...      

45 
MPX
V DRC 07-0338  JX878424.1 ... ... ... ... ... ...  ... ... ... ... ... ... ... ... ... ... ... ... ... ...  ... ... ... ...      

46 
MPX
V DRC 07-0354  JX878425.1 ... ... ... ... ... ...  ... ... ... ... ... ... ... ... ... ... ... ... ... ...  ... ... ... ...      

47 
MPX
V DRC 07-0450  JX878426.1 ... ... ... ... ... ...  ... ... ... ... ... ... ... ... ... ... ... ... ... ...  ... ... ... ...      

48 
MPX
V DRC 07-0480  JX878427.1 ... ... ... ... ... ...  ... ... ... ... ... ... ... ... ... ... ... ... ... ...  ... ... ... ...      

49 
MPX
V DRC 07-0514  JX878428.1 ... ... ... ... ... ...  ... ... ... ... ... ... ... ... ... ... ... ... ... ...  ... ... ... ...      

50 
MPX
V DRC 07-0662 JX878429.1 ... ... ... ... ... ...  ... ... ... ... ... ... ... ... ... ... ... ... ... ...  ... ... ... ...      

51 
MPX
V Ivory Coast 2012 KJ136820.1 ... ... ... ... ... ...  ... ... ... ... ... ... ... ... ... ... ... ... ... ...  ... ... ... ...      

52 
MPX
V UTC  KJ642614.1 ... ... ... ... ... ...  ... ... ... ... ... ... ... ... ... ... ... ... ... ...  ... ... ... ...      

53 
MPX
V W-Nigeria  KJ642615.1 ... ... ... ... ... ...  ... ... ... ... ... ... ... ... ... ... ... ... ... ...  ... ... ... ...      

54 
MPX
V PCH  KJ642616.1 ... ... ... ... ... ...  ... ... ... ... ... ... ... ... ... ... ... ... ... ...  ... ... ... ...      

55 
MPX
V Nigeria-SE-1971 KJ642617.1 ... ... ... ... ... ...  ... ... ... ... ... ... ... ... ... ... ... ... ... ...  ... ... ... ...      

56 
MPX
V Cote d'Ivoire_1971 KP849470.1 ... ... ... ... ... ...  ... ... ... ... ... ... ... ... ... ... ... ... ... ...  ... ... ... ...      

57 
MPX
V MPXV_Nig_2017_297957 

MG693723.
1 ... ... ... ... ... ...  ... ... ... ... ... ... ... ... ... ... ... ... ... ...  ... ... ... ...      

           aaaaagccagag                       

        D D D L A I   K K P E A K R E A I V K A D  I E K C      
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        GAT GAC GAT CTT GCA ATT  AAA AAG CCA GAG GCT AAA CGC GAA GCA ATT GTT AAA GCC GAT  ATA GAA AAG TGT      

1 
RaPX
V Rabbitpox virus Uttrecht Z99059.1 ... ... ... ... ... ...  ... ... ... ... ... ... ... ... ... ... ... ... ... ...  ... ... ... ...      

2 
RaPX
V Rabbitpox virus AY484669.1 ... ... ... ... ... ...  ... ... ... ... ... ... ... ... ... ... ... ... ... ...  ... ... ... ...      

           
gtagttaaagcg
gat              

atag-
agaaatgc        

        D D D I A I  K K P E K P A K R K V V K A D  I E K C      

       GAC  GAT GAT ATT GCA ATT AAA AAA CCA GAA AAA CCA GCT AAA CGT AAA GTA GTT AAA GCG GAT               

      KP143769.1 ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...               

        --- --- --- --- --- --- --. ... ... ... GCT AAA CGT AAA GTA GTT GAA AAG GCA GAC GAC  ATA GAG AAA TGC      

1 RPXV Raccoonpoxvirus  
DQ374628.
1 ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...  ... ... ... ...      

                                   

        D D D L A I   K K P E A K R E A I V K A D  I E K C      

        GAT GAT GAT CTT  GCA ATT  AAA AAG CCA GAG GCT AAA CGC GAA GCA ATT GTT AAA GCC GAT  ATA GAA AAG TGT      

1 
TaPX
V Dahomey 1968 

NC_008291
.1 ... ... ... ... ... ...  ... ... ... ... ... ... ... ... ... ... ... ... ... ...  ... ... ... ...      

2 
TaPX
V Dahomey 1968 

DQ437594.
1 ... ... ... ... ... ...  ... ... ... ... ... ... ... ... ... ... ... ... ... ...  ... ... ... ...      

3 
TaPX
V Taterapox virus  

DQ374634.
1 --- --- --- --- --- ---  --. ... ... ... ... ... ... ... ... ... ... ... ... ...  ... ... ... ...      

                                   

        D D D L A I   K K P E A K R E A I V K A D  I E K C      

        GAT GAC GAT CTT GCA ATT  AAA AAG CCA GAG GCT AAA CGC GAA GCA ATT GTT AAA GCC GAT  ATA GAA AAG TGT      

1 
VAC
V Vaccinia virus M18173.1 ... ... ... ... ... ...  ... ... ... ... ... ... ... ... ... ... ... ... ... ...  ... ... ... ...      

2 
VAC
V Tian Tan AF095689.1 ... ... ... ... ... ...  ... ... ... ... ... ... ... ... ... ... ... ... ... ...  ... ... ... ...      

3 
VAC
V LIVP-1 Z99057.1 ... ... ... ... ... ...  ... ... ... ... ... ... ... ... ... ... ... ... ... ...  ... ... ... ...      
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4 
VAC
V COP-2 Z99056.1 ... ... ... ... ... ...  ... ... ... ... ... ... ... ... ... ... ... ... ... ...  ... ... ... ...      

5 
VAC
V LIVP-2 Z99058.1 ... ... ... ... ... ...  ... ... ... ... ... ... ... ... ... ... ... ... ... ...  ... ... ... ...      

6 
VAC
V Wyeth Z99064.1 ... ... ... ... ... ...  ... ... ... ... ... ... ... ... ... ... ... ... ... ...  ... ... ... ...      

7 
VAC
V Ankara U94848.1 ... ... ... ... ... ...  ... ... ... ... ... ... ... ... ... ... ... ... ... ...  ... ... ... ...      

8 
VAC
V Acambis 3000 MVA AY603355.1 ... ... ... ... ... ...  ... ... ... ... ... ... ... ... ... ... ... ... ... ...  ... ... ... ...      

9 
VAC
V BP-1 AY299016.1 ... ... ... ... ... ...  ... ... ... ... ... ... ... ... ... ... ... ... ... ...  ... ... ... ...      

10 
VAC
V IHD AY299017.1 ... ... ... ... ... ...  ... ... ... ... ... ... ... ... ... ... ... ... ... ...  ... ... ... ...      

11 
VAC
V LEVADITI AY299018.1 ... ... ... ... ... ...  ... ... ... ... ... ... ... ... ... ... ... ... ... ...  ... ... ... ...      

12 
VAC
V CVA AY299019.1 ... ... ... ... ... ...  ... ... ... ... ... ... ... ... ... ... ... ... ... ...  ... ... ... ...      

13 
VAC
V ELSTREE AY299020.1 ... ... ... ... ... ...  ... ... ... ... ... ... ... ... ... ... ... ... ... ...  ... ... ... ...      

14 
VAC
V EP-MARINA AY299021.1 ... ... ... ... ... ...  ... ... ... ... ... ... ... ... ... ... ... ... ... ...  ... ... ... ...      

15 
VAC
V Connaught AY160184.2 ... ... ... ... ... ...  ... ... ... ... ... ... ... ... ... ... ... ... ... ...  ... ... ... ...      

16 
VAC
V LC16m8 AY678275.1 ... ... ... ... ... ...  ... ... ... ... ... ... ... ... ... ... ... ... ... ...  ... ... ... ...      

17 
VAC
V LC16mO AY678277.1 ... ... ... ... ... ...  ... ... ... ... ... ... ... ... ... ... ... ... ... ...  ... ... ... ...      

18 
VAC
V WR (Western Reserve) AY243312.1 ... ... ... ... ... ...  ... ... ... ... ... ... ... ... ... ... ... ... ... ...  ... ... ... ...      

19 
VAC
V Copenhagen M35027.1 ... ... ... ... ... ...  ... ... ... ... ... ... ... ... ... ... ... ... ... ...  ... ... ... ...      

20 
VAC
V 3737 

DQ377945.
1 ... ... ... ... ... ...  ... ... ... ... ... ... ... ... ... ... ... ... ... ...  ... ... ... ...      

21 
VAC
V DUKE 

DQ439815.
1 ... ... ... ... ... ...  ... ... ... ... ... ... ... ... ... ... ... ... ... ...  ... ... ... ...      

22 
VAC
V Lister clone VACV107 

DQ121394.
1 ... ... ... ... ... ...  ... ... ... ... ... ... ... ... ... ... ... ... ... ...  ... ... ... ...      

23 
VAC
V CVA 

AM501482.
1 ... ... ... ... ... ...  ... ... ... ... ... ... ... ... ... ... ... ... ... ...  ... ... ... ...      

24 
VAC
V GLV-1h68 EU410304.1 ... ... ... ... ... ...  ... ... ... ... ... ... ... ... ... ... ... ... ... ...  ... ... ... ...      
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25 
VAC
V 

unknown Sequence 318 
from patent US 7645456  

ADC23632.
1 

no nt se-
quence 
available                                                      

26 
VAC
V Acambis clone 3 AY313848.1 ... ... ... ... ... ...  ... ... ... ... ... ... ... ... ... ... ... ... ... ...  ... ... ... ...      

27 
VAC
V Acambis clone 2000 AY313847.1 ... ... ... ... ... ...  ... ... ... ... ... ... ... ... ... ... ... ... ... ...  ... ... ... ...      

28 
VAC
V 

unknown Sequence 8 
from patent US7807180  

ADS58159.
1 

no nt se-
quence 
available                                                      

29 
VAC
V Dryvax clone DPP12 JN654979.1 ... ... ... ... ... ...  ... ... ... ... ... ... ... ... ... ... ... ... ... ...  ... ... ... ...      

30 
VAC
V Dryvax clone DPP9 JN654976.1 ... ... ... ... ... ...  ... ... ... ... ... ... ... ... ... ... ... ... ... ...  ... ... ... ...      

31 
VAC
V Dryvax clone DPP10 JN654977.1 ... ... ... ... ... ...  ... ... ... ... ... ... ... ... ... ... ... ... ... ...  ... ... ... ...      

32 
VAC
V Dryvax clone DPP11 JN654978.1 ... ... ... ... ... ...  ... ... ... ... ... ... ... ... ... ... ... ... ... ...  ... ... ... ...      

33 
VAC
V Dryvax clone DPP13 JN654980.1 ... ... ... ... ... ...  ... ... ... ... ... ... ... ... ... ... ... ... ... ...  ... ... ... ...      

34 
VAC
V Dryvax clone DPP15 JN654981.1 ... ... ... ... ... ...  ... ... ... ... ... ... ... ... ... ... ... ... ... ...  ... ... ... ...      

35 
VAC
V Dryvax clone DPP16 JN654982.1 ... ... ... ... ... ...  ... ... ... ... ... ... ... ... ... ... ... ... ... ...  ... ... ... ...      

36 
VAC
V Dryvax clone DPP17 JN654983.1 ... ... ... ... ... ...  ... ... ... ... ... ... ... ... ... ... ... ... ... ...  ... ... ... ...      

37 
VAC
V Dryvax clone DPP19 JN654984.1 ... ... ... ... ... ...  ... ... ... ... ... ... ... ... ... ... ... ... ... ...  ... ... ... ...      

38 
VAC
V Dryvax clone DPP20 JN654985.1 ... ... ... ... ... ...  ... ... ... ... ... ... ... ... ... ... ... ... ... ...  ... ... ... ...      

39 
VAC
V Dryvax clone DPP21 JN654986.1 ... ... ... ... ... ...  ... ... ... ... ... ... ... ... ... ... ... ... ... ...  ... ... ... ...      

40 
VAC
V IHD-W KC201194.1 ... ... ... ... ... ...  ... ... ... ... ... ... ... ... ... ... ... ... ... ...  ... ... ... ...      

41 
VAC
V TianTan clone TP3 KC207810.1 ... ... ... ... ... ...  ... ... ... ... ... ... ... ... ... ... ... ... ... ...  ... ... ... ...      

42 
VAC
V TianTan clone TP5 KC207811.1 ... ... ... ... ... ...  ... ... ... ... ... ... ... ... ... ... ... ... ... ...  ... ... ... ...      

43 
VAC
V TianTan clone TT8 JX489135.1 ... ... ... ... ... ...  ... ... ... ... ... ... ... ... ... ... ... ... ... ...  ... ... ... ...      

44 
VAC
V TianTan clone TT9 JX489136.1 ... ... ... ... ... ...  ... ... ... ... ... ... ... ... ... ... ... ... ... ...  ... ... ... ...      

45 
VAC
V TianTan clone TT10 JX489137.1 ... ... ... ... ... ...  ... ... ... ... ... ... ... ... ... ... ... ... ... ...  ... ... ... ...      
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46 
VAC
V TianTan clone TT11 JX489138.1 ... ... ... ... ... ...  ... ... ... ... ... ... ... ... ... ... ... ... ... ...  ... ... ... ...      

47 
VAC
V TianTan clone TT12 JX489139.1 ... ... ... ... ... ...  ... ... ... ... ... ... ... ... ... ... ... ... ... ...  ... ... ... ...      

48 
VAC
V Brazil Serro 2  KF179385.1 ... ... ... ... ... ...  ... ... ... ... ... ... ... ... ... ... ... ... ... ...  ... ... ... ...      

49 
VAC
V L-IVP  KP233807.1 ... ... ... ... ... ...  ... ... ... ... ... ... ... ... ... ... ... ... ... ...  ... ... ... ...      

50 
VAC
V Dryvax clone DPP25 KJ125438.1 ... ... ... ... ... ...  ... ... ... ... ... ... ... ... ... ... ... ... ... ...  ... ... ... ...      

51 
VAC
V Tashkent cloneTKT3 

KM044309.
1 ... ... ... ... ... ...  ... ... ... ... ... ... ... ... ... ... ... ... ... ...  ... ... ... ...      

52 
VAC
V Tashkent cloneTKT4 

KM044310.
1 ... ... ... ... ... ...  ... ... ... ... ... ... ... ... ... ... ... ... ... ...  ... ... ... ...      

53 
VAC
V WAU86/88-1  KF866253.1 ... ... ... ... ... ...  ... ... ... ... ... ... ... ... ... ... ... ... ... ...  ... ... ... ...      

54 
VAC
V WR (Western Reserve) 

NC_006998
.1 ... ... ... ... ... ...  ... ... ... ... ... ... ... ... ... ... ... ... ... ...  ... ... ... ...      

55 
VAC
V IOC cloneB141 KT184690.1 ... ... ... ... ... ...  ... ... ... ... ... ... ... ... ... ... ... ... ... ...  ... ... ... ...      

56 
VAC
V IOC cloneB388 KT184691.1 ... ... ... ... ... ...  ... ... ... ... ... ... ... ... ... ... ... ... ... ...  ... ... ... ...      

57 
VAC
V Cantagalo  KT013210.1 ... ... ... ... ... ...  ... ... ... ... ... ... ... ... ... ... ... ... ... ...  ... ... ... ...      

58 
VAC
V 

Lister clone: Lister Butan-
tan KX061501.1 ... ... ... ... ... ...  ... ... ... ... ... ... ... ... ... ... ... ... ... ...  ... ... ... ...      

59 
VAC
V Vaccinia virus WR  P11258.3 

no nt se-
quence 
available                                                       

60 
VAC
V Vaccinia virus X57318.1 ... ... ... ... ... ...  ... ... ... 

..T 
(D) 

CGG 
(R) ... ... ... 

CAG 
(Q) ... ... ... ... ...   ... ... ... ...      

61 
VAC
V WR 65-16  P26312.1 

no nt se-
quence 
available                                                       

                                   

        D D D L A I   K K P E A K R E A I V K A D  I E K C      

        GAT GAT GAT CTT GCA ATT  AAA AAG CCA GAG GCT AAA CGC GAA GCA ATT GTT AAA GCC GAT  ATA GAA AAG TGT      

1 
VAR
V ma. India-1967 X67115.1 ... ... ... ... ... ...  ... ... ... ... ... ... ... ... ... ... ... ... ... ...  ... ... ... ...      

2 
VAR
V ma. 

Bangladesh-1975, ssp. 
major L22579.1 ... ... ... ... ... ...  ... ... ... ... ... ... ... ... ... ... ... ... ... ...  ... ... ... ...      
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3 
VAR
V ma. Harvey, ssp. major X65517.1 ... ... ... ... ... ...  ... ... ... ... ... ... ... ... ... ... ... ... ... ...  ... ... ... ...      

4 
VAR
V ma. India378 AY223483.1 ... ... ... ... ... ...  ... ... ... ... ... ... ... ... ... ... ... ... ... ...  ... ... ... ...      

5 
VAR
V ma. M-Sur-60 AY223485.1 ... ... ... ... ... ...  ... ... ... ... ... ... ... ... ... ... ... ... ... ...  ... ... ... ...      

6 
VAR
V ma. 6/58 AY223492.1 ... ... ... ... ... ...  ... ... ... ... ... ... ... ... ... ... ... ... ... ...  ... ... ... ...      

7 
VAR
V ma. Aslam AY223490.1 ... ... ... ... ... ...  ... ... ... ... ... ... ... ... ... ... ... ... ... ...  ... ... ... ...      

8 
VAR
V ma. Brazil128 AY223494.1 ... ... ... ... ... ...  ... ... ... ... ... ... ... ... ... ... ... ... ... ...  ... ... ... ...      

9 
VAR
V ma. Brazil131 AY223495.1 ... ... ... ... ... ...  ... ... ... ... ... ... ... ... ... ... ... ... ... ...  ... ... ... ...      

10 
VAR
V ma. Butler AY223493.1 ... ... ... ... ... ...  ... ... ... ... ... ... ... ... ... ... ... ... ... ...  ... ... ... ...      

11 
VAR
V ma. India164 AY223484.1 ... ... ... ... ... ...  ... ... ... ... ... ... ... ... ... ... ... ... ... ...  ... ... ... ...      

12 
VAR
V ma. Khateen AY223491.1 ... ... ... ... ... ...  ... ... ... ... ... ... ... ... ... ... ... ... ... ...  ... ... ... ...      

13 
VAR
V ma. M-A-60 AY223487.1 ... ... ... ... ... ...  ... ... ... ... ... ... ... ... ... ... ... ... ... ...  ... ... ... ...      

14 
VAR
V ma. M-Bl-60 AY223488.1 ... ... ... ... ... ...  ... ... ... ... ... ... ... ... ... ... ... ... ... ...  ... ... ... ...      

15 
VAR
V ma. M-N-60 AY223489.1 ... ... ... ... ... ...  ... ... ... ... ... ... ... ... ... ... ... ... ... ...  ... ... ... ...      

16 
VAR
V ma. M-Sok-60 AY223486.1 ... ... ... ... ... ...  ... ... ... ... ... ... ... ... ... ... ... ... ... ...  ... ... ... ...      

17 
VAR
V ma. TajBarin AY223482.1 ... ... ... ... ... ...  ... ... ... ... ... ... ... ... ... ... ... ... ... ...  ... ... ... ...      

18 
VAR
V ma. India-1967, ssp. major X69198.1 ... ... ... ... ... ...  ... ... ... ... ... ... ... ... ... ... ... ... ... ...  ... ... ... ...      

19 
VAR
V ma. 

United Kingdom 1947 
Higgins (Staffordshire) 

DQ441446.
1 ... ... ... ... ... ...  ... ... ... ... ... ... ... ... ... ... ... ... ... ...  ... ... ... ...      

20 
VAR
V ma. 

Afghanistan 1970 Vari-
olator 4 

DQ437580.
1 ... ... ... ... ... ...  ... ... ... ... ... ... ... ... ... ... ... ... ... ...  ... ... ... ...      

21 
VAR
V ma. 

Bangladesh 1974 (nur is-
lam) 

DQ441420.
1 ... ... ... ... ... ...  ... ... ... ... ... ... ... ... ... ... ... ... ... ...  ... ... ... ...      

22 
VAR
V ma. 

Bangladesh 1974 (Shah-
zaman) 

DQ441421.
1 ... ... ... ... ... ...  ... ... ... ... ... ... ... ... ... ... ... ... ... ...  ... ... ... ...      

23 
VAR
V ma. 

Bangladesh 1974 (Solai-
man) 

DQ441422.
1 ... ... ... ... ... ...  ... ... ... ... ... ... ... ... ... ... ... ... ... ...  ... ... ... ...      
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24 
VAR
V ma. 

Bangladesh 1975 v75-550 
Banu 

DQ437581.
1 ... ... ... ... ... ...  ... ... ... ... ... ... ... ... ... ... ... ... ... ...  ... ... ... ...      

25 
VAR
V ma. 

Benin, Dahomey 1968 
(v68-59) 

DQ441416.
1 ... ... ... ... ... ...  ... ... ... ... ... ... ... ... ... ... ... ... ... ...  ... ... ... ...      

26 
VAR
V ma. Botswana 1972 (v72-143) 

DQ441417.
1 ... ... ... ... ... ...  ... ... ... ... ... ... ... ... ... ... ... ... ... ...  ... ... ... ...      

27 
VAR
V ma. Botswana 1973 (v73-225) 

DQ441418.
1 ... ... ... ... ... ...  ... ... ... ... ... ... ... ... ... ... ... ... ... ...  ... ... ... ...      

28 
VAR
V ma. 

Brazil 1966 (v66-39 Sao 
Paulo) 

DQ441419.
1 ... ... ... ... ... ...  ... ... ... ... ... ... ... ... ... ... ... ... ... ...  ... ... ... ...      

29 
VAR
V ma. 

China Horn 1948; Sabin 
Lab July 1948 

DQ437582.
1 ... ... ... ... ... ...  ... ... ... ... ... ... ... ... ... ... ... ... ... ...  ... ... ... ...      

30 
VAR
V ma. 

Congo 9 1970 (v74-227 
Gispen) 

DQ441423.
1 ... ... ... ... ... ...  ... ... ... ... ... ... ... ... ... ... ... ... ... ...  ... ... ... ...      

31 
VAR
V ma. 

Congo 1970 v70-46 
Kinshasa 

DQ437583.
1 ... ... ... ... ... ...  ... ... ... ... ... ... ... ... ... ... ... ... ... ...  ... ... ... ...      

32 
VAR
V ma. 

Ethiopia 1972 (Eth16 R14-
1X-72 Addis) 

DQ441424.
1 ... ... ... ... ... ...  ... ... ... ... ... ... ... ... ... ... ... ... ... ...  ... ... ... ...      

33 
VAR
V ma. 

Ethiopia 1972 (Eth17 R14-
1X-72 Addis) 

DQ441425.
1 ... ... ... ... ... ...  ... ... ... ... ... ... ... ... ... ... ... ... ... ...  ... ... ... ...      

34 
VAR
V ma. 

Germany 1958 Heidel-
berg 

DQ437584.
1 ... ... ... ... ... ...  ... ... ... ... ... ... ... ... ... ... ... ... ... ...  ... ... ... ...      

35 
VAR
V ma. Guinea 1969 (005) 

DQ441426.
1 ... ... ... ... ... ...  ... ... ... ... ... ... ... ... ... ... ... ... ... ...  ... ... ... ...      

36 
VAR
V ma. 

India 1953 (Kali-Muthu-
M50 Madras) 

DQ441427.
1 ... ... ... ... ... ...  ... ... ... ... ... ... ... ... ... ... ... ... ... ...  ... ... ... ...      

37 
VAR
V ma. India 1953 (New Delhi) 

DQ441428.
1 ... ... ... ... ... ...  ... ... ... ... ... ... ... ... ... ... ... ... ... ...  ... ... ... ...      

38 
VAR
V ma. India 1964 7124 Vellore 

DQ437585.
1 ... ... ... ... ... ...  ... ... ... ... ... ... ... ... ... ... ... ... ... ...  ... ... ... ...      

39 
VAR
V ma. India 1964 7125 Vellore 

DQ437586.
1 ... ... ... ... ... ...  ... ... ... ... ... ... ... ... ... ... ... ... ... ...  ... ... ... ...      

40 
VAR
V ma. Iran 1972 2602 Tabriz 

DQ437587.
1 ... ... ... ... ... ...  ... ... ... ... ... ... ... ... ... ... ... ... ... ...  ... ... ... ...      

41 
VAR
V ma. 

Japan 1946 (Yamada MS-
2(A) Tokyo) 

DQ441429.
1 ... ... ... ... ... ...  ... ... ... ... ... ... ... ... ... ... ... ... ... ...  ... ... ... ...      

42 
VAR
V ma. 

Japan 1951 (Harper, Mas-
terseed) 

DQ441430.
1 ... ... ... ... ... ...  ... ... ... ... ... ... ... ... ... ... ... ... ... ...  ... ... ... ...      

43 
VAR
V ma. 

Japan 1951 (Stillwell, 
Masterseed) 

DQ441431.
1 ... ... ... ... ... ...  ... ... ... ... ... ... ... ... ... ... ... ... ... ...  ... ... ... ...      

44 
VAR
V ma. 

Korea 1947 (Lee, Master-
seed) 

DQ441432.
1 ... ... ... ... ... ...  ... ... ... ... ... ... ... ... ... ... ... ... ... ...  ... ... ... ...      
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45 
VAR
V ma. Kuwait 1967 (K1629) 

DQ441433.
1 ... ... ... ... ... ...  ... ... ... ... ... ... ... ... ... ... ... ... ... ...  ... ... ... ...      

46 
VAR
V ma. Nepal 1973 V73-175 

DQ437588.
1 ... ... ... ... ... ...  ... ... ... ... ... ... ... ... ... ... ... ... ... ...  ... ... ... ...      

47 
VAR
V ma. 

Pakistan 1969 (Rafig 
Lahore) 

DQ437589.
1 ... ... ... ... ... ...  ... ... ... ... ... ... ... ... ... ... ... ... ... ...  ... ... ... ...      

48 
VAR
V ma. 

Sierra Leone 1969 (V68-
258) 

DQ441437.
1 ... ... ... ... ... ...  ... ... ... ... ... ... ... ... ... ... ... ... ... ...  ... ... ... ...      

49 
VAR
V ma. Somalia 1977 (V77-1252) 

DQ441438.
1 ... ... ... ... ... ...  ... ... ... ... ... ... ... ... ... ... ... ... ... ...  ... ... ... ...      

50 
VAR
V ma. SOM77_1605_139 

DQ441439.
1 ... ... ... ... ... ...  ... ... ... ... ... ... ... ... ... ... ... ... ... ...  ... ... ... ...      

51 
VAR
V ma. Somalia 1977; V77-2479 

DQ437590.
1 ... ... ... ... ... ...  ... ... ... ... ... ... ... ... ... ... ... ... ... ...  ... ... ... ...      

52 
VAR
V ma. 

South Africa 1965 (102 
Natal, Ingwavuma) 

DQ441435.
1 ... ... ... ... ... ...  ... ... ... ... ... ... ... ... ... ... ... ... ... ...  ... ... ... ...      

53 
VAR
V ma. 

South Africa 1965 (103 
T'vaal, Nelspruit) 

DQ441436.
1 ... ... ... ... ... ...  ... ... ... ... ... ... ... ... ... ... ... ... ... ...  ... ... ... ...      

54 
VAR
V ma. 

United Kingdom 1946 
Harvey 

DQ441444.
1 ... ... ... ... ... ...  ... ... ... ... ... ... ... ... ... ... ... ... ... ...  ... ... ... ...      

55 
VAR
V ma. Sudan 1947 (Juba) 

DQ441440.
1 ... ... ... ... ... ...  ... ... ... ... ... ... ... ... ... ... ... ... ... ...  ... ... ... ...      

56 
VAR
V ma. Sudan 1947 (Rumbec) 

DQ441441.
1 ... ... ... ... ... ...  ... ... ... ... ... ... ... ... ... ... ... ... ... ...  ... ... ... ...      

57 
VAR
V ma. Sumatra 1970 V70-228 

DQ441442.
1 ... ... ... ... ... ...  ... ... ... ... ... ... ... ... ... ... ... ... ... ...  ... ... ... ...      

58 
VAR
V ma. Syria 1972 V72-199 

DQ437592.
1 ... ... ... ... ... ...  ... ... ... ... ... ... ... ... ... ... ... ... ... ...  ... ... ... ...      

59 
VAR
V ma. Tanzania 1965 kembula 

DQ441443.
1 ... ... ... ... ... ...  ... ... ... ... ... ... ... ... ... ... ... ... ... ...  ... ... ... ...      

60 
VAR
V ma. 

United Kingdom 1946 
Hinden (Middlesex) 

DQ441445.
1 ... ... ... ... ... ...  ... ... ... ... ... ... ... ... ... ... ... ... ... ...  ... ... ... ...      

61 
VAR
V ma. 

United Kingdom 1952 
Butler 

DQ441447.
1 ... ... ... ... ... ...  ... ... ... ... ... ... ... ... ... ... ... ... ... ...  ... ... ... ...      

62 
VAR
V ma. Yugoslavia 1972 V72-164 

DQ441448.
1 ... ... ... ... ... ...  ... ... ... ... ... ... ... ... ... ... ... ... ... ...  ... ... ... ...      

63 
VAR
V ma. Sumatra 1970 V70-222 

DQ437591.
1 ... ... ... ... ... ...  ... ... ... ... ... ... ... ... ... ... ... ... ... ...  ... ... ... ...      

64 
VAR
V ma. India-1967, ssp. major 

NC_001611
.1 ... ... ... ... ... ...  ... ... ... ... ... ... ... ... ... ... ... ... ... ...  ... ... ... ...      

65 
VAR
V ma. PoxSib  JX080526.1 --- --- --- --- --- ---  --- --- --- --- --- --- --- --- --- --- --- --- --- ---  ... ... ... ...      



STUDIES	PERFORMED	

	 84	

66 
VAR
V ma. VD21, 17th century  KY358055.1 ... ... ... ... ... ...  ... ... ... ... ... ... ... ... ... ... ... ... ... ...  ... ... ... ...      

67 
VAR
V ma. 

Niger 1969 (001, importa-
tion from Nigeria) 

DQ441434.
1 ... ... ... ... ... ...  ... ... ... ... ... ... 

.A. 
(H) ... ... ... ... ... ... ...  ... ... ... ...      

                                   

        D D D L A I   K K P E A K R E A I V K A D  I E K C      

        GAT GAT GAT CTT GCA ATT  AAA AAG CCA GAG GCT AAA CGC GAA GCA ATT GTT AAA GCC GAT  ATA GAA AAG TGT      

1 
VAR
V mi. Garcia-1966 X76266.1 ... ... ... ... ... ...  ... ... ... ... ... ... ... ... ... ... ... ... ... ...  ... ... ... ...      

2 
VAR
V mi. Garcia-1966 Y16780.1 ... ... ... ... ... ...  ... ... ... ... ... ... ... ... ... ... ... ... ... ...  ... ... ... ...      

                                   

        D D D L A I   K K P E E K R K A V V K A E  I E K C      

        --- --- --- --- --- ---  --. AAA CCA GAA GAA AAA CGT AAA GCG GTT GTT AAA GCA GAA  ATC GAG AAA TGC      

1 
Vo-
lepox Volepox virus  

DQ374627.
1 --- --- --- --- --- ---  --. ... ... ... ... ... ... ... ... ... ... ... ... ...  ... ... ... ...      

                                   

        D D D M A I   K K P E E P V K R K V V K N K N K H K V V K A D 

        GAT GAT GAC ATG GCG ATT  AAA AAA CCA GAA GAA CCA GTT AAA CGT AAA GTA GTT AAA AAC AAA AAT AAA CAT AAA GTG GTT AAA GCA GAT 

1 
SkPX
V SKUNK AY299088.1 ... ... ... ... ... ...  ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... 

2 
SkPX
V WA  

NC_031038
.1 ... ... ... ... ... ...  ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... 

3 
SkPX
V WA  KU749310.1 ... ... ... ... ... ...  ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... 

 
Derivations of VACV/VARV-typical epitopes are marked in red. Matches are indicated by dots. 
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Table S6 Mapping of epitope #5 based on 391 complete and partial amino acid sequences from 
the NCBI GenBank database.  

Linear A27 epitope aa 68-71 OPXV genera Number of DB en-
tries 

IEKC  VARV major 67/67 

 VARV minor 2/2 

 VACV 60/61 

 BPXV 26/26 

 HSPV 2/2 

 RPXV 2/2 

 CMLV 18/18 

 CPXV 132/134 

 ECTV 14/14 

 MPXV 57/57 

 TaPXV 3/3 

 RCNV 1/1 

 VPXV 1/1 

(aa 93-96) SkPXV 3/3 

(aa 93-96) VACV 1/61 

IEKY  CPXV 1/134 

C-Terminus truncated  CPXV 1/134 
Differences within the epitope sequence are highlighted. 
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Table S7 Mapping of epitope complex #1A-D based on 391 complete and partial amino acid 
sequences from the NCBI GenBank database.  

Linear A27 epitope aa 26-39 OPXV genera Number of DB entries 

KKPEAKREAIVKAD VARV major 66/67 

 VARV minor 2/2 

 VACV 59/61 

 BPXV 26/26 

 HSPV 2/2 

 RPXV 2/2 

 CPXV 51/134 

 TaPXV 2/3 

_KPEAKREAIVKAD  CPXV 3/134 

 TaPXV 1/3 

KKPEAKREAIVKAE CPXV 64/134 

_KPEAKREAIVKAE CPXV 2/134 

KKPEAKREAIIKAD CMLV 17/18 

KRPEAKREAIIKAD CMLV 1/18 

KRPEAKREAIVKAE CPXV 1/134 

KNPETKREAIVKAY MPXV 57/57 

KKPEDKHEATVKAD ECTV 13/14 

_KPEDKHEATVKAD ECTV 1/14 

KKPEAKHEAIVKAD VARV major 1/67 

KKPEAKHEAIVKAE CPXV 1/134 

KKQEAKREAIVKAE CPXV 8/134 

_KQEAKREAIVKAE CPXV 1/134 

KKPEAKREAFVKAE CPXV 1/134 

KKPEVKREAIVKAE CPXV 1/134 

_KPEEKRKAVVKAE VPXV 1/1 

KKPDRKREQIVKAD VACV 1/61 

_KPEAKRKVVEKAD RCNV 1/1 

KSQRLNAKQLLKLR CPXV 1/1 

TSRSSTGSANPSAS VACV 1/61 

KKPEEPVKRKVVKNKNKHKVVKAD (aa 26-49) SkPXV 3/3 

Differences within the epitope sequence are highlighted. 
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ABSTRACT 

Variola virus (VARV) was eradicated by active heterologous immunization using vac-

cinia virus (VACV), but VARV is still considered to be used as a potential biological 

weapon. Currently, the community is naïve and in case of an epidemic, a therapeutic 

support of the vaccination campaign is required. Potent neutralizing antibodies can pro-

tect against orthopoxvirus (OPXV) infections. Recombinant human immunoglobulin li-

braries are a new approach to engineer standardized, pathogen-free, and target optimized 

recombinant antibody preparations for prophylactic and therapeutic reasons. For the de-

velopment of OPXV specific recombinant human single chain antibodies (scFvs), the IgG 

repertoire from four donors vaccinated intracutaneously with live vaccinia virus vaccine 

was amplified, cloned, and displayed onto M13 phages. The library resulted in a diversity 

of ≥4x108 independent colonies. Different immuno-screening protocols against VACV 

Elstree revealed a predominant selection of scFv-clones specifically binding to the D8 

protein. The obtained scFv-1.2.2.H9 was engineered into the larger human scFv-Fc-

1.2.2.H9 and IgG1-1.2.2.H9 formats, to improve its apparent binding affinity and effector 

function within the human immune response. Similar binding kinetics were shown for 

scFv-1.2.2.H9 and scFv-Fc-1.2.2.H9 (1.61 nM and 7.68 nM, respectively), whereas, 

IgG1-1.2.2.H9 had a much higher affinity (43.82 pM). None of the purified recombinant 

1.2.2.H9 antibodies were able to neutralize 100 pfu of VACV Elstree in vitro. However, 

after addition of 1% human complement, the VACV Elstree-neutralization abilities of the 

larger antibody formats scFv-Fc-1.2.2.H9 and IgG1-1.2.2.H9 were significantly im-

proved (0.0776 µM and 0.01324 µM, respectively). In an in vivo passive immunization 

Naval Medical Research Institute (NMRI)-mouse-model, 100 µg purified scFv-1.2.2.H9 

and the IgG1-1.2.2.H9 partially protected against the challenge with 4LD50 VACV Mu-

nich 1 as 3/6 mice survived. In contrast, the scFv-Fc-1.2.2.H9 showed no protection 
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effect. In conclusion, screening of human OPXV-immunoglobulin libraries is a useful 

tool for the identification of protective recombinant antibodies against OPXV. 

 

AUTHORS SUMMARY  

Variola virus (VARV) is the most famous species of the family Poxviridae and caused 

more fatalities than all other human infectious diseases taken together. Fortunately, 

VARV was officially declared eradicated in 1980. However, there are several other zo-

onotic poxvirus species endangering human health. To obtain protective recombinant an-

tibodies against OPXV, we need to know the target regions of the antibody directed to 

poxviruses, resulting in a target directed screening of human immunoglobulin libraries. 

In our study, a human OPXV-immunoglobulin library was developed, using the immu-

noglobulin G (IgG) repertoire from four previously vaccinated donors. Interestingly, we 

obtained an antibody, which neutralizes VACV in vitro in the presence of complement 

and mediates partial protection in mice after VACV infection. 

 

INTRODUCTION 

Vaccinia virus (VACV) is considered the prototype of the genus Orthopoxviruses (Moss, 

2006). VACV was used as a heterologous vaccine against variola virus (VARV), the 

causative agent of smallpox. Vaccination was terminated after eradication of VARV in 

1980 leaving an increasing susceptible population (Fenner et al., 1988). While VARV 

solely infects humans (Fenner et al., 1988; Ladnyi and Breman, 1978), zoonotic pox-

viruses like cowpox virus (CPXV) and monkeypox virus (MPXV) can also cause severe 

and sometimes fatal infections (Becker et al., 2009; Campe et al., 2009; Kurth et al., 2008; 

Ladnyj et al., 1972; Reed et al., 2004; Vaughan et al., 2018; Vorou et al., 2008). While 

vaccination is generally safe and effective for prevention of smallpox, in well-docu-

mented cases of various adverse reactions in individuals, especially in immune-



STUDIES	PERFORMED	

	 90	

compromised humans, caused by licensed vaccines (Cono et al., 2003; Fulginiti, 2003; 

Fulginiti et al., 2003), vaccinia immune globulin (VIG) have been used for treatment 

(Feery, 1976; Hopkins et al., 2004; Hopkins and Lane, 2004; Kempe, 1960). Neverthe-

less, VIG prepared from human donors bear the risk of quality variances between batches 

(Cono et al., 2003) and, even so it is reduced, a risk for the transmission of pathogenic 

agents (Sawyer, 2000). Currently, the availability of an immune-serum donor population 

is scarce.  

Two antigenic distinct forms are present in VACV (Smith et al., 2002). The intracellular 

mature virus (MV) is the most abundant infectious form in Orthopoxvirus responsible for 

host-to-host transmission. Extracellular enveloped virus (EV) consists of an additional 

envelope and is thought to be important for dissemination within the host (Blasco and 

Moss, 1992; Boulter and Appleyard, 1973; Smith et al., 2002). Targets for neutralizing 

and protective antibodies were identified for MV surface proteins A13, A17, A27, D8, 

H3, L1, A28, and EV surface proteins B5 and A33 (Hsiao et al., 1999; Ichihashi and Oie, 

1996; Lin et al., 2000; Rodriguez et al., 1985; Wallengren et al., 2001; Wolffe et al., 

1995). One linear epitope, which is very conserved among OPXVs, was mapped at the 

C-terminus of the A13 (aa residues 59-69) (Xu et al., 2011). Moreover, six linear epitopes 

were mapped on the A27 protein of OPXVs (epitope #4: aa region 9-14, epitope complex 

#1A-D: between aa 26 and 39 and epitope #5: aa region 68-71) (Ahsendorf et al., 2019). 

Other studies discovered four epitope groups on the A27 protein of VACV (group I: aa 

residues 21-40; group II: discontinuous; group III: aa residues 81-100 and group 4: aa 

residues 91-110) (Kaever et al., 2016). Anti-B5 mAbs detected a conformational epitope 

(aa residues 22-130) (Chen et al., 2006) as well as two further ones localized to the SCR1–

SCR2 border, and in the stalk region (Aldaz-Carroll et al., 2005). Hitherto, five confor-

mational antigenic sites were identified on the D8 protein (Czerny et al., 1994) reacting 
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with neutralizeing antibodies VACV only in the presence of complement (Matho et al., 

2012). 

The 32 kDa protein D8 is a type 1 membrane protein and plays a role in the adsorption of 

the poxvirus to the host cell (Hsiao et al., 1999; Maa et al., 1990). The atomic structure 

revealed a carbonic anhydrase fold with a central positively charged crevice binding to 

chondroitin sulfate (CS) E on cell surfaces (Hsiao et al., 1999; Maa et al., 1990; Matho et 

al., 2014; Matho et al., 2012). Sequence alignments of D8 orthologs suggest a structural 

conservation of this binding site (Matho et al., 2012). A hexameric arrangement of D8 on 

the viral particle is proposed, mediated as a trimeric self-association of disulfide bonded 

homodimers, which might increase the avidity of D8 to CS (Matho et al., 2014). VACV 

D8L knock out mutants exhibited reduced infectivity in a BALB/c mouse model 

(Rodriguez et al., 1992) but replicated efficiently in cell culture (Niles and Seto, 1988). 

Using an optimized D8 DNA vaccine approach in a BALB/c mouse model, high titers of 

neutralizing antibodies were induced, which were protective against a subsequent chal-

lenge with VACV WR (Sakhatskyy et al., 2006). The characterization of a panel of mu-

rine monoclonal antibodies revealed four distinct antigenic groups on the D8 surface. 

Most effective were antibodies blocking the chondroitin sulfate CS-E interaction sites at 

K41, R44, K108, and R220 (Matho et al., 2014). In addition, D8 seems to possess a high 

and a low affinity binding region within the central crevice for CS-E and CS-A, respec-

tively (Matho et al., 2018). 

Phage display provides a robust technique to isolate monoclonal antigen binding frag-

ments, which can then be converted into other larger molecules or full-size antibodies 

(Hoogenboom et al., 1998). Schmaljohn et al. (Schmaljohn et al., 1999) constructed a Fab 

phage display library from peripheral blood of one human donor. Here, we isolated the 

peripheral blood mononuclear cells of four donors immunized previously with Dryvax® 

and amplified the genetic information of IgG heavy and light chains using phages. We 
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describe the selection, engineering, and full in vitro as well as in vivo characterization of 

an anti-D8 antibody derived from a human IgG based phage display library.  

 

RESULTS 

Immunization, library construction, and characterization 

The titer of circulating anti-VACV IgG in the peripheral blood of four volunteers was 

measured by ELISA. The determined titers ranged between 1.024x104 and 4.096x104 /ml 

serum. Volunteer 2, previously unvaccinated, revealed the lowest titer, whereas volun-

teer 1 vaccinated several times showed the highest anti-VACV titer (Fig 1).  

 
FIG 1 Circulating anti-VACV IgG in sera of four volunteers was measured by indirect 
ELISA. Blood samples were either taken 20 days (volunteer 1 and 2) or 28 days (vol-
unteer 3 and 4) after immunization with Dryvax® (Wyeth Laboratories, Inc., USA). 
Three volunteers (volunteer 5 to 7) were not vaccinated. Sera were titrated in two-fold 
serial dilutions. 

 

Neutralizing antibodies in the sera of the immunized individuals were determined through 

plaque reduction neutralization test using VACV Elstree. The sera showed neutralizing 

titers of 1.6x102 to 3.2x102 /ml. 
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To construct the scFv library, RT-PCR was performed using total RNA of at least 

107 cells per volunteer. It was possible to amplify a specific product with every primer 

combination for every sample (Fig S1 to S3). After pooling of the related 650 bp products 

and amplification of the variable regions with linker overhangs (Fig S4), the scFvs were 

joined by SOE-PCR (Fig S5). Subsequent to the ligation of scFv into pCANTAB5E, 

40 transformations resulted in ≥4x108 independent colonies.  

 

Selection of Vaccinia virus specific scFv 

Specific antibodies were selected for four rounds of enrichment. After each round, 176 in-

dividual E. coli HB2151 colonies were isolated for the production of soluble antibodies 

in a microtiter well format. No specifically binding scFvs were observed after the first 

selection round. The second selection round revealed one clone with a 25 times higher 

absorption over the background. The clone was designated as 1.2.2.H9. Two clones both 

from the third and fourth round of selection had absorptions with at least four times over 

background. In addition, the fourth round revealed one scFv, 1.4.1.C4, with an absorption 

of around 33 times over background. ScFv-1.2.2.H9 and 1.4.1.C4 were sequenced and 

according to the deduced amino acid residues classified to the human VH3/D3/JH6-

VKIII/JK3 (1.2.2.H9) (Fig 2A) and VH1/D2/JH6-VKIII/JK2 (1.4.1.C4) families 

(Fig 2B).  
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|FR1H                                                      
5’ CAGGTGCAGCTGGTACAATCAGGGGGAGGCTTGGTCCAGCCTGGGGGGTCCCTGAGACTC   60

NH4+  Q  V  Q  L  V  Q  S  G  G  G  L  V  Q  P  G  G  S  L  R  L    20

||CDR1H                 ||FR2H               
61 TCCTGTGCAGCCTCTGGATTCACCGTCAGTAGCAACTACATGAGCTGGGTCCGCCAGGCT  120
21  S  C  A  A  S  G  F  T  V  S  S  N  Y  M  S  W  V  R  Q  A    40

||CDR2H              ||FR3H   
121 CCAGGGAAGGGGCTGGAGTGGGTCTCAATTATTTATAGCGGTGGTAGCACATACTACGCA  180
41  P  G  K  G  L  E  W  V  S  I  I  Y  S  G  G  S  T  Y  Y  A    60

181 GACTCCGTGAAGGGCAGATTCACCATCTCCAGAGACAATTCCAAGAACACGCTGTATCTT  240
61  D  S  V  K  G  R  F  T  I  S  R  D  N  S  K  N  T  L  Y  L    80

||CDR3H        
241 CAAATGAACAGCCTGAGAGCCGAGGACACGGCTGTGTATTACTGTGCGAGAGATCGAAGG  300
81  Q  M  N  S  L  R  A  E  D  T  A  V  Y  Y  C  A  R  D  R  R   100

||FR4H                  
301 CTCTACGATATTTTCAGCAGCTACGGTATGGACGTCTGGGGCCAAGGGACCACGGTCACC  360
101  L  Y  D  I  F  S  S  Y  G  M  D  V  W  G  Q  G  T  T  V  T   120

||Linker                                     ||FR1K          
361 GTCTCCTCAGGTGGAGGCGGTTCAGGCGGAGGTGGTTCTGGCGGTGGCGGATCGGAAATT  420
121  V  S  S  G  G  G  G  S  G  G  G  G  S  G  G  G  G  S  E  I   140

421 GTGATGACGCAGTCTCCAGGCACCCTGTCTTTGTCTCCAGGGGAAAGAGCCACCCTCTCC  480
141  V  M  T  Q  S  P  G  T  L  S  L  S  P  G  E  R  A  T  L  S   160

||CDR1K              ||FR2K                     
481 TGCAGGGCCAGTCAGAGTGTTAGCAGCAGCTACTTAGCCTGGTACCAGCAGAAACCTGGC  540
161  C  R  A  S  Q  S  V  S  S  S  Y  L  A  W  Y  Q  Q  K  P  G   180

||CDR2K  ||FR3K                     
541 CAGGCTCCCAGGCTCCTCATCTATGGTGCTTCCACCAGGGCCACTGGCATCCCAGCCAGG  600
181  Q  A  P  R  L  L  I  Y  G  A  S  T  R  A  T  G  I  P  A  R   200

601 TTCAGTGGCAGTGGGTCTGGGACAGACTTCACTCTCACCATCAGGAACCTAGAGCCTGAA  660
201  F  S  G  S  G  S  G  T  D  F  T  L  T  I  R  N  L  E  P  E   220

||CDR3K                    ||FR4K      
661 GATTTTGCAGTTTATTACTGTCAGCAGCGTAGCAACTGGCCATTCACTTTCGGCCCCGGG  720
221  D  F  A  V  Y  Y  C  Q  Q  R  S  N  W  P  F  T  F  G  P  G   240

|  |Tryp.    |E tag                       
721 ACCAAGGTGGAAATCAAACGTGCGGCCGCAGGTGCGCCGGTGCCGTATCCGGATCCGCTG  780
241  T  K  V  E  I  K  R  A  A  A  G  A  P  V  P  Y  P  D  P  L   260

|Tryp.||Amber Stop Codon                           
781 GAACCGCGTGCCGCATAG                                             3’
261  E  P  R  A  A  .                                             COO-

A
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FIG 2 Deduced amino acid sequence of variable domains of heavy and light chains of 
the anti-VACV 1.2.2.H9 (A) and 1.4.1.C4 (B).  

 

Large-scale production and immune affinity purification were successful only for the 

scFv-1.2.2.H9 as the concentration of scFv-1.4.1.C4 was always very low.  

 

Binding of scFv-1.2.2.H9, scFv-Fc-1.2.2.H9, and IgG1-1.2.2.H9 by ELISA 

The EC50 was measured using an indirect ELISA with two-fold serial dilutions in 

|FR1H                                                      
5’ CAAATCCAGCTGGTGCAGTCTGGGGCTGAGGTGAAGAAACCTGGGGCCTCAGTGAAGGTC 60

NH4+ Q  I  Q  L  V  Q  S  G  A  E  V  K  K  P  G  A  S  V K  V 20

||CDR1H                 ||FR2H               
61 TCCTGCAAGGCATCTGGATACACCTTCAGCAATTACTATCTGCACTGGGTGCGACAGGCC 120
21 S  C  K  A  S  G  Y  T  F  S  N  Y  Y  L  H  W  V  R Q  A 40

||CDR2H                 ||FR3H
121 CCTGGACAAGGGCTTGAGTGGATGGGAGCAATCAACCCTAGCGCTGATAGCGCAGGCTAC 180
41 P  G  Q  G  L  E  W  M  G  A  I  N  P  S  A  D  S  A G  Y 60

181 GCACAGAAGTTCCAGGGCAGACTCACCATGACCAGGGACACGTCCATCAGCACAGCCTAC 240
61  A  Q  K  F  Q  G  R  L  T  M  T  R  D  T  S  I  S  T A  Y 80

||CDR3H     
241 ATGGAGCTGAGCAGGCTGAGATCTGACGACACGGCCGTGTATTACTGTGCGAGAGTGGAG 300
81  M  E  L  S  R  L  R  S  D  D  T  A  V  Y  Y  C  A  R V  E 100

||FR4H   
301 TACCAGCTGCTATACGGCCTTTTTAGGAGGGACAGATACGGTATGGACGTCTGGGGCCAA 360
101 Y  Q  L  L  Y  G  L  F  R  R  D  R  Y  G  M  D  V  W G  Q 120

||Linker                            
361 GGGACCACGGTCACCGTCTCCTCAGGTGGAGGCGGTTCAGGCGGAGGTGGTTCTGGCGGT 420
121 G  T  T  V  T  V  S  S  G  G  G  G  S  G  G  G  G  S G  G 140

||FR1K                                             
421 GGCGGATCGGAAATTGTGCTGACTCAGTCTCCAGGCACCCTGTCTTTGTCTCCAGGGGAA 480
141 G  G  S  E  I  V  L  T  Q  S  P  G  T  L  S  L  S  P G  E 160

||CDR1K              ||FR2K      
481 AGAGCCACCCTCTCCTGCAGGGCCAGTCAGAGTGTTAGCAGCAGCTGGTTAGCCTGGTAC 540
161 R  A  T  L  S  C  R  A  S  Q  S  V  S  S  S  W  L  A W  Y 180

||CDR2K  ||FR3K      
541 CAGCAGAAACCTGGCCAGGCTCCCAGGCTCCTCATCTATGGTGCATCCAACAGGGCCACT 600
181  Q  Q  K  P  G  Q  A  P  R  L  L  I  Y  G  A  S  N  R A  T 200

601 GGCATCCCAGACAGGTTCAGTGGCAGTGGGTCTGGGACAGACTTCACTCTCACCATCAAT 660
201 G  I  P  D  R  F  S  G  S  G  S  G  T  D  F  T  L  T I  N 220

||CDR3K                 
661 AGCCTGGAAGCTGAAGATGCTGCAGCGTATTACTGTCATCAGAGTAGTAGTTTACCGTAC 720
221 S  L  E  A  E  D  A  A  A  Y  Y  C  H  Q  S  S  S  L P  Y 240

||FR4K                        |  |Tryp.    |E tag        
721 ACTTTTGGCCAGGGGACCAAGCTGGAGATCAAACGTGCGGCCGCAGGTGCGCCGGTGCCG 780
241 T  F  G  Q  G  T  K  L  E  I  K  R  A  A  A  G  A  P V  P 260

|Tryp.||Amber Stop Codon            
781 TATCCGGATCCGCTGGAACCGCGTGCCGCATAG                              3’
261 Y  P  D  P  L  E  P  R  A  A  .                       COO-

B
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triplicate starting with 10 µM of the respective antibody (Fig 3) and calculated according 

to Michaelis-Menten (Michaelis and Menten, 1913).  

 

FIG 3 Indirect ELISAs with scFv-1.2.2.H9, scFv-Fc-1.2.2.H9 and IgG1-1.2.2. H9 on 
2 µg/ml VACV Elstree in triplicates were used to calculate the EC50. The titration con-
ducted in two-fold serial dilutions. The starting concentrations were 10 µM of purified 
antibodies. 

 

The EC50 of the scFv-1.2.2.H9 to VACV Elstree was 1.61 nM. This corresponds to values 

of vmax of 3.015 and Km of 0.1285 µg/ml. The affinity of the scFv-Fc-1.2.2.H9 was deter-

mined with 7.68 nM, which corresponds to vmax = 3.319 and Km = 0.2369 µg/ml. The 

lowest EC50 of 43.82 pM was calculated for the IgG1-1.2.2.H9 molecule size. This equals 

vmax = 2.617 and Km = 6.57 ng/ml. 

Distinct capture abilities were observed with the scFv-1.2.2.H9 for ≥ 1.5625×103 pfu/ml 

VACV Elstree. No specific binding to scFv-1.2.2.H9 and the used detector anti-MVA-

polyclonal rabbit Ab were seen with other viruses tested (Fig 4). 
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FIG 4 Capture ELISA with 25 µg/ml 1.2.2.H9 coated onto 96-well microtiter plate. 
Different virus strains received from cell cultured material were tested: 106 pfu/ml Vac-
cinia virus Elstree (VACV), 106 pfu Parapoxvirus Orf D1701 (Orf), 106.75 CID50/ml bo-
vine Corona virus V270 (BCV), 107.25 CID50/ml Reovirus (Reo), 107.25 CID50/ml New 
castle disease virus (ND), and 107.25 CID50/ml enteric cytopathic bovine orphan virus 
(ECBO). Negative controls were MA104-cell line and DMEM. The titration was con-
ducted in two-fold serial dilutions. Specific binding was detected using anti-MVA-pol-
yclonal rabbit Ab (1:5000). 

 

Competitive ELISA for epitope detection  

To reveal the epitope recognized by the scFv-1.2.2.H9, an inhibition ELISA with murine 

monoclonal antibodies was performed. Therefore, microtiter plates were coated with 

2 µg/ml VACV. Purified scFv (Fig 5a) or mAb (Fig5b) (Ab1) adjusted to a starting con-

centration of 100 µg/ml were added in two-fold serial dilutions (100 µl/well). After incu-

bation and five washing steps, purified scFv/mAb (Ab 2) was incubated under same con-

ditions. 
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FIG 5 Inhibition of mAb in binding to their target by scFv-1.2.2.H9 with a starting 
concentration of 100 µg/ml (A) and vice versa (B). Microtiterplates were coated with 
2 µg/ml VACV Elstree. The results demonstrate the average from three independent 
assays. A reduction in the photometer adsorption (OD450nm) of ≥50% indicated that two 
tested mAbs bind to identical or closely related antigenic sites. 
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The scFv-1.2.2.H9 was able to block the mAb 1F7/2F9 with up to 58%, whereas 

the scFv-1.2.2.H9 was blocked by the mAbs 1F7/2F9, 1B3/1A11, 3D11/2G7, and 

4C4/2B6 in different concentrations. The mAb 1F7/2F9 inhibited the scFv-1.2.2.H9 with 

at least 0.1953 µg/ml and a maximum of 94%. A concentration of at least 

0.7813 µg/ml mAb 4C4/2B6 was sufficient in the same assay. The highest concentration 

of 12.5 µg/ml was needed to block the scFv-1.2.2.H9 by mAbs 3D11/2G7 and 

1B3/1A11. The target of 1.2.2.H9 was assigned to the VACV D8 epitope #2B (Czerny et 

al., 1994). 

 

In vitro neutralization 

The classical plaque reduction neutralization test (PRNT) was performed in triplicates 

with a starting-concentration of 10 µM of the respective 1.2.2.H9 molecule. The scFv-

1.2.2.H9 with and without human complement as well as the scFv-Fc-1.2.2.H9 and IgG1-

1.2.2.H9 without addition of human complement showed no neutralization. However, af-

ter addition of 1% human complement both molecules with an Fc part neutralized with 

0.0776 µM and 0.01324 µM, respectively (Fig 6). 

 
FIG 6 The PRNT was performed in triplicates with a starting-concentration of 10 µM 
of the respective 1.2.2.H9 molecule. The scFv-1.2.2.H9 with and without complement 
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as well as the scFv-Fc-1.2.2.H9 and IgG1-1.2.2.H9 without addition of human comple-
ment showed no neutralization. However, after addition of 1% human complement both 
molecules with an Fc part neutralized with 0.0776 µM and 0.01324 µM, respectively. 

 

In vivo neutralization 

The in vivo neutralizing ability of the antibodies were investigated using an NMRI mouse 

challenge model. All 1.2.2.H9 molecules were investigated and a polyclonal anti-MVA 

rabbit immune sera (pAb) served as positive control. As negative control groups mice 

were injected with either PBS or anti-EHV1 6B11 mAb (kindly provided by Hermann 

Meyer, Bundeswehr Institute of Microbiology, Munich, Germany). Six groups consisting 

of six mice were injected intra-peritoneal with the respective antibody or control 24h be-

fore challenge with 4LD50 VACV Munich 1. Weight was monitored daily. Of mice re-

ceiving the scFv-1.2.2.H9 or IgG1-1.2.2.H9, always three were protected and three were 

sacrificed at days 7, 10, and 13 or on days 10 and 11 post challenge, respectively. Five 

out of six mice of the scFv-Fc-1.2.2.H9 group were sacrificed on days 8-11 post chal-

lenge. One animal in the pAb positive control group had to be sacrificed at day 9, the 

remaining five animals survived the challenge until termination of the experiment at day 

28. All animals of the two negative control groups (PBS and anti-EHV1 6B11 mAb) were 

sacrificed between day 6 and 11. 

The least square-means of weight of the surviving and sacrificed animals are shown in 

Fig 7. Compared to the surviving animals, all sacrificed animals showed a significant 

reduction of weight development during the post challenge time period except the animals 

of pAb group. This is explained by the fact that at the beginning of the experiment this 

group showed a weight gain followed by a marked decrease in weight development.  
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FIG 7 Least squares means for weight (g) for the effect of survival ability of different 
antibody-treatment groups. Different alphabets (a, b, c) illustrate the significant differ-
ences between the least squares means of different factor levels (P<0.05). 

 

The development of the infection-induced weight loss is reflected in the survivability of 

the animals of the different treatment groups, illustrated by Kaplan-Meier survival anal-

yses in Figs 8 and 9. 

 

FIG 8 Survival rate of mice during the passive immunization experiment.  
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FIG 9 Hazard rate derived from the non-parametric survival function estimated with 
the Kaplan-Meier method.  

 

At the end of the experiment (day 28 post challenge), heart, liver, spleen, lung, brain, and 

kidney of all animals were harvested and examined for viral loads by real-time PCR (Fig-

ure 10).  

 

FIG 10 Concentration of the VACV DNA in different organs of mice after challenge 
of VACV Munich1.  
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The viral loads showed differences between surviving and dead animals as well as be-

tween the different antibody-treatments. The highest viral load of the scFv-1.2.2.H9-in-

oculated surviving mice was found in the spleen, followed by lung, kidney, heart, and 

liver. Sacrificed animals showed a higher viral load in liver, followed by lung, kidney, 

heart, brain, and spleen. In scFv-Fc-1.2.2.H9-inoculated sacrificed mice a higher viral 

load was observed in spleen and kidney, followed by heart, liver, and lung, while the 

surviving mouse showed viral particles solely in the kidney. The IgG1-1.2.2.H9-inocu-

lated sacrificed mice had detectable viral loads only in kidney and spleen. No virus DNA 

was found in the organs of mice inoculated with the pAb. In the case of PBS and the anti-

EHV1 mAb the highest viral load was found in the spleen, followed by kidney, lung, 

heart, liver, and brain. 

 

DISCUSSION 

In this study the IgG repertoire from four donors vaccinated intracutaneously with live 

vaccinia virus vaccine was amplified, cloned, and displayed onto M13 phages to develop 

OPXV specific recombinant human scFv antibodies. The antibodies generated in this way 

are safer and applicable in human therapy. This study demonstrates the neutralizing ac-

tivity against VACV using only one monoclonal scFv, as the smallest human antibody 

derived molecule. Schmaljohn et al. (Schmaljohn et al., 1999) were the first who estab-

lished a recombinant human Fab-library and selected specific binding molecules to a 

number of VACV proteins. Two Fabs bound to a 35 kDa protein, while one Fab was 

precipitated with a 34 kDa protein. Those Fabs were able to neutralize in vitro. While our 

library with higher diversity was constructed from peripheral B lymphocytes of four dif-

ferent volunteers, others selected B5 specific recombinant Fabs from a phage display li-

brary from immunized chimpanzees (Chen et al., 2006) as B cells were isolated from 

bone marrow 11 weeks after immunization. A majority of 80-90% of antigen-specific 
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plasma cells resides from day 45 in the bone marrow and can be detected for at least one 

year after immunization (Slifka et al., 1995). To avoid an invasive intervention to the 

study volunteers, we preferred to collect blood samples and isolate peripheral blood lym-

phocytes. There, the amount of specific B cells can be determined with about 20% 

(Schmaljohn et al., 1999). Therefore, we expect a high amount of VACV unspecific an-

tibodies within the library, which can be disadvantageous in the selection procedure. 

However, after a selection procedure on full VACV particles, specific binding fragments 

were obtained. 

The selected scFv-1.2.2.H9 was engineered to a full-size human IgG to improve the bind-

ing affinity and effector function. The VACV-neutralizing abilities of the scFv-Fc-

1.2.2.H9 and the IgG1-1.2.2.H9 were improved by the addition of 1% human complement 

in vitro, while the addition of complement had no effect on the scFv-1.2.2.H9, because 

of the lacking Fc-region. The complement system is a complex of the innate immune 

response, consisting of over 30 proteins (Dunkelberger and Song, 2010). Activation of 

complement leads to a cascade of enzymatic reactions, resulting in the so-called mem-

brane attack complex, which forms a pore into the cell membrane followed by cell lysis 

(Sarma and Ward, 2011). Furthermore, complement got its name by its complementing 

effect on the antibodies, by linking them over their Fc-region to get a larger construct 

(Dunkelberger and Song, 2010). Other authors also characterized VACV neutralizing 

abilities of anti-D8 mAbs only in the presence of complement, because complement is 

needed to increase the footprint of those mAbs (Matho et al., 2012). These complement-

dependent findings were also confirmed by other mAbs directed against the VACV A27 

(Ahsendorf et al., 2019; Kaever et al., 2016) and B5 (Benhnia et al., 2009a; Benhnia et 

al., 2009b) proteins.  

Several studies confirmed the feasibility of protection against OPXV infections using 

monoclonal antibodies targeting neutralizing epitopes of the EV and MV (Benhnia et al., 
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2009a; Czerny and Mahnel, 1990; McCausland et al., 2010; Ramirez et al., 2002). In vivo, 

the scFv-1.2.2.H9 and the IgG1-1.2.2.H9 were able to protect 50% of mice from a lethal 

challenge with VACV Munich 1, whereby the scFv-Fc-1.2.2.H9 was not able to neutral-

ize the virus. However, the viral loads of the scFv scarified animals were much higher 

than these ones, found in the scFv-Fc-1.2.2.H9-group. Moreover, due to the small num-

bers of six mice per antibody-group, we cannot conclude that the scFv-Fc-1.2.2.H9 pro-

tects less than the scFv- and the IgG1-1.2.2.H9. As mentioned above, in vaccinia neutral-

ization the importance of complement especially the Fc receptors (FcgR) is proven. Hu-

man IgG subclasses showed a similar affinity to the mouse FcgR as to the corresponding 

receptors in humans. Moreover, human IgG binds mouse FcgR with similar affinities as 

mouse IgG (Dekkers et al., 2017). Interestingly, complement- and FcgR-deficient mice 

showed an enhanced susceptibility to infections (Huber et al., 2001; Suresh et al., 2003). 

Thus, we assume, that the two additional mice, that died more in the scFv-Fc-1.2.2.H9 

group might have a lack of FcgR. Furthermore, the mice of the negative control groups 

died earlier. The viral loads detected in their organs were much higher than those found 

in the scFv-Fc-1.2.2.H9 immunized sacrificed animals. In addition, the sacrificed animals 

of all groups showed a significant weight reduction, except only one mouse that died in 

the pAb control group. The weights of the survivors of the IgG1-1.2.2.H9 and the pAb 

treatment groups were not significantly different. However, in comparison with the IgG1-

1.2.2.H9 and the pAb groups, the scFv-1.2.2.H9 and the scFv-Fc-1.2.2.H9 group showed 

a slight reduction and increase in body weight, respectively.  

Another important point in the development of recombinant antibodies is the accurate 

mapping of their epitopes. The target of the scFv-1.2.2.H9 was assigned to the 32kDa D8 

protein of VACV, which is part of the MV, the most common infectious form (Smith and 

Vanderplasschen, 1998). The function of the conserved D8 protein is the adsorption of 

virus to the host cell surface due to its binding to chondroitin sulfate (Hsiao et al., 1999; 
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Maa et al., 1990). The reciprocal blocking effect of scFv-1.2.2.H9 and the mAb 1F7/2F9  

led to the conclusion that the target of scFv-1.2.2.H9 is the same or a part of the confor-

mational epitope #2B region, recognized by mAb 1F7/2F9 (Czerny et al., 1994). Further 

western blotting analysis of the unselected hyperphage pool revealed the possibility to 

select scFv against other VACV proteins e.g. using single protein directed panning meth-

ods. The goal in passive and therapeutic protection might be the combination of EEV and 

IMV specific monoclonal antibodies, which can block a poxvirus infection at different 

replication stages (Hooper et al., 2000; Lustig et al., 2005). Well-characterized monoclo-

nal antibodies produced in GMP controlled cell culture systems or plants for example 

have the advantage of always the same quality and functionality. Moreover, the data on 

antigenic sites for cross-reacting or monospecific neutralizing antibodies are of high rel-

evance for target directed screening of human immunoglobulin libraries to generate spe-

cifically engineered human recombinant antibodies, which might help in controlling any 

future outbreaks of zoonotic orthopoxviruses.  

 

MATERIAL AND METHODS  

Immunization and lymphocyte preparation 

Four human volunteers were immunized via scarification with Dryvax® (Wyeth La-

boratoires, Marietta, USA) according to the manufacturer’s directions with a two-pronged 

needle. Volunteer 1 was vaccinated five years ago whereas Volunteer 2 was naive. Vol-

unteers 3 and 4 have been immunized more than ten years ago. After 20 (Volunteer 1 and 

2) or 28 (Volunteer 3 and 4) days post immunization, approximately 500 ml peripheral 

blood was collected, and respective sera were tested in duplicates for the presence of 

circulating anti-vaccinia virus (VACV) IgG in an ELISA. Sera from three unvaccinated 

volunteers (volunteer 5 to 7) were used as negative serum controls and to determine the 

unspecific background. Plates were coated either with 2 µg/ml VACV or BSA (as 
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irrelevant protein). For the calculation of the antibody titer specific for VACV, the ad-

sorption measured on VACV was corrected with the corresponding value determined on 

BSA. The cut-off value was calculated according to Frey et al. (Frey et al., 1998) for each 

respective dilution: 

ƒ 

with 

 = mean of independent control sera 

SD = standard deviation of independent control sera 

ƒ = 3.372 for confidence level 95% (Frey et al., 1998).  

 

Peripheral blood mononuclear cells were isolated using Ficoll-Paque PLUS density gra-

dient (GE Bioscience, Freiburg, Germany). Total RNA was extracted from at least 

107 cells per volunteer with the RNeasy MiniKit (Qiagen, Hilden, Germany) followed by 

cDNA synthesis using oligohexamers (pdN6) (Invitrogen, Karlsruhe, Germany) as man-

ufacturers´ instructions. 

 

Library construction  

The amplification of the variable region of IgG-heavy and k- and l-light chains was per-

formed with degenerated primer set (BACK-primers) binding to the first 23 bp of frame-

work region (FR) 1 of the variable regions and primers binding to the first constant re-

gions either of human IgG1 to 4 or k- and l-light chains (FOR-primers, Table S1). In 

parallel, the quality and integrity of the cDNA was monitored with a primer pair ampli-

fying 788 bp of human Glyceraldehyde 3-phosphate dehydrogenase (GAPDH, (Hurteau 

and Spivack, 2002)). A 50 µl PCR reaction consisted of 1-2 µl cDNA, 1x PCR buffer 

(7.5 mM Tris HCl pH 9, 0.2 mM MgCl2, 5 mM KCl, 2 mM (NH4)2SO4; Biotools), 

Cut off =Χ +SD×

Χ
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0.4 µM of one BACK-primer, 0.4 µM of one FOR-primer, 10 mM of each dNTP, and 

2 U DNA polymerase (Biotools). Amplification was performed with 10 min denaturation 

at 95ºC, 25 cycles of 94ºC for 1 min, annealing at 58ºC for 1 min, elongation at 72ºC for 

2 min, and final elongation for 10 min. The length and purity of the products were visu-

alized by 1% agarose gelelectrophoresis. The PCR-products with a size of about 650 bp 

were purified with the DNA Clean & Concentrator-5-kit (Zymo Research Europe, Glas-

gow, Scotland).  

In the following second semi-nested PCR, the variable regions of heavy and light chains 

were amplified. The purified corresponding PCR-products of each volunteer were pooled 

to equal amounts, of which 50 ng was used for amplification with Phusion polymerase 

and the 5xGC-buffer (Finnzymes, Espoo, Finland). In case of the variable region of the 

heavy chains, the BACK-primer set used in the first PCR was combined with primers 

binding to FR4 (Table S2). Those primers were extended with 20 bp of an overlapping 

sequence coding for the (G4S)3-linker. The complementary part is coded by an overhang 

in the primers annealing to FR1 of the light chains. The reactions were incubated for 30 s 

at 98ºC, followed by 30 cycles at 98ºC for 30 s, 60ºC for 30 s, 72ºC for 30 s, and final 

elongation for 10 min. The variable regions with their overhangs were gel-purified 

(MinElute-Kit; Qiagen, Hilden, Germany).  

The formation of single chain Fragment variable (scFv) occurred with splicing-by-over-

lap-extension. In the first step, 300 ng of mixed to equal amounts of heavy and light chain 

variable regions were joined in the absence of primers. In a second step, 5 µl of the con-

nected products were re-amplified with outer primers including restriction sites for SfiI 

(3’-GTC CTC GCA ACT GCG GCC CAG CCG GCC ATG GCC-HuVH BACK-5’) and 

NotI (3’-GAG TCA TTC TCG ACT TGC GGC CGC-HuJk/l FOR-5’). The scFvs were 

gel-extracted and cleaved first by SfiI (NEB, Frankfurt a. M., Germany) and then by NotI 

(NEB, Frankfurt a. M., Germany). The fragments were ligated into the phagemid 



STUDIES	PERFORMED	

	 109	

pCANTAB5E (GE Biosciences, Freiburg, Germany) and electroporated into Escherichia 

coli, TG1. Colonies were grown overnight either on Bioassay dishes (NUNC, Germany) 

or in 8 cm diameter petri dishes (Sarstedt, Germany) for titration on 2×TYG-A (tryptone 

16 g/l, yeast 10 g/l, NaCl 5 g/l, glucose 2%, ampicillin 100 µg/ml) agar (15 g/l). Colonies 

were scraped into 5 ml 2×TYG-A-15% glycerol and stored at -80°C.  

 

Cells and viruses 

The permanent monkey kidney cell line MA104 cultured in minimum essential medium 

(MEM) and supplemented with 7% fetal calf serum was used to propagate the VACV 

strains Elstree and Munich1 (M1) (for references see (Czerny and Mahnel, 1990). Infec-

tivity titers were determined on 24-well plates (Nunc, Wiesbaden, Germany) and calcu-

lated as plaque forming units (pfu/ml). For plaque reduction neutralization test, Vero cells 

cultured in MEM and supplemented with 5% fetal calf serum were used and maintained 

in the same way as MA104. 

 

Gradient purification of Vaccinia viruses Elstree and Munich1 

Vaccinia viruses Elstree as well as Munich1 (M1) were grown in MA104 cells for one 

day and harvested by pelleting at 13,700×g for 2h. The pellets were resolved with 1 mM 

Tris-HCl, pH 9.0, and sonicated/freeze-thawed three-times to lyse the cells. Cell debris 

and nuclei were removed by centrifugation (2,200×g, 10 min). The supernatant was lay-

ered onto a 36% (w/v) sucrose cushion prepared in 1 mM Tris-HCl, pH 9.0. After ultra-

centrifugation in a SW28-rotor (Beckman Coulter GmbH, Krefeld, Germany) at maxi-

mum 112,700×g for 90 min the pellet was resolved with 1 mM Tris-HCl, pH 9.0 and 

applied onto a 60%/40%/20% (w/w in 1 mM Tris-HCl, pH 9.0) sucrose discontinuous 

gradient and again ultra-centrifuged at maximum 40,018×g for 90 min in a SW40-rotor 

(Beckman Coulter GmbH, Krefeld, Germany). The visibly white viral bands were 
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collected and washed with 1 mM Tris-HCl, pH 9.0 to remove residual sucrose solution 

(maximum 11,1160×g for 1h). Finally, the pellets were resolved in 1 mM Tris-HCl, 

pH 9.0 and the protein concentrations were determined (Lowry et al., 1951). 

 

ScFv selection using purified Vaccinia virus Elstree 

The scFv-phage library was panned using VACV Elstree in four rounds. Phages were 

rescued by infection of log phase E. coli TG1. The first phage rescue was performed from 

6x109 bacteria cells, which were cultured in 1 l 2×TYG-A. The cells were grown to an 

optical density at 600 nm (OD600nm) of 0.4-0.5. M13K07ΔpIII (Hyperphage, Progen, 

Heidelberg, Germany) and a multiplicity of infection (MOI) of 30 were used to infect 

150 ml of the bacterial suspension. The incubation was stationary at 37°C for 30 min 

followed by shaking with 250 rpm (Sartorius Certomat® BS-1, Goettingen, Germany) 

under the same conditions. The infected cells were harvested by centrifugation 

(137,000xg/ 4°C/ 20 min) and resuspended in 1 l 2×TY-A-K (kanamycin 70 µg/ml). For 

further replication and phage production, the infected cells were incubated under gentle 

shaking at 30°C over night (Sartorius Certomat® BS-1, Goettingen, Germany). Phages 

were precipitated two times by the addition of 1/5 volume 20 % polyethylene glycol 

8000/2.5 M sodium chloride (20% PEG/2.5M NaCl). The phages were resuspended in 

1 ml PBS/15% glycerol. Aggregates were removed by high-speed centrifugation 

(10,000xg/ 4°C/ 1 min), and the supernatant stored at 4°C over night. For the successive 

selection rounds, 109 bacteria cells were grown in 100 ml media. Twenty milliliters of the 

bacteria solution were infected with M13K07 MOI 30 (NEB, Frankfurt a. M., Germany). 

Phage packaging was performed in 200 ml 2×TY-A-K. 

Unselected phages were used in a western blotting assay on VACV Elstree gradient to 

determine the range of VACV proteins detected by the phage repertoire. The visualization 

occurred with HRP/anti-M13 monoclonal conjugate (GE Healthcare, Freiburg, 
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Germany).  

For phage selection, one well of a 96-well MaxiSorb plate (Thermo Fisher Scientific, 

Langenselbold Site, Germany) was coated with 10 µg VACV Elstree diluted in 150 µl 

carbonate-bicarbonate buffer (pH 9.6) at 37°C for 4h and stored at 4°C over night. The 

well was washed three times using a Tecan-washer (Tecan, Männedorf, Switzerland) for 

standardized washing procedure. The virus coated and an additional empty well were 

blocked with 2% skimmed milk powder (SMP) and 10% FCS in PBS/0.1% Tween at 

37°C for 2h. Approximately 1 to 5×1012 cfu phages diluted in 150 µl 

PBS/2% SMP/10% FCS/0.05% Tween were incubated in the pre-blocked well at room 

temperature for 1h. The blocking solution of the coated well was replaced by the pre-

blocked phages. Incubation occurred at room temperature for 2h. Unbound phages were 

removed by washing ten-times in the first panning round followed by a fifteen-times 

washing procedure using PBS/0.1% Tween in the successive rounds. Bound phages were 

eluted by enzymatic cleavage with 200 µl trypsin solution (10 µg/ml PBS) and an incu-

bation period of 30 min at 37°C. Ten microliter were added to 1 ml previously prepared 

log phase E. coli HB2151 while the remaining solution was used to infect 10 ml log phase 

E. coli TG1. The cells were streaked on 2×TYG-A plates and incubated at 30°C over 

night. Phage input and output titers were calculated for each panning round as colony 

forming units. Following each panning round, 176 E. coli HB2151 clones were pre-cul-

tured in 150 µl 2×TYG-A in a Multiple Well Plate 96-Well (Sarstedt, Nümbrecht, Ger-

many). 

 

Screening of randomly selected scFv producing HB2151 clones in indirect ELISAs 

In order to produce antibody fragments without pIII fusion, 0.5 µl of the E. coli HB2151 

pre-cultures were transferred into 100 µl 2×TYG(0.1%)-A and incubated at 30°C for 4 h. 

The expression was induced by the addition of IPTG to a final concentration of 2 mM 
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dissolved in 50 µl 2×TY-A by gentle shaking at 30°C overnight (Sartorius Certomat® BS-

1, Goettingen, Germany). The cells were pelleted (137,000xg/ 4°C/ 20 min) and the su-

pernatants were applied in an ELISA for pre-screening. Wells of two Maxisorb microtiter 

plates were coated either with 100 µl of 2 µg/ml VACV Elstree or BSA as negative con-

trol. All subsequent steps were performed at room temperature. The plates were washed 

three times and blocked for 2h with 300 µl/well PBS/2% SMP/0.1% Tween 20. The 

block solution was renewed with 50 µl. On each plate 50 µl scFv-supernatant was added. 

The monoclonal antibody (mAb) 5B4/2F2 binding to epitope 1A (Ahsendorf et al., 2019; 

Czerny et al., 1994) of VACV A27 was used as positive control whereas the Parapoxvirus 

Orf specific mAb 3C5 (Czerny et al., 1997) was applied as negative control for the coated 

virus. The wells were washed five times with PBS/0.1% Tween after 2h of incubation. 

Bound scFvs were detected with an HRP conjugated anti-E tag polyclonal antibody 

(Abcam, Cambridge, UK) diluted 1:5000, while the mAbs were detected with a polyclo-

nal goat anti-mouse antibody (Dako, Hamburg, Germany) diluted 1:5000. After ten times 

washing, 100 µl/well of TMB (3, 3’, 5, 5’-tetramethylbenzidine) substrate was added and 

the covered plates were incubated for 20 min. The reaction was stopped with 50 µl/well 

of 1 M HCl and the absorbance was measured at 450 nm. 

Plasmids of ELISA positive colonies were isolated from 5 ml media using the MiniPrep 

Kit (Qiagen, Hilden, Germany). The genes encoding the variable regions of the heavy 

(VH) and light (VL) chains were sequenced using vector specific forward primers S1 (5’-

CAA CGT GAA AAA ATT ATT ATT CGC-3’) and R1 (5’-CCA TGA TTA CGC CAA 

GCT TTG GAG CC-3’) and reverse primers S6 (5’-GTA AAT GAA TTT TCT GTA 

TGA GG-3’) and R2 (5’-CGA TCT AAA GTT TTG TCG TCT TTC C-3’). The se-

quences were analyzed with the DNAStar program (SeqMan Pro and MegAlign. Version 

12.0. DNASTAR. Madison, WI). The deduced amino acid sequences were used to 
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classify the presumed family and germline origin by search of IMGT/V-QUEST (Brochet 

et al., 2008; Giudicelli et al., 2011). 

Purification of selected scFvs 

Two monoclonal scFvs with high ELISA values were produced in one liter. The culture 

was centrifuged at 1500×g at 4°C for 15 min. The supernatant was precipitated on ice on 

a tumbler with the same volume of saturated solution of ammonium sulfate for 1h. There-

after, the resuspension was centrifuged with 1500×g at 4°C for 10 min. The pellet was 

resuspended in 5 ml 1 M Tris-HCl, pH 8.0. The periplasmatic fraction was collected by 

addition of 20 ml ice-cold 1×TES (200 mM Tris-HCl, 500 mM Ethylenediaminetet-

raacetic Acid, 500 mM Sucrose, pH 8.0) to the bacterial pellet. A total of 33 ml of 

1/5×TES was added. The suspension was incubated on ice while shaking for at least 

30 min. MgSO4 was added to a final concentration of 5 mM. Centrifugation conducted 

with 1500×g at 4°C for 10 min. The supernatant contained the periplasmatic fraction of 

the scFv.  

Both filter-sterilized and to pH 7.0 to 8.0 adjusted fractions were purified with an anti-E 

tag column (GE-Healthcare, Freiburg, Germany). The column was equilibrated with 

binding buffer (20 mM phosphate buffer, 0.005% NaN3 pH 7.0). The samples were ap-

plied and washed with binding buffer. After removing all unbound proteins, the scFv was 

eluted with 0.1 M glycine buffer pH 3.0 into neutralization buffer (0,1M Tris, 0.005% 

NaN3 pH 8.2) (10:1). The protein concentration was determined after dialyzing against 

PBS (Lowry et al., 1951).  

 

Competitive ELISA for epitope detection  

An inhibition ELISA with murine monoclonal antibodies was used to reveal the epitope 

recognized by the specific binding scFv. The associated epitopes of the mAbs on the 
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VACV proteins are described in Table 1. Flat-bottom 96-well microtiter plates (Nunc 

MaxiSorp) were coated with 2 µg/ml VACV in carbonate/bicarbonate buffer (pH 9.6; 100 

µl/well). After blocking with 2% skimmed milk and 10% fetal calf serum in PBS, purified 

scFv or mAb (Ab 1) adjusted to a starting concentration of 100 µg/ml were added in two-

fold serial dilutions (100 µl/well). The maximum extinction with 100 µg/ml was moni-

tored in one well. Incubation was performed at room temperature for 2h. After five wash-

ing steps with PBS, purified scFv/mAb (Ab 2) was incubated under same conditions. The 

concentrations of Ab 2 were determined empirically to ensure sufficient saturation of all 

free epitopes. The maximal extinction of Ab 2 was measured in an additional well coated 

with virus. The detection of the Ab 2 occurred either with goat pAb to E tag (HRP) 

(1:2000) or goat anti-mouse IgG peroxidase conjugate developed in goat (1:2000) (whole 

molecule; Sigma Aldrich, Taufkirchen, Germany) at room temperature for 1h. After, five 

washing times with PBS, the developing solution (3, 3’, 5, 5’ tetramethylbenzidine; 

Abcam, Cambridge, UK) was added. The reaction was stopped by 1 N hydrochloric acid. 

The OD-values were measured by a photometric plate reader (TECAN, Männedorf, Swit-

zerland) at a wavelength of 450 nm. Reduction of the photometer extinction of detected 

challenge antibodies by competing antibodies was calculated as: 

%(#$%#&#'#($) = (1 −
-./01$2(341342)
-./01$2(342)

) × 100 

An inhibition of at least 50% was regarded as significant blocking effect. 

 

Table 1 Monoclonal antibodies (mAb) used in an inhibition ELISA for the identification of the 
target of scFv 1.2.2.H9.  

Epitope ID MAb Isotype Virus strain used for MAb pro-

duction 

2A 1B3/1A11 IgG2a VACV M1 
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2B 1F7/2F9 IgG2b ECTV M1 

2D 3D11/2G7 IgG2a CPXV KR2 Brighton 

2G 4C4/2B6 IgG2a CPXV KR2 Brighton 

 

Engineering of specific binding scFv to human scFv-Fc and IgG1 molecules 

Specific binding scFv were converted into scFv-Fc and IgG format. The addition of the 

second and third constant region of a human IgG1 enables studies on further effector 

mechanisms within the immune system. The binding affinities to VACV and neutraliza-

tion abilities were compared.  

The pCANTAB5E, possessing the genetic information of the selected scFvs, and the vec-

tor pCMX2.5 were cleaved using the restriction enzymes NcoI and NotI. 1 µg of each 

plasmid was first incubated at 37°C for 1h with NcoI and after heat inactivation incubated 

with NotI under the respective buffer conditions. The vector pCMX2.5 was dephosphor-

ylated while the scFv was gel-extracted. Ligation occurred at 16°C overnight, followed 

by transformation into E. coli DH5a. Colonies were randomly selected and the successful 

ligation was confirmed by sequencing of isolated plasmids. HEK293T cells (approxi-

mately 7.5×105 cells) were seeded in growth medium (Dulbecco’s modified Eagle’s me-

dium (DMEM) containing 5% (v/v) fetal calf serum (FCS) and 1% penicillin/streptomy-

cin (PS) into 6-well culture plates (Sarstedt, Germany) and were grown to reach a con-

fluence of 75 to 80% for transfection after 24 h. A total of 20 µl of a 1 mg/ml PEI (poly-

ethylenimine, linear, 25 kDa, Polysciences) solution was diluted in 125 µl DMEM. In 

parallel, 2 µg of purified pCMX2.5-scFv-Fc was diluted in 150 µl DMEM. PEI and DNA 

dilutions were combined and incubated for 15-30 min at RT to allow formation of PEI-
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DNA complexes. This suspension was dispersed over the cells and incubated overnight. 

The medium was changed to DMEM/4% FCS/1% PS for primary production of scFv-Fc 

into the culture supernatant. Immunoaffinity purification of the fragments occurred by 

Protein G column.  

For expression of IgG1, Fv fragments were cloned into IgG expression vectors pCSL3k 

(light chain) and pCSH1c (heavy chain). The VH and VL were PCR amplified using pri-

mers TS_UDH9VH_BssHII_f (5'-CACAGGCGCGCACTCCCAGGTGCAGCTGG-

TACA-3') and TS_UDH9VH_NheI_r (5'-TGGTGCTAGCTGAGGAGACGGTGAC-

CGT-3') for the VH and TS_UDH9VL_AgeI_f (5'-AAGCACCGGTGAAATT-

GTGATGACGCAG- 3') and TS_UDH9VL_BsiWI_r (5'-CCACCGTACGTTTGAT-

TTCCACCT-3') for the VL. Cloning of VH and VL was done as described previously 

(Steinwand et al., 2013). 

Monocistronic heavy and light chain vectors were co-transfected into HEK293-6E cells 

for transient expression (Durocher et al., 2002). In brief, heavy and light chain vectors 

were mixed with a molar ration of 1:1 and HEK293-6E cells at densities of 1.8-

2×106 cells/ml transfected using PEI as described previously (Jager et al., 2013). Forty-

eight hours after transfection, one volume of medium including 1 % Tryptone N1 

(TekniScience) was added for feeding. Supernatant was harvested 5 days after transfec-

tion. Immunoglobulins were purified by protein A affinity chromatography using the 

ProfiniaTM Affinity Chromatography Protein Purification System (Bio-Rad, Munich) 

according to the manufacturer's description.  

 

SDS-PAGE and Western blotting for the detection of the target virus protein 

For Western blot analyses, 5 µg of gradient purified VACV Elstree and 5 µg of the puri-

fied recombinant D8 protein were fractionated by vertical 12% sodium dodecyl sulfate 
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(SDS)-polyacrylamid gel electrophoresis (Laemmli, 1970) and subsequently transferred 

to nitrocellulose membranes. Immunodetection was performed by standard techniques 

using 10 µg scFv after a blocking step in PBS/2% SMP/10% FCS at room temperature 

for 2h. Goat pAb to E tag (HRP) (1:500, Abcam, UK), and HRP color-developing reagent 

(Bio-Rad, Heidelberg, Germany) were used for visualization. For the verification of the 

virus gradient integrity an anti-MVA-polyclonal rabbit antibody (1:500) was used and 

visualized with polyclonal goat anti-rabbit IgG conjugated with HRP (Sigma-Aldrich, 

Taufkirchen, Germany). The protein sizes were estimated with a concurrent protein stand-

ard (Bio-Rad, München, Germany). The parapoxvirus Orf D1701 was chosen as virus 

negative control and an anti-Orf-polyclonal sheep Ab (1:500) was used for its verifica-

tion. 

 

Enzyme-linked immunosorbent assay (ELISA)  

For quantification of the binding affinities, the purified scFv, scFv-Fc, and IgG1 were 

titrated in triplicates in two-fold serial dilutions starting with 100 µM in an ELISA. Plates 

were coated with 2 µg/ml gradient purified VACV Elstree. The background was deter-

mined with BSA and subtracted from the respective dilution measured on VACV Elstree. 

The affinity was calculated from the average adsorption of the triplicates using the Mich-

aelis-Menten kinetics (Michaelis and Menten, 1913) and GraphPad Prism 6 for Mac (La 

Jolla California, USA). 

The capture abilities of the scFv were tested in a sandwich ELISA. Plates were coated 

with 100 µl of 25 µg/ml scFv at 37°C for 4h followed by 4°C overnight. Blocking was 

performed after eight washings with PBS/0.1% Tween. The blocking solution was re-

moved by an additional eight times washing. The chosen virus samples, composed of cell 

culture supernatants, were titrated in two-fold serial dilutions and incubated at 37°C for 

1h. The tested viruses were reovirus (5×105.625 CID50/ml), Newcastle disease virus 
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(5×105.25 CID50/ml), Orf D1701 (104 pfu/ml), enterocytopathogenic bovine orphan virus 

(5×105.25 CID50/ml), bovine corona virus V270 (5×105.25 CID50/ml) and VACV Elstree 

(104 pfu/ml). Negative controls were DMEM and the MA104 cell line in DMEM. After 

washing ten times, the detection occurred with anti-MVA-polyclonal rabbit sera in a prior 

determined dilution of 1:5000. Binding of the detector was visualized with anti-rabbit 

IgG (whole molecule) peroxidase conjugate (Sigma-Aldrich, Taufkirchen, Germany) pre-

diluted at 1:2000 and TMB substrate. 

 

In vitro Plaque Reduction Neutralization Test (PRNT) 

To assess the neutralization abilities of scFv, scFv-Fc, and IgG1, a confluent monolayer 

of Vero cells was grown in 24-well culture plates. Antibodies were adjusted to 10 µM 

and titrated in triplicates in 2-fold serial dilution against approximately 50 pfu of VACV 

Elstree in MEM (PAN-BIOTECH GmbH, Aidenbach, Germany) and incubated at 37°C 

for 1h with or without 1% human complement (Sigma Aldrich, Taufenkirchen, Ger-

many). The virus-antibody (-complement) mixture was then added to the cells and again 

incubated at 37°C for 1h under 5% CO2. The supernatant was removed and replaced with 

0.5 ml of 2.5% FCS-0.5% methylcellulose in MEM ensuring plaque formation within 

48h. As virus positive control and an equal volume of MEM with or without complement 

was added to 50 pfu VACV Elstree. The neutralization positive control was anti-MVA-

polyclonal rabbit sera. Fixation and staining of cells were done using 1.5% crystal violet 

in 8.5% ethanol/25% formaldehyde. Plaques were counted visually and a reduction of 

plaque number of ≥50% compared to the virus control was considered as significant virus 

neutralization. 

 

In vivo neutralization 
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All animal experiments were approved by Lower Saxony State Office for Consumer Pro-

tection and Food Safety under the number 33.9-42502-04-15/1967 and in compliance 

with German animal welfare laws. 

To examine the neutralization abilities of scFv, scFv-Fc, and IgG1, six groups of six fe-

male NMRI mice were passively immunized intraperitoneally (i.p.) with 300 µl contain-

ing 100 µg of the corresponding antibody in PBS. Two groups of mice served as negative 

control receiving either PBS or an anti-equine-herpesvirus mAb. One group served as 

antibody-positive-control group receiving a polyclonal anti-MVA antibody. Animals 

were challenged i.p. with 4 LD50 VACV Munich 1 24h later. Mice were monitored for 

survival and signs of illness. Moreover, weight, and ear temperature of each mouse were 

measured daily. Mice with a body weight loss of > 30% were euthanized. The impact of 

treatment on weight was analyzed using the mixed procedure of SAS with the following 

model: 

8#9:2 = ; + =# + >9 + =>#9 + 4?@#9A + B#9: + C#9:2 

where yijk is the observation for weight, μ is the general mean, αi is the effect of treatment, 

βj is the fixed effect of survival ability, αβij is the fixed effects of interactions between 

treatment and survival ability, Gij is the starting individual weights, γijk is the random 

effect of repeated measurement and e represent the random error. 

Statistical analysis of the survived mice was carried out by the Kaplan–Meier method by 

using the LIFETEST procedure of SAS System 9.3 (SAS Institute Inc., USA) and using 

the following model: 

DE(F) = G H1 −
I9
J9
K

9:'MN'

OPQ	FS ≤ F ≤ F: 
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Where Ŝ(t) is the survivor function and t is the lifetime of mice. For each j: tj ≥ t, let t1 <t2 

<… <tk representing the different event times. nj is the number of individuals at risk just 

prior to ti, and dj is the number of individuals that die at time tj.  

Tests of equality across strata were used to explore whether significant differences be-

tween different antibody-treatment group existed. Hazard rates were derived from the 

non-parametric survival function estimated with the Kaplan-Meier method.  

At the end of the experiment (day 28 after challenge), heart, liver, spleen, lung, brain, and 

kidney were harvested and examined for infectious particles. DNA was purified from the 

organs using QIAamp DNA Blood Mini Kit and QIAamp DNA Mini Kit (Qiagen, Hilden, 

Germany) according to the to the manufacturer's instructions. Real-time PCR was per-

formed on a LightCycler 480 (Roche, Mannheim, Germany) using the LightCycler 480 

Probes Master Kit (Roche, Mannheim, Germany) to amplify the D8 fragment of VACV. 

The reaction volume contained 10 μl Light Cycler 480 Probes Master mix, 1 μl of each 5 

pmol/μl D8L_forward: 5´-CATATTCATTGGGGAGAAACC-3´ and D8L_reverse: 5´-

GCGATTGAAGACGTTAGACTAA-3´, 1 μl of 4 pmol/μl D8L_probe: 5´-TTCTGGA-

TAGTGGTTGGTTTCGACTCA-3’ and 2 μl HPLC as well as 5 μl of the DNA template. 

The LightCycler was programmed as follow: first ten minutes pre-incubation at 95°C, 

then 40 cycles of 95°C/30 sec, 58°C/45 sec and 72°C/60 sec followed by a final cooling 

step at 40°C for 10 min. 
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SUPPLEMENTAL MATERIAL 

Supplemental figures 

 

FIG S1 Amplification of the 650 bp fragments of the IgG heavy chains from the cDNA 
synthesized from four different B-lymphocyte donors (A to D). The fragments consisted 
of the variable and parts of the constant regions. Primers amplifying GAPDH (11) were 
chosen to monitor the quality of the cDNA. S1 and S2 were the 1 kb and 100 bp ladders 
respectively. The products occurred from the combination of HuIgG1-4CH1FOR with 
HuVH1aBACK (1), HuVH1bBACK (2), HuVH1cBACK (3), HuVH1d-7BACK (4), 
HuVH2aBACK (5), HuVH3aBACK (6), HuVH4aBACK (7), HuVH5aBACK (8), 
HuVH6aBACK (9), and HuVH7aBACK (10). The no-template control as negative con-
trol is applied in lane 12. 
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FIG S2 Amplification of the 650 bp fragments of the k light chains from the cDNA 
synthesized from four different B-lymphocyte donors (A to D). The fragments consisted 
of the variable and parts of the constant regions. Primers amplifying GAPDH (11) were 
chosen to monitor the quality of the cDNA. S1 and S2 were the 1 kb and 100 bp ladders 
respectively. The products occurred from the combination of HuCkFOR with 
HuVk1aBACK (1), HuVk1bBACK (2), HuVk2aBACK (3), HuVk2bBACK (4), 
HuVk3aBACK (5), HuVk3cBACK (6), HuVk4aBACK (7), HuVk5aBACK (8), 
HuVk6aBACK (9), and HuVk6aBACK (10). The no-template control as negative con-
trol is applied in lane 12. 
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FIG S3 Amplification of the 650 bp fragments of the l light chains from the cDNA 
synthesized from four different B-lymphocyte donors (A to D). The fragments consisted 
of the variable and parts of the constant regions. Primers amplifying GAPDH (12) were 
chosen to monitor the quality of the cDNA. S1 and S2 were the 1 kb and 100 bp ladders 
respectively. The products occurred from the combination of HuCl2FOR and 
HuCl7FOR in equal amounts with HuVl1aBACK (1), HuVl1bBACK (2), 
HuVl2BACK (3), HuVl3aBACK (4), HuVl3bBACK (5), HuVl4a-9BACK (6), 
HuVl4bBACK (7), HuVl5BACK (8), HuVl6BACK (9), HuVl7-8BACK (10), and 
HuVl10BACK (11). The no-template control as negative control is applied in lane 13. 
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FIG S4 Amplification of the variable regions of the heavy chains (A), k light chains 
(B), and l light chains (C) from pooled 650 bp samples (1-10, and 11 for the l variable 
regions). The fragments consisted of the variable region and overlapping parts coding 
for the (G4S)3-linker. S1 and S2 were the 1 kb and 100 bp ladders respectively. The no-
template control as negative control is applied in lane 11, and 12 for the l variable 
regions respectively. The products were gel-purified and taken as template for splicing 
by overlap extension-PCR. 
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FIG S5 Amplification of full scFv including restriction sites for SfiI and NotI. The 
pooled variable regions of the heavy chains were either connected with the variable 
regions of k light chains (A), or l light chains (B). After SOE-PCR (splicing by overlap 
extension) the products were divided into 10 templates (1-10) for the re-amplification 
and connection of restriction sites. S1 and S2 were the 1 kb and 100 bp ladders respec-
tively. The no-template control as negative control is applied in lane 11. The products 
were gel-purified and restricted before ligation into pCANTAB5E. 
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Supplemental tables 

 

Table S1 Degenerate primer used for the amplification of variable- and part of the constant region 
of the heavy IgG-chains and k- and l-light chains respectively. The expected product size was 
650 bp. 
Primer	 Sequence	5’®3’	
HuIgG1-4CH1FOR	 GTC	CAC	CTT	GGT	GTT	GCT	GGG	CTT	
HuVH1aBACK	 CAR	RTG	CAG	CTG	GTG	CAG	TCT	GG 
HuVH1bBACK	 CAG	GTY	CAG	CTK	GTG	CAG	TCT	GG 
HuVH1cBACK	 SAG	GTC	CAG	CTG	GTA	CAG	TCT	GG 
HuVH1d-7BACK	 CAR	RTS	CAG	CTG	GTG	CAR	TCT	GG 
HuVH2aBACK	 CAG	RTC	ACC	TTG	ARG	GAG	TCT	GG 
HuVH3aBACK	 SAG	GTR	CAG	CTG	GTG	GAG	TCT	GG 
HuVH4aBACK	
HuVH4CBACK	 CAG	STG	CAG	CTG	CAG	GAG	TCS	GG 
HuVH5aBACK	 GAR	GTG	CAG	CTG	GTG	CAG	TCT	GG 
HuVH6aBACK	 CAG	GTA	CAG	CTG	CAG	CAG	TCA	GG 
HuVH7aBACK	 CAG	GTS	CAG	CTG	GTG	CAA	TCW	GG 
HuCkFOR	 AGA	CTC	TCC	CCT	GTT	GAA	GCT	CTT	
HuVk1aBACK RAC	ATC	CAG	WTG	ACC	CAG	TCT	CC 
HuVk1bBACK GMC	ATC	CAG	TTG	ACC	CAG	TCT	CC 
HuVk2aBACK GAT	RTT	GTG	ATG	ACY	CAG	WCT	CC 
HuVk2bBACK GAT	RTT	GTG	ATG	ACW	CAG	TCT	CC 
HuVk3aBACK GAA	ATW	GTG	WTG	ACR	CAG	TCT	CC 
HuVk3cBACK GAA	ATT	GTR	WTG	ACA	CAG	TCT	CC 
HuVk4aBACK GAC	ATC	GTG	ATG	ACC	CAG	TCT	CC 
HuVk5aBACK GAA	ACG	ACA	CTC	ACG	CAG	TCT	CC 
HuVk6aBACK GAA	ATT	GTG	CTG	ACT	CAG	TCT	CC 
HuVk6bBACK	 GAT	GTT	GTG	ATG	ACA	CAG	TCT	CC	
HuCl2FOR	 TGA	AGA	TTC	TGT	AGG	GGC	CAC	TGT	CTT	
HuCl7FOR	 AGA	GCA	TTC	TGC	AGG	GGC	CAC	TGT	CTT	
HuVl1aBACK CAG	TCT	GTG	CTG	ACT	CAG	CCA	CC 
HuVl1bBACK CAG	TCT	GTG	YTG	ACG	CAG	CCG	CC 
HuVl2BACK CAG	TCT	GCC	CTG	ACT	CAG	CCT	GC 
HuVl3aBACK TCC	TAT	GWG	CTG	ACW	CAG	CCA	CC 
HuVl3bBACK TCT	TCT	GAG	CTG	ACT	CAG	GAC	CC 
HuVl4a-9BACK	
HuVl9BACK CWG	CCT	GTG	CTG	ACT	CAG	CCM	CC 
HuVl4bBACK CAG	CYT	GTG	CTG	ACT	CAA	TCR 
HuVl5BACK CAG	SCT	GTG	CTG	ACT	CAG	CCR 
HuVl6BACK AAT	TTT	ATG	CTG	ACT	CAG	CCC	CA 
HuVl7-8BACK CAG	RCT	GTG	GTG	ACY	CAG	GAG	CC 
HuVl10BACK CAG	GCA	GGG	CTG	ACT	CAG	CCA	CC 
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Table S2 Degenerate primer used for the amplification of variable regions with overlapping parts 
coding for the (G4S)3-linker. The expected product sizes were 420 bp for the variable region of 
the heavy chains and 380 bp for the light chains. The BACK-primers used for the PCR of the 
heavy chain variable region were the same shown in table S1. 
Primer	 Sequence	5’®3’	
Linker-HuJH1-
2	 

AGA	ACC	ACC	TCC	GCC	TGA	ACC	GCC	TCC	ACC	TGA	GGA	GAC	GGT	
GAC	CAG	GGT	GC	

Linker-HuJH3 
AGA	ACC	ACC	TCC	GCC	TGA	ACC	GCC	TCC	ACC	TGA	AGA	GAC	GGT	
GAC	CAT	TGT	CC	

Linker-HuJH4-
5 

AGA	ACC	ACC	TCC	GCC	TGA	ACC	GCC	TCC	ACC	TGA	GGA	GAC	GGT	
GAC	CAG	GGT	TC-	

Linker-HuJH6 
AGA	ACC	ACC	TCC	GCC	TGA	ACC	GCC	TCC	ACC	TGA	GGA	GAC	GGT	
GAC	CGT	GGT	CC	

HuJk1FOR ACG	TTT	GAT	TTC	CAC	CTT	GGT	CCC 
HuJk2FOR ACG	TTT	GAT	CTC	CAG	CTT	GGT	CCC 
HuJk3FOR ACG	TTT	GAT	ATC	CAC	TTT	GGT	CCC 
HuJk4FOR ACG	TTT	GAT	CTC	CAC	CTT	GGT	CCC 
HuJk5FOR ACG	TTT	AAT	CTC	CAG	TCG	TGT	CCC 
Linker-
HuVk1a	 

GTT	CAG	GCG	GAG	GTG	GTT	CTG	GCG	GTG	GCG	GAT	CGR	ACA	
TCC	AGW	TGA	CCC	AGT	CTC	C	

Linker-
HuVk1b	 

GTT	CAG	GCG	GAG	GTG	GTT	CTG	GCG	GTG	GCG	GAT	CGG	MCA	
TCC	AGT	TGA	CCC	AGT	CTC	C	

Linker-
HuVk2a	 

GTT	CAG	GCG	GAG	GTG	GTT	CTG	GCG	GTG	GCG	GAT	CGG	ATR	
TTG	TGA	TGA	CYC	AGW	CTC	C	

Linker-
HuVk2b	 

GTT	CAG	GCG	GAG	GTG	GTT	CTG	GCG	GTG	GCG	GAT	CGG	ATR	
TTG	TGA	TGA	CWC	AGT	CTC	C	

Linker-
HuVk3a	 

GTT	CAG	GCG	GAG	GTG	GTT	CTG	GCG	GTG	GCG	GAT	CGG	AAA	
TWG	TGW	TGA	CRC	AGT	CTC	C	

Linker-
HuVk3c	 

GTT	CAG	GCG	GAG	GTG	GTT	CTG	GCG	GTG	GCG	GAT	CGG	AAA	
TTG	TRW	TGA	CAC	AGT	CTC	C	

Linker-
HuVk4a	 

GTT	CAG	GCG	GAG	GTG	GTT	CTG	GCG	GTG	GCG	GAT	CGG	ACA	
TCG	TGA	TGA	CCC	AGT	CTC	C	

Linker-
HuVk5a	 

GTT	CAG	GCG	GAG	GTG	GTT	CTG	GCG	GTG	GCG	GAT	CGG	AAA	
CGA	CAC	TCA	CGC	AGT	CTC	C	

Linker-
HuVkk6a	 

GTT	CAG	GCG	GAG	GTG	GTT	CTG	GCG	GTG	GCG	GAT	CGG	AAA	
TTG	TGC	TGA	CTC	AGT	CTC	C	

Linker-
HuVk6b	 

GTT	CAG	GCG	GAG	GTG	GTT	CTG	GCG	GTG	GCG	GAT	CGG	ATG	
TTG	TGA	TGA	CAC	AGT	CTC	C	

Hu	Jl1FOR ACC	TAG	GAC	GGT	GAC	CTT	GGT	CCC 
Hu	Jl2-3FOR ACC	TAG	GAC	GGT	CAG	CTT	GGT	CCC 
Hu	Jl4-5FOR ACC	TAA	AAC	GGT	GAG	CTG	GGT	CCC 
Hu	Jl7FOR ACC	GAG	GAC	GGT	CAG	CTG	GGT	GCC 
Linker-
HuVl1a	 

GTT	CAG	GCG	GAG	GTG	GTT	CTG	GCG	GTG	GCG	GAT	CGC	AGT	
CTG	TGC	TGA	CTC	AGC	CAC	C 

Linker-
HuVl1b	 

GTT	CAG	GCG	GAG	GTG	GTT	CTG	GCG	GTG	GCG	GAT	CGC	AGT	
CTG	TGY	TGA	CGC	AGC	CGG	C 

Linker-HuVl2	 
GTT	CAG	GCG	GAG	GTG	GTT	CTG	GCG	GTG	GCG	GAT	CGC	AGT	
CTG	CCC	TGA	CTC	AGC	CTG	C 
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Linker-
HuVl3a	 

GTT	CAG	GCG	GAG	GTG	GTT	CTG	GCG	GTG	GCG	GAT	CGT	CCT	
ATG	WGC	TGA	CWC	AGC	CAC	C- 

Linker-
HuVl3b 

GTT	CAG	GCG	GAG	GTG	GTT	CTG	GCG	GTG	GCG	GAT	CGT	CTT	
CTG	AGC	TGA	CTC	AGG	ACC	C 

Linker-
HuVl4a-9 

GTT	CAG	GCG	GAG	GTG	GTT	CTG	GCG	GTG	GCG	GAT	CGC	WGC	
CTG	TGC	TGA	CTC	AGC	CMC	C 

Linker-
HuVl4b 

GTT	CAG	GCG	GAG	GTG	GTT	CTG	GCG	GTG	GCG	GAT	CGC	AGC	
YTG	TGC	TGA	CTC	AAT	CRG	C 

Linker-HuVl5 
GTT	CAG	GCG	GAG	GTG	GTT	CTG	GCG	GTG	GCG	GAT	CGC	AGS	
CTG	TGC	TGA	CTC	AGC	CRT	C 

Linker-HuVl6 
GTT	CAG	GCG	GAG	GTG	GTT	CTG	GCG	GTG	GCG	GAT	CGA	ATT	
TTA	TGC	TGA	CTC	AGC	CCC	A 

Linker-HuVl7-
8	 

GTT	CAG	GCG	GAG	GTG	GTT	CTG	GCG	GTG	GCG	GAT	CGC	AGR	
CTG	TGG	TGA	CYC	TGG	AGC	C 

Linker-
HuVl10	 

GTT	CAG	GCG	GAG	GTG	GTT	CTG	GCG	GTG	GCG	GAT	CGC	AGG	
CAG	GGC	TGA	CTC	AGC	CAC	C 
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ABSTRACT 

Vaccinia virus (VACV) is belonging to the genus Orthopoxvirus of the family Poxviri-

dae. There are four different forms of infectious virus particles: intracellular mature virus 

(IMV), intracellular enveloped virus (IEV), cell-associated enveloped virus (CEV) and 

extracellular enveloped virus (EEV). The F13 protein occupies the inner side of the CEV 

and the EEV- and the outer side of the IEV-membranes. It plays an important role in the 

wrapping progress and the EEV production.  

We constructed a human single chain fragment variable (scFv) library with a diversity of 

≥4x108 using peripheral blood from four vaccinated donors. One anti-F13 scFv was iso-

lated and characterized after three rounds of panning. In western blotting assays, the scFv 

3E2 reacted with the recombinant F13VACV protein with reduction of binding under dena-

tured and reduced conditions. Two antigenic binding sites (139-GSIHTIKTLGVYSDY-

153 and 169-AFNSAKNSWLNL-188) of scFv 3E2 were mapped using a cellulose mem-

brane encompassing 372 15-mere peptides with 12 overlaps covering the whole F13 pro-

tein. No neutralization capabilities were observed either in presence or absence of com-

plement. 

In conclusion, the construction of recombinant immunoglobulin libraries is a promising 

strategy to isolate specific scFvs to enable the study of the host-pathogen interaction.  

 

INTRODUCTION 

Vaccinia virus (VACV), a member of the genus Orthopoxvirus (OPXV) of the family 

Poxviridae (Moss, 2006), was used as the vaccine, which led to the eradication of small-

pox in 1979 (Fenner et al., 1988). While Variola virus (VARV) solely infects humans, 

OPXV with zoonotic potential, like cowpox virus (CPXV) and monkeypox virus 

(MPXV), can also cause severe and sometimes fatal infections (Becker et al., 2009; 

Campe et al., 2009; Kurth et al., 2008; Ladnyj et al., 1972; Reed et al., 2004; Vaughan et 
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al., 2018; Vorou et al., 2008). There are public concerns of bioterrorism using poxviruses 

as biological weapons (Henderson, 1999). Therefore, the investigation on poxvirus repli-

cation and infectivity is still necessary. 

There are four different types of infectious virus particles: intracellular mature virus 

(IMV), intracellular enveloped virus (IEV), cell-associated enveloped virus (CEV) and 

extracellular enveloped virus (EEV) (Roberts and Smith, 2008; Smith et al., 2002). The 

majority of the particles are IMV virions (>90%), which are responsible for the transmis-

sion of the virus between hosts and are generated within cytoplasmic factories from cres-

cents precursor cells (Moss, 2012; Smith et al., 2003). Some IEV particles get out of the 

factories and receive a double layer of intracellular membrane by the trans-Golgi network 

(TGN) or the early endosomes (Hiller and Weber, 1985). The outer membrane of IEV 

fuses with the plasma membrane of the cell (Geada et al., 2001). The particles stay con-

nected to the cell surface named CEV, while the detached ones termed EEV (Payne, 1980; 

Smith et al., 2002). The CEV as well as the EEV are responsible for a rapid virus spread 

within the host (Moss, 2012). Each of these forms has a unique antigen occupancy and 

distribution on its surface (Benhnia et al., 2009b; Davies et al., 2005; Hsiao et al., 1999; 

Ichihashi and Oie, 1996; Kaever et al., 2016; Matho et al., 2017, 2018; Matho et al., 2015; 

Moss, 2006, 2011; Rodriguez et al., 1985; Smith et al., 2002; Wolffe et al., 1995). For 

instance, the major envelope protein of EEV particles is the 37 kDa F13 non-glycosylated 

membrane protein (Hiller et al., 1981; Hirt et al., 1986), which is encoded by the ORF 

F13L gene and consists of 372 aa (Grosenbach and Hruby, 1998; Hirt et al., 1986). The 

F13 protein has no transmembrane domain, but it is palmitylated at cysteine residues 185 

and 186 (Grosenbach et al., 1997), which are located within the TGN membrane 

(Schmutz et al., 1995). The F13 plays an important role in the membrane association, the 

virion wrapping progress and the EEV production (Borrego et al., 1999; Husain and 

Moss, 2001).  
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Although smallpox is eradicated, there is a rising interest in neutralizing antibodies as 

well as antiviral drugs, because of the fear of bioterrorism (Breman and Henderson, 1998; 

Grosenbach et al., 2011). The generation of highly diverse species-specific human anti-

body libraries by using the phage display technique (Schmaljohn et al., 1999) is a power-

ful technology. Target-specific human single-chain variable antibody fragments (scFvs) 

can be even used as a treatment because they are able to penetrate the cell due to their 

low molecular weight (Farajnia et al., 2014). 

In this study, we constructed an anti-F13VACV scFv antibody retrieved from a human im-

munoglobulin library isolated from an OPXV vaccinee. The specificity, binding affinity 

and virus neutralization capacities of the F13 scFv were compared to that of a monoclonal 

antibody.  

 

RESULTS 

Selection of an anti-F13 specific scFv antibody 

Selection of F13 specific antibodies was conducted over three rounds of panning. After 

each round, 176 individual E. coli HB2151 colonies were isolated for the production of 

soluble antibodies in a microtiter well format. No specific binding of scFv was observed 

after the first and second selection rounds. The third selection round revealed one clone 

with an adsorption three times over background designated as 3E2. The scFv 3E2 was 

sequenced and classified to the human VH3/D2/JH3-VK3/JK4 families (Figure 1).  
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FIG 1 Genome sequence (upper lines) and amino acid sequence (lower lines) of varia-
ble domains of heavy and light chain of the scFv 3E2. The variable region consists of 
four framework regions (FR1-4) and three hypervariable complementarity-determining 
regions (CDR1-3). Trypsin-sensitive sites (Tryp.) are needed for the elution of bound 
phages by enzymatic cleavage with trypsin. 
 

 

Specificity and binding affinity studies 

The specificity of the antibodies was measured in an indirect ELISA with two-fold serial 

dilutions of the scFv starting with 200 µg/ml using various recombinant antigens and 

|FR1H                                                      
5’ ATGGCCCAGGTCCAGCTGGTACAGTCTGGGGGAGGCTTGGTACAGCCTGGCAGGTCCCTG 60

NH4+  M  A  Q  V  Q  L  V  Q  S  G  G G L  V Q P  G  R S  L 20

||CDR1H                 ||FR2H               
61 AGACTCTCCTGTGCAGCCTCTGGATTCACCTTTGATGATTATGCCATGCACTGGGTCCGG 120
21  R L  S  C  A A S  G  F T  F  D  D Y  A  M H W  V  R    40

||CDR2H              |
121 CAAGCTCCAGGGAAGGGCCTGGAGTGGGTCTCAGGTATTAGTTGGAATAGTGGTAATATA 180
41  Q  A  P  G  K G  L  E  W  V  S G I  S W N  S  G  N  I    60

|FR3H 
181 GGCTATGCGGACTCTGTGAAGGGCCGATTCACCATCTCCAGAGACAACGCCGAGAACTCC 240
61  G Y  A  D  S V K G  R  F  T  I S  R  D  N  A E N  S    80

||CDR3H        
241 CTTTATCTGCAAATGAGCAGTCTGAGAGCTGAGGACACGGCCTTGTATTACTGTGCAAAA 300
81  L Y  L  Q  M  S  S  L  R  A  E  D  T  A  L  Y  Y  C  A  K   100

||FR4H D-JH3                  
301 GATCTATTGGCAGTGCCGACTGCTATTTCTGCTCTTGATATCTGGGGCCAAGGGACAATG 360
101  D L L A V P T A I S A  L D I W G Q G T M 120

||Linker                                           
361 GTCACCGTCTCTTCAGGTGGAGGCGGTTCAGGCGGAGGTGGTTCTGGCGGTGGCGGTCTT 420
121  V T V S  S G  G  G  G S  G  G  G  G S G  G  G  G L 140

|FR1K                                                            
421 GGTGGAGGCGGTTCAGGCGGAGGTGGTTCTGGCGGTGGCGGATCGGAAACGACACTCACG 480
141  G G G G S G G  G G S G  G G G S E T T L  T 160

481 CAGTCTCCAGGCACCCTGTTTTTGTCTCCAGGGGAAAGAGCCACCCTCTCCTGCAGGGCC  540
161  Q S P G T L F L S  P  G E R A T L S C R A 180

||CDR1K ||FR2K                     
541 AGTCAGAGTGTTAGCAGCAGCTACTTAGCCTGGTATCAGCATAGGCCTGGCCAGGCTCCC 600
181  S Q S V S S S Y  L  A  W  Y Q H R P G Q  A P 200

||CDR2K ||FR3K
601 AGACTCCTCTTCTATCGTGCGTCAAATAGGGCCACTGGCACCCCAGGCAGGTTCACTGGC 660
201  R L L F  Y  R  A  S N R A T G  T P G R F T G   220

||CDR3K                    ||FR4K      
661 AGTGGGTCTGGGACCGACTTCACTCTCACCATTAGCAGAGTGGAGCCAGAAGATTCTGCA 720
221  S G S G T D F T L T I S  R  V E P E  D S A   240

||CDR3K ||FR4K JK4                           
721 GTTTATTTCTGTCAGCTGTATGGTGACTCAATCACCTTCGGCGGAGGGACCAAGGTGGAA 780
241  V Y F C Q L Y G  D  S  I T F G G G T K V E 260

|Tryp.||E tag ||Tryp. 
781 ATCAAACGTGCGGCCGCAGGTGCGCCGGTGCCGTATCCGGATCCGCTGGAACCGCGTGCC 840
261  I  K  R  A  A  A  G  A  P  V  P  Y  P  D  P  L  E  P  R  A    280

||Amber Stop Codon
841 GCATAG.                                                          3’
281  A  . COO-
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viruses (recombinant F13 and A27 proteins of VACV, VACV Elstree and Munich1). The 

binding affinities were calculated according to Michaelis-Menten (Michaelis and Menten, 

1913) (Figure 2).  

The scFv 3E2 did not bind to VACV Elstree, VACV Munich1 and the recombinant A27, 

however, a Michealis-Menten constant (Km) of 10.97 ng/ml and a maximal velocity (vmax) 

of 1.25 were recorded against the F13 protein (Figure 2A).  

 
FIG 2A Binding affinities of the scFv 3E2 as measured in an indirect ELISA using 
recombinant F13, A27 proteins of VACV, VACV Elstree, Munich1 or BSA. The scFv 
3E2 showed a reaction with the recombinant F13 protein. However, the Ab neither 
bound to VACV Elstree, VACV Munich1 nor to BSA and A27, the latter used as neg-
ative controls.  

 

For comparison, the mAb 15B6 showed a Km of 0.006724 ng/ml and a vmax of 3.54 against 

the recombinant F13 protein, a Km of 0.7522 ng/ml and a vmax of 1.35 towards VACV-

Elstree and a Km of 0.5108 ng/ml and a vmax of 1.19 towards VACV-M1. The mAb 15B6 

did not bind to the recombinant A27 (Figure 2B). 

A
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FIG 2B Binding affinities of the mAb 15B6 as measured in an indirect ELISA using 
recombinant F13, A27 proteins of VACV, VACV Elstree, Munich1 or BSA. The mAb 
15B6 showed a reaction with the recombinant F13 protein, VACV Elstree and Munich1, 
while no binding was observed with the recombinant A27 protein and with BSA. 

 

Western blotting analysis revealed the binding of the scFv 3E2 on the recombinant F13 

protein of VACV under denaturing and reducing conditions (Figure 3A), while no reac-

tion was observed with the VACV Elstree, VACV Munich1 and the A27 protein. As an-

tibody positive control, the mAb 5B4/2F2, directed against the A27 protein, was used and 

showed reactivities with VACV Elstree, VACV Munich1 and the recombinant A27 pro-

tein of VACV (Figure 3B).  

B
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FIG 3 Western blotting analysis of the scFv 3E2 (A) and the mAb 5B4/2F2 (B) under 
reducing and denaturing conditions. The scFv 3E2 bound to its epitope on the recombi-
nant F13 protein (4), however not to VACV Elstree (1), VACV Munich1 (2) or to 
the A27 protein (3) using as negative control. The mAb 5B4/2F2 showed a reaction to 
VACV Elstree (1), VACV Munich1 (2) and to the recombinant A27 protein of VACV 
(3).  

 

Epitope mapping using a peptide membrane and truncated recombinant F13 frag-

ment 

A cellulose membrane, containing 372 15-mere peptides with 12 overlapping amino acids 

covering the whole F13 protein, was used for epitope mapping. The scFv 3E2 reacted to 

two different target regions, i.e. 139-GSIHTIKTLGVYSDY-153 and 166-

TFKAFNSAKNSWLNLCSAACCLPVSTA-192 (Figure 4).  

MW       1            2             3           4        MW      1          2          3            4     

37 kDa

20 kDa

75 kDa

A B
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FIG 4 A cellulose membrane, containing 372 15-mere peptides covering the whole F13 
protein was used for epitope mapping. The scFv 3E2 (A) reacted with four peptide spots 
(No. 47, 56, 57 and 60). Two targets were mapped (139-GSIHTIKTLGVYSDY-153 
and 166-TFKAFNSAKNSWLNLCSAACCLPVSTA-192). The minimal sequence es-
sential for binding for the second epitope area was 169-AFNSAKNSWLNL-188. The 
secondary Ab, used as negative control (B), did not bind to any spots.  

 

The strongest signal was recorded for the area 169-AFNSAKNSWLNL-188. For the 

mAb 15B6, an epitope with the sequence 202-VFFTDSPEHLLGYSRDLDTDVVID-225 

was identified (Figure 5), whereby the minimal sequence essential for binding was 211-

LLGYSR-216.  

Peptide #47 GSIHTIKTLGVYSDY

Peptide #56 TFKAFNSAKNSWLNL
Peptide #57    AFNSAKNSWLNLCSA
Peptide #60.            LNLCSAACCLPVSTA

A

B
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FIG 5 A cellulose membrane, containing 372 15-mere peptides covering the whole F13 
protein was used for epitope mapping. MAb 15B6 (A) recognized four peptide spots 
(No. 68-71). The epitope was mapped to 202-VFFTDSPEHLLGYSRDLDTDVVID-
225. The minimal sequence essential for binding is 211-LLGYSR-216. The secondary 
Ab, used as negative control (B), did not bind to any spots. 

 

To further confirm the epitope mapping results, western blotting analysis was performed. 

A truncated F13 fragment (#F1) starting at aa 197 with a total length of 532 bp was con-

structed (Figure 6A) to cover the identified epitope by the mAb 15B6 (Figure 6B).  

A

B

Peptide #68 VFFTDSPEHLLGYSR
Peptide #69 TDSPEHLLGYSRDLD
Peptide #70 PEHLLGYSRDLDTDV
Peptide #71 LLGYSRDLDTDVVID
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FIG 6 A: Amplification of the 532 bp truncated fragment #1 of F13LVACV (1) and the 
1119 bp F13L gene (2). S1 and S2 are 1 kb and 100 bp ladders, respectively. B: Sche-
matic illustration of the F13 protein and the truncated fragment #F1. The epitope of the 
mAb 15B6 is located on the #F1, as well as on the whole F13 protein, while the epitope 
of the scFv 3E2 is located only on the whole F13 protein. 

 

The epitope mapping was verified by western blotting analysis, whereby the mAbs 15B6 

and 5B4/2F2 as well as an anti-his tag Ab were used as controls (Figure 7). The scFv 3E2 

only bound to the recombinant F13 protein (3) showing a band at 37 kDa (Figure 7A), 

whereas the mAb 15B6 showed a reaction with the recombinant fragment (2) at 22 kDa 

as well as with the whole F13 protein (3) and the VACV Elstree (1) at 37 kDa (Figure 

7B). The mAb 5B4/2F2 recognized a 14 kDa on the recombinant A27 protein (4) and on 

the VACV Elstree (1) (Figure 7C). The anti-his-tag bound to all recombinant proteins and 

therefore confirmed the purity of the proteins. (Figure 7D). 

1000 bp

600 bp

S1     S2      1        2      S2     S1

C

172 372

N

166 205 2221
#F1

F13

A

B
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FIG 7 Western blotting analysis using VACV Elstree (1), #F1 (2), F13 (3) and A27 (4) 
proteins. The scFv 3E2 (A) detected the whole F13, while the mAb 15B6 (B) showed a 
reaction on the VACV Elstree, #F1 and the whole F13 protein. The control mAb 
5B4/2F2 (C) was used and detected VACV Elstree and the recombinant A27 protein. 
The his-tag Ab (D) served as positive control and bound to all recombinant proteins. 
MW was Precision Plus Protein Standard (Bio-Rad).  

 

Confocal microscopy 

A confluent monolayer of Vero cells was infected with 100 pfu of VACV Munich1 for 

3h. After fixing and permeabilization of the cells, the primary Abs diluted in PBS supple-

mented with 10% FCS were incubated for 2.5h. The secondary Abs diluted in PBS con-

taining 10% FCS were incubated followed by cell nuclei staining with Hoechst’ reagent. 

Cells were incubated at room temperature for 1h. Fluorescence was examined under a 

confocal laser scanning microscope equipped with a Plan-Apochromat 63x/1.40 Oil DIC 

objective (LSM 800, Zeiss).   

Penetrating the cell through permeabilization was recognized for the following: scFv 3E2 

(Figure 8A), the mAb 15B6 (Figure 8B), the mAb 5B4/2F2 (Figure 8C), an anti-envelope 

rabbit immune serum (Figure 8D), a mixture of the scFv 3E2 and the mAb 5B4/2F2 
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(Figure 8E), a mixture of the mAbs 15B6 and 5B4/2F2 (Figure 8F), a mixture of the scFv 

3E2 and the mAb 15B6 (Figure 8G), a mixture of scFv 3E2 and rabbit anti-envelope 

serum (Figure 8H) and a mixture of mAb 15B6 and rabbit anti-envelope serum (Figure 

8I). Various fluorescence signals were recorded. The scFv 3E2 (Figure 8A) showed the 

weakest signal, while the mAb 5B4/2F2 (Figure 8C) was the strongest. Interestingly, the 

mAb 15B6 and the rabbit anti-envelope immune serum bound to the same spot (Figure 

8I). Figure 8J showed the cell culture control without VACV infection. 

 
FIG 8 Confocal microscopy results of the scFv 3E2 (A), the mAb 15B6 (B), the mAb 
5B4/2F2 (C), an anti-envelope rabbit immune serum (D), a mixture of the scFv 3E2 and 
the mAb 5B4/2F2 (E), a mixture of the mAbs 15B6 and 5B4/2F2 (F), a mixture of the 
scFv 3E2 and the mAb 15B6 (G), a mixture of scFv 3E2 and rabbit anti-envelope serum 
(H) and a mixture of mAb 15B6 and rabbit anti-envelope serum (I). All were able to 
penetrate the cell through permeabilization to different extents. J is the negative control 
without VACV infection. 

 

Neutralization abilities in vitro  

The classical plaque reduction test (PRT) was performed in triplicates with a starting-

concentration of 200 µg/ml of the antibodies. The VACV-Elstree was neither neutralized 
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by the scFv 3E2 (Figure 9A) nor by the mAb 15B6 (Figure 9) either in the presence or 

absence of 1% complement. 

 
FIG 9 In vitro Plaque Reduction Neutralization Test. The scFv 3E2 (A) and the mAb 
15B6 (B) with and without complement did not neutralize the VACV Elstree.  

 

DISCUSSION  

In this study, we characterized a purified human anti-F13VACV scFv, which was isolated 

from a human anti-OPXV-immunoglobulin library by phage display. The epitope of the 

scFv 3E2 was assigned to the 37 kDa F13 protein, which is the most abundant membrane 

protein of the EEV (Hiller et al., 1981; Hirt et al., 1986) and located within the TGN 

membrane (Schmutz et al., 1995). F13 plays an important role in the wrapping progress 

and therefore in the EEV production. After EEV release, F13 is left on the inner side of 

the EEVs (Husain et al., 2003; Roos et al., 1996). In western blotting assays, the scFv 

3E2 detected the recombinant F13 protein under denaturing and reducing conditions. 

However, the scFv 3E2 did not bind to its epitope on the whole VACV, which was ex-

pected due to the inner location of the protein (Roos et al., 1996; Schmutz et al., 1995). 
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These results were verified by ELISA, in which the scFv 3E2 bound to neither VACV 

Elstree nor VACV Munich1, too. Moreover, in confocal microscopy study, the scFv 3E2 

showed a weak signal only. The stronger binding of the mAb 15B6 to the virus can be 

explained by the fact, that the mAb contains two antigen binding sites in contrast to the 

scFv 3E2.  

For epitope mapping, a cellulose membrane, spanning 372 15-mere peptides with 12 

overlapping amino acids covering the whole F13 protein was used. The scFv 3E2 reacted 

with two epitopes differently located on the F13 primary structure (139-GSIHTIK-

TLGVYSDY-153 and 169-AFNSAKNSWLNL-188). From another study it is known, 

that one antibody detected two almost identical epitopes of Clostridium difficile (Frey and 

Wilkins, 1992). However, in the case of the scFv 3E2 target regions, no similarities be-

tween both regions were found. In western blotting analysis, the scFv 3E2 binding re-

sulted in a weaker band compared to the control mAb 15B6. Moreover, denaturation with 

SDS and heating reduced the binding of the scFv 3E2. Therefore, the scFv 3E2 is confor-

mationally dependent. A similar result of a conformationally dependent herpes simplex 

mAb has been observed before (Krawczyk et al., 2011). Other discontinuous epitopes 

over a larger aa range were mapped on the D8 protein of VACV (Matho et al., 2014). For 

the mAb 15B6 the epitope sequence of 211-LLGYSR-216 was identified. In predictions 

of the secondary structure of the F13 protein, ß-turns (Petersen et al., 2010) were evident 

within the target region. Beta-turns generally lead to a high antigenicity (Chou and 

Fasman, 1979). Although several studies confirmed the neutralization abilities of mAbs 

against OPXVs (Benhnia et al., 2013; Benhnia et al., 2009a; Czerny and Mahnel, 1990; 

McCausland et al., 2010; Ramirez et al., 2002), the scFv 3E2 did not have any neutraliz-

ing activity, because of the inner localization of the F13 protein (Schmutz et al., 1995). 

However, scFvs can penetrate the cell, in contrast to full size immunoglobulins, because 

of their small size (Holliger and Hudson, 2005; Yokota et al., 1992). In conclusion, the 
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construction of recombinant scFv phage libraries is a promising strategy to generate en-

gineered, target-specific human recombinant antibodies, which might help for controlling 

any future outbreak of zoonotic OPXV infections. 

 

MATHERIAL AND METHODS  

Cells and viruses 

The permanent monkey kidney cell line MA-104 cultured in minimum essential medium 

(MEM) and supplemented with 7% fetal calf serum was used to propagate the VACV 

strains Elstree and Munich 1 (Czerny and Mahnel, 1990). Infectivity titers were deter-

mined and calculated as plaque forming units (pfu/ml). Vero cells cultured in MEM and 

supplemented with 5% fetal calf serum were used for plaque reduction tests.  

Virus preparations were purified and concentrated by sucrose gradient centrifugation as 

described previously (Czerny et al., 1994; Joklik, 1962). Protein contents of the samples 

were determined by the method of Lowry et al. (Lowry et al., 1951). 

 

Monoclonal and polyclonal antibodies 

For this study, the A27-specific murine mAb anti-VACV 5B4/2F2 (epitope #1A) (Czerny 

et al., 1994; Czerny and Mahnel, 1990) and the rat mAb 15B6 directed against the VACV 

envelope protein F13 (Galfre and Milstein, 1981; Schmelz et al., 1994) were used. The 

mAb 15B6, used as F13 potitive control, was kindly made available by Jacomina Krijnse 

Locker. To evaluate the preparation of the protein purifications, an anti-his-tag antibody 

(Qiagen, Hilden, Germany) was used. Moreover, polyclonal rabbit hyper-immune serum 

against purified A27VACV (Czerny et al., 1994; Czerny and Mahnel, 1990), used in con-

focal experiment, was purified on Protein G sepharose columns (HiTrap™ 5 ml Protein 

G HP, Sigma Aldrich, USA), dialyzed against PBS and sterilized by centrifugation at 
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20,238 x g. Protein contents of all antibodies preparations were determined according to 

the method of Lowry et al. (Lowry et al., 1951). 

 

Immunization, lymphocyte preparation and library construction 

Four human volunteers were immunized via scarification with Dryvax® (Wyeth La-

boratoires, Marietta, USA) according to the manufacturer’s instructions as described be-

fore (Diesterbeck et. al, submitted). 20-28 days post vaccination, about 500 ml blood was 

collected, the peripheral blood mononuclear cells were isolated using Ficoll-Paque PLUS 

density gradient (GE Bioscience, Freiburg, Germany), followed by RNA extraction 

(RNeasy MiniKit (Qiagen, Hilden, Germany)) and by cDNA synthesis using oligohex-

amers (pdN6) (Invitrogen, Karlsruhe, Germany) as directed by the manufacturers. To con-

struct the scFv library, RT-PCR was performed using total RNA of at least 107 cells per 

volunteer as described before (Diesterbeck et. al, submitted).  

 

Construction and purification of F13  

For the amplification of the F13L gene and its truncated sub-fragment, primers were se-

lected by using a published sequence (GenBank accession number: NC_006998.1). The 

restriction enzymes BamHI and HindIII were introduced to both ends of the primers. The 

reserve primer “F13 (C-terminal)” 5’ – GAT CAA GCT TTT AAA TTT TTA ACG ATT 

TAC - 3’, and the following forward primers were used to amplify the full size F13 pro-

tein and the truncated fragment #1: “F13 forward (N-terminal)”:  5’ - GAT CGG ATC 

CAT GTG GCC ATT TGC ATC GG - 3’, “fragment #1 (N-terminal)”: 5’ –GAT CGG 

ATC CAG AAT CCT ATA GGT GGA GTG- 3’. The PCR reactions were set as follows: 

initial denaturation at 95°C/10 min, 35 cycles of 94°C/1 min, primer annealing at 50.6°C/ 

1 min and 72°C/2 min, and a final extension step of 72°C/10 min.  
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The PCR products were ligated into the pSC-A-amp/kan PCR cloning vector 

(StrataClone, Agilent Technologies, Germany) and transformed into chemically compe-

tent E. Coli. Ligation and transformation were performed according to the manufacturer. 

Plasmids of positive colonies were isolated from 5 ml LB media using the MiniPrep Kit 

(Qiagen, Hilden, Germany). The genes were sequenced with an ABI Prism 3100 Analyzer 

(Applied Biosystems Deutschland GmbH, Darmstadt, Germany). Sequences were ana-

lyzed with the DNAStar program (SeqMan Pro and MegAlign. Version 12.0. DNASTAR. 

Madison, WI) and with BLAST (Altschul et al., 1990). 

Plasmids were ligated into the expression vectors pQE80L and pQE81L (Qiagen, Hilden, 

Germany), electroporated into One Shot® TOP10 Electrocomp™ E. coli. (InvitrogenTM, 

Karlsruhe, Germany) and were grown in LB media with 1 mM Ampicillin at 37°C until 

OD600nm=0.6. The expression was induced with 1 mM IPTG at 37°C for 5h, while shaking 

at 200 rpm (Sartorius Certomat® BS-1, Goettingen, Germany). Cells were pelleted (4,500 

rpm/ 20 min) and resuspended in TBS buffer containing 7.7 mM Tris pH 7.5/150 mM 

NaCl before sonicated (100% on ice/ 20 min). Cell debris was removed by centrifugation 

(2,100 rpm/15 min). Lysate was pelleted at 7,000 rpm for 1h and resuspended in suspen-

sion buffer containing 12.5% phosphate buffer/1% 2 M imidazole stock/23% of 43.5% 

glycerol stock at 4°C over night. Afterwards, the lysates were mixed with an equal vol-

ume of 16 M urea stock and incubated by gently shaking at 4°C for 1h. Lysates were 

clarified at 17,000 g at 4°C for 45 min. Supernatants were compounded with Ni-NTA 

agarose (Qiagen, Hilden, Germany) and incubated under gently shaking at 4°C overnight. 

The mixtures were loaded onto 5 ml Ni-NTA columns (Qiagen, Hilden, Germany). The 

purifications were done according to the manufacturer instructions by using a binding 

buffer pH 8.0 containing 12.5% phosphate buffer/1% 2 M imidazole stock/23% of 43.5% 

glycerol stock/50% 16M urea stock and an elution buffer containing 12.5% phosphate 

buffer/5% 2 M imidazole stock/23% of 43.5% glycerol stock/50% 16M urea stock. After 
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overnight dialysis against PBS the protein concentrations were determined by Lowry pro-

tein assay as described previously (Lowry et al., 1951). 

 

Selection on purified recombinant F13 protein 

To get specific anti-F13 scFv antibodies, the constructed human anti-OPXV-scFv phage 

library was three times panned applying purified recombinant F13 protein of VACV Mu-

nich 1. The exact screening procedure was performed as previously described (Diester-

beck et. al, submitted). 

 

Plasmid isolation and sequencing of positive colonies 

To produce antibody fragments without pIII fusion, 0.5 µl of the E. coli HB2151 pre-

cultures were transferred into 100 µl 2×TYG (0.1%)-A and incubated at 30°C for 4 h. 

The expression was induced by the addition of IPTG to a final concentration of 2 mM 

dissolved in 50 µl 2×TY-A by gentle shaking at 30°C overnight (Sartorius Certomat® BS-

1, Goettingen, Germany). The cells were centrifuged (137,000xg/ 4°C/ 20 min) and the 

supernatants were applied in an ELISA for pre-screening as described before (Diester-

beck et. al, submitted). The positive plasmid was isolated from 5 ml media using the Min-

iPrep Kit (Qiagen, Hilden, Germany). With an ABI Prism 3100 Analyzer (Applied Bio-

systems Deutschland GmbH, Darmstadt, Germany), the genes encoding the variable re-

gions of the heavy (VH) and light (VL) chains were sequenced. Therefore, the vector 

specific forward primer R1 (5’-CCA TGA TTA CGC CAA GCT TTG GAG CC-3’) and 

the reverse primer R2 (5’-CGA TCT AAA GTT TTG TCG TCT TTC C -3’) were applied 

to the sequence reaction. The sequence was analyzed with the DNAStar program (Se-

qMan Pro and MegAlign. Version 12.0. DNASTAR. Madison, WI). Moreover, the amino 

acid sequence was used to classify the presumed family and germline origin by search of 

IMGT/V-QUEST (Brochet et al., 2008; Giudicelli et al., 2011) and 
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IMGT/DomainGapAlign. Moreover the structure of the scFv was analyzed and a 3D 

model was calculated by using the Phyre2 server (Kelley and Sternberg, 2009) and VMD 

1.9.1 software (Humphrey et al., 1996). 

 

Upscale production and purification of selected scFv 

Production of the scFv yielding the highest ELISA value was scaled up to one liter and 

the antibody was purified as described before (Diesterbeck et. al, submitted). Finally, the 

protein concentration was determined by Lowry protein assay as described previously 

(Lowry et al., 1951). 

 

SDS-PAGE and Western blotting 

For western blotting analyses, 5 µg/slot of gradient purified VACV Elstree, gradient pu-

rified VACV Munich1, purified recombinant A27 protein and of the purified recombinant 

F13 protein were fractionated by vertical 12% sodium dodecyl sulfate (SDS)-polyacryla-

mid gel electrophoresis (Laemmli, 1970) and subsequently transferred to nitrocellulose 

membranes (Vorou et al., 2008). The blocking step was performed by a mixture of 

3% BSA in TBS at room temperature for 2h. Purified Abs (50 µg/ml) were added to the 

membranes and incubated at room temperature for 2h. Immunodetection followed with 

horseradish peroxidase-conjugated anti-IgG antisera (1:250) for 2.5h and horseradish pe-

roxidase color-developing reagent (Bio-Rad, Heidelberg, Germany; 375 µg/ml). Between 

each step, the membranes were washed with TBS three times for 10 minutes. The Mr of 

stained viral proteins was estimated with a concurrent protein standard (Bio-Rad, Munich, 

Germany). 

 

Enzyme-linked immunosorbent assay (ELISA)  
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Microtiter plates were coated with either of 2 µg/ml VACV Elstree, 2 µg/ml VACV Mu-

nich1, 15 µg/ml F13VACV, 5 µg/ml A27VACV, and with 2 µg/ml BSA. After blocking, an-

tibodies were added in two-fold serial dilutions starting with a concentration of 

200 µg/ml. Incubation was performed at 37°C for 3h. After five washings with PBS de-

tection of the second antibody occurred either with goat pAb to E tag (HRP) (1:2000), 

anti-mouse IgG (whole molecule) or anti-rat IgG (whole molecule) peroxidase conjugate 

developed in goat (1:2000) at 37°C for 1h. After ten times washings with PBS, the devel-

oping solution composed of tetramethylbenzidine (TMB) was added. The reaction devel-

opment was stopped using hydrochloric acid. The photometric reading (Spectra II, SLT 

Labinstruments GmbH, Germany) was performed at 450 nm. The binding affinity was 

calculated from the average adsorption of three independent assays using the Michaelis-

Menten behavior (Michaelis and Menten, 1913) using GraphPad Prism version 6.00 for 

Mac (La Jolla California, USA). 

 

Epitope mapping by SPOT synthesis on nitrocellulose membranes 

A total of 372 amino acids representing whole F13 protein were synthesized directly on 

derivatized cellulose membranes in form of 15-mere peptides with 12 aa overlaps. The 

synthesis on derivatized cellulose membranes was performed as described before (Frank, 

1992). The protein binding assay as well as the subsequent membrane regeneration were 

executed as previously described (Beutling et al., 2008). 

 

Cell infection and confocal microscopy 

A confluent monolayer of vero cells was cultivated on glass coverslips placed in 24-well 

tissue culture plates. Then, 100 pfu (100 µl/well) of VACV Munich1 was added to each 

well. After incubation at 37°C for 3h, the virus-mixture was replaced with fresh medium 

containing 2.5% FCS. Cells were incubated at 37°C for about 18h, followed by the 
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removal of the medium. Cells were fixed on glass coverslips with 4% paraformaldehyde 

in PBS at room temperature for 20 min. Thereafter, 0.2% Triton X-100 in PBS was added 

and incubated at room temperature for 5 min for permeabilization of the cells. After three 

washing-steps with PBS, cells were blocked with PBS supplemented with 10% FCS (200 

µl/well) at room temperature for 30 min. Subsequently the blocking solution was removed 

and 100 µg/ml of the primary Abs diluted in PBS supplemented with 10% FCS (250 

µl/well) were incubated at 4°C for 2h, followed by further 30 min at room temperature. 

After three washing-steps with PBS, both the Hoechst’ reagent (1:5000; 100 µl/well) to 

stain the cell nuclei and the secondary Abs (1:1000 goat anti-mouse Alexa Fluor 488 or 

goat anti-rabbit Alexa Fluor 568 (Abcam, Cambridge, UK) diluted in PBS containing 

10% FCS (250 µl/well)) were added and incubated at room temperature for 1h. After 

three washing steps with PBS, the glass coverslips were mounted in Mowiol/DABCO. 

Fluorescence was examined on a confocal laser scanning microscope equipped with a 

Plan-Apochromat 63x/1.40 Oil DIC objective (LSM 800, Zeiss).   

 

In vitro Plaque Reduction Neutralization Test (PRT) 

To assess the neutralization abilities of selected antibodies, a confluent monolayer of 

Vero cells was grown in 24-well tissue culture plates. The PRT was performed as de-

scribed before (Ahsendorf et al., 2019). Plaques were counted by visual inspection. Neu-

tralization was determined as ≥50% plaque reduction compared to the virus control.  
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3 GENERAL DISCUSSION 

3.1 DISCUSSION 

VARV, the causative agent of smallpox, is supposed to have caused more fatalities than 

all other human diseases together (McFadden, 2005). However, through strict vaccination 

programs, the non-zoonotic VARV has been officially eradicated since 1979 (Fenner et 

al., 1988). Due to cessation of vaccination after smallpox eradication, the majority of the 

population does not have protective immunity, since the worldwide vaccination program 

has been stopped in 1979. As a consequence, there is a growing fear about the use of 

VARV or  zoonotic cross-reactive OPXVs as potential biological weapons (Henderson, 

1999; Rimoin et al., 2010). Moreover, recent outbreaks of MPXV (Ladnyj et al., 1972; 

Reed et al., 2004; Vaughan et al., 2018) as well as the presence of CPXV in the environ-

ment (Becker et al., 2009; Campe et al., 2009; Howard et al., 2008; Kurth et al., 2008; 

Vogel et al., 2012; Vorou et al., 2008) have encouraged corporations to develop thera-

peutic drugs. Another treatment option, either as pre- or post-exposure prophylaxis are 

highly efficient inhibiting anti-OPXV antibodies which prompted us to construct an 

OPXV-human immunoglobulin library, to generate target-specific neutralizing recombi-

nant antibodies. As is known, vaccination results in the induction of neutralizing antibod-

ies against different envelope proteins (D8, A27, H3, A17, L1, A33 and B5) (Aldaz-

Carroll et al., 2005; Hsiao et al., 1998, 1999; Matho et al., 2015; Moss, 2012, 2016; 

Rodriguez et al., 1985; Vogel et al., 2012). So, we use the immunogenic D8 protein as a 

target for the library-screening. This conserved protein is involved in the virus attachment 

by binding to GAG chondroitin sulfate (Hsiao et al., 1999; Maa et al., 1990). Screening 

yielded one scFv designated 1.2.2.H9. First, to further improve the avidity and effector 

function (Moutel et al., 2009), the scFv-1.2.2.H9 was also engineered into the larger hu-

man scFv-Fc-1.2.2.H9 and IgG1-1.2.2.H9 formats. Similar binding affinities were shown 



GENERAL	DISCUSSION	

	 154	

by scFv-1.2.2.H9 and scFv-Fc-1.2.2.H9, whereas, IgG1-1.2.2.H9 was much more effi-

cient. As expected, a multivalent IgG consisting of two variable domains has a higher 

avidity than a monovalent antibody with only one antigen binding site. Moreover, due to 

the engineered Fc-part, complement can bind to these two bigger molecules (Burton, 

2002), resulting in an effective in vitro VACV-neutralization in the presence of comple-

ment. There are more than 30 proteins involved in the complement system, which is ac-

tivated by a cascade of reactions. The Fc-region of the antibody is used to activate the 

complement system, which is a member of the innate immune system (Burton, 2002). 

This finding is also confirmed by other authors, suggesting that complement is indeed 

needed to enhance the D8 footprint (Matho et al., 2012).  

The obtained scFv-1.2.2.H9 was able to protect 50% of mice from a lethal challenge with 

VACV Munich1, however, no VACV-neutralization could be observed in vitro. So, there 

might be some factors in vivo, improving the neutralization. The bound scFv antibodies 

work hand in hand with the cellular immunity by labeling the virus for destruction. As 

mentioned above, OPXV can occur in different forms with different proteins and func-

tions. The enveloped CEV and EEV virion particles are important for rapid cell-to-cell 

spread (Blasco and Moss, 1992; Moss, 2012; Payne, 1980; Roper et al., 1998; Smith et 

al., 2002), which is an essential parameter in an infection experiment. Therefore, its size 

is advantageous for the scFv, as the smallest antibody derived molecule, consisting only 

of the variable (V) regions of the heavy (H) and light (L) chain connected by a short 

peptide linker. It is known that scFvs are able to penetrate the cell within 10-30 minutes 

(Bird et al., 1988; Yokota et al., 1992). So, the scFv-1.2.2. H9 could pass the CEVs and 

EEVs and block the cell-to-cell spread by binding to its epitope. Moreover, another dif-

ference of the neutralization efficiency of the scFv between in vitro and in vivo could be 

the differentiation of the extracellular matrix. Since D8 is responsible for the attachment 

by binding to GAG chondroitin sulfate (Chung et al., 1998; Hsiao et al., 1999; Lin et al., 
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2000; Moss, 2016), the extracellular matrix may have an effect on the anti-D8-antibody-

binding. If the antibody has bound to the D8, there are still four other proteins left for the 

attachment (A27, H3, A26 and L1) and therefore for the dissemination of the virus (Chiu 

et al., 2007; Chung et al., 1998; Foo et al., 2009; Hsiao et al., 1999; Lin et al., 2000; Moss, 

2016). So, we decided to investigate the A27 protein, as a member of a protein-complex, 

for further studies. To obtain a good neutralizing drug, it seems to be important, to include 

many targets, in order to block the infection steps, such as attachment and fusion. In neu-

tralization assays, targeting the A27 protein of VACV, which is also involved in the at-

tachment (Howard et al., 2008), we found out, that the VACV neutralization with anti-

A27 mAbs in vitro was complement-dependent as well. Other studies, also demonstrated 

the complement-dependence of A27 mAbs for the VACV neutralization (Kaever et al., 

2016), as well as like the complement-improved neutralization of the D8 antibodies as 

described before. Kaever et al. could not neutralize VACV without complement (Kaever 

et al., 2016), while in our studies three out of six mAbs neutralized VACV without com-

plement. However, this neutralization could be improved with the addition of comple-

ment suggesting, that complement is ameliorating the inhibition of virus attachment. Next 

to the attachment, the virion wrapping also is important for the cell-to-cell spread of the 

virus. Therefore, we decided to screen the existing library against the F13 protein, which 

plays an important role in the virion wrapping and therefore in the EEV production and 

spread of the virus (Roper and Moss, 1999). However, the obtained scFv 3E2 failed to 

neutralize VACV, which can be explained by the inner localization of the F13 protein 

(Hiller and Weber, 1985; Schmutz et al., 1995). Interestingly, these findings could be 

confirmed by western blotting assays as well as by ELISAs. Here the scFv 3E2 was only 

able to react with its corresponding epitope on the recombinant F13 protein. On the 

VACV however, no binding was observed. However, in FACS analyzes (data not shown), 

the scFv 3E2 was able to bind to permeabilized VACV infected cells, which also is in 
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agreement with the results.  

Furthermore, it is suggested that there might be an interaction between the F13 and the 

A27 protein, because of their functions in the virion wrapping (Schmutz et al., 1995). 

Testing the anti-A27 mAb 5B4/2F2 together with the anti-F13 scFv 3E2 in vitro, there 

are no improvements in the neutralization efficiency compared to the mAb 5B4/2F2 

alone. So, these two antibodies used together did not display any synergistic efficacy. Our 

confocal studies demonstrated, that the epitopes of the two tested anti-F13 antibodies 

(scFv 3E2 and mAb 15B6) and anti-A27 mAb 5B4/2F2 were close to each other. Inter-

estingly, doubling the amount of the mAb 5B4/2F2 in western blotting assays, indicated 

an additional reaction both with the recombinant F13 protein and with its truncated frag-

ment #1. In our A27 fine-mapping studies, we mapped the epitope of the mAb 5B4/2F2 

between aa residues 32-39 (REAIVKAD). Figure 5 shows the sequence of VACV Co-

penhagen F13 protein (accession number: P20638.1). There are 3 aa residues highlighted 

240-AIV-242, which correspond with the target region of the mAb 5B4/2F2 directing to 

epitope #1A. 

 

 

 

 

 
 
 
 

In fine-mapping studies using SPOT membranes, we could confirm, that there are only a  

few aa needed to detect the target regions. Interestingly, the aa sequence 35-IVKA-38 

was the most important factor for binding the mAb 5B4/2F2. Based on these findings, we 

took a closer look at all of the 381 A27 sequences which are available online and figured 

 1-MWPFASVPAGAKCRLVETLPENMDFRSDHLTTFECFNEIITLAKKYIYI- 49     
50-ASFCCNPLSTTRGALIFDKLKEASEKGIKIIVLLDERGKRNLGELQSHC- 98 
 99-PDINFITVNIDKKNNVGLLLGCFWVSDDERCYVGNASFTGGSIHTIKTL-147    
148-GVYSDYPPLATDLRRRFDTFKAFNSAKNSWLNLCSAACCLPVSTAYHIK-196 
197-NPIGGVFFTDSPEHLLGYSRDLDTDVVIDKLRSAKTSIDIEHLAIVPTT-245 
246-RVDGNSYYWPDIYNSIIEAAINRGVKIRLLVGNWDKNDVYSMATARSLD-294 
295-ALCVQNDLSVKVFTIQNNTKLLIVDDEYVHITSANFDGTHYQNHGFVSF-343 
344-NSIDKQLVSEAKKIFERDWVSSHSKSLKI                    -372 

FIG 5 Amino acid sequence of F13 protein (accession number: P20638.1). Fragment #1 
(green) starts at aa 197. The marked aa residues are supposed to react with the mAb 
5B4/2F2. 
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out, that the epitope-complex #1 (26-KKPEAKREAIVKAD-39) was hypervariable and 

therefore responsible for conserved species-specific epitope characteristics. Differences 

in the aa sequence had an effect on the affinity in ELISA, too. Of note, in the mapped 

area of the epitope complex #1 (aa residues 26-39) is the GAG binding site (aa residues 

21-34), in which the KKPE segment (aa residues 26-29) is essential for binding heparan 

sulphate (Chung et al., 1998; Shih et al., 2009). So, the mAb 3F5/2D5 directing to epitope 

#1C (aa 26-KKPEAK-31) influences the attachment by binding the KKPE region. How-

ever, this antibody was not able to neutralize VACV without complement in vitro. As 

previously seen with the anti-D8 1.2.2.-H9 ab, this could be due to the fact, that there are 

four other proteins involved in the attachment (Chiu et al., 2007; Chung et al., 1998; Foo 

et al., 2009; Hsiao et al., 1999; Lin et al., 2000; Moss, 2016). 

In contrast to epitope complex #1, the epitopes #4 and #5 could not be used for species-

specific differentiations. Epitope #4 (9-DDDLAI-14) was conserved among all OPXVs 

with the exception of 3/25 BPXV sequences and 3/3 SkPXV. Epitope #5 (68-IEKC-71) 

was constant among 380/381 OPXV sequences. Epitope #5 is located in the CCD (aa 

residues 43-84) and contains a cysteine, which is essential for the binding of the A26 

protein (Ching et al., 2009). But even this antibody has no influence on the VACV neu-

tralization without complement, even though A26 is also an attachment protein (Chiu et 

al., 2007), and the binding of A26 is partially blocked by the binding of the antibody. 

However, as already mentioned, there are other proteins responsible for the attachment 

of the virus. These data suggest that, in future, the antibodies should be combined in one 

product. 

Because of the high affinity of the mAb 5B4/2F2 directed to epitope #1A (even with aa 

exchanges in the epitope region), we decided to use its epitope sequence as tag for the 

antibody detection (data not shown). Similar to other tag-studies, our epitope tag has a 

defined aa sequence representing a linear epitope (Bastin et al., 1996). Another important 
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aspect of selecting this antibody as an epitope tag was, that the mAb was able to recognize 

its epitope in different immunological assays (Bastin et al., 1996) as well as with different 

epitope variations. Therefore, we decided to fuse the 5B4/2F2-tag to the N-terminal end 

of the 32 kDa D8 adsorption protein of VACV.	The results indicated that the 5B4/2F2-

tag did not interact with the tertiary structure of the tagged D8 protein. Moreover, the 

tagged recombinant construct could be detected by the mAb 5B4/2F2 in ELISA, which 

showed that the N-terminal fusion did not affect the functionality of the tag (figure 6).  

	

FIG 6 The binding affinities were measured using an indirect ELISA on 5B4/2F2-
tagged D8 (A) and recombinant D8 protein (B) with two-fold serial dilutions starting 
with 200 µg/ml. The mAb 4C4/2B6 served as negative control, while the rabbit serum, 
the his-tag ab and the mAb 3D11/2G7 served as positive D8 controls. The mAb 
5B4/2F2 was the positive tag-control. 

 
In future, it could also be a good purifying agent, since no imidazole is needed for the 

elution of the protein and thus it is also protected for precipitation (Hefti et al., 2001). In 

addition, the imidazole content, needed for the his-tagged purification, is not suitable for 

long time storage (Sharma et al., 1992). Thus, epitope tags are a useful tool for increasing 

the solubility of the proteins as well as the protein yield in general (Baneyx, 1999; Kapust 

and Waugh, 1999; LaVallie and McCoy, 1995).  

Based on our different neutralization studies, we can conclude, that an effective virus 

neutralization is only possible, if many targets are bound. So, the goal in passive and 

therapeutic protection might be a combination of different specific monoclonal antibod-

ies, which can block a poxvirus infection at different replication stages. Therefore, we 

took a closer look at the B-cell epitopes of the D8 protein. As mentioned above, the type 1 

membrane protein is involved in the virus attachment by binding to GAG chondroitin 

A B

C

E

D
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sulfate (Hsiao et al., 1999; Maa et al., 1990). First, mapping was performed by peptide 

microarrays (data not shown), whereby one linear epitope was discovered using the pol-

yclonal anti-MVA-rabbit immune serum (aa residues: 139-DSIRSANTSAP-

FDSVFYLDNL-159). This epitope was mapped in the carbonic anhydrase (CAH) do-

main (residues 1-234), which is important for chondroitin sulfate binding (Matho et al., 

2012). So, anti-MVA-rabbit immune serum may possibly affect the adsorption of the vi-

rus to the host cell. In other studies, there were different anti-D8 mAbs targeting the CAH 

domain rather than the stalk region (aa residues 235-273) (Matho et al., 2014; Matho et 

al., 2012). However, in our investigations, the anti D8-mAbs did not show any reaction 

in microarray analysis. Because of this, we supposed that the epitopes are conformation 

dependent, and we decided to construct truncated recombinant D8 fragments. Therefore, 

the D8L-genes of VACV Elstree, CPXV KR2 Brighton, ECTV Munich 1 and CMLV 

CP1 were divided into five differently sized fragments, because of their 2D secondary 

structure prediction (figure 7A). By using western blotting analysis, one epitope region 

was recognized by three antibodies at the C-terminus (aa residues 222-289) of the D8 

protein (figure 7B-D).  
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FIG 7 (A) Layout of the truncated D8 fragments. (B) Western blot on VACV Elstree 
gradient (1), recombinant D8 protein (2), recombinant fragment #5 (3) recombinant 
fragment #4 (4) and recombinant fragment #3 (5). B: 50 µg/ml of the mAb 3D11/2G7 
were used for detection. C: 50 µg/ml of the mAb 1F7/2F9 were used for detection. D: 
50 µg/ml of the IgG1 1.2.2.H9 were used for detection.  
 

In addition to the last 12 aa of the CAH domain (residues 1-234), this target region also 

includes the disordered stalk region (residues 235-273) as well as a part of the transmem-

brane domain that anchors the D8 protein (aa residues 274-294) (Maa et al., 1990; Niles 

and Seto, 1988). By comparing all D8 protein homologs of OPXVs which are available 

online, sequence alignments revealed a significant homology. However, there was an in-

creasingly occurring hypervariable region at the C-terminus, in which we mapped the 

conformational epitope area (aa residues 222-289). This confirmed the species-specific 

differences regarding the epitope phylogeny, leading to 35 different aa motifs. While 

BPXV, CMLV, HSPV, ECTV, MPXV, RPXV, TaPXV and VARV were largely con-

served, and the New World Poxviruses (RCNV, SkPXV and VPXV) were completely 

conserved, CPXV and VACV showed many different motifs in this hypervariable region. 
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However, CPXV were known to be very polyphyletic (Carroll et al., 2011; Dabrowski et 

al., 2013; Franke et al., 2017). The different sequence motifs in this area enabled us to 

interpret species-specific epitope variations in order to get an impression of their phylo-

genic relationships.  

In summary, we accurately mapped the antigenic sites on the A27, D8 and F13 proteins 

of OPXVs. Therefore, we were able to interpret species-specific epitope variations and 

conservations of various OPXVs. To interpret these relationships, crystallizations of the 

protein-antibody complexes might be helpful for future investigations. The neutralization 

results suggest the construction of a multi-epitope vaccine for active immunization 

against OPXVs, stemming from these immunogenic proteins which are involved in the 

attachment. For this development, further knowledge about OPXVs-morphology and the 

exact position of immunogenic epitopes is indispensable. Moreover, epitope evaluations 

are essential for a target directed screening of human immunoglobulin libraries to gener-

ate specific human recombinant antibodies, which might help to control any future out-

breaks of zoonotic orthopoxviruses.	 	
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3.2 CONCLUSIONS 

The following conclusions were drawn in these investigations: 

1. Six sequential antigenic sites of 4-8 aa were identified and mapped on the A27 

protein of OPXVs. 

2. Epitope #4 (9-DDDLAI-14) was conserved among all OPXVs, except 3/25 

BPXVs and SkPXVs. 

3. Epitope #5 (68-IEKC-71) was constant among 380/381 sequences. 

4. Epitope complex #1 (26-KKPEAKREAIVKAD-39) was hypervariable and there-

fore responsible for conserved species-specific epitope characteristics. 

5. Nearly all of the 381 OPXV sequences offered a monophyletic genus-specific 

epitope conservation.  

6. CPXV sequences were polyphyletic and could be subdivided into 7 different mo-

tifs. 

7. The constructed anti-OPXV-immunoglobulin-library displayed a diversity of 

>4x108 independent colonies. 

8. The epitope of the obtained scFv-1.2.2-H9 was mapped on the D8 protein to a 

similar region like the mAb 1F7/2F9. 

9. Partial in vivo neutralization of VACV Munich1 by scFv and IgG1-1.2.2-H9. 

10. High viral loads are found in spleen and kidney of mice after lethal challenge of 

VACV Munich1. 

11. In vitro VACV-neutralization is complement-dependent. 

12. The sequential antigenic-site of the obtained scFv 3E2 was mapped on the F13 

protein of VACV. 
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3.3 FUTURE PROSPECTS 

The further prospects of these investigations are: 

1. Crystallization of the A27 protein together with the 6 mAbs.  

2. Crystallization of the 1.2.2-H9-D8 complex and so fine mapping of the epitope. 

3. Crystallization of the F13 protein together with the scFv 3E2. 

4. Library screening against the further attachment proteins H3, A26 and L1 as well 

as against the immunogenic B5 protein to get target-specific antibodies. 

5. Combination of neutralizing recombinant antibodies against different epitopes 

(D8, A27, H3, A26, L1, B5) to obtain a general in vivo protection without clinical 

symptoms. 

6. Further development of the 5B4/2F2-epitope-tag for the purification of proteins. 
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4 SUMMARY 

The genus Orthopoxvirus (OPXV) contains a group of large (130-380 kb) and closely 

related double-stranded DNA viruses within the Poxviridae family, which replicates in 

the cytoplasm of vertebrate or invertebrate cells. Vaccinia virus (VACV), the prototype 

of the OPXV genus, was applied as a vaccine against the closely related Variola virus 

(VARV). VARV, the causative agent of smallpox, elicited more fatalities than all other 

human diseases taken together. However, strict VACV-vaccination campaign led to the 

eradication of smallpox. Another advantage of the vaccination is the achievement of cross 

protection against all the other OPXVs. Unfortunately, due to the termination of the vac-

cination campaign, the majority of humans is not protected anymore. Therefore, there is 

considerable concern regarding the use of VARV and monkeypox virus (MPXV) as po-

tential biological weapons, especially after recurrent outbreaks of MPXV in Africa, 

America and Europe. Moreover, reservoirs for other closely related OPXVs, e.g. cowpox 

viruses (CPXV), exist in the environment and may also endanger human health, espe-

cially in immuno-compromised humans. Therefore, it is crucial to join forces in the de-

velopment of safer vaccines, antiviral agents, and protective human recombinant antibod-

ies for passive immunization. Morphogenesis of VACV results mainly in two distinct 

virus particle forms. The majority (>90%) consists of the “intracellular mature virus” 

(IMV), which mediates host-to-host transmission. “Extracellular enveloped virus” (EEV) 

on the other hand is important for direct cell-to-cell transmission inside the host and is 

surrounded by an additional golgi-derived envelope. Another difference between IMVs 

and EEVs is the distribution of envelope proteins, as several structural proteins of immu-

nological relevance were identified on the IMV (A10, A13, A14, A17, A25, A26, A27, 

A28, C3, D8, D13, H3 and L1), and on the EEV (A33, A56, B5 and F13).  
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In my PhD thesis, studies on antibody-viral interaction with focus on the VACV proteins 

A27, D8 and F13 were conducted, because of their important functions in the virus rep-

lication cycle. One of the best characterized envelope proteins is the A27, which is en-

coded by the open reading frame (ORF) A27L. This conserved protein is present in all 

members of OPXVs. A27 is important for virus attachment, by binding to the glycosa-

minoglycan (GAG) heparan sulfate on the surface of mammalian cells. In this study, the 

binding sites of six specific A27 monoclonal antibodies (mAbs) were identified by pep-

tide SPOT synthesis and peptide microarray technology. In the region of amino acids (aa) 

26 to 39, a complex of four antigenic sites was identified (epitope #1A: aa 32-39, #1B: 

aa 28-33, #1C: aa 26-31, #1D: 28-34), and another two at the N-terminus (epitope #4: aa 

9-14) and C-terminus (epitope #5: aa 68-71). Binding affinities were determined using 

ELISAs with different purified OPXV reference strains. Interestingly, all mAbs directed 

to epitope complex #1 showed strong binding activities to VACV, CPXV and camelpox 

virus (CMLV) but either did not react or only bound weakly to ectromelia virus (ECTV) 

and MPXV. These differences are caused by amino acid exchanges of the epitope regions. 

To determine the sequence variability of the six antigenic sites, 391 published sequences 

of A27 protein homologs were compared. Epitope #4 was conserved among almost all 

OPXVs with the exception of three buffalopox viruses (BPXV), three skunkpox viruses 

(SkPXV), 12 truncated OPXV sequences and one VACV sequence, while epitope #5 was 

constant among 389 of the 391 sequences. The sequential epitope complex #1A-D was 

more variable and, therefore, responsible for species-specific epitope characteristics, 

which is in correspondence to the ELISA results. Moreover, the neutralization capabilities 

of A27 specific mAbs were tested, whereby the mAbs detecting epitopes #1A-D and #4 

neutralized VACV Elstree in the presence of 1% complement (50% plaque-reduction: 

12.5-200 µg/ml).  
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Another crucial IMV protein is the D8 type 1 membrane protein, which is highly con-

served in poxviruses. It plays an important role in virus attachment to the host cell via 

binding to the GAG chondroitin sulfate (CS). For neutralization studies, specific human 

anti-D8 antibodies were generated. Therefore, the IgG repertoire from four donors vac-

cinated intracutaneously with live vaccinia virus vaccine was amplified, cloned and dis-

played onto M13K07ΔpIII phage. This library displayed a diversity of ≥4x108 independ-

ent colonies. Different immuno-screening protocols against VACV Elstree revealed a 

predominant selection of scFv-clones specifically binding to the D8 protein, which is 

known to induce strong antibody responses. To improve the binding affinity and the im-

mune response, the obtained scFv-1.2.2.H9 was also engineered into the larger human 

scFv-Fc-1.2.2.H9 and IgG1-1.2.2.H9 formats. Similar binding affinities were shown by 

scFv-1.2.2.H9 and scFv-Fc-1.2.2.H9 (1.61 nM and 7.68 nM, respectively), whereas, 

IgG1-1.2.2.H9 was much more efficient (43.82 pM). However, none of the purified re-

combinant 1.2.2.H9 antibodies were able to neutralize 100 pfu of VACV Elstree in vitro. 

Interestingly, after addition of 1% human complement, the neutralization abilities of the 

larger antibody formats scFv-Fc-1.2.2.H9 and IgG1-1.2.2.H9 could be improved 

(0.0776 µM and 0.01324 µM, respectively). In an in vivo passive immunization NMRI-

mouse-model, 100 µg of scFv-1.2.2.H9 and the IgG1-1.2.2.H9 partially protected the 

mice against the challenge with 4LD50 VACV Munich 1 as 3/6 animals survived. In con-

trast, the mice inoculated with scFv-Fc-1.2.2.H9 showed no protection. 

Moreover, the existing OPXV phage library was screened against the F13 protein of 

VACV, which is the major envelope protein of EEV particles. The nonglycosylated F13 

membrane protein is encoded by the ORF F13L gene. The F13 protein has no transmem-

brane domain, instead, its N- and C-terminus are both directed towards the inner side 

within the EEV membrane. Because of its location in the TGN membrane, it plays an 

important role in the virion wrapping progress as well as the EEV production. After 
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applying immuno-screening protocols against F13, one anti-F13 scFv was isolated and 

characterized. Interestingly, two antigenic binding sites (139-GSIHTIKTLGVYSDY-153 

and 169-AFNSAKNSWLNL-188) were mapped using a cellulose membrane encompass-

ing 372 15-mere peptides with 12 overlaps, therefore covering the whole F13 protein. 

Because of the inner location of the protein, scFv 3E2 showed no capability of VACV 

neutralization.  

In conclusion, more research on poxvirus replication is crucial. The epitope mapping on 

immuno-protective proteins such as the A27 and D8 proteins of VACV provides more 

insights into host-pathogen interaction. Moreover, data on virus species-specific epitope 

variations will enable the future development of safer vaccines or antivirals. The con-

struction of recombinant scFv phage libraries is a promising strategy to produce target 

specific antibodies which are useful to investigate the replication cycle of poxviruses. 

Moreover, these libraries are of high interest because they enable generating specifically 

engineered human recombinant scFv antibodies, which might be a helpful tool for con-

trolling any future eruption of zoonotic OPXV infections.  

.
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5 ZUSAMMENFASSUNG 

Die Gattung der Orthopockenviren (OPXV) lässt sich der Familie der Poxviridae zuord-

nen, die eine Gruppe großer, doppelsträngiger DNA Viren umfasst. Diese replizieren sich 

im Cytoplasma von Wirbel- und Wirbellosentieren, welches eine Besonderheit unter den 

DNA-Viren darstellt. Vaccinia Virus (VACV) wurde, aufgrund der Kreuzreaktivität zwi-

schen den nah miteinander verwandten Pockenviren, als Impfstoff gegen Variola Virus 

(VARV) eingesetzt. Es wird angenommen, dass VARV mehr Todesfälle, als alle anderen 

menschlichen Infektionskrankheiten zusammen, auslöste. Der strikten VACV-Impfkam-

pange ist es jedoch zu verdanken, dass VARV vollständig ausgerottet werden konnte. 

Aufgrund der Beendigung dieser Impfkampagne ist jedoch ein Großteil der Menschheit 

nicht mehr geschützt, weswegen VARV sowie auch die Affenpockenviren (MPXV) als 

potentielle biologische Waffen genutzt werden könnten. Auch andere zoonotische OPXV 

Arten, wie z.B. Kuhpockenviren (CPXV), können die menschliche Gesundheit, insbe-

sondere die, immungeschwächter Menschen, gefährden. Daher ist die Entwicklung siche-

rerer Impfstoffe, antiviraler Wirkstoffe und rekombinanter humaner Antikörper essenti-

ell. Die Morphogenese von VACV führt zu zwei verschiedenen Haupt-Viruspartikelfor-

men. Die Mehrheit (>90%) besteht aus dem "intracellular mature virus" (IMV), dass die 

Übertragung von Wirt zu Wirt vermittelt. Während das „extracellular enveloped virus“ 

(EEV) für die direkte Übertragung von Zelle zu Zelle innerhalb des Wirts wichtig ist. 

Hervorzuheben ist außerdem, dass das EEV von einer zusätzlichen Hülle umgeben ist. 

Ein weiterer Unterschied zwischen den IMVs und den EEVs sind die unterschiedlichen 

Hüllproteine. Unter anderem wurden am IMV A10, A13, A14, A17, A25, A27, A28, C3, 

D8, D13, H3 und L1 und A33, A56, B5 und F13 am EEV identifiziert.  

Im Laufe meiner Dissertation habe ich mich auf die VACV Proteine A27, D8 und F13 

konzentrieren, da diese wichtige Funktionen im Virusreplikationszyklus übernehmen. 
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Eines der am besten charakterisierten Hüllproteine ist das A27, dass vom offenen Leser-

ahmen (ORF) A27L kodiert wird. Dieses konservierte Protein ist in allen OPXV-Arten 

vorhanden. Es ist ein wichtiger Bestandteil für die Virusanheftung, indem es an das Gly-

cosaminoglycan (GAG) Heparansulfat auf der Oberfläche von Säugetierzellen bindet. In 

dieser Arbeit konnten die Bindungsstellen von sechs monoklonalen A27-spezifischen 

Antikörpern (mAks) mit Hilfe der Peptid-SPOT-Synthese und der Peptid-Microarray-

Technologie identifiziert werden. Im Bereich der Aminosäuren (AS) 26 bis 39 wurde ein 

Komplex von vier antigenen Bereichen detektiert (Epitop #1A: AS 32-39, #1B: AS 28-

33, #1C: AS 26-31, #1D: AS 28-34). Des Weiteren wurden ein N-terminales (Epitop #4: 

AS 9-14) und ein C-terminales Epitop (Epitop #5: AS 68-71) identifiziert. Durch ELISA-

Tests mit verschiedenen OPXVs-Referenzstämmen konnten die Bindungsaffinitäten be-

stimmt werden. Interessanterweise zeigten alle, gegen den Epitopkomplex #1 gerichteten 

mAKs eine starke Bindung mit VACV, CPXV und Camelpox-Viren (CMLV), reagierten 

jedoch nicht oder nur schwach mit Ektromelie-Virus (ECTV) und MPXV. Diese Unter-

schiede sind auf die Austausche in der Aminosäuresequenz der Epitopregion zurück zu 

führen. Um diese Sequenzvariabilität der sechs antigenen Bereiche zu bestimmen, wur-

den 391 bisher veröffentlichte A27 OPXV Sequenzen miteinander verglichen. Das Epitop 

#4 zeigte sich bei fast allen OPXV Arten konserviert. Ausnahmen bildeten jedoch drei 

Büffelpocken Viren (BPXV), drei Stinktierpocken Viren (SkPXV), 12 N-terminal ver-

kürzte OPXV-Sequenzen und eine VACV-Sequenz. Das Epitop #5 war in 389 der insge-

samt 391 Sequenzen konstant. Der Epitopkomplex #1A-D zeigte sich variabler und ist 

daher für die spezies-spezifischen Eigenschaften des Epitops verantwortlich, welche auch 

durch die ELISA-Ergebnisse bestätigt werden konnten. Darüber hinaus wurden die Neut-

ralisationsfähigkeiten der A27-spezifischen mAks getestet, wobei die mAks, die die 

Epitope #1A-D und #4 detektieren, VACV Elstree in Anwesenheit von einem Prozent 

humanem Komplement neutralisierten (50% Plaquereduktion: 12,5-200 µg/ml).  
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Ein weiteres IMV-Protein ist das D8 Protein, ein Membranprotein Typ 1, welches bei der 

Anheftung von Viren an die Wirtszelle durch das GAG-Chondroitinsulfat (CS) ebenfalls 

eine wichtige Rolle spielt. Um Neutralisationsstudien durchführen zu können, wurden 

spezifische humane anti-D8-Antikörper generiert. Daher wurde das IgG-Repertoire von 

vier Spendern, die zuvor mit dem Vaccinia-Lebendvirus geimpft wurden, amplifiziert, 

kloniert und von M13K07ΔpIII-Phagen präsentiert. Diese Bibliothek zeigte eine Vielfalt 

von ≥4×108 unabhängigen Kolonien. Verschiedene Screening-Protokolle gegen VACV 

Elstree zeigten eine vermehrte Selektion von spezifischen anti-D8 scFv-Klonen. D8 ist 

für die Induktion starker Antikörperreaktionen bekannt. Um die Bindungsaffinität und 

die Immunantwort verbessern zu können, wurde das scFv-1.2.2.H9 durch die größeren 

scFv-Fc-1.2.2.H9 und IgG1-1.2.2.H9 Formate erweitert. Die scFv-1.2.2.H9 und scFv-Fc-

1.2.2.H9 Formate zeigten ähnliche Bindungsaffinitäten (1,61 nM bzw. 7,68 nM), wohin-

gegen das IgG1-1.2.2.H9 eine viel effizientere Bindung aufwies (43,82 pM). Jedoch 

neutralisierte keiner der gereinigten rekombinanten 1.2.2.H9-Antikörperformate 100 pfu 

VACV Elstree in vitro. Interessanterweise konnten, nach der Zugabe von einem Prozent 

humanem Komplement, die Neutralisationsfähigkeiten der größeren Antikörperformate 

scFv-Fc-1.2.2.H9 und IgG1-1.2.2.H9 verbessert werden (0,0776 uM bzw. 0,01324 uM). 

In vivo, hingegen, konnten 100 µg des scFv-1.2.2.H9 sowie auch des IgG1-1.2.2.H9 teil-

weise (3/6 Mäusen) gegen die Infektion mit 4LD50 VACV München1 schützen. Uner-

warteterweise zeigte scFv-Fc-1.2.2.H9 keine Schutzwirkung.  

Zudem wurde die bestehende OPXV-Phagenbibliothek erneut gegen das VACV F13 Pro-

tein gescreent. Bei dem F13 Protein handelt es sich um ein nicht glykosyliertes Memb-

ranprotein, welches von dem ORF-F13L-Gen kodiert wird. Das F13 Protein wurde im 

Bereich des Trans-Golgi-Netzes und der Plasmamembran der Wirtszelle nachgewiesen. 

Es liegt jedoch nicht exponiert auf der Oberfläche der Viren vor, sondern befindet sich 

überwiegend an der Innenseite der Virushülle. Das F13 Protein ist, ebenso wie das A27 
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Protein, für die Umhüllung der IMV und damit für die Ausbildung der EEV essentiell. 

Nachdem die OPXV Phagenbibliothek gegen das F13 Protein gescreent wurde, wurde 

das scFv 3E2 isoliert und mit Hilfe der Peptid-SPOT-Synthese weiter charakterisiert. In-

teressanterweise ergaben sich für das scFv 3E2 zwei antigene Bereiche (139-GSIHTIKT-

LGVYSDY-153 und 169-AFNSAKNSWLNL-188). Es konnte keine VACV-Neutralisa-

tion in vitro erzielt werden, da sich das F13 Protein (und somit das Epitop) auf der Innen-

seite der Virushülle befindet.  

Zusammenfassend ist die weitere Forschung der Replikationszyklen von Pockenviren 

von großer Bedeutung. Besonders sollte die Kartierung funktioneller Epitope der A27 

und D8 VACV Proteine im Vordergrund stehen, da Antikörper gegen diese Proteine bei 

der Immunantwort im Höchsten Maße verfügbar sind. Darüber hinaus ermöglicht das 

Wissen über mögliche spezies-spezifische Epitopvarianten die zukünftige Entwicklung 

sichererer Impfstoffe und Virostatika. Die Konstruktion rekombinanter scFv-Phagenbib-

liotheken ist darüber hinaus eine vielversprechende Strategie zur Hestellung spezifisch 

konstruierter humaner rekombinanter scFv-Antikörper, die dazu beitragen können, zu-

künftige Ausbrüche von zoonotischen OPXV-Infektionen zu kontrollieren. 
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7 APPENDIX 

ABBREVIATIONS 

A   Adenine 

AA   Amino acid 

Ab   Antibody 

ATI   A-type inclusion 

 

BLAST   Basic Local Alignment Search Tool 

bp   Base pair 

BPXV   Buffalopox virus 

 

C   Cytosine 

CCD   Coiled-coil domain 

CDR   Complementary determining region 

CEV   Cell-associated enveloped virus 

CMLV   Camelpox virus 

CPXV   Cowpox virus 

 

DNA   Deoxyribonucleic acid 

dsDNA   Double-stranded deoxyribonucleic acid 

 

ECTV   Ectromelia virus 

EEV   Extracellular enveloped virus 

EFC   Entry fusion complex 

ELISA   Enzyme Linked Immunosorbent Assay 
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G   Guanine 

GAG   Glycosaminoglycan 

GAPDH  Glyceraldehyde-3-phosphate dehydrogenase 

 

HBD   Heparin binding domain 

HKD   His, Lys, Asp. 

HSPV   Horsepox virus 

 

IEV   Intracellular enveloped virus 

Ig   Immunoglobulin 

IMV   Intracellular mature virus 

ITR   Inverted terminal repeat 

 

Kb   Kilobase 

kDa   Kilodalton 

 

L   Left 

LB   Lateral body 

LZD   Leucine zipper motif 

 

MAb   Monoclonal Antibody 

MPXV   Monkeypox virus 

 

NCBI   National Center for Biotechnology Information 

Nt   Nucleotide 
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ORF   Open reading frame 

OPXV   Orthopoxvirus 

 

PBMC   Peripheral blood mononuclear cells 

PBS   Phosphate buffered saline 

PCR   Polymerase chain reaction 

PFU   Plaque-forming unit 

PRT   Plaque reduction test 

 

R   Right 

RPXV   Rabbitpox virus 

RCNV   Raccoonpox virus 

 

ScFv   Single-chain variable fragment 

SkPXV  Skunkpox virus 

 

T   Thymine 

TaPXV  Taterapox virus 

TGN   trans Golgi network 

 

VACV   Vaccinia virus 

VARV   Variola virus 

VPXV   Volepox virus 

 

WHO   World Health Organisation 

WR   Western Reserve  
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