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Summary 

Alzheimer’s disease (AD) is the most prevalent cause of dementia. Typically, AD is 

characterized as a slow progressive dementia with an average disease duration of 

eight years. Classically, AD is categorized into two subtypes: the first subtype in-

cludes cases with spontaneous onset, termed sporadic AD (spAD), while the second 

subtype (familial AD) includes cases exhibiting mutations in genes encoding prese-

nilin-1, presenilin-2, and amyloid-precursor protein (APP). Recently, a rapidly pro-

gressive variant of Alzheimer’s disease (rpAD) was identified, in which patients ex-

hibit a rapid cognitive decline and/or short disease duration (average of 4 years). It is 

known that spAD and rpAD share core neuropathological features, but unfortunately 

the altered molecular processes, which eventually lead to these variable rates of 

progression, remain elusive. To this end, we aimed to explore the emerging role of 

RNA-binding proteins (RBPs) in these two AD subtypes and in sporadic Creutzfeldt-

Jakob disease (sCJD), another rapidly progressive form of dementia. 

In the current study, we utilized an RNA pull-down approach from brain samples fol-

lowed by mass spectrometry analysis to comprehensively interrogate RNA-binding 

protein (RBP) complexes; these were examined in human brain frontal cortex sam-

ples from three groups of patients, namely spAD, rpAD, and sCJD, as well as con-

trols. Using a combination of bioinformatic and computational techniques, significant 

targets from the proteomic study were identified and prioritized for further characteri-

zation. The first set of analyses investigated differential expression of a target RBP 

termed splicing factor proline and glutamine rich (SFPQ) at both the protein and 

mRNA level, its accumulation as well as its possible interactions with tau protein and 

stress granules (SGs) in the postmortem brains. To investigate a mechanistic link 

between SFPQ and the pathogenesis and progression of AD, it was furthermore 

studied in two cellular models – the cellular model of stress and the tau-pathology 

model – given that in the human brain associations exist between SFPQ, stress 

granules and tau protein. Finally, SFPQ and associated proteomic signatures were 

studied at the pre-symptomatic and symptomatic stages of the disease in the 3xTg-

AD mice model, in order to uncover very early changes occurring during the disease 

progression.  
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In the present study, the RNA-binding proteome from Alzheimer’s and sCJD sub-

types were identified and characterized. The proteomic investigation, in combination 

with several bioinformatic and computational approaches, highlighted quantitative 

and qualitative changes in the identified RNA-binding proteome in a disease-

subtype-specific manner. We identified a dysregulation pattern both at the protein 

and mRNA level, including the dislocation of the RNA-binding protein SFPQ as a 

novel pathological target in the rapidly progressive subtype of AD. The SFPQ protein 

is involved in multiple functions in the brain, including splicing, transcription, and 

transport of mRNAs. This suggests that the dysregulation/dislocation of SFPQ lead 

to defects in these functions, which aggravate the neurodegenerative processes and 

eventually contribute to the rapid progression.  

Furthermore, co-immunofluorescence analysis revealed a change in the fluores-

cence pattern of phosphorylated tau (p-tau) along with SFPQ, with a complete nu-

clear depletion of both proteins and co-localization in the perinuclear/cytoplasmic 

area. This indicated that there are changes in the function of both nuclear tau and 

SFPQ. The cytoplasmic SFPQ showed co-localization with TIA-1, a marker of stress 

granules (SGs). In parallel with human brain findings, our study of the cellular model 

of stress indicated that SFPQ and tau translocate into the cytoplasm to form SGs 

after oxidative stress treatment. This translocation of the two proteins into the SGs 

provides a possible mechanism for the observed depletion/dislocation of SFPQ and 

nuclear tau in postmortem human brains from rpAD cases. At initial phases of the 

disease, kinases phosphorylate not only tau but also SFPQ, leading to their translo-

cation into perinuclear/cytoplasmic area and their incorporation into stress granules. 

Chronic stress, such as that which occurs during the disease, may convert these 

physiological stress granules into pathological stress granules, which can lead to the 

abnormal sequestration of SFPQ and nuclear tau in the cytoplasm resulting in an 

overall depletion from the nucleus. Of note, co-localization of SFPQ with oligomeric 

tau indicates a potential role of SFPQ in oligomerization and misfolding of the tau 

protein, which appears as a major hallmark of AD.  

The significant reduction in SFPQ levels observed after human tau expression (tau-

pathology model) in vitro and in the postmortem brains of rpAD subjects, suggests a 

causal role of tau in the downregulation of SFPQ. Quantitative proteomic analysis 
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using Sequential Window Acquisition of all THeoretical fragment ion spectra-MS 

(SWATH-MS) in combination with functional characterisation illustrated two major 

themes (global translation reduction and DNA repair) that were altered as a conse-

quence of the combinatorial effect of tau toxicity and SFPQ downregulation in this 

tau-pathology model.  

Finally, the transgenic 3xTg-AD mice model uncovered specifically pre-symptomatic 

changes of target proteomic signatures. The levels of SFPQ and TIA-1 were already 

significantly elevated at an early pre-symptomatic phase of the disease in 3xTg-AD 

mice, suggesting that these proteins could be of potential significance as early ther-

apeutic targets. This upregulation of the two SG components SFPQ and TIA-1 indi-

cates active functions of the SG machinery at the early pre-symptomatic stage of the 

disease implicating pre-tangle stress, which coincides well with the observed acute 

phase oxidative stress-mediated upregulation of phospho-tau, TIA-1, and SFPQ in 

our cellular model of stress. Furthermore, the parallel reduction of SFPQ, which was 

found in the late symptomatic stage in 3xTg-AD mice and in the postmortem brains 

of patients with rapidly progressive forms of dementias (rpAD and prion disease), 

suggests that SFPQ may function as a common marker associated with rapid pro-

gression of these diseases. 

On the basis of the findings from the current study, it can be concluded that the dis-

location and dysregulation of SFPQ and nuclear tau, the subsequent DNA-related 

anomalies and aberrant dynamics of SGs in association with pathological tau repre-

sents a novel pathway which contributes to rapid progression in AD. Early pre-

symptomatic changes in SFPQ indicate its relevance as an early therapeutic target. 

Reestablishing nuclear localization/expression of SFPQ might be a promising strate-

gy to rescue neurodegeneration or to slow down the progression of the disease.
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1 Introduction 

 

1.1 RNA-binding proteins (RBPs) 

The post-transcriptional regulatory mechanisms of neuronal gene expression are fast 

and effective processes that fine-tune the proteome of a cell in the brain to an ever-

changing microenvironment (Glisovic et al., 2008; Janga and Mittal, 2011; Richter 

and Klann, 2009; Wang and Szaro, 2016). These gene regulatory mechanisms are 

controlled by a group of special proteins known as RNA-binding proteins (RBPs) 

(Glisovic et al., 2008; McMahon et al., 2016). RNA-binding proteins are key regula-

tors in RNA processing and translational control as they are complementary for 

RNAs, regulating all aspects of RNA metabolism; this includes alternative splicing, 

packaging, transport, stabilisation, translation, degradation, and the facilitation of 

RNA-interactions with other macromolecules (Fig. 1) (Anderson and Kedersha, 

2009; Marchese et al., 2016). More than 1500 RBPs have been described in the 

human cell (Castello et al., 2012; Gerstberger et al., 2014; Hentze et al., 2018). 

RNA-binding proteins interact with cis-regulatory elements in the mRNA to form ribo-

nucleoprotein (RNP) complexes, also known as granules (Wahl et al., 2009), thereby 

controlling the function/expression of their target RNAs (Fig. 1) (Zhou et al., 2014). 

All RNP granules are composed of RBPs associated with mRNAs in their untranslat-

ed regions (5-´ or 3-´UTR) or in the coding regions (Anderson and Kedersha, 2009; 

Martin and Ephrussi, 2009). Transport granules are responsible for localization and 

storage of mRNAs for localized protein synthesis (Ramaswami et al., 2013; Xing and 

Bassell, 2013). Stress granules (SGs) are reversible membrane-less aggregates in 

the cytoplasm which are formed in response to different environmental stresses (e.g. 

heat shock, oxidative stress, nutrient deprivation etc.); they are then resolved after 

the removal of stress (Anderson et al., 2015; Guo and Shorter, 2015; Jain et al., 

2016). These granules have a pivotal role in stress response, sequestering mRNAs 

to sort them for their storage or decay (Jain et. al., 2016). Degradation of mRNA oc-

curs in processing bodies that are made up of proteins involved in degradation, sur-

veillance of mRNA, repression of translation, and RNA-dependent silencing pro-

cesses (Fig. 1) (Guo and Shorter, 2015; Jain and Parker, 2013; Marchese et al., 

2016). 
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Figure 1: Functions of RNA-binding proteins through RNA-granule assembly. This figure highlights different 

steps of the RNA life cycle which are controlled by RBPs (grey rectangles). In the nucleus, RBPs are responsible 

for regulation of transcription, pre-mRNA processing, and export of newly synthesized mRNAs from the nucleus. 

Several types of granules present in the cytoplasm with their functions are described here. RNA granules are 

composed of an array of different proteins including RBPs, ribosomal subunits, helicases, translation factors and 

decay enzymes (Anderson and Kedersha, 2006). Disordered domains of RBPs contribute to dynamic remodeling 

of these granules by creating landing platform for RNA-protein and protein-protein interactions. Translating gran-

ules are responsible for translational control of the RNA. Stress granules safeguard mRNA and store them during 

stress response. Processing bodies are responsible for mRNA decay. Both stress granules and processing bod-

ies are dynamic structures and share their components. Transport granules mediate the translocation of mRNAs 

through the long axons in neurons for de novo protein synthesis at the synapse (adapted and modified from 

Coppin et al., 2018).  

The interaction between RBPs and RNA is achieved by special domains in RBPs, 

known as RNA-binding domains (RBDs). RNA-binding proteins bind with RNA either 

by recognizing specific sequence elements in the target transcript or by recognizing 

secondary structural features in the RNA molecule (Castello et al., 2016; Wright and 

Dyson, 2015). Therefore, binding specificity is dependent on both the secondary 

structural features of the RNA and the bound RBPs (Ding et al., 2014; Gosai et al., 

2015; Li et al., 2012). Typically, binding sites for RBPs are present in the untranslat-

ed regions of RNA but some sites can also be present in the coding regions as well 
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(Dassi et al., 2012; Pickering and Willis, 2005). Sequence elements in the 5´-UTRs 

control the expression pattern of proteins, e.g. ribose-methylation of the cap, 5-

terminal polypyrimidine sequences, and secondary structural elements. Sequences 

in the 3´-UTR region are responsible for regulation of stability, translational control, 

and localization (Lunde et al., 2007; Wurth, 2012).  

RNA recognition is complicated by the flexibility in the structure of the RNA. A single-

stranded RBP might have strong sequence preferences, but the accessibility of an 

individual strand can depend on surrounding RNA structures (Duss et al., 2014; 

Helder et al., 2016). Furthermore, posttranslational modifications of RBPs are cru-

cial, not only in diversifying their RNA-binding specificities but also in intracellular 

localization and metabolic functions (Glisovic et al., 2008). Dysfunctional RBPs are 

emerging as key players in many neurological diseases (Maziuk et al., 2018).  

According to classical assumptions, RNA-protein interactions are dependent on well-

defined, ordered globular domains. These well-structured RNA-binding domains are 

categorized into four main families: the zinc-finger domain (Brown, 2005), the K-

homology domain (Valverde et al., 2008), the RNA recognition motif (Clery et al., 

2008), and the double-stranded RNA-binding domain (Banerjee and Barraud, 2014). 

Until recently, RNA-protein interactions were assumed to be mediated mainly by 

these classical domains; however, new research, which characterizes other types of 

RNA-binding domains, has added more complexity to the intricate mesh of RNA-

protein complexes (Balcerak et al., 2019).  

The binding of RBPs with RNA is not only specific but can also be non-specific, 

through auxiliary domains which greatly increase their functional diversity. Auxiliary 

domains consist of intrinsically disordered regions, which are composed of repetitive 

sequences of characteristic amino acids and a low percentage of hydrophobic amino 

acids. These domains enable the RBPs to form dynamic disordered structures rang-

ing from collapsed globules to extended coils (Dyson and Wright, 2005; Varadi et al., 

2015; Wright and Dyson, 2015). Intrinsically unstructured regions in the RNA-binding 

proteins are important in two ways. Firstly, these segments establish extended yet 

conserved electrostatic boundaries with RNAs via induced fit. Secondly, flexibility in 

their conformation enables them to bind different RNA targets, providing multi-

functionality while also ensuring specificity (Varadi et al., 2015; Calabretta and 
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Richard, 2015). These regions are responsible for reversible phase transition, lead-

ing to formation of liquid droplets, hydrogels, and aggregates or fibrils (Brangwynne, 

2013; Hyman et al., 2014). RNA-protein interactions mediated by auxiliary domains 

affect many aspects of RNA-processing; their disruption, therefore, can potentially 

cause protein disorders (Varadi et al., 2015; Calabretta and Richard, 2015).  

An important subset of low-complexity domains are prion-like domains (PLDs), main-

ly comprised of uncharged polar residues and glycines, showing similarities with the 

prion protein of yeast (Couthouis et al., 2011; Lancaster et al., 2014). These PLDs 

enable several proteins of yeast, e.g. Sup35 and Rnq1, to form infectious structures, 

termed prions (Alberti et al., 2009; King et al., 2012; Toombs et al., 2010; Wickner et 

al., 2015). Deletion of these prion domains precludes access to the prion state 

(Masison et al., 1997), and the addition of this region to otherwise innocuous pro-

teins is sufficient to induce prion-like behaviour (Li and Lindquist, 2000; Tyedmers et 

al., 2010).  

The development of bioinformatics algorithms has led to the identification of bona-

fide prion domains (Alberti et al., 2009; Couthouis et al., 2011; King et al., 2012; 

Toombs et al., 2010). These algorithms scan amino acid compositions to screen the 

human genome for proteins with PLDs. One of the updated PLD detection algorithm 

is PLAAC (Prion-Like Amino Acid Composition) (Lancaster et al., 2014), which has 

been used for PLD prediction for several organisms.  

There are about 240 human proteins with PLDs that have been identified by PLAAC. 

Of these, 70 are RBPs, suggesting a beneficial and essential role of these domains. 

Prion-like domains are essential for RBP functions and enable them to undergo liq-

uid-liquid phase separation (LLPS). This phase separation is the basis for the for-

mation of higher-order structures, including oligomers and several membrane-less 

granules (Fig. 2) (Toretsky and Wright 2014; Verdile et al., 2019). However, this 

LLPS property renders prion-like-domain-containing proteins prone to misfold and 

aggregate via aberrant phase transitions (Fig.2) (Harrison and Shorter, 2017; Verdile 

et al., 2019). Prion-like domains form mesh-like networks in vitro, manifesting as hy-

drogels (Kato et al., 2012). These hydrogels are different from amyloid material and 

signify a functional amyloid (Hennig et al., 2015). Due to this special property of func-

tional aggregation, PLD-containing proteins have gained attention in recent years in 
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protein aggregation disorders, e.g. amyotrophic lateral sclerosis (ALS), Alzheimer’s, 

and prion diseases (Harrison and Shorter, 2017; March et al., 2016; Wolozin, 2012).  

 

Figure 2: Prion-like granule assembly by RNA-binding proteins with prion-like domains. The prion-like 

domains enable RBPs to exist in one of three states: a soluble state (monomeric), an amyloid-like fiber state 

(polymeric) or a pathogenic (aggregate) state. This polymeric amyloid state is the basis of formation of different 

types of granules, e.g. stress granules, transport granules, and processing bodies. The conversion between the 

first two states is reversible, which means RBPs can both enter and exit a prion-like state. Transition to 3rd state 

is pathogenic and is irreversible (Kato et al., 2012) (adapted from Gao and Arkov, 2013).  

Regulation of RNA-biology is highly complex, due to the heightened demands of 

RBP functions in the neurons. RNA-binding proteins are important for neurons in two 

distinct ways. Firstly, alternative splicing is particularly active in the neurons, as 

compared with other tissues (Li et al., 2007; Yeo et al., 2004). This posttranscription-

al regulatory mechanism (alternative splicing) is dependent on RBPs. Secondly, it is 

RBPs that ensure safe transportation of mRNAs from the nucleus to the cytoplasm, 

dendrites and long axons, thus preventing their premature degradation and transla-

tion during their journey (Fig. 3) (Anji and Kumari, 2016; Holt and Bullock, 2009; 

Zhang and Poo, 2002; Zhou et al., 2018). In addition, RNA-binding proteins are effi-

cient and fast regulatory hubs, helping the neuron to manage the strains of an ever-

Pathogenic 

aggregated state

IrreversibleReversible

Monomeric/dimeric 

soluble state

Polymeric, amyloid 

like fiber state

(RNP granules)

RNA 

PLD RBD 

RNA-binding protein



Introduction 

12 
 

changing microenvironment, including synaptic depolarization responses, depres-

sion, oxidative stress, misfolded proteins, reduced nutrient availability, and apoptosis 

(Sephton and Yu, 2015; Zhou et al., 2018). 

 

Figure 3: RNA-binding proteins in the neuron. RNA-binding proteins are very important in the neurons in order 

to fulfill heightened demand of dynamic RNA-RBP processes in the neurons. Firstly, alternative splicing is par-

ticularly active in the neurons compared with other tissues. Secondly, neurons need RBPs to transport mRNAs 

through long axons to distal parts of the neurons, e.g. the synapse for de novo protein synthesis. As a result, 

dysfunction of the RNA-binding proteins leads to defects in post-transcriptional gene regulatory mechanisms, 

resulting in neurodegenerative disorders (adapted and modified from Zhou et al., 2018). 

In several neurodegenerative diseases, alterations in the dosage and dynamics of 

RBPs, including expressional changes, mutations, aberrant interactions or altered 

RNA-processing, are emerging as a major pathological feature (Castello et al., 2013; 

Liu et al., 2017; Maziuk et al., 2018; Nussbacher et al., 2015). Dysregulation of many 

RBPs, including FUS, TDP-43, hnRNPA1 and ATXN2, have been demonstrated in 

amyotrophic lateral sclerosis, frontotemporal lobar degeneration and/or spino-

cerebellar ataxia (Table 1) (Maziuk et al., 2017). Other RBPs have also been shown 

to co-aggregate with aggregated-prone protein inclusions in AD, Huntington’s dis-

ease (HD) and Creutzfeldt-Jakob disease (CJD) (Table 1) (Goggin et. al., 2008; 

Maziuk et al., 2017; Nussbacher et al., 2015; Zhou et al., 2014). 
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Table 1: Different RBPs associated with neurological diseases. 

RNA-binding proteins Associated diseases 

TAR DNA-binding protein 43 (TDP-43) ALS, FTLD, AD, HD 

T-cell intracellular antigen 1 (TIA-1) ALS, FTLD, AD 
Ras GTPase-activating protein-binding protein 1 
(G3BP1) ALS, FTLD, AD 

Tristetraprolin (TTP) ALS, FTLD, AD 

Fused in Sarcoma (FUS) ALS, FTLD 

Ewing Sarcoma protein (EWS) ALS, FTLD 
TATA-Box Binding Protein Associated Factor 15 
(TAF15) ALS, FTLD 
Heterogenous Ribonucleoprotein Particle A1/A2 
(hnRPA1/A2) ALS, FTLD 

Angiogenin (ANG) ALS, PD 

Survival of motor neuron (SMN1) ALS, SMA 

Matrin-3 (MATR3) ALS 

Ataxin-2 (ATXN2) ALS 

Optineuin (OPTN) ALS 

Fragile X mental retardation protein (FMRP) FXS 
ALS: Amyotrophic lateral sclerosis, FTLD: Frontotemporal lobar degeneration, AD: Alzheimer’s disease, HD: 

Huntington’s disease, PD: Parkinson’s disease, FXS: Fragile X syndrome, SMA: Spinal muscular atrophy (Mazi-

uk et al., 2017). 

One by one, connections are being discovered between RNA-binding proteins with 

prion-like domains and neurodegenerative disorders (Li et al., 2013; March et al., 

2016). Recently, this paradigm of RNA-binding proteins has been extended to AD, 

where pathological aggregates of TIA-1 (TIA-1: cytotoxic granule-associated RBP), 

an RNA-binding protein with prion-like domain, have been linked to tau neurofibrillary 

tangles (NFTs) in the brain (Vanderweyde et al., 2012, Vanderweyde et al.,2016). 

Furthermore, co-aggregation of components of the spliceosomal complex with the 

tau protein has been reported in both sporadic and familial AD cases, but not in other 

tauopathies (Bai et al., 2013; Bishof et al., 2018; Diner et al., 2014; Sengupta et al., 

2018).  

1.2 Alzheimer’s disease  

Alzheimer’s disease is the most prevalent cause of dementia with progressive neu-

rodegeneration, affecting 40–50 million people around the globe (GBD Dementia 

Collaborators, 2019; Prince et al., 2013). This number is predicted to increase three-

fold by 2050 (Prince et al., 2013; Prince et al., 2015). The prevalence of AD is quite 

high in North America and Europe, compared with less developed countries, though 

a sharp increase has been observed in India, China and Latin America in recent 
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years (Ferri et al., 2005; Kalaria et al., 2008). In America alone, the financial burden 

of maintaining AD patient’s health care amounts to ~$203 billion annually. Due to a 

total lack of therapeutic interventions for the treatment and prevention of AD, the 

costs are expected to reach $1.1 trillion annually by the year 2050 (Alzheimer’s As-

sociation, 2019). 

Alzheimer’s disease has two sub-classifications: early-onset (EOAD) or familial AD 

(FAD), or late-onset (LOAD) or sporadic AD (SAD). For FAD, symptoms usually ap-

pear earlier than SAD, typically ranging between 30-50 years of the age (Bertram et 

al., 2010; Goate and Hardy, 2012; Sanabria-Castro et al., 2017). Autosomal domi-

nant mutations in amyloid-precursor protein (APP), presenilin-1, and -2 genes have 

been shown to cause familial AD (Blennow et al., 2006). Known genetic causes of 

AD only account for a small percentage of cases (less than 1%). Alzheimer’s disease 

cases, which are not associated with any genetic mutations, are known as sporadic 

AD (Mendez, 2017). 

Clinically, AD is characterized by continuous memory deficits and dysfunction of oth-

er cognitive abilities. At initial phases, the major symptoms are centered on episodic 

memory. With progression of the disease, topographical difficulties emerge, along-

side problems with multi-tasking and loss of confidence. By the time a patient is di-

agnosed with AD dementia, symptoms have typically become more sever, interfering 

with activities of daily life (Scheltens et al., 2016). At later stages of the disease, oth-

er deficits may also emerge, including impaired mobility, behavioural abnormalities, 

hallucinations and delusions. Severe stages of the disease are accompanied by a 

complete loss of various cognitive functions, impaired motor functions (e.g. chewing 

and swallowing) and linguistic problems. Most of the patients are bedridden at this 

stage, and die of inanition or secondary illnesses, e.g. infections and ulcers (Förstl 

and Kurz, 1999; Tarawneh and Holtzman, 2012).  

Neuropathologically, AD is characterized by two cardinal hallmarks: intracellular tan-

gles of misfolded tau protein in conjunction with extracellular plaques of aggregated 

amyloid-β (Aβ) peptide (Cushman et al., 2010; Perl, 2010), together with neuronal 

and synapse loss (Nelson et al., 2009; Selkoe and Hardy, 2016; Perl, 2010). The Aβ 

plaques originate from the aggregation of Aβ peptides (40–42 amino acid long), pro-

duced by sequential cleavage of APP by the β- and γ-secretases. An imbalance be-
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tween the production and clear mechanisms for Aβ peptides leads to precipitation of 

Aβ pathology (Selkoe and Hardy, 2016).  

The amyloid hypothesis posits Aβ pathology as the primary pathological feature of 

the disease (Hardy and Higgins, 1992), triggering a cascade of further pathological 

events, including the formation of neurofibrillary tangles of hyperphosphorylated tau, 

neuroinflammation, oxidative stress, and neuronal loss (Hardy and Higgins, 1992; 

Reitz, 2012; Tanzi and Bertram, 2005). Unfortunately, therapeutic interventions tar-

geting Aβ have failed to improve cognitive functions in AD (Doody et al., 2014; Love-

stone et al., 2015). One possible reason for the failure of these therapeutic strategies 

is an incomplete understanding of the mechanisms leading to neurodegeneration in 

AD. Mounting evidence has shifted the focus towards tau as a more promising ther-

apeutic target for AD (Cao et al., 2018). The discovery of pathogenic mutations in the 

tau gene in familial cases of frontotemporal dementia (FTLD-17: FTLD with parkin-

sonism linked to chromosome 17) has demonstrated a clear link between the dys-

function of tau and neurodegeneration (Goedert et al., 2000). 

Tau, suggested by some to be the “holy grail of dementia,” is a protein initially de-

scribed as a dull executor of pathological effects associated with amyloid β. In AD, 

tau is hyperphosphorylated, misfolded, oligomerized, aggregated, and mislocalized 

(Grundke-Iqbal, 1986; Ren and Sahara, 2013; Vanderweyde et al., 2016). Since the 

initial discovery of tau in 1975, the field has focused on its role in microtubule stabili-

zation by binding with polymerized tubulin in the axons (Weingarten et al., 1975). 

Over the last few decades, several studies have reported multiple functions and lo-

calizations of tau protein. Specifically, its localization in the nucleus (both phosphory-

lated and non-phosphorylated) (Bukar et al., 2016) and cytoplasm under conditions 

of oxidative stress has been demonstrated (Vanderweyde et al., 2016). Unfortunate-

ly, the significance of multiple localization types is not yet clear.  

Recent evidence suggests a novel pathological feature of tau in relation to cytoplas-

mic stress granules, through which tau disrupts cellular homeostasis. RNA-binding 

proteins, like TIA-1, co-localize with hyperphosphorylated tau and aggravate tau pa-

thology (Fig. 4) (Vanderweyde et al., 2012; Vanderweyde et al., 2016). This interac-

tion between tau and TIA-1 in stress granules has been shown to enhance tau-

mediated neurodegeneration in primary hippocampal cultures, which can be rescued 

https://www.frontiersin.org/articles/10.3389/fnmol.2017.00032/full#B26
https://www.frontiersin.org/articles/10.3389/fnmol.2017.00032/full#B66
https://www.frontiersin.org/articles/10.3389/fnmol.2017.00032/full#B20
https://www.frontiersin.org/articles/10.3389/fnmol.2017.00032/full#B44
https://www.frontiersin.org/articles/10.3389/fnmol.2017.00032/full#B44
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by reduction of TIA-1 protein (Fig. 4) (Vanderweyde et al., 2016). Likewise, extracel-

lular tau, after internalization and hyperphosphorylation, has been shown to alter SG 

dynamics, supporting the notion that secreted tau has a role in the formation of 

pathological SGs (Brunello et al., 2016). All these evidences link tau pathology to 

dysfunctional RBPs and pathological stress granules, highlighting an important role 

of RBPs in AD. 

 

Figure 4: The interplay between tau and RNA-binding proteins in the SGs: Tau is normally present in the 

axons, but stress induces translocation to somatodendritic compartments. RNA-binding proteins, e.g. TIA-1 with 

both nuclear and cytoplasmic functions, keep on translocating between cytoplasmic and nuclear regions. Alt-

hough TIA-1 is predominantly a nuclear protein, stress leads to rapid shuttling into the cytoplasm, where its inter-

action with tau promotes SG formation. This association also enhances tau misfolding and aggregation and in-

creases the size of SGs by influencing the RNA-binding protein composition of SGs. Furthermore, this contact 

increases the tendency of tau to form sarkosyl-insoluble aggregates and stabilize SGs. These deleterious effects 

can be rescued by TIA-1 reduction in cultured neurons (adapted and modified from Vanderweyde et. al., 2016). 

The current neuropathological assessment of AD is based on updated criteria re-

leased by the National institute of Aging (NIA). Classification of AD neuropathologic 

changes is achieved according to three different staging themes: Thal stages for dis-

tribution of amyloid-β deposits (Thal et al., 2002), neurofibrillary tangle pathology 

with Braak stages (Braak and Braak, 1991; Braak et al., 2006), and the occurrence 

and severity of neuritic plaques according to the Consortium to Establish a Registry 

for Alzheimer's Disease (CERAD) (Fillenbaum et al., 2008; Mirra et al., 1991). Com-

Tau

TIA-1
Tau

Tau

Tau

Tau

Tau

TIA-1

TIA-1

TIA-1

hnRNP

R

Tau

Tau

TIA-1

RPL7

DDX3
Tau

Tau

Tau

TIA-1

TIA-1

TIA-1

hnRNP

R

Tau

TIA-1

RPL7

DDX3

PABP

Tau
Tau

Tau

Tau

Tau

Tau

mRNA

SG proteins

TIA-1

Tau

Tau in axons:
microtubule 

stabilization

Tau 

translocation

Tau insoluble

TIA-1
knockdown

Tau in soma/dendrites:

SGs

Tau insoluble: 

pathological SGs

PABP



Introduction 

17 
 

bining these three standards (Amyloid: A, Braak: B, CERAD: C) to the ABC method 

provides an estimate of a no, low, medium or high pathology (Montine et al., 2012).  

The genetic and non-genetic risk factors associated with AD are significant, because 

they give clues into the predispositions of the disease process prior to onset. Fur-

thermore, they provide basis for classification of individuals with increased risk for 

the disease. Diverse non-genetic risk factors have been linked with AD including 

cardiovascular diseases, hypertension, type 2 diabetes, obesity, traumatic injury to 

the head, life style (poor diet, physical inactivity, smoking etc.), and depression 

(Crous-Bou et al., 2017; Edwards et al., 2019; Reitz and Mayeux, 2014).  

Genetic risk factors also affect sporadic AD. Several genes have been identified as a 

risk factor for sporadic AD including TREM2, PLD3, ADAM10, CD2AP, DSG2, and 

APOE (Karch and Goate, 2015). Among these genes, APOE polymorphism has 

been one of the most widely studied risk factor. The APOE gene containing three 

variants (ɛ2, ɛ3 and ɛ4) represents the greatest risk for developing sporadic AD. 

Here, ɛ4 is the main risk factor, as ɛ4 heterozygotes have three-fold higher risk, 

which rises to twelve-fold in ɛ4 homozygotes (Karch and Goate, 2015; Mahley, 

2016). Given the low percentage of genetic causes, the identification of potential en-

vironmental risk factors for sporadic AD is crucial.  

Although age is considered a key risk factor for AD, several studies have also impli-

cated chronic stress as a crucial environmental risk factor (Hoeijmakers et al., 2017; 

Huang et al., 2016; Islam et al., 2019; Justice, 2018; Lesuis et al., 2016; Ownby et 

al., 2006). It has been proposed that oxidative stress plays an important role in the 

initiation and progression of AD (Wang et al., 2014). Oxidative stress is caused by an 

imbalance in the biochemical systems involved in the production and removal of re-

active oxygen species (ROS). Reactive oxygen species are reactive molecules origi-

nated from oxygen (Andreyev et al., 2005), which are highly reactive due to pres-

ence of their unpaired electrons (Patten et al., 2010).  

Several studies clearly indicate that an increased level of reactive oxygen species 

leads to oxidative stress and the manifestation of neurodegenerative disorders, in-

cluding AD, ALS, and PD (Chen and Liu, 2017; Magalingam et al., 2018; Niedzielska 

et al., 2016; Patten et al., 2010). Oxidative stress can affect cell biology in many dif-

ferent ways, including damage to cell membranes and other functional units such as 
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proteins, lipids, and DNA. In addition, oxidative stress may result in aberrant dynam-

ics of SGs (Chen and Liu, 2017). The brain is particularly vulnerable to these insults 

because of its heightened demand for oxygen and its low antioxidant capacity (Chen 

et al., 2012; Cobley et al., 2018). Pathological and persistent SGs due to chronic 

stress and mutations in RBPs have been implicated in several neurodegenerative 

diseases (Liu-Yesucevitz et al., 2014; Vanderweyde et al., 2016). However, whether 

these RBP-pathological features are associated with rapid progression of the 

disease remains enigmatic.  

1.3 Atypical subtype of Alzheimer’s disease 

Typically, sporadic AD is characterized by a slow progression in cognitive decline, 

with conspicuous memory loss. Classically, disease duration spans ~8 years after 

the onset of clinical symptoms (Scheltens et al., 2016). However, emerging evidence 

shows heterogeneity in both clinical phenotypes and progression rates (Abu-

Rumeileh et al., 2018; Ba et al., 2017; Cohen et al., 2015; Schmidt et al., 2011). 

These classical AD cases are abbreviated as spAD in the current study. 

Recently, a rapidly progressive variant of AD (rpAD) has been described with a steep 

decline in the Mini-Mental State Examination (MMSE: a psychometric test) score 

(e.g. ≥ 6 points/year), and/or a reduced survival duration (~4 years in comparison to 

8 years for spAD cases) (Llorens et al., 2016; Nelson et al., 2009; Schmidt et al., 

2010; Soto et al., 2008; Tosto et al., 2015). The prevalence and clinical definition of 

rpAD varies greatly across different studies in the literature. Preliminary evidence 

supports the notion that rpAD is associated with a specific molecular and pathogenic 

cascade (Ba et al., 2017; Cohen et al., 2015; Drummond et al., 2017; Schmidt et al., 

2011). However, no significant differences have been detected in the core neuropa-

thological features between spAD and rpAD (Cohen et al., 2015; Schmidt et al., 

2010), suggesting a great demand for a better understanding of molecular signatures 

responsible for this heterogeneity.  

Rapidly progressive AD also exhibits significant clinical overlap with Creutzfeldt-

Jakob disease, another rapidly progressive dementia, which makes early differential 

diagnosis a challenge. The rpAD often mimics the disease duration of CJD. Previous 

reports have also demonstrated similarity in biomarker profile and clinical features 

(rapid course, development of early focal neurological signs, levels of CSF markers 
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14-3-3 and total tau) between rpAD and CJD (Abu-Rumeileh et al., 2017; Schmidt et 

al., 2011; Stoeck et al., 2014).  

In fact, in prion disease referral centres worldwide, rpAD is a common non-prion di-

agnosis at neuropathological investigation, accounting for ~14–50% of all non-CJD 

cases (Chitravas et al., 2011; Jansen et al., 2012; Lattanzio et al., 2017; Stoeck et 

al., 2012). The lack of understanding, how molecular mechanisms and risk factors 

lead to rapid progression seen in the various rapidly progressive forms of dementia 

(rpAD and sCJD), has hindered the development of therapeutic interventions, specif-

ically at the early stages.  

The most common human prion disease, CJD is a rapidly progressive, rare, trans-

missible and fatal disease, with patients exhibiting dementia among other major clin-

ical symptoms (Collinge, 2001; Johnson and Gibbs, Jr., 1998; Prusiner, 1982; Zerr 

and Parchi, 2018). There are four major types of CJD: sporadic, familial, iatrogenic 

and the variant form. Sporadic CJD is the most prevalent form (85%) of all human 

prion diseases (Parchi et al., 1999; Tschampa et al., 2007; Zerr and Parchi, 2018). 

Within sCJD, there are six distinct subtypes as determined by a combination of pol-

ymorphism at codon 129 of prion protein gene (PRNP) and two types of strains (type 

1 and 2). The six subtypes have been classified as sCJD-MM1, -MV1, -VV1, -MM2, -

MV2 and -VV2 corresponding to different clinical phenotypes (Bishop et al., 2010; 

Parchi et al., 1999; Parchi et al., 2009). Among these subtypes, sCJD-MM1 and 

sCJD-VV2 subtypes are the most prevalent ones (Parchi et al., 1999; Meissner et 

al., 2009), therefore they were investigated in the present study along with AD-

subtypes to uncover common molecular factors underlying variant progression rates.  

During the last decades, there has been significant progress in understanding the 

risk factors and molecular basis underpinning AD. It has become clear that AD is a 

multifaceted disease; multiple theories have been proposed, with the amyloid-

cascade hypothesis being the most studied one. The recent failure of many Aβ-

oriented clinical trials has disappointed the field and led to a focus on other molecu-

lar mechanisms associated with this complex neurodegenerative disorder. Further-

more, recent discovery of various progression phenotypes of AD demands a great 

need for understanding molecular factors, leading to heterogenous progression phe-

notypes in AD. Emerging evidence indicates an increasingly compelling role of dys-

functional neuronal RBPs and stress granules (Ramaswami et al., 2013, Wolozin, 
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2012) in neurodegenerative diseases. To this end, this study aims to identify and 

characterize RNA-binding proteome (RBPome) alterations in subtypes of Alz-

heimer’s and prion diseases, to open new avenues for early diagnosis and disease-

modifying therapies. 

 

1.4 Objectives of the study 

Based on previous observations, we hypothesize that global deregulation of RNA-

RBP processes contributes to the pathophysiology of Alzheimer’s and other neuro-

degenerative diseases, particularly prion diseases. RNA-binding proteins may repre-

sent a previously "hidden" component of pathophysiology of Alzheimer’s and prion 

diseases. Understanding the global derangement of RBPs during the course of the 

disease will potentially unveil new targets for the design of therapeutics. 

The present study was conducted to uncover pathological mechanisms linked to dys-

functional RBPs, leading to heterogeneous progression rates and phenotypes of AD. 

The study principally focusses on defining differential RBPome signatures in spAD, 

rpAD, two prion disease subtypes (sCJD-MM1 and sCJD-VV2) and age-matched 

controls. In the next part of the study, target proteomic candidates will be character-

ized in the human brain as well as cellular and animal models to explore the mecha-

nistic role of these signatures in the pathogenesis and progression of the disease.  

The objectives of the study were:  

1. to identify and characterize RBPome signatures from diseased and healthy 

subjects, to have an overview of multiple deregulated pathways, 

2. to perform a differential expressional analysis of target RBPs in the human 

brain and mouse brain model and at a cellular model, 

3. to identify and characterize pathological mechanisms associated with target 

RBPs in the progression rate variations, and 

4. to translate RBP signatures in cellular and animal models, to find a mechanis-

tic link with the pathological features of the disease. 
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2 Materials and methods 

 

2.1 Materials 

2.1.1 Antibodies 

All the antibodies used for immunoblotting (IB) and immunofluorescence (IF) 

are listed in Tables 2 and 3.  

 Table 2: List of primary antibodies used in the study 

Primary Antibody Origin 
Dilution  
(IB) 

Dilution  
(IF) 

Cat. No./ Company 

Tau-5 Mouse 1: 500 1: 100 ab80579/Abcam 

Tau (E178) Rabbit 1: 1000 1: 100 ab32057/Abcam 

Anti-tau (T22), oligomeric  Rabbit 1: 1000 1: 250 ABN454/Sigma-Aldrich 

Phospho-tau (S199) Rabbit 1: 1000 1: 100 ab81268/Abcam 

TIA-1 Rabbit 1: 500 1: 100 ab140595/Abcam 

TIA-1 Mouse 1: 500 - ab40693/Abcam 

TIA-1(G-3) Rabbit 1: 200 1: 100 sc-166247/Santa Cruz  

TIA-1 (G-3) AlexaFluor 488 Mouse - 1: 50 sc-166247/Santa Cruz 

SFPQ Rabbit 1: 500 1: 100 ab38148/Abcam 

VCP Rabbit 1: 3000 1: 200 ab109240/Abcam 

GAPDH Mouse 1: 3000 - G8795/Sigma-Aldrich 

β-Actin Mouse 1: 1000 - ab8227/Abcam 

BRD4 Rabbit 1: 1000 - ab128874/Abcam 

 

 Table 3: List of secondary antibodies used in the study 

Secondary 
antibody 

 
Origin Dilution (IB) Dilution (IF) Cat. No. /Company 

α-Mouse-HRP (IgG)  Goat 1: 10000 - 115-035-062/Jackson 
IR Lab 

α-Mouse-HRP (IgM)  Goat 1: 10000 - AP128P/Merck 
Millipore 

α-Rabbit-HRP (IgG)  Goat 1: 10000/1: 5000 - 11-035-144/Jackson IR 
Lab 

α-Mouse-A488  Goat - 1: 200 A-11001 /Invitrogen 

α-Rabbit-A488  Goat - 1: 200 A-11008/Invitrogen  

α-Mouse-A555  Goat - 1: 200 A-21424/Invitrogen  

α-Rabbit-A546  Goat - 1: 200 A-11010/Invitrogen 

 

 

https://www.scbt.com/scbt/de/product/tia-1-antibody-g-3/;jsessionid=4W0QD88vBeqFNA-1o3X59YDE9lD_SFJ4l9m992q044QFwor9ZGky!-789756999
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2.1.2 Antibiotics, enzymes and standards 

Table 4: All antibiotics, enzymes and standards used 

 Cat. No. / Company 

Antibiotics  

Ampicillin 171254, Calbiochem  

Penicillin-Streptomycin (PS) 15140122, Thermo Fisher Scientific, Dreieich, Germany 

 
Enzymes 

 

Taq DNA Polymerase, 5 U/μL 11146173001, Sigma-Aldrich, Deisenhofen, Germany 
 
Standards (Protein and DNA) 

 

Bovine serum albumin (BSA) P0914, Sigma-Aldrich 

DNA ladder SM1333, Thermo Fischer Scientific 

Precision Plus Protein Standard 161-0374, Bio-Rad, Munich, Germany 

2.1.3 Bacterial strain and culture media  

Table 5: List of bacterial strain and culture media 

Bacterial Stain and media Catalog No./Company 

E. coli strain DH5α  Addgene 

LB medium A0954/PanReacAppliChem ITW reagents 

LB agar A0949/ PanReacAppliChem ITW reagents 

2.1.4 Cell culture reagents 

Table 6: Reagents used in cell culture 

Reagent  Catalog No./Company 

DMEM, high glucose, HEPES, no phenol red 21063/Thermo Fisher Scientif ic  

Fetal bovine serum (FBS) F7524/Sigma-Aldrich 

Lipofectamine 2000 11668027/Thermo Fisher Scientific 

Opti-MEM, reduced Serum Medium, no phenol red 11058021/Thermo Fisher Scientific 

Phosphate-buffered saline (PBS) L1825/Merck 

Trypsin/EDTA solution T4174/Sigma-Aldrich 

GlutaMAX supplement Gibco 35050038/Thermo Fischer Scien-
tific 

2.1.5 Chemicals 

All chemicals used in the present study were obtained from Sigma-Aldrich (Deisen-

hofen, Germany), Merck (Darmstadt, Germany), Roth (Karlsruhe, Germany), Bio-

Rad (Munich, Germany), Amersham (Freiburg, Germany), Fluka (Deisenhofen, 
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Germany), Thermo Fisher Scientific (Darmstadt, Germany), or unless otherwise 

stated.  

2.1.6 Instruments and other materials 

Table 7: Instruments and appliances used in the study 

Appliances Model/Description Manufacturer 

Centrifuges  
 

5415C  
Optima TL 100  

Eppendorf, Hamburg, Germany  
Beckman, Krefeld, Germany  

C1000 Touch Thermal Cycler   Bio-Rad, USA 

ChemiDoc XRS+ system 170-8265 Bio-Rad 

Electrophoresis apparatus Mini-ProteanSarstedt 
III 

Bio-Rad 

Filtopur V50 0.2 (Vacuum filter) 83.1823.001 SARSTEDT, Nümbrecht, Ger-
many 

Heated magnetic stirrer  iKAMAG RCT  IKA-Labortechnik, Staufen, 
Germany  

Ice machine  -  Ziegra, Isernhagen, Germany  

Incubator  IFE 400  Memmert, Schwabach, Germany  

Light Cycler 480 Multiwell Plate 96, 
white 

- 4729692001, Roche Life scienc-
es, Germany 

Microscope Leica TCS SPE Leica Microsystems, Wetzlar, 
Germany 

Microscope  Zeiss LSM 510 Meta  Carl Zeiss 

Microscope Zeiss 667183 Axio-
vert 25C 

Carl Zeiss 

Microwave oven  ER-6320 PW  Brother International, Bad Vilbel, 
Germany  

Microplate reader Perkin Elmer Wallac 
1420 Victor 

GMI, USA 

Power supply  Power Pac 300  Bio-Rad 

Safe-Lock tubes  0.2, 0.5, 1.5 and 2ml  Eppendorf 

Semi-Dry transfer Cell  Transblot Turbo 
transfer system 

Bio-Rad 

Serological pipettes  
plastic tubes  

2, 5, 10, 25ml  
15 and 50ml  

Sarstedt 

pH meter  pH 526  WTW,Weilheim, Germany  

pH strips (6.5-10) 1.09543.0001 Merck Millipore, Germany 

Shakers  CERTOMAT R  Sartorius, Göttingen,  
Germany  

Spectrophotometers  EL808  Bioteck instruments, Winooski-
vermont, Germany 

Syringes BD Discardit  2, 5, 20ml  Becton Dickinson, NJ, USA  

TC-plate 6 well, Cell+F 83.3920.300 SARSTEDT 

TC Flask T75, Cell+vented Cap 83.3911.302 SARSTEDT 

Thermomixer  5436  Eppendorf 

TissueLyser LT 85600 Qiagen, Hilden, Germany 

UV-transilluminator  200x 200mm  Bachofer, Reutlingen, Germany  

Vacuum drier  UNIVAPO 150H  UNIEQUIP, Martinsried, Germa-
ny  
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Water bath  1003  GFL, Burgwedel, Germany  

2.1.7 Kits 

Table 8: Kits used in the present study 

Name Cat No. / Company 

Purelink Genomic DNA isolation Kit K182001, Invitrogen 

RNeasy Plus Universal Mini Kit  73404, Qiagen 

HI Speed Plasmid Midi Kit  12643, QIAGEN 

Pierce Magnetic RNA-Protein Pull-Down Kit 20164, Thermo Fisher Scientific 

MTS Assay Kit (Cell Proliferation) (Colorimetric)  ab197010, Abcam 

Chemiluminescent Nucleic Acid Detection Module Kit Thermo Fisher Scientific 

High-Capacity cDNA Reverse Transcription Kit 4368814, Thermo Fisher Scientific 

2.1.8 Mammalian cell lines and culture media 

2.1.8.1 HeLa cells: HeLa cells were kindly provided by Dr. Aman-Deep Singh Arora, 

European Neuroscience Institute Göttingen, Georg-August University Göttingen, 

Germany. The cells were cultured in DMEM, supplemented with 10% FBS and 1% 

PS at 37°C with 5% CO2 and 95% humidity. 

2.1.8.2 SH-SY5Y cells: SH-SY5Y cells were obtained from Prof. Walter Schulz-

Schaeffer, Department of Neuropathology, University Medical Center (UMG), Göttin-

gen, Germany. The cells were cultured in DMEM, supplemented with 10% FBS, 1% 

GlutaMax supplement and 1% PS at 37°C with 5% CO2 and 95% humidity.  

2.1.9 Plasmids 

Plasmids for human wild-type tau (pRK5-EGFP-tau, cat. #46904) and mutated tau 

(pRK5-EGFP-tau P301L, cat. #46908) were purchased from Addgene (originally 

prepared by Karen Ash lab) (Hoover et al., 2010).  

2.1.10 Primer pairs  

All primers were purchased from Eurofins Genomics. List and sequences of primer 

pairs are provided in annexure data Table 14. 
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2.1.11 Software and online tools 

Table 9: List of software and web-based tools  

Name   Description/use References 

GraphPad Prism (6.01) 
 

Statistical analysis 
GraphPad Software, Inc. California, 
USA 

catGRANULES 
 Liquid-Liquid phase separation 

property (LLPS) estimation http: //s.tartaglialab.com  

Functional enrichment 
analysis tool (FunRich) 

 
Functional enrichment analysis http: //www.funrich.org/  

FIJI 1.52p 
 

Statistical analysis National institutes of Health, USA 

Image J 1.51j8 
 

Immunofluorescence analysis National institutes of Health, USA 

Image Lab (3.0.1) 
 

Densitometric analysis Kapelan, GmbH/Halle, Germany 

Inkscape (0.92) 
 Professional quality vector 

graphics software https: //www.inkscape.org 

IPA 
 

Pathway mapping Qiagen, USA 

LAS X 
 

Imaging software 
Leica Microsystems/Wetzlar, Ger-
many 

Perseus software 
(1.5.0.31) 

 
Proteomics data analysis 

MPI of Biochemistry, Martinsried, 
Germany 

PLAAC software 
 

Prion-like domain scanning http: //plaac.wi.mit.edu  

R version 3.4.3 
 

Statistical analysis Proteome Software, Inc 

Cytoscape 3.6.1 
 

Protein network visualization Cytoscape.Js 

Scaffold 4.8.4 
 

MS/MS data analysis Proteome Software, Inc 

WEB-based GEne SeT 
AnaLysis Toolkit 
(WebGestalt) 

 

Functional enrichment analysis http: //www.webgestalt.org/  

Zeiss LSM 4.2.0.121 
 

Immunofluorescence imaging 
Microimaging GmbH, Göttingen, 
Germany 

2.1.12 Solutions and buffers  

Note: ddH2o water was used to prepare solutions and buffers 

Blocking solution for immunoblotting: 5% non-fat dry milk in PBS-T/TBS-T 

Cell-lysis buffer: 50 mM Tris-HCl, pH 8, 1% Triton X-100, 0.5% CHAPS, 1 mM DTT 

Citrate buffer: 10 mM sodium citrate (pH 6.0) 

Coomassie stain: 0.1% Coomassie blue R-250, 10% acetic acid, 50% methanol, 

40% ddH2O 

PBS-T buffer: PBS and Tween-20 (0.05% Tween) 

Resolving gel buffer: 1.5 M Tris, 0.4% SDS, pH 8.8 

SDS-running buffer: 25 mM Tris, 192 mM glycine, 0.1% SDS, pH 8.3 

Stacking gel buffer: 0.5 M Tris, 0.4% SDS, pH 6.8 

TBS-T buffer: 50 mM Tris, 150 mM NaCL, 0.05% Tween-20, pH 7.6 

http://s.tartaglialab.com/
http://www.funrich.org/
https://www.nature.com/articles/nmeth.3901
http://plaac.wi.mit.edu/
http://www.webgestalt.org/
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Tissue lysis buffer: 7 M urea, 2 M thiourea, 4% CHAPS (freshly added 2% ampho-

lytes, 1% DTT) 

Transblot-buffer: 192 mM glycine, 10% methanol, 25 mM Tris-HCl, pH 8.3
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2.2 Methods 

2.2.1 Patient cohorts and sample processing 

Patient cohort processing, neuropathological examination and brain tissue collection 

for this study were all conducted as previously described (Krbot and Glatzel, 2018; 

Zafar et al., 2018; Zafar et. al., 2017). Briefly, postmortem brain material was ob-

tained from patients after the approval of the local ethics committee at the University 

Medical Center, Göttingen, Germany. Frontal cortex samples from spAD, rpAD and 

age-matched controls were provided by the brain bank of the Institute of Neuropa-

thology (HUB-ICO-IDIBELL Biobank) and Biobank of Hospital Clinic-IDIBAPS Spain, 

following the legislation (Ley de la Investigación Biomédica 2013 and Real Decreto-

Biobancos, 2014). Frontal cortex samples were obtained from patients with sCJD 

subtypes (MM1 and VV2), from the Department of Neurology at the University Medi-

cal Centre, Göttingen.  

Cases strictly fulfilling the following inclusion criteria were included in rpAD cohort:  

1. initial classification as prion disease based on rapidly progressive neurological 

and clinical parameters;  

2. presence of AD pathological features, i.e., higher Braak stages and CERAD 

stages;  

3. exclusion of other rapidly progressive dementias (e.g. prion disease) and po-

tential causes of rapid progression, e.g. vascular pathology, extensive Lewy 

body pathology, significant vascular disease, inflammation, stroke and tumors, 

as assessed by standard neuropathological examination, and 

4. absence of familial AD, as evident by family history. 

Patients of all ages fulfilling all the above-stated criteria were included in the study.  

Tissue samples were processed following previously described protocols (Zafar et 

al., 2018). Briefly, whole brains were cut into two parts. One hemisphere was fixed 

with formalin (4%), followed by treatment with formic acid. After fixation and decon-

tamination, this hemisphere was stored at -80°C until further use for neuropathologi-

cal examination. Tissue sections of one-centimetre thickness were excised from the 
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other hemisphere of each brain. Dissected tissues were immediately frozen and 

stored at -80°C until used for biochemical investigations. 

For immunohistochemistry, a separate cohort was used. Detailed description is given 

in annexure data table (Table 13). Samples were obtained from the University Medi-

cal Centre Hamburg-Eppendorf. Diagnosis of all these cases was confirmed neuro-

pathologically by a combination of ABC score, Thal staging for amyloid deposition 

(A), Braak staging for neurofibrillary tangles (NFTs) (B), and the Consortium to Es-

tablish a Registry for Alzheimer’s Disease (CERAD) neuritic plaque score (C), as 

recommended by the current criteria of the National Institute on Aging, USA (NIA) for 

AD. Ethical approval was attained from the ethics committee of the University Medi-

cal Centre Göttingen, and all the procedures were followed in accordance to ethics 

regulations (Nr. 1/11/93 and Nr. 9/6/08). 

2.2.1.1 Pathological profiles 

Non-demented control cortical samples exhibited mild pathology (Braak stage I – II). 

Both spAD and rpAD samples had AD pathologies ranging from Braak stage III to VI. 

The samples for AD subtypes were included without co-pathologies. Likewise, the 

sCJD subtypes (sCJD-MM1 and -VV2) cohort was exclusively composed of 

prionopathies. Details of the cohorts are described in the annexure data tables (Ta-

bles 11–13). No significant differences were observed in the age distribution and 

postmortem intervals (PMI) among the disease groups investigated in the study, as 

shown in Fig. 5 and 6.  
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Figure 5: Patient cohorts included in the present study. A) Comparison of ages of the control and diseased 

subjects used for RBPome isolation, immunoblotting and qRT-PCR analysis. B) Comparison of ages in patient 

cohort used for immunohistochemical analysis. 

 

Figure 6: Comparison of postmortem intervals: Comparison of postmortem intervals to the time of autopsies 

from cases used in the present study. 

 

2.2.2 Molecular biology methods 

2.2.2.1 Genomic DNA extraction  

Genomic DNA was isolated from human brain frontal cortex samples for APOE gen-

otyping. DNA extraction was performed using the purelink genomic DNA isolation 

kits, in accordance with the manufacturer’s protocols. Approximately 30 µg of tissue 

was used for each extraction. Concentration estimation of DNA was performed with 

Nanodrop (OD260 = 50 µg for dsDNA). Integrity of DNA was confirmed by agarose 

gel electrophoresis, followed by ethidium bromide staining. 

2.2.2.2 APOE genotyping 

The genotyping of the APOE polymorphism was performed using the APOE Strip 

Assay kit (GenoType APOE, Hain Lifesciences), as described previously (Al-Asmary 

et al., 2015). Briefly, the procedure involves two steps: the first involves polymerase 

chain reaction (PCR) amplification using biotinylate primers, followed by reverse hy-

bridization of the amplified products on a test strip with allele specific oligo-

nucleotides immobilized as an array in line. Biotinylated sequences bound to the 

strips were detected by streptavidin alkaline phosphatase, in order to develop color 
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with color substrates. The frequency of APOE gene polymorphisms is represented 

for both spAD and rpAD cases in Fig. 7. An increasing trend was observed for alleles 

3/3 and 3/4 in rpAD cases. 

 

Figure 7: APOE genotype: The percentage of APOE genotype from slow progressive (spAD) and rapidly pro-

gressive Alzheimer’s disease (rpAD) patients included in the present study. 

 

2.2.2.3 RNA extraction  

For the preparation of all reagents for RNA isolation, RNase-free water was used. 

Before RNA extraction, surfaces and lab-ware were cleaned with RNAseZap (Ther-

mo Fischer Scientific). Total RNA was extracted from the human brain frontal corti-

ces of diseased and control subjects using RNeasy Plus Universal kits (Qiagen, 

Germany), including DNase treatment in accordance with the manufacturer’s instruc-

tions. RNA concentration was measured using a Nanodrop 2000 (Thermo Scientific) 

apparatus. Ratios of A260/A280 were also calculated for all samples. RNA integrity 

was confirmed by using a Bioanalyzer (Agilent Technologies, Santa Clara, CA). 

Samples bearing RNA integration number (RIN) ≥ 5 were used for further analysis. 

2.2.2.4 Tissue lysis for pull-down assay 

Frontal cortex tissues from each subject were lysed in ‘tissue protein extraction rea-

gent (T-PER; Thermo Fischer Scientific), supplemented with phosphatase and pro-

tease-inhibitor cocktails (Roche, Germany). The concentration of isolated proteins 

was determined using Bradford assay (Bio-Rad). Total protein extract concentration 
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was kept greater than 2 mg/mL, such that there is significant dilution into the binding 

reaction buffer.  

2.2.2.5 RNA pull-down assay 

Total brain-derived RNA was end-labeled with desthiobiotin using T4-RNA ligase 

from Pierce RNA 3'-End Desthiobiotinylation Kit, which was a part of the Pierce 

magnetic RNA-protein pull-down kits (Thermo Fisher Scientific). The labelling effi-

ciency of experimentally labelled samples was estimated by dot blotting (Thermo 

Scientific Chemiluminescent Detection Module, Product No. 89880), according to 

instructions from the manufacturer. 

Labelled RNA was used for the enrichment of RBP complexes, according to the 

manufacturer’s recommendations (Thermo Fischer Scientific). Briefly, experimentally 

labelled RNA was bound to 50 µL of streptavidin magnetic beads in RNA capture 

buffer and incubated on a rotation wheel for 30 min at room temperature (RT). Beads 

were washed three times with 20 mM Tris (pH 7.5). Bead-bound RNA was incubated 

with total protein extract, which was isolated from the human brain frontal cortex, for 

1 hour (hr) in RNA-protein binding reaction buffer at 4˚C followed by another three 

washes. Bound protein complexes were eluted with biotin elution buffer and pro-

cessed for mass spectrometry (MS) analysis. In this assay, streptavidin mag-

netic beads were mixed with protein extract in the absence of biotinylated transcript 

as a control for nonspecific binding. 

2.2.2.6 Label-free quantification mass spectrometry (LFQ-MS) analysis 

Mass spectrometry analysis was carried out as published previously (Zafar et al., 

2017). Briefly, isolated protein complexes were separated by 4-20% Bis-Tris gels 

(NuPAGE Novex Bis-Tris Mini gels, Invitrogen) for a length of ~1 cm followed by 

Coomassie staining. The bands were excised from the gel into small slices (1-2 

mm2). The gel pieces were initially rinsed with ddH2O followed by reduction (10 mM 

dithiothreitol [DTT] for 30 min at 56°C) and alkylation (55 mM iodoacetamide [IAA] at 

RT in dark for 1hr). Then, the gel slices were washed with acetonitrile (ACN) for 15 

min and dried using a SpeedVac. The gel slices were incubated overnight with the 

minimum possible amount of trypsin (12.5 ng/µL in 0.025 M aqueous ammonium 

bicarbonate) at 37°C. After digestion with trypsin, ddH2O (10 µL) was added to the 

https://www.thermofisher.com/global/en/home/life-science/protein-biology/protein-labeling-crosslinking/protein-labeling/biotinylation/desthiobiotinylation-reagents/desthiobiotin-product-selection-guide.html
https://www.thermofisher.com/order/catalog/product/20163
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slices for 15 min at 37°C, followed by the addition of ACN (80 µL) for 15 min at 37°C. 

Supernatant was isolated after a short-spin. Residual peptides were recovered from 

slices by incubation for 15 min at 37°C with 5% formic acid (FA) (65 µL). Again, ACN 

(65 µL) was added for 15 min at 37°C. Supernatant from this step was collected and 

added to previous supernatant. Total volume of supernatant was evaporated in a 

vacuum concentrator to dry. These samples were suspended in ACN (30%,10 uL) 

and triflouroacetic acid (TFA, 0.1%).  

For MS measurements, the peptide mixture was concentrated on a Reversed Phase-

C18 precolumn (0.15 mm ID x 20 mm, self-packed with Reprosil-Pur 120 C18-AQ 3 

µm material), followed by separation using Reversed Phase-C18 nanoflow chroma-

tography on a Picofrit column, 0.075 mm ID x 200 mm (New Objective, Woburn, 

USA) and a 15 min linear gradient on an Easy nLC-1000 nanoflow chromatographic 

system (Thermo Fisher Scientific). Samples were measured on a Q-Exactive hybrid 

quadrupole/orbitrap MS system operated under Excalibur v2.4 software (Thermo 

Fisher Scientific). 

Analysis was performed by a Top10 method in the Data Dependent Acquisition 

mode. Tandem mass spectra were extracted for database searching using the 

Raw2MSM v1.17 software (Max Planck Institute for Biochemistry, Martinsried, Ger-

many). MS/MS samples were analyzed using the Mascot (Matrix Science, London, 

UK; version 2.5.1) set for searching UniProt/SwissProt database (release 02/17 fil-

tered for Homo sapiens, 92928 entries). Mascot was searched with a fragment ion 

mass tolerance of 0.050 Da and a parent-ion tolerance of 10.0 PPM. Carbamidome-

thyl of cysteine was specified in Mascot as a fixed modification. Oxidation of methio-

nine, acetylation of the N-terminus and phosphorylation of serine, threonine and ty-

rosine were specified in Mascot as variable modifications and 2 missed cleavages 

were allowed. Scaffold (version Scaffold 4.8.4, Proteome Software Inc., Portland/OR, 

USA) was used to validate MS/MS-based peptide and protein identifications. Peptide 

identifications were accepted if they could be established at greater than 95% confi-

dence. For protein identifications, a minimum of two peptide counts and a confidence 

threshold of 99% was used. Protein probabilities were assigned by the Protein 

Prophet algorithm, as described by Nesvizhskii et al. (2003). Proteins sharing similar 

peptide sequences were classified into defined clusters. 
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2.2.2.7 Differential enrichment analysis of RBPome 

For a detailed analysis of the isolated proteome, three different approaches were 

used, here labelled approach A, B and C. Approach A was used to identify proteins 

differentially enriched in the various disease groups. Pairwise t-tests (two-sided) 

were performed for all disease group combinations using Perseus software (version 

1.5.0.31) (Tyanova and Cox, 2018), with a p-value < 0.05 and multiple testing correc-

tion using the Benjamini-Hochberg (BH) method. Using label-free MS to identify and 

quantify proteins, zero values were observed in the data for several proteins. Missing 

or zero values appeared when the mass spectrometer could not detect peptides hav-

ing abundances below the censoring cutoff of the mass spectrometer. Such values 

were informative because they were below the lowest abundance observed for a 

peptide. In such situations, when quantitative values were missing in one group but 

were present in other groups, this more likely represented differences in abundance 

between groups, which might indicate interesting features specific to that group. 

Therefore, zero values were imputed by half of the minimum value of total spectrum 

count values, to have statistical analysis of the proteomic candidates (Approach A). 

Fold change (FC) for all comparisons’ thresholds was set at ±1.5 and a p-value < 

0.05 for significance. Proteins which were identified as significantly enriched were 

used to make heatmaps using Perseus software (version 1.5.0.31). Volcano plots 

were also calculated using Perseus software, where FC was log2 transformed, so 

that the data were centered on zero, while the p-values were transformed into −log10.  

In addition, approach B was used. Given the exploratory nature of this discovery-

based proteomic work-flow, the criteria were relaxed and proteins with a single quan-

titative value were included in the analysis to compare all the disease groups. Venn 

diagrams were prepared, showing similar and unique proteins with functional en-

richment and analysis tool (FunRich).  

To have a deeper proteome coverage of isolated RNA-binding proteome of particu-

larly rapidly progressive forms of dementia (rpAD, sCJD-MM1 and sCJD-VV2 sub-

types), we used SWATH-MS quantitative proteomic analysis as the approach C, 

which also served as a confirmatory method for the LFQ-MS analysis. Detailed de-

scription of SWATH-MS is described in Section 2.2.15.8. Quantified proteins were 

analysed using Perseus software (version 1.5.0.31), to identify significantly modulat-
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ed proteins between two pairs of comparisons, namely rpAD vs sCJD-MM1 and 

rpAD vs sCJD-VV2. Significantly abundant proteins were visualized by heatmaps 

generated using Perseus software (version 1.5.0.31). 

2.2.2.8 Quantitative real-time PCR (qRT-PCR) 

Complementary DNA (cDNA) was synthesized from brain-derived total RNA (1 µg), 

using the High Capacity cDNA Reverse Transcription Kit (Thermo Fisher Scientific). 

The synthesis was performed according to the instructions from the kit protocol. The 

resulting cDNA was diluted (1:10) and stored at -20°C. All primer pairs for qRT-PCR 

assays were designed with Primer 3. The product size of all the primers was in a 

range of 100 to 150 base pair long. The primer sequences were tested using 

NCBI/Primer BLAST and synthesized by Eurofins Genomics (Table 14). Reaction 

mixtures for RT-PCR were prepared by mixing 1 uL of 10x PCR reaction buffer 

(Roche), 1 uL of dimethylsulphoxide (DMSO) (Sigma), 0.5 uL of 1:1000 dilutions of 

SYBR Green (Sigma), 0.2 mmol of each dNTP (Roche), 0.15 units of Taq-

polymerase, 10 pm/uL of forward and reverse primers and 1 uL of cDNA (1:10 dilut-

ed); the volume was filled up to 20 uL with RNAse-free water. Amplification was per-

formed using Light Cycler 480 (Roche), with an initial denaturation at 95°C for 2 min, 

followed by 40-PCR cycles (denaturation at 95°C for 30 seconds [sec], annealing at 

56°C for 30 sec, and extension at 72°C for 30 sec). Reactions were done in tripli-

cates. No template controls were used to ensure reaction specificity. The data were 

analysed with Light Cycler 480 software SW1.5.1 (Roche) and values were normal-

ised to GAPDH. The comparative Ct method (2-ΔΔCt) was used to measure relative 

fold change mRNA expression (Livak and Schmittgen, 2001). 

2.2.2.9 Preparation of brain homogenates for protein analysis  

Frontal cortex tissues were lysed from spAD, rpAD, sCJD (MM1 and VV2 subtypes) 

and non-demented control subjects, along with cortical tissues from mouse brains, 

as published previously (Zafar et al., 2018). Briefly, brain tissues were homogenized 

(10%, wt/vol) using tissue lyser LT (Qiagen) in ice-cold tissue lysis buffer containing 

protease and phosphatase inhibitors (Roche). To remove insoluble debris, lysates 

were centrifuged at 14000 rpm for 30 min at 4°C. Protein quantification of isolated 

extracts was performed by Bradford protein assay. Bradford assay dye reagent was 

diluted with ddH2O at a ratio of 1:5. Dilutions of protein standard, bovine serum al-
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bumin (BSA) were prepared (0.0–1.0 mg/mL) in ddH2O. Total protein extracts from 

experimental samples were diluted at a ratio of 1:20. From this dilution, 20 μL was 

mixed with 980 uL of Bradford working solution and the mixture was incubated for 10 

min at RT. All dilutions of protein standard and experimental samples were meas-

ured at a wavelength of 595 nm. Measured optical density values were used for cal-

culation of protein concentration. 

2.2.2.10 Immunoblotting 

Equal amounts of proteins (30–50 ug) from each brain lysate or cell lysate were re-

solved by molecular weight on 12% SDS-PAGE polyacrylamide gels (prepared in 

house) or 4–12% Bis-Tris gels (NuPAGE 4–12% Bis-Tris Protein Gels, Invitrogen). 

The protein marker (Precision plus protein dual color standards from Bio-Rad) was 

used to visualize the correct separation of the proteins and to confirm the correct 

protein band sizes. After separation on the gel, proteins were transferred onto a pol-

yvinylidene difluoride (PVDF) membrane with a 0.45 μm pore size using a semi-dry 

blot chamber (Bio-Rad, Hercules, USA) for 1 hr. The membranes were blocked for 1 

hr at RT in blocking reagent (5% non-fat dry milk in TBS-T or PBS-T), followed by 

incubation with primary antibodies at 4°C overnight. All the primary antibodies (total 

tau, phospho-tau (S199), SFPQ, TIA-1, VCP, β-actin, BRD-4, and GAPDH) were 

diluted in blocking buffer. The dilutions of all the primary antibodies are given in Ta-

ble 2. Next, the membranes were washed in PBS-T/TBS-T and incubated with sec-

ondary antibodies coupled to horseradish peroxidase (HRP) for 60 min at RT. Pro-

tein bands were detected using the enhanced chemiluminescent (ECL) method with 

Chemi-Doc (Bio-Rad). The densitometric analysis was performed with Image Lab 

software (3.0.1). 

2.2.2.11 Immunohistochemistry 

Formalin-fixed and paraffin-embedded human brain cortical sections (5 µm thick) 

from patients with spAD and rpAD as well as non-demented controls were analysed 

by co-immunofluorescence using protocols validated previously (Krasemann et al., 

2017; Vanderweyde et el., 2012). Briefly, tissue sections were deparaffinized using 

xylene, rehydrated and then proceeded for antigen retrieval with citrate buffer (pH 

6.0) for 1 hr at 95°C. The slides were cooled for 30 min at RT and then washed with 

PBS for 1 hr with repeated changes. Next, the sections were permeabilized with 
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0.2% Triton X-100 for 10 min, followed by two washes with PBS. The slides were 

then exposed to UV-A and UV-B for 20 min, to remove background fluorescence. 

The sections were then blocked with a blocking reagent (1% BSA, 10% FBS in PBS) 

for 1 hr at RT, treated with Sudan black to remove lipofuscin fluorescence and then 

washed with PBS for 30 min. The primary antibodies specific for SFPQ, TIA-1, phos-

pho-tau (S199) and oligomeric tau (T22) were incubated overnight at 4°C. Dilutions 

of all the primary antibodies are given in Table 2. After incubation, the slides were 

washed in PBS for 1 hr. The secondary antibodies, Alexa488, Alexa546 and 

Alexa555 (Invitrogen), were incubated for 2 hrs at RT followed by counter staining 

with TO-PRO-3 iodide for 1 min to visualize cell nuclei. After washing with PBS, the 

sections were mounted with Fluoromount-G (Thermo Fischer Scientific). After sec-

ondary antibody incubation, the whole procedure was carried out in dark. 

2.2.2.12 Confocal laser scanning and image analysis  

Imaging was performed with the confocal laser scanning microscope TCS-SPE from 

Leica, using 543 and 633 nm helium-neon and 488 nm argon excitation wave-

lengths. All images were separately analysed for co-localization using ImageJ (WCIF 

plugin) and FIJI software. Threshold Mander’s overlap coefficient (tM) and Pearson's 

linear correlation coefficient (rP) were calculated to measure the strength and direc-

tion of linear correlations between two fluorescence channels. In addition, intensity 

correlation analysis (ICA) was performed. This analysis generated scatter-plots of 

channel A and channel B against the product of the difference of each pixel A and B 

intensities from their respective means (PDM) (Li et al., 2004). The resulting plots 

emphasized the high intensity stained pixels and allowed to identify protein pairs that 

vary in synchrony (positive PDM values), randomly (around 0), or independently 

(negative PDM values) within the cell.  

2.2.3 Microbiological methods 

2.2.3.1 Culturing and storage of E. coli 

Plasmids were purchased from Addgene in the E.coli strain DH5α in agar stab and 

were propagated in-house. For long-term storage, bacterial strains were mixed with 

an equal volume of glycerol (50%) and stored at -80ºC. 
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2.2.3.2 Extraction of plasmid DNA 

For the extraction of plasmid DNA, Hispeed Plasmid Midi Kit (Qiagen) was used. A 

single bacterial colony was inoculated into 5 mL of LB medium containing ampicillin 

(100 μg/mL) followed by incubation for 12-16 hrs with continuous shaking (180–250 

rpm) at 37°C. The resultant bacterial pellets were harvested by centrifugation at 

5,000xg for 10 min at 4°C. All further procedures were performed according to the 

instructions of the kit protocol. 

2.2.4 Cell biology methods 

2.2.4.1 Cryopreservation of mammalian cell lines 

In order to be stored for longer, the cells were preserved in liquid nitrogen in DMSO. 

Cells at confluency (70–90%) were harvested and centrifuged at 400×g for 5 min. 

The cell pellet was resuspended in freezing medium (5% DMSO in culture medium) 

and immediately transferred to 1 mL cryogenic vials, followed by overnight freezing 

at -80°C. Finally, the vials were transferred to liquid nitrogen. 

2.2.4.2 Cell culturing and maintenance  

The cells were taken from the liquid nitrogen tank and incubated for 2 min in a 37°C 

water bath until nearly 80% thawed. The cells were then gently mixed with 10 mL of 

pre-warmed culture medium (DMEM, 10% FBS, 1% PS) and centrifuged at 400xg for 

5 min. The supernatant was removed and the pellet was suspended in 14 mL of the 

culture medium. The cells were cultured in flasks and plates at 37°C, 95% humidity 

and 5% CO2. After 24 hrs, the media was replaced with a fresh 14 mL culture medi-

um. Once the cells reached confluency, they were washed once with PBS followed 

by trypsinization using 2-3 mL of trypsin/EDTA solution. After trypsinization, cells 

were centrifuged at 400xg for 5 min and then washed with PBS. Cell counting was 

performed using a haemocytometer (0.1 mm sample depth). The cell pellet was re-

suspended in a fresh pre-warmed culture medium and cells were grown to approxi-

mately 70–90% confluency. All cell lines were cultured between 5 and 20 passages.  

2.2.4.3 Stress model for stress induction 

Confluent cells (HeLa and SH-SY5Y) were subjected to oxidative stress by adding a 

pre-warmed culture medium containing sodium arsenite (0.6 mM) for 1 hr at 37°C. 
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After 1 hr of treatment, the cells were either fixed with 4% paraformaldehyde (PFA) 

for immunocytochemistry or processed for immunoblotting analysis. 

2.2.4.4 Immunocytochemistry 

The cells were grown in T75 flasks with culture medium (DMEM, 10% FBS, 1% PS). 

At confluency (70–90%), cells were trypsinized and seeded (5 x 104) on glass co-

verslips (13 mm) in 24-well plates. Following the stress treatment as described 

above, the cells were fixed with 4% PFA for 20 min at RT, followed by three washes 

with ice-cold PBS for 5 min each. Permeabilization was achieved using 0.2% Triton 

X-100 in PBS for 10 min, followed by three washes with PBS for 5 min each. To 

avoid non-specific binding, cells were incubated with blocking buffer (1% BSA, 10% 

FBS in PBS) for 30 min at RT. The primary antibody and, in case of double labelling 

both primary antibodies, were diluted in 1% BSA in PBS, followed by overnight incu-

bation at 4°C. The cells were washed three times with PBS (each wash was for 5 

min) followed by incubation with secondary antibodies (see Table 3) diluted in 1% 

BSA in PBS for 2 hrs at RT in the dark. The cells were rinsed three times with PBS 

for 5 min each in the dark to remove non-specific immunoreactivity. The cells were 

then counterstained with DAPI for 1 min or a RedDot 2 Far red nuclear stain for 20 

min. After nuclear staining, the cells were washed three times with PBS, followed by 

mounting with one drop of mounting medium (immuo-mount, Thermo Fisher Scien-

tific). The slides were stored in the dark at -20°C or +4°C until they were imaged. 

The average number of stress granules in each cell was calculated using FIJI soft-

ware.  

2.2.4.5 Subcellular fractionation  

Cellular fractionation after stress treatment was carried out as described previously 

(Suzuki et al., 2010). Briefly, confluent HeLa cells (70–90%) were washed once with 

ice-cold PBS, scraped and resuspended in 1 mL of PBS. After a short spin (10 sec), 

the supernatant was removed and the cell pellet was resuspended in 900 μL of the 

lysis buffer (0.1% NP40 in PBS) (Calbiochem, CA, USA) followed by trituration (5x) 

using a p1000 micropipette. From this step, 300 uL of the whole cell lysate fraction 

were isolated and mixed with 4x Laemmli buffer (100 μL). The remaining (600 μL) 

lysate was centrifuged for 10 sec. The supernatant (300 μL) from this step was sepa-

rated as the “cytosolic fraction” and mixed with 4x Laemmli buffer (100 μL) followed 



Materials and methods 

39 
 

by boiling for one min. The remaining supernatant in the original tube was removed 

and the pellet was resuspended in 1 mL of lysis buffer and centrifuged for 10 sec. 

This supernatant was removed and the pellet (~20 μL) was resuspended in 180 μL 

of 1x Laemmli buffer and saved as the “nuclear fraction”. Whole-cell nuclear fractions 

containing DNA were sonicated in an ultrasonicator (Level 2, twice for 5 sec), fol-

lowed by boiling for 1 min. From each fraction, 10 μL were proceeded for immunob-

lotting analysis with primary antibodies specific for total tau (tau-5), phospho-tau 

(S199), TIA-1, SFPQ, β-actin, BRD4, and GAPDH.  

2.2.4.6 Cell lysis and protein extraction 

Total protein extracts were prepared from 70-90% confluent HeLa and SH-SY5Y 

cells. After stress treatment, all the cell lines were washed with 1x PBS, scraped and 

resuspended in lysis buffer (50 mM Tris-HCl, pH 8, 1% Triton X-100, 0.5% CHAPS, 

1mM DTT, protease, and phosphatase inhibitors). Lysates were sonicated using an 

ultrasonicator on ice, followed by incubation for 1 hr at 4°C with shaking. The lysates 

were centrifuged at 14000 rpm for 30 min at 4°C. The supernatants were transferred 

to new tubes and proteins were quantified as described above. To harvest cells after 

transient transfections, cells were trypsinized and washed with PBS followed by cen-

trifugation at 400xg for 5 min at 4°C. The washed cell pellets were lysed, and protein 

quantification was performed as above.  

2.2.4.7 Tau transfections 

Plasmids for human wild-type tau (pRK5-EGFP-tau) and mutated tau (pRK5-EGFP-

tau P301L) were obtained from Addgene. The plasmids were propagated in E. coli 

DH5α strain and extracted from the the transformed bacteria using the Hispeed 

Plasmid Midi kit (Qiagen). Transient transfections were achieved using the Lipofec-

tamine 2000 (Invitrogen) reagent, according to the instructions of the manufacturer. 

HeLa cells (2x 105/well) were plated in 6-well plates and cultured for 24 hrs in culture 

medium. The cells were washed with Opti-MEM I, followed by transfection with 2 μg 

of DNA/well in the Opti-MEM I medium. The cells were collected from cultures after 

24 and 48 hrs post-transfection. 
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2.2.4.8 SWATH-MS for global proteomics 

2.4.8.1 Library preparation 

Analytical-grade reagents were used for protein extraction and digestion. Sterile wa-

ter (Ampuwa, Fresenius, Bad Homberg, Germany) was used to prepare all buffers 

and solutions. For the preparation of the spectral peptide library, digested protein 

extracts (normalized for protein amounts) from each sample were pooled to a total 

amount of 220 µg and separated into fourteen staggered pooled fractions, using an 

Äkta pure (GE Healthcare) with a Hypersil Gold C18 column (diameter 150x2,1 mm, 

Particle size: 3 µm). Protein digests were analyzed on an Eksigent nanoLC425 

nanoflow chromatography system associated with TripleTOF 5600+, a hybrid triple 

quadrupole TOF mass spectrometer with a Nanospray III ionization source (ionspray 

voltage 2400V, Interface heater temperature 150°C, Sheath gas setting 12). The 

peptides were dissolved in loading buffer (0.1% formic acid, 2% acetonitrile in optima 

water [Thermo Scientific]) to a final concentration of 0.3 µg/µL and spiked with a syn-

thetic peptide standard used for retention-time alignment (iRT Standard, Schlieren, 

Schweiz). For every measurement, digested proteins (1.5 µg) were enriched on a 

precolumn (PharmFluidics µPAC Trapping Column) and separated on a PharmaFlu-

idics µPAC microchip-based separation analytical column with 50 cm length, using a 

120 min linear gradient of 5%–45% ACN, 0.1% FA at a flow rate of 300 nL/min. 

Qualitative LC-MS/MS measurement was carried out using a Top 20 data-dependent 

acquisition (DDA) mode with a mass range of m/z 350–1250 for 250 milliseconds 

(ms). The resolution for data extraction was 30,000 full width at half maximum 

(FWHM). MS/MS scans of mass range m/z 180–1600 at a resolution of 17,500 

FWHM for 85 ms and a precursor isolation width of 0.7 FWHM with a cycle time of 

2.9 sec were used. For MS/MS, the criteria for precursor ions selection were as fol-

lows: a threshold intensity of more than 125 cps with charge states of 2+, 3+, and 4+, 

and the dynamic exclusion of 30 sec. In every reversed-phase fraction, two technical 

replicates were analyzed for the construction of the spectral library. 

2.4.8.2 Quantitative SWATH measurement 

For the SWATH measurement, MS/MS data were obtained using windows of 65 var-

iable sizes across a mass range of 400–900 m/z. For each biological sample, two 

technical replicate injections were attained. Protein identifications were attained us-
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ing ProteinPilot Software version 5.0 build 4769 (AB Sciex) at “thorough” settings. 

Spectra from MS/MS were searched in the UniProtKB using Homo sapiens as refer-

ence proteome (revision 04/2018, 93661 entries) at a critical false discovery rate 

(FDR) of 1%. Spectral library and SWATH peak extraction were attained in Peak-

View Software version 2.1 build 11041 (AB Sciex). Following retention time correc-

tion using the iRT standard, peak areas were extracted using information from the 

MS/MS library at 1% FDR. The peak areas were summed up to peptide and finally 

corresponding protein area values that were used for downstream statistical and 

functional analysis.  

2.4.8.3 Gene Ontology analysis and functional network mapping  

To gain functional insights from proteomics data, three different enrichment strate-

gies were used. Functional enrichment analysis was initially performed using Per-

seus software for significantly enriched Gene Ontology (GO) processes, including 

the Biological Process and Molecular Function by Fisher’s exact test. Then, 

overrepresentation enrichment analysis was performed using the web-based Gene 

SeT Analysis Toolkit (WebGestalt), in the domains of Biological and Molecular Func-

tions to have a GO Slim summary of enriched terms. Finally, an Ingenuity Pathway 

Analysis (IPA, Qiagen, USA) was performed to find out canonical pathways associ-

ated with up- and down-regulated proteins after tau expression, as described below.  

2.4.8.4 Ingenuity Pathway Analysis (IPA) 

The proteomic dataset containing the fold change and p-values of significantly regu-

lated proteins was uploaded to IPA for core analysis (Qiagen, USA). The protein 

candidates from the submitted dataset generated top molecular networks based on 

Molecular and Biological Functions including canonical pathways, potential upstream 

regulators, and disease-based networks. The settings for analysis were based on 

direct and indirect relationships between differentially expressed proteins (DEPs), 

and these were supported by experimentally reported data from human, mouse and 

rat studies (Everts et al., 2014). Potential upstream regulators were designated as 

inhibited or activated, according to the fold change and p-values (-log10-p-values) 

(Sardiu et al., 2009) of the DEPs. In order to understand the complex relationships 

among significant disease-based networks, Cytoscape (3.6.1) was used to construct 

and visualize the networks. 
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2.2.5 Biochemical methods 

2.2.5.1 MTS assay 

Cells were grown in T75 flasks with culture medium (DMEM, 10% FBS, 1% PS). At 

confluency (70–90%), cells were trypsinized and then washed once with PBS. The 

cells were seeded (10 x 103) in 96-well plates and incubated for 18–24 hrs at 37°C. 

Transfections were performed as described above with plasmids coding for wild-type 

tau and P301L-tau for variable periods of time (24 and 48 hrs). To measure cell via-

bility, MTS assay (ab197010, Abcam) was used according to the manufacturer’s pro-

tocol. The culture media was replaced with a fresh medium before treatment with the 

3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H te-

trazolium MTS reagent. To estimate the effect of tau expression on cell viability, the 

reduced MTS tetrazolium complex (colored formazan product) was measured. This 

conversion is a property of metabolically active cells. For color development, cells 

were incubated at 37oC for 1 hr and the absorbance measurement was taken at 490 

nm using a Perkin Elmer Wallac 1420 Victor microplate reader (GMI, USA). Absorb-

ance from the control wells (background) was subtracted from the sample wells. 

2.2.5.2 Trypan blue exclusion assay 

Cell viability was also assessed through the trypan blue exclusion dye test. Briefly, 

the cell suspension in the culture medium (25 µL) after trypsinization was mixed with 

25 µL of 0.4% trypan blue. After mixing, the 10 uL of cell suspension was loaded on-

to haemocytometer. The viable (colorless) and dead (blue) cells were counted in 

each large square of the haemocytometer using a 40x objective for both untreated 

(control) and sodium-arsenite-treated (stress) cells.  

2.2.6 Animal time course and sample collection  

All animal experiments were conducted according to the ethical standards of the Re-

gierungspräsidium Tübingen (Regional Council) experimental no. FLI 231/07 file ref-

erence number 35/9185.81-2. All procedures were carried out in accordance with the 

institutional and French national guidelines within the European Community Council 

Directive 86/609/EEC. The experimental procedures approved by the INRA Tou-

louse/ENVT ethics committee were used. 
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The mice model (3xTg-AD) was initially generated and characterized by Oddo et al. 

(2003). Transgenic mice between 3–4 months of age were inoculated with 10% brain 

homogenates in PBS from AD-patients, in the thalamus. Both, inoculated and non-

inoculated control animals were sacrificed at 4 time-points corresponding to early 

pre-symptomatic (3 months post-inoculation [mpi]), late pre-symptomatic (6 mpi), 

early symptomatic (9 mpi) and late symptomatic (12 mpi) stages of the disease, and 

the brains were collected. All mice (n = 48) were anesthetized and decapitated. The 

cortical tissues were obtained and immediately stored in liquid nitrogen for further 

analysis. A graphical representation of the mice model indicating different time points 

of the sample collection is given in Fig. 8. 

 

Figure 8: Graphical representation of animal experimentation using the mice model of Alzheimer’s dis-

ease. Transgenic mice model of AD (3xTg-AD) was used for inoculation. Brain homogenates (b.h.) (10%) from 

AD patients were injected into thalamus. The samples were collected for early pre-symptomatic (3 months post-

inoculation [mpi]), late pre-symptomatic (6 mpi), early symptomatic (9 mpi) and late symptomatic (12 mpi) stages 

of the disease. 

 

2.2.7 Statistical analysis 

All the data in the present study was obtained after performing at least three inde-

pendent experiments. All the results are described as mean ± SEM (standard error 

of the mean). The densitometry analysis of immunoblots was performed with Image 

Lab software (version 3.0.1). Statistical tests were applied using GraphPad Prism 

6.01. The data from mass spectrometry analysis were analysed using the Perseus 

software with adjustments for multiple testing. Hierarchical clustering analysis was 

also performed with Perseus software. Two-dimensional interaction plots were plot-
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ted in R (version 3.4.3), followed by editing using Inkscape (version 0.92). For com-

parisons between two groups, the Student’s t-test or Welch’s t-test was used. For 

comparisons between three or more groups, a one-way ANOVA followed by the 

Tukey post-hoc analysis was used. Statistical significance was considered for a p-

value < 0.05. 



Results 

45 
 

3 Results 

Emerging evidence has demonstrated that numerous neurodegenerative disorders 

including AD display features of RBP pathologies, highlighting a vital role of RBPs in 

neurodegeneration (Cookson, 2017; Vanderweyde et al., 2016). The study of RBP 

biology is at its early stages, particularly in Alzheimer’s and prion diseases. To this 

end, we identified and characterized the RNA-binding proteome variations in Alz-

heimer’s and prion diseases. 

This chapter is divided into four major sections. The first section describes the identi-

fication and characterization of RNA-binding proteomes from postmortem brains of 

diseased and healthy subjects. Target candidates were prioritized from proteomic 

analyses for further investigation. The second section is focussed on pathological 

characterization of target RBPs, particularly SFPQ, in the human brain. The third 

section describes the cellular model of stress and the tau-pathology model, and, in 

addition, explores the mechanistic link of SFPQ in disease pathogenesis and pro-

gression. This chapter links SFPQ in the human brain to stress granules and tau pro-

tein. Finally, in the fourth section, SFPQ and associated proteomic signatures are 

studied at pre-symptomatic and symptomatic stages of the disease in the 3xTg-AD 

mice model, in order to uncover early changes during the disease progression (Fig. 

9).  
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Figure 9: Overview of the results: In the first part of the study, RNA-binding proteins were identified and char-

acterized in postmortem brains from diseased and healthy subjects (Section 3.1). Targets were prioritized for 

further investigation from the proteomic study (Section 3.1.5). One of these target RBPs, the RNA-binding protein 

SFPQ (splicing factor proline and glutamine rich), was pathologically characterized in the human brain (Section 

3.2). Then, these target candidates were translated in the cellular (Section 3.3) and animal models (Section 3.4) 

to investigate mechanistic links with pathological features of the disease.  

 

3.1 RNA pull-down assay and mass spectrometry analysis of RNA-

binding proteome 

In this study, we utilized brain-derived, total RNA to pull down RBPome complexes 

from the human brain of spAD, rpAD, sCJD as well as control subjects. Mass spec-

trometry analysis was performed to identify and quantify isolated RNA-binding pro-

tein complexes. A schematic outline of the RNA pull-down/MS procedure used in this 

study is shown in Fig. 10A.  

Total RNA was isolated from the frontal cortical region of the brain of diseased and 

control subjects. Brain-isolated RNA was labelled with desthiobiotin at 3’-end to min-

imize any disturbance to the secondary structure of the RNA. Desthio-biotinylated-

RNA was bound to streptavidin magnetic beads and oriented to enrich RNA-binding 

protein complexes. Isolated protein complexes were identified by two MS approach-

es: global proteomic approach (spectral counting-based, label-free quantification 

[LFQ]) and a variant of data-independent quantitative MS (Sequential Window Ac-

quisition of All Theoretical Mass Spectra [SWATH-MS]) (Fig. 10A).  

After the identification and quantification of RBPome candidates, a combination of 

bioinformatic, computational, and biochemical approaches was used to comprehen-

sively analyse the isolated RBPome (Fig. 10B). 
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Figure 10: Identification of RNA-binding proteome by total RNA pull-down assay coupled with mass 

spectrometry analysis. A) Total RNA was isolated from the frontal cortical region of 20 diseased and control 

cases. Brain-derived RNA was desthiobiotinylated at 3’-end to minimize disturbance to the secondary structure of 

RNA pull-down assay MS analysis
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RNA. Desthiobiotinylated RNA was bound with streptavidin magnetic beads. Bead-bound RNA was oriented to 

pull down RBP complexes from total tissue lysates of corresponding diseased and healthy subjects. Bead-only 

controls were used for non-specific binding. Isolated RBP complexes were digested into peptides followed by 

identification and quantification by mass spectrometry. In total, 1,091 proteins were detected and quantified at a 

minimum peptide count of 2 and a protein confidence threshold of 99%. B) Target selection from proteomic 

investigation and their pathological characterization in the postmortem brains. A combination of bioinfor-

matic and computational approaches was used to identify significant hits from the proteomic study, including 

differential enrichment analysis of MS data, hierarchical clustering analysis to visualize global proteome profile, 

comparative RBPome analysis for similar and unique proteins, Gene Ontology (GO) functional enrichment analy-

sis, database search for identification of bona-fide and novel or putative RBP candidates, and prion-like domain 

scanning with the PLAAC database. Target candidates from proteomic investigation were pathologically charac-

terized in the postmortem human brain, using various techniques including immunoblotting, qRT-PCR, and im-

munohistochemical analysis. 

 

3.1.1 Global enrichment profile of RNA-binding proteome 

Label-free quantitative mass spectrometry analysis identified a total of 1,091 pro-

teins, with minimum peptide count of 2 and a protein confidence threshold of 99%. 

For detailed analysis of the identified proteome, three strategies were adopted (Fig. 

11). A detailed description of all the approaches (A, B and C) can be found in ‘’Meth-

ods Section’’. In approach A and B, two subtypes of sCJD (MM1 and VV2) were 

merged, and only proteins that were common in both subtypes were considered to 

be a general representation of the sCJD group. Firstly, to gain insight into the global 

similarities and differences between disease groups, RBP-candidates were uploaded 

to Perseus software, followed by pairwise comparisons between all the group com-

binations using t-test (approach A). The proteins having a p-value < 0.05 and FC > 

±1.5 were considered as significantly abundant between any of the experimental 

groups (Fig. 12A).  

Using significantly enriched proteins in the hierarchical clustering analysis, four dif-

ferent expression signatures were found, which are represented in the form of 

heatmap (Fig. 12B). Columns of the heatmap represent all the disease groups, while 

the rows represent significantly abundant proteins. Clustering of the biological repli-

cates across the vertical axis generated two main column clusters. Based on RBP 

signatures, rpAD and sCJD groups appeared largely similar as they were segregated 

into a single cluster and differed from the control group (Fig. 12B). The control and 

spAD cases were segregated into a separate cluster based on the full set of differen-
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tially enriched proteins, which indicated similarities in the protein profiles between 

control and spAD groups.  

Overall, clustering of the individual replicates indicated low biological variance and 

segregation of all the groups, showing the reproducibility and robustness of the work-

flow (Fig. 12B).  

 

Figure 11: Statistical analysis of RBPome candidates: Two different strategies (approaches A and B) were 

used to obtain a more detailed analysis of RBPome candidates identified from LFQ-MS. Approach A: Statistical 

analysis of isolated proteomic candidates by Perseus software. Zero values from the total spectral counts of the 

proteins were imputed by half of the minimum value followed by pairwise Student’s t-test comparisons between 

all the group combinations, to find out significantly enriched proteins in each group. Approach B: Qualitative 

analysis of the RBPome. Proteins with a single quantitative value were included in this approach from all the 

groups to have a broader impression of the isolated proteome. In order to find out common and unique proteins 

among all the groups, a comparative RNA-binding proteome profile was obtained, based on specifically identified 

proteins in each group. Approach C: SWATH-MS of rpAD and sCJD (MM1 and VV2 subtypes) followed by pair-

wise comparisons, as above. The numbers of resulted proteins, and selected proteins is described in figures as 

indicated. 
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Given the exploratory nature of this discovery-phase proteomics workflow, we re-

laxed the criteria and included all the proteins with one or more than a single-

detection in each group, due to the high sensitivity of the MS analyser (approach B) 

(Fig. 11). The proteins which were specifically enriched in each group were further 

analysed to have a comparative proteome profile of the RBP-candidates. This analy-

sis revealed disease-subtype specific differences in the enriched RBP candidates 

(Fig. 13A). There were 98 proteins that were shared among all the groups. The 

common and unique proteins from all the groups are shown in figure (Fig. 13A, an-

nexure data Table 15). 

The RBPome variations were highly prominent in the sCJD and rpAD groups, as ev-

idenced by the global enrichment profile of both groups (Fig. 12B). We used a vari-

ant of data-independent quantitative MS, namely SWATH-MS, to gain a deeper in-

sight into rpAD and sCJD RBPome candidates (Fig. 11, approach C). The 

SWATH‐MS variant has emerged as a technology that combines the deeper prote-

ome coverage with the quantification accuracy.  

This analysis identified 1469 proteins at FDR of 5%, while 917 proteins were quanti-

fied at a critical FDR of 1%. Bioinformatic analysis (Welch’s t-test with Benjamini-

Hochburg correction) indicated 477 proteins that were differentially modulated in 

abundance between rpAD and the two subtypes of sCJD, MM1 and VV2. One inter-

esting finding, evident from the hierarchical clustering analysis of the significantly 

modulated RBP signatures, was the similarity in the RBPome profile between rpAD 

and the sCJD-subtype MM1, when compared to the sCJD-VV2 subtype. Both groups 

(rpAD and sCJD-MM1) were segregated into a single cluster, whereas the sCJD-

VV2 subtype was segregated into a separate cluster (Fig. 12C).  
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Figure 12: Global enrichment profile of RBPome candidates: A) Volcano plots of pairwise comparisons dis-

playing, the -log10-p-values (y-axis) and the log2(FC) of the proteins that were significantly abundant (x-axis) in all 

the group combinations (spAD vs control, rpAD vs control, sCJD vs control, spAD vs rpAD, rpAD vs sCJD, and 

spAD vs sCJD). The dashed lines indicate Student’s t-test cut-off, the data points above the dashed lines repre-

sent proteins having a p-value < 0.05 and FC > ±1.5 as significant hits, which are depicted in red (for enriched) 
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transformed expression values were normalized by Z-score for each biological replicate. Horizontal axis indicates 

the differentially enriched proteins, and the vertical axis shows the biological replicates from all the groups. Green 

denotes depleted proteins, red represents enriched proteins. C) The heatmap of hierarchical clustering from 

SWATH-MS of rpAD and sCJD-MM1 and -VV2 subtypes, showing similarities in RBPome candidates between 

rpAD and sCJD-MM1 subtype. 

 

3.1.2 Functional categorization of RBP candidates  

To gain functional insights into the identified RBP candidates, classification based on 

Gene Ontology (GO) annotations was performed (Fig. 13B). The analysis was per-

formed in the GO domains, including “Biological Process and Molecular Function”. 

The results of this analysis identified several categories that were differentially en-

riched in various disease groups.  

To compare the functional profiles and to visualize the relative enrichment of differ-

ent categories in all the groups (Fig. 13B), the protein counts belonging to GO terms 

from each group were uploaded to Perseus software. The variation in each term 

across the groups was calculated by a Z-score. The heatmap is representing dis-

ease groups across the columns (vertical axis) and functional terms in the rows (x-

axis). The enriched terms in comparison to other groups are indicated by red, while 

depleted terms are indicated by green. 

A large number of identified proteins were related to cellular and metabolic process-

es, RNA metabolism, and immune and stress responses, among other activities. 

Consistent with the analysis of the RNA-binding proteome, many proteins were an-

notated as having nucleic acid, nucleotide, RNA- and/or DNA-binding activity as well 

as transcriptional regulatory and transporter activities (Fig. 13B). A variety of proteins 

were annotated as having catalytic activity (including lipid and carbohydrate metabol-

ic enzymes and protein modulating enzymes), structural molecule and signal trans-

ducer activity (Fig. 13B). 

Based on clustering of GO terms, rpAD and sCJD groups were segregated into a 

single cluster, showing similarities in the enriched functional terms (Fig. 13B). The 

most enriched processes for both groups included response to stress (e.g. response 

to oxidative stress and cellular response to stress), metabolic process and catalytic 

activity, among others (Fig. 13B). The signal transducer activity was particularly en-
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riched in the spAD group when compared with other groups. Additionally, one cluster 

of cellular processes, including cellular homeostasis, localization and binding, was 

particularly enriched in the rpAD group, showing more aggressive disturbances in 

the overall cellular homeostasis of the rpAD group. Taken together, these results 

suggested that the RBPome aberrations are an integral part of the pathological fea-

tures of particularly the rapidly progressive forms of dementia. 
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Figure 13: Comparative RNA-binding proteome profiling and functional categorization of MS results. A) 

Venn diagram showing similar and unique RBP candidates in each group. There were ninety-eight proteins 

common among all the groups. There were total of 315 proteins in the control, 377 in the spAD, 361 in the sCJD 

and 409 in the rpAD group. Of these, 107 were only uniquely present in the control, 97 were only found in the 

spAD, 70 in the sCJD and 76 in the rpAD group. B) Functional categorization of MS results: RBP candidates 

C
o

n
t.

s
p

A
D

rp
A

D

s
C

J
D

Signal transducer activity

Structural molecule activity

Molecular carrier activity

Detoxification

Transcription regulator activity

RNA binding

Antioxidant activity

Immune system process

Response to stress

Metabolic process

Catalytic activity

Receptor activity

Transporter activity

Cellular homeostasis

Localization

Binding

-1.4        -1        -0.6  0               0.6         1         1.4        

A

B

sCJD

361

spAD

377

rpAD

409

Cont.

315



Results 

55 
 

identified in each group were analysed for associated GO terms. The protein count associated with the GO terms 

from each group was uploaded to Perseus software, to prepare heatmap showing relative enrichment of different 

functional categories across all the groups. The variation in each term across the groups was calculated by Z-

score. The heatmap is representing disease groups across the columns (vertical axis) and functional terms in the 

rows (x-axis), with red indicating an enriched category as compared with other groups, and green indicating de-

pleted terms. 

 

3.1.3 Classification of known and putative/novel RBP candidates 

Candidates for RNA-binding protein were classified as previously demonstrated 

(Beckmann et al., 2015). In order to discriminate bona-fide RBPs from putative RBP 

candidates, identified proteins were searched for RNA-binding annotation in the Uni-

ProtKB database. Two categories were organized to give clarity to the data, as de-

scribed previously (Zhang et al., 2016) (Fig. 14A). The category I (bona-fide RBP 

candidates: red bars) contains proteins that were annotated as RNA-binding in the 

UniProtKB database. There were 64 RBPs in the control group, 64 in spAD, 77 in 

rpAD and 70 in sCJD that were annotated as RNA-binding proteins (Fig. 14A). The 

category II (putative/novel RBP candidates: black bars) contains the rest of the pro-

teins that have neither a known RNA-binding domain (RBDs) nor a known linkage to 

the RNA. The putative RBP candidates include metabolic enzymes and translation 

factors among others. It should be noted that some of the identified candidate pro-

teins may not have RNA-binding activity themselves, but, instead, interact with other 

proteins that do, and are hence identified in the RBPome. 

3.1.4 Prion-like domain (PLD) prediction 

Prion-like domains are often present in RBPs, which carry out protein aggregation in 

neurodegenerative diseases, e.g. amyotrophic lateral sclerosis (ALS), and, more 

recently, in AD (King et al., 2012; Wolozin, 2012; Vanderweyde et al., 2016). To 

evaluate the presence and functional implication of PLD-containing proteins, the 

identified RNA-binding proteomic candidates were analysed using highly stringent 

computational algorithms (Batlle et al., 2017; Michelitsch and Weissman, 2000; 

Toombs et al., 2012; Zambrano et al., 2015). In this study, the web-based PLAAC 

database was used to identify domains with prion-like amino acid sequences. The 

input sequences are ranked by several types of summary scores. Criteria for a pro-

tein to have a PLD consisted of four requirements: it had to 1) be rich in Q/N-
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sequences, 2) exhibit disorderliness according to the PAPA algorithm (Prilusky et al., 

2005), 3) have compositional similarity with yeast prion domains, and 4) contain 

short amyloidogenic stretches able to carry out their self-assembly into an amyloido-

genic state. Applying these criteria, we identified twenty-four PLD-containing proteins 

in the current study (Table 10).  

Table 10: Prion-like domain prediction score of RBPs from PLAAC database. 

Experimental group SEQid COREscore PAPAprop 
Cont., sCJD sp|Q12906|ILF3 30.688 0.092 

Cont. rpAD, sCJD sp|P08247|SYPH 25.009 -0.105 

Cont. spAD, sCJD sp|Q5D862|FILA2 24.633 0.109 

Cont., spAD, rpAD, sCJD sp|P17600|SYN1 20.311 -0.054 

Cont, sCJD sp|O43390|HNRPR 17.059 -0.049 

Cont., sCJD sp|P09012|SNRPA 11.165 -0.146 

  
   

spAD, rpAD sp|Q9UPA5|BSN 22.864 -0.044 

spAD, rpAD, sCJD sp|P20073|ANXA7 17.868 -0.033 

spAD, sCJD sp|Q92945|FUBP2 15.926 -0.065 

spAD, rpAD, sCJD sp|P02671|FIBA 12.12 0.033 

  
   

rpAD, sCJD sp|Q14103|HNRPD 30.124 0.164 

rpAD, sCJD sp|P23246|SFPQ 28.671 -0.1 

rpAD sp|P04156|PRIO 14.844 0.02 

  
   

sCJD sp|Q92734|TFG 38.015 -0.005 

sCJD sp|Q01844|EWS 34.368 0.057 

sCJD sp|P22626|ROA2 30.362 0.043 

sCJD sp|P09651|ROA1 28.381 0.093 

sCJD sp|Q8WUM4|PDC6 26.882 0.049 

sCJD sp|P50995|ANX11 19.803 -0.059 

sCJD sp|Q9UBV8|PEF1 19.787 0.005 

sCJD sp|P17931|LEG3 17.868 -0.033 

sCJD sp|P49840|GSK3A 11.251 -0.103 

sCJD sp|P14678|RSMB 10.958 -0.121 

sCJD sp|O60506|HNRPQ 8.799 -0.019 

PLAAC: Prion-like amino acid composition, SEQid: sequence ID from fasta file, COREscore: max sum of PLAAC 

LLRs, PAPAprop: max score of PAPA prion propensities (Toombs et al., 2012), Cont.: control, spAD: sporadic 

Alzheimer’s disease, rpAD: rapidly progressive Alzheimer’s disease, sCJD: sporadic Creutzfeldt-Jakob disease. 

 

Among all the identified PLD-containing proteins, splicing factor proline and gluta-

mine rich (SFPQ) with a PLD score of 28.67 was an interesting target as this protein 

was specifically enriched in rapid forms of dementia (rpAD and sCJD). The detailed 

architecture of the SFPQ prion-like domain is described in the figure (Fig. 14B). 
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Figure 14: Identification of bona-fide and putative RBP candidates. A) The proteins identified in the proteo-

mic study were searched for RNA-binding annotation in the UniProtKB database. The bar graph shows two cate-

gories of identified protein candidates. The category I (red bar) indicates bona-fide RBPs (known), and category II 

(black bar) represents potential novel/putative RBP candidates from each group. B) Identification of SFPQ-prion-

like domain by PLAAC database. The amino acid composition of SFPQ is represented in colour-coded boxes. 

The red line in the top panel represents the probability of having a prion domain against the background. The 

plots in the middle panel show fold-index scores in grey (Prilusky et. al., 2005), the log-likelihood (LLR) ratio 

scores in red (Alberti et. al., 2009), and the predicted prion propensity (PPP) in green (Toombs et. al., 2010). 

Negative scores represent disorder and prion propensity, dashed green line is indicating the cutoff value of PPP 

> 0.05. The bottom panel shows the primary sequence of SFPQ with the PLD in red (Alberti et. al., 2009). 
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3.1.5 Target candidates from proteomic study 

From the proteins which had prion-like domains (as described in the Table 10), the 

SFPQ was selected (approach B). This protein was specifically identified in the rpAD 

and sCJD groups and exhibited a high score for PLD. This high score of PLD is a 

crucial factor contributing to the pathophysiology of RBPs. Given the involvement of 

stress granules in the AD, valosin-containing protein (VCP) was selected from re-

sults using the approach A. The valosin-containing protein plays an important role in 

the formation and clearance of SGs. Valosin-containing protein was also specifically 

enriched in rapid forms of dementia (rpAD and sCJD).  

One interesting finding evident from the proteomic study was the enrichment of the 

microtubule-associated protein tau (MAPT), a major hallmark of AD in our RBPome 

dataset, suggesting an intimate link of RBPs to tau-related pathological mechanisms. 

The interactive association between tau, SFPQ and VCP led us to investigate the 

role of these target candidates in the disease. Furthermore, TIA-1 (T-cell intracellular 

antigen 1) was also added to the candidate list for further investigation (Fig. 15), giv-

en that its role in tau aberrations in AD (Apicco et al., 2018), although it was not de-

tected in our MS dataset, most likely due to the hydrophobic nature of the protein.  

 

Figure 15: Candidate hits from proteomic investigation. Splicing factor proline and glutamine rich (SFPQ) 

(approach B) was selected, because the protein was specifically enriched in rpAD and sCJD, and, in addition, 

bearing high score for PLD; which is very crucial factor contributing to pathophysiology of RNA-binding proteins. 

Given the recent role of stress granules in AD, valosin-containing protein was selected (approach A). This protein 

was significantly enriched in abundance only in diseased groups and has a role in the formation and clearance of 

SGs. Due to involvement of TIA-1 protein in the pathophysiology of tau, it was also added to the target candidate 

list, although it was not detected in our dataset. 

 

SFPQ VCP TIA-1
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In order to more accurately illuminate the specific mechanisms of how selected tar-

gets (particularly SFPQ) interact with other major cellular components (e.g. tau) in 

the development of AD, and to further ascertain whether the aforementioned select-

ed approaches were appropriate for the target selection, we began to explore these 

proteins more in-depth. Based on research which has shown that neurons are par-

ticularly vulnerable to aberrant dosage as well as the dynamics of RBPs (Conlon and 

Manley, 2017), the first set of analyses focused on the pathological characterization 

of these target proteins in the postmortem brains, using various techniques including 

immunoblotting, immunohistochemistry, and qRT-PCR analysis. Then, these target 

candidates were translated in the cellular and animal models to find out mechanistic 

links with pathological features of the disease.  

3.2 Pathological characterization of target RBP (SFPQ) in the post-

mortem human brain 

3.2.1 SFPQ is dysregulated in rpAD and sCJD brains 

To investigate the differential expression of SFPQ in Alzheimer’s and prion diseases, 

immunoblotting analysis was performed in the frontal cortical brain tissues of human 

brains from the spAD, rpAD, sCJD-MM1, and sCJD-VV2 subtypes as well as non-

demented controls. Information on all the subjects is listed in annexure data tables 

(Tables 11 and 12). Immunoblotting analysis showed that the expression of SFPQ 

was reduced in the frontal cortex of both rpAD and sCJD patients compared with 

controls (Fig. 16A).  

For SFPQ expression in spAD patients, a decreasing trend was observed, though 

that was not significant. The band intensities of SFPQ were normalized to the corre-

sponding levels of GAPDH by calculating the intensity ratio of the GAPDH bands. 

The densitometric analysis revealed that SFPQ levels were remarkably decreased in 

both subtypes of sCJD (MM1 and VV2) compared with the control subjects (Fig. 

16B).  

A significant reduction was observed for TIA-1 levels in spAD and both subtypes of 

sCJD (MM1 and VV2), when compared with control subjects (Fig. 16A and C). In 

contrast, the levels of TIA-1 were significantly increased in rpAD patients in compari-

son to patients in the spAD group. Defects in VCP have been linked with aberrant 
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dynamics of SGs, both as impaired formation and clearance of SGs (Buchan et al., 

2013). Next, we sought to examine the levels of VCP in the diseased and control 

subjects. An increasing trend was observed for VCP levels in rpAD and sCJD-VV2 

subtype (Fig. 16D) compared with the respective controls, suggesting an impaired 

SG dynamic.  

Overall, the dysregulated target proteomic signatures suggest a compromised multi-

functionality of these proteins, which can start a cascade of aberrant signaling in the 

neurons and contribute to neurodegeneration.  
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Figure 16: Differential expression analysis of SFPQ, TIA-1, and VCP: A) Immunoblotting analysis was per-

formed with frontal cortical human brain tissues from spAD (n = 7), rpAD (n = 7), sCJD (MM1 and VV2 subtypes, 
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n = 8) and non-demented controls (n = 8). Representative immunoblot images are shown. B-D) The densitomet-

ric analysis of SFPQ, TIA-1 and VCP. Protein amounts were normalized to corresponding bands of GAPDH. The 

levels of SFPQ were significantly reduced in rpAD and the indicated sCJD subtypes. Expression of TIA-1 at the 

protein level was significantly reduced in the spAD and sCJD groups, while it was increased in rpAD as com-

pared with the spAD group. For VCP, no significant changes were observed. One-way ANOVA was conducted, 

followed by Tukey post-hoc test for multiple comparisons, *p < 0.05, **p < 0.01. 

 

Dysregulated protein levels of SFPQ and TIA-1 prompted us to investigate the 

mRNA levels of these target proteins in the diseased brains. Quantitative RT-PCR 

was used to examine mRNA levels in spAD, rpAD and control subjects. The expres-

sion levels were normalized to GAPDH. Contrary to a reduced expression at the pro-

tein level in rpAD, mRNA levels of SFPQ were significantly elevated in the rpAD 

group compared with control and spAD groups (Fig. 17A). For both TIA-1 and VCP 

mRNA levels, a significant increase was observed in rpAD subjects, in comparison 

with control and spAD subjects, as was observed for protein expression (Fig. 17B 

and C).  

 

Figure 17: Expression of SFPQ, TIA-1, and VCP at mRNA level. A-C) Expression of SFPQ, TIA-1 and VCP at 

mRNA level was analysed in spAD, rpAD, and controls using qRT-PCR. The expression levels of mRNA were 

normalized to GAPDH. The comparative Ct method (2-ΔΔCt) was used for calculation of relative mRNA levels 

(Livak and Schmittgen, 2001). One-way ANOVA followed by Tukey post-hoc analysis for multiple comparisons, 

*p < 0.05, **p < 0.01, (n = 5-8).  
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3.2.2 SFPQ mislocalization and co-localization with SG marker TIA-1 in 

the rpAD brain 

Mislocalization of several RBPs has been described as a pathological feature in 

many neurodegenerative diseases (Barmada et al., 2010; Bishof et al., 2018; 

Neumann et al., 2006; Vance et al., 2013). Immunoblotting analysis revealed 

dysregulation of SFPQ in the human brain from patients diagnosed as rpAD and the 

two sCJD subtypes. Next, we sought to explore the localization of SFPQ in the hu-

man brain. In order to examine the localization of SFPQ, we immuno-stained the 

brain tissues from spAD, rpAD, and control subjects with antibodies specific for 

SFPQ. For this analysis, a separate cohort was used and the clinical data of the fif-

teen cases are listed in the annexure data table (Table 13). In most cells of the con-

trol and spAD brains, SFPQ was localized in the nucleus (Fig. 18A) which is the typi-

cal localization of SFPQ, as reported previously (Lu et al., 2018; Meissner et al., 

2000). Interstingly, in rpAD cases, SFPQ was massively depleted from the nucleus. 

A ring-shaped SFPQ was observed around the nucleus (Fig. 18A). Dislocation of 

SFPQ was observed in 91% cells in rpAD, compared with 51% in spAD and 43% in 

controls (Fig. 18B). These results demonstrate that nuclear depletion and dislocation 

of SFPQ occurred in both patient and control tissues; however, the dislocation rate 

was specifically higher in rpAD brains. 

The mislocalization of SFPQ, particularly in the rpAD cases, raised an interesting 

question of whether or not nuclear depletion of SFPQ was associated with its cyto-

plasmic accumulation. Recently, the mislocalization of some nuclear factors has 

been linked with their cytoplasmic accumulation in the stress granules (Barmada et 

al., 2010; Vance et al., 2013). To test this possibility, we double-labelled the tissues 

from diseased and control subjects with primary antibodies specific for SFPQ (red) 

and TIA-1 (green): a classical marker of SGs (Fig. 18A). Sudan black was used to 

quench lipofuscin fluorescence, as differentiation of SG reactivity from lipofuscin can 

be quite challenging (Liu-Yesucevitz et al., 2010; Vanderweyde et al., 2012). Treat-

ment with Sudan black highlights consolidated cytoplasmic TIA-1 reactivity, which 

tends to show strong fluorescence in the SGs, compared with nuclear signal which is 

quenched by Sudan black. Hence, it’s difficult to observe nuclear TIA-1 in these Su-

dan black-treated tissues (Fig. 18A).  
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TIA-1 reactivity was also observed in control cases with normal cognition, as has 

been noted previously (Vanderweyde et al., 2012), and a partial co-localization was 

also observed with SFPQ (Fig. 18A). In case of spAD subjects, a moderate co-

localization was observed. For rpAD cases, a complete co-localization was demon-

strated for SFPQ and TIA-1 in the perinuclear/cytoplasmic area (Fig. 18A). 

To measure quantitative association between SFPQ and TIA-1, co-localization anal-

ysis was performed with ImageJ and FIJI (Coloc 2 plugin) software. Multiple methods 

were used to provide a quantitative measure of the extent of co-localization. We ana-

lysed the co-localization of SFPQ and TIA-1 using Pearson’s correlation coefficient 

(rP) and Threshold Mander’s coefficient (tM) (Bolte and Cordelieres, 2006), together 

with intensity correlation analysis (ICA). Intensity correlation analysis (PDM plots) 

showed highest degree of co-localization between SFPQ and TIA-1 in the rpAD 

brain, followed by spAD and controls (Fig. 18A). A significant degree of co-

localization was observed in rpAD cases, as judged from the two co-localization co-

efficients rP and tM (Fig. 18C and D). The value of tM1 shows the overlap of TIA-1 

channel pixels with SFPQ channel pixels, which is significantly higher in rpAD when 

compared with either spAD or control subjects. For tM2 (representing the overlap of 

SFPQ channel pixels with TIA-1 channel pixels), a trend was observed for rpAD cas-

es, as well.  

In summary, quantitative analysis of the brain-tissue staining demonstrated that co-

localization between SFPQ and TIA-1 was observed in both spAD and rpAD cases, 

with a stronger degree of co-localization in rpAD subjects.  
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Figure 18: Dislocation/depletion of SFPQ from the nucleus and co-localization with the SG marker TIA-1 

in the cytoplasm. A) Co-immunofluorescence of SFPQ (red) and TIA-1 (green) in the human brain of spAD (n = 

4), rpAD (n = 4), and controls (n = 5). Cell nuclei were visualized with To-Pro-3 iodide staining (blue). Repre-
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sentative images are shown (scale bar = 50 μm). Cells are also shown at higher magnification for a closer look in 

each group. Intensity correlation analysis (ICA) was performed with ImageJ, showing PDM plots, which are rep-

resenting highest overlap in rpAD cases, followed by spAD and controls. B) Quantification of the cells with SFPQ 

dislocation (n = 150). C) Pearson’s correlation coefficient (rP) graph, representing co-localization coefficient be-

tween SFPQ and TIA-1. The co-localization between SFPQ (red) and TIA-1 (green) was analysed with FIJI (Col-

oc 2 plugin) software. D) Co-localization analysis with Threshold Mander’s correlation coefficients (tM). The value 

of tM1 shows the overlap of TIA-1 channel pixels with SFPQ channel pixels, and tM2 represents the overlap of 

SFPQ channel pixels with TIA-1 channel pixels. One-way ANOVA followed by Tukey post-hoc test for multiple 

comparisons, *p < 0.05, **p < 0.01. 

  

3.2.3 SFPQ is co-localized with phospho-tau in neurofibrillary tangles in 

the rpAD brain 

Cytoplasmic co-aggregation of some splicing factors with tau protein has been re-

ported in both sporadic and familial cases of AD (Bai et al., 2013; Bishof et al., 2018; 

Diner et al., 2014). To test this possibility, the relationship of SFPQ with tau tangles 

was explored by immunohistochemical analysis. In frontal cortex tissues from the 

control subjects, immunoreactivity for SFPQ and phospho-tau (S199) was observed 

predominantly in the nucleus, with a strong degree of co-localization between both 

proteins. To further investigate this relationship, typical cells were investigated at 

high magnification in the indirect immunofluorescence micrographs (Fig. 19A). In the 

human brain of spAD patients, a strong signal was observed for SFPQ in the nucleus 

and for phospho-tau in the cytoplasm, with a partial overlap between both in the nu-

clear and cytoplasmic regions (Fig. 19A). Interestingly, in rpAD subjects, there was a 

dislocation of SFPQ from the nucleus and immunoreactivity was observed in the cy-

toplasm. A significant co-localization was evident with phospho-tau tangles in the 

cytoplasm (Fig. 19A).  

In order to measure the association between SFPQ and phospho-tau quantitatively, 

co-localization analysis was performed with ImageJ and FIJI (Coloc 2 plugin) soft-

ware. Again, multiple methods were used to investigate the extent of co-localization 

between SFPQ and phospho-tau. Partial co-localization was observed between 

SFPQ and phospho-tau in the nuclear region in spAD cases, as was evident from 

both co-localization methods (rP and tM coefficients). In rpAD cases, two interesting 

findings were observed. Firstly, co-localization between SFPQ and phospho-tau was 

significantly increased compared with spAD group (Fig. 19B and C). Secondly, this 
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co-localization was primarily in the cytoplasmic region rather than predominant co-

localization in the nucleus, which is typically seen in controls. 

In summary, co-immunofluorescence analysis of the affected brain tissues revealed 

extranuclear distribution of SFPQ and phospho-tau, and co-localization in the cyto-

plasm, contrary to the predominantly nuclear-based co-localization observed in con-

trol cases.  
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Figure 19: Co-localization of SFPQ with phospho-tau tangles. A) Representative images stained with α-

phospho-tau (S199) (green) and SFPQ (red) antibodies (scale bar = 50 μm), counter-stained with To-Pro-3 iodide 

to visualize the nuclei (blue). In control subjects (n = 3), a strong degree of co-localization between SFPQ and 

phospho-tau was observed in the nucleus at high magnification. In spAD tissues (n = 3), partial co-localization 

between SFPQ and phospho-tau was observed in the nuclear region. In rpAD cases (n = 3), a strong degree of 

co-localization was observed between SFPQ and phospho-tau in the cytoplasm, contrary to the nuclear co-

localization which was seen in the control subjects. B) Intensity correlation analysis (ICA) was performed with 

Image-J (WCIF plug-in), ICA plots, frequency co-localization plots and PDM plots are displayed for control, spAD 

and rpAD. C) Pearson’s correlation coefficient (rP) showing significant co-localization between SFPQ and phos-

pho-tau in rpAD and control cases, as compared with spAD cases. D) Threshold Mander’s correlation coefficients 

(tM) representing similar significant co-localization between SFPQ and phospho-tau in rpAD, in comparison to 

spAD cases. Graphs were prepared with GraphPad Prism (6.01) using One-way ANOVA followed by the Tukey 

post-hoc test for multiple comparisons, *p < 0.05, **p < 0.01. 

 

The formation of pathological tau tangles is associated with hyperphosphorylation of 

the tau protein in the AD brain. Expression of total tau and phosphorylated tau 

(S199) was assessed by immunoblotting analysis (Fig. 20A). Biochemically, no sig-

nificant changes were observed in the levels of total tau (tau-5), and phospho-tau to 

tau ratio (Fig. 20B and D). The levels of phosphorylated tau (S199) were significantly 

increased in the high molecular weight (HMW = 65–250 kDa) range in spAD cases, 

compared with control subjects (Fig. 20C). A trend was also observed for rpAD, but 

this relationship was not significant (Fig. 20C).  
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Figure 20: Differential expression analysis of tau and phospho-tau by immunoblotting. A) Representative 

immuno-blot images for total tau and phospho-tau expression from control, spAD, and rpAD frontal cortical tissue 

extracts. (B-D) Quantification of immunoblotting images for total tau and phospho-tau [low molecular weight-tau 

(LMW < 65 kDa, and high molecular weight (HMW = 65-250 kDa)]. GAPDH was used as a loading control. There 

were no significant changes observed for total tau and the ratio of phospho-tau to tau. High molecular weight-

range band (~120kDa) of phospho-tau was significantly increased in spAD in comparison to control, while a trend 

was observed for other bands. Graphs were plotted by GraphPad prism (version 6.01). One-way ANOVA fol-

lowed by Tukey post-hoc test for multiple comparisons were conducted, *p < 0.05. 

 

3.2.4 Tau oligomers are co-localized with SFPQ in the rpAD brain 

Although cytoplasmic tau tangles are a burden for the cell, it has recently been 

shown that toxic, soluble oligomeric species of tau are the real culprits associated 

with cognitive decline, neuronal dysfunction, and death (Guerrero-Muñoz et al., 

2015; Shafiei et al., 2017). In order to examine the association of SFPQ with oligo-

meric tau, we co-immuno-stained the cortical sections from control and rpAD sub-

jects, given that there is significant association of SFPQ with tau tangles in the rpAD 
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brain, using SFPQ and anti-oligomeric antibody for tau (T22). Almost no reactivity 

was observed for oligomeric tau in control cases (Fig. 21A). Interestingly, the co-

immunofluorescence analysis revealed a change in the fluorescence pattern of 

SFPQ, with a high degree of association with oligomeric tau in the cytoplasmic re-

gion, in rpAD subjects (Fig. 21A).  
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Figure 21: Co-localization of SFPQ with tau oligomers in the rpAD brain. A) Co-immunofluorescence images 

of control (n = 3) and rpAD (n = 3) cortical sections stained with α-SFPQ (red) and α-Tau oligomeric antibody T22 

(green). To-Pro-3 iodide was used for staining nuclei (blue), scale bar = 50 μm. There was no co-localization 

observed in control cases, while a significant co-localization was observed in rpAD subjects (yellow colour at 

higher magnification). B) Intensity correlation analysis showing ICA plots, frequency co-localization plots and 

PDM plots for both control and rpAD. C) Threshold Mander’s correlation coefficients (tM1, tM2) showing signifi-

cant association between SFPQ and oligomeric tau. Statistical significance was calculated by t-test, ****p < 

0.0001. 

 

The degree of co-localization was estimated with ICA and Threshold Mander’s corre-

lation coefficients (tM1, tM2) (Fig. 21B and C). Significant co-localization was identi-

fied by both methods. Splicing factor proline and glutamine rich has a high PLD 

score and showed co-localization with tau oligomers. This potential interaction be-

tween SFPQ and tau oligomers might act as nidus for tau oligomerization and sub-

sequent aggregation. 

 

3.3 Translational study of SFPQ in cellular models 

3.3.1 Role of SFPQ towards stress axis 

Redistribution of SFPQ from the nucleus into the cytoplasm was observed in the 

staining of the human brain tissues particularly in rpAD subjects and a co-localization 

with TIA-1 in the cytoplasm. In order to investigate both the significance of this redis-

tribution and the association with the stress granule protein TIA-1, a cellular model of 

stress was established in HeLa cells. A well-known oxidative stress inducer, sodium 

arsenite, was used for stress induction. Several studies have shown a clear link be-

tween arsenite-induced oxidative stress and AD pathology in both animal models 

and a variety of cellular models (McEwen et al., 2005; Resende et al., 2008). Stress 

granules were analysed, where the viability of both control (untreated) and arsenite-

treated cells under stress was not compromised (Fig. 40 in annexure data). 

3.3.1.1 Characterization of TIA-1-positive SGs 

For visualization of SGs, cells were stained after stress induction with the classical 

marker and core-nucleating factor of SGs, TIA-1. TIA-1 immunoreactivity was identi-

fied in both the cytoplasm and the nucleus, with predominance in the nucleus in the 
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control (untreated) cells (Fig. 22A). Sodium arsenite treatment resulted in the for-

mation of clearly defined cytoplasmic foci which positively stained TIA-1 in more than 

80% of cells (Fig. 22A and D). To assess the expression of TIA-1 after stress induc-

tion, immunoblotting analysis was performed in both untreated (cont.) and arsenite-

treated (stress) cells. A significant increase was observed in the intensity levels of 

TIA-1 after arsenite-induced cellular stress (Fig. 22B and C). 

 

Figure 22: Sodium arsenite induces the formation of SGs in HeLa cells. A) HeLa cells were seeded on glass 

cover slips in 24-well plates (5×104 cells/well) for 24 hrs in DMEM supplemented with 10% FBS and 1% PS. Cells 

were treated with sodium arsenite (0.6 mM) at 37°C for 1 hr followed by fixation with 4% PFA for 20 min at RT. 

Using primary antibody specific for TIA-1, stress granules were visualized by staining the classical marker of SGs 

TIA-1, followed by incubation with secondary antibody AlexaFluor 546. The cells were counter-stained for visuali-

zation of nuclei and mounted with immuo-mount mounting medium, scale bar = 10 um. B and C) Levels of TIA-1 

were determined by immunoblotting followed by densitometric analysis. Significance was estimated by t-test, **p 

< 0.01. D) The cells positive for SGs were calculated with FIJI software. More than 80% cells were identified 

positive for SGs after arsenite treatment. 
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A significant proportion of our knowledge on these cytoplasmic foci originates from 

studies in HeLa cells, including 154 reports published between 1999-2014, according 

to Aulas and Vande Velde (2015). Based on observations from the current study and 

a literature survey, HeLa cells were found to be the best representative of SGs. 

Hence, the HeLa cell line was preferred to further investigate the role of the target 

protein candidates in SG biology.  

 

3.3.1.2 Tau phosphorylation is increased after stress induction 

Numerous rodent studies focusing on the role of acute physiological or psychological 

stress have reported increased phosphorylation of tau after stress exposure (Feng et 

al., 2005; Korneyev, 1998; Lopes et al., 2016; Papasozomenos, 1996; Planel et al., 

2001, Planel et al., 2004; Yanagisawa et al., 1999). Furthermore, several studies in 

cellular models have also demonstrated that oxidative stress leads to increased tau 

phosphorylation in neuronal cultures (Su et al., 2010; Zhu et al., 2005). Firstly, we 

investigated the levels of total tau after stress induction. There was no significant 

change observed for total tau levels between the control and stress-induced groups 

(Fig. 23A and C). For phospho-tau (S199), stress treatment induced significant in-

creases in the levels of phosphorylation when compared with untreated control cells 

(Fig. 23A and D). This was found to be within the HMW range (65–250 kDa), sug-

gesting tau aggregation under stressful conditions (Su, 2010).  

To rule out the possibility that this observed increase in the tau phosphorylation in 

HeLa cells was cell-specific, the status of the tau phosphorylation was also investi-

gated in the neuronal cell line SH-SY5Y after stress induction. Similarly, significant 

increases in the phosphorylated tau (S199) levels were identified in SH-SY5Y cells 

(Fig. 41 in annexure data). Overall, these results indicate that oxidative stress treat-

ment increases tau phosphorylation in both cell lines tested.  
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Figure 23: Stress-induced increase in tau phosphorylation. A) Representative immunoblots for total tau and 

phospho-tau in control (untreated) and stress (arsenite-treated) cells. Cells were plated in 6-well plates (2x105) 

for 24 hrs and lysed in cell-lysis buffer supplemented with protease and phosphatase inhibitors. The expression 

of total tau and phospho-tau was analysed by immunoblotting. Intensity levels were normalized to GAPDH. B 

and C) The densitometric analysis was performed using Image Lab software. Statistical tests were applied in 

GraphPad prism (version 6.01) with significance ***p < 0.001. 

 

3.3.1.3 Tau and phospho-tau are recruited into SGs 

Previously, it has been reported that tau co-localizes with the SG markerTIA-1 in vivo 

(Vanderweyde et al., 2012). Next, we studied the relationship between tau and SGs 

in our cellular model of stress. We examined the association of phospho-tau and tau 

with TIA-1-positive SGs using immunocytochemistry. Labelling with total tau and 

phospho-tau antibodies revealed co-localization with TIA-1 cytoplasmic SGs 

(Fig. 24A and B, high magnification images). Untreated control cells showed a 

positive signal for tau-5 predominantly in the cytoplasm. For phospho-tau (S199), a 
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positive signal was detected in the cytosol and nucleus, with predominance in the 

nucleus (Fig. 42 in annexure data), which was in-line with previous studies conduct-

ed in HeLa cells (Ibáñez-Salazar et al., 2017; Sjöberg et al., 2006). Such a signal 

was increased upon oxidative stress treatment. Overall, these findings determine 

that tau and phospho-tau are recruited into stress granules after stress exposure. 

The average number of SGs in each cell was estimated with FIJI software. We iden-

tified a higher number of phospho-tau-positive SGs compared with tau-positive gran-

ules (Fig. 24C). In addition to these observations, it should be noted that the size of 

the phospho-tau-positive granules was bigger in comparison to tau-positive SGs. 

 

Figure 24: Tau and phospho-tau are recruited into SGs. A and B) Stress was induced with sodium arsenite 

as above and cells were co-immunoassayed with primary antibodies specific for total tau, phospho-tau and TIA-1, 

followed by incubation with AlexaFlour 488 and AlexaFlour 546 secondary antibodies. High magnification images 

showing the expression of tau/TIA-1 and phospho-tau/TIA-1 (Images with lower magnification are shown in an-

nexure Fig. 42). Examples of SGs are indicated by the arrows. C) Average number of SGs per cell positive for 

TIA-1 was estimated both for tau and phospho-tau-positive stress granules using FIJI software. Significance was 

calculated by t-test, *p < 0.05. 
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3.3.1.4 Endogenous SFPQ redistributes into the cytoplasm and assembles with 

SGs upon oxidative stress treatment 

To ascertain whether endogenous SFPQ forms SGs (as co-localization between 

SFPQ and TIA-1 was observed in the human brain), we studied the subcellular local-

ization of SFPQ after stress induction. The presense of SFPQ in arsenite-induced 

cytoplasmic foci was observed by fluorescence microscopy. The protein SFPQ was 

mainly localized in the nucleus in the control (untreated) cells, which is the typical 

localization of SFPQ (Fig. 25A). The nuclear localization of SFPQ was not 

changed after arsenite treatment, but stress-induced redistribution/translocation of 

SFPQ following arsenite exposure into the cytoplasm and formation of granules in 

HeLa cells was observed (arrows, Fig. 25A).  

To identify whether or not the SFPQ granules which could be observed in the cy-

toplasm were actually SGs, HeLa cells were co-stained with the SG marker TIA-1. 

Co-localization was detected between the SG marker and SFPQ (yellow foci in the 

cytoplasm) (Fig. 25B). The amount of cytoplasmic SFPQ signal was low because 

labelling only detected endogenous SFPQ, and SFPQ that was present in the cyto-

plasm was largely in the inclusions. Quantification of SFPQ-positive granules by FIJI 

software indicated ~20–25 SFPQ-positive stress granules per cell (Fig. 25C). Over-

all, these results revealed that stress induces cytoplasmic redistribution and for-

mation of SFPQ inclusions, which co-localize with TIA-1 positive SGs. 

Furthermore, we examined SFPQ levels before and after stress induction using im-

munoblotting analysis. A significant increase was identified in the SFPQ intensity 

levels after stress induction (Fig. 25D and E). Given the role of VCP in stress-granule 

dismantling and clearance, we next examined the levels of VCP after stress induc-

tion. A significant increase in VCP intensity levels was identified in stress-induced 

cells as compared with control cells (Fig. 25D and F).  
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Figure 25: Recruitment of SFPQ into SGs after oxidative stress induction in HeLa cells. A) Localization of 

SFPQ (green) and TIA-1 (red) was visualized in sodium-arsenite-treated (0.6 mM; 60 min) (stress) and untreated 

(control) HeLa cells using immunofluorescence microscopy. Cells were counter-stained to visualize nuclei, scale 

bar = 10 μm. B) Higher magnification image of ‘’A’’ showing the overlap between SFPQ/TIA-1 in the cytoplasm. 

C) Average number of SFPQ-positive SGs per cell was calculated with FIJI software. D) Representative im-

munoblot images after stress treatment. Cells were seeded in 6-well plates (2x105) for 24 hrs. Cells lysis was 

performed with cell-lysis buffer supplemented with protease and phosphatase inhibitors, and expression of SFPQ 
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and VCP was analysed by immunoblotting. Intensity levels were normalized to β-actin. E and F) SFPQ and VCP 

densitometric analysis. Statistical tests (t-test) were applied in the GraphPad prism (6.01), *p < 0.05. 

 

According to a recently described model (Molliex et al., 2015), SG formation is de-

pendent upon liquid-liquid phase separation (LLPS), a property of the RNA-binding 

proteins containing prion-like domains. We analysed SFPQ protein with catGRAN-

ULES algorithm, which predicts the propensity of a given protein to undergo phase 

separation, and the probability of forming granules. A score of 1.66 was identified for 

SFPQ showing high probability of SFPQ to form granules. We were also curious to 

know LLPS properties for TIA-1. Between the two proteins tested, SFPQ (1.66) ex-

hibited a higher score for LLPS than TIA-1 (0.973) (Fig. 26A and B).  

 

Figure 26: Liquid-liquid phase separation properties of SFPQ and TIA-1 assessed by catGRANULES algo-

rithm. SFPQ exhibited a score of 1.66, followed by TIA-1: 0.973, showing higher probability for oligomerization 

and granule formation.  

Score=1.66

SFPQ

C
D

F

P
ro

p
e
n
s
it
y
 s

c
o
re

 (
x1

0
)

Score=0.973

TIA-1

C
D

F

P
ro

p
e
n
s
it
y
 s

c
o
re

 (
x1

0
)

Protein sequencePropensity score

Protein sequencePropensity score

A

B



Results 

80 
 

3.3.1.5 SFPQ co-localizes with tau and phospho-tau in cytoplasmic granules 

Recruitment of SFPQ into SGs and localization of tau and phospho-tau in these 

SGs, raised the possibility that SFPQ and tau might co-localize in SGs and this func-

tional interaction between SFPQ and tau might have implications for neurodegenera-

tion. In the control cells, SFPQ was observed predominantly in the nucleus, while a 

redistribution was identified in the cytoplasmic-granules in treated (stress) cells. The 

immunoreactivity of SFPQ was increased after arsenite treatment (stress).  

Labelling with tau-5 revealed majorly cytoplasmic staining in the control untreated 

cells (Fig. 27A). A predominant nuclear signal was detected for phospho-tau. Co-

localization of SFPQ with both tau-5 and phospho-tau was observed under basal 

conditions and in granules upon stress treatment (Fig. 27A and B).  
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Figure 27: SFPQ co-localizes with tau and phospho-tau in SGs after sodium-arsenite-induced oxidative 

stress in HeLa cells. A and B) Localization of SFPQ (green), tau-5 and phospho-tau (red) was visualized in 

control (untreated) and stress (sodium-arsenite-treated) cells by immunofluorescence. Cells were counter-stained 

to visualize nuclei. Scale bar = 10 μm. Merged micrographs of cells (arsenite-treated) showing the overlap be-

tween SFPQ/tau and SFPQ/p-tau in the cytoplasmic granules. 

3.3.1.6 Biochemical characterization of stress granule components 

Increased intensity levels of SG-associated proteins after stress induction, raised the 

question of whether or not this was really an increase in their concentration or simply 

an increase in the intensity levels due to the consolidation of these proteins in SGs. 

To address this question, we performed subcellular fractionation of control and 
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stress-induced HeLa cells using a Rapid, Efficient and Practical (REAP) method 

(Suzuki et al., 2010). This method is a very rapid (2 min), non-ionic detergent (NP-

40)-based purification method allowing very rapid fractionation of nuclear and cyto-

plasmic fraction, which is necessary given that nucleocytoplasmic transport of pro-

teins is a rapid process in response to stress. 

Immunoblotting analysis revealed an efficient subcellular fractionation with no cross 

contamination between nuclear and cytoplasmic fractions. The nuclear marker 

(BRD4) was not detected in the cytoplasmic fractions (Fig. 43 in annexure data). 

Conversely, the cytoplasmic marker (GAPDH) was not detected in the nuclear frac-

tion (Fig. 43 in annexure data).  

After an efficient fractionation, immunoblotting analysis was performed to investigate 

whether an increase in the intensity was observed after stress induction. For total tau 

levels, no significant changes were observed in line with the observations from total 

cell lysates analysis (Fig. 28A and B). Indeed, the REAP method showed a signifi-

cant increase in the levels of phospho-tau in cytoplasmic and nuclear fractions, also 

in the HMW range (65-250 kDa: ~120 and 75 kDa), as was observed after stress 

treatment (Fig. 28A, C and D). 
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Figure 28: Increased tau phosphorylation and cytoplasmic accumulation after stress treatment. A) HeLa 

cells were treated with sodium arsenite (0.6 mM, 60 min). Lysates from control (untreated) and stress (arsenite-

treated) cells were separated into nuclear and cytoplasmic fractions by REAP method, which were analyzed by 

immunoblotting with total tau (tau-5) and phospho-tau (S199) antibodies. Intensity values were normalized to β-

actin. Isolated fractions were abbreviated as C: cytoplasmic extract, N: nuclear extract, and W: whole cell extract. 

B-D) Quantification of all above proteins showing significantly increased intensity levels for phospho-tau as calcu-

lated by t-test, * p < 0.05, **p < 0.01. 

 

The REAP method also demonstrated significant increases in the intensity levels of 

TIA-1 in the nuclear fraction after stress induction as well as a slight increase in the 

whole cell fraction (Fig. 29A and B). For SFPQ, a moderate increase was also evi-

dent in both the nuclear and whole cell fractions (Fig. 29A and C). 
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Figure 29: Expression of TIA-1 and SFPQ after subcellular fractionation. A) Stress was induced by treat-

ment with sodium arsenite (0.6 mM, 60 min). Lysates from control (untreated) and stress (arsenite-treated) cells 

were separated into nuclear and cytoplasmic fractions by REAP method, which were analyzed by immunoblotting 

with TIA-1 and SFPQ antibodies. Protein amounts were normalized to β-actin. Subcellular fractions were abbre-

viated as C: cytoplasmic extract, N: nuclear fraction, and W: whole cell lysate. B and C) The densitometric analy-

sis of TIA-1 and SFPQ showing significantly increased intensity levels for TIA-1 in the nuclear fraction particular-

ly, as were calculated by t-test, p-value *p<0.05. 

 

3.3.2 Role of SFPQ in the tau axis 

3.3.2.1 SFPQ downregulation induced by human tau expression 

From cell staining (Fig. 27A), co-localization was observed between SFPQ and tau in 

the cytoplasm. Furthermore, Braak stage-dependent reduction in levels of SFPQ in 

the entorhinal cortex (EC) has been reported in the human brain (Ke et al., 2012). In 

order to find out a direct interaction of tau on SFPQ, we expressed human wild-type 

(WT-tau) and mutant tau (P301L-tau) transiently in HeLa cells.  
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To assess the expression of tau after transfections, immunoblotting analysis was 

performed with antibodies specific for total tau (tau-5) and phospho-tau (S199) at 24- 

and 48 hrs post-transfection. Protein extracts from transfected cells showed an in-

creased level of total tau and its phosphorylated form (Fig. 30A). The densitometric 

analysis revealed no significant differences in the ratio of phospho-tau to tau be-

tween WT-tau and P301L-tau transfected cells (Fig. 30B). A trend of increased 

phosphorylation could be noted for WT-tau-transfected extracts. Interestingly, ex-

pression of human tau led to a significant reduction in the levels of SFPQ, as as-

sessed by immunoblotting at 48 hrs post-transfection in WT-tau transfected cells, 

compared with control (Fig. 30A and C). For P301L-tau expressing cells, a decreas-

ing trend was also observed at the 48 hrs post-transfection. There were no signifi-

cant changes observed at 24 hrs post-transfection. For TIA-1 protein, no significant 

changes could be identified under any of these conditions (Fig. 30A and D).  
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Figure 30: Tau regulates SFPQ levels in HeLa cells detected by immunoblotting. A) Representative im-

munoblots for tau, phospho-tau, SFPQ and TIA-1 after transient transfection of WT-tau or P301L-tau. B) Total 

protein lysates from transfected HeLa cells and control cells were subjected to immunodetection using tau-5 and 

phospho-tau (S199) antibodies. C) The levels of SFPQ were also determined after tau expression. Protein ex-

pression was normalized to β-actin. The densitometric analysis revealed significant decrease in the levels of 

SFPQ in WT-tau-expressing cells at 48 hrs post-transfection. D) For TIA-1, no significant differences were ob-

served after transient expression of tau compared with transfection corresponding control. Significance was esti-

mated with one-way ANOVA followed by Tukey post-hoc test for multiple comparisons, *p < 0.05. 

 

Cell viability was significantly reduced after tau expression in both WT- and P301L-

tau-expressing cells, with more robust changes in WT-tau-expressing cells at 48 hrs 

post-transfection (Fig. 44 in annexure data). In summary, immunoblotting analysis 

indicated that tau has a direct effect on SFPQ in the form of reduction, which coin-

cides well with the massive reduction of SFPQ observed in the rpAD and sCJD pa-

tient’s brains. 

 

3.3.2.2 Proteomic changes associated with SFPQ downregulation after 

human tau-expression 

Immunoblotting analysis after human tau expression in the cells indicated a direct 

effect of tau on SFPQ in the form of reduction. To determine the combinatorial effect 

of tau toxicity and SFPQ reduction in the cells, we used a quantitative SWATH label-

free proteomics technology. Quantitative MS-based proteomics has emerged as a 

powerful technology for investigating mammalian signalling pathways (Huang et al., 

2015; Liu et al., 2017). Proteomic alterations after tau expression could provide novel 

insights into the mechanisms linking tau-pathology to SFPQ dysregulation.  

In total, 3597 proteins were identified quantitatively at a critical FDR of 1%. To identi-

fy differentially expressed proteins (DEPs), bioinformatic analysis was performed. 

Proteins with a corrected BH p-value < 0.05 were considered differentially ex-

pressed, compared with controls (Fig. 31A and B). Significantly DEPs (314) were 

divided into two sets: the first consisted of 63 up-regulated proteins, and the second 

consisted of 251 down-regulated proteins (Tables 16 and 17 in annexure data).  

To get deeper insights into the molecular mechanisms associated with significantly 

modulated proteins, a number of bioinformatic tools were used to examine enriched 

https://www.ncbi.nlm.nih.gov/pubmed/?term=Liu%20W%5BAuthor%5D&cauthor=true&cauthor_uid=28507275
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functional categories and pathways. Firstly, hierarchical clustering and enrichment 

analysis was performed using Fisher’s exact test by Perseus software, in order to 

have an overview of the significantly enriched functional profile. As shown in Fig. 

31C, the significantly regulated proteins were clustered hierarchically across all the 

samples (columns) and the significantly regulated proteins (rows). Interestingly, the 

main branch point in the columns separated the tau-expressing cells (Fig. 31C, 

Lanes 1–12) from controls (mock-transfected or non-transfected controls) (Fig. 31C, 

Lanes 13–24). No significant differences were observed between WT-tau and 

P301L-tau expressing phenotypes.  

The significantly regulated proteins (rows) were grouped into two main sub-clusters. 

Cluster 1 included proteins that were upregulated in tau-expressing cells (both WT-

tau and P301L-tau). The functional enrichment analysis of cluster 1 by Fisher’s exact 

test indicated highly significant enrichment for substrate specific transporter activity 

and immune system processes (Fig. 31C: right panel). The downregulated proteins 

(cluster 2) showed enrichment for functional terms associated with ‘‘structural con-

stituent of ribosome’’, and ‘‘SRP-dependent co-translational protein targeting to 

membrane’’ among others (Fig. 31C: right panel). Additionally, an over-

representation analysis was performed using WEB-based Gene SeT AnaLysis 

Toolkit (WebGestalt). By classifying the 314-DEPs (Liao et al., 2019) based on their 

‘’Biological Process’’, 202 proteins were identified as being related to the metabolic 

processes, 180 proteins linked to biological regulation, and 139 attributed to be in-

volved in response to the stimulus (Fig. 31D). For Molecular Function, 228 proteins 

were assigned to the protein-binding category, with 109 attributed to be related to 

nucleic-acid binding, and 107 to ion binding. 
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Figure 31: Human tau-expression-induced proteomic alterations: A and B) Volcano plots of pairwise com-

parisons showing differentially expressed proteins in both WT-tau- and P301L-tau-expressing cells in comparison 

to controls. C) The heatmap of two-dimensional hierarchical clustering analysis of 314 DEPs among technical 

and biological replicates generated by Perseus software (version 1.5.0.31). The log2-transformed expression 

values of significantly regulated proteins were normalized to the Z-score for all the replicates. The columns are 

representing samples (tau-expressing cells: lanes 1–12 and control: lanes 13–24) and rows indicating significant-

ly modulated proteins (green, down-regulated: red, up-regulated). Functional enrichment analysis of DEPs re-
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sulted in multiple categories that were enriched in the two clusters. The enriched functional terms with their p-

values and FDR values are shown on the right side (Fisher’s exact test with FDR multiple test correction). The 

Fisher's exact test was used to select the significant GO terms identified by a p-value < 0.05. D and E) GO-slim 

summary from WebGestalt, GO classification of proteins in both clusters. The number of proteins associated with 

each GO term in the ‘’Biological Process’’ and ‘’Molecular Function’’ domains is indicated in red and green bar 

charts, respectively. 

 

Detailed analysis of the ‘’Molecular Function’’ GO-terms of DEPs revealed RNA-

binding (enrichment ratio = 3.58) and structural constituent of ribosome (enrichment 

ratio = 7.3) as the most enriched terms (Fig. 32).  

 

Figure 32: Volcano plot showing significantly enriched Molecular Functional terms from DEPs (314). The 

vertical axis is showing -Log10-FDR value and x-axis represents the log2-transformed enrichment ratio obtained 

from WebGestalt.  

 

3.3.2.2.1 Canonical pathway analysis  

To find out major canonical pathways modulated after human tau expression, Inge-

nuity Pathway Analysis (IPA, Qiagen, USA) was performed. The proteomic candi-

dates were sorted into 67 canonical pathways. According to their p-values, the top 5 

significant pathways identified in WT-tau-expressing cells as compared with mock-

transfected cells were eukaryotic initiation factor 2 (eIF2) signalling (p-value = 2.28E-

23), regulation of eIF4 and p70S6K signalling (p-value = 6.44E-07), mTOR signalling 
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(p-value = 5.60E-06), mismatch repair for eukaryotes (p-value = 4.93E-05), and pro-

line biosynthesis I (p-value = 1.23E-04).  

The most significant canonical pathways modulated after P301L-tau expression were 

EIF2 signalling (p-value = 3.23E-18), interferon signalling (p-value = 2.86E-04), 

mTOR signalling (p-value = 9.50E-04), DNA double-strand break repair by non-

homologous end joining (p-value = 1.11E-03), and telomere extension by telomerase 

(p-value = 1.28E-03). OveralI, EIF2 signalling was the most significant of the en-

riched canonical pathways.  

3.3.2.2.2 Disease- and function-based protein networks 

In addition to pathway mapping, DEPs were also categorized into related diseases 

and functions. The most significant networks associated with significantly modulated 

proteins are listed in annexure data for both WT-tau- and P301L-tau-expressing 

cells, respectively (Tables 18 and 19). The most significant network that was also 

shared between WT- and P301L-tau-expressing cells was “RNA damage and repair, 

protein synthesis” (score = 61). Among these networks, two most significant net-

works are described below. 

3.3.2.2.3 Protein network associated with RNA damage and repair, protein syn-

thesis, cancer 

The most enriched network that was common between both types of tau-expressing 

cells “RNA metabolism and protein synthesis” was composed of 27 focus molecules, 

including 60S ribosomal subunit, C7orf50, CDK4/6, Eif4g, ERK1/2, IFIT1, importin 

beta40s subunit, RPL15, RPL18, RPL18A, RPL19, RPL23A, RPL27A, RPL31, 

RPL32, RPL36, and RPL37A, among others. Biological Processes associated with 

this network were visualized by Cytoscape (3.6.1) (Fig. 33). Significant Biological 

Processes associated with this network include large and small ribosomal subunit, 

RNP complexes, SRP-dependent co-translational protein targeting to membranes, 

among other processes (Fig. 33).  
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Figure 33: RNA damage and repair, protein synthesis, cancer. The Biological Processes associated with this 

IPA-based network were visualized by Cytoscape (3.6.1). The Cytoscape plugin ClueGO was used to identify 

enriched Biological Processes from the network molecules. Nodes with related Biological Processes are marked 

with the same colour. 

 

3.3.2.2.4 Protein network associated to cell morphology, cellular assembly and 

organization, DNA replication, recombination, and repair 

The second most enriched network was “cell morphology, cellular assembly and or-

ganization, DNA replication, recombination, and repair network”, consisting of 20 

focus molecules from DEPs from proteomic dataset. This complex network was in-

terconnected with Biological Processes associated to homeostatic processes, includ-

ing telomere maintenance and organization, DNA metabolic processes and chromo-

some organization, among others (Fig. 34).  

Proteomics investigation with functional characterization has provided a comprehen-

sive overview of major alterations associated with tau toxicity and downregulation of 

SFPQ. Analysis of global proteomic alterations revealed two major themes “RNA 

metabolism and protein synthesis”, and “DNA homeostasis-related processes”, that 

were significantly altered after human tau expression.  
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Figure 34: Biological Processes associated with most enriched network molecules from IPA-based net-

work ‘‘Cell morphology, cellular assembly and organization, DNA replication, recombination, and repair’’. The 

final network was visualized using Cytoscape (3.6.1). The Cytoscape plugin ClueGO was used to visualize Bio-

logical Processes from the most enriched network molecules. The nodes from related functional terms are of the 

same color. The size of the node is corresponding to BH-corrected p-value and width of lines is representing 

extent of the overlap between related terms. 

 

3.4 Translation of SFPQ-tau-TIA-1 in the 3xTg-AD mice model 

Given the long incubation periods of clinically silent neurodegeneration and the 

manifestation of AD at later stages, knowledge of the modifiable risk factors at pre-

symptomatic stages of the disease is crucial. To extend our results from the analysis 

of terminal stage pathology from the human brain, a time-dependent expression pro-

file of proteomic signatures was examined in a mouse model of AD, termed 3xTg-

AD, both at pre-symptomatic and symptomatic stages of the disease.  

Mice were injected with 10% brain homogenate from AD patients. Animals were sac-

rificed at four time points spanning from early and late pre-symptomatic to early 

symptomatic and late symptomatic stages, e.g. at 3-, 6-, 9- and 12-months post in-

oculation (mpi). Total protein expression levels between inoculated and non-

inoculated control mice were determined at each time point. In summary, we found 

that protein expression during disease progression was dynamic and characterized 

by distinct changes in the global expression levels.  
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3.4.1 Differential expression of tau in AD mice 

Hyperphosphoylation of tau protein and concomitant formation of NFTs is a major 

hallmark of AD and closely correlates to cognitive loss. Therefore, tau phosphoryla-

tion status was investigated in the mice model at all stages of the disease using im-

munoblotting analysis. The level of total tau was significantly decreased at the termi-

nal stage between the experimental and control groups (p < 0.05) (Fig. 35A and B). 

There was a trend of increased phospho-tau levels at the early pre-symptomatic 

stage in experimental animals, when compared to controls, with no significant 

changes observed at later stages (Fig. 35A and C).  

3.4.2 Dysregulation of SFPQ at early and late-symptomatic disease stag-

es 

Interestingly, levels of SFPQ were significantly altered at early pre-symptomatic 

phase with a significant increase in comparison to controls (Fig. 36A and D). At mid-

dle stages of the disease, expression levels returned to basal level and underwent a 

direct reversal at late-symptomatic stage of the disease with a drastic reduction at 12 

mpi (Fig. 36A and D). Within the sensitivity of the Western blot, the band for SFPQ 

disappeared completely at the late-symptomatic stage of the disease, which coincid-

ed well with the massive reduction of SFPQ at the terminal stage of the disease ob-

served in the postmortem brain, particularly in the rapidly progressive forms of de-

mentia (rpAD and sCJD).  
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Figure 35: Temporal expression profile of tau, phospho-tau and SFPQ. A) Representative immunoblot im-

ages showing expression of tau, phospho-tau and SFPQ from AD (n = 4) mouse brain cortical tissues at the 

indicated ages (mpi: months post inoculation) and respective controls (n = 4). The GAPDH was used as a loading 

control. B-D) The densitometric analyses from three independent experiments were performed with Image Lab 

software. Unpaired t-test was performed to calculate statistical significance at each time point. *p < 0.05, **p < 

0.01, ***p < 0.001.  

 

3.4.3 Alterations in TIA-1 levels at early pre-symptomatic and terminal 

stage of the disease 

Furthermore, we also studied the expression profile of TIA-1 in the AD mouse model 

at different time points. Two antibodies were used to detect both the C- and N-

terminus of TIA-1 (TIA-1 abcam: recognizing amino acids 350 at the C-terminus; 

TIA-1 sc-166247 recognizing amino acids 37-65 at the N-terminus). The protein lev-

els of TIA-1 were significantly decreased at terminal stages of the disease (12 mpi) 

for both antibodies (Fig. 36A, B and C). For TIA-1 (recognizing amino acids 350 to 

the C-terminus), a significant increase was observed at the early pre-symptomatic 
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stage of the disease, which then returned to basal levels at the middle stages of the 

disease (Fig. 36A and B). For C-terminal specific antibody of TIA-1, a low molecular 

weight band at the terminal stage (12 mpi) was observed, which seems to be a 

cleavage product of TIA-1 (Fig. 36A, denoted with star*). The levels of VCP were 

also assessed at both pre-symptomatic and symptomatic stages in 3xTg-AD mice 

model. An increase in VCP levels was observed at the terminal stage of the disease, 

although that was found not to be significant (Fig. 36A and D).  

In summary, the time-dependent expression profile with prominent changes in 

SFPQ, tau and TIA-1 at early pre-symptomatic stages suggested an altered regula-

tion of these molecules at the very early stages of the disease. 

 

Figure 36: Alterations in TIA-1 levels during disease progression. A) Representative immunoblot images 

showing expression of TIA-1 (C- and N-terminal) and VCP from AD-like (n = 4) mouse brain cortical tissues at the 

indicated ages (mpi: months post inoculation) and respective controls (n = 4). (*) Band may indicate proteolytical 

degradation of the C-terminus. The GAPDH was used as a loading control. B-D) Unpaired t-test was used to 

calculate significance. *p < 0.05, **p < 0.01. 
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4 Discussion 

Dysfunctional regulation of RNA-binding proteins is a characteristic feature of many 

neurodegenerative diseases. Although precise mechanisms are still not clear, but it 

is increasingly evidenced that RBP anomalies are linked to neurodegenerative pro-

cesses and/or accelerating their progression. To this end, the present study identi-

fied and characterised the RNA-binding proteome from human brain frontal cortex of 

three neurodegenerative entities, namely spAD, rpAD, and sCJD (MM1 and VV2 

subtypes), as well as control subjects, using a brain-derived RNA-based pull-down 

approach followed by mass spectrometry analysis. Cortical region was studied due 

to maximum pathological manifestations in this region at end stages of the disease 

(Braak and Braak, 1991). Two mass spectrometry approaches (LFQ-MS and 

SWATH-MS) were employed in the present study, to gain a deeper insight into the 

RNA-binding proteome. Proteomic investigation revealed characteristic quantitative 

and qualitative changes in the identified RNA-binding proteome in a disease sub-

type-specific manner.  

4.1 RBPome alterations in neurodegenerative diseases 

Interestingly, global enrichment profile of RNA-binding proteomic candidates from 

the LFQ-MS analysis demonstrated major similarities between rpAD and sCJD, 

compared with spAD (Fig.12B). Although rpAD has same core pathological features 

(Aβ and tau tangles) in common with spAD based on RBPome signatures, rpAD dis-

played more similarity with sCJD group in comparison with spAD. These findings 

suggest that, both forms of rapidly progressive dementias (rpAD and sCJD) have 

similarities in RBP-mediated neuropathogenesis at the terminal stage of the disease. 

Furthermore, these similarities also argue that these RBP-related processes may 

have a pathophysiological role in the rapid progression of these diseases.  

The differential enrichment analysis of identified RNA-binding proteome revealed 

distinct proteomic clusters specific to each group (Fig. 12B). Overall, specific en-

richment of these distinct protein clusters may indicate differences in the RBP-RNA 

interactions in response to disease stress. These specific sets of proteins can be of 

potential relevance to identify subtype-specific differences of these heterogenous 
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diseases. Furthermore, the identification of RNA-binding proteome opens many new 

therapeutic targets for exploration (Table 15). 

As the RBPome changes were more prominent in the rpAD and sCJD groups, we 

employed quantitative SWATH-MS technology to get a deeper insight into the 

RBPome of these rapidly progressive forms of dementia. This finding also served as 

a confirmatory approach to the LFQ-mass spectrometry. It is notable that the 

RBPome from SWATH-MS virtually recapitulated the LFQ-based proteomic data. In 

consistence with deep proteome coverage by SWATH-MS, this analysis indicated 

477 proteins which showed differences in the abundance between rpAD and two 

subtypes of sCJD MM1 and VV2. One interesting finding evident from the hierar-

chical clustering analysis of differentially abundant proteins was the similarity be-

tween rpAD and sCJD-MM1 subtype compared with the profile from sCJD-VV2 sub-

type. Both the rpAD and sCJD-MM1-subtype were segregated into a single cluster, 

while sCJD-VV2 subtype segregated into a separate cluster. The methionine homo-

zygosity (M/M) at codon 129 of the prion protein gene (PRNP) has been described 

as a risk factor for AD (Gacia et al., 2006; Schmidt et al., 2010). Similarities between 

the rpAD and sCJD-MM1 subtype observed in the current study support the notion 

that methionine homozygosity is not only a risk factor for AD, but it may have a role 

in the rapid progression of the disease. 

4.1.1 Functional analysis of MS results  

Functional enrichment analysis of the identified RBPome, highlighted major changes 

related to RNA metabolism, stress response, metabolic processes, and immune sys-

tem among others. The enrichment of metabolic proteins in the current RBPome da-

taset demonstrates an interaction between RNA-related processes and metabolic 

changes during the disease. The regulation of metabolic processes resulting from 

disease stress is necessary to facilitate survival of the neurons. The RBPs may be 

engaged in regulatory plasticity, which is required for the instant stress response. In 

addition, the identification of immune-system-related proteins, supports the integral 

role of inflammatory processes in the pathogenesis of these neurodegenerative dis-

eases. Finally, our data is also consistent with the well-known functions of RBPs in 

the post-transcriptional stress response and RNA metabolism. In summary, our find-

ings denote that changes in the RBPs, in addition to metabolic and inflammatory re-
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sponses, are an integral part of the pathological features of these neurodegenerative 

diseases. 

Furthermore, the Biological Process related to ‘‘Localization’’ including protein and 

macromolecular localization was a leading term enriched in rapidly progressive AD, 

indicating disturbances in the protein localization as a pathomechanism in rpAD. Our 

study identified numerous important proteins, e.g. importin subunit-beta1 (nuclear 

factor p97), clathrin coat assembly protein AP180 or secretogranin, which were 

uniquely present in the rpAD dataset. These signatures can be of potential relevance 

to distinguish the rapid variant of AD from both normal and classical AD-related de-

mentia. Some of these proteins might represent novel biomarkers whose expression, 

aggregation or posttranslational modifications might reflect distinct elements of the 

disease process.  

 4.1.1.1 Proteins involved in RNA metabolism and stress response 

The functional categories related to stress response, antioxidant activity, and RNA-

binding were specifically enriched in rpAD and sCJD groups, compared with control 

and spAD groups, indicating a more aggressive dysregulation of RBP-related pro-

cesses in these fast-progressive forms of dementia. Stress in almost every form has 

been linked to fast progression in not only AD but also other neurodegenerative dis-

eases, e.g. Parkinson’s and Huntington’s diseases (Hiller et al., 2017). Studies from 

many groups and different animal models have reported that stress is a factor lead-

ing to fast progression of AD, including increased plaque assembly, hyperphosphory-

lation of tau, and tangle formation. Not only in animal models, but many studies in 

humans have elaborated that exposure to extreme stress could also lead to rapid 

progression of sporadic AD (Herbert and Lucassen, 2016; Mejía et al., 2003), and 

earlier onset in familial AD (Mejía et al., 2003). Data showing the role of stress re-

sponse in prion diseases have also been reported (Goggin et al., 2008; Mays et al., 

2019).  

In summary, data from this study and reports from the literature highlight a significant 

role of RBPs through stress response in the rapid progression of the disease. Re-

cently, alteration of tau protein has also been linked to stress response in AD 

(Brunello et al., 2016; Vanderweyde et al., 2016), further strengthening the hypothe-
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sis that stress and post-transcriptional regulatory processes associated with RBPs 

are an integral feature of these neurodegenerative disorders. 

4.1.2 Canonical and putative RNA-binding candidates 

The present study identified many putative RNA-binding protein candidates (e.g. 

metabolic and catalytic enzymes) in addition to canonical RBPs, in agreement with 

previous reports (Shchepachev et al., 2019). The identification of these putative 

RBPs in the RNA-binding proteome data points towards a cross-talk between RBPs 

and other proteins (e.g. metabolic enzymes) to meet the everchanging microenvi-

ronment surrounding the neuron. Dysregulation of these intricate networks of pro-

teins in the neurons may start a cascade of aberrant signaling, eventually leading to 

neurodegeneration. 

Many studies identifying RNA-binding proteomes have reported a large number of 

putative RBP candidates, that have no prior linkage to RNA-related functions (Baltz 

et al., 2012; Beckmann et al., 2015; Castello et al., 2012; Castello et al., 2013). 

These putative RBPs, which were categorized as enigmRBPs, have many diverse 

roles in cellular homeostasis, including actin remodeling, protein folding, and many 

metabolic enzymatic activities; however the functions of most of these enigmRBPs 

are largely unknown. To date, the role of only a few enigmRBPs, e.g. metabolic en-

zyme (IRP1), has been discovered (Castello et al., 2015; Hentze et al., 2018). It is 

notable that some of the identified putative RBP candidates (e.g. SNG3, HEBP1, 

SV2A) may not have RNA-binding activity themselves. They were identified in the 

present study due to binding with other proteins that do have RNA-binding activity.  

These putative RBP candidates can potentially be beneficial for the cell. Interactions 

between RNA and these putative RBPs (specifically metabolic enzymes) can be 

used for spatial sorting of related enzymes. This spatial sorting helps the cell to 

boost the metabolic flux (Castello et al., 2015).  

4.1.3 Prion-like-domain (PLD)-containing proteins 

Prion-like-domain-containing proteins can be both beneficial and harmful for the cell 

(Sabate et al., 2015a; Sabate et al., 2015b). In the current study, twenty-four PLD-

containing proteins, fulfilling the requirements to potentially behave as prion-like pro-
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teins were identified (e.g. BSN, SFPQ, EWS, PRIO). Prion-like domains are essen-

tial for RBP functions and enable them to undergo liquid-liquid phase separation, that 

is the basis of the formation of higher-order structures, including oligomers and 

granules (Boeynaems et al., 2018; Riback et al., 2017).  

In the present study, we observed that the PLD-containing protein SFPQ is exclu-

sively enriched in the RBPome of rpAD and sCJD, suggesting a potential role of 

SFPQ in rapidly progressive dementias. Furthermore, SFPQ exhibited a considera-

bly high score for prion-like domain (PLD-score = 28), which is a very crucial factor 

contributing to pathophysiological functions of PLD-containing proteins. Indeed, we 

discovered dysregulation of SFPQ in association with tau and TIA-1 proteins, par-

ticularly in the postmortem brains from rpAD and sCJD patients. 

4.2 Pathological characterization of SFPQ in the human brain 

4.2.1 SFPQ dysregulation in the rpAD and sCJD brains 

Emerging evidence supports that neurodegenerative anomalies modulate the ex-

pression of RBPs (Conlon and Manley, 2017). Interestingly, we identified a signifi-

cant reduction in SFPQ at the protein level in the frontal cortical region of rpAD and 

the subtypes of sCJD MM1 and VV2. A trend was also observed for spAD cases, 

although this was not significant. Ke et al. (2012) reported a significant reduction in 

SFPQ levels with advanced Braak stages in the entorhinal cortex of AD pa-

tients. Specific reduction of SFPQ in both forms of rapidly progressive dementias 

(rpAD and sCJD) further implies that SFPQ may be involved in the rapid progression 

of these neurodegenerative diseases. To the best of our knowledge, this is the first 

study demonstrating dysregulation of SFPQ at both protein and mRNA level in the 

frontal cortex of specifically rpAD subjects. 

The reduction of SFPQ has been linked to behavioral anomalies in mice, neuronal 

loss, and phospho-tau accumulation (Ishigaki et al., 2017). In another study, loss of 

SFPQ was found to lead to apoptosis in zebra fish, linking downregulation of SFPQ 

to neuronal cell death (Lowery et al., 2007). Splicing factor proline and glutamine rich 

is a predominantly nuclear protein involved in multiple functions in the neurons, in-

cluding transcription, alternative splicing, DNA damage and repair, and transport of 

mRNAs through long axons (Knott, et al., 2016; Yarosh et al., 2015). It can be con-
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cluded that downregulation of SFPQ can contribute to neurodegeneration by affect-

ing multiple functions of SFPQ, specifically in the nucleus. 

At the mRNA level, SFPQ expression was elevated in rpAD, in contrast to the reduc-

tion at protein level. One plausible explanation for this observation could be that 

transcription of SFPQ is increased in order to compensate for loss of SFPQ at the 

protein level. The increased mRNA levels of SFPQ could also contribute directly to 

neurodegeneration. The excessive mRNA may sequester many proteins necessary 

for other cellular signalling, as has been noted for some other proteins involved in 

neurodegenerative disease (Greco et al., 2006; Sellier et al., 2014; Tassone et al., 

2004). These aberrant masses of mRNA and protein may convert into the inclusion 

bodies (Greco et al., 2006; Iwahashi et al., 2006).  

4.2.2 SFPQ dislocation in the brain of rpAD patients 

Cytoplasmic mislocalization of many nuclear factors has been defined as a 

pathomechanism in several neurological diseases (Barmada et al., 2010; Bishof et 

al., 2018; Neumann et al., 2006; Vance et al., 2013). Additionally, in the current 

study, a drastic nuclear depletion was detected for SFPQ in the frontal cortex of 

rpAD subjects. Previously, one study has reported a complete dislocation of SFPQ in 

the hippocampus of AD patients (Ke et al., 2012). Specifically, the higher disloca-

tion/depletion rate (91% of cells) observed in rpAD cases in the current study as 

compared to spAD (51%) and controls (43%) suggests an important role of SFPQ in 

the rapid progression of the disease. Lu et al. (2018) demonstrated a moderate dis-

location of SFPQ in AD brains, which was consistent with the observations regarding 

spAD described in this study. Based on data from the current study, from the frontal 

cortex and literature reports (showing dislocation in hippocampus), it can be con-

cluded that dislocation of SFPQ is an important feature of Alzheimer’s pathology, 

and different brain regions have variable intensity of SFPQ dislocation. Increased 

dislocation in rpAD subjects may be due to higher cell death (through apoptosis), as 

cytoplasmic localization of SFPQ has been observed in apoptotic cells. The nuclear 

depletion of SFPQ, particularly in rpAD, may contribute to neurodegeneration by 

both the loss of nuclear functions (Lu et al., 2018) and toxic functions in the cyto-

plasm. 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5011753/#R33
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Nuclear loss of SFPQ could render cells more prone to DNA damage, considering 

that solid evidence has been established for a crucial role of SFPQ in the DNA dou-

ble-strand break repair processes (Jaafar et al., 2017). Lu et al. (2018) reported a 

disrupted DNA organization in association with SFPQ dislocation. SFPQ depletion 

from the nucleus may induce cell death by contributing to mitosis, as a redistribution 

in the cytoplasm was observed in mitotic cells (Shav-Tal et al., 2001). 

4.2.3 SFPQ co-localization with the SG marker TIA-1 in the rpAD brain 

Nuclear depletion and dislocation of SFPQ was concomitantly associated with its 

cytoplasmic co-localization with TIA-1 (a classical marker of SGs) in rpAD subjects. 

A ring-shaped SFPQ was observed around the nuclei which co-localized with TIA-1. 

Previously, pathological SGs have been linked to mislocalization of tau, FUS and 

TDP-43 (Bosco et al., 2010; Liu-Yesucevitz et al., 2010; Vanderweyde et al., 2016; 

Yasuda et al., 2017).  

Furthermore, SFPQ translocated from the nucleus and assembled into cytoplasmic 

TIA-1-positive stress granules in response to oxidative stress conditions in cultured 

cells. These findings from the current study indicate a role of SFPQ in the stress re-

sponse under physiological conditions. The identification of SFPQ in the stress gran-

ule-interactome of U2OS cells (Jain et al., 2016) further confirms the involvement of 

SFPQ in the stress response. Pathological and persistent TIA-1-positive-stress 

granules have been implicated in AD (Apicco et al., 2018). Increased intron retention 

in SFPQ transcript has been reported in ALS patients (Luisier et al., 2018). Extensive 

binding of SFPQ to its retained introns leads to higher cytoplasmic abundance. This 

corroborates with our findings of increased mRNA levels of SFPQ in the rpAD brain, 

which might contribute to the altered localization observed in the rpAD cases.  

Though predominantly a nuclear protein, multiple localizations of SFPQ have been 

reported. Phosphorylation at C-terminal tyrosines leads to accumulation at the nu-

clear envelope or in the cytoplasm (Lukong et al., 2009; Otto et al., 2001). This redis-

tribution of SFPQ has been linked to cell cycle arrest (Lukong et al., 2009), apoptosis 

(Galietta et al., 2007; Shav-Tal et al., 2001), and splicing abnormalities (Heyd and 

Lynch, 2010; Melton et al., 2007). Furthermore, a role for SFPQ in the IRES (internal 

ribosome entry site)-mediated translation in the cytoplasm has also been reported 

https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0035678#pone.0035678-ShavTal1


Discussion 

103 
 

(Sharathchandra et al., 2012). From our results and literature reports, we propose 

three possible mechanisms responsible for the dislocation of SFPQ from the nucle-

us: (1) Chronic stress may turn physiological SGs into pathological, and hijack SFPQ 

in the cytoplasm. (2) Retained introns in combination with increased levels of SFPQ 

transcript may sequester SFPQ in the cytoplasm. (3) Redistribution of SFPQ into the 

cytoplasm is linked to cell death (apoptosis), specifically in rpAD cases. 

4.2.4 SFPQ and neurofibrillary tangles  

Co-aggregation of some splicing factors with tau protein in the cytoplasmic inclusions 

has been reported for both sporadic and familial AD cases (Bai et al., 2013; Bishof et 

al., 2018; Diner et al., 2014). The present study identified a depletion of both SFPQ 

and phospho-tau from the nucleus in brain tissue from rpAD patients. Both proteins 

showed cytoplasmic/perinuclear co-localization as compared to nuclear co-

localization in control cases. One possible explanation for this observation could be 

that, at earlier stages, activated kinases can phosphorylate not only tau protein but 

also SFPQ. Cytoplasmic association of SFPQ with phospho-tau tangles, and their 

complete loss from the nucleus, suggests a change in the function of these proteins, 

extending the pathogenic role of tau to the nuclear processes.  

Hernandez-Ortega et al. (2016) described a complete depletion of nuclear tau in the 

neurons bearing NFTs in hippocampal-CA1, entorhinal and temporal neocortical re-

gions at the terminal stages of the disease. This altered localization of nuclear tau 

was associated with chromatin modifications (Hernandez-Ortega et al., 2016). In 

rpAD cases showing complete loss of nuclear tau, DNA-protective role of nuclear tau 

(Sultan et al., 2011) or heterochromatin stabilization function (Hernandez-Ortega et 

al., 2016; Sjöberg et al., 2006) will be disturbed. Furthermore, SFPQ has also been 

linked to telomere maintenance (Petti et al., 2019). Its dislocation from the nucleus 

along with tau protein may lead to impaired DNA functions and results in aberrant 

gene regulation. In summary, our data in corroboration with previous reports suggest 

the involvement of nuclear tau, possibly in conjunction with SFPQ, in the pathology 

of rpAD.  

Interestingly, we detected a predominant nuclear localization for phospho-tau (S199) 

in the control subjects. Nuclear localization of phospho-tau has been reported in 
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normal cell lines (Shea and Cressman, 1998), mouse brain (Lambert et al., 1995; Lu 

et al., 2013), and human brain (Brady et al., 1995). However, the significance of 

phospho-tau in the nucleus under control conditions is not clear. Localization of 

phospho-tau in the nucleus under control conditions, observed in the present study 

in combination with literature reports, highlights a potential role of tau in genome sur-

veillance. Further knowledge on nuclear and, in particular, phosphorylated tau may 

provide clues in understanding pathological features of nuclear tau in neurodegener-

ative diseases.  

In spAD subjects, tangled tau was even observed in the nucleus in agreement with 

previous findings (Fernandez-Nogales et al., 2017; Lu et al., 2018), where it co-

localized with SFPQ. Identification of tangled tau in the nucleus extends pathological 

features of tau not only to axon or somatodendritic compartments but also to nuclear 

processes. Previously, rod-like deposits of tau were also identified in the nuclei of 

subjects with AD and Huntington’s disease (Lu et al., 2014). Collectively, evidence 

from the current study in corroboration with previous studies suggests a role for tau 

within the nucleus under normal and disease conditions. Furthermore, disloca-

tion/depletion of both SFPQ and phospho-tau, specifically in the rpAD cases, may be 

linked to distinct molecular pathways in subtypes of AD. 

Biochemically, there were no significant differences detected for total tau in the cur-

rent study in the postmortem brains. We were able to detect significant differences in 

the SDS-resistant HMW-tau (~120KDa) between spAD and control subjects. Inter-

estingly, a trend for lower ratio of phospho-tau/tau was observed in rpAD cases as 

compared with spAD patients, in line with a previous report (Ba et al., 2017). This 

decreased phospho-tau/tau ratio indicates a reduced rate of tau phosphorylation in 

rpAD subjects, contrary to higher phosphorylation, which is a cardinal feature of 

spAD pathology. This difference in the ratio of phospho-tau/tau may be of potential 

significance for the development of a progressive form of AD.  

4.2.5 SFPQ co-localizes with oligomeric tau in the rpAD 

Although cytoplasmic tau deposits are a burden for the cell, it is rather the toxic solu-

ble oligomeric species of tau that are the real culprits associated with cognitive de-

cline, neuronal dysfunction, and death (Guerrero-Muñoz et al., 2015; Shafiei et al., 

2017). Interestingly, significant co-localization was detected for tau oligomers and 
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SFPQ in the rpAD subjects. This interaction between SFPQ and tau oligomers has 

potential relevance for oligomerization, and subsequent misfolding of tau protein. 

Previously, co-aggregation of tau oligomers with TIA-1 has been reported in animal 

models of tauopathy (Apicco et al., 2018; Vanderweyde et al., 2016). In response to 

different kinds of stresses, SG formation brings together many intrinsically aggregat-

ed-prone proteins (e.g. TIA-1, tau, and SFPQ) to form reversible SGs. Chronic stress 

can turn these physiological SGs to insoluble and pathological SGs (Wolozin, 2012). 

Based on results from the current study, demonstrating  

A) stress-induced redistribution of SFPQ into cytoplasmic TIA-1-positive SGs in 

cultured cells, 

B) its nuclear depletion and co-localization with cytoplasmic TIA-1 in the human 

brain of rpAD subjects, 

C) SFPQ co-localization with tau oligomers and tangles in the rpAD brains,  

D) its high score for PLD (PLD score = 28), and 

E) its LLPS property (catGRANULES score=1.66),  

it is reasonable to propose that SFPQ is an important component of AD pathology, 

particularly of rapidly progressive AD.  

Our findings suggest that dysregulated SFPQ can interact with (hyperphosphory-

lated) tau and its oligomeric form in stress granules, providing an intimate link be-

tween SFPQ, tau pathology and SGs. Dislocation of SFPQ may lead to impaired nu-

clear functions of SFPQ, e.g. DNA damage and repair, telomere stability, and splic-

ing abnormalities. Toxic gain of function in the cytoplasm may contribute to aberrant 

dynamics of SGs, oligomerization, and misfolding of tau protein (Fig. 37). Based on 

results from the current study, we could state that SFPQ pathology is linked with tau 

protein, more robustly in rapid progressive form of AD. These results provide a new 

insight into the relationship between SFPQ and tau pathological features in rpAD. 
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Figure 37: Pathological characteristics of SFPQ, phospho-tau and TIA-1 in the human brain. This figure 

describes pathological features observed for SFPQ, TIA-1 and phospho-tau in the postmortem brains of rpAD 

cases. The RNA-binding protein SFPQ is normally localized predominantly in the nucleus, where it performs 

multiple functions including splicing, transcription, and DNA damage and repair. In the control subjects, significant 

co-localization was observed for SFPQ and phospho-tau (S199) in the nucleus (1). In rpAD subjects, a complete 

nuclear depletion and cytoplasmic co-localization was observed for SFPQ and tau tangles (2), and tau oligomers 

(3). Furthermore, SFPQ co-localization with TIA-1 was identified significantly in brain samples from rpAD patients 

(4). At protein level, SFPQ was significantly downregulated, and TIA-1 was upregulated in rpAD group, in com-

parison to spAD group. Our findings suggest that dysregulated SFPQ can interact with (hyperphosphorylated) tau 

and its oligomeric form in stress granules, providing an intimate link between SFPQ, tau pathology and SGs. 

Overall, dysregulation of SFPQ in the form of reduction and nuclear depletion/dislocation can affect the cell biolo-

gy by two-ways.1) Dislocation of SFPQ may lead to impairment of nuclear functions of SFPQ e.g. DNA damage 

and repair, telomere stability, and splicing abnormalities. 2) Toxic gain of function in the cytoplasm may contribute 

to aberrant dynamics of SGs as well as oligomerization and misfolding of tau protein.  

4.2.6 Differential regulation of SG marker TIA-1 in disease-subtype-specific 

manner 

Previously, TIA-1 has been linked to tau misfolding (Vanderweyde et al., 2016) but 

the expression of TIA-1 has not been investigated in the various AD entities. In the 

present study, we detected a significant reduction in TIA-1 levels in spAD and sCJD-

subtypes. It was shown that TIA1 reduction (haploinsufficiency) is cytoprotective in 

vivo, leading to increased survival in a mouse model of tauopathy due to reduced 

neurodegeneration and improvement in cognitive deficits (Apicco et al., 2018). A sig-

p-tau

p-tau

SFPQ

SFPQ

TIA-1

TIA-1

SFPQ

p-tau

p-tau

Tau oligomers

Translation

Transport

Abnormal 

sequestering of 

RBPs

Toxicity

Toxicity

Nucleus Cytoplasm

Splicing

Transcription

DNA damage and 

repair

SFPQ

SFPQ

SFPQ

SFPQ



Discussion 

107 
 

nificant increase in TIA-1 levels in rpAD as compared to spAD may contribute to 

higher neurodegeneration in rpAD cases. 

Our data show that valosin-containing protein is specifically enriched in the RNA-

binding proteome from rpAD and sCJD subjects, suggesting a possible involvement 

of VCP in these diseases. In our study, a significant increase of mRNA coding for 

VCP was detected in rpAD subjects. This protein plays an important role in the 

clearance of SGs (Turakhiya et al., 2018). Malfunction of VCP due to mutations has 

been associated with increased build-up of stress granules in other neurodegenera-

tive diseases, e.g. ALS and fronto-temporal dementia (FTD) (Ramaswami et al., 

2013; Wolozin, 2012). Elevated expression of VCP at the mRNA level may have a 

role in the formation and clearance of neuronal inclusions in various neurodegenera-

tive diseases (Mori et al., 2013). It can be concluded that VCP dysregulation is a 

common pathological feature of several neurodegenerative diseases including rpAD. 

4.3 Translational aspects of SFPQ in cellular models 

4.3.1 Cellular model of stress 

To understand the role of target proteomic candidates for SG biology, HeLa cells 

were used as an appropriate model for stress induction (Aulas and Vande Velde, 

2015). These cells offer numerous technical advantages, as they are easy to main-

tain in culture and reliably result in high transfection efficiency (Bali et al., 2012). 

Though non-neuronal, this cell line was used for the current study because it pro-

duced prominent SGs. Compared to other cell lines, the increased size of HeLa cells 

allows the accurate distinction of cytoplasmic SGs.  

4.3.2 SFPQ recruitment into SGs after oxidative stress treatment 

In this study, we demonstrate that SFPQ is recruited into SGs that are induced in 

response to treatment with sodium arsenite. The SFPQ protein is an important com-

ponent of RNA transport granules in dendrites (Kanai et al., 2004; Kunde et al., 

2011; Zhu et al., 2005). However, it is not known whether SFPQ plays a role under 

stressful conditions. In the current study, it was found that endogenous SFPQ co-

localizes with the core SG marker TIA-1 following exposure to oxidative stress. 

SFPQ is localized predominantly in the nucleus, but treatment with sodium arsenite 
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induced the redistribution of this protein into the cytoplasm. However, the quantity of 

translocated protein was small relative to the total amount of the protein. This redis-

tribution led to the formation of cytoplasmic inclusions, which co-localized with SG 

marker, indicating that these inclusions are SGs. Association of SFPQ with SGs can 

be mediated through protein-protein or RNA-protein interactions. Ke et al. (2012) 

reported a redistribution and cytoplasmic accumulation of SFPQ in the form of vesic-

ular aggregates in SH-SY5Y cells after overexpression of tau. Cytoplasmic redistri-

bution in the form of inclusions has also been observed in N2a cells after SFPQ 

overexpression (Lu et al., 2018). Both of these studies reported the formation of cy-

toplasmic inclusions of SFPQ, but the nature of these inclusions is not known. Co-

localization of SFPQ with TIA-1-positive stress granules, as shown in the present 

study, indicates that these are most likely SGs. 

In summary, our results highlight a role of oxidative stress in the cytoplasmic redistri-

bution of SFPQ and its incorporation into SGs. Furthermore, we also found a signifi-

cant increase in SFPQ intensity levels after stress induction. It was reported that 

SFPQ sensitizes neurons to excitotoxic damage in vitro (Xu et al., 2005). Our find-

ings indicate an important function of SFPQ under stressful conditions, allowing sig-

nificant flexibility in gene regulation, therby enabling the cell to adjust in response to 

different environmental conditions. Based on our findings demonstrating oxidative-

stress-mediated redistribution of SFPQ into TIA-1-positive cytoplasmic SGs, it can 

be concluded that chronic stress may lead to nuclear depletion of SFPQ, which was 

observed in the postmortem brains of rpAD cases. 

4.3.3 Tau, TIA-1 and SFPQ in stress granules 

In our model of stress induction, we observed a co-localization of tau and phospho-

tau with TIA-1. Interestingly, for phospho-tau, we observed both nuclear and cyto-

plasmic localization with predominant nuclear reactivity, which was increased in re-

sponse to stress treatment. Although tau is considered predominantly a cytosol-

enriched protein, several studies have reported its nuclear localization in both neu-

ronal (Siano et al., 2019, Ulrich et al., 2018; Wang et al., 1993) and non-neuronal cell 

lines, including HeLa cells (Sjöberg et al., 2006). Higher immunoreactivity for phos-

pho-tau in the nucleus during stress exposure may indicate a role of tau in cytopro-

tective mechanisms. Previously, a role of nuclear tau has been implicated in the 

https://www.frontiersin.org/articles/10.3389/fnins.2017.00495/full#B32
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compensatory mechanisms of the cell through epigenetic changes upon stress ex-

posure (Frost et al., 2014; Mastroeni et al., 2011; Sanchez-Mut and Graff, 2015; Sul-

tan et al., 2011). Notably, we found co-localization of SFPQ with tau and phospho-

tau in the granules after stress exposure. This co-localization of SFPQ and phospho-

tau in the granules in vitro as well as in postmortem human brain of rpAD subjects 

further strengthen the possibility that SFPQ contributes to tau pathology through the 

formation and/or stabilization of stress granules.  

In the present study, immunoblotting analysis of total cell lysates after stress induc-

tion also indicated an increase in tau phosphorylation in agreement with immunocy-

tochemical data. Our results suggest that the phosphorylation status and distribution 

of tau, particularly phospho-tau, are both modified by oxidative stress in HeLa cells. 

To rule out the possibility of a cell-type-specific increase in tau phosphorylation, we 

also investigated the phosphorylation status of tau protein in the neuronal cell line 

SH-SY5Y. A similar increase was observed in tau phosphorylation in SH-SY5Y cells 

after stress induction. These findings confirm the stress-dependent increase in tau 

phosphorylation in both neuronal (SH-SY5Y) and non-neuronal (HeLa) cell lines. An 

increased activity of GSK-3β has been reported in different cell lines leading to hy-

perphosphorylation of tau after oxidative stress treatment (Feng et al., 2013; Lovell 

et al., 2004). One of the earliest events occurring in the progression of AD is an ele-

vation in tau phosphorylation (Huang et al., 2016). Our results confirm oxidative-

stress-induced phosphorylation and redistribution of phospho-tau into cytoplasmic 

SGs along with SFPQ, providing a possible mechanism for co-aggregation and mis-

localization of both proteins (Fig. 38).  
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Figure 38: Current working model for SFPQ and tau-pathological features in the rapidly progressive form 

of Alzheimer’s disease. The left box of the picture depicts nucleocytoplasmic translocation of SFPQ and phos-

pho-tau including their assembly into stress granules based on our data from the cellular model of stress. Oxida-

tive-stress-induced redistribution of SFPQ and phospho-tau into the cytoplasm results in the formation of stress 

granules. These reversible stress granules will be resolved upon removal of the stressors. The right box is depict-

ing pathological features of both proteins observed in the human brain of patients with rpAD at terminal stage of 

the disease. A complete nuclear depletion of SFPQ and phospho-tau was observed in the postmortem brain of 

rpAD cases. Furthermore, SFPQ co-localized with tau tangles, tau oligomers and TIA-1 in the cytoplasm in the 

human brain and in cultured cells, providing a possible mechanism of SFPQ and nuclear tau dislocation through 

pathological SGs. 

4.3.4 Biochemical characterization of stress-granule components 

The increase in intensity levels of phospho-tau, TIA-1 and SFPQ during oxidative 

stress, as observed in this study, raised a concern as to whether this increase was 

due to increased expression of these proteins or due to consolidation of these pro-

teins into granules. To confirm this, the REAP method (Suzuki et al., 2010) was 

used, allowing very rapid fractionation (2 min) without the involvement of intermedi-

ate, time-consumping lysis steps, thus minimizing the chance of technical processing 

bias in the assessment of protein expression. The REAP method confirmed that 

there is an increase in tau phosphorylation after oxidative stress. A significant in-
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crease in phospho-tau levels was detected in cytoplasmic and nuclear fractions, with 

a stronger increase in cytoplasmic fractions. Chronic oxidative stress leads to in-

creased tau phosphorylation in neuronal cultures (Su et al., 2010; Zhu et al. 2005).  

Our experiments using biochemical fractionation confirmed that oxidative stress me-

diates an increase in tau phosphorylation and its redistribution into the cytoplasm. 

However, the amount of translocated phospho-tau into the cytoplasm was small, as 

compared to the total tau pool. The levels of TIA-1 increased significantly in nuclear 

fractions and slightly in whole cell lysate fractions. Furthermore, subcellular fractiona-

tion also indicated a slight increase in SFPQ levels in both nuclear and whole cell 

fractions, although that was not significant. One plausible explanation for this obser-

vation could be that the increase in SFPQ levels observed in the total cell lysates 

was not high enough to be detected in the volume-based normalizations used in the 

REAP method. In summary, these results confirm increased phosphorylation and 

redistribution of tau into the cytoplasm in response to oxidative stress. The REAP 

method also confirmed increase in TIA-1 levels after stress treatment.  

4.3.5 Role of SFPQ towards tau axis 

The Braak-stage-dependent reduction in SFPQ levels in the entorhinal cortex of hu-

man brain (Ke et al., 2012) suggests a tau-dependent downregulation of SFPQ. To 

decipher the role of tau, we expressed recombinant WT or mutant human tau 

(P301L-tau) in HeLa cells and found a significant increase in total and phosphory-

lated tau levels after transient transfection. However, there were no significant 

changes observed in net phosphorylation (phospho-tau/tau) between WT- and 

P301L tau-expressing cells. Immunoblotting analysis did not show significant differ-

ences in the levels of SFPQ 24 hrs post-transfection. 

To further extend our knowledge about putative long-term effects of tau expression, 

we also investigated changes in SFPQ levels 48 hrs post-transfection. Interestingly, 

immunoblotting analysis revealed a significant reduction in SFPQ levels in WT-tau-

expressing cells as compared to controls. These results indicate that expression of 

tau leads to a reduced SFPQ expression in both WT- and P301L-tau-expressing 

cells, but a significant downregulation was only found in WT-tau-expressing cells. 

Downregulation of SFPQ at a transcriptional level has also been reported in pR5 



Discussion 

112 
 

mice expressing P301L-tau (Ke et al., 2012). Given the reduced SFPQ expression in 

the human brain frontal cortex of rpAD subjects and in transfeced cells overexpress-

ing tau, our data suggest a tau-dependent modulation of SFPQ expression.  

The cell viability assay indicated decreased cell viability in HeLa cells after tau-

expression as compared to controls. Increased susceptibility to cell death has been 

reported after WT-tau expression in other cell lines as well e.g. SY5Y cells (Delobel 

et al., 2003). Similarly, knockout of whitesnake/sfpq in zebra-fish has been associat-

ed with increased apoptosis (Lowery et al., 2007). Furthermore, our immunoblotting 

analysis indicated that total levels of TIA-1 were not altered under any of these con-

ditions, suggesting that tau has no effect on the total levels of TIA-1. A role of tau in 

the regulation of the TIA-1 interactome has been reported previously (Vanderweyde 

et al., 2016). In summary, our data demonstrate that human WT-tau expression 

leads to SFPQ reduction and higher susceptibility to cell death. 

4.3.5.1 Dysregulated pathways associated with tau-mediated downregulation 

of SFPQ 

To explore pathways and mechanisms associated with tau-dependent downregula-

tion of SFPQ, this study employed a quantitative proteomic technology called 

SWATH-MS. Combination of three functional enrichment strategies (IPA analysis, 

Fisher’s exact test and WebGeStalt-based enrichment analysis) indicated two major 

themes that were altered: the first was associated with RNA metabolism (RNA dam-

age and repair and cytoplasmic translation via the eiF2 and eiF4 pathways) and the 

second as associated with DNA damage and repair. Overall, most of the proteins 

were downregulated (251) after expression of human tau, as compared with the 

number of up-regulated proteins (63), suggesting a reduction in global translation. 

Likewise, most of the proteins belonging to the first theme were downregulated. Giv-

en the fundamental importance of protein synthesis machinery in the neurons, it is 

most likely that tau-mediated aberrant synthesis of ribosomal proteins and subunits 

is harmful to numerous complex neuronal processes (Rangaraju et al., 2017; 

Slomnicki et al., 2016). Another possible reason for changes in the synthesis of spe-

cific sets of proteins, as observed in this study, might be due to aberrant interaction 

between tau and TIA1, which could sequester specific mRNAs, change the synthesis 

of particular sets of proteins and, therefore, contribute to tau pathology (Apic-
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co et al., 2018; Vanderweyde et al., 2016). A link between AD and altered or reduced 

global translation was recognized initially in 1989 (Langstrom et al., 1989). Signifi-

cant impairment in ribosomal function has been reported in multiple cortical regions 

in patients with mild cognitive impairment (MCI) and AD, due to reduced protein syn-

thesis, reduced ribosomal and transfer RNA levels (Ding et al., 2005; Hernandez-

Ortega et al., 2016). Downregulation of many ribosomal proteins was observed in 

our data. Recently, impaired synthesis of ribosomal proteins was reported in a tau-

transgenic mouse model of FTD (Evans et al., 2019) and in cultured cells (Maina et 

al., 2018). In summary, our findings confirm impaired protein synthesis as a 

pathomechanism through which pathological tau can disrupt cellular homeostasis. 

The second major theme associated with DEPs was DNA damage and repair. Major 

proteins belonging to this functional category (XRCC5, XRCC6, FEN1, MSH6, 

POLD1, PCNA, RFC5) exhibited a reduced expression. A malfunction of these pro-

teins associated with “telomere organization and mismatch-repair in eukaryotes’’ 

suggests disturbed DNA-metabolic processes. Tau-mediated DNA disorganization 

has important implications for AD. These findings confirm a toxic role of tau in the 

nucleus. Previous investigations in MCI patients have demonstrated a role of DNA-

damage in the development of AD and other neurodegenerative diseases (Bucholtz 

and Demuth, 2013). Based on our results, it is tempting to speculate that tau-induced 

DNA abnormalities may contribute to AD-related neurological deficits. 

There are no reports providing evidence for the involvement of tau in DNA-repair 

processes (Rossi et al., 2013) or in telomere preservation. A chaperone role for tau 

protecting genomic DNA against free radicals or heat-induced stress damage has 

been recently reported (Sultan et al., 2011; Wei et al., 2008), as well as functions in 

chromatin stabilization (Rossi et al., 2008). Disturbances observed in telomere 

maintenance and organization could be attributed to a reduction of SFPQ levels, as 

recently established for SFPQ in the regulation of telomere integrity (Petti et al., 

2019).  

In summary, the reduced SFPQ levels after tau expression in vitro, in the human 

brain of rpAD and sCJD subjects, and in the 3xTg-AD animals suggest that this de-

pletion may lead to impaired nuclear DNA functions. As observed in the frontal cor-

tex in this study and in the hippocampus by others (Ke et al., 2012), mislocalization 

https://www.embopress.org/doi/10.15252/embj.2018101174#embj2018101174-bib-0003
https://www.embopress.org/doi/10.15252/embj.2018101174#embj2018101174-bib-0045
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of SFPQ suggests a disturbance in multiple roles including DNA damage, transcrip-

tion, alternative splicing, and transport machinery, eventually contributing to neuro-

degeneration.  

4.4 Dysregulation of SFPQ, tau, and TIA-1 in 3xTg-AD mice  

To address the physiological significance of reduced expression of SFPQ in the 

postmortem human brain, the time-dependent expression profile of proteomic signa-

tures was investigated in the model of 3xTg mice both at pre-symptomatic and symp-

tomatic stages of the AD-like disease. The 3xTg-AD mouse model has three muta-

tions (APP Swedish, MAPT P301L, and PSEN1 M146V) in the brain (Oddo et al., 

2003) and develops Aβ-plaques and tau tangles in the hippocampus from the age of 

6 months (Belfiore et al., 2019).  

In the current study, we identified a significant reduction in the levels of total tau at 

late-symptomatic stage of the disease in 3xTg-AD mice as compared to controls. No 

significant changes were observed for phospho-tau (S199), which was consistent 

with previous findings in 3xTg-AD mice (Li et al., 2019). Furthermore, we uncovered 

that SFPQ and TIA-1 were already significantly elevated at the early pre-

symptomatic phase (3 mpi) of the disease, which indicates their relevance as early 

disease-modifying targets in 3xTg-AD mice (Fig. 39). This upregulation in 3xTg-AD 

mice is consistent with the oxidative-stress-induced increase in SFPQ and TIA-1 lev-

els in HeLa cells (Fig. 39), suggesting that at early stages of the disease pre-tangle 

pathology might induce these changes (Santacruz et al., 2005).  

During progression of the disease, SFPQ levels did not differ from controls at the 

early symptomatic phase of the disease. This study observed that, in 3xTg-AD mice 

at 12 mpi, there was a drastic reduction in SFPQ levels, comparable to the data from 

the postmortem human brain tissues from rpAD and sCJD patients. It was demon-

strated that overexpression of SFPQ contributes to cell death, since it sensitizes 

neurons to neurotransmitter-mediated cell death (Xu et al., 2005).  

Reduction in TIA-1 (haplosufficiency) has been shown to be protective against neu-

rodegeneration (Apicco et al., 2018). The significant downregulation of TIA-1 ob-

served at the terminal stage in 3xTg-AD mice and in spAD postmortem brains may 
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exhibit a protective or compensatory effect (Fig. 39). The significant increase in TIA-

1 in rpAD in comparison to spAD suggests higher neurodegeneration in rpAD cases.  

 

Figure 39: Comparative analysis of the differential expression of SFPQ and TIA-1 in mice and humans. 

The red boxes are indicating upregulated proteins, whereas the green boxes are representing downregulated 

proteins, with grey boxes indicating non-significant changes in relation to controls. Expression of SFPQ and TIA-1 

was significantly elevated at the early pre-symptomatic phase (3 mpi) of the disease in 3xTg-AD mice, suggesting 

that these proteins could be of potential significance as early disease-modifying targets. The high expression 

levels of SFPQ and TIA-1 in mice were also observed in HeLa cells following exposure to oxidative stress. At 

symptomatic stage of the disease, differential regulation was observed for both SFPQ and TIA-1. The reduced 

SFPQ levels in the postmortem human brains of rpAD patients was also evident at late symptomatic stage in the 

3xTg-AD mice.  

In summary, the research findings from the current study confirmd the heterogeneity 

of AD entities. Proteomic analyses have identified several subtype-specific RBPs, 

but further studies are required to assess their clinical relevance. 
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4.5 Conclusion 

RNA-binding proteins as key regulators in RNA processing and translational control 

may have pathophysiological functions in Alzheimer’s disease. This study shows that 

the RNA-binding protein SFPQ (splicing factor proline and glutamine rich) is 

dysregulated at both the protein and mRNA level in the frontal cortex of patients 

dignosed with rpAD or sCJD as well as in the brains of 3xTg-AD mice. Co-

immunofluorescence analysis in combination with confocal-laser scanning microsco-

py demonstrated nuclear depletion of SFPQ along with phospho-tau, particularly in 

cases of rapidly progressive AD. This nuclear depletion of both proteins was con-

comitantly associated with their cytoplasmic redistribution. Of note, association be-

tween SFPQ and tau in rpAD brain did not exclude the possible role of SFPQ in oli-

gomerization and misfolding of tau protein. In the human brain, immunoreactivity of 

SFPQ co-localized with cytoplasmic TIA-1, which is a marker of stress granules. A 

similar translocation of SFPQ and phospho-tau into cytoplasmic TIA-1-positive stress 

granules was also obtained in cultured HeLa cells treated with sodium arsenite. Fur-

thermore, the expression of human tau in vitro induced a significant reduction in 

SFPQ levels, suggesting a causal role of tau in downregulation of SFPQ. The find-

ings from the current study indicate that dysregulated SFPQ in combination with 

pathological tau and aberrant dynamics of SGs represents an important pathway, 

which may contribute to the rapid progression of AD. The re-establishment of the 

normal localization of SFPQ may be a candidate for future therapeutic research 

strategies. 
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5 Annexure 

Table 11: Patient details of Alzheimer’s disease subtypes and non-demented controls 

No. Case Age Gender Disease 
duration (y) 

Braak 
stages 

PMI (hr) 

1 rpAD1 70 Male <4  VI/ C  11:30 

2 rpAD2 76 Female <4  VI 18 

3 rpAD3 79 Female <4  V  05:30 

4 rpAD4 83 Male <4  VI/C  05:30 

5 rpAD5 83 Male <4  V/C 08:20 

6 rpAD6 76 Male <4  VI/C 06:30 

7 rpAD7 77 Female <4 IV/A 12 

8 rpAD8 78 Male <4 VI/C 03:30 

9 spAD1 78 Male >4 V/C 09:30 

10 spAD2 72 Female >4 V/C 09:30 

11 spAD3 82 Female >4 VI/B 01:45 

12 spAD4 56 Female >4 V/C 07 

13 spAD5 87 Male >4 V/C 07:05 

14 spAD6 75 Female >4 V/C 04:15 

15 spAD7 93 Male  >4 V/C 03 

16 spAD8 67 Female >4 III/C 06:10 

17 spAD9 90 Female >4 IV/A 09:55 

18 spAD10 83 Male >4 III/0 07:25 

19 Cont.1 69 Male - II/A 03:45 

20 Cont.2 68 Male - I/0 10:55 

21 Cont.3 64 Male - I/0 08:35 

22 Cont.4 67 Male - I/0 14:40 

23 Cont.5 74 Male - II/A 05:30 

24 Cont.6 86 Male - II/A 05:30 

25 Cont.7 73 Female - I/0 15:45 

26 Cont.8 61 Male - I 04:30 

27 Cont.9 77 Male - I/A 06:55 

PMI (hr): Postmortem interval in hours, rpAD: rapidly progressive Alzheimer’s disease, spAD: sporadic Alzheimer’ 

disease. 

Table 12: Details of sporadic Creutzfeldt Jakob disease subtype cases 

No. Case Age Gender Disease 
duration (y) 

Genotype PMI (hr) 

1 sCJD (MM1)1 65 Male <1 MM/MV1 09:45 

2 sCJD (MM1)2 74 Female <1 MM/MV1 07:50 

3 sCJD (MM1)3 61 Male <1 MM/MV1 07 

4 sCJD (MM1)4 66 Female <1 MM/MV1 05:05 

5 sCJD (MM1)5 74 Female <1 MM/MV1 11 

6 sCJD (MM1)6 74 Male <1 MM/MV1 04:50 

7 sCJD (VV2)1 66 Male <1 VV2 15:30 

8 sCJD (VV2)2 70 Female <1 VV2 11 

9 sCJD (VV2)3 72 Female <1 VV2 06 

10 sCJD (VV2)4 66 Female <1 VV2 04 
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Table 13: Details of cases used for immunohistochemistry analysis 

No. Case Age Gender Disease dura-
tion (y) 

ABC score 

1 rpAD1 59 Female <4 A3, B3, C3 

2 rpAD2 88 Female <4 A3, B2, C3 

3 rpAD3 76 Female <4 A3, B3, C2 

4 rpAD4 71 Female <4 A2, B3, C3 

5 rpAD5 84 Male <4 A2, B3, C3 

6 spAD1 87 Male >4 A1, B3, C3 

7 spAD2 77 Female >4 A1, B3, C2 

8 spAD3 69 Female >4 A1, B2, C3 

9 spAD4 62 Female >4 A1, B1, C2 

10 spAD5 85 Male >4 A2, B3, C3 

11 Cont.1 74 Female - - 

12 Cont.2 87 Female - - 

13 Cont.3 84 Female - - 

14 Cont.4 82 Male - - 

15 Cont.5 75 Male - - 

 

Table 14: List of primer pairs used in the study 

Gene name Direction Sequence 

GAPDH 

Forward TGGGTGTGAACCATGAGAAGTA 

Reverse GAGTCCTTCCACGATACCAAAG 

SFPQ  

Forward TGGGAAGTGACATGCGTACT 

Reverse TGTTTGGGCCTTCGTACTCT 

TIA-1  

Forward AGTTTCCTGGCCTGCATTTC 

Reverse ACACTCGAGCTGTCTTTCCT 

VCP 

Forward AAACGTATCCATGTGCTGCC 

Reverse ACTTTGAACTCCACAGCACG 

 

5.1 RNA-binding protein candidates from mass spectrometry analysis. 

Table 15: List of unique and common RNA-binding protein candidates identified in sporadic 

AD, rapidly progressive AD, and sporadic Creutzfeldt-Jakob disease  

Disease 
Group  

IDs 
Uniprot 
Acc. No. 

Protein names 
Involvement in 

disease 

spAD AEDO Q96SZ5 2-aminoethanethiol dioxygenase  
 

 
AL1L1 O75891 Cytosolic 10-formyltetrahydrofolate 

dehydrogenase  
 

 
AL4A1 P30038 Delta-1-pyrroline-5-carboxylate 

dehydrogenase, mitochondrial  
Hyperprolinemia 2  

 
AP2M1 Q96CW1 AP-2 complex subunit mu  

 

 
ARP2 P61160 Actin-related protein 2  

 

 
ARRB1 P49407 Beta-arrestin-1  

 

 
ATPD P30049 ATP synthase subunit delta, 

mitochondrial  
Mitochondrial com-
plex V deficiency, 
nuclear type 5   

CAD13 P55290 Cadherin-13  
 



Annexure 

119 
 

 
CADM4 Q8NFZ8 Cell adhesion molecule 4  

 

 
CANB1 P63098 Calcineurin subunit B type 1  

 

 
CAND1 Q86VP6 Cullin-associated NEDD8-dissociated 

protein 1  
 

 
CAPZB P47756 F-actin-capping protein subunit beta  

 

 
CASA1 P47710 Alpha-S1-casein [Cleaved into: Casoxin-

D] 

 

 
CAZA1 P52907 F-actin-capping protein subunit alpha-1  

 

 
CC50A Q9NV96 Cell cycle control protein 50A  

 

 
CD47 Q08722 Leukocyte surface antigen CD47  

 

 
CLCA P09496 Clathrin light chain A  

 

 
CLH2 P53675 Clathrin heavy chain 2  

 

 
CPLX2 Q6PUV4 Complexin-2  

 

 
CSN2 P61201 COP9 signalosome complex subunit 2  

 

 
CYFP2 Q96F07 Cytoplasmic FMR1-interacting protein 2  Epileptic 

encephalopathy, 
early infantile, 65   

DBNL Q9UJU6 Drebrin-like protein  
 

 
DC1L2 O43237 Cytoplasmic dynein 1 light intermediate 

chain 2  
 

 
DCXR Q7Z4W1 L-xylulose reductase  Pentosuria  

 
ECHA P40939 Trifunctional enzyme subunit alpha, mi-

tochondrial  
Mitochondrial 
trifunctional protein 
deficiency   

ENOB P13929 Beta-enolase   Glycogen storage 
disease 13   

FLNA P21333 Filamin-A  Periventricular 
nodular heterotopia 
1   

FLOT1 O75955 Flotillin-1 
 

 
FUBP2 Q92945 Far upstream element-binding protein 2  

 

 
GANAB Q14697 Neutral alpha-glucosidase AB  Polycystic kidney 

disease 3 with or 
without polycystic 
liver disease   

GBB4 Q9HAV0 Guanine nucleotide-binding protein sub-
unit beta-4  

Charcot-Marie-
Tooth disease, dom-
inant, intermediate 
type, F   

GBG3 P63215 Guanine nucleotide-binding protein G 
 

 
GDE P35573 Glycogen debranching enzyme  Glycogen storage 

disease 3   
GLU2B P14314 Glucosidase 2 subunit beta  Polycystic liver dis-

ease 1 with or with-
out kidney cysts   

GNAQ P50148 Guanine nucleotide-binding protein G Capillary 
malformations, 
congenital   

GPD1L Q8N335 Glycerol-3-phosphate dehydrogenase 1-
like protein  

Brugada syndrome 
2   

GPDM P43304 Glycerol-3-phosphate dehydrogenase, 
mitochondrial  

 

 
HINT1 P49773 Histidine triad nucleotide-binding protein 

1  
Neuromyotonia and 
axonal neuropathy, 
autosomal recessive   

HS74L O95757 Heat shock 70 kDa protein 4L  
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HSP76 P17066 Heat shock 70 kDa protein 6  

 

 
ICAM5 Q9UMF0 Intercellular adhesion molecule 5  

 

 
IDH3B O43837 Isocitrate dehydrogenase [NAD] subunit 

beta, mitochondrial  
Retinitis pigmentosa 
46   

IF4A1 P60842 Eukaryotic initiation factor 4A-I  
 

 
IF4B P23588 Eukaryotic translation initiation factor 4B  

 

 
IPYR Q15181 Inorganic pyrophosphatase  

 

 
KCC2A Q9UQM7 Calcium/calmodulin-dependent protein 

kinase type II subunit alpha  
Mental retardation, 
autosomal dominant 
53   

KCRM P06732 Creatine kinase M-type  
 

 
KT3K Q9HA64 Ketosamine-3-kinase  

 

 
L1CAM P32004 Neural cell adhesion molecule L1  Hydrocephalus due 

to stenosis of the 
aqueduct of Sylvius   

LASP1 Q14847 LIM and SH3 domain protein 1  
 

 
LIGO1 Q96FE5 Leucine-rich repeat and immunoglobulin-

like domain-containing nogo receptor-
interacting protein 1  

Mental retardation, 
autosomal recessive 
64   

MAOM P23368 NAD-dependent malic enzyme, 
mitochondrial  

 

 
MAP4 P27816 Microtubule-associated protein 4  

 

 
MK03 P27361 Mitogen-activated protein kinase 3  

 

 
MT1F P04733 Metallothionein-1F  

 

 
NCHL1 O00533 Neural cell adhesion molecule L1-like 

protein  
 

 
NCKP1 Q9Y2A7 Nck-associated protein 1  

 

 
NCKX2 Q9UI40 Sodium/potassium/calcium exchanger 2  

 

 
NDRG1 Q92597 Protein NDRG1  Charcot-Marie-

Tooth disease 4D   
NEDD8 Q15843 NEDD8  

 

 
NEGR1 Q7Z3B1 Neuronal growth regulator 1  

 

 
NP1L4 Q99733 Nucleosome assembly protein 1-like 4  

 

 
NTRI Q9P121 Neurotrimin  

 

 
ODPA P08559 Pyruvate dehydrogenase E1 component 

subunit alpha, somatic form, 
mitochondrial  

 Pyruvate 
dehydrogenase E1-
alpha deficiency   

OLA1 Q9NTK5 Obg-like ATPase 1  
 

 
OPA1 O60313 Dynamin-like 120 kDa protein, 

mitochondrial  
Optic atrophy 1  

 
OPCM Q14982 Opioid-binding protein/cell adhesion 

molecule  
Ovarian cancer  

 
PAK1 Q13153 Serine/threonine-protein kinase PAK 1  Intellectual devel-

opmental disorder 
with macrocephaly, 
seizures, and 
speech delay   

PAK3 O75914 Serine/threonine-protein kinase PAK 3  Mental retardation, 
X-linked 30   

PCSK1 Q9UHG2 ProSAAS  
 

 
PCY2 Q99447 Ethanolamine-phosphate 

cytidylyltransferase  
 

 
PFKAL P17858 ATP-dependent 6-phosphofructokinase, 

liver type  
 

 
PFKAP Q01813 ATP-dependent 6-phosphofructokinase,  
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platelet type  
 

PHIPL Q96FC7 Phytanoyl-CoA hydroxylase-interacting 
protein-like 

 

 
PLIN3 O60664 Perilipin-3  

 

 
PPT1 P50897 Palmitoyl-protein thioesterase 1  Ceroid 

lipofuscinosis, 
neuronal, 1   

PTN11 Q06124 Tyrosine-protein phosphatase non-
receptor type 11  

 LEOPARD 
syndrome 1   

QCR2 P22695 Cytochrome b-c1 complex subunit 2, 
mitochondrial  

Mitochondrial com-
plex III deficiency, 
nuclear 5   

RAB8B Q92930 Ras-related protein Rab-8B 
 

 
RALA P11233 Ras-related protein Ral-A 

 

 
RD23B P54727 UV excision repair protein RAD23 homo-

log B  
 

 
REEP5 Q00765 Receptor expression-enhancing protein 5  

 

 
RHOC P08134 Rho-related GTP-binding protein RhoC  

 

 
SEMG1 P04279 Semenogelin-1  

 

 
Septin-3 Q9UH03 Neuronal-specific septin-3 

 

 
Septin-6 Q14141 Septin-6 

 

 
Septin-9 Q9UHD8 Septin-9  

 

 
SH3G1 Q99961 Endophilin-A2  

 

 
SHLB2 Q9NR46 Endophilin-B2  

 

 
SNAG Q99747 Gamma-soluble NSF attachment protein  

 

 
SPTN2 O15020 Spectrin beta chain, non-erythrocytic 2  Spinocerebellar 

ataxia 5   
SRC8 Q14247 Src substrate cortactin  

 

 
SYNPO Q8N3V7 Synaptopodin 

 

 
TCAL5 Q5H9L2 Transcription elongation factor A protein-

like 5  
 

 
TCPB P78371 T-complex protein 1 subunit beta  

 

 
TCPQ P50990 T-complex protein 1 subunit theta  

 

 
TCTP P13693 Translationally-controlled tumor protein  

 

rpAD 4F2 P08195 4F2 cell-surface antigen heavy chain  
 

 
ACTA P62736 Actin, aortic smooth muscle  

 

 
ACY2 P45381 Aspartoacylase  Canavan disease  

 
ADDA P35611 Alpha-adducin  

 

 
ADT2 P05141 ADP/ATP translocase 2  

 

 
AL7A1 P49419 Alpha-aminoadipic semialdehyde 

dehydrogenase  
Pyridoxine-
dependent epilepsy   

AMER2 Q8N7J2 APC membrane recruitment protein 2  
 

 
AMPL P28838 Cytosol aminopeptidase  

 

 
ANK2 Q01484 Ankyrin-2  Long QT syndrome 

4   
AOFA P21397 Amine oxidase [flavin-containing] A  Brunner syndrome  

 
AOFB P27338 Amine oxidase [flavin-containing] B  

 

 
AP180 O60641 Clathrin coat assembly protein AP180  

 

 
ASAH1 Q13510 Acid ceramidase  Farber 

lipogranulomatosis   
AT2A2 P16615 Sarcoplasmic/endoplasmic reticulum 

calcium ATPase 2  
Acrokeratosis 
verruciformis   

ATP5H O75947 ATP synthase subunit d, mitochondrial  
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ATP5J P18859 ATP synthase-coupling factor 6, mito-

chondrial  
 

 
ATP5L O75964 ATP synthase subunit g, mitochondrial  

 

 
CALX P27824 Calnexin  

 

 
CD44 P16070 CD44 antigen  

 

 
CDS2 O95674 Phosphatidate cytidylyltransferase 2  

 

 
CLD11 O75508 Claudin-11  

 

 
CMC1 O75746 Calcium-binding mitochondrial carrier 

protein Aralar1  
Epileptic 
encephalopathy, 
early infantile, 39   

CO4A P0C0L4 Complement C4-A  Complement 
component 4A 
deficiency   

CO4B P0C0L5 Complement C4-B   Systemic lupus 
erythematosus   

COX41 P13073 Cytochrome c oxidase subunit 4 isoform 
1, mitochondrial  

 

 
CPNS1 P04632 Calpain small subunit 1  

 

 
CUTA O60888 Protein CutA  

 

 
DC1I2 Q13409 Cytoplasmic dynein 1 intermediate chain 

2  

 

 
DDTL A6NHG4 D-dopachrome decarboxylase-like pro-

tein  

 

 
EF2 P13639 Elongation factor 2  Spinocerebellar 

ataxia 26   
ERMIN Q8TAM6 Ermin  

 

 
FIS1 Q9Y3D6 Mitochondrial fission 1 protein  

 

 
GBG2 P59768 Guanine nucleotide-binding protein G 

 

 
GHC1 Q9H936 Mitochondrial glutamate carrier 1   Epileptic 

encephalopathy, 
early infantile, 3   

GPM6B Q13491 Neuronal membrane glycoprotein M6-b  
 

 
HEBP1 Q9NRV9 Heme-binding protein 1  

 

 
HNRPD Q14103 Heterogeneous nuclear 

ribonucleoprotein D0  
 

 
HYEP P07099 Epoxide hydrolase 1  

 

 
IMB1 Q14974 Importin subunit beta-1  

 

 
LAMP1 P11279 Lysosome-associated membrane 

glycoprotein 1  
 

 
LANC2 Q9NS86 LanC-like protein 2  

 

 
MAG P20916 Myelin-associated glycoprotein  Spastic paraplegia 

75, autosomal 
recessive   

MRP P49006 MARCKS-related protein  
 

 
MTAP2 P11137 Microtubule-associated protein 2  

 

 
MTPN P58546 Myotrophin  

 

 
NDKA P15531 Nucleoside diphosphate kinase A  

 

 
NDUA4 O00483 Cytochrome c oxidase subunit NDUFA4   Leigh syndrome  

 
ODO2 P36957 Dihydrolipoyllysine-residue succinyltrans-

ferase component of 2-oxoglutarate de-
hydrogenase complex, mitochondrial  

Platelet-activating 
factor acetylhydro-
lase IB subunit beta   

PA1B2 P68402 
 

 
 

PCBP2 Q15366 Poly(rC)-binding protein 2  
 

 
PGAM2 P15259 Phosphoglycerate mutase 2  Glycogen storage 

disease 10  
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PHB P35232 Prohibitin 

 

 
PHB2 Q99623 Prohibitin-2  

 

 
PI42A P48426 Phosphatidylinositol 5-phosphate 4-

kinase type-2 alpha  
 

 
PRIO P04156 Major prion protein  prion diseases, like: 

Creutzfeldt-Jakob 
disease   

QCR1 P31930 Cytochrome b-c1 complex subunit 1, 
mitochondrial  

 

 
QCR6 P07919 Cytochrome b-c1 complex subunit 6, 

mitochondrial  
 

 
RAP1A P62834 Ras-related protein Rap-1A  

 

 
SCG1 P05060 Secretogranin-1  

 

 
SCG2 P13521 Secretogranin-2  

 

 
SDHA P31040 Succinate dehydrogenase [ubiquinone] 

flavoprotein subunit, mitochondrial  
Mitochondrial 
complex II 
deficiency   

Septin-4 O43236 Septin-4  
 

 
SERA O43175 D-3-phosphoglycerate dehydrogenase  Phosphoglycerate 

dehydrogenase 
deficiency   

SIRB1 O00241 Signal-regulatory protein beta-1  
 

 
SNG3 O43761 Synaptogyrin-3 

 

 
SV2A Q7L0J3 Synaptic vesicle glycoprotein 2A 

 

 
SV2B Q7L1I2 Synaptic vesicle glycoprotein 2B 

 

 
SYNJ1 O43426 Synaptojanin-1  Parkinson disease 

20, early-onset   
TBA1B P68363 Tubulin alpha-1B chain  

 

 
TCPE P48643 T-complex protein 1 subunit epsilon  Neuropathy, heredi-

tary sensory, with 
spastic paraplegia, 
autosomal recessive   

TENA P24821 Tenascin  Deafness, 
autosomal 
dominant, 56   

VA0D1 P61421 V-type proton ATPase subunit d 1  
 

 
VAT1 Q99536 Synaptic vesicle membrane protein VAT-

1 homolog  
Voltage-dependent anion-selective 
channel protein 1  

Voltage-dependent 
anion-selective 
channel protein 2  
Voltage-dependent 
anion-selective 
channel protein 3   

VDAC1 P21796 
 

 
 

VDAC2 P45880 
 

 
 

VDAC3 Q9Y277 
 

 

sCJD A2MG P01023 Alpha-2-macroglobulin  
 

 
AACT P01011 Alpha-1-antichymotrypsin  

 

 
ACO13 Q9NPJ3 Acyl-coenzyme A thioesterase 13  

 

 
ADHX P11766 Alcohol dehydrogenase class-3  

 

 
AL1A1 P00352 Retinal dehydrogenase 1  

 

 
ALDR P15121 Aldo-keto reductase family 1 member B1  

 

 
APEX1 P27695 DNA-(apurinic or apyrimidinic site) lyase  

 

 
APOA1 P02647 Apolipoprotein A-I  High density 

lipoprotein 
deficiency 2 
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ARP3 P61158 Actin-related protein 3  

 

 
ASGL1 Q7L266 Isoaspartyl peptidase/L-asparaginase  

 

 
BIEA P53004 Biliverdin reductase A  Hyperbiliverdinemia  

 
CAB39 Q9Y376 Calcium-binding protein 39  

 

 
CATA P04040 Catalase  Acatalasemia  

 
CD59 P13987 CD59 glycoprotein  Hemolytic anemia, 

CD59-mediated, 
with or without poly-
neuropathy   

CLIC4 Q9Y696 Chloride intracellular channel protein 4  
 

 
CMBL Q96DG6 Carboxymethylenebutenolidase homolog  

 

 
CPPED Q9BRF8 Serine/threonine-protein phosphatase 

CPPED1  
 

 
DOPD P30046 D-dopachrome decarboxylase  

 

 
DYL2 Q96FJ2 Dynein light chain 2, cytoplasmic  

 

 
EFHD2 Q96C19 EF-hand domain-containing protein D2  

 

 
FABP7 O15540 Fatty acid-binding protein, brain  

 

 
FAHD1 Q6P587 Acylpyruvase FAHD1, mitochondrial  

 

 
FBX2 Q9UK22 F-box only protein 2 

 

 
FIBB P02675 Fibrinogen beta chain  Congenital 

afibrinogenemia   
FIBG P02679 Fibrinogen gamma chain Congenital 

afibrinogenemia   
FKBP4 Q02790 Peptidyl-prolyl cis-trans isomerase 

FKBP4  

 

 
G6PD P11413 Glucose-6-phosphate 1-dehydrogenase  Anemia, non-

spherocytic hemolyt-
ic, due to G6PD 
deficiency   

GBRL2 P60520 Gamma-aminobutyric acid receptor-
associated protein-like 2  

 

 
GGCT O75223 Gamma-glutamylcyclotransferase  

 

 
GNAI2 P04899 Guanine nucleotide-binding protein G 

 

 
GNPI1 P46926 Glucosamine-6-phosphate isomerase 1  

 

 
GSHB P48637 Glutathione synthetase  Glutathione 

synthetase 
deficiency   

HMGB1 P09429 High mobility group protein B1  
 

 
HNRPK P61978 Heterogeneous nuclear 

ribonucleoprotein K  
Au-Kline syndrome  

 
IDHC O75874 Isocitrate dehydrogenase [NADP] 

cytoplasmic  
Glioma  

 
IDHP P48735 Isocitrate dehydrogenase [NADP], 

mitochondrial  
D-2-hydroxyglutaric 
aciduria 2   

IGLL5 B9A064 Immunoglobulin lambda-like polypeptide 
5  

 

 
ILF2 Q12905 Interleukin enhancer-binding factor 2  

 

 
KAD3 Q9UIJ7 GTP: AMP phosphotransferase AK3, 

mitochondrial  
Phospholysine 
phosphohistidine 
inorganic pyrophos-
phate phosphatase   

LHPP Q9H008 
 

 
 

LKHA4 P09960 Leukotriene A-4 hydrolase  
 

 
MPI P34949 Mannose-6-phosphate isomerase  Congenital disorder 

of glycosylation 1B  
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MT2 P02795 Metallothionein-2  

 

 
NNRE Q8NCW5 NAD(P)H-hydrate epimerase  Encephalopathy, 

progressive, early-
onset, with brain 
edema and/or leu-
koencephalopathy   

NQO2 P16083 Ribosyldihydronicotinamide 
dehydrogenase 

 

 
NUDT5 Q9UKK9 ADP-sugar pyrophosphatase  

 

 
PDCD6 O75340 Programmed cell death protein 6  

 

 
PITH1 Q9GZP4 PITH domain-containing protein 1 

 

 
PROF2 P35080 Profilin-2  

 

 
PSA1 P25786 Proteasome subunit alpha type-1  

 

 
PSA2 P25787 Proteasome subunit alpha type-2  

 

 
PSA4 P25789 Proteasome subunit alpha type-4  

 

 
PSA5 P28066 Proteasome subunit alpha type-5  

 

 
PSA6 P60900 Proteasome subunit alpha type-6  

 

 
PSA7 O14818 Proteasome subunit alpha type-7  

 

 
PSB1 P20618 Proteasome subunit beta type-1  

 

 
PSB3 P49720 Proteasome subunit beta type-3  

 

 
PSB5 P28074 Proteasome subunit beta type-5  

 

 
PTGR1 Q14914 Prostaglandin reductase 1  

 

 
RAB21 Q9UL25 Ras-related protein Rab-21 

 

 
RAB5B P61020 Ras-related protein Rab-5B 

 

 
RASK P01116 GTPase KRas  Leukemia, acute 

myelogenous   
RB11B Q15907 Ras-related protein Rab-11B  Neurodevelopmen-

tal disorder with 
ataxic gait, absent 
speech, and de-
creased cortical 
white matter   

RHOA P61586 Transforming protein RhoA  
 

 
SH3L2 Q9UJC5 SH3 domain-binding glutamic acid-rich-

like protein 2  
 

 
SKP1 P63208 S-phase kinase-associated protein 1  

 

 
SPB6 P35237 Serpin B6  Deafness, 

autosomal 
recessive, 91   

SYWC P23381 Tryptophan--tRNA ligase, cytoplasmic  Neuronopathy, 
distal hereditary 
motor, 9   

TOLIP Q9H0E2 Toll-interacting protein 
 

 
UBC12 P61081 NEDD8-conjugating enzyme Ubc12  

 

rpAD 
and 

sCJD 

Common between rpAD and SCJD 

A1AG1 P02763 Alpha-1-acid glycoprotein 1  
 

 
A1AT P01009 Alpha-1-antitrypsin  Alpha-1-antitrypsin 

deficiency   
ACTN1 P12814 Alpha-actinin-1   Bleeding disorder, 

platelet-type 15   
ACYP2 P14621 Acylphosphatase-2  

 

 
AK1A1 P14550 Aldo-keto reductase family 1 member A1  
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CD81 P60033 CD81 antigen  Immunodeficiency, 

common variable, 6   
CYTB P04080 Cystatin-B   Epilepsy, 

progressive 
myoclonic 1   

DNJC5 Q9H3Z4 DnaJ homolog subfamily C member 5  Ceroid 
lipofuscinosis, 
neuronal, 4B   

FRIL P02792 Ferritin light chain   Hyperferritinemia 
with or without cata-
ract   

FSCN1 Q16658 Fascin  
 

 
GLTP Q9NZD2 Glycolipid transfer protein  

 

 
GSTM2 P28161 Glutathione S-transferase Mu 2  

 

 
HPLN1 P10915 Hyaluronan and proteoglycan link protein 

1  

 

 
LIS1 P43034 Platelet-activating factor acetylhydrolase 

IB subunit alpha  
Lissencephaly 1  

 
OTUB1 Q96FW1 Ubiquitin thioesterase OTUB1  

 

 
PDIA3 P30101 Protein disulfide-isomerase A3  

 

 
PEA15 Q15121 Astrocytic phosphoprotein PEA-15  

 

 
PIPNA Q00169 Phosphatidylinositol transfer protein alpha isoform  

 
PPIA P62937 Peptidyl-prolyl cis-trans isomerase A  

 

 
PTGDS P41222 Prostaglandin-H2 D-isomerase  

 

 
QOR Q08257 Quinone oxidoreductase  

 

 
RAB5C P51148 Ras-related protein Rab-5C  

 

 
RIDA P52758 2-iminobutanoate/2-iminopropanoate deaminase  

 
SCRN1 Q12765 Secernin-1 

 

 
SERC Q9Y617 Phosphoserine aminotransferase  Phosphoserine 

aminotransferase 
deficiency   

SFPQ P23246 Splicing factor, proline- and glutamine-
rich  

  

 
SH3L1 O75368 SH3 domain-binding glutamic acid-rich-

like protein 
 

 
SNAA P54920 Alpha-soluble NSF attachment protein  

 

 
SNAB Q9H115 Beta-soluble NSF attachment protein  

 

 
SODM P04179 Superoxide dismutase [Mn], 

mitochondrial  
Microvascular 
complications of 
diabetes 6   

TKT P29401 Transketolase  Short stature, de-
velopmental delay, 
and congenital heart 
defects   

TRFE P02787 Serotransferrin  
 

 
UGPA Q16851 UTP--glucose-1-phosphate 

uridylyltransferase  
 

 
VATH Q9UI12 V-type proton ATPase subunit H  

 

 VCP P55072 Valosin containing protein  Inclusion body myo-
pathy with early-
onset Paget disease 
with or without fron-
totemporal dementia 
1  
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 spAD    
and 

sCJD 

Common between spAD and sCJD 
 

O43488 Aflatoxin B1 aldehyde reductase member 
2  

 

 
CYBP Q9HB71 Calcyclin-binding protein  

 

 
DDAH2 O95865 N(G), N(G)-dimethylarginine dimethyla-

minohydrolase 2  
 

 
ECH1 Q13011 Delta(3,5)-Delta (2,4)-dienoyl-CoA 

isomeras, mitochondrial 
 

 
ENOPH Q9UHY7 Enolase-phosphatase E1  

 

 
FPPS P14324 Farnesyl pyrophosphate synthase  Porokeratosis 9, 

multiple types 
(POROK9)   

GLO2 Q16775 Hydroxyacylglutathione hydrolase, 
mitochondrial  

 

 
GLOD4 Q9HC38 Glyoxalase domain-containing protein 4 

 

 
GMFB P60983 Glia maturation factor beta  

 

 
GSTM1 P09488 Glutathione S-transferase Mu 1  

 

 
GSTM3 P21266 Glutathione S-transferase Mu 3  

 

 
LGUL Q04760 Lactoylglutathione lyase  

 

 
LSAMP Q13449 Limbic system-associated membrane protein  

 
MK01 P28482 Mitogen-activated protein kinase 1  

 

 
NCDN Q9UBB6 Neurochondrin 

 

 
PGM2L Q6PCE3 Glucose 1,6-bisphosphate synthase  

 

 
PP2BB P16298 Serine/threonine-protein phosphatase 2B 

catalytic subunit beta isoform  
 

 
RAB2A P61019 Ras-related protein Rab-2A 

 

 
RAB5A P20339 Ras-related protein Rab-5A 

 

 
TAGL Q01995 Transgelin  

 

spAD 
and 

rpAD 

Common between spAD and rpAD 

AKA12 Q02952 A-kinase anchor protein 12  
 

ANXA7 P20073 Annexin A7  
 

APOE P02649 Apolipoprotein E  Hyperlipoproteinemi
a 3  

AQP4 P55087 Aquaporin-4  
 

 
AT2B1 P20020 Plasma membrane calcium-transporting 

ATPase 1  
 

 
AT2B2 Q01814 Plasma membrane calcium-transporting 

ATPase 2  
 

 
AT2B3 Q16720 Plasma membrane calcium-transporting 

ATPase 3  
Spinocerebellar 
ataxia, X-linked 1   

AT2B4 P23634 Plasma membrane calcium-transporting 
ATPase 4  

 

 
AT5F1 P24539 ATP synthase F 

 

 
ATPG P36542 ATP synthase subunit gamma, 

mitochondrial  
 

 
BCAS1 O75363 Breast carcinoma-amplified sequence 1  

 

 
BSN Q9UPA5 Protein bassoon  

 

 
CADM2 Q8N3J6 Cell adhesion molecule 2  

 

 
CXA1 P17302 Gap junction alpha-1 protein  Oculodentodigital 

dysplasia   
EAA1 P43003 Excitatory amino acid transporter 1  Episodic ataxia 6  

 
EAA2 P43004 Excitatory amino acid transporter 2  Epileptic 

encephalopathy, 
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early infantile, 41  
 

F10A1 P50502 Hsc70-interacting protein  
 

 
FIBA P02671 Fibrinogen alpha chain  Congenital 

afibrinogenemia   
HECAM Q14CZ8 Hepatocyte cell adhesion molecule  Leukoencephalopa-

thy, megalence-
phalic, with subcor-
tical cysts, 2A   

MAON Q16798 NADP-dependent malic enzyme, mito-
chondrial  

 

 
MOG Q16653 Myelin-oligodendrocyte glycoprotein Narcolepsy 7  

 
MT1G P13640 Metallothionein-1G  

 

 
MT3 P25713 Metallothionein-3  

 

 
NCAM2 O15394 Neural cell adhesion molecule 2  

 

 
NCAN O14594 Neurocan core protein  

 

 
NHRF1 O14745 Na (+)/H (+) exchange regulatory cofac-

tor NHE-RF1 
Nephrolithiasis/oste
oporosis, 
hypophosphatemic, 
2   

NPTN Q9Y639 Neuroplastin  
 

 
NRCAM Q92823 Neuronal cell adhesion molecule  

 

 
OXR1 Q8N573 Oxidation resistance protein 1 

 

 
PADI2 Q9Y2J8 Protein-arginine deiminase type-2  

 

 
PALM O75781 Paralemmin-1  

 

 
PDIA6 Q15084 Protein disulfide-isomerase A6  

 

 
PFKAM P08237 ATP-dependent 6-phosphofructokinase, 

muscle type  
Glycogen storage 
disease 7   

PLCB1 Q9NQ66 1-phosphatidylinositol 4,5-bisphosphate 
phosphodiesterase beta-1  

Epileptic 
encephalopathy, 
early infantile, 12   

PRRT2 Q7Z6L0 Proline-rich transmembrane protein 2  Episodic kinesigenic 
dyskinesia 1   

PTMA P06454 Prothymosin alpha  
 

 
PTPRZ P23471 Receptor-type tyrosine-protein phospha-

tase zeta  
 

 
RAB6B Q9NRW1 Ras-related protein Rab-6B 

 

 
RTN1 Q16799 Reticulon-1  

 

 
RTN4 Q9NQC3 Reticulon-4  

 

 
S10AD Q99584 Protein S100-A13  

 

 
SH3L3 Q9H299 SH3 domain-binding glutamic acid-rich-

like protein 3  
 

 
SNG1 O43759 Synaptogyrin-1 

 

 
TENR Q92752 Tenascin-R  

 

 
TYB4 P62328 Thymosin beta-4  

 

 
VPP1 Q93050 V-type proton ATPase 116 kDa subunit a 

isoform 1  
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Figure 40: Cell viability assay: Trypan blue exclusion test was used to estimate the cell viability. The percent-

age of live cells was calculated in control (untreated) and stress cells (treated with 0.6 mM NaAso2 for 60 min). 

  

 

Figure 41: Stress induced increase in tau phosphorylation in SH-SY5Y cells. A) Representative immunob-

lots of phospho-tau in control (untreated) and stress (arsenite treated) cells. The cells were plated in 6-well plates 

(2x105) for 24 hrs and lysed in cell-lysis buffer supplemented with protease and phosphatase inhibitors, and lev-

els of phospho-tau were analysed by immunoblotting analysis. Intensity levels were normalized to β-actin. B) The 

densitometry was performed using Image Lab software. A significant increase was observed in the levels of 

phospho-tau in high molecular weight range (HMW = 65-250 kDa). No significant changes were observed for low 

molecular weight range (LMW < 65 kDa). Statistical tests (unpaired t-test) were applied in GraphPad prism, **p < 

0.01, ***p < 0.001.  
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Figure 42: Tau and phospho-tau are recruited into SGs. A and B) Stress was induced with sodium arsenite 

and cells were co-immunostained with primary antibodies specific for total tau, phospho-tau and TIA-1, followed 

by incubation with AlexaFlour 488 and AlexaFlour 546 secondary antibodies. High magnification showing the 

expression of tau/TIA-1 and p-tau/TIA-1 for closer details in stress induced cells. Examples of SGs are indicated 

by the arrows, scale bar = 25 μm for tau and 10 μm for p-tau.  

 

 

Figure 43: Subcellular fractionation after stress induction: A) Representative immunoblots for nuclear 

(BRD4) and cytoplasmic (GAPDH) markers in control (untreated) and stress (arsenite treated) cells, after subcel-

lular fractionation by REAP method. Isolated fractions were abbreviated as C: cytoplasmic extract, N: nuclear 

extract, and W: whole cell extract. There was no cross contamination observed between nuclear and cytoplasmic 

markers.  
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Figure 44: Cell Viability assay: The cell viability was estimated by MTS assay after expression of human-tau 

(both WT-tau and P301L-tau) in comparison to control at 24- and 48 hrs post-transfection. One-way ANOVA 

followed by Tukey post-hoc analysis was used, *p < 0.05, **p< 0.01, ***p < 0.001, ****p < 0.0001. 

 

Table 16: Tau-up regulated proteins: list of unique and common proteins (with their -log10p-

values), that were upregulated after expression of either WT-tau or P301L-tau 

No. UniProt ID 
UniProt 

Accession 
Protein names 

(WT vs 
Cont.) (p-
values) 

(P301L vs 
Cont.) (p-
values) 

1 IST1 P53990 IST1 homolog  2.80404 
 

2 XCT Q9UPY5 Cystine/glutamate transporter  2.70942 
 

3 ITPR3 Q14573 Inositol 1,4,5-trisphosphate 
receptor type 3  

3.74147 
 

4 CAD13 P55290 Cadherin-13  3.29636 
 

5 TMEDA P49755 Transmembrane emp24 domain-
containing protein 10  

2.79315 
 

6 APC7 Q9UJX3 Anaphase-promoting complex 
subunit 7  

2.64649 
 

7 PXDC2 Q6UX71 Plexin domain-containing protein 
2  

2.60679 
 

8 PLCA Q99943 1-acyl-sn-glycerol-3-phosphate 
acyltransferase alpha  

2.77202 
 

9 NUDC1 Q96RS6-2 NudC domain-containing protein 
1  

2.58966 
 

10 SYUG O76070 Gamma-synuclein  3.30288 
 

11 A0A1W2PS4
3 

A0A1W2PS
43 

Lysosome membrane protein 2 3.00432 
 

12 F8VX04 F8VX04 Sodium-coupled neutral amino 
acid transporter 1 

3.15582 
 

13 RAB18 Q9NP72 Ras-related protein Rab-18 2.60603 
 

14 Q5VZR0 Q5VZR0 Golgi-associated plant patho-
genesis-related protein 1 

2.6549 
 

15 CD44 P16070 CD44 antigen  2.89138 
 

16 COX2 P00403 Cytochrome c oxidase subunit 2  2.89006 
 

17 PYRG1 P17812 CTP synthase 1  2.64826 
 

18 C9JYN0 C9JYN0 Synaptophysin-like protein 1 3.73999 
 

19 E7ER44 E7ER44 Lactotransferrin 
 

5.61449 
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20 K7ENL2 K7ENL2 WW domain-binding protein 2 
 

3.25965 

21 IF16 Q16666 Gamma-interferon-inducible 
protein 16  

 
2.54071 

22 A0A1B0GW
C0 

A0A1B0G
WC0 

Carnitine O-palmitoyltransferase 
2, mitochondrial 

 
3.83877 

23 A0A087WX9
7 

A0A087WX
97 

Bcl-2-like protein 13 
 

3.19665 

24 RND3 P61587 Rho-related GTP-binding protein 
RhoE  

 
3.65369 

25 PODXL O00592 Podocalyxin  
 

5.52997 

26 MOT1 P53985 Monocarboxylate transporter 1  
 

4.65667 

27 CLIC4 Q9Y696 Chloride intracellular channel 
protein 4  

 
4.5989 

28 A0A075B73
0 

A0A075B7
30 

Epiplakin 
 

2.80249 

29 S38A2 Q96QD8 Sodium-coupled neutral amino 
acid transporter 2 

 
3.7117 

30 TPBG Q13641 Trophoblast glycoprotein  
 

3.97711 

31 LAT1 Q01650 Large neutral amino acids trans-
porter small subunit 1 

 
6.21328 

32 SQOR Q9Y6N5 Sulfide: quinone oxidoreductase, 
mitochondrial 

 
3.5484 

33 E9PEB5 E9PEB5 Far upstream element-binding 
protein 1 

 
3.65134 

34 AAAT Q15758 Neutral amino acid transporter B 
 

4.73081 

35 AHNK2 Q8IVF2 Protein AHNAK2 
 

2.93411 

36 RTN4 Q9NQC3-2 Reticulon-4  
 

2.78976 

37 AT1A1 P05023-4 Sodium/potassium-transporting 
ATPase subunit alpha-1 

 
2.80245 

38 A0A087X054 A0A087X0
54 

Hypoxia up-regulated protein 1 
 

2.67896 

39 J3KPF3 J3KPF3 4F2 cell-surface antigen heavy 
chain  

 
3.40599 

40 VINC P18206 Vinculin  
 

2.67223 

41 SYWC P23381-2 Tryptophan--tRNA ligase, 
cytoplasmic  

 
2.87585 

42 UAP1 Q16222 UDP-N-acetylhexosamine 
pyrophosphorylase 

 
2.53642 

43 PLST P13797 Plastin-3  
 

2.62095 

Common in both WT- and P301L-tau expressing cells 

44 Tau P10636-6 Microtubule-associated protein 
tau  

9.66209 9.99752 

45 STX12 Q86Y82 Syntaxin-12 4.38935 3.90083 

46 A0A0A0MRJ
7 

A0A0A0MR
J7 

Coagulation factor V 2.79996 2.55125 

47 TSP1 P07996 Thrombospondin-1  4.63034 3.69623 

48 STOM P27105 Erythrocyte band 7 integral 
membrane protein  

2.63921 4.70864 

49 AT1B1 P05026 Sodium/potassium-transporting 
ATPase subunit beta-1  

4.36966 4.04487 

50 SNG2 O43760 Synaptogyrin-2  3.38169 3.37281 

51 SODM P04179 Superoxide dismutase [Mn], 
mitochondrial  

4.35392 4.21758 

52 E9PR17 E9PR17 CD59 glycoprotein  4.06777 5.10992 

53 MOT4 O15427 Monocarboxylate transporter 4  3.57067 3.15312 

54 RAI3 Q8NFJ5 Retinoic acid-induced protein 3  5.11684 3.4051 
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55 RTN3 O95197-3 Reticulon-3  2.89615 2.83528 

56 FLNB O75369-8 Filamin-B  4.65931 4.00561 

57 QCR1 P31930 Cytochrome b-c1 complex sub-
unit 1, mitochondrial  

3.85388 5.56346 

58 B4DKB2 B4DKB2 Endothelin-converting enzyme 1  2.89353 2.60173 

59 VDAC2 P45880 Voltage-dependent anion-
selective channel protein 2  

3.02634 3.84069 

60 ANXA3 P12429 Annexin A3  2.89038 4.15502 

61 BIP P11021 Endoplasmic reticulum 
chaperone BiP  

4.09375 5.35755 

62 ANXA4 P09525 Annexin A4  4.25635 3.6306 

63 A0A0G2JIW
1 

A0A0G2JI
W1 

Heat shock 70 kDa protein 1B 3.97859 2.54103 

 

Table 17: Tau down-regulated proteins: list of unique and common proteins (with their -log10p-
values), that were down-regulated after expression of either WT-tau or P301L-tau 

No. UniProt ID 
UniProt 

Accession 
Protein names 

WT vs 
Cont. (p-
values) 

P301L vs 
Cont. (p-
values) 

1 CAPZB P47756-2 F-actin-capping protein subu-
nit beta  

2.90632 
 

2 CLIC1 O00299 Chloride intracellular channel 
protein 1  

2.74343 
 

3 1433E P62258 14-3-3 protein epsilon  2.97992 
 

4 PDLI7 Q9NR12 PDZ and LIM domain protein 
7  

2.87187 
 

5 DHPR P09417 Dihydropteridine reductase  3.29976 
 

6 TBB4B P68371 Tubulin beta-4B chain  2.61161 
 

7 CYBP Q9HB71 Calcyclin-binding protein  4.20659 
 

8 GSH0 P48507 Glutamate--cysteine ligase 
regulatory subunit  

3.64493 
 

9 IDHC O75874 Isocitrate dehydrogenase 
[NADP] cytoplasmic  

3.18656 
 

10 CRK P46108 Adapter molecule crk  2.66295 
 

11 LKHA4 P09960 Leukotriene A-4 hydrolase  3.07686 
 

12 LDHA P00338 L-lactate dehydrogenase A 
chain  

2.60496 
 

13 COF1 P23528 Cofilin-1  2.86394 
 

14 PSME3 P61289 Proteasome activator complex 
subunit 3  

2.59093 
 

15 XPO6 Q96QU8 Exportin-6  2.63751 
 

16 PFKAM P08237 ATP-dependent 6-
phosphofructokinase, muscle 
type  

2.77411 
 

17 METK2 P31153 S-adenosylmethionine syn-
thase isoform type-2  

2.59551 
 

18 I3L0H8 I3L0H8 ATP-dependent RNA helicase 
DDX19A 

3.00712 
 

19 A0A087WYT3 A0A087WYT3 Prostaglandin E synthase 3 6.25017 
 

20 MBB1A Q9BQG0 Myb-binding protein 1A 3.31109 
 

21 GANAB Q14697-2 Neutral alpha-glucosidase AB  3.99331 
 

22 RPAC1 O15160 DNA-directed RNA polymer-
ases I and III subunit RPAC1  

2.95675 
 

23 6PGD P52209 6-phosphogluconate 3.15286 
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dehydrogenase, 
decarboxylating  

24 F2Z2Y4 F2Z2Y4 Pyridoxal kinase 3.349 
 

25 KTHY P23919 Thymidylate kinase  4.05072 
 

26 ACADM P11310-2 Medium-chain specific acyl-
CoA dehydrogenase, mito-
chondrial  

3.37726 
 

27 RT27 Q92552 28S ribosomal protein S27, 
mitochondrial  

2.65651 
 

28 A0A1B0GW77 A0A1B0GW77 Alpha-aminoadipic 
semialdehyde dehydrogenase 

2.57993 
 

29 IPYR Q15181 Inorganic pyrophosphatase  2.56092 
 

30 KPYM P14618 Pyruvate kinase PKM 3.3471 
 

31 TWF1 Q12792 Twinfilin-1  3.16219 
 

32 MCM6 Q14566 DNA replication licensing fac-
tor MCM6  

2.98343 
 

33 I3L2B0 I3L2B0 Clustered mitochondria 
protein homolog  

3.14353 
 

34 KPRA Q14558 Phosphoribosyl pyrophos-
phate synthase-associated 
protein 1  

2.88641 
 

35 ERO1A Q96HE7 ERO1-like protein alpha  3.48398 
 

36 AP3D1 O14617 AP-3 complex subunit delta-1  2.64148 
 

37 Q5QPM7 Q5QPM7 Proteasome inhibitor PI31 
subunit 

2.779 
 

38 TNPO3 Q9Y5L0 Transportin-3  3.19029 
 

39 NAT10 Q9H0A0 RNA cytidine 
acetyltransferase  

2.60558 
 

40 F6WQW2 F6WQW2 Ran-specific GTPase-
activating protein 

2.6097 
 

41 HAT1 O14929 Histone acetyltransferase type 
B catalytic subunit  

2.61858 
 

42 E7ESZ7 E7ESZ7 NADH dehydrogenase [ubiq-
uinone] 1 alpha subcomplex 
subunit 10, mitochondrial 

3.34015 
 

43 A0A1B0GWE8 A0A1B0GWE8 Cathepsin D 3.59333 
 

44 APEX1 P27695 DNA-(apurinic or apyrimidinic 
site) lyase 

2.573 
 

45 LNP Q9C0E8 Endoplasmic reticulum junc-
tion formation protein lunapark  

3.024 
 

46 PARK7 Q99497 Protein/nucleic acid deglycase 
DJ-1  

3.53845 
 

47 PP2AA P67775 Serine/threonine-protein 
phosphatase 2A catalytic sub-
unit alpha isoform  

2.85783 
 

48 DUS23 Q9BVJ7 Dual specificity protein 
phosphatase 23  

2.6001 
 

49 NUP43 Q8NFH3 Nucleoporin Nup43  2.92109 
 

50 TF3C4 Q9UKN8 General transcription factor 
3C polypeptide 4  

2.85149 
 

51 UBA3 Q8TBC4 NEDD8-activating enzyme E1 
catalytic subunit  

2.85788 
 

52 B1AH49 B1AH49 3-mercaptopyruvate 
sulfurtransferase 

4.16312 
 

53 ABCD3 P28288 ATP-binding cassette sub-
family D member 3  

2.89151 
 

54 Q5QPR3 Q5QPR3 Cyclin-dependent kinase 11A 3.07425 
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55 D6RG13 D6RG13 40S ribosomal protein S3a  3.40351 
 

56 B7Z4B8 B7Z4B8 Heterogeneous nuclear ribo-
nucleoprotein U-like protein 1  

3.80247 
 

57 AN32E Q9BTT0 Acidic leucine-rich nuclear 
phosphoprotein 32 family 
member E  

3.0431 
 

58 HPBP1 Q9NZL4 Hsp70-binding protein 1  3.14118 
 

59 PAIRB Q8NC51 Plasminogen activator 
inhibitor 1 RNA-binding 
protein  

2.72168 
 

60 CDK1 P06493 Cyclin-dependent kinase 1  6.03772 
 

61 X6RLT1 X6RLT1 Negative elongation factor 
C/D  

2.93622 
 

62 TNAP2 Q03169 Tumor necrosis factor alpha-
induced protein 2  

2.62938 
 

63 MLKL Q8NB16 Mixed lineage kinase domain-
like protein  

3.39344 
 

64 E7ETK0 E7ETK0 40S ribosomal protein S24 3.59647 
 

65 DHX36 Q9H2U1 ATP-dependent DNA/RNA 
helicase DHX36  

3.02912 
 

66 TBCC Q15814 Tubulin-specific chaperone C  2.65875 
 

67 RL6 Q02878 60S ribosomal protein L6  3.71789 
 

68 TOM34 Q15785 Mitochondrial import receptor 
subunit TOM34  

3.64649 
 

69 HP1B3 Q5SSJ5 Heterochromatin protein 1-
binding protein 3  

3.88668 
 

70 C19L1 Q69YN2 CWF19-like protein 1  2.65963 
 

71 RS17 P08708 40S ribosomal protein S17  3.74528 
 

72 E7ESA6 E7ESA6 Focal adhesion kinase 1 2.64713 
 

73 AP3M1 Q9Y2T2 AP-3 complex subunit mu-1  2.75333 
 

74 M0QXD6 M0QXD6 General transcription factor IIF 
subunit 1  

2.56235 
 

75 WNT5A P41221 Protein Wnt-5a 2.59575 
 

76 GMDS O60547 GDP-mannose 4,6 
dehydratase  

3.08654 
 

77 I3L0X5 I3L0X5 Sperm-associated antigen 7 3.3113 
 

78 E9PH64 E9PH64 NADH dehydrogenase [ubiq-
uinone] 1 beta subcomplex 
subunit 9 

2.95705 
 

79 MIPEP Q99797 Mitochondrial intermediate 
peptidase  

2.7807 
 

80 A0A087WZR9 A0A087WZR9 Pyrroline-5-carboxylate 
reductase  

5.26058 
 

81 CHIP Q9UNE7 E3 ubiquitin-protein ligase 
CHIP  

2.93915 
 

82 TBCE Q15813 Tubulin-specific chaperone E  2.57258 
 

83 SAAL1 Q96ER3 Protein SAAL1  2.84296 
 

84 SYRC P54136 Arginine--tRNA ligase, 
cytoplasmic  

 
3.68764 

85 HTAI2 Q9BUP3 Oxidoreductase HTATIP2  
 

2.52883 

86 GRP75 P38646 Stress-70 protein, 
mitochondrial  

 
3.35915 

87 PSB3 P49720 Proteasome subunit beta 
type-3  

 
2.82347 

88 GSTP1 P09211 Glutathione S-transferase P  
 

3.25767 

89 RAB7A P51149 Ras-related protein Rab-7a 
 

2.95429 
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90 TCPG P49368 T-complex protein 1 subunit 
gamma  

 
3.5822 

91 RAB9A P51151 Ras-related protein Rab-9A 
 

2.60002 

92 PHB P35232 Prohibitin 
 

2.76765 

93 RS27A P62979 Ubiquitin-40S ribosomal pro-
tein S27a  

 
3.44529 

94 E7EQR4 E7EQR4 Ezrin 
 

2.70739 

95 RIR1 P23921 Ribonucleoside-diphosphate reductase 
large subunit  

2.55098 

96 J3QQT2 J3QQT2 60S ribosomal protein L17  
 

2.99247 

97 SRP68 Q9UHB9 Signal recognition particle 
subunit SRP68  

 
3.01785 

98 SMD3 P62318 Small nuclear ribonucleopro-
tein Sm D3  

 
3.12363 

99 SYQ P47897 Glutamine--tRNA ligase  
 

2.65577 

100 H3BQI1 H3BQI1 Dynein light chain roadblock-
type 2 

 
2.72107 

101 MCM5 P33992 DNA replication licensing fac-
tor MCM5  

 
2.94611 

102 Q8WVC2 Q8WVC2 40S ribosomal protein S21 
 

2.76124 

103 NDUS3 O75489 NADH dehydrogenase [ubiquinone] iron-
sulfur protein 3, mitochondrial  

3.63337 

104 RL7 P18124 60S ribosomal protein L7  
 

2.73981 

105 C9JA28 C9JA28 Translocon-associated protein 
subunit gamma 

 
3.0665 

106 S4R3E9 S4R3E9 NEDD8-MDP1 readthrough 
 

3.09505 

107 VIME P08670 Vimentin 
 

3.24861 

108 I3L504 I3L504 Eukaryotic translation initiation 
factor 5A-1 

 
2.65408 

109 TM109 Q9BVC6 Transmembrane protein 109  
 

3.52926 

110 DRG1 Q9Y295 Developmentally-regulated GTP-binding 
protein 1  

3.14037 

111 SMD1 P62314 Small nuclear ribonucleopro-
tein Sm D1  

 
3.54617 

112 H0YEN5 H0YEN5 40S ribosomal protein S2  
 

3.76272 

113 MCM3 P25205-2 DNA replication licensing fac-
tor MCM3  

 
3.01339 

114 ARF6 P62330 ADP-ribosylation factor 6 
 

3.18205 

115 RL7A P62424 60S ribosomal protein L7a  
 

3.56152 

116 BZW2 Q9Y6E2 Basic leucine zipper and W2 domain-
containing protein 2 

4.20893 

117 A0A0A0MTN0 A0A0A0MTN0 Cullin-2 
 

2.85465 

118 THOP1 P52888 Thimet oligopeptidase  
 

3.49956 

119 J3QRI7 J3QRI7 60S ribosomal protein L26  
 

5.03306 

120 ATPO P48047 ATP synthase subunit O, mi-
tochondrial  

 
2.73623 

121 LSM3 P62310 U6 snRNA-associated Sm-like 
protein LSm3 

 
3.12073 

122 SRP14 P37108 Signal recognition particle 14 
kDa protein  

 
2.97832 

123 NCBP2 P52298 Nuclear cap-binding protein 
subunit 2  

 
2.55743 

124 RAN P62826 GTP-binding nuclear protein 
Ran  

 
2.58877 

125 J3KQ48 J3KQ48 Peptidyl-tRNA hydrolase 2, 
mitochondrial 

 
4.00593 
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126 TXD17 Q9BRA2 Thioredoxin domain-
containing protein 17  

 
3.25391 

127 MGST1 P10620 Microsomal glutathione S-
transferase 1  

 
2.82746 

128 SNX1 Q13596 Sorting nexin-1 
 

2.5274 

129 HNRPF P52597 Heterogeneous nuclear 
ribonucleoprotein F  

 
2.89938 

130 RL13 P26373 60S ribosomal protein L13  
 

3.9096 

131 A0A087WUD3 A0A087WUD3 Oligosaccharyltransferase complex subunit 
OSTC 

2.65514 

132 RS28 P62857 40S ribosomal protein S28  
 

5.78257 

133 J3KTA4 J3KTA4 Probable ATP-dependent 
RNA helicase DDX5 

 
4.43944 

134 DDX6 P26196 Probable ATP-dependent 
RNA helicase DDX6  

 
2.70974 

135 ZC3HF Q8WU90 Zinc finger CCCH domain-containing pro-
tein 15  

2.64774 

136 RM21 Q7Z2W9 39S ribosomal protein L21, 
mitochondrial  

 
3.18026 

137 ULA1 Q13564 NEDD8-activating enzyme E1 regulatory 
subunit  

3.12154 

138 RL11 P62913 60S ribosomal protein L11  
 

4.33191 

139 RS11 P62280 40S ribosomal protein S11  
 

3.57281 

140 RS8 P62241 40S ribosomal protein S8  
 

4.43922 

141 RL21 P46778 60S ribosomal protein L21  
 

3.30215 

142 A0A087X0X3 A0A087X0X3 Heterogeneous nuclear 
ribonucleoprotein M 

 
2.92309 

143 RS23 P62266 40S ribosomal protein S23  
 

4.45084 

144 ATD3A Q9NVI7-2 ATPase family AAA domain-containing 
protein 3A 

2.65768 

145 RL23 P62829 60S ribosomal protein L23  
 

4.39359 

146 2A5D Q14738-3 Serine/threonine-protein phosphatase 2A 
56 kDa regulatory subunit delta isoform  

3.24429 

147 RS13 P62277 40S ribosomal protein S13  
 

5.13601 

148 G5E9Q6 G5E9Q6 Profilin 
 

3.91099 

149 RL12 P30050 60S ribosomal protein L12  
 

4.5988 

150 XPO5 Q9HAV4 Exportin-5  
 

2.81304 

151 DDX23 Q9BUQ8 Probable ATP-dependent RNA helicase 
DDX23  

3.09004 

152 RL27 P61353 60S ribosomal protein L27  
 

5.56322 

153 E5RI99 E5RI99 60S ribosomal protein L30  
 

4.79294 

154 SHIP2 O15357 Phosphatidylinositol 3,4,5-trisphosphate 5-
phosphatase 2  

2.93228 

155 PRP6 O94906 Pre-mRNA-processing factor 
6  

 
4.71226 

156 SYDM Q6PI48 Aspartate--tRNA ligase, 
mitochondrial  

 
4.19994 

157 KIF2A O00139-2 Kinesin-like protein KIF2A  
 

2.70644 

158 J3QR09 J3QR09 Ribosomal protein L19 
 

2.74218 

159 OCAD2 Q56VL3 OCIA domain-containing 
protein 2  

 
4.79686 

160 J3QSV6 J3QSV6 Ribosomal L1 domain-
containing protein 1  

 
4.28401 

161 RL38 P63173 60S ribosomal protein L38  
 

2.93381 

162 A0A087X2D0 A0A087X2D0 Serine/arginine-rich-splicing 
factor 3 

 
4.36894 
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163 GPI8 Q92643 GPI-anchor transamidase  
 

2.86273 

164 NU160 Q12769 Nuclear pore complex protein 
Nup160  

 
2.76185 

165 SMYD3 Q9H7B4 Histone-lysine N-
methyltransferase SMYD3  

 
3.32229 

166 YMEL1 Q96TA2 ATP-dependent zinc metallo-
protease YME1L1  

 
2.84011 

167 PDCD4 Q53EL6 Programmed cell death 
protein 4  

 
3.59557 

168 TMED1 Q13445 Transmembrane emp24 domain-containing 
protein 1  

2.72926 

169 RCN2 Q14257 Reticulocalbin-2  
 

3.22922 

170 R39L5 Q59GN2 Putative 60S ribosomal pro-
tein L39-like 5  

 
5.63947 

171 SRP09 P49458 Signal recognition particle 9 
kDa protein  

 
4.54385 

172 TSR1 Q2NL82 Pre-rRNA-processing protein 
TSR1 homolog 

 
2.96676 

173 DYR P00374 Dihydrofolate reductase  
 

4.23334 

174 DHX8 Q14562 ATP-dependent RNA helicase 
DHX8  

 
2.56375 

175 RIPK1 Q13546 Receptor-interacting serine/threonine-
protein kinase 1  

3.70312 

Common in both WT- and P301L- tau expressing cells 

176 F8WCF6 F8WCF6 Actin-related protein 2/3 com-
plex subunit 4 

3.33715 4.14691 

177 RACK1 P63244 Receptor of activated protein 
C kinase 1  

3.39824 4.51018 

178 SYDC P14868 Aspartate--tRNA ligase, 
cytoplasmic  

2.74959 2.57307 

179 EIF3K Q9UBQ5 Eukaryotic translation initiation 
factor 3 subunit K  

2.81828 4.58194 

180 H9KV45 H9KV45 Ubiquitin-conjugating enzyme 
E2 D3 

2.67823 5.42209 

181 Q5JR08 Q5JR08 Rho-related GTP-binding pro-
tein RhoC  

3.44748 3.81268 

182 PROF1 P07737 Profilin-1  3.07127 4.69295 

183 FPPS P14324 Farnesyl pyrophosphate 
synthase  

3.80014 3.24431 

184 Q5VV89 Q5VV89 Microsomal glutathione S-
transferase 3 

3.6279 4.42465 

185 SYK Q15046 Lysine--tRNA ligase  3.9661 3.1659 

186 PUR2 P22102 Trifunctional purine biosyn-
thetic protein adenosine-3 
[Includes: Phosphoribosyla-
mine--glycine ligase  

2.81901 2.93211 

187 SND1 Q7KZF4 Staphylococcal nuclease do-
main-containing protein 1  

3.019 3.608 

188 C9JZR2 C9JZR2 Catenin delta-1 2.6207 2.99525 

189 CAN2 P17655 Calpain-2 catalytic subunit  3.42537 3.11891 

190 AAAS Q9NRG9 Aladin  4.28764 4.41039 

191 SYLC Q9P2J5 Leucine--tRNA ligase, 
cytoplasmic  

3.39758 3.6911 

192 RNZ2 Q9BQ52 Zinc phosphodiesterase ELAC 
protein 2  

3.34161 3.22 

193 TIF1B Q13263 Transcription intermediary 
factor 1-beta  

3.23108 3.44094 

194 EIF3B P55884 Eukaryotic translation initiation 4.32237 4.51386 



Annexure 

139 
 

factor 3 subunit B  

195 PPIA P62937 Peptidyl-prolyl cis-trans iso-
merase A  

3.8054 4.17 

196 H0YAK1 H0YAK1 G-rich sequence factor 1  3.46677 2.53854 

197 EIF3G O75821 Eukaryotic translation initiation 
factor 3 subunit G  

2.72457 3.04545 

198 Q32Q12 Q32Q12 Nucleoside diphosphate 
kinase  

3.00854 3.04007 

199 EFTU P49411 Elongation factor Tu, 
mitochondrial  

3.64175 3.42478 

200 RS3 P23396 40S ribosomal protein S3  2.61813 3.38603 

201 MTREX P42285 Exosome RNA helicase MTR4  2.57741 2.61761 

202 RS26 P62854 40S ribosomal protein S26  2.66498 3.15958 

203 RS16 P62249 40S ribosomal protein S16  2.87042 5.66172 

204 A0A087WZT3 A0A087WZT3 BolA-like protein 2 2.62918 3.9663 

205 LANC1 O43813 Glutathione S-transferase 
LANCL1  

4.28469 3.09074 

206 CND3 Q9BPX3 Condensin complex subunit 3  2.9969 2.66232 

207 AIMP2 Q13155 Aminoacyl tRNA synthase 
complex-interacting multifunc-
tional protein 2  

3.83739 3.0309 

208 G3V325 G3V325 ATP5MF-PTCD1 readthrough 4.35305 4.77429 

209 TGM2 P21980 Protein-glutamine gamma-
glutamyltransferase 2  

3.47902 2.55024 

210 RS18 P62269 40S ribosomal protein S18  3.20805 4.17992 

211 RS14 P62263 40S ribosomal protein S14  2.67833 4.25944 

212 C9JXB8 C9JXB8 60S ribosomal protein L24 2.98512 4.69503 

213 MGST2 Q99735 Microsomal glutathione S-
transferase 2  

2.68604 3.32233 

214 RL13A P40429 60S ribosomal protein L13a  2.87139 4.09016 

215 SNR40 Q96DI7 U5 small nuclear ribonucleo-
protein 40 kDa protein  

2.83902 2.94416 

216 SRP54 P61011 Signal recognition particle 54 
kDa protein  

3.37647 3.10435 

217 CUL4A Q13619 Cullin-4A  5.00644 2.58406 

218 UCK2 Q9BZX2 Uridine-cytidine kinase 2  2.99612 2.78459 

219 K7EP65 K7EP65 60S ribosomal protein L22  3.68703 6.73393 

220 RS19 P39019 40S ribosomal protein S19  3.54415 7.35693 

221 TSYL1 Q9H0U9 Testis-specific Y-encoded-like 
protein 1  

2.66813 3.09096 

222 E9PJD9 E9PJD9 60S ribosomal protein L27a 3.04224 5.20122 

223 VPS45 Q9NRW7 Vacuolar protein sorting-
associated protein 45  

2.73297 4.2448 

224 M0R3D6 M0R3D6 60S ribosomal protein L18a  3.29172 4.15871 

225 RS6 P62753 40S ribosomal protein S6  2.85538 3.91982 

226 H7C2W9 H7C2W9 60S ribosomal protein L31  2.97225 6.33005 

227 NUCL P19338 Nucleolin  3.49248 4.59942 

228 A0A0D9SG12 A0A0D9SG12 ATP-dependent RNA helicase 
DDX3X 

2.69323 4.56215 

229 CDC73 Q6P1J9 Parafibromin  3.60285 2.99202 

230 APT P07741 Adenine 
phosphoribosyltransferase  

3.34193 2.61598 

231 E7ENU7 E7ENU7 Ribosomal protein L15  3.97322 2.8185 

232 G3BP1 Q13283 Ras GTPase-activating 3.04396 3.61278 
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protein-binding protein 1  

233 K7ERT8 K7ERT8 60S ribosomal protein L23a  4.22784 5.36401 

234 J3QQ67 J3QQ67 60S ribosomal protein L18  2.66443 2.95231 

235 XRCC6 P12956 X-ray repair cross-
complementing protein 6  

3.48879 3.75823 

236 M0R0R2 M0R0R2 40S ribosomal protein S5 4.26617 5.14718 

237 RFC5 P40937 Replication factor C subunit 5  4.36703 3.35394 

238 F8W727 F8W727 60S ribosomal protein L32 3.74762 5.39745 

239 MD2L1 Q13257 Mitotic spindle assembly 
checkpoint protein MAD2A  

2.92545 2.98028 

240 D6RAN4 D6RAN4 60S ribosomal protein L9  3.31616 4.19725 

241 RL4 P36578 60S ribosomal protein L4  2.85467 3.7287 

242 RL36 Q9Y3U8 60S ribosomal protein L36  4.53022 5.5977 

243 SSBP Q04837 Single-stranded DNA-binding 
protein, mitochondrial  

5.65442 4.22935 

244 RS10 P46783 40S ribosomal protein S10  3.25188 3.02068 

245 C9JZI1 C9JZI1 Replication factor C subunit 4 2.62627 3.47232 

246 XRCC5 P13010 X-ray repair cross-
complementing protein 5  

2.60763 3.48406 

247 AMPN P15144 Aminopeptidase N  3.75088 3.23543 

248 GTF2I P78347 General transcription factor II-I  2.60151 3.52247 

249 RS7 P62081 40S ribosomal protein S7  3.97012 3.42622 

250 C9JQV0 C9JQV0 Uncharacterized protein 
C7orf50  

2.86837 2.93894 

251 ACOX3 O15254 Peroxisomal acyl-coenzyme A 
oxidase 3  

2.7579 4.58583 

 

Table 18: Top 5 networks identified from IPA analysis in WT-tau expressing cells 

ID Associated network functions Score 

1 RNA damage and repair, protein synthesis, cancer  61 

2 DNA replication, recombination, and repair, cellular assembly and 
organization, cell morphology 

41 

3 Cell cycle, cellular function and maintenance, molecular transport 28 

4 Cellular movement, haematological system development and func-
tion, immune cell trafficking 

21 

5 Organismal injury and abnormalities, cellular movement, skeletal 
and muscular system development and function 

17 
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Table 19: Top 5 networks identified from IPA analysis in P301L-tau expressing cells 

ID Associated network functions Score 

1 RNA damage and repair, protein synthesis, cancer  55 

2 Cellular assembly and organization, cellular compromise, cellular 
function and maintenance 

52 

3 Nucleic acid metabolism, small molecule biochemistry, digestive 
system development and function 

27 

4 Cellular compromise, developmental disorder, endocrine system 
disorders 

22 

5 Developmental disorder, endocrine system disorders, organ mor-
phology 

11 
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