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Abstract
Human activity understanding has attracted much attention in recent years, due to a key role in a
wide range of applications and devices, such as human- computer interfaces, visual surveillance,
video indexing, intelligent humanoid robots, ambient intelligence and more. Of particular rele-
vance, performing manipulation actions has a significant importance due to its enormous use,
especially for service, as well as industrial robots. These robots strongly benefit from a fast and
predictive recognition of manipulation actions. Although, for us as humans performing these
actions is a quite trivial function, however this is not necessarily the case for a robot. To address
this problem, in this thesis, we propose an approach for the representation, as well as an algorithm
for the recognition and prediction of manipulation action categories, as observed in videos.
The key contributions of this thesis are the following: First, we modeled each object as a simple
axis aligned bounding box and provide a qualitative spatial reasoning method to calculate static
and dynamic spatial relationships, accordingly. Static relations depend on the relative spatial
position of two objects, including “Above”, “Below”, “Right”, “Left”, “Front”, “Back”, “Inside”,
“Surround”, “Around without touch”, “Around with touch”, “Top” and “Bottom”; while dynamic
relations address the spatial relation of two objects during movement of either or both of them.
These relations consist of “Getting close”, “Moving apart”, “Stable”, “Moving together”, “Halting
together” and “Fixed moving together”. This qualitative approach allows us to provide a new
semantic representation of manipulation actions, creating a sequence of static and dynamic spatial
relations between the manipulated objects taking part in a manipulation. Our approach creates
a transition matrix, called the “Enriched Semantic Event Chain (ESEC)”. The rows of this matrix
show spatio-temporal relations include touching/ not-touching (rows 1:10), static (rows 11:20) and
dynamic (rows 21:30) relations within each pair of manipulated objects, while the columns of the
matrix contain events that occur as a result of one or more change(s) in the spatio-temporal relations
between the involved objects. Since the presence of noise as well as inappropriate accuracy in
object modeling may lead to errors in the calculation of spatio-temporal relations, our framework
has been adapted to the algorithm of noise identification and correction.
Second, we designed clustering and classification algorithms according to the ESEC framework, to
distinguish and recognize manipulation actions. To this end, we introduced a novel method to
calculate the similarity between manipulation actions. Our algorithm is validated on a data-set
including 120 scenarios of 8 action types obtaining an accuracy of 95%.
Third, the ESEC framework is employed to predict a large set of manipulations in theoretical as
well as real data . Our method could correctly predict manipulation actions after only (on average)
45% of their execution was accomplished, which is twice as fast as a standard Hidden Markov
Model based method. This claim, was tested on 35 theoretically defined manipulations as well as
two publicly available data-sets consisting of a total of 162 scenarios in 12 action types.
Finally, we designed a cognitive experiment to examine the prediction of manipulation actions in a
virtual reality-based environment. To this end, we selected 10 actions distributed in all possible
groups and subgroups of manipulations. Next, we designed and created 300 scenarios of these



actions, producing a large data-set of manipulation actions in a virtual reality environment. To
our knowledge, this is the first virtual reality data-set of human manipulation actions, aimed
at helping AI scientists studying human action recognition. In the next step, we performed an
experiment where 50 human subjects participated in, and were asked to predict the type of action
in each scenario, before it ends. Our ESEC-based prediction method was applied on these scenarios,
proving capable of predicting the manipulation actions as good as 17.6% faster than the human
participants.
The main advantage of our proposed framework, ESEC, is that it is capable of encoding a manip-
ulation in a highly invariant and abstract way, independent from object poses, perspectives and
trajectories which could largely interchange. In fact, ESECs help resolve the problem of action
representation under conditions where clutter and big scenes induce complexities in the analysis
of scaled matrices.
Different from model-based policy designs, our model-free framework operates on spatio-temporal
object relations without making assumptions on the structure of objects and scenes. This new
form of representation, enables us to provide the novel recognition and prediction algorithms for
manipulation actions, leading to a high efficiency.
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Chapter 1

Introduction

1.0.1 Motivation

One of the central goals in cognitive robotics is to analyze, recognize and predict human behaviors.
The large application of this topic in the field of computer vision and robotics confirms its major
role in human-human, as well as human-robot interactions. Key applications of cognitive robotics
fall into the following categories:

• Industrial
Industrial service robots can be used to carry out a wide range of tasks, from simple, such as
examining welding spots, to complicated and harsh-environment cases, such as aiding in
dismantling nuclear power stations [1].

• Frontline Service Robots
Service robots are system-based autonomous and adaptable interfaces that interact, commu-
nicate and deliver services to an organization’s customers [2].

• Domestic
Domestic robots perform tasks that humans regularly perform in non- industrial environ-
ments, such as housework, including cleaning floors, mowing the lawn and pool maintenance
[3]. People with disabilities, as well as elder people, may soon access such service robots to
help them live independently [3].

• Scientific
Autonomous scientific robots perform tasks which are hardly possible for humans, from
missions from deep in the ocean, to those in outer space [4].

While most of the researches in the field of “Human Activity Analysis” focus on full-body action
categorization, one major requirement for a service robot is the ability to manipulate objects found
in human environments. However, almost all the robots developed by experts in AI and robotics,
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Chapter 1. Introduction

per- form poorly in manipulating objects and executing tasks compared to even non-skilled human
(ex., a child). The manipulation ability of humans is because of their excellent brain processing
capabilities together with the high performance sensors (eyes) and flexible actuators (hands),
while a robot or an intelligent system needs a lot of factors to obtain this ability. In all manual
interactions a robot makes with humans and the environment, it must be able to identify the scene
together with the spatial relations between manipulated objects, determine the type of actions and
produce an appropriate response.

On the other hand, although human activity recognition is beneficial for some offline analysis,
however it fails to be enough in lots of real time applications. In real world applications, such as
autonomous navigation, surveillance systems, health care, etc., post-hoc recognition is usually not
helpful and we need to predicatively recognize actions early in time to prevent problems.

For a service robot, the capability of on-line prediction (and behavioral adaptation) in a human-
robot interaction scenario is a difficult and challenging problem, because human manipulation
actions are complex, performed in variable ways, and decisions must be made based on incomplete
action executions.
This thesis’ contributions span from the area of representation to recognition and prediction of
manipulation actions. Our specific goals are summarized as follows:

• To employ spatial reasoning techniques to calculate static and dynamic spatial relations
between objects in a scene space.

• To define a semantic framework for definition and representation of manipulation actions
according to the spatial relations.

• To develop a manipulation actions prediction algorithm which uses enriched semantic
event chains in a hierarchical tree structure for distinguishing between different types of
manipulations.

• To integrate the designed recognition and prediction semantic frame- work with virtual
reality and compare the prediction results with human performance, as well as the existing
mathematical prediction algorithms.

The remaining of this chapter is organized as follows: The problems we address are stated in
1.2. A review of the state-of-the-art techniques concerning our approach is provided in 1.3. The
contributions of this thesis are summarized in 1.4 to conclude this chapter.

2



Chapter 1. Introduction

1.0.2 Problem Statement

Spatial Reasoning

Semantical scene understanding involves the assessment of the spatial arrangement of objects.
Using spatial relations not only helps us discriminate the objects in the scene [5], but also allows us
to distinguish between different interpretations of two scenes with similar objects with different
spatial arrangements [6]. Spatial relations are abstract and functional relationships between
entities in space which can create a new perspective on action identification.

Here, we aim to present a manipulation action recognition and prediction framework which
does not use object recognition information and represents manipulations in terms of spatial
relations between their manipulated objects. To develop a theory of spatial relations, it is necessary
to determine the minimal set of spatial relations needed to describe the spatial organization of
objects.

Here, in order to facilitate the computation of spatial relations, we use the camera axes and create
a simple Axis Aligned Bounding Box (AABB) surrounding each object and perform calculations
based on the relationships between the AABBs.

Spatial relations are divided into static and dynamic relations.

Static Spatial Relations (SSR) depend on the relative position of two objects in space and include
“Above”, “Below”, “Right”, “Left”, “Front”, “Back”, “Inside” and “Surround”. Right, Left, Front
and Back are merged into “Around”. The relations “Above”, “Below” and “Around” are assumed
to happen in case the relation “Not touching” holds. When paired with the “Touching” relation
(that is, two objects are in physical contact with each other), the corresponding relations are called:
“Top”, “Bottom” and “Touching Around”.

Dynamic Spatial Relations (DSR) define the spatial relation of two objects during movement of either
or both of them. Here, different from SSR, some information from the previous K frames (e.g.,
distance related parameters) between each pair of objects is necessary. Dynamic relations consist
of “Getting close”, “Moving apart”, “Stable”, “Moving together”, “Halting together” and “Fixed
moving together”.

3



Chapter 1. Introduction

Manipulation Actions Representation and Recognition

There have been two main approaches to this problem based on symbolic and geometric
(sub-symbolic) representations. The symbolic approach is most common within classic AI
and natural language communities. Engineers and roboticists usually prefer more geometric
approaches dealing with low-level signals.

Both approaches have their pros and cons. The symbolic approach is more intuitive in tasks
related to understanding and communication with humans. It also generates a discrete state space
which makes planning tasks more tractable compared with the signal space which is of continuous
nature. However, the major problem is the grounding of these symbols in the environment. In
signal space the main problem is to find a small subset of features for manipulation actions. Two
demonstrations of the same pick and place action could look totally different in signals space,
which makes it difficult to find a conjoined symbolic representation for this action [7]. More
recent approaches, including our approach, try to combine both approaches to have the benefits
of both. Our proposed framework, named as Enriched Semantic Event Chains (ESECs) creates a
temporal sequence of static and dynamic spatial relations between the objects that take part in the
manipulation action. Mathematically speaking, ESECs are transition matrices that symbolically
encode the relational static and dynamic changes between (unspecified) objects. Each row of an
ESEC matrix represents the sequence of the spatial relations between each pair of manipulated
objects attained during the continuous video. Whenever a change occurs in any of those spatial
relations a new column is created. As a consequence, each column reflects at least one such change.

After a proper action representation, action recognition is implemented by comparing the action
ESEC matrix of a new action (test sample) to the action ESECs matrices of existing action models
(training samples) and computing the similarity score. We assign the class label to the tested action
as the one belonging to the action, which had the maximal similarity score.

Ontology of Manipulation Actions

Humans can robustly classify objects and actions using a very high degree of invariance and
generalization. To reach such a high classification robustness in artificial systems, we created a
large ontology of manipulation actions by taking ESECs as reference. This helps to understand
how manipulation actions are fundamentally structured in the spatio-temporal domain.

4



Chapter 1. Introduction

Manipulation Actions Prediction

We humans constantly update our believes about both ongoing actions and future events.
We easily recognize on- going actions, but there is even more to this. We can understand
the kinematics of the ongoing action, the limbs’ future positions and velocities. We also
understand the observed actions in terms of our own motor-representations. That is, we
are able to interpret others’ actions in terms of dynamics and forces and predict the effects
of these forces on objects. Similarly, cognitive robots that assist human partners need to
understand their intended actions at an early stage. If a robot needs to act, it cannot have a
long delay in visual processing. It needs to recognize in real-time to plan its actions. A fully
functional perception-action loop requires the robot to predict, so it can efficiently allocate future
processes. Finally, even vision processes for multimedia tasks may benefit from being predictive [8].

In this thesis, we are specifically interested in manipulation actions and how visual information
of hand and manipulated objects can be exploited for predicting future actions. Here, the special
way of manipulation actions representation in ESEC method by using static and dynamic spatial
relations allows us to use the ESEC action matrices for action prediction. For this, the Touching or
Not touching relation(T/N), Static Spatial Relation (SSR), and Dynamic Spatial Relation(DSR) are
computed for each pair of so called “fundamental” objects. We consider the object to belong to the
set of fundamental objects if this object is being touched or untouched by some other object during
the action. For action prediction, we perform column-wise comparison of the matrix of that action
to the matrices from the training data set (in this case we use several action matrices as models for
each action class) until all actions are categorized into a set which consists of the action members
from the same class, or where there are no identical columns with any of the actions. In the latter
case, we compute the similarity measure as presented later for those incomplete action tables and
predict the label based on the maximum similarity score. If case scores are identical for several
action from different classes, we proceed to the next column until a unique class is obtained.

Validation of Manipulations Prediction Method in Virtual Reality

Although our ESEC prediction algorithm has outstanding results in both theory and practice, how-
ever like any other scientific method, we need to validate it by comparing with the other existing
methods. Therefore, it is necessary to design a suitable substrate for comparison. Consequently,
we compared our semantic method with a state-of-the-art hand trajectory recognition algorithm
according to Hidden Markov Model (HMM) [9] and [10] as a mathematical approach.
Next, we compared our algorithm’s predictability power with humans. To this end, we selected 10
actions which are distributed in all possible groups and subgroups of manipulations, including
Chop, Cut, Hide, Uncover, Put on top, Take down, Lay, Push, Shake, Stir and made 30 sample
scenarios of each in Virtual Reality (VR) (totally 300 scenarios), each scenario with a different
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geometrical and coloring setup. We next asked 50 individuals to join our VR experiments and do
action prediction. Results were next com- pared with the result of ESEC method applied on exactly
the same data.

1.0.3 State-of-the-art

For each of the problems mentioned in 1.2 a review of the existing literature will be presented.

Spatial Reasoning

Qualitative spatial and temporal reasoning is a sub field of knowledge representation and symbolic
reasoning that deals with knowledge about an infinite spatio-temporal domain using a finite
set of qualitative relations. One particular aim in this type of reasoning, is to model human
common-sense understanding of space. Spatial relations as an aspect of spatial reasoning are used
in many applications in various domains, in medical images to recognize different brain structures
[11, 12], in image interpretation to provide linguistic scene descriptions [13], in Geographical
Information Systems (GIS) applications to computer-aided design [14] and in robotics [15, 16].
Mobile robot navigation is an important topic in the field of spatial robots reasoning that involves
“self-localization”, “map learning” and “human-robot communication” issues. In self-organization,
the location of the robot is determined based on spatial relations with respect to the perceived
objects [17], and map learning involves the autonomous acquiring of the environment’s map [18,19].
Moreover, service robots are supposed to take orders from humans and, in some cases, report
back to humans, or request more information to resolve ambiguities. In these scenarios, being able
to communicate spatial information is a key capability [20, 21]. All these applications require a
thorough analysis of space and spatial relations between entities.

1.0.4 Manipulation Actions Representation and recognition

Representation

There are two distinct approaches in action representation and executions. One at the trajectory
level [22] and the other at the symbolic level [23]. The former gives more flexibility for the definition
of actions, while the latter defines actions at a higher level which allows for generalization and
planning actions at a higher level and allows for generalization and planning. For trajectory
level representation there are several well established techniques, Splines [24], Hidden Markov
Models (HMMs) [25], Gaussian Mixture Models (GMMs) [26] and dynamic Movement Primitives
(DMPs) [22,27]. On the other hand, high level symbolic representations usually use graph structures
and relational representations [28, 29]. Sridhar et al. [28] represented a whole video sequence by
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an activity graph with discrete levels each of which represents qualitative spatial and temporal
relations between objects involved in activities, however, large activity graphs and the difficulty of
finding exact graph isomorphism make this framework expensive and sensitive to noise. Along the
same line, Aksoy et al. [29] used semantic event chains (SECs) as a high level action descriptor. SECs
are generic action descriptors that capture the underlying spatio-temporal structure of continuous
actions by sampling only decisive key temporal points derived from the spatial interactions
between hands and objects in the scene. In this thesis, we aim to improve SECs by adding static
and dynamic spatial relations and define enriched semantic event chains (ESECs).

Recognition

Manipulation recognition can be understood as a sub-field within the above- discussed more
general problem of human activity recognition. Numerous previous studies have attempted to
solve this problem [28, 30–32].
To solve automatically recognize human manipulation activities from videos, Ramirez et al. sug-
gested to extract functional object categories from spatio-temporal patterns encoding the interac-
tions between hand and objects in a semantic layer. This coding system is then used to analyze
manipulation actions, although it suffers from a lack of generality in the semantic rules genera-
tor [28]. Furthermore, the authors of [30] and [31] try to improve the semantic action rules generator
by exploring a reasoning method, which extracts these rules via employing abstract hand move-
ments with the object information and enhance the recognition of manipulation actions through
spatio-temporal feature learning. They show that by introducing new capabilities to the reasoning
engine, one could compute new relationships between objects and actions, to improve hand action
recognition. However their proposed method still does not work efficiently for complex hand
movements with unknown movement primitives.

Due to the limitations in the physical To solve automatically recognize human manipulation
activities from videos, Ramirez et al. suggested to extract functional object categories from spatio-
temporal patterns encoding the interactions between hand and objects in a semantic layer. This
coding system is then used to analyze manipulation actions, although it suffers from a lack of
generality in the semantic rules generator [28]. Furthermore, the authors of [30] and [31] try to
improve the semantic action rules generator by exploring a reasoning method, which extracts
these rules via employing abstract hand movements with the object information and enhance the
recognition of manipulation actions through spatio-temporal feature learning. They show that
by introducing new capabilities to the reasoning engine, one could compute new relationships
between objects and actions, to improve hand action recognition. However their proposed method
still does not work efficiently for complex hand movements with unknown movement primitives.

Due to the limitations in the physical modeling of movements, caused by the variation of action
types and their components, researchers have developed graph-based approaches. In [33] visual
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semantic graphs are introduced for recognition of manipulation sequences according to the changes
in the topological structure of the manipulated objects. Another study modeled human manipu-
lations by incorporating semantic information about human skeleton and tracking the segments
of manipulated objects [34]. Faria et al. used hand trajectories and hand-object interactions in a
Bayesian model to enable manipulation understanding. These methods share a drawback in that
they are not efficient enough for complex and hybrid applications [35]. In order to solve the above
drawback, Aksoy et al. described a method for semantic segmentation and recognition of long
and complex manipulation actions, which captured the underlying spatio-temporal structure of an
action and extracts the basic primitive elements of each parsed manipulation [32]. Building on this,
a more descriptive set of spatial relations between manipulated objects were introduced in [36]
(see also [37]) which can be lead to more precise action representation and recognition.

were introduced in [36] (see also [37]).

1.0.5 Manipulation Actions Prediction

Our focus in the current work is not only to recognize but also to rapidly predict manipulations.
Recently, Fermüller et al. developed a recurrent neural network based method for manipulation
action prediction [8]. They depicted the hand movements before and after contact with the objects
during the preparation and execution of actions and applied a method based on a recurrent
neural network (RNN) where patches around the hand were used as inputs to the network. They
additionally used the estimations of forces on finger tips during the different manipulations
to achieve more accurate predictions. Others [9, 38] have used a hidden Markov model-based
continuous gesture recognition system utilizing hand motion trajectories. We have here extended
their methods from recognition to prediction and compared it with our ESEC approach [39].

A central problem that can be found in all of the above approaches is that action recognition (and
prediction) heavily rely on time-continuous information (e.g. trajectories, movie sequences, etc.).
This type of information, however, are highly variable. It is interesting to note that — indeed
— we (humans) have a hard time describing an action in words using this level of detailed-ness.
Instead, we prefer using relational descriptions like “X moves toward Y”, or “X is on top of Y”.
We may add “... moves fast...” or similar specifiers but we usually cannot express in words
detailed information on the actual speed, etc. Therefore, in this study we decided to shy away
from continuous descriptions, as well, trying to obtain leverage from a relational representation as
discussed in our older works [29,40,41], which makes this system robust against individual spatial
and temporal variations in the actual action execution.
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1.0.6 Virtual Reality

Virtual reality (VR) is a rapidly developing computer interface that strives to immerse the user
completely within an experimental simulation environment, thereby providing a much more
intuitive link between the computer and the human participants. VR has been applied successfully
to hundreds of scenarios in diverse areas, including rapid prototyping [42], manufacturing [43],
scientific visualization [44], engineering [45], and education [46]. Additionally, it has a considerable
number of applications in the machine vision domain. Segmentation of 3D images, 3D shape
modeling, 3D rigid and nonrigid registration, 3D motion analysis and 3D simulation are
some important machine vision topics that can accurately match a virtual environment of
graphically simulated 3D models to the video images of the real task environment [47]. Using
three-dimensional(3D) images is becoming very popular in the medical research. This comes
from the new capabilities demonstrated by computer vision applied to 3D imagery. Not only
does it provide better diagnosis tools, but also new possibilities for therapy. This is true in
particular for brain and skull surgery and radiotherapy, where simulation tools can be tested
in advance, in a virtual environment, and next be used during the intervention as guiding tools [48].

In this thesis, after definition of a novel semantic framework (ESEC) for representation, recognition
and prediction of manipulation actions and comparing the results in theory as well as the real
data with the state of the art mathematical methods, we next carry out a comparison between
predictability powers of humans and the ESEC framework. For this purpose, we selected 10
actions and made 30 scenarios for each in virtual reality environment with different geometrical
and coloring setups. Next, we asked 50 human participants to participate in this experiment
and predict the action types as early as possible while observing the action being performed.
Afterwards, the ESEC results were compared with the human results.

1.0.7 Overview and Contributions

The contribution of each chapter can be summarized as follows:

• Chapter 2: This chapter was published in [36] and contains spatial reasoning notions, such
as calculating static and dynamic spatial relations. Also, it includes basic concepts like
object modeling, object roles, fundamental manipulated objects definition and uses these
thoughts to provide a framework for semantic representation of manipulation actions. This
framework is called Enriched Semantic Event Chain (ESEC)and is applied for recognition of
manipulation actions in this chapter.

• Chapter 3: was published in [49] and introduces manipulation actions ontology and also cat-
egorization. It further presents a method for prediction of manipulation action classes using
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spatial reasoning. Results are then used to trigger the robot action and we demonstrate the
advantage of ESEC framework comparing two different approaches in a robotic experiment.

• Chapter 4: was published in [39] and includes a comprehensive definition of ESEC frame-
work by using new object roles, new similarity measurement and a novel noise reduction
algorithm. This framework is then used in recognition and prediction of manipulation actions
in theory as well as real data. The results are obtained and discussed in two big data-sets.
In the following, a state-of-the-art HMM based approach for recognition of manipulation is
introduced and developed as a prediction method. Further, its results are compared with the
ESEC results on both data-sets and the efficiency of the framework is evaluated.

• Chapter 5: provides describes the virtual reality system and the design of a VR-based
experiment for action prediction and describes its aspects in a detailed manner. Afterwards,
it reports human results in predicting the manipulation actions, analyzes them considering
different aspects and compares the results of the ESEC framework applied on the same data.

Finally, in Chapter 6 the thesis is concluded by a short summary and final remarks.
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Spatial Reasoning and its Application in Rep-
resentation and Recognition of Manipulation
Actions
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Chapter 2. Spatial Reasoning and its Application in Representation and Recognition of
Manipulation Actions

This chapter contains an original manuscript, presenting our fundamental framework for the
classification and recognition of manipulation actions. It includes the following:

• Object modeling using the Axis-Aligned Bounding Box (AABB) approach.

• Spatio-temporal reasoning and the division of spatial relations into static and dynamic, as
well as the formal description and computation procedures.

• Definition of fundamental object roles in a manipulation.

• Creating Enriched Semantic Event Chain (ESEC) as a temporal sequence of static and dynamic
spatial relations between the fundamental objects taking part in a manipulation.

• Introducing our method to measure the similarity of ESEC matrices.

• Action classification using the ESEC framework on a large set of actions.

• Action discrimination in the ESEC framework using theoretical analyses.
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Abstract  Recognition of human manipulation actions 

together with the analysis and execution by a robot is an 

important issue. Also, perception of spatial relationships 

between objects is central to understanding the meaning of 

manipulation actions. Here we would like to merge these two 

notions and analyze manipulation actions using symbolic spatial 

relations between objects in the scene. Specifically, we define 

procedures for extraction of symbolic human-readable relations 

based on Axis Aligned Bounding Box object models and use 

sequences of those relations for action recognition from image 

sequences. Our framework is inspired by the so called Semantic 

Event Chain framework, which analyzes touching and un-

touching events of different objects during the manipulation. 

However, our framework uses fourteen spatial relations instead 

of two. We show that our relational framework is able to 

differentiate between more manipulation actions than the 

original Semantic Event Chains. We quantitatively evaluate the 

method on the MANIAC dataset containing 120 videos of eight 

different manipulation actions and obtain 97% classification 

accuracy which is 12 % more as compared to the original 

Semantic Event Chains.  

Index Terms Spatial relations, manipulation actions, 

semantic analysis, action semantics, action classification. 

 

I. INTRODUCTION 

Action recognition and human activity analysis are the 
most active and challenging domains in computer vision and 
robotics. They play an important role in human-human as well 
as human-robot interactions. Also, it has many other 
applications in different fields such as video surveillance 
systems or video retrieval. Most of the researches in this area 
focus on full-body action categorization [1] [2], but there are a 
lot of tasks that an agent (human or robot) performs only using 
his hands (i.e., manipulation actions). Manipulation actions 
make a big proportion of applications both in industrial and 
service robotics. Intelligent robots could use observation of 
manipulation actions for learning how to manipulate.  
However, there are many ways to perform a single 
manipulation and it would be very inefficient to store a large 
set of observed examples that is not easy to generalize. The 
paper addresses the problem of representing manipulations in 
a compact and efficient way. It describes actions in terms of 
changes of spatial relations in the scene, while ignoring the 
diversity of scenes, objects and small details in the trajectory 
for doing the same action. 
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Spatial relations are abstract and functional relationships 
between entities in space [3]. One way of representing them is 
in the way humans speak ab

object-wise spatial relations for a given action is essential for 
a robot to perform an action successfully [6]. Suppose, we ask 
a robot to put some object on the top of the other object. For a 
successful execution, in addition to the recognition of those 

 
of it. Definition of a robot action through appropriate spatial 
relations would lead to an accurate and generalizable 
performance in the robot execution. 

In this regard, we apply qualitative spatial reasoning to 
each object pair in the scene. We use camera axes and create 
an Axis Aligned Bounding Box (AABB) around of each 
object. In the AABB representation, all box sides are parallel 
to the directions of axes. Next, we evaluate static and dynamic 
spatial relations, where the static relations set includes 

-

design heuristic rules for evaluation of those relations and 
track changes in those relations during continuous video-
frames.  

The computed relations are embedded into the so called 

extension of the original Semantic Event Chain approach [7] 
developed to semantically compare and identify actions [8]. 
We benchmark the proposed approach for accuracy in action 
recognition based on the MANIAC dataset [8] that includes 8 
different manipulation actions (overall 120 videos performed 
by three different actors). To address wider action variety, we 
also show that the Enriched Semantic Event Chains in 
principle can differentiate between more actions as compared 
to the original Semantic Event Chains based on a 26 action set 
presented in [9]. 

II. RELATED WORKS 

There has been a great deal of research in the field of 
spatial representation and reasoning because of its  
multifaceted applications in robot planning and navigation 
[10], interpreting visual inputs [11], computer-aided design 
[12], cognitive science where models of spatial skills help to 
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explain human performance [13], geographic information 
systems (GIS) [14], and understanding natural languages [15]. 
All of these cases need to represent and reason about spatial 
aspects of the world. Spatial reasoning is studied using both 
quantitative and qualitative approaches. According to [16], 
quantitative reasoning is the developed (human) ability to 
analyze quantitative information and to determine which skills 
and procedures can be applied to a particular problem to arrive 
at a solution while a qualitative approach creates non-
numerical descriptions of physical systems and their behavior, 
preserving important behavioral properties and qualitative 
distinctions. Qualitative spatial reasoning (QSR) provides 
representational primitives and inference mechanisms about 
space. In fact, QSR aims at capturing human-level concepts of 
space by using finite sets of relations to model particular 
spatial aspects such as topology, orientation and distance while 
quantitative spatial models rely on numeric calculations. Here, 
we would like to apply a qualitative approach because it is 
closer to how humans represent and reason using 
commonsense knowledge. It can overcome the indeterminacy 
problems, by allowing inference from incomplete spatial 
knowledge and it also offers a compact representation that is 
supposed to enable complex decision tasks. 

Spatial reasoning techniques in artificial intelligence 
attempt to emulate human reasoning during navigation and 
other spatial planning tasks. For example, [18] applies results 
of brain research to obtain geometrical factors or [19] suggests 
a model in the form of spatial templates and prototypes (both 
quantitative spatial reasoning). A method of performing 
qualitative spatial reasoning on robots is proposed in [20].  

Robotics is a domain much influenced by methods of 
spatial reasoning. One of the key aspects which is needed to 

is the ability of reasoning about spatial directions in a 
qualitative manner. In other words, the robot needs to be able 
to reason about an object with respect to another object in a 
given reference frame [20]. Therefore, finding spatial relations 
between objects in a scene is fundamental in execution of tasks 
by robots. In this work, we limit our study on manipulation 
actions that define actions which are done by hands. Because 
of large variation of ways for performing manipulation actions 
and also many occlusions in the visual scenes, manipulation 
action recognition is still an open and challenging problem. 
Meanwhile, hand movements as such have been widely 
investigated, but for a slightly different purpose: hand gesture 
recognition, for human-computer interfaces or sign language 
recognition [21]. 

In this study we concentrate on analysis of manipulation 
actions via the relations of manipulated objects. Only a couple 
of studies exist doing this type of analysis. In [22] visual 
semantic graphs were introduced for recognition of action 
consequence according to the changes in the topological 
structure of the manipulated objects. The study presented in 
[23] represents an entire manipulation by an activity graph 
which holds spatiotemporal interaction between objects, 
however, the activity graph requires complicated processing 
for extraction of semantic level knowledge. The work in [24] 
modeled human activities by involving some information 
about human skeleton and tracking the segments of 
manipulated objects. The authors of [25] use hand trajectories 

and hand-object interactions in a Bayesian model for 
manipulation observation. All the studies mentioned above 
introduce represen
execution details, while we attempt to describe manipulation 
actions through abstract relations. The already mentioned 

a possible generic descriptor for manipulation actions, which 
encodes the sequence of spatio-temporal changes in relations 
between manipulated objects. But it only takes into account 
touching and not-touching relations and does not consider 
other spatial information, therefore it has limitations in action 
recognition, as well in its usability for guiding execution by a 
robot. Here we would like to extend the SEC framework by 
considering qualitative static and dynamic spatial relations 
between objects and make a novel more accurate framework 
for classification of manipulation actions based on symbolic 
spatial relations. 

III. OUR APPROACH 

A. Overview of our method 

A brief description of the steps involved in our approach 

is provided in Fig.1 and the details will be discussed in the 

following sections. 

 

 

 

 

 

In order to semantically identify and compare 
manipulation actions, we present a new algorithm based on 
qualitative spatial relations. The input of our algorithm is an 
RGB-D video of a manipulation action. In this work, we use 
the videos of the MANIAC dataset which includes 8 different 
manipulation actions (Pushing, Hiding, Putting, Stirring, 
Cutting, Chopping, Taking, and Uncovering) [8]. 

A segmentation algorithm is applied on the scene at the 
first frame and objects are tracked during the rest of frames 
(section III-B). 

-C and so 
called Enriched Semantic Event Chains (ESEC) are defined 
in section III-D. Finally, our similarity measures and 
classification procedure is described in section III-E. The 
discriminative ability of the ESECs for different actions is 
evaluated in section IV. Results are compared to analogous 
results obtained using the original Semantic Event Chains 
(SECs) as presented in [8, 9].  

B. Point cloud segmentation and tracking 

As the first step, the recorded video frames are pre-
processed by an image segmentation procedure based on color 
and depth information as described in [8]. In this procedure 
objects (and hands) in the scene are extracted as separate 

RGB-D 

image 
sequences 

Segmentation 

and tracking 

Extraction of 

spatial 
relations 

Enriched 

Semantic Event 
Chain 

Similarity 

measurement 

Action 

classification 

Fig. 1. Steps of our spatial reasoning approach 
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segments. A sample of a MANIAC dataset frame before and 
after segmentation is shown in Fig.2. Segments are tracked 
using a persistent super voxel world-model which is updated, 
rather than replaced, as new frames of data arrive as described 
in [26].   

Each object in a scene after the aforementioned 
procedures is a point cloud, i.e., a set of points in a three-
dimensional coordinate system (X, Y, Z). We define the scene 
at frame f as a set of point clouds: { 1

f
N

f}, where N is 
the number of objects in the fth frame of the action. Object i

f 

represents the point cloud of object i at frame f, i {1,..., N} 
and can be tracked throughout the frames sequence. 

 

 

 

 

C. Extraction of spatial object relations 

In this work, we define two types of spatial relations. The 
first type includes static relations which describe the 
directional ordering of objects in a scene and the second type 
contains dynamic relations between objects.    

 We define the following static spatial relations between 
Ab Be

(R L F Ba
(Bw).  

To Bo

touching (Ab + T = To; Be + T = Bo). We gather all of these 
relations in a set and name it Rel_static. Thus, Rel_static = 
{Ab, Be, R, L, F, Ba, Bw, To, Bo}. 

Dynamic relations are the second type of relations in the 
current study which are collected in a Rel_dynamic set. When 
an object starts moving and the distance between its central 

GC) and when this distance 
Moving Apart

(MA). We also observe MT 
mean only moving together when being in touching (T) 

HT 
S -touching (N), but keeping the same 

distance). Thus, Rel_dynamic = {GC, MA, MT, HT, S}. 
T - N) 

making the backbone of the original Semantic Event Chain 
framework [7] are used in some of the definitions of our new 
relations (e.g. To, Bo, MT, HT, S) as described above. 

Further we explain in more detail how the introduced 
relations are calculated in real scenes. The touching (T) and 
non-touching (N) relations are determined by applying the 

-

occurrence (or non-occurrence) of collision between the point 
clouds. 

For definition of the other relations we need to first 
introduce our object model. We define the coordinate axes 
according to the direction of the camera axes. Our coordinate 
system is shown in Fig.3. The z axis corresponds to perceived 

depth (front/back) direction, while the x and y axes define 
directions of right/left and above/below, respectively. Table 1 
defines directions of six spatial relations in terms of the 
coordinate system axes. 

For each point cloud (object) we create an Axis Aligned 
Bounding Box (AABB). In the AABB all sides are parallel to 
the directions of the coordinate system axes (Fig.3(b)). 

 

 

 

 

 

 

Suppose object i
f is the ith object in the fth frame 

represented as a point cloud and consisting of P  points. As 
an object i

f model we define the AABB by the following set 
of vertices: 

 

Vi
f (1) = [xmin(i)

f, ymax(i)
f, zmin(i)

f], 

Vi
f (2) = [xmin(i)

f, ymin(i)
f, zmin(i)

f], 

Vi
f (3) = [xmin(i)

f, ymin(i)
f, zmax(i)

f], 

Vi
f (4) = [xmin(i)

f, ymax(i)
f, zmax(i)

f], 

Vi
f (5) = [xmax(i)

f, ymax(i)
f, zmax(i)

f], 

Vi
f (6) = [xmax(i)

f, ymin(i)
f, zmax(i)

f], 

Vi
f (7) = [xmax(i)

f, ymin(i)
f, zmin(i)

f], 

Vi
f (8) = [xmax(i)

f, ymax(i)
f, zmin(i)

f]. 

 
where xmin(i)

f, xmax(i)
f, ymin(i)

f, ymax(i)
f, zmin(i)

f
 and zmax(j)

f are 
the minimum and maximum values between the points of 
object i

f
 in the x, y and z axes, respectively. We calculate 

scene where the neighborhood is defined in the following 
way: suppose Oi

f shows the central point of the AABB of 

i
f; we define  ( i

f, j
f) = ||Oi 

f - Oj
f||  to be a two 

argument function for measuring the Euclidean distance 
between the objects i and j in fth frame. Objects are 
considered to be neighbors in case  ( i

f, j
f

objects in our table-top manipulation neighbors (only 
extremely distant objects, e.g. those that are beyond the table 
are excluded).  

Each relation is defined by a set of rules and those rules 
are evaluated for each neighboring object pair. We start with 
specifying the rules set for static spatial relations. Let us 
consider the SR ( i

f, j
f) = R (object i

 is to 
the right of object j in frame f) if xmax( i

f)> xmax( j
f) as well 

as all the following (exception) conditions are not true: 

Fig. 2: A frame in MANIAC dataset (a) before and (b) after the scene 
segmentation. Segments are identified by different colors and segment 

numbers. 

(a) (b) 

x 

z 
y 

Fig.3. (a) Coordinate system, (b) A sample of AABB around a point cloud 

based in the defined coordinate system. 

V(2) 

V(1) 

V(3) 
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V(8) 
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ymin( i
f)> ymax( j

f); ymin( j
f) > ymax( i

f); zmin( i
f)> zmax( j

f);  
zmin( j

f) > zmax( i
f). The exception conditions exclude from the 

-AABBs do not 
overlap in altitude (y direction) or front/back (z direction).  
Several examples of objects holding relation SR (red, blue) = 
R, when the size and shift in y direction varies, are shown in 
in Fig. 4.  

SR ( i
f, j

f) = L is defined by xmin ( i
f) < xmin ( j

f) and the 
Ab Be

F Ba Ab
Be F
Ba . 

 

 

 

 

Bw
5
This space is obtained by extending the AABBs of two non-
overlapping objects towards each other along the pre-defined 
axis and taking the intersection of those extensions. Whenever 

i

Bw) of the two objects. The rules for 
X axis 

is defined below (the object 3
f is in between of objects 1

f 

and 2
f): 

SR ( 1
f, 2

f, 3
f) = Bw, 

If (xmin(3)
f > maximum (xmin(1)

f , xmin(2)
f) && 

(xmax(3)
f < minimum (xmax(1)

f , xmax(2)
f)) 

If (ymin(3)
f > minimum (ymin(1)

f , ymin(2)
f) && 

(ymax(3)
f < maximum (ymax(1)

f , ymax(2)
f)) 

If (zmin(3)
f > minimum (zmin(1)

f , zmin(2)
f) && 

(zmax(3)
f < maximum (zmax(1)

f , zmax(2)
f)) 

 
Two objects can have more than one static spatial relation 

to 
the right and in . However, for 
forming the ESEC (as will be explained in III-D) we need 
only one relation per object pair. Here we propose a solution 
for this problem.  

 
 
 
 
 
 
 
 
 
 
 
 
 

Each AABB is a cube with 6 rectangles. Let us label them 

as top, bottom, right, left, front and behind based on their 

positions in our scene coordinate system. Whenever object i 

is in the right of object j, one can make a projection from the 

left rectangle of object i onto the right rectangle of object j 

and consider only the rectangle intersection area which we 

shadow  in this work.  

Suppose SR ( i
f, j

f
1 k 1 k}  

Rel_static and we have calculated shadow i
f

j
f

i
f and j

f. The relation with 
the biggest shadow is chosen as the main static relation for the 
two objects: 

 
SR ( i

f, j
f

n , If shadow ( i
f, j

f
n) = max

(Shadow i
f

j
f

m)). 
 
The static relations around objects are highly dependent 

on the viewpoint and their changes, also do not make a 
human-notable difference in the performance of manipulation 
actions. For instance, when picking a knife to cut a cucumber 
we do not note if the knife is picked from the right or the left 
side of the cucumber. Thus we define a new relation called 

Ar) and map the set of relations {L, R, F, Ba} 
onto it. located on 
lateral sides of an object in a limited radius equal to threshold 

. This space does not cover the vertical neighborhood areas 
 

 
 

 
Now we switch to explaining dynamic relations DR which 

we define as a two argument function where arguments are 

 in our experiments, given the 30 
GC) and when this 

Moving Apart
(MA). Formal definition is given next, where the threshold  
is kept at 0.1 m: 

 

 
When calculating GC and MA we are also checking the 

touching relations SRtouch ( i
f, j

f) = (T or N) between the two 
objects. Based on SRtouch, we define two conditions required 
for calculating the remaining dynamic relations: 

 Rel_touch ( i
f, j

f) =T && Rel_touch ( i j
f ) =T 

 Rel_touch ( i
f, j

f) =N && Rel_touch ( i j ) =N 

The third condition is on object i, j movement: 

 Oi 
f Oi  && Oj 

f  Oj  

The dynamic relations MT, HT and S, based on the three 
conditions above are defined in the following way: 

Directions Right Left Front Back Above Below 

Relevant vector +x -x +z -z -y +y 

Fig.4. Possible states of Right- Left relations between two AABBs when 

size and y positions vary.  

Fig.5. Defining betweenness by AABBs. In this scene, yellow AABB is 

between white and blue AABBs.  

TABLE 1: Definition of spatial relation directions 

DR ( i
f, j

f): 

 

GC,    ( i
f + , j

f + ) -  ( i
f, j

f) <  

MA,   if:   ( i
f + , j

f + ) -  ( i
f, j

f) >  
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D. Enriched SEC framework (ESEC) 

As mentioned in the introduction, the Enriched SEC 
framework is inspired by the original Semantic Event chain 
(SEC) approach [4]. The original SECs check touching (T), 
not-touching (N) and absence (A) relations between each pair 
of objects in all frames of a manipulation scene and focus on 
transitions (change) in these relations. The extracted 
sequences of relational changes (represented in a form of a 
matrix, see first matrix in Fig. 6) are used in the manipulation 
action recognition. In the Enriched SEC framework the 
wealth of relations described in section III-C are embedded 
into a similar matrix-form representation, showing how the 
set of relations changes throughout the action. We expect to 
be able to differentiate actions in more details this way. 

As the first step of making an Enriched SEC, we recognize 

in a manipulation scene. Definition of these objects are based 
on the original SEC relations and given in Table 2. This way 
we exclude distractor objects which are present in the scene 
but do not perform any role in the manipulation. 

TABLE 2. Definition of fundamental objects during manipulation action 

Object Definition Relation 

Hand The object that 

performs the action 

Not touching anything at 

the beginning and at the end of 
the action. It touches at least one 

object 

Main The object 
which is directly in 

contact with the hand 

Not touching the hand at 
the beginning and at the end of 

the action. It touches the hand at 

least once 

Primary The object from 
which the main 

object separates 

Initially touches the main 
object. Changes its relation to 

not touching during the action 

Secondary The object to 
which the main 

object joins 

Initially does not touch the 
main object. Changes its 

relation to touching during the 

action 

 
As ESEC representation we introduce two matrices: one 

for representing the sequence of the static spatial relations 
Rel_static between the fundamental manipulated objects and 
one for describing the sequence of dynamic relations 
Rel_dynamic between the objects. We calculate static and 
dynamic relations in the sequence of the video frames of a 
manipulation action and add a new column to both (static and 
dynamic relation) matrixes whenever any static or dynamic 
relation has changed. This way we obtain a notation in matrix 
form as shown in Fig. 7 (middle is the static relation matrix 
and bottom is the dynamic relation matrix).  

Alternatively, we can interpret our matrixes as sequences 
of graphs, where fundamental objects are connected by edges 
with the labels of static and dynamic relations. Each column 
in each matrix represents one graph, and the sequence of 
columns shows the time-development of those graphs. 

One can observe (compare top representation in Fig. 6 for 
the original SEC with the bottom representation for the 
ESEC), that the ESEC has more columns as compared to the 
original SEC.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

E. Similarity measures and classification procedure 

sim  between two ESECs we 
use a measure based on Longest Common Subsequence 
(LCS) as described in [8]. For discriminating different 
actions, we define, a threshold ( ) according to the minimum 
similarity value between the ESEC matrices of the same 
manipulation actions in real data:  = Mink (Min q (sim (Akq , 
Akq))). Here Ak is a representative of a manipulation type (e.g. 
in the MANIAC data set we are using in further experiments) 
and Akq indicates the q-th scenario of that action, in the 
dataset. For action classification we follow the online 
procedure defined in [8] in a slightly simplified way (see 
pseudocode in Fig. 7). 

 

 

DR ( i
f, j

f) 

 

MT, if: 

HT,  if:  

S,     if: P2 and i
f + 

j
f + )  i

f
j
f) 

<  

A   Ar    Ab   To  To   To  To  To   Ab  Ar   A   A 

To  To   To   To   To   To  To  To  To   To  To  To 

Ar   Ar   Ar   Ar   Ar    Ab  To  Ab  Ar   Ar  Ar  Ar  

H, M 

P, S 

M, S 

A  N  T  T  T  T  N   N  A   

T  T   T  T  T  T  T   T  T 

N  N  N  T  N  N  N  N  N       

A    GC  GC  GC  MT MT   MT   MT  MA  MA  MA  A     

HT  HT  HT  HT  HT  HT   HT   HT   HT   HT   HT   HT 

S     S     S     S    GC  GC   S      MA  MA  MA  S      S      

H, M 

P, S 

M, S 

H, M 

P, S 

M, S 

Fig.6. Description of a cutting action in SEC and Enriched SEC 
frameworks. First row: frames from the manipulation video for 

visualization of the action; second row: segmentation of the frames

above, third row: SEC matrix, fourth row: ESEC: Static relation matrix; 
fifth row: ESEC: dynamic spatial relation matrix; knife is the main 

object (M), table is the primary object (P), cucumber is the secondary 

object (S). 

For (1  

     If (i=1) 
          Make cluster one  and assign ESECi to cluster one  

     Else 

          For (1  

               For  

                    Sijk = sim (ESECi, mjk) // calculate similarity to cluster j 

member k  

            Si = max ({Sijk})   // find maximum 
            J = arg(max(Sijk))  // find to which cluster maximum belongs 

            If (Si> ) 

                  Assign ESECi to cluster J 

            Else 

            Create new cluster and assign ESECi to the new cluster 

Fig.7. Pseudocode for ESEC clustering. 
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We take ESECs extracted for each dataset video in a 
random order. The first ESEC is assigned to cluster one. For 
the second randomly selected ESEC we calculate the 
similarity sim to the first ESEC. If the similarity is above the 
threshold , we assign the ESEC to the same cluster. 
Otherwise, we assign the ESEC to a new cluster. When more 
than one ESEC is already assigned to some cluster, we 
calculate the maximum similarity between the cluster 
members and the new ESEC. In case more than one cluster 
show above-threshold similarity, the ESEC is assigned to the 
cluster with the highest similarity. The procedure is continued 
until the dataset is exhausted.  Afterwards class labels are 
assigned to clusters using the ground-truth labels, according 
to the majority in that cluster and the classification error is 
calculated in comparison to the ground-truth labels. 

IV. EXPERIMENTS 

A. Data Sets 

Our action classification experiments were performed on 
the MANIAC dataset. It includes 8 different manipulation 
actions (Pushing, Hiding, Putting, Stirring, Cutting, 
Chopping, Taking, and Uncovering), each of which is 
presented in 15 different versions performed by 5 different 
human actors (overall 120 demonstrations). Actors were 
performing actions in different order, choosing from a set of 
30 different objects and performing in differently configured 
scenes.  Manipulation instances of each action have big 
variations in terms of manipulated objects, their poses, and 
followed trajectories. 

To address a wider action variety, we have conducted 
additional experiments on a 26 actions set presented in [9]. 
Here, however, we did not have data recordings and thus were 
working on hand-made action models following the 
methodology suggested in [9]. 

B. Spatial relations accuracy 

Here we begin with a brief evaluation of the performance 
of our spatial relation model. We asked three persons to 
indicate static spatial relations between pairs of objects from 
the set Rel_static on a set of 120 selected scenes in the 
MANIAC dataset. We have accepted the human-labeled 
relations to be the ground-truth in those cases where a 
majority vote was possible (2 matching human evaluations). 
We then calculated the relations using the algorithms 
introduced in III-C, including the extraction of the main 
relation, in case several relations were true, and compared 
with the ground truth. The obtained false positive rate is 
FPR=4.725% and the obtained false negative rate is 
FNR=5.262%.  

C. Action Classification        

We performed action classification on the MANIAC 
dataset as described in section III-E. The threshold used for 
action discrimination for the MANIAC dataset is . 

Table 3 compares action classification results of our novel 
ESEC representation to the results of the SEC framework as 
indicated in [8]. The classification accuracy for all actions is 
higher in ESECs. Totally, in average the spatial reasoning 
method has 97% accuracy in action classification which 
makes 12% improvement in compare of the previous method. 

This supports the notion that ESEC is a more powerful tool 
for classifying manipulation actions, as compared to the 
original SEC approach. 

D. Discriminative ability of the Enriched SEC framework 

in an extensive actions set 

A manipulation action ontology was designed in [9] where 
the hierarchical relations of 26 single-hand manipulation 
actions were based on the SEC framework (as well as pose 
and velocity considerations). However, it was shown that the 
discriminative ability of SECs alone is not enough to 
differentiate all those actions from each other. Here we will 
take the 26 manipulation actions analyzed in [26] and measure 
how much the discriminative ability increases when we use 
the ESECs for that purpose.  

TABLE 3. Accuracy of classification on the MANIAC dataset in ESEC and 
SEC frameworks 

 

 

 

 

 

 

 

The study [9] divides the 26 manipulation actions into six 
groups, where within one group all actions are similar or 
identical based on the SEC representation. Actions can be 
differentiated with SECs only across groups. Different from 
this, here we show how the Enriched SECs can now also 
differentiate actions within each group. Two groups are 
analyzed in Tables 4 and 5. To allow for fair comparison, we 
use as discrimination threshold 65% as this had been used in 
[8, 9]. As a consequence, in Tables 4 we see an action group 
where the ESECs differentiate the same number of actions as 
the SECs. However, ESECs can observe sub-threshold 
differences between the first three actions in the group, while 
the SECs indicate those actions as fully identical (similarity 
100%).   

In Table 5 we see an action group where ESECs can 

are 100% identical in the SEC representation, while the 
ESECs can differentiate those (with only 41% similarity). We 
also see sub-threshold improvement when differentiating 

 

48% similarity vs. 66% in SECs), 
18% vs 69% in SECs), 

19% vs 69 in SECs), 
54% 

vs. 67 in SECs). 

V. DISCUSSION 

In this paper, we have introduced a representation for 
manipulations and called the Enriched Semantic Event Chain, 
which focuses on spatial relations between objects in a scene. 

Actions ESEC SEC[8] 

Hiding 100% 87% 

Pushing 94% 93% 

Putting 100% 87% 

Stirring 93% 93% 

Cutting 91% 80% 

Chopping 100% 93% 

Taking 95% 87% 

Uncovering 100% 80% 

Average 97% 85% 
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ones. For each action, the sequences of these static 
and dynamic spatial relations create a semantic descriptor of 
the manipulation action. The obtained descriptors are used to 
discriminate between different actions using real video 
sequences from the MANIAC data set (8 different actions) as 
well as sequences from the 26 actions from [9].  

TABLE 4. ESECs showing differences in actions, when SECs indicate those 

Poke, Rub and Bore actions. Similarity values allowing action differentiation 
are shown in bold font. 

 

TABLE 5. ESECs differentiating between additional pair of actions, as 
compared to SECs. Similarity values allowing action differentiation are 
shown in bold font. 

 

 

 

 

 

 

 

 

 

 

Action differentiation by ESECs is compared to our 
earlier method based only on touching and not-touching 
events encoded in the older SEC (Semantic Event Chain) 
framework [8]. Both frameworks do not require object 
recognition and they ignore movement trajectories. Because 
in the original SECs touching and not-touching are the only 
defined spatial relations, the discriminative power of SECs is 
more limited than that of the here proposed Enriched SECs. 
This is shown by the difference between 96.625% action 
recognition accuracy for ESECs as compared to 87.5% for 
SECs using MANIAC. Also for the data from [9] we find 
improved performance and 5 more actions can be 
discriminated with ESECs. In addition, we found that several 
actions that had been 100% similar using the SEC framework 
begin to show differences when using ESECs (e.g. 83% 
similarity only). All this clearly shows that ESECs have a 

higher discriminative power than SECs. Because of this 
ESEC are necessarily also more robust against noise during 
action observation. 

Evidently, there are some actions that can only be 
distinguished when considering dynamics, too (e.g. push 
versus hit). Those are not covered by the (E)SEC frameworks. 
In our older works [8,9] we had argued for a level-based 
semantic understanding of manipulations, where (E)SECs 
represent one certain symbolic level of understanding which 

-symbolic layers (such as 
differentiating actions on the grounds of their different 
movement characteristics). ESECs help this process, because 

 having more transitions than SECs  they are breaking down 
an action into more (symbolic) components. Suppose we want 
to put a cup on the top of a box.  In the original SEC, the 
relation between cup and box is initially -
later . With an ESEC representation there are 

-grained and 
this should allow defining and joining trajectories for each 
phase. As the ESEC framework describes the sequence of 
required object relations based on quantitatively measured 
object (and manipulator) positions, it is possible to use the 
entries in the columns of the ESECs to provide quantitative 
start and end points for the manipulator trajectory. We had 
designed such a procedure using the older SEC framework 
coupled to DMPs [27] for trajectory generation in [28, 29] and 
we can now do the same in an improved way using the finer-
grained representation of ESECs instead of the SECs. 
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Chapter 3

Manipulation Actions Prediction Algorithm:
Basic Idea and Implementation
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Chapter 3. Manipulation Actions Prediction Algorithm: Basic Idea and Implementation

In the previous chapter, we focused mainly on the representation and classification of manipulation
actions using the ESEC framework.
This chapter includes another original paper highlighting another important application of the
ESEC framework, early recognition or prediction of manipulations. Normally, automatic systems can
only recognize actions only when it is finished, while here we provide an approach to predict
actions, helping to yield to a system that provides the type of action well before an action has
completed. This feature can be noticeably effective in interactions between humans and robots.
This paper includes the following:

• Categorization of manipulation actions according to their inherent ontology as well as their
effects on the scene.

• Formulization of the prediction concept and its implementation on ESEC matrices.

• Definition of the prediction quantification measures for the analysis of theoretical and real
data.

• Quantification against baseline method and a comparison between ESEC framework and
other existing approaches for prediction of manipulations.

• Methods for human robot interaction to show that faster action prediction leads to a benefit
in cooperation. To this end, two samples of human-robot interactions are chosen and
implemented on a KUKA LWR robotic-arm.
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Prediction of Manipulation Action Classes Using Semantic Spatial
Reasoning

Fatemeh Ziaeetabar1, Tomas Kulvicius1, Minija Tamosiunaite1,2 and Florentin Wörgötter1

Abstract— Human-robot interaction strongly benefits from
fast, predictive action recognition. For us this is relatively easy
but difficult for a robot. To address this problem, here we
present a novel prediction algorithm for manipulation action
classes in video sequences. Manipulations are first represented
using the Enriched Semantic Event Chain (ESEC) framework.
This creates a temporal sequence of static and dynamic spatial
relations between the objects that take part in the manipulation
by which an action can be quickly recognized. We measured
performance on 32 ideal as well as real manipulations and
compared our method also against a state of the art trajectory-
based HMM method for action recognition. We observe that
manipulations can be correctly predicted after only (on average)
45% of action’s total time and that we are almost twice as
fast as the HMM-based method. Finally, we demonstrate the
advantage of this framework in a simple robot demonstration
comparing two different approaches.

I. INTRODUCTION

In most cases, action recognition is considered a classifica-
tion problem, mapping image sequences to previously known
actions. In general, here the question arises “how fast” can
an action be recognized. Many systems will only respond
after an action has finished, while here we are concerned
with action prediction, leading to a system that provides
recognition output before an action has completed. This is
also the way humans interpret actions performed by others:
we continuously perceive and update our belief about an
ongoing action not waiting for its end.

Many applications exist, where action (or event) prediction
is beneficial in autonomous navigation, surveillance, health
care, and others. Two examples can make this clear: 1) driver
action prediction to prevent accidents or 2) prediction of a
handicapped person’s looming fall and a proactive help by a
robot. While in these two examples post-hoc recognition will
usually not help, action prediction may prevent problems.

For a robot, the capability of on-line prediction (and
behavioral adaptation) in a human-robot interaction scenario
is a difficult and challenging problem, because human actions
are complex, performed in variable ways [1], and decisions
must be made based on incomplete action executions [2].
In this work, we are interested in manipulation action-class

∗The research leading to these results has received funding from the
DFG grant WO 388/13-1 and the EU Horizon 2020 research and innovation
program under grant agreement No. 680431, ReconCell.

1Fatemeh Ziaeetabar, Tomas Kulvicius, Minija Tamosiunaite
and Florentin Wörgötter are with III. Physics Institute, University
of Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
fziaeetabar@gwdg.de

2Minija Tamosiunaite is also with Faculty of Informatics, Vytautas
Magnus University, Lithuania.

prediction. If one wants to analyse (and/or predict) the dy-
namics of an action, fully continuous action information —
for example hand trajectories — should be used. For action-
class prediction, this is not needed. Instead, here we focus
on very simple hand-object and object-object relations, like
“getting closer”, “moving together”, etc. The strength of this
approach is that we only have to use a very small set of such
relations to achieve high predictive power. To achieve this,
in the current study we extend our recently introduced action
classification framework based on Enriched Semantic Event
Chains (ESECs) [3] to implement temporal action prediction.
Each action is distinguished and classified semantically “as
fast as possible” according to the differences in static and
dynamic spatial information between the involved objects.
We show with different experiments that this creates a new
and robust framework for real time action prediction.

II. RELATED WORK

There has been a great deal of research in the field of
human activity recognition from simple human actions in
constrained situations [4][5] to complex actions in cluttered
scenes or in realistic videos [6][7][8][9]. Also there are
recent works in early event detection that have attempted to
expand human action recognition towards action prediction
[10][11][12][13][14]. These approaches try to predict actions
from incomplete video data.

Ryoo [10] proposed a method which explains each activity
as an integral histogram of spatio-temporal features. Their
recognition methodology named dynamic bag-of-words con-
siders sequential nature of human activities and uses those
for prediction of ongoing activities.

Cao et al. [11] proposed an optimization approach and for-
mulated the problem of action prediction as a posterior max-
imization problem. They randomly removed some frames in
a video to simulate missing data and then performed feature
reconstruction based on previous frames for creating new
frames. After that, the accuracy of the newly created features
are computed by comparing them to those in the actual next
frames.

Kong et al. in [2] proposed a structured SVM learning
method to simultaneously consider both local and global
temporal dynamics of human actions for action prediction.
In another study [12] it had been proposed to use a deep
sequential context network (DeepSCN), which first elegantly
gains sequential context information from full videos and
then uses the resulting discriminative power to classify partial
videos.
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Fig. 1. Flow diagram of the prediction algorithm including human-robot interaction.

The importance of action prediction has been demon-
strated recently in several robotic applications [13][14]. For
example [13] anticipates future activities from RGB-D data
by considering human-object interaction. This method has
been embedded into a real robot system to interact with
a human in regular daily tasks. It considers each possible
future activity using an anticipatory temporal conditional
random field (ATCRF) that models the rich spatial-temporal
relations through object affordances and then considers each
ATCRF as a particle, and represents the distribution over
the potential future activities using a set of particles. In
our approach, we do not use particle filters; instead we
represent each action as a matrix of spatial relations. Wang
et al. [14] used probabilistic modelling of human movements
for intention inference and action prediction. They applied
an Intention-Driven Dynamics Model (IDDM) as a latent
variable model for inferring unknown human intentions and
performed predictions according to that.

In another work about prediction in human-robot interac-
tion, a joint assembly task is specified and provided by a
finite state machine representation. Here the robot learns to
predict the next action of the human by discovering repeated
patterns of low level actions like grasping an object. By
assuming that repeated low level actions also imply repeated
higher level sub-tasks, the robot learns to predict human
actions [10]. A more sophisticated state/action model is
described in [11], who applied an adaptive Markov model
to assign confidence regarding predictions of the human
partners’ actions.

Our focus in the current work is on visual prediction
of manipulations, which are actions performed by hands.
This is important for industrial as well as service robotics
and also plays an essential role in human-robot interaction
(HRI). Being able to efficiently and early predict, a robot

will have more time to act accordingly and this way provide
better adaptation in responding to human actions. Previous
works mostly discuss about recognition of manipulations
[3][15][16]. Recently Fermüller et al. have developed a re-
current neural network based method for manipulation action
prediction [17]. They depicted the hand movements before
and after contact with the objects during the preparation and
execution of actions and applied a recurrent neural network
(RNN) based method while patches around the hand were
their input. They additionally used the estimations of forces
on finger tips during the different manipulations for having
more accurate predictions.

A central problem that can be found in all of the above
approaches is that action recognition (and prediction) heav-
ily relies on time-continuous information (e.g. trajectories,
movie sequences, etc.). This type of information, however,
is highly variable. It is interesting to note that — indeed
— we (humans) have a hard time to describe an action in
words using this level of detailed-ness. Instead, we prefer
using relational descriptions like “X moves toward Y”, or “X
is on top of Y”. We may add “... is moved fast...” or similar
specifiers but we usually cannot express in words detailed
information on the actual speed, etc. Therefore, in this study
we decided to shy away from continuous descriptions, too,
trying to obtain leverage from a relational representation as
discussed in the older works [18] [19] [20], which makes
this system robust against individual spatial and temporal
variations in the actual action execution. We will continue to
discuss these issues in the Conclusion section, arguing that
time-continuous information (dynamics) may not play much
of a role for action-class prediction.

III. OVERVIEW OF OUR METHOD

First we will explain the whole process and then its
components. A workflow diagram of action prediction and
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execution is shown in Fig. 1. For each video frame, RGB
and depth images are used to generate point clouds. Next, a
segmentation algorithm based on color and depth information
is used for preprocessing the input to extract and track objects
and the hand in a scene using algorithms presented in [21]
and [22]. Since segmentation and tracking is not the main
focus of the current work, we will not discuss those methods
in more detail.

Note that for action recognition, the ESEC framework
used here [3] does not require any object and movement
recognition. It only considers the spatial relations between
objects. Since objects have different sizes and shapes we
need to model them as simpler structures for judging their
spatial relations. For this we use “Axis Aligned Bounding
Boxes” (AABB).

Static and Dynamic spatial relations (SSR and DSR)
are then computed according to the relative positions of
these bounding boxes (for details see section IV-B). After
that we define the Enriched Semantic Event Chain (ESEC)
framework in section IV-C. An ESEC represents an action
based on the relative spatial relations between the objects
in a scene. Whenever a spatial relation changes, the corre-
sponding change-event is stored in a transition matrix, the
“ESEC”.

The temporal action prediction is then formalized in
section IV-E. The prediction algorithm is a step by step
procedure that utilizes the ESEC matrices in order to dis-
criminate actions according to their event chains.

Results are then analyzed or, in case of a robotic experi-
ment, used to trigger the robot action.

For quantifications, we used the MANIAC data set [20] 1.
This data set consists of the following eight manipulation
actions: push, put, take, stir, cut, chop, hide and uncover.
Each action type is performed in 15 different versions by
five human actors. Each version has a differently configured
scene with different objects and poses.

Fig. 2. (a) Static Spatial Relations: (a1) Above/Below, (a2) Right/Left, (a3)
Front/Behind, (a4) Around. (b) Dynamic Spatial Relations: (b1) Moving
Together, (b2) Halting Together, (b3) Fixed-Moving Together, (b4) Getting
Close, (b5) Moving Apart, (b6) Stable.

1Publicly available at: http://www.dpi.physik.uni-goettingen.de/cns/
index.php?page=maniac-data set.

Fig. 3. Description of “Put on Top” action in SEC and ESEC frameworks.
H: Hand, M: Main Object, P: Primary Object and S: Secondary Object, U:
Undefined, T: Touch, N: Not-touch, Ab: Above, To: Top, Ar: Around, S:
Stable, GC: Getting Close, MA: Moving Apart, MT: Moving Together, HT:
Halting Together, O and Q: Not having a specific static and dynamic spatial
relations, respectively. Image frames (top): Frame segmentation of a “Put
on Top” video. Blue object (3) is the main object (M), table is the primary
object (P) and yellow object (4) is the secondary object (S). Event matrix
(bottom): white cells of the table - SEC matrix; green cells - ESEC Static
relation matrix; blue cells - ESEC dynamic spatial relation matrix; yellow
cells - show the number of events (when at least one static or dynamic
spatial relation is changed in consecutive frames). The ESEC framework
uses the whole table, while the SEC framework only includes the white
part.

IV. DETAILED METHODS

A. Object Modeling

After segmentation, each object in a scene is represented
as a point cloud that includes a set of points in a three
dimensional coordinate system. Our scene at frame f is
defined as a set of point clouds: λf1 , ..., λ

f
N , where N is

the number of objects and λi represents the point cloud of
object i, which is tracked throughout the action-sequence
[3]. We approximate each point cloud as an Axis Aligned
Bounding Box (AABB) to allow for efficient detection of
spatial relations. An AABB is a model that surrounds a point
cloud by a box such that its sides are parallel to the directions
of the axes of the coordinate system.

B. Extraction of Spatial Relations

In this work, three types of spatial relations have been
considered: 1) “Touching” (T) and “Non-touching” (N),
2) Static Spatial Relations (SSR) and 3) Dynamic Spatial
Relations (DSR) [3]. T and N relations between two point
clouds of objects are determined by applying the “kd-tree
algorithm” and evaluating occurrence (or non-occurrence) of
collision between them [23].
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Both static and dynamic spatial relations between two
objects can be extracted simultaneously by evaluating the
relations between AABBs of the objects as described in [3].
In the following, we will describe SSR and DSR in more
detail.

1) Static Spatial Relations: Static spatial relations rely
on the relative position of two objects in space. They do not
need any data from previous frames and determine relations
only at the current time moment (frame).

We define the following types of SSRs: “Above” (Ab),
“Below” (Be), “Right” (R), “Left” (L), “Front” (F),
“Back”(Ba) and “Between” (Bw). Right, Left, Front and
Back are merged into “Around” (AR) or “Not-Around”
(N-Ar) if one object is surrounded by the other or not,
respectively. Moreover, “Above”, “Below” and “Around”
relations in combination with “Touching” are converted to
“Top” (To), “Bottom” (Bo) and “Touching Around” (ArT),
respectively, which correspond to the same cases but now
with physical contact.

If two objects are far from each other or they have not
any of the above mentioned relations, their static relation is
assumed as Null (O). This leads to a set of 12 static relations:
SSR = {Ab, Be, To, Bo, R, L, F, Ba, Ar, ArT, N-Ar, O}.

Fig. 2 (a1-a4) represents static spatial relations between
two objects in terms of cubes.

2) Dynamic Spatial Relations: Dynamic spatial relations
define the spatial relation of two objects during movement
of either or both of them. Here, different from SSR, some
information from the previous K frames (e.g., distance
related parameters) between each pair of objects is necessary.

The parameter K is related to the frame-rate of the movie,
where we determine K as frame number for covering 0.5
seconds, which is a good estimate for the time that a human
takes to change the relations between objects. Therefore, if
the video frame rate is µ frames per second, then K = 0.5µ.

DSRs consist of the following relations: “Moving To-
gether” (MT), “Halting Together” (HT), “Fixed-Moving
Together” (FMT), “Getting Close” (GC), “Moving Apart”
(MA) and “Stable” (S). Dynamic spatial relations between
two objects in term of cubes are shown in Fig. 2 (b1-b6).
MT, HT and FMT denote situations when two objects are
touching each other while both of them are moving together
(MT), are constant (HT), or one object (upper or lower)is
fixed and does not move, while the other one is moving on
or across it (FMT). Case S denotes that any distance-change
between objects is less than a defined threshold (here, we
have considered this threshold as ξ = 1 cm) and remains
constant during the action sequence. The other cases are clear
from looking at Fig. 2 (b). In addition, Q is used to denote
a dynamic relation between two objects if their distance is
more than the defined threshold ξ or if they have not any of
the above defined dynamic relations.

Thus, we have a set of seven dynamic relations:
DSR = {MT, HT, FMT, GC, MA, S, Q}.

TABLE I
DEFINITION OF THE FUNDAMENTAL OBJECTS DURING A MANIPULATION

ACTION [3].

Object Definition Relation
Hand The object that Not touching anything at

performs the action. the beginning and at the end of
the action. It touches at least
one object during an action.

Main The object which Not touching the hand at
is directly in contact the beginning and at the end of

with the hand. the action. It touches the hand
at least once during an action.

Primary The object from Initially touches the main
which the main object object. Changes its relation to

separates. not touching during an action.
Secondary The object to Initially does not touch the

which the main object main object. Changes its
joins. relation to touching during an

action.

C. Action Representation by ESEC

The ESEC framework is inspired by the original Semantic
Event Chain (SEC) framework [18]. The original SECs con-
sider only touching (T) and not-touching (N) events between
all pairs of objects along a manipulation action and focus on
the changes of these relations (see white rows of the matrix
in Fig. 3). Here (U) annotates the situation that the role
of the respective fundamental object is not yet known. The
definition of object roles is given in Table I. (Note, objects
obtain their role through the course of the action!). We have
supposed that the hand only touches one object during a
manipulation, therefore there is only one main object and
the primary and secondary objects are considered unique,
as well. The extracted sequences of relational changes had
been used for recognition of manipulation actions. In the
Enriched SEC (ESEC) framework, in addition to touching
and not-touching relations, sequences of static and dynamic
relations described in Section IV-B are analyzed (see green
and blue rows of the matrix in Fig. 3).

It is important to note that one does not have to extract
all relations between each pair of objects in a scene. It
is only necessary to consider the so-called “fundamental
objects”, which are those that have an essential role in the
manipulation for determining an ESEC matrix. This has been
discussed in [3] and is an important step forward for reducing
action-analysis complexity. This way, we naturally exclude
distractor objects without any role in our manipulation and
reduce computations.

D. Manipulation Action Ontology [20]

Manipulations can be divided into three main groups
(Fig. 4 (a)): “Hand-Only Actions”, “Separation Actions”
and “Release Determined Actions”. Hand-Only Actions are
actions where the hand alone acts on a target object (or
first grasps a tool and then the tool acts on the target
object). According to their goals and effects on the scene
they can be subdivided into “Rearranging” (like stirring)
and “Destroying” (like cutting) actions. Separation Actions
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Fig. 4. (a) Categorization of 32 manipulation actions. (b) Prediction tree
of manipulation actions according to ESEC framework.
Tree levels (1 to 7): show the ESECs column numbers that their correspond-
ing actions become predictable in that column. All: mentions to the full list
of manipulation actions. Others: mentions to the list of manipulations which
are not yet distinguishable.

denote actions where the hand manipulates one object to
either destroy it or remove it from another object. This group
is also divided into two cases: “Break” (ripping-off) and
“Take-Down” (taking down one object from another one). Fi-
nally, there are so-called Release Determined Actions, which
include all actions where the hand manipulates an object
and combines it with another object. This type of actions is
subdivided into “Hide” (covering an object with another one)
and “Construct” (building a tower) [20]. According to this
subdivision, in this work, we have analyzed and categorized
32 manipulation actions as listed in Fig. 4 (a).

E. Action Prediction and Quantification Measures

We define these 32 actions as α1, α2, ..., α32. Each action
in the ESEC framework has its own matrix with a specific
total number of columns Ni (1 ≤ i ≤ 32). For the theoretical
analysis the event chains for all 32 actions were manually
created in an ideal and noise free way. Furthermore, αk

i

denotes the k-th column of action αi. Due to the predefined
set of fundamental objects, the number of rows is 18 and is
the same for all actions.

Prediction occurs via comparison of the observed spatio-
temporal relation sequence with the matrices in the action
ontology according to the maximum similarity which is

measured based on Longest Common Subsequence method
(LCS)[20]. The distinct structure of the ESECs allows for
temporal action prediction, which can be shown as a tree
diagram (Fig. 4 (b)). This will be discussed in the Results
section.

We call the column number in a SEC or ESEC at which
the prediction of an action has occurred the “Prediction Event
Column”. This parameter for action αi is displayed as E(αi).
We define a prediction power measure for the event based
prediction as below (in percent):

PE(αi) =
(
1− E(αi)

Ni

)
∗ 100%. (1)

Hence, here the completion of an action corresponds to 1. A
prediction power of 0% would then correspond to the case
where action recognition only happens at the very end of the
action while 100% would refer to the action’s start.

Due to noise that exists in real data (e.g., due to inaccu-
racies in segmentation, detection of object collisions, etc.),
predictions using real data will often not correspond exactly
to theoretical predictions. Thus, we define another prediction
power measure for the “frame based” evaluation. In this case,
the spatial relations of the objects involved are computed for
each video frame. The frame, at which the prediction occurs,
is called “Prediction Frame”.This parameter for action αi is
displayed as F (αi). Similarly, prediction power for the frame
based prediction is defined as below:

PF (αi) =
(
1− F (αi)

L(αi)

)
∗ 100%, (2)

where L(αi) = lastframe(αi) − firstframe(αi), is the
total number of frames during execution of action αi and
denotes the length of the action. We assumed as the first
frame the one where the hand appears in the scene and the
frame where the hand leaves the scene is the last frame.

F. Method for Quantification against Baseline Method

To assess our method against the state of the art, we
compared our results with the performance of a state of the
art HMM-based baseline from [23] applied on the MANIAC
data set. For a fair comparison we selected this method,
because—like ours—it does not use object information, but,
instead, relies on hand trajectories.

We use the hand gesture recognition method from [22] for
detection of the hand motions and then extend recognition
to prediction. In [23] detection and segmentation of a hand
takes place using 3D depth maps and color information.
Then the hand trajectory is quantized based on an orientation
feature, which provides the direction of motion between con-
secutive trajectory points of the hand. This extracted feature
is clustered to generate discrete vectors, which are used as
input to the HMMs recognizer and then the gesture path is
classified using these discrete vectors. Evaluation, Decoding
and Training as the main problems of an HMM model are
solved by using Forward or Backward algorithm, Viterbi
algorithm and the Baum-Welch algorithm respectively as in
[23]. We adopted the same procedures here, too.
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Fig. 5. SEC vs. ESEC in theoretical prediction analysis (PE(αi)) on
MANIAC data set actions.

G. Methods for Human-Robot Interaction Experiments

The goal of this part of the work is to show that earlier
action prediction leads to a benefit in cooperation. To this
end, we have chosen two quite simple, but illustrative cases
for human-robot interaction: 1) push blocks together and 2)
put one block on top of the other block. In this study, we
are not interested in complex computer vision and, therefore,
we kept the scenario minimal. It just consists of a table
with three coloured blocks as shown in Fig. 1. The human
performs an action (push together or put on top); the robot
observes this and is supposed to engage in the same action
as soon as possible. Experiments were done comparing both
SEC and ESEC approaches. For this, we used a KUKA
LWR robotic-arm (see Fig. 1; in our experiments only one
of the arms was used) and an ASUS-Xtion RGB-D sensor
for getting the input data for the action prediction system.
We used the Library of Manipulation Actions proposed by
[20] in order to generate motions and execute actions by the
robot.

V. RESULTS

We have compared the performance of action prediction
using the ESEC against SEC and HMM frameworks on three
different cases: 1) theoretical prediction of actions, 2) action
prediction using the MANIAC data set, and 3) real robot
experiments.

A. Prediction of Manipulation Actions

1) Theoretical Analysis of All Actions: For this com-
parison, we manually generated 32 ideal matrices for the
representation of manipulation actions (see Fig. 4 (a), small
print at the bottom) based on ESEC sequences, as explained
above.

First we show how action prediction evolves over time.
For this we build a decision tree (Fig. 4 (b)) as follows: At
the start of an action, all first columns of the 32 manipu-
lations α1

i , (1 ≤ i ≤ 32) are compared. Then, all actions
with the same first column are categorized into the same
set (S1, ..., Sn). Afterwards, the members of each set are
compared according to their second column α2

i . Again, those
actions with the same second column are categorized into
the same set and this process is continued until all actions
are categorized into a single-member set where there are no
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Fig. 6. Results of the comparison of action prediction using SEC and
ESEC as well as the HMM methods on the MANIAC actions. (a) Event-
based prediction (PE(αi)). (b) Frame-based prediction (PF (αi)). The error
bars show standard deviations.

more identical columns with any of the other actions or all
the columns of an action have been analysed.

The resulting tree uses the same color code as in Fig. 4 (a)
and shows that maximally seven columns in an ESEC are
needed until all actions are recognized. Note, the most com-
plex action (“pouring”) has in total 16 columns. Columns 1,
3, and 6 have no added discriminative value. Four actions are
found already in column 2, where the bulk is discriminated
in columns 4 and 5. Different action types (color code) are
distributed along the tree and no type clustering is observed.

To quantify this better, we used the Prediction Event
Column for each action and computed the prediction power
PE(αi) for all 32 actions for both SEC and ESEC. We ob-
tained an average prediction power of 18.10% (SD=16.3%)
when using the SEC framework and 52.68% (SD=13.2%)
for ESEC. This means that we can predict actions using
ESECs much earlier (before half of the action has been
completed) than when using SECs. Moreover, all of those 32
manipulation actions were recognized correctly when using
ESEC, whereas only 20 actions out of 32 were recognized
correctly when using SEC.

2) Theoretical Analysis of MANIAC-Type Actions: A
comparison of the theoretical prediction power between SEC

TABLE II
COMPARISON OF PREDICTION POWER FOR SEC AND ESEC OBTAINED

FROM THEORETICAL ANALYSIS (MANIAC-TYPE ACTIONS), AND SEC,
ESEC AND HMM ON MANIAC DATA SET. AVERAGE AND STANDARD

DEVIATION IS SHOWN.

Theory MANIAC
PE PE PF

SEC 23.1%±21.2% 24.7%±19.1% 32.3±19.3%
ESEC 59.8%±15.5% 60.7±15.5% 51.3%±17.9%
HMM n/a n/a 21.6%±18.5%
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and ESEC for only the actions contained in the MANIAC
data set is shown in Fig. 5. MANIAC-type action had for this
been re-created in a noise-free manner. The average of the
theoretical (best possible) prediction power for MANIAC-
type actions is 23.1% (SD=21.2%) for SEC and 59.8%
(SD=15.5%) for ESEC.

B. Action Prediction on MANIAC Data Set

To see how well theory matches to reality, we performed
the same analysis now using the real MANIAC movies [20].
We have randomly selected three versions of each of the
existing eight actions, thus, here we used 24 actions in total.
We have calculated and compared both prediction power
measures, i.e., “Event based” (PE(αi)) and “Frame based”
(PF (αi)).

Results for the comparisons between prediction powers
of MANIAC manipulations between SEC and ESEC frame-
works and an HMM-based method as a baseline method
are presented in Fig. 6. Here, panel (a) shows Event-based
prediction and panel (b) denotes frame-based prediction.
Values in Fig. 6 (a) slightly differ from Fig. 5 because of
some inaccuracies in computations of spatial relations and
presence of noise in real data. In most of the cases, the
moments when an ESEC recognizes an action are earlier
and they can, thus, predict faster than SECs and the HMM-
based method. This is confirmed by Table II, which shows
the average prediction power for all eight manipulations
of the MANIAC data set for both event- and frame-based
evaluations. ESECs are on average 36% better than SECs
in event-based and 19% better in frame-based real data
analysis. Moreover, ESECs are totally 29.7% better than
HMM-based method in frame-based prediction of MANIAC
manipulation actions. Furthermore, the ESEC method is of
lower algorithmic complexity than the HMM-based one.

In general, comparing all panels show that all different
(theoretical and real-data) analyses lead to consistent results.

C. Action Prediction in Robot Experiments

One of the most promising applications of the proposed
prediction method concerns human-robot or a robot-robot
interaction. By using our prediction method, a robot can
anticipate a human’s or another robot’s action before the
action has ended and engage in collaboration as soon as
the action is predicted. To demonstrate this, as explained
above we designed and performed two robot experiments:
“Push together” and “Put on top”. Here, the task for the
robot was to observe the human action and then engage in a
collaboration by performing the same action as soon as the
action is recognized.

Using ESECs, a put on top action is predicted when
the hand and the main object (green block) are getting
close to the secondary object (blue block), whereas with
SECs, this action is predicted only after the hand places
the main object (green block) on the secondary object (blue
block) and releases it (an un-touch event is detected; see
also supplementary video). For the push together action, the
ESEC predicts the action at the moment when the hand

starts moving together with the main object (green block),
whereas when using a SEC, the action is predicted only after
the hand pushes the main object (green block) toward the
secondary object (blue block) and releases the main object.
For these two manipulation actions, when using SECs a
correct prediction is made very much at the end of these
actions (prediction power of 15.4% for push together action
and 9.1% for put on top action), whereas when using
ESECs, predictions can be made much earlier (45.5% and
23.8%, respectively).

We show selected frames from these robot experiments in
Fig. 7, where we can observe differences between prediction
times (the frame when the robot predicted the action and
started executing that action) for the push together and put
on top actions when using the ESEC and SEC approaches. In
case of the push together action, using SECs, the robot starts
approaching the red block when the hand leaves the scene,
whereas when using ESECs the robot has already completed
the push together action and is moving back to the initial
position (see elliptic marks on the frames). Similarly, in case
of predicting a put on top action using SECs, the robot starts
moving towards the red object when the action is already
finished by the person and the hand leaves the scene, whereas
in case of ESECs, the robot has by then already grasped
the red object and lifted it up. Thus, as expected from the
other analyses, in real robot experiments ESECs performed
faster than SECs with a 30.1% and 14.7% improvement with
ESEC in comparison to SEC for push together and put on
top actions, respectively.

VI. CONCLUSION

In this paper, we proposed an approach to manipulation
action prediction based on the ESEC framework and com-
pared it with SEC and an ”object-free” HMM-based method.
We showed that on average the ESEC framework outper-
forms both SEC and HMM-based methods. One possible
strength of ESEC (and SEC) is that is does not rely on
time-continuous information, which—in all likelihood—is
far more prone to variability (and noise) than the quasi-
symbolic representations used by ESEC (and SEC). Indeed,
when watching some of the examples in the MANIAC
data set one sees that time continuous information will not
improve prediction much, because the only aspect added by
this is the action dynamics. Dynamics do not influence the
action class but will play a role in the way how an action
is executed (e.g. fast versus slow, etc.). This, however, is
irrelevant for manipulation action-class prediction. Further-
more, our prediction approach as opposed to [12][13][14]
does not need any action trajectories, shape features or
action reconstruction and performs prediction only by using
semantic representation and spatial relations in a simple way.
This has low complexity, can perform in real time scenarios
and is strongly linked to the way human language describes
an action.
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Chapter 4

Recognition and Prediction of Manipulation
Actions: Extended Idea, Complete Implemen-
tation and Comparison

The previous two chapters discussed the basis of our ESEC framework (object modeling, spatial
reasoning, transition matrices, quantification measures and etc), as well as its application in
classification and prediction of manipulation actions. We further compared ESEC with SEC and
another hand trajectory pattern recognition algorithm and concluded our discussion with reference
to the human-robot interaction experiment.
This chapter describes an enrichment of our previously introduced framework leading to a lower
cost and higher accuracy and efficiency. We further compare the ESEC framework with other
existing methods on real data .
This chapter includes an original manuscript consisting of the following:

• Noise detection and reduction algorithm for the ESEC manipulation action matrices accord-
ing to a Probabilistic Context Free Grammar.

• Definition of the new fundamental object roles which leads to a higher accuracy in action
representation, allowing us to differentiate between different actions, previously considered
as identical.

• Definition of the new similarity measurement algorithm that significantly reduces the time
and complexity of the calculations. This attribute considerably enhances the performance of
manipulation action prediction.

• Comparison against a ”Hidden Markov Model” (HMM) for hand motion recognition

– Enhancement of hand trajectories with ”Doglas Peucker” and ”Dynamic Time Warping”
(DTW) pre-processing algorithms.
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Implementation and Comparison

– Extension of the recognition concept to prediction.

• A comprehensive comparison between ESEC and SEC and the HMM based method on two
publicly available point cloud manipulation action data-sets.
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• We present a new algorithm for a prediction of manipulation action classes.
• Actions are represented by a matrix called Enriched Semantic Event Chain (ESEC).
• ESEC describes changing static and dynamic spatial relations between the objects.
• Actions can be correctly predicted after (on average) 45% of their execution time.
• Proposed approach outperforms a standard HMM-based method used for comparison.
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a b s t r a c t

Human activity understanding has attracted much attention in recent years, because it plays a key role
in a wide range of applications such as human–computer interfaces, visual surveillance, video indexing,
intelligent humanoids robots, ambient intelligence and more. Activity understanding strongly benefits
from fast, predictive action recognition. Here we present a new prediction algorithm for manipulation
action classes in natural scenes. Manipulations are first represented by their temporal sequence of
changing static and dynamic spatial relations between the objects that take part in the manipulation.
This creates a transition matrix, called ‘‘Enriched Semantic Event Chain (ESEC)’’. We use these ESECs to
classify and predict a large set of manipulations. We find that manipulations can be correctly predicted
after only (on average) 45% of their total execution time and that we are almost twice as fast as a standard
HMM-based method used for comparison.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Many methods have recently been developed for action recog-
nition and many benchmark data sets have been prepared for
measuring the performance of these methods [1–5]. Most of the
computational approaches use segmented video as input and pro-
duce candidate action labels as output. These approaches usually
consider action recognition as a classification issue.

The majority of the existing methods for human activity recog-
nition focus on low-level spatio-temporal features, which can be
brittle, for example due to problems of intra class variability arising
from different humans performing the same action [6]. We, on the
other hand, will not have problems recognizing actions performed
by different people. Hence, evidently, humans are not troubled by
the variability of low-level features present in movement trajecto-
ries, objects, and scene context. Approaches that use higher-level
features [7,8] also seem to be less affected by this.

∗ Corresponding author.
E-mail address: worgott@physik3.gwdg.de (F. Wörgötter).

In addition to recognition and classification, many applications
exist in autonomous navigation, surveillance, health care, and oth-
ers, where action (or event) prediction is beneficial. Two examples
can make this clear: (1) driver action prediction to prevent ac-
cidents or (2) prediction of a handicapped person’s looming fall
and proactive support by a robot. While in these two examples
post-hoc recognition will usually not help, action prediction may
prevent accidents.

For prediction, variability [9] and incompleteness of the action
execution [10] amplify the known problems in action recognition.
After all, prediction is just ‘‘recognition earlier in time’’.

In this study we focus on visual recognition and prediction of
manipulation actions, which are important for industrial as well as
service robotics and also play an essential role in Human–Robot In-
teraction (HRI). To achieve this, we develop the so-called Enriched
Semantic Event Chain (ESEC) framework [11], which is a much
extended version of the Semantic Event Chain (SEC) [12]. ESECs
use different static relations such as ‘‘around, above, below, inside’’,
etc., and object movements like ‘‘getting close, moving apart’’, etc.,

https://doi.org/10.1016/j.robot.2018.10.005
0921-8890/© 2018 Elsevier B.V. All rights reserved.
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without specifying the fine details of object type, placement and
motion. Hence, the framework remains symbolic and uses a repre-
sentation, which alsowemight usewhen speaking about an action.
Thus, ESECs are transition matrices, which symbolically encode
the relational static and dynamic changes between (unspecified)
objects.

The here presented framework allows comparing the develop-
ment of the ESECs of different actions along the time-line, leading
to a system that provides action-class recognition output before an
action has completed. This is also thewayhumans interpret actions
performed by others: we continuously perceive and update our
belief about an ongoing action not waiting for its end.

After discussing the state of the art, in the following we will
introduce and quantify the performance of the ESEC framework
also in comparison to another predictionmethod that relies on the
often-used Hidden Markov Model (HMM) approach. The symbolic
character of ESECs allows in addition to define a Context Free
Grammar for noise reduction further improving our approach.

2. Related works

In this section, we will review studies related to our work
covering the following aspects: (a) Spatial Reasoning, (b) Human
Activity Recognition and Prediction, (c) Semantic Representation
and Recognition of Manipulation Actions, and (d) Prediction of
Manipulation Actions.

(a) Spatial Reasoning: In this study we are specifically con-
cerned with the analysis of relations between objects. Apart from
the here investigated problem of manipulation understanding,
this topic is also central to fields dealing with spatial representa-
tions and spatial reasoning (for example in: robot planning and
navigation [13], interpreting visual inputs [14], computer aided
design [15], cognitive science, geographic information systems
(GIS) [16], natural language understanding [17], and several oth-
ers). All of these cases need to represent and reason about spatial
aspects of the world.

In robotics, one of the key aspects which is needed to under-
stand commands such as ‘‘go in front of the closet door’’, is the
ability to reason about spatial directions and relations in a quasi-
humanmanner. In otherwords, the robot needs to be able to reason
about an object with respect to another object in a given reference
frame [18]. Therefore, finding spatial relations between objects in
a scene is fundamental for the execution of tasks by robots.

Much of the above cited research also uses spatial relations
in combination with a time-concept to structure spatio-temporal
features, which can lead to semantic (relational) representation
of the world to be used in the different applications. The next
subsection shows that such (usually low-level) spatio-temporal
features are indeed very helpful for addressing complex tasks.

(b) Human Activity Recognition and Prediction: One field
which is strongly forced to fall back on spatio-temporal represen-
tations is human activity recognition and prediction. This could
be simple human actions in constrained situations [19–22] up to
complex actions in cluttered scenes or in realistic videos [23–26].
Also, there are recent works in early event detection that have
attempted to expand human action recognition towards action
prediction [27–31]. These approaches try to predict actions from
incomplete video data.

Ryoo [27] proposed a method which explains each activity as
an integral histogram of spatio-temporal features. Their recogni-
tion methodology, named dynamic bag-of-words, considers the
sequential nature of human activities and uses those for prediction
of ongoing activities.

Cao et al. [28] proposed an optimization approach and formu-
lated the problem of action prediction as a posterior maximiza-
tion problem. They randomly removed some frames in a video to

simulate missing data and then performed feature reconstruction
based on previous frames for re-creating the missing frames. After
that, the accuracy of the newly created features are computed by
comparing them to those in the actual next frames.

Kong et al. in [10] proposed a structured support vector ma-
chine (SVM) learning method to simultaneously consider both,
local and global, temporal dynamics of human actions for action
prediction. In another study [29] it had been proposed to use a deep
sequential context network (DeepSCN), which first elegantly gains
sequential context information from full videos and then uses the
resulting discriminative power to classify partial videos.

The importance of action prediction has been demonstrated re-
cently in several robotic applications [30,31]. For example [30] an-
ticipates future activities from RGB-D data by considering human–
object interaction. This method has been tested in a real robot
system employed to interact with a human in regular daily tasks.
It considers each possible future activity using an anticipatory
temporal conditional random field (ATCRF) that models the rich
spatial–temporal relations through object affordances and then
considers each ATCRF as a particle, and represents the distribution
over the potential future activities using a set of particles. In our
approach, we do not use particle filters; instead we represent each
action as a matrix of spatial relations. Wang et al. [31] used prob-
abilistic modeling of human movements for intention inference
and action prediction. They applied an Intention-Driven Dynamics
Model (IDDM) as a latent variable model for inferring unknown
human intentions and performed predictions according to that.

In another work about prediction for human–robot interaction,
a joint assembly task is specified and provided by a finite state
machine representation. Here the robot learns to predict the next
action of the human by discovering repeated patterns of low level
actions like grasping an object. By assuming that repeated low level
actions also imply repeated higher level sub-tasks, the robot learns
to predict human actions [27]. This low-to-high level transfer may,
however, often not really hold. A more sophisticated state/action
model is described in [28], who applied an adaptive Markovmodel
to assign confidence regarding predictions of the human partners’
actions.

Most of the above cite work relies on rather fine-grained fea-
tures. An alternative are feature sets, which are more strongly de-
coupled from the details of the scene. Many of the next-discussed
studies use such features addressing the problem of manipulation
understanding.

(c) Semantic Representation and Recognition of Manipu-
lation Actions: Manipulation recognition can be understood as
a sub-set within the above-discussed more general problem of
human activity recognition. It has been addressed in differentways
in several interesting studies [32–35].

In [32] functional object categories are extracted from spa-
tiotemporal patterns, which encode interactions between hand
andobjects. Theworks in [33,34] try to explore a reasoningmethod,
which extract semantic action rules by employing abstract hand
movements with the object information and enhance manipula-
tion actions recognition through spatio-temporal feature learning.
In [36] visual semantic graphs are introduced for recognition
of manipulation consequences according to the changes in the
topological structure of the manipulated objects. The work in [37]
modeled human manipulations by involving some semantic infor-
mation about human skeleton and tracking the segments of ma-
nipulated objects and [38] used hand trajectories and hand–object
interaction in a Bayesian model for manipulation understanding.

Aksoy et al. in [35] describe a method for semantic segmen-
tation and recognition of long and complex manipulation actions,
which captures the underlying spatiotemporal structure of an ac-
tion and extracts basic primitive elements of each parsed manip-
ulation [12]. Building on this, a more descriptive set of spatial
relations was introduced in [11] (see also [39]).
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(d) Prediction of Manipulation Actions: Our focus in the cur-
rent work is not only to recognize but also to quickly predict
manipulations. Recently Fermüller et al. have developed a recur-
rent neural network based method for manipulation action pre-
diction [8]. They depicted the hand movements before and after
contact with the objects during the preparation and execution of
actions and applied a method based on a recurrent neural network
(RNN) where patches around the hand were used as inputs to
the network. They additionally used the estimations of forces on
finger tips during the different manipulations for achieving more
accurate predictions. Moreover, there are some studies about hand
motion trajectory recognition, which work in a causal way and
can be also used for prediction. For example [40,41] use a hid-
den Markov model-based continuous gesture recognition system
utilizing hand motion trajectories. We have here extended their
methods from recognition to prediction and compared it with our
ESEC approach.

A central problem that can be found in all of the above ap-
proaches is that action recognition (and prediction) heavily re-
lies on time-continuous information (e.g. trajectories, movie se-
quences, etc.). This type of information, however, is highly variable.
It is interesting to note that – indeed – we (humans) have a hard
time to describe an action in words using this level of detailed-
ness. Instead, we prefer using relational descriptions like ‘‘Xmoves
toward Y’’, or ‘‘X is on top of Y’’. We may add ‘‘... moves fast...’’ or
similar specifiers but we usually cannot express in words detailed
information on the actual speed, etc. Therefore, in this study we
decided to shy away from continuous descriptions, too, trying to
obtain leverage froma relational representation as discussed in our
older works [12,42,43], which makes this system robust against
individual spatial and temporal variations in the actual action
execution.

3. Overview of the algorithm

Before explaining details of our method, first we provide an
overview of the different steps of the algorithm (see Fig. 1).

First, all frames of a manipulation video are extracted. For each
video frame, RGB and depth images from the Kinect device are
used to generate 3D point clouds. These point clouds are then seg-
mented and tracked by applying the algorithmpresented in [44,45]
according to color and depth information. First, all frames of a
manipulation video are extracted. For each video frame, RGB and
depth images from the Kinect device are used to generate 3D point
clouds. These point clouds are then segmented and tracked by
applying the algorithm presented in [44,45] according to color and
depth information. The algorithm is called Voxel Cloud Connectiv-
ity Segmentation (VCCS) and is an over-segmentation algorithm
for point clouds which uses voxel relationships and spatial con-
nectivity to produce over-segmentation, which are fully consistent
with the spatial geometry of the scene in three dimensional, rather
than projective, space to help supervoxels conform better to ob-
ject boundaries. Enforcing the constraint that segmented regions
must have spatial connectivity, prevents label flow across semantic
object boundaries, which might otherwise happen. Additionally,
as the algorithm works directly in 3D space, observations from
several calibrated RGB+D cameras can be segmented jointly. Thus,
the VCCS algorithm uses region growing to produce uniformly
sized supervoxels, while respecting object boundaries, inferred by
large changes in local normals. The segments can then be tracked
by warping the obtained segment labels to the next frame using
real-time optical flow.

In addition to the point cloud data (used to determine phys-
ical object contact), we model each object using ‘‘Axis Aligned
Bounding Box’’ (AABB) in order to assess spatial relations between
objects (Section 4.4). Hence, no other information about object-
type and/or its affordance is used in our recognition and prediction

system. This allows us to deal with many scenes including various
objects of different sizes, shapes, types and geometrical structures.

Next, we extract from the point-cloud data the information
about which object is touching which other object. In addition,
from the relative position and relative movement of these AABBs,
static and dynamic spatial relations (SSR and DSR) are computed
(Section 4.5). These are encoded as discrete entities (of which we
have in total only 18), like ‘‘Above’’ or ‘‘Moving Together’’, etc.
Hence, we do not consider continuous variables.

After that, we define the so-called Enriched Semantic Event
Chain as an action descriptor (Section 4.2), which combines
touching/non-touching information with the information about
the spatial relations between all relevant object pairs (Section 4.3)
in each movie frame. Only when any of these discrete relations
changes, the corresponding event-change is stored as the next
column in a transition matrix, the ‘‘ESEC’’ table. Hence, the ESEC
table remains a very compact descriptor comprising notmore then
(about) 20 columns maximally.

The column-to-column transitions in an ESECs will always fol-
low only certain rules (for example if an object is ‘‘above’’ another
object then it cannot suddenly change to ‘‘below’’). This allowsus to
define the Context-Free-Grammar (CFG) of ESEC-transitions. This
is a very useful tool, because we can employ this CFG for noise-
reduction. Evidently, using real data the computation of ESEC-
relations is never 100% accurate due to noise in action execution
as well as in the segmentation and tracking process. The ESEC-CFG
allows immediately removingmany evidently-nonsensical column
transitions, which we do in the next step (Section 4.6).

As output we receive purified ESEC sequences, which can now
be used for action recognition and action prediction. For this, we
define a newmethod for similaritymeasurement between ESECs in
Section 4.7 and this leads to our action clustering, classification and
prediction methods, which are described in Sections 4.8–4.10. The
prediction algorithm is a step by step procedure that utilizes the
ESEC matrices in order to discriminate actions according to their
event chains.

To demonstrate the quality of the ESEC-approach in comparison
to others, in Section 4.11, we describe a standard baseline method
for action classification based on Hidden Markov Model (HMM).
This method is based on a hand gesture recognition procedure us-
ing two-level speed normalization, feature selection and classifier
fusion based on [40,46] and extended to manipulation prediction
by us.

4. Methods

4.1. Data sets

For experimental analysis, we used the MANIAC data set [42]1
and the KIT data set [47].2

The MANIAC data set consists of the following eight manipu-
lation actions: push, put, take, stir, cut, chop, hide (put over), and
uncover. Each action type is performed in 15 different versions by
five human actors, resulting to 120 demonstrations. Each version
has a differently configured scenewith different objects and poses.

The KIT manipulation data set is a subset of the ‘‘KIT Whole-
Body Motion Database’’ which has six action types: cut, drink, mix,
pick and place, pour, and put with seven demonstrations per action
type, resulting to 42 demonstrations.

For a theoretical analysis as well as for noise reduction proce-
dures for real data we used an extended set of 35 manipulation

1 http://www.dpi.physik.uni-goettingen.de/cns/index.php?page=maniac-
dataset.
2 https://motion-database.humanoids.kit.edu/.
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Fig. 1. Flow diagram of the algorithm.

actions, based on the smaller action set introduced in [43]. For the
complete list of actions see caption of Fig. 9.

In [43], as well as in [8], it had been suggested that manip-
ulations can be divided into three main groups (Fig. 2): ‘‘Hand-
Only Actions’’, ‘‘Separation Actions’’ and ‘‘Release Determined Ac-
tions’’. Hand-Only Actions are actions where the hand alone acts
on a target object (or first grasps a tool and then the tool acts
on the target object). According to their goals and effects they
can be subdivided into ‘‘Rearranging’’ (like push) and ‘‘Destroying’’
(like squash) actions. Separation Actions denote actions where the
hand manipulates one object to remove it (or parts of it) from
another object. This group is also divided into two cases: ‘‘Break’’
(e.g., ripping-off) and ‘‘Take-Down’’ (e.g., taking down one object
from another one). Finally, there are so-called Release Determined
Actions, which include all actions where the hand manipulates an
object and combines it with another object. This type is subdivided
into ‘‘Hide’’ (e.g., covering an object with another one) and ‘‘Con-
struct’’ (e.g., building a tower). According to this subdivision, here,
we have analyzed and categorized 35manipulation actions. For the
theoretical analysis the event chains for all actions were manually
created in an ideal and noise free way.

4.2. Enriched semantic event chain framework as an action descriptor

The core of our work relies on the Enriched Semantic Event
Chain framework, the concept of which shall be introduced first
before we describe all details of how to fill an ESEC matrix with
events.

ESECs are inspired by the original semantic event chain (SEC)
framework [12]. The original SECs investigated only the changes
of touching (T) and non-touching (N) relations between all object
pairs along a manipulation. A SEC is a matrix (table) where on
the left side every row is indexed by the object pair to which this
row refers and the core of the matrix describes the changes of the
touching (T) and non-touching (N) relations for these object pairs
over time. Hence, a new column is created whenever a change in
N or T occurs and, as a consequence, every column reflects at least
one such change. For example, the white upper rows of the matrix
in Fig. 3 show the conventional SEC of an ‘‘uncovering’’ action.

These N–T-relational changes had been used in manipulation
action recognition [12] but – as discussed later – this framework
cannot recognize all the different 35 manipulations investigated
here and it is also quite limited in its temporal-predictive power.

Here we still use these N–T-relations, too, but in the Enriched
SEC framework we add a set of static (SSR) as well as dynamic
spatial relations (DSR) in addition.

These spatial relations are shown by their abbreviations (see
Section 4.5 for the definitions of all SSRs and DSRs), in a similar
matrix-form representation in the lower two sections of Fig. 3. This
figure, thus, shows how the set of all the different relations changes
throughout an ‘‘uncovering’’ action.

Two aspects are needed to fully understand how an ESEC is
generated: (1) What are the objects and their models? and (2)
Which static and dynamic relations are used and how are they
defined. This will be described next.

4.3. Object types

For this we introduce the concept of the so-called ‘‘fundamental
objects’’, which are those that have an essential role in a manip-
ulation action.3 There are only five fundamental objects existing.
Importantly, not all of them are always present in a manipulation.
Their definitions are presented in Table 1. Also note that objects
obtain their role through the course of the action. For example,
‘fundamental object ‘‘2’’’: it is the location in the sequence of (N or T)
transitions that lets some object become ‘‘2’’, which is that object
that encounters the second transition.

This way, we naturally exclude irrelevant (distractor) objects in
ourmanipulation and the ordering of the rows in an ESEC is always
the same. Given five objects we have only 4 + 3 + 2 + 1 possible
relational combinations, resulting in ten rows for each of the sub-
aspects (N/T, SSR, DSR) in the ESEC leading to thirty rows in total.
Always, the upper ten rows denote N/T relational changes, while
the middle and the bottom ten rows represent the sequences of
SSR andDSR changes between eachpair of fundamental objects in a
manipulation, respectively. This ESEC matrix represents a detailed
and precise action descriptor as demonstrated later for recognition
and prediction of manipulation actions.

4.4. Object modeling as AABBs

For determining touching/non-touching we use the point-
clouds. For definition all other spatial relations, a simpler object
model suffices as defined next.

All coordinate axes are aligned according to the direction of
the camera axes. The z axis corresponds to the depth direction
(front/back), while x and y axes define direction of right/left and
above/below, respectively. The camera is fixed during the manip-
ulations and does not move. For simplicity, all relations have been
defined relative to such a setting. Hence, if the camera moves one
needs to transform the different relations. For example, if the view
changes from a front-view to a back-view, relations left and right
would invert, etc. All this, however, is straightforward and amounts
to a reducedmethod for robotic coordinate system transformation.
Using this definition, each object point cloud is approximatedusing
an Axis Aligned Bounding Box (AABB). An AABB is a model that

3 In our olderworks, we had still faced the complication that we needed to cover
the N–T transition of all objects in a manipulation. This had led to a permutation
problem, because objects had been arbitrarily labeled by the segmentation algo-
rithm and movies with the same action performed twice could result in totally
different label-order. Hence, to introduce fundamental objects is an important con-
ceptual simplification.
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Fig. 2. Theoretical categorization of manipulation actions according to [43].

Fig. 3. Description of ‘‘Uncovering by pick and place’’ action in SEC and ESEC frameworks. Image frames (top): frame segmentation of an ‘‘Uncovering by pick and place’’
video. Green object (12) is object ‘‘1’’, table is the Ground (G) and purple object (27) is object ‘‘2’’. Event matrix (bottom): white cells are the SEC matrix; blue cells – ESEC
static spatial relation matrix; green cells – ESEC dynamic spatial relation matrix. The ESEC framework uses the whole table, while the SEC framework only uses the white
part.

circumscribes a point cloud by a cube with sides parallel to the
directions of the coordinate system axes.

An example of a point cloud with its corresponding AABB is
shown in Fig. 4 a. AABB computation details are discussed in [11].

4.5. Spatial relations

Wehave considered three types of spatial relations in thiswork:
(1) ‘‘Touching’’ (T) and ‘‘Non-Touching’’ (N) relations, (2) ‘‘Static
Spatial Relations’’ (SSR) and (3) ‘‘Dynamic Spatial Relation’’ (DSR).

T and N relations between two objects were determined based
on occurrence (or non-occurrence) of a collision between the
point-clouds [48], using kd-trees to speed up the evaluation [48].

SSR and DSR are extracted simultaneously by computing the
relations between the AABBs of the objects.

Static Spatial Relations depend on the relative position of two
objects in space. We do not need any data from previous frames
for their evaluations and these relations are determined only at
the current time moment (frame). We define the following types
of SSRs: ‘‘Above’’ (Ab), ‘‘Below’’ (Be), ‘‘Right’’ (R), ‘‘Left’’ (L), ‘‘Front’’
(F), ‘‘Back’’ (Ba), ‘‘Inside’’ (In), ‘‘Surround’’ (Sa) and ‘‘Between’’ (Bw).
Right, Left, Front and Back are merged into ‘‘Around’’ (AR) and
used at times when one object is surrounded by the other. More-
over, ‘‘Above’’, ‘‘Below’’ and ‘‘Around’’ relations in combination
with ‘‘Touching’’ are converted to ‘‘Top’’ (To), ‘‘Bottom’’ (Bo) and
‘‘Touching Around’’ (ArT), respectively, which correspond to the
same cases but nowwith physical contact. Fig. 5 (a1–a3) represents
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Table 1
Definition of the fundamental objects during a manipulation action.
Object Definition Remarks

Hand The object that Not touching anything at
performs an action. the beginning and at the end of

the action. It touches at least
one object during an action.

Ground The object which supports It is extracted as a ground
all other objects except plane in a visual scene.
the hand in the scene.

1 The object which is the first Trivially, the first transition
to obtain a change will always be a touch
in its T/N relations. by the hand.

2 The object which is the second Either T→N or N→T relational
to obtain a change change can happen.
in its T/N relations.

3 The object which is the third Either T→N or N→T relational
to obtain a change change can happen.
in its T/N relations.

Fig. 4. (a) Apoint cloud and its correspondingAABB. (b) Possible states of Right–Left
relations between two AABBs when size and y positions vary.

static spatial relations between two objects in terms of cubes. If
two objects are far from each other or they do not have any of the
above mentioned relations, their static relation is assumed as Null
(O). This leads to a set of eleven static relations: SSR = {Ab, Be, R, L,
F, Ba, Ar, Top, Bottom, ArT, In, Sa, Bw, O}.

Dynamic Spatial Relations define the spatial relation between
two objects (moving in certain ways or not moving). Here, dif-
ferent from SSR, some information from the previous K frames
(e.g., distance related parameters) between each pair of objects
is necessary. The parameter K is related to the frame-rate of the
movie, where we determine K as frame count for covering 0.5 s,
which is a good estimate for the time that a human takes to change
the relations between objects. Therefore, if the video rate is µ
frames per second, then K = 0.5µ.

DSRs consist of the following relations: ‘‘Moving Together’’
(MT), ‘‘Halting Together’’ (HT), ‘‘Fixed-Moving Together’’ (FMT),
‘‘Getting Close’’ (GC), ‘‘Moving Apart’’ (MA) and ‘‘Stable’’ (S). Dy-
namic spatial relations between two objects in terms of cubes
are shown in Fig. 5 (b1–b6). MT, HT and FMT denote situations
when two objects are touching each other while: both of them are
moving in a same way (MT), are constant (HT), or when one object
is fixed and does not move, while the other one is moving on or
across it (FMT). Case S denotes that any distance-change between
objects is less than a defined threshold (here, we have considered
this threshold as ξ = 1 cm) and remains constant during the action

Fig. 5. (a) Static Spatial Relations: (a1) Above/Below, (a2) Around, (a3) In-
side/Surround. (b) Dynamic Spatial Relations: (b1) Moving Together, (b2) Halting
Together, (b3) Fixed-Moving Together, (b4) Getting Close, (b5) Moving Apart, (b6)
Stable.

sequence. All these dynamic relations cases are clear from looking
at Fig. 5 (b). In addition, Q is used to denote a dynamic relation
between two objects if their distance is more than the defined
threshold ξ or if they do not have any of the above defined dynamic
relations. Thus, we have a set of seven dynamic relations: DSR =
{MT, HT, FMT, GC, MA, S, Q}.

Moreover, if one object becomes ‘‘Absent’’ or hidden during
the actions (e.g. in put over, push over actions), we use (A) for
annotating this condition. In addition, (X) is used if one object is
destroyed or looses its primary shape (e.g. in cut, chop, scoop or
break actions).

Each relation is defined by a set of rules. We start with specify-
ing the rule set for static spatial relations. In general, xmin, xmax, ymin ,
ymax, zmin and zmax are theminimumandmaximumvalues between
the points of the AABB of object αi in x, y and z axes, respectively.

Let us consider the relation ‘‘Right’’: SSR(αi, αj) = R (object αi
is to the right of object αj) if xmax(αi) > xmax(αj) as well as all the
following (exception) conditions are not true: ymin(αi) > ymax(αj);
ymin(αj) > ymax(αi); zmin(αi) > zmax(αj); zmin(αj) > zmax(αi). The
exception conditions exclude from the relation ‘‘Right’’ those cases
when two objects-AABBs do not overlap in altitude (y direction)
or front/back (z direction). Several examples of objects holding
relation SSR(red, blue) = R, when the size and shift in y direction
varies, are shown in Fig. 4 b.

SSR(αi, αj) = L is defined by xmax(αi) < xmin(αj) and the
same set of exception conditions. The relations Ab, Be, F, Ba are
defined in an analogous way. For Ab and Be the emphasis is on
the ‘‘y’’ dimension, while for the F, Ba the emphasis is on the
‘‘z’’ dimension. For the relation ‘‘inside’’ SSR(αi, αj) = In, x and z
coordinates of AABB αi must be between the x and z coordinates
of AABB αj respectively while ymin(αj) < ymax(αi) ≤ ymax(αj). The
opposite holds for relation Sa (surrounding).

First we define the so called ‘‘Between Space’’ for two objects.
This is obtained by extending the AABBs of two non-overlapping
objects towards each other along our camera’s axes and taking the
intersection of those extensions.Whenever the third object’s AABB
completely stays in the ‘‘Between Space’’ of the two other objects’,
it is assumed that the third object is ‘‘in between’’ (Bw) of the two
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objects. The rules for this relation in the case, are defined below
SSR(αi, αk, αj) = Bw, (the object αk is in between of objects αi and
αj):

xmin(αk) ≥ minimum(xmax(αi), xmax(αj)) and
xmax(αk) ≤ maximum(xmin(αi), xmin(αj)) and
ymin(αk) ≥ maximum(ymin(αi), xmin(αj)) and
ymax(αk) ≤ minimum(ymax(αi), xmax(αj)) and
zmin(αk) ≥ maximum(zmin(αi), xmin(αj)) and
zmax(αk) ≤ minimum(zmax(αi), xmax(αj))
Two objects can have more than one static spatial relation

regarding each other: e.g. one object’s AABB can be both to the right
and in front of the other object’s AABB. However, for forming the
ESEC we need only one relation per object pair. We solve this as
follows.

Each AABB is a cube with six surfaces. Let us label them as
top, bottom, right, left, front and back based on their positions in
our scene coordinate system. Whenever object αi is to the right
of object αj, one can make a projection from the left surface of
object αi onto the right rectangle of object αj and consider only the
rectangle intersection area, which we will call ‘‘shadow’’. Suppose
SSR(αi, αj) = {Y1, . . . , Yk}while Y1, . . . , Ym ∈ SSR andwe have cal-
culated the shadow(αi, αj, Y ) for all relations Y between the objects
αi and αj. The relation with the biggest shadow is then chosen as
the main static relation for the two objects: SSR(αi, αj) = Yn(1 ≤

n ≤ k), if : shadow(αi, αj, Yn) = max1≤m≤k(Shadow(αi, αj, Ym)).
Static relations around objects are highly dependent on the

viewpoint and the exact relation is often not relevant (also humans
do not consider this many times). For instance, when picking up a
knife to cut a cucumber we do not note whether the knife is picked
up from the right or the left side of the cucumber. Thus, we define a
different relation called ‘‘Around’’ (Ar) andmap the set of relations
L, R, F, Ba onto it. Thisway, ‘‘Ar’’ (Around) includes the space located
lateral to the object in a limited radius equal to threshold ξ . This
space does not cover vertical neighborhood areas like ‘‘Above’’ or
‘‘Below’’ [11].

Now we switch to explaining the dynamic spatial relations
(DSR), which we define as a two argument function where argu-
ments are the AABBs in the scene. Suppose Oif shows the central
point of the AABB of object α

f
i (object αi in fth frame); we define

δ(αf
i , α

f
j ) = ∥Oif − Ojf ∥ to be a two argument function for

measuring the Euclidean distance between the AABBs αi and αj in
fth frame.

DSR(αf
i , α

f
j ) =

{
GC, if δ(αf+θ

i , α
f+θ

j ) − δ(αf
i , α

f
j ) < ξ

MA, if δ(αf+θ

i , α
f+θ

j ) − δ(αf
i , α

f
j ) > ξ

(1)

For thisweuse a timewindowof θ = 10 frames in our experiments
(recording speed is 30 fps); the threshold ξ is kept at 0.1 m:

When calculatingGC andMA, we are also checking the touching
relations between those two objects. For this we first define TNR,
which is a two argument function which illustrates whether two
objects are touching or non-touching. This is then used below to
define several conditions:

P1 :TNR(αf
i , α

f
j ) = T&&TNR(αf+θ

i , α
f+θ

j ) = T

P2 :TNR(αf
i , α

f
j ) = N&&TNR(αf+θ

i , α
f+θ

j ) = N

P3 :Of
i ̸= Oif+θ

P4 :Of
j ̸= Ojf+θ

P5 :δ(αf+θ

i , α
f+θ

j ) − δ(αf
i , α

f
j ) < ξ

The dynamic relations MT, HT, FMT and S, based on the three
conditions above are now defined in the following way:

DSR(αf
i , α

f
j ) =

⎧⎪⎪⎨⎪⎪⎩
MT , if P1&&P3&&P4
HT , if P1&& ∼ P3&& ∼ P4
FMT , if P1&&(P3XORP4)
S, if P2&&P5

(2)

4.6. Noise detection and reduction

In theory each ESEC column describes one event as an essential
part of a manipulation but in real data, when someone is carrying
out a manipulation, there is variability and noise. To treat this, we
use the fact that there are only certain column-to-column transi-
tion possible, while many others cannot exist (violating temporal
causality or physics).

Hence, we define all possible transition rules for ESEC matrix-
column transitions, based on hand-made noise-free ESECs of ma-
nipulation actions (see caption of Fig. 9 for the list of actions). The
rules are given in the form of a Context-Free Grammar (CFG) and
details of the CFG are described in Appendix A.

If a certain column-to-column transition in an ESEC does not
satisfy any of the CFG rules it means an error has occurred. This
allows detecting noise but we also need a method for noise re-
duction. To achieve this we modify the deterministic CFG into a
probabilistic Context Free Grammar (PCFG) where each production
rule is nowassigned a certain probability (for definition of the PCFG
see also Appendix A).

Once a noise-induced column has been detected, the best guess
for a correction is to substitute themost probable itemaccording to
the transition probabilities as given in the PCFG (see Table 3 in the
AppendixA). For example, assumewehave the following transition
in an ESEC matrix: Ar → Be. We know that this is a wrong
transition and according to Table 3 this transition is converted to:
Ar → Ar as this is the most possible transition from Ar .

This method does not work perfectly and sometimes yields an
incorrect transition (in cases where the correct transition corre-
sponds to a rule which has not the highest probability), but all in
all it still substantially reduces noise effects as shown in the results
section.

4.7. Similarity measure

Next we discuss how to calculate the similarity of two ma-
nipulation actions. In the older SEC framework we had used the
Longest Common Sub-sequence (LCS) method for similarity mea-
surement [42], which we also have used in our previous work [11].

In this paper we define an improved similarity measure. This
covers two new aspects: (1) different from before, here we now
need to combine similarity assessments across three aspects: N/T,
SSR and DRS transitions and (2) we are dealing with a rigorously
temporally ordered set of (maximally) five fundamental objects:
Hand, Ground, Object 1, Object 2 and Object 3. These objects have a
strictly defined order of appearance, leading to a well-defined row
ordering in the ESEC matrix.

Suppose θ1 and θ2 are the names of two actions with ESECs that
have n andm columns, respectively.

Instead of writing down a 30-row ESEC each, we can concate-
nate the corresponding T/N, SSR and DSR of each fundamental
object pair into a triple (f , g, h) and make a 10-row matrix for θ1
and θ2 with ternary elements instead. For θ1 this reads (for θ2 with
elements bi,j accordingly):

θ1 =

⎛⎜⎜⎝
(a1,1, a11,1, a21,1) (a1,2, a11,2, a21,2) · · · (a1,n, a11,n, a21,n)
(a2,1, a12,1, a22,1) (a2,2, a12,2, a22,2) · · · (a2,n, a12,n, a22,n)

.

.

.
.
.
.

. . .
.
.
.

(a10,1, a20,1, a30,1) (a10,2, a20,2, a30,2) · · · (a10,n, a20,n, a30,n)

⎞⎟⎟⎠
Using the elements of both matrices, we define the differences

in the three different relation categories L1:3 by:

L1i,j =

{
0, if ai,j = bi,j
1, otherwise
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L2i,j =

{
0, if ai+10,j = bi+10,j

1, otherwise

L3i,j =

{
0, if ai+20,j = bi+20,j

1, otherwise

where 1 ≤ i ≤ 10, 1 ≤ j ≤ k, k = max(n,m)
Then we define the compound difference for the three cate-

gories in the following way:

di,j =

√
L1i,j + L2i,j + L3i,j. (3)

In case one matrix had more columns than the other matrix.
i.e.,m < n or vice versa, we repeated the last column of the smaller
matrix to match the number of columns of the bigger matrix.

Now we define D as the matrix, which holds all compound
differences between the elements of the two ESECs.

D(10,k) =

⎛⎜⎜⎝
d1,1 d1,2 · · · d1,k
d2,1 d2,2 · · · d2,k
...

...
. . .

...

d10,1 d10,2 · · · d10,k

⎞⎟⎟⎠
where di,j denotes the dissimilarity of ith objects pair at the jth time
stamp (column). Then, D, which is the total dissimilarity between
ESECs of θ1 and θ2 is obtained as the average across all elements of
matrix D.

Dθ1,θ2 =
1

k ∗ 10
(

k∑
j=1

10∑
i=1

di,j) (4)

Accordingly, the similarity between these ESECs Simθ1,θ2 , is ob-
tained as:

Simθ1,θ2 = (1 − Dθ1,θ2 ) ∗ 100% (5)

4.8. Action clustering

We performed automatic action clustering of 35 actions (see
Section 4.1). Thiswas done to assess how the theoretical categoriza-
tion of actions based on their semantic meaning presented in Fig. 2
would match to the automatic action categorization (clustering)
based on similarities between action tables for both ESEC and SEC
frameworks.

For clustering, we employed the distance measure Dθ1,θ2 be-
tween different actions (which is 1−Simθ1,θ2/100). These distances
D, calculated for SECs as well as ESECs, provide the input for a hi-
erarchical clustering algorithm (also known as hierarchical cluster
analysis [HCA]) were we used complete linkage (furthest distance)
to build two hierarchical cluster trees, one for the ESEC- and the
other for the SEC-framework. Here we used a distance threshold
of 0.5 (corresponds to 50% similarity between actions) to break the
tree into clusters. Thus, we group actions into one cluster if actions
have more than 50% similarity (distance below 0.5).

4.9. Action classification

Here we are concerned with a action recognition. Action recog-
nition is implemented by comparing the action table of a new
action (test sample) to the action tables of existing action models
(training samples) and computing the similarity score Simθ1,θ2 as
given above.Weassign the class label to the tested action as the one
belonging to the action, which had the maximal similarity score.

4.10. Action prediction and quantification measures

We have recently introduced the idea of manipulation actions
prediction through spatial reasoning in [49]. We now decide to
extend it in this paper.

Decision Tree: For the theoretical analysis of action prediction
we build a decision tree from the manually defined event tables
of the 35 manipulation actions (see caption of Fig. 9). This tree
tells at what column of an ESEC an action can be unequivocally
predicted. It is constructed in the following way: At the start, all
first columns of the ESECs of the 35 manipulations are compared.
Then, all actions with the same first column are categorized into
the same set (S1, . . . , Sn). Afterwards, the members of each set are
compared according to their second column. Again, those actions
with the same second column are categorized into the same set
and this process is continued until all actions are categorized into
a single-member set or all the columns of an action have been
analyzed (see Fig. 9).

New Action Prediction: The same along-column comparison can
now be done for any new action. In order to evaluate prediction
performance we define a prediction power measure for the event
based prediction in percent as:

PE(αi) =

(
1 −

E(αi)
Ni

)
∗ 100%, (6)

where E(αi) is the prediction event column for an action alphai at
which the prediction of an action has actually occurred, and Ni is
the number of columns in the matrix. Hence, here the completion
of an action corresponds to 1. A prediction power of 0%would then
correspond to the case where action recognition only happens at
the very end of the actionwhile 100%would refer to the prediction
at the start of the action.

Different from theoretically defined action tables, tables ob-
tained from real data include noise and are not the same as the-
oretical ones. Therefore, in this case we perform prediction based
on frames of action movies (frame based). For this, the N/T, SSR,
and DSR relations are computed for each video frame. Similar to
event based prediction, we perform column-wise comparison to
action tables from the training data set (in this case we use several
action tables as models for each action class) until all actions are
categorized into a set which consists of the action members from
the same class, or where there are no identical columns with any
of the other actions. In the latter case, we compute the similarity
measure as presented above for those incomplete action tables and
predict the label based on the maximum similarity score. In case
scores are identical for several action from different classes we
proceed to the next column until a unique class is obtained.

Similar to above, the frame at which the prediction occurs
is called prediction frame and is annotated as F (αi). Accordingly,
prediction power for the frame based prediction is defined as:

PF (αi) =

(
1 −

F (αi)
L(αi)

)
∗ 100%, (7)

where L(αi), is the total number of frames during execution of an
action αi and denotes the duration of the action. The frames where
the hand appears in the scene and leaves the scene are defined as
the first and the last frame, respectively.

4.11. Comparison against baseline method

We compared our results with the performance of a state of
the art HMM-based method from [40]. For a fair comparison we
selected this method, because – like ours – it does not use object
information, but, instead, relies on hand trajectories. To make the
comparison even stronger, we improved the method from [40] by
introducing noise reduction and feature fusion described in [46].
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Table 2
Noise detection rate and correction rate among detected errors onMANIAC data set.
Actions Noise detection rate Noise correction rate

Put on top 56% 72%
Take down 59% 75%
Push 32% 84%
Cut 75% 66%
Chop 62% 53%
Stir 57% 49%
Put over 33% 61%
Uncover 48% 53%

Average 52.75% 64.12%

As this HMM-based method works in a causal way along the
time line, instead of giving a result only at the very end, here this
method has been used for prediction.

We have implemented this HMM-framework analyzing ori-
entation, velocity, and location of the hand individually but also
by fusing these results using majority voting. In addition, noise
reduction and feature fusion [46] allowed removing noise such as
hand trembling and unintentional movements to improve on the
baseline.

As this is a very technical aspect and not related to our own
methods, we are giving the details of the HMM implementation
in Appendix B.

5. Results

In this section we present experimental results of our method
and compare to SEC and HMM with respect to several different
aspects. First, we measure the effect of the noise detection and
reduction algorithm in the ESEC framework (Section 5.1). Second,
the results on action clustering are presented for both ESEC and SEC
frameworks in Section 5.2. After that, the results of manipulation
action classification on the MANIAC data set are presented and
compared to the SEC framework in Section 5.3. Finally, we have
compared the performance of action prediction using ESEC against
SEC andHMM-basedmethod onMANIAC andKIT data sets (Section
5.4).

5.1. Noise reduction

Here we evaluated performance of the noise reduction tech-
nique proposed in Section 4.6 on theMANIAC data set. For that, we
used all 120 actions fromeightmanipulation classes of theMANIAC
data set, and compared automatically extracted ESEC tables from
action videos to the theoretical (manually defined) ground-truth
ESEC tables of the corresponding eight actions. By comparing the
resulting matrices of the real with the ground-truth tables we
identified all errors. In total there were 749 false events (errors).
After that we calculated the percentage of the errors that we could
actually detect using the CFG-method and also the percentage of
errors that we were able to correct among those detected errors.

Table 2 presents the rates of noise detection and correction us-
ing our proposed CFG-basedmethod. Results show that on average
we were able to detect errors in 52.75% of the cases, and correct
64.12% of the detected errors. The False Positive Rate is FPR=0%
as the noise correction algorithm only operates in case of not-
allowed grammatical transitions, whereas the False Negative Rate
is FNR=47.25%.

5.2. Clustering of manipulation actions

Unsupervised clustering of the semantic distances between the
different actions is shown in Fig. 6 for SECs (right) and ESECs (left).
Similarity between any two actions is encoded in these trees by

the ‘‘height’’ on the distance axis that you have to overcome when
climbing from one action to the other. Short vertical bars in the
SEC diagram connect actions with zero semantic distance between
them. These are actions that cannot be distinguished using SECs.
This case does not exist in the ESEC diagram. The similarity tree for
SECs essentially reproduces the results from our older study [43].
The red group on top contains the Release Determined plus Take
Down actions (see Fig. 2 above). This correspondswell to our earlier
findings of high intrinsic but also across-group similarities for
these cases. The small purple group represents the Break actions
and all remaining groups except the green one at the bottom are
Hand Only actions, where light blue covers the Destroy group, dark
blue the Rearrange group and orange is a mix from both. The green
group contains all Pouring actions, which had not been considered
in our older works. When comparing this tree to the confusion
matrix shown in Fig. 9 in [43] one can see that,with fewexceptions,
there is a very highmatch. The ‘‘outliers’’ are those cases that were
also outliers in our old confusion matrix.

In general, ESECs (left) discriminate more strongly while pre-
serving the general picture very well, but now – as an important
additional point – we observe that all actions can be separated
from each other. There are no cases with zero distance anymore.
For example, the red group (Release Determined actions) is basi-
cally preserved but now the Take Down subgroup (marked with
a bracket) forms a clearly visible sub-cluster. It is important to
realize that the here shown colored clusters are created when
using a cutting threshold of distance=0.5. This corresponds to 50%
similarity, a value, which we had used also in many other stud-
ies. When considering the ESEC tree, another ‘‘naturally looking’’
choice would be a threshold of 0.3. In this case the red and orange
clusters would remain and all others would be split resulting in
different semantic grouping.

In summary, these tree diagrams show that, depending on the
threshold, different semantic groupings are observed. We find
this interesting, because this reflects algorithmically also our own,
human,way of considering action similarities: depending on inten-
tion, task, etc., we can also choose different ‘‘cutting thresholds’’
for what is similar and what is not. Also for us, action similarity
semantics are not set in stone.

5.3. Classification of manipulation actions

We have performed action classification and compared classifi-
cation accuracy of ESEC and SEC frameworks on the MANIAC data
set (8 action classes) as described above. We performed Monte
Carlo cross validation 20 times, where each time we randomly
selected 10 different actions from each class (in total 80 actions)
for training and used them as action models for comparison and 5
actions from each class (in total 40 actions) for testing. Confusion
matrices are given in Fig. 7.

Bar plots for a comparison of classification performance be-
tween ESECs and SECs are shown in Fig. 8, where we show results
for both, noisy event tables and noise-reduced event tables (i.e., by
applying our noise reduction algorithm as described in Section
4.6 before classification). Results show that on the noisy data on
average across all 8 actionwe obtained slightly better classification
accuracy with ESECs than with SECs, 86.0% (SD = 15.01%) and
76.75% (SD = 19.54%), respectively. In this case, ESEC outperforms
SEC in a recognition of three (‘‘Take down’’, ‘‘Cut’’ and ‘‘Chop’’) out
of eight actions (see Fig. 8). We obtained, however, a much better
classification result by applying noise reduction where now (on
average) classification accuracy was improved by 5.62% for ESECs
with a final score of 91.62% (SD = 12.78%) and by 1.5% for SECs
with a final score 78.25% (SD = 17.15%). In this case, classification
accuracy for ESEC was significantly better in all, except the ‘‘Stir’’
action.
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Fig. 6. Dendrogram of the hierarchical clustering of 35 theoretical actions based on ESEC and SEC frameworks. Herewe used a distance threshold of 0.5 to cluster the actions.
Note that colors mark clusters with the same action subsets.

Fig. 7. Confusionmatrices of classification (on-diagonal) andmisclassification (off-diagonal) results on theMANIAC data set for ESEC and SEC frameworks for noise-reduced
data. Average classification rate from 20 classification trials is shown for each target and predicted class pair.

The biggest recognition difference between ESECs and SECs is
observed for ‘‘Take down’’, ‘‘Cut’’ and ‘‘Chop’’ actions. This is due to
the fact that in case of the ‘‘Take down’’ action, in SEC this action is
mixed upwith the ‘‘Put on top’’ action, resulting in highmisclassifi-
cation rates of 25.0% and of 16.0%, see confusionmatrices in Fig. 7,
whereas in ESEC these errors are much lower, i.e., 4.0% and 3.0%.
In case of the ‘‘Cut’’ and ‘‘Chop’’ actions, misclassification rates
between these two actions for the SEC framework is even bigger
(42.0% and 37.0%). Note, in the theoretical SEC-action tables of
these actions are identical! For the ESEC framework, action tables
are more different, which results in lower misclassification rates
(20.0% in both cases) and a better recognition of these two actions.

In summary, classification results demonstrate that on average
ESECs with the noise reduction algorithm clearly outperformed

SECs leading to a final improvement of 13.37% in classification
accuracy.

5.4. Prediction of manipulation actions

5.4.1. Theoretical analysis of all actions
For this analysis, we used themanually generated 35 ideal ESEC

matrices for the representation of the manipulation actions.
First we show how action prediction evolves over time. For this

we use the decision tree as defined in Section 4.10, shown in Fig. 9.
This tree uses the same color code as in Fig. 2 and shows that
maximally eight columns in an ESEC are needed until all actions are
recognized. Note, the most complex action (‘‘pouring’’) has in total
14 columns. Columns 1, 2, 6 and 7 have no added discriminative
value. Four actions are found already in column 3, where 18 and



F. Ziaeetabar et al. / Robotics and Autonomous Systems 110 (2018) 173–188 183

Fig. 8. Comparison of classification results on MANIAC data set between ESEC and
SEC frameworks for noisy and noise-reduced (de-noised) event tables. Average
classification accuracy and confidence intervals ofmean (95%) from20 classification
trials are shown for each action class.

9 actions are discriminated in columns 4 and 5, respectively. The
remaining four actions are recognized in column 8.

To quantify this better, we computed the event-based predic-
tion power PE(αi) according to Eq. (6) for all 35 actions for both
SEC and ESEC.We obtained an average prediction power of 43.94%
and 30.94% when using the ESEC and the SEC, respectively (95%
confidence interval of mean difference is [0.327 17.673]). This
shows that we can predict actions using ESECs earlier (before half
of the actionhas been completed) thanwhenusing SECs.Moreover,
we could correctly predict all the 35 actions with ESECs (100.00%),
whereas with SECs we could only predict 25 out of 35 actions
(71.43%) correctly.

5.4.2. Prediction on real world datasets
Here we performed action prediction on two real world data

sets: the MANIAC data set, the same on which classification was
performed, and in addition the KIT data set, an independent data
set, which had never been considered in any stage of the ESEC
development before.

We compared prediction power of ESEC against prediction
power of SEC and the baseline HMM-based method as described
above. For the MANIAC dataset (8 action classes), as in the classifi-
cation experiments, we performedMonte Carlo cross validation 20
times were each time we randomly selected 10 actions from each
class for training (in total 80 actions) and 5 actions from each class
for testing (in total 40 actions). For KIT data set (6 action classes),

we also performed Monte Carlo cross validation 20 times were we
used 4 randomly selected actions from each class for training (in
total 24 actions) and 3 randomly selected actions from each class
for testing (in total 18 actions).

Prediction on MANIAC dataset: Fig. 10 (top) shows the frame-
based predictive power for the ESEC method compared to the SEC
and the HMM methods for the eight MANIAC data set actions.
The resulting average predictive power for the ESEC is 62.69%
(SD = 13.22%) out of 92.8% correctly predicted actions, for the
SEC it is 32.11% (SD = 15.77%) out of 80.8% correctly predicted
actions, and for the HMM it is 34.48% (SD = 10.56%) out of 70.2%
correctly predicted actions. Thus, ESECs have the highest predictive
power on average and predict all eight actions earlier as compared
to SEC and HMM. SEC is faster than HMM in predicting two (‘‘Take
down’’ and ‘‘Uncover’’) out of six actions, but slower than HMM in
predicting ‘‘Put on top’’ and ‘‘Push’’ actions.

Prediction on KIT dataset: Fig. 10 (bottom) shows a comparison
of all three methods (ESEC, SEC, and HMM) for the six KIT ac-
tions. In this case, average predictive power for the ESEC is 61.2%
(SD = 10.40%) out of 99.0% correctly predicted actions, for SEC it
is 39.82% (SD = 11.5%) out of 82.33% correctly predicted actions,
and for the HMM it is 30.32% (SD = 9.29%) out of 90.33% correctly
predicted actions. As for MANIAC, ESEC also here outperforms SEC
and HMM methods in prediction of all six action classes. SEC is
faster than HMM in predicting three actions (‘‘Cut’’,‘‘Drink’’, and
‘‘Pick&Place’’).

In summary, prediction results demonstrate that on average
our presented ESEC framework leads to earlier and more accurate
predictions as compared to SEC and HMM methods when tested
on two different data sets (in total 13 different actions), whereas
SEC and HMM methods on average show similar prediction per-
formance.

6. Discussion

In the following we will discuss the results of our framework
and compare those to other frameworks.

6.1. Action discrimination

First, we compared our proposed method to the original SECs
with respect to action discrimination in clustering and classifica-
tion tasks. For clustering, we used 35 theoretical actions extended
from [43] and for classification we used the MANIAC data set with
eight different actions [42].

Fig. 9. Prediction tree of manipulation actions using ESEC framework. Colors correspond to action categories as shown in Fig. 2. List of actions:
(1) Hit/Flick; (2) Poke; (3) Bore/Rub/Rotate; (4) Lay; (5) Push/Pull; (6) Stir; (7) Knead; (8) Lever; (9) Push from x to y; (10) Take & invert; (11) Shake; (12) Rotate-align; (13)
Pick & place; (14) Pour from a container onto the ground when the liquid first un-touches the container then touches the ground (Pour to ground [v1]); (15) Pour from a
container on the ground when the liquid can touch the container and the ground at the same time (Pour to ground [v2]); (16) Pour from a container to another container
when the liquid first un-touches the container then touches another container (Pour to cup [v1]); (17) Pour from a container to another container when the liquid can touch
the container and another container at the same time (Pour to cup [v2]); (18) Cut; (19) Chop; (20) Scratch; (21) Squash; (22) Draw; (23) Scoop; (24) Take down; (25) Push
down; (26) Push apart; (27) Break/Rip-off; (28) Uncover by pick & place; (29) Uncover by push; (30) Put on top; (31) Put inside; (32) Push on top; (33) Push together; (34)
Put over; (35) Push over.
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Fig. 10. Comparison of prediction results on the MANIAC data set (top panel) and
the KIT data set (bottom panel) between ESEC, SEC, and HMM frameworks. Average
frame-based prediction power and confidence intervals of mean (95%) from 20
classification trials are shown for each action class within correctly predicted
actions.

When analyzing action clustering we found that ESECs discrim-
inate actions more strongly than SECs. On the 35-action set, we
obtained an improvement of 28.6% where 10 more actions can be
discriminated with ESECs (35 out of 35 actions) compared to SECs
(25 out of 35 actions).

For action classification on average we obtained slightly better
accuracy when using ESECs as compared to SECs: 86.0%
(SD = 15.01%) for ESEC vs. 76.75% (SD = 19.5%) for SEC, where the
improvement of the classification accuracy by ESECs was statisti-
cally significant for three out of eightMANIAC data set actions. This
is due to the fact that, since in the original SECs touching and non-
touching are the only defined spatial relations, the discriminative
power of SECs ismore limited than that of the here proposed ESECs.
For example, when putting a cup on a box, in the original SEC, the
relation between cup and box is initially ‘‘non-touching’’ and later
‘‘touching’’. In an ESEC representation there are additional phases,
where the cup is ‘‘above’’ or ‘‘getting close’’ to the box, etc.

We then further improved these results by introducing
grammar-based noise reduction techniques where we obtained
substantially better classification accuracy for ESECs: 91.62%
(SD = 12.78%) for ESECs vs. 78.25% (SD = 17.15%) for SECs. Here
improvement in classification accuracy for ESEC vs. SEC is statisti-
cally significant for seven out of eightMANIAC data set actions. The
noise reduction brought more improvement for ESEC as compared
to SEC, because ESECs have more and more variable relations, thus
they are more prone to errors. However, as demonstrated this can
be nicely handled by the error reduction techniques as introduced
in this study.

Comparing results obtained in our study to similar studies,
in [42] an average recall of 87% was obtained on the MANIAC
data set when using SEC and assigning cut and chop to the same

class. Though the cited study uses a slightly different procedure
(including the class ‘‘unknown’’) and we cannot directly compare,
our average classification accuracy in case of also merging the cut
and chop classes is 88% in SEC, thus similar to what is achieved
in [42]. This confirms that our new similarity measure and our
classification procedures, which are different to those in [42], work
equally well. Note, the new similarity measure is computationally
much more efficient. Furthermore we found that the average ESEC
classification accuracy we are obtaining (when merging cut and
chop classes) is 97%, thus far higher as compared to that in [42].

6.2. Action prediction

The main focus of this study is action prediction. Thus, we
performed a thorough analysis of this using ESECs and we com-
pared this to SECs and also to a baseline method based on hidden
Markov models (HMMs). Different from the HMM-based method,
both ESEC and SEC frameworks do not require continuous infor-
mation such as movement trajectories. We compared these three
frameworks on two data sets: MANIAC and KIT [47]), resulting in
13 different actions in total (one action type is the same in both
data sets).

We showed that on overage the ESEC framework outperforms
both SEC and HMM-based methods on both data sets, whereas
SEC andHMMmethods on average show similar prediction perfor-
mance. One possible reason for that is that ESEC takes ‘‘some mid-
dle ground’’ between SEC and HMM, where SEC, while symbolic, is
too compressed and HMM, being sub-symbolic (time continuous),
is too prone to noise.

7. Conclusion

In this study, we had presented our augmented action recog-
nition and prediction framework based on ESECs, which is fun-
damentally based on discrete events. Hence, our method does
not use continuous (motion trajectory) features or full action re-
construction and performs classification and prediction only by
using a symbolic representation relying on the spatial relations
between the objects. This way it differs from the great majority
of other studies (e.g. [28–30]). As a consequence, our approach
has low complexity. Several psychological findings have discussed
that event-based encodingmight be fundamental for action under-
standing in the brain (see e.g. [50]) and, thus, our frameworkmight
this way indeed be better linked to the way humans ‘‘understand’’
actions. Currently we are pursuing an investigation based on func-
tional magnetic resonance asking whether brain signals will be
enhanced in response to such SEC or ESEC events.

Moreover, Given the tight link between NLP and scene descrip-
tion, to further enhance the performance of our approach, we are
planning to incorporate NLP (Natural Language Processing) and
LfD (Learning from Demonstration) into our framework for future
works.
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Appendix A. CFG- and PCGF-rules for noise reduction in ESEC

A Context-Free Grammar (CFG) is defined as:

G = (N, S, T , P) (8)
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where N is a finite set of non-terminal symbols, S is the starting
symbol (S ∈ N), T is a finite set of terminal symbols (T ∩N = ∅), P
is a finite grammar of the formA → u(A ∈ N and u ∈ (N∪T )+) [51].

As non-terminal symbols we use the symbols defining the re-
lations in the ESECs augmented by the starting symbol st . For
definition of the end points of the grammatical transitions, we
define a terminal symbol tr . The production rules are obtained
according to the manually-created noise-free ESEC matrices of the
35 manipulation actions from Eq. (12). We investigate all possible
transitions from each column element to its corresponding next
column element and, based on that, generate grammar production
rules. Suppose, we want to produce possible transitions from a
non-terminal element such as ‘‘Moving together’’ (MT ). For this
purpose, we search for the element MT in every column of each
action αi, (1 ≤ i ≤ 35). If it occurs on the Rth row and Cth column of
action αi (αi(R, C) = MT ) then we put the result of the αi(R, C + 1)
into the transition set ofMT .

Formally the grammar is described by the following equations:

N = {O,Q ,U, T ,N, A, X, Ar, Ab, Be, In, Sa,MT ,

HT , FMT ,GC,MA, S} (9)

S = st; (10)

T = {tr} (11)

P = {

•St → U |O|Q |N;

•T → T |N|A|tr;
•N → T |N|A|tr;

•A → A|tr;
•X → X |tr;

•U → U |T |N|X |Ar|Ab|Be|In|Sa|HT |FMT |GC |S|MA|tr;
•O → Ab|tr;

•Ar → Ar|Ab|O|A|tr;
•Ab → Ab|O|In|Ar|X |A|tr;

•Be → Be|Ar|tr;
•IN → Ab|In|X |tr;

•Sa → sa|Ab|tr;
•HT → HT |MT |FMT |MA|S|X |Z |tr;

•MT → HT |MA|MT ;

•FMT → MA|HT |FMT |S|X |A;

•GC → S|HT |FMT |A|GC;

•MA → Q |MA|S|GC |HT ;

•S → S|Q |MA|GC |FMT |HT |tr;
•Q → S|tr.

}

(12)

The production rules are obtained according to the manually-
created noise-free ESEC matrices of the 35 manipulation actions.
To get the rules, we analyzed for each non-terminal (which could
be a static or dynamic spatial relation) all of these 35 matrices. For
each occurrence of a given non-terminal item, the corresponding
element of its next column is considered as a possible transition
rule of that non-terminal. All of these rules are gathered in Eq. (12).
Then, for finding the probability of each transition from a non-
terminal to an item, we divided the whole number of transi-
tions from that non-terminal to that item by the total possible

transitions from that non-terminal. Suppose, we want to produce
possible transitions from a non-terminal element such as ‘‘Moving
together’’ (MT). For this purpose, we search for the element MT
in every column of each action αi, (1 ≤ i ≤ 35). If it occurs on
the Rth row and Cth column of action αi, (αi(R, C) = MT ) then we
put the results of the αi(R, C + 1) onto the transition set of MT.
In real data analysis, whenever we faced an illegal transition, we
have substituted the transition to the illegal item with the highest
possible transition.

Furthermore, we define three types of rules:

1. Rules regarding start point and end point of a manipulation.
2. Rules regarding limitation of transitions for the elements.
3. Rules regarding general consistency of elements in a column.

Regarding the first rule: All of the ESEC matrices for manipu-
lation actions, are started by the symbol: N in the 10 upper rows,
U or O in the middle 10 rows and U or Q in the 10 lowest rows.

Regarding the second rule: Only transitions included in the
grammar are allowed.

Regarding the third rule: The element should be consistent
with the other elements in the same column. If an object is un-
defined (U), destroyed (X) or absent (A) in the ith row within the
set of ten upper rows, 1 ⩽ i ⩽ 10, the corresponding static spatial
relation in rows (i + 10)th and dynamic spatial relations in rows
(i + 20)th should be the same. In addition, if two fundamental
objects are touching in the ith row, 1 ⩽ i ⩽ 10, their corresponding
dynamic spatial relations in (i + 20)th row should be a member
of {HT , MT , FMT }, which are only defined in case of touching and
if two object are not touching, their dynamic spatial relation in
(i+20)th row should be amember of {MA,GC , FMT , S,Q }. Formally:

if (x(i) = X) ⇐⇒ x(i + 10) = X ∧ x(i + 20) = X;

if (x(i) = A) ⇐⇒ x(i + 10) = A ∧ x(i + 20) = A;

if (x(i) = U) ⇐⇒ x(i + 10) = U ∧ x(i + 20) = U;

if (x(i) = T ) ⇐⇒ x(i + 20) → HT |MT |FMT ;

if (x(i) = N) ⇐⇒ x(i + 20) → MA|GC |S|Q ;

1 ⩽ i ⩽ 10

(13)

In the next paragraphs we define the probabilistic version of
the CFG, the so-called PCFG, used for element replacement after
detection of a noise event. Similar to the CFG defined above, the
PCFG can be defined by a quintuple:

G = (N, S, T , P, Pr) (14)

where N, S, T , P are compatible with their definitions in the CFG
and Pr is the set of probabilities of the production rules. Table 3
shows the production rules (explained in Eq. (12)) with their prob-
abilities based on statistical information obtained from the ESEC
matrices of all here investigated manipulations. In PCFG the gram-
matical rules are given as: α → a1 ∗ β|a2 ∗ γ . Here a1 and a2 are
the probabilities of a transition from α to β and γ , respectively.

For example we know according to Eq. (12), the possible tran-
sitions from ‘‘Around’’ (Ar) to either the same Ar or ‘‘Above’’ (Ab),
or ‘‘null’’ (O), or ‘‘Absent’’ (A). Each of these has a separate proba-
bility.4

Ar → a1 ∗ Ar|a2 ∗ Ab|a3 ∗ O|a4 ∗ A (15)

According to our availablemanipulation ESECs, totally there are
213 transitions from Ar , where 169 of them are a transit to Ar , 8
cases go to Ab, 35 elements are converted to O and the remaining

4 We do not mention tr as a possible transition from Ar because tr is not a
legal symbol for our ESEC transitions and is only used as a terminal for ending all
transitions.
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Table 3
The probability of possible transitions between the spatial relations according to the theoretical statistical analysis of manipulation actions.

Fig. 11. The effect of Douglas Peucker and DTW pre-processes algorithms on the x, y and z coordinates of a hand trajectory in a cutting demonstration (a): before and (b)
after applying the algorithms.

Fig. 12. Membership array of an action during the time.

1 elements changes to A. Therefore, a1, a2, a3 and a4 are 0.7934,
0.0376, 0.1643 and 0.0047 respectively and above production rule
is:

Ar → 0.7934 ∗ Ar|0.0376 ∗ Ab|0.1643 ∗ O|0.0047 ∗ A (16)

These different probabilities can be used to perform column re-
placement as described in the main text.

Appendix B. HMM-baseline method for hand motion recogni-
tion

Here we provide the details of our implementation of the base-
line method based on HMMs. We basically follow [40], but expand
the method based on the solutions proposed in [46].

Our data relies on hand segments in each video frame. We
used the quantization of hand orientation into 18 bins as described
by [52]. The obtained codewords were used as input to the HMM
recognizer.

Evaluation, decoding and training of the HMM were solved
by using forward–backward algorithm, Viterbi algorithm, and the
Baum–Welch algorithm respectively, following [40].

Based on the observations in [41,52,53] that – besides orien-
tation – also velocity and location of the hand are useful in hand
movement recognition, we have extended the method to include
fusion of all these three features. For that we followed the frame-
work from [46].

According to this frameworks, HMMs were fused using major-
ity voting. In addition, we used the Douglas Peucker algorithm
and Dynamic Time Warping (DTW) from the same framework for
removing noise and hand velocity variations. The effect of the
algorithm on our data is shown in Fig. 11.

B.0.1. Extension of recognition to prediction
As the HMM in each time step outputs a recognition result,

we have defined that the HMM has predicted the action at that
moment from which on recognition remains stable to the end of
the action. This approach renders a fair comparisonwith our ESEC-
based prediction.

In more detail: suppose action α shall be truly classified as
belonging to manipulation class β . The question is from when the
recognition process can yield and keep this result (namely class β

as the corresponding class of action α). To achieve this, we analyze
time windows. For this, we choose a window size based on the
duration of a meaningful motion segment at a medium speed of
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the human hand motion. Hence, here we use a window of δ = 10
frames,where the frame-rate in our videos is 30 frames per second.
Thus, ten frames is one third of a second and short enough for not
missing ameaningfulmotion. Using this, we divided an actionwith
N frames into [

N
δ
] + 1 time windows.

Then during the recognition process, the discovered classes of
the action α in each time window are found and stored in an
array called ‘‘membership array’’, e.g. in Fig. 12 after the first time
window the highest membership probability is for class λ1, after
the second time window it will be converted to λ2 and so on. Then
by looking at the obtained membership array, we can conclude
from which time window onwards the recognition was stable. In
Fig. 12, in the 4th time window the action is truthfully placed in
class β but afterwards it is wrongly recognized as class λ4. But
from the 6th time window, recognition is correct remains so. Thus,
we take the frame θ at the beginning of 6th time windows or
(5 ∗ δ + 1) frames as the one at which prediction happened. By
dividing the frame number of frame θ by the number of total
frames and subtracting this from 1 we obtain the predictability of
action α.

PF (α) =

(
1 −

θ

N

)
∗ 100% (17)

which is then used to compare against the performance of the
ESEC-based prediction.
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5.0.1 Motivation

The main topic of this thesis is about prediction of manipulation actions. For humans, this is
generally an easy task. Most activities can already be identified by recognition of the participating
objects or movement of the hand before the activity started. This raises the question of how
important spatial relations between objects are to the human understanding of actions and how
humans compete with computer vision algorithms when all manipulation action objects are
represented as cubes of random size and color. Hence, when all helpful object information is
removed. To address this issue we performed a large set of psychophysics experiment in a virtual
reality setup.

5.0.2 Introduction

Virtual reality (VR) replaces boring, flat monitors with 3D worlds that immerse users in unique
visual experience. The concept of VR has been around since about 1970. It involves cutting edge
devices that totally engross the user’s vision system and increase their cognitive awareness of 3D
scenarios. VR navigation means that users experience themselves manipulating objects, reacting to
events and moving around and exploring landscapes. This special immersion is achieved by using
real-time, stereoscopic sound and graphics that present virtual worlds in first-person views. In
fact, VR technology provides intuitive ways for users to explore new environments and master
new skills.

VR can be found in fields as diverse as entertainment, marketing, education, medicine, construc-
tion, road safety training, and many others. They provide numerous possibilities for users to
explore virtual realities for various purposes [50] [51].
Moreover, VR tools give science a new dimension and allow scientific researchers to view
and share data as never before. As an example, virtual reality is being increasingly used in
the field of scientific visualization. This field is based on using computer graphics to express
complex ideas and scientific concepts like molecular models or statistical results. Scientific
visualization is used as a means of communicating abstract concepts to an audience which
also aids understanding. The audience can interact with these images, for example, viewing a
molecular structure at different angles or as a means of problem solving [52]. Virtual reality en-
ables scientists to demonstrate a method or convey complex ideas in a 3D, interactive visual format.

Virtual Reality (VR) is not an entirely new concept; it has existed in various forms since the
late 1960s. It has been known by names such as synthetic environment, cyberspace, artificial
reality, simulator technology and so on and so forth before VR was eventually adopted. The latest
manifestation of VR is desktop VR [53]. VR promised a new concept of technology interaction,
different from traditional mouse and keyboard input with stationary monitors. After several
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attempts to develop consumer products failed, the technology began to gain traction and huge
public interest again, when Oculus VR announced the Oculus Rift headset in 2012. Since then,
many hardware manufactures invested in their own VR headsets and controller development.

Our goal in this chapter of the thesis is to use virtual reality to test our framework. For this, we
defined 10 manipulation actions and made 30 sample scenarios for each of them (each scenario with
different objects and different scene arrangements). After that, we arranged these 300 generated
scenarios as random sequences. Then we conducted a test on 50 people. The test routine is that
for each person, we show 300 scenarios with an interval of 1 second in random order and we ask
them to inform the system by clicking on a button as soon as the type of manipulation has been
recognized.

The moment and accuracy of the predictions are stored for each trial and the participants’ pre-
dictability power is calculated accordingly.

We also apply our ESEC framework on the same 300 sample scenarios and finally we made a
comparison between the predictability power in humans and in the ESEC framework. We had
already compared the algorithmic ESEC framework with SECs and HMMs and this new set of
experiments now does the same with human prediction performance.

5.0.3 Outline

We will first explain the virtual reality system that we used. Afterwards, we demonstrate the
methods employed in our VR experiments and then we describe the results of these experiments
and compare them with the results of the ESEC theoretical analysis.

5.0.4 Virtual Reality System

“We are finally going to be free of 2D monitor. It has been a window into virtual reality that we
have all looked into for 30 or 40 years.”

Brendan Iribe

Key Components in a Virtual Reality System

The general components necessary for building and experiencing VR are sub-divided as listed
below.

• PC ( Personal Computer)/Console/Smart phone
Virtual reality content, which is what users view inside of a virtual reality headset, is very
data-rich. In order to power these interactive three-dimensional environments, significant
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computing power is required. This is where PC (Personal Computer), consoles, and smart
phones come in. They act as the engine to power the content being produced (Fig.5.1 (a)).

• Head-Mounted Display
A head-mounted display (also called HMD, Headset, or Goggles) is a type of device that
contains a display mounted in front of a user’s eyes. This display usually covers the user’s
full field of view and displays the virtual reality content (Fig.5.1 (b)).

• Input Devices
Input devices or controllers are one of the two categories of components that provide users
with a sense of immersion (i.e. convincing the human brain to accept an artificial environment
as real). They provide users with a more natural way to navigate and interact within a virtual
reality environment (Fig.5.1 (c)).

Figure 5.1: VR main components: (a) Computing power, (b) Head-Mounted Display, (c) Motion
controllers

Choice of Development Environment

The Vive VR headset and controller are used in this project. It was released by HTC in April 2016
and features a resolution of 1080x1200 per eye. Its main advantage over competing headsets is its
“roomscale” system, which allows for precise 3D motion tracking in between two infrared base
stations. This provides the opportunity to record and review actions for the experiment on a larger
scale of up to 5 meters diagonally. Furthermore, it is widely supported by all VR game engines.

The Unreal Engine 4 (UE4) is a high performance game engine developed by Epic Games and is
chosen as the game engine of this project. It has built-in support for virtual reality environments
and the Vives motion controllers. After registering and linking an Epic Games account with a
GitHub account, source code access is granted, which greatly helps in development.
The virtual reality system used in this project was designed and implemented as a bachelor’s thesis
by “Stefan Pfeiffer” [54].
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5.0.5 Virtual Reality Experiment

Action Types

The first step was defining an action set. These 10 actions were chosen for the experiment:

• Chop

• Cut

• Hide

• Uncover

• Put on top

• Take down

• Lay

• Push

• Shake

• Stir

All objects, including hand and tools, in all actions are represented by colored cubes of variable
size, color, and location. This is done to allow for a fair comparison with the ESEC method, because
our ESEC framework does not use any object recognition method. Hence, we decided to design
our experiment in such a way that the type of manipulated objects does not provide guidance to
the type of actions. The hand, which is the most important object in a manipulation, is always
shown as a red cube.

Chop: The hand-object (short: hand) touches an object (tool), picks up the object from the ground,
puts it on another object (target) and starts chopping. When the target object was divided into two
parts, the tool object untouches the pieces of the target object. After that, the hand puts the tool
object on the ground, untouches it, and leaves the scene.

Cut: The hand touches an object (tool), picks up the object from the ground, puts it on another
object (target) and starts cutting. When the target object was divided into two parts, the tool object
untouches the pieces of the target object. After that, the hand puts the tool object on the ground,
untouches it, and leaves the scene.

Hide: The hand touches an object (tool), picks up the object from the ground, puts it on another
object (target) and starts coming down on the target object until it covers that object thoroughly.
Then the hand untouches the tool object and leaves the scene.
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Uncover: The hand touches an object (tool), picks up the object from the ground. The second object
(target) emerges as the tool object is raised from the ground, because the tool object had hidden the
target object. After that, the hand puts the tool object on the ground, untouches it, and leaves the
scene.

Put on top: The hand touches an object, picks up the object from the ground and puts it on another
object. After that, the hand untouches the first object and leaves the scene.

Take down: The hand touches an object that is on another object, picks up the first object from the
second object and puts it on the ground. After that, the hand untouches the first object and leaves
the scene.

Lay: The hand touches an object on the ground and changes its direction (lays it down) while it
remains touching the ground. After that, the hand untouches the object and leaves the scene.

Push: The hand touches an object on the ground and starts pushing it on the ground. After that,
the hand untouches the object and leaves the scene.

Shake: The hand touches an object, picks up the object from the ground and starts shaking it.
Then, the hand puts it back on the ground, untouches is, and leaves the scene.

Stir: The hand touches an object (tool), picks up the object from the ground, puts it on another
object (target) and starts stirring. After that, the hand puts the tool object on the ground, untouches
it, and leaves the scene.

For each action 30 samples were recorded. As an important point, the action scenes should never
be distinguishable at the start. Imagine a scene based on the action set with only two visible cubes
at its beginning, with one being the hand. Most actions could be ruled out immediately, as they
require the second, to be picked up object, to interact with a third one. This leaves only shake, push
and uncover as options. Therefore, it was necessary to design our sample scenarios in a way that
no one can predict the type of actions from the scene arrangements. Hence, always many blocks
are shown at the start of an experiment.

Experiment Process

A view of a Vive motion controller and its buttons are shown in the fig.5.2. The experiment is
automatically started and completely controlled by the subject through pressing 5/Down (fig.5.2)
to advance to the next state. This subsection therefore focuses on the experimental procedures and
gives visual samples of the different stages.

As human performance system test, 50 people were recruited for the experiment.Among of them,
35 persons were male and 15 persons were female. The youngest person was 20 and the oldest
one was 68 years old. The average age of participants was 31.62 and their median age was 29.
All people were given an introduction and explanation of the goal and instructed to press the
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Figure 5.2: Vive Motion Controller Buttons

button immediately after realizing which action is being performed in every step. The resulting
(50*300=15000) answers are separated by action and subject number. Participant performance is
then evaluated, by dividing the time at which the answer was given by the total duration of the
scene. This measure is called “Human predictability Power” and describes how much (in percent) of
the scene had been seen by the participant before a choice was made.

Before each experiment begins, in a training stage an example of each action (10 samples in total)
is displayed to the participant to show them how each action is performed with cubes. There is
always a list of actions in the back of these training scenes and, during the display of each action,
the cell containing its name is shown in green. Fig.5.3 demonstrates an example of a “put on top”
action in the training stage.

After the end of the training stage, the test stage begins. The red hand-cube enters the scene, picks
up a cube, and performs an action (fig.5.4). When the action is recognized and the participant
presses the 5/Down button and the moment of this butto-press is recorded as the reaction time. At
that moment also all cubes are removed from the scene so that no post-decision cogitation about
the scene is possible. The controller gets a red pointer added to its front. Hovering over the action
of choice and pressing 5/Down again records the actual choice and advances the experiment to
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Figure 5.3: Experiment Training Stage: Put on top action

the next trial (fig.5.5).

Figure 5.4: Experiment Testing Stage: Action scene playing

At the beginning of the experiment, a result file will be created. Every answer appends a line to the
file, indicating whether the answer was correct or not, the participant reaction time in seconds, the
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Figure 5.5: Experiment Training Stage: Choose the action

name of the action type that the participant has predicted plus the correct name of the action type.
The last item in this line is the name of the recording action file shown to the participant.

This file includes 300 lines (the number of trials) for each person experiment. One of these lines
sample is shown in fig.5.6.

Figure 5.6: Experiment Result File Format

5.0.6 Results

As we discussed in the last section, we selected 10 manipulations and recorded 30 different samples
of each, thus generating 300 sample scenarios. We did both theoretical(ESEC based) and human
experimental analysis on this data and did a proper comparison between them. Now we want to
explain both in more detail.

ESEC Framework Results

We performed Monte Carlo cross validation 20 times, where each time we randomly selected 20
different actions from each class (in total 10*20=200 actions) for training and used them as action
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Table 5.1: Average and Median of predictability power for all action types according to the ESEC
framework

Manipulation type Average Median
Chop 36.55% 35.78%
Cut 52.11% 51.25%
Hide 36.35% 36.88%
Uncover 55.51% 55.86%
Put on top 19.61% 21.16%
Take down 59.31% 58.39%
Lay 50.70% 50.57%
Push 61.71% 60.81%
Shake 46.09% 45.71%
Stir 55.82% 55.61%
Total 47.38% 50%

models for comparison and 10 actions from each class (in total 10*10=100 actions) for testing.
Here, the “Train-Test Ratio” was considered as 66.66%, which is a usual ratio in such studies. The
prediction process is exactly same with the method, which was described before for “frame based
prediction”. As its result, predictability power of each sample scenario based on ESEC framework is
computed. Predictability power=100% means immediate prediction (impossible) and Predictability
power=0% means prediction happened exactly when the displayed action has ended on the screen.

The average and median values of each action typeś predictability power are shown in table.5.1.
As a result of this table, we conclude that the ESEC framework mode can on average predict the
type of action after 52.62% of its progress. According to the total median value, it can make a
correct prediction exactly in the middle 50% of the actions. The detailed enriched semantic event
chain matrices — with the event columns indicating the prediction place in the theoretical analysis
as well as humans — are explained in the section 5.0.8.

Human results

• Removing Low-Performer Data The first point, which should be considered before the analysis
of human results, is removing possible data points of human, which substantial below-average
accuracy in action recognition. Fig.5.7 is a plot showing the relationship between predictability
power (speed of prediction) and accuracy (number of wrong recognitions) in the 50 examined
people. This figure also includes the data linear fit (y = 0.0926x+ 29.8507, R value = 0.1380).

As can be seen, there is only one person (rightmost data point) who, in comparison with the
rest, produces a significant number of mistakes. Therefore, we will remove this person in all
subsequent analyzes and work with the other 49 participant after this. According to a linear fit
and its positive gradient, the people with higher predictability power usually (but not much)
make more mistakes. Likely, this is because faster people do not wait until they are fully sure of
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their predictions and only decide on the initial evidences.

In the following, we show data and discuss potential “learning effects” and “variability of
predictability power” of the participants in all 10 actions of the VR experiment.

Figure 5.7: Comparison between speed and accuracy in the VR action prediction experiment.

• Learning Effects
One important question that arises is whether people show learning or performance improve-
ment during the trials?
There are 30 trial scenarios for each manipulation in the VR test. Thus, we want to know if
the participants’ predictability power for each action type increases by seeing more examples
of that action during the experiment. In other words, does a person’s prediction power in the
first samples show a significant difference as compared to the last examples? To answer this
question, for each manipulation action type, we show a bar plot whose horizontal axis is a
number from 1 to 30 that represents the trial number and the vertical axis shows the average
predictability power of individuals for that trial. Also, we plot the value of standard deviation
(STD) on each bar. Fig.5.8 shows the learning effect among of the participants on all 10 discussed
manipulations. Finally, Fig.5.9 illustrates the effect of learning on the predictability power of the
participants across the grant-average of all 10 actions.
As can be deduced from the Fig.5.9, in the average mode, a very small learning effect is only
observed in the first 5 trials, which, however, is not true for some actions like hide and take
(Fig.5.8). All in all, learning is not significant along trials.

• Variability of Predictability Power in the Same Action
Another interesting question to be asked here is the comparison of the predictability power of
the participants about a specific action. In fact, we want to know: are there different strategies
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Figure 5.8: Increasing the number of observations and its effect on improving the average pre-
dictability power of the participants for each of the 10 manipulations

that may lead to some people performing faster and others slower at recognizing the actions.
Consequently, for each of the 10 manipulation actions, we extracted histograms (Fig.5.10), whose
horizontal axis shows the median values of the predictability power of individuals (the bin-width
of the histogram bars was considered as 3) and their vertical axis is the number of individuals
that have shown this particular predictability. More details of one of these histograms, are shown
in Fig.5.11, which is the enlarged histogram of the “shake” action in Fig.5.10. According to this
figure the median of predictability power values of all individuals to recognize the shake action
is different, while the range of these numbers is between 21 and 42, the largest number is in
range 36 to 39. It means, although some people are slower and a few are faster, but most of them
(31 out of 49 people) predict this action with the predictability power from 36 to 39.

These figures are important because they show the predictability power of the participants in
the same manipulation is different, and the distribution of this ability is various from action
to action, as well. For example, in some actions like shake and uncover, more people perform
better than others, while in put on top action, most people have poor performance and lower
predictability power. Also, in actions like cut and chop, there is no distinct majority with better
or worse results and they contain a distribution of individuals in a wide range of predictability
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Figure 5.9: Learning effect on improving the average predictability power of the participants for
the average of all manipulations

Figure 5.10: Histograms of the median predictability power of the participants for all 10 manipula-
tions
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Figure 5.11: Histogram of the median predictability power of the participants for the shake action

powers.

In the next step, we want to compare the predictability power results of the participants with our
ESEC algorithm and see how similar is the column of the ESECs matrix in which the prediction
of the algorithm takes place and the column in which the majority of people make prediction.

5.0.7 Comparison Between ESEC Framework and Human Performance

In this section we want to compare results from the ESEC framework to those from humans and
answer the question: “Are humans performing faster or slower than the ESEC framework?”

We know that, when our ESEC algorithm collects enough evidence to predict the type of action,
the system is informed immediately, but a human must press a key on the VR controller and
inform the system about the predicted action. The length of time taken for a person to respond
to a given stimulus or event is called “motor reaction time” and to have a fair comparison, we
have to deduct the motor reaction time from the total reaction time used for a prediction. We have
considered this parameter as 300 milliseconds based on the [55] and [56] studies. According to these
studies reaction time depends on a number of external (stimulation intensity, sensory modality,
sensory quality of signal, pulse-to-pulse interval, etc.) and internal (age, gender, professional skill,
functional state, etc.) factors which in average mode is considered to be 300 milliseconds for simple
task like pressing a button in our VR experiment.

Fig.5.12 and fig.5.13 compare the predictability power between ESEC and our 49 praticipants
without and with consideration of the motor reaction time, respectively. Both plots are divided into
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10 parts, each part is assigned to a specific action type and the dots represent the median of each
person’s predictability power for that action. The green horizontal lines and the red vertical bars
show the median of all participants’ predictability power and the median of the ESEC algorithm
for the related action, respectively.

Figure 5.12: Comparison of the ESEC and the participants’ median predictability power without
consideration of the reaction time

Figure 5.13: Comparison of the ESEC and the participants’ median predictability power with
consideration of the reaction time
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As can be seen from these diagrams, reaction time correction shifts the data points and the medians
a bit upward, but the shift value is not much as the trials are long, relative to those 300ms (mostly
trials are longer than 5 seconds). Furthermore, these diagrams show that humans are always a bit
slower than the ESEC algorithm.

Another interesting question about the comparison of the ESEC algorithm and human performance
is that, if we map the moment of the prediction made by the individual in the action scenarios onto
the related ESEC matrices, which column does it match? In spite of the slower human performance,
are humans still using that same event column to perform prediction as the one used by the ESEC
algorithm?

In fig.5.14, we pool responses across all people for each action. Column 0 (marked with the red
arrow) in the histograms indicates that the human has recognized the action at the same ESEC
column as the algorithm did, while column -1 and column +1 in the histograms show the human
has predicted the action one column before or after the ESEC algorithm, respectively. We subtracted
300ms as pure sensor-motor reaction time before the analysis.

Figure 5.14: Histograms of the participants’ median prediction event column number for all 10
manipulations. Remarkably: Column 0 gets the highest values for 6 of the 10 actions (Median!).
Two actions (cut and uncover) are clearly recognized one column later. Chop is widely distributed
but still with a Median of 1. Only Take is recognized quite a bit later.

For a more precise explanation, look at the enlarged sample of one of these actions in the fig.5.15.
As we know, we have 10 actions in this experiment and 30 scenarios are available for each of them.
On the other hand, there are 49 participants with an acceptable output. Thus, each individual
observes 30 samples of a particular action, during the experiment and the action is observed in the
total of 30*49=1470 times. The moments of the participants’ predictions are mapped onto the ESEC
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matrices and the prediction columns are obtained. Then we consider the median values of these
column numbers for each action observation. According to the fig.5.15 in Put on top action, the
median of the prediction columns in 950 of the total is in column 0(the same column as the ESEC
algorithm predicts there). Also, 365 and 12 of the total observations were happening in column +1
column +2, hence shortly after column 0, while in 94 and 2 cases the median prediction columns
are columns -1 and -2 (before the ESEC prediction column). There is also one case that predicts
the type of action in column -4 (4 columns before the ESEC prediction column). The total sum
of these values is 1424, while the trials of each action are observed 1470 times. The difference is
because in 1470− 1424 = 46 cases of the total, the Put on top action was not properly detected and
we had only 1424 observations with the correct recognition. The rest of incorrect recognition are
not included in the histogram.

Figure 5.15: Histograms of the participants’ median prediction event column number for the Put
on top action

The general results in fig.5.14 is to some degree intriguing. It seems that for many actions humans
“do it at the same time chunk” as the ESEC algorithm. Chop, Take down and Hide need a deeper look
as they are for everyone rather more widely distributed.

Figures 5.16, 5.17 and 5.18 show the median of all participants’ predictability power for each of
30 trials of these actions with standard deviation (STD). As can be seen, the variability of the
predictability power is high in many trials, and this leads to the widespread distribution of the
prediction column numbers in fig.5.14.

Cut and Uncover are also interesting and we should consider “how does Column +1 in the ESEC
look like?” for these two actions. (Maybe Column +1 is highly indicative for this action here and
Column 0 not so much).
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To address this, the ESEC matrices of all these 10 manipulation actions and the event columns in
which both, the ESEC predictions and the majority of human predictions happen, are explained in
section 5.0.8.

Figure 5.16: Median of all participants’ predictability power for each trial of the chop action

Figure 5.17: Median of all participants’ predictability power for each trial of the take action
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Figure 5.18: Median of all participants’ predictability power for each trial of the hide action

5.0.8 ESEC Matrices

As a reminder, each ESEC matrix has 30 rows. The first 10 rows indicates the T/N relations
between each pair of the fundamental objects (SEC matrix) and the middle and the last 10 rows
indicate the static and dynamic spatial relations between those pairs, respectively. In this section,
we need to show always the full version of our 10 manipulation actions matrices. The red
marker at the bottom of each matrix marks the column, where the ESEC algorithm made the
decision, while the violet marker at the top shows where the most of participants (according to the
histograms of fig.5.0.8) have recognized this action. For each action:

1. First we denote the columns, which had been prediction columns for any of the people by
light blue color following the distributions in figure 5.14.

2. Then we show all event transitions by a green color. For example if one spatial relation
changes from ”MA” to ”HT” in two subsequent columns, we color both cells green. Excep-
tions:

• Sometimes one relation changes continuously between the several columns
(e.g.“MA”,“HT”,“MT”,... in columns i,i+1, i+2,...). Then we show this by a sequence of
green color for that relation in the consecutive columns.

• Sometimes a spatial relation changes in columns i and i+1 and also i+2 and i+3. In these
case we show the first transition by light green and the second by dark green color. (e.g.
the spatial relations between two items in 4 continuous columns could be: “Ar”,“ArT”,
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“ArT”,“To”, in this case the first transition (Ar→ ArT in column i and i+1) is light green
and the second transition (ArT → in column i+2 and i+3 is dark green.)

3. Also for better differentiation, we have spelt out the event of each blue column below the
ESEC matrix in human terms.

68



Chapter 5. Manipulation Action Prediction By Virtual Reality: A Comparison Between Human
and ESEC Predictability Power

1. Chop

Figure 5.19: Chop ESEC Matrix

6) When object 1 starts to penetrate into the object 2. 7) When the object 1 touches the ground.
8) When object 1 exits from object 2. 9) When object 1 is converted into two parts. 10) When
object 1 is moving apart from the new created objects. 11) When the hand and object 1 are
getting close to the ground. 12) When the hand puts the object 1 on the ground. 13) When
the hand untouches object 1. 14) When the hand is far away.
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2. Cut

Figure 5.20: Cut ESEC Matrix

2) When the hand moves above the ground. 5) When object 1 starts moving on the surface of
object 2. 6) When object 1 starts to penetrate into object 2. 7) When object 1 starts to leave
object 2. 8) When object 1 is divided to two parts. 9) When object 1 is moving apart from
the new created objects. 10) When the hand and object 1 are getting close to the ground.
11) When the hand puts object 1 on the ground. 12) When the hand untouches object 1. 13)
When the hand is far away.

70



Chapter 5. Manipulation Action Prediction By Virtual Reality: A Comparison Between Human
and ESEC Predictability Power

3. Hide

Figure 5.21: Hide ESEC Matrix

4) When the hand and object 1 are moving away from the ground. 5) When object 1 starts
covering object 2. 6) When object 1 completely covers object 2 (object 2 is absent). 7) When
the hand untouches object 1. 8) When the hand is far away.
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4. Uncover

Figure 5.22: Uncover ESEC Matrix

4) When object 1 starts moving away from the ground and the covered object begins to
appear. 5) When object 1 untouches object 2. 6) When the hand and object 1 are getting close
to the ground. 7) When the hand puts object 1 on the ground.
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5. Put

Figure 5.23: Put ESEC Matrix

5) When the hand puts object 2 on object 1. 6) When the hand untouches object 2. 7) When
the hand is far away. 8) When the hand leaves the scene.
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6. Take

Figure 5.24: Take ESEC Matrix

1) When the hand is far away. 2) When the hand moves above the ground. 3) When the hand
touches object 1. 4) When object 1 is separated from object 2 by the hand. 5) When the hand
and object 1 are getting close to the ground. 6) When the hand puts object 1 on the ground. 7)
When the hand untouches object 1. 8) When the hand is far away.
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7. Lay

Figure 5.25: Lay ESEC Matrix

3) When the hand touches object 1 on the ground. 4) When the hand starts laying object 1 on
the ground. 5) When the hand stops moving object 1. 6) When the hand untouches object 1.
7) When the hand is far away.
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8. Push

Figure 5.26: Push ESEC Matrix

4) When the hand starts pushing object 1. 5) When the hand untouches object 1. 6) When the
hand is far away.
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9. Shake

Figure 5.27: Shake ESEC Matrix

4) When the hand separates object 1 from the ground and lifts it. 5) When the hand starts
shaking object 1. 6) When the hand and object 1 are getting close to the ground. 7) When the
hand puts object 1 on the ground. 8) When the hand untouches object 1. 9) When the hand is
far away.
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10. Stir

Figure 5.28: Stir ESEC Matrix

7) When object 1 starts stirring object 2. 8) When object 1 starts leaving object 2. 9) When
object 2 is exactly on top of object 1. 10) When object 1 untouches object 2. 11) When the
hand and object 1 are getting close to the ground. 12) When the hand puts object 1 on the
ground. 13) When the hand untouches object 1.
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Chapter 6

Summary and Future Remarks

This chapter concludes this thesis with a short summary and final remarks. All previous chapters,
explained so far, include their own summary sections in which main findings with corresponding
advantages and drawbacks are discussed. In this chapter, we will first highlight the most important
points of each chapter and then continue with the problems of ESEC framework and future remarks.

6.0.1 Summary

In this thesis, we introduced a framework for semantic representation of manipulation actions,
named as “Enriched Semantic Event Chain (ESEC)”, which focuses on spatial relations between
objects of a scene. We divided possible spatial relations into “static” and “dynamic” relations.
ESEC creates a temporal sequence of static and dynamic spatial relations between the objects that
take part in the manipulation aiding early action recognition. Mathematically speaking, ESECs are
transition matrices that symbolically encode the relational static and dynamic changes between
(unspecified) objects. Each row of an ESEC matrix represents the sequence of the spatial relations
between each pair of manipulated objects attained during the continuous video. Whenever a
change occurs in any of those spatial relations a new column is created. As a consequence, every
column reflects at least one such change. In order to facilitate the spatial relations computations, we
model each object in a simple AABB (Axis-Aligned Bounding Box) and perform calculations based
on the relationships between the AABBs. Accordingly, we suggested a method for recognition of
manipulations and tested it on MANIAC data-set.

Moreover, we proposed an approach for the prediction of manipulation actions, based on the
ESEC framework and compared it with the original SEC and an “object-free” Hidden Markov
Model (HMM)- based method. We showed that on average, the ESEC framework outperforms
both SEC and HMM-based methods. One possible strength of ESEC is that it does not rely
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on time-continuous information, making it considerably less prone to variability (and noise),
compared to when using the quasi-symbolic representations. Indeed, when watching some of the
examples in the MANIAC data set, it is perceivable that time continuous information does not
necessarily improve prediction much, because the only aspect added by this type of information is
the action dynamics. Dynamics do not influence the action class but will play a role in how an
action is executed (e.g. fast versus slow, etc.)

In the next step, we compared our method’s performance in predicting manipulation actions with
that of humans, by selecting 10 actions which are distributed in all possible groups and subgroups
of manipulations and constructing 300 scenarios of those actions. We provided an experiment in
the virtual reality environment and compared the predictability power of the ESEC algorithm with
50 human participants and analyzed the results. We finally came to the conclusion that the present
algorithm works better than humans, as well as a mathematical HMM based method.

ESEC framework does not require any object recognition, action trajectories, shape features or
action reconstruction and performs the recognition tasks only by using semantic representation
and spatial relations in a simple way which makes it unique as of other studies. Furthermore, we
designed a noise reduction pre-processing algorithm which eliminates those errors occurring due
to the presence of noise. ESEC has a negligible complexity, can perform in real time scenarios and
is strongly linked to the way human language describes an action. Several psychological investiga-
tions have reported that event-based en- coding might be fundamental to action understanding in
the brain (see e.g. [57]) and, thus, our framework might indeed be better linked to the way humans
understand actions.

6.0.2 Problems of ESEC Framework

• Our framework heavily relies on the segment permanence (i.e., reliable tracking) which is
performed by advanced computer vision methods and we are aware that failures in the
computer vision can harm our approach. Clearly, on the computer vision side, improvements
can be made to better assure this, which is not in the core of this thesis.

• We modeled each object in an Axis Aligned Bounding Box (AABB) which is not an accu-
rate model for objects with concave shapes. AABB model was selected because of its low
complexity and simplicity of calculation allowing ESEC to run online. Although we have
already achieved improved results at the moment, we can get more accurate results using
the oriented bounding box (OBB) for the object modeling.
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6.0.3 Future Remarks

According to the insight gained in this work, the following paths are suggested for future works:

• Currently, ESEC framework is used in representation, discrimination, recognition and pre-
diction of single hand manipulation actions (or two hands in the cases that one hand only
supports an object), we are nevertheless planning to extend this approach to dual arms ma-
nipulations or interactions of two hands. In this regards, the first step is to extract Dynamic
Motion Primitives (DMPs) which are used for robot executions and the second step is to
define the timing relationships between DMPs according to a Context Free Grammar (CFG)
based structure. The extension of the current ontology to bi-manual tasks enables us to
perform more/better actions while introducing new challenges.

• The key feature of our suggested framework is that it does not rely on any object recognition,
but that it equips ESEC with additional information such as affordances of objects potential
of having a significant effect on the prediction speed.

• Given the tight link between Natural Language Processing (NLP) and scene description, we
can incorporate Natural Language Processing (NLP) and Learning from Demonstration (LfD)
into our framework for future works to further enhance the performance of our approach.
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[41] F. Wörgötter, E. E. Aksoy, N. Krüger, J. Piater, A. Ude, and M. Tamosiunaite, “A simple ontol-
ogy of manipulation actions based on hand-object relations,” IEEE Transactions on Autonomous
Mental Development, vol. 5, no. 2, pp. 117–134, 2013.

[42] M. Robiony, I. Salvo, F. Costa, N. Zerman, M. Bazzocchi, F. Toso, C. Bandera, S. Filippi, M. Fe-
lice, and M. Politi, “Virtual reality surgical planning for maxillofacial distraction osteogenesis:
the role of reverse engineering rapid prototyping and cooperative work,” Journal of oral and
maxillofacial surgery, vol. 65, no. 6, pp. 1198–1208, 2007.

[43] S. K. Ong and A. Y. C. Nee, Virtual and augmented reality applications in manufacturing. Springer
Science & Business Media, 2013.

[44] A. Van Dam, A. S. Forsberg, D. H. Laidlaw, J. J. LaViola, and R. M. Simpson, “Immersive
vr for scientific visualization: A progress report,” IEEE Computer Graphics and Applications,
vol. 20, no. 6, pp. 26–52, 2000.

[45] R. S. Kalawsky, “The science of virtual reality and virtual environments: a technical, scientific
and engineering reference on virtual environments,” 1996.

[46] Z. Merchant, E. T. Goetz, L. Cifuentes, W. Keeney-Kennicutt, and T. J. Davis, “Effectiveness of
virtual reality-based instruction on students’ learning outcomes in k-12 and higher education:
A meta-analysis,” Computers & Education, vol. 70, pp. 29–40, 2014.

86



Bibliography

[47] W. S. Kim, “Computer vision assisted virtual reality calibration,” IEEE Transactions on Robotics
and Automation, vol. 15, no. 3, pp. 450–464, 1999.

[48] N. Ayache, “Medical computer vision, virtual reality and robotics,” Image and Vision Computing,
vol. 13, no. 4, pp. 295–313, 1995.

[49] F. Ziaeetabar, T. Kulvicius, M. Tamosiunaite, and F. Wörgötter, “Prediction of manipulation
action classes using semantic spatial reasoning,” in 2018 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS). IEEE, 2018, pp. 3350–3357.

[50] W. Winn, “A conceptual basis for educational applications of virtual reality,” Technical Publica-
tion R-93-9, Human Interface Technology Laboratory of the Washington Technology Center, Seattle:
University of Washington, 1993.

[51] S. Zhang, J. Teizer, J.-K. Lee, C. M. Eastman, and M. Venugopal, “Building information
modeling (bim) and safety: Automatic safety checking of construction models and schedules,”
Automation in Construction, vol. 29, pp. 183–195, 2013.

[52] T. S. Mujber, T. Szecsi, and M. S. Hashmi, “Virtual reality applications in manufacturing
process simulation,” Journal of materials processing technology, vol. 155, pp. 1834–1838, 2004.

[53] M. O. Onyesolu and F. U. Eze, “Understanding virtual reality technology: advances and
applications,” in Advances in Computer Science and Engineering. IntechOpen, 2011.

[54] S. Pfeiffer, “Virtual reality system for action prediction,” Bachelor Thesis, Göttingen University,
January 2019.

[55] A. V. Zaitsev and Y. A. Skorik, “Mathematical description of sensorimotor reaction time
distribution,” Human Physiology, vol. 28, no. 4, pp. 494–497, 2002.

[56] C. Cabib, S. Llufriu, J. Casanova-Molla, A. Saiz, and J. Valls-Solé, “Defective sensorimotor
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