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affects Theorem [2.22] but not Theorem [2.27 These and all further statements
affected have been indicated.
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Abstract

We study a weak form of Gromov-Hausdorff con-
vergence of Riemannian manifolds, also known as
Benjamini-Schramm convergence. This concept
is also applicable to other areas and has widely
been studied in the context of graphs.

The main result is the continuity of characteristic
numbers normalized by the volume with respect
to the Benjamini-Schramm topology on the class
of Riemannian manifolds with a uniform lower
bound on injectivity radius and Ricci curvature.
An immediate consequence is a comparison the-
orem that gives for any characteristic number a
linear bound in terms of the volume on the entire
class of manifolds mentioned. We give another
interpretation of the result showing that charac-
teristic numbers can be reconstructed with some
accuracy from local random information.
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Introduction

The class of (equivalence classes up to isometry of) compact metric measure
length spaces are denoted by M. Additionally, let PM denote the class of
pointed metric measure spaces (pointed mm-spaces) that are proper length
spaces. We will often skip base point, metric and volume measure when denoting
and element of this class, i.e. M = (M, d, vol,p). The main results of this thesis
concerns a space PM of (equivalence classes of) oriented pointed Riemannian
manifolds. For pointed metric measure spaces there is the established notion
of pointed Gromov-Hausdorff distance (PGH-distance). There are refinements
for mm-spaces and oriented Riemannian manifolds, as explained in Sections [1.2
and [L3]

There is a weak, or probabilistic, notion of PGH-distance, given by the notion
of Benjamini-Schramm covergence (BS-convergence). One can make sense of
this concept in a far broader variety of contexts. The concept originated in the
study of graphs (Benjamini and Schramm [BS01], Aldous and Steele [AS04], and
Aldous and Lyons |[AL07)) and found vast application in this area, e.g. |[Lyo05}
BSS08}, [BL10; Bor+13; |ATV17; |AH15; |Abé+16], where it is also called local
weak convergence. The other two big areas of application are measured group
theory |16; |Gell5], entropy theory, and dynamical systems [Bowl17]. In this
context the contributions of a group of seven mathematician, calling themselves
"Seven Samurai' on lattices in Lie groups, are to mention [7s11}|7s17} 7s16] as
well as related results for arithmetic orbifolds [Rail3], and non-Archimedean
local fields [GL17].

Furthermore, there are occurrences in areas such as random matrix theory
[And17], simplicial complexes |Elel0], Riemannian manifolds [AB16|, or non-
commutative probability [Mall7]. A major question that is underlying these
investigations is whether in any context every unimodular space is sofic: A sofic
space is a random space that can be described as the BS-limit of normal, i.e.
deterministic, spaces of finite volume. Such spaces enjoy the property of being
unimodular, a concept introduced in § 2.1.2] that can be formulated by the
Intrinsic Mass-Transport-Principle stating that a point receives as much as it
sends under transport. The arising question is whether every unimodular random
space is sofic, i.e. a BS-limit of random spaces. Under appropriate definitions
this question amounts in group theory to the question if every group is sofic (see
also Remark , a big unsolved problem.

We will introduce BS-convergence in detail in Chapter 2} Let P X denote the
space of probability measures on a metric space X endowed with the topology
of convergence against bounded continuous test functions.

Definition 0.1 (BS-convergence). Let M denote the set of (equivalence classes



of) compact measure length spaces with finite measure. For any M = (M, vol) €
M let pps: M — PM be the map p — (M, p, vol) that assigns to each point a
pointed version of M. Further let i be the map

- vol

where vol is finite since M is compact. We endow M with the topology induced
by fi and the weak topology on P(PM). Likewise, we can say that a sequence
(M) C M of spaces BS-converges if the laws fi,,(M) converge (against continuous
test functions).

For the probabilistic formulation of BS-convergence, we first have to introduce
the sample function on PM by

syt (M, p) — (Blp, 7], p).

A sequence (M, vol,) € M BS-converges if for random variables X,,: Q@ — M,
distributed according to vol,, the random variables

w = $p(Mp, Xp(w)) € PM

converge in distribution for every r > 0.

By a parameter we will formally understand a partially defined real valued
function on M, C M C PPM. Further we introduce the following Hungarian
terminology (in normal statistics one would rather speak of "estimating" than of
"testing" in the application given in Theorem below)

Definition 2.6. A parameter is testable if it is continue and can be continued
to the boundary of its domain.

Definition 2.7. A testable parameter is testable in constant time if its domain
is relatively compact.

In this thesis we study the probably most investigated subclass of M, Rie-
mannian manifolds of some fixed dimension d. An important invariant in the
investigation of (closed) oriented even-dimensional Riemannian manifold are
Characteristic numbers. By so-called Chern-Weil theory they can be expressed
by integration of certain forms on a manifolds. Each such class is described by
a polynomial IT on the ring My(C) invariant under base change. The invariant
ITI[M] corresponding to M is a complex number. It is possible to choose a base of
characteristic numbers for d-dimensional manifolds such that the characteristic
number of each base vector gives an integer, e.g. such a basis can be chosen in
terms of Pontryagin numbers. However, we are interested in the normalized
characteristic number

1I[M]
vol(M)’
Theorem 2.24 (Geometric Main Theorem). (Assuming the validity of Lemma

Let II be an invariant polynomial on My(C) and i > 0, A € R. On the class of
smooth d-dimensional oriented Riemannian manifolds M satisfying

en(M) =

(i) Ric M > —A,



(ii) inj M > i
the parameter @1y is testable in constant time.
A related result is:

Theorem 2.27 (volume comparison). Let IT be an invariant polynomial on
My4(C), i >0, and A € R. There is a constant C = C(I1,4,A) such that

IT[M)| < Cvol(M)
for any closed Riemannian d-manifold with
(i) Ric M > —A,
(i) inj M > .

The quest for such bounds goes back to Cheeger and Gromov |[CG85|.

Crucial as well is the geometric motivation of this definition by the following
theorem. This is that small changes of a space result only in small changes of
the parameter, e.g. 1. A probabilistic way to make this precise is as follows:

Theorem 2.10. Let ¢ be a parameter that is testable in constant time. For
any € > 0 there is a radius r and a natural number n and a tester 7, i.e. a map
7: (5,(PMy))" = R, such that the bound

Prob(Jo(M) — 7(s; X1,...,8:Xpn)| <€) >1—¢ forall (M,d, vol) € M,

holds, where X1, ..., X, are uncorrelated random variables with law vol.

1
vol(M)

This theorem is formulated for mm-spaces but holds as well for parameters
on P(PM) or also for other kinds of spaces, like simplicial complexes. To the
knowledge of the author this is the first time that it is explicitly noted X1, ..., X,
have to be only uncorrelated and not independent.

Testability of normalized invariants holds for other invariants than charac-
teristic numbers and also on different kinds of spaces: For a suitable class of
mm-spaces, normalized Betti numbers are testable as shown by Bowen |[Bow15|
Theorem 4.1] and [Lucl4]. For simplicial complexes of bounded vertex degree
Elek |Elel0] proved that Betti numbers normalized by the number of vertices
are testable in constant time. This result was extended to the signature of
4k-dimensional triangulated manifolds in [Lucll].

The first chapter summarized preliminaries on mm-spaces and Riemannian
manifolds supplemented by a new economic explicit metrization of the space
of isomorphism classes of mm-spaces using a generalized Wasserstein distance,
Theorem [I.6] that is proved in appendix [A:2] as a result in its own right. In
Chapter [2] we explain the concept of Benjamini-Schramm convergence and our
main result. The final chapter is devoted to the proof of the main lemma,
Lemma The idea of the proof is to choose charts in a controlled random
way.






Chapter 1

Preliminaries

In the first section we present some established underlying notions and theorems,
many of which are found in the textbooks of Burago, Burago, and Ivanov |[BBIO1]
and Petersen [Pet16].

1.1 Metric geometry

In matters of metric geometry we follow mainly Burago, Burago, and Ivanov
[BBIO1]. In detail, we use the following conventions and definitions: The
elementary notion is the notion of a (pointed) metric space, denoted by (M, d),
(M';d") or (N,dy) (M,d,p), (M’',d',p") or (N,dn,q), respectively). Note that
d might have the value co. Usually, we write M and N suppressing the metric
(and often also the base point). If no confusion can arise, the distance is also
denoted by |zy| = d(z,y) or, indicating the space, by |z y|y = dy(z,y). We
will also write

a Ab:=min{a,b} and aVb:=max{a,b}.

The class of maps f: M — N considered in this thesis will largely depend
on the context; but it is called an embedding if it is distance preserving, i.e.
|f(z) f(y)|n = |z y|a for all z,y € M; and it is called an isomorphism or an
isometry if it is bijective and distance preserving.

By a notion of convergence on some set X we mean a predicate on XN x X,
i.e. a function AN x X — {false, true}, that should be interpreted as saying
whether or not a given sequence converges. The topology induced by a
notion of convergence on X is defined by declaring a set U to be open in X
if for any x € U and any sequence (z,), C X converging to z it holds that all
but finitely many x; lie in U. This definition guarantees that the intersection of
finitely many open sets is open. In the other direction any topology or metric
induces a notion of convergence by saying that a sequence converges to a point
x if for any neighborhood of x all but finitely many elements of the sequence are
contained in this neighborhood. Moreover we say that a sequence subconverges
if it has a converging subsequence.

Lemma 1.1. Let X and Y be two spaces with a notion of convergence and
f: X =Y be a set-theoretic map. If for any sequence x,, converging to some x
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with respect to the notion of convergence on X the image points f(x,) converge to
f(x) with respect to the notion of convergence on Y, then the map f is continuous
with respect to the induced topologies on X and Y.

Proof. Take any subset V' C ) open in the induced topology on ). Further take
any point z € f~1())) and assume that there is some sequence x,, converging
to « with respect to the notion of convergence on X. Then f(x,) converges to
f(z), hence for sufficiently large n the image points f(z,) are in V' and therefore
x, € f7H(Y) for these n. This proves the claim. O

Given a topological space (X,7T) let C denote the induced notion of conver-
gence. It follows from definition that any 7-open set is open in the topology
induced by C. Observe further

Lemma 1.2. In a metrizable topological space (X,T) a set U is in T if and
only if for every sequence converging to a point in U with respect to the notion
of convergence induced by (X, T) all but finitely many members already belong
toU.

Proof. Fix a metric on X inducing 7. Let C denote the notion of convergence
induced by (X, T). Further let 7' denote the topology induced by C. Observe
that as noted above T C T’

For the non-trivial direction take a subset U such that for every sequence
(zn)n converging with respect to C to a point z € U all but finitely many
members are in U. Assume that U does not belong to 7. By [Kel75, p. 119] a
subset U of a metric space is open with respect to the induced topology if and
only if for each x € U there is a € > 0 such that the open ball of radius € around
x is contained in U. The assumption that U is closed amounts to saying that
there is a point € U such that for each € > 0 there is a point x. of distance less
than e to x such that x. ¢ U. Take the sequence (21 /y,),. We have x,,, 270 g
and xy ¢ U for all n. This is in contradiction to our assumption. O]

1.1.1 GH-convergence

To establish a notion of convergence on the class of isometry classes of metric
spaces, we agree on a further conventions. Closed balls and open balls in a
metric space are denoted by

Blz,r] = B[z, 7] and B(z,r) = By(a,r),

respectively, the index is suppressed if it is clear to which space z belongs, e.g.
x=por M =R?if x = 0. Sometimes we use even the shorthands z"! or z").
They are derived from the notations

AV ={zeM|Ve>0:3yc A: |zy|<r+e} and
AV ={zeM|3ycA:|zy <r}

for the closed and open thickening of some set A C M. Define its diameter by

diam(A) == sup |z y|. (1.1)
z,y€A
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The distortion of a map f: M — N is given by
distor(f) == sup_ 2yl = |(@) F@)]

z,y

The Hausdorff distance of two closed subsets A, B C M is given by
du(A, B) = inf{r € [0,00] | BC A" and A C B" }.

This can be generalized to the Gromov-Hausdorff distance (GH-distance)
between two metric spaces

dan(M, N) i= inf du(o(M),n(N))

where the infimum is taken over all embeddings ¢: M — L and n: N — L in some
metric space L, compare [BBIO1, Definition 7.3.10]. The class of (isomorphism
classes of) compact metric spaces forms a metric space with respect to dgg. This
space is complete as a consequence of [BBIO1, Theorem 7.4.15]. A sequence of
pointed metric spaces M,, PGH-converges to M if for every ¢ > 0 and r > 0
there are for sufficiently large n (not necessarily continuous) maps

tn: Blpn,r] = M (1.2)
such that
tn(pn) =p, distor(c,) <e, and B[p,r —¢] C (LnB[pn,T])E). (1.3)

The functions ¢,, are also called e-isometries or comparison maps.

1.1.2 Comparison angle

Given three points x, y, and z in M such that y is distinct from z and z, we
can assign to them the comparison angle at y between x and z

2 2 2
K(l‘ayaz) ‘= arccos |$y‘ + |yz| ‘$Z|
2z yllzy

This definition is derived from the law of cosines. For a sequence M,, converging
to a space M via some maps ¢ and points x,, Yn, 2n, and x, y, z it is immediate
from definition that

(1.4)

LTy —T ~ ~
{Lyn =y asn — oo implies L(Tn, Yn, 2n) = L(x,y, 2). (1.5)

1.1.3 Proper length space

To each continuous path v: I — M we can assign its length

length y := Sup{ > Iy(@iz1) (@)

i=1

xo,...,xnel,nEN}.

Further on the class of metric spaces there is the idempotent operation of forming
the intrinsic metric

d(z,y) == inf{length~ | v is a path from z to y } (1.6)

for a metric space (M, d) with the canonical continuous map (M, d) — (M, d).
A length space is a metric space such that this map is an isometry.
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1.1.4 Geodesics

In a length space a shortest path, or minimal geodesic, v: I — M is a path
v from x to y such that d(z,y) = length v or, equivalently, for I = [a, b] we have
d(vy(a),y(t)) =t—a p. 48]. A metric space M is proper if every bounded
closed set is compact. Note that in this case M is separable. It is a consequence
of the Arzela-Ascoli theorem that in a proper length space the distance of two
points is always realized by a shortest path Theorem 2.5.23]. Note that
by the Hopf-Rinow-Cohn-Vossen theorem, Theorem 2.5.28], any locally
compact complete length space is already proper.

In a length space a geodesic is a path v: I — M such that t € I is contained
in the interior of a subinterval J = J; C I such that 7| is a minimal geodesic.
The injectivity radius at x € M, inj, M, is defined by saying that inj, M > r
if all geodesics «,7’ joining x to some y of length not greater than r describe
the same curve in M. Further set inj M := inf, inj, M. The injectivity radius is
not continuous with respect to Gromov-Hausdorff convergence, as can be seen
from the example:

dn q
° . ° ]

where inj, M, — 0 while two distinct geodesics starting at p € M can only
intersect at the poles and any geodesic emitting from g, goes to the south pole
without intersectiing any other geodesic emitting from p,, while any two geodesics
emitting from ¢ intersect at p.

1.1.5 Space of metric spaces

Let PM denote the class of (isomorphism classes of) pointed proper length
spaces. This class can actually be represented as a set due to the separability
statement of Theorem below. As in the case of the space of close subspaces of
a metric space there can be given a metrization, that is compatible with pointed
Gromov-Hausdorff convergence. Define for two pointed spaces (M, p) and (N, q)

dpeu(M, N) = Z r2 A di’GH (B[pa T]v B[qv T]) (1.7a)
pan (M, N) = inf du (eM,9N) + |e(p) n(q)] (1.7b)

where the infimum is taken over all embeddings ¢: B[p,7] — L and n: Blg,r] = L
to some compact metric space L = (L, |..]). This definition gives a reasonable
metric on PM. This fact is expressed by the following proposition proved in

appendix
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Theorem 1.3. On PM a metric is given by dpcu, that is complete, separable,
and induces the same notion of convergence as defined by (1.2) and (1.3).

Remark 1.4. The crucial definition of dpgn metricizes PGH-convergence
only if the domain is restricted to the class of length spaces, though this is
sometimes forgotten in the literature. To see the problem, take a space M =
({p,z},p) with |pz| = 1. This space should be the limit of M,, = ({p,z.},p)
with [pz,| = 14 1/n. But already for » = 1 the summand in is equal to 1
for all n. Despite this fact, it is possible to define dpgy in a more refined way
on the entire class of proper spaces.

1.2 Metric measure spaces

By a metric measure space, or mm-space, M we understand a metric space
that is in addition endowed with a boundedly finite measure, i.e. any bounded
set has only finite measure. Note that in this case the measure is necessarily
a Radon measure (every boundedly finite measure on a metric space is Radon
[Dud02, Theorem 7.1.3], i.e. it is inner regular, outer regular and locally finite).
We denote the measure by vol and call it volume. Normally, these spaces will
also be pointed and we will shortly write M = (M, d, vol, p).

1.2.1 Convergence of measures and mm-spaces

Let MX denote all boundedly finite measures on a metric space X. Moreover
let P(X) =P X denote all probability measures on X. For probability measures
we will also often use the term law. On both spaces we define topologies in
terms of test functions f: X — R

#n%uin/\/l)(<:>/fdun%/fdu (1.8)
for all bounded continuous f with bounded support
Pn—>PinPX<:>/fdun—>/fd,u (1.9)

for all bounded continuous f.

The former notion of convergence is often called weak” convergence. The
latter is called weak convergence or simply convergence in law. If X is a
complete separable metric space, so MX is completely metrizable and separable
[IDV03, Theorem A2.6.111(i)]. Moreover for such X the topology obtained by
restricting MX to P X coincides with the topology of law convergence (e.g. as a
direct consequence of [DV03| Proposition A2.6.11(iii)]). Restriction of a measure
pon X to a Borel set A C X by

ula and  pNA.

Denote by PM the class of (isomorphism classes of) proper pointed metric
measure spaces M = (M, d, p, vol) that are length spaces. To define a suitable
metric on PM, first define the bump function b, , by

1 if lzy|<r-—1
bor(y) =qr—lvyl ifr—1<|zy <r (1.10)
0 if |zy| >
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We say that a sequence (M,,),, C PM does Pmm-converge to M if for all » > 0
and € > 0 there are for sufficiently large n measurable maps

tn: Blpn, 7] = M (1.11)

such that holds and ¢y (by, (.)vol,) weak? converges to b, ,.vol.

A further generalization, that is necessary due to technical reasons, are
pointed mm-spaces with k-measures (M, d,p, voly, ..., voly) for some k =
1,2,.... The definition of convergence of mm-spaces is to be read mutatis
mutandis, i.e. weak? convergence of tp. (bp, r(.)v0lin) to by, (.)vol; for all
i=1,...,kis required. Let PM* denote the space of (equivalence classes of)
pointed proper length spaces with k measures.

1.2.2 Space of mm-spaces

Let PM denote the class of pointed mm-spaces (M, d, vol, p) such that (M, d, p)
is in PM, i.e. it is a proper length mm-spaces, and vol € M(M). A metrization
of the class of arbitrary proper mm-spaces with k-measures by a separable
complete metric is stated in Bowen [Bow15, Theorem 3.1]. On the space PM!*!
of pointed mm-spaces with k measures we introduce the following alternative
shorter metrization:

> Blp, r], by rvoly, ..., by rvolk, D)
d M M/ — 2/\d/ ( ) » VP, 9 s VD, 9 9
P (M, M) Z " PM (Blp', 7], by yvol', ... by rvoly,p)

r=1

) (1.12a)

di (LM, M) + [e(p) ' (P)]
dong(M, M') :==inf su k
PM( ) v, fl,...,I;k: +Z/fz d(L*’UOlZ' —L;UOZ;)
i=1

L—[-1,1]

(1.12b)

where the infimum is taken over all embeddings t: M — L and «/: M’ — L to
some compact metric space L = (L, |..]), like in (1.7b)); and the supremum is
taken over all Lipschitz functions f: L — [—1, 1] with Lipschitz constant not
greater than 1.

Remark 1.5 (Wasserstein distance). The term introduced for each measure is
the dual representation of the Wasserstein metric given by the Kantorovich-
Rubinstein theorem for arbitrary measures: The well established Wasserstein
distance on the laws on a metric space (M, d) is the given by [Dud02 p. 420]

W(P.Q) = int [ da,y)d

where the infimum is taken over all laws on M x M such that the marginals,
i.e. the push-forwards along both projections, are P and @. By the well-known
Kantorovich-Rubinstein theorem [Dud02, Theorem 11.8.2] this quantity can
equivalently be calculated by

sg/faP—Q) (1.13)

where the supremum is taken over all Lipschitz functions f: M — [—1,1] with
Lipschitz constant not greater than 1.
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The Wasserstein distance can be generalized for arbitrary measures p and
v on a metric space M. First note that the classic definition of Wasserstein
distance W works fine for measures of same mass. Further let the mass |u| of a
signed measures p = put — pu~ be uT (M) + pu~(M). Define

W)= inf |u—fl+ v — o]+ W(a0).

This metric was introduced by Piccoli and Rossi [PR14]. In [PR16] these au-
thors prove the Kantorovich-Rubinstein theorem for the generalized Wasserstein
distance, i.e. W can be calculated by —note that in [PR14; PR16| only
measures on R? are considered but the proof of the Kantorovich-Rubinstein
theorem therein works for any locally compact metric spaces.

Theorem 1.6. On PM*! o metric is given by dpype, that is complete, separable,
and induces the same notion of convergence as defined by (1.11]).

Let PPM¥ denote the set of (isomorphism classes of) doubly pointed mm-
spaces, i.e. spaces with two distinguished points. A complete and separable
metric on this space is given by

dpene(M, vol, p, q), (M, ol ¢/ q'))
= |lpal = 0" ¢'l| + dppavern (M, vol, 3, p), (M’ vol', 1, 9'))
+ dpsan (M, v0l, 8y, ), (M’ 00l 8,,q')) (1.14)
where d,, etc. are Dirac measures and v—>0l = (woly, ..., voly) abbreviates the

collection of measures. The definition uses the dpyx+1) twice simply to guarantee
symmetry.

1.2.3 Measure theory

Lemma 1.7 (integration lemma). Let X and ) be complete separable metric
spaces. Let my: X — MY be a map continuous with respect to weak# con-
vergence on MY. For any law P on X and any bounded Borel set A C Y the
integral

Q(P): An—>/ mg(A) dP(x)
x
is defined. This assignment determines a measure Q(P) on ). Further,

(i) if m(y(A) is uniformly bounded for any bounded Borel set A, then the
assignment P — Q(P) is continuous with respect to convergence of laws
and weak? convergence;

(ii) if the codomain of m( actually restricts to P Y, then Q(P) is a law;
(iii) if the integral [ fdQ(P) is defined for a function f:Y — [—o0,00] it can
be calculated by

[ raew) = [[ swyam.ar
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Proof. The Borel o-algebra of MY is the smallest o-algebra for which the
evaluation functions p — p(A) is measurable for all bounded A [DV03] The-
orem A2.6.ITI(iii)]. Being continuous the assignment x — m, is measurable,
hence the concatenation x — m,(A) is measurable and Q(P)(A) exists. Also
by [DV03l, Theorem A2.6.111(iii)] the bounded Borel sets form a semiring (i.e.
a system of subsets containing the empty set, closed under finite intersections,
and with the property that for any two sets U, V we have U \ V is the union of
finitely many disjoint sets of the system) that generates the Borel o-algebra of
MY. By the monotone convergence theorem the assignment Q(P) is countably
additive on this semiring. Hence |[Dud02, Proposition 3.2.4] @ extends to a
measure on he Borel g-algebra of M.

Claim is stated by Fremlin [Fre03, par. 452F]. For claim assume
that m((A) is uniformly bounded for any bounded Borel set A. The integral
J fdQ(P) is defined for any continuous bounded f with bounded support. Note
that the map x — [ f(y) dm,(y) is continuous as a concatenation of m) and
evaluation on f as well as bounded in absolute value by sup, , |f(y)|m.(supp f)
due to our assumption of a uniform bound. Hence, for any convergent se-
quence P, — P we observe [ fdQ(P,) = [[ f(y)dm,(y)dP, converges to
[[ fy)dmy(y)dP = [ fdQ(P). This is to say that Q is continuous.

For claim insert ) and observe that Q(P)(Y) = [1dP = 1 assuming
that my is valued in P ). O

The support of a measure p on X is the closed set defined as

supp i == ﬂ A.
ACX closed,
1(\A)=0

Recall that a Polish space is a separable completely metrizable space. By a
result of Giry [Gir82] we have:

Lemma 1.8 (Giry monad). The assignment X — P X of a Polish space X to
the space of Borel probability measures on X with convergence in law forms a
monad. On maps f: X — Y the monad is described by

Pn—><f'—>/Xhof> (1.15)

for any law P € P(X) and bounded continuous function h: Y — R.
Unit and multiplication of the monad are given by

nx: X = P(X), T+ Oy,

px: PP(X) = P(X), P (A > /Q(A) dP(Q))

for any Borel set A C X and 6, the Dirac measure on X.

Remark 1.9 (categorical properties of probability measures). The operation @
from Lemma [1.7] actually can be described as f +— upy o (P(f)). Moreover the
map f is a morphism in the Kleisli category belonging to the Giry monad. There
is also a version of the Giry monad for complete separable metric spaces, called
Kantorovic monad [FP17].
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1.3 Riemannian geometry

As for Riemannian geometry, we mostly follow Petersen [Pet16]. It is fundamental
to our approach to view a Riemannian manifold as an mm-spaces, i.e.

(M, g,p) = (M, dg,volg,p) € PM.

The metric tensor g will not be assumed to be smooth but only of some Hélder
regularity. For a treatment of convergence theory for smooth tensors see Lessa
[Les15] and Abert and Biringer [AB16].

1.3.1 Holder regular functions

Let f be a real valued function on some open ball B(0, o) C R¢ (for simplicity we
restrict to Euclidean balls, but the theory can be extended to other open domain
in Rd) and m = 0,1,... an integer. Recall that, provided that all derivatives of
f up to order m exist, the possibly infinite C™-norm is given by

fllem = > sup [0 f(2)]

0<la|<m  x€B(0,0)

where a = (aq,...,aq) is a multi-index and |a| = a1 + ... + a4 is its order. The
Hoélder semi-norm is given by

flz) = 1y
fla= sup LDZJWIL
z,y€B(0,0) |.7J - y|
This allows to define the C™“-Hélder-norm, or shortly C"™*-norm, for o € (0, 1]
by
flleme = fllem + > 10 fla-

la]=m

If @« >0 and ||f]jcgm.e < oo, f and its derivatives up to order m can be uniquely
continued to the boundary. Hence we denote the space of such functions by
C™%(B[0,r]). If, on the other hand, the C™“-norm is only bounded on each
compact set strictly contained in the domain, we call f a C"*-function or of
class C™%. Finally, we set

Cm(...)=Cm™0.),
Co“(...)={feC™*(...)| f has compact support },
[flla = lfilla + -+l fallas
[flleme = [l fillome + ...+ [ fullcm.a

for a vector valued function f: B(0,0) — R™.

A comprehensive introduction to Hoélder functions including all basic facts
used in this thesis is given by Csaté, Dacorogna, and Kneuss [CDK11, Chapter 16].
Standard references on this topic also include Gilbarg and Trudinger |[GT77].
Throughout this thesis, we will take extensive usage of the following estimates:

Lemma 1.10 ([CDK11], Theorem 16.28]). Let o > 0, m > 0 an integer, and
a € [0,1]. Then there exists a constant C = C(p,m) > 0 such that

[Fgllome < € (Iflemelgllcn + 7l lgllcme)
for functions f,g € C™*(BJ0, o], R).
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Corollary 1.11. Under the same assumptions as in Lemma and C =
C(e,m)
[fgllcme < CIlf]
for functions f,g € C™*(BJ0, o], R).
Lemma 1.12 ([CDK11], Proposition 16.30]). Let o0 > 0, m > 0 an integer, and
€ [0,1]. Further let A € C™*(BJ0, o], R"™) be a matriz valued function and
¢ > 0 such that
1
— < d ||Alco <e.
‘ detAHCo <c¢ and ||Aljco <c

Then there exists a constant C' = C(c, o,m) > 0 such that
JA gme < Ol Allgme.

cmelgllem.e

In particular, if there exists a constant ¢ > 0 so that
A o ¢ and ||Alleo < ¢,
then there exists a constant C = C(c, 0,m) > 0 such that
1A lgme < CllAllgme.

Lemma 1.13 ([CDK11, Theorem 16.31]). Let 9,0 > 0, m > 0 an integer, and
a, B €10,1]. Further let g € C"™(B[0, ¢'],R).
If m =0 and f € CP(Bga|0, 0], R?) with f(Bga[0, 0]) C B[O, o], then

lg o flleme < llgllo=|[fllcs + llgllco-

Ifm>1 and f € C™(Bga[0, o], RY) with f(Bgal0, o) C B0, ¢'], then there
is a constant C = C(m, o, 0") such that

lgo fllcma <C (Hg\ FIE + llgller 1171

Corollary 1.14. Under the assumptions from Lemma we have that for a
constant C' = C(m, g, 0')

lg o fllcme < C (lglcmellfllom« + llgllco) -

Proof. Obvious consequence from Lemma [1.13 O

- ome + lglles )

Corollary 1.15. Let 9,0’ > 0, m > 1 and a € [0,1]. For a function f €
C™(Bgal0, 0], RY) with f(Bgal0,0]) C Bga[0,¢] and a metric, i.e. matriz
valued function, g € C™ 1%(Bga [0, Ql],Rd,z) we have that for some constant
C =C(m,p,0,d) the pull-back is subject to the bound

1F*gllem—1.a < Cllgllam-r1allfllem—1.a + llgllco) | fl[Em.q-
Proof. Use Corollaries [I.11] and [T.14]
||(f g)w/HCm Lo = HZ gu v of fu ufu Y gmora

< ZW 1(gurvr o Plllem=rell furpllem=rall furwllom=1.

< Cll(g e Hllem-rallfllomealfllome
< Clgllem-rallflem-1a + lglco)l f1Em.a

where f, \ = %fﬁ. O
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Lemma 1.16 ([CDK11, Theorem 16.32]). Let 0,0’ > 0, m > 1 an integer, and
a €10,1]. Letc > 0. Further let f € C™(B[0, o], RY) and g € C"™*(B|0, o], R?)
with f(B[0, o]) C B0, ¢'] and g(B|0, ¢']) C BI0, o] such that

go f =1id and ||g||cl, ||chl S C.

Then there exists a constant C = C(c,m, ,0’) such that
[£lcme < Clgliome.

Lemma 1.17 (|[CDK11, Theorem 16.39]). Let 0,0’ > 0, m > 0 an integer, and
a € 10,1] withm+a > 1. Let ¢ > 0. Further let u,v € C™(B[0, o], R?) and g €
(B0, o], RY) with u(B[0, o)), u(B[0, e]) C B0, o] and g(B0, o)) C B0, o
such that

ullcr, [lv]ler < e

Then there exists a constant C = C(c,m, 0, 0’) such that
lgou—gov|ema < Cllgllema (1+ [lullcme + [[v]lam.e) [lu = v]lcm.a.
Moreover, we conclude from the following;:

Corollary 1.18. Let o,0' > 0, m > 1 an integer, and a € [0,1], 0" € (0, g].
Let ¢ > 0. Let f,, f € C™%(BI0, ¢'],R?) with inverses g,,g € C™*(BJ0, o], RY)
(i.e. gno frn =1id and go f = id) such that

fn—=f in C™%-norm

and ||gnllct, llgllcr, 1fallcr, 1fller < e
Assume further that on B(0, 0") the converse equalities f, o g, = id and
fog=id hold. Then the inverses g, converge to g in C™*-norm on B(0, o").

Proof. By abuse of notation we write g, and g for the restrictions gn[p(o,o) and
g|B(o’Q~). We estimate

19n — gllcm.e
= [|(gn —9g) o foglcma
=llgnofog—go foglcma
=llgnofog—gnofnog+gnofanog—gofoglome
as gn 0 fu = go f = id
= ||gn Ofog_gn Ofn Og”Cm«"‘
apply Lemma [1.17]for u = fogand v = f,o0g
< Cllgnllema (1 +1f o gllema + 1 fu 0 gllema) [(f = fn) © gllema.
The first factors are bounded by assumption. The last factor converges to 0 as

n — oo due to the composition estimate from Lemma [[.13] and the assumption
that f,, — f in C"™“-norm. O
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1.3.2 Metric tensors of low regularity

The object we study in this thesis are Riemannian d-dimension manifolds (or
d-manifolds)
M= (M,gq)

where the tensor g is not assumed to be smooth but of some lower regularity.
To be precise by a g we understand the following data:

e A covering collection {¢;: V; = U, };er of charts on M that is compatible
with the continuous structure on M, i.e. y; is continuous and V; C R is
open for each 1.

e on each V; there is a Riemannian tensor given, i.e. a measurable map g
from V; into symmetric positive definite (d - d)-matrices.

e each ¢° induces a metric in V; by
k=t [ (920" (V70
0,1

where the infimum is taken over all Cl-curves v: [0,1] — V; from & to g
and Vv(t) denotes the gradient at ¢. The compatibility condition for the
charts is only that for each x € M and indices i, j such that z € U; N U;
there is a neighborhood U C U; N Uj of = such that the metrics |..|; and
|..|; agree on U, i.e.

o7 M (@) o W)l = Loy (2) @5 (W)l

for all z,y € U.

In this thesis we will focus on Holder regularity, though Sobolev regularity
is also studied sporadically |Heb96]. Note that there is so far no analytic
requirement on the regularity of the transition functions involved. We will see
below how a smooth structure is fixed by a metric tensor of C*-regularity for
a > 0. In this direction first note a classical theorem by Whitney that a C!'-atlas
on a topological manifold uniquely determines a compatible smooth atlas [Hir97,
Theorem 2.9].

The following notion of convergence is also called Cheeger-Gromov conver-
gence.

Definition 1.19 (C™“-convergence). A sequence (M,,) of pointed complete
Riemannian manifolds C™*-converges to a pointed Riemannian manifold M if
the manifolds M, M, Ms, ... admit a C'-atlas, the charts defining the respective
Riemannian metrics belong to a respective C'-atlas, and for every r > 0 there
are a domain ©Q D B(p,r) in M and (smooth with respect to the respective
Cl-structures) embeddings ¢, : ,, — M for large n such that

Q, D B(pn, ), 0 C (),
tn(pn) = p, (tn')*gn 272, g on Q in the C"™“-sense,

where the last condition means that there are charts p,: Vy — Uy C M such
that U, Vs = Q and (t5')*g, C™*-converges to g on any chart Us.



1.3. RIEMANNIAN GEOMETRY 17

1.3.3 Chart norms

In the next step we quantify the regularity of C"*-metrics. We follow Petersen
[Pet16), § 11.3.1]. Another exposition is found in [Ronl0|. §

Definition 1.20 (chart norm). Let (M, p) be a pointed Riemannian d-manifold.
The C™“-norm on the scale of ¢ of (M,p), ||(M,p)|/¢m.a, is the supremal
real number such that for all © it holds that

(M, p)[Ema <O,

where ¢ is an upper index, whenever we find a chart (i.e. continuous map
compatible with g in the sense of §|1.3.2))

P (BRd(O7 9)70) - (Uap) cM

such that for the (matrix valued) metric tensor g.. on B(0, ¢) we have the following
bounds

() || Tid|, || Tid™ || < e® for id: (B(0, o), (., VEue.) — (B(0,0),9..) and T,
T ¢! the differential maps between tangent bundles;

in case of a metric tensor g defined on the tangent bundle of a smooth
manifold this can be expressed in a coordinate free way by the bounds
I Tell <e® on (B(0,0), (- )Euc.) and || T~ < e® on (U, glv);

(ii) Q‘“H'O‘HD“g__ llo. < © on the Holder semi-norm for all multi-indices a with
0<|a| <m.

To refine this terminology, we say that a chart ¢: B(0,0) = U C M has
C™“-norm on the scale of g bounded by ©, or

@l|Em.a <6,

if both conditions above hold. If ¢’ < g, the norm H<p||gm,a is understood as the
norm of the restriction of ¢ to B(0, ¢'). Moreover, we say that a chart ¢ is a
chart at x € M if p(0) = z. To globalize, we define

[M]

&m.a = sup [|[(M,p)||Em.a- (1.16)
peEM

Form =0,1,...and a € [0, 1], let P/\/lé’ﬁ,a<9 denote the class of (isomorphisms
classes of) pointed complete Riemannian d-manifolds with (global) C™®-norm
on the scale of ¢ bounded by ©.

From now on forward we will restrict to the case

a>0 (1.17)

The reason to do so is first to exclude the case m + « = 0 in which a system
of continuous coordinate charts with C%-bounded metric tensor does not fix a
smooth structure. The other reason is that we are not able to apply Arzela-Ascoli
by lowering «.

As Petersen [Pet16l Proposition 11.3.2] states, the chart norm enjoys in case
a > 0 the properties that

(M, A2g, D) 1a = (M, g,P) 15 (1.18)
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for A > 0 and that

(M, p)[|Em.e — 0 (1.19)

as ¢ goes to 0. Moreover, given any chart ¢ with ||¢||¢e < ©, we find that

e O1¢] < (&) ¢(0)] < €®¢]. (1.20)

Another variation of this concept is crucial to our application: harmonic
coordinates. A chart ¢: B(0,0) — M is harmonic if each component of the
function p~1: p(B(0, 0)) — R? is harmonic, where harmonic means that the
Laplace operator vanishes at this function. If the metric tensor admits at least
one derivative, we are at liberty to consider the classical second-order Laplace
operator

Au) = Zg—lﬂai(@g“aju) (1.21)

= 3" (90;0; + (9" + 9™ (9i9)g")0; .

ij

But in order to formulate this in full generality also for the m = 0 case we have
to consider a weak version of the Laplace operator. Such a version is given by
Taylor [Tay00l p. 140] in form of

A (u) = (/99" 9;u)0; (1.22)

ij

where A% (u) is treated as a distribution, i.e. a map ¢ — [ A" (u)(¢)dz for
¢ € C§(B[0, ¢],R), and the g~1/2 coefficient gets absorbed by the measure, a
trick that works fine if A (u) is non-singular.

Based on these definitions and following |Pet16, § 11.3.4], we define in
parallel to ||(M, p)||&m.as | M||&m.q, and P./\/ldc’,ﬂ,a<@, harmonic chart norms and
regularity classes of manifolds with harmonic tensors

har har d,o har
(M, p)|mas 1M |[Ena, and PMGRaZe (1.23)

where the only difference is that all charts considered have to be harmonic. Note
that without any regularity theory it is not obvious that these norms can have

finite values and that the classes PM%&,TQG are non-empty.

1.3.4 Regularity of transition maps

It may seem conspicuous that the chart norm, as formulated in Definition [1.20]
takes the regularity of the metric tensor but not of transition functions into
account. Actually, a geometric miracle is happening and regularity of the former
implies the required regularity of the latter. In the harmonic case the regularity
of transition functions is even one degree higher. The following theorem states
these claims quantitatively:

Theorem 1.21. Let m € {0,1,2,...} and o € [0,1). Let M be a topological d-
manifold. Further let v;: B(0,0) — U; C M, 1 = 1,2, be two coordinate patches.
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Let V = p1(B(0, 0)) N w2(B(0, 0)). Assume that on Uy and Us, respectively, are
endowed with a Riemannian tensor g* and g2, respectively, such that
p=gy 0w (V) = 9 (V)
is a locally distance preserving homeomorphism with respect to 91|¢>*1(V) and
1

gQ|¢;1(V), i.e. for every point x € <p2_1(V) there is a small neighborhood on which
@ 1is distance preserving. Then

(i) if m+a > 0, then ¢ is of class C™T1e;

(it) if m+a >0, >0, and ||@;||¢me < O fori=1,2, then for any r >0
there is a constant C = C(d, 0,0, m,a,T)

lelo-1 vy llemtra < C; (1.24)
where Vi := ¢1(B(0, 0 — 1)) N2(B(0, 0 —1));

(i) if in addition to the assumptions from p1 and o are harmonic, then ¢
is even of class C™ 2 and for any r > 0 the bound (1.24) holds with m+1

replaced by m + 2 and C a constant depending on the same parameters;

(iv) in the case m = 0 and o = 0 the map ¢ need not to be of class Ct.

Proof. Part|(i)|is a result of Taylor |Tay06, Theorem 2.1]. Part is a refinement
of Taylors’ result, which we will explain below. First we state why ¢ almost
everywhere is locally bi-Lipschitz and subject to the equation go*gz|%_1(v) =
gl|w;1(v): Since both metrics are continuous, ¢ is locally bi-Lipschitz with
respect to Euclidean distance. Hence it is differentiable almost everywhere by
Rademacher’s theorem [Fed14) § 3.1.6]. Moreover, since ¢ maps Lipschitz curves
to Lipschitz curves and preserves lenghts with respect to the metric tensors,
the map T, p: (R% g'],) — (R% g%|,), where it exists, is a linear isometry by
polarization identity. Therefore (g'|,);; = Zi7#21(92|1)>\pw>\,i@p,j.

Now we refine Taylor’s argument. For the map ¢ the proof shows that it is of
class C™ 1, The proof goes by regularizing the coordinate system on a small
ball B around o(p) € ¢, '(V) yielding some harmonic coordinates u: B — R%.
By linear transformation of coordinates we can assume that B is centered at 0.
Using regularity theory, Taylor can show that not only w and u o ¢|,-1p5 are of
class C™*+1:@ but also u~!. The desired regularity of ¢| o1 follows then from
the classes of regularity of v~ ! and u o ¢l,-15 by Lemma

First we will show that the ball can actually be chosen of fixed radius. The
only thing to check is that the solution to the Dirichlet problem A" u = 0,
ugp = id actually gives a coordinate system, i.e. u is injective. This is the
case as soon as |[id — ul|c1 < 1: Assume that u(z) = u(y). By the mean value
theorem the differential has to degenerate at a point on the line segment joining
x and y. This is in contradiction to ||id — u|lcr < 1.

By a linear transformation bounded in terms of ©, we may actually as-
sume that g is Euclidean at ¢(p). The Laplacian of the vector difference
AY(id —u) = AYid = (A] — Ap,q,)id is Zij(\/ggij — 6;;)0;, that has to be
understood as a distribution as explained right after . Standard theory
|GT77, Corollary 8.36] of the weak Dirichlet problem therefore gives the estimate

lid = ullere < € (Jlid = ulleo + | (2 VA7 = )yl )
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where C' does only depend on d and an upper bound on © (as by Definition m
© controls the coefficients of A7). The values of the function u are bounded
via the maximum principle |[GT77, Theorem 8.1] by the radius of B. Choosing
B sufficiently small, we can minimize the second summand. Since g'/2¢" — 0ij
vanishes at p(p) and by assumption 0%||gijlla < ©, Lemma implies that
there is a constant C' = C(d, B[0, 0 — r],0) = C(d, o — r, ©) such that

(9"29" = i) (@)] < 0 - C - |lg.||co.eBlo.r] ra-e) - |2|* < C(|z]/0)*

for any « € B. These two observation allow us to choose the required radius for
B. Note that the assumption a > 0 is used here.

As the Euclidean metric is close to the intrinsic metric by , the domain
©7 1 (V;.) has a positive distance 7 = 7(r, ©) in the intrinsic metric to the boundary
of V. Assume that the radius of B is smaller than 7. This is to say that for
every point p in ¢ !(V;.) we can choose a harmonic coordinate system u on B
around ¢(p) that is contained in ¢;*(V). We seek a regularity estimate for
the restriction of the harmonic function uwo ¢ on ¢ 1B to ¢! (1B). This is
given by Schauder estimates, also called elliptic estimates, for both versions—the
weak version AV w0 ¢ =0 (see (1.22)) in case m = 0, and the classical version
Auop =0 (see ) in case m > 0. In the former case we apply again |[GT77,

Corollary 8.36] and in the latter [GT77, Problem 6.1] getting the bound
0 @l pos(a e < Clluo gly-plles

where C depends only on d, o, ©, and a lower bound on dgua (¢! (3B),9B).
The latter term and [[u o p|,-15[|co are again bounded in terms of © by the
distance comparison statement ((1.20). The inverse u~! is bounded in terms of
C and radius(B) due to Lemma [1.16] This concludes the proof of part
The harmonic case, part uses only the classical regularity result, |[GT77,
Problem 6.1], and is by far easier: As in harmonic coordinates the Laplace
operator has the shape ¢"/9;0;, all coefficients are actually of class C™ in
the classical problem. Hence direct application of the theorem to ¢ gives
||g0|(p;1(w)\|cm+2,a < C|l¢llco where C' is bounded in terms of d, «, ©, and

diua (071 (V3)),0B(0, 0)). As in part a distance comparison argument based

on (|1.20]) concludes the proof.
Finally, a counterexample proving part is given in [HW53]. O

Remark 1.22 (Myer-Steenrod theorem and regularity of geodesics). A theorem
establishing the regularity of isometries, as [Tay06, Theorem 2.1] in the proof
above, is also called Myer Steenrod’s theorem, going back to the first such result
claimed by Myers and Steenrod [MS39] in their ground-breaking paper on the
isometry groups of Riemannian manifolds. They claimed that any distance-
preserving map of Cl-metrics is a C'-isometry. The flaw in their argument is the
employment of normal coordinates, for the existence of which one has to require
at least Cll-regularity of the metric tensor [KSS13; |Chr91, Appendix F|]—a
problem we bypass by the introduction of strainers, see § [3.2.1]

Later Calabi and Hartman |[CH70| claimed to prove CK*L“regularity of
isometries for k + a > 0. But their argument proves only C*+1:%/2_regularity.
More precisely, Theorem 3.1 therein is flawed claiming that a geodesic in a
CF_metric is itself of class C¥T1®, But actually the statement is false and their
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argument proves only uniform CF+1:%/2_regularity, as pointed out by Reshetnyak
[Res78]. See [MT16, § 7] for a historical overview.

The question of optimal regularity of geodesics in rough Riemannian metrics
was answered in case k = 0 by Lytchak and Yaman [LY06, Theorem 1.4]
who prove C1/(2=®)_regularity and also give counterexamples showing that
their result is optimal. They even provide results for Finsler metric in [LYO06,
Theorem 1.3]. For a self-contained proof of C*+1:¢/2_regularity with k& > 1 in
the Riemannian case see [Pet01].

There is the following addition for a converging sequence of metric tensors.

Lemma 1.23. Let m > 0. Given a uniformly C™ 2 bounded sequence of maps
©n: U = R for an open domain U C RY together with Riemannian metrics
g™ on U such that ¢, is harmonic with respect to the metric g™ and g" does
C™%_converge to some harmonic g. If ¢, converges in C° to some harmonic
function p: U — R?, then ¢, converges in C™T2%e,

Proof. By the same result as used for the harmonic case in the last proof |[GT77,
Problem 6.1] we have

Jim o = ¢llomiza

<0( Jim | 8g(en = ) lome + lon = Plico )
n—=00 o ——
=A n n— o0
=4y ‘Pnizgn Pn 0
=C lim [[(Ag = Agn)onfoma
< CC' sup ||nllgm+za lim |lg — g™||cm.a
n n—oo

=0

where C’ depends on d and the uniform C™*2:%bound on ¢,,. O

1.3.5 Fundamental Theorem of Convergence Theory

We state a version of Theorem 11.3.6 in Petersen [Pet16| that gives fundamental
properties of P/\/l‘éma, o0 in terms of GH-convergence and goes back to Cheeger
and Colding [CC97|, Theorem 7.2].

Theorem 1.24 (Fundamental Theorem of Convergence Theory). Let 0 < 5 <
a<l,d>2,andm >0. On P/\/l‘éﬁ,,a<@ the pointed mm-topology and the C™P-
topology coincide. They are compact. Moreover the notion of Pmm-convergence
(see §11.2.1) and C™P-convergence coincide. The same holds for P./\/lé’ﬁ,};aé@.

Proof. Petersen |[Pet16, Theorem 11.3.6] states that P./\/ldc’ﬁ’a <o Is compact in
the C™P-topology. As C"™#-convergence implies Pmm-convergence, the map
from PM(é77€z,a<@ to PM is continuous. Restricting the codomain of this map
to its image we get a bijective continuous map from a compact space into a
Hausdorff space, but therefore it is also a homeomorphism [Sch75, § 1.7.2 Satz 3].

In the harmonic case, by [Pet16], Corollary 11.3.8] the class P/\/lé’,%,l;aé@ is

compact in the C™P-topology. Since PMé’fL,}fﬁ@ is contained in PM%,?L,(K@,
this implies our claim on PM&G2 5. O
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1.3.6 Spaces of field spaces
Recall from (|1.17]) that we only consider Riemannian manifolds M with

IM][E < ©

for some a, 0,0 > 0. Recall further that in this case a C'-atlas is fixed by
Theorem [1.21] and therefore also a smooth structure on M by a mentioned result
of Hirsch [Hir97, Theorem 2.9].

Definition 1.25 (C™%-tensor). Let m/, k,1 > 0, o/ € (0,1], and M a Rieman-
nian manifold (with ||M||g. < ©). A C™* -tensor of rang (k, 1) is a section s

in T%! M such that M is covered by some charts compatible with the smooth
structure on which the tensor is a C™® -function. Let C™ (M, T*! M) be
the set all C™ »* -tensors of rang (k,1).

In this section we define a space of spaces (M, g,p, s) where (M, g,p) is a
pointed Riemannian manifold and s is a section in C™ " (M, T*! M). Such a
space is called field space. For the space of sections le""/(M7 Tk M) over a
Riemannian manifold M we have at each point p € M the Riemannian norm
on the fiber of p. When we want to take derivatives into account, we are faced
with the fact that there is no immediate way to do this in a coordinate free
fashion since the metric admits no derivatives and hence there is no covariant
derivative—see Lessa |Les14; Les15| for a development of approach in the smooth
case.

The idea of the tensor norm is to look at the section s on some coordinate
patches that are regular with respect to a the C"“-norm of the metric tensor.

Definition 1.26. [C"™"*-C"™-@-norm on the scale of g] For o € (0,1], § €
(0,), and k, [ non-negative integers. For a section s € C™"¢ (M, T*! M) over
a manifolds M € PMdC’SL,a<@ the C™"@.C™:2_@-norm on the scale of o of
(M, p) is defined as -

inf{ [|*sllcm s | : (Brr(0,0),0) = (U,p) C M with [|p[cme <O}
The C™"®'-C™*-@-norm on the scale of o of a non-pointed space is defined as
the supremum of all norms of spaces (M, x, s) for all z € M, like for the metric
tensor. Let

k,1
T

d,0 k,1
CIu/,a,S@/ PMCm,a <o and T

d,o har
C“"’“’Se/ PMC'HL,L!§67 resp.,

be the space of all (equivalence classes of) pointed Riemannian manifolds with
sections (M, p, s) such that | M| ‘é’ﬁ,a < © and || M| dc’ﬁ,};ar < O, resp., and (M, s)

has C™+®'-C™_@-norm on the scale of ¢ not greater than ©'.

Note that the definition treats the norm of the section different from the norm
of the tensor since there is no factor Qmura/. It is important to further note that a
bound in the C™®"-C™*_-@-norm does not imply that the section s is actually a
tensor of class C™' because there is no control on the C -regularity of transition
functions if m/’ is to large. More precisely, according to Theorem we have
to require either m’ < m in the T P/\/léﬁ,a<9—case ororm’ <m-+1

cm’ o’ <@
. k,1 d,o har
in the Tcm”a/ge’ PMim . cg-case.
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We now prove a Fundamental Theorem of Convergence Theory for tensors,
proved in appendix

Lemma 1.27. Let 0 < S < a and 0 < B’ < o' with 8’ < a. The space

k,1
A= T 0 o PMER o

is completely metrizable and compact in the le”g/-Cm’B-topology.

1.3.7 Orientation and additional measures

A manifold is oriented if there is a nowhere vanishing antisymmetric d-form on
that manifold. Both equivalence classes of such d-forms are associated with an
orientation.

Definition 1.28. Let k,I > 0. The space of oriented pointed Riemannian
manifolds with a (k,[)-field is the topological space

kl
Cm ol <o’ PMC"L <O

k,l4+d w antisymmetric,
= 3 (M. g,p,5®0w) € TG o PMEL 0o ~
|wlg > 1

where ~ is defined by (M, g,p,s @w) ~ (M',¢’,p', s’ ® ') if there is a diffeo-
morphism f: M — M’ such that

fp) =7, 9=1"
fes =4, [*(Wo = Xw|o  for some A\ > 0.

The space is given the quotient topology of the subspace topology of

(Tk,1+d

! ’
Om' v <@y P/\/lcm <@ topology induced by C™ @ -C™“-convergence).

Note that by this construction a space with an orientation reversing symmetry
is represented by only one point. Again we have a Fundamental theorem of
Convergence Theory, whose proof is in the appendix:

Lemma 1.29. The space T PMdC’ﬁ,QSG is completely metrizable and

Cm o <@
/ /
compact as a subspace of Tcm/ o <o PMC’H 8<o for B<aand f' <.

Definition 1.30. Let TCm o <o PMdC’fb,[flg’%], C > 0, denote the space of (equiv-

alence classes of) spaces
(M’gap7s Hiy--- 7,“’16)

such that (M,p,g,s) € T P/\/lCm a<ce and fu, ..., [k are measure on

cm'a’ <o
M satisfying the bound
wi(Blz,r]) <C"+C

for any x € M, r >0, and ¢ = 1,...,k. On this space a notion of convergence is
given by combination of the notion of convergence of PM/+1 and tensor conver-

gence, namel}h (anpnvgna Sny MUnly - - a/ffnk) converges to (M7p7 g,S, 1, 7/~Lk)
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if and only if for every radius 7, index ¢ = 1, ..., k (and sufficiently large n) there
are a domain © D B(p,r) and (smooth) embeddings

i Qy — M
from domains Q,, D B(pn, ) such that
e (1;1)*g, converges in C"™® to g on 2,
® 1,.Sy converges in ™' to s on Q, and

o Lni(bp, rlini) weak? converges to bprpi fori=1,...,k and b_ as defined

in (L.10).
Likewise, define
Tkl d,o[k',0]
Cm ol <e’ PMCW <O

k1 elk,C . .
C’Ji,<®, PMC,%: a<@] as in Definition [1.28

as a quotient of a subset of T

Lemma 1.31. Lemma |1.27 holds for the spaces TCm o <o PMC’ﬁUng and
Tlélln o <o PMéﬁ §<%], i.e. they are compact and completely metrizable as a

subspace ofT . PMdCﬁ ’,;<%] nd Tlélln, o <o PM(éi §<%], resp., for B < «

and B < d.

m’/, B’ <e’

The proof is found in the appendix. The spaces

k,1 ,0 har [k’,C] k,1 ,0 har [k’,C] .
TCm/’Q/S@’ PMcm <O an d TC“‘ o <o’ PMCm <O , resp.,

are defined as the preimage of the spaces
PMEL M C PME and PMELM, c PME r
Ccme<o G RG] M@wg@ C"' a<@> I'eSP-,
under the obvious forgetful map. Choosing some metric d on

k,1 d,o[k'+1,C .
TS e PMEERZSC with € > 1,

de[k',C .
we can define a metric the space TCm o <o PPM)C,L,)L,[QSG] on doubly pointed

spaces (M, g,p,q, s, f{) with i = p1,..., pg in parallel to the metric on doubly
pointed mm-spaces from (|1.14))

dil PPMd e [k',C] ((M7g7p7 q, 870‘)’:&:)7 (Ml7g/ap/a q/a S/7w/?ﬁ/))

cm’ ol <gr L BT a<@

= Hpq| - |p/ q/l‘ + d((Magvp787w7ﬁ7 §q)7 (Mlvg,7p/7sl7w/7ﬁl76q’))
+d((M,g,q,s,w,[i,0,), (M, g, q',s" ' [i',6,1)). (1.25)



Chapter 2

Main concepts and results

The most general notion of a random space is a probability measure on the
spaces P dc’£<@, P/\/l‘é’5<@, or PM. But it is more suitable to restrict to a
narrower class by imposing some condition, such as unimodularity, a way to
formulate the independence of a random space and its base point. As special
case of unimodular spaces are spaces that arise as limits of (deterministic) spaces

viewed as random spaces.

2.1 Random spaces

As focus of this thesis is on oriented Riemannian manifolds we will state all
definition for PM%’S <o, though they work for PME&2_ o, PM, or other classes
of spaces as well. The term law denotes in general a probability measure on a
metric space, e.g. the distribution of a random variable with values in this space.

2.1.1 Benjamini-Schramm limits

The following definition was actually already formulated for PM in the introduc-
tion by Definition [0.1

Definition 2.1. Let 9,0 > 0 and « € (0,1]. Let M = Mé’gg(_) denote the
class (of equivalence classes) of oriented compact Riemannian manifolds with

C%*-norm on the scale of g not greater than ©. For any M = (M, vol) € M let

par: M — P/X)lé’f<@ be the map p — (M, p, vol) that assigns to each point a

pointed version of M. Further let i be the map

_ d,o vol
fir M= PPMcaco, M — (par)« <V01M>
where vol is finite since M is compact. We endow M with the topology induced

by fi. Likewise we say that a sequence (M,,) C M of spaces BS-converges if the
laws i(M) converge (against continuous test functions).

2.1.2 Unimodular spaces

Any random space in the in the closure of the image of fi, as considered above, is
unimodular. Further, all constructions we will do will have to satisfy this notion of

25
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independence. We will introduce the concept following [Bow15|. Unimodularity
is again a convenient concept for any kind of random object to which Benjamini-
Schramm convergence is applicable. The broadest study is again found in graph
theory, e.g. [Borl6] and [ALO7] (see also Remark 2.5). But the concept is
also studied, for example, for Riemannian manifolds with respect to smooth
convergence [AB16].

Definition 2.2. A law P on PMCQ<® is called unimodular if the Intrinsic
Mass-Transport Principle holds, i.e. the left and rlght measures, my,(P) and
mg(P), on the space of doubly pointed spaces PPMCa <o induced by Lemma
(Which is applicable due to part . (i)| of Lemma [2.3] below) and the maps from
PMCQ<@ to MPPMCQ<@

/fdﬁ{f): (M, p,vol) — (u%;)«vol and u() (M, p,vol) — (u%;).vol,
where
ptrx = (M,p,z) and pR:z— (M, z,p),
are equal.
It is routine to check the following lemma:
Lemma 2.3. (i) the maps ji* and i are continuous;

(i) for any bounded subset A of PPM there is a uniform bound on fi%,;(A) and
R (A) for any M € P/\/lca<o,

(iii) the maps my, and my are continuous;

(iv) the subset of unimodular laws in PPMca<o is closed;

(v) the subset of unimodular laws in PPMC”<® comprises M(M) (notation
as in Definition [21]

Proof. For[(i)| we check the definition from by taking a bounded continuous
test function f: ./\/lPPQ;Ca<® — R with bounded support. Note that due to
the term ’ ||pq\ —p'q H in definition @) the distance of both base points of
a space in the Support of f is bounded by some [. Observe that for a converging
sequence (M,,p,) — (M,p) in MPM%’SS@ (according to Definition we
have

[ #4itas gy = [ £ b )00l = [ £ ) dvol (2)

— [ (o) dvol, @

for g,: © + f((Mp,pn,)). Likewise we have ffdﬂ%Mm) = [gdvol for g,: x —
f((M,p,z)). Note that g, is bounded, because f is bounded, and moreover
has a bounded support with diameter < 2/ because for any two points =,y we
have that g(x),g(y) > 0 implies |p, z|,|pny| < I and hence |zy| < 2[. But
convergence (M,,p,) — (M,p) according to Definition implies that for
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sufficiently large n there are invertible comparison maps tp,: Q, € M, — M
such that the support of g, (g, resp.) is contained in every €2, (in €, resp.) and
Lnxvol, converges to vol. Hence we have that

/gn dwvol,, = /g o, dipyvol, = /g o 1, * d(tnxvol, — vol) + /g o, dvol

Since the supports of each g, and g have diameter < 2I, there is a function
X: M — [0,1] with bounded support which is 1 one every point which is in one
of the supports of one of the g,,’s or of g. Let C' be the bound of the absolute
value of f. Hence the first summand [ g o ¢, d(tnwvol,, — vol) is bounded in
absolute value by [ C'x d(tnvol, — vol) which converges to 0 by definition from
[3).

The integrand of the second summand converges pointwise to f g dwol since
M,, converges to M via the ¢,,’s. Hence it converges to [ g dvol by the dominated
convergence theorem. This is to say that [ f dﬂ%Mn,pn) converges to [ f dﬂl(“Myp);

thus 1" is continuous. The argument for i is the same.

For take a bounded set A with diameter (see bounded by [. It is
immediate from the term ”||pg| — |p'¢’||” in definition (1.14)) of the distance
in PPM that the distance of both base points of a space in A is bounded by
I. Moreover the volume Blp,!] has a uniform bound v for any (M, p,vol) €

PMCQ <o since otherwise there were a limit manifold of a sequence of manifolds
n—oo

(M, p, voly,) € PMCQ<@ with vol,B[p,,l]] —— co. Hence we can estimate
b (Mpvol) (A) < 40lB[p,1] < v. By the same argument the values of i are
bounded on bounded sets.

The claim follows directly from and Lemma Claim follows
from the fact that the unimodular laws are exactly the elements of the equalizer of
my, and mg, and this equahzer is closed because it is nothing but the preimage of
the diagonal § C PPMC&<@ under the map (mr,, mg) and § is closed because

PPMCQ<® is Hausdorft.
For the last claim - be calculate using the definition from Lemma

a0 = s (ae)e 57
—ars [ (trhase ) v0D)() ).

— 1 .
=Ar ol M ((M(M,p))* vol)(A) dwol(p)

= VollM //XA((M,p, q)) dwvol(q) dwol(p).

By similar calculation we have that

vol ,

M /
VolM( 7)

=A

mn(0): A o [ [ xa((.4.9) duol(q) duol(p).

Hence the equality mp,(#(M)) = mg(a(M)) is implied by Tonelli’s theorem. [

The term Mass-Transport Principle is motivated by the equality [ fdmy, =
ffdmR for any Borel function f: PPM — R>q and by thinking of f as the
mass transported from p to q.
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As mentioned above Definition [2:2] generalizes immediately to the space PM
but also to the space

k,1
T

d,o [k'+1,C .
cm’ el <@/ PMCSL,[Q;G ]7 Wlth C Z 1,

by replacing PPM%’S<@ with Tlé’rln,’a, cor PPM%?SL’[’;;%,C]? those metric is defined
in (L29).

The term unimodular corresponds to the concept of unimodular groups in
topological group theory. Let G be a locally compact topological group and let
my, and mg be the left and right Haar measures. Recall that G unimodular if

e my, and mp coincide or, equivalently,

e the modular function m on G characterized by mr,(Ag) = m(g)my(A) is
constant to 1.

The following remarks make the connection to unimodular random spaces explicit.

Remark 2.4 (connection to Lie groups). We say that a sequence M, of pointed
smooth Riemannian manifolds smoothly converges to a pointed smooth Rieman-
nian manifolds M if it converges in the sense of Definition [[.I9|with C™ replaced
by C*°. Definition [2.2] can be rephrased for the space of smooth Riemannian
manifolds with the topology induced by smooth convergence.

For a (non-pointed) smooth Riemannian manifold M with transitive isometry
group the spaces (M, p) and (M, q) are isometric as pointed spaces for any choice
of p,q € M. Hence there is a unique way two view M as a Dirac measure () of
the space of pointed smooth Riemannian manifolds. Abert and Biringer [AB16]
proved that for a smooth Riemannian manifold M with transitive isometry
group, the random space d(z,,y is unimodular if and only if the isometry group
of M is unimodular.

Remark 2.5 (connection to Cayley graphs). We explain how the term unimodular
origins from graph theory and group theory, following [ALO7, § 3] and |[Ben+99,
§ 3]. Consider the following definitions

e a (deterministic) locally finite graph X is called unimodular if the group
Aut X endowed with the topology of pointwise convergence is unimodular;

e a (deterministic) locally finite graph X is called unimodular with respect
to a closed subgroup G < Aut X if G is unimodular;

e a random graph P € P ({pointed graphs}) is unimodular if the functions
p", p®: P ({pointed graphs}) — M P ({doubly pointed graphs})

defined in parallel to Definition [2.2] are equal—for a suitable topology
chosen on {pointed graphs}, see references mentioned above;

where the requirements of local finiteness of X and closedness of G guarantees
local compactness. A crucial and direct combinatorial consequence of unimodu-
larity of a graph X with respect to some G < Aut X is that if gy = x for some
z,y € X and g € G, then [Stabg z| = [Stabg y| where || is the Haar measure
and Stabg(z) = {g € G | gz = x } is the stabilizer of x.
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Aldous and Lyons |[ALO7, Theorem 3.1] state that a random graph P sup-
ported on a fixed (possibly infinite) grap}ﬂ X is unimodular if and only if X is
a (deterministic) unimodular graph and ¢ =) |Stabau x x| 7" < 0o where z
ranges over a complete orbit section. This probability measure P is unique and

satisfies
1

P((X =—
((X,p)) ¢ [Stabam x 7]

By |ALO7, Remark 3.3] the same holds for Cayley graphs with respect to
G < Aut Cayley(G)—or, if we formulate all definitions above for labeled graphs
and mark the edges of Cayley(G) by generators, G itself is the automorphism
group of Caley(G) and the statement holds equivalently. This establishes the
connection of all definition considered.

2.1.3 Parameters and Testability

By a parameter we will formally understand a partially defined real valued
function on M, C PPMESL_¢ (or My, C P PM, alternatively).

Definition 2.6. A parameter is testable if it is continue and can be continued
to the boundary of its domain.

Following Hungarian terminology, we define:

Definition 2.7. A testable parameter is testable in constant time if its domain
is relatively compact.

In general statistical terminology one would rather speak of "estimating" than
of "testing". The explanation for using statistical terminology will be given in
the next Subsection in Theorem For a better understanding of the latter
definition in terms of measure theory recall from [Dud02, Theorem 11.5.4]

Lemma 2.8. A family of laws on a complete separable metric space X 1is
relatively compact if and only if it is uniformly tight, i.e. for every e > 0 there
is a compact subset X. C X such that X. has measure greater than 1 — & with
respect to any element of the family of laws.

Remark 2.9. Testability in a concept widely studied in graph theory. In this area,
a tester for a property P is a random algorithm that make a limited amount of
queries and return with some probabilty 1 — ¢ if a graph is e-close (with respect
to some distance) to some other graph with property P. An example for P
would be being 4-colorable and a typical metric for measuring closeness is the
edit distance. See |Goll0] for an overview. There is also a concept of estimability,
that is a bit closer to the characterization of testability in constant time we will
obtain in Theorem [ENO5].

2.1.4 Characterization by random samples
More crucial is the geometric motivation of this definition by Theorem [2.10]
which we are going to proof now. Define the sample function on PM and PM by
Sy (M, g,w,p) — (B[p, r],g|B[p7T]XB[p7T],w|B[p_,T],p) and
Syt (M, d,vol,p) — (B[p, 7], d|B[p,r xBlp,r]» vol|B[p,r],p) .
lie. PH(X,z) |z€X}) =1.
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We formulate and prove the following theorem in the mm-space case. The case
of /\_/l> is parallel.

Theorem 2.10. Let ¢ be a parameter that is testable in constant time. For
any € > 0 there is a radius r and a natural number n and o tester T, i.e. a map
7: (8,(PMy))™ — R, such that the bound

Prob(Jo(M) — 7(s, X1,...,8:Xy)| <€) >1—¢ for all (M,d, vol) € M,
holds, where X1, ..., X, are uncorrelated random variables with law WUO[.

The proof is actually an application of the law of the large numbers as it
uses the Stone-Weierstrafl theorem which can be obtained from the latter.

Lemma 2.11. The assignments

M — COLOM) == (COLO,R), ||.[lco) and
M — COPM) = (CO(PM,R), |.||co)

constitute contravariant functors from Lip to Norm, where Lip is the category of
metric spaces and bounded Lipschitz maps of Lipschitz constant at most 1 and
Norm s the category of mormed spaces and bounded linear maps. There is a
natural transformation

non: (CHH ML R), [L]lco) — (CO(P O, R), ||| co)

among these functors given by

h»—)(Pl—>/th>.

Proof. On morphisms both functors are defined by concatenation. Since the
hom-sets of Lip are restricted to bounded Lipschitz maps, this assignment is
well-defined for the functor C%!(.). The functor C°(P ., R) is the concatenation
of the covariant functor P and the contravariant functor C°(.,R). Both are even
definable for arbitrary continuous functions.

As for the natural transformation map 79y we immediately see that it is
linear in h. Moreover given a function h € C%(9M) with ||h]/co < 1 we get that
|[P— [hdP|co < sup,eon h(z) < 1. Hence noy is bounded. To check that oy is
natural observe for any Lipschitz map f: 9 — 91 and any h € C%1(90) we have
none(COL(F))() = (P = [ hef dP) = (P [ hdf.P) = (CO(P f)onm(h). O

Note that this lemma is related to Riesz representation theorem which states
that if we restrict Lip to compact spaces, the natural transformation becomes
an isomorphism.

Proof of Theorem[2.10. For convenience of notation define

vol
B;L — (Sth' . -73an) and Py = (MM)* <VOI(]\4)) .

Let C°(.), C%1(.) be the functors defined in Lemma and let 7 be the
natural transformation from C°(.) to C%1(.) defined therein.
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For a compact subset &8 C P9, the algebra generated by the image of
non shrinked to & is dense in C°(R): Since & is compact and Hausdorff, the
Stone-Weierstrafl theorem [Dud02, Theorem 2.4.11] implies that any subalgebra
of C°(R) that contains the constants and separates points is dense in C°(R).
Such a subalgebra is given by 7o (C%1(9)) as all constants are of the form
[ constd(.) and, according to [Dud02, Theorem 11.3.3], the Hausdorff topology
of PM is induced by the functions { [~ d(.)}neco.r(on)-

In our case, this observation in combination with the assumption that W@
is compact amounts to the fact that the algebra generated by the functions
{[ hd(.)}n, where h € C%}(PM), is dense in C°(M,,) with respect to the sup
norm. Hence ¢ can be approximated by a finite superposition of finite products

¢%P'—>ZCiH/hide
( J

with error < ¢/2 for some Lipschitz continuous functions h;; on PM uniformly
bounded by 1
Let ¢ =3 |¢;| and m be the number of all multi-indices (4, 7). If we manage
to estimate f h;j dPps with error less than c e /2 with probability more than 1—
g/m, the proof is completed: More formally, we seek a tester 7;; = 7771 (PM)" —
R bounded uniformly by 1 such that

Prob (’/hij APy — 73;(B")
If so, for 7 =}, ¢; [[; 7i; we gain the bound
Prob (|¢(M) — 7(B)| > ¢€)
< Prob (‘2 &1, [ hig dPag — 7(B2)| > 5/2)
< Prob ‘z ci (1‘[ J hiy APy =TT, 725(B ))‘ > 5/2)

= Prob fhz] dPM —Tij(B:L H fhzk dPM H qu(BZ})
J k>j k<j

rob (z 3 | by dPas = rig(BO)] T halion| T1 Iiellco > £/2)
k>j k<j

2c

1 1
> a) < —e. (2.1)
m

(&

>s/2>

< Prob (2, ¢ 2, | [ hij dPar — 75 (B)| > e/2)
< Prob (| [ hijdPy — 7i;(B*)| > ¢7'e/2  for some multi-index (i, 5))
<m-eg/m=¢e.

We now seek a tester 7;; satisfying (2.1). First compare the functions h;; and
hij o s.: PM — R given by h;; o s,.(M, vol, p) = hi;(B[p,r], vol [, p). From
the Definition 28 in [Bow15| we read that for any &', the pointed spaces M and
s-(M) are &’-close for sufficiently large r with respect to the metric constructed
in the proof of Theorem 3.1 therein. This r is independent of the choice of
M € PM. Observe further that being Lipschitzian h;; is uniformly continuous.
Choose r such that for all i, the distance [|h;; — 7i; 0 5,0 is smaller than
c~te/4. Now take My, ..., M, in the image of s, and set the real-valued map

(M) th M) = 3 3 o (22
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To finish the proof, the 7;; have to converge uniformly with respect to the
tested manifold M. Here basic probability theory enters the proof:

Prob (| [ hij dPy — 7i5(BR)| > ¢7'e/2)

< Prob ( |[ hij dPas — [ 7i5(BR) APy | +| [ 7i;(BR) dPag —7iy (BM)| > i)

<c—le/4 =E7;;(B})
< Prob (|(ETZJ(B;L)) — le(B;CL” > 6715/4)
Chebyshev inequality [FG97, Chapter 5 Proposition 2] implies

< 16¢%c~2 Var 7;;(B) by definition from
=16c%c=2Varn= ' >°)'_, h;j o pr,(B) pairwise uncorrelated
=16c%c"2n"2 %"} _, Varh;; o pr,(B?) since [[hijllco <1
<16c%c2n"2.n-4
= 64c?e2n" L.

Therefore by sufficiently large choice of n condition holds. O

2.2 Characteristic numbers

In this section we will formulate a condition under which characteristic numbers
are testable. We introduce characteristic numbers by Chern-Weyl theory [MS74,
Appendix CJ: Let IT be an invariant polynomial on the matrix algebra M4(C),
i.e. a map My(C) — C that is described by a polynomial in the entries of the
matrix and is invariant under base change. For any connection V on a manifold
M let Ry be the corresponding curvature tensor. The characteristic number of
an even-dimensional compact Riemannian d-manifold M (without boundary)
with respect to IT (and V) is given by an integral

/M I(Re)[M), (2.3)

where [M] is the fundamental class and Ry is considered as a d - d-matrix valued
in 2-forms and the resulting map to C is well-defined due to invariance of II.
Note, that as we evaluate with respect to the fundamental class characteristic
numbers actually change sign with change of orientation. These numbers turn
out to be independent of the connection. Let I';; be the Christoffle symbols of the
connection. Recall that in coordinates (Rv)ijk =0;T!, — Bkl"éj + >, I‘és o —
FfCSFfj Moreover the polynomial function II is of degree d/2 in the components
of Rv.

Characteristic numbers are a vast generalization of the Euler characteristic

of a surface, which by the Gauss-Bonnet Theorem can expressed by an integral

x(M) = i/Kdvol
2

where K denotes the Gaussian curvature. In our definition any characteristic
number of a non-orientable manifold vanishes. There are many special kinds of
characteristic numbers studied, like Chern numbers and Pontryagin numbers.
As in case of the Euler characteristic these numbers often give integer values for
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any Riemannian manifold M. One can even give explicitly a base for the vector
space of invariant polynomials such that each base vector corresponds to an
integer valued characteristic number. Characteristic numbers are an important
invariant in the study of oriented cobordism.

2.2.1 Characteristic numbers from rough connections

We want to define the curvature tensor of a connection in a setup of a manifold
M with a locally finite atlas ¢;: B(0, o) of regularity C*“. Such an atlas can
carry at most a CL:@ regular tensor, but only a C*-regular connection because
the transition function ¢; * o ¢ from a chart : (V, di ,) — M to some chart
p: U — M involves second derivatives. It is given by

eIk = (o o). (VT))
B Yy Oy (o Oz
o Z al’ﬂ 8931, ( FM v oy) axk/ °Y

;LI,D/,k‘/
d _
oxy 0 Loy
+ Z <6$l ° y) 0z, 0z,

where z = loy: Vs UCRlandy=v¢lop: U -V CR?

> Yo (Tl o) (@rioy) + (@i oy) Ww).  (24)

[N 7N l

We will however demonstrate how two define a C%-curvature tensor of a
connection on such an atlas. To this end set any regularity issues aside for a
moment. Take a partition of unity {\;: M — R};c; compatible with the atlas,
i.e. supp i C ¢3(B(0,0)) and ), ; = 1. With such a datum ({¢;}, {\i}) we
define a connection by a convex combination of the Euclidean connections on
each chart

Viead iy = Z)\i(%)*VEuCL. (2.5)
iel
This makes sense as the convex combination of connections is again a connection.
Formula simplifies in case 1) = ¢; and wI‘ﬁV = Bucl. Ik, =0to Y (zki0y)
(yi,)- In this notation the Christoffel symbols ?I'f, of Vi3 (.} on ¢ are
given by

@wa _ Z)\Z((wfl o Soz) Eucl. F Z)\ zl—xﬁy
el i€l
- ZA Z xk,l o yi)(yli,uu) (26)
i€l

where TH, = (¢ 0 @) ™)k, 2t = o7l oy, and y' = ¢; ' o . We
formally calculate the curvature tensor on ¢ from the standard coordinate

definition

R)\;w = ( lk/;/\ ,u [uv] + Z w7 [MV] (2.7)
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where we used the standard shorthand h[ij] = hi; — hj;
= Z ((Al iF + Z l“‘f v [p.l/]
iel
= Z (A "Tox st A Ty T Z ”Ffm oA [uu]
iel
= Z Ai ( El((mfcl o yi)yli,w\),u) (1]
iel

k
+ (Ao’ MM*Z (T “T05)

= Z Ai Z ((@hsoy") v, V)\)[W,] + ((zg, 0 yz)y; o) ]
el

% k
(e T oy + Z (T T
= Z Ai Z ((Ikl ) ),/Lyl V)\)[ V] + <)‘ iyt Zrk )[,W] (2~8)

iel l
w k ®
+Z Lo 7T50) g -

The trick is now to define V.1 1,3 not by (2.5), which does not exist, but by
formula (2.8]). The only remaining thing to check is that this defines a tensor,
i.e. is coordinate independent. The following lemma expresses this fact.

Lemma 2.12. Given a cover of a manifold M by charts ¢;: U; — M in the
C?-atlas of M with a corresponding C'-partition of unity \;. For any two
charts ¢o: U — M and ¢': U' — M the expression defined by coincide on
e(U)N ' (U') as (3,1)-tensor, i.e.

Z ( R/\’ ryr ©T )(E)\/ )\xu [Lxlj V(xk,k?' O;L') R/\/,w
Nl vl k!

The proof is given in appendix [B] and consists in an algebraic calculation,
that is more involved than the standard textbook calculations because it has to
avoid any third derivative of transition functions, not to mention derivatives of
the metric tensor or Christoffel symbols.

Lemma 2.13. The coordinate function (2.8]) is C*-bounded provided that the
transition functions involved are C>-bounded and that the partition of unity is
Ch-bounded.

Proof. This is a direct consequence of the product estimate Corollary [I.11] and
the concatenation estimate Lemma [[.T3] O

Definition 2.14. Let {¢;} be a locally finite atlas of M and {\;} a corresponding
partition of unity. We say that the function on a chart ¢ defined by (2.8)) is the
curvature tensor of the piecewise Euclidean connection Vi1 1x,} as deﬁned

in . ) and denote it by Ry, ., , = = R{e:i}, {N})-
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Lemma 2.15. For a closed oriented manifold M and any invariant polynomial
I the characteristic number

/MH(R({%} D) Z/ pio i - T(YRY,,)ds

where ¥;: Uy = M is some C%-atlas compatible with the orientation and u; a
corresponding smooth partition of unity, is well-defined, independent of the choice
of a curvature tensor given by a piecewise Fuclidean connection, and coincides
with the characteristic number given by smooth connection as defined in .

Proof. 1t is a standard result that the lemma holds for smooth connections, see
[MST74}, p. 298]. As proven in the mentioned reference, [MS74, Appendix C], in
the case of smooth connections even the entire de Rham class of the form II(Rv)
is independent of the connection. This result extends using mollification:

As a manifold, M is metrizable. Hence we can assume that M carries some
metric d. Let di denote the Hausdorff distance with respect to d. For any chart
@; choose some ¢; < dg(supp A;, 9p;(B(0,0))). For any chart ¢;: B(0, ) —
Vi C M we can define a mollification by choosing a finite cover V;; of »(B(0, g))
corresponding to a finite set of smooth charts {¢;;: U;; — Vi; C M}jey, for
©(B(0, 0)). Moreover we choose corresponding functions {u;;: M — [0, 1]} e,
that are a partition on unity for supp \;, i.e.

supp pi; C Vij, for all j
U, suppuij < #(B(0, 0)), and

supp(/\i)s") C (Z] Mz‘j)71 ({1})

for all 2. On each chart v;; we mollify the compactly supported function
wijp; b Uiy — R? by convolution on the chart t;; with a function ¢5 which
has support in B[0,d] and satisfies [ ¢sdz = 1, see [Hor12, Lemma 1.2.3] for
existence. The resulting function

. (a / 05 (€ — ) - iy (W (€)M (€)) €

has support in V;; for § < §; := du(supp pi;,0U;;) # 0. Summing up we define
a function M — R
Z HIC

which is well defined for § < min;d; # 0. Moreover this function has the
property that for sufficiently small 0 the support is contained in ¢(B(0, )).
Finally, we observe that by standard mollification results [Hor12, Theorem 1.3.2]
the functions @;?j are smooth and C2-converges to ¢; Lo 1;; as 6 — 0. Therefore
@? converges in C? to (; - > i as & — 0.

In a similar fashion we define, for sufficiently small d, the mollification of the
partition of unity {A;}

i [ 0sl€ = )iy (O 6)) e
V(@)= YA W5 @)
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To preserve the partition of unity property we normalize with respect to all
indices %

Ei 5‘?(37)

and observe that 5\5 converges in C? to \; - Z tij = A; as 0 — 0. For each ¢ we
can choose § > 0 sufficiently small so that supp )\5 C supp()\ )ei).

Now we can define the mollified connection: The maps ¢? is a diffeomorphism
from (Z ; uij)_l({l}) onto a subset of R? and hence diffeomorphism on supp :\f
Thus we can define a smooth connection on M given by

2= N (@) Ve (2.9)
ij
that is well-defined for small § because for any point x there are only finitely ¢
such that x € ¢;(B(0, 0)).

Now we can check the claim on characteristic numbers. For a compact
manifold M the locally finite collection of charts {;} is actually finite (given a
locally finite cover V;, i € I, one can find for each point an open neighborhood
U, that is contained in only finitely V;’s. By compactness the space is covered by
only finitely many U(z)’s, let’s say U(z1),...,U(x,). Thereby one can bound I
by n times the maximal number of V;’s to which one of the 1, ..., z, belongs).
Hence we can choose § > 0 such that for all i the mollified functions ¢¢ and A2
are defined. Therefore

/ (R, 00) Z/ pio v (" RY,,,) dz

— i ) . 1/%

= /M TI(Rys).

This proves that [, II 2 IRy (orhing }) equals the actually characteristic number
of M with respect to II and is therefore independent of the choice of the atlas
{Ui}. O
2.2.2 Testability from random connections

Extending Definition we define unimodularity of curvature tensors by the
Intrinsic Mass-Transport Principle:

Definition 2.16. Let 0 < o/ < a. Let further be

3,1
PeP(T,. <o PMCm a<o)

The law P is said to be a unimodular tensor if the measures mp,(P) and
mpg(P) are equal where the maps

3 1 3 1
mLamR P( C“" <o’ PMC’" 0‘<®) — P( Ca <o’ PPMC’" a‘<®
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are induced by Lemma [I.7 and the maps

L o~ 3,1 3,1

M 7:“ Tcm/ a’<@/ P'A_/;Cm a<O — MTCm/ ol PPM)C’" <O
defined by

it (M, p,vol, R) — (u%;).vol  where = (M, p,x) and
it (M, p,vol, R) — (u&,),vol  where pBez (M, z,p).

Moreover P is called a random curvature tensor if the random (3,1)-

tensor R of (M,p, R) € Tgi <o P/X)lcm a<e I8 P-as. (P almost surely) induced

by a connection, i.e. it is P-a.s. the case that either there is a connection V of
class at least C! on M inducing R or there is a piecewise Euclidean connection
Vigi}.{) inducing R by formula .

Finally, P is unimodular curvature tensor if it is both, unimodular and
a random curvature tensor.

As in case of Definition the assignments my, and mg are continuous.

Lemma 2.17. For anyd > 1, 0 > 0, © > 0, and r € (0,e=9¢] there is
a constant v = v(d, 0,0,r) > 0 such that vol(Blx,r]) > v for any M with
|IMllco o, <O, z€ M, and o € (0, 1].

Proof. Choose a chart with |¢||ce,, < © and ¢(0) = . We apply condition
of Definition [[.20] several times:

volys Bz, r] > voly Blz, 7] where 7 := min{r,e~© o}
> voly (B0, e~ ©7)) by (T.20))

:/ V| det(g.)|da
B[0,e—©7]

> / |4 de
B[0,e—©F]

where A is the smallest eigenvalue of g, at z
> / \(e7©)ddz
B[0,e—©7]
= volguel. (B[0, e797]) - e~ 4©/2 =:v(d, 0,0,7). O

Theorem 2.18 (testability). Let a,© > 0 and II be an invariant polynomial.
The normalized characteristic number corresponding to 11 is the parameter

1
on: M — W (Rv),

where M is a smooth compact Riemannian manifold and V is a connection
thereon. The parameter pr s testable in constant time on a relatively compact
class M C PMdC’£<@ of smooth compact Riemannian d-manifolds M = p(M) if

(i) for some (8 € (0,1] and ©' > 0 there is a continuous map D)

an D 3,1
PPMCQ<@ DM = P(Teie PMCQ<®
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(ii) for any P € M the law Dp is a unimodular curvature tensor as defined in

Definition [2.16,
(ii) D is a section, i.e.
P((M,p,R) — (M,p)) oD = id;
where (M, p, R) — (M,p) is a map from Tcﬁ<@, PMC@«% to the space
PMC(«@
Proof. Define

1 if voly B(y, d(x, <w
() = v B(y, d(z,y))
0 else.

We write x%(y; g) if we want to make the metric on which d depends explicit.
By Lemma choose v such that x, is supported on Blp,e 9]

Let M = (M, g, vol) € M be any Riemannian d-manifold and let R be the
curvature of a connection V of class C%, e.g. let g be smooth and V be the Levi-
Civita connection. Such an R always exists since one can always find a smooth
metric on a differentiable manifold. Note that the quotient fd ). M — R of the
evaluation of IT at R and the volume form w is well defined since M is oriented.
Note that

1 1
;//X;’,(x) dwvol’ (p) dDps (M, vol’, p', R') = ;/vdDM(M',vol',p’,R') =

Using this we calculate the normalized characteristic number:

1 II(R(z))
oIl /M - dwol(x)

1 [I(R(z
VolM/ // xp () dvol’(p dwol(x)

dDpy (M, vol' ' R
- VollM/H(R *//xZ(m) dvol(p) dDa (M, p', R') dvol(x)
= /VOIM// (x) dwol(z) dvol(p) dDy (M, p', R)

Lemma 18 1 R’ )) L
= — v D M
/ vol M / Xp (.T) d’UOl(l‘) dUOl(p) d M( D s R )

Lemma [[7] R' ) o
- /volM/ (z) dvol(z) dmg (Dar)(M',p,p', R')

unimodularity

%/VOIM/ Rc; ))Xf,(iv)dvol(x)dmL(DM)(M'm’p/’R/)
v %/VollM /H(Rw(m))X;(x)dvol(m)dvol(p/)dDM(M’,nR/)

In the final expression the inner integrand does only depend on a bounded

ball around the base point. Hence the integrand f@xg (z)dwol(x) is a
continuous as function of (M’,p’, R') on the entire closure of 9.
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It remains to check that the integrand in bounded. By assumption we
can almost surely choose a chart ¢ around p such that ||¢|ce < ©, the tensor
R’ in bounded in C°norm on this chart. Thus Xp is supported on the image of
this chart. Hence for (M’,p, R') = (M’,¢',p, R') we have a bound

R’ .
A G avato)| = | [ n R @yt ) et
0,0
< (" R)co - / V[detg.|dz
é\lH(so*R’)HCU/ I de
B(0,0)

where )y is the largest eigenvalue of g at x

<@ R)e- [ yfeo)yrdn
B(0,0)
= |T(¢*R")||co - volgua (B(0, o)) - e2©/2

in terms of g, ©, and ©'.

Thus the parameter goH(M ) can be expressed by the integral over a bounded
and continuous function on TC Y PMCQ <o Hence by definition of convergence
of laws the assignment

R/
// () dvol(z) AP(M',p, R'),  PTgi_o PMEE o =R
is a continuous function. Due to continuity of D the concatenation
R’ _
/ () dvol(z) ADp(M',p, B'), T — R
is continuous as well and is the extension of the parameter ¢ we sought. [

2.2.3 A first analytic criterion

We can immediately give two criteria using which we can apply Theorem [2.18
The first is analytic.

Theorem 2.19. Let 9,0 € (0,00) and 0 < 8 < o < 1. The parameter o1, as
defined in Theorem is testable in constant time on the class M of compact

spaces in P PMC2 a<o-

In view of this theorem, the main theorem, Theorem [2:22] we are going to
prove in the next section can be summarized as saving two derivatives compared
to the preliminary result above.

Proof. Due to Lemma the set
d,o _ m0,0
PM(J?@g@ Tco o' <@ PM)C2 <O

(for any o € (0,1)) is compact. Hence the space PPM’é’f acg I8 compact
[Dud02| Theorem 11.5.4].
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Now check the assumptions of Theorem [2.18| for ¢y restricted to 9 As the
metric g of a space M € P/L/l;é’f, o< admits two derivatives, we can form the

Levi-Civita connection and its Riemannian curvature tensor RRjem. given by
1' The Christoffel symbols Ffj = ZM %gk“(gm’,j + gul,i — 9ij,u) involve only

rst derivatives of the metric tensor and the inverse of the metric tensor. Since
we have by definition of the chart norm a positive lower bound on |det g| in
terms of © and an upper bound bound on [|g;j|/c2.« in terms of © and p, there is
some upper bound on the C>“-norm of ﬁ by Lemma m Therefore there is

also an upper bound on the C*®-norm of each I‘fj due to Corollary Using
the functoriality of the operation P, Lemma we get the continuous map

D = P((Mvp) = (Map7 RRiem.)): PPMézg.age — PT%(}S@/ PMéSS@

For any P € M the law D(P) is unimodular because for any bounded
continuous test function f

/ F(M, p. g, R) diny (D(P))

Lemmna 11 / / (M, p, g, R) (k) v0l(q)
dP((M',p") = (M',p', Rgiem.))(M, p, R)

Lemgam // f(M,pv%RRiem.)dVOlM(q) dP(Mvp)
= // f(M7p7Q7RRiem‘)d(mLP)(M7p7 q)
Lemma:// f(M7pa q, RRiem.) d(mRP)(M7p7 q)

- / / F(M, ., Rriom.) dvolar (p) dP(M, q)
LemmelLy //f(M,p,q,R)d(

%M)*'U()l(p)
P((M7p/) = (M/,pla RRiem-))(Ma q, R)

Leml;am /f(M7p’q7R)dmR(D(P))7

I
d

and, hence, mr,(D(P)) is equal to mg(D(P)). Moreover D(P) is always sup-
ported on the image of PM%’EQSG under the map (M,p) — (M,p, Rriem.)-,
hence D(P) is also a random curvature tensor.

The section property follows again by functoriality

P((M,p,R) = (M,p)) o D_ =P ((M,p) = (M,p)) =id. =
=P((M,p)—(M,p,RRriem.)

2.2.4 A first geometric criterion

The second criterion is geometric relying on results of Lessa |[Les15| in the context
of GH-convergence of smooth manifolds. The main core of his approach is the
following definition, which takes all covariant derivatives of the curvature tensor
into account. Such an analysis can also be refined by considering only finitely
many such covariant derivatives, see Eichhorn [Eic91].
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Definition 2.20 (uniformly bounded geometry). Let r and {C, }5o_, be positive
real constants. A smooth Riemannian manifold has uniformly bounded geometry
with respect to r and {C,, }5o_, if

o injM >r,

e |[V™R|| < C,, for m = 0,... where R = R’j\’w denotes the Riemannian
curvature tensor, V denotes the covariant derivative, and we use the tensor
norms induced by the Riemannian metric.

Theorem 2.21. Let r and {Cp,}°_, be positive real constants. Further let
M denote the class of compact smooth Riemannian manifold having uniformly
bounded geometry with respect to r and {Cy,}2°_,. Then the parameter o1 as
defined in Theorem[2:18 is testable in constant time on the class 9.

Proof. Let P/\/l‘{i’é yoo denote the class of pointed smooth Riemannian man-
mJSm=0

ifolds having uniformly bounded geometry with respect to r and {C),}>%°_,.
For this class of spaces a Fundamental Theorem of Convergence Theory holds
[Les15L Theorem 3.1], i.e. on this class the C*°-topology and the PGH-topology
coincide and are compact. Therefore this class is also closed and every law in
M C P PM is supported on this set. Moreover 9t is relatively compact according
to Lemma 2.8

For m = 2 uniformly bounded geometry implies a lower bound on the Ricci
curvature. Together with the lower bound on the injectivity radius this implies
by a theorem of Anderson and Cheeger |[AC92| some © bound on the C*-norm
on some scale p > 0. Hence we can also consider 9t as a subset of P P ‘é’f <o-
Again 9 is relatively compact according to Lemma [2.8 and every law in the
closure is supported on spaces with uniformly bounded geometry.

As in the proof of the analytic criterion, Theorem the map D is given
by applying the function P to the map

(Mvp) = (M7p7 RRiem‘)

. . . . d . .
assigning to each metric space in PM {g yoo the Riemannian curvature tensor.

m=0

Eichhorn [Eic91] provided several regularity results for the regularity of normal
coordinates for spaces of uniformly bounded geometry: On normal coordinates
¢: B(z,7) — M the Cl-norm of the metric tensor is uniformly bounded in terms
of r, Cy, and C; |Eic91] Corolarry 2.2]. Hence we also have a bound on ||¢|ce for
some «a € (0,1]. In the same charts there is also a bound on the second derivative
of the Christoffel symbols depending only on r,Cy, ..., Cs [Eic91, Theorem A].
Thus in these normal charts also the C*-norm of RRjem. is bounded. This implies
that the codomain of the assignment (M,p) — (M, p, Rriem.) can be chosen as
Té’;ge, PM‘é’gg@ for some 8 € (0,1] and ©,0" > 0.

Unimodularity and the section property are proved like in the proof of
Theorem O

2.3 Main results

The main theorem can be stated in an analytic and a geometric way. The latter,
Theorem [2.24] is a consequence of the former.
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2.3.1 Main theorem and lemma

Recall from || that P_/\_/i}dc’f Shgr denotes the class of pointed Riemannian
manifolds with harmonic metrics tensors bounded uniformly with respect to the
Hélder norm on some chart of radius p.

Theorem 2.22 (Main Theorem). (Assuming the validity of Lemma Let
AeR,i>0and C>0. Ford>1, let IT be an invariant polynomial on M4(C).
Given o > 0 one can find © > 0 such that for all scales o € (0,1) the parameter
o is testable in constant time on

M is smooth,
(M,g) € PM%’S Shg Ric M > A,inj(M, g) > i, and
vol(Blz,r]) < C" forallz € M,r >0

As in the case of Theorem the key stone of the testability criterion for
C*-regular metrics (a € (0,1]) is the Fundamental Theorem of Convergence
Theory, Theorem that states that PM%’S <hg is compact. By Theorem
this main theorem is an immediate consequence of the following lemma:

Lemma 2.23 (Main Lemma). (Assuming the validity of Lemma Given
AeR,i>0,C>0,d>1,a> >0, and a scale o € (0,1), for sufficiently
small © > 0 there is a continuous section

M is smooth,
D:P|{ Me PM%’SS}%T Ric M > A,inj(M, g) > i, and
Ve e M,r >0: vol(B[z,r]) < C"

— P(Tg5 <o PMELLE)  (2.10)

for some ©" > 0 such that D(P) is a unimodular curvature tensor (see Defini-

tion and Theorem .

2.3.2 (Geometric version

The geometric version of the main theorem relies on the following theorem
that goes back to Anderson and Cheeger [AC92| and can be stated in terms
of chart norms as follows |[Pet16, Theorem 11.4.15; |AC92, p. 267, Remark (2)]:
Given « € (0,1), ¢ > 0, and A € R one can find for each ©® > 0 a scale
0= o(d,a, A, i) > 0 such that any pointed Riemannian d-manifold with

Ric M > —A, injM >4

is in P./\/ldc’f <hgr. Also remember that, by Bishop—Gromov inequality, a lower
Ricci bound gives a bound vol(B[z,r]) < C” for any x € M,r > 0 and some
constant C' = C'(d, A). Taking © = O(d, ) from the Main Theorem and plugging
it into Anderson’s theorem eventually allows us to reduce the assumptions of
the Main Theorem obtaining the following geometric version:

Theorem 2.24 (Geometric Main Theorem). (Assuming the validity of Lemmal[3.9)
Let I be an invariant polynomial on My(C) and i > 0, A € R. On the class of
smooth d-dimensional oriented Riemannian manifolds M satisfying
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(i) RicM > —A,
(i) inj M > 1
the parameter o s testable in constant time.

Remark 2.25. (i) As mentioned in the original publication [AC92] under the
above assumption the metric tensor posses even one weak derivative, that
is, they are in WP for 1 < p < co. Unfortunately, GH-convergence of
manifolds translates only in strong convergence on charts. Therefore the
arguments from Banach spaces in Chapter do not apply immediately
(and probably not at all).

(ii) In the context of regularity by Ricci curvature assumptions one should also
mention Anderson [And90|, who proves under an additional upper Ricci

curvature bound Ric M < A that such manifolds are even in P/L/;é’lg, a<6 for

0=o0(d,A,i,a,O), as well as a corresponding W2P_result with 1 < p < oc.
For a textbook proof see [Pet16, Lemma 11.4.1].

(iii) Recent developments in so-called Cheeger-Colding-Naber theory allow to
control regularity when the lower bound on the injectivity radius is replaced
by a lower bound on the volume of a ball of fix radius, see Cheeger and
Naber [CN13; |CN15]. This weakening causes singularities in PGH-limit
spaces, but it is possible to maintain some degree of regularity on a part
of some a-priori volume.

We call to mind a theorem from Cheeger’s PhD thesis [Che67] that is restated
in Petersen [Pet16, Lemma 11.4.9] as follows: Given d > 2 and v, K > 0. If a
compact manifold M satisfies

(i) a sectional curvature bound from both sides by K,
(ii) volps(Blx,1]) > v for any x € M,

then inj M > ¢ for some 7 that depends only on d, K, and v. Together with the
fact that a lower sectional curvature bound implies a lower Ricci bound we get
the alternative criterion:

Corollary 2.26. For an invariant polynomial 11, the parameter @1y is testable in
constant time on the class of d-dimensional Riemannian manifolds M satisfying

(i) the sectional curvature of M is bounded from both sides,

(i) volB(z,1) > v.

2.3.3 Comparison theorem

A very easy but so far unproven consequence is the following bound, that
is completely independent of the notion of Benjamini-Schramm convergence.
Interest is such comparison theorems goes back to Cheeger and Gromov [CG85)
who give a bound in terms of the volume of the n-invariant of a Riemannian
(4d — 1)-manifold which is the boundary of another manifold of bounded sectional
curvature.
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Theorem 2.27 (volume comparison). Let IT be an invariant polynomial on
M4(C), ¢ > 0, and A € R. There is a constant C = C(I1,4,A) such that

[II[M]] < C vol(M)
for any closed Riemannian d-manifold with
(i) Ric M > —A,
(ii) inj M > i.
Proof. Choose © > 0 and a € (0,1). Choose ¢ = o(d,«, A,7) > 0 such that

| M| %2 2ar < @ (according to [Pet16, Theorem 11.4.15; AC92, p. 267, Remark
(2)] as quoted above). Choose a maximal collection of points {p;}ier that is
2e~972p-separated (i.e. any two point in the collection have distance at least
2e7972p). Such a system is automatically e~©~!p-covering (meaning that
{pi|ie ]}67@719) = M). Choose harmonic charts p;: (B(0, 0),0) — (M, p;)
with [|M]|¢ace < © for each i € I. By the length comparison the space
M is covered by the family {y;(B(0,e"10))}icr. By the same inequality and the
fact that {p;}ier is e~© 2p-separated, the balls {p;(B(0,e 29729/2))};cr are
pairwise disjoint. This gives the estimate
vol(M)

v
for the constant v = v(d, 0,0, 2972/2) from Lemma

Let u; be a corresponding smooth partition of unity, i.e. ¢;(B(0,e719)) C
supp i C ¢;(B(0,0)) for every i € I. We can define another partition of
unity on M by choosing a smooth bump function on b: R¢ — [0, 1] such that
supp b C B0, 7] and b|g[,c-1, = 1, and setting

5 {bo o7t if 2 € i(B(0,0)) 1

#] <

M= e S S WS K
as maps M — [0,00). Note that in the denominator at least one summand
\j(z) is 1. On any chart ¢ € {p;}ies the function \; reads in @-coordinates
Aiop(x) = (X jer Ajop)~t-boy; top. Combining the estimate on the transition
functions Theorem [[2T] with Corollaries [L11] and [[L14]and Lemmas and
we obtain a uniform C?“-bound on the );’s. Using Lemma we estimate

Z/ Hi © Pj - H(gaiRl)c\p,V) dz
i “/B(0,0)

< (¥ R5 )| d
>~ Z,/]3(07Q)| ( )\}LV)‘ z

i

M| =

(M
< vol(M) ~sup/ ’H(‘PiRﬁw)‘ dex.
v i€l JB(0,0)

The integrand II(¥* R’/{W) is a polynomial of degree 4/2 in the ¥ R}/{W’s, which
are defined by and (2.8]) in terms of products of the \;’s, its first derivatives,
the transition functions ¢; " o ¢, (i,j € I) and its first and second derivatives.
Hence, by Corollaries and there is a C%-bound on the integrand. Thus
) |H("°iR’§\W)| dz is bounded by a constant. O

fwi(B(O,Q)



Chapter 3

Proof of the main lemma

In this chapter we are going to prove Lemma [2.23

3.1 Factorization of Holder spaces

3.1.1 Tangent space factorization

All Banach spaces considered will be over the real numbers. Remember that
the tangent space at a point b in a Banach space B is a copy of B. Given
an (algebraic) vector space V and a vector subspaces V; we can always find a
vector space complement V5 such that V' = Vi @ V5 as an algebraic biproduct
of vector spaces. Unfortunately, this is not true in categories of vector spaces
with additional structure, like Banach spaces. In the latter case one has to hope
that not only the subspace V; is a Banach space, i.e. is closed in V, but also
that there is a complement that is a closed as well. The following lemmas below,
Lemmas [3.1] and establish this fact in the cases relevant to our investigation.
Let » > 0. For the rest of this subsection we will adopt the shorthands

0"l .= Bga[0,7] and 07 := Bga(0,r).

Further let Z = (1,...,2;) be an ordered collection of points in R? for k =
0,.... The scaling by a factor r is denoted by r#. For a partially defined map
f:R? — R? that is defined on z1,...,z; we define f(Z) = (f(x1),..., f(zr).
We define evz: CH(0), R?) — R¥® and the Banach space C1*(0"1,R%)z by

evz: f = (f(z1),..., f(z)) (3.1a)
Che(0", RY)z = kerevz (3.1b)
={feC (O RY) | fz1)=...= flzx) =0}.

Further define the following spaces of matrix-valued functions
Co(0"), Sym?) == { f € C* (0", R¥9) | f(z) is a symmeric} and
C0™, A%) = { f € CY(0",R¥?) | f(x) is skew-symmeric }

where 2 € 0", Both spaces can be identified with C*(0"), R*(**+1)/2) and
CQ(OT],R("*I)"/ 2) respectively. Moreover Riemannian metrics on 0"l can be
viewed as elements of C*(0"], Sym?).

45
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Recall the shorthand f; ; = 8% fi = 0, f; and that C}(0"),R%) ¢ C*(0"], R)

denotes the space of functions with compact support inside 0™, which fails to be
a Banach space. Further define the interior derivative of w € CH*(0"1, A2) by

4 d d
dw = < E i Wji,j) = E wji j d;.
=l =1

Moreover let the continuous dual space of a topological vector space be

V* ={f:V — R continuous and linear}
with topology induced by evaluation, i.e. the coarsest topology such that every
map ev,: V* = R, f — f(v) with v € V is continuous. We continue to define

grad: CL%(B,RY) — C*(B,R%4) by

3f3f)

Ox1’ " Oxg

Y

grad f = (
curl: C*(0"1,R?) — (Cé(or]vAz))* by

curl(v): w s — / (v, 603 |

i.e. a weak form of the operator curl: v — (vj; — v; ;) da; A dz; obtained from
integration by parts [CDK11, Theorem 3.28]; curl*: C»*(0], A?) — C*(0"), R?)
by

i—1 n n
* .
curl®(v) = ( > vjig— D Uz’j,j) ;
j=1 1

j=i+1 i

1=

and, finally, div: C*(0"),R%) — (C}§(0"),R))" by
div(u): ¢ — —/Zuiaicp.

Lemma 3.1. Let o € (0,1), s >r >0, and T € (Os] \OT])k. The following
sequences are right exact in the category of Banach spaces and bounded linear
maps. Moreover the sequences split, i.e. each middle object decomposes into a
direct sum of the right space and some complement. The sequences are:

ker grad —— CL2(0"] R) £ Lercurl (3.2a)

r\_/
ker(f o flppon)) —— €0, R L2200y cagor) gey  (3.21)
Cle (0, RY); —— CLe(07,RY) == RF, (3.2¢)

~_
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Proof. Obviously, all maps going from left to right in the diagrams are linear
and continuous. Moreover, curl is linear, and also continuous as well since given
v, — 0 in C¥(0"1, R?) implies — [ (v,dw) — 0 for any w € C§(0", A%) by the
Dominated Convergence Theorem. As kernels of continuous maps are closed, all
spaces in the sequences are Banach spaces.

By general yoga of topological vector spaces [Sch71, § 1.2.2] it is sufficient to
show that the right map is surjective and it admits a bounded linear split. In
case of this is a PDE problem, that is solved by [CDK11, Theorem 8.3]
(consider also Remarks 8.5 (ii), (iv), and (v) therein). In case the question
translates into an extension problem which is solved in [CDK11, Theorem 16.11;
GT77, Lemma 6.37]. For the remaining case (3.2c) choose pairwise disjoint

neighborhoods of 1, ..., z; and take smooth bump functions by, ..., bx of these
neighborhoods with by(z1) = ... = bp(zx) = 1. A split is then given by
f— f(xl)bl +...+ f(xk)bk. O]

In the original version of the thesis there was a mistake in the proof of the
following lemma which could not be remedied, see the remark preceding this
thesis.

Lemma 3.2. (No proof of this lemma currently known, see the remark preceding
this thesis) Let a € (0,1). The following sequence is left exact in the category of
topological vector spaces. Moreover the sequence splits in the category of Banach
spaces, i.e. the left and the middle objects are Banach spaces and the middle
space decomposes as Banach spaces into a direct sum of the former space and
some complement. The sequence is:

Che (07, A%)/ ker curl* 22 (071, RY) 1Y (Ch(0,R))T. (3.2d)

\/

Remark 3.3. The theorem used by the preceding lemmas, namely |[CDK11}
Theorem 8.3], holds for higher degrees of Holder regularity C™“ with o € (0, 1).
But it is in general not known in the cases o = 0 or o = 1 and false is specific
instances of these cases [DFT03; |[Pre97]—though no counterexample in the
instances relevant for the lemma is known to the author. Hence from this
moment onward we have to assume a € (0,1).

3.1.2 The implicit function theorem

By a locally defined map between two pointed spaces we mean a map that
preserves the base point and is defined on a neighborhood of the base point of its
domain. This domain is called domain of definition. When writing A ® B, we
consider this space pointed at the origin, i.e. A® B = (A® B,0). Recall that the
Fréchet derivative of a locally defined map A: (€,e) = (F, f) at e € £ is, if it
exists, the bounded linear map given by (D.A)(v) := l1_>m0 W. A local
Fréchet isomorphism is a locally defined continuously Fréchet differentiable
map with a locally defined continuously Fréchet differentiable inverse. The
domain of definition of the inverse is called codomain. We state the local
submersion theorem [Lanl2 Corollary 5.7]:
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Lemma 3.4 (local submersion theorem). Consider a locally defined continuously
Fréchet differentiable map

A: (E,e%) — (F, 9

between pointed Banach spaces. Assume that the differential Do A is surjective
and its kernel has a closed complement. Then there is a local Fréchet isomor-
phisms (up to restriction of the domains of definition) ¢: (1 ® E2,0) — (€,¢€°)
such that

Aop(er,es) = Aop(er,0) (3.3a)

for all (e1, e2) in the domain of definition of ¢. Moreover ¢ is of the form
p(er,ez) = e + paler, ea) (3.3b)
with @9 valued in &;.

Related to the local submersion theorem is the implicit function theorem. A
nice generalization thereof was given by Robinson [Rob91, Corollary 3.4]. The
instance crucial to our investigation reads as follows:

Lemma 3.5. Let Y be a Banach space and X, Z be normed vector spaces. Let
29, 49 be points in X, Y respectively, and let U a neighborhood of z° and V a
neighborhood of y°. Suppose F is a function from U x V to Z with F(2°,y°) = 0,
and is Fréchet differentiable at (2°,y"). Suppose further:

(i) F(.,y) is Lipschitz admitting a uniform Lipschitz constant for all y € Y;

(ii) the derivative at (z°,y") in y-direction D(y0 ,o\F|y is strong, meaning that
for the first order approzimation Ty = F(2°,4°) + D(zo yoyFly: Y — Z
for every € > 0 the following error estimate holds on a sufficiently small
neighborhood of (z°,y°):

|(F(z,y) = T1i(y)) — (F(z,y) = Ti(y")| < ely = ¢'|;

(iii) D(go 4oy Fy is bijective.

Then there are neighborhoods U' of x° and V' of 4°, and a function P: U — V'
such that

(i) P(2°) =y°;

(ii) P is Lipschitz;
(iii) for each x € U', P(z) is the unique solution in V' of F(z,y) = 0.
Lemma 3.6. Let o >0, m >0, and a € [0,1] with m+« > 1. Set B := B|0, g].
For a neighborhood U' of id € C™*(B,R?), id: x + x, every function f € U

with values in B has a unique inverse f=1, i.e. f~Yo f = fo f~' =id. This
inverse f~1 depends continuously on such f’s.

Proof. Set ||.|| == ||.||cm.«; OB denotes the boundary of B. The idea is to apply
Lemma tothe case X =Y = Z = {f € C"(B,RY) | flap = 0} and
U=V ={f||f—1id] <1} Note that, being defined as the kernel of the
restriction map to 0B, ) is again a Banach space. Since m +«a > 1 every f € U
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is at least Lipschitz with Lipschitz constant smaller than 1. Hence for very x € B
the distance dg((id + f)(x) — x,0B) < du(z,dB). Thus (id+ f)(x) € B. Hence
the map

F:UXV = Z,(f,g)— (id+g)o(id+ f)—id

is well defined.
Obviously, F(0,0) = 0. At (0,0) the Fréchet derivative is calculated using
infinitesimal elements fs and gs:
((id + gs) o (id + f5) — id) — (id o id — id)
= fs +gso (id+ fs)
= fs+ 95+ (95 0 (id + f5) — gs 0 id)
Lemma indicates that the last summand vanishes at rate ||gs||2. Hence

= f5+ 9.

Thus Do 0yr = idx +1idy. We continue to check the remaining assumptions of
Lemma [3.5

(i) For g € V and f1, fo € U we obtain by Lemma

IF(f1,9) — F(f2,9)ll < llgo fi —go fa
< Cllgh @+ ([ foll + 1 f2D I f1r = fll
<CA+2)fr = fall-

Thus there is a Lipschitz bound on F(., g) uniform in g.

(ii) Note that DF(O,0)|31 = idy. For T} = F(0,0) + DF(0,0)|)1 = 0+idy we
estimate using again Lemma

1(F(f,9) — Ta(g)) — (F(f,9") — Tu(g")|l
= |[((#d + g) o (id + f) —id — g) — ((id + ¢') o (id + f) — id — g')||
=(g—9g")o(id+f)+(g—g)oid]
< Cllg— g+ |lid + f|| + ||5d|) || £
<3C|Iflllg = 4'll-

Hence shrinking the domain of f sufficiently, we get a Lipschitz estimate
in g with arbitrarily small Lipschitz constant.

(iii) Since D(O,O)Fb} = idy, D(O,O)Fb} is bijective.

Hence Lemma [3.5]is applicable. But the conclusion of this lemma is exactly our
claim. O

3.1.3 Geometric applications

Let r > 0. We identify the tangent bundle T 0"} on the ball 0"} with 0" x
R%4 ~ 0" x R*? canonically. By this identification a bundle isomorphism
w: TOT = T0 (with ¢(z,v) = (z,$(v))) can be identified with a matrix
valued function 0"} — R%¢, By an orthonormal C*-frame for g we denote
a bundle isomorphism x — B, that is in C* (OT],Rd'd) and maps the canonical
Euclidean base of R% to base that is orthonormal with respect to g.
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Lemma 3.7. Let g be a Riemannian C*-metric on some ball B[0,r]. Then g
admits an orthonormal C*-frame B(y. Moreover, the inverse x — B;! is also
in C*(0"1, R%4),

Proof. Lemma states in our case that given a matrix valued function A €
Cho (071, R%4) such that (det A)~! is bound in absolute value, the inverse matrix
function A~! is C*bounded by C, where C = C(||A]|co,7). An immediate
application of this statement is that for any vector valued function f € C*(0"], R9)
with 0 < Cy < |f| < Oy the reciprocal norm ﬁ is bounded in the same way.

Let (z,e1),(x,e2),...,(z,e,) be the Euclidean standard frame of T 0"l. We
calculate B by the Gram-Schmidt process, i.e.

Bye, = (z,€1)
. B -
By, = (z,€2) — 7@21 $’612>g .
|B$7€1 |g
d—1 ~
_ B _
By, = (z,€4) — Z MBL%
n=1 |BI7€n ‘g
and - -
B B
Byo = =5 By, = bt
| Bz e lg |Bz,ealg

We have to check inductively that the field defined in each step remains
C*-bounded. Each step involves only C*-functions (assuming that all functions
defined before are of class C*) and operations that are either of the form f — ﬁ

or addition and multiplication (which are C*-bounded). As the Gram-Schmidt
process is well-defined (i.e. denominators do not vanish), all reciprocal norms
involved in the process are bounded uniformly since 0"} is compact. Hence by
the first paragraph the frame map B = (B ,,..., B .,) is C*-bounded.

y DPlleq
For the inverse frame map apply directly the statement of [CDK11| from the
first paragraph. This gives that Bz ' is in C*(0" x R%?, 0" x R¥9). O

Lemma 3.8. Let B C B’ be two Euclidean balls. The pull-back map
()*(.): C*(B',Sym?) x (id + C**(B,R%)z) — C*(B,Sym?),
(9. f) = g

is continuously Fréchet differentiable. Moreover for any Riemannian metric g°
the Fréchet differential at (g°,id) has a factorization of the form

<prGB1 0 S 0

Prg,, 0 O 0>:gB@gB’\B@fl@f2—>931€Bng,

where S is a linear homeomorphism and we have linear homeomorphisms

Gp ~ C*(B, Sym?), G ®Gpnp =~ C*(B, Sym?),
G ~Gp1 B Gpa,
Fi1@®Fy ~CH(B,RY)z.
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Proof. We calculate the Fréchet derivative of (.)*(.) at (g%, °) in the direction
of some tangent vector (f,g), i.e. a map between tangent spaces,

Do so((.)*(.)): C*(B',Sym?) x C1*(B,R%)z — C*(B, Sym?).

Since by linearity

Dgo ¢ ((.)"())(g, f) = 111% (.fO+T,f)*(g(;+7—g)_f0*go
T
0 * 0 0% 0
we have

Dyo po(()*())(f9) = Dfo(f*go) + fO%*g.

This expression is continuous in ¢ and f for fix ¢° and f°. Hence pullback map
has a Fréchet derivative at (g%, f°). Since this expression is continuous in g° and
£9 as well, the pullback map is continuously differentiable. For the factorization
we restrict to the case (¢°, f°) = (¢°, id), i.e.

Dgo,ia(()*()) = Dia(()"9") + (9 = glpo.a))- (3-4)

In case of the first summand of (3.4)), we calculate using the fiber-wise inverse
A,: T? B — B x R? of an orthonormal frame B, : B x R¢ — T% B as provided

by Lemma [3.7]

Dia(()*g)(f) = lim L4+ Tf)*g° — id*g°

T7—0 T
. ({(id + 7 )«0;, (id + T f)+05) g0 — (id.0;, id*aj>go)ij
T7—0 T

= (<’Ld*8“ f*aj>g° + <7’d*aj’ f*8i>go)ij
= (<A71id*az‘a Ailf*8j>Eucl. + <A71id*8j7A71f*8i>Eud')
=z v (A7 Ay (grad f)(2))ij + (A7 As(grad f)(2));),; -

ij

By this base change we can fiber-wise factorize D;4((.)*g°) by bounded linear
maps

d

2

che(B,RY) L Co(B,R¥4) — Co(B, R4 — Co(B,R())

h hij AT Ay (hij)ij = hij — (haj + hyji)i<;

of Banach spaces, where J = grad? is the Jacobi map. It has a kernel-image
factorization due to of Lemma The bounded and linear transformation
hij — AZ;AI(hiyj)ij is invertible and therefore a linear homeomorphisms of
Banach spaces. Finally, the map (h;;) ~ (hi; + hji)i<; has a kernel-image
factorization as it is described fiber-wise by a constant matrix. This gives the
desired kernel-image factorization D;q((.)*¢"): F1 ® F2 — Gp1 ® Gpa-

In case of the second summand of , there is a kernel-image factorization
Gp®Gpnp ~ C*(B, Sym?) with G ~ C*(B, Sym?) due to ofLemma
O
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Lemma 3.9. (The proof of this lemma is not correct and, currently, no valid
proof is known, see the remark preceding this thesis) Assume d > 3. Let ¢° €
C(0"1, Sym?) be a harmonic metric. There is a local Fréchet isomorphism

Qhar : (Vhar ® ghar7 0@ 0) N (Coz (07']7Sym2)790)

for some Banach spaces yhar and EMa sych that the Fréchet derivative D jopnar is
an isomorphism and a metric g in the codomain of definition of Ynar is harmonic

if and only if prens: oy, (g) = 0.

Proof. Recall from (1.22) that harmonicity of a C®-metric means that the
distributions Ay zy = >;(g'/%g%*)0; for all coordinate functions xy = x1,...,7q
vanish. We factorize the map (A{y z1,..., Ay zq), as follows

d

o0, Sym?) (AY) 21, A7 ) 24) ((Cé’a(Or],R))*>

I o]

Co(07), Sym?) —— 22 e or] Ry

where G: g — g"/?g (¢ denotes the inverse of g, which is again a symmetric
matrix). The map G has an inverse given by a. — a’"2a as

lg2g[12(g"2g )™ = (g2 ]) "2 P (g7) Tt = (g 2T g = g,

where |a_ | = deta.. To see that G admits a Fréchet derivative at any point g
around ¢° apply basic rules of Fréchet derivatives [Die69, § 8.2] to a tangent
vector h. € C*(0"], Sym?)

(DgG)h.. = ((Dgg”*)h.) - g + g"*(Dgg)h..

1 —1/g 1/9
=39 2((Dgdetg.)h.) g +g"*(Dyg)h..

provided that g > ¢ > 0 which can be assumed by restricting to a sufficiently
small neighborhood around ¢°. Moreover observe that

) Mu(g.) ... Mia(yg.)
(Dgg~)h.. = ((Dgé)h.i) gt EDg : (h)
:7g_zmg_zh” Ma(g.) .. Maa(yg..)

where M;; (g..) denotes the ij-minor which are determinants. As determinants
are simply polynomials the Fréchet derivative of G exists. By a similar argument
the Fréchet derivative of the inverse of G exists. Since both maps are inverse to
each other their derivatives have to be invertible. This is to say that G is a local
Fréchet isomorphism.

The linear map a;; — (aix); is described fiber-wise by a constant matrix and
is injective. Hence it is onto a closed linear subspace F of (C*(0"),R4))¢ with
a closed linear complement Fy. Identify F; with C*(0"), Sym?). Due to (3.2d)
the map div? is onto. According to of Lemma there is a factorization
of C* (OT],]Rd) into the kernel of div, let’s denote it by £ and a closed linear
complement &;. This factorization applied to every factor gives a factorization
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of (C*(0",R%))¥ into a kernel, let’s call it V*** and a closed complement, let’s
call it £"*. The harmonic metrics by Vhar := Yhar 0 ¢ (07], Sym?).
Unfortunately, by a mistake in the original version of this thesis it was
assumed that the intersection VP admits a closed complement as well. But this
is not generally the case in Banach spaces, see the remark preceding this thesis.
We can apply Lemma [3.4] to the map A obtaining the local Fréchet isomorphism
(Vhar We sought. O

3.2 Controlling coordinate charts

3.2.1 Strainers

Strainers are a way of introducing coordinates that works generally in complete
length spaces of curvature bounded from below. We resort to this concept,
as it allows to introduce a kind of coordinate system canonically up to the
discrete choice of an origin and 2d points around it in any metric space. Note,
that the standard canonical coordinate system in Riemannian geometry, normal
coordinates, is ill-defined in our set-up as the geodesic equations require at least
a Cll-metric tensor to have a unique solution guaranteed by the Picard-Lindelof
theorem, see also [KSS13] for the regularity of the resulting coordinate system.
A counterexamples regarding the uniqueness of geodesics for Ct®-metrics with
a < 1 is found in [Chr91, Appendix F].

A complete introduction of the concept of strainers in metric spaces is given
in Burago, Burago, and Ivanov [BBIO1, § 10.8.2]. For our purposes the following
definition is convenient:

Definition 3.10 (e-strainer). A collection Z = (27, ..., z;, 2y ..., %y ) of points
in Riemannian d-manifold M is an e-strainer at some point z if
’Z zsz;r -] <e, (3.5a)
|Z zfaz; —w|<e (3.5b)

for ¢,57 € {1,...d} with i # j.

Remark 3.11. As strainer can be regarded as a coordinate system in the following
sense: For an e-strainer distance coordinates str: U — R are given by the
function

str(z) = (|Jz 21|, .- -, |z 24]) -

However, we will not use this definition, but only the fact stated below by
Theorem [3.15 that strainers fix a choice of automorphism. The reason is that,
since we assume only a lower Ricci bound, strainer coordinates do not give a
local bijection. To the knowledge of the author there has not been any usage of
strainers in this set-up.

There is a twofold difference between our definition and the definition given
by Burago, Burago, and Ivanov [BBIO1]. First, strict inequality is required. In
our set-up weak inequality is more natural as it is stable under limits. Second,
the authors also consider the case where d does not equal the dimension of
the space (that does not need to have an integer dimension in the classical
sense anyway). Moreover their lower curvature requirement for the regularity
of strainer coordinates is formulated in terms of triangle comparison instead in
terms of Ricci curvature.



54 CHAPTER 3. PROOF OF THE MAIN LEMMA

For the rest of this chapter we need the following domains

By == B[0,e V], (3.6a)
By = B[0,2e°7 7], (3.6b)
By == B[0, 4¢2(®+ Y], (3.6¢)
Bs == B|0,4e3©+ Y], (3.6d)

Further let

¢:=((1,0,...,0),(0,1,0...,0),...,(0,...,0,1),
(~1,0,...,0),(0,-1,0,...,0),...,(0,...,0,—1)) € (RY)* (3.7)

be the canonical unit vectors.

Lemma 3.12. Let ©,9,c,6 > 0. There is some nzy > 0 such that for r < g1y
and any chart ¢: B(0, 0) — M to a Riemannian manifold M with ||¢||g. < ©

| L Buc1. €00 — £ e g€0n| < 6

for all z,y € By[p, cr] \ By(p,7) and £ :== ¢~ (x), n =~ (y).

Proof. Assume that for arbitrarily small r > 0 there is a Riemannian manifold
M with ||(M,p)||de < © such that there is a chart ¢: (B(0, 9),p) = (M, p) with

| Buct.£0n — L g€0n| > & for some z,y € B[0,cr] \ B(0,7) and € == ¢~ 1(z),
n = 1(y). Let r, be a sequence of such r converging to 0 and (M., gn), ©n,
and zp,,yn € By, [0,cr,] \ By, (0,7,,) corresponding manifolds, charts and points
with [|¢n[|de < © and |£puct.&n0nn — Ly g€n0nn| > & where € == ¢, (x,) and
1= n(n).

We rescale the metrics by factors r; !, i.e. r,2(¢*g"). Further, by a linear
transformation A: (R%, g,l0) — (RY, (., >Euc1,) we can assume that 7, 2(p*g") is
Euclidean at the origin. Due to the bounds || Tl < €®, [ Te ! < €® and
since r, —=5 0, theses new metric are defined on B(0, o) for sufficiently large
n, let’s denote them by g, == (A~1)*(r-2(p*g")). Further let &, = A~1¢, and
il == A”'n,. They are located in the compact set B[0, 2e2©g] \ B(0, 1729 p)
due to and | T¢ ™| < €®. Due to Arzela-Ascoli the §"’s subconverge
to some metric §g. By the Holder semi-norm bounds ||(¢*gn)..[lce < 07O this
metric is constant. Hence it is Euclidean because each g, is Euclidean at the
origin. Since &, and I, are in a compact set, we can assume that the sequences
&, and 7, converge by going to a subsequence. Let £ and 7 denote the limit
points. Observe that

= ~ ZEucl.goﬁ
2[&n 0[]77 0]

Zg;L anﬁn = arccos

since |€,, 0] and |7, 0| are bounded from below. Hence we have
0 < liminf |ZEucl.§~n0ﬁn - Zg}énoﬁn‘ = ‘ZEucl.EOfl - ZEucl.g()f/' = 0.
n—oo

This is a contradiction, hence the lemma follows. O]
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Proposition 3.13 (normalization of strainers). Fiz o € (0,1) and 9,0 > 0.
Choose mgra = iz1A(©, 0, ¢, 0) > 0 according to Lemma for ¢ = 2. Then
there is some angle € > 0 and some 6 > 0 such that for any r € [0, %6_3(®+1) A
e~ 1o Amgl[1] there is E = =(d, e, ©,7) such that the following holds:

For any (M, g,p) € PMdc’ffgr, e-strainer Z C Bgy[p,2r] \ By(p,7) of p, and
harmonic chart ¢ : B(0, 0) — M with ||¢||¢e < © there is a chart ¢: B(0, o) —
M centered at p of the form ¢ = o ¢ with

lolléa <E, @(2ré) =2, () =(x)

for all x ¢ By \ By.

Proof. Set = 1~1(2). In this proof, let |.| refer to Euclidean distance. Note
that e ©7r < 0¢;| < 2e®r for i = 1,...,d due to (1.20).

We use ££0n to denote the Euclidean angle on B(0, o), that coincides with
the comparison angle with respect to Euclidean metric as defined in , and
£ £0n to denote the comparison angle with respect to 1*g. We note that we have
the triangle inequality for (non-comparison) angles [BBIO1, Theorem 3.6.34]

LE0¢ < LEOn + An0¢ (3.8)

for any &, 7,¢ € B(0, o).

First, by rotation we may assume that £({ 0e; = 0. In the second step observe
that [£() 0e; — 2| < | £ 0e1 — 5|40 < £+ 6 by Lemma and (3.5a)). Hence
can apply a rotation fixing the ej-axis such that £(; 0es < &+ 4. In the third
step we observe that again

LGH0es — 5 = 140G — §1 <e+4 and

4¢3 0e2 — 5| < |£G0G — 5|+
Lemma 3121
< |£¢F0G — 2| +6+¢
(3-52)
< 0+ 2e.

Therefore due to the triangle inequality for angles the (Euclidean) angle between
¢ and the orthogonal complement of the e;-es-plane is smaller than (e + &) +
(6 + 2¢). Hence, provided d > 4, we can find a rotation fixing the e;- and es-axes
such that Aegoq < 20 4 3e. We can repeat this process until d — 1-th step.
In the d-th step the orthogonal complement of the ei-...-eq_1-hyperplane is
simply a line on which e is located, thus A{edO(j; is immediately bounded in
terms of € and §. As the described process comprises only finitely many steps
we can make &Q‘Oei, i=1,...,d, as small as we wish by choice of € and 9, let’s

say {g- Assuming further that ¢ < {5, we get £(;0e; < § fori=1,...,d by
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(3.5b)). The resulting arrangement can be depicted as follows:

The idea is now to construct an auxiliary function f’ depending on r_lg? C R4
with the case 7 = 1 in mind. We have r—1¢ € B(0,2¢9)\B(0,e~©). Let K be the
subset of B(0,2¢®) \ B(0,e~®) consisting of all points that are within a cone of
aperture %ﬂ' with axis going through one of the +e;’s. As £(;F0e;, (7 0(—e;) < 5
fori=1,...,d, we can find some C'“-isomorphism f’: B(0,7 1) — B(0,r!p)
such that f':e; — ¢ fori = 1,...,d and f/'(§) = £ for any ¢ ¢ K—where
by Cl“-isomorphism we mean that there is a CY*-bounded inverse. Both
Ch-bounds can actually be chosen independent of 5 only depending on d and ¢.

For general r > 0, we define

&) =rf'(r71).
Set 0; = (%. By definition from Section E we have

fllcre = flleo + Y l10ifllco + D 119:f

Observe that 8, f(&) = (0;f')(r~1¢) and Mo O-hG ) _ p—ah(r O—h(r )

[€=nl [r=te—r=Tn|™

for any function h, e.g. h = 0; f. Hence

= rllflleo + 3 10:F lco +7 3 10:f: o

i
<7 fllove
Analoguously, the inverse is subject to

£ lere <77 lf " e

Now we have to choose Z so large such that it bounds the C**-norm of the
chart ¢ := 1) o f on the scale of p according to Definition [[.20] To force the first
condition choose = so large that for the differentials we have

[TWo )l =T foTy| <[Tf]-|Ty| < € and likewise
[T@po f)" < NTy - I TF) < e
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For the second condition observe that the ||.||o-seminorm pullback metric f*g
is bounded according to Corollary in terms of a constant C' = C(p) and
I fllce and ||g..||ca. Observe that ||g. ||ce is bounded in terms of d, o, o, and ©
since ||g..[|co < d%e® due to || Tt < © and ||g..[|o < 0~*O. Moreover | f|ca
is bounded by r~||f'~1||c1.« as we observed above. Hence f*g is bounded in
terms of d, o, a, ©, and r. This allows us to choose a sufficiently large © such
that 0 /*glla < ©. 0

3.2.2 Automorphism rigidity

For any points z,y in a Riemannnian manifold M and any v € T, M denote by
£(y,x,v) the angle between the minimal geodesic from z to y and v provided
that such a geodesic uniquely exists. Moreover let S denote a (d — 1-dimensional)
hyperplane in Euclidean space M = R? containing z. Denote by £(S,x,v)
the angle between the plane S and the vector v. Recall from that € =
(te1,...,+eq) are the Euclidean standard unit vectors.

Definition 3.14 (Anderson-Cheeger limit). Let « > 0, A€ R, i >0, © > 0,

€ (0,e79i/4), r € (0,3e72€p), and some § € (0,1). We call a Riemannian
metric g on B(0, ¢) an Anderson-Cheeger limit of exponent « if there exist
a chart ¢: (B(0, ),0) — (M, p) to some pointed Riemannian manifold (M, ¢’, p)
such that

e g=¢"yg,
¢ |¢[|¢e < © (where ||.||ce is the chart norm from Definition [1.20), and

e (M,p) is the PGH-limit of some smooth Riemannian manifolds M,, with
Ric M,, > —A and inj M,, > i.

Theorem 3.15 (automorphism rigidity of limit metrics). Let « > 0, A € R,
i>0,0>0, and o € (0,e=9i/4). For sufficiently small radius r € (0, %6’299)
and some 6 € (0, 1) the following holds:

Assume that g is an Anderson-Cheeger limit on B(0, ¢) and a locally g-distance
preserving map f: B[0,2e2r] — B(0, ). If f(ré) = ré, then flBjo,6r) = id.

The idea of the proof is to show that the geodesics joining the points 7€,
geodesics joining points on these geodesics with the points ré, etc. are dense in
B[O, 6r] with respect to the Euclidean metric. As we will see, f is the identity
map on such points. Hence the claim follows. From Taylor [Tay07, Propositions
3.2, 3.3, 4.2] we have a detailed characterization of the limits we are studying;:

Lemma 3.16. Assume that a C*-metric g on B(0,0) is given by a chart
v: (B(0,0),9,0) = (M, q',p), i.e. g = @*q’, for a rough pointed Riemannian
manifold (M, g, p) that is the limit of smooth pointed Riemannian manifolds M,
such that for some constants A and i >0

e RicM,, > —A and
e inj M, > 1.

Then:
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(1) Given x,y € B(0, o) with |xy|y < i/4 there is a unique geodesic y from x
to y.

(i) Assume that v is contained in the chart . Given a sequence M, =
(M, g™, p) converging to M via some comparison maps t, we have that
the geodesics 4™ from x to y with respect to g'™ converge to y in Ch2.

(i) if two geodesics v,~': [0,T] — B(0,0), T > 0, coincide on an open interval
I C0,T], then they are identical.

Lemma 3.17. For any plane S through the origin of R? the is at least one
Cartesian coordinate axes in € which has a Fuclidean angle of at least

1
04 = T arccos —= (3.9)

2 Vd

to the plane. This angle 04 is positive and depend only on the dimension.

€2

\

S

€1

02

0y =12 03~ 35.26° o 0a = § — arccos -

Proof. Given any plane S through the origin let 7 be its normal vector. Instead
of minimizing max.cz £(5,0, e) we can as well maximize f(7) := mineez £(7, €).
Since 77 € S¥! C R?, the supremum in dependence of 7 is obtained. By

symmetry we may assume that 7 is in the first quadrant spanned by eq,...,eq4.
The quantity f(7) is maximal when 77 = ﬁ(l, ...,1). Hence
(2 . . 1 (! 1
— = min arccos{ e;,—| : = arccos —.
\/a 1 i=1,...,n ¢ \/a 1 \/E
Eucl.
Hence Qd:g—f<%(1,...,1))zg—arccos%. O

Lemma 3.18. For sufficiently small qz1g € (0,1) we have that for and r > 0
any plane S through a point x € B(0, dg1gr) there is a point e € € such that the
Euclidean angle £(S, z,re) is at least 30.

Proof. First look at the case r = 1. The existence of the required dg1g is implied
by Lemma [3.17] and continuity of angles. Since angles are scale invariant, the
claim holds for arbitrary r. O
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Lemma 3.19. Let qgqg € (0,1). There is some ng1g such that for any r < ng1g
the following holds: For any metric g on B(0, o) as in Theorem the geodesic
from —rey to rey intersects the ball B[O, dzTgr]-

Proof. Assume that there is no such nggg > 0. This is to say that there is
a sequence 1, > 0 going to zero such that for some metric g" on B(0, g) as
in Theorem [3.15] the geodesic from —rpe; to 7,61 does not intersect the ball
B[O, dz1grr]- As we have a uniform C®-bound on the metrics we may assume
(by going to a subsequence using the Arzela—Ascoli theorem) that the g,’s
CB-converge to some metric g. We rescale the metrics by factors 7,1, i.e.
gt =, 2g™. With respect to each rescaled metric the geodesic from —e; to ey
does not intersects the ball B[0, qgrg]. As 7, ——> 0, the spaces (B(0, 0)3", 0)
PGH-converge to the Euclidean space (R?,0). Moreover the geodesics from
—ej to ey with respect to §g" converge to the Euclidean geodesic from —e; to e
(Lemma [3.16][(if)). On the other hand the distance of the limit geodesic to the

origin is at least qzTg. This is a contradiction. Hence the Lemma holds. O

Lemma 3.20. Let qgog € (0, 3). There is some radius nzzmg € (0,e290) such
that for every r < ngog, every metric g on B(0,0) as in Theorem the
following holds: For every points y € B[O, qgzgr] and z, z € B[0,7] with |y x| gyl
and |y z| puel. at least dgzm, the difference of the intrinsic angle £4(z,y, z) and
the Euclidean angle £ pyer. (x,y, z) is not greater than i@d.

Proof. As in the proof of the previous lemma assume that there is a sequence
r, that goes to zero and violates the claim, i.e. there is a metric ¢g" on B(0, p)
as in Theorem and points y, € B[O, fgzgry] and x,, 2z, € B[0,7,] such
that |£gn(Zn, Yn, 2n) — £Bucl. (Tn, Yn, 2n)| > 04/4 for all n. Since in our case
geodesics Cl'@-converge under PGH-convergence (Lemma and the angle
Lgn(Ty, Yn, 2n) depends on the first derivatives of the geodesics from y to = and
z, we may assume that each metric ¢g” origins from a metric g™ on a manifold
(M, g™, p) with Ric M,, > —A and inj M,, > i.

As in the previous we can further assume that the metrics g" C#-converge for
some metric g on B(0, 9). We rescale by §" = r,,2g"™. Asr, 272050, the spaces
(B(0, 0)§™, 0) PGH-converge to the Euclidean space (R%,0) via some comparison
maps ¢, to R?% more precisely, let ¢ a linear transformation that maps the
tangent space of g at 0 isometrically to Euclidean space; ¢,, can be chosen as
€ ah(r; 1€). Hence we can assume that the ¢,,’s are isometric embeddings. The
sequences iy (X)), tn(yn), and ¢, (2, ), resp., are contained in the compact ball
B[0,e~©] by . Hence by going to a subsequence we may assume that these
sequences converge to some x, y, and z, resp. with |y z|guc. and |y z|guc. at
least dgom We identify x,, with ¢(zy,), yn with ¢(y,), and z, with ¢(z,). Due to
Lemma the geodesics from y to x and z are C'“-limits of the geodesics
from y,, to z, and z,. Let ¢, : B(0, 0) — B(0, ¢) be transformations that map
T, Yns Zn t0 T, 7, 2, Tesp. such that v, — id in C'-norm. Hence

1 .
Ead < hnnl}gf \Kgn (xru Yn, Zn) - AEucl.(xna Yn, Zn)|
< lim inf |A¢*gn (@n, 0, 2n) — Ly gn (x, 0, z)|
n—oo " "
- |1Eucl‘(x7 Y, Z) - KEucl‘(xa Y, Z)| =0.

This is a contradiction. O
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Proof of Theorem[3.15 Let § = 1dg1g A  according to Lemma Apply
Lemma [3.19] to ¢ obtaining a radius rg1g; and apply Lemma [3.20] to 40 = 4T3,
obtaining a radius 1gzg. Set r < 1gg A Ezm A %6_269.

Due to the injectivity radius assumption and each geodesic between
two points inside ¢(B[0,7]) is joined by a unique geodesic inside (B(0,2¢27)).
Hence we can define:

Ay = U{ ~v(I) | v is a geodesic from e to €’ with e, e’ € €},

with e € €and x € A,

Apy1=An U U{ (1)

v is a geodesic from e to x }

forn > 1, and

We claim that Ay is actually dense in Bgyc (0,0r) with respect to the
Euclidean metric (and therefore dense in Bgyel [0, 67]). Assume that there is a
point & € By, (0, d7) some € > 0 such that

BEucL(Jja 5) NAyx = 0. (310)

Since 7 < g1 we have € < 2dr. Assume € to be maximal with property .
Hence there is a point y € Bgye, [0, 307] such that |z y|gue. = €.

Let S be the surface tangent to the Euclidean sphere of radius ¢ around .
Since 30 < dgrg we have that for at least one e € € the Euclidean angle £(e,y, S
is at least %5. Let v be the projection of e — y on S — y. Due to Lemma
we have that the intrinsic angle £, (y + 45%, y,e) is at least 36 — 16 = 34. Let
v: [0, |yely] — B[O, g] be the g-geodesic from y to e. Since 4/(0) points into
Bguc. (2, €), for some small ¢ > 0 the point y(¢) is contained in Bgyq. (z, ) but
also in A.,. This is a contradiction to . Hence points in A, are dense in
B(0, ér).

Due to uniqueness of geodesics (Lemma , every point in Ay is
preserved by f. Hence every point in A; is preserved by f, and so forth. Thus
Ao is preserved by f. Therefore f|gjo sy = id. O

3.2.3 Selection lemma

(Note that in this subsection Lemma is used, see remark preceding this thesis)
In this subsection we prove a theorem that serves to select a chart at the base
point p of a space M € PMé’f <hgr in a way continuous around M € P é’f <hgr.
The proof of the lemma is an application, on one hand, of the theory of elliptic
PDEs as presented by Gilbarg and Trudinger |[GT77] and, on the other hand, of
the well-known implicit function theorem for Banach spaces, which is introduced

and applied in Section 3.1} In the following theorems we will use the Euclidean

balls By, B1, Ba, B3 as introduced in (3.6a)) to (3.6d]).

Theorem 3.21. (Assuming the validity of Lemma[3.9) Let o, 8 € (0,1) with
B < a. Furtherleta >0, A€R,i>0,0 >0, o >0. Finally, let

e B, D By, By D By be Euclidean balls such that e2(®TV B C Bj;
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e ¢° € C¥(B4,Sym?) be a Riemannian metric that is harmonic on By;
e 2re be an e-strainer of 0;

e r > 0 be sufficiently small so that Theorem [3.15 holds with respect to
a,\,i,0, and o;

e ¢° be an Anderson-Cheeger limit with exponent o (see Definition ;

o F=F, CCL¥B Rz be a bounded neighborhood of id: x — x such
that f(B%) C BY for all f € F.

Then there exists a neighborhood G = G,, C CP (B4, Sym?) around ¢° and a

continuous map
P: G — id + CYP (B}, RY)g,e

from G to the hyperplane {id + f | f € CYP(B,, RY)q,2} C CLP(BS, R?) such
that

(i) P(g°) = id;
(i) if g|B, is harmonic for some g € G, so is (P(9)*9)|By;s

(i) for all g,¢' € G with g|p, and ¢'|p, harmonic:
(3feF:dls,=f9) = Pl9)g=Plg)y.

The theorem is a consequence of the following lemma. The crucial difference
is that the Holder exponent is not lowered, but there is no freedom to choose
the set F anymore.

Lemma 3.22. (Assuming the validity of Lemma Let o € (0,1). Further
let B and B’ be Fuclidean balls in R% centered at zero such that By C B C B'.
Finally, let ¢° € C*(B’,Sym?) be a Riemannian metric that is harmonic on By,
and 2ré € B\ By.

Then there are an open neighborhood F C CY*(B',RY) of id, an open
neighborhood G C C*(B',Sym?) of ¢°, and a continuous map

P: G —id+ CH*(B,R%)ye
such that
(i) P(g°) = id;
(i) if g|B, is harmonic for some g € G, so is (G(9)*9)|Bo;

(iii) for all ¢’ € G with ¢'|p, harmonic and any metric ¢" on a domain con-
taining B’':

(3f € F: f*q" is defined and g = f*g") = P(¢"|p)*g" = P(¢")*q .

Proof of Theorem using Lemma [3.23 First, we claim that for any bounded
neighborhood F' C id + CY#(Bh,R%),z of id there is a small neighborhood
G" ¢ CP(B4,Sym?) of ¢° such that for any g, ¢’ € G”

Vhe F: (h*g = g'|p, and h(2ré) = 2ré) — he F'. (3.11)
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To see this assume that there are a ¢ > 0 as well as bounded sequences
h, € F C CH*(Bj Ry, and g, such that g, — ¢° in C?, h¥g, = 9nlBys
hn(2r€) = 2ré€, but ||h, — idp;|/c1.s > €. Then by Arzela-Ascoli the sequence
h,, subconverges in C'# to some h. Of course, the corresponding subsequence
of the g,’s subconverges to ¢g°. Moreover h*¢® = gO\Bé and h(2ré) = 2ré but
|h —idp;|lcr1.s > €. This implies that & is not the identity map in contradic-
tion to our rigidity theorem, Theorem [3.15| applied to frheoremEIm = h and
TTheorem = 2r.

Using this observation we can improve Lemma that we apply to a = 3,
B = B}, B’ a ball between B and B}, and ¢°|z/, obtaining a neighborhood
F' of id: By — R%, a neighborhood G’ of ¢°|p/, and a map P': G’ — F'. By
restricting 7’ further we can assume that f(B’) C Bj Now, we apply the last
paragraph to F' obtaining some G”. Set Ggo = G' N G”. This set together with
P =P o(g+ g|p) does the job. O

For the proof of Lemma [3.22] and a preliminary lemma let us agree on some
convenient notation. For a Euclidean ball B (all balls are again centered at zero)
we introduce

F=F =Ch(B,RY)ae,
Gp = C*(B, Sym?).
Using factorization (3.2b) we denote by

Gpp = ker(g — glp) C C*(B, Sym?),

for a ball B D B, the complement of metrics on B inside the space of metrics on
B. Finally, denote by

Ghar .= { g€ G| g|p, is harmonic }

where By C B is a Euclidean ball. Note that still By N {z € 2ré} = 0.
Additionally, we factorize Gp, using Lemma by @har: (VP @ £Par () —
(GB,,¢°) and parameterize the metrics harmonic on By by

PET = Ppar X (idgpy 5, + 9°|B\By): (Gp\B, ® V"™ @ EM,0) — (Gp, ¢°)
where ¢°| g\ B, = PIG o (¢°). And parameterize the domain of (.)*(.) by

Pt = pp xidF

where id: B — B’.
Choose a factorization of the differential Dg(.)*(.) of the pullback map onto
B around (g°, id) according to Lemma ie.

Prg 0 S 0\
(prcz 0 0 o) 9899e\BDF1BF2— G @ Ipa. (3.12)

Set

A= (B o (()°() 0 @F: G © Gpnp & F1 & Fa — Gp\p, & V™ & &
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Lemma 3.23. (Assuming the validity of Lemma In the notation above we
have that
g C DoA (Gpnp, @V & F).

Proof. Assume that there is a nontrivial vector e; € £ that is not in
A (gB'\BO @ Vher g ]:) .

This space is generated by the closed subspaces with closed complement &; =
DoA(./T") ((p%ar) I(S(f)) and D()A (QB/\BO @ Vhar) = QB\BO @ Vhar. Hence
it is closed and has a closed complement. Let & denote the projection of this
complement on £"*. We have e5 € & \ {0}. Moreover note that Gp\ g, ® V" =
A(Gpnp, ® V'™ @ 0). Hence

G\, B V"™ = DoA(Gp\p, ® V™) C DoA (Gprp, V'™ & F).
For each A > 0 let e;(\) € F denote a vector such that
A(e1(A) + Ae2) =0
if such a vector exists. Note that always
A(Xea) = ()7 Lid* har (Aeg) = Aes.
If we assume that e;(\) € & exists for sufficiently small A and

er(N) 2% 0 (3.13a)

then we can argue as follows: Since A is Fréchet differentiable at 0 we have

Aeg = prg, (Aez — 0)

(
= pre, (A(Aez) — A(e1(A) + Aez))
= prg, (DoA(Aez) — DoA(er () + Aez) +7)
= pre, (—DoA(ex(N)) +7)
= prg, 7

for some function r: dom A — Gp with |r(x)|/|z] — 0 as || — 0. But this is a
contradiction as es # 0.

This is to say that we are left to choose e; (\) in such a way that the continuity
statement (3.13a) holds. Applying "', we see that the defining property of
e1(N) is that (id + e1(N\))* (%7 (Aes)) is harmonic on By. In other words we are
dealing with the boundary value problem

w =0
» (3.13D)
ulap, (T1) = Tk,

for k=1,...,d, where id + e;(\) = u~! and AY is the weak Laplace—Beltrami
operator corresponding to the metric g* (g”)Z o1 = ohar(Neg) from

Gilbarg and Trudinger |GT77, pp. 181-183] construct a bounded near
solution operator for a second order elliptic differential operator as under COIlbld—
eration here given by

PI: (Wé’z(BO)) W2 (By),
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where Wé’2(Bo) denotes the W12_closure of C}, C} the compactly supported
functions in C!, and (W(l)’z)* the dual with the operator norm topology. Let PI,

be the solution operator for AY. As apparent from the definition of W(l)’Q(BO)
this solution operator gives a solution only to the Cauchy boundary problem, i.e.
when seeking a function vanishing on the boundary. But as pointed out in the
same reference this directly generalizes to the Dirichlet problem by

A}'\V(uk - a?k) =0
= > /19M95 05 (i — 24) 5 = 0
ij
= >\ /1gMgy 0jund; = a3 (3.13¢)
ij
where [gy| = | det 9{\J| and Zp = iV \gx\gf\j6k.78i. Hence our solution is
id + ea(\) = (PIy(id + 23)d_,)~*

which is well defined since the solution by each operator PIy is unique. It remains
to check that the solution is actually in C(By) and (3.13a)).

First, due to the additional boundary regularity—that the solution x; +
PI,(Z}) of is in C1'*—we know by |GT77, Theorem 8.34] that e()) is
actually a CH*-function.

Second, we check that actually (PL(i3))4_, 229 0 with respect to the

C%norm. Let Ay and Ply be the Laplace-Beltrami and solution operators
corresponding to ¢" and &) = > V19°(¢°)"6x,;0;. By assumption id + 0 is
actually a solution of the problem (3.13b)) for A = 0, so PIy(#?) = 0. Thus
73, = 0. Hence

PG| oo = [PIER — 2D
Using an estimate [GT77, Theorem 8.16] in the coefficients of the distribution

<C H(ZJ( Mgy — \/w(go)”)%)n

=1

La/2

for A sufficiently small, ¢ > n, and C = C(¢°,d,q, By). But the coefficients
(+/1grlgY — +/1991(g°)7)6y; converge to 0 in -norm as g converges to ¢
; K 07(g%) )5 0 in L9/2 0
or actually even in . Hence N _1 — 0 with respect to the C”-norm.
i in C*). Hence (PI(#})){_, — 0 with he C?

Third, we improve the convergence PIA(ﬁcg) 2200 4n €O to convergence in
CLe. For the harmonic C1*-solution PI,(#}) of the Cauchy problem (3.13c|) an
established Holder estimate [GT77, Theorem 8.33] gives

IPL(Z) lore < CfPIy(E7) lco

where C' depends only on bounds to the metric g*. Thus the C’-convergence
proved in last paragraph is already sufficient to imply C!*®-convergence. Due to
Lemma the inverses of the id + PI)(#})’s Ch*-converge as well. Hence we
have (3.13a)) follows. This completes the proof. O

Proof of Lemma[3.24 The proof proceeds is four steps.



3.2. CONTROLLING COORDINATE CHARTS 65

Linearization of functions harmonic on By. Identify yhar with Q%*“ Fur-

ther the factorization of G and F according to (3.12)) is preserved by gpf_éfir in
the following sense: Set T := Dy@a" and define

G = PIghar O DIz, O T7H(Gp1) Gl = Pgyr O Pip, © T (Gn2)
Eput = Prepar © DT, © T-'(Gp1) Eby = Pleger ©Plp, © T7(Gp2)
gB\Bol = prgB/\B °© Tﬁl(gBl) gB\Bo2 = prgB\Bo ° Tﬁl(ng)'

Further define

har — ghar

h ._ ch
o) D gB\Bol ar .__ G ar

Boo © Gp\By2-

With this reparametrization of the domain the map A" := ((.)*(.)) 0 @par has
the differential

i
o oo

DOAhar —

o oo™
1
oo&o
h S

o Poo
b

cocoo
o Yo W
cooo

4

IO G ©EEL ©ERS O Gpnp ©F1 & Fo — HiT © HIST © Hy™ & Ho

where ﬂlf?r,’}:l?%r,’}:[}ﬁar,?:lg are the suitable closed subspaces and A;, Ay, As,
Ayare linear homeomorphisms and S1, Sy are surjective bounded linear maps.
Moreover (Sl, Sg) Fi1— H,® H%’ar is injective. Note that Gg, = har &) ’Hhar
and Gpo = 7‘[12 S¥) 7‘[2

We can do for Gg the same decomposition as for Gg by the map (p]};ar, ie.

we can view GET as a linear subspace of Gp. As A(Qhar ® Ghar) is GhAT | we have
that D 0|Bg0%ar is an isomorphism from 7—[5“1“ D Hhar to V @& Gp\ B, Define

le =D Ogoléar(Hhar) HQ — D O(p}éar(thar)
Hg =D Owhar(z}_[har) 7_[4 =D OSO}E“(H )
Lemma amounts to the fact that Hz & Ha C Do A(GH" ® G ®Gpnp &

F1 & F3). But this is to say that H4 = 0. Hence Shir = 0 as well. Moreover
Lemma implies that M C (5’1,5'2)(]:1). To sum this up, the fourth

row in the matrix representation of DyA" cancels and (S, S2) is a linear
homeomorphism onto Hi; & H%‘ar. For convenience define
. (har . har . char
gl = gll ’ g2 — Y12 » g3 — “Bol»

G:=019G2®G3®Gpns, H=H1 DB Ho® Hs.

In this reparametrization the differential of A becomes

A 0 0 0 S 0 0
DpA=(0 A 0 0 0 0 O
0 0 A3 0 0 Sy O

G1©G20G30Gp\pDF1EF2 = H1 DHa & H3

where Ay, As, A3 and Sy, So are linear homeomorphisms.
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Quotient out F3 by ¢. Consider the map
B = (A’pr91@g3€9913/\13) : g @fl @FQ — H D (gl ©® g3 ©® gB/\B)

The kernel of the differential Dy B is given by F». Choose the obvious complement
G ® F1. Applying Lemma [3.4] provides a locally defined map

p:(GoF)DF2— (GO TF1) D Fo

such that, by (3.3a)), Aop(eq, e2) is constant in eo € Fy and, by (3.3b)), p(e1,e2) =
e1 + @a(er, ez) with pa(eq, ex) € Fa. Setting B := A o ¢|ggr,e0 We get that

A 0 0 051
DOB:<0A2000>:Q@I1—)H.
0 0 A3052

Construct P by implicit function theorem. Consider the map

Pryan, 0B G & 1 —— H1@Hs (3.14)

P

At 0 the restricted differential Dopry,;, gy, © B|F, is S1 @ S and hence invertible.
Moreover pry;, gy, © B(0,0) = 0. Hence—after restricting the domain of B
accordingly—the standard implicit function theorem for Banach spaces [Die69,
§ 10.2] provides a locally defined map P: G — F; with domain of definition G’
such that

Pra,em, © B9, Pg)) =0

uniquely for g € G’ and P(g) € F’ for some F' C F;. Now for g in a sufficiently
small neighborhood of g¥ (i.e. such that @p..(g, id) is in the domain of B) define

g = Prg © Py (9, id)

P(g) = prgo¢(g,P(g)).

Note that § = prg o ™' o, L (g, id) and that (g, P(g)) = ¢(g, P(g). Further let
F" be a neighborhood of 0 in F5 such that G’ x F’ x F” is in the domain of ¢
(if necessary, restrict G’ and F’ further). Let G x F be a neighborhood of (¢°, id)
such that G x F C @ 0 o(G’ x F' x F"). By Corollary the continuity of
P, and P(¢°) = id, it is possible to find neighborhoods G C G of ¢° and F of
id € CY*(B’,R%) such that f’ o P(g) € F forall g € G and f’ € F.

Check that P(g) does the job. First observe gNO = 0. Hence P (gNO) = 0 and,

hence, P(¢°) = id. This is claim Further observe that P(g)*g = B(g, P(9))
and, hence, the H3 component vanishes, i.e. P(g)*g is harmonic on By. This is
claim (i)

To check the uniqueness property claim assume that there is some
¢’ in G harmonic on By and some metric ¢” on a larger domain such that
for some f € F the pullback f*¢g” is defined and ¢’ = f*¢”. Tt follows that
P(g"Y*g =P(g") f*g" = (foP(¢g'))*g"”. Moreover (fo P(g"))*(¢"|p’) is defined
as fo P(g) € F. By the equality P(¢')*¢’ = (f o P(¢"))*(¢"|p’) we have
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Py, an, (f o P(9') (9" |B') = Proy,em, P(9')*g’ = 0. Hence we have a solution

to problem (3.14) by

pr?‘[l@’f‘b oB (é\///a pr}'l f) =0 where
f~ = (,071 O@%%r(g/qB’,fOP(g/))

as prgospflo@lg’}r(g”, foP(¢") = prgogoflo@%%r(g”, id). Hence P (?) =prg f.
In other words f and P (57) differ only by an element in F,. But by construction

this element has no effect on the image under B, i.e. B (57, f) =B (&77 P (?))
Thus P(¢"|p)*(9"|5) = (f o P(g"))"(¢" ) = P(g')" 9" = P(g')"g".

3.3 Proof of the main lemma

(Note that in this Section Lemma is used, see remark preceding this thesis)
Finally, we come to the proof of the main Lemma.

Lemma 2.23 (Main Lemma). (Assuming the validity of Lemma Given
AeR,i>0,C>0,d>1,a>pF>0, and a scale p € (0,1), for sufficiently
small © > 0 there is a continuous section

M is smooth,
D: P MePMEELY | RicM > A inj(M,g) >4, and
Ve e M,r > 0: vol(B[z,r]) < C"

3,1 d,p har
= P(T_o PMESLS)  (2.10)

for some © > 0 such that D(P) is a unimodular curvature tensor (see Defini-

tion and Theorem .

For brevity write

PM = { M ePMEELY

. m3,1 d,o har
RPM = TS!_o, PM&L,

vol(B[z,r]) < Cr? for all x € M,r > 0

M is smooth, inj(M, g) > i, and }

The construction of D is conducted stepwise as summarized in this diagram:

PPM — PSPM <—PStrPM — PRM

U U U U

Slex — Str — R —
S(ON) ———— StrS(M) D)

W _R
Step 1 Step 2 Step 3

R

where the undefined objects and maps will be explained throughout the proof.
The three maps above, S, Str, and D, will correspond to the three steps of the
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proof. In each step the map is being constructed by Lemma [I.7] and the section
property as well as unimodularity are being checked.

For formal transparency of the proof we initially recall and assign all constants
involved in terms of d and «. Let 8,8, 8" € (0,1) be such that 8 < 8’ < 8" < «.
Apply Proposition to o = 3’ obtaining an angle ¢ < § and a norm bound
©. Choose © < ©. Proposition also gives a norm bound E = 2(d, ¢, 0, r).
Recall the definition of the following Euclidean ball for r < %6_5(94'1)@

Bo == B[0,e©717], By == BJ[0,2e®+17],
By = B0, 4917, Bs := B[0,4e3(®+ 1],
Further let B} and B be Euclidean balls such that
X©TVUBL c B and eBj3 C B).

< % 2(0+1)r. Finally, let v be the constant from
Lemma such that vol(Blz, 37]) > v for any M with [[M|ce, < © and
reM.
To check the section property of Theorem [2.18] more easily, note:

Set 7 > 0 such that 7 <

Lemma 3.24. Let X and Y be complete separable metric spaces. Further let
mey: X = PY and p: Y — X be continuous maps. Let Q: PX — PY be the
integration map induced by Lemma[I.7] and nx: X — P X denote the unit of the
Giry monad, i.e. the map x — .

Then (Pp) omy = nx implies (Pp) o Q = idp x.

Proof. Let f: PX —> R be a bounded continuous test function and Pe PX.

Wehaveffd Pp) = [ fopdQ(P) = [[ fopdm, dP(z) = [[ fd(Pp)o
my dP(z) = [ f(x) a

Assume that X is a complete separable metric space. Recall that MX
denotes the space of boundedly finite measures on X, i.e. measures that are finite
on bounded sets. Let N'X C MX be the space of counting measures on X, i.e.
measures with values in {0,1,...} U{oo}. A random (multi-)set of X is formally
a Radon measure on A’ X. A point process is a random variable Q — A X, this
is to say, the distribution law of a point process is a random set. See [DVO08|
Chapter 9] for details.

3.3.1 First step: random cover

Recall that a subset S C X of a metric space X is called 7-separated if |z y| > 7
for all z,y € X and it is called #covering if S7) = X

Definition 3.25. Let SPM be the subspace (with the restricted topology from
Definition |1.28]) of isomorphism classes

(M,p,w,0) € PMCSEZ; IC/UVH,

where w denotes the orientation, such that
e 0 e N M;

e o is %f—separated;
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o for all x € M there is an y € o \ {z} with |zy| < 7, i.e. ¢ is F-covering
with respect to closed balls.

Lemma 3.26. The space SP/X; is compact.
Proof. Since the space P/\_/;dcf ghg)r [L.C/ova] g compact, it is sufficient to show that
SPM is closed. Let (M,,pn,0n,) € SP/\_/; be a sequence converging to a space
(M,p,0). We can find partially comparison maps ¢, : M,, — M such that ¢,.0,,
weak? converges to o. Since the i,,.0,’s are counting measures so is o [DV08|
Proposition 9.1.IV(iii)]. The second condition can be formulated equivalently
by requiring that o, (B(z, %f)) < 1 for any = € o. As the volume of every
bounded open set can only decrease in the limit [DV03, Theorem A2.3.11(iii),
Proposition A2.6.11(iii)] we have that o(B(z,37)) < 1. In the same way the
volume of bounded closed sets can only increase [DV03| Theorem A2.3.1I(ii),
Proposition A2.6.1I(iii)]. And the final condition can equivalently stated as
o (Blz,7]) > 1 and therefore also holds for the limit o. O

In the same way we define SPM by leaving out orientation. By a random
element in SPM we mean a random variable X :  — SPM, where Q = (2, P)
is a probability space. The probability measure X, (P) is called Law(X) or
distribution of X. Bowen [Bowl5, Lemma 4.2] proved a lemma that reads in
our notation (stated for Riemannian manifolds) as follows:

Lemma 3.27. Let 7 > 0. There exists a continuous map
mey: PM%’SShg — PSPM
such that,

(i) for any (M,p) € P./\/lé’fggr we have that, if (M',p',o’) € SPM is random
with Law((M',p’,0")) = m(p), then (M',p") = (M,p) and o' is %f—
separated and 7-covers M almost surely.

(ii) Moreover, m(y does not depend on the point p in the following sense:
If (M, p),(M,q) are pointed spaces in P./\/ldc’félgr and (M,p,0),(M,p,c")
random with Law((M,p,0)) = myr,py, Law((M,q,0")) = m(uq), then
Law(o) = Law(d”).

Observe that for a representative of an equivalence class (M, p,s) € PM,
also denoted by (M, p, s), where s is the orientation, two cases can happen: First
there is an orientation reversing pointed isomorphism f: (M,p) — (M, p) or not.
The former means that the spaces possesses an orientation reversing symmetry.
More precisely, we can say:

Lemma 3.28. The subset of M € PM admitting an orientation reversing
pointed isomorphism is closed.

Proof. Take a sequence of spaces M,, € PM with orientation reversing pointed
isomorphisms f,: M,, — M,. Moreover choose orientation preserving com-
parison maps t,,: M, — M for some radius r such that B[p,r] C im(¢,) and
B[pn,r] C dom(t,,). This gives approximate pointed orientation reversing maps
fran: (Blp,r],p) = (M, p) defined by vo fr,00~!, meaning that infgy, 1 | f,5g > 1
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and f;, s represents the opposite orientation. Application of Arzela-Ascoli gives
a convergent subsequence. Repeating this argument for a sequence r, — oo
and a diagonal argument gives a globally defined orientation preserving pointed
isomorphism f: M — M. O

First Step of Proof of Lemma[2.23 First, we refine Bowen’s map m ) to a con-

tinuous map
miy: PM = PSPM.

For any (M,p) € PM let X(51,): Q@ — SPM be a random variable with law
m(p,p) On some probability space 2 = (€2, Pg). For a space (M,p,s) € PM
define the random variable Y(57, ¢): 2 — P(SPJ\_/;) by

5(X(M,p>(w),s) if 3 orientation reversing

pointed isomorphism

Yirp,s) (W) = (3.15)

%6(;((”]@)(&,)73) else, f such an isomorphism,
1
+ 20X (a1, (@), )

(where by abuse of notation we write ((M,p,0),s) = (M,p,o0,s)) which is
well defined since in the first case there is no ambiguity of how to assign the
orientation and in the second case all choices are made simultaneously, i.e. there
is no dependence on f. Moreover, Y(,z,, ) is measurable since the case distinction
is based on a closed condition by Lemma [3.28] As the definition does not depend
on w but only on X(a,)(w), the law of Y(az,, ) is independent of the choice of
X(m,p)- Thus define

M ps) = pspp(Law Yiasp s))

where [sP M P(P(PM)) — 73(P./L/l> ) is the counit of the Giry monad, see
Lemma i.e. the integration MSPM = [ P'(A)dP(P’) for some Borel
set ACP

Continuity of m®. Take a sequence M,, = (M, p,,s,) converging to M =

(M, p,s) in PM. By standard probability theory [Dud02, Theorem 11.7.1(d)] w

can choose random variables Xy, ., X(ar,p): €2 = SPM with laws such that
X (M, p) (W) as. converges to X sy (w). Let Yy, = Yoz, p,..s,) and Y = Y(ar o)
be random variables defined by 1D To show that men) converges to me),
we show that Y, (w) a.s. converges to Y (w). In the first case assume that M
admits an orientation reversing pointed isomorphism. Moreover let s,, denote the
reversed orientation of M,, and f an orientation reversing pointed isomorphism
of M. Then any comparison maps ty,: (M, pn, $n) — M give also comparison
maps foi,: (Mp,pn,Sn) — M. As we are in a metrizable space, for some chosen
metric d we have d((My, pn, $n); (Mp, Pn, Sn)) — 0 as n — co. Hence both laws

1 1
OX s A0 50X (a1, p,09) T 50X 01,9 9)

converge to each other as n — oo. In the second case assume that M does not
admit an orientation preserving pointed isomorphism. Then, as by Lemma [3.2§|
the set of such M is open, for sufficiently large n also M, does not admit such
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an isomorphism. Hence by 1] we have Y = §(x,, , (w).s)- Any compari-
son maps ty: (My, pn, sn) — M give directly comparison maps (Y, (w), sn) —
(X(Mp)(w), s). This proves convergence Y, (w) = Y (w) a.

The map S: PPM — P( SPM is now given by m® and the integration
lemma, Lemma [I.7]

Unimodularity of S. Observe that for any unimodular law P on PM and
for any bounded test function with bounded support ¢: SPPM — R on doubly

pointed spaces with random subset carrying the metric defined in ([1.25]) we have
/@(M7p7 q, S, 0) dmL(S(P))
:/ @(M,p,q,S,CT)dVOlM(q) d(SP)(M7p,S,O')
M
:/ M(p(M,p,q,s,cr)dvolM(q) dme,7p,78,)(M,p,5,o) dP(M',p',s")
// ©(M,p,q,s,0)dvoly(q) dY(arrpy o1y (W) (M, p, 5,0)
M dPo(w) dP(M', . o)

write X (w) = (M, Pw), Sw, 0w ), and do the case distinction from (3.15])

fMQD wsPw,> 4, S, Uw)dVOIM( )

://Q 1 [ Mo(M,,po,q,s,0.) dvola(q) dPo(w)
! / /
+§fM<pafS7O'w)dVOlM() dP(M7paS)

where f is the change of orientation. In the integrand we can consider M, p, and
s as fixed, i.e. o(M,p,q,5,0) = ©rp,s)(M, q,0). Thereby we can interchange
integration due to independence of o, from the point as stated in part (ii) of
Bowen’s Lemma [3.271

L (e Y

dPo(w)dP(M',p', ")
// / <{1 wapwaq,sso—w))—i_ ) dPQ(W)
3P M., pu,q,8,04 dVOlM(q)dP(M/,p/,S/)

since X,, depends only on the isomorphism class

// / Mobod:5.0.) dPq(w)dmpP(M',p',q,s")
2<P My, Pw, 4, 8,00) + - -

using unimodularity of P

// / 1( wsPw, 4, S, Uw) dPQ(w) dmRP(M’7p’7q, S/)
M 5@ wapquaS Jw)+"'
wH W 78 Ucu
// / 1( Puws q ) APo(w)
590 w’pquas UUJ)_'_"'

dvoly (p') dP(M’, ¢, ")
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using again idependence of the base point
Mw’ /5 w 7 w
gEO ey
M JQ 590( vavqusvaw)+"' dVOlM(p/)dP(M/,q,S/)

:/// @(Mﬂp/aq/aSaU)dV01M(p/)d}/(M’,q,s/)(w)(M7q/7S7o-)
@M dPQ(W)dP(M/,q7S/)

://M (IO(M,p/,q/,S,U)dVOlM(pl)dme\/[/’q’s/)(M7q/,870) dP(MI7q, Sl)
- / / o(M, p,q,5,0) dvolys () A(SP) (M. g, 5,0)

M
- / o(M,p,q,5,0) dmr (SP).

This proves mp,(SP) = mg(SP), i.e. unimodularity.

Section property. It is sufficient according to Lemma to check for any
point (M,p,s) € PM and any bounded test function with bounded support
p: PM — R on doubly pointed spaces that

/cpdms(M,p,S)

N //QOdP'd(LaWY(M,p,s))(PI)

dé s
:/ ({fgo 1(X<M,p)(w)v* ) ) dPq(w)
Q f §0d§5(X(M,p)(w),S) + 55(X(M,p),f3)

_ @(X(M’p) (w), s) y )
_/Q ({é@(X(MW)(w),s)Jr %¢<X(N[7p),f5) > dPq(w)dP(M,p,s)

where by abuse of notation we write p((M,p,o),s) instead of p(M,p,s). Ac-
cording to the section property contained in Bowen’s Lemma [3.27] part (i), this
is

_ J (M, p,s)
s0(M,p,s)+ 5o(M,p, fs)

in the second case by definiton of the quotient space PM we have (M, p,s) =
(M, p, fs). Hence

= (p(M7p7S) = /(pd(;(lﬂ,p,s)- O

3.3.2 Second Step: random strainer

Let A: z + (z,7) be the diagonal map from M to M?2. Endow M? = M x M
with the metric |(z,2”) (y,v')| = 3(|z y|+ |2’ y'|) The idea is to assign to a space
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(M,p,v) € SPM with M = (M, g, vol, s) the space

(M27A*’U0l70' X 'UOZ, Z 6(:13 Z+)7"" Z (5($ 2t )
TEC el €O Tad

2 Oaaryye ,gﬂ 5(mm)> (3.16)

rEo

such that (z,..., 25, 221,...,2,,) is an e-strainer of z contained in B[z, 2r] \
B(p, r) for each point € o. This way of encoding the strainers can be visualized
by:

M /

d

a

/EU zhen BA(M,U)(x’OO)
(pvy M

Ve

Recall that for a subspace A C X of some metric space X we denote by A the
set A endowed with the intrinsic metric of the restriction of the metric
of X to A x A. For a measured space (X, ) and a measurable set A C X
denote by N A the restriction of y to A. Set A(M, o) = supp(c x vol) and

~ —

A(M, o) = A(M, o).
Definition 3.29. Let StrPM be the subspace of isomorphism classes

d,o har [1+d,C/vV1
(N7Q7u70ayl7"'7y2d)GPMC“gS@r [ /o

(where we also write U/ = vy, ..., v9q) such that there is a Riemannian manifold
M e PM with an mm-space isomorphism ¢: (M x M, (p,p), Asvol) — (N, q, 1)
with

(supp ) No is a i7-separated set of M = A(N) C N;

(supp ) N o is a 7-covering set of M with respect to closed balls, i.e. in
the sense ((supp p) N o)™ = M;

Vi,...,vaoq € NN and supp(v1),...,supp(raq) C fl(M, o);

for any x € (supp p)No the sets vq NB 4 U)(x, 00), ..., v2aMB 4 (11.0) (z,00)
are singletons, their elements form an e-strainer of x in M.

Lemma 3.30. The subspace StrPM - PMé’fghg [4d.C/ov1] o compact.

Proof. Given a sequence N,, € StrPM. Choose representations M,, with mm-
space isometries @, : (M, X My, (Pn,Pn), Asxvoly,) = (Nu, qn, tbn). Note that by
assumption we can reconstruct the restrictions of the additional measures o N M,
and 7 from the measures (supp ) N o and v, N BA(M’O_)({E,OO), s Vp(2d) N
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B, Myg)(:v,oo), for x € (suppp) N o, viewed as measures on M by formula
(13.16)).

By compactness of PM the M,,’s subconverge to some M. All the additional
measures (Supp p,) N oy, and v, N B (7,00), ..., Vpe2q) N B (z,00),
for x € (supp u) No N B x M, viewed as measures on M,, can be pushed forward
to M after choice of partially defined comparing maps t,: M, — M as given
by Lemma i.e. for any r > 0 and sufficiently large n the ball B(p,r) is
contained in the image of ¢, and orientation, distance, and volume converge
with respect to the ¢,’s. Since—for some constant C—the space of measures
@ € MM subject to

w(Blz,r]) < Crt+ C

is compact [DVO03, Corollary A2.6.V], all these push forward measures subcon-
verge to some measures on M. Hence we can find a converging subsequence of
the M,,’s.

Observe that for any open ball B C M the collection of spaces(N,q, u, o,
Vi,...,Vaq) such that all condition in Definition hold on B is closed: The
%f—separating and 7-covering conditions obviously hold for the limit measures.
The counting measures 7, converge to counting measures [DVO08, Proposi-
tion 9.1.IV (iii)]. More precisely, since the sets v,1 N BA(M,U‘) (7,00),.. ., Vp2a) N
BA(M’U)(:E, 00), for x € (supp ) No N B x M, are singletons their push forward
measures converge to points. Hence convergence of these measures just means
convergence of points. The e-strainer conditions closed as well, so it holds for
the limit points.

Since the condition holds for any closed ball B and arbitrary intersections of

closed balls are closed, the collection of spaces (N, q, u, 0,1, ..., Vaq) such that
all conditions in Definition hold is closed. This is to say that every limit of
the subconverging sequence M, is in StrP/\_/l). O

Lemma 3.31 (lifting lemma). Let X and Y1, Ys, ... be Polish spaces and p1, . ..
laws on Vi, ... with compact support and fr: Y, — X be measurable maps. For
n=1,...1let X,: Q = X be random wvariables with law fn.pn. Then there
is a probability space Q' = (¥, P") with random variables Y, : Q' — Y, for
n=1,..., such that X,, = f, oY, a.s. and LawY,, = .

Proof. Take a disintegration { P, },ecx of each fr.p, [AGS08, Theorem 5.3.1],
i.e. a family of probability measures {P,,}.cx such that u,(f,(x)) = 1 and
integration with respect to ju, is expressed by [[ ¢(y) dPs(y) dfnpn(x). Set
Q= Q x [[>_, M, with probability measure P’ defined by integration [Fre03,
452B(b)(i)] of the family of probability measures

oo
(60.) X H Pan(w))
n=1

with respect to the projection Q' — Q. Forn =1,...set Y, : Q' — M, to be the
projection to M,,. First observe that for every n it holds true P’-a.s. that for any
(w,x1,...) € Q' we have z,, € supp P, x,, (.) and hence f,, (Y, (w)) = X, (w). More-
over for any bounded real valued function ¢: },, — R observe that [ ¢ du, =

[ o) APna(y) dfpspin(x) = [ 0(y) dPpx, ) (y) dP(w) = [ ¢(Y,)dP’. This
proves also Law Y, = p,,. O

weN
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Second Step of Proof of Lemma[2.23 We construct a lift from S(91) to the
space P StrPM. Again we construct this map Str by integration according to
Lemma Define

fe:Z—= 0V min /
i#]
ij=1,...,d

M*% [0, 00)

{5 |ZZ;F$ZT"7%|,5—|ZZ;"IZ;—W|, }
)

br — el ~ 3

with 2= (2,..., 2, 27,...,2;). As vol is fully supported for any M € S(90),
the support of f, has always positive measure. Hence we can normalize f, by

= 1

fo = fo~

that is a non-negative bounded function that does not vanish only if 2’ is an
e-strainer for x located in B(x,2r) \ B[z, r]. Fact in the special case of a
constant sequence M = M, proves continuity of f,. Now we define the integrand
function m3: SPM — P StrPM. Set

m?ﬁp,o) = (Z 524 x (UM)*fﬁvolz‘l) ,

reo

where 7, is the unit of the Giry monad from Lemma[L.8] i.e. M — P M,z + 6,
and i, is the index shuffle (z1,..., %24, 91, -, ¥24) = (1,Y1,- -, T2ad, Y2q). This
map is invariant under representatives of equivalence classes in SPM and change
of base point, i.e.

M o) = S o)y and (3.17)
M g,0) = T p.o) (3.18)

for any isomorphism f: (M, p,o) = (M’,p’,¢’) and any points p, ¢ € M. Finally,
m(SJg’p’u) = (7 (M x M, (p,p), vol X &,,v x vol, ﬁ))*mfﬁpyu) (3.19)

Continuity of m>". Let (M,,pn,0,) € SPM converging to some M € SP
via some t,: M, — M. Let X,,X:Q — S /L/l> be random variables with

laws mfﬁl o un),m?}{/}“py). Write X = (M x M, u,v,7°) and X,, = (M, X

Mn?/'l‘nvl/TL?ﬁ’ruL})'
For a radius s > 0 set

Y (W) == X(w) N B(p, s) (3.20)
= (M x M, p, o NB(p,s)%, 7 N (B(p,s) x M)

for some 7(): Q — (N'M)*(29; this is well-defined as it can be rephrased in a
way invariant under pointed isometries M x M — M x M, namely

N (B(p,s) x M)=vnN BA(M,U)(BSUPPH(p7 5), 00).

Define YTET)(OJ) = X,(f)(w) N B(pn, ) in the same way.



76 CHAPTER 3. PROOF OF THE MAIN LEMMA

By definition of convergence in StrPM we know that Y.’ converges in law
to X, a.s. as s — 0o and Y* converges to X in law a.s. as s — oo. Since is
metrizable this implies that to show convergence X,, — X in law it is sufficient

to show convergence
VA O (3.21)

in law for each s > 0.

As the elements of o are %f—separated, there is, for sufficiently large n,
a unique point z, € o, with |zi,(x,)| < %F. For the ¢,’s we know that
(1h), fo, vO12T — fLvol®?.

For each x € o choose random variables X,.,, X,: Q — M with laws

Law X, = (Lz)*f% volid and Law X, = f, vol??

such that X, — X, a.s. By Lemma (applied to X = M?? and X, = M29)
we can assume that there is a lift of X,,, to a random variable Y, : @ — M,
i.e. we have

Law Y, = fz, volid and tnoY, =X, a.s.

Choose

Y — <M x M, (p,p), vol x §,,v X vol, i, Z 5§i X nM(wan)>

TEO,
[Pn @ |<s

= (M x M, (p,p), vol X dp,v X vol, i, Z 6% X nM(YLn))

xreo,
[P zn|<s

where the equality holds for sufficiently large n as the is a one-to-one correspon-
dence between x,,’s and z’s. This definition is by construction consistent with

our previous definition (3.20) of ¥;\*).

It remains to check (3.21)). We claim that this pointwise convergence holds
via the ¢,,’s. Note that a map from the equivalence class Y;* (w) to M is defined
up to isometries of (M, p, o). Observe that

Lﬁi* Z 6% X 77M(Y$7n) = i« Z 6?,?% X nM(LnYw,n)

rEo, rEo,
[pn xn‘<3 [Pn zn|<s

a.s. Moreover for large n we have
. 2d
= 1% 5men X nM(Xw,n)

reo,
pz|<s

But this means that this converges for almost every w € €2 to the strainer of

Y (®)(w). This proves that Yn(s) a.s. converges to Y (®)(w). Since s was chosen
arbitrarily and by our observation from , X, converges a.s. to X. Hence
metr ., ) is continuous.

The Integration Lemmal[I.7] gives the map Str. It remains to check the section

property and unimodularity.
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Section property. Define the section map Str(S ) — SPM

(M, d,p, p,0,7)

= (SUPP £ 5 | (supp ) x (supp ) Ps 1 N (SUPP 1), 0 N (supp ) -
Note that the domain of this map is complete since it is compact as the image of
a compact set under continuous maps. By Lemma [3.24] it is sufficient to check
that (P p) o upr = Sy for every M € SPM. But this holds true since for any

bounded continuous test function ¢: SPM — R we have [ oopStdun = o(M).

Unimodularity of Str. Let ¢: StrPPM — R be an arbitrary bounded test
function with bounded support. According to the discussion following Defini-
tion it is to check that [ ¢ dmy,(Str P) = [ ¢ dmg(Str P) for any unimodular
law P on S(M1). We calculate

/gﬁdmL(StrP)
:// (M, q s 1 o, 7) dmu(misy, ) (M0 ' ' 0, 7)
dP(M,p,0)
// L (pp)d 10, 7) dmi (W, o)) (M0 d i 0, ')
dP(M,p,0)

// M2 (p,p), (¢,q), 1,0 x vol, 7") dvol(q)
(S]'i;,p, )(M 7p M/ 0-/ 17/) dP(M b, o )

by definition of Pmm-convergence and by continuity of ¢ we have

= /// lim (M2, (p.p), (¢:9), 4, 0 % vol, 7 N B((p,p), 5)")
dvol(q) Ay p o) (M9, ' 0’ ﬁ/)dP(M,]%O’)

By definition of the metric of doubly pointed spaces the distance of an
argument of ¢ to the argument (M2, (p,p), (p,q),...) is bounded from below by
|pg|. Since the support of ¢ is bounded, the integrand is bounded by a constant
depending only on (M,p,0). Hence the Dominated Convergence Theorem
[Dud02, Theorem 4.3.5] is applicable.

= [t [[ e ). (000100 x v0l. 7 VB p).5))
dvol Ay poy (M9, 1 0! 7) dP(M, p, o)
:/ lim / // (p7p),(q,q),,u',a><vol,i*ég, X )
S§— 00 _
2€0NB(p,s) dvol(q) . .. df,vol®*(Z)... dP(M,p,0)
z€oNB(p,s)

by Tonelli-Fubini Theorem [Dud02, Theorem 4.4.5]

:/lim// / (M?, (p,p), (¢,9), 1, axvolzd X &)
§— 00

2E0NB(p,s) .. dfpvol?X(Z) ... dvol(q) dP(M, p, o)

z€oNB(p,s)
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reverting some steps from above we get

/// p), (4,9), 1,0 x vol, ")

?]t\} p.o) (7)) dvol(q) dP(M, p, o)
due to invariance under representatives of equivalence classes in SP./L/; li

// M2 (1,1),(4,9), 1’0 x wol, )
?]t\;po') )d(mLP)(MpQ7 )

apply unimodularity of P

/// Str p):(¢,q), 1,0 x vol, V')

M(M,p, O’)(“/) d(mRP)(M b,q,0 )

// (M?,(p,p), (¢,9), ', 0 x vol, #') Ay, - (7)
dwol(p) dP(M,q,0)

use invariance under change of base point ((3.18)

:///w(MQ,(pm) (4,9), 1,0 x vol, 7') Ay o o (7')

dvol(p) dP(M, q,0)
= /// @(M?, (p,p), (¢,9), 1/, 0 X vol,7") dvol(p) Ay} , (7

dP(M,q,0)
= //w(M',p',qﬁu’,U, 7Y dmg (myy 4 o) (M, p ' i 0, 7)
dP(M,q,0)
:/cpdmR(StrP). O

3.3.3 Third step: random curvature tensor

We will use Theorem [3.15] on automorphism rigidity and on chart selection
to construct a random curvature tensor of a space endowed with a strainer, i.e.
a map

mft: StrPM — PRPM.

Third Step of Proof of Lemma@ For Euclidean balls B O B, B’ D B3, a
metric g € C%(B,Sym?) and o’ € (0,1) define the condition (I% B)

g is the C*-limit of pullbacks ¢} ¢" some smooth Riemannian metrics g"

on By under isometries ¢, : B’ — By such that
B C By [0, radius B] C B’ and inj, g" > 5¢° 1! (I%/,B,)

where B’° := By (0, radius B’) is the interior of B’. Define the P _closed set

B’

lgllcs < 0™ “E,2r€ is an e-strainer of 0, }

B = {g € CP" (B}, Sym?)

(Ig:B/), and g|p, is harmonic
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This set is compact by Arzela-Ascoli. The points 2re form an ¢ strainer of 0 for
every metric in g € B’ since being an e-strainer is a closed condition. Moreover
the condition (Ig ) holds for every metric in B’ by a diagonal argument. Also
the restriction 9|;90 of any g € B’ is harmonic since harmonicity as defined in
§[1.3.3] by (1.22) is a closed condition.

By Theorem [1.21} part there is a bound C = C(d, ', 0,0,r) on the
Ch*-norm of the restriction f|p; for any differentiable map f: eBy — R? such
that f(eB5) C B} and ¢ = f*g for metrics ¢’ on eB) and g on B} with
lgllcr . lg'lc> < e~°=. Apply Theorem B21| for o = &', 5 = 6, B — B,
B} = B, and F = Bcﬁ/(Bé,Rd)(id,C) to every g € B’ obtaining open sets G,
and maps

P=P,: G — id+ CYP(B), Ry,

Since P is continuous, we can assume by further shrinking G, that the Lipschitz
constant of

Py(9"): (B, dgua) — (B, dpuc.) (3.22)

is at most e'/2 and ||P,(¢g') — id||c1.s < e~© for every ¢’ € G,. By compactness
we can find a finite set

{g",....d"} B and radiir,...,7

such that BcB’(Bg,sme)(glv T1)yees Bcﬂf(Bévsymz)(gk, r) cover B'. Let Aq,...,
Ar be a corresponding partition of unity.

For each space (N, g, pu,o,7) € StrPM fix a model (M, p), thereby we mean
an actually pointed Riemannian manifold such that (M x M, (p,p), A,vol) is
contained in the equivalence class (N, ¢, ). By abuse of notation we write
o =oN(suppp) C M. For each x € o we have a corresponding e-strainer Z
given by 7 (see definition from previous subsection). As M € PM, it is a limit
of smooth manifolds M,, with || M, [|42*" < ©. Therefore, by the Fundamental

Theorem of Convergence Theory, Theorem |1.24] we know that HMnH(Qj;“?r <0o.

By Proposition we can find at least one chart ¢: (B3,0) — (M, z) such that
p*g € B'. Moreover g € Bcgl(Bé7Sym2)(gj,’l"j) for at least one j =1,...,k. We

call a ¢ subject to both conditions (i.e. ¢*g € B’ and g € Bcﬂ/(Béysymz)(gj,rj))
admissible. Due to these observations we can define a variation of A1,..., \g:

Ni(M,z,2) = sup{ \i(¢*g) | ¢: (B%,0) = (M, x) is admissible } U {0},

1 -
Ni(M,z,7) = ——= —\i(M, z, ), (3.23)
D=1 A (M, Z)
for i =1,...,k and an e-strainer z. Note that the denominator in this definition

is at least 1. If the space M is clear from the context, we write

)‘i,az = )\Z(M, Z, E)

Set s = 2 radius By. Let b: R — [0, 1] be a smooth bump with b(0) = 1 and
supp b = [1,1] and b|g[o,1/.) = 1. For a pointed chart ¢: %Bo — (M, z) define
0 if y ¢ ¢(5Bo)

e M B0 o) = {b<|0so-1<y>|%ud_/52> else.
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For a locally finite system of pointed charts {¢; };c; define

bi({oer) () = b (1) (3.24)

Yjerbe; (y

for y € M. A C%bound on the b;({yi}icr)(y)’s will be established in the

paragraph on continuity below.

Recall from §hat CP' (M, T>! M) consists of (3,1)-tensors that are
C?" function on some charts in the differentiable atlas of M. Further, define a
topology on Cﬁl(M . T3 M ) by saying that a sequence of sections s,, converges
to s if and only if for every open bounded set 2 C M there is a cover of 2 by
charts with harmonic C*-norm on the scale of g at most © such that on these
charts the sections converge as C# -functions. By definition the embedding

gy U= RPM, s (M,p,s), UcCC¥(M,T* M) (3.25)

is continuous for a subset U such that there is a uniform bound on the C#'-norm
for any s € U on some charts with harmonic C*-norm on the scale of g at most
0.

After these preparations we can define the integration map. Let B C M
be the ball of radius r around p of a representative (M, p) of an equivalence
class N = (N, q,0,7) € RPM. Recall Deﬁnition of R({¢:},{N\:}) and the
bump function b, , from Observe that the set ¢ N Br is finite. Let
iz € {1,...,k} be a choice of indices for each x € o N Bgr. The product [[; A, »
vanishes if there is no admissible pointed chart with ¢3g € Bsr( Bé,Sme)(gi’ 7)
for all x € o N Bgr. Define

(p;’l‘ = g O Pgiz (@;g)

. k
mﬁ,M,BR = Z)‘ o Z Aiasa - '.6” R({ :
1 " -

ig
ip=1 € %Bo}z7{bz({¢1
r€oNBr

k

by ({ o=
ip=1 rEoNBRr ® %Bo}z’{ =({ es

y?)} )

1} )

(3.26)

x€oNBRr

where always x € 0N Bpg, and ¢, denotes an admissible pointed chart. Note, that
being a convex combination of Dirac measures the sum rhﬁ, M. B, 18 a probability

measure on CO(M, T*' M). We have to show that this expression is well-defined,
ie.

(i) does not depend on the choice of an admissible charts ¢,;

(ii) actually defines a tensor, i.e. the transition functions are C?#-bounded
and partition of unity is C#-bounded.

For the first point take two admissible charts ¢, and ¢! and some index ¢ such
that ¢tg € Bcg/(Bévsymz)(gi,’l"i). We have to show that ¢! = ¢'* Set g.. == ¢*g

and g/ = ¢"*g. Since g. |p;, = (po¢'"!)*g’ , Theorem implies that the
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metrics g' == Pyi(g. IB;)*g.. and Pyi(g’ |p;)*g’ coincide. In other words, we
have an isometry (B, g' |5,) = (By,g' ) given by f i= (¢' o Pyu(g/ )~ o (0
Pyi(g..)). We check that our rigidity theorem, Theorem is applicable to
a = ', By = By, B, = Bs, and f = f: The chart ¢ can be obtained by
Proposition from a chart ¢: (B(0, 0),0) — (M, z) with [|[¢||qsr < © with

@ =1 o @. Due to (3.22)) we have
Pyi(By)
C €%B2 = Bguel [0, 4e®+%r] C By [0, 462®+%7“] C Bgey, [0, 4626+%T]
C Bguel (0,4€3©FYy) = BS

for sufficiently large n. As the approximations g, we chosen from manifolds
(My, xn) € M, we have inj, g" > 5¢9F1. Hence condition (Igz,Bs) holds. The
map f preserves the strainer as all maps it is composed of do. The remaining
assumptions hold as well by construction. Hence we can apply Theorem [3.15
and have f = id. Thus ¢’ o Pyi(g' = ¢ o Pi(g..). This proves the independence
of the choice of .

For the second point observe that the charts o | 1p, &T€ actually harmonic,
since they are shrunk to their harmonic part, and evizn have a harmonic buffer
of Euclidean width (radius By) around them. Hence the transition functions

between to such charts is actually bounded by C' = C’(d, 0,0, 3,r) in virtue

of Theorem Note, that the denominator in (3.24) is actually bounded

from below by inf by, op , (474, (1By) = inf b(B(0, 1/2)) = 1 for an n € o such
g /153 Bo

that [n¢l, < 3¢ ©7! = L(radius By) which exists because o is #-covering and
# < 1e72®+1r. The partition of unity defined by (3.24) is bounded in the
C!#-norm since P,i(g) < © +1 and a chart ¢ is bounded by = in the C*# -norm.
Hence we see that there is even a uniform bound

C=0C(d,0,0,8,7) (3.27)
on the C-norm of R({l %Bg}m{bz({wﬁ %Bo}x)}r) restricted to Bp.

Next we extend mﬁ’ M.Bp (02 random curvature tensor on the entire M. To
this end define

~ i R .
M M = lim TN M, Bg'
R—o0
where convergence is a consequence of the Dominated Convergence Theorem:
For r = 1,2, ..., we describe each law m% by a random variable
) ) ) NgMuBR

Xr: ([0,1),\) = CO(M, T% M)

with Law Xp = ﬁlﬁM,BR and A the Lebesgue measure. Enumerate the z’s in o
by 1,2,... such that if n < m then z,, € 0 N By implies z,, € 0 N Bg. For each
n=1,... subdivide [0,1) into k™ (possibly empty) intervals of lengths given by
MM, zy), ..., (M, x,), i.e for n =1 take

[07>‘1(M7z1)),“-3[Al(Maxl) +"'+/\k—l(M’x1)71)a
for n = 2 take

0,0 (M, z1) - M (M, 22)) ..., [Al(M,xl) SN (M, 1), Al(M,xl)) ,

L [SE A, 1) + A (M, 21) M (M, 22) + - ..+ A1 (M, @), 1) 7
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and so forth. Let I(n) denote the set of such intervalls. We can index
the intervalls by a tupel (i1,...,4,) € {1,...,k}™. For each r = 1,... let
n, = #0 N Br. We define Xy as the step function that is constant on each

intervall in [ (n,) and assigns to an interval with index (i1, ..., 1n) with value
bpr R({9i | 180}, {02 ({9022 |18, }m) },,) Where m ranges over 1,...,n,.. Ob-

serve that Law X,, = ﬁlﬁ M, B These random variables converge pointwise
since the restriction X,|o to a bounded open domain become constant in n for
sufficiently large n. From this follows convergence in law as for any bounded con-
tinuous test function f: CO(M, T*' M) — R we have limg_,o0 [ f AR v By =
limp oo [ foXpd\ = [limp s f o XgdA by the Dominated Convergence
Theorem |Dud02, Theorem 4.3.5]. In particulart, this theorem implis that the
pointwise limit
X(w) = lim Xg(w) (3.28)
R—

is a measurable function.

Further note that the bound on the chart norm now holds on the
entire space M. We can therefore use the map ¢(7, defined in to get the
integration map

R . ~ R
YN, q,p,0,0) = UM, p)x"TIN M

where (M, p) is a model for (N, g, u, o, 7) as considered above. As the construction
of fnﬁ’ M. By, 18 preserved under isomorphisms and in the construction of fnﬁ’ M
the enumeration of the points in ¢ was irrelevant, mf’N Wps0,7) is independent of
the choice of a model space.

Continuity of mf. Take a converging sequence m?N Take some

nsqnsHn>0n,Vn)’

models (M,,, p,) for these spaces. To show convergence is sufficient to show that
the random variables

n
L(M'mpn) o X ’

where the X™’s are the random variables from , pointwise converge to
t(M,p) © X. To this end first observe that for pointwise convergence it is sufficient
to look at a ball Br of arbitrary size and find comparison maps t,,: M,, - M
such that on Br we have Cﬁ—convergence tnx X" — X. Next observe that for
this purpose it is actually fine to look only at the (r + 1)-approximations X" ,,
X,+1 of X", X. Finally, observe that for sufficiently large n there are for each
2z € Br N o unique z,’s in o, such that ¢, (x,) — = for n — oco. We are at
liberty to arrange the numbering of the points in ¢,, for the subdivision on the
interval [0, 1) in such a way that it is consistent with the numbering of o.

Further observe that \;(M,, z,) converges to A;(M, x) provided that ¢, (zy,)
converge x for n — oo since the denominator in is bounded by 1. As the
Ai(M,,, z,,) converge, the probability that w € [0,1) is in the same interval of
the subdivision indexed by (i1,...,ix) € {1,...,k}"™ converges to one. Hence we
can assume that X, (w) and X (w) choose the same indices i1, ..., ik.

Further take for any point y € M a neighborhood U that is so small that it
is contained in the image of p o P,i(yp*g) for some chart ¢: B(0, o) — M with
lellqer < ©. On B(0, ) the metric ¢*g is approximated by ¢" = ¢©*tp.gn. By
making this chart a bit smaller and restricting to sufficiently large n, we can
even assume that U is contained in 1 o (Pyi (¢*Ln.gn)) (3 Bo) for each pointed
chart 1: B(0, 0) = (M, z) for each = € o such that y € ¥ o (Pyi (1" tn.gn))(3 Bo).
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On the chart py: V — U C M the curvature tensor of the piecewise Euclidean
connection

R ({000 Py (9035, } oo {0l 0 Posa (0035, }0) e, ) s (3:29)

is given in coordinates, according to its definition ([2.8)), by

R = D be({on 0 Py (97 5y bneo) 3 ((F 0 5™ 0t )

(o l

+ (bellon o Pyn )3 bnee)n Thn)

+Z WUFk <PU V)\)[HV]7

(3.30)

[nv]

where

e the y™¢’s are of the form Pz (g") "t op~! for a chart ¢ = ¢, independent
of n with [|¢||cs < E;

e the 2™ are of the form P, (¢") " toptop/ 0Py, (¢/) with ¢/ := ¢'*tp4gn
for charts ¢ = ¢¢, ¢’ = ¢y independent of n with [[¢||cs, [|¢'[lcs < E; and

o I, = Yeeo bel- ) Dulait oy ) ().

Due to the product estimate from Corollary and the composition estimate
from Lemma for convergence of (3.30]), we have to check convergence of

e the b¢’s in C18: Note, that the denominator in is actually bounded
from below by inf b%op 0 @)1 5, (1By) = infb(B(0,1/2)) =1 forann € o
such that |n¢|, < 1e7©7! = L(radius By) which exists because o is
7-covering and 7 < 16*2(@+1)r. Due to this fact, Corollary E and Lem-

mas [[.12] and [[.I3] and since the Euclidean distance function is smooth,
the partition of unity bm({go;’f' ’%Bo }m) for 2 € o,, converges in C1#;

e the y™¢ = P, (¢") ' o Vs in C2F;

o the 2™¢ = Py (g")top oy o P (¢™) in 28,
Note, that by continuity of P, the Py, (g")’s already converge in CL8. The
inverses of the Py, (¢")’s are of class clB by Theorem @L part By
Corollary E and the assumption ||Py(g') — id||c1.s < e, also the inverses
of the P, (g")’s converge if the domain is restricted by a factor e~®. Finally,
Lemma improves the convergence regularity to C?#, if we restrict to the
harmonic part %Bo of the charts. Therefore, the composition estimate from
Lemma implies convergence of the y™¢’s and the ™%’s as n — oo. This
proves convergence of as n — 0o. Hence we have convergence of ¢, X, (w)
to X (w) on U. Since we can cover Br by such U’s we have ¢, X, (w) to X (w)
for almost every w. This proves continuity.

The map R is now defined as in the previous steps by the Integration
Lemma [L.7
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Unimodularity of R. Take some unimodular law P on StrPM. Next let ¢
a continuous bounded test function with bounded support on RP /L/; For the

law R(P) observe
[ amuiie))
= //fdmL(mf%mq,u,g,ﬁ))dP(qu,u,U, V)
= /// F(M,p,p',8) dvolns (p') dm{ly o 0 .7 (M, D, 8) AP(N, g, 1, 0, 7)
= [[] 104,589 dvotas ) dify () 4PN 107
/AU/ﬂM%ﬂJ@W&MMMWNHN%MQW

://[O 1)/f(Mvp,p’,X(w))dA(w)dvolM(p’)dp(qu’%U’ﬁ)

since Law X is invariant under the choice of representative of N € StrP./\./;

:// /ﬂM%dJ@DM@NWﬁWN%%mmﬂ
[0,1)

by unimodularity of P
:/[)/ﬂM%ﬂJWDMWMWﬂWM%%mmW
0,1
:// /ﬂM%ﬂJ@DMWNWW@NﬂM%mmW
[0,1)
:// /ﬂMn%XMNwW®M@MHM%mmﬂ
[0,1)
aﬁV[)/ﬂM@ﬁxw»mmmmw&Mwmmm¢%mm
0,1
= / fdmr(m{y . 05) AP(N, g, p,0,7)

:1/fddeaP».

As we proved that each map S, Str, and R preserves unimodularity, we know
that also R = R o Stro S does.

Section property. Regarding the section property we can not check it for
R because this maps forgets the strainer. Instead we prove it for D. The
corresponding projection map p’: RPM — P./\./l> is given by forgetting the

strainer. Let p: Str(S(M)) — PM be the map that forgets the strainer, i.e. that
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maps (M, p, u,0,7) to (supp i, p, ftlsupp ). The maps are part of the diagram

PRPM +™ Str(S(M))

Str.

Py (3.31)

™
“n
<

WPM
PPM — PM

where p® and p®*" are the projection maps from the preceding two part of the

proof. The triangle in this diagram commutes by definition. The square in this
diagram commutes because for any space N = (N, q, u,0,7) € StrPM for any
measurable function f on PM we have

/ AP PR (mE) = / fopfdmf = / (M, p) dmE (M, p, 5)
= f(supp tt, D, ft|supp -

From this the section property of R follows from the abstract nonsense of the
Giry monad and our proofs of the section properties of S and Str:

Using properties of the Giry monad from Lemma the map D can be
expressed as

D = prpag © (Pm) o psuppg 0 (Pm®) o pspag o (Pm®)
use that p is a counit to n
= HRPM © P RPM © HRPM © (P m™) o pstrpg © (P m5) o psp © (P m®)
omit indices of n, 4 and use naturality of n, u
— 0P (o (PmF) oo (PmS™) o o (PmS)) o (Pn)
use functoriality
— o P (o (PmF) oo (Pm)o o (PmS)on)
use naturality of n, u
— 0P (o (PmP) oo (PmS'r) o m¥)
:uoP(po,uo Pn)o (PmR)ouo(PmStr)omS)
=poP (wopoP(Pm)opo(Pm))o(Pn)om?)
= poP (nopoP(Pm)opo(Pm®")on)om?)
:,uoP<Mo,uo7? 'Pm )o S” S)
=poP (poP(u)o(PPmt)o (Pms”)om )

This is to say that the map D is given by integration of the map m®? =

HRPAM © P(NRPM) o (PP mf) o (Pm3")om®. Hence we can use Lemma
To this end observe that

(Pp) om™ = ey o Plurpag) o (PPPp) o (PPm™) o (PmS) o m®
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using commutativity of the square in (3.31))
— ~ Str
= prpp © P(urprg) © PP(npag 0 p) o (Pm>™) om

= prppm 0P P(p® o p™T) o (Pm®") o m?

S

S

use the equalities (P p¥) o m® = n and (P p%") o mS*" = 5 proved in the two

preceding parts of the proof

S

= pprg 0 PP(p%) o Plnigpag) o m

M
= pppg © Plirppg 0 p%) o m®
=P(p®) om®

:'TIPM.

Lemma [3:24] now implies the section property of R. O



Appendix A

Metrization and
metrizability theorems

A.1 Spaces of pointed metric spaces

Define for two pointed spaces (M, p) and (N, q)

dPGH<M7 N) = Z A diDGH (B[p, ’I“], B[q’ T]) "
r=1
peu(M, N) = inf dy (.M, nN) + [(p) 1(q)| (L7E)

3y

where the infimum is taken over all embeddings ¢: B[p,r7] — L and n: Blg,7] — L
to some compact metric space L = (L, |..|).

Theorem 1.3. On PM a metric is given by dpgn, that is complete, separable,
and induces the same notion of convergence as defined by (1.2) and (1.3).

Proof. The proof proceeds in five steps.

dpcy is a pseudometric, i.e. a metric that does not neceissarily distin-
guishes points. The function dpqy is obviously symmetric, so is dpgu. To
see the triangle inequality it is sufficient to check it for the function dpgy. For
any € > 0 consider compact spaces M, M’', N and a zig-zag of embeddings

M M’ N
L L

such that

dy(eM, /M) +u(p)/(P)]  and  du(n’M',nN) +|n' (') n(q)|
<dpgu(M,M') + ¢ < dpgu(M',N) +e¢.

87
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Next we form the pushout LU L' along the maps «/ and 7/, i.e. the set theoretic
pushout with the metric
dL(xvy) ifx7y€Lu
d(z,y) = < dp/(z,y) ife,ye L, (A1)
inf{dp(z,2) + dp(z,y) | z€ LUp: L'} else,
that is indeed well-defined and a metric by a quick check or by [BBIO1} § 3.1].
We denote the inclusion maps by ir,: L — LUy L' and i7: L' — L Upp L'
and write M' =i (VM') =i (f’M') C LUy L' as well as p’ = i (V(p')) =
ir-(n'(p')) € LUpr L. On closed subsets of the metric space L Ly L' the
triangle inequality holds for Hausdorff distance dy. Hence,
peu(M,N) < du(ip (M), i (nN)) + lis(e(p)) ir(n(q))|
< dH(Z'L(Lﬂf)7 M’) + d.H(]WI7 ir (UN))
+lin () 'l + I i (n(q))]
= du (M, /M") + |u(p) ' (p")]
+du(n'M',nN) + [0 (p) n(q)]
< dIPGH(M7 M/) + d/PGH(M/7 N) + 2.

As € > 0 was chosen arbitrarily, the triangle inequality follows.

dpcy and PGH-convergence coincide. First assume that a sequence M,, =
(M,,, dy,, pr,) PGH-converges to a space M by some e-isometries ¢, : B[p,,r] = M
subject to . As we have restricted ourselves to length spaces, we can modify
each ¢, such that ¢, (B[pn,7]) C Blp,r] by going back along paths: For each
x € Lp(B[pn, r]) \ Blp, 7] we know that |px| < r + ¢ and that there is a geodesic
v joining p and x. The function 7,

Z@y_{%ﬂwgu%»—a if & € 1 (Blpa, 1)) \ Blp,7]
" BN else.

in a 2e-isometry. Rename 7, by ¢, and 2¢ by e.
On the disjoint union M,, LI M define the symmetric function

infeenr, |28 + lyn(§)|+¢ ifze M, andye M
d(z,y) =  dn(z,y) if z,y € My
d(z,y) ifx,y e M.

This as a metric as it distinguishes points and the triangle inequality holds as
d(@,y) < infdn(2,£) + dn (&, 1) + dn(n,Y)

< d(z,2) + d(z,y)
for x,y € M, and z € M,
A, 9) < 0 A1) + 10 (6),tn (1) + e (7). )

< lgncf d(z,1,(€)) +d(€,m) + €+ d(tn(n), y)
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for z,y € M and z € M,,, and
d(w,y) < infdn(x,ﬁ) +d(n (), 2) + d(en(n),y)

d(z, 1 (€)) +d(€,m) + €+ d(tn(n), y)
z) +d(z,y)

for x,z € M,, and y € M. Note that we still have d(p,,p) < e. Hence
pan(Blpn, 7], Blp, r]) < 2¢ for sufficiently large n. The existence of this metric
implies dy (¢B[pn, r], nBlp, r]) < € for sufficiently large n. As ¢ > 0 can be chosen
arbitrarily small, M,, converges to M with respect to dpgy.
In the other direction we observe that for any r > 0 convergence with respect
to the pseudometrlc (M,N) — dpey (Blpn, 7], Blp, r]) implies the existence of a
suitable ¢,,’s by taking close-by points, i.e. modifying a Z,,: Blp,,r] — L given
from the condition dpqyy (Blpn, 7], Blp, 7]) < € by mapping x € M, to some point
tn(z) € M C L with |v(n) In(z)| < e.

< inf
T 6
< d(z,

The pseudometric dpgp distinguishes points, i.e. it is a metric. Theo-
rem 8.1.7 from [BBIO1] states that pointed GH-convergence distinguishes points,
i.e. proper metric spaces. Hence dpgy does.

Separability. Note that as stated in [BBIO1, Proposition 7.5.5] every com-
pact length space can be GH-approximated by finite graphs, i.e. length spaces
constructed from intervals of different lengths glued together at their endpoints.
Hence any such space can be approximated by finite graphs in PM with rational
edge lengths. Moreover any proper metric space can be approximated by a
compact space, i.e. taking a sufficiently large ball around the base point. Hence
any space in PM can be PGH-approximated by pointed finite graphs with
rational edge lengths. But there are only countably many such graphs.

Completeness. Take a dpgy-Cauchy-converging sequence M,,. Given € > 0
we can find a sufficiently large n such that dgu(B[pn, 7], Blpk,7]) < €/2 for all
k > n. Moreover there are N points in the compact set B[p,,r] that are an
€/2-net (i.e. €/2-balls around these point cover B[p,, r]). Hence for any B[pg, r]
there is a e-net consisting of N = N(r, ) points. Now [BBIO1, Theorem 8.1.10]
implies that the M,,’s subconverge to some pointed metric space M. As any
metric space is dense in its completion, we may assume without loss of generality
that M is complete. The space M inherits from the spaces M,, the properties
of being a length space [BBIO1, Theorem 8.1.9] and of being proper [BBIO1,
Exercise 8.1.8]. O

A.2 Space of pointed mm-spaces

To define a suitable metric on PMI¥l, the space of (isomorphism classes) of
mm-spaces with & measures, first define the bump function b, , by

1 if lzy|<r-—1
ber(y)=qr—lzyl ifr—1<|zyl <r (1.10)
0 if |zy| >
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We say that a sequence (M,,),, C PM does Pmm-converge to M if for all » > 0
and € > 0 there are for sufficiently large n measurable maps

tn: Blpn, 7] = M (1.11]

such that holds and ¢y, (by, - (.)vol,) weak” converges to by, .vol.

A further generalization are mm-spaces with k-measures (M, d, voly, ...,
voly) for some k = 1,2,.... The definition of convergence of mm-spaces is to be
read mutatis mutandis, i.e. weak? convergence of ¢, (bp, (.)v0lin) to b, (. vol;
foralli =1,...,k is required. Let PM*! denote the space of (equivalence classes
of) pointed proper length spaces with k& measures.

On the space PM!*! we introduce the following metrization:

= Blp, ], bprvoly, ..., by rvolk, p)
d M M/ — 2/\d, ( » 1 Yp, ) s Vp, ) )
PM( ) ) ZT PM (B[p’m},bp/’,«vol’l,...,bpr,rvolz,p’)

)@mm
r=1
du (LM, M) + u(p) /' ()]

doy (M, M') :=inf su k
PM( ) vl f1,.4.71,?k: + Z / fl d(L*UOZi — L;UOZIZ-)
=1

L—[-1,1]

(T.125)

where the supremum is taken over all embeddings :: M — L and ¢/: M’ — L
to some compact metric space L = (L, |..]), like in ; and the supremum
is taken over all Lipschitz functions f: L — [—1,1] with Lipschitz constant not
greater than 1.

This metrization is based on the Kantorovich-Rubinstein dual metric

W(P.Q) =sw [ fa(P- @) [BE|
f

where the infimum is taken over all Lipschitz functions f: M — [—1,1] with
Lipschitz constant not greater than 1 (consider also Remark[1.5)). This expression
comes with the advantage that the triangle inequality is obvious as

s?/faP—wa?/}aP—w+/}aQ—P>
sag/faP—QHw?/QaQ—P> (A.2)

for laws P, P’,Q on M.

Lemma A.1. Given a map f: (M,p) — (N, q) from a pointed compact metric
space to a pointed metric space and e, > 0 such that

f(p) =4q, distor(f) <e, and Blg,r—¢]C (f(M))E)

Then there is a measurable map g with the same properties for ¢ replaced by 3e.
Moreover |g(x) f(x)] < 2¢e for allz € M.

Proof. Take a finite ordered e-cover of Blp, 7], i.e. a system of balls B(z1,¢),...,
B(xy, €). Without loss of generality we may assume p = 21 For each € M there
is a e-close point of lowest index in the e-covering. Define a map g sending each
point = € M to this closest point.



A.2. SPACE OF POINTED MM-SPACES 91

The map g is measurable, as every preimage of a measurable subset of IV is
a finite union of the sets

B(z1,¢),B(z2,¢) \ B(z1,¢),B(x3,¢) \ (B(z1,¢) UB(z2,¢)), ...
R B(Ik,é‘) \ (B(Il, £, U) .U B(.’Ek_1€, ))

By construction g(p) = g. Moreover for every z,y € M we have |xy| <
|z @i + |wi ;] + o5 y| < e+ (If (i) ()] +€) + e = 3e + |g(xi) f(x;)| for some
indices 4,5 € {1,...,k}. For the same z,y,4,j we also have |g(z;) f(z;)| <
|zi z;| + e < |zy| + 2 + . Hence we have distor(g) < 3e. For the last property
take some point y € B[g, 7 —¢]. There is some point € M such that |f(x) y| < e.
Let i be the index such that z; is the point e-close to x of lowest index. Thus
lg(za) yl < lg(z:) f(@)] + 1 (@) yl = |f(za) f(@)] + [f(2)y| < [ziz|+e+e < 3e.
The property |g(z) f(z)| < |g(x) f(z:)] + [f(z:) f(2)| = 0 + |2; ] + & < 2¢ for a
suitable index 1. O

Theorem 1.6. On PM*! o metric is given by dpye, that is complete, separable,
and induces the same notion of convergence as defined by (1.11)).

Proof. The proof consists of four steps.

Metric. First, we check that dpy; is a metric: symmetry is obvious. For
identity of indiscernibles first realize that dpy (M, M') implies dpgr (M, M') =0,
i.,e. M and M’ are isometric. Equality of measures is seen from the fact that
Lipschitz functions distinguish signed measures on compact spaces (by Riesz
representation theorem [Dud02| Theorem 7.4.1] continuous functions do the
same and Lipschitz functions on a compact space are dense among the latter
[Dud02, Theorem 11.2.4] with respect to the uniform norm).

For the last metric axiom, the triangle inequality, consider proper length
mm-spaces M, N, and M’. It is sufficient to show that the triangle inequality
holds for dpy (M, M’) under the assumption that the radii of M, N, and M’ are
bounded by some r > 0. In the following estimates every [—1.1]-valued function
is assumed to be Lipschitz with Lipschitz constant at most 1.

dpyg (M, M)
k
<inf sup (dH(LM7 UM + Z / fi d(eevol; — L;vol;)>
L,L/ fiyee S —
(LM)U(lL’M’)k—>[—1,1] =1

for embeddings ¢: M — L and ¢/: M’ — L. Assume additionally that there is
an embedding n: N — L.

k
< inf sup (dH(LM7 M)+ Z / fi d(esvol; — L;UOZ;))
i=1

Lt f1yeesfE:
(MU' M )—[-1,1]

by the observation that any Lipschitz function extends from a closed subspace to
the whole space preserving the Lipschitz constant [Bjo69, Proposition 1] we have

k
= inf sup <dH(LM7 M)+ Z/fid(L*voli - L;vol'i)>
i=1
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as the triangle inequality holds for dyg, points in L, and for measures in the way
of (A.2), we further have

k
< inf  sup (dH(LM, nN) + Z/fZ d(esvol; — 1 volé))
i=1

Lyt fl, S fk
k
+ <dH(77N7 UMY+ Z/fl d(n.vol; — Limlé))
i=1

—[-1,1]

< inf sup  duy(eM,nN) +Z/f’ (txvol; — myvol})
Ly, s
DG S 1)

+ sup du(nN,J/M") +Z/fl (n«vol; — i\ vol,)
Jisenf
(nN)U(1L'1VI')k~>[ 1,1]

< [ inf sup dig(tu M, mN) +Z/fl (t1.v0l; — n1svol})

t1m fieenf)
(t1 M)U(n 1N)~>[ 1,1]

k
+ | inf sup  dg(mN, LéM’)—&-Z/fid(ng*voli—L’z*volé)
nayty  froeofee —
(M2 N)U(thbM')—[-1,1]

for embeddings ¢1, 171 to some L; and 72, t2 to some Ly, where the inequality
holds since L; and Lo can be glued together along N as metric spaces as in

().

The notion of convergence coincides with the notion induced
by PM. Take a sequence M,, that converges in the sense of . Fix any
r,e > 0. By definition we get comparison maps ¢, M,, — M for large n as in
(1.11). As in the proof of Theorem we can construct from them metric spaces
M, UM with embeddings z,,: M,, - M, UM and 7: M — M, U M such that
|e(en(x)) in(z)| < €. For simplicity we will only calculate the case k = 1. The
following supremum is taken over all Lipschitz functions f: M — M, UM —
[—1,1] with Lipschitz constant not greater than one

sup ‘/ £ d(Znabyp, rvol, — Z*bp7Tv0l)’
!

= sup ‘/ foinedby, rvol, — /f o i dby, rvol
f

= sup ‘ /f 0 Ty dby,, rvoly, — /f o 7dby rvol
f

_ /f 070 Lpy dby, rvol, + / foidipby, rvoly,
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= sup /|f 010 Ly — f0lnsl dbp, rv0l,
f

+ ’/f 0 £d(bp,rv0l — tysiby, rv0ly,)

<e / 1d(bp, rvol — by, yvol,) + sup / fotd(bprvol — tpiby, rvoly,)
f

the second summand only increases if we take the supremum over all continuous
functions valued in [—1,1]. But then the second summand becomes, by a version
of Riesz representation theorem [Dud02, Theorem 7.4.1], equal to [ 1d(b,,,vol —
by, rvoly). Hence

<(l+¢) / 1d(bp,rvol — by, rvoly).

This converges to zero as n — oo by the definition of convergence of mm-spaces.
Hence the spaces M,, LI M constructed in the proof of Theorem also serve to
prove convergence with respect to PMI¥l,

For the other direction take a sequence converging with respect to dpyym -
Again we only treat the case k = 1. Fix some r,e > 0. We have comparison
spaces L, with embeddings ,,: B, := B[pn,r] = L, and 7,: B := B[p,r] = L,
such that

eli= sup  du(inBn,MnB) + |in(pn) Tn(p)| + /fd([n*voln — Tnsvol)
f: L—[-1,1]

n—oo

0

where the supremum is taken over all Lipschitz functions with Lipschitz constant
not greater than one. Again from the proof of Theorem we already have
comparison maps t,,: B[p,,r] = M satisfying for n sufficiently large. By
Lemma we can without loss of generality (replace 3¢ by €) assume that these
comparison maps are measurable and, moreover, that

|71 (e () I ()] < €. (A.3)

By a diagonal argument we may also assume that there is actually a sequence
en — 0 as n — oo such that (1.3)) holds with e replaced by ¢,,. Now given any
bounded continuous function f: M — R we have to show that

/den*(bpmrvoln) — /fdbp)Tvol

as n — 00. Since M is proper, we may assume that f is compactly supported.
Hence we can approximate f by Lipschitz functions with respect to the uniform
norm [Dud02, Theorem 11.2.4]. With out loss of generality we can therefore
assume that f is a Lipschitz function. By scaling f with a positive real factor
we can also assume that the Lipschitz constant of f is bounded by one. Further
note that any Lipschitz function extends from an arbitrary subspace to the whole
space preserving the Lipschitz constant [McS34, Theorem 1] and, hence, there
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are extensions f of fo ﬁ;l and li)pwr of by o 77;1 to the whole of L,,. We estimate

‘/ f dins(bp,, rvoly,) — by rvol

< ‘/den* (bp,, ,rvoly) — by rinsvoly

+ ‘/ f dby rinsvoly, — by rvol

= ‘/(f o ty) - (bp,.r — bproty)dvol,

+ ‘/ [ bp.r dinsvoly, — vol

< En/ 1dwol,, + ‘/ f- BP,T d (7, © tn) w00l — Tipsvol
B

n

< Qen/ 1dwol,, + ‘/ f_ EW« dipsvol, — fpsvol
B

n

< Qan/ 1dwol, + €,.
By
The integral is bounded, as is apparent from looking at dppy-convergence for a
larger ball, let’s say B[p, r + 1]. This proves that M,, converges to M in sense of

(1.11) by the ¢, constructed.

Completeness. Take any (Cauchy) dpp-convergent sequence M,,. As we are
in a metric space, it is sufficient to find a subsequence converging to some M. Is
is also sufficient that this convergence takes place in the sense of . We will
first prove the claim in case k = 1, i.e. for mm-spaces with one measure. Fix any
r>0and 0 < e < 1. By Theorem there is a PGH-limit M of this sequence
given by some comparison maps t,, : B[pn, 7] — M subject to condition . By
Lemma we may assume that the ¢,,’s are measurable. Moreover there has
to be a bound m = m,. . on the total measure of m,, = my, ;¢ == by, rvol,(M,)
because otherwise there would be a diverging subsequence of m,,, and the
definition of df); the corresponding subsequence of M,,’s would not be bounded.

We can do this argument for any r = 1,2, .... By a diagonal argument we can
find a subsequence (n(r));Z; and comparison maps t,: Blpy,y,r] — M. The

resulting sequence has the property that for any s = 1,2, ... the volume of the
balls Bp, s] is bounded by m1,. with respect to the measures ty(r)4bp, »v0ly
for sufficiently large r. Hence the sequence t,,(;)4bp, »v0l, subconverges for
r — 0o with respect to weak?” convergence [DV03, Proposition A2.6.1V]. The
corresponding subsequence of M,, and ¢,’s is what we looked for.

Separability. First take a countable dense subset {M;}; of PM. Then take
for each M; a dense subset vol;; of M(M;), which exists as M(M;) is separable
[DV03, Theorem A2.6.I11(i)]. We show that

{(Miapi’ UOlijl PRI vozijk)}ivjly---yjk

is dense in PMFl: Given M = (M, p, voly, ..., vol) € PM choose a radius 7/
such that dpm(Blp, '], M) < &’ where

M'" = (M’ p,voly, ..., voly) == (Blp, '], p, voli|gpp,, - - - » volg|Bp,)-

Choose M; € PM such that dpgu(M’, M;) < /2 for some e such that ¢ -
vol(M’) < €’. By the same construction as in the second part of this proof this
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implies that there is a comparison space L and a measurable e-distortion ¢ from
M’ C L to Blp;,r’] C L. Now view ¢ as a map from B[p;,’'] C L to Blp, '] C L.
Choose volj,, ..., vol;; such that

dpr (M, piy txvoly, piy « . . Levoly), (Mg, piy volijy . .., voliz)) < €.

This implies [, fd(vol’ — vols;) < [, fd((vol’ — vyvol’) + (v.vol” — wolij)) <
e(volM') + ¢’ < 2¢'. Hence

dpyvi(M, pi, (M, volyj,, . .., voly;, )
< dPM(M7 MI) + dPM(M/7 (Mivpia UOZijlﬂ R UOlijk))

<&+ ZT_Q (g2 + 2¢").
r=1

This proves that (M;, p;, vol;;) can be chosen arbitrarily close to M. O

A.3 Space of field spaces

In this section we prove only metrizability of the tensor norm. To this end we
recall a bit of set point topology. From Schubert [Sch75, §§ 1.8.3, 1.9.1, 1.9.3
Satz 2] we have:

Definition A.2 (normal space). A topological space X is called normal if it is
Hausdorff and any two disjoint closed sets have disjoint neighborhoods.

Definition A.3 (completely regular space). A topological space X is called
completely regular if it is Hausdorff and to every point x € X and any neighbor-
hood U of z there is a continuous function X — [0, 1] vanishing on « and 1 on
the complement of U

Theorem A.4 (Urysohn metrization theorem). For a second countable topolog-
ical space the following are equivalent:

e X is metrizable;
e X is normal;

e X is completely reqular.

Corollary A.5. If a topological space Y is Hausdorff and the quotient of a
metrizable compact space X, then it is metrizable.

Proof. Recall that ) is a quotient of X under f: X — Y if f is surjective and
Y has the finest topology such that f is continuous. This is equivalent to the
property that V' C ) is open if and only if f~1()) is open, or the property that
V C Y is closed if and only if f=1(V) is closed [Sch75, § 1.4.3 Satz 1]. The space
Y = f(X) is compact being the image of a compact space. Moreover, if a set
U C X is open, so is its image f(U), because if U is open, then the complement
UC is closed, hence U® is compact, hence f(U¢) = f(U)€ is compact, hence
f(U)€ is closed (since Y Hausdorff), hence f(U) open.

A countable base of ) is given by the image of a countable base of X: First
note that these images are open. For any open set V' C Y the preimage f~1(V)
is a union of sets from the countable base of X. Hence V' is a union of the image
of these sets. As Hausdorff compact space ) is normal [Sch75, § 1.8.2 Satz 1].
Hence Y is metrizable by the Urysohn metrization theorem. O
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Definition 1.26. [C"™*-C™-@-norm on the scale of g] For a € (0,1], § €
(0,a), and k, | non-negative integers. For a section s € C™" " (M, T*! M) over
a manifolds M € PME2 . o the C™*'-C™*-@-norm on the scale of ¢ of
(M, p) is defined as -

nf{[|o"sll oo | @3 (B (0,0),0) = (Uyp) € M with [glloma < O,

The C™*'-C™*-@-norm on the scale of g of a non-pointed space is defined as
the supremum of all norms of spaces (M, z, s) for all € M, like for the metric
tensor. Let

k,1
T

d,o k.1
C"‘/’O‘,S@’ PMCm,a <o and T

d,o har
C‘“l,u/S@/ PMC'NL,L!§67 resp.,

be the space of all (equivalence classes of) pointed Riemannian manifolds with
sections (M, p, s) such that [|M||&2 . < © and | M55 < ©, resp., and (M, s)

has C™"®'-C"@_@-norm on the scale of ¢ not greater than ©'.

Lemma A.6. Let 0 < S < a and 0 < ' < o with 8/ < a. The space

. mk,l d,o
A=TE o PMEE o

1s sequentially compact with respect to the le’B/-Cm’B-topology.

Proof. Given any sequence (M, s,) of spaces in A we first choose a subsequence
converging to some M as possible by the Fundamental Theorem of convergence
Theory, Theorem m For each radius 7 > ¢®(e®p + 1) fix some comparison
maps t,: 0, — M according to Definition [[.19} Choose an atlas covering
B(p,7e™® — ¢®p — 1) with finitely many charts ¢;, indexed by the finite set I,
of C"™-norm on the scale of p not greater than ©; by choice of parameters the
ranges of these charts are contained in the ranges of the comparison maps for
sufficiently large n. The metrics

(‘P:‘Ln*sn)f{izzii = Z Sn(bn‘Pz(f))l)ﬁi::l)fi : (Ln © @i),)q Tl (Ln © @i),)\k
2}17,3 (tn 0 @i) py 0 Pij e (b0 © Pi) i © P
are bounded in C*"® _norm since (tn, 0 ©;)~* and (1, © ;) are bounded in Cl<-
norm by Theorem and , and products and concatenations of Holder
bounded function are again Hélder bounded by Corollary [[.11] and Lemma [T.13]
For each i we choose inductively a subsequence of the former subsequence of
M,,’s such that on these charts ¢} tn.5n, Cﬂ/—converges. Repeating this process
for a sequence r; — oo choosing further and further subsequences. A diagonal
argument gives a convergent subsequence on M,,.
To check that this is indeed a tensor on each B(p,r;e~® —e®p — 1), we have
to check that the limits of the ¢} i,.sy,’s are invariant under chart transition.
But since s,, is invariant under chart transition, we already have

’ ’
* H1seees bl * Hasees g . . A
(@5 tnssn) 50N = § : (‘ijn*sn)xl,...,,\; TPig A T Pig A
PVIDY '
1Nk . .. PR . .. ..
wlopt! Pjipy © Pig -+ Pijux © Pij

on suitable domains of definition. Hence these equations hold for the limits as
well. O
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Lemma 1.27. Let 0 < S < a and 0 < B < o' with 8’ < a.. The space

k,1
A TCm o <@, PMcm a<O

is completely metrizable and compact in the Cm/’ﬁ/-Cm’B-topology.

Proof. 1t suffices to prove metrizability on A: Any sequentially compact metriz-
able space is compact [Sch75| § 1.7.4, Satz 4]. Hence by Lemma the space
A is compact. Thus A is a compact, and hence a closed subset of its metric
completion. Therefore A coincides with its completion. Metrization will be
achieved by Urysohn’s theorem

For any space M € P/\/lcm «<e choose some charts {¢;: B(0,0) — M}ier
with [|¢||&m.o < © for some index set I. Let I, ar be the set of all indices ¢ such

that ¢;(B(0,0)) N B[p, 7] # 0. Let Q. ar = Usey, ,, #i(B(0, 0)). Set
Ure(M) = {M' € MEE oo | 3 Quag — M st |l@j"g — @lgllome <e}

where the condition holds for all ¢ € I, )y and ¢ is a smooth map. These
sets are open by definition of C™“ < ©O-convergence because for the metrics
©F L Lpxgn Testricted to suitable domains of definition corresponding to a chart
¥: B(0,0) = M’ with |[¢||gm.. <O

lim sup ||} ¢ tn«gn — @ gllce

n—oo

< limsup [|F " tnign — @510 |l co + @ 9 — 05 gl ce
n—oo

< limsup [0} t" tpsgn — @it g [|co + €
n—oo

= e limsup (91 0.0 ™) (B tnng — 979 0n

n—oo
=i,y =Ang
Corollary [[.15]
<

e +lim SUPC(”AngHC“ ||Zi,¢||cﬂ + HAngHCO) ||Zi7¢||?31vﬂ
n— o0

n— oo

since M,, converges to M’ and hence |4, glce = [|[¥*tnsxgn — ¥* ¢ ||ce —— 0
=e+0.
Observe that for M’ € U, (M) we can embed B[p, r] and B[p’, r] into
L:=(Qx[0,e],(1—L)g+ Ly’ + di)

along the maps z — (z,0) and z — (z,¢). From this we read for r € N

dprs(Blp, 7], B[p',r]) < du(Blp, 7] x {0}, 7'B[p',7]) x {e}) +|(p,0) (p,€)1

/f x,0) dvol — /f g) dwol’
f L%[ 1,1]

where f is a Lipschitz function with Lipschitz constant not greater than 1. Each
summand can be bounded as follows:

du(B[p, 7] x {0}, (7' Blp/,7]) x {e})
< du(Bp, 7] x {0}, (. 7"B[p', 7)) x {0})
+du((e "Bl r]) x {0}, («7'BY', 7)) x {e})

<er+4e,
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by a geodesic comparison.

p,e)|r <e, and

/f x,0) dvol — /f ~(z),0) dvol’

g/f(x,O)— x,€ dvol—i—/fx e) dwvol — /f “(x),e) dwol’
< ewol(§2 /fxe (vol — (¢4, wol")

< ewvol(Q /‘\/|detga gl — \/\detgo (t=1)*g'|

i€l v

dx

< evol(Q) + Cllgi g’ — igllce

where C' is a constant depending only on g and d, given by standard estimates
Corollary and Lemma These bounds imply that the sets U, (M) form

a neighborhood base of M, i.e. any sequence M; € P./\/lé’ﬁ_,a<e converges to M
if and only if for every ¢ > 0 and r > 0 all but finitely many M; are in U, .(M).

Observe that every base B of a compact metric space X' contains a countable
base: A base of a topology contains a neighborhood base for each point. For each
xr € X and € > 0 we can cover X" with a finite number of opens U 1,...,U; n(c) €
B such that each of them is contained in the open £/2-ball around some point
in X. Hence every point x € X' is contained in at least one of these opens and
every such open is contained in the e-ball around = due to triangle inequality.
Hence the union B = {Uy,,, | n=1,2,3,...;k=1,...,N(1/n) } contains a
neighborhood base of each point. Thus 3 is a base of the topology. Moreover B
is countable.

We apply this observation to P/\/lcm a<o- This space is compact and metriz-
able due to Theoremm Hence the base given by U, .(M) for e > 0, r > 0, and
M e P./\/l‘é’f,:,,u<® contains a countable base {U,, ., (Mg)}qaen of the topology of
P/\/lcm a<o- For each My, 74, €4, and g, for i € I, :== I, ., We can choose a

countable base {Vap }oen of the C™ P-topology on the metrizable and compact

set ™ (Q, T Q). Set Q, = Uier, #i(B(0,0)). From this we define

* % _/

U (M5 € A Ju: Q. — M’ such that
ab = , S N
’ i g’ — oigllome <en and *s" € Vg

} (A4)

where Q is the union of all ¢;(B(0, )) with i € I, ar,. Let {U;};en be the base
generated by Ugp’s, and let Ty} denote the topology generated by the Ugp’s.
We observe that the notion on convergence induced by Ty,; is the same
as Cm,’a/—Cm’“—convergence: If a sequence (M, s,) does Cm/’o‘/—Cm*"‘—converge
to (M, s) € Uy for some a,b then, by construction there is a map ¢: M, — M
and moreover, by definition of C™ - -C™_convergence, for sufficiently large n
there are comparison maps from ¢, : £, — M such that ¢(£2) C ¢, (€2,). Since
(t;1)*gn and 15,45 converge to g and s as n — oo, we observe that (M, s,) € Ugp.
For the other direction take some (M, s) and a sequence (M, s,) such that for
any Uy, containing (M, s) all but finitely many (M, s,)’s are in Ug,. Given
any r = 1,2,... we have to find (for all but finitely many n) comparison maps
tn: Qn — M such that B(pn,r) C Qp, (1;1)*gn — g in C™, and 148, — §
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in ¢, To this end consider indices a, b such that Q, contains B[pa,r] and
M € Ug. Choose a sequence of a’s such that the U,’s form a neighborhood
base of M € Mcm «<e- Further choose any b = b(a) such that (M,s) € U
and V,;, has diameter (see ([1.1) less than 1/a. Let a = a(j) be an ascending
sequence of such a’s. The definition of U,(jys(a(j)) give the required comparison
maps ty: 2, — M.

Next we check that the topology generated by the base {U, }en is completely
regular in the sense of Definition The topology generated by the base
{U;};en is Hausdorff: Let (M, s) and (M’,s") be two distinct points It M+ M
then choose disjoint neighborhoods U and U’ of M and M’ in /\/lcm a<p and the
sets {(M",s) | M" e U} and {(M",s) | M" € U'}. In case M = M’ choose
a radius r such that the balls (B(p,r),s) and (B(p,r),s’) are not isomorphic.
Choose any base element U, ., (M,) of the topology of Mé’fﬁ,a<@ as chosen

above such that r, > r. From the topology of le’ﬁ,(Q,Tk’l Q) choose base
elements Vo, and Vg that can distinguish s|g(p,») and s'|g(p,). This proves that
A is Hausdorff.

For the other property consider any point (M, s) € A. It is sufficient to prove
the claim for any neighborhood U, of (M, s) because for any finite intersection
Uayp, N...NUqpupy the required function f is given by fu,p, V...V fayby Where
farbys - s fanby are the corresponding functions for the subsets Uy, p,, -, Usyby -
Choose a neighborhood U, of (M, s) such that Uy C Ugp. It is sufficient to
find a non-zero continuous function f’: Uy — [0,1] such that f'|sy,,, = 0.
Choose some ¢: 2, — M and let ¢ be such that B(pfit*s,e) C ¢f(Vyrr). On
Uy define

FOM",8") = 0V (2 = inf{ 8| [l7"s" = @ sallgm .o ¥i € Lr )

Continuity of this mapped is checked in parallel to the proof that a sequence
converging with respect to the topology generated by the U;’s is a Ccm' e’ _Cmae_
converging sequence. This proves that A is completely regular.

Now we are able to apply Urysohn’s metrization Theorem @ to Tu,y-
Recall from Lemma the fact that in a metric space a set U is open if and
only if for every sequence 7T(y,}-converging to a point in U all but finitely
many members are already contained in U. Since T{y,}-convergence coincides

with C™"#-C™# | this fact implies that the topology T(v,y coincides with the
leﬁ/—Cm’B—tOpology. O

Definition 1.28. Let k,I > 0. The space of oriented pointed Riemannian
manifolds with a (k,[)-field is the topological space

k,1
Tcm’ o' <@/ PMC"L <O

Kltd w antisymmetric,
— {(M,g,p,8®w) ETCm o’ <e’ PMCma<@ |UJ| >1 ~
g =

where ~ is defined by (M, g,p,s @w) ~ (M',¢',p’, s’ ® ') if there is a diffeo-
morphism f: M — M’ such that

fp) =7, g=f"9g

fes =14, I (W)]o = Mw|op for some A > 0.
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The space is given the quotient topology of the subspace topology of

(Th!+d PM(é’SL,agea topology induced by C™ ' -C™_convergence).

cm’ e’ <@/
Lemma 1.29. The space Tlé’rln,’a,S@, P/L/;dc’ﬁ,age is completely metrizable and
k,1 d,o ’ ’
compact as a subspace of TCm’ﬁ’ge)' PMCmﬁge for B<aand B < do.

Proof. The space

A - { (Mvgap7 5 w) € Tk71+d PMdd’L’)“D‘S@

w is antisymmetric,
cm’ o’ <@

|wlg > 1

is compact being defined as a subspace of a compact space by closed conditions.
Hence we have a sequence

A A LTl PMES .o
where the second map f comes from forgetting w. We check the assumptions of
Corollary i.e. the Hausdorff property.

Given two distinct points M, M’ € A/~ we immediately find disjoint open
neighborhoods if their images under f are distinct. Hence assume otherwise,
ie. M' = (M,g,p,s @ w') with w|op # A'|g (for all A > 0) after choice of
representatives. Set s’ :== s, 0 '= s @ w, and ¢’ = s’ ® w’. By the assumption
M # M’ there has to be a radius » > 0 and an open neighborhood Q of p
containing B(p, r) such that there is no diffeomorphism ¢: Q — M such that

B(p,r) Cu(), up)=p, "g=g, and o' =0 (A.5)

Therefore it is also possible to find neighborhoods V' and V' of o and o/,
respectively, in Cm"ﬁ(Q, Thi+d Q) such that there is no ¢ such that holds
with 0,0’ replaced by some 6 € V,5’ € V’': Otherwise, we could choose a
sequence of neighborhoods V;, converging to {¢} and V! converging to {o'}
together with sequences &,, — o, &, — o', and maps ¢, : Q@ — M fulfilling
with &, &,,, and ¢,, for each n. Due to ¢};g = g and Theorem we have a
uniform bound on the C'®-norm of the ¢,’s. Hence we can find a subsequence
converging to some one-time differentiable function ¢: Q@ — M fulfilling in
contradiction to our assumptions.
Let {¢; | i € I} be a finite set of charts for Q. Define U and U’ by

, _ Ju: Q — M such that for all i € T
" .— (M,5)e A ) /
oty — @lglloma < e and *6 € VI

for some € > 0. These sets are open by the same arguments as the sets are
open. Moreover by construction these maps are disjoint. Thus their image in
the quotient .A/~. Hence we can apply Corollary As in the lemmas above
metrizability implies the remaining claims. O

Definition 1.30. Let Tlé’rln,

alence classes of) spaces

<o PMdC’TQn,[{fS’%], C > 0, denote the space of (equiv-

(Mag7pa S,/Ll,...,,llk)
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such that (M,p,g,s) € T*
M satisfying the bound

d
Cm o <o PMC’fZL»age and fi1, ...,y are measure on

wi(Blz,r]) <C"+C

for any z € M, r >0, and ¢ = 1,...,k. On this space a notion of convergence is
given by combination of the notion of convergence of PM¥*1 and tensor conver-

gence, nameb@ (anpnmgny Sny Mnly - .- 7,Unk) converges to (M7pa 9,8, U1, - - - 7/J“k)
if and only if for every radius r, index ¢ = 1, ..., k (and sufficiently large n) there
are a domain Q D B(p,r) and (smooth) embeddings

iy — M
from domains ©,, D B(pn, ) such that
o (1n1)*g, converges in C™ to g on €,
e L,.8, converges in C™ % to s on Q, and

o tni(bp, rlini) weak# converges to bprp; fori=1,...,k and b_, as defined
in (L10).

Likewise, define

k,1 d,o[k',C]
Tcrn/,a/éel PMC’" a<O

as a quotient of a subset of T lélf(i/ <o PM%’&,[E fg as in Definition |1.28
Lemma A.7. Lemma holds for TCm o <o PMC’ﬁ ’ng with respect to the

topology defined in Deﬁmtwn i.e. it is sequentially compact with respect to
this topology:

. d,o[k',C] _ m0,0 d,o [K',C]
Proof. First we observe that PMgnalg = T o <o PMcmalg as a sub-
set of M1 is compact: Given any sequence (M, Pr, Gn, tnds - - - » fnk') We

can choose a converging subsequence of (M, pn,gn) due to Theorem m
This means that (after going to a subsequence of the M,’s) for any radius
there are embeddings ¢y, €., — M for some space M according to Defi-
nition with B(pp,7) C Q,. Due to [DV03, Corollary A2.6.V] there is a
convergent subsequence of the measures ¢, (tinilB(p,,r)) weak# converging to
some ju;, for each i = 1,...,k’. By the same theorem s, weak# subconverges
to some p; for r = 1,2,... — oo and each i = 1,...,k'. Since MM is a
metrizable [DVO08, Proposition 9.1.IV(i)], we can use a diagonal argument to
find a subsequence (ty(m),n(m))m Of the v, ,’s such that L:(n/),n(n/)m|B(pn,r(n’))
converges to u for n’ — oo and each i = 1,...,k’. By this procedure we
found a subsequence (My,(n/), Pn(n')s 9n(n’)s Hin(n’)s - - - » Bkn(n’)) Which converges
to (M,p,g,p1,. .., k) as n — oo.
The proof of Lemma [A.6| applies mutatis tutandis by replacing the space
Mcm a<o DY PMC’ELUZ - Mlk+1 because compactness of P./\/lcm ace Was
the only property of this space used. This finishes the proof. O

Lemma 1.31. Lemma |1.27 holds for the spaces Tcm o <o P./\/lc’ﬁ ’Z<%] and

k! PMC’,% §<%, i.e. they are compact and completely metrizable as a

Cn] Ot<@/
PMdg[k C] and T,

d,o [K',C]
subspace ofT om, B<@ om' 8 <o PMCm a<@; resp., for f < «

and B < o.

Cm 87 <o’
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Proof. For TCm o <o PMg’ﬁ[ljlfg the proof of Lemma |1.27] applies mutatis
d.e[k",C]

tutandis by replacing the space P./\/lcm a<o by PMdn.alg because sequential
compactness as stated in Lemma [A77] was the only property of this space used.

For T*! PMC’T%UZ <%] the proof of Lemma|l.29(applies mutatis mutandis

cm’sal <o
d,e[K,C]
P./\/l Cm.a<@ With TCm o <®,PMCMQ<@

by replacing the space TCm o' <or

Lemma A.8. Let M,, — M be a sequence in

Tléxln o' <@/ PM?}EL[&;:(:) or Tlc(;xln o' <@/ PM?}EL[E<C(;

convergent in the sense of Definition[I.30, There are partially defined comparison
maps Ly : My, — M such that iy, pin; weak? converges to u;, moreover, for any
r > 0, and sufficiently large n the image of v, contains B(p,r), and for some
charts the tensors v} g, and i} sy, resp., converge in C™ to g and s, resp, on
these chart.

Proof. First look ar the case TCm o <o P/\/ldcﬁ[ﬁ <% We can fix a countable

atlas {U; }ien of M such that any ball B(p, ) is covered by a finite number of
charts. Thereby we can define a norm |.|| on C™" (M, T*! M) by

Ig. )l =27 (llglo.

i€N

ome 4 lslor .o ) -

Moreover the space M(M) of measures on M is metrizable [DV08| Proposi-
tion 9.1.IV(i)]. Choose such a metric daqps.

For any r the are partially defined comparison maps ¢, : M,, whose domain
contains B(py,,r) such that the measures b, pn; converge to by rp; as n — 0o
for all + = 1,...k’. For each r = 1,2,... and sufficiently large n > n,, we
can find a comparison map ¢, ,: M, — M with distortion at most ¢ such that
At (s (Dpyy o thin ) bp.rpi) < 771 and || (e, tnasn)— (g, 8)|| < 7. We define
a diagonal sequence by ¢, = t(n),, Where r(n) is the largest integer such that
Lr.n exists. By triangle inequality for daqas and ||| the sequence iy (bp, rttin)
weak” converges to ;.

Since for any test function with bounded support, we can choose r so large
that it contains the support of f, and hence

/den*(bmeMm):/den*(bpmr(n)Mm)

for sufficiently large n and all 4 = 1,...,k’. The claim for TC’m o <o P/\/lc’f1 C}f<%]
follows.
For Tlérln o <o PMdCfonf <% do the same argument but with a representative

of the orientations on the M,,’s and M. O



Appendix B

Coordinate independence of
rough curvature tensors

In this appendix we check that the curvature defined in the notation of §
by the formula

LPRI;;W = Z )‘i Z ((x;c,l © yi),uyli,uA>[lW] + (/\1 2 inIf)\) [uv] "
icl l
k K
2 (T T80
is actually coordinate independent. The standard textbook calculation could be

referred to if a third derivative of transition maps would exists.

Lemma 2.12. Given a cover of a manifold M by charts ¢;: U; — M in the
C2-atlas of M with a corresponding C'-partition of unity X\;. For any two
charts o: U — M and ¢’ : U' — M the expression defined by coincide on
e(U)N'(U') as (8,1)-tensor, i.e.

'k AP, / ’ ’ k
E (PR 0 )N 3T T (T 0 2') = YRS,
A v k!

Proof. We repeat all crucial definitions in the primed and non-primed versions

r=¢p lop: U = UCcCR? ' =¢lop:U—=U cRY,
mizgp_logpi’ x/i:(p/_logoia
y' =g oo, Y=g oy,
Z]‘—‘,U,V = Z(‘r;@,l o yl)(ylz,,uu)? LF,/U,D = Z(xz,l o y”)(yﬁuu)ﬂ
l l
k ik "1k ik
Sorpy = Z)‘z Zrlwa ¥ F/u/ = Z /\l ZF:},D'
i€l i€l

defined on the suitable domains. Additionally, we introduce the shorthand
(hiirjj )i jo) = hiirjjr — Bjjeiir.
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Observe that in case hjij;» = hl - h;'j,
5 g~ (5,0) (5, 8) - (5, 6) (5,00
= (Z” hz‘i’jj’>[ij] : (B.1)

We have 2/ = ¢ lop =a" oy’ and 2 := ¢! 0 ¢/ = 2 0y’ if defined.
Observe that for the differential Did: R? — R? of the identity the following
identity holds

0=(Did)r=(Dzoa'), = ((Zl Tpy 0 - azay)lw) N
= Zz ((wpp0a’) oy, + (zry0 z’)x?ym)ky ) (B.2)
We check
(R 02 )yl it (nse 0 7)

plug in definition ([2.8)

:Z)\lz xk’l’oy)'ox)xp/p

/ / !/
icl ! (yl’ﬂ/’/\’ ox )xk’)\xl”a”(x’“’k' o) [ v”]
N
use formula (B.1)
7
+ E E QYR T\, ATy Tk O ))[umym]

DNNTUNVIN %

el p' v
)\/,k},
use formula (B.1)
’
+ E g (ka T, 2h ! T (The by ox'))
Vi | W)
NN
use formula (B.1)
I /7 JAPW;
Z#/((xk’,l' oy )sHl ox )‘r,u/”u.
A\ change of variables
o Z i ri N / /
iel : (yl’,y’k’ °ox )x)\/,A xu’,u(zk,k/ ox )
XK o -
change of variables (uv]
itk
+ E Z i ! W >, T ,/\/x/\, AL, V(xkk/ox))“w]
X k:/ change of variables apply formula
Pk’ ’ / YK ’ ’
+ E : (Z,u’ Fp’n’x,u’,p(xk,k' ox ) Zu’ Fu’)\’mz\',)\xu’,u
N (k]
11 I / /4 / / /
=S afy ey od) W N wi oa)aal, (@i o))
icl ~~—~ — S~~~ [pv]
NG =(x'ox?) s =y’ :(yioz)l/,uz
ik / /
+ E ()\w( ox — E (Tgpow )(xl,w\))>[ J
iel 1 "
k' 2! ’ YK ’ /
+( E F (J?kk/olv)~6mK/~F//1‘/ X,
umuu e LK [ZO D IO VNV
N ~~ [1v]
N/’ u” m’ =6, 02’ =(D1id),, .0z’ =(D(z'ox)),, . 0x’

:(Z[’c Z:n,now'I»e,n’)c’“:,:ZK z:nvﬁ(wnw/ ozx’)
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/ % i i
((ZHZC]C/’NOCC -an’l/) oyl>
= E \; y
icl DI ((Zl Yo mlﬂ,/) o x’) R “xy,, (Th g 0 2')

kL ’ 1]
i 2 : . / /
+ § z NY 1_‘1//\ [uv] ((Eie] Al),u (:Ek:,l ox )(wl,y)\))[ V]
iel 1 "
§ : Yk 2 N Ye / ’
+ ( F,u 'm ,u #($k7k, ox )xm,l{ Fu/)\/‘r)\’,)\xy’,u(l'ﬁyli/ ox ) (]
’ ! /7
?L/’ky,";n’ apply formula (2.4)) apply formula ([2.4))

= YN Sl 0¥ Dot - 210 03 22l (s 0.21))
i€l
k'l

(]

DR VNINED DI (MENTEIE Y

icl l

+ Z ( (SDF’ZK — (kg0 xl)xivw) (wrﬁk — 2w o m/m’”*) )

B Z)\ xk’ LT oy') +aty (w0 ') )
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[nr]

el
T
2 : § : NS
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el l my
ek YK N
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Ll
+ § YTk AU, N AU}
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use formula (B.2]) [uv]
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i€l
I,k

Dok (2 w( k' OY N+ Thr (T Tl o Y )
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o x;c',w(mk,k’ ox') iFf,\fSlu
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