
 

 

The influence of melamine treatment in combination with 

thermal modification on the properties and performance 

of native hardwoods 

 

Dissertation 

In partial fulfillment of the requirements of the doctoral degree  

“Doctor forestalium” 

of the Faculty of Forest Sciences and Forest Ecology 

Georg- August-Universität Göttingen 

 

within the PhD program Wood Biology and Wood Technology 

of the Graduate School Forest and Agricultural Sciences (GFA) 

 

 

 

 

 

 

 

 

 

Submitted by 

Georg Behr 

Born in Dresden, Germany 

 

Göttingen 2019 

  



 

 

 

 

Members of the examination board  

First Referee: Prof. Dr. Holger Militz Department of Wood Biology and Wood Products, 

Burckhardt Institute, Faculty of Forest Sciences and Forest Ecology, Georg-August Universität, 

Göttingen, Germany.  

Second Referee: Prof. Dr. Andreas Krause, Wood Physics, Institute of Wood Science, Department 

of Biology, Faculty of Mathematics, Informatics and Natural Sciences, University of Hamburg, 

Germany. 

 

Further members of the examination board 

 

Prof. Dr. Carsten Mai Department of Wood Biology and Wood Products, 

Burckhardt Institute, Faculty of Forest Sciences and Forest Ecology, Georg-August Universität, 

Göttingen, Germany. 

 

Prof. Dr. Kai Zang Department of Wood Technology and Wood-based Composites, 

Burckhardt Institute, Faculty of Forest Sciences and Forest Ecology, Georg-August Universität, 

Göttingen, Germany. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Date of oral examination: 20.12.2019 

  



I 

 

 

Acknowledgements 

Firstly, I would like to thank Prof. Dr. Holger Militz for the opportunity to work at his 

department and to take part in a very interesting research topic. Thank you for your guidance 

and expertise but also for the freedom and responsibilities that came with that position. 

Due thanks go to Prof. Dr. Andreas Krause, Prof. Dr. Carsten Mai, and Prof. Dr. Kai Zang 

for the support and discussions and for their commitment to evaluate this thesis. 

This thesis would not have been possible without the solid supervision, support and 

encouragement of my supervisors Dr. Antje Gellerich and Dr. Susanne Bollmus. Thank you 

for all the effort you put into the project “Creating new markets and applications for domestic 

hardwoods using new technologies” and into me and my work. This study was generously 

funded by the Federal Ministry for Food and Agriculture via the Agency for Renewable 

Resources (FNR) under reference number 22024211. 

A special thanks goes to the backbone of the department of wood biology and wood technology, 

the staff: Mirko Küppers, Bernd Bringemeier, Dieter Varel, Petra Heinze, and Brigitte Junge. 

Your work and support enabled students like me to do our research in the best possible way. 

Many thanks to my friends, colleagues, co-authors, and students for sharing and discussing 

relevant scientific ideas, very relevant nonsense, general support, and long evenings at the 

workshop: Dr. Philipp Schlotzhauer, Dr. Bernd Lütkemeier, Dr. Maximilian Wentzel, Dr. 

Michael Altgen, Michael Starck, Dr. Christoph Stiem, Dr. Bodo Kielmann, Dr. Benedikt 

Hünnekens, Dr. André Klüppel, Dr. Felix Tregret, Philipp Nelis, Dr. Kim Krause, Dr. Tim 

Koddenberg, Sascha Brinker, Dr. Karl-Christian Mahnert, Cara Leitch, and Lukas Emmerich. 

It was a great time in Göttingen thanks to you. 

I would like to thank my parents, sister, family, and friends for the never-ending support and 

for shaping who I am today. Thank you Dr. Wolfram Scheiding for introducing me to forest 

and wood science. 

This thesis is dedicated to my wife Karen, thank you for your unconditional love and support! 

 

  



 

II 

 

Summary 

The objective of this study was to improve the properties of native hardwoods and find potential new 

applications in exposed environments that had previously been unsuitable for most of these species. 

Certain properties such as the aesthetics, hardness, impact bending strength, weathering resistance, and 

crack susceptibility are issues of the commercially available modified wood products. It was the aim of 

this study to prepare potential solutions for using the readily available resource beech wood (Fagus 

sylvatica L.) and other hardwoods (ash (Fraxinus excelsior L.), lime (Tilia spp.) and poplar (Populus 

spp.)) more efficiently and expand the knowledge about impregnation modification of hardwoods with 

melamine resin. 

In this study, the curing process of melamine resin treatment was analyzed in depth first, because the 

properties of modified materials depend on the parameters of the treatment process. Then, thermal 

modification and melamine resin treatment were combined, and the resulting elasto-mechanical and 

weathering properties were assessed. The influence of the curing parameters of melamine resin treatment 

were analyzed to identify the determining factors for viable curing processes. It was also of interest if 

the control methods used would yield correct answers on how curing influences the material properties. 

Analyses with differential scanning calorimetry could be used to determine the minimum requirements 

of temperature and duration for complete resin curing in wood. The nitrogen content and fixation in the 

treated wood should give information about the quality of the incorporation of the resin in the wood 

matrix. The formaldehyde content and emissions should also provide information about whether the 

curing is complete and about the formed resin network. Scanning electron microscopy in combination 

with energy dispersive X-ray spectroscopy could be used to locate the resin in the wood matrix and the 

cell walls. The influence of the curing variations on the mechanical properties such as hardness, bending 

strength, and impact bending strength were also investigated. Furthermore, it was of interest if the 

melamine resin treatment could be combined with thermal modification. The mechanical properties and 

the weathering performance were investigated.  

The differential scanning calorimetry revealed to be well capable to determine the curing characteristics 

of melamine resin in solid beech wood. The curing reaction would onset at 110 °C and peak at 135 °C 

in a high-pressure crucible. The nitrogen fixation confirmed that higher temperatures and longer curing 

(>110 °C, 24 h) led to completely cured resin. High humidity while curing negatively influenced the 

fixation. The method to determine the fixation also had an effect: Leaching in cold water over a longer 

period gave more accurate results than extraction in hot water. Scanning electron microscopy in 

combination with energy dispersive X-ray spectroscopy revealed an even nitrogen distribution across 

the cell walls of melamine-treated beech. There were more microcracks in dry-cured specimens than in 

steam-cured specimens. Steam curing led to slightly increased allocation of resin in the cell lumen, 

compared to dry curing. High humidity curing resulted in lower embrittlement and lower formaldehyde 
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emissions than dry curing. The bending strength and hardness, however, were not influenced by the 

curing conditions.  

Treating thermally modified wood with melamine resin resulted in lower bulking after impregnation 

and curing. This depended on the thermal treatment intensity and was nonetheless able to increase the 

hardness, but not the impact bending strength. The weathering performance was positively influenced. 

Depending on the wood species, lesser or smaller surface cracks were observed. The embrittlement of 

the thermally modified wood was not influenced. 

Some useful control methods for the curing of melamine resin in hardwoods were established. The test 

results of this study should be a basis to create a long-lasting product from non-durable native 

hardwoods.  
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Zusammenfassung 

Das Ziel dieser Arbeit war es, die Eigenschaften einheimischer Laubhölzer zu verbessern und 

potenzielle neue Verwendungen in Außenanwendungen zu finden, die zuvor für die meisten dieser Arten 

ungeeignet waren. Bestimmte Eigenschaften wie die Ästhetik, die Härte, die Schlagbiegefestigkeit, die 

Witterungsbeständigkeit und die Rissanfälligkeit sind Probleme der im Handel erhältlichen 

modifizierten Holzprodukte. Ziel war es, mögliche Lösungen für eine effizientere Nutzung der gut 

verfügbaren Ressource Buchenholz (Fagus sylvatica L.) und anderer Laubhölzer (Esche (Fraxinus 

excelsior L.), Linde (Tilia spp.) und Pappel (Populus spp.)) zu erarbeiten und die Kenntnisse über die 

Imprägnierung von Laubhölzern mit Melaminharz zu erweitern.  

In dieser Studie wurde zunächst der Aushärtungsprozess der Melaminharzbehandlung eingehend 

analysiert, da die Eigenschaften modifizierter Materialien von den Parametern des 

Behandlungsprozesses abhängen. Danach wurden die thermische Modifizierung mit 

Melaminharzbehandlung kombiniert und die resultierenden elastomechanischen und 

Bewitterungseigenschaften getestet. Der Einfluss der Härtungsparameter der Melaminharzbehandlung 

wurde analysiert, um die bestimmenden Faktoren für anwendbare Härtungsprozesse zu identifizieren. 

Ebenfalls von Interesse war, ob die verwendeten Kontrollmethoden korrekte Antworten darauf liefern, 

wie die Aushärtung die Materialeigenschaften beeinflusst. Eine Analyse mit dynamischer 

Differenzkalorimetrie könnte verwendet werden, um die Mindestanforderungen an Temperatur und 

Dauer für eine vollständige Aushärtung des Melaminharzes in Holz zu bestimmen. Der Stickstoffgehalt 

und die Stickstofffixierung des behandelten Holzes sollten Aufschluss über die Qualität der Aufnahme 

des Harzes in die Holzmatrix geben. Der Formaldehydgehalt und die Formaldehydemissionen sollten 

Auskunft über das gebildete Harznetzwerk geben und ob die Aushärtung abgeschlossen ist. 

Rasterelektronenmikroskopie in Kombination mit energiedispersiver Röntgenspektroskopie könnte 

verwendet werden, um das Harz in der Holzmatrix und den Zellwänden zu lokalisieren. Der Einfluss 

der Aushärtungsvariationen auf die mechanischen Eigenschaften wie Härte, Biegefestigkeit und 

Schlagbiegefestigkeit wurde ebenfalls untersucht. Weiterhin war es von Interesse, ob die 

Melaminharzbehandlung mit thermischer Modifizierung kombiniert werden kann. Die mechanischen 

Eigenschaften und die Witterungsbeständigkeit wurden untersucht.  

Die dynamische Differenzkalorimetrie zeigte, dass sie die Aushärtungseigenschaften von Melaminharz 

in Buchenholz gut bestimmt werden kann. Die Aushärtungsreaktion im Hochdrucktiegel setzte bei 

110 °C ein und erreichte bei 135 °C ihr Maximum. Die Stickstofffixierung bestätigte, dass höhere 

Temperaturen und eine längere Aushärtung (> 110 ° C, 24 h) zu vollständig ausgehärtetem Harz führten. 

Hohe Feuchtigkeit während der Aushärtung beeinflusste die Fixierung negativ. Die Methode zur 

Bestimmung der Fixierung wirkte sich ebenfalls aus: Das Auswaschen in kaltem Wasser über einen 

längeren Zeitraum ergab genauere Ergebnisse als die Extraktion in heißem Wasser. 

Rasterelektronenmikroskopie in Kombination mit energiedispersiver Röntgenspektroskopie zeigte eine 
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gleichmäßige Stickstoffverteilung über die Zellwandquerschnitte der mit Melamin behandelten Buche. 

In unter trockenen Bedingungen ausgehärteten Proben gab es mehr Mikrorisse als in unter 

Dampfatmosphäre ausgehärteten Proben. Die Aushärtung unter Dampfatmosphäre führte zu einem 

leicht erhöhten Harzanteil im Zelllumen im Vergleich zur Trockenhärtung. Die Härtung bei hoher 

Luftfeuchtigkeit führte des Weiteren zu einer geringeren Versprödung und zu geringeren 

Formaldehydemissionen als die trockene Aushärtung. Die Biegefestigkeit und die Härte wurden jedoch 

nicht durch die Aushärtungsbedingungen beeinflusst.  

Die Behandlung von thermisch modifiziertem Holz mit Melaminharz hatte eine geringere permanente 

Quellung nach Imprägnierung und Aushärtung zur Folge. Dies hing von der 

Wärmebehandlungsintensität ab und konnte die Härte, aber nicht die Schlagbiegefestigkeit, erhöhen. 

Die Bewitterungsbeständigkeit wurde positiv beeinflusst. Je nach Holzart wurden weniger oder kleinere 

Oberflächenrisse beobachtet. Die Versprödung des thermisch modifizierten Holzes wurde nicht 

beeinflusst. 

Einige nützliche Kontrollmethoden für die Aushärtung von Melaminharz in Harthölzern wurden 

etabliert. Die Testergebnisse dieser Studie sollten eine Grundlage für die Herstellung eines langlebigen 

Produkts aus nicht dauerhaften einheimischen Laubhölzern sein. 
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1  Introduction 

1.1 Motivation  

The demand for renewable materials for building is increasing, while resources such as naturally durable 

wood are dwindling. Wood is a natural and renewable material. It is strong, lightweight, and 

aesthetically pleasing. It is also naturally degradable and can lack the required dimensional stability. 

That means that the integrity of the material is potentially shorter than the prospected service life. Thus, 

wood in outdoor applications requires protection.  

Constructional wood protection is the traditional way of protecting wood from the elements and 

subsequent deterioration. Where constructional wood protection cannot be achieved, it can be typically 

provided by biologically active wood preservatives (DIN 68800-1 2011). The ingredients of wood 

preservatives are designed to specifically target fungi or insects but might leak over time and 

contaminate the surroundings. Their long-term influence on humans is not sufficiently clarified (Leisse 

1992). Disposal of wood treated with preservatives is also an issue, as the extraction of the preservative 

is rather impossible, and the reuse of the material is difficult (Voss and Willeitner 1993). Developments 

in analytics, health issues and environmental concerns, and new regulations limit the use of preservatives 

(Militz 2008). There are novel alternatives to protect wood and prolong its service life. This protection 

and improvement of properties can be provided through physical alteration, called wood modification.  

Wood modification changes the chemical and structural constitution and presents new properties to 

improve specific properties. Natural durability, dimensional stability, and resistance to weathering are 

some of those properties. The mechanisms of wood protection through wood modification of the already 

developed technologies have yet to be fully understood, and new ways might have to be found to 

establish further gains. The knowledge must also be expanded to include treating new resources such as 

new wood species or increasingly available species. This can occur when technology is expanded to 

different parts of the world (Hill 2011) or the composition of the domestic or available resources is 

modified. 

For ecological and economic reasons, the forests in Germany will have more mixed stands and more 

hardwoods in the future. The goal is a more natural state of the managed forests with more biodiversity 

and a lower risk of calamities in mixed stands. The wood of broadleaved trees (hereafter named 

hardwoods) such as beech will be more abundant (BWI3 2012). These species are often not durable or 

dimensionally stable enough to be used for construction materials or furniture, cladding, and decking in 

outdoor applications. On the other hand, they are readily available and easy to treat, making them ideal 

candidates for wood modification processes to improve their properties. European beech (Fagus 

sylvatica L.), common ash (Fraxinus excelsior L.), lime (Tilia spp.), and poplar (Poplar spp.) meet these 

requirements and are among the most abundant species in Germany now and will be throughout the next 
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decades. Beech is by far the most available species among them (BWI3 2012). To make use of the more 

available hardwood, some sort of wood protection must be applied. As those species have not been 

treated with the utilized processes before, existing processes have to be applied and adapted. The 

technologies might have to be combined to achieve the desired material properties. 

This study further focused on understanding already developed technologies and combining 

technologies for new properties and potential applications, as described in depth in the next paragraphs. 

1.2 Wood modification 

Wood modification is a term describing chemical, biological, or physical techniques to positively alter 

the properties of wood and to prolong the service life using nontoxic agents or processes. The use, 

recycling or the disposal of the material at the end of the service life should not release any toxic 

substances. Protection against biological decay should be based on a nonbiocidal mode of action (Hill 

2006). Ultimately, local, abundant, and renewable resources can be used to make products that subsidize 

endangered tropical hardwoods or petrochemical and unrecyclable choices. Biocidal wood preservatives 

and their potential impact on non-target species can also be avoided (Leisse 1992).  

Wood modification methods employ different techniques to alter wood properties. Thermal 

modification alters the cell wall chemistry; chemical modification (e.g. treatment with acetic anhydride) 

is based on the covalent reaction of the modification agent with cell wall constituents. Other 

modifications are impregnation processes (wax, furfuryl alcohol, phenol formaldehyde resin, melamine 

formaldehyde resin). They can either fill the lumen and/or the cell wall cavities without the need of a 

covalent bond.  

Chemical wood modification utilizes covalent bonding of agents to cell wall constituent’s hydroxyl 

groups. One of the most researched and today also commercialized method is the acetylation with acetic 

anhydride (Rowell 1983; Hill 2006). In the case of high weight percent gain (WPG), the blockage of 

nearly all hydroxide groups in the cell walls is very effective at dimensional stabilization (Rowell 1983). 

One drawback was the strong smell of acetic acid of the early treatments. The process was further 

developed, and the commercialization was launched in the 2000s (Bongers et al. 2009). 

Impregnation modification does not require the agent to covalently bond to the cell walls but must 

penetrate and be fixated in the wooden matrix to prevent leaching and ensure a consistent material 

performance (Hill 2006). Impregnation and curing of phenol formaldehyde resin (PF) resin in wood 

(Impreg and Compreg) was the first commercial solid wood impregnation modification to be widely 

used (Stamm 1964). Treatment with furfuryl alcohol is commercialized by Kebony ASA. It uses 

processed byproducts of the corn and sugar cane production and produces dimensionally stabilized, 

naturally durable and hardened wood products suitable for outdoor application (Lande et al. 2008). 1,3-

dimethylol-4,5-dihydroxyethyleneurea (DMDHEU) has been used in the textile industry as a crease-
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free agent for some time (Emmerich et al. 2019). Academic research about the use of DMDHEU as an 

impregnation agent for solid wood and wood products began in the 2000s and showed improved 

dimensional stability and durability against fungi (Krause 2006; Schaffert 2006; Wepner 2006; Bollmus 

2011). Impregnation modification with wax products mostly only penetrated the cell lumen of wood but 

provided a certain level of mechanical wood protection and increased the durability and hardness 

(Scholz 2011).  

Melamine formaldehyde resins (MF) were initially used as additives in the wood products industry to 

increase the water resistance of particleboards and overlay papers (Kohlmayr et al. 2014). The relatively 

high price of MF resins prevented developments of MF-treated solid wood products, although research 

showed the major improvements in dimensional stability and natural durability, surface hardness, 

bending strength, and fire retardancy (Lukowsky 1999; Rapp 1999). Because of the large potential of 

MF resins as wood modification agents, they will be discussed in more depth in the next chapter. 

Thermal modification is very intuitive and one of the oldest methods of wood modification. Reports 

show that humans knew about increasing the durability of wood by heating it over a fire as early as the 

age of the Vikings. Fence posts in the Alps are still treated that way at the soil/air transition to increase 

the service life (Anonymous 2003). A comprehensive overview of the research during the 20th century 

is given by Hill (2006) and Esteves and Pereira (2009). Extensive research work was carried out in 

Finland in the 1990s (Anonymous 2003) and is still the country with the largest production of thermally 

modified wood (Scheiding 2018). The most intensive and comprehensive research work was conducted 

by VTT in Finland (Anonymous 2003). 

Today, some modification processes are commercialized in Europe. Besides thermal modification (TM), 

furfurylation (F), and acetylation (AC), there is wax treatment and treatment with PF and UF resins. The 

most widely used method is TM with 400.000 m³/a (Militz 2015), followed by AC (40.000 m³/a) and F 

(25.000 m³/a) (Scheiding 2018). This is still a small number compared to the overall production of solid 

wood produced each year worldwide (400 m m³/a, (FAO 2011)), but that number is rising steadily 

(Scheiding 2018). High purchase costs compared to preservative treated wood or naturally durable 

tropical timber tend to keep modified wood in high quality niche applications.  

1.3 Treatment with methylated melamine formaldehyde resin 

Melamine resins are amino resins and were first synthesized in the 1940s and have been increasingly 

used since then. Today, there is a variety of uses, ranging from overlay papers (thin high-pressure 

laminates) used for kitchen countertops and laminate floorings, to wet strength for paper (in bills) and 

wood-based products (Hagstrand 1999), melamine tableware, camping tableware, fire retardants in 

airplane upholstery, and electrical insulation (Lukowsky 1999). From the 1950s onwards, melamine 

resin treatment of wood has been researched for dimensional stabilization. Stamm (1964) mentioned 

them as being “promising, but too expensive to be used for dimensional stabilization”. Further research 
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was conducted in the 80s and 90s, with Pittmann et al. (1994), Lukowsky (1999) and Rapp (1999) as 

examples for extensive testing regarding dimensional stability, decay resistance and weathering 

performance, and mechanical properties of many types of MF. The curing conditions were found to play 

a major role in the resulting properties of melamine-treated wood (Lukowsky 2002). 

1.3.1 Process  

Melamine formaldehyde resins (MF) are synthesized by the addition reaction (condensation) of 

melamine molecules with formaldehyde in water (Scheepers et al. 1995). Their shelf life is prolonged 

through the stabilization with alcohols, mainly methanol. The resulting type of MF, the methylated 

melamine formaldehyde resin (MMF), is the most common type of MF used today.  

Wood modification with MF is a two-step process:  

1) An aqueous solution of MF is used to impregnate wood  

2) The treated wood is then dried, and the resin is cured under elevated temperatures.  

Vacuum-pressure impregnation allows the impregnation solution to enter the lumens of the wooden 

matrix. A subsequent diffusion phase allows the impregnation solution and the including monomers to 

enter the cell wall cavities. The subsequent drying and curing usually takes place at elevated 

temperatures, but it can also be catalyzed by acids (Mizumachi and Fujino 1972; Scheepers et al. 1993). 

Water is allowed to evaporate during drying, whereas the resin remains in the cell walls. There, 

polycondensation-type crosslinking reactions occur during the curing, building a network (Jones et al. 

1994). Melamine curing is temperature-dependent (Zeppenfeld 1991), as nearly all chemical reactions 

are. Becker (1968) stated 80 °C as a sufficient curing temperature. Typical curing temperatures ranged 

from 80 °C to 120 °C (Krause 2006), depending on the author, curing process, and type of resin 

(Lukowsky 1999; Krause 2006; Sint 2010). Another influential factor on the structure of the melamine 

resin network is the humidity during the curing process (Jones et al. 1994). The results of curing 

melamine formaldehyde resin depend on the conditions such as the temperature, pH value, and humidity. 

All of these influence the resin formation. When the resin network is formed, methanol and 

formaldehyde are split off (Lukowsky 1999). Especially industrial-scale processes of DMDHEU 

treatment had to account for conservative drying and curing and follow hot steam processes rather than 

conventional drying schemes (Schaffert 2006). 

MF treatment of small specimens for specific tests was done at laboratory scale using drying ovens 

(Lukowsky 1999; Rapp 1999). When larger dimensions were treated, drying under dry conditions led 

to severe drying defects such as cell collapse and internal cracks (Lukowsky 1999). Dry processes can 

also lead to uneven distribution of the modification agent (Krause 2006). High-humidity or hot steam 

processes guarantee a lower moisture gradient between the wood surface and the surrounding 

atmosphere (Krause 2008; Mahnert 2013). Above 100 °C, water will boil and form vapor. The hot steam 
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process uses this principle to dry wood. Water will move and exit the wood in the gas phase and is thus 

not able to transport any impregnation agent across the wood cross section to the surface of the board. 

This migration effect has been described as a problem of dry curing processes (Schaffert 2006; Krause 

2008).  

Not many commercialized resin treatment processes have been implemented, rendering the real-world 

data rather small. Researchers have discussed pilot plant scale curing processes at various levels and 

different focusses. Wepner (2006) used a hot press to cure beech veneers treated with DMDHEU. Krause 

(2008) used hot steam processes to cure DMDHEU and melamine-treated pine. Different process 

conditions such as time and temperature affect the properties of modified wood. Indications of how the 

process conditions influence the properties were made (Krause 2006; Schaffert 2006; Wepner 2006) for 

DMDHEU treatment of wood. High temperature curing resulted in a more complete curing of the resin 

(Scheepers et al. 1993). Klüppel and Mai (2013) added to the discussion of this matter and found dry 

curing conditions leading to more complete curing than wet conditions. DMDHEU tended to migrate 

during drying and curing (Krause 2006). Using hot steam processes to cure wood treated with resins 

such as PF, DMDHEU or MMF yielded fewer drying defects. Krause (2006) conducted several 

iterations of full-sized impregnation and curing processes, analyzed the drying defects, nitrogen fixation, 

and mechanical properties. The results were incorporated in the next process to approach the best 

possible outcome. One verdict was that the resin treatment resulted in diffusion hindrance and made the 

treated wood behave like a difficult-to-dry species, such as oak (Rapp 1999). Lukowsky et al. (1998) 

and Lukowsky (2002) tested the influence of curing conditions on the formaldehyde emissions of 

melamine-treated pine specimens. Higher temperature and longer duration resulted in lower 

formaldehyde emissions.  

1.3.2 Quality control of impregnation and curing processes  

The most frequently used methods for quality control of impregnation modifications are based on the 

increased mass caused by the modification chemicals. The solution uptake (SU) is used to characterize 

the impregnation, and WPG is used to characterize the amount of cured modification agent in the wood 

after modification. Further methods, depending on type of resin and curing process parameters, were 

investigated during the last years. Such methods included the measurement of formaldehyde (FA) 

emissions and the nitrogen content, distribution, and fixation (NF). When resin formulations contain 

FA, emissions were measured to ensure they meet regulations (Lukowsky et al. 1998; Rapp 1999; 

Krause 2006; Wepner 2006). Curing specimens at higher temperatures for longer durations resulted in 

lower FA emissions (Lukowsky 1999). The degree of curing of nitrogen-containing resins such as 

DMDHEU or MMF can also be controlled by the nitrogen content and nitrogen fixation (NF) (Rapp 

1999; Schaffert 2006; Krause 2008). Cured resin showed a higher resistance against leaching or 

extraction than uncured specimens, and thus showed a higher NF (Rapp 1999). 
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Microscopy techniques were used by several authors to detect the changes in wooden materials after 

gluing or wood modification. Kielmann et al. (2014) used light microscopy (LM) and UV 

microspectrophotometry (UMSP) to visualize MMF deposits in cell lumens. Biziks et al. (2015) 

visualized the penetration depth of different molecular weight phenol formaldehyde (PF) resins through 

the inability of safranin to stain the cross sections of modified beech wood. This method would be very 

useful if applicable for the investigation of the influence of curing processes on penetration and 

stainability of beech modified with melamine resin.  

Leemann and Ruch (1972) used brilliant sulphoflavine (BSF) staining to quantify proteins in plant cells. 

Sernek et al. (1999) later used the same technique of BSF and safranin staining to detect the urea-

formaldehyde resin (UF) bondline in beech plywood. Mahrdt et al. (2015) detected the UF bondline and 

UF penetration by combined dyeing and fluorescence microscopy imaging.  

Numerous authors used electronic imagery to verify effects of wood modifications on the modified 

material. The most widely used methods were UMSP (Gindl et al. 2002; Mahnert 2013), electron energy 

loss spectroscopy (EELS) (Rapp et al. 1999), and scanning electron microscopy with energy disperse 

X-ray spectroscopy (SEM-EDX) (Rapp 1999). 

UMSP and EELS require 100 nm thin cuts for the TEM. SEM-EDX requires small, smoothly cut 

wooden blocks, which is a less demanding sample preparation, and was used in this study. The SEM-

EDX technique is particularly emphasized, as the specimen preparation for SEM analysis is simpler, 

and the EDX verification of nitrogen is a reliable method to localize melamine resin in cell walls. 

Classified as an impregnation type modification (Hill 2006), melamine treatment does not need to 

covalently bond to wood cell walls. There have been disputed results about this in the literature. 

Devallencourt (2000) found co-condensation reactions between melamine and cellulose fibers. 

Lukowsky (1999) rendered only a small number of bonds possible. The three-dimensional network of 

melamine resin formed while curing is sterically locked (Lukowsky 1999) in the cell wall cavities 

(Devallencourt et al. 2000) and potentially does not need chemical bonds to exert the recorded changes 

to wood properties.  

1.3.3  Properties  

The properties of wood treated with melamine resin are altered in several ways. Melamine resin does 

not alter the original color of wood (Hagstrand 1999). It improves the surface hardness and dimensional 

stability (Inoue et al. 1993a; Rapp 1999) depending on resin uptake (Deka et al. 2007). Due to the 

incorporation of resin in wood cell walls, density and stiffness increase (Stamm 1964; Miroy et al. 1995; 

Gindl et al. 2003; Deka et al. 2007). The MOE was increased (Deka and Saikia 2000; Epmeier et al. 

2004; Kielmann et al. 2013), reflecting the increased stiffness. The impact bending strength was reported 

to decrease (Epmeier et al. 2004; Kielmann et al. 2013), reflecting the increased stiffness. The bending 
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strength was reported to increase (Inoue et al. 1993a) or decrease (Epmeier et al. 2004; Lahtela and 

Kärki 2014), depending on low or high WPG, respectively.  

The moisture properties of melamine-modified wood have been the focus of several investigations 

(Rapp and Peek 1995; Epmeier et al. 2004; Epmeier et al. 2007; Hosseinpourpia et al. 2016; Kielmann 

et al. 2016), but the influence of melamine resin treatment on the sorption behavior seemed benign. 

Rapp and Peek (1995) reported no change in EMC by melamine treatment, Epmeier et al. (2004) and 

Kielmann et al. (2016) showed a minor reduction of EMC through melamine treatment, and Epmeier et 

al. (2007) even recorded slightly increased EMCs after melamine treatment. 

For outdoor application, besides dimensional stability, the appearance of the exposed surfaces is 

important, too. There were no significant color changes after artificial weathering of sugi specimens 

treated with MF (Inoue et al. 1993b). Pittmann et al. (1994) reported no deformation and no 

discoloration after weathering tests of Southern yellow pine samples treated with MF. An increased 

surface integrity and lower crack susceptibility were achieved by MF treatment of Scots pine (Rapp 

1999). According to Hansmann et al. (2006), melamine treatment provided weathering protection. The 

reports about the crack susceptibility of melamine-treated wood are inconsistent. Hansmann et al. (2006) 

and Rapp and Peek (1995) stated an increased crack performance after melamine treatment, while 

Lukowsky (1999) reported no reduction in cracks after melamine treatment. Rapp (1999) reported a 

reduced crack performance during outdoor exposure above ground after melamine treatment.  

1.4 Thermal modification 

1.4.1 Process  

Thermal modification is characterized by exposing wood to elevated temperatures, ranging from 160 °C 

to 240 °C under an oxygen-reduced atmosphere. The main goals of the processes are increased durability 

and dimensional stabilization (Militz and Altgen 2014). The processes differ mainly in the medium of 

heat transfer and the oxygen exclusion system. There are systems operated under either vacuum, 

atmospheric pressure steam, pressurized steam, oil or nitrogen. The principle of heat transfer and oxygen 

exclusion can be the same medium (e.g. steam or oil) or it can be separate (heated metal plates for heat 

transfer in a vacuum atmosphere). Steam as a medium of heat transfer and oxygen exclusion is the most 

widely used process in terms of quantity (Stellac, Finland). It is a relatively inexpensive and safe 

principle and can easily be scaled up (Scheiding 2018). The wood is firstly dried to near 0 % moisture 

content and then subjected to high temperatures in a second step while the steam excludes oxygen and 

prevents drying damages. The Plato process (Netherlands) also uses steam in a multi-stage process in a 

pressurized vessel. Recent advances with pressurized steam processes were made by FirmoLin in the 

Netherlands (Willems 2010). Oil was used by Menz Holz, Germany (Sailer et al. 2000). The wood is 

directly submerged and thus also gets hydrophobized surfaces. However, this process is currently not 

commercially available. Nitrogen is used as the inert atmosphere in the Retification process (France) 



Thermal modification 

8 

 

(Mitchell et al. 1953). Vacuum excludes the oxygen and heated metal plates provide the heat transfer in 

the Vacu³ process, used by the German company timura Holzmanufaktur GmbH and the Dutch company 

Lignius (New Polymeric Compound Industries BV). Some manual effort is required to alternatingly 

stack wood boards and metal plates containing the heated oil for this process. In return, this alternating 

pattern ensures even heat transfer and modification intensity throughout the stack and the boards. 

Downward pressure is exerted onto the stack to prevent cupping or warping of the boards (Wetzig et al. 

2012). 

1.4.2  Properties 

The main wood components are affected by increased temperatures with increasing intensity in the order 

of: Lignin – Cellulose – Hemicellulose. 

Hemicellulose has the least thermal stability and already undergoes major decomposition by 

depolymerization and hydrolysis at 170 °C (Rowell 2006). It is affected mostly by acidic hydrolysis, 

which works best under high humidity conditions, especially under high pressure, which prevents the 

acids from evaporating (Altgen et al. 2014). C-O bonds between the monomers of the hemicellulose are 

split off, and acetyl groups are eliminated. They further accelerate the acetic decomposition by creating 

acetic and formic acid (Sundqvist et al. 2006). The thermal degradation of pentoses is more severe than 

of hexoses. Softwoods have a higher degree of hexoses, and pentoses are more prevalent in hardwoods. 

Hardwoods therefore showed higher mass loss than softwoods in the same thermal treatments (Fengel 

1993; Militz 2002). 

Analog to hemicellulose, amorphous regions of cellulose are more susceptible to thermal degradation 

than crystalline regions. The degree of crystallinity increases through thermal modification (Fengel 

1993). One reason for the increased hydrophobicity of TM is the hydrophobic nature of the crystalline 

regions (Wikberg and Liisa Maunu 2004; Boonstra and Tjeerdsma 2006).  

Lignin is known to be less affected by thermal degradation. Nonetheless, there are changes to the lignin 

macromolecules. Lignin is softened at 70-80°C, and depolymerization occurs at 120 °C to 130 °C, which 

produces radicals. The molecules of lignin were found to undergo recombination at 140 °C to 200 °C 

(Windeisen and Wegener 2008). 

The number of hydroxyl groups is significantly reduced. This causes a slower water uptake and less 

swelling, resulting in higher dimensional stability (Tjeerdsma et al. 1998). The increased durability of 

TM is in part ascribed to the reduction of OH groups. Other factors for the increased durability are the 

structural changes of cellulose and lignin and the formation of new chemical structures (Weiland and 

Guyonnet 2003). 

Extractives are non-structural components of the wood matrix, ranging von 1 % to 10 % depending on 

the wood species. The total amount of natural extractives is reduced, the composition is altered (Fengel 
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1966), and new extractives are formed, depending on the type of process and intensity (Poncsak et al. 

2009). 

The property changes due to thermal modification are gradual and depend on the wood species, 

treatment temperature, and duration (Hill 2006). The longer the maximum temperature of the treatment 

is applied, the more severe the mass loss and overall change of properties (Kocaefe et al. 2008). All the 

different modification systems and processes generally result in the following changes in wood due to 

TM. 

Due to thermal modification, the durability and dimensional stability are increased depending on wood 

species and treatment intensity (Militz and Altgen 2014). The equilibrium moisture content of wood is 

reduced through thermal modification by 50 %, depending on the process (Hill 2006; Esteves and 

Pereira 2009). Decreased EMCs can influence the mechanical properties; further, thermal modification 

is known to influence the mechanical properties of wood (Stamm 1964; Boonstra et al. 2007; Esteves 

and Pereira 2009). In the literature, there is contradictory information about the influence of thermal 

treatments on mechanical wood properties. Brinell hardness (HB), modulus of elasticity (MOE), and 

bending strength (MOR) were reported to increase or decrease depending on treatment intensity 

(Welzbacher 2007; Esteves and Pereira 2009). Light treatment was reported to increase hardness and 

bending strength, while more severe treatments decreased them. However, treatments intense enough to 

enhance the durability and the dimensional stability have the tendency to reduce the hardness and 

bending strength (Kubojima et al. 2000). Impact bending strength (dynamic) (Welzbacher 2007; 

Boonstra et al. 2007) and work in bending (static) (Kim et al. 1998; Wetzig et al. 2012; Rautkari et al. 

2014) were decreased, and they were the most affected properties due to thermal modification.  

Other changes to wood through thermal modification are a darker color (Niemz 2005), depending on 

treatment intensity, and a reduced density and higher porosity because of the decomposition of 

hemicelluloses (Andersson et al. 2005). 

The weathering properties were subject of several studies, especially the development of checks and 

cracks. No improvement of crack susceptibility was reported for thermally modified wood by other 

authors (Feist and Sell 1987). In contrast, Rapp (2001) reported fewer cracks after heat treatment and 

weathering. 

1.5 Double modification 

Double modification of wood is a relatively new research topic. Wood modifications are rather 

expensive and new in themselves. They had to be established with commonly known material properties 

to see the full picture and make out potential weaknesses which should be compensated for in order to 

further promote this technology or product. From the market side: When target values for a potential 

application are known, the processes can be adjusted accordingly.  
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The combination of several wood modification systems involving either thermal and or melamine 

treatment has been covered to various extents (Epmeier et al. 2004; Hansmann et al. 2005; Mahnert 

2013; Sun et al. 2013; Lahtela and Kärki 2014; Humar et al. 2016). The authors had different objectives 

and approaches, but their common theme was that they combined different modification methods for 

their unique properties and joint advantages.  

1.5.1 Process 

As mentioned above, the topic of combined wood modification was sparsely covered. No two papers 

were similar, and comparison and generalization were rather difficult. However, the found examples of 

double-modified wood were either two-step modification processes or some synergetic setups. E.g., 

when a resin treatment was combined with thermal modification, the impregnation was followed by a 

joint drying, curing, and thermal treatment step (Lahtela and Kärki 2014).  

Epmeier et al. (2004) tested the feasibility to treat acetylated Scots pine, beech, and birch with melamine 

resin. Hansmann et al. (2005) similarly tested acetylation in combination with melamine treatment. Both 

studies subsequently used two modification methods without further process adaption. Mahnert (2013) 

used melamine treatment as a secondary modification to improve properties of several thermally 

modified hardwood species. An adjusted thermal process was used, and a melamine treatment process 

had to be developed. Sun et al. (2013) thermally modified melamine-urea-formaldehyde-treated 

eucalyptus. The resin treatment was fixed, but the thermal treatment was variable. Lahtela and Kärki 

(2014) also used a subsequent thermal modification of melamine-treated Scots pine. They also used a 

fixed resin treatment procedure and varied the thermal treatment. Humar et al. (2016) thermally 

modified Norway spruce treated with different wax suspensions. 

The possibilities of combining different modification methods were shown. It was also shown that the 

order of modifications can be changed (whereas to what effect cannot be answered). The effects of the 

treatment intensities were addressed by Hansmann et al. (2005) (melamine resin soaking time) and 

Lahtela and Kärki (2014) (thermal modification temperature).  

1.5.2 Properties  

The properties of double-modified wood are the result of the combination of treatments and their 

intensities. The order of modification will potentially influence the outcoming properties, though no 

reports were found to address that issue. Generally speaking, the hardness of (double) modified wood 

was increased when melamine treatment was involved. Further, all modifications and combinations 

showed reduced impact bending strength values. The target values for the intended properties are 

relevant to decide what combination of modifications could achieve that goal. 

Epmeier et al. (2004) reported that the combination of acetylation and melamine treatment showed 

improved dimensional stability, reduced EMC, and slightly improved bending strength.  
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Melamine-treated thermally modified hardwoods (Mahnert 2013) showed improved hardness and 

dimensional stability, excellent durability, and adequate weathering resistance while showcasing the 

aesthetics of a high-end solid wood product. The impact bending strength was reduced. 

Lahtela and Kärki (2014) showed that mild rather than strong thermal modification in combination with 

melamine treatment could increase the bending strength. It also increased the dimensional stability and 

decreased the water uptake but also the impact bending strength. 

1.6 Objectives of this study 

The mentioned studies show the possibilities to improve the properties of native hardwoods and potential 

new applications in exposed environments that were previously unsuitable for most of these species. 

Certain properties such as aesthetics, hardness, bending strength, weathering resistance, and low crack 

susceptibility are still issues in available modified wood products such as thermally modified wood. 

It is the aim of this study to prepare potential solutions for using the available resource hardwood more 

effectively. The species chosen to investigate the curing influence was beech (Fagus sylvatica L.), as it 

is the most available hardwood species in Germany. Common ash (Fraxinus excelsior L.), lime (Tilia 

spp.) and poplar (Populus spp.) were also included. They exhibit the same ideal preconditions for wood 

modification as beech: They show a low natural durability, are readily available and potentially 

permeable enough to be impregnated. This study aims at expanding the knowledge about impregnation 

modification of hardwoods with melamine resin. Potential applications of such modified wood products 

are outdoor usage without ground contact (use class 3), e.g. decking for terraces, pool areas, cladding of 

private and commercial buildings, and outdoor furniture. The core questions were: 

1. What are the effects of the curing conditions on the microstructure, chemical composition and 

resin distribution in the wooden matrix, and the cell wall components and the resulting material 

properties? Paper (I, II, III, IV) 

 

2. Can the interactions of the curing conditions and the material properties be exploited as curing 

control mechanisms? Paper (I, II, III, IV) 

 

3. Is melamine treatment suitable to positively alter the mechanical, water-related, and 

weathering properties of thermally modified hardwoods? Paper (V, VI, VII, VIII) 
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2 Paper I: Determining the N-Fixation – A reliable method to verify the 

curing quality of wood modification with melamine resin? 

(published at the European Conference on Wood Modification 7 - 2014) 

Abstract 

As a thermosetting resin, melamine should show a higher fixation after hot curing than after drying at 

room temperature. The nitrogen (N) fixation rates are used to control the curing quality of wood 

modification with DMDHEU and melamine. A melamine solution with 19 % solid content was used to 

impregnate beech samples of two groups: One was cured at 103 °C and one air dried at room temperature 

(20 °C). The nitrogen analysis after a hot water extraction resulted in an N fixation of 77 % for both 

groups. The anti-swell-efficiency (ASE) test was used to investigate differences in dimensional stability. 

It was modified (freeze drying instead of oven drying) to avoid further curing due to high temperatures 

during the drying step. Both groups had a positive ASE at the first cycle. The initially higher ASE of the 

air-dried samples was greatly reduced and roughly corresponded to the ASE of the cured specimen from 

cycle two onwards. The air-dried samples showed a severe mass loss due to uncured melamine leaching 

out of the samples, whereas the cured samples lost as little as the untreated references. This suggests a 

more thorough fixation of the melamine resin in the cured samples in contrast to the very similar nitrogen 

fixation. Based on the results of both the fixation and the ASE, it can be concluded that determining the 

N-fixation is rather applicable for controlling the impregnation process than the curing quality of wood 

modification with melamine. 

2.1 Introduction 

Wood modification such as the treatment with methylated N-methylol melamine (NMM, referred to as 

melamine) can be used to improve the performance of non-durable native hardwoods e.g. beech (Fagus 

sylvatica L.) and expand the use to outdoor applications. Melamine treatment consists of two steps: 

Impregnation and curing. Different methods can be used to control the quality of melamine treatments: 

The determination of the weight percent gain (WPG) and the nitrogen fixation (NF) besides testing the 

improvement of relevant properties directly. The WPG is the weight of the chemical retaining in the 

product after impregnation and curing (based on dry weight). As the curing reaction of melamine resins 

is temperature sensitive (Rapp 1999) high temperatures are applied to ensure proper curing. Melamine 

contains a high percentage of nitrogen, whereas untreated wood is almost nitrogen free (Keller and 

Nussbaumer 1993). Within the last years, testing the N-content and -fixation were successfully utilized 

for quality control purposes for nitrogen containing wood modifications such as DMDHEU (Krause 

2006; Bollmus 2011) and melamine (Mahnert et al. 2013). The N-fixation compares the N-content 

before and after extraction to determine the content of fixed melamine in the sample. Besides the 

durability, the dimensional stability is another key property for materials used in Use Class 3 conditions 
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such as decking and cladding. Melamine is known for enhancing the ASE up to 30 % (Lukowsky 1999). 

The dimensional changes of modified material between dry and wet state are measured and compared 

to those of untreated material. The drying step commonly utilizes a drying oven. As the behavior of 

uncured melamine should be examined, high temperatures had to be avoided to stop further curing. 

Freeze drying is a careful method to dry e.g. perishable, high quality foods such as coffee (‘instant 

coffee’) and aromatic herbs (Ratti 2001). It can also be applied for drying sawn timber, but never 

exceeded the experimental state due to high energy costs (Trübswetter 2006). Freeze drying takes 

advantage of the fact that water sublimes from ice directly to gas below a pressure of 6.11 mbar. Freeze 

drying is a convenient method to dry wood on a laboratory scale: It is quick and gives very similar dry 

weights compared to conventional oven drying at 103 °C (Larnøy 2008). 

2.2 Material and Methods 

In this study a melamine solution with 19 % solid content (INEOS Melamines Madurit MW840 75WA) 

was used to impregnate twenty beech wood samples (25 x 25 x 10 mm³) for each of two treatment 

groups: One was cured at 103 °C in a drying oven with adjustable temperature and humidity levels and 

one air dried at room temperature. Ten samples of each group were ground in a cutting mill (SM 100 by 

RETSCH Haan Germany with a 2 mm sieve) after curing. One part of the wood flour was subjected 

directly to the nitrogen analysis (Kjeldahl method in a FoodALYT system by OMNILAB Bremen 

Germany: Block digestion system SBS 850, steam distillation D 1000 and back titration TS 10). Another 

part underwent a hot water extraction (86 °C, 24 h), was then dried and also analyzed for nitrogen. The 

calculated nitrogen fixation is the ratio between the nitrogen content of extracted (Ne) and non-extracted 

(Nne) samples [NF = (Ne / Nne)*100]. 

The remaining ten samples underwent a modified ASE test to check the dimensional stability. The 

adapted ASE contained the following steps: Freezing (-25 °C) and freeze drying (1 mbar, -20 °C, 24 h 

and 0.06 mbar, 4 h), water impregnation (30 min, 60 mbar), water storage (20 °C, 24 h) and storage at 

normal climate (20 °C, 65 %RH, 5 days). The used freeze dryer was an ALPHA 1-2 LD plus, Martin 

Christ Gefriertrocknungsanlagen GmbH Osterode Germany. Dimensions and weight were measured 

after the steps water storage and freeze drying. A leaching test did not take place before the test. In order 

to calculate the anti-swell-efficiency [ASE=(SR_ref–SR_mel)/SR_ref*100], the dimensional changes 

[(swell rate; SR=(area_wet–area_dry)/area_dry*100)] of the treated samples are referenced to those of 

the untreated samples going through the same procedure. 

2.3 Results and Discussion 

In this work the results of two different treatments with very similar nitrogen fixations are presented and 

discussed. The WPG and the nitrogen content of both groups determined with the Kjeldahl method was 

similar after impregnation and curing /air-drying (non-extracted) and also after extraction in hot water, 

no difference in fixation was detectable (Table.1). The nitrogen fixation rates are used to control the 
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curing quality of wood modifications. As melamine is a thermosetting resin, it is expected that hot curing 

should give a higher fixation than drying at room temperature (Rapp 1999). The hot water extraction is 

conducted using ground wood. By grinding wood, the cured and uncured melamine in the cell lumens 

presumably become accessible to extraction. In the N fixation test only the mass of N is considered. 

 

Table.1: WPG, nitrogen content, N-fixation and weight loss of melamine treated beech and references 

 

Curing treatment WPG 

[%] 

N content 

non-extracted 

[%] 

N content 

extracted 

[%] 

N  

fixation 

[%] 

N loss by 

extraction [%] 

Weight loss 

during ASE 

[%] 

Cured (103 °C / 

25 %RH 24 h) 

17 7.1 5.5 77.5 1.6 0.8 

Air dried (20 °C / 

65 %RH 168 h) 

17 7.0 5.4 77.1 1.6 10.4 

Untreated 

references 

- 0.13 0.12 (98.4) - 1.3 

 

To verify the dimensional stability, the modified ASE test was used. The dimensional changes of the 

samples of both treated groups were less than those of the untreated samples at the first cycle (Figure 

1). The initially higher ASE of the air-dried samples is greatly reduced and roughly corresponds to the 

ASE of the cured specimen from cycle two onwards.  

 

  

Figure 1; left: Anti-swell-efficiency (ASE) of beech treated with melamine resin and cured (103 °C) and air 

dried (20 °C); right: Swell rate of beech treated with melamine resin and cured (103 °C) and air dried 

(20 °C) 

 

The ASE is a relative value and referenced to the swell rate of the untreated samples of the current cycle. 

Changes of either the swelling of the treated samples or the references have a great influence on the 

ASE. The decreasing ASE is a combination of an increasing swelling of the treated samples and the 

lesser swell rate of the references (Figure 1).  

Uncured melamine is not properly cross-linked and can leach out of the solid wood samples, whereas 

the cured melamine is immobile. The ASE starts to decline after the first cycle. The dry mass of the 
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20 °C - drying samples also decreases significantly (10 %), whereas the 103 °C - curing samples and 

the references only lose about 1 % mass (Figure 2).  

 

 

Figure 2: Weight change during ASE: Beech treated with melamine resin and cured (103 °C), air dried 

(20 °C); Untreated beech as reference 

 

The decreasing ASE and the mass loss of the air-dried samples correspond strongly. This compliance is 

not apparent in the cured samples and suggests a more thorough fixation of the melamine resin in 

contrast to the results of the nitrogen fixation. The mass loss during the ASE test is composed of all 

substances leached out of the treated wood (Table.1). 

The temperature and the pH value are the two main factors for the reaction speed of curing of melamine 

resins (Lukowsky 1999). In this case the acidity of beech wood (pH 5.4; (Fengel and Wegener 1989)) 

probably caused the melamine to react and precipitate. It was immobile to the extraction with hot water 

and thus showed high fixation rates. But the repeated water impregnation, water storage and drying 

during the ASE caused severe leaching of uncured melamine.  

2.4 Conclusions 

The study shows that freeze drying, as an alternative to oven drying, can be utilized to dry temperature 

sensitive samples in tests such as the ASE. Based on the results of both, the nitrogen fixation and the 

ASE, it can be concluded that determining the nitrogen fixation is rather applicable for controlling the 

impregnation process than the curing quality of wood modification with melamine. The hot water 

extraction does not show the true fixation of melamine in this study. The cured and air-dried melamine 

showed a high nitrogen fixation but only the air-dried melamine was severely leached out by cyclic 

watering during the ASE test. 
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3 Paper II: Different methods of nitrogen analysis and their suitability to 

control the curing quality of wood modification with melamine resin  

(Published at the European Conference on Wood Modification 8 - 2015) 

Abstract 

To ensure the quality of wood modifications it is important to test the material properties. Moreover, 

measures of quality control have to assure how the process parameters influence the material properties. 

A melamine solution was used to impregnate beech wood samples divided into different curing 

variations including air drying at room temperature. The content of fixed nitrogen after wood 

modification with melamine resin was tested following two different extraction methods: hot water 

extraction and leaching (based on DIN EN 84 (1997)). The fixation after hot water extraction did not 

show differences between air drying and curing variations. In contrast, leaching the samples did show 

the influence of different curing temperatures and durations. High fixation rates after leaching ensured 

proper curing and can be a tool for quality control of wood modification agents containing nitrogen, 

such as melamine resin. 

3.1 Introduction 

Wood modification such as the treatment with methylated N-methylol melamine formaldehyde resin 

(NMM or MMF, referred to as melamine) can be used to improve the performance of non-durable native 

hardwoods e.g. beech (Fagus sylvatica L.) in outdoor applications. A proper melamine treatment 

consists of two steps: Impregnation and curing. To ensure the quality it is important to test the altered 

material properties for the desired improvements. Moreover, measures of quality control have to be 

taken to assess how the process parameters influence the material properties. Such methods can be: The 

determination of the solution uptake (SU), weight percent gain (WPG) and the nitrogen fixation (NF). 

Melamine contains a high percentage of nitrogen, whereas untreated wood is almost nitrogen free 

(Keller and Nussbaumer 1993). Within the last years, the N-fixation after hot water extraction (HWE) 

was applied as a quality control for wood modifications, for example with DMDHEU (Krause 2006; 

Wepner 2006; Bollmus 2011) and MMF (Krause 2008; Mahnert et al. 2013). The N-fixation compares 

the N-content before and after extraction to determine the content of fixed melamine in the sample. The 

curing reaction of melamine resins is temperature sensitive (Rapp 1999). Proper curing is thus ensured 

by high temperatures and long curing durations. However, lower temperatures and shorter curing 

durations are desirable considering economical aspects.  

Previously, the authors used the NF after HWE to assess the curing quality of a melamine treatment and 

produced contradictory results: The high fixation after proper curing as well as the low fixation after 

just air drying were not depicted correctly (2.3, p. 14). Against this background, a new test was set up 

to further investigate this matter. The focus of this study was to evaluate if leaching the samples in cold 
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water can be combined with nitrogen fixation to control, and later predict, the curing quality. This 

method is then applied to evaluate the minimum requirements regarding temperature and duration for a 

complete curing of melamine resin for the modification of wood. 

3.2 Material and Methods 

 In this study a melamine solution with 19 % solid content (INEOS Melamines GmbH, Madurit MW840 

75WA) was used to impregnate beech wood samples (25 x 25 x 10 mm³) divided into seven curing 

varieties: Cured at 103 °C and 120 °C for 4 h, 24 h and 48 h in drying ovens and one was air dried at 

room temperature until equilibrium moisture content (EMC) was reached (Table 2).  

 

Table 2: Curing parameters of the melamine treated beech 

 

Temperature [°C] Duration [h] 

120 4, 24, 48 

103 4, 24, 48 

20 (air drying) 500 (until EMC) 

 
A schematic sequence of the sample preparation is given in Table 3. Samples of group A were ground 

in a cutting mill (SM 100 by RETSCH Haan Germany with a 2 mm sieve) and subsequently fed to the 

nitrogen analysis (Kjeldahl method in a FoodALYT system by OMNILAB Bremen Germany: Block 

digestion system SBS 850, steam distillation D 1000 and back titration TS 10) to determine the N-

content directly after curing. Entire samples of group B were leached based on DIN EN 84 (1997) (tap 

water instead of demineralized water), dried and afterwards ground up and analyzed for nitrogen. 

Group C underwent hot water extraction (86 °C, 16 h), before being dried, ground and analyzed. The 

calculated nitrogen fixation is the ratio between the nitrogen content of extracted (Ne) and non-

extracted (Nne) samples [NF = (Ne/Nne)*100]. The samples of each group were mixed together after 

grinding. Slight deviations in WPG and therefore nitrogen content between the groups can occur. 

 

Table 3: Sample preparation for N analysis 

Group A (N-content) B (HWE) C (Leaching) 

Treatment sequence Impregnation and curing 

  Leaching 

Cutting mill 
 Extraction  

Nitrogen analysis 

 

3.3 Results and Discussion 

After impregnation and curing, the solution uptake (SU) and the weight percent gain (WPG) were similar 

in all groups. The resulting nitrogen contents were also similar after curing/drying (Table 4).  
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The first part of the study was to test the nitrogen fixation (NF) after two different extraction methods 

for their accuracy and applicability as a tool to control the curing quality. Two extreme curing variations 

were selected for this comparison: Curing at 120 °C for 48 h and air drying at room temperature. After 

hot water extraction (HWE) they had the same fixation, after leaching the cured samples had a high and 

the air dried samples a low fixation (Table 4). After HWE it was not possible to distinguish between 

well fixed and unfixed samples. Leaching, on the other hand, did show distinct differences. Therefore, 

the fixation after leaching will be used to evaluate the curing quality. 

 

The second part was to assess the curing parameters on their influence on the nitrogen fixation (Figure 

3). The results are consistent with the literature: Higher temperatures and longer durations lead to a 

higher degree of curing.  

 

 

3.4 Conclusions 

The nitrogen analysis after hot water extraction did not show distinct differences between varying 

curing conditions or air drying. Based on these results the authors see this method as not suitable to 

Table 4: Process parameters and results of impregnation (SU), curing (WPG) and nitrogen analysis (N-

content and fixation after hot water extraction and leaching) 

 

Max 

temperature 

[°C] 

Duration 

[h] 

Weight 

percent gain 

[%] 

(A) Nitrogen 

content [%] 

(B) N-fixation after 

hot water extraction 

[%] 

(C) N-fixation 

after leaching 

[%] 

120 4 18.7 (1.8) 7.3 83 91 

120 24 18.5 (0.8) 7.5 80 98 

120 48 17.6 (0.9) 7.6 78 102* 

103 4 19.1 (1.5) 6.9 76 84 

103 24 18.6 (0.9) 7.7 77 83 

103 48 16.5 (1.2) 7.3 80 98 

20 (Air drying) 500 17.9 (1.2) 7.3 81 60 

 Untreated - - 0.15 - - 
* Higher WPG and therefore higher nitrogen content of group C than group A. 

 
Figure 3: Nitrogen fixation of differently cured and air-dried specimen and varied extraction methods  
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assess the curing quality. In contrast, leaching the samples did show the influence of curing temperatures 

and durations. This method is adequate and can be seen as a suitable analysis for controlling the curing 

quality of modified wood treated with resin containing nitrogen such as melamine. High fixation rates 

after leaching ensured proper curing of the samples in the examined curing variations in this study. For 

a better understanding of the curing mechanisms, further testing should also include other methods such 

as formaldehyde emission and -content and work in bending and more curing parameters. 
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4 Paper III: Influence of curing conditions on properties of melamine 

modified wood 

(Published in the European Journal of Wood and Wood Products 76 (4) - 2018) 

Abstract 

The curing conditions influence the material properties of wood modified with melamine resin. To 

identify the most influential parameters, the process conditions were varied separately. The degree of 

conversion (differential scanning calorimetry; DSC), work in bending (WB), nitrogen fixation, 

formaldehyde emission, formaldehyde content and content of free formaldehyde were measured to 

verify the influence of the curing conditions on the material properties. The temperature and duration 

positively influenced the curing of melamine resin as the DSC results indicate. However, the humidity 

was the greatest influence on the material properties: The formaldehyde properties and the WB differed 

most between dry and high humidity processes with the latter producing material being less brittle and 

having lower formaldehyde emissions. It can be derived that DSC measurements, formaldehyde 

emission and -content are valuable methods to characterize the influence of curing conditions on the 

material properties. The FA content in combination with the emission revealed a different FA release 

factor for dry and high humidity processes. The conditions for future curing processes will vary 

depending on the desired material properties: Dry processes at high temperatures favor more complete 

resin networks, whereas hot steam processes can be used for material with low formaldehyde emission 

and less embrittlement. 

4.1 Introduction 

Wood in outdoor application is exposed to moisture conditions leading to dimensional changes and 

fungal attack. Improvements in dimensional stability, hardness and decay resistance through wood 

modification would not only expand the field of application but also create new markets for native wood 

as a renewable and sustainable resource (Hill 2006). Treatment with thermosetting resins is among other 

wood modification systems such as thermal modification and acetylation. MMF resins have a wide range 

of application in the wood products industry (Kohlmayr et al. 2014). They are used as adhesives, binder 

material, for finishing surfaces and as impregnation agents. Decking and cladding made of modified 

wood would be located in a high-price market sector. Therefore, a control of the modification process 

and the properties of the modified material is essential when homogenous products are demanded. Wood 

modification with thermosetting resins including melamine resin alter the mechanical properties of the 

wood modified therewith; The compression strength and the hardness are increased (Miroy et al. 1995), 

impact bending and work in bending (WB) are reduced (Kielmann et al. 2013; Mahnert 2013).  

This study deals with three main topics: Identification of the minimum requirements to cure melamine 

resin in wood, the influence of the process parameters temperature, duration and RH on the material 
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properties of MMF resin treated wood and which test method will give correct results about the altered 

material properties. 

Other scientists have applied various methods to characterize the curing process. The influence of 

temperature on the curing reaction of a condensation type resin was first published by Mizumachi 

(1973). The degree of curing (degree of conversion) of melamine urea formaldehyde resin (MUF) was 

examined using the differential thermal analysis and the differential scanning calorimetry (DSC). The 

influence of wood on the degree of curing of MUF was investigated by Pizzi and Panamgama (1995). 

The same methods were used to study the curing reaction of MMF impregnated papers and the resulting 

properties (Kandelbauer et al. 2009a; Kohlmayr et al. 2014). The most frequently used methods for 

quality control of impregnation modifications are based on the increased mass caused by the 

modification chemicals. The solution uptake (SU) is used to characterize the impregnation and the 

weight percent gain (WPG) to characterize the amount of cured modification agent in the wood. 

Different methods depending on type of resin and curing process parameters were investigated during 

the last years. Such methods include the measurement of formaldehyde (FA) emissions and the nitrogen 

content and – fixation (NF). When resin formulations contain FA, emissions were measured to ensure 

they meet regulations (Lukowsky et al. 1998; Rapp 1999; Krause 2006; Wepner 2006). Curing 

specimens at higher temperatures for longer durations resulted in lower FA emissions (Lukowsky 1999). 

Curing of nitrogen containing resins such as DMDHEU or MMF can also be controlled by the nitrogen 

content and – fixation (NF) (Rapp 1999; Schaffert 2006). Thorough curing of MMF resulted in the 

fixation of the nitrogen containing resin (Rapp 1999). Different process conditions such as time and 

temperature affect the properties of modified wood. Indications of how the process conditions influence 

the properties were made by Krause (2006), Schaffert (2006) and Wepner (2006) for DMDHEU 

treatment of wood. High temperature curing resulted in a more complete curing of the resin (Scheepers 

et al. 1993). Klüppel and Mai (2013) further discussed this matter and found dry curing conditions 

leading to more complete curing than wet conditions.  

The minimum requirements for curing were examined using differential scanning calorimetry (DSC). 

To investigate the curing process, the parameters temperature, time and RH were varied separately to 

verify their influences on the material properties. After the modification processes, different methods 

such as NF, FA content and - emission and WB were applied to determine the altered material properties. 

Cross referencing the test results with the process parameters ought to show the validity of the test result 

and the influence of the process parameters on the material properties. 

4.2 Material and Methods 

Clear specimens of beech wood (Fagus sylvatica L.) were oven dried and impregnated (Vacuum 

100 mbar for 1 h; Diffusion phase at atmospheric pressure for 2.5 h) with different solutions of 

methylated melamine formaldehyde resin (MMF). The solid content (SC) of the impregnation solution 
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was dependent on the experimental setup. (Table 5). Based on the stock solution of the MMF resin 

(Madurit MW 840, INEOS Melamines GmbH, Frankfurt Germany), 1 % Triethanolamine (Th. Geyer 

GmbH & Co. KG, Renningen Germany) was added to the impregnation solution as pH buffer. 

 

 

4.2.1 Determination of minimum curing time and temperature 

The analysis with DSC (200 F3 Maia, NETZSCH GmbH, Selb Germany) was used to record the 

dependency of the degree of conversion (degree of curing) on temperature and time of the curing 

process. Oven-dry beech wood specimens were impregnated and weighed directly after impregnation to 

determine the solution uptake (SU). Afterwards cylindrical specimens were die-cut, weighed and stored 

at -18 °C until curing and subsequent testing.  

 

 

Figure 4: Preparation of melamine treated beech specimens for DSC analysis 

 

The specimens (Figure 4) of MMF treated beech wood were cured in a laboratory drying oven at set 

temperatures for specific durations (Table 6).  

 

 

Table 5: Overview of the solid content (SC) of the impregnation solution [%], size of the specimens for treatment 

(mm³), and type of specimens (solid specimens or wood particles) for analysis of the different curing series. 

List of the applied tests for each curing series. 

 

Series Applied tests SC  

[%] 

Size of specimens for treatment 

(rad x tan x lon) [mm³] 

Specimen type 

for analysis 

Minimum thermal 

requirements 

DSC 50 4 x 10 x 65 (impregnation);  

4 x 4.5 (curing, DSC) 

Solid specimens 

Material  3-point bending 19 10 x 10 x 180 Solid specimens 

properties Nitrogen fixation  25 x 25 x 10 Wood particles 

 FA emission   Solid specimens 

Formaldehyde  FA content 19 25 x 25 x 10 Wood particles 

properties FA emission   Solid specimens 

 Content of free FA    Solid specimens 

 Nitrogen fixation   Wood particles 
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Table 6: Parameters of the curing processes for the determination of the minimum thermal requirements via 

DSC: Curing temperature [°C] and - duration [h]. Subsequent analysis of the residual reactivity via DSC. 

 

Temperature [°C] Duration [h] 

90 0.1, 0.2, 0.4, 0.8, 1.7, 3.3, 6.7, 27, 48, 107 

90 0.1, 0.2, 0.4, 0.8, 1.7, 3.3, 6.3, 13, 19, 91 

105 0.1, 0.2, 0.4, 0.8, 1.7, 3.3, 6.7 

110 0.1, 0.2, 0.4, 0.8, 1.7 

120 0.1, 0.2, 0.4, 0.8 

 

The specimens consisted of wood, water and resin but only the resin released measurable reaction 

energy. Therefore, the mass of the specimens was corrected to only account for the mass of the resin 

(Eq. 1). 

 

Mi – M0 – Mw = Mr          (1) 

Mr  = Mass of resin [g] 

Mi  = Mass after impregnation and die-cut [g] 

M0  = Dry mass before treatment [g] 

Mw  = Mass of water [g] 

 

After curing the specimens were placed in high pressure, gold plated steel crucibles (30 µl) which were 

sealed and subjected to a temperature gradient ranging from 20 °C to 180 °C at a heating rate of 

10 °C/min. The enthalpy changes were recorded and analyzed for the onset- and peak temperature and 

enthalpy integral (H) with the NETZSCH Proteus Thermal Analysis 5.2.0 program. Onset - and peak 

temperature were used to describe the reaction. The onset temperature is defined as the intersection of 

the tangents of the peak and the extrapolated baseline. It is defined as the temperature at which the 

reaction starts to accelerate and subsequently proceeds without external energy input. The peak 

temperature is defined by the maximum thermal activity (heat flow) of the reaction. Uncured specimens 

were analyzed in the DSC to determine the full reaction enthalpy. As described by Kandelbauer et al. 

(2009b) the calculated degree of conversion is the ratio of the enthalpy of the cured and uncured 

specimens (Eq. 2). To determine the influence of wood on the curing reaction of MMF, the reaction 

kinetics of the pure stock solution (75 % SC) of the resin was analyzed in the DSC with the same 

temperature program as mentioned above. 

  

Hα [%] = (Huncured - Hcured) / Huncured *100       (2) 

Hα  = Degree of conversion [%] 

Huncured   = Enthalpy integral of the uncured specimen [kJ/g] 

Hcured   = Enthalpy integral of the cured specimen [kJ/g] 
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The information about the reaction time and temperature derived from the DSC measurements was used 

to lay out the following curing series. 

4.2.2 The influence of curing time, temperature and relative humidity on work in 

bending, nitrogen fixation and formaldehyde emission 

To determine the influence of the curing parameters on the material properties, the process parameters 

were varied individually. Curing took place in a laboratory oven (XVC305 UNOX S.p.A., Padova Italy) 

with the capability to control the temperature as well as the relative humidity (RH). Based on the DSC 

results, the applied curing parameters were 90 °C, 105 °C and 120 °C for 4, 24 and 48 hours. The RH 

(% steam) during curing was varied between 0 %, 40 %, 80 % and 100 %. The percentage of steam 

resulted in different RH levels at different temperatures. For economic reasons, this was only applied to 

curing processes lasting 24 h (Table 7). 

 

Table 7: Parameters of the curing processes for the determination of the material properties and the 

formaldehyde properties. Temperature [°C], duration of curing [h] and the relative humidity of the curing 

process [% steam] 

 

Series Treatment Temperature 

[°C] 

Duration  

[h] 

Relative humidity   

[% steam] 

Material  untreated -  -      - 

properties uncured 20 - - 

 cured 105 4, 24, 48 0 

   24 80 

  120 4, 24, 48 0 

   24 40, 80, 100 

Formaldehyde cured 90 24 0, 100 

properties  105 24 0, 100 

  120 24 0, 100 

 

4.2.2.1 Determination of work in bending 

The work in bending was measured in a three-point bending test DIN 52 186 (1978) on a universal 

testing machine (Z010 Zwick/Roell, Ulm Germany). The results were analyzed with testXpert II 

(Zwick/Roell, Ulm Germany). 15 replicates per group were used, for the dimensions and solid content 

of the impregnation solution see Table 5.  

4.2.2.2 Determination of nitrogen fixation 

The results of curing nitrogen containing resins such as MMF can be controlled by the nitrogen fixation 

(NF). The content of nitrogen remaining in the sample after an extraction method is considered to be 

fixated. The extraction method in this study was leaching of the specimens based on DIN EN 84 (1997). 
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Entire specimens were leached and afterwards ground up in a cutting mill with a 2 mm sieve (SM 100 

by RETSCH, Haan Germany) for subsequent nitrogen content analysis. The Kjeldahl method (1883) 

was used to determine the nitrogen content of the sample. The wood particles were subjected to the 

nitrogen analysis (block digestion system SBS 850, steam distillation D 1000 and back titration TS 10, 

FoodALYT system OMNILAB, Bremen Germany). The NF was calculated as the ratio of nitrogen 

content of leached and unleached samples (Eq. 3). 

 

FixN [%] = (Nunleached – Nleached) / Nunleached *100       (3) 

FixN  = Nitrogen fixation [%] 

Nunleached   = Nitrogen content unleached sample [%] 

Nleached    = Nitrogen content leached sample [%] 

 

4.2.2.3 Determination of formaldehyde emission 

The FA emissions of the specimens after curing were measured based on the EN 717-3 (1996). Four 

specimens were placed in each flask containing 50 ml demineralized water. Three flasks per curing 

process were placed in an oven at 40 °C for 24 h. The formaldehyde concentration of the solution was 

photometrically determined (Specord 205, Analytik Jena AG, Jena Germany) using the acetyl acetone 

method.  

4.2.3 The influence of curing temperature and relative humidity on formaldehyde 

content, formaldehyde emission, content of free formaldehyde and nitrogen 

fixation  

The FA emission was determined as mentioned above.  

Two 0.5 g samples from the differently cured treatment groups were analyzed for their FA content by 

hot steam distillation in half concentrated phosphoric acid for 33 min (FoodALYT D 1000 OMNILAB, 

Bremen Germany). The FA concentration of the solution of was then measured photometrically as 

mentioned above. To put the FA content and the resulting FA emissions in relation to each other, their 

ratio was calculated (Eq. 4). 

 

FactorE/C = FAemission / FAcontent)        (4) 

FactorE/C  = Ratio of formaldehyde emission and formaldehyde content 

FAemission  = Formaldehyde emission [mg/kg]  

FAcontent   = Formaldehyde emission [g/kg] 
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The content of free FA of the specimens after curing was photometrically determined according to 

DIN EN 120 (1992) in a perforator apparatus. 

4.3 Results and Discussion 

4.3.1  Minimum thermal requirements for curing melamine resin 

4.3.1.1 Minimum curing temperature and duration of melamine resin curing in the presence of 

wood 

The differential scanning calorimetry (DSC) analysis revealed a temperature and time dependency of 

the degree of conversion. Reported curing temperatures for MMF range from 80 °C to 140 °C 

(Lukowsky 1999; Rapp 1999). Wood components start to degrade at 140 °C. The temperature for the 

curing experiments was therefore limited to 120 °C. The results of this study revealed that there was less 

residual reactivity of methylated melamine formaldehyde resin (MMF) at higher temperatures and 

longer curing times. Bergmann et al. (2006) used the DSC analysis to show the influence of wood and 

wood constituents on the curing temperature of several MMFs with different degrees of methylation. 

Partially methylated resins (such as the resin used in this study) were more temperature sensitive than 

fully methylated resins. DSC was used to characterize the curing reaction of MMF and the influence of 

the presence of wood. The results showed that the presence of wood lowered the reaction temperature 

considerably (Table 8).  

 

 

Kandelbauer et al. (2009b) calculated a temperature and time dependency of the curing reaction of MMF 

via DSC measurements (without the presence of wood). The presence of wood lowered the crosslinking 

temperature significantly. The difference in reactivity presented in this study were comparable to 

Bergmann et al. (2006). When MMF was cured in wood the onset and peak temperature were distinctly 

lower: The onset temperature was reduced by 54 °C (from 164 °C to 110 °C) and the peak temperature 

by 45 °C (from 180 °C to 135 °C). The curing reaction of MMF can be catalyzed by the acidity of wood 

(Mizumachi and Fujino 1972; Scheepers et al. 1993). This would lead to lower reaction temperatures as 

observed in this study.  

Different resins react differently to the presence of wood. MUF seemed to have the same reaction 

towards the presence of wood as MMF. Experiments by Pizzi and Panamgama (1995) with melamine 

Table 8: DSC analysis of melamine resin and melamine treated beech wood. Onset and peak 

temperatures; Group mean values and standard deviation in parenthesis 

 

Specimens/Group Onset [°C] Peak [°C] 

Melamine (20 %)   (n=2) 164.3 (1.0) 180.2 (0.5) 

Melamine (50 %)   (n=2) 165.7 (0.4) 179.4 (1.4) 

Beech and melamine (50 %) (n=12) 110.4 (2.2) 135.4 (1.8) 
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urea formaldehyde resin (MUF) and wood showed similar effects: the activation energy was lower for 

wood/MUF mixtures than for MUF alone. The curing of urea formaldehyde resin (UF) can be retarded 

or catalyzed by wood: Mizumachi (1973) showed an increase in activation energy of UF in the presence 

of wood. Xing et al. (2005) characterized the curing of UF resin reaction via DSC and found several 

effects of the wood on the curing reaction: Here, the presence of wood lowered the activation energy, 

but it also led to a lower degree of conversion of the resin by a diffusion effect. Popovic et al. (2011) 

reported that crosslinking of UF resin took place at above 100 °C in the presence of wood. Wood had a 

retarding effect on curing reaction as the peak temperature rose higher compared to resin alone being 

cured.  

 

 
Figure 5: The degree of conversion of melamine treated beech calculated from the DSC results. A 

logarithmic scale (log5) was chosen to show the curing progress after different curing times (6 min – 

110 h and different temperatures; 80 °C – 120 °C) 

 

The curing reaction of MMF started at temperatures as low as 80 °C but could never be completed at 

this temperature (Figure 5). Even after 107 hours, the curing was not finished, and a residual reactivity 

could be measured at 80 °C. With curing temperatures above 100 °C, the curing was completed in less 

than 3 hours. Specimens cured at 120 °C only needed minutes to show a distinct progress of the curing 

reaction. After 30 min, there was no reactivity left at all to be measured.  

4.3.1.2 Suitability of the method 

The DSC specimens showed how the temperature affected the curing of MMF in wood. They represent 

the compare temperature of a board being cured and thus could simulate the minimum requirements of 

a complete curing. The DSC data is suitable used to depict the curing behavior of MMF resin alone and 

of impregnated wooden specimens. 
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4.3.2 Work in bending, nitrogen content and - fixation and formaldehyde emission 

The work in bending (WB), nitrogen fixation (NF) and formaldehyde (FA) emission were used to 

investigate the influence of the curing temperature, duration and relative humidity (RH) on the material 

properties. The results are displayed in Table 9.  

 

Table 9: Results of the curing series to determine the influence of the curing temperature, duration and relative 

humidity (RH). Weight percent gain (WPG), work in bending (WB) [N/mm²], nitrogen fixation (NF) after EN 

84 [%] and formaldehyde (FA) emission. Group mean values with standard deviation in parenthesis 

 

Treatment Temperature 

[°C] 

Curing time 

[h] 

RH 

[% Steam] 

WPG 

[%] 

WB  

[N/mm²] 

NF  

[%] 

FA emission  

[mg/kg] 

untreated - - -  -   26.3 (4.8) - 3.2 (1.1) 

uncured 20 - -  -    22.6 (3.8) 60.2 559.2 (18.3) 

cured 105 4 0 16.2 (1.4) 13.6 (3.9) 84.5 239.4 (5.4) 

  24 0 16.5 (1.0) 13.3 (2.7) 82.2 226.7 (18.3) 

   80 15.1 (1.0) 13.3 (2.9) 102.3* 63.0 (5.5) 

  48 0 15.4 (1.4) 13.6 (3.1) 97.7 194.5 (3.8) 

 120 4 0 16.5 (1.6) 12.7 (3.0) 90.9 223.6 (13.1) 

  24 0 17.2 (0.7) 14.6 (3.5) 98.1 129.0 (4.8) 

   40 17.1 (0.4) 12.5 (3.2) 102.0* 94.0 (7.6) 

   80 13.4 (0.9)  19.3 (3.2) 91.0 28.7 (3.4) 

   100 14.8 (0.8) 18.3 (4.4) 81.2 12.0 (1.0) 

  48 0 17.0 (0.8) 12.0 (3.8) 101.5* 89.2 (7.5) 

 

The weight percent gain (WPG) was recorded to ensure a uniform treatment. The WPG for the 

specimens for the determination of NF could only be calculated theoretically to prevent post curing 

when recording the oven dry weight. A consistent WPG was considered when the specimens were 

chosen. The average WPG varied from 13.4 % to 17.2 % with an overall average of 15.4 %.  

4.3.2.1 Influence of the curing temperature, duration and relative humidity on the work in 

bending 

The WB was tested in a three-point bending test. The impregnated but uncured specimens showed the 

least reduction in WB, but the mere presence of uncured resin in wood already decreased the WB. WB 

showed generally reduced values to about 50 % of the reference’s strength for most curing processes 

(Table 5). Curing temperature and duration of the dry processes did not affect the WB, whereas the high 

RH processes at 120 °C had less reduced strength values. However, high RH at 105 °C curing did not 

show a difference to dry curing. A higher degree of modification causes more embrittlement (Lukowsky 

1999; Bollmus 2011; Kielmann et al. 2013). The WB could show the influence of the curing process: 

Less embrittlement and thus a less reduced WB could indicate a less completely cross-linked resin 

network.  
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4.3.2.2 Influence of the curing temperature, duration and relative humidity on the nitrogen 

content and - fixation 

Solution uptake and responding WPG varied between groups and between individual specimens. The 

differences in WPG resulted in slightly different nitrogen contents. If the WPG was higher in leached 

specimens than in unleached specimens, NF values above 100 % were calculated. The NF was used to 

evaluate the influence of the curing processes on the degree of curing. The recorded NF rates in this 

study varied between 60 % and 100 %. In general, the NF was higher at higher temperatures and longer 

curing durations. The influence of the RH on the NF was dependent on the temperature: Lower NF 

values of at high RH were recorded at 120 °C compared to the dry processes. Higher fixation was 

recorded for curing at 105 °C and high RH compared to the dry process. 105 °C and 120 °C seemed to 

be sufficiently high temperatures to polymerize MMF to an un-leachable state. The DSC measurements, 

on the other hand, indicated a minimum temperature of 110 °C for complete resin curing. Air drying 

without curing led to the lowest NF; however, 60 % of the nitrogen was fixed in the sample. The 

influence of the curing temperature and duration on the NF was consistent with the literature, describing 

the curing of resins as thermo-sensitive (Rapp 1999). The presence of moisture can have a strong 

influence on NF (Klüppel and Mai 2013) but the influence of RH on NF could not be clarified in this 

study. Krause (2006) measured the influence of curing process parameters of DMDHEU treated Scots 

pine and beech wood on the material properties where the NF rates were considerably lower: 50 % NF 

were recorded when the specimens were cured at high temperatures under dry conditions and 25 % 

fixation when cured under wet conditions (specimens were wrapped in plastic bags to retain moisture). 

However, it is scarcely reported how hot steam processes influence the degree of curing analyzed via 

NF. Wepner (2006) found the nitrogen content to be suitable to calculate the amount of modification 

agent brought into the wood specimens (WPG), he did not use the NF to evaluate the influence of process 

parameters on the degree of curing. Schaffert (2006) reported that the NF of different DMDHEU 

modifiers was high (87 % - 97 %) after hot steam processes and stated that hot steam processes are 

sufficient for complete curing of the resin. It has to be considered, that water is a product of condensation 

reactions such as the polymerization of MMF (Jones et al. 1994). High moisture contents while curing 

shift the chemical equilibrium towards the educts, potentially obstructing a complete curing reaction. 

The lower NF values of processes with high RH at 120 °C compared to the fixation values of the dry 

process at 120 °C are an indication of this chemical mechanism. 

4.3.2.3 Influence of the curing temperature, duration and relative humidity on the 

formaldehyde emission 

The formaldehyde (FA) emission was negatively correlated to temperature. The same was recorded for 

the duration of the processes. There was a positive correlation of RH while curing at 120 °C and the 

reduction of the FA emission. Air drying and no curing led to the highest FA emission. The literature 

suggests that more complete curing causes less emission of FA (Lukowsky et al. 1998; Lukowsky 2002). 
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High temperatures and long durations should thus lead to lower emissions. For the dry processes this is 

in accordance to the literature (Lukowsky et al. 1998; Schaffert 2006; Wepner 2006): The FA-emissions 

measured with the flask method were lower at higher temperatures and longer curing durations. The 

high RH processes showed very low FA emissions even at lower temperatures. This was published for 

wood modified with DMDHEU (Krause 2006; Schaffert 2006): Hot steam processes led to the lowest 

FA-emissions. The FA-emission was highly influence by the availability of water while curing (Petersen 

1971). A potential explanation is the fact that FA is highly soluble in water. The hot steam present in 

the curing oven could absorb the FA. This could lead to a considerably lower FA content of the 

specimens after treatment.  

4.3.3 The influence of curing temperature and relative humidity on the formaldehyde 

properties and nitrogen fixation 

The influence of the curing process parameters on the material properties were measured by work in 

bending, NF and the formaldehyde emission. Further investigations of the formaldehyde properties, 

especially regarding the influence of RH during curing on the FA-content were conducted. The selected 

temperatures were 90 °C, 105 °C and 120 °C. The curing time was kept at 24 h and 0 % and 100 % 

steam were used. The results of the second curing series are displayed in Table 6. NF and FA-emission 

were recorded as reference to the first curing series investigating the material properties.  

4.3.3.1 Influence of curing temperature and relative humidity on the formaldehyde content 

The formaldehyde (FA) content decreased slightly at higher temperatures in dry processes. The high RH 

curing showed significantly lower FA contents than the dry processes. No temperature dependency 

could be seen at high RH curing. No literature about the remaining FA content after curing MMF resin 

in wood could be found. The difference of the amount of FA present in the specimens after curing and 

the resulting FA emissions is compared in the following paragraph. 

4.3.3.2 Interdependency of the formaldehyde content and the formaldehyde emission 

When comparing the FA emission with the measured FA content in this study, it supports the hypothesis 

that low emissions are caused by low contents (Figure 6).  
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Figure 6: Formaldehyde content and formaldehyde emission of beech modified with melamine resin 

under different curing conditions 

 

It can be derived that steam in high RH processes is the potential vector to extract FA from the specimens 

while curing. Our results showed that this was the case regardless of the temperature. The specimens 

cured at high RH had the same low FA content and emitted similar amounts of FA independent of the 

curing temperature. The dry cured specimens had a higher FA content and a much higher FA emission 

than the specimens cured at high RH. If the FA content and the FA emission are compared via the 

factorE/C it can be seen that for the dry processes the factor is temperature sensitive and that the factor is 

constant for the high RH processes (Table 10).  

 

Table 10: Results of the curing series to determine the influence of the curing temperature and relative humidity 

(RH) on FA content, FA emission, Factor FA emission/FA content, content of free FA and nitrogen fixation 

(NF). Group mean values with standard deviation in parenthesis 

 

Treatment Temp 

[°C] 

RH 

[% Steam] 

FA content 

[g/kg] 

FA emission 

[mg/kg] 

Factor E/C Free FA 

[mg/kg] 

NF  

[%] 

untreated - - 0.36 (0.02) 7.2 (0.6) - 1.3 (0.9) - 

cured 90 0 48.6 (0.4) 409.4 (10.8) 0.0084 641.5 (8.1) 71.2 

  100 26.3 (1.1) 17.7 (1.2) 0.0007 42.1 (2.5) 94.5 

 105 0 45.8 (1.2) 194.0 (21.7) 0.0042 327.0 (3.4) 95.3 

  100 23.6 (0.3) 13.6 (1.4) 0.0006 15.2 (1.3) 93.5 

 120 0 44.8 (0.2) 106.6 (2.7) 0.0024 205.6 (5) 98.7 

  100 24.9 (0.4) 20.7 (1.9) 0.0008 11.3 (1.4) 93.7 

 

Different bridges between MMF molecules occur when cured in different conditions: Methylene-ether 

bridges are transformed to methylene bridges at high temperatures. The first being more susceptible to 

hydrolysis and thus less stable (Scheepers et al. 1993). 
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4.3.3.3 Influence of curing temperature and relative humidity on the content of free 

formaldehyde 

The results of the content of free formaldehyde had the same pattern as the results of the emission test 

and thus yielded no further information but confirmed the results of the latter.  

4.3.3.4 Influence of curing temperature and relative humidity on the nitrogen fixation 

The results of the NF of the high RH processes at 120 °C were not uniform. At first the fixation of high 

RH curing was lower than that of the dry process, when repeated, there was no difference in fixation of 

humid and dry processes. The specimens of the process 90 °C/0 %RH had a low NF (71 %), all others 

showed high NF (94 % - 98 %). Curing processes with high RH could not be differentiated from dry 

curing via NF. 

4.3.4 Comparing the results of the test methods – DSC and the curing processes 

This study was conducted to gain knowledge about the minimum thermal requirements for curing MMF 

in wood, the influence of process parameters on the material properties of MMF treated beech wood and 

the accuracy of the applied test methods. Temperature, duration and RH of the curing processes were 

the variable parameters. The applied tests were differential scanning calorimetry (DSC), work in 

bending (WB), formaldehyde (FA) emission, FA content, content of free FA and NF after leaching.  

The DSC analysis showed promising results regarding the influence of wood on the curing reaction of 

MMF resin by lowering the respective onset temperatures and peak temperatures when in contact with 

wood. It was possible to distinguish partially and completely cured specimens, as the degree of 

conversion can be calculated by the residual reaction enthalpy. A higher degree of conversion was 

recorded after higher curing temperatures and longer curing durations. The Q10 temperature coefficient 

(Holleman et al. 1995) describes the general influence of time and temperature on chemical reactions as 

a doubling in reaction speed for every 10 K the temperature is increased. The minimum curing 

conditions for complete MMF curing in beech wood are 1 to 5 hours at above 110 °C to 120 °C as 

suggested by the DSC results. 

The WB was sensitive enough to distinguish between untreated and treated groups. Curing temperature 

and duration did not affect WB, whereas the high RH processes at 120 °C had less reduced WB values 

than the dry process. However, high RH at 105 °C curing did not show a difference to dry curing. It 

became evident that the RH was the most influential parameter regarding WB. Different curing 

conditions in themselves can cause different resin network formations. Jones et al. (1994) described the 

influence of different amounts of water present while curing producing different structures of the resin 

networks. Lukowsky (2002) investigated the influence of different FA contents of resin formulations on 

properties of modified wood. High FA contents led to increased cell wall penetration and thus more 
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embrittlement compared to lower FA contents. If the high RH curing leads to lower FA contents, the 

less reduced WB can be explained by a lower degree of modification. 

The FA emissions responded directly to the temperature and the duration of curing process. The RH of 

the curing process seemed to be a crucial factor for the FA emission. High RH while curing led to lower 

emissions, independent of the curing temperature. It was thus difficult to assign the FA emissions to 

certain process parameters. Content of free FA was influenced by the process parameters the same way 

and contains the same information as FA emission. FA content showed similar responses to the curing 

parameters temperature and RH but on a different scale. Higher temperatures led to lower FA contents 

in dry processes. High RH led to reduced FA contents, regardless of the temperature. The quotient of 

FA content and emissions changes strongly between dry and high RH processes: High RH while curing 

led to reduced FA contents but led to very low emissions.  

The NF showed a high variability. There is no conclusive explanation for the differences in fixation at 

high RH levels from the first to the second curing series. The authors have reported about the validity 

of NF as a mean of curing control (Behr et al. 2014), see 2.3 p. 14, (Behr et al. 2015), see 3.3 p. 18. The 

preferred method of leaching specimens in cold water instead of extraction of wood particles in hot 

water seemed to be a valid method. Hence, NF itself is questionable as a reliable test method because it 

is unclear whether the fixation values can be attributed to material properties. Nevertheless, NF values 

above 90 % assured a stable fixation of MMF in wood. 

Varying the curing process parameters led to the following test results: If the curing temperature was 

increased, DSC showed a higher degree of conversion, FA emission and FA content were reduced, and 

WB and NF were unchanged. If the curing duration is extended, DSC showed a higher degree of 

conversion, FA emission was reduced, and WB and NF were unchanged. If the RH is increased, FA 

emission and FA content were severely reduced, NF was unchanged, and WB was less reduced. 

4.4 Conclusions 

Beech wood was treated with a methylated melamine formaldehyde resin (MMF) to determine the 

minimum requirements for curing, the influence of the curing process parameters (temperature, duration 

and relative humidity (RH)) on the material properties (work in bending (WB), formaldehyde (FA) 

emission, FA content, content of free FA and nitrogen fixation (NF) after leaching) and to survey the 

applied test methods on their accuracy to represent the material properties.  

The minimum curing conditions for complete curing of MMF in beech wood are 1 to 5 hours at above 

110 °C to 120 °C as suggested by the DSC results. DSC is a very useful tool to examine the curing 

reaction of MMF regarding curing temperature and duration. 

The process conditions for curing MMF vary depending on the application of the modified material: 

Dry curing conditions result in a more complete resin curing, preferably at high temperatures as shown 
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by the NF. However, the results of the NF were not uniform; it might not be trusted as a sole test method. 

The FA emission showed a positive influence of temperature and curing duration.  

Hot steam processes can be used to achieve even lower FA emissions and potentially less reduced WB. 

The FA content is mostly influenced by the RH of the curing processes. The FA content in combination 

with the emission revealed a different FA release factor for dry and high RH processes. The WB of 

beech wood is reduced by MMF treatment. Different temperatures and curing durations did not affect 

the WB. However, high RH while curing showed the least reduction in WB. 
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4.5 Addendum 

The following supplemental data has been added to this paper for the discussion of the thesis: 

Table 8 has been expanded to include the curing temperatures without 1 % pH buffer triethanolamine 

(TEA), see Table 11. 

 

 

Table 9 has been expanded to include the bulking values, nitrogen content and the modulus of rupture, 

see Table 12. 

 

Table 12: Results of the curing series to determine the influence of the curing temperature, duration and relative humidity 

(RH). Weight percent gain (WPG), bulking (volumetric, after curing and storage at 20 °C/65 % RH until EMC), work in 

bending (WB) [N/mm²], modulus of rupture [N/mm²], nitrogen content [%], nitrogen fixation (NF) after EN 84 [%] and 

formaldehyde (FA) emission. Group mean values with standard deviation in parenthesis 

 

Treatment Temp.  

[°C] 

Curing  

time 

[h] 

RH 

[% Steam] 

Bulking  

[%] 

WPG 

[%] 

WB  

[N/mm²] 

MOR 

[N/mm²] 

NC  

[%] 

NF  

[%] 

FA emission  

[mg/kg] 

untreated - - -  -     -   26.3 (4.8) 134.2 (11.1) 0.20 - 3.2 (1.1) 

uncured 20 - -  - -    22.6 (3.8) 144.6 (11.6) 7.30 60.2 559.2 (18.3) 

cured 105 4 0 9.4 (0.4) 16.2 (1.4) 13.6 (3.9) 137.2 (15.2) 6.90 84.5 239.4 (5.4) 

  24 0 9.2 (0.9) 16.5 (1.0) 13.3 (2.7) 127.8 (17.6) 7.73 82.2 226.7 (18.3) 

   80 6.6 (0.9) 15.1 (1.0) 13.3 (2.9) 132.1 (16.3) 7.63 102.3* 63.0 (5.5) 

  48 0 8.0 (1.2) 15.4 (1.4) 13.6 (3.1) 135.4 (16.1) 7.35 97.7 194.5 (3.8) 

 120 4 0 8.5 (0.5) 16.5 (1.6) 12.7 (3.0) 135.8 (14.0) 7.29 90.9 223.6 (13.1) 

  24 0 9.5 (1.1) 17.2 (0.7) 14.6 (3.5) 143.3 (11.9) 7.45 98.1 129.0 (4.8) 

   40 8.9 (0.6) 17.1 (0.4) 12.5 (3.2) 139.4 (20.3) 7.41 102.0* 94.0 (7.6) 

   80 5.9 (1.5) 13.4 (0.9)  19.3 (3.2) 149.3 (13.2) 7.27 91.0 28.7 (3.4) 

   100 4.1 (0.8) 14.8 (0.8) 18.3 (4.4) 153.5 (20.3) 7.98 81.2 12.0 (1.0) 

  48 0 10.2 (0.6) 17.0 (0.8) 12.0 (3.8) 130.9 (23.6) 7.58 101.5* 89.2 (7.5) 

* Higher WPG and therefore higher nitrogen content of the extracted specimens than the non-extracted 

specimens led to the calculation of theoretical fixation rates above 100 % 

  

Table 11: DSC analysis of melamine resin and melamine treated beech wood. Onset and peak 

temperatures of the curing process in high pressure crucibles; Group mean values and standard deviation 

in parenthesis 

 

Specimens/Group 
Onset  

[°C] 

Peak  

[°C] 

Melamine (20 %)*    (n=2) 164.3 (1.0) 180.2 (0.5) 

Melamine (20 % without TEA)  (n=2) 162.5 (0.9) 178.2 (1.2) 

Melamine (50 %)*   (n=2) 165.7 (0.4) 179.4 (1.4) 

Beech and melamine (50 %)*  (n=12) 110.4 (2.2) 135.4 (1.8) 

Beech and melamine (50 %, without TEA)  (n=8) 100.2 (1.6) 125.9 (1.7) 

* All impregnation solutions in this thesis were conducted using 1 % TEA as pH buffer 
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5 Paper IV: The influence of curing conditions on the properties of 

European beech (Fagus sylvatica) modified with melamine resin assessed 

by light microscopy and SEM-EDX 

(Published in the International Wood Products Journal 9 (1) – 2018b) 

Abstract 

The curing conditions influence the material properties of wood modified with melamine resin. Beech 

was impregnated with melamine resin and cured under dry and wet conditions to investigate the 

influence of humidity while curing. The topochemistry of modified wood was assessed by light 

microscopy and SEM-EDX to visualize physical changes on cell wall level. Light microscopy in 

combination with staining did not show differences between the processes. EDX line scans showed an 

even distribution of resin across the cell wall. The SEM micrographs revealed that dry processes had a 

more severe impact on the structural integrity of the material. Dry cured resin modified wood might not 

only show brittleness because of the resin itself but also because of micro cracks developed during 

curing. 

5.1 Introduction 

Wood in outdoor applications is exposed to moisture conditions leading to dimensional changes and 

fungal attack. Improvements of the mechanical and chemical properties through wood modification 

would not only expand the field of application but also create new markets for native wood as a 

renewable and sustainable resource (Hill 2006). Modification with thermosetting resins such as 

methylated melamine formaldehyde resin (MMF) is one of the established wood modification systems 

besides thermal modification, acetylation and furfurylation. MMF resins have a wide range of 

applications in the wood industry (Kohlmayr et al. 2014). They are used as adhesives, binder material, 

for finishing surfaces and as impregnation agents. If MMF was applied as a wood modification agent, 

decking and cladding made of modified wood would be located in a high-price market sector. Therefore, 

a control of the modification process and the modified material is essential when homogenous products 

are demanded.  

Process conditions such as time and temperature affect the properties of modified wood. High 

temperature curing resulted in a more complete curing of the resin (Scheepers et al. 1993). Klüppel and 

Mai (2013) further discussed this matter and found that dry curing conditions lead to more complete 

curing than wet conditions. Wet conditions led to resin precipitation in the cell lumens and consequently 

higher resin content compared to the cell walls. 

Microscopy techniques were used by several authors to detect the changes in wooden materials after 

gluing or wood modification. Kielmann et al. (2014) used light microscopy (LM) and UV 
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microspectrophotometry (UMSP) to visualize MMF deposits in cell lumens. Biziks et al. (2015) 

visualized the penetration depth of different molecular weight phenol formaldehyde (PF) resins through 

the inability of safranin to stain the cross sections of modified beech wood. This method would be very 

useful if applicable for the investigation of the influence of curing processes on penetration and 

stainability of beech modified with melamine resin.  

Sernek et al. (1999) used brilliant sulphoflavine (BSF) and safranin staining to detect the urea-

formaldehyde resin (UF) bondline in beech plywood. Mahrdt et al. (2015) detected the UF bondline and 

UF penetration by combined dyeing and fluorescence microscopy imaging. This technique was first 

established by Leemann and Ruch (1972). BSF was here used to quantify proteins in plant cells.  

Numerous authors used electronic imagery to verify effects of wood modifications on the modified 

material. The most widely used methods were UMSP (Gindl et al. 2003; Mahnert et al. 2013), electron 

energy loss spectroscopy (EELS) (Rapp et al. 1999), and scanning electron microscopy with energy 

disperse X-ray spectroscopy (SEM-EDX) (Rapp 1999).  

UMSP and EELS require demanding sample preparation, whereas SEM-EDX only requires small 

smoothly cut wooden blocks. The SEM-EDX technique is particularly emphasized as the specimen 

preparation for SEM analysis is rather simple and the EDX verification of nitrogen is a reliable method 

to localize melamine resin in cell walls.  

The aim of this study was to analyze the influence of the curing conditions on melamine treated wood 

through light and electron microscopy. In particular, there were three topics: The impact of the curing 

conditions on staining specimens in light microscopy imaging, the micro structural changes of the 

melamine modified cell wall matrix through SEM and the resin distribution across the wooden matrix 

and the cell wall layers as analyzed by EDX. 

5.2 Material and Methods 

5.2.1  Material 

Beech wood (Fagus sylvatica L.) was cut to specimens free of defects (Table 13). The methylated 

melamine formaldehyde resin used in this study was supplied by INEOS Melamines GmbH, Frankfurt 

Germany.  

 

Table 13: Specimen sizes for light microscopy and scanning electron microscopy / energy dispersive X-ray 

spectroscopy (SEM/EDX) 

 

Applied tests Specimen size for curing  

(rad x tan x long) [mm] 

Specimen size for microscopy  

(rad x tan x long) [mm] 

Light microscopy 
10 x 10 x 180 

3 x 3 x 0.02 

SEM EDX 3 x 3 x 10 
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5.2.2 Methods  

5.2.2.1 Impregnation and curing  

Oven-dry specimens were impregnated (vacuum 100 mbar for 1 h; diffusion phase at atmospheric 

pressure for 2.5 h) with MMF resin (solid content 19 %) and 1 % Triethanolamine as buffer. The curing 

took place in a laboratory oven with the capability to control the temperature as well as the humidity 

(XVC305 UNOX S.p.A., Padova Italy). Two curing processes were set up, each lasted 24 h at 120 °C 

and differed in humidity: 0 % and 100 % steam (0 % and 52 % RH respectively) were used. The 

specimens were allowed to dry at room temperature for 24 h prior to curing. Solution uptake and weight 

percent gain (WPG) were recorded to ensure a uniform treatment. The WPG for the specimens for 

leaching could only be calculated theoretically in order to prevent post curing when recording the oven 

dry weight. Slides and specimens for light microscopy and SEM-EDX were cut from specimens after 

the different curing processes. 

5.2.2.2 Light microscopy  

The specimens for light microscopy were prepared from small specimens as mentioned above. Sections 

of 20 µm thickness were prepared using a sliding microtome with disposable blades. One series of 

sections of all treatment groups was stained in a safranin solution (0.5 %) for ten minutes. Another series 

of sections was stained with brilliant sulphoflavine (BSF), washed out for two weeks in demineralized 

water, rinsed in 50 % and 96 % ethanol (1 h each) and finally embedded in Euparal, dried at 60 °C 

overnight and fixed on microscopic slides.  

5.2.2.3 Scanning electron microscopy and energy dispersive X-ray spectroscopy 

The samples for scanning electron microscopy (SEM) coupled with energy dispersive X-ray 

spectroscopy (EDX) were prepared using fine hand tools and a sliding microtome with disposable 

blades. The specimens were placed on sample holders and carbon sputter coated. SEM micrographs 

were taken with an EVO LS 15 (Carl Zeiss Microscopy GmbH Jena Germany), 8.5 mm working 

distance, 10 kV acceleration voltage and 430 pA spot size. The EDX images were recorded using an X-

MAX 50 mm² detector (Oxford Instruments GmbH, Wiesbaden Germany) in combination with the 

AzTecEnergy program, a recording time of 300 s, and a scan size of 1024 px. Line scans were placed to 

span the distance across two cell walls. The recording time was 300 s. Nitrogen and carbon data were 

recorded and used for the analysis of the nitrogen distribution. Comparison and thus quantification of 

elemental distribution on wood is challenging as the surface is rough. In order to improve and compare 

the data of several line scans and specimens, the nitrogen data were normalized using the carbon data. 

Under the supposition that the carbon content is uniform throughout the cell wall layers (Blazej 1979), 

the recorded carbon data (counts per second; cps) of an even, horizontal area were defined as the 

normalization constant. Then the nitrogen cps of every spot of the line were normalized over the mean 

carbon cps of that defined area (Eq. 5). 
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Ncpsn = Ncpsx / (Ccpsx / CcpsN)         (5) 

Ncpsn =   Normalized nitrogen count per second  

 Ncpsx =   Nitrogen count per second 

 Ccpsx =   Carbon count per second 

 CcpsN =   Normalization constant; carbon count per second 

 

The simple moving average (20 SMA; Microsoft Excel 2016) was used to facilitate the line scan graphs 

of the nitrogen distribution across the cell wall 

5.3 Results and Discussion 

5.3.1  Impregnation and curing  

Specimens with uniform WPGs were chosen for the analysis. The average WPG varied between 13.4 % 

and 17.2 % with an overall average of 15.4 %. 

5.3.2 Light microscopy 

Transverse sections of the specimens treated with MMF resin and stained with safranin and brilliant 

sulphoflavine (BSF) are shown in Figure 7.  

 

 

Figure 7: Top row: Light micrographs (100x) of 0.5 % safranin stained beech sections, a) untreated beech b) dry 

cured melamine treated beech c) steam cured melamine treated beech cured. Bottom row: Light micrographs 

(100x) of brilliant sulphoflavine (BSF) stained sections. d) untreated beech e) dry cured melamine treated beech 

f) steam cured melamine treated beech cured. Scale bar 100 µm 

 

a) b) c) 

d) e) f) 
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The untreated references showed a saturated coloration by the safranin, whereas the melamine treated 

specimens were barely stained. Biziks et al. (2015) visualized the difference in penetration depth of 

different molecular weight phenol formaldehyde (PF) resins through the inability of safranin to stain the 

cross sections of modified beech wood compared to untreated beech. In this study, there was only one 

resin used and therefore no drastically different penetrations depths were to be seen. The effect of the 

different curing conditions became not visible in thin sections after staining. BSF staining led to brightly 

colored melamine treated sections. The untreated sections remained unstained. There were no apparent 

differences between the dry and steam cured sections. Different curing regimes can result in different 

resin distributions as demonstrated by Klüppel and Mai (2013). Therefore, we assume that differences 

in cell wall penetration in the present study were not pronounced enough to distinguish between the 

processes by staining and light microscopy. It can be concluded that the staining methods for UF resin 

(Sernek et al. 1999; Mahrdt et al. 2015) proved to be highly efficient for the general detection of 

melamine resin in wood but not for the differentiation between the dry and high relative humidity 

process.  

5.3.3 Scanning electron microscopy and energy disperse X-ray spectroscopy 

5.3.3.1 Scanning electron microscopy 

SEM images of transverse surfaces of small blocks of MMF treated beech specimens cut by microtome 

are shown in Figure 8 a), b).  

 

Figure 8: SEM images 2500x of a) dry cured melamine treated beech and b) steam cured melamine treated 

beech and c)/d) the respective EDX mapping of the nitrogen distribution. The arrows indicate micro cracks in 

the cell walls. 1: cell wall rupture across a single cell wall from the lumen to the middle lamellae. 2: internal 

cell wall rupture parallel to the cell wall located in the S2. 

 

a) b) 

c) d) 

1 

2 
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SEM images were used to evaluate the structure and condition of the cut surface of the specimens. Micro 

cracks were detected in both dry and steam cured specimens with substantially more cracks in the dry 

cured material. The micro cracks in the dry cured material were found across single cell walls from 

lumens to the middle lamellae (arrow 1) and internal cell wall ruptures parallel to the cell wall located 

in the S2 (arrow 2). The influence of resin modification on the structural integrity of beech assessed by 

electron micrographs was reported by Bollmus (2011). The propagation of macro cracks was monitored 

but no micro cracks were reported. Mahnert et al. (2013) investigated the resin distribution in MMF 

treated koto (Pterygota macrocarpa K. Schum.) and limba (Terminalia superba Engl. & Diels) with 

UMSP but did not detect any micro cracks. To the best knowledge of the authors the effect of curing 

conditions on the microstructure of resin treated wood had not been examined yet. It is known that 

drying conditions greatly influence the quality of dried wood. Fast drying with large drying rates leads 

to steep moisture gradients causing stress to the wooden matrix (Klüppel and Mai 2013). Data about the 

influence of high temperature drying conditions (115 °C) on the microstructure and the mechanical 

properties of Scots pine (Pinus sylvestris L.) suggested that high temperature drying caused micro 

cracks, but the mechanical properties were unaffected (Terziev and Daniel 2002). A similar temperature 

(120 °C) was applied during resin curing in this study. A potential reason for the formation of the cracks 

might be the drying conditions rather than the resin modification. Bollmus (2011) also found that the 

curing conditions affected the structure of ray parenchyma cells, but there was no difference between 

dry and hot steam curing and resin, or water impregnated specimens. Applying high temperatures 

between 120 °C and 130 °C while curing led to the recorded damages (Bollmus 2011). 

5.3.3.2 Energy disperse X-ray spectroscopy 

5.3.3.2.1 EDX mapping of elemental nitrogen 

The energy dispersive X-ray spectroscopy (EDX) mapping of nitrogen showed the distribution of the 

resin (Figure 8 c), d)). Both processes showed a rather even distribution across the scanned surface and 

across the cell walls. Li et al. (2012) also recorded an even distribution of the modification agents maleic 

anhydride and methacrylate across the cell wall matrix via their respective content. There was excess 

resin visible in the lumens, forming granules (‘bubbles’). More granules were visible in the steam cured 

specimens than in the dry cured specimens. Mahnert et al. (2013) reported about granules in MMF 

modified wood, cured under wet conditions. Furuno et al. (2004) described the granules to form above 

a certain solid content/resin concentration (PF), below this concentration all the resin was located in the 

cell walls. Granules might indicate a saturated cell wall under the given curing conditions. Saturated cell 

walls might occur at high resin concentrations but also under high relative humidity curing conditions. 

The steam cured specimens showed lower nitrogen concentrations in the cell walls in combination with 

more frequent granules in the lumens. This might be an indication of a difference in resin concentration 

between the cell wall and lumen of the steam cured specimens and the dry cured specimens. Klüppel 
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and Mai (2013) reasoned that the higher diffusion potential of dry curing led to higher resin 

concentrations in dry cured specimens.  

5.3.3.2.2 EDX line scans 

SEM images of two representative cross section areas of dry and steam cured beech with the respective 

EDX line scans and nitrogen cps (counts per second) can be seen in Figure 9. 

 

  

Figure 9: SEM micrographs (5000x) of dry cured beech (left) and steam cured beech (right) with the position 

of the line scan (thick black line, below). Line scans with nitrogen counts per second (cps) across two cell 

walls of dry cured (left; n = 6) and steam cured (right; n = 4) melamine modified beech. Thin black lines: 

Moving average (20 SMA) of the normalized nitrogen counts per second (cps) of several line scans on 

different specimens. 

 

The line scans revealed the resin distribution across the cell walls of MMF treated beech with generally 

lower MMF concentrations towards the middle lamella (ML) than in the outer S2 and S3. Measurements 

from other authors revealed different concentration gradients from S2 to the ML. Higher MMF 

concentrations in beech towards the ML were reported by Kielmann et al. (2014) as analyzed by UMSP. 

Mahnert et al. (2013) also reported higher resin concentrations in the ML than in the S2 of MMF treated 
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koto and limba via UMSP measurements. In contrast, Rapp (1999) used SEM-EDX and recorded a 

slightly higher nitrogen concentration in the ML than in the S2 and a steeply rising gradient in the S3 

towards the lumens, similar to the results in this study. Rapp (1999) explained the findings with the 

higher accessibility of lignin rich areas like the S3 and ML over the cellulose rich S2 and a resin diffusion 

gradient from the lumen towards the ML. Furuno and Goto (1973) found lower resin concentrations in 

the S2 than in the ML. Gindl et al. (2003) recorded higher MMF concentrations in the S2 than the ML. 

The behavior is explained by the higher affinity of the hydrophilic MMF resin towards the S2 as a less 

lignified cell wall region. 

Generally, lower a nitrogen cps was attributed to the steam cured specimens. The distribution of nitrogen 

across the cell wall itself did not seem to be affected by the curing conditions and showed a similar 

pattern. 

5.4 Conclusions 

 Beech wood was treated with a methylated melamine formaldehyde resin (MMF) and cured under 

differently humid conditions to determine the influence of the curing process on the distribution of the 

chemical on a microscopic level. There were more micro cracks in the dry cured than in the steam cured 

material. Further on, the steam cured specimens showed lower nitrogen concentrations in the cell walls 

in combination with more frequent granules in the lumens. Light microscopy in combination with two 

staining methods was a suitable method to distinguish between MMF treated and untreated specimens. 

There was, however, no difference between the different curing processes detectable. Scanning electron 

microscopy in combination with energy dispersive X-ray spectroscopy (SEM-EDX) was a valuable tool 

to visualize the structural changes induced by the curing processes. The line scan function in SEM-EDX 

was suitable to detect the elemental nitrogen of the MMF resin and can be used to detect the resin 

distribution across cell walls. SEM-EDX could be very useful method for future analysis of the influence 

of curing processes on the material properties of resin modified wood. 
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6 Paper V: Improving dimensional stability of thermally treated wood by 

secondary modification 

(Published in holztechnologie 58 (2) - 2017) 

Abstract 

The potential of treating thermally modified wood with melamine resin to improve the dimensional 

stabilization is investigated in this study. One half of two poplar (Populus spp.) boards were thermally 

modified (T1: 210 °C; T2: 230 °C) in a commercial process, the other two halves were used as untreated 

reference material. Ten specimens of each material were impregnated with a solution of a commercially 

available methylolated melamine resin and dry-cured in a laboratory oven. The anti-swell-efficiency 

(ASE) based on the swell rate was measured during ten cycles of repeated drying and wetting. The 

melamine treatment caused a higher bulking in the references than in thermally modified wood. The 

ASE of T1 was improved by secondary modification, whereas the ASE of T2 was higher than that of 

the secondary modified material. Reasons for the low bulking may be found in the same mechanisms 

providing good dimensional stability of thermally modified wood in the first place. The cell walls are 

hydrophobized by the thermal modification and thus less accessible for melamine oligomers. 

6.1 Introduction 

Wood in outdoor applications is exposed to severe changes in temperature, humidity and thus 

dimensional changes. A fundamental improvement in dimensional stabilization through wood 

modification would not only expand the field of application but also create new markets for native wood 

as a renewable and sustainable resource. 

Thermal modification is the most common method of wood modification. It is commercialized in a 

variety of processes which differ in terms of treatment intensity (peak temperature and duration of 

treatment), treatment atmosphere and medium of heat transfer. During thermal modification, the 

dimensional stability and durability of wood are improved by treatment between 160 ºC and 260 ºC 

(Militz 2002). Thermal modification is classified as active wood modification since the chemical 

composition of the wood is altered and cell wall polymers are degraded. The thermal stability of the cell 

wall polymers increases in the order hemicelluloses, cellulose and lignin. Thermal modification is 

known to influence the swelling of wood (Burmester 1975). The anti-swell-efficiency (ASE) of wood 

modified at commercially relevant temperatures is ascribed to the reduced number of OH-groups due to 

degradation of cell wall polymers. In the literature, an ASE between 24 % and 68 % is reported for 

thermally modified wood (Santos 2000; Koch 2005). One reason for this high variation is the variety of 

wood species, modification processes and measurement techniques.  
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The impregnation modification of wood with methylolated melamine formaldehyde resin (MMF) has 

been scientifically investigated by various researchers during the last decades (Stamm 1964; Pittman et 

al. 1994; Lukowsky 1999). MMF-resin does not alter the original color of the wood (Hagstrand 1999). 

It improves the surface hardness and dimensional stability of wood (Inoue et al. 1993a; Miroy et al. 

1995; Rapp 1999; Gindl et al. 2003). The dimensional stability of wood through MMF-modification is 

increased due to diffusion of the MMF-oligomers into the cell wall and hardening which results in 

bulking of the cell walls and blocking of OH-groups, excluding these for attachment of water molecules. 

The literature suggests an ASE between 17 % and 26 % for wood modified with an impregnation 

solution containing 10 % melamine oligomers (Lukowsky 1999; Krause 2008).  

Aim of this study was the combination of thermal modification (primary modification) and MMF-

modification (secondary modification) to further improve the dimensional stability of the modified 

wood. The alteration of ASE of the modified wood by different intensities of thermal modification and 

secondary modification was investigated. 

6.2 Material and Methods 

6.2.1  Specimen preparation 

Two poplar (Populus spp.) boards from the same batch (1 and 2; with a dry density of 540 - 420 kg/m³) 

were cut into two halves. One half of each board was thermally modified (T1 and T2) in a commercial 

process, the other half was used as untreated reference material (R1 and R2; Figure 10).  

 

  

Figure 10: Material allocation for references (R) and thermal modification (T) from one board 

 

A series of 20 defect free adjacent small specimens (Table 14) with perpendicularly oriented annual 

rings was produced from both halves of each board. The oven dry mass of the modified specimens was 

determined after drying at 103 °C for 24 h. Ten specimens of each series were modified with MMF resin 

(M1 and M2). 
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Table 14:Characteristics of specimens and modifications: Oven-dry density (OD), specimen size, modification 

temperature and solid content (SC) for the impregnation solution. Mean values (SD) 

 

Label Treatment OD 

[kg/m³] 

Specimens size 

(r x t x l) [mm3] 

Modification 

temperature 

[°C] 

SC 

impregnation 

solution [%] 

R1 Reference Board 1 540 (1) 20 x 20 x 10 - - 

M1 Melamine treatment 1 560 (2) 20 x 20 x 10 - 10 

T1 Thermal modification 1 500 (2) 20 x 20 x 10 210 - 

TM1 Thermal modification 1 and 

Melamine treatment 1 

540 (2) 20 x 20 x 10 210 10 

R2 Reference Board 2 420 (5) 25 x 25 x 10 - - 

M2 Melamine treatment 2 433 (9) 25 x 25 x 10 - 7.5 

T2 Thermal modification 2 400 (6) 25 x 25 x 10 230 - 

TM2 Thermal modification 2 and 

Melamine treatment 2 

437 (5) 25 x 25 x 10 230 7.5 

 

6.2.1.1 Thermal modification 

The material was thermally modified using the vacu³® process at Timura Holzmanufaktur GmbH, 

Germany. Operated under vacuum, heated steel plates serve as medium of heat transfer. The treatment 

duration at maximum temperatures 210 °C (T1) and 230 °C (T2) was 7.5 h. 

6.2.1.2 Melamine modification 

The specimens were impregnated with a solution of the MMF Madurit MW840/75WA (Ineos 

Melamines GmbH, Germany). The solid content (SC) of the MMF used for the MMF-modification of 

P2 was adjusted to meet the lower density of poplar board 2 and obtain the same uptake of resin (weight 

percent gain; WPG). SCs of the impregnation solutions are given in table 1. A full cell impregnation 

process (vacuum of 60 mbar for 0.5 h followed by a pressure phase of 2 h at 12 bar) was applied. 

Specimens were dried and cured in a laboratory oven at a maximum temperature of 120 °C for 24 h. 

The oven dry mass of the modified specimens was determined after drying at 103 °C for 24 h. 

Subsequently solution uptake (SU; Eq. 6), increased dry mass due to resin incorporated into the 

specimens (WPG; Eq. 7) and bulking as percentage increase in dry volume due to modification were 

calculated. The calculations were based on 10 replicates per modification intensity.  

 

      SU [%]   = (Mi – M) / M x 100      (6) 

      WPG [%]   = (M2 – M1) /M1 x 100     (7) 

 

      M  = Mass before impregnation [g] 

      Mi  = Mass after impregnation [g] 

      M1  = Dry mass before impregnation [g] 

      M2  = Dry mass after curing [g] 
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6.2.2 Determination of the anti-swell-efficiency 

The ASE (Eq. 9) based on the swell rate (SR; Eq. 8) was tested during ten cycles of repeated drying and 

wetting without prior leaching. First, mass and dimensions of the specimens were recorded after careful 

oven-drying. Afterwards, the specimens were vacuum impregnated with tap water at 60 mbar for 0.5 h 

and left submerged for 16 h. Then, mass and dimensions were recorded, and the SR was calculated. The 

calculation of the swell rate follows Hill and Jones (1996) but is based on the cross-section area 

(radial x tangential) of the specimens according to Schaffert (2006) and Bollmus (2011). The 

measurements were conducted with an accuracy of 0.001 g and 0.01 mm. 

  

      SR [%]   = (Aw – Ad) / Ad x 100      (8) 

      ASE [%]   = (SRt – SRu) / SRu x 100    (9) 

 

    Ad  = Dry area of the specimens [mm²] 

      Aw  = Wet area of the specimens [mm²] 

      SRu  = Maximum swelling of the untreated specimens [%] 

     SRt  = Maximum swelling of the treated specimens [%] 

 

6.3 Results and Discussion 

6.3.1  Thermal modification 

The thermal modification caused a mass loss depending on the modification intensity. The higher 

temperature caused more degradation and thus more mass loss (T1 and T2; 8 % and 10 %). Thermal 

modification of wood is usually carried out at 160 °C to 250 °C (Militz 2002; Hill 2006); the applied 

temperatures (210 °C and 230 °C) are considered medium and high treatment intensities. 

6.3.2 Melamine modification 

After melamine modification, differences between bulking of M1/M2 and TM1/TM2 (4.3 %; 4.8 % and 

1.4 %; -0.5 %) were observed (Table 15).  
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Table 15: Results (N=10) of the modifications: Oven-dry density (OD), bulking, solution uptake (SU) and 

weight percent gain (WPG). Mean values (SD) 

 

Label OD [kg/m³] Bulking [%] SU [%] WPG [%] 

R1 540 (1) - - - 

T1 500 (2) - - -8* 

M1 560 (2) 4.3 (1.1) 147 (6) 12.2 (0.6) 

TM1 540 (2) 1.4 (2.4) 145 (10) 11.6 (0.7) 

R2 420 (5) - - - 

T2 400 (6) - - -10* 

M2 433 (9) 4.8 (1.0) 177 (4) 11.2 (0.4) 

TM2 437 (5) -0.5 (0.7) 177 (4) 9.7 (0.5) 

 

Reasons for that could be anatomical and chemical properties of thermally modified wood. Thermal 

modification blocks diffusion pathways by sealing the cell wall due to hydrophobation of hemicelluloses 

and increased condensation of lignin (Tjeerdsma et al. 1998; Windeisen and Wegener 2008). It also 

reduces the number of OH-groups, leaving less potential binding sites for melamine (Weiland and 

Guyonnet 2003). Nevertheless, similar SU and WPG, potentially because of increased porosity (Pfriem 

et al. 2009), were observed. Pfriem (2011) reported the effect of increased porosity after thermal 

modification: less water absorption in radial and tangential direction and more water uptake in 

longitudinal direction was recorded. 

6.3.3 Anti-swell-efficiency 

The swelling and the ASE of R2, M2, T2 and TM2 can be seen in Figure 11. The ASE is a relative value 

referring to the swelling of the untreated specimens. The swelling of all treatments increased slightly 

with progressing ASE-cycle number. The result was a decrease of ASE over the course of the ASE test. 

A potential reason for this development could be cracking of the specimens during the test. Since the 

specimens remained free of cracks throughout the test, the increasing swell rate cannot be explained 

based on the current results. 

 

 

Figure 11: Results (N=10) of the anti-swell-efficiency test: Swell rate (left) of R2, M2, T2 and TM2 and ASE 

(right) of M2, T2 and TM2 over the course of 10 cycles of repeated drying and soaking. 
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The different densities of poplar board 1 and 2 caused different absolute swelling rates (Table 16). The 

ASE increased with increasing intensity of thermal modification: After the 10th cycle T1 and T2 retained 

an ASE of 45 % and 52 %.  

 

Table 16: Results (N=10) of the swell rate (SR) and anti-swell-efficiency (ASE) after cycle 2 and 10 of materials 

P1 and P2 untreated and after modifications. 

 

Label SR2 [%] SR10 [%] ASE2 [%] ASE10 [%] 

R1 21 22 - - 

M1 12 14 45 35 

T1 12 12 46 45 

TM1 9 11 57 52 

R2 16 16 - - 

M2 12 13 28 20 

T2 7 8 59 52 

TM2 7 8 56 50 

 

The results are in accordance to Welzbacher (2007) as the ASE increases with rising modification 

temperatures. Higher modification temperatures lead to increasing hydrophobation of hemicelluloses 

and cellulose due to cleavage of OH-groups (Weiland and Guyonnet 2003), and a higher degree of 

polymerization (Bhuiyan et al. 2000). This reduces the water sorption of the cell wall and leads to less 

swelling. 

M1 and M2 have similar WPGs and the resulting ASE ranges from 35 % to 20 % respectively. Melamine 

treatment enhances the dimensional stabilization of wood (Stamm 1964; Rapp 1999). The literature 

suggests an ASE between 17 % and 26 % for Scots pine modified with an impregnation solution 

containing 10 % melamine oligomers (Lukowsky 1999; Krause 2008). Sint, (2010) reported 19 % to 

35 % WPG in Bombax spp. impregnated with 10 % Madurit MW840 resin. The melamine treatment of 

TM1 further improved the dimensional stability compared with T1 (52 % and 45 % ASE). The initially 

higher ASE of T2 (52 %) was not improved but slightly decreased by melamine treatment (TM2: 50 % 

ASE). The hindered bulking may account for the reduced or negative ASE. Bulking of the cell wall 

allows easier penetration of the cell wall by the melamine oligomers to penetrate bulked cell walls (Hill 

2006). With a decreased bulking, the ability of the melamine oligomers to penetrate the cell wall is 

greatly reduced. This can explain that no further dimensional stabilization of the wood can be obtained. 

For further studies, the influence of density in unmodified timber and the WPG on the improvement of 

dimensional stability should be investigated. 

6.4 Conclusions 

In this study the potential of secondary modification as a tool for further improvement of dimensional 

stability of thermally modified wood was assessed. Poplar was thermally modified at two different 

temperatures (T1: 210 °C and T2: 230 °C). Ten specimens of thermally modified and unmodified poplar 
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(R) were subsequently modified with methylolated melamine formaldehyde resin (MMF). The 

dimensional changes of melamine treated (M), thermally modified wood (T) and melamine treated 

thermally modified wood (TM) were compared to those of R in an anti-swell-efficiency test (ASE). The 

melamine treatment caused a different bulking in M (4.3 % - 4.8 %) and TM (1.4 % - -0.5 %). The 

specimens of T1 and T2 had a high ASE (45 % and 52 %). The ASE of T1 was improved by secondary 

modification (ASE TM1: 52 %), whereas the ASE of T2 remained higher than that of TM2 (50 %). The 

melamine treatment of thermally modified poplar yielded good results for solution uptake and weight 

percent gain, but the bulking was lower than expected. Reasons may be found in the same mechanisms 

providing good dimensional stability of thermally modified wood in the first place: The cell walls are 

less accessible for melamine oligomers due to hydrophobation resulting from thermal modification. The 

mechanisms responsible for the hydrophobation are the degradation of hemicelluloses (Tjeerdsma et al. 

1998) including a reduction of OH-groups (Weiland and Guyonnet 2003) and the increased crystallinity 

of the cellulose (Bhuiyan et al. 2000). The hydrophobation of the cell wall due to thermal modification 

might hinder impregnation modification with water-based solutions thereof. However, impregnation 

modification of thermally modified wood aiming for mainly filling lumens will be unaffected. 
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6.5 Addendum 

In addition to poplar, the dimensional stability (ASE) of beech, ash and lime were also investigated. The 

thermal modification and melamine treatment were the same as in paper VI. For the specifics of 

impregnation and curing see chapter 7.2, p.55, the results of the curing can be seen in Table 17.  

 

 
 The results of 10 cycles of ASE test are displayed in Table 18. 

 

 

  

Table 17: Characteristics and results of the melamine treatment (N=40): Solid content (SC) [%] of the 

impregnation solution, solution uptake (SU) [%], bulking [%] and weight percent gain (WPG) [%]. 

Mean values with standard deviations in parenthesis 

 

Species Treatment SC [%] SU [%] Bulking [%] WPG [%] 

Beech Melamine treatment 20 88 (7) 2.8 (1.3) 13.7 (1.1) 

 Double modification 25 78 (4) -1.4 (0.5) 14.2 (0.8) 

Ash Melamine treatment 19 100 (5) 3.6 (1.1) 12.8 (1.2) 

 Double modification  20 96 (14) -1.6 (0.4) 14.2 (1.2) 

Lime Melamine treatment 13 129 (11) 2.7 (1.7) 12.9 (3.9) 

 Double modification 13 139 (21) -2.6 (0.9) 13.3 (1.4) 

Table 18: Oven dry density (OD) [kg/m³] and results of the anti-swell-efficiency test (N=40): Swell rate 

(SR) [%] and anti-swell-efficiency (ASE) [%] after 10 cycles. Mean values and standard deviation in 

parenthesis 

 

Species Treatment OD [kg/m³] SR10 [%] ASE10 [%] 

Beech Untreated 737 (08) 18.7 (0.2) - 

 Melamine treatment 804 (12) 16.6 (0.9) 11.2 (4.7) 

 Thermal modification 660 (07) 10.2 (0.2) 45.6 (0.9) 

 Double modification 763 (15) 11.0 (0.4) 41.1 (2.3) 

Ash untreated 624 (32) 16.4 (1.8) - 

 Melamine treatment 676 (34) 13.5 (1.2) 13.8 (2.9) 

 Thermal modification 562 (38) 8.3 (2.3) 49.3 (15.3) 

 Double modification 650 (35) 9.6 (0.3) 40.6 (1.9) 

Lime untreated 569 (44) 18.5 (2.3) - 

 Melamine treatment 618 (38) 14.6 (2.2) 20.9 (4.8)  

 Thermal modification 498 (43) 9.9 (2.1) 46.6 (7.2) 

 Double modification 576 (44) 10.5 (1.4) 42.6 (6.1) 
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7 Paper VI: Improvement of mechanical properties of thermally modified 

hardwood through melamine treatment  

(Published in Wood Material Science and Engineering 13 (5) - 2018) 

Abstract 

Specimens of beech, ash, lime and poplar were thermally modified (T) and treated with an aqueous 

solution of melamine (M) resin to investigate the mechanical changes after combined (double) 

modification (TM). Density, solution uptake, weight percent gain, bulking and equilibrium moisture 

content were recorded to ensure proper treatment. Samples for Brinell hardness and three-point bending 

were cured at 120 °C under dry conditions. The WPGs of the two treatment groups M and TM were 

similar but bulking of TM specimens was negative. This might indicate an incomplete penetration into 

the thermally modified cell wall in combination with a potential leaching of soluble hemicellulose 

components by the alkaline impregnation solution. The decreased hardness of heat-treated wood was 

substantially increased by melamine treatment (combined modification). Both modifications and their 

combination slightly increased the modulus of elasticity. The modulus of rupture was increased after 

melamine treatment, decreased after thermal modification and combined modification. The work in 

bending was severely reduced for all treatments. Melamine treatment of thermally modified wood was 

carried out successfully and some mechanical properties were improved. Double-modified wood with 

increased bending strength and extraordinary surface hardness would be suitable for non-structural 

outdoor applications such as decking and cladding. 

7.1 Introduction 

Thermal modification is the most widely used wood modification system today (Militz 2015). It is 

commercialized in a variety of processes that differ in terms of treatment intensity (peak temperature 

and duration of treatment), treatment atmosphere and medium of heat transfer. During thermal 

modification, the chemical composition of the wood is altered, and cell wall polymers are degraded. 

Due to thermal modification, durability and dimensional stability are increased depending on wood 

species and treatment intensity (Militz and Altgen 2014). The thermal stability of the cell wall polymers 

increases in the order of hemicelluloses, cellulose and lignin. The equilibrium moisture content of wood 

is reduced through thermal modification by 50%, depending on the process (Hill 2006; Esteves and 

Pereira 2009). Decreased EMCs can influence the mechanical properties, further, thermal modification 

is known to influence the mechanical properties of wood (Stamm 1964; Boonstra et al. 2007; Esteves 

and Pereira 2009). In the literature, there is contradictory information about the influence of thermal 

treatments on mechanical wood properties. Brinell hardness (HB), modulus of elasticity (MOE) and 

bending strength (MOR) were reported to increase or decrease depending on treatment intensity 

(Welzbacher 2007; Esteves and Pereira 2009). Impact bending strength (dynamic) (Welzbacher 2007; 
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Boonstra et al. 2007) and work in bending (static) (Kim et al. 1998; Wetzig et al. 2012; Rautkari et al. 

2014) are affected most by thermal modification. A reduction of mechanical properties limits the range 

of applications for heat treated wood.  

The impregnation modification of wood with methylated melamine formaldehyde resin (MMF, referred 

to as melamine) has been scientifically investigated by various researchers during the last decades (e.g. 

(Stamm 1964; Pittman et al. 1994; Lukowsky 1999; Rapp 1999). Focus of the investigations were 

dimensional stability (Stamm 1964), durability against wood destroying fungi in laboratory tests (Sailer 

1995; Rapp and Peek 1996) and outdoor tests (Rapp 1999), as well as fire retardancy (Pittman et al. 

1994). Numerous formulations of melamine were tested in the literature, often without stating the 

chemical composition. The resins vary in formaldehyde content and degree of methylation which results 

in different effects on wood properties (Lukowsky 1999), (Lukowsky 2002). This should be considered 

when results are compared. Melamine resin does not alter the original color of wood (Hagstrand 1999). 

It improves the surface hardness and dimensional stability (Inoue et al. 1993a; Rapp 1999). Due to the 

incorporation of resin in wood cell walls, density and stiffness increases (Stamm 1964; Miroy et al. 

1995; Gindl et al. 2003; Deka et al. 2007) and impact bending strength decreases (Kielmann et al. 2013). 

The MOE was increased (Deka and Saikia 2000; Epmeier et al. 2004; Kielmann et al. 2013), the MOR 

increased (Inoue et al. 1993b) or decreased (Epmeier et al. 2004; Lahtela and Kärki 2014), depending 

on WPG. The moisture properties of melamine modified wood have been the focus of several 

investigations (Rapp and Peek 1995; Epmeier et al. 2004; Epmeier et al. 2007; Hosseinpourpia et al. 

2016; Kielmann et al. 2016), but the results are inconclusive. Rapp and Peek (1995) reported no change 

in EMC by melamine treatment, Epmeier et al. (2004) and Kielmann et al. (2016) showed a minor 

reduction of EMC through melamine treatment and Epmeier et al. (2007) recorded increased EMCs.  

The combination of several wood modification systems including melamine resins has been covered by 

some authors to various extends (Epmeier et al. 2004; Hansmann et al. 2005; Mahnert 2013; Sun et al. 

2013; Lahtela and Kärki 2014). The combination of thermal modification and thermosetting resins was 

investigated by Sun et al. (2013). Eucalyptus was impregnated with melamine-urea-formaldehyde resin 

and the specimens were heat treated to improve dimensional stability and mechanical properties. The 

authors concluded that the combined treatment had the potential to increase the material quality of solid 

wood products. Lahtela and Kärki (2014) treated Scots pine with melamine resin and subsequently 

thermally modified the material to improve the physical and mechanical properties. The authors 

described that moderate heat treatment enhanced the wood properties. Mahnert (2013) investigated 

thermally modified koto (Pterygota macrocarpa K. Schum.) and limba (Terminalia superba Engl. & 

Diels) treated with melamine resin as a substitute for teak wood in maritime applications. He reported 

on superior hardness, durability and dimensional stability of the material and found decreased MOE, 

MOR and work in bending values. The results for the mechanical properties of double modified material 
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which was tested by Mahnert (2013), Sun et al. (2013), Lahtela and Kärki (2014) are summarized in 

Table 25.  

The low hardness and work in bending are drawbacks of thermally modified wood and can presumably 

be compensated by melamine treatment. Improvements of the mechanical properties through combined 

wood modification would not only expand the field of application but also create new markets for native 

wood as a renewable and sustainable resource. Therefore, the aim of this study was to improve 

mechanical properties of thermally modified hardwoods through melamine treatment. The treatment 

performance was assessed via solution uptake, WPG and bulking. The altered properties by modification 

were evaluated through Brinell hardness and modulus of elasticity, bending strength and work in 

bending in a static three-point bending test setup. This will provide an extensive profile of the 

mechanical properties of double modified native hardwood species. 

7.2 Material and Methods 

7.2.1  Specimen preparation 

 The hardwood species used in this study were beech (Fagus sylvatica L.), ash (Fraxinus excelsior L.), 

lime (Tilia spp.) and poplar (Populus spp.). Four boards of each species were cut into halves. One half 

of each board was thermally modified (T) in a commercial process, the other halves were used for 

melamine treatment (M) and as untreated reference material (R). The oven dry mass of the modified 

specimens was determined after drying at 103 °C for 24 h. Specimens of untreated and thermally 

modified material for recording density, solution uptake, weight percent gain, bulking and equilibrium 

moisture content and performing Brinell hardness as well as three point-bending tests were modified 

with MMF resin (generating materials M and TM) (Table 19).  

 

 

7.2.2 Thermal modification 

The material was thermally modified at Timura Holzmanufaktur GmbH (Rottleberode, Germany) using 

the Vacu³-process. Operated under vacuum, heated steel plates served as a medium of heat transfer. The 

treatment duration at a maximum temperature of 230 °C was 7.5 h. 

Table 19: Experimental specifications, number of specimens and specimen size of the used materials in this 

study 

 
Test Number of specimens of each 

treatment group 

Specimen size  

(rad x tan x lon; mm³) 

Density, solution uptake, weight 

percent gain, bulking 40 20 x 20 x 10 

Hardness 12 25 x 50 x 50 

Three-point bending 25 - 40 10 x 10 x 180 
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7.2.3 Melamine modification 

The specimens were impregnated with a solution of a methylated melamine formaldehyde resin (MMF) 

Madurit MW840/75WA (Ineos Melamines GmbH, Frankfurt, Germany). The solid content (SC) of the 

impregnation solution was adjusted for each wood species (according to pre-trials; data not shown) to 

meet the density and obtain about the same uptake of resin (weight percent gain; WPG). SCs of the 

impregnation solutions are given (Table 20). 1 % Triethanolamine (referred to resin stock solution) was 

added as buffer. 

 

Table 20: Wood species, treatment and solid content (SC) of impregnation solution for melamine treatment of 

the material in this study. Mean values with standard deviation in parenthesis 

 

Wood species Treatment Solid content of melamine resin in impregnation solution [%] 

Beech  Untreated  20 

 Thermo 25 

Ash Untreated  19 

 Thermo 20 

Lime Untreated  13 

 Thermo 13 

Poplar Untreated  8 

 Thermo 7 

 

A full cell impregnation process (vacuum of 60 mbar for 0.5 h followed by a pressure phase of 2 h at 

12 bar) was applied. Specimens were air dried (24 h) and subsequently cured in a laboratory oven. The 

temperature was raised from 20 °C by 20 °C every 24 h before the specimens were cured at 120 °C for 

additional 24 h. The oven dry mass of the modified specimens was determined after cooling in a 

desiccator. Eq. 10 shows the solution uptake (SU). 

 

SU [%] =
(𝑀𝑖−𝑀)

𝑀
∗ 100         (10) 

M = Mass before impregnation [g] 

Mi = Mass after impregnation [g] 

 

Eq. 11 shows the percentage increase in dry mass due to resin incorporated into the specimens (WPG).  

WPG [%] =
(𝑀2−𝑀1)

𝑀1
∗ 100       (11) 

M1 = Dry mass before impregnation [g] 

M2 = Dry mass after curing [g] 
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Eq. 12 shows the bulking as percentage increase in dry area due to modification.  

Bulking [%] =
(𝐴2−𝐴1)

𝐴1
∗ 100      (12) 

A1 = Dry area before impregnation [mm²] 

A2 = Dry area after curing [mm²] 

 

The equilibrium moisture content (EMC) at 20 °C and 65 % RH of the specimens was calculated. To 

minimize the influence of the additional weight due to the chemical modification (Akitsu et al. 1993), 

the reduced equilibrium moisture content (EMCR) was calculated based on the dry weight of the 

specimens before modification (Eq. 4).  

 

EMCR =
(𝑀𝑒−𝑀2)

(𝑀2−𝑊𝑃𝐺)
∗ 100       (13) 

Me = Equilibrium mass at 20 °C / 65 %RH [g] 

M2 = Dry mass after curing [g] 

WPG = Weight percent gain [%] 

 

7.2.4 Brinell hardness 

Brinell hardness testing was conducted on a Zwick/Roell (Ulm, Germany) universal testing machine 

with a 10 kN load cell. The test was adopted to EN 1534 (2000), the specimens measured 

25 x 50 x 50 mm³ (rad x tan x long). The test force was adapted to the density of the species (Table 21).  

 

Table 21: Test force of Brinell hardness [N] for treatment groups 

 

Wood species Treatment Test force [N] 

Beech  Untreated  1000 

 Melamine 1000 

 Thermo 1000 

 Thermo-melamine 1000 

Ash Untreated  1000 

 Melamine 1000 

 Thermo 1000 

 Thermo-melamine 1000 

Lime Untreated  500 

 Melamine 1000 

 Thermo 500 

 Thermo-melamine 500 

Poplar Untreated  500 

 Melamine 500 

 Thermo 200 

 Thermo-melamine 200 
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7.2.5 Three-point bending test 

The three-point bending test was performed to obtain data about the changing physical properties 

regarding modulus of elasticity (MOE), bending strength (MOR) and work in bending (WB) in a static 

test design. The specimens were tested on a Zwick/Roell (Ulm, Germany) universal testing machine 

with a 10 kN load cell according to EN 52 186 (1978). The test speed was 4 mm/min and the MOE was 

measured at 10 % to 40 % of MOR with an external strain sensor. MOE, MOR and WB were calculated 

by the control program testXpert II V3.5. WB is closely related to impact bending strength (IB) 

(Kollmann 1951), thus indicating the material properties regarding dynamic load. Aside from varying 

absolute values, IB and WB correlate positively.  

7.2.6 Statistical analysis 

To test the different groups for significant differences with a parametric one factor ANOVA (Analysis 

of Variance), the data must fulfil the normality assumption, the assumption of homogeneity of variances 

and the assumption of balanced sample group sizes. The data was analyzed for the assumption of 

normality using the Shapiro-Wilk test separately for each species and treatment group for the data of 

hardness, MOE, MOR and WB. The Levene/Brown-Forsythe test for the assumption of homogeneity of 

variances was performed. The normality assumption and the assumption of homogeneity were rejected 

at an error level (p-value) beyond 0.05. Both tests revealed several treatment groups that did not fulfil 

the assumptions. Therefore, the nonparametric Kruskal-Wallis test was selected to perform the ANOVA. 

The Dunnett’s test was performed using a nonparametric multi comparison packet (Konietschke 2015) 

to compare each of the treatment groups with the reference group in RStudio (R Development Core 

Team 2011). They were regarded as significantly different when below a p-value of 0.05. 

7.3 Results and Discussion 

7.3.1 Melamine treatment 

Melamine treatment of thermal modified wood altered the material properties. Basic data about the 

melamine treatment (density, solution uptake, WPG, bulking, EMC, EMCR) of both untreated and 

thermally modified wood can be seen in Table 22.  
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Table 22: Results of the treatment of beech, ash, lime and poplar with melamine resin: Oven dry 

density (OD), solution uptake (SU), weight percent gain (WPG), bulking and equilibrium moisture 

content (EMC) and reduced equilibrium moisture content (EMCR). Mean values with standard 

deviation in parenthesis  

 

Wood 

species 

Treatment OD  

[kg/m³] 

Solution 

uptake [%] 

WPG [%] Bulking 

[%] 

EMCR [%] 

Beech Untreated reference 737 (38) - - - 11.9 (0.1)* 

 Melamine 804 (30) 88 (7) 13.7 (1.1) 2.8 (1.3) 11.4 (0.2) 

 Thermo 660 (18) - - - 5.1 (0.1)* 

 Thermo melamine 763 (14) 78 (4) 14.2 (0.8) -1.4 (0.5) 8.4 (0.3) 

Ash Untreated reference 624 (32) - - - 11.7 (0.1) 

 Melamine 676 (34) 100 (5) 12.8 (1.2) 3.6 (1.1) 11.4 (0.2) 

 Thermo 562 (38) - - - 4.9 (0.3) 

 Thermo melamine 650 (35) 96 (14) 14.2 (1.2) -1.6 (0.4) 7.9 (0.1) 

Lime  Untreated reference 569 (44) - - - 10.4 (0.2) 

 Melamine 618 (38) 129 (11) 12.9 (3.9) 2.7 (1.7) 10.5 (0.1) 

 Thermo 498 (43) - - - 4.9 (0.3) 

 Thermo melamine 576 (44) 139 (21) 13.3 (1.4) -2.6 (0.9) 7.7 (0.2) 

Poplar Untreated reference 346 (47) - - - 11.6 (0.1) 

 Melamine 367 (41) 234 (36) 13.4 (3.7) 3.9 (1.1) 11.9 (0.1) 

 Thermo 308 (54) - - - 5.5 (0.3) 

 Thermo melamine 361 (46) 252 (46) 13.7 (2.5) -3.6 (2.8) 9.3 (0.1) 

 

*= EMCR of R and T equals EMC: These treatment groups have not been modified with melamine 

resin. 

 

 

The solid content of the impregnation solution was adjusted to the density of the different wood species; 

similar weight percent gains (WPG) throughout all treated materials were achieved. Poplar and lime 

were more heterogeneous in density and treatability than beech and ash. Thus, resulted in a higher 

variability for solution uptake and respectively WPG. The melamine treatment of unmodified wood as 

well as thermally modified wood was similar regarding SU and WPG but there were major differences 

related to the resulting bulking (Table 22). The bulking of all four thermally modified wood species was 

negative after melamine treatment. Behr et al. (2017b) (see 6.3.3, p. 49) also showed negative bulking 

in treated thermally modified poplar with melamine resin: The higher the modification temperature, the 

lower the bulking after melamine treatment. The resulting hydrophobation of the cell wall due to thermal 

modification might hinder impregnation modification with water-based solutions thereof. Bulking is 

regarded as an indicator of modification intensity (Lukowsky 1999; Hill 2006). Low bulking of the 

thermally modified wood indicates a low level of cell wall penetration. This could be shown by 

SEM/EDX images (to be published). If not in the cell wall, a major proportion of the resin is potentially 

located on the S3 layer in the cell lumens which are visible in microscopic analysis, rather forming a 

coating and ‘bubbles’ (Mahnert et al. 2013).  

There could be another reason for negative bulking after melamine treatment of thermally modified 

wood. Alkaline impregnation agents might be able to remove degraded cell wall components such as 

hemicellulose constituents as used in Kraft pulping for cellulose production. The leaching can be more 

pronounced for hardwoods than for softwoods (Alén et al. 2002) as hardwood hemicelluloses are mainly 
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pentoses which degrade faster under the influence of heat treatment than hexoses (Zaman et al. 2000). 

Melamine resin formulations are alkaline (pH 9 to 10) and might not be strong enough to degrade cell 

wall components but might be able to solve and leach the thermally degraded hemicelluloses. Melamine 

resin treatment might have separate effects: Cell wall bulking due to incorporation and leaching 

thermally degraded hemicellulose components, which leads to shrinkage. When thermally modified 

wood is impregnated with melamine resin, the two effects are combined: As the swelling of thermally 

modified wood is limited, the alkaline, leaching-induced shrinkage becomes apparent. 

The EMC of thermally modified wood was reduced to about 5 % compared to 11 % - 12 % of 

unmodified wood. The melamine treated thermally modified wood showed an increased EMCR: The 

combined modification raised the EMC from 5 % - 6 % to 8 % - 9 %, depending on the wood species. 

The reason for the increased EMCR of melamine treated thermally modified wood could be that the resin 

itself is hydrophilic and contributes to moisture sorption (Hosseinpourpia et al. 2016).  

Melamine treatment of unmodified wood did not alter the EMCR in this study. Melamine treatment is 

often reported to reduce the EMC (Epmeier et al. 2004), (Kielmann et al. 2013). When calculating the 

moisture content of modified wood, the denominator is changed by the mass of the modification agent. 

Just by the difference in mass, the EMC calculation would show reduced moisture values. The EMCR is 

based on the dry mass [g] after modification, subtracting WPG [g] and therefore excludes the influence 

of the increased mass. 

7.3.2 Brinell Hardness  

The results for the Brinell hardness are shown in Table 23. The Brinell hardness (HB) results can be 

divided into three main findings:  

(1) Thermal modification led to a significantly decreased hardness except for lime.  

(2) Treatment with melamine resin led to a significantly increased hardness of untreated wood and 

thermally modified wood.  

(3) The hardness after combined modification was significantly higher than that of untreated wood, 

except for poplar. 
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Table 23: Results of Brinell hardness (HB) Mean values with standard deviation in 

parenthesis  

 

Wood species Treatment HB  

[N/mm²] 

Beech Untreated reference 41 (4) 

 Melamine 65 (8) 

 Thermo 34 (11) 

 Thermo melamine 53 (13) 

Ash Untreated reference 36 (4) 

 Melamine 48 (6) 

 Thermo 30 (5) 

 Thermo melamine 45 (8) 

Lime  Untreated reference 19 (4) 

 Melamine 25 (3) 

 Thermo 18 (3) 

 Thermo melamine 24 (4) 

Poplar Untreated reference 10 (4) 

 Melamine 12 (3) 

 Thermo 7 (3) 

 Thermo melamine 10 (2) 

 

The hardness of untreated wood is strongly dependent on the density (Kollmann 1951). Thermal 

modification reduced the density of the material (see 6.2.1) and could have led to decreased hardness. 

The reports about the hardness of thermally modified wood are contradictory: The hardness was 

increased after short treatment durations even at high temperatures, but longer treatment durations 

decrease the hardness (Sundqvist et al. 2006). The applied treatment time in this study was 7.5 h at the 

maximum temperature of 230 °C. (Wetzig et al. 2012) reported this process to alter the hardness of 

beech, ash and poplar as following: mild treatments increased hardness, more severe treatments 

decreased hardness. High temperature thermal modification as in this study can be regarded as a severe 

treatment and the EMC was reduced to less than half of the value for unmodified wood. In unmodified 

wood the reduction of EMC leads to increased hardness (Kollmann 1951). In thermally modified wood 

the mass loss induced hardness decrease has a stronger influence than the reduced EMC. 

The melamine treatment increased the hardness of thermally modified wood to levels higher than that 

of unmodified references. Literature about the hardness values after combined wood modification is 

scarce. Mahnert (2013) reported that a melamine treatment of thermally modified koto and limba wood 

increased the hardness significantly. The changed EMCR of TM might have influenced the hardness of 

TM as discussed for thermally modified wood. Nevertheless, this effect is very small and is largely 

outweighed by the increase of hardness due to the incorporated resin. 

Treatment with melamine resin increased the hardness, potentially by increasing the density of the 

materials and because of the polymeric network (Table 23). It increased the hardness of untreated as 

well as thermally modified wood treated therewith. The WPGs were adjusted to the densities to create 

even resin loads per weight. This led to higher resin uptake per wood volume for high-density wood 

species: Melamine treatment led to a higher absolute increase of hardness with wood species of higher 



Results and Discussion 

62 

 

densities. Melamine treatment on its own was often found to increase the hardness (Inoue et al. 1993a; 

Epmeier et al. 2004), dependent on the WPG. Rapp (1999) reported the hardness of the modification 

agent itself has great influence on the hardness of the modified material. He found melamine treated 

wood of the same density as untreated wood being substantially harder. The high increase in hardness 

of beech in comparison to poplar supports, that the polymeric network more than the density is the 

reason for the increased hardness. 

7.3.3 Three-point bending 

The multiple results of the three-point bending test (see Table 24) are shown and discussed as follows: 

Modulus of elasticity (MOE), Modulus of rupture (MOR) and work in bending (WB).  

 

 

7.3.3.1 Modulus of elasticity (MOE) 

The MOE of thermally modified beech was increased. In contrast, the MOE of thermally modified ash, 

lime and poplar were slightly decreased (1 % for poplar and up to 20 % for lime; Table 24). Boonstra et 

al. (2007) described the MOE of thermally modified wood as being higher at 165 °C and the same as 

the reference at 185 °C treatment temperature. Esteves and Pereira (2009) reported the same behavior, 

as the MOE increased for less intense thermal treatments and decreased for more severe treatments. 

Rautkari et al. (2014) reported the MOE of thermally modified wood being unchanged compared to 

unmodified Scots pine, when treated under high pressure and saturated steam at 180 °C. Wetzig et al. 

(2012) found only minor changes in static MOE after thermal modification at different temperatures of 

beech, ash and poplar. 

Table 24: Results of three-point bending test: Modulus of elasticity (MOE), Modulus of rupture (MOR) 

and work in bending (WB) Mean values with standard deviation in parenthesis  

 

Wood 

species 

Treatment MOE  

[N/mm²] 

MOR  

[N/mm²] 

WB  

[N/mm²] 

Beech Untreated reference 11500 (650)  109 (7) 20.7 (4.4) 

 Melamine 12780 (720)  114 (13) 9.5 (2.5) 

 Thermo 12300 (900) 86 (13) 5.8 (1.6) 

 Thermo melamine 13830 (680)  99 (11) 6.5 (1.3) 

Ash Untreated reference 12750 (1850)  121 (16) 27.3 (8.3) 

 Melamine 12740 (1270)  125 (19) 14.3 (4.2)  

 Thermo 13380 (2580) 86 (12) 5.4 (1.4) 

 Thermo melamine 12000 (2360)  89 (16) 6.3 (1.8) 

Lime  Untreated reference 9940 (2590) 77 (16) 13.2 (4.4) 

 Melamine 11430 (2420) 97 (24) 8.5 (3.6) 

 Thermo 11930 (1990)  75 (19) 5.7 (2.6) 

 Thermo melamine 10930 (2590) 73 (27) 4.8 (3.1) 

Poplar Untreated reference 7900 (1140) 59 (9) 9.7 (2.1) 

 Melamine 8320 (960) 70 (11) 6.8 (2.2) 

 Thermo 7950 (2450) 56 (17) 5.1 (2.4) 

 Thermo melamine 6900 (1660) 50 (9) 3.7 (1.2) 
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There was no uniform influence of double modification on the MOE of the investigated wood species 

in this study: The MOE of double modified beech and ash was increased and that of lime and poplar 

decreased, resulting in levels ±10 % of the unmodified material. (Sun et al. 2013) described the MOE 

to decrease after thermal modification of MUF treatment of high-density eucalyptus, whereas in this 

study the MOE of the high-density species beech and ash was decreased. 

The melamine treatment led to slightly increased MOE values of all unmodified wood species. This is 

backed by the literature: Deka and Saikia (2000) also found a slight increase in MOE after treatment of 

a softwood (Anthocephalus cadamba Miq.) with melamine resin.  

The influence of the EMC on the MOE of wood is known to be linear (Kollmann 1951). Bollmus (2011) 

found the same behavior of DMDHEU modified beech and untreated beech. The resin modification did 

not change the moisture dependency of MOE.  

The MOE did not change as much as other material properties e.g. MOR and WB. A stress-strain curve 

(Figure 12) of unmodified and modified wood shows that the elastic limit of modified wood seemed to 

be unchanged followed by abrupt rupture without the wood-typical plastic deformation, where most of 

the energy will be absorbed as shown by Mahnert (2013) for tropical double modified wood. The minor 

MOE changes do not represent the overall material characteristics. 

 

 

Figure 12: Exemplary stress-strain curve of untreated and modified beech specimens of this study 

 

7.3.3.2 Modulus of rupture (MOR) 

Thermal modification decreased the MOR of all four wood species. The melamine treatment did not 

improve the MOR of thermally modified wood. The MOR was increased after melamine treatment of 

unmodified wood except for beech. 
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Thermal modification led to decreased MOR values of all tested wood species. The MOR of beech and 

ash were more reduced compared to that of lime and poplar. This confirms the results of Wetzig et al. 

(2012). Lahtela and Kärki (2014) also found that the MOR of thermally modified pine decreased with 

increasing treatment temperature. Boonstra et al. (2007) correlated the reduced bending strength of 

thermally modified wood to degraded hemicelluloses. The reduction of sorption properties of thermally 

modified wood was shown (Tiemann 1915). Kollmann (1951) investigated the influence of EMC on 

mechanical properties of wood: Reducing the EMC from 10 % to 5 % increased the MOR of beech and 

ash. Esteves and Pereira (2009) qualify the positive influence of low EMC values on the strength of 

thermally modified wood by the greater negative influence of lowered density (see Table 24) caused by 

the degraded hemicelluloses.  

The double modification did not alter MOR significantly compared to thermally modification: It was 

slightly increased in beech, unchanged in ash and lime and was slightly decreased in poplar (Table 24). 

Lahtela and Kärki (2014) investigated thermally modified melamine treated Scots pine: The MOR after 

combined treatment was only slightly reduced compared to melamine treatment, whereas the sole 

thermal treatment decreased the MOR more than double modification. It should be considered that they 

used an impregnation solution with a high solid content (47 %). The results are still comparable to those 

in the present study. Sun et al. (2013) recorded no change in MOR between sole thermal treatment and 

MUF and subsequent thermal treatment. 

The MOR of melamine treated wood was slightly increased. Epmeier et al. (2004) also found a slight 

increase of the MOR of pine wood after melamine modification. The MOR of small defect free wood 

specimens is density dependent (Kollmann 1951). As the density of melamine treated wood was 

increased it might have contributed to increase MOR values. Inoue et al. (1993a) treated sugi 

(Cryptomeria japonica D. Don) and produced comparable results with 25 % melamine formaldehyde 

resin the MOR increased by 18 %. The bending strength in three-point bending depended on the 

compression and tensile strength of the specimens (Kollmann 1951). Tensile strength was reported to 

decrease after wood modification with thermosetting resins (Bollmus 2011; Leitch 2016), while 

transverse compression strength was increased (Gindl et al. 2003). The MOR was influenced by both 

tensile and compression strength.  

According to Kollmann (1951) the mechanical properties of wood and wood products are moisture 

dependent. The EMCR was not altered by melamine treatment. Rapp and Peek (1995) recorded un-

altered EMCR values of melamine treated wood. As the moisture content is unchanged, it can be ruled 

out as an influence on the mechanical properties of melamine treated wood. The EMCR of all four double 

modified wood species increased at the same rate, whereas the MOR changed differently for each wood 

species. There was no clear influence of the changed EMCR on MOR. 

7.3.3.3 Work in bending (WB) 
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The work in bending (WB) was changed severely by all applied modifications. Thermal modification 

strongly reduced the WB (-64 % overall; up to -80 % in ash). Thermal modification was often described 

to reduce the WB or impact bending significantly. Boonstra et al. (2007) reported about 50 % reduction 

in impact bending after thermal modification. Welzbacher (2007) found thermal modification processes 

to affect the impact bending negatively (-50 %). Wetzig et al. (2012) recorded reduction of impact 

bending up to 59 %, only mildly treated ash showed an increased impact bending strength (+10 %). 

They suggest the high density of ash to be the critical factor for this behavior. Lahtela and Kärki (2014) 

reported 45 % reduction of impact strength after thermal modification at high temperature.  

Double modification slightly decreased WB in lime and poplar and increased the WB in beech and ash 

compared to thermal modification. Comparable results were obtained by Mahnert (2013) and Lahtela 

and Kärki (2014). Mahnert (2013) reported about combined thermo and melamine modification of 

tropical hardwoods koto and limba. He found only minor changes in WB and IB after the melamine 

treatment of thermally modified wood (Table 25). Lahtela and Kärki (2014) reported the impact strength 

of thermally modified, melamine treated and double modified wood to be similarly reduced to less than 

50 % of the reference’s strength.  

 

 

The reduction of WB after melamine treatment was 42 % over all wood species. Stamm (1964) reported 

a strong reduction of impact strength for melamine modified solid wood. Lukowsky (1999) and Epmeier 

et al. (2004) also recorded reduced impact strength after melamine modification. 

In accordance with Kollmann (1951), the EMC does not influence the impact bending or work in 

bending until fiber saturation, whereas water saturated samples have a strongly increased impact bending 

strength. Nevertheless, minor changes in EMC do not change the WB measurably and can be excluded 

as a reason for the altered WB. The EMCR of double modified wood is higher than that of all four 

Table 25 : Results of Brinell hardness and three-point bending test: Brinell Hardness, Modulus of elasticity 

(MOE), Modulus of rupture (MOR) and impact bending (IB). Mean relative changes of the treatment groups 

compared to the control group in percent. 

* In MAHNERT the values are partially referenced to the thermally modified specimens 

 

Authors Wood 

species 

Treatment Δ Brinell 

Hardness 

[%] 

Δ MOE  

[%] 

Δ MOR  

[%] 

Δ IB  

[%] 

Sun et al. Eucalyptus Thermo (220 °C) - -20 -50 - 

(2013)  MUF - +11 +10 - 

  MUF + Thermo (220 °C) - -10 -50 - 

Lahtela and  Pine Thermo (212 °C) - - -40 -52 

Kärki (2014)  Melamine - - -22 -52 

  Melamine + Thermo 

(212 °C) 
- - -26 -59 

Mahnert Koto Thermo -27 +10 -25 -36 

(2013)  Thermo + Melamine +5 - - -48 

 Limba Thermo + Melamine +60* - - +8* 

 Pine Thermo + Melamine - (-15 / -20)* (-10 / -15)* - 



Conclusions 

66 

 

thermally modified wood species. As the WB changed depending on species there seemed to be no 

apparent influence of EMCR on WB. The Brinell hardness, Modulus of elasticity (MOE), Modulus of 

rupture (MOR) and work in bending (WB) of the treatments as relative change to the untreated 

references are shown in Table 26. 

 

 

The treatment of thermally modified wood with melamine resin can be summarized as follows: The 

negative bulking seemed to indicate an incomplete cell wall penetration of the impregnation solution. 

The negative bulking might also be a result of alkaline induced leaching of degraded cell wall 

components. The hardness was increased after melamine treatment of thermally modified wood except 

for poplar. MOE, MOR and WB were slightly increased or decreased depending on wood species. 

7.4 Conclusions 

 Aim of this study was to improve the mechanical properties of thermally modified wood by treatment 

with melamine resin.  

The reduced hardness of thermally modified wood was improved by melamine treatment and was 

significantly increased to values above untreated wood except for poplar.  

Embrittlement is an issue of modified wood. Double treatment did not change the work in bending 

compared to thermally modified wood. However, non-structural usage such as decking and cladding 

would be most suitable for double modified wood with its increased durability, bending strength and 

surface hardness.  

Table 26: Results of Brinell hardness and three-point bending test: Brinell Hardness, Modulus of elasticity 

(MOE), Modulus of rupture (MOR) and work in bending (WB). Mean relative changes of the treatment 

groups compared to untreated wood in percent and significance indicator: * = significant differences of 

treatment group to untreated reference; - = not significantly different 

 

Wood 

species 

Treatment Δ Brinell 

Hardness [%] 

Δ MOE  

[%] 

Δ MOR  

[%] 

Δ WB  

[%] 

Beech Untreated reference -  - - -  - - -  - 

 Melamine 57 * 11 * 5 - -54 * 

 Thermo -17 * 7 - -21 * -72 * 

 Thermo melamine 29 * 20 * -9 * -69 * 

Ash Untreated reference -  - - -  - - -  - 

 Melamine 35 * 0 * 3 * -48 * 

 Thermo -15 * 5 * -29 * -80 * 

 Thermo melamine 27 * -6 - -26 * -77 * 

Lime  Untreated reference -  - - -  - - -  - 

 Melamine 30 * 15 * 26 * -36 * 

 Thermo -7 - 20 - -3 - -57 * 

 Thermo melamine 25 * 10 - -5 - -64 * 

Poplar Untreated reference -  - - -  - - -  - 

 Melamine 15 * 5 - 19 * -30 * 

 Thermo -32 * 1 * -5 - -47 * 

 Thermo melamine -5 - -13 * -15 * -62 * 
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In indoor applications, the double modified wood also has the advantage of the appearance of dark 

thermally modified wood and the improved hardness properties of melamine treated wood.  

Thermal modification in combination with melamine treatment can expand the field of application and 

create new markets for native hardwoods.   
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8 Paper VII: Natural weathering - Weathering protection of European 

hardwoods through double modification  

(Published at the International Research Group on Wood Protection (IRG/WP 17-30715) - 2017) 

Abstract 

Beech and poplar were thermally modified, treated with melamine resin and both treatments were 

combined. The weathering performance (cracks and general appearance) of modified beech and poplar 

was assessed in natural weathering and correlated to the material properties work in bending (WB) and 

Brinell hardness. In addition, the equilibrium moisture content after exposure of 12 months and 

subsequent climatization was evaluated. Melamine treated beech and thermally modified poplar 

performed best while still showing serious cracks. The melamine treatment increased the equilibrium 

moisture content, indicating a rather hygroscopic behavior of the resin. All treated groups showed 

increased moisture contents after weathering and subsequent climatization. The thermal and melamine 

treatment decreased the WB substantially. The melamine treatment of the thermally modified wood 

(double modification) did not further decrease the WB. WB as an indicator of brittleness could not be 

used to explain the cracking behavior. Thermal modification decreased the Brinell hardness, whereas 

melamine treatment increased it. The increased Brinell hardness of melamine treated groups and the 

double modified groups can be accounted for the stabilized surfaces without erosion. 

8.1 Introduction 

Wood exposed outdoors faces changes and deterioration, quite in contrast to the user’s expectations. 

Surface tensions lead to cracks and further degrade the surface (Altgen et al. 2016). Wood preservatives 

can provide protection from decomposition by fungi and insects. Some preservative systems face legal 

restrictions and might have toxic issues because non-target organisms are affected, too. Disposal at the 

end of service life might be challenging for preservative treated wood (Rapp 1999). Other techniques 

include modification of wood. They proved to be able to protect wood from the elements and to provide 

new material properties (Hill 2006). Thermal wood modification reduces the equilibrium moisture 

content (EMC) and thereby protects wood against fungal degradation and increases dimensional 

stability. It also provides a desired dark color (Esteves and Pereira 2009). Crack susceptibility, on the 

other hand is mostly unchanged (Feist and Sell 1987) and the hardness is reduced (Sundqvist et al. 

2006). This restriction the use as outdoor flooring material, being a high value product with certain 

customer demands. The low weathering resistance and high crack susceptibility are drawbacks of 

thermally modified wood and can presumably be compensated by melamine treatment. Treatment with 

thermosetting resins such as melamine formaldehyde resin provide dimensional stability (Lukowsky 

1999), excellent biological protection (Mahnert 2013), weathering protection (Hansmann et al. 2006) 

and increased hardness (Inoue et al. 1993a; Hansmann et al. 2006). The equilibrium moisture content 
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was unchanged (Rapp and Peek 1995). The combination of modification systems is capable to provide 

new material properties and join several advantageous properties. Improvements of the weathering 

properties through combined wood modification would not only expand the field of application but also 

create new markets for native wood as a renewable and sustainable resource.  

 

Therefore, the aim of this study was to improve the weathering properties of thermally modified 

hardwoods through melamine treatment. The treatment performance was assessed via WPG, the altered 

mechanical properties after modification were evaluated through Brinell hardness and work in bending 

and the weathering performance was assessed in a natural weathering test. It was of interest whether the 

weathering performance can be explained by other material properties influenced by the wood 

modifications such as the hardness and the work in bending. 

8.2 Material and Methods 

8.2.1 Source material 

Beech and poplar were cut to the specifics required for natural weathering (DIN EN 927-3 2006) and 

three-point bending (DIN 52 186 1978). The used resin (Madurit MW840 75WA) was provided by 

INEOS Melamines, Frankfurt, Germany. 

8.2.2 Thermal modification 

The thermal modification used in this study was provided by timura Holzmanufaktur GmbH. A vacuum 

process with maximum temperatures of 230 °C was carried out. 

8.2.3 Treatment with melamine resin 

Impregnation with several concentrations of an aqueous solution of methylated melamine formaldehyde 

resin was carried out in a vacuum pressure full cell process at 100 mbar 1 h and 12 bar 5 h. Curing of 

the specimens in laboratory ovens was carried out at a maximum temperature of 120 °C under dry 

conditions over several weeks for extra careful drying. For the calculation of the solution uptake (SU) 

and the weight percent gain (WPG) see Eq. 10 and Eq. 11, 7.2.3, p. 56. 

8.2.4 Mechanical testing 

Mechanical tests were conducted to describe the impact of the modifications on the material properties. 

8.2.4.1 Three-point bending 

The bending tests according to DIN 52 186 (1978) were performed using separately cut and treated 

specimens (10 x 10 x 180 mm³). A Zwick/Roell universal testing machine with a 10 kN load cell was 

used.  
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8.2.4.2 Brinell hardness 

The hardness was tested based on EN 1534 (2000) 4 times on the backside of each of the field weathering 

specimens. 

8.2.5 Natural weathering test 

The natural weathering test was conducted according to DIN EN 927-3 (2006) with six specimens per 

treatment group. The specimens were treated as described above. The exposed surface was sanded flat 

(150 grid) prior to edge sealing and exposure. The specimens were exposed at 45-degree inclination 

facing south direction at the University of Göttingen. After each six months of exposure, the specimens 

were climatized at 20 °C and 65 % RH until equilibrium for crack evaluation according to 

DIN ISO 4628-4 (1997). Every specimen was evaluated for the number of cracks (0 (no cracks 

detectable) to 5 (cracks in large numbers)) and the width of cracks (0 (no visible cracks at 10x 

magnification) to 5 (very wide cracks, wider than 1 mm)). In addition to the crack evaluation, the overall 

appearance was subjectively evaluated using grades: 1 (excellent), 2 (good), 3 (satisfactory), 4 

(sufficient) and 5 (failed). The authors considered this evaluation step advisable as the bare numbers of 

crack evaluations often insufficiently represent the appearance of the surfaces (Brischke et al. 2016).  

 

The moisture content of the specimens was recorded before the start and after climatization after each 

six months to evaluate the EMC at 20 °C/65 %RH repeatedly over a longer period of weathering. To 

minimize the influence of the additional weight due to the chemical modification (Akitsu et al. 1993), 

the reduced equilibrium moisture content (EMCR) was calculated based on the dry weight of the 

specimens before modification (Eq. 14) 

 

      EMCR =
𝑀𝑒−𝑀2

𝑀2−𝑊𝑃𝐺
∗ 100         (14) 

 

Me = Equilibrium mass at 20 °C/65 %RH [g] 

M2 = Dry mass after curing [g] 

WPG = Weight percent gain [%] 

 

8.3 Results and Discussion 

8.3.1  Impregnation and curing 

The results of the impregnation and curing can be seen in Table 27. 
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Table 27: Natural weathering specimens and 3-point bending specimens of untreated and thermally modified 

beech and poplar after impregnation with melamine resin. Solid content (SC) and weight percent gain (WPG) in 

percent. Aim of melamine resin concentration 1 = 15 %WPG. 2 = 25 %WPG. Mean group values and standard 

deviation in parenthesis 

 

Wood 

species 

Treatment SC [%] WPG 3-Point 

Bending [%] 

WPG natural 

weathering [%] 

Beech Melamine 1 23 20.0 (0.9) 19.4 (1.5) 

 Melamine 2 32 29.6 (1.2) 26.3 (3.2) 
 Thermo + melamine 1 23 18.1 (0.9) 14.8 (1.4) 

 Thermo + melamine 2 32 25.7 (1.6) 23.6 (2.7) 

Poplar Melamine 1 12 10.9 (5.4) 11.7 (2.0) 

 Melamine 2 18 15.1 (8.3) 22.2 (3.6) 

 Thermo + melamine 1 12 17.6 (2.5) 18.0 (3.3) 

 Thermo + melamine 2 18 25.0 (4.9) 27.2 (5.0) 

 
The impregnation and curing resulted in WPGs of 15 % and 25 %. The impregnation resulted in even 

resin treatment of beech and thermally modified beech. Poplar was not treated evenly, some parts of 

some specimens showed refractory behaviour and therefore no or very little resin uptake. This resulted 

in higher standard deviations of the poplar treatment groups. 

8.3.2 Mechanical testing 

The assessed mechanical properties were work in bending in a 3-point bending test and the Brinell 

hardness (Table 28). 

 

Table 28: Results of the mechanical testing, work in bending in a static three-point bending test and the Brinell 

hardness tested on the backside of the natural weathering specimens. Melamine resin concentration 

1 = 15 %WPG. 2 = 25 %WPG. Mean group values and standard deviation in parenthesis 

 

Wood 

species 

Treatment Work in bending [N/mm²] Brinell hardness [N/mm²] 

Beech Untreated reference 21.7 (3.4) 40 (4) 

 Melamine 1 9.8 (3.0) 71 (12) 

 Melamine 2 9.4 (2.1) 88 (18) 

 Thermo 10.8 (3.5) 31 (4) 
 Thermo + melamine 1 10.8 (2.6) 49 (7) 

 Thermo + melamine 2 8.6 (2.8) 65 (9) 

Poplar Untreated reference 15.1 (4.2) 18 (4) 

 Melamine 1 13.0 (5.1) 22 (5) 

 Melamine 2 11.4 (7.5) 29 (6) 

 Thermo 6.6 (1.7) 12 (3) 

 Thermo + melamine 1 6.1 (2.3) 19 (4) 

 Thermo + melamine 2 6.3 (1.9) 24 (6) 

 

8.3.2.1 Three-point bending 

The work in bending (WB) is a value drawn from a static bending test but closely related to the 

(dynamic) impact bending strength (Kollmann 1951). Both thermal modification and treatment with 

melamine resin influenced the WB negatively. Beech showed similar reduction in WB by any treatment. 

The lowest values were recorded for double-modified specimens with high resin load. Poplar showed a 

stronger influence of the thermal treatment than of the melamine treatment resulting in lower WB values. 
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Reduction in WB was reported for thermal modification and for melamine treatment (Stamm 1964), 

(Boonstra et al. 2007) and is confirmed by the current results. 

 

8.3.2.2 Brinell hardness 

The hardness was measured at four different locations on the unweathered side of the natural weathering 

specimens before the weathering test. In general, the hardness decreased through the thermal treatment 

and was increased by the melamine treatment. The double-modified specimens showed hardness values 

above those of the untreated specimens. The hardness increased with the resin load, higher hardness 

values were measured for higher resin loads regardless of species and treatment. Beech with higher 

density showed higher hardness values treated and untreated. Hardness reduction through thermal 

modification of wood was reported by Wetzig et al. (2012). The increase in hardness through melamine 

treatment dependent on the resin load is according to the literature (Inoue et al. 1993a). Double modified 

hardwood was shown to have an increased hardness compared to untreated wood (Behr et al. 2018b) 

(see 7.3.2 p. 60). 

8.3.3 Weathering performance 

The results of the natural weathering modified beech and poplar can be seen in Table 29. The focus was 

put on the crack behaviour, as this is critical for a long service life in outdoor applications with or without 

coating. The degradation of the surfaces was visually assessed. 

 

Table 29: Evaluation of the natural weathering test according to DIN ISO 4628-4 (1997) and subjective surface 

appearance according to grades 1 to 5 after 12 months. Melamine resin concentration 1 = 15 %WPG. 

2 = 25 %WPG. Mean group values and standard deviation in parenthesis 

 

Wood 

species 

Treatment Field test  

Number of cracks 

Field test  

Width of cracks 

Subjective surface 

assessment 

Beech Untreated reference 3.3 2.7 Failed  

 Melamine 1 3.3 2.0 Sufficient 

 Melamine 2 2.0 2.0 Sufficient 

 Thermo 4.0 2.7 Failed 
 Thermo + melamine 1 3.7 1.3 Satisfactory 

 Thermo + melamine 2 3.7 1.3 Satisfactory 

Poplar Untreated reference 5.0 1.8 Failed 

 Melamine 1 2.8 1.7 Good 

 Melamine 2 2.7 2.0 Good 

 Thermo 1.7 1.3 Sufficient 

 Thermo + melamine 1 2.2 1.3 Satisfactory 

 Thermo + melamine 2 1.8 1.5 Failed 

 

8.3.3.1 Crack evaluation 

The treatments were differently effective at protecting the surface. Both untreated references showed 

the most cracks and the widest cracks. The thermally modified beech performed as meagre as the 

references with slightly more cracks of the same width. Thermally modified poplar performed better 
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than the references, with distinctively less cracks. No improvement of crack behaviour was reported for 

thermally modified wood by other authors (Feist and Sell 1987). In contrast, Rapp (2001) reported of 

less cracks after heat treatment and weathering. Melamine treated poplar was the best performing 

material combination in this study, whereas melamine treated beech only performed slightly better than 

untreated references. There are inconsistent reports about the cracking behaviour of melamine treated 

wood. Hansmann et al. (2006) and Rapp and Peek (1995) state reduced cracking after melamine 

treatment, Lukowsky (1999) reported no reduction in cracks after melamine treatment. Rapp (1999) 

reported about increased cracking after melamine treatment. Cracking could in part be prevented by the 

double modification, especially for beech. There were still cracks but the width was considerably 

reduced. Mahnert (2013) also reported about reduced cracking of double modified tropical hardwoods 

compared with the thermally modified groups.  

8.3.3.2 Equilibrium moisture content 

The moisture contents of the beech and poplar specimens after several months of exposure and 

subsequent climatization can be seen in Figure 13. 

 
 

Figure 13: Moisture content (EMCR) at 20 °C/65 %RH of the natural weathering specimens before and after 

repeated exposure (6 and 12 month) and climatization at 20 °C/65 %RH. Left side: beech (B), right side: 

poplar (P). Treatments: Thermal modification (T), melamine resin treatment (M) and double modification 

(TM) with varying resin content 1 = 15 %WPG. 2 = 25 %WPG. 

 

The EMC of thermally modified wood was lower than the references. Over time, the EMCs of thermally 

modified beech and poplar increased by 2 %, whereas the references’ EMCs increased only 1 %. 

Mitchell et al. (1953) reported an increase of EMC of thermally modified sawdust after repeated climatic 

cycles. Altgen (2016) described this behaviour as the reversible part of hydrophobation through thermal 

modification.  

Melamine treatment is described as being neither hygroscopic nor hydrophobic (Lukowsky 1999). In 

this study, the EMCR of melamine treated beech was 1.6 % higher than that of untreated wood regardless 

of resin load. After 12 months, this difference increased to 3.7 % and showed a rather hydrophilic 
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tendency. Melamine treated poplar showed the same trend but with a higher EMCR of the higher resin 

load.  

The EMCR of double modified wood was generally higher than that of thermally modified wood. This 

was more pronounced for poplar, with higher EMCRs of the higher resin load, it was reversed for the 

beech thermo melamine groups with lower EMCRs of the high WPG group. 

8.3.3.3 Surface degradation 

The degradation of the surfaces had to be considered as well. Under the impact of UV radiation and 

water, lignin was decomposed and then the exposed fibers are eroded. This was the case for the untreated 

references and the thermally modified specimens. Jämsä et al. (2000) also recorded the same weathering 

and cracks on thermally modified wood. On the other hand, many authors report lignin stabilization 

through degradation, with the result of less leachable components (Esteves and Pereira 2009). The 

melamine treated specimens on the other hand, did not show any sign of erosion, the surfaces were 

stabilized by the treatment (Figure 14). They are therefore a potentially more suitable substrate for paints 

and varnishes. 

 

 

Figure 14: Modified beech after 18 months natural weathering: a) untreated beech; b) thermally modified 

beech; c) thermally modified wood treated with melamine resin; d) melamine treated beech 

 

8.3.4 Weathering performance and material properties 

The modification of wood altered the weathering performance and the mechanical properties (Table 28). 

Crack development is often associated with the stiffness of a material or the inability of a material for 

relaxation and stress distribution (Altgen et al. 2016). The mechanical properties could provide data to 

explain the crack behaviour of the modified materials. 

 

The hardness is not a value typically associated with surface weathering. However, the increase in 

hardness through melamine resin might be an indicator for the stabilization of the surfaces shown in 

Figure 13. Higher hardness might have caused less erosion of melamine treated wood and double 

modified wood. 

a) b) c) d) 

10mm 10mm 10mm 10mm 
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The work in bending (WB) of all modified groups was decreased, whereas the cracking behaviour was 

positively influenced by most modifications. Thermally modified beech was more brittle (-50 %) than 

the untreated references and was rated insufficient regarding cracks.  

Thermo poplar performed slightly better than the reference regarding cracks and was even more brittle 

(-56 %). Melamine treatment of beech led to embrittlement of the references, but thermally modified 

wood was not further embrittled. Mahnert (2013) reported the same behavior for double modified 

hardwoods. The crack performance was positively influenced, especially for the double modified 

material. The same behavior was recorded for poplar. The melamine treated groups performed best of 

all materials and had the least reduction in WB. The crack behavior of double modified poplar depended 

on the resin load. The low WPG group showed satisfactory crack behavior and the high WPG group 

were rated as low as the untreated reference while both groups showed the same reduction in WB. The 

WB values did not provide a cohesive representation of the cracking behavior.  

The equilibrium moisture content (EMCR) of the treated groups changed depending on the treatment. 

There was no cohesive correlation apparent to support the weathering behaviour.  

8.4 Conclusions 

 Modification of beech and poplar improved the weathering performance to different extends. Beech 

showed the least cracking after double modification and poplar after melamine treatment.  

The cracking behaviour is rather difficult to predict based on other material properties. The work in 

bending (WB) is an indicator of the flexibility or brittleness of a material but did not correlate with the 

cracking behaviour. The increased hardness through melamine treatment was a good indicator of the 

reduced erosion of the weathered surfaces. The equilibrium moisture content (EMC) of wood was 

reduced through thermal modification and increased through melamine treatment. After long-time 

exposure, the EMC of modified wood increased stronger than that of untreated wood. 
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9 Paper VIII: Accelerated weathering – Performance of beech and poplar 

after double modification 

(unpublished) 

Abstract 

Beech and poplar were thermally modified, treated with melamine resin and both treatments were 

combined. The performance of modified beech and poplar was assessed in accelerated weathering. 

Melamine treated beech and thermally modified poplar had the best crack performance while still 

showing cracks. The combined modification did not improve the performance of the single modification 

methods. The cracking behavior was evaluated using the amount and the width of the cracks. The two 

properties opposed each other; there were either many narrow cracks or few large cracks. Accelerated 

weathering tests were designed to evaluate material properties and performances faster than natural 

weathering. In this study, the results of the accelerated weathering had a low correlation with the natural 

weathering results for beech and could not be used to reliably predict the material performance. The 

results for poplar were more concise, the best performing material in both tests was the melamine treated 

group. 

9.1 Introduction 

Wood exposed outdoors faces changes and deterioration, quite in contrast to the user’s expectations. 

The exposed materials can deteriorate through biological decay, destroying the structure and leading to 

a shortened service life. Surface tensions lead to checks, cracks and further degrade the surface (Feist 

and Hon 1984; Altgen 2016). The service life of such materials might also be shortened. Most chrome 

free preservatives can provide protection from decomposition by fungi and insects, but not from surface 

degradation through weathering and crack development. Some preservative systems face legal 

restrictions and might have toxic issues because non-target organisms are affected. Disposal at the end 

of service life might be challenging for preservative treated wood (Rapp 1999). Other techniques to 

protect wood in service include modification of wood. They proved to be able to protect wood from the 

elements and to provide new material properties (Hill 2006). Thermal wood modification reduces the 

equilibrium moisture content (EMC) and thereby protects wood against fungal degradation and 

increases dimensional stability. It also provides an aesthetically pleasing dark color (Esteves and Pereira 

2009). Crack susceptibility, on the other hand is mostly unchanged (Feist and Sell 1987) and the 

hardness is reduced (Sundqvist et al. 2006). This restricts the use as outdoor flooring material, being a 

high value product with certain customer demands. The low weathering resistance and high crack 

susceptibility are drawbacks of thermally modified wood and can presumably be compensated by 

melamine treatment. Treatment with thermosetting resins such as melamine formaldehyde resin 

generally provided dimensional stability (Lukowsky 1999), biological protection (Lukowsky 1999), 
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weathering protection (Hansmann et al. 2006), increased hardness (Inoue et al. 1993a; Deka et al. 2007) 

and decreased crack susceptibility (Mahnert 2013). The combination of modification systems is capable 

to provide new material properties and join several advantageous properties (Behr et al. 2018b). Natural 

weathering tests with conditions close to the real environment are one way of testing the material 

performance but they also take the longest to conduct. Artificial weathering could deliver results earlier, 

the question remains, whether the results represent the material properties in natural weathering.  

The aim of this study was to assess the weathering properties of thermally modified hardwoods after 

melamine treatment during an accelerated weathering test. It was of particular interest whether the 

weathering performance in accelerated weathering can be correlated to natural weathering. 

9.2 Material and Methods 

9.2.1 Source material 

Whole slabs of beech and poplar were cut in two, every other half was subjected to the thermal 

modification process, the other half was kept untreated. After thermal treatment, the material was cut to 

the specifics required (150 x 78 x 20 mm³) for accelerated weathering tests (DIN EN 927-6 2006).  

9.2.2 Thermal modification 

Half the material for this study was subjected to thermal treatment. The thermal modification used in 

this study was provided by timura Holzmanufaktur GmbH (Rottleberode, Südharz, Germany). A thermal 

treatment, vacuum-press process (Vacu³) with a maximum temperature of 230 °C was carried out 

(Wetzig et al. 2012). 

 

9.2.3 Treatment with melamine resin 

One half of the untreated and thermally modified material was subjected to a downstream melamine 

treatment. The impregnations with aqueous solutions with several solid contents (SC) of methylated 

melamine formaldehyde resin were carried out in a vacuum pressure full cell process at 100 mbar for 

1 h and 12 bar for 5 h. The SC of the solutions were adjusted to the density and solution uptake (SU) of 

beech and poplar to achieve similar WPGs for both species. For the calculation of SU and WPG see 

Eq. 10 and Eq. 11, 7.2.3, p. 56. The specimens were cured in laboratory ovens at a maximum 

temperature of 120 °C under dry conditions over three weeks.  

 

After treatment all specimens of the six treatment groups (untreated, thermally modified, melamine 

treated (high SC and low SC) and double modification (high SC and low SC) were stored at 

20 °C/65 %RH until equilibrium moisture content (EMC) was achieved. The surface which was later 
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exposed was sanded flat (150 grid) prior to edge sealing with a commercial sealant (Pyrotect Schutzlack 

2K, Rütgers Organics GmbH, Mannheim, Germany) and climatized again until EMC was reached. 

9.2.4 Accelerated weathering test 

The accelerated weathering test was conducted according to (DIN EN 927-6 2006) in a QUV accelerated 

weathering tester (Q-Lab; Saarbrücken, Germany) with four specimens per treatment group and one as 

unexposed reference sample. The untreated group served as control. The specimens were exposed for 7 

(beech) and 10 (poplar) weathering cycles according to DIN EN 927-6 2006. Each cycle involved 24 h 

conditioning (45 ± 3 °C, 95 % ± 1 %RH) and exposure to UVA light (maximum absorption at 340 nm; 

0.89 W m-2 nm−1) from a fluorescent light source over 48 cycles, each involving 2.5 h of UV irradiation 

at 60 °C and 30 min cold water spray (6–7 l min−1).  

 

The exposed surfaces were evaluated according to DIN ISO 4628-4 (1997). Every specimen was 

evaluated for the number of cracks (0 (no cracks detectable) to 5 (cracks in large numbers)) and the 

width of cracks (0 (no visible cracks at 10 x magnification) to 5 (cracks wider than 1 mm)). 

9.3 Results and Discussion 

9.3.1 Impregnation and curing 

The results of the impregnation and curing can be seen in Table 30. 

 

Table 30: Accelerated weathering specimens of untreated and thermally modified beech and poplar after 

impregnation with melamine resin. Solid content (SC) of impregnation solution; solution uptake (SU); weight 

percent gain (WPG) in percent. Mean group values and standard deviation in parenthesis. 

 

Wood species Treatment SC [%] SU [%] WPG [%] 

Beech Melamine 25 98 (5) 19.3 (1.1) 

  40 103 (5) 35.8 (1.9) 
 Thermo + melamine 25 89 (4) 17.8 (1.2) 

  40 95 (6) 32.8 (3.8) 

Poplar Melamine 10 166 (23) 11.8 (1.7) 

  18 166 (27) 23.6 (4.5) 

 Thermo + melamine 10 185 (10) 14.6 (0.6) 

  18 186 (19) 28.5 (3.2) 

 

Pre-trials were conducted to ensure that the treatment with two SCs results in WPGs of 15 % and 25 %. 

This goal was achieved for most of the treatment groups except for the high SC groups of beech. Poplar 

was not treated evenly, some parts of some specimens showed refractory behaviour and therefore no or 

very little resin uptake. This resulted in high standard deviations of some of the poplar treatment groups. 

 

9.3.2 Weathering performance 
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The results of the accelerated weathering of modified beech and poplar can be seen in Table 31. The 

focus was on the crack behaviour, as this is critical for a long service life in outdoor applications with 

or without coating. 

 

Table 31: Evaluation of the accelerated weathering of beech (7 cycles) and poplar (10 cycles) according to DIN 

ISO 4628-4 (1997). number of cracks (0 (no cracks detectable) to 5 (cracks in large numbers)) and the width of 

cracks (0 (no visible cracks at 10 x magnification) to 5 (cracks wider than 1 mm)). Solid content (SC) of 

impregnation solution.  

 

Wood species Treatment SC [%] Classification of 

number of cracks 

Classification of 

width of cracks 

Beech Untreated reference - 5 3 

 Melamine 1 25 4 3 

 Melamine 2 40 4 4 

 Thermo - 4 4 
 Thermo + melamine 1 25 2 4 

 Thermo + melamine 2 40 1 4 

Poplar Untreated reference - 5 2 

 Melamine 1 10 5 2 

 Melamine 2 18 1 3 

 Thermo - 1 3 

 Thermo + melamine 1 10 1 3 

 Thermo + melamine 2 18 1 4 

 

For both species the untreated references showed the highest number of cracks but not the widest cracks. 

Overall, the treatments were differently effective at protecting the surface from cracks. All treatments 

reduced the number of cracks, except for the low SC melamine treated poplar which showed the same 

number of cracks as the references. On the other hand, all modifications increased the width of the 

cracks, except for the low SC melamine treated groups.  

The number of cracks of thermally modified wood decreased in both species in comparison to untreated 

wood, but the width of the cracks increased. No improvement of crack behaviour was reported for 

thermally modified wood by other authors (Feist and Sell 1987). However, Rapp (2001) reported less 

cracks after heat treatment and weathering.  

Melamine treated wood showed rather similar results to the thermal treatment. The number of cracks 

was reduced, but the width of those cracks increased. This was more pronounced at the higher SC/WPG. 

There are inconsistent reports about the cracking behaviour of melamine treated wood. Hansmann et al. 

(2006) and Rapp and Peek (1995) stated reduced cracking after melamine treatment, Lukowsky (1999) 

reported no reduction of cracks after melamine treatment. Rapp (1999) reported increased cracking after 

melamine treatment. These reports were not specific on whether the number of cracks or the size of the 

cracks changed compared to untreated material. 

Double modified material performed best regarding the number of cracks recorded in beech. Double 

modified poplar did not perform better than melamine treated or thermally modified poplar. Mahnert 

(2013) reported reduced cracking of double modified hardwoods compared with the thermally modified 

groups in an artificial weathering test. He used a less intense thermal treatment and a different 

impregnation solution formulation which might account for the differing results. 
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When comparing the data of the artificial weathering test with the natural weathering test (Behr et al. 

2017a), only a minor coherence of the results was perceivable. Solely the number of cracks of modified 

poplar seemed generally cohesive between the two tests. It has been mentioned by other authors, that 

the results of artificial weathering have only a limited significance about natural weathering behavior 

((Feist and Sell 1987; Sudiyanni et al. 1996; Brischke et al. 2016). Feist and Sell (1987) found that the 

surfaces of naturally and artificially weathered beech were comparably smooth but with different 

severity of cracking. There were fewer cracks in artificially weathered thermally treated specimens than 

untreated specimens, whereas naturally weathered thermally modified beech showed the same number 

of cracks as the untreated beech. Sudiyanni et al. (1996) found a coherence of the outdoor and artificially 

weathered surfaces of DMDHEU modified and untreated wooden surfaces. The results of the surface 

performance of the other treatments (e.g. acetic anhydride, paraformaldehyde, PF resin) in their study 

scattered largely and showed a low coherence of artificially and naturally weathered specimens. Overall, 

they reported a more severe deterioration of the artificially weathered surfaces than the outdoor 

weathered surfaces at a supposedly equivalent exposure (1080 h artificial weathering; 1 year outdoor 

weathering). The conditions the specimens were exposed to in the respective tests were evidently very 

different. The amount and intensity of UV radiation, the amount of water sprayed, the sharp and rapid 

changes of climatic conditions in the artificial weathering test are different to natural weathering.  

 

The number of times climatic conditions change was earlier identified as possibly the number one factor 

for the development of cracks in wooden surfaces. Surface tension caused by changing moisture content 

as a function of environmental changes. 

 

In natural weathering, the temperature, humidity and exposure to radiation also vary largely by site and 

throughout the years. However, the long-term effect of natural weathering and artificial weathering 

might be the same, causing delignified, grey and eroded surfaces (Feist and Hon 1984). For crack 

development, however, the specific conditions seemed to be highly relevant. The most influential factor 

for cracks is the change of the moisture content. Moisture gradients are often the steepest at the exposed 

surfaces. The subsequent swelling and shrinking induce unbalanced stresses in wooden surfaces. 

Precipitation and dew are the main reasons for increased moisture on the surfaces. If an exposed wooden 

component was wet during the night (dew) and the sun heated up the surface in the morning, the top 

layers of the surface heat up after the water has evaporated, causing shrinkage of the top layers. The 

underlaying layers of cell walls are still wet and bulked. This causes differential swelling and stresses 

and can lead to checks and cracks in the surface. Moisture changes naturally occur during rain events or 

day night transitions and temperature changes. Without weather changes like rain, this would mean one 

change from dry to wet during 24h, 7 times a week. In comparison the accelerated weathering test 

procedure has 48 changes of UV light (hot, dry) water spray (cold, wet) and one 24 h condensation phase 
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in one week. Thus, the accelerated weathering yields seven times the rate of natural weathering and is 

more aggressive towards crack development. 

9.4 Conclusions 

Modification improved the weathering performance of beech and poplar to different extends. Beech 

showed the least cracking after double modification and poplar after melamine treatment. The outdoor 

weathering behavior was rather difficult to predict based on accelerated weathering performance as the 

results differed from the natural weathering tests of the same materials. A general observation was 

confirmed for natural and accelerated weathering. Wood modification can reduce the number of cracks 

and checks in exposed surfaces. There were less cracks in modified materials but also some larger cracks 

as well. Melamine treatment could potentially be used to further reduce the appearance of surface cracks 

of thermally modified hardwood. 
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10 General discussion 

Several studies about the specific aspects of the topic melamine resin treatment of hardwood and 

thermally modified hardwood have been conducted and are discussed as a whole in the following 

chapters. 

10.1 Influence of curing conditions and process control, properties of melamine treated 

wood 

Gravimetric methods were used to monitor the solution uptake (SU) and weight percent gain (WPG) 

after impregnation and curing, respectively. SU is linearly influenced by wood species, density, and 

moisture content. Wood density can be considered, but not really be changed, if a certain wood species 

is to be treated. The solid content (SC) will be adapted to achieve the desired WPG. The WPG is, in 

general, not influenced by the curing process and cannot be used to control the ‘quality’. Other methods 

to control the curing process results are the technical and biological properties of the product, but this 

can take a long time as is not suitable for process control. 

10.1.1 Chemical analysis 

Changes in the amount, composition or constitution of the impregnation agent in the specimens caused 

by the curing process were recorded using differential scanning calorimetry, nitrogen, and formaldehyde 

analysis. The differences in chemical and mechanical properties were used to analyze the influence of 

the curing processes.  

10.1.1.1 Differential scanning calorimetry 

The basic curing characteristics of methylated melamine formaldehyde resin (MMF) can be determined 

under dynamic conditions by differential scanning calorimetry (DSC). The reaction enthalpy of uncured 

and cured samples can be used to determine the degree of curing (degree of conversion). Studies have 

been conducted to analyze the curing characteristics of urea formaldehyde (UF) and melamine 

formaldehyde (MF) resins (Szesztay et al. 1996; Xing et al. 2005; Bergmann et al. 2006), with and 

without catalysts, in the presence of powdered wood, and different wood components. Generally 

speaking, the reaction of thermosetting resins was accelerated by catalysts, making them react at lower 

temperatures in the DSC. The same was found to be true for resins mixed with wood powder. The 

catalyzing effect is explained by the acidity of wood (Devallencourt et al. 2000). For the combination 

of beech and MF in this study, the goal was to analyze the curing reaction of melamine resin in solid 

wood. As this has not been done before, the experiment had to be dialed in first. The SC of the 

impregnation solution was increased to 50 % to increase the chemical reaction in the DSC to be 

recordable. The specimens consisted of wood, water, resin, and pH buffer. The pH buffer had an 

inhibiting effect of about 10 °C on the curing temperatures in the DSC tests. An onset temperature of 
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100 °C was recorded without the use of triethanolamine (TEA), and 110 °C with 1 % TEA (see 4.5, p. 

36). Following Mahnert (2013), and with regard to production scale impregnation, all impregnations 

were conducted using 1 % TEA as pH buffer. A SC of 20 % resulted in about 10 % melamine resin in 

the specimen – too low to record the curing reaction. Further, the amount of wood content in the mix 

with resin could inhibit the reaction and reduce the reaction enthalpy due to diffusion effects (Xing et 

al. 2005).  

The test series with incrementally longer curing durations at different temperatures showed the residual 

reaction enthalpy compared to uncured specimens showing the enthalpy of the complete curing reaction. 

The degree of curing was positively correlated with curing time and temperature. This could confirm 

the results of Lukowsky (1999), who demonstrated that the curing process is more complete at higher 

temperatures and showed a lower limit of approx. 100 °C for complete curing (see p. 28). Curing at 

lower temperatures (80 °C) would have to be indefinitely longer and eventually would never be 

complete. Hagstrand (1999) explained this by the formation of an incompletely cured network, which is 

sterically hindered by its immobility after reaching the gelation point. In the presence of wood, this 

could mean that the resin condenses to a higher molecular weight before they would crosslink (Xing et 

al. 2005). During the curing in the DSC, no water can escape, as the crucibles are sealed. Condensation 

reactions produce water, which would evaporate in an open reaction (drying oven, etc.). The presence 

of the water of the impregnation solution and the reaction water will potentially further influence the 

chemical reactions. The pressure build-up in the crucible differs from most ambient pressure curing 

conditions. Using DSC with high-pressure crucibles was still a close schematic simulation of melamine 

resin curing in solid wood. The results display a rather realistic picture of complete MF curing in wood 

at 120 °C within several hours. For the comparison with product dimensions it must be considered that 

the specimens in the crucibles were 4 x 4.5 mm (cylindric) and thus rather instantly heated and 

subsequently cured. A board of 30 mm thickness has to be heated through first to ensure even curing 

even in the middle of that board. The curing process has to be oriented at curing the center of the board; 

measurements should be taken when the core of boards of varying thickness reaches the maximum 

curing temperature. 

Bergmann et al. (2006) analyzed the influence of wood and wood components on the curing of MF 

resins. They found the influence of the components increasing in the order cellulose, wood flour, lignin, 

and hemicellulose. In their study, 20 % wood flour content in the resin mix lowered the curing 

temperature by 47 °C, similar to what was found in this study with a WPG of approximately 50 %. The 

most influential component was xylan (hemicellulose), decreasing the curing temperature by 89 °C. An 

explanation is given by the indication of the pH values of the wood components, with hemicellulose 

being the most acidic of them. The results of Bergmann et al. (2006) could be an indication of how the 

degraded hemicellulose and the potentially altered pH value of thermally modified wood could influence 

resin curing.  
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Referring to the objectives 1 and 2 of this study, the DSC analysis provided basic data for the curing 

process of melamine formaldehyde resin impregnated into beech wood and cured in situ. The DSC 

analysis showed the influence of curing temperature and duration on the degree of conversion (degree 

of curing). The principles of the test could potentially be used for different species of wood or other 

types of resin, too.  

10.1.1.2 Nitrogen analysis 

The nitrogen content of impregnation agents was used to monitor retention values after curing (weight 

percent gain, WPG) or determine the fixation after a subsequent extraction or leaching procedure or 

long-term weathering in an outdoor application. As the nitrogen content of wood is negligible (0.1 % – 

0.2 %), all the nitrogen detected after treatment will have originated from the resin. Every melamine 

molecule contains six nitrogen atoms, approximately 50 % of the base resin, depending on the 

formulation (Rapp 1999). When the WPG and nitrogen content values were correlated, an overall 

accordance was achieved. The higher the WPG, the higher the nitrogen content. When comparing the 

dry and wet processes, a discrepancy could be seen. The WPG of the 120 °C curing at dry and steam 

conditions were 17.2 % and 14.8 %. In contrast, the nitrogen contents were rather close: 7.45 % and 

7.98 %. The same pattern emerged for the curing at 105 °C: dry and steam curing resulted in 16.5 % and 

15.1 % WPG, and 7.73 and 7.63 % nitrogen content, respectively. Steam curing resulted in the same 

nitrogen content but lower WPGs. Another major component of the resin is formaldehyde. The analysis 

of the formaldehyde content will complement these findings (10.1.1.3, p. 85). 

The influence of the curing conditions on nitrogen fixation (NF) are expected to show higher fixation 

values the higher the curing temperature and the longer the curing is (Wepner 2006). When the extraction 

method ‘leaching’ was used, a time sensitive distinction could be made between dry-cured specimens 

(see Table 9, p. 29). The longer the curing, the higher the fixation. Higher temperatures also led to higher 

nitrogen fixation values. This was also observed by Sint (2010) for the curing of methylated melamine 

formaldehyde (MMF) in bombax wood: 90 °C curing led to high leaching values and 120 °C curing led 

to low leaching values after leaching according to DIN EN 84 (1997). In the separately conducted 

nitrogen fixation test (hot water extraction after milling) the influence of the curing temperature seemed 

to be benign, leading the author to conclude that the curing temperature does not have a significant 

influence on the fixation of the resin. This was separately tested in paper II. Hot water extraction found 

uncured melamine resin to have the same fixation values as MMF cured at 120 °C for 48 h. A leaching 

procedure following DIN EN 84 (1997), on the other hand, resulted in clear differences of cured and 

uncured specimens and a positive influence of time and temperature on NF.  

When the humidity of the curing process was varied, the results varied, too. Here, higher humidity 

partially led to lower fixation rates (see Table 9, p. 29), or they were rather indistinguishable (see Table 

10, p. 32). Schaffert (2006) stated a fixation value of above 90 % for the DMDHEU curing under hot 

steam atmosphere as sufficiently high. However, he also reported about inexplicable variations of the 
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fixation values between the different modification agents. In this study, only one resin formulation was 

used. Bollmus (2011) stated an influence of the amount of resin used on the nitrogen fixation of 

DMDHEU: higher concentrations resulted in higher fixation values. In the present study, only one 

concentration was used. Mahnert (2013) treated production-relevant sized boards of several thermally 

modified hardwood species with MF and used the nitrogen content and fixation to control the treatment 

quality across the cross section (outer layer – core layer) and along of the boards (end – middle – end) 

and found slightly higher nitrogen contents at the ends and in the middle of the boards. The fixation, 

however, was high throughout all placements. In addition, he treated thermally modified Scots pine 

specimens with the same resin and found lower fixation values (85 %). Reasons for the different fixation 

values between the species were not discussed.  

Nitrogen fixation analysis as a measure of curing control has proven to be a challenge, several changes 

in methodology have happened in the hope of more reliable results: Soxhlet extractions were initially 

used and later replaced by hot water extraction (HWE) (Krause 2006; Schaffert 2006). HWE was found 

to give unreliable results (fixation values of cured and uncured MF in paper II, 3.3, p. 18) and was 

replaced by a leaching procedure following DIN EN 84 (1997). This enabled clear distinction between 

uncured and fully cured specimens. Krause (2006) used nitrogen content and fixation to analyze the 

influence of different catalysts on the curing reaction of DMDHEU but referred to the formaldehyde 

emission as a measure to evaluate the fixation after different curing processes. It was, however, difficult 

to differentiate between different curing processes, e.g., 105 °C and 120 °C after 4 h of curing (the DSC 

results suggested there should be clear differences). Nitrogen analysis was a valuable tool to help analyze 

the influence of the curing conditions on the material properties, but it would be difficult to only rely on 

nitrogen analysis.  

10.1.1.3 Formaldehyde analysis 

The influence of temperature and duration of dry curing processes were congruent with the nitrogen 

fixation values. Longer durations and higher temperatures led to lower formaldehyde emissions (FA-E). 

The temperature had a more severe influence on the FA-E than the duration. Increasing the curing 

duration from 4 h to 24 h compared to raising the temperature of dry curing for 24 h from 105 °C to 

120 °C reduced the FA-E from 239 mg/kg to 227 mg/kg (105°C) and from 224 mg/kg to 129 mg/kg 

(120 °C), respectively. As a relevant property for wood products in interior application (DIN EN 13986 

2015) and a measure of the degree of curing, the formaldehyde emissions were analyzed in multiple 

studies (Petersen et al. 1972; Lukowsky et al. 1998; Krause 2006; Wepner 2006) which were 

unanimously represented in the above-mentioned studies. This study comes to the same result. A 

complete curing has either released the formaldehyde during the curing process, or fixed it permanently 

in the network (Lukowsky et al. 1998). Schaffert (2006) recommended high maximum curing 

temperatures for low formaldehyde emissions. Wepner (2006) used 140 °C to 150 °C in a press for 
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curing beech veneers treated with DMDHEU. Prolonging the curing processes achieved lower 

formaldehyde emissions. 

The humidity had a distinct influence on the formaldehyde emissions. The formaldehyde emissions 

(tested after curing) were lower at high humidity curings. Still temperature dependent, the FA-E values 

of high humidity curing were low (63 mg/kg at 105 °C and 29 mg/kg at 120 °C) after 24 h curing 

processes at 80 % steam level (see Table 9, 29p.). Wepner (2006) recorded lower formaldehyde 

emissions of DMDHEU treated veneers with a higher moisture content. Krause (2006) and Schaffert 

(2006) reported the same behavior for curing of DMDHEU treated solid wood. Petersen et al. (1972) 

reported twice the emission of formaldehyde during the curing process of particle boards with 15 % 

EMC compared to 10 % EMC. The amount of formaldehyde in the resin during curing influenced the 

crosslinking properties of the resin (Xing et al. 2005). They describe the influence of formaldehyde on 

the complete crosslinking of UF resins into a glass-state in DSC investigations, where a higher 

formaldehyde ratio led to more crosslinking. Correlating this mechanism, the lower formaldehyde 

content and the lower nitrogen fixation values in this study suggest that the high humidity during steam 

processes could cause incomplete curing and lower fixation.  

The formaldehyde analysis showed the influence of the curing conditions on the chemical properties. It 

would be possible to use the formaldehyde emissions as curing control.  

10.1.2 Influence of the curing conditions on mechanical properties and dimensional 

stability 

10.1.2.1 Mechanical properties 

The influence of the curing conditions on the mechanical properties after different curing processes were 

analyzed and compared to the nitrogen fixation and formaldehyde properties. 

The work in bending (WB, static bending test) was the most sensitive property towards differences of 

the curing processes. High temperatures, long curing durations, and dry conditions led to the most 

reduction in WB. Here, a rather complete resin network is expected (Lukowsky 1999). Generally, the 

more complete the curing is, the stiffer the resin network and the larger the reduction in IB or WB 

(Lukowsky 2002). Less reduction in WB was recorded for incomplete curing (90 °C dry conditions), 

which also showed reduced nitrogen fixation values. Another factor influencing resin network formation 

and the subsequent mechanical properties was the formaldehyde content. It was shown that the high 

humidity conditions reduced the formaldehyde content by almost 50 %, and the same consistent 

differences were not recorded for the WB. The influence was more pronounced for processes at 120 °C 

than at 105 °C or 90 °C. No more plastic deformation in bending tests were recorded (Bollmus 2011; 

Mahnert 2013). Bollmus (2011) named the polymerization of the resin (DMDHEU) and potential cross-

linking of the resin to cell wall components as potential reasons. According to Lukowsky (1999) and 
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Devallencourt et al. (2000), cross linking was not the main reason for the mode of action of MMF resins. 

Formaldehyde (gas) treatment caused embrittlement of the wood samples treated therewith (Rowell 

1983). Here, a pure cross-linking effect was shown, with low impact bending values and increased 

hardness and MOR values. The formaldehyde treatment included fixation of the formaldehyde in wood 

using hydrochloric acid (Burmester and Wille 1976). It has to be noted that this step was not undertaken 

in the present study, and the formaldehyde might not be properly fixated to act as a modification agent.  

The bending strength of beech was slightly increased after melamine treatment (MOR untreated: 

134 N/mm², minimum MOR: 105 °C, 24 h, 0 % RH: 128 N/mm², maximum MOR 120 °C, 24 h, 100 % 

RH: 154 N/mm², see addendum paper III, 4.5, p. 36). The MOR of high humidity curing was slightly 

higher than that of dry curing, but standard deviations were as large as the differences between the 

treatment groups. MOR seemed to be higher when the work in bending was also higher. Again, the 

differences were not significant. Other aspects influencing the MOR are further discussed in chapter 

10.2.1, p. 90. The bending strength greatly depends on the tensile and compression strength, as both 

stresses are present. The tensile strength is known to decrease after wood modifications (Bollmus 2011). 

An increase of the compressive strength was not measured directly but the increased Brinell hardness is 

a strong indicator for that. 

The influence on hardness by the different curing conditions was not investigated. It was expected that 

the influence of curing temperature, duration, and humidity would rather be benign, and other factors 

such as resin concentration were more influential  (see paper VII, 8.3.2.2, p. 72). The hardness of wood 

products is an issue when used as flooring. Hence, increasing the hardness was sought to be achieved 

with many different modifications (Epmeier et al. 2004). Hardness was increased regardless of the 

method but to varying degrees. The methods included chemical modification with acetic anhydride 

(Epmeier et al. 2004) to strictly cell wall impregnation modification with melamine resin tested through 

nano indentation (Gindl et al. 2004) or lumen filling with, e.g., wax treatment (Scholz 2011).  

The mechanical properties were influenced by the curing condition to a varying degree. The bending 

strength was not influenced meaningfully and would not be suitable as quality control. Work in bending, 

however, was quite sensitive to the curing parameters and could be used in the future to characterize the 

influence of curing process parameters on the material properties.  

When regarding full scale production, the mechanical properties as well as the FA-E are critical 

properties to be considered. The processes will most likely be conducted employing hot steam conditions 

and at a maximum temperature of 120 °C rather than 100 °C (Rapp 1999; Schaffert 2006; Mahnert 

2013). Thus, the mechanical properties such as WB would be affected less negatively while achieving 

low formaldehyde emissions of the product. 

10.1.2.2 Dimensional stability 
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The dimensional stability (anti-swell-efficiency ASE) was recorded for dry processes of double-

modified material (see paper I, p. 13 and paper V, p. 37). The ASE of melamine-treated wood was 

caused by the bulking and was therefore indirectly monitored via bulking (Rapp 1999). In this study, 

lower bulking values were recorded for steam curing than for dry curing (see Table 12, p. 36). Generally, 

treatment with MF achieved ASE values as high as 40 % to 50 % when high solid content impregnation 

solutions were used (Rosca et al. 2003; Krause 2006; Mahnert 2013). Stamm and Seeborg (1936) and 

Sint et al. (2012) recorded higher dimensional stabilization of MF treated wood when cured at higher 

temperatures and higher nitrogen fixation. A more complete resin curing is quoted as a potential reason 

(Sint et al. 2012). Formaldehyde is important for resin formation during curing. It was shown that the 

formaldehyde content was very different for dry and steam processes (45 – 49 g/kg and 24 – 26 g/kg 

respectively, see paper III, 4.3.3.2, p. 31). Via the differences in bulking, a general difference in ASE of 

dry and steam processes can be considered. When formaldehyde was split off early in the curing process, 

it could have potentially led to fewer 3D connections in the network (Hagstrand and Oksman 2001). A 

less connected network is more flexible (see higher WB values) and could also mean less dimensional 

stabilization of the treated wood. This was also reported by Klüppel and Mai (2013), where lower 

bulking values were recorded after wet curing than after dry curing. In contrast, Schaffert (2006) did not 

record an influence of the humidity of the curing process on the dimensional stability of DMDHEU 

treated wood.  

10.1.3 Microscopy and curing conditions 

The properties of MMF treated wood were influenced by the curing conditions, as established in the 

previous chapters. Detecting and verify changes in material properties through imaging techniques has 

been attempted using both light microscopy techniques and electronic imagery. 

10.1.3.1 Light microscopy  

Light microscopy techniques have been used by several authors (Biziks et al. 2015; Mahrdt et al. 2015) 

to detect the changes in wooden materials after gluing or wood modification and was expected to work 

for this purpose, similarly with the modifications in this study. Transverse sections were analyzed; radial 

and tangential sections were not suitable for visual analysis. Safranin stained the untreated samples well 

but not the treated specimens. Safranin is commonly used to stain wooden cell walls in microscopy. 

Melamine seemed to block the access to the cell wall constituents, as reported with PF resin by Biziks 

et al. (2015). They visualized the penetration depth of different molecular weight phenol formaldehyde 

(PF) resins through the inability of safranin to stain the cross sections of modified beech wood. As the 

MF in this study has a molar mass sufficiently small enough to fully penetrate the cell walls, no untreated 

parts of the specimens were detected. 

Brilliant sulphoflavine (BSF) stained the treated specimens but not the untreated ones. However, no 

variances of differently cured specimens in staining were detectable. BSF staining is an established, 
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nonspecific protein method (Leemann and Ruch 1972) and was successfully used by Mahrdt et al. 

(2015) to detect the UF bond line and UF penetration by combined dyeing and fluorescence microscopy 

imaging. In this study, the nitrogen of the resin was used as the detectable protein equivalent. As for 

safranin staining, a rather even penetration of the specimens across the cell walls could be concluded, 

leaving no difference between the curing variations to be detected. Further analysis of the resin 

distribution was conducted using electron microscopy.  

10.1.3.2 Scanning electron microscopy and energy dispersive X-ray spectroscopy 

The WPG results (see Table 9 p. 29) suggested a higher residual resin content in the dry-cured specimens 

than the steam-cured specimens. The results of the bending tests also could be explained by the same 

mechanisms, or a different resin network formed under the different curing conditions (Klüppel and Mai 

2013). The analysis of scanning electron microscopy imaging and the elemental examination with 

energy dispersive X-ray spectroscopy could potentially quantify the influence of curing conditions on 

melamine-treated wood (Rapp 1999) and provide information on the structural integrity of the wooden 

matrix (Bollmus 2011). Comparing the results of EDX imaging of transverse surfaces showed no clear 

differences of the dry- and steam-cured specimens. There was, however, a distinct difference to the 

untreated specimens, as no nitrogen was detectable (no images recorded, not shown). Granules of pure 

melamine resin formed in the lumens of dry- and steam-cured specimens, with a more frequent 

occurrence in the steam-cured specimens. Evaporation of water, condensation reactions, and resin 

network formation happen simultaneously during a curing process. There is a constant concentration 

adjustment between impregnation solution in the lumens and the cell wall. While the water evaporates 

from the lumens, the resin remains on site. The resin concentration in the lumen increases, forcing more 

resin into the cell wall in an osmotic effort to maintain balance. This continues until the water has 

evaporated or until the gelation point of the resin is reached (Hagstrand 1999), and it is immobilized 

(Lukowsky 1999). Excess resin remained in the lumen and formed granules (Rapp 1999). Furuno et al. 

(2004) and Mahnert (2013) reported that the granules formed above a certain solution concentration of 

PF and MMF resin, respectively.  

The line scans complemented that situation, showing relatively high resin concentrations at the 

intersection of lumen and the cell wall (S3), with a gradual decline in nitrogen concentration in the 

secondary cell wall (S3) and a rather even distribution across S1 and the middle lamella (ML) (see 

Figure 9, p. 43). Investigations employing UMSP revealed different resin distributions. Higher MMF 

concentrations in beech towards the ML were reported by Kielmann et al. (2014), as analyzed by UMSP. 

Mahnert et al. (2013) also reported higher resin concentrations in the ML than in the S2 of MMF-treated 

koto and limba via UMSP measurements. In contrast, Rapp (1999) used SEM-EDX and TEM-EELS 

and recorded a slightly higher nitrogen concentration in the ML than in the S2 and a steeply rising 

gradient in the S3 towards the lumens, similar to the results in this study. RAPP (1999) explained the 

findings with the higher accessibility of lignin-rich areas such as the S3 and ML over the cellulose-rich 
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S2, and a resin diffusion gradient from the lumen towards the ML. Furuno and Goto (1973) found lower 

resin concentrations in the S2 than in the ML. Gindl et al. (2003) recorded higher MMF concentrations 

in the S2 than the ML using UMSP. The behavior is explained by the higher affinity of the hydrophilic 

MMF resin towards the S2 as a less lignified cell wall region. A slightly lower nitrogen content was 

attributed to the steam-cured specimens. The distribution of nitrogen across the cell wall itself did not 

seem to be affected by the curing conditions and showed a similar pattern. 

10.2 Material properties of double modified wood 

10.2.1 Mechanical properties 

The investigated material properties were Brinell hardness, modulus of elasticity, modulus of rupture 

(MOR, bending strength), and work in bending (WB, work to maximum load). Four species were 

investigated (beech, ash, lime, and poplar), featuring a broad spectrum of densities. The tested species 

reacted similarly, therefore only the properties of beech will be discussed. The mechanical properties 

are influenced by the natural variability of wood such as grain orientation, knots, density, which is why 

only a selection of defect-free specimens were treated and tested.  

Hardness (Brinell) was tested and found to decrease after thermal treatment and increased after 

melamine treatment, including in double-modified wood. These results confirmed the literature 

(Lukowsky 1999; Hill 2006; Esteves and Pereira 2009; Mahnert 2013; Lahtela and Kärki 2014). 

Hardness is foremost a function of the density of a wood-based material (Gindl et al. 2003), and the 

treatments influenced the material in the expected way: lower after heat treatment and increased after 

melamine treatment. The increase in density was caused by the incorporation of the resin into the cell 

walls and partly in the lumen. In this study, several SCs were used to match the WPGs of the different 

wood species. This might have resulted in an uneven increase in hardness when comparing the species, 

as the amount of resin also contributes to the increase in hardness (Kielmann et al. 2013). The SC for 

the treatment of untreated and thermally modified wood were also adapted to match the density and 

solution uptake. Thermally modified wood treated with melamine resin reacted differently regarding 

density and hardness than untreated wood. The density of wood only treated with melamine resin, and 

double-modified wood, increased by 9 % and 16 % with 20 % and 25 % SC, respectively. The increase 

in hardness was 57 % and 55 % (see Table 23, p. 61). Melamine treatment of thermally modified wood 

was as effective in increasing hardness as treating unmodified wood. Different solid contents (SC) of 

the impregnation solutions for thermally and untreated wood made it difficult to compare the increase 

in hardness. Thermally modified cell walls are more hydrophobic; the swelling due to solution uptake 

is lower (Esteves and Pereira 2009). However, both treated beech variations showed similar hardness 

increases. The differences in density are discussed further in the next paragraph (10.2.2 below, p. 92). 

The hardness of natural wood depends on the EMC (Kollmann 1951). This phenomenon should also be 

considered for modified wood. The EMC at 20 °C/65 %RH of the thermally modified beech was 5.1 % 
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compared to 11.9 % of the untreated specimens (Table 22, p. 59). In thermally treated wood, the EMC 

decreased with increasing treatment intensity, as does the decrease in hardness (Esteves and Pereira 

2009). The mass-loss-induced hardness decrease has a stronger influence than the reduced EMC could 

have. The EMC of (double-) modified wood is discussed further in chapter 10.2.3, p. 93. 

The bending strength (MOR) of untreated and thermally modified wood was slightly increased by 

melamine treatment in this study (from 109 N/mm² to 114 N/mm² and from 86 N/mm² to 99 N/mm², 

respectively). Resin treatment has been reported to increase (Sun et al. 2013) or decrease (Lahtela and 

Kärki 2014) the MOR, depending on type of resin and WPG. The common trait of resin-treated wood 

has been the lack of plastic deformation, followed by an abrupt rupture of the test specimens (Figure 12, 

7.3.3.1, p. 62). This behavior has been described for melamine and DMDHEU treated wood and double- 

modified wood (Bollmus 2011; Mahnert 2013). An increase of MOR has been described for double -

modified wood by Lahtela and Kärki (2014) when mild thermal treatment was involved rather than high 

thermal treatment temperatures. Krause (2006) described the incorporation of the resin in the cell walls 

as a potential reason for the rigidity of the specimens. Cross-linking of resin and cell wall components 

or the stiff three-dimensional network of the resin in the cell wall are described as reasons for the loss 

of plasticity.  

The most notably influenced mechanical property investigated was the work in bending (WB). WB was 

determined in the three-point bending test, too. As it shares high correspondence with the dynamically 

determined impact bending strength (IB), they will be discussed in conjunction. The influence of 

melamine treatment on the WB of wood was discussed in the paragraph above (10.1.2.1, p. 86) and by 

other authors (Lukowsky 1999; Epmeier et al. 2004). The influence of melamine treatment of thermally 

modified wood was rather minimal; no significant further decrease of WB was detected. Few authors 

have described the influence of resin treatment on WB or IB of thermally modified wood. Mahnert 

(2013) reported the IB to be rather unchanged, noting that melamine treatment of other authors led to a 

decreased WB (Epmeier et al. 2004). Mahnert (2013) named the recombination of thermal treatment 

degradation products and resin monomers as a potential reason for strengthening the wood structure and 

prevent a further decrease of IB. Lahtela and Kärki (2014) treated pine with melamine resin and a 

subsequent thermal modification and also reported the IB of double-modified material to be only slightly 

reduced compared to melamine or thermally treated specimens. The melamine and thermal treatment of 

Lahtela and Kärki (2014) are interchanged compared to this study and to Mahnert’s (2013). During their 

curing and subsequent thermal treatment, the temperatures for complete resin curing (120 °C) will occur 

before the temperatures for the development of thermal degradation products (140 °C – 170 °C and 

higher). This renders the potential recombination of resin and thermal degradation products improbable. 

However, the resulting mechanical properties of the different process combinations were very similar. 

The IB or WB of either thermal or melamine treatment are already significantly reduced; it could be 

argued that further reduction would involve serious deterioration of the wooden matrix. The discussed 
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increase in density of the double-modified material through melamine treatment could also increase the 

WB or prevent further decrease. The bulking of double-modified specimens compared to melamine-

treated ones is rather low, even negative at times, fostering the density increase (see 10.2.2, p. 92). 

10.2.2  Dimensional stability 

The increase of the dimensional stability of thermally modified poplar through melamine treatment was 

the focus of paper V (see chapter 6.3.3, p. 49). The dimensional stability was only marginally increased, 

depending on the thermal modification temperature. Material from two boards treated at maximum 

temperatures of 210 °C and 230 °C, respectively, were subsequently treated with melamine resin. The 

ASE of the lower temperature thermal treatment increased slightly from 45 % to 52 %, the ASE of the 

230 °C treated specimens did not change (from 52 % to 50 %). The double-modified samples (230 °C) 

had a slightly negative ASE compared to the thermally treated specimen. Similar negative ASE values 

(high thermal modification temperature of 230 °C) were also recorded for beech, ash, and lime. All four 

species (including the poplar treated at 230 °C) were treated in the same thermal modification and also 

in the same melamine treatment (see addendum, paper V, 6.5, p. 52). The SC of the impregnation 

solution was adapted to the varying densities and solution uptakes to achieve similar WPGs. The ASE 

of melamine-treated wood was WPG-dependent (Rosca et al. 2003). A positive ASE after melamine 

treatment with 10 % and 25 % SC of thermally modified tropical hardwoods (210 °C) was reported by 

Mahnert (2013). The bulking was zero for the 10 % and positive for the 25 % solution. When the same 

author treated thermally modified (180 °C and 220 °C) pine with 15 % and 30 % melamine resin, he 

reported positive bulking for the 180 °C-treated and negative bulking values for the 220 °C-treated pine. 

15 % melamine had lower bulking than 30 % melamine. In this study, the SC and WPG were rather low 

(wood density and solution uptake dependent). If the goal was to maximize the ASE through melamine 

treatment, a higher WPG would have been more suitable. However, the ASE of MF is limited, as an 

increase in ASE levels of approx. 40 % were observed at 30 % WPG (Mahnert 2013). Potential 

explanations for negative bulking of double-modified wood partially lie in the properties of thermally 

modified wood such as the increased hydrophobicity, limited water uptake, and limited subsequent 

swelling. As the swelling due to polar solvent (water) uptake of the thermally modified cell wall is 

limited, less resin can penetrate the cell walls (Mahnert 2013). Less resin in the cell wall would lead to 

less potential in permanent bulking (Mahnert 2013). The main mode of action of impregnation 

modifications such as melamine treatment regarding ASE is bulking rather than fixating the dry state 

(Hill 2006) and thus, restrictions of the bulking will greatly interfere with the bulking efficiency. 

Degradation products of the thermal treatment partly evaporate during treatment (Fengel 1966) and 

partly remain in the wood matrix (Altgen et al. 2016; Wentzel 2018) and can cause a) increased 

hydrophobicity and b) a bulking effect. Some of those degradation products are (water-) soluble and can 

be leached out, decreasing the volume and thus the dimensional stability of the specimen (Biziks et al. 

2014). This effect was mentioned as the reversible part of thermal modification by Altgen (2016). When 
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impregnated with a melamine resin solution (pH 9 – 10), these degradation products might have leached 

into the alkaline impregnation solution, as suggested by Mahnert (2013). The combination of a potential 

alkaline leaching of thermally degraded cell wall components and the decreased swelling and bulking 

could lead to the reduced and even negative bulking seen with low SC resin treatment of wood thermally 

treated with high temperatures.  

10.2.3 Weathering properties 

Outdoor usage without ground contact (Use Class 3.1 and 3.2 (DIN 68800-1 2011)) are potential 

applications for modified wood products. Untreated, non-durable wood species would not be suitable, 

as a durability class 2 or higher is required for these applications (DIN EN 350-2 1994). Grey surfaces 

are another issue, as well as checks and cracks and surface erosion. These are the main concerns when 

unfinished (without lacquer or paint) wood surfaces are used outdoors.  

Color changes, especially greying, is a common trait of all wood species and rather unavoidable when 

no surface protection layer is applied. It might therefore be acceptable or subject to perception 

management (Kaudewitz 2016). 

Surface cracks are an aesthetical issue as well as a potential safety hazard and also a subject of material 

integrity. Splinters can cause harm; cracks could entrap water and cause permanently increased moisture 

content of wood components and potentially lead to accelerated degradation of the material. 

Greying and subsequent erosion is caused by repeated UV degradation of cell wall components on the 

surface (50 µm – 100 µm) and by the subsequent leaching through water or damage by insects such as 

wasps. This mechanism can continue for decades. Less erosion was found on melamine-treated and 

double-modified specimens than on untreated and thermally modified specimens. The thermal 

modification did not differ from the untreated specimens in terms of crack development. Lignin was not 

altered much during thermal treatment (Hill 2006). Lignin was most vulnerable to UV degradation (Lin 

and Gierer 1972). The properties of modified wood towards UV were unchanged, the lignin degraded 

and was washed out. The cellulose was left on the surface, turning it white or grey. The resin treatment 

did not inhibit the greying but stabilized the surfaces. A potentially mechanical stabilization of the 

surface was suggested (Mahnert 2013). UMSP investigations of Mahnert et al. (2013) showed high 

nitrogen content in the middle lamella where most lignin is located. Lignin was not chemically stabilized 

through the melamine treatment and could still be degraded and washed out, turning the surface grey 

over time. However, the three-dimensional matrix of resin mechanically stabilized the surface and led 

to a slower weathering erosion.  

Testing the change in crack susceptibility of modified wood was the focus of the weathering tests. The 

weathering stability of thermally modified wood has been investigated before (Feist and Sell 1987; Hill 

2006; Esteves and Pereira 2009) and the verdict was heterogeneous. It depended on the treatment 
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intensity, treatment process, and wood species (Feist and Sell 1987). Weathering of double-modified 

wood was subject to only very few studies and can therefore mostly be discussed with results gathered 

by Mahnert (2013). Otherwise, the single modifications will be discussed, but as the previous chapters 

have shown, the influence of MMF on thermally modified wood was different than on untreated wood. 

In this study, thermally modified beech and poplar (230 °C) were treated with two different melamine 

resin concentrations to achieve 15 % and 25 % WPG in both species. Weathering of thermal 

modification of beech resulted in more cracks of the same size compared to the untreated controls 

(‘references’). The treatment of poplar resulted in fewer cracks of smaller size. The influence of the 

thermal treatment was species-dependent, as reported by Feist and Sell (1987). The double modification 

of beech resulted in slightly more cracks of smaller size; poplar showed no change in crack susceptibility 

after double-modification compared to thermal treatment. Mahnert (2013) compared the weathering 

behavior of koto and limba after thermal and double modification in two accelerated weathering setups. 

One test was the QUV accelerated weathering (DIN EN 927-6 2006) and the other a custom-built device 

following the nautical standard (EN 60 945 2002). After accelerated weathering, both species showed a 

“70 % to 80 % increase of the crack index” (evaluation of sum of crack width and number of cracks, 

following DIN ISO 2648-4 (1997)). Depending on the species, there was a considerable improvement 

compared to thermally modified wood. Much like the results in this study, weathering and crack 

susceptibly with or without treatment was species-dependent. It has to be noted that results of accelerated 

and natural weathering are difficult to compare (see paper VIII, 9.3, p. 78). This is also mentioned by 

Mahnert (2013). He suggested that material development have to be accompanied by long-term natural 

weathering tests. The conditions differ greatly between tests, UV spectrum of the light source, exposure 

time, weathering cycle schemes, and amount of water spray.  

Reasons for crack development in resin treated wood have previously been discussed (Rapp 1999; 

Krause 2006; Bollmus 2011). Most authors concluded that differential swelling due to drying and 

wetting of the surface led to tensions higher than the wood matrix can absorb. Wood species with a high 

potential to exert these tensions (high-density wood such as beech) are more prone to develop cracks. 

Properties of modified wood such as low flexibility and low impact bending strength could potentially 

showcase the inability to absorb stresses. They could not be linked to crack susceptibility in this study 

(chapter 8.3, p. 70). The increased dimensional stability was also not an indicator for crack susceptibility 

of double-modified material (Mahnert 2013). Rapp (1999) reported the slowly increasing EMC of 

MMF-treated wood to cause increasing crack development. Higher moisture uptake could cause more 

movement and induce more cracks. The EMCR levels during natural weathering in this study did 

increase over time. The initial EMCR (20 °C/65 %RH) of untreated, melamine-treated (low WPG), 

thermally modified, and double-modified (low WPG) beech were 11 %, 13 %, 6 %, and 12.5 %. After 

one year of outside weathering, they were recorded at 12%, 16 %, 8 %, and 14 %, respectively (Figure 

13, p. 73). The EMCR of the various treatments and their respective crack susceptibility did not support 

this assumption that the increased EMCR led to more crack development. All treatment groups showed 



General discussion 

95 

 

increased EMCR values but showed different levels of crack development (see paper VII, 8.3, p. 70), 

mostly reduced crack susceptibility. Other reasons for crack development might be rooted in the source 

material (wood) and the treatments it received before the weathering test began. Microcracks are 

reported to form during technical drying of lumber as well as during thermal treatment (Altgen et al. 

2014) and during curing of melamine-treated specimens (Mahnert 2013). These drying-induced tensions 

caused microcracks, not visible or detectable on a macroscopic scale of other drying defects (e.g., cell 

collapse and cracks). Once microcracks were formed, the low flexibility of the stiff resin network could 

facilitate crack development more easily (Bollmus 2011). Bollmus (2011) found ray cells of beech 

especially susceptible to damage by curing processes. She reported that very low resin concentrations 

or even water impregnation and subsequent hot steam curing damaged the ray cells (collapse, 

detachments) and significantly decreased the tensile strength. The SEM imaging (paper IV, chapter 5.3, 

p. 39) showed more microcracks in melamine-treated beech after dry curing than after steam curing. 

Steam curing could be more suitable to cure resin in wood with regards to crack susceptibility during 

weathering. Mahnert (2013) used steam curing during double modification and recorded an 

improvement in crack susceptibility compared to the thermally treated specimens. However, wood 

species, thermal treatment, and impregnation solution were different from the present study. The 

evaluation of weathered surfaces and crack susceptibility is an ongoing debate, since objective 

parameters such as crack width and number of cracks (DIN ISO 4628-4 1997) can differ from the user’s 

perception of the surfaces and the intended use (Kaudewitz 2016). Gellerich et al. (2017) found that 

crack width rather than the number of cracks was the decisive measure of surface quality assessment. 

Analog to these findings, a subjective assessment (from ‘excellent’ to ‘failed’) was assigned to the 

natural weathering specimens (chapter 8.3.3, p. 72). It showed the width of the cracks to correlate best 

with the subjective visual assessment.  

Melamine treatment was used to alter the weathering performance of thermally modified beech and 

poplar. In the natural weathering test, the crack susceptibility was reduced, and the surface erosion was 

decreased.  
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11 Conclusions & Outlook 

The study can be concluded by returning to the objectives and answering the posed questions. An 

outlook for the potential of products made of double-modified wood is given. 

11.1 Material properties and curing control  

The questions of the objectives of this study can be answered as follows: 

1. What are the effects of the curing conditions on the microstructure, chemical composition and 

resin distribution in the wooden matrix, and the cell wall components and the resulting material 

properties? 

The effects of the curing conditions on the microstructure in the form of microcracks were detected by 

scanning electron microscopy. There were fewer cracks in steam-cured specimens than in dry-cured 

specimens. The chemical composition was altered in the following ways: The nitrogen content was 

increased compared to uncured specimens and was roughly the same for steam and dry curing. The 

nitrogen fixation was lower after steam curing than dry curing. The formaldehyde content was lower 

after steam curing than after dry curing. The formaldehyde emissions were substantially lower after 

steam curing. According to energy dispersive X-ray spectroscopy, the resin distribution was about the 

same across the cell wall for dry and steam curing, with potentially lower nitrogen content in the cell 

wall and more resin in the lumen after steam curing. The resulting material properties were increased 

hardness and slightly increased bending strength for both processes, and slightly lower work in bending 

after steam curing. 

2. Can the interactions of the curing conditions and the material properties be exploited as curing 

control mechanisms?  

Nitrogen fixation: Leaching instead of hot water extraction gave more accurate results. Steam curing 

resulted in lower fixation values than dry curing. It might be difficult to be used as curing control, as 

low fixation values after dry curing would indicate not fully cured specimens, but high humidity curing 

showed lower fixation values even after sufficiently long curing at high temperatures. The formaldehyde 

emissions were sensitive to curing duration and temperature. The formaldehyde emissions were very 

sensitive to humidity. The formaldehyde content reacted primarily to humidity; steam curing resulted in 

low formaldehyde content. Nitrogen and formaldehyde analysis are elaborate methods and might be 

used to develop a curing process rather than monitor the mass production of modified wood. The 

mechanical properties might not be suitable to be used as curing control: The work in bending showed 

high variability and would be difficult to use as curing control. Hardness was not influenced by the 

curing conditions and thus not suitable as curing control.  
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3. Was melamine treatment suitable to positively alter the mechanical, water-related, and 

weathering properties of thermally modified wood?  

The hardness improved greatly depending on resin concentration. The bending strength was slightly 

increased by resin treatment. The work in bending was rather unaltered depending on wood species. The 

equilibrium moisture content of double-modified wood was found to be higher than that of thermally 

modified wood. The resin itself is potentially hygroscopic or created micropores to contain water. The 

weathering properties were improved. Crack susceptibility was lower depending on species and resin 

load of thermally modified hardwoods. The surface was stabilized and more protected against erosion 

after melamine treatment.  

Some notes for future developments: Hot steam curing processes could potentially benefit the crack 

stability of resin-treated wood. The low formaldehyde content led to less reduction of work in bending. 

A potentially less stiff resin network might have been formed. The specimens for the weathering tests 

in this study were cured in laboratory ovens under dry conditions. If cured under hot steam conditions, 

the crack susceptibility could maybe improve further. 

11.2 Upscaling and market prospects of double-modified wood 

The results gathered in this thesis should be used to prepare the upscaling of the production of modified 

or double-modified wood products. It is crucial to know the field of application of the product. Which 

are the most important properties for that product? The hardness, durability, flexibility, or color? Most 

of the properties are interdependent; not a single one can be changed without influencing the other. But 

setting the priorities right can still influence the overall outcome. The investigated properties can be 

used to monitor the product characteristics. When a production is set up, regulations have to be respected 

regarding the labor protection law (German Occupational Safety and Health Act) and explosion 

protection (Guidelines for Explosion Protection and Prevention) as formaldehyde and methanol are 

emitted during the curing process. Rapp (1999) analyzed the disposal of melamine-treated wood and 

concluded that it is nontoxic and could even be used as fertilizer or for composting, as it has long-term 

nutritional value to plants (nitrogen) since it would degrade slowly.  

The potential market for a double-modified product would have to recognize the properties of the 

material over the costs. High-quality outdoor applications with high requirements regarding dimensional 

stability, durability, surface integrity, hardness, and the aesthetics of exclusive hardwood would be 

suited. Potential markets are pool surroundings, seating areas, and decking in hot climates or even 

maritime applications (Mahnert 2013). Further development expanding the usage could be low or no 

emissions (formaldehyde) or fire retardancy. The double-modified materials were clearly developed for 

exterior applications. The material will be perceived as a new wood species. If accepted by the market 

as a new species, the material will potentially be used for various applications, not only the specific 

application it might have been developed for. A modified wood might have been developed as a decking 
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material. An architect working with this material will design the deck surrounding the pool. Then the 

deck is supposed to seamlessly integrate into the restaurant area and further to the bar of a hotel. Here, 

different regulations concerning fire safety or emissions might apply. This opens up future possibilities 

and challenges for the scientific community to promote wood as a universal building material. 
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