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Preface

Linear mixed models (LMMs) are both mathematically intriguing and

useful in practice. This dissertation aims to establish two aspects of sta-

tistical inference in such models. Those lead to confidence sets for un-

known parameters that can be extended for testing statistical hypotheses

in various testing scenarios.

It is based on the articles given in Addenda A and B. Devised from

different ideas on how to interpret the model components in the field of

‘small area estimation’ (SAE), the former addresses the issue of construct-

ing confidence sets for mixed parameters. The latter uses the particular

LMM estimation methodology to adequately account for additional un-

certainty induced by selecting model coefficient parameters.

This document is structured as follows. First, Chapter 1 introduces

the model, its fundamental advantages and properties and motivates the

aspects of inference that were investigated. Next, Chapters 2 and 3

discuss both of these separately. In each, the specific underlying problem

is explained and the main results presented.

The scientific contribution to this dissertation is given in the addenda.

In both articles I derived the results, designed the proofs and simulation

studies. Especially the presentation, structure, phrasing, data set and

motivation were the joint work of all authors.

The main body of the present text introduces and discusses the un-

derlying problems and is merely meant to give a comprehensive overview

of the topic. A thorough literature review, the rigorous model definitions,

assumptions, theorems, proofs, examples, discussion and outlook is given

in the respective article.
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Chapter 1

Introduction

It is no surprise that mixed model methodology has been found a pow-

erful tool in a variety of empirical sciences. Habitually, regression analysis

is introduced to a layman with the assumption that observed data stems

from independent and identically distributed random variables. Mathe-

matically the implications of such conditions are well understood. Even

if they may not be present in real life application, their notional premise

may still serve certain tasks adequately. Yet for many research questions,

in particular those that involve grouped observations, their elementary

structure proves to be too restrictive. Mixed models on the other hand

offer the additional flexibility to overcome those limitations, whilst pre-

serving the mathematical simplicity of the classical approach.

Their different nature is readily understood in their simplest formu-

lation. Consider the following model equation for i = 1, . . .m:

yi = Xi β + Zi vi + ei,

ei
ind.∼ Nni

(0ni
,Ωi) , vi

ind.∼ Nq (0q,Ψ) .
(1.1)

One observes the response yi ∈ Rni and matrices Xi ∈ Rni×p as well

as Zi ∈ Rni×q. The vector of coefficient parameters β ∈ Rp and the

independent random vectors vi ∈ Rq and ei ∈ Rni are unknown. Further,

the covariance matrices Ωi ∈ Rni×ni and Ψ ∈ Rq×q as well as the sample

sizes m,ni ∈ N, i = 1, . . . ,m and the dimensions p, q ∈ N are known.

In the classical linear model one has Zi = 0ni×q, so that yi is driven

solely by the unknown, fixed coefficient parameters β. For linear mixed

models on the other hand, Zi has non-zero entries, so that the fixed

1



2 INTRODUCTION

effects are complemented by a term of random effects.

Most importantly, these random effects model the presence of m

groups in the data. All observations yi from the i-th group are driven

by the same realization of the random effect vi. In his monograph, [9]

provides a suitable toy example. Consider a fictional data set of profits

Sales

P
ro

fi
t

Classical Linear Model

Sales

P
ro

fi
t

Mixed Effects Model

Figure 1.1: Fitting a classical linear model to grouped data may not
capture their information adequately. Whereas the average regression of
groups shows a positive correlation of profit and sales (right), the näıve
approach indicates a negative relationship (left).

versus sales for certain goods visualized in Figure 1.1. Ignoring the fact

that up to three pairs of observations are from the same commodity, a

näıve application of the classical linear model suggests a negative rela-

tionship between sales and profit. A more convincing argument is made

by evaluating the average of group-wise regression lines. Note that this

does not imply that each group is treated separately. It is an inherent

feature of mixed model methodology that in the course of prediction of

the random effects v1, . . . ,vm the overall population is used to borrow

strength for each group prediction.

In the example above the group-wise regression lines are shrunken to-

wards the overall mean as admissible estimators are not unbiased under

quadratic loss [18, 10]. However, the amount of shrinkage remains unclear

at first. Mixed models interpret the group-wise deviations from the over-

all mean as realizations from random variables, and hence determine the

shrinkage as relative size of random effect versus error variance. Thus,

the amount of shrinkage, and the interpretation of group-wise deviations

as stochastic, have their own decision theoretic justification. But it is
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crucial to note, that, in the words of Nicholas Longford, this random-

ness assumption may ‘merely [be] a device that enables a more natural

application of a general principle that should be employed, or at least

considered, universally’ [25, pp. 175-176].

Even though the random effects v1, . . . ,vm are treated as stochastic,

this does not imply that they are interpreted as such. But when it comes

to assess the precision of their estimates, an elaboration on the true

nature of the underlying random effects is crucial. If they really are seen

as stochastic in practice, mixed model methodology can be applied for

inference. When they are in fact understood to be fixed parameters, only

treated as random to obtain shrinkage estimators in the first place, then

inference has to be performed conditional on the realizations v1, . . . ,vm.

This approach raises new questions on how confidence sets or testing

procedures have to be constructed. Direct estimators, that do not borrow

strength, suffer from large variability, which results in prohibitively large

confidence sets. Borrowing strength however results in a bias, in particu-

lar for ‘interesting’ groups, see the example in Section 4 of Addendum A.

In Chapter 2 a choice is discussed that is based on considering multiple

groups simultaneously.

In the introductory example it has been made evident that even in

the most basic cases, a misspecified model may cause a fallacy in inter-

pretation. Of course, this misspecification can happen in various ways.

Failing to include relevant coefficient parameters may hurt the models

predictive power. Including parameters that contribute similar informa-

tion on the other hand may lead to confounding. In these cases model

selection is understood as selection of coefficient parameters β. This task

is often carried out prior to estimation and inference. However, the latter

is disrupted if parameter selection relies on a stochastic process, such as

cross validation, information criteria, or even eyeballing. All those meth-

ods are data dependent and thus stochastic. The additional uncertainty

that these methods produce has to be accounted for. In Chapter 3, this

problem is addressed in the context of linear mixed models.

The above described problems have made clear that the questions

considered are by no means purely theoretical. Mixed models are widely

applied, and their ability to treat grouped data is required in a variety

of fields. In particular, these groups may represent clustered data, as in
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the example. In that case, sampling issues are the reason why groups

emerge. This justification of mixed models is arguably the most basic

one, and covered by the field of small area estimation, which is discussed

in Chapter 2 as well. But, as it has been introduced above, the mixed

model may be interpreted as an hierarchical, two-level setup as well. The

first level models the distribution of the error terms, whereas the second

level plays the role of a prior distribution on the random effects. This

allows a Bayesian view on mixed model methodology, which also will be

briefly considered in Chapter 2. But these motivations for the mixed

model are not exclusive, nor can its usage in a specific case be uniquely

attributed to one motivation only.

Consider the following example from the field of animal sciences,

which was also the motivation for Charles Henderson to formulate mixed

models in the first place [15, 16]. The quantity of interest is the milk

production of dairy cows. It is of interest to obtain the breeding value

of a bull. Obviously, although he may pass on unobserved factors that

determine the milk production of his next generation, he himself does

not possess any ability to produce milk. To account for his latent ability

to inherit such, it may be modeled by a random effect. It is notewor-

thy, that this application of mixed models is not merely tool to obtain

an amount of shrinkage, but a in itself justified model choice. For this

particular model, it does not make sense to evaluate it conditional on the

random effects. This is due to the fact that the bulls own milk producing

capability is of no interest.

Another example from economics is given in Addendum A. Based

on data from the Spanish survey of living conditions of 2008, interest

lies in the relation between income and a panel of auxiliary variables

across groups formed by a cross-section of Spain’s fifty provinces and

whether secondary education was completed. Now, as specifically the

group deviations are of interest, inference for such a research question

has to be performed conditional on the random effects.

In the former example, mixed models served to account for different

sources of variation. Besides genetics, it is used in ecology to model

biological heterogeneity. In the latter one, the mixed model is used to

borrow strength for each group specific estimate. Problems like these are

part of ‘small area estimation’, which is discussed in the next chapter.
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The vast available literature on mixed models is rooted in its various

applications. A broad overview is provided by the monographs [33, 9, 28]

on that subject. After all, in the words of Eugene Demidenko: ‘Mixed

model methodology brings statistics to the next level’ [9, p. 1].





Chapter 2

Marginal and Conditional

Multiple Inference

2.1 Small Area Estimation

In the introductory example of the previous Chapter 1 it has been ar-

gued that mixed models ‘borrow strength’ from the whole population to

obtain more reliable group-specific estimators. This effect is particularly

prominent when the group sample sizes are very small. In 1988, George

Battese, Rachel Harter and Wayne Fuller examined the soy and corn pro-

duction for selected counties in north-west Iowa [1]. The groups for each

crop were constituted by geographical criteria. The data set contained

only up to six observations per county. Thus, a weighted average between

the direct, i.e. county specific, ‘regression-synthetic’ estimator and ‘sur-

vey regression’ estimator, that considers the whole population, served

as a method to obtain reliable ‘composite’ estimators for each county

than direct estimators alone. Their novel approach sparked new research

on the topic of information scarcity amongst groups, called ‘small areas’.

Even today, in times of electronic data processing, the gathering of larger

samples is often prohibitively expensive. This is why the idea of borrow-

ing strength remains attractive today, in particular in the framework of

mixed models. Extensive reviews of current research on the subject are

given in [27] or in the monographs by [31, 25].

Suppose that the vector of parameters of interest µ = (µ1, . . . , µm)t

is a linear combination of fixed and random effects µi = lti β +hti vi for β

and vi as in (1.1), where li ∈ Rp,hi ∈ Rq are known, i = 1, . . . ,m. For

7



8 MARGINAL AND CONDITIONAL MULTIPLE INFERENCE

example, if lti = Xt
i 1ni

/ni and hti = Zt
i 1ni

/ni, then µi is the conditional

mean for group i. Recall that the initial motivation to turn to shrinkage

estimators in the first place was to obtain more reliable estimators. In

mixed model terminology, bias and variance of the target estimator have

to comply with a certain optimality criterion. Under quadratic loss, the

criterion is equivalent with minimizing the mean squared error (MSE) or,

acknowledging its random component the mean squared prediction error

(MSPE) [27]. The resulting linear estimator for µ is called ‘best linear

unbiased predictor’ (BLUP) µ̃ = (µ̃1, . . . , µ̃m)t, a term coined by Charles

Henderson [17]. A formal definition is deferred to Addendum A. Another

estimator is given as the ‘best predictor’ E(µ |y). Under normality, both

estimators coincide [31]. It is difficult to identify the distribution of the

random effects, so that analytic model based small area estimation lit-

erature almost exclusively relies on normality assumptions. Distribution

free approaches are manifold, but often rely on re-sampling techniques

so that they lack analytic representations for inference. A comprehensive

review on such methods is given by [4, 27].

For each group i = 1, . . . ,m, the BLUP minimizes MSEµi(µ̃i) =

E(µi − µ̃i)2, and thus serves as adequate shrinkage estimator that bor-

rows strength from other groups. Its analytic expression is readily avail-

able. However, recall from the introductory example that the amount

of shrinkage is determined by the relative size of random effects versus

error variance, both of which are generally unknown in practice. De-

note the vector of covariance parameters as δ ∈ Rr
>0, r ∈ N, and let

Ωi(δ), i = 1, . . . ,m, and Ψ(δ) from (1.1) be known matrices depending

on the unknown vector δ. They may be estimated either by the method

of maximum likelihood, adjusted for the loss in degrees of freedom in

estimating the fixed effects β and then called restricted maximum like-

lihood (REML), or by the method of least squares, named Hendersons

method III for unbalanced data sets, which do not require a distribu-

tional assumption [33]. Denote an estimator based on any of these meth-

ods as δ̂. Plugging the estimates of the covariance parameters into the

BLUP then gives the empirical BLUP (EBLUP), which will be denoted

as µ̂ = (µ̂1, . . . , µ̂m)t.

The EBLUP µ̂ has been developed on the basis that it is more ro-

bust than direct estimators, which suffer high variability due to small
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sample sizes. It is thus an adequate shrinkage estimator to treat small

areas, irrespective of whether the realizations of the random effects are

of interest or not. The precision of BLUP and EBLUP can be assessed

by evaluation of the MSE, which in turn depends on the estimated co-

variance parameters. For a specific group i = 1, . . . ,m, it is given as

MSEµi(µ̃i) = g1,i(δ) + g2,i(δ). Here, g1,i(δ) is a known function quantify-

ing the variability induced by the estimation of the random effects and

g2,i(δ) by the fixed effects. For the EBLUP, the estimation of δ by δ̂ has

to be taken into account. The additional variability is given by g3,i(δ),

so that MSEµi(µ̂i) = g1,i(δ) + g2,i(δ) + g3,i(δ). A näıve estimator for

the MSE of µ̂i is given by simply plugging in the estimated covariance

parameters: M̂SEµi(µ̂i) = g1,i(δ̂)+g2,i(δ̂)+g3,i(δ̂). Problematically how-

ever, the bias of g1,i(δ̂) is of the same order as g2,i(δ̂) and g3,i(δ̂). The

explicit formulation of the functions g1,i, g2,i and g3,i are given in [31] or

Addendum A. A second order approximately unbiased estimator for the

MSE, the so-called ‘Prasad-Rao’-estimator was subsequently developed

[30, 8, 5].

Under marginal law, that is when both errors and random effects are

stochastic, and light regularity conditions [20], the EBLUP is unbiased,

i.e. E(µ̂i) = µi. Since further MSEµi(µ̂i) = Var(µ̂i − µi), the Prasad-

Rao estimator may serve to construct pointwise confidence intervals for

single small area estimates [5, 4, 13]. Interpreting the random effect as

purely stochastic, the described methods are sufficient to derive suitable

shrinkage estimators, and to establish area specific inference and testing.

2.2 Conditional Inference

As in the introductory example of the previous Chapter 1 the pres-

ence of groups in the data required more elaborate estimation techniques

than just direct estimators. The EBLUP minimizes the MSE under joint

distribution of errors ei and random effects vi, i = 1, . . . ,m, henceforth

called marginal MSE, and is thus a Bayes estimator for µi under quadratic

loss. This is a justification for the choice of estimator irrespective of its

interpretation. It may be applied as a suitable estimator whether the

group-wise deviations are perceived as stochastic or fixed.

Under the marginal law as stated in (1.1), the group-wise deviations
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follow a distribution with mean zero. The population mean is driven by

the fixed effects. Therefore the BLUP, and EBLUP [14], are unbiased

under marginal law. If interest lies however in the group-wise deviations,

the underlying distribution must be taken as conditional on the random

effects v = (vt1, . . . ,v
t
m)t. Under this conditional law, the EBLUP is –

oxymoronicly – biased: E(µ̂i − µi|v) 6= 0.

Furthermore, whereas the MSE equals the marginal variance of the

estimator, it does not do so for the conditional variance, MSEµi(µ̂i) 6=
Var(µ̂i−µi|v). The latter only depends on the variation induced by the

errors, the former additionally on the variation of the random effects.

Both quantities, conditional bias and variance, are required to con-

struct confidence intervals to perform conditional inference. But al-

though the conditional variance can be calculated by similar means to

the marginal one, see Addendum A, the bias cannot be treated with ease.

Due to the small sample sizes, the direct bias estimates come with a pro-

hibitive large variance, rendering the previous application of shrinkage

estimators obsolete [19, 25, 27].

Although both issues, the conditional interpretation and its insuffi-

cient direct methods for inference were previously noted [22, 27], they

have not been treated. This is even more surprising, as ignoring the

misspecification results in confidence sets that do not meet nominal level

[6, 7]. The effect of undercoverage is most pronounced for large devia-

tions so that confidence intervals for groups that stand out, and for which

a researcher might be particularly interested about, may be grossly mis-

placed. This behaviour was noted in [19]. A compact example is also

provided in Addendum A.

In conclusion, group-wise confidence intervals under conditional law

do not appear useful in practice, in contrast to the respective counter-

parts under marginal law in the previous section. However, different ap-

proaches are motivated by the phenomenon described by Grace Wahba

for smoothing splines confidence intervals, namely that although they do

not attain the nominal level individually they do so in average [37, 26].

Similarly, the consideration of multiple groups simultaneously under con-

ditional law is promising, which leads to the results in the next section.
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2.3 Main Results

The results obtained on the present subject are published in the ar-

ticle in Addendum A. It is of interest to establish multiple marginal and

conditional inference for a mixed parameters vector µ, where m is the

number of groups, and µi a linear combination of the random effect from

the i-th group.

As first main result, for the marginal case, confidence sets and testing

procedures that involve multiple groups are developed. In order to do so,

an estimate Σ̂ for the variance-covariance matrix Σ = Cov(µ) is derived

by similar means of [30, 8]. The covariance matrix Σ has off-diagonal

entries of order O(m−1) and so it is crucial to verify that the second

order bias corrected estimator Σ̂ is precise enough to allow for m multiple

comparisons. This is indeed confirmed in Theorem 2, which describes an

m-dimensional confidence ellipsoid with coverage approaching nominal

level with an error of order O(m−1/2). As a supplementary result, it is

further shown that the bias correction of Σ̂ is actually O(m−2) instead

of O(m−3/2), which was derived by [30]. This however does not improve

the rate in Theorem 2, which also depends on the variance of the entries

of Σ̂.

For multiple conditional inference, two competing approaches are pre-

sented. First, the conditional covariance matrix Σc = Cov(µ |v) is esti-

mated by a second order bias corrected estimator Σ̂c, where the approach

of [30] requires the treatment of additional terms. Furthermore, the bias

λ = ‖E(µ̂− µ |v)t Σ−1/2c ‖2, where ‖ · ‖ refers to the Euclidean norm, is

estimated. Then, Theorem 1 describes an confidence ellipsoid with cov-

erage approaching nominal level with an error of order O(m−1/2), which

coincides with the rate from the marginal case.

The second approach, Theorem 3, simply evaluates the marginal con-

fidence ellipsoid under conditional law. Remarkably, the resulting cov-

erage also attains nominal level up to an error of order O(m−1/2). This

phenomenon occurs as the misspecification of the bias for each group

and the oversized variance cancel each other out in average. However,

the rate in this case requires that the number of comparisons grows with

m.

These results serve for the construction of confidence sets, and by

inverting them also for the use of testing linear hypotheses.
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Additionally, Theorem 4 lays the basis for different testing scenarios

that may be helpful in practice. With Tukey’s method [36, 35], all simple

contrasts can be tested against, i.e. H0 : µi = µj for all i, j ∈ S vs.

H1 : µi 6= µj for at least one pair i, j ∈ S, where S ( N≤m.

In total, all these results on marginal and conditional multiple infer-

ence are completely novel. They fill a relevant gap in the application of

mixed models, as they justify a wider understanding than their narrow

mathematical formulation suggests. Their usability is confirmed with an

extensive simulation study. A real data set on Spanish income data gives

an example how these theoretical results can be put to practice.







Chapter 3

Uniformly Valid Inference

Based on the Lasso

3.1 Post Selection Inference

The motivating example from Chapter 1 discussed the association be-

tween sales and profit for certain commodities. The key message was that

for an inadequately chosen model, one may fail to correctly identify the

relation between response and covariates. In many real life applications,

the research question is not so precisely posed. Often, many covariates

are available to include within a model. Here, we only focus on this

part of model selection that considers the process of deciding on a set

of covariates which are to be included in the model. This understanding

implies that the model equation is seen merely as a description of the

association between observations and covariates. To highlight the prob-

lem of selecting the fixed coefficient parameters consider the alternative

representation of model (1.1), given by

y = Xβ +ε, ε ∼ Nn
{
0n,V(θ)

}
, (3.1)

with y ∈ Rn, X ∈ Rn×p and where V(θ) ∈ Rn×n is a block diagonal

covariance matrix with (ni × ni)-blocks Zi Ψ(θ) Zt
i + Ωi(θ). Deviating

from the choice of notation from the previous chapter, but consistent

with the notation in Addendum B, the covariance parameters are denoted

as θ ∈ Θ ( Rr, r ∈ N. This model equation is not seen as a data

generating mechanism, in which the covariates exert a causal effect on

15
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the observations. Whereas in the latter understanding the inclusion of all

true coefficient parameters β is crucial to obtain the underlying model,

no such thing exists in the former case. Any model with a selected set

of certain coefficient parameters may be justified from the point of a

researcher. However, the classical analytic approach of estimating β via

least squares (LS) relies on rank(X) = p ≤ n, requiring selection if more

than n covariates are available. Moreover, the effect of a single coefficient

within a model is expressed in terms of all other coefficients. Hence, to

adequately address a single effect on the observations, a researcher might

be generally interested to describe the effect with a single coefficient, to

avoid confounding covariates. An extensive and insightful discussion on

this problem is given in [2].

Generally, the process of model selection is performed under the prin-

ciple of ‘Occams razor’, which postulates that amongst a set of candidate

models, the simplest one is to be adopted. Superfluous complexity, in

terms of coefficient covariates, is to be cut off. To find a parsimonious

model, the model fit, expressed in its likelihood, is to be weighted against

the number of coefficient parameters. Many such ‘information criteria’

have been derived on this basis. An extensive overview is provided by [3].

The fundamental problem is that those model selection techniques itself

are necessarily data dependent. But since the observations are stochastic,

so is any procedure that considers the model fit.

For a chosen and fitted model, one may infer about the included

and underlying β on the basis of the estimated coefficient parameters.

With classical theory one can construct confidence regions for β, or by

inverting those, derive testing procedures of interest. This is different

if the model is selected by one of the established information criteria.

The model is then selected based on its fit, meaning that it consists of

covariates strongly related to the response. Subsequent testing for the

coefficient parameters will make them appear more significant then they

actually are, as the model is chosen so that they are strongly associated

in the first place. For an included coefficient βi consider the test H0:

βi = 0 against H1: βi 6= 0. Then, the type-I-error Pβi=0(reject H0)

is larger compared to what the classical theory postulates [2]. See the

simulation example in Section 5 in Addendum B for an visualization of

this effect. Hence, classical confidence sets based on LS estimators after
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model selection exhibit a lower coverage than the nominal level indicates.

Recent interest has been focused on the issue of correctly quantify-

ing the uncertainty induced by the model selection step, coined ‘post-

selection inference’ (PoSI) [2]. The suggested workarounds however are

either conservative by nature [2] or are conditional on the chosen model

and thus not precisely what is understood to be a classical confidence set

[21].

3.2 Inference Based on Penalization Meth-

ods

The problem of post-selection inference arises by the two-step nature

of model fitting. The least absolute shrinkage and selection operator

(Lasso) introduced by [34] is a single step procedure that selects and es-

timates the model coefficient parameters simultaneously. Its application

thus bypasses the issue of post-selection inference. For model (3.1) and

given tuning parameters λ1, . . . , λp ∈ R consider the objective function

Q {β,V(θ)} = ln |V(θ)|+
∥∥V(θ)−1/2 (y−Xβ)

∥∥2 + 2

p∑

j=1

λj |βj| .

For the classical linear Gaussian regression model with V(θ) = In,

where In is the (n × n)-dimensional identity matrix, the Lasso for the

coefficient parameters is defined as β̂L = argminβQ(β, In). The `1-

penalization term ensures that in absolute value small coefficient param-

eters are shrunken to zero, and hence excluded from the model, whereas

large ones are included. At the cost of this shrinkage towards zero, de-

pending on λ1, . . . , λp, the procedure simultaneously selects and estimates

the coefficient parameters.

However, the shrinkage also results in the Lasso to be biased, see [12].

Hence the distribution of β̂L − β is shaped by the underlying coefficient

parameters β [29]. This is in contrast to classical LS estimation. There-

fore, different to inference based on LS estimators, pointwise confidence

sets for fixed β based on the Lasso are not honest in the sense of [24].

Honest confidence sets have to achieve nominal level uniformly over the

whole space of coefficient parameters [23, 29].
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For a classical linear Gaussian regression model, [11] showed that

limiting versions limβ→±∞Q(β, In) can be used to construct confidence

sets based on the Lasso estimator. The resulting sets hold uniformly over

the whole space of coefficient parameters.

3.3 Main Results

The contribution in Addendum B covers the construction of uniformly

valid confidence sets for Lasso in LMMs. In contrast to the linear regres-

sion case, the estimation of covariance parameters has to be taken into

account. The Lasso depends on the underlying covariance parameters,

so the joint simultaneous estimation of both parameter vectors via

(
β̃, θ̃

)
= argmin

β,θ
Q {β,V(θ)}

makes the confidence set for β̃ depend on θ̃ in a complicated manner

[32]. In linear regression with covariance matrix σ2 In with unknown

variance parameter σ2, this problem can be avoided by choosing the

tuning parameters accordingly [11].

If the covariance parameters are of dimension r > 1, as usually con-

sidered in LMMs, one may exploit the method of restricted maximum

likelihood (REML). This estimation method for the underlying covari-

ance parameters θ considers the loss in degrees of freedom in estimating

the true coefficient parameters β. The resulting estimator θ̂ is not only

unbiased, but also based solely on transformed data At y for a matrix

A ∈ Rn×(n−p) such that At X = 0(n−p)×p. Hence, θ̂ does not depend on

β. Now, the Lasso for the LMM is defined as

β̂L = argmin
β

Q
{
β,V(θ̂)

}
,

and for this estimator similar arguments as for the case of linear regres-

sion can be applied.

Then, Theorem 1 in Addendum B states that confidence sets based

on β̂L = argminβQ{β,V(θ̂)} are uniformly valid over the space of coeffi-

cient parameters β and covariance parameters θ up to an error vanishing

with parametric rate. The error is induced by the estimation of the co-
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variance parameters. To prove this result, it has been shown in Lemma

1 that the REML estimator θ̂ is uniformly consistent for θ. The results

are backed up with a simulation study that visualizes the uniform nature

of the resulting confidence set and its superiority to näıvely chosen ones.
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Marginal and Conditional Multiple Inference

in Linear Mixed Models

Peter Kramlinger1 Tatyana Krivobokova2 Stefan Sperlich3

Abstract

This work introduces a general framework for multiple inference in linear mixed

models. Such can be done about population parameters (marginal) and subject

specific ones (conditional). For two asymptotic scenarios that adequately address

settings arising in practice, consistent simultaneous confidence sets for subject

specific effects are constructed. In particular, it is shown that while conditional

confidence sets are feasible, remarkably, marginal confidence sets are also asymp-

totically valid for conditional inference. Testing linear hypotheses and multiple

comparisons by Tukey’s method are also considered. The asymptotic inference is

based on standard quantiles and requires no re-sampling techniques. All findings

are validated in a simulation study and illustrated by a real data example on

Spanish income data.

MSC 2010 subject classification: Primary 62J15; secondary 62F05; 62F03; 62J10.

Keywords and phrases: marginal vs conditional confidence, simultaneous inference,

multiple testing, small area estimation

1 Introduction

Linear mixed models (LMMs) were introduced by Charles Roy Henderson in 1950s [14, 15]

and are applied if repeated measurements on several independent subjects of interest are

available. Monographs [32], [8] and [20] give a comprehensive overview of LMMs and their
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1



generalizations. The classical LMM can be written as

yi = Xi β + Zi vi + ei, i = 1, . . . ,m

ei ∼ Nni
{0ni

,Ri(δ)}, vi ∼ Nq{0q,G(δ)},
(1)

with observations yi ∈ Rni , known covariates Xi ∈ Rni×p and Zi ∈ Rni×q, indepen-

dent random effects vi ∈ Rq and error terms ei ∈ Rni , such that Cov(ei,vi) = 0ni×q.

Parameters β ∈ Rp and δ ∈ Rr are unknown and we denote Vi(δ) = Cov(yi) =

Ri(δ) + Zi G(δ) Zt
i, where Ri(δ) and G(δ) are known up to δ.

Model (1) accommodates both settings with a fixed number of subjects m by a growing

number of observations per subject ni, as well as settings with a growing number of

subjects m by few observations per subject ni, implying two possible asymptotic scenarios

for mixed models, as noted by [21]. The latter case is referred to as small area estimation

(SAE) [34].

Depending on the research question, the focus of estimation and inference might lay either

on the population parameter β or on subject specific effects associated with vi. In the

former case, a LMM (1) is interpreted as a linear regression model with mean Xi β and

covariance matrix Vi(δ) that accounts for complex dependences in the data. Inference

about β is referred to as marginal and well understood. If the focus is rather on the

subject specific effects, then inference should be carried out conditional on vi, which is

more involved. This distinction between marginal and conditional inference is emphasized

already in [13] and has attracted particular attention in the model selection context. For

example, [42] argue that the conventional (i.e. marginal) Akaike information criterion

(AIC) is applicable to the selection of population parameter β only, and suggested a

conditional AIC that should be employed else. For further discussion on marginal versus

conditional inference in mixed models, see [26].

Today, there is an increasing interest in studying mixed parameters, in particular linear

combinations of β and vi, such as µi = lti β +htivi, i = 1, . . . ,m with known li ∈ Rp and

hi ∈ Rq. While the SAE literature has intensively studied inference of such parameters

under the marginal law for a single µi, little is known about conditional and/or simul-

taneous inference. Under two possible asymptotic scenarios we construct simultaneous

confidence sets for all µ1, . . . , µm and discuss the corresponding multiple testing problem.

Thereby, we distinguish between the marginal scenario, where vi are treated as proper

random variables and the conditional scenario, where vi are considered as pre-fixed.

There is a large body of literature on the confidence intervals for each µi individually under

the small area asymptotic scenario. Much attention is given to the estimation of the mean

squared error MSE(µ̂i) = E(µi − µ̂i)2, where the expectation is taken under the marginal

2



law and µ̂i is some estimator of µi, which depends on unknown δ. To estimate marginal

MSE, one can either plug in an appropriate estimator of δ (e.g., restricted maximum

likelihood (REML) or Hendersons method III estimator given in [36]) or use unbiased

marginal MSE approximations like in [33, 7, 4]. Other distribution-free approaches to the

estimation of marginal MSE comprise a diverse collection of bootstrap methods, for an

extensive review consult [3].

Since inference about µi has often a conditional focus (under the marginal law the vi are

simply not available), it seems counterintuitive to base inference on the marginal MSE

only. In fact, we show that the nominal coverage of the subject-wise confidence intervals

for µi based on the marginal MSE holds under the conditional law on average (over

subjects) only, see Proposition 1 in Section 4 for more details. However, µ̂i are biased

under the conditional law and this bias is, in general, difficult to handle. Ignoring the bias

leads to a clear under-coverage, see [5, 6], while estimating the bias leads to unacceptably

wide intervals, see [22, 28, 31].

In this article we construct simultaneous confidence sets for µ1, . . . , µm in LMMs under

two possible asymptotic scenarios. To the best of our knowledge this problem remained

largely untreated; only [10] points out the need for simultaneous inference and considers

a related problem of inference about certain linear combinations of µi in the Fay-Herriot

model (a special case of (1) under small area asymptotics) employing a Bayesian approach.

We first consider simultaneous confidence sets for µ1, . . . , µm under the conditional law

and show that the nominal coverage is attained at the usual parametric rate. Additionally,

we show that, surprisingly, the simultaneous confidence sets built under the marginal law,

being also accurate at the same parametric rate, are at the same time approximately valid

when conditioning on the subjects. This, however, is not true in general for the subject-

wise confidence intervals, as pointed out already. We use the derived confidence sets for

testing linear hypotheses. Further, we extend the scope of analysis to the special case

of testing multiple comparisons by the use of Tukey’s method in the context of LMMs.

Eventually, the usefulness of the derived methods is demonstrated on a real data study

on Spanish income data.

The main results are given in Section 2. Applications for comparative statistics and testing

linear hypotheses as well as extensions are elaborated in Section 3. The fundamental

problem together with our results is visualized in a simulation study in Section 4, and

further exemplified on Spanish income data in Section 5. We conclude with a discussion

in Section 6. Proofs are deferred to the Appendix, and some auxiliary results to the

Supplement [25].
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2 Simultaneous Inference

We start with introducing basic notation and assumptions. In the notation of [34], the

empirical BLUP (EBLUP) as estimator of µi for unknown δ reads as

µ̂i = µ̂i(δ̂) = ltiβ̂ + bi(δ̂)t
(

yi−Xi β̂
)
;

bi(δ̂)t = hti G(δ̂) Zt
i Vi(δ̂)−1,

β̂ =

{ m∑

i=1

Xt
i Vi(δ̂)−1 Xi

}−1 m∑

i=1

Xt
i Vi(δ̂)−1 yi .

(2)

Under the mild assumptions below E(µ̂i) = µi, if E(µ̂i) is finite [24], but E(µ̂i|vi) 6= µi.

We consider two alternative asymptotic scenarios, namely

(A1) m→∞ while supi ni = O(1).

(A2) m→∞ while ni →∞ ∀i = 1, . . . ,m.

Condition supi ni = O(1) in (A1), introduced by [12], implies E(µ̂−µ |v) 9 0m. However,

due to (A2), the findings below are not restricted to the SAE setting. Further, we adopt

the regularity conditions from [33] and [7]:

(B1) Xi, Zi, G(δ) > 0, Ri(δ) > 0, i = 1, . . . ,m contain only finite values.

(B2) dti = lti − bi(δ)t Xi has entries dik = O(1) for k = 1, . . . , p.

(B3)
{

∂
∂δj

bi(δ)t Xi

}
k

= O(1), for j = 1, . . . , r and k = 1, . . . , p.

(B4) Vi(δ) is linear in the variance components δ.

Conditions (B1) - (B3) ensure that µ can be estimated up to a vanishing error term.

Condition (B4) implies that the second derivatives of Ri and G w.r.t. δ are zero.

The variance components δ can be estimated using both REML and Hendersons method

III. Those are unbiased, even and translation invariant, which are the conditions of [24].

Subsequently, δ̂ denotes an estimator of δ obtained with either one of these methods.

Simultaneous Confidence Sets

Now we turn to the construction of simultaneous confidence sets for µ = (µ1, . . . , µm)t.

Since the inference focus in this case is conditional, we start by constructing a confidence

set Cα, such that P(µ ∈ Cα |v) ≈ 1− α, for a pre-specified level α ∈ (0, 1). In particular,

for the conditional inference v = (vt1, . . . ,v
t
m)t is treated as a fixed parameter and the
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assumption on normality of v in (1) is ignored. Thereby, all parameter estimators are

still obtained under model (1).

Let µ̂ = (µ̂1, . . . , µ̂m)t and Σ̂c be our (approximately) second-order unbiased estimator

for Σc = Cov(µ̂ − µ |v), which we derive in detail in the appendix, see equation (9). It

then holds:

Theorem 1. Let model (1) hold and Σ̂c be as in (9). Under (A1) or (A2), with (B1)-(B4)

it holds that

P

{∥∥Σ̂−1/2

c (µ̂− µ)
∥∥2
< χ2

m,1−α(λ̂)

∣∣∣∣v
}

= 1− α +O(m−1/2),

where α ∈ (0, 1), χ2
m,α(λ̂) is the α-quantile of the χ2

m(λ̂)-distribution and λ̂ is a least

squares estimator, given in (8), for the non-centrality parameter

λ =
m∑

i=1

{ m∑

k=1

E(µ̂k − µk|v)
(

Σ−1/2
c

)
ik

}2

.

Since µ̂ is not unbiased under the conditional law, λ has to account for the conditional

bias, whereas Σ̂c accounts for the correct variability under such law. Note that the

result of Theorem 1 holds for any pre-fixed v, not necessarily a realization of a normally

distributed random variable.

From Theorem 1 we immediately obtain the conditional confidence set

Cα =

{
µ ∈ Rm :

∥∥Σ̂−1/2

c (µ̂− µ)
∥∥2 ≤ χ2

m,1−α(λ̂)

}
.

This defines a simultaneous confidence region over all subjects under the conditional

law. The practical difficulty when constructing Cα is the estimation of the non-centrality

parameter λ which introduces additional uncertainty.

If v is treated as a proper random variable, this implies the following result.

Theorem 2. Let model (1) hold and Σ̂ be an estimator for Σ = Cov(µ̂ − µ) given in

(6). Under (A1) or (A2), with (B1)-(B4) it holds that

P

{∥∥Σ̂−1/2
(µ̂− µ)

∥∥2
< χ2

m,1−α

}
= 1− α +O(m−1/2),

where α ∈ (0, 1) and χ2
m,1−α is the α-quantile of the χ2

m-distribution.

5



Similarly to above, one obtains the marginal confidence set

Mα =

{
µ ∈ Rm :

∥∥Σ̂−1/2
(µ̂− µ)

∥∥2 ≤ χ2
m,1−α

}
,

with P (µ ∈ Mα) ≈ 1 − α, for α ∈ (0, 1). Such marginal confidence regions have to

be interpreted with care, since µ under the marginal case remains a random parameter.

However, it turns out that the marginal confidence set can be used for simultaneous

inference under the conditional law. Indeed, the following theorem states thatMα, albeit

derived under the marginal law, lead to the asymptotically correct coverage under the

conditional law.

Theorem 3. Let model (1) hold and Σ̂ be as in (6). Under (A1) or (A2), with (B1)-(B4)

it holds that

P

{∥∥Σ̂−1/2
(µ̂− µ)

∥∥2
< χ2

m,1−α

∣∣∣∣v
}

= 1− α +O(m−1/2).

From the proof one can see that the misspecification in using the marginal formula-

tion under the conditional scenario is averaged out across the subjects under (A1) or,

less surprisingly, within the subjects under (A2). Notably, the rates for the marginal

formulation in the marginal versus conditional scenario coincide. The result implies

P(µ ∈Mα |v) ≈ 1− α.

Note that if the quadratic form in Theorem 3 is reformulated for one subject i with ni <∞
in (A1) we get

P

{
(µ̂i − µi)2

σ̂ii
< χ2

1,1−α

∣∣∣∣v
}

= 1− α +O(1).

In (A2) however, the bias vanishes for each subject and the nominal coverage is attained

asymptotically for a single subject as well.

The results of this section suggest that simultaneous inference about µ under the condi-

tional law can be performed based on the confidence sets obtained under the marginal

law. In particular, this allows to circumvent the problem of estimating the non-centrality

parameter in practice.

Tukey’s Intervals

Further interest in inferring about multiple subjects simultaneously includes the use of

Tukey’s method [40]. That concerns all simple contrasts ct(µ̂ − µ) ∀c ∈ Sw, w ≤ m,

6



where

Sw =
{
1i − 1j ∀i, j ≤ w, for 1k the k-th unit vector in Rm

}
.

Conventional use of Tukey’s method involves linear unbiased estimators, see e.g. [2]. This

setting, however, firmly lies in the realm of the conditional law, in which µ̂ are biased.

Additional regularity conditions are thus required for ∀i, k ≤ m:

(C1) hi = hk + {O(m−1/2)}q and li = lk + {O(m−1/2)}p.

(C2) 1tni
Vi(δ)−11ni

= 1tnk
Vk(δ)−11nk

+ {O(m−1/2)}tq.

These conditions ensure that the subjects’ mixed parameters are sufficiently similar. A

special case in which both (C1) and (C2) are fulfilled is the widely used nested error

regression model (5) with a balanced panel.

Theorem 4. Let model (1) hold and Σ̂c as in (9). Under (A1) or (A2), with (B1)-(B4)

and (C1), (C2) it holds for α ∈ (0, 1) that

P

{ |ct(µ̂− µ)|
ĉ+

< ηc + qm,1−α, ∀c ∈ Sm
∣∣∣∣v
}

= 1− α +O(m−1/2),

where qm,1−α the α-quantile of the range distribution for m standard normal random vari-

ables, ηc = c−1
+ ctE(µ̂−µ |v) with c+ =

(
ct Σ1/2

c

)
>0

1m, i.e. the sum of positive entries of

ct Σ1/2
c and ĉ+ analogously with Σ̂c.

This result establishes consistent inference for all simple contrasts and thereby forms

a special case of the generalized Tukey conjecture about attaining nominal level for

non-diagonal covariance matrices [2, 40]. In particular, the result states that P (ctµ ∈
Tα,m(c), ∀c ∈ Sm|v) ≈ 1− α for

Tα,m(c) =
{

ctµ ∈ R : |ct(µ̂− µ)
∣∣ ≤ ĉ+

(
ηc + qm,1−α

)}
.

Note that in practice ηc is in general unknown and the confidence interval cannot be

readily constructed. However, in the next section we discuss that for relevant testing

scenarios (C1) and (C2) imply that ηc vanishes quickly enough, so that Tα,w(c) can serve

for pairwise testing for equality of µi, . . . , µw, w < m.
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3 Testing

It is appealing to use the derived results to test either linear hypotheses or multiple

comparisons of µi, i = 1, . . . ,m, under conditional law. The former is concerned about

testing whether µ lies in a given subspace of Rm. It can, for example, be applied to

examine if subject specific effects are present within subsets, as done in Section 5. In case

of rejection, one may want to know which subjects are the cause for it. Tukey’s method

controls the family-wise error rate whilst simultaneously testing multiple comparisons for

all pairwise differences µi − µj, i, j = 1, . . . , w < m.

Linear Hypotheses

Let us assume it is of interest to test

H0 : L(µ−a) = 0u vs. H1 : L(µ−a) 6= 0u, (3)

where a ∈ Rm and L is a given (u × m)-matrix with u ≤ m and rank(L) = u. The

dimension u of the linear subspace of Rm corresponds to the number of simultaneous

tests of linear combinations, whereas each linear combination of interest is specified in

the rows of L. For example, for L = Im and a = (a1, . . . , am)t, ai 6= aj, i, j ≤ m,

implies testing whether the mixed parameters take on some ex-ante assumed value. For

conditional inference in (1) about µ, Theorem 1 gives the α-level test for (3), that rejects

H0 if a 6∈ Cα,L, where

Cα,L =
{
a ∈ Rm :

∥∥(LΣ̂cL
t
)−1/2

L(µ̂− a)
∥∥2 ≤ χ2

u,1−α(λ̂L)
}
.

This test is consistent with an error O(m−1/2). Parameter λ̂L is the non-centrality pa-

rameter that depends on the modified covariance LΣ̂cL
t.

Furthermore, Theorem 3 allows to employ the confidence setMα as well. An α-level test

rejects H0 if a 6∈ Mα,L, where

Mα,L =
{
a ∈ Rm :

∥∥(LΣ̂Lt
)−1/2

L(µ̂− a)
∥∥2 ≤ χ2

u,1−α
}
.

This test is again consistent with rate O(m−1/2) under (A2), while under (A1) the rate

is O(u−1/2) for u = mξ1 , where ξ1 ∈ (0, 1] bounded away from zero. This affirms that

individual confidence intervals (u = 1) can not be constructed using Mα,L under (A1),

the standard SAE assumption.

It is often of interest to test if some or all µi are equal, which implies equality of random

8



effects. If w < m random effects are tested to be equal, then model (1) is altered in that

only m′ = m − w + 1 different subjects remain under H0. In that case, above tests are

consistent with m replaced by m′: O[{min(m′, u)}−1/2]. For w = m, the underlying model

(1) of H0 reduces to a linear model, for which conventional tests are readily available.

Details are given in the appendix.

Tukey’s Method

Multiple comparisons, as µi − µj, i, j = 1, . . . , w < m, allow for multiple testing against

w equal random effects. Formally,

H0 : ctµ = 0 ∀c ∈ Sw vs. H1 : ctµ 6= 0 for some c ∈ Sw, (4)

where w = mξ2 , with ξ2 ∈ (0, 1). Under (C1) and (C2), ηc, c ∈ Sw vanishes under H0.

See (13) in the appendix for details. It follows that all
(
w
2

)
simple contrasts in (4) can

be tested by Tukey’s method [40, 27] with Theorem 4. The test rejects H0 if ∃c ∈ Sw
such that 0 /∈ Tα,w(c) and is consistent with O(m−1/2) under (A1) and (A2), where m is

replaced by m′.

Again, for w = m, the classical versions of Tukey’s method can be applied, see the

discussion in the appendix.

4 Simulation Study

Consider a special case of (1), the nested error regression model [1] with eij ∼ N (0, σ2
e),

vi ∼ N (0, σ2
v), and

yij = xtij β +vi + eij, i = 1, . . . ,m, j = 1, . . . , ni. (5)

The data are simulated as follows. For each given set of the parameters m, ni, σ
2
e , σ

2
v , the

value of the subject effect vi is obtained as a realization of a N (0, σ2
v)-distributed random

variable and remains fixed in all Monte Carlo samples. Parameters β ∈ R2 were drawn

once from a standard normal distribution, whereas Xi ∈ Rni×2 consists of a column of

1’s and a column of entries drawn once from the uniform distribution. The parameter of

interest is µi = Xi β +vi, where Xi = n−1
i

∑ni

j=1 Xij.

Before we report simulation results for simultaneous inference, we visualize consequences

of using marginal law for subject-wise inference about single µi. We set (σ2
v , σ

2
e) = (4, 4),

m = 100, ni = 5 under (A1) and ni = 50 under (A2). The results are based on 1.000

9
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Figure 1: Empirical coverage of marginal 95% subject-wise confidence intervals for µi
under conditional law under (A1) (left) and (A2) (right). The dashed lines give the
theoretical coverage.

Monte Carlo samples. Figure 1 shows the subject-wise coverage of confidence intervals

for µi built under the marginal law. The left hand side of Figure 1 corresponds to the

small area asymptotics (A1). Subjects which comprise a large |vi|, being those with most

prominent subject effect, exhibit a severe undercoverage. This is particularly annoying,

since such subjects are arguably those that a practitioner might be most interested in, see

[22]. On average (over all subjects), however, over- and undercoverage cancel each other

out. Under (A2), this problem is less pronounced, since the bias for every subject vanishes

asymptotically and so does the difference between conditional and marginal variance, as

visible on the right hand side of Figure 1. These observations are formalized in

Proposition 1. Let model (1) hold, δ known, Ti = (µ̂i − µi)Var(µ̂i − µi)−1/2 and z1−α/2

the two-sided α-quantile of N (0, 1). Then,

(a) for Z ∼ N (0, 1) and c1 as well as c2(v) as given in (14) it holds

P
(
|Ti| ≤ z1−α/2|v

)
= P

{
|Z| ≤ z1−α/2 + c1 ± c2(v)|v

}
.

(b) under (A1) or (A2) with (B1) and (B2) it holds

1

m

m∑

i=1

P(|Ti| ≤ z1−α/2|v) = 1− α +O
(
m−1/2

)
.

That is, although c1 ± c2(v) is almost surely nonzero under marginal law, the coverage

probability of marginal confidence intervals under the conditional law still attains its

nominal level on average over all subjects. For the simulated data in Figure 1 the average

coverage under (A1) is 95.4%, while under (A2) it is 94.9%.
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Table 1: Coverage of 95%-confidence ellipsoids in model (5) under conditional law.

Marginal Conditional
δ m ni nk known δ REML known δ REML

σ2
v = 8

σ2
e = 2

10 5 5 .96 (.98) .92 (1) .95 (.92) .88 (.79)

100 5 5 .95 (.97) .93 (1) .95 (.89) .93 (1.6)

10 10 10 .95 (.96) .93 (1) .95 (.99) .93 (1.0)

100 10 10 .95 (.96) .93 (1) .95 (1.0) .94 (1.5)

10 5 10 .96 (.96) .92 (1) .95 (.83) .90 (.98)

10 10 100 .95 (.95) .95 (1) .95 (.93) .95 (1.1)

σ2
v = 4

σ2
e = 4

10 5 5 .96 (.70) .92 (1) .94 (.66) .96 (1.6)

100 5 5 .95 (.81) .93 (1) .94 (.25) .94 (3.8)

10 10 10 .95 (.79) .94 (1) .95 (.80) .96 (1.8)

100 10 10 .94 (.72) .94 (1) .94 (.59) .95 (5.1)

10 5 10 .96 (.73) .94 (1) .94 (.39) .97 (2.3)

10 10 100 .96 (.80) .96 (1) .95 (.73) .97 (1.3)

σ2
v = 2

σ2
e = 8

10 5 5 .97 (.24) .96 (1) .85 (.32) .82 (1.0)

100 5 5 .97 (.32) .88 (1) .86 (.01) .88 (1.5)

10 10 10 .94 (.42) .93 (1) .91 (.24) .97 (.94)

100 10 10 .94 (.32) .92 (1) .92 (.01) .94 (2.8)

10 5 10 .98 (.28) .97 (1) .90 (.05) .92 (3.3)

10 10 100 .97 (.44) .97 (1) .93 (.25) .99 (1.8)

We now turn to simultaneous inference: Table 1 contains results based on 10, 000 Monte

Carlo samples. For each sample the estimates µ̂ and Σ̂, as well as Σ̂c and λ̂ are calculated,

and it is checked whether µ lies within the 95%−confidence set. The resulting coverage

probability is reported together with the one of the oracle confidence sets for known

δ = (σ2
v , σ

2
e)
t. The relative volume of the confidence sets to the volume of the REML-

based marginal set is given in brackets.

Under (A1), the asymptotic behavior relies on m, and is therefore studied for m = 10 and

m = 100. One case is carried out for ni = nk = 5 observations for all subjects i, k, relating

to the study of [1]; the other for ni = nk = 10. Under (A2), 80% percent of subjects had

ni observations, while the remaining 20% had nk. As it is well known that the relation

of σ2
v and σ2

e , the so-called intraclass correlation coefficient (ICC), plays a key role in the

reliability of the estimators, different ICC are considered.

The columns “Marginal” and “Conditional” of Table 1 give the simulated coverage of

the confidence sets for the nominal coverage of 0.95. The differences between each of the

two marginal and conditional coverages display the impact of the REML estimation. The

estimation of the variance components is indeed influential, in accuracy as well as in size.

Further, a comparison between marginal REML and conditional REML coverages reveals

the performance of Mα and Cα. The marginal sets are generally smaller. This is due to
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Figure 2: Power of tests based on confidence ellipsoids Mα (solid line) and Cα (dashed)
for model (5) in the conditional setting with H1 : µ = a + 1m∆.

the conditional sets being amplified by the non-central quantile to meet the nominal level,

but not stretched in the direction where the multivariate distribution of µ̂ has most of

the mass.

The first two rows of each configuration of δ show the asymptotic behavior for (A1) with

ni = nk = 5 observations only, whereas the less extreme case for (A1) is given in lines

three and four. Clearly, larger m produce better results. However, the reported coverage

seems to be stronger influenced by the number of observations in each subject. This is the

realm of case (A2). Convergence for that scenario seems to be more sensitive, although

this is likely due to the smaller sample size.

The ICC (and the signal-noise ratio) proves to be quite influential, with coverage being

closest to the nominal level for large σ2
v . This is not unexpected as these parameters deter-

mine the validity of the REML-estimates which has already been observed for individual

confidence intervals, see [4]. However, even for known δ, Cα can exhibit undercoverage if

the ICC is too small and/or too few data is available, whereas Mα does not.

Let us turn to the test H0 : µ = a vs. H1 : µ = a + 1m∆, a ∈ Rm with ∆ ∈ R.

Power functions studying the error of the second kind for different parameters m and ni,

cf. Table 1, are given in Figure 2 with different ICC. Unsurprisingly, the power growths

steeper for larger m and ni, but again is sensitive to the relative size of σ2
v to σ2

e . The

power of the tests based on the marginal set (solid line) is notably steeper than the slope

of the power based on the conditional set (dashed). Although being of less importance if
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Figure 3: Power of tests based on Tukey’s method with i, j = 1, . . . ,m∗ for H0 : µi = µj
for against H1 : ∃!i : µi = µj + ∆.

ni is large, the plots favor the use of the marginal confidence sets for testing.

A similar visualization for Tukey’s method is obtained by testing H0 : µi = µj for ∀i, j =

1, . . . ,m/2 vs. H1 : ∃!i : µi = µj + ∆ for ∀i, j = 1, . . . ,m/2, where ∆ ∈ R. That is, all

but one µ1, . . . , µm/2 are equal. Figure 3 shows that, similar to the case for confidence

ellipsoids, the ICC is influential. In difference to Figure 2, more subjects greatly increase

the number of tests, and the power function undesirably flattens around zero.

5 Study on Spanish Income

The discussed methods are now applied to a case study on log-transformed yearly income

for working population in Spain obtained from the survey of living conditions in 2008 [17].

As income varies non-linearly with age, we restrict the study on people of age 50 and older.

The subjects, henceforth small areas, are formed by cross-section of all 50 provinces of

Spain and whether secondary school was completed. In total, n = 3, 335 observations are

available for m = 100 small areas, with a median of 20 per area. Available explanatory

variables are gender, municipality size and nationality. The observations are assumed to

follow a nested error regression model (5). The variance components are estimated via

REML as σ̂2
v ≈ .55× 10−2 and σ̂2

e ≈ 5.17× 10−2.

Interest lies in determining whether the hypothesis that no area specific effect is present in

those 16 small areas that lie in the autonomous community of Andalućıa, can be rejected.
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Formally, let L1 = (015, . . . ,L
∗
1,015, . . . ) be (15 × 100), with L∗1 =

(
I15,015

)
− 1151

t
16/16

corresponding to all small areas in Andalućıa. The test then checks the linear hypothesis

H0 : L1 µ = 015 against H1 : L1 µ 6= 015. For α = 0.05, 86.7% of individual tests do not

reject H0, and neither does the conservative Bonferroni correction. Both tests based on

marginal and conditional ellipsoids however do reject, as

∥∥(L1Σ̂Lt
1)−1/2L1µ̂

∥∥2 ≈ 25.7 > 25.0 ≈ χ2
15,.95,∥∥(L1Σ̂cL

t
1)−1/2L1µ̂

∥∥2 ≈ 37.2 > 25.0 ≈ χ2
15,.95(0).

Both sets have the same nominal coverage, and here they both yield the same result,

although the conditional fails to produce a positive estimate of λL1 for this data set.

Moreover, if there was interest in investigating other regions, this approach would require

to re-estimate the non-centrality parameter on the new subset of interest. This aspect

makes the application of the marginal set more appealing.

Although both accurate tests reject H0, it remains unknown by which areas this is

caused. Tukey’s method allows for those kind of multiple comparisons. Let SAnd =

{1i − 1j, ∀i, j in Andalućıa,1k the k-th unit vector}, |SAnd| = 120, and H0 : ctµ =

0 ∀c ∈ SAnd. One can verify that the bias ηc is of a negligible order for this test, so that

Theorem 4 can be applied. Then, H0 can be rejected by two contrasts, namely

|µ̂Cádiz, school − µ̂Granada, no school|
ĉ+,Cádiz, school; Granada, no school

≈ 5.20 > 4.85 ≈ q16,.95,

|µ̂Cádiz, school − µ̂Córdoba, no school|
ĉ+,Cádiz, school; Córdoba, no school

≈ 4.89 > 4.85 ≈ q16,.95.

If interest does not concern all pairwise differences, but only those within a single province,

the test H0 : µi,school − µi,no school = 0 for ∀i in Andalućıa is appropriate. Similarly as

above, let L2 = (08, . . . ,L
∗
2,08, . . . ) be (8× 100), with i-th row corresponding to the i-th

province as L∗2,i =
(
0, . . . , 1,−1, 0, . . .

)
. We test the linear hypothesis H0 : L2 µ = 08

against H1 : L2 µ 6= 08.

At α = 0.05, 75% of individual tests do not reject H0, and, again, neither does the

Bonferroni correction, whereas both ellipsoid-based methods reject:

∥∥(L2Σ̂Lt
2)−1/2L2µ̂

∥∥2 ≈ 17.8 > 15.5 ≈ χ2
16,.95,∥∥(L2Σ̂cL

t
2)−1/2L2µ̂

∥∥2 ≈ 25.9 > 15.5 ≈ χ2
16,.95(0).

Note that as only pairwise differences within a single province are tested against, Tukey’s

method cannot be applied here, as it does not extend to test against all pairwise differences
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Table 2: Means of income in Euro for school graduates.
If µ̂i,no school were equal µ∗i,no school, H0 : Lµ = 08 could not be rejected.

Province µ̂i,school µ̂i,no school µ∗i,no school µ∗i,no school − µ̂i,no school

Córdoba 16,394 11,177 11,720 543
Granada 16,149 10,900 11,101 201
Sevilla 15,742 12,099 12,516 417
Total 1,161

of pairwise differences.

However, the method based on confidence ellipsoids allows to project L2µ̂ ontoMα,L2 in

order to obtain µ∗no school for which H0 could not have been rejected. Results are given

in Table 2. This procedure indicates how much effort, and in which province is to be

made to attain statistically insignificant differences. Such findings could not have been

obtained from so far existing tools. They exemplify the wide range of applications of

multiple inference in SAE, with others easily conceivable.

6 Discussion

We derive simultaneous confidence sets for mixed parameters µ1, . . . , µm, namely linear

combinations of fixed and random effects of LMMs. This is done under the two scenarios,

m → ∞ or ni → ∞. These simultaneous confidence sets are derived under conditional

law and require the estimation of a non-centrality parameter of the respective χ2(λ)-

distribution. We can show that with its estimate, the wanted nominal coverage is still

attained at the usual parametric rate. Further, we extend the theory for marginal law,

for which no such parameter is required.

We find that, surprisingly, the simultaneous confidence sets built under marginal law are

approximately valid (at the same parametric rate) when conditioning on the subjects.

This, however, is not true in general for the subject–wise confidence intervals. We use the

confidence sets for multiple testing, and demonstrate its usefulness in practice.

Our results hold for all kind of linear combinations of mixed (fixed and random) pa-

rameters µi of a subject i. The results show that the problem of bias estimation in the

conditional case can be overcome either by straight-forward estimation of λ or by directly

applying marginal sets as the bias is averaged out over multiple subjects. A simulation

study confirms this effect already for samples of small and moderate size.

For the special case when it is of interest to test whether the specific effects within a subset

of subjects are equal, we extended the testing procedures to cover multiple comparisons

by Tukey’s method. However, the application of this method is limited to special cases
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of LMMs where the corresponding bias can be shown to be negligible.

Most uncertainty is induced by the estimation of δ. If the normality of errors and ran-

dom effects is not met, it has been shown that the estimates for hierarchical [35] and

non-hierarchical LMM [19] or by Hendersons Method III [11] are still consistent and

asymptotically normal. For the latter, we obtain asymptotically the same results [25].

However, it is to be expected that depending on the deviations from normality larger

samples are needed to reach the nominal coverage probability.

A popular strategy is to transform the data in order to achieve normality for errors and

random effects, see [41] for a recent review. Software provides checks for the distributions

of residuals and predictors v̂i [18]. Alternatively, bootstrap methods for LMM can account

for non-Gaussian data, see [9].

We expect that our results can be extended to other predictors of LMMs, such as the best

predictor of [23].
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Appendix

Notation

Throughout the appendix the following notation is used. The (i, j)-th entry of matrix A

is denoted as aij or (A)ij. The (A)i denotes the i-th column vector of matrix A. Other

ways to display a vector or matrix is by e.g. {Op(1)}n×n, a (n × n) stochastic matrix

with each entry being of probabilistic order Op(1), or A = (aij)i,j, if it is obvious that

i, j = 1, . . . ,m. Furthermore, for a matrix A, ‖A‖2 = tr{AtA} is the Frobenius norm.

The square-root of a symmetric positive-definite matrix A1/2 is defined as the unique

symmetric matrix such that A1/2A1/2 = A. For easier readability, the dependence on

the δ is suppressed for various quantities. It should be clear from the context if e.g. G

or V depend on δ or δ̂. Further, if not otherwise noted, we adapt the notation of [34]
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and denote µ̃i = µ̂i(δ) as given in (2) and β̃ analogously. For convenience, dropping

the subject index i = 1, . . . ,m labels the respective quantities over all observations, e.g.

y = (yt1, . . . ,y
t
m)t, V = diag{Vi(δ)}i=1,...,m and X = (Xt

1, . . . ,X
t
m)t, etc. If the range

of the index is clear from the context, it will not be dropped as well. For the proofs,

i, k = 1, . . . ,m denote the subject and j = 1, . . . , ni the respective observation for the i-th

subject. Eventually, e, f, g, d = 1, . . . , r are indices referring the entries in δ.

Proof and Definitions for Theorem 2

The estimator for the across-area generalization of the Prasad-Rao MSE estimator from

[33] is defined below. Let V = Cov(δ̂) be the asymptotic covariance matrix of δ̂. Then,

Σ̂ = Σ̂(δ̂) = K1(δ̂) + K2(δ̂) + 2K̂3(δ̂);

K1(δ) = diag
{
hti
(

G−G Zt
i V
−1
i Zi G

)
hi
}
i=1,...,m

,

K2(δ) =

{
dti

( m∑

l=1

Xt
l V
−1
l Xl

)−1

dk

}

i,k=1,...,m

,

K̂3(δ) = diag

{
tr

(
∂bti
∂ δ

Vi
∂bi

∂ δt
V

)}

i=1,...,m

.

(6)

Σ̂ is a second-order unbiased estimator of Σ = K1(δ) + K2(δ) + K3. The leading term

K1(δ) is an estimator for the variability induced in the prediction of the random effect,

whereas K2(δ) describes the variability induced by the estimation of β such that K1(δ)+

K2(δ) = {E(µi−µ̃i)(µk−µ̃k)}i,j=1,...,m. Finally, (K3)i,j = E(µ̃i−µ̂i)(µ̃k−µ̂k) the variability

of the estimation of δ.

Proof. (of Theorem 2). Consider first (A1). We first show that

‖Σ̂−1/2
(µ̂− µ)‖2 = ‖Σ−1/2(µ̂− µ)‖2 +Op(m

1/2).

It has been shown for both Hendersons method III [33] and REML [7] that E(σ̂ik) =

σik + Op(m
−3/2), as well as σ̃ik = σik + Op(m

−3/2). Note that δ̂e − δe = Op(m
−1/2).

Further, σ̃ii = O(1) as well as σ̃ik = O(m−1) for i 6= k and this order is preserved for its

derivatives with respect to δ. Thus,

Var(σ̂ik) = E
[
{σ̂ik − σ̃ik +O(m−3/2)}2

]

= E

[{
(δ̂ − δ)t

∂σ̃ik
∂ δ

+ (δ̂ − δ)t
∂2σ̃ik

∂ δ ∂ δt
(δ̂ − δ) +Op(m

−3/2)

}2]
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= 1i=kO(m−1) +O(m−3).

Using that for a random variable X with finite variance X = E(X) + Op{
√

Var(X)}, it

follows that Σ̂ = Σ−C where

Σ = diag[{O(1)}m] + {O(m−1)}m×m,
C = diag[{Op(m

−1/2)}m] + {Op(m
−3/2)}m×m.

It is now shown that inverting preserves the error. Note that (Xt V−1 X)−1 =

{Op(m
−1)}p×p and let D = (d1, . . . ,dm) for di as in (B2) as well as K1 = K1(δ). With

(6), the matrix inversion formula yields

Σ−1 =
{
K1 + Dt

(
Xt V−1 X

)−1
D
}−1

= K−1
1 −K−1

1 Dt
(

Xt V−1 X + D K−1
1 Dt

)−1
D K−1

1

= K−1
1 + {O(m−1)}m×m.

Thus, C Σ−1 = diag[{Op(m
−1/2)}m] + {Op(m

−3/2)}m×m. Denote λC Σ−1 as largest eigen-

value of C Σ−1. With the column-sum norm, λC Σ−1 ≤ maxk=1,...,m

∑m
i=1 |{C Σ−1}ik| =

O(m−1/2) < 1 for large m. Writing the inverse as Neumann-series, (Im−C Σ−1)−1 =

Im +diag[{Op(m
−1/2)}m] + {Op(m

−3/2)}m×m. Now

Σ̂
−1

= Σ−1
(

Im−C Σ−1
)−1

= Σ−1 +diag[{Op(m
−1/2)}m] + {Op(m

−3/2)}m×m.

Eventually, since m−1/2
∑m

i=1(µ̂i − µi)2 = Op(m
1/2), it holds first that

‖Σ̂−1/2
(µ̂− µ)‖2 = ‖Σ−1/2(µ̂− µ)‖2 +Op(m

1/2),

and second Q = m−1‖Σ−1/2(µ̂−µ)‖2 = Op(1). Further, U = Op(m
−1/2) with probability

density function fU and z = m−1χ2
m,1−α = O(1), such that

P

{
‖Σ̂−1/2

(µ̂− µ)‖2 < χ2
m,1−α

}
= P

(
Q+ U < z

)

=

∫

R
P
(
Q < z − u

)
fU(u)du =

∫

R

{
P
(
Q < z

)
+O(m−1/2)

}
fU(u)du

= 1− α +O(m−1/2),

which concludes the proof for (A1). For (A2), the reasoning with m → ∞ goes analo-
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gously, so that it suffices to consider case m = O(1). Analogous results to [33] and [7]

follow directly as the diagonal entries of Σ are of the same order as off-diagonal entries,

as

{K1(δ)}ii = hti
(

G−G Zt
i V
−1
i Zi G

)
hi

= hti
(

G−1−Zt
i Ri Zi

)−1
hi = O(n−1

i ),

as Vi = Zi G Zt
i + Ri. The same holds for derivatives with respect to δ. As δ̂e − δe =

Op(m
−1/2), a Taylor expansion yields

ni
[
{K1(δ̂)}ii − {K1(δ)}ii

]
= ni(δ̂ − δ)t

∂{K1(δ)}ii
∂ δ

+O(m−1) = O(m−1/2).

Now, sΣ̂
−1

= sΣ−1 +{Op(m
−1/2)}m×m by analogous reasoning as in (A1). As for m =

O(1) the number of parameters does not grow,

‖Σ̂−1/2
(µ̂− µ)‖2 = ‖Σ−1/2(µ̂− µ)‖2 +Op(m

−1/2).

However, as neither does the quantile, χ2
m,1−α = O(1). This gives

P

{∥∥Σ̂−1/2
(µ̂− µ)

∥∥2
< χ2

m,1−α

}
= 1− α +Op(m

−1/2),

which concludes the proof.

Proof and Definitions for Theorem 1

First, note that δ is not well-defined in the conditional model as parts of this vector that

only describe the variability of the now-fixed random effects are meaningless. Below, δc is

interpreted as the solution of the respective expected minimization problem when either

estimating with REML of Hendersons method III. Now, for the conditional scenario, let

Â = A(Σ̂c, δ̂
c
) =

{(
Σ̂
−1/2

c

)
i
(btiZi − hti)

}
i=1,...,m

(Zt Z)−1 Zt

+
m∑

i=1

(Σ̂
−1/2

c )id
t
i(X

t V−1 X)−1 Xt V−1 .
(7)

With S = X(Xt H X)−1 Xt H and H = R−1−R−1 Z(Zt R−1 Z)−1 Zt R−1,

λ̂ = λ̃(Σ̂c, δ̂
c
) =

∥∥Â
(
In − S

)
y
∥∥2 −

∥∥Â
(
In − S

)
R1/2

∥∥2
. (8)
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Further, denote A = A(Σc, δ
c) and λ̃ = λ̃(Σc, δ

c) if the variance components are known.

Now, for Σ̂c as an estimator for Σc reads as

Σ̂c = Σ̂c(δ̂
c
) = L1(δ̂

c
) + L2(δ̂

c
) + L̂3(δ̂

c
) + L̂4(δ̂

c
)− L̂5(δ̂

c
); (9)

L1(δc) = diag
(
bti Ri bi

)
i=1,...,m

,

L2(δc) =

{
dti(X

t V−1 X)−1 Xt V−1 R V−1 X(Xt V−1 X)−1dk

+btiRi V
−1
i Xi(X

t V−1 X)−1dk

+btkRk V−1
k Xk(X

t V−1 X)−1di

}

i,k=1,...,m

,

L̂4(δc) = diag

{
tr

(
∂bti
∂ δc

Ri
∂bi
∂(δc)t

V

)}

i=1,...,m

,

L̂5(δc) =
1

2
diag

{
tr

[
∂2{L1(δc)}ii
∂ δc ∂(δc)t

V

]}

i=1,...,m

.

As in the marginal case Σc = L1(δc) + L2(δc) + L3 + L4. L̂5 serves as a estimator for

the bias of the leading term L1(δ̂
c
). The fourth term accounts for the estimation of the

random effects, i.e. L4 =
[
Cov

{
µ̂−µ̃−E(µ̂−µ̃|v)

}∣∣v
]
ik

, whereas the third term does so

for the cross-terms, that do not vanish in the conditional model as µ̂ is biased. The term

L̂3 = L̂3(δc) differs for δ̂
c

being a REML- or Hendersons method III-based. It can be split

into L̂3 = L̂∗3 +(L̂∗3)t, L̂∗3 = E
[
{µ̃i−E(µ̃i|v)}{µ̂k− µ̃k−E(µ̂k− µ̃k|v)}

∣∣v
]
. Define wi ∈ Rn

such that µ̂i(δ
c)− E{µ̂i(δc)|v} = wt

ie. Now, for Hendersons method III, δ̂ce = yt Ce y for

e = 1, . . . , r and Ce ∈ Rn×n as given in [36]. It is an estimator for δce = E(yt Ce y |v).

Then, for i, k = 1, . . . ,m,

{
L̂∗3(δc)

}
ik

=
r∑

e=1

{
2tr

(
wi
∂wt

k

∂δce
R Ce R

)
+

r∑

g=1

tr

(
wi

∂2wt
k

∂δce∂δ
c
g

R

)
Veg

}
.

For REML, let δc such that ∂
∂ δc

E{`RE(δc)|v} = 0r, where `RE is the marginal restricted

log-likelihood as spelled out in (10). Now let

Dik(e, d) =
r∑

f=1

(V)efwi(V)td
∂V

−1

∂δce
V
∂wt

k

∂ δc
,

Fik(e, d) =
r∑

f,g=1

(V)ef (V)fgwi
∂2wt

k

∂δce∂δ
c
d

.
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Further, with P = V−1−V−1 X(X V−1 Xt)−1 Xt V−1, an estimator Σ̂c = Σ̂c(δ̂
c
) for Σc

is given by

{
L̂∗3(δc)

}
ik

= 2
r∑

e=1

tr

{
P
∂V

∂δce
P R wi(V)te

∂wt
k

∂ δc
R

}

+ 2
r∑

e,d=1

tr

[{
2Fik(e, d)−Dik(e, d)

}
R

](
V
−1)

ed

+
r∑

e,d,g=1

tr

{
wi(V)te

∂wt
k

∂ δc
R

}
∂(V

−1
)ef

∂δcg
(V)ed.

For the proof of Theorem 1, two preliminary results are required.

Lemma 1. Let Ai ∈ Rn×n be nonstochastic and u ∼ Nn(0n,V). Then,

(i) E

( 2∏

i=1

utAiu

)
= 2tr

(
A1 V A2 V

)
+ tr

(
A1 V

)
tr
(
A2 V

)
,

(ii) E

( 3∏

i=1

utAiu

)
=

3∏

i=1

tr
(
Ai V

)
+ 2tr

(
A1 V

)
tr
(
A2 V A3 V

)

+ 2tr
(
A2 V

)
tr
(
A1 V A3 V

)
+ 4tr

(
A2 V A1 V A3 V

)

+ 2tr
(
A3 V

)
tr
(
A2 V A1 V

)
+ 4tr

(
A1 V A2 V A3 V

)
.

This Lemma follows by direct application of Theorem 1 of [38].

Lemma 2. Let model (1) hold. Under (A1) with regularity conditions conditions (B1)

and (B4) and δ̂
c

being a REML estimate, let s be the score vector of δ̂
c

and V
−1

its

information matrix, and Λ as in (11). Then,

δ̂
c − δc = g1 + g2−g3 +{Op(m

−3/2)}r;

g1 = Vs = {Op(m
−1/2)}r,

g2 = V Λ Vs = {Op(m
−1)}r,

g3 =
1

2

r∑

g=1

(Vs)gV
∂V

−1

∂δcg
Vs = {Op(m

−1)}r.

Proof. Denote `RE(δc) as the restricted log-likelihood function such that

`RE(δc) ∝ −1

2
log|V | − 1

2
log|Xt V−1 X | − 1

2
yt P y (10)

21



with P = V−1−V−1 X(Xt V−1 X)−1 Xt V−1. As ∂
∂δcf

P = −P ∂
∂δcf

VP and PVP = P,

score vector and matrix of second derivatives read as

s(δc) =
∂`RE

∂ δc
(δc) =

{
− 1

2
tr

(
P
∂V

∂δcd

)
+

1

2
yt P

∂V

∂δcd
P y

}

d

;

∂2`RE

∂ δc ∂(δc)t
(δc) = −V

−1
+ Λ,

(
V
−1)

ef
=

1

2
tr

(
P
∂V

∂δcf
P
∂V

∂δce

)
,

(Λ)ef = tr

(
P
∂V

∂δcf
P
∂V

∂δce

)
− ytP

∂V

∂δcf
P
∂V

∂δce
Py.

(11)

The information matrix of δ̂
c

is V
−1

= {O(m)}r×r. Further, as E{s(δc)|v} = 0r, it

follows that

E
{

(Λ)fe|v
}

= tr

{
P
∂V

∂δce
P
∂V

∂δcf
P Z(v vt−G) Zt

}
= 0,

too. Further, by Lemma 1 (ii) this gives E{(Λ)ef |v}+ Op[
√

Var{(Λ)ef |v}] = Op(m
1/2).

Together with s(δc) = {Op(m
1/2)}r, this gives

{
∂3`RE

∂δce∂δ
c
f∂δ

c
g

(δc)

}

e,f

= − ∂

∂δcg
V
−1

+ {Op(m
1/2)}r×r.

We continue with a Taylor expansion for s(δ̂
c
) = 0r around the score vector s(δc). Next,

suppress the argument of the score vector, e.g. s refers to the score vector and sd to its

d-th entry. Then,

δ̂
c − δc = Vs + V Λ(δ̂

c − δc)

− 1

2

r∑

g=1

(δ̂cg − δcg)V
∂V

−1

∂δcg
(δ̂

c − δc) + {Op(m
−3/2)}r

= Vs + V Λ Vs− 1

2

r∑

g=1

(Vs)gV
∂V

−1

∂δcg
Vs + {Op(m

−3/2)}r.

This gives the claim.

Lemma 3. Let model (1) hold with definitions above and let δ̂
c

be being a REML esti-

mator. Under (A1) or (A2), with (B1)-(B4) it holds

(i) L1(δc) = E
{
L1(δ̂

c
)− L̂5(δ̂

c
)
∣∣v
}

+ {O(m−3/2)}m×m,
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(ii) L2(δc) = E{L2(δ̂
c
)|v}+ {Op(m

−3/2)}m×m,

(iii) L3 = E{L̂3(δ̂
c
)|v}+ {Op(m

−3/2)}m×m,

(iv) L4 = E{L̂4(δ̂
c
)|v}+ {Op(m

−3/2)}m×m.

Proof. Consider (A1) only, as (A2) goes analogously to the considerations in the proof

of Theorem 2 as L1(δc) = {Op(n
−1
i )}m×m for m = O(1). Also, (ii) and (iv) are obtained

analogously to [7]. For (iii) we show first that

L3 = L̂3(δc) + {Op(m
−3/2)}m×m. (12)

Consider the Taylor expansion of µ̂k − E[µ̂k|v] around δc, multiply with wt
ie and take

expectation. Then, L∗3 = E
{
wt
ie(ŵk −wk)

te
}

. With gj, j = 1, 2, 3 as given in Lemma 2,

this yields

(ŵk−wk)
te = (δ̂

c−δc)t
∂wt

ke

∂ δc
+ (δ̂

c−δc)t
∂2wt

ke

∂ δc ∂(δc)t
(δ̂

c−δc) +O(m−3/2).

Multiplying with wt
ie and taking expectations then gives

L∗3 = E

(
wt
ie gt1

∂wt
ke

∂ δc

∣∣∣∣v
)

+ E

(
wt
ie gt2

∂wt
ke

∂ δc

∣∣∣∣v
)
− E

(
wt
ie gt3

∂wt
ke

∂ δc

∣∣∣∣v
)

+ E

(
wt
ie gt1

∂2wt
ke

∂ δc ∂(δc)t
g1

∣∣∣∣v
)

+O(m−3/2),

which we will show to lead to L̂∗3(δc). Each expectation above is evaluated one by one,

using Lemma 1. First, Lemma 1 (i) yields

E

(
wt
ie gt1

∂wt
ke

∂ δc

∣∣∣∣v
)

=
r∑

e=1

E

{
see

twi(V)te
∂wt

k

∂ δc
e

∣∣∣∣v
}

= 2
r∑

e=1

tr

{
P
∂V

∂δce
P R wi(V)te

∂wt
k

∂ δc
R

}
.

Similarly, with Lemma 1 (ii) the next term gives

E

(
wt
ie gt2

∂wt
ke

∂ δc

∣∣∣∣v
)

=
r∑

e,g,f=1

E

{
se(Λ)fge

twi(V)te
∂wt

k

∂ δc
e(V)ef

∣∣∣∣v
}

= −2
r∑

e,g,f=1

tr

{
wi(V)te

∂wt
k

∂ δc
R

}
tr

(
∂V

∂δce
P
∂V

∂δcf
P
∂V

∂δcg
P

)
(V)ef +O(m−2),
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and note that −2∂(V
−1

)ef/∂δ
c
g = tr(∂V

∂δce
P∂V
∂δcg

P∂V
∂δce

P) + tr(∂V
∂δce

P∂V
∂δcg

P∂V
∂δcf

P). For the next

term, note that Dik(e, d) has only entries of order O(m−3) except on the submatrix

{O(m−2)}ni×nk
corresponding to the respective subjects. Hence,

E

(
wt
ie gt3

∂wt
ke

∂ δc

∣∣∣∣v
)

=
1

2

r∑

e,d=1

E

{
sesd etDik(e, d)e

∣∣∣∣v
}

= 2
r∑

e,d=1

tr
{
Dik(e, d) R

}
(V
−1

)ed +O(m−2),

by Lemma 1 (ii). The last term eventually gives also by Lemma 1 (ii) that

E

(
wt
ie gt1

∂2wt
ke

∂ δc ∂(δc)t
g1

∣∣∣∣v
)

=
r∑

e,d=1

E

{
sesd etFik(e, d)e

∣∣∣∣v
}

= 4
r∑

e,d=1

tr
{
Fik(e, d) R

}
(V
−1

)ed +O(m−2).

Putting all terms together eventually gives L∗3 = L̂∗3(δc)+{Op(m
−3/2)}m×m and thus (12).

Note that L̂∗3(δc) = {Op(m
−1)}m×m. Taking derivatives preserves the order and a Taylor

expansion and taking expectations yields

E
[
{L̂3(δ̂

c
)}ik|v

]
= {L̂3(δc)}ik +O(m−2) = (L3)ik +O(m−2),

as E(δ̂
c − δc |v) = 0r. The last equation follows by (12). This gives (iii).

(i) A similar approach for {L1(δ̂
c
)}ii around {L1(δc)}ii gives

E
[
{L1(δ̂

c
)}ii|v

]
= {L1(δc)}ii +

1

2
diag

{
tr

[
∂2{L1(δc)}ii
∂ δc ∂(δc)t

V

]}

i

+O(m2).

This concludes the proof for Lemma 3.

Lemma 4. Let model (1) hold with definitions above and let δ̂
c

given by Hendersons

method III. Under (A1) or (A2), with (B1)-(B4) it holds

(i) L1(δc) = E
{
L1(δ̂

c
)− L̂5(δ̂

c
)
∣∣v
}

+ {O(m−3/2)}m×m,

(ii) L2(δc) = E{L2(δ̂
c
)|v}+ {Op(m

−3/2)}m×m,

(iii) L3 = E{L̂3(δ̂
c
)|v}+ {Op(m

−3/2)}m×m,

(iv) L4 = E{L̂4(δ̂
c
)|v}+ {Op(m

−3/2)}m×m.
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Proof. (of Lemma 4). Consider (A1) only, as (A2) analogously unless m = O(1),

in which case the leading term is O(m−1). Recall that δ̂e = yt Ce y where Ce =

diag[{O(m−1)}ni×ni
]i=1,...,m + {O(m−2)}n×n. Further, (i) and (ii) hold as in Lemma 3

as they do not depend on the different nature of δ̂
c
.

(iii) The only part that remains to be treated is L̂∗3. As all entries are of order O(m−1),

it suffices to show

L∗3 = L̂∗3(δc) + {O(m−3/2)}m×m

To show this, rewrite δ̂
c

terms of e, namely

δ̂ce − δce = etCee− tr{Ce R}+ 2etCe(Z v + Xβ).

Adapting to the abbreviations of before, L∗3 = E{wt
ie(ŵk−wk)

te} = aik+bik+O(m−3/2),

where

aik =
r∑

e=1

E

{
wt
ie(δ̂ce − δce)

∂wt
ke

∂δce

∣∣∣∣v
}
,

bik =
r∑

e=1

r∑

g=1

E

{
wt
ie(δ̂ce − δce)(δ̂cg − δcg)

∂2wt
ke

∂δce∂δ
c
g

∣∣∣∣v
}
.

Both terms are treated in turn. First, Lemma 1 (i) gives

aik =
m∑

e=1

2tr

{
wi
∂wt

k

∂δce
R Ce R

}
.

For the next term, Lemma 1 (ii) yields

bik =
r∑

e=1

r∑

g=1

tr

{
wi

∂2wt
k

∂δce∂δ
c
f

R

}
Veg +O(m−2).

(iv) The proof goes similar to Lemma 3. As all entries of L̂4 are of order O(m−1), it

suffices to show

L4 = L̂4(δc) + {O(m−3/2)}m×m.

Using that Cf R Ce = diag[{O(m−2)}ni×ni
] + {O(m−3)}n×n and ∂wk

∂δcf

∂wt
i

∂δce
has entries
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O(m−1) except on the submatrix {O(1)}nk×ni
, it follows that

(L4)ik =
r∑

e=1

r∑

f=1

E

{
(δ̂ce − δce)(δ̂cf − δcf )et

∂wk

∂δcf

∂wt
i

∂δce
e

∣∣∣∣v
}

+O(m−3/2)

=

{ r∑

e=1

r∑

f=1

2tr(Ce R Cf R) + 4(Xβ−Z v)tCe R Cf (Xβ−Z v)

}

· tr
{
∂b

∂δce

∂bt

∂δcf
R

}
+O(m−3/2)

= L̂4(δc) +O(m−3/2)

as the first factor equals Cov{(ytCey)e=1,...,r|v} = V. Since δ̂
c

is unbiased and δc =

δ̂
c
+O(m−1/2), the remaining part of the proof follows analogously to that one of Lemma

3.

Proof. (of Theorem 1). With Lemma 3 and Lemma 4 the proof for Theorem 2 can be

replicated, which gives

P

{
‖Σ̂−1/2

c (µ̂− µ)‖2 < χ2
m,1−α(λ)

∣∣∣∣v
}

= 1− α +O(m−1/2).

Thus, for (A1) it remains to show that χ2
m,1−α(λ) = χ2

m,1−α(λ̂) + Op(m
1/2). First, define

λ̃ for λ̂ from (8) with Σc and δc instead of Σ̂c and δ̂
c
. Similarly, define A for Â as in (7)

and see that

A = diag[{O(1)}m×ni
]i=1,...,m + {O(m−1)}m×n.

Analogously to the marginal scenario it holds that Σ̂
−1/2

c = Σ−1/2
c +B, for B =

diag[{Op(m
−1/2)}m] + {Op(m

−1)}m×m. As δ̂
c

= δc +{Op(m
−1/2)}r by Lemma 2 and thus

it holds

Â = A +
{
Bi(b

t
iZi − hti)

}
i
(Zt Z)−1 Zt +

m∑

i=1

Bid
t
i(X V−1 Xt)−1 X V−1

= A + diag[{O(m−1/2)}m×ni
]i + {O(m−1)}m×n = A + C .

Note that AtC = diag[{Op(m
−1/2)}ni×ni

]i + {Op(m
−1)}n×n and further n−1

∑n
k=1{(In −

S) y}k = Op(m
−1/2). As δ̂

c
only occurs in R(δ̂

c
) in λ̂ = λ̃(Σ̂c, δ̂

c
) by (8), multiplying out

and a Taylor expansion for δ̂
c

around δc with δ̂
c − δc = {Op(m

−1/2)}r leads to

λ̂ = λ̃ +2 yt(In − S)AtC(In − S) y +
∥∥C(In − S) y

∥∥2
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−2tr
{

(In − S)AtC(In − S) R(δ̂
c
)
}
−
∥∥C(In − S){R(δ̂

c
)}1/2

∥∥2

+Op(m
−1/2)

∥∥A(In − S){R(δc)}1/2
∥∥2

+Op(1) = λ̃+Op(m
1/2).

By construction E{λ̃|v} = λ. For its variance, we get

Var{λ̃|v} = 6Var{‖A(In − S) y ‖2|v} = Var{‖A Z v + A(In − S)e‖2|v}
= 2tr

{
(In − S)AtA(In − S)R(In − S)AtA(In − S)R

}

+vt Zt AtA(In − S) R(In − S)AtA Z v = O(m)

by Lemma 1 (i). Hence, λ̂ = λ+Op(m
1/2). Eventually,

χ2
m,1−α

(
λ̂
)

= χ2
m,1−α

{
λ+Op(m

1/2)
}

= χ2
m,1−α(λ) +Op(m

1/2).

This concludes the proof for (A1). For (A2) the reasoning is similar. If moreover m =

O(1), the respective quantities are smaller, namely

A = diag[{O(m−1)}m×ni
]i=1,...,m + {O(m−2)}m×n,

C = diag[{O(m−3/2)}m×ni
]i=1,...,m + {O(m−2)}m×n,

which gives that λ̂ = λ̃(Σc, δ
c) + Op(m

−1/2), Var{λ̃(Σc, δ
c)|v} = O(m−1) and thus

χ2
m,1−α

(
λ̂
)

= χ2
m,1−α(λ) +Op(m

−1/2). This proves Theorem 1.

Proof and Definitions for Theorem 3

Another way to obtain a pivotal for simultaneous inference is to evaluate the distribution

of the quadratic form Q = ‖Σ−1/2(µ̂ − µ)‖2 under conditional law. It is distributed

as generalized non-central χ2, and thus has no analytically tractable probability density

function. However, due to the linearity of µ̂ − µ in v, the quadratic form Q can be

suitably split up in treatable terms.

In the conditional scenario, v is seen as pre-fixed. Hereafter it is treated as being generated

by the underlying marginal model v ∼ N (0m,G). Generally, it is merely required that v

does not depart too much from G, namely,

1√
q

q∑

i=1

q∑

j=1

(v)i(v)j − (G)ij = O(1).

Proof. (of Theorem 3). Due to linearity of µ̂ − µ, it holds that Σ = Σc + Σb, where
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Σb = Cov(µb) for µb = E(µ̂− µ |v) by the law of total variance. Moreover,

Σ−1 =
(

Σc + Σb

)−1
= Σ−1

c −Σ−1
c

(
Σ−1
c + Σ−1

b

)−1
Σ−1
c = Σ−1

c −T−1
c ,

where T−1
c fulfills Σc T−1

c = Σb Σ−1. Now consider Q = S +R with

S = ‖Σ−1/2
c (µ̂− µ−µb)‖2,

R = ‖Σ−1/2 µb ‖2 + 2µt
b Σ−1(µ̂− µ−µb)− ‖T−1/2

c (µ̂− µ−µb)‖2.

First consider the marginal law. Clearly, Q ∼ χ2
m and S ∼ χ2

m. Thus, E(R) = 0

and Var(R) = 4tr(Σ−1 Σb) − 2tr{(Σ−1 Σb)
2}, which can be verified by calculating all

quantities directly. Under conditional law, Q|v 6∼ χ2
m a.s., but as in the marginal case,

S|v ∼ χ2
m. Thus, E(R|v) 6= 0 a.s. Note that almost surely (a.s.) refers to the joint,

marginal distribution. In order to evaluate Q under conditional law, R is replaced by

its marginal expectation and variance R = E(R) + Op{
√

Var(R)}. For m → ∞ this

gives R = Op(m
1/2) as Var(R) = O(m) by diag(Σ) = {O(1)}m. For m = O(1) we have

Var(R) = {O(m−1)}m and thus R = Op(m
−1/2). This is a natural procedure, insofar R|v

is interpreted as random variable that depends on the realization of v, and those can be

wrapped up by their marginal expectation and square-rooted variance. Now for m→∞,

using that S = Op(m),

P
(
Q < χ2

m,1−α
∣∣v
)

= P

{
S

m
+Op(m

−1/2) <
χ2
m,1−α
m

∣∣∣∣v
}

= P
(
S < χ2

m,1−α
∣∣v
)

+O(m−1/2) = 1− α +Op(m
−1/2).

Replacing Σ in Q by Σ̂ = Σ +{Op(m
−1/2)}m×m gives ‖Σ̂−1/2

(µ̂ − µ)‖2 = Q + Op(m
1/2)

as in the proof of Theorem 2. The order of the error coincides with
√

Var(R) = Op(m
1/2)

and above equation still holds. Analogously, for m = O(1), χ2
m,1−α = O(1), which gives

the stated result.

Proof of Theorem 4

The proof transforms the simple contrast upon the unstandardized pivot to a general

contrast upon a standardized pivot.

Proof. First we show that c̃t1m = ct Σ1/2
c 1m = O(m−1/2). Note that (C1), (C2) imply

btiRibi = btkRkbk, i, k ≤ w, as

btiRibi = htiGZt
iV
−1
i Zi

(
Iq + GZt

iV
−1
i Zi

)
Ghi.
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Further, Σc = btiRibiIm + C, for C = {O(m−1)}m×m and as both matrices commute,

they are simultaneously diagonalizable and the eigenvalues of Σc the sum of eigenvalues

of its components above. It thus remains to evaluate ctC by (9). Some calculations finally

yield with (C1), (C2) that c̃t1m = O(m−1/2).Now let c ∈ Sm and Z ∼ Nm(0m, Im). Then,

c̃tZ = c̃t Σ−1/2
c

{
µ̂− µ−E(µ̂− µ |v)

}
= ct(µ̂− µ)− c+ηc.

The claim follows for c̃+ = (c̃t)>01m by [37, Theorem 7.11]. Replacing c̃ by ĉ as in the

proof of Theorem 2 gives

ctΣ̂
1/2

c = ct Σ1/2
c +ctdiag

[{
Op(m

−1/2)
}
m

]
+ ct

{
Op(m

−3/2)
}
m×m

= ct Σ1/2
c +Op(m

−1/2),

so ĉ+ = c̃+ +Op(m
−1/2), which shows Theorem 4.

Tukey’s Method

For subjects with vi = vk for all i, k ≤ w < m, (C1), (C2) imply that ctE
(
µ̂i − µi|v

)
=

O(m−1/2), and thus ηc = O(m−1/2):

E
(
µ̂i − µi|v

)
= (lti − btiXi)(X

tV−1
i X)−1XtV−1

i Zv + (lti − bti Xi)vi

= hti G Zt
iV
−1
i Zivi − htivi +O(m−1/2).

(13)

Testing for Equality of all Random Effects

For w = m, all random effects are zero under H0 and the underlying model reduces to

a linear model. For linear hypotheses, this allows for the application of F-tests, see [16].

For testing equality of all pairwise differences, the standard version of Tukey’s method

for balanced, or Tukey-Kramer for inbalanced sets, have to be applied, see [39, 30].
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Supplement to “Marginal and Conditional Multiple

Inference in Linear Mixed Models”

This document includes the proof of Proposition 1 in [4], simulation studies evaluating

Tukey’s multiple comparison tests as well as performance of marginal ellipsoids and as an

extension to the results of [2] and [6] it is shown that the bias of the estimators actually

vanishes with rate O(m−2) instead of O(m−3/2). The proof for this claim is related to the

findings of [4].

Simulation Study.

Naturally, the set Mα is especially suitable to use for marginal models. Table 1 shows

results of a simulation for such a marginal scenario, i.e. in each iteration the random

effects are drawn again. All other quantities are as described in [4]. As stated in Theorem

Table 1: Coverage of 95%-confidence ellipsoids in model (5) under marginal law.

δ = (8, 2) δ = (4, 4) δ = (2, 8)
m ni nj δ REML δ REML δ REML

10 5 5 .95 .92 .95 .92 .95 .95
100 5 5 .95 .92 .95 .93 .95 .89
10 10 10 .95 .93 .95 .94 .95 .93

100 10 10 .95 .94 .95 .94 .95 .93
10 5 10 .95 .93 .96 .94 .96 .96
10 5 100 .96 .95 .96 .97 .98 .98

2 the nominal coverage is achieved asymptotically, though for finite samples undercoverage

is induced due to uncertainty caused by the REML estimation.

Table 2: Accuracy in % of Tukey’s multiple comparisons test at 5% for model (5) under
conditional law.

δ = (8, 2) δ = (4, 4) δ = (2, 8)
m ni nj δ REML δ REML δ REML

10 5 5 4.93 6.96 5.08 5.18 5.06 3.47
100 5 5 4.71 5.49 4.72 5.08 4.53 3.85
10 10 10 5.24 5.63 5.19 4.59 5.23 2.86

100 10 10 4.81 4.86 4.83 4.70 4.81 4.12
10 5 10 4.95 7.49 4.93 5.79 4.90 4.18
10 10 100 5.21 8.47 5.21 7.60 5.21 5.27

Similarly, Table 2 assesses the accuracy of Tukey’s test for multiple comparisons. The

simulations parameters are chosen to match those in Section 4 in [4]. That is, for half the

1



subjects (m∗ = m/2) being generated with equal random effect, the hypothesis H0 : µi =

µj for ∀i, j = 1, . . . ,m∗ was tested against a two-sided alternative. For all
(
m∗

2

)
simple

contrasts it was then checked whether the Tukey interval included zero, and the resulting

rejection of H0.

The simulation reassures that Tukey’s method works very well within the generated data

set. The nominal level is readily being achieved, even for estimated variance components,

both for 10 (m∗ = 5) and 1125 (m∗ = 50) tests carried out in total.

Proof of Proposition 1

For result (a) it suffices to identify all quantities solely depending on v and marginal law,

namely

c(v) =z1−α
2

∞∑

k=1

(
1/2

k

){
Var(µ̂i)− Var(µ̂i|v)

Var(µ̂i|v)

}k
− sign(Z)

E(µ̂i − µi|v)√
Var(µ̂i|v)

. (14)

For the second result, the the described phenomenon in scenario (A1) has been previously

found by [9] and [5] for nonparametric regression. We borrow the ansatz of the latter for

the proof.

Proof. (a) The result follows immediately from

P

{∣∣∣∣
µ̂i − µi√
Var(µ̂i)

∣∣∣∣ ≤ z1−α
2

∣∣∣∣v
}

= P

{∣∣∣∣
µ̂i − µi√
Var(µ̂i|v)

∣∣∣∣ ≤ z1−α
2

√
Var(µ̂i)√

Var(µ̂i|v)

∣∣∣∣v
}

= P

{∣∣Z
∣∣ ≤ z1−α

2

√
Var(µ̂i)√

Var(µ̂i|v)
− sign(Z)

E(µ̂i − µi|v)√
Var(µ̂i|v)

∣∣∣∣v
}

= P

{∣∣Z
∣∣ ≤ z1−α

2

√
1 +

Var(µ̂i)− Var(µ̂i|v)

Var(µ̂i|v)
− sign(Z)

E(µ̂i − µi|v)√
Var(µ̂i|v)

∣∣∣∣v
}

= P

{∣∣Z
∣∣ ≤ z1−α

2
+ c(v)

∣∣∣∣v
}
.

(b) First consider (A1). Let ξ be a random variable independent to e with distribution

putting equal weight on the points in {1, . . . ,m}. Then,

1

m

m∑

i=1

P
(
|Ti| ≤ z1−α

2

∣∣v
)

= E
{

E
(
1|Tξ|≤z1−α

2

∣∣v, ξ
)}

= P
(
|Tξ| ≤ z1−α

2
|v
)
.

Now study the distribution of Tξ under the joint law (ξ, e). In particular, due to β̃ =

2



β +{Op(m
−1/2)}p,

Tξ =
µ̂ξ − µξ√

Var(µ̂ξ − µξ)
=

(btξZξ − htξ)vξ + btξeξ√
Var(µ̂ξ − µξ)

+Op(m
−1/2),

where bξ was defined in (2). Now, first and second moments are expressed in terms of

the joint expectation. Due to independence of ξ and e, the expectation with respect to

the former can be treated as the average again, while the order of the remaining part is

assessed in terms of the marginal case. Since Var(µ̂i−µi) = htiGihi−bti Vi bi +O(m−1),

this amounts to

E(Tξ|v) =
1

m

m∑

i=1

(btiZi − hti)vi√
htiGihi − bti Vi bi

+O(m−1/2) = O(m−1/2),

by Lindeberg’s central limit. The same approach gives for the variance

Var
(
Tξ|v

)
= E(T 2

ξ |v)− E(Tξ|v)2

=
1

m

m∑

i=1

(btiZi − hti)viv
t
i(b

t
iZi − hti)

t + btiRibi
htiGihi − bti Vi bi

+O(m−1)

= 1 +O(m−1),

again by central limit and since Vi = Zt
i Gi Zi + Ri. It follows that Tξ = Z + O(m−1/2)

for Z ∼ N (0, 1). The claim follows.

For (A2), the claim follows for each subject as matrix inversion gives

(btiZi − hti)vi = hti
{

Gi Z
t
i

(
Zi Gi Z

t
i + Ri

)−1
Zi Gi−Gi

}
G−1i vi

= −hti
(

G−1i + Zt
i R
−1
i Zi

)−1
G−1i vi = O(n−1i ).

Thus, E(Ti|v) = O(n−1i ). Similarly, for Var(Ti v), we find that the denominator is O(n−1i ),

as well as btiRibi = O(n−1i ) in the nominator. The remaining part of the nominator, by

the same reasoning as above, is O(n−2i ). It follows that Var(Ti) = O(n−1i ). This gives the

claim.

Auxiliary Results.

We only consider the marginal case, as the conditional case follows from analogous con-

siderations for results in the appendix of [4]. These findings do not improve the error

rate obtained for simultaneous comparisons however, as the error rate in Theorem 1 and

Theorem 2 is induced by the variability of the estimators Σ̂c and Σ̂, respectively. Some

3



preliminary results are required.

Lemma 1. Let Ai ∈ Rn×n be symmetric and nonstochastic for i ∈ {1, 2, 3, 4},
and u ∼ Nn(0n,V). For R = {(1, 2, 3, 4), (1, 3, 2, 4), (1, 4, 2, 3)} and Q =

{(1, 2, 3, 4), (2, 1, 3, 4), (3, 1, 2, 4), (4, 1, 2, 3)} it holds

(i) E

( 2∏

i=1

utAiu

)
= 2tr

(
A1 V A2 V

)
+ tr

(
A1 V

)
tr
(
A2 V

)
,

(ii) E

( 3∏

i=1

utAiu

)
=

3∏

i=1

tr
(
Ai V

)
+ 2tr

(
A1 V

)
tr
(
A2 V A3 V

)

+ 2tr
(
A2 V

)
tr
(
A1 V A3 V

)
+ 4tr

(
A2 V A1 V A3 V

)

+ 2tr
(
A3 V

)
tr
(
A2 V A1 V

)
+ 4tr

(
A1 V A2 V A3 V

)
,

(iii) E

( 4∏

i=1

utAiu

)
=

4∏

i=1

tr
(
Ai V)

+
∑

(i,j,k,l)∈R
2tr
(
Ai V)tr

(
Aj V)tr

(
Ak V Al V)

+
∑

(k,l,i,j)∈R
2tr
(
Ai V)tr

(
Aj V)tr

(
Ak V Al V)

+
∑

(i,j,k,l)∈Q
4tr
(
Ai V)

{
tr
(
Aj V Ak V Al V)

+ tr
(
Ak V Aj V Al V)

}

+
∑

(i,j,k,l)∈R
4tr
(
Ai V Aj V)tr

(
Ak V Al V)

+ 16tr
(
Ai V Aj V Ak V Al V).

This results is an extension of Lemma 1 from [4], a result that was derived by direct

application of Theorem 1 of [8].

Lemma 2. Let model (1) hold with (6) and let δ̂ be being a REML estimator. Under

(B1) - (B4) it holds

(i) K1(δ) = E
{
K1(δ̂) + K̂3(δ̂)

}
+ {O(m−2)}m×m,

(ii) K2(δ) = E
{
K2(δ̂)

}
+ {O(m−2)}m×m,

(iii) K3 = E
{
K̂3(δ̂)

}
+ {O(m−2)}m×m.

Proof. (of Lemma 2) First, (A1) is considered, and part (ii) is proved. Adapt the notation

of the proof of Lemma 2 for X and V. Recall that {K2(δ)}ik = dti(X
t V−1 V)−1dk =

4



O(m−1), and all derivatives preserve the order. Thus, for i, k = 1, . . . ,m, a Taylor expan-

sion around δ and taking expectations yields

E
[
{K2(δ̂)}ik

]
= {K2(δ)}ik +

1

2
(δ̂ − δ)t

∂2{K2(δ)}ik
∂ δ ∂ δt

(δ̂ − δ) +O(m−2)

= {K2(δ)}ik +O(m−2),

noting that the REML estimates fulfill δ−δ̂ = {Op(m
−1/2)}r and are unbiased, hence

having that the second term of the expansion is zero under expectation.

(iii) For the next statement, we start showing that

K̂3(δ) + {O(m−2)}m×m = K3. (15)

The proof is similar to [2], but in contrast to these authors the Taylor expansion is

performed including the second order term. Again using that the REML estimates fulfill

δ−δ̂ = {Op(m
−1/2)}r,

µ̂i − µ̃i = (δ̂ − δ)t
∂µ̃i
∂ δ

+
1

2
(δ̂ − δ)t

∂2µ̃i

∂ δ ∂ δt
(δ̂ − δ) +Op

(
m−3/2

)
. (16)

Since further ∂β̃
∂ δt

= {Op(m
−1/2)}p×r as shown in [1],

∂µ̃i
∂ δ

=
∂µ̃i|β̃=β

∂ δ
+
∂β̃

t

∂ δ

∂µ̃i|β̃=β

∂ β
= f1,i + f2,i,

∂2µ̃i

∂ δ ∂ δt
=
∂2µ̃i|β̃=β

∂ δ ∂ δt
+ {Op(m

−1/2)}r×r = 2F3 + {Op(m
−1/2)}r×r.

With the notation from Lemma 2, the explicit forms read as

f1,i =
∂bti
∂ δ

(Zi vi + ei) = {Op(1)}r,

f2,i = −
{

dti(X
t V−1 X)−1 X V−1

∂V

∂δd
P(y−Xβ)

}

d

= {Op(m
−1/2)}r,

2F3,i =

{
∂2bti
∂δd∂δe

(Zi vi + ei)

}

d,e

= {Op(1)}r×r.

Using Lemma 2, it follows that (16) can be rewritten as

µ̂i − µ̃i = gt1f1,i
Op(m

−1/2)

+ gt1f2,i
Op(m

−1)

+ gt2f1,i
Op(m

−1)

− gt3f1,i
Op(m

−1)

+ gt1F3,ig1

Op(m
−1)

+Op(m
−3/2).

Now, (15) is shown by splitting K3 into nine terms. Five terms are considered separately,
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the other four yield the same result by symmetry. In particular,

(K3)ik = E(gt1f1,ig
t
1f1,k) + E(gt1f1,ig

t
2f1,k) + E(gt1f1,kg

t
2f1,i)

− E(gt1f1,ig
t
3f1,k)− E(gt1f1,kg

t
3f1,i)

+ E(gt1f1,ig
t
1f2,k) + E(gt1f1,kg

t
1f2,i)

+ E(gt1f1,kg
t
1F3,ig1) + E(gt1f1,ig

t
1F3,kg1) +O(m−2).

In the following it will be shown that E(gt1f1,ig
t
1f1,k) = {K̂3(δ)}ik +O(m−2) and all other

terms are of order O(m−2), which is sufficient to show (15). Repeating the calculations

of [2], the leading term gives

E(gt1f1,ig
t
1f1,k) = 1i=k tr

(
∂bti
∂ δ

Vi
∂bi

∂ δt
V

)
+O(m−2),

using Lemma 1 (i) and exploiting that V being of block-diagonal form and

P = diag[{O(1)}ni×ni ]i=1,...,m + {O(m−1)}n×n. For the next term consider the

matrix Mik(e, d, g, f) of dimension (n × n) with only non-zero entries being

(V)ef
∂bk
∂ δt

(V)d(V)tg
∂btk
∂ δ

= {O(m−3)}ni×nk at the (ni × nk)-submatrix, corresponding to

the respective subjects. Further, by construction, P y = P(Z v +e). Tedious calculations

yield with Lemma 1 (iii) that

E(gt1f1,ig
t
2f1,k) =

r∑

e,g,d,f=1

E

{
sgsd(Λ)ef (Z v + e)tMik(e, g, d, f)(Z v + e)

}

= O(m−2).

Now define the matrix Oik(e, d, g, f) of dimension (n×n) with only non-zero entries being

(V)ef
∂bk
∂ δt

(V)d(V
∂V

−1

∂δe
V)tg

∂btk
∂ δ

= {O(m−3)}ni×nk at the (ni×nk)-submatrix, corresponding

to the respective subjects. Further, by construction, P y = P(Z v + e). Now, Lemma 1

yields

E(gt1f1,ig
t
3f1,k) =

1

2

r∑

e,d,f,g=1

E

{
sgsdsf (Z v + e)tOik(e, d, g, f)(Z v + e)

}

= O(m−2).

Similarly, by Lemma 1 (ii), and matrix Qik(e, d) with only non-zero entries on the ni-

columns corresponding to the respective i-th subject with entries of order {O(m−3)}ni×n
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it holds that

E(gt1f1,ig
t
1f2,k) =

r∑

e,d=1

E

{
sesd(Z v + e)tQik(e, d)(Z v + e)

}
= O(m−2).

It remains to treat the last term. As before, for a matrix Ui,k(e, d, f) with zero entries

except on the (ni×nk)-submatrix {O(m−3)}ni×nk corresponding to the respective subjects

it holds that

E(gt1f1,kg
t
1F3,ig1) =

1

2

r∑

e,d,f=1

E

{
sesdsf (Z v + e)tUik(e, d, f)(Z v + e)

}

= O(m−2).

The other terms are O(m−2) by symmetry when replacing i and k. Hence K3 = K̂3(δ) +

{O(m−2)}m×m, which was the claim in (15). The remaining proof is now similar to (ii).

Note that {K̂3(δ̂)}ik = O(m−1). As above, taking derivatives preserves the order and a

Taylor expansion and taking expectations yields

E
[
{K̂3(δ̂)}ik

]
= {K̂3(δ)}ik +

1

2
(δ̂ − δ)t

∂2{K̂3(δ)}ik
∂ δ ∂ δt

(δ̂ − δ) +O(m−2)

= {K̂3(δ)}ik +O(m−2) = (K3)ik +O(m−2),

where the last equation follows by (15). This gives (iii).

(i) Finally, as before, a Taylor expansion of {K1(δ̂)}ii around {K1(δ)}ii and taking ex-

pectation yields

E
[
{K1(δ̂)}ii

]
= {K1(δ)}ii + E(δ̂ − δ)t

∂{K1(δ)}ii
∂ δ

+
1

2
tr

[
∂2{K1(δ)}ii
∂ δ ∂ δt

V

]

+
1

6
E

[ r∑

e=1

(δ̂e − δe)(δ̂ − δ)t
∂3{K1(δ)}ii
∂δe∂ δ ∂ δ

t (δ̂ − δ)

]
+O(m−2).

By Lemma 1 (ii), the fourth term is of order O(m−2) as

r∑

e,d,f=1

E
(
sesdsf

)
=

r∑

e,d,f=1

tr

(
∂V

∂δe
P
∂V

∂δf
P
∂V

∂δd
P +

∂V

∂δf
P
∂V

∂δe
P
∂V

∂δd
P

)

= O(m),

exploiting again the block diagonal structure of V and detailed structure of P, with the

same reasoning as for the proof of (15). Further, some calculations yield ∂2

∂ δ ∂ δt
{K1(δ)}ii =

7



−2
∂bti
∂ δ

Vi
∂bi
∂ δt

[2, p. 624-625]. Together with the proof in (iii), which implies that

E{K̂3(δ̂)} = K̂3(δ)+{O(m−2)}m, it follows that E
{
K1(δ̂)+K̂3(δ̂)

}
+diag

[
{O(m−2)}m

]
=

K1(δ). Altogether, this gives (i) and proves Lemma 2 for (A1).

For (A2), the leading term itself is of lower order and it holds

{K1(δ)}ii = hti
(

Gi−Gi Z
t
i V
−1
i Zi Gi

)
hi

= hti
(

G−1i −Zt
i Ri Zi

)−1
hi = O(n−1I ),

as Vi = Zi Gi Z
t
i + Ri. Further, {K2(δ)}ii, {K3(δ)}ii as well as subject crossterms are of

lower order. Thus, statements (i)-(iii) for (A2) follow analogously from the reasoning in

(ii) and (iii) above. This proves Lemma 2.

First, [6] derived a second-order unbiased estimator for the MSE, but they considered esti-

mation of the variance components by Hendersons Method III [7]. They can be written as

δ̂e = yt Ce y where it further holds that Ce = diag[{O(m−1)}ni×ni ]i=1,...,m+{O(m−2)}n×n.

An explicit formulation for the nested error regression model (5) is e.g. given in [3]. The

analogous result from Lemma 2 holds true.

Lemma 3. Let model (1) hold with (6) and let δ̂ be being estimate obtained via Hendersons

Method III. Under (B1) - (B4) it holds

(i) K1(δ) = E
{
K1(δ̂) + K̂3(δ̂)

}
+ {O(m−2)}m×m,

(ii) K2(δ) = E
{
K2(δ̂)

}
+ {O(m−2)}m×m,

(iii) K3 = E
{
K̂3(δ̂)

}
+ {O(m−2)}m×m.

Proof. (of Lemma 3). We treat (A1) only as (A2) follows by analogous considerations as

in Lemma 2. In fact the proof is very similar to the proof of Lemma 2, but we have to

account for the different nature of the estimator δ̂. Replicating the calculations of Lemma

2, and adapting the notation of g1 = δ̂ − δ for simplicity, the terms to consider for K3

are

(K3)ik = E(gt1f1,ig
t
1f1,k) + E(gt1f1,ig

t
1f2,k) + E(gt1f1,kg

t
1F3,ig1)

+ E(gt1f1,kg
t
1f2,i) + E(gt1f1,ig

t
1F3,kg1) +O(m−2) .

For the first term, verify that Cf V = diag[{O(m−1)}ni×ni ]+{O(m−2)}n×n, Cf V Ce V =

diag[{O(m−2)}ni×ni ] + {O(m−3)}n×n and further V Ce Xβ = {O(m−1)}n. Further adapt

the notation u = Z v + e and respectively ui = Zi vi + ei for i = 1, . . . ,m. Now, let
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Ω = Ωi,j(e, f) with only entries ∂bi
∂δe

∂btk
∂δf

on the (ni × nk)-submatrix, corresponding to the

respective subjects. Then it follows that

E(gt1f1,ig
t
1f1,k) =

r∑

e=1

r∑

f=1

E
{

(δ̂e − δe)(δ̂f − δf )utΩu
}

= 1i=ktr

[
Cov

{
(ytCey)e

}
Cov

{(
∂bti
∂δe

ui

)

e

}]
+O(m−2).

As before, the remaining parts are of lower order. Let Ξ = Ξi,k(e, f) with only non-zero

entries being the ni rows ∂bi
∂δe

dti(X
t V−1 X)−1 X V−1 ∂V

∂δf
P = {O(m−1)}ni×n corresponding

to the i-th subject. Then, as above it holds

E(gt1f1,ig
t
1f2,k) =

r∑

e=1

r∑

f=1

E{(δ̂e − δe)(δ̂f − δf )utΞu} = O(m−2) = O(m−2).

Eventually, let Λi,k(e, f, g) = Λ with only non-zero entries ∂bi
∂δe

∂2btk
∂δf∂δg

on the (ni × nk)-

submatrix, corresponding to the respective subjects. Moreover noting that it holds that

tr(Cf V Ce V Cg V) = O(m−2), tr(Cf V Ce V Λ V) = O(m−2), tr(Cf V Λ V) = O(m−1)

and tr(Cf V Ce V Cg V Λ V) = O(m−3). Now, similarly to the considerations above,

E(gt1f1,kg
t
1F3,ig1) =

1

2

r∑

e=1

r∑

f=1

r∑

g=1

E{(δ̂e − δe)(δ̂f − δf )(δ̂g − δg)utΛu}

= O(m−2).

Hence, K̂3(δ) = K3 + {O(m−2)} as Cov{(ytCey)e=1,...,r} = Cov(δ̂) = V. Since δ̂ is

unbiased and still δ = δ̂ +O(m−1/2), the remaining part of the proof follows analogously

to that one of Lemma 2.
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Abstract

In a Gaussian linear mixed model we construct confidence sets for fixed effects that

are estimated via a Lasso-type penalization. It is shown that those are uniformly

valid over the space of coefficient and covariance parameters. They adequately

quantify the joint uncertainty of model selection and estimation. Their superiority

to näıve LS confidence sets is demonstrated in a simulation example.
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1 Introduction

Linear mixed models (LMMs) are regression models that allow for more elaborate depen-
dency structures within the observed data. They are widely applied in many empirical
sciences ranging from genetics [Henderson, 1950] to survey statistics [Pfefferman, 2013]
and more. Comprehensive reviews are given by [Demidenko, 2004, Pinheiro and Bates,
2000]. The classical LMM can be written as

yi = Xiβ0 + Zivi + εi, i = 1, . . . ,m;

εi ∼ Nni{0ni ,Ωi(θ0)}, vi ∼ Nq{0q,Ψ(θ0)}, (1)

with observations yi ∈ Rn, known covariates Xi ∈ Rni×p and Zi ∈ Rni×q and vi ∈ Rq and
εi ∈ Rni independent and each independently distributed for all i = 1, . . . ,m. The term
Xiβ0 is referred to as ‘fixed effects’, and Zivi as ‘random effects’. The coefficient β0 ∈ Rp

and covariance parameters θ0 ∈ Rq are unknown and to be estimated.

Two-stage methods for fitting regression models involve model selection first, e.g. based
on information criteria, and thereafter estimation of the parameters in the obtained model.

1peter.kramlinger@uni-goettingen.de, Institute for Mathematical Stochastics, Georg-August-
Universität Göttingen, Goldschmidtstr. 7, 37077 Göttingen, Germany
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3ulrike.schneider@tuwien.ac.at, Institute of Statistics and Mathematical Methods in Economics, Tech-
nische Universität Wien, Wiedner Hauptstr. 8, 1040 Vienna, Austria

1



However, classical inferential theory does not consider the selection procedure as stochas-
tic. Accounting for the additional uncertainty of model selection is a difficult task, that
received attention as post-selection inference in the recent past [Berk et al., 2013].

A single stage approach is given by the least absolute shrinkage and selection operator
(Lasso) [Tibshirani, 1996], which performs selection and estimation jointly.

In the context of mixed models the Lasso can be applied on both the fixed and random
effects. For example, Ibrahim et al. [2011] and Bondell et al. [2010] penalize both β0 and
θ0, whereas Peng and Lu [2012] penalize the random effects directly. A review on these
methods is given by Müller et al. [2013]. Even when only the fixed effects are penalized,
the joint estimation of β0 and θ0 in LMMs raises difficulties from computational aspects
[Schelldorfer et al., 2011, Juming and Shang, 2019].

Its usefulness and wide application sparked interest in how to construct confidence in-
tervals based on the Lasso. The general difficulty is that its asymptotic distribution is
crucially shaped by the unknown coefficient parameters β0 [Pötscher and Leeb, 2009].
Therefore, honest confidence sets in the sense of Li [1989] are necessarily obtaining the
nominal coverage over the whole parameter space. For a low dimensional framework
(‘p < n’), Ewald and Schneider [2018] propose limiting versions of the objective function
in order to obtain uniformly valid confidence sets.

This contribution builds on these obtained results and extends them to LMMs. It is
exploited that the classical estimation of θ0 via restricted maximum likelihood (REML)
in LMMs is separated from β0, see Section 3. Thus, it is shown that the results on Lasso-
type penalized estimators for the fixed effects carry over to LMMs. Eventually, the main
result establishes confidence sets that are uniformly valid over the space of coefficient and
variance parameters together.

The rest of the article is structured as follows. First, we specify the settings and regular-
ity conditions and state the estimation procedure that avoids the need of a non-convex
optimization problem for both β0 and θ0 in Section 2. Next, in Section 3, the estimation
of covariance parameters θ0 is discussed and their uniform consistency established. In
Section 4 the main results are presented. Their usefulness and limitations, and in par-
ticular their superiority to a näıve approach based on least squares is demonstrated in a
simulation study in Section 5.

2 Setting and Regularity Conditions

We rewrite model (1) to a linear model with n dependent observations and model equation

y = Xβ0 + ε, ε ∼ Nn
{
0n,V(θ0)

}
. (2)

The covariance matrix V(·) ∈ Rn×n is known and models the dependency amongst the
observations. The vectors β0 ∈ Rp as well as θ0 ∈ Θ ⊆ Rr

>0 are unknown and remain to
be estimated. The objective function for Lasso-penalized fixed effects and given tuning
parameters λ1, . . . , λp is given by

Q(β,θ) = ln |V(θ)|+
∥∥V(θ)−1/2 (y −Xβ)

∥∥2
+ 2

p∑

j=1

λj |βj| . (3)
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The joint minimization over both β and θ is a non-convex optimization problem [Schell-
dorfer et al., 2011]. In order to establish uniform coverage for both parameter spaces by
adapting the approach of Ewald and Schneider [2018], we consider the Lasso estimator

for β0 for a given estimator θ̂ for θ to be

β̂L = argmin
β∈Rp

Q(β, θ̂). (4)

We aim to find a set M ⊂ Rp such that infβ0,θ0 P{√n(β̂L−β0) ∈M} = 1−α+O(n−1/2)
for some nominal level α ∈ (0, 1). Here and throughout the rest of this article, the order
of the remainder term is understood uniformly over β0 ∈ Rp and θ0 ∈ Θ.
The reasoning closely follows Ewald and Schneider [2018], by which the notation is bor-

rowed and slightly adapted. Key idea is that instead of treating β̂L with its intractable
distribution directly, consider

û = argmin
u∈Rp

utĈu− 2utŵ + 2utΛd = Ĉ−1
(
ŵ −Λd

)
. (5)

where Ĉ = n−1XtV(θ̂)−1X, ŵ = n−1/2XtV(θ̂)−1(y − Xβ0), Λ = n−1/2diag(λ1, . . . , λp)
and d ∈ {−1, 1}p. The hindmost plays the role of adjusting sign of the coefficients, such

that, for fixed ŵ, û→ √n
(
β̂L−β0

)
for diβ0,i →∞ for all i = 1, . . . , p. Further, denote u,

C and w analogously with θ̂ replaced by θ0. As the distribution of û is not analytically
available, the proofs exploit that u ∼ Np(−C−1Λd,C−1).

We only consider confidence sets of ellipsoidal shape, i.e. E(Ĉ, k) = {z ∈ Rp | ztĈz ≤ k},
as those are required in order to attain the infimum over both β0 and θ0. For details
on non-ellipsoidal confidence sets see Ewald and Schneider [2018]. Regularity conditions
below are further imposed for all n ∈ N.

(A) Θ ⊆ Rr
>0.

(B) rank(X) = p < n.

(C) V(θ0) =
∑r

k=1 θ0,kHk positive definite with positive semi-definite, symmetric and
linear independent Hk ∈ Rn×n, k = 1 . . . , r.

(D) For i = 1 . . . , n, j = 1 . . . , p and k = 1 . . . , r, there exist non-zero c1, c2, c3 ∈ R
constant with respect to n, such that

∑n
s=1 xsj � nc1,

∑p
s=1 xis � c2,

∑n
s=1 h

k
is � c3,

where xij and hkij are the (i, j)-th entry of X and Hk, respectively.

Condition (A) with θ0,i > 0, i = 1, . . . , r fulfills the conditions of positive covariance pa-
rameters and non-degenerativity as introduced by Jiang [1996]. Condition (B) allows that
C = n−1XtV(θ0)−1X can be inverted, which is essential in the reasoning below. Further,

(C) ensures that V(θ0) can be inverted and that random variables depending on θ̂ can
be approximated by ones depending on θ0. It corresponds to the condition of identifi-
ablility of covariance parameters condition from Jiang [1996]. Eventually, Condition (D)
is required in order assure consistent estimation of both β0 and θ0, and is a similar to
the condition of Prasad and Rao [1990]. The condition ensures that all entries in X are
bounded and do not vanish for n → ∞. The condition on Hk allows for block-diagonal
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matrices with constant entries and with blocks of size ni = O(1), corresponding to the
small area setting [Rao and Molina, 2015]. Also, for blocks of size ni 6= O(1), a con-
stant number of entries in each row has to consist of constant entries, with other entries
being O(n−1). Also allowed are Toeplitz matrices with a constant number of non-zero
off-diagonals.

Example. The linear mixed model with (1) with ni = O(1), i = 1, . . . ,m is of type
(2). For convenience, drop the class index to i label the respective quantities over
all observations. Then, ε = Zv + ε with block diagonal covariance matrix V(θ0) =
ZΨ(θ0)Zt + Ω(θ0).

The usual representation of LMMs is given in the form of above example. However, the
reasoning in this contribution allows for different dependency structures in V(θ0) from
(2) as long as θ0 can be estimated with restricted maximum likelihood.

3 Estimation of the Covariance Parameters

The key idea in deriving uniformly valid confidence sets in LMMs is that the estima-
tion of β0 and θ0 is separated. By using restricted maximum likelihood (REML), the
covariance parameters are estimated while accounting for the loss of degrees of freedom
when estimating β0 [Searle et al., 1992, Demidenko, 2004]. Let A ∈ Rn×(n−p) such that

AtX = 0(n−p)×p and consider only transformed data Aty. Then, the REML estimate θ̂
for θ0 is the minimizer of

lR(θ) = −1

2
ln |V(θ)| − 1

2
ln |XtV(θ)−1X| − 1

2
ytP(θ)y, (6)

where P(θ) = V(θ)−1 − V(θ)−1X
{
XtV(θ)−1X}−1XtV(θ)−1. By construction, θ̂ does

not depend on β0 as P(θ)Xβ0 = 0n×n.

As interest lies in valid inference, uniform consistency of the REML estimator is required.
Consistency for ML estimators was first shown by Wald [1949], and uniform ML consis-
tency by Moran [1970]. Both required the parameter space to be compact, as well as
independently drawn observations. A consistency result that omits those assumptions
was first given by Weiss [1971, 1973]. Miller [1977] applied this on ML in LMMs, which
describe a dependency structure. Similarly, Jiang [1996] did so for REML estimators.

However, none of the latter three explicitly considered uniform consistency for θ̂. This is
given by the following Lemma.

Lemma 1. Let model (2) and (A) - (D) hold. Then, νi(θ0)|θ̂i − θ0,i| = OP (1) for all

θ0 ∈ Θ and i = 1, . . . , r for νi(θ0) =
√
−E{∂2`R(θ)/∂θ2

i |θ0}, that is

νi(θ0) =
1√
2

tr

{
P(θ0)

∂V

∂θi
P(θ0)

∂V

∂θi

}1/2

.

Note that νi(θ0)2 is the asymptotic variance of θ̂i. Also, by conditions (C) and (D),
∂V/∂θi is a bounded (n × n)-matrix with independent of θ0. The proof of Lemma 1 is
similar to Moran [1970]. It is merely required to check if their conditions hold uniformly.
The second part of the proof mimics Weiss [1971].
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4 Main Results

As main result of Ewald and Schneider [2018], it is known how the minimum coverage
over the whole parameter space can be expressed in terms of the limiting distribution,
depending only on the sign of the entries of β0. This result directly carries over to
minimum coverage over the space of coefficient and covariance parameters, as the latter,
when estimated with REML, does not depend on the fixed effects.

Lemma 2. Let model (2) and (A)-(D) hold, θ0 estimated by REML and k > 0. Then,

inf
β0,θ0

P
{√

n
(
β̂L − β0

)
∈ E

(
Ĉ, k

)}
= inf

θ0,d
P
{

û ∈ E
(
Ĉ, k

)}
.

The proof follows from Ewald and Schneider [2018, Theorem 1], as θ̂ is independent from
β0. Using properties of the optimization problem, is proven by showing that both sets
are equal, not by evaluating the probabilities. This can be done by minimizing over a
discrete set, as d ∈ {−1, 1}p, and obviates the need to treat the underlying parameter β0

directly. It is clear that the coverage of the resulting confidence set heavily depends on
the signs of the specific value of β0. See section 5 for similar occurrences and Ewald and
Schneider [2018] for an extensive discussion.

To apply this result for LMMs, the next theorem additionally treats the minimization
over Θ. The additional variability induced by the estimation of θ0 is incorporated within
a term of known stochastic order. The result shows that due to the uniform consistency
of θ̂, the infimal coverage meets nominal level up to a term of vanishing order.

Theorem 1. Let model (2) and (A)-(D) hold, θ0 estimated by REML and

κ̂ = max
d∈{−1,1}p

χ2
p,1−α

(∥∥∥Ĉ−1/2Λd
∥∥∥

2
)

the corresponding quantile of the non-central χ2
p-distribution. Then,

inf
β0,θ0

P
{√

n
(
β̂L − β0

)
∈ E

(
Ĉ, κ̂

)}
= 1− α +O

(
1√
n

)
.

The result differs from Lemma 2 in two aspects. First, the minimization over d ∈ {−1, 1}p
has been shifted to the choice of non-centrality parameter of the χ2-distribution, based
on Propositions 4 and 5 from Ewald and Schneider [2018]. Note the maximization is
invariant with respect to sign, in that if d∗ is the maximizer, so is −d∗. Second, the
additional variability induced by θ̂ has been treated with an error term of vanishing,
usual parametric order n−1/2.

From Theorem 1 we obtain the confidence set

M =

{
β ∈ Rp: n

∥∥∥Ĉ1/2
(
β̂L − β

)∥∥∥
2

≤ κ̂

}
(7)

uniformly attains nominal coverage up to an error of parametric rate. Although this
implies that the resulting testing procedure is not of nominal level 1− α as discussed in
Leeb and Pötscher [2017], it is shown in the simulations in Section 5 that this error term
seems to have little influence in finite samples.
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5 Simulations

β̂WLS original Näıve β̂WLS after AIC

β̂L as in (7) β̂L with WLS-set

-2 -1 0 1 2 -2 -1 0 1 2
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2
0.7

0.8
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Figure 1: Only confidence sets based on the Lasso as in (7) or WLS estimator (left)
achieve nominal level over the whole parameter space (yellow), the former is conservative
(green and white) around the origin and axes. Näıvely applying WLS sets to the Lasso
or for the WLS estimator after AIC model selection (right ) yields undercoverage (dark).

The derived confidence sets are uniformly valid over the whole parameter space. They
are constructed from the limiting distribution based on the sign of the parameters. This
implies that they attain nominal coverage in two orthants only (two, as they are invariant
to sign), whereas they exhibit overcoverage in all other orthants.

In order to visualize this effect, we use the following simulation design for two coefficient
parameters. Consider the ‘random intercept model’, a special case of model (1):

yij = xtijβ0 + vi + uij, i = 1, . . . ,m, j = 1, . . . , ni;

uij
i.i.d.∼ N (0, σ2

u), vi ∼ N (0, σ2
v).

(8)

We fix the parameters to m = 20, n = 400, ni = 20, σu = σv = 4, resembling to a
similar scenario as in Kramlinger et al. [2020]. For visualization purposes, we restrict the
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simulation to p = 2 parameters. The tuning parameters are chosen to be λi = n1/2/2 for
i = 1, 2, resembling a conservative tuning regime. The entries of the matrix of covariables
are independently drawn from N (0, 4), so that the fixed and random effects are of a
comparable magnitude. Hence, for β0 ∈ [−2, 2]2 the empirical coverage probability is
computed by checking if β0 ∈ M , for M with α = .05 from (7). For each β0, 3.000
simulations were carried out. Figure 1 shows the results. The probabilities shown are
average empirical coverages for all configurations of β0.

First note the classical confidence sets based on the WLS estimator β̂WLS (bottom left).

As the distribution of β̂WLS − β0 is independent of β0, the coverage based on its confi-
dence set is attained uniformly over the coefficient parameters space. One finds that no
deviations from the the nominal level of 95% (yellow) can be observed in the simulation.

Next, consider the confidence set based on the Lasso as given in (7) (top left). Nominal
coverage is only attained up to a small error is attained in two orthants, namely for
sign(β1) = sign(β2). Note that due to Lemma 6, those orthants can be determined in
advance, up to the uncertainty induced by the estimation of θ0. The other orthants
exhibit a slight overcoverage (green), whereas a significant overcoverage (white) occurs
at the axes and around the origin. The latter effects are due in the event of variable
selection, when a component in β̂L being zero. Hence, at the axes, a coverage close to 1
is achieved, and the 95%-confidence sets prove to be too wide. These findings are in line
with the example of the linear regression model from Ewald and Schneider [2018, Fig.
4]. Although additional uncertainty is present due to the estimation of random effects,
the additional error term does not appear too influential. Hence, although Theorem 1
postulates that nominal coverage is only achieved with an additional term of vanishing
order, the experiment indicates that the confidence sets still prove to be adequately close
to the nominal level.

In contrast to the methods on the left, which meet the nominal level thoroughly, but
without model selection (bottom left) or conservatively, but with selection (upper left),
two additional näıve approaches are displayed on the right column.

First, one observes that näıvely applying classical WLS confidence sets around a WLS
estimator β̂WLS after performing model selection with AIC (bottom right) yields inconsis-
tent coverages over the parameter space. Type-I-error inflation [Berk et al., 2013] occurs
in regions with undercoverage (purple, dark) in event of variable selection at the axes.

Another approach is applying a WLS confidence set around the estimator β̂L (top right).
Note that a generalization of this approach in the case of n > p has been proposed
by van der Geer et al. [2014], although the authors note that their resulting sets hold
uniformly. Again, these sets are not theoretically justified and indeed, an overcoverage
occurs at the origin, whereas a severe undercoverage over the rest of the coefficient pa-
rameter space. Both näıve approaches thus yield misleading confidence sets, and their
use is inadvisable.

6 Discussion

This contributions presents a solution to estimate both coefficient and covariance pa-
rameters in a low-dimensional LMM in which the fixed effects only are estimated with a
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Lasso-penalization. Our aim is to construct uniformly consistent confidence sets for the
fixed effects. We suggest that a two-stage estimation procedure, where the covariance pa-
rameters are estimated via REML-estimators θ̂ first, and the parameters with θ̂ plugged
in second. In doing so, the REML estimators do not depend on β0, and hence previous
results of Ewald and Schneider [2018] can be employed. Eventually, we prove that the
resulting confidence sets are uniformly valid under both the coefficient and covariance
parameters.

To the best of our knowledge, this work is the first that considers inference specifically for
the Lasso in LMMs. We expect that this approach can serve as a basis for proper inference
for an estimation procedure that penalizes fixed and random effects in the future.

7 Proofs

In order to prove Lemma 1 is proved, the following preliminary result is helpful.

Lemma 3. Let model (2) and (A) - (D) hold. Denote for i, j, k = 1, . . . , r

Qij(θ0) = P(θ0)
∂V

∂θi
P(θ0)

∂V

∂θj
,

Qijk(θ0) = P(θ0)
∂V

∂θi
P(θ0)

∂V

∂θj
P(θ0)

∂V

∂θk
.

(9)

Then, there exist constants cij, cijk ∈ R with respect to n and θ0 such that

tr {Qij(θ0)} � cij
n

tr

{
P(θ0)

∂V

∂θi

}
tr

{
P(θ0)

∂V

∂θj

}
,

tr {Qijk(θ0)} � cijk
n2

tr

{
P(θ0)

∂V

∂θi

}
tr

{
P(θ0)

∂V

∂θj

}
tr

{
P(θ0)

∂V

∂θk

}
.

(10)

Proof of Lemma 3. As notational convenience denote the dependency of quantities in-

volved for this proof only by P(θ) = Pθ. First, we show that Sθ = X
(
XtV−1

θ X
)−1

XtV−1
θ

is independent of θ, by considering its derivative. Note that SθSθ = Sθ and thus

∂Sθ

∂θi
= SθHiPθ =

∂SθSθ

∂θi
=
∂Sθ

∂θi
Sθ + Sθ

∂Sθ

∂θi
= Sθ

∂Sθ

∂θi
,

where the last equality holds as (∂Sθ/∂θi)Sθ = SθHiPθSθ = 0n×n by the construction of
Pθ. This gives that ∂Sθ/∂θi = Sθ∂Sθ/∂θi, which implies either that ∂Sθ/∂θi is the null
element, i.e. ∂Sθ/∂θi = 0n×n, or, as SθSθ = Sθ, ∂Sθ/∂θi = Sθ. However, the latter as
well implies

∂Sθ

∂θi
= Sθ = S2

θ =

(
∂Sθ

∂θi

)2

= SθHiPθSθHiPθ = 0n×n,

again using PθSθ = 0n×n. Thus, since the derivative of Sθ is zero, Sθ is constant and
hence independent of θ. Now, (10) can be shown. Let Ri ∈ Rn×n such that

Pθ0

∂V

∂θi
= V−1

θ0

[
In −X

{
XtV−1

θ0
X
}−1

XtV−1
θ0

] ∂V

∂θi
= V−1

θ0
Ri.
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By condition (C), Ri = (In − Sθ0)∂V/∂θi is independent of θ0. Let c0, . . . , c9 ∈ R be
constants with respect to n and θ0. Further, let Is =

{
t ∈ {1, . . . , n} : (V−1

θ0
)st 6= 0

}

being the set of indices of non-zero entries in the s-th column of V−1
θ0

and similarly
I is = {t ∈ {1, . . . , n} : (Ri)st 9 0} the set of constant entries. Also, as the entries of X do
not vanish by condition (D), t /∈ I is: (Ri)st � c0/n. Now,

(
V−1

θ0
Ri

)
st
�

∑

u∈Is∩Iit

(
V−1

θ0

)
su

(Ri)ut +
c1

n

∑

u∈Is\Iit

(
V−1

θ0

)
su
, (11)

for any s, t = 1, . . . , n. If t is such that Is ∩ I it 6= ∅ this implies that (V−1
θ0

Ri)st �
c2(V−1

θ0
Ri)ss. Finally, note that Is ∩ I is 6= ∅ for all s. Now consider the left hand side of

the the first line of (10):

tr {Qij(θ0)} =
n∑

s=1

n∑

t=1

(
V−1

θ0
Ri

)
st

(
V−1

θ0
Rj

)
ts

=
n∑

s=1

∑

t:Is∩Iit 6=∅

(
V−1

θ0
Ri

)
st

(
V−1

θ0
Rj

)
ts

+
n∑

s=1

∑

t:Is∩Iit=∅

(
V−1

θ0
Ri

)
st

(
V−1

θ0
Rj

)
ts

= A+B.

For A, note that as |{t : Is ∩ I it 6= ∅}| = O(1), it follows that

A � c3

n∑

s=1

∑

t:Is∩Iit 6=∅

(
V−1

θ0
Ri

)
ss

(
V−1

θ0
Rj

)
ts
� c4

n∑

s=1

∑

t:Is∩Iit 6=∅

(
V−1

θ0
Ri

)
ss

1

n

n∑

u=1

(
V−1

θ0
Rj

)
tu

� c5

n
tr
(
V−1

θ0
Ri

)
tr
(
V−1

θ0
Rj

)
.

Similarly, by (11) and as |{t : Is ∩ I it = ∅}| � c6n it holds for B that

B � c7

n∑

s=1

∑

t:Is∩Iit=∅

1

n

∑

u∈Is\Iit

(
V−1

θ0

)
su

(
V−1

θ0
Rj

)
ts
� c8

n

n∑

s=1

(
V−1

θ0
Ri

)
ss

∑

t:Is∩Iit=∅

(
V−1

θ0
Rj

)
ts

� c9

n
tr
(
V−1

θ0
Ri

)
tr
(
V−1

θ0
Rj

)
.

Altogether, this gives the first line of (10). The second line is shown analogous.

The result is helpful as νi(θ0) =
√

tr{Qii(θ0)}/2 � c10tr{Qii(θ0)}. Now Lemma 1 is
shown.

Proof of Lemma 1. This proof is adapted to account for uniformity w.r.t. θ0 from Lemma
7.2 (i) from Jiang [1996] and closely follows the lines of Weiss [1971]. The four boundedness
conditions below on the derivatives of the log-likelihood are surrogates of the boundedness
conditions imposed on the log-likelihood directly by Wald [1949] and Moran [1970]. By a
Taylor expansion the conditions below include boundedness of the log-likelihood as well.
They are further required to omit the compactness condition of Θ, by constructing a
compact set Θ′ε, see details below. For all i, j = 1 . . . , r, it holds for any θ0 that
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(i) E
{

∂
∂θi
lR(θ)|θ0

}
= 0,

(ii) 1
νi(θ0)

∂
∂θi
lR(θ)|θ0 = OP (1),

(iii) Jij(θ0) = − 1
νi(θ0)νj(θ0)

E
{

∂2

∂θiθj
`R(θ)

∣∣
θ0

}
= c for some constant c ∈ R,

(iv) εij(θ) = 1
νi(θ)νj(θ)

∂2

∂θi∂θj
lR(θ)+Jij(θ0) = oP (1) for θ ∈ Θq = {θ : νi(θ0)|θi−θ0,i| ≤ q},

where q � n1/(2+ε) for some ε > 0. For readability, suppress the dependency from θ when
the argument is clear from the context. Now, (i)-(iv) are shown.

(i) Note that ∂P/∂θi = −P∂V/∂θiP and PVP = P, as well as

∂lR
∂θi

∣∣∣∣
θ0

=
1

2
ytP

∂V

∂θi
Py − 1

2
tr

(
P
∂V

∂θi

)
.

The claim now follows after taking expectation.

(ii) As E(∂lR/∂θi|θ0) = 0 by (i) and Var(∂lR/∂θi|θ0) = ν2
i , Chebychevs inequality can

be applied, it holds uniformly, and gives that for any ε > 0 there exists k > 0, such
that

sup
θ0

P

(
1

νi

∣∣∣∣∣
∂lR
∂θi

∣∣∣∣
θ0

∣∣∣∣∣ ≥ k

)
≤ 1

k2
< ε,

or, equivalently, ν−1
i ∂lR/∂θi|θ0 = OP (1).

(iii) The same reasoning as for (i) with the help of Lemma 3 gives for a constant c:

Jij(θ0) = − 1

νiνj
E

{
1

2
tr

(
P
∂V

∂θi
P
∂V

∂θj

)
− ytP

∂V

∂θi
P
∂V

∂θj
Py

}
=

tr(Qij)√
tr(Qjj)tr(Qjj)

= c.

(iv) First, for any θ ∈ Θq, consider expectation and variance of the random term in (iv)
w.r.t. θ. For that note that for any k = 1, . . . , r,

r∑

i=1

(θi − θ0,i)
∂V

∂θi
≤

r∑

i=1

q

νi

∂V

∂θi
= O

[{
q√

tr(Qkk)

}

n×n

]
.

This implies V(θ) = V(θ0)+[O{q tr(Qkk)
−1/2}]n×n for any k = 1, . . . , r, by a Taylor

expansion. With Lemma 3, this gives

E

{
− 1

νiνj

∂2`R
∂θi∂θj

(θ)

}
= − 1

νiνj

[
1

2
tr(Qij)− tr {QijPV(θ0)}

]

= Jij(θ) +O

{
q

tr(Qijk)

tr(Qii)3/2

}
= Jij(θ) +O

(
q√
n

)
,

10



for all θ ∈ Θq on which all quantities except V(θ0) depend upon. Similarly, for any
k = 1, . . . , r,

Var

{
− 1

νiνj

∂2`R
∂θi∂θj

(θ)

}
= − 1

ν2
i ν

2
j

tr {QijPV(θ0)QijPV(θ0)}

= O

{
tr(QijQij)

tr(Qkk)2
+ q

tr(QijQijk)

tr(Qkk)5/2
+ q2 tr(QijkQijk)

tr(Qkk)3

}

= O

(
q2

n

)

for all θ ∈ Θq. Putting the previous two results together, Chebychev gives that for
any ε > 0 there exists k > 0 such that for θ ∈ Θq, where Θq depends on θ0,

sup
θ0

Pθ

{√
n

q

∣∣∣∣
1

νiνj

∂2`R
∂θi∂θj

(θ) + Jij(θ)

∣∣∣∣ ≥ k

}
≤ 1

k2
< ε, (12)

or − 1
νiνj

∂2`R
∂θi∂θj

(θ) = Jij(θ) +OP (qn−1/2) for any θ0. In order to prove (iv), this must

hold for θ0 in the right hand side. Taking derivatives gives with Lemma 3 for θ ∈ Θq

and i, j, k = 1, . . . , r that

(θk − θ0,k)
∂Jij
∂θk

∣∣∣∣
θ0

≤ q

νk

∂Jij
∂θk

∣∣∣∣
θ0

=
∑

a,b∈{i,j}
a6=b

q
tr(Qaa) {tr(Qab)tr(Qbbk) + tr(Qbb)tr(Qabk)}

tr(Qkk)1/2tr(Qii)3/2tr(Qjj)3/2
= O

(
q√
n

)

Finally, a Taylor expansion for Jij(θ) around Jij(θ0) gives the second equality below,
while the first is due to (12), and it follows that

1

νiνj

∂2lR
∂θi∂θj

(θ) = −Jij(θ) +OP

(
q√
n

)
= −Jij(θ0) +OP

(
q√
n

)
,

so that (iv) holds as well, as qn−1/2 → 0.

The second part of the proof mimics the reasoning of Weiss [1971]. Let J(θ0) = {Jij(θ0)}ij
and s(θ0) = {s1(θ0), s2(θ0), . . . , sr(θ0)} with si(θ0) = νi(θ0)−1∂lR/∂θi|θ0 and define θ′

such that

ν(θ0)⊗ (θ′ − θ0) = s(θ0)J(θ0)−1.

Note that J(θ0) is non-singular as its i-th and j-th row are linearly independent by
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condition (C). By (i) and (iii), θ′ ∈ Θq for some q large enough. Now, for any θ ∈ Θq,

`R(θ) = `R(θ0) +
r∑

i=1

νi(θ0)(θi − θ0,i)si(θ0)

− 1

2

r∑

i=1

r∑

j=1

νi(θ0)(θi − θ0,i)νj(θ0)(θj − θ0,j)Jij(θ0) +R(θ, θ̃)

= `R(θ0) +
1

2
s(θ0)tI(θ0)−1s(θ0)

− 1

2

r∑

i=1

r∑

j=1

νi(θ0)(θ′i − θi)νj(θ0)(θ′j − θj)Jij(θ0) +R(θ, θ̃),

(13)

where R(θ, θ̃) = 1
2

∑r
i=1

∑r
j=1 νi(θ0)(θi − θ0,i)νj(θ0)(θj − θ0,j)ε(θ̃) for some θ̃i = θ0,i +

t(θi − θ0,i) where t ∈ [−1, 1]. By (iv) we have supθ∈Θq |R(θ, θ̃)| = oP (1). Now consider

the set Θ′ε =
{
θ : νi(θ0)|θi − θ′i| < ε

}
and its boundary Θ

′
ε. By (i) and (iii), there

exists a sequence εn → 0 such that infθ0 P
(
Θ
′
εn ⊂ Θq

)
→ 1 for q large enough. Hence,

supθ∈Θ
′
εn
|R(θ, θ̃)| = oP (1). Second-to-last, consider

δ(εn) = min
θ∈Θ

′
εn

1

2

r∑

i=1

r∑

j=1

νi(θ0)(θ′i − θi)νj(θ0)(θ′j − θj)Iij(θ0),

and note that δ(ε) is not stochastic, increasing and δ(0) = 0. Finally, let εn such that
lim infn→∞ infθ0 P{2 supθ∈Θ

′
εn
|R(θ)| < δ(εn)} = 1, for which the infimum holds due to

(iii) and θ′ ∈ Θq for q large enough. Then, using (13) for θ′ ∈ Θq for q large enough, gives

lim inf
n→∞

inf
θ0

P

{
min
θ∈Θ

′
εn

`R(θ′)− `R(θ) > 0

}

= lim inf
n→∞

inf
θ0

P

{
R(θ′, θ̃

′
) + δ(εn) + min

θ∈Θ
′
εn

−R(θ, θ̃) > 0

}
= 1.

Thus, there is a maximum θ̂ ∈ Θ′εn such that νi|θ̂i − θ′i| < εn, and thus νi(θ0)(θ̂i − θ0,i)−
νi(θ0)(θ0,i − θ′i) = oP (1) for any θ0. The claim follows.

In order to address the infimum over Θ, we use the following result.

Lemma 4. Let Xn and Yn be random variables where Xn = OP (an) and Yn = OP (anbn)
with bn = o(1). Then,

P
(
Xn + Yn ≤ an

)
= P(Xn ≤ an) +O(bn).

The asymptotic result is clear as convergence in probability implies convergence in distri-
bution. Above result further specifies the rate of convergence.
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Proof of Lemma 4. First, let φ(s, t) = P (Xn + s ≤ an|Yn = t) and consider a Taylor
expansion for s/an around zero, which gives φ(s, t) = φ(0, t) + O(s/an). This implies∫ an
an−t pXn|Yn=t(z) dz = φ(0, t)− φ(t, t) = O(t/an). Using convolution formula we obtain

P
(
Xn + Yn ≤ an

)
=

∫ an

−∞
pXn+Yn(z) dz

=

∫ an

−∞

∫ ∞

−∞
pXn,Yn(z − t, t) dt dz

=

∫ an

−∞

∫ ∞

−∞
pXn|Yn=t(z − t)pYn(t) dt dz

=

∫ ∞

−∞
pYn(t)

∫ an−t

−∞
pXn|Yn=t(z) dz dt

=

∫ ∞

−∞
pYn(t)

{∫ an

−∞
pXn|Yn=t(z) dz +

∫ an

an−t
pXn|Yn=t(z) dz

}
dt

=

∫ ∞

−∞
pYn(t)

{∫ an

−∞
pXn|Yn=t(z) dz +O

(
t

an

)}
dt

=

∫ ∞

−∞

∫ an

−∞
pXn,Yn(z, t) dz dt+O

{
E

(
Yn
an

)}

=

∫ ∞

−∞

∫ an

−∞
pXn(z)pYn|Xn=z(t) dz dt+O(bn)

= P(Xn ≤ an) +O(bn),

(14)

which gives the claim.

The next two result are helpful to prove Theorem 1.

Lemma 5. Let model (2) and (A)-(D) hold, θ0 estimated by REML and k̂ = k + c > 0
with

k = O
(
p+

∥∥C−1/2Λd
∥∥2
)
, c = OP

(
1√
n

∥∥C−1/2Λd
∥∥2
)
.

Then,

inf
θ0,d

P
{

û ∈ E
(
Ĉ, k̂

)}
= min

d
P {u ∈ E (C, k)}+O

(
1√
n

)
.

Proof of Lemma 5. First, let ξ = ‖C−1/2Λd‖2 and observe that ‖C1/2u‖2 ∼ χ2
p(ξ). This

implies that ‖C1/2u‖2 = OP (1 + ξ) for all θ0. Now, consider its derivative with respect
to θi, i = 1, . . . , r.

∂

∂θi
‖C1/2u‖2 = ‖Ω1/2

i (w −Λd)‖2 + 2(w −Λd)tC−1∂w

∂θi
,

where Ωi = C−1XtV−1∂V/∂θiV
−1XC−1/n as ∂C−1/∂θi = Ωi. Now,

E

(
∂

∂θi
‖C1/2u‖2

)
= ‖Ω1/2

i Λd‖2 − tr(CΩi).

13



For two symmetric positive semi-definite matrices A,B ∈ Rn×n it holds tr(AB) =
‖A1/2B1/2‖2 ≤ ‖A1/2‖2‖B1/2‖2 = tr(A)tr(B). Hence, for A = V−1/2∂V/∂θiV

−1/2 and
B = V−1/2XC−1(ΛddtΛ + C)C−1XtV−1/2/n, it follows

E

(
∂

∂θi
‖C1/2u‖2

)
≤ tr(AB) ≤ tr(A)tr(B) = tr

(
V−1∂V

∂θi

)
(1 + ξ),

and thus E
(
∂‖C1/2u‖2/∂θi

)
= O{tr(V−1∂V/∂θi)(1 + ξ)} for all θ0. Proceeding analo-

gously for νi(θ0) as defined in Lemma 1 gives νi(θ0) = O{√n− p tr(V−1∂V/∂θi)} for all
θ0. Altogether,

E

(
∂

∂θi
‖C1/2u‖2

)
= O

{
tr

(
V−1∂V

∂θi

)
(1 + ξ)

}
= O

{
νi(θ0)√

n
(1 + ξ)

}

for all θ0. Similarly, lengthy calculations give that

Var

(
∂

∂θi
‖C1/2u‖2

)
= 2tr(ΩiCΩiC)− 4

∥∥C1/2ΩiΛd
∥∥2

+
4

n

∥∥∥∥V−1/2∂V

∂θi
V−1XC−1Λd

∥∥∥∥
2

.

Proceeding as above,

Var

(
∂

∂θi
‖C1/2u‖2

)
= O

{
tr

(
V−1∂V

∂θi

)2

(1 + ξ)

}
= O

{
νi(θ0)2

n
(1 + ξ)

}

for all θ0. With Chebychev, this gives the representation

∂

∂θi

∥∥C1/2u
∥∥2

= OP

(
νi(θ0)√

n
‖C1/2u‖2

)
(15)

for all θ0. By Lemma 1, a Taylor expansion for ‖Ĉ1/2û‖2 around θ0 eventually gives

∥∥Ĉ1/2û
∥∥2

=
∥∥C1/2u

∥∥2
+OP

{(
θ̂ − θ0

)t ∂
∂θ

∥∥C1/2u
∥∥2
}

=
∥∥C1/2u

∥∥2{
1 +OP (n−1/2)

}
,

which holds for all θ0. Eventually, let Xn = ‖C1/2u‖2, Yn = OP (n−1/2Xn−c) = OP (bnXn)
for all θ0 with bn = n−1/2 and an = k. Then,

inf
θ0

P
(∥∥Ĉ1/2û

∥∥2 ≤ k̂
)

= inf
θ0

P

(
Xn

1 + ξ
+

Yn
1 + ξ

≤ k

1 + ξ

)
= P (Xn + Yn ≤ k) ,

where the second equality holds as all quantities inside the probability are independent
of θ0. Finally, Lemma 4 gives the claim.

Lemma 6. Let model (2) and (A)-(C) hold. Then, for k > 0,

argmin
d∈{−1,1}p

P
{

u ∈ E
(
C, k

)}
= argmax

d∈{−1,1}p

∥∥C−1/2Λd
∥∥2
.

This result is given in [Ewald and Schneider, 2018, Prop. 4].
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Proof (of Theorem 1). Consider κ = maxd χ
2
p,1−α(ξ) with ξ = ‖C−1/2Λd‖2. Since for

X ∼ χ2
p(ξ) it holds X = OP (1 + ξ) for all θ0 and by the definition of the quantile

P
(
X ≤ κ) = 1− α it follows that κ = O(1 + ξ) for all θ0 as well.

Now we proceed similar to the proof of Lemma 5. A Taylor expansion for ‖Ĉ−1/2Λd‖2

around θ0 gives for Ωi = C−1XtV−1∂V/∂θiV
−1XC−1/n that

‖Ĉ−1/2Λd‖2 = ‖C−1/2Λd‖2 +OP

{
p∑

i=1

(
θ̂i − θ0,i

)t ∥∥∥Ω1/2
i Λd

∥∥∥
2
}

= ‖C−1/2Λd‖2 +OP

(
n−1/2ξ

)

for all θ0 and together with the first argument it follows that κ̂ = κ+OP (n−1/2ξ) for all
θ0. By Lemma 5 it is ensured that the coverage is attained uniformly for both β0 and θ0,

inf
β0,θ0

P
{√

n
(
β̂L − β0

)
∈ E

(
Ĉ, κ̂

)}
= min

d∈{−1,1}p
P {u ∈ E (C, κ)}+O(n−1/2).

By Lemma 6, this minimum is in fact attained for the d ∈ {−1, 1}p for which κ ensures
nominal coverage, since ‖C1/2u‖2 ∼ χ2

p(ξ). This proves the claim.
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