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Abstract

Ultralight bosonic particles forming a coherent state are dark matter
candidates with distinctive wave-like behaviour on the scale of dwarf
galaxies and below. In this thesis, a new simulation technique for ul-
tralight bosonic dark matter, also called fuzzy dark matter, is devel-
oped and applied in zoom-in simulations of dwarf galaxy halos. When
gas and star formation are not included in the simulations, it is found
that halos contain solitonic cores in their centers reproducing previous
results in the literature. The cores exhibit strong quasi-normal oscil-
lations, which are possibly testable by observations. The results are
inconclusive regarding the long-term evolution of the core mass. It is
shown that the Fourier spectrum of the entire halo is related to the
velocity distribution in collisionless N-body simulations in a simple
way, contributing to a better understanding of the empirically-found
core-halo mass relation. When gas and star formation are included,
it is found that the collapsing baryonic component heats up the inner
halo region, resulting in more compact and massive cores. Their ra-
dial profiles are determined by the inner halo velocity and the external
potential sourced by the baryon density. This finding has direct con-
sequences for observational constraints on fuzzy dark matter which
are so far based on radial density profiles from dark matter only sim-
ulations.
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Chapter 1

Introduction

Although dark matter is an integral constituent of the cosmological standard
model (ΛCDM), its exact nature is still unknown. Since most trivial explana-
tions like massive clumps of ordinary matter (MACHOs) are tightly constrained
[5; 6; 7; 8], present-day dark matter research combines methods and theoretical
framework from two large areas of physics: astrophysics and particle physics.
Astrophysicists use increasingly precise observational data from telescopes to de-
rive basic properties like abundance, temperature and interaction strengths. On
the particle physics side, theorists look for natural extensions to the standard
model of particle physics fulfilling these properties and laboratory experiments
then try to detect the particle candidates - so far unsuccessfully. Within this
broad picture, numerical simulations, the topic of this thesis, serve as a connec-
tion between observations of the late universe and fundamental properties of dark
matter candidates. They are necessary because the formation of collapsed objects
like galaxies or galaxy clusters involves many non-linear processes.

Sometimes motivated by alleged deviations between ΛCDM predictions and
observations on the scale of dwarf galaxies and sometimes motivated by theories
beyond the standard model of particle physics, fuzzy dark matter (FDM) has
gained increased attention in the scientific community in recent years. FDM is
described by an ultralight scalar field producing distinctive wave-like patterns
in the density distribution. The absence of strong density gradients explains its
name. In this thesis, implications for the detailed structure of dwarf galaxies are
studied using 3D cosmological simulations. The simulations follow the formation
process of dwarf galaxies in a realistic cosmological environment starting from
small initial fluctuation of the cosmic density field. Their aim is to quantify
and understand the properties of FDM halos in order to derive observational
constraints on FDM model parameters. While simulations that only follow the
dark matter part of FDM halo formation already exist in the literature [1; 9],
this thesis presents the first high resolution simulations with ordinary matter

1



1. INTRODUCTION

included.
One major obstacle for FDM simulations is the requirement of dedicated nu-

merical techniques. The author of this thesis together with his collaborators Bodo
Schwabe and and Jens Niemeyer developed a new numerical method for cosmo-
logical structure formation with FDM. Using this method, the author conducted
two suites of dwarf galaxy formation simulations. In the first suite, only the dark
matter contribution to the cosmic matter field was simulated, neglecting the in-
fluence of gas and star formation. The second suite also includes ordinary matter.
The results of both suites were published in Physical Review D [3; 4].

The thesis is organized as follows. Chapter 2 discusses the basic theory of
cosmological structure formation, the state of knowledge about dwarf galaxies
and theoretical aspects of the FDM model. In chapter 3, the numerical methods
used in the following chapters are introduced with emphasis on techniques for
FDM and the new hybrid approach. Chapters 4 and 5 present and discuss results
from the two simulation suites. Finally, conclusions and possible directions for
further research based on the findings in this thesis can be found in chapter 6.
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Chapter 2

Theoretical Background

2.1 The ΛCDM model

Over the past century, our knowledge of the history of the universe has gradually
increased leading to the development of the now widely accepted ΛCDM model of
cosmology. Soon after Albert Einstein formulated the theory of general relativity
in 1916, the isotropic and homogeneous Friedmann-Robertson-Walker (FRW)
metric was proposed to describe the overall space-time shape of the universe.

ds2 = dt2 − a2(t)

(
dr2

1− kr2
+ r2dΩ2

)
(2.1)

Here, the spatial part of the metric is expressed in spherical coordinates with
a radial component dr and angular component dΩ. k = +1, 0,−1 determines
if the geometry of space is closed, flat or open. a is the scale factor describing
the expansion (or contraction) of the universe and in the case of k = +1,−1 the
curvature radius. Wavelengths emitted at the time tem and observed today, t0,
appear redshifted by a factor

1 + z =
a(t0)

a(tem)
. (2.2)

According to the Einstein equation of general relativity, the evolution of the scale
factor is described by the Friedmann equation

H2 +
k

a2
=

8πG

3
ε (2.3)

To find a solution for a, energy density components ε with their respective equa-
tion of state parameters w and one initial value for ȧ, often expressed in terms of

3



2. THEORETICAL BACKGROUND

the Hubble parameter today H0 = ȧ(t0)/a(t0), have to be specified. The equation
of state parameter determines how the energy density evolves with respect to the
scale factor according to

ε ∼ a−3(1+w) (2.4)

Initially, some scientists favored a static universe with H0 = 0 for aesthetic rea-
sons. This requires an energy component with an equation of state parameter
w < −1/3 or a cosmological constant, equivalent to w = −1, to balance the
contraction effect of the matter content of the universe. However, Edwin Hubble
measured in 1929 that nearby galaxies recede from the Milky Way [10], which
was interpreted as cosmological expansion and the cosmological constant was
abandoned.

Tracing the evolution of the expanding universe backwards in time shows that
it was much denser and hotter in the past. This fact is commonly referred to as
Hot Big Bang model. George Gamov and his student Ralph Alpher proposed
two testable consequences of this model in the 1940s [11]. At about a redshift of
z = 1000 the cosmic gas forms neutral atoms such that photons within the gas
do not scatter off the electrons anymore, which were previously present in the
ionized plasma. The photons released back then and redshifted in the meantime
are detectable in form of the cosmic microwave background (CMB) today. This
was first measured in 1964 by Arno Penzias and Robert Woodrow Wilson [12].
Going further back in time and to higher temperatures atomic nuclei are formed
out of a plasma of protons and neutrons. The theory of Big Bang Nucleosynthesis
predicts the relative abundances of elements in primordial gas.

A major pillar of modern cosmology is the theory of structure formation. It
revolves around the question of how the state of the universe today with its in-
homogeneous distribution of matter on scales smaller than ∼ 100 Mpc (galaxies,
galaxy clusters, etc.) has evolved out of a homogeneous distribution at earlier
times. Assuming initially small perturbations of the otherwise homogeneous den-
sity field, the equations of motion of gas and radiation (in the early times dark
matter was not considered) can be linearized with respect to overdensity and
solved analytically. Before the first precision measurements of CMB anisotropies
took place in the early 90s by the COBE satellite, the initial conditions for struc-
ture formation were hard to constrain and highly idealized set-ups were studied.
Nevertheless, Harrison [13] and Zel’dovich [14] independently found in 1970 and
1972 that only a certain type of spectrum of initial perturbations, later called
Harrison-Zel’dovich spectrum, can account for the observed galaxy distribution.
The power spectrum of density perturbations is in this case given by P (k) ∼ k.

An important development for the theoretical framework of cosmology was the
theory of inflation in the 1980s by Guth and Linde [15; 16] - a phase of accelerated
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2.1 The ΛCDM model

expansion in the very early universe. Originally proposed to explain the absence
of magnetic monopoles it can also explain various properties of the initial state of
the universe like the observed isotropy of the CMB: Before the start of inflation
the entire observable universe was in causal contact which would not have been
the case without an inflationary phase. Furthermore, it gives an explanation for
the initially high degree of spatial flatness that is necessary because the universe
would otherwise recollapse too early or expand too fast. Last but not least,
vacuum fluctuations of the inflaton field, which drives inflation, are stretched
to macroscopic scales. This provides a mechanism for the production of initial
perturbations acting as seeds for structure formation.

Although Fritz Zwicky had already argued in 1933 that a much larger amount
of mass than observable in the form of stars is needed to explain the high veloc-
ity dispersion of galaxies in the Coma Cluster [17], it was not until the 1970s
that dark matter was widely considered in astronomy. At this time, extended
analysis of galaxy clusters, as well as first measurements of rotation curves of
disk galaxies gave further evidence for a large amount of matter not interact-
ing significantly with electromagnetic radiation and, thus, only detectable via its
gravitational influence. Subsequently, dark matter was incorporated into cosmo-
logical structure formation. While baryonic explanations for dark matter like
black holes, brown dwarfs and white dwarfs were also considered, the idea that
dark matter is composed of non-baryonic particles lead to a large number of pro-
posed dark matter candidates motivated by particle physics. Those candidates
were typically categorized according to their initial velocity dispersion into hot
dark matter (HDM), for example massive neutrinos, warm dark matter (WDM)
like gravitinos or sterile neutrinos and cold dark matter (CDM) like weakly in-
teraction massive particles (WIMPs) or QCD axions. The higher the velocity
dispersion of dark matter, the larger the length scale below which perturbations
are suppressed due to free-streaming in the linear evolution of the density field.
HDM was soon shown to disagree with observations of galaxy clustering for the
above reason. The maximum allowed velocity dispersion for WDM has decreased
more and more in recent years due to observations probing the smallest scales of
the power spectrum like Lyman-α forest spectra [18].

As the latest addition to the cosmological standard model, the cosmological
constant Λ, which also goes by the name dark energy, was reintroduced in the
1990s after galaxy surveys [19] and the first measurements of anisotropies in the
CMB [20] favoured a flat universe which today contains ∼ 70 % dark energy
and ∼ 30 % dark matter over other models like open universes or flat ones with
100 % matter domination. The late time effect of dark energy, the accelerated
expansion of the universe, was detected in 1998 using supernova Ia data [21; 22].

Today, the ΛCDM model convincingly describes the large scale structure of the
galaxy distribution as observed in galaxy surveys like the Sloan Digital Sky Survey

5



2. THEORETICAL BACKGROUND

(SDSS) [23] and the CMB anisotropies as measured most precisely by the Planck
satellite [24]. In its most basic form, the model assumes spatial flatness and
contains 6 free parameters which have now been constrained up to ≈ 1 percent.
From those 6 parameters other parameters like the today’s energy densities of
dark matter, baryons and dark energy can be derived. They are often expressed
as fractions Ω of the critical density needed for a spatially flat universe given the
Hubble parameter

εcr =
3H2

8πG
(2.5)

2.1.1 Structure formation and halo properties

In agreement with cosmological measurements [24], a spatially flat universe is as-
sumed in the following. The scale factor a can then be scaled arbitrarily. Comov-
ing distances, used in the definition of the metric in equation (2.1), are translated
to physical distances by a multiplication by a.

The evolution of a non-relativistic ideal fluid with Newtonian treatment of
gravity in comoving coordinates is described by the following set of equations
[25]

∂ρ

∂t
+ 3

ȧ

a
ρ+

1

a
∇(ρv) = 0 (continuity) (2.6)

∂v

∂t
+
ȧ

a
v +

1

a
(v · ∇)v +

1

a

∇p
ρ

+
1

a
∇V = 0 (Euler) (2.7)

∇2V = 4πGa2(ρ− ρ̄) (Poisson) (2.8)

Here, ρ denotes the density, v the velocity and p the pressure of the fluid. V is the
gravitational potential and ρ̄ the mean density. The above equations have only
limited applicability in cosmological structure formation for several reasons. The
Newtonian treatment of gravity is only valid on sub-horizon scales (� cH−1),
which can be understood as requiring that the expansion velocity must not be
comparable to the speed of light so that the effect of gravity can be considered
instantaneous. Moreover, the Euler equation only considers non-relativistic fluids.
Due to the absence of collisions between individual particles, dark matter is not
an ideal fluid in general. However, it can be described by the fluid equations with
p = 0 as long as its velocity dispersion is negligible. In the case of CDM, this
condition is fulfilled on all relevant length scales until first shell-crossing. In the
case of WDM, the velocity dispersion is only negligible on length scales larger
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2.1 The ΛCDM model

than the free-streaming length λfs.

For an ideal fluid the pressure is given by an equation of state of the form

p = p(ρ, S) (2.9)

where S is the specific entropy. Thus, the term ∇p
ρ

can be expressed as

∇p
ρ

=
1

ρ

[(
∂p

∂ρ

)
S

∇ρ+

(
∂p

∂S

)
ρ

∇S

]
=

1

ρ

[
c2
s∇ρ+ σ∇S

]
, (2.10)

where cs = (∂p/∂ρ)
1/2
S is the adiabatic sound speed. After writing ρ = ρ̄(1 + δ)

and keeping only linear terms in δ and v and using equation (2.10) the fluid
equations read

∂δ

∂t
+

1

a
∇ · v = 0 (2.11)

∂v

∂t
+
ȧ

a
v +

c2
s

a
∇δ +

σ

aρ̄
∇S +

1

a
∇V = 0 (2.12)

∇2V = 4πGa2ρ̄δ (2.13)

Differentiating equation (2.11) with respect to t and using equations (2.12) and (2.13)
gives

∂2δ

∂t2
+ 2

ȧ

a

∂δ

∂t
= 4πGρ̄δ +

c2
s

a2
∇2δ +

σ

aρ̄
∇S (2.14)

This partial differential equation becomes an ordinary differential equation after
applying the Fourier transformation.

∂2δk
∂t2

+ 2
ȧ

a

∂δk
∂t

=

[
4πGρ̄− k2c2

s

a2

]
δk −

σk2

aρ̄
Sk (2.15)

In the special case of a pressureless fluid without entropy perturbations the equa-
tion reads

∂2δk
∂t2

+ 2
ȧ

a

∂δk
∂t

= 4πGρ̄δk (2.16)
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2. THEORETICAL BACKGROUND

It has the general solution [25]

δk = C1H

∫
dt

a2H2
+ C2H (2.17)

where the first term is the growing mode and the second one is the decaying
mode. This solution is applicable to the linear evolution of CDM on sub-horizon
scales after it has decoupled from the baryonic particles under the assumption
that gravity is dominated by dark matter perturbations. In the case of a flat
matter-dominated universe it becomes

δk = C1t
2/3 + C2t

−1 (2.18)

A Gaussian random field is completely specified in the statistical sense by its
power spectrum P (k)

〈δk1δk2〉 = V −1
u P (k)δk1k2 (2.19)

where Vu is a large volume in which the density field is assumed to be periodic
(it enters in the definition of the Fourier transform δk) and δk1k2 is the Kronecker
delta. This means that different Fourier modes are uncorrelated. The probability
distribution for the real and imaginary parts of a single mode is a Gaussian
distribution around 0 with a variance of V −1

u P (k). Data from the Planck satellite
[24] is in agreement with a Gaussian spectrum of adiabatic initial conditions with
a power spectrum close to the Harrison-Zel’dovich one (P (k) ∼ k). ”Adiabatic”
means that entropy perturbations are not present corresponding to Sk = 0 in the
treatment above. Such a spectrum is a natural outcome of single field inflation
models.

Since Fourier modes evolve independently in the linear theory, the spectrum
of cosmological perturbations remains Gaussian until non-linear evolution sets in.
The power spectrum after recombination is often expressed in terms of the initial
spectrum Pi(k) as

P (k, t) = Pi(k)T 2(k)D2(t) (2.20)

where D(t) is the growing mode (C1) in equation (2.17). T (k) is the trans-
fer function, which encapsulates all deviations from the sub-horizon pressureless
fluid description of D(t). The most important of those effects stems from the
fact that, due to cosmic expansion and the different equation of state parameters
in equation (2.4), there is a transition between radiation-domination to matter-
domination at around z ≈ 3000. In comparison to super-horizon modes, whose
evolution can be computed by linearizing the general relativistic equations of
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2.1 The ΛCDM model

motion, the sub-horizon modes grow extremely slowly during radiation domina-
tion. This imprints a characteristic tilt from the initial ∼ k scaling to a ∼ k−3

scaling at large k into the power spectrum. In the case of warm dark matter
with a non-vanishing velocity dispersion, free-streaming leads to a suppression
of modes below the free-streaming length corresponding to sharp decline of the
power spectrum at large k. Minor changes to the total power spectrum are in-
troduced by the baryonic fraction of the cosmic matter density. One effect is
caused by the non-vanishing pressure of the baryon-photon plasma prior to re-
combination. This is apparent in equation (2.15): If k > c−1

s a
√

4πGρ̄ the solution
becomes oscillatory instead of growing. Since these baryonic acoustic oscillations
take place only before recombination and the baryon fraction is low, the ampli-
tude of the resulting oscillatory pattern the power spectrum is small. However,
it is still observable in the galaxy-galaxy correlation function. Apart from that,
the imperfect coupling between photons and baryons before recombination allows
for long mean-free paths of photons and, in turn, photon diffusion which damps
small scale perturbations in the baryon power spectrum further (Silk damping).

When perturbations have grown so much that δ becomes of order unity, the
linearized equations of motion are invalid. Insight into the nonlinear evolution
can be gained analytically by using approximations or by studying idealized sit-
uations. For example, in the case of a one-dimensional perturbation, matter
elements move along the following trajectories according to the pressureless fluid
equations:

x = xi −
D(t)

4πGρ̄a3
∇Vi(xi) (2.21)

v = − Ḋ(t)

4πGρ̄a2
∇Vi(xi) (2.22)

In the Zel’dovich approximation [26], these equations are also used for 3-dimensional
perturbation fields. This is only approximately correct and, while linear evolution
is reproduced, the error grows with increasing overdensity δ. An important pre-
diction of the Zel’dovich approximation is that in regions where a perturbation
along a certain direction dominates over the other directions, the density field will
form 2-dimensional sheets, the so-called pancakes. In any case, the Zel’dovich ap-
proximation becomes invalid, when the trajectories of matter elements cross each
other (shell-crossing).

Besides one-dimensional perturbations, the case of a perfectly spherical over-
density also allows for an analytical solution for nonlinear collapse. The physical
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2. THEORETICAL BACKGROUND

radius of of a mass shell in the overdensity is given by the equation [27]

d2r

dt2
= −GM

r2
+

Λ

3
r (2.23)

where M is the enclosed mass and Λ the cosmological constant. Initially, the
radius nearly expands like the rest of the universe (ṙi/ri ≈ Hi). Due to the
enclosed overdensity, the expansion slows down, turns around and the sphere
eventually collapses. Although overdensities with perfect spherical symmetry do
not exist in the cosmological density field, the solution to the spherical collapse
problem is often invoked for the analysis of non-linear collapse. Two important
quantities stand out: Firstly, it is possible to relate the time of collapse of a
spherical mass shell to the overdensity δ that it encloses initially. This overdensity
can also be expressed in terms of the value it would have according to linear theory
at the time of collapse. The computation yields a nearly time indepedent value
δc ≈ 1.686. This critical overdensity is used in the Press-Schechter formalism
to predict the halo mass function out of the linear perturbation spectrum [28].
Secondly, the total energy of a sphere is conserved and is given completely in the
form of gravitational potential energy at the turnaround. According to the virial
theorem, the energy should eventually be distributed in the following way:

−2K = W (2.24)

where K is the kinetic and W the potential energy. This conditition leads to a
characteristic average overdensity of the final virialized object. For a flat universe
with cosmological constant it reads [29]

ζ ≈ (18π2 + 82[Ωm(t)− 1]− 39[Ωm(t)− 1]2)/Ωm(t) (2.25)

This value often serves as a definition for virial radius and virial mass in the
analysis of simulation results.

In general, dark matter in the non-relativistic sub-horizon regime is described
by the Vlasov equation for the phase space density f(x,p ≡ ma2ẋ, t) [25]

∂f

∂t
+

1

ma2
p · ∇f −m∇V ∂f

∂p
= 0 (2.26)

In comparison to solving for the 6-dimensional phase space density directly, it is
less computationally expensive to employ N-body simulations for studying non-
linear structure formation of CDM. The basic procedure is to initialize a set of
particles according to the Zel’dovich approximation (equations (2.21) and (2.22))
at a time when perturbations are still linear and then to evolve them under the

10



2.1 The ΛCDM model

gravitational influence of the other particles. This can be understood as a Monte-
Carlo sampling of the phase space density in the Vlasov equation. Even though
basic properties of non-linear structure formation can be derived with analytical
arguments, numerical simulations are necessary to obtain a full picture which
can be linked to observations of galaxy distribution, for example. On length
scales right below the scale where the universe is homogeneous (today ≈ 100
Mpc), dark matter forms the so-called ’cosmic web’ consisting of 2-dimensional
walls (the pancakes predicted by the Zel’dovich approximation), which connect
1-dimensional filaments, which connect spherical halos of dark matter. Going to
smaller scales, gravitational collapse has already progressed further resulting in
the fact that walls, filaments and large halos themselves consist of smaller halos.
Numerical simulations also make predictions for the internal properties of dark
matter halos, which is nearly impossible analytically. Their radial density profile,
for example, was shown to be universally described by the Navarro-Frenk-White
profile [30]:

ρ(r) =
4ρs

(r/rs)(1 + r/rs)2
(2.27)

where rs is a characteristic radius marking a tilt from a central r−1 behaviour to
a r−3 scaling and ρs is the density at that radius.

After recombination, baryons lose the additional pressure support formerly
provided by the photons. In turn, they fall into the potential wells that dark
matter has already built up. If the virial temperature of a halo exceeds 104 K
primordial gas can cool by means of atomic processes which radiate photons.
This allows the gas to contract more than the dark matter component and even-
tually form a galaxy. The formation of stars complicates the process further as
the additional energy gained by nuclear fusion has a significant impact on the
environment of the stars. Supernova explosions inject a large amount of energy
into the interstellar medium preventing further star formation or even expelling
gas from the halo. Highly energetic UV radiation from massive stars permeates
the universe and leads to a reionization of the cosmic gas at around z = 6 − 10
and provides further heating.

The details of galaxy formation and evolution seem infinitely complex due
to the many physical processes and many length and time scales involved. The
discussion above does not mention the role of active galactic nuclei or mergers
between galaxies, for example. Because of its relevance for the general topic of
this thesis, the next chapter focuses on a special type of galaxy.
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2.2 Dwarf galaxies

Galaxies at the low luminosity end of the distribution of galaxies are called ’dwarf
galaxies’. It was observed that the surface brightness profiles of galaxies with
magnitudes MB & −18 are better described by an exponential law instead of
the Vaucouleurs law R1/4 which describes brighter galaxies [25; 31; 32]. However,
more recent results show that both populations can be described by a Sérsic profile
with a Sérsic index that is smoothly varying with brightness [25; 33]. Hence,
the distinction between ’dwarf’ galaxies and ’regular’ galaxies is mostly due to
historical reasons and the threshold of MB ∼ −18, which roughly corresponds to
a stellar mass of M∗ ∼ 109 M� and a virial mass of Mh ∼ 1011 M�, is somewhat
arbitrary [25].

Dwarf galaxies are by number the most abundant type of galaxies in the uni-
verse but contain only a small fraction of the total number of stars [25]. With the
faintest galaxy discovered so far having an absolute magnitude of MV ≈ 0.0 [34],
dwarf galaxies span a larger range of magnitudes than ’regular’ galaxies. Their
morphological properties are also diverse. A distinction can be made between
gas-rich galaxies with ongoing star formation, so called dwarf irregulars (dIrr),
and gas-poor ones without young stars, the dwarf spheroidal (dSph) and dwarf
ellipticals (dE) [25]. Bright dwarf irregulars often contain rotating gas disks [25].
Dwarf spheroidal galaxies have a very low surface brightness and a relatively reg-
ular shape [25]. They include the subgroup of ultrafaint dwarf galaxies which
are the faintest galaxies discovered so far with stellar masses of M∗ ≈ 102−5 M�.
Many known dwarf galaxies are satellite galaxies of larger galaxies but field dwarfs
are also known to exist. The majority of field dwarfs are dwarf irregulars whereas
most dwarf spheroidals are satellite galaxies [35].

Because of their low luminosity, the detection of dwarf galaxies is limited to the
local universe. While brighter dwarf galaxies have been observed in nearby galaxy
clusters like Virgo or Fornax, the maximum observable distance decreases with
decreasing luminosity. The only known ultrafaint dwarf galaxies, for example,
are satellites of the Milky Way. The detection of new dwarf galaxies and the
study of their properties is an active field of research. The number of known
systems has been steadily increasing over the past years owing to large-area digital
sky surveys like the Sloan Digital Sky Survey (SDSS) [36; 37; 38], the Pan-
Andromeda Archaeological Survey (PAndAS) [39] and the Dark Energy survey
(DES) [34; 40; 41]. Today, ∼ 59 satellite galaxies of the Milky Way are known
which is ∼ 5 times more than in the year 2004. Equally, the stellar mass of the
smallest known dwarf has decreased from M∗ ≈ 5 × 105 M� in the year 2004 to
more than 1000 times less [35]. Future telescopes like the Large Synoptic Survey
Telescope will push the boundary of detectability even further.

As the amount of observational data on dwarf galaxies increases, more effort
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is being put into the task to understand their properties and formation history
within the ΛCDM framework. The most naive interpretations of cosmological
dark-matter-only simulations have shown to disagree with observations. In fact,
dwarf galaxies are at the core of the three often-cited problems that the ΛCDM
model faces on small scales, the missing-satellite problem, the cusp-core problem
and the too-big-to-fail problem.

2.2.1 Missing satellites

The missing-satellite problem consists of an apparent mismatch between the num-
ber of low-mass halos predicted by ΛCDM and the number of observed dwarf
galaxies [42; 43]. High-resolution cosmological N-body simulations show that
dark matter halos exist at all masses and there is no minimum halo mass. The
halo mass function rises steeply with decreasing mass with dn/dM ∼ M−1.9.
Comparing the numbers, one expects thousands of subhalos in the Milky Way
halo that could support molecular cooling (Mh & 107 M� [44; 45]) and, thus,
are in principle able to form stars [35]. On the other hand, we only know ∼ 59
Milky Way satellites today and it is not to be expected that future surveys can
find enough satellites to alleviate this discrepancy. Taking the ΛCDM model for
granted, it is therefore obvious that a linear relation between halo mass Mh and
and stellar mass M∗ of the type

M∗ = ε∗fbMh (2.28)

with a constant efficiency ε∗ and the cosmic baryon fraction fb = Ωb/Ωm cannot
exist. Instead, the efficiency must vary with halo mass and become zero for low
mass halos. One way to find the relation between M∗ and Mh is abundance
matching. Starting from the most massive ones, the number density of dark
matter halos is matched with the most massive observed galaxies that are not
yet associated with more massive halos. A more sophisticated model is presented
in [46] with a ratio up to 103 between Mh and M∗. Extrapolating to ultrafaint
dwarfs (Mh . 109 M�) yields even higher ratios. Such high mass-to-light ratios
are in agreement with kinematic measurements of the dark matter mass of dwarf
galaxies. These can be done either by measuring the rotation velocity of gas disks
[35; 47], which is only possible for bright dwarfs (Mh & 1010 M�) containing
disks, or by measuring the stellar velocity dispersion [35; 48; 49; 50; 51]. The
measurements yield mass-to-light ratios up to ∼ 1000 times the ratio of the sun
[35]. Thus, dwarf galaxies, especially ultrafaint ones, are the most dark matter
dominated systems in the universe.

Under the assumption that the ΛCDM model is correct, the explanation for
the small number of dwarf galaxies and their high mass-to-light ratio must be

13



2. THEORETICAL BACKGROUND

found in the physics of the baryonic component of galaxies. Supported by nu-
merical simulations [52; 53; 54; 55; 56; 57], two effects have been identified as
the most relevant: The UV background responsible for the reionization of the
universe leads to a heating of the gas in low mass halos and suppresses gas ac-
cretion. Apart from that, if the UV background does not shut off star formation
completely, stellar feedback by supernova explosions inside the low mass halos in-
hibits further star formation and expels large fractions of the gas from the halo’s
potential well.

Heating by the UV background prevents star formation at halo masses below
Mh ≈ 109 M� [35; 58; 59] which is roughly the size of ultrafaint dwarfs. Con-
sequently, it is debated, with the support of observations [60] and simulations
[57; 61; 62], whether ultrafaint dwarfs could be so-called ’fossils’ of reionization
with all their stars having formed before UV radiation eventually prevented ad-
ditional gas accretion [63].

Apart from UV background and stellar feedback, the baryon fraction in satel-
lite dwarfs can be affected by ram pressure stripping and tidal stripping [27; 64].

2.2.2 Cusp-core controversy

Cosmological dark-matter-only simulations predict that the NFW-profile is more
or less universally applicable to all halo masses [30]. The profile has a steeply
increasing density towards the center with ρ ∼ r−1 forming a ’cusp’. Such a cuspy
profile is, however, in disagreement with measurements of rotation curves of gas
disks in bright dwarf galaxies preferring constant (’cored’) central density profiles
[47; 65; 66; 67; 68]. For low mass dwarf spheroidal galaxies, similar results can
obtained by Jeans analysis of stellar kinematics [69; 70]. However, these methods
are less reliable because of the degeneracy of mass and anisotropy in such models
[71]. Analysis methods based on different stellar populations also favour cores
[72]. Taking into account the uncertainties of the methods and the fact that
some results favour cuspy profiles [70; 73] one can summarize that, in contrast
to brighter dwarf galaxies, the evidence for cored profiles in dwarf spheroidal
galaxies is less firm.

Like in the case of the missing-satellite problem, many researchers have pointed
out that the discrepancy is probably a result of an overinterpretation of dark-
matter-only simulations neglecting baryonic effects. Indeed, various numerical
studies show that the repeated expulsions of gas caused by supernova explosions
lead to temporal fluctuations of the central gravitational potential and, in turn, to
cored dark matter density profiles in dwarf galaxies [35; 53; 57; 74; 75; 76; 77; 78].
Most simulation results [57; 77; 78] agree that the ability to form cores is limited
to a certain range of stellar masses with a peak at M∗ = 108−9 M� corresponding
to bright dwarfs (Mh ≈ 1011 M�). Below M∗ ≈ 106 M� there are not enough
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stars being formed to move gas outwards by supernova explosions. However, as
discussed above, there is less observational evidence for cores at these mass scales
(discussed further in the next section). Owing to the variety of subgrid models
and resolution choices, some numerical results deviate from the above picture.
While [55] do not produce cores in any of their halos, [79] see cores in halos of all
masses.

Another mechanism proposed to turn cuspy profiles into cores is dynamical
friction of cold gas clumps transferring energy to the dark matter component in
a halo [80; 81; 82].

2.2.3 Too-big-to-fail

As pointed out by Boylan-Kolchin et al. [83; 84], the central masses of the most
massive subhalos produced in dark matter only simulations of Milky Way-like
systems do not agree with the observed central mass of any Milky Way satellite.
Instead, the simulated subhalos are too dense in the center. On the one hand, the
favoured mechanisms for the solution of the missing-satellites problem cannot be
invoked here, because the subhalos are too massive for reionization and supernova
feedback to prevent star formation. Thus, the simulated massive subhalos should
host an observable satellite galaxy. This explains the name of the problem. On
the other hand, the relevant Milky Way satellites have stellar masses aroundM∗ ≈
106 M� which is the scale where stellar feedback becomes inefficient at moving
dark matter outwards and thereby reducing the central density. This makes the
high central densities of simulated subhalos harder to explain. Supported by
hydrodynamical simulations, it is often argued that environmental effects like
tidal stripping, disk shocking and ram pressure stripping can account for the
discrepancy [35; 55; 85; 86].

2.3 Alternatives to CDM

To summarize the last section, it is debatable if the small scale problems exist
at all or if they simply result from insufficient modelling of baryonic physics in
cosmological simulations. Still, it is viable to consider solutions involving alter-
natives to the CDM paradigm under the constraint that the successes of ΛCDM
on large cosmological scales are preserved. If baryonic explanations turn out to
be insufficient, alternative dark matter models might at least play a supportive
role in explaining the small scale problems.

Baryonic solutions to the missing-satellite problem rely on the fact that of the
many small subhalos of the Milky Way only the most massive ones host galaxies.
A more radical solution is to reduce the number of small halos by changing the
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behaviour of dark matter. Warm dark matter with a mass that is still allowed
by Lyman-α forest constraints is one simple way to achieve this. If thermally
produced, the WDM mass mWDM is related to its velocity dispersion and, thus,
to the effective free-streaming scale λfs according to [87]

λfs = 0.07
(mWDM

1 keV

)−1.11
(

ΩDM

0.25

)0.11(
H0

70 km/s/Mpc

)0.22

Mpc . (2.29)

The suppression of power at large wavenumbers k caused by free-streaming in the
linear regime leads to fewer small dark matter halos [88]. Furthermore, WDM can
help to alleviate the too-big-too-fail problem, because halos of a given size form
later with WDM compared to CDM leading to a reduced central density [35; 89].
However, WDM is unable to explain the presence of cores in bright dwarf galaxies
of the local group (cusp-core problem). Although a thermal velocity distribution
of dark matter can produce cored profiles, the necessary WDM mass to agree
with observations is so low (mWDM ∼ 0.1 keV) that it prevents the formation
of the halo in the first place [90] and is ruled out by Lyman-α forest constraints
(mWDM > 3.5 keV) [18].

The cusp-core problem can be addressed by self-interacting dark matter
(SIDM). Self-interactions between dark matter particles with a cross-section per
unit mass of σ/m = 0.45−450 cm2/g increases the entropy of dark matter in high
density environments like centers of halos and this flattens the density profile [91].
Such a high cross-section is in tension with the central densities of galaxy clusters
[92], which can be solved by considering velocity dependent cross-sections σ(v)
[35]. SIDM alone does not have an effect on the halo mass function and, thus,
cannot explain the missing-satellite problem.

2.4 Fuzzy dark matter

An alternative dark matter model to explain the small scale tensions was proposed
by Hu, Barkana and Gruzinov [93] in 2000, although the idea that dark matter
is a light scalar field had been around before that [94]. In the fuzzy dark matter
model, dark matter consists of ultralight bosonic particles with negligible self-
interaction. They form a coherent state governed by the Lagrangian of a classical
real scalar field

L =
~2

2
gµν∂µΦ∂νΦ−

1

2
m2c2Φ2 (2.30)
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The corresponding equation of motion is the Klein-Gordon equation

�Φ− m2c2

~2
Φ = 0 (2.31)

On a curved space-time, the d’Alembert operator is given by

� =
1√
−g

∂µ[
√
−ggµν∂ν ] (2.32)

If one is interested in the behaviour of FDM on sub-horizon scales, it is prudent
to consider the non-relativistic limit with Newtonian gravity. This is achieved by
considering only small scalar perturbations V to the FRW metric in Newtonian
gauge, factoring out fast oscillations due to the rest mass energy

Φ =
1√

2ma3

(
Ψe−

imc2t
~ + Ψ∗e

imc2t
~

)
(2.33)

and keeping in the equation of motion for Ψ only the linear terms in ~Ψ̇, ~2∇2Ψ
and V [95]. The result is the well-known Schrödinger equation

i~Ψ̇ = − ~2

2ma2
∇2Ψ + V mΨ , (2.34)

where V is the Newtonian gravitational potential given by the Poisson equation
(equation (2.8))

∇2V = 4πGa2(ρ− ρ̄) (2.35)

The scalar field contributes in the following way to the mass density with spatial
average ρ̄:

ρ = ma−3|Ψ|2 (2.36)

If the mass of the scalar field is chosen to be m ≈ 10−22 eV, the de Broglie wave-
length λdb = 2π~/mv becomes of the order of kiloparsecs in dwarf galaxy halos.
Analogous to the uncertainty principle of quantum mechanics, this prevents the
formation of cuspy density profiles. Approximately the same mass is necessary
to achieve a suppression of the linear power spectrum at large k, in order to have
an effect on the abundance of low mass halos similar to the WDM solution to the
missing-satellites problem. Thus, FDM is potentially an elegant solution to the
small scale problems of ΛCDM as it relies on a single mechanism to explain all
of them.

To get an understanding of the linear evolution of FDM, the Schrödinger-
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Poisson system can be cast to a similar form as the non-relativistic fluid equations
(equations (2.6) to (2.8)) using the Madelung transformation [96]. Substituting

Ψ =

√
ρ(x, t)a3

m
exp(iS(x, t)/~) (2.37)

and v = (ma)−1∇S and separating real and imaginary parts yields

∂ρ

∂t
+ 3

ȧ

a
ρ+

1

a
∇(ρv) = 0 (2.38)

∂v

∂t
+
ȧ

a
v +

1

a
(v · ∇)v +

~2

2m2a3
∇
∇2√ρ
√
ρ

+
1

a
∇V = 0 (2.39)

These equations are exactly the continuity and euler equations, but with the
hydrodynamic pressure replaced by a term involving the second derivative of the
density field. The quantity

Q =
~2

2m2a2

∇2√ρ
√
ρ

(2.40)

is often called ’quantum pressure’ for this reason. Analogous to section 2.1.1 the
equations can by linearized and combined to give [97]

∂2δ

∂t2
+ 2

ȧ

a

∂δ

∂t
= 4πGρ̄δ +

~2

4m2a4
∇2∇2δ (2.41)

After applying the Fourier transformation this becomes

∂2δk
∂t2

+ 2
ȧ

a

∂δk
∂t

=

[
4πGρ̄− ~2k4

4m2a4

]
δk (2.42)

This shows that, similar to the pressure of the baryon-photon plasma before
recombination, the quantum pressure introduces a Jeans scale

kJ = 2π1/4~−1/2a(Gρ̄)1/4m1/2 (2.43)

Perturbations with k < kJ grow, while perturbations with larger wavenumbers
undergo oscillations. Since ρ̄ ∼ a−3 during matter-domination, the comoving
Jeans scale changes only mildly (kJ ∼ a1/4). This leads to a cut-off in the power
spectrum which is sharper than the one introduced by WDM free-streaming [98].
The effect can be expressed as a transfer function T (k) relative to the ΛCDM
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Figure 2.1: Cosmological FDM simulation with a zoom-in on the central region
of a halo.
Reprinted by permission from Springer Nature: Nature Physics [1] c© 2014

prediction [93]

PSFDM(k, z) = T 2(k)PCDM(k, z) (2.44)

where T (k) can be approximated by the analytical expression

T (k) =
cosx3

1 + x8
(2.45)

with x = 1.61m1/18k/kJeq and kJeq is the Jeans scale at matter-ratiation equality.
WDM with a mass

mWDM = 0.84
( m

10−22 eV

)0.39

keV (2.46)

produces a cut-off with the same half-mode k1/2, defined by T (k1/2) = 0.5 [98].
Inserting a value for ρ̄ that is characteristic for centers of dark matter halos

in equation (2.43) gives a rough estimate for the radius below which the density
profile must be flattened [93]. In 2014, cored density profiles were confirmed for
the first time in 3D cosmological simulations integrating the Schrödinger-Poisson
system [1]. The simulations show that FDM behaves like CDM on large scales.
On smaller scales, comparable to the local de Broglie wavelength, however, the
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density fields of collapsed objects like halos and filaments show wave-like patterns.
In particular, while the overall shape of halos is still described by an NFW profile,
their small scale structure looks ’granular’. Since radial profiles average over
cocentric shells, they only show the central granule in the form of a flattened
core while the outer parts look similar to the NFW profile. The cores are well
described by solitonic solutions to the Schrödinger-Poisson system. Figure 2.1
shows a snapshot of the simulations.

The term ’soliton’ refers to ground state solutions of the Schrödinger-Poisson
system. For a given total mass they are the configurations with lowest energy. In
the Madelung picture, the quantum pressure exactly balances the gravitational
pull, similar to a gas cloud in hydrostatic equilibrium. Solitons fulfill the virial
condition (equation (2.24)), where the kinetic energy of the scalar field is given
by

K =

∫
~2

2a5m
|∇Ψ|2d3x (2.47)

and the potential energy by

W =
1

2

∫
V a−3m|Ψ|2dx3 (2.48)

The radial profile of a soliton is approximated by the analytical expression [1]

ρs(r) ≈
1.9(m/10−23eV)−2(rc/kpc)−4

[1 + 9.1× 10−2(r/rc)2]8
M�pc−3 (2.49)

For a given scalar field mass m the profile is specified by a single free parameter,
here expressed as the radius rc at which the density has dropped to one half of
its maximum value in the center. It is related to the mass it encloses according
to [1]

Mc ≈
5.5× 109

(m/10−23eV)2(rc/kpc)
M� (2.50)

Spherically symmetric perturbations lead to pulsating oscillations of the den-
sity distribution with a frequency [99]

f = 10.94

(
ρc

109 M�kpc−3

)1/2

Gyr−1 , (2.51)

where ρc is the central density of the soliton in its ground state.

In their cosmological simulations, Schive et al. [100] empirically found a rela-
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tion between core mass Mc and the virial mass of its host halo Mh

Mc =
1

4
a−1/2

(
ζ(z)

ζ(0)

)1/6(
Mh

M0

)1/3

M0 (2.52)

with M0 = 4.4× 107(m/10−22eV)−3/2M� and ζ given by equation (2.25).

2.4.1 Observational constraints

Under the assumption that dark matter is completely made up of FDM, the
ΛCDM model is augmented by a single additional free parameter, the scalar field
mass m. This parameter has become increasingly constrained by observations
casting doubt on the existence of a value small enough to be relevant for the
small scale problems of ΛCDM.

The dark matter only simulations in [1] make a generic prediction for den-
sity profiles of FDM halos. Solitonic cores with a mass given by equation (2.52)
are embedded in NFW profiles. This prediction can be fit to stellar kinemat-
ics data of dwarf spheroidals (dSph) which, as discussed in section 2.2.2, might
have cored dark matter profiles. The inferred masses are 0.81+0.16

−0.17× 10−22 eV [1],
m = 1.18+0.28

−0.24 × 10−22 eV [101], m = 3.7− 5.6× 10−22 eV [102], m < 1.1× 10−22

eV [103], m < 0.4 × 10−22 eV [104], 0.8 − 1.2 × 10−22 eV [105]. Using only the
mass versus half-light radius relation, [106] pointed out, that it is impossible to
fit all Milky Way satellites with a single mass m. In [107], the soliton+NFW
profile was fitted to rotation curves of bright dwarf galaxies with rotating disks,
for which cored profiles are more established. The analysis yielded an even lower
mass of m = 0.554×10−23 eV. [108; 109] also found rotation curve measurements
to be incompatible with masses in the usual range for FDM (m = 10−22 − 10−21

eV). [110] pointed out a general problem of the FDM explanation to the cusp-core
problem in bright dwarf galaxies: The core-halo mass relation (equation (2.52))
predicts the core radius to scale inversely with virial velocity of a halo, but ro-
tation curve measurements suggest that the core radius increases with increasing
velocity.

Like in the case of WDM, strong constraints on the minimal allowed field
mass are imposed by Lyman-α forest measurements. This is because the method
probes scales near to the linear power spectrum cut-off at redshifts where they
are still only slightly non-linear. The term ”Lyman-α forest” refers to hydrogen
absorption line features in highly redshifted quasar spectra, tracing the distribu-
tion of neutral hydrogen and, in a biased manner, the underlying dark matter
distribution. Because of the non-linear evolution involved, the analysis typically
requires hydrodynamical cosmological simulations to predict flux power spectra
from a given linear transfer function. [111] found a lower mass of 20×10−22 eV us-
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ing quasars with redshift z = 3.5− 5.4. Using data from SDSS, [112] constrained
the field mass to be larger than 23× 10−22 eV. These values are in strong tension
with the ones obtained from stellar kinematics in dwarf spheroidals. However,
interpretations of Lyman-α forest observations, especially at high redshifts, are ar-
guably not entirely trustworthy because the effect of inhomogeneous reionization
is difficult to account for in the modelling of flux spectra [113]. Furthermore, the
hydrodynamical simulations in [18] and [112] employed standard N-body methods
instead of solving the Schrödinger-Poisson system. Thus, the small scale effects
of FDM relative to CDM in the non-linear evolution was not covered.

In the ΛCDM model small perturbations collapse first [25]. Consequently,
the suppression of linear small scale power in FDM can significantly delay the
formation of the first galaxies. Early time galaxy formation can be probed in a
number of ways. Using abundance matching together with the halo mass function
inferred from analytical methods [114] or cosmological simulations [115; 116; 117]
the luminosity function (number of galaxies with UV magnitude below a cer-
tain value) of FDM can be constructed. The luminosity function can be directly
compared to the observed UV luminosity function as derived from high redshift
observations of galaxies with the Hubble space telescope up to a redshift of z = 10
[118]. Alternatively, the luminosity function can be used to predict the reioniza-
tion history of the universe as the first galaxies, among quasars, are considered
its primary cause. The reionization history is probed by hydrogen absorption in
quasar spectra [119] (Gunn-Peterson trough) or by Thomson scattering of CMB
photons with free electrons [24]. The inferred lower bounds for the FDM mass
m are lower than the Lyman-α forest constraints. They are slightly higher than
10−22 eV [114; 115; 117] or even lower than that [116] depending on the specific
model and data analyzed. Recently, the EDGES experiment found an absorption
feature in the sky-averaged CMB spectrum which corresponds to the 21 cm line
(hyperfinestructure of neutral hydrogen) redshifted to z ∼ 15− 20 [120]. This is
interpreted as a signature of star formation at that redshift, because the spin tem-
perature of neutral hydrogen would otherwise equilibrate with the CMB, leading
to the absence of net absorption or emission. Since FDM delays star formation,
this imposes a constraint of m ≥ 5× 10−21 eV [121].

Turning away from the high redshifts, a number of implications of the specific
behaviour of FDM on de Broglie scales were proposed in [113]. These include
interactions between the granular density structure of FDM halos with the stellar
component leading to the disruption of star clusters or, generally, to a heating
of the stellar component, which was further investigated in [122]. This lead to
constraints of m ≥ 0.6 × 10−22 eV from the thickness of the galactic disks [123]
and m ≥ 1.5 × 10−22 eV from the heating of stellar streams [124]. From the
stability of a central star cluster in the ultrafaint dwarf Eridanus II, [125] derived
a lower bound of m ≥ 10−19 eV but with a mass window 10−21 & m & 10−20
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that could not be unambiguously excluded with the employed approximations.
Subhalos in the FDM model react differently to tidal forces exerted by the host
halo, because of quantum pressure effects [113]. From the survival of Milky Way
satellites despite tidal forces, [126] derived a bound of m & 2× 10−21 eV.

To summarize, it is unlikely that FDM density profiles found in the simulations
in [100] can solve the cusp-core problem for all dwarf galaxy masses. What
is worse, FDM with a relevant scalar field mass is even disfavoured by some
observations. Fits to kinematic data of dwarf galaxies seem to favour different
field masses m depending on the galaxy mass. Apparently, there is a trend
towards smaller field masses m the more massive a galaxy is. Constraints from
the Lyman-α forest and others exclude the masses necessary to explain density
distribution of bright and intermediate dwarf galaxies.

Note that so far fits of dwarf galaxies profiles are all based on simulations
that do not take the effect of gas and stars on the halo structure into account.
This approximation might be reasonable because dwarf galaxies are strongly dark
matter dominated. However, a critical examination is necessary and will be
provided in chapter 5.

All the constraints listed above are modified if FDM is considered to be only
a fraction of the total dark matter density. These mixed dark matter models are
considered in various published works.

2.4.2 Theoretical description of FDM dynamics

For the lack of laboratory experiments, progress in the theory of cosmological
structure formation is often made by a combination of numerical simulations and
analytical models. While simulations allow us to see the grand picture, analytical
descriptions isolate and give an understanding of individual mechanisms at work,
which can then be generalized to situations that cannot be probed by simulations,
because of limited computational resources for example. The same is true for
FDM theory. For instance, the similarity of FDM and CDM on large scales has
become known as Schrödinger-Vlasov correspondence. More or less heuristically,
it can be understood in terms of the Ehrenfest theorem: A localized wave packet
in an external potential moves according to the classical trajectory of a single
particle. A general wavefunction can be decomposed into a collection of localized
wave packets. Thus, since the Schrödinger equation with external potential is
linear, the collection of wave packets behaves like a collection of classical particles.

There are two factors that the above discussion fails to take into account:
First, the gravitational potential of FDM is actually not external, but instead
sourced by the FDM density itself. This makes the Schrödinger equation non-
linear. Secondly, under time evolution, wave packets do not stay localized. Free
wave packets disperse gradually with time and interactions with the gravitational
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potential can potentially disrupt them completely (tunnel effect). To quantify the
deviations from CDM, the Schrödinger-Vlasov correspondence can be described
in terms of phase space densities. The Wigner distribution of a Schrödinger
wavefunction is given by

fW (x,p) =

∫
d3x̃

(π~)3
exp

[
2
i

~
p · x̃

]
Ψ(x− x̃)Ψ∗(x + x̃) (2.53)

It can be thought of as an equivalent to the phase space density of a classical
ensemble of particles like in the Vlasov equation (equation (2.26)). However,
unlike the Vlasov phase space density, it allows for negative values and often
has strong oscillatory behaviour on small scales in position and momentum space
[127]. Coarse-graining the Wigner distribution with a Gaussian filter

f̄W ∼
∫

exp

(
− 1

2σ2
x

(∆x)2 − 1

2σ2
p

(∆p)2

)
fW (2.54)

with σxσp ≥ ~/2 makes the Wigner distribution strictly positive. Using the
Schrödinger equation, the evolution equation for f̄W can be derived showing that
it agrees with the Vlasov equation coarse-grained in the same way as fW , if
σxσp ≥ ~/2 [127].

The special case of σx = σp =
√

~/2 is the so-called Husimi representation

fH = |ΨH(x,p)|2 (2.55)

with

ΨH(x,p) =

(
1

2π~

)3/2(
1

2πσ2
x

)3/4 ∫
d3x̃ exp

[
−(x− x̃)2

4σ2
x

− i

~
p ·
(
x̃− 1

2
x

)]
Ψ(x̃)

(2.56)

In this expression, a decomposition into localized Gaussian wave packets, like in
the heuristic discussion above, is explicitly visible.

During the linear regime of cosmological structure formation, the points in 6D
phase space with non-zero density approximately form a 3D hyperplane. The ve-
locity distribution of CDM at a given point in space is single-valued and, thus, can
be described by the pressure-less fluid description (equations (2.6) to (2.8)). At
this time, the phase space distribution is easily translated to a Schrödinger wave-
function by reverting the substitution in equation (2.37) for the Madelung trans-
formation [128]. After shell-crossing, the fluid description of CDM breaks down as
the velocity distribution of CDM becomes multi-valued. Due to the Schrödinger-
Vlasov correspondence the Husimi distribution for FDM starting from the same
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Figure 2.2: This figure illustrates the different behaviours of particles (blue) and
Schrödinger field (red) when the velocity distribution is multi-valued. At the time
of collision, the kinetic energy is stored in the velocity dispersion of particles in
one case and in the interference pattern in the other case.
c© 2016 American Physical Society [2]
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initial conditions does the same. However, the underlying Schrödinger wavefunc-
tion or the equivalent Madelung equations with a single velocity at a given point
always remain valid. For FDM, having multiple velocities in the Husimi rep-
resentation corresponds to the formation of interference patterns in the density
field. This can be most easily seen in simulations of idealized set-ups like the
interference of two solitons shown in figure 2.2. In virialized dark matter halos,
one expects many different velocity vectors at any given point. Their interference
explains the granular structure observed in FDM halos. Indeed, a similar pattern
can be produced by superimposing an isotropic distribution of plane waves with
random phases like in equation (2.57) of the next paragraph.

A specific effect, which is potentially able to cause super de Broglie scale
deviations between CDM and FDM and thereby spoiling the Schödinger-Vlasov
correspondence is relaxation by gravitational interaction between the granules
within dark matter halos. It is possible because of the non-linear nature of the
Schrödinger-Poisson system. The phenomenon was numerically studied in [129].
A simulation was initiated with a wavefunction given in Fourier space as

Ψ̃(k) = N exp(−|k|) exp(iϕk) (2.57)

where N is a prefactor factor related to the average density of the field and ϕk is a
random phase for each Fourier mode. If N is sufficiently small, the contribution of
the gravitational potential energy to the energy of Fourier mode can be neglected.
In this case, each k can be associated to an energy ω according to ω ∼ k2. Thus,
the energy distribution of mass (|Ψ|2) in the initial state is

F (k)dk ∼ exp(−k2)dk ∼ k2 exp(−k2)dk

∼ ω exp(−ω)
dk

dω
dω ∼ ω1/2 exp(−ω)dω ∼ F (ω)dω (2.58)

Thermalization of a classical field leads to equipartition of energy among its
degrees of freedom, which are the Fourier modes in this case. Then, the energy
distribution is given by

F (k)dk ∼ 1

k2
dk ∼ k2

k2
dk ∼ dk

dω
dω ∼ ω−1/2dω ∼ F (ω)dω (2.59)

Exactly this shift from the spectrum in equation (2.58) to the one in equa-
tion (2.59) was observed in the simulations in [129]. Moreover, the formation of
a soliton at a random point in the simulation box was observed. Over time, the
soliton accumulates mass. This phenomenon was interpreted as Bose-Einstein
condensation, because a soliton is the lowest energy state of the Schödinger-
Poisson system.
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The spectrum shift, the formation of the soliton and its growth all happen
on a single timescale τgr. In [129], this timescale was derived via the Landau
scattering intergral, which describes wave interaction by long range forces. More
heuristically, but leading to the same result, the relaxation time can be derived
by treating the granules as quasi-particles and considering two body relaxation
between them [113]. Accordingly, the relaxation time in a halo consisting of N
particles is given by [130]

τgr ≈ 0.1

(
N

log Λ

)
tcr (2.60)

where log Λ is the Coulomb logarithm and tcr the crossing time. The size of the
quasi-particles is determined by the de Broglie wavelength corresponding to the
virial velocity v of the halo lgranule ≈ 0.5λdB = π~/mv. Thus, taking the quasi-
particle number in terms of the halo radius R to be N ≈ (R/lgranule)

3 and using
that tcr = R/v gives

τgr ≈ 0.1

(
Rmv

~π

)3(
R

v

)
(log Λ)−1 (2.61)

Plugging in realistic physical quantities gives [113]

τgr ∼
1010yr

frelax

(
v

100km s−1

)2(
R

5kpc

)4 ( m

10−22eV

)3

(2.62)

Here, the Coulomb logarithm log Λ ≈ log(R/lgranule) was absorbed into the di-
mensionless constant frelax . 1, which also accounts for other approximations in
the derivation.

2.4.3 Candidates from particle physics

FDM requires a spin-zero field Φ with a very low mass. Such fields naturally
occur in extensions to the standard model of particle physics, where Φ is an
angular variable, so that the potential V (Φ) is periodic with V (Φ + 2π) = V (Φ).
The potential can be induced by non-perturbative quantum effects which often
implies low masses m with V (Φ) = m2c2

~2 Φ2 + O(Φ4) [113].
One example is the Axion, a particle proposed to solve the CP-problem of

Quantum Chromodynamics by Peccei and Quinn [131]. QCD allows for a CP
violating term in its Lagrangian

LθQCD =
θQCD
32π2

εµνλρTrGµνGλρ (2.63)
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where Gµν is the gluon field strengh tensor. The term leads to a neutron electric
dipole moment, which is experimentally constrained, implying θQCD . 10−10

[132]. This is a fine tuning problem since θQCD gets a O(1) contribution from the
chiral anomaly in the presence of fermions

θQCD = θ̄QCD + arg detMuMd (2.64)

where Mu and Md are the quark matrices. Thus, the free parameter θ̄QCD has to
be tuned to cancel the second term.

In the axion solution to this problem, θQCD is the angular component of an
additional complex scalar field ϕ = |ϕ|eiθQCD . The total Lagrangian obeys a
global U(1) symmetry acting as a shift on θQCD. Similar to the Higgs field, the
complex field has a symmetry breaking potential

V (ϕ) = λ

(
|ϕ|2 − f 2

a

2

)2

(2.65)

Thus, at an energy scale fa the global U(1) symmetry is spontaneously broken
and Φ = θQCDfa, which is now called the ”axion” emerges as a Nambu-Goldstone
boson. Depending on the concrete model the axion is coupled to εµνλρGµνGλρ in
one way or another. Non-perturbative effects of QCD (instantons) then give the
axion a potential which drives the CP-violating term to zero.

Directly after spontaneously breaking the U(1) symmetry, the axion does not
have a preferred value. Instead, θQCD takes a random value between −π and π.
When non-perturbative effects switch on, this results in a residual excitation of the
axion field. This so-called ”misalignment production” is the primary mechanism,
by which a cosmological population of axions, which potentially makes up the
dark matter is produced. Since initially the axion field has a value Φi = θifa ∼ fa
and the energy density is given by ρ ∼ m2|Φ|2, the resulting dark matter fraction
is strongly influenced by the two parameters m and fa. In the case of the QCD-
axion, the two parameters are related [133]

m ≈ 6× 10−10eV

(
1016GeV

fa

)
(2.66)

For this reason, the mass m is the main parameter, which determines the axion
relic-density. Masses below m ∼ 10−6 eV can be excluded because they would
produce too much dark matter [134]. Thus, although axions in general are a
candidate for dark matter (CDM in this case) and they are rather light particles,
they do not allow the ultralight masses needed in the FDM model.

However, particles with similar properties as the axion arise generically, if
the standard model is derived from string theory [113; 133]. They appear in
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compactifications of extra space-time dimensions as Kaluza-Klein zero modes of
antisymmetric tensor fields. In these models, the constant of proportionality in
equation (2.66) can assume a large range of values [113]. This allows for an
axion-like particle with m ≈ 10−22 eV making up the dark matter content of
the universe, like in the FDM model. In order to produce enough dark matter
by misalignment, fa must be of the order fa ∼ 1016 GeV, which means that
Φ takes its initial value before inflation. Inflation then homogenizes the field.
After the end of inflation, the axion-like field falls into the potential wells that
the inflaton fluctuations have generated. This defines the initial spectrum of
adiabatic perturbations of the dark matter field [98].

While string theory explains why an ultralight scalar with m ≈ 10−22 eV can
exist, it does not motivate why the mass has the specific value. In fact, most
models predict the existence of several axion-like particles with a homogeneous
distribution of masses on a logarithmic scale [133]. If any of those additional ALPs
has a mass in the range 0.4 GeV & m & 1022 eV, they pose a potential problem
to cosmology as they would predict to much dark matter [113]. It therefore has to
be stressed that, although string theory can produce FDM, the main motivation
for the ultralight mass stems from its astrophysical implications. Another line
of reasoning is also possible: String theory motivates the hypothesis that dark
matter is given by a light scalar field with negligible self-interaction. Studying
the implications on cosmological structure formation can potentially constrain
the mass range around m ∼ 10−22 eV.

2.4.4 Quantum or classical?

Despite the mentioning of ”particles” in the last section, the dynamics of FDM
can be entirely understood in terms of classical field theory. This can be seen
in the governing Schrödinger equation (equation (2.34)), where the fundamental
constant of quantum mechanics only shows up in the combination ~/m. It serves
as a definition of the mass m, which itself does not show up alone. ~ and m would
acquire a meaning if the field Ψ was treated in the framework of quantum field
theory, but that is not the case in the FDM model. In the FDM literature, this
is often justified with a ”high occupancy number” [93]. Indeed, it might seem
absurd to talk about quantum effects on cosmological length scales. However, in
the FDM model, the de Broglie wavelength, a quantum mechanical quantity, is
explicitly stretched to those scales. Based on quantum mechanical calculations,
several authors claim that quantum effects in FDM are significant and, as a
consequence, the classical field description is invalid [135; 136; 137].

Although eventually every classical theory must be derivable from the more
fundamental quantum theory, classical field descriptions are perfectly valid in var-
ious fields of physics. Laser light, for example, can be well described by classical

29



2. THEORETICAL BACKGROUND

electromagnetic field equations. Bose-Einstein condensates produce macroscopi-
cal wave functions, which can be understood as classical fields. In fact, quantum
field theory admits quantum states with properties very close to those of classical
fields. They are called coherent states and the two phenomena mentioned above
can be described by those states [138; 139].

Coherent states play an important role in theories of spontaneous symmetry
breaking. In the case of the axion, the global U(1) symmetry is broken when
ϕ in equation (2.65) obtains a non-zero expectation value for the field operator
〈ϕ̂〉 = |ϕ|eiθQCD . This is impossible if the quantum state of the axion field is an
eigenstate of the particle number operator, as those would always give 〈ϕ̂〉 = 0.
In contrast, coherent states allow for a non-zero expectation value. Because the
misalignment population of axions is nothing but the symmetry breaking field
θQCD, it is already produced in a coherent state or at least close to one [140].
The same fact is often referred to as axions forming a ”condensate” [113].

Coherent states were already discovered in the early days of quantum mechan-
ics by Erwin Schrödinger for the quantum mechanical harmonic oscillator [141].
Here, coherent states are states with minimum uncertainty ∆x∆p = ~/2 with
the expectation values of x̂(t) and p̂(t) exactly given by the classical trajectory
of a single particle. Since in a free scalar field, the Fourier modes can be thought
of as independent harmonic oscillators, the concept can be easily generalized to
such fields. For brevity, the discussion below copes with real scalar fields, like the
axion field, instead complex ones. A coherent state can then be written in terms
of the creation operator â†k and the Fourier transform of the classical field Φ̃ as
[140]

|Φ〉 =
1

N
exp

[∫
d3k

(2π)3

√
Ek
2

Φ̃(k)â†k

]
|0〉 (2.67)

where N is a normalization factor, so that 〈Φ|Φ〉 = 1. As can be seen in this
notation, the coherent state is a superposition of an infinite number of particle
number eigenstates. Note, that the classical field can always be decomposed into
Φ̃ = Φ̃1 + Φ̃2 and the state can then be written with a subsequent application of
the operator above.

|Φ〉 =
1

N
exp

[∫
d3k

(2π)3

√
Ek
2

Φ̃1(k)â†k

]
exp

[∫
d3k

(2π)3

√
Ek
2

Φ̃2(k)â†k

]
|0〉 (2.68)

Thus, coherent states do not have any notion of particles being in certain 1-
particle states. In summary, coherent states can be thought of being the most
”field-like” and the least ”particle-like” states in the Hilbert space of a quantum
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field.

Using the commutation relation [âk, â
†
p] = δ3(k− p)(2π)3, the computation of

expectation value of the field operator gives the classical field Φ(x)

〈Φ|Φ̂(x)|Φ〉 = 〈Φ|
∫

d3k

(2π)3

1√
2Ek

(
âke
−ik·x + â†ke

ik·x
)
|Φ〉

=

∫
d3k

(2π)3

1

2

(
Φ̃(k)e−ik·x + Φ̃∗(k)eik·x

)
= Re Φ(x) = Φ(x) (2.69)

The time evolution of the coherent state is given by the classical evolution of the
field Φ(x, t)

e−iĤt|Φ〉 =
1

N
exp

[∫
d3k

(2π)3

√
Ek
2

Φ̃(k)
(
e−iĤtâ†ke

iĤt
)]
|0〉

=
1

N
exp

[∫
d3k

(2π)3

√
Ek
2

Φ̃(k)e−iEkt/~â†k

]
|0〉

=
1

N
exp

[∫
d3k

(2π)3

√
Ek
2

Φ̃(k, t)â†k

]
|0〉

= |Φt〉 (2.70)

To estimate the significance of quantum fluctuations, the variance of the field
operator convoluted with a localized smooth function F (x) can be computed
(Φ̂(F ) =

∫
d3xF (x)Φ̂(x))

〈Φ|Φ̂(F )2|Φ〉 =〈Φ|
∫

d3xF (x)

∫
d3x′F (x′)

∫
d3k

(2π)3

∫
d3p

(2π)3

1√
2Ek

1√
2Ep

âke
−ik·xâpe

−ip·x′
+ â†ke

ik·xâpe
−ip·x′

+ â†ke
ik·xâ†pe

ip·x′

+ â†pe
ip·x′

âke
−ik·x + δ3(k − p)(2π)3e−ik·xeip·x

′ |Φ〉

=

(∫
d3xF (x)Φ(x)

)2

+

∫
d3k

(2π)3

1

2Ek
F̃ (k)2

=

(∫
d3xF (x)Φ(x)

)2

+ const. (2.71)

The relative quantum mechanical uncertainty of the convoluted field operator is
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thus given by √
〈Φ̂(F )2〉 −

(
〈Φ̂(F )〉

)2

Φ(F )
∼ 1

Φ(F )
(2.72)

This shows that, since for axion dark matter Φ(F ) is sufficiently high, quantum
fluctuations can be neglected as long as the axions are in a coherent state [142].

Returning to the question of whether the classical treatment of the axion field
is valid, the above discussion favours a positive answer. In fact, some of the
papers criticizing the classical treatment do not assume the axion field to be in
a coherent state, but instead in a state with a sharp particle number [135; 136].
One might object that, in the above discussion of coherent states interactions
between field modes via gravity were not taken into account. Indeed, in [143], it
was shown in a simplified model of coupled quantum mechanical harmonic oscil-
lators that the expectation values for the occupation numbers (corresponding to
〈âkâ†k〉 in the notation above) still start to differ from their classical analogues on
short timescales. This might be due to the highly chaotic nature of the problem
studied, where classical treatments are known to break down very quickly [144].
As a final remark, it is questionable if the comparison between the quantum me-
chanical expectation value 〈âkâ†k〉 and the classical density is meaningful at all.
The cosmic dark matter field is not a closed system, but instead, via its gravita-
tional interaction coupled to everything else in the universe including ourselves.
Human observers will always experience the wavefunction of the axion field in a
”collapsed” state.
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Chapter 3

Numerical methods

This chapter describes the numerical methods employed in chapters 4 and 5. In
both projects, a modified version of the public cosmology code Enzo [145] was
used. Enzo combines a particle-mesh algorithm for dark matter with grid-based
solvers for hydrodynamics or magnetohydrodynamics on an expanding cosmo-
logical background. It furthermore provides modules for radiative heating and
cooling, star formation and feedback and radiation transport. It supports par-
allel computation with distributed memory using the Message Passing Interface
(MPI) and allows for adaptive mesh refinement, meaning that in some regions of
the simulation box fulfilling user-defined criteria the spatial resolution is increased
compared to the root-grid resolution. To solve the equations of motion of FDM,
the author of this thesis took part in the development of a new hybrid method
using both particle-based and grid-based algorithms and its implementation into
Enzo together with his collaborators Bodo Schwabe and Jens Niemeyer. It was
first published in the article corresponding to chapter 4 [3]. The hybrid method is
described in section 3.1.4 after giving an overview of existing algorithms for FDM
in the preceding subsections. Other physics modules of Enzo used in chapters 4
and 5 and the generation of initial conditions are discussed in section 3.2.

Figure 3.1 shows the result of a scaling test conducted on the computer cluster
of the North-German Supercomputing Alliance (HLRN). The code version and
the test problem are the same as in chapter 4. Using 384 processor cores, like
in most of the runs in chapters 4 and 5, leads to a speed-up by a factor of 20.5
compared to using only 4. Thus, the strong scaling efficiency is 21.3 % compared
to linear scaling.
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Figure 3.1: Elapsed real time during a complete root grid time step involving
many time steps on finer resolution levels vs. number of employed processor
cores.

3.1 Simulating fuzzy dark matter

3.1.1 An explicit and stable solver for the Schrödinger
equation

The numerical solver for the Schrödinger equation presented here is based on
the so-called ”method of lines” [146]. This means, as a first step, the spatial
coordinates of the wavefunction are discretized transforming the partial differ-
ential equation into an ordinary differential equation. This ODE can then be
integrated with an appropriate method with respect to the remaining parameter
t. For better readability, the spatial discretization is written out in one dimension
here:

Ψj(t) = Ψ(j ∗∆x, t) (3.1)

with a constant spatial separation ∆x. The second derivative in the Schödinger
equation is replaced with the discretized expression

∇2Ψj =
Ψj−1 − 2Ψj + Ψj+1

(∆x)2
(3.2)

which is second-order accurate in ∆x, yielding

i~
∂Ψj

∂t
= − ~2

2ma2(∆x)2
(Ψj−1 − 2Ψj + Ψj+1) + VjmΨj (3.3)
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This is now a set of coupled ordinary differential equations. It can be written
with a matrix A as

∂Ψj

∂t
= AΨj (3.4)

In principle, an arbitrary integration scheme with desired accuracy in terms of
the timestep ∆t can now be chosen. However, because the Schrödinger equation
is a ”stiff” equation, special care has to be taken regarding the stability of the
employed method. While the concept of ”accuracy” measures the numerical
error induced in a single timestep, ”stability” describes the long-term effect on
the numerical solution induced by small errors in the initial conditions. A specific
criterion for stability is to require the numerical solution to be bounded when the
exact solution is bounded [146]. Assuming that A is constant, the exact solution
to equation (3.4) after n timesteps of the length ∆t is

Ψj(n∆t) = exp(n∆tA)Ψj(0) (3.5)

Because A is symmetric, it can be diagonalized. Thus, changing the basis of Ψj

the equation can be written in terms of the eigenvalues λj of A

Ψ̃j(n∆t) = exp(n∆tλj)Ψ̃j(0) (3.6)

Since A, on top of being symmetric, has only imaginary entries, its eigenvalues
are also imaginary. Thus,

| exp(n(∆t)λj)| = 1 (3.7)

which is just an expression of the unitary nature of the Schrödinger equation. In
the context presented here, it means that the exact solution is bounded every-
where. For a general time integration scheme the equivalent to equation (3.6) is
[146]

Ψ̃j(n∆t) = Rn((∆t)λj)Ψ̃j(0) (3.8)

Now, if |R((∆t)λj)| > 1 for some eigenvalue λj, the corresponding eigenvector
will grow exponentially, spoiling the boundedness of the solution and accumu-
lating numerical errors. Thus, stability requires |R(∆λj)| ≤ 1. The third-order
Runge-Kutta solver is the lowest-order Runge-Kutta scheme fulfilling this stabil-
ity criterion for the Schrödinger equation given that ∆t is sufficiently small [147].
However, the fourth-order Runge-Kutta integration allows for a larger timestep.
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Here, the update from t0 to t0 + ∆t is given by

Ψj(t0 + ∆t) = Ψj(t0) + ∆t · 1

6
(k1j + 2k2j + 2k3j + k4j) (3.9)

with

k1j = AΨj(t0) (3.10)

k2j = A(Ψj(t0) +
∆t

2
k1j) (3.11)

k3j = A(Ψj(t0) +
∆t

2
k2j) (3.12)

k4j = A(Ψj(t0) + ∆tk3j) (3.13)

Using the fact that A has only imaginary eigenvalues, the stability function R is
then [146; 147]

|R((∆t)λj)|2 = 1 +
(∆t)8λ8

j

576
−

(∆t)6λ6
j

72
(3.14)

It is less or equal to 1 for

∆t <

√
8

|λmax|
(3.15)

where λmax is the largest absolute eigenvalue of A. For the Schrödinger equation
(equation (3.3)) in three dimensions, it can be computed, giving [147]

∆t <

√
8

6− m2a2(∆x)2

~2 Vmin

m

~
a2(∆x)2 (3.16)

where Vmin is the most negative value of the gravitational potential. If the grav-
itational potential is neglected, the maximum timestep scales with the square of
the spatial resolution

∆t <

√
2

3

m

~
a2(∆x)2 (3.17)

This can be interpreted as requiring that the change of the Fourier mode with
wavelength 2∆x (Nyquist frequency) in one timestep must not be too large. Note,
that the kinetic operator in the Schrödinger equation scales with the inverse
square of the wavelength. Thus, taking for instance a spatial grid of 5123 cells,
the timescale of the Nyquist mode is 2562 times faster than the largest wave
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3.1 Simulating fuzzy dark matter

length contained in the grid. This is the common property of ”stiff” differential
equations: Stability of certain numerical algorithms requires an extremely small
timestep compared to most of the physical timescales involved in the problem.

3.1.2 Alternative grid-based solvers for the Schrödinger
equation

Not every numerical algorithm shares the restrictive timestep requirement of the
4th-order Runge-Kutta method. Actually, there are various algorithms for the
Schödinger equation, which are unconditionally stable, meaning that there is no
upper limit for the timestep to ensure stability. The Crank-Nicholson scheme,
for example, is second order accurate in ∆t and unitary (|R((∆t)λj)| = 1) for all
timesteps [148]. It is given by

Ψj(t0 + ∆t) = Ψj(t0) + ∆tA

(
Ψj(t0) + Ψj(t0 + ∆t)

2

)
(3.18)

Note, that the updated wavefunction shows up on the right hand-side. Find-
ing Ψj(t0 + ∆t), thus, requires to solve a linear equation system. Using matrix
inversion, the equation can be written as

Ψj(t0 + ∆t) = (I − ∆t

2
A)−1(Ψj(t0) +

∆t

2
AΨj(t0)) (3.19)

Another popular unitary algorithm is the pseudo-spectral method. Here, kinetic
operator − i~

2ma2
∇2 and the gravitational operator iV m are applied separately in

an alternating fashion. The kinetic operator is applied in Fourier space, where it
reduces to the favorable expression − i~

2ma2
k2 with wavenumber k, and the grav-

itational operator is applied in real space. Sticking to the language with the
matrix A, both operators are represented by diagonal matrices with imaginary
entries when evaluated and the update is performed by the unitary expression in
equation (3.7) respectively.

The downside to the two algorithms is that in both cases the update of one grid
cell depends on every other cell on the grid. This can be seen by the fact that the
inverted matrix in equation (3.19) is not sparse unlike A and by the necessity of
Fourier transforms in the pseudo-spectral method. The non-local nature of these
algorithms makes their implementation into parallel codes less straightforward,
because it is unclear how to distribute the grid data among several processors
or even compute nodes with separate memory. For the pseudo-spectral method,
one can make use of various libraries for fast Fourier transformation (FFT) with
distributed memory parallelization [149].

Pseudo-spectral methods require rectangular grids and assume periodic bound-
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aries. For this reason, they are less suited for implementation into existing codes
for cosmological structure formation with adaptive mesh refinement like Enzo.
Different resolution levels in AMR codes are not necessarily of rectangular shape
and level boundaries are not periodic except for the root grid. Furthermore, the
existing parallelization concept in terms of workload and memory distribution is
not necessarily the same as the one used in the FFT libraries.

In contrast to implicit or pseudo-spectral methods, the update step in the
explicit Runge-Kutta method in section 3.1.1 depends only on local grid cells
with a maximum distance of 4 cells. This is similar to the hydrodynamics solvers
used in grid based cosmology codes like Enzo. Thus, the 4th-order Runge-Kutta
method can be straightforwardly implemented into the existing parallelization
schemes of those codes.

In line with the above discussion, the pseudo-spectral method has mostly
been used for simulations with uniform computational grids in the context of
FDM [9; 97; 126; 150]. As is evident from the Schrödinger-Vlasov correspondence
(equation (2.53)) or from the Madelung transformation (equation (2.37)), cap-
turing the dynamics of the FDM wavefunction requires to resolve the de Broglie
wavelength λdB = 2π~/(mv). Gravitational collapse of cosmological perturba-
tions involves de Broglie wavelengths, which are typically very small compared
to the initial size of the perturbations. For this reason, uniform grid simulations
are most of the time applied to idealized set-ups of already-collapsed structures.

3.1.3 Madelung methods and N-body simulations of FDM

The necessity to resolve the de Broglie wavelength is avoided by using algo-
rithms, that do not solve the Schrödinger equation directly, but instead use a
representation in terms of velocities v = (ma)−1∇S and not the phase of the
Schödinger wavefunction S. One possibility is to numerically solve the Madelung
equations (equations (2.38) and (2.39)). Analogous to the developments in nu-
merical hydrodynamics, two approaches can be found in the literature: on the one
hand, Lagrangian particle based methods, where elements of fixed mass represent
the flow of matter and interact with each other due to pressure forces (in this
case the quantum pressure) [2; 151; 152] and, on the other hand, Eulerian grid
based solvers [153]. However, the accuracy and convergence behaviour of these
Madelung based methods are not well tested. Specifically, all of them more or
less fail to produce the correct interference patterns in situations where matter
flows with different velocity vectors overlap.

A more pragmatic approach is to make use of the Schrödinger-Vlasov corre-
spondence without attempting to cover the small scale deviations at all. Then, a
standard N-body scheme, like in simulations of CDM is sufficient. This approach
has been used in studies of the effect of the linear power spectrum suppression
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3.1 Simulating fuzzy dark matter

Figure 3.2: Illustration of the hybrid method with N-body particles in red and
Schrödinger field in blue and green.

(equation (2.43)) on the non-linear evolution [115; 116]. All relevant effects of
FDM are then already present in the initial conditions. The same approach is
typically used in WDM simulations [88].

3.1.4 A hybrid approach

The general idea behind the hybrid method used in chapter 4 and chapter 5 is
to combine the accurate, stable and easy-to-parallelize 4th-order Runge-Kutta
solver of section 3.1.1 with the cost-efficient pragmatic approach of using N-body
simulations described at the end of the last section. This method is especially well
suited for simulations of galaxy formation with FDM. Inside a dark matter halo,
the Runge-Kutta solver computes the detailed behaviour of the Schrödinger field
at de Broglie scales. In the greater environment of the halo, the N-body solver
is responsible for the initial collapse of the seed overdensity, subsequent mass
accretion and for the large scale gravitational field in which the halo resides. The
method requires to resolve the de Broglie wavelength only in the domain of the
Schrödinger solver. Thus, it can use different levels of refinement avoiding the
limitations of uniform grid simulations.

The crucial point in the realization of this idea are the boundary conditions
of the Schrödinger solver. Obviously, they must be defined in some way by the
N-body solver, such that particles entering the Schrödinger domain, for example,
are converted into a field representation. Due to the approximate nature of the
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3. NUMERICAL METHODS

Schrödinger-Vlasov correspondence, the exact solution to the Schrödinger equa-
tion can only be approximately constructed from the information provided by
the N-body particles. The aim of any adopted prescription must be to reproduce
important statistical properties the exact solution would have.

Concretely, in the prescription adopted here, the particle density directly de-
termines the field density ρ = a−3m|Ψ|2 in the boundary region. Particles with
index i, mass mi, position xi and velocity vi are smoothed with a second order
interpolation kernel

W (|x− xi|) = mi
3

πξ3

(
1− |x− xi|

ξ

)
(3.20)

for |x− xi| < ξ and 0 elsewhere. Then, the amplitude of the Schrödinger field is
given by

|Ψ(x)| =
√

1

m

∑
i

W (x− xi) (3.21)

With this formulation, the boundary conditions obviously do not contain inter-
ference fringes, even if the velocity distribution is multi-valued. On the positive
side, mass is exactly conserved in the conversion from particles to field.

The complex phase of the constructed boundary conditions is obtained by
letting each N-body particle carry a phase Si, which is interpolated onto the grid
according to

S(x) = arg

[∑
i

√
W (x− xi)e

i(Si+vi·a(x−xi))m/~

]
(3.22)

The phase of each particle is initialized at the beginning of a simulation from the
initial velocity field by solving the Poisson equation

∇ · v = a−1∇2S (3.23)

on the computational grid and interpolating to the particle positions. The equa-
tion is obtained by applying the ∇-operator on both sides of the relation v =
(a)−1∇S, which, as discussed in section 2.4.2, can be used for the initialization of
the wavefunction in cosmological simulations [128]. The particle phase is evolved
according to the equation

dSi
dt

=
1

2
vi

2 − V (xi) (3.24)
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3.1 Simulating fuzzy dark matter

To illustrate this overall prescription for the boundary conditions, it is useful to
note that it computes the so-called ”classical wave function” as long as the velocity
distribution is single-valued [154; 155]. The classical wave function is derived by
dropping the quantum pressure term in the Madelung equations, resulting in
the pressureless fluid equations, and then transforming back to a wave function
representation. Specifically, the polar decomposition of the Schrödinger equation
yields the following equation for the complex phase S

−∂S(x, t)

∂t
=

1

ma2
(∇S(x, t))2 + V (x, t)− ~2

2m2a2

∇2√ρ
√
ρ

(3.25)

Now, dropping the quantum pressure and using v = (ma)−1∇S gives the classical
Hamilton-Jacobi equation

−∂S(x, t)

∂t
=
m

2
v2 + V (x, t) (3.26)

Writing this equation in terms of the total derivative dS(x,t)
dt

= ∂S(x,t)
∂t

+a−1v∇S(x, t)
yields equation (3.24). The equation of motion for the classical wave function
reads [154]

i~Ψ̇cl = − ~2

2ma2
∇2Ψcl + V mΨcl +

~2

2ma2

∇2|Ψcl|
|Ψcl|

(3.27)

which is equivalent to the Schrödinger equation apart from the last term canceling
quantum pressure effects. The smaller the quantum pressure, the better will be
the approximation of the exact Schrödinger equation.

Another way to understand the prescription is to think of the particles as
independent wave packets like in the discussion at the beginning of section 2.4.2.
If their widths are sufficiently large, the contribution of the quantum pressure in
equation (3.25) is negligible and their central phases are given by equation (3.24).
For the construction of the total wave function, the wave packets are superim-
posed, but in a way that erases interference patterns.

Since a 4th-order Runge-Kutta update of single cell depends on all cells
in a box with 4 cells radius centered on that cell, the boundary region of the
Schrödinger domain requires a minimum thickness of 4 cells. Before each timestep,
the hybrid algorithm constructs the wavefunction according to equations (3.21)
and (3.22) in this boundary region. N-body particles inside the Schrödinger do-
main are passively co-evolved. They do not contribute to the gravitational field.
Instead, the Schrödinger density ρ = a−3m|Ψ|2 does.
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3.2 Standard ingredients to cosmological simu-

lations

3.2.1 Initial conditions

Since cosmological simulations of structure formation typically start at redshifts
where perturbations are still linear, producing initial conditions for them amounts
to producing a realization of a Gaussian random field with a given power spectrum
P (k). A common way to achieve this, is to generate Gaussian white noise µ(x)
first. This is done by assigning each cell of the computational grid a random
overdensity drawn from a Gaussian distribution centered around zero with a
standard deviation of 1. Since Gaussian white noise is a Gaussian random field
with constant power spectrum P (k) = 1, a field with a different power spectrum
can now be obtained by multiplying µ with the desired power spectrum in Fourier
space

δk =
√
P (k) · µ(k) (3.28)

Baryon acoustic oscillations and Silk damping cause the baryon power spectrum
to differ from the dark matter one. This can be accounted for by using different
power spectra in the multiplication in equation (3.28) to produce the respective
density fields. Given those density fields, the initial displacements of an otherwise
uniform distribution of dark matter particles, as well as their initial velocities and
the velocities of the baryon field are computed by the Zel’dovich approximation
(equations (2.21) and (2.22)). The public code MUSIC [156] is able to perform
all of the steps just described.

3.2.2 Poisson equation

In each timestep involving the update of dark matter particles or FDM wave-
function and, if present, the baryon field, the gravitational potential V has to be
computed via the Poisson equation

∇2V = 4πGa2(ρ− ρ̄) (3.29)

where ρ is the total matter density. In Enzo, the Poisson equation on the root
grid is solved by fast Fourier transformation, as the differential operator reduces
to a multiplication by k2 in Fourier space. On additional refinement levels, the
gravitational potential is computed with a multigrid relaxation technique where
the boundary conditions are provided by the next coarser level respectively.
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3.2 Standard ingredients to cosmological simulations

3.2.3 Collisionless particles

Positions x and velocities v of collisionless N-body particles in Enzo are advanced
by a drift-kick-drift method. This symplectic scheme ensures energy conservation.

xn+1/2 = xn +
∆t

2an
vn (3.30)

vn+1 = vn
(

1− ȧn+1/2

an+1/2

)
+

∆t

an+1/2
gn+1/2 (3.31)

xn+1 = xn+1/2 +
∆t

2an+1
vn+1 (3.32)

The upper indices denote the timestep. The gravitational acceleration g is deter-
mined for each particle by computing the gradient of the potential V on the grid
and then interpolating it to the particle position.

3.2.4 Hydrodynamics

The evolution of baryonic matter is governed by the fluid equations equations (2.6)
and (2.7)

∂ρ

∂t
+ 3

ȧ

a
ρ+

1

a
∇(ρv) = 0 (3.33)

∂v

∂t
+
ȧ

a
v +

1

a
(v · ∇)v +

1

a

∇p
ρ

+
1

a
∇V = 0 (3.34)

To close the system, an additional evolution equation for the specific internal
energy density e is needed

∂e

∂t
+

1

a
(v · ∇)e+

2ȧ

a
e+

p

ρa
∇ · v +

a3Λ

ρ
= 0 (3.35)

where Λ is an additional heating and cooling term induced by radiative processes
discussed in the next section. The specific energy density is related to the pressure
and density of the gas by an equation of state

e =
p

ρ(γ − 1)
(3.36)
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with γ = 5/3 for an ideal monoatomic gas. Enzo provides a variety of eulerian
grid-based methods to solve the equations above. The simulations in chapter 5
use the finite-difference solver Zeus [157]

3.2.5 Heating and cooling

Heating and cooling of gas by radiative processes is an important factor in simu-
lations of galaxy formation. On the one hand, as discussed in section 2.1.1, it is
the ability to cool that allows baryons to contract inside dark matter halos and
form galaxies. On the other hand, heating by the metagalactic UV background
prevents galaxy formation in halos below Mh ≈ 109 M�. These two examples
show, why it is of high importance to model radiative processes as accurately as
possible in simulations of galaxy formation.

The simulations in chapter 5 make use of Enzo’s non-equilibrium chemical
network routine to compute heating and cooling rates. It solves the rate equa-
tions for reactions between the six chemical species H, H+, He, He+, He++, e−.
Processes leading to the emission of photons and, in turn, cooling are collisional
excitations of atoms and subsequent radiative relaxation, recombination of nuclei
with electrons, free-free emission by collisions of electrons, inverse Compton scat-
tering of electrons with the CMB. Heating is provided by absorption of photons
from the UV background.

Although the UV background is produced by young galaxies and quasars, in
other words objects that should be contained in the cosmological volumes simu-
lated in cosmological simulations, it is typically modelled as a uniform radiation
field with predefined spectrum. The simulations in chapter 5 use the spectrum
computed in [158].

Due to the many species and processes involved, the cooling provided by
heavier elements than helium, produced in stellar processes, is costly to simulate
with a non-equilibrium chemical network like in the case of the primordial species.
For this reason, metal cooling is included in the simulations of chapter 5 by using
a predefined cooling function assuming a solar composition of elements from [159].
It returns the cooling rate depending on the temperature and metallicity of the
gas.

Since most of the cooling processes listed in this section are two-body pro-
cesses, their rates scale with ρ2. This is why the dominant cooling mechanism
in the intergalactic medium is the expansion of the universe (the third term in
equation (3.35)). The temperature of the IGM can be well approximated by as-
suming equilibrium of this cooling rate and heating by the UV background [25].
In collapsed objects, however, radiative cooling mechanisms dominate.
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3.2.6 Star formation and feedback

The formation of individual stars in galaxies happens on spatial and temporal
scales that normally are not resolved in cosmological simulations. Moreover,
the process involves physics which is not modelled in those simulations at all.
Star formation is known to take place in dense and cool molecular clouds and
is affected by magnetic fields and turbulence. Consequently, prescriptions for
star formation in cosmological simulations have to consist of coarse-grained laws
depending on averaged large-scale properties of the star forming gas like density,
temperature and metallicity. The fact that these laws cannot be derived from first
principles but instead have to rely on heuristic reasoning and empirical findings
has lead to a large variety of star formation prescriptions in the literature. They
typically introduce a number of free parameters, that account for unresolved or
insufficiently understood physical processes. These parameters are then tuned to
reproduce empirical relations like the Kennicutt-Schmidt law, which relates the
increase of the surface density of stars Σ∗ to the surface density of gas Σgas in a
galaxy [25; 160]

Σ̇∗ = (2.5± 0.7)× 10−4

(
Σgas

M�pc−2

)1.4±0.15

M�yr−1kpc−2 (3.37)

The simulations in chapter 5 use the star formation and feedback model intro-
duced by Cen & Ostriker [161]. It is part of the public version of Enzo. Star
formation in a given cell is allowed if the following criteria are met:

• The overdensity of gas exceeds a value given by the free parameter η.

ρb
ρ̄b
> η (3.38)

• Gas flow is converging.

∇ · v < 0 (3.39)

• The cooling time is shorter than the dynamical time.

tcool < tdyn ≡
√

3π/32Gρtot (3.40)

• Gas in the cell is Jeans unstable (see equation (2.15)).

mb > mJ ≡
π5/2

6
G−3/2ρ

−1/2
b c3

s (3.41)
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If all the conditions are fulfilled in a timestep of the length ∆t and the mass

m∗ = f∗mg
∆t

tdyn
(3.42)

is larger than a predefined threshold m∗,min, a star particle with this mass created
and the same mass is subtracted from the gas density. The star particle is placed
in the center of the cell and given the same initial velocity as the gas. Then, it is
treated as a collisionless N-body particle like in section 3.2.3 for the rest of the
simulation.

In the model of Cen & Ostriker, stellar feedback is modelled by adding a
certain amount of thermal energy into the cell in which a star particle resides.
This amount is commonly expressed as a fraction of the rest mass energy of a
star particle

E = fSNm∗c
2 (3.43)

A reasonable value for fSN can be found by noting that a supernova releases
approximately 1051 erg of energy and that a supernova approximately occurs
once for every 200 M� of stars being formed [145]. This gives

fSN ≈
1051 erg

200 M�c2
≈ 3× 10−6 (3.44)

In addition to thermal energy, star particles inject a fraction fZ of its mass in
form of metals into its environment. Since a star particle does not represent a
single star, but instead an entire population of stars, the model implemented in
Enzo distributes feedback over the timescale tdyn in order to account for the
different formation times and lifetimes in the stellar population.

Ė ∼ t

tdyn
exp[−t/tdyn] (3.45)

Although seemingly well-motivated, this thermal-only prescription of stellar feed-
back is known to suffer from overcooling if the spatial resolution is not high
enough. Since feedback energy is then injected into a region which is too large
(the size of a cell), it is radiated away too efficiently. The stabilizing effect of
stellar feedback is weakened leading to extreme collapse of gas in galaxies and,
in turn, unrealistically high star formation rates [162]. One method to prevent
this is to artificially turn off cooling in gas which has received feedback energy
for a certain amount of time. This ad-hoc method was shown to achieve desired
results in the sense that catastrophic gas collapse is prevented and star formation
rates drop to realistic values [163]. Cooling suppression is also used in chapter 5.
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Chapter 4

Dark matter only simulations

This chapter discusses results from dark matter only simulations of the formation
of FDM halos in the mass range of dwarf galaxies. In 2018, the results including
all figures in this chapter were published in an article with the title ”Formation
and structure of ultralight bosonic dark matter halos” in Physical Review D [3].
The author of this thesis set the simulations up, ran them and produced the
figures in this chapter based on discussions with his co-authors Jens Niemeyer
and Bodo Schwabe. In particular, figures 4.3, 4.4 and 4.6 resulted from ideas by
the author of this thesis.

Besides providing a proof-of-concept for the newly developed hybrid algo-
rithm, the goal of the simulations was to better understand the processes behind
the small scale structure of FDM halos observed in previous simulations [1]. A
specific question was how to explain the formation of solitonic cores and their core-
halo mass relation equation (2.52) in the light of the concepts discussed in sec-
tion 2.4.2, the Schrödinger-Vlasov correspondence and relaxation/condensation
mechanisms. Answering this question would allow extrapolations to more massive
halos, since cosmological FDM simulations with resolved de Broglie wavelength
are so far limited to virial masses below Mh ∼ 1011 M� [100]. There are different
proposals in the literature regarding this question. While some authors invoke
relaxation effects as the main mechanism [113; 129; 164], others invoke solely the
Schödinger-Vlasov correspondence to explain core properties [9].

Admittedly, the more important reason for the focus on dwarf galaxies is the
same resolution restriction that prevented other groups from simulating galaxies
of higher mass. The larger de Broglie wavelength in dwarf galaxies is simply
easier to resolve. Furthermore, dwarf galaxies form out of initial overdensities of
smaller wavelength. Thus, the ratio between total box size and numerical cell
size can be chosen smaller. The second reason is the high mass-to-light ratio of
dwarf galaxies which allows for easier measurements of the dark matter profile
in observations as discussed in section 2.2 and, consequently, constraints on the
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scalar field mass (see section 2.4.1).

4.1 Simulation setup

The simulations use a so-called zoom-in technique. In a low-resolution run of
a cosmological volume large enough to contain several halos of a given size, a
particular halo is selected and its positional data extracted. Then, the same box is
resimulated with additional levels of higher resolution centered on that halo. The
most refined level corresponds to the Schrödinger domain of the hybrid method.
The smoothing radius ξ in the kernel function, equation (3.20), was chosen to
be ξ = 8∆x, a trade-off between sufficient smoothness of the interpolation and
computational cost.

Initial conditions were generated according to the procedure in section 3.2.1
with the public code Music [156]. The code supports the use of custom transfer
functions for FDM with the most important effect being the small scale power sup-
pression due to the Jeans scale (equation (2.43)). They were generated with Ax-
ionCAMB [165], which solves the relativistic equations for linear structure forma-
tion of FDM. All simulations have a side length of 2.5 Mpc/h, with h = H0/(100
km/s/Mpc). The following cosmological parameters were chosen in rough corre-
spondence to cosmological measurements [24]: H0 = 70 km/s/Mpc, ΩΛ = 0.75,
Ωm = ΩFDM = 0.25. In all runs, the scalar field mass is m = 2.5× 10−22 eV and
the initial redshift is z = 60.

On top of the root grid with 5123 cells, two nested static refinement levels
with a side length of roughly a quarter of the total domain are centered on
the Lagrangian patch of a previously chosen halo. Three additional refinement
levels with side lengths of 0.0625 Mpc/h trace the position of the halo. Using
a refinement factor of two between levels, the finest one is resolved with a cell
width of ∆x = 150 pc/h.

To minimize computational cost, the Schrödinger solver is applied only after
a redshift of z ≈ 7. At this redshift, the wave function is initialized with the
same prescription as the one used for the boundary conditions. Because the
velocity distribution of particles is still single-valued and the gradient energy of
the resulting field is negligible at this point, the approximations involved in the
construction of the wavefunction according to section 3.1.4 are moderate.

In total, seven halos with a mass range between 8 × 108 M� and 7 × 1010

M� were simulated. For comparisons with standard CDM dynamics, five of these
simulations were rerun with only the N-body solver using identical grid resolution,
level setup and FDM initial conditions. The virial mass of a simulated halo is
determined via its theoretical overdensity ζ derived from the spherical collapse
model (see equation (2.25)) . It is the mass enclosed by the virial radius, rvir,
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z = 1.07
2.5 Mpc/h

9 kpc/h

Figure 4.1: Volume rendering of a typical simulation. The large box shows the
N-body density in the full simulation domain, the inlay shows the density of
the Schrödinger field in the central region of the indicated halo. The density
thresholds in the inlay are set to 0.75, 0.05 and 0.01 times the maximum density.
c© 2018 American Physical Society [3]

defined as the radius where the enclosed mean density is equal to ζρ̄. All simulated
halos evolve without major mergers. Halos of this kind are more abundant in
FDM cosmologies relative to CDM because of the small scale cut-off in the power
spectrum.

The simulations ran on the HLRN-III system of the North-German Super-
computing Alliance. Using 16 computer nodes with 24 cores each, the FDM
simulations took ∼ 1 week in real time. The snapshots analyzed in the next
section use ≈ 30 Terabyte of storage space in total.

4.2 Results

4.2.1 Numerical parameters

The maximum difference between total mass of the Schrödinger field and total
mass of the passively co-evolved particles in the Schrödinger domain is 10 % in all
simulations. This shows that the particle-to-field conversion in the hybrid method
successfully conserves an important statistical quantity, namely the rate of mass
inflow. It was furthermore checked that the smoothing radius ξ of the particle
kernel and the redshift of initialization of the wavefunction, have no systematic
effects on the resulting core mass in figure 4.5 but produces statistical scattering
of 30%.
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4.2.2 General halo structure

A typical snapshot of one of the simulations is shown in figure 4.1. The zoomed-in
view on the central region of the resolved halo shows the configuration found in
previous simulations: A central core (in red) surrounded by granular structure of
approximately the same size.

Radial density profiles centered around the maximum density of four repre-
sentative halos are compared with results from pure N-body runs in figure 4.2.
Taking radial density profiles already involves smoothing the density by averaging
over spherical shells. Consequently, the granular structure of FDM halos which
deviates strongly from the smooth CDM density field on small scales, is not vis-
ible apart from a small region around the solitonic core. The radially averaged
core profile agrees well with previous results [1; 166; 167]. Among the five halos
in the sample that were rerun with a pure N-body solver, the maximum FDM
core density was exceeded by the maximum density of the corresponding CDM
halo in all cases but one, by a maximum factor of 7.5.

Outside of the core, the FDM and N-body (CDM) profiles deviate by at most
50% while the overall density varies by multiple orders of magnitude. The residu-
als between the CDM and FDM halo profiles in figure 4.2 highlight the differences.
The deviations are not correlated among different halos and may be caused by
nonlinear amplification of numerical noise. In summary, the comparison of radial
density profiles shows, that the density distribution on scales larger than the de
Broglie wavelength can be explained by the Schrödinger-Vlasov correspondence.

In order to compare FDM and CDM halos in momentum space, recall that the
Wigner quasi-probality distribution (equation (2.53)) is expected to resemble the
phase space distribution of the Vlasov-Poisson equations, when both are coarse-
grained with a Gaussian filter obeying σxσp ≥ ~/2 [127; 128]. In the extreme case
of averaging over the entire position space, the global momentum distribution is
obtained from the Fourier transform of Ψ,

fW(p) =
1

N

∫
d3xfW(x,p)

=
1

N

∫
d3x

∫
d3y exp

[
2
i

~
p · y

]
Ψ(x− y)Ψ∗(x + y)

=
1

N

∫
d3x

∫
d3y exp

[
i

~
p · (ỹ + x̃)

]
Ψ(−ỹ)Ψ∗(x̃)

=
1

N

∣∣∣∣∫ d3x exp

[
− i
~
p · x

]
Ψ(x)

∣∣∣∣2 =
1

N
|Ψ̃(k)|2 (4.1)

with p = mv and a normalization factor N .
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Figure 4.2: Top: Radial FDM and CDM density profiles of four representative
halos. The labels indicate their virial masses. Bottom: Residuals of the same
profiles in a linear plot. c© 2018 American Physical Society [3]
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c© 2018 American Physical Society [3]

In figure 4.3, fW(v) is compared to the velocity distribution f(v) from the
corresponding CDM simulations. As predicted by the Vlasov-Schrödinger corre-
spondence, the normalized distribution of Fourier amplitudes matches very well
the velocity distribution of particles in the N-body runs inside of the virial radius.
Since the velocity distribution of virialized CDM halos is in rough approximation
given by a Maxwellian distribution,

f(v)dv =
4

π

(
3

2

)3/2
v2

v3
rms

exp

(
−3

2

v2

v2
rms

)
dv , (4.2)

where vrms is the root-mean-square velocity [168], figure 4.3 also shows Maxwellian
distributions fitted to the Schrödinger results.

A powerful illustration of the difference between the core and the granular
density fluctuations that make up the outer halo can be obtained by comparing
their virial parameters (figure 4.4). They are computed by taking spherical re-
gions around local maxima in the density field and calculating the total kinetic
and potential energy in these spheres. The radii of the spheres are given by the ra-
dius at which the angular averaged density drops to half its central value rc. The
kinetic energy is computed by subtracting the center of mass velocity from the
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Figure 4.4: Virial parameter of local maxima (granules) at various distances to
the center of the halo. c© 2018 American Physical Society [3]

phase gradient and evaluating equation (2.47) expressed in physical coordinates

Ekin =

∫
~2

2m
|∇Ψ|2d3x (4.3)

over the volume of the sphere. Instead of integrating exact density field like in
equation (2.48), the potential energy is approximated by the expression for a
uniform sphere,

Epot = −3

5

GM2(< rc)

rc
. (4.4)

This approximation is reasonable since the density profiles around local maxima
are typically flattened within rc. As can be seen in figure 4.4, the core of the
halo is the only local maximum that is in itself gravitationally bound and close
to virialized. It is therefore a stable object whereas the granules have a finite
lifetime of order τc = ~/mv2

vir, as confirmed by the temporal correlation functions
inside and outside of the core discussed below (figure 4.7).

4.2.3 Time evolution of the core

On the one hand, the relaxation process discussed in section 2.4.2 predicts a
growing core mass on the timescale of the relaxation time τgr. Equation (2.62)
yields relaxation times of the order of a Hubble time 1/H0 for the virialized halos
presented here, but the exact value depends strongly on the radius R within which
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the timescale is computed. On the other hand, the relation found by Schive et
al. [100] (equation (2.52)) is also implicitly time-dependent via the evolving scale
factor a and halo mass Mh. It is restated here for convenience:

Mc =
1

4
a−1/2

(
ζ(z)

ζ(0)

)1/6(
Mh

M0

)1/3

M0 (4.5)

However, there is no obvious relation between the two descriptions for core
growth.

In order to test for core growth possibly allowing to distinguish between the
two scenarios, figure 4.5 shows the evolution of core masses Mc in all 7 halos.
Mc is defined exactly like in the core-halo mass relation given by equation (4.5):
It is the mass enclosed by the half-density radius rc. The density is assumed to
follow a ground-state soliton profile (equation (2.49)), such that the core mass
can be determined from its central density. As discussed below, this is only
approximately true owing to the strong oscillations of the core (see figure 4.6).
Spurious fluctuations of Mc resulting from oscillations of the peak density on
much smaller timescales are smoothed by taking a moving average. To make core
growth explicitly visible in figure 4.5, the core masses are normalized to a fixed
value Mc,0, which is the core-halo mass relation evaluated roughly at the time
of halo virialization. The time of virialization is determined by the requirement
that the measured virial mass has settled to a slowly varying value. Using time-
dependent values for a, ζ and Mh for the normalization produces differences that
are small and unrelated to the halo mass. As can be seen, there is a small
tendency towards smaller core masses than predicted by equation (4.5), but the
relation still predicts core masses reasonable well. No systematic growth of Mc

is observed for all halos but two. Thus, the simulation results do not allow for a
conclusive statement on the existence of core growth or the process causing it.

Analysis of the core density with much finer temporal resolution reveals oscil-
lations with amplitudes of more than a factor of two and a standard deviation of
33% the mean density close to the dynamical timescale of the core (figure 4.6).
The frequency spectrum exhibits a peak at the quasi-normal frequency (equa-
tion (2.51)). The simulations, thus, show that cores form in a state with strong
quasi-normal excitations, failing to relax to the ground state completely.
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c© 2018 American Physical Society [3]
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4.2.4 Correlation functions

The spatial correlation function normalized to the virial de Broglie scale of the
halo, λdB = 2π~/mvvir,

C(x) =
〈δ(x1)δ(x2)〉x
〈δ2〉x

, (4.6)

with x = |x1 − x2| and δ(x) = ρ(x) − 〈ρ〉x for a fixed halo at different redshifts
can be seen in the top panel of figure 4.7. As expected, the correlation length is
of order λdB across a large range of redshifts.

The temporal correlation function in the bottom panel of figure 4.7 is defined
as

C(t, r) =
〈〈δ(t1,x)δ(t2,x)〉t〉x
〈〈δ2(x)〉t〉x

, (4.7)

with t = |t1 − t2|, δ(t,x) = ρ(t,x) − 〈ρ(x)〉t, 〈〉t denoting the temporal average,
and 〈〉x the spatial average within a radial bin with distance r to the center. x is
comoving with the center of mass of the halo. Again, the curves are normalized
to the timescales at which structure with the size of λdB is expected to evolve:
τc = ~/mv2

vir. The temporal correlation function confirms the stability of the core
apart from oscillations. In its environment, temporal correlation of the density
at a fixed point is lost after ∼ τc. The transition between the regions of long
and short temporal correlation occurs at around r = 3.5rc, which was previously
found to be the radius where the solitonic radial profile turns into an NFW-like
radial profile [167].

4.3 Discussion

Schive et al. [100] already noted, that their empirically found relation can be
explained by requiring

Mc ∼ (|E|/Mh)
1/2 (4.8)

The total energy of a virialized halo is given by

E ∼M2
h/xvir (4.9)

and, according to the spherical collapse model, the virial radius xvir by

xvir ∼ a(Mh/ζ(z))1/3 (4.10)
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The scale factor a appears here, because the virial overdensity ζ(z) is defined with
respect to the comoving average density of the universe, but xvir has physical
units. Together, the three equations yield the core-halo mass relation.

Note that, using the virial condition, equation (4.8) can also be written as

Mc ∼ (|E|/Mh)
1/2 ∼ (K/Mh)

1/2 ∼ vvir (4.11)

Since Mc ∼ 1/rc and rc ∼ λdB ∼ 1/vc, the relation requires that the velocity
dispersion of the core matches the virial velocity of the halo. The comparison
in figure 4.3 takes this discussion one step further, as it shows that the velocity
distribution in an FDM halo, and therefore the core radius rc, can be derived from
the Schrödinger-Vlasov correspondence. However, it is unclear which mechanism
is behind the formation of a soliton with the given velocity and the distinctive
feature of being gravitationally self-bound as shown in figure 4.4. Furthermore,
it is unclear whether the core would adapt to a changing virial velocity. The
evolution of core masses over time shown in figure 4.5 unfortunately cannot answer
these questions unambiguously.
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Chapter 5

Simulations with gas and star
formation

After performing the dark matter simulations presented in the last chapter, the
obvious next step was to redo essentially the same simulations, but now with
baryonic physics included making use of ENZO’s standard routines for gas and
star formation. Again, simulation setup and analysis of the results was done by
the author of this thesis. This chapter corresponds to the Physical Review D
article ”Baryon-driven growth of solitonic cores in fuzzy dark matter halos” [4].

One might expect these hydrodynamic simulations to directly predict ob-
servables like morphology and star formation histories of dwarf galaxies possibly
yielding distinctive signatures of FDM. However, due to the large diversity of
those galaxy properties, such an analysis requires a large enough statistical sam-
ple. Moreover, simulating realistic galaxies is an entire steadily evolving field of
research by itself requiring more considerations in terms of resolution, sub-grid
models and algorithms. For these reasons, the analysis in this chapter focuses
on the effect of gas and stars on the FDM distribution in halos instead of the
other way around. It then suffices to use well-tested standard prescriptions for
star formation together with standard parameters in order to model the baryonic
content in a galaxy as realistic as possible. Nevertheless, predictions for the FDM
distribution in galaxies can be equally important for comparisons with observa-
tions than more direct observables. For example, as discussed in section 2.4.1,
fits to stellar kinematics or rotation curves of galaxies constraining the field mass
m rely on findings from dark matter only simulations, namely the formation of
a solitonic core together with its mass relation (equation (2.52)). Consequently,
specific questions guiding the analysis of simulation results were: Does a core still
form in the presence of baryons? If it does, what determines its properties?

First 3D numerical simulations with the aim to elaborate on these questions
were done in [169]. The authors added N-body particles mimicking stars to FDM
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Figure 5.1: Density volume rendering of the central region of halo 1 at z = 4.4.
c© 2020 American Physical Society [4]

halos extracted from cosmological simulations and evolved the combined system
further in an isolated box. They found that cores become more prominent and
compact after adding stars.

5.1 Simulation setup

The simulations use the same numerical and cosmological parameters as in chap-
ter 4 except for changes related to the inclusion of baryons. Now, the total matter
fraction Ωm = 0.25 also contains a baryon fraction of Ωb = 0.05. The hydrody-
namic equations of motion, radiative cooling, a uniform UV background, which
is gradually ramped up between z = 7− 6.75, and star formation/feedback with
cooling suppression are treated with the methods discussed in section 3.2 using
the same set-up of spatial grids as for dark matter. Parameters for star formation
and feedback are η = 100, m∗,min = 5000 M�, f∗ = 0.01, fSN = 10−5. Cooling
in cells which have received feedback energy is suppressed for 50 Myr. These pa-
rameters lie in the range commonly adopted by other authors to produce realistic
amounts of star formation.

Like in the last chapter, halos in a low resolution CDM simulation are chosen
and re-simulated with grids of higher resolution centered on that halo (zoom-in
technique). This time, two halos are simulated, each with three high resolution
runs: (1) collisionless N-body dynamics appropriate for CDM including baryonic
physics, (2) FDM without baryons as in chapter 4, and (3) a full FDM simulation
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Figure 5.2: Dark matter density, temperature, gas density and stellar density
of halo 1 at z = 4. The top row shows slices, whereas the bottom row shows
projections.

including baryonic physics. Key results for the two halos are summarized in
table 5.1.

Having virial masses ofMh = 1.05×1010 M� andMh = 1.25×1010 M� at z ≈ 4
the two halos are among the most massive ones in the simulated cosmological box.
They were selected because, as discussed in section 2.2.1, the UV background
prevents gas accretion in halos below Mh ≈ 109 M�. A significant impact of
baryons can only be expected for halos larger than this threshold. Due to the
high dark matter velocities in such massive halos, boosted by the baryons as
discussed in the results section, the simulation have to be terminated at zf = 4
and zf = 4.4. At smaller redshifts, the de Broglie wavelength would not be
sufficiently resolved.

5.2 Results

5.2.1 Star formation and feedback

In contrast to other galaxy formation simulations [56; 78], the baryon fraction
inside the virial radius stays close to the cosmic baryon fraction fb = Ωb/Ωm
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Figure 5.3: Star formation histories of both simulated halos in the FDM and the
CDM runs.

throughout the simulations. Due to the relatively large halo masses, the UV
background is not expected to reduce the baryon fraction [59], but stellar feedback
should. Figure 5.2 shows the final configuration of dark matter, gas and stars
in halo 1. As can be seen in the temperature slice, the effect of stellar feedback
is limited to the central area, where it heats up the star forming gas providing
pressure support in this region. Rapid expulsion of gas from the center or even
the entire halo cannot be observed with the star formation and feedback model
adopted here.

Figure 5.3 shows star formation histories of both halos. At z = 4.0 the total
stellar mass of halo 1 is M∗ = 1.5× 106 M� in the FDM run and M∗ = 7.1× 106

M� in the CDM run. The values more or less match the modelled values in
[46]. As further tests revealed, the difference of more than a factor of 4 between
FDM and CDM runs is caused by different numerical timesteps ∆t affecting star
formation via equation (3.42). It is a numerical artifact of the star formation
model and not physical.

Altogether, these findings motivate the focus on FDM properties in the rest of
the results section. Star formation in the simulations mainly serves as a heating
mechanism preventing central gas from runaway collapse. It should not be used
for direct comparisons to observations.

5.2.2 Properties of the core

Figure 5.4 compares the radial dark matter density profiles of halo 1 at different
redshifts. Also shown are the gas density profiles of the FDM run. They are
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Figure 5.4: Radial dark matter density profiles of halo 1 comparing all three runs
at three different redshifts. The inner profile of the FDM+baryon run matches
the modified FDM ground state solution (red dotted line) instead of the dark
matter only ground state solution (black dotted line). The gas density profiles in
gray are taken from the FDM run. c© 2020 American Physical Society [4]
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halo zf Mvir Mbar
sol / Mtot/ vsol vc vo 〈−K/W 〉

# [1010 M�] Mdm
sol Mdm [km/s] [km/s] [km/s]

1 4.0 1.05 2.08 3.81 136 138 70 0.53± 0.07
2 4.4 1.25 3.00 3.07 159 147 77 0.54± 0.06

Table 5.1: Final redshift, virial mass, ratio of the soliton mass with baryons to
the soliton mass without baryons given by the smoothed curve in figure 5.7, ratio
of total mass to dark matter mass within 2 rc, the velocities shown in figure 5.6
(soliton, central, outer), and the virial parameter −K/W computed with equa-
tion (5.4) and equation (2.47) within 2 rc for both halos. All values are the final
ones apart from the virial parameter which is averaged between z = 5.6 and zf .

not significantly different to their CDM counterparts after z . 5.4. The highest
redshift shown in figure 5.4 (z = 5.6) roughly corresponds to the time where the
gaseous component has cooled and collapsed allowing star formation in the center.
At this point, the CDM run is clearly the one with the highest central dark matter
density. In contrast to its cuspy profile, the FDM runs show cores with relatively
large radii, which can be expected due to the core-halo mass relation and the
relatively low virial mass of the halo at this point. At z = 4.0, the situation has
changed dramatically. The central FDM density is now more than a magnitude
higher if baryons are included compared to the case where they not included.
Even the central dark matter density in the CDM run is exceeded. Similar to
the known results from FDM only runs, 2D-slices of the density field in figure 5.5
still show a central dark matter clump with a size roughly corresponding to the
kink in the density profile at 0.2 kpc. It is surrounded by granular structure of
apparently the same size. This result agrees with [169], who also found that the
addition of stars to an FDM halo leads to a more prominent core. As in [169],
the core profiles deviate from the soliton solution in vacuum (equation (2.49)).
Their radii are too small given their central density. Instead, they are described
by ground state solutions of the Schrödinger-Poisson system with the additional
gravitational potential sourced by the baryon density taken into account, exactly
like the authors of [108] pointed out for the simulations in [169].

The modified ground state solutions represented as red dotted lines in fig-
ure 5.4 are found as follows. Assuming spherical symmetry the gas density profile
can be approximated by

ρb(r) =
ρb0

1 + (r/rb0)3
(5.1)

with the two parameters ρb0 and rb0 fitted to the density profile found in the sim-
ulations. If the desired ground state solution is written as Ψ(x, t) = e−iγt/~φ(|x|),
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Figure 5.5: Slices of dark matter density of halo 1 with and without baryons at
the final redshift z = 4.0. c© 2020 American Physical Society [4]

then φ has to solve the time-independent Schrödinger-Poisson system in radial
coordinates:

1

r

∂2

∂r2
(rφ(r)) = 2(

m2

~2
V (r)− m

~2
γ)φ (5.2)

1

r

∂2

∂r2
(rV (r)) = 4πG(|φ|2(r) + ρb(r)) (5.3)

Using a numerical ODE solver with the boundary conditions φ(0) =
√
ρc and

∂
∂r
φ(0) = 0, a unique value for γ can be found, such that φ(∞) = 0 without

zero-crossings. The corresponding solution φ(r) is the desired ground state.

As mean and standard deviation of the virial parameter in table 5.1 show, the
simulated cores fulfill the virial condition like solitons in the vacuum. Here, the
potential energy due to the collective gravitational force of baryons and the core
itself is approximated as

W = −GMtotal(< 2rc)Mdm(< 2rc)

2rc
(5.4)

where Mtotal is the total and Mdm the dark matter mass enclosed within the radius
2 rc. This expression and the kinetic energy

K =
~2

2m

∫
d3x|∇Ψ|2 (5.5)

with subtracted center-of-mass velocity of the host halo are evaluated inside the
radius 2 rc. Again, rc is defined as the radius where the radial density profile
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has dropped to half the central value ρc. This integration radius r was chosen to
include a large enough portion of the core (recall that the boundary of the soliton
was at 3.5 rc in figure 4.7). Since the resulting virial parameter depends on the
exact choice of r and equation (5.4) is an approximation anyway, the values in
table 5.1 should not be taken at face value.

Given an external potential from the baryons, ground state solutions depend
on a single free parameter, their total mass or, as in the description above,
their central density ρc. The empirically found core-halo mass relation (equa-
tion (2.52)) fixes this parameter in dark matter only simulations. As discussed
in section 4.3, the relation can also be understood in terms of velocities. This
finding, together with the decreasing granule size towards the center observed
in figure 5.5, is the reason to compare the velocities of the simulated cores with
velocities in their environment in figure 5.6.

Since the kinetic energy can be expressed in Fourier space as

K =
~2

2m

∫
d3x|∇Ψ|2(x) =

1

2

∫
d3k

(
~k
m

)2

|Ψ̃|2(k) (5.6)

and, according to equation (4.1), |Ψ̃|2 is equivalent to the spatially integrated
Wigner distribution, the velocity dispersion can be computed with

vrms =

√
2
K

M
. (5.7)

M is the total field mass

M =

∫
d3xm|Ψ|2 . (5.8)

In figure 5.6, the core velocity is computed by evaluating the two integrals
equations (5.5) and (5.8) up to a radius of 2 rc, as in the calculation of the virial
parameter. This time, the exact value does not matter much, because most of its
effect cancels in the division in equation (5.7).

Local velocity dispersions in the environment of the core are determined by
evaluating equation (5.7) for the field

Ψf (x) = exp

[
−(|x| − fxvir)2

2σ2

]
Ψ(x)√
ρprof (|x|)

(5.9)

Here, ρprof (r) is the radial density profile of FDM. Dividing Ψ by its angular
mean amplitude erases the core feature, but leaves the granular structure in the
rest of the halo intact. The exponential serves as a window function at different
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Figure 5.6: Redshift evolution of velocity dispersion in the soliton (only in the
runs with FDM), its immediate surrounding and at xvir/2 in the three different
runs for halo 1. Data points are smoothed with a Gaussian filter with standard
deviation of σ = 0.08 in redshift space. c© 2020 American Physical Society [4]

radii, which are expressed here as fractions f of the virial radius xvir.
Also plotted is the velocity dispersion of the N-body particles in the CDM

run. To this end, particle masses are multiplied with the same window function
as above.

vrms =

(
Σi exp [−(|xi| − fxvir)2/(2σ2)]miv

2
i

Σi exp [−(|xi| − fxvir)2/(2σ2)]mi

)1/2

(5.10)

In figure 5.6, f = 0, 0.5 was used for the inner and outer radius respectively
and σ = 0.4 kpc, making sure to include a few de Broglie wavelengths but well
below the virial radius xvir ∼ 25 kpc.

The most important finding in figure 5.6 is that the velocity dispersion of
the soliton indeed matches the velocity dispersion of its immediate surrounding.
Furthermore, the inclusion of baryons leads to a non-uniform velocity distribution.
In all runs with baryons, the central velocity dispersion differs by up to a factor
of 2 from the velocity dispersion at xvir/2, whereas in the dark matter only runs,
the velocity dispersion in the center and at the outer radius are similar. The
similarity of the CDM and the FDM runs, both with baryons, suggests that the
non-uniform velocity distribution is a generic result of the accumulation of gas in
the center unrelated to the distinctive features of FDM.

The analysis so far does not clarify whether the core can reach the ground-
state solutions with ever growing velocities by mere contraction or if it has to
accumulate mass in this process. Figure 5.7 shows that the latter is the case.
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Figure 5.7: Evolution of dark matter mass within a radius λdB/4 from the center
for halo 1. The lines show the Gaussian filtered data points with σ = 0.2. The
shaded regions represent the corresponding standard deviation.
c© 2020 American Physical Society [4]

Instead of using rc, the core mass is here defined as the mass enclosed within a
radius of r = λdB/4, where λdB is the de Broglie wavelength corresponding to the
soliton velocity in figure 5.6. With this definition, the result is less dependent
on the profile shape than using rc, but values at different snapshots still show
significant scattering, as the standard deviation in figure 5.7 shows. Nevertheless,
one can see that the core grows by more than a factor of two in the run with
baryons. In contrast, there is no clear sign of mass growth if baryons are absent,
reproducing figure 4.5.

5.2.3 Core oscillations

Note that the quasi-normal frequency (equation (2.51)) is inversely proportional
to the free-fall time (equation (3.40)) of the inner halo region with central FDM
density ρc. If a baryonic component is present, the free-fall time depends on
the total density ρtot. Assuming that the proportionality between quasinormal
period and free-fall time holds, one expects the frequency to increase by a factor
≈
√
ρtot/ρc in the presence of baryons. As shown in figure 5.8, the ground state

configuration in the FDM simulation with baryons indeed oscillates with the
frequency f multiplied by the square root of total mass divided by dark matter
mass within 2 rc averaged over time.
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Figure 5.8: Top: Evolution of the central density in the FDM run with baryons.
Bottom: Frequency spectrum of the time series above. The orange and gray re-
gions are the expected quasinormal frequencies with and without baryons taken
into account respectively. The boundaries are the expected quasinormal frequen-
cies for the minimum and maximum central density averaged over a few periods.

5.3 Discussion

Returning to the initial questions about the existence and properties of the core,
section 5.2.2 gives clear answers: The formation of central solitonic cores is a
robust prediction for FDM halos, also if a significant amount of gas and stars
accumulates in the center. If the local velocity dispersion increases, cores do not
dissolve but adapt by growing in mass - an effect not visible in the results of
chapter 4.

The core profile is determined by two effects. First, the accumulation of gas
leads to a higher dark matter velocity in the center. This effect is also found
in CDM simulations and not special to FDM. The velocity of the FDM core is
fixed by this increased velocity. Secondly, the presence of baryons inside the core
causes its profile to assume a modified ground state solution with the additional
gravitational pull of the baryons taken into account. This modified profile has
a mass-to-radius relation, or equivalently central density-to-radius relation, dif-
ferent from the one of a soliton in the vacuum. Both of these effects alter the
core-halo mass relation.

It is interesting to compare the results in this chapter to those presented in
[169]. There as well, the velocity dispersion of dark matter increases towards the
center of the halo after the addition of a baryonic component (stars) and their
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cores are also described by the modified ground-states found in our simulations
[108]. Over the course of a Hubble time, their cores are able to evacuate stars from
the center thereby restoring the mass-to-radius relation of FDM-only solitons.
Such a process is not observable in the simulations presented here. First of all,
the simulation time is much shorter than a Hubble time. Apart from that, a
possible evacuation effect of gas would be counteracted by the continuous gas
accretion of the halo. Interestingly, the authors of [169] find that their cores are
unable to acquire mass if the gravitational effect of baryons is mimicked by a
static external potential. Instead, the core has to be able to transfer energy to
the stellar component. If this is generally true, the mass growth of cores in this
chapter hints towards a relaxation effect between baryons (star particles or gas)
and FDM.
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Chapter 6

Conclusion and outlook

In this thesis, a new hybrid method for simulating fuzzy dark matter was devel-
oped and applied to simulations of galaxy formation starting from cosmological
initial conditions. The method combines the efficiency of N-body algorithms
with the accuracy of finite difference schemes. In the applications, it has proven
a viable alternative to existing codes for cosmological FDM simulations. Still,
improvements are possible. One could try to use more accurate prescriptions
for the construction of the boundary conditions of the finite difference scheme.
Gaussian beam methods [170] for example would treat interference phenomena in
the boundary region more accurately. Such methods inevitably come with more
complexity and therefore higher computational cost. On the positive side, the
region of the finite difference solver could be chosen smaller focusing only on the
very central part of a halo. This way, simulations of Milky Way sized FDM halos
are possibly within reach.

The dark matter only simulations in chapter 4 confirm the general halo struc-
ture found in similar works [1; 9]. Radial density profiles show a central solitonic
core with a mass given by equation (2.52) while, at larger radii, they can be re-
produced by CDM-like N-body simulations. Further quantitative analysis of the
simulation results in chapter 4 contribute to a better understanding of the halo
properties. Specifically, it was shown that the velocity distribution of FDM halos
can be derived from the Schrödinger-Vlasov correspondence and is possibly part
of an explanation for the core-halo mass relation. In the paper corresponding to
chapter 4 ([3]), the core oscillations were quantified for the first time in cosmolog-
ical simulations allowing to be probed by observations. Indeed, they were used in
[125] to derive constraints on the scalar field mass from the stability of the central
star cluster in a dwarf spheroidal galaxy. Furthermore, the correlation functions
in figure 4.7 were used in [171] for constraints from the heating of galactic disks.

Regardless of first hydrodynamical cosmological FDM simulations in chap-
ter 5 and [172], further dark matter only simulations can likely answer remaining
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questions. Interactions between FDM halos, for example through tidal forces,
dynamical friction or mergers, have so far only been studied in non-cosmological
setups [126; 166; 173]. Apart from that, the wave condensation/relaxation pro-
cess, convincingly shown to exist in [129], deserves further studies especially with
respect to its long-term behaviour. If computationally feasible, the core-halo mass
relation should be tested for more massive halos than so far simulated.

Of all results presented in this thesis, chapter 5 has arguably the most direct
consequences for constraints on the scalar field mass from astronomical observa-
tions and next steps are relatively clear. The results motivate a simple recipe
to predict FDM core masses in galaxies for comparisons to observations: Given
the baryonic contribution to the gravitational potential in a galaxy, one solves
for the ground state solution of the Schrödinger-Poisson system with its velocity
dispersion fixed by the central dark matter velocity dispersion. In principle, this
was done in [108; 174] but their soliton velocities were given by the core-halo
mass relation equation (2.52) instead of the local dark matter velocity. In chap-
ter 5, cores become more massive and more compact when baryons are included.
With this result, observed rotation curves would disfavour FDM masses around
m = 10−22 eV even more than already found in [108; 109] but detailed studies
based on the above recipe are necessary. Note that the simulated halo masses
(Mh ≈ 1010 M�) lie in the range for which rotation curve measurements are avail-
able [108; 175]. Thus, comparisons do not require an extrapolation of the recipe
to higher masses than simulated.

The simulations in chapter 5 leave room for further FDM simulations with
gas and star formation. The treatment of star formation and feedback should
be improved leading to more realistic, perhaps more violent behaviour of the gas
inside FDM halos. The best way to achieve this is obviously to increase resolution,
at least for the baryonic component. Indeed, several dwarf galaxy simulations in
the literature now have a high enough resolution to model supernova explosions
individually as discrete events [57; 176]. Supernova blast waves, which are then
resolved sufficiently, convert injected energy into momentum before it is radiated
away, reducing the need for ad-hoc methods like cooling suppression. In cases
where supernova blast waves are not resolved, many state-of-the-art sub-grid
models for stellar feedback inject momentum instead of thermal energy into the
gas causing its movement directly [176; 177; 178; 179]. However, even with these
improvements the simulation of realistic galaxies remains challenging [180].

An improved treatment of feedback should reproduce the repeated expulsions
of gas which, as discussed in section 2.2.2, allegedly cause core formation in
CDM halos. Interaction of this process with FDM cores might lead to interesting
phenomenology. In chapter 5, neither stellar feedback nor the UV background
were able to expel gas from the FDM halos entirely, partly owing to their high
mass. In contrast, as discussed in section 2.2, nowadays dark matter dominated
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dwarf galaxies might once have contained larger fractions of baryons. This leads
to the question whether the core growth observed figure 5.7 is reversed when
baryons leave the galaxy. If it is not, the entire history of a galaxy has to be
taken into account in order to predict its FDM core mass. In this regard, it
might be interesting to simulate galaxies closer to the formation threshold caused
by the UV background [59] or galaxies that form before the UV background sets
in (possible fossils of reionization).

As long as dark matter does not reveal its nature in direct detection exper-
iments, astrophysical observations remain important for dark matter research.
Cosmic structure on small spatial scales and at high redshifts allows us to distin-
guish between models like WDM, SIDM and FDM, and our knowledge in these
areas will certainly increase in the next century with upcoming ground based and
space based telescopes like Large Synoptic Survey Telescope (LSST), James Webb
Space Telescope (JWST), Wide Field Infrared Survey Telescope (WFIRST), Ex-
tremely Large Telescope (ELT) and Euclid. To mention only a few possibilities,
the detection of faint and distant galaxies will constrain the luminosity function
at high redshifts and at low luminosities with more accuracy. Resolving stellar
populations, star formation histories of dwarf galaxies including their formation
time can be reconstructed [181]. Apart from that, measurements of 3D veloci-
ties of individual stars in dwarf galaxies of the local group will constrain their
underlying dark matter distribution in more detail and gravitational lensing ob-
servations potentially allow us to detect small dark matter halos independent of
their baryonic content [182]. In summary, future observations will probably show
if dark matter indeed consists of ultralight bosonic particles and cosmological
FDM simulations like the ones presented in this thesis play a crucial role in this
process.
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