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Summary

Summary

Aboveground biomass (AGB) is related to the carbon content of the forest and forest carbon is a
core variable for contemporary forest management and policy decisions. A credible and precise
estimate of AGB is a prerequisite for the scientifically proper implementation of commitments
made regarding the reduction of forest carbon emissions. With datasets of the Mexican National
Forest Inventory (MNFI), this thesis estimates AGB in the temperate forests of Durango, a federal
state of Mexico, evaluating the uncertainty of the estimate of total AGB and how different error
sources contribute to the overall error. In addition to AGB, also the basal area was analyzed which
is closely correlated to AGB but does not have the error source of coming from the application of
allometric models.

The thesis covers empirical studies for various sources of errors, with a focus on measurement
errors. Re-measurement experiments were conducted to quantify such measurement errors, applying
mathematical-statistical techniques to model these errors. For the predictions of AGB, allometric
models were selected according to the goodness-of-fit and the proximity of the study area of the
fitted model. The plot design provided another source of uncertainty (uPlot) that was included in the
analysis. The errors from the different steps in the AGB estimation process were propagated
towards the total error by two techniques: (1) following the Guide to the Expression of Uncertainty
in Measurement (GUM) and (2) by Monte Carlo simulation Method (MCM). In an additional study,
AGB was regionalized for the study area using Landsat imagery as carrier data. To establish the
corresponding remote sensing-based models, a set of vegetation indices and textures metrics were
extracted from Landsat imagery and processed in a stepwise multiple regression analysis. Using the
estimates of MNFI as response variables and Landsat imagery information as predictor variables,
optimal models to estimate AGB were fitted. The regression models using texture metrics from
Landsat imagery improve the AGB and the basal area estimates in the temperate forest of Durango,
compared with regression models without texture metrics.

With respect to the tree measurement errors, they ranged from 0.133 cm to 1.197 cm for DBH
(uDBH) and 0.348 m to 1.505 m for total height TH (uTH). uTH contributed most to the overall
measurement error (uMes), accounting for 37% to 62% of the uMes. The uncertainty (error)
induced by the allometric biomass model (UAM) was estimated by the mean square error (MSE) as
the result of the model fit. The MSE of the uUAM was combined with the uMes to estimate the tree-
level uncertainty (uTree). In this step of error propagation, we estimated the two opposite results in
two study cases. In a pine forest, uUAM contributed 97.8% to the uTree; and in a broad-leaved forest,
uMes contributed 98.9% to the uTree. Combining the uncertainties from tree level (uTree) to stand
level, the non-sampling uncertainty or uNS (UAM-+uDBH+uTH) was estimated. The non-sampling
uncertainty was combined with the standard error, estimated at sampling, and when propagating all
sources of errors to the total uncertainty in AGB estimation, the analysis showed that the standard
error contributed by far most to the total error with over 98% in the study cases of this thesis.

The ranking of the contributions of the different error sources to the propagated error of total AGB
in Durango, Mexico was SE>UAM>uTH>uPlot>uDBH with values of
99.41%>0.53%>0.03%2>0.02%2>0.02%, illustrating very clearly that in large-area forest monitoring,
the sampling induced error is by far the most relevant, while measurement and model errors can
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almost be ignored — always. However, assuming that measurement and model errors are random
errors and biases are absent.

Applying re-measurements was an efficient way to estimate and describe the measurement errors in
DBH and TH. Through the application of the GUM Method, error propagation is decomposed into
sources and processes, and it is better understood how uncertainties are combined. The Monte-Carlo
simulation Method (MCM) also proves to be an effective, practical and reliable way to approximate
the total AGB uncertainty estimate with acceptable ranges of probable error at scales of the MNFI.
The results in the error propagation by the GUM Method and by the MCM are equivalent.

We found that TH measurement errors have a greater contribution than DBH measurement errors at
the tree-level. Furthermore, when the main contribution to the uncertainty at tree-level comes from
UAM instead of uMes, then the total estimate of uNS at stand-level is proportional to the number of
the trees. However, a ratio of uMes>UAM produces a total uNS estimate at stand level that is
proportional to the contribution according to the size of the tree. Therefore, in this last relation, a
greater contribution to the total NS estimate is made by the trees with the largest AGB estimated.

\



Zusammenfassung

Zusammenfassung

Die oberirdische Biomasse (Above Ground Biomass = AGB) is eine wesentliche Variable fir die
Schétzung von Kohlenstoffvorraten im Wald. Die Quantifizierung des Kohlenstoffvorrats ist in
Zeiten des Klimawandels eine zentrale GroRe flr die Waldbewirtschaftung und fir entsprechende
politische Entscheidungen. Eine wissenschaftlich prazise und damit glaubwiirdige Schéatzung der
oberirdischen Biomasse ist eine der wesentlichen Voraussetzungen im Zusammenhang mit der
korrekten Umsetzung der Verpflichtungen, die die Vertrasgparteien zur Klimakonvenion UN-FCCC
eingegangen sind, um die Kohlenstoffemissionen aus Wald zu reduzieren.

Die vorliegende Dissertationsschrift wertet Datensatze der mexikanischen nationalen Waldinventur
(MNWI) aus dem mexikanischen Bundesstaat Durango aus. Sie analysiert die verschiedenen
Fehlerquellen (Residualvariabilitat) bei der Schatzung der oberirdischen Waldbiomasse und
bewertet, wie sich diese Fehlerquellen im Rahmen der Fehlerfortpflanzung auf den Gesamtfehler
auswirken. Hintergrund dieser Analysen ist, dass eine effiziente Verfahrensverbesserung
insbesondere an den Teilschritten des Schatzprozesses stattfindet, an denen ein gegebener
Ressourceneinsatz die hochstmdogliche Reduktion des Gesamtfehlers bewirkt. Ergédnzend zur
oberirdischen Biomasse erfolgten entsprechende Analysen auch fir die Bestandesgrundflache, die
eng mit der oberirdischen Biomasse korreliert ist, bei der aber die Modellfehler aus allometrischen
Biomassenmodellen nicht zum Tragen kommen.

Die Dissertationsschrift umfasst vier empirische Teilstudien zu den verschiedenen Fehlerquellen,
wobei ein Schwerpunkt auf Messfehlern liegt. Zur Quantifizierung solcher Messfehler erfolgten
Wiederholungsmessungen, wobei mathematisch-statistische Techniken zur Modellierung dieser
Fehler zum Einsatz kamen. Die Vorhersagen der oberirdischen Biomasse erfolgten mittels
allometrischer Modelle, die nach der Anpassungsgute und der Nahe zum Untersuchungsgebiet
ausgewahlt wurden. Das Plot-Design stellte eine weitere Unsicherheitsquelle (uPlot) dar und wurde
als solche in die Analyse einbezogen. Die Fehler, die sich aus den verschiedenen Schritten des
oberirdischen Biomasse-Schéatzprozesses ergaben, wurden mit zwei Techniken der
Fehlerfortpflanzung auf den Gesamtfehler hochgerechnet: (1) geméal des ISO-Leitfadens des
Zuverlassigkeitsmanagements (GUM auf Englisch) und (2) durch die Monte-Carlo-
Simulationsmethode (MCM). Eine weitere empirische Studie hatte die Regionalisierung der
oberirdischen Biomasse fiir das Untersuchungsgebiet zum Gegenstand, wobei Landsat-Bilder als
Tragerdaten verwendet wurden. Um die entsprechenden fernerkundungsbasierten Modelle zu
erstellen, wurde eine Set von Vegetationsindizes und Texturmetriken aus den Landsat-Bildern
abgeleitet und in einer schrittweisen multiplen Regressionsanalyse verarbeitet. Unter Verwendung
der Plot-Daten aus der nationalen Waldinventur von Mexiko als Response-Variablen und Landsat-
Bildinformationen als Pradiktor-Variablen, wurden Modelle zur Schatzung der oberirdischen
Biomasse optimiert. Texturmetriken als Pradiktorvariablen verbessern die AGB- und die
Grundflachenschétzungen in der Studie in Durango im Vergleich zu Regressionsmodellen ohne
Texturmetriken.

Die Messfehler der Baume reichten von 0,13 cm bis 1,207 cm fiir den BHD (uBHD) und von 0,348
m bis 1,505 m fiir die Gesamthéhe GH (UGH). uGH trug am meisten zum Gesamtmessfehler
(uMes) bei und erreichte 37% bis 62% der messfehlerbedingten Ungenauigkeit uMes. Die durch das
allometrische Biomasse-Modell (uUAM) induzierte Unsicherheit (Fehler) wurde durch den mittleren
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guadratischen Fehler (MSE) als Ergebnis der Modellanpassung abgeschétzt. Der Modellfehler
wurde mit dem Messfehler uMes kombiniert, um die Unsicherheit pro Baum (uBaum) zu
bestimmen. Die Beitrége der beiden Fehlerquellen uAM (Modellfehler) und uMes (Messfehler)
zum Gesamtfehler der baumweisen Biomasseschéatzung (uBaum) wurden in Durango in einem
Kiefernwald und einem Laubwald exemplarisch bestimmt und waren sehr unterschiedlich: im
Kiefernwald trug uAM 97,8% zu uBaum bei; und in einem Laubwald trug uMes 98,9% zu uBaum
bei. Im né&chsten Schritt erfolgte eine Hochrechnung der Fehler pro Baum auf das Gesamtgebiet.
Die Hochrechnung der Biomasse erfolgt aufgrund von Stichprobenverfahren, so dass hier der
Standardfehler als weitere Fehlerquelle zu Modell- und Messfehler hinzukommt. Bei der
Fortpflanzung aller Fehlerquellen auf die Gesamt-Unsicherheit der oberirdischen Biomasse-
Schétzung zeigte die Analyse, dass der Standardfehler (SE) mit Uiber 98% bei weitem am meisten
zum Gesamtfehler beitrug; diese Gberragende Bedeutung des Stichprobenfehlers bei der
Biomasseschatzung aus Waldinventuren ist konform mit anderen Studien, insbesondere mit
groBraumigen Waldinventuren mit grofRen Stichprobenumfangen.

Die Rangfolge der Beitrége der verschiedenen Fehlerquellen zm Gesamtfehler der Schatzung der
oberirdischen Biomasse war SE > uAM > uGH > uPlot > uDBH mit Werten von 99,41% > 0,53% >
0,03% > 0,02% > 0,02%. Dieser Befund illustriert sehr deutlich, dass im grof3flachigen
Waldmonitoring der Stichprobenfehler mit Abstand am relevantesten ist, wahrend Mess- und
Modellfehler fast immer vernachlassigbar klein sind; diese Aussage gilt unter der Annahme, dass
Mess- und Modellfehler zuféllige und keine systematischen (Bias) Fehler sind.

Die hier durchgefuhrten Wiederholungsmessungen stellen einen effizienten Weg dar, die
Messfehler in BHD und GH zu quantifizieren.

Beide Ansatze zur Fehlerfortpflanzung fiihrten zu vergleichbaren Ergebnissen. Die Anwendung der
analytischen Methode der Fehlerfortpflanzung (GUM-Methode) erfordert eine Zerlegung in Quellen
und Prozesse und erzeugt somit ein besseres Verstéandnis fiir die Kombination der Fehlerquellen.
Die Monte-Carlo-Simulation (MCM) erweist sich auch als effektive, praktische und zuverlassige
Methode, um die gesamte Unsicherheitsschatzung der oberirdischen Biomasse mit akzeptablen
Bereichen wahrscheinlicher Fehler auf Skalen der MNW!I zu approximieren.

Es zeigte sich, dass auf Ebene der Biomasseschétzung fiir einzelne Baume die Messfehler in GH
einen grofReren Beitrag leisten als die Messfehler in BHD. Wenn der Hauptbeitrag zur Unsicherheit
der Schdtzung fir einen einzelnen Baum von uAM statt von uMes stammt, dann ist die gesamte
uUNS-Schatzung auf Bestandesebene proportional zur Anzahl der Baume. Eine Beziehung
uMes>UAM erzeugt jedoch eine gesamte uNS-Schétzung auf Bestandesebene proportional zur
BaumgroRe. Daher wird in dieser letzten Beziehung ein gréRerer Beitrag zur gesamten NS-
Schétzung von den Baumen mit der grofiten geschatzten oberirdischen Biomasse geleistet.

Vil



Table of Content

Table of Content

ACKNOWLEDGEMENT ...ttt sttt sttt e sneeanae e nee e e i
SUMMARY ettt et et E ettt be e aEe e nRe e nRbean b e be e beenreenree s V
ZUSAMMENFASSUNG ....oooiiiiiiiie sttt st steesteesnae s e an e enbeenbeesnee e VII
TABLE OF CONTENT ...ttt b et ne e nne e IX
LIST OF FIGURES ... .ottt X1
LIST OF TABLES ...ttt b ettt sb e sbeenenesineanre s XV
LIST OF ABBREVIATIONS ...ttt XIX
CHAPTER I INTRODUCGTION. ...ttt 1
L1 BACKOIOUNG ....coiiiiiitiecieit ettt bbbt e bbb bbb bbbttt et et 1
1.L1.1  Origins and present 0f UNCEMAINTY ........ccvieiiiiiiee e sre s 1
1.2 ADOVEGIOUNGT DIOMASS ......iviiiitiieiiite ettt bbb bbbttt bbbt 2
1.2.1  Aboveground biomass (AGB) definitioN..........cccooeiiiriiiieci e 2
1.2.2 Aboveground DiomMasSs 8SHIMALION. ..........cciiiiiiiieie ittt bbb 2
1.3 Errors and UNCEITAINTIES . ........cciiiieiiisicre et 4
1.3.1  Definition Of UNCEIMAINTY ..ot 4
.32 RePOITiNG UNCEITAINTY .....oviiieitieiiitietie ettt sb ettt b e bbbt e s e ne e bbb e e be e e e nee e e 4
1.3.3  Errors in National fOreSt iINVENTOTIES ..o 4
1.3.4  SAMPIING BITON .ottt bbbt bbbt be bt b et e bt 5
1.3.5  Non-sampling errors: MeasUreMENT EITOFS. .........erieirrerieerreriee ettt sre ettt sbe b sre e 6
1.3.6  Non-sampling errors: prediction errors due to allometric models ............ccooeoeiininiiiiiiccee, 6
1.3.7  Quality CONLrol OF QatA.......ccceiviiiiicie e ettt re e srees 7
R Y g o] gl o] o] oT=To =14 o] o ISP P U TOT PPN 8
.41  General observations of error Propagation............coeoioereiirienieie e 8
.42  GUM Method of error propagation ............ccceceeieieiiie ettt re e sre e 8
1.4.3  Monte-Carlo simulation Method for error propagation ...........ccoceoeirereieneneienenee e 9
1.5 JUSHIfICation OF thisS STUAY .......coiiiiiiiii bbb ere e 10
L5 1 GIODAITBVEL......oiiei et 10
1.5.2  National level: the example of MEXICO .......coiriiiiiii e 11
1.6 Outline of the diSSEIrTAtION. ........ciiiii et eneenis 13
1.7 Objective and reSearch qUESTIONS. .........cooiiiiiiiei e e 14
R R € 1T g LT | o =Tt £ SRS 14
1.7.2 RESEAICH QUESTIONS. ......iiieiititeictee ettt bbbt b et 14
CHAPTER I: MATERIALS ...t 17
FEL STUAY AT ...ttt bbbt b et b b bbbt e e bbb bt e bt b e bt e bbbt ebenb e b e e b e nreseebennas 17
111 DUrango State, IMEXICO .....ccviiueiieiiiiieiieeeieetesteste e ste s e ete e et e te s re st e s teebeese e s eseeseesbesbesaeereeneeseeeeeees 17
O T ] o =T TR =T 1 4= S 19
B Y = L =T g T | OSSPSR 20
11.2.1  National Forest Inventory infOrmMation ... e 20
11.2.2  Satellite imagery iNfOrMAtiON ..........ccciviiiiiiiie e e ee s 20
11.2.3  Vegetation and land-use iNfOrMatioN.............covviiiiiiieece e s 21

CHAPTER I1I: METHODOLOGIES



Table of Content

111.1 Empirical study 1: Double measurement of dasometric variables to estimate the measurement

uncertainty and error propagation in aboveground biomass estimation in pine forests...........ccccccceei. 23
1.1.1 ST L] o] FTaTo e (1T o TSRS 23
11.1.2 o 1) 0 1] T o SRR 23
.13 EXPEIIMENT AESION ..ottt bbbt bbbttt 24
.1.4 Aboveground biomass (AGB) eStIMALION ..........cccriiiiriiir s 25
.15 QUANTITYING UNCEITAINTY ..ottt ettt se bbbt se e bbb 27
11.1.6 INFOIMALION @NAIYSIS ....evveieieieeicte bbbttt 36

111.2 Empirical study 2: Comparison of aboveground biomass estimates from two types of dasometric
measuring equipment for the variables DBH and TH, a case study developed in beech forest near

(o)A [aTe T TR €Tl o= 0SSR 37
1.2.1 SaMPling and PIOT ABSIGN.......oveiiiiiiiiie bbb e sbe e 37
11.2.2 EXPEIIMENT AESION ..ottt bbbt 37
11.2.3 AGB BSHIMALION ...ttt ettt ettt n e e s 38
1.2.4 SOUICES OF UNCEIMAINTIES .....eveivieieiee et ettt e e e e ntesreeneenes 39
1.2.5 Monte-Carlo simulation Method (MCM).........cciiiiiiiiieree e 41
111.2.6 INFOrMALION ANAIYSIS ....cviiiiie bbbttt e et sre b 41

111.3 Empirical study 3. Propagation of errors in the AGB estimation for the state of Durango, Mexico,

with information of the National FOrest INVENTOIY..........cocooiiiiiiiiiceeee s 43
11.3.1 OVBIVIBW. ... ettt sttt sttt et ettt b et et e b e e et e et e s e e b e be st e b e e b e st et e e be st et e ebenb e s e abenbereabeneereabe st 43
11.3.2 Fieldwork dataset to eStimate AGB ...t 44
11.3.3 SAMPING DESIGN ...ttt et b e et b e et b e bbb e b e b e e e e abe e 44
1.3.4 PIOT ESIGN ...ttt et b bbbttt b et b e 44
111.3.5 EStIMALOTS GESIGN ...ttt bbbttt e bt bbbt e bbb sbe b 45
111.3.6 National Forest Inventory data Validation............ccoccviriiiineieeee e 46
11.3.7 AGB BSTIMALION ...ttt ettt sttt e s et et e sbeebeeteenees e e e e beseennenre e 47
111.3.8 SOUICE OF UNCEITAINTIES......eiteitieie ettt ettt b et sa bbb 48
111.3.9 Error propagation with Monte-Carlo simulation Method (MCM) ........cccccceevviviieievcce e, 49
[11.3.10  INFOrMALioN @NAIYSIS ...oveiiiiiiiiciiie ettt eb e ettt se e ebe e 49

111.4 Empirical study 4: Modelling and mapping AGB for the state of Durango..........cc.ccocccveniinennn 51
1.4.1 OVBIVIBW. ...ttt ettt ettt b et b ettt b et b e bt e bt b e s e bt bt e bt e be st e bt et e s b e b e ebeneeseebeneereabeneas 51
111.4.2 e T=] (o I P S 51
11.4.3 Remote Sensing data PrOCESSING ......c.civiiiirieiiiirieieiesie ettt 51
.4.4 RESPONSE VAITADIES.........oeiiei e bbbttt et see e 53
111.4.5 Co-registration of remote senting and field PIOtS............ccoviiiieiciicc e 53
111.4.6 AGB models assessment and ValIAAtion .............cooieieiiniieneecee e 56

CHAPTER IV:  RESULTS ..ottt st bae et e e snbe e nnaeennees 59

IV.1 Empirical study 1: Double measurement of dasometric variables to estimate the measurement

uncertainty and error propagation of aboveground biomass estimation in pine forests...........cccccccen.n. 59
V.11 General INFOMALION .........cv it ettt st e e seeneesrenrenns 59
vV.1.2 DBH and TH MEASUIEMENTS. ......cueiieieiitieieiteeieeeeie st esiestestesie s eseeseeneeseesbestesseeseaneeseeseeteseessessenns 59
IV.1.3 DBH and TH MEASUIEMENT BITOF ........oiuiiieieieieiieie sttt sttt ee e sbe ettt sbe e ne et et e sbesre e 61
V.14 o g o] o] oL (o LT ]  H SRS 62

IV.2 Empirical study 2: Comparison of aboveground biomass estimates from two types of dasometric
measuring equipment for the variables DBH and TH, a case study developed in beech forest near

(o)A [aTe T 1T o s o= 0 VSRS 68
Iv.2.1 GeNeral INFOMMEALION ..o bbb sa s 68
vV.2.2 Yo UL =T a0 (=] 0L =T (o SO PUOPR PR 71
V.23 o] g o] o] oL o LA Lo ] o F USRS TRTRR 74

1\VV.3 Empirical study 3: Propagation of errors in the AGB estimation for the state of Durango, Mexico,

with information from the National FOrest INVENTOIY..........ccccviiiiiiiinicee s 83
IvV.3.1 General information on the Mexican National Forest Inventory dataset ...........ccccccoevencienenne. 83



Table of Content

1IVvV.3.2 AGB and basal area estimation DY SIZ€ CIaSSES ........ucrvervirerirerie e 84
1IvV.3.3 Error propagation OF AGB..........coi it bbb e 85
1VV.4 Empirical study 4: Modelling and mapping AGB for the state of Durango.........c..ccccceeevvvvieennnne. 92
V4.1 Vegetation in the State 0f DUFANGO0 ......cvevviieieiece e nne 92
V4.2 Basal area and AGB estimation MOEIS ...........ccocviiriiieiecie e 92
V.43 Basal area and AGB in the StIMAtiON.........cccooiiiiiiiiiee e e 97
CHAPTER V:  DISCUSSION .....oiiiiiiiiiieiieiit ittt bbbttt nne s 103
V.1 IMIBASUNEIMEINT B FOFS ... eitieiteeiteete et sttt e ste e bt et e e st e esb e s be e s beesbeesbeebeesseeaeeebeeab e e b e e st e e s beeseesseesbeesbeenbeennas 103
V.1.1 Measurement and uncertainty comparison among AEVICES..........cccvvrivrrreriereiieseseseeeeeesiesie e 104
V.2 Aboveground biomass & Dasal Ara ............coeiiiiriiiiiicii e 105
V.2.1 Aboveground biomass (W) allometric models (AM) SEleCtion ..........ccccoeiiiiiiiineniiicee e, 105
V2.2 AGB ESHMALION ...ttt ettt sttt be bt b et nenes 107
V.2.3  Basal area (G) eStMALION. ........ciiiiiiiiiicieet bbbttt 108
V.3 EFTOF PrOPAGJATION .....coeitiiiiiiteiietiet ettt ettt ettt b et b e e bbbt eb e e e bt ebene e e ebenr e s e ebenreseebennas 109
V.3.1 Tree-level (measurement CONIIDULIONS) ........cooiiriiiriiieie e 109
V.3.2  Tree-level (NON-SAMPIING BITOT)......ciiiiiiiiiecre bbb 110
V.3.3  Plot-level (NoNn-Sampling EITO) ......cviiiiiiiiceciee bbb 111
V.3.4 Stand-level GUM Method (non-sampling & sampling errors)........coceeeerenenenenesisieese e 111
V.3.5 Stand-level MCM (non-sampling & Sampling €ITOrS) .......cccovveieirsieeieeriesesesesese e e see e e 112
V.4 AGB and basal area estimation with Landsat imagery information ............ccccocevvnninineincnnns 115
V.4.1 Models of basal area (G) eSMALION ..........ccuriiiiriiciriee s 115
V.4.2  Prediction Models 0F AGB (W)....cvii oottt sttt e e sre e 115
V.4.3 Basal area (G) and AGB (W) estimation in strata of temperate forest...........ccoceovvrvvrenviniennnnn 116
V.4.4  Predictor variables from LandSat iMAGEIY .........curiiiiriiiiriiisicnieee s 116
V.4.5 Underestimation of the PrediCtion ..ot e 117
V.4.6 Model-based comparison with sampling-based estimations..........c..cceceveveiieiesiesie e, 118
CHAPTER VI: CONCLUSIONS ... ... 121
CHAPTER VII: REFERENCES.........i ittt 125
CHAPTER VIE: APPENDIX ...ttt ettt 137
AV L 1 N o] o 1= s o G OO PR TP PRTPRPIORTPPN 137
VL2 APPENAIX T oottt bbb et b e et b e bt b e nb et eb bt ebenr e ebe e 140
VL3 APPENAIX T bbbkttt skttt nr s 141
AV L Y o] o 1=T o [t Y 2SSO 143
VLS APPENAIX V.t bbb bbb bbbt st et eb s b st ebenb st ebene e ebe e 147
VHTEE APPENAIX V1 oot b et bbbt b b bbbt b bt nr s 156
VL7 APPENAIX VLot ee bbbt 158
VL APPENAIX VT ..ot b e ettt et se et e et e 162

XI






List of Figures

List of Figures

Figure I-1. Levels of uncertainty (source: Marchau et al., 2019) .......ccooveiieiereri e 1
Figure 1-2. Direct and indirect methods of AGB eStIMation...........cccooeiriiiiiinie e 3
Figure 1-3. Total error in the measurement as a product of systematic errors and random errors. Modified

from source (United Nations, 2008)..........cceuairiiiiriiieiinieiet sttt bbbt b et nb et nb s 6
Figure 1-4. Sources of uncertainty evaluated in the error propagation of AGB using NFI fieldwork data........ 8
Figure I-5. Scenarios of carbon emission from land-use change in the tropical forests. Source: Houghton,

2005 modified by Quegan et al., 2012, ..o b 10
Figure 1-6. Structure 0f the diSSErtation. ...........oiiiiiiiie e et 13
Figure 11-1. Durango State in the context 0f MEXICO. ........ccciriiiiiiiiieere e e 17
Figure 11-2. Location map of plot sites and UMAFOR 1008 in the State of Durango. .........cc.cceevevvevierierennenn. 18
Figure 11-3. Location map of the study area in the Gottingen Forest, GErmany..........ccccceveevvrvsesiesieereeseneens 19

Figure 11-4. Left: Grid of Primary sampling units (PSU) of the MNFI for the temperate forest in Durango.
Right: Landsat 5 mosaic imagery false-color composite with RGB: 432 combination to enhance vegetation in

red color, covering all forested 1ands iN DUFANGO. ........coeviiiiiiiieicee e 20
Figure 11-5. Vegetation and land-use limits of Durango for the LUVS of 2007-2008 (Serie 1V) and 2012-2013
(SBIIE V). ittt bbb bbb bbb bR R R R bR R bR bR bbbt r e 22
Figure 11-6. Vegetation strata limits of temperate forest in Durango according to vegetation Series IV and V.
........................................................................................................................................................................... 22
Figure I11-1. Pictures of the pine forest in El Salto, Durango, where the sampling sites were located............. 23
Figure 111-2. Size and arrangement of the SUDPIOLS...........ooiiiiiiiiic e 24
Figure I11-3. Flow chart to select the allometric model for AGB estimation, adapted from CONAFOR
(CONAFOR, 20L4D). ...ecutiieeieeereiesesee ettt st r et b et R bt e et R et b et e r e e n et n s 25
Figure I11-4. Discrepancies dispersion across the size of the tree and distribution of the discrepancies for the
variables DBH and TH in El Salt0, DUIANGO. .......civiiiieieierise e sieseeseeeeseesie e steseeseeaesee e seessesseesseseessessenes 27
Figure 111-5. Linear regression relating discrepancies in measurement with the size of variable measured
(=] - TaTo B I OSSPSR 28
Figure 111-6. Probability Density Function of uncertainties for DBH and TH measurements in the study area.
........................................................................................................................................................................... 29
Figure I11-7. Flowchart to estimate AGB error propagation adapted from two publications, the Evaluation of
measurement by JCGM (2010) and the IPCC Guidelines for National GHG Inventories (2006). ................... 33
Figure 111-8. Iterations made to select the optimal number of iterations for MCM in the uncertainty estimation
of AGB with information of El Salto, DUFaNQO. ........coeeiiiiiiiiiiieeee e 34
Figure I11-9. Flowchart for error propagation of measurement and model uncertainties in El Salto, Durango,
MEXICO, USING the MCIM. .....ccuiiiiiieiicieee ettt sttt et st e st e s teeae e s e e s et e ste st e sbeeteeseeneeseeneente e 35
Figure I111-10. The pictures give an idea of the study area and the systematic sampling design is given. ........ 37
Figure 111-11. Essay of iterations to select the optimal number of iterations for MCM in the uncertainty
estimation of AGB with information of GONGEN. ........ccoo i e 41
Figure 111-12. Durango coverage grid for the tree main vegetation types. ........cocecevereirinninensneeseens 45

Figure 111-13. Form and distribution of PSU and SSU in the MNFI in Mexico. Source (CONAFOR, 2012c).45
Figure 111-14. Flow diagram for database debugging implemented to select the information to analyze from

the database Of MINFT iN DUFANQO. ....c..ciiiiiiiteiieiiite ettt et b e et be et b e e b nn e b nneneas 47
Figure 111-15. Tree distribution in the relationship DBH (cm) & TH (m) for El Salto 2015 (n=4262), MNFI
2004-2009 (n=109762) and MNFI 2009-2014 (N=109983). ......eiveiiitiriereirerieresiesiee e e steseee e ssere e e 48
Figure 111-16. Flowchart for error propagation of measurement, model and plot design uncertainties for MNFI
in Durango, Mexico, USING the IMCIM. ........coiiiiiicice ettt st e sttt eeteene e e e e e nne e 50
Figure 111-17. AGB estimation and mappaing fIOWChart. ............cccoeiiiii i 51
Figure I11-18. Texture metrics construction with the image (spectral band or vegetation index), window size
(in pixels) and the Haralik teXtUre @StIMALE. .......uiiveieieriee sttt e e e e e neeneens 57
Figure IV-1. Basal area and AGB estimation of the study area. Above, estimate by DBH class every 5 cm;
below, estimate by TH ClIaSS BVEIY 2.5 M. ..o e 60
Figure IV-2. Left: DBH data boxplot, histograms of Measurement (M1) and Re-measurement (M2). Right: a
similar case for TH. Bottom, the trend line of M2 versus M1 for DBH and TH..........cccccoviiininieinninieecee, 60
Figure 1VV=3. Probability Density Functions (PDF) fitted with DBH measurement errors according to DBH

(0] - TRV 62
Figure IV—4. PDF fitted with TH measurement error according to TH Class. ... 63

Xl



List of Figures

Figure IV-5. Basal area and AGB estimation. Above, estimate by DBH class every 20 cm; below, estimate by

TH class every 10 m. The bars represent the frequency of threes per Size Class.........ccccovvvveiinenncneneeen, 69
Figure 1V-6. Relationship between DBH and TH for mean values of the 250 trees in re-measurement plots
made with Caliper and Blume-Leiss (CB) and with Tape and VerteX (TV). ....ccooeerirenenenenieesee e 70

Figure IV—7. Left-top: DBH boxplot and overlapped histograms of Caliper (C) and Tape (T) measurements.
Right-top, graphs of TH made with Blume-Leiss (BL) and Vertex (V). Bottom: comparison of measurements
MAAE WILN TWO GBVICES. ...ttt sttt b bttt bbbt bt e st et et saeeb e s b e eb e e b e e e e besaesbesee e 71
Figure I\VV-8. Probability Density Function (PDF) fitted with DBH measurement error according to DBH class,
for Caliper and Tape measurement. a) and b) are PDF fitted for the whole dataset of Caliper and Tape,

=] 01T 1171 Y S S 73
Figure I\V-9. Probability Density Function fitted with TH measurement error according to TH class, for
Blume-Leiss and Vertex measurements. a) and b) are PDF fitted for the whole dataset of Blume-Leiss and

VEEX [V, TESPECTIVEIY. ...ttt bbbt b 74
Figure IVV-10. Contribution of uncertainties from DBH and TH measurements to the total non-sampling
uncertainty 0f AGB ESTIMALE. .........ciiiiiiie bbbt b e bbb e ane e 80
Figure IV-11. Comparison of uncertainty calculated per plot and measurement device, for three scenarios of
measurement error in AGB @SHIMELION. ........coiiiiiiiiieie ettt e e ne e 82
Figure IV-12. Basal area (G) and AGB (W) estimation for 2004-2009 MNFI in Durango, Mexico. Above,
estimations made by DBH class; below, estimations made by TH Class. ........cccccooiiiiiniiiniice 84
Figure IVV-13. Basal area in the temperate forest of Durango, Mexico, with information from the MNFI and

LI V0 KT T4 T =TSSR 99
Figure IV-14. AGB in the temperate forest of Durango, Mexico, with information from the MNFI and

LI 100 KT T4 T =TSSP 99
Figure IV-15. AGB storage and uncertainty in AGB storage using information from two methods of
estimation in the temperate forests of DUrango, IMEXICO. .......ceriiiiriiiiie i 101

Figure VI1I-1. Model fitted to estimate the measurement uncertainty, according to the tree size for Caliper
(DBH), Tape (DBH), Blume-Leiss (TH) and Vertex IV (TH), with information of 250 trees in the study area of

(€011 1o <] T OO USSP PSP UPTUTURURTPTRPRTPN 142
Figure VI11-2. Comparison of uncertainty estimation (paired plot) per plot and per measuring device for each
scenario used to estimate measurement Error PArAMELETS. .......ieveirierierireeiee et seene e s 155
Figure VI11-3. Basal area (G) and AGB (W) estimation for MNFI 2009-2014 in Durango, Mexico. Above,
estimations made by DBH class; below, estimations made by TH Class. ........cccccovvieiiiiieiiiicicce e 157
Figure VI11-4. Predicted vs. observed in AGB estimate (G) when applying Landsat-adjusted models and
MNFI information in DUrango, IMEXICO. ......c.civiieiieiieie e sie st ie ettt s ae st beeaeera e s eaesrestesreanens 158
Figure VI11-5. Residual vs. predicted graphs in basal area estimation (G) applying linear regression models
With Landsat and MINFT GALA. .......eoveiiieiiiiseseeeee e et e e seestestesneereeneenaeseesresrenneas 159
Figure VI11-6. Predicted vs. observed in AGB estimate (W) when applying Landsat-adjusted models and
MNFI information in DUFaNQO, IMEXICO. .......ciiiieieiiie ettt et s e e eeseesbesreeneas 160
Figure VI1I-7. Residual vs. predicted graphs in AGB estimation (W) applying linear regression models with
Landsat anNd MINFI Qata. .......oooiiiiee ettt sae st e beene e s e e e entesaesaesrenneas 161

XV



List of Tables

List of Tables

Table I-1. Instruments and policies to implement actions for adaptation and mitigation of climate change in
3 T PSS 12
Table 11-1. General information in sampling units of MNFI in Durango, MexiCo.........c.ccocevvvereinicneincnienens 20

Table 11-2. Satellite imagery scenes of Landsat used in this study to estimate AGB in Durango, Mexico.
RMSE was expressed in meters and characterizes the result of the geometric correction with ground control

POTNES. 1tttk ettt e bbbt bbbk ek £k R R R R R R R R R R R R R R bR bbbt r e 21
Table I11-1. Allometric models used in the pine forest of El Salto, Durango to estimate AGB based in DBH
AN TH MEASUIBIMENTS. ... ettt ettt ettt sb ettt e e et e b e b e b e e bt e s e e e e s beeb e b e e bt ebe e R e et e besbeeb e e bt ebeebeeneenbennenas 26
Table I11-2. Methods and scenarios applied in the error propagation of AGB estimation in El Salto, Durango,
L oo TSSOSO 36
Table 111-3. Allometric AGB models used in the study area of Géttingen, Germany (Source: Fehrmann, 2006).
........................................................................................................................................................................... 39
Table I11-4. Goodness-of-fit for the models used in the study area of Géttingen using DBH and TH
IMNBASUIEIMIEIT. ...eeettie ittt sttt stt et s e ettt e sttt e b bt e she e ek bt e b et e sk bt e sbb e e e b bt e e Re e e e b e e ek e e e nb b e e bb e e b e e e bt e e e b e e e be e e beeebbeenbneennne s 40
Table 111-5. Reference datasets in AGB estimation for re-mesurement plots. .........ccoevvvireieninninineisenee 42
Table 111-6. Scenarios of error propagation wWith GUM Method. ... 43
Table 111-7. Scenarios of error propagation With MCM...........ccoiiiiiiiiiiiie e 43
Table 111-8. Sources of error contributing to error propagation SCENAIIO. ...........ccoviireiirereienereeee e 43
Table 111-9. Aggregation levels used to classify vegetation with the number of clusters recorded in the MNFI
(CONAFOR, 20L2C). ...veutiieeieiaieiesieieiee sttt sttt sttt b bt b bt e bbb s b e e e ke b e £ b e bt e e b e bt eb ke bt bbbt bbb e ebene s 52
Table 111-10. Vegetation indexes evaluated in this study based on spectral bands information of Landsat
1T To T 2SS 54
Table I111-11. Texture variables used. P (i, j) is the normalized co-occurrence matrix such that sum (i, j = 0, N-
1) (P (i, ])) = 1 (Haralick €t @l., 1973). ..ottt bbbttt 55
Table 111-12. Vegetation indexes with the highest Pearson correlation coefficient, selected to apply on them
the tEXEUME CAICUIALION. .. .iivieeeceie et e st et e st et e e st e e e se e beseesrenreeneeree e eeenes 55
Table 111-13. Landsat image predictor variables (PV) used to evaluate models for estimating AGB and basal
LT T T T T O OO TP PP PPRTOPRON 56
Table IV-1. Range and mean values of the measured and estimated variables in the pine forests of El Salto,

(D TU =1 T o O O PR U PR U RO TTOP PP 59
Table IV-2. Uncertainty of the AGB calculation using three scenarios estimating measurement uncertainty
NDN, NDNC @GN0 RIMSD.......ciiiiiiiieeiee ettt bbb bbbt bbbt b bt nn et e e 63
Table IV-3. The total uncertainty of the AGB calculation from non-sampling uncertainty estimation sources.
........................................................................................................................................................................... 65
Table IV-4. Uncertainty of the AGB calculation with MCM using four uncertainty estimation scenarios along
with error propagations made with the GUM MEethod. ..o 66
Table 1V-5. Uncertainty of the AGB calculation with MCM for non-sampling uncertainty sources and their
contribution to the total UNCEITAINTY. .......cooiiiie bbb 66
Table 1V-6. Range of values for measurements and estimated variables in the study area............c.ccoceovvinenae 68
Table 1V-7. Statistics of measurements and estimated variables in the study area. .........c.ccoceeereiiiineiiicnenns 68
Table 1V-8. Uncertainty parameters for scenarios to estimate measurement error of DBH and TH. ................ 72
Table IV-9. Uncertainty of the AGB calculation using four scenarios to estimate the measurement uncertainty
Caliper+Blume-Leiss (CB), Tape+Vertex (TV), Caliper (C) and Tape (T). ...coceeerereererenierienieseeeeeeree e 75
Table I1VV-10. Sources of uncertainty contribution in the AGB calculation for different scenarios of
MEASUFEMENT EITON ESTIMALION. ....viviiiitiite ettt ettt b ettt et st e e be bt ere b e ene 77
Table IV-11. Error propagation in AGB estimation with MCM different scenarios to calculate measurement

LT (0] £ T TSP TP PP SR PSPPI 79
Table IV-12. Estimates of basal area (G) and AGB (W) calculated from the MNFI in the temperate forest of
10T gl T 1V 1= oo S 83
Table 1VV-13. Error propagation in AGB estimation using three scenarios of non-sampling uncertainty in
temperate forest of DUraNQgO, IMEXICO. .......ooueiiiiiiiii ettt b e et b e et besr e ebesreneas 87
Table 1VV-14. Error propagation in AGB estimation, using three scenarios of non-sampling uncertainty in
strata of the temperate forest of DUranNQgo, MEXICO. ........cueiiiiiiiiiei e e 88
Table IV-15. Reference values at the substratum level with the sampling error as the source of uncertainty in
AGB estimation of the temperate forests in DUrango, MEeXICO. .......cccuiiiirieriieiiriee e 89

XV



List of Tables

Table 1V-16. Error propagation in AGB estimation, using three scenarios (BD, BDC, Exp) of non-sampling

uncertainty estimation in the STUAY rea..........ccoiriiiiiii bbb 89
Table IV-17. Error propagation by uncertainty source in AGB estimation, using three scenarios of non-
sampling uncertainty in the temperate forests of Durango, MEXICO. ........cccereiieiirriiiie e 90
Table IV-18. Surface area by vegetation type and land-use for two time-series in the state of Durango,

LT o TSSO 92
Table IV-19. Predictor variables (PV) selected to estimate the response variables basal area (G) and AGB (W)
in Durango. The description of PV is in FIgure TH-18. ........cccooiiiiiiiie e 93

Table IV-20. Adjusted models for the basal area (G) and AGB (W), estimated from the 2004-2009 MNFI. .. 94
Table IV-21. Adjusted models for the basal area (G) and AGB (W), estimated with the 2009-2014 MNFI data.
.......................................................................................................................................................................... 95
Table 1V-22. Bias estimate and goodness-of-fit of the adjusted models for the basal area (G) and AGB (W)
estimated from MNFI data in DUrango, IMEXICO. .......cccicviireiieieriee e se sttt seesresne e 96
Table IV-23. Basal area (G) and AGB (W), estimate for temperate forest in Durango, MexXico. ...........c.ce..... 97
Table 1V-24. Estimates of basal area (G) and AGB (W) using methods based on forest inventory sampling and
regression models, applied in the temperate forests of Durango, MeXiCo. .........cccoeririeieninienieiesese e 100
Table VIII-1. AGB allometric models (AM) used in MNFI in the state of Durango with the number of trees
registered. AM data: n=number of sampled trees to fit the AM; R?>=coefficient of determination; RMSE=root-
mean-square error; W=AGB in kg per tree; Variables used to fit the AM: DBH, TH, basal area (G), crown
volume (CVol); ND (= no data) is given when data were not reported; BR= Brazil, EC = Ecuador, MX =

MEXICO, US = UNITEA STAES. ...veveiviiiiiitiiiiieisie ettt ettt b et b et ettt b 137
Table VIII-2. Parameters and goodness-of-fit for the PDF fitted (normal distribution and best-fitted
distribution) for DBH measurement by DBH class in El Salto, Durango, MexiCo. .........cccccevvevvereresesesnnnne. 140
Table VI11-3. Parameters and goodness-of-fit for the PDF fitted (normal distribution and best-fitted
distribution) for TH measurement by TH class in El Salto, Durango, MeXico. .........ccccvevrveivererervsiesnsennes 140
Table VIII-4. Parameters and goodness-of-fit for the PDF fitted (normal distribution and best-fitted
distribution) for DBH measurement made with Caliper by DBH class in Géttingen, Germany. .................. 141
Table VIII-5. Parameters and goodness-of-fit for the PDF fitted (normal distribution and best-fitted
distribution) for DBH measurement made with Tape by DBH class in Gottingen, Germany. ..........c.ccceevene. 141
Table VI11-6. Parameters and goodness-of-fit for the PDF fitted (normal distribution and best-fitted
distribution) for TH measurement made with clinometer by TH class in Géttingen, Germany.............cc....... 141
Table VIII-7. Parameters and goodness-of-fit for the PDF fitted (normal distribution and best-fitted
distribution) for TH measurement made with Vertex by TH class in Gottingen, Germany. ............ccccccveeveane. 142
Table VI11-8. AGB and uncertainty of the AGB calculation by plot using three scenarios for the measurement
uncertainty estimation (NDn, NDnC, RMSD) in El Salto, Durango, MEeXiCO. .........cccvvvrrrvriveeerienesesensennnns 143

Table VI11-9. Repeated-measures ANOVA, with correction for sphericity, applied to three scenarios (NDn,
NDnC, RMSD) of measurement uncertainty estimation in AGB calculation in El Salto, Durango, Mexico.. 143
Table VI11-10. Pairwise comparison using paired T- Test, with p-value Holm’s correction, for three scenarios
(NDn, NDnC, RMSD) of AGB uncertainty estimation in El Salto, Durango, MeXiCo. .........c.ccccevevereniniennen. 143
Table VI11-11. Uncertainty of the AGB calculation by plot using the estimation with all sources of
measurement error (NDnC) and by source (NDnCa, NDnCbh, NDnCab, NDnCc) in El Salto, Durango, Mexico.
........................................................................................................................................................................ 144
Table VI11-12. Repeated-measures ANOVA, with correction for sphericity, applied to five scenarios (NDnC,
NDnCa, NDnCh, NDnCab, NDnCc) of measurement uncertainty estimation in AGB calculation in El Salto,
DN T a0 o AV [ oo TSSOSO 144
Table VI11-13. Pairwise comparison using paired T-Test, with p-value Holm’s correction, for five scenarios
(NDnC, NDnCa, NDnCh, NDnCab, NDnCc) of AGB uncertainty estimation in El Salto, Durango, Mexico.

Table VI11-14. Uncertainty of the AGB calculation by plot using seven scenarios for the measurement
uncertainty estimation (MCNDn, MCNDnC, MCBD, MCBDC, NDn, NDnC, RMSD) in El Salto, Durango,
T o TSSO 145
Table VI111-15. Repeated-measures ANOVA with correction for sphericity applied to seven scenarios
(MCNDn, MCNDNC, MCBD, MCBDC, NDn, NDnC, RMSD) of measurement uncertainty estimation in AGB
calculation in El SAIt0, DUFANQO. .....couoiiiiiieieiieie ettt bttt et b b et b e be e e sae st e be b sbeees 145
Table VI1I-16. Pairwise comparison using paired T-Test, with p-value Holm’s correction, for seven scenarios
(MCNDn, MCNDNC, MCBD, MCBDC, NDn, NDnC, RMSD) of AGB uncertainty estimation in El Salto,
D01 T a0 o Y T TSSOSO 145

XVI



List of Tables

Table VIII-17. AGB uncertainty estimation by plot with Monte-Carlo simulation Method using non-sampling

uncertainty estimation sources (MCC, MCCa, MCCb, MCCc) in El Salto, Durango, Mexico. ............c.cc...... 146
Table VI11-18. Repeated-measures ANOVA with correction for sphericity applied to four scenarios (MCC,
MCCa, MCCb, MCCc) of AGB uncertainty estimation in El Salto, DUrango. ..........cccccecererereninieninne e 146
Table VI11-19. Pairwise comparison using paired T-Test, with p-value Holm’s correction, for four scenarios
(MCC, MCCa, MCCbh, MCCc) of AGB uncertainty estimation in El Salto, Durango MexXico. ...................... 146
Table VI11-20. AGB calculation by Plot using three scenarios for the measurement uncertainty estimation
(CB, C, TV, T) IN GOMINGEN, GEIMMANY .......cctiitiitieieiuieiieeenie sttt ee et e sbesbe b e be et esbessesbesbesbesbeaneasaenae e nee 147
Table VI1I-21. Repeated-measures ANOVA with correction for sphericity applied to four scenarios (CB, C,
TV, T) of AGB estimation in GOttiNGEN, GEIMANY. ......c.cceieieiireee e re e e e srenes 147
Table VI11-22. Pairwise comparison using paired T-Test, with p-value Holm’s correction, for three scenarios
(CB, C, TV, T) of AGB estimation in GOttingen, GEIMANY.........ccccueiueriererereseeeeeeieseeseesie e sreseeseeseesseseeses 147
Table VI11-23. Uncertainty of the AGB calculation by plot using four scenarios for the measurement
uncertainty estimation (CB, C, TV, T) in GOttingen, GEIMANY. ........ccccuriiiiririiirieneesesesese e 148
Table VI11-24. Repeated-measures ANOVA with correction for sphericity applied to four scenarios (CB, C,
TV, T) of AGB uncertainty estimation in GOttingen, GEIMANY.........c.ccovrereireneeseree e 148
Table VI11-25. Pairwise comparison using paired T-Test, with p-value Holm’s correction, for four scenarios
(CB, C, TV, T) AGB uncertainty estimation in GOttingen, GErMAaNY. .........ccocererirerierienese e e 148
Table VI11-26. AGB and uncertainty of the AGB calculation by plot using five scenarios for measurement
uncertainty estimation (CB, CBmean, CBNDn, CBNDnC, CBmod) in Goéttingen, Germany. ...........ccceceuee. 149
Table VI11-27. Repeated-measures ANOVA with correction for sphericity applied to five scenarios (CB,
CBmean, CBNDn, CBNDNnC, CBmod) of AGB uncertainty estimation in Géttingen, Germany. ................... 149

Table VI11-28. Pairwise comparison using paired T-Test, with p-value Holm’s correction, for five scenarios
(CB, CBmean, CBNDn, CBNDnC, CBmod) of AGB uncertainty estimation in El Salto, Durango Mexico...149
Table VI11-29. Uncertainty of the AGB calculation by plot using six scenarios for the measurement

uncertainty estimation (TV, TVmean, TVNDn, TVNDnC, TVmod) in Gottingen, Germany...........ccocecvvenne. 150
Table VI11-30. Repeated-measures ANOVA with correction for sphericity applied to five scenarios (TV,
TVmean, TVNDn, TVNDNC, TVmod) of AGB uncertainty estimation in Gottingen, Germany. ............c........ 150
Table VI11-31. Pairwise comparison using paired T-Test, with p-value Holm’s correction, for seven scenarios
(TV, TVmean, TVNDn, TVNDnC, TVmod) of AGB uncertainty estimation in Géttingen, Germany............... 150
Table VI11-32. Uncertainty of the AGB calculation by plot using three scenarios for the measurement
uncertainty estimation (TV, TVEXp, TVNexp) in Gottingen, Germany.........c.cccceeveeerierieiesesesresiesseeseeseeseeens 151
Table VI11-33. Repeated-measures ANOVA with correction for sphericity applied to three scenarios (TV,
TVEXp, TVNexp) of AGB uncertainty estimation in Gottingen, GErmany. .........ccocvevvevverevesesiesesieeseeseesreenes 151
Table VI11-34. Pairwise comparison using paired T-Test, with p-value Holm’s correction, for three scenarios
(TV, TVEXp, TVNexp) of AGB uncertainty estimation in Gottingen, GErmany. ...........cocooeeurerverenereneneenns 151
Table VI11-35. Repeated-measures ANOVA with correction for sphericity applied to three scenarios (CBBD,
CBBDC, CBmod, CBNDn) of AGB uncertainty estimation in Gottingen, Germany. ..........ccceeeevrereerennenns 152
Table VI11-36. Pairwise comparison using paired T-Test, with p-value Holm’s correction, for four scenarios
(CBBD, CBBDC, CBmod, CBNDn) of AGB uncertainty estimation in Gottingen, Germany. ............ccoceeuu... 152
Table VI11-37. Repeated-measures ANOVA with correction for sphericity applied to four scenarios
(TVBPDF, TVBDC, TVmod, TVNDn) of AGB uncertainty estimation in Gottingen, Germany. ................. 152
Table VI11-38. Pairwise comparison using paired T-Test, with p-value Holm’s correction, for four scenarios
(TVBPDF, TVBDC, TVmod, TVNDn) of AGB uncertainty estimation in Géttingen, Germany. .................... 152
Table VI11-39. Repeated-measures ANOVA with correction for sphericity applied to six scenarios (Exp, Nexp,
CBmod, CBNDn, TVmod, TVNDn) of AGB uncertainty estimation in Géttingen, Germany. ............cccee.v.... 153

Table VI11-40. Pairwise comparison using paired T-Test, with p-value Holm’s correction, for six scenarios
(Exp, Nexp, CBmod, CBNDn, TVmod, TVNDn) of AGB uncertainty estimation in Géttingen, Germany...... 153
Table VI1I-41. Result of Monte-Carlo simulation Method on the contribution by uncertainty source to the total
uncertainty in AGB estimation in GOttiNGen, GEIMANY. ..........ooiiriiiirieenee e 154
Table VI11-42. Basal area (G) and AGB (W) estimation made by classes of DBH and TH, in four datasets of
Durango temperate forest. Estimation made with data of two periods of MNFI 2004-2009 and 2009-2014. 156

Table VI11-43. Temperate forest surface by basal area (G) class in Durango, MeXiCo. .........ccoceevererieieeneenne. 162
Table VI11-44. Temperate forest surface by AGB (W) class and amount of W stored by class in Durango,
IVIEXICO. .tttk b bt E b e b bR AR R R R R AR R e R R R Rt R bbbt n b 162

XVII






List of abbreviations

List of abbreviations

AGB

AM

BD

BDC

CB

CO;
CONAFOR
CVv

DBH

FAO

FRA

GHG

GOF

GUM

GUM Method
INEGI

IPCC
LEP
MCM
MNFI
mod
MSE
MRV
NDn
NDnC
NFI
PDF
PV
RMSD
RSS
SCF
SE
SMF
SMO
SOF
SRS
TF

TH
TV
UNFCCC
UAM
uDBH
uMes
uNSplot
uStand

Aboveground biomass

Allometric model to predict AGB

Best distribution fitted to measurement errors

Best distribution fitted to measurement errors by classes of DBH and TH
Tree measurements made with Caliper (DBH) and Blume-Leiss (TH)
Carbon Dioxide

Comision Nacional Forestal=National Forest Commission in Mexico
Coefficient of variation

Diameter at breast height (130 cm)

Food and Agriculture Organization of the United Nations

Global Forest Resources Assessment

Greenhouse gases

Goodness-of-fit

Guide to the expression of uncertainty in measurement

Error propagation method using the GUM

Instituto Nacional de Estadistica y Geografia =National Institute of Statistics
and Geography in Mexico

Intergovernmental Panel on Climate Change

Law of Error Propagation

Monte-Carlo simulation Method

Mexican National Forest Inventory

Linear regression model fitted to measurement errors

Mean square error

Measurement, Reporting, Verification

Normal distribution fitted to measurement errors

Normal distribution fitted to measurement errors by classes of DBH and TH
National Forest Inventory

Probability Density Function

Predictor variables

Root mean square deviation

Residual sum of squares

Stratum of conifer forest into the temperate forest

Sampling error

Stratum of mixed forest (conifer and oak) into the temperate forest
Sierra Madre Occidental = Western Mother Mountains

Stratum of oak forest into the temperate forest

Simple random sampling

Temperate forest

Total height

Tree measurements made with Tape (DBH) and Vertex IV (TH)
United Nations Framework Convention on Climate Change
Uncertainty of AGB prediction with allometric model

Uncertainty of DBH measurement

Uncertainty of measurements

Uncertainty of non-sampling at plot-level

Uncertainty at stand-level

XIX



List of abbreviations

uTH
uTree
VI

Uncertainty of TH measurement
Uncertainty of non-sampling at tree-level
Vegetation Index



Chapter I: Introduction

Chapter I: Introduction

1.1 Background

1.1.1 Origins and present of uncertainty

The term uncertainty is better known in the social sciences (Wakeham, 2015), especially when it
relates to making a decision (Marchau et al., 2019), when referring to the knowledge or lack of
knowledge (Pérez-Hernandez, 2012) or incomplete information (Ascough et al., 2008).

Over the course of history, analogies of uncertainty have been developed, and uncertainty has even
been considered as "what can not be explained”. Frank Knight in 1921, defined risk as part of a
process "calculable”, while uncertainty he defined as "the unknown" (Marchau et al., 2019).
Between the 1970s and early 1990s uncertainty was synonymous with ambiguity, while in the late
1990s and until 2011 it was related to "ignorance or lack of knowledge"(Wakeham, 2015).

Recently, Marchau et al. (2019), arguing that ““...uncertainty is a broader concept than risk”, defined
five levels of uncertainty between total precision (determinism), and total ignorance (Figure I-1).
Marchau et al. (2019) defined these levels based on the four aspects proposed by Walker et al.
(2003): i) context or definition of the system, ii) the variables and relationships involved in the
system, iii) the outcomes from the system, iv) the weights of the outcomes set by stakeholders.

Level 1 Level 2 Level 3 Level 4 Level 5

+ w4
° «QO->
Context 4 ¥ 1

A few plausive  Many plausive Unknow

Aclearenough  Ajernative futures  futures features future
future
Asingle Assingle - .
. - A few alternative Many alternative
System model (deterministic) (stochastic) system system models system model Unknown
system model model
Svstem outcomes A point estimate ﬁ\ti?\r/];ﬂ%?c:ach A limited range A wide range of Unknown
Y for each outcome of outcomes outcomes
outcome
Several sets of
. A single set of weights, with a Alimited range A wide range of
Weights weights probability attached weights weights Unknown
to ecah set

Figure I-1. Levels of uncertainty (source: Marchau et al., 2019)

The uncertainty in aboveground biomass (AGB) estimation is set at Levels 1 and 2 of Figure I-1.
According to Marchau et al. (2019), these two levels encompass scientific work in the natural
sciences where an emphasis on reducing uncertainty in the result is placed. This can be achieved
through acquiring more information about the process or through stochastic variation by statistical
analysis.
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1.2 Aboveground biomass

1.2.1 Aboveground biomass (AGB) definition

Biomass is the matter of living or dead organisms in a specific place expressed in weight by unit
area or by unit volume (GTOS & FAQ, 2009). Plant biomass relates to the individuals or parts of
individuals found on the soil, such as trees, crops, shrubs, herbs; and parts found in the soil or below
the surface, i.e., roots (FAO, 2006). AGB in trees, is all living matter over the soil comprising trunk,
stump, branches, bark, seed, and leaves (FAO, 2006; IPCC, 2006).

Biomass in plants is produced through photosynthesis, where plants generate organic substances
from the absorption of atmospheric carbon dioxide (CO-) and water in the presence of light, storing
it as dry matter (BUN-CA, 2002). When plant biomass is burned, CO, (BUN-CA, 2002; Gibbs et
al., 2007) and other trace gases and aerosols are emitted into the atmosphere (GTOS & FAO, 2009).
CO; is one of the main greenhouse gases (GHG) and has increased by more than 30% in
concentration in the atmosphere over the last century (CONAFOR, 2012a; IPCC, 2013). Reports
from international panel experts conclude that there is a probability close to certainty that humans
influence climate change through energy, industry, forestry, transport and agriculture sectors (IPCC,
2013; PASCC, 2010).

Forest ecosystems have the capacity to absorb CO; and store it as biomass for long periods of time
depending on the lifetime of the corresponding organisms. Forests are therefore referred to as
carbon sinks or reserves (IPCC, 2003), and cover about 30.6% of the global land area (FAO, 2015).
Since forests on their own cannot increase CO- capture (Ma et al., 2019), forest plantations
(Brancalion et al., 2019), forest management for wood products extraction (Profloresta, 2008;
SEMARNAT, 2014), promoting the use of wood in construction (FAO, 2015), among other
activities, increase the natural capacity of the forest to capture CO.. Also, future land-use change
(LUC) scenarios combined with disturbance (wildfire, weather, insects, disease) have been
evaluated, finding more AGB storage in the scenarios than in the undisturbed forest (Ma et al.,
2019). With these dynamics in the forest, it is important to evaluate their AGB stocks and the
changes associated with these AGB stocks: deforestation, reforestation, increase in agricultural
areas, increase in urban areas, among others (IPCC, 2003, 2015).

1.2.2 Aboveground biomass estimation

1.2.2.1 Direct method of measurement or tree-level observations

The direct method (Figure 1-2) involves measuring a standing tree and after felling, drying and
weighing to get the dry matter or AGB (Picard et al., 2012; Shi & Liu, 2017). If the AGB of more
than one tree is measured with this method, a prior analysis is performed to stratify the area of
interest and calculate the sample size of trees that will be subject to the process (Picard et al., 2012).

This method is a costly and elaborated process that requires a protocol (Magnussen & Reed, 2015)
that clearly sets out a sequence of actions to follow in field data collection and chain of custody to
avoid systematic errors. The “Manual for building tree volume and biomass allometric equations”
represents an effort by CIRAD and FAO to set best practices for direct method estimations (Picard
etal., 2012).
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1.2.2.2 Indirect methods of estimation

1.2.2.2.1 Observations at plot-level

The ground based measurement of biomass via the direct method can not be achieved over large
areas, due to cost and because it is impractical since the purpose is to know the amount of AGB
stored (Magnussen & Reed, 2015). In this case, an indirect estimation method is applied (Figure I-
2), which uses data from standing trees as predictive variables to calculate regression equations
based on allometric relationships (Magnussen & Reed, 2015; Picard et al., 2012; Shi & Liu, 2017).
These equations are allometric models and describe the relationship of AGB with standing tree
variables (GTOS & FAO, 2009; Picard et al., 2012). If AGB allometric models were not available,
then conversion factors can be used to transform the tree volume into AGB (GTOS & FAO, 2009).
Once calculating the AGB by tree, this is aggregated or grouped by characteristics of interest such
as diameter class, height class, species, genus, among others (Magnussen & Reed, 2015). Once the
AGB has been added at the plot-level, the estimators for the study area are calculated, considering
the sampling design applied to the forest inventory (McRoberts et al., 2015).

Direct measurement Indirect estimation
AGB tree-level (Measuring, Measuring (DBH, TH, crown Remote sensing
felling, drying, weighing) diameter, wood density) imagery
Fitting allometric models Estimation of AGB at Co-registration of imagery
AGB = f(DBH, TH, crown plot-level, stand-level (spectral bands, vegetation
diameter, wood density) (NFI-level) indexes, textures)

AGB maps

Figure 1-2. Direct and indirect methods of AGB estimation.

1.2.2.2.2 Extrapolation of the AGB estimation

Under plot-level AGB estimation, there are “gaps” (the area not selected in the sampling) and
remote areas without field data, where remote sensing techniques can be employed to estimate the
AGB (Hyde et al., 2006; Sarker & Nichol, 2011). As the advantages of AGB estimation with
remote sensing, are included the strong correlation between spectral data and vegetation parameters,
the repeatability of data collection and the availability of global image coverage (Dengsheng Lu,
2006).

AGB indirect estimation with National forest inventory (NFI) data is reported every 5 to 10 years,

corresponding to the time used for field data collection and data analysis (Sousa et al., 2017). The

monitoring of AGB (Figure 1-2), from satellite imagery, is an indirect method that can increase the
estimation frequency of AGB and can be complementary to NFI data (GTOS & FAO, 2009).

There are studies which use estimates of the AGB obtained with field-measured dasometric
information (as a response variable) to calibrate images from sensors such as Landsat (Gizachew et
al., 2016; Vargas-Larreta et al., 2017), Ikonos 2 (Phua et al., 2012), Radar (Sinha et al., 2015), ALS

3
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(Peuhkurinen et al., 2008), Sentinel (Alboabidallah et al., 2017) or a combination of sensors for
estimating AGB in larger areas and in shorter periods of time than the NFI (GFOI, 2016).

Since optical sensors have a saturation effect on AGB estimation (GTOS & FAO, 2009), the texture
has been a property of the images that has been included to increase the range of AGB (Fuchs et al.,
2009; Lu & Batistella, 2005; Sarker & Nichol, 2011) estimation from the discrimination of the
levels of tones related to regions or objects (Haralick et al., 1973).

1.3 Errors and uncertainties

1.3.1 Definition of uncertainty

In the scientific domain, according to the Joint Committee for Guides in Metrology (JCGM, 2010),
the uncertainty is a parameter related to the result of a measurement that describes the spread of
values that can be reasonably assigned to the measurement. Other authors complement this
definition as the range in which results are expected, including the probability with which this range
was obtained (Kallner, 2001; Taylor, 1997).

The method to analyze the uncertainties associated with estimation is the propagation of
uncertainties (JCGM, 2010; Taylor, 1997). This method divides the problem into stages, quantifies
the uncertainties separately, and then combines them to get the total uncertainty (Kallner, 2001).
The division into stages is due to the identification of the sources of uncertainty that, presumably or
with information from previous studies, contribute most to the total uncertainty (Schmid & Lazos
Martinez, 2000). The quantification of uncertainty usually embraces the assignment of value plus its
distribution (Schmid & Lazos Martinez, 2000).

1.3.2 Reporting uncertainty

Ascough et al. (2008) point out the importance of reporting uncertainty in all types of empirical
studies in the environmental and ecological context, emphasizing the relationship between
understanding the uncertainty with the quality of decision-making. In the forestry context,
Kauffman et al. (2013) mentioned that by including uncertainty analysis in aboveground biomass
(AGB) estimation, reference was made to the precision of the reported information. According to
the Global Terrestrial Observing System and Food and Agriculture Organization (GTOS & FAO,
2009), this refers then also to the reliability of the information.

Research on forest biomass, including uncertainty analysis has increased, given the development of
government policies and international negotiations about forest response and climate change (Shi &
Liu, 2017). As a national strategy, the Mexican government has promoted the development of
public policy instruments that consider strategies in the economic/climate sectors (SEMARNAT &
SHCP, 2009), and their relationship with the technical parameters in forest emissions (CONAFOR,
2017Dh). These policy instruments contain clear methodologies of uncertainty analysis and include
uncertainty estimates in the results to be obtained (CONAFOR, 2014b).

1.3.3 Errors in National forest inventories

Different measurement methods are used in NFIs to get observations to record the current state of
the forest (CONAFOR, 2017a; Kleinn et al., 2015). The best methods improve the acquisition
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accuracy of the measurements while reducing the acquisition time (Diéguez Aranda et al., 2005;
Kershaw Jr., Ducey, Beers, & Husch, 2017). Therefore, data collected from NFIs is objectively
prone to error. Across this thesis work, the word "error” will not be used as a synonym for
“mistake” or “carelessness” (Gil & Rodriguez, 2001) rather as the uncertainty of
measurement/estimation (Taylor, 1997). As before defined Section 1.3.1, an error will be considered
as the residual variability associated with the measurement or estimation, thus describing the
dispersion values logically attributed to AGB measurement (JCGM, 2010).

The total error of estimation in NFIs involves different components, including sampling and non-
sampling error (FAO, 1981; Kleinn et al., 2015; United Nations, 2008). The final report of the NFI
in Mexico, for example, included sampling error as the source of all observed variations in the
variables considered (number of trees, basal area, volume, biomass, etc.) without reporting non-
sampling errors (CONAFOR, 2012b, 2017a).

1.3.4 Sampling error

NFI plots sample the landscape to measure variables of interest, from which the parameters of the
target population are estimated (Kohl et al., 2006). However, the estimators are subject to error due
to the sampling design applied (Kershaw Jr. et al., 2017), meaning that the error would not be
present if the entire population was included in the observations (Gormanson et al., 2017;
McRoberts et al., 2015). This error is referred to as sampling error. The sampling error of
probability samples is reported as the standard error of the mean (SE), coefficient of variation (CV)
or the confidence interval (Kohl et al., 2006; United Nations, 2008), of a given variable e.g. volume,
AGB, etc. (FAO, 1981; Kohl et al., 2006; McRoberts, Naesset, et al., 2015). Considering that SE
measures the precision of the estimate, sampling error is related to the sample size and is therefore
intrinsically associated with the time spent doing fieldwork and budgets allocated to the inventory
(Kershaw Jr. et al., 2017; United Nations, 2008).

McRoberts et al. (2015) show the use of the CV to be effective when comparing across sampling
designs; whereby the differences between sampling designs were given by sample size and inter-
plot distances. Similarly, an optimal sampling error is defined by the smallest SE per sampling
design given the costs assigned to the inventory (United Nations, 2008). Tomppo et al. (2010)
compared 31 European countries, 3 Asian (China, Japan, and Republic of Korea), 3 on the
American continent (Brazil, Canada, and USA) and New Zealand from 1992 to 2009 and reported
NFI sampling errors for wood volume by SE ranging from 0.46% (USA) to 7.14% (Ireland).
However, in this comparison, there were inconsistencies in the definition of wood volume as the
height of DBH (1.3 - 1.5 m), minimum DBH (0 - 12.5 cm), elements sampled other than standing
trees (stumps, branches and/or dead wood), among others. More recent results to those reported by
Tomppo et al. (2010) can be accessed online in most countries, and show an improvement in the
estimation precision of wood volume with SE of 0.31% in the USA and 2.17% Ireland
(https://www.fia.fs.fed.us/; https://www.agriculture.gov.ie/nfi/). In Mexico, the first repeat survey of
the NFI (2009-2014), reported for volume a SE of 3.2 - 4 % (CONAFOR, 2017a). These results are
consistent with those obtained in the first NFI (2004-2009) where the volume was estimated with
3.2 - 4% of SE (CONAFOR, 2012c). The AGB was reported only for the temperate forest in NFI
(2009-2014) with 2.6 - 3.3 % of SE.
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1.3.5 Non-sampling errors: measurement errors

The goals established in an NFI, such as timber supply, biodiversity, REDD+, etc., determine the
variables measured during fieldwork (Kleinn, 2017; Kleinn et al., 2015). Trees are the object, where
the measurements are made and the values of the variables of interest registered. Tree
measurements are made assuming geometric forms like the tree cross-section (circle, oval), tree
form (cone, frustum cone), or tree crown (circle, oval) (Kershaw Jr. et al., 2017; Matérn, 1956) and
thus inherently carry an error in their magnitudes. Thus, it is important to estimate measurement
uncertainty, so as to determine the quality of the measurement. Such a result can be the source of
information for another project or for a decision-making process (Pérez-Hernandez, 2012).

There are two important components of measurement error, systematic and random errors (Taylor,
1997; United Nations, 2008). Both systematic and random measurement errors are independent of
each other and hence should be quantified independently. Figure 1-3 shows that the total error can
be quantified as the hypotenuse, of the Pythagoras' theorem, joining both error axes. Considering
that it is not possible to avoid random error in any measurement (Taylor, 1997), one can posit that
smaller total error can be achieved, when systematic error reduces and as systematic error tends to
zero, the total error equals to the random error.

Total error
Systematic < ;hir?;erc?r;)sf
errors Y
C
2 a2+ b?=c?
b b

Random errors

Figure 1-3. Total error in the measurement as a product of systematic errors and random errors.
Modified from source (United Nations, 2008).

Practically, measurement errors arise from the faulty or incorrect use of measurement devices e.g.
from device calibration (Diéguez Aranda et al., 2005) or dependent on the accuracy of the
measurement devices (Gil & Rodriguez, 2001). Incorrect use of measurement devices by staff is
often related to either measurement criteria or staff capacity use the availed forest inventory devices
(Canavan & Hann, 2014; Diéguez Aranda et al., 2005).

1.3.6 Non-sampling errors: prediction errors due to allometric models

The allometric model to estimate the AGB is obtained from regression analysis (Picard et al., 2012).
The AGB is the result of statistical relationship with tree variables such as DBH (Avendafio
Hernandez et al., 2009; Navar, 2009), TH (Foroughbakhch et al., 2006; Vargas-Larreta et al., 2017),
crown diameter (Navar et al., 2004), wood density (Martinez-Yrizar et al., 1992; Wiemann &
Williamson, 2013). This model can be applied to other standing trees located in the same site, where
the model was obtained, or in areas with similar site-characteristics (GTOS & FAO, 2009); or
applying a scientific approach as a suitability check of the model validating the prediction
uncertainty precision to select a AGB model (Pérez-Cruzado et al., 2015). Then, site-characteristics
is a potential source of bias if not considered in the selection of model (Pérez-Cruzado et al., 2015),
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because it is related to climatic conditions or soil types and these are associated with tree growth
and with accumulation of AGB (GTOS & FAO, 2009; Picard et al., 2012; Shi & Liu, 2017).

As a result of the regression model, statistics that represent the adjustment of the equation for the
AGB and the uncertainty of the model, based on the tree measurement variable(s) are obtained
(GTOS & FAOQ, 2009). The most commonly used indicator is the coefficient of determination (R?),
representing the quality of the model to be replicated and the proportion of variation of the results
that can be explained by the model (Ayala Gallego, 2015; Mehtatalo, 2013). Mean square error
(MSE) is a measure of the difference between the estimator and what is estimated. The square root
of the MSE (RMSE), is the parameter of precision associated with the model assuming a constant
variance of the error (Cochran, 1977). Two more indicators are obtained from the regression
analysis, the error in prediction of the mean used to estimate the confidence interval of the
regression, and the error in prediction of an individual used to estimate the prediction interval of the
regression (Draper & Smith, 1998). Only 40 of 478 studies in AGB allometric equations for
Mexican trees forest, reported the parameters related to the uncertainty: RMSE or SE (Rojas-Garcia
et al., 2015a).

The allometric models of AGB are generated under different criteria related to the stand
characteristics, geographic area and the delimitation of classes according to the size range of the
trees to be characterized. Based on stand characteristics, the allometric model could be made for
species specific (Vargas-Larreta et al., 2017), genus (Méndez Gonzélez et al., 2012) or group of
species (Burquez et al., 2010). The geographic area criterion is related to allometric models
generated with information of one stand (Shi & Liu, 2017), a group of stands (Méndez Gonzélez et
al., 2012), a location (Navar et al., 2004) or a region (Shi & Liu, 2017; Vargas-Larreta et al., 2017);
considering those areas are referred to the physiographic conditions of the area (Shi & Liu, 2017).
The models have a range of validity whose extreme values are the minimum and maximum values
of the variables used when calculating the model; if we use the model to predict AGB outside this
range of values, estimation biases may occur (Picard et al., 2012).

1.3.7 Quality control of data

The quality control of data is due to the handling of data records in the field (United Nations, 2008),
transfer of field forms observations to electronic media (Kershaw Jr. et al., 2017), and the statistical
process of data in computer programs (Canavan & Hann, 2014). Therefore, it is important to
implement verification mechanisms at each step involving data transfer, to have a reliable database
for information analysis (United Nations, 2008). With an emphasis on the proper training of the
work teams in the process of collection and storage of field information (FAO, 1981; United
Nations, 2008).

To ensure data quality, NFI's have been implementing protocols to assess the quality of information
recorded (Tomppo et al., 2010). The protocols include data electronic storage, double review in
fieldwork, plausibility checking (included in the storage equipment), automatic verification on the
central server (logical check) and verification of 5-10% of the sampled plots.
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1.4 Error propagation

1.4.1 General observations of error propagation

When a predictor variable (or variables) is used to estimate AGB with a model, and the
measurement error was calculated for the predictor variable, the AGB error per tree will be
estimated through error propagation or uncertainty propagation based on the contribution of the
predictor variable into the model (Hughes & Hase, 2010). Uncertainty propagation is also used in
the aggregation process of AGB from tree-level to plot-level and continuing until stand-level, for
the variable underestimation (Chave et al., 2004).

As before indicated, for the estimation of AGB with NFI information in a ground-based approach
(Figure 1-4), the first source of error is the measurement s,,,. The second source of error incorporates
the uncertainty with the error of the allometric model s4,,. The third source of uncertainty is due to
the design of sampling through sampling error sgg. At the end of this process is estimated the total
uncertainty s, as a result of the error propagation (Shi & Liu, 2017).

Sources of uncertainty Uncertainty
propagated
(5]
D
[
>
2
=
< Tree measurement: AGB prediction Sampling design AGB stock
DBH, TH, Crown (allometric models)
Diameter, Wood
density
A 7
> 6 I -
E % ,“\ i %h J/ . L
S e aE
- / Confidence
Ss . Y
Sm = f(SpBu, STH) ScD) Sam SSE SAGB

Figure 1-4. Sources of uncertainty evaluated in the error propagation of AGB using NFI fieldwork
data.

1.4.2 GUM Method of error propagation

Error propagation calculated by the application of the Law of Error Propagation (IPCC, 2003) is
described in the Guide to the expression of Uncertainty in Measurement (GUM), first published in
1993 by the Joint Committee for Guides in Metrology (JCGM, 2010; Pérez-Hernandez, 2012) and is
reported as a GUM Method. To apply the GUM Method in this thesis, the following conditions must
be present: the process is applied to a single response variable of the mathematical allometric
model; the allometric model must be explicit; mathematical expectations and uncertainties can be
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calculated from the explanatory variables. To propagate uncertainties, the GUM Method establishes
the procedure summarized in the following steps and applied to the variable AGB (Farrance &
Frenkel, 2014; JCGM, 2010; Schmid et al., 2000):

Specify the measurand to calculate AGB. The physical model or set of assumptions about the
measurement is defined, allometric models approximate AGB in the forest and through this
calculation, AGB is associated with predictor variable(s).
Identify the sources of uncertainty. Measurement error, model error to estimate AGB and
sampling error.
Quantify uncertainty components or standard uncertainties. There are two types of evaluations.
In type A evaluation, uncertainty is described by analyzing the probability distribution function
of measurement error, and therefore, the distribution parameters associated with each error
source. Type B evaluation, error behavior is obtained through calibration certificates, literature,
regulations or previous studies; the allometric models to estimate AGB in NFI.
Calculate the value of the AGB.
Calculate the combined uncertainty. The Law of Error Propagation is applied to combine
standard uncertainty from each error source.
Calculate the expanded uncertainty. This is the confidence interval for the AGB estimate and is
calculated using the combined uncertainties multiplied by a coverage factor (k).
The explanation of the steps for error propagation by the GUM Method will be discussed in more
detail in Chapter 111 of this thesis.

1.4.3 Monte-Carlo simulation Method for error propagation

Monte-Carlo simulation Methods (MCM) are defined as numerical (Hughes & Hase, 2010),
computer-based (Castro Quilantan et al., 2010) or experimental probabilistic technics (Basil et al.,
2001), used to estimate probabilities, mean values, confidence intervals, using a sequence of
random or pseudorandom numbers (Hughes & Hase, 2010). Due to its relation to randomness, the
method has taken its name from the principality of Monte-Carlo is known for casinos where the
basic principle of its games is to get the result with low probability commonly stated as “by chance”
(Martinez, 2003).

MCM has been applied to different fields of science to solve many of the problems associated. Error
limits in accidentology (Martinez, 2003), risk estimation (Azofeifa, 2005), uncertainty in flow
measurement (Basil et al., 2001), evaluation of measurement uncertainty of pharmaceutical certified
reference material (Rocha & Nogueira, 2012), estimate the uncertainty of airflow measurement
(Sediva et al., 2015). In natural resources, the uncertainty assessment has been applied in ecosystem
budget calculations (Yanai et al., 2010), individual tree volume estimation (McRoberts, Tomppo, et
al., 2015; McRoberts & Westfall, 2014, 2016), plot-based estimates of carbon stock (Holdaway et
al., 2014), among others.

The MCM for error propagation is conceptually simple. The AGB estimate is evaluated repeatedly
by including the uncertainty of the explanatory variables (EV) in the estimate. This uncertainty is
randomly selected from the EV probability distribution error, calculating values higher or lower
than a mean value of the EV (Ogilvie, 1984; Rees, 1984; Yanai et al., 2010). If the AGB estimate
has more than two EVs, the variance-covariance matrix structure in the joint probability
distributions should be considered, which measures the joint variability of EVs (Ogilvie, 1984; Press
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et al., 2007). After repeating the process for numerous times, the result defines the probability
distribution of the propagated error (Yanai et al., 2010). The MCM procedure provides simulation-
based approximations to the propagated uncertainty without the need of differential equations
associated with the GUM Method (Farrance & Frenkel, 2014).

1.5 Justification of this study
1.5.1 Global level

1.5.1.1 Uncertainty in the estimation of AGB

In 1988, IPCC activities began with the aim of carrying out comprehensive assessments associated
with climate change (IPCC, 2003). To contribute to its main commitment in 1998 United Nations
Framework Convention on Climate Change (UNFCCC) requested the IPCC to standardize the
evaluation of GHG inventories, developing the Guidelines for national GHG inventories, which has
been reinforced by the contributions of the National Greenhouse Gas Inventories Program (IPCC,
2006). This guide was developed for the Kyoto Protocol compliance (IPCC, 2003, 2006). The guide
includes the standardized method to generate detailed information for each sector that contributes to
climate change and the assessment of the uncertainty associated with each sector (IPCC, 2003).
Houghton (2005) contributed to evaluating the uncertainty of forest biomass under different land-
use change carbon flux scenarios (Figure 1-5); three of the scenarios used for forest biomass
estimation from the FAO Forest Resources Assessment reports (1980, 1990 and 2000). The
difference between the evaluated scenarios of 0.95 PgC yr was attributed to the uncertainty of the
forest biomass estimate. Moreover, the result presented in the 2014 IPCC report indicated that the
main cause of climate change was the emission of carbon dioxide (CO-). CO- contributions
associated with agriculture, forestry and other land-use (AFOLU) are the second in importance with
a 24% contribution to the emission of GHG, only behind the energy sector with 34% (IPCC, 2014).
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Figure 1-5. Scenarios of carbon emission from land-use change in the tropical forests. Source:
Houghton, 2005 modified by Quegan et al., 2012.
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1.5.1.2 Monitoring of forest resources

Monitoring and evaluation of a country's forest resources are carried out through National Forest
Inventories (NFI), starting in the Nordic European countries in 1910 and continued with other
European countries in the 1960s (Democratic Republic of Germany, France, Austria, and Spain)
(Lund, 2009; Tomppo et al., 2010). The goals and objectives of NFI have changed according to a
demand for information that users have made over time, such as timber production, forest
biodiversity, the sustainability of forest resources, biomass storage, carbon capture, among others
(Kleinn, 2017; Lund, 2009). This has led to an evolution of the NFI, initially, monitoring carried out
by forest experts to assess the state of forest resources, and now monitoring carried out by
multidisciplinary teams to meet commitments of global interest, resulting in an instrument for
decision-making not only around forest resources (Kleinn, 2017). The NFIs have also evolved in
other aspects such as the standardization of inventories carried out in the same country to be able to
compare the results, and harmonization, which refers to the standardization between NFI of
different countries (Alberdi et al., 2016; Tomppo et al., 2010). As an example of harmonization and
since the NFI data are used to estimate the AGB and Carbon stored in the forest, IPCC guidelines
have been incorporated to know the estimation uncertainty (IPCC, 2006) and MRV processes have
also been incorporated to comply with the transparency in the estimation required by REDD+*
mechanisms (Kleinn, 2017).

Since 1946, the Food and Agriculture Organization of the United Nations (FAO) has coordinated
the generation of global forest data by compiling available national data. These reports had been
published all 10 years and because of the rapid developments and increasing demand in global
forest data the interval had been set for 5 years from 2005 onward. The world forest inventories, as
they were called in the beginning, are now the FAO Forest Resources Assessments FAO-FRA
(Garzuglia, 2018). These statistics since 2005 included AGB and carbon estimates under the IPCC
specifications (FAO, 2006). In GFRA 2015, an improvement was implemented in the methodology
applied to the evaluation called Long-term Strategy, which includes the improvement of the reports,
the quality and the reliability of the data provided by the participating countries (Garzuglia, 2018).

IPCC and GFRA reports provide information on forest area and CO, emissions due to forestry
activities, as well as the dynamics of vegetation cover in cooperating countries. Both reports do
emphasize the need to define and describe methodologies clearly and transparently and demand that
the uncertainties associated with the results be explicitly reported for all target variables.

1.5.2 National level: the example of Mexico

1.5.2.1 Policies and commitments

The Government of Mexico has recognized the problems are caused by loss and degradation of
forests and their relationship to climate change at national and international levels. Mexico signed
its commitment to the UNFCCC in 1992, the Kyoto Protocol was signed at the COP in 1997, and in
2016 added to the Paris agreement (Chamber of Deputies, 2019; Morfin Rios et al., 2015). Table I-1
shows the instruments and policies developed in Mexico to tackle the climate change effects and

! Reducing Emissions from Deforestation and forest Degradation and the role of conservation, sustainable management of
forests and enhancement of forest carbon stocks in developing countries (REDD+)
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thus implement the commitments acquired at the international level. In addition, the economy of
climate change effects has also been studied by the Mexican Government (SEMARNAT & SHCP,
2009) and, together with the National Climate Change Strategy, the Government decided to conduct
a sustainable, low-carbon economy based on the assessment of GHG emissions at the national level
and by economic sectors (CICC, 2013; Mexican Government, 2019).

The National Forestry Commission in Mexico (CONAFOR), with the project "Reinforcing REDD+
and South-South Cooperation™ (Mexico-Norway), developed the guidelines for the methodology to
be used in Mexico for the GHG inventory (CONAFOR, 2015), emphasizing the challenge in AGB
estimation of forest ecosystems. These guidelines were based on the IPCC proposal, that clearly
establishes the use of AGB and carbon data from the Mexican National Forest Inventory (MNFI)
for the estimation of emission factors in the sector LULUCF (Land-Use, Land-Use Change, and
Forestry) (IPCC, 2006). This AGB and the carbon estimate should include its uncertainty
estimation, as established by the REDD+ strategy in Mexico (CONAFOR, 2017b).

Instrumentand/  Year* Status Obijective / chapter / clause related to climate
or policies change

General Law of 2003 Updated in 2018 It states that the MNFI is an instrument of national

Sustainable Forestry (before 2003, policy and its estimates are used to develop programs

Development Forestry Law) and strategies for adaptation and mitigation of
climate change (Chamber of Deputies, 2018a).

General Law on 2012 Updated in 2018  The chapters 1l and 111 regulate the implementation of

Climate Change mechanisms for climate change adaptation and
mitigation (MRV systems) (Chamber of Deputies,
2018b).

National Climate 2013 Updated in 2019  National planning instrument. Proposal of actions to

Change Strategy be implemented in the medium and long term to face
the effects of climate change (Chamber of Deputies,
2019).

National 2013 Updated for the  Encourage economic development that will promote

Development Plan period 2019- the reduction of emissions of GHGs and adaptation to

of Mexico 2024 climate change to improve the quality of life for the

population (Mexican Government, 2019).

*Year of publication or year when climate change regulations were included.

Table I-1. Instruments and policies to implement actions for adaptation and mitigation of climate
change in Mexico.

1.5.2.2  Further developing the National Forest Inventory

The forest inventory in Mexico required a major improvement because the methodologies applied in
the four national inventories, implemented from 1960 to 2001, were incompatible with each other
(with respect to the set of variables, the sampling design, and the reference dates) and were
therefore not immediately comparable (CONAFOR, 2012c). In 2002, a new inventory attempted to
tackle the problem of inconsistency of protocols by harmonizing with US and Canadian NFI
procedures, while promoting international cooperation with NAFC? (SEMARNAT, 2004). The

2 North American Forest Commission (NAFC) for Food and Agriculture Organization of the United Nations (FAQ)
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primary objective of the MNFI was to support national sustainable forest development
(SEMARNAT, 2004), by improving the estimation of biomass and carbon stocks and conserve the
ecosystem quality (CONAFOR, 2012c). The MNFI in a more structured way started in the period of
2004-2009 and the first re-measurement 2009-2014. (CONAFOR, 2017a). The results of this
inventory have been used to report forest biomass and carbon stocks to FRA since 2010
(CONAFOR, 2012c). Recently, MRV procedures have been incorporated to standardize the
national carbon estimation process through the National REDD+ Strategy in Mexico (CONAFOR,
2017b; SEMARNAT & INECC, 2017).

For the Mexican government, the importance of the forest has become evident through the policies
generated over the last two decades around natural resources. These policies provide a framework
for the development of this thesis topic that describes the methodologies for the calculation and
reporting of uncertainties in the AGB estimation. The research in this study complements the
information reported by CONAFOR (CONAFOR, 2014a), since non-sampling errors are not
reported. The information in this thesis is the first study reporting measurement and prediction
errors along with sampling errors for the MNFI in Durango.

1.6 Outline of the dissertation

The thesis work includes the following topics as illustrated in Figure 1-6:

( )
Es 1. Quantification of Field measurement
measurement errors of variables
N~ 7 involved in the
- N estimation of AGB
Es 2. Device accuracy in (DBH, TH, AGB
measurement errors on AGB estimation model)
estimation

\.

AGB .
Es 3. NFI scale error estimation Es 4. Satellite image-
propagation of AGB in NEI based regionalization of
estimation AGB

scale

Figure 1-6. Structure of the dissertation.

Empirical study 1. Quantification of measurement errors: There is no evidence of published
works where the measurement error was estimated in dasometric variables for temperate
forests of Durango and in general in the context of the Mexican NFI. Studies in other
countries have shown that applying double measurement allows knowing the discrepancy
of measurements and can describe the measurement error. For this reason, double
measurements were carried out for DBH and TH in pine forest in El Salto, Durango,
Mexico to quantify the measurement errors occurring during fieldwork for DBH and TH.
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Empirical study 2. Device accuracy in measurement errors on AGB estimation: To determine
the uncertainty of the best estimate, in DBH and TH measurements, a case study was
developed to compare two devices of different precision for each variable and the effect
that this difference generates in the accuracy of the AGB estimation and error propagation.

Empirical study 3. NFI scale error propagation of AGB estimation: The AGB of the temperate
forest was estimated for the whole state of Durango, Mexico, using the data of the MNFI
and allometric models to calculate de AGB. The uncertainty propagation in AGB was
estimated with the MCM, incorporating the distributions of the errors from the sources of
uncertainty: fieldwork measurements (Topic 1), allometric models and sampling design.

Empirical study 4. Satellite image-based regionalization of AGB: AGB was modeled with remote
sensing using Landsat images and MNFI fieldwork as the reference data of AGB for the
state of Durango, Mexico.

1.7 Objective and research questions

1.7.1 General objective

The overall objective is to contribute to a better understanding of the role of errors and error
propagation in AGB estimates for the state of Durango, from data of the Mexican NFI, which in
turn will support carbon reporting at the national scale and helps make the NFI results more
meaningful and better interpretable.

From this overall objective, the following technical research questions are being derived all oriented
towards contributing to achieving the overall objective:

1.7.2 Research questions
Empirical study 1
i.  Which Probability Density Function (PDF) describes best the measurement errors in
DBH and TH for pine forest?

ii. How much are the contributions of the measurement errors and allometric errors in
comparison with the sampling error, in AGB estimation?

iii.  Which differences exist in the error propagation results from GUM Method in
comparison with Monte-Carlo simulation Method?

Empirical study 2

i.  How does the PDF of measurement error changes with different measuring equipment
for DBH and TH?

ii.  How does the measurement error in DBH and TH contribute to the total uncertainty in
AGB estimation, when the measurement error comes from devices of different
precision?

iii.  How is the relationship between non-sampling errors and sampling errors, when the
sample size increases?

Empirical study 3
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i.  Are measurement, prediction, and sampling, the only sources of uncertainty associated
with the error propagation in a scale of NFI?

ii.  What are the contributions of the different sources of error in the estimation of AGB to
the temperate forest in Durango State, using MCM?

iii.  How does the sample size affect the total uncertainty, when the analysis is made into
the strata of the temperate forest?
Empirical study 4
i. Isthe MNFI data suitable as a source of fieldwork information to predict AGB with
satellite information from the Landsat sensor?

ii. Which are the response variables from the Landsat sensor, that best model the AGB for

Durango temperate forest and substrata in the temperate forest?

iii.  Are goodness-of-fit parameters improved in the estimation of AGB with Landsat when

carrying out stratification with vegetation types?
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Chapter 1I: Materials

This research has been implemented through four studies developed with information on the
Mexican National Forest Inventory in the state of Durango. However, it was necessary to perform
two experiments in El Salto, Durango, Mexico and Géttingen, Germany, to improve understanding
and analysis of the topic under study.

11.1  Study Area

11.1.1 Durango State, Mexico

The main study area in this thesis work was the state of Durango in Mexico (third and fourth
empirical studies). This state lies between the coordinates (X, Y): corner North West (277055,
2968491) and corner South East (755631, 2472422) according to the UTM projection, datum
WGS84 and 13N zone (Figure 11-1). Durango has an area of 123450 km?. It is the fourth largest
state and represents 6.3% of the national area in Mexico. It is divided into 39 municipalities and had
a population as of 2015 of almost 1.8 million inhabitants (INEGI, 2016).

The topography of Durango is rugged, the altitude difference ranges from 440 meters above sea
level (masl) in the Piaxtla river bed, southeast of the state, up to 3328 masl in the Gordo hill, in the
south of the state. The physiography of the state has four provinces: the mountain chain Sierra
Madre Occidental (SMO) from the southwest to the center (71% of Durango), Northern mountains
and plains in the north-central area (15%), to the east lies Part of the Mesa del Centro (9%) and to
the northeast the mountain chain Sierra Madre Oriental (5%) (CONABIO, 2017).
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Figure 11-1. Durango State in the context of Mexico.
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The main geological formation is an extrusive igneous with 58% of the state, followed by
sedimentary material (23%), soil formations (16%), and the rest is a metamorphic rock and intrusive
igneous rock (3%). Soil types distribution is uneven in the state, the Leptosol type is present in 32%
of the territory, Phaeozem in 15% and Luvisol in 13%, these are the main soils with more than half
of the surface of the state. The predominant climate in 54% of the area ranges from very dry to
semi-dry, in second place of importance is the temperate climate covering 34% of Durango, placed
principally on the area of the mountain chain SMO (INEGI, 2016; CONABIO, 2017).

Anthropogenic activities, in Durango, cover 30% of the surface (3.7 million ha) and vegetation
cover the remaining 70% (8.6 Mha). Timber forest, which includes temperate forest and tropical
forest, is 47% (5.8 Mha) of the state. Conifer forest is the largest area of vegetation with about 19%
(2.3 Mha). The non-timber forest, including shrubs and desert vegetation, is 22.8% of the state of
Durango with 2.8 Mha. (INEGI, 2017).

11.L1.1.1 EIl Salto, Durango

The study area, that was used to do the first empirical study of measurement errors in DBH and TH,
is in the temperate forest of southwest Durango, Mexico. Including areas of high-density pine
plantations of 20-40 years old without a management plan. The country is subdivided into Forest
Management Units (UMAFOR in Spanish), according to the National Forest Commission
(CONAFOR), the institution leading the management of forest resources in Mexico. The fieldwork
was made in the UMAFOR 1008 or “El Salto” characterized by mixed and uneven-aged temperate
forest stands (Figure 11-2). The UMAFOR 1008 has 558,270 ha of surface, the 52% of the area is
occupied with temperate forest, and this is equal to 7% of the area of temperate forest in the state of
Durango.
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Figure 11-2. Location map of plot sites and UMAFOR 1008 in the State of Durango.
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With an altitude of 400 - 3262 masl; the predominant climate is temperate, sub-humid with rain
during summer (SEMARNAT, 2014). The average annual temperature of 10.7°C and an average
annual rainfall of 760 - 1490 mm during the months of June to September. This management unit is
located in the mountain chain SMO. The forest vegetation is principally a mixture of the genus
Pinus (P. engelmannii, P. durangensis, P. chihuahuana, P. cooperi, P. leiophylla, P. teocote, P.
arizonica, P. lumholtzii), genus Quercus (Q. sideroxyla, Q. rugose, Q. fulva, Q. mcvaughii and Q.
scytophylla), and shrub species of the genus Juniperus sp., Arbutus sp. and Alnus sp. among others
(Gonzalez-Elizondo et al. , 2012).

11.1.2 Gottingen, Germany

The second empirical study, comparing the measurement uncertainty committed in fieldwork using
different devices took place in the State forest in Northern of Géttingen, Lower Saxony, Germany
(Figure 11-3). This forest is located at 54°34° North latitude — 9°57°40°” East longitude and a
maximum altitude of 427.5 masl (Nagel & Wunderlich, 1976). The annual rainfall in Géttingen,
628 mm, is uniformly distributed over the year and temperature ranges from 1 to 17.4 °C, obtaining
with the average information of 1971-2000 (GAUG, 2017).
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Figure 11-3. Location map of the study area in the Gottingen Forest, Germany.

The studied forest tract belongs to the Highland of southern Lower Saxony and specifically to the
“Forest of Gottingen” (Brumme & Khanna, 2009), 4 km north-east of Gottingen city center. The
principal forest species in the study site are beech (Fagus sylvatica) as a dominant species, mixed
with European ash (Fraxinus excelsior), field maple (Acer campestre), Norway spruce (Picea
abies), wild cherry (Prunus avium), and few other species.
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1.2 Material

11.2.1 National Forest Inventory information

For the third empirical study, ground measurements were provided by CONAFOR (Table I1-1). The
database available contains the field data of the first MNFI in the state of Durango (Figure 11-4) in
the period 2004-2009 (CONAFOR, 2012c), as well as the data of the first re-measurement of the
MNFI 2009-2014 (CONAFOR, 2017a). The data acquisition in the fieldwork was based on the
“Manual and procedures for field sampling” made by CONAFOR (CONAFOR, 2009b). The
geographic location associated with the field information was the center of the Cluster or Primary
Sampling Unit (PSU) and the center of each subplot or Secondary Sampling Units (SSU), the
location of the tree was not recorded (CONAFOR, 2012c). The geographic information was
recorded with a conventional GPS receiver in projection UTM13N, CRS ITRF92, Datum ITRF92,
ellipsoid GRS1980 and units in meters (CONAFOR, 2009b). Geographic information was recorded
with an accuracy of less than or equal to 15 meters (CONAFOR, 2009b).

MNFI dataset Tree No. Cluster No. Subplots No. Species
2004-2009 118647 1826 6170 220
2009-2014 118641 1822 6090 277

Table I1-1. General information in sampling units of MNFI in Durango, Mexico.
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Figure 11-4. Left: Grid of Primary sampling units (PSU) of the MNFI for the temperate forest in
Durango. Right: Landsat 5 mosaic imagery false-color composite with RGB: 432 combination to
enhance vegetation in red color, covering all forested lands in Durango.

11.2.2 Satellite imagery information

To estimate the AGB in the third empirical study from remote sensing data, Landsat imagery was
used (Landsat 5 Thematic Mapper TM and Landsat 8 Operational Land Imager OLI) with a spatial
resolution of 30 m (USGS, 2015). The images were downloaded from
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https://earthexplorer.usgs.gov/ . The images required were the product with high-level surface
reflectance (Tier 1) with RMSE < 12 m of geometric verification (Young et al., 2017).

For the third empirical study, two field data sets were used: MNFI 2004-2009 and MNFI re-
measurement 2009-2014. For these two time periods, in the fourth empirical study satellite imagery
was required. The selected scenes are listed in Table 11-2 and they came from the last year of each
field campaign in MNFI in 2007 (Landsat 5 TM) and in 2013 (Landsat 8 OLI). With these data was
developed the model-based assessment.

2007 2013
Path/row Landsat5 TM RMSE (m) Landsat8 OLI RMSE (m)
(day.month) (day.month)
32/41 28.04 4.62 28.04 6.98
32/42 28.04 4.46 28.04 5.90
32/43 28.04 5.27 28.04 7.64
31/42 21.04 4.23 23.05 7.81
31/43 21.04 4.89 23.05 6.49
31/44 21.04 4.77 23.05 8.01
30/43 30.04 4.38 30.04 7.26
30/44 30.04 4.48 30.04 8.09

Table 11-2. Satellite imagery scenes of Landsat used in this study to estimate AGB in Durango,
Mexico. RMSE was expressed in meters and characterizes the result of the geometric correction
with ground control points.

11.2.3 Vegetation and land-use information

Vegetation and land-use series (LUVS) is a national product developed through the interpretation of
satellite imagery: Landsat and SPOT (CONAFOR, 2014b). This product started in 1993 and has
been incorporating new tools to improve the quality of the information obtained over time and has
been used for the analysis of the land-use and vegetation change nationwide in Mexico (INEGI,
2017). The LUVS, Series IV and Series V, were used to demarcate the area of the vegetation types
found in the MNFI (CONAFOR, 2012c, 2017a).

The Figure 11-5 shows the main vegetation types, the areas without vegetation and the
anthropogenic uses, for the Series IV and V of INEGI in the state of Durango. The INEGI, includes
in the anthropogenic uses the urban areas, agriculture, grassland, among others (INEGI, 2014). The
vegetation strata, inside of the temperate forest in Durango, are shown in Figure 11-6, also for the
two LUVS.

21


https://earthexplorer.usgs.gov/

Chapter II: Materials

300000 500000 700000 300000 500000 700000
T T T T T

Vegetation and Land Use
I No vegetation

I Rain forest

B Xcric shrubland

I Temperate forest

[~ 3000000 4 + s I Anthropogenic + &

= 2800000

[~ 2600000

+

Coordinate System UTM
Zone 13N
Datum WGS84

0 75 150 225 km
[ Sea— |

Series 1V (2007-2008) Series V (2012-2013)

Figure 11-5. Vegetation and land-use limits of Durango for the LUVS of 2007-2008 (Serie 1V) and
2012-2013 (Serie V).
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Figure 11-6. Vegetation strata limits of temperate forest in Durango according to vegetation Series
IVand V.

In the third empirical study, using the MNFI data, AGB estimation for the temperate forest and the
strata inside the temperate forest (conifer, mixed, and oak) were provided. Using the estimates per
vegetation type and demarcated area in Figure 11-6, in the fourth empirical study, the AGB stored in
the state of Durango was estimated with a sampling-based assessment.
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Chapter I11: Methodologies

I11.1 Empirical study 1: Double measurement of dasometric variables to estimate the
measurement uncertainty and error propagation in aboveground biomass estimation in pine

forests

111.1.1  Sampling design

Plot locations were selected by a broader project® based on stand competition conditions (tree
density and age-class). The selection of the plot had two limiting reasons; therefore, it was
necessary the prior knowledge provided by the forestry technicians of the region. The first reason
was safety issues due to social problems; the second reason was the owner’s permission to work in
the sampling sites. After applying the above criteria on the sampling sites, 10 locations met the
factors to be considered sampling sites (Figures 11-2, I11-1): La Victoria, La Campana, Borbollones,
La Campana 2, Pueblo Nuevo, Pueblo Nuevo 2, Pueblo Nuevo 3, La Campana 3, El Brillante 2 y El
Brillante 3.

La Victoria

élo Nuvo

El Brillante 2 El Brillante 3

Figure I11-1. Pictures of the pine forest in El Salto, Durango, where the sampling sites were
located.

111.1.2  Plot design

The aforementioned project determined the plot design and provided the field crew. My role was to
coordinate the fieldwork and | was part of the observers of the dasometric variables. The plots were
established in August and September of 2014. The plot size was 95 X 60 meters; subdivided into six

% “Installation of a thinning experiment in forests of UMAFOR 1008 (Corral-Rivas et al, 2013)
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subplots of 25 X 25 meters with a corridor of ten meters between the plots (Figure 111-2). The
division into subplots was made for later thinning treatments by the project above mentioned;
however, for this study, the data of the six subplots together was considered as a single plot data.
The boundaries of the subplots were oriented North-South and East-West and cords were used to
make the plot limits visible. The plots remained marked throughout the period of the measurements.

95 m
_—25m—
10 m
25m
SP1 SpP2 SP3
60m| [10m
SP4) SPS SP6

Figure 111-2. Size and arrangement of the subplots.

The trees in the plots were marked and numbered with a metal plate and their position recorded with
x-y local coordinates for each subplot. These tree marks facilitated the identification of the sample
trees, during the measurement. The metal plates were oriented to the center of the subplot for easier
reference.

111.1.3 Experiment design

Field data collection followed the procedures defined in the "Manual and procedures for field
sampling", a protocol developed by CONAFOR for the MNFI 2004-2009 (CONAFOR, 2012c).
This document describes exhaustively how to do a standardized data collection of dendrometric
measurements (i.e. DBH, TH, etc.) in MNFI.

Devices used in the measurement were calibrated regularly to avoid miss-calibrations. The center of
each plot and subplot was recorded by a Sokkia CX total station with two base stations, which was
also used to measure azimuth and distances from the center of the plot to the trees stem surface at
breast height. Tree position was then the distance measured plus half the diameter of the tree.
Positions measured were post-processed and was obtained a precision of 2 mm using data from base
stations and projected in the UTM WGS84 system of zone 13N. DBH was measured in two
directions, North-South and East-West, similar to the marking of the sub-plots and a Caliper with
mm accuracy was used. The TH was measured with a Vertex IV, this device had 0.1 m as the
smallest unit of measurement. Species identification was done by support staff who had experience
in the identification of regional trees.

A procedure of two “blind” measurements was used as recommended by Condit (1998) as a
measure of quality assurance. This method consisted of the following steps: i ) Measuring a variable
to all the trees in the plot, this was the first measurement made by one person, ii ) Repeated-
measurement of the same variable for all trees in the plot without access to previous measurement
made, being a measurement independently made by a second observer. In the first cycle, DBH, TH,
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tree location and species were recorded. In the second cycle, DBH and TH were recorded; because
of the relatively low species diversity in the sample plots, a re-assessment of tree species was not
done, assuming that errors due to species-misidentifications be non-existent. The re-measurement of
most plots was done on the same day or the day after the first measurement. At one sampling site, it
could only be done about one week later. The recording of field data was conducted by two
different observers, one for point 1 in time and the second one for the re-measurement.

111.1.4  Aboveground biomass (AGB) estimation

The AGB estimation was calculated indirectly using allometric models. Field variables used in
these models were DBH, TH and tree species. Four species of pine were identified (Pinus cooperi,
P. leiophylla, P. strobiformis and P. teocote), trees from genus Arbutus spp, Juniperus spp and
Quercus spp, and one tree of Abies durangensis. A selection criterion for the model was developed
because a pool of 46 models was found for the species identified and is represented in the following
flow chart (Figure 111-3).

Allometric Model
selection

| Species | | Genus ”Vegetation gruupl

[ 1 |
v

Range of DBH and Height

CThe lowest Mean Square Error (MSE)

The highest coefficient of determination (R?)

v

@osest elaboration location to the study area

¥

Figure 111-3. Flow chart to select the allometric model for AGB estimation, adapted from
CONAFOR (CONAFOR, 2014b).

The first step in the selection criteria was to identify the tree in the field at the sp/genus/vegetation
group level. With the field identification, models that meet the first criterion were then compared
with the valid range, which must not be exceeded by field data (DBH, TH, crown diameter) to avoid
a systematic error. The next two criteria were measures of the goodness of the model fit, selecting
the models with the lowest MSE and the highest determination coefficient (R?). The last criterion
was the selection of the model that has been adjusted with trees in the study area or the model that
was adjusted close to the study area. Even though not included in the criteria, the selected model
used more than 30 trees to meet the requirement of a biomass estimate in a homogeneous and
species-specific stand, as referred to Picard et al. (2012).

As before mentioned, in "El Salto" five genera and in the genus Pinus spp four species were
identified, therefore, models made at species/genus levels were used. Rojas-Garcia et al. (2015a)
made a compilation of 478 allometric models to estimate AGB in Mexico; this study reported in
Durango 27 and three AGB models for the genus Pinus spp and Quercus spp, respectively. In 2017,
Vargas-Larreta et al. published a study conducted in the Durango temperate forest where they
obtained allometric models of AGB for species-specific and genus of the main commercial species.
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Allometric models, adjusted by Vargas-Larreta et al. (2017), satisfied the selection criteria and are
shown in Table I11-1. The genus Abies spp in the state of Durango is infrequent (Quifiones-Pérez et
al., 2012) and no studies on AGB estimation have been conducted, for this reason, the allometric

model proposed by Avendafio et al. (2009) adjusted for the Abies religiosa species was used.

s AGB In piin pln ps R? RMSE DBH TH Tree
component a DBH TH DBH?TH kg (cm) (cm) No.

Qf;:;guensisl Total 1.074 2510 0.99 26 6.5-79.0 6.8-42.4 1
stem 1067 1664 0.865 093 1511
Arbuts bark 1.003 1518 0.950 087 085
e branches 1.021 1.812 0.819 095  6.99
foliage 1.007 1.503 0.848 079 172

Total (%) 095 2281 49 7.9-448 2.4-250 4
stem 0.013 091 2898
Juniperus bark 0.001 057 3.5
i branches 0.002 0.81 5.87
foliage 0.001 0.67 3.92

Total (%) 090 3700 48 10.0-437 45215 23
stem 1.032 2093 0.769 097 41.22
Bins bark 1.011 1676 0.746 0.81 1043
cooperi® branches 1.008 1.599 1.347 0.89 27.06
foliage 1.051 1.223 0.600 074  3.79

Total (X) 094 8721 103 55523 4.2-280 3956
stem 0.016 0.94 6835
o bark 0.001 0.89  6.92
. ) branches 0.007 0.63 67.38
leiophylla foliage 00003 081 253

Total (%) 0.92 11021 84 84553 54-292 79
stem 1.007 2.022 1.309 0.90 8801
o bark 1.031 1.100 1.099 088  6.34
L - branches 1.016 1.906 0.701 0.93 15.24
strobiformis foliage 1.040 1535 0.318 072 555

Total (2) 093 9302 98 50490 63266 32
stem 1.045 1.895 0.847 092 5850
o bark 1.003 1.962 0.662 093 934
te.ocotez branches 1.005 1.788 1.123 0.93 3.02
foliage 1.031 1.784 0.73  16.67

Total () 095 7611 81 10.0-450 45247 124
stem 1123 1774 0.687 078 94.25
bark 1.008 0.008 0.65 27.68
‘g;j;{cus branches 1.051 0.050 0.342 057 53.64
foliage 1.086 0.082 029 11.95

Total (%) 0.82 13412 423 7.0-57.0 3.3-248 43

Bij _

AGB component (kg hal) = W; = aiX;

+ &; AGB Total (kg ha') = W,

1 W; + &,; where Xj=tree variables, a; and gi=coefficients

estimated, & and & = error terms; R?= coefficient of determination; RMSE=root mean square error; n=number of trees used to fit the

model; DBH (cm)=DBH range of trees used to fit the model; TH (cm)=TH range of trees used to fit the model; Tree No.=number of trees
registered in El Salto, Durango.
! (Avendario Hernandez et al., 2009)
2 (Vargas-Larreta et al., 2017)

Table 111-1. Allometric models used in the pine forest of El Salto, Durango to estimate AGB based
in DBH and TH measurements.
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111.1.5 Quantifying uncertainty
111.1.5.1 Source of uncertainties

111.1.5.1.1 Methods to estimate measurement error at tree-level

DBH and TH were measured for 4262 trees. The measurement (M1) and the re-measurement (M2)
of the variables were made independently and each was considered as a trial mensuration.
Therefore, the difference of the M1-M2 was treated as a discrepancy (Taylor, 1997).

The relationship between discrepancies in DBH measurement and the DBH size is shown in Figure
I11-4. The dispersion chart shows a concentration of the point cloud close to zero, and in trees with
DBH less than 30 cm. In the lower part of the figure, the dispersion chart of TH discrepancies by TH
tree size is shown. Most of the values in TH are also concentrated close to zero and in trees larger
than 5 meters but no more than 20 m of TH. To verify the concentration of data close to zero was
applied a Kurtosis Test, and the discrepancies distributions were classified as leptokurtic
(Kurtpsn=8.030, Kurtry=4.394). Using the Lilliefors Test, normal distribution was rejected for both
variables discrepancies (ppsr < 2.2, pry < 2.2e9).
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Figure 111-4. Discrepancies dispersion across the size of the tree and distribution of the
discrepancies for the variables DBH and TH in El Salto, Durango.

To analyze the heteroscedasticity, discrepancies were converted into an absolute value and was
fitted a regression line over the values to evaluate the relationship of discrepancy relating to the size
of the tree (Figure I11-5). The trend line in this figure shows the increase of the discrepancy with the
increase of the tree size (p-valuepsn<2.2e*°, p-valuern<2.2e?).However, the equations shown here
were not further used in the error propagation because the discrepancy is not an uncertainty
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according to the IPCC (2006). They have been provided to illustrate the basic properties of repeated
DBH and TH measurements.

DBH measurements
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Figure 111-5. Linear regression relating discrepancies in measurement with the size of variable
measured (DBH and TH).

111.1.5.1.1.1 Methods 1 and 2: Probability Density Function (PDF)

Discrepancy data was used to construct the uncertainties' distribution. On the left side of Figure I11-
6, are the plots of the discrepancies, in absolute value. To each discrepancy was added the negative
value (mirrored), resulting in the distribution on the right side in Firure Il1-6. To perform this
procedure, we assumed symmetry in the measurement uncertainty. In Method 1, we adjusted a PDF
to each data set (DBH and TH) thus obtaining the parameters to estimate the measurement uncertainty
per tree.

In Method 2, to include the uncertainty variability across the tree size, the PDF was adjusted by class
(Chave et al., 2004), assuming that the uncertainties behave similarly inside each class of the
measured variable. Classes every 5 cm and 2.5 m were defined for DBH and TH measurements. Every
class had more than 100 data to calculate the PDF.

Measurement uncertainties were adjusted to a PDF (Hughes & Hase, 2010; IPCC, 2003) with the
fitDist tool in the "Propagate” package for R (R Core Team, 2018; Spiess, 2015). The adjustment
procedure was based on the calculation of the weighted residual sum of squares (RSS) of the
observations and is used as an adjustment criterion. Goodness-of-fit (GOF) obtained was the
Bayesian information criterion (BIC), which has an increasing number of parameters in the
adjustment of the distribution and compensates for the overfitting (Spiess, 2015). RSS and MSE
were also part of the GOF report of this package.
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Figure 111-6. Probability Density Function of uncertainties for DBH and TH measurements in the
study area.

111.1.5.1.1.2 Method 3: Root mean square deviation

As already mentioned, the discrepancy is not a parameter of uncertainty. However, the discrepancy
collected information on the difference between M1 and M2. The root mean square deviation
(RMSD) measured the difference between the two observed values per tree, averaging the squared
deviations, giving a non-negative result. The Equation that describes the RMSD is the following:

n _ 2
RMSD = /Z’Zl(’+x’”z} Equation 01

Where: x;,;-x,,, = discrepancy, n = number of trees measured

The RMSD estimated was used as the standard deviation of the uncertainty measurement, assuming
a normal distribution and a constant variation (homoscedasticity) not depending on the size of the
tree. In Section 111.1.5.1.1, it was stated that discrepancies were not normal distributed, however, the
normal distribution assumption was necessary in this case to apply the GUM Method of error
propagation, using the standard deviation as the parameter of uncertainty applying the Law of Error
Propagation.

111.1.5.1.2 Tree-level (prediction error)

The allometric models were shown in Table I11-1. This table included two of the criteria used to
select the allometric model to estimate AGB in this study: coefficient of determination (R?) and
RMSE. The RMSE was used in the error propagation assuming a normal distribution characterizing
the model uncertainty (UAM).

I11.1.5.1.3 Sampling error

The previous sections have described the calculations to obtain the two sources of non-sampling
uncertainties used in this empirical study: measurement error and prediction error. In this section,
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we address the equations associated with sampling error, generally, the only source of error reported
in forest inventories. Together, sampling error and non-sampling error were the total error in this
empirical study.

Simple random sampling (SRS) estimators were used to estimate the parameters of AGB at the
stand-level. The estimator for the mean g estimated the AGB for the study area. The Equation of
this estimator is:

Z;}:IY,'

n

mean (f) =y = Equation 02

Where: y; = AGB estimated in plot i; n = number of plots

The variance estimator (62) describes the dispersion of the per plot AGB values. It is an unbiased
estimator of the population variance and was calculated with the following Equation:

_ 2 6,7)

- Equation 03

variance [0”2
Where: y; = AGB estimated in plot i; ¥ =mean AGB estimate; n = number of plots

The standard error of the mean (SE) is the standard deviation (6 = \/?) of all the possible sample
means and is reported in the forest inventories as the sampling error. The SE is used to define the

confidence interval in which the parametric mean of the AGB estimation is located with a certain
probability of occurrence, commonly 95%.

SE (8;)= \ﬁ == Equation 04

Where: ¢ = variance of AGB estimation; n = number of plots

111.1.5.2 GUM Method of error propagation

The GUM Method was used to propagate the error in AGB estimation, through the application of
the rules for uncertainty assessment of the Joint Committee for Guides in Metrology (JCGM, 2010).
Detailed steps of the GUM Method are described below, following the order indicated in Section
1.4.2.

.Specify the measurand to calculate AGB

The AGB was estimated by an indirect method using allometric models (AM). The predictor
variables (DBH and TH) were used in the AM to estimate the AGB per tree. Applying the simple
random sampling (SRS) estimators to the AGB values per tree resulted in the AGB in the study
area.

ii.Identify the sources of uncertainty

The sources of uncertainty in AGB estimation were identified in Section 111.1.5.1. These sources
were grouped as non-sampling error and sampling error. The two sources of non-sampling error
were the measurement error and the AGB prediction error.

iii.Quantify uncertainty components or standard uncertainties

Three methods were used to quantify measurement errors, described in Section 111.1.5.1.1. With
these methods, the measurement uncertainties of DBH and TH per tree were estimated. The AGB
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prediction uncertainty was the RMSE of the allometric models in Table I11-1. The SE, estimated
with Equation 04, was the uncertainty parameter from sampling.

iv.  Calculate the value of the AGB
In this step, the step i. was applied to get the best estimate of AGB. This estimate was made from
the AGB at tree-level to the AGB at the stand-level, using the sampling error (SE). This estimate of
AGB was the baseline excluding non-sampling errors.

v.  Calculate the combined uncertainty
The AGB estimate had levels of error propagation or levels of a combination of uncertainties. The
first combined uncertainty was the measurement errors in AGB estimation at tree-level (uTree),
combining the uncertainty in DBH (uDBH) with the uncertainty in TH (UTH). To combine these
uncertainties, the partial contribution of each variable (DBH and TH) in the AGB estimate was
calculated (Taylor, 1997). This contribution is the sensitivity coefficient (SCpgn, SCtn) and was
calculated by a partial derivation of the allometric model regarding DBH and TH (Equation 05).

0AGB 0AGB

SCosr= 5 » SCru=—- Equation 05
. 0AGB __ . . . . . . 84GB _ .
Where: D partial derivative with respect to DBH of the model used to estimate AGB; = partial

derivative with respect to TH of the model used to estimate AGB

The Law of Error Propagation (LEP) is the process that propagates random uncertainties and was
used to combine the measurement errors in uMes. This LEP was applied when more than one source
of uncertainty was included in the AGB's estimation model. The formula applied considered
whether the variables involved were independent (Equation 6a) or dependent (Equation 6b).

ODBH oTH

uMes = J ((M uDBH)2> + ((MGB uTH)Z) Equation 06a

_ 0AGB 2 0AGB 2 0AGB , 0AGB .
uMes = J ((6DBHMDBH) ) + ((ar—HuTH) ) + (S« S MUDBHAUTHYD g 1) Equation06b

Where: uDBH = uncertainty of DBH measurements; uTH = uncertainty of TH measurements; opsH,TH) =
correlation coefficient of DBH and TH measurements

The second combined uncertainty was the non-sampling errors in AGB estimation at tree-level
(uTree). The uMes was combined with the AGB prediction uncertainty (RMSE in Table 111.1).
These two uncertainties, independent and random, were combined applying the LEP with Equation
07.

uTree= \/ (uMes)’ +(RMSE)* Equation 07

Where: uMes = measurement uncertainty by tree; RMSE =root mean square error of the allometric model to
estimate AGB

The third combined uncertainty was the non-sampling errors in AGB estimation at plot-level
(uNSplot), by adding uTree in quadrature, as stated in the LEP (Equation 08).

uNSplot = J(uTree1)2+(uTree2)2+...+(uTree,,)2 Equation 08

Where: uTree = non-sampling uncertainty by tree; n = number of trees
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The fourth combined uncertainty was the non-sampling errors in AGB estimation at the stand-level
(uNS). The uNSplot were combined to estimate the uNS. Applying the uNSplot in Equation 04, in
this combination, was included the sampling design in the estimation of uNS.

uNsS =

Equation 09

Y.(uNSplot 1)2

Where: uPlots is ; UNSplot= uncertainty estimates in the i plot; n=number of plots

ﬂa

Note: To get the contribution to the uNS by a source of uncertainty, only the parameter (& or RMSE)
of the source of interest (DBH, TH or AM) was included in the propagation and the other sources
were stated without uncertainty. When the contributions by a source of uncertainty were obtained
separately, it was verified by the LEP, that the uNS was the product of the independent uncertainties
from each source.

uNsS = J(u])2+(u2)2+...+(u,~)2 Equation 10
Where: u= source of uncertainty; i = number of sources of uncertainty

The fifth and final combination was the total uncertainty in AGB estimation (uW). In this step, the
uNSI and the SE were combined (Equation 11). The SE was estimated in the AGB estimation
baseline following the step iv.

uW = v uNS’+SE Equation 11

The result of total uncertainty was reported using the 95% confidence interval. The confidence
interval (CI) was the range where the mean AGB of the population was estimated to lie with a 95%
probability (Equation 12). This CI was constructed with the expanded uncertainty* of the AGB
estimated (UWexp), and this uncertainty was calculated with the uw multiplied by a T-distribution
value (Equation 13). Since normality was not assumed with 10 sampled plots, the probability was
calculated with the T-distribution. The effective degrees of freedom for T-distribution were
calculated with the Welch-Satterthwaite equation (JCGM, 2010; Pérez-Hernandez, 2012) (Equation
14)

Confidence interval = Clwgse, = (W-UWexp) < W < (W+uWexp) Equation 12
Expanded uncertainty = UWexp= UW * (to.05(Ver) Equation 13
4
Effective degrees of freedom = Vet = (N;L;—m(w Equation 14
s dsg

Where: W=total AGB estimate; uWexp=expanded uncertainty; uW=total uncertainty in the stand; Ve
=effective degrees of freedom; uNS= uncertainty due non-sampling errors; SE=sampling error; df =
degrees of freedom

Figure 111-7 shows the flowchart of the steps implemented to propagate the error in the AGB
estimation, using the GUM Method.

4 Term used in JCGM (2010) for error propagation with the GUM Method.
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i. Specify the AGB estimation

(Explanation of the measurement and the

elements in the model, aggregation,
estimators)

J
l . * DBH
[ ii. Identify the sources of uncertainty " TH
' ) * Allometric model (AM)
'  Sampling error (SE)
( )
iii. Quantify uncertainties per source [ Estimate the standard deviation from J
UDBH, uTH, UAM every source of uncertainty
. J/
e A
iv. AGB estimation from tree-level
until stand-level. Sampling error P
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‘ « correlations of variables
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Confidence interval of the AGB
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Figure 111-7. Flowchart to estimate AGB error propagation adapted from two publications, the
Evaluation of measurement by JCGM (2010) and the IPCC Guidelines for National GHG
Inventories (2006).

111.1.5.3 Monte-Carlo simulation Method (MCM)

Determining the criteria for setting the number of iterations for error propagation in AGB
estimation (repeated simulations of the estimate) was an important step for the MCM. For this
study, iterations from 10 to 100000 were evaluated, and the AGB average (fi,;g), Standard error
(64¢8), and standard error confidence interval were estimated for each group of reiterations.
Following the selection criteria established by the IPCC (2006), the number of iterations from
which the value of the estimates reached a variation of less than 1% of the estimators calculated
without uncertainty was selected (Figure 111-8). The MCM found stability in the estimation of the
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AGB mean (fi4;g) estimation and the SE (6,.5) of the AGB estimation from 10000 iterations so
that this value was used in all simulations.
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Figure 111-8. Iterations made to select the optimal number of iterations for MCM in the uncertainty
estimation of AGB with information of El Salto, Durango.

The MCM to estimate the error propagation in AGB estimation was implemented in the Package R
(R Core Team, 2018). The use of the MCM required the parameters of the Probability Density
Function (PDF) of measurement uncertainty in DBH and TH (Section 111.1.5.1.1.1). The PDF used
in MCM was the best evaluated by the Goodness-of-fit: Bayesian information criterion (BIC),
residual sum of squares (RSS) and MSE. Correlation of the measured variables (opg+.m)=0.78) was
included in MCM, because according to Ogilvie (1984) it should be used when it is greater than
|0.8|, otherwise it is negligible. The AGB prediction error parameter was the RMSE in Table I11.1.

The flowchart of MCM to propagate the error in AGB estimation is in Figure 111.9. This flowchart
was made based on the IPCC Guidelines for National GHG Inventories (2006), incorporating the
AGB estimate for the uncertainty levels considering under this study. The flowchart represents the
steps made by the level of uncertainty and the required information. Step 1 was the PDFs of the
non-sampling uncertainty sources used in the AGB estimation (S1L1, S1L2). Step 2 was the random
selection of PDF values for measurement uncertainties (S2L1) and allometric model (AM)
uncertainty (S2L2). Step 3 was the calculation of the AGB with the AM including the uncertainty
values (S3L1, S3L2). In step 4, the iteration process was performed, each AGB estimate was
repeated 10,000 times, and the aggregation process from tree-level to plot-level took place. In step
5, using the estimators in Section 111.1.5.1.3 were estimated the mean value and the SE of AGB
estimate to construct the confidence interval of the error propagation. On the right end of the
flowchart is the path used to include all uncertainties in the simulation together. At the bottom are
the four outcomes: error propagation with individual uncertainty sources (uUDBH, uTH, uAM) and
error propagation with all uncertainties. The error propagation using one source of uncertainty at a
time provided the contribution of that source to the total uncertainty. The error propagation
Equation for the MCM results in non-sampling uncertainties was:

34



Chapter I11: Methodologies

uNS =~ J (uDBH)’ +(uTH)* +(uAM)’ Equation 15
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Figure 111-9. Flowchart for error propagation of measurement and model uncertainties in El Salto,
Durango, Mexico, using the MCM.
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111.1.6 Information analysis

111.1.6.1 General estimations of the study area

Stand statistics were calculated for AGB and basal area for the study area. Basal area was calculated
since it is one of the variables most used in the stand characterization and related to the tree density

and AGB (Kershaw Jr. et al., 2017; Lewis et al., 2013; Ni-Meister et al., 2010). Data from the DBH

and TH, as measurement variables, were included in this analysis.

111.1.6.2 Variables measured and measurement errors

The relationship between the response variables (DBH and TH measurements) was analyzed. These
variables were used in the allometric model to estimate the AGB. In addition, measurement errors
were described using three methods to estimate the measurement uncertainty parameters (uUDBH
and uTH).

111.1.6.3 Baseline estimation

AGB estimation, as a reference value, was calculated with the allometric model by species using the
mean value (i) of the two measurements for each tree (DBH and TH). The measurement
uncertainties and allometric model uncertainties were not required for this estimation.

111.1.6.4 Error propagation

The three methods used to estimate DBH and TH measurement errors were used to propagate
measurement uncertainties in AGB estimation with the GUM Method. After estimating the
measurement errors, the prediction errors were aggregated, resulting in the AGB error propagation
scenarios. For the identification of the methods used to estimate the measurement error in the
propagation of the error, Table I11-2 relates the method used with the acronym adopted by the
scenario. A similar identification of scenarios was made to the methods used when applying the
MCM in error propagation.

Error . Uncertainty
propagation Methods to estimate measurement error scenario
Method 1: Normal distribution NDn
GUM Method Method 2: Normal distribution per class NDnC
Method 3: RMSD RMSD
MCM Method 1: Best PDF MCBD
Method 2: Best PDF per class MCBDC

Table 111-2. Methods and scenarios applied in the error propagation of AGB estimation in El Salto,
Durango, Mexico.

The scenarios of error propagations were compared in the errors committed in AGB estimation for
the study area. Based on the analysis of error propagation performed, the contribution of uncertainty
sources (DBH, TH, and allometric model) to the total error propagation was determined.
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111.2 Empirical study 2: Comparison of aboveground biomass estimates from two types of
dasometric measuring equipment for the variables DBH and TH, a case study developed in
beech forest near Goéttingen, Germany

111.2.1  Sampling and plot design

In this study area, 47 plots were established in the summer of 2015. The plots were laid out in a
systematic grid of 75 by 75 m (Figure 111-10). Plots were circular and had an area of 500 m? (12.61
m radius).

43

5 41

Figure 111-10. The pictures give an idea of the study area and the systematic sampling design is
given.

111.2.2 Experiment design

111.2.2.1 Re-measurement fieldwork

Eleven plots were selected to describe and analyze the measurement uncertainties. Two variables
were considered in the fieldwork: DBH and TH as explanatory variables to estimate AGB. The
experiment consisted of repeated measurements to estimate the best measurement, or control data,
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per device per variable and to characterize the uncertainty per device per variable. To obtain this
control data, two devices were used to measure the DBH and two devices to measure the TH.

A protocol of measurement was made for the fieldwork. This protocol established the measurement
criteria for the correct usage of the devices including calibration. Applying this protocol, it was
assumed that systematic errors were avoided. The measurement protocol was based on the protocol
established by FAO (Saket et al., 2004). The devices used for the measurement of the explanatory
variables were:

The DBH measurements were made with a Caliper of a maximum of 65 cm (brand Haglof) and
with a metallic diameter Tape for a maximum diameter of 96 cm. Measurement resolution for both
devices was 0.1 cm. A minimum DBH of 7 cm was defined.

The TH of the trees was measured with two hypsometers, Blume-Leiss (brand Carl Leiss Berlin
GmbH) and Vertex IV (brand Haglof). The two devices measured with the trigonometric principle
the height of the tree, the measurement unit was in meter (m) and the resolution was 0.5 and 0.1 m,
respectively. The accuracy of the Vertex was 1% and was provided only for horizontal distance
(Haglof Sweden AB, 2007). The resolution was the minimum scale the devices result was read
(Schmid & Lazos Martinez, 2000) and the % accuracy indicated how different is the device lecture
to the true measurement value (Cochran, 1977).

"Blind measurements” were applied (Condit, 1998), as explained in Section 111.1.3. Five repetitions
were made per device per tree. The repeated measurements made with Tape and Vertex were the
responsibility of one observer during the entire experiment, and the repeated measurements with
Caliper and Blume-Leiss were made with a second responsible observer. The two responsible for
measurements made field data collection in the 11 plots, while one observer conducted the
measurements, the other recorded the observations. The devices used for this study were always the
same during the data acquisition to avoid bias due to the device. The two observers, before
fieldwork, trained to measure the same trees until they reach less than 1 cm and 1 m of difference in
measurement of DBH and TH, respectively.

111.2.2.2 Stand-level fieldwork

Students of the University of Gottingen registered the field data of the 47 inventory plots. In this
data, a single measure per tree and per variable was recorded with Tape and Vertex. This data was
used to estimate the AGB and the uncertainty propagation of the measurement errors.

The analysis of the measurement errors between repeated measurements and the fieldwork by
students was reported in the master's thesis by Praudel (2015). Praudel compared the measurement
of two groups of students (based on their experience in dasometric measurements) and the best
estimate in DBH and TH using Tape and Vertex. The results of Praudel (2015) showed that
experienced students had measurement uncertainties of 1.18 cm and 4.01 m for DBH and TH. For
non-experienced students, the uncertainties were 1.18 cm and 4.06 m.

111.2.3 AGB estimation

The models used in this study, to estimate the AGB, were developed for broad-leaved trees and
conifer trees (Fehrmann, 2006). To derive the models, Fehrmann (2006) used data from n = 528
trees for the general model for broad-leaved trees and data from n = 963 trees for the general model
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for conifers. The DBH range of the sampled trees was from 0.8 cm to 77.1 cm and for tree TH from
1.9 m to 29.1 m. The corresponding models are in Table I11-3, and the total AGB per tree (W) is
calculated in kg.

Vegetation group AGB allometric models

Broad-leaved W = 0.044 * DBH?2048 *TH0.759
Broad-leaved W =0.099 * DBH?5%
Conifers W = 0.082 * DBHZ170 *TH0-349
Conifers W = 0.089 * DBH2464

Table 111-3. Allometric AGB models used in the study area of Goéttingen, Germany (Source:
Fehrmann, 2006).

111.2.4  Sources of uncertainties
111.2.4.1 Tree-level (measurement error)

111.2.4.1.1 Individual tree uncertainty.

The SRS estimators were used to calculate the mean value (i) and the standard deviation (&) of the
five measurements per tree, in the 11 re-measurement plots. The mean ({) was the best estimate
value of the measurement and the standard deviation (&) was the uncertainty parameter of the
measurement. Applying these calculations to the measured variables (DBH and TH), and in the four
devices used, were estimated the measurement uncertainty parameter per variable, per device, and
per tree. Although this uncertainty was an estimate, it was hamed "measured uncertainty" indicating
that it comes from the repeated measurement per tree.

111.2.4.1.2 Methods to estimate the “measured uncertainty”

Repeated measurements were made on 11 out of 47 plots, i.e. the "measured uncertainty" could not
be estimated for all trees. Therefore, four methods were used to estimate the measurement
uncertainty parameters to include this uncertainty in all the trees at the stand-level. The source of
information was the “measured uncertainty” (previous section) and the methods applied are
described in the following sections.

111.2.4.1.2.1 Method 1: mean value of “measured uncertainty”

The mean value or average of the “measured uncertainty”” from Section 111.2.4.1.1 was calculated,
and this mean uncertainty parameter (o) was applied to the measurements made in trees of the 47
plots. Applying this method, we assumed that the measurement errors had the same size (a) on all
trees and these errors not depended on the size of the tree. This estimation was made per device.

111.2.4.1.2.2 Methods 2 and 3: Probability Density Function (PDF)

These methods were explained in Section 111.1.5.1.1.1. In this case study, the uncertainty
information to calculate the Probability Density Functions (PDF) was the standard deviation (&)
estimated per tree or “measured uncertainty”. In the method 2, a PDF was fitted using all the dataset
of measurement errors (&) and was applied per variable measured (DBH and TH) and per device. In
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method 3, the total number of measurement uncertainties (&) was divided into three classes. The
classes used were 7-20, 20-40, 40-63 for DBH (in centimeters) and 5 - 15, 15 - 25, 25 - 37 for TH
(in meters). The criteria used for the selection of classes was taken from Pardé and Bouchon (1988),
using classes with more than 50 observations to fit a PDF per class, considering every class as a
homogeneous dataset.

111.2.4.1.2.3 Method 4: Regression analysis

The relationship between the DBH and its measured uncertainty was adjusted to a linear model and
the Shapiro-Wilkoxon and Breusch-Pagan Tests were applied to verify the normality and
homoscedasticity of the regression residuals. The hypotheses of normality and heteroscedasticity
(psw = 3.612e”*? and pgp = 3.26"%) were rejected. Classical transformations (In x, Vx, 1/x) applied to
the data to meet the assumptions of normality were not successful, so that a transformation of the
response variable was performed through the Box-Cox method (Box & Cox, 1964; Garcia-Pérez,
2014). Once the transformation was applied, the residuals had a normal distribution; however, the
heteroscedasticity was significant. Due to heteroscedasticity, a weight factor was incorporated into
each observation (inversely proportional to the variance) to perform a regression with the Weighted
Least Squares estimator (wls). This estimator incorporated the variability of the errors into the
model and estimated a homoscedastic error model (Fahrmeir et al., 2013; Hill et al., 2018). For
model assessment, cross-validation was made (James et al., 2013). One sample of half the dataset
was randomly selected and used to calculate the test error rate of the model. The selection process
was repeated 1000 times to construct the 95% confidence interval of the MSE, verifying that the
MSE of the fitted model was in the estimated confidence interval.

111.2.4.2 Tree-level (prediction error)

The Goodness-of-fit reported for the allometric models used in this study are shown in Table I11-4.
The RMSE described the contribution of the model uncertainty to the total uncertainty, this was the
uncertainty due to the model (UAM).

Vegetation Group n R?2 RMSE (kg) Source
Broad-leaved (DBH, TH) 528 0.98 1.30
Broa-ld-leaved (DBH) 528 0.98 1.35 Fehrmann. 2006
Conifers (DBH, TH) 963 0.97 131

Conifers (DBH) 963 0.97 1.32

n=number of sampled trees, R?= coefficient of determination and RMSE = root mean square error.

Table 111-4. Goodness-of-fit for the models used in the study area of Géttingen using DBH and TH
measurement.

111.2.4.3 Sampling error.

In this study, was used a systematic sampling in the fieldwork to collect the data. The estimator of
the mean (i) was the estimator described for simple random sampling (SRS). On variance and SE
no unbiased estimators have been developed for systematic sampling (Mostafa & Ahmad, 2018).
However, the variance estimator (62, 5;) of the SRS in the data obtained with systematic sampling is
generally used, even when the estimators of SRS overestimate the variance due to systematic design
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is more precise (Cochran, 1977). SRS estimators were used for this study and the equations have
been addressed in the previous case study (Section 111.1.5.1.3).

111.25 Monte-Carlo simulation Method (MCM)

The MCM was used to propagate the error in AGB estimation of the study area. The MCM was
conducted for the two measurement datasets, Caliper and Blume-Leiss (CB) and Tape and Vertex
(TV) measurements. The flowchart used in the first topic (Figure 111-9, Section 111.1.5.3), was
basically the same used to represent the MCM in the case study of Géttingen. The difference was
the use of two datasets of measurement error to estimate the AGB (CB and TV). The following
Section 111.2.6 lists the datasets and methods to estimate measurement errors used in MCM.

The MCM approximations, as a result of the applied iterations, had a difference of less than 1% in
the estimators (mean (fi45) and SE (6,445)) to be valid, according to the guidelines of the IPCC
(2006). Figure 111-11 shows the result of the test carried out with the data of the study area in
Gottingen finding 10000 as the number of iterations used in this study. This number of iterations
was used to estimate the AGB in the scenarios evaluated in this case study.
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Figure 111-11. Essay of iterations to select the optimal number of iterations for MCM in the
uncertainty estimation of AGB with information of Gottingen.

111.2.6  Information analysis

111.2.6.1 General estimators of the study area

AGB and basal area statistics were calculated for stand area (47 plots) and re-measurement area (11
plots). In the re-measurement plots were calculated the statistics for two datasets, Caliper+Blume-
Leiss (CB) and Tap+/Vertex (TV). This analysis included statistics of the measured variables DBH
and TH.
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The relationship between the variables used to estimate the AGB at the re-measurement plots was
compared and analyzed for the two datasets (CB and TV).

The measurement errors of each measuring device were described and the parameters of the PDF
describing the measurement errors were estimated. This was done for the whole dataset and for the
DBH and TH classes, according to the measurement device.

111.2.6.2 Baseline information

In this empirical study, four-baseline datasets of AGB without uncertainty were estimated (Table
111.5) in the 11 re-measurement plots. The datasets used were a combination of the measurement

device(s) and the allometric model to estimate the AGB. The measurement per device used in the
estimation were the mean values per tree (best estimate).

Measurement Device (s) Allometric model  Dataset
variable

DBH, TH Caliper, Blume-Leiss _ CB

DBH, TH Tape, Vertex AGB =1 (DBH, TH) TV

DBH Caliper _ C

DBH Tape AGB =1 (DBH) T

Table I11-5. Reference datasets in AGB estimation for re-mesurement plots.

The baseline information used in the stand area, recorded by students (Section 111.2.2.2) was used to
estimate the AGB applying the allometric models for conifers and hardwoods to the measurement
variables (best estimate).

111.2.6.3 Error propagation

The first analysis was performed on the 11 re-measurement plots using the baseline information
(Section 111.2.4.1.2). In this analysis, the “measured uncertainty” was included, and the GUM
Method of error propagation was applied to estimate the total uncertainty in AGB estimation for the
datasets in Table I11-5.

The second analysis, also on the 11 re-measurement plots, compared the scenarios of error
propagation with GUM Method proposed in this study. The scenarios included two sources of
information, the dataset (CB or TV) and the method used to estimate measurement uncertainty.
Table 111-6 contains the acronyms to identify the scenarios to easily identify them in the results
section, the measurement error of the students were also included as scenarios. To compare the
methods, an Analysis of Variance for repeated measurements were used and paired T-Tests were
applied to determine significance in paired comparisons.

The third analysis was conducted with information from the 47 plots. The scenarios that best
represented the “measured uncertainty” in the previous analysis were selected. These scenarios, in
addition to the scenarios that used the best PDF to describe the measurement error, were used to
propagate the error using the MCM and were compared. An Analysis of Variance for repeated
measurements and paired T-Tests were used to compare the scenarios and find significance in the
paired comparisons. Table 111-7 lists the scenarios used in the MCM, including the students'
measurement error as scenarios.
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Dataset Meagured uncertainty and _ Uncertai_nty
Methods to estimate measurement uncertainty  scenario
Measured uncertainty CB
Method 1: mean CBmean

CB Method 2: Normal distribution CBNDn
Method 3: Normal distribution per size class CBNDnC
Method 4: Regression model CBmod
Measured uncertainty TV
Method 1: mean TVmean
Method 2: Normal distribution TVNDn

TV Method 3: Normal distribution per size class TVNDNC
Method 4: Regression model TVmod
Students with prior experience TVEXp
Students without prior experience TVNexp

Table 111-6. Scenarios of error propagation with GUM Method.

Dataset Methods to estimate measurement uncertainty = Lo ANty

scenario
CB Method 2: Best PDF CBBD
Method 3: Best PDF per size class CBBDC
Method 2: Best PDF TVBD
TV Method 3: Best PDF per size class TVBDC
Students with prior experience TVEXp
Students without prior experience TVNexp

Table 111-7. Scenarios of error propagation with MCM.

Error propagation results by each source of uncertainty were reported, estimating the contributions
of uncertainty in measuring DBH (uDBH), uncertainty in measuring TH (uTH), AGB prediction
uncertainties (UAM) and sampling uncertainties (SE). Table 111-8 shows the identification of sources
of uncertainty for the CBBD scenario, also used in the other scenarios.

Methods to estimate Uncertainty

Dataset . Source of uncertainty :
measurement uncertainty scenario
all CBBD
ubDBH CBBDa
CB Method 2: Best PDF uTH CBBDb
UAM CBBDc
SE CBBDd

Table 111-8. Sources of error contributing to error propagation scenario.

111.3 Empirical study 3. Propagation of errors in the AGB estimation for the state of
Durango, Mexico, with information of the National Forest Inventory

111.3.1 Overview

The information registered in MNFI is assumed free of measurement uncertainties and only the
sampling error is reported in the variables estimated. The information analyzed and the results
obtained in El Salto, Durango (first empirical study), were important in describing the measurement
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uncertainty in DBH and TH, because there have been no studies in Durango that provide this
information. In this empirical study, it was assumed that the measurement uncertainties in MNFI
were like the measurement uncertainties assessment described in the El Salto, Durango, to
propagate the uncertainties in AGB estimation, using the Monte Carlo simulation Method.

111.3.2 Fieldwork dataset to estimate AGB

Two datasets were used for this study; the first measurement of the MNFI in the state of Durango
for the period 2004-2009 and the first re-measurement from 2009-2014. The registers were made
following the “Manual and procedures for field sampling” made by CONAFOR to be applied at the
fieldwork stage (CONAFOR, 2009b).

111.3.3  Sampling Design

The sampling design used in the MNFI was a systematic stratified sampling using a cluster of four
subplots in a fixed pattern. A grid composed of panels of 5 X 5 km was superimposed on the
territory of Mexico (Figure I11-12). Each point in this grid represented the location of one cluster.
According to the vegetation type (INEGI, 2017), and forest density the grid was applied with wider
distances (10 X 10 km and 20 X 20 km). CONAFOR, in the field manual, named the cluster as a
primary sampling unit (PSU) and the subplot as a secondary sampling unit (SSU) The SSU was
where the variables and characteristics of the site were measured/estimated/described. The
description of the size and shape of the PSU and SSU is detailed below (CONAFOR, 2012c)

111.3.4  Plot design

In 1998, the North American Science Symposium was held with the aim of standardizing methods
of data collection in future monitoring programs and inventories of forest in North America, to
make them comparable and with assured quality. In this symposium, the plot design of the United
States Forest Inventory (Bechtold & Zarnoch, 1999) was described, as well as proposals for plot
designs to optimize forest sampling (Schreuder & Geissler, 1999). With this precedent, and for the
new MNFI, Velasco et al. (2002) evaluated seven plot designs for the variables: number of trees,
basal area, and volume. According to the analysis of Velasco et al. (2002), the optimal plot design
was applied in the MNFI with a relative error of less than 7%. This design, consisted of a PSU of
one hectare with a radius of 56.42 m, inside this PSU four SSU of 400 m? each with a fixed radius
of 11.28 m were sampled. Figure 111-13 is shown the aspect of the PSU, and the inverted "Y" design
in where the four SSU were arranged in fieldwork (CONAFOR, 2012c).

In the SSU, were measured trees with DBH equal to or greater than 7.5 cm. Inside the SSU, in a
nested subplot of 12.56 m? (2 m radius), were measured trees with DBH less than 7.5 cm with a
height greater than or equal to 25 cm. In the center of the SSU was located one-square-meter site
micro-plot to sample herbs, ferns, mosses, and lichens. In total, 112 variables were
measured/estimated/observed in the MNFI, 54 variables for quantitative purposes and 58 for
qualitative (CONAFOR, 20093, 2012c).
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50 0

Figure 111-13. Form and distribution of PSU and SSU in the MNFI in Mexico. Source

(CONAFOR, 2012¢).

111.3.5 Estimators design

The estimators used in the MNFI were designed by Velasco et al. (2003) using in the research the
main variables of interest (basal area, tree density, volume, among others) of the MNFI
(SEMARNAT, 2004) and adding the hierarchical level of estimation for vegetation types:
ecosystem, stratum, and substratum (INEGI, 2014). The estimator was a ratio estimator using the
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area of the SSU as an auxiliary variable to obtain the results of the parameters measured in hectares.
The estimators used the following notation (CONAFOR, 2012b):

Ratio estimator
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= Znil] Yh- .
==t Equation 16
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Where: R;, = Estimated ratio to obtain information at stratum level or vegetation formation

ny, = Number of PSU evaluated in stratum h

thij

Y, = Variable of interest (AGB or basal area) = Z;":j] Yy, = ZJ’."Z"I ket Yh

Yhij = Value of the variable of interest in SSU j (secondary sampling unit -SSU-) of PSU i of
stratum h

th,/_k = Value of the variable of interest of tree k in SSU j of PSU i of stratum h

tp;; = Number of trees evaluated in SSU j of PSU i of stratum h

m; = Number of the SSU evaluated in the PSU; j=1, 2, 3 or 4

Ap, = plot area (ha) sampled from PSU i of stratum h (auxiliary variable) = Z;Z; Apj

Ap; = Area (0.4 ha) of SSU j of PSU i of stratum h
The variance estimator measured how spread out was the variability from the ratio estimation in the
variable of interest.

~2
0y,

2
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82(§)= Equation 17
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Where: 82yh_ = Variance of the variable of interest (AGB or basal area)
85% = Variance of the auxiliary variable (plot area)

oy, 4, = Covariance of the variable of interest and the auxiliary variable (sampled area)

ffhl: Mean value of forest area (ha) sampled

The standard error was the square root of Equation 17.

SER) = |#°(R) Equation 18
The relative standard error expresses the standard error in percent of the estimated mean:

. JFR) _
SE%= RSE(R) = — *100 Equation 19

111.3.6  National Forest Inventory data validation

A review process of the raw MNFI database was applied, as a validation system, to detect
registry errors and select the information to be analyzed (Morales M., 2005). Since the original
field sheets were not accessible, it was not possible to determine typing and writing errors.
However, a debugging of the database and a selection of the records were made, following the
scheme presented below (Figure 111-14). The debugging and selection were made under the
assumption that the errors occurred during data typing in the database program.
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Figure 111-14. Flow diagram for database debugging implemented to select the information to
analyze from the database of MNFI in Durango.

The database debug was designed to select the forest type, standing trees for this case study, and
delete the registers with mistakes. The debug had as a first criterion the selection of temperate forest
clusters, the predominant vegetation in the study area. As the second criterion the standing alive
trees were selected, due to the allometric models used to estimate the AGB were fitted with these
criteria. The next step consisted of the elimination of duplicated registers and registers without
information of DBH, height or without species identification. During this process were eliminated
records with DBH less than 7.5 cm due they did not comply with the regulations of the data
collection protocol and were considered records mistake.

As part of the debugging of the database, graphical analyses were performed for each tree species
using the relationship DBH and height to compare with the information of the technical datasheets
made by CONAFOR and in this way rule out errors of registration assignment (DBH, TH, species).
The graphic analysis was complemented by applying the non-parametric method used by Bi (2000),
to locate outliers in the DBH ~ TH relationship.

111.3.7 AGB estimation

The AGB estimate for the MNFI data in Durango was made using allometric models (AM) for the
346 species registered. Mexico’s dataset of models to estimate AGB does not have complete
coverage for all tree species of Durango (Rojas-Garcia et al., 2015). Therefore, using the model
selection method proposed by CONAFOR (2014), the species were grouped by vegetation type or
genus to estimate the AGB. The selection criteria and model assignment was explained in Section
11.1.4.

The 36 models used to estimate the AGB are shown in Table VIII.1 of Appendix |. From the
models used, six were produced in studies conducted in Durango (Arbutus sp, Juniperus spp, Pinus
spp, Pseudotsuga spp, Prosopis spp, Quercus spp) and used to estimate the AGB for 96% of the
trees sampled in the MNFI. The genera with the highest share were Quercus spp with 44% of the
registered trees and Pinus spp (37 species) with 40%. For Cedrela spp, Yucca spp, tropical dry
forest and desert communities, AM from neighboring states of Durango were used. Together, these
four vegetation types represented 1.9% of the sampled trees; however, these included 144 species,
mainly shrubs. The remaining 26 AM used were for genera and species with the lowest number of
observations at the MNFI in Durango (2.6%). For these genera and species, no studies are reported
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that have built AM for AGB estimation, so adjusted AM were used in other states of Mexico and
even in other countries.

111.3.8 Source of uncertainties

111.3.8.1 Tree-level (measurement error)

The information assessed in El Salto, Durango (first empirical study), was used to estimate the
measurement uncertainties of the trees in the MNFI in Durango State. The distribution of the trees
measured in El Salto, MNFI 2004-2009 and MNFI 2009-2014 is shown in Figure I11-15. In this
figure, due to the scale and density of the points, the trees less than 20 m of TH and less than 30 cm
of DBH are overlayed.

The Figure 111-15 shows two differences between the dataset in El Salto compared to the datasets of
the MNFI in Durango State: the maximum limit of the measured THs and DBHs, and the clearly
limited subset for the trees in El Salto. These differences were because sampling in El Salto was
made in relatively homogeneous pine plantations without forest management, while in MNFI, the
objective was to determine the variability of the species and the potential productivity of all the
forests in Durango state and generally in Mexico (CONAFOR, 2017a).
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Figure 111-15. Tree distribution in the relationship DBH (cm) & TH (m) for El Salto 2015
(n=4262), MNFI 2004-2009 (n=109762) and MNFI 2009-2014 (n=109983).

111.3.8.2 Tree-level (prediction error)

The allometric models used to estimate the AGB were selected according to previously established
criteria. One of these criteria was the MSE, which expressed the variability of the data estimated by
the model. Table VI1I1.1, with the MSE values by allometric model, is in Appendix I of this
document. This table shows that 16, of 36 models used were reported with the MSE value. These 16
models covered about 98% of the MNFI sample trees.

48



Chapter I11: Methodologies

111.3.8.3 Plot design error

The plot design implemented in the MNFI had two major characteristics: 1) relative error of less
than 7% as a previous-established criterion in the study area (Velasco et al., 2002) and 2) this design
reduced implementation costs according to previous studies by Scott (1993). The design used in the
MNFI was the optimal but also the one with the highest relative error and according to Velasco et
al. (2002), there were designs with 2% less relative error. The 2% variation was used to propagate
the uncertainty due to the plot design assuming that this uncertainty was normally distributed.

111.3.9 Error propagation with Monte-Carlo simulation Method (MCM)

Figure 111-16 shows the flowchart designed for the propagation of MNFI uncertainties in the state of
Durango. This flowchart is like that presented in Section 111.1.5.3, except that for the Durango
MNFI information is available about the variation in the estimation of the AGB at cluster level
according to previous studies. The correlation coefficient between DBH and TH was not used in
AGB estimation with MCM because in both periods of the MNFI it was below |0.08| (omnFi040e=0.67
and pmnrioe14=0.65). The number of iterations used in the MCM was 10,000 times.

111.3.10 Information analysis

111.3.10.1 General statistics of the study area

The errors detected when debugging the database of the two MNFI periods analyzed (2004-2009

and 2009-2014), were described. AGB and basal area statistics were analyzed for the two periods,
estimated by DBH and TH classes. The analysis included statistics for the two main genera in the

study area, Pinus spp and Quercus spp.

111.3.10.2 Reference information to comparison

Two MNFI periods were analyzed in Durango, the first measurement of 2004-2009 and the first re-
measurement 2009-2014. In both cases, field measurements of the variables required for the
estimation of AGB (DBH, TH, crown diameter, and wood density) were used. With this information
and the allometric models, the AGB was estimated without considering the uncertainty in the
calculation, having two reference datasets, 2004-2009 and 2009-2014 for the study area.

111.3.10.3  Error propagation

Using the MCM and following the flowchart in Figure 111-16, the uncertainties were estimated
individually for each uncertainty source (DBH, TH, allometric model and sampling) in the AGB
estimate for the MNFI in Durango. This procedure was applied to the two MNFI datasets of this
study.

Second uncertainty propagation in AGB estimation was made to evaluate the experience for the
field teams as one potential factor for measurement errors. Base data were taken from the
measurement errors by the field teams with different experience in forest measurements as
described in Section 111.2.2.2). The uncertainties of allometric models and cluster design were also
included to calculate the propagation of the uncertainty.
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The propagation of uncertainty in the AGB estimate was performed for three levels of vegetation
aggregation: ecosystem (temperate forest), stratum (conifers, mixed and oak) and substratum, which
divides each stratum into primary and secondary vegetation.
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Figure 111-16. Flowchart for error propagation of measurement, model and plot design
uncertainties for MNFI in Durango, Mexico, using the MCM.
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111.4 Empirical study 4: Modelling and mapping AGB for the state of Durango

111.4.1 Overview

In this case study, the AGB was modeled with Landsat imagery, using AGB information calculated
from MNFI field measurements. The flowchart in Figure 111-17 describes the steps followed in this
study, explained in the following lines.

Field work
collection MNFI Imagery source
2004-2009/2009-2014

S~/ D
o ) e, e,

e <8

Landsat 5, 8
5 (surface reflectance)

| Mask
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Topographic clouds, shadows)

Correction

Measurements
DBH, TH, crown
diameter, wood
density

AGB allometric

model
collection Predictor variables
AGB = f(DBH,TH,CD,WD) Spectral  Vegetation GLCM
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Figure 111-17. AGB estimation and mappaing flowchart.

111.4.2 Field data

Field information from MNFI was registered into different levels of aggregation according to the
vegetation type (Table 111-9). The information was provided by fieldwork of MNFI and the
vegetation series the Institut of statistic and geography in Mexico (INEGI) elaborated from Landsat
satellite imagery interpretation (INEGI, 2017).

111.4.3 Remote sensing data processing

The satellite images used in this study to estimate field measurements were Landsat 5 TM and
Landsat 8 OLI, for the two periods analyzed in this study. Scenes LT1 (standard level-one terrain-
corrected) in surface reflectance values and less than 20% cloud coverage were requested from the
website of the United States Geological Survey (https://earthexplorer.usgs.gov/). The temperate
forest of Durango State is covered by eight images (Figure 11-4, Section 11.2.1) of Landsat 5 from
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7th to 30th April 2007 and Landsat 8 from 28th April to 23th May 2013. The surface reflectance
product was orthorectified to WGS84 datum, geometrically calibrated (Wu et al., 2016) and
consistently georegistered with RMSE < 6 m (metadata information) when the average RMSE is <12
m (Young et al., 2017). This product included the visible, near infrared (NIR) and short-wave
infrared (SWIR) bands for all the scenes.

Vegetation Aggregation Level
Ecosystem Strata
Conifer forest, 292 Clusters
2004-2009 Temperate forest, 1662 Clusters Mixed forest, 1033 Clusters
Oak forest, 337 Clusters
Conifer forest, 216 Clusters
2009-2014 Temperate forest, 1635 Clusters Mixed forest, 1156 Clusters
Oak forest, 263 Clusters

MNFI

Table 111-9. Aggregation levels used to classify vegetation with the number of clusters recorded in
the MNFI (CONAFOR, 2012c).

The area of interest in this study was the temperate forest; therefore, areas of non-forest or have
pixels with altered values (clouds) were eliminated. Surface reflectance information included spatial
data on cloud size and location. This information was used to eliminate the clouds and their
shadows.

Non-forest information was obtained from INEGI vegetation and land-use series (LUVS) (INEGI,
2017), using data from anthropogenic use (INEGI, 2014). The fieldwork of LUV Series IV took
place between 2007 and 2008, the anthropogenic layer information of this series was used with the
Landsat 5 TM imagery (2007). For the information of Landsat 8 OLI (2013), Series V was used
which had fieldwork during 2012-2013.

With the cloud’s information and the anthropogenic layers of the LUVS, a mask was made to cut
the non-forest information and pixels with altered data of Landsat imagery in both periods. Pimple
et al. (2017) recommend this procedure prior to topographic correction.

To minimize the shadow effect on the calculation of the indexes to be used to estimate AGB, the C
correction method proposed by Teillet et al. (1982) was performed on Landsat images in QGIS
(QGIS Development Team, 2019) with the SAGA processing tool. This method has been used in
previous studies (Pimple et al., 2017; Riafio et al., 2003; Vazquez-Jiménez et al., Novillo, 2017),
recommended for not presenting over-correction (Wu et al., 2016) and reducing the topographic
effect in mountain forest terrains (Pimple et al., 2017), such as those of the temperate forest of the
state of Durango. The C-correction is defined as follows (Riafo et al., 2003):

_ cos 0+ ¢y .
Pu~ pT( IL+cy ) Equation 20
IL=cos0,cos0.+sinb,sinb.cos (¢ -4 ) Equation 21

. . . - . b .
Where: py is the reflectance of a horizontal surface, py is the reflectance of an inclined surface, ¢,= m—“ by is
k

the gradient of regression line for band k, m, is the slope of the regression line for band k, by is the
intercept in regression line of p; vs IL for band k, my, is the slope in regression line of p; vs IL for
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band k , 8, is the slope angle; 6, is the solar zenith angle; ¢, is the solar azimuth angle; and ¢, is the
aspect angle.

The information source for 8,, and ¢, was the Digital Elevation Model (DEM) version 3.0 (MSE <
4.9 m) provided by INEGI with spatial resolution of 15 m scaled to 30 m
(http://www.beta.inegi.org.mx/app/geo2/elevacionesmex/). The values for 6, and ¢, were obtained
from metadata information provided by USGS for every scene, and it was applied for the estimation
of py to each band.

With the images corrected, the eight scenes were merged into a mosaic for each spectral band. The
scenes were placed in the same hierarchical order and in this way the following calculation of the
vegetation indexes was calculated with the corresponding ordered information.

111.4.4 Response variables

The information of interest for this case study were calculated using the measured variables of
MNFI. The response variables used were AGB and basal area (G). Basal area with the DBH
measurement was directly obtained and reported in m?ha™. AGB calculation was made by tree with
36 allometric models by genus and group of species (Table VI1I-1, Appendix I) and reported in Mg
ha*. The ratio estimators used to calculate the response variables, referred directly to the plot area
that was sampled (CONAFOR, 2012c) (Section 111.3.5).

111.4.5 Co-registration of remote senting and field plots

The predictor variables for AGB used in this study were spectral bands, vegetation indexes (VI) and
Gray Level Co-occurrence Matrix (GLCM) based texture, calculated from the Landsat imagery for
the two data sets used in 2007 and 2013. The spectral bands and VI have been used as predictors of
Landsat images to estimate AGB in pine forest (Gunlu, et al., 2014), AGB in state inventory for
New England, USA (Zheng, Heath, & Ducey, 2008), among other studies. Lu, 2006 and Rodriguez-
Veiga et al. (2017) emphasized the importance of including other variables to avoid saturation in the
AGB estimation when VI are used. Using GLCMs as predictor variables, the AGB estimates have
been above the saturation value that is estimated with the use of VI (Kelsey & Neff, 2014; Wu et al.,
2016; Zhao et al., 2016).

111.4.5.1 Spectral Bands

The spectral bands used in this study were the visible spectrum, NIR and SWIR. The MNFI field
manual states that the location of the plots was recorded with an accuracy of up to 15 m, and the co-
registration of the Landsat images had an RMSE of less than 6 m, which meant that the values of the
estimated AGB could converge on different adjacent pixels of the Landsat image. Therefore, to
solve the location issue, a window of 3 X 3 pixels was applied to calculate the mean value by pixel
of the spectral bands to be used as predictor variables of AGB (A. Gunli et al., 2014; Wu et al.,
2016).

111.4.5.2 Vegetation indexes

Spectral indexes are combinations of spectral reflectance of two or more wavelengths (spectral
bands) indicating the relative abundance or accumulation in satellite imagery that can be associated
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with a feature of interest (Bramhe et al., 2018), such as the AGB in this study. Vegetation indexes
(VI) are the most popular type that detects the photosynthetic activity of vegetation and are sensitive
to AGB estimation (Rodriguez-Veiga et al., 2017).

The NDVI is the most commonly used index for vegetation studies because it is sensitive to the
photosynthetically active biomass (Bannari et al., 1995). EVI, WDRVI, and NDMI were calculated
as they are used as an alternative to NDVI because they are more sensitive in areas with high AGB
and AGB content in tree crowns (Glenn et al., 2008; Henebry et al., 2004; USGS, 2017). SR and
SRG were also calculated due they are sensitive to the amount of vegetation and reduce the effect of
atmosphere and topography (Glenn et al., 2008). Other indexes such as SAVI, MSAVI, and SATVI
have been calculated because they incorporate a correction factor for areas with spaces between
vegetation or senescent vegetation, reducing the effect of the soil and dead wood on the collected
vegetation information (Marsett et al., 2006; Qi et al., 1994). The calculated VIs are shown in Table
111-10, they were calculated using the Grass module of the QGIS program.

Index Calculation Range Reference

Atmospherically ARVI (AR) = MR=Red=2(Red=blue)

Resistant Vegetation NIkt Red—2(Red—Blns) -1tol (Kaufman & Tanre, 1992)

NIR—Red

Enhanced vegetation EVI(E) = 2.5 NIReo-Red—75-Blmey i1

-1tol (Glennetal., 2008)

Modified Soil 2+NIR+1—/(2*NIR+1)?>—8+(NIR—Red) ;

. . = * ¢ -1t01 ietal, 1994
Adjusted Vegetation MSAVI (MSA) 2 Q )
Normalized _ NIR-SWIR1 ;

Difference Moisture NDMI = ———" -1tol  (Wilson & Sader, 2002)
Normalized NIR—Red R
Difference Vegetation NDVI (ND) = e hea -l1tol  (Qietal, 1994)

i i _ MR
Simple Ratio SR=1— 0to>30 (Glenn et al., 2008; Le
Simple Ratio Green SRG = Oto>30 Maireetal., 2004)
Soil-adjusted Total _Re
Vegetaiion SATVI (SAT) = 72 (1 - 0.5) — 2022 -1tol  (Marsett et al., 2006)
Soil-adjusted _Re
Vegeta:ion SAVI (SA) = N,’:’;;i_s (1+0.5) -1tol (Jackson & Huete, 1991)
Wide Dynamic 0.1+(NIR—Red) .
Range Vegetation WDRVI (WDR) = = ey -1tol1 (Gitelson, 2004)

Table 111-10. Vegetation indexes evaluated in this study based on spectral bands information of
Landsat imagery.

111.4.5.3 Textures

The texture is a metric of pixel variability across neighboring pixels for a defined processing
window (Kelsey & Neff, 2014). GLCM-based texture measurements provides the basis for
calculating multiple first or second order statistical quantities and were defined by Haralick et al.
(1973), currently the common procedure for obtaining texture from images (Zhao et al., 2016).
Based on AGB estimates in studies conducted in temperate and subtropical forests (Safari &
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Sohrabi, 2016; Wu et al., 2016; Zhao et al., 2016) the textures to be extracted from Landsat images
were selected (Table I11-11).

Texture has been calculated for spectral bands (Fuchs et al., 2009; Kelsey & Neff, 2014; Safari &
Sohrabi, 2016; Wu et al., 2016) and for vegetation indexes (Lopez-Serrano et al., 2015). In this
study, a Pearson correlation was performed between the response variables (AGB and basal area)
and the predictor variables (spectral bands and vegetation indexes). From the two periods of MNFI
were selected the predictor variables with the highest correlation coefficient Table 111-12. In these
response variables were calculated the Haralick textures.

Feature extracted Calculation Feature extracted Calculation
N-1 N-1
Mean (MN) Z iP;; Dissimilarity (DI) Z iPli— |
N-1 b= 1vl—']1=0
Variance (VA) Z iP,; (i — ME)? Entropy (EN) Z iP,j(—InP,))
i,j=0 ij=0
Haralicks Ni P,; — ME? Energy or Angular ’il )
correlation (HC) b VA Second Moment (ASM) =
N-1 . i N-1
Correlation (CR) P -mG-m Inverse different moment Z i P
v
= D or homogeneity (HO) G 1A=
N-1
Contrast (CO) z iP (i —j)?

i,j=0

Table 111-11. Texture variables used. P (i, j) is the normalized co-occurrence matrix such that sum
(i,j =0, N-1) (P (i, j)) = 1 (Haralick et al., 1973).

Landsat 5 (2007) Landsat 8 (2013)
G W G W
ARVI  0.77%** 0.72***  ARVI  0.75*%** (.76 ***
NDVI  0.79*** 0.73*** NDVI 0.75*** (.76 ***
SRG  0.79*%** (.74 *** SR 0.72%** (.76 ***

WDRVI 0.79*** 0.74*** WDRVI 0.74*** Q.77 ***
Note: *** Significant at a 0.001 level.

Table 111-12. Vegetation indexes with the highest Pearson correlation coefficient, selected to apply
on them the texture calculation.

To estimate the texture it was necessary to define the size of the window to calculate the GLCM
(Bramhe et al., 2018). The window size should be appropriate so that the variation will not be
exaggerated neither there will be an excess of smoothing in the variation, small and large window
size, respectively (Dengsheng Lu, 2006).

In subtropical forest, (Wu et al., 2016) using a window of 3 x 3 pixels for Landsat imagery, detected
changes in AGB storage in a 10 years period study. Attarchi and Gloaguen (2014), found a higher
correlation in AGB estimation with textures in window size of 11X11 pixel for temperate forest
with Landsat images, in comparison of AGB estimation to vegetation indeces. (Kelsey & Neff,
2014), implementing different window sizes (3X3, 5X5, 7X7 and 9X9), found that 3X3 is the
optimal size for estimating AGB in temperate forest. Similarly, (Lopez-Serrano et al., 2015) tested
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three window sizes (3X3, 5X5 and 7X7) in temperate forest, finding that the combination of the
texture variables and window size are important to optimize mixed models for estimating AGB in
Landsat images, not concluding in an optimal window size using texture for AGB estimation. In this
study, and according to previous estudies, the textures were calculated for three window sizes 3X3
(Kelsey & Neff, 2014), 7X7 (P. Lépez-Serrano et al., 2015) and 11X11(Attarchi & Gloaguen,
2014). The extraction of the textures from the satellite imagery was made using the Orfeo Tool Box
(OTB) module implemented in QGis.

111.4.6 AGB models assessment and validation

AGB and basal area, as determined in the field plots, were modelled from the remote sensing data
with predictor variables as of Table I11-13. For the spectral bands and for the vegetation indexes, a
3X3 window was applied to calculate the mean value by pixel (see Section 111.4.5.1).

Landsat 5 (2007) Landsat 8 (2013)
Spectral bands (6) Spectral bands (7)
R, G, B, NIR, SWIR1, SWIR2 Coastal, R, G, B, NIR, SWIR1, SWIR2
Vegetation Indexes (10) Vegetation Indexes (10)
ARVI, EVI, MSAVI, NDMI, NDVI, SR, SRG, SATVI, SAVI, ARVI, EVI, MSAVI, NDMI, NDVI, SR, SRG, SATVI, SAVI,
WDRVI WDRVI
Texture metrics (243) Texture metrics (243)
-9 Image: Red, Green, Blue, NIR, ARVI, NDVI, SR, SRG, -9 Image: Red, Green, Blue, NIR, ARVI, NDVI, SR, SRG,
WDRVI WDRVI
-3 Kernel size: 3X3(3),7X7(7),11X11(11) -3 Kernel size: 3X3(3),7X7(7),11X11(11)
-9 Haralick texture: MN, VA, HC, CR, CO, DI, EN, ASM, -9 Haralick texture: MN, VA, HC, CR, CO, DI, EN, ASM,
HO HO
259 variables 260 variables

Table 111-13. Landsat image predictor variables (PV) used to evaluate models for estimating AGB
and basal area.

The texture metrics were constructed using the image with the spectral band information or VI,
three window sizes and the Haralick texture estimation. Figure 111-18 shows the construction of the
texture metrics.

The Box-Cox transformation (Box & Cox, 1964) was applied to the response variables using the
package R (R Core Team, 2018). This transformation corrects biases in the distribution of errors,
also unequal variances and mainly non-linearity in the relation of predictor variable with the
response variable (Box & Cox, 1964). The exponent Lambda (L) was the central part of the
transformation of Box-Cox. The transformation of y (response variable) has the following form
(Box & Cox, 1964):
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Image (Bands and V1)

Red (Rd), Green (G), Blue(B), NIR (N), ARVI (AR),
NDVI (ND), SR, SRG, WDRVI (WDR)

Kernel size (window)
3X3(3), 7X7 (7), 11X11 (I1)

Metrics (Haralick texture) Texture Metric:

Mean (MN), Variance (VA), Haralick correlation (HC), l Haralicks correlation
correlation (CR), Contrast (CO), Dissimilarity (DI), vY estimated in window 11X11
Entropy (EN), Angular Second Moment (ASM), Rdl11HC of the Red band image
Homogeneity (HO)

Figure 111-18. Texture metrics construction with the image (spectral band or vegetation index),
window size (in pixels) and the Haralik texture estimate.

V-1 . .
y={ 7 T Equation 22
logy, if1=0.

The values of A were the optimal value to correct the data and its value varied from -5 to 5. The
optimal value of A gave the best approximation of a normal distribution curve (Box & Cox, 1964;
Garcia-Pérez, 2014).

The transformed response variables were modeled with the Landsat imagery data using a stepwise
multiple regression analysis (Fuchs et al., 2009; A. Glnlu et al., 2014; Ou et al., 2019; Safari &
Sohrabi, 2016; Wu et al., 2016). A stepwise regression analysis was done with the statistics
software R using the MASS package (R Core Team, 2018). A standard model was used:

=By B X tBxot P X, e Equation 23

Where: y; were the response variables (AGB or basal area); x,, are the predictor variables; S, are the
parametric regression coefficients to be estimated,; ¢ is the error of the model.

This model was used to estimate the AGB based on four vegetation types according to the
vegetation aggregation level (Table 111.9). Models selected for each level of aggregation were those
with the highest coefficient of determination (R?) and significance in of the predictor variables p-
value < 0.05. To estimate multicollinearity of the predictor variables (A. Ginlu et al., 2014), for
each model the variance inflation factor (VIF) was calculated through the mctest package in the
program R (R Core Team, 2018). Using the VIF criterion proposed by (Marquardt, 1970), the
models without multicolliniarity were selected.

Repeated K-fold cross validation was the method used to evaluate the model (Langford, 2005),
splitting the data into K sections where the model was evaluated and selecting the number of times
the process was repeated; the precision of the model (RMSE) was the average of the repetitions
executed. The validation was performed with the caret package in program R (R Core Team, 2018).
The evaluation of the models included the estimation of the absolute and relative bias in the data
estimated by the model (with Landsat predictor variables) compared to the data measured in the
MNFI (Fuchs et al., 2009). Bias estimators were obtained using the following equations:

Absolute Bias = = %1, (%-x)) Equation 24
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Bias

Relative Bias = (Bias,) in % = *100 Equation 25

Where: X, were the estimated values from the model adjusted (AGB, basal area); x; were the observed values
from MNFI (AGB, basal area); x was observed mean value (AGB, basal area).

After validation, the models were used to produce maps for the response variables (AGB and basal
area).
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Chapter IV: Results

IV.1 Empirical study 1: Double measurement of dasometric variables to estimate the
measurement uncertainty and error propagation of aboveground biomass estimation in pine
forests

IV.1.1 General information

In this study, 4292 trees in the 10 plots were measured. During the fieldwork, a control of the
measurements was made and 34 writing errors and 35 inconsistency errors (DBH and TH
relationship) were corrected. In addition, the field records were verified, and it was found that 30
trees were measured only once; these were not used in the estimation of discrepancies. Thus, the
number of trees with double measurement was 4262.

The species Pinus cooperi dominated, spanning 92.8% of the trees sampled. Table 1VV-1 shows the
mean and range of values from measured and estimated variables. Figure IV-1 shows the per-
hectare basal area and AGB estimates both based upon DBH class and TH for the trees sampled.

Variable / Tree DBH TH G W
estimate  No. ha* (cm) (m) (m*ha™) (Mg ha)

Mean value 1137 16.9 13.3 29.17 176.07

Range 424-1901 7.5-55.75 3.5-27.6 20.49-35.29 86.61to0 228.41

Table 1V-1. Range and mean values of the measured and estimated variables in the pine forests of
El Salto, Durango.

Figure 1VV-1 shows that 95% of the trees had DBH < 30 cm and that the DBH class with the largest
number of trees was (10-15] cm. The DBH class with the greatest contribution in the basal area and
AGB was (15, 20] cm, was also the class of the overall mean DBH of 16.9 cm. On the other hand,
trees over 30 cm DBH represented 4.5% of the sample. However, they contributed to 16.5% of the
basal area and 20.2% of the AGB.

The overall TH mean was 13.3 m; from the dataset, 90% of the trees measured were less than 17.5
m and the class (12.5-15] m contained the most trees. The TH class with the highest contribution to
AGB and basal area was (15, 17.5] m. Trees taller than 17.5 m comprised 9.6% of the data,
although the contribution of these trees was 24.8% and 30.5%, for basal area and AGB,
respectively.

1IV.1.2 DBH and TH measurements

1V.1.2.1 Diameter at breast height

Analysis of the boxplots from the two datasets (Figure 1V-2, left) shows their similarity, with a
median value of 15.75 cm for the first Measurement (M1) and 15.85 cm for the re-measurement
(M2). The histograms of M1 and M2 were superimposed and found 98.4% overlap. A high
correlation of p(yq y2) = 0.9864 between M1 and M2 was estimated.
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Figure IV-1. Basal area and AGB estimation of the study area. Above, estimate by DBH class
every 5 cm; below, estimate by TH class every 2.5 m.
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Figure 1V-2. Left: DBH data boxplot, histograms of Measurement (M1) and Re-measurement
(M2). Right: a similar case for TH. Bottom, the trend line of M2 versus M1 for DBH and TH.

The data pairs were compared with non-parametric methods due to the rejection of normality (p-
valueks< 2.2e™*®) with the Kolmogorov-Smirnov Test (Lilliefors correction). The variances of the
datasets were compared with Bartlett's Test (p-valueg= 0.6671) and Fligner-Killeen's Test (p-
valuerk =0.9354), and not significance for variance difference was found. With the Wilcoxon
Signed-Rank Test, medians of the datasets were compared. This test showed that the difference
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between medians did not include, meaning that the populations were not identical (p-valuewn<2.2e”

16).

1V.1.2.2 Total height

A graphical evaluation was performed, as with the DBH data, for the TH measurements (Figure V-
2, right). The histograms show the areas where frequencies of the dataset overlap (95%) and the
areas where the frequency of one of the sets was most prevalent. The estimation of the median
values was 13.17 m for M1 and 13.35 m for M2. Data dispersion was greater for TH compared to
the DBH measurements, and the correlation coefficient was p(y,m2) =0.9651.

Normality in data distribution for M1 and M2 TH measurements was rejected (p-valuexs=0.0001298
and p-valuexs< 2.088e™, respectively). The Bartlett and Fligner-Killeen Tests did not reject the
homogeneity of the variances (p-valueg=0.3947and p-valuerx=0.7991), and the Wilcoxon Signed
Rank Test stated that databases do not belong to identical populations (p-valuewr< 2.2e%).

The applied tests showed differences between the data pairs (DBH and TH). However, because the
field manual was followed, it was assumed that the data collection was free of systematic errors.
Therefore, the source of these measurement differences was attributed to random error.

1V.1.3 DBH and TH measurement error

1V.1.3.1 DBH measurement error

The DBH measurement errors of the 4262 trees were organized by frequency distribution. The
0.92% of the measured trees had an error greater than 2 cm, 93.24% of the trees had an error
between 0 and 2 cm, and 5.94% did not show difference between measurements. The mean error
was 0.4 cm, and the maximum was 4.6 cm.

As explained in Section 111.1.5.1.1.1, the frequency distribution of DBH measurement errors was
fitted to a probability density function (PDF) to describe the errors through the parameters of the
PDFs. The PDFs were fitted using the whole dataset of errors (Figure 1V-3a) and the errors by DBH
class (Figure 1\VV-3b to h). See Table VI1II-2 of Appendix Il for the parameters and goodness-of-fit
for the fitted PDF's. Since the GUM Method of error propagation use the variance as the parameter
to propagate uncertainty, the dataset of measurement errors was adjusted to a normal distribution
(Figure 1V-3, gray line distribution). The Monte-Carlo simulation approach (MCM), to propagate
the errors, can use any PDF describing those errors. Therefore, the best adjusted PDFs per
measurement error class and for the whole data set were used for the MCM (Figure 1V-3, dark line
distribution).

For the measurement error of the first DBH class, the best PDF was the Scaled-Shifted t
distribution. In the following four classes, Johnson's distribution had the best fit for measurement
error. In the last two classes of the largest trees, the error followed a pattern of Laplace distribution.
The best-fitted distributions differed slightly from the normal distribution for classes of DBH less
than 30 ¢cm, even in some classes it was not possible to distinguish the difference because the two
distributions overlap. However, in the two classes with larger DBH, the difference between the
normal distribution and the best-fitted distribution was evident.
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Figure 1VV-3. Probability Density Functions (PDF) fitted with DBH measurement errors according
to DBH class.

1V.1.3.2 TH measurement error

In 7.88% of the 4262 trees measured, were not find difference between measurements. The 87.35%
of the trees had errors greater than zero and less than 2 m, and the remaining trees (4.77%) had
errors between 2 and 4 m. The largest error was 4 m, and the mean TH measurement error was 0.61
m. PDFs for the entire dataset (Figure 1\VV-4a) and by TH classes (Figure 1VV-4b to g) were adjusted.
In each case, the PDF that best adjusted to the distribution of errors (Figure 1V-4, dark line
distribution), as well as the normal distribution (Figure V-4, gray line distribution) were used. TH
classes less than 17.5 m followed Johnson's distribution. The last two classes fitted to the Scaled-
Shifted t and Laplace distributions. The parameters, which describe each distribution and the
goodness-of-fit, are in Appendix Il (Table VII1I-3).

IV.1.4 Error propagation
1IV.1.4.1 GUM Method for error propagation

IV.1.4.1.1 General statements

The error propagation results using the GUM Method are shown in Table IV-2. This table has two
sections (non-sampling and stand-level) summarizing the contributions from sources of uncertainty
in the AGB estimation. In the upper part of the table, the contributions at the average tree (tree-
level) and stand-level are in the same units of the estimated values, kg per tree and Mg per ha. In the
lower part, the percentages by each source of uncertainty at tree-level and stand-level were
provided.
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Figure 1V-4.
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IV.1.4.1.2 Tree-level uncertainty

The mean uncertainty contributions to AGB estimation by tree of DBH measurements (uDBH), TH
measurements (UTH), and their correlation (ugpen,tH)) are shown in Table 1V-2.

---- Non-sampling uncer'Falnty (tree-level) ---- - Total uncertainty (stand-level)--

c -- Measurement uncertainty --
£ 1 2 3 4 5 6 |7 8 9 10 11
% u u u u u u u u
% DBH TH  ppgHTH* Mes AM  Tree | NS SE W W W exp
£ Uncertainty kg kg kg kg kg kg Mg Mg Mg Mg Mg

S _ scenario  tree! treet ftree’! tree! tree!  tree! | ha!  hat hat hat ha?
?) NDn 522 534 4.63 8.79 87.42 87.86f 154 13.78 13.87 176.07 =*27.18
<C NDnC 6.15 7.57 5.92 11.41 87.42 88.16 1.56 13.78 13.87 176.07 +27.18
RMSD 8.14 7.71 6.94 13.18 87.42 88.41] 155 13.78 13.87 176.07 =*27.18
---------- Non samplmg_uncertamty ---------- - Total uncertainty ---

i -- Measurement uncertainty --

0\5 u? u? u u u? u? u u? u

g DBH TH ppgutn Mes Mes| AM  Tree | NS  SE? W W RSE
R - B I B B

$ NDn 353 37.0 278 879 10 99.0 87.86 1.23 98.77 13.87 176.07 7.88
. NDnC 29.0 44.0 270 1141 17 98.3 88.16 1.26 98.74 13.87 176.07 7.88
' RMSD 32.2 40.1 277 1318 22 978 88.41 125 98.75 13.87 176.07 7.88

* This term is the . /u pppu,rm)

Table IV-2. Uncertainty of the AGB calculation using three scenarios estimating measurement
uncertainty NDn, NDnC and RMSD.
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The scenarios used to estimate the measurement uncertainty parameter (& = standard deviation) are
represented by their acronyms (see Table 111-2). The three scenarios were (i) measurement errors
fitted to normal distribution (NDn), (ii) measurement errors fitted to a normal distribution by DBH
class and by TH class (NDnC), and (iii) root mean square deviation of measurement (RMSD). The
parameters of the scenarios NDn and NDnC are in Tables VI1I-2 and VII1-3 of Appendix I1.
Parameters of the RMSD scenario were 6p5,5=0.53 cm for DBH and 6;5=0.89 m for TH.

In the first combined uncertainty (column 4), the scenario with the highest estimation was RMSD
with 13.18 kg per tree, followed by NDnC with 11.41 kg, and finally by the NDn with 8.79 kg. The
sources of uncertainty (DBH, TH, and correlation), are shown in the lower part of the table. The
largest contribution was made by uDBH, followed by uTH, and finally upogH.mH).

In the lower part of Table V-2 are the contributions calculated from Equations 06b, 07, and 9. The
uTH was the highest contribution for all the scenarios applied with a range between 37 and 44%.
The uDBH was the second most important contribution of measurements at tree-level and it ranged
from 29 to 35.3%. Finally, the smaller contribution in measurement was the correlation within a
short range between 27-27.8%.

Once uTree was estimated (column 4), the uncertainty of the allometric model (UAM in column 5)
was added to obtain the second combined uncertainty or uncertainty of non-sampling (uTree in
column 6), still at the tree-level. The contribution of uAM to uTree ranged from 97.8 to 99.0%.

IV.1.4.1.3 Total AGB uncertainty

After the aggregation process from tree-level to plot level, the total non-sampling uncertainty (UNS)
was combined with the sampling error (SE in column 8) to estimate the total uncertainty (UW in
column 9). In this step, the contribution of uNS was similar for all three scenarios, ranging from
1.23-1.26% of uW, with more than 98.9% contribution due to the SE. The last two columns are the
average estimate of AGB (W) and the expanded uncertainty (UWexp, Equation 13). Using Equation
12 with uWexp, the 95% confidence interval for W was calculated and gave the same result for the
three scenarios of 148.89 to 203.25 Mg ha™*. Moreover, the lower part of column 11 shows that the
total relative standard error, calculated to be 7.88%, was also the same for the three scenarios.

ANOVA for repeated measurements was applied to compare the mean uncertainty estimate at plot-
level (Tables VIII-8 and VI111-9, Appendix V). From this analysis, a significant difference (p-value
= 0.0422) was found between the means of the different scenarios. Through applying a T-Test with
the Holm correction (Table VII1-10, Appendix 1V), a significant difference (p-value=0.0037) was
found between the NDn and RMSD scenarios. In contrast, no significant difference was found
between the NDnC scenario and the other two scenarios (p-valuey >0.05).

IV.1.4.1.4 Total AGB contribution by source of non-sampling uncertainty

To estimate the contribution from sources of uNS to the uW, the error propagation with the NDnC
scenario (normal distribution adjusted by class) was estimated. Table 1V-3 shows the results of the
error propagation using one uncertainty source at a time, and thus the individual contribution by
uncertainty source at tree-level and stand-level was estimated.

Table IV-3 provides a summary of average uncertainty values by error source. The row in bold
(NDnNC) is the reference error propagation explained in the previous section, in which all
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uncertainties were included. Rows NDnCa, NDnCb, and NDnCab are the individual error
propagations by source of uncertainty (a=uDBH, b=uTH and ab=uppsn,H)). The row NDnCc is the
uncertainty of allometric model (UAM).

---- Non-sampling uncertainty (tree-level) ---- - Total uncertainty (stand-level)--

---- Measurement uncertainty ----
u? u? u u u? u? u u? u?
DBH TH ppeutH Mes Mes | AM  Tree NS SE? W w RSE
uncertainty % % % kg % % kg % % Mg Mg %
source tree! tree! ha! hat

NDnC 29.0 44.0 270 11.41 1.7, 983 88.16| 126 98.74 13.87 176.07 7.88
NDnCa 100 0 0 6.15 100 0 6.15/ 0.01 99.99 13.78 176.07 7.83
NDnChb 0 100 0 757 100 0 757/ 0.02 99.98 13.78 176.07 7.83
NDnCab 0 0 100 5.92 100 0 5.92| 0.01 99.99 13.78 176.07 7.83
NDnCc 0 0 0 0.00 0| 100 8742 121 9879 13.86 176.07 7.87

a=DBH, b=TH, ab=correlation, c=model prediction

Table 1V-3. The total uncertainty of the AGB calculation from non-sampling uncertainty estimation
sources.

The total contribution of uNS sources was 1.26%, of which 0.01% came from uDBH, 0.02% from
uTH, 0.01% from upoerH), and 1.23% from uAM. The corresponding values in Mg ha™* were
uNS=1.56, ubBH=0.16, uTH=0.20, uppen,tH)=0.16, and uAM=1.53. Applying the Equation 10
with the GUM Method, the total uNS is

1.56= \/(0.16)2+(0.20)2+(0.16)2+(1.53)2

The estimated mean uncertainties were compared by plot for each source of uncertainty through an
ANOVA for repeated measurements (Tables VIII-11 and VI1I1-12, Appendix 1V). In the analysis,
significant differences between all sources were found, with a p-value=4.989¢". In Table VII1-13
of Appendix IV, with a pairwise comparison, statistical difference was found (p-value<0.0205).

1V.1.4.2 Monte-Carlo simulation Method (MCM)

IV.1.4.2.1 Total uncertainty analysis

The scenarios applied in error propagation with MCM used the uncertainty parameters (Tables VIl1I-
2 and VI11-3, Appendix Il) of the PDF adjusted to the measurement errors in DBH and TH. The
normal distribution parameters were the same as in the GUM Method of error propagation. The
scenarios were: normal distribution (MCNDn), normal distribution adjusted by DBH and TH class
(MCNDnNC), best adjusted distribution (MCBD), and best adjusted distribution by DBH and TH
class (MCBDC).

Table 1V-4 provides the error propagation using MCM. In this table, the results of the GUM Method
were included. The percentage contribution of uncertainties due to non-sampling uncertainty (UNS)
ranged from 1.17 to 1.26% of the total uncertainty (UW). The results show that more than 98.7% of
the uW was due to the sampling error (SE).
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The highest uNS contribution, 1.26%, was with the GUM Method using normal distribution by
classes (NDNC). In contrast, the lowest contribution from uNS was with the MCM using normal
distribution (MCNDnN).

Because the uW was nearly the same across all scenarios, the uncertainties at the plot level were
compared through an Analysis of Variance for repeated measurements to determine if the applied
scenarios were different.

Uncertainty  parameters of u? SE W RSE
propagation measurement NS uw
method uncertainty 9 % Mgha!' Mgha! %
MCNDn 1.17 98.83 13.86 176.11 7.87
MCM MCNDnC 1.19 99.81 13.86 176.14 7.87
MCBD 1.23 98.77 13.86 176.18 7.87
MCBDC 1.25 98.75 13.87 176.21 7.87
NDn 1.23 98.77 1387 176.07 7.88
GUM 7.88
Method NDnC 1.26 98.74 13.87 176.07 /.
RMSD 1.25 98.75 13.87 176.07 7.88

Table IV-4. Uncertainty of the AGB calculation with MCM using four uncertainty estimation
scenarios along with error propagations made with the GUM Method.

With this analysis, differences among the means of the evaluated scenarios were found (p-
value=0.0112) and through the T-Test, the p-value with Holm's corrections was calculated (Tables
VIII-14 to 16, Appendix 1V). Differences between the NDn and MCNDn scenarios were found.
These scenarios used the same parameters of measurement uncertainty (p-value=0.00021). Besides,
differences between the NDnC and MCNDnNC were observed, which also used the same uncertainty
parameters in the measurement by class (p-value=0.00090). The MCBD was also statistically
different from the NDnC and RMSD (p-value<0.014), as well as MCNDn (p-value<0.004).

IV.1.4.2.2  Stand-level contribution by source of non-sampling uncertainty

The contribution by source of uNS for the scenario MCBDC is in Table IV-5. The correlation
between the DBH and TH variables was not included in the estimation, because it was less than 0.8
and was considered a negligible contribution. The sources of uncertainties are depicted in the
following table as follows: a = uDBH, b = uTH and ¢ = u of allometric model (UAM).

u? RSE RSE
uncertainty g SE uw w L RSE L
source

% % Mgha! Mgha! % % %
MCBDC 1.25 98.75 1387 176.21 741 7.87 8.32
MCBDCa 0.03 99.97 13.80 176.23 7.76 7.83 7.90
MCBDCbh  0.03 99.97 13.78 176.05 7.76 7.83 7.89

MCBDCc 1.20 98.80 13.86 176.09 742 7.87 8.30
W =AGB estimated by tree, a=DBH, b=TH, c=model prediction

Table 1V-5. Uncertainty of the AGB calculation with MCM for non-sampling uncertainty sources
and their contribution to the total uncertainty.
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The contributions of uDBH (0.233 Mg ha™) and uTH (0.230 Mg ha™) were 0.03% each. The uAM
had the largest contribution for the uNS with 1.20% (1.52 Mg ha™). Using the contribution per ha of
every source in Equation 15, the result of MCM per source of uncertainty was shown to be an
approximation for the total NS uncertainty.

1.55%1.56= J(0.233)2+(o.230)2+(1.52)2

The uncertainty due to sampling contributed 98.75% to the total uncertainty. In the columns
following the estimated AGB (W) are the values of the relative standard error (RSE) estimate. With
the MCM, not only the average value of the estimate was reported, but also a 95% confidence
interval. Therefore, the RSE LL column was the lower limit and the RSE UL column was the upper
limit of the relative uncertainty.

Comparing the mean uncertainties (Tables VI1I1-17 to 19, Appendix V) in the AGB estimation by
plot, significant differences were found among the contributions by the source of uncertainty and
the uW per plot (p-value<2.722¢"%). The mean uncertainties in AGB estimation by DBH and TH
were not significantly different (p-value=0.708). However, the other paired comparisons were
significantly distinct (p-value<0.034).
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IVV.2 Empirical study 2: Comparison of aboveground biomass estimates from two types of
dasometric measuring equipment for the variables DBH and TH, a case study developed in
beech forest near Gottingen, Germany

V.21

General information

In total, 1103 trees of 16 genera were registered in the 47 plots of the study area. The genus Fagus
spp dominated, with 47% of the measured trees, which, together with the genera Acer spp, Fraxinus
spp, and Prunus spp, accounted for 87% of the total number of registered trees.

Applying the simple random sampling estimators, the estimates per-hectare of the number of trees,
basal area, and AGB were calculated for the re-measurement plots and the stand area. Table IV-6
shows the results range and Table V-7 shows the mean value of measured and estimated variables
per device for both the stand area (47 plots) and the re-measurement plots (11 plots).

Re-measurement (11 plots) Stand area

Variable Caliper+Blume-Leiss  Tape+Vertex (47 plots)

(CB) (TV) Tape+Vertex

DBH (cm) 6.9-62.4 7.0-63.6 7.8-89.8

Measured | T4 (m) 5.2-36.6 5.0-34.7 7.3-36.3
No. of trees (ha) 320 - 660 160-1360

Estimated | Basal area (m? ha?) 21.1-39.1 21.4-39.8 15.9-48.2
AGB (Mg ha') 159.3-314.4 154.8-325.1 88.2-424.5

Table 1V-6. Range of values for measurements and estimated variables in the study area.

Re-measurement (11 plots) Stand area

Variable Caliper+Blume-Leiss Tape+Vertex | (47 plots)
(CB) (TV) Tape+Vertex
DBH (cm) 23.9 24.2 25.3
Measured | 111 (m) 19.9 19.7 20.0
No. of trees (ha) 455 469
Estimated | Basal area (m? ha?) 28.8 29.4 32.1
AGB (Mg ha?) 236.3 238.6 257.6

Table 1V-7. Statistics of measurements and estimated variables in the study area.

The basal area and AGB per class estimates are plotted in Figure IV-5. The tree frequency bars
were the same for basal area and AGB estimates, and tree frequency varied depending on DBH or
TH classes. In the four graphs of this figure, the pattern observed in the estimation of basal area and
AGB was similar by class and by measuring device. As shown in the upper graphs, the number of
trees per DBH class was similar between the stand and re-measurement plots. The smaller classes
(7-20 cm] had the lowest contribution to basal area and AGB, despite having registered more than
50% of the sampled trees. In contrast, with less than 22% of the trees sampled, large trees (40-63
cm) contributed to more than 60% of the basal area and more than 65% of AGB.

The estimate of AGB and basal area follow similar patterns by TH class. However, the proportion
of the TH classes had greater variation. For example, the TH measurements between the re-
measurement plots showed a smaller number of trees in the intermediate class (15-25 m). The
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largest trees in TH (from 25 m) had the largest contribution to the estimated variables, more than
71% of the total basal area and more than 79% of the AGB.

Basal area Aboveground biomass (AGB)
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Figure 1V-5. Basal area and AGB estimation. Above, estimate by DBH class every 20 cm; below,
estimate by TH class every 10 m. The bars represent the frequency of threes per size class.

1V.2.1.1 DBH and TH relation

Figure 1V-6 shows the relationship between DBH and TH. The figure depicts the mean values of the
five re-measurements made with Caliper for DBH and with the Blume-Leiss for TH (CB). In the
same way, the mean values measured by the Tape and Vertex (TV) were plotted in the same figure.
Comparing the two datasets values less than 25 cm DBH and less than 24 m TH, had a similar
dispersion. Higher values of both variables showed greater dispersion.

Pearson's correlation coefficients (p) are also included in the graph. In both cases, the coefficient
was positive and greater than 0.92, showing the systematic variation between the two variables, as
well as the direction of the relationship. This coefficient was used in the error propagation as stated
the Equation 06b.

1V.2.1.2 Data sets comparison

IV.2.1.2.1 Diameter at breast height (DBH)

The differences between variables and devices were analyzed through boxplots and frequency
histograms in Figure IV-7. The left side shows the comparison of DBH measured by Caliper (C)
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and by Tape (T). The results in the boxplots for the two devices were similar, with no extreme
values observed. The median, from the boxplots, for Caliper was 18.21 cm and for Tape was 18.32
cm.
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Figure 1V-6. Relationship between DBH and TH for mean values of the 250 trees in re-
measurement plots made with Caliper and Blume-Leiss (CB) and with Tape and Vertex (TV).

The histogram in Figure I1V-7 (top left) displays the measurement frequencies by class for each
device and the areas of overlap (0.98%) indicate that the measurements made by both devices had
the same frequency. Two frequency bars (0-10 and 20-30) had a higher frequency for Caliper, and
one bar (40-50) recorded more trees for Tape measurements. In the lower part, the scatter plot
denotes a high relationship between Caliper and Tape measurements per tree, with a Pearson
correlation coefficient pcatiper, tapey=0.99.

The Wilcoxon Signed-Rank Test compared the data pairs and resulted in a p_valuewr<2.2e°,
indicating non-identical populations of the two datasets (C and T) of best estimates . Before the
median analysis, Bartlett's Test was applied (p-values=0.9263) and verified homogeneous
variances.

IV.2.1.2.2 Total height (TH)

The histogram in Figure V-7 (top right) shows that only in the class 20-25 both devices had the
same frequency of measured trees. For the other six classes, each device had three classes in which
it was the most frequent. In total, there was 95.6% overlap between the two devices. As shown in
the boxplot, the Vertex provided fewer extreme values. This trend was also registered in the lower
median value of 18.87 m for the Vertex and 19.05 m for the Blume-Leiss.

The datasets were not normally distributed, so the Wilcoxon Signed-Rank Test for paired data was
used to compare them. A p-valuew=0.0539 was calculated, indicating that the difference between
the medians of the two datasets included zero and that there are no significant differences between
the datasets.
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Figure IV-7. Left-top: DBH boxplot and overlapped histograms of Caliper (C) and Tape (T)
measurements. Right-top, graphs of TH made with Blume-Leiss (BL) and Vertex (V). Bottom:
comparison of measurements made with two devices.

1V.2.2 Measurement error

1V.2.2.1 Individual tree uncertainty

One of the methods used to propagate the uncertainties was the GUM Method using the Law of
Error Propagation. This method assumes a hormal distribution of the error, so the variable
"measurement error" for each tree with the SRS standard deviation estimator was estimated.

IV.2.2.1.1 Diameter at breast height (DBH)

The Caliper measurement errors ranged from 0 to 1.01 cm, while the Tape measurement error
ranged from 0.01 to 0.63 cm. Considering the maximum value of measurement errors with Tape
(0.63 cm), 96% of the error with Caliper fell within the range of errors of Tape. The mean value of
the error for each device was 0.19 cm and 0.16 cm, for Caliper and Tape.

IV.2.2.1.2 Total height (TH)

The measurement errors estimated for TH had limit values from 0.03 to 2.22 m for Blume-Leiss
(BL) and 0.01 to 1.85 m for Vertex. The mean value of measurement error was 0.88 for BL and 0.58
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m for Vertex. 97.2% of the errors measured with BL were less than or equivalent to the maximum
measurement error made by Vertex (1.85 m).

1V.2.2.2 Measurement uncertainty parameters for the study area.

IV.22.2.1 GUM Method

The parameters used to propagate the errors of AGB estimates are shown in Table I1V-8. In this
table, were included two types of results: those which assumed homoscedasticity in the
measurement errors, and those which assumed heteroscedasticity in the measurement errors, as
described in Section 111.2.4.1.2.3. The applied parameter was the standard deviation (&), expressed
in centimeters for DBH and meters for TH. Following the terminology established in Section
111.2.6.3, in the first scenario, called "Mean", was used the mean value of all measurement errors.
The second scenario was "NDn", with the dispersion parameter estimated by fitting the errors to a
normal distribution (Tables VI1I-4 to VI11-7, Appendix I1I).

In this table, the parameters of students with (Exp) and without (NExp) previous experience in forest
mensuration were included, from Section 111.2.2.2. At the end of the table are the models fitted by
linear regression (scenario 4) to estimate &, which follows the heteroscedasticity of the errors
(Figure VI111-1, Appendix I11). The scenario 3 "NDnC" (not included in the table due to
compatibility of size), fitting the errors to a normal distribution by class, the dispersion parameters
are in Appendix 111 (Tables VIII-4 to VIII-7).

Scenarios of measurement error estimation (&)

Homoscedastic errors Heteroscedastic errors
Variable Device
Mean Students
NDn Linear Regression !
Exp Nexp
DBH Caliper 0.193 0212 - - (((-2.012+0.018*DBH)*L)+1)"*
(cm)  Tape 0.162 0.209 1.178  1.183  (((-1.993+0.018*DBH)*L)+1)""*
TH Blume-Leiss  0.882 1.229 - - (((-0.667+0.024*TH)*\)+1)"*
(m)  Vertex 0.576 0.646 4.01 4.06 (((-1.488+0.037*TH)*\)+1)"*

Y Acatiper= 0.2121, Apgpe= 0.2525, Agjyme Leiss= 0.5454, Ayerrer= 0.3434
Mean=mean value of error, NDn=normal distribution, Exp=students with prior experience, Nexp=students without prior
experience

Table 1V-8. Uncertainty parameters for scenarios to estimate measurement error of DBH and TH.

IV.2.2.2.2 Monte-Carlo simulation Method

The MCM did not require the assumption of normality in error distribution. Therefore, the
distributions of measurement errors were fit to the PDF that best described those errors (Figure 1V-
8a and b). To be consistent with homoscedasticity in the measured errors, the PDFs by class were
adjusted (Figure IV-8c to h), as established in Section 111.2.4.1.2.2.

Shown in Figure IV-8 are the PDFs which best fit to the measurement errors by diameter class
(black line), along with the normal distribution (gray line) for reference. The number of trees per
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class are also displayed next to each graph. The adjustment parameters, as well as the goodness-of-
fit per PDF, are recorded in Tables VIII-4 and VII1-5 of Appendix IlI.

The logistic and cosine distributions were closely aligned to normal distribution. However, in the
PDFs for Caliper [20-40) and Tape [40-63], the trapezoidal distribution had a better fit.

DBH Probability Density Function (PDF)
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Figure 1\V-8. Probability Density Function (PDF) fitted with DBH measurement error according to
DBH class, for Caliper and Tape measurement. a) and b) are PDF fitted for the whole dataset of
Caliper and Tape, respectively.

Distributions adjusted for TH measurement errors are found in Figure 1VV-9. The parameters for the
PDEF’s adjusted are in Tables VIII-6 and VI11-7 of Appendix I1I.

The TH measurement errors showed larger differences between the best-fit distribution (black line)
and the normal distribution (gray line) than measurement errors in DBH. The errors measured by
Blume-Leiss were greater than those measured by Vertex. This observation was verified graphically
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by noting that the Blume-Leiss had more frequent large errors and that the parameters of the normal
distributions were smaller for the errors measured by the Vertex.

TH Probability Density Function (PDF)
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Figure 1\VV-9. Probability Density Function fitted with TH measurement error according to TH class,
for Blume-Leiss and Vertex measurements. a) and b) are PDF fitted for the whole dataset of Blume-
Leiss and Vertex IV, respectively.

IV.2.3  Error propagation
1V.2.3.1 GUM Method of error propagation

IV.2.3.1.1 Measurement error propagation by tree

In this Section, the AGB and the uncertainty of AGB estimation by four datasets were compared.
The datasets identification is with the first letter of the measurement devices. In this way, the first
two datasets were CB (Caliper+Blume Leiss) and TV (Tape+Vertex), and the AGB predictions were

74



Chapter 1V: Results

made with the two-variables model. The other two datasets were C (Caliper) and T (Tape) and the
AGB was predicted with the one-variable model.

The error propagation required the error parameters (Section 1V.2.2.2.1) from the two non-sampling
sources and the correlation of the two variables measured in the field. The Pearson correlation
coefficient (p) was calculated by tree with the matrix made up of the five DBH re-measurements
and the five TH re-measurements. The error propagation is in Table IV-9.

In the upper part of the table are the uncertainty values in the units of the measurement. In the lower
part, the percentage values show the proportional contribution from every source to the propagated
error. The non-sampling uncertainty information was the average data of the 250 measured trees.

Measurement uncertainty of an average tree (uWtree in column 4) was lower for TV than for CB.
TH had the largest contribution to measurement error, with values of 62% for Blume-Leiss and
56.3% for Vertex. The contribution of DBH to uWtree was between 22.7-30.2%, and the correlation
contributed to less than 15.3%. In scenarios using only DBH in the AGB model (C and T), DBH
uncertainty was larger than DBH uncertainty in scenarios using DBH and TH. However, the total
AGB estimate at tree-level was less than the other estimates.

Uncertainty (u) in the 11 plots of
re-measurement

---------- Measurement ----------

s 1 2 3 4 5 6 7 8 9 10 11
g u u u u u u u u u
E DBH TH PDBH, TH* Mes AM Tree NS SE w W Wexp
S Uncertainty kg kg kg kg kg kg Mg Mg Mg Mg Mg
= scenario  treel tree?  tree?! tree’ tree? tree! hal hal hal!  hal ha'
§ CB 8.70 14.38 7.16 1826 1.30 1831 0.87 13.71 13.74 236.28 +26.93
< TV 6.68 9.12 4.46 12.16 1.30 1223 055 1442 1443 238.64 +28.28
i 9.01 - - 9.01 135 911 050 1480 14.81 22340 +£29.03

T 6.99 - - 699 135 7.12 032 1503 1504 22864 *29.47
Co_ e Non sampling ------------------- Uncertainty (u) in the 11 plots of

o e Measurement ---------- re-measurement

i u? u? u u w o u u? u
§ DBH TH DBH,TH Mes Mes AM Tree NS SE? w W RSE
E CB 227 62.0 15.3 18.26 99.5 0.5 1831 040 99.60 13.74 236.28 5.82
i TV 30.2 56.3 135 1216 98.9 1.1 1223 0.15 99.85 14.43 238.64 6.05
E C 100 - - 9.01 978 22 911 011 99.89 14.81 223.40 6.63
I T 100 - - 6.99 96.4 36 712 0.05 99.95 15.04 228.64 6.58

* This term is the \/u pppu )

Table 1VV-9. Uncertainty of the AGB calculation using four scenarios to estimate the measurement

uncertainty Caliper+Blume-Leiss (CB), Tape+Vertex (TV), Caliper (C) and Tape (T).

uWtree combined with the allometric model uncertainty (uAM) resulted in the non-sampling
uncertainty (uNS). The Allometric models contributed <3.6% to the uNS. Therefore, the largest
contribution to uNS was uW tree, with more than 96.4% of the contribution.
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The estimates per tree were aggregated at the plot-level and expanded to values per hectare (ha).
This information is summarized in column 7 from Table I1VV-9. uNS combined with SE resulted in
the total uncertainty (uUW). The estimate of UNS was <0.87 Mg ha™ (0.4%) and from SE it was
>13.71 Mg ha™ (99.6%).

The estimated mean of AGB (column 10) was higher in calculations using two variables in the
estimate of AGB (CB and TV), than with one variable to estimate AGB (C and T).

The four AGB estimates were compared using the estimates per plot. Appendix V shows the result
of the Analysis of Variance for repeated measurements and the paired T-Test applied to the four
AGB estimates (Tables VI111-20 to VII1-22). The ANOVA Test indicated no significant difference
for the CB and TV estimates (p-value=0.2916). However, the other pairs’ comparisons showed a
significant difference (p-value<0.0256).

The total error of the four AGB estimates was also compared (Tables VI11-23 to VI11-25, Appendix
V). Significant differences were found in the analysis for total estimated errors per plot with
scenarios CB and C (p-value=0.00034) and for total estimated errors in scenarios TV and T (p-
value=0.00051).

IV.2.3.1.2 Measurement error propagation by tree (modeled)

In this section, the comparison of the measured uncertainty with the scenarios to estimate
measurement errors is shown (Section 111.2.4.1.1). The GUM Method of error propagation was used
to make the comparison, applying the scenarios to estimate the measurement error to the datasets
Caliper+Blume-Leiss (CB) and Tape+Vertex (TV).

The uncertainty parameters in Section 1V.2.2.2.1, together with the correlations of the measured
dataset (pcs= 0.9238, prv=0.9330) were used to propagate the error in AGB estimation. The results
of the propagations are in Table IV-10. This table includes the reference information estimated in
the previous Section for the CB and TV datasets (bold rows).

The applied scenarios, in Table 111-6 of Section 111.2.6.3, were previously described. The scenario
used the dataset (CB or TV), together with the method to estimate the measurement errors: average
uncertainty value (mean), normal distribution (NDn), normal distribution per class (NDnC), students
with prior experience (Exp) and students without prior experience (Nexp).

The table shows the percentages that each source contributed to the estimated uncertainty at
different levels. The estimated levels were as follows: measurement uncertainty (uMes in column
4), non-sampling uncertainty at tree-level (uTree in column 7), and total uncertainty (uUW in column
10). Column 12 shows the relative standard error (RSE), which gives an estimate of uW in relation
to the total AGB estimate (W).

From the error propagation with the Caliper+Blume-Leiss (CB) measurements, it was observed that
uTH had the highest contribution to the uMes (column 4). This error contributed, on average, to at
least 41.1% of the error, and was greater than the contribution of uDBH in all the scenarios (less
than 28%). The uMes of the CBNDn, CBNDnC, and CBmod scenarios overestimated the reference
estimation (CB=18.26 kg tree™). The use of the CBmean scenario led to an underestimation of the
uMes and the RSE of the reference value.
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The contribution of the AGB prediction model (UAM) to UNS was <0.7%. Therefore, the largest
contribution to uNS was the uMes, with over 99.3% of the estimate in column 7. Due to the low
contribution of uAM, the uTree had a slight increase compared to the estimates in uMes (column 4).

---------- Non sampling uncertainty (u) ---------- -u in the 11 plots of

---- Measurement uncertainty ---- re-measurement -
1 2 3 4 5 6 7 8 9 10 11 12

u? u? u u u? u? u u? u

DBH TH  pPppurH Mes Mes AM Tree NS SE? W W RSE
Uncertai.nty % % % kg % % kg % % Mg Mg %

scenario tree? tree? hat ha
cB 227 620 153 1826 995 05 1831 040 99.60 13.74 236.28 5.82
CBmean 17.9 54.4 276 1558 993 0.7 1563 022 99.78 13.73 236.28 581
CBNDn 13.0 61.9 251 2043 996 04 2047 039 99.61 13.74 236.28 5.82
CBNDnC 133 61.3 254 2589 993 07 2592 048 9952 13.76 236.28 5.82
CBmod 16.0 56.8 272 1926 996 04 1930 037 99.63 13.74 23628 5.82
TV 30.2 56.3 135 1216 989 1.1 1223 015 99.85 1442 23864 6.05
TVmean 234 469 297 1129 987 1.3 1136 0.0 99.90 14.42 238.64 6.04
TVNDn 273 423 304 1319 990 10 1326 014 99.86 1442 23864 6.05
TVNDNC 271 428 30.1 1736 994 06 1741 028 99.72 1442 23864 6.05
TVmod 280 41.1 308 1394 991 09 1401 019 9981 1442 23864 6.05
TVEXp 25.0 452 29.8 77.76 99.99 001  77.77 469 9531 14.77 23864 6.19
TVNexp 248 454 29.7 7849 99.99 001 7850 477 9523 14.77 23864 6.19

Table 1'V-10. Sources of uncertainty contribution in the AGB calculation for different scenarios of
measurement error estimation.

Two scenarios had the same value of uW as the reference value. These scenarios, CBNDn and
CBmod, had the uNS contribution closest to the reference value (0.40%). The estimation of the
relative standard error (RSE) was alike for all scenarios because the main source of error was
always SE, accounting for more than 99.46% of the contribution.

To compare the scenarios using the CB dataset, an ANOVA for repeated measurements was
performed with the estimated mean uncertainty per plot. The results of the ANOVA are in
Appendix V (Tables VI11-26 to VI1I1-28). The findings indicate that the CBmod (p-value=0.10039)
and CBNDn (p-value=0.97838) scenarios did not differ significantly from the reference estimate.

The propagations using the TV dataset are at the bottom of Table 1V-10. The TVmean, when
compared to reference value TV, was the only scenario that underestimated uWtree (column 4). At
this estimation level, the main contribution for all scenarios was uTH (>41.1%), followed by the
correlation (<30.8%), and with the least contribution from the uDBH (<28.0%).

For the uTree (column 7), the contribution of allometric models (UAM) was less than or equal to
1.3%, while uMes contributed more than 98.7%. Converting the uNS to values per ha and
combining it with the sampling error (SE) resulted in a total uncertainty of AGB (uW in column 10).
The greatest contribution of this uncertainty was the SE at more than 99.72%. The RSE value
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followed the initial trend, where the TVmean scenario underestimated the result of the reference
value TV.

The analysis, ANOVA for repeated measurements, of the mean estimated uncertainties per plot
(Tables VI111-29 to VII1-31, Appendix V), determined that the TVmod (p-value=0.521) and TVNDn
(p-value=0.71675) estimates did not differ significantly from the mean uncertainties estimated by
the measured uncertainty TV.

The errors propagated with the parameters of measurement errors made by students, TVExp and
TVNexp, showed similar values for the three levels of uncertainty. Comparing the errors propagated
in TVEXp and TVNexp with the measured uncertainty for measurements with Tape+Vertex (TV), the
uMes and the uTree were six times larger. This deviation resulted in a larger contribution to the
final measurement error of almost 5% of the uW. This contribution increased RSE from 6.05%
(reference scenario) to 6.19% for TVExp and TVNexp.

The mean uncertainty in AGB estimation per plot calculated with the students’ measurement errors
(TVExp and TVNexp) were compared, with the measured uncertainty TV by using an ANOVA for
repeated measurements (Tables VI11-32 to 34, Appendix V). The difference between the mean
uncertainty values was significant (p-value=2.321e*?), and, from applying a paired T-Test (Holm
correction), it was found that significant differences exist for the mean uncertainties in these three
scenarios (p-value<9.2¢™?).

1V.2.3.2 Error propagation with Monte-Carlo simulation Method (MCM)

With MCM, the errors in AGB estimation were propagated for the study area. The data from 47
measured plots (DBH, TH) was assumed as the best estimate per tree. Then, on these measurements
were applied to the error measurement parameters of the NDn and mod scenarios. These scenarios
were selected since they were observed in the previous Sections to be the scenarios that best
estimated the measurement errors for the CB and TV datasets. The student measurement error
parameters (Exp and Nexp) were included in the propagation. Finally, two more scenarios: the best-
fitted PDF (BD) and the best-fitted PDF by class (BDC) were added.

The error parameters were mentioned in the previous section, except for the methods in which
errors were non-normal distributed (BD and BDC). The error parameters of the remaining scenarios
(CBBD, CBBDC, TVBD, and TVBCD) are displayed in Tables VI1I1-4 to VI1I-7 of Appendix I1I.

Table 1VV-11 shows the results of error propagation with MCM. This table includes the contribution
in percentage of non-sampling errors (UNS) and sampling error (SE). Both contributions to the total
uncertainty (UW) in the AGB estimate (W), as well as the relative standard error (RSE).

For all analyzed scenarios, the greatest contribution came from SE (> 99.05%). Using parameters
from Caliper and Blume-Leiss (CB), the reference scenarios CBNDn and CBmod had the same
contribution of 0.10% for uNS. The CBBD scenarios underestimated (0.07%) the contribution of
errors due to uNS. In contrast, using error distributions according to the diameter class (CBBDC),
the contribution of uNS was overestimated (0.15%).

Error propagation using the Tape and Vertex (TV) parameters is reported in the lower part of Table
IV-11. For this data, a higher contribution of the TVmod scenario (0.05%) was observed compared
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to TVNDn (0.03%). However, the TVBDC scenario had the same contribution of uNS as the
reference scenario TVNDn. Similarly, the TVBDC scenario contributed 0.05%, as did TVmod.

The propagations using the errors estimated with the student measurement errors (Exp and Nexp)
had a major contribution to the uNS. With contributions close to 1% of the uNS to the uWw; the
estimated values resulted in an increase in RSE from 5.00% to 5.04%.

u? u
Uncertainty NS SE NS SE W W RSE
scenario  Mghal Mgha! % % Mgha! Mgha! %
CBNDn 0.42 13.13 0.10 99.90 13.14  262.67 5.00
CBmod 0.42 13.13 0.10 99.90 13.14 262.70 5.00
CBBD 0.35 13.13 0.07 99.93 13.14  262.69 5.00
CBBDC 0.50 13.14 0.15 99.85 13.15 262.67 5.00
TVNDn 0.24 13.13 0.03 99.97 13.13  262.70 5.00
TVmod 0.29 13.13 0.05 99.95 13.13  262.71 5.00
TVBD 0.23 13.13 0.03 99.97 13.13 262.71 5.00
TVBDC 0.30 13.13 0.05 99.95 13.13  262.71 5.00
TVEXp 1.27 13.18 0.93 99.07 13.24 262.67 5.04
TVNexp 1.29 13.17 0.95 99.05 13.24  262.63 5.04

CB=Caliper+Blume-Leiss, TV=Tape+Vertex, NDn= normal distribution, mod=linear regression model, BD= best fitted distribution,
BDC=best fitted distribution by class, Exp=students with experience, Nexp=students without experience.

Table IV-11. Error propagation in AGB estimation with MCM different scenarios to calculate
measurement errors.

The analyses to compare the mean uncertainty estimated at the plot level was performed. First, were
compared the mean uncertainty from propagations using error estimates for Caliper+Blume-Leiss
(CB). The ANOVA of repeated measurements (Tables VI11-35 and VI11-36, Appendix V) was
significant (p-value < 2.2¢°). The paired T-Test found that the mean uncertainty in all applied
scenarios were significantly different, with p-value< 3.2 ¢®.

Results of comparisons using Tape+Vertex (TV) mean uncertainty estimates were like the CB
results (Tables VI11-37 and 38, Appendix V). It was found a significant difference between the
scenarios (p-value<1.603¢™*%), and the paired comparison determined that the mean uncertainty from
the scenarios were significantly distinct (p-value<1.2¢™%).

The mean uncertainty of propagation with error parameters by students (Exp, Nexp) with the
reference measurements scenarios were compared (CBNDn, CBmod, TVNDn, and TVmod). The
result of ANOVA (Table VI11-39 and VI11-40, Appendix V) revealed significant differences (p-
value< 2.2e7*). Post hoc analysis showed no significant difference between the mean uncertainty
from the two scenarios with student information (TVExp and TVNexp), but the remainder of the pair
analyses were statistically different (p-value<5.40e™®).

IV.2.3.2.1 Contribution per source of uncertainty

In the previous section, a major contribution of sampling error (SE) to the total uncertainty (uW)
was found. Non-sampling uncertainty (UNS) consisted of four sources of uncertainty, and it was
split in the contribution of each source in this Section. When the contribution was separated, a
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contrast between the sources of UNS was revealed among the different scenarios used to estimate
measurement errors.

Out of the scenarios used in the previous Section, the NDn scenario was excluded because its
estimates were not significantly different from the ones in mod scenario. Additionally, the mod
scenario used the size of the tree in estimating measurement errors.

The error propagation results with MCM separated by the source of uncertainty are displayed in
Table VI11I-41 of Appendix V. Using Equation 11, the contributions with units of Mg ha™ were

obtained, and the Law of Error Propagation was used (Equation 15) to approximate the total uNS
for the scenario BDC.

(CB) Caliper+Blume-Leiss 0.50 ~ J (0.501Y2+(0.202)*+(0.453)>+(0.008)>+(0.018)

(TV) Tape+Vertex 030~ J (0.302)%+(0.158)%+(0.260)*+(0.004)2+(0.018)”

The contributions by source of uncertainty showed that the two sources that contributed most to the
total non-sampling uncertainty (UNS) were uDBH and uTH. Contributions from the other two
sources, correlation (<0.006%) and prediction model (<0.0002%), were relatively small.

Figure 1V-10 presents the contributions from uDBH and uTH to the uNS estimates in Table VI11-41
of Appendix V. In the figure were included six scenarios, used in the previous section with the error
propagation using MCM. The scenarios were constructed with two datasets (CB and TV) and tree
methods to estimate measurement errors (mod, BD and BDC).

1

mCBmod mCBBD CBBDC
EmTVmod m®mTVBD mTVBDC

v 0.8

= mExp ONexp

8

= 0.6

2

=

o]

=04

s CB 1A%

o

ST —

o

uDBH+uTH uDBH uTH
Measurement uncertainties

uNS=total non-sampling uncertainty, CB=Caliper+Blume-Leiss, TV=Tape+Vertex, mod=linear regression model, BD=best fitted
distribution, BDC=best fitted distribution by class.

Figure 1VV-10. Contribution of uncertainties from DBH and TH measurements to the total non-
sampling uncertainty of AGB estimate.

The figure shows the overall contribution of the two uncertainties (uUDBH+uTH) to the total NS
uncertainty, for each scenario. The total uNS had larger contributions from scenarios using
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Caliper+Blume-Leiss (CB >0.072%) compared to the contributions of scenarios with Tape+Vertex
(TV<0.053%). The contribution to UNS by student measurements (Exp and Nexp) was close to 1%.

The TH errors were the largest contributors to uNS. In the scenarios using CB data, they represented
more than 80% of the uNS, and they contributed to more than 68% for TV scenarios. Applying
errors from students’ measurements (Exp and Nexp), TH error accounted for more than 72% of the
uNS. On the other hand, measurement errors in DBH were responsible for less than 28% of the
errors in uNS.

IV.2.3.2.2  Error contribution of AGB estimation by measurement device

To analyze the differences in uncertainty estimation by a measurement device, the uncertainties
were compared by pairs of devices (Tape vs. Caliper and Vertex vs. Blume-Leiss). This comparison
with the mean uncertainty propagated at plot-level was performed for each of the scenarios used in
the previous Section (BD, BDC, mod). The boxplots in Figure IV-11 show the mean uncertainty
estimates among measurement pairs, with uDBH displayed on the left and uTH on the right. The
right margin describes the scenarios used to estimate measurement errors. The lines join the
estimates of the same plot made by the two instruments being compared.

In the previous section was found that the uncertainties of TH measurements were larger than those
of DBH. For uDBH, Tape errors were smaller than Caliper errors for the three scenarios. However,
the BD and BDC scenarios occasionally produced similar estimates for both devices. In Figure VIII-
2 of Appendix V, a complementary graph of the error estimates by plot and device was included.

For the TH measurement errors (graphs on the right side), the uncertainty estimates with Blume-
Leiss measurements were greater than those observed in Vertex in all the estimates (see Figure VI1II-
2, Appendix V).

To verify the graphical differences, a paired analysis for the mean DBH uncertainties was
performed. The Kolmogorov-Smirnov Test verified the normal distributions of the uncertainty (p-
valueks>0.082). Subsequently, a paired T-Test was applied (Holm’s correction), and the results
indicated that from the three scenarios, DBH mean uncertainty estimates were statistically distinct
(p-valuerhom<2.2¢%). The mean value of the differences was greatest in the BDC scenario (0.255
Mg ha't), followed by mod (0.188 Mg ha™), and then the BD scenario (0.028 Mg ha™).

The Kolmogorov-Smirnov's Test, when applied to the TH measurements, resulted in a p-
valueks>0.06. The T-Tests also found statistically significant differences in the data pairs of
uncertainties per plot (p-value.Hom<2.2¢™°). In ascending order, the mean value of the differences
was 0.808 Mg ha™* for scenario mod, 0.817 Mg ha™* for BD and 1.250 Mg ha™ for BDC.
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Figure IV-11. Comparison of uncertainty calculated per plot and measurement device, for three

scenarios of measurement error in AGB estimation.

82



Chapter 1V: Results

1VV.3 Empirical study 3: Propagation of errors in the AGB estimation for the state of
Durango, Mexico, with information from the National Forest Inventory

IV.3.1 General information on the Mexican National Forest Inventory dataset

1V.3.1.1 First measurement of the Mexican National Forest Inventory (2004-2009)

The data used in this analysis derives from the Mexican National Forest Inventory (MNFI) from the
years 2004 to 2009. The 2004-2009 MNFI records for the state of Durango consisted of 1826
clusters with 118,647 trees. Our study excluded 157 clusters (8320 records) because they were from
a vegetation classification other than temperate forests. Errors detected in the records were “missing
information” and “outliers”. There were 73 missing information registers: 21 without DBH, 46
without TH, and 6 without a name registration. There were 492 outlier records, from which 141 had
a DBH less than 7.5 cm and 351 had a TH less than 1.5 m. These limits were established in the
measurement protocol. The errors in this raw dataset were the 0.51% of the total trees.

Our final subset of data from the 2004-2009 MNFI in the temperate forest in Durango consisted of
1662 clusters with 109,762 trees. This dataset was used as reference information to estimate basal
area (G) and AGB (W) from the estimators in Section 111.3.5. The summary of these results is in
Table IV-12, in which the standard error (SE (R)) refers to the sampling error and s(R) indicates the
dispersion of the mean estimate per cluster.

2004-2009 2009-2014
Vegetation Estimator Clusters=1662 Clusters=1632
9 Tree G W Tree G w

No. m?hat Mgha®* No. m?ha' Mg ha?

R 445,16  12.98 6431 45176 13.17 64.77

Temperate forest  s(R) 279.16 856  77.80 27836 8.66  77.70
SE(R) 710 022 193 713 022 194

Table 1'V-12. Estimates of basal area (G) and AGB (W) calculated from the MNFI in the temperate
forest of Durango, Mexico.

1V.3.1.2 First re-measurement of MNFI (2009-2014)

The information from the following MNFI was designated as “re-measurement” data. The 2009-
2014 MNFI included 1822 clusters registered in Durango, with 118,641 measured trees. From the
Durango subset, temperate forest in 1632 clusters were identified, thereby removing 8191 tree
records from the other vegetation types. Additionally, 18 double records and 417 records without
information were eliminated. Seven records were also eliminated with DBH less than 7.5 cm and 25
trees with TH less than 1.5 m, per the established measurement protocol. The error in the dataset
represented 0.40% of the trees measured. In the end, basal area and AGB were estimated for the
Durango temperate forest with 109,983 records from the 2009-2014 dataset (Table 1V-12).

The estimates of G and W increased from the 2004-2009 dataset to the 2009-2014 re-measurement
dataset. The ratio estimate increased by seven trees ha*, 0.19 m?ha* for basal area, and 460 kg ha*
for AGB. In addition, the variation between plots was lower in the re-measurement for the number
of trees and AGB but was higher for the basal area. Finally, the standard error showed no change
for the basal area but the other two variables increased.
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IV.3.2 AGB and basal area estimation by size classes

The AGB (W) and the basal area (G) were estimated by DBH and TH class to determine the
proportion of each class in the total estimate. The W and G estimates per class, for the 2004-2009
MNFI dataset (ALL), is in Figure 1V-12. Since the genera Pinus spp (PINE) and Quercus spp (OAK)
were dominant (84.3% of the dataset), the estimate of both genera and the sum of the two genera
were included (P&O). DBH and TH classes were outlined in Section 111.1.5.1.1.1.

Basal area (G) Aboveground biomass (W)
0.25 ALL 0.25 ALL
=PINE =PINE
=0AK =0AK 15
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hlh, .. 1 I
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TH class (m)
ALL=estimation made with all the data of temperate forest, PINE=estimation made with genus Pinus spp (n=43531), OAK=estimation
made with genus Quercus spp (n=48993), P&O=estimation made with Pinus spp + Quercus spp (n=92524).

Figure IV-12. Basal area (G) and AGB (W) estimation for 2004-2009 MNFI in Durango, Mexico.
Above, estimations made by DBH class; below, estimations made by TH class.

0.00

The upper part of Figure 1V-12 shows the results of the estimation by DBH class and in the lower
part the estimates by TH classes. The number of trees by class was represented with vertical bars
according to the percentage of trees with respect to the total MNFI. the values of W and G were
represented with connected points, to display the direction followed by the estimates. The
information source for Figure 1VV-12 was Table V111-42 of Appendix V1.

1V.3.2.1 DBH classes

In the diameter data, the frequency of trees per class was similar for the three datasets (ALL, PINE,
and OAK). The DBH class with the highest frequency was [10-15 cm) for the three sets. The class
that contained the mean for the three data sets was [15-20 cm), with means of 16.7 cm, 18.1 cm, and
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16.2 cm, for ALL, PINE, and OAK, respectively. In the four lower classes, OAK had a higher
frequency than PINE, and, conversely, in the three classes with larger DBH, the frequency of PINE
was higher.

The class estimates from the dataset ALL (the top line in the two graphs) had a similar contribution
from the two variables. The estimates ranged from 1.66 to 2.22 m? ha* and from 8.12 to 9.55 Mg
ha™ for G and W. The graphs demonstrate that the frequency of trees in the small tree classes was
higher. However, the four larger tree classes with 32.5% of the trees contributed to 59.2% of G and
57.9% of W.

The PINE (n=43531) and OAK (n=48993) contributions were inversely proportional. As the PINE
contribution increased, the OAK contribution decreased. This trend was observed up to the class
[30-35 cm), except for the last class in which both groups increased their contribution. The
contribution of the P&O dataset (sum of PINE and OAK) is observed under and parallel to the ALL
contribution. P&O contributed to 87.7% of the total G estimate and 93.2% of the total W estimate.

1V.3.2.2 TH classes

The lower part of Figure 1V-12 shows the estimated results of G and W by TH class. The figure
shows that the class with the smallest tree height (vertical bars) had the highest frequency, with
most trees being of the genus Quercus spp (OAK). The frequency generally decreased as TH
increased, except for the last class. The lowest class was the class containing the mean for the
datasets of ALL and OAK, with values of 7.7 m and 6.2 m. The class of the mean for PINE was [10-
12.5), with 10.1 m.

The contribution to G was highest in the lowest TH class. In this class, OAK had the highest
contribution (3.49 m? ha®), while the rest of the classes had the largest contribution from PINE.
OAK's contribution to W decreased with increasing tree size, while PINE gradually increased its
contribution from trees larger than 10 meters. As a result, 45.3% of PINE greater than 10 meters
contributed to 87.1% of the estimated W for this genus. In contrast, for the same TH range, the
14.2% of OAK contributed to only 56.9% of the W.

The estimation of G and W with the Pine & Oak dataset was already included in the previous
Section. However, it is worth noting that for the estimate of G, a smaller contribution was observed
from the smallest TH class, i.e. the shortest trees. In this class, P&O's contribution was 81.1%, and,
in the remaining classes, it was greater than 90.5%. The P&O contribution to the W estimate was
greater than 90% in all classes.

The 2009-2014 MNFI data, analyzed by classes of DBH and TH, showed a similar behavior as
described for the first MNFI period. Since the description of these results does not represent a

relevant contribution, the graphs of the second MNFI period can be found in Appendix V1 for

reference (Figure VIII-3).

1IV.3.3 Error propagation of AGB

The error in the estimate of AGB was propagated with MCM from the individual sources of error to
the total error. Field variable measurement error (uMes), AGB predictions with allometric models
(UAM), and plot design (uPlot) were the identified sources of error, besides SE. The random errors
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were incorporated into non-sampling sources of uncertainty (uMes and uAM) through three
scenarios.

In the first scenario (BD), the assumption was that uMes came from a single probability distribution
(PDF) of each measured variable (DBH and TH). For the second scenario (BDC), an increase of
measurement error as the class of the measured variable increased (heteroscedasticity) was
assumed. The third scenario (Exp) estimated the uMes with the parameters applied to the students’
experience in mensuration (from the second empirical study). In this scenario, it was assumed that
uMes by students were under similar conditions as MNFI.

Measurement uncertainty parameters for the BD and BDC scenarios developed in Empirical Study 1
are reported in Tables VI11-2 and VII1-3 of Appendix Il. For the Exp scenario used in Empirical
Study 2, Table 1VV-6 shows the measurement error parameters. Furthermore, the allometric models
and their uncertainty parameters are in Table VI1I-1 of Appendix I. Finally, the error parameter of
the plot design was described in Section 111.3.8.3.

The information for both analyzed datasets with the acronyms MNFloaog for the 2004-2009 MNFI
and MNFlgg14 for the 2009-2014 MNFI was represented. The temperate forest (TF) data into three
strata was divided, each defined by the dominant vegetation. Those strata were conifer forest (SCF),
mixed forest (SMF), and oak forest (SOF). Similarly, each stratum had two substrata to define the
dominance of primary vegetation (p) or secondary vegetation (s).

It is important to make a note about the number of clusters in each strata and substrata since they
were the primary sampling units in the MNFI. Thus, the tables of results for strata and substrata
always reported the number of clusters. This number refers to how many clusters in the temperate
forest have at least one site identified with that stratum and/or substratum. Because every cluster
can have more than one stratum, when adding the clusters of the three strata and substrata, the result
is not equal to the total number of temperate forest clusters.

1V.3.3.1 Temperate forest of Durango, Mexico

The error propagation, estimated for the two periods under study, is in Table 1V-13. The result of
the total estimate (W), as well as the total uncertainty (UW), is given in the measurement units.
Uncertainty contributions (non-sampling error -uNS- and sampling error -SE-) are given in
percentage, as was the relative standard error (RSE). The result of uW is reported to three significant
figures to see the differences between the scenarios. The number of clusters used in the estimates
was n=1662 for MNFlo and n=1632 for MNFlgo1a.

The uncertainty of the baseline result (bold line) was 1927 Mg ha™ for MNFlos00 and 1940 Mg ha*
for MNFlog14. This uncertainty was estimated only with the SE. Once was calculated the ratio uW/W,
it was found that RSE (3.00%) was equal in both MNFI periods. In a step before, non-sampling
uncertainties (UNS) were less than 1% of the total uncertainty (UW) in both periods. In this case, the
scenario with the highest contribution to uW was TFExp (0.71%), followed by TFBDC, and the
lowest contribution was in TFBD. Notably, the SE contributed more than 99% to the uW in AGB
estimates.

With the MCM, the confidence interval for the estimated uwW with 95% reliability was calculated.
Besides, the interval across the lower (LL) and upper (UL) limits of RSE was included in the table.
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Finally, non-differences were observed between the estimated confidence limits for the three
scenarios in both periods.

The difference in the estimates of the mean value (W) met the criterion set out in Section 111.1.5.3.
This criterion established the difference between scenario W (TFBD, TFBDF, TFEXp) and the
reference W (TF) to be less than 1%. In the temperate forest, this difference was less than 0.1%.

MNFI 2004-2009 (no409=1662) MNFI 2009-2014 (noe14=1632)
u? u RSE RSE | u? u RSE RSE
SE? w RSE SE? w RSE
Uncertainty NS W LL UL | NS W LL UL
source - - - -
% % Mglha Mglha % % % % % Mglha Mglha % % %
TF 100.00 1.927 64.31 3.00 100.00 1.940 64.77 3.00
TFBD 055 9945 1932 6431 298 3.00 3.03] 056 9944 1946 64.77 2.98 3.00 3.03
TFBDC 059 9941 1934 6436 298 3.00 3.03| 0.59 99.41 1948 64.82 2.98 3.00 3.03
TFEXp 0.71 9929 1931 6428 298 3.00 3.03| 0.67 99.33 1945 64.75 2.98 3.00 3.03

Table 1VV-13. Error propagation in AGB estimation using three scenarios of non-sampling
uncertainty in temperate forest of Durango, Mexico.

By converting the results of uNS (0.59%) and SE (99.41%) into Mg ha™* and substituting into
Equation 11, the total uncertainty for the period 2004-2009 for the BDC scenario was estimated: uW

~1.934= J(1.929)2+(o.15)2

IV.3.3.1.1 Strata in the temperate forest of Durango, Mexico

The AGB estimates were calculated for the temperate forest strata and reported the results in Table
IV-14. As with the complete temperate forest dataset, the AGB for each stratum was estimated
(bold rows). This table includes in the first column, the number of clusters per strata for both
periods of study. Here, it was observed that the mixed forest (SMF) had the highest AGB per ha in
the two periods (>73.123 Mg ha™). Furthermore, the highest total uncertainty due to sampling was
estimated in the conifer forest (SCF) of MNFlgg14, with 10.62% of RSE.

The results by scenario showed that uNS for SCF and SMF were about 0.67% of the total
uncertainty. A greater contribution was observed of uNS in the oak forest (SOF), ranging from 1.95
to 2.51% of the uW. Moreover, the uNS contributions increased the estimated uncertainties in SCF
and SMF from less than 0.01 to 0.02 Mg ha*, while in SOF it increased from 0.02 to 0.03 Mg ha™.
The SE contributed to more than 99.3% of the total uncertainty of SCF and SMF, while the
contribution in SOF ranged from 97.49 to 98.05%.

The BD scenario was the most conservative in estimating uNS, followed by BDC. The Exp scenario
had the highest contributions of uNS out of all strata. Comparing the two periods, in MNFlog14, the
clusters in the strata decreased by 51% for SCF, 7% for SMF, and 44% for SOF.

The errors propagated were compared by scenario by the paired T-Tests with Holm's correction.
The assumption of normality was verified with the Kolmogorov-Smirnov Test with Lilliefor’s
correction, (p-valueks>0.1216). During the MNFlo409 period, the uncertainties calculated by the Exp
scenario were statistically different from those calculated for the BD scenario (p-value=0.02658).
Other comparisons of this same period were not significantly different (p-value>0.0508). No
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significant differences were found in the scenarios estimated at the level of strata for the MNFlgg14
data (p-valueg>0.1068).

2004-2009 2009-2014
u? u RSE RSE u? u RSE RSE
SE? w RSE SE? w RSE

Uncertainty ~ NS W LL UL NS w LL UL
source Mg Mg Mg Mg

% % g g % % % % % 28 R % % %
SCF
Noa0e=537 100.00 3.86 48.31 8.00 100.00 5.49 51.82 10.62
Nog14=264
SMF
Noaos=1281 100.00 2.79 77.48 3.60 100.00 245 73.12 3.36
n0914=1190
SOF
Noa0e=526 100.00 2.09 35.52 5.96 100.00 2.40 36.84 6.59
No914=295
SCFBD 0.46 99.54 387 4833 790 8.00 810 0.33 99.67 551 5184 10.48 10.62 10.78
SMFBD 0.48 99.52 279 7749 358 360 3.63 056 99.44 246 7313 333 336 3.38
SOFBD 2.26 97.74 212 3550 584 596 6.08 195 98.05 243 36.82 643 659 6.75
SCFBDC 0.49 9951 3.87 4837 790 800 811 0.38 99.62 551 51.88 10.47 10.63 10.79
SMFBDC 0.51 99.49 280 7755 357 360 3.64 056 9944 246 73.18 333 336 3.39
SOFBDC 2.26 97.74 212 3553 584 596 6.08 207 9793 243 3686 643 659 6.74
SCFExp 0.59 99.41 388 4842 7.88 8.00 8.13 047 9953 552 5193 10.44 10.62 10.81
SMFExp 0.60 99.40 2.79 7745 357 360 3.64 067 9933 245 73.10 333 336 3.39
SOFEXp 251 97.49 211 3558 583 596 6.09 222 97.78 242 36.72 6.43 659 6.75

SCF=conifer forest, SMF=mixed forest, SOF=oak forest, BD=best fitted distribution, BDC=best fitted distribution by class,
Exp=students.

Table 1V-14. Error propagation in AGB estimation, using three scenarios of non-sampling
uncertainty in strata of the temperate forest of Durango, Mexico.

1IV.3.3.1.2 Substrata in the temperate forest of Durango, Mexico

The reference values for the error propagation and AGB estimation by substratum are in Table IV-
15. In the reference values, it was observed that substrata of primary vegetation (p) in the conifer
forest (SCF) and mixed forest (SMF) strata, had higher W estimations than the secondary vegetation
substrate (s). In contrast, the substratum of secondary vegetation in oak forest (SOFs) had a higher
W estimate than the primary vegetation (SOFp). The SMFp substratum contained the highest AGB
per unit area of 78.07 Mg ha* and 76.50 Mg ha™* for the MNFloss and MNFlgg14, respectively. The
maximum uncertainty totaled to 9.62 Mg ha™* in SMFs, and the minimum equaled 2.07 Mg ha™ in
SOFp. Proportional to the AGB estimate, the relative error (RSE) ranged between 3.6 and 23.5%.

The error propagation, including the non-sampling uncertainty (uNS) from the applied scenarios, is
shown in Table 1V-16. The total uncertainty (uUW) ranged from 2.09 to 9.68 Mg ha™ in the MNFls0s.
Within the same stratum, a higher uW was recorded in the substratum of secondary vegetation
compared to the substratum with primary vegetation (secondary>primary). On the contrary, in
MNFlge14, greater uW in the primary vegetation substratum (primary>secondary) was estimated.
The uncertainty in this last period ranged from 3.15 to 8.66 Mg ha™. The uNS had a greater
contribution to SOFp, with values from 2.83 to 3.61% of the uw.
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2004-2009 2009-2014
cluster number Mghal Mghal % Mgha! Mghal %
SCFp  nose=500  nog14=81 4.17 50.12 83 8.64 59.57 145
SCFs  no0e=60 No914=187 7.21 30.81 235 6.84 4777 143
SMFp  nos0s=1261 nog14=541 2.85 78.08 3.7 3.73 7651 49
SMFS  No0s=60 N0914=673 9.62 58.83 16.4 3.26 7019 47
SOFp  nos0s=476  nNo914=88 2.07 3544 59 3.43 3580 97
SOFs  no0s=86 No914=210 5.78 36.01 16.2 3.14 3736 85

SCF=conifer forest, SMF=mixed forest, SOF=o0ak forest, p=primary vegetation, s=secondary vegetation, BD=best fitted distribution,
BDC=best fitted distribution by class, Exp=students.

Table I1V-15. Reference values at the substratum level with the sampling error as the source of
uncertainty in AGB estimation of the temperate forests in Durango, Mexico.

2004-2009 2009-2014
2 2
Uncertainty lilJS SE \l/JV W I:QLSLE RSE lTJSI_E ;S SE* \;JV w RLSLE RSE ITJSI_E
souree % % Mgha' r'::l% % % % % % Mgha L:% % % %

SCFpBD 044 9956 417 5013 82 83 84 041 9959 865 5060 142 145 148
SCFsBD 114 9886 724 3080 225 235 245 033 9967 685 4778 140 143 146
SMFpBD 047 9953 286 7808 36 36 36 051 9949 373 7651 48 48 49
SMFsBD 096 9904 966 5881 158 164 169 058 9942 326 7019 46 46 47
SOFpBD 284 9716 210 3541 58 59 60 349 9651 348 3578 92 97 102
SOFsBD 124 9876 581 3600 156 161 167 157 9843 316 3734 82 84 86
SCFpBDC 048 9952 418 5017 82 83 84 046 9954 866 5062 142 145 148
SCFsBDC 117 9883 725 3084 225 235 245 036 9964 686 4782 140 143 146
SMFpBDC 050 9950 286 7814 36 36 37 053 9947 374 7657 48 48 49
SMFsBDC 098 9902 968 5887 158 164 170 060 9940 327 7024 46 46 47
SOFpBDC 283 9717 210 3544 58 59 60 348 9652 349 3581 92 97 102
SOFsBDC 119 9881 582 3602 155 161 167 159 9841 316 3738 82 84 86
SCFpExp 056 9944 418 5022 82 83 84 059 9941 866 5068 141 145 1438
SCFSExp 133 9867 726 3086 225 235 246 045 9955 687 4787 140 143 146
SMFpExp 060 9940 285 7803 36 36 37 065 9935 373 7647 48 48 49
SMFSExp 119 9881 967 5881 158 164 170 067 9933 326 7017 46 46 47
SOFpEXp 315 9685 209 3527 58 59 60 361 9639 347 3565 92 97 102
SOFSEXp 062 9938 581 3597 155 161 168 176 9824 315 3726 82 84 86

SCF=conifer forest, SMF=mixed forest, SOF=0ak forest, p=primary vegetation, s=secondary vegetation, BD=best fitted distribution,
BDC=best fitted distribution by class, Exp=students.

Table 1V-16. Error propagation in AGB estimation, using three scenarios (BD, BDC, Exp) of non-
sampling uncertainty estimation in the study area.

For the three scenarios, the widest RSE intervals (RSE LL and RSE UL) were those with the smallest
estimate of W. For MNFlo409, this case was the substratum SCFs, and for MNFlgo14, it was the SOFp.

Substrata mean uncertainties were compared with a paired T-Test (Holm correction). During the
MNF o409 period, BD and BDC scenarios were not significantly different (p-valuew = 0.3009). The
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other pairs of comparisons, including the MNFlq914 comparisons, were significantly different, with a
p-valuen < 0.039.

1V.3.3.2 Contribution of the sources of uncertainty in AGB estimation

The contribution (%) of the sources of uncertainty to the total uncertainty (uW) of each scenario, is
in Table 1V-17. Here, were represented the sources of uncertainty (u) with the letters a for the
uncertainty in DBH, b for the uncertainty in TH, c for the prediction from the allometric model, and
d for the uncertainty of plot design. The sum of contributions from these sources (UNS) are shown in
Table 1V-13 in the reference values of each scenario.

2004-2009 (No40s=1662) 2009-2014 (noo14=1632)
u? u RSE RSE | u? u RSE RSE
Uncertainty | NS SE w w LL RSE UL | NS SE? w w LL RSE UL
source % % Mglha‘Mglha' % % % % % Mglha'Mglha' % % %
TFBDa 0.00 100.00 1.927 64.34 299 3.00 3.00[ 0.00 100.00 1.940 64.80 2.99 3.00 3.00
TFBDb 0.01 99.99 1926 64.28 299 3.00 3.000 0.01 99.99 1940 64.74 299 3.00 3.00
TFBDc 0.52 99.48 1932 6431 299 3.00 3.02| 0.53 99.57 1945 64.77 2.98 3.00 3.02
TFBDd 0.02 99.98 1927 6431 299 300 3.00] 0.02 99.98 1940 64.77 2.99 3.00 3.00
TFBDCa 0.01  99.99 1929 64.37 299 3.00 3.00 0.01 99.99 1942 64.83 2.99 3.00 3.00
TFBDCb 0.03  99.97 1927 6430 299 3.00 3.00 0.03 99.97 1.940 64.76 2.99 3.00 3.00
TFBDCc 0.53 9947 1932 6431 298 3.00 3.02| 0.53 99.47 1945 64.77 298 3.00 3.02
TFBDCd 0.02 99.98 1927 6431 299 3.00 3.000 0.02 99.98 1940 64.77 2.99 3.00 3.00
TFExpa 0.02 99.98 1929 6446 299 299 3.00] 0.02 99.98 1942 64.92 299 299 2.99
TFExpb 0.13  99.87 1924 64.13 299 3.00 3.01| 0.13 99.87 1.938 64.60 2.99 3.00 3.01
TFExpc 0.53 9947 1932 6431 298 3.00 3.02| 0.54 99.46 1945 64.77 298 3.00 3.02
TFExpd 0.02 99.98 1927 6431 299 3.00 3.000 0.01 99.99 1945 64.77 299 3.00 3.00

TF=estimation made with temperate forest data, BD=best fitted distribution for measurement errors, BDC=best fitted distribution by
class, Exp=students, a=uDBH, b=uTH, c=uAM, d=uPlot.

Table IV-17. Error propagation by uncertainty source in AGB estimation, using three scenarios of
non-sampling uncertainty in the temperate forests of Durango, Mexico.

Two sources of uncertainty that did not vary between scenarios (u model and u plot design) had
similar contributions to uW. The u about the model contributed to a range of 0.52 to 0.54%, while
the u of plot design contributed 0.01 to 0.02%.

Among the sources of measurement uncertainty, the lowest contributor was the uDBH, with
contributions <0.02% of the uwW. Meanwhile, the uTH contribution had a wider range, from 0.01 to
0.13% of the uWw.

With the uncertainty estimated at the substratum level, the mean estimated uncertainties by source
were compared separately for each scenario, and the paired T-Test was used to compare the mean
uncertainty between every pair of sources. With the MNFloa09 data, the paired T-Test in the BD
scenario indicated that the uncertainty of uTH-uPlot was not significantly different (p-
valuey=0.1346). From the BDC scenario, the sources uDBH-uTH, uDBH-uPIlot, and uTH-uPlot
were not significantly different (p-value>0.118). In the Exp scenario, no significant difference was
found in the uDBH-uPlot comparison (p-value>0.118).
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In the second period of MNFlog14, Similar results were obtained in the pair comparisons of the BDC
and Exp scenarios. For the BDC scenario, a significant difference for the uDBH-uTH, uDBH-uPlot,
and uTH-uPlot comparisons was not found (p-value>0.1706). For the Exp scenario, the comparison
between uDBH-uPlot was not significantly different (p-valuey=0.2642). Furthermore, in the BD
scenario, all comparisons were statistically different (p-value;<0.0093).
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IV.4 Empirical study 4: Modelling and mapping AGB for the state of Durango

IV.41 Vegetation in the State of Durango

The total forested area in the State of Durango (Figure 11-5, Section 11.2.3) was calculated as
8,509,347 ha from Series IV and 8,589,123 ha from Series V. The area excluded from the analysis
was the area outside of temperate forest, such as areas with predominant anthropogenic activities
(i.e. agriculture, pastures, human settlements, etc.), water bodies, and areas with clouds or cloud
shadows blocking temperate forest information.

Table 1VV-18 reports the area occupied by the main vegetation types and land-uses, with emphasis on
the temperate forest strata (Figure 11-6, Section 11.2.3). Comparing the two time-series from 2007 to
2013, it is noticed an increase in surface area for temperate forest and arid zone vegetation. In
contrast, the area with tropical forest and anthropogenic activities decreased. Within the temperate
forest, the stratum of the oak forest increased, while the strata of conifer forest and mixed forest
decreased.

. Series 1V (2007-2008) Series V (2012-2013)
Vegetation and land-use
ha % ha %
Anthropogenic & no vegetation 3820133 30.98 3740357 30.34
Rain forest 607180 4,92 605607 491
Xeric shrubland 2737949 22.21 2817453 22.85
Temperate forest 5164218 41.89 5166063 41.90
Stratum of conifer forest 2359391 19.14 2356893 19.12
Stratum of mixed forest 1907236 15.47 190311 15.43
Stratum of oak forest 897591 7.28 906054 7.35
Total 12329480 12329480

Table I'V-18. Surface area by vegetation type and land-use for two time-series in the state of
Durango, Mexico.

As described in Chapter 11, the vegetation series IV and V were used to define the areas and
vegetation types in the MNFI (CONAFOR, 2012c, 2017a).

1IV.4.2 Basal area and AGB estimation models

The estimates of basal area (G) and AGB (W) at the cluster level, analyzed in the previous chapter,
were the response variables. Therefore, it was this information that was used to adjust the G and W
models with the predictor variables derived from Landsat images as response variables for the two
periods of study.

1V.4.2.1 Pre-selected predictor variables

Prior to the adjustment of the models, the pre-selection of prediction variables (PV) through the
Pearson correlation coefficient was made. The correlation was calculated among the PV and were
removed the PV with more than p=|0.97|, to avoid multicollinearity, preserving the PV with higher
correlation with the response variable (Dohoo et al., 1996). Table 1V-19 shows the PVs selected,
where is shown the Pearson coefficient and the significance p-value<0.001 of the 38 PV for the
2007 dataset and 41 PV for the 2013 dataset.
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The correlation coefficients ranged from |0.40| to |0.79|, out of which the ARVI, NDVI, SR, SRG,
and WDRVI predictor variables had correlations greater than |0.71|. Out of the available spectral
bands, the NIR band was not selected due to low a correlation with the response variables. The
texture with the highest correlation was the weighted mean (MN), followed by the Haralicks
correlation (HC). Two other textures, homogeneity (HO) and variance (VA) were selected in a
smaller proportion to the previous ones.

v MNFI (2004-2009) MNFI (2009-2014) v MNFI (2004-2009) MNFI (2009-2014)
G W G w G w G w

C3 -0.62%++ -0.60*** Rd11MN -0.61 *** -059* -0.60*** -0.58***
B3 -0.71wxx -0.64%xx  -0.63** -0.62+» ND3HC 0.56 *** (.58 #x*
G3 -0.70 %+ -0.63*+x  -0.61* -0.60+~= ND3MN 0.64 %%+ 0.66%++  0.66 =  0.67 »*
Rd3 -0.70 %% -0.63*x+  -0.65**+ -0.63* ND7HC 0.54 5+ 0.56 ***
SWIR13 -0.66 *x* -0.59%xx  -0.63*+*  0.62*» ND7MN 0.65%** 0.67++  0.66 %+  0.67 »*
SWIR23 -0.7Lwwx -0.64++=  -0.67+ -0.66= NDI11HC 0.56 *#+x 0,57 #xx
SR3 0.78%*x 0.74 %5 0.72%==  0.76%x ND11MN 0.66*** 0.67*+  0.66*  0.66 ***
SRG3 0.79%* 0.74 %% 0.71%++  0.75*+ WDR3HC 0.52 %++ (.58 #xx
ND3 0.79xx 0.73%++  0.75%  0.76++ WDR3MN 0.64 %+ 0.67%x+ 0,70 %%  0.73 %+
E3 0.73 %% 0.66*** 0.69%=+  0.72++ WDR7HO -0.50 xxx Q.51 #xx
AR3 0.77 % 0.72%%* 0.75%*  0.76* WDR7HC 0.40%»* 0.45%++ 055 %+ 0.61 »*x
SA3 0.74 %% 0.69*++  0.70%+  0.73++ WDR7MN 0.67 %+ 0.69%xx 0,72+  0.74 %+
MSA3 0.71 %% 0.67 %x* 0.69%==  0.72++ WDR11HO -0.53 xxx -0.54 xxx
WDR3 0.79%* 0.74 %% 0.74»+  0.77+ WDR11HC 0.57 %++ 0,63 #**
NDMI3 0.72%* 0.67 *** 0.72**+  0.75*» WDR11MN 0.66%** 0.69#++  0.71%xx  0.73%x
B3MN -0.53**= -0.52*= WDR11VA 0.66*** 0.69%**

B7MN -0.54 %= -0.53**  -0,58*>* -0.57** AR3HC 0.48%»* 0.51#*

B11MN -0.54 %+ -0.53**  -0.58*** -0.56*** AR3MN 0.67 0.68#++  0.71%xx  0.72%x
G3MN -0.59 = -0.58**  -0.55***  0.53** AR7MN 0.69 %+ 0.70%%%  0.72%%*  0.73 %**
G7MN -0.59*** -0.56**  -0.56*** -0.54*** AR11MN 0.68*** 0.69#++  0.72%xx  0.72%x
G11MN -0.57*** -0.58*** -0.56*** 0.54** SRG3MN 0.62 %% 0.65 %+

Rd3MN -0.59 %= -0.58**  -0.59** -0.57** SRG3HC 0.66 ***  0.69 ***
Rd7MN -0.61 % -0.59**  -0.60*** -0.58*** SRG7MN 0.64 % 0.67

Rd11HC -0.62*** -0.43**  -0.60** -0.41** SRG11MN 0.63 %+ 0.66*+*

Table 1VV-19. Predictor variables (PV) selected to estimate the response variables basal area (G) and
AGB (W) in Durango. The description of PV is in Figure 111-18.

1V.4.2.2 Estimation models adjusted with MNFI 2004-2009 field data

The adjusted models for the basal area (G) and AGB (W) estimated from the 2004-2009 MNFI data
and Landsat 5 (2007) imagery are given in Table 1VV-20. The elements contained in the table include
vegetation type, response variable, estimator (est), standard error of the estimator (SE), the
significance of the response variable (p=p>|t|), and the coefficient of determination of model
validation (R?). For each response variable, two models were fitted: the first with the predictor
variable NDVI and the second with the variables selected by stepwise regression (SW). The
coefficients (1) from the box-cox transformation of the predictor variables were recorded at the
bottom of the table. The acronyms of the response variables can be easily followed with the
information of Figure 111-18 in Chapter I11. The goodness-of-fit of the models is described in a
further Section.

In the upper part of the table (bold rows) are the models adjusted with the information on the 1662
clusters of the temperate forest (TF). The rest of the table shows the adjusted models for the strata
conifer forest (SCF), mixed forest (SMF), and oak forest (SOF), with 292, 1033, and 337 clusters,
respectively.
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Using TF models as a reference, it was observed that, when adjusting models for the response
variable per stratum, the model of basal area (G) for SCF increased R? (>0.585). On the other hand,
the R? decreased for SMF and SOF. W models showed the same R? behavior at the stratum level.

| NDVI model | Stepwise model NDVI model | Stepwise model
Basal area (G) Temperate forest (TF) AGB (W) Temperate forest (TF)
RV Int ND3“ Int ND3H Rd11HC# Int ND3*
est -32.34 64.87 5.49 49.15 -15.73| -142.74 325.14
SE 0.98 1.42 4.34 2.19 1.79 421 6.85
p-value <2E16 <2E6 0.21 <2E16 <2E|  <2E <2E16
R? 0.585 0.585 0.601
Basal area (G) Stratum Conifer forest (SCF) AGB (W) Stratum Conifer forest (SCF)
RV Int ND3* Int SR3%” Int ND3%* Int SR3"
est -46.63 80.96 34.18 -50.63 -215.2 398.20 192.71  -291.09
SE 2.63 3.68 1.07 2.26 11.8 17.80 6.63 12.89
p-value <2E16 <2E1 <2E1 <2E16 <2E1 <2E 16 <2E1 <2E16
R? 0.624 0.636 0.646 0.646
Basal area (G) Stratum Mixed forest (SMF) AGB (W) Stratum Mixed forest (SMF)
RV Int ND3* Int ND3* Rd11HC* Int ND3*¢ Int ND3*¢ Rd11HC*!
est -32.38 65.69 20.89 45.06 -22.73| -129.88 333.34 479.90 243.00 -466.60
SE 1.37 1.94 5.49 2.84 2.25 531 8.98 72.90 13.10 56.10
p-value <2E16 <2E1 1.5E* <2E16 <2E1 <2E1 <2E 16 7.50E™ <2E16 2.90E6
R? 0.570 0.580 0.600 0.598
Basal area (G) Stratum Oak forest (SOF) AGB (W) Stratum Oak forest (SOF)
RV Int ND3*? Int SR3*3 Int ND3*# Int SR3*7
est 28.61 -13.80 16.05 -27.30 21494  -131.55 9241 -176.86
SE 1.94 1.27 0.743 2.331 12.55 9.09 3.88 11.44
p-value <2E16 <2E1 <2E1 <2E16 <2E1 <2E 16 7.50E™ <2E16
R? 0.282 0.298 0.414 0.422

Int=intercept, A=Box-Cox coefficient, G= Basal area (m?ha'), W=Aboveground biomass (Mg ha'!), A1=0.383838=0.38, 12=0.06, 13=0.50, A4=0.34, A5=-
0.98, 46=0.42, 1.7=-0.86, 18=0.38, 19=0.06, 110=0.58, 111=0.02, 112=0.34, 13=1.39, 114=0.26, .15=-1.3T

Table 1V-20. Adjusted models for the basal area (G) and AGB (W), estimated from the 2004-2009
MNFI.

Predictor variables were also selected stepwise for the W models and resulted in a higher calculated
R2. Predictions of G and W improved in SCF and SMF by adding Haralicks correlation in window
11X11 for the red band (Rd11HC). The respective response variables of the SCF and SOF strata did
not include texture information. These response variables for SCF was the ratio Red band/NIR
(SR3), while for SOF it was the ratio Green band/NIR (SRG3).

1V.4.2.3 Estimation models adjusted with 2009-2014 MNFI field data

As in the first MNFI period, basal area (G) and AGB (W) estimates with the 2009-2014 MNFI
information were the response variables (RV) to fit prediction models using Landsat 8 (2013)
imagery. The result of the adjusted models is in Table IV-21, using the same configuration and
nomenclature previously presented in Table 1VV-20.

The model was adjusted for 1635 plots in the temperate forest (TF). At strata level, 216, 1156, and
263 plots were used to adjust the models in the conifer forest (SCF), mixed forest (SMF), and oak
forest (SOF). Table IV-21 presents two models adjusted for each stratum, as well as for temperate
forest. The first model was adjusted with the NDVI index, and the second model was the result of

stepwise regression.

Higher R? was calculated in 2013 compared to 2007, apart from W models in SOF. In comparison to
the temperate forest TF models, the strata model of SCF increased the R?, while the models of SMF
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and SOF decreased the R% The models fitted for both variables G and W are presented in Table IV-
21.

The predictor variables selected by the stepwise method for both the G and W models were the same
but in a different order. To estimate G in TF, the model included the ratio of Red band/NIR (SR3),
along with the estimation of the weighted mean of the ARVI index for the 11X11 window
(AR11IMN). The stepwise estimate of W in TF selected the NDVI variable (ND).

| NDVI model | Stepwise model NDVI model | Stepwise model
Basal area (G) Temperate forest (TF) AGB (W) Temperate forest (STF)
RV Int ND3" Int SR3Z  ARLIMNZ Int ND3*
est -32.91 66.06| 6251  -33.08 -101.49 12870 31570
SE 0.907 1.323 5.78 2.45 20.09 3.69 6.28
p-value <2E16 <2E1® 021 <2E7® <2E16 <2E16 <2E16
R? 0.629 0.637 0.633
Basal area (G) Stratum Conifer forest (SCF) AGB (W) Stratum Conifer forest (SCF)
RV Int ND3% Int SR3% Int ND3" Int SR3* ND3HC?
est -66.08  100.73| 3442  -51.82 18450  366.90| 319.80 -343.30 -41.40
SE 3.56 4.68 1.15 2.39 11.60 18.60|  55.00 28.00 18.30
p-value <2E16 <2E| <2E® <6 <QE16 <QE|  <2F1 <2E1
R? 0.681 0.681 0.660 0.674
Basal area (G) Stratum Mixed forest (SMF) AGB (W) Stratum Mixed forest (SMF)
RV Int ND3" Int SR377 WDR1IHO? ARLIMN#3[ Int ND3 Int SR3 ARLIMN?6
est -27.98 6179| 10124  -30.14 1000  -21328| -11157 31219 -467.20 -198.80 404.00
SE 1.07 158 8.58 3.04 1.46 27.28 431 7.60| 123.60 19.40 71.10
p-value <2E16 <OE| <2 12FU 1.3 <QE18 <2E%|  1.6E* <2E1 1.7E-8
R? 0.598 0.611 0.619 0.618
Basal area (G) Stratum Oak forest (SOF) AGB (W) Stratum Oak forest (SOF)
RV Int ND3*7 Int E3"  WDR7HO”* WDR7MN“*{ Int ND3?! Int SWIR2_3%2  MSA3'%
est 62.85 -46.45 2263  -1.70 7.35 -11.01| 77430  -687.50| 807.07 -0.08 -670.01
SE 5.52 4.61 4.10 2.94 1.81 1.69 65.30 60.50|  77.56 0.02 71.66
p-value <QE16 <2E6| 88E®  94E?® 6.8E 4 .4E10 <2E16 <2E|  <2E1 9.1E® <2E1
R2 0.313 0.356 0.372 0.388

Int=intercept, A=Box-Cox coefficient, G= Basal area (m?ha), W=Aboveground biomass (Mg ha™), 21=0.383838=0.38, 12=-0.94, 13=-0.42, A4=0.54,
15=0.26, A6=-1.03, A7=0.46, 18=-0.82, 19=0.10, 110=0.42, .11=-0.86, 112=1.67, A13=-0.38, A14=0.62, .15=-0.66, 116=0.18, 117=-0.14, 118=-0.30, 19=2,
120=0.98, 121=-0.06, 122=0.74, 123=-0.06

Table 1V-21. Adjusted models for the basal area (G) and AGB (W), estimated with the 2009-2014
MNFI data.

The mixed forest stratum (SMF) contained the largest number of clusters. The corresponding
stepwise analysis selected the same variables as TF (SR3 and AR11MN), along with the variable
WDR11HO. For the W estimation, the model selected the SR3 and AR11MN variables.

The model adjusted to estimate G in the conifer forest (SCF) included the variable SR3, while the
model to estimate W added the ND3HC variable to better fit the model.

In the oak forest (SOF), the models for G and W used entirely different variables. The model
adjusted for G selected E3, WDR7HO, and WDR7MN, and the model adjusted for W included
SWIR2 and MSAVI (MSA).

1V.4.2.4 Goodness-of-fit of adjusted models

For the estimated models, absolute bias and relative bias were calculated (Bias, Biasr) and reported
the results in Table 1V-22, together with RMSE, CV (RMSE/mean), and R?. The top part of the table
shows the information of the 2004-2009 MNFI, and the bottom part shows the information of the
2009-2014 MNFI.

The stepwise models had lower RMSE and CV compared to NDVI models adjusted for the same
vegetation type and for the same response variables (G or W). For example, the TF model adjusted
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for NDVI had an RMSE=4.35 m?ha and CV=34.36%, while the stepwise model reported an
RMSE=4.28 m?ha* and CV=33.78%. The Bias was negative for all estimates, indicating an
underestimation of the fitted models. However, two optimized models had higher Bias (more
negative) than was calculated in the NDVI models: G estimation in TF and W estimation in SMF,
both of which were derived from the 2004-2009 MNFI.

Model Basal area (G) AGB (W)
R RMSE  CV Bias  Biasr R RMSE Ccv Bias Biasr
MNFI 2004-2009 m?ha't % m?hal % Mg ha? % Mghal %

TF (NDVI 0.585 435 34.36 -0.28 -2.25 0.601 2450 40.48 -3.37 -5.57

TF (stepwise) 0.585 4.28 33.78 -0.29 -2.32
SCF (NDVI) 0.624 438 38.08 -0.36 -3.09 0.646 2437 4721 -391 -7.58
SCF (stepwise) 0.636 433 37.62 -0.28 -242 0.646 2421 46.90 -3.59 -6.95
SMF (NDVI) 0.570 435 30.11 -0.41  -2.83 0.600 2550 36.04 -3.53 -4.99
SMF (stepwise) 0.580 423 29.28 -0.38 -2.65 0.598 2471  34.92 -3.98 -5.62
SOF (NDVI) 0.282 339 4161 -0.42 -516 0.414 17.35 4748 -1.87 -5.13

SOF (stepwise) 0.298 3.33  40.73 -0.39  -4.83 0.422 17.05  46.67 -141  -3.87
MNFI 2009-2014

TF (NDVI 0.629 4.18 3253 -046 -3.62 0.633 23.93 39.65 -3.52 -5.84
TF (stepwise) 0.637 411 32.01 -0.39 -3.02
SCF (NDVI) 0.681 426 39.27 -0.35 -3.25 0.660 2388 5171 -3.61 -7.82
SCF (stepwise) 0.681 424 39.02 -0.35 -321 0.674 23.20 50.25 -3.28 -7.11
SMF (NDVI) 0.598 431 29.99 -050 -3.50 0.619 2522 36.75 -3.67 -5.34
SMF (stepwise) 0.611 419 29.23 -043 -3.00 0.618 25.18 36.69 -3.26 -4.78
SOF (NDVI) 0.313 3.26 4185 -0.38 -491 0.372 16.76  47.87 -2.27  -6.49

SOF (stepwise) 0.356 3.06  39.26 -0.33  -430 0.388 16.06  45.87 -1.77  -5.07

R2=validation coefficient of determination, RMSE=root mean square error, CV=RMSE/mean, Bias,=relative bias

Table 1V-22. Bias estimate and goodness-of-fit of the adjusted models for the basal area (G) and
AGB (W) estimated from MNFI data in Durango, Mexico.

IV.4.2.4.1 Stepwise regression models by strata for MNFI 2004-2009

The indicators of basal area (G) and AGB (W) in temperate forest (TF) models, using information
from the first MNFI measurement in Durango, are displayed in the underlined rows.

By separating the TF area in the strata and fitting models for each stratum, some fitting parameters
changed. In the G estimation for SCF, the R? increased (0.636) and the Bias decreased (-0.28 m?ha®
. In the SMF model, the RMSE and CV indicators were lower (4.23 m?ha! and 29.28%) than the
estimates in TF. Conversely, in the SOF model, the prediction of the model decreased even though
the RMSE was lower (3.33 m?ha*) than the estimated in the model for TF.

With respect to the W estimate in the SCF model, R? (0.646) increased and RMSE (24.21 Mg ha™)
was reduced. In the SMF model, CV=34.92% was reduced. The adjusted model for SOF had a lower
R? (0.422), but nevertheless reduced the variance (RMSE=17.05 Mg ha) and the Bias (-1.414 Mg
ha™).

IV.4.2.4.2  Stepwise regression models by strata for MNFI 2009-2014

In the second period of MNFI, indicators of the G model suggest a better prediction compared to the
first MNFI model for TF predictions. The differences consisted of increasing R?=0.637 and
decreasing both RMSE=4.11 m*ha* and CV=32.01%.

The stratum model indicators improved when compared to the TF-adjusted model. For example, the
SCF model had an increase of R? (0.681) and a decrease of Bias (-0.35 m*ha™). In the SMF model,
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CV (29.23%) and relative Bias (-3.00%) decreased. For the SOF model, RMSE (3.06 m?ha™) and
Bias (-0.33 m?ha) decreased.

The W estimate for TF had changes in the indicators compared to the first period. the observed
increase in R? (0.633) and decrease in CV (39.65%) and Bias (-3.52 Mg ha) suggested an
improvement of the model.

As in G models, W models improved goodness-of-fit of the models adjusted in TF. The SCF model
had larger R? (0.674), smaller RMSE (23.20 Mg ha*), and smaller Bias (Mg ha™). In the SMF model
decreased CV (36.69 %) and decreased Bias (-3.26 Mg ha™). Finally, the SOF model calculated a
lower RMSE=16.06 Mg ha™* and a lower Bias=-1.77 Mg ha™.

1IV.4.3 Basal area and AGB in the estimation

Using the stepwise regression models and applying the results to the Landsat imagery, the basal
area (G) and AGB (W) were estimated in the temperate forest of Durango, Mexico. Then, the
statistics (mean and standard deviation) for the variable estimates of the temperate forest (TF) and
per-vegetation stratum were calculated (Table 1V-23). In this table, the total area where Landsat
imagery information was properly acquired and applied to the models was included (non-temperate
forests and clouds were excluded). In the bold character rows, the results of applying the stepwise
model in TF (n=1662 in 2007 and n=1635 in 2013) are shown for both response variables. For the
W estimate, the calculation of total storage was included (Tg). Similarly, G and W statistics for each
vegetation stratum were estimated (SCF, SMF, and SOF). With the stratum estimates, a single layer
of temperate forest merged was made (TFM).

Time Area Basal area (G) Aboveground biomass (W)
Q 6 RMSE | [ g RMSE storage

2007 ha m?ha’? Mg ha? Tg
TF (n=1662) 5152172.76 | 12.58 5.33 428| 5856 31.43 2450 301.70
TFM (n=1662) 5152172.76 | 12.16 5.53 --| 55.36 31.28 -- 285.25

SCF (n=292) 2356073.28 | 13.72 5.59 433| 6211 3127 2421 146.34
SMF (n=1033) 1906699.05| 12.32 5.41 4.23| 56.57 3273 2471 107.86

SOF (n=337) 889400.43| 7.70 2.35 3.33| 3490 1538 17.05 31.04
2013

TF (n=1635) 5104018.71| 12.42 5.61 411| 57.03 3251 23.93 291.09

TFM (n=1635)  5104018.71| 11.99 5.83 --| 5357 3201 -- 27342

SCF (n=216) 233848143 | 14.03 6.16 4.24| 6164 3397 2320 144.15
SMF (n=1156) 1883999.43 | 11.65 5.12 419| 5218 3159 2518 98.31
SOF (n=263) 880943.85| 7.33 2.68 3.06| 3510 1488 16.06 30.92

fi= estimated mean, §=estimated standard deviation RMSE=root mean square error

Table 1'V-23. Basal area (G) and AGB (W), estimate for temperate forest in Durango, Mexico.

Basal area models estimated values less than zero for 0.17% of the area in 2007 and 0.27% of the
area in 2013. Moreover, from applying the AGB models, the area with values less than zero was
1.90% in 2007 and 1.78% in 2013. Values less than zero were estimated because the range of
predictor variables used (PV) to fit the regression models has not covered all the range of PV values
in the study area, previously referred to as gaps (Section 1.2.2.2.2). In this study, it was the above-
mentioned percentage of area for basal area and AGB. These values less than zero were replaced by
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0.1 (m?ha*/Mg ha*) with no modification to the estimates of 4 and 6. Los valores menores a ceros
se obtuvieron

IV.4.3.1 Basal area (G) estimates for Durango temperate forest

In 2007, the G estimate using the TF model (2=12.58 m?ha) was larger than the TFM estimate
(1=12.16 m?ha™). In contrast, & was larger in TFM (5.33 m?ha'*). Estimates of G for 2013 were
like in 2007, with a larger /i in TF (12.42 m?ha) than in TFM (11.99 m?ha). The & in 2013 was
smaller in TF than in TFM (5.61 and 5.83 m?ha™).

The i G values across the different vegetation strata were largest for SMF in 2007, with a value of
12.32 m?ha*. However, in 2013, the SCF and SOF estimates were the largest (14.03 and 7.33 m?ha’
. Furthermore, the & was smaller in 2007 for SCF and SOF (5.59 and 2.35 m?ha*) but was smaller
for SMF in 2013 (5.12 m?ha™).

1V.4.3.2 AGB (W) estimates for the Durango temperate forests

The 2007 4 W estimates were larger in TF compared to TFM (58.56>55.36 Mg ha™). Therefore,
storage was also larger for TF at 301.70 Tg (Tg=10° Mg). The & was smaller in TFM, with a value
of 31.28 Mgha™. The 2013 trends were the same, in which TF had a /i of 57.03 Mgha*, 6 of 32.51
Mg ha™ (CV=0.6), and storage of 291.09 Tg.

For the vegetation strata in 2007, the & W estimates were larger in the SCF and SMF (62.11 and
56.57 Mg ha*), while the larger SOF estimate occurred in 2013 (35.10 Mg ha™). The & was smaller
in 2007 for SCF, with 31.27 Mg ha*. However, for SOF and SMF, it was smaller in 2013 (14.88
and 31.59 Mg ha™).

1V.4.3.3 Basal area and AGB maps of Durango, Mexico

Using the models per stratum described above, the basal area (G) and AGB (W) maps were
produced for the State of Durango. The results, presented in Figure 1V-13, show the G estimated by
the stepwise regression models using Landsat satellite imagery and the INEGI vegetation series.
The values in the figure for the Landsat 5 imagery (2007) range from 0 to 35.14 Mg ha and from 0
to 35.49 Mg ha* for the Landsat 8 imagery (2013). Surfaces with the presence of clouds were
excluded in the Landsat 8 images (right), located in the far west of the state in two blank areas. This
surface spanned 48,154 ha without information in 2013. However, the same land area was able to be
analyzed in 2007 and averaged a 15.43 m?ha* basal area.

In 2007, 88.6% of the evaluated area in the temperate forest (TF) registered less than 20 m? ha™* of
G. The class with the largest area was (10 to 15] m?ha, comprising 30.5% of the TF. Moreover,
with the information from 2013, 87.1% of the surface recorded less than 20 m?ha. The largest
surface class in this year was (5 to 10 cm] m?ha, covering 32.2 % of the TF in Durango (see Table
VI111-43, Appendix VIII).
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Figure IV-13. Basal area in the temperate forest of Durango, Mexico, with information from the
MNFI and Landsat imagery.
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Figure IV-14. AGB in the temperate forest of Durango, Mexico, with information from the MNFI
and Landsat imagery.

Figure 1VV-14 shows the distribution of the W in the temperate forest of Durango. This map was
produced by applying the stepwise regression models of W to Landsat imagery. The W range in
2007 was 0 to 199.48 Mg ha* and in 2013 was 0 to 201.79 Mg ha™. According to the 2007
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estimates, 77.5% of W was contained in classes less than 100 Mg ha™, which represented 89.9% of
the temperate forest area. Similarly, in 2013, the two classes less than 100 Mg ha™* covered 89.6%
of the area, with an estimate of 76.03% of the AGB in TF. Thus, classes >100 Mgha‘l increased
surface in 2013 (see Table VI11-44, Appendix VI1II). For the area covered by clouds in 2013, a
storage of 3.8 Tg in 2007 was calculated.

1V.4.3.4 Comparison of model-based and sampling-based estimations

The estimates of linear regression models (Table 1V-23) were compared with the estimates from the
sampling-based method made in the MNFI (Section V.3 of this study). In this case, the estimators
(4, 6, SE, RE) calculated for both methods are available in Table 1V-24. In this table, the calculation
of AGB storage (Tg) and the uncertainty in estimating AGB storage (uTg) using the /i and SE
estimators were included. Calculations are given for the total reported area of the temperate forest
(TF) and the per-strata vegetation in Durango to estimate total storage using both estimation
methods. Estimates by stratum were summed up and reported as temperate forest merged (TFM).

Time area Basal area (G) Aboveground biomass (W)
1 g SE RE i 4 SE RE storage
MNFI 04-09 ha m?hat Mg ha? Tg uTg

TF (n=1662) 5152172.76 12.98 856 0.22 64.31 77.80 1.93 33134  + 994

SCF (n=537) 2356073.28 11.35 12.84  0.60 48.31 85.49 3.86 113.82  + 9.09
§ SMF (n=1281) 1906699.05 15.02 10.30 0.32 77.48 96.03 2.79 14773 £ 532
& SOF (n=526) 889400.43 7.74 6.23 031 35.52 44.71 2.09 3159 + 186
éa Sum of strata storage (TFM) 293.64  £10.70
= MNFI 09-14
£ TF (n=1635) 5104018.71 13.17 8.66 0.22 64.77 77.69 1.94 33059  +9.90
19}

SCF (n=264) 2338481.43 11.92 1144 0.75 51.82 87.09 5.49 12118 +12.84

SMF (n=1190) 1883999.43 14.54 8.75 0.26 73.12 83.28 2.45 13776  + 4.62

SOF (n=295) 880943.85 7.82 555 0.35 36.84 39.59 2.40 3245 + 211

Sum of strata storage (TFM) 294.67 #1381
1 é SE 1 G SE Storage

Landsat 5, 2007 ha m?hat Mg ha? Tg uTg

TF (n=1662) 5152172.76 12.58 533 015 22 58.56 31.43 0.86| 5.1 30171  + 442

SCF (n=292) 2356073.28 13.72 559 0.36| 2.8 62.11 31.27 202| 37 146.34 + 476
g SMF (n=1033) 1906699.05 12.32 541 019 29 56.57 32.73 111 64 10786 + 2.11
& SOF (n=337) 889400.43 7.70 235 025| 15 34.90 15.38 137 23 31.04 + 122
= Sum of strata storage (TFM) 285.76  + 535
8 Landsat 8, 2013
2 TF (n=1635) 5104018.71 12.42 561 0.14| 25 57.03 3251 0.89| 4.7 291.08 + 455

SCF (n=216) 2338481.43 14.03 6.16 041| 33 61.64 33.97 2.26| 5.9 14414 + 528

SMF (n=1156) 1883999.43 11.65 512 0.18| 2.2 52.18 31.59 1.06| 54 98.31 + 1.99

SOF (n=263) 880943.85 7.33 268 027 17 35.10 14.88 143| 28 3092 + 126

Sum of strata storage (TFM) 276.39 £ 5.79

Table 1V-24. Estimates of basal area (G) and AGB (W) using methods based on forest inventory
sampling and regression models, applied in the temperate forests of Durango, Mexico.

The results from both methods in the temperate forest (TF) showed that in the first study period the
sampling-based value of i was larger than the model-based value (bold rows in Table 1V-24). This
observation was valid for the two variables and both study periods. It was also found that the
sampling-based method produced larger estimates of fi in the second period of the MNFI, while the
opposite result was achieved with the model-based method.
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At the stratum level, was observed similar behavior as in TF for most strata. Nevertheless, when the
sampling-based method was applied in the mixed forest stratum (SMF), the /i value was smaller in
the second period for both variables. On the other hand, the model-based method in G estimation
calculated an increase in the estimation in the second period for the conifer forest stratum (SCF,
14.03>13.72 m? ha'®). This result was also observed in the oak forest stratum (SOF) for W
(34.90<35.10 Mg ha™).

SOF estimates were similar for both methods and for both variables, with ranges of 7.33 to 7.82 m?
ha* for G and 34.90 to 36.84 Mg ha™* for W. In the other two strata, the dominance alternated
according to the estimation method. While SCF had the largest ji in the sampling-based method,
SMF had the largest estimate in model-based method.

W storage behaved like the /i estimator. Thus, the largest storage from the sampling-based method
came from the SMF, with values of 147.73 Tg for the first MNFI and 137.76 Tg for the second
MNFI. Meanwhile, the largest storage in the model-based method was in the SCF.

Comparing the W stored in the TF (bold rows in Table 1VV-24) to the sum of W stored by stratum, an
overestimation of the W in TF was observed. The sampling-based estimate from all sampled clusters
of the TF was 13% larger than the sum of the estimates per vegetation stratum. Likewise, the
overestimate of W in the model-based method was 6%.

In Figure 1V-15, the storage values of AGB with information from the two estimation methods were
plotted (sampling-based and model-based). This figure included the uncertainty confidence interval
(Clgsw -95% of probability-), using SE for the sampling-based and model-based method,
respectively.
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SB=sampling-based method, MB=model-based method

Figure IV-15. AGB storage and uncertainty in AGB storage using information from two methods
of estimation in the temperate forests of Durango, Mexico.

Figure 1VV-15 shows that AGB's estimates in temperate forest (TF) were higher than those observed
for temperate forest merged (TFM). However, the confidence intervals of the two methods of AGB
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estimation showed overlap in the TFM estimates; this overlap was not observed in the results for
TF. This figure shows also the AGB overestimate in the results of the model-based method for the
conifer forest stratum (SCF), as well as the underestimate of the same method for the mixed forest
stratum (SMF), compared to the sampling-based estimations. In the figure is shown the difference in
Clgse by the model-based method (+2.44 to +11.57 Mg ha*) compared to the Clgsy by the sampling-
based method (+3.72 to +27.61 Mg ha™). These differences in uncertainty estimation was used to
calculate the relative efficiency (RE) for the two periods of study. In TF the RE for 2004-2009 was
5.1 and decreased to 4.7 in the second period. This reduction of RE was also observed in SMF (6.4
to 5.4). However, in SCF and oak forest stratum (SOF) an increase in RE was observed (3.7 t0 5.9
in SCF, 2.3 t0 2.8 in SOF).
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Chapter V: Discussion

V.1 Measurement errors

The first empirical study analyzed measurement errors using the discrepancy between two
measurements for 4262 trees. In studies applying the same methodology, Berger et al. (2014)
reported similar numbers of sampled trees, with 4411 trees, but generally smaller sample sizes have
been used, such as 391 (Kitahara et al., 2010), 879 (Elzinga et al., 2005) and 778 trees (Melson et
al. 2001). In the second empirical study, the number of trees was reduced, but the number of
repetitions was increased, with five remeasurements in 250 trees of the DBH and TH variables.
Similar studies to the second empirical study have been conducted by Luoma et al. (2017) with four
measurements and McRoberts et al. (1994) with eight measurements per tree.

The DBH in our first study made in conifer forest had a mean error (&) with Caliper of 0.36 cm or a
relative standard deviation (RSD) of 2.2%. For our second study in broad-leaved forest, we
estimated & of 0.19 cm (RSD=0.9%) with Caliper and 0.16 cm (RSD=0.8%) with Tape. These
results are consistent with studies that report RSD of 1.6% with Tape (Elzinga et al., 2005), standard
deviations of 0.51 cm (Melson et al. 2001) and 0.3 cm (RSD=1.5%) with multiple Caliper
measurements (Luoma et al., 2017). Using Tape, Kitahara et al. (2010) estimated & of 0.37-0.57 cm
(RSD of 1.3-2.9%) for conifer trees and 0.52-0.83 cm (RSD of 1.2-3.2%) for broad-leaved trees.

The second empirical study calculated smaller measurement errors. Each re-measurement was
performed by the same individual to obtain the best estimate, i.e. without time pressure and
following the field manual. Thus, it was possible to estimate smaller measurement errors than the
ones estimated in other studies, like the study of Kitahara et al. (2010), in which measurement errors
are estimated comparing the measurements of field crew with measurements made by forest
experts. Or similar approaches like in our first empirical study, in which the errors are estimated
from measurements made by different field crew members (Elzinga et al., 2005; Liu, Bitterlich,
Cieszewski, & Zasada, 2011; Luoma et al., 2017; McRoberts et al., 1994; Melson et al., 2001).

In preparation for error propagation, DBH measurement errors were adjusted to probability
distribution functions (PDF) under two criteria. The first was to assume that measurement errors
have a single PDF describing them, independently of the size of the tree. Our study found that the
PDFs that best-fit for all errors were Johnson SU and Logistic. For both cases, normal distribution
(NDn) was also adjusted showing overlapping with the best-fitted PDF. The second criterion was to
incorporate the heteroscedasticity of errors into the PDFs. Therefore, a PDF was fitted per DBH
class, assuming that within the classes the distribution of errors is the same. It was found that in
DBH classes less than 30 cm, the NDn overlapped with the best-fitted PDF. However, beyond 30
cm DBH, the best-fitted PDFs showed differences with the NDn (see Figures 1V-4 and 1V-9). With
respect to selected PDF, most studies assume NDn by reporting the dispersion of errors in DBH
through standard deviation (Berger et al., 2014; Kitahara et al., 2010; Melson et al., 2001). Some
authors provide support for the use of the NDn (Gertner & Kohl, 1992; Kangas, 1998), and other
studies include heteroscedasticity of errors by calculating standard deviations by DBH class
(Elzinga et al., 2005; Liu et al., 2011; Luoma et al., 2017). Logarithmic transformations were also
found to be the most commonly used method for describing heteroscedastic errors (Chave et al.,
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2004; Kangas, 1998). It should be noted that no work was found using other types of distribution
than normal or log normal to describe measurement errors in DBH.

In estimating errors for the TH variable, the first study had a mean error (&) of 0.61 m or RSD=4.6%
when measured with Vertex, while in the second study had values of 0.88 m (RSD=5.0%) for
Blume-Leiss (BL) and 0.58 m (RSD=3.0%) for Vertex. The results of our first two studies are similar
to those reported by (Luoma et al., 2017) with 0.5 m (RSD of 2.9%) for Vertex but smaller than the
ones estimated by (Melson et al., 2001) of 1.52 m. Also with Vertex measurements, Kitahara et al.
(2010) estimated errors of 0.66 to 1.02 m (RSD of 3.1-4.5%) for conifers and from 1.2 t0 1.89 m
(RSD of 7.1-9.8%) for broad-leaved.

Like the errors in DBH, the errors in TH measurement were adjusted to a normal distribution (NDn)
and the PDF that best fit to the error frequencies. The PDFs that best fit the measurement errors in
conifers (first study) were Johnson SU and in hardwoods (second study) Cosine and Trapezoidal,
for Vertex and Blume-Leiss. The PDF's adjusted for Vertex measurements were closer to NDn than
the measurements of Blume-Leiss. When adjusting PDFs by TH classes, it was found that in
conifers there was a greater frequency of errors close to zero, prevailing the Johnson SU distribution
(see Figure 1V-5). In hardwoods, Vertex measurements also had a higher frequency of near-zero
errors, and the NDn overlapped the best-fit PDFs in TH less than 15 m and TH beyond 25 m. The
PDF of measurements with Blume-Leiss in hardwoods overlapped with the NDn in the small tree
classes. However, from 15 meters of TH, there was no high frequency in central values of errors,
and the PDFs describing the errors were Trapezoidal Curvilinear and Uniform (see Figure 1V-10).
The studies reporting measurement error in TH assume normality in the error distribution (Kangas,
1998; Kitahara et al., 2010; Melson et al., 2001) and even estimate the errors according to the TH
classes, as in our study (Luoma et al., 2017; Williams et al., 1994).

In the second empirical study of this thesis, were used measurement errors of students with mean
error (6) of 1.18 cm for DBH and 4.01 m for TH, using Tape and Vertex. The errors in DBH were
similar to those found by Kitahara et al. (2010), that calculated errors for three groups of
inexperienced crew members with a range from 0.19 to 1.43 cm with hardwood species. In contrast,
the TH errors from 0.48 to 2.09 m, were smaller to those obtained by the students in our study. We
emphasize that the TH range of the species measured by Kitahara et al. (2010) of 4.2 to 22.7 m with
an average of 13.2 m, was lower than our study with 7.3 to 36.3 m and an average of 20.2 m.
Although measurement errors increase with increasing TH, compared to other studies (Luoma et al.,
2017; Melson et al., 2001), our mean TH measurement error of students was overestimated.

V.1.1 Measurement and uncertainty comparison among devices

In the second empirical study, the mean DBH values were larger from Tape than from Caliper
(24.24>23.97 cm). However, the mean measurement errors (&) were larger with Caliper than with
Tape (0.19>0.16 cm). Other temperate forest studies (Liu et al., 2011; Moran & Williams, 2002;
Weaver et al., 2015) confirm this trend. In relation to larger measurements from Tape, Brickell
(1970) and Matérn (1956), explained that the perimeter measured with Tape is assumed from a
circumference, being this figure the one that estimates larger surface given a perimeter. Matérn
(1956) argued that measurements with Tape are more consistent than with Caliper since Caliper
measurement represents one diameter of an infinite number that makes up a cross-section. This
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explains why repeated measurements with Caliper had larger measurement errors compared to
Tape.

Mean TH measurements were larger with Blume-Leiss (BL) than with Vertex (19.97>19.75 m).
Measurement errors (&) ranged from 0.03 to 2.22 m (RSD of 0.2-18.3%) and 0.04 to 1.48 m (0.4-
9.7%), respectively, with mean errors of 0.88 m (RSD=5.0%) and 0.58 m (RSD=3.0%). The errors
in BL were similar to those obtained by Williams et al. (1994) with clinometers; 0.46 m in trees up
to 12.2 m, and 2.22 m in larger trees. Hyppdnen and Roiko-Jokela (1978) estimated also a similar
range of 0.56-0.80 m with clinometers Sunnto. However, our errors were larger than West (2009),
who found that the accuracy of optical-mechanical equipment (Blume-Leiss) is around 0.5 m. Errors
in Vertex measurements were larger than the estimated by Gaudin and Richard (2014) and Wing et
al. (2004), calculating errors of 0.19 to 2.3% in experiments with 10 trees. Our results were also
larger than the errors reported by Rondeux and Pauwels (1998), who compared Vertex and BL
measurements, estimating RSD of 1-1.6% for Vertex and 2.3% for BL and mean errors of 5 cm for
Vertex and 34 cm for BL. Here we emphasize that studies reporting errors in Vertex measurements
have been conducted under controlled conditions (e.g. five trees in an urban area), compared to our
study where 250 trees were measured in the field.

In the experiments developed in this thesis, it was observed that the measurement errors were higher
in TH. If we use the measurements (DBH=cm and TH=m) into an allometric model, these
measurements are coefficients with which the AGB is estimated. Comparing them without
dimension, the measurement errors in TH were less precise than those of DBH (see Figures V-4,
IV-5, V-9, and IV-10), similar to the results reported by Kitahara et al. (2010) and Luoma et al.
(2017).

V.2 Aboveground biomass & basal area

V.2.1 Aboveground biomass (W) allometric models (AM) selection

From the eight AM used in the first empirical study, five models were selected by species and three
by genus (see Table I11.1). However, an AGB model for Abies duranguensis (Rojas-Garcia et al.,
2015a) has not been reported in Mexico, and due to the similarity in morphological characteristics
an Abies religiosa model was used (Avendafio Hernandez et al., 2009). The impact of this bias is
considered negligible because there was only one tree out of 4262 in the dataset.

For the third empirical study, Table VIII-1 (Appendix I) shows the list of 36 AMs used to estimate
the AGB of the 346 species identified in the MNFI for the two periods studied. Five important
features in the selection of AMs are discussed below:

i. 19 AMs estimated the AGB grouped by genus. The models used for Quercus spp and Pinus
spp stand out, with 77 and 37 species.

ii.  Desert communities and tropical dry forest were AM that estimated AGB for 73 genera (20
and 53 genera, respectively). Although these AMs were applied to genera of the same
vegetation type, 60% and 30% of the trees using these models belong to genera that were
not included in the studies where these models were fitted.
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iii. 18 AMs used in this thesis were not fitted in Durango or the surrounding states, and six
models were not fitted in Mexico.

iv.  Only 16 AM were reported together with the MSE of the fitted model but did not include the
information used to fit the model.

v. 15 of the AMs used were fitted with information from less than 30 sampled trees.

The first three features are related to the AMs developed in the state of Durango. Pinus spp and
Quercus spp trees make up 88% of MNFI trees, and the commercial importance of these genera
account for 89.5 and 6.9% of timber production in Durango (INEGI, 2016). The compilation of 346
models made by Rojas-Garcia et al. (2015a), has 43 models developed in Durango, 33 of these
models were made in Pinus spp (11 species) and seven in Quercus spp (three species). For this
reason, tropical and desert species have more interest in neighboring states such as Sinaloa for
tropical vegetation (Navar, 2009, 2010) and Sonora for desert vegetation (Burquez et al., 2010). In
our thesis work, the need for allometric models involving information from Pinus cembroides,
Quercus eduardii, Q. magnoliifolia, Q. laeta and Q. grisea has been detected. Therefore, a clear
adherence to procedures indicating the precision to obtain allometric models is suggested (Picard et
al., 2012). These species are 18.6% of the trees in our study area and have not been reported models
in Durango or neighboring states. Some of these species have also been detected as an area of
opportunity in AM research, in studies such as that conducted by Rojas-Garcia et al. (2015b), listing
40 priority species for the development of AM in Mexico.

The fourth feature is that AMs have been reported mostly with the determination coefficient (R?)
only and not with the goodness-of-fit. Rojas-Garcia et al. (2015a) reported that out of 346 AMs
compiled from studies conducted in Mexico, only 39 models reported the MSE of the fitted model.
The models used in our thesis did not include the original data in their publications, with which the
error of prediction of the mean and the error of prediction of the individual are estimated (Draper &
Smith, 1998). Since the original data were not available, the MSE was used as the uncertainty
parameter due to AM, which corresponds to an overestimation of the prediction of the mean or SE
(Yanai et al., 2010).

The fifth feature is associated with the information that was used to produce the AMs, i.e. the
number of trees used to estimate the AM. Using less than 30 trees, according to Picard et al. (2012),
assumes homogeneity of the species in a 10 ha sampling stand. In addition, Chave et al. (2004)
found that increasing the sample size decreases the coefficient of variation in the estimated AM.
This implies that models with smaller sample sizes (less than 20 trees) may have greater uncertainty
in the estimation of the AGB (Roxburgh et al., 2015). However, AMs that used less than 20 trees for
their fitting, were still used in our thesis, when no other publications were found for that genus or
species (Rojas-Garcia et al., 2015a). It should be noted that this decision is considered to have a
negligent impact on our AGB estimate because the AMs fitted in Durango State had sample sizes
from 30 to 423 trees and were applied in 96% of the dataset.

On the variables used in the AMs, 23 of the selected models were fit with DBH data and 13 models
added TH in the model fitting. Vargas-Larreta et al. (2017) found that for AMs of pines and oaks,
TH was a significant predictor variable, improving the prediction of adjusted AMs in 12 of the 17
that were included in their study. This same conclusion has been found by other studies with pines
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and eucalyptus (Bartelink, 1996; Reed & Tomé, 1998). In a sweet chestnut forest, Menéndez-
Miguélez et al. (2013) found an increase in the accuracy in AGB estimation including TH. The 13
models including TH as a predictor variable in our study were used in AGB's estimate of 96.8% of
the MNFI dataset.

An important consideration in the AMs selection is the correct identification of the sampled trees in
the field. Although our thesis did not include an experiment that quantified the success in the
identification of trees, it is explained below how this topic was approached. In the first empirical
study, the identification of the trees is considered correct, because the members of the field crew
were selected for their experience in the study area as suggest the NFI reviewed by (Tomppo et al.,
2010). For the second empirical study, conifer and broad-leaved AMs were assigned, which are
distinct vegetation groups. In the third empirical study, the trees in the MNFI database are assumed
to be correctly identified according to the field manual (CONAFOR, 2009b). However, a
CONAFOR study, which aimed to verify the identification of MNFI species from 2013-2015,
obtained results that contrast with the assumption of correct identification (Ricker et al., 2015). This
study had 14035 samples, out of which 69.2% were identified in terms of species (9711 samples)
and 30.8% (4324 samples) were identified in terms of the genus, family or unknown. A group of 47
biologists determined that 39.3% of the 9711 records were correctly identified, 28.1% were correct
at the genus level, and 32.6% were misidentified. From 4324 collections, 1856 were not identified
with traditional methods and required the use of molecular methods. Therefore, based on this study,
60.6% of the collections were correctly identified at the genus level, while only 27.2% were correct
at the species level. In personal communication with Dr. Martin Ricker, the researcher responsible
for the project, 89.9% of the collections coincided at the genus level in the state of Durango. From
this information, it was decided to use the AMs at the genus level for the estimation of the AGB in
the MNFI.

V.2.2 AGB estimation

In the Durango state, two empirical studies from this thesis estimated AGB. In the first study, the
AGB in pine forest was 176.07 Mg ha™ and ranged from 86.61 to 228.41 Mg ha*. This estimate
contrasts with the national estimate in Mexico of 63.43 Mg ha™ for this forest type (CONAFOR,
2017a). The major difference was found in tree density and tree height. While in the first study the
average values were 1137 trees ha™* and 13.3 m of TH, at the national level, 455 trees ha™* and a 6.7
m of TH (CONAFOR, 2014a). On the other hand, the estimate of AGB was consistent with the
study conducted by Vargas-Larreta et al. (2017), where they estimated 129.84 Mg ha™ in a range of
11.06 to 469.42 Mg ha* for pine and mixed forests in Durango.

In the third empirical study, AGB in the temperate forest of Durango was estimated for two periods
of the MNFI data. The mean AGB was 64.31 Mg ha™* for the period 2004-2009 and 64.77 Mg ha™
for 2009-2014. This AGB value lies intermediate to the estimates made in Durango ranging
between 48.86 and 130 Mg ha™ from 2008 to 2012. However, those estimates were the result of
different sampling designs and approaches, such as circular plots (Navar, 2009), permanent plots of
50 per 50 m (Martinez Barrdn et al., 2016; Vargas-Larreta et al., 2017), or technical studies that
calculate AGB from volume estimates (Profloresta, 2008). The National Forestry Commission of
Mexico has not reported AGB in the last report of the state (CONAFOR, 2014a), and with MNFI
data, the AGB reported to FAO was 54.08 and 54.11 Mg ha™* in 2007 and 2011 for temperate forest
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(FAO, 2015). In our study, using MNFI data, the temperate forest registered larger AGB estimates
in Durango State than at the National level in Mexico.

Inside the Durango temperate forest in the period 2004-2009, the mean estimate of AGB was 48.31
Mg ha* in the conifer forest, 77.48 Mg ha™ in the mixed forest, and 35.52 Mgha™ in the oak forest.
In the second period (2009-2014), the mean values of AGB were 51.82, 73.12, and 36.84 Mg ha™,
in the same order. These estimates could only be compared with the MNFI 2009-2014 report
because it was the first report including the AGB estimate. In this report, the AGB was 63.43 Mg
ha* in the conifer forest, 53.66 Mg ha™ in the mixed forest and 34.25 Mg ha™ in the oak forest.
AGB in the oak forest was similar to that reported at the national level of Mexico. Conversely, our
study estimated lower AGB in the conifer forest, but higher AGB in the mixed forest. This opposite
behavior was caused since the mixed forest in Durango had more trees than the conifer forest
(487>409), and higher mean DBH (16.94>16.75 cm).

In the second empirical study, conducted in Géttingen, the average AGB was 257.6 Mg ha™ in the
beech forest. High accumulation of AGB is common in this area and has previously been registered
by Brumme & Khanna (2009) with estimates of 431 Mg ha™ in a range of 128 to 660 Mg ha™* from
a study conducted in the “Gottinger Wald”.

In all three empirical studies, the categories of DBH greater than the category of the mean DBH had
a greater contribution to AGB. In first and third studies in Durango, trees with more than 20 cm (26
and 32% of the dataset, respectively) contributed to more than 58% of the AGB. In Gottingen, trees
greater than 40 cm in DBH (22% of the dataset) contributed to 65% of the AGB. The categories
greater than or equal to the category of the average DBH had fewer trees but a greater contribution
to the AGB.

V.2.3 Basal area (G) estimation

The G estimate in the first empirical study had the mean value of 29.17 m?ha* in pine forest, which
is consistent with the result estimated in the same area of Durango (UMAFOR 1008, see Figure I1-
2) by Molinier et al. (2016) estimating 23.44 m*ha*, with a range of 8.21 to 54.83 m*ha™. At the
state level, the third empirical study had estimates of 12.98 and 13.17 m?ha™* for the temperate
forest, for the 2004-2009 and 2009-2014 periods. At the national level, the results were similar with
11 and 14 m*ha’* for the same periods (CONAFOR, 2012c, 2017a); and also similar to the estimate
for the state of Durango in 2013 with 10.77 m*ha™® (CONAFOR, 2014a). At the state level of
Durango, the third empirical study recorded 1.7% of RSE for the two periods studied, being
consistent with the estimate of MNFI 2009-2014 with 1.98% of RSE, and with 2.2% estimated for
this state in 2013.

In the second empirical study, a G value from 29 to 32 m?ha* with a RSE of 5.9% was estimated;
similar results were obtained in the monitoring reported by Brumme & Khanna (2009) from 32.3 to
39.5 m*ha* in beech forest near the study area.

The contribution to the G estimates from bigger trees, DBH larger than the category of the mean
DBH, was large. In the first empirical study, trees larger than 20 cm DBH were 26% of the dataset
and contributed 54% of the G estimate. In the second empirical study, same DBH trees size were the
32.5% of the dataset, contributing 59.2% of G. This contribution of bigger trees was also recorded
in the MNFI 2009-2014, where trees larger than 20 cm DBH (21% of the dataset) contributed 56%
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of the G estimation (CONAFOR, 2017a). As in the Durango estimates, the large trees of the second
empirical study (DBH larger than 40 cm and 22% of the dataset) contributed 60% of the estimated
G.

V.3 Error propagation

V.3.1 Tree-level (measurement contributions)

The contribution of measurement errors (uMes) in DBH (uDBH) and TH (uTH) were the first
sources of uncertainty in the estimation of AGB at tree-level. With the GUM Method, the
contribution of uncertainties uDBH and uTH were estimated for each tree (uMes) in the first two
empirical studies (Equations 06a and 06b). The major contribution in the measurement errors at the
tree-level was the uTH, followed by uDBH and finally the correlation of these two variables
(up(osH.TH).-

The contribution of the uTH was higher due to the following reasons: the relationship between the
sensitivity coefficients SCpsn/SCtn=1.65 (Equation 05) indicated that in the allometric models used,
for each unit of uTH, the uDBH contributed 65% more. However, because the variables (DBH, TH)
are correlated, the contribution of the correlation was incorporated in the error propagation; thus,
the contribution of the uDBH decreased, and consequently the ratio uTH/uDBH favored uTH,
having contributions from 37 to 62% to the measurement errors. Chave et al. (2004) found also
more contribution of the uTH to the measurement error in tropical forest, estimating 48 to 78% form
uTH; as well as Phalla et al. (2018) who estimated a contribution of 74% from uTH to the
measurement errors in evergreen forest.

The NDnC scenario (description in Section I11.1.6.4) included the heteroscedasticity of
measurement errors, and it was not significantly different from the other two scenarios used (NDn,
RMSD). Because these scenarios underestimated (NDn) and overestimated (RMSD) the
measurement errors calculated by NDnC; the NDnC scenario, using tree size, describes best the
errors from the discrepancies in DBH and TH measurements in the study area of El Salto, Durango.

The second empirical study was designed to compare the measured error from repeated
measurements per tree, against an estimated parameter from the application of four scenarios of
estimation. The scenarios that showed no significant difference with the measured errors were linear
model (mod) and normal distribution (NDn). Applying the scenarios in the two datasets,
Caliper+Blume-Leiss (CB) and Tape+Vertex (TV), the largest contribution was from uTH, followed
by the correlation (DBH,TH), and the smallest was from uDBH. The largest contribution of uTH
was already mentioned for the first empirical study. The correlation of the second empirical study
was greater than in the first empirical study (p=0.92 > p=0.78), and we assume that for this reason
there is a greater contribution of the correlation in relation to the uDBH. Tiedeman & Green (2013)
found that including the correlation between observations affects the uncertainty of the source
involved in the correlation. In general, the correlation between variables affects uncertainty
estimation (Criscenti et al., 1996; Farrance & Frenkel, 2014; Golia§ & Palencar, 2012; Mahmoud &
Hegazy, 2017). The results of our thesis show a range from 13 to 30% of the tree-level uncertainty
comes from correlation. However, in the AGB estimation, the contribution of correlation
uncertainty of the measurement variables has not been reported. Estimates have been reported with
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allometric models using only DBH as a predictor variable (Qin et al., 2019), or assuming
independency of the DBH and TH measurements (Berger et al., 2014; Holdaway et al., 2014;
McRoberts & Westfall, 2014; Phalla et al., 2018; Phillips et al., 2000; Van et al., 2011).

The AGB and their uncertainty, estimated with models fitted with the variables DBH and TH, were
compared with estimates from models fitted with DBH. Models using only DBH underestimated the
AGB, and it is significantly different from estimates by the models using DBH and TH. This was a
clear difference between the two models and was previously stated in Section V.2.1. The AGB
estimation models using only the predictor variable DBH, had less uncertainty at tree-level,
compared to the model that used DBH and TH. This larger uncertainty when using allometric
models with TH has been reported by Phalla et al. (2018) and Chave et al. (2004). In these studies,
they attribute more difficulty in measuring TH as the reason for the increased uncertainty, and as we
have seen in this thesis, this was observed in the devices used (Section V.1.1).

Because we used two devices per measured variable in the second empirical study, we compared
the uncertainty contributions. The CB has a larger contribution, compared to TV, to the
measurement error at tree-level. This larger contribution is associated with the uncertainty
parameters used in error propagation (Table 1V-8), which show a greater magnitude of both error
parameters of the CB dataset, Ucaiiper>Utape, 8Nd Uslume-Leiss™>Uvertex

V.3.2 Tree-level (non-sampling error)

In the GUM Method, the non-sampling error (uTree) was estimated (Equation 07) with the
contributions of measurement errors (uMes) and prediction errors (UAM). The first two empirical
studies represent two scenarios not only geographically, but also in the contribution of uAM to the
uTree.

In the first study, the uAM contributed to more than 97.8% to the uNS estimated at tree-level; the
uMes had a range of 8.79 to 13.18 kg and the uAM was 87.42 kg for the uAM of the average tree.
Similar results were obtained by Phalla et al. (2018) with uAMs contribution of 81 to 98%, and
more conservatively by Berger et al. (2014) with less than 83% of uAM contribution. On the
contrary, our second study showed a greater contribution of the uMes (more than 98.9%) to the
uTree. The uMes had a range of 12.16 to 18.26 kg and uAM was less than 1.35 kg per tree.
Holdaway et al. (2014) had similar results where uMes contributed to more than 10 times the uAM,
using the standard error of the mean as the source of uncertainty of the carbon estimation model.

The previous information allows us to understand the difference in contributions of the errors
included in the uTree for the first two empirical studies. This difference is related to the model
selection or the source of prediction error used (RMSE or SE) as mentioned by Holdaway et al.
(2014) (discussed in Section V.2.1); however, it has another implication in the aggregation process.
In the first empirical study, having a uAM>uMes relation in the uncertainty at tree-level, 97.8% was
due to uAM and therefore the size of the tree is not relevant. When estimating the AGB for trees
beyond 20 cm DBH, although 59% of the AGB was calculated, the 26% of the uNS is estimated and
is the same percentage of trees of this DBH size. In the second study, with an inverse relationship
uMes>uAM, the uncertainty at tree-level was 98.9% from uMes. When verifying it with the dataset
measured by Caliper+Blume-Leiss, it was found that trees of DBH greater than 40 cm, account 78%
of the AGB and 65% of the uNS; even when it is the 22% of the trees in the Stand.
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V.3.3 Plot-level (non-sampling error)

Adding the non-sampling errors per tree (uTree) to estimate the non-sampling errors per plot
(uNSplot), the proportion of errors decreased. Using the results of the first study, the relative errors
(uTree/AGB) at tree-level were on average 56.7 to 57.4%. In plot-level, the range of relative errors
(uNSplot/AGB per plot) was from 1.32 to 6.09% (see Table VI111-8, Appendix V). The reduction of
percentage in the aggregation is because the sum of the errors is in quadrature. The sum of errors,
random and independent, is smaller than the sum and can be described by the geometric form of the
right-angled triangle (Taylor, 1997). In this triangle, the legs represent the uTree and the hypotenuse
is the sum in quadrature of the two uTree; with a greater contribution from the larger uTree. The
sum of two uTree (hypotenuse) is the leg of a next triangle adding the next uTree, and so on. The
same result is obtained using Equation 08 applied to all the uTree. The above also means that trees
with larger uTree have a greater contribution to the uNSplot.

The reduction of relative errors, from tree to plot, was also observed in the second empirical study
with a smaller difference. For Caliper+Blume-Leiss measurements, the relative errors in tree-level
were from 3.56 to 3.96% and in plot-level from 0.73 to 1.50% (see Table VI11-26, Appendix V). In
Tape+Vertex the same trend was found (see table V111-29, Appendix V). The lower contribution of
measurement errors in Vertex, which had already been explained, maintained a lower contribution
in errors at the plot-level.

V.3.4 Stand-level GUM Method (non-sampling & sampling errors)

At the stand-level, unlike tree-level and plot-level, the uncertainty was also estimated with the
Monte-Carlo simulation Method (MCM). The RSE of 7.88% is high, according to the
recommendation of RSE<7% proposed by Velasco et al. (2002); however, the experiment met the
purpose of estimating the parameters of measurement errors. With the results of the GUM Method,
the uNS for the stand was obtained by applying Equation 09 to the uNSplot. The first empirical
study resulted in a mean AGB estimate of 176.07 Mg haand a total uncertainty (uW) of 13.87 Mg
ha*. The uNS contributed to 1.26% of this total uncertainty when using the NDnC scenario. In the
second empirical study, the CB dataset had a mean AGB estimate of 236.28 Mg ha™and uw of
13.74 Mg ha™. In the TV dataset were estimated a mean AGB of 236.28 Mg ha™*and uwW 14.43 Mg
ha*. The uNS contributed to 0.40% of uW in the CB dataset and 0.15% in the TV dataset. These
results indicate that the SE contribute to over 98.7% in the first two empirical studies when
estimated with the GUM Method for error propagation.

Contributions by a source of uncertainty, in the GUM Method, only for the first empirical study
were estimated. In the NDnC scenario, the order of contribution was SE>UAM>uTH
>UDBH>uppsH,TH), With percentages of 98.74>1.213>0.02>0.014>0.013% of the total uncertainty.
We observed that the major source of uncertainty for the estimation of AGB in El Salto, Durango
was the SE. Similarly, the uAM was more than 97% of the uMes; and the uTH had the greatest
contribution in the uMes, taking into account its relationship with the other measurement errors used
at tree-level (67>6 ppy™>up©H,TH))-
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V.3.5 Stand-level MCM (non-sampling & sampling errors)

In each empirical study, we ran 10000 iterations. The resulting differences in the approximations of
MCM with the direct estimation were less than 0.1% when the IPCC recommendation is 1% (IPCC,
2006). This implies that the results obtained with the MCM were acceptable. The estimated RSE
was 7.8, 6.0 and 3.0%, for the first, second and third empirical studies. Even when the empirical
studies were not conducted in the same study area, the RSE show the effect of the sample size
(Cochran, 1977) of 10, 47 and over 1600, respectively. The RSE of the third study is comparable to
the RSE of 3.3% reported in the MNFI for temperate forest (CONAFOR, 2017a).

Using the MCM, the largest contribution to total uncertainty (UW), for the three empirical studies
was the SE with values over 98.7%. Phillips et al. (2000) reported the SE as the most important
contribution in volume estimates in South-eastern NFI USA, with over 89% of the uW. Similar
results have been reported by Holdaway et al. (2014) and McRoberts & Westfall (2016) in
temperate forest carbon estimation, but do not report the contribution percentage. In contrast, Chave
et al. (2004) in a rainforest found a contribution of about 50% of the SE to the uW. This indicates
that the number of trees sampled in our studies is large enough so that the major source of error is
attributed to sampling (McRoberts & Westfall, 2016; Phillips et al., 2000). According to McRoberts
& Westfall (2016), with a mean density of 23 trees in 400 m? plot (575 trees ha), the uMes are
negligible comparing to the SE. Our results confirm this last statement with a mean value of 20 trees
in a 400 m?plot.

When comparing the results of uNS in the MCM and the GUM Method, in the first empirical study,
a slight overestimation of the GUM Method was found. Using the same scenarios (NDn and NDnC)
and comparing at plot-level the mean error estimate, resulting in an overestimation of 2% of the
GUM Method (p<0.01, Tables VIII-14 and VII1-16 in Appendix V). Assessments in
instrumentation, and material quality controls, report a range of 8 - 21% of overestimate of GUM
Method results (Mahmoud & Hegazy, 2017; Sana Sediva et al., 2015; Sona Sediva & Havlikova,
2013). However, when we applied the best-fit distribution with the MCM (scenarios MCBD &
MCBDC) the uW per plot was not significantly different from the GUM Method results (scenarios
NDn and NDnC) (p>0.614, Table VIII-16 in Appendix IV). Farrance & Frenkel (2014) had similar
results with no difference between these two methods, assuming independence in the variables used
for the error propagation.

In the second empirical study, it was observed that the uNS decreased in proportion more than the
SE, for all the scenarios evaluated when the sample size increased from 11 to 47 plots. This is
evident from Caliper+Blume-Leiss (CBmod scenario) results, in which the uNS of the 11 plots
equaled 0.4% of the uW, while in 47 plots was 0.1%. This behavior is explained due to the GUM
Method used in the 11 plots, overestimate the MCM results in uW for the 47 plots, and according to
Cochran (1977) & Taylor (1997), the SE and uNS decrease when sample size increase.

The order of the contributions to the uW, of the scenarios used in the second study, were
BD<mod<BDC. The scenario mod did not have significant differences in comparison with the
measured errors, and mod includes the heteroscedasticity of the measurement errors related to the
size of the tree. Then, the other two scenarios underestimated (BD) and overestimated (BDC) the
measurement errors.
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In the second study, the contribution obtained with the use of errors made by students (Exp and
Nexp) stands out since these were the only scenarios that increased the total RSE from 5.0 to 5.04%.
The Exp and Nexp scenarios represent a six-fold increase in DBH measurement errors, and a 4.5-
fold increase in TH, compared to the estimated errors in repeated measurements. However, when
these measurement errors are applied in the third empirical study, they are negligible with the large
sample size (NFI scale) as stated by McRoberts & Westfall (2016).

V.3.5.1 MCM per source contribution

The results of the MCM in the first empirical study maintained the order of contribution from the
sources of uncertainty, where SE>UAM>uTH>uDBH. The percentage of contributions per source
was 98.746>1.205>0.029>0.028 and is similar to the estimated with the GUM Method.

In the second empirical study, The sources of uncertainty had a contribution to uW in the following
order SE>uTH>uDBH>uAM>uppen,1H) (See Table VII1-41, Appendix V). The contribution for
Caliper+Blume-Leiss measurements with mod scenario was 99.9>0.08>0.02>0.0002>0.00002,
while with Tape+Vertex measurements was 99.95>0.036>0.014>0.0002>0.00001.

In the third empirical study (MNFI), the order of the contribution to the total uncertainty (uW) was
like the one obtained in the first study, but also included the uncertainty of the plot design (uPlot).
The contribution to the uW was related to the scenario of measurement error estimation. The
scenarios BD (best-fitted distribution) and Exp (experimented students), do not consider the size of
the trees and, therefore, the contribution to the final error depends on the number of trees. In
contrast, the BDC scenario (best-fitted distribution by class) estimated the contributions according
to the size of the tree, furthermore, this scenario did not differ significantly from the other scenarios.
Thus, the BDC scenario does not underestimate (as BD) or overestimate (as Exp) the measurement
errors in the estimation of AGB. In the BDC scenario, the order of contribution to the uW was
SE>uAM>uTH>uPlot>uDBH. The percentage of contributions per source in MNFI of Durango was
99.41>0.53>0.03>0.02>0.02. The contributions from uTH, uPlot and uDBH sources were small
(>0.7%) and did not differ significantly from one another. The uPlot is uncertainty related to the
shape and size of the plot, in this study its contribution was equal for the given scenarios. The
contributions of uTH were larger than uDBH as the results in the first study, with no significant
difference.

Using information from FIA in the South-eastern USA, Phillips et al., (2000) estimated the
contributions to total carbon estimation from four sources of uncertainty. The order of the
contributions is like that observed in the first and third empirical studies of this thesis, being
SE>UAM=>uTH=>uDBH. The reported contribution percentages were 98.7>1.2>0.1>0.0. On the
other hand, Holdaway et al. (2014), report a different order of contribution being SE>uMes>uAM
where they estimate a larger contribution from uMes compared to UAM. The percentage
contributions were 98.9>1.0>0.09 and, within the measurement errors, the uTH were larger than the
uDBH. This last is like our results in the second empirical study.

Our thesis results include the contributions of measurement, prediction, plot design and sampling
uncertainties in the AGB estimation with the MNFI data for the state of Durango, Mexico. The
uncertainty estimates of this thesis were made under the IPCC guidelines established for Tier 2
(IPCC, 2006), which imply the reporting of transparent, coherent, compatible, exhaustive and
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precise estimates (Morfin Rios et al., 2015). Since AGB estimation is a basic input for the
estimation of GHG emissions (CONAFOR, 2014b; Gibbs et al., 2007), it is proposed that the
approach used here could be considered in the development of MRV systems under REDD+ in
Durango, Mexico. The MRV system in State-level (Durango strategy is under construction) aims to
monitor, verify, and adapt national REDD+ strategies, incorporating practices best suited to regional
characteristics (CONAFOR, 2017b). The State-level MRV system takes on greater importance since
it is requested in reports of environmental management in Mexico, referring to climate change
mitigation (SEMARNAT & INECC, 2017), forest carbon dynamics (Red Mex-SMIC, 2015), and
including the Law of Climate Change (Chamber of Deputies, 2018b).

V.3.5.2 Uncertainty in strata and substrata of MNFI

Estimating AGB by vegetation type is a recommended method to stratify the forest for the AGB
uncertainty report, according to the IPCC (IPCC, 2006). Stratification is recommended to reduce
variability in estimates; however, the results of our study show the opposite trend. While in the
temperate forest the RSE was 3.0%, a range from 3.3 to 10.63% of RSE was estimated in the strata
and from 3.6 to 23.5% in substrata. The RSE estimates for wood volume in Durango, with
information of the MNFI (2009-2014), have an RSE range from 6.97 to 29.71% for temperate forest
strata (CONAFOR, 2014a). In our study, the highest RSE (23.5%) was estimated in the substratum
of secondary vegetation in the conifer forest (SCFs). This substratum has the smallest number of
sampled plots (n=60). In contrast, the lowest RSE (3.6%) was in the primary vegetation of mixed
forest (SMFp). This is the substratum with the largest number of sampled sites (n>1261). The
increase in measurement errors (scenarios) did not change the contribution of SE and uNS to the
uW, since both estimates depend on the sample size (Cochran, 1977; Taylor, 1997). However, by
stratifying, the contribution of the SE was reduced gradually; while in the temperate forest the SE
was >99.29%, at the stratum level it was >97.49% and at the substratum level >96.39%. The
scenarios were consistent in estimating uncertainties as in the temperate forest, with an
underestimation of uNS by the scenario BD (best-fitted distribution) and an overestimation of Exp
(experimented students), compared to BDC (best-fitted distribution by class).

The number of clusters changed in the strata and substrata of the temperate forest and were not
consistent in the periods studied. The classification of vegetation is fundamental information where
the field crew applies the NFI field manual (CONAFOR, 2017a; Tomppo et al., 2010). Since
classification is qualitative, as well as species identification, Morrison (2016) suggest that
experience and training is required for the field crew. The difference is that classification can be
only made in fieldwork and trees can be identified in the herbarium, if not possible in the fieldwork
(CONAFOR, 2009b; Ricker et al., 2015). The professional profile or experience of the field crew in
MNFI is not defined in the field manual. We suggest applying the findings of Tomppo et al. (2010)
about the strategies used in the NFI field manuals of 37 countries to ensure the quality of MNFI
information. Among these strategies are, the profile of the field crew (forest engineer or technician),
training and training evaluation, cross-checking at fieldwork, a random check of the field crew,
correction and validation of fieldwork (Tomppo et al., 2010).
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V.4 AGB and basal area estimation with Landsat imagery information

The basal area (G) and AGB (W), calculated with the MNFI data, were correlated with the
information extracted from the Landsat imagery (predictor variables). The predictor variables (PV)
with the highest Pearson's correlation coefficient (|p|) were SR, SRG, NDVI, ARVI, and WDRVI (see
Table 111-10 for acronym description). The coefficients range for G were from 0.74 to 0.79 and for
W from 0.74 to 0.77. Similar coefficients (0.74<p<0.77) were estimated with MNFI data (G and W)
by Pérez Miranda et al. (2018) in a mixed forest of Durango for NDVI and GNDVI (Green
Normalized Difference Vegetation). Mufioz-Ruiz et al. (2014), also for NDVI and GNDVI,
calculated correlations of less than 0.50 in G estimations in a temperate forest of Hidalgo, Mexico.

V.4.1 Models of basal area (G) estimation

The fitted model to estimate G with predictor variables (PV) from Landsat 5 of 2007, had an R? of
0.58, an RMSE of 4.33 m*ha’, and a CV of 33.8%. With PV from Landsat 8 of 2013, the G model
had an R? of 0.64, an RMSE of 4.11 m*ha™ and a CV of 32.0%. The results of this thesis are similar
to those obtained by Mufioz-Ruiz et al. (2014) and Pérez Miranda et al. (2018) in a temperate forest,
combining information from the MNFI, with SPOT and Landsat 7 imagery, respectively. In these
studies, they estimate R? of 0.32 and 0.58, and RMSE of 4.70 and 3.85 m?ha’. However, Giinli et
al. (2014) estimate smaller RMSE=1.74 m?ha™, in a smaller study area (180 km?) of conifer forest in
Turkey.

V.4.2 Prediction models of AGB (W)

Models for W prediction, fitted with PV from Landsat 5, had R? of 0.60, RMSE of 24.5 Mgha* and
CV of 40.5%. Using PV from Landsat 8 were estimated R? of 0.63, RMSE of 23.9 Mgha™ and CV of
39.6%. In the temperate forest of Durango, W estimation has been studied combining field sampling
and remote sensing, under different characteristics. Pérez Miranda et al. (2018), estimated similar
results with R? of 0.59 and RMSE of 21.65 Mgha*, using MNFI and Landsat imagery in mixed
Forest of Durango. Martinez Barron et al. (2016), using data from permanent plots estimated W
combined with Landsat in the temperate forest of Durango, and obtained an R? of 62.41, but higher
RMSE of 54.74 Mgha™. With a lower R? of 0.46 and higher RMSE of 49.77 Mgha*, Vargas-Larreta
et al. (2017) estimated W using permanent plots and Landsat imagery in Durango. In contrast,
L6pez-Serrano et al. (2019) estimated an R? of 0.80 and lower RMSE of 8.20 Mgha™, ina W
estimated a range from 1.72 to 101.71 Mgha™; smaller range compared with the estimated in our
study, from 0.23 to 457.04 Mgha™. Two aspects can be distinguished which differentiate the studies
carried out in Durango compared to this thesis work. The first is the sampling design in our thesis,
covering the total temperate forest area (see Figure 11-4); compared to sampling designs that
partially cover the study area, in the other studies showed. The second aspect is in favor of
permanent plots, designed for the analysis of growth, production and evolution of forest stands
through site monitoring. These plots are evaluated every three to five years (Corral-Rivas et al.,
2009). In addition, these plots have a larger area (2500 m?) of sampling compared to the MNFI plots
(1600 m?), which decreases the uncertainty in the W estimation according to Chave et al. (2004).
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V.4.3 Basal area (G) and AGB (W) estimation in strata of temperate forest

The models fitted at the strata-level showed differences in the Godness-of-fit and coefficient of
determination (R®) compared with the models fitted for the temperate forest. In conifer forest, the R?
and CV increased in both estimated variables, G and W. The R? had values of more than 0.64, while
CV was more than 37.6% in G, and more 46.9% in W. In mixed forest, for both estimates, the R?
decreased to less than 0.62, and the CV also decreased to less than 36.7%. The models to estimate G
and W in the oak forest had the lowest R? of less than 0.42 and the CV increased to more than 39
until 46.7%. Our results show that stratification reduces the CV only in mixed forest and increases
R? only in conifer forest. Other studies that applied stratification when combining remote sensing
and field sampling found similar results than in our study, in W estimation. Rodriguez-Veiga et al.
(2016), using MNFI and MaxEnt algorithm, they fit a model to estimate W at national-level with an
R? of 0.31, and found a decrease of R? at state-level with a range of 0.34 to 0.82. Zhao et al. (2016)
found that RMSE and CV decrease in the stratifications, except for the pine forest as in our study. In
180 km? of a conifer forest of Turkey, Gunli et al. (2014) estimated R? of 0.61 and CV of 10.19%
for W estimation. In a similar area of conifer forest in Turkey, Giinlii & Kadiogullar1 (2018)
estimated an R? of 41 and CV of 8.9%. Similar results for deciduous forest were obtained by Zhao et
al. (2016) in estimates of AGB with R? of 0.43 and RMSE of 24.8 Mg ha™.

V.4.4 Predictor variables from Landsat imagery

The widest predictor variable (PV) used in G and W estimation is the NDVI (Gizachew et al., 2016;
Pérez Miranda et al., 2018). However, there is evidence from previous studies that NDVI has limited
ability to estimate G and W when high concentrations are estimated (Shi & Liu, 2017). Through
stepwise regression, we selected the PVs which optimize (smaller RMSE) G and W estimates
compared to those estimated with NDVI.

With the information of the first MNFI (2004-2009), we did not find optimization to the use of
NDVI to estimate W in the temperate forest. However, in the conifer and oak forest strata, the
estimate of W was optimized with the simple ratio (SR) vegetation index. For the mixed forest
stratum, model optimization was done by adding a PV with texture information (Rd11HC -
Haralicks correlation in window 11X11 of the red band-) to the variable NDVI. In the second period
of the MNFI (2009-2014), as in the first period, the optimal model to estimate W in the temperate
forest used the NDVI. For conifer forest and mixed forest, the W estimate was optimized with the SR
by adding a PV with texture (Haralicks correlation in 3X3 of NDVI for conifer forest and weighted
mean in 11X11 of ARVI for mixed forest). Finally, the AGB estimate for the oak forest was
optimized with the SWIR2 band and the MSAVI index.

Applying GLCM-based texture and vegetation indexes different from NDVI, we optimized the W
(D. Lu, 2005)(D. Lu, 2005) estimated with NDVI, using different criteria. The models applied by
Ou et al. (2019) selected the textures correlation, variance and dissimilarity applied to spectral
bands in windows from 3X3 to 7X7 as the optimal PV to estimate W in conifer forest with Landsat.
In the Amazon forest, Lu & Batistella (2005) found that texture variance and dissimilarity in the
NIR band optimizes W estimates with Landsat 5. Sarker & Nichol (2011) used textures contrast,
skewness and second-moment angularity to improve estimates with ALOS AVNIR-2 imagery. In a
boreal forest, Fuchs et al. (2009) reported that the AGB was optimized by using a 25X25 window in
texture contrast for Quickbird and 5X5 for Aster, using the panchromatic layer. The improvement
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of the estimation with textures has been related to changes in forest structure (Lu, 2005; Sarker &
Nichol, 2011), as well as the complexity of crown structure (Ou et al., 2019); an important
characteristic of the temperate forest of Durango (Aguirre et al., 2003; CONAFOR, 2014a; Marquez
Linares et al., 2016; Navar & Gonzélez Elizondo, 2009).

In the models fitted without texture, the variables SWIR2, SR, and MSAVI were used, since they
have been shown to improve W estimates. Cartus et al. (2014) found a high sensitivity form SWIR
bands to estimate W at the national level in Mexico, and Molinier et al. (2016) optimized the
estimate of W using a model with SWIR2 and Green bands in Durango temperate forest. About SR,
Jackson & Huete (1991) found that it has a higher sensitivity for determining the amount and
condition of vegetation with less influence of atmospheric conditions, compared to NDVI. Similarly,
Qi etal. (1994) proposed the use of MSAVI to improve vegetation detection by decreasing the
variations emitted by the soil. With the above, Zheng et al. (2004) estimated W in a temperate forest
using MSAVI in their model together with SR and tree age.

For the G estimation with Landsat imagery, in the first period of the MNFI (2004-2009), the same
PVs were used as in the estimation of W. The only difference being that in the temperate forest there
was optimization in the estimation of G, adding a texture PV to the variable NDVI. In the second
period of the MNFI (2009-2014), the estimation of G was optimized in the temperate forest, and the
strata mixed forest and oak forest, using texture information. In the case of the conifer forest
stratum, the estimate was optimized using SR instead of NDVI. The similarity in the adjusted
models between W and G is assumed to be due to the close relationship in the variability of the
estimates of W and G (correlation greater than 0.95). This similarity in the variation of W and G has
also been reported in the tropical deciduous forest by Rao & Rao (2015) with a correlation greater
than 0.93, and in temperate forest by Pérez Miranda et al. (2018), finding what they call “similar
spatial variability”.

The spatial distributions of variables G and W are important in the planning and sustainable
management of forest resources, to propose projects for the sustainable use of forest resources
and/or environmental services such as carbon sequestration. Given the average estimate per
vegetation type, together with analyses of land-use change, it is possible to detect which areas have
shown the greatest loss in forest cover and to propose environmental policies for the optimization of
forest resources, promoting the conservation of biodiversity and forest culture. Similarly, in areas
with above-average estimates, intensive management can be proposed, applying sustainable
strategies and thereby fixing carbon in wood for construction materials or furniture.

V.4.5 Underestimation of the prediction

The Bias was negative for all estimates, indicating an underestimation of the fitted models. Figure
VI11-6 (Appendix VII) illustrates the W underestimation of MNFI estimates by the predictor
variables derived from Landsat. In the temperate forest (MNFI 2004-2009) and Landsat 5, 457 Mg
ha* was the maximum W estimation observed, while the maximum W estimated by the model was
154 Mg ha™. In the same period at the strata-level, the maximum values of W estimated were 152,
164 and 75 Mg ha* for conifer, mixed and oak forests, respectively. Using Landsat 8 in the second
period of MNFI, the maximum W estimated were 165, 156, 169 and 89 Mg ha*, for temperate,
conifer, mixed and oak forest. These results indicate a maximum limit of W estimation from the
predictor variables, and according to Ou et al. (2019), they represent the saturation in the W
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estimation from Landsat imagery. Our results are similar to the saturation results obtained by Zhao
et al. (2016), using Landsat 5 imagery they estimated 156, 159, 152 and 123 Mg ha™, respectively to
the same vegetation types. However, our results are above the saturation threshold of 70 Mg ha™,
proposed by Rodriguez-Veiga et al. (2017) for passive optical sensors. It was also observed that
Landsat 8 increased the upper limit of W estimation, compared to Landsat 5, Ou et al. (2019)
observed this same in a temperate forest of China, reaching estimations greater than 180 Mg ha™.
The estimation of G had similar behavior to W; the estimation shows saturation using the prediction
variables of the Landsat imagery (Figure VI1I1-4, Appendix VII).

The underestimation (G and W) in this thesis, explains why by incorporating the spatial variability
of Landsat images, the values obtained by the sample-based method decreased in a range of 9 and
13%, for the first (2004-2009) and second (2009-2014) periods of the MNFI. In the estimation of W
at the national level, Rodriguez-Veiga et al. (2016) also obtained an underestimate of W values by
2.4% using MODIS and ALOS PALSAR imagery compared to the MNFI information. Mufioz-Ruiz
et al. (2014), found underestimates also of 9% in Hidalgo (Mexico) for G and wood volume. Fuchs
et al. (2009), estimating W in Siberian forest tundra with systematic sampling, underestimated W
values by 7% with Aster imagery; however, with Quickbird images it was overestimated by 1.5%.

Figures VIII-5 and VI1I-7 (Appendix VII) show the increase of the residuals with the size of the
tree, despite the transformation made to the prediction variables to stabilize the variance. The
heteroscedasticity is common in biological data such as W estimations (Picard et al., 2012). It has
been found in tundra forest using ASTER and Quickbird imagery (Fuchs et al., 2009), as well as
with LIDAR and Landsat in a temperate forest (Lopez-Serrano et al., 2015; Ortiz-Reyes et al., 2015;
Vargas-Larreta et al., 2017).

V.4.6 Model-based comparison with sampling-based estimations

The estimated variables (G and W) with model-based showed a higher precision due to a lower SE
estimated (Table 1V-24). Therefore, a lower model-based Clgsy Was estimated, as shown in Figure
IV-15, while the sampling-based Clgsy Wwas more conservative. Pérez Miranda et al. (2018) also
estimated a lower Clgsy, in G and W using Landsat compared to MNFI in three municipalities of
Durango. Similar results were obtained by Mufioz-Ruiz et al. (2014) in Hidalgo (Mexico)
estimating a lower 1Cgs in G and wood volume with SPOT compared with sampling-based
estimation. Gizachew et al. (2016) also estimated lower SE in W estimates with Landsat compared
to sampling-based estimation, in miombo woodlands in Tanzania.

In this thesis, sampling-based and model-based estimates were compared by calculating relative
efficiency (RE). This RE was greater than 2.2 in the estimate of G in temperate forest and greater
than 4.7 in the estimate of W. In the temperate forest strata, the range was from 1.5 to 3.3 for G,
while for W it was from 2.3 to 6.4. The RE represents the number of times the variance in the
estimate (G and W) is reduced using Landsat imagery without additional costs since it is considered
that the images were acquired without cost (Gonzélez-Alonso et al., 1997). A RE equal to 1.5
indicates the result of estimating G with Landsat imagery in Durango is equivalent to increasing the
sample size by 50% (Nasset et al., 2016). Similar results were obtained by Hansen et al. (2015) in
the rainforest, where they estimated RE between 3.5 and 6.0 for 700 to 1900 m? plots. In agriculture,
higher values of RE larger than 9.2 have been estimated because the agricultural areas show
uniformity in shape and in the emission of NDVI (Gonzéalez-Alonso et al., 1997).
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Basal area (G) and AGB (W) maps were generated for the temperate forest in Durango, Mexico.
These maps add the spatial variation, of Landsat satellite imagery (Sensor 5 -2007- and Sensor 8 -
2013-), to the sample-based estimates of the MNFI in Durango (2004-2009 and 2009-2014,
respectively). These results are considered relevant because they allow us to know the spatial
distribution, for the state of Durango, of the two estimated variables. The results make it possible to
have precise and well-timed information (estimates) to monitor the dynamics and capture of carbon
in this state, which is part of the MRV systems under REDD+ and is an express request in the
estimation protocol of the Mexican Network of Carbon Intensive Monitoring Sites (Red Mex-
SMIC, 2015). To optimize the results obtained in this thesis, in further steps we will include other
remote sensors sources and thus reduce the saturation in the W estimates. Different studies report
optimizations of W estimates using ALS (Hansen et al., 2015; Nasset et al., 2016), Radar (Sinha et
al., 2015; Zhang et al., 2014; Zhao et al., 2016) and/or biophysical (Rodriguez-Veiga et al., 2016;
Zhao et al., 2016) or bioclimatic characteristics (Lopez-Serrano et al., 2015). Similarly, we propose
for a further step a different technique of regression models as machine learning (P. M. Lopez-
Serrano et al., 2019; Rodriguez-Veiga et al., 2016; Vargas-Larreta et al., 2017) or mixed models
(Nath et al., 2019; Wang et al., 2019) to improve the W estimation in Durango temperate forest.
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Chapter VI: Conclusions

It was found that even with clear measurement protocols, instrument calibration, training, and non-
time pressure measurements, random errors are present in the measurement of DBH and TH
variables; and we can not avoid them (only less than 8% of re-measurements had no error). For this
reason, the results concerning the comparison with reference or control data (commonly reported in
scientific studies), the reference data should indicate the size (&) of the measurement errors.

With the technique of re-measurements, it was an efficient way to estimate the measurement errors.
Re-measurements can describe the measurement errors using the mean value of the entire database
or describe the errors by DBH and TH classes (heteroscedasticity). This is recommended to verify
the size (&) of the errors in the forest estimates. The methods recommended describing the
measurement errors of the measured variables were those including the heteroscedasticity of the
measurement, i.e., the errors were estimated according to the size of DBH and TH. In the temperate
forest of Durango, Mexico, the best method using double measurement was the best distribution
fitted by DBH and TH class (BDC). In the temperate forest of Géttingen, Germany, the best method
using five re-measurement was the linear model fitted with the tree variable size (mod).

It is important to emphasize the differences found in TH measurements. With the data analyzed, we
found that measurements made with Vertex had higher precision compared with the Blume-Leiss
measurements. In this sense, it is recommended to use Vertex to improve the precision in TH
measurement and the estimations made with this measurement (volume, AGB, dominance, etc.).
However, the difference in measurement of DBH, with Caliper and diametric Tape, are considered
negligent due to no statistical difference was found.

The GUM Method of error propagation is explicit to generate knowledge, from the input of the
measurement errors until the error estimation at the stand-level. Through the application of this
method, error propagation was decomposed into sources and processes, and it is better understood
how uncertainties are combined. The use of this method emphasizes the importance of the
aggregation (during the sampling process) in the reduction of the non-sampling uncertainty. This
reduction of uncertainty takes place when aggregating the AGB uncertainty from tree-level to plot-
level, and from plot-level to stand-level.

In measurement errors at tree-level, important contributions were found. The allometric models
used in this thesis, which used DBH and TH, have a sensitivity coefficients ratio (SCpgn/SCth)
greater than one; this indicates that a greater contribution from the variable DBH exists. However, it
was also found that the ratio of the measurement errors in DBH and TH (61 /6pgy) IS decisive for
further contribution in error propagation. If 6y /6ppy is bigger than SCpen/SCrh, then, the errors in
TH measurement have a greater contribution than errors in DBH measurement at the tree-level. As
is the case in the empirical studies made in this thesis.

Allometric models represent an area of opportunity in the estimation of AGB in Mexico. They are a
challenge to conduct research using a greater number of trees in their fit, thus increasing their
precision. A major challenge is to include in the publications of AGB allometric models, the
Goodness-of-fit or even better, the access to the dataset used to construct the model.
Simultaneously, the training of the field crews of MNFI should be reinforced, with the purpose of
achieving better identification of species and vegetation to apply the proper allometric model.
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At the plot-level, a relationship was found between the sources of the non-sampling uncertainty
(uNS), i.e. the uncertainty of the allometric models (UAM) and the measurement errors (uMes). If the
main contribution comes from uAM, then the uNS estimate is in proportion to the number of trees.
However, a relation uMes>uAM generates uNS estimation proportional to the AGB estimate, which
is related to the tree size.

The Monte-Carlo simulation Method (MCM) prove to be an effective and practical way to estimate
the propagation of errors in AGB estimation. It is easy to implement in personal computer
equipment through the R packet. By applying this technique allows us to approximate the AGB
estimate with acceptable ranges of probable error, and therefore reliable. The error propagation
method used in this study is easy to implement in the NFI scale of work.

The results obtained in the error propagation by the GUM Method and by the MCM are equivalent.
This occurs when measurement errors are estimated including the heteroscedasticity concerning to
the size of the measured variable (size of the tree). Specifically, when employing normal
distribution by classes in the GUM Method and best PDF by classes in MCM, the estimation by
each source of uncertainty is compatible.

The largest contribution by these two methods of error propagation was SE, with over 98% of the
total uncertainty in AGB estimation. Thus, the SE is the largest source of uncertainty in the AGB
estimation of Durango temperate forest. The second important source of error is the allometric
model. This indicates that the errors made in DBH and TH measurements, as well as the uncertainty
of the plot design, are negligible. However, the measurement errors should be part of the final report
(MRV report) to reinforce the transparency and precision of the AGB estimation.

In the strata of temperate forest, AGB and basal area models fitted with texture information show
the better prediction. Our study shows that regression models using texture improve the AGB
estimation in conifer and mixed forest, in our study area. However, in the oak forest, no optimal
results were obtained and need to be developed an appropriate method that can be applied to this
forest type. Because the Landsat data is available on sub-annual timescales, the texture may be an
important tool to optimize and update biomass maps with the partial’s measurements of the annual
MNFI surveys, or according to the phenology of the forest type. This will increase our
understanding of the interaction of forest AGB and human activities (with low cost and proved
efficiency), illustrating possible policy decisions in forest management.

We found an underestimation of the predicted values, related to the saturation of Landsat imagery in
the AGB and basal area estimation. Although optimization of the estimates was achieved by
including texture in the prediction model (the relative efficiency was positive), saturation in the
estimates was not avoided. To improve the estimates, the use of RADAR imagery is proposed to
include vegetation height as a required variable in the AGB estimation, due to its relationship to the
tree volume.

This thesis provides the methodology to combine fieldwork and remote sensing data to improve the
prediction of AGB and basal area in the Durango temperate forest. The methodology can be entirely
replicated in Mexico because the materials used are public and are available (under request) for data
processing.
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The models and maps developed show a high relationship between the AGB and the basal area, as
previous studies in allometry are shown. Therefore, the basal area as an easy calculate variable, can
be used as a proxy variable in the AGB estimation using remote sensing. Besides, the maps
generated are a source of information for other disciplines to interact with, to develop more specific
information like fuel accumulation, potential CO; emissions in fire events, dynamics of carbon
stock changes over time, among others.
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Chapter VIII:  Appendix
VIIL.1  Appendix I
Vegetation ~ ee  Tree DBH TH B B2 B3 p 85 86 BI0 il
g No.  No. , RMSE ! w Ln BT 78 B9 p12
Group / Genus / MNFI MNEI State n R (k) range range Allometric model (kg) a Ln Ln Ln Ln Ln Ln DBH TH  DBHZTH log log DBH? Source
Specie D em) (m) 9 “ DBH TH G*TH G DBH2TH Cvol TH DBH
04-09 09-14
Tlaxcala Avendafio
Abies sp 108 40 MX ! 26 0.99 ND 5.7-79 6.8-45 W=aDBH* Total exp™(0.071)  2.510 Hernandez et
al., 2009
N = Z
Alnus spp 1011 952 Oaxaca, 52 088 ND % np WeeDBH Total exph(-2.14)  2.23 Acosta
MX 235 Mireles et al,
Inga spp 0 5 52 0.97 ND 3.3-25 ND Wi=aDBH/! Total exp”(-1.76) 2.26 2002
. W=aDBH/! Acosta-
Hidalgo, 5.3- .
Clethra sp 0 5 MX 15 0.95 ND 2 ND Total exp”(0.463) 1.1817 Mireles et al.,
33 2011
Carya spp 21 3 20 0.98 ND ND  ND We=aDBH! Total exp”(0.061) 2532 Rodriguez
Ficus sp 0 4 143 092 ND__ND __ ND Wi=aDBH" Total exp™(0.027)  2.864 Lagunaetal.,
Nectandra sp 3 0 Tamps, MX __20 0.95 ND ND  ND Wi=aDBH'! Total exp”(0.004)  3.357 2006
Piscidia sp 2 0 30 095 ND ND _ND Wi=aDBH" Total exp™(0.064)  2.623 Rodriguez-
Psidium spp 3 4 18 099 ND ND ND W=aDBH! Total exph(0.247)  2.25 Laguna et al.,
Tilia spp 346 462 10 099 ND _ND __ND W=aDBH! Total exp™(0.048)  2.582 2008
Mexico Wi=aDBH"! N
Cupressus spp 361 Ciity, MX 18 0.93 ND 3-45 ND Total exp™(0.527) 1.7712 Rojas-Garcia
= L
Prunus spp 86 100 O 11 05 ND ND Np WEeDBH Total exph(-2.76) 237 etal., 20152
Ostrya sp 0 2 Us 55 0.81 5445 3-47 ND W=aDBH Total exp™(0.104) 2,535 Chojnacky et
Picea sp 0 29 289 081 107.19 3-72  ND Wi=aDBH/! Total exp"(0.118)  2.323 al., 2014
Dgo., Chih,, 59. 26 W=aDBH" Méndez
Prosopis spp 34 83 Coah.,Zac., 30 098 ND .- - Total exp”(0.056) 2.383 Gonzélez et
315 6.4
MX al., 2012
Chih.,Dgo., 8.4- W=aDBH N
Pseudotsuga spp 543 560 MX 81 094 8371 298 ND Total exp”(0.135)  2.303 José Névar,
Tropical dry Sinaloa, 5.2- Wi=aDBH/! 2009
forest 562 728 MX 39 085 5241 26 ND Total exp™(0.37) 1.96
. _ I " Solano etal.,
Tabebuia sp 0 10 EC 94 091 103 ND ND W=aDBHTH/ Total exp”(0.057) 1.98 1.06 2014
Abarema sp 0 12 Par4 BR 82 092 111 588 6-8.2 Wi =a(G*TH)R Total exp(387.8) 0.892 ?g‘ggey etal,

Table VII1-1. AGB allometric models (AM) used in MNFI in the state of Durango with the number of trees registered. AM data: n=number of

sampled trees to fit the AM; R*=coefficient of determination; RMSE=root-mean-square error; W=AGB in kg per tree; Variables used to fit the AM:
DBH, TH, basal area (G), crown volume (CVol); ND (= no data) is given when data were not reported; BR= Brazil, EC = Ecuador, MX = Mexico, US
= United States.
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) Tree Tree
Vegetation DBH TH Bl B2 B3 B4 B5 p6 IO Bl
Group / Genus / Ml\'l\chil Ml\'l\llgll State n 2 R(I\l:lS)E range range Allometric model (l\(N) a tn Ln Ln Ln Ln Ln Ln D’gH .{.}f{ DBﬁgTH log log DﬂBIiP Source
Specie 04.00 0014 D em) (m) 9 * DBH TH G*TH G  DBH2TH CVol TH DBH
Buddleja spp 13 6 . 8 098 ND _ND _ND W =(«G*)/1000 Total exp’\(5.562) 1.136
Dodonaea sp 0 3 Mexico 8 092 ND_ND __ ND W =(¢G*)/1000 Total exp™(6.110) 0.941 Cano
" City, MX ” Santana, 1994
Fraxinus spp 57 5 4 0.96 ND ND ND W:=(aG")/1000 Total exp”(5.892) 11
. Quintana 10- _ 2 Cairnsetal.,
Manilkara sp 1 Roo, MX 20 0.98 70.19 533 ND Wi=5(DBH?*TH) Total 0.045 2003
Desert Burquez et
= 56
comunities 496 988 Sonora, MX 779 0.74 ND ND ND W =(a(CVol)*)/1000 Total exp”(5.830) 1.115 al.. 2010
Wi=aDBH/TH? foliage exp™(0.007) 1,503 0.848
Wp=aDBHMTH? bark exp”(0.003) 1518 0.951
Wor=aDBH/TH? branches exp”(0.021)  1.812  0.820
ATbutus spp 6984 6863 Ws=aDBHTH? stem exp"(0.064) 1664 0.865
49 095 2281 47498_ 2.4-25 W=X Wi Total (X)
W=aDBHMTHR exp’(0.052) 1.282  0.433
Wp=aDBHMTH? exp”(0.020)  1.333  0.929
Pinus spp 43556 43993 Wor=aDBHPITHR exp™(0.025) _1.838__ 0.546
Ws=aDBHTH? exp™(0.029)  1.742 1166
Durando 594 0.93 83.04 5-55.3 3.2-31 W=X Wi __ Total (X) Vargas-
e Wi=aDBH™ exp(0.082) _ 1.504 Larreta et al.,
Wo=aDBH 2 exp”(0.008) _ 2.546 2017
Wer=aDBHPITH? exp’(0.050) 1.976 _ 0.342
Quercus spp 48993 47636 Ws=aDBHATHR expN0.116) 1774 0.687
423 0.82 134.12 7-57 ;43;; W=X Wi Total (X)
Wi =p9(DBHZTH) foliage 0.001
Wy=$9(DBH?TH) bark 0.008
. Whr=49(DBH?TH) branches 0.002
Juniperus spp 5654 5895 W, —$9(DBHPTH) stem 0.129
48 090 37.00 6-43.7 ;155; W=X Wi Total (X)
. Foroughbakh
— 2°
Crescentia sp 19 0 NL, MX 20 094 577 ND ND W:=B9(DBH?TH) Total 0.033 ch et al,, 2006
i Wi=a+f7DBH + ]
Annona sp 22 20 World 170 0.96 ND 5-148 ND B12(DBH?) Total 42.69 12.8 1.242 Brown, 1997
Wet zone 145 122 169 0.92 ND 4-112  ND Wi=a+p7DBH+A12(DBH?) Total 21.297 6.953 0.74
. Rueda
Cedrela spp 2 449 f/'lr)'f"’a' 15 096 ND 85 22 Wi=a+B7DBH+B12(DBH?) Total 94.995 15.553 0.737 Sénchez et
al.,, 2015
Yucea spp 50 77 fnacatecas' 31 096 1013 10-93 14-11 Wi=a+pDBH+STH Total -40.102 1787 10.182 %“j‘;r‘”e'a'

Table VIII-1. Continuation
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Tree

Tree

Vegetation DBH TH Bl B2 B p4 B5 56 IO pIl
Grouplgenusl Mmgi M,Z"gi State n R? R(’r;)E range range Allometric model (\kAg;) a Lan Ln Ln Ln Ln Ln Ln Di;7|—1 .ﬁi DBﬁngTH log log [{);315'2 Source
Specie 0409 0014 m) (m) DBH TH G*TH G DBH3TH Cvol TH DBH
/%(B”é:'ﬁ;"':ﬂlo(logm) foliage  0.006 0241  0.0008 -0.479
Acacia spp 648 806 Whr=a+B9(DBH?TH) branches  1.946 0.017
Ws=a+47DBH stem -0.876 0.542
79 0.76 2.90 ND ND W= Wi Total (X)
Wi=a+87DBH foliage -0.024 0.071
Wor=a+f7DBH +
Celtis spp 17 2 ﬂg(DBHgTH) branches  0.822 0.334 0.028
Coah., N.L., Ws=o+7DBH stem -0.975 0.622 ,
IAH)TPS" 27 095 100 ND__ND W=2 Wi _Total (%) ;'I NSXSLQ‘
/"g\g(’gBLﬂﬁﬁH THTH*  foliage 0,027 0044 0015  0.0011
Wo=a + i8TH +
SI(DBH>*TH) + branches 1.025 -0.171 0.024 -0.096
Shrub community 25 3 p10(logTH)
W; =a + S7DBH +
PI(DBH*TH) + stem -0.431 0.114 0.011 0.308
B11(logDBH)
913 0.80 44 1545 15-7 W=X Wi Total (X)

Table VIII-1. Continuation .....
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VIIL.2  Appendix Il

DBH Normal Best-fitted distribution Goodness-of-fit
class distribution parameters
parameters
(1, 0)

[7.5-56] (0, 0.368) Johnson SU: y=0, 6=1.073, BIC=-575.099, RSS=4.38 &%,
£=0,2=0.371 MSE=8.83 e'®

[7.5-10) (0, 0.240) Scaled/shifted t: =0, BIC=-97.756, RSS=2.871 &%,
sd=0.218, df=2.472 MSE=0.008

[10-15) (0, 0.330) Johnson SU: y=0, =1.108, BIC=-497.681, RSS=5.030 &%,
£=0, 2=0.344 MSE=0.0002

[15-20) (0, 0.373) Johnson SU: y=0, =1.228, BIC=-449.72, RSS=4.215 &%,
£=0, 2=0.436 MSE=0.0013

[20-25) (0, 0.442) Johnson SU: y=0, $=1.327, BIC=-393.741, RSS=6.009 &%,
£=0, A=0.567 MSE=0.0006

[25-30) (0, 0.540) Johnson SU: y=0, §=-1.907, BIC=-290.398, RSS=3.470 &%,
£=0,A=-1.013 MSE=0.0011

[30-35) (0, 0.748) Laplace: =0, 6=1.040 BIC=-116.481, RSS=2.149 ¢,

MSE=0.018
[35-56] (0, 1.197) Laplace: =0, 6=1.197 BIC=-148.022, RSS=0.018,
MSE=0.0177

Table VI11-2. Parameters and goodness-of-fit for the PDF fitted (normal distribution and best-fitted
distribution) for DBH measurement by DBH class in El Salto, Durango, Mexico.

TH Normal Best-fitted distribution Goodness-of-fit
class distribution parameters
parameters
(n,0)
[3.6-28] (0,0.573) Johnson SU: y=0, =0.830, BIC=-442.844, RSS = 1.156e%,
£=0, A=0.437 MSE=0.00018
[3.6-10) (0,0.351) Johnson SU: y=0, =0.987, BIC=-367.425, RS5=3.984¢%,
£=0, A=0.325 MSE=0.0004
[10-12.5) (0, 0.472) Johnson SU: y=0, 6=0.942, BIC=-330.029, RSS=1.357¢"%,
£=0, A=0.425 MSE=0.00064
[12.5-15) (0, 0.605) Johnson SU: y=0, 6=1.094, BIC=-311.550, RS5=3.133¢%,
£=0, A=0.629 MSE=0.0009
[15-17.5) (0, 0.796) Johnson SU: y=0, 6=0.938, BIC=-277.538, RSS=2.166 £,
&=0, 1.=0.682 MSE=0.0013
[17.5-20) (0, 0.982) Scaled/shifted t: =0, BIC=-218.041, RSS=0.0014,
6=0.982, df=2.472 MSE=0.0024
[20-28] (0, 1.040) Laplace: =0, 6=2.095 BIC=-39.495, RSS=0.0025,
MSE=0.040

Table VI11-3. Parameters and goodness-of-fit for the PDF fitted (normal distribution and best-fitted
distribution) for TH measurement by TH class in El Salto, Durango, Mexico.
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VIIL3  Appendix I

DBH Normal Best-fitted distribution Goodness-of-fit
class distribution parameters
parameters
(1, 0)
[7-64] (0,0.212) Logistic: =0, s=0.132 BIC =70.854, RSS = 0.009,
MSE =0.1024
[7-20) (0, 0.150) Normal: =0, 6=0.149 BIC=433.360, RSS=0.131,
MSE=1.216
[20-40) (0, 0.283) Curvilinear Trapezoidal: BIC=175.396, RSS=0.179,
a=-0.441, b=0.441, d=0.242 MSE=0.273
[40-64) (0, 0.436) Cosine: mu=0, §=1.102 BIC=137.652, RSS=1.5497,
MSE=0.278

Table VI11-4. Parameters and goodness-of-fit for the PDF fitted (normal distribution and best-fitted
distribution) for DBH measurement made with Caliper by DBH class in Géttingen, Germany.

DBH Normal Best-fitted Dn Goodness-of-fit
class distribution parameters
parameters
()
[7-64] (0, 0.209) Logistic: Location=0, BIC=365.781, RSS=0.021,
scale=0.128 MSE=0.910
[7-20) (0,0.133) Logistic: location=0, BIC=415.526, RSS=0.520,
scale=0.084 MSE=1.568
[20-40) (0, 0.266) Normal: £i=0, BIC=367.917, RSS=0.581,
6=0.266 MSE=0.967
[40-64) (0, 0.350) Curvilinear Trapezoidal: BIC=370.031, RSS=0.466,

a=-0.506, b=0.506, d=0.251 MSE=1.038

Table VI11-5. Parameters and goodness-of-fit for the PDF fitted (normal distribution and best-fitted
distribution) for DBH measurement made with Tape by DBH class in Goéttingen, Germany.

TH Normal Best-fitted distribution Goodness-of-fit
class distribution parameters
parameters
(#,0)
[5-37] (0, 1.229) Trapezoidal: a=-2.162, BIC=-128.960, RSS=0.0016,
b=-1.062, c=1.062, d=2.162 MSE=0.011
[5-15) (0, 0.933) Cosine: mu=0, 6=2.318 BIC=-36.263, RS5=3.033¢%,
MSE=0.0301
[15-25) (0, 1.427) Curvilinear Trapezoidal: BIC=-43.896, RSS=0.028,
a=-1.971, b=1.971, d=0.246 MSE=0.029
[25-37) (0, 1.505) Uniform: min=-2.426, BIC=-13.726, RSS=1.156€"%,
max=2.426 MSE=0.0418

Table VI11-6. Parameters and goodness-of-fit for the PDF fitted (normal distribution and best-fitted
distribution) for TH measurement made with clinometer by TH class in Géttingen, Germany.

141



Chapter VIII: Appendix

TH Normal Best-fitted distribution Goodness-of-fit
class distribution parameters
parameters
(#,0)
[5-37] (0, 0.646) Cosine: mu=0, 6=1.641 BIC=-31.495, RS5=1.209¢e"%,
MSE=0.033
[5-15) (0, 0.348) Von Mises: mu=0, kappa=8.519  BIC=207.933, RSS=0.063,
MSE=0.279
[15-25) (0, 0.835) Curvilinear Trapezoidal: BIC=3.176, RSS=0.024, MSE=0.0479
a=-1.048, b=1.048, d=0.236
[25-37) (0, 0.882) Cosine: mu=0, §=2.180 BIC=4.276, RS$5=8.643e%,
MSE=0.052

Table VI11-7. Parameters and goodness-of-fit for the PDF fitted (normal distribution and best-fitted
distribution) for TH measurement made with Vertex by TH class in Gottingen, Germany.
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Figure VII1-1. Model fitted to estimate the measurement uncertainty, according to the tree size for
Caliper (DBH), Tape (DBH), Blume-Leiss (TH) and Vertex IV (TH), with information of 250 trees
in the study area of Géttingen.
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Scenario Plot 1 2 3 4 5 6 7 8 9 10

NDn Mg ha't 146.0 1649 139.0 2104 2284 2151 181.3 2109 86.6 178.1
NDn uMg ha't 3.74 5.05 6.10 6.40 3.00 4.10 3.93 526 5.26 4.73
NDnC Mg ha! 1384 1548 126.8 1976 2218 2066 1732 2003 76.1 168.6
NDnC uMg ha't 3.79 5.07 6.10 6.41 3.31 4.26 4.04 529 5.26 4,77
RMSD Mg ha't 146.0 1649 139.0 2104 2284 2151 1813 2109 86.6 178.1
RMSD uMg ha't 3.79 5.09 6.12 6.43 3.13 4.17 3.99 530 5.27 4.77

NDn= normal distribution, NDnC= normal distribution by class, RMSD = root mean square deviation

Table VI111-8. AGB and uncertainty of the AGB calculation by plot using three scenarios for the
measurement uncertainty estimation (NDn, NDnC, RMSD) in El Salto, Durango, Mexico.

Df Sum Sq ErrorSS denDf Fvalue Pr(>F)
Intercept 1 690.53  29.0125 9 214209 1.396e-07 ***
Scenario 2 0.03 0.0449 18 5.548 0.01327 *

Mauchly Tests for Sphericity
Test statistic  p-value
Scenario 0.028044  6.1853e-07
Corrections for Departure from Sphericity
GG eps Pr(>F[GG])

Scenario 0.50711 0.0422 = Greenhouse-Geisser
H Feps Pr(>F[HF])
Scenario 0.5097947 0.04193635 * Huynh-Feldt

Table VI11-9. Repeated-measures ANOVA, with correction for sphericity, applied to three

scenarios (NDn, NDnC, RMSD) of measurement uncertainty estimation in AGB calculation in El
Salto, Durango, Mexico.

Scenario | Group (Holm correction) NDn  NDnC
NDn A - -
NDnC AB 0.0850 -
RMSD B 0.0037 0.2766

Table VI11-10. Pairwise comparison using paired T- Test, with p-value Holm’s correction, for three
scenarios (NDn, NDnC, RMSD) of AGB uncertainty estimation in El Salto, Durango, Mexico.
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Scenario  Plot 1 2 3 4 5 6 7 8 9 10
NDnC uMgha' | 379 507 610 641 331 426 404 529 526 477
NDnCa  uMgha™| 41 039 029 040 088 072 055 046 020 0.44
NDnCb uMgha' | 054 042 028 047 104 090 077 059 017 0.54
NDnCab uMgha™ | 041 035 025 037 084 070 057 045 0.16 0.43

NDnCc  uMgha'| 379 503 608 637 290 404 3.88 522 525 470
NDnC=all sources, NDnCa=DBH, NDnCh=TH, NDnCab=correlation, NDnCc=allometric model

Table VIII-11. Uncertainty of the AGB calculation by plot using the estimation with all sources of
measurement error (NDnC) and by source (NDnCa, NDnCh, NDnCab, NDnCc) in El Salto,
Durango, Mexico.

Df Sum Sq Error SS denDf Fvalue Pr(>F)
Intercept 1 8.294 1.0135 9 73.655 1.257e-05 ***
Scenario 4 87.528 5.1194 36 153.877 <2.2e-16 ***

Mauchly Tests for Sphericity
Test statistic  p-value
Scenario  3.2246e-08 2.1461e-22
Corrections for Departure from Sphericity
GG eps Pr(>F[GG])

Scenario 0.2532 4.989e-07 *** Greenhouse-Geisser
HFeps Pr(>F[HF])
Scenario 0.2544114 4.712382e-07 *** Huynh-Feldt

Table VII1-12. Repeated-measures ANOVA, with correction for sphericity, applied to five
scenarios (NDnC, NDnCa, NDnChb, NDnCab, NDnCc) of measurement uncertainty estimation in
AGB calculation in EIl Salto, Durango, Mexico.

Scenario | Group (Holm correction) NDnC NDnCa NDnCab NDnCh
NDnC A - - - -
NDnCa B 2.00e-06 - - -
NDnCb C 2.40e-06  0.03509 - -

NDnCab D 5.60e-06  0.02048  0.00015 -
NDnCc E 0.03509 3.70e-06 4.10e-06 9.80e-06

Table VI11-13. Pairwise comparison using paired T-Test, with p-value Holm’s correction, for five
scenarios (NDnC, NDnCa, NDnChb, NDnCab, NDnCc) of AGB uncertainty estimation in El Salto,
Durango, Mexico.
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Scenario Plot 1 2 3 4 5 6 7 8 9 10

MCNDn uMg ha'* 369 494 591 628 289 400 385 519 515 459
MCNDnC uMg ha'* 367 502 601 626 325 411 386 525 512 4.63
MCBD uMg ha'* 371 499 595 642 308 400 395 520 517 460
MCBDC uMg ha'* 373 505 598 626 346 437 395 524 518 4.73
NDn uMg ha'* 374 505 610 640 300 410 393 526 526 473
NDnC uMg ha'* 379 507 6.0 641 331 426 404 529 526 4.77
RMSD uMg ha'* 379 509 612 643 313 417 399 530 527 477

For Monte-Carlo simulation Method: MCNDn=normal distribution, MCNDnC=normal distribution by class, MCBDn=best adjusted
distribution, MCBDC=best adjusted distribution by class. For GUM Method: NDn=normal distribution, NDnC=normal distribution by

class, RMSD=root mean square deviation

Table VI11-14. Uncertainty of the AGB calculation by plot using seven scenarios for the
measurement uncertainty estimation (MCNDn, MCNDnC, MCBD, MCBDC, NDn, NDnC, RMSD)

in El Salto, Durango, Mexico.

Df Sum Sq Error SS den Df F value Pr(>F)
Intercept 1 1580.52 65.186 9 218.2145 1.288e-07 ***
Scenario 6 0.25 0.296 54 7.5071 7.057e-06 ***

Mauchly Tests for Sphericity

Test statistic  p-value
Scenario  1.0916e-05 4.3153e-08

Corrections for Departure from Sphericity

GG eps Pr(>F[GG])

Scenario 0.23674 0.0112 * Greenhouse-Geisser

H F eps Pr(>F[HF])
Scenario 0.2683571 0.008144593 ** Huynh-Feldt

Table VI111-15. Repeated-measures ANOVA with correction for sphericity applied to seven
scenarios (MCNDn, MCNDnC, MCBD, MCBDC, NDn, NDnC, RMSD) of measurement uncertainty

estimation in AGB calculation in El Salto, Durango.

”

Scenario ?H(())Il:r? MCBD MCBDC MCNDnN MCNDnNC NDn NDnC
correction)

MCBD AB

MCBDC ABCD 1 - - - - -

MCNDn A 0.39802 0.68129 - - - -

MCNDnC ABD 1 0.61451 1 - - -

NDn BC 1 1 0.00022 1 - -

NDnC CD 0.01899 1 0.00528 0.00099 0.89258 -

RMSD D 0.00811 1 2.90e-05 0.18097 0.02605 1

Table VI11-16. Pairwise comparison using paired T-Test, with p-value Holm’s correction, for seven
scenarios (MCNDn, MCNDnC, MCBD, MCBDC, NDn, NDnC, RMSD) of AGB uncertainty

estimation in El Salto, Durango Mexico.
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Scenario Plot 1 2 3 4 5 6 7 8 9 10

MCC uMgha! | 3.73 505 598 6.26 3.46 437 3.95 524 518 4.73
MCCa uMgha'! | 054 052 039 053 139 109 0.78 061 026 0.60
MCCb uMgha! | 057 051 038 052 134 112 0.76 0.63 026 0.59
MCCc uMgha! | 3.68 492 6.01 615 288 397 376 511 516 4.60

MCC-=all sources, MCCa=DBH, MCCb=TH, MCCc=prediction model

Table VII1-17. AGB uncertainty estimation by plot with Monte-Carlo simulation Method using
non-sampling uncertainty estimation sources (MCC, MCCa, MCCb, MCCc) in El Salto, Durango,

Mexico.
Df Sum Sq Error SS denDf Fvalue Pr(>F)
Intercept 1 289.34 5.5755 9 467.05 4.58e-09 ***
Scenario 3 163.36  14.1684 27  103.77 6.17e-15 ***

Mauchly Tests for Sphericity

Test statistic  p-value

Scenario  1.7331e-05

2.3872e-16

Corrections for Departure from Sphericity

GG eps Pr(>F[GG])

Scenario 0.33618

2.813e-06

H Feps Pr(>F[HF])
Scenario 0.3372499 2.722362e-06

**k*%

*k*

Greenhouse-Geisser

Huynh-Feldt

Table VI11-18. Repeated-measures ANOVA with correction for sphericity applied to four scenarios
(MCC, MCCa, MCCh, MCCc) of AGB uncertainty estimation in El Salto, Durango.

Scenario | Group (Holm correction) MCC MCCa MCChb
MCC A - - -
MCCa B 8.9e-06 - -
MCCb B 8.9e-06  0.708 -
MCCc C 0.034  2.2e-05 2.2e-05

Table VI11-19. Pairwise comparison using paired T-Test, with p-value Holm’s correction, for four
scenarios (MCC, MCCa, MCCh, MCCc) of AGB uncertainty estimation in El Salto, Durango

Mexico.
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Scenario  Plot 1 2 3 4 5 6 7 8 9 10 11
CB Mg ha' | 23469 22500 314.25 213.68 238.98 206.33 233.74 250.95 159.27 207.77 314.40
C Mghat | 22411 209.17 31339 197.77 214.43 202.53 205.08 242.94 144.64 196.40 306.98
v Mg ha' | 238.94 236.77 325.09 218.01 230.89 210.65 23478 25299 154.77 206.96 315.19
T Mg hat | 231,77 213.93 31547 202.20 218.89 206.16 211.06 254.55 146.92 199.91 314.15

C=Caliper, B=Blume-Leiss, T=Tape, V=Vertex

Table VII11-20. AGB calculation by Plot using three scenarios for the measurement uncertainty
estimation (CB, C, TV, T) in Gottingen, Germany.

Df Sum Sq Error SS den Df Fvalue Pr(>F)
Intercept 1 1528.14 2.3268 10 6567.517 2.000e-15 ***
Scenario 3 0.05 0.0231 30 20.532 1.995e-07 ***

Mauchly Tests for Sphericity
Test statistic  p-value
Scenario 0.12534 0.0029995
Corrections for Departure from Sphericity
GG eps Pr(>F[GG])

Scenario 0.50987 0.000108 *** Greenhouse-Geisser
H F eps Pr(>F[HF])
Scenario 0.5834365 4.159047e-05 *** Huynh-Feldt

Table VII1-21. Repeated-measures ANOVA with correction for sphericity applied to four scenarios
(CB, C, TV, T) of AGB estimation in Goéttingen, Germany.

Scenario | Group (Holm correction) C CB T
C A - - -
CB B 0.0023 - -
T C 0.0002 0.0256 -
TV B 0.0004 0.2916 0.0061

Table VI11-22. Pairwise comparison using paired T-Test, with p-value Holm’s correction, for three
scenarios (CB, C, TV, T) of AGB estimation in Gottingen, Germany.
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Scenario Plot 1 2 3 4 5 6 7 8 9 10 11
CB Mgha' | 1.83 3.03 4.67 2.36 3.78 257 2.13 3.62 1.88 3.08 3.47
C Mgha' | 1.62 197 254 177 230 1.80 150 3.49 1.06 2.20 2.75
TV Mgha' | 1.02 1.67 3.04 1.89 1.94 1.69 200 234 150 1.45 2.70

T Mgha!| 093 146 166 0.83 143 1.34 1.12 109 091 1.22 130
C=Caliper, B=Blume-Leiss, T=Tape, V=Vertex

Table VI11-23. Uncertainty of the AGB calculation by plot using four scenarios for the
measurement uncertainty estimation (CB, C, TV, T) in Gottingen, Germany.

Df Sum Sq Error SS denDf Fvalue Pr(>F)
Intercept 1 14,9457  2.01731 10 74.087 6.168e-06 ***
Scenario 3 3.4482  0.70439 30 48.953 1.137e-11 ***

Mauchly Tests for Sphericity
Test statistic  p-value
Scenario 0.38221 0.13829
Corrections for Departure from Sphericity
GG eps Pr(>F[GG])

Scenario 0.75414 2.77e-09 *** Greenhouse-Geisser
H F eps Pr(>F[HF])
Scenario 0.9859425 1.55613e-11 *** Huynh-Feldt

Table VI11-24. Repeated-measures ANOVA with correction for sphericity applied to four scenarios
(CB, C, TV, T) of AGB uncertainty estimation in Gottingen, Germany.

Scenario | Group (Holm correction) C CB T
C A - - -
CB B 0.00034 - -
T C 0.00034 1.1e-07 -
TV A 0.41637 0.00034  0,00051

Table VI11-25. Pairwise comparison using paired T-Test, with p-value Holm’s correction, for four
scenarios (CB, C, TV, T) AGB uncertainty estimation in Gottingen, Germany.
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Scenario Plot 1 2 3 4 5 6 7 8 9 10 11
AGB Mg ha* 23469 225.00 31425 213.68 238.98 206.33 233.74 25095 159.27 207.77 314.40
CB uMgha* 1.83 3.03 4.67 2.36 3.78 2.57 2.13 3.62 1.88 3.08 3.47
CBmean uMgha 1.63 221 2.86 1.93 2.33 2.09 2.14 2.66 1.52 2.37 2.62
CBNDn uMgha 2.13 2.94 3.83 2.56 3.10 2.78 2.84 3.59 2.00 3.20 3.49
CBNDNnC uMgha! 2.55 3.52 4.57 3.07 3.78 3.28 3.38 4.33 2.22 3.87 4.13
CBmod uMgha* 1.85 2.62 3.39 2.29 2.89 2.32 2.58 3.35 1.59 3.10 3.00

CB=Caliper+Blume-Leiss, mean=mean value of errors, NDn= normal distribution, NDnC= normal distribution by class, mod=linear
regression model

Table VII1-26. AGB and uncertainty of the AGB calculation by plot using five scenarios for
measurement uncertainty estimation (CB, CBmean, CBNDn, CBNDnC, CBmod) in Géttingen,
Germany.

Df Sum Sq ErrorSS denDf Fvalue Pr(>F)
Intercept 1 569.60  23.4236 10 243.172 2.406e-08 ***
Scenario 3 12.44 2.2049 40 56433 <2.2e-16 ***

Mauchly Tests for Sphericity
Test statistic  p-value
Scenario 0.000412  7.7684e-08
Corrections for Departure from Sphericity
GG eps Pr(>F[GG])

Scenario 0.31273 2.045e-07 *** Greenhouse-Geisser
H Feps Pr(>F[HF])
Scenario 0.3603441 2.9679e-08 *** Huynh-Feldt

Table VI11-27. Repeated-measures ANOVA with correction for sphericity applied to five scenarios
(CB, CBmean, CBNDn, CBNDnC, CBmod) of AGB uncertainty estimation in Gottingen, Germany.

Scenario Group (Holm correction) CB CBmean CBmod CBNDn
CB AC
CBmean B 0.00546 - - -
CBmod A 0.10039 0.00029 - -
CBNDn C 0.97838 3.9e-07 4.5e-05 -
CBNDnC D 0.00322 7.6e-07 1.5e-07 2.3e-06

Table VI11-28. Pairwise comparison using paired T-Test, with p-value Holm’s correction, for five
scenarios (CB, CBmean, CBNDn, CBNDNnC, CBmod) of AGB uncertainty estimation in El Salto,
Durango Mexico.
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Scenario Plot 1 2 3 4 5 6 7 8 9 10 11
AGB Mg ha 238.94 236.77 325.09 218.01 230.89 210.65 234.78 25299 154.77 206.96 315.19
TV uMgha! 1.02 1.67 3.04 1.89 194 1.69 2.00 2.34 1.50 1.45 2.70
TVmean uMgha! 1.20 157 2.00 1.38 1.66 1.48 154 191 1.09 1.65 1.87
TVNDnN uMgha! 1.94 2.54 3.23 2.24 2.68 2.38 2.50 3.09 1.76 2.66 3.02
TVNDnC uMgha! 1.96 2.62 3.30 2.28 2.77 2.36 2.55 3.05 1.63 2.69 3.03
TVmod uMgha! 1.54 2.17 2.75 1.87 2.27 1.84 2.10 2.63 1.23 2.38 2.37

TV=Tape+Vertex, mean=mean value of errors, NDn= normal distribution, NDnC= normal distribution by class, mod=linear regression

model

Table VI11-29. Uncertainty of the AGB calculation by plot using six scenarios for the measurement
uncertainty estimation (TV, TVmean, TVNDn, TVNDnC, TVmod) in Goéttingen, Germany.

Df Sum Sq Error SS denDf Fvalue Pr(>F)
Intercept 1 289.047  10.4404 10 276.855 1.286e-08 ***
Scenario 3 8.755 1.4197 40 61.669 <2.2e-16 ***

Mauchly Tests for Sphericity

Test statistic  p-value
Scenario  3.8811e-06  1.4135e-14

Corrections for Departure from Sphericity

GG eps Pr(>F[GG])
Scenario 0.33879 3.73e-08 ***

H F eps Pr(>F[HF])
Scenario 0.4005151 2.7366e-09 ***

Greenhouse-Geisser

Huynh-Feldt

Table VI11-30. Repeated-measures ANOVA with correction for sphericity applied to five scenarios
(TV, TVmean, TVNDn, TVNDNC, TVmod) of AGB uncertainty estimation in Géttingen, Germany.

Scenario Gcroor“rzc(t?o(:)m TV TVmean TVmod TVNDn
TV AC - - - -
TVmean B 0.04442 - - -
TVmod A 0.52100 2.50e-05 - -
TVNDn C 0.71675 1.80e-08 0.00081 -
TVNDnC D 0.00061 2.70e-07 1.60e-07 5.30e-07

Table VI11-31. Pairwise comparison using paired T-Test, with p-value Holm’s correction, for seven
scenarios (TV, TVmean, TVNDn, TVNDNC, TVmod) of AGB uncertainty estimation in Gottingen,

Germany.
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Scenario Plot 1 2 3 4 5 6 7 8 9 10 11
TVEXp uMg ha! 8.22 1082 13.74 952 1141 10.14 10.62 13.17 749 11.36 12.82
TVNexp uMg ha! 8.30 10.93 13.88 9.61 1152 10.23 10.72 13.31 756 11.47 12.95
TV uMg ha! 1.02 1.67 3.04 1.89 1.94 1.69 200 234 150 1.45 2.70

TV=Tape+Vertex, Exp=measurement errors made by students with previous experience. Nexp=measurement errors made by students

without previous experience.

Table VI11-32. Uncertainty of the AGB calculation by plot using three scenarios for the
measurement uncertainty estimation (TV, TVExp, TVNexp) in Goéttingen, Germany.

Df Sum Sq ErrorSS denDf Fvalue Pr(>F)
Intercept 1 208.232 3.7645 10 553.14 4.378e-10 ***
Scenario 3 54.793 0.3438 20 1593.69 <2.2e-16 ***
Mauchly Tests for Sphericity
Test statistic  p-value
Scenario  0.00017479 1.2341e-17

Corrections for Departure from Sphericity

GG eps Pr(>F[GG])

Scenario 0.50004 2.321e-12  *** Greenhouse-Geisser
H F eps Pr(>F[HF])

Scenario 0.5000583 2.319561e-12 *** Huynh-Feldt

Table VI11-33. Repeated-measures ANOVA with correction for sphericity applied to three
scenarios (TV, TVExp, TVNexp) of AGB uncertainty estimation in Géttingen, Germany.

Scenario Group (Holm correction) TvExp TVNesp

TVEXp A - -
TVNexp B 9.2e-12 -
™V C 6.8e-12  6.8e-12

Table VI11-34. Pairwise comparison using paired T-Test, with p-value Holm’s correction, for three
scenarios (TV, TVExp, TVNexp) of AGB uncertainty estimation in Gottingen, Germany.
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Df Sum Sq Error SS denDf Fvalue Pr(>F)
Intercept 1 491.65  154.465 46  146.41 6.772e-16 ***
Scenario 3 16.70 4.425 138 17360 <2.2e-16 ***

Mauchly Tests for Sphericity
Test statistic  p-value
Scenario 0.023595 2.884e-34
Corrections for Departure from Sphericity
GG eps Pr(>F[GG])

Scenario 0.39652 2.2e-16 *** Greenhouse-Geisser
H F eps Pr(>F[HF])
Scenario 0.4010133 3.207957e-20 *** Huynh-Feldt

Table VI111-35. Repeated-measures ANOVA with correction for sphericity applied to three
scenarios (CBBD, CBBDC, CBmod, CBNDn) of AGB uncertainty estimation in Gottingen,
Germany.

Scenario Group (Holm correction) CBBD CBBDC CBmod

CBBD A - - -
CBBDC B < 2e-16 - -
CBmod C 4.7e-10 <2e-16 -
CBNDn D <2e-16 7.5e-14 3.2e-05

Table VI11-36. Pairwise comparison using paired T-Test, with p-value Holm’s correction, for four
scenarios (CBBD, CBBDC, CBmod, CBNDn) of AGB uncertainty estimation in Gottingen,
Germany.

Df Sum Sq Error SS denDf Fvalue Pr(>F)
Intercept 1 96.174 63.693 46  69.458 9.559e-11 ***
Scenario 3 5.262 2.746 138 88.130 <2.2e-16 ***

Mauchly Tests for Sphericity
Test statistic  p-value
Scenario 0.0062212 5.8209e-47
Corrections for Departure from Sphericity
GG eps Pr(>F[GG])

Scenario 0.37587 1.603e-13 *** Greenhouse-Geisser
H F eps Pr(>F[HF])
Scenario 0.37884 1.309963e-13 *** Huynh-Feldt

Table VI11-37. Repeated-measures ANOVA with correction for sphericity applied to four scenarios
(TVBPDF, TVBDC, TVmod, TVNDn) of AGB uncertainty estimation in Gottingen, Germany.

Scenario Group (Holm correction) TVBPDF TVBDC TVmod

TVBPDF A - - -
TVBDC B 6.3e-16 - -
TVmod C 1.2e-08  4.1e-08 -
TVNDn D 7.0e-12  6.3e-16  4.1e-08

Table VI11-38. Pairwise comparison using paired T-Test, with p-value Holm’s correction, for four
scenarios (TVBPDF, TVBDC, TVmod, TVNDn) of AGB uncertainty estimation in Géttingen,
Germany.

152



Chapter VIII: Appendix

Df Sum Sq ErrorSS denDf Fvalue Pr(>F)
Intercept 1 621.88 82.216 46 34794 <22e-16 ***
Scenario 5 283.31 2.006 230 6497.83 <2.2e-16 ***
Mauchly Tests for Sphericity
Test statistic  p-value

Scenario  6.4315e-05 1.5186e-81
Corrections for Departure from Sphericity

GG eps Pr(>F[GG])
Scenario 0.26836 <2.2e-16 *** Greenhouse-Geisser

H Feps Pr(>F[HF])
Scenario 0.2734762 4.897372e-69 *** Huynh-Feldt

Table VI11-39. Repeated-measures ANOVA with correction for sphericity applied to six scenarios
(Exp, Nexp, CBmod, CBNDn, TVmod, TVNDn) of AGB uncertainty estimation in Gottingen,

Germany.
Scenario Group (Holm correction) CBmod CBNDn  Exp NExp TVmod
CBmod A - - - - -
CBNDn B 5.40e-05 - - - -
Exp C <2e-16 <2e-16 - - -
Nexp C <2e-16 <2e-16 0.99 - -
TVmod D <2e-16 <216 <216 <2e-16 -
TVNDn E <2e-16 <216 <216 <2e16 7.20e-06

Table VI11-40. Pairwise comparison using paired T-Test, with p-value Holm’s correction, for six
scenarios (Exp, Nexp, CBmod, CBNDn, TVmod, TVNDn) of AGB uncertainty estimation in

Gottingen, Germany.
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Uncertainty (u) u? SE? u W RSELL RSE RSEUL
source % % Mgha! Mg ha? % % %
CBBD 0.072 99.928 13.14 262.69 497 5.00 5.03
CBBD a 0.010 99.990 13.13 262.74 499 5.00 5.01
CBBD b 0.060 99.940 13.14 262.69 498 5.00 5.03
CBBD ab 0.00002 100.00 13.13 262.71 5.00 5.00 5.00
CBBDc 0.0002 100.00 13.13 262.71 5.00 5.00 5.00
CBmod 0.100 99.900 13.14 262.70 497 5.00 5.03
CBmod a 0.020 99.980 13.13 262.72 499 5.00 5.00
CBmod b 0.080 99.920 13.14 262.68 499 5.00 5.01
CBmod ab 0.00002 100.00 13.13 262.71 5.00 5.00 5.00
CBmod ¢ 0.0002 100.00 13.13 262.71 5.00 5.00 5.00
CBBDC 0.145 99.855 13.15 262.67 497 5.00 5.04
CBBDC a 0.024 99.976 13.13 262.73 498 5.00 5.01
CBBDC b 0.119 99.881 13.14 262.66 497 5.00 5.04
CBBDC ab 0.00004 100.00 13.13 262.71 5.00 5.00 5.00
CBBDC ¢ 0.0002 100.00 13.13 262.71 5.00 5.00 5.00
TVBD 0.032 99.968 13.13 262.71 498 5.00 5.02
TVBD a 0.009 99.991 13.13 262.74 499 5.00 5.00
TVBD b 0.022 99.978 13.13 262.71 5.00 5.00 5.00
TVBD ab 0.00001 100.00 13.13 262.71 5.00 5.00 5.00
TVBD ¢ 0.0002 100.00 13.13 262.71 5.00 5.00 5.00
TVmod 0.049 99.951 13.13 262.71 498 5.00 5.02
TVmod a 0.014 99.986 13.13 262.72 499 5.00 5.01
TVmod b 0.036 99.964 13.13 262.70 498 5.00 5.02
TVmod ab 0.00001 100.00 13.13 262.71 5.00 5.00 5.00
TVmod ¢ 0.0002 100.00 13.13 262.71 5.00 5.00 5.00
TVBDC 0.053 99.947 13.13 262.71 498 5.00 5.02
TVBDC a 0.014 99.986 13.13 262.74 499 5.00 5.01
TVBDC b 0.039 99.961 13.13 262.71 498 5.00 5.02
TVBDC ab 0.00001 100.00 13.13 262.71 5.00 5.00 5.00
TVBDC ¢ 0.0002 100.00 13.13 262.71 5.00 5.00 5.00
Exp 0.926 99.074 13.24 262.67 495 5.04 5.14
Exp a 0.247 99.753 13.15 263.08 495 5.00 5.05
Exp b 0.690 99.310 13.22 262.32 496 5.04 5.12
Exp ab 0.006 99.994 13.13 262.71 499 5.00 5.01
Expc 0.0002 100.00 13.13 262.71 5.00 5.00 5.00
Nexp 0.951 99.049 13.24 262.63 495 5.04 5.14
Nexp a 0.254 99.746 13.15 263.07 495 5.00 5.05
Nexp b 0.694 99.306 13.21 262.32 495 5.04 5.12
Nexp ab 0.006 99.994 13.13 262.71 499 5.00 5.01
Nexp ¢ 0.0002 100.00 13.13 262.71 5.00 5.00 5.00

W=AGB estimation, RSE=relative standard error, LL=lower limit of confidence interval, UL=upper limit of confidence interval. Datasets
from which measurement errors were calculated: CB=Caliper+Blume-Leiss dataset, TV=Tape+Vertex dataset, Exp=students with
experience, Nexp=students without experience. Scenario used to obtain measurement error parameters: mod=linear regression model,
BD= best-fitted distribution, BDC=best-fitted distribution by class. Source of uncertainty: a=DBH, b=TH, ab=correlation, c=prediction
model.

Table VI11-41. Result of Monte-Carlo simulation Method on the contribution by uncertainty source
to the total uncertainty in AGB estimation in Go6ttingen, Germany.
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DBH TH Scenario
Best Probability Density
Function fitted to the
measurement errors
(BPDF)
* Tape * Vertex
g + Caliper + Blume-Leiss
04 06 0.8 1.0 1.2 1.0 2.0 3.0
Best Probability Density
Function fitted by class to
the measurement errors
(BDC)
- : * Tape * Vertex
- : + Caliper o - Blume-Leiss
0.5 1.0 15 2.0 1.0 20 3.0 40
Linear model fitted to
estimate the measurement
uncertainty according to the
tree size
(mod)
* Tape * Vertex
o « Caliper + Blume-Leiss
0.5 1.0 1.5 2.0 1.0 2.0 3.0 4.0

Mg ha’!

Measurement error: C=Caliper, T=Tape, BL=Blume-Leiss, V=Vertex. Scenario used to obtain measurement error parameters: mod=linear
regression model, BPDF=best-ftted distribution, BDC=best-fitted distribution by class.

Figure VII1-2. Comparison of uncertainty estimation (paired plot) per plot and per measuring
device for each scenario used to estimate measurement error parameters.
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VII.6  Appendix VI

OAK

2004-2009, n=48993
2009-2014, n=47636

PINE

2004-2009, n=43531
2009-2014, n=43993

OAK & PINE

2004-2009, n=92524
2009-2014, n=91629

ALL

2004-2009, n= 109762
2009-2014, n=109983

DBH 2009-2014 DBH 2004-2009

TH 2004-2009

TH 2009-2014

Class W G Tree w G Tree W G Tree W G Tree

(cm) Mgha' m?ha®  No. Mgha! m?ha' No. Mgha! m?ha’ No. Mgha! m?ha’ No.
7.5-10 5.17 0.88 48.73 2.40 0.59 38.78 7.58 1.47 87.51 8.60 1.67 109.26
10-15 5.40 0.90 5137 2.99 059 4078 8.39 149 9215 9.16 173 110.73
15-20 5.11 0.90 37.19 4.01 0.79 33.39 9.11 1.69 70.58 9.29 1.89 80.24
20-25 4.29 0.78 2362 4.81 094 2228 9.10 173 4589 9.55 1.99 5405
25-30 3.42 0.66 15.85 4.87 0.92 16.69 8.29 1.57 3254 8.91 1.82 36.71
30-35 2.68 052 982 4.79 0.89  12.05 7.47 141 2186 8.12 166 2553
>35 4.08 0.87 11.12 5.90 1.15 13.25 9.99 2.02 24.36 10.61 222 28.22
Sum 3015 552 197.69 29.77 587 177.21 59.92 1138 374.89 64.23 1297 44474
7.5-10 5.10 0.88 47.13 2.50 0.56 37.97 7.60 144  85.10 8.66 1.68 107.65
10-15 5.23 0.86 5091 2.98 056 42,01 8.21 143 9293 9.13 175 11258
15-20 4.95 0.87 36.78 4.12 0.73 34.18 9.07 1.60 70.96 9.36 1.93 84.25
20-25 4.20 0.80 23.16 477 0.86  24.01 8.97 1.66 4717 9.71 204 5584
25-30 3.57 0.64 15.00 4.88 0.87 17.09 8.45 1.52 32.09 9.12 1.89 36.90
30-35 2.72 052 967 4.98 0.86  12.99 7.69 138 2267 8.38 169 2532
>35 4.12 0.88 11.80 5.66 1.02 13.38 9.78 1.90 25.18 10.35 2.18 28.95
Sum  29.89 5.46 194.45 29.89 5.46 181.64 59.78  10.93 376.10 6471 1316 451.49
1.5-10 12.99 3.49 169.69 3.83 1.59 96.92 16.82 5.08 266.61 18.66 6.25 334.29
10-12.5 5.76 0.82 1483 3.73 091 2828 9.49 172 4311 10.29 185 4473
12.5-15 5.35 0.52 7.09 4.24 0.96 20.40 9.59 1.47 27.48 10.06 1.53 27.66
15-17.5 357 033 341 4.99 087 1411 8.56 1.20 1753 8.75 125 17.68
17.5-20 1.43 0.20 1.53 4.74 0.60 7.77 6.17 0.79 9.30 6.48 0.84 9.39
>20 1.04 017 114 8.24 095 973 9.28 112 1087 9.99 124 1099
Sum 3015 552 197.69 29.77 587 177.21 50.92 1138 374.89 64.23 1297 44474
1.5-10 12.98 349 166.60 3.82 152 9754 16.81 501 264.14 18.98 6.41 33756
10-12.5 5.85 0.84 15.31 4.06 0.94 31.98 9.91 179 4729 10.70 2.03 48.03
12.5-15 5.36 050 675 4.20 0.87 2070 9.56 137 2745 10.16 153 2811
15-17.5 3.22 0.30 3.20 5.07 0.81 14.68 8.29 111 17.89 8.66 1.26 18.19
17.5-20 1.36 0.15 1.40 5.15 0.53 7.99 6.51 0.68 9.38 6.89 0.79 9.50
>20 1.12 0.18 1.20 7.58 0.79 8.75 8.70 0.97 9.94 9.32 1.13 10.09
Sum  29.89 5.46 19445 29.89 5.46 181.64 59.78 1093 376.10 6471 1316 451.49

ALL=estimation made with all the data of temperate forest, PINE=estimation made with genus Pinus spp, OAK=estimation made with

genus Quercus spp, P&O=estimation made with Pinus spp + Quercus spp.

Table VII1-42. Basal area (G) and AGB (W) estimation made by classes of DBH and TH, in four
datasets of Durango temperate forest. Estimation made with data of two periods of MNFI 2004-
2009 and 2009-2014.
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ALL=estimation made with all the data of temperate forest, PINE=estimation made with genus Pinus spp (n=43993), OAK=estimation
made with genus Quercus spp (n=47636), P&O=estimation made with Pinus spp + Quercus spp (n=91629).

Figure VII1-3. Basal area (G) and AGB (W) estimation for MNFI 2009-2014 in Durango, Mexico.
Above, estimations made by DBH class; below, estimations made by TH class.
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VIIL7  Appendix VII

Landsat 5 (2007) & Landsat 8 (2013) &
MNFI 2004-2009 MNFI 2009-2014
F
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=
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SOF ~

Observed G m? ha™
TF=temperate forest, SCF=stratum conifer forest, SMF=stratum mixed forest, SOF=stratum oak forest

Figure VII1-4. Predicted vs. observed in AGB estimate (G) when applying Landsat-adjusted
models and MNFI information in Durango, Mexico.
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Figure VII1-5. Residual vs. predicted graphs in basal area estimation (G) applying linear regression
models with Landsat and MNFI data.
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Landsat 5 (2007) & Landsat 8 (2013) &
MNFI 2004-2009 MNFI 2009-2014
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Figure VII1-6. Predicted vs. observed in AGB estimate (W) when applying Landsat-adjusted
models and MNFI information in Durango, Mexico.
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Figure VII1-7. Residual vs. predicted graphs in AGB estimation (W) applying linear regression

models with Landsat and MNFI data.
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VIIL8  Appendix VIII

G class Area %

(m? ha') (ha) surface
[0-5) 338047.11 6.56
[5-10) 1532279.61 29.74
Landsat 5 imagery [10-15) 1569250.44 30.46
(2007) & MNFI [15-20) 1124598.24 21.83
2004-2009 [20-25) 517285.35 10.04
[25-30) 69564.78 135
[30-35] 1147.23 0.02

Total  5152172.76 100.00

[0-5) 340221.96 6.67

[5-10) 1647123.66 32.27
Landsat 8 imagery  [10-15) 1467709.29 28.76
(2013) & MNFI  [15-20) 992527.56 19.45
2009-2014 [20-25) 549831.24 10.77
[25-30) 105864.84 2.07

[30-35] 740.16 0.01

Total  5104018.71 100.00
Table VI11-43. Temperate forest surface by basal area (G) class in Durango, Mexico.

W class Area % W %
Mg ha! (ha) surface (Tg) AGB
Landsat 5 imagery [0 - 50) 2443025.70 47.42 59.95 21.01
(2007) & MNFI [50 - 100) 2190043.44 42.51 161.23 56.52
2004-2009 [100 - 150) 511730.46 9.93 62.79 22.01
[150 - 205] 7373.16 0.14 1.27 0.44

Total 5152172.76 100.00 285.25 100.00

Landsat 8 imagery [0 - 50) 2650856.04 51.93 65.39 23.92
(2013) & MNFI 50 - 100) 1925092.89 37.72 142.50 52.12
2009-2014 [100 - 150) 520412.94 10.20 64.21 23.48
[150 - 205] 7656.84 0.15 1.32 0.48

Total 5104018.71 100.00 273.42 100.00

Table VII1-44. Temperate forest surface by AGB (W) class and amount of W stored by class in
Durango, Mexico.
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