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Summary 

Aboveground biomass (AGB) is related to the carbon content of the forest and forest carbon is a 

core variable for contemporary forest management and policy decisions. A credible and precise 

estimate of AGB is a prerequisite for the scientifically proper implementation of commitments 

made regarding the reduction of forest carbon emissions. With datasets of the Mexican National 

Forest Inventory (MNFI), this thesis estimates AGB in the temperate forests of Durango, a federal 

state of Mexico, evaluating the uncertainty of the estimate of total AGB and how different error 

sources contribute to the overall error. In addition to AGB, also the basal area was analyzed which 

is closely correlated to AGB but does not have the error source of coming from the application of 

allometric models. 

The thesis covers empirical studies for various sources of errors, with a focus on measurement 

errors. Re-measurement experiments were conducted to quantify such measurement errors, applying 

mathematical-statistical techniques to model these errors. For the predictions of AGB, allometric 

models were selected according to the goodness-of-fit and the proximity of the study area of the 

fitted model. The plot design provided another source of uncertainty (uPlot) that was included in the 

analysis. The errors from the different steps in the AGB estimation process were propagated 

towards the total error by two techniques: (1) following the Guide to the Expression of Uncertainty 

in Measurement (GUM) and (2) by Monte Carlo simulation Method (MCM). In an additional study, 

AGB was regionalized for the study area using Landsat imagery as carrier data. To establish the 

corresponding remote sensing-based models, a set of vegetation indices and textures metrics were 

extracted from Landsat imagery and processed in a stepwise multiple regression analysis. Using the 

estimates of MNFI as response variables and Landsat imagery information as predictor variables, 

optimal models to estimate AGB were fitted. The regression models using texture metrics from 

Landsat imagery improve the AGB and the basal area estimates in the temperate forest of Durango, 

compared with regression models without texture metrics. 

With respect to the tree measurement errors, they ranged from 0.133 cm to 1.197 cm for DBH 

(uDBH) and 0.348 m to 1.505 m for total height TH (uTH). uTH contributed most to the overall 

measurement error (uMes), accounting for 37% to 62% of the uMes. The uncertainty (error) 

induced by the allometric biomass model (uAM) was estimated by the mean square error (MSE) as 

the result of the model fit. The MSE of the uAM was combined with the uMes to estimate the tree-

level uncertainty (uTree). In this step of error propagation, we estimated the two opposite results in 

two study cases. In a pine forest, uAM contributed 97.8% to the uTree; and in a broad-leaved forest, 

uMes contributed 98.9% to the uTree. Combining the uncertainties from tree level (uTree) to stand 

level, the non-sampling uncertainty or uNS (uAM+uDBH+uTH) was estimated. The non-sampling 

uncertainty was combined with the standard error, estimated at sampling, and when propagating all 

sources of errors to the total uncertainty in AGB estimation, the analysis showed that the standard 

error contributed by far most to the total error with over 98% in the study cases of this thesis. 

The ranking of the contributions of the different error sources to the propagated error of total AGB 

in Durango, Mexico was SE>uAM>uTH≥uPlot≥uDBH with values of 

99.41%>0.53%>0.03%≥0.02%≥0.02%, illustrating very clearly that in large-area forest monitoring, 

the sampling induced error is by far the most relevant, while measurement and model errors can 
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almost be ignored – always. However, assuming that measurement and model errors are random 

errors and biases are absent. 

Applying re-measurements was an efficient way to estimate and describe the measurement errors in 

DBH and TH. Through the application of the GUM Method, error propagation is decomposed into 

sources and processes, and it is better understood how uncertainties are combined. The Monte-Carlo 

simulation Method (MCM) also proves to be an effective, practical and reliable way to approximate 

the total AGB uncertainty estimate with acceptable ranges of probable error at scales of the MNFI. 

The results in the error propagation by the GUM Method and by the MCM are equivalent. 

We found that TH measurement errors have a greater contribution than DBH measurement errors at 

the tree-level. Furthermore, when the main contribution to the uncertainty at tree-level comes from 

uAM instead of uMes, then the total estimate of uNS at stand-level is proportional to the number of 

the trees. However, a ratio of uMes>uAM produces a total uNS estimate at stand level that is 

proportional to the contribution according to the size of the tree. Therefore, in this last relation, a 

greater contribution to the total NS estimate is made by the trees with the largest AGB estimated. 

 

 



Zusammenfassung 

 

VII 

Zusammenfassung 

Die oberirdische Biomasse (Above Ground Biomass = AGB) is eine wesentliche Variable für die 

Schätzung von Kohlenstoffvorräten im Wald. Die Quantifizierung des  Kohlenstoffvorrats ist in 

Zeiten des Klimawandels eine zentrale Größe für die Waldbewirtschaftung und für entsprechende 

politische Entscheidungen. Eine wissenschaftlich präzise und damit glaubwürdige Schätzung der 

oberirdischen Biomasse ist eine der wesentlichen Voraussetzungen im Zusammenhang mit der 

korrekten Umsetzung der Verpflichtungen, die die Vertrasgparteien zur Klimakonvenion UN-FCCC 

eingegangen sind, um die Kohlenstoffemissionen aus Wald zu reduzieren.  

Die vorliegende Dissertationsschrift wertet Datensätze der mexikanischen nationalen Waldinventur 

(MNWI) aus dem mexikanischen Bundesstaat Durango aus. Sie analysiert die verschiedenen 

Fehlerquellen (Residualvariabilität) bei der Schätzung der oberirdischen Waldbiomasse und 

bewertet, wie sich diese Fehlerquellen im Rahmen der Fehlerfortpflanzung auf den Gesamtfehler 

auswirken. Hintergrund dieser Analysen ist, dass eine effiziente Verfahrensverbesserung 

insbesondere an den Teilschritten des Schätzprozesses stattfindet, an denen ein gegebener 

Ressourceneinsatz die höchstmögliche Reduktion des Gesamtfehlers bewirkt. Ergänzend zur 

oberirdischen Biomasse erfolgten entsprechende Analysen auch für die Bestandesgrundfläche, die 

eng mit der oberirdischen Biomasse korreliert ist, bei der aber die Modellfehler aus allometrischen 

Biomassenmodellen nicht zum Tragen kommen. 

Die Dissertationsschrift umfasst vier empirische Teilstudien zu den verschiedenen Fehlerquellen, 

wobei ein Schwerpunkt auf Messfehlern liegt. Zur Quantifizierung solcher Messfehler erfolgten 

Wiederholungsmessungen, wobei mathematisch-statistische Techniken zur Modellierung dieser 

Fehler zum Einsatz kamen. Die Vorhersagen der oberirdischen Biomasse erfolgten mittels 

allometrischer Modelle, die nach der Anpassungsgüte und der Nähe zum Untersuchungsgebiet 

ausgewählt wurden. Das Plot-Design stellte eine weitere Unsicherheitsquelle (uPlot) dar und wurde 

als solche in die Analyse einbezogen. Die Fehler, die sich aus den verschiedenen Schritten des 

oberirdischen Biomasse-Schätzprozesses ergaben, wurden mit zwei Techniken der 

Fehlerfortpflanzung auf den Gesamtfehler hochgerechnet: (1) gemäß des ISO-Leitfadens des 

Zuverlässigkeitsmanagements (GUM auf Englisch) und (2) durch die Monte-Carlo-

Simulationsmethode (MCM). Eine weitere empirische Studie hatte die Regionalisierung der 

oberirdischen Biomasse für das Untersuchungsgebiet zum Gegenstand, wobei Landsat-Bilder als 

Trägerdaten verwendet wurden. Um die entsprechenden fernerkundungsbasierten Modelle zu 

erstellen, wurde eine Set von Vegetationsindizes und Texturmetriken aus den Landsat-Bildern 

abgeleitet und in einer schrittweisen multiplen Regressionsanalyse verarbeitet. Unter Verwendung 

der Plot-Daten aus der nationalen Waldinventur von Mexiko als Response-Variablen und Landsat-

Bildinformationen als Prädiktor-Variablen, wurden Modelle zur Schätzung der oberirdischen 

Biomasse optimiert. Texturmetriken als Prädiktorvariablen verbessern die AGB- und die 

Grundflächenschätzungen in der Studie in Durango im Vergleich zu Regressionsmodellen ohne 

Texturmetriken.  

Die Messfehler der Bäume reichten von 0,13 cm bis 1,207 cm für den BHD (uBHD) und von 0,348 

m bis 1,505 m für die Gesamthöhe GH (uGH). uGH trug am meisten zum Gesamtmessfehler 

(uMes) bei und erreichte 37% bis 62% der messfehlerbedingten Ungenauigkeit uMes. Die durch das 

allometrische Biomasse-Modell (uAM) induzierte Unsicherheit (Fehler) wurde durch den mittleren 
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quadratischen Fehler (MSE) als Ergebnis der Modellanpassung abgeschätzt. Der Modellfehler 

wurde mit dem Messfehler uMes kombiniert, um die Unsicherheit pro Baum (uBaum) zu 

bestimmen. Die Beiträge der beiden Fehlerquellen uAM (Modellfehler) und uMes (Messfehler) 

zum Gesamtfehler der baumweisen Biomasseschätzung (uBaum) wurden in Durango in einem 

Kiefernwald und einem Laubwald exemplarisch bestimmt und waren sehr unterschiedlich: im 

Kiefernwald trug uAM 97,8% zu uBaum bei; und in einem Laubwald trug uMes 98,9% zu uBaum 

bei. Im nächsten Schritt erfolgte eine Hochrechnung der Fehler pro Baum auf das Gesamtgebiet. 

Die Hochrechnung der Biomasse erfolgt aufgrund von Stichprobenverfahren, so dass hier der 

Standardfehler als weitere Fehlerquelle zu Modell- und Messfehler hinzukommt. Bei der 

Fortpflanzung aller Fehlerquellen auf die Gesamt-Unsicherheit der oberirdischen Biomasse-

Schätzung zeigte die Analyse, dass der Standardfehler (SE) mit über 98% bei weitem am meisten 

zum Gesamtfehler beitrug; diese überragende Bedeutung des Stichprobenfehlers bei der 

Biomasseschätzung aus Waldinventuren ist konform mit anderen Studien, insbesondere mit 

großräumigen Waldinventuren mit großen Stichprobenumfängen. 

Die Rangfolge der Beiträge der verschiedenen Fehlerquellen zm Gesamtfehler der Schätzung der 

oberirdischen Biomasse war SE > uAM > uGH ≥ uPlot ≥ uDBH mit Werten von 99,41% > 0,53% > 

0,03% ≥ 0,02% ≥ 0,02%. Dieser Befund illustriert sehr deutlich, dass im großflächigen 

Waldmonitoring der Stichprobenfehler mit Abstand am relevantesten ist, während Mess- und 

Modellfehler fast immer vernachlässigbar klein sind; diese Aussage gilt unter der Annahme, dass 

Mess- und Modellfehler zufällige und keine systematischen (Bias) Fehler sind. 

Die hier durchgeführten Wiederholungsmessungen stellen einen effizienten Weg dar, die 

Messfehler in BHD und GH zu quantifizieren.  

Beide Ansätze zur Fehlerfortpflanzung führten zu vergleichbaren Ergebnissen. Die Anwendung der 

analytischen Methode der Fehlerfortpflanzung (GUM-Methode) erfordert eine Zerlegung in Quellen 

und Prozesse und erzeugt somit ein besseres Verständnis für die Kombination der Fehlerquellen. 

Die Monte-Carlo-Simulation (MCM) erweist sich auch als effektive, praktische und zuverlässige 

Methode, um die gesamte Unsicherheitsschätzung der oberirdischen Biomasse mit akzeptablen 

Bereichen wahrscheinlicher Fehler auf Skalen der MNWI zu approximieren.  

Es zeigte sich, dass auf Ebene der Biomasseschätzung für einzelne Bäume die Messfehler in GH 

einen größeren Beitrag leisten als die Messfehler in BHD. Wenn der Hauptbeitrag zur Unsicherheit 

der Schätzung für einen einzelnen Baum von uAM statt von uMes stammt, dann ist die gesamte 

uNS-Schätzung auf Bestandesebene proportional zur Anzahl der Bäume. Eine Beziehung 

uMes>uAM erzeugt jedoch eine gesamte uNS-Schätzung auf Bestandesebene proportional zur 

Baumgröße. Daher wird in dieser letzten Beziehung ein größerer Beitrag zur gesamten NS-

Schätzung von den Bäumen mit der größten geschätzten oberirdischen Biomasse geleistet. 
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Chapter I: Introduction 

I.1 Background 

I.1.1 Origins and present of uncertainty 

The term uncertainty is better known in the social sciences (Wakeham, 2015), especially when it 

relates to making a decision (Marchau et al., 2019), when referring to the knowledge or lack of 

knowledge (Pérez-Hernández, 2012) or incomplete information (Ascough et al., 2008). 

Over the course of history, analogies of uncertainty have been developed, and uncertainty has even 

been considered as "what can not be explained". Frank Knight in 1921, defined risk as part of a 

process "calculable", while uncertainty he defined as "the unknown" (Marchau et al., 2019). 

Between the 1970s and early 1990s uncertainty was synonymous with ambiguity, while in the late 

1990s and until 2011 it was related to "ignorance or lack of knowledge"(Wakeham, 2015). 

Recently, Marchau et al. (2019), arguing that “…uncertainty is a broader concept than risk”, defined 

five levels of uncertainty between total precision (determinism), and total ignorance (Figure I-1). 

Marchau et al. (2019) defined these levels based on the four aspects proposed by Walker et al. 

(2003): i) context or definition of the system, ii) the variables and relationships involved in the 

system, iii) the outcomes from the system, iv) the weights of the outcomes set by stakeholders. 

 Level 1 Level 2 Level 3 Level 4 Level 5 

Context 

 

A clear enough 

future 

 

Alternative futures 

 

 

A few plausive 

futures 

 

Many plausive 

features 

 

Unknow 

future 

System model 

A single 

(deterministic) 

system model 

A single 

(stochastic) system 

model 

A few alternative 

system models 

Many alternative 

system model 
Unknown 

System outcomes 
A point estimate 

for each outcome 

A confidence 

interval for each 

outcome 

A limited range 

of outcomes 

A wide range of 

outcomes 
Unknown 

Weights  
A single set of 

weights 

Several sets of 

weights, with a 

probability attached 

to ecah set 

A limited range 

weights 

A wide range of 

weights 
Unknown 

Figure I–1. Levels of uncertainty (source: Marchau et al., 2019) 

The uncertainty in aboveground biomass (AGB) estimation is set at Levels 1 and 2 of Figure I-1. 

According to Marchau et al. (2019), these two levels encompass scientific work in the natural 

sciences where an emphasis on reducing uncertainty in the result is placed. This can be achieved 

through acquiring more information about the process or through stochastic variation by statistical 

analysis. 
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I.2 Aboveground biomass 

I.2.1 Aboveground biomass (AGB) definition 

Biomass is the matter of living or dead organisms in a specific place expressed in weight by unit 

area or by unit volume (GTOS & FAO, 2009). Plant biomass relates to the individuals or parts of 

individuals found on the soil, such as trees, crops, shrubs, herbs; and parts found in the soil or below 

the surface, i.e., roots (FAO, 2006). AGB in trees, is all living matter over the soil comprising trunk, 

stump, branches, bark, seed, and leaves (FAO, 2006; IPCC, 2006). 

Biomass in plants is produced through photosynthesis, where plants generate organic substances 

from the absorption of atmospheric carbon dioxide (CO2) and water in the presence of light, storing 

it as dry matter (BUN-CA, 2002). When plant biomass is burned, CO2 (BUN-CA, 2002; Gibbs et 

al., 2007) and other trace gases and aerosols are emitted into the atmosphere (GTOS & FAO, 2009). 

CO2 is one of the main greenhouse gases (GHG) and has increased by more than 30% in 

concentration in the atmosphere over the last century (CONAFOR, 2012a; IPCC, 2013). Reports 

from international panel experts conclude that there is a probability close to certainty that humans 

influence climate change through energy, industry, forestry, transport and agriculture sectors (IPCC, 

2013; PASCC, 2010). 

Forest ecosystems have the capacity to absorb CO2 and store it as biomass for long periods of time 

depending on the lifetime of the corresponding organisms. Forests are therefore referred to as 

carbon sinks or reserves (IPCC, 2003), and cover about 30.6% of the global land area (FAO, 2015). 

Since forests on their own cannot increase CO2 capture (Ma et al., 2019), forest plantations 

(Brancalion et al., 2019), forest management for wood products extraction (Profloresta, 2008; 

SEMARNAT, 2014), promoting the use of wood in construction (FAO, 2015), among other 

activities, increase the natural capacity of the forest to capture CO2. Also, future land-use change 

(LUC) scenarios combined with disturbance (wildfire, weather, insects, disease) have been 

evaluated, finding more AGB storage in the scenarios than in the undisturbed forest (Ma et al., 

2019). With these dynamics in the forest, it is important to evaluate their AGB stocks and the 

changes associated with these AGB stocks: deforestation, reforestation, increase in agricultural 

areas, increase in urban areas, among others (IPCC, 2003, 2015). 

I.2.2 Aboveground biomass estimation  

I.2.2.1 Direct method of measurement or tree-level observations 

The direct method (Figure I-2) involves measuring a standing tree and after felling, drying and 

weighing to get the dry matter or AGB (Picard et al., 2012; Shi & Liu, 2017). If the AGB of more 

than one tree is measured with this method, a prior analysis is performed to stratify the area of 

interest and calculate the sample size of trees that will be subject to the process (Picard et al., 2012). 

This method is a costly and elaborated process that requires a protocol (Magnussen & Reed, 2015) 

that clearly sets out a sequence of actions to follow in field data collection and chain of custody to 

avoid systematic errors. The “Manual for building tree volume and biomass allometric equations” 

represents an effort by CIRAD and FAO to set best practices for direct method estimations (Picard 

et al., 2012). 
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I.2.2.2 Indirect methods of estimation 

I.2.2.2.1 Observations at plot-level  

The ground based measurement of biomass via the direct method can not be achieved over large 

areas, due to cost and because it is impractical since the purpose is to know the amount of AGB 

stored (Magnussen & Reed, 2015). In this case, an indirect estimation method is applied (Figure I-

2), which uses data from standing trees as predictive variables to calculate regression equations 

based on allometric relationships (Magnussen & Reed, 2015; Picard et al., 2012; Shi & Liu, 2017). 

These equations are allometric models and describe the relationship of AGB with standing tree 

variables (GTOS & FAO, 2009; Picard et al., 2012). If AGB allometric models were not available, 

then conversion factors can be used to transform the tree volume into AGB (GTOS & FAO, 2009). 

Once calculating the AGB by tree, this is aggregated or grouped by characteristics of interest such 

as diameter class, height class, species, genus, among others (Magnussen & Reed, 2015). Once the 

AGB has been added at the plot-level, the estimators for the study area are calculated, considering 

the sampling design applied to the forest inventory (McRoberts et al., 2015). 

 

Figure I–2. Direct and indirect methods of AGB estimation. 

I.2.2.2.2 Extrapolation of the AGB estimation 

Under plot-level AGB estimation, there are “gaps” (the area not selected in the sampling) and 

remote areas without field data, where remote sensing techniques can be employed to estimate the 

AGB (Hyde et al., 2006; Sarker & Nichol, 2011). As the advantages of AGB estimation with 

remote sensing, are included the strong correlation between spectral data and vegetation parameters, 

the repeatability of data collection and the availability of global image coverage (Dengsheng Lu, 

2006).  

AGB indirect estimation with National forest inventory (NFI) data is reported every 5 to 10 years, 

corresponding to the time used for field data collection and data analysis (Sousa et al., 2017). The 

monitoring of AGB (Figure I-2), from satellite imagery, is an indirect method that can increase the 

estimation frequency of AGB and can be complementary to NFI data (GTOS & FAO, 2009).  

There are studies which use estimates of the AGB obtained with field-measured dasometric 

information (as a response variable) to calibrate images from sensors such as Landsat (Gizachew et 

al., 2016; Vargas-Larreta et al., 2017), Ikonos 2 (Phua et al., 2012), Radar (Sinha et al., 2015), ALS 
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(Peuhkurinen et al., 2008), Sentinel (Alboabidallah et al., 2017) or a combination of sensors for 

estimating AGB in larger areas and in shorter periods of time than the NFI (GFOI, 2016). 

Since optical sensors have a saturation effect on AGB estimation (GTOS & FAO, 2009), the texture 

has been a property of the images that has been included to increase the range of AGB (Fuchs et al., 

2009; Lu & Batistella, 2005; Sarker & Nichol, 2011) estimation from the discrimination of the 

levels of tones related to regions or objects (Haralick et al., 1973). 

I.3 Errors and uncertainties 

I.3.1 Definition of uncertainty 

In the scientific domain, according to the Joint Committee for Guides in Metrology (JCGM, 2010), 

the uncertainty is a parameter related to the result of a measurement that describes the spread of 

values that can be reasonably assigned to the measurement. Other authors complement this 

definition as the range in which results are expected, including the probability with which this range 

was obtained (Kallner, 2001; Taylor, 1997). 

The method to analyze the uncertainties associated with estimation is the propagation of 

uncertainties (JCGM, 2010; Taylor, 1997). This method divides the problem into stages, quantifies 

the uncertainties separately, and then combines them to get the total uncertainty (Kallner, 2001). 

The division into stages is due to the identification of the sources of uncertainty that, presumably or 

with information from previous studies, contribute most to the total uncertainty (Schmid & Lazos 

Martínez, 2000). The quantification of uncertainty usually embraces the assignment of value plus its 

distribution (Schmid & Lazos Martínez, 2000).  

I.3.2 Reporting uncertainty 

Ascough et al. (2008) point out the importance of reporting uncertainty in all types of empirical 

studies in the environmental and ecological context, emphasizing the relationship between 

understanding the uncertainty with the quality of decision-making. In the forestry context, 

Kauffman et al. (2013) mentioned that by including uncertainty analysis in aboveground biomass 

(AGB) estimation, reference was made to the precision of the reported information. According to 

the Global Terrestrial Observing System and Food and Agriculture Organization (GTOS & FAO, 

2009), this refers then also to the reliability of the information. 

Research on forest biomass, including uncertainty analysis has increased, given the development of 

government policies and international negotiations about forest response and climate change (Shi & 

Liu, 2017). As a national strategy, the Mexican government has promoted the development of 

public policy instruments that consider strategies in the economic/climate sectors (SEMARNAT & 

SHCP, 2009), and their relationship with the technical parameters in forest emissions (CONAFOR, 

2017b). These policy instruments contain clear methodologies of uncertainty analysis and include 

uncertainty estimates in the results to be obtained (CONAFOR, 2014b). 

I.3.3 Errors in National forest inventories 

Different measurement methods are used in NFIs to get observations to record the current state of 

the forest (CONAFOR, 2017a; Kleinn et al., 2015). The best methods improve the acquisition 
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accuracy of the measurements while reducing the acquisition time (Diéguez Aranda et al., 2005; 

Kershaw Jr., Ducey, Beers, & Husch, 2017). Therefore, data collected from NFIs is objectively 

prone to error. Across this thesis work, the word "error" will not be used as a synonym for 

“mistake” or “carelessness” (Gil & Rodríguez, 2001) rather as the uncertainty of 

measurement/estimation (Taylor, 1997). As before defined Section I.3.1, an error will be considered 

as the residual variability associated with the measurement or estimation, thus describing the 

dispersion values logically attributed to AGB measurement (JCGM, 2010). 

The total error of estimation in NFIs involves different components, including sampling and non-

sampling error (FAO, 1981; Kleinn et al., 2015; United Nations, 2008). The final report of the NFI 

in Mexico, for example, included sampling error as the source of all observed variations in the 

variables considered (number of trees, basal area, volume, biomass, etc.) without reporting non-

sampling errors (CONAFOR, 2012b, 2017a). 

I.3.4 Sampling error 

NFI plots sample the landscape to measure variables of interest, from which the parameters of the 

target population are estimated (Köhl et al., 2006). However, the estimators are subject to error due 

to the sampling design applied (Kershaw Jr. et al., 2017), meaning that the error would not be 

present if the entire population was included in the observations (Gormanson et al., 2017; 

McRoberts et al., 2015). This error is referred to as sampling error. The sampling error of 

probability samples is reported as the standard error of the mean (SE), coefficient of variation (CV) 

or the confidence interval (Köhl et al., 2006; United Nations, 2008), of a given variable e.g. volume, 

AGB, etc. (FAO, 1981; Köhl et al., 2006; McRoberts, Næsset, et al., 2015). Considering that SE 

measures the precision of the estimate, sampling error is related to the sample size and is therefore 

intrinsically associated with the time spent doing fieldwork and budgets allocated to the inventory 

(Kershaw Jr. et al., 2017; United Nations, 2008). 

McRoberts et al. (2015) show the use of the CV to be effective when comparing across sampling 

designs; whereby the differences between sampling designs were given by sample size and inter-

plot distances. Similarly, an optimal sampling error is defined by the smallest SE per sampling 

design given the costs assigned to the inventory (United Nations, 2008). Tomppo et al. (2010) 

compared 31 European countries, 3 Asian (China, Japan, and Republic of Korea), 3 on the 

American continent (Brazil, Canada, and USA) and New Zealand from 1992 to 2009 and reported 

NFI sampling errors for wood volume by SE ranging from 0.46% (USA) to 7.14% (Ireland). 

However, in this comparison, there were inconsistencies in the definition of wood volume as the 

height of DBH (1.3 - 1.5 m), minimum DBH (0 - 12.5 cm), elements sampled other than standing 

trees (stumps, branches and/or dead wood), among others. More recent results to those reported by 

Tomppo et al. (2010) can be accessed online in most countries, and show an improvement in the 

estimation precision of wood volume with SE of 0.31% in the USA and 2.17% Ireland 

(https://www.fia.fs.fed.us/; https://www.agriculture.gov.ie/nfi/). In Mexico, the first repeat survey of 

the NFI (2009-2014), reported for volume a SE of 3.2 - 4 % (CONAFOR, 2017a). These results are 

consistent with those obtained in the first NFI (2004-2009) where the volume was estimated with 

3.2 - 4 % of SE (CONAFOR, 2012c). The AGB was reported only for the temperate forest in NFI 

(2009-2014) with 2.6 - 3.3 % of SE. 

https://www.fia.fs.fed.us/
https://www.agriculture.gov.ie/nfi/
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I.3.5 Non-sampling errors: measurement errors 

The goals established in an NFI, such as timber supply, biodiversity, REDD+, etc., determine the 

variables measured during fieldwork (Kleinn, 2017; Kleinn et al., 2015). Trees are the object, where 

the measurements are made and the values of the variables of interest registered. Tree 

measurements are made assuming geometric forms like the tree cross-section (circle, oval), tree 

form (cone, frustum cone), or tree crown (circle, oval) (Kershaw Jr. et al., 2017; Matérn, 1956) and 

thus inherently carry an error in their magnitudes. Thus, it is important to estimate measurement 

uncertainty, so as to determine the quality of the measurement. Such a result can be the source of 

information for another project or for a decision-making process (Pérez-Hernández, 2012). 

There are two important components of measurement error, systematic and random errors (Taylor, 

1997; United Nations, 2008). Both systematic and random measurement errors are independent of 

each other and hence should be quantified independently. Figure I-3 shows that the total error can 

be quantified as the hypotenuse, of the Pythagoras' theorem, joining both error axes. Considering 

that it is not possible to avoid random error in any measurement (Taylor, 1997), one can posit that 

smaller total error can be achieved, when systematic error reduces and as systematic error tends to 

zero, the total error equals to the random error. 

Systematic 

errors 

 

  

Total error 

 

 

Theorem of  

Pythagoras 

 

a2 + b2 = c2 

 Random errors 

Figure I–3. Total error in the measurement as a product of systematic errors and random errors. 

Modified from source (United Nations, 2008).  

Practically, measurement errors arise from the faulty or incorrect use of measurement devices e.g. 

from device calibration (Diéguez Aranda et al., 2005) or dependent on the accuracy of the 

measurement devices (Gil & Rodríguez, 2001). Incorrect use of measurement devices by staff is 

often related to either measurement criteria or staff capacity use the availed forest inventory devices 

(Canavan & Hann, 2014; Diéguez Aranda et al., 2005). 

I.3.6 Non-sampling errors: prediction errors due to allometric models 

The allometric model to estimate the AGB is obtained from regression analysis (Picard et al., 2012). 

The AGB is the result of statistical relationship with tree variables such as DBH (Avendaño 

Hernandez et al., 2009; Návar, 2009), TH (Foroughbakhch et al., 2006; Vargas-Larreta et al., 2017), 

crown diameter (Návar et al., 2004), wood density (Martinez-Yrizar et al., 1992; Wiemann & 

Williamson, 2013). This model can be applied to other standing trees located in the same site, where 

the model was obtained, or in areas with similar site-characteristics (GTOS & FAO, 2009); or 

applying a scientific approach as a suitability check of the model validating the prediction 

uncertainty precision to select a AGB model (Pérez-Cruzado et al., 2015). Then, site-characteristics 

is a potential source of bias if not considered in the selection of model (Pérez-Cruzado et al., 2015), 
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because it is related to climatic conditions or soil types and these are associated with tree growth 

and with accumulation of AGB (GTOS & FAO, 2009; Picard et al., 2012; Shi & Liu, 2017). 

As a result of the regression model, statistics that represent the adjustment of the equation for the 

AGB and the uncertainty of the model, based on the tree measurement variable(s) are obtained 

(GTOS & FAO, 2009). The most commonly used indicator is the coefficient of determination (R2), 

representing the quality of the model to be replicated and the proportion of variation of the results 

that can be explained by the model (Ayala Gallego, 2015; Mehtätalo, 2013). Mean square error 

(MSE) is a measure of the difference between the estimator and what is estimated. The square root 

of the MSE (RMSE), is the parameter of precision associated with the model assuming a constant 

variance of the error (Cochran, 1977). Two more indicators are obtained from the regression 

analysis, the error in prediction of the mean used to estimate the confidence interval of the 

regression, and the error in prediction of an individual used to estimate the prediction interval of the 

regression (Draper & Smith, 1998). Only 40 of 478 studies in AGB allometric equations for 

Mexican trees forest, reported the parameters related to the uncertainty: RMSE or SE (Rojas-García 

et al., 2015a). 

The allometric models of AGB are generated under different criteria related to the stand 

characteristics, geographic area and the delimitation of classes according to the size range of the 

trees to be characterized. Based on stand characteristics, the allometric model could be made for 

species specific (Vargas-Larreta et al., 2017), genus (Méndez González et al., 2012) or group of 

species (Búrquez et al., 2010). The geographic area criterion is related to allometric models 

generated with information of one stand (Shi & Liu, 2017), a group of stands (Méndez González et 

al., 2012), a location (Návar et al., 2004) or a region (Shi & Liu, 2017; Vargas-Larreta et al., 2017); 

considering those areas are referred to the physiographic conditions of the area (Shi & Liu, 2017). 

The models have a range of validity whose extreme values are the minimum and maximum values 

of the variables used when calculating the model; if we use the model to predict AGB outside this 

range of values, estimation biases may occur (Picard et al., 2012). 

I.3.7 Quality control of data 

The quality control of data is due to the handling of data records in the field (United Nations, 2008), 

transfer of field forms observations to electronic media (Kershaw Jr. et al., 2017), and the statistical 

process of data in computer programs (Canavan & Hann, 2014). Therefore, it is important to 

implement verification mechanisms at each step involving data transfer, to have a reliable database 

for information analysis (United Nations, 2008). With an emphasis on the proper training of the 

work teams in the process of collection and storage of field information (FAO, 1981; United 

Nations, 2008). 

To ensure data quality, NFI's have been implementing protocols to assess the quality of information 

recorded (Tomppo et al., 2010). The protocols include data electronic storage, double review in 

fieldwork, plausibility checking (included in the storage equipment), automatic verification on the 

central server (logical check) and verification of 5-10% of the sampled plots.  
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I.4 Error propagation 

I.4.1 General observations of error propagation  

When a predictor variable (or variables) is used to estimate AGB with a model, and the 

measurement error was calculated for the predictor variable, the AGB error per tree will be 

estimated through error propagation or uncertainty propagation based on the contribution of the 

predictor variable into the model (Hughes & Hase, 2010). Uncertainty propagation is also used in 

the aggregation process of AGB from tree-level to plot-level and continuing until stand-level, for 

the variable underestimation (Chave et al., 2004). 

As before indicated, for the estimation of AGB with NFI information in a ground-based approach 

(Figure I-4), the first source of error is the measurement 𝑠𝑚. The second source of error incorporates 

the uncertainty with the error of the allometric model 𝑠𝐴𝑀. The third source of uncertainty is due to 

the design of sampling through sampling error 𝑠𝑆𝐸. At the end of this process is estimated the total 

uncertainty 𝑠𝐴𝐺𝐵 as a result of the error propagation (Shi & Liu, 2017). 
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𝑠𝑚 = 𝑓(𝑠𝐷𝐵𝐻 , 𝑠𝑇𝐻 , 𝑠𝐶𝐷) 𝑠𝐴𝑀 𝑠𝑆𝐸 𝑠𝐴𝐺𝐵 

Figure I–4.  Sources of uncertainty evaluated in the error propagation of AGB using NFI fieldwork 

data. 

I.4.2 GUM Method of error propagation 

Error propagation calculated by the application of the Law of Error Propagation (IPCC, 2003) is 

described in the Guide to the expression of Uncertainty in Measurement (GUM), first published in 

1993 by the Joint Committee for Guides in Metrology (JCGM, 2010; Pérez-Hernández, 2012) and is 

reported as a GUM Method. To apply the GUM Method in this thesis, the following conditions must 

be present: the process is applied to a single response variable of the mathematical allometric 

model; the allometric model must be explicit; mathematical expectations and uncertainties can be 
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calculated from the explanatory variables. To propagate uncertainties, the GUM Method establishes 

the procedure summarized in the following steps and applied to the variable AGB (Farrance & 

Frenkel, 2014; JCGM, 2010; Schmid et al., 2000): 

i. Specify the measurand to calculate AGB. The physical model or set of assumptions about the 

measurement is defined, allometric models approximate AGB in the forest and through this 

calculation, AGB is associated with predictor variable(s).  

ii. Identify the sources of uncertainty. Measurement error, model error to estimate AGB and 

sampling error. 

iii. Quantify uncertainty components or standard uncertainties. There are two types of evaluations. 

In type A evaluation, uncertainty is described by analyzing the probability distribution function 

of measurement error, and therefore, the distribution parameters associated with each error 

source. Type B evaluation, error behavior is obtained through calibration certificates, literature, 

regulations or previous studies; the  allometric models to estimate AGB in NFI. 

iv. Calculate the value of the AGB. 

v. Calculate the combined uncertainty. The Law of Error Propagation is applied to combine 

standard uncertainty from each error source. 

vi. Calculate the expanded uncertainty. This is the confidence interval for the AGB estimate and is 

calculated using the combined uncertainties multiplied by a coverage factor (k). 

The explanation of the steps for error propagation by the GUM Method will be discussed in more 

detail in Chapter III of this thesis. 

I.4.3 Monte-Carlo simulation Method for error propagation 

Monte-Carlo simulation Methods (MCM) are defined as numerical (Hughes & Hase, 2010), 

computer-based (Castro Quilantán et al., 2010) or experimental probabilistic technics (Basil et al., 

2001), used to estimate probabilities, mean values, confidence intervals, using a sequence of 

random or pseudorandom numbers (Hughes & Hase, 2010). Due to its relation to randomness, the 

method has taken its name from the principality of Monte-Carlo is known for casinos where the 

basic principle of its games is to get the result with low probability commonly stated as “by chance” 

(Martínez, 2003). 

MCM has been applied to different fields of science to solve many of the problems associated. Error 

limits in accidentology (Martínez, 2003), risk estimation (Azofeifa, 2005), uncertainty in flow 

measurement (Basil et al., 2001), evaluation of measurement uncertainty of pharmaceutical certified 

reference material (Rocha & Nogueira, 2012), estimate the uncertainty of airflow measurement 

(Sediva et al., 2015). In natural resources, the uncertainty assessment has been applied in ecosystem 

budget calculations (Yanai et al., 2010), individual tree volume estimation (McRoberts, Tomppo, et 

al., 2015; McRoberts & Westfall, 2014, 2016), plot-based estimates of carbon stock (Holdaway et 

al., 2014), among others. 

The MCM for error propagation is conceptually simple. The AGB estimate is evaluated repeatedly 

by including the uncertainty of the explanatory variables (EV) in the estimate. This uncertainty is 

randomly selected from the EV probability distribution error, calculating values higher or lower 

than a mean value of the EV (Ogilvie, 1984; Rees, 1984; Yanai et al., 2010). If the AGB estimate 

has more than two EVs, the variance-covariance matrix structure in the joint probability 

distributions should be considered, which measures the joint variability of EVs (Ogilvie, 1984; Press 
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et al., 2007). After repeating the process for numerous times, the result defines the probability 

distribution of the propagated error (Yanai et al., 2010). The MCM procedure provides simulation-

based approximations to the propagated uncertainty without the need of differential equations 

associated with the GUM Method (Farrance & Frenkel, 2014). 

I.5 Justification of this study 

I.5.1 Global level 

I.5.1.1 Uncertainty in the estimation of AGB 

In 1988, IPCC activities began with the aim of carrying out comprehensive assessments associated 

with climate change (IPCC, 2003). To contribute to its main commitment in 1998 United Nations 

Framework Convention on Climate Change (UNFCCC) requested the IPCC to standardize the 

evaluation of GHG inventories, developing the Guidelines for national GHG inventories, which has 

been reinforced by the contributions of the National Greenhouse Gas Inventories Program (IPCC, 

2006). This guide was developed for the Kyoto Protocol compliance (IPCC, 2003, 2006). The guide 

includes the standardized method to generate detailed information for each sector that contributes to 

climate change and the assessment of the uncertainty associated with each sector (IPCC, 2003). 

Houghton (2005) contributed to evaluating the uncertainty of forest biomass under different land-

use change carbon flux scenarios (Figure I-5); three of the scenarios used for forest biomass 

estimation from the FAO Forest Resources Assessment reports (1980, 1990 and 2000). The 

difference between the evaluated scenarios of 0.95 PgC yr-1 was attributed to the uncertainty of the 

forest biomass estimate. Moreover, the result presented in the 2014 IPCC report indicated that the 

main cause of climate change was the emission of carbon dioxide (CO2). CO2 contributions 

associated with agriculture, forestry and other land-use (AFOLU) are the second in importance with 

a 24% contribution to the emission of GHG, only behind the energy sector with 34% (IPCC, 2014). 

 

Figure I–5. Scenarios of carbon emission from land-use change in the tropical forests. Source: 

Houghton, 2005 modified by Quegan et al., 2012. 
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I.5.1.2 Monitoring of forest resources  

Monitoring and evaluation of a country's forest resources are carried out through National Forest 

Inventories (NFI), starting in the Nordic European countries in 1910 and continued with other 

European countries in the 1960s (Democratic Republic of Germany, France, Austria, and Spain) 

(Lund, 2009; Tomppo et al., 2010). The goals and objectives of NFI have changed according to a 

demand for information that users have made over time, such as timber production, forest 

biodiversity, the sustainability of forest resources, biomass storage, carbon capture, among others 

(Kleinn, 2017; Lund, 2009). This has led to an evolution of the NFI, initially, monitoring carried out 

by forest experts to assess the state of forest resources, and now monitoring carried out by 

multidisciplinary teams to meet commitments of global interest, resulting in an instrument for 

decision-making not only around forest resources (Kleinn, 2017). The NFIs have also evolved in 

other aspects such as the standardization of inventories carried out in the same country to be able to 

compare the results, and harmonization, which refers to the standardization between NFI of 

different countries (Alberdi et al., 2016; Tomppo et al., 2010). As an example of harmonization and 

since the NFI data are used to estimate the AGB and Carbon stored in the forest, IPCC guidelines 

have been incorporated to know the estimation uncertainty (IPCC, 2006) and MRV processes have 

also been incorporated to comply with the transparency in the estimation required by REDD+1 

mechanisms (Kleinn, 2017). 

Since 1946, the Food and Agriculture Organization of the United Nations (FAO) has coordinated 

the generation of global forest data by compiling available national data. These reports had been 

published all 10 years and because of the rapid developments and increasing demand in global 

forest data the interval had been set for 5 years from 2005 onward. The world forest inventories, as 

they were called in the beginning, are now the FAO Forest Resources Assessments FAO-FRA 

(Garzuglia, 2018). These statistics since 2005 included AGB and carbon estimates under the IPCC 

specifications (FAO, 2006). In GFRA 2015, an improvement was implemented in the methodology 

applied to the evaluation called Long-term Strategy, which includes the improvement of the reports, 

the quality and the reliability of the data provided by the participating countries (Garzuglia, 2018).  

IPCC and GFRA reports provide information on forest area and CO2 emissions due to forestry 

activities, as well as the dynamics of vegetation cover in cooperating countries. Both reports do 

emphasize the need to define and describe methodologies clearly and transparently and demand that 

the uncertainties associated with the results be explicitly reported for all target variables. 

I.5.2 National level: the example of Mexico 

I.5.2.1 Policies and commitments 

The Government of Mexico has recognized the problems are caused by loss and degradation of 

forests and their relationship to climate change at national and international levels. Mexico signed 

its commitment to the UNFCCC in 1992, the Kyoto Protocol was signed at the COP in 1997, and in 

2016 added to the Paris agreement (Chamber of Deputies, 2019; Morfín Ríos et al., 2015). Table I-1 

shows the instruments and policies developed in Mexico to tackle the climate change effects and 

 
1
 Reducing Emissions from Deforestation and forest Degradation and the role of conservation, sustainable management of 

forests and enhancement of forest carbon stocks in developing countries (REDD+) 
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thus implement the commitments acquired at the international level. In addition, the economy of 

climate change effects has also been studied by the Mexican Government (SEMARNAT & SHCP, 

2009) and, together with the National Climate Change Strategy, the Government decided to conduct 

a sustainable, low-carbon economy based on the assessment of GHG emissions at the national level 

and by economic sectors (CICC, 2013; Mexican Government, 2019). 

The National Forestry Commission in Mexico (CONAFOR), with the project "Reinforcing REDD+ 

and South-South Cooperation" (Mexico-Norway), developed the guidelines for the methodology to 

be used in Mexico for the GHG inventory (CONAFOR, 2015), emphasizing the challenge in AGB 

estimation of forest ecosystems. These guidelines were based on the IPCC proposal, that clearly 

establishes the use of AGB and carbon data from the Mexican National Forest Inventory (MNFI) 

for the estimation of emission factors in the sector LULUCF (Land-Use, Land-Use Change, and 

Forestry) (IPCC, 2006). This AGB and the carbon estimate should include its uncertainty 

estimation, as established by the REDD+ strategy in Mexico (CONAFOR, 2017b). 

Instrument and / 

or policies 

Year* Status Objective / chapter / clause related to climate 

change 

General Law of 

Sustainable Forestry 

Development  

2003 Updated in 2018 

(before 2003, 

Forestry Law) 

It states that the MNFI is an instrument of national 

policy and its estimates are used to develop programs 

and strategies for adaptation and mitigation of 

climate change (Chamber of Deputies, 2018a). 

General Law on 

Climate Change 

2012 Updated in 2018 The chapters II and III regulate the implementation of 

mechanisms for climate change adaptation and 

mitigation (MRV systems) (Chamber of Deputies, 

2018b). 

National Climate 

Change Strategy 

2013 Updated in 2019 National planning instrument. Proposal of actions to 

be implemented in the medium and long term to face 

the effects of climate change (Chamber of Deputies, 

2019). 

National 

Development Plan 

of Mexico 

2013 Updated for the 

period 2019-

2024  

Encourage economic development that will promote 

the reduction of emissions of GHGs and adaptation to 

climate change to improve the quality of life for the 

population (Mexican Government, 2019). 

*Year of publication or year when climate change regulations were included. 

Table I-1. Instruments and policies to implement actions for adaptation and mitigation of climate 

change in Mexico. 

I.5.2.2 Further developing the National Forest Inventory 

The forest inventory in Mexico required a major improvement because the methodologies applied in 

the four national inventories, implemented from 1960 to 2001, were incompatible with each other 

(with respect to the set of variables, the sampling design, and the reference dates) and were 

therefore not immediately comparable (CONAFOR, 2012c). In 2002, a new inventory attempted to 

tackle the problem of inconsistency of protocols by harmonizing with US and Canadian NFI 

procedures, while promoting international cooperation with NAFC2 (SEMARNAT, 2004). The 

 
2 North American Forest Commission (NAFC) for Food and Agriculture Organization of the United Nations (FAO) 
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primary objective of the MNFI was to support national sustainable forest development 

(SEMARNAT, 2004), by improving the estimation of biomass and carbon stocks and conserve the 

ecosystem quality (CONAFOR, 2012c). The MNFI in a more structured way started in the period of 

2004-2009 and the first re-measurement 2009-2014. (CONAFOR, 2017a). The results of this 

inventory have been used to report forest biomass and carbon stocks to FRA since 2010 

(CONAFOR, 2012c). Recently, MRV procedures have been incorporated to standardize the 

national carbon estimation process through the National REDD+ Strategy in Mexico (CONAFOR, 

2017b; SEMARNAT & INECC, 2017). 

For the Mexican government, the importance of the forest has become evident through the policies 

generated over the last two decades around natural resources. These policies provide a framework 

for the development of this thesis topic that describes the methodologies for the calculation and 

reporting of uncertainties in the AGB estimation. The research in this study complements the 

information reported by CONAFOR (CONAFOR, 2014a), since non-sampling errors are not 

reported. The information in this thesis is the first study reporting measurement and prediction 

errors along with sampling errors for the MNFI in Durango. 

I.6 Outline of the dissertation 

The thesis work includes the following topics as illustrated in Figure I-6: 

 

Figure I–6. Structure of the dissertation. 

Empirical study 1. Quantification of measurement errors: There is no evidence of published 

works where the measurement error was estimated in dasometric variables for temperate 

forests of Durango and in general in the context of the Mexican NFI. Studies in other 

countries have shown that applying double measurement allows knowing the discrepancy 

of measurements and can describe the measurement error. For this reason, double 

measurements were carried out for DBH and TH in pine forest in El Salto, Durango, 

Mexico to quantify the measurement errors occurring during fieldwork for DBH and TH. 
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Empirical study 2. Device accuracy in measurement errors on AGB estimation: To determine 

the uncertainty of the best estimate, in DBH and TH measurements, a case study was 

developed to compare two devices of different precision for each variable and the effect 

that this difference generates in the accuracy of the AGB estimation and error propagation. 

Empirical study 3. NFI scale error propagation of AGB estimation: The AGB of the temperate 

forest was estimated for the whole state of Durango, Mexico, using the data of the MNFI 

and allometric models to calculate de AGB. The uncertainty propagation in AGB was 

estimated with the MCM, incorporating the distributions of the errors from the sources of 

uncertainty: fieldwork measurements (Topic 1), allometric models and sampling design. 

Empirical study 4. Satellite image-based regionalization of AGB: AGB was modeled with remote 

sensing using Landsat images and MNFI fieldwork as the reference data of AGB for the 

state of Durango, Mexico. 

I.7 Objective and research questions 

I.7.1 General objective 

The overall objective is to contribute to a better understanding of the role of errors and error 

propagation in AGB estimates for the state of Durango, from data of the Mexican NFI, which in 

turn will support carbon reporting at the national scale and helps make the NFI results more 

meaningful and better interpretable. 

From this overall objective, the following technical research questions are being derived all oriented 

towards contributing to achieving the overall objective: 

I.7.2 Research questions 

Empirical study 1 

i. Which Probability Density Function (PDF) describes best the measurement errors in 

DBH and TH for pine forest?  

ii. How much are the contributions of the measurement errors and allometric errors in 

comparison with the sampling error, in AGB estimation?  

iii. Which differences exist in the error propagation results from GUM Method in 

comparison with Monte-Carlo simulation Method? 

Empirical study 2 

i. How does the PDF of measurement error changes with different measuring equipment 

for DBH and TH?  

ii. How does the measurement error in DBH and TH contribute to the total uncertainty in 

AGB estimation, when the measurement error comes from devices of different 

precision?  

iii. How is the relationship between non-sampling errors and sampling errors, when the 

sample size increases? 

Empirical study 3 



Chapter I: Introduction 

 

15 

i. Are measurement, prediction, and sampling, the only sources of uncertainty associated 

with the error propagation in a scale of NFI? 

ii. What are the contributions of the different sources of error in the estimation of AGB to 

the temperate forest in Durango State, using MCM? 

iii. How does the sample size affect the total uncertainty, when the analysis is made into 

the strata of the temperate forest?  

Empirical study 4 

i. Is the MNFI data suitable as a source of fieldwork information to predict AGB with 

satellite information from the Landsat sensor? 

ii. Which are the response variables from the Landsat sensor, that best model the AGB for 

Durango temperate forest and substrata in the temperate forest? 

iii. Are goodness-of-fit parameters improved in the estimation of AGB with Landsat when 

carrying out stratification with vegetation types? 
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Chapter II: Materials  

This research has been implemented through four studies developed with information on the 

Mexican National Forest Inventory in the state of Durango. However, it was necessary to perform 

two experiments in El Salto, Durango, Mexico and Göttingen, Germany, to improve understanding 

and analysis of the topic under study. 

II.1 Study Area 

II.1.1 Durango State, Mexico 

The main study area in this thesis work was the state of Durango in Mexico (third and fourth 

empirical studies). This state lies between the coordinates (X, Y): corner North West (277055, 

2968491) and corner South East (755631, 2472422) according to the UTM projection, datum 

WGS84 and 13N zone (Figure II-1). Durango has an area of 123450 km2. It is the fourth largest 

state and represents 6.3% of the national area in Mexico. It is divided into 39 municipalities and had 

a population as of 2015 of almost 1.8 million inhabitants (INEGI, 2016). 

The topography of Durango is rugged, the altitude difference ranges from 440 meters above sea 

level (masl) in the Piaxtla river bed, southeast of the state, up to 3328 masl in the Gordo hill, in the 

south of the state. The physiography of the state has four provinces: the mountain chain Sierra 

Madre Occidental (SMO) from the southwest to the center (71% of Durango), Northern mountains 

and plains in the north-central area (15%), to the east lies Part of the Mesa del Centro (9%) and to 

the northeast the mountain chain Sierra Madre Oriental (5%) (CONABIO, 2017).  

 

Figure II–1. Durango State in the context of Mexico. 
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The main geological formation is an extrusive igneous with 58% of the state, followed by 

sedimentary material (23%), soil formations (16%), and the rest is a metamorphic rock and intrusive 

igneous rock (3%). Soil types distribution is uneven in the state, the Leptosol type is present in 32% 

of the territory, Phaeozem in 15% and Luvisol in 13%, these are the main soils with more than half 

of the surface of the state. The predominant climate in 54% of the area ranges from very dry to 

semi-dry, in second place of importance is the temperate climate covering 34% of Durango, placed 

principally on the area of the mountain chain SMO (INEGI, 2016; CONABIO, 2017). 

Anthropogenic activities, in Durango, cover 30% of the surface (3.7 million ha) and vegetation 

cover the remaining 70% (8.6 Mha). Timber forest, which includes temperate forest and tropical 

forest, is 47% (5.8 Mha) of the state. Conifer forest is the largest area of vegetation with about 19% 

(2.3 Mha). The non-timber forest, including shrubs and desert vegetation, is 22.8% of the state of 

Durango with 2.8 Mha. (INEGI, 2017). 

II.1.1.1 El Salto, Durango 

The study area, that was used to do the first empirical study of measurement errors in DBH and TH, 

is in the temperate forest of southwest Durango, Mexico. Including areas of high-density pine 

plantations of 20-40 years old without a management plan. The country is subdivided into Forest 

Management Units (UMAFOR in Spanish), according to the National Forest Commission 

(CONAFOR), the institution leading the management of forest resources in Mexico. The fieldwork 

was made in the UMAFOR 1008 or “El Salto” characterized by mixed and uneven-aged temperate 

forest stands (Figure II-2). The UMAFOR 1008 has 558,270 ha of surface, the 52% of the area is 

occupied with temperate forest, and this is equal to 7% of the area of temperate forest in the state of 

Durango. 

 

Figure II–2. Location map of plot sites and UMAFOR 1008 in the State of Durango. 
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With an altitude of 400 - 3262 masl; the predominant climate is temperate, sub-humid with rain 

during summer (SEMARNAT, 2014). The average annual temperature of 10.7°C and an average 

annual rainfall of 760 - 1490 mm during the months of June to September. This management unit is 

located in the mountain chain SMO. The forest vegetation is principally a mixture of the genus 

Pinus (P. engelmannii, P. durangensis, P. chihuahuana, P. cooperi, P. leiophylla, P. teocote, P. 

arizonica, P. lumholtzii), genus Quercus (Q. sideroxyla, Q. rugose, Q. fulva, Q. mcvaughii and Q. 

scytophylla), and shrub species of the genus Juniperus sp., Arbutus sp. and Alnus sp. among others 

(González-Elizondo et al. , 2012). 

II.1.2 Göttingen, Germany 

The second empirical study, comparing the measurement uncertainty committed in fieldwork using 

different devices took place in the State forest in Northern of Göttingen, Lower Saxony, Germany 

(Figure II-3). This forest is located at 54°34’ North latitude – 9°57’40’’ East longitude and a 

maximum altitude of 427.5 masl (Nagel & Wunderlich, 1976). The annual rainfall in Göttingen, 

628 mm, is uniformly distributed over the year and temperature ranges from 1 to 17.4 °C, obtaining 

with the average information of 1971-2000 (GAUG, 2017).  

 

Figure II–3. Location map of the study area in the Göttingen Forest, Germany. 

The studied forest tract belongs to the Highland of southern Lower Saxony and specifically to the 

“Forest of Göttingen” (Brumme & Khanna, 2009), 4 km north-east of Göttingen city center. The 

principal forest species in the study site are beech (Fagus sylvatica) as a dominant species, mixed 

with European ash (Fraxinus excelsior), field maple (Acer campestre), Norway spruce (Picea 

abies), wild cherry (Prunus avium), and few other species. 
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II.2 Material 

II.2.1 National Forest Inventory information 

For the third empirical study, ground measurements were provided by CONAFOR (Table II-1). The 

database available contains the field data of the first MNFI in the state of Durango (Figure II-4) in 

the period 2004-2009 (CONAFOR, 2012c), as well as the data of the first re-measurement of the 

MNFI 2009-2014 (CONAFOR, 2017a). The data acquisition in the fieldwork was based on the 

“Manual and procedures for field sampling” made by CONAFOR (CONAFOR, 2009b). The 

geographic location associated with the field information was the center of the Cluster or Primary 

Sampling Unit (PSU) and the center of each subplot or Secondary Sampling Units (SSU), the 

location of the tree was not recorded (CONAFOR, 2012c). The geographic information was 

recorded with a conventional GPS receiver in projection UTM13N, CRS ITRF92, Datum ITRF92, 

ellipsoid GRS1980 and units in meters (CONAFOR, 2009b). Geographic information was recorded 

with an accuracy of less than or equal to 15 meters (CONAFOR, 2009b). 

MNFI dataset Tree No. Cluster No. Subplots No. Species 

2004-2009 118647 1826 6170 220 

2009-2014 118641 1822 6090 277 

Table II-1. General information in sampling units of MNFI in Durango, Mexico. 

 

Figure II–4. Left: Grid of Primary sampling units (PSU) of the MNFI for the temperate forest in 

Durango. Right: Landsat 5 mosaic imagery false-color composite with RGB: 432 combination to 

enhance vegetation in red color, covering all forested lands in Durango. 

II.2.2 Satellite imagery information 

To estimate the AGB in the third empirical study from remote sensing data, Landsat imagery was 

used (Landsat 5 Thematic Mapper TM and Landsat 8 Operational Land Imager OLI) with a spatial 

resolution of 30 m (USGS, 2015). The images were downloaded from 
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https://earthexplorer.usgs.gov/ . The images required were the product with high-level surface 

reflectance (Tier 1) with RMSE ≤ 12 m of geometric verification (Young et al., 2017).  

For the third empirical study, two field data sets were used: MNFI 2004-2009 and MNFI re-

measurement 2009-2014. For these two time periods, in the fourth empirical study satellite imagery 

was required. The selected scenes are listed in Table II-2 and they came from the last year of each 

field campaign in MNFI in 2007 (Landsat 5 TM) and in 2013 (Landsat 8 OLI). With these data was 

developed the model-based assessment. 

Path/row 

2007 2013 

Landsat 5 TM  

(day.month) 

RMSE (m) Landsat 8 OLI 

(day.month) 

RMSE (m) 

32/41 28.04 4.62 28.04 6.98 

32/42 28.04 4.46 28.04 5.90 

32/43 28.04 5.27 28.04 7.64 

31/42 21.04 4.23 23.05 7.81 

31/43 21.04 4.89 23.05 6.49 

31/44 21.04 4.77 23.05 8.01 

30/43 30.04 4.38 30.04 7.26 

30/44 30.04 4.48 30.04 8.09 

Table II-2. Satellite imagery scenes of Landsat used in this study to estimate AGB in Durango, 

Mexico. RMSE was expressed in meters and characterizes the result of the geometric correction 

with ground control points. 

II.2.3 Vegetation and land-use information 

Vegetation and land-use series (LUVS) is a national product developed through the interpretation of 

satellite imagery: Landsat and SPOT (CONAFOR, 2014b). This product started in 1993 and has 

been incorporating new tools to improve the quality of the information obtained over time and has 

been used for the analysis of the land-use and vegetation change nationwide in Mexico (INEGI, 

2017). The LUVS, Series IV and Series V, were used to demarcate the area of the vegetation types 

found in the MNFI (CONAFOR, 2012c, 2017a). 

The Figure II-5 shows the main vegetation types, the areas without vegetation and the 

anthropogenic uses, for the Series IV and V of INEGI in the state of Durango. The INEGI, includes 

in the anthropogenic uses the urban areas, agriculture, grassland, among others (INEGI, 2014). The 

vegetation strata, inside of the temperate forest in Durango, are shown in Figure II-6, also for the 

two LUVS. 

https://earthexplorer.usgs.gov/
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Series IV (2007-2008) Series V (2012-2013) 

Figure II–5. Vegetation and land-use limits of Durango for the LUVS of 2007-2008 (Serie IV) and 

2012-2013 (Serie V). 

 
Series IV (2007-2008) Series V (2012-2013) 

Figure II–6. Vegetation strata limits of temperate forest in Durango according to vegetation Series 

IV and V. 

In the third empirical study, using the MNFI data, AGB estimation for the temperate forest and the 

strata inside the temperate forest (conifer, mixed, and oak) were provided. Using the estimates per 

vegetation type and demarcated area in Figure II-6, in the fourth empirical study, the AGB stored in 

the state of Durango was estimated with a sampling-based assessment. 
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Chapter III: Methodologies  

III.1 Empirical study 1: Double measurement of dasometric variables to estimate the 

measurement uncertainty and error propagation in aboveground biomass estimation in pine 

forests 

III.1.1 Sampling design 

Plot locations were selected by a broader project3 based on stand competition conditions (tree 

density and age-class). The selection of the plot had two limiting reasons; therefore, it was 

necessary the prior knowledge provided by the forestry technicians of the region. The first reason 

was safety issues due to social problems; the second reason was the owner’s permission to work in 

the sampling sites. After applying the above criteria on the sampling sites, 10 locations met the 

factors to be considered sampling sites (Figures II-2, III-1): La Victoria, La Campana, Borbollones, 

La Campana 2, Pueblo Nuevo, Pueblo Nuevo 2, Pueblo Nuevo 3, La Campana 3, El Brillante 2 y El 

Brillante 3. 

    
La Victoria La Campana Borbollones La Campana 2 

    
Pueblo Nuevo Pueblo Nuevo 2 Pueblo Nuevo 3 La Campana 3 

 

  

 

 El Brillante 2 El Brillante 3  

Figure III–1. Pictures of the pine forest in El Salto, Durango, where the sampling sites were 

located. 

III.1.2 Plot design 

The aforementioned project determined the plot design and provided the field crew. My role was to 

coordinate the fieldwork and I was part of the observers of the dasometric variables. The plots were 

established in August and September of 2014. The plot size was 95 X 60 meters; subdivided into six 

 
3 “Installation of a thinning experiment in forests of UMAFOR 1008” (Corral-Rivas et al, 2013) 



Chapter III: Methodologies 

 

24 

subplots of 25 X 25 meters with a corridor of ten meters between the plots (Figure III-2). The 

division into subplots was made for later thinning treatments by the project above mentioned; 

however, for this study, the data of the six subplots together was considered as a single plot data. 

The boundaries of the subplots were oriented North-South and East-West and cords were used to 

make the plot limits visible. The plots remained marked throughout the period of the measurements. 

 

Figure III–2. Size and arrangement of the subplots. 

The trees in the plots were marked and numbered with a metal plate and their position recorded with 

x-y local coordinates for each subplot. These tree marks facilitated the identification of the sample 

trees, during the measurement. The metal plates were oriented to the center of the subplot for easier 

reference. 

III.1.3 Experiment design 

Field data collection followed the procedures defined in the "Manual and procedures for field 

sampling", a protocol developed by CONAFOR for the MNFI 2004-2009 (CONAFOR, 2012c). 

This document describes exhaustively how to do a standardized data collection of dendrometric 

measurements (i.e. DBH, TH, etc.) in MNFI. 

Devices used in the measurement were calibrated regularly to avoid miss-calibrations. The center of 

each plot and subplot was recorded by a Sokkia CX total station with two base stations, which was 

also used to measure azimuth and distances from the center of the plot to the trees stem surface at 

breast height. Tree position was then the distance measured plus half the diameter of the tree. 

Positions measured were post-processed and was obtained a precision of 2 mm using data from base 

stations and projected in the UTM WGS84 system of zone 13N. DBH was measured in two 

directions, North-South and East-West, similar to the marking of the sub-plots and a Caliper with 

mm accuracy was used. The TH was measured with a Vertex IV, this device had 0.1 m as the 

smallest unit of measurement. Species identification was done by support staff who had experience 

in the identification of regional trees. 

A procedure of two “blind” measurements was used as recommended by Condit (1998) as a 

measure of quality assurance. This method consisted of the following steps: i ) Measuring a variable 

to all the trees in the plot, this was the first measurement made by one person, ii ) Repeated-

measurement of the same variable for all trees in the plot without access to previous measurement 

made, being a measurement independently made by a second observer. In the first cycle, DBH, TH, 
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tree location and species were recorded. In the second cycle, DBH and TH were recorded; because 

of the relatively low species diversity in the sample plots, a re-assessment of tree species was not 

done, assuming that errors due to species-misidentifications be non-existent. The re-measurement of 

most plots was done on the same day or the day after the first measurement. At one sampling site, it 

could only be done about one week later. The recording of field data was conducted by two 

different observers, one for point 1 in time and the second one for the re-measurement. 

III.1.4 Aboveground biomass (AGB) estimation 

The AGB estimation was calculated indirectly using allometric models. Field variables used in 

these models were DBH, TH and tree species. Four species of pine were identified (Pinus cooperi, 

P. leiophylla, P. strobiformis and P. teocote), trees from genus Arbutus spp, Juniperus spp and 

Quercus spp, and one tree of Abies durangensis. A selection criterion for the model was developed 

because a pool of 46 models was found for the species identified and is represented in the following 

flow chart (Figure III-3). 

 

Figure III–3. Flow chart to select the allometric model for AGB estimation, adapted from 

CONAFOR (CONAFOR, 2014b). 

The first step in the selection criteria was to identify the tree in the field at the sp/genus/vegetation 

group level. With the field identification, models that meet the first criterion were then compared 

with the valid range, which must not be exceeded by field data (DBH, TH, crown diameter) to avoid 

a systematic error. The next two criteria were measures of the goodness of the model fit, selecting 

the models with the lowest MSE and the highest determination coefficient (R2). The last criterion 

was the selection of the model that has been adjusted with trees in the study area or the model that 

was adjusted close to the study area. Even though not included in the criteria, the selected model 

used more than 30 trees to meet the requirement of a biomass estimate in a homogeneous and 

species-specific stand, as referred to Picard et al. (2012). 

As before mentioned, in "El Salto" five genera and in the genus Pinus spp four species were 

identified, therefore, models made at species/genus levels were used. Rojas-García et al. (2015a) 

made a compilation of 478 allometric models to estimate AGB in Mexico; this study reported in 

Durango 27 and three AGB models for the genus Pinus spp and Quercus spp, respectively. In 2017, 

Vargas-Larreta et al. published a study conducted in the Durango temperate forest where they 

obtained allometric models of AGB for species-specific and genus of the main commercial species. 
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Allometric models, adjusted by Vargas-Larreta et al. (2017), satisfied the selection criteria and are 

shown in Table III-1. The genus Abies spp in the state of Durango is infrequent (Quiñones-Pérez et 

al., 2012) and no studies on AGB estimation have been conducted, for this reason, the allometric 

model proposed by Avendaño et al. (2009) adjusted for the Abies religiosa species was used. 

sp 
AGB 

component 
ln 

α 

β1 ln 

DBH 

β2 ln 

TH 

β3 

DBH2TH 
R2 

RMSE 

kg 
n 

DBH  

(cm) 

TH  

(cm) 

Tree  

No. 
Abies 

duranguensis1 
Total 1.074 2.510   0.99  26 6.5-79.0 6.8-42.4 1 

Arbutus 

 spp2 

stem 1.067 1.664 0.865  0.93 15.11     

bark 1.003 1.518 0.950  0.87 0.85     

branches 1.021 1.812 0.819  0.95 6.99     

foliage 1.007 1.503 0.848  0.79 1.72     

Total (Σ)  0.95 22.81 49 7.9-44.8 2.4-25.0  4 

Juniperus 

 spp2 

stem    0.013 0.91 28.98     

bark    0.001 0.57 3.15     

branches    0.002 0.81 5.87     

foliage    0.001 0.67 3.92     

Total (Σ)  0.90 37.00 48 10.0-43.7 4.5-21.5 23 

Pinus 

cooperi2 

stem 1.032 2.093 0.769  0.97 41.22     

bark 1.011 1.676 0.746  0.81 10.43     

branches 1.008 1.599 1.347  0.89 27.06     

foliage 1.051 1.223 0.600  0.74 3.79     

Total (Σ)  0.94 87.21 103 5.5-52.3 4.2-28.0 3956 

P. 

 leiophylla2 

stem    0.016 0.94 68.35     

bark    0.001 0.89 6.92     

branches    0.007 0.63 67.38     

foliage    0.0003 0.81 2.53     

Total (Σ)  0.92 110.21 84 8.4-55.3 5.4-29.2 79 

P.  

strobiformis2 

stem 1.007 2.022 1.309  0.90 88.01     

bark 1.031 1.100 1.099  0.88 6.34     

branches 1.016 1.906 0.701  0.93 15.24     

foliage 1.040 1.535 0.318  0.72 5.55     

Total (Σ)  0.93 93.02 98 5.0-49.0 6.3-26.6 32 

P.  

teocote2 

stem 1.045 1.895 0.847  0.92 58.50     

bark 1.003 1.962 0.662  0.93 9.34     

branches 1.005 1.788 1.123  0.93 3.02     

foliage 1.031 1.784   0.73 16.67     

Total (Σ)  0.95 76.11 81 10.0-45.0 4.5-24.7 124 

Quercus 

 spp2 

stem 1.123 1.774 0.687  0.78 94.25     

bark 1.008 0.008   0.65 27.68     

branches 1.051 0.050 0.342  0.57 53.64     

foliage 1.086 0.082   0.29 11.95     

Total (Σ)  0.82 134.12 423 7.0-57.0 3.3-24.8 43 

AGB component (kg ha-1) = 𝑊𝑖 = 𝛼𝑖𝑋𝑗

𝛽𝑖𝑗 + 𝜀𝑖; AGB Total (kg ha-1) = 𝑊𝑡 = ∑ 𝑊𝑖 + 𝜀𝑡
𝑛
𝑖=1 ; where Xj=tree variables, αi and βi=coefficients 

estimated, εi and εt = error terms; R2= coefficient of determination; RMSE=root mean square error; n=number of trees used to fit the 

model; DBH (cm)=DBH range of trees used to fit the model; TH (cm)=TH range of trees used to fit the model; Tree No.=number of trees 

registered in El Salto, Durango. 

1 (Avendaño Hernandez et al., 2009) 
2 (Vargas-Larreta et al., 2017) 

Table III-1. Allometric models used in the pine forest of El Salto, Durango to estimate AGB based 

in DBH and TH measurements. 
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III.1.5 Quantifying uncertainty 

III.1.5.1 Source of uncertainties 

III.1.5.1.1 Methods to estimate measurement error at tree-level 

DBH and TH were measured for 4262 trees. The measurement (M1) and the re-measurement (M2) 

of the variables were made independently and each was considered as a trial mensuration. 

Therefore, the difference of the M1-M2 was treated as a discrepancy (Taylor, 1997). 

The relationship between discrepancies in DBH measurement and the DBH size is shown in Figure 

III-4. The dispersion chart shows a concentration of the point cloud close to zero, and in trees with 

DBH less than 30 cm. In the lower part of the figure, the dispersion chart of TH discrepancies by TH 

tree size is shown. Most of the values in TH are also concentrated close to zero and in trees larger 

than 5 meters but no more than 20 m of TH. To verify the concentration of data close to zero was 

applied a Kurtosis Test, and the discrepancies distributions were classified as leptokurtic 

(KurtDBH=8.030, KurtTH=4.394). Using the Lilliefors Test, normal distribution was rejected for both 

variables discrepancies (pDBH < 2.2e-16, pTH < 2.2e-16). 

 

Figure III–4. Discrepancies dispersion across the size of the tree and distribution of the 

discrepancies for the variables DBH and TH in El Salto, Durango. 

To analyze the heteroscedasticity, discrepancies were converted into an absolute value and was 

fitted a regression line over the values to evaluate the relationship of discrepancy relating to the size 

of the tree (Figure III-5). The trend line in this figure shows the increase of the discrepancy with the 

increase of the tree size (p-valueDBH<2.2e-16, p-valueTH<2.2e-16).However, the equations shown here 

were not further used in the error propagation because the discrepancy is not an uncertainty 
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according to the IPCC (2006). They have been provided to illustrate the basic properties of repeated 

DBH and TH measurements. 

 

Figure III–5. Linear regression relating discrepancies in measurement with the size of variable 

measured (DBH and TH). 

III.1.5.1.1.1 Methods 1 and 2: Probability Density Function (PDF) 

Discrepancy data was used to construct the uncertainties' distribution. On the left side of Figure III-

6, are the plots of the discrepancies, in absolute value. To each discrepancy was added the negative 

value (mirrored), resulting in the distribution on the right side in Firure III-6. To perform this 

procedure, we assumed symmetry in the measurement uncertainty. In Method 1, we adjusted a PDF 

to each data set (DBH and TH) thus obtaining the parameters to estimate the measurement uncertainty 

per tree. 

In Method 2, to include the uncertainty variability across the tree size, the PDF was adjusted by class 

(Chave et al., 2004), assuming that the uncertainties behave similarly inside each class of the 

measured variable. Classes every 5 cm and 2.5 m were defined for DBH and TH measurements. Every 

class had more than 100 data to calculate the PDF. 

Measurement uncertainties were adjusted to a PDF (Hughes & Hase, 2010; IPCC, 2003) with the 

fitDist tool in the "Propagate" package for R (R Core Team, 2018; Spiess, 2015). The adjustment 

procedure was based on the calculation of the weighted residual sum of squares (RSS) of the 

observations and is used as an adjustment criterion. Goodness-of-fit (GOF) obtained was the 

Bayesian information criterion (BIC), which has an increasing number of parameters in the 

adjustment of the distribution and compensates for the overfitting (Spiess, 2015). RSS and MSE 

were also part of the GOF report of this package. 
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Figure III–6. Probability Density Function of uncertainties for DBH and TH measurements in the 

study area. 

III.1.5.1.1.2 Method 3: Root mean square deviation 

As already mentioned, the discrepancy is not a parameter of uncertainty. However, the discrepancy 

collected information on the difference between M1 and M2. The root mean square deviation 

(RMSD) measured the difference between the two observed values per tree, averaging the squared 

deviations, giving a non-negative result. The Equation that describes the RMSD is the following: 

RMSD = √
∑ (xM1-xM2)2n

i=1

n-1
                                                                                                    Equation 01 

Where: xM1-xM2 = discrepancy, n = number of trees measured 

The RMSD estimated was used as the standard deviation of the uncertainty measurement, assuming 

a normal distribution and a constant variation (homoscedasticity) not depending on the size of the 

tree. In Section III.1.5.1.1, it was stated that discrepancies were not normal distributed, however, the 

normal distribution assumption was necessary in this case to apply the GUM Method of error 

propagation, using the standard deviation as the parameter of uncertainty applying the Law of Error 

Propagation. 

III.1.5.1.2 Tree-level (prediction error) 

The allometric models were shown in Table III-1. This table included two of the criteria used to 

select the allometric model to estimate AGB in this study: coefficient of determination (R2) and 

RMSE. The RMSE was used in the error propagation assuming a normal distribution characterizing 

the model uncertainty (uAM). 

III.1.5.1.3 Sampling error 

The previous sections have described the calculations to obtain the two sources of non-sampling 

uncertainties used in this empirical study: measurement error and prediction error. In this section, 
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we address the equations associated with sampling error, generally, the only source of error reported 

in forest inventories. Together, sampling error and non-sampling error were the total error in this 

empirical study. 

Simple random sampling (SRS) estimators were used to estimate the parameters of AGB at the 

stand-level. The estimator for the mean 𝜇̂ estimated the AGB for the study area. The Equation of 

this estimator is: 

mean (μ̂) = 𝑦 ̅= 
∑ yi

n
i=1

n
                                                                                                         Equation 02 

Where: yi = AGB estimated in plot i; n = number of plots 

The variance estimator (𝜎̂2) describes the dispersion of the per plot AGB values. It is an unbiased 

estimator of the population variance and was calculated with the following Equation: 

variance (σ̂
2)= 

∑ (yi-y̅)
2n

i=1

n-1
                                                                                                   Equation 03 

Where: yi = AGB estimated in plot i; 𝑦̅ =mean AGB estimate; n = number of plots 

The standard error of the mean (SE) is the standard deviation (𝜎̂ = √𝜎̂
2
) of all the possible sample 

means and is reported in the forest inventories as the sampling error. The SE is used to define the 

confidence interval in which the parametric mean of the AGB estimation is located with a certain 

probability of occurrence, commonly 95%. 

SE (σ̂y̅)= √
σ̂

2

n
 =

σ̂

√n
                                                                                                             Equation 04 

Where: 𝜎̂ = variance of AGB estimation; n = number of plots 

III.1.5.2 GUM Method of error propagation 

The GUM Method was used to propagate the error in AGB estimation, through the application of 

the rules for uncertainty assessment of the Joint Committee for Guides in Metrology (JCGM, 2010). 

Detailed steps of the GUM Method are described below, following the order indicated in Section 

I.4.2. 

i.Specify the measurand to calculate AGB 

The AGB was estimated by an indirect method using allometric models (AM). The predictor 

variables (DBH and TH) were used in the AM to estimate the AGB per tree. Applying the simple 

random sampling (SRS) estimators to the AGB values per tree resulted in the AGB in the study 

area. 

ii.Identify the sources of uncertainty 

The sources of uncertainty in AGB estimation were identified in Section III.1.5.1. These sources 

were grouped as non-sampling error and sampling error. The two sources of non-sampling error 

were the measurement error and the AGB prediction error. 

iii.Quantify uncertainty components or standard uncertainties 

Three methods were used to quantify measurement errors, described in Section III.1.5.1.1. With 

these methods, the measurement uncertainties of DBH and TH per tree were estimated. The AGB 
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prediction uncertainty was the RMSE of the allometric models in Table III-1. The SE, estimated 

with Equation 04, was the uncertainty parameter from sampling. 

iv. Calculate the value of the AGB 

In this step, the step i. was applied to get the best estimate of AGB. This estimate was made from 

the AGB at tree-level to the AGB at the stand-level, using the sampling error (SE). This estimate of 

AGB was the baseline excluding non-sampling errors. 

v. Calculate the combined uncertainty 

The AGB estimate had levels of error propagation or levels of a combination of uncertainties. The 

first combined uncertainty was the measurement errors in AGB estimation at tree-level (uTree), 

combining the uncertainty in DBH (uDBH) with the uncertainty in TH (uTH). To combine these 

uncertainties, the partial contribution of each variable (DBH and TH) in the AGB estimate was 

calculated (Taylor, 1997). This contribution is the sensitivity coefficient (SCDBH, SCTH) and was 

calculated by a partial derivation of the allometric model regarding DBH and TH (Equation 05). 

SCDBH=
∂AGB

∂DBH
  , SCTH=

∂AGB

∂TH
                                                                                            Equation 05 

Where: 
∂AGB

∂DBH
 = partial derivative with respect to DBH of the model used to estimate AGB;         

∂AGB

∂TH
 = partial 

derivative with respect to TH of the model used to estimate AGB 

The Law of Error Propagation (LEP) is the process that propagates random uncertainties and was 

used to combine the measurement errors in uMes. This LEP was applied when more than one source 

of uncertainty was included in the AGB's estimation model. The formula applied considered 

whether the variables involved were independent (Equation 6a) or dependent (Equation 6b). 

uMes =  √((
∂AGB

∂DBH
uDBH)

2
) + ((

∂AGB

∂TH
uTH)

2
)                                                                     Equation 06a 

uMes = √((
∂AGB

∂DBH
uDBH)

2

) + ((
∂AGB

∂TH
uTH)

2

) + (
∂AGB

∂DBH
*

∂AGB

∂TH
*uDBH*uTH*ρ

(DBH,TH)
)               Equation06b 

Where: uDBH = uncertainty of DBH measurements; uTH = uncertainty of TH measurements; ρ(DBH,TH) = 

correlation coefficient of DBH and TH measurements 

The second combined uncertainty was the non-sampling errors in AGB estimation at tree-level 

(uTree). The uMes was combined with the AGB prediction uncertainty (RMSE in Table III.1). 

These two uncertainties, independent and random, were combined applying the LEP with Equation 

07. 

uTree= √(uMes)
2
+(RMSE)

2
                                                                                             Equation 07 

Where: uMes = measurement uncertainty by tree; RMSE =root mean square error of the allometric model to 

estimate AGB 

The third combined uncertainty was the non-sampling errors in AGB estimation at plot-level 

(uNSplot), by adding uTree in quadrature, as stated in the LEP (Equation 08). 

uNSplot = √(uTree1)
2
+(uTree2)

2
+...+(uTreen)

2                                                        Equation 08 

Where: uTree = non-sampling uncertainty by tree; n = number of trees 
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The fourth combined uncertainty was the non-sampling errors in AGB estimation at the stand-level 

(uNS). The uNSplot were combined to estimate the uNS. Applying the uNSplot in Equation 04, in 

this combination, was included the sampling design in the estimation of uNS. 

uNS =√uPlots
2

n-1
 =

uPlots

√n-1
                                                                                                         Equation 09 

Where: uPlots is √
∑(uNSplot i)

2

n-1
; uNSplot= uncertainty estimates in the i plot; n= number of plots 

Note: To get the contribution to the uNS by a source of uncertainty, only the parameter (𝜎̂ or RMSE) 

of the source of interest (DBH, TH or AM) was included in the propagation and the other sources 

were stated without uncertainty. When the contributions by a source of uncertainty were obtained 

separately, it was verified by the LEP, that the uNS was the product of the independent uncertainties 

from each source. 

uNS = √(u1)
2
+(u2)

2
+…+(ui)

2
                                                                                          Equation 10 

Where: u= source of uncertainty; i = number of sources of uncertainty 

The fifth and final combination was the total uncertainty in AGB estimation (uW). In this step, the 

uNSl and the SE were combined (Equation 11). The SE was estimated in the AGB estimation 

baseline following the step iv. 

uW = √uNS2+SE                                                                                                               Equation 11 

The result of total uncertainty was reported using the 95% confidence interval. The confidence 

interval (CI) was the range where the mean AGB of the population was estimated to lie with a 95% 

probability (Equation 12). This CI was constructed with the expanded uncertainty4 of the AGB 

estimated (uWEXP), and this uncertainty was calculated with the uW multiplied by a T-distribution 

value (Equation 13). Since normality was not assumed with 10 sampled plots, the probability was 

calculated with the T-distribution. The effective degrees of freedom for T-distribution were 

calculated with the Welch-Satterthwaite equation (JCGM, 2010; Pérez-Hernández, 2012) (Equation 

14)  

Confidence interval = CIW95% = (W-uWEXP) ≤ W ≤ (W+uWEXP)                                       Equation 12 

Expanded uncertainty = uWEXP= uW * (t0.95(Veff)                                                              Equation 13 

Effective degrees of freedom = Veff = 
(uW)

4

(uNS)
4

dfNS
+ 

(SE)
4

dfSE

                                                               Equation 14 

Where: W=total AGB estimate; uWEXP=expanded uncertainty; uW=total uncertainty in the stand; Veff 

=effective degrees of freedom; uNS= uncertainty due non-sampling errors; SE=sampling error; df = 

degrees of freedom  

Figure III-7 shows the flowchart of the steps implemented to propagate the error in the AGB 

estimation, using the GUM Method. 

 
4 Term used in JCGM (2010) for error propagation with the GUM Method. 
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Figure III–7. Flowchart to estimate AGB error propagation adapted from two publications, the 

Evaluation of measurement by JCGM (2010) and the IPCC Guidelines for National GHG 

Inventories (2006). 

III.1.5.3 Monte-Carlo simulation Method (MCM) 

Determining the criteria for setting the number of iterations for error propagation in AGB 

estimation  (repeated simulations of the estimate) was an important step for the MCM. For this 

study, iterations from 10 to 100000 were evaluated, and the AGB average (𝜇̂𝐴𝐺𝐵), standard error 

(𝜎̂𝐴𝐺𝐵), and standard error confidence interval were estimated for each group of reiterations. 

Following the selection criteria established by the IPCC (2006), the number of iterations from 

which the value of the estimates reached a variation of less than 1% of the estimators calculated 

without uncertainty was selected (Figure III-8). The MCM found stability in the estimation of the 
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elements in the model, aggregation, 

estimators) 

ii. Identify the sources of uncertainty 

iii. Quantify uncertainties per source 
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• combine the uNSplot 

Total uncertainty (uW) 

• combine uNS and SE 

• Degrees of freedom Veff 

• Confidence level to expand the 

uncertainty (p=0,95)  
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AGB mean (𝜇̂𝐴𝐺𝐵) estimation and the SE (𝜎̂𝐴𝐺𝐵) of the AGB estimation from 10000 iterations so 

that this value was used in all simulations. 

 

Figure III–8. Iterations made to select the optimal number of iterations for MCM in the uncertainty 

estimation of AGB with information of El Salto, Durango. 

The MCM to estimate the error propagation in AGB estimation was implemented in the Package R 

(R Core Team, 2018). The use of the MCM required the parameters of the Probability Density 

Function (PDF) of measurement uncertainty in DBH and TH (Section III.1.5.1.1.1). The PDF used 

in MCM was the best evaluated by the Goodness-of-fit: Bayesian information criterion (BIC), 

residual sum of squares (RSS) and MSE. Correlation of the measured variables (ρ(DBH,TH)=0.78) was 

included in MCM, because according to Ogilvie (1984) it should be used when it is greater than 

|0.8|, otherwise it is negligible. The AGB prediction error parameter was the RMSE in Table III.1.  

The flowchart of MCM to propagate the error in AGB estimation is in Figure III.9. This flowchart 

was made based on the IPCC Guidelines for National GHG Inventories (2006), incorporating the 

AGB estimate for the uncertainty levels considering under this study. The flowchart represents the 

steps made by the level of uncertainty and the required information. Step 1 was the PDFs of the 

non-sampling uncertainty sources used in the AGB estimation (S1L1, S1L2). Step 2 was the random 

selection of PDF values for measurement uncertainties (S2L1) and allometric model (AM) 

uncertainty (S2L2). Step 3 was the calculation of the AGB with the AM including the uncertainty 

values (S3L1, S3L2). In step 4, the iteration process was performed, each AGB estimate was 

repeated 10,000 times, and the aggregation process from tree-level to plot-level took place. In step 

5, using the estimators in Section III.1.5.1.3 were estimated the mean value and the SE of AGB 

estimate to construct the confidence interval of the error propagation. On the right end of the 

flowchart is the path used to include all uncertainties in the simulation together. At the bottom are 

the four outcomes: error propagation with individual uncertainty sources (uDBH, uTH, uAM) and 

error propagation with all uncertainties. The error propagation using one source of uncertainty at a 

time provided the contribution of that source to the total uncertainty. The error propagation 

Equation for the MCM results in non-sampling uncertainties was: 
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uNS ≈ √(uDBH)
2
+(uTH)

2
+(uAM)

2
                                                                     Equation 15 

 

Figure III–9. Flowchart for error propagation of measurement and model uncertainties in El Salto, 

Durango, Mexico, using the MCM. 
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III.1.6 Information analysis 

III.1.6.1 General estimations of the study area 

Stand statistics were calculated for AGB and basal area for the study area. Basal area was calculated 

since it is one of the variables most used in the stand characterization and related to the tree density 

and AGB (Kershaw Jr. et al., 2017; Lewis et al., 2013; Ni-Meister et al., 2010). Data from the DBH 

and TH, as measurement variables, were included in this analysis. 

III.1.6.2 Variables measured and measurement errors 

The relationship between the response variables (DBH and TH measurements) was analyzed. These 

variables were used in the allometric model to estimate the AGB. In addition, measurement errors 

were described using three methods to estimate the measurement uncertainty parameters (uDBH 

and uTH). 

III.1.6.3 Baseline estimation 

AGB estimation, as a reference value, was calculated with the allometric model by species using the 

mean value (𝜇̂) of the two measurements for each tree (DBH and TH). The measurement 

uncertainties and allometric model uncertainties were not required for this estimation. 

III.1.6.4 Error propagation 

The three methods used to estimate DBH and TH measurement errors were used to propagate 

measurement uncertainties in AGB estimation with the GUM Method. After estimating the 

measurement errors, the prediction errors were aggregated, resulting in the AGB error propagation 

scenarios. For the identification of the methods used to estimate the measurement error in the 

propagation of the error, Table III-2 relates the method used with the acronym adopted by the 

scenario. A similar identification of scenarios was made to the methods used when applying the 

MCM in error propagation. 

Error  

propagation 
Methods to estimate measurement error 

Uncertainty 

scenario 

GUM Method 

Method 1: Normal distribution NDn  

Method 2: Normal distribution per class NDnC 

Method 3: RMSD RMSD 

MCM 
Method 1: Best PDF  MCBD  

Method 2: Best PDF per class MCBDC 

Table III-2. Methods and scenarios applied in the error propagation of AGB estimation in El Salto, 

Durango, Mexico. 

The scenarios of error propagations were compared in the errors committed in AGB estimation for 

the study area. Based on the analysis of error propagation performed, the contribution of uncertainty 

sources (DBH, TH, and allometric model) to the total error propagation was determined.  



Chapter III: Methodologies 

 

37 

III.2 Empirical study 2: Comparison of aboveground biomass estimates from two types of 

dasometric measuring equipment for the variables DBH and TH, a case study developed in 

beech forest near Göttingen, Germany 

III.2.1 Sampling and plot design 

In this study area, 47 plots were established in the summer of 2015. The plots were laid out in a 

systematic grid of 75 by 75 m (Figure III-10). Plots were circular and had an area of 500 m2 (12.61 

m radius). 

  

 

  

Figure III–10. The pictures give an idea of the study area and the systematic sampling design is 

given. 

III.2.2 Experiment design 

III.2.2.1 Re-measurement fieldwork 

Eleven plots were selected to describe and analyze the measurement uncertainties. Two variables 

were considered in the fieldwork: DBH and TH as explanatory variables to estimate AGB. The 

experiment consisted of repeated measurements to estimate the best measurement, or control data, 
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per device per variable and to characterize the uncertainty per device per variable. To obtain this 

control data, two devices were used to measure the DBH and two devices to measure the TH. 

 A protocol of measurement was made for the fieldwork. This protocol established the measurement 

criteria for the correct usage of the devices including calibration. Applying this protocol, it was 

assumed that systematic errors were avoided. The measurement protocol was based on the protocol 

established by FAO (Saket et al., 2004). The devices used for the measurement of the explanatory 

variables were: 

The DBH measurements were made with a Caliper of a maximum of 65 cm (brand Haglöf) and 

with a metallic diameter Tape for a maximum diameter of 96 cm. Measurement resolution for both 

devices was 0.1 cm. A minimum DBH of 7 cm was defined. 

The TH of the trees was measured with two hypsometers, Blume-Leiss (brand Carl Leiss Berlin 

GmbH) and Vertex IV (brand Haglöf). The two devices measured with the trigonometric principle 

the height of the tree, the measurement unit was in meter (m) and the resolution was 0.5 and 0.1 m, 

respectively. The accuracy of the Vertex was 1% and was provided only for horizontal distance 

(Haglöf Sweden AB, 2007). The resolution was the minimum scale the devices result was read 

(Schmid & Lazos Martínez, 2000) and the % accuracy indicated how different is the device lecture 

to the true measurement value (Cochran, 1977). 

"Blind measurements" were applied (Condit, 1998), as explained in Section III.1.3. Five repetitions 

were made per device per tree. The repeated measurements made with Tape and Vertex were the 

responsibility of one observer during the entire experiment, and the repeated measurements with 

Caliper and Blume-Leiss were made with a second responsible observer. The two responsible for 

measurements made field data collection in the 11 plots, while one observer conducted the 

measurements, the other recorded the observations. The devices used for this study were always the 

same during the data acquisition to avoid bias due to the device. The two observers, before 

fieldwork, trained to measure the same trees until they reach less than 1 cm and 1 m of difference in 

measurement of DBH and TH, respectively. 

III.2.2.2 Stand-level fieldwork 

Students of the University of Göttingen registered the field data of the 47 inventory plots. In this 

data, a single measure per tree and per variable was recorded with Tape and Vertex. This data was 

used to estimate the AGB and the uncertainty propagation of the measurement errors. 

The analysis of the measurement errors between repeated measurements and the fieldwork by 

students was reported in the master's thesis by Praudel (2015). Praudel compared the measurement 

of two groups of students (based on their experience in dasometric measurements) and the best 

estimate in DBH and TH using Tape and Vertex. The results of Praudel (2015) showed that 

experienced students had measurement uncertainties of 1.18 cm and 4.01 m for DBH and TH. For 

non-experienced students, the uncertainties were 1.18 cm and 4.06 m. 

III.2.3 AGB estimation 

The models used in this study, to estimate the AGB, were developed for broad-leaved trees and 

conifer trees (Fehrmann, 2006). To derive the models, Fehrmann (2006) used data from n = 528 

trees for the general model for broad-leaved trees and data from n = 963 trees for the general model 
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for conifers. The DBH range of the sampled trees was from 0.8 cm to 77.1 cm and for tree TH from 

1.9 m to 29.1 m. The corresponding models are in Table III-3, and the total AGB per tree (W) is 

calculated in kg. 

Vegetation group AGB allometric models 

Broad-leaved W = 0.044 * DBH2.048 *TH0.759 

Broad-leaved W = 0.099 * DBH2.501 

Conifers W = 0.082 * DBH2.170 *TH0.349 

Conifers W = 0.089 * DBH2.464 

Table III-3. Allometric AGB models used in the study area of Göttingen, Germany (Source: 

Fehrmann, 2006). 

III.2.4 Sources of uncertainties 

III.2.4.1 Tree-level (measurement error) 

III.2.4.1.1 Individual tree uncertainty. 

The SRS estimators were used to calculate the mean value (𝜇̂) and the standard deviation (𝜎̂) of the 

five measurements per tree, in the 11 re-measurement plots. The mean (𝜇̂) was the best estimate 

value of the measurement and the standard deviation (𝜎̂) was the uncertainty parameter of the 

measurement. Applying these calculations to the measured variables (DBH and TH), and in the four 

devices used, were estimated the measurement uncertainty parameter per variable, per device, and 

per tree. Although this uncertainty was an estimate, it was named "measured uncertainty" indicating 

that it comes from the repeated measurement per tree. 

III.2.4.1.2 Methods to estimate the “measured uncertainty” 

Repeated measurements were made on 11 out of 47 plots, i.e. the "measured uncertainty" could not 

be estimated for all trees. Therefore, four methods were used to estimate the measurement 

uncertainty parameters to include this uncertainty in all the trees at the stand-level. The source of 

information was the “measured uncertainty” (previous section) and the methods applied are 

described in the following sections. 

III.2.4.1.2.1 Method 1: mean value of “measured uncertainty” 

The mean value or average of the “measured uncertainty” from Section III.2.4.1.1 was calculated, 

and this mean uncertainty parameter (𝜎) was applied to the measurements made in trees of the 47 

plots. Applying this method, we assumed that the measurement errors had the same size (𝜎) on all 

trees and these errors not depended on the size of the tree. This estimation was made per device. 

III.2.4.1.2.2 Methods 2 and 3: Probability Density Function (PDF) 

These methods were explained in Section III.1.5.1.1.1. In this case study, the uncertainty 

information to calculate the Probability Density Functions (PDF) was the standard deviation (𝜎̂) 

estimated per tree or “measured uncertainty”. In the method 2, a PDF was fitted using all the dataset 

of measurement errors (𝜎̂) and was applied per variable measured (DBH and TH) and per device. In 
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method 3, the total number of measurement uncertainties (𝜎̂) was divided into three classes. The 

classes used were 7-20, 20-40, 40-63 for DBH (in centimeters) and 5 - 15, 15 - 25, 25 - 37 for TH 

(in meters). The criteria used for the selection of classes was taken from Pardé and Bouchon (1988), 

using classes with more than 50 observations to fit a PDF per class, considering every class as a 

homogeneous dataset. 

III.2.4.1.2.3 Method 4: Regression analysis 

The relationship between the DBH and its measured uncertainty was adjusted to a linear model and 

the Shapiro-Wilkoxon and Breusch-Pagan Tests were applied to verify the normality and 

homoscedasticity of the regression residuals. The hypotheses of normality and heteroscedasticity 

(pSW = 3.612e-12 and pBP = 3.2e-06) were rejected. Classical transformations (ln x, √x, 1/x) applied to 

the data to meet the assumptions of normality were not successful, so that a transformation of the 

response variable was performed through the Box-Cox method (Box & Cox, 1964; García-Pérez, 

2014). Once the transformation was applied, the residuals had a normal distribution; however, the 

heteroscedasticity was significant. Due to heteroscedasticity, a weight factor was incorporated into 

each observation (inversely proportional to the variance) to perform a regression with the Weighted 

Least Squares estimator (wls). This estimator incorporated the variability of the errors into the 

model and estimated a homoscedastic error model (Fahrmeir et al., 2013; Hill et al., 2018). For 

model assessment, cross-validation was made (James et al., 2013). One sample of half the dataset 

was randomly selected and used to calculate the test error rate of the model. The selection process 

was repeated 1000 times to construct the 95% confidence interval of the MSE, verifying that the 

MSE of the fitted model was in the estimated confidence interval. 

III.2.4.2 Tree-level (prediction error) 

The Goodness-of-fit reported for the allometric models used in this study are shown in Table III-4. 

The RMSE described the contribution of the model uncertainty to the total uncertainty, this was the 

uncertainty due to the model (uAM). 

Vegetation Group n R2 RMSE (kg) Source 

Broad-leaved (DBH, TH) 528 0.98 1.30 

Fehrmann, 2006 
Broad-leaved (DBH) 528 0.98 1.35 

Conifers (DBH, TH) 963 0.97 1.31 

Conifers (DBH) 963 0.97 1.32 

                        n=number of sampled trees, R2= coefficient of determination and RMSE = root mean square error. 

Table III-4. Goodness-of-fit for the models used in the study area of Göttingen using DBH and TH 

measurement. 

III.2.4.3 Sampling error. 

In this study, was used a systematic sampling in the fieldwork to collect the data. The estimator of 

the mean (𝜇̂) was the estimator described for simple random sampling (SRS). On variance and SE 

no unbiased estimators have been developed for systematic sampling (Mostafa & Ahmad, 2018). 

However, the variance estimator (𝜎̂2, 𝜎̂𝑦̅) of the SRS in the data obtained with systematic sampling is 

generally used, even when the estimators of SRS overestimate the variance due to systematic design 
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is more precise (Cochran, 1977). SRS estimators were used for this study and the equations have 

been addressed in the previous case study (Section III.1.5.1.3). 

III.2.5 Monte-Carlo simulation Method (MCM) 

The MCM was used to propagate the error in AGB estimation of the study area. The MCM was 

conducted for the two measurement datasets, Caliper and Blume-Leiss (CB) and Tape and Vertex 

(TV) measurements. The flowchart used in the first topic (Figure III-9, Section III.1.5.3), was 

basically the same used to represent the MCM in the case study of Göttingen. The difference was 

the use of two datasets of measurement error to estimate the AGB (CB and TV). The following 

Section III.2.6 lists the datasets and methods to estimate measurement errors used in MCM. 

The MCM approximations, as a result of the applied iterations, had a difference of less than 1% in 

the estimators (mean (𝜇̂𝐴𝐺𝐵) and SE (𝜎̂𝐴𝐺𝐵)) to be valid, according to the guidelines of the IPCC 

(2006). Figure III-11 shows the result of the test carried out with the data of the study area in 

Göttingen finding 10000 as the number of iterations used in this study. This number of iterations 

was used to estimate the AGB in the scenarios evaluated in this case study. 

 

Figure III–11. Essay of iterations to select the optimal number of iterations for MCM in the 

uncertainty estimation of AGB with information of Göttingen. 

III.2.6 Information analysis 

III.2.6.1 General estimators of the study area 

AGB and basal area statistics were calculated for stand area (47 plots) and re-measurement area (11 

plots). In the re-measurement plots were calculated the statistics for two datasets, Caliper+Blume-

Leiss (CB) and Tap+/Vertex (TV). This analysis included statistics of the measured variables DBH 

and TH. 
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The relationship between the variables used to estimate the AGB at the re-measurement plots was 

compared and analyzed for the two datasets (CB and TV). 

The measurement errors of each measuring device were described and the parameters of the PDF 

describing the measurement errors were estimated. This was done for the whole dataset and for the 

DBH and TH classes, according to the measurement device. 

III.2.6.2 Baseline information 

In this empirical study, four-baseline datasets of AGB without uncertainty were estimated (Table 

III.5) in the 11 re-measurement plots. The datasets used were a combination of the measurement 

device(s) and the allometric model to estimate the AGB. The measurement per device used in the 

estimation were the mean values per tree (best estimate). 

Measurement  

variable 
Device (s) Allometric model Dataset  

DBH, TH Caliper, Blume-Leiss 
AGB = f (DBH, TH) 

CB 

DBH, TH Tape, Vertex TV 

DBH Caliper 
AGB = f (DBH) 

C 

DBH Tape T 

Table III-5. Reference datasets in AGB estimation for re-mesurement plots. 

The baseline information used in the stand area, recorded by students (Section III.2.2.2) was used to 

estimate the AGB applying the allometric models for conifers and hardwoods to the measurement 

variables (best estimate). 

III.2.6.3  Error propagation 

The first analysis was performed on the 11 re-measurement plots using the baseline information 

(Section III.2.4.1.2). In this analysis, the “measured uncertainty” was included, and the GUM 

Method of error propagation was applied to estimate the total uncertainty in AGB estimation for the 

datasets in Table III-5. 

The second analysis, also on the 11 re-measurement plots, compared the scenarios of error 

propagation with GUM Method proposed in this study. The scenarios included two sources of 

information, the dataset (CB or TV) and the method used to estimate measurement uncertainty. 

Table III-6 contains the acronyms to identify the scenarios to easily identify them in the results 

section, the measurement error of the students were also included as scenarios. To compare the 

methods, an Analysis of Variance for repeated measurements were used and paired T-Tests were 

applied to determine significance in paired comparisons. 

The third analysis was conducted with information from the 47 plots. The scenarios that best 

represented the “measured uncertainty” in the previous analysis were selected. These scenarios, in 

addition to the scenarios that used the best PDF to describe the measurement error, were used to 

propagate the error using the MCM and were compared. An Analysis of Variance for repeated 

measurements and paired T-Tests were used to compare the scenarios and find significance in the 

paired comparisons. Table III-7 lists the scenarios used in the MCM, including the students' 

measurement error as scenarios. 
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Dataset 
Measured uncertainty and  

Methods to estimate measurement uncertainty 

Uncertainty 

scenario 

CB 

Measured uncertainty CB 

Method 1: mean CBmean  

Method 2: Normal distribution CBNDn 

Method 3: Normal distribution per size class CBNDnC 

Method 4: Regression model CBmod 

TV 

Measured uncertainty TV 

Method 1: mean TVmean  

Method 2: Normal distribution TVNDn 

Method 3: Normal distribution per size class TVNDnC 

Method 4: Regression model TVmod 

Students with prior experience TVExp 

Students without prior experience TVNexp 

Table III-6. Scenarios of error propagation with GUM Method. 

Dataset Methods to estimate measurement uncertainty 
Uncertainty 

scenario 

CB 
Method 2: Best PDF  CBBD 

Method 3: Best PDF per size class CBBDC  

TV 

Method 2: Best PDF  TVBD 

Method 3: Best PDF per size class TVBDC  

Students with prior experience TVExp 

Students without prior experience TVNexp 

Table III-7. Scenarios of error propagation with MCM. 

Error propagation results by each source of uncertainty were reported, estimating the contributions 

of uncertainty in measuring DBH (uDBH), uncertainty in measuring TH (uTH), AGB prediction 

uncertainties (uAM) and sampling uncertainties (SE). Table III-8 shows the identification of sources 

of uncertainty for the CBBD scenario, also used in the other scenarios. 

Dataset 
Methods to estimate  

measurement uncertainty 
Source of uncertainty 

Uncertainty 

scenario 

CB Method 2: Best PDF  

all CBBD 

uDBH CBBDa  

uTH CBBDb 

uAM CBBDc 

SE CBBDd 

Table III-8. Sources of error contributing to error propagation scenario. 

III.3 Empirical study 3. Propagation of errors in the AGB estimation for the state of 

Durango, Mexico, with information of the National Forest Inventory 

III.3.1 Overview 

The information registered in MNFI is assumed free of measurement uncertainties and only the 

sampling error is reported in the variables estimated. The information analyzed and the results 

obtained in El Salto, Durango (first empirical study), were important in describing the measurement 
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uncertainty in DBH and TH, because there have been no studies in Durango that provide this 

information. In this empirical study, it was assumed that the measurement uncertainties in MNFI 

were like the measurement uncertainties assessment described in the El Salto, Durango, to 

propagate the uncertainties in AGB estimation, using the Monte Carlo simulation Method.  

III.3.2 Fieldwork dataset to estimate AGB 

Two datasets were used for this study; the first measurement of the MNFI in the state of Durango 

for the period 2004-2009 and the first re-measurement from 2009-2014. The registers were made 

following the “Manual and procedures for field sampling” made by CONAFOR to be applied at the 

fieldwork stage (CONAFOR, 2009b). 

III.3.3 Sampling Design 

The sampling design used in the MNFI was a systematic stratified sampling using a cluster of four 

subplots in a fixed pattern. A grid composed of panels of 5 X 5 km was superimposed on the 

territory of Mexico (Figure III-12). Each point in this grid represented the location of one cluster. 

According to the vegetation type (INEGI, 2017), and forest density the grid was applied with wider 

distances (10 X 10 km and 20 X 20 km). CONAFOR, in the field manual, named the cluster as a 

primary sampling unit (PSU) and the subplot as a secondary sampling unit (SSU) The SSU was 

where the variables and characteristics of the site were measured/estimated/described. The 

description of the size and shape of the PSU and SSU is detailed below (CONAFOR, 2012c) 

III.3.4 Plot design 

In 1998, the North American Science Symposium was held with the aim of standardizing methods 

of data collection in future monitoring programs and inventories of forest in North America, to 

make them comparable and with assured quality. In this symposium, the plot design of the United 

States Forest Inventory (Bechtold & Zarnoch, 1999) was described, as well as proposals for plot 

designs to optimize forest sampling (Schreuder & Geissler, 1999). With this precedent, and for the 

new MNFI, Velasco et al. (2002) evaluated seven plot designs for the variables: number of trees, 

basal area, and volume. According to the analysis of Velasco et al. (2002), the optimal plot design 

was applied in the MNFI with a relative error of less than 7%. This design, consisted of a PSU of 

one hectare with a radius of 56.42 m, inside this PSU four SSU of 400 m2 each with a fixed radius 

of 11.28 m were sampled. Figure III-13 is shown the aspect of the PSU, and the inverted "Y" design 

in where the four SSU were arranged in fieldwork (CONAFOR, 2012c). 

In the SSU, were measured trees with DBH equal to or greater than 7.5 cm. Inside the SSU, in a 

nested subplot of 12.56 m2 (2 m radius), were measured trees with DBH less than 7.5 cm with a 

height greater than or equal to 25 cm. In the center of the SSU was located one-square-meter site 

micro-plot to sample herbs, ferns, mosses, and lichens. In total, 112 variables were 

measured/estimated/observed in the MNFI, 54 variables for quantitative purposes and 58 for 

qualitative (CONAFOR, 2009a, 2012c). 
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Figure III–12. Durango coverage grid for the tree main vegetation types. 

  

Figure III–13. Form and distribution of PSU and SSU in the MNFI in Mexico. Source 

(CONAFOR, 2012c). 

III.3.5 Estimators design 

The estimators used in the MNFI were designed by Velasco et al. (2003) using in the research the 

main variables of interest (basal area, tree density, volume, among others) of the MNFI 

(SEMARNAT, 2004) and adding the hierarchical level of estimation for vegetation types: 

ecosystem, stratum, and substratum (INEGI, 2014). The estimator was a ratio estimator using the 

area of the SSU as an auxiliary variable to obtain the results of the parameters measured in hectares. 

The estimators used the following notation (CONAFOR, 2012b): 

Ratio estimator 
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R̂h=
∑ Yhi

nh
i=1

∑ Ahi

nh
i=1

                                                                                                                        Equation 16 

Where:  R̂h = Estimated ratio to obtain information at stratum level or vegetation formation 

nh = Number of PSU evaluated in stratum h 

Yhi
= Variable of interest (AGB or basal area) = ∑ Yhij

= ∑ ∑ Yhijk

thij

k=1
 

mj

j=1
 

mj

j=1
 

Yhij
= Value of the variable of interest in SSU j (secondary sampling unit –SSU-) of PSU i of 

stratum h 

Yhijk
= Value of the variable of interest of tree k in SSU j of PSU i of stratum h 

thij = Number of trees evaluated in SSU j of PSU i of stratum h 

mj = Number of the SSU evaluated in the PSU; j = 1, 2, 3 or 4 

Ahi
= plot area (ha) sampled from PSU i of stratum h (auxiliary variable) = ∑ Ahij

mj

j=1
  

Ahij = Area (0.4 ha) of SSU j of PSU i of stratum h 

The variance estimator measured how spread out was the variability from the ratio estimation in the 

variable of interest. 

σ̂
2(R̂)= 

σ̂Yhi
 

2
+ R̂

2
σ̂Ahi

2

+2R̂σ̂Yhi
Ahi

nA̅hi

2                                                                                           Equation 17 

Where:  σ̂Yhi
 

2 = Variance of the variable of interest (AGB or basal area) 

σ̂Ahi

2 = Variance of the auxiliary variable (plot area) 

σ̂Yhi
Ahi

= Covariance of the variable of interest and the auxiliary variable (sampled area) 

𝐴̅ℎ𝑖
= Mean value of forest area (ha) sampled 

The standard error was the square root of Equation 17. 

SE(R̂) = √σ̂
2(R̂)                                                                                                             Equation 18 

The relative standard error expresses the standard error in percent of the estimated mean: 

SE%= RSE(R̂) = 
√σ̂

2(R̂)

R̂
*100                                                                                       Equation 19 

III.3.6 National Forest Inventory data validation 

A review process of the raw MNFI database was applied, as a validation system, to detect 

registry errors and select the information to be analyzed (Morales M., 2005). Since the original 

field sheets were not accessible, it was not possible to determine typing and writing errors. 

However, a debugging of the database and a selection of the records were made, following the 

scheme presented below (Figure III-14). The debugging and selection were made under the 

assumption that the errors occurred during data typing in the database program. 
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Figure III–14. Flow diagram for database debugging implemented to select the information to 

analyze from the database of MNFI in Durango. 

The database debug was designed to select the forest type, standing trees for this case study, and 

delete the registers with mistakes. The debug had as a first criterion the selection of temperate forest 

clusters, the predominant vegetation in the study area. As the second criterion the standing alive 

trees were selected, due to the allometric models used to estimate the AGB were fitted with these 

criteria. The next step consisted of the elimination of duplicated registers and registers without 

information of DBH, height or without species identification. During this process were eliminated 

records with DBH less than 7.5 cm due they did not comply with the regulations of the data 

collection protocol and were considered records mistake. 

As part of the debugging of the database, graphical analyses were performed for each tree species 

using the relationship DBH and height to compare with the information of the technical datasheets 

made by CONAFOR and in this way rule out errors of registration assignment (DBH, TH, species). 

The graphic analysis was complemented by applying the non-parametric method used by Bi (2000), 

to locate outliers in the DBH ~ TH relationship. 

III.3.7 AGB estimation 

The AGB estimate for the MNFI data in Durango was made using allometric models (AM) for the 

346 species registered. Mexico’s dataset of models to estimate AGB does not have complete 

coverage for all tree species of Durango (Rojas-García et al., 2015). Therefore, using the model 

selection method proposed by CONAFOR (2014), the species were grouped by vegetation type or 

genus to estimate the AGB. The selection criteria and model assignment was explained in Section 

III.1.4. 

The 36 models used to estimate the AGB are shown in Table VIII.1 of Appendix I. From the 

models used, six were produced in studies conducted in Durango (Arbutus sp, Juniperus spp, Pinus 

spp, Pseudotsuga spp, Prosopis spp, Quercus spp) and used to estimate the AGB for 96% of the 

trees sampled in the MNFI. The genera with the highest share were Quercus spp with 44% of the 

registered trees and Pinus spp (37 species) with 40%. For Cedrela spp, Yucca spp, tropical dry 

forest and desert communities, AM from neighboring states of Durango were used. Together, these 

four vegetation types represented 1.9% of the sampled trees; however, these included 144 species, 

mainly shrubs. The remaining 26 AM used were for genera and species with the lowest number of 

observations at the MNFI in Durango (2.6%). For these genera and species, no studies are reported 
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that have built AM for AGB estimation, so adjusted AM were used in other states of Mexico and 

even in other countries. 

III.3.8 Source of uncertainties 

III.3.8.1 Tree-level (measurement error) 

The information assessed in El Salto, Durango (first empirical study), was used to estimate the 

measurement uncertainties of the trees in the MNFI in Durango State. The distribution of the trees 

measured in El Salto, MNFI 2004-2009 and MNFI 2009-2014 is shown in Figure III-15. In this 

figure, due to the scale and density of the points, the trees less than 20 m of TH and less than 30 cm 

of DBH are overlayed. 

The Figure III-15 shows two differences between the dataset in El Salto compared to the datasets of 

the MNFI in Durango State: the maximum limit of the measured THs and DBHs, and the clearly 

limited subset for the trees in El Salto. These differences were because sampling in El Salto was 

made in relatively homogeneous pine plantations without forest management, while in MNFI, the 

objective was to determine the variability of the species and the potential productivity of all the 

forests in Durango state and generally in Mexico (CONAFOR, 2017a). 

 

Figure III–15. Tree distribution in the relationship DBH (cm) & TH (m) for El Salto 2015 

(n=4262), MNFI 2004-2009 (n=109762) and MNFI 2009-2014 (n=109983). 

III.3.8.2 Tree-level (prediction error) 

The allometric models used to estimate the AGB were selected according to previously established 

criteria. One of these criteria was the MSE, which expressed the variability of the data estimated by 

the model. Table VIII.1, with the MSE values by allometric model, is in Appendix I of this 

document. This table shows that 16, of 36 models used were reported with the MSE value. These 16 

models covered about 98% of the MNFI sample trees. 
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III.3.8.3 Plot design error 

The plot design implemented in the MNFI had two major characteristics: 1) relative error of less 

than 7% as a previous-established criterion in the study area (Velasco et al., 2002) and 2) this design 

reduced implementation costs according to previous studies by Scott (1993). The design used in the 

MNFI was the optimal but also the one with the highest relative error and according to Velasco et 

al. (2002), there were designs with 2% less relative error. The 2% variation was used to propagate 

the uncertainty due to the plot design assuming that this uncertainty was normally distributed. 

III.3.9 Error propagation with Monte-Carlo simulation Method (MCM) 

Figure III-16 shows the flowchart designed for the propagation of MNFI uncertainties in the state of 

Durango. This flowchart is like that presented in Section III.1.5.3, except that for the Durango 

MNFI information is available about the variation in the estimation of the AGB at cluster level 

according to previous studies. The correlation coefficient between DBH and TH was not used in 

AGB estimation with MCM because in both periods of the MNFI it was below |0.08| (ρMNFI0409=0.67 

and ρMNFI0914=0.65). The number of iterations used in the MCM was 10,000 times. 

III.3.10 Information analysis 

III.3.10.1 General statistics of the study area 

The errors detected when debugging the database of the two MNFI periods analyzed (2004-2009 

and 2009-2014), were described. AGB and basal area statistics were analyzed for the two periods, 

estimated by DBH and TH classes. The analysis included statistics for the two main genera in the 

study area, Pinus spp and Quercus spp. 

III.3.10.2 Reference information to comparison 

Two MNFI periods were analyzed in Durango, the first measurement of 2004-2009 and the first re-

measurement 2009-2014. In both cases, field measurements of the variables required for the 

estimation of AGB (DBH, TH, crown diameter, and wood density) were used. With this information 

and the allometric models, the AGB was estimated without considering the uncertainty in the 

calculation, having two reference datasets, 2004-2009 and 2009-2014 for the study area. 

III.3.10.3 Error propagation 

Using the MCM and following the flowchart in Figure III-16, the uncertainties were estimated 

individually for each uncertainty source (DBH, TH, allometric model and sampling) in the AGB 

estimate for the MNFI in Durango. This procedure was applied to the two MNFI datasets of this 

study.  

Second uncertainty propagation in AGB estimation was made to evaluate the experience for the 

field teams as one potential factor for measurement errors. Base data were taken from the 

measurement errors by the field teams with different experience in forest measurements as 

described in Section III.2.2.2). The uncertainties of allometric models and cluster design were also 

included to calculate the propagation of the uncertainty. 
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The propagation of uncertainty in the AGB estimate was performed for three levels of vegetation 

aggregation: ecosystem (temperate forest), stratum (conifers, mixed and oak) and substratum, which 

divides each stratum into primary and secondary vegetation. 

 

Figure III–16. Flowchart for error propagation of measurement, model and plot design 

uncertainties for MNFI in Durango, Mexico, using the MCM.  
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III.4 Empirical study 4: Modelling and mapping AGB for the state of Durango 

III.4.1 Overview 

In this case study, the AGB was modeled with Landsat imagery, using AGB information calculated 

from MNFI field measurements. The flowchart in Figure III-17 describes the steps followed in this 

study, explained in the following lines. 

 

Figure III–17. AGB estimation and mappaing flowchart. 

III.4.2 Field data 

Field information from MNFI was registered into different levels of aggregation according to the 

vegetation type (Table III-9). The information was provided by fieldwork of MNFI and the 

vegetation series the Institut of statistic and geography in Mexico (INEGI) elaborated from Landsat 

satellite imagery interpretation (INEGI, 2017). 

III.4.3 Remote sensing data processing  

The satellite images used in this study to estimate field measurements were Landsat 5 TM and 

Landsat 8 OLI, for the two periods analyzed in this study. Scenes LT1 (standard level-one terrain-

corrected) in surface reflectance values and less than 20% cloud coverage were requested from the 

website of the United States Geological Survey (https://earthexplorer.usgs.gov/). The temperate 

forest of Durango State is covered by eight images (Figure II-4, Section II.2.1) of Landsat 5 from 

https://earthexplorer.usgs.gov/
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7th to 30th April 2007 and Landsat 8 from 28th April to 23th May 2013. The surface reflectance 

product was orthorectified to WGS84 datum, geometrically calibrated (Wu et al., 2016) and 

consistently georegistered with RMSE < 6 m (metadata information) when the average RMSE is ≤12 

m (Young et al., 2017). This product included the visible, near infrared (NIR) and short-wave 

infrared (SWIR) bands for all the scenes. 

MNFI 
Vegetation Aggregation Level 

Ecosystem Strata 

2004-2009 Temperate forest, 1662 Clusters 

Conifer forest, 292 Clusters 

Mixed forest, 1033 Clusters 

Oak forest, 337 Clusters 

2009-2014 Temperate forest, 1635 Clusters 

Conifer forest, 216 Clusters 

Mixed forest, 1156 Clusters 

Oak forest, 263 Clusters 

Table III-9. Aggregation levels used to classify vegetation with the number of clusters recorded in 

the MNFI (CONAFOR, 2012c). 

The area of interest in this study was the temperate forest; therefore, areas of non-forest or have 

pixels with altered values (clouds) were eliminated. Surface reflectance information included spatial 

data on cloud size and location. This information was used to eliminate the clouds and their 

shadows. 

Non-forest information was obtained from INEGI vegetation and land-use series (LUVS) (INEGI, 

2017), using data from anthropogenic use (INEGI, 2014). The fieldwork of LUV Series IV took 

place between 2007 and 2008, the anthropogenic layer information of this series was used with the 

Landsat 5 TM imagery (2007). For the information of Landsat 8 OLI (2013), Series V was used 

which had fieldwork during 2012-2013.  

With the cloud’s information and the anthropogenic layers of the LUVS, a mask was made to cut 

the non-forest information and pixels with altered data of Landsat imagery in both periods. Pimple 

et al. (2017) recommend this procedure prior to topographic correction. 

To minimize the shadow effect on the calculation of the indexes to be used to estimate AGB, the C 

correction method proposed by Teillet et al. (1982) was performed on Landsat images in QGIS 

(QGIS Development Team, 2019) with the SAGA processing tool. This method has been used in 

previous studies (Pimple et al., 2017; Riaño et al., 2003; Vázquez-Jiménez et al., Novillo, 2017), 

recommended for not presenting over-correction (Wu et al., 2016) and reducing the topographic 

effect in mountain forest terrains (Pimple et al., 2017), such as those of the temperate forest of the 

state of Durango. The C-correction is defined as follows (Riaño et al., 2003): 

ρ
H

= ρ
T

(
cos θz+ ck

IL+ck
)                                                                                                            Equation 20 

IL=cosθpcosθz+sinθpsinθzcos (ϕ
a
-ϕ

o
)                                                                     Equation 21 

Where: 𝜌𝐻 is the reflectance of a horizontal surface, 𝜌𝑇 is the reflectance of an inclined surface, ck= 
bk

mk
, 𝑏𝑘 is 

the gradient of regression line for band k, 𝑚𝑘 is the slope of the regression line for band k,  𝑏𝑘 is the 

intercept in regression line of 𝜌𝑇 vs IL for band k, 𝑚𝑘 is the slope in regression line of 𝜌𝑇 vs IL for 
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band k , 𝜃𝑝 is the slope angle; 𝜃𝑧 is the solar zenith angle; 𝜙𝑎 is the solar azimuth angle; and 𝜙𝑜 is the 

aspect angle. 

 

The information source for 𝜃𝑝 and 𝜙𝑜 was the Digital Elevation Model (DEM) version 3.0 (MSE ≤ 

4.9 m) provided by INEGI with spatial resolution of 15 m scaled to 30 m 

(http://www.beta.inegi.org.mx/app/geo2/elevacionesmex/). The values for 𝜃𝑧 and 𝜙𝑎 were obtained 

from metadata information provided by USGS for every scene, and it was applied for the estimation 

of 𝜌𝐻 to each band. 

With the images corrected, the eight scenes were merged into a mosaic for each spectral band. The 

scenes were placed in the same hierarchical order and in this way the following calculation of the 

vegetation indexes was calculated with the corresponding ordered information. 

III.4.4 Response variables  

The information of interest for this case study were calculated using the measured variables of 

MNFI. The response variables used were AGB and basal area (G). Basal area with the DBH 

measurement was directly obtained and reported in m2 ha-1. AGB calculation was made by tree with 

36 allometric models by genus and group of species (Table VIII-1, Appendix I) and reported in Mg 

ha-1. The ratio estimators used to calculate the response variables, referred directly to the plot area 

that was sampled (CONAFOR, 2012c) (Section III.3.5). 

III.4.5 Co-registration of remote senting and field plots 

The predictor variables for AGB used in this study were spectral bands, vegetation indexes (VI) and 

Gray Level Co-occurrence Matrix (GLCM) based texture, calculated from the Landsat imagery for 

the two data sets used in 2007 and 2013. The spectral bands and VI have been used as predictors of 

Landsat images to estimate AGB in pine forest (Günlü,  et al., 2014), AGB in state inventory for 

New England, USA (Zheng, Heath, & Ducey, 2008), among other studies. Lu, 2006 and Rodríguez-

Veiga et al. (2017) emphasized the importance of including other variables to avoid saturation in the 

AGB estimation when VI are used. Using GLCMs as predictor variables, the AGB estimates have 

been above the saturation value that is estimated with the use of VI (Kelsey & Neff, 2014; Wu et al., 

2016; Zhao et al., 2016). 

III.4.5.1 Spectral Bands 

The spectral bands used in this study were the visible spectrum, NIR and SWIR. The MNFI field 

manual states that the location of the plots was recorded with an accuracy of up to 15 m, and the co-

registration of the Landsat images had an RMSE of less than 6 m, which meant that the values of the 

estimated AGB could converge on different adjacent pixels of the Landsat image. Therefore, to 

solve the location issue, a window of 3 X 3 pixels was applied to calculate the mean value by pixel 

of the spectral bands to be used as predictor variables of AGB (A. Günlü et al., 2014; Wu et al., 

2016). 

III.4.5.2 Vegetation indexes 

Spectral indexes are combinations of spectral reflectance of two or more wavelengths (spectral 

bands) indicating the relative abundance or accumulation in satellite imagery that can be associated 

http://www.beta.inegi.org.mx/app/geo2/elevacionesmex/
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with a feature of interest (Bramhe et al., 2018), such as the AGB in this study. Vegetation indexes 

(VI) are the most popular type that detects the photosynthetic activity of vegetation and are sensitive 

to AGB estimation (Rodríguez-Veiga et al., 2017). 

The NDVI is the most commonly used index for vegetation studies because it is sensitive to the 

photosynthetically active biomass (Bannari et al., 1995). EVI, WDRVI, and NDMI were calculated 

as they are used as an alternative to NDVI because they are more sensitive in areas with high AGB 

and AGB content in tree crowns (Glenn et al., 2008; Henebry et al., 2004; USGS, 2017). SR and 

SRG were also calculated due they are sensitive to the amount of vegetation and reduce the effect of 

atmosphere and topography (Glenn et al., 2008). Other indexes such as SAVI, MSAVI, and SATVI 

have been calculated because they incorporate a correction factor for areas with spaces between 

vegetation or senescent vegetation, reducing the effect of the soil and dead wood on the collected 

vegetation information (Marsett et al., 2006; Qi et al., 1994). The calculated VIs are shown in Table 

III-10, they were calculated using the Grass module of the QGIS program. 

Index Calculation Range Reference 

Atmospherically 

Resistant Vegetation  
𝐴𝑅𝑉𝐼 (𝐴𝑅) =

𝑁𝐼𝑅−𝑅𝑒𝑑−2(𝑅𝑒𝑑−𝐵𝑙𝑢𝑒)

𝑁𝐼𝑅+𝑅𝑒𝑑−2(𝑅𝑒𝑑−𝐵𝑙𝑢𝑒)
  -1 to 1 (Kaufman & Tanré, 1992) 

Enhanced vegetation  𝐸𝑉𝐼(𝐸) = 2.5 
𝑁𝐼𝑅−𝑅𝑒𝑑

(𝑁𝐼𝑅+6∗𝑅𝑒𝑑−7.5∗𝐵𝑙𝑢𝑒)+1
  -1 to 1 (Glenn et al., 2008) 

Modified Soil 

Adjusted Vegetation  
𝑀𝑆𝐴𝑉𝐼 (𝑀𝑆𝐴) =

2∗𝑁𝐼𝑅+1−√(2∗𝑁𝐼𝑅+1)2−8∗(𝑁𝐼𝑅−𝑅𝑒𝑑)

2
  -1 to 1 (Qi et al., 1994) 

Normalized  

Difference Moisture  
𝑁𝐷𝑀𝐼 =

𝑁𝐼𝑅−𝑆𝑊𝐼𝑅1

𝑁𝐼𝑅+𝑆𝑊𝐼𝑅1
  -1 to 1 (Wilson & Sader, 2002) 

Normalized  

Difference Vegetation 
𝑁𝐷𝑉𝐼 (𝑁𝐷) =

𝑁𝐼𝑅−𝑅𝑒𝑑

𝑁𝐼𝑅+𝑅𝑒𝑑
  -1 to 1 (Qi et al., 1994) 

Simple Ratio 𝑆𝑅 =
𝑁𝐼𝑅

𝑅𝑒𝑑
  0 to > 30 

(Glenn et al., 2008; Le 

Maire et al., 2004) 
Simple Ratio Green 𝑆𝑅𝐺 =

𝑁𝐼𝑅

𝐺𝑟𝑒𝑒𝑛
  0 to > 30 

Soil-adjusted Total 

Vegetation 
𝑆𝐴𝑇𝑉𝐼 (𝑆𝐴𝑇) =

𝑆𝑊𝐼𝑅1−𝑅𝑒𝑑

𝑆𝑊𝐼𝑅1+𝑅𝑒𝑑+0.5
(1 − 0.5) −

𝑆𝑊𝐼𝑅2

2
  -1 to 1 (Marsett et al., 2006) 

Soil-adjusted  

Vegetation  
𝑆𝐴𝑉𝐼 (𝑆𝐴) =

𝑁𝐼𝑅−𝑅𝑒𝑑

𝑁𝐼𝑅+𝑅𝑒𝑑+0.5
(1 + 0.5)  -1 to 1 (Jackson & Huete, 1991) 

Wide Dynamic  

Range Vegetation  
𝑊𝐷𝑅𝑉𝐼 (𝑊𝐷𝑅) =

0.1∗(𝑁𝐼𝑅−𝑅𝑒𝑑)

0.1∗(𝑁𝐼𝑅+𝑅𝑒𝑑)
  -1 to 1 (Gitelson, 2004) 

Table III-10. Vegetation indexes evaluated in this study based on spectral bands information of 

Landsat imagery. 

III.4.5.3 Textures 

The texture is a metric of pixel variability across neighboring pixels for a defined processing 

window (Kelsey & Neff, 2014). GLCM-based texture measurements provides the basis for 

calculating multiple first or second order statistical quantities and were defined by Haralick et al. 

(1973), currently the common procedure for obtaining texture from images (Zhao et al., 2016). 

Based on AGB estimates in studies conducted in temperate and subtropical forests (Safari & 
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Sohrabi, 2016; Wu et al., 2016; Zhao et al., 2016) the textures to be extracted from Landsat images 

were selected (Table III-11). 

Texture has been calculated for spectral bands (Fuchs et al., 2009; Kelsey & Neff, 2014; Safari & 

Sohrabi, 2016; Wu et al., 2016) and for vegetation indexes (Lopez-Serrano et al., 2015). In this 

study, a Pearson correlation was performed between the response variables (AGB and basal area) 

and the predictor variables (spectral bands and vegetation indexes). From the two periods of MNFI 

were selected the predictor variables with the highest correlation coefficient Table III-12. In these 

response variables were calculated the Haralick textures. 

Feature extracted Calculation Feature extracted Calculation 

Mean (MN) ∑ 𝑖𝑃𝑖,𝑗

𝑁−1

𝑖,𝑗=0

 Dissimilarity (DI) ∑ 𝑖𝑃𝑖,𝑗|𝑖 − 𝑗|

𝑁−1

𝑖,𝑗=0

 

Variance (VA) ∑ 𝑖𝑃𝑖,𝑗

𝑁−1

𝑖,𝑗=0

(𝑖 − 𝑀𝐸)2 Entropy (EN) ∑ 𝑖𝑃𝑖,𝑗(−𝑙𝑛𝑃𝑖,𝑗)

𝑁−1

𝑖,𝑗=0

 

Haralicks 

correlation (HC) 
∑

𝑃𝑖,𝑗 − 𝑀𝐸2

𝑉𝐴

𝑁−1

𝑖,𝑗=0

 
Energy or Angular 

Second Moment (ASM) 
∑ 𝑃𝑖,𝑗

2

𝑁−1

𝑖,𝑗=0

 

Correlation (CR) ∑
𝑃𝑖,𝑗(𝑖 − 𝜇)(𝑗 − 𝜇)

√(𝜎𝑖
2)(𝜎𝑗

2)

𝑁−1

𝑖,𝑗=0

 Inverse different moment 

or homogeneity (HO) 
∑ 𝑖

 𝑃𝑖,𝑗

1 + (𝑖 − 𝑗)2

𝑁−1

𝑖,𝑗=0

 

Contrast (CO) ∑ 𝑖𝑃𝑖,𝑗(𝑖 − 𝑗)2

𝑁−1

𝑖,𝑗=0

 

  

Table III-11. Texture variables used. P (i, j) is the normalized co-occurrence matrix such that sum 

(i, j = 0, N-1) (P (i, j)) = 1 (Haralick et al., 1973). 

Landsat 5 (2007) Landsat 8 (2013) 

 G W  G W 

ARVI 0.77*** 0.72 *** ARVI 0.75*** 0.76 *** 

NDVI 0.79*** 0.73 *** NDVI 0.75*** 0.76 *** 

SRG 0.79*** 0.74 *** SR 0.72*** 0.76 *** 

WDRVI 0.79*** 0.74 *** WDRVI 0.74*** 0.77 *** 

Note: *** Significant at a 0.001 level. 

Table III-12. Vegetation indexes with the highest Pearson correlation coefficient, selected to apply 

on them the texture calculation. 

To estimate the texture it was necessary to define the size of the window to calculate the GLCM 

(Bramhe et al., 2018). The window size should be appropriate so that the variation will not be 

exaggerated neither there will be an excess of smoothing in the variation, small and large window 

size, respectively (Dengsheng Lu, 2006). 

In subtropical forest, (Wu et al., 2016) using a window of 3 x 3 pixels for Landsat imagery, detected 

changes in AGB storage in a 10 years period study. Attarchi and Gloaguen (2014), found a higher 

correlation in AGB estimation with textures in window size of 11X11 pixel for temperate forest 

with Landsat images, in comparison of AGB estimation to vegetation indeces. (Kelsey & Neff, 

2014), implementing different window sizes (3X3, 5X5, 7X7 and 9X9), found that 3X3 is the 

optimal size for estimating AGB in temperate forest. Similarly, (Lopez-Serrano et al., 2015) tested 
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three window sizes (3X3, 5X5 and 7X7) in temperate forest, finding that the combination of the 

texture variables and window size are important to optimize mixed models for estimating AGB in 

Landsat images, not concluding in an optimal window size using texture for AGB estimation. In this 

study, and according to previous estudies, the textures were calculated for three window sizes 3X3 

(Kelsey & Neff, 2014), 7X7 (P. López-Serrano et al., 2015) and 11X11(Attarchi & Gloaguen, 

2014). The extraction of the textures from the satellite imagery was made using the Orfeo Tool Box 

(OTB) module implemented in QGis. 

III.4.6 AGB models assessment and validation 

AGB and basal area, as determined in the field plots, were modelled from the remote sensing data 

with predictor variables as of Table III-13. For the spectral bands and for the vegetation indexes, a 

3X3 window was applied to calculate the mean value by pixel (see Section III.4.5.1). 

Landsat 5 (2007) Landsat 8 (2013) 

Spectral bands (6) 

R, G, B, NIR, SWIR1, SWIR2 

Spectral bands (7) 

Coastal, R, G, B, NIR, SWIR1, SWIR2 

Vegetation Indexes (10) 

ARVI, EVI, MSAVI, NDMI, NDVI, SR, SRG, SATVI, SAVI, 

WDRVI 

Vegetation Indexes (10) 

ARVI, EVI, MSAVI, NDMI, NDVI, SR, SRG, SATVI, SAVI, 

WDRVI 

Texture metrics (243)  

-9 Image: Red, Green, Blue, NIR, ARVI, NDVI, SR, SRG, 

WDRVI 

-3 Kernel size: 3X3(3),7X7(7),11X11(11) 

-9 Haralick texture: MN, VA, HC, CR, CO, DI, EN, ASM, 

HO 

Texture metrics (243)  

-9 Image: Red, Green, Blue, NIR, ARVI, NDVI, SR, SRG, 

WDRVI 

-3 Kernel size: 3X3(3),7X7(7),11X11(11) 

-9 Haralick texture: MN, VA, HC, CR, CO, DI, EN, ASM, 

HO 

259 variables 260 variables 

Table III-13. Landsat image predictor variables (PV) used to evaluate models for estimating AGB 

and basal area. 

The texture metrics were constructed using the image with the spectral band information or VI, 

three window sizes and the Haralick texture estimation. Figure III-18 shows the construction of the 

texture metrics. 

The Box-Cox transformation (Box & Cox, 1964) was applied to the response variables using the 

package R (R Core Team, 2018). This transformation corrects biases in the distribution of errors, 

also unequal variances and mainly non-linearity in the relation of predictor variable with the 

response variable (Box & Cox, 1964). The exponent Lambda (λ) was the central part of the 

transformation of Box-Cox. The transformation of y (response variable) has the following form 

(Box & Cox, 1964): 
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Figure III–18. Texture metrics construction with the image (spectral band or vegetation index), 

window size (in pixels) and the Haralik texture estimate. 

𝑦(λ)= {
yλ-1

λ
,     if λ≠0;

log y,    if λ=0.
                                                                                                       Equation 22 

The values of λ were the optimal value to correct the data and its value varied from -5 to 5. The 

optimal value of λ gave the best approximation of a normal distribution curve (Box & Cox, 1964; 

García-Pérez, 2014). 

The transformed response variables were modeled with the Landsat imagery data using a stepwise 

multiple regression analysis (Fuchs et al., 2009; A. Günlü et al., 2014; Ou et al., 2019; Safari & 

Sohrabi, 2016; Wu et al., 2016). A stepwise regression analysis was done with the statistics 

software R using  the MASS package (R Core Team, 2018). A standard model was used: 

y
i
=β

0
+β

1
x1+β

2
x2+…..+β

n
xn+ε                                                                                   Equation 23 

Where: 𝑦𝑖 were the response variables (AGB or basal area); 𝑥𝑛 are the predictor variables; 𝛽𝑛 are the 

parametric regression coefficients to be estimated; 𝜀 is the error of the model. 

This model was used to estimate the AGB based on four vegetation types according to the 

vegetation aggregation level (Table III.9). Models selected for each level of aggregation were those 

with the highest coefficient of determination (R2) and significance in of the predictor variables p-

value < 0.05. To estimate multicollinearity of the predictor variables (A. Günlü et al., 2014), for 

each model the variance inflation factor (VIF) was calculated through the mctest package in the 

program R (R Core Team, 2018). Using the VIF criterion proposed by (Marquardt, 1970), the 

models without multicolliniarity were selected. 

Repeated K-fold cross validation was the method used to evaluate the model (Langford, 2005), 

splitting the data into K sections where the model was evaluated and selecting the number of times 

the process was repeated; the precision of the model (RMSE) was the average of the repetitions 

executed. The validation was performed with the caret package in program R (R Core Team, 2018). 

The evaluation of the models included the estimation of the absolute and relative bias in the data 

estimated by the model (with Landsat predictor variables) compared to the data measured in the 

MNFI (Fuchs et al., 2009). Bias estimators were obtained using the following equations: 

Absolute Bias = 
1

n
 ∑ (xî-xi)

n
n=1                                                                                        Equation 24 
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Relative Bias = (Biasr) in % =
Bias

x̅
*100                                                                    Equation 25 

Where: 𝑥𝑖̂ were the estimated values from the model adjusted (AGB, basal area); 𝑥𝑖 were the observed values 

from MNFI (AGB, basal area); 𝑥̅ was observed mean value (AGB, basal area). 

After validation, the models were used to produce maps for the response variables (AGB and basal 

area). 
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Chapter IV: Results 

IV.1 Empirical study 1: Double measurement of dasometric variables to estimate the 

measurement uncertainty and error propagation of aboveground biomass estimation in pine 

forests  

IV.1.1 General information 

In this study, 4292 trees in the 10 plots were measured. During the fieldwork, a control of the 

measurements was made and 34 writing errors and 35 inconsistency errors (DBH and TH 

relationship) were corrected. In addition, the field records were verified, and it was found that 30 

trees were measured only once; these were not used in the estimation of discrepancies. Thus, the 

number of trees with double measurement was 4262. 

The species Pinus cooperi dominated, spanning 92.8% of the trees sampled. Table IV-1 shows the 

mean and range of values from measured and estimated variables. Figure IV-1 shows the per-

hectare basal area and AGB estimates both based upon DBH class and TH for the trees sampled. 

Variable / 

estimate 

Tree 

No. ha-1 

DBH 

(cm) 

TH 

(m) 

G 

(m2ha-1) 

W 

(Mg ha-1) 

Mean value 1137 16.9 13.3 29.17 176.07 

Range 424-1901 7.5-55.75 3.5-27.6 20.49-35.29 86.61 to 228.41 

Table IV-1. Range and mean values of the measured and estimated variables in the pine forests of 

El Salto, Durango. 

Figure IV-1 shows that 95% of the trees had DBH ≤ 30 cm and that the DBH class with the largest 

number of trees was (10-15] cm. The DBH class with the greatest contribution in the basal area and 

AGB was (15, 20] cm, was also the class of the overall mean DBH of 16.9 cm. On the other hand, 

trees over 30 cm DBH represented 4.5% of the sample. However, they contributed to 16.5% of the 

basal area and 20.2% of the AGB. 

The overall TH mean was 13.3 m; from the dataset, 90% of the trees measured were less than 17.5 

m and the class (12.5-15] m contained the most trees. The TH class with the highest contribution to 

AGB and basal area was (15, 17.5] m. Trees taller than 17.5 m comprised 9.6% of the data, 

although the contribution of these trees was 24.8% and 30.5%, for basal area and AGB, 

respectively.  

IV.1.2  DBH and TH measurements 

IV.1.2.1 Diameter at breast height 

Analysis of the boxplots from the two datasets (Figure IV-2, left) shows their similarity, with a 

median value of 15.75 cm for the first Measurement (M1) and 15.85 cm for the re-measurement 

(M2). The histograms of M1 and M2 were superimposed and found 98.4% overlap. A high 

correlation of 𝜌(𝑀1,𝑀2) = 0.9864 between M1 and M2 was estimated. 
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Figure IV–1. Basal area and AGB estimation of the study area. Above, estimate by DBH class 

every 5 cm; below, estimate by TH class every 2.5 m. 

  
DBH TH 

Figure IV–2. Left: DBH data boxplot, histograms of Measurement (M1) and Re-measurement 

(M2). Right: a similar case for TH. Bottom, the trend line of M2 versus M1 for DBH and TH. 

The data pairs were compared with non-parametric methods due to the rejection of normality (p-

valueKS< 2.2e-16) with the Kolmogorov-Smirnov Test (Lilliefors correction). The variances of the 

datasets were compared with Bartlett's Test (p-valueB= 0.6671) and Fligner-Killeen's Test (p-

valueFK =0.9354), and not significance for variance difference was found. With the Wilcoxon 

Signed-Rank Test, medians of the datasets were compared. This test showed that the difference 
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between medians did not include, meaning that the populations were not identical (p-valueWrt<2.2e-

16). 

IV.1.2.2 Total height 

A graphical evaluation was performed, as with the DBH data, for the TH measurements (Figure IV-

2, right). The histograms show the areas where frequencies of the dataset overlap (95%) and the 

areas where the frequency of one of the sets was most prevalent. The estimation of the median 

values was 13.17 m for M1 and 13.35 m for M2. Data dispersion was greater for TH compared to 

the DBH measurements, and the correlation coefficient was 𝜌(𝑀1,𝑀2) =0.9651. 

Normality in data distribution for M1 and M2 TH measurements was rejected (p-valueKS=0.0001298 

and p-valueKS< 2.088e-07, respectively). The Bartlett and Fligner-Killeen Tests did not reject the 

homogeneity of the variances (p-valueB=0.3947and p-valueFK=0.7991), and the Wilcoxon Signed 

Rank Test stated that databases do not belong to identical populations (p-valueWrt< 2.2e-16). 

The applied tests showed differences between the data pairs (DBH and TH). However, because the 

field manual was followed, it was assumed that the data collection was free of systematic errors. 

Therefore, the source of these measurement differences was attributed to random error. 

IV.1.3 DBH and TH measurement error 

IV.1.3.1 DBH measurement error 

The DBH measurement errors of the 4262 trees were organized by frequency distribution. The 

0.92% of the measured trees had an error greater than 2 cm, 93.24% of the trees had an error 

between 0 and 2 cm, and 5.94% did not show difference between measurements. The mean error 

was 0.4 cm, and the maximum was 4.6 cm. 

As explained in Section III.1.5.1.1.1, the frequency distribution of DBH measurement errors was 

fitted to a probability density function (PDF) to describe the errors through the parameters of the 

PDFs. The PDFs were fitted using the whole dataset of errors (Figure IV-3a) and the errors by DBH 

class (Figure IV-3b to h). See Table VIII-2 of Appendix II for the parameters and goodness-of-fit 

for the fitted PDF's. Since the GUM Method of error propagation use the variance as the parameter 

to propagate uncertainty, the dataset of measurement errors was adjusted to a normal distribution 

(Figure IV-3, gray line distribution). The Monte-Carlo simulation approach (MCM), to propagate 

the errors, can use any PDF describing those errors. Therefore, the best adjusted PDFs per 

measurement error class and for the whole data set were used for the MCM (Figure IV-3, dark line 

distribution). 

For the measurement error of the first DBH class, the best PDF was the Scaled-Shifted t 

distribution. In the following four classes, Johnson's distribution had the best fit for measurement 

error. In the last two classes of the largest trees, the error followed a pattern of Laplace distribution. 

The best-fitted distributions differed slightly from the normal distribution for classes of DBH less 

than 30 cm, even in some classes it was not possible to distinguish the difference because the two 

distributions overlap. However, in the two classes with larger DBH, the difference between the 

normal distribution and the best-fitted distribution was evident. 
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Figure IV–3. Probability Density Functions (PDF) fitted with DBH measurement errors according 

to DBH class. 

IV.1.3.2 TH measurement error 

In 7.88% of the 4262 trees measured, were not find difference between measurements. The 87.35% 

of the trees had errors greater than zero and less than 2 m, and the remaining trees (4.77%) had 

errors between 2 and 4 m. The largest error was 4 m, and the mean TH measurement error was 0.61 

m. PDFs for the entire dataset (Figure IV-4a) and by TH classes (Figure IV-4b to g) were adjusted. 

In each case, the PDF that best adjusted to the distribution of errors (Figure IV-4, dark line 

distribution), as well as the normal distribution (Figure IV-4, gray line distribution) were used. TH 

classes less than 17.5 m followed Johnson's distribution. The last two classes fitted to the Scaled-

Shifted t and Laplace distributions. The parameters, which describe each distribution and the 

goodness-of-fit, are in Appendix II (Table VIII-3). 

IV.1.4 Error propagation 

IV.1.4.1 GUM Method for error propagation 

IV.1.4.1.1 General statements 

The error propagation results using the GUM Method are shown in Table IV-2. This table has two 

sections (non-sampling and stand-level) summarizing the contributions from sources of uncertainty 

in the AGB estimation. In the upper part of the table, the contributions at the average tree (tree-

level) and stand-level are in the same units of the estimated values, kg per tree and Mg per ha. In the 

lower part, the percentages by each source of uncertainty at tree-level and stand-level were 

provided. 
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Figure IV–4. PDF fitted with TH measurement error according to TH class. 

IV.1.4.1.2 Tree-level uncertainty 

The mean uncertainty contributions to AGB estimation by tree of DBH measurements (uDBH), TH 

measurements (uTH), and their correlation (uρ(DBH,TH)) are shown in Table IV-2. 
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--
-  ---- Non-sampling uncertainty (tree-level) ---- 

-- Total uncertainty (stand-level)-- 
 -- Measurement uncertainty --   

 1 2 3 4 5 6 7 8 9 10 11 

 

u 

DBH 

u 

TH 

u 

ρDBH,TH* 

u 

Mes 

u  

AM 

u 

Tree 

u  

NS SE 

u  

W W 

u  

W EXP 

Uncertainty 

scenario 

kg 

tree-1 

kg 

tree-1 

kg 

tree-1 

kg 

tree-1 

kg 

tree-1 

kg 

tree-1 

Mg 

ha-1 

Mg 

ha-1 

Mg 

ha-1 

Mg 

ha-1 

Mg 

ha-1 

NDn 5.22 5.34 4.63 8.79 87.42 87.86 1.54 13.78 13.87 176.07 ±27.18 

NDnC 6.15 7.57 5.92 11.41 87.42 88.16 1.56 13.78 13.87 176.07 ±27.18 

RMSD 8.14 7.71 6.94 13.18 87.42 88.41 1.55 13.78 13.87 176.07 ±27.18 

--
--

--
--

- 
P

er
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n
ta
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e 

%
 -

--
--

--
--

 

 ---------- Non sampling uncertainty ---------- 
--- Total uncertainty --- 

 -- Measurement uncertainty --   

 

u2 

DBH 

u2 

TH 

u 

ρDBH,TH 

u 

Mes 

u2  

Mes 

u2  

AM 

u 

Tree 

u2  

NS SE2 

u  

W W RSE 

Uncertainty 

scenario 
% % % 

kg  

tree-1 
% % 

kg  

tree-1 
% % 

Mg  

ha-1 

Mg  

ha-1 
% 

NDn 35.3 37.0 27.8 8.79 1.0 99.0 87.86 1.23 98.77 13.87 176.07 7.88 

NDnC 29.0 44.0 27.0 11.41 1.7 98.3 88.16 1.26 98.74 13.87 176.07 7.88 

RMSD 32.2 40.1 27.7 13.18 2.2 97.8 88.41 1.25 98.75 13.87 176.07 7.88 

* This term is the √𝑢 𝜌(𝐷𝐵𝐻,𝑇𝐻) 

Table IV-2. Uncertainty of the AGB calculation using three scenarios estimating measurement 

uncertainty NDn, NDnC and RMSD. 
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The scenarios used to estimate the measurement uncertainty parameter (𝜎̂ = standard deviation) are 

represented by their acronyms (see Table III-2). The three scenarios were (i) measurement errors 

fitted to normal distribution (NDn), (ii) measurement errors fitted to a normal distribution by DBH 

class and by TH class (NDnC), and (iii) root mean square deviation of measurement (RMSD). The 

parameters of the scenarios NDn and NDnC are in Tables VIII-2 and VIII-3 of Appendix II. 

Parameters of the RMSD scenario were 𝜎̂DBH=0.53 cm for DBH and 𝜎̂TH=0.89 m for TH. 

In the first combined uncertainty (column 4), the scenario with the highest estimation was RMSD 

with 13.18 kg per tree, followed by NDnC with 11.41 kg, and finally by the NDn with 8.79 kg. The 

sources of uncertainty (DBH, TH, and correlation), are shown in the lower part of the table. The 

largest contribution was made by uDBH, followed by uTH, and finally uρ(DBH,TH). 

In the lower part of Table IV-2 are the contributions calculated from Equations 06b, 07, and 9. The 

uTH was the highest contribution for all the scenarios applied with a range between 37 and 44%. 

The uDBH was the second most important contribution of measurements at tree-level and it ranged 

from 29 to 35.3%. Finally, the smaller contribution in measurement was the correlation within a 

short range between 27-27.8%.  

Once uTree was estimated (column 4), the uncertainty of the allometric model (uAM in column 5) 

was added to obtain the second combined uncertainty or uncertainty of non-sampling (uTree in 

column 6), still at the tree-level. The contribution of uAM to uTree ranged from 97.8 to 99.0%. 

IV.1.4.1.3 Total AGB uncertainty 

After the aggregation process from tree-level to plot level, the total non-sampling uncertainty (uNS) 

was combined with the sampling error (SE in column 8) to estimate the total uncertainty (uW in 

column 9). In this step, the contribution of uNS was similar for all three scenarios, ranging from 

1.23-1.26% of uW, with more than 98.9% contribution due to the SE. The last two columns are the 

average estimate of AGB (W) and the expanded uncertainty (uWEXP, Equation 13). Using Equation 

12 with uWEXP, the 95% confidence interval for W was calculated and gave the same result for the 

three scenarios of 148.89 to 203.25 Mg ha-1. Moreover, the lower part of column 11 shows that the 

total relative standard error, calculated to be 7.88%, was also the same for the three scenarios.  

ANOVA for repeated measurements was applied to compare the mean uncertainty estimate at plot-

level (Tables VIII-8 and VIII-9, Appendix IV). From this analysis, a significant difference (p-value 

= 0.0422) was found between the means of the different scenarios. Through applying a T-Test with 

the Holm correction (Table VIII-10, Appendix IV), a significant difference (p-valuett=0.0037) was 

found between the NDn and RMSD scenarios. In contrast, no significant difference was found 

between the NDnC scenario and the other two scenarios (p-valuett >0.05). 

IV.1.4.1.4 Total AGB contribution by source of non-sampling uncertainty 

To estimate the contribution from sources of uNS to the uW, the error propagation with the NDnC 

scenario (normal distribution adjusted by class) was estimated. Table IV-3 shows the results of the 

error propagation using one uncertainty source at a time, and thus the individual contribution by 

uncertainty source at tree-level and stand-level was estimated. 

Table IV-3 provides a summary of average uncertainty values by error source. The row in bold 

(NDnC) is the reference error propagation explained in the previous section, in which all 
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uncertainties were included. Rows NDnCa, NDnCb, and NDnCab are the individual error 

propagations by source of uncertainty (a=uDBH, b=uTH and ab=uρ(DBH,TH)). The row NDnCc is the 

uncertainty of allometric model (uAM). 

 ---- Non-sampling uncertainty (tree-level) ---- 
-- Total uncertainty (stand-level)-- 

 ---- Measurement uncertainty ----  

 

u2 

DBH 

u2 

TH 

u 

ρDBH,TH 

u 

 Mes 

u2 

Mes 

u2 

AM 

u 

Tree 

u2 

NS SE2 

u2 

W W RSE 

uncertainty 

source 
% % % 

kg  

tree-1 
% % 

kg  

tree-1 
% % 

Mg  

ha-1 

Mg  

ha-1 
% 

NDnC 29.0 44.0 27.0 11.41 1.7 98.3 88.16 1.26 98.74 13.87 176.07 7.88 

NDnCa 100 0 0 6.15 100 0 6.15 0.01 99.99 13.78 176.07 7.83 

NDnCb 0 100 0 7.57 100 0 7.57 0.02 99.98 13.78 176.07 7.83 

NDnCab 0 0 100 5.92 100 0 5.92 0.01 99.99 13.78 176.07 7.83 

NDnCc 0 0 0 0.00 0 100 87.42 1.21 98.79 13.86 176.07 7.87 

a=DBH, b=TH, ab=correlation, c=model prediction 

Table IV-3. The total uncertainty of the AGB calculation from non-sampling uncertainty estimation 

sources. 

The total contribution of uNS sources was 1.26%, of which 0.01% came from uDBH, 0.02% from 

uTH, 0.01% from uρ(DBH,TH), and 1.23% from uAM. The corresponding values in Mg ha-1 were 

uNS=1.56, uDBH=0.16, uTH=0.20, uρ(DBH,TH)=0.16,  and uAM=1.53. Applying the Equation 10 

with the GUM Method, the total uNS is 

1.56=√(0.16)
2
+(0.20)

2
+(0.16)

2
+(1.53)

2
 

The estimated mean uncertainties were compared by plot for each source of uncertainty through an 

ANOVA for repeated measurements (Tables VIII-11 and VIII-12, Appendix IV). In the analysis, 

significant differences between all sources were found, with a p-value=4.989e-07. In Table VIII-13 

of Appendix IV, with a pairwise comparison, statistical difference was found (p-value<0.0205). 

IV.1.4.2 Monte-Carlo simulation Method (MCM) 

IV.1.4.2.1 Total uncertainty analysis 

The scenarios applied in error propagation with MCM used the uncertainty parameters (Tables VIII-

2 and VIII-3, Appendix II) of the PDF adjusted to the measurement errors in DBH and TH. The 

normal distribution parameters were the same as in the GUM Method of error propagation. The 

scenarios were: normal distribution (MCNDn), normal distribution adjusted by DBH and TH class 

(MCNDnC), best adjusted distribution (MCBD), and best adjusted distribution by DBH and TH 

class (MCBDC). 

Table IV-4 provides the error propagation using MCM. In this table, the results of the GUM Method 

were included. The percentage contribution of uncertainties due to non-sampling uncertainty (uNS) 

ranged from 1.17 to 1.26% of the total uncertainty (uW). The results show that more than 98.7% of 

the uW was due to the sampling error (SE). 
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The highest uNS contribution, 1.26%, was with the GUM Method using normal distribution by 

classes (NDnC). In contrast, the lowest contribution from uNS was with the MCM using normal 

distribution (MCNDn). 

Because the uW was nearly the same across all scenarios, the uncertainties at the plot level were 

compared through an Analysis of Variance for repeated measurements to determine if the applied 

scenarios were different. 

Uncertainty  

propagation 

method 

parameters of  

measurement 

uncertainty 

u2 

NS 
SE 

uW 
W RSE 

% % Mg ha-1 Mg ha-1 % 

MCM 

MCNDn 1.17 98.83 13.86 176.11 7.87 

MCNDnC 1.19 99.81 13.86 176.14 7.87 

MCBD 1.23 98.77 13.86 176.18 7.87 

MCBDC 1.25 98.75 13.87 176.21 7.87 

GUM 

 Method 

NDn 1.23 98.77 13.87 176.07 7.88 

NDnC 1.26 98.74 13.87 176.07 7.88 

RMSD 1.25 98.75 13.87 176.07 7.88 

Table IV-4. Uncertainty of the AGB calculation with MCM using four uncertainty estimation 

scenarios along with error propagations made with the GUM Method. 

With this analysis, differences among the means of the evaluated scenarios were found (p-

value=0.0112) and through the T-Test, the p-value with Holm's corrections was calculated (Tables 

VIII-14 to 16, Appendix IV). Differences between the NDn and MCNDn scenarios were found. 

These scenarios used the same parameters of measurement uncertainty (p-value=0.00021). Besides, 

differences between the NDnC and MCNDnC were observed, which also used the same uncertainty 

parameters in the measurement by class (p-value=0.00090). The MCBD was also statistically 

different from the NDnC and RMSD (p-value<0.014), as well as MCNDn (p-value<0.004). 

IV.1.4.2.2 Stand-level contribution by source of non-sampling uncertainty 

The contribution by source of uNS for the scenario MCBDC is in Table IV-5. The correlation 

between the DBH and TH variables was not included in the estimation, because it was less than 0.8 

and was considered a negligible contribution. The sources of uncertainties are depicted in the 

following table as follows: a = uDBH, b = uTH and c = u of allometric model (uAM). 

uncertainty  

source 

u2 

NS 
SE uW W 

RSE 

LL 
RSE 

RSE  

UL 

% % Mg ha-1 Mg ha-1 % % % 

MCBDC 1.25 98.75 13.87 176.21 7.41 7.87 8.32 

MCBDCa 0.03 99.97 13.80 176.23 7.76 7.83 7.90 

MCBDCb 0.03 99.97 13.78 176.05 7.76 7.83 7.89 

MCBDCc 1.20 98.80 13.86 176.09 7.42 7.87 8.30 
                           W =AGB estimated by tree, a=DBH, b=TH, c=model prediction 

Table IV-5. Uncertainty of the AGB calculation with MCM for non-sampling uncertainty sources 

and their contribution to the total uncertainty.  
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The contributions of uDBH (0.233 Mg ha-1) and uTH (0.230 Mg ha-1) were 0.03% each. The uAM 

had the largest contribution for the uNS with 1.20% (1.52 Mg ha-1). Using the contribution per ha of 

every source in Equation 15, the result of MCM per source of uncertainty was shown to be an 

approximation for the total NS uncertainty. 

1.55≈1.56=√(0.233)
2
+(0.230)

2
+(1.52)

2
 

The uncertainty due to sampling contributed 98.75% to the total uncertainty. In the columns 

following the estimated AGB (W) are the values of the relative standard error (RSE) estimate. With 

the MCM, not only the average value of the estimate was reported, but also a 95% confidence 

interval. Therefore, the RSE LL column was the lower limit and the RSE UL column was the upper 

limit of the relative uncertainty. 

Comparing the mean uncertainties (Tables VIII-17 to 19, Appendix IV) in the AGB estimation by 

plot, significant differences were found among the contributions by the source of uncertainty and 

the uW per plot (p-value<2.722e-06). The mean uncertainties in AGB estimation by DBH and TH 

were not significantly different (p-value=0.708). However, the other paired comparisons were 

significantly distinct (p-value≤0.034). 
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IV.2 Empirical study 2: Comparison of aboveground biomass estimates from two types of 

dasometric measuring equipment for the variables DBH and TH, a case study developed in 

beech forest near Göttingen, Germany 

IV.2.1 General information 

In total, 1103 trees of 16 genera were registered in the 47 plots of the study area. The genus Fagus 

spp dominated, with 47% of the measured trees, which, together with the genera Acer spp, Fraxinus 

spp, and Prunus spp, accounted for 87% of the total number of registered trees. 

Applying the simple random sampling estimators, the estimates per-hectare of the number of trees, 

basal area, and AGB were calculated for the re-measurement plots and the stand area. Table IV-6 

shows the results range and Table IV-7 shows the mean value of measured and estimated variables 

per device for both the stand area (47 plots) and the re-measurement plots (11 plots). 

Variable 

Re-measurement (11 plots) Stand area 

(47 plots) 

Tape+Vertex 

Caliper+Blume-Leiss 

(CB) 

Tape+Vertex 

(TV) 

Measured 
DBH (cm) 6.9-62.4 7.0-63.6 7.8-89.8 

TH (m) 5.2-36.6 5.0-34.7 7.3-36.3 

 No. of trees (ha-1) 320 - 660 160-1360 

Estimated Basal area (m2 ha-1) 21.1-39.1 21.4–39.8 15.9-48.2 

 AGB (Mg ha-1) 159.3-314.4 154.8-325.1 88.2-424.5 

Table IV-6. Range of values for measurements and estimated variables in the study area. 

Variable 

Re-measurement (11 plots) Stand area 

(47 plots) 

Tape+Vertex 

Caliper+Blume-Leiss 

(CB) 

Tape+Vertex 

(TV) 

Measured 
DBH (cm) 23.9 24.2 25.3 

TH (m) 19.9 19.7 20.0 

 No. of trees (ha-1)        455 469 

Estimated Basal area (m2 ha-1) 28.8 29.4 32.1 

 AGB (Mg ha-1) 236.3 238.6 257.6 

Table IV-7. Statistics of measurements and estimated variables in the study area. 

The basal area and AGB per class estimates are plotted in Figure IV-5. The tree frequency bars 

were the same for basal area and AGB estimates, and tree frequency varied depending on DBH or 

TH classes. In the four graphs of this figure, the pattern observed in the estimation of basal area and 

AGB was similar by class and by measuring device. As shown in the upper graphs, the number of 

trees per DBH class was similar between the stand and re-measurement plots. The smaller classes 

(7-20 cm] had the lowest contribution to basal area and AGB, despite having registered more than 

50% of the sampled trees. In contrast, with less than 22% of the trees sampled, large trees (40-63 

cm) contributed to more than 60% of the basal area and more than 65% of AGB. 

The estimate of AGB and basal area follow similar patterns by TH class. However, the proportion 

of the TH classes had greater variation. For example, the TH measurements between the re-

measurement plots showed a smaller number of trees in the intermediate class (15-25 m). The 
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largest trees in TH (from 25 m) had the largest contribution to the estimated variables, more than 

71% of the total basal area and more than 79% of the AGB. 

 Basal area Aboveground biomass (AGB) 

(%
) 

F
re

q
u

en
cy

 o
f 

tr
ee

s 

 
DBH class (cm) 

  

 
TH class (m) 

S=Stand-level, TV=re-measurement with Tape+Vertex and CB=re-measurement with Caliper+Blume-Leiss. 

Figure IV–5. Basal area and AGB estimation. Above, estimate by DBH class every 20 cm; below, 

estimate by TH class every 10 m. The bars represent the frequency of threes per size class.  

IV.2.1.1 DBH and TH relation 

Figure IV-6 shows the relationship between DBH and TH. The figure depicts the mean values of the 

five re-measurements made with Caliper for DBH and with the Blume-Leiss for TH (CB). In the 

same way, the mean values measured by the Tape and Vertex (TV) were plotted in the same figure. 

Comparing the two datasets values less than 25 cm DBH and less than 24 m TH, had a similar 

dispersion. Higher values of both variables showed greater dispersion. 

Pearson's correlation coefficients (ρ) are also included in the graph. In both cases, the coefficient 

was positive and greater than 0.92, showing the systematic variation between the two variables, as 

well as the direction of the relationship. This coefficient was used in the error propagation as stated 

the Equation 06b. 

IV.2.1.2 Data sets comparison 

IV.2.1.2.1 Diameter at breast height (DBH) 

The differences between variables and devices were analyzed through boxplots and frequency 

histograms in Figure IV-7. The left side shows the comparison of DBH measured by Caliper (C) 
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and by Tape (T). The results in the boxplots for the two devices were similar, with no extreme 

values observed. The median, from the boxplots, for Caliper was 18.21 cm and for Tape was 18.32 

cm. 

 

Figure IV–6. Relationship between DBH and TH for mean values of the 250 trees in re-

measurement plots made with Caliper and Blume-Leiss (CB) and with Tape and Vertex (TV). 

The histogram in Figure IV-7 (top left) displays the measurement frequencies by class for each 

device and the areas of overlap (0.98%) indicate that the measurements made by both devices had 

the same frequency. Two frequency bars (0-10 and 20-30) had a higher frequency for Caliper, and 

one bar (40-50) recorded more trees for Tape measurements. In the lower part, the scatter plot 

denotes a high relationship between Caliper and Tape measurements per tree, with a Pearson 

correlation coefficient ρ(caliper, tape)=0.99. 

The Wilcoxon Signed-Rank Test compared the data pairs and resulted in a p_valueWrt<2.2e-16, 

indicating non-identical populations of the two datasets (C and T) of best estimates . Before the 

median analysis, Bartlett's Test was applied (p-valueBt=0.9263) and verified homogeneous 

variances. 

IV.2.1.2.2 Total height (TH) 

The histogram in Figure IV-7 (top right) shows that only in the class 20-25 both devices had the 

same frequency of measured trees. For the other six classes, each device had three classes in which 

it was the most frequent. In total, there was 95.6% overlap between the two devices. As shown in 

the boxplot, the Vertex provided fewer extreme values. This trend was also registered in the lower 

median value of 18.87 m for the Vertex and 19.05 m for the Blume-Leiss. 

The datasets were not normally distributed, so the Wilcoxon Signed-Rank Test for paired data was 

used to compare them. A p-valueWrt=0.0539 was calculated, indicating that the difference between 

the medians of the two datasets included zero and that there are no significant differences between 

the datasets. 
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DBH TH 

Figure IV–7. Left-top: DBH boxplot and overlapped histograms of Caliper (C) and Tape (T) 

measurements. Right-top, graphs of TH made with Blume-Leiss (BL) and Vertex (V). Bottom: 

comparison of measurements made with two devices. 

IV.2.2 Measurement error 

IV.2.2.1 Individual tree uncertainty 

One of the methods used to propagate the uncertainties was the GUM Method using the Law of 

Error Propagation. This method assumes a normal distribution of the error, so the variable 

"measurement error" for each tree with the SRS standard deviation estimator was estimated. 

IV.2.2.1.1 Diameter at breast height (DBH) 

The Caliper measurement errors ranged from 0 to 1.01 cm, while the Tape measurement error 

ranged from 0.01 to 0.63 cm. Considering the maximum value of measurement errors with Tape 

(0.63 cm), 96% of the error with Caliper fell within the range of errors of Tape. The mean value of 

the error for each device was 0.19 cm and 0.16 cm, for Caliper and Tape.  

IV.2.2.1.2 Total height (TH) 

The measurement errors estimated for TH had limit values from 0.03 to 2.22 m for Blume-Leiss 

(BL) and 0.01 to 1.85 m for Vertex. The mean value of measurement error was 0.88 for BL and 0.58 
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m for Vertex. 97.2% of the errors measured with BL were less than or equivalent to the maximum 

measurement error made by Vertex (1.85 m).  

IV.2.2.2 Measurement uncertainty parameters for the study area. 

IV.2.2.2.1 GUM Method 

The parameters used to propagate the errors of AGB estimates are shown in Table IV-8. In this 

table, were included two types of results: those which assumed homoscedasticity in the 

measurement errors, and those which assumed heteroscedasticity in the measurement errors, as 

described in Section III.2.4.1.2.3. The applied parameter was the standard deviation (𝜎̂), expressed 

in centimeters for DBH and meters for TH. Following the terminology established in Section 

III.2.6.3, in the first scenario, called "Mean", was used the mean value of all measurement errors. 

The second scenario was "NDn", with the dispersion parameter estimated by fitting the errors to a 

normal distribution (Tables VIII-4 to VIII-7, Appendix III). 

In this table, the parameters of students with (Exp) and without (NExp) previous experience in forest 

mensuration were included, from Section III.2.2.2. At the end of the table are the models fitted by 

linear regression (scenario 4) to estimate 𝜎̂, which follows the heteroscedasticity of the errors 

(Figure VIII-1, Appendix III). The scenario 3 "NDnC" (not included in the table due to 

compatibility of size), fitting the errors to a normal distribution by class, the dispersion parameters 

are in Appendix III (Tables VIII-4 to VIII-7). 

Variable Device 

Scenarios of measurement error estimation (𝜎̂) 

Homoscedastic errors Heteroscedastic errors 

Mean 

 
NDn 

Students 
Linear Regression 1 

Exp Nexp 

DBH 

(cm) 

Caliper 0.193 0.212 - - (((-2.012+0.018*DBH)*λ)+1)1/λ 

Tape 0.162 0.209 1.178 1.183 (((-1.993+0.018*DBH)*λ)+1)1/λ 

TH 

(m) 

Blume-Leiss 0.882 1.229 - - (((-0.667+0.024*TH)*λ)+1)1/λ 

Vertex 0.576 0.646 4.01 4.06 (((-1.488+0.037*TH)*λ)+1)1/λ 

1 𝜆𝐶𝑎𝑙𝑖𝑝𝑒𝑟= 0.2121, 𝜆𝑇𝑎𝑝𝑒= 0.2525, 𝜆𝐵𝑙𝑢𝑚𝑒 𝐿𝑒𝑖𝑠𝑠= 0.5454, 𝜆𝑉𝑒𝑟𝑡𝑒𝑥= 0.3434 

Mean=mean value of error, NDn=normal distribution, Exp=students with prior experience, Nexp=students without prior 

experience 

Table IV-8. Uncertainty parameters for scenarios to estimate measurement error of DBH and TH. 

IV.2.2.2.2 Monte-Carlo simulation Method 

The MCM did not require the assumption of normality in error distribution. Therefore, the 

distributions of measurement errors were fit to the PDF that best described those errors (Figure IV-

8a and b). To be consistent with homoscedasticity in the measured errors, the PDFs by class were 

adjusted (Figure IV-8c to h), as established in Section III.2.4.1.2.2. 

Shown in Figure IV-8 are the PDFs which best fit to the measurement errors by diameter class 

(black line), along with the normal distribution (gray line) for reference. The number of trees per 
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class are also displayed next to each graph. The adjustment parameters, as well as the goodness-of-

fit per PDF, are recorded in Tables VIII-4 and VIII-5 of Appendix III. 

The logistic and cosine distributions were closely aligned to normal distribution. However, in the 

PDFs for Caliper [20-40) and Tape [40-63], the trapezoidal distribution had a better fit. 

DBH 

class (cm) 
Probability Density Function (PDF) 

           Caliper Tape 

[7–64] 

 

[7–20) 

[20–40) 

[40–64] 

 cm 

Figure IV–8. Probability Density Function (PDF) fitted with DBH measurement error according to 

DBH class, for Caliper and Tape measurement. a) and b) are PDF fitted for the whole dataset of 

Caliper and Tape, respectively. 

Distributions adjusted for TH measurement errors are found in Figure IV-9. The parameters for the 

PDF’s adjusted are in Tables VIII-6 and VIII-7 of Appendix III. 

The TH measurement errors showed larger differences between the best-fit distribution (black line) 

and the normal distribution (gray line) than measurement errors in DBH. The errors measured by 

Blume-Leiss were greater than those measured by Vertex. This observation was verified graphically 
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by noting that the Blume-Leiss had more frequent large errors and that the parameters of the normal 

distributions were smaller for the errors measured by the Vertex. 

TH 

class (m) 
Probability Density Function (PDF) 

           Blume-Leiss Vertex 

[5–37] 

 

[5–15) 

[15–25) 

[25–37] 

 m 

Figure IV–9. Probability Density Function fitted with TH measurement error according to TH class, 

for Blume-Leiss and Vertex measurements. a) and b) are PDF fitted for the whole dataset of Blume-

Leiss and Vertex IV, respectively. 

IV.2.3 Error propagation 

IV.2.3.1 GUM Method of error propagation 

IV.2.3.1.1 Measurement error propagation by tree 

In this Section, the AGB and the uncertainty of AGB estimation by four datasets were compared. 

The datasets identification is with the first letter of the measurement devices. In this way, the first 

two datasets were CB (Caliper+Blume Leiss) and TV (Tape+Vertex), and the AGB predictions were 
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made with the two-variables model. The other two datasets were C (Caliper) and T (Tape) and the 

AGB was predicted with the one-variable model. 

The error propagation required the error parameters (Section IV.2.2.2.1) from the two non-sampling 

sources and the correlation of the two variables measured in the field. The Pearson correlation 

coefficient (ρ) was calculated by tree with the matrix made up of the five DBH re-measurements 

and the five TH re-measurements. The error propagation is in Table IV-9. 

In the upper part of the table are the uncertainty values in the units of the measurement. In the lower 

part, the percentage values show the proportional contribution from every source to the propagated 

error. The non-sampling uncertainty information was the average data of the 250 measured trees. 

Measurement uncertainty of an average tree (uWtree in column 4) was lower for TV than for CB. 

TH had the largest contribution to measurement error, with values of 62% for Blume-Leiss and 

56.3% for Vertex. The contribution of DBH to uWtree was between 22.7-30.2%, and the correlation 

contributed to less than 15.3%. In scenarios using only DBH in the AGB model (C and T), DBH 

uncertainty was larger than DBH uncertainty in scenarios using DBH and TH. However, the total 

AGB estimate at tree-level was less than the other estimates. 

--
--
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  ---------- Non-sampling uncertainty (u) ----------  Uncertainty (u) in the 11 plots of  

re-measurement   ---------- Measurement ----------   

 1 2 3 4 5 6 7 8 9 10 11 

 

u 

DBH 

u 

TH 

u 

ρDBH,TH* 

u 

Mes 

u  

AM 

u 

Tree 

u  

NS SE 

u  

W W 

u  

WEXP 

Uncertainty 

scenario 

kg 

tree-1 

kg 

tree-1 

kg 

tree-1 

kg 

tree-1 

kg 

tree-1 

kg 

tree-1 

Mg 

ha-1 

Mg 

ha-1 

Mg 

ha-1 

Mg 

ha-1 

Mg 

ha-1 

CB 8.70 14.38 7.16 18.26 1.30 18.31 0.87 13.71 13.74 236.28 ±26.93 

TV 6.68 9.12 4.46 12.16 1.30 12.23 0.55 14.42 14.43 238.64 ±28.28 

C 9.01 - - 9.01 1.35 9.11 0.50 14.80 14.81 223.40 ±29.03 

T 6.99 - - 6.99 1.35 7.12 0.32 15.03 15.04 228.64 ±29.47 

--
--

--
--

- 
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-  ------------------ Non sampling -------------------  Uncertainty (u) in the 11 plots of 

 re-measurement  ---------- Measurement ----------   

 

u2 

DBH 

u2 

TH 

u 

ρDBH,TH 

u 

Mes 

u2 

Mes 

u2 

AM 

u 

Tree 

u2 

NS SE2 

u  

W W RSE 

Uncertainty 

scenario 
% % % 

kg 

tree-1 
% % 

kg 

tree-1 
% % 

Mg 

ha-1 

Mg 

ha-1 
% 

CB 22.7 62.0 15.3 18.26 99.5 0.5 18.31 0.40 99.60 13.74 236.28 5.82 

TV 30.2 56.3 13.5 12.16 98.9 1.1 12.23 0.15 99.85 14.43 238.64 6.05 

C 100 - - 9.01 97.8 2.2 9.11 0.11 99.89 14.81 223.40 6.63 

T 100 - - 6.99 96.4 3.6 7.12 0.05 99.95 15.04 228.64 6.58 

* This term is the √𝑢 𝜌(𝐷𝐵𝐻,𝑇𝐻) 

Table IV-9. Uncertainty of the AGB calculation using four scenarios to estimate the measurement 

uncertainty Caliper+Blume-Leiss (CB), Tape+Vertex (TV), Caliper (C) and Tape (T). 

uWtree combined with the allometric model uncertainty (uAM) resulted in the non-sampling 

uncertainty (uNS). The Allometric models contributed ≤3.6% to the uNS. Therefore, the largest 

contribution to uNS was uW tree, with more than 96.4% of the contribution. 
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The estimates per tree were aggregated at the plot-level and expanded to values per hectare (ha). 

This information is summarized in column 7 from Table IV-9. uNS combined with SE resulted in 

the total uncertainty (uW). The estimate of uNS was ≤0.87 Mg ha-1 (0.4%) and from SE it was 

≥13.71 Mg ha-1 (99.6%). 

The estimated mean of AGB (column 10) was higher in calculations using two variables in the 

estimate of AGB (CB and TV), than with one variable to estimate AGB (C and T). 

The four AGB estimates were compared using the estimates per plot. Appendix V shows the result 

of the Analysis of Variance for repeated measurements and the paired T-Test applied to the four 

AGB estimates (Tables VIII-20 to VIII-22). The ANOVA Test indicated no significant difference 

for the CB and TV estimates (p-value=0.2916). However, the other pairs’ comparisons showed a 

significant difference (p-value≤0.0256). 

The total error of the four AGB estimates was also compared (Tables VIII-23 to VIII-25, Appendix 

V). Significant differences were found in the analysis for total estimated errors per plot with 

scenarios CB and C (p-value=0.00034) and for total estimated errors in scenarios TV and T (p-

value=0.00051). 

IV.2.3.1.2 Measurement error propagation by tree (modeled) 

In this section, the comparison of the measured uncertainty with the scenarios to estimate 

measurement errors is shown (Section III.2.4.1.1). The GUM Method of error propagation was used 

to make the comparison, applying the scenarios to estimate the measurement error to the datasets 

Caliper+Blume-Leiss (CB) and Tape+Vertex (TV). 

The uncertainty parameters in Section IV.2.2.2.1, together with the correlations of the measured 

dataset (ρCB= 0.9238, ρTV= 0.9330) were used to propagate the error in AGB estimation. The results 

of the propagations are in Table IV-10. This table includes the reference information estimated in 

the previous Section for the CB and TV datasets (bold rows). 

The applied scenarios, in Table III-6 of Section III.2.6.3, were previously described. The scenario 

used the dataset (CB or TV), together with the method to estimate the measurement errors: average 

uncertainty value (mean), normal distribution (NDn), normal distribution per class (NDnC), students 

with prior experience (Exp) and students without prior experience (Nexp). 

The table shows the percentages that each source contributed to the estimated uncertainty at 

different levels. The estimated levels were as follows: measurement uncertainty (uMes in column 

4), non-sampling uncertainty at tree-level (uTree in column 7), and total uncertainty (uW in column 

10). Column 12 shows the relative standard error (RSE), which gives an estimate of uW in relation 

to the total AGB estimate (W). 

From the error propagation with the Caliper+Blume-Leiss (CB) measurements, it was observed that 

uTH had the highest contribution to the uMes (column 4). This error contributed, on average, to at 

least 41.1% of the error, and was greater than the contribution of uDBH in all the scenarios (less 

than 28%). The uMes of the CBNDn, CBNDnC, and CBmod scenarios overestimated the reference 

estimation (CB=18.26 kg tree-1). The use of the CBmean scenario led to an underestimation of the 

uMes and the RSE of the reference value. 
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The contribution of the AGB prediction model (uAM) to uNS was ≤0.7%. Therefore, the largest 

contribution to uNS was the uMes, with over 99.3% of the estimate in column 7. Due to the low 

contribution of uAM, the uTree had a slight increase compared to the estimates in uMes (column 4). 

 ---------- Non sampling uncertainty (u) ---------- -u in the 11 plots of  

re-measurement -  ---- Measurement uncertainty ----   

 1 2 3 4 5 6 7 8 9 10 11 12 

 

u2 

DBH 

u2 

TH 

u 

𝜌𝐷𝐵𝐻,𝑇𝐻 

u 

Mes 

u2 

Mes 

u2 

AM 

u 

Tree 

u2 

NS SE2 

u  

W W RSE 

Uncertainty 

scenario 
% % % kg  

tree-1 
% % kg  

tree-1 
% % Mg  

ha-1 

Mg  

ha-1 
% 

CB 22.7 62.0 15.3 18.26 99.5 0.5 18.31 0.40 99.60 13.74 236.28 5.82 

CBmean 17.9 54.4 27.6 15.58 99.3 0.7 15.63 0.22 99.78 13.73 236.28 5.81 

CBNDn 13.0 61.9 25.1 20.43 99.6 0.4 20.47 0.39 99.61 13.74 236.28 5.82 

CBNDnC 13.3 61.3 25.4 25.89 99.3 0.7 25.92 0.48 99.52 13.76 236.28 5.82 

CBmod 16.0 56.8 27.2 19.26 99.6 0.4 19.30 0.37 99.63 13.74 236.28 5.82 

TV 30.2 56.3 13.5 12.16 98.9 1.1 12.23 0.15 99.85 14.42 238.64 6.05 

TVmean 23.4 46.9 29.7 11.29 98.7 1.3 11.36 0.10 99.90 14.42 238.64 6.04 

TVNDn 27.3 42.3 30.4 13.19 99.0 1.0 13.26 0.14 99.86 14.42 238.64 6.05 

TVNDnC 27.1 42.8 30.1 17.36 99.4 0.6 17.41 0.28 99.72 14.42 238.64 6.05 

TVmod 28.0 41.1 30.8 13.94 99.1 0.9 14.01 0.19 99.81 14.42 238.64 6.05 

TVExp 25.0 45.2 29.8 77.76 99.99 0.01 77.77 4.69 95.31 14.77 238.64 6.19 

TVNexp 24.8 45.4 29.7 78.49 99.99 0.01 78.50 4.77 95.23 14.77 238.64 6.19 

Table IV-10. Sources of uncertainty contribution in the AGB calculation for different scenarios of 

measurement error estimation. 

Two scenarios had the same value of uW as the reference value. These scenarios, CBNDn and 

CBmod, had the uNS contribution closest to the reference value (0.40%). The estimation of the 

relative standard error (RSE) was alike for all scenarios because the main source of error was 

always SE, accounting for more than 99.46% of the contribution. 

To compare the scenarios using the CB dataset, an ANOVA for repeated measurements was 

performed with the estimated mean uncertainty per plot. The results of the ANOVA are in 

Appendix V (Tables VIII-26 to VIII-28). The findings indicate that the CBmod (p-value=0.10039) 

and CBNDn (p-value=0.97838) scenarios did not differ significantly from the reference estimate. 

The propagations using the TV dataset are at the bottom of Table IV-10. The TVmean, when 

compared to reference value TV, was the only scenario that underestimated uWtree (column 4). At 

this estimation level, the main contribution for all scenarios was uTH (≥41.1%), followed by the 

correlation (≤30.8%), and with the least contribution from the uDBH (≤28.0%). 

For the uTree (column 7), the contribution of allometric models (uAM) was less than or equal to 

1.3%, while uMes contributed more than 98.7%. Converting the uNS to values per ha and 

combining it with the sampling error (SE) resulted in a total uncertainty of AGB (uW in column 10). 

The greatest contribution of this uncertainty was the SE at more than 99.72%. The RSE value 



Chapter IV: Results 

 

78 

followed the initial trend, where the TVmean scenario underestimated the result of the reference 

value TV. 

The analysis, ANOVA for repeated measurements, of the mean estimated uncertainties per plot 

(Tables VIII-29 to VIII-31, Appendix V), determined that the TVmod (p-value=0.521) and TVNDn 

(p-value=0.71675) estimates did not differ significantly from the mean uncertainties estimated by 

the measured uncertainty TV. 

The errors propagated with the parameters of measurement errors made by students, TVExp and 

TVNexp, showed similar values for the three levels of uncertainty. Comparing the errors propagated 

in TVExp and TVNexp with the measured uncertainty for measurements with Tape+Vertex (TV), the 

uMes and the uTree were six times larger. This deviation resulted in a larger contribution to the 

final measurement error of almost 5% of the uW. This contribution increased RSE from 6.05% 

(reference scenario) to 6.19% for TVExp and TVNexp. 

The mean uncertainty in AGB estimation per plot calculated with the students' measurement errors 

(TVExp and TVNexp) were compared, with the measured uncertainty TV by using an ANOVA for 

repeated measurements (Tables VIII-32 to 34, Appendix V). The difference between the mean 

uncertainty values was significant (p-value=2.321e-12), and, from applying a paired T-Test (Holm 

correction), it was found that significant differences exist for the mean uncertainties in these three 

scenarios (p-value≤9.2e-12). 

IV.2.3.2 Error propagation with Monte-Carlo simulation Method (MCM) 

With MCM, the errors in AGB estimation were propagated for the study area. The data from 47 

measured plots (DBH, TH) was assumed as the best estimate per tree. Then, on these measurements 

were applied to the error measurement parameters of the NDn and mod scenarios. These scenarios 

were selected since they were observed in the previous Sections to be the scenarios that best 

estimated the measurement errors for the CB and TV datasets. The student measurement error 

parameters (Exp and Nexp) were included in the propagation. Finally, two more scenarios: the best-

fitted PDF (BD) and the best-fitted PDF by class (BDC) were added. 

The error parameters were mentioned in the previous section, except for the methods in which 

errors were non-normal distributed (BD and BDC). The error parameters of the remaining scenarios 

(CBBD, CBBDC, TVBD, and TVBCD) are displayed in Tables VIII-4 to VIII-7 of Appendix III. 

Table IV-11 shows the results of error propagation with MCM. This table includes the contribution 

in percentage of non-sampling errors (uNS) and sampling error (SE). Both contributions to the total 

uncertainty (uW) in the AGB estimate (W), as well as the relative standard error (RSE). 

For all analyzed scenarios, the greatest contribution came from SE (> 99.05%). Using parameters 

from Caliper and Blume-Leiss (CB), the reference scenarios CBNDn and CBmod had the same 

contribution of 0.10% for uNS. The CBBD scenarios underestimated (0.07%) the contribution of 

errors due to uNS. In contrast, using error distributions according to the diameter class (CBBDC), 

the contribution of uNS was overestimated (0.15%). 

Error propagation using the Tape and Vertex (TV) parameters is reported in the lower part of Table 

IV-11. For this data, a higher contribution of the TVmod scenario (0.05%) was observed compared 
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to TVNDn (0.03%). However, the TVBDC scenario had the same contribution of uNS as the 

reference scenario TVNDn. Similarly, the TVBDC scenario contributed 0.05%, as did TVmod. 

The propagations using the errors estimated with the student measurement errors (Exp and Nexp) 

had a major contribution to the uNS. With contributions close to 1% of the uNS to the uW; the 

estimated values resulted in an increase in RSE from 5.00% to 5.04%. 

Uncertainty 

scenario 

NS SE 
u2 

NS 
SE2 

u 

W 
W RSE 

Mg ha-1 Mg ha-1 % % Mg ha-1 Mg ha-1 % 

CBNDn 0.42 13.13 0.10 99.90 13.14 262.67 5.00 

CBmod 0.42 13.13 0.10 99.90 13.14 262.70 5.00 

CBBD 0.35 13.13 0.07 99.93 13.14 262.69 5.00 

CBBDC 0.50 13.14 0.15 99.85 13.15 262.67 5.00 

TVNDn 0.24 13.13 0.03 99.97 13.13 262.70 5.00 

TVmod 0.29 13.13 0.05 99.95 13.13 262.71 5.00 

TVBD 0.23 13.13 0.03 99.97 13.13 262.71 5.00 

TVBDC 0.30 13.13 0.05 99.95 13.13 262.71 5.00 

TVExp 1.27 13.18 0.93 99.07 13.24 262.67 5.04 

TVNexp 1.29 13.17 0.95 99.05 13.24 262.63 5.04 

CB=Caliper+Blume-Leiss, TV=Tape+Vertex, NDn= normal distribution, mod=linear regression model, BD= best fitted distribution, 

BDC=best fitted distribution by class, Exp=students with experience, Nexp=students without experience. 

Table IV-11. Error propagation in AGB estimation with MCM different scenarios to calculate 

measurement errors. 

The analyses to compare the mean uncertainty estimated at the plot level was performed. First, were 

compared the mean uncertainty from propagations using error estimates for Caliper+Blume-Leiss 

(CB). The ANOVA of repeated measurements (Tables VIII-35 and VIII-36, Appendix V) was 

significant (p-value ≤ 2.2e-16). The paired T-Test found that the mean uncertainty in all applied 

scenarios were significantly different, with p-value≤ 3.2 e-05. 

Results of comparisons using Tape+Vertex (TV) mean uncertainty estimates were like the CB 

results (Tables VIII-37 and 38, Appendix V). It was found a significant difference between the 

scenarios (p-value≤1.603e-13), and the paired comparison determined that the mean uncertainty from 

the scenarios were significantly distinct (p-value≤1.2e-08). 

The mean uncertainty of propagation with error parameters by students (Exp, Nexp) with the 

reference measurements scenarios were compared (CBNDn, CBmod, TVNDn, and TVmod). The 

result of ANOVA (Table VIII-39 and VIII-40, Appendix V) revealed significant differences (p-

value< 2.2e-16). Post hoc analysis showed no significant difference between the mean uncertainty 

from the two scenarios with student information (TVExp and TVNexp), but the remainder of the pair 

analyses were statistically different (p-value≤5.40e-05). 

IV.2.3.2.1 Contribution per source of uncertainty 

In the previous section, a major contribution of sampling error (SE) to the total uncertainty (uW) 

was found. Non-sampling uncertainty (uNS) consisted of four sources of uncertainty, and it was 

split in the contribution of each source in this Section. When the contribution was separated, a 
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contrast between the sources of uNS was revealed among the different scenarios used to estimate 

measurement errors. 

Out of the scenarios used in the previous Section, the NDn scenario was excluded because its 

estimates were not significantly different from the ones in mod scenario. Additionally, the mod 

scenario used the size of the tree in estimating measurement errors. 

The error propagation results with MCM separated by the source of uncertainty are displayed in 

Table VIII-41 of Appendix V. Using Equation 11, the contributions with units of Mg ha-1 were 

obtained, and the Law of Error Propagation was used (Equation 15) to approximate the total uNS 

for the scenario BDC. 

(CB) Caliper+Blume-Leiss 0.50 ≈ √(0.501)
2
+(0.202)

2
+(0.453)

2
+(0.008)

2
+(0.018)

2
   

(TV) Tape+Vertex               0.30 ≈ √(0.302)
2
+(0.158)

2
+(0.260)

2
+(0.004)

2
+(0.018)

2
  

The contributions by source of uncertainty showed that the two sources that contributed most to the 

total non-sampling uncertainty (uNS) were uDBH and uTH. Contributions from the other two 

sources, correlation (<0.006%) and prediction model (<0.0002%), were relatively small. 

Figure IV-10 presents the contributions from uDBH and uTH to the uNS estimates in Table VIII-41 

of Appendix V. In the figure were included six scenarios, used in the previous section with the error 

propagation using MCM. The scenarios were constructed with two datasets (CB and TV) and tree 

methods to estimate measurement errors (mod, BD and BDC). 

 

uNS=total non-sampling uncertainty, CB=Caliper+Blume-Leiss, TV=Tape+Vertex, mod=linear regression model, BD=best fitted 

distribution, BDC=best fitted distribution by class. 

Figure IV–10. Contribution of uncertainties from DBH and TH measurements to the total non-

sampling uncertainty of AGB estimate. 

The figure shows the overall contribution of the two uncertainties (uDBH+uTH) to the total NS 

uncertainty, for each scenario. The total uNS had larger contributions from scenarios using 
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Caliper+Blume-Leiss (CB ≥0.072%) compared to the contributions of scenarios with Tape+Vertex 

(TV≤0.053%). The contribution to uNS by student measurements (Exp and Nexp) was close to 1%. 

The TH errors were the largest contributors to uNS. In the scenarios using CB data, they represented 

more than 80% of the uNS, and they contributed to more than 68% for TV scenarios. Applying 

errors from students’ measurements (Exp and Nexp), TH error accounted for more than 72% of the 

uNS. On the other hand, measurement errors in DBH were responsible for less than 28% of the 

errors in uNS. 

IV.2.3.2.2 Error contribution of AGB estimation by measurement device 

To analyze the differences in uncertainty estimation by a measurement device, the uncertainties 

were compared by pairs of devices (Tape vs. Caliper and Vertex vs. Blume-Leiss). This comparison 

with the mean uncertainty propagated at plot-level was performed for each of the scenarios used in 

the previous Section (BD, BDC, mod). The boxplots in Figure IV-11 show the mean uncertainty 

estimates among measurement pairs, with uDBH displayed on the left and uTH on the right. The 

right margin describes the scenarios used to estimate measurement errors. The lines join the 

estimates of the same plot made by the two instruments being compared. 

In the previous section was found that the uncertainties of TH measurements were larger than those 

of DBH. For uDBH, Tape errors were smaller than Caliper errors for the three scenarios. However, 

the BD and BDC scenarios occasionally produced similar estimates for both devices. In Figure VIII-

2 of Appendix V, a complementary graph of the error estimates by plot and device was included. 

For the TH measurement errors (graphs on the right side), the uncertainty estimates with Blume-

Leiss measurements were greater than those observed in Vertex in all the estimates (see Figure VIII-

2, Appendix V). 

To verify the graphical differences, a paired analysis for the mean DBH uncertainties was 

performed. The Kolmogorov-Smirnov Test verified the normal distributions of the uncertainty (p-

valueKS≥0.082). Subsequently, a paired T-Test was applied (Holm’s correction), and the results 

indicated that from the three scenarios, DBH mean uncertainty estimates were statistically distinct 

(p-valuet-Holm≤2.2e-16). The mean value of the differences was greatest in the BDC scenario (0.255 

Mg ha-1), followed by mod (0.188 Mg ha-1), and then the BD scenario (0.028 Mg ha-1). 

The Kolmogorov-Smirnov's Test, when applied to the TH measurements, resulted in a p-

valueKS≥0.06. The T-Tests also found statistically significant differences in the data pairs of 

uncertainties per plot (p-valuet-Holm≤2.2e-16). In ascending order, the mean value of the differences 

was 0.808 Mg ha-1 for scenario mod, 0.817 Mg ha-1 for BD and 1.250 Mg ha-1 for BDC. 
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 DBH  TH Scenario 

 Tape Caliper  Vertex Blume-Leiss  

 

Best Probability Density 

Function fitted to the 

measured errors 

(BD) 

Best Probability Density 

Function fitted by class to 

the measured errors 

(BDC) 

Linear model fitted to 

estimate measured error 

given the tree size 

(mod)  

Figure IV–11. Comparison of uncertainty calculated per plot and measurement device, for three 

scenarios of measurement error in AGB estimation. 
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IV.3 Empirical study 3: Propagation of errors in the AGB estimation for the state of 

Durango, Mexico, with information from the National Forest Inventory 

IV.3.1 General information on the Mexican National Forest Inventory dataset 

IV.3.1.1 First measurement of the Mexican National Forest Inventory (2004-2009) 

The data used in this analysis derives from the Mexican National Forest Inventory (MNFI) from the 

years 2004 to 2009. The 2004-2009 MNFI records for the state of Durango consisted of 1826 

clusters with 118,647 trees. Our study excluded 157 clusters (8320 records) because they were from 

a vegetation classification other than temperate forests. Errors detected in the records were “missing 

information” and “outliers”. There were 73 missing information registers: 21 without DBH, 46 

without TH, and 6 without a name registration. There were 492 outlier records, from which 141 had 

a DBH less than 7.5 cm and 351 had a TH less than 1.5 m. These limits were established in the 

measurement protocol. The errors in this raw dataset were the 0.51% of the total trees. 

Our final subset of data from the 2004-2009 MNFI in the temperate forest in Durango consisted of 

1662 clusters with 109,762 trees. This dataset was used as reference information to estimate basal 

area (G) and AGB (W) from the estimators in Section III.3.5. The summary of these results is in 

Table IV-12, in which the standard error (SE (𝑅̂)) refers to the sampling error and 𝑠(𝑅̂) indicates the 

dispersion of the mean estimate per cluster. 

Vegetation Estimator 

2004-2009 

Clusters=1662 

2009-2014 

Clusters=1632 

Tree  

No. 

G  

m2ha-1 

W  

Mg ha-1 

Tree  

No. 

G  

m2ha-1 

W  

Mg ha-1 

Temperate forest 

𝑅̂ 445.16 12.98 64.31 451.76 13.17 64.77 

𝑠(𝑅̂) 279.16 8.56 77.80 278.36 8.66 77.70 

𝑆𝐸(𝑅̂) 7.10 0.22 1.93 7.13 0.22 1.94 

Table IV-12. Estimates of basal area (G) and AGB (W) calculated from the MNFI in the temperate 

forest of Durango, Mexico.  

IV.3.1.2 First re-measurement of MNFI (2009-2014) 

The information from the following MNFI was designated as “re-measurement” data. The 2009-

2014 MNFI included 1822 clusters registered in Durango, with 118,641 measured trees. From the 

Durango subset, temperate forest in 1632 clusters were identified, thereby removing 8191 tree 

records from the other vegetation types. Additionally, 18 double records and 417 records without 

information were eliminated. Seven records were also eliminated with DBH less than 7.5 cm and 25 

trees with TH less than 1.5 m, per the established measurement protocol. The error in the dataset 

represented 0.40% of the trees measured. In the end, basal area and AGB were estimated for the 

Durango temperate forest with 109,983 records from the 2009-2014 dataset (Table IV-12). 

The estimates of G and W increased from the 2004-2009 dataset to the 2009-2014 re-measurement 

dataset. The ratio estimate increased by seven trees ha-1, 0.19 m2 ha-1 for basal area, and 460 kg ha-1 

for AGB. In addition, the variation between plots was lower in the re-measurement for the number 

of trees and AGB but was higher for the basal area. Finally, the standard error showed no change 

for the basal area but the other two variables increased. 
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IV.3.2 AGB and basal area estimation by size classes 

The AGB (W) and the basal area (G) were estimated by DBH and TH class to determine the 

proportion of each class in the total estimate. The W and G estimates per class, for the 2004-2009 

MNFI dataset (ALL), is in Figure IV-12. Since the genera Pinus spp (PINE) and Quercus spp (OAK) 

were dominant (84.3% of the dataset), the estimate of both genera and the sum of the two genera 

were included (P&O). DBH and TH classes were outlined in Section III.1.5.1.1.1. 
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ALL=estimation made with all the data of temperate forest, PINE=estimation made with genus Pinus spp (n=43531), OAK=estimation 

made with genus Quercus spp (n=48993), P&O=estimation made with Pinus spp + Quercus spp (n=92524). 

Figure IV–12. Basal area (G) and AGB (W) estimation for 2004-2009 MNFI in Durango, Mexico. 

Above, estimations made by DBH class; below, estimations made by TH class. 

The upper part of Figure IV-12 shows the results of the estimation by DBH class and in the lower 

part the estimates by TH classes. The number of trees by class was represented with vertical bars 

according to the percentage of trees with respect to the total MNFI. the values of W and G were 

represented with connected points, to display the direction followed by the estimates. The 

information source for Figure IV-12 was Table VIII-42 of Appendix VI. 

IV.3.2.1 DBH classes 

In the diameter data, the frequency of trees per class was similar for the three datasets (ALL, PINE, 

and OAK). The DBH class with the highest frequency was [10-15 cm) for the three sets. The class 

that contained the mean for the three data sets was [15-20 cm), with means of 16.7 cm, 18.1 cm, and 
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16.2 cm, for ALL, PINE, and OAK, respectively. In the four lower classes, OAK had a higher 

frequency than PINE, and, conversely, in the three classes with larger DBH, the frequency of PINE 

was higher. 

The class estimates from the dataset ALL (the top line in the two graphs) had a similar contribution 

from the two variables. The estimates ranged from 1.66 to 2.22 m2 ha-1 and from 8.12 to 9.55 Mg 

ha-1 for G and W. The graphs demonstrate that the frequency of trees in the small tree classes was 

higher. However, the four larger tree classes with 32.5% of the trees contributed to 59.2% of G and 

57.9% of W. 

The PINE (n=43531) and OAK (n=48993) contributions were inversely proportional. As the PINE 

contribution increased, the OAK contribution decreased. This trend was observed up to the class 

[30-35 cm), except for the last class in which both groups increased their contribution. The 

contribution of the P&O dataset (sum of PINE and OAK) is observed under and parallel to the ALL 

contribution. P&O contributed to 87.7% of the total G estimate and 93.2% of the total W estimate. 

IV.3.2.2 TH classes 

The lower part of Figure IV-12 shows the estimated results of G and W by TH class. The figure 

shows that the class with the smallest tree height (vertical bars) had the highest frequency, with 

most trees being of the genus Quercus spp (OAK). The frequency generally decreased as TH 

increased, except for the last class. The lowest class was the class containing the mean for the 

datasets of ALL and OAK, with values of 7.7 m and 6.2 m. The class of the mean for PINE was [10-

12.5), with 10.1 m. 

The contribution to G was highest in the lowest TH class. In this class, OAK had the highest 

contribution (3.49 m2 ha-1), while the rest of the classes had the largest contribution from PINE. 

OAK's contribution to W decreased with increasing tree size, while PINE gradually increased its 

contribution from trees larger than 10 meters. As a result, 45.3% of PINE greater than 10 meters 

contributed to 87.1% of the estimated W for this genus. In contrast, for the same TH range, the 

14.2% of OAK contributed to only 56.9% of the W. 

The estimation of G and W with the Pine & Oak dataset was already included in the previous 

Section. However, it is worth noting that for the estimate of G, a smaller contribution was observed 

from the smallest TH class, i.e. the shortest trees. In this class, P&O's contribution was 81.1%, and, 

in the remaining classes, it was greater than 90.5%. The P&O contribution to the W estimate was 

greater than 90% in all classes. 

The 2009-2014 MNFI data, analyzed by classes of DBH and TH, showed a similar behavior as 

described for the first MNFI period. Since the description of these results does not represent a 

relevant contribution, the graphs of the second MNFI period can be found in Appendix VI for 

reference (Figure VIII-3). 

IV.3.3 Error propagation of AGB 

The error in the estimate of AGB was propagated with MCM from the individual sources of error to 

the total error. Field variable measurement error (uMes), AGB predictions with allometric models 

(uAM), and plot design (uPlot) were the identified sources of error, besides SE. The random errors 
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were incorporated into non-sampling sources of uncertainty (uMes and uAM) through three 

scenarios. 

In the first scenario (BD), the assumption was that uMes came from a single probability distribution 

(PDF) of each measured variable (DBH and TH). For the second scenario (BDC), an increase of 

measurement error as the class of the measured variable increased (heteroscedasticity) was 

assumed. The third scenario (Exp) estimated the uMes with the parameters applied to the students’ 

experience in mensuration (from the second empirical study). In this scenario, it was assumed that 

uMes by students were under similar conditions as MNFI. 

Measurement uncertainty parameters for the BD and BDC scenarios developed in Empirical Study 1 

are reported in Tables VIII-2 and VIII-3 of Appendix II. For the Exp scenario used in Empirical 

Study 2, Table IV-6 shows the measurement error parameters. Furthermore, the allometric models 

and their uncertainty parameters are in Table VIII-1 of Appendix I. Finally, the error parameter of 

the plot design was described in Section III.3.8.3. 

The information for both analyzed datasets with the acronyms MNFI0409 for the 2004-2009 MNFI 

and MNFI0914 for the 2009-2014 MNFI was represented. The temperate forest (TF) data into three 

strata was divided, each defined by the dominant vegetation. Those strata were conifer forest (SCF), 

mixed forest (SMF), and oak forest (SOF). Similarly, each stratum had two substrata to define the 

dominance of primary vegetation (p) or secondary vegetation (s). 

It is important to make a note about the number of clusters in each strata and substrata since they 

were the primary sampling units in the MNFI. Thus, the tables of results for strata and substrata 

always reported the number of clusters. This number refers to how many clusters in the temperate 

forest have at least one site identified with that stratum and/or substratum. Because every cluster 

can have more than one stratum, when adding the clusters of the three strata and substrata, the result 

is not equal to the total number of temperate forest clusters. 

IV.3.3.1 Temperate forest of Durango, Mexico 

The error propagation, estimated for the two periods under study, is in Table IV-13. The result of 

the total estimate (W), as well as the total uncertainty (uW), is given in the measurement units. 

Uncertainty contributions (non-sampling error -uNS- and sampling error -SE-) are given in 

percentage, as was the relative standard error (RSE). The result of uW is reported to three significant 

figures to see the differences between the scenarios. The number of clusters used in the estimates 

was n=1662 for MNFI0409 and n=1632 for MNFI0914. 

The uncertainty of the baseline result (bold line) was 1927 Mg ha-1 for MNFI0409 and 1940 Mg ha-1 

for MNFI0914. This uncertainty was estimated only with the SE. Once was calculated the ratio uW/W, 

it was found that RSE (3.00%) was equal in both MNFI periods. In a step before, non-sampling 

uncertainties (uNS) were less than 1% of the total uncertainty (uW) in both periods. In this case, the 

scenario with the highest contribution to uW was TFExp (0.71%), followed by TFBDC, and the 

lowest contribution was in TFBD. Notably, the SE contributed more than 99% to the uW in AGB 

estimates. 

With the MCM, the confidence interval for the estimated uW with 95% reliability was calculated. 

Besides, the interval across the lower (LL) and upper (UL) limits of RSE was included in the table. 
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Finally, non-differences were observed between the estimated confidence limits for the three 

scenarios in both periods. 

The difference in the estimates of the mean value (W) met the criterion set out in Section III.1.5.3. 

This criterion established the difference between scenario W (TFBD, TFBDF, TFExp) and the 

reference W (TF) to be less than 1%. In the temperate forest, this difference was less than 0.1%. 

 MNFI 2004-2009 (n0409=1662) MNFI 2009-2014 (n0914=1632) 

 Uncertainty  

source 

u2  

NS 
SE2 

u  

W 
W 

RSE 

LL 
RSE 

RSE  

UL 

u2  

NS 
SE2 

u  

W 
W 

RSE 

LL 
RSE 

RSE  

UL 

% % 
Mg ha-

1 

Mg ha-

1 
% % % % % 

Mg ha-

1 

Mg ha-

1 
% % % 

TF  100.00 1.927 64.31  3.00   100.00 1.940 64.77  3.00  

TFBD 0.55 99.45 1.932 64.31 2.98 3.00 3.03 0.56 99.44 1.946 64.77 2.98 3.00 3.03 

TFBDC 0.59 99.41 1.934 64.36 2.98 3.00 3.03 0.59 99.41 1.948 64.82 2.98 3.00 3.03 

TFExp 0.71 99.29 1.931 64.28 2.98 3.00 3.03 0.67 99.33 1.945 64.75 2.98 3.00 3.03 

Table IV-13. Error propagation in AGB estimation using three scenarios of non-sampling 

uncertainty in temperate forest of Durango, Mexico. 

By converting the results of uNS (0.59%) and SE (99.41%) into Mg ha-1 and substituting into 

Equation 11, the total uncertainty for the period 2004-2009 for the BDC scenario was estimated: uW 

≈1.934≈√(1.929)
2
+(0.15)

2
 

IV.3.3.1.1 Strata in the temperate forest of Durango, Mexico 

The AGB estimates were calculated for the temperate forest strata and reported the results in Table 

IV-14. As with the complete temperate forest dataset, the AGB for each stratum was estimated 

(bold rows). This table includes in the first column, the number of clusters per strata for both 

periods of study. Here, it was observed that the mixed forest (SMF) had the highest AGB per ha in 

the two periods (≥73.123 Mg ha-1). Furthermore, the highest total uncertainty due to sampling was 

estimated in the conifer forest (SCF) of MNFI0914, with 10.62% of RSE. 

The results by scenario showed that uNS for SCF and SMF were about 0.67% of the total 

uncertainty. A greater contribution was observed of uNS in the oak forest (SOF), ranging from 1.95 

to 2.51% of the uW. Moreover, the uNS contributions increased the estimated uncertainties in SCF 

and SMF from less than 0.01 to 0.02 Mg ha-1, while in SOF it increased from 0.02 to 0.03 Mg ha-1. 

The SE contributed to more than 99.3% of the total uncertainty of SCF and SMF, while the 

contribution in SOF ranged from 97.49 to 98.05%.  

The BD scenario was the most conservative in estimating uNS, followed by BDC. The Exp scenario 

had the highest contributions of uNS out of all strata. Comparing the two periods, in MNFI0914, the 

clusters in the strata decreased by 51% for SCF, 7% for SMF, and 44% for SOF.  

The errors propagated were compared by scenario by the paired T-Tests with Holm's correction. 

The assumption of normality was verified with the Kolmogorov-Smirnov Test with Lilliefor’s 

correction, (p-valueKS≥0.1216). During the MNFI0409 period, the uncertainties calculated by the Exp 

scenario were statistically different from those calculated for the BD scenario (p-valuetH=0.02658). 

Other comparisons of this same period were not significantly different (p-valuetH≥0.0508). No 
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significant differences were found in the scenarios estimated at the level of strata for the MNFI0914 

data (p-valuetH≥0.1068). 

 2004-2009 2009-2014 

Uncertainty  

source 

u2  

NS 
SE2 

u  

W 
W 

RSE 

LL 
RSE 

RSE  

UL 

u2  

NS 
SE2 

u  

W 
W 

RSE 

LL 
RSE 

RSE  

UL 

% % 
Mg 

ha-1 

Mg 

ha-1 
% % % % % 

Mg 

ha-1 

Mg 

ha-1 
% % % 

SCF 
n0409=537 

n0914=264 

 100.00 3.86 48.31  8.00   100.00 5.49 51.82  10.62  

SMF  
n0409=1281 

n0914=1190 

 100.00 2.79 77.48  3.60   100.00 2.45 73.12  3.36  

SOF  
n0409=526 

n0914=295 

 100.00 2.09 35.52  5.96   100.00 2.40 36.84  6.59  

SCFBD 0.46 99.54 3.87 48.33 7.90 8.00 8.10 0.33 99.67 5.51 51.84 10.48 10.62 10.78 

SMFBD 0.48 99.52 2.79 77.49 3.58 3.60 3.63 0.56 99.44 2.46 73.13 3.33 3.36 3.38 

SOFBD 2.26 97.74 2.12 35.50 5.84 5.96 6.08 1.95 98.05 2.43 36.82 6.43 6.59 6.75 

SCFBDC 0.49 99.51 3.87 48.37 7.90 8.00 8.11 0.38 99.62 5.51 51.88 10.47 10.63 10.79 

SMFBDC 0.51 99.49 2.80 77.55 3.57 3.60 3.64 0.56 99.44 2.46 73.18 3.33 3.36 3.39 

SOFBDC 2.26 97.74 2.12 35.53 5.84 5.96 6.08 2.07 97.93 2.43 36.86 6.43 6.59 6.74 

SCFExp 0.59 99.41 3.88 48.42 7.88 8.00 8.13 0.47 99.53 5.52 51.93 10.44 10.62 10.81 

SMFExp 0.60 99.40 2.79 77.45 3.57 3.60 3.64 0.67 99.33 2.45 73.10 3.33 3.36 3.39 

SOFExp 2.51 97.49 2.11 35.58 5.83 5.96 6.09 2.22 97.78 2.42 36.72 6.43 6.59 6.75 

SCF=conifer forest, SMF=mixed forest, SOF=oak forest, BD=best fitted distribution, BDC=best fitted distribution by class, 

Exp=students. 

Table IV-14. Error propagation in AGB estimation, using three scenarios of non-sampling 

uncertainty in strata of the temperate forest of Durango, Mexico. 

IV.3.3.1.2 Substrata in the temperate forest of Durango, Mexico 

The reference values for the error propagation and AGB estimation by substratum are in Table IV-

15. In the reference values, it was observed that substrata of primary vegetation (p) in the conifer 

forest (SCF) and mixed forest (SMF) strata, had higher W estimations than the secondary vegetation 

substrate (s). In contrast, the substratum of secondary vegetation in oak forest (SOFs) had a higher 

W estimate than the primary vegetation (SOFp). The SMFp substratum contained the highest AGB 

per unit area of 78.07 Mg ha-1 and 76.50 Mg ha-1 for the MNFI0409 and MNFI0914, respectively. The 

maximum uncertainty totaled to 9.62 Mg ha-1 in SMFs, and the minimum equaled 2.07 Mg ha-1 in 

SOFp. Proportional to the AGB estimate, the relative error (RSE) ranged between 3.6 and 23.5%. 

The error propagation, including the non-sampling uncertainty (uNS) from the applied scenarios, is 

shown in Table IV-16. The total uncertainty (uW) ranged from 2.09 to 9.68 Mg ha-1 in the MNFI0409. 

Within the same stratum, a higher uW was recorded in the substratum of secondary vegetation 

compared to the substratum with primary vegetation (secondary>primary). On the contrary, in 

MNFI0914, greater uW in the primary vegetation substratum (primary>secondary) was estimated. 

The uncertainty in this last period ranged from 3.15 to 8.66 Mg ha-1. The uNS had a greater 

contribution to SOFp, with values from 2.83 to 3.61% of the uW. 

 



Chapter IV: Results 

89 

 2004-2009 2009-2014 

 Vegetation & 

cluster number 

uW W RSE uW W RSE 

Mg ha-1 Mg ha-1 % Mg ha-1 Mg ha-1 % 

SCFp n0409=500 n0914=81 4.17 50.12 8.3 8.64 59.57 14.5 

SCFs n0409=60 n0914=187 7.21 30.81 23.5 6.84 47.77 14.3 

SMFp n0409=1261 n0914=541 2.85 78.08 3.7 3.73 76.51 4.9 

SMFs n0409=60 n0914=673 9.62 58.83 16.4 3.26 70.19 4.7 

SOFp n0409=476 n0914=88 2.07 35.44 5.9 3.43 35.80 9.7 

SOFs n0409=86 n0914=210 5.78 36.01 16.2 3.14 37.36 8.5 
SCF=conifer forest, SMF=mixed forest, SOF=oak forest, p=primary vegetation, s=secondary vegetation, BD=best fitted distribution, 

BDC=best fitted distribution by class, Exp=students. 

Table IV-15. Reference values at the substratum level with the sampling error as the source of 

uncertainty in AGB estimation of the temperate forests in Durango, Mexico. 

 2004-2009 2009-2014 

 Uncertainty  

source 

u2  

NS 
SE2 

u  

W 
W 

RSE 

LL 
RSE 

RSE  

UL 

u2  

NS 
SE2 

u  

W 
W 

RSE 

LL 
RSE 

RSE  

UL 

% % Mg ha-1 
Mg 

ha-1 
% % % % % Mg ha-1 

Mg 

ha-1 
% % % 

SCFpBD 0.444 99.566 4.177 50.133 8.22 8.33 8.44 0.411 99.599 8.657 59.600 14.24 14.53 14.81 

SCFsBD 1.144 98.866 7.248 30.809 22.58 23.53 24.56 0.333 99.677 6.858 47.787 14.08 14.35 14.63 

SMFpBD 0.477 99.533 2.861 78.081 3.64 3.66 3.69 0.511 99.499 3.739 76.515 4.83 4.89 4.94 

SMFsBD 0.966 99.044 9.665 58.814 15.89 16.43 16.97 0.588 99.422 3.268 70.197 4.61 4.66 4.71 

SOFpBD 2.844 97.166 2.101 35.415 5.80 5.93 6.07 3.499 96.511 3.487 35.781 9.27 9.75 10.25 

SOFsBD 1.244 98.766 5.819 36.008 15.62 16.16 16.73 1.577 98.433 3.160 37.343 8.25 8.46 8.68 

SCFpBDC 0.488 99.522 4.182 50.170 8.22 8.34 8.45 0.466 99.544 8.665 59.628 14.24 14.53 14.83 

SCFsBDC 1.177 98.837 7.259 30.848 22.56 23.54 24.58 0.366 99.644 6.866 47.822 14.07 14.36 14.66 

SMFpBDC 0.500 99.500 2.865 78.142 3.63 3.67 3.70 0.533 99.477 3.744 76.575 4.84 4.89 4.94 

SMFsBDC 0.988 99.022 9.681 58.879 15.89 16.44 17.02 0.60 99.400 3.272 70.247 4.61 4.66 4.71 

SOFpBDC 2.833 97.177 2.104 35.444 5.80 5.94 6.07 3.488 96.522 3.490 35.814 9.27 9.75 10.24 

SOFsBDC 1.199 98.811 5.821 36.027 15.59 16.16 16.75 1.591 98.419 3.164 37.386 8.25 8.46 8.69 

SCFpExp 0.566 99.444 4.187 50.229 8.20 8.34 8.47 0.599 99.411 8.665 59.688 14.19 14.52 14.85 

SCFsExp 1.333 98.677 7.263 30.861 22.50 23.54 24.63 0.455 99.555 6.870 47.877 14.02 14.35 14.69 

SMFpExp 0.600 99.400 2.859 78.039 3.63 3.66 3.70 0.655 99.355 3.737 76.474 4.83 4.89 4.95 

SMFsExp 1.199 98.811 9.672 58.819 15.85 16.45 17.06 0.677 99.333 3.266 70.175 4.60 4.65 4.71 

SOFpExp 3.155 96.855 2.094 35.279 5.80 5.93 6.08 3.611 96.399 3.476 35.656 9.26 9.75 10.24 

SOFsExp 0.622 99.388 5.818 35.971 15.51 16.17 16.81 1.766 98.244 3.154 37.264 8.24 8.46 8.68 

SCF=conifer forest, SMF=mixed forest, SOF=oak forest, p=primary vegetation, s=secondary vegetation, BD=best fitted distribution, 

BDC=best fitted distribution by class, Exp=students. 

Table IV-16. Error propagation in AGB estimation, using three scenarios (BD, BDC, Exp) of non-

sampling uncertainty estimation in the study area. 

For the three scenarios, the widest RSE intervals (RSE LL and RSE UL) were those with the smallest 

estimate of W. For MNFI0409, this case was the substratum SCFs, and for MNFI0914, it was the SOFp. 

Substrata mean uncertainties were compared with a paired T-Test (Holm correction). During the 

MNFI0409 period, BD and BDC scenarios were not significantly different (p-valuetH = 0.3009). The 
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other pairs of comparisons, including the MNFI0914 comparisons, were significantly different, with a 

p-valuetH ≤ 0.039. 

IV.3.3.2 Contribution of the sources of uncertainty in AGB estimation 

The contribution (%) of the sources of uncertainty to the total uncertainty (uW) of each scenario, is 

in Table IV-17. Here, were represented the sources of uncertainty (u) with the letters a for the 

uncertainty in DBH, b for the uncertainty in TH, c for the prediction from the allometric model, and 

d for the uncertainty of plot design. The sum of contributions from these sources (uNS) are shown in 

Table IV-13 in the reference values of each scenario. 

 2004-2009 (n0409=1662) 2009-2014 (n0914=1632) 

 Uncertainty  

source 

u2  

NS 
SE2 

u  

W 
W 

RSE 

LL 
RSE 

RSE  

UL 

u2  

NS 
SE2 

u  

W 
W 

RSE 

LL 
RSE 

RSE  

UL 

% % 
Mg ha-

1 

Mg ha-

1 
% % % % % 

Mg ha-

1 

Mg ha-

1 
% % % 

TFBDa 0.00 100.00 1.927 64.34 2.99 3.00 3.00 0.00 100.00 1.940 64.80 2.99 3.00 3.00 

TFBDb 0.01 99.99 1.926 64.28 2.99 3.00 3.00 0.01 99.99 1.940 64.74 2.99 3.00 3.00 

TFBDc 0.52 99.48 1.932 64.31 2.99 3.00 3.02 0.53 99.57 1.945 64.77 2.98 3.00 3.02 

TFBDd 0.02 99.98 1.927 64.31 2.99 3.00 3.00 0.02 99.98 1.940 64.77 2.99 3.00 3.00 

TFBDCa 0.01 99.99 1.929 64.37 2.99 3.00 3.00 0.01 99.99 1.942 64.83 2.99 3.00 3.00 

TFBDCb 0.03 99.97 1.927 64.30 2.99 3.00 3.00 0.03 99.97 1.940 64.76 2.99 3.00 3.00 

TFBDCc 0.53 99.47 1.932 64.31 2.98 3.00 3.02 0.53 99.47 1.945 64.77 2.98 3.00 3.02 

TFBDCd 0.02 99.98 1.927 64.31 2.99 3.00 3.00 0.02 99.98 1.940 64.77 2.99 3.00 3.00 

TFExpa 0.02 99.98 1.929 64.46 2.99 2.99 3.00 0.02 99.98 1.942 64.92 2.99 2.99 2.99 

TFExpb 0.13 99.87 1.924 64.13 2.99 3.00 3.01 0.13 99.87 1.938 64.60 2.99 3.00 3.01 

TFExpc 0.53 99.47 1.932 64.31 2.98 3.00 3.02 0.54 99.46 1.945 64.77 2.98 3.00 3.02 

TFExpd 0.02 99.98 1.927 64.31 2.99 3.00 3.00 0.01 99.99 1.945 64.77 2.99 3.00 3.00 

TF=estimation made with temperate forest data, BD=best fitted distribution for measurement errors, BDC=best fitted distribution by 

class, Exp=students, a=uDBH, b=uTH, c=uAM, d=uPlot. 

Table IV-17. Error propagation by uncertainty source in AGB estimation, using three scenarios of 

non-sampling uncertainty in the temperate forests of Durango, Mexico. 

Two sources of uncertainty that did not vary between scenarios (u model and u plot design) had 

similar contributions to uW. The u about the model contributed to a range of 0.52 to 0.54%, while 

the u of plot design contributed 0.01 to 0.02%. 

Among the sources of measurement uncertainty, the lowest contributor was the uDBH, with 

contributions <0.02% of the uW. Meanwhile, the uTH contribution had a wider range, from 0.01 to 

0.13% of the uW. 

With the uncertainty estimated at the substratum level, the mean estimated uncertainties by source 

were compared separately for each scenario, and the paired T-Test was used to compare the mean 

uncertainty between every pair of sources. With the MNFI0409 data, the paired T-Test in the BD 

scenario indicated that the uncertainty of uTH-uPlot was not significantly different (p-

valuett=0.1346). From the BDC scenario, the sources uDBH-uTH, uDBH-uPlot, and uTH-uPlot 

were not significantly different (p-valuett≥0.118). In the Exp scenario, no significant difference was 

found in the uDBH-uPlot comparison (p-valuett≥0.118). 
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In the second period of MNFI0914, similar results were obtained in the pair comparisons of the BDC 

and Exp scenarios. For the BDC scenario, a significant difference for the uDBH-uTH, uDBH-uPlot, 

and uTH-uPlot comparisons was not found (p-valuett≥0.1706). For the Exp scenario, the comparison 

between uDBH-uPlot was not significantly different (p-valuett=0.2642). Furthermore, in the BD 

scenario, all comparisons were statistically different (p-valuett≤0.0093). 
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IV.4 Empirical study 4: Modelling and mapping AGB for the state of Durango 

IV.4.1 Vegetation in the State of Durango 

The total forested area in the State of Durango (Figure II-5, Section II.2.3) was calculated as 

8,509,347 ha from Series IV and 8,589,123 ha from Series V. The area excluded from the analysis 

was the area outside of temperate forest, such as areas with predominant anthropogenic activities 

(i.e. agriculture, pastures, human settlements, etc.), water bodies, and areas with clouds or cloud 

shadows blocking temperate forest information. 

Table IV-18 reports the area occupied by the main vegetation types and land-uses, with emphasis on 

the temperate forest strata (Figure II-6, Section II.2.3). Comparing the two time-series from 2007 to 

2013, it is noticed an increase in surface area for temperate forest and arid zone vegetation. In 

contrast, the area with tropical forest and anthropogenic activities decreased. Within the temperate 

forest, the stratum of the oak forest increased, while the strata of conifer forest and mixed forest 

decreased. 

Vegetation and land-use 
Series IV (2007-2008) Series V (2012-2013) 

ha % ha % 

Anthropogenic & no vegetation 3820133 30.98 3740357 30.34 

Rain forest 607180 4.92 605607 4.91 

Xeric shrubland 2737949 22.21 2817453 22.85 

Temperate forest 

Stratum of conifer forest 

Stratum of mixed forest 

Stratum of oak forest 

5164218 

2359391 

1907236 

897591 

41.89 

19.14 

15.47 

7.28 

5166063 

2356893 

190311 

906054 

41.90 

19.12 

15.43 

7.35 

Total 12329480   12329480   

Table IV-18. Surface area by vegetation type and land-use for two time-series in the state of 

Durango, Mexico. 

As described in Chapter III, the vegetation series IV and V were used to define the areas and 

vegetation types in the MNFI (CONAFOR, 2012c, 2017a). 

IV.4.2 Basal area and AGB estimation models 

The estimates of basal area (G) and AGB (W) at the cluster level, analyzed in the previous chapter, 

were the response variables. Therefore, it was this information that was used to adjust the G and W 

models with the predictor variables derived from Landsat images as response variables for the two 

periods of study. 

IV.4.2.1 Pre-selected predictor variables 

Prior to the adjustment of the models, the pre-selection of prediction variables (PV) through the 

Pearson correlation coefficient was made. The correlation was calculated among the PV and were 

removed the PV with more than ρ=|0.97|, to avoid multicollinearity, preserving the PV with higher 

correlation with the response variable (Dohoo et al., 1996). Table IV-19 shows the PVs selected, 

where is shown the Pearson coefficient and the significance p-value≤0.001 of the 38 PV for the 

2007 dataset and 41 PV for the 2013 dataset.  
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The correlation coefficients ranged from |0.40| to |0.79|, out of which the ARVI, NDVI, SR, SRG, 

and WDRVI predictor variables had correlations greater than |0.71|. Out of the available spectral 

bands, the NIR band was not selected due to low a correlation with the response variables. The 

texture with the highest correlation was the weighted mean (MN), followed by the Haralicks 

correlation (HC). Two other textures, homogeneity (HO) and variance (VA) were selected in a 

smaller proportion to the previous ones. 

PV 
MNFI (2004-2009) MNFI (2009-2014) 

PV 
MNFI (2004-2009) MNFI (2009-2014) 

G W G W G W G W 

C3     -0.62 *** -0.60 *** Rd11MN -0.61 *** -0.59 *** -0.60 *** -0.58 *** 

B3 -0.71 *** -0.64 *** -0.63 *** -0.62 *** ND3HC     0.56 *** 0.58 *** 

G3 -0.70 *** -0.63 *** -0.61 *** -0.60 *** ND3MN 0.64 *** 0.66 *** 0.66 *** 0.67 *** 

Rd3 -0.70 *** -0.63 *** -0.65 *** -0.63 *** ND7HC     0.54 *** 0.56 *** 

SWIR13 -0.66 *** -0.59 *** -0.63 *** 0.62 *** ND7MN 0.65 *** 0.67 *** 0.66 *** 0.67 *** 

SWIR23 -0.71 *** -0.64 *** -0.67 *** -0.66 *** ND11HC     0.56 *** 0.57 *** 

SR3 0.78 *** 0.74 *** 0.72 *** 0.76 *** ND11MN 0.66 *** 0.67 *** 0.66 *** 0.66 *** 

SRG3 0.79 *** 0.74 *** 0.71 *** 0.75 *** WDR3HC     0.52 *** 0.58 *** 

ND3 0.79 *** 0.73 *** 0.75 *** 0.76 *** WDR3MN 0.64 *** 0.67 *** 0.70 *** 0.73 *** 

E3 0.73 *** 0.66 *** 0.69 *** 0.72 *** WDR7HO     -0.50 *** 0.51 *** 

AR3 0.77 *** 0.72 *** 0.75 *** 0.76 *** WDR7HC 0.40 *** 0.45 *** 0.55 *** 0.61 *** 

SA3 0.74 *** 0.69 *** 0.70 *** 0.73 *** WDR7MN 0.67 *** 0.69 *** 0.72 *** 0.74 *** 

MSA3 0.71 *** 0.67 *** 0.69 *** 0.72 *** WDR11HO     -0.53 *** -0.54 *** 

WDR3 0.79 *** 0.74 *** 0.74 *** 0.77 *** WDR11HC     0.57 *** 0.63 *** 

NDMI3 0.72 *** 0.67 *** 0.72 *** 0.75 *** WDR11MN 0.66 *** 0.69 *** 0.71 *** 0.73 *** 

B3MN -0.53 *** -0.52 ***     WDR11VA 0.66 *** 0.69 ***     
B7MN -0.54 *** -0.53 *** -0.58 *** -0.57 *** AR3HC 0.48 *** 0.51 ***     
B11MN -0.54 *** -0.53 *** -0.58 *** -0.56 *** AR3MN 0.67 *** 0.68 *** 0.71 *** 0.72 *** 

G3MN -0.59 *** -0.58 *** -0.55 *** 0.53 *** AR7MN 0.69 *** 0.70 *** 0.72 *** 0.73 *** 

G7MN -0.59 *** -0.56 *** -0.56 *** -0.54 *** AR11MN 0.68 *** 0.69 *** 0.72 *** 0.72 *** 

G11MN -0.57 *** -0.58 *** -0.56 *** 0.54 *** SRG3MN 0.62 *** 0.65 ***     
Rd3MN -0.59 *** -0.58 *** -0.59 *** -0.57 *** SRG3HC     0.66 *** 0.69 *** 

Rd7MN -0.61 *** -0.59 *** -0.60 *** -0.58 *** SRG7MN 0.64 *** 0.67 ***     
Rd11HC -0.62 *** -0.43 *** -0.60 *** -0.41 *** SRG11MN 0.63 *** 0.66 ***     

Table IV-19. Predictor variables (PV) selected to estimate the response variables basal area (G) and 

AGB (W) in Durango. The description of PV is in Figure III-18. 

IV.4.2.2 Estimation models adjusted with MNFI 2004-2009 field data 

The adjusted models for the basal area (G) and AGB (W) estimated from the 2004-2009 MNFI data 

and Landsat 5 (2007) imagery are given in Table IV-20. The elements contained in the table include 

vegetation type, response variable, estimator (est), standard error of the estimator (SE), the 

significance of the response variable (p=p>|t|), and the coefficient of determination of model 

validation (R2). For each response variable, two models were fitted: the first with the predictor 

variable NDVI and the second with the variables selected by stepwise regression (SW). The 

coefficients (λ) from the box-cox transformation of the predictor variables were recorded at the 

bottom of the table. The acronyms of the response variables can be easily followed with the 

information of Figure III-18 in Chapter III. The goodness-of-fit of the models is described in a 

further Section. 

In the upper part of the table (bold rows) are the models adjusted with the information on the 1662 

clusters of the temperate forest (TF). The rest of the table shows the adjusted models for the strata 

conifer forest (SCF), mixed forest (SMF), and oak forest (SOF), with 292, 1033, and 337 clusters, 

respectively. 
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Using TF models as a reference, it was observed that, when adjusting models for the response 

variable per stratum, the model of basal area (G) for SCF increased R2 (>0.585). On the other hand, 

the R2 decreased for SMF and SOF. W models showed the same R2 behavior at the stratum level. 

 NDVI model Stepwise model NDVI model Stepwise model 
Basal area (G) Temperate forest (TF)  AGB (W) Temperate forest (TF)  

RV Int ND3λ1 Int ND3λ1 Rd11HC λ2 Int ND3λ3    

est -32.34 64.87 5.49 49.15 -15.73 -142.74 325.14    

SE 0.98 1.42 4.34 2.19 1.79 4.21 6.85    

p-value <2E-16 <2E-16 0.21 <2E-16 <2E-16 <2E-16 <2E-16    

R2 0.585  0.585   0.601     

Basal area (G) Stratum Conifer forest (SCF)  AGB (W) Stratum Conifer forest (SCF)  
RV Int ND3λ4 Int SR3λ5  Int ND3λ6 Int SR3λ7  

est -46.63 80.96 34.18 -50.63  -215.2 398.20 192.71 -291.09  

SE 2.63 3.68 1.07 2.26  11.8 17.80 6.63 12.89  

p-value <2E-16 <2E-16 <2E-16 <2E-16  <2E-16 <2E-16 <2E-16 <2E-16  

R2 0.624  0.636   0.646  0.646   

Basal area (G) Stratum Mixed forest (SMF)  AGB (W) Stratum Mixed forest (SMF)  
RV Int ND3λ8 Int ND3λ8 Rd11HCλ9 Int ND3λ10 Int ND3λ10 Rd11HCλ11 

est -32.38 65.69 20.89 45.06 -22.73 -129.88 333.34 479.90 243.00 -466.60 

SE 1.37 1.94 5.49 2.84 2.25 5.31 8.98 72.90 13.10 56.10 

p-value <2E-16 <2E-16 1.5E-4 <2E-16 <2E-16 <2E-16 <2E-16 7.50E-11 <2E-16 2.90E-16 

R2 0.570  0.580   0.600  0.598   

Basal area (G) Stratum Oak forest (SOF)  AGB (W) Stratum Oak forest (SOF)  
RV Int ND3λ12 Int SR3λ13  Int ND3λ14 Int SR3λ15  

est 28.61 -13.80 16.05 -27.30  214.94 -131.55 92.41 -176.86  

SE 1.94 1.27 0.743 2.331  12.55 9.09 3.88 11.44  

p-value <2E-16 <2E-16 <2E-16 <2E-16  <2E-16 <2E-16 7.50E-11 <2E-16  

R2 0.282  0.298   0.414  0.422   

Int=intercept, λ=Box-Cox coefficient, G= Basal area (m2 ha-1), W=Aboveground biomass (Mg ha-1), λ1=0.383838=0.38̂, λ2=0.06̂, λ3=0.50̂, λ4=0.34̂, λ5=-

0.98̂, λ6=0.42̂, λ7=-0.86̂, λ8=0.38̂, λ9=0.06̂, λ10=0.58̂, λ11=0.02̂, λ12=0.34̂, λ13=1.39̂, λ14=0.26̂, λ15=-1.31̂ 

Table IV-20. Adjusted models for the basal area (G) and AGB (W), estimated from the 2004-2009 

MNFI. 

Predictor variables were also selected stepwise for the W models and resulted in a higher calculated 

R2. Predictions of G and W improved in SCF and SMF by adding Haralicks correlation in window 

11X11 for the red band (Rd11HC). The respective response variables of the SCF and SOF strata did 

not include texture information. These response variables for SCF was the ratio Red band/NIR 

(SR3), while for SOF it was the ratio Green band/NIR (SRG3). 

IV.4.2.3 Estimation models adjusted with 2009-2014 MNFI field data  

As in the first MNFI period, basal area (G) and AGB (W) estimates with the 2009-2014 MNFI 

information were the response variables (RV) to fit prediction models using Landsat 8 (2013) 

imagery. The result of the adjusted models is in Table IV-21, using the same configuration and 

nomenclature previously presented in Table IV-20. 

The model was adjusted for 1635 plots in the temperate forest (TF). At strata level, 216, 1156, and 

263 plots were used to adjust the models in the conifer forest (SCF), mixed forest (SMF), and oak 

forest (SOF). Table IV-21 presents two models adjusted for each stratum, as well as for temperate 

forest. The first model was adjusted with the NDVI index, and the second model was the result of 

stepwise regression. 

Higher R2 was calculated in 2013 compared to 2007, apart from W models in SOF. In comparison to 

the temperate forest TF models, the strata model of SCF increased the R2, while the models of SMF 
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and SOF decreased the R2. The models fitted for both variables G and W are presented in Table IV-

21. 

The predictor variables selected by the stepwise method for both the G and W models were the same 

but in a different order. To estimate G in TF, the model included the ratio of Red band/NIR (SR3), 

along with the estimation of the weighted mean of the ARVI index for the 11X11 window 

(AR11MN). The stepwise estimate of W in TF selected the NDVI variable (ND). 

 NDVI model Stepwise model  NDVI model Stepwise model 
Basal area (G) Temperate forest (TF) AGB (W) Temperate forest (STF) 

RV Int ND3λ1 Int SR3λ2 AR11MN λ3  Int ND3λ4    

est -32.91 66.06 62.51 -33.08 -101.49  -128.70 315.70    

SE 0.907 1.323 5.78 2.45 20.09  3.69 6.28    

p-value <2E-16 <2E-16 0.21 <2E-16 <2E-16  <2E-16 <2E-16    

R2 0.629  0.637    0.633     

Basal area (G) Stratum Conifer forest (SCF) AGB (W) Stratum Conifer forest (SCF) 
RV Int ND3λ5 Int SR3λ6   Int ND3λ7 Int SR3λ8 ND3HCλ9 

est -66.08 100.73 34.42 -51.82   -184.50 366.90 319.80 -343.30 -41.40 

SE 3.56 4.68 1.15 2.39   11.60 18.60 55.00 28.00 18.30 

p-value <2E-16 <2E-16 <2E-16 <2E-16   <2E-16 <2E-16 <2E-16 <2E-16  

R2 0.681  0.681    0.660  0.674   

Basal area (G) Stratum Mixed forest (SMF) AGB (W) Stratum Mixed forest (SMF) 
RV Int ND3λ10 Int SR3λ11 WDR11HOλ12 AR11MN λ13 Int ND3λ14 Int SR3λ15 AR11MNλ16 

est -27.98 61.79 101.24 -30.14 10.00 -213.28 -111.57 312.19 -467.20 -198.80 404.00 

SE 1.07 1.58 8.58 3.04 1.46 27.28 4.31 7.60 123.60 19.40 71.10 

p-value <2E-16 <2E-16 <2E-16 1.2E-11 1.3E-14  <2E-16 <2E-16 1.6E-4 <2E-16 1.7E-8 

R2 0.598  0.611    0.619  0.618   

Basal area (G) Stratum Oak forest (SOF) AGB (W) Stratum Oak forest (SOF) 
RV Int ND3λ17 Int E3λ18 WDR7HOλ19 WDR7MN λ20 Int ND3λ21 Int SWIR2_3λ22 MSA3 λ23 

est 62.85 -46.45 22.63 -7.70 7.35 -11.01 774.30 -687.50 807.07 -0.08 -670.01 

SE 5.52 4.61 4.10 2.94 1.81 1.69 65.30 60.50 77.56 0.02 71.66 

p-value <2E-16 <2E-16 8.8E-8 9.4E-3 6.8E-5 4.4E-10 <2E-16 <2E-16 <2E-16 9.1E-5 <2E-16 

R2 0.313  0.356    0.372  0.388   

Int=intercept, λ=Box-Cox coefficient, G= Basal area (m2 ha-1), W=Aboveground biomass (Mg ha-1), λ1=0.383838=0.38̂, λ2=-0.94̂, λ3=-0.42̂, λ4=0.54̂, 

λ5=0.26̂, λ6=-1.03̂, λ7=0.46̂, λ8=-0.82̂, λ9=0.10̂, λ10=0.42̂, λ11=-0.86̂, λ12=1.67̂, λ13=-0.38̂, λ14=0.62̂, λ15=-0.66̂, λ16=0.18̂, λ17=-0.14̂, λ18=-0.30̂, λ19=2, 

λ20=0.98̂, λ21=-0.06̂, λ22=0.74̂, λ23=-0.06̂ 

Table IV-21. Adjusted models for the basal area (G) and AGB (W), estimated with the 2009-2014 

MNFI data. 

The mixed forest stratum (SMF) contained the largest number of clusters. The corresponding 

stepwise analysis selected the same variables as TF (SR3 and AR11MN), along with the variable 

WDR11HO. For the W estimation, the model selected the SR3 and AR11MN variables. 

The model adjusted to estimate G in the conifer forest (SCF) included the variable SR3, while the 

model to estimate W added the ND3HC variable to better fit the model.  

In the oak forest (SOF), the models for G and W used entirely different variables. The model 

adjusted for G selected E3, WDR7HO, and WDR7MN, and the model adjusted for W included 

SWIR2 and MSAVI (MSA). 

IV.4.2.4 Goodness-of-fit of adjusted models 

For the estimated models, absolute bias and relative bias were calculated (Bias, Biasr) and reported 

the results in Table IV-22, together with RMSE, CV (RMSE/mean), and R2. The top part of the table 

shows the information of the 2004-2009 MNFI, and the bottom part shows the information of the 

2009-2014 MNFI. 

The stepwise models had lower RMSE and CV compared to NDVI models adjusted for the same 

vegetation type and for the same response variables (G or W). For example, the TF model adjusted 
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for NDVI had an RMSE=4.35 m2 ha-1 and CV=34.36%, while the stepwise model reported an 

RMSE=4.28 m2 ha-1 and CV=33.78%. The Bias was negative for all estimates, indicating an 

underestimation of the fitted models. However, two optimized models had higher Bias (more 

negative) than was calculated in the NDVI models: G estimation in TF and W estimation in SMF, 

both of which were derived from the 2004-2009 MNFI. 

Model 
Basal area (G) AGB (W) 

R2 
RMSE CV Bias Biasr 

R2 
RMSE CV Bias Biasr 

MNFI 2004-2009 m2 ha-1 % m2 ha-1 % Mg ha-1 % Mg ha-1 % 

TF (NDVI) 0.585 4.35 34.36 -0.28 -2.25 0.601 24.50 40.48 -3.37 -5.57 

TF (stepwise) 0.585 4.28 33.78 -0.29 -2.32      

SCF (NDVI) 0.624 4.38 38.08 -0.36 -3.09 0.646 24.37 47.21 -3.91 -7.58 

SCF (stepwise) 0.636 4.33 37.62 -0.28 -2.42 0.646 24.21 46.90 -3.59 -6.95 

SMF (NDVI) 0.570 4.35 30.11 -0.41 -2.83 0.600 25.50 36.04 -3.53 -4.99 

SMF (stepwise) 0.580 4.23 29.28 -0.38 -2.65 0.598 24.71 34.92 -3.98 -5.62 

SOF (NDVI) 0.282 3.39 41.61 -0.42 -5.16 0.414 17.35 47.48 -1.87 -5.13 

SOF (stepwise) 0.298 3.33 40.73 -0.39 -4.83 0.422 17.05 46.67 -1.41 -3.87 

MNFI 2009-2014           
TF (NDVI) 0.629 4.18 32.53 -0.46 -3.62 0.633 23.93 39.65 -3.52 -5.84 

TF (stepwise) 0.637 4.11 32.01 -0.39 -3.02      

SCF (NDVI) 0.681 4.26 39.27 -0.35 -3.25 0.660 23.88 51.71 -3.61 -7.82 

SCF (stepwise) 0.681 4.24 39.02 -0.35 -3.21 0.674 23.20 50.25 -3.28 -7.11 

SMF (NDVI) 0.598 4.31 29.99 -0.50 -3.50 0.619 25.22 36.75 -3.67 -5.34 

SMF (stepwise) 0.611 4.19 29.23 -0.43 -3.00 0.618 25.18 36.69 -3.26 -4.78 

SOF (NDVI) 0.313 3.26 41.85 -0.38 -4.91 0.372 16.76 47.87 -2.27 -6.49 

SOF (stepwise) 0.356 3.06 39.26 -0.33 -4.30 0.388 16.06 45.87 -1.77 -5.07 
R2=validation coefficient of determination, RMSE=root mean square error, CV=RMSE/mean, Biasr=relative bias  

Table IV-22. Bias estimate and goodness-of-fit of the adjusted models for the basal area (G) and 

AGB (W) estimated from MNFI data in Durango, Mexico. 

IV.4.2.4.1 Stepwise regression models by strata for MNFI 2004-2009 

The indicators of basal area (G) and AGB (W) in temperate forest (TF) models, using information 

from the first MNFI measurement in Durango, are displayed in the underlined rows. 

By separating the TF area in the strata and fitting models for each stratum, some fitting parameters 

changed. In the G estimation for SCF, the R2 increased (0.636) and the Bias decreased (-0.28 m2 ha-

1). In the SMF model, the RMSE and CV indicators were lower (4.23 m2 ha-1 and 29.28%) than the 

estimates in TF. Conversely, in the SOF model, the prediction of the model decreased even though 

the RMSE was lower (3.33 m2 ha-1) than the estimated in the model for TF. 

With respect to the W estimate in the SCF model, R2 (0.646) increased and RMSE (24.21 Mg ha-1) 

was reduced. In the SMF model, CV=34.92% was reduced. The adjusted model for SOF had a lower 

R2 (0.422), but nevertheless reduced the variance (RMSE=17.05 Mg ha-1) and the Bias (-1.414 Mg 

ha-1). 

IV.4.2.4.2 Stepwise regression models by strata for MNFI 2009-2014 

In the second period of MNFI, indicators of the G model suggest a better prediction compared to the 

first MNFI model for TF predictions. The differences consisted of increasing R2=0.637 and 

decreasing both RMSE=4.11 m2ha-1 and CV=32.01%.  

The stratum model indicators improved when compared to the TF-adjusted model. For example, the 

SCF model had an increase of R2 (0.681) and a decrease of Bias (-0.35 m2 ha-1). In the SMF model, 
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CV (29.23%) and relative Bias (-3.00%) decreased. For the SOF model, RMSE (3.06 m2 ha-1) and 

Bias (-0.33 m2 ha-1) decreased. 

The W estimate for TF had changes in the indicators compared to the first period. the observed 

increase in R2 (0.633) and decrease in CV (39.65%) and Bias (-3.52 Mg ha-1) suggested an 

improvement of the model.  

As in G models, W models improved goodness-of-fit of the models adjusted in TF. The SCF model 

had larger R2 (0.674), smaller RMSE (23.20 Mg ha-1), and smaller Bias (Mg ha-1). In the SMF model 

decreased CV (36.69 %) and decreased Bias (-3.26 Mg ha-1). Finally, the SOF model calculated a 

lower RMSE=16.06 Mg ha-1 and a lower Bias=-1.77 Mg ha-1. 

IV.4.3 Basal area and AGB in the estimation 

Using the stepwise regression models and applying the results to the Landsat imagery, the basal 

area (G) and AGB (W) were estimated in the temperate forest of Durango, Mexico. Then, the 

statistics (mean and standard deviation) for the variable estimates of the temperate forest (TF) and 

per-vegetation stratum were calculated (Table IV-23). In this table, the total area where Landsat 

imagery information was properly acquired and applied to the models was included (non-temperate 

forests and clouds were excluded). In the bold character rows, the results of applying the stepwise 

model in TF (n=1662 in 2007 and n=1635 in 2013) are shown for both response variables. For the 

W estimate, the calculation of total storage was included (Tg). Similarly, G and W statistics for each 

vegetation stratum were estimated (SCF, SMF, and SOF). With the stratum estimates, a single layer 

of temperate forest merged was made (TFM). 

Time  Area 
Basal area (G) Aboveground biomass (W) 

𝜇̂ 𝜎̂ RMSE 𝜇̂ 𝜎̂ RMSE storage 

2007 ha m2 ha-1 Mg ha-1 Tg 

TF (n=1662) 5152172.76 12.58 5.33 4.28 58.56 31.43 24.50 301.70 
         

TFM (n=1662) 5152172.76 12.16 5.53  - - 55.36 31.28 - - 285.25 

SCF (n=292) 2356073.28 13.72 5.59 4.33 62.11 31.27 24.21 146.34 

SMF (n=1033) 1906699.05 12.32 5.41 4.23 56.57 32.73 24.71 107.86 

SOF (n=337) 889400.43 7.70 2.35 3.33 34.90 15.38 17.05 31.04 

2013       

TF (n=1635) 5104018.71 12.42 5.61 4.11 57.03 32.51 23.93 291.09 
         

TFM (n=1635) 5104018.71 11.99 5.83 - - 53.57 32.01 - - 273.42 

SCF (n=216) 2338481.43 14.03 6.16 4.24 61.64 33.97 23.20 144.15 

SMF (n=1156) 1883999.43 11.65 5.12 4.19 52.18 31.59 25.18 98.31 

SOF (n=263) 880943.85 7.33 2.68 3.06 35.10 14.88 16.06 30.92 
𝜇̂= estimated mean, 𝜎̂=estimated standard deviation RMSE=root mean square error 

Table IV-23. Basal area (G) and AGB (W), estimate for temperate forest in Durango, Mexico. 

Basal area models estimated values less than zero for 0.17% of the area in 2007 and 0.27% of the 

area in 2013. Moreover, from applying the AGB models, the area with values less than zero was 

1.90% in 2007 and 1.78% in 2013. Values less than zero were estimated because the range of 

predictor variables used (PV) to fit the regression models has not covered all the range of PV values 

in the study area, previously referred to as gaps (Section I.2.2.2.2). In this study, it was the above-

mentioned percentage of area for basal area and AGB. These values less than zero were replaced by 
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0.1 (m2 ha-1/Mg ha-1) with no modification to the estimates of 𝜇̂ and 𝜎̂. Los valores menores a ceros 

se obtuvieron  

IV.4.3.1 Basal area (G) estimates for Durango temperate forest 

In 2007, the G estimate using the TF model (𝜇̂=12.58 m2 ha-1) was larger than the TFM estimate 

(𝜇̂=12.16 m2 ha-1). In contrast, 𝜎̂ was larger in TFM (5.33 m2 ha-1). Estimates of G for 2013 were 

like in 2007, with a larger 𝜇̂ in TF (12.42 m2 ha-1) than in TFM (11.99 m2 ha-1). The 𝜎̂ in 2013 was 

smaller in TF than in TFM (5.61 and 5.83 m2 ha-1).  

The 𝜇̂ G values across the different vegetation strata were largest for SMF in 2007, with a value of 

12.32 m2 ha-1. However, in 2013, the SCF and SOF estimates were the largest (14.03 and 7.33 m2 ha-

1). Furthermore, the 𝜎̂ was smaller in 2007 for SCF and SOF (5.59 and 2.35 m2 ha-1) but was smaller 

for SMF in 2013 (5.12 m2 ha-1). 

IV.4.3.2 AGB (W) estimates for the Durango temperate forests 

The 2007 𝜇̂ W estimates were larger in TF compared to TFM (58.56>55.36 Mg ha-1). Therefore, 

storage was also larger for TF at 301.70 Tg (Tg=106 Mg). The 𝜎̂ was smaller in TFM, with a value 

of 31.28 Mg ha-1. The 2013 trends were the same, in which TF had a 𝜇̂ of 57.03 Mg ha-1, 𝜎̂ of 32.51 

Mg ha-1 (CV=0.6), and storage of 291.09 Tg. 

For the vegetation strata in 2007, the 𝜇̂ W estimates were larger in the SCF and SMF (62.11 and 

56.57 Mg ha-1), while the larger SOF estimate occurred in 2013 (35.10 Mg ha-1). The 𝜎̂ was smaller 

in 2007 for SCF, with 31.27 Mg ha-1. However, for SOF and SMF, it was smaller in 2013 (14.88 

and 31.59 Mg ha-1). 

IV.4.3.3 Basal area and AGB maps of Durango, Mexico 

Using the models per stratum described above, the basal area (G) and AGB (W) maps were 

produced for the State of Durango. The results, presented in Figure IV-13, show the G estimated by 

the stepwise regression models using Landsat satellite imagery and the INEGI vegetation series. 

The values in the figure for the Landsat 5 imagery (2007) range from 0 to 35.14 Mg ha-1 and from 0 

to 35.49 Mg ha-1 for the Landsat 8 imagery (2013). Surfaces with the presence of clouds were 

excluded in the Landsat 8 images (right), located in the far west of the state in two blank areas. This 

surface spanned 48,154 ha without information in 2013. However, the same land area was able to be 

analyzed in 2007 and averaged a 15.43 m2 ha-1 basal area. 

In 2007, 88.6% of the evaluated area in the temperate forest (TF) registered less than 20 m2 ha-1 of 

G. The class with the largest area was (10 to 15] m2 ha-1, comprising 30.5% of the TF. Moreover, 

with the information from 2013, 87.1% of the surface recorded less than 20 m2 ha-1. The largest 

surface class in this year was (5 to 10 cm] m2 ha-1, covering 32.2 % of the TF in Durango (see Table 

VIII-43, Appendix VIII). 
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MNFI (2004-2009) and Landsat 5 (2007) MNFI (2009-2014) and Landsat 8 (2013) 

Figure IV–13. Basal area in the temperate forest of Durango, Mexico, with information from the 

MNFI and Landsat imagery. 

 
MNFI (2004-2009) and Landsat 5 (2007) MNFI (2009-2014) and Landsat 8 (2013) 

Figure IV–14. AGB in the temperate forest of Durango, Mexico, with information from the MNFI 

and Landsat imagery. 

Figure IV-14 shows the distribution of the W in the temperate forest of Durango. This map was 

produced by applying the stepwise regression models of W to Landsat imagery. The W range in 

2007 was 0 to 199.48 Mg ha-1 and in 2013 was 0 to 201.79 Mg ha-1. According to the 2007 
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estimates, 77.5% of W was contained in classes less than 100 Mg ha-1, which represented 89.9% of 

the temperate forest area. Similarly, in 2013, the two classes less than 100 Mg ha-1 covered 89.6% 

of the area, with an estimate of 76.03% of the AGB in TF. Thus, classes ≥100 Mgha-1 increased 

surface in 2013 (see Table VIII-44, Appendix VIII). For the area covered by clouds in 2013, a 

storage of 3.8 Tg in 2007 was calculated. 

IV.4.3.4 Comparison of model-based and sampling-based estimations 

The estimates of linear regression models (Table IV-23) were compared with the estimates from the 

sampling-based method made in the MNFI (Section IV.3 of this study). In this case, the estimators 

(𝜇̂, 𝜎̂, SE, RE) calculated for both methods are available in Table IV-24. In this table, the calculation 

of AGB storage (Tg) and the uncertainty in estimating AGB storage (uTg) using the 𝜇̂ and SE 

estimators were included. Calculations are given for the total reported area of the temperate forest 

(TF) and the per-strata vegetation in Durango to estimate total storage using both estimation 

methods. Estimates by stratum were summed up and reported as temperate forest merged (TFM). 

 Time  area 
Basal area (G) Aboveground biomass (W) 

𝜇̂ 𝜎̂ SE RE 𝜇̂ 𝜎̂ SE RE storage 

S
am

p
li

n
g

-b
as

ed
 

MNFI 04-09 ha m2 ha-1  Mg ha-1  Tg uTg 

TF (n=1662) 5152172.76 12.98 8.56 0.22  64.31 77.80 1.93  331.34 ±  9.94 
              
SCF (n=537) 2356073.28 11.35 12.84 0.60  48.31 85.49 3.86  113.82 ±  9.09 
SMF (n=1281) 1906699.05 15.02 10.30 0.32  77.48 96.03 2.79  147.73 ±  5.32 
SOF (n=526) 889400.43 7.74 6.23 0.31  35.52 44.71 2.09  31.59 ±  1.86 

       Sum of strata storage (TFM)  293.64 ±10.70 

MNFI 09-14           

TF (n=1635) 5104018.71 13.17 8.66 0.22  64.77 77.69 1.94  330.59 ±  9.90 
              
SCF (n=264) 2338481.43 11.92 11.44 0.75  51.82 87.09 5.49  121.18 ±12.84 
SMF (n=1190) 1883999.43 14.54 8.75 0.26  73.12 83.28 2.45  137.76 ±  4.62 
SOF (n=295) 880943.85 7.82 5.55 0.35  36.84 39.59 2.40  32.45 ±  2.11 

       Sum of strata storage (TFM)  294.67 ±13.81 

M
o
d

el
-b

as
ed

 

   𝜇̂ 𝜎̂ SE  𝜇̂ 𝜎̂ SE  Storage 

Landsat 5, 2007 ha m2 ha-1  Mg ha-1  Tg uTg 

TF (n=1662) 5152172.76 12.58 5.33 0.15 2.2 58.56 31.43 0.86 5.1 301.71 ±  4.42 
               
SCF (n=292) 2356073.28 13.72 5.59 0.36 2.8 62.11 31.27 2.02 3.7 146.34 ±  4.76 
SMF (n=1033) 1906699.05 12.32 5.41 0.19 2.9 56.57 32.73 1.11 6.4 107.86 ±  2.11 
SOF (n=337) 889400.43 7.70 2.35 0.25 1.5 34.90 15.38 1.37 2.3 31.04 ±  1.22 

        Sum of strata storage (TFM)  285.76 ±  5.35 

Landsat 8, 2013            

TF (n=1635) 5104018.71 12.42 5.61 0.14 2.5 57.03 32.51 0.89 4.7 291.08 ±  4.55 
               
SCF (n=216) 2338481.43 14.03 6.16 0.41 3.3 61.64 33.97 2.26 5.9 144.14 ±  5.28 
SMF (n=1156) 1883999.43 11.65 5.12 0.18 2.2 52.18 31.59 1.06 5.4 98.31 ±  1.99 
SOF (n=263) 880943.85 7.33 2.68 0.27 1.7 35.10 14.88 1.43 2.8 30.92 ±  1.26 

      Sum of strata storage (TFM)  276.39 ±  5.79 

Table IV-24. Estimates of basal area (G) and AGB (W) using methods based on forest inventory 

sampling and regression models, applied in the temperate forests of Durango, Mexico. 

The results from both methods in the temperate forest (TF) showed that in the first study period the 

sampling-based value of 𝜇̂ was larger than the model-based value (bold rows in Table IV-24). This 

observation was valid for the two variables and both study periods. It was also found that the 

sampling-based method produced larger estimates of 𝜇̂ in the second period of the MNFI, while the 

opposite result was achieved with the model-based method. 
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At the stratum level, was observed similar behavior as in TF for most strata. Nevertheless, when the 

sampling-based method was applied in the mixed forest stratum (SMF), the 𝜇̂ value was smaller in 

the second period for both variables. On the other hand, the model-based method in G estimation 

calculated an increase in the estimation in the second period for the conifer forest stratum (SCF, 

14.03>13.72 m2 ha-1). This result was also observed in the oak forest stratum (SOF) for W 

(34.90<35.10 Mg ha-1). 

SOF estimates were similar for both methods and for both variables, with ranges of 7.33 to 7.82 m2 

ha-1 for G and 34.90 to 36.84 Mg ha-1 for W. In the other two strata, the dominance alternated 

according to the estimation method. While SCF had the largest 𝜇̂ in the sampling-based method, 

SMF had the largest estimate in model-based method. 

W storage behaved like the 𝜇̂ estimator. Thus, the largest storage from the sampling-based method 

came from the SMF, with values of 147.73 Tg for the first MNFI and 137.76 Tg for the second 

MNFI. Meanwhile, the largest storage in the model-based method was in the SCF. 

Comparing the W stored in the TF (bold rows in Table IV-24) to the sum of W stored by stratum, an 

overestimation of the W in TF was observed. The sampling-based estimate from all sampled clusters 

of the TF was 13% larger than the sum of the estimates per vegetation stratum. Likewise, the 

overestimate of W in the model-based method was 6%. 

In Figure IV-15, the storage values of AGB with information from the two estimation methods were 

plotted (sampling-based and model-based). This figure included the uncertainty confidence interval 

(CI95% -95% of probability-), using SE for the sampling-based and model-based method, 

respectively. 

 

SB=sampling-based method, MB=model-based method 

Figure IV–15. AGB storage and uncertainty in AGB storage using information from two methods 

of estimation in the temperate forests of Durango, Mexico. 

Figure IV-15 shows that AGB's estimates in temperate forest (TF) were higher than those observed 

for temperate forest merged (TFM). However, the confidence intervals of the two methods of AGB 
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estimation showed overlap in the TFM estimates; this overlap was not observed in the results for 

TF. This figure shows also the AGB overestimate in the results of the model-based method for the 

conifer forest stratum (SCF), as well as the underestimate of the same method for the mixed forest 

stratum (SMF), compared to the sampling-based estimations. In the figure is shown the difference in 

CI95% by the model-based method (±2.44 to ±11.57 Mg ha-1) compared to the CI95% by the sampling-

based method (±3.72 to ±27.61 Mg ha-1). These differences in uncertainty estimation was used to 

calculate the relative efficiency (RE) for the two periods of study. In TF the RE for 2004-2009 was 

5.1 and decreased to 4.7 in the second period. This reduction of RE was also observed in SMF (6.4 

to 5.4). However, in SCF and oak forest stratum (SOF) an increase in RE was observed (3.7 to 5.9 

in SCF, 2.3 to 2.8 in SOF).



Chapter V: Discussion 

 

103 

Chapter V: Discussion 

V.1 Measurement errors 

The first empirical study analyzed measurement errors using the discrepancy between two 

measurements for 4262 trees. In studies applying the same methodology, Berger et al. (2014) 

reported similar numbers of sampled trees, with 4411 trees, but generally smaller sample sizes have 

been used, such as 391 (Kitahara et al., 2010), 879 (Elzinga et al., 2005) and 778 trees (Melson et 

al. 2001). In the second empirical study, the number of trees was reduced, but the number of 

repetitions was increased, with five remeasurements in 250 trees of the DBH and TH variables. 

Similar studies to the second empirical study have been conducted by Luoma et al. (2017) with four 

measurements and McRoberts et al. (1994) with eight measurements per tree. 

The DBH in our first study made in conifer forest had a mean error (𝜎̂) with Caliper of 0.36 cm or a 

relative standard deviation (RSD) of 2.2%. For our second study in broad-leaved forest, we 

estimated 𝜎̂ of 0.19 cm (RSD=0.9%) with Caliper and 0.16 cm (RSD=0.8%) with Tape. These 

results are consistent with studies that report RSD of 1.6% with Tape (Elzinga et al., 2005), standard 

deviations of 0.51 cm (Melson et al. 2001) and 0.3 cm (RSD=1.5%) with multiple Caliper 

measurements (Luoma et al., 2017). Using Tape, Kitahara et al. (2010) estimated 𝜎̂ of 0.37-0.57 cm 

(RSD of 1.3-2.9%) for conifer trees and 0.52-0.83 cm (RSD of 1.2-3.2%) for broad-leaved trees. 

The second empirical study calculated smaller measurement errors. Each re-measurement was 

performed by the same individual to obtain the best estimate, i.e. without time pressure and 

following the field manual. Thus, it was possible to estimate smaller measurement errors than the 

ones estimated in other studies, like the study of Kitahara et al. (2010), in which measurement errors 

are estimated comparing the measurements of field crew with measurements made by forest 

experts. Or similar approaches like in our first empirical study, in which the errors are estimated 

from measurements made by different field crew members (Elzinga et al., 2005; Liu, Bitterlich, 

Cieszewski, & Zasada, 2011; Luoma et al., 2017; McRoberts et al., 1994; Melson et al., 2001). 

In preparation for error propagation, DBH measurement errors were adjusted to probability 

distribution functions (PDF) under two criteria. The first was to assume that measurement errors 

have a single PDF describing them, independently of the size of the tree. Our study found that the 

PDFs that best-fit for all errors were Johnson SU and Logistic. For both cases, normal distribution 

(NDn) was also adjusted showing overlapping with the best-fitted PDF. The second criterion was to 

incorporate the heteroscedasticity of errors into the PDFs. Therefore, a PDF was fitted per DBH 

class, assuming that within the classes the distribution of errors is the same. It was found that in 

DBH classes less than 30 cm, the NDn overlapped with the best-fitted PDF. However, beyond 30 

cm DBH, the best-fitted PDFs showed differences with the NDn (see Figures IV-4 and IV-9). With 

respect to selected PDF, most studies assume NDn by reporting the dispersion of errors in DBH 

through standard deviation (Berger et al., 2014; Kitahara et al., 2010; Melson et al., 2001). Some 

authors provide support for the use of the NDn (Gertner & Köhl, 1992; Kangas, 1998), and other 

studies include heteroscedasticity of errors by calculating standard deviations by DBH class 

(Elzinga et al., 2005; Liu et al., 2011; Luoma et al., 2017). Logarithmic transformations were also 

found to be the most commonly used method for describing heteroscedastic errors (Chave et al., 
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2004; Kangas, 1998). It should be noted that no work was found using other types of distribution 

than normal or log normal to describe measurement errors in DBH. 

In estimating errors for the TH variable, the first study had a mean error (𝜎̂) of 0.61 m or RSD=4.6% 

when measured with Vertex, while in the second study had values of 0.88 m (RSD=5.0%) for 

Blume-Leiss (BL) and 0.58 m (RSD=3.0%) for Vertex. The results of our first two studies are similar 

to those reported by (Luoma et al., 2017) with 0.5 m (RSD of 2.9%) for Vertex but smaller than the 

ones estimated by (Melson et al., 2001) of 1.52 m. Also with Vertex measurements, Kitahara et al. 

(2010) estimated errors of 0.66 to 1.02 m (RSD of 3.1-4.5%) for conifers and from 1.2 to 1.89 m 

(RSD of 7.1-9.8%) for broad-leaved. 

Like the errors in DBH, the errors in TH measurement were adjusted to a normal distribution (NDn) 

and the PDF that best fit to the error frequencies. The PDFs that best fit the measurement errors in 

conifers (first study) were Johnson SU and in hardwoods (second study) Cosine and Trapezoidal, 

for Vertex and Blume-Leiss. The PDF's adjusted for Vertex measurements were closer to NDn than 

the measurements of Blume-Leiss. When adjusting PDFs by TH classes, it was found that in 

conifers there was a greater frequency of errors close to zero, prevailing the Johnson SU distribution 

(see Figure IV-5). In hardwoods, Vertex measurements also had a higher frequency of near-zero 

errors, and the NDn overlapped the best-fit PDFs in TH less than 15 m and TH beyond 25 m. The 

PDF of measurements with Blume-Leiss in hardwoods overlapped with the NDn in the small tree 

classes. However, from 15 meters of TH, there was no high frequency in central values of errors, 

and the PDFs describing the errors were Trapezoidal Curvilinear and Uniform (see Figure IV-10). 

The studies reporting measurement error in TH assume normality in the error distribution (Kangas, 

1998; Kitahara et al., 2010; Melson et al., 2001) and even estimate the errors according to the TH 

classes, as in our study (Luoma et al., 2017; Williams et al., 1994). 

In the second empirical study of this thesis, were used measurement errors of students with mean 

error (𝜎̂) of 1.18 cm for DBH and 4.01 m for TH, using Tape and Vertex. The errors in DBH were 

similar to those found by Kitahara et al. (2010), that calculated errors for three groups of 

inexperienced crew members with a range from 0.19 to 1.43 cm with hardwood species. In contrast, 

the TH errors from 0.48 to 2.09 m, were smaller to those obtained by the students in our study. We 

emphasize that the TH range of the species measured by Kitahara et al. (2010) of 4.2 to 22.7 m with 

an average of 13.2 m, was lower than our study with 7.3 to 36.3 m and an average of 20.2 m. 

Although measurement errors increase with increasing TH, compared to other studies (Luoma et al., 

2017; Melson et al., 2001), our mean TH measurement error of students was overestimated. 

V.1.1 Measurement and uncertainty comparison among devices 

In the second empirical study, the mean DBH values were larger from Tape than from Caliper 

(24.24>23.97 cm). However, the mean measurement errors (𝜎̂) were larger with Caliper than with 

Tape (0.19>0.16 cm). Other temperate forest studies (Liu et al., 2011; Moran & Williams, 2002; 

Weaver et al., 2015) confirm this trend. In relation to larger measurements from Tape, Brickell 

(1970) and Matérn (1956), explained that the perimeter measured with Tape is assumed from a 

circumference, being this figure the one that estimates larger surface given a perimeter. Matérn 

(1956) argued that measurements with Tape are more consistent than with Caliper since Caliper 

measurement represents one diameter of an infinite number that makes up a cross-section. This 
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explains why repeated measurements with Caliper had larger measurement errors compared to 

Tape. 

Mean TH measurements were larger with Blume-Leiss (BL) than with Vertex (19.97>19.75 m). 

Measurement errors (𝜎̂) ranged from 0.03 to 2.22 m (RSD of 0.2-18.3%) and 0.04 to 1.48 m (0.4-

9.7%), respectively, with mean errors of 0.88 m (RSD=5.0%) and 0.58 m (RSD=3.0%). The errors 

in BL were similar to those obtained by Williams et al. (1994) with clinometers; 0.46 m in trees up 

to 12.2 m, and 2.22 m in larger trees. Hyppönen and Roiko-Jokela (1978) estimated also a similar 

range of 0.56-0.80 m with clinometers Sunnto. However, our errors were larger than West (2009), 

who found that the accuracy of optical-mechanical equipment (Blume-Leiss) is around 0.5 m. Errors 

in Vertex measurements were larger than the estimated by Gaudin and Richard (2014) and Wing et 

al. (2004), calculating errors of 0.19 to 2.3% in experiments with 10 trees. Our results were also 

larger than the errors reported by Rondeux and Pauwels (1998), who compared Vertex and BL 

measurements, estimating RSD of 1-1.6% for Vertex and 2.3% for BL and mean errors of 5 cm for 

Vertex and 34 cm for BL. Here we emphasize that studies reporting errors in Vertex measurements 

have been conducted under controlled conditions (e.g. five trees in an urban area), compared to our 

study where 250 trees were measured in the field. 

In the experiments developed in this thesis, it was observed that the measurement errors were higher 

in TH. If we use the measurements (DBH=cm and TH=m) into an allometric model, these 

measurements are coefficients with which the AGB is estimated. Comparing them without 

dimension, the measurement errors in TH were less precise than those of DBH (see Figures IV-4, 

IV-5, IV-9, and IV-10), similar to the results reported by Kitahara et al. (2010) and Luoma et al. 

(2017). 

V.2 Aboveground biomass & basal area 

V.2.1 Aboveground biomass (W) allometric models (AM) selection 

From the eight AM used in the first empirical study, five models were selected by species and three 

by genus (see Table III.1). However, an AGB model for Abies duranguensis (Rojas-García et al., 

2015a) has not been reported in Mexico, and due to the similarity in morphological characteristics 

an Abies religiosa model was used (Avendaño Hernandez et al., 2009). The impact of this bias is 

considered negligible because there was only one tree out of 4262 in the dataset. 

For the third empirical study, Table VIII-1 (Appendix I) shows the list of 36 AMs used to estimate 

the AGB of the 346 species identified in the MNFI for the two periods studied. Five important 

features in the selection of AMs are discussed below: 

i. 19 AMs estimated the AGB grouped by genus. The models used for Quercus spp and Pinus 

spp stand out, with 77 and 37 species.  

ii. Desert communities and tropical dry forest were AM that estimated AGB for 73 genera (20 

and 53 genera, respectively). Although these AMs were applied to genera of the same 

vegetation type, 60% and 30% of the trees using these models belong to genera that were 

not included in the studies where these models were fitted. 
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iii. 18 AMs used in this thesis were not fitted in Durango or the surrounding states, and six 

models were not fitted in Mexico.  

iv. Only 16 AM were reported together with the MSE of the fitted model but did not include the 

information used to fit the model.  

v. 15 of the AMs used were fitted with information from less than 30 sampled trees. 

The first three features are related to the AMs developed in the state of Durango. Pinus spp and 

Quercus spp trees make up 88% of MNFI trees, and the commercial importance of these genera 

account for 89.5 and 6.9% of timber production in Durango (INEGI, 2016). The compilation of 346 

models made by Rojas-García et al. (2015a), has 43 models developed in Durango, 33 of these 

models were made in Pinus spp (11 species) and seven in Quercus spp (three species). For this 

reason, tropical and desert species have more interest in neighboring states such as Sinaloa for 

tropical vegetation (Návar, 2009, 2010) and Sonora for desert vegetation (Búrquez et al., 2010). In 

our thesis work, the need for allometric models involving information from Pinus cembroides, 

Quercus eduardii, Q. magnoliifolia, Q. laeta and Q. grisea has been detected. Therefore, a clear 

adherence to procedures indicating the precision to obtain allometric models is suggested (Picard et 

al., 2012). These species are 18.6% of the trees in our study area and have not been reported models 

in Durango or neighboring states. Some of these species have also been detected as an area of 

opportunity in AM research, in studies such as that conducted by Rojas-García et al. (2015b), listing 

40 priority species for the development of AM in Mexico. 

The fourth feature is that AMs have been reported mostly with the determination coefficient (R2) 

only and not with the goodness-of-fit. Rojas-García et al. (2015a) reported that out of 346 AMs 

compiled from studies conducted in Mexico, only 39 models reported the MSE of the fitted model. 

The models used in our thesis did not include the original data in their publications, with which the 

error of prediction of the mean and the error of prediction of the individual are estimated (Draper & 

Smith, 1998). Since the original data were not available, the MSE was used as the uncertainty 

parameter due to AM, which corresponds to an overestimation of the prediction of the mean or SE 

(Yanai et al., 2010). 

The fifth feature is associated with the information that was used to produce the AMs, i.e. the 

number of trees used to estimate the AM. Using less than 30 trees, according to Picard et al. (2012), 

assumes homogeneity of the species in a 10 ha sampling stand. In addition, Chave et al. (2004) 

found that increasing the sample size decreases the coefficient of variation in the estimated AM. 

This implies that models with smaller sample sizes (less than 20 trees) may have greater uncertainty 

in the estimation of the AGB (Roxburgh et al., 2015). However, AMs that used less than 20 trees for 

their fitting, were still used in our thesis, when no other publications were found for that genus or 

species (Rojas-García et al., 2015a). It should be noted that this decision is considered to have a 

negligent impact on our AGB estimate because the AMs fitted in Durango State had sample sizes 

from 30 to 423 trees and were applied in 96% of the dataset. 

On the variables used in the AMs, 23 of the selected models were fit with DBH data and 13 models 

added TH in the model fitting. Vargas-Larreta et al. (2017) found that for AMs of pines and oaks, 

TH was a significant predictor variable, improving the prediction of adjusted AMs in 12 of the 17 

that were included in their study. This same conclusion has been found by other studies with pines 
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and eucalyptus (Bartelink, 1996; Reed & Tomé, 1998). In a sweet chestnut forest, Menéndez-

Miguélez et al. (2013) found an increase in the accuracy in AGB estimation including TH. The 13 

models including TH as a predictor variable in our study were used in AGB's estimate of 96.8% of 

the MNFI dataset. 

An important consideration in the AMs selection is the correct identification of the sampled trees in 

the field. Although our thesis did not include an experiment that quantified the success in the 

identification of trees, it is explained below how this topic was approached. In the first empirical 

study, the identification of the trees is considered correct, because the members of the field crew 

were selected for their experience in the study area as suggest the NFI reviewed by (Tomppo et al., 

2010). For the second empirical study, conifer and broad-leaved AMs were assigned, which are 

distinct vegetation groups. In the third empirical study, the trees in the MNFI database are assumed 

to be correctly identified according to the field manual (CONAFOR, 2009b). However, a 

CONAFOR study, which aimed to verify the identification of MNFI species from 2013-2015, 

obtained results that contrast with the assumption of correct identification (Ricker et al., 2015). This 

study had 14035 samples, out of which 69.2% were identified in terms of species (9711 samples) 

and 30.8% (4324 samples) were identified in terms of the genus, family or unknown. A group of 47 

biologists determined that 39.3% of the 9711 records were correctly identified, 28.1% were correct 

at the genus level, and 32.6% were misidentified. From 4324 collections, 1856 were not identified 

with traditional methods and required the use of molecular methods. Therefore, based on this study, 

60.6% of the collections were correctly identified at the genus level, while only 27.2% were correct 

at the species level. In personal communication with Dr. Martin Ricker, the researcher responsible 

for the project, 89.9% of the collections coincided at the genus level in the state of Durango. From 

this information, it was decided to use the AMs at the genus level for the estimation of the AGB in 

the MNFI. 

V.2.2 AGB estimation 

In the Durango state, two empirical studies from this thesis estimated AGB. In the first study, the 

AGB in pine forest was 176.07 Mg ha-1 and ranged from 86.61 to 228.41 Mg ha-1. This estimate 

contrasts with the national estimate in Mexico of 63.43 Mg ha-1 for this forest type (CONAFOR, 

2017a). The major difference was found in tree density and tree height. While in the first study the 

average values were 1137 trees ha-1 and 13.3 m of TH, at the national level, 455 trees ha-1 and a 6.7 

m of TH (CONAFOR, 2014a). On the other hand, the estimate of AGB was consistent with the 

study conducted by Vargas-Larreta et al. (2017), where they estimated 129.84 Mg ha-1 in a range of 

11.06 to 469.42 Mg ha-1 for pine and mixed forests in Durango. 

In the third empirical study, AGB in the temperate forest of Durango was estimated for two periods 

of the MNFI data. The mean AGB was 64.31 Mg ha-1 for the period 2004-2009 and 64.77 Mg ha-1 

for 2009-2014. This AGB value lies intermediate to the estimates made in Durango ranging 

between 48.86 and 130 Mg ha-1 from 2008 to 2012. However, those estimates were the result of 

different sampling designs and approaches, such as circular plots (Návar, 2009), permanent plots of 

50 per 50 m (Martínez Barrón et al., 2016; Vargas-Larreta et al., 2017), or technical studies that 

calculate AGB from volume estimates (Profloresta, 2008). The National Forestry Commission of 

Mexico has not reported AGB in the last report of the state (CONAFOR, 2014a), and with MNFI 

data, the AGB reported to FAO was 54.08 and 54.11 Mg ha-1 in 2007 and 2011 for temperate forest 
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(FAO, 2015). In our study, using MNFI data, the temperate forest registered larger AGB estimates 

in Durango State than at the National level in Mexico. 

Inside the Durango temperate forest in the period 2004-2009, the mean estimate of AGB was 48.31 

Mg ha-1 in the conifer forest, 77.48 Mg ha-1 in the mixed forest, and 35.52 Mgha-1 in the oak forest. 

In the second period (2009-2014), the mean values of AGB were 51.82, 73.12, and 36.84 Mg ha-1, 

in the same order. These estimates could only be compared with the MNFI 2009-2014 report 

because it was the first report including the AGB estimate. In this report, the AGB was 63.43 Mg 

ha-1 in the conifer forest, 53.66 Mg ha-1 in the mixed forest and 34.25 Mg ha-1 in the oak forest. 

AGB in the oak forest was similar to that reported at the national level of Mexico. Conversely, our 

study estimated lower AGB in the conifer forest, but higher AGB in the mixed forest. This opposite 

behavior was caused since the mixed forest in Durango had more trees than the conifer forest 

(487>409), and higher mean DBH (16.94>16.75 cm). 

In the second empirical study, conducted in Göttingen, the average AGB was 257.6 Mg ha-1 in the 

beech forest. High accumulation of AGB is common in this area and has previously been registered 

by Brumme & Khanna (2009) with estimates of 431 Mg ha-1 in a range of 128 to 660 Mg ha-1 from 

a study conducted in the “Göttinger Wald”. 

In all three empirical studies, the categories of DBH greater than the category of the mean DBH had 

a greater contribution to AGB. In first and third studies in Durango, trees with more than 20 cm (26 

and 32% of the dataset, respectively) contributed to more than 58% of the AGB. In Göttingen, trees 

greater than 40 cm in DBH (22% of the dataset) contributed to 65% of the AGB. The categories 

greater than or equal to the category of the average DBH had fewer trees but a greater contribution 

to the AGB. 

V.2.3 Basal area (G) estimation 

The G estimate in the first empirical study had the mean value of 29.17 m2ha-1 in pine forest, which 

is consistent with the result estimated in the same area of Durango (UMAFOR 1008, see Figure II-

2) by Molinier et al. (2016) estimating 23.44 m2ha-1, with a range of 8.21 to 54.83 m2ha-1. At the 

state level, the third empirical study had estimates of 12.98 and 13.17 m2ha-1 for the temperate 

forest, for the 2004-2009 and 2009-2014 periods. At the national level, the results were similar with 

11 and 14 m2ha-1 for the same periods (CONAFOR, 2012c, 2017a); and also similar to the estimate 

for the state of Durango in 2013 with 10.77 m2ha-1 (CONAFOR, 2014a). At the state level of 

Durango, the third empirical study recorded 1.7% of RSE for the two periods studied, being 

consistent with the estimate of MNFI 2009-2014 with 1.98% of RSE, and with 2.2% estimated for 

this state in 2013.  

In the second empirical study, a G value from 29 to 32 m2ha-1 with a RSE of 5.9% was estimated; 

similar results were obtained in the monitoring reported by Brumme & Khanna (2009) from 32.3 to 

39.5 m2ha-1 in beech forest near the study area. 

The contribution to the G estimates from bigger trees, DBH larger than the category of the mean 

DBH, was large. In the first empirical study, trees larger than 20 cm DBH were 26% of the dataset 

and contributed 54% of the G estimate. In the second empirical study, same DBH trees size were the 

32.5% of the dataset, contributing 59.2% of G. This contribution of bigger trees was also recorded 

in the MNFI 2009-2014, where trees larger than 20 cm DBH (21% of the dataset) contributed 56% 
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of the G estimation (CONAFOR, 2017a). As in the Durango estimates, the large trees of the second 

empirical study (DBH larger than 40 cm and 22% of the dataset) contributed 60% of the estimated 

G. 

V.3 Error propagation 

V.3.1 Tree-level (measurement contributions) 

The contribution of measurement errors (uMes) in DBH (uDBH) and TH (uTH) were the first 

sources of uncertainty in the estimation of AGB at tree-level. With the GUM Method, the 

contribution of uncertainties uDBH and uTH were estimated for each tree (uMes) in the first two 

empirical studies (Equations 06a and 06b). The major contribution in the measurement errors at the 

tree-level was the uTH, followed by uDBH and finally the correlation of these two variables 

(uρ(DBH,TH)).  

The contribution of the uTH was higher due to the following reasons: the relationship between the 

sensitivity coefficients SCDBH/SCTH=1.65 (Equation 05) indicated that in the allometric models used, 

for each unit of uTH, the uDBH contributed 65% more. However, because the variables (DBH, TH) 

are correlated, the contribution of the correlation was incorporated in the error propagation; thus, 

the contribution of the uDBH decreased, and consequently the ratio uTH/uDBH favored uTH, 

having contributions from 37 to 62% to the measurement errors. Chave et al. (2004) found also 

more contribution of the uTH to the measurement error in tropical forest, estimating 48 to 78% form 

uTH; as well as Phalla et al. (2018) who estimated a contribution of 74% from uTH to the 

measurement errors in evergreen forest. 

The NDnC scenario (description in Section III.1.6.4) included the heteroscedasticity of 

measurement errors, and it was not significantly different from the other two scenarios used (NDn, 

RMSD). Because these scenarios underestimated (NDn) and overestimated (RMSD) the 

measurement errors calculated by NDnC; the NDnC scenario, using tree size, describes best the 

errors from the discrepancies in DBH and TH measurements in the study area of El Salto, Durango. 

The second empirical study was designed to compare the measured error from repeated 

measurements per tree, against an estimated parameter from the application of four scenarios of 

estimation. The scenarios that showed no significant difference with the measured errors were linear 

model (mod) and normal distribution (NDn). Applying the scenarios in the two datasets, 

Caliper+Blume-Leiss (CB) and Tape+Vertex (TV), the largest contribution was from uTH, followed 

by the correlation (DBH,TH), and the smallest was from uDBH. The largest contribution of uTH 

was already mentioned for the first empirical study. The correlation of the second empirical study 

was greater than in the first empirical study (ρ=0.92 > ρ=0.78), and we assume that for this reason 

there is a greater contribution of the correlation in relation to the uDBH. Tiedeman & Green (2013) 

found that including the correlation between observations affects the uncertainty of the source 

involved in the correlation. In general, the correlation between variables affects uncertainty 

estimation (Criscenti et al., 1996; Farrance & Frenkel, 2014; Goliaš & Palenčár, 2012; Mahmoud & 

Hegazy, 2017). The results of our thesis show a range from 13 to 30% of the tree-level uncertainty 

comes from correlation. However, in the AGB estimation, the contribution of correlation 

uncertainty of the measurement variables has not been reported. Estimates have been reported with 
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allometric models using only DBH as a predictor variable (Qin et al., 2019), or assuming 

independency of the DBH and TH measurements (Berger et al., 2014; Holdaway et al., 2014; 

McRoberts & Westfall, 2014; Phalla et al., 2018; Phillips et al., 2000; Van et al., 2011). 

The AGB and their uncertainty, estimated with models fitted with the variables DBH and TH, were 

compared with estimates from models fitted with DBH. Models using only DBH underestimated the 

AGB, and it is significantly different from estimates by the models using DBH and TH. This was a 

clear difference between the two models and was previously stated in Section V.2.1. The AGB 

estimation models using only the predictor variable DBH, had less uncertainty at tree-level, 

compared to the model that used DBH and TH. This larger uncertainty when using allometric 

models with TH has been reported by Phalla et al. (2018) and Chave et al. (2004). In these studies, 

they attribute more difficulty in measuring TH as the reason for the increased uncertainty, and as we 

have seen in this thesis, this was observed in the devices used (Section V.1.1). 

Because we used two devices per measured variable in the second empirical study, we compared 

the uncertainty contributions. The CB has a larger contribution, compared to TV, to the 

measurement error at tree-level. This larger contribution is associated with the uncertainty 

parameters used in error propagation (Table IV-8), which show a greater magnitude of both error 

parameters of the CB dataset, uCaliper>uTape, and uBlume-Leiss>uVertex. 

V.3.2 Tree-level (non-sampling error) 

In the GUM Method, the non-sampling error (uTree) was estimated (Equation 07) with the 

contributions of measurement errors (uMes) and prediction errors (uAM). The first two empirical 

studies represent two scenarios not only geographically, but also in the contribution of uAM to the 

uTree.  

In the first study, the uAM contributed to more than 97.8% to the uNS estimated at tree-level; the 

uMes had a range of 8.79 to 13.18 kg and the uAM was 87.42 kg for the uAM of the average tree. 

Similar results were obtained by Phalla et al. (2018) with uAMs contribution of 81 to 98%, and 

more conservatively by Berger et al. (2014) with less than 83% of uAM contribution. On the 

contrary, our second study showed a greater contribution of the uMes (more than 98.9%) to the 

uTree. The uMes had a range of 12.16 to 18.26 kg and uAM was less than 1.35 kg per tree. 

Holdaway et al. (2014) had similar results where uMes contributed to more than 10 times the uAM, 

using the standard error of the mean as the source of uncertainty of the carbon estimation model. 

The previous information allows us to understand the difference in contributions of the errors 

included in the uTree for the first two empirical studies. This difference is related to the model 

selection or the source of prediction error used (RMSE or SE) as mentioned by Holdaway et al. 

(2014) (discussed in Section V.2.1); however, it has another implication in the aggregation process. 

In the first empirical study, having a uAM>uMes relation in the uncertainty at tree-level, 97.8% was 

due to uAM and therefore the size of the tree is not relevant. When estimating the AGB for trees 

beyond 20 cm DBH, although 59% of the AGB was calculated, the 26% of the uNS is estimated and 

is the same percentage of trees of this DBH size. In the second study, with an inverse relationship 

uMes>uAM, the uncertainty at tree-level was 98.9% from uMes. When verifying it with the dataset 

measured by Caliper+Blume-Leiss, it was found that trees of DBH greater than 40 cm, account 78% 

of the AGB and 65% of the uNS; even when it is the 22% of the trees in the Stand. 
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V.3.3 Plot-level (non-sampling error) 

Adding the non-sampling errors per tree (uTree) to estimate the non-sampling errors per plot 

(uNSplot), the proportion of errors decreased. Using the results of the first study, the relative errors 

(uTree/AGB) at tree-level were on average 56.7 to 57.4%. In plot-level, the range of relative errors 

(uNSplot/AGB per plot) was from 1.32 to 6.09% (see Table VIII-8, Appendix IV). The reduction of 

percentage in the aggregation is because the sum of the errors is in quadrature. The sum of errors, 

random and independent, is smaller than the sum and can be described by the geometric form of the 

right-angled triangle (Taylor, 1997). In this triangle, the legs represent the uTree and the hypotenuse 

is the sum in quadrature of the two uTree; with a greater contribution from the larger uTree. The 

sum of two uTree (hypotenuse) is the leg of a next triangle adding the next uTree, and so on. The 

same result is obtained using Equation 08 applied to all the uTree. The above also means that trees 

with larger uTree have a greater contribution to the uNSplot. 

The reduction of relative errors, from tree to plot, was also observed in the second empirical study 

with a smaller difference. For Caliper+Blume-Leiss measurements, the relative errors in tree-level 

were from 3.56 to 3.96% and in plot-level from 0.73 to 1.50% (see Table VIII-26, Appendix V). In 

Tape+Vertex the same trend was found (see table VIII-29, Appendix V). The lower contribution of 

measurement errors in Vertex, which had already been explained, maintained a lower contribution 

in errors at the plot-level. 

V.3.4 Stand-level GUM Method (non-sampling & sampling errors) 

At the stand-level, unlike tree-level and plot-level, the uncertainty was also estimated with the 

Monte-Carlo simulation Method (MCM). The RSE of 7.88% is high, according to the 

recommendation of RSE<7% proposed by Velasco et al. (2002); however, the experiment met the 

purpose of estimating the parameters of measurement errors. With the results of the GUM Method, 

the uNS for the stand was obtained by applying Equation 09 to the uNSplot. The first empirical 

study resulted in a mean AGB estimate of 176.07 Mg ha-1and a total uncertainty (uW) of 13.87 Mg 

ha-1. The uNS contributed to 1.26% of this total uncertainty when using the NDnC scenario. In the 

second empirical study, the CB dataset had a mean AGB estimate of 236.28 Mg ha-1and uW of 

13.74 Mg ha-1. In the TV dataset were estimated a mean AGB of 236.28 Mg ha-1 and uW 14.43 Mg 

ha-1. The uNS contributed to 0.40% of uW in the CB dataset and 0.15% in the TV dataset. These 

results indicate that the SE contribute to over 98.7% in the first two empirical studies when 

estimated with the GUM Method for error propagation. 

Contributions by a source of uncertainty, in the GUM Method, only for the first empirical study 

were estimated. In the NDnC scenario, the order of contribution was SE>uAM>uTH 

>uDBH>uρ(DBH,TH), with percentages of 98.74>1.213>0.02>0.014>0.013% of the total uncertainty. 

We observed that the major source of uncertainty for the estimation of AGB in El Salto, Durango 

was the SE. Similarly, the uAM was more than 97% of the uMes; and the uTH had the greatest 

contribution in the uMes, taking into account its relationship with the other measurement errors used 

at tree-level (σ̂TH>σ̂DBH>uρ(DBH,TH)). 
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V.3.5 Stand-level MCM (non-sampling & sampling errors) 

In each empirical study, we ran 10000 iterations. The resulting differences in the approximations of 

MCM with the direct estimation were less than 0.1% when the IPCC recommendation is 1% (IPCC, 

2006). This implies that the results obtained with the MCM were acceptable. The estimated RSE 

was 7.8, 6.0 and 3.0%, for the first, second and third empirical studies. Even when the empirical 

studies were not conducted in the same study area, the RSE show the effect of the sample size 

(Cochran, 1977) of 10, 47 and over 1600, respectively. The RSE of the third study is comparable to 

the RSE of 3.3% reported in the MNFI for temperate forest (CONAFOR, 2017a).  

Using the MCM, the largest contribution to total uncertainty (uW), for the three empirical studies 

was the SE with values over 98.7%. Phillips et al. (2000) reported the SE as the most important 

contribution in volume estimates in South-eastern NFI USA, with over 89% of the uW. Similar 

results have been reported by Holdaway et al. (2014) and McRoberts & Westfall (2016) in 

temperate forest carbon estimation, but do not report the contribution percentage. In contrast, Chave 

et al. (2004) in a rainforest found a contribution of about 50% of the SE to the uW. This indicates 

that the number of trees sampled in our studies is large enough so that the major source of error is 

attributed to sampling (McRoberts & Westfall, 2016; Phillips et al., 2000). According to McRoberts 

& Westfall (2016), with a mean density of 23 trees in 400 m2 plot (575 trees ha-1), the uMes are 

negligible comparing to the SE. Our results confirm this last statement with a mean value of 20 trees 

in a 400 m2 plot. 

When comparing the results of uNS in the MCM and the GUM Method, in the first empirical study, 

a slight overestimation of the GUM Method was found. Using the same scenarios (NDn and NDnC) 

and comparing at plot-level the mean error estimate, resulting in an overestimation of 2% of the 

GUM Method (p<0.01, Tables VIII-14 and VIII-16 in Appendix IV). Assessments in 

instrumentation, and material quality controls, report a range of 8 - 21% of overestimate of GUM 

Method results (Mahmoud & Hegazy, 2017; Sana Sediva et al., 2015; Sona Sediva & Havlikova, 

2013). However, when we applied the best-fit distribution with the MCM (scenarios MCBD & 

MCBDC) the uW per plot was not significantly different from the GUM Method results (scenarios 

NDn and NDnC) (p≥0.614, Table VIII-16 in Appendix IV). Farrance & Frenkel (2014) had similar 

results with no difference between these two methods, assuming independence in the variables used 

for the error propagation. 

In the second empirical study, it was observed that the uNS decreased in proportion more than the 

SE, for all the scenarios evaluated when the sample size increased from 11 to 47 plots. This is 

evident from Caliper+Blume-Leiss (CBmod scenario) results, in which the uNS of the 11 plots 

equaled 0.4% of the uW, while in 47 plots was 0.1%. This behavior is explained due to the GUM 

Method used in the 11 plots, overestimate the MCM results in uW for the 47 plots, and according to 

Cochran (1977) & Taylor (1997), the SE and uNS decrease when sample size increase. 

The order of the contributions to the uW, of the scenarios used in the second study, were 

BD<mod<BDC. The scenario mod did not have significant differences in comparison with the 

measured errors, and mod includes the heteroscedasticity of the measurement errors related to the 

size of the tree. Then, the other two scenarios underestimated (BD) and overestimated (BDC) the 

measurement errors. 
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In the second study, the contribution obtained with the use of errors made by students (Exp and 

Nexp) stands out since these were the only scenarios that increased the total RSE from 5.0 to 5.04%. 

The Exp and Nexp scenarios represent a six-fold increase in DBH measurement errors, and a 4.5-

fold increase in TH, compared to the estimated errors in repeated measurements. However, when 

these measurement errors are applied in the third empirical study, they are negligible with the large 

sample size (NFI scale) as stated by McRoberts & Westfall (2016). 

V.3.5.1 MCM per source contribution 

The results of the MCM in the first empirical study maintained the order of contribution from the 

sources of uncertainty, where SE>uAM>uTH>uDBH. The percentage of contributions per source 

was 98.746>1.205>0.029>0.028 and is similar to the estimated with the GUM Method. 

In the second empirical study, The sources of uncertainty had a contribution to uW in the following 

order SE>uTH>uDBH>uAM>uρ(DBH,TH) (see Table VIII-41, Appendix V). The contribution for 

Caliper+Blume-Leiss measurements with mod scenario was 99.9>0.08>0.02>0.0002>0.00002, 

while with Tape+Vertex measurements was 99.95>0.036>0.014>0.0002>0.00001. 

In the third empirical study (MNFI), the order of the contribution to the total uncertainty (uW) was 

like the one obtained in the first study, but also included the uncertainty of the plot design (uPlot). 

The contribution to the uW was related to the scenario of measurement error estimation. The 

scenarios BD (best-fitted distribution) and Exp (experimented students), do not consider the size of 

the trees and, therefore, the contribution to the final error depends on the number of trees. In 

contrast, the BDC scenario (best-fitted distribution by class) estimated the contributions according 

to the size of the tree, furthermore, this scenario did not differ significantly from the other scenarios. 

Thus, the BDC scenario does not underestimate (as BD) or overestimate (as Exp) the measurement 

errors in the estimation of AGB. In the BDC scenario, the order of contribution to the uW was 

SE>uAM>uTH≥uPlot≥uDBH. The percentage of contributions per source in MNFI of Durango was 

99.41>0.53>0.03≥0.02≥0.02. The contributions from uTH, uPlot and uDBH sources were small 

(≥0.7%) and did not differ significantly from one another. The uPlot is uncertainty related to the 

shape and size of the plot, in this study its contribution was equal for the given scenarios. The 

contributions of uTH were larger than uDBH as the results in the first study, with no significant 

difference. 

Using information from FIA in the South-eastern USA, Phillips et al., (2000) estimated the 

contributions to total carbon estimation from four sources of uncertainty. The order of the 

contributions is like that observed in the first and third empirical studies of this thesis, being 

SE>uAM>uTH>uDBH. The reported contribution percentages were 98.7>1.2>0.1>0.0. On the 

other hand, Holdaway et al. (2014), report a different order of contribution being SE>uMes>uAM 

where they estimate a larger contribution from uMes compared to uAM. The percentage 

contributions were 98.9>1.0>0.09 and, within the measurement errors, the uTH were larger than the 

uDBH. This last is like our results in the second empirical study. 

Our thesis results include the contributions of measurement, prediction, plot design and sampling 

uncertainties in the AGB estimation with the MNFI data for the state of Durango, Mexico. The 

uncertainty estimates of this thesis were made under the IPCC guidelines established for Tier 2 

(IPCC, 2006), which imply the reporting of transparent, coherent, compatible, exhaustive and 



Chapter V: Discussion 

 

114 

precise estimates (Morfín Ríos et al., 2015). Since AGB estimation is a basic input for the 

estimation of GHG emissions (CONAFOR, 2014b; Gibbs et al., 2007), it is proposed that the 

approach used here could be considered in the development of MRV systems under REDD+ in 

Durango, Mexico. The MRV system in State-level (Durango strategy is under construction) aims to 

monitor, verify, and adapt national REDD+ strategies, incorporating practices best suited to regional 

characteristics (CONAFOR, 2017b). The State-level MRV system takes on greater importance since 

it is requested in reports of environmental management in Mexico, referring to climate change 

mitigation (SEMARNAT & INECC, 2017), forest carbon dynamics (Red Mex-SMIC, 2015), and 

including the Law of Climate Change (Chamber of Deputies, 2018b). 

V.3.5.2 Uncertainty in strata and substrata of MNFI  

Estimating AGB by vegetation type is a recommended method to stratify the forest for the AGB 

uncertainty report, according to the IPCC (IPCC, 2006). Stratification is recommended to reduce 

variability in estimates; however, the results of our study show the opposite trend. While in the 

temperate forest the RSE was 3.0%, a range from 3.3 to 10.63% of RSE was estimated in the strata 

and from 3.6 to 23.5% in substrata. The RSE estimates for wood volume in Durango, with 

information of the MNFI (2009-2014), have an RSE range from 6.97 to 29.71% for temperate forest 

strata (CONAFOR, 2014a). In our study, the highest RSE (23.5%) was estimated in the substratum 

of secondary vegetation in the conifer forest (SCFs). This substratum has the smallest number of 

sampled plots (n=60). In contrast, the lowest RSE (3.6%) was in the primary vegetation of mixed 

forest (SMFp). This is the substratum with the largest number of sampled sites (n≥1261). The 

increase in measurement errors (scenarios) did not change the contribution of SE and uNS to the 

uW, since both estimates depend on the sample size (Cochran, 1977; Taylor, 1997). However, by 

stratifying, the contribution of the SE was reduced gradually; while in the temperate forest the SE 

was ≥99.29%, at the stratum level it was ≥97.49% and at the substratum level ≥96.39%. The 

scenarios were consistent in estimating uncertainties as in the temperate forest, with an 

underestimation of uNS by the scenario BD (best-fitted distribution) and an overestimation of Exp 

(experimented students), compared to BDC (best-fitted distribution by class). 

The number of clusters changed in the strata and substrata of the temperate forest and were not 

consistent in the periods studied. The classification of vegetation is fundamental information where 

the field crew applies the NFI field manual (CONAFOR, 2017a; Tomppo et al., 2010). Since 

classification is qualitative, as well as species identification, Morrison (2016) suggest that 

experience and training is required for the field crew. The difference is that classification can be 

only made in fieldwork and trees can be identified in the herbarium, if not possible in the fieldwork 

(CONAFOR, 2009b; Ricker et al., 2015). The professional profile or experience of the field crew in 

MNFI is not defined in the field manual. We suggest applying the findings of Tomppo et al. (2010) 

about the strategies used in the NFI field manuals of 37 countries to ensure the quality of MNFI 

information. Among these strategies are, the profile of the field crew (forest engineer or technician), 

training and training evaluation, cross-checking at fieldwork, a random check of the field crew, 

correction and validation of fieldwork (Tomppo et al., 2010). 
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V.4 AGB and basal area estimation with Landsat imagery information 

The basal area (G) and AGB (W), calculated with the MNFI data, were correlated with the 

information extracted from the Landsat imagery (predictor variables). The predictor variables (PV) 

with the highest Pearson's correlation coefficient (|ρ|) were SR, SRG, NDVI, ARVI, and WDRVI (see 

Table III-10 for acronym description). The coefficients range for G were from 0.74 to 0.79 and for 

W from 0.74 to 0.77. Similar coefficients (0.74≤ρ≤0.77) were estimated with MNFI data (G and W) 

by Pérez Miranda et al. (2018) in a mixed forest of Durango for NDVI and GNDVI (Green 

Normalized Difference Vegetation). Muñoz-Ruiz et al. (2014), also for NDVI and GNDVI, 

calculated correlations of less than 0.50 in G estimations in a temperate forest of Hidalgo, Mexico.  

V.4.1 Models of basal area (G) estimation 

The fitted model to estimate G with predictor variables (PV) from Landsat 5 of 2007, had an R2 of 

0.58, an RMSE of 4.33 m2ha-1, and a CV of 33.8%. With PV from Landsat 8 of 2013, the G model 

had an R2 of 0.64, an RMSE of 4.11 m2ha-1 and a CV of 32.0%. The results of this thesis are similar 

to those obtained by Muñoz-Ruiz et al. (2014) and Pérez Miranda et al. (2018) in a temperate forest, 

combining information from the MNFI, with SPOT and Landsat 7 imagery, respectively. In these 

studies, they estimate R2 of 0.32 and 0.58, and RMSE of 4.70 and 3.85 m2ha-1. However, Günlü et 

al. (2014) estimate smaller RMSE=1.74 m2ha-1, in a smaller study area (180 km2) of conifer forest in 

Turkey. 

V.4.2 Prediction models of AGB (W) 

Models for W prediction, fitted with PV from Landsat 5, had R2 of 0.60, RMSE of 24.5 Mgha-1 and 

CV of 40.5%. Using PV from Landsat 8 were estimated R2 of 0.63, RMSE of 23.9 Mgha-1 and CV of 

39.6%. In the temperate forest of Durango, W estimation has been studied combining field sampling 

and remote sensing, under different characteristics. Pérez Miranda et al. (2018), estimated similar 

results with R2 of 0.59 and RMSE of 21.65 Mgha-1, using MNFI and Landsat imagery in mixed 

Forest of Durango. Martínez Barrón et al. (2016), using data from permanent plots estimated W 

combined with Landsat in the temperate forest of Durango, and obtained an R2 of 62.41, but higher 

RMSE of 54.74 Mgha-1. With a lower R2 of 0.46 and higher RMSE of 49.77 Mgha-1, Vargas-Larreta 

et al. (2017) estimated W using permanent plots and Landsat imagery in Durango. In contrast, 

López-Serrano et al. (2019) estimated an R2 of 0.80 and lower RMSE of 8.20 Mgha-1, in a W 

estimated a range from 1.72 to 101.71 Mgha-1; smaller range compared with the estimated in our 

study, from 0.23 to 457.04 Mgha-1. Two aspects can be distinguished which differentiate the studies 

carried out in Durango compared to this thesis work. The first is the sampling design in our thesis, 

covering the total temperate forest area (see Figure II-4); compared to sampling designs that 

partially cover the study area, in the other studies showed. The second aspect is in favor of 

permanent plots, designed for the analysis of growth, production and evolution of forest stands 

through site monitoring. These plots are evaluated every three to five years (Corral-Rivas et al., 

2009). In addition, these plots have a larger area (2500 m2) of sampling compared to the MNFI plots 

(1600 m2), which decreases the uncertainty in the W estimation according to Chave et al. (2004). 
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V.4.3 Basal area (G) and AGB (W) estimation in strata of temperate forest 

The models fitted at the strata-level showed differences in the Godness-of-fit and coefficient of 

determination (R2) compared with the models fitted for the temperate forest. In conifer forest, the R2 

and CV increased in both estimated variables, G and W. The R2 had values of more than 0.64, while 

CV was more than 37.6% in G, and more 46.9% in W. In mixed forest, for both estimates, the R2 

decreased to less than 0.62, and the CV also decreased to less than 36.7%. The models to estimate G 

and W in the oak forest had the lowest R2 of less than 0.42 and the CV increased to more than 39 

until 46.7%. Our results show that stratification reduces the CV only in mixed forest and increases 

R2 only in conifer forest. Other studies that applied stratification when combining remote sensing 

and field sampling found similar results than in our study, in W estimation. Rodríguez-Veiga et al. 

(2016), using MNFI and MaxEnt algorithm, they fit a model to estimate W at national-level with an 

R2 of 0.31, and found a decrease of R2 at state-level with a range of 0.34 to 0.82. Zhao et al. (2016) 

found that RMSE and CV decrease in the stratifications, except for the pine forest as in our study. In 

180 km2 of a conifer forest of Turkey, Günlü et al. (2014) estimated R2 of 0.61 and CV of 10.19% 

for W estimation. In a similar area of conifer forest in Turkey, Günlü & Kadıoğulları (2018) 

estimated an R2 of 41 and CV of 8.9%. Similar results for deciduous forest were obtained by Zhao et 

al. (2016) in estimates of AGB with R2 of 0.43 and RMSE of 24.8 Mg ha-1. 

V.4.4 Predictor variables from Landsat imagery 

The widest predictor variable (PV) used in G and W estimation is the NDVI (Gizachew et al., 2016; 

Pérez Miranda et al., 2018). However, there is evidence from previous studies that NDVI has limited 

ability to estimate G and W when high concentrations are estimated (Shi & Liu, 2017). Through 

stepwise regression, we selected the PVs which optimize (smaller RMSE) G and W estimates 

compared to those estimated with NDVI. 

With the information of the first MNFI (2004-2009), we did not find optimization to the use of 

NDVI to estimate W in the temperate forest. However, in the conifer and oak forest strata, the 

estimate of W was optimized with the simple ratio (SR) vegetation index. For the mixed forest 

stratum, model optimization was done by adding a PV with texture information (Rd11HC -

Haralicks correlation in window 11X11 of the red band-) to the variable NDVI. In the second period 

of the MNFI (2009-2014), as in the first period, the optimal model to estimate W in the temperate 

forest used the NDVI. For conifer forest and mixed forest, the W estimate was optimized with the SR 

by adding a PV with texture (Haralicks correlation in 3X3 of NDVI for conifer forest and weighted 

mean in 11X11 of ARVI for mixed forest). Finally, the AGB estimate for the oak forest was 

optimized with the SWIR2 band and the MSAVI index. 

Applying GLCM-based texture and vegetation indexes different from NDVI, we optimized the W 

(D. Lu, 2005)(D. Lu, 2005) estimated with NDVI, using different criteria. The models applied by 

Ou et al. (2019) selected the textures correlation, variance and dissimilarity applied to spectral 

bands in windows from 3X3 to 7X7 as the optimal PV to estimate W in conifer forest with Landsat. 

In the Amazon forest, Lu & Batistella (2005) found that texture variance and dissimilarity in the 

NIR band optimizes W estimates with Landsat 5. Sarker & Nichol (2011) used textures contrast, 

skewness and second-moment angularity to improve estimates with ALOS AVNIR-2 imagery. In a 

boreal forest, Fuchs et al. (2009) reported that the AGB was optimized by using a 25X25 window in 

texture contrast for Quickbird and 5X5 for Aster, using the panchromatic layer. The improvement 
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of the estimation with textures has been related to changes in forest structure (Lu, 2005; Sarker & 

Nichol, 2011), as well as the complexity of crown structure (Ou et al., 2019); an important 

characteristic of the temperate forest of Durango (Aguirre et al., 2003; CONAFOR, 2014a; Márquez 

Linares et al., 2016; Návar & González Elizondo, 2009). 

In the models fitted without texture, the variables SWIR2, SR, and MSAVI were used, since they 

have been shown to improve W estimates. Cartus et al. (2014) found a high sensitivity form SWIR 

bands to estimate W at the national level in Mexico, and Molinier et al. (2016) optimized the 

estimate of W using a model with SWIR2 and Green bands in Durango temperate forest. About SR, 

Jackson & Huete (1991) found that it has a higher sensitivity for determining the amount and 

condition of vegetation with less influence of atmospheric conditions, compared to NDVI. Similarly, 

Qi et al. (1994) proposed the use of MSAVI to improve vegetation detection by decreasing the 

variations emitted by the soil. With the above, Zheng et al. (2004) estimated W in a temperate forest 

using MSAVI in their model together with SR and tree age. 

For the G estimation with Landsat imagery, in the first period of the MNFI (2004-2009), the same 

PVs were used as in the estimation of W. The only difference being that in the temperate forest there 

was optimization in the estimation of G, adding a texture PV to the variable NDVI. In the second 

period of the MNFI (2009-2014), the estimation of G was optimized in the temperate forest, and the 

strata mixed forest and oak forest, using texture information. In the case of the conifer forest 

stratum, the estimate was optimized using SR instead of NDVI. The similarity in the adjusted 

models between W and G is assumed to be due to the close relationship in the variability of the 

estimates of W and G (correlation greater than 0.95). This similarity in the variation of W and G has 

also been reported in the tropical deciduous forest by Rao & Rao (2015) with a correlation greater 

than 0.93, and in temperate forest by Pérez Miranda et al. (2018), finding what they call “similar 

spatial variability”. 

The spatial distributions of variables G and W are important in the planning and sustainable 

management of forest resources, to propose projects for the sustainable use of forest resources 

and/or environmental services such as carbon sequestration. Given the average estimate per 

vegetation type, together with analyses of land-use change, it is possible to detect which areas have 

shown the greatest loss in forest cover and to propose environmental policies for the optimization of 

forest resources, promoting the conservation of biodiversity and forest culture. Similarly, in areas 

with above-average estimates, intensive management can be proposed, applying sustainable 

strategies and thereby fixing carbon in wood for construction materials or furniture. 

V.4.5 Underestimation of the prediction 

The Bias was negative for all estimates, indicating an underestimation of the fitted models. Figure 

VIII-6 (Appendix VII) illustrates the W underestimation of MNFI estimates by the predictor 

variables derived from Landsat. In the temperate forest (MNFI 2004-2009) and Landsat 5, 457 Mg 

ha-1 was the maximum W estimation observed, while the maximum W estimated by the model was 

154 Mg ha-1. In the same period at the strata-level, the maximum values of W estimated were 152, 

164 and 75 Mg ha-1 for conifer, mixed and oak forests, respectively. Using Landsat 8 in the second 

period of MNFI, the maximum W estimated were 165, 156, 169 and 89 Mg ha-1, for temperate, 

conifer, mixed and oak forest. These results indicate a maximum limit of W estimation from the 

predictor variables, and according to Ou et al. (2019), they represent the saturation in the W 
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estimation from Landsat imagery. Our results are similar to the saturation results obtained by Zhao 

et al. (2016), using Landsat 5 imagery they estimated 156, 159, 152 and 123 Mg ha-1, respectively to 

the same vegetation types. However, our results are above the saturation threshold of 70 Mg ha-1, 

proposed by Rodríguez-Veiga et al. (2017) for passive optical sensors. It was also observed that 

Landsat 8 increased the upper limit of W estimation, compared to Landsat 5, Ou et al. (2019) 

observed this same in a temperate forest of China, reaching estimations greater than 180 Mg ha-1. 

The estimation of G had similar behavior to W; the estimation shows saturation using the prediction 

variables of the Landsat imagery (Figure VIII-4, Appendix VII). 

The underestimation (G and W) in this thesis, explains why by incorporating the spatial variability 

of Landsat images, the values obtained by the sample-based method decreased in a range of 9 and 

13%, for the first (2004-2009) and second (2009-2014) periods of the MNFI. In the estimation of W 

at the national level, Rodríguez-Veiga et al. (2016) also obtained an underestimate of W values by 

2.4% using MODIS and ALOS PALSAR imagery compared to the MNFI information. Muñoz-Ruiz 

et al. (2014), found underestimates also of 9% in Hidalgo (Mexico) for G and wood volume. Fuchs 

et al. (2009), estimating W in Siberian forest tundra with systematic sampling, underestimated W 

values by 7% with Aster imagery; however, with Quickbird images it was overestimated by 1.5%.  

Figures VIII-5 and VIII-7 (Appendix VII) show the increase of the residuals with the size of the 

tree, despite the transformation made to the prediction variables to stabilize the variance. The 

heteroscedasticity is common in biological data such as W estimations (Picard et al., 2012). It has 

been found in tundra forest using ASTER and Quickbird imagery (Fuchs et al., 2009), as well as 

with LIDAR and Landsat in a temperate forest (Lopez-Serrano et al., 2015; Ortiz-Reyes et al., 2015; 

Vargas-Larreta et al., 2017). 

V.4.6 Model-based comparison with sampling-based estimations 

The estimated variables (G and W) with model-based showed a higher precision due to a lower SE 

estimated (Table IV-24). Therefore, a lower model-based CI95% was estimated, as shown in Figure 

IV-15, while the sampling-based CI95% was more conservative. Pérez Miranda et al. (2018) also 

estimated a lower CI95% in G and W using Landsat compared to MNFI in three municipalities of 

Durango. Similar results were obtained by Muñoz-Ruiz et al. (2014) in Hidalgo (Mexico) 

estimating a lower IC95% in G and wood volume with SPOT compared with sampling-based 

estimation. Gizachew et al. (2016) also estimated lower SE in W estimates with Landsat compared 

to sampling-based estimation, in miombo woodlands in Tanzania. 

In this thesis, sampling-based and model-based estimates were compared by calculating relative 

efficiency (RE). This RE was greater than 2.2 in the estimate of G in temperate forest and greater 

than 4.7 in the estimate of W. In the temperate forest strata, the range was from 1.5 to 3.3 for G, 

while for W it was from 2.3 to 6.4. The RE represents the number of times the variance in the 

estimate (G and W) is reduced using Landsat imagery without additional costs since it is considered 

that the images were acquired without cost (González-Alonso et al., 1997). A RE equal to 1.5 

indicates the result of estimating G with Landsat imagery in Durango is equivalent to increasing the 

sample size by 50% (Næsset et al., 2016). Similar results were obtained by Hansen et al. (2015) in 

the rainforest, where they estimated RE between 3.5 and 6.0 for 700 to 1900 m2 plots. In agriculture, 

higher values of RE larger than 9.2 have been estimated because the agricultural areas show 

uniformity in shape and in the emission of NDVI (González-Alonso et al., 1997). 
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Basal area (G) and AGB (W) maps were generated for the temperate forest in Durango, Mexico. 

These maps add the spatial variation, of Landsat satellite imagery (Sensor 5 -2007- and Sensor 8 -

2013-), to the sample-based estimates of the MNFI in Durango (2004-2009 and 2009-2014, 

respectively). These results are considered relevant because they allow us to know the spatial 

distribution, for the state of Durango, of the two estimated variables. The results make it possible to 

have precise and well-timed information (estimates) to monitor the dynamics and capture of carbon 

in this state, which is part of the MRV systems under REDD+ and is an express request in the 

estimation protocol of the Mexican Network of Carbon Intensive Monitoring Sites (Red Mex-

SMIC, 2015). To optimize the results obtained in this thesis, in further steps we will include other 

remote sensors sources and thus reduce the saturation in the W estimates. Different studies report 

optimizations of W estimates using ALS (Hansen et al., 2015; Næsset et al., 2016), Radar (Sinha et 

al., 2015; Zhang et al., 2014; Zhao et al., 2016) and/or biophysical (Rodríguez-Veiga et al., 2016; 

Zhao et al., 2016) or bioclimatic characteristics (Lopez-Serrano et al., 2015). Similarly, we propose 

for a further step a different technique of regression models as machine learning (P. M. López-

Serrano et al., 2019; Rodríguez-Veiga et al., 2016; Vargas-Larreta et al., 2017) or mixed models 

(Nath et al., 2019; Wang et al., 2019) to improve the W estimation in Durango temperate forest. 
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Chapter VI: Conclusions 

It was found that even with clear measurement protocols, instrument calibration, training, and non-

time pressure measurements, random errors are present in the measurement of DBH and TH 

variables; and we can not avoid them (only less than 8% of re-measurements had no error). For this 

reason, the results concerning the comparison with reference or control data (commonly reported in 

scientific studies), the reference data should indicate the size (𝜎̂) of the measurement errors. 

With the technique of re-measurements, it was an efficient way to estimate the measurement errors. 

Re-measurements can describe the measurement errors using the mean value of the entire database 

or describe the errors by DBH and TH classes (heteroscedasticity). This is recommended to verify 

the size (𝜎̂) of the errors in the forest estimates. The methods recommended describing the 

measurement errors of the measured variables were those including the heteroscedasticity of the 

measurement, i.e., the errors were estimated according to the size of DBH and TH. In the temperate 

forest of Durango, Mexico, the best method using double measurement was the best distribution 

fitted by DBH and TH class (BDC). In the temperate forest of Göttingen, Germany, the best method 

using five re-measurement was the linear model fitted with the tree variable size (mod). 

It is important to emphasize the differences found in TH measurements. With the data analyzed, we 

found that measurements made with Vertex had higher precision compared with the Blume-Leiss 

measurements. In this sense, it is recommended to use Vertex to improve the precision in TH 

measurement and the estimations made with this measurement (volume, AGB, dominance, etc.). 

However, the difference in measurement of DBH, with Caliper and diametric Tape, are considered 

negligent due to no statistical difference was found. 

The GUM Method of error propagation is explicit to generate knowledge, from the input of the 

measurement errors until the error estimation at the stand-level. Through the application of this 

method, error propagation was decomposed into sources and processes, and it is better understood 

how uncertainties are combined. The use of this method emphasizes the importance of the 

aggregation (during the sampling process) in the reduction of the non-sampling uncertainty. This 

reduction of uncertainty takes place when aggregating the AGB uncertainty from tree-level to plot-

level, and from plot-level to stand-level. 

In measurement errors at tree-level, important contributions were found. The allometric models 

used in this thesis, which used DBH and TH, have a sensitivity coefficients ratio (SCDBH/SCTH) 

greater than one; this indicates that a greater contribution from the variable DBH exists. However, it 

was also found that the ratio of the measurement errors in DBH and TH (𝜎̂TH/𝜎̂DBH) is decisive for 

further contribution in error propagation. If 𝜎̂TH/𝜎̂DBH is bigger than SCDBH/SCTH, then, the errors in 

TH measurement have a greater contribution than errors in DBH measurement at the tree-level. As 

is the case in the empirical studies made in this thesis. 

Allometric models represent an area of opportunity in the estimation of AGB in Mexico. They are a 

challenge to conduct research using a greater number of trees in their fit, thus increasing their 

precision. A major challenge is to include in the publications of AGB allometric models, the 

Goodness-of-fit or even better, the access to the dataset used to construct the model. 

Simultaneously, the training of the field crews of MNFI should be reinforced, with the purpose of 

achieving better identification of species and vegetation to apply the proper allometric model. 
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At the plot-level, a relationship was found between the sources of the non-sampling uncertainty 

(uNS), i.e. the uncertainty of the allometric models (uAM) and the measurement errors (uMes). If the 

main contribution comes from uAM, then the uNS estimate is in proportion to the number of trees. 

However, a relation uMes>uAM generates uNS estimation proportional to the AGB estimate, which 

is related to the tree size. 

The Monte-Carlo simulation Method (MCM) prove to be an effective and practical way to estimate 

the propagation of errors in AGB estimation. It is easy to implement in personal computer 

equipment through the R packet. By applying this technique allows us to approximate the AGB 

estimate with acceptable ranges of probable error, and therefore reliable. The error propagation 

method used in this study is easy to implement in the NFI scale of work. 

The results obtained in the error propagation by the GUM Method and by the MCM are equivalent. 

This occurs when measurement errors are estimated including the heteroscedasticity concerning to 

the size of the measured variable (size of the tree). Specifically, when employing normal 

distribution by classes in the GUM Method and best PDF by classes in MCM, the estimation by 

each source of uncertainty is compatible. 

The largest contribution by these two methods of error propagation was SE, with over 98% of the 

total uncertainty in AGB estimation. Thus, the SE is the largest source of uncertainty in the AGB 

estimation of Durango temperate forest. The second important source of error is the allometric 

model. This indicates that the errors made in DBH and TH measurements, as well as the uncertainty 

of the plot design, are negligible. However, the measurement errors should be part of the final report 

(MRV report) to reinforce the transparency and precision of the AGB estimation. 

In the strata of temperate forest, AGB and basal area models fitted with texture information show 

the better prediction. Our study shows that regression models using texture improve the AGB 

estimation in conifer and mixed forest, in our study area. However, in the oak forest, no optimal 

results were obtained and need to be developed an appropriate method that can be applied to this 

forest type. Because the Landsat data is available on sub-annual timescales, the texture may be an 

important tool to optimize and update biomass maps with the partial’s measurements of the annual 

MNFI surveys, or according to the phenology of the forest type. This will increase our 

understanding of the interaction of forest AGB and human activities (with low cost and proved 

efficiency), illustrating possible policy decisions in forest management. 

We found an underestimation of the predicted values, related to the saturation of Landsat imagery in 

the AGB and basal area estimation. Although optimization of the estimates was achieved by 

including texture in the prediction model (the relative efficiency was positive), saturation in the 

estimates was not avoided. To improve the estimates, the use of RADAR imagery is proposed to 

include vegetation height as a required variable in the AGB estimation, due to its relationship to the 

tree volume.  

This thesis provides the methodology to combine fieldwork and remote sensing data to improve the 

prediction of AGB and basal area in the Durango temperate forest. The methodology can be entirely 

replicated in Mexico because the materials used are public and are available (under request) for data 

processing. 
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The models and maps developed show a high relationship between the AGB and the basal area, as 

previous studies in allometry are shown. Therefore, the basal area as an easy calculate variable, can 

be used as a proxy variable in the AGB estimation using remote sensing. Besides, the maps 

generated are a source of information for other disciplines to interact with, to develop more specific 

information like fuel accumulation, potential CO2 emissions in fire events, dynamics of carbon 

stock changes over time, among others. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 



Chapter VII: References 

 

125 

Chapter VII: References 

Acosta Mireles, M., Carrillo Anzures, F., & Gómez Villegas, R. (2011). Estimation of biomass and carbon in 

two mountain mesophilic forest species. Revista Mexicana de Ciencias Agricolas, 2(4), 529–543. 

Acosta Mireles, M., Vargas Hernández, J., Velázquez Martínez, A., & Etchevers Barra, J. D. (2002). 

Aboveground biomass estimation by means of allometric relationships in six hardwood species in 

Oaxaca, Mexico. Agrociencia, 36(06), 725–736. 

Alberdi, I., Michalak, R., Fischer, C., Gasparini, P., Brändli, U. B., Tomter, S. M., … Vidal, C. (2016). 

Towards harmonized assessment of European forest availability for wood supply in Europe. Forest 

Policy and Economics, 70(September), 20–29. https://doi.org/10.1016/j.forpol.2016.05.014 

Alboabidallah, A., Martin, J., Lavender, S., & Abbott, V. (2017). Using Landsat-8 and Sentinel-1 data for 

Above Ground Biomass assessment in the Tamar valley and Dartmoor. 2017 9th International 

Workshop on the Analysis of Multitemporal Remote Sensing Images (MultiTemp), 1–7. 

Ascough, J. C., Maier, H. R., Ravalico, J. K., & Strudley, M. W. (2008). Future research challenges for 

incorporation of uncertainty in environmental and ecological decision-making. Ecological Modelling, 

219(3–4), 383–399. https://doi.org/10.1016/j.ecolmodel.2008.07.015 

Attarchi, S., & Gloaguen, R. (2014). Improving the estimation of above ground biomass using dual 

polarimetric PALSAR and ETM+ data in the Hyrcanian mountain forest (Iran). Remote Sensing, 6(5), 

3693–3715. https://doi.org/10.3390/rs6053693 

Avendaño Hernandez, D. M., Acosta Mireles, M., Carrillo Anzures, F., & Etchevers Barra, J. D. (2009). 

Biomass and carbon estimation in an Abies religiosa forest. Revista Fitotecnia Mexicana, 32(3), 233–

238. 

Ayala Gallego, G. (2015). Basic statistics. (S. Hocevar, Ed.) (2nd ed.). Sam Hocevar. 

Azofeifa, C. E. (2005). Application of Monte Carlo Simulation in the calculation of risk using Excel. 

Tecnología En Marcha, 17(1), 97–109. 

Bannari, A., Morin, D., Bonn, F., & Huete, A. R. (1995). A review of vegetation indices. Remote Sensing 

Reviews, 13(1), 95–120. https://doi.org/10.1080/02757259509532298 

Bartelink, H. H. (1996). Allometric relationships on biomass and needle area of Douglas-fir. Forest Ecology 

and Management, 86(1–3), 193–203. https://doi.org/10.1016/S0378-1127(96)03783-8 

Basil, M., Papadopoulos, C., Sutherland, D., & Yeung, H. (2001). Application of probabilistic uncertainty 

methods ( Monte- Carlo Simulation ) in flow measurement uncertainty. In Ø. Isaksen (Ed.), 19th 

International North Sea flow measurement workshop 2001 (pp. 1–21). Kristiansand, Norway: North sea 

flow measurement workshop. 

Bechtold, W. A., & Zarnoch, S. J. (1999). Field Methods And Data Processing Techniques Associated With 

Mapped Inventory Plots. In C. Aguirre-Bravo & C. Rodriguez Franco (Eds.), The North American 

Science Symposium:Toward a Unified. Framework for Inventorying and Monitoring Forest Ecosystem 

Resources (pp. 421–424). Guadalajara, Jalisco, Mexico: USDA Forest Service. 

Berger, A., Gschwantner, T., McRoberts, R. E., & Schadauer, K. (2014). Effects of measurement errors on 

individual tree stem volume estimates for the Austrian national forest inventory. Forest Science, 60(1), 

14–24. 

Bi, H. (2000). Trigonometric variable-form taper equations for Australian eucalypts. Forest Science, 46(3), 

397–409. 

Box, G. E. P., & Cox, D. R. (1964). An Analysis of Transformations. Royal Statistical Society, 26(2), 211–

252. 

Bramhe, V. S., Ghosh, S. K., & Garg, P. K. (2018). Extraction of Built-Up Area By Combining Textural 

Features and Spectral Indices From Landsat-8 Multispectral Image. ISPRS - International Archives of 

the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLII–5(November), 727–733. 

https://doi.org/10.5194/isprs-archives-xlii-5-727-2018 

Brancalion, P. H. S., Campoe, O., Mendes, J. C. T., Noel, C., Moreira, G. G., van Melis, J., … Guillemot, J. 

(2019). Intensive silviculture enhances biomass accumulation and tree diversity recovery in tropical 

forest restoration. Ecological Applications, 29(2), 1–12. https://doi.org/10.1002/eap.1847 

Brickell, J. E. (1970). More on diameter tapes and calipers. Journal of Forestry, 68(3), 169–170. 

Brown, S. (1997). Estimating biomass and biomass change of tropical forests: a primer. FAO Forestry Paper, 

134(August), 55. Retrieved from http://www.fao.org/3/w4095e/w4095e00.htm 

Brumme, R., & Khanna, P. K. (2009). Functioning and management of european beech ecosystems. (M. M. 

Caldwell, G. Heldmaier, R. . Jackson, O. L. Lange, H. A. Mooney, E. D. Schulze, & U. Sommer, Eds.), 

Ecological studies Vol. 208 (1st ed.). Heidelberg, Germany: Springer. 



Chapter VII: References 

 

126 

BUN-CA. (2002). Biomass. Manuals on renewable energy. Strengthening Renewable Energy Capacity for 

Central America. San José, Costa Rica: Biomass Users Network (BUN-CA). 

Búrquez, A., Martínez-Yrízar, A., Núñez, S., Quintero, T., & Aparicio, A. (2010). Aboveground biomass in 

three Sonoran Desert communities: Variability within and among sites using replicated plot harvesting. 

Journal of Arid Environments, 74(10), 1240–1247. 

Cairns, M. A., Olmsted, I., Granados, J., & Argaez, J. (2003). Composition and aboveground tree biomass of 

a dry semi-evergreen forest on Mexico’s Yucatan Peninsula. Forest Ecology and Management, 186(1–

3), 125–132. 

Canavan, S. J., & Hann, D. W. (2014). Stochasticity and measurement error in forest models. Oregon, US. 

Retrieved from 

https://www.researchgate.net/publication/269699584_Stochasticity_and_Measurement_Error_in_Forest

_Models 

Cano Santana, Z. (1994). Energy flow through sphenarium purpurascens (Orthoptera: acrididae) and net 

primary aerial productivity in a xerophytic community. National Autonomous University of Mexico 

(UNAM). 

Cartus, O., Kellndorfer, J., Walker, W., Franco, C., Bishop, J., Santos, L., & Fuentes, J. M. M. (2014). A 

national, detailed map of forest aboveground carbon stocks in Mexico. Remote Sensing, 6(6), 5559–

5588. https://doi.org/10.3390/rs6065559 

Castañuela Ramos, Y. E. (2013). Estimation of the Aerial Biomass and Carbon Capture in Yucca filifera 

(Chaubad) and Atriplex canescens (Pursh) Nutt. Using Allometric Equations, in Mazapíl, Zacatecas. 

Universidad Aiutónoma Agraria Antonio Narro. 

Castro Quilantán, J. L., Bouchot, C., & Sánchez Ochoa, J. C. (2010). Propagation of uncertainties, an 

evolutionary approach. In CENAM (Ed.), Simposio de Metrología 2010 (pp. 1–5). Queretaro, Qro., 

Mexico: Centro Nacional de Metrología (CENAM). 

Chamber of Deputies. General Law of Sustainable Forestry Development (2018). Mexico. 

Chamber of Deputies. General Law on climate change (2018). City of Mexico, Mexico, Mexico: Official 

Journal of the Federation (DOF). 

Chamber of Deputies. Climate change: the main adaptation and mitigation actions in Mexico (2019). Mexico 

City, Mexico, Mexico. 

Chave, J., Condit, R., Aguilar, S., Hernandez, A., Lao, S., & Perez, R. (2004). Error propagation and scaling 

for tropical forest biomass estimates. Philosophical Transactions of the Royal Society of London. Series 

B, Biological Sciences, 359(1443), 409–420. 

Chojnacky, D. C., Heath, L. S., & Jenkins, J. C. (2014). Updated generalized biomass equations for North 

American tree species. Forestry, 87, 129–151. https://doi.org/10.1093/forestry/cpt053 

CICC. (2013). National Climate Change Strategy. Vision 10-20-40. Mexico City, Mexico. 

Cochran, W. G. (1977). Sampling Techniques. Technometrics (3rd.). New York, US: John Wiley and Sons. 

CONABIO. (2017). Biodiversity in Durango. (A. Cruz Angón, E. Castaños Rochell, J. Valero Padilla, & E. 

D. Melgarejo, Eds.). Mexico: National Commission for the Knowledge and Use of Biodiversity 

(CONABIO). 

CONAFOR. (2009a). Anexo 1. Números del INFyS 2004-2009 (Annex 1. NFSI 2004-2009 numbers). 

National Forest and Soil Inventory 2004 - 2009. Zapopan, Jalisco, Mexico: National Forest 

Commission (CONAFOR). 

CONAFOR. (2009b). Manual and procedures for field sampling. National Forest and Soil inventory 2004 - 

2009. Zapopan, Jalisco, Mexico: National Forest Commission (CONAFOR). 

CONAFOR. (2012a). Forests, climate change and REDD+ in Mexico. Basic Guide (First). (National Forest 

Commission (CONAFOR), Ed.). Zapopan, Jalisco, Mexico: National Forest Commission (CONAFOR). 

CONAFOR. (2012b). Inventario Nacional Forestal y de Suelos, México 2004-2009. Zapopan, Jalisco, 

México. 

CONAFOR. (2012c). National Forest and Soil Inventory of Mexico. Report 2004-2009. CONAFOR (Vol. 1). 

Zapopan, Jalisco, Mexico: National Forest Commission (CONAFOR). 

https://doi.org/10.1017/CBO9781107415324.004 

CONAFOR. (2014a). Forest and soil inventory - Durango 2013. Tlalpan, Mexico. 

CONAFOR. (2014b). Proposal of the reference level of the forest emissions of Mexico. Jalisco, Mexico. 

CONAFOR. (2015). Practical guide on how to calculating state emission inventories of greenhouse gas. 

(National Forestry Commission (CONAFOR) & Reinforcing REDD+ and South-South Cooperation, 

Eds.). Zapopan, Jalisco, Mexico: National Forestry Commission (CONAFOR), Reinforcing REDD+ 

and South-South Cooperationy Cooperación Sur-Sur. 



Chapter VII: References 

 

127 

CONAFOR. (2017a). National Forest and Soil Inventory in Mexico Report 2009-2014. Memorias de la VII 

Reunión Nacional de Estadística. Zapopan, Jalisco, Mexico. 

CONAFOR. (2017b). National strategy for REDD+ 2017-2030 (First). Zapopan, Jalisco, Mexico: National 

Forestry Commission (CONAFOR), Ministry of the Environment and Natural Resources 

(SEMARNAT). 

Condit, R. (1998). Tropical forest census plots: Methods and Results from Barro Colorado Island, Panama 

and a Comparison with Other Plots. Georgetown, Texas, USA: Springer International Publishing. 

https://doi.org/10.1007/978-3-662-03664-8 

Corral-Rivas, J. J., Márquez, P., Quiñones-Scott, R., Lujan-Soto, J. E., & López-Sánchez, C. A. (2013). 

Installation of a thinning experiment in forests of UMAFOR 1008. In A. R. Ortíz Gámez & J. Méndez 

González (Eds.), XI Mexican Congress on Forest Resources 2013 (pp. 433–442). Saltillo, Coahuila, 

Mexico: Mexican Forest Resources Society and Antonio Narro Autonomous Agrarian University. 

Corral-Rivas, José Javier, Vargas Larreta, B., Wehenkel, C., Aguirre Calderón, O. A., Álvarez González, J. 

G., & Rojo Alboreca, A. (2009). Guide for the establishment of forestry and soil research in forests of 

the state of Durango (p. 54). Durango, Mexico. 

Criscenti, L. J., Laniak, G. F., & Erikson, R. L. (1996). Propagation of uncertainty through geochemical code 

calculations. Geochimica et Cosmochimica Acta, 60(19), 3551–3568. https://doi.org/10.1016/0016-

7037(96)00188-3 

Diéguez Aranda, U., Castedo Dorado, F., Barrio Anta, M., Álvarez González, J. G., Rojo Alboreca, A., & 

Ruiz González, A. D. (2005). Forest mensuration practices. (Fundación Conde del Valle de Salazar y 

Ediciones Mundi-Prensa, Ed.) (1st ed.). Lugo, España: Universidad de Santiago de Compostela. 

Dohoo, I. R., Ducrot, C., Fourichon, C., Donald, A., & Hurnik, D. (1997). An overview of techniques for 

dealing with large numbers of independent variables in pidemiologic studies. Preventive Veterinary 

Medicine, 29(3), 221–239. https://doi.org/https://doi.org/10.1016/S0167-5877(96)01074-4 

Draper, N. R., & Smith, H. (1998). Applied Regression Analysis. (V. Barnett, R. A. Bradley, N. A. C. Cressie, 

N. I. Fisher,  lain M. Johnstone, J. B. Kadane, … E. J. Stuart Hunter, Eds.) (3rd ed.). New York, 

Chchester, Weinheim, Brisbane, Singapore, Toronto: John Wiley & Sons, Inc. 

Ducey, M. J., Zarin, D. J., Vasconcelos, S. S., & Araújo, M. M. (2009). Biomass equations for forest regrowth 

in the eastern Amazon using randomized branch sampling. Acta Amazonica, 39(2), 349–360. 

Elzinga, C., Shearer, R. C., & Elzinga, G. (2005). Observer variation in tree diameter measurements. Western 

Journal of Applied Forestry, 20(2), 134–137. 

Fahrmeir, L., Kneib, T., Lang, S., & Marx, B. (2013). Regression. Models, methods and application (1st ed.). 

Heidelberg, New York, Dordrecht, London: Springer. 

FAO. (1981). Manual of forest inventory. Rome, Italy. Retrieved from 

http://www.fao.org/3/ap358e/ap358e00.pdf 

FAO. (2006). Global Forest Resources Assessment 2005. Rome, Italy. https://doi.org/ISBN 92-5-105481-9 

FAO. (2015). Global Forest Resources Assessment 2015. Rome, Italy. Retrieved from 

http://www.fao.org/forestry/fra2005/en/ 

Farrance, I., & Frenkel, R. (2014). Uncertainty in measurement: A review of monte carlo simulation using 

microsoft excel for the calculation of uncertainties through functional relationships, including 

uncertainties in empirically derived constants. Clinical Biochemist Reviews, 35(1), 37–61. 

https://doi.org/http://dx.doi.org/10.1016/j.probengmech.2016.04.005 

Fehrmann, L. (2006). Alternative approaches for biomass estimation on single tree level with k-nearest 

neighbor method. University of Göttingen, Göttingen, Germany. 

Foroughbakhch, R., Alvarado-Vázquez, M. A., Hernández-Piñero, J. L., Rocha-Estrada, A., Guzmán-Lucio, 

M. A., & Treviño-Garza, E. J. (2006). Establishment, growth and biomass production of 10 tree woody 

species introduced for reforestation and ecological restoration in northeastern Mexico. Forest Ecology 

and Management, 235(1–3), 194–201. 

Fuchs, H., Magdon, P., Kleinn, C., & Flessa, H. (2009). Estimating aboveground carbon in a catchment of the 

Siberian forest tundra: Combining satellite imagery and field inventory. Remote Sensing of 

Environment, 113(3), 518–531. https://doi.org/10.1016/j.rse.2008.07.017 

García-Pérez, A. (2014). Data Interpretation. An introduction to applied statistic. (UNED, Ed.) (First). 

Madrid, Spain: National University of Distance Education - Universidad Nacional de Educación a 

Distancia (UNED)-. 

Garzuglia, M. (2018). 1948-2018: Seventy years of FAO’s Global Forest Resources Assessment. Historical 

overview and future prospects. (S. Russell & D. Henderson-Howat, Eds.) (1st ed.). Rome, Italy: Forest 

and Agriculture Organization of the United Nations (FAO). 



Chapter VII: References 

 

128 

Gaudin, S., & Richard, J. B. (2014). Comparaison des dendromètres vertex III et trupulse 200b pour la mesure 

de la hauteur totale des arbres. Revue Forestiere Francaise, 66(2), 163–181. 

https://doi.org/10.4267/2042/54353 

GAUG. (2017). Forstbotanischer Garten (Forest Botanical Garden). Retrieved August 22, 2017, from 

http://www.uni-goettingen.de/en/site-and-climate/10232.html 

Gertner, G., & Köhl, M. (1992). An assessment of some nonsampling errors in a national survey using an 

error budget. Forest Science, 38(3), 525–538. 

GFOI. (2016). Integration of Remote-Sensing and Ground-Based Observations for Estimation of Emissions 

and Removals of Greenhouse Gases in Forests. Methods and Guidance from the Global Forest 

Observations Initiative. (GFOI, Ed.) (2nd ed.). Rome, Italy. 

Gibbs, H. K., Brown, S., Niles, J. O., & Foley, J. A. (2007). Monitoring and estimating tropical forest carbon 

stocks: Making REDD a reality. Environmental Research Letters, 2(4). 

Gil, S., & Rodríguez, E. (2001). Re-Creative Physics (1st ed.). Buenos Aires, Argentina: Prentice-Hall 

Hispananoamericana, S. A. 

Gitelson, A. a. (2004). Wide Dynamic Range Vegetation Index for remote quantification of biophysical 

characteristics of vegetation. Journal of Plant Physiology, 161(2), 165–173. 

https://doi.org/10.1078/0176-1617-01176 

Gizachew, B., Solberg, S., Næsset, E., Gobakken, T., Bollandsås, O. M., Breidenbach, J., … Mauya, E. W. 

(2016). Mapping and estimating the total living biomass and carbon in low-biomass woodlands using 

Landsat 8 CDR data. Carbon Balance and Management, 11(1), 1–14. 

Glenn, E. P., Huete, A. R., Nagler, P. L., & Nelson, S. G. (2008). Relationship between remotely-sensed 

vegetation indices, canopy attributes and plant physiological processes: What vegetation indices can and 

cannot tell us about the landscape. Sensors, 8(4), 2136–2160. https://doi.org/10.3390/s8042136 

Goliaš, M., & Palenčár, R. (2012). Determination of uncertainties for correlated input quantities by the Monte 

Carlo method. Acta Polytechnica, 52(4), 57–61. https://doi.org/10.14311/1590 

González-Alonso, F., Cuevas, J. M., Arbiol, R., & Baulies, X. (1997). Remote sensing and agricultural 

statistics: crop area estimation in north-eastern Spain through diachronic Landsat TM and ground 

sample data. Remote Sensing, 18(2), 467–470. 

González-Elizondo, M. S., González-Elizondo, M., Tena-Flores, J. A., Ruacho-González, L., & López-

Enríquez, I. L. (2012). Vegetation of Sierra Madre Occidental, Mexico: A synthesis work. Acta 

Botanica Mexicana, 100, 351–403. 

Gormanson, D. D., Pugh, S. A., Barnett, C. J., Miles, P. D., Morin, R. S., Sowers, P. A., & Westfall, J. A. 

(2017). Statistics and Quality Assurance for the Northern Research Station Forest Inventory and 

Analysis Program, 2016. Newtown Square, PA, USA. https://doi.org/10.2737/NRS-GTR-166 

GTOS, & FAO. (2009). Biomass. Assessment of the status of the development of the standards for the 

rterrestrial essencial climate variables (Vol. 10). Rome, Italy. 

Günlü, A., Ercanli, I., Başkent, E. Z., & Çakır, G. (2014). Estimating aboveground biomass using Landsat TM 

imagery: A case study of Anatolian Crimean pine forests in Turkey. Annals of Forest Research, 57(2), 

289–298. https://doi.org/10.15287/afr.2014.278 

Günlü, Alkan, & Kadıoğulları, A. İ. (2018). Modeling forest stand attributes using landsat ETM+ and 

quickbird satellite images in western Turkey. Bosque, 39(1), 49–59. https://doi.org/10.4067/S0717-

92002018000100049 

Haglöf Sweden AB. (2007). Users Guide Vertex IV and Transponder T3. Långsele, Sweden: Haglöf Sweden 

AB. 

Hansen, E. H., Gobakken, T., Solberg, S., Kangas, A., Ene, L., Mauya, E., & Næsset, E. (2015). Relative 

efficiency of ALS and InSAR for biomass estimation in a Tanzanian rainforest. Remote Sensing, 7(8), 

9865–9885. https://doi.org/10.3390/rs70809865 

Haralick, R. M., Shanmugam, K., & Dinstein, I. (1973). Textural Features for Image Classification. IEEE 

Transactions on Systems, Man, and Cybernetics, SMC-3(6), 610–621. 

https://doi.org/10.1109/tsmc.1973.4309314 

Henebry, G., Viña, A., & Gitelson, A. (2004). The wide dynamic range vegetation index and its potential 

utility for gap analysis. Papers in Natural Resources, 50–56. Retrieved from 

http://digitalcommons.unl.edu/natrespapers/262/ 

Hill, R. C., Griffiths, W. E., & Lim, G. C. (2018). Principles of Econometrics (5th ed.). USA: Wiley John 

Wiles & Sons, Inc. 

Holdaway, R. J., McNeill, S. J., Mason, N. W. H., & Carswell, F. E. (2014). Propagating uncertainty in plot-

based estimates of forest carbon stock and carbon stock change. Ecosystems, 17(4), 627–640. 



Chapter VII: References 

 

129 

https://doi.org/10.1007/s10021-014-9749-5 

Houghton, R. A. (2005). Aboveground forest biomass and the global carbon balance. Global Change Biology, 

11(6), 945–958. https://doi.org/10.1111/j.1365-2486.2005.00955.x 

Hughes, I. G., & Hase, T. P. A. (2010). Measurements and their uncertainties. A practical guide to modern 

error analysis (1st ed.). New York, USA: Oxford University Press. 

Hyde, P., Dubayah, R., Walker, W., Blair, J. B., Hofton, M., & Hunsaker, C. (2006). Mapping forest structure 

for wildlife habitat analysis using multi-sensor (LiDAR, SAR/InSAR, ETM+, Quickbird) synergy. 

Remote Sensing of Environment, 102(1–2), 63–73. https://doi.org/10.1016/j.rse.2006.01.021 

Hyppönen, M., & Roiko-Jokela., P. (1978). On the accuracy and effectivity of measuring sample trees. Folia 

Forestalia, 356, 1–25. 

INEGI. (2014). Dictionary of Land Use and Vegetation Data. Scale 1: 250000. (INEGI, Ed.) (Third). 

Aguascalientes, Mexico: National Institute of Statistic and Geography (INEGI). 

INEGI. (2016). Statistical and geographical yearbook of Durango 2016. (INEGI, Ed.) (1st ed.). 

Aguascalientes, Mexico: INEGI. 

INEGI. (2017). Guide to the interpretation of cartography: land use and vegetation. (INEGI, Ed.), Scale 

1:250,000: series VI. (First). Aguascalientes, Mexico: National Institute of Statistic and Geography 

(INEGI). 

IPCC. (2003). Good practice guidance for land use, land use change and forestry. Institute for Global 

Environmental Strategies. Hayanama, Kanagawa, Japan: Intergovernmental Panel on Climate Change 

(IPCC). 

IPCC. (2006). Volume 4: Agriculture, Forestry and Other Land Use. In S. Eggleston, L. Buendia, K. Miwa, T. 

Ngara, & K. Tanabe (Eds.), 2006 IPCC Guidelines for National Greenhouse Gas Inventories (First, p. 

673). Kanagawa, Japan: IPCC. 

IPCC. (2013). Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the 

Fifth Assessment Report of the Intergovernmental Panel on Climate Change. (T. F. Stocker, D. Qin, G.-

K. Plattner, M. Tignor, S. K. Allen, J. Boschung, … P. M. Midgley, Eds.) (First). Geneva, Switzerland: 

Cambridge University Press. 

IPCC. (2014). Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the 

Fifth Assessment Report of the Intergovernmental Panel on Climate Change. (Core Writting Team 

IPCC, R. K. Pachauri, & L. Meyer, Eds.). Geneva, Switzerland: Intergovernmental Panel on Climate 

Change. https://doi.org/10.1017/CBO9781107415324 

IPCC. (2015). Climate Change 2014. Mitigation of Climate Change. Summary for policymakers and 

Technical Summary. https://doi.org/10.1177/002248717302400108 

Jackson, R., & Huete, A. R. (1991). Interpreting vegetation indexes. Preventive Veterinary Medicine, 11, 

185–200. 

James, G., Witten, D., Hastie, T., & Tibshirani, R. (2013). An Introduction to Statistical Learning with 

applications in R. (G. Casella, S. Fienberg, & I. Olkin, Eds.) (First). New York, Heidelberg, Dordrecht, 

London: Springer International Publishing. https://doi.org/10.1016/j.peva.2007.06.006 

JCGM. (2010). Evaluation of measurement data: Guide to the expression of uncertainty in measurement. (I. 

and O. BIPM, IEC, IFCC, ILAC, ISO, IUPAC, Ed.) (2nd ed.). Joint Committee for Guides in 

Metrology (JCGM). 

Kallner, A. (2001). Uncertainty in measurement, Introduction and examples from laboratory medicine. 

JIFCC, 13(1), 16–24. Retrieved from http://www.ifcc.org/ ejifcc/vol13no1/1301200103.htm 

Kangas, A. S. (1998). Effect of errors-in-variables on coefficients of a growth model and on prediction of 

growth. Forest Ecology and Management, 102(2–3), 203–212. https://doi.org/10.1016/S0378-

1127(97)00161-8 

Kauffman, B. J., Donato, D., & Adame, M. F. (2013). Protocol for the measurement, monitoring and 

reporting of mangrove structure, biomass and carbon stocks (No. 117). Documento de Trabajo 117. 

Bogor, Indonesia. 

Kaufman, Y. J., & Tanré, D. (1992). Atmospherically resistant vegetation index (ARVI) for EOS-MODIS. 

IEEE Transactions on Geoscience and Remote Sensing, 30(2), 261–270. 

Kelsey, K. C., & Neff, J. C. (2014). Estimates of aboveground biomass from texture analysis of landsat 

imagery. Remote Sensing, 6(7), 6407–6422. https://doi.org/10.3390/rs6076407 

Kershaw Jr., J. A., Ducey, M. J., Beers, T. W., & Husch, B. (2017). Forest mensuration. (L. John Wiley & 

Sons, Ed.) (5th ed.). Chichester, West Sussex, UK: Wiley Blackwell. 

Kitahara, F., Mizoue, N., & Yoshida, S. (2010). Effects of training for inexperienced surveyors on data 

quality of tree diameter and height measurements. Silva Fennica, 44(4), 657–667. 



Chapter VII: References 

 

130 

https://doi.org/10.14214/sf.133 

Kleinn, C. (2017). The renaissance of National Forest Inventories (NFIs) in the context of the international 

conventions – a discussion paper on context, background and justification of NFIs. Pesquisa Florestal 

Brasileira, 37(91), 369. https://doi.org/10.4336/2017.pfb.37.91.1343 

Kleinn, C., Bhandari, N., & Fehrmann, L. (2015). Observations and measurements. In FAO (Ed.), Knowledge 

reference for national forest assessments (1st ed., pp. 41–52). Rome, Italy: Food and Agriculture 

Organization (FAO). Retrieved from http://www.fao.org/forestry/fma/73411/en/ 

Köhl, M., Magnussen, S. S., & Marchetti, M. (2006). Sampling Methods, Remote Sensing and GIS 

Multiresource Forest Inventory, 392. 

Langford, J. (2005). The Cross Validation Problem. In P. Auer & R. Meir (Eds.), Learning Theory. COLT 

2005. Lecture Notes in Computer Science, vol 3559 (pp. 687–688). Berlin, Heidelberg: Springer. 

https://doi.org/10.1007/11503415_47 

Le Maire, G., François, C., & Dufrêne, E. (2004). Towards universal broad leaf chlorophyll indices using 

PROSPECT simulated database and hyperspectral reflectance measurements. Remote Sensing of 

Environment, 89(1), 1–28. https://doi.org/10.1016/j.rse.2003.09.004 

Lewis, S. L., Sonké, B., Sunderland, T., Begne, S. K., Lopez-Gonzalez, G., van der Heijden, G. M. F., … 

Zemagho, L. (2013). Above-ground biomass and structure of 260 African tropical forests. Philosophical 

Transactions of the Royal Society B: Biological Sciences, 368(1625), 14. 

https://doi.org/10.1098/rstb.2012.0295 

Liu, S., Bitterlich, W., Cieszewski, C. J., & Zasada, M. J. (2011). Comparing the use of three dendrometers 

for measuring diameters at breast height. Southern Journal of Applied Forestry, 35(3), 136–141. 

https://doi.org/10.1093/sjaf/35.3.136 

López-Serrano, P., López-Sánchez, C., Díaz-Varela, R., Corral-Rivas, J., Solís-Moreno, R., Vargas-Larreta, 

B., & Álvarez-González, J. (2015). Estimating biomass of mixed and uneven-aged forests using spectral 

data and a hybrid model combining regression trees and linear models. IForest - Biogeosciences and 

Forestry, (October), e1–e9. https://doi.org/10.3832/ifor1504-008 

López-Serrano, P. M., Cárdenas Domínguez, J. L., Corral-Rivas, J. J., Jiménez, E., López-Sánchez, C. A., & 

Vega-Nieva, D. J. (2019). Modeling of Aboveground Biomass with Landsat 8 OLI and Machine 

Learning in Temperate Forests. Forests, 11(11), 1–18. https://doi.org/10.3390/f11010011 

Lopez-Serrano, P. M., Corral-Rivas, J. J., & López-Sánchez, C. A. (2015). Spatial mapping carbon stocks in 

temperate forests of the state of Durango, Mexico. In F. P. Pellat, J. W. González, & R. T. Alamilla 

(Eds.), Current state of knowledge of the carbon cycle and its interactions in Mexico: synthesis 2015. 

National Synthesis Series (p. 702). Texcoco, Mexico: Mexican Carbon Program (PMC) in collaboration 

with the Center for Global Change and Sustainability in the Southeast, A.C. and the International Center 

for Linking and Teaching of the Universidad Juárez Autónoma de Tabasco. 

Lu, D. (2005). Aboveground biomass estimation using Landsat TM data in the Brazilian Amazon. 

International Journal of Remote Sensing, 26(12), 2509–2525. 

https://doi.org/10.1080/01431160500142145 

Lu, Dengsheng. (2006). The potential and challenge of remote sensing-based biomass estimation. 

International Journal of Remote Sensing, 27(7), 1297–1328. 

https://doi.org/10.1080/01431160500486732 

Lu, Dengsheng, & Batistella, M. (2005). Exploring TM image texture and its relationships with biomass 

estimation in Rondônia, Brazilian Amazon. Acta Amazonica, 35(2), 249–257. 

https://doi.org/10.1590/s0044-59672005000200015 

Lund, H. G. (2009). National forest inventories and global resource assessments. In J. N. Owens & H. G. 

Lund (Eds.), Forest and Forest Plants Volume 1, Encyclopedia of Life Support Systems (EOLSS) (First, 

pp. 29–65). Oxford, UK: EOLSS Publishers. 

Luoma, V., Saarinen, N., Wulder, M. A., White, J. C., Vastaranta, M., Holopainen, M., & Hyyppä, J. (2017). 

Assessing precision in conventional field measurements of individual tree attributes. Forests, 8(2), 1–

16. https://doi.org/10.3390/f8020038 

Ma, W., Domke, G. M., Woodall, C. W., & D’Amato, A. W. (2019). Land use changes, disturbances, and 

their interactions on future forest aboveground biomass dynamics in the Northern US. Forests, 10(7), 1–

21. https://doi.org/10.3390/f10070606 

Magnussen, S., & Reed, D. (2015). Modelling for estimation and monitoring. In FAO (Ed.), Knowledge 

reference for national forest assessments (First, pp. 111–136). Rome, Italy: Food and Agriculture 

Organization (FAO). Retrieved from http://www.fao.org/forestry/fma/73411/en/ 

Mahmoud, G. M., & Hegazy, R. S. (2017). Comparison of GUM and Monte Carlo methods for the 



Chapter VII: References 

 

131 

uncertainty estimation in hardness measurements. International Journal of Metrology and Quality 

Engineering, 8, 1–9. https://doi.org/10.1051/ijmqe/2017014 

Marchau, V. A. W. J., Walker, W. E., Bloemen, P. J. T. M., & Popper, W. S. (2019). Decision Making under 

Deep Uncertainty From Theory to Practice. (V. A. W. J. Marchau, W. E. Walker, P. J. T. M. Bloemen, 

& W. S. Popper, Eds.) (First). Gelderland, Zuid-Holland,The Hague, The Netherlands; Santa Monica, 

CA, USA: Springer. https://doi.org/https://doi.org/10.1007/978-3-030-05252-2 

Marquardt, D. W. (1970). Generalized inverses, ridge regression, biased linear estimation, and nonlinear 

estimation. American Statistical Association, American Society for Quality. Taylor & Francis., 12(3), 

591–612. 

Marsett, R. C., Qi, J., Heilman, P., Biedenbender, S. H., Watson, M. C., Amer, S., … Marsett, R. (2006). 

Remote Sensing for Grassland Management in the Arid Southwest. Rangeland Ecology & Management, 

59(5), 530–540. https://doi.org/10.2111/05-201R.1 

Martinez-Yrizar, A., Sarukhan, J., Perez-Jimenez, A., Rincón, E., Maass, J. M., Solis-Magallanes, A., & 

Cervantes, L. (1992). Above-ground phytomass of a tropical deciduous forest in the coast of Jalisco, 

México. Journal Tropical Ecology, 8(1), 87–96. 

Martínez Barrón, R. A., Aguirre Calderón, O. A., Vargas Larreta, B., Jiménez Pérez, J., Treviño Garza, E. J., 

& Yerena Yamallel, J. I. (2016). Modeling of biomass and aboveground carbon in forests of the state of 

Durango. Revista Mexicana de Ciencias Forestales, 7(35), 91–106. 

Martínez, E. N. (2003). Calculating error bounds in accidentología using the Monte Carlo technique. 

Bariloche, Argentina. 

Matérn, B. (1956). On the Geometry of the Cross-Section of a Stem. Stockholm. 

McRoberts, R. E., Hahn, J. T., Hefty, G. J., & Cleve, J. R. Van. (1994). Variation in forest inventory field 

measurements. Canadian Journal of Forest Research, 24(9), 1766–1770. 

McRoberts, R. E., Næsset, E., & Gobakken, T. (2015). Optimizing the k-Nearest neighbors technique for 

estimating forest aboveground biomass using airborne laser scanning data. Remote Sensing of 

Environment, 163(June), 13–22. 

McRoberts, R. E., Tomppo, E. O., & Czaplewski, R. L. (2015). Sampling designs for national forest 

assessments. In FAO (Ed.), Knowledge reference for national forest assessments (First, pp. 23–40). 

Rome, Italy: Food and Agriculture Organization (FAO). Retrieved from 

http://www.fao.org/forestry/fma/73411/en/ 

McRoberts, R. E., & Westfall, J. A. (2014). Effects of uncertainty in model predictions of individual tree 

volume model on large area volume estimates. Forest Science, 60(1), 34–42. 

McRoberts, R. E., & Westfall, J. A. (2016). Propagating uncertainty through individual tree volume model 

predictions to large-area volume estimates. Annals of Forest Science, 73(3), 625–633. 

Mehtätalo, L. (2013). Forest biometrics with examples in R. Kuopio, Finland: University of Eastern, Finland. 

Melson, S., Azuma, D., & Fried, J. S. (2001). A first look at measurement error on FIA plots using blind plots 

in the Pacific Northwest. In R. E. McRoberts, G. A. Reams, P. C. Van Deusen, & J. W. Moser (Eds.), 

Thrid Annual Forest Inventory and Analysis Symposium (pp. 11–20). Saint Paul, Minnesota, US: U.S. 

Department of Agriculture, Forest Service, North Central Research Station. 

Méndez González, J., Turlan Medina, O. A., Ríos Saucedo, J. C., & Nájera Luna, J. A. (2012). Allometric 

equations to estimate aerial biomass of Prosopis laevigata (Humb. & Bonpl. ex Willd.) M.C. Johnst. 

Rev. Mex. Cien. For. Vol., 3(13), 57–72. 

Menéndez-Miguélez, M., Canga, E., Barrio-Anta, M., Majada, J., & Álvarez-Álvarez, P. (2013). A three level 

system for estimating the biomass of Castanea sativa Mill. coppice stands in north-west Spain. Forest 

Ecology and Management, 291, 417–426. https://doi.org/10.1016/j.foreco.2012.11.040 

Mexican Government. The National Development Plan of Mexico 2019-2024 (2019). Mexico City, Mexico, 

Mexico. Retrieved from https://lopezobrador.org.mx/wp-content/uploads/2019/05/PLAN-NACIONAL-

DE-DESARROLLO-2019-2024.pdf 

Molinier, M., López-Sánchez, C. A., Toivanen, T., Korpela, I., Corral-Rivas, J. J., Tergujeff, R., & Häme, T. 

(2016). Relasphone-mobile and participative in situ forest biomass measurements supporting satellite 

image mapping. Remote Sensing, 8(869), 1–23. https://doi.org/10.3390/rs8100869 

Morales M., E. H. (2005). Experimental design through the Analysis of Variance and Linear Regression 

Model. (A. Diaz M., Ed.) (First). Valdivia, Chile: Carouna. 

Moran, L. A., & Williams, R. A. (2002). Comparison of three dendrometers in measuring diameter at breast 

height. Northern Journal of Applied Forestry, 19(1), 28–33. https://doi.org/10.1093/njaf/19.1.28 

Morfín Ríos, J. E., Michel Fuentes, J. M., González Murguía, R., Carrillo, O., Mayorga, R., Rangel, L., … 

Guerrero Pacheco, G. (2015). Carbon reserves estimation in forest biomass in Mexico. Zapopan, 



Chapter VII: References 

 

132 

Jalisco, Mexico. 

Morrison, L. W. (2016). Observer error in vegetation surveys : a review. Plant Ecology, 9(4), 367–379. 

https://doi.org/10.1093/jpe/rtv077 

Mostafa, S. A., & Ahmad, I. A. (2018). Recent developments in systematic sampling: A review. Journal of 

Statistical Theory and Practice, 12(2), 290–310. https://doi.org/10.1080/15598608.2017.1353456 

Muñoz-Ruiz, M. A., Valdez-Lazalde, J. R., de los Santos-Posadas, H. M., Ángeles-Pérez, G., & Monterroso-

Rivas, A. I. (2014). Inventory and mapping of temperate forest in Hidalgo, Mexico through spot and 

field data. Agrociencia, 48(8), 847–862. 

Næsset, E., Ørka, H. O., Solberg, S., Bollandsås, O. M., Hansen, E. H., Mauya, E., … Gobakken, T. (2016). 

Mapping and estimating forest area and aboveground biomass in miombo woodlands in Tanzania using 

data from airborne laser scanning, TanDEM-X, RapidEye, and global forest maps: A comparison of 

estimated precision. Remote Sensing of Environment, 175, 282–300. 

https://doi.org/10.1016/j.rse.2016.01.006 

Nagel, U., & Wunderlich, H.-G. (1976). Geological block image of the surroundings of Göttingen. Lower 

Saxony Institute of Regional and Regional Development (2nd ed., Vol. 91). Göttingen, Germany. 

Nath, A. J., Tiwari, B. K., Sileshi, G. W., Sahoo, U. K., Brahma, B., Deb, S., … Gupta, A. (2019). Allometric 

models for estimation of forest biomass in North East India. Forests, 10(2). 

https://doi.org/10.3390/f10020103 

Návar, J. (2009). Allometric equations for tree species and carbon stocks for forests of northwestern Mexico. 

Forest Ecology and Management, 257(2), 427–434. 

Návar, J., Méndez, E., Nájera, A., Graciano, J., Dale, V., & Parresol, B. (2004). Biomass equations for shrub 

species of Tamaulipan thornscrub of North-eastern Mexico. Journal of Arid Environments, 59(4), 657–

674. 

Ni-Meister, W., Lee, S., Strahler, A. H., Woodcock, C. E., Schaaf, C., Yao, T., … Blair, J. B. (2010). 

Assessing general relationships between aboveground biomass and vegetation structure parameters for 

improved carbon estimate from lidar remote sensing. Journal of Geophysical Research: Biogeosciences, 

115(G2), n/a-n/a. https://doi.org/10.1029/2009jg000936 

Ogilvie, J. F. (1984). A monte-carlo approach to error propagation. Computers and Chemistry, 8(3), 205–207. 

https://doi.org/10.1016/0097-8485(84)80007-8 

Ortiz-Reyes, A. D., Valdez-Lazalde, R. J., De Los Santos-Posadas, H. M., Ángeles-Pérez, G., Paz-Pellat, F., 

& Martínez-Trinidad, T. (2015). Inventory and cartography of forest variables derived from LiDAR 

data: comparison of methods. Madera y Bosques, 21(3), 111–128. 

Ou, G., Li, C., Lv, Y., Wei, A., Xiong, H., Xu, H., & Wang, G. (2019). Improving aboveground biomass 

estimation of Pinus densata forests in Yunnan using Landsat 8 imagery by incorporating age dummy 

variable and method comparison. Remote Sensing, 11(7), 738. https://doi.org/10.3390/rs11070738 

Pardé, J., & Bouchon, J. (1988). Dendrometry (2nd||). Nancy, France: National School of Rural Engineering, 

Water and Forestry. 

PASCC. (2010). Advancing the Science of Climate Change. (Panel on advancing the science of climate 

change (PASCC) & National Academy of Sciences (NAC), Eds.) (First). Washington, DC: National 

Academies Press. 

Pérez-Cruzado, C., Fehrmann, L., Magdon, P., Cañellas, I., Sixto, H., & Kleinn, C. (2015). On the site-level 

suitability of biomass models. Environmental Modelling and Software, 73, 14–26. 

https://doi.org/10.1016/j.envsoft.2015.07.019 

Pérez-Hernández, M. M. (2012). Uncertainty estimation. GUM guide. E-Medida. Revista Española de 

Metrología, 1(3), 113–130. 

Pérez Miranda, R., Romero Sánchez, M. E., González Hernández, A., Martínez Angel, L., & Arriola Padilla, 

V. J. (2018). Estimation of forest attributes by remote sensing in mixed forests of Durango, Mexico. 

Áreas Naturales Protegidas Scripta, 4(2), 49–70. 

https://doi.org/10.18242/anpscripta.2018.04.04.02.0003 

Peuhkurinen, J., Maltamo, M., & Malinen, J. (2008). Estimating species-specific diameter distributions and 

saw log recoveries of boreal forests from airborne laser scanning data and aerial photographs: A 

distribution-based approach. Silva Fennica, 42(4), 625–641. 

Phalla, T., Ota, T., Mizoue, N., Kajisa, T., Yoshida, S., Vuthy, M., & Heng, S. (2018). The importance of tree 

height in estimating individual tree biomass while considering errors in measurements and allometric 

models. Agrivita, 40(1), 131–140. https://doi.org/10.17503/agrivita.v40i1.1730 

Phillips, D. L., Brown, S. L., Schroeder, P. E., & Birdsey, R. A. (2000). Toward error analysis of large-scale 

forest carbon budgets. Global Ecology and Biogeography, 9(4), 305–313. 



Chapter VII: References 

 

133 

https://doi.org/10.1046/j.1365-2699.2000.00197.x 

Phua, M.-H., Ling, Z.-Y., Wong, W., Korom, A., Ahmad, B., Besar, N. A., … Takao, G. (2012). Estimating 

aboveground biomass of a tropical forest in Northern Borneo based on individual tree crowns from 

IKONOS 2 data. In 33rd Asian Conference on Remote Sensing (pp. 1–8). 

Picard, N., Saint-André, L., & Henry, M. (2012). Manual for building tree volume and biomass allometric 

equations: from field measurement to prediction. (FAO, Ed.), Cirad (First). Rome, Italy: CIRAD and 

Food and Agricultural Organization of the United Nations (FAO). 

Pimple, U., Sitthi, A., Simonetti, D., Pungkul, S., Leadprathom, K., & Chidthaisong, A. (2017). Topographic 

correction of Landsat TM-5 and Landsat OLI-8 imagery to improve the performance of forest 

classification in the mountainous terrain of Northeast Thailand. Sustainability (Switzerland), 9(2). 

https://doi.org/10.3390/su9020258 

Press, W. H., Teukolsky, S. A., Vetterling, W. T., & Flannery, B. P. (2007). Numerical recipes. The art of 

scientific computing. Journal of Experimental Psychology: General (3rd ed.). Cambridge, New York, 

Melbourne, Madrid, Cape Town, Singapore, São Paulo: Cambridge University Press. 

Profloresta. (2008). Regional forest study in the forest management unit 1008. Durango, Mexico. 

QGIS Development Team. (2019). QGIS Geographic Information System. Open Source Geospatial 

Foundation Project. Retrieved from http://www.qgis.org/ 

Qi, J., Chehbouni, A., Huete, A. R., Kerr, Y. H., & Sorooshian, S. (1994). A Modified Soil Adjusted 

Vegetation Index. Remote Sensing of Environment, 48, 119–126. 

Qin, L., Liu, Q., Zhang, M., & Saeed, S. (2019). Effect of measurement errors on the estimation of tree 

biomass. Canadian Journal of Forest Research, 49, 1371–1378. https://doi.org/10.1139/cjfr-2019-0034 

Quegan, S., Le Toan, T., Chave, J., Dall, J., Papathanassiou, K., Rocca, F., … Williams, M. (2012). Report 

for Mission Selection: Biomass. Noordwijk, The Netherlands. 

Quiñones-Pérez, C. Z., Silva-Flores, R., & Wehenkel, C. (2012). Ecology of mexican fir Abies durangensis 

Martínez. Journal of Forestry Faculty, 12(3 (Special Iss.)), 180–184. 

R Core Team. (2018). R: A language and environment for statistical computing. R Foundation for Statistical 

Computing, Vienna, Austria. https://doi.org/10.1016/j.jssas.2015.06.002 

Rao, V. S., & Rao, B. R. P. (2015). Carbon sequestration potential of tropical deciduous forests of 

Nallamalais, India. Asian J. Plant. Sci. Res., 5(3), 24–33. 

Red Mex-SMIC. (2015). Protocol for forest carbon dynamics estimation in sites of intensive measurement : 

multi-scale approach. Mexico: Reinforcing REDD+ and South-South Cooperation. 

Reed, D., & Tomé, M. (1998). Total aboveground biomass and net dry matter accumulation by plant 

component in young Eucalyptus globulus in response to irrigation. Forest Ecology and Management, 

103(1), 21–32. https://doi.org/10.1016/S0378-1127(97)00174-6 

Rees, C. E. (1984). Error propagation calculations. Geochimica et Cosmochimica Acta, 48(11), 2309–2311. 

https://doi.org/10.1016/0016-7037(84)90226-6 

Riaño, D., Chuvieco, E., Salas, J., & Aguado, I. (2003). Assessment of Different Topographic Corrections in 

Landsat-TM Data for Mapping Vegetation Types. IEEE Transactions on Geoscience and Remote 

Sensing, 41(5), 1056–1061. 

Ricker, M., Calónico, J., Chávez, N., Gernandt, D. S., Gutiérrez, G., Martínez, E. M., … Salazar, G. A. 

(2015). Taxonomic determination of herbarium specimens from the re-sampling of the national forest 

and soil inventory 2009-2013 (year 2013). Mexico City, Mexico. 

Rocha, W. F. C., & Nogueira, R. (2012). Monte Carlo simulation for the evaluation of measurement 

uncertainty of pharmaceutical certified reference materials. J. Braz. Chem. Soc., 23(3), 385–391. 

Rodríguez-Laguna, R., Jiménez-Pérez, J., Meza-Rangel, J., Aguirre-Calderón, O., & Razo-Zarate, R. (2008). 

Carbon contained in a tropical sub-deciduous forest in the Biosphere Reserve “El Cielo”, Tamaulipas, 

Mexico. Revista Latinoamericana de Recursos Naturales, 4(2), 215–222. 

Rodríguez-Veiga, P., Saatchi, S., Tansey, K., & Balzter, H. (2016). Magnitude, spatial distribution and 

uncertainty of forest biomass stocks in Mexico. Remote Sensing of Environment, 183, 265–281. 

https://doi.org/10.1016/j.rse.2016.06.004 

Rodríguez-Veiga, P., Wheeler, J., Louis, V., Tansey, K., & Balzter, H. (2017). Quantifying Forest Biomass 

Carbon Stocks From Space. Current Forestry Reports, 1–18. https://doi.org/10.1007/s40725-017-0052-

5 

Rodríguez Laguna, R., Jiménez Pérez, J., Aguirre Calderón, O. A., & Treviño Garza, E. J. (2006). Estimation 

of carbon stored in a cloud forest in Tamaulipas Mexico. Ciencia UANL, IX(April-June), 179–188. 

Rojas-García, F., De Jong, B. H. J., Martínez-Zurimendí, P., & Paz-Pellat, F. (2015). Database of 478 

allometric equations to estimate biomass for Mexican trees and forests. Annals of Forest Science, 72(6), 



Chapter VII: References 

 

134 

835–864. 

Rojas-García, F., De Jong, B. H. J., & Paz-Pellat, F. (2015). Areas of opportunity for the development of 

allometric models to estimate biomass in plant species with distribution in Mexico. In F. Paz-Pellat & J. 

Wong-González (Eds.), Current state of knowledge of the carbon cycle and their interactions in 

Mexico: Synthesis 2014 (p. 642). Texcoco, Mexico: Programa Mexicano del Carbono en colaboración 

con el Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional, Unidad Mérida 

y el Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco. 

Rondeux, J., & Pauwels, D. (1998). Le Forestor Vertex : une nouvelle génération de dendromètres. Revue 

Forestière Française, (1), 59–64. https://doi.org/10.4267/2042/5513 

Roxburgh, S. H., Paul, K. I., Clifford, D., England, J. R., & Raison, R. J. (2015). Guidelines for constructing 

allometric models for the prediction of woody biomass: How many individuals to harvest? Ecosphere, 

6(3), 1–27. https://doi.org/10.1890/ES14-00251.1 

Rueda Sánchez, A., Gallegos Rodríguez, A., González Eguiarte, D., Ruiz Corral, A., Benavides Solorio, J. de 

D., López Alcocer, E., & Acosta Mireles, M. (2015). Aboveground biomass estimation in plantations of 

Cedrela odorata L. and Swietenia macrophylla King. Revista Mexicana de Ciencias Forestales, 5(25), 

8–17. 

Safari, A., & Sohrabi, H. (2016). Ability of Landsat-8 OLI derived texture metrics in estimating aboveground 

carbon stocks of coppice oak forests. International Archives of the Photogrammetry, Remote Sensing 

and Spatial Information Sciences - ISPRS Archives, 41(June), 751–754. 

https://doi.org/10.5194/isprsarchives-XLI-B8-751-2016 

Saket, M., Altrell, D., Vuorinen, P., Dalsgaard, S., & Andersson, L. G. B. (2004). National Forest Inventory 

Field Manual Template. 

Sarker, L. R., & Nichol, J. E. (2011). Improved forest biomass estimates using ALOS AVNIR-2 texture 

indices. Remote Sensing of Environment, 115(4), 968–977. https://doi.org/10.1016/j.rse.2010.11.010 

Schmid, W. A., & Lazos Martínez, R. J. (2000). Guide to estimate the measurement uncertainty. National 

Center of Metrology, Mexico (CENAM). Queretaro, Qro., Mexico, Mexico. 

Schreuder, H. T., & Geissler, P. H. (1999). Plot Designs for Ecological Monitoring of Forest and Range. In C. 

Aguirre-Bravo & C. Rodriguez Franco (Eds.), The North American Science Symposium:Toward a 

Unified. Framework for Inventorying and Monitoring Forest Ecosystem Resources (pp. 180–185). 

Guadalajara, Jalisco, Mexico: USDA Forest Service. 

Scott, C. T. (1993). Optimal design of a plot cluster for monitoring. In K. Rennolls & R. Gertner (Eds.), The 

optimal design of forest experiment and forest survey: Proceedings, IUFRO S.4.11 (pp. 233–242). 

London, UK: University of Greenwich. 

Sediva, Sana, Uher, M., & Havlikova, M. (2015). Application of the Monte Carlo Method to Estimate the 

Uncertainty of Air Flow Measurement. In I. Petráš, I. Podlubny, J. Kačur, & J. Vásárhelyi (Eds.), 16th 

International Carpathian Control Conference (ICCC) (pp. 465–469). Szilvásvárad, Hungary: IEEE, 

ICCC. 

Sediva, Sona, & Havlikova, M. (2013). Comparison of GUM and Monte Carlo method for evaluation 

measurement uncertainty of indirect measurements. Proceedings of the 2013 14th International 

Carpathian Control Conference, ICCC 2013, (June), 325–329. 

https://doi.org/10.1109/CarpathianCC.2013.6560563 

SEMARNAT. (2004). Strategies governing the National Forest and Soil Inventory. Guadalajara, Jalisco, 

Mexico. 

SEMARNAT. (2014). Study of the Forest Supply Basin “Centro Occidente” of the State of Durango. 

Durango, Durango. 

SEMARNAT, & INECC. (2017). Methodological improvements for state inventories of GHG emissions and 

removals by land use, the evaluation of the utility and concordance for the national MRV system and its 

contribution in the commitments determined at national level. Zapopan, Jalisco, Mexico. 

SEMARNAT, & SHCP. (2009). The Economy of Climate Change in Mexico. Mexico City, Mexico. 

Shi, L., & Liu, S. (2017). Methods of estimating forest biomass: A review. In J. S. Tumuluru (Ed.), Biomass 

volume estimation and valorization for energy (1st ed., pp. 23–46). Intech open. 

Sinha, S., Jeganathan, C., Sharma, L. K., & Nathawat, M. S. (2015). A review of radar remote sensing for 

biomass estimation. International Journal of Environmental Science and Technology, 12(5), 1779–

1792. 

Solano, D., Vega, C., Eras, V. H., & Cueva, K. (2014). Generation of models allometric to determine aerial 

biomass at the species level, by the destructive method of low intensity for the layer of forest dry 

Pluviestacional of Ecuador. Revista CEDAMAZ, 4(1), 32–44. 



Chapter VII: References 

 

135 

Sousa, A. M. O., Gonçalves, A. C., & Marques da Silva, J. R. (2017). Above‐ground biomass estimation with 

high spatial resolution satellite images. In J. S. Tumuluru (Ed.), Biomass volume estimation and 

valorization for energy (1st ed., pp. 47–70). IntechOpen. 

Spiess, A. N. (2015). Propagate: Propagation of Uncertainty. R package version 1.0-6. 

Taylor, J. R. (1997). An Introduction to Error Analysis: The Study of Uncertainties in Physical 

Measurements. (A. McGuire, Ed.) (2nd ed., Vol. 9). Sausalito, California, US: University Science 

Books. 

Teillet, P. M., Guindon, B., & Goodenough, D. G. (1982). On the slope-aspect correction of multispectral 

scanner data. Canadian Journal of Remote Sensing, 8(2), 84–106. 

https://doi.org/10.1080/07038992.1982.10855028 

Tiedeman, C. R., & Green, C. T. (2013). Effect of correlated observation error on parameters, predictions, and 

uncertainty. Water Resources Research, 49(10), 6339–6355. https://doi.org/10.1002/wrcr.20499 

Tomppo, E., Gschwantner, T., Lawrence, M., & McRoberts, R. E. (2010). National Forest Inventories. 

Pathways for common reporting. (E. Tomppo, T. Gschwantner, M. Lawrence, & R. E. McRoberts, 

Eds.) (First). Heidelberg Dordrecht London New York: Springer, Dordrecht. 

https://doi.org/10.1007/978-90-481-3233-1 

United Nations. (2008). Non-sampling errors in haushold surveys. In United Nations (Ed.), Designing 

Household Survey Samples: Practical Guidelines Department of Economic and Social Affairs (1st ed., 

pp. 163–176). New York, US: United Nations Publication. Retrieved from 

http://www.ihsn.org/node/538 

USGS. (2017). Product Guide: Landsat Surace Reflactance-Derived Spectral Indices. Montana, USA. 

https://doi.org/10.1016/0042-207X(74)93024-3 

Van Breugel, M., Ransijn, J., Craven, D., Bongers, F., & Hall, J. S. (2011). Estimating carbon stock in 

secondary forests: Decisions and uncertainties associated with allometric biomass models. Forest 

Ecology and Management, 262(8), 1648–1657. https://doi.org/10.1016/j.foreco.2011.07.018 

Vargas-Larreta, B., López-Sánchez, C. A., Corral-Rivas, J. J., López-Martínez, J. O., Aguirre-Calderón, C. 

G., & Álvarez-González, J. G. (2017). Allometric equations for estimating biomass and carbon stocks in 

the temperate forests of north-western Mexico. Forests, 8(269), 20. 

Vázquez-Jiménez, R., Romero-Calcerrada, R., Ramos-Bernal, R., Arrogante-Funes, P., & Novillo, C. (2017). 

Topographic Correction to Landsat Imagery through Slope Classification by Applying the SCS + C 

Method in Mountainous Forest Areas. ISPRS International Journal of Geo-Information, 6(9), 287. 

https://doi.org/10.3390/ijgi6090287 

Velasco Bautista, E., Moreno Sánchez, F., & Rodriguez P., R. (2002). Comparison of seven designs of 

secondary sampling units in forest inventories. Ciencia Forestal En México, 27(92), 29–51. 

Wakeham, J. (2015). Uncertainty: History of the Concept. International Encyclopedia of the Social & 

Behavioral Sciences: Second Edition (Second Edi). Elsevier. https://doi.org/10.1016/B978-0-08-

097086-8.03175-5 

Walker, W. E., Harremoës, P., Rotmans, J., Van Der Sluijs, J. P., Van Asselt, M. B. A., Janssen, P., & Von 

Krauss, M. P. K. (2003). Defining uncertainty. A Conceptual basis for uncertainty management in 

model-based decision support. Integrated Assessment, (4), 13. Retrieved from 

https://repository.tudelft.nl/islandora/object/uuid:fdc0105c-e601-402a-8f16-

ca97e9963592?collection=research 

Wang, Y., Zhang, K., Tang, C., Cao, Q., Tian, Y., Zhu, Y., … Liu, X. (2019). Estimation of rice growth 

parameters based on linear mixed-effect model using multispectral images from fixed-wing unmanned 

aerial vehicles. Remote Sensing, 11(11). https://doi.org/10.3390/rs11111371 

Weaver, S. A., Ucar, Z., Bettinger, P., Merry, K., Faw, K., & Cieszewski, C. J. (2015). Assessing the 

Accuracy of Tree Diameter Measurements Collected at a Distance. Croatian Journal of Forest 

Engineering, 36(1), 73–84. 

West, P. W. (2009). Tree and Forest Measurement. Springer (Vol. 53). 

https://doi.org/10.1017/CBO9781107415324.004 

Wiemann, M. C., & Williamson, G. B. (2013). Biomass determination using wood specific gravity from 

increment cores. General Technical Report FPL-GTR-225. Wisconsin, US. 

Williams, M. S., Bechtold, W. A., & LaBau, V. J. (1994). Five Instruments for Measuring Tree Height: An 

Evaluation. Southern Journal of Applied Forestry, 18(2), 76–82. https://doi.org/10.1093/sjaf/18.2.76 

Wilson, E. H., & Sader, S. A. (2002). Detection of forest harvest type using multiple dates of Landsat TM 

imagery. Remote Sensing of Environment, 80(3), 385–396. https://doi.org/10.1016/S0034-

4257(01)00318-2 



Chapter VII: References 

 

136 

Wing, M. G., Kellog, L., & Solmie, D. (2004). Comparing digital range finders for forestry applications. 

Journal of Forestry, 102(4), 16–20. https://doi.org/10.1093/jof/102.4.16 

Wu, C., Shen, H., Wang, K., Shen, A., Deng, J., & Gan, M. (2016). Landsat imagery-based above ground 

biomass estimation and change investigation related to human activities. Sustainability (Switzerland), 

8(2). https://doi.org/10.3390/su8020159 

Yanai, R. D., Battles, J. J., Richardson, A. D., Blodgett, C. a., Wood, D. M., & Rastetter, E. B. (2010). 

Estimating uncertainty in ecosystem budget calculations. Ecosystems, 13(2), 239–248. 

https://doi.org/10.1007/s10021-010-9315-8 

Young, N. E., Anderson, R. S., Chignell, S. M., Vorster, A. G., Lawrence, R., & Evangelista, P. H. (2017). A 

survival guide to Landsat preprocessing. Ecology, 98(4), 920–932. 

Zhang, G., Ganguly, S., Nemani, R. R., White, M. A., Milesi, C., Hashimoto, H., … Myneni, R. B. (2014). 

Estimation of forest aboveground biomass in california using canopy height and leaf area index 

estimated from satellite data. Remote Sensing of Environment, 151, 44–56. 

https://doi.org/10.1016/j.rse.2014.01.025 

Zhao, P., Lu, D., Wang, G., Wu, C., Huang, Y., & Yu, S. (2016). Examining spectral reflectance saturation in 

Landsat imagery and corresponding solutions to improve forest aboveground biomass estimation. 

Remote Sensing, 8(6), 26. https://doi.org/10.3390/rs8060469 

Zheng, D., Heath, L. S., & Ducey, M. J. (2008). Spatial distribution of forest aboveground biomass estimated 

from remote sensing and forest inventory data in New England, USA. Journal of Applied Remote 

Sensing, 2(1), 17. https://doi.org/10.1117/1.2940686 

Zheng, D., Rademacher, J., Chen, J., Crow, T., Bresee, M., Le Moine, J., & Ryu, S. R. (2004). Estimating 

aboveground biomass using Landsat 7 ETM+ data across a managed landscape in northern Wisconsin, 

USA. Remote Sensing of Environment, 93(3), 402–411. https://doi.org/10.1016/j.rse.2004.08.008 

 



 

 

 

Chapter VIII: Appendix 

 

137 
 
 
 

Chapter VIII: Appendix 

VIII.1 Appendix I 

Vegetation 

Group / Genus / 

Specie 

Tree 

No.  

MNFI 

04-09 

Tree 

No.  

MNFI 

09-14 

State n R2 
RMSE 

(kg) 

DBH 

range 

(cm) 

TH 

range 

(m) 

Allometric model  
W 

(kg) 
α 

Ln 

α 

β1 

Ln 

DBH 

β2 

Ln  

TH 

β3 

Ln 

G*TH 

β4 

Ln  

G 

β5 

Ln 

DBH2TH 

β6 

Ln 

CVol 

β7 

DBH 

β8 

TH 

β9 

DBH2TH 

β10 

log 

TH 

β11 

log 

DBH 

β12 

DBH2 
Source 

Abies sp 108 40 
Tlaxcala, 

MX 
26 0.99 ND 5.7-79 6.8-45 Wt=αDBHβ1 Total  exp^(0.071) 2.510            

Avendaño 

Hernandez et 

al., 2009 

Alnus spp 1011 952 Oaxaca, 

MX 

52 0.88 ND 
3.9-

23.5 
ND 

Wt=αDBHβ1 
Total  exp^(-2.14) 2.23            

Acosta 

Mireles et al, 

2002 Inga spp 0 5 52 0.97 ND 3.3-25 ND Wt=αDBHβ1 Total  exp^(-1.76) 2.26            

Clethra sp 0 5 
Hidalgo, 

MX 
15 0.95 ND 

5.3-

23.3 
ND 

Wt=αDBHβ1 

Total  exp^(0.463) 1.1817            

Acosta-

Mireles et al., 

2011 

Carya spp 21 3 

Tamps, MX 

 

20 0.98 ND ND ND Wt=αDBHβ1 Total  exp^(0.061) 2.532            Rodríguez 

Laguna et al., 

2006 

Ficus sp 0 4 143 0.92 ND ND ND Wt=αDBHβ1 Total  exp^(0.027) 2.864            

Nectandra sp 3 0 20 0.95 ND ND ND Wt=αDBHβ1 Total  exp^(0.004) 3.357            

Piscidia sp 2 0 30 0.95 ND ND ND Wt=αDBHβ1 Total  exp^(0.064) 2.623            Rodríguez-

Laguna et al., 

2008 

Psidium spp 3 4 18 0.99 ND ND ND Wt=αDBHβ1 Total  exp^(0.247) 2.25            

Tilia spp 346 462 10 0.99 ND ND ND Wt=αDBHβ1 Total  exp^(0.048) 2.582            

Cupressus spp 361 47 
Mexico 

City, MX 
18 0.93 ND 3-45 ND 

Wt=αDBHβ1 
Total  exp^(0.527) 1.7712            

Rojas-García 

et al., 2015a 
Prunus spp 86 109 

Oaxaca, 

MX 
11 0.95 ND ND ND 

Wt=αDBHβ1 
Total  exp^(-2.76) 2.37            

Ostrya sp 0 2 
US 

55 0.81 54.45 3-47 ND Wt=αDBHβ1 Total  exp^(0.104) 2.535            Chojnacky et 

al., 2014  Picea sp 0 29 289 0.81 107.19 3-72 ND Wt=αDBHβ1 Total  exp^(0.118) 2.323            

Prosopis spp 34 83 

Dgo., Chih., 

Coah., Zac., 

MX 

30 0.98 ND 
5.2-

31.5 

2.6-

6.4 

Wt=αDBHβ1 

Total  exp^(0.056) 2.383            

Méndez 

González et 

al. , 2012 

Pseudotsuga spp 543 560 
Chih.,Dgo., 

MX 
81 0.94 83.71 

8.4 - 

49.8 
ND 

Wt=αDBHβ1 
Total  exp^(0.135) 2.303            

José Návar, 

2009 Tropical dry 

forest 
562 728 

Sinaloa, 

MX 
39 0.85 52.41 

5.2-

32.6 
ND 

Wt=αDBHβ1 
Total  exp^(0.37) 1.96            

Tabebuia sp 0 10 EC 94 0.91 1.03 ND ND Wt=αDBHβ1THβ2 Total  exp^(0.057) 1.98 1.06           
Solano et al., 

2014 

Abarema sp 0 12 Pará, BR 82 0.92 1.11 5-8.8 6-8.2 Wt =α(G*TH)β3 Total  exp^(387.8)   0.892          
Ducey et al., 

2009 

Table VIII-1. AGB allometric models (AM) used in MNFI in the state of Durango with the number of trees registered. AM data: n=number of 

sampled trees to fit the AM; R2=coefficient of determination; RMSE=root-mean-square error; W=AGB in kg per tree; Variables used to fit the AM: 

DBH, TH, basal area (G), crown volume (CVol); ND (= no data) is given when data were not reported; BR= Brazil, EC = Ecuador, MX = Mexico, US 

= United States.  
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Vegetation 

Group / Genus / 

Specie 

Tree 

No.  

MNFI 

04-09 

Tree 

No.  

MNFI 

09-14 

State n R2 
RMSE 

(kg) 

DBH 

range 

(cm) 

TH 

range 

(m) 

Allometric model  
W 

(kg) 
α 

Ln 

α 

β1 

Ln 

DBH 

β2 

Ln  

TH 

β3 

Ln 

G*TH 

β4 

Ln  

G 

β5 

Ln 

DBH2TH 

β6 

Ln 

CVol 

β7 

DBH 

β8 

TH 

β9 

DBH2TH 

β10 

log 

TH 

β11 

log 

DBH 

β12 

DBH2 
Source 

Buddleja spp 13 6 
Mexico 

City, MX 

8 0.98 ND ND ND Wt =(αGβ4)/1000 Total  exp^(5.562)    1.136         
Cano 

Santana, 1994 
Dodonaea sp 0 3 8 0.92 ND ND ND Wt =(αGβ4)/1000 Total  exp^(6.110)    0.941         

Fraxinus spp 57 25 4 0.96 ND ND ND Wt =(αGβ4)/1000 Total  exp^(5.892)    1.1         

Manilkara sp 1 0 
Quintana 

Roo, MX 
20 0.98 70.19 

10-

53.3 
ND Wt=β5(DBH2*TH) Total       0.045        

Cairns et al., 

2003 

Desert 

comunities 
496 988 Sonora, MX 779 0.74 ND ND ND Wt =(α(CVol)β6)/1000 Total  exp^(5.830)      1.115       

Búrquez et 

al., 2010 

Arbutus spp 6984 6863 

Durango, 

MX 

     Wf=αDBH β1THβ2 foliage  exp^(0.007) 1.503 0.848           

Vargas-

Larreta et al., 

2017 

     Wb=αDBH β1THβ2 bark  exp^(0.003) 1.518 0.951           

     Wbr=αDBH β1THβ2 branches  exp^(0.021) 1.812 0.820           

     Ws=αDBH β1THβ2 stem  exp^(0.064) 1.664 0.865           

49 0.95 22.81 
7.9-

44.8 
2.4-25 Wt=Ʃ Wi Total (Ʃ)               

Pinus spp 43556 43993 

     Wf=αDBH β1THβ2   exp^(0.052) 1.282 0.433           

     Wb=αDBH β1THβ2   exp^(0.020) 1.333 0.929           

     Wbr=αDBH β1THβ2   exp^(0.025) 1.838 0.546           

     Ws=αDBH β1THβ2   exp^(0.029) 1.742 1.166           

594 0.93 83.04 5-55.3 3.2-31 Wt=Ʃ Wi Total (Ʃ)               

Quercus spp 48993 47636 

     Wf=αDBH β1   exp^(0.082) 1.594            

     Wb=αDBH β2   exp^(0.008) 2.546            

     Wbr=αDBH β1THβ2   exp^(0.050) 1.976 0.342           

     Ws=αDBH β1THβ2   exp^(0.116) 1.774 0.687           

423 0.82 134.12 7-57 
3.3-

24.8 
Wt=Ʃ Wi Total (Ʃ)               

Juniperus spp 5654 5895 

     Wf =β9(DBH2TH) foliage           0.001    

     Wb=β9(DBH2TH) bark           0.008    

     Wbr=β9(DBH2TH) branches           0.002    

     Ws =β9(DBH2TH) stem           0.129    

48 0.90 37.00 6-43.7 
4.5-

21.5 
Wt=Ʃ Wi Total (Ʃ)               

Crescentia sp 19 0 NL, MX 20 0.94 5.77 ND ND Wt=β9(DBH2TH) Total           0.033    
Foroughbakh

ch et al., 2006 

Annona sp 22 20 
World 

170 0.96 ND 5-148 ND 
Wt=α+β7DBH + 

β12(DBH2) 
Total 42.69        -12.8     1.242 

Brown, 1997 

Wet zone 145 122 169 0.92 ND 4-112 ND Wt=α+β7DBH+β12(DBH2) Total 21.297        6.953     0.74 

Cedrela spp 2 449 
Sinaloa, 

MX 
15 0.96 ND 8.5 22 Wt=α+β7DBH+β12(DBH2) Total 94.995        15.553     0.737 

Rueda 

Sánchez et 

al., 2015 

Yucca spp 50 77 
Zacatecas, 

MX 
31 0.96 10.13 10-93 1.4-11 Wt=α+βDBH+βTH Total -40.102        1.787 10.182     

Castañuela, 

2013 

Table VIII-1. Continuation ….. 
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Vegetation 

Group / Genus / 

Specie 

Tree 

No.  

MNFI 

04-09 

Tree 

No.  

MNFI 

09-14 

State n R2 
RMSE 

(kg) 

DBH 

range 

(cm) 

TH 

range 

(m) 

Allometric model  
W 

(kg) 
α 

Ln 

α 

β1 

Ln 

DBH 

β2 

Ln  

TH 

β3 

Ln 

G*TH 

β4 

Ln  

G 

β5 

Ln 

DBH2TH 

β6 

Ln 

CVol 

Β7 

DBH 

β8 

TH 

β9 

DBH2TH 

β10 

log 

TH 

β11 

log 

DBH 

β12 

DBH2 
Source 

Acacia spp 648 806 

Coah., N.L., 

Tamps., 

MX 

 

     
Wf =α + β8TH + 

β9(DBH2TH) + β10(logTH) 
foliage 0.006         0.241 0.0008 -0.479   

J. Návar et 

al., 2004 

     Wbr=α+β9(DBH2TH) branches 1.946          0.017    

     Ws=α+β7DBH stem -0.876        0.542      

79 0.76 2.90 ND ND Wt=Ʃ Wi Total (Ʃ)               

Celtis spp 17 42 

     Wf=α+β7DBH foliage -0.024        0.071      

     
Wbr=α+β7DBH + 

β9(DBH2TH) 
branches 0.822        0.334  0.028    

     Ws=α+β7DBH stem -0.975        0.622      

27 0.95 1.00 ND ND Wt=Ʃ Wi Total (Ʃ)               

Shrub community 25 3 

     
Wf=α + β7DBH + β8TH + 

β9(DBH2*TH) 
foliage 0.027        0.044 -0.015 0.0011    

     

Wb=α + β8TH + 

β9(DBH2*TH) + 

β10(logTH) 

branches 1.025         -0.171 0.024 -0.096   

     

Ws =α + β7DBH + 

β9(DBH2*TH) + 

β11(logDBH) 

stem -0.431        0.114  0.011  0.308  

913 0.80 4.4 1.5-45 1.5-7 Wt=Ʃ Wi Total (Ʃ)               

Table VIII-1. Continuation ….. 
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VIII.2 Appendix II 

DBH 

class 

Normal 

distribution 

parameters 

(𝝁̂, 𝝈̂) 

Best-fitted distribution 

parameters 

Goodness-of-fit 

[7.5-56] (0, 0.368) Johnson SU: γ=0, δ=1.073, 

ξ=0, λ=0.371 

BIC= -575.099, RSS=4.38 e-06, 

MSE=8.83 e-05 

[7.5-10) (0, 0.240) Scaled/shifted t: 𝜇̂=0, 

sd=0.218, df=2.472 

BIC=-97.756, RSS=2.871 e-04,  

MSE=0.008 

[10-15) (0, 0.330) Johnson SU: γ=0, δ=1.108, 

ξ=0, λ=0.344 

BIC= -497.681, RSS=5.030 e-05, 

MSE=0.0002 

[15-20) (0, 0.373) Johnson SU: γ=0, δ=1.228,   

ξ=0, λ=0.436 

BIC= -449.72, RSS=4.215 e-05, 

MSE=0.0013 

[20-25) (0, 0.442) Johnson SU: γ=0, δ=1.327,  

ξ=0, λ=0.567 

BIC= -393.741, RSS=6.009 e-05, 

MSE=0.0006 

[25-30) (0, 0.540) Johnson SU: γ=0, δ= -1.907, 

ξ=0, λ= -1.013 

BIC= -290.398, RSS=3.470 e-04, 

MSE=0.0011 

[30-35) (0, 0.748) Laplace: 𝜇̂=0, 𝜎̂=1.040 BIC= -116.481, RSS=2.149 e-02, 

MSE=0.018 

[35-56] (0, 1.197) Laplace: 𝜇̂=0, 𝜎̂=1.197 BIC= -148.022, RSS=0.018,  

MSE=0.0177 

Table VIII-2. Parameters and goodness-of-fit for the PDF fitted (normal distribution and best-fitted 

distribution) for DBH measurement by DBH class in El Salto, Durango, Mexico. 

TH 

class 

Normal 

distribution 

parameters 

(𝝁̂, 𝝈̂) 

Best-fitted distribution 

parameters 

Goodness-of-fit 

[3.6-28] (0, 0.573) Johnson SU: γ=0, δ=0.830, 

ξ=0, λ=0.437 

BIC= -442.844, RSS = 1.156e-05,  

MSE=0.00018 

[3.6-10) (0, 0.351) Johnson SU: γ=0, δ=0.987, 

ξ=0, λ=0.325 

BIC= -367.425, RSS=3.984e-05, 

MSE=0.0004 

[10-12.5) (0, 0.472) Johnson SU: γ=0, δ=0.942, 

ξ=0, λ=0.425 

BIC= -330.029, RSS=1.357e-04,  

MSE=0.00064 

[12.5-15) (0, 0.605) Johnson SU: γ=0, δ=1.094, 

ξ=0, λ=0.629 

BIC= -311.550, RSS=3.133e-05, 

MSE=0.0009 

[15-17.5) (0, 0.796) Johnson SU: γ=0,  δ=0.938, 

ξ=0, λ=0.682 

BIC= -277.538, RSS=2.166 e-06,  

MSE=0.0013 

[17.5-20) (0, 0.982) Scaled/shifted t: 𝜇̂=0, 

𝜎̂=0.982, df=2.472 

BIC= -218.041, RSS=0.0014, 

MSE=0.0024 

[20-28] (0, 1.040) Laplace: 𝜇̂=0, 𝜎̂=2.095 BIC= -39.495, RSS=0.0025,  

MSE=0.040 

Table VIII-3. Parameters and goodness-of-fit for the PDF fitted (normal distribution and best-fitted 

distribution) for TH measurement by TH class in El Salto, Durango, Mexico.   
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VIII.3 Appendix III 

DBH 

class 

Normal 

distribution 

parameters 

(𝝁̂, 𝝈̂) 

Best-fitted distribution 

parameters 

Goodness-of-fit 

[7-64] (0, 0.212) Logistic: 𝜇̂=0, s=0.132 BIC = 70.854, RSS = 0.009,  

MSE = 0.1024 

[7-20) (0, 0.150) Normal: 𝜇̂=0, 𝜎̂=0.149 BIC=433.360,  RSS=0.131,  

MSE=1.216 

[20-40) (0, 0.283) Curvilinear Trapezoidal:  

a= -0.441, b=0.441, d=0.242 

BIC=175.396, RSS=0.179,  

MSE=0.273 

[40-64) (0, 0.436) Cosine: mu=0, 𝜎̂=1.102 BIC=137.652, RSS=1.5497,  

MSE=0.278 

Table VIII-4. Parameters and goodness-of-fit for the PDF fitted (normal distribution and best-fitted 

distribution) for DBH measurement made with Caliper by DBH class in Göttingen, Germany. 

DBH 

class 

Normal 

distribution 

parameters 

(𝝁̂, 𝝈̂) 

Best-fitted Dn 

parameters 

Goodness-of-fit 

[7-64] (0, 0.209) Logistic: Location=0, 

scale=0.128 

BIC=365.781, RSS=0.021, 

MSE=0.910 

[7-20) (0, 0.133) Logistic: location=0, 

scale=0.084 

BIC=415.526, RSS=0.520, 

MSE=1.568 

[20-40) (0, 0.266) Normal: 𝜇̂=0,  

𝜎̂=0.266 

BIC=367.917, RSS=0.581,  

MSE=0.967 

[40-64) (0, 0.350) Curvilinear Trapezoidal: 

a= -0.506, b=0.506, d=0.251 

BIC=370.031, RSS=0.466,  

MSE=1.038 

Table VIII-5. Parameters and goodness-of-fit for the PDF fitted (normal distribution and best-fitted 

distribution) for DBH measurement made with Tape by DBH class in Göttingen, Germany. 

TH 

class 

Normal 

distribution 

parameters 

(𝝁̂, 𝝈̂) 

Best-fitted distribution 

parameters 

Goodness-of-fit 

[5-37] (0, 1.229) Trapezoidal: a= -2.162,  

b= -1.062, c=1.062, d=2.162 

BIC= -128.960, RSS=0.0016, 

MSE=0.011 

[5-15) (0, 0.933) Cosine: mu=0, 𝜎̂=2.318 BIC= -36.263, RSS=3.033e-03, 

MSE=0.0301 

[15-25) (0, 1.427) Curvilinear Trapezoidal: 

a= -1.971, b=1.971, d=0.246 

BIC= -43.896, RSS=0.028,  

MSE=0.029 

[25-37) (0, 1.505) Uniform: min= -2.426,  

max=2.426 

BIC= -13.726, RSS=1.156e-02,  

MSE=0.0418 

Table VIII-6. Parameters and goodness-of-fit for the PDF fitted (normal distribution and best-fitted 

distribution) for TH measurement made with clinometer by TH class in Göttingen, Germany. 
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TH 

class 

Normal 

distribution 

parameters 

(𝝁̂, 𝝈̂) 

Best-fitted distribution 

parameters 

Goodness-of-fit 

[5-37] (0, 0.646) 

 
Cosine: mu=0, 𝜎̂=1.641 BIC=-31.495, RSS=1.209e-04, 

MSE=0.033 

[5-15) (0, 0.348) Von Mises: mu=0, kappa=8.519 BIC=207.933, RSS=0.063,  

MSE=0.279 

[15-25) (0, 0.835) Curvilinear Trapezoidal: 

a= -1.048, b=1.048, d=0.236 

BIC=3.176, RSS=0.024, MSE=0.0479 

[25-37) (0, 0.882) Cosine: mu=0, 𝜎̂=2.180 BIC=4.276, RSS=8.643e-03,  

MSE=0.052 

Table VIII-7. Parameters and goodness-of-fit for the PDF fitted (normal distribution and best-fitted 

distribution) for TH measurement made with Vertex by TH class in Göttingen, Germany. 

 

Figure VIII–1. Model fitted to estimate the measurement uncertainty, according to the tree size for 

Caliper (DBH), Tape (DBH), Blume-Leiss (TH) and Vertex IV (TH), with information of 250 trees 

in the study area of Göttingen. 
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VIII.4 Appendix IV 

Scenario Plot 1 2 3 4 5 6 7 8 9 10 

NDn Mg ha-1 146.0 164.9 139.0 210.4 228.4 215.1 181.3 210.9 86.6 178.1 

NDn uMg ha-1 3.74 5.05 6.10 6.40 3.00 4.10 3.93 5.26 5.26 4.73 

NDnC Mg ha-1 138.4 154.8 126.8 197.6 221.8 206.6 173.2 200.3 76.1 168.6 

NDnC uMg ha-1 3.79 5.07 6.10 6.41 3.31 4.26 4.04 5.29 5.26 4.77 

RMSD Mg ha-1 146.0 164.9 139.0 210.4 228.4 215.1 181.3 210.9 86.6 178.1 

RMSD uMg ha-1 3.79 5.09 6.12 6.43 3.13 4.17 3.99 5.30 5.27 4.77 
NDn= normal distribution, NDnC= normal distribution by class, RMSD = root mean square deviation 

Table VIII-8. AGB and uncertainty of the AGB calculation by plot using three scenarios for the 

measurement uncertainty estimation (NDn, NDnC, RMSD) in El Salto, Durango, Mexico. 

 

 Df Sum Sq Error SS den Df F value Pr(>F)  

Intercept 1 690.53 29.0125       9 214.209 1.396e-07 *** 

Scenario 2 0.03       0.0449      18 5.548    0.01327 * 

Mauchly Tests for Sphericity     

 Test statistic     p-value      

Scenario 0.028044 6.1853e-07      

Corrections for Departure from Sphericity    

 GG eps Pr(>F[GG])      

Scenario 0.50711      0.0422 *  Greenhouse-Geisser  

 H F eps Pr(>F[HF])      

Scenario 0.5097947 0.04193635 *  Huynh-Feldt  

Table VIII-9. Repeated-measures ANOVA, with correction for sphericity, applied to three 

scenarios (NDn, NDnC, RMSD) of measurement uncertainty estimation in AGB calculation in El 

Salto, Durango, Mexico. 

 

Scenario Group (Holm correction) NDn NDnC 

NDn A - - 

NDnC AB 0.0850 - 

RMSD B 0.0037 0.2766 

Table VIII-10. Pairwise comparison using paired T- Test, with p-value Holm’s correction, for three 

scenarios (NDn, NDnC, RMSD) of AGB uncertainty estimation in El Salto, Durango, Mexico. 
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Scenario Plot 1 2 3 4 5 6 7 8 9 10 

NDnC uMg ha-1 3.79 5.07 6.10 6.41 3.31 4.26 4.04 5.29 5.26 4.77 

NDnCa uMg ha-1 0.41 0.39 0.29 0.40 0.88 0.72 0.55 0.46 0.20 0.44 

NDnCb uMg ha-1 0.54 0.42 0.28 0.47 1.04 0.90 0.77 0.59 0.17 0.54 

NDnCab uMg ha-1 0.41 0.35 0.25 0.37 0.84 0.70 0.57 0.45 0.16 0.43 

NDnCc uMg ha-1 3.70 5.03 6.08 6.37 2.90 4.04 3.88 5.22 5.25 4.70 
NDnC=all sources, NDnCa=DBH, NDnCb=TH, NDnCab=correlation, NDnCc=allometric model 

Table VIII-11. Uncertainty of the AGB calculation by plot using the estimation with all sources of 

measurement error (NDnC) and by source (NDnCa, NDnCb, NDnCab, NDnCc) in El Salto, 

Durango, Mexico. 

 

 Df Sum Sq Error SS den Df F value Pr(>F)  

Intercept 1 8.294       1.0135       9 73.655 1.257e-05 *** 

Scenario 4 87.528       5.1194      36 153.877 < 2.2e-16 *** 

Mauchly Tests for Sphericity     

 Test statistic     p-value      

Scenario 3.2246e-08 2.1461e-22      

Corrections for Departure from Sphericity    

 GG eps Pr(>F[GG])      

Scenario 0.2532   4.989e-07 ***  Greenhouse-Geisser  

 H F eps Pr(>F[HF])      

Scenario 0.2544114 4.712382e-07 ***  Huynh-Feldt  

Table VIII-12. Repeated-measures ANOVA, with correction for sphericity, applied to five 

scenarios (NDnC, NDnCa, NDnCb, NDnCab, NDnCc) of measurement uncertainty estimation in 

AGB calculation in El Salto, Durango, Mexico. 

 

Scenario Group (Holm correction) NDnC NDnCa NDnCab NDnCb 

NDnC A - - - - 

NDnCa B 2.00e-06 - - - 

NDnCb C 2.40e-06 0.03509 - - 

NDnCab D 5.60e-06 0.02048 0.00015 - 

NDnCc E 0.03509 3.70e-06 4.10e-06 9.80e-06 

Table VIII-13. Pairwise comparison using paired T-Test, with p-value Holm’s correction, for five 

scenarios (NDnC, NDnCa, NDnCb, NDnCab, NDnCc) of AGB uncertainty estimation in El Salto, 

Durango, Mexico. 

 

 

 

 

  



Chapter VIII: Appendix 

 

145 

Scenario Plot 1 2 3 4 5 6 7 8 9 10 

MCNDn uMg ha-1 3.69 4.94 5.91 6.28 2.89 4.00 3.85 5.19 5.15 4.59 

MCNDnC uMg ha-1 3.67 5.02 6.01 6.26 3.25 4.11 3.86 5.25 5.12 4.63 

MCBD uMg ha-1 3.71 4.99 5.95 6.42 3.08 4.00 3.95 5.20 5.17 4.60 

MCBDC uMg ha-1 3.73 5.05 5.98 6.26 3.46 4.37 3.95 5.24 5.18 4.73 

NDn uMg ha-1 3.74 5.05 6.10 6.40 3.00 4.10 3.93 5.26 5.26 4.73 

NDnC uMg ha-1 3.79 5.07 6.10 6.41 3.31 4.26 4.04 5.29 5.26 4.77 

RMSD uMg ha-1 3.79 5.09 6.12 6.43 3.13 4.17 3.99 5.30 5.27 4.77 
For Monte-Carlo simulation Method: MCNDn=normal distribution, MCNDnC=normal distribution by class, MCBDn=best adjusted 

distribution, MCBDC=best adjusted distribution by class. For GUM Method: NDn=normal distribution, NDnC=normal distribution by 

class, RMSD=root mean square deviation 

Table VIII-14. Uncertainty of the AGB calculation by plot using seven scenarios for the 

measurement uncertainty estimation (MCNDn, MCNDnC, MCBD, MCBDC, NDn, NDnC, RMSD) 

in El Salto, Durango, Mexico. 

 

 Df Sum Sq Error SS den Df F value Pr(>F)  

Intercept 1 1580.52       65.186       9 218.2145 1.288e-07 *** 

Scenario 6 0.25       0.296      54 7.5071 7.057e-06 *** 

Mauchly Tests for Sphericity     

 Test statistic     p-value      

Scenario 1.0916e-05 4.3153e-08      

Corrections for Departure from Sphericity    

 GG eps Pr(>F[GG])      

Scenario 0.23674      0.0112 *  Greenhouse-Geisser  

 H F eps Pr(>F[HF])      

Scenario 0.2683571 0.008144593 **  Huynh-Feldt  

Table VIII-15. Repeated-measures ANOVA with correction for sphericity applied to seven 

scenarios (MCNDn, MCNDnC, MCBD, MCBDC, NDn, NDnC, RMSD) of measurement uncertainty 

estimation in AGB calculation in El Salto, Durango. 

 

Scenario 

Group 

(Holm 

correction) 

MCBD MCBDC MCNDn MCNDnC NDn NDnC 

MCBD AB       

MCBDC ABCD 1 - - - - - 

MCNDn A 0.39802 0.68129 - - - - 

MCNDnC ABD 1 0.61451 1 - - - 

NDn BC 1 1 0.00022 1 - - 

NDnC CD 0.01899 1 0.00528 0.00099 0.89258 - 

RMSD D 0.00811 1 2.90e-05 0.18097 0.02605 1 

Table VIII-16. Pairwise comparison using paired T-Test, with p-value Holm’s correction, for seven 

scenarios (MCNDn, MCNDnC, MCBD, MCBDC, NDn, NDnC, RMSD) of AGB uncertainty 

estimation in El Salto, Durango Mexico. 
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Scenario Plot 1 2 3 4 5 6 7 8 9 10 

MCC uMg ha-1 3.73 5.05 5.98 6.26 3.46 4.37 3.95 5.24 5.18 4.73 

MCCa uMg ha-1 0.54 0.52 0.39 0.53 1.39 1.09 0.78 0.61 0.26 0.60 

MCCb uMg ha-1 0.57 0.51 0.38 0.52 1.34 1.12 0.76 0.63 0.26 0.59 

MCCc uMg ha-1 3.68 4.92 6.01 6.15 2.88 3.97 3.76 5.11 5.16 4.60 
MCC=all sources, MCCa=DBH, MCCb=TH, MCCc=prediction model 

Table VIII-17. AGB uncertainty estimation by plot with Monte-Carlo simulation Method using 

non-sampling uncertainty estimation sources (MCC, MCCa, MCCb, MCCc) in El Salto, Durango, 

Mexico. 

 

 Df Sum Sq Error SS den Df F value Pr(>F)  

Intercept 1 289.34       5.5755       9 467.05 4.58e-09 *** 

Scenario 3 163.36       14.1684 27 103.77 6.17e-15 *** 

Mauchly Tests for Sphericity     

 Test statistic     p-value      

Scenario 1.7331e-05 2.3872e-16      

Corrections for Departure from Sphericity    

 GG eps Pr(>F[GG])      

Scenario 0.33618   2.813e-06 ***  Greenhouse-Geisser  

 H F eps Pr(>F[HF])      

Scenario 0.3372499 2.722362e-06 ***  Huynh-Feldt  

Table VIII-18. Repeated-measures ANOVA with correction for sphericity applied to four scenarios 

(MCC, MCCa, MCCb, MCCc) of AGB uncertainty estimation in El Salto, Durango. 

 

Scenario Group (Holm correction) MCC MCCa MCCb 

MCC A - - - 

MCCa B 8.9e-06 - - 

MCCb B 8.9e-06 0.708 - 

MCCc C 0.034 2.2e-05 2.2e-05 

Table VIII-19. Pairwise comparison using paired T-Test, with p-value Holm’s correction, for four 

scenarios (MCC, MCCa, MCCb, MCCc) of AGB uncertainty estimation in El Salto, Durango 

Mexico. 
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VIII.5 Appendix V 

Scenario Plot 1 2 3 4 5 6 7 8 9 10 11 

CB Mg ha-1 234.69 225.00 314.25 213.68 238.98 206.33 233.74 250.95 159.27 207.77 314.40 

C Mg ha-1 224.11 209.17 313.39 197.77 214.43 202.53 205.08 242.94 144.64 196.40 306.98 

TV Mg ha-1 238.94 236.77 325.09 218.01 230.89 210.65 234.78 252.99 154.77 206.96 315.19 

T Mg ha-1 231.77 213.93 315.47 202.20 218.89 206.16 211.06 254.55 146.92 199.91 314.15 

C=Caliper, B=Blume-Leiss, T=Tape, V=Vertex 

Table VIII-20. AGB calculation by Plot using three scenarios for the measurement uncertainty 

estimation (CB, C, TV, T) in Göttingen, Germany. 

 

 Df Sum Sq Error SS den Df F value Pr(>F)  

Intercept 1 1528.14 2.3268       10 6567.517 2.000e-15 *** 

Scenario 3 0.05       0.0231      30 20.532 1.995e-07 *** 

Mauchly Tests for Sphericity     

 Test statistic     p-value      

Scenario 0.12534 0.0029995      

Corrections for Departure from Sphericity    

 GG eps Pr(>F[GG])      

Scenario 0.50987    0.000108 ***  Greenhouse-Geisser  

 H F eps Pr(>F[HF])      

Scenario 0.5834365 4.159047e-05 ***  Huynh-Feldt  

Table VIII-21. Repeated-measures ANOVA with correction for sphericity applied to four scenarios 

(CB, C, TV, T) of AGB estimation in Göttingen, Germany. 

 

Scenario Group (Holm correction) C CB T 

C A - - - 

CB B 0.0023 - - 

T C 0.0002 0.0256 - 

TV B 0.0004 0.2916 0.0061 

Table VIII-22. Pairwise comparison using paired T-Test, with p-value Holm’s correction, for three 

scenarios (CB, C, TV, T) of AGB estimation in Göttingen, Germany. 
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Scenario Plot 1 2 3 4 5 6 7 8 9 10 11 

CB Mg ha-1 1.83 3.03 4.67 2.36 3.78 2.57 2.13 3.62 1.88 3.08 3.47 

C Mg ha-1 1.62 1.97 2.54 1.77 2.30 1.80 1.50 3.49 1.06 2.20 2.75 

TV Mg ha-1 1.02 1.67 3.04 1.89 1.94 1.69 2.00 2.34 1.50 1.45 2.70 

T Mg ha-1 0.93 1.46 1.66 0.83 1.43 1.34 1.12 1.09 0.91 1.22 1.30 
C=Caliper, B=Blume-Leiss, T=Tape, V=Vertex 

Table VIII-23. Uncertainty of the AGB calculation by plot using four scenarios for the 

measurement uncertainty estimation (CB, C, TV, T) in Göttingen, Germany. 

 

 Df Sum Sq Error SS den Df F value Pr(>F)  

Intercept 1 14.9457 2.01731       10 74.087 6.168e-06 *** 

Scenario 3 3.4482       0.70439      30 48.953 1.137e-11 *** 

Mauchly Tests for Sphericity     

 Test statistic     p-value      

Scenario 0.38221 0.13829      

Corrections for Departure from Sphericity    

 GG eps Pr(>F[GG])      

Scenario 0.75414   2.77e-09 ***  Greenhouse-Geisser  

 H F eps Pr(>F[HF])      

Scenario 0.9859425 1.55613e-11 ***  Huynh-Feldt  

Table VIII-24. Repeated-measures ANOVA with correction for sphericity applied to four scenarios 

(CB, C, TV, T) of AGB uncertainty estimation in Göttingen, Germany. 

 

Scenario Group (Holm correction) C CB T 

C A - - - 

CB B 0.00034 - - 

T C 0.00034 1.1e-07 - 

TV A 0.41637 0.00034 0.00051 

Table VIII-25. Pairwise comparison using paired T-Test, with p-value Holm’s correction, for four 

scenarios (CB, C, TV, T) AGB uncertainty estimation in Göttingen, Germany. 
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Scenario Plot 1 2 3 4 5 6 7 8 9 10 11 

 AGB Mg ha-1 234.69 225.00 314.25 213.68 238.98 206.33 233.74 250.95 159.27 207.77 314.40 

CB uMgha-1 1.83 3.03 4.67 2.36 3.78 2.57 2.13 3.62 1.88 3.08 3.47 

CBmean uMgha-1 1.63 2.21 2.86 1.93 2.33 2.09 2.14 2.66 1.52 2.37 2.62 

CBNDn uMgha-1 2.13 2.94 3.83 2.56 3.10 2.78 2.84 3.59 2.00 3.20 3.49 

CBNDnC uMgha-1 2.55 3.52 4.57 3.07 3.78 3.28 3.38 4.33 2.22 3.87 4.13 

CBmod uMgha-1 1.85 2.62 3.39 2.29 2.89 2.32 2.58 3.35 1.59 3.10 3.00 

CB=Caliper+Blume-Leiss, mean=mean value of errors, NDn= normal distribution, NDnC= normal distribution by class, mod=linear 

regression model 

Table VIII-26. AGB and uncertainty of the AGB calculation by plot using five scenarios for 

measurement uncertainty estimation (CB, CBmean, CBNDn, CBNDnC, CBmod) in Göttingen, 

Germany. 

 

 Df Sum Sq Error SS den Df F value Pr(>F)  

Intercept 1 569.60 23.4236       10 243.172 2.406e-08 *** 

Scenario 3 12.44       2.2049      40 56.433 < 2.2e-16 *** 

Mauchly Tests for Sphericity     

 Test statistic     p-value      

Scenario 0.000412 7.7684e-08      

Corrections for Departure from Sphericity    

 GG eps Pr(>F[GG])      

Scenario 0.31273  2.045e-07 ***  Greenhouse-Geisser  

 H F eps Pr(>F[HF])      

Scenario 0.3603441 2.9679e-08 ***  Huynh-Feldt  

Table VIII-27. Repeated-measures ANOVA with correction for sphericity applied to five scenarios 

(CB, CBmean, CBNDn, CBNDnC, CBmod) of AGB uncertainty estimation in Göttingen, Germany. 

 

Scenario Group (Holm correction) CB CBmean CBmod CBNDn 

CB AC     

CBmean B 0.00546 - - - 

CBmod A 0.10039 0.00029 - - 

CBNDn C 0.97838 3.9e-07 4.5e-05 - 

CBNDnC D 0.00322 7.6e-07 1.5e-07 2.3e-06 

Table VIII-28. Pairwise comparison using paired T-Test, with p-value Holm’s correction, for five 

scenarios (CB, CBmean, CBNDn, CBNDnC, CBmod) of AGB uncertainty estimation in El Salto, 

Durango Mexico. 
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Scenario Plot 1 2 3 4 5 6 7 8 9 10 11 

AGB Mg ha-1 238.94 236.77 325.09 218.01 230.89 210.65 234.78 252.99 154.77 206.96 315.19 

TV uMgha-1 1.02 1.67 3.04 1.89 1.94 1.69 2.00 2.34 1.50 1.45 2.70 

TVmean uMgha-1 1.20 1.57 2.00 1.38 1.66 1.48 1.54 1.91 1.09 1.65 1.87 

TVNDn uMgha-1 1.94 2.54 3.23 2.24 2.68 2.38 2.50 3.09 1.76 2.66 3.02 

TVNDnC uMgha-1 1.96 2.62 3.30 2.28 2.77 2.36 2.55 3.05 1.63 2.69 3.03 

TVmod uMgha-1 1.54 2.17 2.75 1.87 2.27 1.84 2.10 2.63 1.23 2.38 2.37 

TV=Tape+Vertex, mean=mean value of errors, NDn= normal distribution, NDnC= normal distribution by class, mod=linear regression 

model 

Table VIII-29. Uncertainty of the AGB calculation by plot using six scenarios for the measurement 

uncertainty estimation (TV, TVmean, TVNDn, TVNDnC, TVmod) in Göttingen, Germany. 

 

 Df Sum Sq Error SS den Df F value Pr(>F)  

Intercept 1 289.047 10.4404       10 276.855 1.286e-08 *** 

Scenario 3 8.755       1.4197      40 61.669 < 2.2e-16 *** 

Mauchly Tests for Sphericity     

 Test statistic     p-value      

Scenario 3.8811e-06 1.4135e-14      

Corrections for Departure from Sphericity    

 GG eps Pr(>F[GG])      

Scenario 0.33879  3.73e-08 ***  Greenhouse-Geisser  

 H F eps Pr(>F[HF])      

Scenario 0.4005151 2.7366e-09 ***  Huynh-Feldt  

Table VIII-30. Repeated-measures ANOVA with correction for sphericity applied to five scenarios 

(TV, TVmean, TVNDn, TVNDnC, TVmod) of AGB uncertainty estimation in Göttingen, Germany. 

 

Scenario 
Group (Holm 

correction) 
TV TVmean TVmod TVNDn 

TV AC - - - - 

TVmean B 0.04442 - - - 

TVmod A 0.52100 2.50e-05 - - 

TVNDn C 0.71675 1.80e-08 0.00081 - 

TVNDnC D 0.00061 2.70e-07 1.60e-07 5.30e-07 

Table VIII-31. Pairwise comparison using paired T-Test, with p-value Holm’s correction, for seven 

scenarios (TV, TVmean, TVNDn, TVNDnC, TVmod) of AGB uncertainty estimation in Göttingen, 

Germany. 
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Scenario Plot 1 2 3 4 5 6 7 8 9 10 11 

TVExp uMg ha-1 8.22 10.82 13.74 9.52 11.41 10.14 10.62 13.17 7.49 11.36 12.82 

TVNexp uMg ha-1 8.30 10.93 13.88 9.61 11.52 10.23 10.72 13.31 7.56 11.47 12.95 

TV uMg ha-1 1.02 1.67 3.04 1.89 1.94 1.69 2.00 2.34 1.50 1.45 2.70 
TV=Tape+Vertex, Exp=measurement errors made by students with previous experience. Nexp=measurement errors made by students 

without previous experience. 

Table VIII-32. Uncertainty of the AGB calculation by plot using three scenarios for the 

measurement uncertainty estimation (TV, TVExp, TVNexp) in Göttingen, Germany. 

 

 Df Sum Sq Error SS den Df F value Pr(>F)  

Intercept 1 208.232 3.7645 10 553.14 4.378e-10 *** 

Scenario 3 54.793       0.3438      20 1593.69 < 2.2e-16 *** 

Mauchly Tests for Sphericity     

 Test statistic     p-value      

Scenario 0.00017479 1.2341e-17      

Corrections for Departure from Sphericity    

 GG eps Pr(>F[GG])      

Scenario 0.50004  2.321e-12 ***  Greenhouse-Geisser  

 H F eps Pr(>F[HF])      

Scenario 0.5000583 2.319561e-12 ***  Huynh-Feldt  

Table VIII-33. Repeated-measures ANOVA with correction for sphericity applied to three 

scenarios (TV, TVExp, TVNexp) of AGB uncertainty estimation in Göttingen, Germany. 

 

Scenario Group (Holm correction) TVExp TVNesp 

TVExp A - - 

TVNexp B 9.2e-12 - 

TV C 6.8e-12 6.8e-12 

Table VIII-34. Pairwise comparison using paired T-Test, with p-value Holm’s correction, for three 

scenarios (TV, TVExp, TVNexp) of AGB uncertainty estimation in Göttingen, Germany. 
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 Df Sum Sq Error SS den Df F value Pr(>F)  

Intercept 1 491.65 154.465 46 146.41 6.772e-16 *** 

Scenario 3 16.70       4.425      138 173.60 < 2.2e-16 *** 

Mauchly Tests for Sphericity     

 Test statistic     p-value      

Scenario 0.023595 2.884e-34      

Corrections for Departure from Sphericity    

 GG eps Pr(>F[GG])      

Scenario 0.39652  2.2e-16 ***  Greenhouse-Geisser  

 H F eps Pr(>F[HF])      

Scenario 0.4010133 3.207957e-20 ***  Huynh-Feldt  

Table VIII-35. Repeated-measures ANOVA with correction for sphericity applied to three 

scenarios (CBBD, CBBDC, CBmod, CBNDn) of AGB uncertainty estimation in Göttingen, 

Germany. 

Scenario Group (Holm correction) CBBD CBBDC CBmod 

CBBD A - - - 

CBBDC B < 2e-16 - - 

CBmod C 4.7e-10 < 2e-16 - 

CBNDn D < 2e-16 7.5e-14 3.2e-05 

Table VIII-36. Pairwise comparison using paired T-Test, with p-value Holm’s correction, for four 

scenarios (CBBD, CBBDC, CBmod, CBNDn) of AGB uncertainty estimation in Göttingen, 

Germany. 

 Df Sum Sq Error SS den Df F value Pr(>F)  

Intercept 1 96.174 63.693 46 69.458 9.559e-11 *** 

Scenario 3 5.262       2.746      138 88.130 < 2.2e-16 *** 

Mauchly Tests for Sphericity     

 Test statistic     p-value      

Scenario 0.0062212 5.8209e-47      

Corrections for Departure from Sphericity    

 GG eps Pr(>F[GG])      

Scenario 0.37587  1.603e-13 ***  Greenhouse-Geisser  

 H F eps Pr(>F[HF])      

Scenario 0.37884 1.309963e-13 ***  Huynh-Feldt  

Table VIII-37. Repeated-measures ANOVA with correction for sphericity applied to four scenarios 

(TVBPDF, TVBDC, TVmod, TVNDn) of AGB uncertainty estimation in Göttingen, Germany. 

Scenario Group (Holm correction) TVBPDF TVBDC TVmod 

TVBPDF A - - - 

TVBDC B 6.3e-16 - - 

TVmod C 1.2e-08 4.1e-08 - 

TVNDn D 7.0e-12 6.3e-16 4.1e-08 

Table VIII-38. Pairwise comparison using paired T-Test, with p-value Holm’s correction, for four 

scenarios (TVBPDF, TVBDC, TVmod, TVNDn) of AGB uncertainty estimation in Göttingen, 

Germany. 
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 Df Sum Sq Error SS den Df F value Pr(>F)  

Intercept 1 621.88 82.216 46 347.94 < 2.2e-16 *** 

Scenario 5 283.31       2.006      230 6497.83 < 2.2e-16 *** 

Mauchly Tests for Sphericity     

 Test statistic     p-value      

Scenario 6.4315e-05 1.5186e-81      

Corrections for Departure from Sphericity    

 GG eps Pr(>F[GG])      

Scenario 0.26836  < 2.2e-16 ***  Greenhouse-Geisser  

 H F eps Pr(>F[HF])      

Scenario 0.2734762 4.897372e-69 ***  Huynh-Feldt  

Table VIII-39. Repeated-measures ANOVA with correction for sphericity applied to six scenarios 

(Exp, Nexp, CBmod, CBNDn, TVmod, TVNDn) of AGB uncertainty estimation in Göttingen, 

Germany. 

Scenario Group (Holm correction) CBmod CBNDn Exp NExp TVmod 

CBmod A - - - - - 

CBNDn B 5.40e-05 - - - - 

Exp C < 2e-16 < 2e-16 - - - 

Nexp C < 2e-16 < 2e-16 0.99 - - 

TVmod D < 2e-16 < 2e-16 < 2e-16 < 2e-16 - 

TVNDn E < 2e-16 < 2e-16 < 2e-16 < 2e-16 7.20e-06 

Table VIII-40. Pairwise comparison using paired T-Test, with p-value Holm’s correction, for six 

scenarios (Exp, Nexp, CBmod, CBNDn, TVmod, TVNDn) of AGB uncertainty estimation in 

Göttingen, Germany. 
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Uncertainty (u)  

source 

u2  

NS 

SE2 u  

W 

W RSE LL 

LL 

RSE RSE UL  

UL % % Mg ha-1 Mg ha-1 % % % 

CBBD 0.072 99.928 13.14 262.69 4.97 5.00 5.03 

CBBD a 0.010 99.990 13.13 262.74 4.99 5.00 5.01 

CBBD b 0.060 99.940 13.14 262.69 4.98 5.00 5.03 

CBBD ab 0.00002 100.00 13.13 262.71 5.00 5.00 5.00 

CBBD c 0.0002 100.00 13.13 262.71 5.00 5.00 5.00 

CBmod 0.100 99.900 13.14 262.70 4.97 5.00 5.03 

CBmod a 0.020 99.980 13.13 262.72 4.99 5.00 5.00 

CBmod b 0.080 99.920 13.14 262.68 4.99 5.00 5.01 

CBmod ab 0.00002 100.00 13.13 262.71 5.00 5.00 5.00 

CBmod c 0.0002 100.00 13.13 262.71 5.00 5.00 5.00 

CBBDC 0.145 99.855 13.15 262.67 4.97 5.00 5.04 

CBBDC a 0.024 99.976 13.13 262.73 4.98 5.00 5.01 

CBBDC b 0.119 99.881 13.14 262.66 4.97 5.00 5.04 

CBBDC ab 0.00004 100.00 13.13 262.71 5.00 5.00 5.00 

CBBDC c 0.0002 100.00 13.13 262.71 5.00 5.00 5.00 

TVBD 0.032 99.968 13.13 262.71 4.98 5.00 5.02 

TVBD a 0.009 99.991 13.13 262.74 4.99 5.00 5.00 

TVBD b 0.022 99.978 13.13 262.71 5.00 5.00 5.00 

TVBD ab 0.00001 100.00 13.13 262.71 5.00 5.00 5.00 

TVBD c 0.0002 100.00 13.13 262.71 5.00 5.00 5.00 

TVmod 0.049 99.951 13.13 262.71 4.98 5.00 5.02 

TVmod a 0.014 99.986 13.13 262.72 4.99 5.00 5.01 

TVmod b 0.036 99.964 13.13 262.70 4.98 5.00 5.02 

TVmod ab 0.00001 100.00 13.13 262.71 5.00 5.00 5.00 

TVmod c 0.0002 100.00 13.13 262.71 5.00 5.00 5.00 

TVBDC 0.053 99.947 13.13 262.71 4.98 5.00 5.02 

TVBDC a 0.014 99.986 13.13 262.74 4.99 5.00 5.01 

TVBDC b 0.039 99.961 13.13 262.71 4.98 5.00 5.02 

TVBDC ab 0.00001 100.00 13.13 262.71 5.00 5.00 5.00 

TVBDC c 0.0002 100.00 13.13 262.71 5.00 5.00 5.00 

Exp 0.926 99.074 13.24 262.67 4.95 5.04 5.14 

Exp a 0.247 99.753 13.15 263.08 4.95 5.00 5.05 

Exp b 0.690 99.310 13.22 262.32 4.96 5.04 5.12 

Exp ab 0.006 99.994 13.13 262.71 4.99 5.00 5.01 

Exp c 0.0002 100.00 13.13 262.71 5.00 5.00 5.00 

Nexp 0.951 99.049 13.24 262.63 4.95 5.04 5.14 

Nexp a 0.254 99.746 13.15 263.07 4.95 5.00 5.05 

Nexp b 0.694 99.306 13.21 262.32 4.95 5.04 5.12 

Nexp ab 0.006 99.994 13.13 262.71 4.99 5.00 5.01 

Nexp c 0.0002 100.00 13.13 262.71 5.00 5.00 5.00 
W=AGB estimation, RSE=relative standard error, LL=lower limit of confidence interval, UL=upper limit of confidence interval. Datasets 

from which measurement errors were calculated: CB=Caliper+Blume-Leiss dataset, TV=Tape+Vertex dataset, Exp=students with 

experience, Nexp=students without experience. Scenario used to obtain measurement error parameters: mod=linear regression model, 

BD= best-fitted distribution, BDC=best-fitted distribution by class. Source of uncertainty: a=DBH, b=TH, ab=correlation, c=prediction 

model. 

Table VIII-41. Result of Monte-Carlo simulation Method on the contribution by uncertainty source 

to the total uncertainty in AGB estimation in Göttingen, Germany. 
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DBH TH Scenario 

 

Best Probability Density 

Function fitted to the 

measurement errors 

(BPDF) 

Best Probability Density 

Function fitted by class to 

the measurement errors 

(BDC) 

Linear model fitted to 

estimate the measurement 

uncertainty according to the 

tree size 

(mod)  

Measurement error: C=Caliper, T=Tape, BL=Blume-Leiss, V=Vertex. Scenario used to obtain measurement error parameters: mod=linear 

regression model, BPDF=best-ftted distribution, BDC=best-fitted distribution by class.  

Figure VIII–2. Comparison of uncertainty estimation (paired plot) per plot and per measuring 

device for each scenario used to estimate measurement error parameters. 
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VIII.6 Appendix VI 

 

 

OAK 

2004-2009, n=48993 

2009-2014, n=47636 
 

PINE 

2004-2009, n=43531 

2009-2014, n=43993 
 

OAK & PINE 

2004-2009, n=92524 

2009-2014, n=91629 
 

ALL 

2004-2009, n= 109762 

2009-2014, n=109983 

 Class 

(cm) 

W 

Mgha-1 

G 

m2ha-1 

Tree 

No. 
 

W 

Mgha-1 

G 

m2ha-1 

Tree 

No. 
 

W 

Mgha-1 

G 

m2ha-1 

Tree 

No. 
 

W 

Mgha-1 

G 

m2ha-1 

Tree 

No. 

D
B

H
 2

0
0
4
-2

0
0
9
 

7.5-10 5.17 0.88 48.73 
 

2.40 0.59 38.78 
 

7.58 1.47 87.51 
 

8.60 1.67 109.26 

10-15 5.40 0.90 51.37 
 

2.99 0.59 40.78 
 

8.39 1.49 92.15 
 

9.16 1.73 110.73 

15-20 5.11 0.90 37.19 
 

4.01 0.79 33.39 
 

9.11 1.69 70.58 
 

9.29 1.89 80.24 

20-25 4.29 0.78 23.62 
 

4.81 0.94 22.28 
 

9.10 1.73 45.89 
 

9.55 1.99 54.05 

25-30 3.42 0.66 15.85 
 

4.87 0.92 16.69 
 

8.29 1.57 32.54 
 

8.91 1.82 36.71 

30-35 2.68 0.52 9.82 
 

4.79 0.89 12.05 
 

7.47 1.41 21.86 
 

8.12 1.66 25.53 

> 35 4.08 0.87 11.12 
 

5.90 1.15 13.25 
 

9.99 2.02 24.36 
 

10.61 2.22 28.22 

Sum 30.15 5.52 197.69 
 

29.77 5.87 177.21 
 

59.92 11.38 374.89 
 

64.23 12.97 444.74 

D
B

H
 2

0
0
9
-2

0
1
4
 

7.5-10 5.10 0.88 47.13 
 

2.50 0.56 37.97 
 

7.60 1.44 85.10 
 

8.66 1.68 107.65 

10-15 5.23 0.86 50.91 
 

2.98 0.56 42.01 
 

8.21 1.43 92.93 
 

9.13 1.75 112.58 

15-20 4.95 0.87 36.78 
 

4.12 0.73 34.18 
 

9.07 1.60 70.96 
 

9.36 1.93 84.25 

20-25 4.20 0.80 23.16 
 

4.77 0.86 24.01 
 

8.97 1.66 47.17 
 

9.71 2.04 55.84 

25-30 3.57 0.64 15.00 
 

4.88 0.87 17.09 
 

8.45 1.52 32.09 
 

9.12 1.89 36.90 

30-35 2.72 0.52 9.67 
 

4.98 0.86 12.99 
 

7.69 1.38 22.67 
 

8.38 1.69 25.32 

> 35 4.12 0.88 11.80 
 

5.66 1.02 13.38 
 

9.78 1.90 25.18 
 

10.35 2.18 28.95 

Sum 29.89 5.46 194.45 
 

29.89 5.46 181.64 
 

59.78 10.93 376.10 
 

64.71 13.16 451.49 

T
H

 2
0
0
4
-2

0
0
9
 

1.5-10 12.99 3.49 169.69 
 

3.83 1.59 96.92 
 

16.82 5.08 266.61 
 

18.66 6.25 334.29 

10-12.5 5.76 0.82 14.83 
 

3.73 0.91 28.28 
 

9.49 1.72 43.11 
 

10.29 1.85 44.73 

12.5-15 5.35 0.52 7.09 
 

4.24 0.96 20.40 
 

9.59 1.47 27.48 
 

10.06 1.53 27.66 

15-17.5 3.57 0.33 3.41 
 

4.99 0.87 14.11 
 

8.56 1.20 17.53 
 

8.75 1.25 17.68 

17.5-20 1.43 0.20 1.53 
 

4.74 0.60 7.77 
 

6.17 0.79 9.30 
 

6.48 0.84 9.39 

>20 1.04 0.17 1.14 
 

8.24 0.95 9.73 
 

9.28 1.12 10.87 
 

9.99 1.24 10.99 

Sum 30.15 5.52 197.69 
 

29.77 5.87 177.21 
 

59.92 11.38 374.89 
 

64.23 12.97 444.74 

T
H

 2
0
0
9
-2

0
1
4
 

1.5-10 12.98 3.49 166.60 
 

3.82 1.52 97.54 
 

16.81 5.01 264.14 
 

18.98 6.41 337.56 

10-12.5 5.85 0.84 15.31 
 

4.06 0.94 31.98 
 

9.91 1.79 47.29 
 

10.70 2.03 48.03 

12.5-15 5.36 0.50 6.75 
 

4.20 0.87 20.70 
 

9.56 1.37 27.45 
 

10.16 1.53 28.11 

15-17.5 3.22 0.30 3.20 
 

5.07 0.81 14.68 
 

8.29 1.11 17.89 
 

8.66 1.26 18.19 

17.5-20 1.36 0.15 1.40 
 

5.15 0.53 7.99 
 

6.51 0.68 9.38 
 

6.89 0.79 9.50 

>20 1.12 0.18 1.20 
 

7.58 0.79 8.75 
 

8.70 0.97 9.94 
 

9.32 1.13 10.09 

Sum 29.89 5.46 194.45 
 

29.89 5.46 181.64 
 

59.78 10.93 376.10 
 

64.71 13.16 451.49 

ALL=estimation made with all the data of temperate forest, PINE=estimation made with genus Pinus spp, OAK=estimation made with 

genus Quercus spp, P&O=estimation made with Pinus spp + Quercus spp. 

Table VIII-42. Basal area (G) and AGB (W) estimation made by classes of DBH and TH, in four 

datasets of Durango temperate forest. Estimation made with data of two periods of MNFI 2004-

2009 and 2009-2014. 
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 Basal area (G) Aboveground biomass (W) 

F
re

q
u

en
cy

  
DBH class (cm) 
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ALL=estimation made with all the data of temperate forest, PINE=estimation made with genus Pinus spp (n=43993), OAK=estimation 

made with genus Quercus spp (n=47636), P&O=estimation made with Pinus spp + Quercus spp (n=91629). 

Figure VIII–3. Basal area (G) and AGB (W) estimation for MNFI 2009-2014 in Durango, Mexico. 

Above, estimations made by DBH class; below, estimations made by TH class.  
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VIII.7 Appendix VII 
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Figure VIII–4. Predicted vs. observed in AGB estimate (G) when applying Landsat-adjusted 

models and MNFI information in Durango, Mexico. 
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  Landsat 5 (2007) &  

MNFI 2004-2009 

Landsat 8 (2013) &  

MNFI 2009-2014 
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TF=temperate forest, SCF=stratum conifer forest, SMF=stratum mixed forest, SOF=stratum oak forest 

Figure VIII–5. Residual vs. predicted graphs in basal area estimation (G) applying linear regression 

models with Landsat and MNFI data. 
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  Landsat 5 (2007) &  

MNFI 2004-2009 

Landsat 8 (2013) &  

MNFI 2009-2014 
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TF=temperate forest, SCF=stratum conifer forest, SMF=stratum mixed forest, SOF=stratum oak forest 

Figure VIII–6. Predicted vs. observed in AGB estimate (W) when applying Landsat-adjusted 

models and MNFI information in Durango, Mexico. 

 

 

 

 

 



Chapter VIII: Appendix 

 

161 

  Landsat 5 (2007) &  

MNFI 2004-2009 

Landsat 8 (2013) &  

MNFI 2009-2014 
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TF=temperate forest, SCF=stratum conifer forest, SMF=stratum mixed forest, SOF=stratum oak forest 

Figure VIII–7. Residual vs. predicted graphs in AGB estimation (W) applying linear regression 

models with Landsat and MNFI data. 
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VIII.8 Appendix VIII 

 

Table VIII-43. Temperate forest surface by basal area (G) class in Durango, Mexico. 

 W class 

Mg ha-1 

Area 

(ha) 

%  

surface 

W 

(Tg) 

% 

AGB 

Landsat 5 imagery 

(2007) & MNFI 

2004-2009 

[0 - 50) 2443025.70 47.42 59.95 21.01 

[50 - 100) 2190043.44 42.51 161.23 56.52 

[100 - 150) 511730.46 9.93 62.79 22.01 

[150 - 205] 7373.16 0.14 1.27 0.44 

 Total 5152172.76 100.00 285.25 100.00 

      

Landsat 8 imagery 

(2013) & MNFI 

2009-2014 

[0 - 50) 2650856.04 51.93 65.39 23.92 

[50 - 100) 1925092.89 37.72 142.50 52.12 

[100 - 150) 520412.94 10.20 64.21 23.48 

[150 - 205] 7656.84 0.15 1.32 0.48 

 Total 5104018.71 100.00 273.42 100.00 

Table VIII-44. Temperate forest surface by AGB (W) class and amount of W stored by class in 

Durango, Mexico. 

 

 
G class  

(m2 ha-1) 

Area 

(ha) 

%  

surface 

Landsat 5 imagery 

(2007) & MNFI 

2004-2009 

[0-5) 338047.11 6.56 

[5-10) 1532279.61 29.74 

[10-15) 1569250.44 30.46 

[15-20) 1124598.24 21.83 

[20-25) 517285.35 10.04 

[25-30) 69564.78 1.35 

[30-35] 1147.23 0.02 

 Total 5152172.76 100.00 

    

Landsat 8 imagery 

(2013) & MNFI  

2009-2014 

[0-5) 340221.96 6.67 

[5-10) 1647123.66 32.27 

[10-15) 1467709.29 28.76 

[15-20) 992527.56 19.45 

[20-25) 549831.24 10.77 

[25-30) 105864.84 2.07 

[30-35] 740.16 0.01 

 Total 5104018.71 100.00 


