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Abstract

The Motion Bridging Effect (MBE) is a visual illusion in which a motion that is not 

consciously visible creates a visible illusionary movement in a preceding or succeeding stationary 

ring of points. In the initial MBE study (Mattler & Fendrich, 2010), a ring of 16 points (the 

inducing ring) was rotated at an angular velocity of up to 2250°/s which entails that the point 

positions on the circumference of the ring were refreshed at temporal frequencies of up to 100 Hz. 

The observers only saw an uninterrupted outline circle and were unable to judge the rotation 

direction of the inducing ring. However, when the inducing ring was replaced by a ring of 16 

stationary points (the test ring), the stationary ring seemed to visibly rotate to a standstill, mainly in 

the same direction as the inducing ring was rotating. This demonstrates that although the inducing 

ring rotation was not consciously perceived, its motion was processed by the visual system. Similar 

results were found when the test ring preceded the inducing ring: The test ring seemed to accelerate 

in this case. In this thesis the contributions of temporal frequency, retinal eccentricity, the 

separation between the points of the test ring, and the inducing ring start and stop position are 

discussed as mediators of the effect. Furthermore, it is considered that the illusionary movement in 

the MBE is caused by a new kind of apparent motion, the ring rotation illusion (RRI), whose spatial

and temporal dependencies and differences to the MBE are demonstrated. Finally, it is shown that 

the MBE, which in all previous studies was only demonstrated on an analog oscilloscope, can also 

be reliably found with an LCD monitor.
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1. Introduction

Human perception of temporal changes is limited in everyday life. Very slow 

temporal changes, such as a sunset, are not perceived directly. The observer notices that it has

suddenly become night, although the brightness has continuously decreased in the last few 

minutes. Similarly, very rapid temporal changes, such as the image change of a cathode ray 

tube monitor, cannot be detected. The viewer perceives a continuous image, although the 

monitor only displays a new image approximately every 17 ms when the refresh rate is set to 

60 Hz.

The limits of human perception of temporal changes can be investigated by flicker 

fusion experiments. The best known flicker fusion experiment was conducted by Kelly 

(1961). He showed subjects a so-called “Ganzfeld” stimulus with a radius of 30° visual angle,

which had no sharp edges and whose brightness was modulated sinusoidally over time with a 

certain frequency. The aim of the study was to use the method of adjustment to determine 

exactly the amplitude of the sinusoidal modulation at which the flickering stimulus was 

perceived as stationary. The data showed that the visual system was particularly sensitive to 

temporal frequencies from 5 to 30 Hz. Kelly’s data also revealed the critical flicker frequency

(CFF; Cornsweet, 1970). The CFF is the maximum frequency at which a flickering light 

starts to be perceived as stationary by test subjects. Kelly’s flicker fusion threshold was 

approximately 40 Hz, but it can be higher in the periphery of the retina (Hartmann, 

Lachenmayer, & Brettel, 1979).

The CFF is only one of many temporal limitations of the visual system. Holcombe 

(2009) assigns the CFF to a group of fast temporal limits located at a temporal frequency of 

approximately 30 to 50 Hz. Another limit that can be assigned to this group is the limit of 

motion perception that could be based on similar neuronal mechanisms (Holcombe, 2009). In

everyday life, the effects of this limit can be easily seen by looking at a rotating fan. At a low 

rotation level, its direction of rotation is clearly detectable. If the speed of rotation is 

increased by increasing the voltage, the fan blades appear to form a disc-shaped stationary 

surface, at least when illuminated by sunlight alone. The rotational speed of the fan changes 

the frequency with which the light rays reflected from the fan blades hit identical positions on

the retina. If the temporal frequency of this periodicity is too high, movement can no longer 

be perceived.
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The upper limit of the perception of movement is demonstrated by experiments 

carried out by Burr and Ross (1982). They showed subjects gratings that were sinusoidally 

modulated in intensity over space and time. By changing the contrast of the stimuli, test 

subjects were supposed to determine the threshold at which movement of the grating is barely

perceptible by the method of adjustment. Interestingly, the perception of motion was not 

limited by the speed of motion, which was varied by adjusting the spatial and temporal 

sinusoidal modulation, but only by the temporal frequency of the stimulus (the frequency at 

which the sinusoidal grating returns to its initial position). The data from Burr and Ross also 

illustrate the temporal frequency limit at which a movement is perceived as stationary, and 

this limit is approximately 40 Hz, similar to the CFF. This limit of motion perception can be 

interpreted as the limit of neuronal coding of temporal distances. If, for example, cells on the 

retina are repeatedly stimulated with temporal frequencies above 40 Hz, the temporal signal 

could be lost and consequently no encoding of the temporal modulation and a subsequent 

perception of movement could take place.

In 2010, Mattler and Fendrich published a study questioning the previously proposed 

limits of encoding temporal change. Using the screen of an analog oscilloscope equipped 

with a particularly fast decaying phosphor, they first presented a rotating inducing ring of 16 

points whose temporal frequency varied between 11.1 and 100 Hz. The temporal frequency 

of the inducing ring was defined by the time it took for the ring to return to its starting 

position. Subjects were instructed to judge the perceived direction of rotation (clockwise vs. 

counterclockwise). At temporal frequencies above about 40 Hz, this was no longer possible 

for subjects, as the points of the presented ring merged into a solid line. Interestingly, 

however, the direction of movement of the inducing ring could be made visible again by a 

second stimulus. When the authors presented a stationary test ring of 16 points shortly after 

the inducing ring, subjects reported to have seen an illusionary movement, which a quarter of 

the subjects spontaneously described as deceleration of the test ring. However, Mattler and 

Fendrich’s new illusion does not only consist of the perception of the illusionary movement. 

Surprisingly, in up to 80% of the trials, the illusionary motion of the test ring was reported as 

going to the same direction in which the inducing ring rotated. Strikingly, subjects were 

unable to discriminate the rotation direction of the same inducing ring any better than chance,

when the stationary test ring was not presented.

Moreover, the strength of the directional correspondence depended on the velocity of 

the inducing ring. Mattler and Fendrich (2010) varied the temporal frequency of the inducing 
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ring by changing its angular velocity in five steps (250, 750, 1250, 1500, and 2250 angular °/

s corresponding to approximately 11.1, 33.3, 55.5, 66.7, and 100 Hz). In the condition in 

which only the inducing ring was shown, a pattern of results consistent with the limits for the 

detection of motion proposed by Burr and Ross (1982) was found. In Experiment 1 of the 

initial study, the rotation direction of the inducing ring is clearly detectable at a temporal 

frequency of 11.1 Hz. The discrimination performance of participants decreased steeply at 

33.3 Hz and was only at chance level at frequencies of 55.5 Hz or higher. Fascinatingly, a 

similar pattern of results has been found in conditions in which the inducing ring was 

followed by the test ring: An increase of the temporal frequency led to a decrease in 

participants’ discrimination performance. However, this decrease in discrimination 

performance was by no means as strong as when the inducing ring was presented alone. Even

at the highest speed (2250 angular °/s), the illusory movement was perceived corresponding 

to the inducing ring direction in more than 50% of the trials. The perceived direction of the 

illusory motion thus also depends on the speed of the inducing ring and therefore its temporal

frequency. Mattler and Fendrich concluded from these results that an unconscious encoding 

of the direction of motion of the inducing ring is possible despite its high temporal frequency,

even if the motion cannot be consciously perceived. The conclusion of unconscious encoding 

of motion direction is supported by two decisive criteria of motion perception: The direction 

of the inducing ring appears to be encoded and this directional detection depends on the 

temporal frequency of the stimulus.

In another experiment of Mattler and Fendrich (2010) the stationary test ring was 

preceding the rotating inducing ring. Again, an illusionary movement was seen, which was 

described by some subjects as an acceleration of the test ring. Similarly, the direction of the 

illusory motion corresponded with the actual rotation direction of the inducing ring and the 

strength of this correspondence depended on the temporal frequency of the inducing ring. In 

their velocity updating hypothesis, the authors assume that the visual system tries to ensure 

continuity between a stimulus rotating at a very high velocity and the stationary stimulus 

whose velocity has a value of 0°/s. If this continuity is established, the test ring stops or 

speeds up visibly. Since a bridge is established between two stimulus states, Mattler and 

Fendrich called this illusionary motion the motion bridging effect (MBE). A critical aspect of

the MBE is that there is a directional correspondence between the direction of rotation of the 

inducing ring and the direction of the illusionary motion. The strength of this directional 

correspondence is measured as sensitivity (d') in their investigation and in all investigations 
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presented in this thesis. Sensitivity (d') is defined as the difference of the Z-transformed rate 

of clockwise responses to a clockwise rotation when all clockwise rotations are considered 

and the rate of clockwise responses to a counter-clockwise rotation when all counter-

clockwise rotations are considered (Macmillan & Creelman, 2005).

In their study, Mattler and Fendrich (2010) not only presented the discovered 

phenomenon, but also showed, that the MBE depends on temporal and spatial factors, such as

the presentation duration of the inducing ring or the temporal and spatial distance between the

two rings. For example, the direction correspondence shows a clear inverted U-shaped 

function when the temporal interval between the two rings (inter stimulus interval; ISI) is 

varied. With a small ISI, d' is low, increases to a maximum at 60 to 90 ms, and then drops 

again at an ISI of 180 ms. While the authors mention that there is a similar dependence on ISI

for classical apparent motion (e.g., Korte, 1915), they interpret their results in the sense of 

intermediate perceptual stages generated during the brief temporal pause, which is consistent 

with the velocity updating hypothesis.

2. Studies

This thesis comprises four studies that were carried out in collaboration with Uwe 

Mattler and Robert Fendrich. A manuscript was written based on each of these investigations.

The manuscripts are currently in different stages of editing: The first manuscript has already 

been published and the fourth manuscript will be submitted for publication shortly, whereas 

the second and third manuscripts may undergo more substantial editing before publication. 

All four manuscripts are appended to this thesis and each study is additionally summarized 

below.

In the four studies, numerous spatial and temporal parameters concerning the MBE 

were varied, some of them exploratively. Despite the exploratory character of some of the 

experiments, all results were evaluated using inferential statistics to uncover and clarify 

patterns in the collected data. I would like to emphasize that in our experiments the reliability

of the collected data is warranted in particular by the fact that most of the investigated 

independent variables were parametrically varied and all findings remain stable throughout 

the investigations.
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2.1 Results of the study “Stimulus dependencies of an illusory motion: Investigations of 

the Motion Bridging Effect”

In order to identify further temporal and spatial dependencies of the MBE, we 

systematically varied the number of points and the diameter of the inducing ring and test ring 

in three experiments. Increasing the number of points had the effect of increasing the 

temporal frequency of the inducing ring, since the increase in the number of points at 

constant angular velocity is accompanied by a reduction in the number of steps taken before 

the inducing ring returns to its starting position. The variation in diameter affected the retinal 

eccentricity of the stimuli as the larger rings are processed in more peripheral regions of the 

retina. Note that both manipulations led to an increase of the point distance in the test ring. 

The stimuli were presented on a smaller oscilloscope than in the original study (50 cm vs. 

12.5 cm diameter; Mattler & Fendrich, 2010). The stimulus sequence was similar to the 

original study, but only the condition where the inducing ring is presented first was included 

in the present study. As in the original study, in each experiment the angular velocity of the 

inducing ring was varied over all conditions, but only in four steps (250°/s, 750°/s, 1500°/s, 

and 2250°/s).

In Experiment 1, we varied the number of points of the inducing ring and test ring in 

three steps (12, 16, and 20 points), with the inducing ring having as many points as the test 

ring in each trial. Both the condition in which only the inducing ring was shown and the MBE

condition in which both rings were presented showed a decrease in sensitivity (d') with 

increasing number of points. This decrease in sensitivity can be attributed to the increase in 

the temporal frequency of the inducing ring. The result in the condition in which only the 

inducing ring was shown is consistent with the assumption of Burr and Ross (1982), because 

the direction of the inducing ring could no longer be detected above chance if the temporal 

frequency was greater than 40 Hz, regardless of whether the temporal frequency was 

determined by the number of points or the rotational speed. In the MBE condition, in which 

the test ring was also presented, it could be argued similarly that the reduction in performance

is caused by the increased temporal frequency of the inducing ring. However, the limit of the 

MBE is higher than the limit of the conscious perception of motion (above 125 Hz).

In a second experiment we varied the diameter of the stimuli in three steps (3.5°, 5.5°,

and 7.5° viewing angle), with the inducing ring being the same size as the test ring in each 

trial. It was found that the sensitivity increases significantly with higher ring diameters. This 

effect of diameter could be attributed to the fact that the periphery of the retina is more 
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sensitive to high temporal frequency changes (Breitmeyer & Ganz, 1976; Hartmann et al. 

1979) and therefore shows a preference for the rapid motion of the inducing ring (Sekuler, 

1975). However, we could not detect any effect of the stimulus diameter if only the inducing 

ring was shown. The results of Experiments 1 and 2 could, however, also be the result of a 

change in the spacing of the test ring points. Both an increase in the number of points and a 

reduction in the diameter of the rings reduce the distance between the points in the test ring. 

In order to evaluate the possibility that the results of Experiments 1 and 2 are due to a change 

in the distance between the points in the test ring, we performed Experiment 3.

In Experiment 3, we kept the distance between the points constant by simultaneously 

increasing the diameter of the rings when we increased their number of points. In this 

experiment there was no difference in sensitivity between the 12, 16 and 20 points condition 

at any level of velocity. The results of Experiment 3 can be interpreted in two ways. It is 

possible that the MBE is modulated by the temporal frequency of the inducing ring, both 

when manipulating the angular velocity and when varying the number of points. In addition, 

the MBE is larger the further the inducing ring is shown in the periphery of the retina. In 

Experiment 3, these two effects balance each other out. Another possibility is that the effect 

of the number of points and diameter is caused by the difference in spatial distance between 

the test ring points. I will return to this argument in my final discussion. The influence of the 

spatial distance between the test ring points brings up the possibility that the illusionary 

movement of the MBE is due to an apparent motion that occurs when the seemingly 

stationary inducing ring is transformed into an actually stationary test ring. This explanation 

makes a prediction regarding the stimuli of the MBE: if instead of a rotating ring an actual 

stationary ring is shown, the illusionary motion should still be visible.

2.2 Results and discussion of the study “Ring Rotation Illusion and the influence of 

heuristics on apparent motion”

Stein, Fendrich, and Mattler (2019) consider the possibility that the MBE is related to 

apparent motion, since the MBE is an apparent transformation from a seemingly stationary 

outline circle to a veridically stationary test ring. This explanation is supported by the fact 

that the MBE depends critically on both the temporal distance of the stimuli, which is 

influenced by the ISI (Mattler & Fendrich, 2010), and the spatial distance of the 

transformation, which is influenced by the point distance (Stein et al., 2019). Stein et al. even 

argue that the MBE consists of two processes: An ambiguous apparent motion perceived 
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from the inducing ring to the test ring and a directional signal that influences the direction of 

the ambiguous apparent motion percept. The two process approach makes a clear prediction: 

if the MBE is based on an apparent motion that is perceived independently of the direction 

signal, the illusory motion should also be visible if the rotating ring does not move, but an 

actually stationary continuous ring is shown. Preliminary observations showed that this was 

the case and that the generated illusionary motion is very similar to that of the MBE. The 

illusionary rotation, which occurs when a stationary ring of points is displayed after a 

stationary solid ring, we call ring rotation illusion (RRI). In the second investigation, we 

wanted to know whether the RRI shows similar dependencies on the ISI and point distance to

investigate its relationship to apparent motion and to the MBE.

In the first experiment we therefore varied temporal (the ISI and the duration of 

stimuli) and spatial parameters (the number of points and the diameter of the rings) of the 

RRI. Due to the absence of a direction signal, it is impossible to determine the sensitivity (d') 

of subjects to the direction of rotation and use it as a dependent variable. Therefore, in this 

study we have determined the perceived clearness of the RRI (and in Experiment 2 also the 

motion distance) with the help of a rating scale because other studies have shown that rating 

scales can reliably reproduce typical dependencies of apparent motion (Downing & 

Treisman, 1997; Hubbard & Ruppel, 2011, 2018; Kahneman, 1967). The motion clearness 

judgments of the RRI were similarly influenced with respect to the ISI as the sensitivity 

measure (d') of the MBE. Motion is judged to be most pronounced when the ISI is 60 to 90 

ms. However, the duration of the stimuli influences this dependence. The maximum motion 

clearness shifts to the ISI of 0 ms if the stimuli are shown for 500 ms. Interestingly, 

Kahneman (1967), who investigated classical apparent motion, similarly found a maximum 

of the perceived apparent motion at an ISI of 75 to 100 ms. This maximum shifted to 0 ms 

when the stimulus duration was increased to 800 ms. With small limitations, the results 

regarding the ISI can also be reconciled with results regarding the line motion illusion (LMI).

Hubbard and Ruppel (2011; 2018) used a measure very similar to motion clearness they 

called motion strength and found that it decreases with increasing stimulus onset asynchrony 

(SOA). However, in their study the stimuli were presented overlapping in time, which could 

be the reason that the authors could not find an initial increase in motion strength.

With respect to the spatial parameters, the mean motion clearness behaves exactly 

opposite to the sensitivity of the MBE. The motion was judged to be most pronounced when 

the number of points was very large or the diameter of the rings was very small. In contrast to
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the sensitivity of the MBE, the clearness of the RRI therefore increases with a smaller point 

distance. The results concerning the distance of the transformation cannot be reconciled with 

all results of other apparent motion phenomena. Although Korte (1915) finds a decrease of 

the perceived apparent motion with an increase of the spatial distance with small ISIs (in this 

case 183 ms) in classical apparent motion, Hubbard and Ruppel (2011) could not detect any 

change of the motion strength with regard to the line motion illusion if the line length is 

varied. However, they found an increase in perceived speed and suggested that this increase 

in perceived speed should be accompanied by a reduction in motion strength. Taken together,

the results of Experiment 1 do not show a conclusive pattern, but they give first indications 

that the RRI, like e.g., classical apparent motion, depends on the temporal and spatial 

distance between the two stimuli. In the case of RRI, however, the spatial distance is defined 

by the distance of the transformation of the stationary continuous ring into the pointed ring.

In the other two experiments we compared the two phenomena, the MBE and the 

RRI. Experiment 2 aimed to investigate whether the motion signal in the rotating ring of the 

MBE has an effect on the perceived clearness of the RRI. We instructed subjects at both the 

MBE, where we chose a rotating ring speed of 1500°/s, and the RRI to judge the clearness of 

motion and distance traveled. In order to ensure that any differences were caused by the 

direction signal of the rotating inducing ring and not by a visible difference between the 

stationary inducer of the RRI and the rotating inducer of the MBE, subjects performed a 

discrimination task to ensure that the two stimuli could not be distinguished. In fact, there 

was a small but significant difference in the perceived motion clearness and distance. The 

motion of the MBE was judged to be both more distinct and traveling over a longer distance. 

This difference was especially found in trials where motion clearness was assessed and the 

illusionary motion of the MBE was perceived in the same direction as the rotating inducer.

In the third experiment, too, the clearness of the illusory motion produced by the 

rotating inducer was consistently judged to be higher than that produced by the stationary 

inducer. Since the number of points, the diameter and the ISI were also varied in this 

experiment, it was possible to investigate to what extent the motion clarity of the illusionary 

motion and the sensitivity measure (d') of the MBE are related. With regard to the spatial 

parameters, it was shown that the difference between the two conditions (stationary vs. 

rotating inducer) was particularly high whenever the MBE was high, i.e., at a low point 

number and a high diameter of the stimuli. The ISI had no significant influence on the 

difference in perceived motion clarity between the two conditions. In Experiment 3 we 
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further replicate the dependence of the RRI already found in Experiment 1 on spatial and 

temporal parameters, i.e., the RRI has a temporal optimum at about 60 ms and increases with 

a higher number of points and a smaller diameter, and replicate the dependencies of the 

MBE, which decreases with a larger number of points and increases with a larger diameter of 

the stimuli. For the MBE, we, as well as Mattler and Fendrich (2010), could determine an 

optimal ISI of 90 ms.

2.3 Results of the study “Spatiotemporal alignment and the Motion Bridging Effect”

The third investigation led us to fundamentally rethink the role of the directional 

information of the inducing ring. In all previous investigations, the start and stop position of 

the inducing ring was always identical to the position of the test ring. Mattler and Fendrich 

(2010) justified their decision with the fact that an apparent movement from the last points of 

the inducing ring to the test ring points is eliminated by this approach. As a consequence, the 

distances between the points of the inducing ring and the test ring always had a fixed 

spatiotemporal configuration. For example, if the inducing ring rotates clockwise, the most 

recent occupied positions when examining the test ring point at the 12 o'clock position were 

always to its left. If the inducing ring rotates counterclockwise, however, the most recent 

point positions were to the right of the test ring point at the 12 o'clock position. To investigate

the influence of this spatiotemporal configuration, we systematically varied the start and stop 

positions of the inducing ring in three experiments.

In the first experiment, we parametrically varied the start and stop positions of the 

inducing ring by shifting them in 11 steps (plus the default position) across the circumference

of the test ring. The center of the inducing ring was always on the same position as the center 

of the test ring and since the diameters of the two rings were identical, each point of the test 

ring was located on the circumference of the previously presented inducing ring. The speed 

of the inducing ring was also varied at each level of position displacement. Since the MBE is 

characterized by the directional correspondence between the inducing ring and the illusionary

test ring motion, only velocities at which the MBE occurs were realized (750°/s, 1500°/s, and

2250°/s). Surprisingly, the MBE, defined by its sensitivity measure (d'), showed a sinusoidal 

course over the displacement manipulation. With increasing displacement of the start and 

stop position, the MBE decreased until the mean d' was equal to 0 when the start and stop 

positions of the inducing ring were offset by a quarter of the distance of the test ring points. If

the start and stop positions of the inducing ring were exactly between two test ring point 
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positions, the illusionary movement was predominantly perceived in the opposite direction of

the inducing ring. In this case the velocity manipulation did not have the effect of reducing d',

which could be expected if the direction of the inducing ring was discriminated increasingly 

worse with increasing velocities, but higher velocities brought the sensitivity closer to zero in

all conditions of displacement.

The results of the first experiment show that the illusionary motion of the MBE 

corresponds to the direction of motion of the inducing ring only because a change in the 

direction of rotation changes the spatiotemporal relationship between the presented points of 

the inducing ring and the points of the test ring. These results partly contradict the 

interpretation that the motion of the inducing ring is encoded as a directional signal and 

suggest that the inducing ring is represented by the visual system as a spatiotemporal 

sequence that generates the directional correspondence only in interaction with the test ring. 

It is also conceivable, however, that the spatiotemporal sequence is carried by small 

gradations in the profile of the persisting retinal activations produced by the points as they 

advance. The activity at the retinal locations most recently stimulated by an advancing point 

will be higher than the activity at locations activated earlier and about to be re-stimulated by 

the next advancing point, although this difference will be small given the brevity of the 

temporal intervals between the successive stimulations. It is well known that fading 

luminance trails, visible as streaks behind a moving object convey motion information 

(Geisler, 1999; Geisler, Albrecht, Crane, & Stern, 2001; for a review see Burr & Thompson, 

2011). Here we are suggesting that the fading in the streaks left by the moving points of the 

MBE display could also be conveying this motion information although that fading cannot be

consciously discerned by observers.

To investigate whether the MBE is affected by fading luminance streaks, we enclosed 

the inducing ring with two 18 ms stationary ring masks, presented immediately before and 

after the inducing ring presentation. The ring masks looked exactly the same as the inducing 

ring because they differed from the inducing ring only in that they did not contain a 

spatiotemporal sequence because the point presentations in the stationary ring masks were 

randomized. As in Experiment 1, we varied the velocity of the inducing ring and the 

displacement of its start and stop positions. The same pattern of results were observed as in 

Experiment 1. The sensitivity (d') of the MBE decreased with increasing displacements and 

became negative starting at a displacement over a quarter of the distance of the test ring 

points. Given these results we are tempted to conclude that the fading luminance streaks do 
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not play a role in the generation of the MBE, since the presentation of the ring mask after the 

inducing ring was presented should lead to the overwriting of these streaks. We were also 

interested in whether a similar course of sensitivity (d') could be observed if the test ring was 

preceding the inducing ring. Again, the results were similar to Experiment 1. Sensitivity (d') 

showed a sinusoidal course over the displacement of the start and stop position. Overall, 

however, more extreme d' values were found, confirming the original investigations by 

Mattler and Fendrich (2010), in which they demonstrated that the MBE is stronger when the 

test ring is shown before the inducing ring than when the test ring precedes it.

2.4 Results and discussion of the study “Encoding information from rotations too rapid 

to be consciously perceived as rotating: A replication of the motion bridging effect on a 

liquid crystal display.”

The presentation of very high-frequency movements, such as the movement of the 

inducing ring in the MBE, requires a screen that updates with a very high temporal 

frequency. In all previous investigations of the MBE, the fast rotating ring was therefore 

presented on an analog oscilloscope. Similar to a CRT monitor, an analog oscilloscope 

consists of an electrode beam that can be deflected by magnetic fields and a phosphorous 

coated screen that produces visually perceptible light. In contrast to the CRT monitor, the 

analog oscilloscope has no fixed refresh rate, since the electron beam does not scan the screen

in a fixed order, but the position of the beam, its dwell time and its intensity can be 

determined at any time by the connected computer, limited only by the speed of the digital-

to-analog converter. The temporal frequency of the stimulus can thus be adjusted almost 

arbitrarily and is, for example, only limited by its complexity.

Nowadays, digital oscilloscopes are equipped with LCD screens and no longer offer 

the advantages of an analog oscilloscope. Therefore, an analog oscilloscope suitable for 

vision research can only be found in a few laboratories. In fact, the oscilloscope we used in 

the above investigations was the last analog model manufactured in Germany, but its 

production has been discontinued. In order to make MBE studies possible in laboratories that 

do not have access to an analog oscilloscope, the fourth study dealt with the question of 

whether the MBE can also be reproduced on another screen. Due to its high temporal 

frequency and its general suitability for vision research (Wang & Nikolić, 2011; Zhang et al., 

2018), we opted for an LCD monitor whose temporal repetition rate of 240 Hz is so high that 

a replication of the MBE might be possible. For this, however, the characteristics of the 

original stimuli had to be changed. For example, a presentation of the inducing ring with a 
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temporal frequency as high as in the original study was only possible by reducing the number

of steps the rotating ring takes during its rotation. The reduction of the number of steps, 

however, influences the character of the illusion, because if the inducing ring is presented 

with only a few intermediate steps, it no longer looks like a continuous circle, but like a 

dotted circle. Nevertheless, informal investigations have shown that an illusion can be created

that looks very similar to the MBE.

The replication on the LCD was successful: Both when the inducing ring followed the

test ring and when the inducing ring was shown first, subjects perceived an illusionary 

movement and the discrimination of the direction of the inducing ring was above chance. 

This was the case even though the direction of the inducing ring could no longer be perceived

consciously at a temporal frequency of 40 Hz or higher. In addition, we illustrate that the 

MBE, as in the original study, depends on the velocity of the rotating ring. This indicates a 

high robustness of the phenomenon, since not only the step size was different from the 

original study, but also the size of the dots was enlarged. In addition, even though we reduced

the brightness as much as possible, the backlight of the LCD monitor was always clearly 

visible, so that the retinal illumination was drastically increased. Despite these substantial 

modifications of the procedure, our results illustrate that the MBE works on a commercially 

available monitor. This supports the replicability of the effect and makes it accessible to 

scientific investigation by a broader range of researchers.

3. Final Discussion

In many respects, the investigations we have carried out lead to a more complete 

understanding of the MBE. First, we have shown that the MBE depends on the number of 

points and the diameter of the inducing ring and test ring. Both manipulations influence the 

spatial distance of the test ring points. One area of research where spatial distances play a role

is the study of apparent motion. It has long been known that the relationship between the 

spatial and temporal separations of the successive stimuli used to produce apparent motion 

determine the optimal perception of that motion (Wertheimer, 1912). Korte (1915), for 

example, proposed that as the spatial distance between two stimuli increases, their temporal 

distance also needs to increase to sustain an apparent motion percept (assuming constant 

stimulus intensities; Korte’s third law). A similar relationship has been shown for path-

guided apparent motion (Shepard & Zare, 1983). In path-guided apparent motion a curved 
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grey path is shown between the two stimuli producing the apparent motion. The perceived 

apparent motion follows this path, and the minimal temporal interval needed to produce this 

effect depends upon the length of the path.

At first glance, it seems difficult to reconcile apparent motion and the MBE. In classic

apparent motion, two spatially distant stimuli are presented in temporal succession, and the 

observer perceives an apparent movement of the object over the distance separating the two 

stimuli. The MBE, on the other hand, is perceived as a transition from an apparently 

continuous ring to a pointed ring. One type of apparent motion that gives credence to the 

possibility that the MBE is connected to apparent motion is the line motion illusion (LMI; 

Downing & Treisman, 1997). Downing and Treisman showed subjects a square followed by 

an adjacent line. In this stimulus configuration, the line is perceived as expanding out of the 

square. In another experiment, the authors reversed the order of the stimuli. If the line was 

shown before the square, one sees the line shrinking into the square. This is reminiscent of 

the MBE, because the illusionary motion of the MBE can be interpreted as 16 curved lines 

shrinking into one of the nearest test ring points (in the inducing ring first condition) or 16 

test ring points expanding to the 16 curved line segments (in the test ring first condition). A 

demonstration reported by Downing and Treisman makes the percept of multiple lines 

contracting in tandem to their neighboring points credible. When these investigators 

presented a line and then two points adjacent to each end of the line, the points were “seen to 

disappear from the center outward” (p. 771). However, when a second line was presented to 

the right of the rightward point, the “dual lines were seen to shrink laterally, each toward just 

one of the cues” (p.771). Note that in contrast to this demonstration of the LMI, the spatial 

transition that produces the MBE is highly ambiguous in respect to which direction the lines 

will transform.

Similar to apparent motion, the LMI and the MBE are both sensitive to variations of 

temporal distance. Downing and Treisman (1997), for example, found that LMI mean motion

ratings decreased with an increase in stimulus onset asynchrony (SOA) between the 

successive display elements. Kawahara et al. (1996) also found an adverse effect of 

increasing the inter stimulus interval (ISI) when participants searched for a LMI target, and 

Hubbard and Ruppel (2011) found that the perceived LMI velocity decreased with an 

increase in SOA. A similar dependency on the temporal separation of between the inducing 

and test rings has been reported for the MBE. Performance first increases with short ISI (up 

to 90 ms) and then decreases steeply (Mattler & Fendrich, 2010). While no initial rise of 
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performance has been reported for the LMI, differences in the nature of the measurements 

made (the MBE is measured by a congruency in direction judgments rather than perceived 

motion strength) and the range of temporal intervals investigated (the shortest SOA employed

by Kawahara et al., 1996, was 400 ms and the shortest employed by Downing & Treisman, 

1997, was 195 ms) make the importance of this discrepancy hard to evaluate.

As noted above, the strength of apparent motion percepts depends on the spatial 

distance between the sequentially presented objects. Some evidence has been reported that 

the LMI also exhibits spatial distance dependencies. Hubbard and Ruppel (2011), for 

example, found that ratings of perceived velocity are increased when the line length is 

increased. Downing and Treisman (1997) did not find a significant effect on the reported 

strength of the motion percept when they varied the distance between the square and the line, 

but report the effect of distance “approached significance” (p = .08; p. 772). This potential 

effect appears to be due to a trend towards increased motion ratings with increased distance. 

However, a spatial dependency in the reverse direction was found in a variant of the LMI first

reported by Kanizsa in 1951 (as described in Kanizsa, 1979), which he termed Polarized 

Gamma Motion. In this variant one of two adjacent shapes is sequentially flashed and 

observers perceive the flashing shape as smoothly extending from and retracting back into the

other. In this case, increasing the spatial gap between the two shapes weakened the 

polarization. Interestingly, Kanizsa further investigated the phenomenon and found a similar 

effect when varying the length of the flashed rectangle: When the flashed rectangle is longer 

(becomes less square-like and more similar to the LMI displays), the reports of polarized 

movements decrease.

These similarities between the dependencies of the MBE and other apparent motion 

phenomena suggest that the MBE can be interpreted as an apparent motion, more precisely as

an RRI. This alternative approach to accounting for the perceived motion of the test ring does

not however, explain the MBE’s defining attribute — the test ring’s motion direction tends to

match the inducing ring’s motion direction, although the inducing ring’s motion is not 

consciously visible. Thus, even if the motion generated by the transition of the inducing ring 

to the test ring represents a case of an RRI, the spatiotemporal properties of the inducing ring 

motion are being registered by the visual system and these properties might convey a 

direction signal to the test ring. This could involve the transfer of high temporal frequency 

motion signals from the retina to higher cortical motion processing regions, as Mattler and 

Fendrich (2010) proposed.
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However, with regard to the rotation direction that affects the perceived motion of the 

RRI, we found evidence that it is not the direction of motion of the inducing ring that is 

decisive for the directional correspondence in the MBE, but the spatiotemporal relationship 

between the points of the inducing ring and the test ring. The results of the third study suggest

that the RRI of the MBE is perceived the direction of the inducing ring only because a change

in the direction of rotation is accompanied by changes in the spatiotemporal distances 

between the points of the inducing ring and the test ring. This dependence on the 

spatiotemporal relationship of the stimuli could be explained by the possibility that the MBE 

is generated by spatiotemporal receptive fields (Adelson & Bergen, 1985; Burr, Ross, & 

Morrone, 1986; McLean, Raab, & Palmer, 1994; Reid, Soodak, & Shapley, 1991). These 

spatiotemporal receptive fields could span over both stimuli and signal a movement starting 

from the rotating ring and stopping at the test ring point positions. If the motion of the MBE 

is considered to be caused by spatiotemporal receptive fields, a correspondence problem 

arises, because each of the points in the inducing ring could be associated with each of the 

points shown in the test ring as long as a spatiotemporal receptive field exists that can detect 

this motion. This problem is known in simpler form as the correspondence problem of motion

perception (Dawson, 1991; Ullman, 1979). Since there is evidence that the correspondence 

problem is solved in favor of the slowest velocity (Dawson, 1991; Weiss, Simoncelli, & 

Adelson, 2002), a highly speculative weighing model of multiple receptive fields based on 

the velocity of inducing and test ring point correspondences is proposed.

The model consists of three computational steps and is explained here only for a two-

dimensional representation of the inducing ring — test ring transition. The computation is 

also illustrated in Figure 1. In the first step, for each possible correspondences between the 

points of the inducing ring and its two adjacent test ring points, the velocity it takes to travel 

to the neighboring test ring point is calculated. Since each point of the inducing ring in Figure

1 can correspond to two possible test ring points, two arrays of velocities are produced: One 

corresponding to clockwise movement and one to counterclockwise movement. Points on the 

inducing ring that are located at the same position as the test ring points will be assigned a 

velocity of 0°/s. In the second step, the mean value of the velocity is determined separately 

for the array of clockwise and counterclockwise motions. In a final step, the difference 

between the two mean values is calculated (mean value of counterclockwise velocity — 

mean value of clockwise velocity) such that if the difference is positive, the mean value of 
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clockwise motion is the slowest and if the difference is negative, the mean value of 

counterclockwise motion is the slowest.

Figure 1. Spatiotemporal illustration of the inducing ring points presented between two test 

ring point positions at 12 O’clock on the inducing ring circumference. The stimulus sequence

was reduced to one spatial dimension, so that a global clockwise rotation corresponds to a 

spatial shift to the right and a global counter-clockwise rotation to a spatial shift to the left. 

The stimuli sequence corresponds to a 11 ms clockwise rotating inducing ring with a velocity

of 2250°/s preceding the test ring. The arrows indicate in which direction the inducing ring 

point has to move to produce the velocity indicated in the arrays on the left and right side of 

to the inducing ring points (clockwise movements are printed black, counter-clockwise 

movements are printed purple). The mean value of velocity is calculated for both arrays. 

Because the mean value of velocity is slower for the clockwise movements, the MBE may be 

perceived in the same direction as the inducing ring was rotating.
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Figure 1 demonstrates that for a clockwise 11 ms inducing ring rotating at a velocity 

of 2250°/s, the model predicts that the mean value of velocity of the clockwise rotation is 

lower and therefore the illusion is perceived in the same direction as the inducing ring. 

Analogous to Figure 1, this computation can be performed for the conditions realized in 

Mattler and Fendrich (2010), Stein et al. (2019) and the third manuscript of this thesis, and 

the predictions of the model can be compared with the actual results (the calculations for the 

values reported in the figures are appended to this thesis). Figure 2 shows the simulated data 

for the first experiment of the initial study (Mattler & Fendrich, 2010). Interestingly, the 

decrease of the calculated difference with increasing velocity is similarly pronounced as the 

decrease of the mean sensitivity in the original study. This might indicate that the dependence

of the MBE on angular velocity, caused by differences in temporal frequency, can as well be 

explained by the temporal and spatial distance of the points of the rotating ring and the test 

ring, if it is assumed that slow velocities are preferred by the visual system.

Figure 2. Difference in mean velocity for clockwise and counter-clockwise motion as a 

function of inducing ring angular velocity in Experiment 1 of Mattler and Fendrich (2010). 

With regard to the experiments of Stein et al. (2019), the results are somewhat vague. 

Just as in the original study, the difference in mean velocity decreases with increasing 

18



number of points (Figure 3A) and increases with increasing diameter (Figure 3B), but the 

effect of number of points and diameter is not exactly equalized when co-varied (Figure 3C). 

However, there is a noticeable reduction in the effect of the number of points on the 

difference of mean velocity, which gives credence to the possibility that the manipulation of 

the ring diameter and the number of points can also be traced back to the spatiotemporal 

relationship of the induction ring and test ring.

Figure 3. Difference in mean velocity for clockwise and counter-clockwise motions as a 

function of inducing ring angular velocity, point number and diameter in Experiment 1 to 3 of

Stein et al. (2019). 

Finally, if the results of the third manuscript, in which we varied the start and stop 

position of the inducing ring, are modeled, then a similar pattern can be found as with mean 

sensitivity (see Figure 4). With increasing displacements, the difference of the mean values of

the velocity decreases, reverses and is most negative at an offset of 50%. However, in 

contrast to the original data, the curve loses its sinusoidal character and the effect is reversed 

much earlier than in the original data (at 15% displacement).
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Figure 4. Difference in mean velocity for clockwise and counter-clockwise motions as a 

function displacement of the inducing ring and test ring position (third manuscript).

The computational model predicts some aspects of the directional correspondence, the

velocity dependence, the dependence of the MBE on the displacement of the start and stop 

position of the inducing ring, and to some degree the dependence of the MBE on spatial 

parameter variations. However, there are crucial shortcomings: the model lacks the temporal 

and spatial resolution limits associated with the visual system, and therefore the difference in 

mean velocity between the two competing directions of motion is preserved, no matter how 

small (or large) the ISI and how short the spatial displacement is. In an experiment that is not 

included in this thesis, the inducing ring and test ring were presented very briefly and the ISI 

was minimized. Under these conditions we were not able to reproduce the MBE. With these 

short temporal intervals, there may no longer be any cells that are able to detect the motion of

the inducing ring – test ring transition, since their receptive fields do not cover such short 

temporal distances. If combined with spatiotemporal filter models (e.g., Adelson & Bergen, 

1985), however, the predictions of the introduced computational model may improve 

drastically.
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4. Conclusion

In the first study we uncovered the dependence of the MBE on the number of points 

and the diameter of the inducing ring and test ring. We are inclined to interpret this as the 

MBE depending on the inter-point distance of the test ring, as this increases the spatial 

distance of the transformation from the seemingly stationary solid ring to the pointed test 

ring. These results might indicate that the MBE is closely related to apparent motion, which 

is known to be strongly dependent on changes in spatial distance. In addition, we illustrate 

that the spatiotemporal information of the inducing ring is not necessary to perceive an 

illusionary motion very similar to the MBE, since we could also create a similar illusion with 

an actually stationary solid ring. We called this new illusion “ring rotation illusion” and have 

illustrated similarities and differences to the MBE and to other apparent motion phenomena. 

This study also demonstrates that the MBE is at least partly due to an apparent motion, 

namely the RRI. By varying the start and stop positions of the inducing ring, we were able to 

reveal that the MBE is not perceived in the same direction as the inducing ring because 

direction of rotation is coded, but because a spatiotemporal sequence of the inducing ring is 

represented in the visual system that seems to interact with the test ring producing the 

directional correspondence in the standard condition of the MBE. Finally, we successfully 

replicated the MBE on an LCD monitor. This makes the MBE accessible to scientific 

investigations by a broader range of researchers.
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The Motion Bridging Effect (MBE) is an illusion in which a
motion that is not consciously visible generates a visible
motion aftereffect that is predominantly in the same
direction as the adapter motion. In the initial study of the
MBE (Mattler & Fendrich, 2010), a ring of 16 points was
rotated at angular velocities as high as 22508/s so that
observers saw only an unbroken outline circle and
performed at chance when asked to report the ring’s
rotation direction. However, when the rotating ring was
replaced by a veridically stationary ring of 16 points, the
stationary ring appeared to visibly spin to a halt,
principally in the same direction as the initial ring’s
rotation. Here we continue to investigate the stimulus
dependencies of the MBE. We find the MBE, measured by
the correspondence between the direction of the invisible
rotation of the spinning ring and perceived rotation of the
stationary ring, increases as the number of points used to
construct the rings decreases and grows stronger as the
diameter of the rings get larger. We consider the potential
contributions of temporal frequency, retinal eccentricity,
luminance levels, and the separation between the points
forming the rings as mediators of these effects. Data is
discussed with regard to the detection of real movement
and apparent motion. We conclude that the detection of
the rapid rotation of the spinning ring is likely to be
modulated by temporal frequency of luminance changes
along the ring perimeter while the point-distance may
modulate an apparent motion produced by the transition
from the perceptually unbroken spinning ring to the
point-defined stationary ring.

Introduction

A wealth of vision research has addressed the
abilities and limits of the human visual system, and a

direct approach to exploring these limits has been to
focus on the reported perceptual experiences of
participants. However, there is evidence for the
processing of visual information, which is not accessi-
ble to conscious reports. Much of this evidence is based
on priming and adaptation effects produced by
unconscious information (e.g., Lin & He, 2009;
Vorberg, Mattler, Heinecke, Schimdt, & Schwarzbach,
2003). Two of the present authors previously reported
evidence for the processing of unconscious motion
information. Mattler and Fendrich (2007) employed a
ring of points that rotated so rapidly observers saw
only a fused static ring, but viewing this ring primed
direction judgments when observers subsequently
viewed a visibly rotating ring. In 2010 Mattler and
Fendrich extended their observations by reporting that
viewing such a rapidly rotating ring can produce an
illusory rotation in the same direction as the invisible
rapid rotation in a stationary ring of points that
precedes or follows the rotating ring.

In the investigations reported in the 2010 paper, the
rotating ring was 58 of visual angle in diameter,
constructed of 16 points, and presented on the CRT
screen of a fast phosphor oscilloscope. This ‘‘inducing
ring’’ was rotated at angular velocities as high as 22508/
s. When the inducing ring simply appeared and
vanished, observers perceived it as a flashed continuous
outline circle and performed at chance when asked to
report if the rotation had been clockwise or counter-
clockwise. However, when the inducing ring was
replaced by a stationary ‘‘test ring’’ of 16 points, this
stationary ring appeared to visibly spin to a halt,
primarily in the same direction the inducing ring had
been spinning. This illusionary spin was seen although
the initial and final positions of the inducing ring points
and the display positions of the test ring points were
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identical. Because the illusory rotation of the test ring
usually corresponded to the direction of the inducing
ring, observers were able to report this direction at
substantially greater than chance levels. Subsequently,
Mattler and Fendrich (2010) found there was a similar
effect when the stationary test ring preceded the
inducing ring. In this case, the test ring appeared to
launch into motion in the direction of the inducing ring.
Because these illusory motions linked the actual
(although invisible) rotation of the inducing ring to the
veridically stationary test ring, Mattler and Fendrich
labeled this illusion the Motion Bridging Effect (MBE).

Whereas other studies have reported ways of making
a moving stimulus invisible, these studies used methods
like crowding (e.g., Moutoussis & Zeki, 2006), binoc-
ular rivalry (e.g., Lehmkuhle & Fox, 1974), or
continuous flash suppression (e.g., Maruya, Watanabe,
& Watanabe, 2008) to mask or suppress the stimulus
motion. The MBE differs from these studies because it
demonstrates a motion inherently inaccessible to
consciousness is not only encoded by the visual system
but can subsequently manifest itself as a visible
attribute. A similar phenomenon has been previously
demonstrated in a different domain. Stationary grat-
ings can be made invisible by crowding (He, Cavanagh,
& Intriligator, 1996) or interocular suppression (Blake
& Fox, 1974) and still generate an aftereffect. It has
been shown that this is also possible if the grating is
inherently inaccessible to consciousness because of its
high spatial frequency (He & MacLeod, 2001).

Although the processes underlying the MBE are still
uncertain, a number of its characteristics are known.
Mattler and Fendrich (2010) found the MBE, assessed
by the congruence of the actual inducing ring and
reported test ring spin directions, declined as the
inducing ring’s angular velocity increased but was still
present at 22508/s, the highest velocity they tested. They
also found the MBE was maximal when there was a 90
ms ISI between the inducing and test ring presentation,
and was observable with inducing ring durations as
short as 15 ms, reaching an asymptotic level with
durations of 60 ms. In addition, they noted that the
MBE was degraded by a small (18 of visual angle)
spatial mismatch between the inducing and test ring
positions (produced by an expansion or upward shift of
the test ring) and this degradation was complete when
the spatial mismatch was increased to 38. This outcome
suggests the MBE depends on interactions that occur at
an early stage of the visual pathway where neural
representations map closely onto retinal locations.

More than one factor might be responsible for the
decline in the MBE as the inducing ring velocity
increases. An increase in the rotation rate increases not
only the linear velocity of the inducing ring but also the
temporal frequency at which points cross a given
position along the circumference of that ring. Temporal

frequency is one basic feature that affects the detection
of motion. Due to limitations in the rate at which the
human visual system can track luminance changes,
objects that stimulate retinal locations at high temporal
frequencies may be perceived as static forms or outlines
(e.g., a rotating fan blade may look like a blurred disk).
The upper limit of the system’s temporal response
capabilities can be investigated with a flicker detection
paradigm in which an observer reports the perceived
flicker of a luminous patch that has its intensity
modulated sinusoidally in time. Experiments using this
paradigm show that sensitivity to flicker initially rises
with increasing modulation frequencies and then falls
off steeply (Kelly, 1961). This pattern indicates that the
visual system acts like a band-pass filter that is most
sensitive to frequencies ranging from approximately 10
to 30 Hz (Cornsweet, 1970), with lower and higher
frequencies attenuated (see Kaufman, 1974, for a
summary of early research on flicker perception).

The temporal frequency at which a flickering light is
perceived as steady is termed critical flicker frequency
(CFF). While the CFF is influenced by a number of
stimulus conditions, including the luminance, size,
chromaticity, and sharpness of the test patch, as well as
variables such as an observer’s light adaptation level
(Kelly, 1959; Landis, 1954), the maximum value of the
CFF in humans is about 60 Hz. The apparently steady
appearance of stimuli that flicker faster than the CFF
can be taken to be indicative of the stability in the
activity of neurons responding to the flickering
stimulus. The visual system is, in effect, integrating
luminance variations over short periods of time (see
Barlow, 1958), with neural persistence acting to fill in
the activity troughs. This filling in may occur as early as
the photoreceptor level but could also be occurring at
higher levels in the visual system (see Coltheart, 1980).

However, flicker detection paradigms measure only
the conscious perception of flicker and therefore only
demarcate limits of conscious perception. A variety of
studies indicate that some neurons can encode lumi-
nance modulation frequencies higher than the CFF.
Cells in the monkey lateral geniculate nucleus respond
to flicker rates well beyond the human CFF (Spekreijse,
van Norren, & van den Berg, 1971), and neurons in the
primary visual cortex (V1) of monkeys respond to
flicker rates as high as 100 Hz when high contrast
patterns are used (Williams, Mechler, Gordon, Shap-
ley, & Hawken, 2004). In addition, macaque monkey
V1 neurons respond to heterochromatic flicker at 30
Hertz (Gur & Snodderly, 1997) although macaques do
not discriminate isoluminant red/green flicker at 15 Hz
(Schiller, Logothetis, & Charles, 1990). In human
observers, Regan (1968) has reported that stimuli with
temporal frequency modulations higher than the CFF
evoke potentials in the EEG (for similar findings, see
Herrmann, 2001; Krolak-Salmon et al., 2003; Lyskov,
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Ponomarev, Sandström, Mild, & Medvedev, 1998).
Akin to the results for chromatic flicker in monkeys, in
a human fMRI study, Jiang, Zhou, and He (2007)
found activity in visual cortical areas related to
chromatic flicker at 30 Hz even when participants were
unable to distinguish the presented stimulus from a
static control stimulus. Moreover, Shady, MacLeod,
and Fisher (2004) showed that temporal frequency
modulations above the CFF can have an impact on
perception. These investigators found in an adaptation
experiment that patches flickering above an observer’s
CFF influenced sensitivity to subsequent flickering
patches.

The limited ability of observers to consciously
perceive rapid rates of temporal change also sets limits
on their ability to perceive rapid rates of motion.
Holcombe, in a 2009 review of the visual system’s
temporal processing capabilities, has in fact argued that
flicker can be regarded as ‘‘a degenerate case of
motion’’ (p. 217). In the case of rapidly moving stimuli,
neural persistence can generate percepts of spatially
extended lines and areas rather than stimuli that are
spatially displacing. This neural persistence also sets
limits to the perception of apparent motion: If
presented at a sufficiently rapid rate, advancing or
alternating points will be seen as simultaneously
present rather than advancing or jumping back and
forth (Wertheimer, 1912).

The visual system’s spatial resolving capabilities with
static stimuli can be evaluated by determining the
minimum luminance contrast required for the detection
of sinusoidal gratings of increasing spatial frequency.
This determination yields the human contrast sensitiv-
ity function (e.g., Campbell & Robson, 1968). Kelly
(1979) extended this method to obtain spatio-temporal
contrast-sensitivity functions for moving sinusoidal
gratings. He found the sensitivity function remains
similar in shape but shifts to a lower spatial frequency
as the grating is presented at higher velocities, and
notes that at velocities greater than 1008/s there is
probably no spatial frequency within the range of
normal human vision that would allow a grating to
have a detectable contrast. Using a direction detection
task, Burr and Ross (1982) likewise found the contrast
sensitivity function of moving gratings shifted towards
lower spatial frequencies as the grating’s velocity
increases. However, Burr and Ross (1982) challenged
the 1008/s limitation: They found that gratings with
velocities as high as 8008/s could be detected when the
spatial frequency was lowered to 0.01 c/8. They
proposed that the limiting factor of motion detection,
as is the case with flicker perception, is the temporal
frequency of intensity modulations. In their experiment
this frequency was approximately 30 Hz. Above this
critical rate, motion could no longer be perceived.

Thus, the sensitivity of local motion processing seems
to depend on temporal rather than spatial frequency.

Like measurements of the CFF, however, these
investigations depend upon the conscious percepts of
observers. They therefore do not rule out the possibility
that stimulus motions with higher temporal frequencies
are being encoded at the retinal level and processed at
postretinal levels of the visual system although they
cannot be consciously detected or discriminated. Thus,
just as Shady et al. (2004) reported the processing of
flicker rates above the flicker-fusion threshold, motion
inaccessible to consciousness could still be processed
and have an impact on perception.

Overview

In the present study, we report four experiments that
further investigate functional dependencies of the
MBE. In Experiment 1 we varied the number of points
used to construct the inducing and test ring. Increasing
the number of points had the effect of increasing the
temporal frequency of point presentations at each
position along the inducing ring circumference while
leaving its linear and angular velocity unchanged. In
Experiment 2 we varied the diameter of the inducing
and test rings. In addition to altering their retinal
eccentricity, this manipulation modified the linear
velocity of the inducing ring points but left the
temporal frequency of point presentations along the
ring circumference unchanged. In Experiment 3 we
investigated the possibility that the observed effects of
varying the number of points and the diameter of the
rings are both mediated by a common factor: the
distance between the points that formed the rings. By
changing the diameter of the rings together with the
number of points, we kept the point distance constant
but varied temporal frequency. In Experiment 4 we
addressed the effect of the inducing and test ring
luminance on the MBE and found no effect of these
variables.

General methods

Participants

The participants were students at University of
Goettingen with a mean age of 24.5 years. They were
compensated E7 per hour for their participation. All
participants undertook a visual acuity test using the
Landolt ring chart and had normal or corrected-to-
normal vision. In Experiments 1–3 participants com-
pleted three, 1 hr sessions; in Experiment 4 they
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completed two, 1 hr sessions. Sessions were always run
on separate days. We examined 12 students in each
experiment, with no student taking part in more than
one. However, in Experiment 1, the data of one of the
12 students was subsequently excluded from data
analyses because it was found her vision was impaired,
so data from 11 subjects is reported for this experiment.

Apparatus

Stimuli were presented on a cathode-ray oscilloscope
(HAMEG HM 400) controlled by a PC with a 12-bits
Digital-Analog converter. The 8 3 10 cm oscilloscope
display was customized with a fast P15 phosphor (50 ls
luminance decay time to 0.1%). The experiment was
run in a dark room, and participants had their head
positions stabilized 57 cm from the oscilloscope by a
chin and forehead rest.

Stimuli

Stimuli are illustrated in Figure 1. Participants were
presented with a rapidly rotating inducing ring of
luminous points and a stationary test ring of luminous
points. The points were slightly blurred because pilot
observations had shown this enhanced the illusionary
motions being investigated.

In all the reported experiments, 12, 16, or 20 equally
spaced points were used to construct the inducing and

test rings. The position of these points could be
adjusted in steps of 0.25 angular degrees, allowing them
to be placed in 1440 potential positions along the ring
circumference. The inducing ring was rotated by
advancing all of its points by a specified number of
positions every millisecond, so that it was updated with
an effective frame rate of 1000 Hz. When the inducing
ring was formed from 16 or 20 points, it could be
rotated clockwise or counterclockwise with angular
velocities of 2508, 7508, 15008, and 22508/s. These
velocities entailed sequential point position advances of
1, 3, 6, and 9 steps. Due to programming constraints,
when the inducing ring was constructed from 12 points,
the highest angular velocity was 25008/s rather than
22508/s which entailed a step size of 10. The rotation of
the inducing ring always started and ended with points
placed at the same set of ring circumference positions.
These were also the positions of the test ring points
when the test ring was presented. At the higher rotation
velocities (above 2508/s) the inducing ring appeared to
be an unbroken outline circle. To produce a display free
of visible switching artifacts, the CRT electron beam
was switched off during its transit between the
successive point positions. The diameter of the rings,
number of points used to form the rings, and actual
rotation rates employed in each experiment are
described in each experiment’s specific methods sec-
tions.

As indicated in Figure 1, the inducing ring duration
was usually 121 ms. However, in Experiments 1 and 3
when the inducing ring velocity was 2508/s, this
duration was 91 ms when 16 points were displayed and
145 ms when 20 points were displayed. These devia-
tions from the standard display time were necessitated
by the combined constraints imposed by the relatively
slow inducing ring rotation and the need to end its
display interval when its point positions matched the
position of the test ring points. Note that these
variations in the inducing ring display time had no
effect on our measures of the MBE since at the 2508/s
velocity the MBE could not be measured because the
inducing ring rotation was visible even when no test
ring was presented.

Statistical analysis

In all the experiments, we used signal detection
methods to analyze performance (Macmillan & Creel-
man, 2004). We defined hits as clockwise responses to a
clockwise rotation and false alarms as clockwise
responses to a counterclockwise rotation. Hit and false
alarm rates were estimated separately for each subject
in each condition and corrected with the log-linear rule
(Hautus, 1995). We evaluated d0 measures of the
discrimination ability of participants with repeated

Figure 1. Display sequence in Experiments 1–4. On a given trial

the inducing ring rotated either clockwise (as shown in the

figure) or counterclockwise. Note the points on the oscilloscope

were bright on a dark background.
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measures analyses of variances (ANOVAs). All re-
ported ANOVA p values were corrected using Green-
house-Geisser estimates of sphericity but for the sake of
readability, the uncorrected degrees of freedom are
reported. Differences between specific conditions were
evaluated with posthoc Bonferroni-corrected two-tailed
t tests. Performance levels in specific conditions were
compared to a chance level of 50% with one-tailed
Bonferroni-corrected t tests that evaluated whether d0

exceeded zero.

Luminance of the stimuli

Because of its small size, special methods are
required to measure the brightness of a point on an
oscilloscope screen. We employed a Minolta LS-100
luminance meter with a close-up lens that allowed us to
focus on a small region of the oscilloscope display. To
obtain a measurable luminance signal, we presented a
rectangular matrix of 12, 16, or 20 contiguous points
with their intensity, on-time, and repetition rates set to
match the intensity, on-time, and repetition rates of the
points in our inducing ring or test ring displays.
Luminance estimates of the time averaged brightness of
our display points were obtained by measuring the
luminance of these matrices.

The brightness of the test ring points in the 12 and 16
point display conditions was about 1.50 cd/m2 on a
dark background. Point luminance in the 20 point
condition was slightly lower (1.20 cd/m2). The time
averaged brightness of the inducing ring points varied
with point number and velocity (see Table 1). We
address the possible effect of these luminance variations
in Experiment 4.

Experiment 1

In this experiment we confirmed the previously
reported Motion Bridging Effect (Mattler & Fendrich,
2010) and investigated the effect of varying the number

of points used to form the inducing and test rings.
Changing the number of points effectively changes the
temporal frequency of point presentations at each
position along the inducing ring circumference (see
Table 2) while keeping the linear and angular velocity
constant.

The limiting factor in the perception of the direction
of sinusoidal gratings is the temporal modulation rate
of the stimulus (e.g., Burr & Ross, 1982). This might
hold true for the MBE as well, although the MBE is
found when the temporal frequency of point presenta-
tions along the inducing ring circumference substan-
tially exceeds conventional flicker fusion thresholds (de
Lange Dzn, 1958; Kelly, 1961). A decrease in the MBE
as the number of points increases, with the consequent
increase in their temporal frequency, would support
this premise.

Method

Stimuli

Twelve, 16, or 20 equally spaced points formed the
circumference of the inducing and test rings (see Figure
2). The point separations for these three point numbers
were respectively 1.44, 1.08, and 0.868 of visual angle
measured along the ring circumference. The number of
points in the inducing and test rings was identical in
any given trial. The diameter of the rings was 5.58 of
visual angle. Rotation rates of 2508, 7508, 15008, and
22508/s (25008/s in the 12 point condition) were
employed.

Task

Participants reported the direction of any perceived
rotation (clockwise or counterclockwise). Responses
were registered with the arrow keys of a conventional
computer keyboard, with the right arrow indicating a
clockwise rotation and the left arrow a counterclock-
wise rotation. Trial blocks were started with a press of
the space key. No feedback was given about the
correctness of responses.

Point number

Angular velocity (in 8/s)

250 750 1500 2250/2500

12 0.012 0.037 0.072 0.124

16 0.017 0.050 0.099 0.149

20 0.017 0.051 0.101 0.149

Table 1. Time averaged brightness of inducing ring points in
Experiments 1 and 3 in cd/m2. Note: The replication of the point
refresh rates in the 2508/s angular velocity conditions
necessitated time averaging across flicker rates that were below
the flicker fusion frequency.

Point number

Angular velocity (in 8/s)

250 750 1500 2250/2500

12 8.33 25 50 83.33

16 11.11 33.33 66.67 100

20 13.89 41.67 83.33 125

Table 2. Temporal frequency of point presentations at each
position along the circumference of the inducing ring in
Experiments 1 and 3 in Hz.
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Procedure

Participants were instructed to maintain their gaze
on a central fixation point during the trials. This
fixation point brightened for 750 ms at the start of each
trial to indicate that the inducing ring was about to
appear. In the conditions in which the test ring was
presented, it followed the inducing ring after a 60 ms
interstimulus interval (ISI) and remained visible for 500
ms. Subjects’ reports of the inducing ring direction were
recorded starting 300 ms after the offset of the test ring.
A response was required for the experiment to proceed.
A new trial started 1 second after the response.

Design

Fourteen trial blocks were run in each session with
the first two treated as practice and excluded from data
analysis. The number of points in the inducing ring was
changed in the seventh and 11th blocks following a
Latin Square design. There were 48 trials in each block,
with an additional eight practice trials (which were not
analyzed) added at the start of the seventh and 11th
blocks. Blocks in which only the inducing ring was
presented were alternated with blocks in which the
inducing ring was followed by the test ring. The angular

velocity and the rotation direction of the inducing ring
were varied quasirandomly within each block.

The combination of two test ring states (present vs.
absent), four inducing ring angular velocities (2508,
7508, 15008, 22508/25008/s) and three point numbers
(12, 16, 20) produced 24 experimental conditions. There
were 72 trials in each of these conditions: 36 with a
clockwise inducing ring rotation and 36 in counter-
clockwise rotation.

Results

Results and confidence intervals for sensitivity to the
inducing ring direction in all the conditions of
Experiment 1 are presented in Figure 3A. This data is
also presented as mean percent correct accuracy rates in
Appendix Table A1. To take into account the very
different response profiles found when the test ring is
present and absent, we calculated two separate, two-
way ANOVAs, one for each of the test ring conditions
(present vs. absent). These analyses are presented in
Table A2 in the Appendix. They evaluate the effect of
angular velocity and the number of points that formed
the inducing and test ring on observers’ sensitivity (d0)

Figure 2. The various display conditions in Experiment 1–3.When the diameter of the rings was varied, the visual angle of its diameter

is indicated. Note that the sizes of the rings depicted here are not precisely scaled to their sizes in the actual displays. Also note the

points on the oscilloscope were bright on a dark background.
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to the inducing ring rotation. We will refer to these
factors as Velocity and Point-number.

Inducing ring only

When the inducing ring was presented alone, the
main effects of both Velocity and Point-number were
significant and there was a significant Velocity3Point-
number interaction (Appendix Table A2). Mean
sensitivity declined as Velocity increased (d0¼ 3.85, d0¼
0.61, d0 ¼ 0.10, and d0 ¼ 0.06 at 2508, 7508, 15008, and
22508/25008/s, respectively) and as Point-number in-
creased (d0 ¼ 1.36, d0 ¼ 1.14, and d0 ¼ 0.96 with 12, 16,
and 20 points, respectively). As can be seen in Figure
3A, sensitivity rates were high in the 2508/s condition,
dropped precipitously in the 7508/s condition, and were
at chance in the two high velocity conditions. This
pattern of outcomes accords with informal reports that

the inducing ring perimeter fused into a visually
unbroken outline circle at the higher velocities but was
perceived as a set of spinning points at the lowest
velocity (2508/s).

The effect of Point-number was restricted to the two
lower ring velocities. At the higher velocities, sensitivity
remained near zero irrespective of the point number,
accounting for the Point-number 3 Velocity interac-
tion. Two-tailed t tests (with a Bonferroni-corrected
alpha level of 0.0042) were performed to compare the
across subject mean values of d0. These tests indicate
that with the 2508/s velocity the sensitivity was lower in
the 20 point condition than in the 16 point condition,
whereas with the 7508/s velocity the sensitivity was
lower in both the 20 and 16 point conditions than the
12 point condition. With the 15008/s and 22508/25008/s
velocities, the point conditions did not produce any
significant differences in d0.

A fundamental aspect of the MBE is that the
improvement in sensitivity produced by the test ring
presentation occurs even when subjects perform at
chance in the inducing ring only condition. To
investigate the velocity and point-number levels at
which subjects were unable to discriminate the rotation
direction of the inducing ring, we directly compared the
discrimination ability of participants in the inducing
ring only condition to a chance level of 50% (d0¼0). To
do this we calculated 12 one-tailed t tests (with a
Bonferroni adjusted alpha level of 0.0042), one for each

Figure 3. (A) Mean sensitivity (d0) for 11 participants of Experiment 1 as a function of inducing ring velocity and point-number in the

inducing ring only conditions (the dashed lines) and the inducing ringþ test ring conditions (the solid lines). (B) Mean d0 values from

the inducing ringþ test ring conditions for rotation rates of 7508/s and greater as a function of temporal frequency. The solid gray line

indicates the chance level of accuracy (d0 ¼ 0). The error bars show 95% CI. Points and confidence intervals are slightly offset

horizontally to improve their visibility in (A).

Diameter

Angular velocity (in 8/s)

250 750 1500 2250/2500

3.58 7.64 22.91 45.82 68.72

5.58 12.00 36.00 72.00 108.00

7.58 16.36 49.09 98.18 147.26

Table 3. Linear velocity of the rotating points in the 3 diameter
conditions of Experiment 2 in degrees of visual angle per
second.
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combination of velocity and point-number. We found
that mean sensitivity was significantly greater than zero
with every point-number when the angular velocity was
2508/s (p , 0.0001 in all cases), and with the 7508/s
velocity when the inducing ring was formed by 12 or 16
points (p , 0.0001 and p ¼ 0.0026, respectively). The
mean d0 did not exceed zero in the 20 point 7508/s
condition or with any point number in the two high
velocity rotation conditions. Except for the 12 point
15008/s condition, this was the case with the two high
velocities even when we employed an uncorrected 0.05
significance level.

Inducing ring þ test ring

To address the characteristics of the MBE, similar
analyses were carried out with the inducing ring þ test
ring conditions. However, it is only meaningful to
speak of the MBE when the appearance of the test ring
enables the discrimination of the inducing ring direc-
tion. The 2508/s velocity therefore was excluded from
these analyses since at this velocity the inducing ring
rotation is readily visible even when no test ring is
presented.

In a 333 ANOVA with Velocity (7508, 15008, 22508/
25008/s) and Point-number (12, 16, 20 points) as factors
the main effects of both Velocity and Point-number
were significant as well as the Velocity3 Point-number
interaction (Appendix Table A2). As in the inducing
ring only conditions, mean sensitivity declined with
increasing angular velocities (d0¼ 2.48, d0¼ 1.42, and d0

¼ 0.75 for the 7508, 15008, and 22508/25008/s velocities,
respectively), and with increasing point numbers (d0 ¼
2.03, d0¼ 1.59, and d0¼ 1.03 with 12, 16, and 20 points,
respectively). However, it can be seen in Figure 3A that
the pattern of the data is very different from that found
when no test ring was present. Rather than plummeting
towards zero, observer’s sensitivity rates remained
quite high at the 7508/s velocity and declined in a
relatively linear fashion as the velocity increased,
remaining well above zero at 15008/s and 22508/25008/s.
In addition, point number continued to have an effect
at all three velocities, although there is a reduction in
this effect as the velocity increased, accounting for the
Velocity 3 Point-number interaction.

The reliability of the observed pattern of effects was
evaluated with two-tailed posthoc t tests that compared
specific values of d0 in the various point-number
conditions (using a Bonferroni-corrected alpha level of
0.0056). In all three velocity conditions sensitivity was
significantly poorer in the 20 point condition than in
the 12 point condition (see Figure 3A). In addition, d0

values were significantly lower in the 20 point condition
than in the 16 point condition with the 7508/s and
15008/s velocities. No difference between the 12 point
and the 16 point condition was found at any velocity

when we used the Bonferroni-corrected a values.
However, d0 values were lower in the 16 point condition
than in the 12 point condition at 7508/s, and at 22508/
25008/s when we employed an uncorrected 0.05
significance level.

Velocity and Point-number both modulate the
temporal frequency of the point presentations at
specific localities on the inducing ring circumference:
As the rotation rates go up, points cross a given locality
more frequently, and as the point number goes up,
fewer steps are needed for successive points to cross a
given locality. To address the hypothesis that the
decline in the strength of the MBE as the inducing ring
velocity increases and point-number decreases, is
attributable to the increased temporal frequency of
point presentations, we calculated the temporal fre-
quency for each combination of point number and
angular velocity (see Table 2) and correlated these rates
with observer’s mean sensitivity (d0) in that condition.
A significant relationship between the MBE and the
temporal frequency of the inducing ring was found, r¼
�0.92, p , 0.001, with the MBE decreasing as temporal
frequency increased (see Figure 3B).

Summary and discussion: Experiment 1

In Experiment 1 we replicated the MBE and
confirmed its dependence on angular velocity (Mattler
& Fendrich, 2010). When the inducing ring was
presented by itself, observers’ ability to detect its
rotation fell to chance at velocities of 15008/s and
higher, but remained well above chance at velocities of
up to 25008/s when the rotating ring was followed by
the stationary test ring. Interestingly, at these high
velocities the temporal frequency of point presentations
along the circumference of the inducing ring could be as
high as 125 Hz, which not only exceeds conventional
estimates of the CFF (Kaufman, 1974) but also exceeds
the reported limits for the conscious detection of
motion (Burr & Ross, 1982; Kelly 1979).

Experiment 1 also demonstrates that the conscious
perception of motion in the inducing ring only
conditions and the MBE in the inducing ringþ test ring
conditions were dependent on the number of points
that formed the rings. Increasing the number of points
reduced an observer’s ability to discriminate the
inducing ring’s rotation direction both when it was
presented by itself and when it was followed by the test
ring, though in the latter case performance remained
better than chance at every tested velocity and point-
number. Because increasing the point number acted to
increase the temporal frequency without altering
velocity, the effect of point number is consistent with
the premise that the conscious perception of motion
was limited by the temporal frequency of the point
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presentations along the inducing ring circumference.
When only the inducing ring was presented, this effect
was largely overridden by ceiling effects at the 2508/s
velocity (since participant’s responses were mostly
correct) and basement effects at the 15008/s and higher
velocities (since participants always performed at
chance), but at the 7508/s velocity, performance in the
12 point (25 Hz) condition was substantially better than
in the 16 (33 Hz) and 20 (42 Hz) point conditions (see
Figure 3A). These results are consistent with Burr and
Ross’s study (1982) in which the detection of the
motion of sinusoidal gratings begins to deteriorate at
around 10 Hz and completely breaks down at around
30 Hz.

When both the inducing and test rings were
presented, the effect of point-number was far more
pervasive, clearly demonstrating that the illusory
motion of the MBE, like the actual inducing ring
motion, is modulated by the number of points in the
inducing ring. Increasing the number of points reliably
reduced the MBE with the 7508, 15008, and 22508/
25008/s velocities. As is the case for the percepts of the
actual motion, this effect may be attributable to an
increase in the temporal frequency. However, in the
case of the MBE the upper limit of the effective range
of temporal frequency would be above 125 Hz,
considerably higher than it is in the case for flicker and
motion perception.

Varying the point number has the additional effect
of generating complex changes in the inducing ring’s
spatial frequency spectrum. The effect of altering the
point-number could therefore also be attributed to a
dependency of the MBE on the inducing ring’s spatial
frequency composition. While we cannot rule out the
spatial frequency spectrum of the inducing ring as a
factor that contributes to the observed effects, we
regard this issue as unlikely. Burr and Ross (1982)
regarded spatial frequencies as meaningful for motion
detection only because they determined the temporal
frequency of the intensity modulations that occurred
when their grating stimuli moved. Moreover, when the
inducing ring rotates at a high velocity, there is little
opportunity for the spatial frequency components
associated with the number of inducing ring points to
have any effect because the inducing ring fuses due to
visual persistence into an apparently continuous
outlined circle irrespective of point separation. This
implies the moving points are rendered visually
simultaneous at every position where they are displayed
so that the amplitude of the spatial frequency
components associated with the inducing ring point
separations will be reduced to virtually zero. Based on
these considerations, the findings of Experiment 1 are
more likely to be the effect of temporal frequency
changes rather than any change in the spatial frequency
spectrum of the inducing ring.

Experiment 2

In this experiment we investigated the effect of
changing the diameter of the inducing and test ring on
the illusory motion percept. Changing the diameter of
the inducing ring has two major effects: It changes both
the retinal eccentricity of the points that form the ring
and changes their linear velocity as the ring rotates (see
Table 3). However, the change in ring diameter will not
change the angular velocity of the rotating points or the
temporal frequency of the point presentations at
specific positions along the ring circumference.

While the MBE occurs at rotational velocities so
high that visual persistence prevents motion from being
consciously perceived, this rotation may nevertheless be
capable of driving speed-selective cortical cells (Si-
moncelli & Heeger, 1998) tuned to high velocity
motions. Velocity-tuned cells in the medial temporal
cortex of monkeys that are specifically responsive to
rotational movements have been reported by Tanaka
and Saito (1989). If such cells play a role in mediating
the MBE, increasing the linear velocity of the inducing
ring points could decrease the MBE by raising
velocities above the response limits of these cells.
Alternatively, the MBE could increase with increasing
eccentricity because the modulation sensitivity of the
visual system increases with eccentricity (Hartmann,
Lachenmayr, & Brettel, 1979; Tyler, 1985, 1987).

Method

Stimuli and procedures were similar to those
described for Experiment 1 with the following changes:
In Experiment 2 the inducing and test rings were always
constructed from 16 points, but the diameter of the
rings was varied block-wise in three steps: 3.58, 5.58,
and 7.58 of visual angle (see Figure 2). The point-
distance was respectively 0.698, 1.088, and 1.478 of
visual angle (measured along the ring circumference)
for the three diameters. The diameter of the test ring
always matched that of the inducing ring. As in the first
experiment, 14 trial blocks were run in each session
with the first two treated as practice and excluded from
data analysis. The diameter of the inducing ring was
changed after the sixth and 10th blocks following a
Latin Square design. There were 48 trials in each block,
with an additional eight practice trials (which were not
analyzed) added at the start of the seventh and 11th
blocks.

The inducing ring duration was always 91 ms and the
test ring duration 500 ms. Inducing ring rotation
velocities of 2508, 7508, 15008, and 22508/s were
presented within each block in a quasirandom order.
For the corresponding linear velocities see Table 3. The
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combination of two test ring states (present vs. absent),
four inducing ring angular velocities, and three
diameters produced 24 experimental conditions. There
were 72 trials in each of these conditions: 36 with a
clockwise inducing ring rotation and 36 in counter-
clockwise rotation.

Results

Results and confidence intervals for all the conditions
of Experiment 2 are presented as d0 values in Figure 4A.
Figure 4B shows the relationship between the MBE and
temporal frequency. Mean percentage correct perfor-
mance values are presented in Appendix Table A3. As in
Experiment 1, separate ANOVAs were calculated for the
test ring present and test ring absent conditions. These
ANOVAs are presented in Appendix Table A4.

Inducing ring only

When only the inducing ring was presented, the
across subject sensitivity (d0) to the rotation direction
was examined with a 4 3 3 ANOVA with Velocity and
Diameter as the factors. The main effect of Velocity
was significant, but we found no significant main effect
of Diameter and no significant interaction between
Velocity and Diameter (Appendix Table A4). The effect

of Velocity followed the pattern observed in Experi-
ment 1, as shown in Figure 4A. Sensitivity rates were
high in the 2508/s condition, abruptly dropped in the
7508/s condition, and fell to chance levels in the two
high velocity conditions.

Twelve one-tailed t tests (with a Bonferroni-correct-
ed alpha level of 0.0042) confirmed the consistent above
chance performance in the 2508/s velocity conditions (p
, 0.0001 in all cases) and chance performance in the
high velocity 15008 and 22508/s conditions. In the 7508/
s condition, d0 was slightly but significantly greater than
zero with the two larger ring diameters (d0¼ 0.48 and d0

¼ 0.33, p¼ 0.0013 and p¼ 0.0037, for the 5.58 and 7.58
rings, respectively). Performance did not differ from
chance for any ring diameter in the two high velocity
conditions. Except for the 7.58 ring diameter in the
22508/s condition (p ¼ 0.0073), which we regard as a
false positive, this was the case even when we employed
an uncorrected 0.05 significance level.

Inducing ring þ test ring

Similar analyses were carried out for the inducing ring
þ test ring conditions to address the characteristics of the
MBE. As in Experiment 1, trials with 2508/s velocity
were excluded from these analyses because at this
velocity discrimination of the inducing ring rotation did
not depend upon the test ring presentation. In a 3 3 3
ANOVA with Velocity and Diameter as factors, the

Figure 4. (A) Mean sensitivity (d0) for 12 participants of Experiment 2 as a function of inducing ring velocity and ring diameter in the

inducing ring only conditions (the dashed line) and the inducing ringþ test ring conditions (the solid line). (B) Mean d0 values from the

inducing ringþ test ring conditions for rotation rates of 7508/s and greater as a function of temporal frequency. The solid gray line

indicates the chance level of accuracy (d0 ¼ 0). The error bars show 95% confidence intervals. Points and confidence intervals are

slightly offset horizontally to improve their visibility.
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main effect of both these factors was significant but they
did not interact (Appendix Table A4).

As in Experiment 1, the pattern of the data is very
different from that found when no test ring was
present. As expected, mean sensitivity declined with
increasing angular velocities in a relatively linear
fashion (d0 ¼ 2.39, d0 ¼ 1.28, and d0 ¼ 0.74 at 7508,
15008, and 22508/s, respectively). In addition, as the
ring diameter increased the MBE grew stronger (d0 ¼
1.00, d0 ¼ 1.46, and d0 ¼ 1.95 at 3.58, 5.58, and 7.58 of
visual angle). However, despite the fact that the 3.58
diameter ring produced the lowest accuracy rates at all
velocities, only with the 22508/s velocity did that rate
come close to chance. The reliability of the effect of ring
diameter was confirmed by Bonferroni-corrected two-
tailed posthoc t tests (a¼ 0.0056) which indicated that
at all three velocities the MBE was significantly weaker
with the 3.58 ring diameter than the 7.58 ring diameter.
Additionally, the MBE was weaker with the 5.58 ring
diameter than with 7.58 ring diameter in the 7508/s
condition and weaker with 3.58 ring diameter than the
5.58 diameter in the 22508/s condition.

Discussion: Experiment 2

In Experiment 2 we found that the MBE depends on
the diameter of the inducing and test ring, with a larger
ring diameter producing a stronger MBE. Increasing
the diameter of the rings both increased the retinal
eccentricity of the points that formed the rings and
increased the linear velocity of the points as the
inducing ring rotated. The increase in linear velocity
produced by increases in the inducing ring’s angular
velocity is reliably associated with a decrease in the
MBE. Therefore, it would be reasonable to expect any
effect of the increase produced by the larger ring
diameter would also be a reduction of the MBE. Since
we observed the reverse—larger ring diameters in-
creased the MBE—we think it is likely that the increase
in retinal eccentricity was responsible for this effect.
While it is possible that the increase in velocity did in
fact act to reduce the MBE but this reduction was
overwhelmed by an opposing effect produced by the
eccentricity change, our data suggest that the increase
in linear velocity had no effect at all. When we
calculated the linear velocity for each combination of
diameter and angular velocity (see Table 3) and
correlated these rates with observers’ mean sensitivity
(d0) no significant relationship between the MBE and
linear velocity was found (r ¼�0.41, p . 0.05).

The ring diameters we employed placed the ring
circumferences in two anatomically distinct regions of
the retina. Because the foveal region has an anatomical
diameter of approximately 58 (Millodot, 2018; Schubert,
2014; Wandell, 1995), the inducing and tests rings were

foveal in the 3.58 diameter condition but parafoveal in
the 7.58 condition. Therefore, the increase in the MBE
with increasing ring size might be attributable to the
para- and perifoveal areas being more capable of
processing rapid motions due to the increased domi-
nance of transient cells in these regions relative to the
fovea (for Y cell dominance in cats, see Hoffmann,
Stone, & Sherman, 1972; for the M cell increase in
monkeys, see Schein & de Monasterio, 1987; on the
implications for human perception see Breitmeyer &
Ganz, 1976). While there is data indicating that
sensitivity to motion is similar in the fovea and more
peripheral regions of the retina (McKee & Nakayama,
1984) or that the fovea is actually more sensitive to
motion than the periphery (Finlay, 1982), Sekuler (1975)
concluded that the periphery has a distinct preference
for high rates of temporal modulation. One can construe
this as a shift in the temporal frequency response
function for moving stimuli towards higher values as
retinal eccentricity increases. Along with other evidence,
Sekuler notes that when Armstrong (reported in Sekuler,
1975) presented targets with linear velocities up to 1008/s
on an oscilloscope, the motion of these targets was only
perceived when the target was 108 eccentric. Baker and
Braddick (1985) argue, based on an increase of the
spatial limit of apparent motion (dmax) with eccentricity,
that high velocity motions that are not visible in central
vision can become visible in the periphery of the retina.
The argument that the periphery of the retina is sensitive
for high temporal modulation is further supported by
findings from flicker research. Tyler (1985), for example,
reports the peripheral CFF can be substantially higher
than the foveal CFF (see also Hartmann et al., 1979; and
Tyler, 1987). If the temporal frequency is a primary
determinant of the strength of the MBE, as our
Experiment 1 results suggest (see also Figure 4B), these
findings make a higher temporal sensitivity in the
peripheral retina a likely candidate for the reported
effect of ring diameter.

There is, however, an additional factor that needs to
be considered. In both Experiments 1 and 2 the stimulus
conditions that led to an increase in the MBE were
associated with an increase in the spatial separation
between the points that formed the inducing and test
rings. This finding raises the possibility that the observed
effects were attributable to this increased point separa-
tion. In Experiment 3 we examined this possibility.

Experiment 3

In Experiment 1 we found reducing the number of
points in the inducing and test rings increased the
strength of the MBE. In Experiment 2 we found that
enlarging the rings increased the MBE. The fact that
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both these manipulations increased the spatial separa-
tion between the points forming these rings raised the
possibility that this change in separation was mediating
the change in performance in both cases. In the
discussion of Experiment 1 we noted that the spatial
frequency components associated with the separation
of the points that form the inducing ring do not seem
likely to directly impact the MBE because when its
rotation is rapid, visual persistence transforms the ring
into a visually continuous outline. Nevertheless,
because point spacing was a confounding variable in
both Experiments 1 and 2 we felt its potential
contribution to the experimental outcomes needed to
be empirically evaluated. This was done in Experiment
3 by covarying the diameter and the number of points
in the inducing and test rings in a manner that caused
the spacing between the points forming the rings to
remain constant. Experiment 3 is therefore akin to
Experiment 1 in that at each tested angular velocity,
temporal frequency is varied, but this is accomplished
while holding point separations constant.

Method

Fourteen trial blocks of 48 trials, half with the
inducing ring followed by the test ring, were run in each
of three sessions, following the sequence and proce-
dures described for Experiment 1. Stimuli were similar

to those employed in Experiment 1 with the following
modifications. As in the first Experiment, 12, 16, or 20
equally spaced points formed the circumference of the
inducing and test rings, with changes in the point
number at the start of the seventh and 11th block
following a Latin-square design. However, these
changes were coupled with changes to the inducing ring
diameter so that an interpoint separation of 1.088 of
visual angle on the circumference of the ring was
maintained. The required ring diameters were 4.1258,
5.58, and 6.8758 of visual angle in the 12, 16, and 20
point conditions, respectively (see Figure 2). As in
Experiments 1 and 2, clockwise and counterclockwise
inducing ring rotation directions with angular velocities
of 2508, 7508, 15008, and 22508/s (25008/s in the 12 point
condition) were presented in a quasirandom fashion.

The combination of two test ring states (present vs.
absent), four inducing ring angular velocities, and three
point-number/diameters produced 24 experimental
conditions. There were 72 trials in each of these
conditions: 36 with a clockwise inducing ring rotation
and 36 in counterclockwise rotation.

Results

Results and confidence intervals for all conditions of
Experiment 3 are presented in Figure 5A. Figure 5B
shows the relationship between the MBE and temporal

Figure 5. (A) Mean sensitivity (d0) for 12 participants of Experiment 3 as a function of inducing ring velocity and point-number/

diameter combination in the inducing ring only (the dashed line) and inducing ringþ test ring conditions (the solid line). (B) Mean d0

values from the inducing ringþ test ring conditions for rotation rates of 7508/s and greater as a function of temporal frequency. The

solid gray line indicates the chance level of accuracy (d0¼ 0). The error bars show 95% CI. Points and confidence intervals are slightly

offset horizontally to improve their visibility in (A).
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frequency. Mean percent correct rates are presented
Appendix Table A5. As in the previous experiments,
separate ANOVAs were calculated for the test ring
present and test ring absent conditions. These analyses
are presented in Appendix Table A6.

Inducing ring only

When the inducing ring was presented alone, the
effect of Velocity replicated the pattern found in the
previous experiments with mean sensitivity declining
sharply to chance levels as the inducing ring Velocity
increased. A 4 3 3 ANOVA with Velocity and Point-
number/diameter as factors revealed a significant main
effect of Velocity and a significant main effect of Point-
number/diameter (Appendix Table A6). The effect of
Point-number/diameter reflects a decline in perfor-
mance as Point-number/diameter increased. However,
while sufficient to produce a significant main effect in
the ANOVA, the effect of Point-number/diameter was
quite small and could not be confirmed at any velocity
with Bonferroni-corrected two-tailed posthoc t tests (a
¼ 0.0042). When we employed an uncorrected 0.05
significance level, point-number/diameter did produce
significant posthoc d0 differences but only when the
inducing ring velocity was 2508/s, with performance in
the 20 point condition poorer than in the 12 and 16
point conditions. Posthoc comparisons at the higher
velocities all failed to yield significant differences even
at 0.05 level.

Bonferroni-corrected one-tailed t tests (a ¼ 0.0042)
confirmed that sensitivity was significantly greater than
zero with every point-number when the angular
velocity was 2508/s (p , 0.0001 in all cases), but did not
differ from chance for any point number at any of the
higher velocities. When we employed an uncorrected
0.05 significance level, d0 exceeded 0 in every 7508/s
velocity condition, but at higher velocities the only case
of a data point exceeding chance was in the 16 point
condition when the ring diameter was 5.58 and velocity
was 22508/s, t(11) ¼ 2.28, p ¼ 0.0217. We regard this
outcome as a probable false positive.

Inducing ring þ test ring

To evaluate the effect of point separations on the
MBE, a similar ANOVA was performed on data of
conditions where the test ring followed the inducing
ring (Appendix Table A6). As in the first two
experiments, the 2508/s condition was excluded from
these analyses because it was not appropriate for
measuring the MBE, so there were three Velocity and
three Point-number/diameter conditions. As expected,
the main effect of Velocity was significant with a profile
similar to that observed in the inducingþ test ring
conditions of the previous experiments. Sensitivity to

the inducing ring direction was high in the 7508/s
condition, and declined relatively smoothly with
increasing angular velocities (d0¼ 2.51, d0¼ 1.36, and d0

¼ 0.82 at 7508, 15008, and 22508/25008/s velocities,
respectively), but remained well above chance at the
two highest velocity. However, there was no significant
main effect of Point-number/diameter and no signifi-
cant interaction between Velocity and Point-number/
diameter.

Thus, despite the fact that point-number (Experi-
ment 1) and diameter (Experiment 2) both modulated
the strength of the MBE when presented separately,
when covaried so that the interpoint distance re-
mained constant, they seemed to have no effect. This
result supports the hypothesis that the interpoint
distance was the critical variable in the previous
experiments, although, as discussed below, this
hypothesis raises problems and other interpretations
are feasible.

Discussion: Experiment 3

Experiment 1 suggested that the increases in the
temporal frequency of activations on the inducing ring
circumference might be a critical determinant of the
MBE’s decline with increasing angular velocity. In
Experiment 2 it was found that increasing the retinal
eccentricity of the inducing ring circumference en-
hanced the MBE. In Experiment 3, when these
variables were covaried to keep the separation between
the points that formed the inducing and test rings
constant, the magnitude of the MBE did not change.
As this manipulation required the pairing of an increase
in the ring diameter with an increase in the number of
points forming the rings, the simplest way to account
for this result is to posit that the enhancement
produced by the increase in diameter and decrement
produced by the increase in point number simply
canceled. This account seems unlikely because it
requires that the cancelation be coincidentally perfect
when the interplay of point-number and diameter also
holds the interpoint distance constant. We return to
this consideration in our final discussion. Here, we note
that the alternative hypothesis that the distance
between the inducing ring points was directly respon-
sible for the effects observed in Experiments 1 and 2
also needs to be considered.

Accepting this premise, however, implies that the
changes in temporal frequency produced by our point
number manipulations in Experiment 3 played little
or no role in determining the MBE strength (see
Figure 5B). This implication does not fit well with the
existing evidence (e.g., Burr & Ross, 1982) that
motion perception is in general dependent on the
processing of temporal frequencies. There must, in
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fact, be some temporal frequency at which neural
persistence makes the neural responses to intensity
changes too shallow to differentiate a rotating from a
stationary ring. The absence of an effect of point-
number in Experiment 3 suggests that with temporal
frequencies as high as 125 Hz (see Table 2) the
flattening of neural modulations is not yet sufficient
to degrade the MBE. This is a surprising outcome.
Moreover, in combination with the implication of
Experiment 2 that linear velocity does not affect the
MBE, it leaves the relatively steady decline in the
MBE with increasing angular velocity unaccounted
for. The results of Experiment 3 therefore raise
puzzling issues that need to be addressed. We will
return to these issues in our final discussion.

Experiment 4

In Experiments 1 and 3, a side effect of varying the
number of points in the inducing ring was a change in
the time-averaged luminance of the inducing ring and
test ring points. Because luminance changes flicker
sensitivity (Kelly, 1961), these luminance variations
could in principle have contributed to the observed
effects of point-number. Experiment 4 evaluated this
possibility by varying the luminance of inducing and
test rings to determine what effect, if any, these
luminance changes might have had on the experi-
mental outcomes. Two experimental sessions were run
on separate days. In Session 1, the luminance of the
inducing ring points was varied in four steps and the
test ring luminance was held constant. In session 2,
there were two inducing ring luminances combined
with four test ring luminances. Across the two sessions
we employed luminance levels that encompassed all
the measured test ring point luminances (1.20 to 1.50
cd/m2) and time averaged inducing ring luminances in
the 15008 and 22508/25008/s angular velocity condi-
tions of Experiments 1 and 3 (0.072 to 0.149 cd/m2; cf.
Table 1).

Method: Session 1

Eighteen blocks of 32 trials were run during the first
session. Participants were presented with inducing rings
and test rings like those employed in the previous
experiments (see Figure 1). The inducing rings were
always constructed from sixteen equally spaced points,
5.58 in diameter, and presented for 91 ms. As in the
previous experiments, the test ring was presented for
500 ms. There were four time-averaged inducing ring
luminances: 0.073, 0.094, 0.118, and 0.188 cd/m2. The
luminance was constant within each block but varied

across the trial blocks using a repeated Latin Square
design. The luminance of the test ring points was held
constant at 1.088 cd/m2. Two inducing ring velocities
were presented within each block: On 25% of the trials
(16 total in each condition) there was a slow 2508/s
rotation, and on 75% of the trials (48 in each condition)
there was a rapid 15008/s ring rotation. No test ring was
presented in the initial block; then blocks in which the
test ring was presented and blocks with no test ring
were alternated. The first two blocks and the slow
rotation rate trials were treated as practice and not
analyzed.

Method: Session 2

Seventeen trial blocks with 32 trials per block were
run. The test ring luminance was varied in four steps
(0.733, 1.088, 1.441, and 1.779 cd/m2,) and each test
ring luminance level was presented with two inducing
ring luminance levels (0.073 and 0.188 cd/m2). The
inducing ring-test ring luminance combinations were
varied quasirandomly between blocks. Two inducing
ring velocities were presented within each block: On
25% of the trials (16 total in each condition) there
was a slow 2508/s ring rotation, and on 75% of the
trials (48 in each condition) there was a rapid 15008/s
ring rotation. The first block and the slow rotation
rate trials were treated as practice and were not
analyzed.

Results

Results and confidence intervals for all conditions of
Session 1 are presented in Figure 6. The across subject
sensitivity (d0) to the rotation direction was calculated
for each condition and examined with a 23 4 ANOVA
with Test ring (inducing ring only vs. inducing ring þ
test ring condition) and Inducing ring luminance as the
factors. As expected, the main effect of Test ring was
significant, F(1, 11) ¼ 100.37, p , 0.001. The mean
sensitivity was higher when the inducing ring was
followed by the test ring (d0 ¼ 1.67 compared to d0 ¼
0.25) but we found no significant main effect of
Inducing ring luminance, F(3, 33)¼ 0.34, p¼ 0.759, and
no interaction between Test ring and Inducing ring
luminance, F(3, 33)¼ 0.06, p¼ 0.944. As can be seen in
Figure 6, accuracy rates were stable across the full
range of inducing ring luminances. This is true both
when the inducing ring is presented on its own (54.1%
to 55.4%) and when it is followed by the test ring
(77.1% to 78.3%).

Results and confidence intervals for session 2 are
shown in Figure 7. We once again performed a 2 3 4
ANOVA with Inducing ring luminance and Test ring
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luminance as factors. Neither of these factors had a
significant main effect and there was no significant
interaction between them: F(1, 11)¼ 0.11, p¼ 0.751 for
the main effect of Inducing ring luminance, F(3, 33)¼
0.95, p ¼ 0.398 for the main effect of Test ring
luminance, and F(3, 33) ¼ 2.82, p ¼ 0.064 for the
interaction. The nonsignificant interaction might point
to a slight trend towards larger MBEs in conditions in
which inducing ring and test ring have comparable
luminances. Overall, however, Figure 7 shows that
neither the inducing ring nor test ring luminance had
any effect on accuracy rates.

Discussion: Experiment 4

Although the luminance variations associated with
the number of points displayed could in principle have
confounded the results of Experiments 1 and 3, in
Experiment 4 we found that luminance changes that
encompassed the full range of these variations had no
effect on participants’ performance. We conclude that
luminance was not a confounding factor. It needs to be
noted, though, that the range of luminance levels we
investigated was quite small. It is therefore entirely
possible that luminance variations over a wider range
could modulate the MBE.

General discussion

When participants judged the rotation direction of a
rapidly rotating ring of points (the inducing ring), they
performed at chance when the investigated angular
velocities were 15008/s and higher. However, when an
additional stationary ring (the test ring) was presented
after a short delay, an illusory rotation of this test ring
allowed them to report the inducing ring’s rotation
direction at rates substantially better than chance even
at the highest velocity employed (25008/s). This effect
was previously reported by Mattler and Fendrich
(2010) and termed the Motion Bridging Effect. The
experiments reported here examine the effect of two
variables on the MBE: the number of points that made
up the inducing and test rings and the diameter of those
rings. We found an increase in the MBE (measured by
the accuracy of reports of the inducing ring direction)
when the number of points used to construct the rings
was reduced. In addition, we found an increase in the
MBE when the diameter of the rings was increased.
However, both of these manipulations influenced the
distance between the points that formed the inducing
and test rings. When this distance was held constant by
covarying the point number and ring diameter, no
effect on the MBE was observed. We will speculate that

Figure 7. Mean sensitivity (d0) for 12 participants of Experiment

4 (Session 2) as a function of test ring luminance levels with

each of two time averaged inducing ring luminance levels. The

error bars show 95% CI. Only the inducing ring þ test ring

conditions are shown. The solid gray line indicates the chance

level of accuracy (d0 ¼ 0).

Figure 6. Mean sensitivity (d0) for 12 participants of Experiment

4 (Session 1) as a function of time averaged inducing ring

luminance levels in the inducing ring only conditions (the

dashed line) and the inducing ring þ test ring conditions (the

solid line). The error bars show 95% CI. The solid gray line

indicates the chance level of accuracy (d0 ¼ 0).

Journal of Vision (2019) 19(5):13, 1–23 Stein, Fendrich, & Mattler 15

Downloaded from jov.arvojournals.org on 07/09/2019



processes related to the perception of both real and
apparent motion may be contributing to this pattern of
results.

Burr and Ross (1982) have proposed that all motion
perception is limited by the temporal frequency of
intensity modulations on the retina. If the temporal
frequency is too high (e.g., over 30 Hz for sinusoidal
gratings), the spatial-temporal properties of the stim-
ulus cannot be translated into visible motion. If this
argument is extended to the MBE, then both the
decline in the MBE with increasing angular velocity
and the decline with an increase in the number of points
used to form the inducing ring can be explained.
However in the case of the MBE, the temporal
frequency limit must be at least 125 Hz, which is well
above the rates that normally mediate motion detection
and substantially above the human flicker fusion
frequency. In addition, to account for the performance
gain in the MBE when the diameter of the rings is
increased, one must also posit that its dependence on
temporal frequency is scaled by retinal eccentricity,
with high temporal frequencies more readily processed
at more peripheral positions. This scaling can also
explain the stability of the MBE in Experiment 3 if one
accepts that the decline in the MBE produced by the
increase in point-number is canceled by the improved
processing of high temporal frequencies as the ring
diameter is increased. However, this explanation
requires that the decline and improvement in the MBE
balance one another almost perfectly when a combined
effect of these variables also acts to hold the separation
between the points that form the inducing ring
constant. The presumption that these effect null-points
co-occur by chance strains the credibility of this
account.

Apparent motion

An alternative approach to explaining the observed
pattern of outcomes is to propose that the MBE is
modulated by the spatial separation between the test
ring rather than inducing ring points. In our experi-
ments, the separation of the points that formed the test
ring always matched the separation of the points in the
inducing ring, and because the test ring was always
veridically stationary, this separation was visually
salient irrespective of the inducing ring velocity. We
speculate that an essential component of the MBE is an
apparent motion percept generated by the inducing ring
to test ring transition.

In their 2010 paper, Mattler and Fendrich (2010)
linked the MBE to apparent motion because the MBE
consists of an intermediate visual percept that is
synthesized from the sequence of two rings, one with a
continuous outline and the other constructed of points.

They note that a synthesis of the two rings by an
updating process could account for both the deceler-
ation when the continuous ring precedes the pointed
ring and the acceleration when the pointed ring
precedes the continuous outlined ring. Here we
consider the link to apparent motion in more detail.

It has long been known that the spatial separation
between the successive stimuli used to produce appar-
ent motion can modulate the motion percepts (e.g.,
Korte, 1915; Wertheimer, 1912). Korte proposed that
as the spatial distance between two stimuli increases
their temporal distance also needs to increase to sustain
an apparent motion percept (Korte’s third law). More
recent proposals have argued that depending on the
presentation conditions, the relationship between spa-
tial and temporal distance needed to maintain optimal
apparent motion can be either a positive coupling or a
tradeoff, so that an increase in spatial distance must be
coupled with a decrease in temporal distance (Gepsh-
tein & Kubovy, 2007).

A phenomenon related to apparent motion in which
there is also an interplay of spatial and temporal factors
has been termed Singularbewegung (Wertheimer, 1912),
polarized gamma movement (Kanizsa, 1979), or the
line-motion illusion (LMI; Downing & Treisman,
1997). In LMI experiments, a square flashed on a
screen precedes the presentation of an adjacent line that
appears as smoothly expanding outward from the
square. Contemporary research on the LMI was
initiated by Hikosaka, Miyauchi, and Shimojo (1993)
who proposed that the square draws attention to its
spatial location and facilitates neural processing at the
end of the line adjacent to that location leading to the
precept of expansion. Downing and Treisman (1997)
discounted the attentional explanation of the LMI by
showing a complementary phenomenon in which the
line appears to shrink into a square. This result cannot
be accounted for by attention because no cue to bias
attention to a specific location was presented. The
authors therefore interpret the LMI as an apparent
motion linking two successive states that are treated as
representations of a single object, making the LMI an
instance of what Tse, Cavanagh, and Nakayama (1998)
have termed ‘‘transformational’’ apparent motions. The
LMI, like more traditional instances of apparent
motion, exhibits spatial distance dependencies: Ratings
of perceived velocity are increased when the line length
is increased (Hubbard & Ruppel, 2011).

There are noteworthy similarities between the
displays used to demonstrate the LMI and our MBE
displays. In the case of the LMI, there is an immediate
transition between a stationary line and one or more
stationary markers, and a smooth illusory motion links
the two stationary states, ensuring perceptual continu-
ity. In case of the MBE, there is a transition from a
perceptually stationary outline ring to multiple verid-
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ically stationary points. We propose that when this
transition happens, the segments of the inducing ring
flanking the points of the test ring contract into those
points.

Given this hypothesis, a question that arises is why
observers see all the test ring points rotate together,
rather than seeing the inducing ring segments adjacent
to each of the test ring points, contract locally into
those points. One possible explanation for the common
direction of the test ring points in the MBE is that it
represents an instance of the apparent motion yoking
effect initially reported by Ramachandran and Anstis
(1983). These investigators presented bistable dots pairs
that could be seen to be undergoing either a horizontal
or vertical oscillation when repetitively switched
between their alternative states. When groups of these
dot pairs are presented and switched simultaneously,
the perceived direction of the oscillation is identical in
all the pairs. In addition, other investigations have
shown that when multiple line-motion stimuli are
presented together, their motion signals can pool and
be integrated to form a joint global motion percept
(Tang, Dickinson, Visser, Edwards, & Badcock, 2013;
Tse & Logothetis, 2002). These yoking and integration
effects could result in all the inducing ring segments
contracting in the same direction to generate the
rotation percept.

The hypothesis that the test ring motion is a case of
transformational apparent motion leaves, however, a
core aspect of the MBE unexplained: It does not
explain why the test ring generally rotates in the same
direction as the inducing ring’s invisible rotation. The
transition from the continuous inducing ring to the
point-defined test ring is ambiguous in respect to which
direction the line will transform, so one might expect
the test ring’s rotation direction to be random. The fact
that its direction usually matches the direction of the
inducing ring indicates the inducing ring direction must
have been encoded somewhere in the visual system and
acted to bias the perceived rotation of the test ring. As
we have previously noted, this implies the registration
of temporal frequencies well beyond the range that the
human visual system is conventionally thought to be
able to process. The hypothesis that the test ring
motion is a form of transformational apparent motion
does not alter these implications. The MBE would
therefore represent a case where a motion that is
inherently inaccessible to consciousness is nevertheless
modifying subsequent percepts. We note that if the
biasing effect of the inducing ring acts on every test ring
point this would support the percept that these points
all move in a common direction. Moreover, if the
ability of the inducing ring to bias the direction of the
test ring motion varies with the spacing of the test ring
points, this could account for the potential dependence
of the MBE on that spacing. While this idea is

speculative, the spatial dependencies found with
apparent motion and the LMI lend credence to the
supposition that the perceived rotation of the test ring
could be a function of spacing of the points in that ring.

Conscious and unconscious motion processing

The processing of movement is generally thought to
rest upon direction selective cells that have been found
in the visual cortex of macaque and owl monkeys
(Albright, 1984; Zeki, 1980). A well-known phenome-
non that can be related to the reduced responsiveness of
direction selective cells in V1 is the motion aftereffect
(MAE; see Anstis, Verstraten, & Mather, 1998, for a
review). The MAE is characterized by an illusory
percept of a motion in the reverse direction of a
previously inspected actual linear or rotary motion. It is
generally attributed to a damping by neural adaptation
of the activity of the direction sensitive cells that
mediate the perception of the inspected motion,
creating an imbalance that favors cells tuned to motion
in opposite direction. The rotating dot displays used in
the present experiments can produce a MAE if the rate
of rotation is sufficiently slow (Mattler & Fendrich,
2010) but we think the origins of MAE and MBE are
likely to be quite different. Besides the obvious
difference in the direction of the perceived illusory
motion, the build-up and decay of the MBE is far more
rapid than the MAE. The MAE typically builds during
extended exposures to the adapting stimulus and slowly
fades away (Hershenson, 1989, 1993). In contrast,
Mattler and Fendrich found the MBE occurred with
exposures to the inducing ring as brief as 30 ms and
reached its maximum strength after only 60 ms. While
the duration of the MBE was not formally measured,
they note that it generally ‘‘braked to a standstill’’ in the
course of their 500 ms test ring presentation. Addi-
tionally the temporal frequencies of the stimuli
presented in MBE experiments clearly exceed the
temporal frequency limits of adapting stimuli in MAE
experiments. The duration of the MAE is highest when
the adapter frequency is 1–5 Hz, begins to rapidly
decline at 20 Hz, and when the adapter is presented
with a temporal frequency of 50 Hz, no MAE is seen
(Pantle, 1974). These considerations lead us to conclude
that the MBE and MAE are not related effects.

Studies of the MAE and other phenomena, however,
show (as does the MBE) that movement can be
processed without awareness of the motion direction.
In a functional MRI study, Moutoussis and Zeki (2006)
found a drifting grating at 158 eccentricity generated
motion specific activations in brain areas as high as
MT. Surprisingly, this was also the case when the
grating was crowded by two additional flickering
gratings and participants could no longer judge the
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direction of movement of the target grating. Additional
evidence is provided by binocular rivalry studies
demonstrating that the duration of the MAE does not
depend on whether the drifting adaptation grating is
binocularly suppressed (Lehmkuhle & Fox, 1974,
O’Shea & Crassini, 1981). Other studies have shown
that the MAE still occurs in reduced form when the
adapter is rendered unconscious by continuous flash
suppression (Kaunitz, Fracasso, & Melcher, 2011;
Maruya et al., 2008).

Apparent motion has also been investigated in the
context of binocular rivalry: Wiesenfelder and Blake
(1991) showed that subjects still perceived apparent
motion when the first frame of a two-frame sequence
was suppressed. Blanco and Soto (2009) have reported
an instance of the LMI in which the flashed stimulus
that generates the illusion is not consciously visible. In
their experiment, a gray circle was displayed in one of
four positions, followed by a mask in all four of these
positions. When only the circle and masks were shown,
participants were unable to report the position where
the circle had been presented. However, when a gray
line was presented subsequent to the masks, it was
perceived as moving outward from the circle’s location.
All of these cases differ from the MBE, however, in that
they involve an inherently detectable stimulus that only
fails to reach consciousness because it is masked or
suppressed.

An instance where an inherently invisible moving
stimulus has been shown to have perceptual conse-
quences has, however, been reported by Glasser, Tsui,
Pack, and Tadin (2011), but in this case the motion was
undetectable because of its brevity rather than velocity.
In this study a high contrast 1 cycle/8 sinusoidal grating
drifted across a 168 diameter Gabor patch at 158/s for
intervals as short as 25 ms. Even when the presenta-
tions were too brief to allow observers to identify the
drift direction of this grating, they produced a brief but
detectable motion aftereffect in a subsequently low
contrast stationary grating. However, this aftereffect
corresponds to a classic MAE—a perceived motion in
the direction opposite the preceding real motion—
whereas the aftereffect in the case of the MBE is in the
same direction as the preceding real motion. In
addition, the aftereffect reported by Glasser et al.
decreased steadily as the ISI between the moving and
subsequent stationary stimulus grew larger than zero.
The MBE, in contrast, increases with ISI from zero up
to 90 ms (Mattler & Fendrich, 2010). These differences
suggest that the neural mechanisms responsible for the
aftereffects reported by Glasser et al. and those
responsible for the MBE are fundamentally different.

In addition, global motion percepts that would
otherwise be apparent become imperceptible when the
number of motion directions shown becomes too high
(e.g., Greenwood & Edwards, 2009). Lee and Lu (2014)

demonstrated that such imperceptible global motions
can elicit a motion aftereffect. Observers viewed a
doughnut shaped field of drifting Gabor patches.
Subsets of these Gabors conveyed global motion
directions (e.g., expansion) but because a multiplicity of
motion directions was shown, these global motions
were not consciously detectable. Nevertheless, when a
set of stationary Gabors replaced a subset of the
drifting Gabors that had signified a specific global
motion direction, a motion aftereffect that reversed the
global motion direction was seen. Like the MBE, the
MAE reported by Lee and Lu demonstrates the
processing of motion information that is not con-
sciously seen due to visual system processing limita-
tions. However, in the case of the global motions
addressed by Lee and Lu, these limitations occur at a
stage where visible motions are integrated. Although
observers are not able to link the displayed Gabors to
derive a conscious global motion percept, the grating
drift within each individual Gabor can be readily seen.
In contrast, the motion responsible for the MBE fails to
reach consciousness because of limitations in ability of
the visual system to process a primary sensory
attribute—luminance modulations. The MBE demon-
strates that motion information can be derived from
stimuli with temporal frequencies that have generally
been regarded as beyond the range of human sensory
encoding.

We have argued that two processes contribute to the
MBE: (a) a transformational apparent motion gener-
ated by the transition from the perceptually continuous
outline of the rapidly rotating inducing ring to the
discrete stationary points of the test ring, and (b) a
direction biasing process mediated by the inducing ring
motion. This view of the MBE makes an interesting
prediction. If the motion seen when the inducing ring is
replaced by the test ring is a form of transformational
apparent motion, then one would expect a motion
percept to be present even if the inducing ring is a
genuinely stationary outline. Under these conditions
there can, of course, be no MBE because the MBE is
defined by congruence between the inducing and test
ring motion directions. Nevertheless, if observers see a
coherent rotational motion of the test ring points
similar to that observed with the MBE displays, this
effect would argue strongly that the motion seen in the
case of the MBE displays is mediated by a transfor-
mational component. On the other hand, if no motion
or a directionally incoherent motion is seen, this would
argue against the role of a transformational component
in the MBE. In addition, studies in which the character
of the inducing stimulus is changed could provide
further information about the generality of the MBE
and the suggested connection to apparent motion.
Displays which produce linear or radial apparent
motions might also be capable of giving rise to MBE
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like percepts. We are currently exploring these possi-
bilities.

Summary

The MBE demonstrates the neutral encoding of
direction information from a ring of points that spins
so rapidly its rotation is not consciously detectable
(Mattler & Fendrich, 2010). When this spinning ring
(the inducing ring) is followed by a stationary ring of
points (the test ring), observers report seeing the test
ring to rotate. This rotation is primarily in the same
direction as the inducing ring, although this direction is
not detectable when the inducing ring is presented by
itself. The present study reveals that the MBE, indexed
by the congruence of the inducing and test ring’s
rotation directions, weakens as number of points used
to form the rings is increased. This finding supports the
premise that the MBE is limited by the temporal
frequency of point presentations produced as the points
of the inducing ring advance around the ring perimeter.
In addition, we found the MBE strengthens as the
diameter of the rings is increased, which can be
attributed to the more efficient registration of high
temporal frequencies at more peripheral retina loca-
tions. However, when we covaried the number of points
and the ring diameter in a manner that maintained a
constant separation between the points that formed the
inducing and test rings, the strength of the MBE was
also constant. To account for this pattern of results, we
propose that the MBE reflects the joint action of two
processes, one that registers the direction of the
inducing ring’s rotation (and declines as a function of
temporal frequency) and one that generates the illusory
test ring spin (and is sensitive to the spacing between
the points that form the test ring). We further propose
that the second process represents an instance of a
transformational apparent motion, generated by the
transition from the inducing ring’s perceptually con-
tinuous outline to the discrete stationary points of the
test ring. We think the directional congruence that
defines the MBE is produced by a biasing of the test
ring direction by registered inducing ring direction
information. Finally, we suggest the spacing of the test
ring points (which was always the same as the spacing
of the inducing ring points) may modulate the ability of
the encoded inducing ring direction information to
influence the perceived test ring direction, accounting
for the dependence of the MBE on the point
separations. Research to evaluate this speculative
analysis is now in progress.

Keywords: motion aftereffects, motion perception,
unconscious perception, apparent motion, temporal
frequency
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Appendix

Points

Angular velocity (in 8/s)

250 750 1500 2250/2500

Inducing ring only condition

12 97.3 70.0 53.9 51.3

16 97.5 58.2 50.1 51.5

20 94.3 55.4 51.3 50.4

Inducing ring þ test ring condition

12 97.9 93.6 79.7 68.1

16 97.8 87.0 76.9 62.6

20 97.2 77.3 65.8 59.8

Table A1. Mean percentage of correct direction reports in
Experiment 1.

Effect dfn/dfd F p

Inducing ring only condition

Velocity 3/30 164.13 , 0.001

Point-number 2/20 15.35 , 0.001

Velocity 3 Point-number 6/60 6.97 , 0.001

Inducing ring þ test ring condition

Velocity 2/20 84.60 , 0.001

Point-number 2/20 46.99 , 0.001

Velocity 3 Point-number 4/40 8.04 ¼ 0.001

Table A2. ANOVA outcomes for Experiment 1. dfn¼ numerator
df; dfd = denominator df.

Diameter

Angular velocity (in 8/s)

250 750 1500 2250/2500

Inducing ring only condition

3.58 97.9 51.0 50.7 50.0

5.58 98.5 58.8 50.7 48.7

7.58 97.3 56.5 51.5 53.6

Inducing ring þ test ring condition

3.58 99.1 79.4 65.9 54.2

5.58 97.6 85.8 70.8 63.9

7.58 97.5 92.1 79.1 70.1

Table A3. Mean percentage of correct direction reports in
Experiment 2.

Effect dfn/dfd F p

Inducing ring only condition

Velocity 3/33 347.41 , 0.001

Diameter 2/22 1.73 0.203

Velocity 3 Diameter 6/66 2.17 0.089

Inducing ring þ test ring condition

Velocity 2/22 113.92 , 0.001

Diameter 2/22 27.63 , 0.001

Velocity 3 Diameter 4/44 1.26 0.305

Table A4. ANOVA outcomes for Experiment 2. dfn = numerator
df; dfd ¼ denominator df.

Points / diameter

Angular velocity (in 8/s)

250 750 1500 2250/2500

Inducing ring only condition

12 / 4.1258 97.9 60.7 50.3 51.2

16 / 5.58 95.5 54.7 51.4 53.9

20 / 6.8758 91.8 55.0 49.1 50.7

Inducing ring þ test ring condition

12 / 4.1258 96.8 87.8 72.9 65.5

16 / 5.58 95.0 81.8 69.7 63.4

20 / 6.8758 96.1 83.9 71.9 62.6

Table A5. Mean percentage of correct direction reports in
Experiment 3.

Effect dfn/dfd F p

Inducing ring only condition

Velocity 3/33 149.55 , 0.001

Point-number/diameter 2/22 5.13 0.034

Velocity 3

Point-number/diameter

6/66 2.63 0.062

Inducing ring þ test ring condition

Velocity 2/22 61.05 , 0.001

Point-number/diameter 2/22 3.37 0.063

Velocity 3

Point-number/diameter

4/44 1.34 0.282

Table A6. ANOVA outcomes for Experiment 3. dfn¼ numerator
df; dfd = denominator df.
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RING ROTATION ILLUSION 2

Abstract

We report a new visual illusion we designate Ring Rotation Illusion (RRI). When the outline of a

circle is replaced by a ring of stationary points, the ring of points appears to rotate to a halt, even 

though no motion is actually present in either of the displays. In three experiments we examined 

the RRI, measured by participants’ reports of the clearness of the illusory rotation, and compared

the RRI to a closely related illusion, the Motion Bridging Effect (MBE; Matter & Fendrich, 

2010; Stein et al., 2019). Experiment 1 reveals that the clearness of the RRI increases as the 

diameter of the rings decreases and as the number of points forming the second ring increases. In

addition, we found that the optimum interstimulus interval (ISI) between the outline circle and 

the ring of points depends on the duration the stimuli. Experiment 2 compares the RRI to the 

MBE, which occurs when a ring of points, that rotates so rapidly it appears to be a stationary 

outline, is replaced by a stationary ring of points. This produces an illusory rotation of the 

stationary ring of points that generally matches the direction of the rotating ring’s invisible spin. 

We found participants could not distinguish between the rotating ring that produces the MBE and

the outline ring that produces the RRI, but report a slightly clearer motion percept when the 

spinning ring is presented. Experiment 3 compares the effects of point number, ring diameter, 

and ISI on the motion percept in the RRI and MBE. These functional relationships are found to 

be similar in the two illusions, suggesting a common mechanism produces the perceived rotation 

in both cases. We suggest with both the RRI and MBE, the visual system employs a heuristic, 

which holds that in the real world the transition from an outline circle to a pointed ring is 

plausibly explained by a rapidly spinning pointed ring decelerating to a halt. However, in case of 

the MBE the correspondence between the direction of the spinning ring’s invisible rotation and 

stationary ring’s illusory rotation demonstrates a motion dependent mechanism also operates, 

which may enhance the clearness of the illusory rotation.

Keywords: Ring Rotation Illusion, motion bridging effect, unconscious perception, 

apparent motion, heuristics
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Ring Rotation Illusion: A new type of apparent motion

In 2010 Mattler and Fendrich reported an illusion of motion, which implied the 

processing of motion information beyond the range of velocities the human visual system is 

generally regarded as capable of encoding. A ring of 16 luminous points (the inducing ring) was 

rotated so rapidly, observers perceived a continuous circular outline and performed at chance 

when asked to report the rotation direction. However, when this rapidly rotating ring was 

replaced by a static ring of 16 points (the test ring), the static ring appeared to briefly spin in the 

direction that the rotating ring had spun. Because this illusionary rotation formed a link between 

the veridically rotating but apparently static inducing ring and the veridically static and 

apparently rotating test ring, Mattler and Fendrich termed this illusion the Motion Bridging 

Effect (MBE). The congruence between the actual inducing ring and illusory test ring rotations 

implies the direction of the consciously invisible inducing ring spin must have been somehow 

encoded by the visual system. This was the case despite the fact that the advancing inducing ring 

points were refreshed at rates well above the normal human flicker-fusion threshold.

While the measure of the MBE was the congruence between the inducing and test ring 

rotations, Mattler and Fendrich presumed that the percept of the test ring motion per se, and not 

just the rotation direction, was derived from the signals conveyed by the inducing ring spin. 

However, a continued investigation of the MBE’s functional dependencies by Stein et al. (2019) 

raised the possibility that the motion percept and motion direction information were in fact 

dissociable signals. Stein et al. suggested that while the direction signal necessarily had to derive 

from the inducing ring spin, the actual motion percept could be treated as a case of 

transformational apparent motion (TAM; Tse, Cavanagh, & Nakayama, 1995).

TAM occurs when two successive stimuli that differ in color and/or shape are presented 

sequentially, and the first appears to transform to the second in a continuous manner. This 

transformation can arguably be taken to reflect the operation of a visual heuristic, which adjusts 

motion percepts to reflect the fact that in the external world object features change progressively 

rather than instantaneously (Hsieh, Caplovitz, & Tse, 2005). A particular instance of TAM, 

germane to the MBE, has been termed Singularbewegung (Wertheimer, 1912), polarized gamma 

movement (Kanizsa, 1979) or the line-motion illusion (LMI; Downing & Treisman, 1997). In 

LMI experiments, a square flashed on a screen precedes the presentation of an adjacent line. 
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Interestingly, the line is perceived as smoothly expanding outward from the square. 

Contemporary research on the LMI was initiated by Hikosaka, Miyauchi, and Shimojo (1993a) 

who regarded it as an attention related phenomenon. However, subsequent investigations have 

indicated that the LMI is more likely to be related to apparent motion (Kawahara, Yokosawa, 

Nishida, & Sato, 1996; Downing & Treisman, 1997). Downing & Treisman found that if they 

reversed the order of the line and square participants continued to perceive a smooth illusory 

motion, with the line shrinking into the square. This result cannot be accounted for by attention 

because no cue to bias attention to a specific location is presented. The authors therefore 

interpreted the LMI as a transformational apparent motion, in which a dot transforms into a line 

(or vice-versa). The motion percept in the case of the MBE can be viewed as a global version of 

the LMI in which multiple segments contract in unison into a circular array of points. According 

to this view, the visual system pools the motion signals of the multiple line-motion stimuli and 

integrates them to form a joint global motion percept with a unitary motion direction.

An implication of this view is that the actual motion of the inducing ring should not be 

necessary for the motion percept to occur. That is, if a truly continuous static outline circle 

replaces the spinning inducing ring a motion percept should still be seen. In the experiments we 

report here, this prediction is confirmed. We term the illusion of motion generated in this case 

Ring Rotation Illusion (RRI). We report a series of experiments in which we investigated how 

manipulations of the diameter of the rings, the number of points used to form the test ring and 

the ISI between the continuous and pointed ring presentation affect the RRI. In addition, we 

evaluate the ability of participants to distinguish between the MBE and RRI displays and 

compare the effects of the aforesaid stimulus manipulations on the MBE and RRI.

To the extent that the rapidly rotating inducing ring of the MBE and the continuous 

outline circle shown in RRI displays are indistinguishable, it might be argued that they would be 

expected to generate the same illusion. We believe, however, that there are strong grounds for 

distinguishing between the MBE and RRI. A crucial aspect of the MBE is the transfer of 

invisible rotation direction information from the inducing ring to test ring, and this attribute has 

no RRI counterpart because with the RRI display there is no inducing ring motion. The core 

measure used to measure the MBE — the degree of congruence between the inducing and test 

ring directions — is simply not a possible measure in the case of the RRI. The MBE can 

therefore be deemed to have two components: a direction biasing component that is unique to 
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(and can be taken to define) the MBE and an illusory test ring rotation, which is also generated 

by the RRI display and is the RRI’s defining attribute. In addition, even when one sets aside 

considerations of direction the motion percepts seen with the MBE and RRI may not be 

absolutely identical. Data we report suggests that the clearness of the illusory test ring rotation is 

reliably stronger with MBE than RRI displays, suggesting that in the case of the MBE the 

inducing ring rotation serves to augment the motion percept that the MBE and RRI share.

Experiment 1

Following initial observations of the RRI in which we confirmed that an illusory rotation 

was seen when we replaced a stationary outline circle with a stationary pointed test ring, we 

conducted Experiment 1 to evaluate some characteristics of this new illusion. Specifically, we 

considered the effects of the number of points in the test ring, the ring diameter, the duration of 

the ring presentations, and the ISI between the inducing and test ring on participants’ ratings of 

the clearness of the perceived test ring rotation.

Method

Participants. Twelve students of the University of Göttingen participated in the 

experiments with an average age of 26.4 years (8 females, 4 males). All participants had normal 

or corrected-to-normal vision as determined by the Landolt ring chart and received €7 per hour 

or student credits. Each participant completed two 1-hour sessions, which were run on separate 

days.

Apparatus. Stimuli were displayed on an analog HAMEG HM 400 cathode-ray 

oscilloscope controlled by a PC with a 12-bit Digital-Analog converter. The 8 × 10 cm 

oscilloscope screen was customized with a fast P15 phosphor (50 µs luminance decay time to 

0.1%). Participants sat in a dark room with their head positions stabilized by a chin and forehead 

rest 57 cm from the oscilloscope screen. This was the same in all experiments of this study.

Stimuli. On each trial, a stationary outlined circle (the inducing ring) was followed by 

stationary ring of points (the test ring). The sequence of events is shown in Figure 1.
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Figure 1. Sequence of events in Experiment 1. Note, the on the oscilloscope screen stimuli were 

bright on a dark background.

The stationary circle was constructed by displaying points around the inducing ring 

circumference in a random order 160 times per ms (plus 10 times to the position of the central 

fixation point). The resulting outline circle appeared completely continuous and conveyed no 

motion information.

When the diameter of the rings was not serving as an experimental variable their diameter

was 6° of visual angle, and when the number of points in the test ring was not serving as a 

variable it was constructed of 16 equally spaced luminous points. These points were slightly out 

of focus because we previously found this strengthened the illusory motion percept being 

studied. The brightness of the stationary outlined circle was 0.099 cd/m², and the point brightness

of the test ring was 1.20 cd/m² on a dark background. The methods employed to obtain these 

brightness measurements are described in Stein et al. (2019).

Procedure and Design. In the first session, the duration of each of the ring presentations 

was 500 ms and the ISI was 60 ms. In the first phase of this session, an initial practice block was 

followed by eight 48 trial experimental blocks. In the first 4 blocks we varied the number of 

points in the test ring within each block with 8, 12, 16, or 20 equally spaced points displayed. In 
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in the next four experimental blocks we varied the diameter of the two ring stimuli between 

blocks, with diameters of 2, 4, 6, and 8° of visual angle following a Latin Square design. In the 

second session, a practice block was followed by 10 experimental blocks of 50 trials. Within 

each block we quasi-randomly varied the ISI between the two stimuli with ISIs of 0, 30, 60, 90, 

and 180 ms. In addition, in the first half of the blocks the duration of the two stimuli was 500 ms 

and in the second half 100 ms.

Participants were instructed to report the clearness of the rotation that they perceived 

after the presentation of the two-stimulus displays on a modified computer keyboard with seven 

keys in a horizontal row, which had the numbers 3, 2, 1, 0, 1, 2, 3. The leftmost key was 

indicated a maximally clear counter-clockwise rotation, the rightmost key a maximally clear 

clockwise rotation. The middle key had the value zero and participants were instructed to use this

key when they were not sure about the rotation direction. The remaining keys were introduced as

indicating middle (value 2) or minimal (value 1) clearness of rotation in the direction indicated 

by their side. The space bar below this line of keys was used to start the next block of trials. 

Ratings were collapsed across clock-wise and counter-clockwise directions and the levels of 

clearness were assigned to values, with 0, 1, 2, and 3 for unclear, minimally clear, middle and 

maximally clear rotational percepts. The average of these reports was determined for each 

participant in each experimental condition.

Statistical Analyses. For statistical analyses there were 48 (50) trials in each condition of

session one (two). The average rating of clearness of each participant in each condition were 

analyzed with three repeated measures analyses of variances (ANOVAs) with the within-subjects

factors Point Number, Diameter, and the two independent variables ISI and Stimulus Durations. 

We corrected degrees of freedom using Greenhouse-Geisser estimates of sphericity. For the sake 

of readability, the uncorrected degrees of freedom are reported.

Results

The results of Experiment 1 are presented in Figure 2.
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Figure 2. Mean clearness ratings of the Ring Rotation Illusion in Experiment 1. (A) Judged 

clearness as a function of the number of points in the test ring. (B) Clearness as a function of the 

diameter of the rings. In both A and B the duration of the rings was 500 ms. (C) Mean clearness 

ratings as a function of the interstimulus interval (ISI) between the inducing and test ring 

presentations for ring presentation durations of 100 and 500 ms. The error bars show 95% 

confidence intervals for the within-subject difference in means (Cousineau, 2005; Morey, 2008).

Point Number. The main effect of Point Number was significant, F(3, 33) = 14.94, p 

= .002, ηp² = .576, with the clearness of the rotation increasing as point number increased (see 

Figure 2A).

Diameter. It can be seen in Figure 2B that mean clearness ratings trended downward 

when the ring diameter increased, but this trend failed to reach statistical significance, F(3, 33) = 

2.13, p = .121, ηp² = .162.

ISI. The main effects of ISI and Stimulus Duration were both significant, F(4, 44) = 

20.55, p < .001, ηp² = .651, and F(1, 11) = 18.64, p = .001, ηp² = .629, respectively, and the 

interaction of these factors was significant, F(4, 44) = 19.30, p < .001, ηp² = .637 (Figure 2C). 

When the two stimuli were shown for 500 ms the RRI was clearer than it was with 100 ms 

durations. The clearness of the RRI was maximal with medium or short ISIs and it declined with 

increasing ISIs. With 500 ms stimuli durations, the clearness was maximal with a 0 ms ISI. With 

100 ms stimuli durations the clearness followed an inverted u-shaped function over ISI with a 

maximum at 60–90 ms.
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Discussion

Experiment 1 revealed that the clearness of the RRI varies with stimulus parameters, 

increasing as the number of points in the test ring increases and with longer exposure durations 

when the ISI between the inducing and test rings is less than 90 ms (all p < .003). However, the 

advantage produced by the increased duration vanished when the ISI was 90 ms (p = .818). With 

short stimulus durations, the clearness was modulated with ISI indicating an optimum with 

intermediate ISIs. A small progressive decrease in the clearness of the illusion was also observed

when the ring diameter was increased but was non-significant. We note, however, that the effect 

of diameter was only examined with 500 ms stimulus durations. Subsequently, in Experiment 3, 

we investigated the effect of diameter with 121 ms stimulus durations, and it did reach 

significance.

While we cannot specify the source of these modulations, they may serve to guide future 

analyses of the illusion. Moreover, they provide a basis for comparing the MBE to the RRI. To 

the extent that if the motion percepts in the case of the two illusions are generated in an identical 

manner, it would be expected that the modulations observed with RRI displays would be 

identical with MBE displays. We evaluate this prediction in Experiment 3.

Experiment 2

We previously noted that observers might not be able to distinguish MBE displays in 

which the rate of rotation was high from RRI displays, since in both cases what is consciously 

visible is an outline circle followed by a ring of points. In this case, the illusory rotation 

generated by the two displays of the test ring might be identical. However, this would not 

necessarily be the case. We pointed out that the MBE entails a direction-biasing component, 

which is necessarily generated by the rapid rotation of the MBE inducing ring and cannot be 

present in RRI displays. Conceivably, the rapid rotation of the inducing ring, while not 

consciously perceived, might also contribute to the clearness of the illusory test ring motion. In 

Experiment 2, we evaluated this possibility by empirically determining the extent to which the 

MBE and RRI inducer displays were indistinguishable. In addition, we examined whether the 

illusory motion percepts generated by the two types of inducer were identical. To anticipate our 

results, we found that participants could not distinguish the rapidly rotating inducer and the 

stationary circle when these stimuli were shown alone. When presented together with the test 
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ring, however, similar percepts were reported but rotations were more often clearer and judged to

have a greater spatial extent when the stimulus initially viewed was the rapidly rotating inducer 

rather that the stationary outline inducer.

Method

Participants. Twelve new University of Göttingen students (10 females, 2 males) with 

an average age of 24.1 years participated in the Experiment. All had normal or corrected-to-

normal vision as determined by the Landolt ring chart and received €7 per hour or student 

credits. Each participant completed three 1-hour sessions, which were run on separate days.

Stimuli. The stimulus display sequence is shown in Figure 3. In all the experimental 

sessions, either the stationary outline circle or a rotating ring of points was initially presented for 

91 ms. The diameter of the rings was 7.5° of visual angle. The stationary circle was created in 

the manner described in Experiment 1. The spinning inducing ring was rotated by advancing all 

16 points every millisecond by a specified number of positions out of a total of 1440 positions so

that it was updated with an effective frame rate of 1000 Hz. It was rotated clockwise or 

counterclockwise at angular velocities of 250 or 1500°/s, which entailed sequential point position

progressions of 1 or 6 steps, respectively. At the high rotation speed, the inducing ring appeared 

to be a continuous solid circle. The time averaged brightness of inducing ring points was 0.017 

and 0.099 cd/m² at the 250 and 1500°/s velocities respectively. Note that the location and timing 

of the point presentations in the spinning ring at the 1500°/s velocity was identical to that 

employed during the stationary circle presentation, with the only difference that the sequence of 

point positions in the stationary circle was scrambled. In session 2 and 3, after a 60 ms ISI, the 

stationary 16 point test ring followed the inducer for 500 ms. The test ring point brightness was 

1.50 cd/m² on a dark background.
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Figure 3. The stimulus sequence in Experiment 2. On a given trial the inducing ring rotated 

either counterclockwise (as shown in the figure) or clockwise. The points on the oscilloscope 

were bright on a dark background.

Procedure and Design.In the first session, we examined participants’ ability to 

distinguish the rotating inducer from the stationary inducer in an initial session. Only the 

spinning or outline inducing ring was presented. Participants indicated whether the stimulus was 

stationary or rotating by pressing one of two keys. In the first four blocks the inducer rotated 

with a low velocity of 250°/s, in the following four blocks, the velocity was increased to 1500°/s.

The first block of each group of four was considered practice and excluded from analysis. Across

the six experimental blocks of 48 trials each, we gathered 72 trials for each of the four 

experimental conditions.

In session 2 and 3, the stationary ring of points (the test ring) followed the first stimulus 

(see Figure 3). The inducing stimulus was presented for 91 ms, the test ring for 500 ms. The 

stationary circle and rapidly rotating inducers were each shown on half the trials. On the half of 

trials in which the rapidly rotating inducer was presented it turned clockwise, on the other it 

turned counterclockwise. In one of the two sessions participants were asked to rate the clearness 

of rotation. In the other session, to obtain a second supporting measure of the strength of the 

perceived rotation, participants were asked to judge the covered distance of the perceived 
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rotation that they saw in terms of the distance traveled. The order of the two tasks was balanced 

across participants.

Ratings of clearness and of covered distance of the perceived rotation were given after 

the presentation of the second stimulus with five response keys that were arranged in a horizontal

line on a modified computer keyboard. The leftmost key indicated a very clear (very far) rotation

in counter-clockwise direction, the rightmost key a very clear (very far) rotation in clockwise 

direction, and the middle key was assigned to a rotation in both directions. The remaining two 

keys were assigned to rotations that were less clear (less far) in counter- and clockwise direction,

respectively. Below this line of keys there was the space bar that was assigned to percepts of no 

motion. Following a practice block in each of the sessions, eight blocks of 48 trials each were 

run, providing data from 192 trials each with the stationary circle and the rotating inducer.

Statistical Analyses.We analyzed participants’ sensitivity to distinguish the stationary 

circle from the rotating inducer in a two alternative forced-choice task by means of signal 

detection analyses (Macmillan & Creelman, 2005). “Rotating” responses to rotating inducers 

were considered hits and “Rotating” responses to stationary inducers were considered false 

alarms. Hit and false alarm rates were determined for each subject in each condition and the log-

linear correction rule of Hautus (1995) was applied. To analyze the Ring Rotation Illusion, 

ratings were collapsed across clockwise and counter-clockwise directions and the responses were

assigned to values 0, 1 and 2 for no motion / two motions, less clear (less far) and very clear 

(very far) rotational percepts, respectively. The average of these reports was determined for each 

participant and the effect of Inducer Type was analyzed. Moreover, to compare the RRI with the 

MBE, we compared the frequencies of reports of “no motion” and “two motions” between trials 

in which the test ring followed a stationary circle or a rapidly rotating inducer by using two-

tailed Wilcoxon Signed-Rank Tests. Finally, to determine whether there was a MBE, we 

determined the frequency of congruent reports on trials with the rotating inducer.

Results

Participants’ were able to perfectly distinguish the stationary circle from the rotating 

inducer when the velocity was 250°/s, t(11) = 35.45, p < .001, but performed at chance when 

making this distinction when the velocity was 1500°/s, t(11) = 1.42, p = .09 (mean d′ = 4.59 and 

0.25 respectively; see Figure 4A).
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Figure 4. Strength of the Ring Rotation Illusion in Experiment 2. (A) Participants sensitivity to 

the difference between the rotating and stationary inducer when the rotation velocity was low or 

high. (B) Mean rating of the clearness of the rotation for a rapidly rotating and a stationary 

inducer. (C) Mean rating of the covered distance of the rotation as a function of Inducer Type. 

The error bars show 95% confidence intervals for single means in A and for the within-subject 

difference in means in B and C (Cousineau, 2005; Morey, 2008).

Mean ratings of the clearness of the RRI are shown in Figure 4B. Although clearness 

ratings were fairly similar with the rotating and stationary outline inducers (with mean clearness 

ratings of 1.38 and 1.19, respectively), the slightly greater clearness found with the rotating 

inducer proved to be statistically significant, t(11) = 4.73, p < .001. Additionally, we found that 

participants indicated they saw two directions or no movement at all significantly more often 

with the stationary outline inducer as compared to the rotating inducer, W(11) = 56, p = .014 and 

W(11) = 28, p < .02 for the two directions and no movement judgments, respectively.

Covered distance of motion ratings yielded a similar outcome (see Figure 4C): mean 

clearness ratings reached comparable levels with the rapidly rotating inducer and stationary 

inducers (with ratings of 1.35 and 1.19, respectively), but the small advantage with the rotating 

inducer proved to be statistically reliable, t(11) = 3.11, p = .010. Additionally, we found that 

participants indicated they saw two directions or no movement at all significantly more often in 

the condition with the stationary inducer as compared to the rotating inducer, W(11) = 56.5, p 

= .013 and W(11) = 26, p < .05 for the two directions and no movement judgments, respectively.
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To confirm that our rapidly rotating inducer produced the MBE congruence effect, we 

examined the frequency of congruent responses on trials with the rotating inducer. Participants 

reported perceived rotations in the same direction as the rapid rotation on 67.9 and 69.1% of the 

trials in the clearness and the covered distance rating sessions, respectively. These correspond to 

mean d′ values of 1.42 and 1.51, respectively.

Interestingly, the mean rating of clearness of rotation was only marginally increased on 

trials with congruent as compared to incongruent perceived directions (1.58 vs. 1.43), although 

this difference proved significant, t(11) = 3.47, p = .005. The mean rating of the covered distance

of the illusory rotation was also only a little higher on trials with congruent as compared to 

incongruent perceived directions, and this difference was not significant (1.49 vs. 1.43; t(11) = 

1.09, p = .299).

Discussion

Experiment 2 aimed to compare the Ring Rotation Illusion when the inducing stimulus 

was a stationary circle or a rapidly rotating ring of points. Initial observations indicated that 

participants could not distinguish between the stationary circle and the rapidly rotating inducing 

ring when these stimuli were presented without the test ring. In the following two sessions, we 

asked participants to rate the clearness and the covered distance of motion that they perceived in 

the test ring when it was presented after the inducer. Participants’ rating of the degree of 

clearness and the covered distance of motion reached similar values with the two types of 

inducer. However, there was a small but significant increase in the reported clearness and 

covered distance of motion when the rapidly rotating inducing ring was shown. The increase in 

the ratings of clearness was greatest when the direction of the perceived rotation corresponded to

the direction of the rapidly rotating inducer.

This finding suggests that the illusory motion of the test ring is to some degree dependent

on the nature of the inducing stimulus. This was the case although participants could not 

distinguish the rotating and stationary inducers when the rotation was rapid. We see at least two 

possible ways of accounting for this finding. On the one hand, the motion signal that is conveyed

by the rapidly rotating inducer might have access to the processes, which determine the clearness

and covered distance of motion of the Ring Rotation Illusion. On the other hand, the inducing 

ring actually consists of the same regularly arranged points as the test ring. If the visual system is

able to register this regularity in the rotating inducer, a matching process that supports the 
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perceptual hypothesis that the inducer is the rapidly rotating tetst ring might be facilitated. This 

facilitation could in turn affect the processes that generate the RRI.

Experiment 3

Experiment 2 provided evidence for a generally similar motion percept with the RRI 

(stationary outline circle) and MBE (rotating ring) displays. Participants could not distinguish the

rapidly rotating ring, which was used in the MBE paradigm, from the stationary outlined circle 

used in the RRI paradigm. Ratings of both, clearness and covered distance of illusory test ring 

motion reached similar values, but were significantly stronger on trials in which the inducer was 

the invisibly rotating ring. A somewhat more stringent test of whether the motion percept is 

generated by the same process or processes with the two types of inducer can be implemented by

examining whether the percept exhibits the same functional dependencies in the two cases. Some

of the functional dependencies of the RRI were examined in Experiment 1: specifically, the 

effects of ring diameter, the number of points in the test ring, and the effect on ISI on the 

clearness of the perceived motion with different inducing and test ring display durations. 

Experiment 3 examined whether these dependencies were similar with the stationary outline and 

rotating point inducing ring displays.

In previous studies (Mattler and Fendrich, 2010; Stein et al., 2019) the measure of the 

MBE employed was the direction congruence between the invisible inducing ring rotation and 

illusory test ring rotation. This method cannot be used to compare the MBE and RRI because in 

the case of the RRI there is no direction congruence. In Experiment 3, our comparisons were 

therefore based on the motion clearness ratings utilized in our Experiments 1 and 2.

To facilitate the comparison between the RRI and MBE, within the trial blocks of 

Experiment 3 we randomly switched between trials in which the outlined circle and the rapidly 

rotating inducer were presented, and asked participants to rate the clearness of the perceived 

motion in the subsequent test ring. In this way, we were able to replicate findings of Experiment 

1 while enabling a comparison of the functional dependencies of the RRI and MBE in a within-

subjects design. In a final session, we also tested whether participants could distinguish the 

rapidly rotating inducer from the stationary inducer when the number of points was varied.
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Method

Participants. Twelve new students from the University of Göttingen (12 females, 0 

males) with an average age of 20.9 years participated in Experiments 3. All participants had 

normal or corrected-to-normal vision as determined by the Landolt ring chart and received €7 per

hour or student credits. Each participant completed four 1-hour sessions, which were run on 

separate days.

Stimuli. On half of the trials, the stationary outlined circle was initially presented and on 

the other half a rotating ring of points. These stimuli were generated using the methods described

in Experiments 1 and 2. When the rotating ring was presented its rotation direction was 

clockwise on half the trials and counterclockwise on the other half. The sequence of events 

corresponded to that used in Experiment 2 (cf. Figure 3) with the exception that both stimuli 

were presented for 121 ms. The standard parameters of the stimuli were 16 points, a diameter of 

6° of visual angle, an inducing ring velocity of 1500°/s, and an ISI of 60 ms. The brightness of 

the test ring points was 1.2 cd\m² (as in Experiment 1). The stationary circle was created in the 

manner described in Experiment 1 and the motion of the rapidly rotating inducer was created in 

the manner described in Experiment 2 with the same values of averaged brightness.

In Session 1, we varied the number of points randomly between trials, (with point number

set to 8, 12, 16, and 20 points). In a given trial, the inducing ring and the test ring always had the 

same number of points. In Session 2, we varied the diameter of the rings (with diameters set to 2,

4, 6, and 8° of visual angle). The diameter was varied block-wise and the order of conditions was

balanced across participants according to a Latin square. In Session 3, we randomly varied the 

ISI (0, 30, 60, 90, and 180 ms) between trials. In Session 4, the stationary circle and the rotating 

ring were presented alone and the number of points forming the rapidly rotating ring varied 

randomly between trials (8, 12, 16, and 20 points). All other stimulus parameters except for the 

one being varied were set to the standard values. In all sessions, we considered the initial block 

of trials as practice and these trials were not included in the analyses.

Tasks. In the first three sessions, participants were asked to report the clearness of the 

perceived rotation after the presentation of the two-stimulus displays in the manner employed in 

Experiment 2. We used the instruction and the modified keyboard utilized in Experiment 1. In 

Session 4, participants were instructed to indicate whether the stimulus was stationary or rotating
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by pressing one of the two arrow keys. We told them that the stationary stimulus was presented 

on half of the trials and the rotating stimulus on the other half.

Procedure and Design. There were eight experimental blocks of trials in each session. 

An additional first block of practice trials was excluded from analyses. Each experimental block 

comprised 48 trials except Session 3, where each block comprised 60 trials, so that we gathered 

96 trials for each of the experimental condition in a session. The independent variable Inducer-

Type (rotating vs. stationary) was varied randomly between trials in all sessions. This 

independent variable was combined with one other independent variable in different sessions: 

Point Number (8, 12, 16, and 20), Diameter (4, 6, 8, and 12° of visual angle), and ISI (0, 30, 60, 

90, and 180 ms). The rating of clearness of the rotation in clockwise or counter-clockwise 

direction served as dependent variable for the strength of the Ring Rotation Illusion.

Statistical Analyses. In each experimental session, we analyzed participants’ perception 

of the clearness of the Ring Rotation Illusion by collapsing ratings across clockwise and counter-

clockwise directions. Responses were assigned values of 0, 1, 2, or 3, based on participants’ key 

responses (see above) and average clearness ratings were determined in each stimulus condition. 

The effects of the independent variables on the averaged ratings were evaluated by two-factor 

repeated measures analyses of variance (ANOVAs) which combined the factor Inducer-Type 

(rotating vs. stationary) with either Point Number, Diameter, or ISI. Participants’ ability to 

distinguish between the rapidly rotating inducer and the stationary inducer was analyzed by 

signal detection analysis (see Experiment 2). In addition, we determined the MBE on trials with 

the rotating inducer based on the congruency between the actual and reported directions and 

examined the effects of Point Number, Diameter, and ISI on the MBE.

In contrast to the results obtained in Experiment 2, the results of the final session of 

Experiment 3 indicated that participants could distinguish between rotating and stationary 

inducers at better than chance levels in the standard 16 point condition. We therefore performed 

additional analyses in which the data from the three initial sessions was reanalyzed with an 

ANOVA that included the between-subjects factor Inducer Sensitivity. These analyses are 

reported in the section on “Sensitivity to Inducer Motion” below. All reported ANOVA p values 

were Greenhouse-Geisser corrected, but for the sake of readability, we report the uncorrected 

degrees of freedom.
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Results

Figures 5A-C show participants’ average clearness ratings as a function of Inducer Type 

and the respective independent variables Point Number, Diameter, and ISI, respectively. Figures 

5 D-F show the MBE as a function of Inducer Type and Point Number, Diameter, and ISI, 

respectively. Figure 5G shows how frequently participants’ reported seeing a rotation as a 

function of whether the Inducer Type was rotating or stationary.
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Figure 5. Measures of the Ring Rotation Illusion and the Motion Bridging Effect in Experiment 

3. Top row: Mean rating of clearness of the illusionary rotation with rapidly rotating and 

stationary inducers as a function of (A) Point Number, (B) Diameter, and (C) the inducer-test 

ring ISI. Middle row: Sensitivity to the congruence of the rotating inducing ring and perceived 

test ring rotation directions (the MBE) as a function of (D) Point Number, (E) Diameter, and (F) 

the inducer-test ring ISI. Bottom row: (G) Mean frequency of perceiving the inducer as rotating 

or stationary as a function of Point Number. The black line indicates mean performance when the

stationary inducer was presented. In A-F the stationary test ring followed the inducer. In G, the 

inducer appeared alone. Error bars in A-F show the 95% confidence intervals for the within-

subject difference in means, in G for single means.

Point Number. The main effect of Point Number on the clearness of the test ring’s 

perceived rotation was significant, F(3, 33) = 16.82, p < .001, ηp² = .605. The illusion becomes 

clearer as the number of points in the rings increased. The main effect of Inducer Type was also 

significant, F(1, 11) = 17.51, p = .002, ηp² = .614, indicating a clearer motion percept with the 

rapidly rotating ring than the stationary circle, an outcome also observed in Experiment 1. In 

addition, the interaction Inducer Type × Point Number was significant, F(3, 33) = 17.65, p 

< .001, ηp² = .616. Separate Post-hoc analyses confirmed what is apparent in Figure 5A: this 

interaction is produced by an improvement in motion clearness that occurs only with the 

stationary inducer, F(3, 33) = 26.50, p < .001, ηp² = .707. It can be attributed to a lack of 

clearness relative to the moving inducer condition when the number of points is low. This 

comparative lack of clearness diminishes as Point Number increases, so that Inducer Type has 

almost no impact at the highest Point Number value. There is no effect of Point Number on 

clearness when the rotating inducer is shown, F(3, 33) = 0.32, p = .739, ηp² = .029.

The effect of Point Number on the MBE when the rotating inducer was presented was 

quantified in terms of d′-values for compatible opposed to incompatible responses (Figure 5D). 

The ANOVA confirmed that the main effect of Point Number was significant, F(3, 33) = 7.30, p 

= .002, ηp² = .399, with the MBE decreasing as the number of points increases. This finding 

replicates a previous finding by Stein et al. (2019) but contrasts with the null-effect of Point 

Number when the rotating inducer is shown and clearness rather than congruence is used as the 
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dependent variable (Figure 5A). We also note that visual inspection of Figure 5D suggests a 

possible inverted u-shaped function with a maximum MBE at about 12 points.

Diameter. Visual inspection of Figure 5B suggests the clearness of the illusion of a test 

ring rotation gradually diminished as the diameter of the rings increased, but the main effect of 

Diameter did not reach statistical significance, F(3, 33) = 2.99, p = .075, ηp² = .213. However, 

the main effect of Inducer Type was once again significant, F(1, 11) = 5.82, p = .035, ηp² = .346, 

indicating that there was a clearer illusion with the rapidly rotating inducer (Figure 5B), and this 

effect significantly interacted with Diameter, F(3, 33) = 5.75, p = .007, ηp² = .343. Separate post-

hoc analyses revealed this interaction occurred because Diameter did produce a significant 

reduction in the motion clearness when the stationary inducer was employed, F(3, 33) = 5.03, p 

= .015, ηp² = .314, but not with rotating inducers F(3, 33) = 1.31, p = .285, ηp² = .107. Note a 

comparable but non-significant trend toward a reduction in the clearness of the RRI was found 

with 500 ms stimulus durations in Experiment 1 (cf. Figure 2B).

Figure 5E suggests the MBE increased as a function of Diameter in a slightly bowed 

curve, reaching its maximum value at the largest (8° of visual angle) diameter tested. The 

ANOVA indicated this increase with increasing diameter was significant, F(3, 33) = 5.46, p 

= .025, ηp² = .332. This finding replicates a previous finding (Stein et al., 2019) but contrasts 

with the null-effect of Diameter on the clearness of the perceived motion when a rotating inducer

was employed (see Figure 5B).

ISI. The main effect of ISI on the clearness of the test ring motion was significant, F(4, 

44) = 9.57, p = .003, ηp² = .465. Figure 5C shows a clear inverted u-shaped function that 

indicates the illusion was maximal with a 60 ms ISI and decreased with shorter and longer ISIs. 

The main effect of Inducer Type was once again significant, F(1, 11) = 9.01, p = .012, ηp² = .450,

indicating the rotating inducer produced a clearer motion percept than the stationary inducer. 

Importantly, the interaction Inducer Type × ISI did not reach significance, p = .77, indicating that

the effect of ISI was the same with either type of inducer.

Figure 5F shows the MBE as a function of ISI. ANOVA results confirmed a significant 

main effect of ISI, F(4, 44) = 14.34, p < .001. An inverted u-shaped function is again evident, 

with a maximum MBE when the ISI is 90 ms. This finding accords with a previous finding 

(Mattler & Fendrich, 2010) and parallels with the effect of ISI on the clearness of the RRI (see 

Figure 5C).
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Sensitivity to Inducer Motion. Figure 5G shows the frequency participants reported 

seeing a rotation as a function of Point Number when the inducer was the stationary circle or the 

rapidly rotating ring. The main effect of Point Number on d′ was significant, F(3, 33) = 52.41, p 

< .001, ηp² = .827, with mean values of d′ = 2.22, d′ = 1.07, d′ = 0.52, and d′ = 0.33 for 8, 12, 16, 

and 20 points, respectively. Post hoc one-tailed t-tests revealed that mean sensitivity was above 

chance in all cases (all p < .01). This evidence for participants’ ability to distinguish the 

stationary from the rotating inducer in the 16 point condition raises the possibility that perceptual

differences in the detection of motion contributed to the pattern of results on the clearness ratings

reported above where the 16 points where used as standard value. 

To asses this possibility, first, we examined the correlation between each participants 

sensitivity to the inducer motion in terms of d′ and the differece between their clearness ratings 

on trials with a rotating vs. a stationary inducer. We reasoned, if the interaction between Inducer 

Type and Point Number on the clearness of the RRI (Figure 5A) is at least in part due to 

perceptual differences caused by the type of inducer (Figure 5G), it should lead to a correlation 

between the two measures. Across participants, d′-values of motion sensitivity and clearness 

rating differences correlated with r = .57, .41, -.03, and -.11 with p = .05, .19, .92, and .74 for 

trials with 8, 12, 16, and 20 points respectively.

In addition, we divided our participants into two subgroups based on their ability to 

distinguish the inducer types in the 16 points condition: a poor performance subgroup (d′ = 

0.205) and a good performance subgroup (d′ = 0.841). Then, we conducted additional ANOVAs,

which included the between-subjects factor Inducer Sensitivity (poor vs. good), to see, whether 

the effects of our indipendent vairables differ in the two subgroups. However, regarding the 

Point Number, neither a main effect of Inducer Sensitivity on clearness ratings (p = .56), nor any 

interaction with Point Number (p = .14), Inducer Type (p = .90), or the interaction Point Number 

× Inducer Type (p =.08) reached significance. Regarding Diameter, neither the main effect of 

Inducer Sensitivity on clearness ratings reached significance (p = .51), nor any interaction with 

Diameter (p = .67), Inducer Type (p = .95), or the Diameter × Inducer Type interaction (p =.77). 

Regarding ISI, neither a main effect of Inducer Sensitivity reached significance (p = .11), nor any

interaction with ISI (p = .63), Inducer Type (p = .34), or the ISI × Inducer Type interaction (p 

= .29). To sum up, there was no evidence for an effect of perceptual differences between 
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stationary and rotating inducers on the effect of the clearness rating regarding the RRI in the 

initial three sessions.

Post-hoc analysis of the effect of stimulus duration across experiments. Visual 

inspection of the RRI with stationary inducers in Figures 2A and 5A, and Figures 2B to 5B 

suggests that the mean clearness ratings of the RRI reach higher values in Experiment 1 as 

compared to Experiment 5. One crucial difference between the experiments is the stimulus 

duration of the inducer and the test ring. Durations of 500 ms were used in Experiment 1, 121 ms

in Experiment 3. A within-subjects comparison in Experiment 1 already revealed a significant 

main effect of stimulus duration (see Figure 2C). To examine whether stimulus duration 

increases the RRI in the other conditions as well, we compared the conditions with the stationary

inducer across Experiment 1 and 3 in a post-hoc analysis. However, the main effect of stimulus 

duration was only tentatively significant in the session where Point Number (F(1, 22) = 3.91, p =

.061) and in the session where Diameter was (F(1, 22) = 3.43, p = .077) varied. Thus, findings 

are not decisive for the effect of stimulus duration but suggest that future research might examine

this potentially effective variable.

Discussion

Experiment 3 examined the RRI with the stationary circle and the rapidly rotating ring as 

inducers and compared these effects to the MBE, which occurs only with the rotating inducer. 

Replicating Experiment 2, we found an RRI with both types of inducer. Above that, the clearness

of the RRI was larger with the rotating inducer than the stationary inducer. Our measure of 

clearness indicated an increase in the RRI when Point Number increases and the RRI decreases 

with increasing Diameter with the stationary inducer. We note that the effect of Diameter did not

reach significance in Experiment 1 where the duration of the two stimuli was 500 ms, rather than

121 ms in the present experiment. Thus, the RRI seems to depend on stimulus durations. With 

the rotating inducer, the RRI did not vary with Point Number and Diameter. The ISI, in contrast, 

modulated the RRI in the same way with either type of inducer.

The MBE reflects the effect of the motion direction of the inducer on the direction of the 

perceived RRI. The MBE was reduced by increasing Point Number and it increased with 

increasing Diameter. Visual inspection, however, suggests that the MBE has a curvilinear 

relationship to Point Number and Diameter similar to the curvilinear relationship to ISI where we

found a clear maximum with 90 ms ISI. Beyond replicating previous reports of the MBE 
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(Mattler & Fendrich, 2010; Stein et al., 2019) the extended range of Point Numbers from 8 to 20,

and Diameter between 2° and 8° of visual angle, the present findings point to curvilinear 

dependencies of the MBE. Findings suggests the MBE might break down with extreme values of

Point Number, Diameter and ISI. We note that the ISI effect was found with 90 ms inducer and 

500 ms test ring by Mattler & Fendrich (2010) whereas the effects of Point Number and 

Diameter were found with with 121 ms inducer and 500 ms test ring by Stein et al. (2019). In the

present study, the duration of both stimuli was 121 ms. Therefore, these effects on the MBE 

appear to be robust against changes in stimulus durations.

Our comparison of the two illusions suggests that the appearance of the MBE might be 

due to an RRI in respect of the clearness of the perceived rotation. According to this view, the 

yoked rotation of the points of the stationary test ring might be caused by the same mechanism 

with both types of inducers. However, we also found a dissociation between the effects of Point 

Number and Diameter on measures of the clearness of the RRI (Figure 5A and 5B), and the 

effects of Point Number and Diameter on measures of the MBE (Figure 5D and 5E). This 

dissociation suggests that the source of the MBE cannot be equated with the source of the RRI.

In the last session, we found data suggesting that participants could distinguish the 

stationary outline inducer from the rapidly rotating inducer. This surprising finding provides an 

alternative account for differences on the clearness measures of the RRI with the two types of 

inducers. We have addressed this possibility by a re-analysis of our findings, which did not 

provide evidence for such an alternative account. In addition, we doubt that the findings in the 

last session are informative for the effects in the previous sessions. First, extensive pilot studies 

with the present stimuli did not provide evidence for a perceptual difference between the 

stationary and the rotating inducer. Second, findings of Experiment 2 showed that participants 

could not distinguish the two types of inducer when stimulus durations were 90 ms (see Figure 

4A). Third, we speculate that participants might have developed special strategies to improve 

their performance in the final session, which they did not employ in the previous sessions. One 

of these strategies might include eye-movements, which can provide information to distinguish 

the rotating inducer from the stationary inducer. In consequence, we suggest to control eye 

movement in future studies.
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General Discussion

This study describes a new illusory motion we term the “Ring Rotation Illusion” (RRI). 

The RRI occurs when the outline of a circle (which we term the Inducing Ring) is replaced by a 

ring of stationary points (the Test Ring). This produces the percept of a transient clockwise or 

counter clockwise rotation of the Test Ring. Three experiments are reported. In Experiment 1, 

we examined the functional dependencies of the RRI, using judgments of the clearness of the 

perceived motion as a measure of its strength. We found the RRI increased as the number of 

points forming the Test Ring was increased from 8 to 20, diminished when the diameter of the 

Inducing and Test Ring was increased from 2 to 8° of visual angle, and was modulated by the ISI

between the Inducing and Test Ring in a manner that depended on the duration of the ring 

displays. When that duration was 100 ms the RRI followed an inverted U shaped function as the 

ISI was increased from 0 to 180 ms, peaking at 60 to 90 ms. When the duration was 500 ms, the 

RRI was stable with ISIs from 0 to 60 ms, then declined as it was increased to 180 ms.

The RRI is closely related to the Motion Bridging Effect (MBE), an illusion previously 

described by Mattler & Fendrich (2010) and Stein et al. (2019). The MBE and RRI displays are 

identical except that in the case of the MBE the Inducing Ring is a rapidly rotating ring of points.

When the speed of this rotation is sufficiently high the Inducing Ring appears to be a continuous 

outline circle with no visible rotation, so observers perceive the RRI and MBE displays as 

identical. Both displays produce an illusory rotation of the test ring points, but the MBE is 

distinguished by the fact the rotation direction of the Inducing and Test Rings tend to be 

congruent. This congruence is measured to assess the MBE. In the case of the RRI congruence is

not a meaningful idea since there is no Inducer rotation. However, Stein et al. (2019) have 

argued that processes that mediate congruence in the MBE are dissociable from processes that 

actually produce the illusion of motion in the Test Ring. In this case, it seems sensible to posit 

that the mechanism or mechanisms that produce the percept of a Test Ring motion are the same 

in the RRI and MBE. Our Experiments 2 and 3 evaluated this hypothesis.

 In Experiment 2, we compared the clearness and estimated covered distance of the 

perceived test ring rotation when the stationary and rapidly rotating inducers were employed. 

Although these were similar for the two inducer types, there was a small but significant 

improvement in the scores for both measures when the rotating Inducer was shown. This was the

case although participants could not discriminate the two inducer types.
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 In Experiment 3, clearness estimates were used to investigate whether the functional 

dependences observed in Experiment 1 (the effects of ISI, point-number and ring diameter) were 

the same with the two inducer types. The duration of the ring presentations was set to 121 ms. As

the ISI was increased the identical inverted U shaped function first observed in Experiment 1 

was found irrespective of the type of inducer, though as in Experiment 2 the clearness of the 

motion was slightly better when the rotating inducer was shown. With the rotating inducing ring,

clearness was unaffected by the number of points that formed the rings, but with the stationary 

inducing ring clearness improved, like in Experiment 1, as point number increased, starting well 

below the level found with the rotating inducer but matching that clearness when 20 points were 

used. With the smallest ring diameter, clearness was identical with the two inducer types and 

declined slightly as diameter increased, but declined more rapidly with the stationary inducer.

Overall, the data appear compatible with the view that the motion percept of the MBE 

and RRI have at least a common basis in part, but the inducer rotation in the MBE display serves 

to augment this motion percept. Moreover, the inducer rotation appears to alter the way the 

motion percept is modulated by the stimulus attributes point number and diameter. It should be 

noted in this regard that we found point number and diameter modulated the MBE congruence 

effect in the opposite way that they modulated RRI clearness and perceived rotation distance: 

Congruence declined with increasing point number and increased with larger diameter rings. We 

will return to these findings, which replicate Stein et al. (2019), later in this discussion.

What produces the RRI?

In their 2019 paper Stein and colleagues pointed out that the MBE display bears a 

similarity to the displays used to produce another illusion, which has been variously termed 

Singularbewegung (Wertheimer, 1912), polarized gamma movement (Kanizsa, 1979), line-

motion illusion (e.g., Hikosaka et al., 1993a), motion induction (e.g., von Grünau & Faubert, 

1994), or illusory line motion (e.g., Kawahara et al., 1996). We will adopt the designation “line-

motion illusion” with its “LMI” acronym. This similarity also applies to the RRI, perhaps even 

more so since in the case of both the RRI and LMI two genuinely static stimuli are exchanged. In

LMI experiments, when the presentation of a flashed square on a screen is followed by the 

presentation of an adjacent line, the line is perceived to rapidly grow outward from the square. 

Thus, with both the LMI and RRI displays switching between an extended coherent stimulus (the

line in the case of the LMI and outline circle in the case of the RRI) and a localized nonlinear 
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stimulus (the square in the case of the LMI and ring of points in the case of the RRI) creates an 

illusory motion. It therefore seems appropriate to ask if these illusions are generated by similar 

mechanisms.

Contemporary research on the LMI was initiated by Hikosaka et al. (1993a) who 

regarded it as an attention related phenomenon. These investigators argue, based on their own 

and previous temporal order experiments (e.g., Stelmach & Herdman, 1991), that sensory 

information that is attended is processed faster than unattended information. In the case of the 

LMI, they posit that attention is initially directed to the location of the square. Based on the 

evidence that there is a gradient of diminishing attention around an attentional focus (e.g., 

Mangun & Hillyard, 1988, Sagi & Julesz, 1986; Shulman, Sheehy, & Wilson, 1986) these 

authors propose that when the line appears the attentional gradient is stronger for the parts of the 

line closer to the square, so those parts reach consciousness more rapidly than more distal parts, 

causing the line to appear to grow outward. Commensurate with this view, von Grünau and 

Faubert (1994) found the LMI does not just occur when the square and line are differentiated 

from the background by luminance but also when they are defined by a wide variety of other 

attributes including isoluminant colors, texture, and stereoscopic depth, albeit sometimes with 

reduced strength. Von Grünau and Faubert concluded that the LMI is primarily mediated by a 

“high-level attention-related” process, although low level sensory processes can modulate this 

high level effect.

Downing and Treisman (1997), on the other hand, found that if they reversed the order of

the line and square participants continued to perceive a smooth illusory motion, with the line 

now contracting into the square. This result cannot be accounted for by attention because no cue 

to bias attention to a specific location is presented. Other studies have demonstrated that the LMI

can occur at multiple locations simultaneously (Faubert & von Grünau, 1995; Kawahara et al., 

1996; Tang, Dickinson, Visser, Edwards, & Badcock, 2013), a finding difficult to reconcile with 

an account based on focal attention.

Low-level processes based on shifts in luminance or contrast profiles that are not 

dependent on attention have been proposed to explain the LMI (Hock and Nichols, 2010; Zanker,

1994). However, low-level models of this kind cannot easily account for instances with complex 

LMI displays where motions are perceived that violate the predictions made by motion energy 

models (e.g., Tse and Logothetis, 2002; see the review in Han, Zhu, Corballis, & Hamm, 2016).
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Downing and Treisman (1997) offered a high-level alternative to the attention based 

account of LMI, which relates the illusion to apparent motion, and suggest it represents a case of 

an “impletion” process that fills in the missing intermediary positions of objects undergoing 

apparent motion. The authors regard the LMI as “a progressive transformation of shape induced 

by the binding of the dot and the line as successive states of one moving object” (p. 777), in 

which a dot transforms into a line (or vice-versa). They suggest the impletion process reflects a 

visual inference that interprets a stimulus sequence in terms of the real-world state of affairs 

likely to produce it. Tse and colleagues regard the LMI as an instance of transformational 

apparent motion (TAM, Tse et al.,1998; Tse & Logothetis, 2002). These authors distinguish 

TAM from standard types of apparent motion due to a set of unique rules that are applicable only

to TAM. These include a parsing and matching process over successive scenes of 

spatiotemporally overlapping figures, which contributes to the smooth shape change that is the 

defining characteristic of TAM. Hsieh et al. (2005) expand on this idea and speak of visual 

“heuristics”, one of which adjusts motion percepts to reflect the fact that in the external world 

object features change progressively rather than instantaneously.

The motion percept in the case of the RRI and MBE can be viewed as a global version of 

the LMI in which multiple segments of the outline of the circular inducer contract in unison into 

the circular array of points that form the test ring. According to this view, the inducer segments 

overlain by the test ring points and the points themselves correspond to two components of a 

conventional LMI display. The visual system integrates motion signals generated by these local 

units to form a global percept of rotation. It is apparent, however, the RRI cannot be regarded as 

direct extension of the version of the LMI presented by Hikosaka et al. (1993a) since in that 

version the square precedes the line while in the case of the RRI, the line precedes the points. 

However, as noted above, versions of the LMI display where a line is presented first and 

replaced by a square at one of its ends were examined by Downing and Treisman (1997) and 

Faubert and von Grünau (1995). In these cases, the line is perceived as contracting into the 

square. This version of the LMI display is the one to which the present RRI display can be 

likened. We note, however, even this version of the LMI differs in a fundamental way from the 

RRI. In all cases of the LMI, it is the line stimulus that hosts the motion percept. In the case of 

the RRI, the motion percept is hosted by the points.
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A study by Tang et al. (2013) provides a possible way of addressing this discrepancy. 

These investigators studied circular arrays of various synchronous TAM stimuli of the LMI type.

It was found that multiple TAM stimuli could integrate to yield a coherent global motion percept,

sometimes dependent on the motion energy associated with shifting luminance centroids in the 

TAM elements but sometimes based on “high-level TAM-related motion signals” rather than 

motion energy. The displays in the Tang et al. experiments differ from ours because in theirs the 

global motion is generated by detectable local motions occurring in the array of discrete TAM 

elements. With our stimuli, in contrast, the initial display is a continuous outline and no local 

TAM generated motions are evident when the transition to a ring of points occurs. Nevertheless, 

the fact that grouped TAM arrays can generate global motion percepts raises the possibility that 

in the case of the RRI the hypothesized local contraction of inducer line segments into test ring 

points could generate a global percept of rotation.

This viewpoint, however, raises the additional problem of explaining why all the points 

in the test ring yoke and rotate together in a common direction. The global motion percepts 

reported by Tang et al. (2013) are rotational twists but in their case, the local TAM elements 

provide directional cues to support the rotation percept. In the case of the RRI, these directional 

cues are missing. If the RRI inducer line segments were contracting into the test ring points a 

plausible prediction would be that the inducer line segments between each pair of test ring points

would split in the middle and contract symmetrically into the points being bridged. This 

counterfactual possibility is supported by a finding by Downing and Treisman (1997). When a 

line presentation was followed by two squares, one at each of its ends, the line was in fact seen to

vanish outward in two directions from the center. If this is what happens with the RRI display, 

each of the test ring points would be associated with two opposing line movements that would 

cancel so that no percept of rotation would be expected. Why then does the RRI occur?

Another variant of the LMI demonstrated by Downing and Treisman (1997) bears on this 

issue. When two horizontal lines were followed by two points that occurred at the ends of one 

line, both lines were seen as shrinking toward a point with the same direction (see also Faubert &

von Grünau, 1995). This effect indicates that the illusion takes geometrical arrangements into 

account and demonstrates a yoking of motion directions. In addition, an apparent motion yoking 

effect has been reported by Ramachandran and Anstis (1983). These investigators presented bi-

stable pairs of points that could be seen to be undergoing either a horizontal or vertical 
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oscillation when repetitively switched between their alternative states. When groups of these 

point-pairs were presented and switched simultaneously, the same perceived direction of the 

oscillation was entrained into all the pairs. Ramachandran and Anstis (1986) suggest that their 

finding provides support for the view that their display is perceptually interpreted as a single 

object moving through space. This interpretation could also be applied to the RRI test ring 

display, and would provide a plausible account for our finding of a common direction of the 

rotation of all the test ring points. It does not, however, explain why any rotation is seen. 

Accounting for the RRI therefore remains a challenge.

The RRI also differs from the LMI in terms of its temporal characteristics. The clearness 

of the RRI increases with an increasing ISI between the inducing and test rings, to a maximum 

with 60 – 90 ms ISI, and decreases with an ISI of 180 ms. The LMI is typically examined with 

two sequential displays with an ISI of zero. However, Hikosaka, Miyauchi, and Shimojo (1993b)

have reported that following a 17 ms presentation of the first frame, the LMI reaches a maximum

with an SOA of 50 ms (i.e., ISI of 34 ms) and then continues to be seen with SOAs as long as 

2176 ms. Similarly, Hikosaka and colleagues (1993a) used a 2 ms initial square and found an 

LMI that was maximal with 100 ms SOA but remained at this level in most subjects for 400 ms 

and was still above chance for 1s. The difference in the profiles of the LMI and RRI with 

increased ISIs suggests that the two illusions might not have a common basis.

In general, we think the RRI might be best accounted for by the inferential process 

suggested by Downing and Treisman (1997) and the visual “heuristics” model proposed by 

Hsieh et al. (2005). Some examples of possible “heuristics” provided by Hsieh and colleagues 

are that objects tend to change shape continuously, rarely appear out of nowhere, and rarely 

disappear into thin air. A “heuristic” of this kind might be involved in the generation of the RRI: 

specifically, one that holds that the most likely interpretation when a ring of points that follows 

an outlined circle is that a ring of points rotated very rapidly in one direction and decelerated to a

halt.

We note that Han and colleagues (2016) compared instances of LMI that differ in aspects

of the displays but nonetheless produce similar percepts of apparent motion. Changes of the 

order of the two displays that affected the instances of LMI differentially and the absence of 

within subjects’ correlations between their measures of the illusion suggest that the different 
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instances of LMI may actually be mediated by different mechanisms. Therefore, we think it is 

worthwhile to examine the relation between different instances of the LMI and the RRI.

The relation between the RRI and the MBE

It is important to bear in mind that the MBE differs from the RRI in its defining attribute: 

The global rotation of the test ring constitutes the RRI, while the MBE is measured by the 

congruence between the direction of the actual (but not necessarily consciously visible) motion 

of the inducing ring and the test ring illusory motion. Nevertheless, the displays that produce the 

two illusions as well as the apparent test ring rotations they generate can appear 

indistinguishable. Moreover, both illusions exhibit a comparable inverted U shaped function as 

the ISI between the Inducing and test ring is increased (Figure 5C and 5F). It therefore seems 

reasonable to conclude that the motion percept in the case of the two illusions reflects in part a 

common mechanism. However, the fact that the measures of the MBE congruence and measures 

of the RRI motion clearness vary in opposing ways as the number of points in and diameter of 

the rings are manipulated, indicates the mechanism responsible for the congruence is not the 

same as the mechanism that produces the RRI rotation.

The fact that the clearness of the motion percept is consistently judged to be higher with 

the rotating inducer than the stationary inducer nevertheless indicates that the rotation of the 

inducer can facilitate the RRI. This could be because it serves to disambiguate the direction of 

the test ring motion or because it actually serves to boost the strength of that motion. In the latter 

case, the test ring rotation seen with the MBE display may reflect both the mechanism that 

produces the rotation in the RRI display and an additional motion signal. Additional research is 

needed to evaluate these alternatives.

Measures of the strength of illusory motion

It is always a challenge to measure the strength of subjectively perceived illusions. Here 

we employed a subjective rating measure that has been used in previous research on apparent 

motion (e.g., Kahneman, 1967) and the line-motion illusion (e.g., Christie & Klein, 2005; 

Downing and Treisman, 1997; Hubbard & Ruppel, 2011; 2018) and it has been shown to be 

statistically robust (Norman, 2010) and superior to two-alternative force-choice responses (e.g., 

Hikosaka et al., 1993 and the critique of Downing & Treisman, 1997). We are nevertheless 

aware of limitations that result from using this method. Anecdotally, participants reported that 

they compared the strength of the illusion on a given trial with the strength on previous trials, 
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which points to an involvement of memory and attention. In addition, it points to serial 

dependencies of the ratings because the rating of an illusory motion in one and the same 

condition depends on which condition occurred in the previous trials. These problems call for a 

replication of the present study with less subjective psychophysical measures of the strength of 

the illusion. However, since we found systematic variations of the ratings in Experiment 1 which

were replicated in Experiment 3, we think our use of the ratings to measure the clearness of the 

illusory motion is justified in the current context.

We are currently working to develop alternative approaches to quantifying the strength of

motion percepts produced by the RRI and the MBE displays. One class of possible measures 

takes advantage of the fact that moving stimuli shift the positions of stationary shifts (e.g., 

Durant & Johnston, 2004; Faubert & von Grünau, 1995; Scarfe & Johnston, 2010; Whitney, 

2006). In these procedures, observers judge the relative spatial offset of a pair of stimuli. The 

displacement that is necessary to compensate the motion induced displacement of the two stimuli

can be used as an implicit measure to quantify perceived motion. Whitney (2006) has used this 

approach to study illusory line motions.

Alternatively, a cancellation technique could be employed to quantify the illusionary 

motion (e.g., Blake & Hiris, 1993; Han, Zhu, Corballis & Hamm, 2016; Steinman, Steinman & 

Lehmkuhle, 1995; Wright & Johnston, 1985). Han and colleagues used real motion to cancel the 

illusionary motion and to quantify the illusion (see also Ha & Hamm, 2019). In our future 

research on the RRI and MBE we expect to employ measures of this kind.

Conclusion

We report evidence for a new illusion, the “Ring Rotation Illusion” that results when an 

inducer with a circular outline is followed by a ring of points, which appear to rotate unitarily in 

one direction to a halt. We quantified the strength of this illusion by subjective ratings of the 

clearness of the rotation. Mean clearness was modulated by the number of points, the diameter of

the rings, the ISI between rings, the duration of the rings, and the type of inducer. We compare 

the RRI with the Motion Bridging Effect, which consists in a general unitary rotation in the 

direction of a rapidly rotating inducer, which precedes the ring of points. Similarities between the

two illusions suggest that the RRI is part of the MBE. Differences between the two illusions 

suggest that the MBE cannot be reduced to the RRI. We suggest that the RRI is a variant of 
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apparent motion, which results from a heuristic interpretation of the stimulus sequence according

to a corresponding sequence of events in the real world.
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Abstract

When a ring of points spins with sufficient rapidity it appears to be an unbroken outline circle 

with no visible rotational motion. When the rotating ring is followed or preceded by a stationary 

ring of points, however, the stationary ring is perceived to undergo a brief illusory spin, that 

generally matches the direction of the actual spin of the rotating ring. This allows observers to 

judge the spin direction of the rotating ring at above chance levels, an effect that has been termed

the Motion Bridging Effect (MBE). We replicated the MBE when start and stop positions of 

points in rotating ring matched the point locations in the stationary ring, as has been the case in 

all previous studies. However, when the start and stop positions of the rotating ring were 

progressively displaced across the space between the points of the stationary ring, the MBE 

decreased as the displacement increased, vanishing when the displacement was 25% and then 

reversing so that the direction of the stationary ring’s illusory spin was opposite the spinning 

rings direction. This reverse motion peaked when the start and stop positions of the points in the 

rotating ring were midway between the points of the stationary ring. As further displacements 

brought the final point positions of the rotating ring back into alignment with the points of the 

stationary ring the MBE shifted back to normal, crossing a null when the displacement of 75%. 

We argue that the MBE is not solely determined by the rotation direction of the inducing ring 

because it is generated by an interaction between the inducing ring and test ring points whose 

spatiotemporal distance is the factor that determines the perceived direction of the illusory 

motion.

Keywords: motion aftereffects, motion perception, unconscious perception, apparent 

motion, temporal frequency
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Spatiotemporal alignment and the Motion Bridging Effect.

The motion bridging effect (MBE, Mattler & Fendrich, 2010) is an illusion in which a 

rotating ring of points (the inducing ring) is preceded or followed by a stationary point ring (the 

test ring). The stimulus sequence produces an illusory movement of the test ring points, that is 

mainly perceived to be in the direction of the inducing ring spin. This occurs although the speed 

of the inducing ring is so high that its direction cannot be distinguished when it is presented on 

its own: All that is seen is a continuous outline circle (Mattler & Fendrich, 2010; Stein, Fendrich,

& Mattler, 2019). This absence of a motion percept is attributable to the fact that at the reported 

high velocities all point positions on the circumference of the rotating ring are refreshed at rates 

that exceed the human flicker fusion threshold (e.g., 125 Hz with 16 rotating points and a 

velocity of 2250°/s (Stein et al., 2019).

Two approaches have been proposed to explain the MBE. One is the velocity updating 

hypothesis of Mattler and Fendrich. They propose that the rapid rotation and spin direction of the

inducing ring is stored at some neural processing level. When the rapidly rotating inducer is 

suddenly replaced by the stationary test ring a transition stage is generated that represents an 

intermediate velocity, bridging the two stimulus states and enabling perceptual continuity. The 

stored direction information represented in the interim stage produces the direction 

correspondence of the MBE. Evidence favoring this approach comes from phenomenological 

reports of participants, who often describe a percept of deceleration when the test ring follows 

the inducing ring. When the test ring is presented first, many participants report an acceleration 

of the test ring.

An alternative approach was proposed by Stein et al. (2019). This approach speculates 

that the transition from the visually unbroken inducing ring outline to the dotted test ring 

produces a transformational apparent motion that would be perceived even if the spinning 

inducing ring was replaced by a truly continuous stationary outline circle. This account posits 

that the MBE reflects the joint action of two processes, one that registers the direction of the 

inducing ring’s rotation direction and one that generates the illusory test ring spin. Data gathered 

by Mattler, Stein and Fendrich (in preparation) support this multiple process account by 

demonstrating a test ring motion is in fact seen when the inducing ring is an actual outline circle 

that does not convey any rotational information. Note that the transitional velocity hypothesis 
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and the two-process approach share the premise that the direction of the inducing ring (clockwise

vs. counter-clockwise) is encoded in the visual system and can bias the perceived direction of the

illusory test ring spin despite the fact that this direction is not consciously visible in the inducing 

ring itself.

It was previously shown by Mattler and Fendrich (2010) that the MBE depends on the 

spatial and temporal separations between the inducing ring and test ring points. The authors 

varied the inter-stimulus interval (ISI) between the inducing ring and the test ring starting with 

an ISI of 0 ms. The MBE showed a significant increase as the ISI was increased with an 

optimum at 90 ms and a drop at 180 ms. Additionally, the MBE declined quickly as the position 

of the test ring was displaced by small spatial distances from the inducing ring. When the authors

increased the test ring size to 6° while keeping the inducing ring size constant at 5° of visual 

angle, participants perceived a rotation in the test ring that matched the inducing ring direction 

on 55% of the trials, an opposite rotation on 35% of the trials, and no rotation on 10% of the 

trials. This contrasts with a finding of better than 75% direction congruence when there was no 

spatial displacement. When the test ring size was increased to 8° of visual angle participants 

responded with the inducing ring direction in 35% of trials, the opposite direction in 31% of 

trials, and a report of no rotation in 34 % of trials. This contrasts with a finding of better than 

75% direction congruence and a nearly complete absence of no rotation reports when there was 

no spatial displacement. Note that the appearance of no motion reports in this data fits with the 

Stein et al. (2019) hypothesis that the illusory motion that allows the MBE direction congruence 

to be seen is generated by the inducing ring–test ring transition since transformational apparent 

motions require close spatial proximity (Tse, Cavanagh, & Nakayama, 1998).

In summary, the results of Mattler and Fendrich (2010) argue that the MBE is dependent 

on the spatial and temporal distances between the inducing and test ring, and in particular 

critically dependent on their spatial proximity. However, in the Mattler and Fendrich study only 

the spatial and temporal separations between the full inducing and test rings were considered. 

We were interested in whether the MBE would also be dependent on the spatiotemporal 

relationship of the point positions of the inducing and test ring — i.e., the spatial and temporal 

distances separating the individual inducing ring and test ring points — when the ring 

circumferences overlapped perfectly. We investigated this by shifting the start and stop position 

of the inducing ring along the circumference of the test ring. In all previous investigations this 
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spatiotemporal relationship was kept constant since the start and stop position of the inducing 

ring always corresponded to the position of the test ring.

Overview

In the present study, we report three experiments that investigate the dependence of the 

MBE on the start and stop position of the inducing ring. In Experiment 1 we displaced the start 

and stop positions of the inducing ring points across the spaces separating the points of the test 

ring that followed the inducing ring. This had the effect of changing the spatiotemporal distance 

between inducing and test ring point positions while leaving the inducing ring’s direction 

information and subjective appearance unchanged. In Experiment 2, we investigated whether 

information about the onset and offset positions were the major cause of the effects found in 

Experiment 1 by temporally embedding the inducing ring between two stationary masks. In 

Experiment 3 was similar to experiment 1, but we reversed the presentation order of the two 

rings, so that the test ring was presented first.

General Methods

Participants

Participants were students of the University of Goettingen with an average age of 22.6 

years, and were paid at €7 per hour or received student credits. All were tested with a Landolt 

ring chart prior to their first session and found to have normal or corrected to normal vision. In 

Experiment 1 and 3 participants completed four 1 hour sessions. In Experiment 2, they 

completed three 1 hour sessions. We examined 12 students in each experiment. No student 

participated in more than one of the experiments.

Apparatus

Displays were presented on an analog HAMEG HM 400 cathode-ray oscilloscope 

controlled by a PC with a 12-bit digital-to-analog converter. The 8 × 10 cm oscilloscope screen 

was customized with a fast P15 phosphor (50 µs luminance decay time to 0.1%). Participants sat 

in a dark room with their head positions stabilized by a chin and forehead rest 57 cm from the 

oscilloscope screen.
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Stimuli

The stimuli were similar to those used in our previous study (Stein, Fendrich, & Mattler, 

2019). A rotating ring (the inducing ring) and a stationary ring (the test ring) were displayed. 

Both rings were 7.5° of visual angle in diameter and constructed from 16 equally spaced 

luminous points. These points were slightly blurred because we previously found this 

strengthened the illusory motion percept being studied. The position of the points could be 

adjusted in increments of 0.25 angular degrees, allowing them to be placed in 1440 potential 

positions along the ring circumference. The inducing ring was rotated by advancing all of its 

points every millisecond by a specified number of positions so that it was updated with an 

effective frame rate of 1000 Hz. This ring could be rotated clockwise or counter-clockwise at 

angular velocities of 250, 750, 1500 and 2250°/s, which entailed sequential point position 

progressions of 1, 3, 6, and 9 steps. At the higher rotation speeds (above 250°/s) the inducing 

ring appeared to be a continuous solid circle. To eliminate visible switching artifacts, the 

oscilloscope electron beam was turned off during its transition between the successive point 

positions. The time averaged brightness of inducing ring points was 0.017, 0.050, 0.099, and 

0.149 cd/m² at the 250, 750, 1500 and 2250°/s velocities respectively, and the test ring point 

brightness was 1.50 cd/m² on a dark background. The methods required to obtain these 

brightness measurements are described in Stein et al. (2019). Data reported in Stein et al. (2019) 

indicate the velocity dependent differences in luminance were unlikely to have any impact of the 

MBE.

In one of the reported experiments an 18 ms mask was presented immediately before and 

after the inducing ring was displayed. These masks were constructed by displaying points around

the inducing ring circumference in a random order (and at the position of the central fixation 

point). For each inducing ring velocity, the location and timing of the point presentations in the 

associated mask was identical to that employed during the inducing ring presentation. 

Consequently, the inducing ring and mask had the same apparent brightness, but because the 

sequence of point positions in the mask was scrambled it did not convey a coherent motion 

direction. Like the inducing ring the mask appeared to be a continuous outline circle. Informal 

observations indicated that the presentation of these masks did not alter the appearance of the 

inducing ring. In all the experiments sessions of two types were run.
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The Standard Alignment Session

In the first session of each experiment the rotation of the inducing ring always started and

stopped with points placed at the same set of ring circumference positions. These were the 

positions of the test ring points when the test ring was presented. Fourteen trial blocks were run 

with the first two treated as practice and excluded from the data analysis. There were 48 trials in 

each block. Blocks in which only the inducing ring was presented were alternated with blocks in 

which both the inducing ring and the test ring were presented. The angular velocity and the 

rotation direction of the inducing ring was varied quasi-randomly within each block. The 

combination of two test ring states (present, absent) and four angular inducing ring velocities 

(250, 750, 1500, 2250°/s) produced eight experimental conditions. There were 72 trials in each 

of these conditions: 36 with a clockwise inducing ring rotation and 36 in counter-clockwise 

rotation.

Displacement Sessions

In the displacement sessions of each experiment the lowest velocity (250°/s) was not 

employed and the test ring was always present. The start and stop position of the inducing ring 

was displaced relative to the point positions in the test ring across the 22.5° distance separating 

the points forming these rings in 11 equal steps of approximately 1.88° angular degrees starting 

with a displacement of 0°. This displacement is illustrated in Figure 1 and was always in the 

rotation direction of the inducing ring (i.e., clockwise with a clockwise rotation, counter-

clockwise with a counter-clockwise rotation). Actual displacements employed in each 

experiment and sequence of trial blocks run are described in the experiment specific methods 

sections below.



SPATIOTEMPORAL ALIGNMENT AND THE MBE 8

Figure 1. All conditions of the displacement sessions with a clockwise (CW) rotating inducing 

ring. Test ring point positions are shown in black, inducing ring start and stop positions in 

yellow. The inducing ring start and stop position was displaced in 11 steps across the 22.5° 

angular distance separating the test ring points. All the displayed points were identically bright 

on a dark background: In this figure we color the inducing ring position only to distinguish it 

from the test ring position.

Statistical Analysis

We used signal detection methods to analyze performance (Macmillan & Creelman, 

2005). Hits were defined as clockwise responses to a clockwise rotation direction and false 

alarms as clockwise responses to a counter-clockwise direction. Hit and false alarm rates were 

estimated separately for each subject in each condition and corrected with the log-linear rule 

(Hautus, 1995). In the standard alignment sessions we evaluated d′ measures of the 

discrimination ability of participants with repeated measures analyses of variances (ANOVAs). 

All degrees of freedom were corrected using Greenhouse-Geisser estimates of sphericity but for 

the sake of readability, the uncorrected degrees of freedom are reported.
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Note that contrary to classical signal detection analysis the d′ measures in our analyses do

not represent the distance between the means of the noise and signal distributions but the 

distance between the means of two distributions that correspond to the two motion directions. D′ 

has a high positive value if the rate of clockwise responses to a clockwise rotation when all 

clockwise rotations are considered (hit rate) is higher than the rate of clockwise responses to a 

counter-clockwise rotation when all counter-clockwise rotations are considered (false alarm 

rate). This also implies that d′ values below zero cannot just be interpreted as chance occurrences

when analyzing a small number of trials (e.g., Macmillan & Creelman, 2005) but also as a 

reversal of the relationship between hit and false alarm rates. If participants perceive a counter-

clockwise rotation when the inducing ring is in fact rotating clockwise and vice versa the false 

alarm rate will be higher than the hit rate and this entails a negative d′ value.

Because we observed that the effect of the inducing ring displacements on d' has an 

apparently sinusoidal profile, a sinusoidal function was fitted to each participant’s d′ values at 

each inducing ring velocity using least squares regression. D' variations were measured over the 

periodic interval that begins and ends with a 0° displacement of the inducing ring start and stop 

positions relative to the test ring point positions. The mean fit and amplitude of each sinusoidal 

function was calculated and amplitude estimates were evaluated across participants with 

Greenhouse-Geisser corrected repeated measures ANOVAs.

Experiment 1

In all previous investigations of the MBE the start and stop positions of the points in the 

inducing ring matched the positions of the points in the associated test ring. In this experiment 

we investigated the MBE when the start and stop positions of the inducing ring points were 

displaced across the 22.5° angular gap that separated the test ring points (see Fig. 1). This 

displacement manipulation makes it possible to investigate the influence of the spatiotemporal 

distances between the point positions of the inducing ring and test ring, while keeping the 

direction signal of the inducing ring untouched.

Method

See Figure 2. Participants reported the rotation direction of the inducing ring (clockwise 

or counter-clockwise). Responses were registered with the arrow keys of a conventional 

computer keyboard, with the right arrow indicating a clockwise rotation and the left arrow a 



SPATIOTEMPORAL ALIGNMENT AND THE MBE 10

counter-clockwise rotation. Trial blocks were started with a press of the space key. No feedback 

was given about the correctness of responses.

Figure 2. Display sequence in Experiment 1. The inducing ring rotated either clockwise (as 

shown in the figure) or counter-clockwise. In the standard session no test ring was presented in 

half of the trials and the inducing ring start and end point positions coincided with the test ring 

point positions when one was. In the displacement conditions the test ring was always presented 

and inducing ring start and stop positions fell between the test ring points.

Participants were instructed to maintain their gaze on a central fixation point during the 

trials. This fixation point brightened for 750 ms at the start of each trial to indicate that the 

inducing ring was about to appear. In the conditions in which the test ring was presented it 

followed the inducing ring after a 60 ms interstimulus interval (ISI) and remained visible for 500 

ms. Subject’s reports of the inducing ring direction were recorded starting 300 ms after the offset

of the test ring. A response was required for the experiment to proceed. A new trial started 1 

second after the response. In the standard alignment session (first session) no test ring was 

present in half of the blocks. In the displacement sessions (second to fourth sessions) only blocks

in which the inducing ring was followed by the test ring were presented and the beginning and 
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position of the inducing ring points was displaced relative to the point positions of the test ring in

11 steps (with the standard condition providing a 0 displacement 12th step). In each 

displacement session nine trial blocks were run with the first treated as practice and excluded 

from the data analysis. There were 72 trials in each block. The angular velocity, the degree of 

displacement and the rotation direction of the inducing ring were varied quasi-randomly within 

each block. The combination of 12 displacements (0, 1.88, 3.75, 5.63, 7.5, 9.38, 11.25, 13.13, 15,

16.88, 18.75, and 20.63° across the 22.5° angular point-distance) and three angular inducing ring

velocities (750, 1500, 2250°/s) produced 36 experimental conditions. There were 48 trials in 

each of these conditions: 24 with a clockwise inducing ring rotation and 24 in counter-clockwise 

rotation.

Results: The Standard Alignment Session

For the standard alignment session the across subject mean sensitivity (d′) to the inducing

ring’s direction was calculated for each condition and examined with a two-way 2 × 3 ANOVA 

that evaluated the effect of presenting the additional test ring and the effect of the inducing ring’s

angular velocity. We will refer to these factors as Test ring (inducing ring only vs. inducing ring 

+ test ring condition) and Velocity.

Results and confidence intervals are presented in Figure 3. Additionally, we report mean 

percent responses in inducing ring direction in Table 1. The occurrence of the MBE was 

confirmed by a higher sensitivity to the inducing ring rotation direction when the test ring was 

present than when it was absent, d′ = 2.66 vs. d′ = 1.25, F(1, 11) = 90.05, p < .001. There was 

also a significant main effect of velocity, F(3, 33) = 295.69, p < .001, with mean sensitivity 

declining as angular velocities increased (d′ = 4.20, d′ = 1.92, d′ = 1.08, and d′ = 0.62 for the 250,

750, 1500, and 2250°/s velocities respectively). However, the magnitude and character of this 

decline was quite different for the two Test Ring conditions, producing a significant interaction 

between Test ring and Velocity, F(3, 33) = 32.81, p < .001. When the inducing ring was 

presented alone, performance is high in the 250°/s velocity condition but drops steeply to near 

zero or zero at the other three levels of velocity (d′ = 4.17, d′ = 0.67, d′ = 0.16, and d′ = -0.01 at 

250, 750, 1500, and 2250°/s, respectively). In contrast to the inducing ring only condition, 

accuracy falls of linearly when the inducing ring was followed by a test ring, with d′ staying 

above zero even at the highest velocity condition (d′ = 4.22, d′ = 3.17, d′ = 2.00, and d′ = 1.24 at 

250, 750, 1500, and 2250°/s, respectively).
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Figure 3. Mean sensitivity (d′) for 12 participants in the standard alignment session of 

Experiment 1 for each velocity in the inducing ring only conditions (the dashed line), and the 

inducing ring + test ring conditions (the solid line). Error bars show 95% confidence intervals. 

The solid gray line indicates the chance level of accuracy (d′ = 0). Data are also presented in % 

correct format in Table 1.
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Table 1

Mean percentage of reports in inducing ring direction for the standard alignment and 

displacement sessions of Experiment 1. Note that 50% represents chance performance, and 

values less than 50% indicate a bias to report motion opposite the actual inducing ring 

direction.

Standard Alignment Session of Experiment 1
Angular velocity (in °/s)

Test ring condition 250 750 1500 2250
Inducing ring only 99.2 62.6 53.0 50
Inducing ring + test ring 99.3 93.2 81.4 72.0

Displacement Sessions of Experiment 1
Angular velocity (in °/s)

Displacement (as % of 22.5°) 750 1500 2250
0 93.8 77.6 71.5
8.3 89.8 75.9 68.8
16.7 79.9 64.6 55.4
25 44.8 44.1 45.7
33.3 23.1 30.2 33.5
41.7 11.1 24.3 30.0
50 11.6 24.1 29.9
58.3 14.4 26.7 30.9
66.7 26.9 35.9 40.1
75 60.6 52.1 49.5
83.3 84.7 68.8 63.0
91.7 90.6 78.8 70.8

The presence of the MBE at each of the inducing ring velocities was evaluated by four 

paired one-tailed t tests, that compared the inducer-only and test ring present conditions. At all 

velocities higher than 250°/s, accuracy rates were significantly higher when the test ring was 

shown (p < .001). There was no significant MBE in the 250°/s velocity condition (p > .1) 

because accuracy rates were at ceiling irrespective of the test ring condition.

One striking characteristic of the MBE is that the improvement in accuracy produced by 

the test ring presentation can occur even when subjects perform at chance in the inducing ring 

only condition. To determine if this was the case with the present data we conducted 4 one-tailed

t tests with a Bonferroni adjusted alpha level of .0125 that compared the performance of 

participants at each velocity in the inducing ring only condition to a chance level of 50% (d′ = 0).
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In addition to the obvious above chance performance in the 250°/s condition, we found that mean

sensitivity was significantly greater than zero at 750°/s, t(11) = 4.89 (p < .001), but not at the two

highest velocities. When we employed an uncorrected alpha level of .05 performance in the 

1500°/s condition was also slightly better than chance, t(11) = 2.41, p = .017, but not in the 

2250°/s condition, t(11) = 0.06, p > .05.

Results: Displacement Sessions

Mean d′ values and confidence intervals for all the conditions of the displacement 

sessions are presented in Figure 4. Additionally, Table 1 presents the results as the mean percent 

of correct reports of the inducing ring direction in each condition. As can be seen in Figure 4, the

displacement manipulation had a strong impact on the MBE. Mean sensitivity is high (d′ = 1.95) 

with 0% displacement of the inducing ring start/stop positions relative to the test ring point 

positions (the standard alignment condition), gradually drops to near zero at 25% displacement 

(d′ = -0.26), builds in an inverse direction (i.e., produces reports of a motion in the reverse 

direction of the actual inducing ring rotation) as the displacement continues to increase and 

reaches a negative peak with displacements around of 41.7% and 50% (d′ = -1.73 for both). 

Then, as the displacement is increased further mean sensitivity steadily shifts back to its initial 

value, crossing the chance level of accuracy again at a displacement of 75% (d′ = 0.21).
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Figure 4. Mean sensitivity (d′) for 12 participants in the displacement sessions of Experiment 1 

for each level of velocity and displacement. Error bars show 95% confidence intervals. Points 

and confidence intervals are slightly offset horizontally to improve their visibility. The solid gray

line indicates the chance level of accuracy (d′ = 0). Note that negative d′ values indicate a bias to 

report motion opposite the actual inducing ring direction. Data are also presented in % correct 

format in Table 1.

Because of the sinusoidal profile of the data, we choose to model it with a sinusoidal 

function that resembles the change of d′ over the various levels of displacement. The 

appropriateness of doing this was supported by a high mean fit between a sinusoid and 

participant’s d′ measure of discrimination ability (R² = .96, R² = .88, R² = .85 at 750, 1500, and 

2250°/s, respectively). The amplitude of the fitted sinusoid indicates the strength of the positive 

and negative MBE. The amplitude of each subject's sinusoid in each velocity condition was 

therefore calculated and examined with a one-way ANOVA with angular velocity [750, 1500, 

2250°/s] as the factor. The velocity effect was highly significant, F(2, 22) = 111.26, p < .001, 

with the sinusoid amplitude declining as velocity increased (M = 3.04, M = 1.72, and M = 1.22 at

750, 1500, and 2250°/s, respectively), indicating the strength of the MBE is modulated by 

velocity. As can be seen in Figure 4, an increase in velocity leads to a reduction in the mean 

sensitivity when the MBE is positive (e.g., d′ = 3.08, d′ = 1.58, d′ = 1.19 at 750, 1500, and 2250°/
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s, respectively at 0% displacement), but to an increase in mean sensitivity when the MBE is 

negative (e.g., d′ = -2.55, d′ = -1.56, d′ = -1.07 at 750, 1500, and 2250°/s, respectively at 50% 

displacement). Note that in either case, an increase in velocity brings the MBE closer to chance 

performance.

Summary

In the standard session of Experiment 1 we replicate the MBE and its dependence on 

angular velocity (Mattler & Fendrich, 2010; Stein et al., 2019). When the rapidly rotating 

inducing ring was presented alone, participants perceived a stationary outline at the higher 

velocities and discrimination ability was at chance level. When the test ring succeeded the 

inducing ring performance was substantially above chance level because participants perceived 

an illusory motion in the same direction as the inducing ring was rotating. The most frugal 

explanation of this and previous investigations of the MBE is to assume the rotation direction of 

the inducing ring is registered by the visual system and subsequently determines the direction of 

the illusory motion.

However, the displacement sessions of Experiment 1 demonstrate that the perceived 

direction of motion was highly dependent on the inducing ring start and stop position. The MBE 

decreases when these positions are displaced from the test ring point positions and inverts when 

the displacement is greater than 25% of the inter-point distance, reaching a maximum negative 

value when it is midway between the test ring points. Neither the premise that the MBE reflects a

neural transition between two velocity states of the same stimulus (Mattler & Fendrich, 2010) 

nor that it reflects the encoding of direction information that biases the direction of an illusory 

apparent motion (Stein et al., 2019) can readily account for this reversal. If the direction of the 

MBE is solely determined by the rotation direction of the inducing ring the start and stop 

position of the inducing ring should have no influence on the direction of the illusory motion. 

The fact that this influence does occur argues the MBE is generated by an interaction between 

the inducing ring and test ring points. We will argue in our final discussion that the 

spatiotemporal distance between the inducing ring and test ring point positions is the factor that 

determines the perceived direction of the illusory motion.
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Experiment 2

The fading luminance streak generated by the advancing inducing ring points is a 

potential source of information about the direction of the inducing ring rotation. The persisting 

activity at recently stimulated retinal locations will be greater than the activity at locations 

activated earlier. Thus, the persisting trace of points positioned just behind an actively displayed 

point will necessarily be stronger than the persisting trace of the point just ahead of it. The fading

of the afterimage of a luminance gradient can in fact by itself result in an illusory perception of 

motion (Hsieh, Caplovitz, & Tse, 2006). While the luminance streak in the Hsieh et al. Study 

was clearly visible to the observer and this was not the case in the present and prior MBE studies

this example gives credence to the possibility that a luminance streak that is present but not 

consciously visible could elicit a motion percept. In Experiment 2 we evaluated the hypothesis 

that invisible fading luminance streaks are a modulator of the MBE.

In Experiment 1 we found that a displacement of the start and stop position of the 

inducing ring reduced and even inverted the MBE. While we suggest that these results can be 

accounted for if the perceived direction of the MBE is determined by the spatiotemporal 

distances of the inducing ring and test ring point positions, they leave open the possibility that 

the luminance streaks generated at the onset of the inducing ring presentation and fading 

luminance streaks that follow its offset, although not consciously perceived, play a role in 

determining the perceived direction of the illusory motion. These result from the temporal 

distance of the offsets of the inducing ring points and lead to differences in persisting activity at 

successively presented point positions. To examine the possibility we extended the stimulus 

arrangement of Experiment 1 by adding two stationary masks, one immediately before and one 

immediately after the inducing ring. While the masks to do not alter any visible features of the 

inducing ring (cf., Mattler et al., in preparation), the mask following the inducing ring will 

overwrite the fading luminance streaks that reflect the advance of the ring's final points positions 

while the mask preceding the inducing ring will reduce the salience of the onset information 

conveyed by the initial streaks produced when the inducing ring first appears.

Method

Stimuli and procedures were similar to those described for Experiment 1 with the 

following changes: The inducing ring was preceded and followed by 18 ms circular masks which

emulated the point presentations in each velocity condition but randomized the order of those 
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presentations so that there was no coherent motion direction (see Figure 5 and general methods). 

Additionally, the number of displacement levels was pared down to eight while keeping the 

number of trials per experimental condition constant.

Figure 5. Display sequence in Experiment 2. The inducing ring rotated either clockwise (as 

shown in the figure) or counter-clockwise. In the standard session no test ring was presented in 

half of the trials and the inducing ring start and end point positions coincided with the test ring 

point positions when one was. In the displacement conditions the test ring was always presented 

and inducing ring start and stop positions fell between the test ring points.

In each displacement session thirteen trial blocks (48 trials per block) were run with the 

first treated as practice and excluded from the data analysis. The combination of 8 displacements 

(0, 1.88, 5.63, 9.38, 11.25, 13.13, 16.88, and 20.63° across the 22.5° angular point-distance) and 

three angular inducing ring velocities (750, 1500, 2250°/s) produced 24 experimental conditions.
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There were 48 trials in each of these conditions: 24 with a clockwise inducing ring rotation and 

24 in counter-clockwise rotation.

Results: The Standard Alignment Session

Results and confidence intervals for all conditions of the standard alignment session are 

presented as d′ values in Figure 6. Mean percentage of responses in inducing ring direction are 

presented in Table 2. The data essentially duplicates the pattern found in the standard alignment 

condition of experiment 1. As in Experiment 1, the across subject sensitivity (d′) to the rotation 

direction of the inducing ring was calculated and examined with a 2 × 3 ANOVA with Test ring 

and Velocity as the factors. A significant main effect of Test ring, F(1, 11) = 60.67, p < .001, a 

significant main effect of Velocity, F(3, 33) = 252.34, p < .001, and an interaction between 

Velocity and Test ring, F(3, 33) = 10.98, p < .001. The interaction reflects the different response 

profiles found when the test ring is present and absent. Accuracy falls of linearly when the 

inducing ring was followed by a test ring, with d′ staying above zero even at the high velocity 

conditions. When the inducing ring was presented alone, accuracy drops steeply to near zero 

with increasing velocities.

Figure 6. Mean sensitivity (d′) for 12 participants in the standard alignment session of 

Experiment 2 for each velocity in the inducing ring only conditions (the dashed line), and the 
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inducing ring + test ring conditions (the solid line). Error bars show 95% confidence intervals. 

The solid gray line indicates the chance level of accuracy (d′ = 0). Data are also presented in % 

correct format in Table 2.

Table 2

Mean percentage of reports in inducing ring direction for the standard alignment and 

displacement sessions of Experiment 2. Note that 50% represents chance performance, and 

values less than 50% indicate a bias to report motion opposite the actual inducing ring 

direction.

Standard Alignment Session of Experiment 2
Angular velocity (in °/s)

Test ring condition 250 750 1500 2250
Inducing ring only 96.6 52.9 52.2 50.3
Inducing ring + test ring 99.7 85.3 71.3 64.5

Displacement Sessions of Experiment 2
Angular velocity (in °/s)

Displacement (as % of 22.5°) 750 1500 2250
0 87.3 74.7 64.8
8.3 80.9 67.2 60.6
25 45.1 46.9 48.8
41.7 24.1 36.8 36.5
50 24.7 35.1 37.2
58.3 24.5 35.4 39.4
75 48.3 50.7 46.5
91.7 83.2 72.2 65.1

As in Experiment 1, we directly compared the performance of participants in the inducing

ring only condition to a chance level of 50% (d′ = 0) using 1 tailed t-tests (α = .0125). These tests

confirmed the consistent above chance performance in the 250°/s velocity condition, t(11) = 

13.72, p < .001, and chance performance in all the higher velocity conditions (all p > .05). 

Additionally, one-tailed t tests (α = .0125) that compared the inducer only and inducer + test ring

conditions at each level of velocity confirmed that the MBE was present in all conditions except 

the 250°/s velocity condition (all p < .001). There was no significant MBE for the 250°/s velocity

condition even when an uncorrected alpha level of .05 was employed due to the high detection 

rates in the inducer only trials.
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To investigate whether the MBE was influenced by the presentation of the ring masks we

also calculated a mixed model ANOVA with Test ring and Velocity as within subjects factors 

and Masking [masks absent in Experiment 1 vs. masks present in Experiment 2] as a between 

subjects factor. In accord with the previous analyzes, the main effects of both within subjects 

factors were highly significant as was the interaction between them (all p < .001). A significant 

main effect of Masking F(1, 22) = 7.24, p = .013, indicates that mean sensitivity was reduced 

when the ring masks were added to the inducing ring (d′ = 1.95 in the first vs. d′ = 1.59 in the 

second experiment). However, due to a non-significant interaction between Masking and Test 

ring, F(1, 22) = 2.08, p = .164, it was not possible to conclude this reduction is solely due to a 

reduction in the MBE, as it also could be attributed to a general impairment in the perception of 

motion directions by the stationary masks (cf., Duyck, Wexler, Castet, & Collins, 2018). In 

general, these results indicate the presentation of the masks had little effect on the MBE.

Results: Displacement Sessions

Mean d′ values and confidence intervals for all the conditions of the displacement 

sessions are presented in Figure 7. Additionally, we report mean percent responses in inducing 

ring direction in Table 2. The data shows the same pattern observed in Experiment 1. As can be 

seen in Figure 7 mean sensitivity is high with the standard alignment (0% displacement, d′ = 

1.60), drops as the inducing ring start/stop positions are displaced relative to the test ring point 

positions, crosses chance with an approximate 25% displacement, builds to a negative peak with 

a 50% displacement (d′ = -1.05), then steadily shifts back to its initial positive value re-crossing 

chance at 75%.
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Figure 7. Mean sensitivity (d′) for 12 participants in the displacement sessions of Experiment 2 

for each level of velocity and displacement. Error bars show 95% confidence intervals. Points 

and confidence intervals are slightly offset horizontally to improve their visibility. The solid gray

line indicates the chance level of accuracy (d′ = 0). Note that negative d′ values indicate a bias to 

report motion opposite the actual inducing ring direction. Data are also presented in % correct 

format in Table 2.

As in Experiment 1 we fitted a sinusoid to the change of d′ over displacement for each 

subject in each velocity condition and calculated the amplitude of the sinusoid. Once again, the 

fit of the observed variations in d' as a function of displacement with a sine function was 

excellent (R² = .90, R² = .83, R² = .76 at 750, 1500, and 2250°/s, respectively). The amplitude of 

the sinusoids was examined with one-way ANOVA with angular velocity [750, 1500, 2250°/s] 

as a factor. The effect of velocity was significant, F(2, 22) = 54.14, p < .001, with the amplitude 

of the sinusoid declining as velocity increased (M = 2.04, M = 1.15, and M = 0.83 at 750, 1500, 

and 2250°/s, respectively), indicating the MBE is modulated by velocity.

As can be seen in Figure 7, the increase in velocity leads to similar results as in 

Experiment 1: A reduction in the mean sensitivity when the MBE is positive (e.g., d′ = 3.08, d′ = 

1.58, d′ = 1.19 at 750, 1500, and 2250°/s, respectively at 0% displacement), but to an increase in 

mean sensitivity when the MBE is negative (e.g., d′ = -2.55, d′ = -1.56, d′ = -1.07 at 750, 1500, 
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and 2250°/s, respectively at 50% displacement). Note that in either case, an increase in velocity 

brings the MBE closer to chance performance.

Summary

In Experiment 2 we once again replicated the MBE and in addition addressed possible 

explanations that relate to fading luminance streaks and a dependence of direction percepts on 

information gleaned during the onset and offset of the inducing ring. We found that embedding 

the inducing ring in two 18 ms masks had no distinct effect on the MBE and its reversal caused 

by displacements of the inducing ring start and stop position. As in Experiment 1, participants 

perceive a stationary outline at the higher inducer velocities and their ability to discriminate the 

inducer direction was near chance at these velocities when no test ring was presented. When the 

test ring was presented in the standard alignment condition participants perceived an illusory 

motion in the same direction as the inducing ring. As in Experiment 1, when the inducing ring 

start and end points were displaced across the spaces separating the tests ring points, the MBE 

was eliminated when the displacement reached 25% of the interpoint distance and then inverted 

with the inversion reaching a maximum with displacement of 50% (so that the inducing ring 

points stopped midway between the test ring points). This result appears to rule out any role of a 

fading luminance trace to the MBE motion percept.

Experiment 3

In their 2010 paper, Mattler and Fendrich reported a variant of the MBE display in which 

the test ring preceded the inducing ring. They found this display produced a percept of the 

inducing ring launching into motion in the direction of its actual rotation, although that rotation 

was undetectable when the inducing ring was presented alone. Despite the phenomenological 

differences between the conditions where the inducing ring preceded or followed the test ring, 

the authors assumed that the motion percepts they produced were instances of the same 

phenomenon. To further explore this assumption we were interested if the reversal of the MBE 

also occurs when the test ring precedes the inducing ring.

Method

In Experiment 3 the order of the test and inducing rings was changed in both the standard

and the displacement sessions, as illustrated in Figure 8. As in Experiments 1 and 2, we ran a 

standard alignment sessions in which the start and stop position of the inducing ring points 
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corresponded to the position of the test ring points and displacement sessions in which those start

and stop positions were shifted. In the standard alignment session the test ring was presented on 

half the trials. When present it was shown for 90 ms and was followed by a 90 ms ISI, after 

which the inducing ring was presented for 271 ms.

Figure 8. Display sequence in Experiment 3. The inducing ring rotated either clockwise (as 

shown in the figure) or counter-clockwise. In the standard session no test ring was presented in 

half of the trials and the inducing ring start and end point positions coincided with the test ring 

point positions when one was. In the displacement conditions the test ring was always presented 

and inducing ring start and stop positions fell between the test ring points.

In each displacement session nine trial blocks were run with the first treated as practice 

and excluded from the data analysis. There were 72 trials in each block. The angular velocity, the

degree of displacement and the rotation direction of the inducing ring were varied quasi-

randomly within each block. The combination of 12 displacements (0, 1.88, 3.75, 5.63, 7.5, 9.38,

11.25, 13.13, 15, 16.88, 18.75, and 20.63° across the 22.5° angular point-distance) and three 

angular inducing ring velocities (750, 1500, 2250°/s) produced 36 experimental conditions. 

There were 48 trials in each of these conditions: 24 with a clockwise inducing ring rotation and 
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24 with a counter-clockwise rotation. As in the previous Experiments, participants reported the 

direction of any perceived rotation.

Results: The Standard Alignment Session

Results and confidence intervals for all conditions of the standard alignment session of 

Experiment 3 are presented in Figure 9. Mean percentage of responses in the actual inducing ring

direction are presented in Table 3. When the test ring preceded the inducing ring its effect was 

similar to that observed in the previous experiments in which it followed the inducing ring, with 

a higher mean sensitivity in the test ring + inducing ring condition vs. the inducing ring only 

condition (d′ = 3.44 vs. d′ = 1.32). A 2 × 3 ANOVA with Test ring and Velocity as the factors 

confirmed the main effect of Test ring, F(1, 11) = 183.97, and indicated there was a main effect 

of Velocity, F(3, 33) = 243.48 as well as a Velocity by Test ring interaction, F(3, 33) = 43.73 (all 

p < .001). The interaction reflects the steeper decline in performance in the inducing ring only (d′

= 4.13, d′ = 0.80, d′ = 0.24, and d′ = 0.11 at 250, 750, 1500, and 2250°/s, respectively) vs. the 

inducing ring + test ring condition (d′ = 4.34, d′ = 3.77, d′ = 3.12, and d′ = 2.55 at 250, 750, 

1500, and 2250°/s, respectively).

Figure 9. Mean sensitivity (d′) for 12 participants in the standard alignment session of 

Experiment 3 for each velocity in the inducing ring only conditions (the dashed line), and the test
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ring + inducing ring conditions (the solid line). Error bars show 95% confidence intervals. The 

solid gray line indicates the chance level of accuracy (d′ = 0). Data are also presented in % 

correct format in Table 3.

Table 3

Mean percentage of reports in inducing ring direction for the standard alignment and 

displacement sessions of Experiment 3. Note that 50% represents chance performance, and 

values less than 50% indicate a bias to report motion opposite the actual inducing ring 

direction.

Standard Alignment Session of Experiment 3
Angular velocity (in °/s)

Test ring condition 250 750 1500 2250
Inducing ring only 99.0 64.6 54.6 52.2
Test ring + inducing ring 99.8 97.1 93.2 87.8

Displacement Sessions of Experiment 3
Angular velocity (in °/s)

Displacement (as % of 22.5°) 750 1500 2250
0 97.2 92.7 89.9
8.3 96.7 92.7 87.7
16.7 98.4 91.3 85.2
25 89.6 77.4 73.8
33.3 23.8 33.2 45.0
41.7 5.7 11.6 16.7
50 3.0 5.4 9.9
58.3 3.3 5.9 9.7
66.7 3.3 8.0 15.3
75 22.6 29.0 28.0
83.3 90.1 72.4 61.3
91.7 97.6 88.5 82.6

In the inducing ring only condition, Bonferroni corrected one-tailed t tests (α = .0125) 

indicated sensitivity was significantly greater than zero in the 250°/s and 750°/s velocity 

condition, with respective t(11) values of 43.67 and 4.82 (both p < .001). Performance did not 

differ from chance at the 1500°/s and 2250°/s velocity condition, but did exceed 0 in the 1500°/s 

condition when an uncorrected alpha was employed, t(11) = 2.34, p = .020. A comparison of the 

test ring present and absent conditions using 4 paired Bonferroni corrected one-tailed t tests (α 
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= .125) confirmed the MBE was present at all velocities except 250°/s, with t(11) values of 

13.60, 12.68, and 7.64 (all p < .001) for the 750, 1500, and 2250°/s velocities respectively. When

employing an uncorrected alpha, there was also a small MBE in the 250°/s velocity condition, 

t(11) = 1.90, p = .04, although accuracy rates approached ceiling even when the test ring was 

absent.

Results: Displacement Sessions

When the test ring preceded the inducing ring, we found a pattern of data similar to that 

observed in the previous experiments. This is evident in the mean d′ values of Figure 10 and 

mean percent correct values in Table 3. Mean d′ changes from a peak in the standard alignment 

condition (d′ = 3.08) to a negative peak at 50% displacement (d′ = -3.18) and then back, crossing 

chance between a displacement of 25% (d′ = 1.93) and 33.3% (d′ = -0.94) and subsequently 

between 75% (d′ = -1.38) and 83.3% (d′ = 1.55). Similar to the previous experiments, the effect 

of velocity depends on the MBEs polarity. When the MBE is above chance level an increase in 

velocity decreases sensitivity (e.g., d′ = 3.52, d′ = 2.94, d′ = 2.78 at 750, 1500, and 2250°/s, 

respectively at 0% displacement), and when the MBE is below chance level an increase in 

velocity increases sensitivity (e.g., d′ = -3.48, d′ = -3.26, d′ = -2.79 at 750, 1500, and 2250°/s, 

respectively at 50% displacement).
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Figure 10. Mean sensitivity (d′) for 12 participants in the displacement sessions of Experiment 3 

for each level of velocity and displacement. Error bars show 95% confidence intervals. Points 

and confidence intervals are slightly offset horizontally to improve their visibility. The solid gray

line indicates the chance level of accuracy (d′ = 0). Note that negative d′ values indicate a bias to 

report motion opposite the actual inducing ring direction. Data are also presented in % correct 

format in Table 3.

We once again fitted a sinusoid to the change of d′ over displacement for each subject in 

each velocity condition and calculated the sinusoid amplitudes, and once again the fit between a 

sinusoid and the mean d′ functions was excellent (R² = .91, R² = .96, R² = .96 at 750, 1500, and 

2250°/s, respectively). A one-way ANOVA indicated that the amplitude of the sinusoids varied 

significantly as a function of angular velocity, F(2, 22) = 30.45, p < .001, with the amplitude 

declining as velocity increased (M = 4.29, M = 3.52, and M = 2.98 at 750, 1500, and 2250°/s, 

respectively), indicating the MBE is modulated by velocity.

Summary

When the rapidly rotating inducing ring is presented alone, as in Experiment 1, the 

inducing ring looks like a stationary outline at the higher velocities and participant’s 

discrimination ability is close to chance. When the test ring precedes the inducing ring, 

participants perceive the test ring as launching into motion in the same direction as the actual 
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inducing ring rotation, with its points fusing so that it becomes the inducing ring. This allows the

inducing ring direction to be reported at levels well above chance. As in Experiments 1 and 2 the

MBE diminishes and then reverses as the start and stop positions of the inducing ring points are 

displaced to positions between the test ring points. The pattern of this reversal is very similar to 

the pattern observed in Experiments 1 and 2, with the MBE becoming  0 with a 25% 

displacement, reaching its maximum reverse value at a 50% displacement and then reverting to 

normal, with a null effect at a 75% displacement.

General Discussion

In this study we once more replicated the MBE: When a stationary test ring of 16 points 

followed the rapidly rotating inducing ring at its start and stop position, participants perceived an

illusory motion in the direction the inducing ring has been rotating. This was the case although 

participants were not able to distinguish the rotation direction of the inducing ring by itself due to

the high temporal frequency of point presentations on the inducing ring circumference. 

Furthermore, we confirmed the MBE does not depend on the order of the two stimuli (Mattler & 

Fendrich, 2010). When the point positions of the inducing and test rings were aligned and the test

ring preceded the inducing ring, there was an illusion of the test ring starting to spin and 

becoming the inducing ring. Both stimulus presentation orders produced similar effects on 

sensitivity (d′) although the illusion they produce are phenomenologically different, with the test 

ring launching into motion in one case and spinning to a halt in the other. When only conditions 

where considered in which the inducing ring points start and stop positions were aligned with the

test ring point positions, it seems that the inducing ring rotation direction must be encoded and 

acts to bias the illusory rotation direction.

To our surprise, however, when we displaced the inducing ring start and stop position on 

the test ring circumference, the effect on sensitivity (d′) decreased with small displacements, 

vanished with displacements of 25% and then inverted so that the illusory motion was biased to 

the direction opposite inducing ring spin. The perceived reversal of the inducing ring motion was

maximal when the start/stop position was halfway between the test ring points. One way to 

explain this reversal is to assume that the MBE is mediated by processes that encode motions in 

opposite directions.
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Other visual phenomena have been reported in which a moving stimulus produces a 

subsequent illusory perception of movement or biases the perceived direction of a subsequent 

motion (e.g., Green, Chilcoat, & Stromeyer, 1983; Nishida & Sato, 1995; Pinkus & Pantle, 1997;

Wohlgemut, 1911). The best known of these phenomena is the classic motion aftereffect (MAE):

After watching a moving adapter stimulus for several seconds, observers perceive an illusory 

movement in the opposite direction in a subsequent static stimulus. Motion aftereffects are often 

explained by a temporary reduction in the base discharge rate of direction-specific motion tuned 

cells due to prolonged stimulation by the adapter, giving cells tuned to opposing directions a 

relative advantage (Anstis, Verstraten, & Mather, 1998). This advantage may occur at a 

processing stage as early as the retina (Barlow & Hill, 1963), but higher processing stages in V1 

and extrastriate areas have also been implicated (see review by Niedeggen & Wist, 1998). 

Interestingly, when second order motion stimuli serve as the adapters little or no MAE is found 

with conventional static test stimuli, but second order motions do generate a pronounced MAE in

in flickering test stimuli that have an intrinsic ambiguous motion direction (von Grünau, 1986; 

Nishida & Sato, 1995). Moreover, Nishida and Sato have shown that the same adapting stimulus 

can produce MAEs in opposite directions in static and flickering test stimuli, with these MAEs 

respectively reversing first and second order motion components in the adapting stimulus. These 

results can be interpreted as demonstrating of existence of multiple MAEs that occur at different 

stages of visual processing (Mather, Pavan, Campana, & Casco, 2008).

One approach to accounting for the variations in the direction of the MBE that we 

observed is to posit that our results reflect an interplay between the MAE and MBE. In terms of 

the velocity updating hypothesis of Mattler and Fendrich (2010) it may be consequential that the 

MBE only occurs when the last position of the inducing ring rotation is very close to the position

of the stationary test ring because otherwise the visual system may not consider both rings as 

different states of the same stimulus. If the end position of the inducer is more and more 

displaced from the test ring point positions the direction information derived from the inducing 

ring may get lost and be overwritten by a countering MAE possibly produced by the reduced 

responsiveness of neurons in V1 that are adapted to the direction of motion (Niedeggen & Wist, 

1998).

We deem the explanation of a countering MAE as unlikely, however, because the 

temporal frequencies of the stimuli presented in MBE experiments clearly exceeds the temporal 
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frequencies of adapter stimuli in MAE experiments. Pantle (1974) reports that the duration of the

MAE is highest when the adapter frequency is 1-5 Hz, rapidly declines starting from 20 Hz, and 

no MAE occurs when the adapter is presented with a temporal frequency of 50 Hz. Performance 

in MBE experiments on the other hand is very high at 50 Hz, declines steadily as temporal 

frequency is increased and is still measurable even when the inducing ring is presented with 

temporal frequencies of up to 125 Hz (Stein et al., 2019). The MAE also tends to be independent 

of the start and stop position of the adapter and the position of the test stimulus and even occurs 

when no test stimulus in presented at all or the observers eyes are closed after the adapter 

stimulus was presented (Wohlgemut, 1911). Another defining characteristic of the MAE is the 

long adaptation period, clearly exceeding the presentation time of a 90 ms inducing ring (e.g., 

Hershenson, 1993). Kanai & Verstraten (2005) have reported a rapid form of the MAE that 

occurs after an adaptation period of 160 ms. However, these investigators used an ambiguous test

stimulus instead of a stationary one and an inter stimulus interval (ISI) of 500 ms. In contrast, the

MBE is found with a stationary test ring and will not occur with an ISIs of 500 ms, because it 

was already substantially reduced when Mattler and Fendrich (2010) employed an ISI of 180 ms.

Moreover, when Kanai and Verstraten reduced their ISI to 40 or 120 ms, the MAE reversed and 

the ambiguous test stimulus was perceived in the same direction as the adapter when the 

adaptation period was less than 320 ms.

The MAE and the MBE also differ phenomenologically: While participants perceive a 

continuous motion over more than one second as an after effect when adapting to a MAE stimuli,

in MBE experiments participants report that the dots rapidly spin to a halt (Mattler & Fendrich, 

2010). While we did not measure the reports of participants in a way that could differentiate 

between different motion percepts, our own observations suggest that the reverse and normal 

MBE have a similar appearance. Green et al. (1983) have reported a MAE with a flickering 

sinusoidal patch as the test stimulus that was most prevalent with high temporal frequencies and 

appeared to be a “rapid motion in the direction opposite to the adapting motion” (p. 61). This 

effect, however, was only observed with low temporal frequencies (up to 16 Hz) and adaptation 

periods of multiple seconds. Lastly, we have shown a reverse MBE can occur when the test ring 

precedes the inducing ring, which cannot possibly be attributed to an MAE because the moving 

stimulus does not occur until after the stationary stimulus.
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Therefore, the results of the experiments reported here force us to reconsider the role of 

the direction information provided by the inducing ring in the generation of the MBE (see 

Mattler & Fendrich, 2010 and Stein et al., 2019). While the direction of the perceived illusory 

motion does depend on the rotation direction of the inducing ring, this might only be the case 

because that rotation changes the spatiotemporal relationship between the inducing ring and test 

ring point positions. This relationship is determined by the spatial and temporal spacing of all 

point positions of the inducing ring and the test ring. The rotation direction of the inducing ring 

influences, for example, the spatial arrangement of points that are temporally closest (have the 

shortest temporal distance) to the test ring. Consider a test ring point located at 12 O’clock. If the

inducing ring is rotating clockwise, the inducing ring points with the shortest temporal distance 

are on the left side of the test ring point position. On the other hand, when the inducing ring 

rotates counter-clockwise, the points with the shortest temporal distance are on the right side of 

the test ring point position. Consequently, when the inducing ring start and stop position is 

displaced half-way across the spaces between the test ring points, the inducing ring points with 

the shortest temporal distance are midway between two test ring point positions. Thus, the 

spatiotemporal distances between the inducing ring and test ring points are a function of the 

rotation direction, allowing this direction to generate the direction correspondence in the MBE, 

and are a function of the start and stop position of the inducing ring, allowing the displacement 

manipulation to affect the direction correspondence.

Because of the dependence of MBE’s direction on the spatiotemporal relationship of the 

two rings, we are inclined to conclude that the illusory motion must be mediated by units that 

reflect the relationship between all the inducing and test ring point positions. We speculate that 

these units may be spatiotemporal receptive fields that detect movement from the inducing ring 

to the test ring, and further suggest that a combining weighting of these receptive fields could in 

theory predict opposing motions.

Spatiotemporal receptive fields

The existence of spatiotemporal receptive fields has been proposed among others by 

Adelson and Bergen (1985) and Burr, Ross, and Morrone (1986; see McLean, Raab, & Palmer, 

1994 and Reid, Soodak, & Shapley, 1991 for neurophysiological evidence in cats). Adelson and 

Bergen suggested a moving stimulus (e.g., a square) can be conceptualized as a three-

dimensional pattern in x-y-t space and movement is represented in case of the square by a 
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spatial-temporally tilted bar. By using separable temporal and spatial filters their motion energy 

model it is able to act as an opponent motion detector that responds to rightward or leftward 

motion. Burr et al. described the characteristics of these spatiotemporal receptive fields in 

humans and assumed that they are not constructed from separable filters, because the 

spatiotemporal tuning functions of theses receptive fields do not all peak at the same spatial 

frequency when the temporal frequency of the gratings used in their experiment was varied. 

Concerning the MBE there are multiple ways a spatiotemporal receptive field could detect 

movement. One of these possibilities is illustrated in Figure 11. Similar to Adelson and Bergen, 

we have reduced the spatial dimensions in this figure so that the ring of points effectively 

becomes a line of points. To further reduce complexity, only points between two test ring point 

positions are presented. The figure loosely resembles part of an 11 ms, 2250°/s velocity inducing

ring located at 12 O’clock on the inducing ring circumference. During its rotation 9 point 

positions between the two test ring point positions are occupied, and a continuously illuminated 

test ring follows the inducing ring after a short ISI. The hypothetical spatiotemporal receptive 

field in Figure 11 encompasses points presented within the inducing ring motion and allows a 

cell to detect local motion that is consistent with the global direction of rotation. The existence of

such receptive fields would be compatible with the velocity updating hypothesis (Mattler & 

Fendrich, 2010) and the two-process approach (Stein et al., 2019) and imply that the temporal 

limit for the detection of motion is substantially higher than it was previously proposed (e.g., 

Burr and Ross, 1982).
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Figure 11. Spatiotemporal illustration of the inducing ring points presented between two test ring

point positions at 12 O’clock on the inducing ring circumference. The stimulus sequence was 

reduced to one spatial dimension, so that a global clockwise rotation corresponds to a spatial 

shift to the right and a global counter-clockwise rotation to a spatial shift to the left. In the figure 

we depict a potential spatiotemporal receptive field similar to those of Burr et al. (1986) and 

Reid et al. (1991). This receptive field could potentially allow a cell to detect local motion in 

accordance with the clockwise rotation direction of the inducing ring. Note that the presented 

spatiotemporal receptive field, would require the visual system to have a temporal resolution far 

above the known limits of motion perception (above 100 Hz in case of the 2250°/s angular 

velocity inducing ring).
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However, the strong dependence of the illusory motion direction on the spatiotemporal 

relationship of the inducing and test ring indicates that the MBE is most likely not caused by 

cells with receptive fields that only encompass the inducing ring points. The direction 

congruence of the MBE could, however, potentially result from cells that signal the inducing ring

— test ring transition. These cells would essentially signal a motion starting from the inducing 

ring and stopping at the test ring points. In Figure 12 we illustrate two possible receptive fields 

that encompass both stimuli: the inducing and test ring. Most interestingly, the receptive fields 

proposed in Figure 12 could allow cells to detect local motion that correspond to both, a 

clockwise and a counter-clockwise rotation direction. Note that this approach would better 

integrate the MBE into existing theories of motion perception, because it is consistent with the 

temporal limits of visual perception (e.g., Holcombe, 2009). In order to be compatible with the 

temporal frequency limits of the visual system, which are about 40 Hz (Burr & Ross, 1982; 

Kelly, 1961), the spatiotemporal receptive fields would have to span over at least an interval of 

25 ms. In the case of the MBE, this interval is ensured by the presentation time of the stimuli and

the 60 ms ISI.
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Figure 12. Spatiotemporal illustration of the inducing ring points presented between two test ring

point positions at 12 O’clock on the inducing ring circumference. The stimulus sequence was 

reduced to one spatial dimension, so that a global clockwise rotation corresponds to a spatial 

shift to the right and a global counter-clockwise rotation to a spatial shift to the left. In the figure 

we depict a potential spatiotemporal receptive field similar to those of Burr et al. (1986) and 

Reid et al. (1991). These receptive field could potentially allow the detection of both, a spatial 

shift to the left and a spatial shift to the right. Note that the presented spatiotemporal receptive 

fields, would be well within the known limits of motion perception (in this case this is due to the 

increased temporal distance between inducing ring and test ring produced by the ISI).

Even though the assumption that spatiotemporal detectors mediate the MBE explains 

some aspects of the illusion, i.e., why movement is generally perceived when presenting the two 

stimuli, it does not yet explain why the perceived movement depends on the spatiotemporal 

relationship of the inducing and test ring points. For this reason we propose a highly speculative 

account that gives credence to the possibility that the direction correspondence of the MBE as 
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well as the effect of displacing the inducing ring start and stop position can be accounted for by 

the spatial and temporal distance of each inducing ring point position to the test ring point 

positions. For example, the visual system could preferentially process motion that is detected by 

cells whose receptive fields encompass low spatial and temporal distances. In Figure 13 we 

illustrate a two-stage weighing model of multiple receptive fields based on inducing and test ring

point correspondences.

Figure 13. Spatiotemporal illustrations of the inducing ring points presented between two test 

ring point positions at 12 O’clock on the inducing ring circumference. The stimulus sequences 

were reduced to one spatial dimension, so that a global clockwise rotation corresponds to a 

spatial shift to the right and a global counter-clockwise rotation to a spatial shift to the left. The 

stimuli sequences correspond to an 11 ms inducing ring rotating in clockwise (A) or counter-

clockwise direction (B) with a velocity of 2250°/s at 0% displacement. The arrows indicate the 

results from the first stage of the weighing model: Each inducing ring point is associated with its 
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closest test ring point. Inducing ring – test ring point correspondences with short temporal 

distances are printed black while correspondences with a large temporal distance are printed light

gray.

At the first stage of this model it is assumed that two possible spatiotemporal receptive 

fields allow cells to detect the movement starting from each individual inducing ring point to the 

two neighboring test ring points. The cells are interconnected by a winner takes all opponent 

principle, so that only the movement with the smallest spatial distance is included into the 

calculation of the next stage. This first stage is represented in the figure by arrows that indicate in

which direction each inducing ring point would move if the smallest spatial distance is preferred.

On the second stage, cells that signal small temporal distances are weighted higher than those 

that signal large temporal distances. This is represented in the figure by the grey level of the 

arrows. Dark arrows have a short temporal distance and consequently a high weight, light grey 

arrows have a long temporal distance and a low weight. As can be seen in Figure 13A, when the 

inducing ring is rotating clockwise the cells signaling clockwise movement are weighted higher 

than the ones signaling counter-clockwise movement because of their small temporal distances. 

On the other hand, when the inducing ring rotates in a counter-clockwise direction, like it is 

illustrated in Figure 13B, this relationship is reversed. High weighted cells signal motion in a 

counter-clockwise direction while cells with low weights signal direction opposite the actual 

direction of the inducing ring.

Most importantly, this relationship of weights will be strongly influenced by the start and 

stop position of the inducing ring. Figure 14A presents the stimulus arrangement in the 50% 

displacement condition. In this condition the inducing ring starts and stops halfway between the 

test ring point positions. As a result, the inducing ring points that signal counter-clockwise 

motion have the smallest temporal distances and therefore the highest weights signaling a 

rotation opposite to the actual rotation direction of the inducing ring. Figure 13B on the other 

hand shows that in the 25% displacement condition, there would be a few strong and a few week 

signals in the direction opposite to the inducing ring rotation direction and multiple middle 

weighted signals in the inducing ring rotation direction. This ratio of weights could equalize and 

result in no more congruence between the direction of rotation of the inducing ring and the 

perceived direction of the illusory motion.
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Figure 14. Spatiotemporal illustrations of the inducing ring points presented between two test 

ring point positions at 12 O’clock on the inducing ring circumference. The stimulus sequences 

were reduced to one spatial dimension, so that a global clockwise rotation corresponds to a 

spatial shift to the right and a global counter-clockwise rotation to a spatial shift to the left. The 

stimuli sequences correspond to an 11 ms clockwise rotating inducing ring at 50% (A) or 25% 

displacement (B) and a velocity of 2250°/s. The arrows indicate the results from the first stage of

the weighing model: Each inducing ring point is associated with its closest test ring point. 

Inducing ring – test ring point correspondences with short temporal distances are printed black 

while correspondences with a large temporal distance are printed light gray.

By assuming that the receptive fields span from the test ring points to the inducing ring 

points, the proposed model can also be applied to the conditions in which the test ring preceded 

the inducing ring. As is illustrated in Figure 15, the prediction of the model matches the observed
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effect. Interestingly, the MBE is not much affected by the presence of the ring masks in 

Experiment 2. It is difficult to say what prediction the model we presented makes about the 

presentation of the masks. On the one hand, the same spatiotemporal receptive fields should be 

activated, regardless of whether a ring mask is presented or not. It is therefore possible that the 

ring masks have no influence at all on the direction correspondence of the MBE. However, the 

presentation of the masks activate numerous spatiotemporal receptive fields spanning from the 

mask’s point positions to the test ring points, which would not have been active in the standard 

condition, and these receptive fields could potentially affect the MBE.

Figure 15. Spatiotemporal illustration of the inducing ring points presented between two test ring

point positions at 12 O’clock on the inducing ring circumference. The stimulus sequence was 

reduced to one spatial dimension, so that a global clockwise rotation corresponds to a spatial 
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shift to the right and a global counter-clockwise rotation to a spatial shift to the left. The stimuli 

sequence corresponds to a test ring preceding an 11 ms clockwise rotating inducing ring with a 

velocity of 2250°/s. The arrows indicate the results from the first stage of the weighing model: 

Each test ring point is associated with its closest inducing ring point. Test ring – inducing ring 

point correspondences with short temporal distances are printed black while correspondences 

with a large temporal distance are printed light gray.

In summary, the proposed model is able to predict the displacement results of the 

experiments carried out as well as the direction correspondence of the MBE with both stimuli 

orders: the inducing ring preceding and following the test ring. However, the model has serious 

shortcomings in terms of its theoretical plausibility. While there is some evidence for the 

preference of short spatial distances coming from studies concerning the correspondence 

problem of motion perception (Burt & Sperling, 1981; Ullman, 1979), motion is most likely not 

preferably perceived across the shortest temporal interval. On the contrary, Weiss, Simoncelli, 

and Adelson (2002) and Dawson (1991), for example, suggest that the visual system prefers slow

velocities that result from hight temporal distances. Clearly the model proposed above needs to 

be revised or extended to be in line with already known theories regarding the perception of 

movement. Nevertheless, the model underpins our argument that the MBE is not solely 

determined by the rotation direction of the inducing ring but by an interaction between the 

inducing ring and test ring points whose spatiotemporal relationship is the factor that determines 

the perceived direction of the illusory motion.

Conclusion

The MBE demonstrates the neural encoding of the spatiotemporal sequence of a spinning

ring of points that rotates so rapidly its rotation direction is not consciously detectable (Mattler &

Fendrich, 2010). When the spinning inducing ring is preceded or followed by a stationary test 

ring, participants report a test ring rotation in the same direction as the inducing ring was 

rotating. In this study we demonstrate that the MBE critically depends on the start and stop 

position of the inducing ring. When these positions are displaced across the test ring 

circumference, the MBE, indexed by the congruence of the perceived test ring and actual 

inducing ring rotation, vanishes and even reverses: When the inducing ring start and stop 
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position is displaced halfway across the test ring points, participants perceive a motion opposite 

to the actual inducing ring rotation direction. To account for this pattern of results, we propose 

that the directional congruence of the MBE is not caused by the direction of the inducing ring 

rotation itself but by the spatiotemporal distances between the inducing ring and test ring points. 

We propose a speculative model that predicts some aspects of the MBE by assuming that small 

spatial and temporal distances are preferably processed. Additional investigations are needed to 

further specify the effects of spatiotemporal distances on the MBE and produce a physiologically

plausible model that explains its directional congruence.
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Abstract

The Motion Bridging Effect (MBE) is an illusion in which a motion that is not consciously 

visible generates a visible illusory motion in a preceding or succeeding stationary stimulus. In 

the initial study of the MBE (Mattler & Fendrich, 2010), a ring of 16 points was rotated as 

rapidly as 2250 angular °/s, and point positions on the rings circumference were refreshed at 

temporal frequencies as high as 100 Hz. Observers saw only an unbroken outline circle and 

performed at chance when asked to report the rotating ring’s direction. However, when the 

rotating ring was replaced by a ring of 16 stationary points the stationary ring appeared to visibly

spin to a halt, principally in the same direction as the initial ring’s rotation. Thus, although the 

inducing ring rotation was not consciously perceived its rotation direction was somehow being 

encoded. Similar results were found when the stationary ring preceded the rotating ring: the 

stationary ring appeared to rapidly accelerate. Previously, the MBE could only be investigated 

using analogue oscilloscopes because conventional raster scan monitors cannot be updated at the 

temporal frequencies required to portray the rapid inducing ring rotation. Here we show that the 

MBE can be reproduced using a recent generation of LCD monitors with 240 Hz refresh rates. 

These findings replicate basic characteristics of the MBE, demonstrating robustness with a 

completely new display system and software, and in general demonstrate that LCD monitors 

provide a major new resource for the psychophysical investigation of rapid motions.

Keywords: motion aftereffects, motion perception, unconscious perception, liquid crystal 

display, temporal frequency
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Encoding information from rotations too rapid to be consciously perceived as rotating: A

replication of the motion bridging effect on a liquid crystal display

The conscious perception of spatial or temporal changes in the environment is limited by 

the visual system’s ability to perceptually resolve high spatial and temporal frequencies. This 

limit is approximately 60 cycles per degree of visual angle when discriminating the orientation of

fine grids (He & MacLeod, 1996), 30-60 Hz when observing flickering patches (Cornsweet 

1970; Hartmann, Lachenmayr, & Brettel, 1979), and approximately 30 Hz when detecting the 

direction of sinusoidally moving gratings (Burr & Ross, 1982), depending on the luminance of 

the stimuli (Brown, 1958). These limits, however, apply to conscious perception. Some studies 

suggest that information can unconsciously be encoded even when these limits are exceeded. He 

and MacLeod (2001), for example, demonstrated that gratings indistinguishable from a uniform 

field can affect the magnitude of the tilt aftereffect and Shady, MacLeod, and Fisher (2004) 

showed that temporal frequency modulations above the critical flicker fusion frequency (CFF) 

can influence the sensitivity to subsequent flickering patches.

In 2010, Mattler and Fendrich published a study that indicated the human visual system 

can process motions so rapid they are not visually perceptible as motion. On an analog 

oscilloscope with an effective frame rate of 1000 Hz, they presented a 16-point ring (the 

inducing ring) that rotated at angular velocities of up to 2250°/s. These high velocities were 

achieved by advancing the points around the ring circumference at temporal rates up to 100 Hz. 

As the velocity and refresh rate of point positions along the ring circumference was increased 

participants’ ability to judge the rotation direction of the ring drastically decreased, and the 

rotating points were seen as forming a static circular outline. However, when a stationary ring of 

16 points (the test ring) preceded or followed the rotating ring, participants perceived an illusory 

motion of the test ring that was predominantly in the direction of the inducing ring. Mattler and 

Fendrich argued that this effect demonstrated that the rapid advance of the rotating points, 

though not consciously perceived by participants, conveyed a directional motion signal to the test

ring points.

These findings were extended by Stein, Fendrich, and Mattler (2019), who showed how 

the MBE, indexed by the congruence of the inducing and test ring directions, was affected by 

variations in the diameter of the rings, the number of the points used to form those rings, and the 
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spacing of the points along the ring perimeters. Stein et al. proposed that the perceived rotation 

of the test ring might be related to apparent motion. According to this view, the MBE would 

reflect the joint action of two processes, one that registers the direction of the inducing ring’s 

rotation and one that generates the illusory test ring spin. Data gathered by Mattler, Stein, and 

Fendrich (in preparation) support this dual process account by demonstrating a test ring motion is

seen even when the inducing ring is an actual outline circle that does not convey any rotational 

information. However, the mechanism by which the rotating inducing ring acts to bias the 

direction of the illusory rotation of the test ring remains to be established.

Previous MBE studies have been conducted using analog oscilloscope displays with the 

point positions on the cathode ray tube (CRT) screen controlled by Digital-to-Analog converters 

and screens customized with a fast phosphor. Conventional computer monitors with screen 

refresh rates below 100 Hz, while widely employed for investigations of phenomena like visual 

attention, are unsuitable for displaying the controlled rapid ring rotations needed for MBE 

investigations. However, recent technical advances have made liquid crystal display (LCD) 

“gaming monitors” with refresh rates of up to 240 Hz readily available. These high refresh rate 

monitors allow display sequences to be updated more rapidly than has been possible with the 

standard CRT monitors. Moreover, LCD monitors avoid potential artifacts associated with the 

downward raster scans CRT monitors use to display each frame: all pixels are effectively 

replaced simultaneously. With CRT monitors, phosphor decay times impose an additional 

limitation on the speed with which displays can be updated. A corresponding limitation in LCD 

monitors is imposed by LCD switching times. Although in early LCD monitors these switching 

times were too slow to allow the use of these monitors in psychophysical research, technological 

advances have now overcome this problem (Wang & Nikolić, 2011; Zhang et al., 2018).

We wondered whether currently available LCD “gaming monitors” with 240 Hz would 

have sufficient speed and spatial resolution to be used to study the MBE. Pilot observations 

suggested that this was in fact possible. The experiments reported here formally confirm these 

observations. We replicate the MBE and certain of its characteristics with this technology and 

compare the MBE on an LCD monitor to the MBE on the oscilloscope CRTs.
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Method

Participants

The participants were 12 students at the University of Göttingen with a mean age of 22.5 

years. They were compensated €7 per hour for their participation or received student credits. 

Testing conducted with the Landolt ring chart confirmed all participants had normal or 

corrected-to-normal vision. After providing their written informed consent participants 

completed one session that took approximately one hour.

Apparatus

Stimuli were presented on a 240 Hz LCD monitor (Dell Alienware AW2518HF) 

controlled by a PC via the display port connector of a MSI GeForce GT 1030 graphics card. The 

experiment was run in a darkened room and participants had their head positions stabilized by a 

chin and forehead rest 107.87 cm from the LCD monitor. This resulted in a per-pixel display size

of 0.015° of visual angle. The background luminance of the LCD was reduced to a minimum 

(0.02 cd\m²).

Stimuli

Stimuli are illustrated in Figure 1. Participants were presented with a rapidly rotating 

inducing ring and a stationary test ring constructed from 16 equally spaced dots. The diameter of 

both rings was 6° and the diameter of each dot was 0.12° of visual angle. The luminance of the 

test ring dots, measured with a Minolta LS-100 luminance meter with a close-up lens, was 3.0 

cd\m² and the luminance of the inducing ring dots was 1.5 cd\m². Note that when running the 

monitor in 240 Hz mode, the luminance does not reach its maximum when only one frame is 

displayed. Since this was the case for the points that formed our inducing rings, we determined 

their luminance by presenting a flickering square with a one-frame (4.166 ms) on-off duty cycle 

and doubled the measured luminance of this square.
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Figure 1. Display sequence in the three conditions of the experiment. On a given trial, the 

inducing ring rotated either clockwise (as shown in the figure) or counter-clockwise. In the 

inducing-ring-only condition, there was no test ring present while in the other two conditions the 

test ring either preceded or followed the inducing ring. The dots on the LCD appeared light gray 

on a dark gray background.

At the monitors 240 Hz rate, frames were updated every 4.166 ms. The inducing ring was

rotated at angular velocities of 225, 675, 900, and 1350°/s by respectively advancing all of its 

dots by 0.9375, 2.8125, 3.75, and 5.625 angular degrees per frame in a clockwise or counter-

clockwise direction. These distances respectively generated 384, 128, 96, and 64 dot positions 

along the ring circumference, which were refreshed at respective temporal frequencies of 10, 30, 

40, and 60 Hz as successive dots crossed each display location. The rotation of the inducing ring 

always started and ended with dots placed at the same set of ring circumference positions. These 

were also the positions of the test ring dots when the test ring was presented. At 10 Hz temporal 

frequency, the inducing ring looked like a rotating outline circle formed by overlapping dots. At 

higher temporal frequencies, it appeared to be a circle of stationary dots, almost touching at 30 

Hz but clearly separated at 40 Hz and more widely separated at 60 Hz.



A REPLICATION OF THE MBE ON AN LCD 7

Task

Participants reported the direction of any perceived rotation (clockwise or counter-

clockwise). Responses were registered with the right and left arrow keys of a conventional 

computer keyboard, to indicate clockwise rotation and counter-clockwise rotation, respectively. 

Trial blocks were started by a press of the space key. No feedback was given about the 

correctness of responses.

Procedure

Participants were instructed to maintain their gaze on a central fixation point during the 

trials. This fixation point brightened for 750 ms at the start of each trial to indicate that the 

inducing ring or test ring was about to appear. In the conditions in which the test ring was 

presented it followed or preceded a 204 ms inducing ring presentation with a 25 ms inter-

stimulus interval (ISI) and remained visible for 250 ms. Subject’s reports of the perceived 

motion direction were recorded starting 300 ms after the offset of the last presented ring. A 

response was required for the experiment to proceed. A new trial started 1 second after the 

response.

Design

Fifteen trial blocks were run in each session with the first three blocks treated as practice 

and excluded from data analysis. There were 48 trials in each block. Blocks were run in a 

repeated sequence: a block with the inducing ring only was followed by a block with the 

inducing ring preceding the test ring, and a block with the test ring preceded the inducing ring. 

The temporal frequency and the rotation direction of the inducing ring was varied quasi-

randomly within each block.

The combination of three Test Ring conditions (absent, preceding, and following the 

inducing ring) and four Angular Velocities of the inducing ring (225, 675, 900, and 1350°/s) 

produced 12 experimental conditions. There were 48 trials in each of these conditions: 24 with a 

clockwise inducing ring rotation and 24 in counter-clockwise rotation.

Statistical Analysis

We used signal detection methods to analyze performance (Macmillan & Creelman, 

2005). We defined hits as clockwise responses to a clockwise rotation and false alarms as 

clockwise responses to a counter-clockwise rotation. Values of d' were estimated by measuring 

hit and false alarm rates separately for each subject in each condition and correcting these values 
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by applying the log-linear rule (Hautus, 1995). Across participants, mean d′ measures were 

analyzed with a 2-way repeated measures analysis of variance (ANOVA) which evaluated the 

effect of angular velocity and test ring condition on observers’ sensitivity to the inducing ring 

rotation. We will refer to these factors as Angular Velocity and Test Ring. All reported ANOVA 

p-values were corrected using Greenhouse-Geisser estimates of sphericity, but for the sake of 

readability, the uncorrected degrees of freedom are reported. Differences between specific 

conditions were evaluated with post hoc Bonferroni corrected two-tailed t tests. Performance 

levels in specific conditions were compared to a chance level of 50% with one-tailed Bonferroni 

corrected t tests that evaluated whether d′ exceeded zero.

Results

Means and confidence intervals for sensitivity to the inducing ring rotation direction in 

the 24 conditions are shown in Figure 2. This data is also presented in terms of mean percent 

correct accuracy rates in Table 1. ANOVA outcomes are presented in Table 2. The main effects 

of both Angular Velocity and Test Ring were significant and there was a significant Angular 

Velocity × Test Ring interaction. Critically, mean sensitivity differed conspicuously in the three 

Test Ring conditions (see Figure 2). When the inducing ring was presented alone, mean 

sensitivity was high in the 10 Hz condition, but declined steeply to zero as Angular Velocity was 

increased (d′ = 3.86, 0.37, 0.09, and 0.09 with 225, 675, 900, and 1350°/s, respectively). When 

the inducing ring was followed or preceded by the test ring, mean sensitivity declined linearly 

and stayed above zero even at the highest Angular Velocity employed. When the inducer 

preceded the test ring, d′ values of 3.77, 2.60, 2.15, and 1.35 were observed with 225, 675, 900, 

and 1350°/s, respectively. When the test ring preceded the inducer, d′ values of 3.85, 3.28, 2.41, 

and 1.31 were observed with these velocities. The contrast between the rapid decline to chance 

sensitivity in the inducer only condition and the gradual decline in conditions with the test ring is

the source of the interaction Angular Velocity × Test Ring and reflects a basic characteristic of 

the MBE.
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Figure 2. Mean sensitivity (d′) as a function of the angular velocity of the inducing ring in the 

inducing ring only condition (the solid black line), the condition where the inducing ring 

precedes the test ring (the dashed line), and the condition where the test ring precedes the 

inducing ring (the dotted line). The solid gray line indicates the chance level of accuracy (d′ = 0).

The error bars show 95% confidence intervals. Points and confidence intervals are slightly offset 

horizontally to improve their visibility.

Table 1

Mean percentage of correct direction reports.

Angular Velocity (in °/s) 
Condition 225 675 900 1350
Inducing ring only 98.6 56.3 51.2 51.4
Inducing ring + Test ring 98.1 88.2 84.0 71.9
Test ring + Inducing ring 98.8 95.0 87.5 73.3
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Table 2

ANOVA outcomes.

Effect Numerator df/Denominator df F p
Angular Velocity 3/33 215.58 < .001
Test Ring 2/22 72.35 < .001
Angular Velocity × Test Ring 6/66 30.54 < .001

Note: The ANOVA was calculated on the d' values.

Importantly, the improvement in sensitivity to the inducing ring direction produced by 

the test ring presentation occurs even when subjects perform at chance in the inducing ring only 

condition. In the present investigation, four 1- tailed t-tests were run (one for each inducer 

velocity in the inducing ring only condition) to compare participants sensitivity to the inducing 

ring direction to a chance level of 50% (d' = 0). When a Bonferroni adjusted alpha level of .0125 

was employed, the mean d′ in the inducing ring only condition was significantly greater than 

zero only when the Angular Velocity was 225°/s (p < .001), and did not exceed zero in 

conditions with higher velocities (p = .025, p = .248, and p = .194, for 675, 900, and 1350°/s 

respectively). However, sensitivity was slightly better than chance with 675°/s when an 

uncorrected alpha level of .05 was employed, indicating in with this velocity it was sometimes 

possible for participants to detect the rotation direction. As can be seen in Figure 3, the pattern of

results is very similar to that observed in the previous studies, which used oscilloscope displays 

(Matter & Fendrich, 2010; Stein, Fendrich and Mattler, 2019), and is consistent with Burr and 

Ross’s study (1982), in which the detection of the motion of sinusoidal gratings starts to break 

down at around 30 Hz, which corresponds to an angular velocity of 675°/s.
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Figure 3. Mean sensitivity (d′) as a function of inducing ring angular velocity in the inducing 

ring only conditions (the solid black line) and the conditions where the test ring was presented 

(the dashed lines) in this study and its predecessors (Mattler & Fendrich, 2010. Stein et al., 

2019). Panel A presents data from conditions where the test ring followed the inducing ring and 

panel B where it preceded the inducing ring. In all studies the mean sensitivity with a 16-point 

inducing ring is reported. The solid gray line indicates the chance level of accuracy (d′ = 0).

While the contrast between the inducing-ring-only and the two test-ring-present 

conditions is the most striking aspect of Figure 2 and Figure 3, it can also be seen that the two 

test-ring-present conditions are not identical. Previously, Mattler & Fendrich (2010) reported that

the MBE tends to be larger when the test ring precedes the inducing ring than when it follows the

inducing ring. One-tailed post-hoc t-tests (with a Bonferroni adjusted alpha level of .0167) 

confirmed that a similar difference is also present in the current data when the Angular Velocity 

is 675°/s (p < .005), but not in the 900 and 1350°/s conditions. In addition, when the test ring 

precedes the inducing ring, participants sensitivity falls short in the present data when compared 
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to previous data (Figure 3). Both characteristics of the LCD screen and changes to the stimulus 

parameters used may have contributed to these differences.

Discussion

The ability of observers to perceive the motion of repetitive patterns is limited by the 

temporal frequency of the intensity modulations that those motions generate (Burr & Ross, 

1982). The rapid rotations of the ring stimuli needed to demonstrate the MBE produce 

modulations too rapid to support conscious motion percepts, but not so rapid they prevent the 

encoding of information that can reveal the direction of the rotations. To study the processing of 

rapid motions of this kind requires a technology that enables screen displays to be updated at 

very rapid rates. This has previously been achieved by using analog oscilloscopes as the display 

device. Here we demonstrate that recent LCD monitors with 240 Hz frame rates can also be used

to investigate these rapid motions.

In the present study participants could report the direction of an inducing ring rotation 

when the dots that formed the ring perimeter advanced at angular velocities of 225°/s and were 

refreshed at 10 Hz, but their performance decreased to near chance when the velocity was 675°/s 

(refresh rate 30 Hz), and completely to chance at velocities of 900°/s (refresh rate 40 Hz), and 

1350°/s (refresh rate 60 Hz). The appearance of the inducing ring accords with this outcome: at 

refresh rates of 30 Hz and higher it is seen as a static circle of flicker-free dots. This ring of dots 

corresponds to the steady outline circle that was seen at high inducing ring velocities in previous 

MBE experiments conducted with oscilloscope screens. However, despite the static appearance 

of the inducing ring dots, when the inducing ring is followed by the veridically stationary 16-dot 

test ring, the test ring dots appear to briefly rotate, primarily in the same direction as the invisible

inducing ring rotation. Similarly, when a stationary test ring precedes the inducing ring, that test 

ring appears to momentarily spin in the inducing ring direction when the inducing ring onsets. 

Mattler and Fendrich (2010) used the frequency of the reports in which the illusory test ring 

rotation matched the actual (although not consciously visible) direction of the inducing ring 

rotation as a quantitative measure of the MBE. The congruency rates obtained in the present 

study with comparable inducing ring velocities are similar to the rates they obtained.

The MBE demonstrates the human visual system can derive motion information from 

stimuli with temporal frequencies previously thought to exceed its processing capabilities. With 
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oscilloscope screens, this occurs with refresh rates of 100 Hz (Mattler & Fendrich, 2010) and 

higher (125 Hz in Stein et al., 2019). The present study shows that it is robust with an LCD 

screen when the inducing ring dots are refreshed at 60 Hz, which is at the upper limit of 

conventional CFF estimates (Kaufman, 1974) and exceeds the reported limits for the conscious 

detection of motion in repetitive stimuli (Burr & Ross, 1982; Kelly 1979). The MBE therefore 

extends the gamut of phenomena that reveal the visual system’s processing of information that is

not consciously visible.

The present study is the first to demonstrate that the MBE can be investigated with a 

readily available commercial system. It replicates the modulation of the MBE by the inducing 

ring’s angular velocity both when the test ring precedes and follows the inducing ring (Mattler &

Fendrich, 2010; Stein et al., 2019). This replication with new software and hardware gives added

credence to previous descriptions of the MBE. Moreover, the differences between the LCD and 

oscilloscope display provide a demonstration of the MBE’s generality. With the oscilloscope 

screen, the inducing and test rings were necessarily constructed from luminous points on a 

background close to totally black. On the LCD screen, however, slightly larger 0.12° dots were 

used and displayed on a dark gray background. In addition, the 240 Hz LCD frame rate remains 

well below the 1000 Hz “frame rate” used in the previous oscilloscope investigations. To achieve

comparable inducing ring velocities with the lower frame rates, the dots had to be advanced in 

larger spatial steps. In consequence, the inducing ring looks like a chain of dots with the LCD 

rather than the continuous outline circle it appeared to be with the oscilloscope. Importantly, in 

both cases the inducing ring conveys no motion percept when the temporal frequencies exceed 

30 Hz. We note, however, that the absence of any visible motion in the inducing ring strikes us 

as especially salient with the LCD screen because of the conspicuously static character of the 

inducing ring dots. We also note that although the motion illusion looks very similar on the two 

devices, our informal impression is that it appears to be briefer with a more abrupt start and stop 

on the LCD screen than on the oscilloscope. The display attributes that might produce 

differences in the appearance of the illusion of this kind remains to be determined. 

In conclusion, the present study suggests that LCD monitors are a viable tool for the 

investigation of the MBE. Used in conjunction with MRI or EEG they may enable investigations 

of the physiological sources of the MBE. Although the frame rate of LCD monitors is still 

limited compared to that of the oscilloscope, they allow the effects of rapidly moving stimuli to 
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be examined using variables that cannot be readily manipulated on an oscilloscope. These 

include manipulations of shape and complexity, color, background luminance, contrast, and size.

By uncovering new features of the MBE such studies could facilitate the development of new or 

more extensive theoretical accounts of the illusion.
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Octave script

# This code was executed in Octave 5.1.0. Each of the following calculations, first creates an array containing

# the temporal distances in seconds between a point in the inducing ring and the beginning of the test ring. Then,

# for each condition, two more arrays are created which cover the spatial distances of the point in the inducing

# ring to the two nearest test ring points (in clockwise and counterclockwise direction) at the respective temporal

# distance. In the last step, each of the spatial distances is divided by the respective temporal distance to obtain

# the velocity, the average velocity for both directions (clockwise and counterclockwise) is determined and the

# difference between these velocities is calculated.

# The following code produces the differences in mean velocity of the conditions realized in Mattler and

# Fendrich (2010) The output values are shown in Figure 2 of the summary of this thesis.

isi=60;

temp_dist=([90:-1:0]+isi)/1000;

diameter=5;

point_dist=2*pi*diameter/2/16;

stepnumber=30;

spatial_dist_cw_750=[0,repmat(linspace(point_dist,0,stepnumber+1)(:,2:stepnumber+1),1,3)];

spatial_dist_ccw_750=[repmat(linspace(0,point_dist,stepnumber+1)(:,1:stepnumber),1,3),0];

stepnumber=18;

spatial_dist_cw_1250=[0,repmat(linspace(point_dist,0,stepnumber+1)(:,2:stepnumber+1),1,5)];

spatial_dist_ccw_1250=[repmat(linspace(0,point_dist,stepnumber+1)(:,1:stepnumber),1,5),0];

stepnumber=15;

spatial_dist_cw_1500=[0,repmat(linspace(point_dist,0,stepnumber+1)(:,2:stepnumber+1),1,6)];

spatial_dist_ccw_1500=[repmat(linspace(0,point_dist,stepnumber+1)(:,1:stepnumber),1,6),0];

stepnumber=10;

spatial_dist_cw_2250=[0,repmat(linspace(point_dist,0,stepnumber+1)(:,2:stepnumber+1),1,9)];

spatial_dist_ccw_2250=[repmat(linspace(0,point_dist,stepnumber+1)(:,1:stepnumber),1,9),0];

mean(spatial_dist_ccw_750./temp_dist)-mean(spatial_dist_cw_750./temp_dist)

mean(spatial_dist_ccw_1250./temp_dist)-mean(spatial_dist_cw_1250./temp_dist)

mean(spatial_dist_ccw_1500./temp_dist)-mean(spatial_dist_cw_1500./temp_dist)

mean(spatial_dist_ccw_2250./temp_dist)-mean(spatial_dist_cw_2250./temp_dist)



# The following code produces the differences of the mean velocity of the conditions realized in Experiment 1

# of Stein et al (2019). The output values are shown in Figure 3A of the summary of this thesis.

isi=60;

temp_dist=([120:-1:0]+isi)/1000;

diameter=5.5;

point_dist=2*pi*diameter/2/12;

stepnumber=40;

spatial_dist_cw_750_12=[0,repmat(linspace(point_dist,0,stepnumber+1)(:,2:stepnumber+1),1,3)];

spatial_dist_ccw_750_12=[repmat(linspace(0,point_dist,stepnumber+1)(:,1:stepnumber),1,3),0];

stepnumber=20;

spatial_dist_cw_1500_12=[0,repmat(linspace(point_dist,0,stepnumber+1)(:,2:stepnumber+1),1,6)];

spatial_dist_ccw_1500_12=[repmat(linspace(0,point_dist,stepnumber+1)(:,1:stepnumber),1,6),0];

stepnumber=12;

spatial_dist_cw_2250_12=[0,repmat(linspace(point_dist,0,stepnumber+1)(:,2:stepnumber+1),1,10)];

spatial_dist_ccw_2250_12=[repmat(linspace(0,point_dist,stepnumber+1)(:,1:stepnumber),1,10),0];

point_dist=2*pi*diameter/2/16;

stepnumber=30;

spatial_dist_cw_750_16=[0,repmat(linspace(point_dist,0,stepnumber+1)(:,2:stepnumber+1),1,4)];

spatial_dist_ccw_750_16=[repmat(linspace(0,point_dist,stepnumber+1)(:,1:stepnumber),1,4),0];

stepnumber=15;

spatial_dist_cw_1500_16=[0,repmat(linspace(point_dist,0,stepnumber+1)(:,2:stepnumber+1),1,8)];

spatial_dist_ccw_1500_16=[repmat(linspace(0,point_dist,stepnumber+1)(:,1:stepnumber),1,8),0];

stepnumber=10;

spatial_dist_cw_2250_16=[0,repmat(linspace(point_dist,0,stepnumber+1)(:,2:stepnumber+1),1,12)];

spatial_dist_ccw_2250_16=[repmat(linspace(0,point_dist,stepnumber+1)(:,1:stepnumber),1,12),0];

point_dist=2*pi*diameter/2/20;

stepnumber=24;

spatial_dist_cw_750_20=[0,repmat(linspace(point_dist,0,stepnumber+1)(:,2:stepnumber+1),1,5)];

spatial_dist_ccw_750_20=[repmat(linspace(0,point_dist,stepnumber+1)(:,1:stepnumber),1,5),0];

stepnumber=12;

spatial_dist_cw_1500_20=[0,repmat(linspace(point_dist,0,stepnumber+1)(:,2:stepnumber+1),1,10)];

spatial_dist_ccw_1500_20=[repmat(linspace(0,point_dist,stepnumber+1)(:,1:stepnumber),1,10),0];

stepnumber=8;

spatial_dist_cw_2250_20=[0,repmat(linspace(point_dist,0,stepnumber+1)(:,2:stepnumber+1),1,15)];

spatial_dist_ccw_2250_20=[repmat(linspace(0,point_dist,stepnumber+1)(:,1:stepnumber),1,15),0];



mean(spatial_dist_ccw_750_12./temp_dist)-mean(spatial_dist_cw_750_12./temp_dist)

mean(spatial_dist_ccw_1500_12./temp_dist)-mean(spatial_dist_cw_1500_12./temp_dist)

mean(spatial_dist_ccw_2250_12./temp_dist)-mean(spatial_dist_cw_2250_12./temp_dist)

mean(spatial_dist_ccw_750_16./temp_dist)-mean(spatial_dist_cw_750_16./temp_dist)

mean(spatial_dist_ccw_1500_16./temp_dist)-mean(spatial_dist_cw_1500_16./temp_dist)

mean(spatial_dist_ccw_2250_16./temp_dist)-mean(spatial_dist_cw_2250_16./temp_dist)

mean(spatial_dist_ccw_750_20./temp_dist)-mean(spatial_dist_cw_750_20./temp_dist)

mean(spatial_dist_ccw_1500_20./temp_dist)-mean(spatial_dist_cw_1500_20./temp_dist)

mean(spatial_dist_ccw_2250_20./temp_dist)-mean(spatial_dist_cw_2250_20./temp_dist)

# The following code produces the differences of the mean velocity of the conditions realized in Experiment 2

# of Stein et al (2019). The output values are shown in Figure 3B of the summary of this thesis.

isi=60;

temp_dist=([90:-1:0]+isi)/1000;

diameter=3.5;

point_dist=2*pi*diameter/2/16;

stepnumber=30;

spatial_dist_cw_750=[0,repmat(linspace(point_dist,0,stepnumber+1)(:,2:stepnumber+1),1,3)];

spatial_dist_ccw_750=[repmat(linspace(0,point_dist,stepnumber+1)(:,1:stepnumber),1,3),0];

stepnumber=15;

spatial_dist_cw_1500=[0,repmat(linspace(point_dist,0,stepnumber+1)(:,2:stepnumber+1),1,6)];

spatial_dist_ccw_1500=[repmat(linspace(0,point_dist,stepnumber+1)(:,1:stepnumber),1,6),0];

stepnumber=10;

spatial_dist_cw_2250=[0,repmat(linspace(point_dist,0,stepnumber+1)(:,2:stepnumber+1),1,9)];

spatial_dist_ccw_2250=[repmat(linspace(0,point_dist,stepnumber+1)(:,1:stepnumber),1,9),0];

mean(spatial_dist_ccw_750./temp_dist)-mean(spatial_dist_cw_750./temp_dist)

mean(spatial_dist_ccw_1500./temp_dist)-mean(spatial_dist_cw_1500./temp_dist)

mean(spatial_dist_ccw_2250./temp_dist)-mean(spatial_dist_cw_2250./temp_dist)

diameter=5.5;

point_dist=2*pi*diameter/2/16;



stepnumber=30;

spatial_dist_cw_750=[0,repmat(linspace(point_dist,0,stepnumber+1)(:,2:stepnumber+1),1,3)];

spatial_dist_ccw_750=[repmat(linspace(0,point_dist,stepnumber+1)(:,1:stepnumber),1,3),0];

stepnumber=15;

spatial_dist_cw_1500=[0,repmat(linspace(point_dist,0,stepnumber+1)(:,2:stepnumber+1),1,6)];

spatial_dist_ccw_1500=[repmat(linspace(0,point_dist,stepnumber+1)(:,1:stepnumber),1,6),0];

stepnumber=10;

spatial_dist_cw_2250=[0,repmat(linspace(point_dist,0,stepnumber+1)(:,2:stepnumber+1),1,9)];

spatial_dist_ccw_2250=[repmat(linspace(0,point_dist,stepnumber+1)(:,1:stepnumber),1,9),0];

mean(spatial_dist_ccw_750./temp_dist)-mean(spatial_dist_cw_750./temp_dist)

mean(spatial_dist_ccw_1500./temp_dist)-mean(spatial_dist_cw_1500./temp_dist)

mean(spatial_dist_ccw_2250./temp_dist)-mean(spatial_dist_cw_2250./temp_dist)

diameter=7.5;

point_dist=2*pi*diameter/2/16;

stepnumber=30;

spatial_dist_cw_750=[0,repmat(linspace(point_dist,0,stepnumber+1)(:,2:stepnumber+1),1,3)];

spatial_dist_ccw_750=[repmat(linspace(0,point_dist,stepnumber+1)(:,1:stepnumber),1,3),0];

stepnumber=15;

spatial_dist_cw_1500=[0,repmat(linspace(point_dist,0,stepnumber+1)(:,2:stepnumber+1),1,6)];

spatial_dist_ccw_1500=[repmat(linspace(0,point_dist,stepnumber+1)(:,1:stepnumber),1,6),0];

stepnumber=10;

spatial_dist_cw_2250=[0,repmat(linspace(point_dist,0,stepnumber+1)(:,2:stepnumber+1),1,9)];

spatial_dist_ccw_2250=[repmat(linspace(0,point_dist,stepnumber+1)(:,1:stepnumber),1,9),0];

mean(spatial_dist_ccw_750./temp_dist)-mean(spatial_dist_cw_750./temp_dist)

mean(spatial_dist_ccw_1500./temp_dist)-mean(spatial_dist_cw_1500./temp_dist)

mean(spatial_dist_ccw_2250./temp_dist)-mean(spatial_dist_cw_2250./temp_dist)



# The following code produces the differences of the mean velocity of the conditions realized in Experiment 3

# of Stein et al (2019). The output values are shown in Figure 3C of the summary of this thesis.

isi=60;

temp_dist=([120:-1:0]+isi)/1000;

diameter=4.125;

point_dist=2*pi*diameter/2/12;

stepnumber=40;

spatial_dist_cw_750_12=[0,repmat(linspace(point_dist,0,stepnumber+1)(:,2:stepnumber+1),1,3)];

spatial_dist_ccw_750_12=[repmat(linspace(0,point_dist,stepnumber+1)(:,1:stepnumber),1,3),0];

stepnumber=20;

spatial_dist_cw_1500_12=[0,repmat(linspace(point_dist,0,stepnumber+1)(:,2:stepnumber+1),1,6)];

spatial_dist_ccw_1500_12=[repmat(linspace(0,point_dist,stepnumber+1)(:,1:stepnumber),1,6),0];

stepnumber=12;

spatial_dist_cw_2250_12=[0,repmat(linspace(point_dist,0,stepnumber+1)(:,2:stepnumber+1),1,10)];

spatial_dist_ccw_2250_12=[repmat(linspace(0,point_dist,stepnumber+1)(:,1:stepnumber),1,10),0];

diameter=5.5;

point_dist=2*pi*diameter/2/16;

stepnumber=30;

spatial_dist_cw_750_16=[0,repmat(linspace(point_dist,0,stepnumber+1)(:,2:stepnumber+1),1,4)];

spatial_dist_ccw_750_16=[repmat(linspace(0,point_dist,stepnumber+1)(:,1:stepnumber),1,4),0];

stepnumber=15;

spatial_dist_cw_1500_16=[0,repmat(linspace(point_dist,0,stepnumber+1)(:,2:stepnumber+1),1,8)];

spatial_dist_ccw_1500_16=[repmat(linspace(0,point_dist,stepnumber+1)(:,1:stepnumber),1,8),0];

stepnumber=10;

spatial_dist_cw_2250_16=[0,repmat(linspace(point_dist,0,stepnumber+1)(:,2:stepnumber+1),1,12)];

spatial_dist_ccw_2250_16=[repmat(linspace(0,point_dist,stepnumber+1)(:,1:stepnumber),1,12),0];

diameter=6.875;

point_dist=2*pi*diameter/2/20;

stepnumber=24;

spatial_dist_cw_750_20=[0,repmat(linspace(point_dist,0,stepnumber+1)(:,2:stepnumber+1),1,5)];

spatial_dist_ccw_750_20=[repmat(linspace(0,point_dist,stepnumber+1)(:,1:stepnumber),1,5),0];

stepnumber=12;

spatial_dist_cw_1500_20=[0,repmat(linspace(point_dist,0,stepnumber+1)(:,2:stepnumber+1),1,10)];

spatial_dist_ccw_1500_20=[repmat(linspace(0,point_dist,stepnumber+1)(:,1:stepnumber),1,10),0];

stepnumber=8;

spatial_dist_cw_2250_20=[0,repmat(linspace(point_dist,0,stepnumber+1)(:,2:stepnumber+1),1,15)];



spatial_dist_ccw_2250_20=[repmat(linspace(0,point_dist,stepnumber+1)(:,1:stepnumber),1,15),0];

mean(spatial_dist_ccw_750_12./temp_dist)-mean(spatial_dist_cw_750_12./temp_dist)

mean(spatial_dist_ccw_1500_12./temp_dist)-mean(spatial_dist_cw_1500_12./temp_dist)

mean(spatial_dist_ccw_2250_12./temp_dist)-mean(spatial_dist_cw_2250_12./temp_dist)

mean(spatial_dist_ccw_750_16./temp_dist)-mean(spatial_dist_cw_750_16./temp_dist)

mean(spatial_dist_ccw_1500_16./temp_dist)-mean(spatial_dist_cw_1500_16./temp_dist)

mean(spatial_dist_ccw_2250_16./temp_dist)-mean(spatial_dist_cw_2250_16./temp_dist)

mean(spatial_dist_ccw_750_20./temp_dist)-mean(spatial_dist_cw_750_20./temp_dist)

mean(spatial_dist_ccw_1500_20./temp_dist)-mean(spatial_dist_cw_1500_20./temp_dist)

mean(spatial_dist_ccw_2250_20./temp_dist)-mean(spatial_dist_cw_2250_20./temp_dist)

# The following code produces the differences of the mean velocity of the conditions realized in the third

# manuscript of this thesis. The output values are shown in Figure 4 of the summary of this thesis.

for displacement = 0:9

isi=60;

temp_dist=([90:-1:0]+isi)/1000;

diameter=7.5;

point_dist=2*pi*diameter/2/16;

stepnumber=10;

spatial_dist_cw_2250=[repmat(linspace(point_dist,0,stepnumber+1)(:,2:stepnumber+1),1,9)];

spatial_dist_cw_2250=circshift(spatial_dist_cw_2250,-displacement);

spatial_dist_cw_2250=[spatial_dist_cw_2250(90),spatial_dist_cw_2250];

spatial_dist_ccw_2250=[repmat(linspace(0,point_dist,stepnumber+1)(:,1:stepnumber),1,9)];

spatial_dist_ccw_2250=circshift(spatial_dist_ccw_2250,-displacement);

spatial_dist_ccw_2250=[spatial_dist_ccw_2250,spatial_dist_ccw_2250(1)];

mean(spatial_dist_ccw_2250./temp_dist)-mean(spatial_dist_cw_2250./temp_dist)

end

for displacement = 0:14

stepnumber=15;

spatial_dist_cw_1500=[repmat(linspace(point_dist,0,stepnumber+1)(:,2:stepnumber+1),1,6)];

spatial_dist_cw_1500=circshift(spatial_dist_cw_1500,-displacement);



spatial_dist_cw_1500=[spatial_dist_cw_1500(90),spatial_dist_cw_1500];

spatial_dist_ccw_1500=[repmat(linspace(0,point_dist,stepnumber+1)(:,1:stepnumber),1,6)];

spatial_dist_ccw_1500=circshift(spatial_dist_ccw_1500,-displacement);

spatial_dist_ccw_1500=[spatial_dist_ccw_1500,spatial_dist_ccw_1500(1)];

mean(spatial_dist_ccw_1500./temp_dist)-mean(spatial_dist_cw_1500./temp_dist)

end

for displacement = 0:29

stepnumber=30;

spatial_dist_cw_750=[repmat(linspace(point_dist,0,stepnumber+1)(:,2:stepnumber+1),1,3)];

spatial_dist_cw_750=circshift(spatial_dist_cw_750,-displacement);

spatial_dist_cw_750=[spatial_dist_cw_750(90),spatial_dist_cw_750];

spatial_dist_ccw_750=[repmat(linspace(0,point_dist,stepnumber+1)(:,1:stepnumber),1,3)];

spatial_dist_ccw_750=circshift(spatial_dist_ccw_750,-displacement);

spatial_dist_ccw_750=[spatial_dist_ccw_750,spatial_dist_ccw_750(1)];

mean(spatial_dist_ccw_750./temp_dist)-mean(spatial_dist_cw_750./temp_dist)

end
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