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“With four parameters I can fit an elephant,
and with five I can make him wiggle his trunk.”
John von Neumann

“Fverything should be made as simple as possible,
but no simpler.”
Albert Einstein

“All models are wrong; some models are useful.”
George E. P. Box






Abstract

Cardiac diseases are often related to defects in subcellular components of the heart’s
main constituents, the heart muscle cells also called cardiac myocytes. These biological
cells periodically contract due to excitation-contraction coupling, i.e. an interplay of
intracellular ion dynamics and membrane potential which is centered around calcium
release units (CRUs). Especially alterations of the functions and the geometry of
CRUs may lead to distorted intracellular ion and voltage dynamics resulting in a
malfunctioning cell.

While the functions of CRUs are well studied, the knowledge about their geometry
is still incomplete. However, recently the ryanodine receptors 2 (RyRs), i.e. calcium
handling channels in CRUs, have been found to form elongated clusters rather than
being densely packed into lattice-like configurations, as was previously assumed. This
experimental observation represents a good reason to investigate the influence of the
geometrical arrangement of ionic channels on the dynamics of cardiomyocytes.

In this thesis a multiscale mathematical model is employed to quantify the impact
different RyR arrangements in CRUs have on the ion dynamics and voltage dynamics
of cardiac myocytes. The model describes the microscopic and stochastic processes of
calcium release as well as the intracellular mesoscopic ion diffusion and action potential
dynamics. Using this model we show that not only the shape of the RyR cluster, but
also the density and the arrangement of the channels are found to be relevant for the
cell dynamics. The numerical simulations proved changes in the microscopic structure
and geometry of cell components to significantly affect observed quantities like the
action potential duration or the average peak calcium concentration and thus the whole
cardiomyocyte functionality.

Moreover, since the employed mathematical model is computationally expensive, a
method for the generation and validation of a cheaper numerical model is applied. Using
this approach a meta model is generated based on the results from only a few hundred
simulation runs of the complex original model. Computationally faster regressions
based on the meta model can thus now accompany the multiscale mathematical model
improving the efficiency, with which descriptive and relevant predictions can be made.



Table of contents

Glossary and Abbreviations viii
1 Introduction 1
1.1 The Inner Universe of Cardiomyocytes . . . . . ... ... .. ... .. 2
1.1.1 Cardiomyocytes in Experimental Studies . . . . . .. ... ... 2

1.1.2  Mathematical Models of Cardiomyocytes . . . . . . . ... ... 3

1.2 Scope of this Thesis . . . . . . . . . . . .. ... ... ... ... ... 4
1.2.1 Physiological Insights into Subcellular Geometry . . . . . . . .. 4

1.2.2  Does Geometry Play a Major Role? . . . . . ... .. ... ... 5

1.2.3 Surrogate Model . . . . . ... ..o L 6

1.3 Structure of the Thesis . . . . . . . . .. .. ... ... ... ... . 8

2 Mathematical Model and Methods 11
2.1 Modelling Calcium release in Cardiomyocytes . . . . . .. .. ... .. 11
2.1.1 Calcium Diffusion in Cardiomyocytes . . . . . . . . . .. .. .. 12

2.1.2 Calcium Release Unit . . . . . . . .. ... ... ... ... ... 14

2.1.3 Channel Placements . . . . . ... ... ... . ... ... . 14

2.2 Cleftdyn: Multiscale Model of Intracellular Calcium Cycling . . . . . . 16
2.2.1 Model Geometry . . . . . . ... 17

2.2.2  Electrophysiology . . . . . . . .. ... 20

223 lon Diffusion . . .. .. ... 21

2.24  Cleft Dynamics . . . . . . . . . ... 23

2.2.5  Remarks on Computational Costs . . . . . . ... ... ... .. 27

3 Parameter Analysis 29
3.1 Generating Model Populations . . . . . .. ... ... ... ... ..., 29
3.1.1 Simulation Types . . . . . . . . . ... 30

3.1.2 Biomarkers . . . . ... ... 31

3.1.3 Parameter Input . . . . ... ..o oo 33

3.1.4 Sampling Action Potentials and Sparks . . . . . . .. .. .. .. 34

3.2 Parameter and Biomarker Estimation . . . . . . .. ... ... .. 36
3.2.1 Linear Sensitivity Analysis and Sobol Coefficients . . . . . . . . 37

3.2.2 Biomarker Sieve . . . . . ... ..o 39

3.3 Polynomial Chaos Expansion . . . .. .. ... ... ... ... .... 41

3.3.1 Polynomial Chaos Expansion - Theory . . . . .. ... ... .. 41



Glossary and Abbreviations

3.3.2 Polynomial Chaos Expansion - Application . . . . . . . ... .. 42

3.3.3 Contours of a Response Function . . . ... ... ... ... .. 44

3.4 Impact of Structure Modifications . . . . . . .. .. ... .. ... ... 45
3.4.1 Regular and Soeller Placement . . . . . . .. ... .. ... ... 45

3.4.2 Different Placement Measures . . . . . . .. . .. .. ... ... 45

3.4.3 Convex Hull and Occupancy . . . . . .. ... ... ... .... 48

4 Impact of Structure Modifications on Cardiomyocyte Functionality 51
4.1 Dyadic Structure-Function Relation in Cardiomyocytes . . . . . . . .. 51
4.2  Polynomial Chaos Expansion — Revisited . . . . . . . .. ... ... .. 63
4.2.1 Surrogate Model . . . . . ... 64

4.2.2  On the variable nature of spark simulations . . . . ... .. .. 69

5 Discussion and Conclusions 71
5.1 TImpact of Geometry on Global Cardiac Myocyte Functionality . . . . . 71
5.2 Construction of a Surrogate Model . . . . . . . ... ... .. ... .. 72
5.3 Outlook . . . . . . . 73
54 Conclusion . . . . . . .. 74
References 75
Appendix A Appendix 87

vii



Glossary and Abbreviations

Abbreviations

AP  Action potential
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Glossary and Abbreviations

SERCA Sarco/endoplasmic reticulum Ca*-ATPase
SR Sarcoplasmic reticulum
Glossary

action potential Excitation of the membrane voltage in biological cells, here in cardiac
muscle cells.

biomarker Analysed output of a mathematical model that represents a characteristic cell
function or behaviour.

cardiomyocyte Also cardiac myocyte, single heart muscle cell. It is the main component
of which the heart is made. It allows the organ to beat via periodic contractions.

clfetdyn Name of the multiscale mathematical model of cardiomyocytes used in this work
and developed in the Falcke lab of the Max Delbriick Center for Molecular Medicine
in Berlin.

cytosol Inner gel-like substance inside biological cells.

organelle Subcellular component that resides in the cytosol and with specific functions for
the cell.

quark Reduced calcium release from one single CRU, in which one or only few RyR open at
the same time.

sarcolemma Membrane that surrounds biological cells and thus encloses the cytosol.

Soeller/Jayasinghe placement Arrangement of RyR channels in CRUs according to the
algorithm developed in [1].

spark Event of calcium release from one single CRU, in which the majority of RyRs opens
simultaneously.

surrogate/meta model Numerical model that mimics the behaviour of a computational
expensive and complex mathematical model.

Z-disc Transversal cut through a cardiomyocyte, on which LCCs and RyR cluster are
colocalised. Also known as Z-line.

Symbols

e Penalisation factor of the LASSO regression method
grcc  LCC channel permeability

gryR RyR channel permeability

keose Closing rate of RyR channels

kplus  Opening rate of RyR channels

Vpmax Maximal strength of SERCA pump uptake

X






Chapter 1

Introduction

The heart is the organ responsible for the vital blood delivery to lungs and body. Its
main components are heart muscle cells, commonly referred to as cardiac myocytes or
cardiomyocytes. Several types of heart diseases and heart failure are often attributable
to defects in the structure and functioning of cardiomyocytes [2-5], which have been
the focus of many studies over the past years as reported in [6].

Experimental investigations are the foundations of a deeper understanding of the
functioning of cardiac cells. With the insight gained in experiments techniques for
treating diseased cardiomyocytes can be developed and further studied. These types of
studies can be both challenging and invasive [1, 2, 7|. The challenges are often linked
to technical limitations that allow only for limited resolutions, while some preparation
and analysis techniques of the cardiomyocytes can alter their states possibly causing
cellular components to malfunction [8-10].

In this regard mathematical models often proved to be helpful in accompanying
experimental observations on the path to new insight [11], since they are capable
of resolving spatial and temporal regions that otherwise would remain undisclosed.
Mathematical models are always a simplified description of reality, they thus need to
keep up with new insights in order to be reliable.

A recent experimental study on the structure of subcellular components [1] found
how the geometry differs from the shapes that where previously assumed in mathemati-
cal models as e.g. in [12]. In the work of this thesis I improved an existing mathematical
model by including these novel physiological insights about cardiomyocytes and study-
ing its relevance for cardiac cell modelling. Further I show how a method for the
construction of reliable alternative and computationally faster models (compared to an
original complex one) can be applied.



Introduction

o b
/

‘5 pMm

Figure 1.1 — Confocal image of a single cardiomyocyte, upper panel, with an enlargement
of the boxed region, lower panel. Cellular membrane and so-called Z-lines are made
visible via a fluorescent dye (di-8-ANNEPS) as green vertical stripes. Adapted from [13]
with permissions.

1.1 The Inner Universe of Cardiomyocytes

1.1.1 Cardiomyocytes in Experimental Studies

Figure 1.1 shows a confocal image of a cardiomyocyte with an enlargement of the
selected area [13]. Well visible are the so-called Z-lines in the cell interior, where
the centres of calcium handling, the calcium release units (short CRUs) are localised.
Calcium is essential in muscle cells for allowing a proper contraction of the muscle
fibres [14].

Understanding the calcium dynamics in myocytes helps to shine light on the
mechanism that enables contraction of the cells. Cardiomyocytes with altered or
malfunctioning calcium dynamics thus cease to contract properly [2]. Although such
malfunctions are harmless for the heart when they affect few isolated cells, in cases
where large regions of the heart tissue are affected it can threaten the proper contraction
of the organ.

In order to study the intracellular calcium dynamics it is necessary to gain knowledge
on the subcellular components that are responsible for the calcium handling. Therefore,
in section 2.1 a detailed description of the geometrical arrangement of subcellular
organelles and their functions in cardiomyocytes will be provided.

In recent years experimental techniques to visualise intracellular structures in
cardiomyocytes are improving with a fast pace: from imaging single ion channels and
channel clusters [1, 7, 15, 16] to resolving the organelle structures inside the cell [9, 10,
17] to studies done on entire cells [2, 18]. There are many experimental investigations
on cardiac cells that allow for an understanding of the mechanisms that permit a
healthy functioning of the myocyte. Often diseased cardiac cells are studied by altering
the function of ion channels of the cardiomyocyte using specific drugs [2, 5, 19, 20]. A
remarkable study on how drugs acting on a channel level can affect the functions of
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the entire heart was done on atrial cardiomyocytes by Lou et al. [21].

Many of the experimental studies cited above are affected by some technical
limitations, particularly by the resolution of microscopy techniques while imaging
living cells [1, 7, 10, 22]. Here mathematical models are capable of resolving the
ion dynamics in undisclosed subcellular regions. Further a mathematical model can
function as a “cheap” drug test, when the relations between subcellular components are
well known and a link between experiment and computational model can be established.
Experimental insight can thus be accompanied and enriched by mathematical models
that are capable of mimicking the function of both healthy and diseased subcellular
components. The following section is a summary and characterisation of some of the
models that are used for studying cardiomyocytes from a computational point of view.

1.1.2 Mathematical Models of Cardiomyocytes

The number of mathematical models mimicking the intracellular ion and specifically
calcium dynamics and its link to the membrane voltage in the context of cardiac
myocytes is ever-growing. From resolving ion channels and their surroundings [12,
23-28] through spatially detailed models [29-35] up to ionic descriptions of the cellular
dynamics [36, 37| the universe of intracellular cardiac mathematical modelling is
extended and rich. The goal is often the same, i.e. to be an aid for experiments
indicating possible pathways for further investigations and to better understand the
behaviour of cardiomyocytes when perturbed from their usual regime, e.g. due to
diseases.

The interest in finding the roots and implications of cellular diseases that might
threaten the proper functioning of the heart muscle is strong [2, 4, 5, 20, 34, 38, 39].
Because of their relative cheap costs once they are established, i.e. the equations are set
and the numerics implemented, mathematical models can be used to gain knowledge
on phenomena that, at the current state of the art, cannot be studied experimentally.
This insight can be both trendsetting for new studies and reduce the number of costly
and some times invasive experiments to be performed. A requirement for mathematical
models in this regard is the proximity to experimental studies, which would be the
accuracy with which they describe nature and thus with which they can be compared
to experimental results.

Mathematical models studying the inner functions of cardiomyocytes can be cate-
gorised into three main groups, concerning the dimensions that are considered: models
as [12, 27, 28] have their focus on calcium diffusion in and around single CRUs, models
as [29, 32, 34, 39, 40] neglect the detailed description of calcium diffusion in CRUs,
but resolve the entire cell and its ion dynamics, finally pure ionic models as [36, 37, 41,
42| set their focus, as their naming already suggests, on ionic currents and membrane
potential dynamics neglecting any spatial discretisation inside the cell. The models
of the third category are often integrated in those of the second to describe the ion
currents and the membrane potential [29, 33, 38, 39].

One mathematical model deserves particular attention, since it cannot be categorised
as the others, it rather tries to cover all of them. This model was developed by the

3
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Martin Falcke lab of the Max Delbriick Center for Molecular Medicine in Berlin [23,
24, 35, 43-47] and describes a very broad spectrum of spatial-temporal dimensions.
This characteristic is not present, to my knowledge, in any other mathematical model
describing intra-cardiomyocyte calcium dynamics. The multiscale nature of the model
allows for a range that starts from the spatial and temporal resolution of single ion
channels on one side and reaches the description of calcium diffusion and membrane
potential dynamics on the other. Therefore this multiscale model closes a gap between
microscopic channel gating (very well described in [27] and [12]) and the ion diffusion
in the macroscopic cell interior, as described in e.g. [29]. With this model it is possible
to gain insight on the effects microscopic modifications of the subcellular structure
have on the function of the cardiomyocyte on a cellular and thus macroscopic level.
Considering these points as crucial for the development of mathematical models in
the field of cardiomyocyte research, I chose to adopt this model for the present study.

1.2 Scope of this Thesis

1.2.1 Physiological Insights into Subcellular Geometry

Recent experimental findings on the structure of subcellular components in cardiomy-
ocytes [1], particularly a new insight on the shape of components of CRUs, motivated
me to include this new knowledge in the mathematical model by Martin Falcke, which
in the following I will refer to as cleftdyn. In [1] the shape and density of clusters of
Ryanodine Receptors 2 (particular calcium channels, short RyR) is revealed. These
clusters represent one of the keystones of calcium ion dynamics and thus contraction
inside muscle cells. In the lack of deeper knowledge, many studies model RyR clusters
as being formed by channels placed on a lattice-like grid [27] often in the shape of a
rectangle or square [12, 35]; In many cases the rectangular grid is further spatially
represented by a point source [29, 33, 48]. In some cases the density of the RyRs inside
the cluster is reduced [13].

Jayasinghe, Clowsley and coauthors used newly developed microscopy techniques
(which are described in detail in reference [22]) and found nature not to reflect this
arrangement of RyR channels, but rather to have ion channels distributed in elongated
clusters and with a lower density [1]. In figure 1.2 two sketches of the RyR arrangement
are shown: in figure 1.2a as it was assumed to be before the new experimental study
and in figure 1.2b as it actually was observed [1].

The difference is remarkable, especially the packing of RyR channels between the
outline-based view and the molecular resolution view changes dramatically. In the
former the RyR cluster is simply filled with channels, while in the latter the RyRs
are positioned with gaps between neighbouring channels. The authors of [1] further
developed an algorithm that mimics the arrangement of RyRs with high agreement
with what was observed in experiments and is best described as a “random walk” of
the channel placement.
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(a) — Outline-based view of RyR clusters as it (b) — Molecular resolution view with
is assumed to be when standard microscopy molecules visualised as they are observed with
methods are employed. the DNA-Paint microscopy technique.

Figure 1.2 — Sketches of cluster arrangements of the same RyR cluster for two different
microscopy techniques. RyRs are depicted as orange squares and the cluster outlines as
grey dashed lines. The figures were adapted from [1], Creative Commons, CC BY 4.0.

These findings are valuable insights for the community studying cardiomyocytes,
since such a resolution of RyR clusters was not achieved before; the authors thus ask
for mathematical models “to be refined to capture the effect of such gaps on excitability
using the data provided here” [1].

An inclusion of the algorithm for channel placement developed by Jayasinghe,
Clowsley and coauthors, which is best described as a random walk for the channel
placement [1], into cleftdyn, considering the description capabilities of the mathematical
model, appears to be obvious.

1.2.2 Does Geometry Play a Major Role?

The question whether modifications in the microscopic structure in cardiomyocytes
affect the dynamics on a whole cell level is relevant for a proper mathematical modelling
of intracellular processes (see for instance the differences between [35] and [33]), but
also for the understanding of diseases such as the loss of calcium channels as it happens
during so called t-tubule disruption [13, 49].

In [35] the authors employed cleftdyn to demonstrate how changes of the dynamics
ruling the CRU, i.e. the microscopic actors of calcium handling, would affect the ion
concentrations and the electrophysiology of the entire cardiomyocyte. As outlined in
section 1.2.1, the distribution of RyRs inside CRUs was assumed to be lattice-like
and the RyRs were considered to form densely packed channel clusters [12, 27, 35].
The inclusion of new placement methods like [1] into the mathematical model would
represent a microscopical structure modification, whose impact on the cardiomyocyte
is unknown. In this work I undertook, together with my coauthors Martin Falcke
and Wolfgang Giese, the endeavour of understanding how much variations in the
microscopical geometry would affect the functioning of cardiomyocytes on a broader
scale [50].
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The choice of the “right” microscopic dynamics is often a central discussion point
in studies on cardiomyocytes, especially ionic models as [37] and whole cell models that
approximate the CRU as a point source as e.g. [29, 48]. On the other hand the choice
of the CRU structure plays a role merely with spatially limited models, where only one
or few units are present as in [27] and [12]. With the role of a gap closer, cleftdyn is
thus perfectly suited to be the mathematical model capable of investigating the impact
different structures of the subcellular calcium release unit have on cellular level.

We can now pose a scientific relevant question: does the microscopic geometry of
the subcellular CRUs play a major role in the global ion handling and electrophysiology
of cardiomyocytes?

Our hypothesis is that the arrangement of channels in subcellular components does
influence the whole cell ion and membrane potential dynamics and in this thesis I
describe an approach for confirming this hypothesis.

It is interesting to note how previous studies made with cleftdyn did focus on
functional properties of the CRU [24, 45] and their effect on the cell dynamics [35],
while now we approach the structure of the subcellular components and study their
impact on the cellular level.

The incorporation into cleftdyn of the placement algorithm developed in [1] repre-
sented a major change in the structure of the model and raised the question of how
strong it would impact on the models output, asking for a robustness check of the model
itself. The rework that had to be done on cleftdyn motivated me and my coauthors to
employ statistical techniques only recently applied to cardiac studies [51-53] for the
assessment of our model’s robustness.

1.2.3 Surrogate Model

Solving cardiac models numerically can be computationally demanding allowing only
for a reduced number of simulation runs. In general these high computational costs are
correlated with the model complexity and capability of resolving as many details as
possible. Cleftdyn is certainly such a demanding model (see section 2.2.5 for details),
from which a statistical relevant study in a classical sense, i.e. a Monte Carlo like
generation of thousands of simulation runs [54], cannot be performed.

The aid of so-called surrogate models (often also called emulators or meta models)
can be a support for computational demanding models. An example of a successfully
created surrogate model that is accompanied by a complex and detail-rich mathematical
model is given by [55]. The label surrogate is inspired by the terminology found in [52]
and [56], where a computationally faster model is created starting from the outcome of
a demanding one.

In figure 1.3 a schematic representation of how a surrogate model works is shown.
The orange boxes on the left represent the input and the complex mathematical model,
while the blue boxes on the right represent the output. This is often divided into raw
output, which for example could be the time evolution of the membrane potential, and
the analysed output, which in the example case could be represented by the mean value
of the action potential duration as function of some model parameter. The green box
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depicts the surrogate model that is created on the basis of the analysed output and
which then becomes a “shortcut” between the initial model’s input and the analysed
data.

AP series APDgq
Complex
initiation raw analysis
Input ——— = Mathematical —
data APDy
Model

@@

Surrogate Model

Figure 1.3 — Schematic representation of a general workflow for mathematical models
showing the “shortcut” taken by a surrogate model. In orange the input and the main
mathematical model are shown, in blue the output is shown. The left output box
represents the raw output as for instance the time evolution of the membrane potential,
the right one represents the analysed data as e.g. the action potential duration. A
surrogate or meta model, depicted here as the green box, is able to map the input to the
analysed output avoiding a long computation time.

The idea behind surrogate models is to represent an approximation of the main
computationally demanding model and to allow for many and/or long simulation
runs in cases where the original model could only produce a reduced number of them.
Attention has to be paid here, since the surrogate model does not replace the original
one, it is rather a supplement that allows for finer scans of the parameter space and/or
further prediction.

Creating a surrogate model can be undertaken in many ways [53]. Since this was
not the main focus of our study, the creation of a meta model was not part of the initial
goals, but during estimation and tuning of the model’s input parameters it turned out
to be an endeavour that would open new possibilities to cleftdyn. As mentioned we
needed to calibrate input parameters of the modified mathematical model to allow
for physiological output. Since the number of simulations that can be performed
with cleftdyn is small (compared to e.g. a Monte Carlo like simulation that produces
thousands of repetitions), we had to employ methods from statistics and uncertainty
quantification [57] to properly analyse the model’s outputs.

In the specific case we did use a method introduced by Norbert Wiener, the
polynomial chaos expansion (PCE) [58] to perform regressions on a multidimensional
parameter space that is sparsely filled. Polynomial chaos expansion uses orthonormal
polynomials to fit a function to a high dimensional data set, of which the input
parameters are varied [56]. This regression allowed us to create a function that would
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represent a sort of look up table of the original outputs of cleftdyn, with the possibility
to explore further parameter combinations that were not part of the original simulations.

This regression represents a surrogate model, which we used first to asses the
parameter ranges that would deliver physiological output of cleftdyn. This surrogate
model can be further used to gain insight on regions in parameter space barely accessible
in their entirety by cleftdyn, in other terms it allows for a “shortcut” as the one sketched
in figure 1.3.

Since cleftdyn represents a mathematical model that covers a wide range of spatial
scales from the resolution of single ion channels [23] up to whole cell dynamics [35],
a method that allows the construction of a surrogate model based on cleftdyn is a
valuable tool that enhances the possibilities of analysis.

1.3 Structure of the Thesis

This thesis is structured as follows:
o Chapter 2 is divided into two main sections:

— Section 2.1 describes the main components and functions of cardiomyocytes
with a focus on the literature describing the intracellular structures and
processes. Special attention is paid to the motivation of this project, which
is detailed in section 2.1.3, where the newly developed placement method
for RyRs is described [1].

— In the second section 2.2 the multiscale mathematical model is outlined
in its principal components together with the equations that describe the
intracellular processes.

o In chapter 3 the methods of the data analysis together with the main results are
discussed.

— Sections 3.1 and 3.2 describe which output measures where chosen and how
they where handled and analysed in order to calibrate the input parameters
of the model. The first steps towards the assessment of model parameters
yielding output that can be considered to be physiological are described
here.

— In section 3.3 the theory behind polynomial chaos expansion is outlined
together with its application to the output measures described in the previous
two main sections.

— Section 3.4 discusses the impact that the inclusion of the new channel
placement method [1] has on the cellular dynamics in the frame of cleftdyn.

o Chapter 4 consists of two main sections:

— Section 4.1 contains the publication [50], in which the results outlined in
chapter 3 are presented with further details.
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— Section 4.2 holds an analysis and a discussion of the generation of the
surrogate model using polynomial chaos expansion based on the results of
[50]. In this section I also describe an optimiser for the regression method,
that allows for the generation of a robust meta model.

o In chapter 5 I summarise the results of the present study discussing its main and
most relevant aspects. Finally I sketch a pathway for further investigations.






Chapter 2

Mathematical Model and Methods

This chapter focuses on the considered structures and cell components. Here I describe
the main functions and elements of the modelled heart muscle cells, the cardiomyocytes.
Further I describe the mathematical model employed to carry out the present study
embedding it in the current state of the art considering the advances and achievements
of the recent years (see section 2.1.3). The chapter is divided into two main sections that
consider physiological functioning of cardiomyocytes in connection to mathematical
models on one and the implementation of one specific mathematical model, the one
used in this thesis, on the other hand.

2.1 Modelling Calcium Release in Cardiomyocytes

Muscle cells (myocytes) are responsible for the mechanical contraction and relaxation
of organs. The following description is visualised by a sketch in figure 2.1, where all
the main components of muscle cells are depicted [60].

Myocytes are mainly composed of muscle fibres so-called myofibrils, in which the
interplay between actin and myosin allows the cell to contract. One of the main actors
in this process is calcium, which binds to a molecule known as troponin C' and then to
actin initiating contraction [14, 61-63].

Calcium is stored in an organelle that surrounds the myofibrils, the sarcoplasmic
reticulum (SR), which is often divided into network and junctional SR (the latter
is labelled terminal cisternae in figure 2.1).