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Abstract

The exact characterisation of planets, their host stars and the structure of their sys-
tems is an essential part of exoplanet research. This helps to understand the forma-
tion and evolution of planetary systems. Planets detected with the transiting method
that show transit timing variations (TTVs) are particularly suitable for a detailed
characterisation of their system. TTVs result from dynamical interactions between
the system objects. Hence, from TTVs the orbital configuration and the planetary
masses are determinable. Together with the radius defined by the transits, the plane-
tary density is calculable, which helps to understand the planetary nature. This thesis
is dedicated to follow-up observations and the dynamical modelling of TTV planetary
systems in order to enable a refined system characterisation. Two transiting planetary
systems discovered with the Kepler telescope and containing TT'V planets are targets
of this characterisation. To extend the observation baseline with the aim of capturing
the full dynamic cycle of the TTV curves, ground-based follow-up observations of the
planets transits were performed and processed within the framework of the KOINet
(Kepler Object of Interest Network). To enable a comprehensive and self-consistent
analysis of the systems a photodynamical model was developed for the entire pho-
tometric light curve. The photodynamical model performs a numerical integration
of the entire system over the time span of observations taking into account the dy-
namical interactions between all objects and calculates transit light curves from the
output. Kepler-9 is the first of the two systems which was subject to KOINet follow-up
observations and the photodynamical analysis. The two planets b and ¢ show anti-
correlated, sinusoidal-like TTV curves. The photodynamical analysis of the system
results in precise planet parameter determinations of the order of ~ 1 %, which makes
them the planets with the best determined densities in the Neptune mass regime. In
addition, the analysis predicts that the transits of Kepler-9¢ will disappear by 2050
due to orbital precession as a result of the strong interaction between the planets.
Correspondingly, planet b will migrate towards the lower latitudes of the star. In the
next 30 years the latitudes of the star will be scanned by the transits of the planets,
where planet b will move towards possible spot regions and planet ¢ will explore the
limb of the star before disappearing. The second analysed system is Kepler-82 with
the T'T'V-showing planets b and c. Here, the TT'Vs are not anti-correlated and the
curve of planet ¢ exhibits jumps every three consecutive transits, this feature is called
chopping signal. The chopping signal is not induced by planet b but originated by a
third outer component. With only Kepler data, two possibly system configurations
are found, where an outer planet is near a 3:2 or 3:1 period ratio to planet c¢. The
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adding of KOINet follow-up observations leads to a unique solution resulting in the
detection of a new non-transiting planet in the system, Kepler-82f, orbiting the star
near a 3:2 commensurability to planet c. Both systems are examples of how planets in
transiting systems can be missed in the light curves, since the dynamical interaction
between planets can cause small deviations from co-planarity. Kepler-9¢ would have
been missed if the Kepler mission would had been launched 40 years later and the
Kepler-82 system could have shown a completely different combination of transiting
planets if it had been observed at another time. The follow-up observations of the
systems and their analysis with the self-consistent photodynamical model developed
here enabled the precise parameter determination and system characterisation, which
led to the prediction of the disappearance of the transits of Kepler-9¢ and to the
discovery of the planet Kepler-82f.



Zusammenfassung

Die genaue Charakterisierung von Planeten, ihren Heimatsternen und dem Aufbau
ihrer Systeme ist ein wesentlicher Teil der Exoplanetenforschung. Dies hilft dabei
die Entstehungs- und Entwicklungsgeschichte von Planetensystemen zu verstehen.
Mit der Transitmethode detektierte Planeten, die Transitzeitvariationen (engl. tran-
sit timing variations, TTVs) aufweisen, eignen sich besonders fiir eine detaillierte
Charakterisierung ihres Systems. TTVs sind das Ergebnis dynamischer Interaktionen
zwischen den Systemobjekten. Aus TTVs sind somit die Orbitalkonfiguration des
Systems und die Planetenmassen bestimmbar. Zusammen mit dem Radius, definiert
durch den Transit, ist die planetarische Dichte bestimmbar, was hilft, die Natur des
Planeten zu verstehen. Diese Arbeit widmet sich Folgebeobachtungen und der dy-
namischen Modellierung von TTV-Planetensystemen, um eine verfeinerte System-
charakterisierung zu ermoglichen. Zwei Transit-Planetensysteme, die mit dem Kepler
-Teleskop entdeckt wurden und TTV-Planeten enthalten, sind Ziele dieser Charak-
terisierung. Zur Erweiterung der Beobachtungsbasislinie mit dem Ziel, den vollen
dynamischen Zyklus der TTV-Kurven zu erfassen, wurden im Rahmen des KOINet
(Kepler Object of Interest Network) bodengebundene Folgebeobachtungen der Plane-
tentransite durchgefithrt und verarbeitet. Um eine umfassende und selbstkonsistente
Analyse der Systeme zu ermoglichen, wurde ein photodynamisches Modell fiir die
gesamte photometrische Lichtkurve erstellt. Das photodynamische Modell fiithrt eine
numerische Integration des Gesamtsystems iiber die Gesamtzeit aller Beobachtungen
unter Beriicksichtigung der dynamischen Wechselwirkungen zwischen allen Objekten
durch und berechnet aus der Ausgabe Transitlichtkurven. Kepler-9 ist das erste der
beiden Systeme, das den KOINet Folgebeobachtungen und der photodynamischen
Analyse unterzogen wurde. Die beiden Planeten b und ¢ zeigen antikorrelierte, sinus-
formige TTV-Kurven. Die photodynamische Analyse des Systems fiihrt zu prazisen
Planetenparameterbestimmungen in der Groflenordnung von ~ 1 %, was sie zu den
Planeten mit den am besten bestimmten Dichten im Neptun-Massenregime macht.
Dartiber hinaus prognostiziert die Analyse, dass die Transite von Kepler-9¢ um 2050
aufgrund der orbitalen Prazession als Folge der starken Interaktion der Planeten ver-
schwinden werden. Dementsprechend wandert Planet b in Richtung der geringeren
Breitengrade des Sterns. In den néchsten 30 Jahren werden die Breitengrade des
Sterns durch die Transite der Planeten gescannt, wobei sich Planet b in Richtung
moglicher Sternfleckregionen bewegt und Planet ¢ den Rand des Sterns erforscht,
bevor er verschwindet. Das zweite analysierte System ist Kepler-82 mit den TTV-
zeigenden Planeten b und c. In diesem System sind die TTVs nicht antikorreliert
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und die Kurve des Planeten c zeigt Spriinge alle drei aufeinanderfolgenden Transits.
Dieses Signal wird nicht vom Planeten b induziert, sondern von einer dritten d&ufleren
Komponente erzeugt. Mit nur den Kepler Daten werden zwei mogliche Systemkon-
figurationen gefunden, bei denen ein duflerer Planet in der Néhe eines 3:2 oder 3:1
Periodenverhéltnisses zum Planeten c liegt. Das Hinzufiigen von KOINet-Follow-up-
Beobachtungen fithrt zu einer eindeutigen Losung, die zur Entdeckung eines neuen,
keine Transits aufweisenden Planeten im System fiihrt, Kepler-82f, der den Stern in
der Néhe eines 3:2 Periodenverhéaltnisses zum Planeten ¢ umkreist. Beide Systeme
sind Beispiele dafiir, wie Planeten in Transitsystemen in den Lichtkurven tibersehen
werden konnen, da durch die dynamische Interaktion zwischen den Planeten geringe
Abweichungen von der Koplanaritiat hervorgerufen werden kénnen. Kepler-9¢ wire
iibersehen worden, wenn die Kepler Mission 40 Jahre spater gestartet worden ware
und das Kepler-82-System hétte eine vollig andere Kombination von Transitplaneten
zeigen konnen, wenn man es zu einem anderen Zeitpunkt beobachtet hétte. Durch
die Nachbeobachtungen der Systeme und die Analyse mit dem hier entwickelten selb-
stkonsistenten photodynamischen Modells wurde die prézise Parameterbestimmung
und Systemcharakterisierung ermoglicht, die zu der Vorhersage des Verschwindens der
Transite von Kepler-9c und der Entdeckung des Planeten Kepler-82f fiihrte.
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Chapter 1

Introduction

Looking into the night sky (in a rural place), we can see thousands of sparkling stars.
The question about other worlds like our Earth, about life existing elsewhere in the
sheer endless universe is not that far-fetched and has occupied mankind probably
already almost since its origin (for more than 2000 years from writings). Only 25
years ago, science took a big step forward to answer this question by discovering the
first planet orbiting a star other than our Sun (Mayor & Queloz, 1995). Since then,
thousands of exoplanets have been detected and there are many ongoing and future
missions dedicated to finding many more of them. The zoo of discovered exoplanets
is enriched by outstanding detections such as exoplanets in the close proximity of
the Sun: an Earth-mass planet orbiting the closest star, Proxima centauri (Anglada-
Escudé et al| [2016); two Earth-like planets orbiting Teegarden’s Star in the habitable
zone (Zechmeister et al.,|2019); and seven Earth-like planets in the Trappist-1 system,
four of which may be habitable (Gillon et al. [2017). The Planetary Habitability
Labamtomﬂ reports a total of 55 potentially habitable exoplanets (2019 September
15) that could host life similar to that on Earth.

There is probably still a long way to go before we discover extraterrestrial life
and many more aspects are important than the detection of Earth-like planets in the
habitable zone of their home stars. In order to gain a greater understanding of the
universe and the formation of galaxies, stars and planetary systems, the domain of
exoplanet science comprises a broad field of interest. The discovery and accurate char-
acterisation of many different exoplanets and planetary systems and their dynamics
are important milestones along this path.

1.1 Exoplanet detection methods

There are many methods for detecting exoplanets. In Micheal Perryman
has outlined the different methods and their current and prospected lower planet
mass detectability limits (similar to Figure 1.1 in [Perryman, [2018). The methods are
categorised into three different fields: dynamical, microlensing, and photometry. In
the following, a summary of the detection techniques in these categories is given. An
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Figure 1.1: The various planet detection methods and there capability in the mass
regime, given on logarithmic scale. The solid lines indicate the current capability of
the methods and the dashed line the future prospective. Numbers give the number
of known planets detected with the methods. The mass regime capabilities of the
indirect or miscellaneous methods are not known so far, so the axis is not applying
for them. Diagram by Michael Perryman with data from 2019 January 1, similar to
Figure 1.1 in |Perryman (2018).

interesting aspect is the total number of planets detected by the respective approach:
the cumulative number of detections per year and per planet detection method is
plotted in

Dynamical methods are based on the gravitational effect of an exoplanet on its host
star or other measurable objects in the system. Planet detections via radial velocity
measurements is one of the two most successful detection methods (see
and located in the field of dynamical methods. This observation technique is based
on stellar radial velocity changes in the line-of-sight of the observer due to an orbiting
exoplanet; the details of this method will be discussed later this section. In astrometric
observations the change of the position of the star due to an exoplanet is measured.
The timing method contains measurements of deviations from periodic events. These
deviations could be a light-travel time effect if the star is the source of the periodic
events and its position is changed due to the exoplanet. The periodicity hereby can
be given by pulsars, pulsating stars, or eclipsing binaries for example. Furthermore,
the later discussed transit events can be time shifted by various reasons due to further
planets in the system. These so-called transit timing variations are discussed in detail
in [section 1.7

For the microlensing method the gravitational lensing effect is utilised. A fore-
ground star that moves in front of a background source magnifies the light coming
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Figure 1.2: The cumulative number of detections per year and planet detection
method. Listed techniques are the transit method, radial velocity measurements,
direct imaging, planets detected by microlensing, and timing effects. All other meth-
ods are combined in "others". The numbers are from the NASA FExoplanet Archive,
2019 September 15.

from this source. A planet orbiting the lens star acts as a second lens, measurable
as a secondary signal in the light curve of the event. Such events are unique and not
reproducible. Therefore, follow-up observations of the detected exoplanet can only be
performed with another planet detection method.

With photometric measurements three different planet detection methods are ap-
plicable. When a sufficient spatial resolution is given, large planets in a large orbit
around a masked star can be directly imaged. Furthermore, the reflected and there-
fore polarised light of an exoplanet can be measured. The most successful planet
detection method (see is the transit method, where dips in the light curve
due to the movement of an planet in its foreground are measured. This method is dis-
cussed in detail below. |Perryman (2018)) lists further indirect or miscellaneous planet
detection methods, which could be relevant in future, but their mass limitations are
not sufficient investigated.

1.1.1 Radial velocity method

The radial velocity method to detect exoplanets is based on the reflex motion of the
host star around the barycentre with a planet. This motion is measured in the radial
velocity curve of the star. The first confirmed planet detection was achieved by this
method (Mayor & Queloz, [1995). Since then, the technique has proven to be a very
efficient method in finding exoplanets with a steady stream of new detections (see
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Figure 1.2)).

The motion of the star around the system barycentre is measurable through a
small Doppler shift of the stellar spectral lines in its spectrum. Movements towards
the observer shifts the lines towards the blue and away from observer towards the red.
The relation between the line shift, A\, and the (non-relativistic) radial velocity of
the star, vg, is given by

AN = 2By
C

with the speed-of-light ¢, and the expected line position \.
Measuring the radial velocity of a star with an orbiting planet over a certain time
yields a curve whose amplitude is described by

- 21 1/3 my, sin i 1
P (mg + my)?/3 (1 — e2)1/2

with the gravitational constant GG, the system period P, the stellar and planetary
masses mg and m,, the inclination ¢ and the eccentricity e. Given that only the
radial velocity projected in the direction of the observer is measured, the inclination
of the system is not derivable and so only a lower planet mass limit can be determined.
The measured quantity from the radial velocity amplitude is thus m, sini. From the
shape of the radial velocity curve all other orbital elements are derivable, besides the
position in the sky given by the longitude of the ascending node, €2, and the absolute
value of the semi-major axis, a, the latter is not determinable due to the unknown
inclination.

The most favourable planetary systems for the radial velocity detection method are
heavy planets in a close orbit to its host star. Such planets feature the highest radial
velocity amplitude. Nevertheless, the radial velocity accuracy of current instruments
together with large telescopes allow for detections of exoplanets with a few Earth
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masses (see [Figure 1.1). A mass-period diagram for the detected planets (Figure 1.3)

additionally shows that planets with larger periods are also detectable when they
possess enough mass.

1.1.2 Transit method

The transit detection method is the most effective planet detection method so far (see
[Figure 1.2)). A transit can be measured in the light curve of a star when a planet moves
in front of the star. When the planet blocks part of the star’s light, the star seems
to be darker for a short time. The first detection with this method was achieved in
1999, for a hot Jupiter in the HD 209458 system (Soderhjelm, 1999 |Castellano et al.,
2000). Hot Jupiter type planets are giant planets (radii larger than about 0.3 Jupiter
radii), gaseous in nature, and in very close orbits around their host stars, thus very
hot.

A transit is only observable if a planet orbits its star in the plane of the line of
sight. The observation probability of a transit from a randomly-oriented planet on a
circular orbit depends on the stellar radius, Rg, and the distance between planet and

star, a:
. RS RS a -1
p=-g > 000 (R@> (1 AU) '

From transit observations many important parameters of the planet and its orbit
can be derived, other than the planetary mass, which needs another measuring method
like radial velocity measurements. The planetary radius, R,, is determined by the
transit depth, AF', and its ratio to the stellar radius:

2
AF = (R) |
Rs
If the stellar radius is known from other measurements, the absolute value of the
planetary radius is derivable as well. From the transit duration and the shape of the
transit the inclination, eccentricity, and argument of periastron can be derived, as well
as the distance of the planet to the star. The orbital period is known when several

transits can be measured. Measuring more than two transits per planet is in any case
important to verify the nature of the signal.

The transit detection method is most efficient for large planets in close orbits. The
close orbits lead to a higher transit probability and the larger the planets the larger
the signal. This selection effect can be seen in the planetary mass-period diagram
(Figure 1.3): most of the planets detected with the transit method have periods
below 100 days. With current instruments exoplanets with masses below the one of
the Earth are detectable by the transit method.

An analytic model for a transit light curve was derived by Mandel & Agol (2002)).
The model is based on geometric considerations of a dark sphere as a planet partly
or fully covering the illuminated disk of the star.
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Limb darkening

For transit measurements it is important to consider the fact that a star is not uni-
formly illuminated, but darkened towards its limb. A widely used model for the limb
darkening is the one published by |Claret (2000). This non-linear model describes the
radial brightness dependence by a fourth-order Taylor series:

I(r)=1- 2 cn(1 _M)n/Q 5

with 1 = cosf and 6 describing the angle between the line-of sight and the normal
to the stellar surface at a certain position. A quadratic limb darkening law can be
derived by fixing the coefficients ¢; = ¢3 = 0.

The Kepler telescope

The greatest increase in the number of detected planets from the transit method
(Figure 1.2)) was due to the commissioning of the Kepler space telescope. The satellite
was launched on 2009 March 6 and brought to an Earth trailing, heliocentric orbit
(Borucki et al. 2010). It observed a pre-selected field of stars outside of the ecliptic
plane for about 3.5 years with the overall goal of evaluating the occurrence rate of
Earth-like planets in the habitable zone around Sun-like stars. In the large field of view
(115 sq. deg.) of the 0.95 m modified Schmidt telescope about 160 000 stars satisfied
the constrains of being monitored with brightnesses higher than 16 mag (Batalha
et al., 2010). The data of the Kepler telescope are available in two cadences, long
and short. Long cadence data are integrated exposures over 28.4 minutes and short
cadence data for 58.9 seconds. The NASA FExoplanet Archive reports 2345 confirmed
exoplanet detections by the Kepler telescope (2019 September 15). The discovered
planets have radii ranging from 0.34 Earth radii to 2 Jupiter radii and periods ranging
from 0.22 days to 1322 days.

The primary mission of the Kepler telescope ended in 2013 May with the failure
of a second reaction wheel necessary for the quarterly turn and readjustment of the
telescope to bring its solar cells in the right direction. The spacecraft could be used
in the subsequent K2 mission, observing different fields for about three months each
until the fuel was depleted in 2018 October 30. With the K2 mission 389 confirmed
exoplanets were discovered so far (NASA Ezoplanet Archive, 2019 September 15).

1.2 Transit timing variations

While for a single planet around a star the transits obey a linear ephemeris, in multi-
planet systems the objects are gravitational interacting which can lead to deviations
from this linearity. These differences in the periods of the planets are called transit
timing variations (TTVs). Less susceptible, but also variable due to gravitational
interactions can be the transit durations. These changes may be investigated if TTVs
are measured. Their modelling is naturally considered in the photodynamical analysis
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for modelling light curves of stars with planets showing TTVs introduced in[section 1.4]
The measurement of TTVs is another method for detecting exoplanets and would
therefore fit into the previous section ; however, it primarily serves the
confirmation and a detailed characterisation of the planets and is the main basis of
this thesis, thus it deserves its own section.

Besides the possibility of confirming exoplanets only from one measurement method,
the great advantage of measuring timing variations for transiting planets lies in the
possibility of measuring the planets densities. From the transit a planet-to-star radius
ratio is derived and from the dynamics the planet-to-star mass ratio are possibly de-
termined. Additionally, TTVs imply a definable stellar density, pg, due to its relation
to the dynamical time, tq,, ~ (Gps)~'/? (Agol & Fabrycky, 2018). Together the abso-
lute planetary densities are specified, which give a very good hint on the composition
of the planets.

The idea of measurable TT'Vs arose from the well established modelling of eclipse
timing variations in binaries. In 2002, [Miralda-Escudé| discussed the possibility of a
second planet in the system of the first detected transiting planet HD 209458 and
formulated theories of its influence on the measured planet. Two different author
teams then reviewed the possibility of measuring TTVs in 2005: |[Holman & Mur-
ray| (2005) analysed the detectability due to TTVs of an (non-transiting) Earth-like
planet orbiting a star outside of a transiting Neptune-size planet; many more planet
configurations and their measurable TTV amplitudes were approximated by |[Agol
et al. (2005). These configurations will be discussed in detail later in [subsection 1.2.3]
where different types of TTVs are outlined. In 2008, Nesvorny & Morbidelli| looked
into the possibilities of determining masses and orbits from TTVs of exoplanets. At
that time, all TTV work was only theoretical and there had not been a measurement.
Transit detections were still only performed from ground and only hot Jupiter type
planets had been detected. Later it was found out that hot Jupiters lack close com-
panions that could induce TTVs (Steffen et al., 2012). The picture changed when
the Kepler space telescope was launched in 2009 (see . With Kepler-9
(Holman et al., 2010) the first multiple transiting system was found and directly con-
firmed via its TTVs. This system is the object of an analysis in this thesis, the results

from its dynamical analysis can be found in [chapter 2]

Today, 305 planets showing TTVs in 175 planetary systems are discovered. 165
of the planets have determined masses and only a fraction of the systems are char-
acterised in detail (NASA Ezoplanet Archive, 2019 September 15). The reason for
the low numbers of fully characterised TTV systems is, on the one hand, the time-
consuming dynamical analysis, which involves numerical simulations of the system in
most cases, and, on the other hand, the often long periods of TTV signals preventing
the measurement of full TTV cycle. Another factor is that many systems contain
only one TTV planet. In such systems, the mass of this planet is not derivable, yet
the detection of another planet inducing these TTVs might be possible. For filling
the TTV cycle with data points, even after 4 years of primary Kepler observations,
follow-up observations are necessary. One project dedicated to performing ground-
based follow-up observations to fill the dynamical cycle of TTV systems is the KOINet
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(see [section 1.3)), where this thesis originated.

Before diving into the details of TT'Vs, their periodicity and amplitudes, a few fun-
damentals must be covered. Therefore, the next two subsections deal with multiplicity
in planetary systems and mean-motion resonances.

1.2.1 Multi-planet systems

Transit timing variations due to gravitational interactions only appear in multi-object
systems. Most often such systems consist in a host star orbited by multiple planets.
The NASA Ezoplanet archive lists 4055 (3117 transiting) confirmed exoplanets in
total, 2338 (1782) of them are in single planet systems and 1717 (1335) in 681 different
multi-planet systems. These multiple systems split into 452 two-planets systems, 143
three-planets systems, 57 four-planets systems, 21 five-planets systems, 6 six-planets
systems, 1 seven-planets system, and 1 eight-planets system (Numbers from 2019,
September 15). Both of the systems with seven and eight planets, were found by the
transit detection method. In the following a few differences in the nature of planets
in single and multiple planet systems are examined. Only transiting planets will be
considered as these are the systems of interest for TTV analysis. Apart from that the
different biases of different detection methods makes the comparison difficult.

In the number of planets over the semi-major axis (top), the planetary
radius (middle), and the planetary mass (bottom) for transiting planets in single
and multiple planetary systems are plotted. The multiple planet systems are not
differentiated in the systems with different numbers of planets as it makes no big
difference and the abundance of detected systems decreases with the number of planets
in the system, resulting in a lack of statistical evidence for the many-planets systems.
Planets in single systems tend to be closer to its host star, peaking at about 0.05 AU,
whereas planets in multiple systems have a broader distribution in semi-major axis
and peak at about 0.1 AU. This distribution is not influenced by the stellar host
parameters: the distribution of planets in single and multiple systems are similar for
stellar radii and effective temperature. The planet radii distribution shows a more
significant difference between single and multiple systems. Planets in single systems
are either in the regime of Super-Earths peaking at about 0.2 Ry, or in the regime
of giant planets with radii of the order of Jupiter’s radius. In multiple systems, only
a very small fraction of giant planets are found. The distribution peaks like that of
the single system regimes at about 0.2 Rj,,. The masses of transiting planets are
not measurable from a transit observation. So, only a small fraction of the planets
detected by the transit method have determined masses. For planets in single systems,
the mass determination of the planets is most often conducted through radial velocity
measurements, which are more feasible for massive planets. Hence, the large transiting
single planets have determined masses which peaks at about one Jupiter mass. For
transiting planets in multiple systems the masses can also be derived from TTVs if
detected. Those systems have planets with significant lower masses, peaking at about
0.03 Myyp-

All these observations together suggest that a large proportion of the planets
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detected by transit measurements in single systems are hot Jupiters. These are rarely
found in multiple systems suggesting that close-in giants either disrupt the inclination
of small planets in the system and lower their transit probability, directly prevent their
formation from the beginning or have resulted in the destruction of the other planets
due to their orbital evolution from a “cold” to a “hot” Jupiter. This observation
matches the result by Steffen et al.| (2012), who found out that hot Jupiters have no
near companions that could induce TTVs. This fact also eliminates the possibility of
near planet companions in slightly inclined orbits.

Studies on the architecture of transiting multi-planet systems are performed by
several authors. In 2013, |Ciardi et al.| studied Kepler multi-planet systems and found
a tendency in planet pairs that are of the order or larger than Neptune for the larger
planet to be outside of the smaller planet. They found no such tendency in planet
pairs of smaller size. |Weiss et al.| (2018]) detected a ‘peas in a pod’ behaviour, meaning
the planets in multiple systems are more similar in its size than expected if the sizes
were randomly selected. A similar behaviour was found by Millholland et al. (2017).
They found the same tendency not only for the radii, but also for the masses of the
planets by considering only TTV planets where masses are determined.

The co-planarity of multi-planets systems was investigated relatively early on when
most of the planets were detected by radial velocity measurements. In these systems
the inclination of the planets is not determinable, hence there is no knowledge about
the co-planarity of the systems. The research was done with the help of numerical
simulations suggesting a large proportion of planetary systems containing giant plan-
ets are highly unlikely to be co-planar (e.g., Thommes & Lissauer| (2003), Adams &
Laughlin| (2003), and others). Mechanisms leading to these systems can be the colli-
sion scattering of protoplanets or a fast amplification of relative inclination occurring
at resonances of first order (this terminology is introduced in the next section). This
investigation could explain the lack of giant planets in multi-transiting planet sys-
tems. Either the giant planets are highly inclined and outside of the transiting region
or the systems do not contain giant planets as they would disrupt the inclination of
all the planets.

Recently, Sandford et al. (2019) published a study of the multiplicity distribution
of exoplanet systems detected by the Kepler telescope around FGK type stars. They
found a Zipfian (Zipf, 1935) distribution to match the measured multiplicity when
applying biases given by the detection method and the instrument. This model implies
that the true number of planets around the stars is about 2.22 % higher than the
measured one and that every second single planet system actually contains another
planet. Reasons for these planets to be not detected are for example the absence of
co-planarity or small radii.

The planet multiplicity of systems in the context of TTV measurements was inves-
tigated by Kane et al.| (2019). They visually examined the TTV curves of all planets
and planet candidates detected by Kepler that are listed in the TTV catalogues by
Rowe et al.| (2014) and Holczer et al.| (2016). From the visual inspection they classified
the TTVs by their cleanliness and several other factors leading to a sample of objects
that are showing strong TTVs (overall rating 8-9). For these objects they found out
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that they are 1.6 £ 0.2 times more frequent in planetary systems containing three or
more planets than in systems with only one or two systems.

With the results by Kane et al.|(2019) a correlation analysis for TTV measurements
similar to [Mazeh et al.| (2013) is possible. Mazeh et al. (2013) found a correlation of
0.48 between the orbital period of a planet and its TTV period and a correlation of
0.51 between the TTV period and the TTV amplitude of the planets. In[Figure 1.5|the
correlation between the TTV period and the orbital period of the planets where |Kane
et al| (2019)) found strong TTVs for single and multiple systems is plotted on the top
and the correlation between the TTV amplitude and the TTV period respectively on
the bottom. A calculation of the Pearson correlation coefficient yields a value of 0.18
for the correlation between the TTV period and the orbital period (0.20 for planets
in single systems and 0.35 for planets in multiple systems). The correlation between
the TTV amplitude and the TTV period is 0.24 (0.08 for planets in single systems
and 0.44 for planets in multiple systems). Both correlations are less significant than
the ones found by Mazeh et al.| (2013). The reason for this discrepancy could be the
smaller observation baseline of the |Mazeh et al.| (2013) analysis leading to possibly
wrong TTV period values, given the fact that even the whole Kepler observation time
is in some cases too short to cover a full TTV cycle. Another point is the smaller
sample of Mazeh et al.| (2013)) in comparison to the analysis by Kane et al.| (2019)).

1.2.2 Mean-motion resonances

Resonances can occur in multi-planet systems and if so they highly influence the
dynamics of the system. Orbital resonances appear when there is a simple relationship
between periods or frequencies, resulting in regular, periodic gravitational influences
that can lead to unstable orbits when the planets exchange momentum and their
mutual orbits change. In other cases the resonances lead to mutual self-correcting
orbits and stabilise each other. These planets remain in the resonance for an indefinite
period of time.

A mean-motion resonance does not only require a certain orbital period ratio, but a
regularity defined by a linear combination of the orbital angles. The resonance is true
if the angle combination is librating instead of circulating. Hereby, libration means
the presence of oscillating angles, and circulation the absence of such oscillations. For
a pair of planets with a period ratio near commensurability,

Py P

P, p+q’

where p, q are integers and ¢ defines the resonance order of the mean-motion resonance.
For this system the resonant angles are given by

¢=(p+qr —pA — 12

with the mean longitude, A\, and the longitude of the periastron, @w. In order for the
planets to resonate, these angles must librate.
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In the sample of planet systems detected with the Kepler telescope, it is observed
that only a small fraction of planet pairs have a period ratio close to a low-order
commensurability. This number, however, is higher as if the period ratios have been
randomly chosen from the range of appearing period ratios (Lissauer et al. 2011)).
The planet pairs showing near period commensurabilites can be categorised in three
different of resonance-related relationships: (1) the most common planetary pairs are
those that have a period ratio that is from one to several percent larger than a nearby
commensurability; (2) some planet pairs lie within one per thousand near an exact
period ratio; (3) the period ratio of a few planet pairs differ by about one percent
from a commensurability, but are in mean-motion resonance because their resonance
angles are librating.

1.2.3 Different types of TTVs

The timescale of the gravitational interaction of planets is of the order their orbits,
suggesting a scaling of the TTV amplitude with the orbital period. All other con-
tributions to the amplitude are dimensionless. Known from Newton’s law is the
independence of gravitational effects on an object from its own mass. For this reason
the TTV amplitude only depends on the masses of the other system objects. For a
two-planets system the T'TV amplitudes are given by

m
oty = P172 fi2(aaz, 019)
myo

m
Oty = P2—1f21(a12,621)
mo

with the periods P, the masses of the star and the planets mg, m; and msy, and a
function, f;;, describing the perturbation of planet j on planet i. The perturbation
is a function of the semi-major axis ratio «;; = min(a;/a;,a;/a;), and the angular
orbital elements of the planets, 6;; = (\;, €;, w;, I;, i, Aj, €5, w;, I, ;). These formulae
have been studied by numerous author teams with the help of perturbation theories
aiming for analytic solutions to analyse TTV planet systems (see e.g. [Nesvorny &
Morbidelli, 2008, Nesvorny & Beaugé, 2010, Agol & Deck, [2016, [Deck & Agol, 2016)).
The detailed examination of the studies is beyond the scope if this thesis, because here
the dynamical analysis is based on numerical integrations of the planetary systems,
instead of an analytic approximation.

In a system with multiple perturbing planets the T'TV amplitude can be expressed
as a linear combination of the perturbations per planet if the planet-to-star mass ratios
are sufficient small and in the absence of resonances. Systems with more than two
planets, where this is not given, need to be analysed by the help of a numerical
integration.

Planets in mean-motion resonance

Planets that are in mean-motion resonance show the strongest T'TV amplitudes. The
timing variations are the results of a librating semi-major axis. For a planet pair
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initially on circular orbits and in first order resonance with the period ratio given by
j 7+ 1,/Agol et al.| (2005) found a maximum TTV amplitude of

(St - P mpert

4’5] mpert + Myrans ’
with the libration period, P, and the masses of the perturbing planet, m,ey+, and the
transiting planet, My ans-

Non-resonant planets on circular orbits

For a planet pair on circular obits in a non-resonant period ratio the TTV amplitude
is still driven by the resonance term. The interaction of the planets is largest at the
points of conjunction. At this point the planets perform a radial kick on each other
ending in an eccentricity change which causes a change in the semi-major axis and the
mean motion. The period of the TTV interaction for a planet pair with a period ratio
P,/ P, from the outer planet to the inner close to m/n, with m and n being integers

is given by
1

m/Pg—n/Pl\ ’

This period is also called the ‘super period’. The amplitude of the TTV is smallest
half-way between two resonances. There, it is given by the mass ratio of the perturb-
ing planet to the star, the period of the transiting planet and the squares of the ratio
of the transiting planet semi-major axis to the difference between the transiting and
the perturbing planets semi-major axis. For a pair of planets the TTV curves are
sinusoidal and anti-correlated due to the conservation of energy and angular momen-
tum.

PTTV:‘

Perturber: inner planet on a small orbit

In this case there is no planet-planet interaction. Instead, the inner planet acts on
the host star, both are orbiting the common barycentre. The transit of the outer
planet can happen at different positions of the host star, which is changing the timing
of the transit. The resulting variation amplitude for circular, co-planar, and edge-
on observed orbits depends on the mass ratio of the inner planet to the star, the
semi-major axis ratio of inner planet to outer planet, and the period of the outer
planet (Agol et al., 2005). The variation vanishes if the period of the outer planet
corresponds to a whole multiple of the period of the inner planet. In this case the
transit always happens at the same position of the star.

Perturber: massive outer planet with a large eccentricity

For a two planet system with a transiting inner planet on a circular orbit and a
massive outer planet with a much larger semi-major axis and in an eccentric orbit the
planet-planet interaction induces the transit timing variations. The variable distance
between the planets leads to a change in the period of the inner planet. The TTV
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amplitude is dependent on the period, eccentricity, and the mass ratio to the host
star of the outer planets, as well as the cubes of the semi-major axis ratio of outer
planet to inner planet (Agol et all 2005).

Chopping

As previously mentioned, the interaction between two planets is highest at their con-
junction. This interaction also induces a small period and small amplitude TTV
signal. At conjunctions the inner planet is slowed down and the outer planet is sped
up. This change in the speeds results in a saw tooth like TTV profile, therefore the ef-
fect is called ‘chopping’ (e.g., [Holman et al. 2010, Deck & Agol, [2015)). In[Figure 1.6]
the TTVs of Kepler-82¢ are plotted as an example for chopping TTV profiles. The
graph shows an O-C diagram typically used for presenting TTVs. The transit times
(observed, O) are subtracted by a linear ephemeris (calculated, C), remaining are the
variations. Underlying a larger amplitude, larger TTV period trend is the saw-tooth
profile of the chopping component with a jump every three consecutive transits.
The period of a chopping component in T'T'Vs is given by the period of conjunction,

also called synodic period
1

[1/Py—1/P|
Measuring a chopping component in the TTVs of a planet is very valuable as it

leads to the measurement of the absolute mass of the perturbing planet (Nesvorny &
Vokrouhlicky, 2014, Deck & Agol, 2015)).

Psyn =

1.3 The KOINet

The Kepler Object of Interest Network (KOINet )P is a network of ground-based tele-
scopes dedicated on follow-up observations of TTV planets and planet candidates de-

Zhttp://koinet.astro.physik.uni-goettingen.de/
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tected in the Kepler primary mission. The life time of the latter was not long enough
for all detected TTV planets to fill the full dynamical cycle of the TTV curves. One
aim of the KOINet is to fill the dynamical cycle with the help of the follow-up observa-
tions. Subsequent goals are the dynamical characterisation of the planetary systems
with help of a photodynamical model (see [section 1.4)), the confirmation of some of
the planet candidates and the detection of new, possibly non-transiting planets. The
structure, observation strategies and handling of the ground-based observations are
described in [von Essen et al. (2018). The following section summarises these insights.
Furthermore, the publication shows first results of the KOINet in terms of measured
transit times of four different targets from the KOINet. Other targets, where the
Kepler data are complemented by KOINet data and analysed, are the Kepler-9 sys-
tem (Freudenthal et al., 2018) and the Kepler-82 system (Freudenthal et al., 2019).
The photodynamical analysis of these system are the essence of this thesis and the

publications can be found in (Kepler-9) and (Kepler-82).

The KOINet has a list of targets that are interesting for the ground-based follow-
up observations. These targets are picked from the Kepler TTV catalogues by |Ford
et al. (2012)), Mazeh et al. (2013), Xie (2013, 2014), Nesvorny et al. (2013), Ofir et al.
(2014) and Holczer et al. (2016). Thereby, two criteria were taken into account to
ensure a sufficient photometric precision, resulting in a sufficient timing precision,
and to avoid too high correlated noise in the data to be able to measure transits: the
transit depth has to be larger than one part per thousand and the timing variability
of the planet has to be greater than two minutes. With these criteria a list of sixty
TTV planets and planet candidates were assembled and categorised in four different
priority types (ordered): (1) polynomial shaped TTVs with anti-correlated behaviour
between two planets, where any additional point could show the turnover time from
a parabolic to a sinusoidal-like shaped TTV curve, which leads to a more accurate
mass determination; (2) sinusoidal-like shaped TTV objects that are anti-correlated
between a planet pair but poorly sampled, where additional transit measurements
could improve the dynamical analysis; (3) objects with very long TTV periods; where
new transit measurements could give a hint on the actual period of the TTVs; (4)

planets that are already well-characterised or systems where only one object is showing
TTVs.

For the ground-based observations the network has access to 18 telescopes located
at 16 observatories on the Northern hemisphere around the globe. These telescopes
have apertures between 0.6 - 6.5 meter diameter. All observations are carried out
with an R-band filter, which reduces the impact of the Earth’s atmosphere on the
photometry by avoiding telluric contamination in the I-band and the absorption of
light at shorter wavelenghts. Additionally, the R-band filter ensures rather small light
curve variations induced by stellar spots and the limb darkening. Furthermore, the
observations are slightly defocused to minimise the noise in the photometry (Kjeldsen
& Frandsen, 1992, Southworth et al., |2009)). For the same purpose an engineered
diffuser (ED) (Stefansson et al.| 2017, 2018a,b|) is another option that reduces the
photometric noise even more. Here, the incoming photons are spread in a more ho-
mogeneous way than when defocusing, resulting in broad, homogeneously illuminated
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point spread function for the observed stars independent of seeing changes. Recently,
two different ED’s were installed at the 2.5 meter Nordic Optical Telescoperﬂ (von
Essen et al., 2019). This will improve the time measurements of KOINet targets in
the future when observed by the telescope. For the data reduction, calibration frames
(bias and flat fields, in rare instances also dark fields) are carried out each observing
night.

To provide estimated transit times for scheduling the observations, different models
are fitted to the transit times from Kepler observations according to the shape of the
TTVs. For complex TTVs the predictions are taken out from a dynamical model
if available. In other cases the TTVs are simply fitted by a linear ephemeris and
a sinusoidal term. If the turnover in the TTVs is not yet measured, two different
predictions are given, one by fitting a linear epheremis plus a sinusoidal term and the
other from fitting a linear ephemeris and a parabola term. For objects which show
TTVs with no specific shape, only the linear ephemeris is fitted.

1.3.1 Light curve extraction

The data reduction of KOINet observations are performed by the DIP?OL (Differential
Photometry Pipelines for Optimum Lightcurves) reduction pipeline. The tool consist
of two parts, one is based on IRAF-tools and the second is python-based.

The first step with IRAF is the calibration of the science frames. For this, master
bias, dark, and flat frames are generated by averaging over all respective calibration
observations if available. The science frames are subtracted by the bias and dark
master frames and divided by the flat master frame if applicable due to availability.
Afterwards, a cosmic ray rejection procedure is applied to the target observation
frames. The third part in the IRAF procedure is the measurement of the fluxes for
the target star and reference stars in several different apertures and sky rings. The
aperture and sky ring diameters are set into proportion to the intra-night averaged
full width at half maximum. Further values are extracted necessary for the later
detrending of the photmetric light curve. These are the seeing, the airmass at the
center of the field of view, the x,y-centroid positions of the target star and all reference
stars, the sky values for each sky ring and measured star and the integrated fluxes of
the master flat and the master dark if available per aperture and measured star.

The first step afterwards in python is the selection of the optimal combination
of the reference stars, the aperture diameter, and the width of the sky ring to min-
imise the scatter in the photometric differential light curve. The scatter, thereby, is
measured by a spline function for the light curve since the existence of a transit in
the observation time is not known at this point. Another procedure in python is the
transformation of the time stamps from the science frames from Universal Time to
Barycentric Julian Dates in Barycentric Dynamical Time (BJDtpg) using a python-
wrapper for the web tool by Eastman et al. (2010)@. The detrending and transit
modelling of the differential light curve is also part of the python-based DIP2OL part,

3http://www.not.iac.es/instruments/alfosc/diffuser.html
“http://astroutils.astronomy.ohio-state.edu/time/utc2bjd.html
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but it no longer relates to the light curve extraction and is therefore described in the
following section.

1.3.2 Detrending and transit modelling

For the detrending and the transit modelling of the extracted KOINet observations,
initial transit model parameters of good precision are necessary. The determination
of them is described in the first part of this section.

Part of this thesis project was a contribution to the KOINet by providing initial
transit parameters for the sixty planets and planet candidates. The parameters are
derived from modelling all transits of the objects in the Kepler long cadence data. To
reduce the impact of the TTVs in the data every two consecutive transits are mod-
elled simultaneously. From the Kepler data the transits are extracted with one transit
duration out-of-transit data before and after the transit. For detrending the observa-
tions, the outside transit data belonging to one transit are modelled by a second-order
polynomial and the extracted light curve is divided by this fitted function. The mod-
elling of every two consecutive transits simultaneous is done with the transit Mandel
& Agol (2002) model assuming a quadratic limb darkening law. The limb darkening
coefficients are extracted from the values calculated by (Claret et al.| (2013) for the
fundamental stellar parameters of the objects host star (effective temperature, metal-
licity, surface gravity) from the NASA Ezoplanet Archive. To reduce the impact of the
sampling rate on the derived transit model parameters (Kipping, [2010), the model is
computed on a fine grid of thirty points per observation time step and rebinned to the
data points afterwards. Assuming circular orbits, the transit modelling delivers values
for the semi-major axis, orbital inclination, planet-to-star radius ratio, orbital period,
and mid-transit time. The parameter space is explored by the Markov chain Monte
Carlo (MCMC) algorithm PyMC (Patil et all [2010) accessed from the PyAstronomyf|
package and the mean and standard deviation of the MCMC posterior distribution
gives the fitting parameters. The initial input transit parameters used to model the
ground-based observations are derived from the mean and standard deviation of the
model parameter distribution of analysing all two consecutive transits of an object.
For KOINet objects for which a dynamical modelling like a photodynamical analysis
(see has already been performed, the transit parameter predictions of this
analysis are used as initial parameters for the KOINet observation modelling.

For extracting the transit times of ground-based data by modelling the transit,
a more refined detrending model than just a polynomial is necessary to carefully
respect the influence of the Earth’s atmosphere and the individual instruments of
the observations. The detrending model is also important for the photodynamical
analysis when including KOINet observations. For this reason, a more
complicated model was developed in cooperation with C. von Essen as part of this
thesis project. Due to the high time consumption of the photodynamical model by
numerical integrations, the detrending model needed to be fast. Therefore, a linear
combination of an extraction of components that induce trends in the photometric

Shttp://www.hs.uni-hamburg.de/DE/Ins/Per/Czesla/PyA/PyA/index.html
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light curve is calculated for a given transit model. The possible detrending components
are the seeing S, airmass X, and per measured star, ¢, the X;,Y;-centroid positions, sky
background counts BG;, and flat and dark fluxes, F'C; and DK;. The full detrending
model (DM) when considering all components has the form

N+1
DM(t) =co+ci-X+ca- S+ Y - Xi+yi - Y; + bgi - BG; + fe; - FC; + dk; - DK;
i=1

with NV +1 denoting the total number of stars, target and reference, and the coefficients
of the model are cg, ¢1, ¢, i, yi, bg;, fci, and dk;. The coefficients are calculated from
this linear combination while considering a transit model for the photometric light
curve. In order not to overfit the observations, not all possible detrending compo-
nents are considered, but a sub-model is searched that sufficiently detrends the data
with a minimum amount of detrending components. The individual star components
can be considered for only the target star, for all stars or as a combination of all
stars. To determine the best matching detrending model of an observation an array
of trial transit mid-times from the predicted time plus/minus the transit duration is
arranged. A transit Mandel & Agol (2002)) model with the initial transit model pa-
rameters of the object and quadratic limb darkening law together with a detrending
model is calculated. The quadratic limb darkening coefficients are computed for the
Johnson-Cousins R-filter transmission response and angle-resolved synthetic spectra
from spherical atmosphere models using PHOENIX (Husser et al. 2013) with stellar
parameters closely matching the ones of the star (see, e.g. [von Essen et all 2013)).
With the combined model a minimisation statistic to the data is computed for the
transit time array and the sub models with the different combinations of detrending
components. The mean of four different minimisation statistics is used to ensure a
good number of fitting parameters. These statistics are the reduced-y?, the Bayesian
Information Criterion, BIC, the standard deviation of the residuals enlarged by the
number of fitting parameters, and the (Cash| (1979) statistic. For a trial transit mid-
time near the actual transit time, all statistics should be minimised independent of the
chosen detrending model. In this way, the detrending model which most minimises
the mean of the statistics at the transit time is chosen, while taking the number of
detrending components into account. In two different KOINet light curves
and there detrending models are visualised as an example. The top plot shows an
example where large trends and jumps due to observation breaks are corrected by the
detrending procedure. A full transit observation and the correction of small effects
with the detrending, resulting in a reduction in the scatter in the light curves is visible
in the bottom plot.

The last part of DIP?OL contains a transit fitting routine for transit time de-
termination only when this value is of interest and for accurate errorbars that en-
sure a correct subsequent use of the ground-based light curve in, for instance, the
photodynamical modelling. To calculate accurate errorbars, correlated noise in the
observations needs to be considered (see e.g. (Carter & Winn|, 2009). The observed
light curve is fitted with an MCMC algorithm by the transit [Mandel & Agol (2002)
model with quadratic limb darkening coefficients combined with the fitted detrending



20 CHAPTER 1. INTRODUCTION

1.015

1.010

1.005

1.000

3 Combined
L 0.99%F ——— Detrending ]
¢ Raw Flux
0.990F ¢  Detrended Flux ]
t  Residuals
0.985 F b
0.980 | b
2296.4 2296.5 2296.6 2296.7
BJD - 2454933.
1.015F Combined ]
——— Detrending
1.010 F Raw Flux i
Detrended Flux
Residuals
1.005 | .
51.000 F 8
L
0.995 } .
0.985 | ﬁ

2958.55 2958.60 2958.65 2958.70
BJD - 2454933.

Figure 1.7: Two different examples of KOINet light curves to show the detrending.
The plots show from top to bottom the raw light curve with the combined detrending
and transit light curve model, the detrended light curve with the transit model and the
residuals of the data from the combined models. The curves are artificially shifted for
better visualisation. Both plots show KOINet light curves of Kepler-9 with a transit
of planet ¢ (top) observed by the 2 m Liverpool telescope (Steele et al. 2004)) and a
transit of planet b (bottom) observed by the 2.5 m Nordic Optical Telescope.
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model. The transit model is initialised with the determined transit parameter of the
object, the transit time that minimised the statistics during the detrending model de-
termination, and the calculated limb darkening coefficients for the Johnson-Cousins
R-filter. A full fit with semi-major axis, inclination, planet-to star radius ratio and
with the mid-transit time as free parameters is only performed if the transit curve is
fully covered by the observation. Thereby, all parameters other than the transit time
have Gaussian priors during the MCMC optimisations with the mean and standard
deviation values from the parameters fitted on Kepler data. If the transit is not fully
covered, only the transit mid-time is fitted to avoid corruption due to false fitted
transit shape parameters. To check the light curve for correlated noise the g factor
(von Essen et al| 2013, [2018)) is calculated in time bins relating to the transit ingress
duration on the residuals from subtracting the best fit from the light curve. If the g
value is larger than one, the errorbars are enlarged by the factor and the transit light
curve fitting is repeated in the same fashion. The raw light curve, corrected errorbars
and all detrending components are saved for later analysis with, for example, the
photodynamical model.

1.4 Photodynamical modelling

The analysis of KOINet objects in order to characterise the planetary system was the
main part of this thesis project. Therefore, a photodynamical model was developed
and optimised for all transit light curve observations of a system. This analysis method
combines an n-body simulation of the system over the time span of observations
with an analytic model for the transit light curves. Ragozzine & Holman (2010)
first mentioned the advantages of a photodynamical model when analysing transiting
multi-planet systems. The authors performed a theoretical analysis and reached the
following conclusions:

o there are many local minimas in the parameter space, making it difficult to find
the global minimum if the optimisation algorithm is not started close to it;

o the mass ratios and the semi-major axis of the planets can be determined very
precisely if TTVs play a dominant role in a multi-planet system;

o measuring the dynamical masses of the planets by the light-travel time effect
would need a much longer observation baseline than given by the Kepler tele-
scope;

 for measuring limb-darkening coefficients of the star the combination of several
transiting planets in a simultaneous optimisation gives no significant advantage —
the largest planet in the system mostly defines the limb darkening measurement.

Especially the possibility of a precise mass ratio determination gives a high motivation
to model TTV planet systems photodynamically. The difficulties of finding the global
optimisation minimum, can be solved by conducting a TTV analysis as a first step
to approximate the system dynamics and then using the results as the input for the
light curve analysis.
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1.4.1 The algorithm

The n-body simulation is performed with the second-order mixed-variable symplectic
(MVS) algorithm implement in the Mercury6 package by (Chambers (1999). Sym-
plectic integrators like this are often used for astrophysical problems because of their
speed in comparison to conventional integrators and the absence of long-term accu-
mulation of the energy error. The MVS integrator is faster than the more accurate
Burlisch-Stoer (BS) algorithm implemented in the same package, but still applicable.
The BS algorithm is a hybrid of a symplectic and a conventional integrator. This
has the advantage that close encounters can be integrated more accurately with the
conventional integrator and another advantage of this integrator is the precision in
high-frequency terms of the Hamiltonian. The former is insignificant, there are no
close encounters in the KOINet systems. The latter was discussed by Deck et al.
(2014)) as an advantage of BS integrators. For the application in the photodynamical
model a test was performed by comparing the results of both integrators. In the time
span of available observations the differences are negligible, errors of the order of the
time step of observations occur after about 50 years of integration time. The MVS
integrator has a sufficient precision for the utilisation in the photodynamical model
applied to KOINet objects. A first-order post-Newtonian correction (Kidder] |1995)
was added to the integrator to account for non-Newtonian gravitational forces. To
accelerate the integration by avoiding input/output overhead, a python-wrapper for
Mercury6 was written (Husser, priv. comm.).

From the numerical integration the planet positions are extracted to calculate
projected distances between the planets and the star centres. The plane of sky is
defined as the x-y plane in the Mercury6 output. Therefore, the distances are calcu-
lated from the x- and y-coordinates. The line-of-sight, in which a transit happens, is
defined as the positive z-axis. With the distances the transit Mandel & Agol (2002)
model is calculated respecting the quadratic limb-darkening law implemented in the
occultquad routine. The light-travel-time effect is considered by individually cor-
recting the Mercury6 output time with the distance of the planets from the star in
the line-of-sight.

For KOINet data the earlier described detrending calculation (seesubsection 1.3.2))
is applied after the photodynamical model computation.

1.4.2 Data-algorithm correspondence

For the photodynamical model only the parts of the light curves where transits occur
are important. Therefore, from Kepler data the transit light curves with a certain
portion before and afterwards are extracted and joined to one input light curve. The
KOINet data already comprise only a low number of outside transit data and certain
parts of the transit and are used as a whole.

The Kepler long cadence data have a time resolution of about 30 minutes which
is of the order of the ingress/egress time of most of the KOINet transits. This has a
significant impact on the derivation of the transit parameters if the model is calculated
with the same time step directly (Kipping, 2010)). For this reason the photodynamical
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model is oversampled with about 1 minute cadence for long cadence data and rebinned
to the actual data points.

For minimising the time consumption of the numerical integration by Mercury6
and its processing, a first system simulation is done on a coarse grid. The step
size of this grid is optimised to grant the shortest possible model computation time
with sufficient accuracy. To ensure good accuracy, the time step must not exceed a
twentieth of the period of the innermost planet. For phases near a transit a detailed
integration is done with a step size of 0.01 days. This step size assures a light curve
accuracy of 0.01 parts per million for Kepler long cadence data. The accuracy is
determined by the comparison of a model calculated with the given step size and the
same model calculated with half the step size.

Neither the sampling on a coarse grid, nor on the fine grid matches the time steps
of the observations. For this reason, the projected distances over Mercury6 time in
the vicinity of a transit is modelled with a hyperbola to interpolate the result. The
Mandel & Agol| (2002) model finally is calculated at the observation times with the
interpolated distances, quadratic limb-darkening coefficients and the planet-star radii
ratio.

1.4.3 Model parameters

Before the photodynamical model is optimised on the light curve, a linear ephemeris
is fitted to the transit times T, over its ephemerids n, of each planet p:

TZATP70+PP'H

with the offset AT, between the zeroth transit and the chosen reference time for
starting the numerical integration, and the mean period F,. These parameters are
used in the photodynamical model for calculating a starting value of the semi-major
axis and the mean anomaly described below.

The choice of model parameters was guided by the modelling rather than by the
observations, meaning for instance Mercury6 takes the semi-major axis of the planets
as input parameter, whereas the data deliver the periods. In the following the model
input parameters are described. For the central star the mass mg, and the radius Rg
are needed, as well as two limb darkening coefficients, ¢; inst. and ca inst., reflecting the
wavelength response of the optical setup of each telescope per instrument. Per planet
p (element of the planets designated letters) the following parameters are needed:

A mass ratio, where for the innermost planet the ratio to the central star m,/mg
is used and for all others the ratio to the next inner planet m,/m,y.

e The semi-major axis a, calculated from the earlier derived mean period F,, and
as a free parameter a correction factor, a, corr, that gives the deviance to a pure
Keplerian orbit:

472

(PﬁG(ms + mp)>1/3
ap = * Qp corr
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with the gravitational constant (G. For non-transiting planets the semi-major
axis is computed from its period given by a period ratio to the next inner planet,
P,/Py.

« The eccentricities of the planets, e,.

« The orbital angles: inclination %,, argument of periastron w,, and the longitude
of the ascending node (2,. The latter is fixed to zero for the innermost planet
due to the fact of the impossibility to determine the orbits position on the plane
of sky. The relative positions of the orbits between the planets is allocatable in
the data. Therefore, the longitude of the ascending node of all other planets are
modelled and reflect the difference to the innermost planet.

o The position of the planets at the given reference time via the mean anomaly
M,. Tt is calculated from a Keplerian orbit and corrected with an addition,
M), corr, that delivers the difference to the Keplerian orbit due to the gravitational
interaction between the planets:

2
MP = Mp,Kepler - ?ATP,D + Mp7corr .
p

The Keplerian orbit mean anomaly M, kepler, is calculated for the transit time
from the argument of periastron w,, and the eccentricity e,. This value is
extrapolated to the reference time with the mean period, P, and the offset,
AT, .

 The planet-to-star radius ratio R,/Rs for transiting planets.

To explore the parameter space the photodynamical model is coupled to the Markov
chain Monte Carlo algorithm emcee |[Foreman-Mackey et al.| (2013). The fit parameters
have uniform priors with large limits for the sole purpose of avoiding non-physical
results.

1.5 This thesis

Not all of the many discovered exoplanets are very well characterised, which would
be helpful for understanding planetary system architectures and formation scenarios.
The KOINet project is dedicated on improving the lack of information about the
systems for exoplanets detected with the Kepler telescope, showing transit timing
variations and feasible for ground-based follow-up observations. Anchored in this
project, this thesis is a contribution to the field with detailed characterisations of
two different KOINet systems by carrying out follow-up observations of the plane-
tary transits and system analyse using the photodynamical model described. As a
showcase, the Kepler-9 system was chosen (chapter 2)). The system contains three
confirmed planets with a small inner planet (Kepler-9d) dynamical independent from
two outer Neptune-like planets (Kepler-9b and c) near a 2:1 period commensurability
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and mutual interaction observable in anti-correlated strong TTVs of the order of a
day. The use of Kepler short cadence data and 13 new transit observation obtained in
the framework of the KOINet in a photodynamical analysis of the Kepler-9b/c system
lead to a very refined system model with parameter errorbars of the order of 1 % and
the prediction that the Kepler-9c transits will disappear around 2050 due to mutual
inclination changes. The second target for KOINet observations and photodynamical
analysis was the Kepler-82 system (chapter 3|). Four confirmed planets are orbiting
this host star, with the two inner ones (Kepler-82d and e) dynamically inactive and
independent of the two outer ones. Similar to Kepler-9, the two outer planets (Kepler-
82b and c) are Neptune-like planets near a 2:1 resonance. The TTVs are of the order
of hours and — in contrast to Kepler-9b/c — not anti-correlated. Additionally, the
TTVs of Kepler-82c show a 3-orbits period chopping component on top of the large
period TTVs. This feature hints on another outer planet. Adding KOINet observa-
tions to the Kepler measurements lead to the detection of a fifth non-transiting planet
(Kepler-82f) near 3:2 period commensurability to Kepler-82¢c. The two projects will

be summarised in [chapter 4]
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Chapter 2

Kepler-9

The following section has been published in Astrophysics & Astronomy as the article
‘Kepler Object of Interest Network II. Photodynamical modelling of Kepler-9 over 8
years of transit observations’ (Freudenthal et al 2018); Credit: J. Freudenthal et al.,
A&A, 618, A4l, 2018, reproduced with permission © ESO.

The publication was leaded in all stages by J. Freudenthal. The text was mainly
written by J. Freudenthal. Section 1 was written in cooperation with C. von Essen
and S. Dreizler. Section 2 was written by C. von Essen. Text editing was done by
all co-authors and a language editor assigned by A&A. The KOINet data used in the
paper were provided by all authors except J. Freudenthal and S. Dreizler. The KOINet
data reduction and a first single transit analysis was conducted by C. von Essen in
cooperation with J. Freudenthal. The photodynamical analysis and its interpretation
was performed by J. Freudenthal under supervision of C. von Essen and S. Dreizler.

2.1 Paper: Kepler Object of Interest Network II.
Photodynamical modelling of Kepler-9 over 8
years of transit observations
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ABSTRACT

Context. The Kepler Object of Interest Network (KOINet) is a multi-site network of telescopes around the globe organised to follow
up transiting planet-candidate Kepler objects of interest (KOIs) with large transit timing variations (TTVs). Its main goal is to complete
their TTV curves, as the Kepler telescope no longer observes the original Kepler field.

Aims. Combining Kepler and new ground-based transit data we improve the modelling of these systems. To this end, we have devel-
oped a photodynamical model, and we demonstrate its performance using the Kepler-9 system as an example.

Methods. Our comprehensive analysis combines the numerical integration of the system’s dynamics over the time span of the obser-
vations along with the transit light curve model. This provides a coherent description of all observations simultaneously. This model is
coupled with a Markov chain Monte Carlo algorithm, allowing for the exploration of the model parameter space.

Results. Applied to the Kepler-9 long cadence data, short cadence data, and 13 new transit observations collected by KOINet between
the years 2014 and 2017, our modelling provides well constrained predictions for the next transits and the system’s parameters.
We have determined the densities of the planets Kepler-9b and 9c to the very precise values of p, = 0.439 + 0.023 g cm™ and
pe = 0.322 +£0.017 g cm™>. Our analysis reveals that Kepler-9¢ will stop transiting in about 30 yr due to strong dynamical interac-
tions between Kepler-9b and 9c, near 2:1 resonance, leading to a periodic change in inclination.

Conclusions. Over the next 30 years, the inclination of Kepler-9c (-9b) will decrease (increase) slowly. This should be measurable by
a substantial decrease (increase) in the transit duration, in as soon as a few years’ time. Observations that contradict this prediction
might indicate the presence of additional objects in this system. If this prediction turns out to be accurate, this behaviour opens up a
unique chance to scan the different latitudes of a star: high latitudes with planet ¢ and low latitudes with planet b.

Key words. planetary systems — planets and satellites: dynamical evolution and stability — methods: data analysis —
techniques: photometric — stars: individual: Kepler-9 — stars: fundamental parameters

1. Introduction Prior to Kepler’s launch, it was shown that the analysis of the
. o . dynamical interaction in multi-planet systems would be feasible

One of the outstanding results of the Kepler mission (Borucki offering an independent mass determination (Holman & Murray
et al. 2010) is the large number of transiting multi-planet systems. 2005; Agol et al. 2005). This was impressively confirmed from
* Ground-based photometry is only available at the CDS via anony- the first multi-Fransiting. SYSt?mS (Holman et al. 2010; Lissau@r
mous ftp to cdsarc.u-strashg. fr (138.79.128.5) or via et al. 2011a) using transit timing variations (TTVs), that is, devi-

http://cdsarc.u-strasbg. fr/viz-bin/qcat?J/A+A/618/A41 ations from strict periodicity in planetary transits, caused by non-
® Guggenheim Fellow. Keplerian forces. The first compilation of such systems revealed

Article published by EDP Sciences A41, page 1 of 22
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that multi-planet systems are preferentially found among lower-
mass planets (Latham et al. 2011) highlighting the advantages
of TTVs over radial velocity measurements. Since Kepler, the
search for transiting multi-planet systems has revealed objects
such as TRAPPIST-1 (Gillon 2016), with three potentially hab-
itable rocky planets, Kepler-80, a resonant chain of five plan-
ets, and Kepler-90, the first eight-planet system (Shallue &
Vanderburg 2018).

Transiting multi-planet systems close to resonance allow for
the determination of planetary radii and masses — and therefore
bulk densities — from transit light curves alone, which has been
intensively explored by Lissauer et al. (2011b), Jontof-Hutter
et al. (2016), and Hadden & Lithwick (2017). A compari-
son between the two independent mass determinations, namely
using radial velocity and transit timing variations, allows for
the investigation of systematic errors due to observational and
methodological biases (Mills & Mazeh 2017).

In order to tap into the dynamical information of TTVs it is
important to cover a full cycle of orbital momentum and energy
exchange between the planets (henceforth “interaction cycle”),
which can be substantially longer than their orbital periods. One
of the first lists of systems showing TTVs (Mazeh et al. 2013)
revealed the large existing fraction of Kepler objects of inter-
est (KOIs) that could not be used for dynamical analysis due
to long interaction cycles. These were longer than, or of the
order of, Kepler’s total observing time. This motivated us to
create and coordinate the Kepler Object of Interest Network,
(KOINet', von Essen et al. 2018), a network of ground-based
telescopes organised to follow up KOIs with large-amplitude
TTVs. The main goal of KOINet is to coordinate already
existing telescopes to characterise the masses of planets and
planetary candidates by analysing their observed transit timing
variations.

Among the KOINet targets, Kepler-9 is a benchmark sys-
tem. The star is a solar analog and two of its planets are close
to a 2:1 mean motion resonance, with TTV amplitudes of the
order of one day. Their deep transits (~0.5 %) combined with
their large interaction times and the magnitude of the host star
(Kp = 13.803) make this system ideal for photometric ground-
based follow-up studies.

The first TTV analysis of the Kepler-9b/c system with an
incomplete coverage of the interaction cycle had to be com-
plemented with (a few) radial velocity measurements (Holman
et al. 2010) which resulted in Saturn-mass planets. The com-
position of these two planets was investigated by Havel et al.
(2011) from evolutionary models, as well as the stellar mass
and radius. Using most or all long-cadence Kepler data, several
authors revised the planetary masses from TTVs alone (Borsato
et al. 2014; Dreizler & Ofir 2014) finding masses of about half
the values previously reported in the first paper. Dreizler &
Ofir (2014) thereby showed that the confirmed innermost planet,
Kepler-9d, is dynamically independent from this near-resonant
pair. Recently, a new transit observation for Kepler-9b (Wang
et al. 2018b) was used to correct its transit time predictions.
Additionally, the observation of the Rossiter-McLaughlin effect
in radial velocity measurements of Kepler-9 (Wang et al. 2018a)
indicates that the stellar spin axis is very likely aligned with the
planetary orbital plane.

In this paper, we exploit the large amount of short-cadence
Kepler data, complemented by long-cadence Kepler data where
short-cadence observations are missing, and extended three
years in time by adding corresponding ground-based light curves

! http://koinet.astro.physik.uni-goettingen.de
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from KOINet, all wrapped in a detailed photodynamical analy-
sis. The observation of the full interaction cycle by the KOINet
follow-up together with the comprehensive analysis results in
Kepler-9b and 9c being the system with the highest-precision
planetary mass and radius determinations. We also constrain the
stellar parameters of the host star and predict the dynamical
evolution of the system for the next few decades.

This paper is divided as follows. We describe the new tran-
sit observations by the KOINet, their reduction and analysis in
Sect. 2. The structure of the photodynamical model used to anal-
yse KOINet systems is described in Sect. 3. A description of the
results from this analysis for the Kepler-9 system can be found
in Sect. 4 and these results are discussed in Sect. 5. We end the
paper with some conclusions in Sect. 6.

2. Observations, data reduction, and analysis

Between June, 2014, and September, 2017, we observed 13
primary transits of the Kepler-9b/c planets. The photometric
follow-up was carried out in the framework of KOINet (von
Essen et al. 2018). In this work, we combine the Kepler photom-
etry with new ground-based data which have been collected after
the nominal time of the Kepler Space Telescope. This section
covers the treatment of the new ground-based observations. The
photodynamical model described in Sect. 3 was previously fitted
to the available Kepler data with the aim of obtaining initial
parameters for the ground-based data analysis. A description of
the photodynamical analysis on the different data sets follows in
Sect. 4.

2.1. Data acquisition and main characteristics of the
collected photometry

Table 1 shows the main characteristics of the data presented in
this work. These are the date in which the observations were per-
formed, in years, months, and days; the planet observed during
transit; an acronym for the telescope used to carry out the obser-
vations; the precision of the data in parts-per-thousand (ppt); the
number of frames collected during the night, N; the cadence
of the data accounting for readout time in seconds, CAD; the
total duration of the observations in hours, Tyy; and the transit
coverage, TC. To increase the photometric precision of the col-
lected data, when possible we slightly defocused the telescopes
(Kjeldsen & Frandsen 1992; Southworth et al. 2009).

Below is a brief description of the main characteristics of
each of the telescopes involved in this work.

The Oskar Lithning Telescope (OLT 1.2 m) has a 1.2 m aper-
ture diameter and is located at the Hamburger Observatory in
Hamburg, Germany. The telescope can be used remotely and has
a guiding system, minimising systematics caused by poor track-
ing. Although the seeing at the observatory is relatively poor
(typical values are around 3—4 arcsec), it remains constant dur-
ing the night, allowing photometric precision in the ppt level.
Here we analyse one light curve taken during our first observing
season.

The Apache Point Observatory hosts the Astrophysical Rese-
arch Consortium 3.5 m telescope (henceforth “ARC 3.5 m”), and
is located in New Mexico, in the United States of America.
Due to the large collecting area, typically 2000 observations
per observing run were collected with this telescope. For our
observations, the telescope was slightly defocused. The photody-
namical analysis of Kepler-9 presented here includes three light
curves taken with the ARC 3.5 m during our second observing
campaign in 2015.



Table 1. Characteristics of the collected ground-based transit light curves of Kepler-9b/c, collected in the framework of KOINet.

J. Freudenthal et al.: Kepler Object of Interest Network. II.

Date Planet Telescope Ores N CAD Tiot TC
(yyyy-mm.dd) (ppY) (s) (hours)
2014.06.30 c OLT 1.2m 3.6 103 79 23 ---EO
2015.06.17 b ARC3.5m 1.9 2075 8 4.7 OIB--
2015.07.25 b WISE 1 m 22 132 166 6.1 OIBE-
b CAHA 2.2m 1.6 462 57 74 OIBEO
b LIV2m 1.2 545 46 71 --BEO
b NOT 2.5m 1.5 630 28 5.0 --BEO
2015.08.14 b ARC3.5m 2.7 2095 7 3.8 -IBE-
2015.09.01 c ARC3.5m 2.2 2073 4 2.5 --BEO
2015.10.10 b JAC 0.8 m 0.5 60 197 33 -IB--
b TJO 0.8 m 1.8 133 61 2.3 -IB--
2017.05.17 c NOT 2.5m 0.8 219 79 4.9 OIBE-
2017.06.16 b NOT 2.5m 1.1 624 30 54 -IBEO
2017.06.25 c NOT 2.5m 1.2 416 42 4.9 OIB--
2014.06.27 OANLH 1 m Technical difficulties
2014.07.23 OLT 1.2m Technical difficulties
2014.08.12 OLT 1.2m Weather problems
LIV 2m Weather problems
2015.03.13 OLT 1.2m Weather problems
2016.05.10 ARC3.5m Technical difficulties
2017.09.01 NOT 2.5m Weather problems

Notes. The letter code to specity the transit coverage during each observation is the following: O: out of transit, before ingress. I: ingress.

B: flat bottom. E: egress. O: out of transit, after egress.

The Wise Observatory hosts a 1 m telescope that is operated
by Tel Aviv University, Israel (WISE 1 m). Here we present one
transit taken during the second campaign in 2015.

The Centro Astronémico Hispano-Aleman hosts, among oth-
ers, a 2.2m telescope (henceforth “CAHA 2.2m”). Here we
present one complete transit observation of Kepler-9b.

The fully robotic 2m Liverpool telescope (LIV 2 m; Steele
et al. 2004) is located at the Observatorio Roque de los Mucha-
chos and is owned and operated by Liverpool John Moores
University. In this work, we present one transit observation taken
with LIV 2 m during our second observing season.

The 2.5 m Nordic Optical Telescope (NOT 2.5 m) is located
at the Observatorio Roque de los Muchachos in La Palma, Spain.
Currently, telescope time for KOINet is assigned via a large
(3 yr) program. Here, we analyse four light curves taken between
the first and fourth observing seasons.

The 80 centimetre telescope of the Instituto de Astrofisica de
Canarias (IAC 0.8 m) is located at the Observatorio del Teide,
in the Canary Islands, Spain. Observations were collected by
KOINet’s observers on site. Here we present one light curve
taken during our second observing season.

The Telescopi Joan Oré (TJO) is a fully robotic 80 centime-
tre telescope located at the Observatori Astronomic del Montsec,
in the north-east of Spain (henceforth “TJO 0.8 m”). Here we
present one transit light curve.

The Observatorio Astronémico Nacional Llano del
Hato, Venezuela, hosts a 1m Zeiss reflector (henceforth
“OANLH 1m”). During scheduled observations, the telescope
suffered from technical difficulties.

2.2. Data reduction and preparation

To reduce the impact of Earth’s atmosphere and the associated
telluric contamination in the /-band, as well as the absorption

of stellar light at shorter wavelengths, all of our observations
are carried out using an R-band filter. Observers always pro-
vide a set of calibration frames (bias and flat fields) that are
used to carry out the photometric data reduction. To reduce the
data and construct the photometric light curves, we use our own
IRAF and python-based pipelines called Differential Photometry
Pipelines for Optimum light curves, DIP?OL. A full description
of DIP?2OL can be found in von Essen et al. (2018). Briefly, the
IRAF component of DIP?OL measures fluxes for different ref-
erence stars, apertures, and sky rings; the latter two are set in
proportion to the intra-night averaged full width at half max-
imum (FWHM). The python counterpart of DIP?OL finds the
optimum combination of reference stars, aperture, and width of
the sky ring that minimises the scatter of the photometric light
curves. Once the light curves are constructed, we transform the
time stamps from Universal Time to Barycentric Julian Dates
in Barycentric Dynamical Time (BJDrpg) using Eastman et al.
(2010)’s web tool, all wrapped up in a python script.

To detrend the light curves, we compute the time-dependent
x and y centroid positions of all the stars, the background counts
from the sky rings, the integrated flat counts for the final aperture
centered around the centroid positions, the airmass, and the see-
ing, all from the photometric science frames. A full description
of our detrending strategy, how we combine these quantities to
construct the detrending function, and the extra care in the partic-
ular choice and number of detrending parameters can be found in
Sect. 4.2 of von Essen et al. (2018). The detrending components,
and the time, flux, and errors, are injected into the transit fitting
routine.

2.3. First data analysis

Before fitting the full data set using our photodynamical code
(see Sect. 3) we carry out a transit fit to each ground-based light
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curve individually. The main goal of this step is to provide accu-
rate error bars for the flux measurements, that are enlarged to
account for correlated noise (see e.g. Carter & Winn 2009). A
detailed description of the transit-fitting procedure can be found
in Sect. 4 of von Essen et al. (2018). Briefly, once the detrending
components are selected, we fit each transit light curve individu-
ally. For this, we use a detrending times transit (Mandel & Agol
2002) model, with a quadratic limb-darkening law and hence,
quadratic limb-darkening coefficients. The latter are computed
as described in von Essen et al. (2013), for stellar parameters
closely matching the ones of Kepler-9 (Holman et al. 2010) and
a Johnson—Cousins R filter transmission response. As initial val-
ues for all the transit parameters, we use the ones given by the
photodynamical analysis carried out on Kepler data only. Since
the TTVs in this system are so large, all of the transit parameters
have to be computed for each specific light curve. When fitting
for the transit parameters, rather than using uniform distribu-
tions for these parameters, we use Gaussian priors with mean and
standard deviation equal to the values computed from our initial
photodynamical analysis on Kepler data. Only when the transit
is fully observed do we allow the model to fit for the semi-major
axis, the inclination, and the planet-to-star radius ratio, along
with the mid-transit time. Otherwise, all of the transit parameters
remain fixed and we fit for the mid-transit time only.

To determine reliable errors for the fitted parameters, we
compute them from posterior-probability distributions using a
Markov chain Monte Carlo (MCMC) approach. At this stage,
we iterate 100000 times per transit, and discard a conservative
first 20%. Once the best-fit parameters are obtained, we com-
pute residual light curves by subtracting from the data our best-fit
transit-times-detrending models. From the residuals we compute
the B factor as fully described in Sect. 4.2 of von Essen et al.
(2018). Here, we average 8 values computed in time bins of 0.8,
0.9, 1, 1.1, and 1.2 times the duration of ingress. If this aver-
aged S factor is larger than 1, we enlarge the photometric error
bars by this value, and we repeat the MCMC fitting in exactly
the same fashion as previously explained. The raw light curves
obtained after the second MCMC iteration with their error bars
enlarged, along with the number of detrending components
per light curve, are the input parameters of the photodynami-
cal analysis. As a consistency check, after the photodynamical
analysis is complete, we compare the derived detrending coef-
ficients to the ones obtained from individually fitting the light
curves.

2.4. Independent check of the timings

The use of KOINet to carry out TTV studies relates observations
taken with several telescopes. As a consequence, the timings
will be subject to the accuracy of the ground-based observato-
ries, and the success of KOINet will rely on the capabilities of
the many observatories involved in our photometric follow-up to
accurately record timings.

In order to investigate this, on the night of July 25, 2015,
we observed Kepler-9b using four different telescopes, namely
CAHA 2.2m, LIV 2m, WISE 1m, and NOT 2.5m. Only in
the case of CAHA 2.2m did we have full transit coverage.
After fitting for the transit parameters as previously specified, we
obtained in this case the semi-major axis, a/Ry, the inclination,
i, the planet-to-star radii ratio, Rp/Rs, and the mid-transit time,
To. The derived values along with their 1-o- uncertainties can
be found in the top part of Table 2. Within errors, all the fitted
parameters are consistent with the values predicted by our pho-
todynamical analysis. The bottom part of the same table shows
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Table 2. Transit parameters obtained fitting one light curve of
Kepler-9b observed with CAHA 2.2 m on the night of 2015.07.25.

TP, CAHA 2.2m TFP PDA

a/Rs 29.3+0.2 29.27 £ 0.1
i[°] 88.77 + 0.03 88.76 + 0.2
Rp/Rs 0.085 + 0.001 0.079 + 0.003
Telescope To £ 1-0

CAHA 2.2m, 229.4598 + 0.0008  229.4606 + 0.005
LIV2m 229.4629 + 0.0009

WISE 1 m 229.4623 + 0.0026

NOT 2.5m 229.4582 + 0.0018

Notes. From left to right (top): transit parameter (TP), transit fitted
parameter (TFP) along with 1-o- uncertainties, and value predicted by
our photodynamical analysis (PDA) applied at this stage to Kepler data
only. Bottom: mid-transit times obtained fitting the three remaining
incomplete transit light curves. The first column shows the acronym
for the telescope, and the second column the timings along with 1-0
uncertainties. 7’s are given in BJDrpg — 245 7000.

the individual mid-transit times obtained from fitting all the tran-
sit parameters for CAHA 2.2 m, and fixing all values except the
mid-transit times for the remaining three. All mid-transit times
are mutually consistent.

Figure 1 shows the quality of our reduction and analysis
procedure. From top to bottom, we show the light curves of
Kepler-9b obtained with CAHA 2.2 m in filled circles, LIV 2m
in empty squares, WISE 1 m in empty polygons, and NOT 2.5 m
in filled diamonds. The light curves have been shifted to the
predicted mid-transit time. Visual inspection confirms the equiv-
alency of the derived mid-transit times. The consistency among
mid-transit times alleviates the uncertainty that exists when
using different sites to follow-up one target.

3. The photodynamical model

With the aim of producing a tool to determine planetary masses
that is applicable to all of our KOINet objects, we developed a
photodynamical model. Our light curve analysis is based on an
n-body simulation of the planetary system over the time span of
the observations, combined with a transit light curve model. The
numerical integration is implemented in the Mercury6 package
by Chambers (1999). We use the second-order mixed-variable
symplectic (MVS) algorithm of the package, which is faster than
the Bulirsch—Stoer (BS) algorithm but still applicable. The BS
integrator would offer two advantages: the possibility of simulat-
ing close encounters and the precision in high-frequency terms
of the Hamiltonian (discussed by Deck et al. 2014). The former
is insignificant as the Kepler-9b/c system does not perform close
encounters. The latter was tested to be negligible in our analysis.
We calculated the difference of the same TTV model derived
with the MVS integrator and the BS algorithm. Within a 50-yr
integration, the difference shows a small slope, which can be
corrected by a small change in the mean period smaller than
0.5 s and an oscillation with increasing amplitude. The ampli-
tude of the oscillation is at most (in these 50 yr) of the order
of 55s which is of the order of the precision in the TTVs.
For the 8 yr of Kepler-9 observations, the MVS integrator has
sufficient precision. We added a first-order post-Newtonian cor-
rection (Kidder 1995) and wrote a python-wrapper for Mercury6
(Husser, priv. comm.). From the n-body simulation, we extract
the projected distance between planets and star centres, that
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Fig. 1. Detrended transits of Kepler-9b observed on July 25, 2015, by
four different telescopes. The transits are artificially shifted for better
visual inspection, and plotted as a function of hours from the predicted
mid-transit time to appreciate the duration of the observations. Each
light curve has been labelled according to the corresponding telescope.

is in turn used to calculate the transit light curve through the
Mandel & Agol (2002) model. Here we use a quadratic limb-
darkening law already implemented in the occul tquad routine.
Finally, for each individual planets, we correct the output time
by the light-travel-time effect.

As the numerical integration and its processing are compu-
tationally time consuming, we first carry out a coarse integration
with a step size equal to only a twentieth of the period of the
innermost simulated planet. A more detailed integration is pro-
duced for the parts where transits take place and where data
are available. For these cases, the detailed integration is done
with a step size of 0.01 days, which corresponds to a light curve
accuracy of 0.01 ppm for long-cadence Kepler data. This accu-
racy is measured by the mean difference of transit light curves
between a model with the given step size and a model with half
the step size. For transit light curves, a time step comparable
to ingress/egress duration would have a significant impact on
the derivation of the transit parameters (Kipping 2010). There-
fore, we calculate the transit model on a fine grid (~1 min, when
needed) and we rebin this to the actual data points. We describe
this in more detail in Sect. 4. For our model calculations, we
define the x—y plane as the plane of the sky, with its origin placed
at the stellar centre. Therefore, these coordinates coincide with
the projected distances between planet and star mid points. The

positive z-axis corresponds to the line of sight, so that the plan-
ets transit with positive z-values. The sampling of the Mercury6
integration does not match the observation times. To interpolate
the projected distances from the Mercury6 results, we model
them with a hyperbola in the range of a transit. The Mandel &
Agol (2002) model is calculated for the observation points by
these interpolated projected distances, quadratic limb darkening
coefficients, and the planet-star radii ratios.

To explore the parameter space, our model is coupled to the
MCMC emcee algorithm (Foreman-Mackey et al. 2013) acces-
sible in the PyAstronomy? library. All fitting parameters have
uniform priors with large limits with the sole purpose of avoid-
ing non-physical results. Our choice of free parameters is guided
by the modelling rather than by the observations. For instance,
Mercury6 uses the semi-major axis, a, of the planet as input
value. Instead of the period, P, we therefore use a correction fac-
tor to a mean Semi-major axis dagjust as a free parameter. The
mean semi-major axis is calculated through Kepler’s third law
from the mean period of the transit times of the planets. In addi-
tion, the mean anomaly, M, is calculated from this mean period,
as well as the reference time, ATy. As a free parameter, we have
an addend to this derived mean anomaly M,gjus. Furthermore,
Mercury6 uses the eccentricity, e, and the three angles that
describe the position of the orbits on the sky. They are the orbital
inclination, #, the argument of the periastron, w, and the longi-
tude of the ascending node, Q. As the orientation in the plane
of the sky is not directly measurable, Q is fixed to zero for the
innermost simulated planet. In this way, the corresponding val-
ues of the other planets show the difference in comparison to this
first one. Last but not least, Mercury®6 requires the masses, m, of
the central star and the planets. These are given by an absolute
value for the central star, the ratio of the masses of the innermost
simulated planet to the central star, and the ratio of masses of the
other planets to the innermost planet.

In order to calculate the transit light curve from the out-
put of Mercury®6, the stellar radius, Rg, is required to calcu-
late the relative planet-star distance normalised to the stellar
radius. The transit measurements constrain the stellar density
(Agol & Fabrycky 2017), but we choose to directly use the
required model parameters. Instead of the stellar density, we
input the stellar mass and radius, but fix one of them during
the modelling. In addition, the occultquad routine requires
the planet-star radius ratio, R,/Rg, and the two quadratic limb
darkening coefficients, ¢; and c;.

4. Dynamical analysis of Kepler-9

Three different approaches were taken to dynamically charac-
terise the Kepler-9b/c system. Firstly, in order to compare the
photodynamical model with the dynamical analysis of only tran-
sit times, we fitted our model to quarters 1-16 of the Kepler long-
cadence data (hereafter data set I). This allowed us to compare
our results to those given by Dreizler & Ofir (2014). Secondly,
we attempted to constrain the stellar radius by means of Kepler
short-cadence data, since they have a sampling rate that is thirty
times greater. To this end, we replaced Kepler long-cadence
data with short-cadence data when available. Specifically, for
Kepler-9, short cadence data are available between quarters 7
and 17 (data set II). Finally, the model is applied to the full
data set, which comprises long-cadence data for Kepler quar-
ters 1-6, short-cadence data covering quarters 7—17, and all new

2 https://github.com/sczesla/PyAstronomy
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ground-based light curves, 13 in total, that were collected by
KOINet (data set III).

The results from all the data analyses, and a comparison to
previous analyses, are listed in Table 3. The top part of the table
shows the stellar parameters. The literature values of the stellar
radius and density parameters are taken from Havel et al. (2011),
and the respective quadratic limb darkening values are taken
from the NASA Exoplanet Archive (Mullally etal. 2015). The
bottom part of Table 3 shows the derived planetary parame-
ters. These are compared to the results given by Dreizler &
Ofir (2014). In this latter work, the authors modelled the indi-
vidual transits observed in long-cadence data, from where the
mid-transit times were derived. Afterwards, they dynamically
modelled these transit times.

The osculating orbital elements are given at a reference time,
BJD = 2454933.0. Fitting the transit times found in Dreizler &
Ofir (2014) with a linear time-dependent model we obtained the
reference times AT}, = 25.26d and AT, = —3.08 d as intercepts,
and the mean periods P, = 19.247 d and P, = 38.944 d as slopes.
The reference times and mean periods are used for the determi-
nation of the semi major axis and the mean anomaly for all data
sets, as described previously in Sect. 2.

During our photodynamical modelling we chose to fix the
stellar mass to its literature value, mg = 1.05 + 0.03 M, (Havel
etal. 2011). Derived parameters that depend on this value are the
planetary masses, as the model parameters are given with respect
to the stellar mass. Therefore, the uncertainties of the derived
parameters are increased using error propagation including the
uncertainty of the stellar mass, o, = 0.03 My. When applied,
in Table 3 these parameters are labelled with “o,, prop.” The
calculated densities of the star and the planets depend on the stel-
lar mass in the same way. The semi-major axes are also affected.
These are computed from the mean period through Kepler’s third
law, which also includes the stellar and planetary masses. As a
consequence, this error is also propagated into the uncertainty of
the semi-major axis.

A quick comparative look at Table 3 shows how the limb
darkening coefficients obtained modelling data set I signifi-
cantly differ from their literature values. We address this issue
in Sect. 5. With this exception, all planetary parameters are in
agreement with prior results within 1-o errors. The error bars
decrease from modelling data set I to III. The reasons for this are
given in detail in the following sections.

4.1. Treatment of the Kepler data

To prepare Kepler’s transit photometry we first extracted three
times the transit duration symmetrically around each transit mid
point. To account for intrinsic stellar photometric variability
we normalised each transit light curve dividing this by a time-
dependent second-order polynomial fitted to the out-of-transit
data points. To obtain the coefficients of the polynomial func-
tions, we used a simple least-squares minimisation routine. As
previously mentioned, for long-cadence data, the light curve
model is oversampled by a factor of 30 and rebinned to the actual
data points. This procedure is not necessary for short-cadence
data. The high signal-to-noise ratio (S/N) of Kepler data allowed
us to include the quadratic limb darkening coefficients into our
model budget.

4.2. Treatment of ground-based data

Due to the lower S/N of the ground-based data, we fixed the
quadratic limb darkening coefficients to values derived from
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stellar evolution models for the R-band filter, which we used
for all our observations. For stellar parameters closely match-
ing the ones of Kepler-9, the derived limb darkening coefficients
are ¢; = 0.46 and ¢, = 0.17. The best-matching coefficients of
the previously derived detrending components (see Sect. 2.3)
for each ground-based observation are calculated as a linear
combination at each call of the photodynamical model.

4.3. Statistical considerations

We performed the analysis of data set I with 36 walkers each,
iterating over 30 000 steps. The starting parameters of the walk-
ers are randomly chosen from a normal distribution around the
parameter results of Dreizler & Ofir (2014) with a 3-0 width.
The walkers needed 2000 iterations to burn in, with the excep-
tion of one that finished in a higher y?> minimum. Therefore,
our results are derived from 35 walkers with 28 000 iterations
each. We calculated the autocorrelation time for each parame-
ter following Goodman & Weare (2010), but averaging over the
autocorrelation function per walker instead of averaging directly
over the walker values, as discussed in the Blog by Daniel
Foreman-Mackey?. These calculations result in an autocorrela-
tion time of 1853 on average (2771 maximum), which gives us
an effective sample size of 528 (353 minimum). Each parameter
shows a Gaussian posterior distribution from which we extract
the median and standard deviation values as best-fit values and
errors, respectively. Our results are shown in Table 3. The best-fit
solution has a reduced y? of 1.48.

The analysis of data set II is performed using 36 walkers
with 20000 iterations each. In this case, they burned in after
4000 iterations, with the exception of two walkers that ended in
a higher y?> minimum. The autocorrelation time averages out at
927 (1648 maximum), which gives an effective sample size of
586 (330 minimum). The resulting parameters are derived using
the median and standard deviation of the posterior Gaussian dis-
tribution. The best solution of this analysis has a reduced y? of
1.06.

The modelling of data set III is accomplished by 36 walkers
with 20000 iterations each. Thirty-five of the walkers burned
in after 2000 iterations. The resulting Gaussian distributions of
the 630000 iterations for the parameters and their correlations
can be seen in Fig. A.7 for the mass-dependent parameters, in
Fig. A.8 for the radius-dependent parameters, and in total in
Fig. A.9. Our best-fit solution has a reduced x? of 0.97. The auto-
correlation length of this analysis is given by a value of 694 on
average (1105 maximum). This results in an effective sample size
of 907 (570 minimum).

4.4. Results

The comparison of the best models to the most recent light
curves from 2017 displayed in Fig. 2 clearly shows how the
inclusion of our new ground-based light curves leads to an
improvement of the derived parameters. The upper plot shows a
Kepler-9b transit light curve in red observed on June 16, 2017.
The lower plot shows a Kepler-9c transit light curve in blue
observed on May 17, 2017. Both light curves were obtained
using the NOT 2.5 m telescope. The variation of 500 randomly
chosen good models for data set II is given by the light transpar-
ent yellow areas, which can be compared to the corresponding
ones obtained including all new ground-based data (data set III).
These are plotted in the figures with a light transparent black

3 http://dfm.io/posts/autocorr
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Table 3. Stellar and planetary parameters derived from the photodynamical modelling of data set I in the second column, data set II in the third
column, data set III in the fourth column, along with bibliographic values (Dreizler & Ofir 2014) in the fifth column for comparison and the sixth
column displays some parameters corrected by investigating stellar evolution models in Sect. 5.4.

Parameter Data set | Data set 11 Data set 111 Literature MESA
Stellar parameters
ms (M) 1.05(3) (fixed) 1.05(3) (fixed) 1.05(3) (fixed) 1.05(3) 1‘041'0307
Rs (Ry) 0.947(21) 0.9755(92) 0.9742(83) 1.05(6) 0.971f%%%(1’
ps(g cm™) 1.74(12) 1.596(45) 1.603(41) 1.12(27)
ps(g em™) (07 prop.) 1.74(13) 1.596(64) 1.603(61) 1.12(27)
Cl Kepler 0.281(53) 0.361(51) 0.351(47) 0.4089
€2 Kepler 0.410(95) 0.251(78) 0.269(71) 0.2623
Planetary parameters
my/mg 0.0001271(11) 0.0001271(11) 0.0001281(11) 0.000129(2)
me/my 0.68911(26) 0.68846(22) 0.68849(20) 0.6875(3)
my, (Mg) 44.36(44) 44.51(32) 44.71(24) 45.1(15)
m; (Mg) 30.57(30) 30.64(22) 30.79(17) 31(1)
my, (Mg) (0 s prop.) 44.4(13) 44.5(13) 44.7(13) 45.1(15) 44.4“_“3:‘%
m}; (Mg) (0mg prop.) 30.57(92) 30.64(90) 30.79(90) 31(1) 3054,
apadjust (AU) 0.9992801(21) 0.9992811(11) 0.9992801(11) -
A adjust (AU) 1.0015531(31) 1.0015521(31) 1.0015531(21) -
a, (AU) 0.14276083(21) 0.14276096(16) 0.14276088(14) 0.143(1)
a; (AU) 0.22889883(83) 0.22889869(63) 0.22889876(53) 0.229(2)
a;, (AU) (o prop.) 0.1428(14) 0.1428(14) 0.1428(14) 0.143(1) O.l423j§:§§i§
a’ (AU) (o, prop.) 0.2289(22) 0.2289(22) 0.2289(22) 0.229(2) 0.2282% 009
ep 0.06437(74) 0.06412(54) 0.06378(40) 0.063(1)
ec 0.068026(92) 0.067974(73) 0.067990(68) 0.0684(2)
ip (°) 89.037(85) 88.931(33) 88.936(30) 87.1(7)
i (°) 89.229(41) 89.177(17) 89.180(15) 87.2(7)
wp (°) 357.17(33) 357.10(24) 356.98(20) 356.9(5)
we () 169.29(11) 169.215(95) 169.194(73) 169.3(2)
M agjuse () 4.0426(48) 4.0441(50) 4.0459(39) -
M. agjust (°) -3.2629(63) -3.2654(53) —3.2648(46) -
M; (°) 337.01(41) 337.12(30) 337.28(24) 337.4(6)
M (°) 313.489(97) 313.553(87) 313.575(67) 313.5(1)
Q, (°) 0 (fixed) 0 (fixed) 0 (fixed) 0 (fixed)
Q. () —1.37(15) —1.244(88) —1.268(75) O(fixed)
Ry /Rs 0.07644(60) 0.07766(30) 0.07759(27) 0.0825(1)
R./Rs 0.07498(60) 0.07601(32) 0.07595(28) 0.0796(2)
R (Rs) 7.91(24) 8.27(11) 8.252(94) 11.1(1) 8.22ﬁ§;$g
R (Re) 7.76(23) 8.10(10) 8.077(92) 10.7(1) 8.051'0:%8
og cm™) 0.495(47) 0.434(17) 0.439(15) 0.18(1)
pi(g em™3) 0.362(34) 0.319(12) 0.322(11) 0.14(1)
o(g em™) (o, prop.) 0.495(60) 0.434(24) 0.439(23) 0.18(1)
p(g em™3) (o prop.) 0.362(44) 0.319(18) 0.322(17) 0.14(1)

Notes. Given are the median and standard deviation values from the MCMC posterior distributions. For the stellar radius and density, the biblio-
graphic values are taken from Havel et al. (2011). The quadratic limb darkening coefficients are taken from Mullally et al. (2015). The osculating
orbital elements are given at a reference time, BID = 2454933.0. “)Derived, not fitted parameters.

area. Additionally, the difference between the best model of each
of the data sets II and III can be seen in the bottom panels of
the plots (henceforth “residual plots”). Comparing the yellow
and black areas shows a slight narrowing of the model varia-
tion for data set III, which is reflected by the slightly smaller
error bars in Table 3. In the case of Kepler-9b, the transit mod-
els slightly shift towards earlier transits when all ground-based
data are included. This can be seen by comparing the yellow
and black areas, but it is more obvious in the residual plots. A
larger change between modelling the different data sets appears
for Kepler-9c. The residuals of the best model for this transit
show an asymmetric difference between the modelling of data

sets II and III. This means an adjustment not only in the transit
time, but also in the transit shape.

The obtained detrended ground-based transit light curves are
shown in Fig. A.1, together with the best photodynamical model
in grey, and the variation of 500 randomly chosen good fit-
ting models in black. The data corresponding to Kepler-9b are
plotted in red, and the ones of Kepler-9c are plotted in blue.
Each observation has its own sub-figure, where the date and the
used telescope are indicated. The transits that were observed
from different sites simultaneously are artificially shifted to
allow for a visual inspection. Raw photometry is available for
download.
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Fig. 2. Examples of newly obtained transit light curves for
Kepler-9b in red (fop), observed on June 16, 2017, and Kepler-9c¢ in blue
(bottom), observed on May 17, 2017. Both transits were observed using
the NOT 2.5m telescope. Overplotted is the variation of 500 randomly
chosen good models by modelling data set II (yellow) and data set III
(black). The residuals plot shows the difference between the best models
of these two data sets.

Another derivable parameter of our photodynamical model
is the transit times. Figure 3 shows the O-C diagram of the tran-
sit times measured by individually fitting the Kepler data, as well
as the newly obtained ground-based data, in comparison to the
results of modelling data set III. Also included is the mid-transit
time of Kepler-9b obtained by Wang et al. (2018b), about 20
off from our model and our new data. Unfortunately, the pho-
tometric data are not published so we could not include them
in our photodynamic analysis. The top part of Fig. 3 shows the
O-C diagram with the transit times from Kepler data in orange
for Kepler-9b and in light blue for Kepler-9c. The O-C data from
the new KOINet observations are shown in red for Kepler-9b and
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blue for Kepler-9c. The mid-time derived by Wang et al. (2018b)
is shown in pink. The transit times from the best photodynami-
cal model of data set III minus the linear trend are presented as
grey lines. The middle part of this figure shows the residuals for
Kepler-9b with the same colour identification, and the residuals
of Kepler-9c are shown respectively in the bottom part. In both
residual plots, the 99.74% confidence interval of 1000 randomly
chosen good models of the different data sets in comparison to
the best model of data set III are plotted as grey areas. The light
grey area belongs to the modelling of data set I, middle grey to
data set II, and dark grey to data set III. The differences in the
amplitude of the variations of the models compared to the best
model are discussed in the following section. In Table A.1, we
provide transit-time predictions from modelling data set III for
the next 10 yr.

5. Discussion

The results of the photodynamical modelling of Kepler-9b/c
require some interpretation. In this section, we first discuss the
dynamical stability of the derived system model, and subse-
quently we discuss the transit timing variations along with their
prediction for future observations. We also specifically discuss
the transit shape variations and the consequential prediction of
disappearing transits for Kepler-9c. Moreover, we address the
stellar activity and, connected to this, we investigate the stellar
mass, radius, and age. The age is explored from stellar evolution
models, as well as gyrochronologically. As the photodynami-
cal modelling yields precise densities, our derived values are
also the subject of discussion. Furthermore, the available radial
velocity measurements of this system have not been mentioned
in this paper; the reasons behind this choice are addressed below
as well. The last point of this section deals with the innermost
confirmed planet of the system, which is not included in the anal-
ysis. Finally, we discuss the possibility of detecting other planets
in the system by means of the observed TTVs of Kepler-9b/c.

5.1. Dynamical stability

A dynamical analysis leads naturally to the question of the long-
term stability of the derived planetary system, as an unstable
result should not be considered as a viable model, contradict-
ing the long lifetime of the system. To test the stability of our
results for the Kepler-9 system, our best photodynamical solu-
tion was extended in time up to 1 Gyr. For this purpose, we used
the second-order mixed-variable symplectic algorithm imple-
mented in the Mercury6 package by Chambers (1999). This is
the same integrator used in our photodynamical model. The post-
Newtonian correction (Kidder 1995) has also been included for
this application. The time step size we used was 0.9 days, which
is slightly smaller than a twentieth of the period of the innermost
planet considered in our dynamical analysis, Kepler-9b. This step
size is a good compromise between reasonable computation time
and small integration errors. We find that, over the integration
time, the modelled planetary system remains stable. Given the
architecture of the system, this was expected, and we can assume
that the very similar good results from MCMC modelling should
remain stable as well.

5.2. Transit timings

After the Kepler observations, as time progresses, good MCMC
models differ from the best data set III model at varying ampli-
tude (see for instance the time range around 2014-2015, and
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around 2018-2020; Fig. 3). These variations are illustrated by
the grey areas in different shades for the modelling of the differ-
ent data sets, from light to dark grey corresponding to data sets I,
I, and III. At the specific times previously mentioned, the varia-
tions increase for both planets. This behaviour appears when the
O-C has a positive slope for Kepler-9b, and a negative slope for
Kepler-9c. At these places, the gradient of the TTVs is larger
in comparison to the parts where Kepler-9b shows decreasing
TTVs and when Kepler-9c¢ shows increasing TTVs. A larger gra-
dient leads to a larger uncertainty in the predictions. Despite the
lower precision in comparison to the space-based Kepler data,
the new ground-based KOINet observations help to set tighter
constraints on the modulation of the timings. Unfortunately,
apart from one observation, we missed the chance to observe
transits in the phase of higher variation amplitude in 2014. The
next period of higher-amplitude variation starts in 2018; a few
more observations during 2018, especially of Kepler-9c transits,
will help to further tighten constraints on this modulation.

5.3. The disappearance of Kepler-9c transits

One of the advantages of our photodynamical modelling is the
physical consistency in modelling variations in the transit shape
due to variations in the transit parameters. These variations can
be explained by the dynamical interaction of all objects in the
system. Figure 4 shows these variations in the transit shape. Plot-
ted are the transit light curve data per planet shifted by their
individual transit time. For a better visualisation of this effect,
we plotted only Kepler quarters 1-17 of the long-cadence data.
The higher scatter of short-cadence data would lead to a larger
range in flux. In turn, the variation of the model would appear

single transit modelling. The new transit
> time data points originate from the first
analysis described in Sect. 2.3.

diminished due to the larger data range. The model variation is
shown in black, which is the best model for each of the tran-
sits modelled in data set III, shifted to a common time of transit.
For Kepler-9c especially, a clear variation in the transit shape is
visible, both in transit depth and transit duration.

The variation in transit shape is not only most visible from
long-cadence data, but also most significant. The same TTV
model with an averaged transit-shape model gives a 8% worse
reduced y? on data set I. On data sets II and I, the difference in
the reduced y? is only of the order of 0.5%. Nevertheless, pho-
todynamical modelling has the advantage of consistently mod-
elling the TTVs with the transit-shape-determining parameters,
that is, mainly the inclination.

The observed variation in the transit shape of Kepler-9c
leads us to examine the evolution of transit parameters over
time. Figure 5 shows the variations of the semi-major axis,
the eccentricity, and the inclination with the predictions for
the next 50 yr. The predictions for the inclination of Kepler-9c
show a continuous decrease, so that both the derived impact
parameter b and the transit duration indicate the disappearance
of the transits around the year 2052. This behaviour is shown in
Fig. 5 as well. A long-term inspection reveals the variations in
inclination to be a periodic effect, meaning that the transits will
return around 2230 again (see Fig. A.2). Through the decreasing
inclination, within the next 35 yr we will have the opportunity to
map the high latitudes and hence measure the limb of Kepler-9
with frequent transit observations of planet c. In these higher
latitudes, the transit spends more time at the limb than in the
case of a passage of the mid-point of the star. This fact could
help us to obtain more information on the atmospheric structure
at the limb.
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Kepler-9c. In grey is the best photodynamical model of the full data
set, but calculated for only these Kepler long-cadence data and aligned
respectively. The bottom of each figure shows the residuals.

On the other hand, for planet b, an increasing inclination in
the next 100 yr is predicted (see Fig. A.2). Wang et al. (2018a)
measured a stellar spin alignment with the planetary orbital
plane on a high probability. As this result might be affected by
stellar spot crossings, more Rossiter—McLaughlin measurements
are necessary for confirmation (Oshagh et al. 2016). Neverthe-
less, assuming spin alignment, Kepler-9b will scan the latitudes
from its current location (above 30°), down to around 10°. With
Kepler-9 being a solar analogue, a spot appearance similar to
the sun between 0° and 30° is a reasonable assumption. Under
those circumstances, we have a high probability of being able
to measure spot crossings by Kepler-9b in precise transit obser-
vations in the future. Such detections would lead to a starspot
distribution measurement like in the work of Morris et al. (2017)
in which the system analysed, HAT-P-11, is known to be highly
misaligned. Therefore, an even more similar analysis is possi-
ble if the spin alignment of Kepler-9 is not confirmed, in which
case there could possibly be spot contamination in the existing
transit observations. Spot crossings are not resolvably measured
in these observations, meaning that a higher accuracy would be
necessary for this analysis if they already occur.
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The existing coverage of latitudes by transit observations
is illustrated in Fig. A.3 under the assumption of a stellar spin
alignment with the orbital plane. The red and blue lines refer
to Kepler-9b and Kepler-9c transits, respectively. The track is
extracted from the best photodynamical model of data set III.
The uncertainties in these tracks are retrievable from the impact
parameter shown in the fourth row of Fig. 5. The yellow circular
disk illustrates the star and the orange area shows the possible
star spot occurrence ranges assuming a similar behaviour to the
sun.

The precise Kepler data allow us to model the quadratic limb
darkening of the star. As a result, from modelling data set III,
the derived limb darkening coefficients are ¢; = 0.35 = 0.05 and
¢, = 0.27 + 0.07. Figure A.8 shows that these two coefficients
are highly anti-correlated. This result is consistent with Miiller
et al. (2013), who investigated the quadratic limb darkening of
Kepler targets. Additionally, the values suit the literature values
given in the NASA Exoplanet Archive (Mullally et al. 2015).
The results from modelling data set I demonstrate that using only
long-cadence Kepler data is not sufficient to model the quadratic
limb darkening of Kepler-9. Nonetheless, the derived values of
¢y = 0.28 £ 0.05 and ¢; = 0.41 + 0.09 fit the anti-correlation
derived by modelling data set III. This anticorrelation is illus-
trated in the parameter correlation plot in Fig. A.8. Consequently,
the discrepant values lead to different results for the stellar radius
and the planet-star radius ratios.

In order to check for model-dependent influences on the
resulting evolution of the system parameters, we investigated
the differences between Newtonian gravity and the inclusion
of a post-Newtonian correction. An analysis was done for the
influence on resulting photodynamical models for Kepler-9b
and c. Including the post-Newtonian correction decreased the
parameter uncertainties in the second significant figure and the
reduced y? in the fifth. The differences are too small to discrim-
inate between the models. The future predictions for changes in
inclination and for transit times behave very similarly.

5.4. Stellar radius, mass, and age

Applying our photodynamical analysis to data set III, we
determined a stellar density of ps = 1.603 + 0.061 gcm™.
As described in Sect. 3, we modelled the stellar radius instead
of the density. However, the transit measurements constrain
the stellar density (Agol & Fabrycky 2017). With a fixed
stellar mass, the density can be determined straightforwardly.
Our modelled density is almost 50% higher than the prior
estimate (ps = (0.79 £ 0.19) po = 1.12 + 0.27 g cm™3) by Havel
et al. (2011). The authors derived this value from the TTV
analysis of the first three quarters of Kepler observations by
Holman et al. (2010). With this density, the stellar mass, radius,
and age were determined by stellar evolution models. Our
considerably higher derived density motivated a new, similar
study of Kepler-9.

We used the stellar density and the known stellar parameters
of an effective temperature T = 5777 + 61 K, surface gravity
logg = 4.49 £ 0.09 and metallicity Fe/H = 0.12 + 0.04 (which
classifies Kepler-9 as a solar analogue; see Holman et al. 2010;
Havel et al. 2011) to determine the age, mass, and radius of the
star by stellar evolution models. The results are presented in the
Appendix A (similar to Figs. 6 and 7 derived below) as a mass-
age diagram in Fig. A.4 and as a radius-age diagram in Fig. A.5.
We extracted the corresponding values from the interpolated
MESA (Paxton et al. 2011, 2013, 2015) evolutionary tracks by
MIST (Dotter 2016; Choi et al. 2016). We derive a stellar mass
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Fig. 5. Top: extrapolation of the planets semi-major axis until 2065 for the best model for Kepler-9b (red, left) and Kepler-9c (blue, right). Grey
areas show the 99.74% confidence interval of 1000 randomly chosen good models for the different data sets. From light to dark grey: modelling
of data sets I, II, and III. Second from top: extrapolation of the planets eccentricity. Third from top: extrapolation of the planets inclination. Fourth
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parameter and the transit duration is coloured to highlight the place where the prediction of disappearing transits comes from.

of mg = 1.06*00% Mo, a radius of Ry = 0.977*)03} R, and an

age of Ty = 0957085 Gyr.

Recent HIRES observations by Petigura et al. (2017) of more
than 1000 KOIs led to the correction of the Kepler-9 stellar
parameters to Ter = 5787 = 60 K, logg = 4.473 + 0.1, and
Fe/H = 0.082 + 0.04. Although very similar, the lower metallic-
ity leads to slightly different results. With these new values, we

determined the stellar mass to ms = 1.04*007 Mo, the radius to

Rs = 0.9711'8:83(1) R and the stellar age to Tgyo = 1.491’%5 Gyr.
The corresponding diagrams can be found for mass versus age in
Fig. 6 and for radius versus age in Fig. 7. We note that mass and
radius for both parameter sets are in agreement within 1o~. The
derived age of 1.5 Gyr, however, is in better agreement with the
gyrochronological age derived below. With these new values for

the stellar mass and radius, we corrected the modelled planetary

masses, semi-major axes, and radii, which can be found in the
sixth column of Table 3.

More recently, the second Gaia data release (Gaia DR2) was
carried out (Gaia Collaboration 2016, 2018). The effective tem-
perature of Terr = 5750*730 K derived using DR2 data fits the
HIRES value within the 1o range, as does the stellar radius
with Ry = 0977008, These values have comparatively higher
uncertainties, however. The distance of Kepler-9 is determined
to p = 1.563 + 0.017 mas by Gaia DR2.

To test the results of the stellar evolution model analysis,
we determined the gyrochronological age of Kepler-9. For this,
we computed a periodogram of Kepler-9’s full long-cadence
photometry (Lomb 1976; Scargle 1982; Zechmeister & Kiirster
2009). The highest power peak corresponds to 16.83 + 0.08 days.
The period and error correspond to the mean and standard devia-
tion obtained fitting a Gaussian to the highest periodogram peak.
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Fig. 7. Radius-age diagram of Kepler-9 from MESA stellar evolution
models (MIST). The black star and the red, orange, and grey dots corre-
spond to the best matching value and the 1, 2, and 30~ areas, respectively,
derived from results on the density of the data set III photodynamical
modeling and from new literature values of the effective temperature,
the surface gravity, and the metallicity by Petigura et al. (2017). The
gyrochronological age is indicated by the green solid line and its 1-o
range with the green dashed lines.

On Kepler-9, typical photometric variability due to spot rotation
has an amplitude of 5 ppt, well above the photometric noise.

To determine Kepler-9’s age we made use of Barnes (2007,
2009)’s gyrochronological estimate:

log(TGyro) = %[log P —loga—bxlog(B-V-o0)], (@€))]

for a = 0.770 £ 0.014, b = 0.553 + 0.052, ¢ = 0.472 + 0.027,
and n = 0.519 £ 0.007. Assuming B-V = 0.642, and following
Barnes (2009) error estimates, the derived gyrochronological age
for Kepler-9 is 2.51 + 0.36 Gyr. This age is indicated in the mass-
age and radius-age diagrams (Figs. 6, 7, A.4, and A.5) by green
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Fig. 8. Mass-radius diagram for known planets with masses up to
100 Mg. In yellow are the planets with mass measurements obtained
by radial velocities and in green the planets with mass measurements
obtained from TTVs. The data are given by the The Extrasolar
Planets Encyclopaedia. Our results are shown in red (Kepler-9b)
and in blue (Kepler-9c). For comparison also the values of Saturn,
Uranus, and Neptune are shown, the Neptune-like planet pair of our
solar system.

lines, solid for the the median value and dashed for the 1-¢- range.
The gyrochronological age is slightly higher than the age indi-
cated by stellar evolution models, but the values agree within the
1-o range.

5.5. Stellar and planetary densities

In addition to the stellar density, the photodynamical analy-
sis provides strong constraints on the planetary densities. As
a result of the analysis performed on data set III, we obtain
densities of p, = 0.439 + 0.023 gcm™ for Kepler-9b and
pe =0.322+0.017 g cm™3 for Kepler-9c. In Fig. 8 our results are
compared to literature values from The Extrasolar Planets
Encyclopaedia* for planets with similar properties. Colour-
coded are the mass measurements obtained from radial velocities
in yellow, and from TTVs in green. In this regime, that is the
regime of Neptune-like planets, the density measurements of
Kepler-9b/c are, to date, the most precise ones outside the solar
system.

To rule out biased results for stellar radius and planet-star
radii ratios caused by the photometric variability of Kepler-9,
we checked for variability in the residuals of the transit light
curves. For consistency, we chose the high-precision, well-
sampled Kepler short-cadence data for this analysis. The scatter
of the residuals inside the transit is slightly larger than outside
the transit. For the best model of data set III, the standard devi-
ation inside the transit is stdjsge = 0.001049, while outside it is
Stdouside = 0.001027, meaning a 2% difference between inside
and outside the transit. We did not find any periodicity inside
the transit residuals, potentially due to star spots. Equivalently,
the transit time residuals do not show a periodic variability. Nev-
ertheless, the higher scatter inside transit possibly results from
unresolved stellar spot crossings. The planet-star radii ratio deter-
mination is affected within its uncertainties. With the absence of
measurable star spots and the small differences in standard devi-
ation between inside and outside the transit, a systematic error in

4 http://www.exoplanet.eu/



J. Freudenthal et al.: Kepler Object of Interest Network. II.

20 + + 1
AN ANEAN
\ / /" A
= oF ; \ ]
E \\_,,// /+ \ /,/ \\
> { \ /
Z -10 / \\/ ]
—20F ]
Best photodynamical model
—30F ¢ Data by Holman et al. (2010) B
@ 10f f .
E t
e 0 }
3
2 t
& —10f { ]
400 410 420 430 440 450

BJD - 2454933.

Fig. 9. Results from photodynamical modelling of data set III on the
radial velocity measurements by Holman et al. (2010).

the radius determination seems to be negligible. The planetary
densities are therefore also well determined.

Figure 8 shows the similarity in radius of the Kepler-9b/c
planets to Saturn. The masses are less than half the value of
Saturn, resulting in smaller densities. Their low density implies
Kepler-9b/c should be classified as hydrogen—helium gas giants.
The formation of the planets happened most likely in the outer
region of the system. Through converging migration, the plan-
ets could be brought in the near 2:1 mean motion resonance in
close proximity to the host star (e.g. shown by Henrard 1982;
Borderies & Goldreich 1984; Lemaitre 1984). It has been shown
that such formation scenarios can result in stable resonant orbits
with the outer planet having only about half the mass of the inner
one (Deck & Batygin 2015).

5.6. Radial velocity measurements

In our analysis, we did not consider the radial velocity (RV) mea-
surements by Holman et al. (2010) for Kepler-9. The reasons are
the small number of measurements, the short time span of the
observations, as well as the large discrepancy between a dynam-
ical model to the TTVs and the RV data. Nevertheless, from our
photodynamical model we calculated an RV model. Simulated
RV models from the results of modelling the full transit dataset
are shown together with the data in Fig. 9. The best model has
a x> = 56.94 for the six RV measurements. As pointed out by
Dreizler & Ofir (2014), we also see a similar discrepancy
between the dynamical model and these measurements. Addi-
tional evidence in favour of the TTV model comes from the
short-timescale chopping variations seen in planet 9b due to 9c:
the amplitude of chopping indicates a smaller mass for planet 9c
(Deck & Agol 2015), which, of course, is included in the full
photodynamical constraint.

The most evident reason for this discrepancy is the activity
of Kepler-9. A jitter factor would be necessary to include these
data in the analysis. A detailed analysis of the activity of the star
and the integration of the RV measurements is however, beyond
the scope of this paper.

In addition, the recently obtained RV measurements listed in
the HARPS-N archive’, but marked as proprietary, could help to
better-constrain the RV behaviour of Kepler-9. Figure A.6 shows
a prediction of the Kepler-9 radial velocity based on our model
constraints for the approximate time span of the new HARPS-N
observations.

5.7 An additional planet?

To complete our analysis, we also tested the influence of the third
known planet, Kepler-9d (confirmed by Torres et al. 2011) with a
period of P; = 1.592960(2) d, on the dynamics of the system.
We agree with Dreizler & Ofir (2014) that it does not inter-
act measurably with the two modelled planets, in the plausible
mass regime (my = 1-7 Mg, Holman et al. 2010). For a mass of
mq = 7 Mg, the reduced x> does not improve and also the vari-
ations of the residuals of the transit times are of the same order.
The amplitude in radial velocity measurements is of the order of
1 ms~!, far below the precision of the previous observations and
currently unfeasible for a star as faint as Kepler-9.

Adding another outer planet in a Laplace-resonance (4:2:1)
to explain the deviations in the radial velocity measurements
would require a rather high mass for the additional planet. Such
a planet would have far too large an influence on the system’s
dynamics and is ruled out by the photodynamical analysis. The
fact that only six RV measurements are published makes it
impossible to set constraints on further possible planets. Addi-
tional planets could exist outside the Laplace-resonance, thereby
explaining the discrepancies between transit and radial velocity
measurements, yet not substantially influencing the short-term
dynamics. In addition we find no periodicity in the transit timing
residuals, whereas evidence of periodicy here would have been a
sign of an outer planet.

6. Conclusions

With this work, we substantiate the importance of the KOINet.
With its anticorrelated, large-amplitude TTVs, the Kepler-9b/c
system was chosen as a benchmark system for the photody-
namical modelling. Although the dynamical cycle was almost
covered by Kepler observations, the 13 new transit observa-
tions led to better constraints on the composition of the system.
Concurrently, we have confirmed the capability of KOINet to
complete a transit observation with a long duration by using
several telescopes around the globe. This is complemented by
the results of the photodynamical modelling. The application to
Kepler-9 revealed that the transits of the outer planet will dis-
appear in about 30 yr. Furthermore, this dynamical analysis of
the combined photometric data, consisting of Kepler long- and
short-cadence data in addition to ground-based follow-up obser-
vations led to the most precise planetary density measurements
of planets in the Neptune-mass regime so far.

From the decreasing inclination of Kepler-9c¢ and increasing
inclination of Kepler-9b we have the opportunity to map the dif-
ferent latitudes of the star. Therefore, measurements of the limb
and the star spots of Kepler-9 could be made possible by precise,
frequent transit observations within the next 35 yr for the limb
and 100 yr for the star spots. Interspersed with frequent ground-
based follow-up, transit measurements from space that provide a
high photometric precision would complement the stellar analy-
sis. The promising predictions of this work make Kepler-9 an

5 http://archives.ia2.inaf.it/tng/faces/search.xhtml?
dswid=9814
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interesting target for space missions like TESS (Ricker et al.
2015), PLATO 2.0 (Rauer et al. 2014), or CHEOPS (Broeg
et al. 2013), though it is a relatively faint object, with a Kepler
magnitude of K, = 13.803.
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Appendix A: Additional plots and a table of the transit time predictions
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Fig. A.1. Our observed transits with the best model of data set III in grey and its variations by 500 randomly chosen good models in black. Transit
data in red belong to Kepler-9b and blue transit data correspond to Kepler-9c. The transits from dates with more than one observation are artificially
shifted for better visualisation and the telescope used is indicated.
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Fig. A.2. Top: extrapolation of the planets semi-major axis until 2550 for the best model in red (Kepler-9b) and blue (Kepler-9c) and in grey areas
the 99.74% confidence interval of 1000 randomly chosen good models for the different data sets. From light to dark grey: modelling of data sets
I, I, and III. Second from top: extrapolation of the planets’ eccentricity. Third from top: extrapolation of the planets inclination. Fourth from top:
extrapolation of the calculated impact parameter. Bottom: extrapolation of the calculated transit duration.
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Table A.1. Ephemerides E and transit time predictions in BJD-2400000.0 from modelling data set III for the next 10 yr.

E BID E BJD E BID E BJD

Kepler-9b

165  58133.0822(7) 222 59230.2853(6) 279 60327.6320(13) 336  61423.9735(30)
166  58152.3330(7) 223 59249.5049(6) 280 60346.8684(13) 337  61443.2492(31)
167  58171.5797(8) 224 59268.7261(6) 281  60366.0990(12) 338  61462.5362(31)
168  58190.8374(9) 225  59287.9463(7) 282  60385.3303(12) 339  61481.8137(31)
169  58210.0897(9) 226 59307.1682(7) 283  60404.5561(11) 340 61501.1012(31)
170 58229.3543(10) 227 59326.3890(7) 284  60423.7831(11) 341  61520.3792(31)
171  58248.6125(10) 228  59345.6117(7) 285 60443.0054(11) 342 61539.6657(31)
172 58267.8836(11) 229 59364.8334(7) 286 60462.2291(11) 343 61558.9429(31)
173 58287.1474(12) 230 59384.0569(7) 287 60481.4489(10) 344 61578.2269(31)
174 58306.4240(12) 231 59403.2799(7) 288  60500.6702(10) 345 61597.5020(30)
175 58325.6928(13) 232 59422.5044(7) 289  60519.8885(10) 346  61616.7820(29)
176 58344.9740(13) 233 59441.7290(7) 290 60539.1082(10) 347  61636.0537(29)
177  58364.2468(13) 234 59460.9550(7) 291  60558.3259(10) 348 61655.3282(28)
178 58383.5311(14) 235 59480.1818(7) 292 60577.5447(10) 349 61674.5955(27)
179  58402.8069(14) 236 59499.4096(8) 293 60596.7623(10) 350 61693.8635(26)
180  58422.0930(14) 237  59518.6395(8) 294 60615.9806(10) 351  61713.1253(25)
181 58441.3706(14) 238  59537.8696(8) 295  60635.1985(10) 352 61732.3857(24)
182 58460.6569(14) 239 59557.1034(9) 296  60654.4168(10) 353 61751.6414(23)
183 58479.9349(14) 240  59576.3366(9) 297  60673.6353(10) 354 61770.8939(22)
184  58499.2199(14) 241 59595.5752(10) 298  60692.8538(10) 355  61790.1431(21)
185 58518.4971(14) 242 59614.8123(10) 299  60712.0730(10) 356  61809.3878(20)
186  58537.7793(14) 243 59634.0566(11) 300 60731.2918(10) 357 61828.6306(20)
187 58557.0542(14) 244 59653.2983(11) 301  60750.5118(10) 358 61847.8682(19)
188  58576.3322(13) 245  59672.5491(12) 302 60769.7310(10) 359  61867.1050(18)
189  58595.6037(13) 246 59691.7960(13) 303  60788.9518(10) 360 61886.3363(17)
190  58614.8760(13) 247  59711.0537(14) 304 60808.1716(10) 361  61905.5678(17)
191 58634.1429(12) 248  59730.3063(15) 305 60827.3932(10) 362 61924.7941(16)
192 58653.4085(12) 249 59749.5708(16) 306 60846.6137(10) 363  61944.0213(16)
193 58672.6698(11) 250  59768.8292(17) 307 60865.8362(10) 364 61963.2438(15)
194 58691.9279(11) 251  59788.1003(18) 308  60885.0576(10) 365 61982.4676(15)
195 58711.1829(10) 252 59807.3642(18) 309  60904.2811(10) 366 62001.6874(15)
196  58730.4333(10) 253 59826.6410(19) 310  60923.5038(10) 367 62020.9088(14)
197 58749.6817(10) 254 59845.9098(20) 311 60942.7283(10) 368  62040.1269(14)
198 58768.9246(9) 255 59865.1912(21) 312 60961.9527(10) 369  62059.3466(14)
199  58788.1666(9) 256 59884.4640(21) 313 60981.1787(11) 370  62078.5639(14)
200  58807.4026(8) 257  59903.7488(22) 314 61000.4054(11) 371  62097.7826(14)
201 58826.6387(8) 258  59923.0246(22) 315 61019.6333(11) 372 62116.9998(14)
202 58845.8688(8) 259 59942.3112(22) 316 61038.8630(12) 373 62136.2179(14)
203 58865.0999(7) 260 59961.5887(22) 317 61058.0934(12) 374 62155.4354(13)
204 58884.3254(7) 261 59980.8757(23) 318  61077.3270(13) 375  62174.6533(13)
205  58903.5523(7) 262 60000.1537(22) 319  61096.5605(13) 376 62193.8714(13)
206  58922.7744(7) 263 60019.4395(22) 320 61115.7989(14) 377  62213.0895(13)
207  58941.9981(7) 264  60038.7167(22) 321  61135.0363(15) 378  62232.3083(13)
208  58961.2179(7) 265 60057.9998(22) 322 61154.2805(16) 379 62251.5267(13)
209  58980.4393(7) 266  60077.2749(21) 323 61173.5225(17) 380 62270.7463(13)
210 58999.6578(7) 267  60096.5539(21) 324 61192.7730(18) 381 62289.9651(13)
211 59018.8777(7) 268 60115.8255(21) 325 61212.0202(19) 382 62309.1856(13)
212 59038.0957(7) 269  60135.0989(20) 326 61231.2777(20) 383 62328.4050(13)
213 59057.3147(7) 270  60154.3660(19) 327  61250.5305(21) 384  62347.6263(13)
214 59076.5327(7) 271  60173.6328(19) 328  61269.7949(23) 385  62366.8465(13)
215 59095.7514(7) 272 60192.8943(18) 329 61289.0534(24) 386 62386.0687(13)
216 59114.9697(7) 273 60212.1536(17) 330 61308.3245(25) 387  62405.2899(13)
217 59134.1883(7) 274 60231.4089(17) 331  61327.5884(26) 388  62424.5131(14)
218  59153.4073(6) 275  60250.6603(16) 332 61346.8653(27) 389  62443.7355(14)

Notes.

The median and standard deviation solution of 1000 randomly chosen good models. Reference times for ephemeris E=1:
T, =54977.24962(54) and T, = 54969.30566(78).
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E BID E BJID E BJD E BJD
Kepler-9c
219 59172.6261(6) 276  60269.9091(15) 333 61366.1340(28) 390 62462.9601(14)
220 59191.8458(6) 277  60289.1529(14) 334 61385.4156(29) 391  62482.1842(14)
221 59211.0649(6) 278 60308.3953(14) 335  61404.6884(30) 392 62501.4102(15)
82  58125.7907(10) 111 59255.0764(17) 140 60384.0857(19) 169  61514.8518(47)
83  58164.7408(11) 112 59294.1486(17) 141 60423.1271(20) 170 61553.6402(46)
84  58203.6605(12) 113 59333.2194(17) 142 60462.1834(21) 171  61592.4390(44)
85  58242.5493(14) 114 59372.2879(17) 143 60501.2500(22) 172 61631.2545(41)
86  58281.4089(16) 115 59411.3529(17) 144 60540.3229(23) 173 61670.0929(38)
87  58320.2428(18) 116 59450.4124(17) 145 60579.3991(24) 174 61708.9592(34)
88  58359.0557(20) 117 59489.4635(17) 146 60618.4764(25) 175 61747.8572(30)
89  58397.8536(21) 118 59528.5028(16) 147 60657.5537(25) 176 61786.7885(27)
90  58436.6427(22) 119 59567.5263(16) 148 60696.6301(25) 177  61825.7525(25)
91  58475.4297(22) 120 59606.5294(15) 149 60735.7055(25) 178  61864.7467(24)
92 58514.2212(21) 121 59645.5080(16) 150  60774.7795(25) 179 61903.7666(25)
93  58553.0240(20) 122 59684.4584(17) 151 60813.8522(25) 180 61942.8073(26)
94 58591.8444(18) 123 59723.3785(20) 152 60852.9232(24) 181 61981.8635(28)
95  58630.6884(17) 124 59762.2678(23) 153 60891.9918(24) 182 62020.9307(29)
96 58669.5608(15) 125 59801.1279(26) 154  60931.0567(24) 183 62060.0046(30)
97  58708.4650(13) 126 59839.9620(29) 155 60970.1159(23) 184  62099.0820(31)
98  58747.4020(12) 127 59878.7749(32) 156  61009.1667(23) 185 62138.1607(32)
99  58786.3710(12) 128 59917.5724(33) 157  61048.2058(22) 186  62177.2393(32)
100 58825.3689(12) 129 59956.3608(34) 158 61087.2292(21) 187 62216.3170(32)
101 58864.3913(13) 130 59995.1465(34) 159  61126.2324(21) 188  62255.3933(32)
102 58903.4329(14) 131  60033.9364(33) 160  61165.2112(22) 189  62294.4682(32)
103 58942.4889(15) 132 60072.7371(32) 161  61204.1622(24) 190 62333.5415(32)
104 58981.5547(16) 133 60111.5551(29) 162 61243.0830(28) 191 62372.6128(32)
105 59020.6264(16) 134 60150.3963(27) 163  61281.9731(32) 192 62411.6815(31)
106 59059.7012(17) 135 60189.2658(24) 164 61320.8338(37) 193 62450.7463(30)
107 59098.7772(17) 136 60228.1670(21) 165 61359.6686(41) 194  62489.8054(30)
108  59137.8532(17) 137 60267.1014(19) 166  61398.4818(44)
109  59176.9285(17) 138 60306.0681(18) 167  61437.2792(46)
110 59216.0030(17) 139 60345.0643(18) 168  61476.0670(47)
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Fig. A.3. Latitude coverage of Kepler-9 (yellow circular disc) by all
transit observations of data set III for Kepler-9b (red) and Kepler-9¢
(blue). Demonstrated is the best model of data set ITI. The order of the
variations can be drawn from Figs. 5 or A.2, where the fourth row shows
the modelled impact parameters. The orange area indicates the possible
spot occurrence area between 0° and 30° up- and downwards.
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Fig. A.4. Mass-age diagram of Kepler-9 from MESA stellar evolution
models (MIST). The black star and the red, orange, and grey dots corre-
spond to the best matching value and the 1, 2, and 30~ areas, respectively,
derived from results on the density of the data set III photodynami-
cal modelling and from literature values of the effective temperature,
the surface gravity, and the metallicity by Holman et al. (2010). The
gyrochronological age is indicated by the green solid line and its 1-o
range with the green dashed lines.
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Fig. A.S. Radius-age diagram of Kepler-9 from MESA stellar evolution
models (MIST). The black star and the red, orange, and grey dots corre-
spond to the best matching value and the 1, 2, and 30 areas, respectively,
derived from results on the density of the data set III photodynami-
cal modelling and from literature values of the effective temperature,
the surface gravity, and the metallicity by Holman et al. (2010). The
gyrochronological age is indicated by the green solid line and its 1-o
range with the green dashed lines.
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Fig. A.6. Predicted radial velocity measurements from the results of the

photodynamical modelling of data set III for the approximate time span
of the new observations listed in the HARPS-N archive
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Fig. A.7. Correlation plot of masses, semi-major-axis, eccentricities, longitude of Periastron and mean anomaly from MCMC chains of modelling
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Fig. A.8. Correlation plot of stellar radius, inclination, planetary radii, argument of the ascending node of Kepler-9c and limb darkening coefficients
from MCMC chains of modelling the full dataset.
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Fig. A.9. Full correlation plot of all fit parameters from modelling the full dataset.

A41, page 22 of 22




Chapter 3

Kepler-82

The section of this chapter has been published in Astrophysics & Astronomy as the
article ‘Kepler Object of Interest Network II1. Kepler-82f: A new non-transiting 21 Mg
planet from photodynamical modelling’ (Freudenthal et al.,[2019); Credit: J. Freuden-
thal et al., A&A, 628, A108, 2019, reproduced with permission © ESO.

The publication was leaded in all stages by J. Freudenthal. The text was mainly
written by J. Freudenthal. Section 1 was written in cooperation with C. von Essen.
Text editing was done by all co-authors and a language editor assigned by A&A. The
KOINet data used in the paper were provided by all authors except J. Freudenthal
and S. Dreizler. The KOINet data reduction and a first single transit analysis was
conducted by C. von Essen in cooperation with J. Freudenthal. The photodynamical
analysis and its interpretation was performed by J. Freudenthal under supervision of
C. von Essen and S. Dreizler.

3.1 Paper: Kepler Object of Interest Network III.
Kepler-82f: A new non-transiting 21 Mg planet
from photodynamical modelling
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ABSTRACT

Context. The Kepler Object of Interest Network (KOINet) is a multi-site network of telescopes around the globe organised for follow-
up observations of transiting planet candidate Kepler objects of interest with large transit timing variations (TTVs). The main goal of
KOINet is the completion of their TTV curves as the Kepler telescope stopped observing the original Kepler field in 2013.

Aims. We ensure a comprehensive characterisation of the investigated systems by analysing Kepler data combined with new ground-
based transit data using a photodynamical model. This method is applied to the Kepler-82 system leading to its first dynamic analysis.
Methods. In order to provide a coherent description of all observations simultaneously, we combine the numerical integration of the
gravitational dynamics of a system over the time span of observations with a transit light curve model. To explore the model parameter
space, this photodynamical model is coupled with a Markov chain Monte Carlo algorithm.

Results. The Kepler-82b/c system shows sinusoidal TTVs due to their near 2:1 resonance dynamical interaction. An additional chop-
ping effect in the TTVs of Kepler-82c hints to a further planet near the 3:2 or 3:1 resonance. We photodynamically analysed Kepler
long- and short-cadence data and three new transit observations obtained by KOINet between 2014 and 2018. Our result reveals a
non-transiting outer planet with a mass of my = 20.9 + 1.0 Mg near the 3:2 resonance to the outermost known planet, Kepler-82c.
Furthermore, we determined the densities of planets b and ¢ to the significantly more precise values p, = 0.98*319 g cm™ and

pe = 0.494+906 o cm=.

Key words. planets and satellites: dynamical evolution and stability — planets and satellites: detection — methods: data analysis —

techniques: photometric — stars: individual: Kepler-82 — stars: fundamental parameters

1. Introduction

There is no doubt about the impact that the Kepler Space Tele-
scope has had on the exoplanetary field. Among many other
outstanding and benchmark contributions, such as the first pos-
sibly habitable planet with known radius (Borucki et al. 2012),
and the first exoplanet ever found with two suns in its sky (Doyle
etal. 2011), Kepler data have allowed us to characterise planetary

* Ground-based photometry is only available at the CDS via
anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via
http://cdsarc.u-strasbg.fr/viz-bin/qcat?]/A+A/628/A108

** Guggenheim Fellow.

Article published by EDP Sciences

masses via transit timing variations (TTVs, see e.g. Fabrycky
et al. 2012; Mazeh et al. 2013; Steffen et al. 2013). Nonetheless,
after four years of continuous monitoring of the same field of
view, the nominal observations of Kepler came to an end. This
left several Kepler objects of interest (KOIs) without a proper
characterisation, even though they presented large amplitude
TTVs in the Kepler data alone. To continue with the success-
ful characterisation of planetary masses of KOIs via TTVs, we
have organised the Kepler Object of Interest Network' (KOINet).
To date, results of our network comprise KOINet’s first light

I koinet.astro.physik.uni-goettingen.de
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(von Essen et al. 2018), and the in-depth photodynamical char-
acterisation of Kepler-9b/c (Freudenthal et al. 2018). While in
the former we demonstrated KOINet’s strategy and functionality,
along with initial results on four KOIs, in the latter we were able
to determine values for the planetary densities that are the most
precise measurements in the regime of Neptune-like exoplanets.
Furthermore, we predicted that the transits of Kepler-9c would
disappear in about 30 yr. These results arose from the combi-
nation of the Kepler long- and short-cadence data with KOINet
follow-up transit observations, along with a comprehensive and
coherent analysis carried out with our photodynamical mod-
elling. Similar analyses have likewise revealed precise planetary
densities for other systems, like Kepler-117 by Almenara et al.
(2015), K2-19 by Barros et al. (2015), WASP-47 by Almenara
et al. (2016), Kepler-138 by Almenara et al. (2018a), and
Kepler-419 by Almenara et al. (2018b). In many of these cases
the authors also demonstrated consistent planetary mass deter-
minations from TTV and radial velocity (RV) measurements.

From amongst our KOINet targets we pinpointed Kepler-82
(KOI 0880) as an interesting system that deserves a detailed pho-
todynamical analysis. The Kepler-82 system contains a total of
four confirmed transiting planets. The two inner planets have
periods of Py = 2.38 d and P. = 5.90 d, which were confirmed
by Rowe et al. (2014). The two outer planets have a period
ratio close to 2:1 with P, = 26.44 d and P. = 51.54 d. This
commensurability of the periods results in strong TTVs
(see Fig. 1), which led to the confirmation of the two outer
planets a year before the inner planets (Xie 2013). The inner
two planets are not much affected by this dynamical interac-
tion and also show no measurable dynamical interaction with
one another. Yet Kepler-82e shows TTVs with an amplitude of
about 15 min, where the uncertainties of the transit times are of
the same order, and the variations are without significant peri-
odicity (Holczer et al. 2016). Ofir et al. (2018) found TTVs in
Kepler-82d with an amplitude of 10.3*]% min and a frequency
peak that just surpassed their significance criteria. The peak does
not correspond to any expected dynamical frequency.

The first characterisation of the Kepler-82b/c TTVs was
carried out by Xie (2013). The author found the TTVs to be
sinusoidal as expected for near 2:1 mean-motion resonance
(MMR) systems. In contrast with many other similar systems, the
sinusoidal-shaped TTVs of both planets are not anti-correlated;
instead the phase difference is close to zero. The author cal-
culated the nominal masses assuming a two-planet system and
found a relatively large mass ratio of my,/m. ~ 10%6 ~ 4, which
means a very large density ratio of pp/p. ~ 4 X (5.35/4) ~
10. Another nominal mass computation by Hadden & Lithwick
(2014) indicates a smaller mass (~3) and density ratio (~7).

A further characterisation was done by Ofir et al. (2018)
by analysing periodograms of the TTVs of Kepler-82b/c.
They found the most significant peak in the periodogram of
Kepler-82b fits the 2:1 MMR super frequency. However, the
highest amplitude peak of Kepler-82c is notably offset from
the highest peak of Kepler-82b and the 2:1 MMR super fre-
quency. Additionally, they found one other significant peak for
Kepler-82b and three in Kepler-82c.

The following work includes the first dynamical analysis of
the Kepler-82b/c system. We applied a photodynamical model
to Kepler data and ground-based follow-up observations from
KOINet. With this we were able to constrain the planetary
masses more precisely, and by including another non-transiting
planet, most of the frequency peaks, can be explained. Further-
more, we were able to determine the stellar mass, radius and age
from our results by combining the modelled stellar densities with
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spectroscopic values and comparing these values with stellar
evolution models.

The paper is structured as follows. The data acquisition and
treatment within the KOINet is described in Sect. 2. We present
our own implementation of a photodynamical model in Sect. 3.
The detection of a third dynamically important non-transiting
planet in the TTVs of Kepler-82c is described in detail in Sect. 4.
The results from the analysis are discussed in Sect. 5. We end the
paper with a conclusion in Sect. 6.

2. KOINet data

In order to organise the KOINet observations we calculated tran-
sit time predictions from the Kepler observations as described in
Sect. 2.5 of von Essen et al. (2018). In the case of Kepler-82b,
a linear plus sine function was fitted to predict future times of
transit. For Kepler-82c we provided two different predictions.
One coming from a sine plus linear fit, and one from fitting
a parabolic function as a turnover to the sine curve was not
measured by the Kepler observations. The low precision in the
transit time predictions of Kepler-82c¢ in particular led to only
a small fraction of KOINet Kepler-82 light curves with tran-
sits included. Between 2014 and 2018 eleven light curves of
Kepler-82 were obtained, while only three of them show transit
signals of Kepler-82b/c.

Table 1 lists the main characteristics of the data presented in
this paper, such as the observing telescope and the observation
dates the precision of the data, the total duration of the observa-
tion, and the transit coverage. To increase the photometric preci-
sion of the collected data, we have, when possible, slightly defo-
cused the telescopes (Kjeldsen & Frandsen 1992; Southworth
et al. 2009). Below is a brief description of the main character-
istics of each of the telescopes involved in this work.

The Apache Point Observatory hosts the Astrophysi-
cal Research Consortium 3.5 m telescope (henceforth “ARC
3.5 m”), and is located in New Mexico, United States of Amer-
ica. The photodynamical analysis of Kepler-82 presented here
includes one light curve taken with the ARC 3.5 m during our
first observing campaign in 2014.

The 2.5 m Nordic Optical Telescope (NOT 2.5 m) is located
at the Observatorio Roque de los Muchachos in La Palma, Spain.
Currently, telescope time for KOINet is assigned via a large
(three-years) program. Here, we present two light curves taken
between the fourth and fifth observing seasons.

The 80 cm telescope of the Instituto de Astrofisica de
Canarias (IAC 0.8 m) is located at the Observatorio del Teide, in
the Canary Islands, Spain. The one transit light curve obtained
in the first season of KOINet suffered from technical difficul-
ties during the night. For this reason the resulting science frames
were corrupted and, thus, it was impossible for us to properly
reduce them.

The Oskar Liihning Telescope (OLT 1.2 m) has a 1.2 m aper-
ture diameter and is located at the Hamburger Observatory in
Hamburg, Germany. Kepler-82 was observed for one night in
the first season of KOINet with OLT 1.2m. Unfortunately, the
observation taken in 2014 suffered from technical difficulties.

The Telescopi Joan Oré is a fully robotic 80 cm tele-
scope (TJO 0.8 m) located at the Observatori Astronomic del
Montsec, in the north-east of Spain. The parabolic prediction of
Kepler-82c was chosen as transit time for an observation. The
obtained observation contains only off-transit data.

The fully robotic 2 m Liverpool telescope (LIV 2 m; Steele
et al. 2004) is located at the Observatorio Roque de los Mucha-
chos and is owned and operated by Liverpool John Moores
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Table 1. Characteristics of collected ground-based transit light curves of Kepler-82b/c, collected through KOINet.

Date Planet Telescope Ores N CAD Ty TC
yyyy.mm.dd (pptH) (s) (b
2014.09.04 b ARC3.5m 1.1 235 60 4.6 --BEO
2017.07.08 ¢ NOT 2.5m 1.4 111 193 42 OlI---
2018.07.05 ¢ NOT 2.5m 1.2 112 179 5.7 OlI---
2015.05.26 b SAO 6.5 m 0.3 32 68 1.1 Only off-transit data
2015.05.28 c CAHA22m 108 75 86 1.9 Only off-transit data
2015.07.19 c CAHA35m 44 292 102 6.8 Parabolic solution was chosen
C LIV2m 1.5 112 90 3.0 Parabolic solution was chosen
¢ TJO 0.8 m 4.4 163 69 4.4 Parabolic solution was chosen
2018.07.05 ¢ KRYO1.2m 3.7 242 83 5.8 Only off-transit data
2014.07.23 IAC 0.8 m Corrupted data
OLT 1.2 m Corrupted data

Notes. From left to right: the date on which the observations were carried out, in years, months and days; the planet the transit belongs to; an
acronym for the telescope used to perform the observations; the precision of the data in parts-per-thousand (ppt), os; the number of frames
acquired during the night, N; the cadence of the data considering the readout time in seconds, CAD; the total duration of the observations in hours,
T\o1; the transit coverage, TC. The letter code to specity the transit coverage during each observation is the following: O: out of transit, before
ingress. I: ingress. B: flat bottom. E: egress. O: out of transit, after egress.

University. During the second season of KOINet a transit time
predicted from parabolic TTVs was chosen for an observation.
The resulting light curve does not contain a transit.

The Centro Astronémico Hispano-Aleman hosts, among oth-
ers, a 22 m and a 3.5 m telescope (“CAHA 2.2 m” and
“CAHA 3.5 m”). An observation was taken with each telescope.
No transit is present in the light curves.

The MMT observatory, a joint venture of the Smithsonian
Institution and the University of Arizona, is located on the
summit of Mt. Hopkins in south-eastern Arizona, USA. The tele-
scope has a collecting area of 6.5 m (SAO 6.5 m). The data col-
lected with this telescope were of sub-millimagnitude precision,
but taken outside transit due to bad scheduling decisions.

The National Observatory of Athens hosts the 1.2m
Cassegrain telescope of the Astronomical Station Kryoneri
(KRYO 1.2 m). For the last 40 yr the telescope has been oper-
ational, with an extensive upgrade taking place in 2016. Data
collected with this telescope were of good quality, however taken
outside transit.

All collected observations underwent the KOINet reduction
pipeline, and a preliminary analysis for deriving reliable error-
bars and the detrending components. This process is described
in von Essen et al. (2018) and Freudenthal et al. (2018).

3. The photodynamical model

For the KOINet data analysis we developed a simultaneous tran-
sit light curve model for all observations of each system that
takes the system dynamics into account. This allows us to deter-
mine the planetary masses in addition to the transit parameters.
A full description of our photodynamical model can be found
in Freudenthal et al. (2018). Briefly, we combine a numerical
integration of the whole system over the time span of obser-
vations, and from the output sky positions (projected distance
of each planet to the star) we calculate the transit light curve.
We use a second-order mixed-variable symplectic (MVS) algo-
rithm to perform the numerical integration as implemented in
our python-wrapper for mercury6 (Chambers 1999). The inte-
grator is complemented by first-order post-Newtonian correction
(Kidder 1995), and we correct the individual times for the light-
travel-time effect for each planet. From the numerical integration

of the system we extract the planet-to-star centre distances to
calculate the light curve through the transit model of Mandel &
Agol (2002). Here we use the occultquad routine with the
quadratic limb-darkening law implemented.

As in Freudenthal et al. (2018), the numerical integration is
done on a coarse grid, and only in the vicinity of transits is the
integration refined with a time step of 0.01 d. The coarse grid
is optimised to give the shortest possible computation time with
sufficient accuracy. For this system a time step of a hundred-
twentieth of the period of the innermost included planet was
used. For long-cadence data we take the finite integration time
into account (Kipping 2010). Hence, we compute the transit light
curve with a time step of ~1 min and rebin it to the cadence of
the data points.

Our photodynamical model is coupled to the Markov chain
Monte Carlo (MCMC) emcee3 algorithm (Foreman-Mackey
et al. 2013). All fitting parameters have uniform priors with broad
boundaries chosen to avoid non-physical results. A detailed
description of the model parameters can be found in Freudenthal
et al. (2018). To summarise, the model requires the mass, m,
and the radius R of the central star, as well as the two quadratic
limb darkening coefficients, ¢; and ¢, that reflect the wavelength
response of the optical setup of each telescope per instrument,
and per planet, p (p € {b,c, f} from Sect. 4 and for exam-
ple in the Tables 2 and A.2) the parameters are described
below.

A mass ratio is needed. For the innermost planet the ratio to
the central star, m; /mg, is taken and for all other planets the ratio
to the next inner one, m,, /myy . Secondly, a parameter to calculate
the semi-major axis, a, is needed. In the case of transiting planets
itis calculated from the mean period, P}, and as a free parameter
a correction factor, dp corr:

PXG(ms +my) |
ap = 4—7T2 X ap corrs

with the gravitational constant, G. We fitted a linear ephemeris
T = AT, + Pp X n to the transit times, T, giving us the mean
period P, and an offset AT,¢. For non-transiting planets the
semi-major axis is calculated from the period given by a period
ratio to the next inner planet. Furthermore, the eccentricity, ep,
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is needed. The orbital angles, inclination, i,, argument of the
periastron, wp, and the longitude of the ascending node, €,
are needed. Whereas the latter is fixed to zero for the innermost
planet, the other values are given relative to the innermost planet.
The instantaneous position of the planets at a given reference
time needs to be defined. We take the mean anomaly, M, as
measurement for the position of each planet. This angle is cal-
culated from the mean period, Pp, as well as the offset, AT} .
As a free parameter, we have an addition to this derived mean
anomaly, M}, corr:

2r

Mp = Mp,Kepler -
PP

ATp,O + Mp,corr

with the mean anomaly at transit time calculated for a Kepler
orbit from the argument of periastron and eccentricity, M xepler,
and the second term is giving the difference between the mean
anomaly at transit time and the mean anomaly at the starting
time of the integration. That means the free parameter M} corr
is giving the correction from a pure Keplerian orbit due to
the interaction with the other planets. Lastly, The planet-to-
star radius ratio, Rp/Rs, only for transiting planets needs to be
given.

We treated Kepler data and ground based observations of
KOINet as the description in Freudenthal et al. (2018). From
Kepler photometry we extracted the transit duration symmetri-
cally around each transit mid point four times. To account for
intrinsic stellar photometric variability we normalised each tran-
sit light curve dividing it by a time dependent second-order poly-
nomial optimised on the off-transit data points. The coefficients
of this parabola are derived through a simple least-squares min-
imisation routine. As previously mentioned, for long-cadence
data, the photodynamical light curve model is oversampled
by a factor of 30 and rebinned to the actual data points. This
procedure is not necessary for short-cadence data. The high
signal-to-noise ratio (S/N) of Kepler data allows us to include
the quadratic limb darkening coefficients into our free parame-
ters set. This allows for a more realistic inclination and star and
planetary radii determination due to the good constrained transit
shape.

Due to the lower S/N of the ground-based data, we fixed the
quadratic limb darkening coefficients to values which are derived
as described in von Essen et al. (2013) from stellar parameters
for the Johnson—Cousins R-band filter, which we used for all
of our observations. For stellar parameters closely matching the
ones of Kepler-82 (Petigura et al. 2017), the derived limb darken-
ing coefficients are ¢; = 0.52 and ¢, = 0.14. The best-matching
coefficients of the detrending components, derived during the
first data analysis (in Sect. 2), for each ground-based observa-
tion are calculated as a linear combination at each call of the
photodynamical model.

4. Dynamical analysis of Kepler-82

In the following sections we outline the detection of a fifth,
non-transiting planet in the Kepler-82 system, which is required
to explain the available data. We call the planet Kepler-82f
hereafter.

In this work we analyse the transit light curves of the outer
two planets of Kepler-82, b and c. These planets have a period
ratio close to the 2:1 resonance. The inner two, d and e, show
no strong TTV amplitudes and especially no frequencies due to
interaction with the outer two (Ofir et al. 2018). In a first step we
determined the transit times from long-cadence Kepler data with
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the procedure described in Sect. 4.1 of von Essen et al. (2018).
In addition to the near resonant interaction with Kepler-82b,
the transit times of Kepler-82c show a strong “chopping” com-
ponent, which is visible by a sudden jump in the transit time
following every three consecutive transits which show drifting
transit times. The period of chopping is controlled by the times
between conjunctions of planet ¢ and the fifth planet, given by
the synodic period

1 1!

Py = |—
i Poul Pin

Since the jump in chopping is seen every three transits of
planet c, this indicates that the synodic period is either 3 X P
or 3/2 x P., which would give a dependency of the accelera-
tion and the deceleration during the orbits of the inner planet
from three times its period. These synodic periods can be created
by an outer planet near the 3:2 or 3:1 resonance with planet c.
Based on the synodic period of planet c, an inner planet near
the 3:4 or 3:5 resonance would also be possible; however, such
a planet would be near a 3:2 or 6:5 resonance with Kepler-82b,
and would then induce a strong signal in its TTVs. Such a TTV
signal is not measured; hence the fifth planet must orbit exterior
to planet c.

For this reason we optimised the parameters of the two outer
unknown planet configurations (from now on the 3:2:1 and 6:2:1
resonance models, for convenience we skip the more accurate
notation of the planets being near resonant) in a photodynami-
cal model applied to the Kepler long-cadence (quarters 1-6) and
short-cadence (quarters 7—17) data. From the Kepler data alone,
both of the resonance models show the same probability. The
prediction for the transit times, however, start to diverge rapidly
after the Kepler mission terminates, as visualised in Fig. 1. The
figure shows the transit times with a linear ephemeris subtracted
(observed minus calculated, thus henceforth, O-C diagram) of
Kepler-82b at the top and of Kepler-82¢ at the bottom. For
Kepler-82b the models start to differ within 30~ by the end of
2015 and for Kepler-82c¢ by mid 2014. The three KOINet transit
light curves (plotted in Fig. 2; in the O-C diagram the tran-
sit times are indicated in red) show a clear preference for the
3:2:1 resonance model. In addition, the latest KOINet observa-
tion where no transit is measured clearly contradicts the 6:2:1
resonance model prediction.

On this account we re-optimised the 3:2:1 resonance model
parameters to the Kepler data complemented by the three
KOINet transit light curves. The resulting planetary and stellar
parameters from this fit can be found in Table 2. Table A.2 lists
the planetary and stellar parameters from all model optimisa-
tion done in this work. The tables shows from top to bottom the
modelled and derived values of Kepler-82b, Kepler-82c, the new
planet, Kepler-82f, and the central star. The osculating orbital
elements are given at the reference time BJD = 2454 933.0,
100 days later than the standard Kepler reference time (BKJD).

For comparison we also optimised the transiting 2-planet
system (2:1 resonance model) on the Kepler long- and short-
cadence data. The results are listed as well and presented in the
O-C diagram (Fig. 1) as grey areas.

4.1. Details of optimisation

We initially optimised the different planetary system models
(described later in this section) on the transit times, fixing all
transit shape determining parameters to narrow the parameter
space for the photodynamical analysis. We used the median
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values and the 3o interval of this analysis for a Gaussian random
choice of starting parameter sets. The parameters describing the
transit shape — the inclination, limb darkening coefficients and
planet and star radii — are taken from the individual transit fits.

We fixed the stellar mass to its literature value of
mg = 0.91 My (Johnson et al. 2017) during the TTV and the
photodynamical analysis. The uncertainty on the stellar mass,
oms = 0.03 Mo, is applied to the derived parameters that depend
on it via error propagation. In particular this affects the planetary
masses, semi-major axes, and periods.

Optimising a linear ephemeris to the Kepler transit times of
Kepler-82b/c, we obtained the offsets ATy = 41.23683 d and
AT = 22.52550 d as intercepts, and the mean periods Py
26.44404770 d and P, = 51.53912652 d as slopes. The offsets
and mean periods are used for the determination of the semi-
major axes and the mean anomalies, as described previously in
Sect. 3.

The properties of all of the photodynamical model optimisa-
tion procedures on the transit light curves are given in Table 3.
Listed are the parameters as follows. In the first row the num-
ber of walkers used for extracting the final results are given.
We initialised with more walkers; however, a variable num-
ber of walkers ended in higher x> minima. Next, the number
of iterations we obtained per walker are given, followed by
the number of iterations we used as initial burn-in. From the
MCMC posterior distribution we calculated the autocorrelation

cate the 3:2:1 resonance model solution. The
grey areas present the 2:1 resonance model.

length according to Goodman & Weare (2010), but averaging
over the autocorrelation function per walker instead of averag-
ing directly over the walker values, as discussed in the blog
by Daniel Foreman—Mackey?. The given autocorrelation length
allows us to derive the effective number of individual samples.
The last two rows contain the degree of freedom (d.o.f.) of the
optimisation and the best reduced y? value. We note a significant
deviation from one in the reduced y? values which is unexpected
considering the high dof numbers. For this reason, we quadrat-

ically add a systematic error of ,//\/?ed — 1 ~ 10% to the model

parameter uncertainties in Tables 2 and A.2.

While optimising the 3:2:1 resonance model we realised that
we could actually derive the entire orbit of the non-transiting
planet. By this we mean that we could constrain the inclina-
tion — which avoids transit — and the other orbital angles: the
longitude of periastron, the longitude of ascending node, and the
mean anomaly. We found two different configurations with i,
constrained to below 90°. The first has i, < 90° and i > 90°
(henceforth configuration I), the second is the opposite with
ic > 90° and ir < 90° (configuration II). The configurations are
visualised in Fig. 3, where the impact parameter of the planets is
plotted against the distance to the star. The values and uncer-
tainties are derived from 1000 randomly chosen results from

2 https://dfm.io/posts/autocorr/
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Fig. 2. KOINet transit light curves of Kepler-82.
The three transit light curves (black) are overplotted
with 1000 random models of the 3:2:1 resonance
optimised using Kepler long- and short-cadence

3372.7 3372.8

BJD - 2454933.

33724 3372.5 3372.6

modelling the Kepler and KOINet data in configuration I in red
and in configuration II in blue. Both configurations have the
same probability and are equivalent in all other parameters. This
means that the transit time predictions and shape are the same
for both configurations. The other two configurations, with either
both planets having inclinations below 90° or both above 90°, are
not chosen by the MCMC optimisation, although allowed and
included in the starting positions of the walkers. We modelled
both configurations individually with the same number of iter-
ations and combined all resulting walkers to extract the results.
Given that the KOINet transit times are located at the 3:2:1 res-
onance model predictions, we optimised this model on these
light curves together with the Kepler data again in both of the
configurations.

Following this detection we also set the inclination of the
non-transiting planet in the 6:2:1 resonance model as a free
parameter. In this case the inclination did not avoid the transit
region, though it spans a large area where the majority of
solutions is in the non-transiting region (about 88% in a con-
servative calculation of the impact parameter b). Nonetheless,
we inspected the Kepler data for these transits. Based on the
mass ratio to Kepler-82c of 231’%‘3 we can expect transits of larger
depths compared with the other system’s planets. Such transits
are not detected.

4.2. Results

Along with the optimised parameters listed in Tables 2 and A.2
we display the KOINet transit light curves in Fig. 2 in black.
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3372.9 data (red) and including these KOINet observations

(blue).

These are overplotted with 1000 model solutions randomly cho-
sen from the MCMC posterior distribution from analysing only
Kepler data in red, and including these KOINet transit light
curves in blue with the 3:2:1 resonance model. Similar to the
O-C plot in Fig. 1 we show the TTV behaviour for the 3:2:1 res-
onance model optimised on all available transit light curves in
comparison to the optimisation on Kepler data only in Fig. A.1.
Including the KOINet transit observations led to a narrowing
of the transit time predictions of Kepler-82c¢ (visible in the
Figs. 2 and A.1) and the shrinkage of the mass uncertainties of
Kepler-82b (see Table A.2). The transit time predictions for the
next fifteen years are listed in Table A.1. Finally, the parameter
correlations are visualised in a corner plot in Fig. A.3.

5. Discussion

The most prominent signal in the TTVs of the Kepler-82b/c
system is the dynamical interaction with each other due to its
near 2:1 resonance configuration. Xie (2013) calculated nominal
masses from the amplitudes of these TTVs and a derived
stellar mass from logg and Rs under the assumption of a 2-
interacting-planet system. Their derived masses for Kepler-82b/c
are my, = 87.0"3L% Mg and me = 19.133° Mg, respectively.
Additionally, they derive the planetary radii from single transit
fitting to R, = 4.00 + 1.82 Rg and R, = 5.35 + 2.44 Rg. With
these values they propose a density ratio of ~10 for the planets.
In an initial model we tested this 2-planet system with our
photodynamical analysis. We found planetary masses and radii
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Table 2. Planetary and Stellar parameters from photodynamical analy-
sis of the 3:2:1 resonance model on Kepler data and the three KOINet

transit light curves.

Parameter Values
Kepler-82b

my/ms 0.0000401+0:9000028
mt (M) 12.15%0%
Qb.corr 0.9999606*0:9000042
ay (AU) 0.1683 + 0.0020
Py (d) 26.44 £0.48
ey 0.0033+5%012
i () 89.052+0049
Q ) 0 (fixed)

wp (°) 236733
Micore (©) —~0.025"3530
M; (%) 133(3’

Ry /Rs 0.041592500045
R (Ro) 40773
Pylg em™) 0-98%1
Kepler-82¢

me/my 1147013

mt (M) 13.9*13
09999473100t
a; (AU) 0.2626 + 0.0032
P (d) 51.54 +0.94
e 0.0070:00016
ic (°) config. I 90.15%018

ic (°) config. IT 89.78t8:};
Q. (°) 1.6 2.1

we () 162712
Mecorr (°) —-0.507 + 0.020
M; () 13143
Re/Rs 0.05453+0.00068
R (Ro) 534501
pilg em™) 04947555
Kepler-82f

mg/me 1507014

m; (Mg) 209+ 1.0
Py/P. 1.4694070.00023
P; (d) 75.732 = 0.012
ag (AU) 0.3395 £ 0.0041
er 0.001409018
ir (°) config. I 86.30 = 0.56
ir (°) config. 11 93.62703¢
Q (°) 1637

w ) 62170

M; ) 12547
Kepler-82

ms(My) 0.91 £ 0.03 (fixed, Johnson et al. 2017)
Rs (Ro) 0.8987515
ps(gem™) L7750
€1Kepler 0.522%55

€2 Kepler 0.12*51s

Notes. Listed are the median values and 68.26% confidence interval
from the MCMC posterior distribution. The osculating orbital elements
are given at a reference time, BJD = 2454 933.0. ®Derived, not fitted
parameters.

with much smaller uncertainties (see Table A.2) that agree
within their errorbars with the values calculated by Xie (2013).
The density ratio of our result is even higher with p,/p. ~ 14.

The stellar parameters of this analysis show significant devi-
ations from literature values that are derived by spectroscopic
observations. The stellar radius with Rg = 1.186*7% is more
than 1o higher than the measurement by Johnson et al. (2017)
(Rs = 0.99%00% Ro) and the quadratic limb darkening coeffi-
cients calculated by Claret & Bloemen (2011; ATLAS model)
to ¢; = 0.4695 and ¢, = 0.2240 do not fall within the modelled
values (¢ = 0.31f8'%g, ) = 0.66f8§§).

These stellar parameters as well as the planetary masses, and
with these the densities, become more plausible in their values
when including a third planet in the dynamical analysis. The sig-
nal of such a planet is clearly visible in the TTVs of Kepler-82¢
as a jump every three consecutive transits (see Fig. 1). As
explained in Sect. 3, two different configurations of a three-
planet system can explain this chopping effect in the Kepler data.
Both of these include another outer non-transiting planet, near
the 3:1 or 3:2 period resonance to Kepler-82c. Including either of
these planets dramatically reduces the mass of Kepler-82b, and
thus also reduces the ratio of the density Kepler-82b to c. Both
system models are very similar in probability for Kepler data, the
6:2:1 resonance model has a slightly higher X?E 4 than the 3:2:1
resonance system. With KOINet data we were able to distinguish
between these two models. The detected transits fall at the 3:2:1
model prediction, and one of the observations where no transit
is observed precludes the 6:2:1 model predicted transit time. In
the following we refer to the 3:2:1 resonance model solution on
Kepler and KOINet data when not differently specified.

The density ratio of the resulting Kepler-82b/c planets
reduces to a factor of ~2. Such a ratio is no longer very unusual;
the values are discussed in the context of the literature below by
visualising them in a mass-radius diagram. The density of the
new planet can not be determined as, due to the lack of transits,
the radius is not measurable. In addition, the stellar radius and
the limb darkening values fit in with the literature values within
lo-uncertainty.

At the same time the predicted RV signal reduces from
an amplitude of ~50 ms™! for the 2-planets system to about
~7.5 ms~! for the 3-planets system near 3:2:1 resonance. With
Kepler-82 being a relatively faint star (Kp=15.158), such a
signal is not measurable with current instruments.

5.1. Previously proposed planets

Bovaird et al. (2015) predicted two additional planets in the
Kepler-82 system with periods of 11.8 + 2.0 days and 120 +
20 days based on the Titius—Bode relation. Neither the new
planet proposed here near the 3:2 resonance to Kepler-82c, nor
the less viable option with a planet near the 3:1 resonance,
matches the position of one of the predicted planets. The pre-
dicted outer planet is in between the two possibilities within 3o
distance to each of them.

5.2. Dynamical stability

Subsequent to the photodynamical analysis we tested the dynam-
ical stability of the modelled systems. With the same integrator,
the second-order mixed-variable symplectic algorithm imple-
mented in the mercury6 package by Chambers (1999), we
extend the numerical simulation of the best found solution for
each system configuration to 10 Gyr. For this application the
post-Newtonian correction (Kidder 1995) was implemented as
well. The integration is done with a time step size of 1 day
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Table 3. Properties of the optimisation of different models paired with different data sets.

Parameter Kepler data  Kepler data  Kepler data Kepler &
KOINet data
2:1 6:2:1 3:2:1 3:2:1
Walkers 56 59 91 86
Iterations per walker 20 000 75 000 100 000 175 000
Iterations burn-in per walker 10 000 25 000 25 000 25 000
Autocorrelation length 1136 11 498 14 595 22422
Independent samples in total 986 385 624 671
Degrees of freedom 63 372 63 365 63 365 63 823
Best x> 1.239 1.225 1.224 1.227

red

Fig. 3. Configurations of the Kepler-82 system. With the star in grey
on the left side and the observer on the right side this shows the two
different configurations: b in violet has the same position in both, ¢ and
f in red shows configuration I and in blue configuration II. The grey area
indicates the region of impact parameters below one. The distances are
not true to scale with the stellar radius, therefore a few inclination values
are indicated as dashed grey lines. A similar plot with true scales can be
found in Fig. A.2.

which is roughly a twentieth of the innermost planet consid-
ered in our analysis (Kepler-82b). This gives a good compromise
between a sufficient sampling for small integration errors and
a reasonable computation time. We tested the stability of the
2:1 resonance 2 planets solution, the 6:2:1 resonance system as
well as the 3:2:1 resonance 3 planets model that is preferred by
the KOINet data. All of these system configurations survived
the 10 Gyr integration; only the 2-planet system showed chaotic
parameter evolution. A closer inspection of the 6:2:1 resonance
system long-term behaviour showed that given this model we are
observing the transiting planets b and ¢ at a minimum in period-
ically changing eccentricities. The values are ranging in roughly
e, = 0.002-0.08 and e, = 0.004—0.06. The probability for the
planets to be in this minimum at observation time is below 10%,
making this scenario even less likely.

Another indication for stability is the planets to be near reso-
nant, but not in resonance. We checked that the modelled planets
are not in resonance through calculating the resonant angles
(Morbidelli 2002), as well as the Laplace resonant angle. All
angles are circulating and do not librate, which would be the sign
for the planets to be in resonance.

5.3. TTV frequencies

The frequencies in the TTVs of the Kepler-82 system were anal-
ysed by Ofir et al. (2018). In the TTVs of Kepler-82b they
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Table 4. Comparison between TTV inducing frequencies calculated
from periods of the system solution to measured TTV frequencies by
Ofir et al. (2018).

Planets  figec (1074d™") TTV matching fore (1074d71)
Super frequencies

bandc 9.86 +0.22 Main peak in b 9.82+0-3
band f 18.06 +0.33  One peakinc 179 +3.2
cand f 8.18 £0.26 Main peak in ¢ 8.15+0.12
Chopping frequencies

bandc 184.2 £ 3.1 No matching peak

b and f 246.1 +4.1 No matching peak

candf 61.9+1.0 One peakinc 589+3.2
Orbital frequencies

b 378.2+£6.3 No matching peak

c 194.0 £3.2 No matching peak

f 132.1 £2.2 No matching peak

Notes. Super, chopping, and orbital frequencies are given; from left to
right the table shows the considered planets, the computed frequency,
a match in the Ofir et al. (2018) results (if any), and the matching
frequency.

found, besides the main peak at 9.82*232 x 107* d™!, another

significant frequency peak at (101.5 +2.8) x 10~* d™!. The main
frequency peak of Kepler-82c is at (8.15 + 0.12) x 10~ d~'.
In addition to that they found three more peaks in the TTVs
at ((17.9, 58.9, 68.9) +3.2)x 107+ d". Except for the main
peak of Kepler-82b belonging to the super frequency of the
near 2:1 resonance with Kepler-82c, they could not explain the
detected frequencies with super frequencies of all of the mean
motion resonances, orbital frequencies, chopping frequencies, or
stroboscopic frequencies of the confirmed planets in the system.

In the same manner we computed the super frequencies of all
mean motion resonances, orbital frequencies, and chopping fre-
quencies of our resulting system from photodynamical analysis.
The calculated frequencies are listed in Table 4. With the excep-
tion of two measured frequencies, we can explain them with
interactions of the planets in the modelled system. Significantly,
the super frequencies from mean motion resonances, expected
to induce TTV signals, match the significant peaks found by
Ofir et al. (2018). The super frequency of Kepler-82b/c corre-
sponds to the main peak in the TTVs of Kepler-82b. Kepler-82c/f
have a super frequency that explains the main peak of the
TTVs in Kepler-82c. And finally, the super frequency of Kepler-
82b/f matches a significant peak in the TTVs of Kepler-82c.
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Additionally the chopping frequency of Kepler-82c/f explains
another peak of Kepler-82¢ TTVs. Two of the Ofir et al. (2018)
frequencies with smaller confidence remain unexplained, these
are the (101.5 + 2.8) x 107* d™! frequency in planet b and the
(68.9 +3.2) x 10~* d™! frequency in planet c.

For comparison, we computed the same frequencies from
the 6:2:1 resonance results. In this case the super frequency
of Kepler-82b/c matches, as expected, with the main peak of
the Kepler-82b frequencies, and the orbital frequency of the
third non-transiting planet matches the (58.9 + 3.2) x 107* d~!
peak. Besides these, no other matching frequencies were found,
especially the main peak in the TTVs of Kepler-82¢ is not
explained.

5.4. Stellar parameters

Transit measurements provide the information about the stellar
density (Agol & Fabrycky 2018). In our photodynamical analy-
sis we decided to model the stellar radius while fixing the stellar
mass. With this parameterisation, the density is modelled as
well. We derived the stellar radius to be Rs = 0.898*09% R, The
high asymmetry in the uncertainties is attributed to the symme-
try of the inclination of Kepler-82c around 90°. Together with
the stellar mass from Johnson et al. (2017) of mg = 0.91, this
results in a stellar density of ps = 1.77*032 g cm™.

With this photodynamical-determined density and the mea-
sured stellar parameters (Petigura et al. 2017, from HIRES
observations within the California—Kepler Survey) of the effec-
tive temperature Ty = 5400.5 + 60 K, the surface gravity
logg = 4.372 + 0.100, and metallicity Fe/H = 0.201 + 0.040 we
modelled the stellar radius, mass, and age with stellar evolu-
tion models. We extracted the corresponding values from MESA
(Paxton et al. 2011, 2013, 2015) evolutionary tracks interpolated
by MIST (Dotter 2016; Choi et al. 2016), rejecting values of the
very early evolution below 0.1 Gyr. The results are visualised
in Fig. 4 as a mass-age diagram and in Fig. 5 as a radius-
age diagram with the best-matching value and the 1o, 207, and
30 areas as a black star and red, orange and grey dots respec-
tively. For comparison, the gyrochronological stellar age derived
below is plotted in green; it fits within the 1o errorbars. The

stellar parameters are derived to be ms = 0.94*03 M, for the

mass, Rs = 0.934t8:8‘1‘2 Ry for the radius, and a stellar age of

Tevol = 6.7 Gyr.

We corrected the photodynamically-determined parameters
that depend on stellar mass and radius, namely planetary masses,
semi-major axes, and radii, with these newly determined val-
ues. The corrected values are listed in column six of Table A.2.
The planetary masses and radii of Kepler-82b/c are compared in
Fig. 6 with literature values of planets with masses up to 20 Mg
from The Extrasolar Planets Encyclopaedia’.

For testing the results of the stellar evolution model analysis
we applied the gyrochronologic age determination method to the
Kepler-82 system. Therefore we determined its rotation period
from the Kepler long-cadence photometry excluding the tran-
sits of Kepler-82b/c (Lomb 1976; Scargle 1982; Zechmeister &
Kiirster 2009). There are three small amplitude peaks in the
periodogram; from these the highest-power peak corresponds
to 34.7 + 0.8 days. Here, the period and error are determined
as the mean and standard deviation from fitting a Gaussian to
the peak. We made use of Barnes (2007, 2009) gyrochronologic
estimation for determining the age of Kepler-82 based on its

3 http://exoplanet.eu/
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Fig. 4. Mass-age diagram of Kepler-82 from MESA stellar evolution
models (MIST). The black star and the red, orange, and grey dots corre-
spond to the best matching value and the 1o, 20, and 30 areas derived
from results on the density of the whole set photodynamical modelling
and from the literature values of the effective temperature, the surface
gravity, and the metallicity by Petigura et al. (2017). The gyrochrono-
logic age is indicated in green by a solid line and its 10~ range as dashed
lines.
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Fig. 5. Radius-age diagram of Kepler-82 from MESA stellar evolu-
tion models (MIST). The black star and the red, orange, and grey dots
correspond to the best matching value and the 1o, 20, and 30 areas
derived from results on the density of the whole data set photodynami-
cal modelling and from the literature values of the effective temperature,
the surface gravity, and the metallicity by Petigura et al. (2017). The
gyrochronologic age is indicated in green by a solid line and its 10 range
as dashed lines.

rotational period:
1
log(7Gyro) = ;[log P —loga—bxlog(B-V -c)], @)

with @ = 0.770 £ 0.014, b = 0.553 £ 0.052, ¢ = 0.472 + 0.027,
and n = 0.519 + 0.007. Assuming the spectral type G7 for
Kepler-82 leads to B—V = 0.721 (Everett et al. 2012). Following
the Barnes (2009) error estimation, we derive the gyrochrono-
logical age of Kepler-82 to be 6.8 + 1.1 Gyr. This value fits the
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Fig. 6. Mass-radius diagram for known planets with masses up to
20 M. In yellow are the planets with mass measurements obtained by
RVs and in green the planets with mass measurements obtained from
TTVs. The data are given by The Extrasolar Planets Encyclopaedia.
Our results are shown in red (Kepler-82b) and in blue (Kepler-82c).
For comparison also the values of Uranus and Neptune are shown, the
Neptune-like planet pair of our solar system.

age determined by stellar evolution models very well within the
1o range. It is indicated with green in the mass-age and radius-
age diagram (Figs. 4 and 5) with the mean as a solid line and the
standard deviation in dashed lines.

From the recently published second Gaia data release (Gaia
Collaboration 2016, 2018) the effective temperature and the stel-
lar radius were calculated to be Teer = 5401 + 180 K and Rg =
0.854*09% R, by Berger et al. (2018). While the effective tem-
perature perfectly fits the HIRES value, the stellar radius is
significantly smaller. It fits within the 1o range of the value
derived by the photodynamical analysis, and within the 20~ range
the value derived with the stellar evolution models. The distance
of Kepler-82 is determined to 905+2} pc by Berger et al. (2018).

The discrepancy between stellar parameters derived by Gaia
and by the combination of the photodynamical analysis and
spectroscopic parameters could be a hint of another star that
contaminates the light of Kepler-82. Inspecting a small region
around Kepler-82 revealed a star about two magnitudes fainter
at 10 arcsec distance. This distance is large enough so that
the Kepler light curve should not be contaminated by this star.
In the unlikely case of contamination, the radii of the plan-
ets would be underestimated by ten percent in maximum. That
would make Kepler-82c to be an even more puffed-up exoplanet
in the Neptune-like regime. The stellar radius and hence the den-
sity should not be affected by the light of a second star, as it is
dependent upon the transit duration which is not changed. This
agrees well with the fact that the photodynamical determined
stellar radius matches the Gaia radius within its errorbars. It
should be noted that the largest discrepancy is between the Gaia
and the spectroscopic measurement, whereas the photodynam-
ical one is in between. A further research of this deviance is
beyond the scope of this paper.

6. Conclusions

In this work the first dynamical analysis of the Kepler-82 sys-
tem was carried out, resulting in the discovery of a fifth planet.
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The signal of this planet is found in the TTVs of Kepler-82c.
In addition to the sinusoidal behaviour due to the interaction
with Kepler-82b being near the 2:1 resonance, the TTVs show
the so called chopping signal manifesting in a jump every three
consecutive transits. After optimising a 2-planet photodynamical
model near the 2:1 resonance to the Kepler long- and short-
cadence data, we analysed the data with two different 3-planet
system models. The systems differ in the ratio of the distance
of the outermost fifth planet to Kepler-82c, either a 6:2:1 or a
3:2:1 near-resonant system were possible. The first evidence that
the 3:2:1 resonance system model was the correct assumption
was provided by the X?ed’ which is a little better than the one
from analysing with the 6:2:1 resonance model. The 3:2:1 res-
onance model is also more favourable considering the mass of
planet f is of the same order as planets b and c. This system
model better fits into the “peas in a pod” architecture of most
systems found by Kepler (Weiss et al. 2018). This is emphasised
by the light curves collected in the framework of KOINet. The
three new transit observations prefer the 3:2:1 resonance model
and in addition a light curve including no transit measurement
was taken during the time where a transit was predicted by the
6:2:1 resonance model. Additionally, the avoidance of inclina-
tions that lead to transits by the third planet in near 3:2 resonance
fits very well with the observations. Finally, with the periods
of the planets in the 3:2:1 resonance system, except for two of
them the frequencies in the TTVs of Kepler-82b/c detected by
Ofir et al. (2018) can be explained by the super and the chop-
ping frequencies. The most important point here is that Ofir
et al. (2018) noticed a significant offset in the highest amplitude
frequency of the TTVs of Kepler-82¢ from the near 2:1 mean
motion resonance frequency. This peak is explained by the super
frequency of the near 3:2 resonance of Kepler-82f and Kepler-
82c. We conclude with announcing the detection of a fifth planet
positioned in near 3:2 resonance to Kepler-82c. After the recent
discovery of Kepler-411e (Sun et al. 2019), Kepler-82f is the sec-
ond non-transiting planet detected via the TTVs of two other
planets.

Determining the correct system architecture is important for
modelling the right planet compositions. These highly depend on
the assumed system architecture. The 2-planet model with signif-
icantly higher )(fe 4 supposes a density ratio between planet b and
c of about ~14, whereas in the 3:2:1 resonance model especially
the mass of Kepler-82b drops by about an order of magnitude
resulting in a much more common (and reasonable) density ratio
of ~2.
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Appendix A: Additional plots and tables

£0
2
el
$
ol

o
N ~——— 3:2:1 best model on Kepler data
< = 3:2:1 best model on Kepler and KOINet data
o

ok | Kepler long cadence data -

{  KOINet data

__6F 1

w

£}
2
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% top and Kepler-82c at the bottom with tran-
Ko} 9 sit times from modelling the transits individu-
5 ally. The black points refer to the transit data
g) from the Kepler telescope. The red points are
S0 the individual transit times from the new KOINet

observations. The grey area indicates the 68.3%
confidence interval of the 3:2:1 resonance model
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Fig. A.2. Configurations of the Kepler-82 system. With the star in grey on the left side and the observer on the right side this shows the two different
configurations: b in violet has the same position in both, ¢ and f in red shows configuration I and in blue configuration II. The grey area indicates
the region of impact parameters below one. The distances are true to scale with the stellar radius. Additionally, the two inner planets are plotted in
green, the data are taken from the NASA Exoplanet Archive. They are plotted on both sides because we did not include them in the photodynamical
analysis and hence we do not know how they behave in the two configurations.
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Table A.1. Ephemerides E and transit time predictions in BJD-2 400 000.0 from modelling Kepler and KOINet data for the next 15 yr.

E BJD E BID E BID E BID

Kepler-82b

133 58491.2327(78) 188  59945.6559(140) 243 61400.0816(164) 2908 62854.5228(154)
134 58517.6757(80) 189 59972.1003(141) 244 61426.5237(164) 299  62880.9705(152)
135 58544.1187(81) 190 59998.5465(141) 245  61452.9658(165) 300 62907.4159(152)
136  58570.5609(83) 191  60024.9908(141) 246  61479.4095(165) 301  62933.8627(151)
137 58597.0068(84) 192 60051.4355(142) 247  61505.8527(166) 302 62960.3066(151)
138 58 623.4495(86) 193  60077.8793(143) 248  61532.2962(166) 303  62986.7544(150)
139 58649.8947(86) 194  60104.3241(142) 249  61558.7399(167) 304 63013.1981(150)
140 58676.3391(88) 195 60130.7667(143) 250 61585.1852(167) 305 63039.6433(149)
141 58702.7857(88) 196  60157.2097(144) 251 61611.6291(167) 306 63066.0878(149)
142 58729.2287(90) 197 60183.6534(145) 252 61638.0751(167) 307 63092.5323(148)
143 58755.6765(90) 198  60210.0953(145) 253 61664.5197(168) 308 63118.9747(148)
144  58782.1205(92) 199 60236.5371(147) 254 61690.9672(167) 309 63145.4188(148)
145 58808.5676(91) 200 60262.9801(148) 255 61717.4115(168) 310 63171.8614(149)
146 58835.0118(93) 201  60289.4217(148) 256  61743.8595(167) 311  63198.3035(149)
147 58861.4591(93) 202  60315.8630(150) 257 61770.3053(167) 312 63224.7456(149)
148 58 887.9031(94) 203 60342.3056(151) 258 61796.7530(166) 313 63251.1875(150)
149 58914.3495(94) 204  60368.7475(152) 259 61823.1979(166) 314 63277.6289(150)
150 58940.7934(96) 205 60395.1890(153) 260 61849.6473(164) 315  63304.0698(151)
151 58967.2398(95) 206 60421.6317(155) 261 61876.0919(165) 316  63330.5110(152)
152 58993.6827(97) 207 60448.0743(156) 262  61902.5393(163) 317 63356.9527(152)
153 59020.1276(97) 208 60474.5168(157) 263 61928.9854(163) 318 63383.3930(154)
154 59046.5716(98) 209  60500.9603(158) 264  61955.4328(161) 319  63409.8340(155)
155 59073.0148(99) 210 60527.4037(159) 265 61981.8771(161) 320 63436.2758(155)
156  59099.4571(100) 211 60553.8485(160) 266  62008.3245(160) 321  63462.7167(156)
157  59125.9010(101) 212 60580.2918(162) 267 62034.7689(159) 322 63489.1580(158)
158 59152.3426(102) 213 60606.7375(162) 268 62061.2140(158) 323 63515.6009(159)
159 59178.7840(104) 214 60633.1824(163) 269 62087.6584(158) 324 63542.0429(160)
160 59205.2266(105) 215  60659.6285(163) 270 62114.1031(157) 325 63568.4846(161)
161 59231.6677(107) 216  60686.0730(165) 271  62140.5463(156) 326 63594.9293(161)
162 59258.1085(108) 217  60712.5216(164) 272 62166.9898(156) 327  63621.3717(162)
163 59284.5502(110) 218 60738.9659(165) 273 62193.4328(155) 328 63647.8158(163)
164 59310.9914(112) 219  60765.4137(165) 274  62219.8757(154) 329  63674.2594(164)
165 59337.4321(114) 220  60791.8599(166) 275 62246.3176(154) 330 63700.7052(164)
166 59363.8735(116) 221 60818.3081(164) 276  62272.7598(155) 331  63727.1480(165)
167 59390.3151(117) 222 60844.7527(166) 277  62299.2023(154) 332 63753.5951(165)
168 59416.7567(119) 223 60871.2021(165) 278  62325.6436(154) 333 63780.0389(166)
169 59443.1983(121) 224 60897.6472(165) 279  62352.0850(154) 334  63806.4861(165)
170  59469.6408(123) 225  60924.0946(164) 280 62378.5279(154) 335  63832.9296(167)
171  59496.0836(125) 226  60950.5402(165) 281  62404.9690(154) 336  63859.3772(166)
172 59522.5265(126) 227  60976.9875(163) 282  62431.4105(155) 337 63885.8215(167)
173 59548.9693(128) 228 61003.4318(163) 283  62457.8536(155) 338 63912.2682(166)
174 59575.4148(129) 229 61029.8781(163) 284  62484.2956(155) 339  63938.7120(167)
175 59601.8574(131) 230 61056.3226(163) 285 62510.7379(155) 340 63965.1594(167)
176 59 628.3030(132) 231 61082.7678(162) 286 62537.1817(156) 341  63991.6023(168)
177 59654.7478(134) 232 61109.2114(162) 287  62563.6254(156) 342 64018.0479(167)
178 59681.1942(134) 233 61 135.6556(162) 288  62590.0680(156) 343 64 044.4922(168)
179  59707.6379(136) 234 61162.0995(161) 289  62616.5136(156) 344 64070.9364(168)
180 59734.0866(136) 235 61 188.5422(162) 290 62642.9573(156) 345  64097.3789(169)
181 59760.5308(137) 236 61214.9851(162) 291  62669.4031(155) 346 64 123.8236(170)
182 59786.9783(137) 237 61241.4285(162) 292  62695.8471(156) 347  64150.2657(171)
183 59813.4238(139) 238 61267.8702(162) 293 62722.2942(155) 348 64 176.7075(172)
184 59839.8718(138) 239  61294.3120(162) 294 62748.7387(155) 349  64203.1501(173)
185 59866.3161(140) 240 61320.7550(162) 295  62775.1860(155) 350 64229.5917(174)
186  59892.7641(139) 241  61347.1967(163) 296 62801.6304(155) 351  64256.0326(175)
187 59919.2089(141) 242 61373.6382(163) 297  62828.0789(153) 352 64282.4739(177)

Notes. The median and standard deviation solution of 1000 randomly chosen good models. Reference times for ephemeris E=1:
Ty, = 54974.2409(12) and T, = 54 955.5862(22).
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E BID E BID E BIJD E BIJD

Kepler-82¢

69 58511.9213(51) 97 59955.0537(94) 125 61398.0596(170) 153 62841.1069(181)
70 58563.4587(50) 98 60006.5884(106) 126  61449.5997(168) 154  62892.6426(169)
71 58615.0271(63) 99  60058.1120(99) 127  61501.1194(171) 155 62944.1653(168)
72 58666.5477(58) 100 60109.6316(109) 128 61552.6564(211) 156 62995.7474(207)
73 58718.0834(51) 101  60161.1717(114) 129  61604.1925(205) 157 63047.2834(187)
74 58769.6185(58) 102 60212.6931(118) 130 61655.7116(210) 158 63098.8153(183)
75 58821.1380(52) 103 60264.2227(140) 131  61707.2758(266) 159  63150.4148(180)
76  58872.6773(49) 104  60315.7634(137) 132 61758.8083(257) 160 63201.9487(157)
77 58924.1995(49) 105 60367.2860(141) 133 61810.3307(263) 161 63253.4866(151)
78 58975.7233(48) 106  60418.8402(184) 134  61861.9183(295) 162 63305.0819(114)
79  59027.2653(47) 107  60470.3785(177) 135 61913.4470(279) 163 63356.6105(113)
80 59078.7886(49) 108  60521.9032(183) 136  61964.9745(281) 164 63408.1497(119)
81 59130.3301(62) 109 60573.4843(225) 137 62016.5681(261) 165 63459.7170(151)
82 59181.8732(58) 110  60625.0176(219) 138  62068.0914(244) 166 63511.2413(161)
83  59233.4008(59) 111 60676.5439(228) 139  62119.6225(243) 167 63562.7815(162)
84 59284.9733(87) 112 60728.1367(240) 140 62171.2001(178) 168  63614.3177(210)
85 59336.5156(80) 113 60779.6613(234) 141  62222.7205(171) 169 63665.8397(210)
86 59388.0482(83) 114 60831.1886(243) 142 62274.2547(175) 170  63717.3808(207)
87 59439.6448(102) 115 60882.7736(213) 143 62325.8041(127) 171  63768.9029(219)
88 59491.1819(98) 116  60934.2908(211) 144 62377.3249(129) 172 63820.4267(202)
89 59542.7160(107) 117  60985.8186(220) 145 62428.8641(135) 173 63871.9669(202)
90 59594.3141(102) 118 61037.3776(167) 146  62480.3915(129) 174 63923.4873(200)
91 59645.8400(104) 119 61088.8929(171) 147  62531.9134(133) 175 63975.0305(161)
92  59697.3710(116) 120 61 140.4255(182) 148 62583.4535(135) 176 64 026.5707(159)
93  59748.9480(90) 121  61191.9578(149) 149  62634.9733(137) 177  64078.0964(152)
94 59800.4643(96) 122 61243.4763(155) 150 62686.5010(148) 178 64 129.6718(140)
95 59851.9942(111) 123 61295.0151(161) 151 62738.0382(144) 179 64 181.2144(132)
96 59903.5382(85) 124  61346.5365(157) 152 62789.5566(144) 180 64232.7492(127)
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Table A.2. Stellar and planetary parameters from the photodynamical modelling of the 2:1 resonance solution on Kepler long- and short-cadence
data, the 6:2:1 resonance solution on Kepler data, the 3:2:1 resonance solution on Kepler data, the 3:2:1 resonance solution on Kepler data and the
three KOINet transit light curves, and some corrections from investigating stellar evolution models in Sect. 5.4.

Parameter Kepler data Kepler data Kepler data Kepler & MESA

KOINet data
2:1 6:2:1 3:2:1 3:2:1 3:2:1

Kepler-82b

my/ms 0.00068270:900021 0.0000563*9-9000072 0.0000374:5000062  0.0000401 59000028

m (Mg) 207 + 10 171733 113721 12,1508 125792

A corr 0.9999097+0:9900067 0.999927 + 0.000011  0.9999605* 30000057 0.9999606* 0000042

ar (AU) 0.1684 + 0.0021 0.1683 + 0.0020 0.1683 +£0.0020  0.1683 +0.0020  0.1702*3%18

P; (d) 26.44 +0.48 26.44 +0.48 26.44 +0.48 26.44 +0.48 26.44*082

ey 0.01737+0:90068 0.0024+0:0011 0.003075:9024 0.0033*9001

iy (°) 88.49018 89.109*9-032 89.031+0068 89.052+0:049

Q, () 0 (fixed)

wp (°) 254.6 + 1.3 214+ 231*% 2362

My corr (°) 0.079 +0.018 —0.094+5023 -0.026*90} -0.025*9019

M; (°) 3546+ 1.3 35043 18439 1342

Ry/Rs 0.04428+0.90127 0.04125*9:00040 0.0416670.90053 0.04159+0.90049

R (Rg) 574703 3.967043 413102 4.07+024 4.24+022

pi(gem™) 6.022 1497079 0.88+0-12 0.98%01¢

Kepler-82¢

me [y, 0.156 + 0.012 1.06 +0.14 123702 1147014

m? (Mg) 32222 18.0*18 13.9%14 13.9%13 143+13

decorr 1.003856* 9000055 0.9998607+0-000041 0.999934+0.000030  0.999947+-000018

a; (AU) 0.2637 + 0.0032 0.2626 + 0.0032 0.2626 + 0.0032 0.2626 £0.0032  0.2655%)0038

P; (d) 51.84 +0.95 51.53 +0.94 51.53 +0.94 51.54 +0.94 51.508

ec 0.0685*000!3 0.0103+:90% 0.0072+3:9019 0.0070*9-0018

ic (°) config. I 89.19+013 89.96 +0.18 90.18*0:17 90.15+9:18

ic (°) config. IT 90.76*0:12 - 89.73*013 89.78%0.11

Q. (°) config. I 0.0170% 16713 1.8720 1L6+2.1

Q. (°) config. IT 0.29 +0.10 - - -

we (°) 271.5004 26813 161%1% 162433

Me.corr (°) —0.952+0.042 —0.554+0018 —0.509+0:929 —0.507 + 0.020

M; (°) 19.99*07 PRM 132%23 131%29

R./Rs 0.0578+9:5017 0.05423+0:00048 0.05461+0:90073 0.05453+0:00068

R: (Rg) 7.49%0.72 5.1970:20 5.41%033 5.34%032 5.56+0-28

pi(g em™) 0.42%0.16 0.693+0.977 0.48070:083 0.494+0-070

Kepler-82f

mg/me - 23.01’%1? 1 .50’:8:}2 1 .50“:81}2

m: (Mg) - 415+23 209+ 1.0 209+ 1.0 21.6%19

P¢/P, - 3.1245+0:0023 1.46969*0:00044 1.46940%0.00023

P; (d) - 161.03*312 75.747+0:923 75732+ 0.012

a; (AU) - 0.5616 + 0.0068 0.3395 + 0.0041 0.3395+£0.0041  0.3432+0:9937

er - 0.0912+(:90¢6 0.0016%5:9022 0.0014+0-0018

ir (°) config. I - 90.637 86.21*078 86.30 + 0.56

Notes. Listed are the median values and 68.26% confidence interval from the MCMC posterior distribution. The osculating orbital elements are
given at a reference time, BJD = 2454 933.0. ®Derived, not fitted parameters.
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Table A.2. continued.
Parameter Kepler data Kepler data Kepler data Kepler & MESA
KOINet data
2:1 6:2:1 3:2:1 3:2:1 3:2:1
ir (°) config. IT - - 93.63f8:g; 93.62J_r8:§g
Q (%) - 1743 1.9+22 16723
wr (°) - 279.5%43 77+ 62+
M;s (°) - 92.54_“2:2 11 lfg 1251“%
Kepler-82
mg(Mg) 0.91 £ 0.03 (fixed, Johnson et al. 2017) 0.94*:81831
Rs (Ro) 118610082 0.88010025 0.907+0042 0.898+0042 0.93470.04
ps(g cm™3) 0.77f8;}3 1.89f81?g 1.72j8:£ 1.77f8:;§
03103 0498306 05157908 0522958
€2 Kepler 0.66*93¢ 0.19*91 0.134+0:999 0.12*008
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Chapter 4

Summary, conclusion and outlook

In this thesis, ground-based follow-up observations of two Kepler systems were eval-
uated and a photodynamical model was developed for a comprehensive and self-
consistent analysis of the systems. The results of the photodynamical analysis of
Kepler and KOINet data for the Kepler-9b/c and the Kepler-82b/c system are sum-
marised and discussed in the following sections. Afterwards, both systems are exam-
ined in context of the topical literature given in the introduction , especially
on multi-planet systems. Furthermore, this chapter gives an outlook on an analysis
technique that could provide even more precise parameter determinations by consid-
ering correlated noise due to stellar variability for example. The chapter concludes
with an outlook on possibilities for future follow-up observations.

4.1 The disappearing transits of Kepler-9c

With three confirmed planets orbiting Kepler-9, the system is the first multi-planet
system detected by the transit method, over and above it is the first system where
transit timing variations were measured (Holman et al., 2010). The early detection
of this system during the time of the Kepler mission, demonstrated the high impact
the telescope will have for measuring transiting exoplanet systems and dynamical
interactions between the planets of a system resulting in TTVs. Before, only hot
Jupiter type planets in single-planet systems were discovered with the transit detection
technique. For these planets no TTV signals are measured due to the lack of further
exoplanets in their vicinity.

In this thesis, the characterisation of the Kepler-9 system is brought to a new level
by using a photodynamical model to analyse the long and short cadence data from
the Kepler telescope of the system accomplished by ground-based follow-up transit
observations collected in the framework of the KOINet. The modelled planetary pa-
rameters are determined with a precision of about ~ 1 % by the analysis, this above
all also applies for the density ratio of the two planets. The planets have the most
precise determined density values of exoplanets in the Neptune-mass regime from this
extensive, self-consistent analysis. The largest impact on the achievement of these
results was the use of a photodynamical model, instead of modelling the transits in-
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dividually and applying a dynamical analysis to the transit times afterwards, and
the use of Kepler short cadence data. Since the dynamical cycle of the system was
already very well covered by Kepler data, the addition of the KOINet data only led
to small improvements. Nevertheless, this project showed the functionality of the
KOINet and its data reduction pipeline. The timing accuracy of KOINet data was
investigated by the simultaneous observation of a transit of Kepler-9b with four differ-
ent telescopes located at different sites. The consistency of the modelled transit times
proofed the possibility of using ground-based observations from several telescopes to
follow-up one target. Additional to the planetary parameters, the photodynamical
analysis models the stellar density. Combining this parameter together with stellar
effective temperature, surface gravity and metallicity values derived from high reso-
lution spectroscopic observations by [Petigura et al.| (2017) in stellar evolution models
led to a precise determination of the stellar age, mass and radius. Another advantage
of the photodynamical analysis is the self-consistent modelling of all transits simul-
taneously. This feature led to the possibility of picking up the small transit duration
variations in the transits of the Kepler-9b/c system resulting in the prediction of the
transits of Kepler-9c to disappear at around 2050. The reason for that is a precession
of the planetary orbits due to mutual inclination changes. Likewise, planet b will
move towards the lower latitudes of the star in the upcoming years. Therefore, future
transit observations of both planets will scan the different latitudes of the star, with
planet ¢ the limb will be measured and planet b will get into regions where star spots
can occur, that means possible spot crossings during transit.

The Kepler-9b/c planets have a period ratio near the 2:1 commensurability, but
the resonance angles are oscillating in the systems. This means the planets are not
in mean-motion resonance, but close enough to show strong TTVs. It is also a sign
for stability as the planet-planet interaction is not that strong to disrupt the system.
Nevertheless, the stability was investigated by a numerical integration of the system
over 1 Gyr. During this integration the system remained stable.

Recently, |Kipping et al| (2019)) detected a system in the TESS data similar to
Kepler-9b/c with two gaseous, low-density planets in similar distance to its host star.
These planets are showing strong anti-correlated, sinusoidal like TTVs as well. An-
other system of similar architecture is Kepler-46 (Nesvorny et al., 2012, [Saad-Olivera,
et al., [2017), where additional to two gaseous Neptune-like TTV planets a small com-
panion much closer to the host star is found. This planet is similar to Kepler-9d. The
system architecture similarities leads to the question of the occurrence rate of such
systems and their formation mechanism.

In future photodynamical analysis of the Kepler-9 system, the light curves can
be combined with the new radial velocity measurements obtained by Borsato et al.
(2019). The authors studied the discrepancy in the mass determination between
radial velocity and TTV measurements. Both analysis yield mass determinations
consistent to each other and to the results of the photodynamical analysis conducted
in this thesis. The combination of transit light curves and radial velocity curves in a
photodynamical analysis is already successfully performed on for example Kepler-117
(Almenara et al., 2015), K2-19 (Barros et al., [2015)), WASP-47 (Almenara et al., 2016),
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Kepler-419 (Almenara et al., [2018]), and Kepler-88 (Weiss et al., [2019)). Additionally,
the photometric and spectroscopic data of the triple star system EPIC 249432662
(Borkovits et al., |2019a)) and the quadruple star system HIP 41431 (Borkovits et al.|
2019b)) have been photodynamically analysed.

4.2 A non-transiting planet orbiting Kepler-82

Four confirmed planets were known from transit observations in the Kepler-82 system.
Two smaller inner planets do not show TTV signals and are dynamically independent
from the outer two Neptune-size planets that have a period ratio near the 2:1 com-
mensurability and show strong TTV signals. The TT'Vs of these two larger and outer
planets, Kepler-82b/c, were only used before to calculate nominal masses of the plan-
ets assuming that one of the planets is solely responsible for the TTVs of the other
planet. A dynamical analysis of the T'TVs was not examined for this system before.

In this thesis, a photodynamical analysis of the Kepler-82b/c system was carried
out on Kepler long and short cadence data combined with new KOINet transit ob-
servations. A chopping component in the TTVs of planet ¢ can not be explained by
the interaction with planet b. Therefore, a third planet was introduced. Based on the
chopping pattern with a jump after each three consecutive transits in the transit times,
an outer planet with a period ratio to planet ¢ near the 3:2 or 3:1 commensurability
are the two possible solutions. Photodynamical analysis of both planetary systems on
Kepler data results in similar probabilities with a small preference for the planet near
a 3:2 period ratio to planet c. Shortly after Kepler observations of this object ended,
the two models start to differ in its transit time predictions. With the ground-based
follow-up observations performed in the framework of the KOINet, the preference of
the system model with the unknown planet near a 3:2 period ratio can be confirmed.
The resulting planetary system resembles the main peaks from the frequency analysis
of the TTVs performed by Ofir et al.| (2018) when calculating TTV frequencies based
on the TTV super periods and chopping periods. Additionally, the new planet avoids
the inclination regime where transit measurements are possible. This is important
as the mass of this planet is 1.5 times higher than the one of planet ¢ and, there-
fore, a larger radius can be assumed which means a higher detectability probability
for this planet. The photodynamical analysis of the Kepler-82 system performed in
this thesis results therewith in the detection of a fifth planet in the system, called
Kepler-82f. Additionally, the determined stellar density together with spectroscopic
stellar parameters helped for inferring precise stellar age, mass and radius values in
the similar way as for Kepler-9. The planetary densities of planet b and ¢ are mod-
elled as well. These values are highly dependent on the assumed planetary system
model. When only the two transiting planets are taken into account the density ratio
between the two planets acquires a very unusual high value of ~ 14. By including the
non-transiting planet with a period ratio to planet ¢ near the 3:2 commensurability,
the density ratio of planet b to ¢ reduces to a more common value of ~ 2.

Although the Kepler-82 planets b, ¢ and f have a period ratio near 1:2:3 commen-
surability, non of the planet pairs have librating resonance angles, nor is the Laplace
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resonance angle of the three planets librating. The absence of a mean-motion reso-
nance makes the planetary system stable as confirmed by a numerical integration of
the system over 10 Gyr.

Similar to Kepler-9b/c the three giant planets in the Kepler-82 are subject to
mutual inclination changes. Therefore, the invention of the Kepler telescope only few
hundred years earlier or later could have shown another combination of transiting
planets.

4.3 Multi-planet systems

Both systems analysed in this thesis, Kepler-9 and Kepler-82, are multi-planet sys-
tems. Kepler-9 has three confirmed planets in total and Kepler-82 got to one of the
the 21 detected five-planets systems reported in the NASA Ezoplanet archive (2019,
September 15) by the examination in this thesis. Therefore, a classification of the
results in the current literature on multi-planet systems will be conducted in the
following.

Firstly, the systems will be classified in the abundances of distances, radii and
masses in comparison with single-planet systems discussed in [Figure 1.4l The planets
considered during the photodynamical analysis in both systems, Kepler-9b/c and
Kepler-82b/c/f, are conform with the observation of planets in multi-planet systems
to span a wider range of distances in the outskirts in comparison to planets in single-
planet systems. The inner planets of the systems, Kepler-9d and Kepler-82d/e, fit
into the distribution as well. All planets considered in the dynamical analysis are with
its radii and masses of Neptune-like nature. Hence, they fall in a valley where only
a small fraction of transiting planets are detected in single and in multiple systems,
but they are not large enough to fall into the second peak of planets mainly found
in single-planet systems with sizes of the order of Jupiter. The detection by |Ciardi
et al.| (2013) of a tendency of the outer planet to be the larger one for planet pairs
larger than Neptune is not matched by the Kepler-9b/c system, where Kepler-9b is
the more massive planet. In contrast, the three Neptune-size planets Kepler-82b/c/d
are arranged from close to far by their mass with the inner planet the lightest one.
This system is conform with the observation by |Ciardi et al. (2013)). Additionally,
these three planets in the Kepler-82 system are conform with the ‘peas in a pod’
theory (Weiss et al., 2018, Millholland et al., [2017): they are regular spaced and
of similar size. This is another argument against a new planet near the 3:1 period
commensurability to planet ¢, such a planet would have a mass of ~ 23 times the
mass of planet ¢, instead of ~ 1.5 times in case of Kepler-82f. The outer planetary
system can be considered independently in this matter, since the two inner planets
are far apart from the outer three planets.

The prediction of the disappearing transits for Kepler-9c, as well as the detection
of a non-transiting planet, Kepler-82f, present a possibility to explain missing planets
in the regular spacing of transiting systems. Here, the planets can appear or disappear
due to orbital precession provoked by planet-planet interactions. Precession was also
measured in for example the K2-146 system, where [Hamann et al. (2019) detected
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the transits of the second planet to appear during the observation period due to a de-
creasing impact parameter. In this system, the reason for the orbital precession is as
well planet-planet interaction. For the many transiting systems with a planet showing
TTVs that can not be explained by any other detected planet in the system such pre-
cession effects can be the reason for the perturber to be non-transiting. Additionally,
some of the gaps in a more or less regular spacing between planets in multi-planet
systems (Titius-Bode law, discussions by e.g. Hayes & Tremaine] [1998| |Laskar, |2000)
could be filled by planets that are occasionally out of the transiting plane due to the
interaction with the other planets. This possibility substantiates the predictions by
Sandford et al.| (2019) about undetected planets in the Kepler planetary systems. The
planet Kepler-82f could not be detected by transits due to slight differences in the
inclination in comparison to the other system planets and the same could have been
happened to Kepler-9c if the system would have been detected a hundred years later.
This is a possible scenario for the other planetary systems detected by Kepler as well.

4.4 Correlated noise

Additional to the random white noise, an important type of noise in photometric
data is time-correlated noise. The source of correlated noise can be astrophysical and
instrumental. Stars can show for example granulation on its surface or other activi-
ties that lead to correllated noise. Further examples for correlated noise are telluric
variations from changing weather conditions, imperfect flat-fielding, differential ex-
tinction or not perfectly modelled telescope systematics. Considering correlated noise
in the detrending of stellar light curves rather than just a modelling with a polynomial
would lead to improvements of the results of further analysis. While white noise is
easily handled in a y2-minimisation for example, correlated noise needs more sophisti-
cated methods. One of these techniques are Gaussian processes, a stochastical process
where every finite collection of variables is a multivariate Gaussian random variable.
When computing a likelihood function including Gaussian processes for considering
correlated noise the computing time usually scales as the cube of the number of data
points. This is an obstacle for usage on large data samples like the Kepler obser-
vations. [Foreman-Mackey et al.| (2017)) developed an alternative of Gaussian process
computation where the computing time scales linearly with the number of observation
points. This is realised by using specific classes of covariances matrices that have a
semiseparable structure. With them the system can be directly factorised and solved.
This technique is only applicable for one-dimensional data sets. Implemented is this
method in the python routine called celerite.

One source of correlated noise in stellar light curves are asteroseismic signals in-
duced by stellar oscillations. Solar-like oscillators are dominated by pressure modes
(p-modes). The p-mode frequency pattern, when v, is the frequency of an oscillation
mode with radial order n and spherical degree [, can be described by (e.g. Tassoul,
1980, [Mosser et al., 2011):

[
Ung ~ Av <n+ 5 +€> — oy,
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Figure 4.1: Periodogram of the Kepler short cadence data of Kepler-36 without tran-
sits. The top shows the Lomb-Scargle spectrum in black and a smoothed version in
blue. The orange line indicates the value of the white noise. The bottom plot shows
the data modelled with celerite in blue and the white noise value in orange.

with the mean large frequency separation v, the offset of the radial [ = 0 modes €, and
the small frequency separation of non-radial modes d14;. Such stellar oscillations are
connected to the stellar mass, radius and density. Therefore, a modelling of measured
stellar oscillations yields another method for stellar parameter determinations. Such
a modelling can be performed with celerite as shown by Foreman-Mackey et al.
(2017).

An interesting target that shows asteroseismic signals and TTV planets is the
Kepler-36 system (Carter et al., [2012). The two transiting planets are close to
each other with a period ratio near the 6:7 commensurability and show strong, anti-
correlated TTVs revealing a very high density ratio. A periodogram of the Kepler-36
light curve (like in the top of [Figure 4.1] and [Figure 4.2)) shows asteroseismic signals
with frequencies around ~ 1250 puHz with spherical orders [ = 0,1,2 at a few radial
orders, n. [Carter et al. (2012) performed a classic asteroseismic analysis on the avail-
able Kepler short cadence data and used the determined stellar mass and density from
this analysis as priors in a photodynamical analysis of the first ten quarters of Kepler
data. Combining the asteroseismic analysis directly with the photodynamical model
by using celerite and treating the oscillations as correlated noise in the light curve
would be the overall goal in order to improve the stellar and planetary parameter de-
termination of this system. An example where Gaussian processes were successfully
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Figure 4.2: Same plot as but zoomed into the region with asteroseismic
signals.

used for handling the correlated noise due to asteroseismic signals in photometric data
is the microlensing event OGLE-2017-BLG-1186, the analysis was performed by |Li
et al. (2019).

First step in this direction is a correct modelling of the asteroseismic signal with
celerite. An initial approach would be the one given in the examples by Foreman-
Mackey et al.| (2017). In their example the star only shows oscillations at frequencies
of the spherical orders [ = 0,2 and these are so close to each other that they can be
modelled as one peak. Therefore, the model needs refinement for the application to
Kepler-36. A Lomb-Scargle periodogram (Lomb), [1976| [Scargle] |1982] implemented in
the astropy package (Astropy Collaboration et al.; 2013, |2018))) of all available Kepler
short cadence data with transits cut out (top of [Figure 4.1) and [Figure 4.2)) shows a
white noise background, two granulation components (the component with smaller
frequencies is related to the super-granulation), a peak at about 365 uHz related to an
artefact in the Kepler data and the asteroseismic pattern around 1250 pHz. To model
the white noise celerite provides a jitter component with the o as free parameter.
The quadratic addition of this parameter with the mean uncertainties of the data
results in the white noise value. The granulation components can be modelled by a
more simple version of the stochastically driven damped simple harmonic oscillator
term (SHOTerm) given in equation 24 by (Foreman-Mackey et al., 2017) with the
amplitude S, and the frequency w, as free parameters. The artefact is modelled by
the usual SHOTerm given in equation 20 by (Foreman-Mackey et al., |2017) with an
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amplitude S,, width @), and the frequency w, as free parameters. The asteroseismic
signals are modelled with the SHOTerm as well, but each peak has its own term and
the parameter are not independent from each other. The frequencies are given by the
know asteroseismic frequency relation

Wip,0 = 27 [Vmax + (Jo + €) - Av]
1
Wi 1 = 27 [Vmax + (J1 + 5+ €) - Av — 0y ]

and the amplitudes are given by

A o+ €) - Av]?
Sjo,ozfoexp (—[(JO QW)/Q | )

Q3
g . Al [(jl + % + E) -Av — (501]2
i1l = @eXP - o2
A2 [(jg +1+ 6) -Av — (502]2
Siz2 = (3 OXP (— 53 .

For these terms, W denotes a shared nuisance parameters modelling the width of the
whole asteroseismic signal around the maximum frequency vyax. Ag A1, As, Qo Q1,
()2 are nuisance parameter shared between the terms of each spherical order and the
radial orders are given by integers running from —3 to 3 for jy, from —3 to 2 for 7;, and
from —4 to 2 for js. The asteroseismic parameters mean large frequency separation,
ov, the offset of the radial [ = 0 modes, ¢, and the small frequency separation of
non-radial modes, dvy; and dvge are modelled by this implementation. This model
optimised on the Kepler-36 short cadence light curve results in a periodogram given
in the bottom of and a zoom into the region with the asteroseismic signal
is given in [Figure 4.1]

This implementation of an asteroseismic pattern does not deliver parameters opti-
mised comparable to classic analysis. Problem is the frequency dependency of Av, e,
and d1,;. Possible solutions are to model each peak individually and a calculation of
the asteroseismic parameters similar to classic literature (e.g. White et al., 2011) or to
implement a weighting of the peaks to account for the frequency dependency similar
for example to the work by |[Mosser et al. (2013). This must be taken into account
for comparing stellar parameters resulting from a maximisation of the log-likelihood
function given by celerite with the ones from other asteroseismic analysis.

For combining the asteroseismic model with the photodynamical analysis, this
idea of the oscillation pattern is good enough when using celerite only for handling
the noise of the light curve instead of detrending it by fitting a polynomial to the
out-of transit data. This means the asteroseismic parameters would be fixed during
an optimisation of the photodynamical model. This is probably necessary anyway to
reach a reasonable computing time. The asteroseismic analysis with celerite could
be applied afterwards in the refined version described above to the whole light curve
with the photodynamical model fixed on the optimised parameters.
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4.5 Future Observations

Future follow-up observations of the transits of the discussed planetary systems,
Kepler-9b/c and Kepler-82b/c, would improve the system characterisation, especially
due to the extended observation baseline. In case of Kepler-9c the observation of
further decreasing transit duration would confirm the prediction of the disappear-
ing transits. For the Kepler-82 system the dynamical cycle is not yet fully covered.
Resolving the full TTV cycle would serve a more precise planetary parameter char-
acterisation and the confirmation of the system configuration with the non-transiting
planet near a 3:2 period ratio to Kepler-82c. Such follow-up observation could be
realised from ground, but also from space. The TESS mission (Ricker et al., |2015)
launched on 2018 April 18 will visit the Kepler field in one or two sectors. |Christ
et al| (2019) calculated the probability of the detection of Kepler planets by TESS
and the signal-to-noise ratio (S/N) of their transits. For Kepler-9, they calculated a
detection probability of 0.614 (0.954) for planet b, when observed in one sector (two
sectors) and for planet ¢ of 0.286 (0.574). Hence, there is a very high probability
to detect Kepler-9b in the TESS data when observed in two sectors. For Kepler-9c,
which would be the object of higher interest due to the possibility of measuring a
decrease in the transit duration time, this probability is at least higher than 50 %.
However, due to the faintness of the host star the expected S/N is relatively low with
3.35 (4.80) for Kepler-9b when observed in one sector (two sectors) and 1.95 (3.23)
for Kepler-9c. These S/N values can be easily outperformed by ground-based obser-
vations, especially when an engineered diffuser is installed at the telescope as it is the
case for the 2.5 meter Nordic Optical Telescope (NOT). The S/N of transit observa-
tions of Kepler-9b/c with the NOT without the diffuser were already of the order of
~ 6 and the diffuser is expected to increase this value a lot (see, von Essen et al.
2019). Kepler-82 is probably too faint for the transits of its planets to be detected by
TESS: the planets are not listed by (Christ et al.| (2019)). Another space mission dedi-
cated on observing transiting planets is PLATO (Rauer et al., 2014)). Currently, it is
planned to be launched in 2026. The capabilities of PLATO to detect the discussed
planets are not yet calculated. In conclusion, ground-based follow-up observations are
probably the best option to further characterise the planetary systems, especially if
telescopes like the NOT with installed diffusers can be accessed. The only disadvan-
tage of ground-based follow-up observations is being tied up to the night-time, which
makes the full-coverage of a transit difficult and measuring each transit to resolve the
TTV cycle is impossible. The latter is also true for follow-up observations from space
as there is currently no mission planned to observe the Kepler field for a longer time.
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