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Preface

Parts of the Chapter 1 “Introduction” were already published in an altered and abbreviated
version as a review article in the journal Frontiers in Neuroscience. For this doctoral thesis,
the text was rephrased and mainly integrated in the sections 1.3.1, 1.3.2, 1.4.1 and 1.5. The
Figure 1 was adapted from the same aforementioned article. Detailed information of the
review article: Joppe K, Roser A-E, Maass F and Lingor P (2019). The Contribution of Iron

to Protein Aggregation Disorders in the Central Nervous System. Front. Neurosci. 13, 15.

Two manuscripts were prepared which resemble parts of this doctoral thesis in form and
content of the description and discussion of results as well as in methods. Related figures

were modified for this document.

The first manuscript is related to the results described in chapter 3.1.1 and 3.1.2 as well as
to the corresponding method chapters (2.2.1.1 — 2.2.1.3, 2.2.6) and discussion chapters
(4.1.1, 4.1.2). Detailed information of the manuscript: Joppe K, Nicolas J-D, Griinewald T
A, Eckermann M, Salditt T and Lingor P (2020). Elemental quantification and analysis of
structural abnormalities in neurons from Parkinson's-diseased brains by X-ray fluorescence
microscopy and  diffraction. Biomed. Opt. Express 11(7), 3423-3443,
https://doi.org/10.1364/BOE.389408.

The second manuscript is related to the results described in chapter 3.2 and 3.3 as well as
to the corresponding method and discussion chapters. Preliminary information on title and
authors of the manuscript: Joppe K, Tatenhorst L, Carboni E, Caldi Gomes L, Roser A-E,
El DeBakey H, Bihr M, Vogel-Mikus K, Ip C W, Becker S, Zweckstetter M and Lingor P.
Iron-induced reduction of a-synuclein spreading and microglia accumulation (in

preparation).



Meiner Familie

Hindernisse und Schwierigkeiten sind Stufen,

auf denen wir in die Hohe steigen.

— Friedrich Nietzsche
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1 Introduction

1.1 Neurodegenerative diseases

Neurodegenerative diseases (NDDs) can be characterized by the progressive
degeneration of neurons in the central nervous system (CNS) as well as in the peripheral
nervous system. The neurodegeneration is the fundamental pathology of NDDs but the
symptomatology of NDDs differs depending on the affected cell types and brain structures.
For instance, a decline of motoric, sensory or cognitive functions is triggered depending on
the affected brain areas. Alzheimer’s disease (AD), Parkinson’s disease (PD), Huntington’s
disease, amyotrophic lateral sclerosis (ALS) and prion diseases belong to the most

prominent and frequently occurring NDDs worldwide (Stroo et al., 2017).

Although earlier research put focus on the differences of NDD pathomechanisms, it
is known that NDDs share certain characteristics, such as protein aggregation. Misfolding,
aggregation and accumulation of proteins seems to be one major reason for
neurodegeneration in the brain. Depending on the individual NDD, different proteins are
involved in the pathophysiology such as amyloid-beta (Af) and Tau in AD, alpha-synuclein
(a-syn) in PD, superoxide dismutase 1 (SOD1) and TAR DNA-binding protein 43 (TDP-
43) in ALS. However, amyloidogenic proteins were found to interact and reinforce
aggregation thereof mutually. For instance, recent insights indicated a supportive effect of
AP on Tau aggregation (Bennett et al., 2017; He et al., 2017; Vasconcellos et al., 2016), of
Tau on a-syn (Arai et al., 2001; Badiola et al., 2011; Ishizawa et al., 2003) and SOD1 (Pace
et al., 2018), of a-syn on Tau (Oikawa et al., 2016) and SOD1 (Helferich et al., 2015; Koch
et al., 2016) as well as an effect of SOD1 on TDP-43 accumulation (Jeon et al., 2019;
Zeineddine et al., 2017). Not only protein aggregation causes neuronal loss, also
mitochondrial dysfunction or pathways of programmed cell death are involved. Iron
dyshomeostasis is also suggested as a causative agent for such devastating mechanisms in

NDDs such as AD or PD (Ashraf et al., 2018).

It is still under investigation if protein misfolding and iron accumulation are causative
mechanisms for the pathology or if they are caused by other mechanisms. Since aging
appears to be a risk factor for NDDs, the constantly rising age is additionally challenging
the whole society (Fu et al., 2018; Gan et al., 2018). No cure can be provided so far and in

the best cases therapeutic actions only alleviate the symptomatology. Therefore, it is
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important to investigate the underlying pathomechanisms of NDDs to identify biomarkers

and curative medicine preventing and stopping disease progression.

1.2 Parkinson’s disease

In 1817, James Parkinson firstly described the disorder by publishing his
observations about the symptomatology (Parkinson, 1817). Affecting approximately 1 %
of the population above 60 years of age, PD is the second most common neurodegenerative
disorder after AD (De Lau and Breteler, 2006). In 2016, globally 6.1 million people were
affected from PD. The prevalence was greatly increasing since 1990 when just 2.5 million
cases were reported. This observation is not only explicable by increased numbers of aging
people. Other reasons for increased prevalence numbers could be for example an increase
in awareness for NDDs and the improvement of study methodology. Due to the
industrialization also in rural areas of the world, the population is also affected by
occupational environmental factors, such as pesticides or solvents. Moreover, the disease
duration of PD patients increases resulting in a higher prevalence even with unchanged
incidence (Dorsey et al., 2018). Based on the Global Burden of Disease Study it is assumed
that with the currently existing growth rate of PD cases the number will increase up to 12.9
million cases in 2040 (Dorsey and Bloem, 2018). Focusing at the United States solely, it is
estimated that by 2030 1 million people in the US will be affected by PD (Marras et al.,
2018). A recent literature search (Abbas et al., 2018) separating the whole world’s
population into Western (Russia, Europe, Australia, New Zealand and whole America) and
Eastern countries (Asia and Middle East) revealed interesting differences regarding
incidence, prevalence and gender dominance. Accordingly, PD is an age-dependent disease
which is predominant for males and the rates for prevalence and incidence are slightly

higher in the Western countries compared to the Eastern countries (Abbas et al., 2018).

1.2.1 Symptomatology

PD patients show a progressive and chronic loss of the motor function which affects
for example balance, control of fine motor and gross motor skills. PD patients show
symptoms such as bradykinesia (slowing of movements) accompanied with resting tremor,
rigidity, postural instability, freezing of movements or circular hand movements called pill-
rolling type of tremor (Sveinbjornsdottir, 2016). The main cause of the symptoms is the

neurodegeneration, which starts 5 to 15 years before first motor symptoms become
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apparent. At the timepoint of diagnosis already 40-60 % of neurons in the substantia nigra

(SN) are degenerated (Berg et al., 2012).

Besides motor function abnormalities non-motor symptoms have been reported
several years before the initial motor symptomatology. Fatigue, pain, anxiety, hypophonia,
dysphagia, hallucinations, cognitive dysfunction and dementia are exemplary non-motor
symptoms. It has been suggested that these non-motor anomalies can be classified into
different stages based on the disease progression (Schapira et al., 2017). The earliest
symptoms occurring years before the diagnosis are reduced olfaction (hyposmia), REM
sleep behavior disorder, development of depression and constipation. However, due to their
limited specificity, these alterations are usually not recognized as prodromal PD symptoms

(Schapira et al., 2017; Schrag et al., 2015).

The onset time of symptoms, such as freezing of gait, is related to disease progression
and to an occurrence of specific non-motor symptoms (Virmani et al., 2015). Accordingly,
forming PD subtypes based on age at diagnosis or specific symptoms can help estimating
disease progression, survival or related non-motor symptomatology (De Pablo-Fernandez
et al., 2019; Virmani et al., 2015). Another study found that specific non-motor symptoms
and their severity levels can also be assigned to subtypes formed on the occurrence of
specific motor symptoms (Huang et al., 2019). This leads to the assumptions that patients
possibly express different symptomatic patterns and PD is a collective term incorporating

several subtypes.

1.2.2 Pathophysiology

One of the major hallmarks of PD is the degeneration of neuromelanin-containing
dopaminergic neurons within the SN pars compacta (SNpc) as part of the midbrain (Lees
et al., 2008). The SN belongs to the extrapyramidal system which contributes to the control
processes of the motor function. The loss of cell bodies within the SN is likely a
downstream finding in PD. In accordance to the ‘dying back’ hypothesis firstly described
by (Hornykiewicz, 1998), it is assumed that axonal terminals within the striatum degenerate
prior to the death of neuronal cell bodies within the SN. Studies could show that motor
symptoms are observed when approximately 30 % of dopaminergic neurons are lost.
However, at this time point approximately 50-60 % of striatal projections are degenerated

(Cheng et al., 2010). Due to this degeneration of striatal projections and cell loss within the
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SN, a depletion of dopamine arises which triggers the prominent motor impairments in PD

patients broadly described in chapter 1.2.1.

Neuromelanin-positive dopaminergic neurons in the SN belong to the basal ganglia
and, therefore, they contribute to voluntary movement control. The nuclei of the basal
ganglia are interconnected. Since long axons of nigral dopaminergic neurons project into
the striatum, dopamine modulates the activation of spiny neurons in the striatum through
dopamine receptors. Striatal neurons are in turn directly and indirectly connected with the
globus pallidus and the SN. According to the direct pathway, an excitatory input leads to
an activation of the dopamine receptor D1 on GABAergic spiny cells in the striatum which
project to the internal globus pallidus (GPi). This induces an inhibition of the GPi which in
turn triggers an excitation of the thalamus and motor cortex. In an indirect pathway, the
transmission of inhibitory inputs to the external globus pallidus (GPe) is dependent on other
spiny neurons expressing D2 dopamine receptors. This leads to a decrease of the excitatory
output of the subthalamic nucleus which in turn activates the GPi and thus inhibits the
thalamus and motor cortex. Being the brain region of motor behavior controlling, the motor
cortex is targeted by efferences from the ventral nucleus of the thalamus and it provides
further input to the spinal cord, striatum and SN pars reticulata (SNpr) (DeLong and
Wichmann, 2007; Obeso et al., 2000).

Dopamine transmitted from neurons in the SN plays an important role in these basal
ganglia circuits. The release of dopamine within the striatum either supports the direct
pathway or suppresses the indirect pathway. Thereby dopamine ensures that both pathways
are balanced. Since voluntary movement can just be controlled when these circuits operate
efficiently, motor disturbances in PD can be explained by a transmitter dyshomeostasis.
Accordingly, in PD patients, a dopamine depletion in axon terminals within the striatum
increases the activation of the GPi which thereafter triggers an activity decrease of the

thalamus and motor cortex (DeLong and Wichmann, 2007; Obeso et al., 2000).

1.3 Etiology of PD

PD patients are assigned to either idiopathic/sporadic or familial disease etiology. It
is presumed that the majority of patients suffer from idiopathic PD. Estimations on the
proportion of cases with a genetic linkage vary, but in recent reviews it is assumed that 5-

30 % of cases can be explained by heritability (Alves et al., 2008; Balestrino and Schapira,
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2019; Billingsley et al., 2018; Zhang et al., 2018). The development of an inherited form
of PD can be triggered by autosomal mutations in different genes such as SNCA, LRRK2,
PARKIN, PINK1, ATP13A2 and DJ-1 (Fu et al., 2018).

Although the genetic predisposition determines the development of PD in the
inherited cases, idiopathic and inherited PD cases show several common underlying
mechanisms which possibly trigger neurodegeneration such as a-syn misfolding and
aggregation, reactive oxygen species (ROS) production as well as mitochondrial
dysfunction or neuroinflammation (Johnson et al., 2019). These possible pathomechanisms
can affect each other mutually. For instance, a-syn is able to trigger reactive microgliosis
as a part of neuroinflammation which leads to neurodegeneration (Duffy et al., 2018).
Another study highlighted that neuroinflammation and a-syn show synergistic effects (Gao
etal., 2011). Furthermore, a-syn can trigger oxidative stress and mitochondrial dysfunction
(Hsu et al., 2000), whereas oxidative stress enhances a-syn aggregation (Scudamore and
Ciossek, 2018). Metal dyshomeostasis, especially of iron, also plays an important role in
neurodegeneration and can mediate the above-mentioned mutual effects of a-syn and

oxidative stress (Deas et al., 2016; Levin et al., 2011; Li et al., 2011).

This multitude of mechanisms possibly causing, facilitating or aggravating PD
pathology leads to the assumption that PD describes a cluster of pathological subtypes
which differ regarding their exact pathomechanism (Johnson et al., 2019). Aggregation of
a-syn and its spreading as well as metal dyshomeostasis play an essential role in the
pathogenesis of PD and are regarded as important disease causes or triggers. Therefore,

both pathological events are discussed in detail in the following chapters.

1.3.1 The role of a-syn and its aggregation

Consisting of 140 amino acids, a-syn is a small protein with a molecular weight of
around 14 kDa. It is part of the synuclein protein family which is completed by B- and y-
syn. All together they are neuronal nuclear proteins, but a- and B-syn are also present in
axons and presynaptic nerve terminals (George, 2002). Even if not all functions of a-syn
are known, membrane remodeling, vesicle packaging as well as their release and trafficking
have been studied in detail (Bendor et al., 2013; Rocha et al., 2018). Furthermore, a-syn is
an important player in the synaptic machinery due to its high numbers of interaction
partners at the synapse (reviewed in (Longhena et al., 2019). In the last decades, a-syn was

found to play an important role in the pathogenesis of different NDDs such as PD, multiple
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system atrophy (MSA) or dementia with Lewy bodies (DLB) so that all of these a-syn-
affiliated disorders were summarized under the synonymous ‘synucleinopathies’ (Goedert

et al., 2010).

In PD pathophysiology, special attention is paid to the protein a-syn due to the
involvement of the SNCA gene, encoding for a-syn, in the familial type of disease. Either
point mutations or an a-syn overproduction triggered by multiplications of the SNCA gene
was shown to cause PD. Six identified point mutations for SNCA named A30P, E46K,
H50Q, G51D, A53T, and AS3E were found to trigger a biophysical change in terms of
amino acid substitutions (Appel-Cresswell et al., 2013; Ki et al., 2007; Kriiger et al., 1998;
Lesage et al., 2013; Pasanen et al., 2014; Zarranz et al., 2004).

Furthermore, a-syn has been related to another pathological hallmark in brains of PD
patients: Lewy bodies (LBs). LBs are intracytoplasmatic protein aggregate inclusions
containing for example ubiquitin and neurofilaments, but the most abundant protein in LBs
is a-syn (Spillantini et al., 1997, 1998). Whereas LBs are globular structures found in the
perikarya of cells, spindle-shaped, aggregated structures in neurites are called Lewy
neurites (Spillantini et al., 1998). Such aggregates were not only found in dopaminergic
neurons within the SN, as the mainly affected brain region in PD, they rather spread

throughout the whole brain (Braak et al., 2003).

It is still a contentious issue if LBs are neurotoxic and trigger neurodegeneration
(Braak et al., 2003; Lu et al., 2005) or if they act neuroprotectively by trapping pathological
species of a-syn (Kramer and Schulz-Schaeffer, 2007; Recasens et al., 2014). Studies
suggest that the toxicity originates from presynaptically available a-syn species (Kramer
and Schulz-Schaeffer, 2007) and that oligomeric species are neurotoxic that are formed
preceding to aggregates contained in LBs. Accordingly, a study verified that cell damage
was caused before aggregate structures were detected (Pinotsi et al., 2016). Therefore, the
misfolding and different conformational states of a-syn play an important role in the disease

progression.

The sequence of a-syn is fundamental to explain its structural plasticity and is
comprised of three different parts: the amino terminus (residues 1-60), the non-amyloid-
component (NAC) domain (residues 61-95) and the negatively charged carboxyl terminus.
The NAC region constitutes the central hydrophobic region and it enables P-sheet

formation of a-syn, which is crucial to perform self-aggregation (Breydo et al., 2012; Li et
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al., 2002). Based on the environmental circumstances, o-syn adopts different
conformations (Uversky, 2003). It is supposed that a-syn undergoes structural shifts from
monomer to B-sheet enriched fibrils by passing conformational changes to oligomers,
ribbons and protofibrils. These intermediate, pathogenic stages are also called a-syn
‘strains’. Various a-syn strains show different levels of neurotoxicity and provoke thereby
different PD-characteristic effects such as cell loss or motor deficits in animal models.
These observations possibly explain pathological heterogeneity of synucleinopathies
(Peelaerts and Baekelandt, 2016; Peelaerts et al., 2015). However, a recent study might
refute that one specific strain belongs to one specific disease, since fibrils amplified from
tissue of PD and MSA patients showed a strong structural variability. Patient-derived fibrils
differed from recombinant a-syn fibrils and extracts from PD brains showed more structural
heterogeneity compared to MSA brain extracts. This might suggest that different a-syn
aggregate structures can be associated with specific PD subtypes identified by distinct

phenotypes or characteristics in disease progression (Strohdker et al., 2019).

Investigating aggregation processes in the genetic context, different a-syn mutations
were found to trigger its oligomerization similarly. However, the effect on the aggregation
process and inclusion formation depend on the specific mutation (Lazaro et al., 2014). Even
if in some patients the genetic component explains a-syn pathology, tissue of idiopathic PD
patients also exhibit LB pathology with a-syn aggregate formation (Baba et al., 1998; Braak
et al., 2003), assuming that the machinery of protein handling and degradation is defected
in both disease types. For instance, it is supposed that oxidative stress affects control
systems for conformational changes of proteins. As key mechanisms to handle intracellular
protein aggregates under physiological conditions the ubiquitin proteasome system (UPS)
and the autophagy-lysosomal pathway (ALP) have been reviewed. Regarding the ALP,
mainly chaperon activity and macroautophagy via autophagosomes are involved in a-syn
degradation (Stroo et al., 2017; Xilouri et al., 2013). It has been shown that UPS and the
ALP are linked and exhibit a complex crosstalk, so that in case of malfunction one
mechanism is able to compensate the other (Ebrahimi-Fakhari et al., 2011; Yang et al.,
2013). However, LB-like a-syn aggregates can affect these mechanisms. For instance, in
one study the aggregates induced an impairment of the macroautophagy and were resistant

against degradation (Tanik et al., 2013).

In case of extracellular aggregate deposits, different cell types are supposed to help

in the degradation process such as glia cells (Stefanis et al., 2019). Microglia were shown
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to be the major scavenger cells of a-syn aggregates. However, the phagocytic ability of
microglia is dependent on the conformational state of a-syn (Choi et al., 2015; Lee et al.,
2008; Park et al., 2008). Also astrocytes were shown to affect a-syn degradation by trapping
a-syn and clearing the deposits (Loria et al., 2017). Taken together, a-syn misfolding and
aggregation plays an important role in PD development. Available clearing processes of a-

syn species are multifaceted but are not able to prevent aggregation.

1.3.1.1 Propagation of a-syn

Even if the neurodegeneration process within the SN is the main characteristic of PD
responsible for the motor dysfunctions in patients, it is now common sense that PD
pathology is not initiated within this region. Braak and colleagues described that LB
pathology as conceivable trigger of neurodegeneration possibly starts within the medulla
oblongata/pontine tegmentum and the olfactory bulb/anterior olfactory nucleus (Braak et
al., 2003). The authors suggest a LB pathology progression through the brain in accordance
to six different stages. The findings support the hypothesis that a-syn pathology affects
interconnected brain regions and therefore follows hierarchical, predictable patterns (Braak

et al., 2003, 2004).

Furthermore, the hypothesis of a prion-like behavior of a-syn arose due to several
observations. It is proposed that a-syn may self-propagate and its cell-to-cell transmission
finally triggers misfolding and aggregation of endogenous a-syn. This assumption was
firstly supported by the identification of host-to-graft transmission of aggregates in brains
of PD patients (Kordower et al., 2008a, 2008b; Li et al., 2008). Accordingly, it was assumed
that extracellularly available a-syn due to neuronal release or dying cells is uptaken by the
grafted neurons. In grafted tissue, a-syn triggers misfolding of endogenous a-syn and
thereby transfers its pathogenic conformation to native proteins. The conversion of an a-
helical structured protein to the B-sheet structured fibrils of a-syn seems to be a crucial step
for the self-propagation and resembles the process shown by prion proteins (Fonseca et al.,
2015; Recasens and Dehay, 2014). However, more research is needed to confirm these
suggested mechanisms underlying pathology progression in PD. In this context it is also
still investigated how a-syn spreads from cell to cell. Spreading to interconnected regions
suggests anterograde and retrograde transport of a-syn variants which has been verified in
vitro (Emmanouilidou & Vekrellis, 2016; Tran et al., 2014; Volpicelli-Daley et al., 2011)

and in vivo (Recasens et al., 2014). Other approaches indicate that non-classical exocytosis
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(Jang et al., 2010; Lee et al., 2005), exosomal transport (Alvarez-Erviti et al., 2011;
Emmanouilidou et al., 2010; Xia et al., 2019) and tunneling nanotubes (Abounit et al.,
2016; Dieriks et al., 2017) play also a role in the transmission of pathological a-syn

variants.

1.3.2 Metal dyshomeostasis

Being the most abundant trace element in the brain, iron contributes to many
important processes in neurons and glia cells such as the mitochondrial respiration, oxygen
transport or the metabolism of neurotransmitters (Ashraf et al., 2018; Ward et al., 2014).
Under physiological conditions, iron import, export and storage proteins, which are
important for iron metabolism, are regulated by the iron responsive elements (IREs). The
mRNA translation of the mentioned proteins is controlled by an iron regulatory protein
(IRP) which binds to IREs in the presence of iron (Joppe et al., 2019). In the aging process,
it is known that the metabolism of iron is impaired and iron accumulates in specific brain
regions (Ward et al., 2014). During aging, the L- and H-subunits of the iron storage protein
ferritin were shown to be more abundant and within the first two decades of life
concentrations of both subunits were increasing within the SN. Afterwards, the levels of
H- and L-ferritin does not change significantly (Zecca et al., 2001). In contrast, in brains of
PD patients reduced ferritin levels but increased iron accumulation were documented in the
SN (Dexter et al., 1991). This increased nigral iron content could be verified in other studies
analyzing postmortem tissue (Genoud et al., 2017; Popescu et al., 2009; Szczerbowska-
Boruchowska et al., 2012) or the living patients (An et al., 2018; Chen et al., 2019). The
disturbance of the iron homeostasis induces an excessive formation of ROS and
accompanied oxidative stress. Iron provides the basis for catalyzed redox processes, which
are described by the Fenfon and Haber-Weiss reactions. Specifically, iron reacts with
intracellularly abundant hydrogen peroxide (H>O2) and leads to the formation of free
hydroxyl radicals (HO¢). The thereby formed ROS result in oxidative stress which in turn
induces a dysfunction of mitochondria and cell death (Singh et al., 2014; Zecca et al., 2004).

Therefore, iron is supposed to play a crucial role in the neurodegeneration of PD patients.

Besides the dyshomeostasis of iron, also other trace elements were shown to be
dysregulated in PD. SN samples of PD patients exhibited decreased copper and increased
zinc levels (Dexter et al., 1991). Alterations in copper could be verified in SN tissue from

patients using inductively coupled plasma mass spectrometry (ICP-MS) or X-ray-based
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techniques, whereas zinc level alterations were inconsistent (Davies et al., 2014; Genoud
et al., 2017). These results indicate that it is still not fully understood which other elements
are in dyshomeostasis in the context of PD and whether and how they might contribute to
disease progression. Since other trace elements also potentially undergo redox reactions, it

is likely that they lead to the formation of ROS.

1.4 Need for therapeutic approaches

The diagnosis of PD is made based on the occurring motor symptoms in patients.
However, at this time point, the underlying pathology is already progressed so that markers
are needed which spot earlier disease stages. The case that available drugs for PD only lead
to a relief of symptoms but do not prevent or cure PD pathology point to the need of new
therapeutic strategies. To name a widespread treatment of PD patients, L-3.4-
dihydroxyphenylalanine also known as levodopa (L-DOPA) is a common orally applied
prodrug to increase the dopamine precursor level attenuating the symptomatology. An
attenuation of the dopamine breakdown is aimed by administering inhibitors of monoamine
oxidase-B (MAO-B) to patients. Furthermore, dopamine agonists, anticholinergics or
catechol-O-methyltransferase inhibitors are also used for treatment in the early disease state
(Connolly and Lang, 2014; Hayes et al., 2019). Since iron dyshomeostasis as well as a-syn
aggregation and spreading describe particular hallmarks of PD, new approaches try to
intervene in the underlying mechanisms of these two pathological events. The effectiveness
of iron chelation in PD is stated in chapter 1.4.1. Regarding the a-syn pathology, in chapter
1.4.2 Rho-kinase inhibition by fasudil is described in more detail as a potential treatment

strategy in PD, which is so far only tested in cell culture and animal models.

1.4.1 Iron chelation

Since iron accumulation is a widespread finding in brains of NDD patients, iron
overload is a popular experimental therapeutic target. Aim of these experimental
approaches is to cope with the overload of iron by therapeutically removing excess iron.
Chelators show a high affinity for metals and lead to their sequestration. Iron chelators were
extensively tested in preclinical cell culture and animal models of PD to reveal their effects
on the underlying pathomechanisms. Various beneficial effects such as the prevention of
iron accumulation in SN, less formation of nigral a-syn aggregates, loss of dopaminergic

neurons in the SN and rescued motor as well as cognitive functions of the animals were
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observed (Billings et al., 2016; Carboni et al., 2017a; Finkelstein et al., 2016, 2017; Mandel
et al., 2004). Therefore, iron chelators were also used in clinical trials analyzing the effect

of chelators in patients.

The most common iron chelators are deferoxamine, deferiprone and deferasirox,
clinically approved by the US FDA. Deferoxamine has a short plasma half-life period so
that subjects require continuous injections to ensure an optimal treatment. Further
disadvantages of deferoxamine are dose-dependent neurotoxicity and the time-consuming
and expensive treatment application (Mobarra et al., 2016). For therapeutic usage a chelator
should be non-toxic and brain-permeable (Zecca et al., 2004), which is valid for deferasirox
and deferiprone so that they can be applied orally. Deferiprone is the most promising iron
chelator to treat patients with regional iron overload, since this substance can cross the
blood-brain-barrier (BBB) and mobilizes iron. Furthermore, it has a well-known safety
profile. Various clinical studies exist which tested the efficiency of different chelators in
patients suffering from NDDs such as ALS (Moreau et al., 2018) or Friedreich ataxia
(Boddaert et al., 2007; Pandolfo et al., 2014; Velasco-Sanchez et al., 2011).

In PD, deferiprone was already used for clinical trials. With deferiprone treatment,
patients reached better scores in the Unified Parkinson’s Disease Rating Scale (UPDRS)
and showed a reduced iron content within the SN measured by R2* magnetic resonance
imaging (MRI; FAIR-PARK-I, NCT00943748) (Devos et al., 2014). Another clinical trial
(DeferipronPD, NCTO01539837) showed reduced iron content inside the dentate and
caudate nucleus for deferiprone-treated patients (Martin-Bastida et al., 2017). Due to these
promising results a new randomized, parallel-grouped and placebo-controlled phase III trial
was initiated, including multiple European centers (FAIRPARKII, NCT02655315)
(recently reviewed in (Joppe et al., 2019)).

1.4.2 Fasudil-induced Rho-kinase inhibition

In NDDs, the signaling pathway of the Rho-associated protein kinase (ROCK) has
been described as an interesting target. As recently reviewed, ROCK is involved in several
cellular processes of particular importance in NDDs such as autophagy, synaptic
dysfunction or degeneration of axons (Koch et al., 2018). Already a decade ago, first studies
revealed neuroprotective and pro-regenerative properties of pharmacological inhibitors of

ROCK (Lingor et al., 2007, 2008; Planchamp et al., 2008).
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The isoquinoline-derivative fasudil is one inhibitor of ROCK. Fasudil was approved
in 1995 for clinical human use in Japan and is used to treat subarachnoid hemorrhage-
induced vasospasms (Suzuki et al., 2007, 2008). In the last years, fasudil gained attention
in the field of neurodegeneration for its beneficial effects on animal- and cell-based ALS
models (Giinther et al., 2017; Tonges et al., 2014). A multicenter clinical phase Ila trial is
currently investigating disease-modifying effects of fasudil treatment in ALS patients

(Lingor et al., 2019).

Furthermore, the interest arose to test the effects of fasudil in the context of PD. In
PD models using a treatment with the toxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine
(MPTP), fasudil effected a reduced loss of dopaminergic neurons in an in vivo and an in
vitro setup. Motor behavior of MPTP-treated mice was also rescued with fasudil treatment
(Tonges et al., 2012). Other studies using the MPTP mouse model verified improvements
in motor behavior and neuroprotective effects on dopaminergic neurons with fasudil
treatment. Additionally, the inflammatory response was suppressed by fasudil treatment
(Li et al., 2017; Zhao et al., 2015). The therapeutic combination of fasudil and bone
marrow-derived neural stem cells further enhanced the mentioned positive effects of fasudil
in an MPTP mouse model (Li et al., 2017). In mice with an intranasal administration of
lipopolysaccharide (LPS) fasudil treatment improved motor behavior and attenuated the
inflammatory response, the loss of dopaminergic neurons and the accumulation of a-syn
(He et al., 2016). Another study emphasized the connection of fasudil with a-syn in PD.
The authors described that fasudil can bind to a-syn at two tyrosine residues of its C-
terminal region (Y133 and Y136) and showed that a-syn aggregation was attenuated by
fasudil supplementation in vitro. In A53T mice, fasudil treatment via drinking water
prevented cognitive and motor decline of the mice and effected less a-syn pathology in the
midbrain (Tatenhorst et al., 2016). Therefore, fasudil seems to be a promising candidate for

new treatment strategies in PD.

1.5 The interplay of iron and a-syn

Iron and a-syn are important therapeutic targets in PD. As described in chapter 1.4,
several drugs used to affect the iron dyshomeostasis have been tested in animal models and
some of them were even verified in PD patients. However, it is important to investigate
how different pathological hallmarks are connected to each other to identify appropriate

treatment opportunities. One of the major findings connecting iron and a-syn pathology

12



INTRODUCTION

was the accumulation of iron in LBs (Castellani et al., 2000). Since a-syn has been
previously described as a major component in LBs (Spillantini et al., 1998), an interaction

with iron is likely.

Supporting this hypothesis, it has been found that both oxidation states of iron can
bind to a-syn. Whereas for Fe?* a binding constant of 5.8 x 10> M was revealed, the
binding constant of Fe** was 1.2 x 10> M ! (Peng et al., 2010b). Fe?" specifically binds at
Asp-121, Asn-122, and Glu-123, located at the C-terminus of a-syn (Binolfi et al., 2006).
The affinity of Fe?" to bind a-syn is even increased when a-syn is phosphorylated at pY 125
or pS129 (Luetal., 2011). Fe*" is also supposed to have two bindings sites at the C-terminus
of a-syn (Davies et al., 2011). Besides direct binding, there is further evidence that iron has
an influence on the transcriptional and translational level of a-syn. One study suggests that
a-syn levels are regulated by iron due to its 5’-UTR which shows a close homology to the
IRE of the ferritin mRNA (Friedlich et al., 2007). In HEK293 cells, the polysome-
associated endogenous a-syn mRNA was decreased by the iron chelator deferoxamine.
Thereby, an Fe**-related control of the a-syn mRNA translation was assumed (Febbraro et
al., 2012). Since an IRP knockdown in the SK-N-SH cell line induced an upregulation of
the a-syn transcription and thereby enhanced its aggregation, the authors suggested that the
aggregation process is partially controlled by iron through the IRE/IRP system (Li et al.,
2011).

Almost two decades ago, it has been shown that iron directly induces o-syn
aggregation and fibrillation (Uversky et al., 2001). Several studies could verify this
observation (Golts et al., 2002; Kostka et al., 2008; Levin et al., 2011). Even low Fe**
concentrations in a micromolar range triggered the formation of large sodium dodecyl
sulphate (SDS)-resistant a-syn oligomers (Kostka et al., 2008). In contrast, a-syn did not
form this kind of oligomers in the presence of Fe*" (Levin et al., 2011). Since oxidative
stress induced by H20» treatment did not trigger a-syn oxidation and oligomerization, it
was suggested that trivalent ions plan an important role in the oligomerization (Kostka et
al., 2008). Oxidizing agents such as H>O; rather affect a-syn aggregation indirectly by
oxidizing ferrous iron to ferric iron through the Fenton reaction. Accordingly, the authors
reported that Fe?" treatment triggered the oligomerization of a-syn in the presence of H>O
(Levin et al., 2011). Therefore, oxidative stress could play an important indirect role for
iron-mediated a-syn aggregation. Another study also emphasized the effect of oxidative

stress, since treatment of SK-N-SH cells with antioxidative vitamin E led to an attenuation

13



INTRODUCTION

of the a-syn aggregation (Li et al., 2011). Furthermore, external circumstances such as
aerobic or anaerobic conditions could also have an influence on the a-syn aggregate
conformation triggered by iron. /n vitro, it was observed that under aerobic conditions
treatment with Fe?" triggered a polymerization into antiparallel soluble a-syn oligomers.
Under anaerobic conditions, parallel B-sheet a-syn aggregates were formed by Fe?* but also

by Fe*" treatment (Abeyawardhane et al., 2018).

Iron was also shown to provoke a-syn aggregation indirectly by affecting the
autophagosome-lysosome pathway. Accordingly, in SN4741 cells, iron promoted o-syn
aggregation by decreasing the expression of the nuclear transcription factor EB (TFEB).
TFEB functions as transcriptional regulator of the autophagosome-lysosome pathway. The
nuclear translocation of TFEB was inhibited through an activated Akt/mTORC]1 pathway.
The inhibition of the TFEB-mediated autophagosome-lysosome fusion resulted in an
enhanced a-syn aggregation. In addition, the authors showed that cell-to-cell transmission
of a-syn was also enhanced by iron enrichment, whereas TFEB overexpression attenuated

this effect (Xiao et al., 2018).

Therefore, the current state of research offers different mechanisms on how iron
interacts with a-syn or fosters the aggregation and spreading. On the one hand, direct
binding of iron and a-syn could form the basis. On the other hand, studies suggest indirect

influences which affect the interaction of iron on a-syn.

Vice versa, some studies showed that a-syn has an influence on iron. Accordingly, in
PC12 cells a-syn overexpression fostered an increase of iron and its accumulation which
was predominantly observed in the perinuclear region of PC12 cells (Ortega et al., 2016).
Furthermore, it was shown that a-syn acts as a ferrireductase which implicates the ability
of a-syn to reduce Fe’" to Fe?" (Davies et al., 2011). In contrast, another study indicated
the formation of an a-syn-Fe** complex which inhibited the reduction of Fe** to Fe?* (Levin
etal., 2011). It is supposed that ferrireductase activity is exerted by a membrane-associated

helical-rich a-syn tetramer (Angelova and Brown, 2018; McDowall et al., 2017).

In addition to iron also other trace elements are discussed to interact with a-syn in
PD. It has been shown that a-syn has different metal binding sites (McLeary et al., 2019).
Furthermore, some trace elements such as aluminum, copper or manganese were able to
foster the aggregation of a-syn (Uversky et al., 2001). A recent study could demonstrate

that the exposure to Mn?* could enhance the cell-to-cell transmission of oligomeric o-syn
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through exosomes in both in vitro and in vivo models (Harischandra et al., 2019). Therefore,

the interaction of trace elements and a-syn can offer new approaches to investigate

pathomechanisms in PD.

Taken together, the current state of research shows on the one hand that iron can

interact with a-syn directly and indirectly and this interaction affects the aggregation of a-

syn. On the other hand, a-syn can act as a ferrireductase and can influence the homeostasis

of iron. The mentioned interactions of iron and o-syn are schematically summarized in

Figure 1 (adapted from Joppe et al., 2019).
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Figure 1. The interaction of iron and a-syn. Iron-induced aggregation of a-syn could be accomplished

by direct binding or via oxidation. Iron also impacts a-syn indirectly affecting the transcriptional and

translational level of a-syn. In contrast, iron accumulation is fostered by the overexpression of a-syn, which

could also function as a ferrireductase. Adapted from (Joppe et al., 2019).
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1.6 Animal models of PD

Animal models of PD enable to investigate underlying pathomechanisms even if the
complex pathophysiology of PD in humans cannot be entirely mimicked. The advantage of
several disease-related animal models is that specific parts of the disease pathology and
symptomatology can be investigated untangling the complexity of the disease into
underlying single mechanisms. Since neurodegeneration is one of the main hallmarks of
PD, toxin-based models were firstly tested in animals to mimic the degeneration of the
nigrostriatal pathways. On the one hand, intracerebral injections of the toxin 6-
hydroxydopamine (6-OHDA) were used, since 6-OHDA is not able to cross the BBB
(Schober, 2004). On the other hand, the toxin MPTP is able to cross the BBB so that it can
be applied intraperitoneally or subcutaneously to induce a Parkinsonism-like disease in
mice mimicking different pathological aspects of PD. The conversion of MPTP into the
toxic compound MPP+ occurs in glial cells (Konnova and Swanberg, 2018). Thereby,
neurotoxicity is triggered which effects for instance neurodegeneration, behavioral deficits
or increased a-syn levels and inclusion formation depending on an acute or chronic
treatment of MPTP (Fornai et al., 2005; Jackson-Lewis and Przedborski, 2007; Meredith
et al., 2002; Zhang et al., 2017a). Similar to MPTP and 6-OHDA toxin-based pathology
models, a treatment with the pesticides rotenone and paraquat has also been used to study

the underlying mechanisms of PD-like symptoms (Konnova and Swanberg, 2018).

Based on known gene mutations causing familial PD (e.g. SNCA, LRRK2, PRKN,
DJ-1, PINK-1 or UCH-L1) also genetic animal models are frequently used to analyze PD
pathology. Since a-syn pathology is a crucial step in the disease progression, transgenic
disease models with mutations in the SNCA gene encoding for a-syn have been widely
investigated (Konnova and Swanberg, 2018). Frequently, the transgenic a-syn mouse
model B6;C3-Tg(Prnp-SNCA*A53T)83Vle/J (A53T mice) (Giasson et al., 2002) is used

to analyze disease progression in PD.

Since a-syn spreading and iron enrichment are common pathological events in PD,
in the following subchapters models of iron intoxication and a-syn preformed-fibrils (PFFs)
injections will be described in more detail, forming the basis for the related studies of this

doctoral thesis.
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1.6.1 Iron intoxication models

Iron dyshomeostasis and accumulation is a well-known hallmark in PD as extensively
described in chapter 1.3.2, therefore the relevance of iron in context of PD has been
analyzed in different animal models. MPTP treatment of transgenic AS3T mice was shown
to induce an increase of nigral iron levels, which could be caused by the MPTP-dependent
decrease in levels of the iron export protein ferroportin. This observation highlights the
generation of an iron dyshomeostasis in PD pathology (Finkelstein et al., 2017). The result
that iron chelator treatment of A5S3T mice showed positive effects e.g. on behavior or a-
syn aggregate formation additionally emphasizes the role of iron in PD (Finkelstein et al.,
2016). Therefore, further studies used an iron application model to investigate the

consequences of iron overload in the brain.

Most commonly iron was administered to rodents per gavage, either in form of Fe**
ions (Fredriksson et al., 1999, 2000; de Lima et al., 2005a, 2007) or as elemental carbonyl
iron (Billings et al., 2016, 2019; Carboni et al., 2017a; Chen et al., 2015; Kaur et al., 2007;
Peng et al., 2009, 2010a). In most cases carbonyl iron was applied at a daily rate between
postnatal day 10 and 17 (p10-17) (Billings et al., 2016, 2019; Carboni et al., 2017a; Chen
et al., 2015; Kaur et al., 2007; Peng et al., 2009, 2010a) in a dosage of 120 mg/kg body
weight (Chen et al., 2015; Kaur et al., 2007; Peng et al., 2009, 2010a). The model of iron
enrichment itself is not PD-specific and is rather used to investigate general effects of iron,
for instance iron-induced behavioral abnormalities of rodents (Fredriksson et al., 2000; de
Lima et al., 2005b). To further relate effects of iron enrichment to PD pathology, some
studies used A53T mice overexpressing human a-syn. In both species, AS3T and wild-type
mice, neonatal oral iron application induced iron enrichment in the midbrain, specifically
in the SN. In addition, iron overload triggered a significant increase of protein carbonyls
and a loss of dopaminergic neurons (Billings et al., 2016, 2019; Kaur et al., 2007). In one
study the authors suggested that iron treatment of A53T mice led to a resistance against
iron chelation with clioquinol (Billings et al., 2016). These results indicate detrimental
effects if iron overload is paired with a PD-specific model. Furthermore, the effect of iron
overload in PD-specific toxin-based models was investigated by treating mice with MPTP
or paraquat. Iron and paraquat treatment led to a strong microglia increase in the SN and a
loss of dopaminergic neurons, which differed significantly to the effect of paraquat

treatment without iron enrichment (Peng et al., 2009, 2010a). In an MPTP-based model,
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iron treatment augmented the effect on nigral neuron loss compared to mere MPTP

treatment (Kaur et al., 2007).

Taken together, several studies proved the deleterious effects of iron overload in
context of PD and showed that Parkinsonian models could consequently trigger a
dyshomeostasis of iron. Therefore, different iron chelators such as deferiprone,
desferrioxamine and clioquinol or other components such as green tea, therapeutical
nanoparticles and the quinazoline compound PBT434 were tested in animal models. Trying
to affect the iron dyshomeostasis and related pathological events, the mentioned
components showed a wide range of beneficial effects on pathology and symptomatology
(Carboni et al., 2017a; Dexter et al., 2011; Finkelstein et al., 2017; Kaur et al., 2003; Wang
etal., 2017; Xu et al., 2017).

1.6.2 The a-syn PFFs spreading model

The spreading pathology of a-syn has been recently studied administering a-syn PFFs
to different animal species and using different application methods such as an intraglossal
application or an intramuscular, intraperitoneal, intracerebral, gut or sciatic nerve injection.
Most commonly, intracerebral injections were conducted into brain regions such as the
hippocampus, olfactory bulb, cortex, SN or striatum (Chung et al., 2019). Interestingly, a
recent study showed that intravenous or oral application of PFFs led to an infiltration of
phosphorylated a-syn fibrils into the CNS and to a similar extent of a-syn pathology in the

brain compared to an intracerebral injection (Lohmann et al., 2019).

Due to the frequent usage of intracerebral PFFs injections, precise protocols of the
preparation of a-syn monomers, generation of PFFs, surgery process, perfusion, tissue
processing and cleaning after a-syn usage are available (Patterson et al., 2019a; Polinski et
al., 2018; Zhang et al., 2019a). Besides different injection areas, studies differ also in the
genotype of the used animals (e.g. wild-type, A53T or A30P mice), in the injection side
(unilateral or bilateral injections), species of the injected recombinant PFFs (e.g. mouse or
human), the amount of injected PFFs (e.g. 5 or 10 pg) or the post-injection observation
period which ranges mostly between 30 days and 9 months post injection (Chung et al.,
2019). In general, it was shown that the injection site determines the distribution of a-syn
aggregates through the brain. Accordingly, the a-syn spreading pattern at one month
following an intrastriatal injection differed from its distribution after an injection into other

brain regions such as SN or entorhinal cortex (Masuda-Suzukake et al., 2014).
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From now on, studies are reported which performed unilateral, intrastriatal PFFs
injections in mice to analyze the spreading of a-syn. Investigations showed that the longer
the evaluation period the stronger is the a-syn spreading pathology respectively the
presence of a-syn inclusions in different brain regions (Luk et al., 2012b, 2012a; Okuzumi
et al., 2018; Paumier et al., 2015). In a recent study, separating both hemispheres through
callosotomy before or one day after the intrastriatal PFFs injection could reveal that a-syn
only need one day to spread to the contralateral hemisphere in a rate that is comparable to
mice without callosotomy. When hemispheres were separated before PFFs injection, a-syn
deposits spread almost exclusively to the ipsilateral hemisphere. In this case, the spreading
to cortex, entorhinal cortex or amygdala was more than double compared to mice without
callosotomy (Okuzumi et al., 2018). In general, a-syn spreads stronger to brain regions
such as SN, amygdala or striatum in the ipsilateral hemisphere than to the contralateral

hemisphere (Luk et al., 2012b; Okuzumi et al., 2018; Paumier et al., 2015).

Different studies investigating PFFs-induced a-syn spreading at 90 days post
injection (dpi) showed a-syn pathology in similar brain regions. In some of these studies
no spreading maps were available and only few brain regions were analyzed. However, it
has been commonly reported that for instance the striatum, SN, amygdala and different
cortex areas were strongly affected. Most of the affected regions were innervating the
striatum so that the results support the hypothesis of a connectivity-dependent spreading
pattern (Blumenstock et al., 2017; Kim et al., 2016; Luk et al., 2012b, 2012a; Terada et al.,
2018). At 90 dpi, a marmoset monkey injected with PFFs into the putamen and caudate
nucleus showed a-syn signal especially within the neocortex, SN, globus pallidus, thalamus

and amygdala, resembling spreading pattern in rodent studies (Shimozawa et al., 2017).

Besides PFFs-induced a-syn spreading through the brain, studies investigated other
effects of the intrastriatal injection such as impairment in motor behavior. Whereas an
injection of 5 pg mouse a-syn PFFs only resulted in significant motor abnormalities at 180
dpi (Luk et al., 2012a), an injection of 10 pg mouse PFFs made an impact at 90 dpi in the
rotarod test (Masuda-Suzukake et al., 2014). Both beforementioned studies used the wire
hang test as another motor behavior test. Interestingly, mice injected with 5 ug PFFs
showed a motor decline in this test at 90 dpi (Luk et al., 2012a), but mice injected with 10
pug showed no significant results (Masuda-Suzukake et al., 2014). Despite the direct
connection of the striatum as injection site and the SN, a significant loss of dopaminergic

neurons in SN and a decrease of the striatal dopamine concentrations occurred only at 180
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dpi (Luk et al., 2012a). Therefore, pathological abnormalities other than a-syn spreading

pathology occur rather late in this model.

1.7 The usage of X-ray-based techniques for analyses of human samples

One common X-ray-based analytical technique is the detection of X-ray fluorescence
(XRF). XRF allows to identify several elements simultaneously so that an exact
composition of an analyzed matter can be defined. The photoelectric absorption is the
underlying principle of XRF which enables to identify the available elements (Figure 2).
Accordingly, an incoming X-ray photon interacts with an electron of an inner orbital shell
of an atom. The absorption of the photon energy of this electron leads to the ejection of the
photoelectron from the inner shell of the atom causing a state of instability. To regain its
stability, an electron from an outer orbital shell fills the vacancy of the ejected
photoelectron. Since this electron drops from a higher energy level to a lower energy level,
it releases another X-ray photon with lower energy compared to the incoming X-ray
photon, which can be detected and assigned to a specific element (Seibert and Boone,

2005).

Figure 2. Scheme of the photoelectric

absorption as elementary principle of

ejection of XRF. An incoming X-ray photon

_ _ photoelectron  induces the ejection of a photoelectron of
incoming

the inner shell of the atom. A
X-ray photon

photoelectron from an outer shell
releases an X-ray photon by replacing
the vacancy. The released X-ray photon
X-ray photon is specific for the present element.
[lustration designed based on (Seibert
and Boone, 2005).

For the sake of completeness, except the photoelectric absorption the incoming X-
ray photon can also interact in two other ways with an electron of the atom which are called
Rayleigh scattering and Compton scattering. Therefore, an X-ray detector can additionally
measure the energy released by Rayleigh scattering and by Compton scattering. The
Rayleigh scattering describes the case that the incident X-ray is just scattered caused by an

interaction with an electron. No energy is transferred to the electron and the electron is not
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ejected so that energy of both scattered and incoming X-ray photons are equal. According
to the Compton scattering, the incoming beam loses some energy since it leads to an
ejection of an electron from an outer shell and this event effects the scattering of the beam

(Seibert and Boone, 2005).

XRF enables both a spatial resolution and quantification of trace elements. Already
some years ago, both XRF and scanning transmission X-ray microscopy (STXM) have
been described as well-established and useful techniques to perform a microanalysis on
neuronal tissue or more specific structures such as cells (Fahrni, 2007; Salditt and Ducié¢,
2014). Many studies exist which used XRF-based techniques to analyze the trace element
content either in human brain tissue (Popescu et al., 2009; Surowka et al., 2015;
Szczerbowska-Boruchowska et al., 2004, 2012), or brains of rodents (James et al., 2011;
Tian et al., 2015) or in cell culture (Ortega et al., 2016; Vogt et al., 2003). One study
indicated that different fixation procedures potentially alter the elemental content of
samples (James et al., 2011). This implicates the favored usage of native tissue for trace
element measurements. Next to the mapping and quantification of trace elements, XRF was
also used to further analyze cell signaling. In this context of cell signaling, one study
combined XRF microscopy with a fluorescent copper sensor and revealed that neuronal
cells show a calcium-dependent copper redistribution (Dodani et al., 2011). With a limit of
approximately 0.1 pg ¢! to 1 pg ¢! the sensitivity of XRF to map absolute concentrations

of trace elements is similar to electron-based microanalysis (Bourassa and Miller, 2012).

XRF is only one of many methods which enable to analyze the elemental composition
of brain samples. In previous studies, methods such as ICP-MS, atomic absorption
spectroscopy (AAS), analytical electron microscopy or Nano-secondary lon mass
spectrometry were also used for a quantification approach of trace element within SN
neurons or in the extracellular space (Biesemeier et al., 2016; Fernandez et al., 2017;
Genoud et al., 2017). As a promising approach, high spatial resolution in XRF cannot only
be used for an elemental quantification in cells but also in subcellular structures.
Furthermore, XRF approaches are advantageous since they are non-destructive compared
to other mentioned techniques which lead to a destruction of the analyzed tissue

(Grochowski et al., 2019).

In addition to XRF, X-ray diffraction (XRD) measurements can be performed. XRD

is used for a structural characterization detecting crystals and highly ordered structures of
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the analyzed matter (Bunaciu et al., 2015). The XRD measurements can be performed in
combination with XRF using different detectors. The scattering signal is generated when
the focused X-ray beam raster-scans the tissue. Two-dimensional maps can be generated
including structural parameters such as tissue density, presence of crystalline components
or short range order. In a previous study investigating human SN tissue, the XRD analysis
could determine an increased amount of crystallized cholesterol in one PD sample
compared to a control sample, whereas the XRF measurement showed PD-specific

alterations in concentrations of trace elements (Carboni et al., 2017b).

1.8 Aims of this doctoral thesis

The spreading of a-syn aggregates in the brain is an essential part of the multifaceted
PD pathology, but its causes and triggers still remain elusive. Unraveling pathomechanisms
which cause or influence a-syn propagation is aimed to identify novel treatment strategies
for PD to stop the disease progress. Since iron and other trace elements are known to
interact with a-syn in particular in its aggregation process, trace element dyshomeostasis is
a possible pathogenic event reinforcing the disease progression. X-ray techniques are
powerful tools to detect trace elements and to perform a structural characterization of tissue.
In this thesis, X-ray techniques were used in order to complement the conventional

biochemical methods to analyze a-syn pathology.

The aim of this doctoral thesis was to identify PD-related changes of trace elements
in dopaminergic neurons and subcellularly in LBs to link the role of trace elements to a-
syn pathology. In vivo and in vitro, specifically the influence of iron on PFFs-induced o-
syn spreading was investigated. Beyond that, this thesis contained a second approach to
modulate a-syn fibrils propagation investigating the effect of ROCK inhibition by fasudil

as a therapeutic approach.
In the following, I will point out the central questions of this thesis:

1.  Is it possible to depict PD-related trace elemental changes in neuromelanin-
positive neurons of patients by XRF? Can X-ray-based techniques be applied to
visualize LBs due to the presence of partially crystalline structures and to reveal

their elemental profile?

XRF was used to analyze midbrain tissue sections of PD and control patients with

the goal to identify a PD-related dyshomeostasis of trace elements in dopaminergic
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neurons. We aimed to compare these microscopic data from neurons with the elemental
profile in LBs to verify, which dysregulated trace elements accumulate in LBs. XRD was
used to attempt a structural characterization of LBs, whereas the distribution of different

trace elements within LBs was measured by XRF.

2.  Does postnatal iron treatment modulate PFFs-induced o-syn spreading in a
mouse model? Do intrastriatal PFFs injections and iron supplementation affect

motor or cognitive behavior of mice?

To address these questions, postnatal iron treatment of mice was combined with
intrastriatal PFFs injections. The cognitive and motor performance of the mice was
monitored to find treatment-related changes and the a-syn spreading pathology was
analyzed to gain a better understanding, which role iron plays within mechanisms

underlying a-syn spreading.

3. Can iron treatment change a-syn PFFs spreading in vitro and do the results

mimic changes in the in vivo model?

To investigate a-syn PFFs transmission in vitro, a microfluidic chamber model was

used and the effect of iron on a-syn spreading in cortical neurons was analyzed.

4. Does ROCK inhibition by fasudil treatment prevent or reduce a-syn PFFs-

induced pathology in a PD mouse model?

The a-syn PFFs injection mouse model was used to investigate the effect of ROCK
inhibition by fasudil on a-syn spreading to get a better understanding of the underlying

pathomechanism and to assess the therapeutic potential of fasudil in the context of PD.

23






MATERIALS AND METHODS

2 Materials and Methods

2.1 Material

2.1.1 Equipment

6-, 12- and 24-well cell culture plates
96 well micro test plate

Blades Teflon-coated DB80 LX,
#14035843496

Cage incubator

Camera Legria HFM36

Capillary puller P-97

Cover slide @ 18 mm

Cover slides 24 x 60 mm

Cover slides @ 12 mm

Cover slips 24 x 55 mm #1
Cryomatrix

Cryomatrix 3801480S

Cryomold (Tissue-Tek, Intermediate,
15 x 15 x5 mm)

Cryostat CM 3050S

FluoroDishTM, dish @ 35 mm, glass
0 3 mm

Gilson pipettes

Glass capillaries

IVC animal cages

Micro Injector Nanoliter 2000 Pump
Head

Micro-centrifuge 5415R
Microfluidic chambers, round device
450 um

Microtome blades

Mini drill with 0.8 mm drill head
Mouse jaw holder with ear bars

Parafilm sealing film

Peristaltic perfusion pump
Plastic feeding tubes, 22 ga x 25 mm

Sarstedt (Niimbrecht, Germany)
Sarstedt (Niimbrecht, Germany)
Leica Biosystem (Nussloch, Germany)

Okolab (Pozzuoli, Italy)

Canon (Krefeld, Germany)

Sutter Instruments (Novato, CA, USA)
Menzel (Braunschweig, Germany)

Menzel (Braunschweig, Germany)

Menzel (Braunschweig, Germany)

Menzel (Braunschweig, Germany)

Thermo Scientific (Waltham, CA, USA)
Leica Microsystems (Mannheim, Germany)
Sakura Finetek (Torrance, USA)

Leica Microsystems (Mannheim, Germany)
World precision instruments

(Berlin, Germany)

Gilson (Villiers de belle, France)

World Precision Instruments (Berlin,
Germany)

Tecniplast (Hohenpeiflenberg, Germany)
World Precision Instruments (Berlin,
Germany)

Eppendorf (Hamburg, Germany)

Xona (Temecula, CA)

Feather Safety Razor Co. (Seki, Japan)
Dremel (Leinfelden-Echterdingen, Germany)
World Precision Instruments (Berlin,
Germany)

Starlab International GmbH (Hamburg,
Germany)

Idex (Wertheim, Germany)

Instech Laboratories (Plymouth Meeting, PA,
USA)
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Rotarod 47600
Spark 10M multimode microplate reader
Stereotactic frame

SuperFrost Plus Microscope Slides
SYS Micro4 controller

2.1.2 Reagents

2-Methylbutane
4',6-Diamidin-2-phenylindole (DAPI)
B-27 Supplement
Bepanthene

Sodium Bicarbonate solution
Bovine serum albumin (BSA)
Carbonyl iron

Citric acid

cytosine arabinoside (AraC)
DEPC water

Dermabond

DNAse

D-Sorbitol

Enthellan

Ethanol absolute

Fasudil

Fetal calf serum (FCS)
Glucose 45 %

Glutamax

Glycerol

Glycine

Hank's Balanced Salt Solution (HBSS)
Hemalum solution
Hydrochloric acid 37 %
Iron(II) chloride tetrahydrate
Isopropanol

Ketamine

Levamisol hydrochloride
Metamizole

Methanol

Mineral oil

Mowiol - 488

Naphtol As-BI phosphate
Neurobasal medium
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Ugo Basile (Gemonio, Italy)

Tecan (Ménnedorf, Switzerland)

David Kopf Instruments (Tujunga, CA, USA)
Menzel (Braunschweig, Germany)

World Precision Instruments (Hamburg,
Germany)

Honeywell (Offenbach, Germany)
Sigma Aldrich (Taufkirchen, Germany)
Gibco (Karlsruhe, Germany)

Braun (Melsungen, Germany)

Gibco (Karlsruhe, Germany)
Applichem (Darmstadt, Germany)
Sigma Aldrich (Taufkirchen, Germany)
Roth (Karlsruhe, Germany)

Sigma Aldrich (Taufkirchen, Germany)
Sigma Aldrich (Taufkirchen, German
Ethicon (Norderstedt, Germany)

Sigma Aldrich (Taufkirchen, Germany)
Sigma Aldrich (Taufkirchen, Germany)
Merck Millipore (Darmstadt, Germany)
Applichem (Darmstadt, Germany)

LC Laboratories (Woburn, USA)
Biochrom; PAA (Berlin; Pasching, Germany)
Merck (Darmstadt, Germany)

Gibco (Karlsruhe, Germany)

Roth (Karlsruhe, Germany)

Applichem (Darmstadt, Germany)
Gibco (Karlsruhe, Germany)

Roth (Karsruhe, Germany)

Applichem (Darmstadt, Germany)
Sigma Aldrich (Taufkirchen, Germany)
Applichem (Darmstadt, Germany)
Medistar (Ascheberg, Germany)

Sigma Aldrich (Taufkrichen, Germany)
Zentiva (Frauenfeld, Switzerland)
Applichem (Darmstadt, Germany)
Sigma Aldrich (Taufkirchen, Germany)
Sigma Aldrich (Taufkirchen, Germany)
Sigma Aldrich (Taufkirchen, Germany)
Gibco (Karlsruhe, Germany)
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New fuchsin

Normal goat serum (NGS)
Normal horse serum (NHS)
Hydrogen peroxide 30 % (H20.)
Para-formaldehyde (PFA)
Pen-Strep-Neomycin

Phosphate buffer solution (PBS)

Poly-L Lysine Hydrate 100 mg (PLL)
Potassium ferricyanide (II)
Roti-Histokitt

Sodium azide (NaN3)
Sodium dodecyl sulphate (SDS)
Sodium hydroxide (NaOH)
Sodium nitrite, 67398-1G
Sterofundin

Sucrose

Sudan black

Thionine acetate

Tris base

TritonX 100

Trypsin

Tween20

Xylazine

Xylene

2.1.3 Buffer and solutions

Sigma Aldrich (Taufkirchen, Germany)
Cedarlane (Burlington, NC, USA)

PAA (Berlin; Pasching, Germany)
Applichem (Darmstadt, Germany)
Roth, Applichem (Darmstadt, Germany)
Gibco (Karlsruhe, Germany)
Applichem (Darmstadt, Germany)

Sigma Aldrich (Taufkirchen, Germany)
Honeywell (Offenbach, Germany)
Roth (Karlsruhe, Germany)

Sigma Aldrich (Taufkirchen, Germany)
Applichem (Darmstadt, Germany)
Applichem (Darmstadt, Germany)
Sigma Aldrich (Taufkirchen, Germany)
Braun (Melsungen, Germany)
Applichem (Darmstadt, Germany)
Applichem (Darmstadt, Germany)
Sigma Aldrich (Taufkirchen, Germany)
Applichem (Darmstadt, Germany)
Applichem (Darmstadt, Germany)
Sigma Aldrich (Taufkirchen, Germany)
Applichem (Darmstadt, Germany)
Ecuphar (Greifswald, Germany)

Sigma Aldrich (Taufkirchen, Germany)

Blocking solution for immunohistochemistry (IHC): 10 % NHS, 5 % BSA (IgG free),
0.3 % TritonX, 25 mM glycine in PBS

Borate buffer: 0.927 g boracic acid (150 mM) diluted in < 100 ml H,O with NaOH
adjusted to pH 8.4, filled up to 100 ml with H»O, sterile filtered

Citrate buffer (100 ml): 10mM citric acid (monohydrate 0.21 g) in H>O, pH-value of 6.0
adjusted with 1N NaOH, 0.05 % Tween 20

Calcium-magnesium-free medium (CMF): 450 ml H>O, 50 ml of 10x HBSS, 600 pl
sodium bicarbonate solution 7.5 %

Cortex cell culture medium: 660 pl 45 % glucose, 500 pl 100x glutamax, 500 pl 100x
Pen/Strep, 1 ml 50x B27 diluted in 47,34 ml Neurobasal medium

DAPI solution: 1 pg/ml DAPI in PBS
DNAse: 25 mg/ml in CMF
Mowiol: 6 g glycerin, 2.4 g Mowiol, 6 ml H2O, 12 ml 0.2 M Tris pH 7.2
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PBS: 9.55 g/LL PBS salt solution in distilled H.O

PFA (4 %) solution: 40 mg/ml PFA, 9.5 mg/ml PBS, 1-3 pellets NaOH in distilled water

PLL: Hydrate 100 mg PLL in 50 ml 0.1 M borate buffer, sterile filtered (stock of
2 mg/ml). Stock diluted 1:4 in distilled H,O

Sudan black: 0.1 g per 100 ml 70 % ethanol
TBS: 10 mM Tris HCI, 150 mM NaCl in distilled water
TBS-T: 0.1 % Tween20 in TBS, pH 7.6

Tris: 10 mM Tris-buffered saline pH 8.0
Trypsin solution: 50 mg trypsin diluted in 26.7 HBSS pH 7.4, sterile filtered

2.1.4 Primary antibodies

Anti-a-syn (LB509) from mouse = Covance (Princeton, NJ,
USA)

Anti-o-syn (phospho S129; EP1536Y) from rabbit Abcam (Cambridge, United
Kingdom)

Anti-MAP2 from mouse ~ Merck Millipore
(Darmstadt, Germany)

Anti-mouse CD3 conjugated with Alexa Fluor from rat Biolegend (San Diego, CA,

488 USA)

Anti-mouse CD11b from rat Bio-Rad Laboratories
(Hercules, CA, USA)

Anti-tyrosine hydroxylase from rabbit Zytomed (Berlin, Germany)

2.1.5 Secondary antibodies

Anti-mouse  alkaline phosphatase  from goat Dako (Hamburg, Germany)
Anti-rabbit Cy3 from goat Dianova (Hamburg, Germany)
Anti-rabbit biotinylated from goat Dianova (Hamburg, Germany)
Anti-mouse  Cy5 from goat Jackson ImmunoResearch

(Cambridge, United Kingdom)

2.1.6 Kits
Vectastain ABC PK-4000 Peroxidase Kit Vector Laboratories (Burlingame, USA)
DAB Peroxidase SK-4100 substrate kit Vector Laboratories (Burlingame, USA)
ToxiLight bioassay kit Lonza (Cologne, Germany)

2.1.7 Software

AxioVision SE64 Rel. 4.9 Carl Zeiss

CorelDraw Graphics Suite 2019 Corel Corporation
EthoVision XT 8.5 Noldus

Graphpad Prism 5.04 and 8.2.1 GraphPad software Inc.
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Inkscape 0.92 The Inkscape Team
PyMCA 5.3.1 Sourceforge.net
SparkControl V1.2 Tecan

SPSS Statistics 25.0 IMB Statistics

Stereo Investigator 9.0 Micro Bright Field Inc.
ImagelJ 1.50b N.LH.

Mendeley Elsevier

2.2 Methods

2.2.1 Analysis of human midbrain tissue from PD and control patients

Human midbrain samples were used to analyze the elemental composition of
neuromelanin-positive cells and the elemental distribution in LBs of PD patients. The X-
ray-based analyses of the human tissue were performed in collaboration with Prof. Dr. Tim
Salditt and Dr. Jan-David Nicolas (Institute for X-ray Physics, Gottingen, Germany). Also
Kilian Frank, Marina Eckermann and Tilman A. Griinewald were involved in the
measurements of the samples at the European Synchrotron Radiation Facility (ESRF) in
Grenoble, France (Joppe et al., 2020). For an overview on these X-ray experiments, Figure
3 illustrates the processing of the human midbrain tissue and the procedure of the
consecutive analyses. MATLAB and Python analyses for XRD and XRF data were also

performed in collaboration with the Institute for X-ray Physics in Géttingen.

In a parallel study, human midbrain samples were analyzed regarding their
cholesterol amounts. The lipid extraction and cholesterol analysis were performed in
collaboration with Dr. Cornelia Herrfurth and Sabine Freitag from the Lab of Prof. Dr. Ivo

FeuBner (Department for Plant Biochemistry, Gottingen, Germany).

2.2.1.1 Tissue preparation for X-ray analyses

Human tissue was obtained from the UK Brain Bank (Parkinson's UK, London,
England). The Multicenter Research Ethics Committee granted the ethical approval
(07/MREQ9/72). In order to analyze the elemental profile of PD patients with XRF, brain
sections of four PD patients and four controls (three cancer patients and one multiple

sclerosis (MS) patient) were prepared (Table 1).

29



MATERIALS AND METHODS

frozen g ) Figure 3. Processing of human

. ’ 5
tissue blocks =~ 4 midbrain tissue and the analysis
¢ procedure. Frozen human tissue
blocks received from the UK PD

transfer to

cryostat brain bank were transferred to the
¢ cryostat and sectioned into 30 pm

thick slices. The sections were

Kapton and . . .
PP rings 0 mounted on rings covered with
polypropylene (PP) or Kapton foil.
/ Sections on PP rings were not further
Kapton PP processed, whereas tissue sections on
. Kapton rings were immunolabelled
sectioning and
mounting on rings for a-syn. Microscopy was used to
¢ identify neuromelanin-positive
neurons on native tissue and LBs on
immunostaining . . .
for a-synuclein immunostained tissue. Trace
elements were measured in both
preparations using XRF. XRF data

were processed with the software

2 PyMCA and statistically analyzed
microscopy Q\ .
g with  MATLAB and Python.
*L ¥ Structural analysis of the tissue was
performed by  using  XRD
X-ray PV X-ray
fluorescence ~AAAAS diffraction measurements.
PyMCA
analysis M
statistical analyses e MATLAB e
MATLAB and Python  |liilis analyses |l

Snap frozen midbrain tissue blocks of PD and control (CO) patients were used as
starting material (Figure 4A). The samples were transferred from —80 °C to the cryostat
(=21 °C) at least one hour before sectioning. Tissue blocks were cut into 30 um thick tissue
sections using iron-free teflon-coated blades to avoid friction-dependent particle

contamination. Two adjacent sections were prepared for each patient. The first section was
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mounted on a ring covered with Kapton foil (ring diameter 50 mm; Kapton thickness 30
um); the second section was mounted on a PP-covered ring (diameter 25 mm, PP thickness
1 pm). Sections mounted on PP foil were dried at 60 °C for 15 min and afterwards another
PP ring was put on top of each section. Both rings covering one section were sealed with
nail polish. The sections on Kapton rings were dried for 3 min at 60 °C and fixed with
methanol for 10 min at —20 °C. These sections were kept at room temperature (RT) for

immunohistochemical staining.

The sections on Kapton rings used for the a-syn staining were rehydrated in tris-
buffered saline (TBS) for 20 min. Afterwards, the tissue underwent antigen retrieval in a
citrate buffer made of sodium citrate at pH 3 for 1 h at 60 °C. After 30 min of cooling down,
the citrate buffer was removed and the sections were washed 3 x 5 min in TBS. Blocking
was done in 5 % NGS in TBS with 0.1 % Tween 20 (TBS-T) for 1 h. Afterwards, the
sections were incubated over night at 4 °C with the first antibody (mouse anti a-syn,
LB509), 1:250 diluted in 5 % NGS dissolved in TBS. On the next day, the sections were
washed (3 x 10 min in TBS) and were then incubated with a secondary antibody conjugated
with alkaline phosphatase (goat anti-mouse IgG/alkaline phosphatase), 1:150 diluted in
TBS for 45 min. Sections were washed again (3 x 10 min in TBS). Adding Naphthol As-
BI phosphate to the alkaline phosphatase, the fission product reacts with the added
triphenylmethane dye new fuchsin (0.1 mg/ml) effecting a red staining of a-syn. After an
incubation with the new fuchsin for around 20 min, a washing step followed (5 min in
distilled H>O) to rinse any unbound new fuchsin from the tissue. The sections were dried
at RT. On the next day, distilled H>O was used to rehydrate the tissue (5 min). Afterwards,
the sections were incubated for 8 s in hemalum solution to stain cell nuclei. After blueing
of the samples (10 min in H>O), the tissue dried at RT. Due to the yellow color of the
Kapton foil, the nuclei staining (hemalum) of the sections mounted on Kapton was not
visible in recorded optical micrographs. After covering the section with another Kapton
ring, both rings were sealed with nail polish. The Axio Imager.Z2 microscope (Zeiss,
Gottingen, Germany) was used to identify and document LB-like structures within sections

from PD patients (Figure 4B) (Joppe et al., 2020).
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Table 1. Characterization of the used human samples for X-ray analyses. Samples and detailed information were provided by the UK brain bank. The column ‘analysis

target’ describes if a section of the sample was used for the analysis of neuromelanin-positive cells (cells) or for the Lewy body (LB) analysis. For PD2, one native section was

used for the cell analysis and a stained section was used for the LB analysis. CO: control patient, PD: Parkinson’s disease, MS: multiple sclerosis, F: female, M: male, postmortem

interval: time between death and tissue freezing, N/A: not available. Adapted with permission from (Joppe et al., 2020) © The Optical Society.

Simplified Case Patient Main Analysis Analyzed Age Gender a-syn pathology Disease Post mortem

ID ID group  diagnosis target cells y) (Braak stage)  duration (y) interval (h)
PD1 PD50 PD PD cells 5 82 F 6 14 18
PD2 PD334 PD PD cells/LB 8/1 87 M N/A 9 21
PD3 PD458 PD PD cells 8 73 M 6 19 10
PD4 PD153 PD PD cells 6 76 F 7 12
LB PD29 PD PD LB 1 76 M 7 15
COl1 CO46 CO cancer cells 5 75 M N/A N/A 24
CO2 CO28 CO cancer cells 7 60 F N/A N/A 13
CO3 PDC35 CO cancer cells 6 89 F N/A N/A 13
MSI1 MS520 CO MS cells 8 74 M N/A N/A 21

SAOHLAJAl ANV STVIIALVIA
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Figure 4. Human tissue description and microscopic images of a LB as guidance for X-ray-based analyses.
(A) Schematic anatomical representation of the SN within the midbrain as region of interest (ROI). (B)
Microscopy images of different magnifications focused on an immunostained LB inside a neuromelanin-
positive neuron of the SN. Tissue was immunostained against a-syn with an alkaline-phosphatase-based new
fuchsin staining. Holes inside the tissue originated from biopsy punches used for another project. Red squares
are used to highlight the position of the LB in lower magnifications. Adapted with permission from (Joppe et

al., 2020) © The Optical Society.
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2.2.1.2 X-ray-based measurements of human midbrain sections

Data were recorded at the ESRF (Grenoble, France) using the nanofocus experiment
endstation (EH3) of the beamline ID13. We aimed at analyzing neuromelanin-positive
neurons and LBs in these cells and used an in-line microscope for identification. The

experimental configuration is depicted in Figure 5.

Figure 5. Principle of XRF measurements.
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For the experiment, a photon energy of 14.8 keV with an energy spread of
AE/E =0.1 % defined by a Si(111) channel-cut monochromator was used. A two-
dimensional single-photon counting X-ray detector (Eiger 4M, Dectris) was used to capture
XRD. An energy-sensitive silicon-drift X-ray detector recorded XRF photons (Vortex EM,
SII NanoTechnology Inc.).

A standard reference material and the pyFAlI-calib software (Ashiotis et al., 2015)
were utilized to calibrate the detector distance of the Eiger detector. At distances
Zeiger = {303.194, 503.067, 901.188, 1298.137} mm, the Eiger detector distance and
position of the primary beam (and detector tilt) was calibrated. Two different distances for
the XRF detector were chosen, Zvorex = 25.5 mm and 35.5 mm, depending on the size of
the sample holder. All other relevant parameters for the configuration of the XRF detector

are summarized in Table 2.
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Table 2. Parameters used for the configuration of the Vortex EM silicon drift detector. An aluminum
cap with a circular aperture was used as a collimator by placing it on the detector. Adapted with permission

from (Joppe et al., 2020) © The Optical Society.

Parameter Value

Sample — collimator aperture (mm) 15.5 £ 1 (PP foils)

20.5 £ 1 (Kapton foils)

Distance aperture — entrance window (mm) 10
Aperture opening diameter (mm) 3.6
Entrance window — Si chip (mm) 3
Thickness Si chip (um) 500
Thickness Be window (um) 8
Active area (mm?) 40
Tilt angle (degrees) 15.62

A stack of compound refractive lenses was used achieving X-ray focusing. Due to
the usage of two sets of nanofocusing Si compound refractive lenses, a focal spot of
240 x 250 nm? was generated. We assumed a constant photon flux at /o = 8.4 x 10’ photons
s”!. Fluorescence spectra were calibrated to the amplitude of the Argon K, fluorescence line

(Joppe et al., 2020).

2.2.1.3 Analysis of XRF data

In order to analyze the elemental composition of cells and LBs in PD and CO
samples, each sample was placed directly into the focus of the X-ray beam. Regions of
interest (ROIs) on each section were raster scanned. The detector generated a spectrum of
the recorded XRF photons at each scan point. Afterwards, spectra could be averaged over
specific areas within the raster scanned ROIs (Figure 6A). In order to quantify intra- and
extracellular levels of recorded trace elements separately and to generate area-specific
mean spectra for analysis, measured cells within the ROIs had to be contoured in a next
step. The intensity image of XRF data and fluorescence maps from specific elements were
therefore compared with an optical micrograph. Selenium was relatively homogeneous
distributed within the measured cells, therefore, the selenium Ko fluorescence intensity

map was used to delimit the neuron from surrounding tissue (Figure 6B).
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Figure 6. Processing of XRF data and intracellular area delimitation. (A) A ROI which contained at
least one neuromelanin-positive neuron was defined at the brain section and was raster scanned with a
focused X-ray beam. At each scan point a single fluorescence spectrum was recorded, which were averaged
for subsequent analyses. (B) For quantification, the intracellular area was delimited from the extracellular
region at the ROI. The map of the selenium K, fluorescence intensity was used to delimit the cell. Using
MATLAB, the selenium fluorescence map was filtered with a Gaussian and a manual threshold was
applied to divide each image into an intra- and extracellular area. By slightly enlarging and inverting the
intracellular area, the extracellular compartment could be identified. Adapted with permission from (Joppe

et al., 2020) © The Optical Society.

In a next step, PyMCA (Sol¢ et al., 2007) was used to identify which trace elements
were detected in our sample based on the spectral line intensities. For energy calibration
and fitting the peaks of the spectral lines to the corresponding elements, the averaged
spectrum of a cell in each scan or the extracellular area of a scan was analyzed by using
PyMCA. In addition, the NIST Standard Reference Material 1577b (bovine liver) was fitted
in PyYMCA. The bovine liver served as a calibration standard to determine absolute element

concentrations (area density in g cm™) in human tissue sections (Table 3).
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Table 3. Elemental composition of the NIST Standard Reference Material 1577b bovine liver. The area
density of each element within the bovine liver was used to calculate the element concentration in human
tissue. X-ray emission energies were obtained from (Thompson et al., 2009). Adapted with permission from

(Joppe et al., 2020) © The Optical Society.

Mass fraction

Elements Ko (keV) (2 [100 g]) Area density (g cm?)
K 3.31 0.994 1.12 x 10°®
Ca 3.69 160 1.31 x 1072
Mn 5.90 10.5 1.19 x 10713
Fe 6.40 184 2.08 x 10712
Cu 8.05 160 1.81 x 10712
Zn 8.64 127 1.44 x 1072
As 10.54 0.05 5.65 x 1071
Se 11.22 0.73 8.25 x 10°1°
Br 11.92 9.7 1.10 x 1073

To calculate the absolute concentration c; of a specific element i, the following

o = cvov (AR (A ()
l ' AAr All_oov dref t
bov

The term (‘:Ar ) means the fit area ratio of the Argon K, line of both the bovine liver
Ar

formula was used:

and the sample and cP°V abbreviates the certified reference concentration of the element in

the bovine liver. While AP® expresses the fit area of the element in the bovine liver
spectrum, A; contains the fit area of the element in the midbrain sample spectrum. The
actual thickness of the bovine liver of 150 pm is termed d and the exposure time ¢. frer is the
rescaled exposure time of the bovine liver to 1 s and drer an effective thickness of 30 um to
match the midbrain sample thickness. Figure 7 shows the fitted spectrum of the averaged
bovine liver (A) and an averaged spectrum of a cell of a control sample (B) containing all
detectable elements. The continuum background was determined with PyMCA using

manually chosen parameters for the ‘strip’ filtering algorithm (Joppe et al., 2020).

2.2.1.4 Tissue preparation for cholesterol analysis

Midbrain tissue from nine PD and ten CO patients (three cancer and seven MS

patients) was used to compare the amount of cholesterol between these two groups (Table
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4). Therefore, on dry ice small pieces were cut out of the tissue block. For each patient three
tubes were prepared with approximately 30 mg of tissue inside to have both technical and
biological replicates for the lipid extraction. The tissue was stored at —80 °C until further
preparation for the lipid extraction, accomplished by our collaboration partners Dr.

Cornelia Herrfurth and Sabine Freitag (Department for Plant Biochemistry in Gottingen).
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Figure 7. XRF spectrum of a bovine liver and a control sample. For both XRF spectra, PyMCA was

used to fit the data. A red line indicates the averaged fit, whereas the spectrum of the measured material is
shown in black and the continuum background is indicated by a blue line. (A) Average spectrum of over
10000 individual spectra obtained from the measurement of a 150 um thick section of a bovine liver. The
continuum background was determined with PyYMCA using manually chosen parameters for the ‘strip’
filtering algorithm. (B) An exemplary average spectrum of a control patient (intracellular region). The
instrumental settings did not allow to resolve the Compton and elastic scattering peak. Minimum amounts
of titanium found in both spectra are probably caused by contamination within the collimation system of

the fluorescence detector. Adapted with permission from (Joppe et al., 2020) © The Optical Society.
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Table 4. Characterization of the used human samples for cholesterol analysis. Samples and detailed information were provided by the UK brain bank. CO: control patient
group, PD: Parkinson’s disease, MS: multiple sclerosis, F: female, LBDBS: Lewy Body disease (a-synucleinopathy) brain-stem predominant, LBDN: Lewy Body disease (a-

synucleinopathy) neocortical predominant, M: male, post mortem interval: the time in hours (h) between death and tissue freezing, N/A: not available, y: years.

Case ID Disease  Classification Age Gender Braak Neuropathological Disease Post mortem
type stage diagnosis duration [y] interval [h]
PD29 PD PD 76 M 6 LBDBS 7 15
PD39 PD PD 82 F 5 LBDBS 15 12
PD50 PD PD 82 F 6 LBDBS 14 18
PD74 PD PD 85 M 6 LBDBS 9 17
PD153 PD PD 76 F 6 LBDN 7 12
PD268 PD PD 72 M 6 LBDN 20 8
PD458 PD PD 73 M 6 LBDN 19 10
PD334 PD PD 87 M N/A LBDN 9 21
PD666 PD PD 93 F 6 LBDN 15 24
MS506 MS CO 61 F N/A N/A 50 21
MS517 MS CO 48 F N/A N/A 25 12
MS520 MS CO 74 M N/A N/A 42 21
MS523 MS CO 63 F N/A N/A 32 20
MS528 MS CO 45 F N/A N/A 25 17
MS530 MS CO 42 M N/A N/A 21 15
MS536 MS CO 47 F N/A N/A 21 30
C0O28 cancer CcO 60 F N/A diffuse hypoxic N/A 13
damage
CO46 cancer CO 75 M N/A N/A N/A 24
PDCO035 cancer CcO 89 F N/A diffuse hypoxic N/A 13
damage
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2.2.1.5 Lipid extraction and cholesterol analysis

The following procedure of lipid extraction was performed using an adapted protocol
for extraction of cholesterol from the brain samples. The protocol was provided and
performed by the Department for Plant Biochemistry in Gottingen. First, the samples were
grinded using the Mixer Ball Mill MM200 with stainless steel grinding jars (Retsch GmbH,
Haan, Germany). From approx. 30 mg gross weight of the tissue, 10 mg were extracted as
previously described applying some modifications (Matyash et al., 2008). Sample
extraction was performed using 0.75 ml of methanol, which contained 3.1 pmol ergosterol
as internal standard. Samples were vortexed, 2.5 ml of methyl-ters-butyl ether (MTBE)
were added and the extract was shaken for 1 h at RT. Phase separation was initiated by
adding 0.6 ml of distilled water. Afterwards, an incubation of the mixture for 10 min at RT
and centrifugation at 450 x g for 15 min followed. While the upper phase was collected,
the lower phase was re-extracted with 0.7 ml methanol/water (3:2.5, v/v) and 1.3 ml MTBE
as described above. Streaming nitrogen was used to dry the combined upper phase. Then,

it was resuspended in 0.5 ml of hexane.

Prior the analysis, a 20-fold dilution of the sample in hexane was performed and 5 pl
of pure N,O-bis(trimethylsilyl)trifluoroacetamide (Sigma, Germany) were added to 10 pul
of each sample. For analysis, an Agilent 5977B mass selective detector connected to an
Agilent 7890B gas chromatograph equipped with a capillary HP-5MS UI column (30
m X 0.25 mm; 0.25 um coating thickness; Agilent) was used. Helium served as carrier gas
(1 ml/min) and the injection port temperature was 280 °C. The temperature gradient
reached 180 °C for 1 min, 180 — 320 °C at 5 K/min and 320 °C for 5 min. For the transfer
line, the following set up was used: electron energy of 70 eV, an ion source temperature of
230 °C, and a temperature of 280 °C. Under the mentioned conditions, the retention times
of the trimethylsilyl ether derivatives of cholesterol and ergosterol were detected at 23.9
and 25.0 min, respectively. Using a mass range of m/z 50-650, the mass spectrometer was
operated in the scan mode. Gas chromatography-mass spectrometry (GC-MS) data analysis

was performed using the Agilent ChemStation data analysis software.
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2.2.2 Animal handling and tissue processing

2.2.2.1 Animals

Wild-type C57BL/6J mice were used for the experiments of this thesis, which were
obtained from Charles River (Sulzfeld, Germany). During ongoing experiments, the
animals were kept in the mouse room of the Neurology department with standard ad libitum
feeding and 12 hours dark/light cycle. Five animals were maximally housed in one
individual ventilated cage. For experiments using animals of an age of 10 weeks and older,
the mice were resettled to our animal facility two weeks before starting the experiment to
allow habituation to the new environment. For experiments with mouse pups, mice (wild-
type C57BL/6J) were paired in the central animal facility, University Medical Center
Gottingen. The pregnant mother animals were transferred to the mouse room of the
Neurology department some days before the delivery of the pups. All animal experiments
were governed by the national German animal protection law listed under the grant no.
33.9-42502-04-15/1982 (LAVES Niedersachsen) and the approval was given by the local
authorities. For preparation of primary cortex neuron cultures, pregnant C57BL/6J mice
(central animal facility, University Medical Center Gottingen) were used as donor animals

for embryos of embryonic day (E) 18.5.

2.2.2.1.1 Overview on the used animal models

Animal models were used to analyze the impact of iron as well as fasudil on the o-
syn spreading pathology in the brain. Both study models are used to understand and clarify
the effect mechanism of the a-syn propagation as one of the major characteristics in PD. In
a first study, mouse pups were treated with carbonyl iron between p10 and p17 per gavage.
At an age of approximately 12 weeks, mice were injected with a-syn PFFs or monomers to
analyze the mutual effect of iron and a-syn on motor and cognitive behavior as well as the
effect on a-syn propagation at 90 dpi (Figure 8A). In a parallel experiment, uninjected

animals were used to analyze the iron enrichment in mouse brains.

In a therapeutic approach, mice were injected with a-syn PFFs or monomers and
additionally treated with fasudil via drinking water between the injection and their sacrifice
(Figure 8B). An overview on the used animal models is given in Table 5. The model-based

treatment and injection method will be described in the following chapters.

41



MATERIALS AND METHODS

A B
NOR NOR . .
rotarod : rotarod
| : 3mo. '
0 10 17 [d] //%rguo ' 90 dpi birth //drglo 90 dpi
| |:},\ | | | | fasudil |
IHC IHC
L 5 MO
& a-syn a-syn

Figure 8. Experimental layouts of the main in vivo studies. (A) Experimental procedure of a study
investigating the influence of iron on PFFs-induced a-syn spreading. Iron was treated per gavage, a-syn
was injected intrastriatally. Novel object recognition test (NOR) and rotarod test were performed to assess
the behavior. (B) Experimental procedure of a study investigating the influence of fasudil on PFFs-induced
a-syn spreading. Mice were injected with a-syn PFFs intrastriatally and received fasudil via drinking water.
In both studies animals were sacrificed at 90 days post injection (dpi). Doi: day of injection, d: days, IHC:

immunohistochemistry, mo.: months.

2.2.2.2 Treatment of mice

2.2.2.2.1 Iron intoxication

Mouse pups (C57BL/6J) were fed with iron or sorbitol (control condition) between
pl0 and p17 by oral gavage. Within this time frame, the blood brain barrier is still open, so
that iron treatment should lead to an increased iron load inside the brain. Based on the
weight of the pups they were fed with between 50 and 80 pl of iron or control solution.
Before applying, carbonyl iron was dissolved in 5 % aqueous sorbitol solution, which
served as vehicle. Iron was fed in three different concentrations: 60 mg iron per kg body
weight, 120 mg iron per kg body weight and 240 mg iron per kg body weight. For
convenience only, from now on the iron treatment groups are mentioned as 60 mg/kg Fe,
120 mg/kg Fe and 240 mg/kg Fe. The control group was treated with 5 % aqueous sorbitol
solution. Between p10 and p14 plastic feeding tubes were used for the gavage while metal
tubes had to be used between p14 and p17. During the whole iron treatment time frame,
pups were still in the cage with the mother animal. Since pups ingest their own excrements,
which could thus contain different iron amounts (due to gavage with different iron
dosages), pups from the same litter were treated with the same iron dosage. All animals

respectively both sexes were included in the experiment.
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Table 5. Overview on the used mouse models. In an iron intoxication model, the treatment with sorbitol is
a vehicle/control condition for iron treatment. Iron was prepared in three different dosages diluted in 5 %
sorbitol. Iron and fasudil concentrations were stated as mg/kg body weight (bw). As injection solution either
human (hum) or mouse (ms) a-syn was used. Mice were injected with either a-syn monomers or preformed
fibrils (PFFs) diluted in PBS. F: female, Fe: iron, ICP: inductively coupled plasma, IHC:

immunohistochemistry, M: male, XRF: X-ray fluorescence.

Study Mouse Treatment Injection Sample n per Analysis
model line size (n) gender method
iron C57BL/6J  sorbitol hum a-syn 9 4xF [HC
pathology monomer 5xM
iron C57BL/6J  sorbitol hum a-syn 13 TxF [HC
pathology PFFs 6xM
iron C57BL/6J 60 mg/kg  hum a-syn 10 6xF [HC
pathology bw Fe monomer 4xM
iron C57BL/6J 60 mg/kg  hum a-syn 12 6xF [HC
pathology bw Fe PFFs 6xM
iron C57BL/6J 120 mg/kg  hum a-syn 9 3xF [HC
pathology Fe monomer 6xM
iron C57BL/6J 120 mg/kg  hum a-syn 14 6xF [HC
pathology Fe PFFs 8xM
iron C57BL/6J 240 mg/kg  hum a-syn 8 4xF [HC
pathology bw Fe monomer 4xM
iron C57BL/6J 240 mg/kg  hum a-syn 13 4xF [HC
pathology bw Fe PFFs 9xM
iron C57BL/6J  sorbitol / 5 IxF ICP
pathology 4xM spectrometry
iron C57BL/6J 60 mg/kg / 6 3xF ICP
pathology bw Fe 3xM spectrometry
iron C57BL/6J 120 mg/kg / 5 2xF ICP
pathology bw Fe 3xM spectrometry
iron C57BL/6J 240 mg/kg / 5 2xF ICP
pathology bw Fe 3xM spectrometry
iron C57BL/6J / / 2 IxF XRF
pathology 1xM
iron C57BL/6J 60 mg/kg / 4 2xF XRF
pathology bw Fe 2xM
iron C57BL/6J 120 mg/kg / 2 2xF XRF
pathology bw Fe
fasudil  C57BL/6J / ms 0-syn 10 10xM IHC
treatment monomer
fasudil  C57BL/6J / ms 0-syn 8 8xM IHC
treatment PFFs
fasudil  C57BL/6J 30 mg/kg ms 0-syn 10 10xM IHC
treatment bw fasudil PFFs
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2.2.2.2.2 Fasudil application

In a therapeutic approach, the ROCK inhibitor fasudil was tested in regard to its
effects on a-syn spreading. Fasudil treatment started directly after the injection of mouse
a-syn PFFs and the treatment was continued until mice were sacrificed. Mice were treated
with fasudil daily via drinking water with a dosage of 30 mg/kg bw per day, adjusting the
application of fasudil to previously published studies of our lab (Tatenhorst et al., 2014,
2016).

2.2.2.3 Intrastriatal injection of a-syn

2.2.2.3.1 a-syn PFFs production

Monomeric and fibrillized a-syn solutions were provided by Dr. Stefan Becker (Max
Planck Institute for Biophysical Chemistry, Gottingen, Germany). Both human and mouse
a-syn were expressed recombinantly in E. coli and purified as described before (Hoyer et
al., 2002). For the preparation of pure monomeric a-syn (aggregate-free), the protein was
dialyzed against PBS buffer (pH 7.4), centrifuged at 106.000 x g for 1 h at4 °C and filtrated
through 0.22 pm ULTRAFREE-MC centrifugal filter units (Millipore). The protein

concentration of a-syn monomers diluted in PBS was finally adjusted to 5 mg/ml.

For fibrillization, both monomeric human and mouse a-syn were incubated in PBS
buffer at RT and 37 °C, respectively, with constant stirring at 200 rpm. The fibrillization
progress was monitored with a thioflavin T fluorescence assay (Hoyer et al., 2004). The
steady state of fibrillization of human a-syn was reached after 7-9 days, while fibrillization
of mouse o-syn took up to 11 days until it reached steady state. After preparation,

monomeric a-syn and PFFs were shock frozen in liquid nitrogen and were stored at —80 °C.

2.2.2.3.2 Preparation of a-syn PFFs for injection

a-syn PFFs were defrosted at RT immediately before use whereas a-syn monomers
were kept on ice. Directly before the injection, the PFFs solutions (PFFs amounts in stock
solution: 3.4704 mg/ml) were diluted with PBS to achieve the desired dosage (5 pgin 2 pl)
and were sonicated (30 sec, 1 cycle, 10 % power; Volpicelli-Daley et al., 2014). The
sonication ensures that long-chain molecule fibrils are shortened, which is a crucial step to

generate small seeds.
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2.2.2.3.3 Anesthesia and surgical procedure

C57BL/6J mice received an analgesic treatment with Metamizole (1.5 mg/ml) in
drinking water, starting two days before surgery and ending two days after the injection of
a-syn. Mice were anesthetized with an intraperitoneal injection of ketamine (150 mg/kg
bw) and xylazine (10 mg/kg bw) solution. In order to verify the depth of the anesthesia, the

toe pinch reflex and eyelid reflex were checked before the surgery.

Under anesthesia, the skull of the mouse was fixed within a stereotactic frame (Figure
9A). The skin was opened with a longitudinal cut to determine the Bregma and Lambda
coordinates at the cranial roof. Measuring coordinates of both anatomical points, the
coordinate in the dorsoventral axis should not vary more than 0.3 mm, otherwise the skull
position was corrected. The stereotactic injection was performed into the striatum at the
right hemisphere for every mouse and the injection coordinates were calculated based on
the Bregma point of each mouse by means of the following information taken from the
Paxinos Mouse Brain Atlas (Paxinos & Franklin, 2003): Anteroposterior axis + 0.4 mm;

mediolateral axis —1.8 mm; dorsoventral axis —3.5 mm.

The injectional plane and injection site are visualized in Figure 9B. A drilled hole
into the skull enabled a slow insertion of a thin glass capillary into the brain tissue until the
target coordinate of depth (dorsoventral axis) was reached. After the injection (injection
volume 2 pl, injection rate 500 nl/min) the needle was left in place for 4 minutes to prevent
reflux of the injected substance via the injection pathway. The capillary was slowly
removed, the skin above the skull was closed with DermaBond (tissue glue) and the mouse
received an injection of 1 ml of the sterofundin electrolyte solution (warmed up at 37 °C)
into the nuchal fold to prevent from dehydration. Under observation, the mice were sleeping

at a warming pad under a thermal lamp until they woke up from anesthesia.

2.2.2.4 Behavioral tests

After the stereotactic injection, the weight of the mice was weekly controlled as an
indicator for recovery and physical health of the mice until the sacrifice. In order to detect
treatment-related behavioral changes or pathological abnormalities, behavioral tests were
conducted during both the iron a-syn study and the fasudil a-syn study. Animals performed

the rotarod test weekly (once a week). Mice included in the study analyzing the contribution

45



MATERIALS AND METHODS

of iron on a-syn spreading were additionally tested with the novel object recognition test

(NOR) starting two days before the a-syn injection and two days before sacrifice at 90 dpi.
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Figure 9. Illustrations on the stereotactic injection procedure and used behavioral tests. (A)
Stereotactic injection. The skull of the mouse is fixed with ear bars and a teeth holder. A glass capillary is
inserted inside the brain to inject a-syn. (B) The scheme illustrates the coronal view on the injection site
in the striatum (adapted from Paxinos and Franklin, 2003). (C) Rotarod device. In parallel, up to five mice
are running on the rotarod with accelerating speed from 5 to 40 rpm for maximum 300 seconds. (D) The
procedure of the NOR. After a habituation phase inside the empty arena, the mouse is placed inside the
arena with two identical objects for 5 min to get used to these objects. After a recovery phase, the short-
term memory (STM) is tested by recording the mouse while exploring a familiar and one novel object.
The long-term memory (LTM) is tested after 24 h. The Ethovision XT 8.5 software determines the head
direction to the object within 2 cm of the object’s diameter, which is hereby called the zone of interest. (E)
Exemplary images on the movement of the mice within the experimental cage with two different objects
— one familiar and one novel object. The exemplary images represent mice belonging to the four different

treatment groups (sorbitol = vehicle, 60 mg/kg Fe, 120 mg/kg Fe, 240 mg/kg Fe) before a-syn injection.
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2.2.2.4.1 Rotarod

The rotarod test was used to analyze motor behavior. Motor coordination, balance
ability and endurance are required to complete the rotarod test properly. Up to five mice
can be tested simultaneously on the rotating rod, which has a diameter of 3 cm (Figure 9C).
Large disks separate the mice from each other. Placing the mice on the rod, a constant speed
of 5 rpm is kept. In order to familiarize the mice to the test and to reach stability in the test
performance, the mice were pretrained on the rotarod at a constant speed of 15 rpm (three

trials for 5 min) on two consecutive days before the first official assessment.

During the experiment, the spin speed of the rotating rod was automatically
accelerating from 5 rpm to 40 rpm within 5 min of testing and the time was recorded after
how many seconds the mouse fell from the rod (between 0 and 300 sec). At each testing
day, mice performed three times on the rotarod with an intertrial interval of 30 min to

reduce stress and fatigue. The test was performed at a similar time of day.

2.2.2.4.2 Novel object recognition test

One mouse was placed into an arena of 48 cm % 35 cm. After a 3-minute habituation
phase within the empty arena, two identical objects were put inside the arena for 5 min.
This phase aimed to familiarize the mouse with the objects. Afterwards, the mouse was
transferred back into its cage for 10 min. Subsequently, the mouse was placed again into
the arena with one of the familiar objects and one novel object for 5 min, meanwhile the
mouse behavior was recorded with a camera placed above of the arena. With this 10-minute
interval between habituation and recording phase, short-term memory (STM) of the mouse
was assessed. In order to assess the long-term memory (LTM) of the mice, 24 h after the
habituation phase, the mouse was again exposed to one familiar object and one novel object
for 5 min. Figure 9D illustrates the NOR procedure measuring STM and LTM. The short-
term and long-term experimental setup were analyzed with the Ethovision XT 8.5 software
from Noldus. The software measured the duration (s) of the head direction to the object
within 2 cm of the object’s diameter, which is hereby called the zone of interest (indicated
in Figure 9D). For the analysis, a discrimination ratio was generated relativizing the time
spent with the novel object to the time spent with both objects, as previously described
(Bevins and Besheer, 2006; Tatenhorst et al., 2016). The software could also give an output
on the explorative behavior within the arena. Mice of all iron treatment groups showed

explorative behavior, which is demonstrated by exemplary images in Figure 9E. To gather
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information on the mobility of the mice, the distance moved was recorded for each mouse

during 5 min of testing.

2.2.2.5 Transcardial perfusion and brain processing

In order to histologically analyze brain tissue of mice injected with o-syn, a
transcardial perfusion was performed. Deeply anesthetized mice were transcardially
perfused with ice-cold PBS for 5 min and afterwards with 4 % ice-cold PFA in PBS for 5
min. The brains were removed and post-fixed with 4 % PFA in PBS for 24 h at 4 °C. On
the next day, the brains were transferred to 30 % sucrose in PBS and stored at 4 °C for two
days for tissue dehydration as cryo-protection. Finally, the dehydrated brains were stored

at —80 °C until cryo sectioning.

For the quantification of iron within whole mouse brains via inductively-coupled
plasma (ICP) spectrometry, 6 month-old iron-treated mice were sacrificed, PBS perfused,
and their extracted brains were frozen at —80 °C. Each brain was put in a tube with 500 ul
Milli-Q water and homogenized (3 x 45 sec). Hyphenated ICP spectrometry analysis was
accomplished by Prof. Dr. Bernhard Michalke (Helmholtz Institute, Munich, Germany).

For XRF analysis, 6 month-old iron (60 or 120 mg/kg Fe) treated mice and control
mice were sacrificed and PBS perfused. Mice of the control group were not treated with
iron. Brains were extracted, the hemispheres were divided and cut into 5 mm thick slices.
These single blocks were mounted in cryo matrix and were cryofixed for 2 min in —160 °C
cold 2-methyl butane to avoid ice crystal formation. Samples were stored in liquid nitrogen
until usage. 30 um cryosections were cut, freeze-dried and mounted between two layers of

4 um ultralene foil (SpexSamplePrep) (Vogel-Mikus et al., 2014).

2.2.2.6 Cryosectioning

For the analysis of fixed mouse tissue, brains were covered with a cryo matrix at
—20 °C directly before cutting. 30 um thick sections of the brain were cut. Half of all cut
sections of the SN were directly mounted on Superfrost object slides whereas the other half
was stored in 24-well plates filled with PBS. Sodium azide solution was added to each well
of the plate (0.1 % sodium azide in PBS) to conserve the free-floating sections, and the

plates were stored at 4 °C. Slices on object slides were stored at —20 °C until usage.
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2.2.3 Cell culture

Cell culture experiments were performed to investigate the contribution of iron to a-
syn spreading in vitro mimicking the in vivo model. Cortical cultures were used to establish
iron treatment. To analyze spreading of a-syn, neurons were seeded into microfluidic

chambers. Cells were treated with iron and a-syn on consecutive days.

2.2.3.1 Coating of culture plates and imaging dishes

Cell culture 24-well plates were coated with PLL and stored at 37 °C overnight. The
plates were washed two times with PBS and once with Neurobasal and were stored at 4 °C
until usage. For microfluidic chamber experiments, petri imaging dishes were coated with
PLL over night at 37 °C. Afterwards, the dishes were washed twice with distilled water and

the chambers were assembled with the dishes as described in chapter 2.2.3.2.

2.2.3.2 Preparation of microfluidic chambers

The microfluidic chambers were constantly reused for the experiments. Therefore, a
precise cleaning procedure was applied prior to new cultures. Directly after use, the
chambers were carefully cleaned with soap water. Afterwards, chambers were rinsed with
distilled water (milliQ) and were kept overnight in a jar filled with distilled water at 37 °C.
For the whole cleaning procedure, the microgroove side of the chamber has to face up. On
the next day, chambers were transferred into a plastic dish and dried in the 60 °C warm
incubator. Debris was removed from the chambers using scotch tape. In order to sterilize
the chambers, they were incubated for at least 15 min in sterile 70 % ethanol under the cell
culture hood. Afterwards, the chambers were dried for 1 h. In parallel, distilled HoO was
removed from PLL-coated imaging dishes and they were dried for 1 h, and then the
chambers and imaging dishes were assembled. 200 pul warm cortex medium was filled
inside one compartment of the chambers. After approximately 3 h, the other compartment
was also filled with 200 pl medium. These ready-to-use chambers were left in the 37°C

incubator until cell culture preparation.

2.2.3.3 Primary cortex neuron culture

C57BL/6J embryos (E 18.5) were used for primary cortex neuron cultures. All
embryos were transferred to ice-cold CMF. Under aseptic conditions, meninges were

removed, and the cortices were isolated. Cortex tissue was collected in ice-cold CMF and
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centrifuged at 1 rcf for 2 min at RT. CMF was removed, and the pellet was incubated with
I ml trypsin (= 9,000 U/mg; 1.87 mg/ml) in 37 °C for 12 min under occasionally shaking
movements. 100-150 ul DNAse (~400 U/mg) was added and the cell suspension was
centrifuged for 1 min at 1 rcf. The supernatant liquid was exchanged with 1 ml FCS to
inactivate the remaining trypsin. Under trituration with fire polished Pasteur pipettes, cells
were dissociated and afterwards centrifuged for 4 min at 1 rcf at RT. The remaining pellet
was resuspended in cell culture medium. A Neubauer counting chamber was used to
quantify the number of cells within the solution. 250,000 cells/well were plated on PLL-
coated coverslips inside a 24-well plate in 500 pl medium. 120,000 cells were seeded into
the primary cell compartment of the microfluidic chambers and 250,000 cells at the
opposing secondary cell compartment exactly one week later. All cells were stored in an
incubator at 37°C with 5 % CO; and 95 % humidity. One day after preparation, half of the
medium was replaced with 4 uM cytosine arabinoside containing medium (AraC; stock
1 mM) to reach a final concentration of 2 uM AraC within each well. AraC is an inhibitor
of the DNA synthesis and is therefore used to control the proliferation and to decrease the
amount of glia cells within the cultures. Every 2-3 days half of the medium in each well

was replaced with fresh medium containing 2 uM AraC.

2.2.3.4 Iron treatment of cortex cells

A stock solution of 5 mM iron(II) chloride (FeClz) was prepared by dissolving FeClz
in 5 % glucose in distilled H>O (sterile solution). For neuron cultures in 24-well plates, iron
stock solution was diluted in cell culture medium to gain final treatment concentrations of
10, 50, 100 and 200 uM FeCl. As a control/vehicle condition, 5 % aqueous glucose was
added to the medium in the same amount as in the iron conditions. Cells were incubated
with iron or vehicle for 24 h. After treatment, cells were washed three times with medium.
For the microfluidic chamber model, stock solution was diluted in warm cortex medium
containing 2 uM AraC to obtain a treatment solution of 100 uM FeCl,. At day in vitro (div)
2, the existing medium was removed from the cell side of the microfluidic chambers and
200 pl of the iron solution was added. As a control condition, the same amount of 5 %
aqueous glucose was mixed with cortex medium as in the iron condition. After 24 h, the

whole chambers were washed two times with fresh medium and were treated with a-syn.
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2.2.3.5 PFFs treatment of cortex cells

Mouse a-syn monomers and PFFs stored at —20 °C were thawed — monomer at 4 °C
and PFFs at RT — and both protein solutions were diluted 1:10 in sterile PBS. Then, a- syn
PFFs were sonicated for 30 sec at RT at cycle 1 and with 10 % power. In microfluidic
chambers, cells were treated with 1 pg PFFs or monomers diluted in 200 ul fresh cell
culture medium. After 24 h of treatment starting at div3, the cells were washed three times
with fresh medium. As a separate control condition, cells were treated with PBS instead of

a-syn.

2.2.3.6 Fixation of cells

Cells in 24-well plates were rinsed with PBS and then fixed with 4 % PFA in PBS
for 10 min at RT. Afterwards, PFA was replaced by PBS and the cell-containing coverslips
were stored in PBS at 4 °C until staining. For longer storage of the unstained cells, PBS

was replaced by 0.1 % sodium azide diluted in PBS.

The fixation procedure of cells within microfluidic chambers differs marginally from
the above-mentioned procedure. First, the whole imaging dish, where the chamber was
placed in, was filled with PBS to facilitate detaching of the chamber to the coverslip. After
removing the chamber, PBS was replaced by 4 % PFA in PBS for 10 min. The following

step was the same as above mentioned for 24-well plates.

2.2.4 Molecular biology and biochemical techniques

For the analyses of mouse tissue, immunohistochemical methods were applied.
Depending on the evaluation method, the following antibody-based staining protocols were
used: either fluorescence-based or peroxidase-based staining. An immunocytochemical
approach, a modified Prussian blue staining and a ToxiLight Assay were used to analyze

cortex neurons.

2.2.4.1 Immunohistochemistry

2.2.4.1.1 Fluorescence-marked antibody staining

In order to analyze a-syn spreading pathology through coronal mouse brain sections,
a fluorescence-based antibody staining of a-syn was applied. For this staining, 30 pm thick

sections, already mounted on object slides and stored at =20 °C, were used. The tissue was
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rehydrated in PBS for one hour and afterwards incubated in citrate buffer (pH = 6.0) at
80 °C for 30 min. The sections were cooled down to RT within 30-60 min and then washed
in PBS 2 x 5 min. The tissue was incubated for 20 min in 25 mM glycine in PBS and
washed in PBS twice for 5 min. After incubation with 0.1 % Sudan black for 15 min, the
sections were rinsed with water and washed with PBS 2 x5 min. In order to block
unspecific antibody binding, sections were incubated for 1.5 h at RT in a blocking solution
inside a moist chamber. Afterwards, the tissue was incubated with the first antibody over
night at 4 °C. Rabbit anti-phospho S129 a-syn antibody (EP1536Y, #ab51253, Abcam) was

utilized to recognize a-syn aggregates in a dilution of 1:1000 in blocking solution.

On the following day, slides were washed 3 % 15 min in PBS and incubated with the
second antibody in a moist chamber for 1.5 h at RT (Cy3 goat anti-rabbit, 1:500, #111-165-
006, Dianova). Another washing step 3 x 10 min followed, and the sections were incubated
in DAPI solution for 2 min to achieve staining of the nucleus since DAPI is known to bind
to adenine-thymine rich regions in the DNA. The slides were washed with PBS 2 X 10 min
and dried at 37 °C for 10 min. The sections were embedded with Mowiol and then dried at
60 °C for 10 min for a better expansion of the Mowiol. The slides were kept at RT overnight

and were stored afterwards at 4 °C.

CD3-positive (CD3+) T cell stainings were performed by our collaboration partner
PD Dr. Chi Wang Ip (University Hospital Wiirzburg, Germany). 30 pm thick brain sections
of SN (pars compacta and pars reticulata) and the pre-commissural, commissural and post-
commissural parts of the striatum of iron-treated mice were stained. Free floating sections
were preincubated for 3 h at RT on a shaker with 5 % BSA /5 % NGS in 0.01 M PBS.
Afterwards sections were incubated for 2 h at RT with primary rat anti mouse CD3 antibody
conjugated with Alexa Fluor® 488 (Biolegend, #100210) diluted in 1 % BSA /1 % PBS
in 0.01 M PBS. DAPI was used to label cell nuclei.

2.2.4.1.2 Peroxidase-based antibody staining

In order to stereologically quantify the dopaminergic neuron population in SNpc, 30
um thick brain sections were stained free floating against tyrosine hydroxylase (TH)
followed by an on-slide Nissl staining. Every fourth section of SNpc was washed 3 x 5 min
with TBS in net tubes. The following quenching of endogenous peroxidase was performed
by a 15 min incubation in 40 % methanol and 1 % H>O: dissolved in TBS. After another
washing step with TBS, sections were incubated in 5 % NGS in TBS for 60 min at RT to
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block unspecific antibody binding. The incubation with the primary rabbit anti-TH
antibody, diluted 1:1000 in 2 % NGS in TBS, took place for 48 h on a shaker at 4 °C.

The antibody solution was decanted, and the sections were washed three times in
TBS. The secondary anti-rabbit (biotinylated) antibody was diluted 1:200 in TBS and
stayed on the sections for 2 h at RT, followed by three times washing in TBS. For enhancing
the signal power, the sections were incubated with the VECTASTAIN Elite ABC
Peroxidase Standard kit (Vector Laboratories) for 2 h at RT. After washing with TBS (three
times), the diaminobenzidine-HCI (DAB) Peroxidase Substrate kit was used to visualize
TH staining through the chromogen DAB. Sections were incubated for about 20 min and
the DAB reaction was stopped by an incubation in distilled water for 5 min. Subsequently,

sections were transferred to Superfrost object slides and were dried for 5 days at RT.

Afterwards, the Nissl staining was performed. The tissue was rehydrated in distilled
water for 5 min and stained with thionine acetate solution for 7 min, followed by another
washing step in distilled water for 5 min. Dehydration of the tissue was reached by a step-
by-step incubation in 70 % (2 min), 90 % (2 min) and 95 % (5 min) ethanol. After repeating
all previously performed staining steps, sections were incubated in 100 % isopropanol for
5 min and then 3 times in xylene respectively for 5 min. Finally, slides were mounted with

Entellan and stored at RT until stereological counting.

For the analysis of CD11b+ cells in brains of iron-treated animals, the related staining
procedures were performed by our collaboration partner PD Dr. Chi Wang Ip (University
Hospital Wiirzburg, Germany). 30 um coronal cryo-sections of the SN (pars compacta and
pars reticulata) and the pre-commissural, commissural and post-commissural parts of the
striatum were used. Sections were preincubated free floating for 3 h at RT on a shaker with
5% BSA /5 %NGS in 0.01 M PBS. Afterwards, they were incubated on a shaker overnight
at 4°C with the primary rat anti mouse CDI1b antibody (Bio-Rad Laboratories,
#MCA74G), diluted in 1 % BSA /1 % PBS in 0.01 M PBS. Sections were then incubated
for 2 h with the biotinylated secondary antibody against rat Igs (Vector Laboratories),
which was diluted in 1 % PBS / 1 % NGS in 0.01 M PBS, followed by an incubation with
the avidin/biotin reagent (Thermo Fisher Scientific). In a next step, tissue was incubated

and stained with DAB and H»O,. Cells were additionally stained with Hematoxylin.
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2.2.4.2 Immunocytochemistry

In order to analyze the a-syn PFFs pathology in cortex cells, an antibody-based
fluorescence staining was applied. Cells were washed twice in PBS and were incubated
with 25 mM glycine in PBS for 20 min. After another step of 2 X 5 min washing in PBS,
cells were incubated with blocking solution for 1.5 h at RT. The primary antibodies (rabbit
anti-a-syn pS129, 1:1000, #EP1536Y; mouse anti-MAP2, # MAB3418) were diluted in
blocking solution and cells were incubated with first antibodies over night at 4 °C. At the
second day of staining, the cells were washed 3 % 15 min with PBS. Afterwards, cells were
incubated with the secondary antibodies for 1.5 h at RT (Cy3 goat anti-rabbit, 1:500, #111-
165-006; Cy5 goat anti-mouse, #111-175-146). The cells were washed with PBS for
3 x 10 min and incubated with DAPI for 2 min for nucleus staining. After another washing

step for 2 x 10 min with PBS, cells were mounted with Mowiol and stored at 4°C.

2.2.4.3 Modified Prussian blue staining

In order to stain Fe*" ions, a previously reported protocol was adapted (Hopken,
2005). The protocol is based on the classical known Prussian blue staining from Perls
(1867) detecting Fe*" combined with a DAB approach to intensify the iron signal (Nguyen-
Legros et al., 1980).

Cells were washed 2 x 10 min in PBS with 0.3 % Triton and afterwards incubated
with 5 % potassium ferricyanide(II) dissolved in distilled H>O for 30 min at RT. Following,
the cells were incubated with 2 % potassium ferricyanide(Il) dissolved in distilled H2O in
a 1:1 dilution with 2 M HCI for 30 min at RT. The addition of potassium ferricyanide(Il)
to iron in an acidic environment resulted in a blue staining of iron. To intensify the signal
of iron, cells were incubated with DAB and nickel, mixed according to the description in
the DAB kit (2.5 ml H2O, 1 drop buffer, 1 drop nickel, 2 drops DAB) for 15 min at RT.
Afterwards, an incubation for 15 min at RT in DAB, nickel and H,O; followed (2.5 ml
H>O, 1 drop buffer, 1 drop nickel, 2 drops DAB, 1 drop H>0>). Cells were washed twice in
PBS with 0.3 % Triton for 10 min. For slight staining of the nuclei, nuclear fast red was
used (15 min). After another washing step of 2 X 2 min in PBS, coverslips were dipped in

100 % ethanol for 2 min and mounted with Histokit on an object slide.
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2.2.4.4 ToxiLight Assay

To assess if iron treatment provokes toxicity in cortical neuron cultures, cell medium
was collected from different time points prior and post iron treatment: directly before iron
treatment (div 2), at the end of iron treatment (24 h post treatment start, div 3), 5 days post
treatment start (div 7) and 12 days post treatment start (div 14). Medium was stored at
—80 °C until usage. The cells were previously treated with 10, 50, 100 or 200 uM FeCl, or
vehicle (only with 5 % Glucose). ToxiLight Assay was performed using the kit from Lonza.
Medium was defrosted and 30 pl of each sample was pipetted into a 96-well plate (three
replicates per condition). An equal amount of the kit solution was added to the sample and
after 5 min of incubation the luminescence was monitored for each well with the Tecan
Spark 10M multimode microplate reader (SparkControl software). The release of adenylate
kinase from damaged cells was quantitatively measured. A mean value of the three
replicates per condition was calculated and a negative control (medium from a blank well,

without cells inside) was subtracted from all other conditions.

2.2.5 Microscopy and analyses of in vivo and in vitro experiments

2.2.5.1 Image processing and analyses of a-syn PFFs of the in vivo model

For the analysis of PFFs-induced a-syn pathology in mouse brain tissue,
immunostained sections were imaged with a Zeiss Axioplan microscope (Zeiss, Gottingen,
Germany). The MosaiX module of the AxioVision SE64 Rel. 4.9 software was used to
generate images of whole brain sections (magnification of 10x). The same exposure time
was used for all images in one experiment. For the evaluation of the images of one
experiment, the same color intensities were used. Afterwards, only a-syn phosphorylated
at S129 was quantified. From now on a-syn phosphorylated at S129 will be referred to as
pS129-a-syn. The quantification of pS129-a-syn in whole sections was realized using two
different methods: manual counting or threshold-based particle quantification. Both
methods are separately described in the following chapters. In order to compile pS129-a-
syn spreading maps and to assess the spread amounts of a-syn in specific brain regions per

section, another manual rating approach was established, described in chapter 2.2.5.1.3.

Using the three above-mentioned approaches to investigate a-syn spreading in the
mouse brain, six different coronal brain sections were analyzed. According to the Paxinos

mouse brain atlas (Paxinos and Franklin, 2003) the following sections were analyzed
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named after their distance to the Bregma point: 1.54 mm, 0.38 mm, 0.02 mm, -1.58 mm, -

3.08 mm, -3.28 mm.

2.2.5.1.1 Manual a-syn spreading analysis

For a manual quantification of pS129-a-syn, merged images of both channels DAPI
(nuclei staining) and Cy3 (pS129-a-syn) were imported to the vector graphics software
Inkscape 0.92. Merged images (scale 0.65 um / pixel) were overlaid with a grid. Each box
of the grid covered an area of 150 pm x 150 pm (230.8 pixel x 230.8 pixel). The whole
section was manually raster scanned by the investigator on a subjective perception. Signal

within each box was rated as follows:

Low signal amounts: 1-5 a-syn-positive structures
Medium signal amounts: 6-10 a-syn-positive structures
High signal amounts: >10 a-syn-positive structures

To illustrate the rating, boxes in the grid were marked with dots in yellow (low
signal), orange (medium signal) or red (high signal). The procedure is exemplarily depicted
in Figure 10. For further analysis, both ipsilateral hemisphere (injected hemisphere) and
contralateral hemisphere were individually examined. The total count of yellow, orange or
red marked boxes was relativized to the total number of boxes covering the respective
hemisphere to provide the percentual affected area. Graphs based on this 3-stage method
give an idea on how much area of the hemisphere is highly affected by a-syn or how much

area of the hemisphere is marginally affected.

In order to illustrate how much area of the whole brain section is generally affected
(independent on the quantity evaluated in each counted box) a sum of all rated boxes (low,
medium, high signal amounts) on both hemispheres was calculated, relativized to the box

numbers of the total section and given as percentage (%).
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Figure 10. The procedure of the manual quantification analysis of a-syn spreading. Brain sections
were covered with a grid. Immunolabeled a-syn structures were counted within each box of the grid using

a 3-stage rating.

2.2.5.1.2 Threshold-based a-syn spreading analysis

The aim was to quantify pS129-a-syn signal in different brain sections of mice
injected with a-syn PFFs. The threshold procedure is illustrated in the upper part of Figure
11. Therefore, processed microscopy images as described earlier in 2.2.5.1 were used.
Images of the Cy3 channel were imported to the ImagelJ software and converted to 8-bit
images. The threshold function of ImagelJ was used (default mode) and the threshold of
interest was manually adjusted for each single image due to individual background signal
(noise) (threshold of greyscale 231-250). After applying the selected threshold, the
corresponding image of the DAPI channel was considered to surround and calculate the
area of the injected and contralateral hemisphere separately. In another step, both contours
were assigned to the threshold image and a tool named ‘analyze particles’ calculated the
area of the a-syn-positive signal within each contour. Results were given as percentage
resulting from the observed signal area divided by the total area of the corresponding

hemisphere.
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Figure 11. Quantitative analysis of a-syn distribution after PFFs injections in mice. o-syn
immunostained mouse brain sections were imaged and analyzed with ImagelJ threshold-based particle
analysis tool. For a quantitative analysis, a-syn signal was quantified within the ROI, which is either the
injected or contralateral hemisphere. For a distributional analysis of pS129-a-syn, an overlay image of the
threshold image and DAPI channel in grey-scale was generated. Comparing the overlay image with the
Paxinos atlas figure (Paxinos and Franklin, 2003), a-syn signal was rated per brain region (rating scale
from 0 to 4) using the cell counter function as aid. One marker represented one animal and per region 0 to
4 counts of each marker were set demonstrating the a-syn signal in the specific brain region of each animal.
To visualize the group-specific average distribution of a-syn in different brain sections, the rating scale
was translated into a color code. For a better overview, average values of the groups within the rating scale

from 0 to 4 were translated into: —, +, ++, +++ and ++++.

Since the threshold was manually adjusted for each image in this quantification
analysis, it was tested if the underlying thresholds per mouse differ significantly from each
other. The analysis showed that the used threshold values did not vary significantly between

the investigated groups (240 mg/kg Fe vs. control; one-way ANOVA; Figure 12).

l'-tn? 260 1 Figure 12. Manual threshold variance.
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2.2.5.1.3 Region-specific rating analysis of a-syn spreading and a connectome-based

analysis

A region-specific rating analysis was performed to show an overview on affected
brain regions and an estimation on the severity of the pathology within the regions. The
analysis procedure is illustrated in the lower half of Figure 11. The same six sections per
animal were analyzed as used for the quantitative threshold-based analysis described in the
previous chapter. In the aforementioned analysis, the whole hemispheres of the sections

were analyzed in a threshold-based quantification manner, which provides the difference
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compared to this analysis. In this analysis, we aimed to visualize the distribution of a-syn
through the brain and the amount of a-syn per brain region to compare this signal between
groups in spreading maps. Therefore, we manually classified the observed a-syn signal per

brain regions in a 5-stage rating scale as described below.

ImageJ was used to overlay the generated threshold image from 2.2.5.1.2 with the
image of the DAPI channel showing the brain structures on the section due to the stained
nuclei. The related Paxinos atlas figure of the identical section was opened with ImageJ
and brain regions on the Paxinos figure were marked using the cell counter tool where the
overlay-images showed a-syn signal. In addition, the occurrence of pS129-a-syn signal was
graded in each different brain region as follows: — no positive signal, + sparse (few positive
structures), ++ mild (minor clusters of positive structures), +++ moderate (dense signal
covering a big area of the brain region) or ++++ severe (huge clusters of positive signal
throughout the whole region). Exemplary micrographs are shown in Figure 13. Per group
6-8 animals were evaluated and a mean signal amount was calculated for each positively
graded brain region. A color code was assigned to the scale and the results were illustrated

as heat maps.

5-stage rating scale

DAPI in black

pS129 a-syn
threshold signal in green

Figure 13. Exemplary images for spreading of a-syn using the 5-stage rating scale. Threshold images
indicating pS129 signal (green) were overlaid with DAPI images (black) to visualize the presence of a-syn
per region. From left to right the images show increased amounts of a-syn pathology visualized in green.

Scale bar 200 um.
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In order to assess whether pS129-a-syn pathology spreads according to the
anatomical connectivity starting from the injection site, the Allen Mouse Brain
Connectivity Atlas (©2020 Allen Institute for Brain Science. Allen Mouse Brain
Connectivity Atlas, available from: https://connectivity.brain-map.org/) was used (Oh et
al., 2014). This platform includes mouse EGFP injection experiments and indicates its

specific injection sites and volumes.

For the current study, the injection radius was computed based on the volume of 2 pl.
Experiments included in the mentioned software were selected which used injection sites
within our radius. Two injection sites (Exp. 158916311: https://connectivity.brain-
map.org/projection/experiment/158916311; Exp. 100142580: https://connectivity.brain-
map.org/projection/experiment/100142580) were selected to reconstruct the anatomical
connectivity in our experiment. The software illustrated EGFP signal in different sections
throughout the whole mouse brain. For a better visualization of the EGFP signal in brain
sections, it was displayed in ‘projection segmentation’ maps showing the signal in front of
a black background. In six defined brain sections, regions were marked which showed
EGPF spreading signal and were illustrated in maps. Finally, these connectivity maps were

compared to a-syn spreading maps of the current study.

2.2.5.2 Stereological quantification of dopaminergic neurons in mice

Stereological cell counting was used to assess the cell population of TH-positive
(TH+) and Nissl-positive (Nissl+) neurons in the SNpc due to intrastriatal a-syn injections
in mice. The mouse tissue was stained with a DAB-reaction as well as Nissl staining as
described in chapter 2.2.4.1.2. Immunohistochemistry and evaluation were proceeded as
previously described (Tatenhorst et al., 2014; Tonges et al., 2012). Using a Zeiss
microscope and the compatible Stereo Investigator software (Stereo Investigator 9.0; Micro
Bright Field Inc, Colchester, USA), every fourth section of an animal through the SNpc (8
- 10 sections in total) was analyzed. Specifically, cell population of TH+ and Nissl+
neurons were determined for each mouse in both hemispheres. Therefore, contours of the
area of SNpc were outlined at 2.5x objective magnification level, while neuron
quantification was performed at the 40x objective magnification level. A counting frame
size of 50 um % 50 um was set for the optical fractionator application, furthermore a grid
size of 100 pm x 100 um, an interval of every fourth section through SNpc and a manual

focus on top of the 30 um thick section were chosen. Considering the manually counted
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Nissl+ and TH+ neurons, the software calculated and projected the absolute cell population
within the whole SNpc of each animal. The quantification of Nissl+ neurons was performed
to exclude a mere downregulation of TH-immunoreactivity and to confirm the predominant

loss of neurons.

2.2.5.3 CD11b+ and CD3+ analyses

The analysis of CD11b+ microglia and CD3+ T cells in mouse sections from animals
treated with iron and a-syn were performed by our collaboration partner PD Dr. Chi Wang
Ip (University Hospital Wiirzburg, Germany). At a magnification of 40x, CD11b+
microglia were quantified within an ocular grid of a defined area of 0.0625 mm? using a
light microscope (Olympus BH2, Olympus, Hamburg, Germany). Axio Imager.M2
fluorescence microscope (Zeiss, Gottingen, Germany) was used to quantify T cell amounts
inside the mouse sections. Since T cells were rarely present, the entire regions of the SNpc
and SNpr, the pre-commissural, commissural and post-commissural parts of the striatum
were respectively analyzed on each section. For each animal the a-syn injected and
contralateral hemisphere were investigated separately by quantifying 2-3 grids per region
and 2 sections per region in average. CD11b+ microglia amounts were calculated per

square millimeter.

2.2.5.4 Analyses of iron in mouse brain tissue

In order to assess the iron amount within whole mouse brains of mice treated with
different dosages of iron, samples were investigated by Prof. Dr. Bernhard Michalke
(Helmholtz Institute, Munich, Germany) via ICP spectrometric analysis as previously

described (Fernsebner et al., 2014).

To analyze the iron amounts within single sections of SN of mouse brains, Prof. Dr.
Katarina Vogel-Mikus$ performed the XRF imaging and analysis at the XRF beamline of
Synchrotron Elettra (Karydas et al., 2018). Therefore, frozen hemispheres were cut to 30
um slices by CM3060 Leica Cryostat, freeze-dried and mounted between two 4 pm
ultralene foil layers (SpexSamplePrep) (Vogel-Mikus et al., 2014). The samples were
positioned at 45° and afterwards they were scanned by 75 um x 75 um beam at excitation
energy of 10 keV. The silicon drift detector for XRF detection (Bruker, Nano GmbH,

XFlash 5030) was placed on the incident beam horizontal plane, perpendicular to the

62



MATERIALS AND METHODS

primary beam. The silicon drift detector has a 30 mm? nominal crystal area, exhibits a

thickness of 450 um and has a nominal resolution equal to 131 eV (at Mn-K).

XRF spectra fitting was performed in PyMCA (Sol¢ et al., 2007) and quantification
was done according to (Kump and Vogel-Mikus, 2018). Pure metal foils were used to
calibrate the XRF system (MicromatterTM Technologies Inc., Canada). For validation a
standard reference material (NIST 1537a Tomato Leaves, Sigma Aldrich) was measured.
Absorption utilized to determine the sample thickness was detected by a photodiode placed
behind the sample and the scattering of X-rays on the sample (Kump and Vogel-Mikus,
2018).

2.2.5.5 Imaging and analysis of microfluidic chambers

Cortex cells cultured inside microfluidic chambers were imaged using the Axio
Imager.Z2 microscope (Zeiss). The tiles option of the software served to image both cell
compartments almost completely and the groove area in the middle of the chamber in total.
The channels Cy3, Cy5 and DAPI were always imaged with the same exposure time for all
cover slips. Per each tiles image, the focus was adjusted manually for 50 single tiles. The
threshold function of ImageJ was used to assess the pS129-a-syn signal. One threshold was
defined for each culture. The secondary cell compartment was contoured and defined as
ROL. A percentage based on signal area and ROI area was calculated for each microfluidic
chamber. An average of 1-3 chambers per condition and culture was calculated. The
relative signal (%) of the PBS condition was subsequently subtracted from the relative

signal (%) of the monomer or PFFs conditions, respectively.

2.2.6 Statistical analysis

Statistical analyses of XRF data from ex vivo human tissue were performed by Dr.
Jan-David Nicolas (Institute for X-ray Physics, Gottingen, Germany) using MATLAB and
Python. Python (version 3.6.6.) was used to analyze and display the data (matplotib and
seaborn modules). The Python package SciPy (version 1.0.0.) was used to perform
normality tests. For statistical analysis, the Welch test was accomplished by MATLAB
(R2018b). Scripts of Dowding and Haufe (2018) were used for the sufficient summary
statistics (SSS) approach. The SSS and the nested ANOVA (nANOVA) approach were
implemented in MATLAB (R2018b). The cluster analysis was conducted by Scikit-learn
(version 0.20.1).
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For statistical analyses of mouse and cell culture experiments, SPSS statistics 25.0
and Graphpad Prism 5.04 and 8.2 were used. Detailed information about the used statistical
tests and the sample sizes are indicated in the respective results part. Data were tested for
normality with Shapiro-Wilk, Kolmogorov-Smirnov or D’Agostino-Pearson omnibus
normality test and tested for homogeneity of variances with the Levene, Bartlett’s or
Brown-Forsythe test. For the evaluation of in vivo and in vitro experiments, Fisher’s exact
test, the ANOVA with repeated measurements, one-way ANOVA, Welch-ANOVA,
Student’s t-test, Mann-Whitney-U test and Kruskal-Wallis test were calculated. For
multiple group comparisons, Tuckey’s or Dunn’s post-hoc tests followed. After Welch-
ANOVA, Games-Howell post hoc test followed. Data are given as mean + SEM and
statistical differences within the data were considered as significant if p <0.05 (* p <0.05,

% p < 0.01, *** p < 0.001).
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3 Results

3.1 Characterization of human postmortem midbrain tissue of PD

patients

In order to analyze the role of trace elements in PD assuming metal dyshomeostasis
or accumulation as a potential causative factor in PD, neuromelanin-positive neurons of PD
and CO patients were raster scanned using XRF at the ID 13 (nanofocus experimental
endstation, EH3) of the ESRF (Grenoble, France) (Joppe et al., 2020). Neuromelanin-
positive neurons degenerate within the SN as one major characteristic of PD, firstly
described by Tretiakoffin 1912 (Lees et al., 2008). Since neuromelanin is a brown pigment,
it is easily visible within unstained sections simplifying the identification of these neurons.
Further studies revealed significant differences in the accumulation of trace elements as
copper, iron or zinc in cell bodies within the SN from PD patients compared to controls
(Carboni et al., 2017b; Davies et al., 2014; Szczerbowska-Boruchowska et al., 2012). In
this study, we used a higher sample size as well as respective neuron count and employed
higher magnification using a nanofocus beamline to precisely determine trace element
levels within cell bodies. For the analysis of the metal content in neuromelanin-positive
neurons, native tissue sections were analyzed to avoid contamination by processing.
Furthermore, little is known about metal dyshomeostasis within LBs of PD patients which
could possibly clarify the contribution of trace elements to LB formation or o-syn
pathology. Therefore, in this study, midbrain sections were immunostained with an
antibody which recognized a-syn aggregates helping to identify LBs inside neuromelanin-
positive cells. The same sections were used to detect the distribution of trace elements

within the LBs (Joppe et al., 2020).

A previous XRD study from our lab suggested that tissue of a PD sample from the
same cohort showed higher cholesterol amounts compared to a CO sample (Carboni et al.,
2017b). Therefore, in a side project, the cholesterol amount within our patient cohorts (nine

PD, ten CO) was investigated using the biochemical approach of lipid extraction.
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3.1.1 XREF analysis — the elemental composition of neuromelanin-positive neurons

of PD patients and controls

For the element quantification in neuromelanin-positive neurons, tissue of four PD
and four CO patients were measured. Per patient, five ROIs were raster-scanned with one
to two neurons located on each ROI. Intracellular trace element amounts (average of five
to seven cells per patient) or extracellular amounts (cell-surrounding regions in ROIs) were
detected of the following 12 trace elements: iron (Fe), manganese (Mn), copper (Cu), zinc
(Zn), arsenic (As), selenium (Se), bromine (Br), calcium (Ca), potassium (K), chlorine (CI),
sulfur (S), phosphorus (P). In Figure 14A, the element concentrations inside and outside of
26 cells from the CO group and 27 cells from the PD group are visualized. Surprisingly,
the intra- and extracellular levels of bromine exceeded levels of zinc and selenium. Mostly,
the area density of each element did not differ much comparing the concentration within
the intracellular and the extracellular space. The relative concentrations were computed
from the PD (cPD) and CO (cCO) concentrations calculating (cPD — cCO) / cCO. Relative
changes can be observed in Figure 14B showing that chlorine, manganese, iron and zinc
concentrations are increased in PD samples compared to CO in both intra- and extracellular
space, while potassium, copper, arsenic, selenium and bromine amounts are, both intra- and
extracellularly, decreased in the PD sample cohort. Phosphorus and sulfur levels were
almost unaltered. For calcium the intracellular level was decreased in PD patients whereas

the extracellular amount was slightly increased.
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Figure 14. Averages of absolute and relative trace element concentrations in neuromelanin-positive
neurons of PD and CO patients. (A) Absolute trace element concentrations given as area density are shown

separately for both, intracellular and extracellular area. Data of PD patients (n = 27 cells from four patients)
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are represented in red, whereas control patient values (CO, n =26 cells from four patients) are shown in
blue. Data are given as mean = SEM. (B) Relative changes in element-specific area density of PD samples
relative to CO. A value of | implies a concentration increase of 100 %. A value of —0.5 corresponds to a
50 % decrease of a specific element in the PD samples relative to the CO samples. Data are given as

mean = SEM. Adapted with permission from (Joppe et al., 2020) © The Optical Society.

For the following analyses, elements with Z < 21 (proton number within the nucleus
of the specific atom < 21) were omitted, since the nominal concentrations are affected by
self-absorption in the sample. Probably not all parameters for corrections are sufficiently
known, in particular the absorption coefficient of the tissue. Therefore, self-absorption
could erroneously alter the concentrations of elements with Z < 21. Focusing intracellular
element concentrations, a polar bar chart was used to visualize the results of single cells
(Figure 15). The used illustration allows deeper insights on intra- and interindividual
variances and facilitates to identify outliers of single cells which probably distort the group
average of an element concentration. For example, the overall signal of bromine within the
CO group is dominated by two single cells from patient CO1. For arsenic, great variability
was detected for PD3 showing only one cell with high arsenic concentration whereas the

arsenic levels in other cells were close to the detection level.
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Figure 15. Polar bar charts of element concentrations in single neuromelanin-positive cells. Polar bar

charts of Mn, Zn, As, Fe, Se, Cu and Br indicate absolute element concentrations (g/cm?) within cells. Each

bar represents the absolute concentration (c;) of a specific element in one cell. Bars of the same color belong

to the same patient. The upper half of the diagram corresponds to the four CO samples whereas the bottom

part corresponds to the PD patients (n = 4, 5-8 cells per each patient). Adapted with permission from (Joppe

et al., 2020) © The Optical Society.
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Above mentioned data on element concentrations were further grouped by patients
and groups in Figure 16 for a better overview on interindividual differences. For example,
focusing on iron, PD3 showed a much higher concentration compared to the other PD
samples. In parallel, this illustration also visualizes the fluctuation of values within a patient
given by a relatively low number of cells per patient. For example, levels of manganese are

widely ranging between cells within PD3.

In order to identify statistical significance between both groups, normality and
significance tests were calculated based on the pooled data including all neurons of all
patients per group. A Shapiro-Wilk normality test revealed that for most of the trace
elements the concentrations within groups were not normally distributed (Table 6). For a
first impression on statistical group differences, the Welch test for data with unequal
variances was performed and revealed significantly decreased amounts of copper in PD
patients. It had to be considered that a normal pooled data analysis obtains wrong results,
when inter-subject variances are existing but ignored. Since this study showed high
interindividual differences for some elements (Figure 16), there is a high risk to
underestimate the variance and obtain smaller p-values. To consider any between-subject
variance, the following two statistical tests were performed: the SSS approach and

nANOVA. All results of the used statistical tests are summarized in Table 6.

Assuming random effects and inverse variance weighting, the SSS was calculated as
described in (Dowding and Haufe, 2018) with an effect size measured by the mean of each
sample. For nANOVA, random effects were assumed. For both tests, two layers of the data
set were modelled. The first layer differentiated between the disease type (PD or CO). The
second layer considered the individual patients (four patients per group). For all analyzed
trace elements, no significant results were found. The obtained p-values were orders of
magnitude larger than results of a Student’s t-test on the pooled data not considering inter-
subject variances. The most discriminant trace element of our analysis was copper,
however, no significant difference between the two groups was found in SSS and nANOVA
(p = 0.07 in both analyses; Table 6). Both analyses highlight how important it is to carefully

consider interindividual variances, since these variations could strongly affect the statistics.

69



RESULTS

70

>

2

Mn (g/cm)

Fe (g/cmz)

Cu (g/cmz)

Zn (g/cmz)

psglom),

o

Se (g/cmz)

Br (g/cmz)

Jfemt2 individuals
= CO
3| == PD
2
1 -
O‘.-E?ﬁ%lg == =
519-10
4
3 .
i =
1 %
OTQ_EI* - q_'
31e—11
T m
1 <
L ééii£?=5ii
. .
1e-13
2
== - ;
1
- é%? -
- =l &
0
_01e-10
8
6
4
2
.0
41e—13
3 .
2 +
Le %e% =
e ERS
O.
519—12
4
3
2
, o
0 +%=+—a;- —

CO1 PD1 CO2 PD2 CO3 PD3 PD4 CO4

Cu (g/cmz) Fe (g/cmz) Mn (g/cm)

Zn (g/cmz)

Se (g/cmz)

Br (g/cmz)

et COvsPD
= CO
3| = PD
n.s.

1e-10
n.s.
| —— |
-
1e-11
1e-13
n.s.
e |
.
O
1e-10

1e-12
n.s. .
L —— |
—ri—
co PD




RESULTS

Figure 16. Box-Whisker plot analysis of neuromelanin-positive cells of PD and CO samples. (A) Box-
Whisker plots representing intracellular element concentrations for single patients (5-8 cells per patient; n = 4
per group). Element concentrations are shown for Mn, Fe, Cu, Zn, As, Se and Br. (B) Box-Whisker plots of
intracellular element concentrations grouped by categories PD (grey; n =27 cells) and control (CO, blue,
n = 26 cells). Element concentrations are shown for Mn, Fe, Cu, Zn, As, Se and Br. In both, (A) and (B) values
of single cells are represented as red dots. Results of SSS / nANOVA are shown. # indicates marginal
significance of p = 0.07. n.s.: not significant. Adapted with permission from (Joppe et al., 2020) © The Optical

Society.

In a k-means clustering approach, an unsupervised classification of each data point
to their a priori known class (PD or CO) was aimed. Outlier showing an element
concentration of less or more than the interquartile rage of the distribution were excluded
from this analysis. Running a k-means algorithm for k£ =2, only two labels were returned
from the algorithm which were afterwards compared to the a priori known classes PD and
CO. Merely, 65.5 % of the cases were classified with the correct label by the algorithm.
Taken together, the prediction rate was negligible, since high intragroup variances

disallowed unsupervised automated classification of groups (Figure 17).

Table 6. Statistical tests used for the XRF analysis. Welch test was performed by using total cell counts as
n per group (PD n =27, CO n = 26). Bold numbers for Welch test highlight p-values below an a level of 5 %.
Shapiro-Wilk (SW) test was used to test normality of the data. Normal distribution of data is shown in bold
within the columns of SW(CO) and SW(PD). Both, the sufficient-summary-statistic approach (SSS)
described in (Dowding and Haufe, 2018) as well as a nested ANOVA (nANOVA), compute p-values
considering between-subject variance. Bold numbers indicate the element with the lowest p-value. Adapted

with permission from (Joppe et al., 2020) © The Optical Society.
Elements Welch test SW (CO) SW (PD) SSS nANOVA

Mn 0.40 4.04e-10 1.71e-10 1.00 0.64
Fe 0.25 1.14e-4 1.32e-10 0.82 0.42
Cu 0.42¢-4 6.20e-3 9.79¢-1 0.07 0.07
Zn 0.20 5.79e-3 2.00e-1 0.51 0.57
As 0.28 9.94e-8 1.65e-3 0.96 0.45
Se 0.35 1.67e-1 3.09¢-3 0.26 0.34
Br 0.43 3.53e-10 4.71e-6 0.36 0.52
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Figure 17. k-means clustering approach represented in two-dimensional plots. Seven spectral lines
were used for the clustering algorithm. Outliers were excluded from further analyses. The algorithm was
determined to output two labels (k = 2), which were finally compared to the a priori known classes (PD or
CO). A solid black line indicates matching classes. Black stars indicate the two centroids which are linked
with a solid black line stating the distance between both centroids. Merely 65.5 % of the datapoints were
identified correctly by the algorithm (5-8 cells per patient; n = 4 per group). Adapted with permission from
(Joppe et al., 2020) © The Optical Society.

3.1.2 X-ray analysis of LBs in PD patients

Since a-syn aggregation was found to be fostered by various trace elements and -
syn is one of the major components within LBs in PD patients, XRF was used to analyze
the elemental content of two LBs from two different patients. For this analysis, sections
had to be mounted on Kapton foil since this foil allows immunohistochemical staining of

the sections but can be also used as an X-ray transmissive sample window. This prevents
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from cutting neighboring sections of which one is stained and one can be measured with

XRF. Microscopy-identified LBs were analyzed with XRF and XRD.

In a first analysis, XRD scattering signal of one LB was compiled in a map. XRD
was able to detect a signal that was likely a feature that is indicative of the LB (Figure
18A,B). The averaged background signal was subtracted from the scattering data of the LB
and the gathered signal was azimuthally integrated. In Figure 18C the scattering signal of
all scan points is shown plotting the one-dimensional scattering intensity with the scattering
vector. The scattering vector is defined as ¢ = (4n/A) sin(0), where A is the wavelength of
the radiation and 20 the scattering angle between the primary and scattered beam (Joppe et
al., 2020). The feature of the LB exhibited a prominent intensity peak at 13.6 nm™'. This
peak is characteristic for dried a-syn pellets but also for secondary structures of proteins as
especially B-sheet structures. Therefore, it is still pending if a-syn crystals caused the
scattering signal, in particular, since cells of a CO patient (in green) showed a similar

diffraction curve with a similar peak as the LB (in blue).

A B Figure 18. XRD analysis of a LB. (A)
optical brightfield X-ray scattering
. I

Microscopy image of a LB-containing
neuromelanin-positive cell of a PD
patient. LB is visualized by a new
fuchsin staining and indicated by a red

arrow. XRD-scanned region is indicated

| (S)Uno02) Ajsuajul

02 with a dashed square. (B) Visualization
C of XRD scattering intensity representing
0.08 the LB. The background-subtracted one-
0.07 = ° ’E?_ IE; . dimensional intensity is shown in this
. R S h. (C) The g-distribution of

0.06 | o intra extra | grap q
- . scattering from the LB resembles the
% 0.05 distribution of a cell from a CO patient
:;’ 0.04 | (COl). A prominent peak is observable
g at 13.6 nm’!, which is the scattering peak
E 007 of dried a-syn pellets and also
0.02 characteristic for a secondary structure
001 | of proteins, in particular B-sheets. Bgr:
background, extra: extracellular, intra:
OO intracellular. Adapted with permission

from (Joppe et al., 2020) © The Optical
Society.
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Signal gathered from the XRF was analyzed to assess the chemical composition of
the two measured LBs. For the first LB, which was already described in Figure 18, the main
fluorescence signal resulted from bromine (Figure 19A,B). Other trace elements as iron,
arsenic and selenium also correlated well with the feature of the LB whereas the distribution
of copper anti-correlated with the LB feature. Low-Z elements as potassium and calcium
were the primary element composition of small features appearing around the cell. In a
second LB from another patient fluorescence signal from bromine was again highly
localized with the feature of the LB (Figure 19C,D). The signal of bromine anti-correlated
once again with the fluorescence signal of copper and it showed no correlation with other
trace elements. Iron was distributed in the whole cell but rather slightly less in the LB.
Therefore, both LBs showed quite diverse fluorescence signals of the different trace

elements but exhibited similar distribution patterns of bromine and copper.
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Figure 19. XRF analysis of two LBs. (A) Optical brightfield image of a stained LB (antibody recognizing
a-syn) and a micrograph of the section recorded before XRF measurements. The LB is marked by a red
arrow. The black dashed square in the image of the on-axis microscope indicates the XRF scanned region.
(B) XRF maps of a LB shown in (A). LB is marked with a dashed circle. (C) A LB from another PD
sample indicated in an optical brightfield image and in a micrograph recorded before XRF measurements.
The LB is marked by ared arrow. The black dashed square in the image of the on-axis microscope indicates
the XRF scanned region. (D) XRF maps of a LB shown in (C). LB is marked with a dashed circle. Adapted
with permission from (Joppe et al., 2020) © The Optical Society.
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3.1.3 Increased cholesterol levels in human midbrain tissue of PD patients

A previous X-ray-based study of our work group found increased amounts of
cholesterol crystallites within PD tissue compared to a MS patient measured by XRD
(Carboni et al., 2017b). Since this study only compared one PD and one MS patient, a
verification of these results was intended using a higher sample size and a different
technique for a well-established quantification of cholesterol. A biochemical lipid
extraction of human midbrain tissue was performed to assess the cholesterol content
(Figure 20A). The analysis was performed in collaboration with the Department for Plant
Biochemistry, Gottingen, Germany. In this analysis, MS and cancer patients were included
in the CO group. Midbrain tissue of PD patients (0.34 = 0.07 pmol/mg) showed increased
cholesterol amounts compared to CO samples (0.18 £+ 0.04 umol/mg). Group comparison
analysis (Student’s t-test) revealed a trend to statistical significance (p = 0.057; Figure

20B).

A Figure 20. Quantification of
: \ cholesterol in human
q \ j —> — U —> | midbrain tissue of PD and
i - Cco samples. (A)
frozen 3x30mg lipid extraction cholesterol analysis .
tissue blocks per patient MTBE/methanol with GC-MS Experimental procedure. Three
tissue pieces of ca. 30 mg each
B were cut to have biological
0.8+
p = 0.057 replicates for the following
] 1
_ ° lipid extraction. Afterwards,
o
é 0.6- i cholesterol amounts were
o
5 . quantified using GC-MS. (B)
€ ] The scatter plot shows
S 044
g E‘ cholesterol amounts
©
° u (umol/mg) of human midbrain
= °
% 0.2+ samples from PD (n=9) and
o Ce .
% ag" controls (n=10). Data given
PY - as mean = SEM. Student’s t-
0.0 T T
Qo 00 test was performed.
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3.2 The interplay of iron and a-syn in vivo

The present study aimed to elucidate if neonatal iron treatment could alter the effect
of intrastriatal a-syn PFFs injections on behavior and PFFs-induced spreading of the a-syn
pathology in C57BL/6J mice. The animals were treated with iron between p10 and p17 and
received a stereotactic intrastriatal injection of either monomeric a-syn or PFFs at an age
of approximately 12 weeks. Animals which were treated with the vehicle solution instead
of iron are stated as control group and in figures abbreviated as ctrl in following chapters.
The first part of this chapter focuses on the investigation of iron load in mouse brain
sections and on the effects of iron and a-syn PFFs on the living animals in terms of
treatment-related behavioral abnormalities. Other subchapters are dealing with analyses on
mouse brain sections investigating a-syn spreading and its distribution through the brain as

well as accumulation of immune cells.

3.2.1 Quantification of iron in an iron intoxication mouse model

Aiming to verify whether neonatal iron treatment per gavage leads to iron enrichment
inside the adult mouse brain, two different analyses were used to assess iron load. In a first
attempt, hyphenated ICP spectrometry was used to determine the iron amount in whole
mouse brains. Therefore, mice were treated with different dosages of iron (60 mg/kg Fe,
120 mg/kg Fe, 240 mg/kg Fe) or sorbitol as control and were sacrificed at six months of
age (Figure 21A). The analysis was performed by Prof. Dr. Bernhard Michalke (Helmholtz
Institute, Munich, Germany). The analysis showed that the iron amount in whole brains of
vehicle-treated mice (65.70 = 1.74 mg/kg Fe), 60 mg/kg Fe (66.57 = 1.04 mg/kg Fe),
120 mg/kg Fe (68.24+3.34mg/kg Fe) and 240mgkg Fe-treated mice
(66.66 = 1.01 mg/kg Fe) did not differ significantly (Figure 21B).
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Figure 21. Hyphenated ICP spectrometry analysis of brain tissue from iron-treated mice. (A)
Experimental layout. C57BL/6J mice were treated with carbonyl iron (p10-17) and sacrificed at 6 months
of age. (B) ICP spectrometric analysis of iron (mg/kg) measured in tissue from mice treated with different
iron dosages (60 mg/kg, 120 mg/kg, 240 mg/kg) or 5 % sorbitol as control. Data given as mean + SEM;
60 mg/kg Fe n = 6, other groups n = 5; one-way ANOVA.

Since similar studies of neonatal iron feeding verified iron enrichment specifically
within the SN (Billings et al., 2016; Kaur et al., 2007), in another experiment, cryofixed
mouse brains sections were freeze-dried and, subsequently, the iron amount (ng/g) in the
SN on single sections was analyzed with XRF (Figure 22A). The XRF analysis was
performed by Prof. Dr. Katarina Vogel-Mikus (Faculty of Biology, University of Ljubljana,

Slovenia) at the Elettra Synchrotron in Trieste, Italy.

Photographs and XRF-based heat maps of one exemplary brain section of an iron-
treated and an untreated control animal are shown in Figure 22B,C. The analyzed SN-
containing areas are indicated within the exemplary sections as rectangles (Figure 22B,C).
Compared to untreated control animals, mice treated with 60 mg/kg Fe or 120 mg/kg Fe
showed increased iron amounts within the SN (Figure 22D). However, due to the inferior

sample size of n = 2 per group, no statistical analysis could be applied.
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Figure 22. XRF-based iron analysis of iron-treated mice. (A) Experimental procedure. Iron-treated

C57BL/6J mice were sacrificed at six months of age. Brains were separated and cryofixed. 30 um thick

brain sections were freeze-dried and then analyzed by XRF. (B) A photomicrograph and a X-ray-based

iron heatmap of an exemplary nigral brain section of an animal treated with 120 mg/kg Fe. Rectangle

indicates SN region in which iron was quantified. (C) A photomicrograph and a X-ray-based iron heatmap

of an exemplary nigral brain section of a control animal. Rectangle indicates SN region in which iron was

quantified. (D) XRF results within the SN of control mice as well as iron-treated animals (60mg/kg or

120mg/kg Fe). No statistical analysis was performed due to inferior sample size per group of n = 2.
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3.2.2 The influence of iron and a-syn on motor and cognitive behavior

To investigate the effects of iron treatment and a-syn PFFs injections on motor and
cognitive behavior, mice performed the rotarod test and NOR test. All animals performed
the rotarod weekly between day of a-syn injection (doi) and sacrifice and the NOR test
twice — directly before the doi to investigate single iron effects and directly before sacrifice

to investigate mutual effects of iron and a-syn PFFs on cognition (Figure 23A).

A doi B rotarod performance
ol .
0 10 17 [d] //3mo 0 dpi
L}
Fe rotarod (weekly) 2,
T
a-syn 2
i . 4
NOR NOR ° 100 — ctrimonomer — 120mg/kg Fe/monomer
E 1 ctrl/PFFs —120mg/kg Fe/PFFs
he 4 — 60mg/kg Fe/monomer — 240mg/kg Fe/monomer
— 60%«3 Fe/PFFs —240%«3 Fe/PFFs
0

109 87 65 4 3 2 10
time before sacrifice [weeks]

Figure 23. Experimental layout and motor behavior of iron- and a-syn-treated mice. (A)
Experimental layout. C57BL/6J mice were treated with carbonyl iron between postnatal day 10 and 17 and
were injected with a-syn at ca. 3 months of age. Rotarod was performed weekly and NOR test was
performed twice. (B) Results of the weekly performed rotarod test starting 10 weeks before sacrifice. The
graph shows the averaged mouse performance per treatment group (n = 6-8 per group) over time. The
vehicle-treated control group is labeled as ctrl. Data given as mean + SEM, one-way ANOVA with

repeated measures.

To get stability in the mouse performance on the rod, the mice were pre-trained on
the rotarod before the first test run. Rotarod results are demonstrated in Figure 23B. All
animals showed inconsistent performances on the rotarod over time, evidenced by the
significant changes in the means of the repeated measures over time (variable ‘time in
weeks’; comparing means of the different time points; **p < 0.01; ANOVA with repeated
measures). Joint and separate effects of the two treatment variables ‘iron treatment’ and ‘o-
syn injection’” were analyzed considering both variables as separate between-subjects
factors within the ANOV A with repeated measures. Neither the combination of iron X time
(p = 0.180), nor a-syn x time (p = 0.622), nor the interaction effect of iron x a-syn X time
(p =0.786) showed significant results within the ANOVA with repeated measures. Since
the Mauchly-test for sphericity turned out significant for this analysis, the reported p-values

are given as Greenhouse-Geisser correction. Furthermore, it is also important to highlight
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that homoscedasticity measured by the Levene test is not true for the time points ‘8 and 7
weeks before sacrifice’. In conclusion, the treatment groups did not show significant

differences in their motor behavior measured by the rotarod test.

To investigate the influence of iron and PFFs on cognitive behavior, the NOR test
was used. Both STM and LTM were tested by modifying the timeframe between
habituation and experimental phase (10 min vs. 24 h). Based on the interaction of the mouse
with the novel and the familiar object a discrimination ratio was calculated as described
beforehand (Bevins and Besheer, 2006; Tatenhorst et al., 2016) and compared between the
treatment groups to assess the memory function. Data gathered at the STM time point
meaning 10 min post habituation are shown in Figure 24. In order to assess the general
mobility of the mice 10 min post habituation, the distance moved within the arena (in cm)
was analyzed for both timepoints — before injection and before sacrifice of the mice. Since
data of the 60mg/kg iron group were not normally distributed (Shapiro-Wilk test) at the
timepoint before a-syn injection (Figure 24B), Kruskal-Wallis test was performed between
all four iron groups, turning significant but without any significant pairwise group
comparisons (Kruskal-Wallis test with Dunn’s post hoc test). Before sacrifice (Figure 24C),

mice from the different treatment groups were also equally agile (two-way ANOVA).

The NOR performed before a-syn injection revealed no significant STM difference
between iron treatment groups (Figure 24D; one-way ANOVA). At 90 dpi, neither a
significant interaction effect of iron x a-syn on STM nor a main effect of the separate
treatment conditions was found (Figure 24E; two-way ANOVA, Levene test significant).
Since the Levene test results showed that the requirement of homoscedasticity was not
fulfilled for the latter analysis, treatment conditions of iron and a-syn were grouped.
Subsequently, one-way Welch-ANOVA with Games-Howell post hoc test was performed,

respectively, which also did not show significant difference between the groups.

Data gathered at 24 h post habituation are shown in Figure 25. The mobility of mice
at 24 h post habituation was analyzed for both recorded time points. Before a-syn injection
(Figure 25B), iron treatment groups significantly differed in their mobility. Mice of the
240 mg/kg iron group were significantly less mobile compared to both the 120 mg/kg iron
group (*p <0.05) and the 60 mg/kg iron group (**p < 0.01; one-way ANOVA with
Tuckey’s post hoc test). No significant differences in the distance moved were found at the

time point before sacrifice (two-way ANOVA; Figure 25C).
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Figure 24. STM analysis of iron- and a-syn-treated mice. (A) Experimental procedure of the NOR.

C57BL/6J mice were habituated to two identical objects for 5 min. After a 10 min break within the familiar

cage, the STM was recorded while presenting one old/familiar (O) and one novel (N) object. (B,C) The

distance moved was analyzed as an indicator of mobility at two time points — (B) before a-syn injection

(n=22-29) or (C) at 90 dpi (n = 8-14 per group). (D) STM performance of iron-treated mice before a-syn

injection (n =21-22). (E) STM analysis performed at 90 dpi. Two single graphs display the main effects

of the two single variables — iron treatment and a-syn injection. Another graph shows the combined effects

of iron and a-syn treatments (n = 8-13 per group). Data are shown as mean = SEM, One-way and two-way

ANOVA as well as Kruskal-Wallis test. Low, middle and high iron dosage (60, 120 and 240 mg/kg Fe)

are indicated in graphs as iron-triangle.

The analysis of LTM showed that before a-syn injection mice treated with 240 mg/kg

iron performed significantly worse in the NOR compared to mice of the 60 mg/kg iron

group (Figure 25D; *p < 0.05; due to significant Shapiro-Wilk test the Kruskal-Wallis test

with Dunn’s post hoc test was used). LTM results showed no interaction effect of both

variables iron X a-syn and also no main effect of the iron treatment at 90 dpi. However, a

significant main effect of the variable ‘a-syn injection’ was found indicating that PFFs-
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injected animals performed significantly worse in LTM compared to monomer-injected

ones (Figure 25E; two-way ANOVA, *p < 0.05).
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Figure 25. LTM analysis of iron- and a-syn-treated mice. (A) Experimental procedure of the NOR.
24 h after a habituation phase with two identical objects, LTM was analyzed while presenting one old (O)
and one novel (N) object. (B,C) The distance moved was analyzed at two time points — (B) before a-syn
injection (n = 22-29) and (C) at 90 dpi (n = 8-14). (D) LTM performance of iron-treated mice before a-
syn injection (n = 21-22). (E) LTM analysis at 90 dpi. Two single graphs display the main effects of the
two independent treatment variables (iron and a-syn). Another graph shows the combined effects of iron
and a-syn treatments (n = 8-13 per group). Data are presented as mean + SEM. One-way and two-way
ANOVA with Tuckey’s post hoc test as well as Kruskal-Wallis test. Low, middle and high iron dosage
(60, 120 and 240 mg/kg Fe) are indicated in graphs as iron-triangle.

Taken together, iron-treatment had a significant effect on LTM of mice before a-syn
injection, whereas a-syn PFFs treatment affected LTM at 90 dpi. No interaction effect of
iron and a-syn treatment was found on LTM or STM. Before a-syn injection, recordings at
24 h post habituation revealed significant differences between iron treatment groups in the

moved distance inside the arena as an indicator of general activity.
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3.2.3 The influence of iron on a-syn spreading

A major aim of this study was to investigate if postnatal iron feeding had an impact
on a-syn spreading pathology. Therefore, six coronal brain sections were analyzed, which
were stained with an antibody recognizing aggregated a-syn (anti-a-syn phospho S129
antibody, EP1536Y). First, the amount of pS129-a-syn was quantitatively analyzed to
determine iron-induced effects on a-syn spreading. The results of a semi-automated pS129-
a-syn quantification in whole brain sections are demonstrated in the following subchapter
3.2.3.1. A second analysis method was used to assess the pS129-a-syn amounts in specific
brain regions per section. Manually, the affected brain regions were marked, and it was
assessed in which brain regions iron caused altered spreading pathology. These

distributional effects are shown in subchapter 3.2.3.2.

3.2.3.1 Quantitative analysis of a-syn spreading — iron reduced a-syn spreading

For a quantitative analysis of a-syn spreading in mouse brains after iron and PFFs
treatment, pS129-a-syn signal was evaluated in six different coronal brain sections named
after their coordinates relative to Bregma. a-syn signal was calculated within the ROI which
was either the injected or contralateral hemisphere by relativizing the signal area to the total
analyzed area. Within the injected hemisphere of all six brain sections, a-syn monomer-
injected mice showed almost no signal (Figure 26A-F), an expected result due to the
specificity of the applied antibody to aggregated forms. For that reason, the monomer-
injected animals were used as internal controls. Statistical analyses were only performed
on basis of the four different iron-treated PFFs groups (ctrl/PFFs, 60 mg/kg Fe/PFFs,
120 mg/kg Fe/PFFs, 240 mg/kg Fe/PFFs), not comparing PFFs and monomer groups.

Animals of the ctrl/PFFs group were treated with vehicle instead of iron.

PFFs-injected groups showed signal in all six sections. Four out of six rostral brain
sections contained parts of the striatum which was the injected brain region. Even if the
iron-free control group always showed a higher average on a-syn signal compared to the
iron conditions, these differences did not reach significance in all four striatal sections
(Figure 26A-D). The two caudal SN-containing sections exhibited more prominent group
differences (Figure 26E-F). However, only the most caudal section (Figure 26F) showed a
significant difference between the control and the high-dosed iron group (*p <0.05;

Kruskal-Wallis test with Dunn’s post hoc test).
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Figure 26. Threshold-based quantification of a-syn at the injected hemisphere of single sections. At 90
dpi, immunostained (pS129-a-syn) brain sections were analyzed with the particle analysis tool of the software
ImagelJ. All six sections were selected based on the Paxinos mouse brain atlas (Paxinos and Franklin, 2003).
(A-F) Scatter plots are used representing o-syn signal of each mouse per group (one data point = one mouse).
The following sections were evaluated: (A) Bregma 1.54 mm (n = 5-8), (B) Bregma 0.38 mm as the injectional
plane (n = 5-7), (C) Bregma 0.02 mm (n = 6-8), (D) Bregma -1.58 mm (n = 6-8), (E) Bregma -3.08 mm (n = 6-
7) and (F) Bregma -3.28 mm (n = 5-8). Low, middle and high iron dosage (60, 120 and 240 mg/kg Fe) are
indicated in graphs as iron-triangle. The indicated control group (ctrl) was treated with the vehicle solution

instead of iron. Data are presented as mean + SEM; Kruskal-Wallis test with Dunn’s post hoc test.
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Furthermore, a signal average of all available brain sections per mouse was calculated
separately for signal in both, the contralateral (Figure 27A) and ipsilateral hemisphere
(Figure 27B). At the contralateral hemisphere no significant group differences were
observed. At the injected hemisphere, the crtl/PFFs group showed significantly higher
pS129-0-syn signal amounts compared to the 240 mg/kg iron group (*p < 0.05). In total,
the a-syn amounts at the contralateral hemisphere were markedly lower compared to signal

at the injected hemisphere of PFFs-injected mice.
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Figure 27. Averaged a-syn signal within both the injected and the contralateral hemisphere of iron-
and PFFs-treated mice. Threshold-based a-syn signal analysis of immunostained (pS129-a-syn) brain
sections at 90 dpi. An average of a-syn signal in four to six brain sections was calculated per mouse (n = 6-
8). The averaged a-syn signal per mouse is shown individually for both (A) the contralateral hemisphere
and (B) ipsilateral hemisphere. Each data point within the scatter plots represents the a-syn signal of one
evaluated mouse per group. Low, middle and high iron dosage (60, 120 and 240 mg/kg Fe) are indicated
in graphs as iron-triangle. The indicated control group (ctrl) was treated with the vehicle solution instead

of iron. Data are presented as mean = SEM; Kruskal-Wallis test with Dunn’s post hoc test.

Figure 28 shows pS129-a-syn signal at the contralateral hemisphere of all six
individual sections. No significant differences between the four iron-treated PFFs groups
were found. Taken together, a-syn pathology spread stronger to the injected than to the
contralateral hemisphere and iron-treatment dose-dependently reduced a-syn amounts

compared to mice of the control group.
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Figure 28. Threshold-based quantification of a-syn at the contralateral hemisphere of single sections.

Threshold-based a-syn signal analysis of immunostained (pS129-a-syn) brain sections at 90 dpi. The

following sections were evaluated: (A) Bregma 1.54 mm (n = 5-8), (B) Bregma 0.38 mm as the injectional

plane (n = 5-7), (C) Bregma 0.02 mm (n = 6-8), (D) Bregma -1.58 mm (n = 6-8), (E) Bregma -3.08 mm (n = 6-

7) and (F) Bregma -3.28 mm (n = 5-8). Low, middle and high iron dosage (60, 120 and 240 mg/kg Fe) are

indicated in graphs as iron-triangle. The indicated control group (ctrl) was treated with the vehicle solution

instead of iron. Data are presented as mean + SEM; Kruskal-Wallis test.
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3.2.3.2 Qualitative analysis of a-syn spreading to specific brain regions

For a distributional analysis of a-syn clustering in brain regions, pS129-a-syn signal
was rated per region with a 5-stage scale (—, +, ++, +++, ++++) and visualized in spreading
maps (Figure 29). The darker the color in the heat maps the more signal was found within
the brain regions. Spreading maps were only generated for PFFs-injected mice of the
control group which was treated with vehicle and of the highest iron dosage group
(240 mg/kg Fe), since this iron group showed the strongest effects on pS129-a-syn
quantification demonstrated in chapter 3.2.3.1. This rating approach served as a rough
region-specific quantification to assess the a-syn amount in brain regions and was rather
used to focus differences in the distribution. Differences in the pathology stages between
the groups, e.g. + vs. ++ pathology, do not imply statistical significance. In this concrete
example, the difference in a specific brain region states that on average the a-syn pathology
was rated one level higher in mice of one group compared to the other group. Thereby the
maps represent trends of pathological differences between groups. A statistical analysis of

group means per region is mentioned after the following description of the pathology maps.

The pS129-a-syn spreading maps of both groups show that mostly the same brain
regions were affected but with distinct differences in the quantity of aggregated a-syn. The
rating approach revealed that PFFs-injected mice with vehicle treatment showed more
regions with strong a-syn pathology (+++ or ++++). Group rating differences are visualized

in subtraction heat maps (Figure 29).

High a-syn pathology discrepancy between the two analyzed groups in specific
regions with at least two level of distance (e.g. + vs. +++) were observed at the injected
hemisphere within the cingulate cortex area 1, the primary motor cortex, perirhinal cortex,
lateral amygdaloid nucleus, stria terminalis and the amygdalohippocampal area. Within the
mentioned brain regions, the control group showed more pronounced pathology. At the
contralateral hemisphere, such a distinct difference in pathology was only seen in the
agranular insular area of the cortex showing stronger a-syn pathology for iron-treated mice.
In other brain regions which showed an a-syn increase in iron-treated mice only one rating
level distance between pathology in iron-treated mice and pathology in vehicle-treated mice
was observed such as — vs. + or + vs. ++. The case that in some regions a-syn pathology

was stronger for iron-treated than for vehicle-treated mice was more frequently found at
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the contralateral hemisphere than on the injected hemisphere (Figure 29). As stated above,

the mentioned group differences do not represent statistically significant differences.

a-syn signal A a-syn signal (Fe - ctrl)
e 2 morein
signal Fe mice

T subtraction 1

equal

-1 )
more in

_ Ctrl mice

Figure 29. Heat maps representing the distribution of pS129-a-syn in six coronal brain sections. The
first two columns of heat maps represent pS129-a-syn signal of iron-treated (240 mg/kg Fe) or vehicle-
treated (ctrl) PFF-injected mice, respectively, at 90 dpi. Pathology in brain regions was graded with a 5-

3

stage scale as follows: ‘—° no positive structures, ‘+’ few (some positive structures), ‘++’ mild (more
positive structures), ‘+++’ moderate (many positive structures covering a widespread part of the brain
region), ‘++++° severe (almost the whole brain region is covered with a-syn signal). For each brain region,
the average per treatment group was calculated (n = 5-8 per group) and a color code was assigned to the
scale. In the third column, signal subtraction heat maps comparing both treatment groups are shown.
Therefore, signal stages of the control group were subtracted from the iron group meaning that equal signal
stages were rated as 0 and represented in white. More a-syn pathology for iron animals is shown in green,

whereas more a-syn pathology for the control group is shown in blue.
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For a statistical analysis, the Mann-Whitney-U-test was performed. The p-values as
well as the group means and SEM values per evaluated brain region are listed in Suppl.
Table 1 to Suppl. Table 6. Due to the low sample size and high variability in the a-syn

pathology per group, statistical significance is rarely found in the individual brain regions.

Associated to the subtraction heat map, a fourfold table summarizes the number of
brain regions in which more a-syn signal was either found in iron-treated mice or in the
vehicle-treated mice (Table 7). At the injected hemisphere, PFFs-injected control-treated
mice exhibited more a-syn in a greater number of regions. The Fisher’s exact test of this
2 x 2 contingency table shows a significant result (p = 0.0186) indicating the influence of

iron on a-syn pathology.

Table 7. Fourfold table associated to the subtraction heatmap of a-syn pathology in iron-treated PFFs-
injected mice. The quantity of brain regions is described which show more a-syn in PFFs-injected mice

treated with either iron or vehicle (ctrl group). Fisher’s exact test indicates a significant difference (*p < 0.05).

Regions with more a-syn  Regions with more a-syn
in the ctrl group in the iron group
Injected hemisphere 60 25
Contralateral hemisphere 26 26

3.2.3.3 Connectivity analysis of a-syn spreading

This chapter is associated to the results presented in chapter 3.2.3.2. Accordingly, a-
syn signal was rated per brain region in six different brain sections using a 5-stage scale
ranging from 0 = no pS129-a-syn signal to 4 = severe a-syn pathology. We aimed to further
analyze differences of PFFs-injected mice treated with either iron or vehicle in the a-syn
spreading to anatomically connected regions (Figure 30). Two intrastriatal injection sites
described in the Allen Mouse Brain Connectivity Atlas (Oh et al., 2014) (©2020 Allen
Institute for Brain Science. Allen Mouse Brain Connectivity Atlas, available from:
https://connectivity.brain-map.org/) were used as described in chapter 2.2.5.1.3 to define
the connectome of the injection site of the current experiment. Figure 30C displays all
connectome-specific brain areas in the six evaluated brain sections. Afterwards, the
connectivity maps were overlaid with the a-syn spreading maps and the subtraction heat
map to indicate which group shows stronger spreading to areas anatomically connected to

our injection site.
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Figure 30. PS129-a-syn pathology in anatomically connected brain areas. (A) Striatal injection site of
the current experiment. The circle indicates the injection radius according to injected volume of PFFs. (B)
Serial two-photon tomography illustrations of the Allen Brain Atlas connectivity platform (©2020 Allen
Institute for Brain Science. Allen Mouse Brain Connectivity Atlas, available from:
https://connectivity.brain-map.org/) containing two intrastriatal injection sites which are marked with a red
hair cross. The injection sites of two experiments (Exp. 158916311: https://connectivity.brain-
map.org/projection/experiment/158916311; Exp. 100142580: https://connectivity.brain-
map.org/projection/experiment/100142580) are located within the injection radius of the current
experiment. (C-E) Illustration of six sectional planes assigned to the Bregma levels which are described in
Figure 29. (C) Maps of six brain sections showing the connectivity (based on ©2020 Allen Institute for
Brain Science. Allen Mouse Brain Connectivity Atlas) of brain regions to the injection site of the current
study. EGPF spreading signal of both experiments mentioned in (B) were combined to illustrate the
connectivity in the current study. (D) Pathology maps of pS129-a-syn as shown in Figure 29. Stars
highlight regions connected to the injection site according to the Allen Brain Connectivity Atlas as
illustrated in (C). (E) Signal subtraction heat maps as shown in Figure 29. Stars highlight regions connected

to the injection site according to the Allen Brain Connectivity Atlas as illustrated in (C).

Interestingly, in both groups a-syn spread to most regions of the connectivity maps,
but also to several other brain regions. The fourfold table (Table 8) gives an overview on
how many connectome-specific and other areas were affected by a-syn pathology.
Accordingly, the vehicle-treated mice showed more connectome-specific brain areas with
a-syn pathology compared to the iron group and less unspecific brain regions affected by
a-syn compared to the iron group. However, the Fisher’s exact test of this 2 X 2 contingency
table shows no significant association of the groups and the two outputs (connectome-

specific vs. other brain areas; p = 0.3636).

Table 8. Fourfold table associated to the connectivity heat maps. The quantity of connectome-specific
and other brain regions with a-syn pathology are described for PFFs-injected mice treated with either iron or

vehicle (ctrl group). Fisher’s exact test not significant (p = 0.3636).

Fe group Ctrl group
Connectome-specific brain
. . 66 75
areas with a-syn signal
Other' brain areas with a- 166 155
syn signal
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RESULTS

For a more detailed analysis on the a-syn amounts in the connectome-specific and
other brain areas, in Figure 31 the a-syn rating average per brain area is shown which
correspond to the means listed in Suppl. Table 1 — Suppl. Table 6. In Figure 31A, all
connectome-specific brain regions were included (n) in which at least one of both groups
detected pS129-a-syn signal. The data show significantly higher amounts of a-syn signal
in connectome-specific brain areas for the control group. In connectome-independent brain

areas no significant difference was found between both groups (Figure 31B).
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Figure 31. Averaged pS129-a-syn pathology rating in connectome-specific and other brain regions.
The data are related to the 5-stage rating scale used in Figure 29 and represent pS129-a-syn affected brain
regions in both contralateral and injected hemisphere. All brain regions were included in which at least
one group showed o-syn signal. (A) A comparison of the averaged a-syn pathology ratings in connectome-
specific brain regions (n =78 brain areas) of PFFs-injected mice treated with either iron or vehicle as
control (ctrl). The graph is related to the data in Figure 30. (B) A comparison of the averaged a-syn
pathology ratings in other brain regions (n = 198 brain areas) outside the connectome of PFFs-injected
mice treated with either iron or vehicle as control (ctrl). The graph is related to the data in Figure 30. Mann-

Whitney-U test. Mean + SEM; *p < 0.05; #p <0.1.

3.2.4 Iron-induced effects on the accumulation of immune cells

After demonstrating that iron-treatment resulted in an altered distribution of pS129-
a-syn, the present analyses aimed to elucidate if iron also influenced inflammatory
responses inside the brain which could contribute to changes in a-syn spreading pathology.
Therefore, brain sections were used to analyze microglia and T cell amounts within the
striatum as injection site and the SN as a known iron-enriched brain region of iron-treated
animals. For the microglia analysis, immunolabeled CD11b+ cells were quantified (Figure
32A). Three striatal sectional planes were analyzed: anterior (B), middle (C) and posterior

striatum (D).
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Figure 32. Analysis of CD11b+ microglia in striatal sections of iron- and a-syn-treated mice.
Immunostained brain sections of 30 um thickness were analyzed. CD11b signal is shown in brown due to
a DAB reaction and cells are shown in blue (Hematoxylin staining). (A) Micrographs of CD11b+ cells
from mice treated with vehicle or 240 mg/kg Fe are shown. A close-up image is shown in the right corner
of each micrograph. Scale bar 20 um. (B-D) In brain sections containing (B) anterior (n = 6-7), (C) middle
(60mg/kg Fe/PFFs n = 4; other groups n = 6-7) and (D) posterior (n = 5-7) striatum CD11b+ microglia of
iron- and a-syn-treated C57BL/6J mice were quantified. Data of the injected hemisphere is shown. (E,F)
Microglia counts were averaged over the three evaluated striatal sections. Data of (E) the injected
hemisphere (all groups n = 7) and (F) the contralateral hemisphere (all groups n = 7) are shown separately.

Data given as mean + SEM, one-way ANOVA with Tuckey’s post hoc test; *p < 0.05, ** p <0.01.
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First, the intrastriatal microglia accumulation at the injected hemisphere of the
analyzed sections is described. Mice of the ctrl/PFFs or ctrl/monomer group were treated
with vehicle instead of iron. At the anterior striatum, microglia numbers of the vehicle/PFFs
group did not significantly differ from the monomer-injected groups (vehicle/monomer and
240 mg/kg Fe/monomer). Compared to the 60 mg/kg Fe/PFFs and 120 mg/kg Fe/PFFs
group, the vehicle/PFFs group showed no significant changes in the microglia number, but
a significant increase was observed compared to the highest iron dosage group
(240 mg/kg Fe/PFFs; p<0.01; Figure 32B). At the middle striatum, microglia
accumulation was significantly increased in the vehicle/PFFs groups compared to the
vehicle/monomer group (p <0.05; Figure 32C). All of the three iron dosages in
combination with PFFs injections showed unaltered microglia accumulation compared to
the vehicle/PFFs and to the monomer-injected groups. At the posterior striatum, the
microglia number of the vehicle/PFFs group did not differ significantly from the
vehicle/monomer group. The vehicle/PFFs group showed also no microglia number
changes compared to the 60 mg/kg Fe/PFFs group, however, it showed a significant
increase of microglia compared to the 120 mg/kg Fe/PFFs and the 240 mg/kg Fe/PFFs
group (p < 0.05; Figure 32D).

Furthermore, an average of the microglia number within the injected hemisphere of
all three sections was calculated. The vehicle/PFFs group showed a significant increase in
microglia compared to both ~monomer-injected groups (vehicle/monomer;
240 mg/kg Fe/monomer; p < 0.05). No difference was found between the vehicle/PFFs and
60 mg/kg Fe/PFFs group. However, the microglia number of the vehicle/PFFs group was
significantly increased compared to the 120 mg/kg Fe/PFFs and 240 mg/kg Fe/PFFs group
(p <0.01; Figure 32E). In addition to striatal sections, one SN section (part of the middle
SN) was analyzed. All analyzed groups did not differ in the nigral microglia number at the

injected hemisphere of this section (Figure 33A).

Second, the contralateral hemisphere of all sections was analyzed regarding the
microglia accumulation in striatum and SN. An average of the microglia number of all three
sections was calculated. The vehicle/PFFs group showed a significant microglia increase
compared to the vehicle/monomer group (p < 0.05) as well as to the 60 mg/kg Fe/PFFs
(p <0.05) and 240 mg/kg Fe/PFFs group (p <0.01). No significant difference was
observed compared to the 120 mg/kg Fe/PFFs group (Figure 32F). Analyzing one SN
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section, no significant microglia differences were observed between the groups (Figure
33B).
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Figure 33. Analysis of CD11b+ cells in a nigral section of iron- and a-syn-treated mice. CD11b+ cells
in one SN section were analyzed separately for the (A) ipsilateral and (B) contralateral hemisphere (n = 6-

7). Data given as mean + SEM. One-way ANOVA.

Since T cells also play an important role in the immune response infiltrating the brain
(Brochard et al., 2009; Gonzalez et al., 2013; Kurkowska-Jastrzebska et al., 1999), mouse
brain sections were immunolabeled for the T cell marker CD3 (Figure 34A). As for the
microglia analysis, CD3+ cells were quantified within three striatal sections (Figure 34B-
D). Within the injected hemisphere of single sections, no significant differences in T cell
amounts were found between the different treatment groups. Taking the average of the T
cell counts per mouse over the three sections, no significant group differences were

observed, neither at the injected hemisphere (E) nor at the contralateral hemisphere (F).
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Figure 34. CD3+ T cell analysis in striatal sections of iron- and a-syn-treated mice. Brain sections
were immunolabeled for CD3 and DAPI. Scale bar 20 um. (A) Exemplary image of an immunostained
CD3+ T cell indicated with an arrow. Scale bar 20 pm. At the ipsilateral hemisphere, T cell quantification
is shown within the following striatal sections: (B) anterior, (C) middle and (D) posterior striatum. (E,F)
Averaged T cell amounts within the striatum (E) at the injected hemisphere and (F) at the contralateral

hemisphere. Data given as mean = SEM; n = 5-8; Kruskal-Wallis test.
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Only one sectional plane of the SN was analyzed regarding T cell numbers, but no

significant iron- or PFFs-induced effect was found (Figure 35). For all mentioned T cell

analyses Kruskal-Wallis test was used.
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Figure 35. T cell analysis in a nigral section of iron- and o-syn-treated mice. T cell quantification in

one SN section at the (A) contralateral and (B) ipsilateral hemisphere. n = 6-8. Data given as mean + SEM;

Kruskal-Wallis test.
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3.3 The influence of iron on the a-syn pathology in vitro

After demonstrating the effect of iron on a-syn pathology in the brain of C57BL/6J
mice, the present analysis aimed to elucidate if iron also influences a-syn transmission in
cortex neurons obtained from E 18.5 wild-type mouse embryos. To establish the iron-
treatment paradigm in cortex cultures, cells were treated with different concentrations of
iron and afterwards stained for iron by means of a Prussian blue staining to assess the iron
load in cultures. To exclude iron-induced toxicity, a ToxiLight assay was used. Iron-
mediated alterations of a-syn spreading in vitro were analyzed in microfluidic chambers.

To this, cells were treated with iron and a-syn PFFs or monomers.

3.3.1 Iron treatment of cortex neurons

To verify that iron treatment of cortex cultures indeed led to high amounts of iron in
the culture, a Prussian blue staining combined with DAB staining was used to detect iron
resulting in a brown color of the target. Microscopy images showed that the amount of iron
is higher in cells treated with 100 uM iron compared to treatment with lower iron dosages

(Figure 36A).

In another experiment, iron-induced toxicity in cortex neurons at specific time points
after treatment was analyzed (Figure 36B). A ToxiLight bioassay kit was used measuring
the release of adenylate kinase from damaged cells. Cells were treated with 10, 50, 100 or
200 uM iron. As a control, cells were treated with vehicle solution. To perform the assay,
medium was collected directly before treatment (div2), at the end of the treatment (24 h
post treatment start), at div7 and at div14. The statistical analysis revealed no significant
cytotoxicity or dosage-dependent effects of iron at the different measurement timepoints

(two-way ANOVA with repeated measures).
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Figure 36. Cytotoxicity in cortex neuron cultures following iron treatment. (A) Exemplary micrographs

of cells stained for iron using a modified Prussian blue staining protocol. Cells were treated with 10, 50, 100

or 200 uM Fe at div2 for 24h. The control cells were treated with vehicle. Arrowheads show large intracellular

iron deposits; the arrow indicates smaller iron-positive puncta within a cell. NC: negative control. (B)

ToxiLight analysis of cortex neurons treated with different iron concentrations at div2 for 24h. Cell medium

was collected at div2, div3, div7 and div14 (n = 4 cultures). ANOVA for repeated measures.
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3.3.2 Microfluidic chamber model — the influence of iron on a-syn spreading

To analyze if iron affects the a-syn spreading following PFFs treatment in vitro, the
microfluidic chamber model was used. Cortex neurons were seeded in one compartment of
the chamber and treated with iron and a-syn PFFs at 2d and 3 d post preparation,
respectively (Figure 37A). At div7, freshly prepared cortex neurons were seeded in the
secondary cell compartment. At divl4, cells were fixed and stained with an antibody

recognizing pS129-a-syn.

A 0 2 3 y 7 fi 14 [div]
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primary cell Fe a-syn PFFs secondary cell
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vehicle/PBS

101



RESULTS

Figure 37. Experimental layout and exemplary micrographs of a-syn spreading signal in
microfluidic chambers. (A) Experimental layout. Cells in microfluidic chambers were treated with iron
and a-syn PFFs for 24 h each. (B) Exemplary micrographs of intracellular pS129-a-syn signal appearing
in the secondary cell compartment. MAP2 was used as a neuronal marker. Scale bar 50 um. (C) Exemplary
micrograph of a-syn signal in axons at the secondary cell compartment. In this exemplary chamber no cells
were seeded to the secondary cell compartment. The cells were treated with PFFs. Spread a-syn fibrils

were only transferred via axons to the secondary cell compartment. Scale bar 100 um.

Immunocytochemical staining revealed the presence of pS129-a-syn in cell bodies
and axons at the secondary cell compartment in PFFs conditions. No signal was observed
in monomer- or PBS-treated cells (Figure 37B). To more clearly visualize the distribution
of pS129-a-syn, in some chambers cells were only seeded in the primary cell compartment
and neurites thereof grew to the secondary cell compartment (Figure 37C). The micrograph
shows that the pS129 signal was exclusively located in neurites within the secondary cell
compartment. This suggests that PFFs, uptaken by cells in the primary cell compartment,
spread from the perikarya to the neurites and no extracellular PFFs were observed travelling

independently through the grooves to the secondary cell compartment.

The a-syn signal was quantified by a threshold-based method. Subtracting the signal
results of the PBS-treated chambers, monomer-treated cells showed neglectable signal at
the secondary cell compartment (Figure 38). A statistical analysis (Kruskal-Wallis test with
3 determined Dunn’s post hoc comparisons: Fe/monomer vs. Fe/PFFs, vehicle/monomer
vs. vehicle/PFFs, Fe/PFFs vs. vehicle/PFFs) revealed a significant difference of
Fe/monomer-treated cells compared to Fe/PFFs-treated cells (*p <0.05). With vehicle
treatment, the PFFs condition also significantly differed from its monomer control group
(*p <0.05). Comparing a-syn PFFs conditions, no significant difference was found
between iron-treated and vehicle-treated cortex neurons (Fe/PFFs 0.015 + 0.0048 vs
vehicle/PFFs 0.013 £ 0.0042). In summary, the a-syn spreading results indicate that iron
treatment did not significantly influence the a-syn amounts spread to the secondary cell

compartment in microfluidic chambers.
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Dunn’s post hoc comparisons; *p < 0.05.

3.4 Therapeutic approach: The influence of fasudil on the a-syn

pathology

Finally, we aimed to elucidate if treatment with the ROCK inhibitor fasudil could
affect a-syn spreading pathology in mice. Fasudil has previously been shown to reduce o-
syn aggregation in vitro and also in vivo using the A53T mouse model (Tatenhorst et al.,
2016). In the current study, mice were injected with a-syn PFFs or monomers. One PFFs-
injected group was treated with 30 mg fasudil /kg bw which was supplied via the drinking
water, according to the previously published protocol (Tatenhorst et al., 2016) (Figure
39A). Motor behavior from doi to sacrifice and neuron survival at 90 dpi were analyzed to
assess the health status of PFFs-injected mice. Later, pS129-a-syn signal was quantified in
multiple brain sections to assess if fasudil alters spreading pathology, described in chapter

3.4.3. Therefore, two different quantification methods were used.

3.4.1 Motor behavior analysis

To determine if PFFs treatment induced changes in motor behavior, mice performed
the rotarod test weekly between doi and sacrifice (Figure 39A). The treatment
(monomer/vehicle, PFFs/vehicle, PFFs/fasudil) of the mice and the interaction of
‘treatment % time’ did not significantly affect the performance on the rotating rod (Figure

39B; ANOVA with repeated measures). Only the variable ‘time’ (weeks before sacrifice)
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showed a significant influence, meaning that the time on the rod for the average of all

animals changed over time (****p < 0.0001).
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Figure 39. Experimental layout and evaluation of motor behavior of a-syn PFFs-injected mice
treated with fasudil. (A) Experimental layout. C57BL/6J mice were injected with a-syn PFFs or
monomers at 3 months (3mo.) of age and one group of the PFF-injected animals was treated with fasudil
via drinking water between injection day (doi) and sacrifice at 90 dpi. Rotarod was performed weekly. (B)
Results of the weekly performed rotarod test starting 13 weeks before sacrifice. The graph shows the
averaged performance of mice per treatment group (monomer/vehicle n = 8, other groups n = 10) over

time. Data given as mean = SEM, one-way ANOVA with repeated measures.

3.4.2 Dopaminergic neuron survival

In order to investigate effects of a-syn PFFs on neuronal loss in mice, TH+ neurons
as well as Nissl+ neurons were stereologically quantified in nigral brain sections at 90 dpi.
Nissl staining was used to identify the total neuron count in SNpc. At the ipsilateral
hemisphere, a-syn PFFs-injected mice showed lower counts for TH+ neurons compared to
monomer-injected mice but these results did not differ significantly (Figure 40A;
monomer/vehicle 11232 + 862.5; PFFs/vehicle 10016 + 432.0; PFFs/fasudil 8858 + 774.4
cells). The same trend was observed in Nissl+ neurons in the injected hemisphere (Figure
40B; monomer/vehicle 13282 +965.7; PFFs/vehicle 12133 +457.5; PFFs/fasudil
10629 £ 905.1 cells). At the contralateral SNpc also no significant group differences were
found, neither in the quantification of TH+ neurons (Figure 40C; monomer/vehicle
11217 + 852.7; PFFs/vehicle 11273 +592.6; PFFs/fasudil 10373 &+ 558.3 cells) nor in
Nissl+ neurons (Figure 40D; monomer/vehicle 13569 +959.2; PFFs/vehicle
13492 + 678.6; PFFs/fasudil 12432 + 654.0 cells).
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Figure 40. Quantification of nigral TH+ and Nissl+ neurons of mice injected with a-syn PFFs or
monomers and treated with fasudil. TH+ and total (Nissl+) neuron count was analyzed at 90 dpi. (A,B)
Stereological quantification of (A) TH+ and (B) Nissl+ neurons at the ipsilateral hemisphere. (C,D)
Stereological quantification of (C) TH+ and (D) Nissl+ neurons at the contralateral hemisphere. Data
shown as mean + SEM; monomer/vehicle n=7, PFFs/vehicle n=9, PFFs/fasudil n=9; one-way

ANOVA.

3.4.3 The effect of fasudil treatment on a-syn spreading in vivo

A major aim of this study was to investigate if the ROCK inhibitor fasudil had a
beneficial impact on a-syn spreading pathology. Therefore, six coronal brain sections were
analyzed. Paxinos atlas coordinates (Paxinos and Franklin, 2003) are described in chapter
3.2.3.1. The sections were stained with an antibody recognizing a-syn fibrils (pS129). The
pS129-a-syn amounts were quantitatively analyzed using two approaches — manual

quantification and threshold-based quantification.
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3.4.3.1 Manual quantification of a-syn

In a manual quantification approach, pS129-a-syn immunostained sections were
covered with a grid (150 pm x 150 pm per grid box) and analyzed as described in the
according method chapter 2.2.5.1.1. The signal was rated per grid box using a color code
grading system corresponding to low, medium and high signal amounts, respectively:
yellow = 1-5 a-syn structures, orange = 6-10 a-syn structures, red => 10 a-syn structures

per box.

In a first analysis, it was aimed to describe how much area of each brain section was
generally affected (independent on the pS129 a-syn quantity evaluated in each counted
box). Therefore, a sum of all rated boxes (boxes with low, medium, high signal amounts)
in the contralateral or the injected hemisphere was calculated individually for each section
and relativized to the total box number of the corresponding hemisphere to obtain a
percentage (%). The monomer control group did not show pS129-a-syn signal in any of the
analyzed sections, neither in the injected nor in the contralateral hemisphere (Figure
41A,B). In all sections, PFFs-injected mice and PFFs-injected mice with fasudil treatment
showed no significant differences in the total area affected by a-syn analyzing both
hemispheres separately. In a next step, the signal output of all six sections demonstrated in
Figure 41 A was averaged per group. These results of the injected hemisphere are shown in
Figure 41 C,D. The size of the affected area averaged over all sections (injected

hemisphere) did not differ between the groups (Figure 41D).

Comparing the averaged usage of the three different rating stages (low, medium and
strong signal) between both PFFs-treatment groups, no significant difference was found. In
an equal frequency in both groups, grid boxes were rated to contain low, medium or strong
signal. The graph displays that low signal amounts were observed within largest parts of

the a-syn-affected area (Figure 41C).

Since for monomer-injected animals with vehicle-treatment no pS129-a-syn signal
was expected, both PFFs groups were always additionally analyzed with a Student’s t-test

showing no significant difference between the groups in all mentioned analyses.
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Figure 41. Manual quantification of a-syn spreading in brain sections of fasudil-treated mice. Six coronal

brain sections were immunolabeled with an antibody recognizing pS129-a-syn. Signal was manually analyzed

using a color code rating scale. For each brain section, a sum of a-syn-positive grid boxes was separately

generated for either (A) the injected or (B) the contralateral hemisphere. The sum was normalized to the total

area. (C) Group-specific usage of the three different rating stages (low, medium, strong signal) at the injected

hemisphere averaged over all sections. (D) Average of all sum scores of the injected hemisphere in six brain

sections, which were presented in (A). Data are shown as mean = SEM; n = 8-10; Kruskal-Wallis test with

Dunn’s post hoc test.
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3.4.3.2 Threshold-based quantification of a-syn

In order to verify the results of the manual a-syn quantification approach shown in
chapter 3.4.3.1, in a second analysis a threshold-based quantification in Image] was
performed. The same six coronal brain sections were analyzed. At the injected hemisphere,

monomer-injected animals showed no pS129-a-syn signal (Figure 42A).
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Figure 42. Threshold-based quantification of pS129-a-syn in brain sections of fasudil-treated mice.
At 90 dpi, pS129-a-syn signal in brain sections of PFFs-injected and fasudil-treated mice was analyzed
with the particle analysis tool of the software ImageJ. All six sections were selected based on the Paxinos
mouse brain atlas (Paxinos and Franklin, 2003). Quantification of pS129-a-syn signal is shown in separate
graphs representing either the (A) injected hemisphere or (B) the contralateral hemisphere. Scatter plots
are used representing a-syn signal of each evaluated mouse per group (n=8-10) separately for each
analyzed brain section. No outliers were excluded from the analysis. It was defined that outliers were not
removed, when the strong deviation only occurred in one hemisphere of the mouse brain section. Data are

presented as mean + SEM; Kruskal-Wallis test with Dunn’s post hoc test.
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In all sections, PFFs-injected animals (with and without fasudil) differed significantly
from monomer-injected mice. Fasudil-treated mice did not significantly differ in their
pS129-a-syn signal amount from mice without fasudil treatment (Kruskal-Wallis test with
Dunn’s post hoc test). Since for monomer-injected animals no pS129-a-syn-positive signal
was expected, both PFFs groups were additionally analyzed with a Student’s t-test showing
no significant difference between the groups. Analyzing the contralateral hemisphere, also

no significant differences between the PFFs groups were found (Figure 42B).
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4 Discussion

Until today, the diagnosis of PD relies on the occurrence of specific motor symptoms
that arise relatively late in the progression of the disease. Up to now, a prevention or cure
of the disease is not possible. At the time of diagnosis, the pathomechanisms that mediate
PD are quite progressed, including the degeneration of the majority of nigrostriatal
projections and dopaminergic neurons within the SN. The current state of research is aware
of many individual influencing factors such as LB formation and spreading or metal
dyshomeostasis, even though the details of PD pathogenesis remain unclear. It is
inconclusive if pathological alterations in the PD brain such as a-syn aggregation, metal
dyshomeostasis, oxidative stress or mitochondrial dysfunction represent a cause or

consequence of the disease.

One aim of the present work was to determine the distribution of iron and other
elements in PD on a subcellular level. Therefore, in the first part of this doctoral thesis,
elemental concentrations were analyzed in dopaminergic neurons of midbrain tissue from
PD patients and controls using nanofocus XRF as a powerful technique to map and quantify
trace elements simultaneously. The distribution of elements in two LBs was analyzed to
reveal which elements were strongly correlated to a-syn pathology. Furthermore, the
present work aimed to determine in more detail, if iron affects spreading of a-syn pathology
in a mouse model of PD and secondly if the ROCK inhibitor fasudil has any therapeutic
effects in the a-syn spreading paradigm. Iron is the most studied trace element in the context
of PD and is already known to interact with a-syn, considered as one of the most relevant
proteins for the pathogenesis of PD. Therefore, the second part of this doctoral thesis sheds
light on the effect of iron on a-syn spreading pathology both in vivo and in vitro. Finally,
in a therapeutic approach, the mouse model of a-syn PFFs injections was used to evaluate

if a-syn spreading could be modified by ROCK inhibition by fasudil.

4.1 PD characteristics in postmortem midbrain tissue of patients

In previous studies, cerebrospinal fluid (CSF), serum or plasma samples of PD
patients were used to analyze the quantities of iron and other trace elements in different
biofluids demonstrating a dyshomeostasis of some elements in PD (Ahmed and Santosh,
2010; Gangania et al., 2017; Maass et al., 2018; Zhao et al., 2013). Differences in trace

elemental content have been described even in hair samples of PD patients and controls
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(Forte et al., 2005). Therefore, trace elements are considered as potential biomarkers for
PD. In the present study, X-ray based techniques were used to gain further insight into the
role of trace elements within the SN of PD patients (Joppe et al., 2020).

4.1.1 PD-related changes in trace element concentrations in neuromelanin-positive

neurons

Since the main pathophysiological changes in PD take place within the SN, analyzing
the dyshomeostasis of trace elements in neuromelanin-positive neurons within the SN is

important.

Previous studies using X-ray-based techniques revealed significant differences in the
accumulation of trace elements such as copper, iron or zinc in cell bodies within the SN
from PD patients compared to controls (Carboni et al., 2017b; Davies et al., 2014;
Szczerbowska-Boruchowska et al., 2012). In this work, we took advantage of the nanofocus
beamline to measure more precisely absolute concentrations of trace elements within
neuromelanin-positive neurons of SN tissue from PD patients and controls using XRF.
Analyzing elemental concentrations on a single-cell level as a new approach, our analyses

enabled to assess inter- and intraindividual differences (Joppe et al., 2020).

The current study was a follow-up study to a previously conducted measurement
assessing elemental content in neuromelanin-positive neurons from one single PD and one
CO patient (Carboni et al., 2017b). For a better reliability of the present study, the sample
size and respective neuron count were increased and as mentioned above a higher
magnification employing a nanofocus beamline was used to precisely determine element
levels within cell bodies. A great advantage of using XRF as detection method is that tissue
can be left in a native state for the analysis and it was able to detect in total 12 trace elements
simultaneously: iron, manganese, copper, zinc, arsenic, selenium, bromine, calcium,
potassium, chlorine, sulfur and phosphorus. Comparing the results of the present and the
pilot study, the same PD-related trends were observed such as an increase of iron and zinc
and a decrease of copper. However, even though the sample size was increased no
significant differences were found in all measured trace elements. Only copper levels

showed marginal significance, being lower in PD patients.

Copper is an important biometal in the brain. A corresponding dyshomeostasis of

copper within the SN of PD patients has been already shown previously using inductively
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coupled plasma spectroscopy (Dexter et al., 1991). More precisely, particle-induced X-ray
emission (PIXE) and XRF analyses could verify the copper reduction in neuromelanin-
positive neurons in the SN and showed same effects in the locus coeruleus of PD and
incidental LB disease patients (Davies et al., 2014). The data of the present study
demonstrated similar results for copper in nigral neurons. However, important variances of

the data prevented the results to be significant on the 5 % level.

An essential conclusion from the XRF data presented here was that although we could
reproduce known trends in bioelemental quantifications for iron, copper and other
elements, the observed inter- and intraindividual differences were important. In contrast to
bulk analyses performed previously, we can show that elemental dysregulation does not
affect all neurons in the same extent. This is not only true on an individual patient level,

but even neurons from one patient can show different bioelemental amounts.

Quantifying iron as the most described trace element in the context of PD, the present
data could not verify the assumption of global iron enrichment in all nigral neurons of PD
patients. This could also have implications for selective vulnerability of particular neuron
groups. Analyzing the iron content in SN tissue with a microprobe mass analyzer, a study
demonstrated a significant increase of the averaged iron signal in neuromelanin granules in
PD patient tissue compared to tissue of controls (Good et al., 1992). Using X-ray based
techniques, the aforementioned findings of an increased iron content in SN neurons could
be verified (Davies et al., 2014). Both, measurements of single neuromelanin-positive
neurons in SN using PIXE and XRF (Davies et al., 2014) as well as rapid-scanning XRF
mapping of a whole section containing SN (Popescu et al., 2009), showed increased iron
levels in PD samples. In the current study, we performed a local XRF analysis in neurons
in the SN instead of averaging element concentrations over a wide part of the SN. This
could be one reason for the high variance observed in our data. As a consequence of the
high resolution, limiting the total imaging area, a further characterization of the scanned
SN regions could not be conducted. It was not possible to determine if the measured cells

were e.g. part of different nigrosomes.

Furthermore, the disease state seems to impact iron amounts. A study using
quantitative susceptibility mapping (QSM) showed that in patients with advanced disease
state significantly higher iron values in QSM were found compared to patient with mild

progression or controls. These results presume that the further the disease progressed the
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higher is the iron accumulation in the SN (An et al., 2018). Demonstrating higher iron levels
in SNpc but lower iron serum levels in PD patients, a ratio of both iron levels in SNpc and
in serum revealed a significant increase of iron in PD patients compared to controls (Costa-
Mallen et al., 2017) . Thereby, the authors concluded that in PD patients nigral and blood
iron levels go in dyshomeostasis assuming a causal relation of both findings (Costa-Mallen

etal., 2017).

In addition to iron and copper as the most prominent PD-related trace elements, some
studies already referred to dysregulated levels of selenium in PD patients. Accordingly,
selenium was found to be significantly increased in blood plasma and CSF of patients
(Maass et al., 2018; Zhao et al., 2013). Being an essential trace element in the brain,
selenium is involved in neurogenesis modulation and the maintenance of redox balance or
dynamics in mitochondria, but most interesting for PD is its antioxidant role (Cardoso et
al., 2015). In the present study, selenium levels in neuromelanin-positive neurons of PD
patients were tendentially reduced, however, the observed effect was influenced by strong
interindividual differences. One study showed that a selenium-deficient diet could impact
the vulnerability of dopaminergic neurons (Kim et al., 2000). This observation would fit
the hypothesis of less selenium in dopaminergic neurons of PD patients. A recent
epidemiological study analyzing soil compositions suggested a close relation of selenium
to PD. They found that PD mortality significantly anticorrelated with selenium levels in

geographical regions (Sun, 2018).

For arsenic, zinc and manganese, PD and CO samples in the present study showed
relatively similar distributions. For zinc and manganese, this goes in line with the results
of an ICP-MS analysis (Genoud et al., 2017). One study reported an opposing relationship
of zinc and iron, meaning that in brain regions where increased iron levels are found zinc
levels are often reduced. This effect is vice versa in other brain regions (Popescu et al.,
2009). However, analyzing neuromelanin-positive neurons with PIXE, the zinc
concentration did not significantly differ between the PD and control group (Davies et al.,
2014). One study, conducted similarly to our experiment, detected significant concentration
changes in nigral neurons of PD patients in sulfur, chlorine, iron, calcium and zinc. In the
extracellular space they showed significant differences for phosphorus, sulfur, chlorine,
rubidium, iron and zinc. However, the authors stated significance below the 10 % level
(p <0.1) (Szczerbowska-Boruchowska et al., 2012). Although significant differences were

found in the aforementioned study, some trace element concentrations varied strongly
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within the PD group (Szczerbowska-Boruchowska et al., 2012). These observations fit the

intragroup variances demonstrated in the present study.

A suitable explanation for the detection of bromine showing high concentrations in
single cells in the present analysis has not been found so far. Unlikely, the samples
exhibited a contamination with bromine. The present results were in line with a published
investigation showing also bromine in SN neurons with a high interindividual variance
(Szczerbowska-Boruchowska et al., 2012). This high variance in bromine levels led to the
speculation that some patients took occasionally medication that contained bromine. For
example, the anti-anxiety agent bromazepam or the anti-Parkinsonian drug bromocriptine
contain bromine. The latter one is an ergoline dopamine agonist widely used in the past to
treat PD patients (Brooks, 2000; Guttman, 1997). However, the usage of these drugs has
not been documented in the available medical records and thus cannot be proven neither

excluded.

In a CSF-based study, samples of PD patients showed reduced values of lead,
chromium, cobalt, iron, silicon and tin, whereat the strongest differences compared to CO
patients were shown for lead and chromium (Alimonti et al., 2007). Analyzing brain tissue,
in the present study these elements could not be detected with the exception of iron. The
case that some studies detected different trace elements in their samples can partly be
explained by the different detection methods used. Not all methods are equal in sensitivity
and specificity. In one study, the elemental content was determined in SN tissue from
healthy individuals without neuropathological findings using both PIXE and energy-
dispersive X-ray spectroscopy (EDX). They detected iron, manganese, chromium and zinc
with PIXE while EDX analyses could quantify iron, zinc, aluminum and silicon
concentrations in tissue (Panik et al., 2018). This indicates that in order to provide a
complete elemental profile of PD it would be useful to combine different X-ray based

methods in future studies.

Even though no significant differences in trace elements were found, the question
arose if an unsupervised clustering approach could correctly identify samples of PD or CO
patients based on the combination of trace elements. Merely, 65.5 % of the samples were
classified correctly based on the concentrations from iron, zinc, copper, selenium, arsenic,
manganese and bromine. In another study analyzing neurons in SN, concentrations of

chlorine, iron, bromine, calcium and zinc were statistically significant to discriminate
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samples from the two groups using a multiple discrimination analysis (Szczerbowska-
Boruchowska et al., 2012). The latter study used a comparable sample size to the present
study of four PD and four CO patients (4-10 cells each). In our case, the strong variance

between the used samples prevented from replicating the previous literature.

One general issue of using tissue from patients of high age is that the medical histories
of age-matched controls are quite heterogeneous, which could have significantly influenced
the results. Three patients of the CO group were diagnosed with different kinds of cancer
while one patient suffered from MS. It must be considered that MS is also a neurological
disorder. In general, it is difficult to get brain samples from high age CO patients with a
detailed medical record but without any clear pathology or at least without
neurodegenerative pathology. The inclusion of different disease types in the CO group as
well as the small sample size in the present study might explain the limited differences in
trace element abundancies of PD and CO patients. In another study using a machine-
learning algorithm for group discrimination, an elemental profile of selenium, iron, arsenic,
nickel, magnesium and strontium was shown to discriminate CSF samples of the PD and
CO group (Maass et al., 2018). Therefore, the elemental profile is possibly also dependent

on the used biological source material (e.g. brain tissue, serum, plasma, CSF).

Taken together, our data resemble the results of previous studies analyzing elemental
concentrations in neuromelanin-positive neurons, but our analyses did not reach statistical
significance comparing PD and CO patients. One important reason is still the low sample
size which is owed to a high time expenditure for XRF measurements with the used
resolution and the restricted measurement time at the synchrotron. The novel single cell
analysis in our study indicated that elemental concentrations are not necessarily similar
between PD patients and could even strongly vary between neurons within the same patient.
Nevertheless, these results are relevant indicating on the one hand that trace elemental
changes could possibly be related to PD subtypes and on the other hand that particular
neuron groups probably have a selective vulnerability for a dyshomeostasis of trace

elements such as iron.

4.1.2 X-ray-based characterization of LBs and their elemental composition

LBs containing a-syn aggregates are one of the main hallmarks of PD. Here, LBs
were identified in postmortem midbrain tissue sections from PD patients and analyzed with X-

ray-based techniques in order to investigate these subcellular protein inclusions with a high
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spatial resolution. XRD was used to noninvasively localize and characterize crystalline
structures whereas XRF enabled an analysis of the elemental concentrations in LBs (Joppe et

al., 2020).

First, the question if a-syn can be detected solely based on the XRD signal was
investigated. In future experiments, this would enable an identification of a-syn-containing
LB without any processing of the tissue. So far, a-syn-containing LBs always had to be
visualized by immunohistochemical stainings (Spillantini et al., 1998), which possibly
affects the elemental composition of the LBs due to the processing of the section like
washing and staining. The XRD data did not conclusively show a-syn present in the LB,
but as an indication it showed higher amounts of B-sheet proteins in the LB-defined ROI
compared to B-sheet protein amounts in a neuron of a CO patient. Prospective XRD-based

studies might shed light on the structural quality of LBs.

Further analyses aimed to determine the elemental content of LBs, since little is
known about trace element abundancies and their distribution in LBs of PD patients, even
if several studies suggest an interaction of a-syn with trace elements especially with iron.
It has been shown that iron can bind to a-syn and that the binding affinity is even increased
for phosphorylated a-syn (Binolfi et al., 2006; Lu et al., 2011; Peng et al., 2010b). Another
study suggested that a-syn levels are regulated by iron due to its 5'-UTR, which shows a
close homology to the IRE of the ferritin mRNA (Friedlich et al., 2007). Therefore, it is
relevant to further investigate the interplay of iron and a-syn in the disease state. Due to the
fact that iron, but also copper and manganese were found to foster a-syn aggregation as
previously reviewed (Carboni and Lingor, 2015), accumulation of these elements in a-syn
aggregate-containing LBs was conceivable. Using immunohistochemical stainings, it has
been already shown that iron deposits overlap with LBs (Castellani et al., 2000). In vitro
and in vivo it was demonstrated that arsenic fostered the accumulation of a-syn (Cholanians
et al., 2016), thus it might also be overabundant in LBs. Regarding the possible role of
selenium for LB pathology, previous studies indicated that selenoproteins as
Selenoprotein P (Sepp1) or GPX4 were colocalized with LBs (Bellinger et al., 2011, 2012).

This observation would argue for selenium enrichment in LBs.

To gain further insight into the elemental composition of LBs XRF analyses were
conducted. In one LB, iron, zinc, manganese, selenium, arsenic and bromine were locally

enriched, whereas copper was decreased in the middle of the LB. Since Naphthol As-BI
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phosphate contains bromine and was added during the staining procedure of these sections,
this could possibly explain strong bromine signal in the area of the LB. In a recent study,
the elemental content was assessed in the olfactory bulb of patients with laser ablation-ICP-
MS (LA-ICP-MS) and the colocalization of a-syn aggregates with trace elements was
analyzed (Gardner et al., 2017). Thereto, LA-ICP-MS results had to be combined with
immunohistochemically stained a-syn aggregates. The analyses showed decreased amounts
of copper in a-syn aggregates confirming the results of the present study. Iron amounts
were decreased in their analysis. An increase of zinc again was in line with the observation

in the present study (Gardner et al., 2017).

The analysis of a second LB showed a different elemental composition. Only the
absence of copper and the increase in bromine in the second LB were in accordance with
the results of the first measured LB. Interestingly, the enrichment of iron could not be

shown in the second LB.

Due to the above-mentioned studies showing a clustering of LBs and iron (Castellani
et al., 2000) and a general affinity of iron to bind a-syn (Binolfi et al., 2006; Peng et al.,
2010b) it was hypothesized that at least iron clustered in both measured LBs. However, in
vitro experiments revealed that iron could also indirectly trigger the aggregation of a-syn
(Levin et al., 2011; Li et al., 2011; Xiao et al., 2018) hypothesizing that both targets can
impact each other not necessarily requiring cluster formation of iron and a-syn aggregates

in LBs.

Taken together, the current data demonstrated for the first time trace element
abundancies and their distribution in LBs using XRF with nanofocus resolution. The two
measured LBs showed a heterogeneous elemental pattern. One possible explanation for this
heterogeneity could be that two LBs of different developmental stages were measured.
There is a possibility that both LBs are of different ‘ages’ and that accumulation of for
example iron or selenium is dependent on the age of the LB. More analyses of individual
LBs are needed to describe the variety of elemental profiles of LBs and to discuss the
relevance of different trace elements for LB pathology. Regarding the XRD analysis, it was
not possible to visualize explicitly crystalline structures of a-syn in the LB, but we were
able to detect B-sheet protein amounts. It is assumed that a-syn does potentially not

crystallize under the chosen conditions of the current experiment.
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4.1.3 The role of cholesterol in midbrain tissue of PD patients

Using XRD, a previous study of our group revealed increased amounts of cholesterol
crystals in one midbrain sample of a PD patient compared to one MS sample. Cholesterol
was mainly located in the extracellular space and not within SN neurons (Carboni et al.,
2017b). Since no statistical conclusion could be drawn from this analysis, we aimed to
investigate cholesterol amounts in a bigger sample cohort, using lipid extraction and

following GC-MS to quantify the cholesterol amounts in midbrain tissue.

In the present study, PD patients showed increased cholesterol levels in midbrain
tissue reaching marginal statistical significance in comparison to CO samples. However,
the interpretation of this data requires caution, as three samples of the CO group originated
from cancer patients, whereas the majority of seven patients were diagnosed with MS.
Therefore, it cannot be excluded that the observed cholesterol increase is biased by the
overrepresentation of MS patients in the CO group. Little is known about cholesterol levels
in the brain of MS patients so far, but other sample sources have been analyzed in some
studies. In one study, plasma hydroxycholesterol levels increased in MS patients within
five years of disease progression (Fellows Maxwell et al., 2019). Another study showed
reduced levels of specific hydroxycholesterols in plasma for relapsing-remitting MS
patients (Crick et al., 2017). In CSF, 25-hydroxycholesterol was increased for these patients
whereas no difference was detected in cholesterol levels (Crick et al., 2017). In serum, total
cholesterol and low density lipoprotein (LDL) cholesterol profiles were positively
correlated with the disability status of MS patients (Durfinova et al., 2018). Even if no
specific changes of cholesterol levels in the SN of MS patients are known so far, it must be
kept in mind, that the heterogeneity in patients from the CO group (MS or cancer) could

have influenced the output in the present study.

In contrast to our PD study, different studies investigated cholesterol levels in source
material such as plasma or serum of PD patients. Studies investigating plasma levels of PD
patients showed that higher levels of total or LDL cholesterol were possibly associated with
a decreased risk to develop PD. Furthermore, higher plasma levels of LDL cholesterol led
to a better motor function over time in PD patients (Huang et al., 2016; Sterling et al.,
2016). High cholesterol levels in serum were also associated with a decreased risk for

individuals to develop PD symptomatology and with a retardation of the clinical
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progression of PD (Huang et al., 2011; De Lau et al., 2006; Rozani et al., 2018; Simon et
al., 2007).

Inversely to blood and serum samples, in brain tissue of PD patients, increased
cholesterol levels were found which confirms the data of the present study. One study
investigated cholesterol content in the visual cortex as a region without LB pathology. Both,
a lipidomics approach using liquid chromatography mass spectrometry as well as a
validation with high performance liquid chromatography (HPLC), showed a significant
increase of cholesterol in PD patients (Cheng et al., 2011). Oxysterols amounts were also
increased. The authors therefore suggested an upregulation of the metabolism of cholesterol
through oxysterols in the visual cortex and that this is probably related to selective
expression changes in genes which play a role in lipid metabolism. Regions known to be
affected by LB pathology in PD such as anterior cingulate cortex or amygdala did not show

altered cholesterol amounts compared to controls (Cheng et al., 2011).

In contrast, another study showed that metabolites of oxidative cholesterol were
increased in cortex tissue of DLB patients compared to controls (Bosco et al., 2006). The
results of the present study of an increase in cholesterol amounts in brain regions of PD
patients thereby go partially in line with the literature. Although an above-mentioned study
could not relate cholesterol increase to a-syn pathology in tissue of PD patients, other
investigations suggest a link of both targets. Based on the results of the present study, a
relation of cholesterol and o-syn pathology was also conceivable, since the analyzed
midbrain is commonly known to be affected by a-syn pathology as also mentioned in the
previous chapter. In an in vitro model with SH-SY5Y cells overexpressing a-syn,
cholesterol metabolites were also increased. The study further suggested that cholesterol
accelerated the aggregation of a-syn (Bosco et al., 2006). In primary neurons, the linkage
of cholesterol and a-syn aggregates was confirmed, showing that a cholesterol synthesis
inhibitor reduced a-syn aggregation-induced damage of synapses (Bate and Williams,
2015). Furthermore, cholesterol was postulated to mediate the interaction of a-syn
oligomers and charge-neutral membranes (van Maarschalkerweerd et al., 2015). In an
MPTP model of PD, hypercholesterolemia fostered the degeneration of dopaminergic
neurons in the midbrain of mice and led therefore to a worsening of PD pathology and
symptomatology (Paul et al., 2017). A study in C. elegans reported that the neutral
cholesterol ester hydrolase 1 (NCEH-1) attenuated the a-syn-dependent neurodegeneration

(Zhang et al., 2017b). The results of most of the mentioned studies thereby lead to the
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assumption that cholesterol interacts with a-syn, which fosters the aggregation of a-syn and

supports a-syn-related neurodegeneration.

Taken together, our study reports a cholesterol increase in the SN of PD patients. It
supports the literature on higher cholesterol levels in the brain of PD patients. Furthermore,
not only trace elements, as described in the previous chapter, have been related to a-syn
aggregation and pathology as a hallmark in PD, but also cholesterol has been shown to be
linked with a-syn in previous literature. Due to the characteristic of a-syn being a common
denominator for different possible targets in PD, the next chapters will exclusively address

effects on a-syn pathology in mice in vivo and cortex neurons in vitro.

4.2 Iron-dependent modulation of a-syn spreading pathology in vivo

As mentioned in the previous chapter, a dyshomeostasis and relating thereto the
enrichment of iron in PD has been reported in various studies using different biological
sample sources from patients. Additionally, the positive effects of iron chelators on motor
performance and iron levels in the SN, caudate nucleus and dentate nucleus of PD patients
are evidence for a pertinent role of iron increase in the disease state of PD (Devos et al.,
2014; Martin-Bastida et al., 2017). Using preclinical cell and animal models, various
positive effects of iron chelators were verified. The treatment of rodents or primates with
chelators as deferiprone (Carboni et al., 2017a), clioquinol (Billings et al., 2016; Finkelstein
et al., 2016) or VK-28 (Mandel et al., 2004) or with the quinazolinone compound PBT434
(Finkelstein et al., 2017) prevented the accumulation of iron in SN, formation of nigral a-
syn aggregates, loss of dopaminergic neurons in the SN and rescued motor as well as
cognitive functions of the animals. Chelating iron in PD models therefore consistently
improved the health status and demonstrated already that iron seems to affect the a-syn
pathology in PD models. /n vitro experiments verified that iron can bind to a-syn (Binolfi
et al., 2006; Davies et al., 2011; Peng et al., 2010b) and facilitates its aggregation (Golts et
al., 2002; Kostka et al., 2008; Levin et al., 2011; Uversky et al., 2001). Since these studies
provide evidence for an interaction of iron and a-syn, the question arose if these interactions

could also have an influence on the spreading of a-syn pathology in the brain.

In order to analyze the spreading pathology, the generation of a-syn PFFs and their
injection into rodent brain regions such as striatum, SN or cortex are commonly used

methods that are accurately described in literature provided protocols (Patterson et al.,
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2019a; Polinski et al., 2018; Zhang et al., 2019a). To induce the iron brain load, mice were
postnatally treated at p10 - p17 with different dosages of iron. The present iron intoxication
model has also been used in several studies (Billings et al., 2016; Kaur et al., 2007; Peng
et al., 2009, 2010a). In the present study, an intrastriatal injection of PFFs effected PFFs
seeding which triggered a-syn propagation throughout the brain in the following weeks.
Analyses demonstrated an iron-related reduction of pS129-a-syn amounts in the brain as
well as a prevention of microglia accumulation in the injection site. Iron and o-syn

treatment-related behavioral changes will be discussed first in the following chapter.

4.2.1 The influence of iron and a-syn on motor and cognitive behavior

In order to assess whether iron and a-syn PFFs treatment induced abnormalities in
terms of cognitive or motor behavior of mice, the NOR and rotarod test were performed.
The rotarod test is a commonly used behavioral test for PD animal models. Pure muscle
strength, coordination skills and endurance belong to the abilities which are required to

perform the rotarod test properly.

In the present study, iron and a-syn treatment did not influence the performance on
the weekly implemented rotarod test over a time frame of 90 dpi. The results go in line with
previous investigations showing no significant motor abnormalities for PFFs-injected
animals at 90 dpi. Iron does not seem to accelerate an PFFs-induced motor dysfunction in
mice. In a study using intrastriatal injections of 5 pug of the same protein as in the present
study, also no effects of PFFs injections on the rotarod were observed at 90 dpi but on 180
dpi (Luk et al., 2012a). In another study, 10 ug PFFs were injected and led to a significant
motor decline detected with the rotarod at three months post injection (Masuda-Suzukake
et al., 2014). These data suggest a dose-dependent motor decline in regard to the amount

of PFFs injected.

The mentioned studies used the wire hang test as an additional indicator for motor
decline but showed inconsistent results. Whereas an intrastriatal injection of 5 ug PFFs
showed significant differences in mice at 90 dpi (Luk et al., 2012a), a higher dosage (10 pg
PFFs) did not lead to motor decline (Masuda-Suzukake et al., 2014). Furthermore, recent
studies suggested that bilateral compared to unilateral injections of PFFs and the injection
of shorter fibrils compared to long fibrils significantly influence the effect on motor

behavior (Froula et al., 2019; Patterson et al., 2019b).
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To conclude, in our selected setup, the result of an unchanged motor behavior for
PFFs-injected mice at 90 dpi was as expected compared with a previous study. The
literature suggests that longer time is needed for PFFs to impair motor behavior, which
could be accelerated by the injection of higher PFFs dosages. Indeed, in this study the motor
behavioral analysis was mainly performed to record concomitant effects of the treatment.
The time frame of 90 dpi was selected, since at this time a well-advanced spreading of a-
syn fibrils through the brain has been previously reported (Luk et al., 2012a), and the main
focus of the present study was on influencing the a-syn spreading. For future investigations
targeting the effect of PFFs on the motor function, bilateral injections and the control over
the length of injected fibrils needs to be considered to seed PFFs more effectively in terms

of their effect on motor decline.

Not much is known about direct effects of postnatal iron treatment on motor behavior.
In one study, Sprague-Dawley rats were treated with 120 mg/kg bw iron between postnatal
day 10 and 17. These rats did not show any abnormalities in motor behavior assessed by
rotarod performance at 200 days of age (Chen et al., 2015). A53T mice treated with a low
iron dosage (40 mg/kg bw) showed a reduced learning ability in the rotarod test but overall
a stable motor performance (Carboni et al., 2017a). This effect on learning ability was not
found in the present study using wild-type mice. Another study analyzing behavior of iron-
treated NMRI mice (37 mg/kg body weight) showed alterations in spontaneous motor
behavior (Fredriksson et al., 1999). The few found studies investigating motor behavior of

iron-treated animals therefore deal with other mouse models or another species.

As a conclusion of the rotarod data, our results resemble the literature showing little
evidence for motor abnormalities on the rotarod after neonatal iron treatment or a-syn PFF
injections measured up to 90 dpi / 6 months of age. The accumulation of both treatments
did also not result in a premature onset of motor decline compared to other studies. Thus,
in the selected time frame, iron seems not to foster pathological effects of PFFs on brain

regions important for the locomotor system such as the SN.

Regarding the effect of iron on cognitive performances, iron treatment has been
shown to induce cognitive decline in terms of memory function in mice and rats
(Fredriksson et al., 2000; de Lima et al., 2005b, 2005a, 2007; Schroder et al., 2001).
Therefore, in the present study object recognition was analyzed in terms of STM and LTM

using the NOR test. The NOR was performed twice — before a-syn PFFs injection and at
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90 dpi. At three months of age (before a-syn injection), mice treated with the highest iron
dosage showed an impaired LTM compared to the low iron dosage group. However, at six
months of age (90 dpi), LTM impairment of iron-treated mice was absent. In turn, at 90 dpi,
the PFFs injection significantly impaired LTM compared to the monomer injection of mice.
The combination of iron and PFFs did not worsen the effect compared to PFFs-injected
animals without iron treatment. At both measured time points, STM was not affected by

the treatment conditions.

At three months of age, iron treatment of rats at postnatal days 12-14 showed similar
effects of a cognitive impairment on LTM but absent consequences on STM (de Lima et
al., 2007). Iron treatment of Wistar rats affected LTM independent on the postnatal period
when iron was applied (postnatal days 5-7, 12-14, 19-21 or 30-32), however, measuring
STM only rats treated with iron between p19-21 showed a significant decline in object
recognition memory (de Lima et al., 2005b). These results indicate that the treatment time
point significantly influences if iron affects STM. Accordingly, in the present study, STM
of iron-treated mice was not affected because iron was applied too early (at p10-17). The
reasons for iron-induced cognitive impairment are not fully resolved. It is assumed that
oxidative stress in connection with iron overload could impair the cognitive function.
Accordingly, lipid peroxidation and protein carbonylation were found within the
hippocampus, cortex and SN post neonatal iron intoxication (Dal-Pizzol et al., 2001). The
induction of oxidative stress and damage due to iron accumulation further supports cell

death in neurodegenerative diseases (Zecca et al., 2004).

The present study showed for the first time cognitive decline due to intrastriatally
seeded PFFs measured by the NOR at 90 dpi. A study using intracerebroventricular
injections of a-syn showed that the injection of neither PFFs nor monomers but of
oligomeric a-syn species induced a significant decline in LTM at 10-15 dpi (La Vitola et
al., 2018). Concretely, small extracellular a-syn oligomers were found to disturb the
synaptic plasticity, which could impair both the memory function and cognitive ability
(Martin et al., 2012). Using the Y-maze test, intrastriatally PFFs-injected mice did not show
any learning or memory decline at six months post injection (Luk et al., 2012a; Masuda-
Suzukake et al., 2013). However, in a recent rat study combining viral vector mediated a-
syn overexpression in prefrontal cortex with human a-syn PFFs inoculations into the
striatum cognitive impairments were observed using the delayed matching to position

(DMTP) test, the delayed nonmatching to position (DNMTP) test and the 5-choice serial
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reaction time task (5-CSRTT) (Espa et al., 2019). Therefore, PFFs injections were shown
to affect different cognitive functions measured by different tests. Whereas the present
study plead for an LTM dysfunction in terms of object recognition, no deficits were found
in working memory analyzing spontaneous alternation behavior in literature. Spatial and
working memory were affected in models where a-syn injections were combined with a-

syn overexpression.

Using the NOR test, the distance moved in the arena of iron- and a-syn-treated mice
was also analyzed in the present study as a variable of general mobility. Before a-syn
injection, in the LTM condition, mice with the highest iron dosage were running
significantly less in the arena compared to mice from the other two iron conditions. It is
assumed that this is rather a separate effect than a cause for less interest on the novel object
of this mouse group. Since the duration at the novel object was recorded as main LTM
variable, one would rather expect that mice which move less show LTM values distorted

upwards in terms of the duration spent at the novel object.

Taken together, the present results showed that the highest iron dosage as well as a-
syn PFFs seeding affected the LTM separately. Both targets together did not worsen the
effect in the used model meaning that no interaction effect of both treatments was found.
Comparing the present results with previous literature, the time point of the observation at
90 dpi could have been one major reason for the treatment-induced minor impairments
observed in motor and cognitive behavior. Indeed, the behavioral analyses were mainly
performed to record concomitant effects of the treatment. The focus was not necessarily on
inducing motor or cognitive deficits. In general, available literature indicates that at the
used measurement time points motor and cognitive decline seem to be test-specific,
meaning that the test itself and its sensitivity also strongly influence the output. Possible

reasons for the PFFs-induced cognitive decline are further discussed in chapter 4.2.3.

4.2.2 Quantification analyses of iron

Iron accumulation is an accompanying effect of aging which provides a possible
explanation for an age-dependent susceptibility for neurodegenerative diseases (Ashraf et
al., 2018). In PD, iron increase within the SN is widely reported. One explanation for iron
accumulation in the SN is that neuromelanin which mainly occurs within the dopaminergic
neurons in SN has a high affinity to bind iron. In PD samples, further iron deposits were

found in brain regions as putamen and globus pallidus (Jellinger et al., 1990; Wang et al.,

125



DISCUSSION

2016; Ward et al., 2014). A recent MRI study with PD patients and controls analyzing the
iron content in different brain regions showed an iron increase in the fascicula nigrale,

globus pallidus, red nucleus, putamen, caudate nucleus and SN of PD patients (Chen et al.,

2019).

To investigate the role of iron in neurodegeneration, models enriching brain iron in
rodents were used to analyze iron effects in context of PD (Billings et al., 2016, 2019; Kaur
et al., 2007) and other NDDs such as Huntington’s disease (Agrawal et al., 2018; Berggren
et al., 2015, 2016). The used protocol of treating mice postnatally over several days with
carbonyl iron per gavage is a common model in PD research (Billings et al., 2016; Carboni
et al., 2017a; Chen et al., 2015; Finkelstein et al., 2016, 2017; Kaur et al., 2007; Peng et al.,
2009, 2010a; Schroder et al., 2001). The most commonly used treatment concentration of
iron is our middle dosage of 120 mg/kg bw iron (Chen et al., 2015; Kaur et al., 2007; Peng
et al., 2009, 2010a; Schroder et al., 2001). In the present study, dosages of 60 and

240 mg/kg iron were additionally tested to enrich iron content in the brain.

In order to proof that the used iron treatment method induced an enrichment within

the mouse brain, the iron content in whole brains and nigral brain sections was analyzed.

First, the total iron content in whole mouse brains was measured by hyphenated ICP
spectrometry. Since this analysis could not detect any differences in the iron amount, it was
postulated that iron enrichment happened in small and specific brain regions. By that, an
analysis including the whole brain mass and thereby the iron variance of many brain regions
would average out the iron increase in a few specific iron enriched areas. This hypothesis
corresponds perfectly to a recently published study quantifying iron content within the
midbrain, caudate putamen, cerebellum and cortex of wild-type and A53T mice treated
postnatally with iron. Only in the midbrain a significant difference between iron-treated
and control mice were observed with I[CP-MS. With LA-ICP-MS raster scanning of mouse
brain sections they could further specify that the observed iron effect in the midbrain can

be attributed to the strong iron increase within the SN (Billings et al., 2019).

Indeed, our XRF analysis of single sections of the SN showed higher amounts of
nigral iron for iron-treated mice sacrificed at six months of age. Due to time restricted
measurements at the synchrotron, only tissue from the 60 and 120 mg/kg iron groups could
be measured and compared to control samples. Our observation goes in line with previous

studies. An ICP-MS analysis performed at five months of age also demonstrated
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significantly higher iron concentrations in SN tissue of iron-treated wild-type mice. Even
higher iron concentrations were reached when A53T mice were neonatally treated with iron
(Billings et al., 2016). Using the same iron treatment protocol as in the present study, at
two months of age, iron-treated B6D2 mice showed a significant iron increase in SN tissue
measured by ICP-MS and in sections measured with MRI (Kaur et al., 2007). In one study
treating NMRI mice with an amount of iron which is even lower than the lowest dosage of
the present study, they found an iron enrichment within the basal ganglia but not in the
frontal cortex which was also analyzed at four months of age using AAS (Fredriksson et

al., 1999).

Furthermore, studies used the model of iron enrichment to test iron chelator effects
in the context of PD which showed predominantly positive effects on behavior, neuronal
loss and nigral iron content of wild-type and A53T mice (Billings et al., 2016, 2019). One
of these studies mentioned equal effects of clioquinol and L-DOPA treatment on nigral iron
amounts, midbrain protein carbonyl levels and dopaminergic neuron counts in iron-treated

wild-type mice (Billings et al., 2019).

Treatment with chelators showed also benefits in other PD models, in which mice
were not treated with iron to induce an enrichment. In A53T mice, iron chelator (clioquinol)
treatment without previous iron enrichment led to a reduced formation of a-syn aggregates,
reduced cell loss as well as motor and cognitive decline, and prevented a reduction of
dendritic spine density of spiny neurons in hippocampus and striatum (Finkelstein et al.,
2016). Besides using the A53T mice to further link iron accumulation with PD pathology,
MPTP toxicity models were used. Iron chelation was found to prevent MPTP-induced
oxidative stress and neuronal cell loss (Kaur et al., 2003). In A53T mice, MPTP was shown
to elevate the nigral iron levels. In the same study, the quinazolinone compound PBT434
reduced nigral iron levels and showed beneficial effects on nigral dopaminergic neuron
loss, on nigral a-syn accumulation and on the motor decline after MPTP or 6-OHDA
treatment (Finkelstein et al., 2017). These studies indicate that iron dyshomeostasis is
related to other pathomechanisms in PD, highlighting its important role as a therapeutic

target in PD.

Taken together, the mentioned studies as well as the results of the present analysis
emphasize that iron intoxication models indeed elevate iron levels within the brain of

rodents in specific brain regions. Combined approaches using iron chelators already
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showed the efficacy in preventing effects of iron intoxication. Positive effects of iron
chelators in A53T mice or in toxin-based PD models (e.g. MPTP treatment) further
emphasized the link of iron with other PD pathomechanisms. The impact of iron on a-syn
pathology in PD was previously investigated in terms of a-syn aggregation. The present
study focusses on the effect of iron on a-syn spreading, which will be further discussed in

the following chapters.

4.2.3 PFFs seeding in the brain and its effect on motor behavior and memory

Brain sections were analyzed at 90 dpi to assess quantitative and qualitative
differences in the propagation behavior of a-syn fibrils. Previous rodent studies reported
advanced PFFs-induced a-syn spreading at 90 dpi, however, the pathology extent depended
on the concentration of PFFs-injected and on the genotype of the animals (Blumenstock et
al., 2017; Kim et al., 2016; Luk et al., 2012b, 2012a; Shimozawa et al., 2017; Terada et al.,
2018). The intrastriatal injection used in the present study is the most common method to
seed a-syn PFFs in the brain but as recently reviewed there are also other models
administering o-syn by gut injections, intraglossally, intramuscularly, intraperitoneally,
through the sciatic nerve or as injections into the hippocampus, olfactory bulb or SN

(Chung et al., 2019).

The first intent was to analyze if the PFFs-induced a-syn spreading pattern
corresponds to the previous literature independent on the postnatal treatment (control or
iron). The a-syn spreading pattern of the present study overlaps with affected brain regions
in similar studies using intrastriatal PFFs injections of wild-type mice analyzed at 30 dpi,
60 dpi or 180 dpi. However, compared to studies with other injection sites, the affected
brain regions differ (Chung et al., 2019). An experiment with similar settings as the present
study detected same affected brain regions (Luk et al., 2012a). Both studies show a high
involvement of cortical areas (cingulate, motor, insular, somatosensory, medial parietal
association, temporal, visual, auditory ectorhinal, entorhinal and perirhinal cortex),
amygdaloid nuclei (basal, lateral, central and intercalated amygdaloid nuclei) as well as a

spreading to the SN and amygdalopiriform transition area (Luk et al., 2012a).

Even if other similar studies did not provide spreading maps, they confirmed that the
ipsilateral striatum, SN, auditory cortex, amygdala and anterior cingulate cortex were
affected by the PFFs-based propagation pathology (Kim et al., 2016; Terada et al., 2018)

which resembles the data of the present study. A recent publication used intrastriatal PFFs
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injections in mice to establish a network model. Therefore, the authors first quantitatively
analyzed PFFs-induced spreading at 1, 3 and 6 months post injection (Henderson et al.,
2019). The overall pattern of spreading at 3 months resemble the affected brain regions of
the present data. The authors further paired the quantitative results with a network diffusion
model integrating the anatomical connectivity and could show that PFFs spreading over
time can be traced based on a synaptic connection network. Accordingly, this approach
could demonstrate the vulnerability of regions to a-syn spreading. Henderson and
colleagues identified the basolateral amygdala, rostral cortical regions and the piriform
cortex as the most vulnerable regions in this model (Henderson et al., 2019), which were

also affected in the present study.

In line with previous approaches, the current study could also show that the a-syn-
affected regions are mostly anatomically interconnected. There is wide evidence that the
striatum is innervated by the mainly affected brain regions such as the amygdala (Cho et
al., 2013), motor cortex (McGeorge and Faull, 1989), the cingulate cortex (Kunishio and
Haber, 1994), the somatosensory cortex (Wall et al., 2013), the insular cortex (Chikama et
al., 1997), the ectorhinal cortex (Hunnicutt et al., 2016), the entorhinal cortex (Totterdell
and Meredith, 1997), the perirhinal cortex (Hunnicutt et al., 2016), and the SN (Lynd-Balta
and Haber, 1994). The spreading of a-syn to regions innervating the injection site are
indicative for a retrograde transmission of a-syn fibrils as previously described (Paumier

etal., 2015).

However, both anterograde and retrograde spreading of a-syn was documented in a
model of intrastriatal injections of LB extracts in mice and monkeys (Recasens et al., 2014).
Pathology of a-syn in regions innervated by the striatum (SNpr, entopeduncular nucleus or
globus pallidus) would suggest an anterograde spreading. Interestingly, a-syn pathology
was only found within the SNpr in our model but could not be verified in other mentioned
brain regions of anterograde spreading. Indeed, this observation fits to the results of
previous connectome analyses of a-syn spreading (Henderson et al., 2019; Mezias et al.,
2020; Oliveira et al., 2019). All three studies reported a stronger propensity of a-syn to
spread retrogradely. Mezias and colleagues observed that the spreading direction is shifting
after time. They found that in the first months post injection retrograde spreading is
predominant, but later than a post-injection period of nine months both propagation
directions influenced the detected spreading pattern. It is supposed that the direction then

further shifts to anterograde spreading. Since misfolded a-syn could have an influence on
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the anterograde transport protein kinesin and on the retrograde transport protein dynein, the
authors assume that this link could possibly be causative for the shift (Mezias et al., 2020).
Henderson and colleagues investigated a-syn spreading at six months post injection as the

longest time period and did not report such a shift (Henderson et al., 2019).

In order to get a more precise insight on a-syn spreading to regions anatomically
connected to the injection site, a connectome-based analysis was performed using the Allen
Brain Atlas connectivity platform (©2020 Allen Institute for Brain Science. Allen Mouse
Brain Connectivity Atlas, available from: https://connectivity.brain-map.org/). The
analysis highlighted that several anatomical connections were affected by a-syn spreading
but it also revealed the vulnerability of many other brain regions. Connectome-specific and
unspecific a-syn spreading differences between iron-treated and control animals are
discussed in chapter 4.2.4. It is striking that not all anatomical connections were affected,
and the affected ones showed unequal a-syn amounts. As an assumption, this could be
related to the availability of different neuron types within different brain regions. The
spreading pattern could be also dependent on transmitter-specific circuits. For example,
according to the connectome the globus pallidus or thalamic nuclei as part of the
GABAergic circuits of the basal ganglia should have been affected but they showed no a-
syn pathology. Therefore, neurotransmitters could possibly be relevant for a-syn
propagation pattern. One study suggested that the vulnerability of brain regions could be
related to the count of neuronal projections between the areas and the projection length
meaning that a higher count and shorter projections could increase the vulnerability.
However, they also reported that some regions with a short length of projections were not
affected by a-syn which again highlights that anatomical connectivity is important but not

exclusively determining a-syn spreading pathology (Oliveira et al., 2019).

In the context of affected brain regions, the question arose, if the effect of PFFs on
object recognition memory could be explained by the presence of a-syn aggregates within
crucial brain regions. Indeed, the insular, perirhinal and prefrontal cortex were affected
which can be associated to memory function. The insular cortex was found to play an
important role for object recognition memory since its cholinergic activity contributes to
the familiarization with a specific object (Bermudez-Rattoni et al., 2005). Another study
mentioned both insular and perirhinal cortex as essential areas for the consolidation of
familiar objects (Balderas et al., 2008). Furthermore, involvement of the ventromedial

prefrontal cortex in consolidation and reconsolidation of object recognition memory was
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shown in LTM (after 24 h) but not in STM (after 3 h) (Akirav and Maroun, 2006). In the
rodent’s brain, the different parts of the prefrontal cortex are not clearly defined. In the
present study, pS129-a-syn signal was observed within the infralimbic, prelimbic and
cingulate cortex. Whereas the cingulate cortex (area 1) is commonly known to be a part of
the dorsomedial prefrontal cortex and the infralimbic cortex as part of the ventromedial
cortex, the prelimbic cortex is inhomogeneously assigned to either the ventromedial or
dorsomedial cortex (Laubach et al., 2018). Furthermore, it was shown that the LTM of
object recognition is dependent on hippocampal integrity (Clarke et al.,, 2010).

Interestingly, in our model, hippocampus was only rarely affected.

In STM, the entorhinal cortex was assigned to memory of object details and spatial
locations (Suzuki et al., 1997). In the present study, no STM decline was found, although
the entorhinal cortex was affected by a-syn pathology. However, motor deficits were also
not observed even though strong a-syn pathology was present in the motor cortex and SN.
One possible explanation for this observation is that at the timepoint of sacrifice the
pyramidal tracts were not affected enough by a-syn aggregate pathology to induce motor
deficits. Furthermore, a fundamental reason for motor deficits would be the degeneration
of dopaminergic neurons inside the SN. However, PFFs-induced neurodegeneration in the

SN was found to take place at later time points (Luk et al., 2012a; Paumier et al., 2015).

Figure 43 provides an overview on the above-mentioned brain regions which are
associated with object recognition in LTM and STM conditions, and simultaneously
recapitulates the a-syn pathology for each region of PFFs-injected mice either treated with
iron or with vehicle. This depiction summarizes that the mentioned regions are affected by
a-syn pathology, which could explain why PFFs-injected mice showed a cognitive decline
in the NOR test at 90 dpi. In the NOR test, PFFs-injected mice did not perform different
from each other when they were treated with either iron or vehicle. Nevertheless, pS129-
a-syn pathology differences can be observed between both treatment groups. In several
brain regions associated with object recognition, mice of the control group showed stronger
pathology. These results suggest that the a-syn pathology in both groups exceeds a certain
limit resulting in cognitive deficits, but pathology differences were not strong enough to

observe different severity levels of cognitive decline.
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Taken together, the current study demonstrated PFF-induced a-syn spreading to both,
anatomically connected and other brain regions. Specific brain regions affected by a-syn

pathology provide an explanation for PFFs-induced cognitive deficits.

a-syn signal
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Figure 43. The detection of pS129-a-syn pathology in brain regions related to object recognition. This
illustration represents the results shown in Figure 29 rating the pS129-0-syn signal amount per brain region
by using a 5-stage-rating. Averaged results are shown for PFFs-injected mice treated with either iron or
vehicle (ctrl). Black stars highlight brain areas which are associated with objection recognition as reported
in previous literature (Akirav and Maroun, 2006; Balderas et al., 2008; Bermudez-Rattoni et al., 2005;
Clarke et al., 2010; Laubach et al., 2018; Suzuki et al., 1997).

4.2.4 The influence of iron on a-syn spreading

Aiming to analyze if iron impacts the o-syn spreading pathology in the brain,
postnatal iron treatment was combined with intrastriatal a-syn PFFs injections in mice. Due

to the effects of iron on a-syn aggregation (Golts et al., 2002; Kostka et al., 2008; Uversky
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etal., 2001), it was supposed that iron could lead to disease progression by enhancing PFFs-

induced a-syn spreading.

Contrary to our expectations, the threshold-based pS129-a-syn quantification in
whole brain sections revealed that higher iron amounts resulted in lower pS129-a-syn
values. The PFFs group without iron treatment showed significantly more pS129-a-syn
signal within the nigral brain section and within the averaged signal over all six sections

compared to mice treated with the highest iron dosage.

These results raised the question how postnatal iron supplementation affects a-syn
amounts in the brain. In PD patients, a colocalization of iron with LBs was shown
(Castellani et al., 2000). Furthermore, it is known that iron can bind to a-syn (Binolfi et al.,
2006; Peng et al., 2010b) and that this binding affinity was even increased when a-syn was
phosphorylated at Y125 or S129 at the C-terminal region (Lu et al., 2011). One hypothesis
explaining the present results could be that PFFs and iron clustered and spread differently
than PFFs-induced spreading without iron treatment. In this context, it must be claimed that
it is still not completely understood how a-syn strains spread from cell to cell, but there

exist many suggestions.

The most prominent theory based on data from PFFs-injection studies is the axonal
transport of a-syn fibrils. Spreading to anatomically connected regions assuming
anterograde and retrograde transport as observed in the present study supports this
hypothesis. In vitro studies also suggested the ability of PFFs to be intercellularly
transmitted through a transsynaptic passage (Emmanouilidou and Vekrellis, 2016; Tran et
al., 2014; Volpicelli-Daley et al., 2011). Another approach supports the hypothesis that
pathological forms of a-syn are released from the cell through non-classical exocytosis
(Jang et al., 2010; Lee et al., 2005). Furthermore, the results of other studies indicate an
exosome-mediated transmission of a-syn from cell to cell (Alvarez-Erviti et al., 2011;
Emmanouilidou et al., 2010; Xia et al., 2019) or an intercellular transfer through tunneling
nanotubes (Abounit et al., 2016; Dieriks et al., 2017). However, it is also unknown if or
how iron-a-syn-complexes could be transmitted from cell to cell or if iron impedes fibrils

transmission such as the transsynaptic transport.

If iron would impede transsynaptic transport to neurons from interconnected brain
regions, this would support the hypothesis that a-syn aggregates follow different spreading

routes in iron-treatment conditions. In other words, iron could be involved in changing the
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spreading pattern so that a-syn spreading followed other routes, passing regions not
analyzed in our evaluation. The a-syn spreading maps should provide insight into what
happened to the pS129-a-syn in iron conditions. Referring to the a-syn spreading maps,
overall, the affected brain regions were similar between iron- and control-treated animals,
varying in the amount of pS129-a-syn detected in the areas. Hypothesizing that iron
probably changes spreading routes of a-syn, in some brain regions iron-treated animals
showed more signal compared to the control group or showed small signal amounts in
regions where control animals lacked any signal. The latter effect was predominantly seen
at the contralateral hemisphere in regions such as cingulate cortex (area 2), piriform cortex,
ventral pallidum, primary visual cortex, secondary visual cortex (lateral part) or
retrosplenial granular cortex. Interestingly, the retrosplenial granular cortex serves as a hub
for regions as e.g. cingulate cortex and visual cortex, which are therefore connected. All of
these connected areas were found to be involved in processing of perceptions in terms of
direction, location, landmarks and navigation of mammalian species (Mitchell et al., 2018).
This spreading to different regions compared to the control condition indicates altered

spreading routes in iron-treated animals.

On the one hand, the performed connectivity analysis of the present study further
supports the idea of an iron-dependent pS129-a-syn redistribution pattern, since PFFs-
injected mice treated with the highest iron dosage showed significantly less a-syn signal in
regions anatomically connected to the injection site. In addition, in these mice a higher
number of other, connectome-independent regions were a-syn-affected, however, this
number was not significantly different from the number of regions affected in the control
group. Iron-treated animals did also not show significantly more a-syn signal in other,
connectome-independent brain regions. Therefore, on the other hand, these results support
the idea that iron possibly contributes to a mechanism that degrades pS129-a-syn
aggregates, as it will be further discussed in chapter 4.2.5. But as mentioned in the previous
paragraph, it could also be that a-syn spreads to regions not analyzed in this study. Either
way, the aforementioned results suggest that iron impacts the connectome-based a-syn

spreading, even if the mechanism is not fully elucidated yet.

Iron-treated animals showed a-syn spreading differences in brain regions compared
to control mice in all sectional planes so that an influence of iron on rather short or long
axonal connections is unlikely from these results. A human study on adults reported that an

intrastriatal enrichment of iron was associated with a decreased functional cross-talk of the
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striatum to other resting-state networks including brain areas distant from striatum.
Furthermore, a reduced intrinsic connectivity within the striatum was associated to a higher
iron content and was particularly observed in the caudate network (Salami et al., 2018). A
MRI-based study on PD patients and controls verified a possible negative correlation of
nigral iron load and functional connectivity and suggested that a striatal interconnectivity
dysfunction mediates this correlation (Guan et al., 2019). The results of both studies plead
for a change in connectivity after iron intoxication in the present mouse model which could
have affected a-syn propagation. Other hypotheses would be that iron accumulation could
be possibly linked to demyelination which could influence the pathology, or that iron
accumulation affects specific cell types such as glia cells important for the a-syn transport

to specific brain regions.

An iron-dependent neuroinflammation which could influence pS129-a-syn spreading
would be also conceivable. Microglia and T cell accumulation were analyzed to assess if
iron influenced the migration or proliferation of both cell types. The results of an
unexpected iron-induced prevention of microglia migration are further discussed in the next

chapter.

4.2.5 The influence of iron on fibril-induced accumulation of immune cells

Neuroinflammation is a well-documented hallmark of different NDDs including PD.
Neuroinflammatory mechanisms are known to be mediated by glia cells in terms of
microgliosis and reactive astrogliosis or by the infiltration of peripheral immune cells such
as T cells (Lee et al., 2010b; Wang et al., 2015a). As highlighted in the previous chapter, a
prevention of a-syn spreading was observed in iron-treated animals. In order to investigate
the hypothesis that iron affected a-syn spreading through an immune response, microglia
accumulation and T cell infiltration into the injection site and SN were analyzed. These cell

quantifications should enable to draw a conclusion on possible pathomechanisms.

First, striatal sections were immunolabeled with a CD11b marker. The CD11b marker
recognizes microglia as the main phagocytic cells of the brain as well as peripheral
macrophages. In the present model, the injection of a-syn PFFs induced a significant
increase in CD11b+ cells within the striatum of PFFs-injected mice without iron treatment
compared to monomer-treated animals. This accumulation of microglia could either be a
result of microglia migration or proliferation. Interestingly, in iron-PFFs-treated animals

this effect of increased microglia numbers was absent.
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Previous studies showed that extracellularly available neuron-released a-syn species
could activate microglial cells and mediate their migration (Kim et al., 2013; Lee et al.,
2010a; Zhang et al., 2005). In the present study, we expected that extracellularly available
PFFs after their injection would trigger microglia accumulation in the striatum. Another
study investigated this process in more detail and showed that a-syn binds to the cell
adhesion molecule Integrin a-M (CD11b) and induces microglia migration (Wang et al.,
2015b). Accordingly, CD11b-binding of a-syn acting as a chemoattractant triggered the
activation of NADPH oxidase 2 (Nox2) which induced H>O» production. Afterwards, the
Lyn kinase (SFK member) recognized H>O»-changes within the microglia and caused an
actin filament rearrangement as well as directional microglia migration through
phosphorylation of the F-actin—associated protein cortactin (Wang et al., 2015b). In other
studies, it was in turn suggested that microglia migration triggered by a-syn was dependent
on Bl-integrin (Kim et al., 2014) and that a microglia-dependent increase in proliferation
and cytokine production was impacted by an interaction of oligomeric a-syn and the Toll-
like receptor 2 (Kim et al., 2013, 2014). Furthermore, a strong correlation of microglia
density and a-syn density was shown. Accordingly, a-syn fibrils showed a higher density
of a-syn than ribbons or oligomers so that fibrils increased the density of present microglia
more than other a-syn species (Peelaerts et al., 2015). This result further explains why
PFFs-injected animals in the present study showed significantly increased amounts of

CD11b+ microglia in the injection site compared to monomer-injected mice.

In a study using intrastriatal PFFs injections similar to the present study, MHCII-
positive microglia were quantified in brain regions of the injected rats. Within the striatum
as injection site a microglia peak was reached at two months post injection. In the following
two months the microglia amount decreased to normal levels. Interestingly, the observed
microglia peak at two months almost resembled the peak of neuritic a-syn aggregates
within the striatum, which however decreased in a slower rate (Duffy et al., 2018).
Furthermore, in the a-syn-affected agranular insular cortex increased microglia amounts
were found at two months post injection (Duffy et al., 2018). These results further plead
for a a-syn-dependent microglia migration in the model used in our study. The mentioned
study additionally showed that within the SN a significant increase of MHCII-positive
microglia was found at 2, 4 and 5 months post injection but this effect was absent after 1,
3 and 6 months (Duffy et al., 2018). Confirming the mentioned study, in the present data

no significant PFFs-related microglia difference was found within the SN at 90 dpi.
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Even if the cited studies provide an explanation for the observed intrastriatal
microglia increase in the PFFs group without iron treatment, the role of migrated or
proliferated microglia within the injection site is not fully understood. Microglia were
shown to be the major scavenger cells of a-syn aggregates. Hereby, the activation level of
the present microglia is crucial to degrade a-syn and prevent its spreading (Lee et al., 2008).
However, due to the conformational state of a-syn within the striatum in the present study,
clearance mechanisms appear rather unlikely, as the phagocytic ability of the microglia is
inhibited in the presence of higher aggregates (Choi et al., 2015; Park et al., 2008).
Specifically, aggregated a-syn bound to FcyRIIB and induced an upregulated expression
of FcyRIIB impeding microglia-mediated phagocytosis (Choi et al., 2015).

In the present study, PFFs-injected animals without iron treatment showed more
PFFs-induced a-syn spreading and a significant increase of microglia in the injection site
compared to iron-treated animals. These data rather support the hypothesis that migrating
microglia in PFFs-injected mice without iron treatment facilitate a-syn spreading. This
hypothesis is supported by a recent study showing that LPS-induced microglia activation
in mice previously injected with a virus overexpressing a-syn enhanced a-syn spreading.
After LPS-injection, stronger o-syn spreading to intrastriatally grafted dopaminergic
neurons was shown. The authors further suggested that the activation state of microglia is
highly influencing the a-syn spreading, since an IL-4 injection instead of LPS did not
significantly increase a-syn transmission (George et al., 2019). In an MSA in vitro model,
a-syn aggregates were also shown to be taken up by microglia-like cells. Starting from the
uptake site, these cells carrying o-syn migrated to distal places and did not degrade a-syn.
The authors therefore suggested that microglia could act as a transporter for a-syn
(Valdinocci et al., 2018). This would further explain why a-syn spreading signal was not
solely observed within brain regions anatomically associated to the connectome in the
present study. Since microglia not necessarily travel along axons, it would be conceivable

that microglia transport a-syn to brain regions which are not related to the connectome.

In a recent study, a-syn oligomers-containing-exosomes derived from PD patients
were intrastriatally injected in mice, uptaken by microglial cells and triggered their
activation. Same effects were shown in vitro using BV-2 cells. Since exosome-treated BV-
2 cells exhibited increased amounts of accumulated a-syn, an augmented o-syn secretion
into the extracellular space and a dysregulation of autophagy, the authors supposed that

microglia are important for exosomal-related a-syn transmission (Xia et al., 2019). So far,
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it is not clear by which underlying mechanism a-syn aggregates are uptaken in microglia.
Of course, in the present study, injected fibrils in the extracellular space were not packed
in exosomes so that the latter study deals with another uptake-mechanism. Nevertheless,
fibrils could have been firstly taken up by neurons and could then have been released in
exosomes as discussed in chapter 4.2.4. To conclude this part, it is assumed that the injected
a-syn PFFs led to activation and migration of microglia which could be involved in the

PFFs-induced a-syn spreading.

Iron-treated mice of the present study showed less microglia accumulation and less
a-syn pathology. In the following I will discuss effects of iron on microglia and how this
might be related to less a-syn spreading. In one study, effects of iron overload and its
lysosomal iron transporter natural resistance-associated macrophage protein-1 (Nrampl)
were investigated in vivo and in vitro. In conditions with functional Nramp1, iron-overload
in mice and BV-2 cells facilitated microglia-mediated degradation of a-syn oligomers
compared to the nonfunctional Nramp!l condition (Wu et al., 2017). This leads to the
assumption, that iron pre-conditioning could be involved in a-syn degradation in the

present study.

Another study showed that iron overload enhanced pro-inflammatory responses such
as cytokine release of IL-1p and TNFa in microglia activated by LPS or MPP+ (Wang et
al., 2013). This leads to the hypothesis that an induced inflammation fostered the
degradation of a-syn aggregates in the present study. Accordingly, in one study, mice
received an intraventricular injection of recombinant adeno-associated virus mediated
expression of Interleukin (IL)-6 and additionally an intrahippocampal injection of a-syn
fibrils. The results showed that inflammatory pre-conditioning of mouse brains reduced the
a-syn pathology mediated by the injection of a-syn fibrils (Koller et al., 2017). Also in
preclinical AD models, triggered inflammation was shown to attenuate the proteinopathy
(Herber et al., 2007; Shaftel et al., 2007). Thus, it is conceivable that iron pre-conditioning
could provoke similar effects on a-syn pathology. However, it is still unknown if iron
overload itself provokes inflammation in the brain. Another study reported that classical
activation of microglia impaired microglia migration (Lively and Schlichter, 2013).
Therefore, it is supposed that iron overload led to an impairment of microglia and their
migration and to an inflammatory pre-conditioning, causing less a-syn fibrils pathology

and spreading. However, these hypotheses need to be confirmed in further studies.
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In another experiment, the presence of T cells in the striatum and SN were analyzed.
It is known from MPTP mouse models of PD that CD4+ and CD8+ T cells infiltrate the
brain and especially the SN (Brochard et al., 2009; Gonzalez et al., 2013; Kurkowska-
Jastrzebska et al., 1999). Against the expectations, in the present study, no significant
intergroup differences in T cell amounts within the striatum or the SN were observed. Based
on the literature, an increase of T cells would be expected in PFFs-treated animals. In a
study by Harms and colleagues short a-syn fibrils were not only able to activate and recruit
microglia but also peripheral cells as monocytes, macrophages and lymphocytes (Harms et
al., 2017). Specifically, 8 weeks post a-syn PFFs injection into the SN of rats a significant
T cell infiltration as well as monocytes/macrophages infiltration was observed within the
SN. However, microglia amounts did not increase within the injection site (Harms et al.,
2017). In comparison to the present study, Harms and colleagues used a higher a-syn
dosage (8 ng), a different injection site (SN), different animal species (rats) and an earlier
time point of analysis (8 weeks post injection). Especially the latter mismatch could explain
the different output in our study. Probably the acute immune response of T cells occurred
earlier, and the analysis time point in our study was therefore too late to detect an
infiltration. Another study made aware that the response of T cells could differ regarding
different species of a-syn (monomer, nitrated, fibrillar). This means that changes in
conformational stages of a-syn probably influence the type of T cell response during
disease progression. An a-syn variant specificity of the response of CD4-positive T cells
was recently shown, indicating the strongest CD4+ T cell infiltration into the brain after
fibril treatment (Olesen et al., 2018). However, the authors injected a-syn (2 x 100 pg)
subcutaneously in mice so that the method strongly differs from the method used in the

present study which could also explain the different findings.

4.2.6 Limitations and outlook of the a-syn spreading model

In order to analyze the contribution of iron to PFFs-induced a-syn spreading, well-
established and published methods were used as discussed in previous chapters. However,
one general issue of PFFs injections into the brain is the possibility of PFFs reflux into the
injection channel. Even if the needle was always left in place for another 4 min after the
intrastriatal injection to avoid reflux, it must be considered that some PFFs were probably
taken up by the motor cortex as part of the injection channel. Therefore, the interpretation

of strong a-syn signal inside the motor cortex requires careful consideration of the
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possibility that this is not necessarily a result of anterograde/retrograde spreading but might

be caused by reflux during the injection.

The present study and its analysis methods provide a comprehensive insight into iron-
dependent effects on a-syn spreading but spreading routes could not be holistically tracked.
Thus, it is not clear if iron induced a degeneration or redistribution of a-syn aggregates. In
order to complete our data in future studies, light sheet microscopy coupled with brain
clearing methods (Becker et al., 2012; Costantini et al., 2015; Qi et al., 2019) will be the
striking approach to-be for a-syn propagation experiments, answering the question of the
iron’s role in PFFs-induced a-syn spreading. However, so far, no studies are available using

this technique to track a-syn spreading.

The comparison of a-syn spreading maps to the connectome already showed that iron
reduced a-syn spreading to anatomically connected regions. Furthermore, several brain
regions were affected in PFFs-injected mice treated with either iron or vehicle which did
not resemble the connectome. Even if this could be a hint for different involved a-syn
propagation mechanisms, another reason could be that the used connectome does not fully
fit to the injection site in the present model. The connectome maps were generated based
on two injection experiments of the Allen Mouse Brain Connectivity Atlas (©2020 Allen
Institute for Brain Science. Allen Mouse Brain Connectivity Atlas) with injection sites
fitting to the radius of our injection site. However, they injected much less volume and the
injections were therefore much more specific. Even if the connectome maps of both
experiments were combined, the injection site of the present study is not fully represented
so that possibly more brain regions could belong to the connectome than described.
Therefore, the connectome of the present injection site needs further investigation to fully

define the effect of iron in the present model.

Moreover, in further studies iron accumulation in different brain sections should be
mapped and overlaid with pS129-a-syn signal in the brain. This analysis would help to
answer the question if iron and a-syn cluster together in the brain. Comparing the present
a-syn spreading results with iron distribution maps shown in different publications
(Billings et al., 2019; Morello et al., 2009; Zumbrennen-Bullough et al., 2014) can already
provide insights on the effects of iron on a-syn spreading. Providing iron maps of coronal
brain sections of untreated wild-type mice, studies reported predominant iron accumulation

in the SN and basal ganglia especially in the globus pallidus as well as within the caudate-
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putamen nucleus (Morello et al., 2009; Zumbrennen-Bullough et al., 2014). Indeed, in the
SNpc the present a-syn analysis showed more a-syn signal in iron-treated mice compared
to the control group. However, this pathology difference was only observed in one of the
two measured nigral sections at the injected hemisphere and was not statistically
significant. Regarding the iron availability in the globus pallidus and caudate-putamen
nucleus, one sectional plane used in the present study resembled the sections used in above-
mentioned studies (Bregma -1.58 mm). In these brain regions, the iron group did not differ

in a-syn signal from the control group.

In a mouse study with a postnatal, oral iron treatment of mice between p10-17 which
are comparable conditions to the present study, the distribution of iron deposits was
illustrated in one nigral sectional plane for one vehicle- and one iron-treated mouse
(Billings et al., 2019). Taking a closer look at these maps, the iron-intoxicated brain section
showed in general more iron and a specific enrichment in parts such as the hippocampus
and cortical regions. Most interestingly, there was a strong iron accumulation in the area
where the entorhinal cortex, the amygdalopiriform transition area, the
amygdalohippocampal area and the posteromedial cortical amygdaloid nucleus are located
(Billings et al., 2019). In these regions, strong a-syn pathology could be observed in the
present study, but the control group showed either more or equal a-syn amounts in these
regions compared to the iron group. Thus, it is assumed that a-syn is rather not increased
in regions with enriched iron accumulation. This could support the hypothesis that iron
does not cluster with a-syn aggregates in this disease model but rather effects a-syn
pathology indirectly for example by affecting the microglia accumulation as discussed in

chapter 4.2.5.

4.3 The effect of iron on a-syn spreading in cortical neurons

After demonstrating the effect of iron on a-syn spreading in the brain of C57BL/6J
mice, the present analysis aimed to elucidate if iron would influence spreading of seeded
a-syn PFFs in vitro using cortical neurons. Therefore, cells in one compartment of a
microfluidic chamber were treated with iron and a-syn PFFs. The transport of pS129-a-syn
to the secondary cell compartment was analyzed. In cells treated with iron, no significant
changes of the pS129-a-syn transmission to cells in the secondary cell compartment were

observed compared to the transmission in vehicle-treated cells.
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The usage of microfluidic chambers to track the intracellular propagation of a-syn
fibrils from one compartment to the other is a common model. Both, anterograde and
retrograde propagation has been confirmed seeding PFFs either to the soma or the neurites,
respectively (Volpicelli-Daley et al., 2011). Transmission of a-syn fibrils to second order
neurons has also been described in the same device (Freundt et al., 2012). In another study,
intercellular propagation was further investigated with a microfluidic device existing of
three successive cell-containing chambers. This model showed a-syn aggregate arrival in
the third chamber at 14 days post PFFs seeding (Tran et al., 2014). The mentioned studies
showed that the microfluidic chamber itself is a practicable device to analyze a-syn
propagation. In general, the present data could also verify a-syn fibrils propagation to the
secondary cell compartment. Iron likely affects transmission mechanisms of a-syn which

cannot be reproduced to a full extent with this setup.

As already discussed in chapter 4.2.4, the literature mentions several mechanisms
underlying a-syn transmission from cell to cell such as axonal transport and transsynaptic
transmission, nonclassical exocytosis, exosome-mediated transmission or tunneling
nanotubes. One microfluidic chamber experiment suggested that synapses were not
required to transmit fibrils to second-order neurons, since a-syn was already transmitted to

these neurons at a time point when synapses have not been formed (Freundt et al., 2012).

Discussing contributory factors and circumstances of a-syn uptake and transport, a
study using primary neurons revealed that the internalization of misfolded a-syn was
associated with lysosomal processing. A dysfunctional lysosomal integrity was suggested
to accelerate the transmission of a-syn (Karpowicz et al., 2017). Another study showed that
lymphocyte-activation gene 3 (LAG3) bound to pathologic a-syn and thereby initiated its
transmission and toxicity. Specifically, LAG3 was involved in the endocytosis of
exogeneous a-syn fibrils (Mao et al., 2016). Furthermore, the internalization, fibrillation
and propagation of a-syn was suggested to be mediated by members of the syndecan (SDC)
family, especially by SDC3 (Hudék et al., 2019). Even if the ability of iron to foster a-syn
aggregation has been extensively studied as discussed in the previous chapters, little is

known about its possible effects on the above-mentioned mechanisms of a-syn propagation.

In one study, oligomers were generated by applying iron and an organic solvent to a-
syn. These oligomers were found to improve synaptic transmission mediated by the

AMPA -receptor but they did not enhance the NMDA receptor-mediated transmission (Hiils
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et al., 2011). Therefore, iron possibly impacts a-syn spreading indirectly by helping to
generate specific a-syn conformations that were more prone to spread compared to the
PFFs used in the present study. This could further explain why an iron-related effect on a-
syn spreading was found in our in vivo model but not in the in vitro model. In the mouse
brain, injected recombinant PFFs function as seeds and trigger aggregation and spreading
of these aggregates throughout the brain. Iron could affect the a-syn aggregation and these
aggregates are possibly prone to spread differently, which would support an iron-dependent
redistribution of a-syn. Different spreading pattern cannot be investigated in the used
microfluidic chamber model, but it can be assumed from the results that iron does not affect

the uptake of the recombinant PFFs applied to the somata of neurons and their spreading.

Furthermore, a recent publication using SN4741 cells showed that iron promoted a-
syn aggregation indirectly by decreasing the expression of TFEB. TFEB functions as
transcriptional regulator of the autophagosome-lysosome pathway. Thereby, the TFEB-
mediated autophagosome-lysosome fusion was inhibited resulting in enhanced o-syn
aggregation. In addition, the authors showed that cell-to-cell transmission of a-syn was also
enhanced by iron enrichment, whereas TFEB overexpression attenuated this effect (Xiao
et al., 2018). They further speculated that iron could foster a lysosomal dysfunction by
TFEB-mediation, leading to an increased a-syn release via exosomes. The effect of
lysosomal dysfunction on a-syn exosomal release and transmission has already been shown
(Alvarez-Erviti et al., 2011). One study is interesting in this context of a-syn pathology that
investigated another trace element: Mn?" has also been shown to trigger the secretion of
misfolded a-syn in exosomal vesicles (Harischandra et al., 2019). Therefore, it is possible
that iron only affects one particular mechanism of transmission depending on the applied
a-syn conformation. The microfluidic chamber model in the present study rather
investigates axonal transport and transmission so that this model is probably not sensitive
enough to investigate iron-affected mechanisms of o-syn fibrils spreading. Further
experiments should also test if alterations in parameters as time point and duration of iron

treatment or its dosage would change the output of this experiment.

In regard to the in vivo study discussed in chapter 4.2 iron-related changes on a-syn
spreading were supposed to be mediated through its effect on microglia. Accordingly,
microglia could facilitate the spreading of a-syn. Since in the in vitro experiment only
neurons were investigated, this could provide an explanation for absent iron-dependent

changes in the spreading pathology. It could therefore be possible that iron rather impacts
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a-syn uptake or transmission to other cell types such as microglia. In the context of
exosomal release, one study suggested that microglia probably support a-syn transmission
via exosomes. In their experiment, BV-2 cells were treated with exosomes containing
oligomeric o-syn derived from PD patients. This treatment triggered an inhibition of
autophagy, an intracellular accumulation of a-syn in the microglia as well as accelerated
secretion of the protein suggesting a crucial role of microglia in the exosomal-mediated

transmission (Xia et al., 2019).

Of course, in vitro experiments do not fully mimic the circumstances as present in
brains, simply due to the complexity of the brain e.g. with its diversity of cell types and its
connectivity. The possibility that iron affects rather a-syn spreading to other cell types or
affects a-syn propagation indirectly through its effects on glia cells as discussed in chapter
4.2.5 provide explanations why no difference on a-syn spreading was found in iron-treated
cortical neuron cultures. Therefore, further studies are needed, investigating the effect of
iron on a-syn spreading in different cells types as microglia or mixed cultures to unravel
which mechanism was responsible for the modulation of a-syn spreading in iron-treated

mice.

4.4 Therapeutic approach: the influence of fasudil on a-syn spreading

Up till now, prevention or cure of PD is impossible so that therapeutic investigations
are needed to reveal new target mechanisms and test the effectiveness of possible drugs. In
NDDs, the signaling pathway of ROCK has been described as an interesting target. As
recently reviewed, ROCK is involved in several cellular processes of NDDs such as
autophagy, synaptic dysfunction or degeneration of axons (Koch et al., 2018). The ROCK
inhibitor fasudil is a drug approved to treat sub-arachnoid hemorrhage-induced vasospasms
in clinical use (Suzuki et al., 2007, 2008). In context of neurodegeneration, fasudil gained
especially attention for its beneficial effects on animal- and cell-based ALS models
(Giinther et al., 2017; Tonges et al., 2014). Therefore, a multicenter clinical phase Ila trial
is currently investigating disease-modifying effects of fasudil treatment in ALS patients
(Lingor et al., 2019). Furthermore, the interest arose to analyze the effect of fasudil in PD
due to the ability of fasudil to bind a-syn and its attenuating effects on e.g. a-syn
aggregation or cell loss in toxin-based or a-syn mutation-based PD models (He et al., 2016;
Lietal., 2017; Tatenhorst et al., 2016; Tonges et al., 2012; Zhang et al., 2019b; Zhao et al.,

2015). Since the distribution of a-syn-containing LBs in the brain is the major characteristic

144



DISCUSSION

of PD pathology besides the degeneration of dopaminergic neuron in the SN, the current

study aimed at preventing a-syn fibrils spreading through the brain of PFF-injected mice.

First, possible side effects of the a-syn PFFs injections were ruled out by
investigating motor function of the mice and neuronal loss in the SN at 90 dpi. In the present
study, mice injected with PFFs behaved similar to monomer-injected animals on the
rotarod, irrespective of whether they were treated with fasudil or not. As extensively
discussed in chapter 4.2.1, in the used conditions, an inconspicuous motor performance of
PFFs-injected mice was expected based on the existing literature (Luk et al., 2012a).
Previous studies did not report negative effects of fasudil treatment on motor behavior of
mice (Tatenhorst et al., 2016; Tonges et al., 2014) so that unaltered motor behavior of these

mice was expected.

Second, it was analyzed if PFFs injections induced neurotoxic effects at 90 dpi in
form of neuronal loss within the SN as a brain region directly connected to the injection
site. One study already showed that fasudil treatment in an MPTP mouse model of PD
could rescue dopaminergic neurons in the SN from degeneration (Tonges et al., 2012). In
a 6-OHDA model, fasudil treatment was not sufficient enough to prevent dopaminergic cell
loss (Tatenhorst et al., 2014). In the present analysis, PFFs injections did not lead to a
significant cell loss at 90 dpi compared to monomer-injected mice. Accordingly, PFFs-
injected animals with additional fasudil treatment showed similar cell amounts as
monomer-injected animals. This observation goes in line with the literature showing that
neuronal loss in the SN of PFFs-treated rodents occurred at later time points, such as 180
dpi (Luk et al., 2012a; Paumier et al., 2015). Thereby, it has been ensured that a-syn
spreading could not have been massively influenced by neurodegeneration mechanism at

the timepoint of analysis.

With two quantification methods, it was shown that fasudil did not prevent PFFs-
induced a-syn spreading through the brain. The pS129-a-syn pathology was similar in
fasudil-treated PFFs-injected mice compared to PFFs-injected mice with vehicle-treatment.
These results were against the expectations, since a previous study already showed a close
link of fasudil to a-syn pathology. The authors observed that fasudil could bind to tyrosine
residues Y133 and Y136 in the C-terminal region of a-syn and led to a reduction of a-syn
aggregation in vitro. In A53T mice, fasudil treatment resulted in less motor and cognitive

decline and in less a-syn aggregation in the midbrain of A5S3T animals (Tatenhorst et al.,
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2016). Furthermore, using a model of tauopathy, fasudil treatment of Drosophila reduced

tau pathology by an enhancement of autophagy (Gentry et al., 2016).

It may be that fasudil does not target the recombinant PFFs used in the present model.
The aforementioned PD study reporting beneficial fasudil effects used a transgenic mouse
model (Tatenhorst et al., 2016) so that the experimental conditions as well as the seeding
mechanism could differ to the present study. Nigral injections of different a-syn strains in
the rat brain showed differences in the efficiency of seeding and spreading of a-syn
dependent on the used pathogenic a-syn strains such as fibrils, ribbons or oligomers
(Peelaerts et al., 2015). It is possible that fasudil does not target the recombinant PFFs used
in the present work but would have an influence on seeding or spreading of other a-syn
strains. Furthermore, the fasudil dosage used in the present study was taken over from
another experiment (Tatenhorst et al., 2016) but could be a too low-dosed treatment in this

acute model of an immense PFFs seeding in the brain.

Assuming a main transsynaptic transmission of fibrils, we supposed that fasudil
likely affects the spreading pathology via synapses. The role of ROCK activity in synaptic
function has been described in different studies (Koch et al., 2018). Furthermore, the
inhibition of ROCK is already known to enhance the size of the postsynaptic density, alter
the morphology of dendritic spines, and trigger long-term potentiation (Nakayama et al.,
2000; Swanger et al., 2015). The fact that no differences in spreading pathology were found
could entail that a-syn fibrils are differently transmitted or fasudil is not able to stop a-syn

transmission via synapses.

Bringing together the present result with the iron PFFs in vivo study discussed in
chapter 4.2, another reason to assume spreading prevention by fasudil was its known
attenuating effects on inflammatory responses (Scheiblich and Bicker, 2017). The possible
contribution of microglia on a-syn propagation has been extensively discussed in chapter
4.2.5. In that chapter, it was also assumed that the beneficial influence of iron on spreading
resulted from its attenuating effect on microglia accumulation in the injection site, which
has to be further investigated. In the context of fasudil, an anti-inflammatory effect was
assumed, which could prevent PFFs-induced microglia migration and the contribution of
microglia in a-syn spreading. Accordingly, in several PD rodent studies, predominantly
using the MPTP-intoxication model, fasudil or other ROCK inhibitors were shown to

inhibit the inflammatory response, e.g. in terms of microglia accumulation or activation
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(Barcia et al., 2012; He et al., 2016; Li et al., 2017; Zhao et al., 2015). These inhibitory
effects of fasudil on inflammation have also been described in studies analyzing fasudil in
context of MS (Guo et al., 2014, 2019; Wang et al., 2019). In an AD model, rats were
intracerebroventricularly injected with AB1.42. Treatment with fasudil reduced AB-induced
neurodegeneration in the hippocampus. The prevention of the neurodegeneration was also
linked to a fasudil-depending suppression of the inflammatory response, such as microglia
activation and proliferation (Song et al., 2013). If microglia play a crucial role in the a-syn
propagation, we would have expected a significantly reduced a-syn spreading after
treatment with the ROCK-inhibitor fasudil. The application method could provide a
possible reason why fasudil did not mitigate the severity of the a-syn pathology in the
present study. The administered dosage in the literature (20-40 mg/kg bw) investigating
inflammatory responses in PD models was always similar to the dosage applied in the
current study (30 mg/kg bw). However, in the present study fasudil was applied via
drinking water whereas the above-mentioned studies used a daily intraperitoneal injection
of fasudil (He et al., 2016; Li et al., 2017; Zhao et al., 2015). These methodological
differences might also explain the lack of an effect of fasudil treatment on a-syn spreading

in our study.

Taken together, it was assumed that fasudil treatment affects a-syn spreading due to
its inhibitory effects on the synapse-related ROCK and its attenuating effects on the
inflammatory response. In contrast, fasudil supplementation via drinking water did not alter
a-syn spreading in PFFs-injected mice in the present analysis. On the one hand, the applied
dosage of a-syn PFFs was probably too high or the dosage of fasudil too low to affect the
a-syn spreading appropriately. On the other hand, the effect of fasudil could be a-syn
species dependent, which would include the hypothesis that fasudil did not target the
applied PFFs in our model. Within the scope of the doctoral thesis, effects of fasudil on
inflammation and transsynaptic a-syn transmission could not be proven and need further

investigation.
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S Concluding remarks

The experiments conducted within the scope of this doctoral thesis highlight a-syn
pathology in PD as the major interface for known pathomechanisms and possible triggers
of PD. The propagation of a-syn is a major hallmark in PD. Thus, investigating the relation
of a-syn spreading with targets known to affect a-syn aggregation is an auspicious way to
explore underlying pathomechanisms of disease progression, contributing to the

development of new therapeutic strategies for PD patients.

For the first time, a combination of X-ray techniques and an immunohistochemical
staining allowed the visualization of trace elements as well as the detection of B-sheet rich
structures in two nigral LBs of tissue from PD patients. Further experiments need to assess
whether LBs present a sub-stratified elemental profile. Measurements of trace element
concentrations in nigral neurons of PD-diagnosed end-stage patients revealed strong intra-
and interindividual differences which argue for different subgroups of disease rather than
a homogeneous pathology. Copper was identified as the most discriminating element
comparing PD and control tissue. The present results highlight the strong variance of
human samples which prevents to detect PD-relevant pathogenic trace element alterations
in small sample sizes as feasible in synchrotron-based studies. In a side project using lipid
extraction, a higher sample size was used to assess the role of cholesterol in PD, validating

a cholesterol increase in PD samples.

Since iron is the main described trace element in context of PD and related to a-syn
aggregation, we were interested in analyzing its influence on a-syn spreading. In an acute
mouse model of postnatal iron intoxication and intrastriatal a-syn PFFs injections, high-
dosed iron treatment modulated o-syn spreading and additionally suppressed the
accumulation of microglia in the striatum. Our data indicate that microglia probably
accumulate in the injection site to support a-syn spreading and that iron attenuates this
microglia-mediated spreading. Our results lead to the hypothesis that iron either supports a
redistribution of a-syn aggregate spreading in the brain or mediates indirectly o-syn
aggregate degradation. Both, iron and PFFs treatment, affected LTM at different time

points, underscoring its relevance for pathogenesis.

In vitro, microfluidic chambers were shown as a useful model to investigate a-syn

PFFs spreading from cortical cells of one compartment to the other. However, this model
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was not able to reproduce our in vivo data regarding an iron-dependent modulation of a-
syn spreading. This suggests, that other cell types, e.g. microglia, are involved in iron-

mediated effects, which were not studied in the present microfluidic chamber model.

Finally, we analyzed if ROCK inhibition through an oral fasudil administration
attenuated a-syn spreading. No side effects of PFFs or fasudil treatment in form of
cytotoxicity or motor decline were observed. Fasudil appeared ineffective concerning the
prevention or attenuation of a-syn spreading in mice. On the one hand, the applied dosage
of a-syn PFFs was probably too high so that fasudil in its applied dosage could not affect
the a-syn spreading appropriately. On the other hand, the effect of fasudil is probably a-
syn species dependent including the hypothesis that fasudil did not target the applied PFFs.

Taken together, the present study underlines the heterogeneity of the pathology in PD
patients and argues for different subgroups of the disease rather than for one homogeneous
pathology. Iron was shown to modulate a-syn spreading and to affect behavior, rendering
it an auspicious therapeutic target. The results support the approach to test iron chelators as
therapeutic strategies, which is currently realized by a clinical trial testing the effectiveness
of deferiprone in PD patients (FAIRPARKII, NCT02655315). More experiments are
needed to even better understand the role of iron and ROCK inhibition in a-syn spreading
pathology, and the present results may help to develop new experimental designs based on
arising questions and, in translational prospective, to search for promising treatment

opportunities for PD.
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6 Summary

Parkinson’s disease (PD) is the second most prevalent neurodegenerative disease
affecting approximately 1% of the population above 60 years of age. It affects
preferentially the extrapyramidal system, causing severe deficits in motor function. So far,
the progression of the disease can neither be delayed nor cured. The dyshomeostasis of
trace elements, especially of iron, and the presence of alpha-synuclein (a-syn) aggregate-
containing Lewy bodies (LBs) in the brain are two main pathologic events playing a crucial
role in PD. The underlying pathomechanisms for spreading of a-syn through the brain are
still unknown, but PD-related targets such as trace elements or the rho-associated protein
kinase (ROCK) were suggested to affect its aggregation pathology. Identifying triggers that
affect a-syn propagation is of fundamental importance since they could be considered as

auspicious targets for new therapeutic strategies.

In the present study, the elemental content of nigral neurons of PD patients and
control patients without neurodegeneration was analyzed using X-ray fluorescence (XRF)
and it was found that intracellular element concentrations differ substantially within and
between patients. Copper was the most discriminating element between the groups. On a
subcellular level, X-ray diffraction revealed the presence of B-sheet protein structures in a
LB, whereas XRF measurements identified a varying distribution of trace elements such as
iron, selenium or copper within two LBs. Furthermore, the relation of iron and a-syn was
examined. With the objective to investigate the influence of iron on a-syn propagation
through the brain, a murine o-syn fibrils injection model was combined with iron
intoxication and revealed reducing and redistribution effects of iron on a-syn spreading and
a reduced microglia accumulation. Both iron and a-syn fibrils treatment resulted in long-
term memory dysfunction in the novel object recognition test. Moreover, the influence of
iron on a-syn spreading was investigated in cortical neurons using microfluidic chambers.
Spreading of a-syn seemed not to be affected by iron in vitro, arguing for a more systemic
mode of action in vivo. Since the ROCK inhibitor fasudil showed multiple protective effects
in PD mouse models previously, we analyzed its effects on a-syn spreading in vivo. Here,
the application of fasudil did not alter a-syn propagation. Taken together, the present work
investigates the influence of trace elements, particularly iron, and ROCK inhibition on a-
syn spreading and thus contributes to a better understanding of PD pathophysiology and to

the identification of auspicious targets for new therapeutic strategies.

151






APPENDIX

7 Appendix

The following pages contain supplementary tables which are related to the results
shown in chapter 3.2.3.2 and describe the a-syn pathology in brain regions of PFFs-injected
mice treated with vehicle or iron. Each table is related to a specific coronal brain section
which is named after its distance to the Bregma, as stated in the Paxinos atlas. The
individual brain regions were also abbreviated according to the Paxinos atlas (Paxinos and

Franklin, 2003). Empty spaces in the column “p” of each table imply “no significant

difference” referring to the respective performed Mann-Whitney-U test.

153



147!

Suppl. Table 1. Quantification of pS129-a-syn in individual brain regions in section ‘Bregma 1.54 mm’. The averaged a-syn group signal is shown for affected brain
regions in section ‘Bregma 1.54 mm’. Abbreviations are used according to the Paxinos atlas (Paxinos and Franklin, 2003). Signal in each brain region was rated according to a
S-stage scale from 0 (no o-syn signal) to 4 (severe a-syn pathology) and the group means as well as SEM values are presented per hemisphere. The ‘code’ is a simplified
representation of the pathology rating to which the group means were again classified to (—, +, ++, +++, ++++). The code thereby represents the assessment stages used in Figure
29 and differences regarding these 5 stages (—, +, ++, +++, ++++) between the two groups (240 mg/kg Fe/PFFs and control/PFFs) were marked in bold. For a statistical

comparison, Mann-Whitney-U-test was performed for each brain region per hemisphere. Where applicable p-values are stated (#p <0.1; *p < 0.05; **p <0.01).

Bregma 1.54 mm; interaural 5.34 mm a-syn pathology
Injected hemisphere Contralateral hemisphere
control 240mg/kg Fe control 240mg/kg Fe
Abbreviation

Brain regions Paxinos Mean SEM Code |Mean SEM Code| p |Mean SEM Code|Mean SEM Code| p
accumbens nucleus, core acbhC 0.17 0.17 + 0.00 0.00 - 0.00 0.00 - 0.00 0.00 -
accumbens nucleus, shell AcbSh 0.67 0.21 + 0.71 0.29 + 0.17 017 + 0.14 0.14 +
agranular insular area AID 1.83 060 ++ 129 042 ++ 1.83 0.60 ++ 114 046 ++
agranular insular area AlV 0.33 0.33 + 0.29 0.18 + 0.50 0.22 + 0.29 0.18 +
caudal interstitial nucleus of medial longitudinal
fasciculus Cl 0.50 0.34 + 0.43 0.30 + 0.00 0.00 - 0.00 0.00 -
cingulate cortex, area 1 Cg1 217 048 +++ | 1.00 0.44 + 0.50 0.22 + 0.43 0.30 +
cingulum, anterior forceps of corpus callosum,
external capsule cg fmi ec 183 040 ++ | 0.86 0.40 + 133 042 ++ | 1.00 0.31 +
dorsal endopiriform nucleus DEn 0.33 0.21 + 0.14 0.14 + 0.00 0.00 - 0.00 0.00 -
dysgranular insular cortex DI 1.83 054 ++ 1.29 052 ++ 133 049 ++ | 0.71 0.36
granular insular cortex Gl 0.50 0.22 + 0.57 0.30 + 0.50 0.22 + 0.43 0.30
infralimbic cortex IL 0.33 0.21 + 0.14 0.14 + 0.17 0.7 + 0.00 0.00 -
prelimbic cortex PrL 150 0.50 ++ 0.14 0.14 + * 0.33 0.21 + 0.00 0.00 -
primary motor cortex M1 150 043 ++ | 0.71 0.36 + 0.67 0.21 + 0.14 0.14 +
somatosensory 1, jaw region; primary
somatosensory cortex S1J 81 0.50 0.34 + 0.14 0.14 + 017 0.17 + 0.00 0.00 -
striatum Cpu 1.33 042 ++ | 114 026 ++ 1.00 0.26 + 0.29 0.18 +
supplementary motor cortex M2 283 0.54 +++ | 229 047 +++ 1.00 0.26 + 0.86 0.34 +
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Suppl. Table 2. Quantification of pS129-a-syn in individual brain regions in section ‘Bregma 0.38 mm’. The averaged a-syn group signal is shown for affected brain
regions in section ‘Bregma 0.38 mm’. Abbreviations are used according to the Paxinos atlas (Paxinos and Franklin, 2003). Signal in each brain region was rated according to a
S-stage scale from 0 (no o-syn signal) to 4 (severe a-syn pathology) and the group means as well as SEM values are presented per hemisphere. The ‘code’ is a simplified
representation of the pathology rating to which the group means were again classified to (—, +, ++, +++, ++++). The code thereby represents the assessment stages used in Figure
29 and differences regarding these 5 stages (—, +, ++, +++, ++++) between the two groups (240 mg/kg Fe/PFFs and control/PFFs) were marked in bold. For a statistical

comparison, Mann-Whitney-U-test was performed for each brain region per hemisphere. Where applicable p-values are stated (#p <0.1; *p < 0.05; **p <0.01).

Bregma 0.38 mm; interaural 4.18 mm a-syn pathology
Injected hemisphere Contralateral hemisphere
Control 240mg/kg Fe Control 240mg/kg Fe
Abbreviation
Brain regions Paxinos Mean SEM Code |Mean SEM Code| p |Mean SEM Code | Mean SEM Code| p
adrenergic group C1 OR claustrum C1 0.33 0.21 + 0.43 0.20 + 0.50 0.34 + 0.57 043 +
agranular insular area AIP 0.67 0.21 + 0.57 0.30 + 0.00 0.00 - 114 040 ++ *
cingulate cortex, area 1 Cg1 217 0.60 +++ | 1.57 0.30 ++ 0.67 0.33 + 0.29 0.18 +
cingulate cortex, area 2 Cg2 183 0.60 ++ 0.86 0.26 + 0.00 0.00 - 0.29 0.18 +
corpus callosum; external capsule ccec 0.67 0.33 + 0.57 0.30 + 0.00 0.00 - 0.43 0.20 +
dorsal endopiriform nucleus DEn 0.67 0.21 + 0.14 0.14 + 0.17 0.17 + 0.14 0.14 +
granular insular cortex; dysgranular insular
cortex GI DI 200 045 ++ 114 0.34 ++ 167 049 ++ | 0.71 047 +
interstitial nucleus of posterior limb of anterior
commissure IPACL 0.17 0.17 + 0.14 0.14 + 0.17 0.17 + 0.00 0.00 -
lateral preoptic nucleus LPO 0.17 0.17 + 0.00 0.00 - 0.00 0.00 - 0.00 0.00 -
lateral septal nucleus LSV 0.00 0.00 - 0.14 0.14 + 0.00 0.00 - 0.14 0.14 +
lateral septal nucleus LSI LSI 0.00 0.00 - 0.14 0.14 + 0.00 0.00 - 0.14 0.14 +
nuclei of stria terminalis BSTLV 0.17 0.17 + 0.00 0.00 - 0.00 0.00 - 0.00 0.00 -
nuclei of stria terminalis BSTMV BSTMA | 0.17 0.17 + 0.00 0.00 - 0.00 0.00 - 0.00 0.00
nuclei of stria terminalis BSTLD 0.17 0.17 + 0.29 0.29 + 0.00 0.00 - 0.00 0.00 -
olfactory tubercle Tu 0.00 0.00 - 0.57 0.20 + * 0.00 0.00 - 0.00 0.00 -
piriform cortex Pir 0.33 0.33 + 0.43 0.30 + 0.00 0.00 - 0.14 0.14 +
primary motor cortex M1 250 0.43 +++ | 1.00 0.22 + * 0.83 0.48 + 0.29 0.18
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Q Suppl. Table 2 continued.

Bregma 0.38 mm; interaural 4.18 mm

a-syn pathology

Injected hemisphere

Contralateral hemisphere

Control 240mg/kg Fe Control 240mg/kg Fe
Abbreviation

Brain regions Paxinos Mean SEM Code |Mean SEM Code| p |Mean SEM Code | Mean SEM Code
second somatosensory cortex S2 150 0.50 ++ 0.29 0.18 + # 1.83 0.54 ++ 0.29 0.18 +
somatosensory 1, dysgranular zone S1DZ 1.00 0.63 + 0.29 0.18 + 0.00 0.00 - 0.00 0.00 -
somatosensory 1, forelimb region S1FL 1.67 0.61 ++ 0.86 0.26 + 0.67 0.33 + 0.29 0.18
somatosensory 1, hindlimb region S1HL 250 043 +++ | 114 034 ++ * 0.83 0.31 + 0.14 0.14 +
somatosensory 1, barrel field S1BF 0.50 0.34 + 0.29 0.18 + 0.00 0.00 - 0.00 0.00 -
striatum CPu 1.50 0.22 ++ 1.57 030 ++ 0.67 0.21 + 0.57 0.30
supplementary motor cortex M2 2,67 042 +++ | 2.00 0.44 ++ 1.00 0.45 + 0.57 0.20
ventral pallidum VP 0.17 0.17 + 0.57 0.20 + 0.00 0.00 - 0.00 0.00 -
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Suppl. Table 3. Quantification of pS129-a-syn in individual brain regions in section ‘Bregma 0.02 mm’. The averaged a-syn group signal is shown for affected brain
regions in section ‘Bregma 0.02 mm’. Abbreviations are used according to the Paxinos atlas (Paxinos and Franklin, 2003). Signal in each brain region was rated according to a
S-stage scale from 0 (no o-syn signal) to 4 (severe a-syn pathology) and the group means as well as SEM values are presented per hemisphere. The ‘code’ is a simplified
representation of the pathology rating to which the group means were again classified to (—, +, ++, +++, ++++). The code thereby represents the assessment stages used in Figure
29 and differences regarding these 5 stages (—, +, ++, +++, ++++) between the two groups (240 mg/kg Fe/PFFs and control/PFFs) were marked in bold. For a statistical

comparison, Mann-Whitney-U-test was performed for each brain region per hemisphere. Where applicable p-values are stated (#p <0.1; *p < 0.05; **p <0.01).

Bregma 0.02 mm; interaural 3.82 mm a-syn pathology
Injected hemisphere Contralateral hemisphere
Control 240mg/kg Fe Control 240mg/kg Fe
Abbreviation
Brain regions Paxinos Mean SEM Code | Mean SEM Code| p |Mean SEM Code | Mean SEM Code| p
agranular insular area AIP 0.50 0.22 + 0.25 0.16 + 0.67 0.21 + 0.38 0.26 +
anterior part of anterior commissure aca 0.00 0.00 - 0.13 0.13 + 0.17 0.7 + 0.13 0.13 +
caudal interstitial nucleus of medial
longitudinal fasciculus Cl 0.33 0.21 + 0.38 0.18 + 0.33 0.21 + 0.13 0.13
cingulate cortex, area 1 Cg1 1.50 0.22 ++ 213 040 +++ 0.17 0.7 + 0.38 0.18
cingulate cortex, area 2 Cg2 1.00 0.26 + 125 0.16 ++ 0.17 0.17 + 0.00 0.00 -
corpus callosum cc 0.17 0.17 + 0.13 0.13 + 0.17 0.17 + 0.00 0.00 -
dorsal endopiriform nucleus DEn 0.17 0.17 + 0.13 0.13 + 0.17 0.17 + 0.00 0.00 -
granular insular cortex; dysgranular insular
cortex GI DI 150 0.56 ++ 1.00 0.27 + 117 048 ++ | 0.63 0.18 +
Internal capsule ic 0.00 0.00 - 0.13 0.13 + 0.00 0.00 - 0.00 0.00 -
interstitial nucleus of posterior limb of anterior
commissure IPACL 0.00 0.00 - 0.13 0.13 + 0.00 0.00 - 0.00 0.00 -
lateral preoptic nucleus LPO 0.33 0.21 + 0.13 0.13 + 0.00 0.00 - 0.00 0.00 -
lateral globus pallidus LGP 0.00 0.00 - 0.13 0.13 + 0.00 0.00 - 0.00 0.00 -
lateral septal nucleus LSD 0.00 0.00 - 0.00 0.00 - 0.00 0.00 - 0.00 0.00 -
lateral septal nucleus LSV 0.00 0.00 - 0.00 0.00 - 0.00 0.00 - 0.00 0.00 -
nuclei of stria terminalis BSTMA 0.00 0.00 - 0.25 0.16 + 0.00 0.00 - 0.00 0.00 -
nuclei of stria terminalis BSTLD 0.67 0.67 + 0.00 0.00 - 0.00 0.00 - 0.00 0.00 -
nuclei of stria terminalis BSTLV 0.00 0.00 - 0.13 0.13 + 0.00 0.00 - 0.00 0.00 -
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Suppl. Table 3 continued.

Bregma 0.02 mm; interaural 3.82 mm

a-syn pathology

Injected hemisphere Contralateral hemisphere
Control 240mg/kg Fe Control 240mg/kg Fe
Abbreviation

Brain regions Paxinos Mean SEM Code | Mean SEM Code Mean SEM Code | Mean SEM Code
nuclei of stria terminalis BSTMV 0.00 0.00 - 0.13 0.13 + 0.00 0.00 - 0.00 0.00 -
nuclei of stria terminalis BSTLI 0.00 0.00 - 0.38 0.38 + 0.00 0.00 - 0.13 0.13 +
piriform cortex Pir 0.33 0.21 + 0.25 0.16 + 0.00 0.00 - 0.13 0.13 +
posterior part of anterior commissure acp 0.00 0.00 - 0.13 0.13 + 0.17 0.7 + 0.13 0.13 +
posterior part of anterior commissure acp (below IPACL) | 0.00 0.00 - 0.13 0.13 + 0.00 0.00 - 0.38 0.18 +
primary motor cortex M1 233 049 +++ | 1.00 0.38 + 0.50 0.22 + 0.25 0.16 +
second somatosensory cortex S2 0.50 0.34 + 0.13 0.13 + 0.33 0.21 + 0.25 0.16 +
septofimbrial nucleus SFI 0.00 0.00 - 0.00 0.00 - 0.00 0.00 - 0.00 0.00 -
somatosensory 1, dysgranular zone S1DZ 0.00 0.00 - 0.13 0.13 + 0.00 0.00 - 0.00 0.00
somatosensory 1, forelimb region S1FL 0.33 0.33 + 0.25 0.16 + 0.17 0.7 + 0.25 0.16
somatosensory 1, hindlimb region S1HL 0.83 0.40 + 0.63 0.32 + 0.33 0.21 + 0.25 0.16
somatosensory 1, barrel field S1BF 0.00 0.00 - 0.00 0.00 - 0.00 0.00 - 0.00 0.00 -
striatum CPu 1.50 0.22 ++ 125 025 ++ 0.33 0.21 + 0.25 0.16
supplementary motor cortex M2 250 0.22 +++ [ 1.75 0.31 ++ 0.67 0.21 + 0.38 0.18
ventral endopiriform nucleus VEn 0.17 0.17 + 0.00 0.00 - 0.00 0.00 - 0.00 0.00 -
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Suppl. Table 4. Quantification of pS129-0-syn in individual brain regions in section ‘Bregma -1.58 mm’. The averaged a-syn group signal is shown for affected brain
regions in section ‘Bregma -1.58 mm’. Abbreviations are used according to the Paxinos atlas (Paxinos and Franklin, 2003). Signal in each brain region was rated according to
a 5-stage scale from 0 (no o-syn signal) to 4 (severe a-syn pathology) and the group means as well as SEM values are presented per hemisphere. The ‘code’ is a simplified
representation of the pathology rating to which the group means were again classified to (—, +, ++, +++, ++++). The code thereby represents the assessment stages used in Figure
29 and differences regarding these 5 stages (—, +, ++, +++, ++++) between the two groups (240 mg/kg Fe/PFFs and control/PFFs) were marked in bold. For a statistical

comparison, Mann-Whitney-U-test was performed for each brain region per hemisphere. Where applicable p-values are stated (#p < 0.1; *p < 0.05; **p <0.01).

Bregma -1.58 mm; interaural 2.22 mm a-syn pathology
Injected hemisphere Contralateral hemisphere
Control 240mg/kg Fe Control 240mg/kg Fe
Abbreviation
Brain regions Paxinos Mean SEM Code | Mean SEM Code| p |Mean SEM Code |Mean SEM Code| p
accessory basal amygdaloid nucleus;
accessory basal amygdaloid nucleus;
ventromedial hypothalamic nucleus (central
part) BMA VMHC BMP | 0.83 0.48 + 1.00 0.33 + 0.00 0.00 - 0.38 0.18
amygdalostriatal transition area; striatum AStr CPu 1.00 0.26 + 0.00 0.00 - ** 0.17 0.17 + 0.25 0.16
anterior cortical nucleus of amygdala ACo 0.00 0.00 - 0.00 0.00 - 0.00 0.00 - 0.00 0.00 -
Basal amygdaloid nucleus BLV 0.17 0.17 + 0.38 0.18 + 0.17 0.17 + 0.00 0.00 -
basal amygdaloid nucleus BLA 200 0.52 ++ 1.75 053 ++ 1.67 0.67 ++ 150 0.33 ++
central amygdaloid nucleus CeMPV 1.67 049 ++ 1.63 056 ++ 0.50 0.22 + 0.13 0.13
central amygdaloid nucleus CeC 0.83 0.40 + 1.38 0.53 ++ 0.50 0.22 + 0.25 0.16
central amygdaloid nucleus CelL 117 048 ++ 1.88 0.67 ++ 0.17 0.17 + 0.00 0.00 -
central medial nucleus CM 0.17 0.17 + 0.00 0.00 - 0.17 0.17 + 0.00 0.00 -
corpus callosum cc 0.33 0.21 + 0.00 0.00 - 0.17 0.17 + 0.00 0.00 -
dorsal endopiriform nucleus DEn 0.17 0.17 + 0.50 0.27 + 0.00 0.00 - 0.88 0.35 + #
ectorhinal cortex Ect 1.83 0.54 ++ 0.88 0.30 + 117 048 ++ 0.25 0.16 + #
intercalated amygdaloid nuclei | 117 048 ++ 1.00 0.42 + 0.83 0.54 + 0.00 0.00 -
intermediodorsal thalamic nucleus IMD 0.17 0.17 + 0.38 0.18 + 0.17 0.17 + 0.38 0.18 +
medial amygdaloid nucleus (posterodorsal
subdivision) MePD 0.33 0.21 + 0.13 0.13 + 0.00 0.00 - 0.00 0.00 -
medial amygdaloid nucleus (posteroventral
subdivision) MePV 0.17 0.17 + 0.00 0.00 - 0.00 0.00 - 0.00 0.00 -
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é‘ Suppl. Table 4 continued.

Bregma -1.58 mm; interaural 2.22 mm

a-syn pathology

Injected hemisphere

Contralateral hemisphere

Control 240mg/kg Fe Control 240mg/kg Fe
Abbreviation

Brain regions Paxinos Mean SEM Code | Mean SEM Code Mean SEM Code | Mean SEM Code
lateral amygdaloid nucleus LaVL 1.67 0.61 ++ 0.50 0.38 + 150 0.67 ++ 0.88 0.35 +
lateral amygdaloid nucleus LaDL 217 0.54 +++ | 0.88 0.48 + 1.67 049 ++ 113 040 ++
lateral hypothalamic area LH 0.17 0.17 + 0.00 0.00 - 0.00 0.00 - 0.00 0.00 -
lateral parietal association cortex LPtA 133 0.33 ++ 0.88 0.23 + 0.17 0.17 + 0.13 0.13 +
lateral posterior nucleus LPMR 0.17 0.17 + 0.00 0.00 - 0.00 0.00 - 0.00 0.00 -
medial forebrain bundle mfb 0.50 0.22 + 0.25 0.16 + 0.00 0.00 - 0.13 0.13 +
medial parietal association cortex MPtA 117 031 ++ 0.75 0.25 + 0.17 0.17 + 0.25 0.16 +
mediodorsal thalamic nucleus, medial part MDM 0.17 0.17 + 0.00 0.00 - 0.00 0.00 - 0.00 0.00 -
nigrostriatal fibers ns 0.00 0.00 - 0.13 0.13 + 0.00 0.00 - 0.13 0.13 +
nucleus of stria terminalis BSTIA 1.33 042 ++ 1.00 0.50 + 1.00 0.63 + 0.00 0.00 -
paraventricular thalamic nucleus PV 0.50 0.34 + 0.63 0.18 + 0.50 0.34 + 0.63 0.18 +
perirhinal cortex PRh 217 040 +++ | 1.00 0.27 + 1.33 0.61 ++ 113 052 ++
periventricular hypothalamic nucleus Pe 0.00 0.00 - 0.00 0.00 - 0.17 0.17 + 0.00 0.00 -
piriform cortex pir 0.67 0.49 + 0.38 0.18 + 0.00 0.00 - 0.00 0.00 -
posterolateral cortical amygdaloid nucleus PLCo 0.00 0.00 - 0.00 0.00 - 0.00 0.00 - 0.00 0.00 -
posterior thalamic nuclear group Po 0.17 0.17 + 0.00 0.00 - 0.00 0.00 - 0.00 0.00 -
retrosplenial granular cortex RSG 0.17 0.17 + 0.13 0.13 0.00 0.00 - 0.00 0.00 -
retrosplenial agranular cortex RSA 0.67 0.33 + 0.63 0.26 0.00 0.00 - 0.00 0.00 -
rhomboid thalamic nucleus Rh 0.33 0.21 + 0.00 0.00 - 0.33 0.21 + 0.00 0.00 -
second somatosensory cortex S2 200 045 ++ 1.25 049 ++ 0.50 0.22 + 0.13 0.13 +
somatosensory 1, barrel field S1BF 1.17  0.31 ++ 1.25 0.37 ++ 0.50 0.22 + 0.25 0.16 +
somatosensory 1, trunk region S1Tr 1.50 0.34 ++ 1.25 031 ++ 0.67 0.21 + 0.25 0.16 +
stria terminalis st 283 0.65 +++ | 0.63 0.50 + 0.17 0.17 + 0.00 0.00 -
ventral endopiriform nucleus VEn 0.00 0.00 - 0.13 0.13 + 0.00 0.00 - 0.00 0.00 -
ventrolateral thalamic nucleus VL 0.17 0.17 0.00 0.00 - 0.00 0.00 - 0.00 0.00 -
ventromedial thalamic nucleus VM 0.50 0.34 0.00 0.00 - 0.00 0.00 - 0.00 0.00 -
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Suppl. Table 5. Quantification of pS129-0-syn in individual brain regions in section ‘Bregma -3.08 mm’. The averaged a-syn group signal is shown for affected brain
regions in section ‘Bregma -3.08 mm’. Abbreviations are used according to the Paxinos atlas (Paxinos and Franklin, 2003). Signal in each brain region was rated according to
a 5-stage scale from 0 (no o-syn signal) to 4 (severe a-syn pathology) and the group means as well as SEM values are presented per hemisphere. The ‘code’ is a simplified
representation of the pathology rating to which the group means were again classified to (—, +, ++, +++, ++++). The code thereby represents the assessment stages used in Figure
29 and differences regarding these 5 stages (—, +, ++, +++, ++++) between the two groups (240 mg/kg Fe/PFFs and control/PFFs) were marked in bold. For a statistical

comparison, Mann-Whitney-U-test was performed for each brain region per hemisphere. Where applicable p-values are stated (#p < 0.1; *p < 0.05; **p <0.01).

Bregma -3.08 mm; interaural 0.72 mm a-syn pathology
Injected hemisphere Contralateral hemisphere
Control 240mg/kg Fe Control 240mg/kg Fe
Abbreviation
Brain regions Paxinos Mean SEM Code | Mean SEM Code| p |Mean SEM Code|Mean SEM Code| p
amygdalohippocampal area AHIPM 1.67 0.76 ++ 150 0.50 ++ 0.00 0.00 - 0.00 0.00 -
amygdalopiriform transition area APIR 233 0.67 +++ | 1.33 0.61 ++ 0.00 0.00 - 0.00 0.00 -
basal amygdaloid nucleus BLP 283 0.75 +++ | 233 0.80 +++ 0.00 0.00 - 0.00 0.00 -
cingulum cg 0.33 0.21 + 0.00 0.00 - 0.33 0.21 + 0.17 0.17 +
ectorhinal cortex Ect 2.00 0.52 ++ 0.83 0.54 + 1.33 049 ++ 1.33 042 ++
entorhinal cortex, lateral part LEnt 1.83 0.48 ++ 0.67 0.33 + # 0.67 0.21 + 0.83 0.31 +
habenulointerpeduncular tract fr 0.33 0.33 + 0.00 0.00 - 0.17 0.17 + 0.00 0.00 -
hippocampus (dentate gyrus, stratum lucidem, DG Mol GrDG
stratum radiatum, pyramidal cell layer, CA3 PoDG SLu Rad Or
field) Py CA3 0.17 0.17 + 0.50 0.34 + 0.00 0.00 - 0.00 0.00 -
interpeduncular fossa IPF 0.17 0.17 + 0.17 0.17 + 0.17 0.17 + 0.17 0.17 +
mammillary peduncle mp 0.00 0.00 - 0.17 0.17 + 0.00 0.00 - 0.33 0.21 +
medial lemniscus ml 0.00 0.00 - 0.33 0.21 + 0.00 0.00 - 0.00 0.00 -
medial terminal nucleus of accessory optic tract MT 0.00 0.00 - 0.50 0.50 + 0.00 0.00 - 0.00 0.00 -
peripenduncular nucleus PP 0.17 0.17 + 0.00 0.00 - 0.00 0.00 - 0.00 0.00 -
perirhinal cortex PRh 1.83 0.48 ++ 1.33 042 ++ 117 040 ++ 1.33 042 ++
posterior forceps of corpus callosum;
commissure of fornix fmj dhc 0.17 0.17 + 0.00 0.00 - 0.00 0.00 - 0.00 0.00 -
posteromedial cortical amygdaloid nucleus PMCo 133 049 ++ 0.33 0.21 + 0.00 0.00 - 0.00 0.00 -
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5 Suppl. Table 5 continued.

Bregma -3.08 mm; interaural 0.72 mm

a-syn pathology

Injected hemisphere

Contralateral hemisphere

Control 240mg/kg Fe Control 240mg/kg Fe
Abbreviation

Brain regions Paxinos Mean SEM Code | Mean SEM Code Mean SEM Code | Mean SEM Code
primary auditory area Au1 117 048 ++ 0.83 0.31 + 0.00 0.00 - 0.00 0.00 -
primary visual cortex V1 1.00 0.26 0.67 0.33 + 0.00 0.00 - 017 0.17 +
retrosplenial granular cortex RSG 0.17 0.17 0.17 0.17 + 0.00 0.00 - 0.00 0.00 -
retrosplenial agranular cortex RSA 0.33 0.21 + 0.33 0.21 + 0.00 0.00 - 0.00 0.00 -
secondary auditory cortex, dorsal area AuD 1.50 043 ++ 0.83 0.31 + 0.00 0.00 - 0.00 0.00 -
secondary auditory cortex, ventral area AuV 150 0.50 ++ 1.00 0.52 + 0.33 0.21 + 133 0.61 ++
secondary visual cortex, lateral part V2L 150 0.34 ++ 1.00 0.37 + 0.00 0.00 - 0.17 0.17 +
substantia nigra, lateral part SNL 0.00 0.00 - 0.00 0.00 - 0.00 0.00 - 0.00 0.00 -
substantia nigra, pars compacta (compact part) SNC 200 0.26 ++ 217 0.54 +++ 0.00 0.00 - 0.00 0.00 -
substantia nigra, pars reticularis (reticular part) SNR 0.50 0.22 + 0.50 0.34 + 0.00 0.00 - 0.00 0.00 -
supramammillary nucleus SuM 0.00 0.00 - 0.00 0.00 - 0.00 0.00 - 017 0.17 +
temporal cortex, association area TeA 1.50 0.56 ++ 117 048 ++ 0.67 0.33 + 1.67 0.67 ++
ventral tegmental area VTA 0.50 0.22 + 0.67 0.21 0.00 0.00 - 0.17 0.17 +
visual cortex 2, mediolateral part V2ML 0.33 0.21 0.67 0.33 0.00 0.00 - 0.00 0.00 -
visual cortex 2, mediomedial part V2MM 0.50 0.22 0.33 0.21 0.00 0.00 - 0.00 0.00 -
zona incerta yA| 0.00 0.00 - 0.00 0.00 - 0.00 0.00 - 0.17 0.17 +
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Suppl. Table 6. Quantification of pS129-0-syn in individual brain regions in section ‘Bregma -3.28 mm’. The averaged a-syn group signal is shown for affected brain
regions in section ‘Bregma -3.28 mm’. Abbreviations are used according to the Paxinos atlas (Paxinos and Franklin, 2003). Signal in each brain region was rated according to
a 5-stage scale from 0 (no o-syn signal) to 4 (severe a-syn pathology) and the group means as well as SEM values are presented per hemisphere. The ‘code’ is a simplified
representation of the pathology rating to which the group means were again classified to (—, +, ++, +++, ++++). The code thereby represents the assessment stages used in Figure

29 and differences regarding these 5 stages (—, +, ++, +++, ++++) between the two groups (240 mg/kg Fe/PFFs and control/PFFs) were marked in bold. For a statistical

€91

comparison, Mann-Whitney-U-test was performed for each brain region per hemisphere. Where applicable p-values are stated (#p < 0.1; *p < 0.05; **p <0.01).

Bregma -3.28 mm; interaural 0.52 mm

a-syn pathology

Injected hemisphere Contralateral hemisphere
Control 240mg/kg Fe Control 240mg/kg Fe
Abbreviation

Brain regions Paxinos Mean SEM Code | Mean SEM Code Mean SEM Code | Mean SEM Code
amygdalohippocampal area AHIPM 3.20 0.80 ++++| 113 0.55 ++ 0.00 0.00 - 0.00 0.00 -
amygdalopiriform transition area APir 3.00 0.77 +++ | 2.00 0.63 ++ 0.00 0.00 - 0.00 0.00 -
cingulum cg 0.20 0.20 + 0.50 0.19 + 0.20 0.20 + 0.25 0.16 +
commissure of fornix dhc 0.00 0.00 - 0.00 0.00 - 0.00 0.00 - 0.00 0.00 -
dorsal nucleus of medial geniculate body MGD 0.20 0.20 + 0.00 0.00 - 0.00 0.00 - 0.00 0.00 -
ectorhinal cortex Ect 200 0.00 ++ 1.75 049 ++ 1.00 0.32 + 1.38 042 ++
entorhinal cortex, lateral part LEnt 1.80 0.49 ++ 175 045 ++ 0.80 0.20 + 0.75 0.16 +
hippocampus, inner part (dentate gyrus,
stratum lucidem, stratum radiatum, oriens DG Mol GrDG PoDG
layer, pyramidal cell layer, CA3 field) SLu Rad Or Py CA3 | 0.20 0.20 + 0.50 0.19 + 0.00 0.00 - 0.00 0.00 -
hippocampus, outer part (CA1 field, oriens
layer, pyramidal cell layer, stratum radiatum,
Stratum lacunosummoleculare) CA1 Or Py Rad LMol | 0.80 0.37 + 0.38 0.26 + 0.00 0.00 - 0.00 0.00 -
interfascicular nucleus IF 0.00 0.00 - 0.13 0.13 0.00 0.00 - 0.13 0.13 +
magnocellular nucleus of medial geniculate
body MGM 0.20 0.20 + 0.00 0.00 - 0.00 0.00 - 0.00 0.00 -
medial lemniscus ml 0.80 0.20 + 0.75 049 + 0.00 0.00 - 0.00 0.00 -
medial terminal nucleus of accessory optic
tract MT 0.60 0.24 + 0.38 0.18 + 0.00 0.00 - 0.00 0.00 -
medial geniculate body MGV 0.00 0.00 - 0.00 0.00 - 0.00 0.00 - 0.00 0.00 -
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Suppl. Table 6 continued.

Bregma -3.28 mm; interaural 0.52 mm

a-syn pathology

Injected hemisphere

Contralateral hemisphere

Control 240mg/kg Fe Control 240mg/kg Fe
Abbreviation

Brain regions Paxinos Mean SEM Code | Mean SEM Code Mean SEM Code | Mean SEM Code| p
parabigeminal nucleus PAG 0.20 0.20 + 0.13 0.13 + 0.00 0.00 - 0.00 0.00 -
parabrachial pigmented nucleus PBP 0.60 0.24 + 0.25 0.16 + 0.00 0.00 - 0.00 0.00 -
peripenduncular nucleus PP 1.00 0.32 + 0.50 0.27 + 0.00 0.00 - 0.00 0.00 -
perirhinal cortex PRh 200 0.32 ++ 1.88 0.35 ++ 1.00 0.32 + 113 040 ++
posterior intralaminar thalamic nucleus PIL 0.00 0.00 - 0.00 0.00 - 0.00 0.00 - 0.00 0.00 -
posteromedial cortical amygdaloid nucleus PMCo 140 0.60 ++ 113 0.55 ++ 0.00 0.00 - 0.00 0.00 -
postthalamic nuclear group (triangular part);
deep mesencephalic nucleus PoT DpMe 0.20 0.20 + 0.25 0.16 + 0.00 0.00 - 0.13 0.13
primary auditory area Au1 220 0.37 +++ | 113 044 ++ 160 024 ++ | 0.25 0.16 + *
primary visual cortex V1 040 0.24 + 0.38 0.18 0.00 0.00 - 0.00 0.00 -
retrosplenial granular cortex RSG 0.00 0.00 - 0.25 0.16 0.00 0.00 - 0.00 0.00 -
retrosplenial agranular cortex RSA 0.40 040 + 0.50 0.19 + 0.00 0.00 - 0.00 0.00 -
secondary auditory cortex, dorsal area AuD 140 040 ++ 1.25 041 ++ 0.60 0.40 + 0.25 0.16 +
secondary auditory cortex, ventral area AuV 220 0.37 +++ | 113 044 ++ 160 0.24 ++ 0.88 0.30 +
secondary visual cortex, lateral part V2L 1.00 0.32 + 1.00 042 + 0.00 0.00 - 0.25 0.16 +
subiculum S 1.00 0.45 + 0.88 0.40 + 0.20 0.20 + 0.13 0.13 +
substantia nigra, lateral part SNL 0.00 0.00 - 0.00 0.00 - 0.00 0.00 - 0.00 0.00 -
substantia nigra, pars compacta (compact
part) SNC 140 051 ++ 113 0.35 ++ 0.00 0.00 - 0.00 0.00 -
substantia nigra, pars compacta (compact
part);next to PBP SNC 0.80 0.37 + 0.75 0.41 + 0.00 0.00 - 0.00 0.00 -
substantia nigra, pars reticularis (reticular
part) SNR 140 051 ++ 1.13 023 ++ 0.00 0.00 - 0.00 0.00 -
suprageniculate thalamic nucleus SG 0.20 0.20 + 0.00 0.00 - 0.00 0.00 - 0.00 0.00 -
temporal cortex, association area TeA 220 0.37 +++ | 1.75 0.41 ++ 1.20 0.58 ++ 1.50 042 ++
ventral tegmental area VTA 0.60 0.24 0.38 0.18 0.40 0.24 + 0.13 0.13 +
visual cortex 2, mediolateral part V2ML 040 0.24 0.63 0.26 0.00 0.00 - 0.00 0.00 -
visual cortex 2, mediomedial part V2MM 0.20 0.20 0.50 0.19 + 0.00 0.00 - 0.00 0.00 -
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