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SUMMARY 

Tropical rainforests play a crucial role in biogeochemical cycles and global climate dynamics. 

Yet, research efforts to quantify the main sources and sinks of trace greenhouse gases lags 

behind that of other biomes. The African continent is among the least researched regions 

worldwide, and the effects of land-use change on trace greenhouse gases are identified as an 

important research gap in the greenhouse gas budget of Africa. Recent studies in wetland and 

temperate forests have provided evidence for tree stem nitrous oxide (N2O) and methane (CH4) 

emissions, but the magnitudes of tree contributions to total (soil + stem) N2O and CH4 emissions 

from tropical rainforests on heavily weathered soils remain unknown. Given these knowledge 

gaps, this thesis consists of two studies aimed at quantifying the changes in stem and soil N2O 

and CH4 fluxes, and soil carbon dioxide (CO2) fluxes with forest conversion to cacao 

agroforestry. The study was conducted at three sites (villages) in central and southern 

Cameroon, all located on heavily weathered soils. To assess the impact of land-use change on 

stem and soil greenhouse gas fluxes, we studied two land-use systems at each site: the reference 

forest and the converted cacao agroforestry system. At each site, we selected four replicate plots 

(2500 m2 each) for each land use. Soil and stem greenhouse gas fluxes were measured monthly 

using vented static chambers (4 chambers per plot) and stem chambers (6 trees per plot), 

respectively, from April 2017 to April 2018. On each measurement period, we also measured 

known soil and climatic controlling factors. 

The aim of the first study was to quantify the changes in stem and soil N2O fluxes with 

forest conversion to cacao agroforestry. Additionally, we conducted a 15N tracing experiment 

at one of the sites as a follow-on study to elucidate the source of stem N2O emissions. Our 

findings revealed that trees on well-drained, heavily weathered soils served as an important 

N2O emission pathway, with the potential to overlook up to 38% of fluxes in the forests, and 
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up to 15% of fluxes in cacao agroforests, if tree stems are not considered in the ecosystem N2O 

budget. 15N-isotope tracing from soil mineral N to stem-emitted 15N2O suggest that emitted N2O 

from stems originated predominantly from N2O produced in the soil. Additionally, forest 

conversion to cacao agroforestry systems had no effect on stem and soil N2O emissions, because 

of similarities in soil moisture and soil texture, absence of fertilizer application, and comparable 

presence of leguminous trees in both land uses, which can compensate for N export from harvest 

or other losses. 

 For our second study, we investigated the changes in stem and soil CH4 fluxes and soil 

CO2 fluxes with forest conversion to cacao agroforestry. Conversion of forest to cacao 

agroforestry had no effect on stem and soil CH4 and CO2 fluxes. The lack of differences may 

be due to the comparable soil texture and soil moisture content between the two land uses, 

which influences gas diffusivity into and out of the soil. All the studied trees emitted measurable 

CH4 at some point during the study period. In both land uses, tree stems were net sources of 

CH4, while the soils were net CH4 sinks. Our upscaling suggests that tree stem emissions offset 

3–18% of the annual soil CH4 sink in both land uses.  

 This study provides the first year-round and spatially replicated quantifications of stem 

and soil trace gas fluxes for the Congo Basin, with key implications for improved estimates of 

trace gas budgets for Africa. Our results show for the first time that, N2O and CH4 emissions 

from tree stems on well-drained soils are apparently widespread and detectable in many tropical 

trees in Africa. As discussed in the synthesis chapter, even low stem trace gas emissions at the 

ecosystem level can upscale to significant fluxes globally. These findings emphasize the need 

for additional studies on tree stem fluxes in order to constrain their magnitudes and 

mechanisms, and to refine global greenhouse gas budgets. 
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ZUSAMMENFASSUNG 

Tropische Regenwälder spielen eine entscheidende Rolle in biogeochemischen Kreisläufen und 

der globalen Klimadynamik. Dennoch bleiben die Forschungsbemühungen zur Quantifizierung 

der Hauptquellen und -senken von Treibhausgasen hinter denen anderer Biome zurück. Der 

afrikanische Kontinent gehört zu den am wenigsten erforschten Regionen weltweit, und die 

Auswirkungen von Landnutzungsänderungen auf Treibhausgase stellen eine wichtige 

Forschungslücke im Treibhausgasbudget Afrikas dar. Jüngste Studien in Feuchtgebieten und 

gemäßigten Wäldern haben Nachweise für die Distickstoffmonoxid- (N2O) und Methan- (CH4) 

Emissionen von Baumstämmen geliefert, aber die Größenordnung der Beiträge der Bäume zu 

den gesamten (Boden + Stamm) N2O- und CH4-Emissionen aus tropischen Regenwäldern auf 

stark verwitterten Böden bleibt unbekannt. Angesichts dieser Wissenslücken besteht diese 

Arbeit aus zwei Studien, die darauf abzielen, Veränderungen der N2O- und CH4-Flüsse in 

Stamm und Boden, sowie die Kohlenstoffdioxid (CO2)-Flüsse im Boden bei der Umwandlung 

von Wald in Kakao-Agroforstwirtschaft zu quantifizieren. Die Studie wurde an drei Standorten 

(Dörfern) in Zentral- und Südkamerun durchgeführt, die alle auf stark verwitterten Böden 

liegen. Um die Auswirkungen von Landnutzungsänderungen auf die Treibhausgasflüsse von 

Stamm und Boden zu bewerten, untersuchten wir an jedem Standort zwei 

Landnutzungssysteme: den Referenzwald und das umgestellte Kakao-Agroforstsystem. An 

jedem Standort wählten wir für jede Landnutzung vier Wiederholungsflächen (je 2500 m2) aus. 

Die Boden- und Stamm-Treibhausgasflüsse wurden von April 2017 bis April 2018 monatlich 

mit belüfteten statischen Hauben (4 Hauben pro Fläche) bzw. Stamm-Hauben (6 Bäume pro 

Fläche) gemessen. In jeder Messperiode wurden auch bekannte boden- und klimaregulierende 

Faktoren gemessen. 
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Das Ziel der ersten Studie war es, die Veränderungen der N2O-Flüsse in Stamm und 

Boden bei der Umwandlung von Wald in Kakao-Agroforstwirtschaft zu quantifizieren. 

Zusätzlich führten wir als Folgestudie ein 15N-Rückverfolgungsexperiment an einem der 

Standorte durch, um die Quelle der Stamm-N2O-Emissionen ausfindig zu machen. Unsere 

Ergebnisse zeigten, dass Bäume auf gut entwässerten, stark verwitterten Böden als wichtiger 

N2O-Emissionspfad dienten, mit dem Potenzial, bis zu 38% der Flüsse in den Wäldern und bis 

zu 15% der Flüsse in den Kakao-Agroforstwäldern zu übersehen, wenn die Baumstämme nicht 

im N2O-Budget des Ökosystems berücksichtigt werden. Die Rückverfolgung des 15N-Isotops 

vom mineralischen Bodenstickstoff auf das von den Stämmen emittierte 15N2O lässt vermuten, 

dass das von den Stämmen emittierte N2O überwiegend aus dem im Boden produzierten N2O 

stammt. Darüber hinaus hatte die Umstellung der Wälder auf Kakao-Agroforstwirtschaft keine 

Auswirkungen auf die N2O-Emissionen von Stämmen und Böden aufgrund von Ähnlichkeiten 

in der Bodenfeuchte und Bodenbeschaffenheit, Abwesenheit von Düngemittel  und 

vergleichbarer Präsenz von leguminosen Baumarten in beiden Landnutzungssystemen, was den 

Stickstoff- Export aus Ernte oder anderen Verlusten ausgleichen kann. 

Für unsere zweite Studie untersuchten wir Veränderungen der CH4-Flüsse in Stamm 

und Boden sowie die CO2-Flüsse im Boden bei der Umwandlung von Wald in Kakao-

Agroforstwirtschaft. Die Umwandlung von Wald in Kakao-Agroforstwirtschaft hatte keine 

Auswirkungen auf die CH4- und CO2-Flüsse von Stamm und Boden. Die Abwesenheit von 

Unterschieden könnte auf die vergleichbare Bodentextur und Bodenfeuchtigkeit zwischen 

beiden Landnutzungen zurückzuführen sein, welche das Diffusionsvermögen von Gasen in den 

Boden hinein und aus dem Boden heraus beeinflussen. Alle untersuchten Bäume emittierten 

irgendwann während der Untersuchungsperiode messbares CH4. In beiden Landnutzungen 

waren die Baumstämme Nettoquellen von CH4, während die Böden Netto-CH4-Senken waren. 
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Unsere Hochskalierung deutet darauf hin, dass die Baumstammemissionen 3 bis 18% der 

jährlichen CH4-Senkung des Bodens in beiden Landnutzungen ausgleichen. 

Diese Studie liefert die ersten ganzjährigen und räumlich replizierten Quantifizierungen 

der Stamm- und Boden-Spurengasflüsse für das Kongobecken, mit entscheidenden 

Auswirkungen auf verbesserte Schätzungen der Spurengasbudgets für Afrika. Unsere 

Ergebnisse zeigen zum ersten Mal, dass N2O- und CH4-Emissionen von Baumstämmen auf gut 

entwässerten Böden offenbar weit verbreitet und bei vielen tropischen Bäumen in Afrika 

nachweisbar sind. Wie im Synthesekapitel erörtert, können selbst geringe Spurengasemissionen 

von Baumstämmen auf Ökosystemebene zu signifikanten Strömen weltweit führen. Diese 

Ergebnisse unterstreichen die Notwendigkeit zusätzlicher Studien über die Baumstamm-Flüsse, 

um ihre Größenordnung und Mechanismen zu begrenzen und die globalen 

Treibhausgasbudgets weiter zu verfeinern. 
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1.1. The role of the tropics in the global trace greenhouse gas budgets  

Carbon dioxide (CO2), nitrous oxide (N2O) and methane (CH4) constitute the most important 

long-lived greenhouse gases (GHG) in the atmosphere. CO2 has a longer atmospheric lifetime 

(5–200 years) than both N2O (114 years) and CH4 (12 years) (Forster et al., 2007), and the 

absolute quantity of emitted CO2 exceeds that of N2O and CH4 by several orders of magnitude 

(Oertel et al., 2016). However, N2O and CH4 causes 263 and 32 times more radiative forcing, 

respectively, than CO2 by mass over a century (Neubauer & Megonigal, 2015), making these 

gases equally relevant to climate studies. Despite the high vulnerability of biogeochemical 

cycles in tropical ecosystems to climatic changes, trace gas budgets remain poorly constrained 

for these important ecosystems.  

Tropical soils are one of the largest natural source of CO2, contributing ca. 58 Pg C yr−1 

to the estimated global soil respiration of about 91 Pg C yr−1 (Hashimoto et al., 2015), although 

previous estimates suggest lower global CO2 effluxes of between 68 and 78 Pg C yr−1 (Raich 

& Potter, 1995; Raich & Schlesinger, 1998; Hashimoto, 2012). This efflux of respiratory carbon 

from the soil to the atmosphere largely offsets global atmospheric CO2 uptake by terrestrial 

plants (Beer et al., 2010; Richardson et al., 2019). Net soil CO2 flux is largely a product of 

heterotrophic (soil microbial respiration) and autotrophic (root respiration) respiration 

processes (Luo & Zhou, 2006). The proximal controlling factors of soil CO2 efflux are soil 

temperature and moisture, but are also influenced by spatial differences in soil texture, substrate 

availability and vegetation type (Raich & Schlesinger, 1998; Luo & Zhou, 2006). 

Soil processes are considered to be the most important natural source of global N2O, 

with fluxes from natural and agricultural soils accounting for 56–70% of global N2O emissions 

(Syakila & Kroeze, 2011). Using ground-based, bottom-up approaches, recent estimates of N2O 

emissions from tropical rainforest soils come up with lower values of 1.1 Tg N2O-N yr−1 
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(Stehfest & Bouwman, 2006) and 1.3 Tg N2O-N yr−1 (Werner et al., 2007) than earlier best 

estimates of 2.3 Tg N2O-N yr−1 (Bouwman et al., 1995) and 3.5 Tg N2O-N yr−1 (Breuer et al., 

2000). Although a wealth of microbial metabolic pathways and abiotic processes can produce 

N2O in the soil, the contrasting microbial processes of nitrification and denitrification forms the 

most dominant processes of soil N2O production, contributing ca. 70% of global N2O emissions 

(Syakila & Kroeze, 2011). The activities of these nitrifying/denitrifying bacterial communities 

are affected by proximal environmental factors such as nitrogen (N) availability, soil moisture, 

soil temperature and soil pH (Davidson et al., 2000a; Kesik et al., 2006; Butterbach-Bahl et al., 

2013). 

Tropical forest soils also constitute one of the largest biogenic sink of atmospheric CH4 

(Dutaur & Verchot, 2007). CH4 flux at the soil-atmosphere interface is a net result of the 

simultaneous activities of methanogens (CH4 producers under anaerobic conditions) and 

methanotrophs (CH4 consumers under aerobic conditions). For well-drained soils, CH4 

oxidation by methanotrophic bacteria exceeds CH4 production, resulting in a net uptake of 20 

to 45 Tg CH4-C yr−1 at the global scale (Dutaur & Verchot, 2007; Kirschke et al., 2013; 

Schlesinger & Bernhardt, 2013). Soil CH4 fluxes are largely controlled by soil moisture, which 

influences gas diffusivity into and out of the soil (Verchot et al., 2000; Veldkamp et al., 2013; 

Matson et al., 2017), and soil N availability, through its influence on the activities of 

methanotrophs (Bodelier & Laanbroek, 2004).  

Tropical ecosystems continue to play an important role in biogeochemical cycles and 

global climate, yet, research efforts to quantify the main sources and sinks of trace GHG lags 

behind that of other biomes, with the African continent among the most under researched region 

worldwide (Kim et al., 2016b). Presently, trace gas budgets from the African continent are 

poorly constrained due to the lack of data on biogenic fluxes of trace GHG (Bombelli et al., 
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2009; Ciais et al., 2011; Valentini et al., 2014). Africa may be a small carbon sink (−0.04 Pg C 

yr−1; Fisher et al., 2013), nevertheless, the emissions of N2O and CH4 may turn the continent 

into a net source of GHG (Valentini et al., 2014). Paradoxically, for several decades now, plant 

productivity and biomass in African tropical forests have reportedly increased due to increasing 

atmospheric CO2 concentrations, resulting in net carbon gains (Cao et al., 2001; Lewis et al., 

2009; Ciais et al., 2011). However, recent findings suggest a potential slowdown in the carbon 

sink strength of African tropical forests during the last decade (Hubau et al., 2020), due to 

increasing tree mortality and reduced tree growth, as a result of heat stress and extreme drought 

events, among other limiting factors (Allen et al., 2010; Hubau et al., 2020). Hubau et al. (2020) 

went on to predict that the carbon sink strength of African tropical forests might decline by 14% 

by the year 2039. Conversely, the prediction by Hubau et al. (2020) is in stark contrast to model 

projections of continuous high carbon uptake by Africa tropical forests up to the year 2100 

(Huntingford et al., 2013). Such inconsistencies underline the need to pursue field research 

efforts aimed at improving trace gas budget estimations for the African continent. In the recent 

study on a greenhouse gas budget for Africa, one of the key uncertainties mentioned was: “Non-

CO2 greenhouse gas emissions are poorly studied across the various African ecosystems (...) 

The lack of such information hinders the understanding of the African methane budget (…) and 

insight on the natural sources of nitrous oxide” (Valentini et al., 2014, pg. 400). 

1.2. Trees as conduits of N2O and CH4 fluxes 

For some decades, plants have been shown to contribute to GHG emissions by acting as 

conduits for trace gases, facilitating the transport between the soil, where gases are produced or 

consumed by microbial activity, and the atmosphere. Here, trace GHG emissions may originate 

from root uptake of dissolved gases produced in the soil, and then conveyed to the atmosphere 

via aerenchyma tissue (Cicerone & Shetter, 1981; Butterbach-Bahl et al., 1997) or transpiration 
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stream (Chang et al., 1998). Earlier studies investigating the role of plants as conduits for soil-

produced trace gases focused on herbaceous species, where the contribution of plant-mediated 

trace gas emissions were reported to make up to 90% of the total (plant + soil) emission (Singh 

& Singh, 1995; Butterbach-Bahl et al., 1997; Yu et al., 1997; Chen et al., 2002).  

Trace gas emissions from trunks of woody trees were initially suggested by Schütz et 

al. (1991), but actual data on CH4 and N2O emissions from trees were first reported for seedlings 

of black alder (Alnus glutinosa), a tree species that typically grows in European wetlands 

(Rusch & Rennenberg, 1998). Later studies also reported mangrove trees and tropical swamp 

trees to emit trace gases (Gauci et al., 2010; Pangala et al., 2013; Terazawa et al., 2015). These 

trees, which are adapted to wetlands, have aerenchyma tissue which facilitates egress of soil-

produced CH4 via gas transport through the tree, and exchange with the atmosphere appears to 

happen predominantly through lenticels in stems (Buchel & Grosse, 1990). The described stem 

emission pathway has mostly been demonstrated in the field for CH4 (Pangala et al., 2014; 

Terazawa et al., 2015). Also, N2O can be transported through the aerenchyma system; however, 

preferential transport mechanism appears to be through dissolution in xylem sap flow and 

exchange with the atmosphere through stomata or the stem surface (Machacova et al., 2013; 

Wen et al., 2017). Accordingly, N2O emissions have also been observed in seedlings from trees 

that have no aerenchyma, like Fagus sylvatica (Machacova et al., 2013).  

Tree-stem trace gas fluxes have been found to be largely controlled by tree physiology 

and traits of wood anatomy. For example, it has been shown in tropical peatlands that small 

trees and trees with a low wood specific density are correlated with high CH4 emissions 

(Pangala et al., 2013). The density of stem lenticels also correlated positively with stem CH4 

emissions (Pangala et al., 2014), while stem N2O and CH4 emissions varied significantly among 

species in both upland (Pitz & Megonigal, 2017; Wen et al., 2017; Welch et al., 2019) and 
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wetland forests (Pangala et al., 2015; Pitz et al., 2018). Additionally, soil moisture content, 

temperature, and soil trace gas concentrations have all been found to correlate with stem 

emissions and thus may control them (Machacova et al., 2013; Pangala et al., 2015; Wen et al., 

2017).  

Until now, it is unknown whether trees on heavily weathered soils in lowland tropical 

forests, such as in our study sites, contribute to N2O and CH4 emissions. However, some factors 

suggest that emissions through stems are possible: high N2O concentrations in the soil are 

common in lowland tropical forest soils especially during the wet season when values as high 

as 4 to 8 ppm N2O (compared to atmospheric concentration of 0.32 ppm N2O) have been 

measured (i.e. Brazil: Perez et al., 2000). Additionally, Welch et al. (2019) measured high tree-

stem N2O and CH4 emissions in humid tropical forests in Panama. Over a short measurement 

campaign (2 weeks), annual tree-stem emissions were found to contribute up to 18% to total 

forest emissions (Machacova et al., 2016). In another study, the inclusion of tree-stem fluxes 

from floodplain trees in bottom-up CH4 inventories closed the Amazon CH4 budget (Pangala et 

al., 2017). Despite the evidence for tree stem emissions, estimations of global trace gas budgets 

generally assumes soils to be the only active surfaces emitting trace gases, thereby excluding 

the contributions of trees (Syakila & Kroeze, 2011; Hashimoto et al., 2015; Saunois et al., 

2016). It is possible that tree stem emissions may be the “missing” emission pathways needed 

to explain the mismatches in trace gas estimates between ground-based, bottom-up models and 

top-down modelling and atmospheric inversion methods (Werner et al., 2007; Thompson et al., 

2014; Saunois et al., 2016). Given the extensive coverage of well-drained tropical forests 

relative to tropical wetlands, it is imperative that tree stem emissions in tropical upland forests 

are measured over sufficient spatial and temporal variability in order to provide insights on 

stem flux magnitudes and underlying mechanisms, and their role in global trace gas budgets. 
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1.3. Effects of land-use change on trace gas fluxes 

Although the number of studies on trace gas fluxes from tropical land uses is still limited, it has 

become clear that forest conversion and agricultural intensification contribute to the increasing 

trace gas emissions from soils (Veldkamp & Keller, 1997). The current pattern of deforestation 

in Africa is similar to the rest of the tropics, with an estimated 3.4 million ha of forest converted 

to agricultural lands yearly in Africa (Kim et al., 2016b). Consequently, a study on the GHG 

budget of Africa reported land-use change to be the dominant source of trace gas emissions in 

Africa, resulting in an estimated emission of 0.32 ± 0.05 Pg C yr−1 (Valentini et al., 2014). This 

estimated budget was found to be even higher than emissions from fossil fuels, which is unique 

for the African continent.  

Tropical forest conversion to other land uses affects trace gas fluxes due to changes in 

physicochemical properties of soil (Veldkamp et al., 2008; Hassler et al., 2015, 2017). For 

example, changes in soil CO2 fluxes following forest conversion have been related to changes 

in root mass (Bae et al., 2013), litter input and soil organic carbon stocks (Hassler et al., 2015). 

Land use associated changes in soil N2O fluxes are predominantly controlled by changes in soil 

N availability and soil water content (Davidson et al., 2000a), whereas changes in soil CH4 

fluxes have been linked to differences in gas diffusivity due to soil compaction (Corre et al., 

2006; Veldkamp et al., 2008). How land use affect non-CO2 greenhouse gas fluxes was 

identified as a research gap in the recent greenhouse gas budget for Africa (Valentini et al., 

2014). 

1.4. The Congo Basin, Cameroon 

The Congo Basin forest is the second largest intact tropical rainforest in the world after the 

Amazon, making it an important repository of biodiversity and other ecosystem services. It is 

home to about 20,000 plant species of which 8,000 are endemic (Billand, 2012). The Congo 
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Basin is estimated to store ca. 57 billion t C, representing 21% of the total C stored in tropical 

forests globally (FAO, 2011). It is also important to global precipitation patterns, as it has the 

highest amount of rainfall during the transition seasons (Washington et al., 2013). These signify 

the Basin’s significance to terrestrial carbon cycling and global climate. While Africa has been 

underrepresented in trace gas flux research, studies from the Congo Basin are almost absent, 

possibly due to chronic political instability and limited logistical support (Verbeeck et al., 

2011).  

Cameroon, which shares the Congo Basin, is the second highest deforested country 

behind the Democratic Republic of Congo (Dkamela, 2010). Forest clearing for small-scale 

agriculture has been found to be the dominant cause of deforestation in the region, accounting 

for more than 90% of forest cover loss (Tyukavina et al., 2018). Most of the cleared forest areas 

are used to establish cacao agroforests, especially in densely populated areas such as central 

and south Cameroon. And like many other African countries where cacao agroforests dominate 

agricultural production, the conversion of forest for the establishment of cacao farms have 

mostly being unselective. Nevertheless, most of these small-scale cacao farms, presently 

estimated to be ca. 400,000 hectares, are hand planted under the shade of forests’ remnant trees 

with no fertilizer inputs (Kotto et al., 2002; Saj et al., 2013), making these cacao agroforests 

one of the most sustainable land-use systems in Central and West Africa forest zones.  

1.5. Aims and hypotheses 

Despite disparity of estimates for African trace gas budget between bottom-up and top-down 

approaches, no study has concurrently quantified soil and stem trace gas emissions from Africa. 

The research presented in this thesis aimed to provide a systematic comparison between a 

reference land use and a converted system for quantifying land-use change effects on stem and 

soil trace gas fluxes, which are virtually lacking for the Congo Basin, and thus an important 
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contribution in the improvement of greenhouse gas budget of Africa. This study therefore 

provides the first year-round, multiple site quantifications for forests and cacao agroforestry 

systems in the Congo Basin, including 23 tree species that have not been measured before.  

This thesis consists of two studies carried out at three sites across central and southern 

Cameroon. The aims of the first study were to quantify the changes in stem and soil N2O fluxes 

with forest conversion to cacao agroforestry, and to determine the temporal and spatial controls 

of stem and soil N2O fluxes. In this study, we hypothesized that: (i) stem and soil N2O fluxes 

from these extensively managed CAF systems will be comparable to the natural forests, and (ii) 

the seasonal pattern of stem emissions will parallel that of soil N2O emissions and both will 

have similar soil and climatic controlling factors. 

In the second study, we quantified changes in stem and soil CH4 and soil CO2 fluxes 

with forest conversion to CAF, and determined the temporal and spatial controls of stem and 

soil CH4 and CO2 fluxes. The following hypotheses were tested: (i) stem and soil CH4 fluxes 

from these extensively managed CAF systems will be comparable to the natural forests, (ii) 

trees from tropical forests and cacao agroforestry emit CH4 from stems, and (iii) stem emissions 

will offset a considerable fraction of the net CH4 consumption by soils. 

1.6. Study area and experimental set-up 

Our research was conducted at three sites located in southern and central regions of Cameroon, 

where natural forest conversion into cacao agroforestry systems is common. Sites in the 

southern region were located around the villages of Aloum and Biba Yezoum, and the third site 

was located around the village of Tomba. To investigate the effects of land-use change on trace 

gas fluxes, we examined two land-use systems at each site: the reference forest and the 

converted cacao agroforestry system, each represented by four replicate plots (Fig. 1.1). In total, 
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we measured stem and soil trace gas fluxes in 24 plots (3 sites × 2 land uses × 4 replicate plots) 

all located on relatively flat topography. All sites were located on heavily weathered soils which 

are classified as Ferralsols (IUSS Working Group WRB, 2015). 

 

Figure 1. 1. Location of the study sites in Cameroon, showing the four replicate plots per land 

use (green for forests and orange for cacao agroforestry) at one site.  

All the study sites are characterised by significant rainfall in most months of the year, 

spanning an annual precipitation from 1576 mm yr−1 in the centre to 2064 mm yr−1 in the south 

of Cameroon (Climate-Data.org, 2019). In all of the sites, precipitation occurs in a bimodal 

pattern, with typical wet seasons occurring from March to June and September to November 

(Fig. 1.2). The mean annual temperature across the three sites is 23.5 °C (Fig. 1.2; Climate-

Data.org, 2019). 
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Figure 1. 2. Mean monthly temperature and precipitation (from 1982 to 2012) for Aloum (top 

panel), Biba Yezoum (centre panel), and Tomba (bottom panel) in southern and central regions 

of Cameroon (Data source: (Climate-Data.org, 2019). 
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Prior to stem and soil trace gas flux measurements, we conducted a tree inventory in all 

the forests and cacao plots (Fig. 1.3) where all stems including cacao trees with a diameter at 

breast height (DBH) ≥ 10 cm were identified and measured for DBH. We identified 135 tree 

species belonging to 118 genera and 45 families in the natural forests. In the cacao agroforestry, 

we identified 89 shade tree species belonging to 77 genera and 33 families. The high number 

of species in the cacao agroforests signifies the high diversity and sustainability of these 

extensively managed farms.  

 

Figure 1. 3. Natural forests (left) and cacao agroforestry (right) in the Congo Basin, Cameroon. 

For measurements of stem N2O and CH4 fluxes, we selected six cacao trees per replicate 

plot in the CAF, and six trees representing the most dominant species within each replicate plot 

in the forest. For soil trace gas flux measurements, we installed four permanent chamber bases 

per replicate plot, which were randomly distributed within the plot. Concurrent to the stem and 

soil N2O-flux measurements, we measured soil temperature, soil water content, and extractable 

mineral N in the top 5-cm depth. We also sampled soil-air gas concentrations at 50-cm depth 

from permanently installed stainless-steel probes located at ~1 m from the measured trees. We 

conducted trace gas flux measurements, soil and meteorological parameters in the inner 40-m 
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x 40-m area within each plot to minimize edge effects (Fig. 1.4). Details on study area and 

experimental design are given in Chapters 2 and 3.  

 

Figure 1. 4. Experimental layout of the stem and soil flux measurements in one of the replicate 

plots in the Congo Basin, Cameroon. 
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2.1. Abstract 

Although tree stems act as conduits for greenhouse gases (GHG) produced in the soil, the 

magnitudes of tree contributions to total (soil + stem) nitrous oxide (N2O) emissions from 

tropical rainforests on heavily weathered soils remain unknown. Moreover, soil GHG fluxes 

are largely understudied in African rainforests, and the effects of land-use change on these gases 

are identified as an important research gap in the global GHG budget. In this study, we 

quantified the changes in stem and soil N2O fluxes with forest conversion to cacao agroforestry. 

Stem and soil N2O fluxes were measured monthly for a year (2017–2018) in four replicate plots 

per land use at three sites across central and southern Cameroon. Tree stems consistently 

emitted N2O throughout the measurement period, and were positively correlated with soil N2O 

fluxes. 15N-isotope tracing from soil mineral N to stem-emitted 15N2O as well as correlations 

between temporal patterns of stem N2O emissions, soil-air N2O concentration, soil N2O 

emissions, and vapor pressure deficit suggest that N2O emitted by the stems originated 

predominantly from N2O produced in the soil. Forest conversion to extensively managed, 

mature (>20 years old) cacao agroforestry had no effect on stem and soil N2O fluxes. The annual 

total N2O emissions were 1.55 ± 0.20 kg N ha−1 yr−1 from the forest and 1.15 ± 0.10 kg N ha−1 

yr−1 from cacao agroforestry, with tree N2O emissions contributing 11 to 38% for forests and 8 

to 15% for cacao agroforestry. These substantial contributions of tree stems to total N2O 

emissions highlight the importance of including tree-mediated fluxes in ecosystem GHG 

budgets. Taking into account that our study sites’ biophysical characteristics represented two-

thirds of the humid rainforests in the Congo Basin, we estimated a total N2O source strength 

for this region of 0.18 ± 0.05 Tg N2O-N yr−1.  

Keywords: Africa, cacao agroforest, Congo Basin, Ferralsol, land-use change, nitrous oxide, 

Oxisol, soil N2O emissions, stem N2O emissions, tropical rainforest 
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2.2. Introduction 

The trace gas nitrous oxide (N2O) has become the main stratospheric ozone depleting substance 

produced by human activities (Ravishankara et al., 2009), and is after carbon dioxide and 

methane (CH4) the most important anthropogenic greenhouse gas (GHG) (Denman et al., 

2007). Humid tropical soils are considered one of the most important global N2O sources 

(Denman et al., 2007; Werner et al., 2007a), with tropical rainforests alone estimated to 

contribute between 0.9 to 4.5 Tg N2O-N yr–1 to the global N2O source of about 16 Tg N2O-N 

yr−1 (Bouwman et al., 1995; Breuer et al., 2000; Werner et al., 2007a). However, ground-based, 

bottom-up N2O emission estimates appear to be in stark contrast to the high emissions estimated 

from top-down approaches such as modelling and global N2O atmospheric inversions (Huang 

et al., 2008; Thompson et al., 2014). Nevertheless, there exists considerable uncertainty in both 

approaches (Davidson & Kanter, 2014), especially for the tropics (Valentini et al., 2014). 

Recent studies suggest two possible reasons for large uncertainties in bottom-up approaches: 

“missing” emission pathways such as trees (Welch et al., 2019), and a strong geographic bias 

of measured N2O fluxes from tropical forests.  

Most of the studies on soil N2O fluxes from tropical ecosystems were conducted in 

South and Central America (Davidson & Verchot, 2000; Neill et al., 2005; Wolf et al., 2011; 

Matson et al., 2017), tropical Asia (Purbopuspito et al., 2006; Verchot et al., 2006; Werner et 

al., 2006; Veldkamp et al., 2008; Hassler et al., 2017) and Australia (Breuer et al., 2000; Kiese 

et al., 2003). Africa remains the continent with the least published field studies on soil N2O 

fluxes from the tropical forest biome. After the pioneering work by Serca et al. (1994), very 

few field studies have been conducted, most of which were either not replicated with 

independent plots or only with short measurement campaigns (Werner et al., 2007b; Castaldi 

et al., 2013; Gütlein et al., 2018; Wanyama et al., 2018). The remaining studies were based on 

laboratory incubations, which cannot be translated to actual field conditions. Consequently, 
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field-based studies with sufficient spatial and temporal coverage are critical for improving the 

highly uncertain N2O sink and source estimates for Africa (Valentini et al., 2014; Kim et al., 

2016b). 

The Congo Basin is the second largest intact tropical forest in the world and constitutes 

one of the most important carbon (C) and biodiversity reservoirs globally. Behind the DR 

Congo, Cameroon is the second highest deforested country in the Congo Basin with about 75% 

of its forest being subject to pressure from other land uses including agroforestry (Dkamela, 

2010). Conversion of forests to traditional cacao agroforestry (CAF) systems have well been 

documented in Cameroon (Zapfack et al., 2002; Sonwa et al., 2007; Abada Mbolo et al., 2016). 

Presently, an estimated 400,000 hectares is under CAF on small family farms of approximately 

one to three hectares (Kotto et al., 2002; Saj et al., 2013). These CAF systems are commonly 

established under the shade of the forests’ remnant trees, and are characterised by absence of 

fertilizer inputs and low yields of up to 1 t cacao beans ha−1 (Saj et al., 2013).   

Changes in land use have been found to affect soil N2O emissions due to changes in soil 

N availability (Corre et al., 2006), vegetation (Veldkamp et al., 2008) and management 

practices such as N fertilization (Hassler et al., 2017). In particular, unfertilized agroforestry 

and agricultural systems have been found to have comparable N2O fluxes as those from the 

reference forests (Hassler et al., 2017), whereas N-fertilized systems tend to have higher N2O 

fluxes than the previous forest due to elevated soil mineral N following fertilization (Verchot 

et al., 2006). This is in line with postulations of the conceptual hole-in-the-pipe (HIP) model, 

which suggest that the magnitude of N2O emissions from the soil are largely controlled first by 

soil N availability and second by soil water content (Davidson et al., 2000a). As the number of 

studies on soil GHG fluxes from agricultural land uses in Africa is still limited, the effect of 
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land-use change on GHG fluxes is identified as an important research gap in the GHG budget 

of Africa (Valentini et al., 2014). 

Tree stems have been found to act as conduits for soil N2O in wetlands, mangroves and 

well-drained forests (Rusch & Rennenberg, 1998; Kreuzwieser et al., 2003; Welch et al., 2019), 

facilitating the transport from the soil, where N2O are produced or consumed by microbial 

nitrification and denitrification processes, to the atmosphere. Findings of strong declines in N2O 

emissions with increasing stem height (Díaz-Pinés et al., 2016; Wen et al., 2017; Barba et al., 

2019b) suggest that N2O is mainly emitted through the stems and less likely through the leaves. 

Trees adapted to wetlands and mangroves have aerenchyma systems through which N2O can 

be transported from the soil into the tree by both gas diffusion and transpiration stream, with 

exchange to the atmosphere predominantly through the stem lenticels (Rusch & Rennenberg, 

1998; Wen et al., 2017). However, for trees on well-drained soils, a different transport 

mechanism appears to be dominant: transpiration causes the xylem sap flow in which dissolved 

N2O is transported from the soil to the tree and emitted to the atmosphere through the stem 

surface and stomata (Machacova et al., 2013; Wen et al., 2017). Recent evidence shows that 

trees can also act as N2O sinks (Machacova et al., 2017; Barba et al., 2019b), highlighting the 

need for further research of the stem N2O flux magnitudes and their mechanisms. 

The most important soil parameters found to influence tree-stem N2O fluxes include soil 

water content (Rusch & Rennenberg, 1998; Machacova et al., 2016), soil N2O fluxes (Díaz-

Pinés et al., 2016; Wen et al., 2017), soil temperature (Machacova et al., 2013) and soil-air N2O 

concentration within the rooting zone (Wen et al., 2017). These studies also reported 

environmental parameters, such as air temperature and vapour pressure deficit (VPD), to drive 

stem N2O fluxes due to their influence on transpiration (O’Brien et al., 2004). For temperate 

forests on a well-drained soil, annual stem N2O fluxes have been found to contribute up to 10% 
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of the ecosystem N2O emissions (Wen et al., 2017). However, until now, there is no ground-

based spatial extrapolation of the contribution of stem N2O emissions from tropical forests on 

well-drained soils. Hence, there is a need for concurrent quantifications of the contributions of 

stem and soil N2O fluxes so as to provide insights on the source strengths of N2O emissions 

from tropical African land uses and to improve estimates of N2O emissions from the region. 

Our present study addresses these knowledge gaps by providing year-round 

measurements of stem and soil N2O fluxes from forests and converted CAF systems with 

spatially replicated plots in the Congo Basin as well as stem N2O fluxes of 23 tree species that 

have not been measured before. Our study aimed to (i) assess whether trees in tropical 

rainforests and CAF are important conduits of N2O, (ii) quantify changes in soil-atmosphere 

N2O fluxes with forest conversion to CAF, and (iii) determine the temporal and spatial controls 

of stem and soil N2O fluxes. We hypothesized that (i) stem and soil N2O fluxes from these 

extensively managed CAF systems (unfertilized and manual harvest) will be comparable to the 

natural forests, and (ii) the seasonal pattern of stem emissions will parallel that of soil N2O 

emissions and both will have similar soil and climatic controlling factors. 

2.3. Materials and methods 

2.3.1. Study area and experimental design 

Our study was conducted at three study sites located in southern and central Cameroon, where 

natural forests are predominantly converted to CAF (Sonwa et al., 2007). Sites in the southern 

region were located around the villages of Aloum (2.813°N, 10.719°E; 651 m above sea level, 

asl) and Biba Yezoum (3.158°N, 12.292°E; 674 m asl), and the third site was located around 

the village of Tomba (3.931°N, 12.430°E; 752 m asl) in the central region (Fig. 1.1). The mean 

annual air temperature across the three sites is 23.5°C (Climate-Data.org, 2019), and the soil 

temperature ranged from 21.6–24.4 °C during our measurement period from May 2017 to April 
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2018. The study sites span an annual precipitation from 1576 mm yr−1 in the centre to 2064 mm 

yr−1 in the south of Cameroon (Table S2.1; Climate-Data.org, 2019). Precipitation occurs in a 

bimodal pattern, with two dry seasons (< 120 mm monthly rainfall) occurring from July to 

August and December to February (Fig. 1.2). All sites are situated on heavily weathered soils 

classified as Ferralsols (IUSS WRB, 2015). Geologically, Tomba and Biba Yezoum are 

underlain by middle to superior Precambrian basement rocks, made up of metamorphic schists, 

phyllites and quartzites, whereas Aloum site is situated on inferior Precambrian basement rocks, 

made up of inferior gneiss and undifferentiated gneiss (Gwanfogbe et al., 1983). 

At each site, we studied two land-use systems: the reference forest and the converted 

CAF system. Additional information on vegetation and site characteristics are reported in Table 

S2.1. These CAF sites were established right after clearing the natural forests, where remnant 

forest trees were retained by farmers to provide shade for understorey cacao trees (Theobroma 

cacao). Cacao planting and localised weeding were all done manually using hand tools. Surveys 

from farm owners indicated that there had been no mineral fertilization in any of the CAF sites. 

The ages of the CAF since conversion varied between 22 and ~45 years. 

We selected four replicate plots (50 m x 50 m each with a minimum distance of 100 m 

between plots) per land-use type within each site (Fig. 1.1), totalling to 24 plots that were all 

located on relatively flat topography. Within each plot, all stems including cacao trees with a 

diameter at breast height (DBH) ≥ 10 cm were identified and measured for DBH and height. 

We conducted N2O flux measurements, soil and meteorological parameters in the inner 40-m 

× 40-m area within each plot to minimize edge effects. To check that soil conditions were 

comparable between the reference forests and converted CAF, we compared a land-use-

independent soil characteristic, i.e. clay content at 30−50 cm depth, between these land uses at 

each site. Since we did not find significant differences in clay contents between the forest and 
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CAF at each of the sites (Table 2.1), we inferred that land-use types within each site had 

comparable initial soil characteristics prior to conversion and any differences in N2O fluxes and 

soil controlling factors can be attributed to land-use conversion.  

For measurements of stem N2O fluxes, we selected six cacao trees per replicate plot in 

the CAF, and six trees representing the most dominant species within each replicate plot in the 

forest, based on their importance value index (IVI) (Table S2.1). The species IVI is a summation 

of the relative density, relative frequency and relative dominance of the tree species (Curtis & 

McIntosh, 1951). For a given species, the relative density refers to its total number of 

individuals in the four forest plots at each site; the relative frequency refers to its occurrence 

among the four forest plots; and the relative dominance refers to its total basal area in the four 

forest plots, all expressed as percentages of all species. These 24 trees measured at each site (6 

trees × 4 forest plots) included nine species in Aloum site, seven species in Biba Yezoum site, 

and 10 species in Tomba site (species are specified in Fig. 2.1). The trees were measured for 

stem N2O fluxes at 1.3 m height above the ground at monthly interval from May 2017 to April 

2018. Furthermore, we assessed the influence of tree height on stem N2O fluxes by conducting 

additional measurements on 16 individual trees per land use in May 2018; these trees were 

included in the monthly measurements but were additionally measured at three stem heights 

(1.3 m, 2.6 m and 3.9 m from the ground) per tree in the forest, and at two heights (1.3 m and 

2.6 m) per tree in the CAF due to the limited height of the cacao trees. 

For soil N2O flux measurements, we installed four permanent chamber bases per 

replicate plot, which were randomly distributed within the inner 40-m × 40-m area. We 

conducted monthly measurements of soil N2O fluxes from May 2017 to April 2018 as well as 

meteorological and soil variables known to control N2O emission (see below).  
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Table 2.1. Mean (±SE, n = 4) soil biochemical characteristics in the top 50-cm† depth in forest and cacao agroforestry (CAF) within each site in 

the Congo Basin, Cameroon. Means followed by different lowercase letters indicate significant differences between land-use types within each site 

and different capital letters indicate significant differences among the three sites within a land-use type (Anova with Fisher’s LSD test or Kruskal-

Wallis ANOVA with multiple comparison extension test at p ≤ 0.05). 

Soil 

characteristics 
Aloum site Biba Yezoum site Tomba site 

 
Forest CAF Forest CAF Forest CAF 

Clay (30-50 cm) (%) 66.0 ± 2.4a,A 59.3 ± 6.1a,A 32.8 ± 9.4a,B 39.5 ± 0.9a,B 55.3 ± 0.5a,AB 51.8 ± 1.1a,AB 

Bulk density  

(g cm–3) 
1.2 ± 0.1a,A 1.2 ± 0.1a,A 1.2 ± 0.1a,A 1.2 ± 0.1a,A 1.2 ± 0.1a,A 1.2 ± 0.1a,A 

pH (1:4 H2O) 3.7 ± 0.0b,A  4.1 ± 0.1a,A 3.7 ± 0.1b,A 4.6 ± 0.2a,A 3.6 ± 0.0b,A 4.5 ± 0.2a,A 

15N natural abundance (‰) 8.4 ± 0.2b,A 10.2 ± 0.1a,A 8.6 ± 0.2a,A 9.1 ± 0.2a,B 8.8 ± 0.1a,A 8.8 ± 0.1a,B 

Soil organic C (kg C m–2) 12.1 ± 0.4a,A 6.7 ± 0.2b,A 7.2 ± 0.9a,B 5.6 ± 0.7a,A 9.8 ± 0.2a,AB 7.1 ± 0.4b,A 

Total N (kg N m–2) 1.1 ± 0.1a,A 0.7 ± 0.0b,A 0.7 ± 0.1a,A 0.5 ± 0.0a,B 0.9 ± 0.0a,A 0.7 ± 0.0b,A 

ECEC (mmolc kg–1) 57.5 ± 3.9a,A 33.9 ± 2.8b,A 49.1 ± 11.3a,A 41.1 ± 7.2a,A 58.5 ± 2.0a,A 46.8 ± 4.7a,A 

Exch. bases (mmolc kg–1) 3.5 ± 0.3b,B 8.7 ± 1.7a,B 8.5 ± 1.1b,A 31.0 ± 8.5a,A 9.3 ± 0.8b,A 30.4 ± 7.6a,A 

Exchangeable Al (mmolc kg-1) 47.3 ± 3.1a,A 20.9 ± 3.5b,A 32.9 ± 8.9a,A 5.4 ± 1.2b,B 39.2 ± 2.3a,A 12.3 ± 2.7b,AB 

† Values are depth-weighted average, except for clay content (30-50 cm) and stocks of soil organic C and total N, which are sum of the entire 50-

cm depth. Abbreviations: ECEC, effective cation exchange capacity; Exch. bases: sum of exchangeable Ca, Mg, K, Na.



Chapter 2   Nitrous oxide emissions from the Congo Basin 

29 

 
 

 

Figure 2.1. Stem N2O fluxes from 22 tree species at three forest sites (Aloum, Biba Yezoum 

and Tomba) across central and south Cameroon in the Congo Basin. Boxes (25th, median and 

75th percentile) and whiskers (1.5 × interquartile range) are based on N2O fluxes measured 

monthly from May 2017 to April 2018 for each tree species, and the values in parentheses 

represent the number of trees measured per species. There were no differences in N2O fluxes 

among species (linear mixed-effect models with Tukey’s HSD at p > 0.27). 

2.3.2. Measurement of stem and soil N2O fluxes 

We measured in-situ stem N2O fluxes using stem chambers made from transparent 

polyethylene-terephthalate foil, as described by Wen et al. (2017). One month prior to 

measurement, we applied 1-cm wide silicone sealant strips (Otto Seal ® S110, Hermann Otto 

GmbH, Fridolfing, Germany) 20 cm apart around the surface of the tree stems (between 1.2-m 

and 1.4-m heights from the ground) that stayed permanently to ensure that all the stem chambers 

had air-tight seals. As many of the measured trees have buttresses (rendering stem chambers 
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impossible to attach at low stem height, e.g. Fig. 2.2), we chose the measurements at an average 

of 1.3-m height (or between 1.2-1.4 m), congruent to the standard measurement of DBH. Since 

chamber installation is quick, chambers were newly installed on each sampling date, using the 

silicone sealant strips as a mark to ensure that the same 0.2-m length stem section was measured. 

We wrapped a piece of foil (cut approximately 50 cm longer than the measured stem 

circumference and fitted with a Luer-lock sampling port) around each stem. Using a gas-

powered heat-gun, we “shrank” the top and bottom part of the foil to fit closely onto the silicone 

strips, leaving 0.2-m length between the top and bottom silicone strips, which served as the 

chamber for collecting gas samples (Fig. 2.2). We then wrapped strips of polyethylene foam 

around the edges of the foil and adjusted the foam tightly using lashing straps equipped with 

ratchet tensioners (two straps at the top and two at the bottom). The lashing straps adjusted the 

flexible foam and the foil (on top of the silicone strips) to any irregularities on the bark and 

ensured an airtight fitting.  

After installation, we completely evacuated the air inside the stem chamber using a 

syringe fitted with a Luer-lock one-way check valve. Afterwards, we used a manual hand pump 

to refill the stem chamber with a known volume of ambient outside air for correct calculation 

of stem N2O flux. A 25-mL air sample was taken with syringe through the Luer-lock sampling 

port immediately after refilling the stem chamber with ambient air, and then again after 20, 40 

and 60 minutes. Each air sample was immediately stored in pre-evacuated 12 mL Labco 

exetainers with rubber septa (Labco Limited, Lampeter, UK), maintaining an overpressure. 
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Figure 2.2. Sampling set-up for stem nitrous oxide (N2O)-flux measurement at three stem 

heights in a rainforest in the Congo Basin, Cameroon. 

In May 2018, we conducted a 15N tracing experiment at the Tomba site as a follow-on 

study to elucidate the source of stem N2O emissions. The tracing was conducted in three 

replicate plots per land use, where one tree was selected in each plot. Around each selected tree, 

290 mg 15N (in the form of (15NH4)2SO4 with 98% 15N) dissolved in 8 L distilled water was 

applied evenly onto the soil surface of 0.8 m2 around the tree using a watering can (equivalent 

to 10 mm of rain). The water-filled pore space (WFPS) in the top 5-cm depth was 49 ± 1% and 

52 ± 2% for the forest and CAF, respectively, which were similar to the monthly averages of 

these plots during this period (Fig. 2.4). Based on the monthly average soil mineral N 

concentrations in this site, the applied 15N was only 20% of the extant mineral N in the top 10 

cm soil (resulting to a starting enrichment of 17% 15N), such that we only minimally changed 

the substrate which could influence N2O flux, similar to that described by Corre et al. (2014). 

Stem and soil 15N2O fluxes were measured one day, seven days and 14 days following 15N 

application, and on each sampling day gas samples were taken at 0, 30, and 60 minutes after 
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chamber closure. The gas samples were stored in new pre-evacuated glass containers (100 mL) 

with rubber septa and transported to the University of Goettingen, Germany for analysis. We 

also stored 15N2O standards in similar 100-mL glass containers, which were brought to 

Cameroon and back to Germany, to have the same storage duration as the gas samples in order 

to check for leakage; we found no difference in 15N2O with the original standard at our 

laboratory.  

We measured soil N2O fluxes using vented, static chambers made from polyvinyl 

chloride that were permanently inserted ~0.02 m into the soil at least one month prior to the 

start of measurements, as described in our earlier studies (e.g., Koehler et al., 2009b; Corre et 

al., 2014; Müller et al., 2015). On each sampling day, we covered the chamber bases with 

vented, static polyethylene hoods (0.04 m2 in area and ~11 L total volume) equipped with Luer-

lock sampling ports. Soil N2O fluxes were then determined by taking four gas samples (25 mL 

each) at 2, 12, 22 and 32 minutes after chamber closure. The samples were taken with a syringe 

and immediately injected into pre-evacuated 12 mL exetainers as described above.  

Concurrent to the stem and soil N2O-flux measurements, we sampled soil-air N2O 

concentrations at 50-cm depth from permanently installed stainless-steel probes (1-mm internal 

diameter) located at ~1 m from the measured trees. The stainless steel probes were installed one 

month prior to the start of measurements. Luer-locks were attached to the probes, and on each 

sampling day the probes were first cleared of any previous accumulation of N2O concentration 

by removing 5-mL air volume using a syringe and discarding it. We then took 25-mL gas 

samples and stored them in pre-evacuated 12-mL exetainers as described above.  
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2.3.3. N2O analysis and flux rate calculation 

The N2O concentrations in the gas samples were analysed using a gas chromatograph equipped 

with an electron capture detector, a make-up gas of 5% CO2 – 95% N2 (SRI 8610C, SRI 

Instruments Europe GmbH, Bad Honnef, Germany), and an autosampler (AS-210, SRI 

Instruments). 15N2O was analysed on an isotope ratio mass spectrometer (IRMS) (Finnigan 

Deltaplus XP, Thermo Electron Corporation, Bremen, Germany). We calculated N2O fluxes 

from the linear change in concentrations over time of chamber closure, and adjusted the fluxes 

with air temperature and atmospheric pressure, measured at each replicate plot on each 

sampling day. We included zero and negative fluxes in our data analysis. 

We up-scaled the measured stem N2O fluxes (considering trees ≥ 10 cm DBH) to annual 

values on a ground area in the following steps: (1) the relationship between stem N2O fluxes 

and stem heights was modelled from the 16 individual trees per land use (see above) that were 

measured at multiple heights, from which we observed decreases in stem N2O fluxes with 

increasing stem heights. A linear function was statistically the best fit characterizing these 

decreases in stem N2O fluxes with height. (2) Using this linear function and considering the 

stem surface area as a frustum with 20-cm increment, the tree-level N2O fluxes on each 

sampling day was calculated for the regularly measured six trees per plot. (3) The annual tree-

level N2O fluxes from these regularly measured six trees per plot were calculated using a 

trapezoidal interpolation between the tree-level N2O fluxes (step 2) and measurement day 

intervals from May 2017 to April 2018. (4) The annual tree-level N2O fluxes were then 

extrapolated on a ground-area basis for each replicate plot as follows:   

Annual stem N2O flux (kg N2O-N ha−1 yr−1) = { Σ [((X1-24 ÷ DBH1-24)/24) * DBHn]} ÷ A 

where: X1-24 and DBH1-24 are the corresponding annual tree-level N2O flux (kg N2O-N yr−1 of 

each tree; step 3) and DBH (cm) of each of the 24 measured trees (6 trees x 4 plots) per land 
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use at each site; DBHn is the individual tree DBH (cm) measured for all trees (with ≥10 cm 

DBH) present within the inner 40-m x 40-m area of each plot (Table S2.1); Σ is the sum of the 

annual N2O fluxes of all trees within each plot (kg N2O-N yr−1); A is the plot area (0.16 ha). 

For step 4 of the CAF plots, the annual stem N2O flux was the sum of the cacao and shade trees 

(Table S2.1); as these shade trees were remnants of the original forest, we used the average 

annual tree-level N2O flux of the measured trees in the corresponding paired forest plots 

multiplied by the actual DBH of the shade trees in the CAF plots. This spatial extrapolation 

based on trees’ DBH of each plot was also supported by the fact that there were no significant 

differences in stem N2O fluxes among tree species (Fig. 2.1). 

Annual soil N2O fluxes from each plot were calculated using the trapezoidal rule to 

interpolate the measured fluxes from May 2017 to Apr. 2018, as employed in our earlier studies 

(e.g., Koehler et al., 2009b; Veldkamp et al., 2013). Finally, the annual N2O fluxes from each 

replicate plot were represented by the sum of the stem and soil N2O fluxes. 

2.3.4. Soil and meteorological variables 

We measured soil temperature, WFPS, and extractable mineral N in the top 5-cm depth 

concurrent to stem and soil N2O flux measurements on each sampling day. The soil temperature 

was measured ~1 m away from the soil chambers using a digital thermometer (GTH 175, 

Greisinger Electronic GmbH, Regenstauf, Germany). We determined soil WFPS and 

extractable mineral N by pooling soil samples from four sampling locations within 1 m from 

each soil chamber in each replicate plot. Gravimetric moisture content was determined by oven-

drying the soils at 105 °C for 24 h and WFPS was calculated using a particle density of 2.65 g 

cm-3 for mineral soil and our measured soil bulk density (Table 2.1). Soil mineral N (NO3
– and 

NH4
+) was extracted in the field by putting a subsample of soil into a pre-weighed bottle 

containing 150 mL 0.5 M K2SO4. The bottles were weighed and then shaken for 1 hour, and 
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the solution was filtered through pre-washed (with 0.5 M K2SO4) filter papers. The extracts 

were immediately frozen and later transported to the University of Goettingen, where NH4
+ and 

NO3
− concentrations were analysed using continuous flow injection colorimetry (SEAL 

Analytical AA3, SEAL Analytical GmbH, Norderstedt, Germany) (described in details by 

Hassler et al., 2015).  The dry mass of soil extracted for mineral N was calculated using the 

measured gravimetric moisture content. 

During each measurement day, we set up a portable weather station in each site to record 

relative humidity, air temperature and solar irradiance over the course of each sampling day at 

15-minute interval. We calculated VPD as the difference between saturation vapour pressure 

(based on its established equation with air temperature) and actual vapour pressure (using 

saturation vapour pressure and relative humidity; Allen, Pereira, Raes, & Smith, 1998). 

Soil biochemical characteristics were measured in April 2017 at all 24 plots. We 

collected soil samples from the top 50-cm depth, where changes in soil biochemical 

characteristics resulting from land-use changes have been shown to occur (van Straaten et al., 

2015; Tchiofo Lontsi et al., 2019). In each plot, we collected ten soil samples from the top 0-

10 cm, and five soil samples each from 10-30 and 30-50 cm depths; in total, we collected 480 

soil samples from the 24 plots. The soil samples were air-dried, 2-mm sieved and transported 

to the University of Goettingen, where they were dried again at 40 °C before analysis. Soil pH 

was analysed from 1:4 soil-to-distilled water ratio. Soil texture for each plot was determined 

using the pipette method after iron oxide and organic matter removal (Kroetsch & Wang, 2008). 

Effective cation exchange capacity (ECEC) and exchangeable cation concentrations (Ca, Mg, 

K, Na, Al, Fe, Mn) were determined by percolating the soil samples with unbuffered 1 M NH4Cl 

, and the extracts analysed using inductively coupled plasma-atomic emission spectrometer 

(ICP-AES; iCAP 6300 Duo VIEW ICP Spectrometer, Thermo Fischer Scientific GmbH, 
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Dreieich, Germany). Soil subsamples were ground and analysed for total organic C and N using 

a CN analyser (vario EL cube; Elementar Analysis Systems GmbH, Hanau, Germany), and the 

soil 15N natural abundance signatures were determined using IRMS (Delta Plus; Finnigan MAT, 

Bremen, Germany). Soil organic carbon (SOC) and total N stocks were calculated for the top 

50 cm in both land uses. We used the bulk density of the reference forest for calculating the 

SOC and total N stocks of the converted CAF in order to avoid overestimations of element 

stocks resulting from increases in soil bulk densities following land-use conversion (Veldkamp, 

1994; van Straaten et al., 2015).  

To evaluate the representativeness of our study area with the rest of the Congo Basin 

forest, we estimated the proportion of the Congo rainforest area which have similar biophysical 

conditions (elevation, precipitation ranges and soil type) as our study sites (Table S2.1). Using 

the FAO’s Global Ecological Zone map for the humid tropics, we identified the areal coverage 

of (i) Ferralsols (FAO Harmonized World Soil Database; FAO/IIASA/ISRIC/ISS-CAS/JRC, 

2012) with (ii) elevation ≤ 1000 m asl (SRTM digital elevation model; Jarvis et al., 2008) and 

(iii) precipitation range between 1,500 and 2,100 mm yr−1 (WorldClim dataset; Hijmans et al., 

2005) within the six Congo rainforest countries (Fig. 2.3). This analysis was conducted using 

QGIS version 3.6.3.  
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Figure 2.3. Map of the Congo Basin rainforest (green) spanning across the six major Congo 

Basin countries. Brown shaded area represents the proportion of the Congo rainforest with 

similar biophysical conditions as our study sites (Ferralsol soils, ≤ 1000 m elevation, and 1500-

2100 mm yr−1 precipitation). 

2.3.5.   Statistical analyses 

Statistical comparisons between land uses or among sites for stem and soil N2O fluxes were 

performed on the monthly measurements and not on the annual values as the latter are 

trapezoidal interpolations. As the six trees and four chambers per plot were considered 

subsamples representing each replicate plot, we conducted the statistical analysis using the 

means of the six trees and of the four chambers on each sampling day for each replicate plot 
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(congruent to our previous studies, e.g. Koehler et al., 2009b; Veldkamp et al., 2013; Matson 

et al., 2017). We tested each parameter for normal distribution (Shapiro-Wilk’s test) and 

homogeneity of variance (Levene’s test), and applied a logarithmic or square root 

transformation when these assumptions were not met. For the repeatedly measured parameters, 

i.e. stem and soil N2O fluxes and the accompanying soil variables (temperature, WFPS, NH4
+ 

and NO3
─ concentrations), differences between land-use types for each site or differences 

among sites for each land-use type were tested using linear mixed effect (LME) models with 

land use or site as fixed effect and replicate plots and sampling days as random effects. We 

extended the LME model to include either (1) a variance function that allows different variances 

of the fixed effect, and/or (2) a first-order temporal autoregressive process, which assumes that 

correlation between sampling days decreases with increasing time difference, if this improved 

the relative goodness of the model fit based on the Akaike information criterion (Crawley, 

2009). Using diagnostic plots, the model residuals were checked for normality and 

homoscedasticity, and the data were log- or square root-transformed when necessary. We 

assessed significant differences between land uses or sites using analysis of variance (ANOVA) 

with Fisher’s least significant difference (LSD) test.  

We also analysed if there were differences in stem N2O fluxes among tree species across 

four forest plots at each site as well as across the three sites. Similar LME analysis was carried 

out with tree species as fixed effect, and the random effects were trees belonging to each species 

and sampling days; only for this test, we used individual trees as random effect because most 

of the tree species (selected based on their IVI; see section 2.1) were not present in all plots, 

which is typical in species-diverse tropical forest. For soil biochemical characteristics that were 

measured once (Table 2.1), one-way ANOVA with Fisher’s LSD test was used to assess the 

differences between land uses or sites for the variables with normal distribution and 
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homogenous variance; if otherwise, we applied Kruskal-Wallis ANOVA with multiple 

comparison extension test. 

To determine the temporal controls of soil and meteorological variables (temperature, 

WFPS, NH4
+ and NO3

─ concentrations, soil-air N2O concentration, VPD) on stem and soil N2O 

fluxes, we conducted Spearman’s Rank correlation tests using the means of the four replicate 

plots for each land use on each sampling day. For each land use, the correlation tests were 

conducted across sites and sampling days (n = 33, from 3 sites × 11 monthly measurements).  

To determine the spatial controls of soil biochemical characteristics (which were 

measured once, Table 2.1) on stem and soil N2O fluxes, we used the plots’ annual N2O 

emissions and tested with Spearman’s Rank correlation across land uses and sites (n = 24, from 

3 sites × 2 land uses × 4 replicate plots). The statistical significance for all the tests were set at 

p ≤ 0.05. All statistical analyses were conducted using the open source software R 3.5.2 (R Core 

Team, 2018). 

2.4. Results 

2.4.1. Stem N2O emissions 

Stem N2O emissions neither differed between forest and CAF at each site (p = 0.15–0.76; Table 

2.2) nor among the three sites for each land use (p = 0.16–0.78; Table 2.2). There were also no 

differences in stem N2O emissions among tree species in forest plots at each site as well as 

across the three sites (p = 0.06–0.39; Fig. 2.1). For the forests, stem N2O emissions exhibited 

seasonal pattern with larger fluxes in the wet season than in the dry season at all sites (all p < 

0.01; Fig. 2.4, Table S2.2). However, for the CAF, we observed seasonal differences only at 

Aloum site (p < 0.01; Fig. 2.4, Table S2.3). Contributions of annual stem N2O emissions 

reached up to one-third of the total (soil + stem) N2O emissions from the forests (Table 2.2).  
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Table 2.2. Mean (±SE, n = 4) stem and soil N2O emission as well as annual stem, soil, and total (soil + stem) N2O fluxes from forest and cacao 

agroforestry (CAF) within each site in the Congo Basin, Cameroon. Means followed by different lowercase letters indicate significant differences 

between land-use types within each site and different capital letters indicate significant differences among the three sites within a land-use type 

(linear mixed-effect models with Tukey’s HSD at p ≤ 0.05).  

Site/ 

Land-use type 

Stem N2O fluxes 

(µg N m−2 stem h−1) 

Annual stem 

N2O fluxes  

(kg N ha−1 yr−1) 

Soil N2O fluxes  

(µg N m−2 soil h−1) 

Annual soil 

N2O fluxes  

(kg N ha−1 yr−1) 

Total (soil + 

stem) N2O flux 

(kg N ha−1 yr−1) 

Contribution of 

stem to total N2O 

flux (%) 

Aloum             

Forest 1.13 ± 0.22a,A 0.13 ± 0.00 13.7 ± 2.2a,A 0.87 ± 0.14 1.00 ± 0.14 13.7 ± 1.8 

CAF 0.90 ± 0.16a,A 0.09 ± 0.01 15.2 ± 2.8a,A 1.06 ± 0.17 1.15 ± 0.17 7.8 ± 1.6 

  ( 0.02 ± 0.01)     

Biba Yezoum  

Forest 2.38 ± 0.48a,A 0.87 ± 0.05 17.2 ± 2.9a,A 1.46 ± 0.23 2.33 ± 0.24 38.2 ± 3.5 

CAF 1.11 ± 0.21a,A 0.12 ± 0.01 10.6 ± 2.1a,A 0.80 ± 0.20 0.92 ± 0.20 14.8 ± 3.0 

  (0.03 ± 0.01)     

Tomba            

Forest 0.89 ± 0.10a,A 0.14 ± 0.01 15.0 ± 1.7a,A 1.18 ± 0.18 1.31 ± 0.18 11.4 ± 2.2 

CAF 0.90 ± 0.12a,A 0.12 ± 0.00 15.8 ± 2.0a,A 1.25 ± 0.14 1.37 ± 0.14 8.9 ± 0.9 

  (0.05 ± 0.02)     

Note. Annual stem and soil N2O fluxes were not statistically tested for differences among sites or between land-use types since these annual values 

are trapezoidal extrapolations (see section 2.3.3, pg. 32). Annual stem N2O emissions in parentheses are from cacao trees only. 
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Figure 2.4. Mean (±SE, n = 4) stem N2O fluxes (top panel), soil N2O fluxes (middle panel) and 

water-filled pore space (bottom panel) in Aloum site (a, d and g), Biba Yezoum site (b, e and 

h) and Tomba site (c, f and i) in the Congo Basin, Cameroon, measured monthly from May 

2017 to April 2018; grey shadings mark the dry season. 

From the 15N-tracing experiment, stem 15N-N2O emissions mirrored soil 15N-N2O 

emissions from both land uses (Fig.2.5). One day after 15N addition to the soil, substantial 15N-

N2O were emitted from the stem as well as from the soil. This diminished within two weeks as 

the added 15N recycled within the soil-N-cycling processes, diluting the 15N signatures; 

nevertheless, the 15N signatures of stem- and soil-emitted N2O remained elevated above the 

natural abundance level (Fig. 2.5). 
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Figure 2.5. Mean (±SE, n = 3) 15N2O fluxes from stems (top panel, unit is per m2 stem area) 

and soil (bottom panel, unit is per m2 ground area) in the Congo Basin, Cameroon. In May 

2018, 290 mg 15N (in the form of (15NH4)2SO4 with 98% 15N) was dissolved in 8 L distilled 

water and sprayed within 0.8-m2 area around each tree (equal to 10 mm rain), which was only 

20% of the extant mineral N in the top 10 cm soil and 49 ± 1% and 52 ± 2% water-filled pore 

space for the forest and CAF, respectively, comparable to the soil water content of the site (Fig. 

2.4). 

Across the study period, stem N2O emissions from the forests were positively correlated 

with air temperature, soil-air N2O concentrations and VPD (Table 2.3) and negatively correlated 

with WFPS and NH4
+ contents (Table 2.3). The negative correlation of stem N2O emissions 
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with WFPS was possibly spurious, as this correlation may have been driven by the 

autocorrelation between WFPS and air temperature (R = −0.59, p < 0.01, n = 33). In CAF, stem 

N2O emissions were only positively correlated with soil N2O emissions (Table 2.3).  

Table 2.3. Spearman correlation coefficients of stem N2O flux (µg N m−2 stem h−1) and soil 

N2O flux (µg N m-2 soil h−1) with air temperature (°C), water-filled pore space (WFPS) (%, top 

5-cm depth), extractable NH4
+ (mg N kg−1, top 5-cm depth), soil-air N2O concentration (ppm 

N2O at 50-cm depth), and vapour pressure deficit (VPD) (kPa), using the monthly means of the 

four replicate plots per land use across the three sites from May 2017 to April 2018 (n = 33). 

Land 

use 

Variable Soil N2O  

flux 

Air 

temp. 

WFPS NH4
+ Soil-air N2O 

concentration 

VPD 

Forest Stem N2O flux 0.25 0.39a −0.41a −0.57b 0.41a 0.62b 

 Soil N2O flux  0.07 0.15 −0.43a 0.55b −0.01 

CAF Stem N2O flux 0.60b −0.29 0.17 −0.26 0.21 0.21 

  Soil N2O flux   −0.34a 0.53b −0.14 0.51b 0.10 

b p ≤ 0.05, a p ≤ 0.01. 

 

We detected no difference in WFPS between the forest and CAF (p = 0.15–0.28; Table 

2.4) at any of the sites. For the CAF, we detected higher WFPS in the wet season compared to 

the dry season at two sites (p < 0.01; Fig. 2.4, Table S2.3) whereas there was no seasonal 

difference in WFPS for the forests at any sites (p = 0.31–0.92; Fig. 2.4, Table S2.2). At all the 

three sites, the dominant form of mineral N was NH4
+ (Table 2.4). There was generally no 

difference in soil NH4
+ and NO3

− between the wet and dry seasons (p = 0.12–0.93), except for 

the forests at two sites with larger values in the dry than wet season (p < 0.01; Tables S2 and 

S3).  
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Table 2.4. Mean (±SE, n = 4) water-filled pore space (WFPS) and extractable mineral N in the 

top 5 cm of soil in forest and cacao agroforestry (CAF) within each site in Congo Basin, 

Cameroon, measured monthly from May 2017 to April 2018. Means followed by different 

lowercase letters indicate significant differences between land-use types within each site and 

different capital letters indicate significant differences among the three sites within a land-use 

type (linear mixed-effect models with Tukey’s HSD at p ≤ 0.05). 

 Site/ Land-use 

type 

WFPS (%) NH4
+  

(mg N kg−1) 

NO3
− 

(mg N kg−1 ) 

Aloum       

Forest 64.3 ± 3.6a,A 7.3 ± 1.0a,A 6.3 ± 1.2a,A 

CAF 56.4 ± 2.5a,A 5.1 ± 0.8a,B 2.4 ± 0.6b,A 

Biba Yezoum 

Forest 41.5 ± 2.7a,B 4.9 ± 0.4b,B 2.9 ± 0.5a,B 

CAF 32.6 ± 2.7a,B 7.3 ± 0.4a,A 2.7 ± 0.6a,A 

Tomba       

Forest 48.3 ± 3.0a,B 7.6 ± 0.6a,A 5.8 ± 1.0a,A 

CAF 52.3 ± 5.1a,A 7.1 ± 0.6a,A 2.8 ± 0.6b,A 

 

2.4.2. Soil N2O emissions 

Soil N2O emissions did not differ between forest and CAF at any site (p = 0.06–0.86; Table 

2.2). Similarly, no differences in soil N2O emissions were detected among sites for each land 

use (p = 0.26–0.44; Table 2.2). Soil N2O emissions exhibited consistent seasonal patterns with 

larger fluxes in the wet than dry season for both land uses (all p < 0.01; Fig. 2.4, Tables S2 and 

S3).  

Over the measurement period, soil N2O emissions from the forests were positively 

correlated with soil-air N2O concentrations and negatively correlated with NH4
+ contents (Table 

2.3). In the CAF, soil N2O emissions were positively correlated with WFPS and soil-air N2O 
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concentrations, and negatively correlated with air temperatures (Table 2.3). We did not detect 

any correlation between annual total N2O fluxes and soil physical and biochemical 

characteristics. This was not surprising as the ranges of these soil characteristics were relatively 

small among sites, which reduce the likelihood that significant correlations will be detected. 

2.4.3. Soil biochemical characteristics 

Soil physical characteristics (clay content, bulk density) did not differ between forest and CAF 

at any of the sites (Table 2.1). Across sites, Biba Yezoum had lower clay content compared to 

the other sites for each land use (p < 0.01). Generally, the forest showed higher SOC and total 

N compared to the CAF (p < 0.01–0.05; Table 2.1).  Soil 15N natural abundance signatures, as 

an index of the long-term soil N availability, were generally similar between the forest and CAF 

except at Aloum site (p < 0.01; Table 2.1). Soil C/N ratio, another proxy for the long-term soil 

N status, was higher in the forest than in the CAF at all sites (p < 0.01–0.05). Soil pH and 

exchangeable bases were lower in the forest compared to the CAF at all sites and the converse 

was true for exchangeable Al (p < 0.01–0.05; Table 2.1). Soil ECEC did not differ between the 

land uses at two sites (p < 0.01; Table 2.1) and all were low congruent to Ferralsol soils. 

2.5. Discussion 

2.5.1. Stem and soil N2O emissions from the forest 

There has been no study on tree-stem N2O emission from Africa, nor has any study on soil N2O 

emission with year-long measurements and spatial replication been reported for the Congo 

Basin. Stems consistently emitted N2O in both land uses (Fig. 2.1 and 2.4, Table 2.2), 

exemplifying that tropical trees on well-drained soils were important contributors of ecosystem 

N2O emission. So far, there are only two tree species of tropical lowland forest reported with 

measurements of stem N2O emissions (Welch et al., 2019). Our present study included 23 tree 

species and their comparable stem N2O emissions, at least from highly weathered Ferralsol 
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soils, across sites over a year of measurements provided support to our spatial extrapolation 

based on DBH of trees in the sites. Mean stem N2O fluxes from our study were within the range 

of those reported for temperate forests (0.01–2.2 μg N m−2 stem h−1; Díaz-Pinés et al., 2016; 

Machacova et al., 2016; Wen et al., 2017), but substantially lower than the reported stem N2O 

emissions of 51–759 µg N m−2 stem h−1 for a humid forest in Panama (Welch et al., 2019). 

However, Welch et al. (2019) measured stem N2O emissions at a lower stem height (0.3 m) 

compared to our study (1.3 m), which may partly explain their much larger N2O emissions, as 

another study reported that larger N2O emissions occur nearer to the stem base of trees (Barba 

et al., 2019b). Moreover, the consistently higher stem than soil N2O emissions found by Welch 

et al. (2019), which we did not observe in our study, may point to production of N2O within the 

stem (e.g., Lenhart et al., 2019). Nonetheless, such high stem N2O emissions as reported by 

Welch et al. (2019) have not been observed anywhere else under field conditions. 

Our annual soil N2O emissions from forests (Table 2.2) were lower than the reported 

global average for humid tropical forests (2.81 kg N ha−1 yr−1; summarised by Castaldi et al., 

2013). In contrast, the N2O emissions from our forest soils were comparable to those reported 

for lowland forests on Ferralsol soils in Panama (0.35-1.07 kg N ha−1 yr−1; Matson et al., 2017), 

and lowland forests on Acrisol soils in Indonesia (0.9 & 1.0 kg N ha−1 yr−1; Hassler et al., 2017). 

These were possibly due to the generally similar soil N availability in our forest sites as these 

forest sites in Panama and Indonesia, indicated by their comparable soil mineral N contents and 

soil 15N natural abundance signatures. 

In comparison with studies from sub-Saharan Africa, annual soil N2O emissions from 

our forests were lower than the annual N2O emissions reported for the Mayombe forest in 

Congo (2.9 kg N ha−1 yr−1; Serca et al., 1994), Kakamega mountain rainforest in Kenya (2.6 kg 

N ha−1 yr−1; Werner et al., 2007), and Ankasa rainforest in Ghana (2.3 kg N ha−1 yr−1; Castaldi 
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et al., 2013), but similar in magnitude as those reported for Mau Afromontane forest in Kenya 

(1.1 kg N ha−1 yr−1; Wanyama et al., 2018). Although these African sites have similar 

precipitation level and highly weathered acidic soils as our study sites, the Kakamega rainforest 

in Kenya had higher SOC (7.9–20%) and N contents (0.5–1.6%) in the topsoil layer compared 

to our forest sites (2.8–4.7% SOC, 0.2–0.4% total N), which may explain its correspondingly 

higher soil N2O emissions. The study in Congo (Serca et al., 1994), however, was conducted 

only in a short campaign (two rainy months and one dry month) with less sampling frequency 

and spatial replication, which may not be a good representation of the spatial and temporal 

dynamics of soil N2O fluxes to achieve annual and large-scale estimate. 

2.5.2. Source of tree-stem N2O emissions and their contribution to total (soil + stem) 

N2O emissions 

Emitted N2O from stems were found to originate predominantly from N2O produced in the soil, 

as shown by the 15N tracing experiment (Fig. 2.5). Additionally, the positive correlations of 

stem N2O emissions with soil-air N2O concentrations and soil N2O emissions (Table 2.3) 

suggest that the seasonal variation in stem N2O emissions (Fig. 2.4, Table S2.2) was likely 

driven by the temporal dynamics of produced N2O in the soil, which partly supported our 

second hypothesis. While there has been suggestions of within-tree N2O production (e.g., 

Lenhart et al., 2019), our finding from the 15N tracing experiment, combined with the 

correlations of stem N2O emissions with VPD and air temperature, pointed to a transport 

mechanism of dissolved N2O in soil water by transpiration stream, which has been reported to 

be important for upland trees that do not have aerenchyma (Machacova et al., 2016; Wen et al., 

2017; Welch et al., 2019). 

The contributions of up-scaled stem N2O emissions from our studied forests to total (soil 

+ stem) N2O emissions (Table 2.2) were higher than those reported for temperate forests (1–
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18%; Díaz-Pinés et al., 2016; Machacova et al., 2016; Wen et al., 2017). Given the higher stem 

N2O emissions in the wet than dry seasons (Table S2.2), coupled with the fact that we 

consistently measured positive fluxes or net stem N2O emissions throughout our measurement 

period (Fig. 2.4), we conclude that tree stems in these well-drained Ferralsol soils were efficient 

conduits for releasing N2O from the soil. This has significant implications especially during the 

rainy season as this pathway bypasses the chance for complete denitrification (N2O to N2 

reduction) in the soil. 

2.5.3. Factors controlling temporal variability of stem and soil N2O fluxes 

The positive correlation of stem N2O emissions with VPD and air temperature in the forest 

suggests for transport of N2O via sap flow, for which the latter had been shown to be stimulated 

with increasing VPD and air temperature (O’Brien et al., 2004; McJannet et al., 2007). Soil 

water containing dissolved N2O is transported through the xylem via the transpiration stream 

and eventually emitted from the stem surface to the atmosphere (Díaz-Pinés et al., 2016; Welch 

et al., 2019; Wen et al., 2017).  

Soil moisture has been shown to affect strongly the seasonal variation of soil N2O 

emissions from tropical ecosystems, with increases in soil N2O emissions by predominantly 

denitrification process at high WFPS (Werner et al., 2006; Koehler et al., 2009b; Corre et al., 

2014; Matson et al., 2017). The larger stem N2O emissions from the forest and soil N2O 

emissions from both land uses in the wet than the dry seasons (Tables S2.2 and S2.3) signified 

the favourable soil N2O production during the wet season, which suggests that denitrification 

was the dominant N2O-producing process. However, the moderate WFPS across the year (Table 

2.4) suggests that nitrification may also have contributed to N2O emissions, especially at Biba 

Yezoum (with lower rainfall and clay contents; Tables 2.1 and S21) where the low WFPS 

(Table 2.4) likely favoured nitrification (Corre et al., 2014). For the forest, the negative 
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correlation of the stem and soil N2O emissions with soil NH4
+ (Table 2.3) may be indicative of 

a conservative soil N cycle in our forest sites, as supported by the dominance of soil NH4
+ over 

NO3
− (Table 2.4) and by the lower soil N2O emissions at our sites compared to NO3

─-dominated 

systems (Davidson et al., 2000a). Although the soil mineral N content alone does not indicate 

the N-supplying capacity of the soil, the relative contents of NH4
+ over NO3

− can be a good 

indicator of whether the soil-N cycling is conservative with low N2O losses or increasingly 

leaky (Corre et al., 2010, 2014). 

2.5.4. Land-use change effects on soil N2O emissions 

The annual soil N2O emissions from CAF (Table 2.2) were comparable with those reported for 

rubber agroforestry in Indonesia (0.6–1.2 kg N ha−1 yr−1; Hassler et al., 2017) and from 

multistrata agroforestry systems in Peru (0.6 kg N ha−1 yr−1; Palm et al., 2002). However, our 

soil N2O emissions from CAF were higher than those from an extensively managed 

homegarden in Tanzania (0.35 kg N ha−1 yr−1; Gütlein et al., 2018). In a review, Kim et al. 

(2016b) reported mean annual N2O emission from tropical agroforestry systems to be 7.7 kg N 

ha−1 yr−1. Most of the data used in their review were from intensively managed agroforestry 

systems with varied fertilizer inputs, which were absent in our extensively managed CAF 

systems. In line with this, our measured soil N2O emissions from the CAF were also lower than 

the emissions reported for 10-23-year old CAF in Indonesia (3.1 kg N ha−1 yr−1; Veldkamp et 

al., 2008). Our measured N2O emissions provide the first estimates for traditional CAF systems 

in Africa, as these production systems were not represented in extrapolation of GHG budgets 

despite their extensive coverage in Africa. 

Soil N2O emissions did not differ between forest and CAF systems, which supported 

our first hypothesis. This is possibly due to the presence of leguminous trees in both systems 

(Table S2.1), which can compensate for N export from harvest and other losses (Erickson et 
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al., 2002; Veldkamp et al., 2008). Although studies have hinted on increased N2O emissions 

from managed systems that utilize leguminous trees as cover crops (Veldkamp et al., 2008), the 

similar abundance of leguminous trees between forest and CAF at our sites may have offset this 

effect (Table S1). Previous studies have indeed reported similar soil N2O fluxes between 

reference forests and unfertilized agroforestry systems (Van Lent et al., 2015). Despite the 

general absence of heavy soil physical disturbance, cultivation and fertilization in these 

traditional CAF systems, some soil biochemical characteristics have decreased (Table 2.1); 

however, these did not translate into detectable differences in soil N2O emissions with those 

from forest. 

2.6. Implications 

The biophysical conditions of our forest sites were representative of approximately two-thirds 

of the rainforest area in the Congo Basin (1.137 × 106 km2; Fig. 3), considering the same 

Ferralsol soils, similar elevation (≤ 1000 m asl), and annual rainfall between 1,500 and 2,100 

mm yr−1.  Using the total (soil + stem) N2O emission from our forest sites (1.55 ± 0.20 N2O-N 

kg ha−1 yr−1; Table 2.2), our extrapolated emission for the two-thirds of the Congo Basin was 

0.18 ± 0.05 Tg N2O-N yr−1 (error estimate is the 95% confidence interval). This accounted 52% 

of the earlier estimate of soil N2O emissions from tropical rainforests in Africa (0.34 Tg N2O-

N yr−1; Werner et al., 2007), or 27% based on the more recent estimate (0.65 Tg N2O-N yr−1; 

Valentini et al., 2014). We acknowledge, however, that there are uncertainties in our 

extrapolation (as is the case of these cited estimates) because our up-scaling approach from plot 

to regional level did not account for the spatial variability of large-scale drivers of soil N2O 

emissions, such as soil texture, landforms and vegetation characteristics (e.g. Corre et al., 1999). 

These limitations of our estimate of N2O source strength for the Congo Basin rainforests call 

for further investigations in Africa to address the geographic bias of studies in the tropical 

region (e.g. Powers et al., 2011). 
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 Our year-round measurements of stem and soil N2O fluxes were the first detailed study 

carried out in the Congo Basin, with key implications on improved estimates of N2O budget for 

Africa. Our results revealed that trees on well-drained, highly weathered soils served as an 

important N2O emission pathway, with the potential to overlook up to 38% of N2O emissions 

if trees are not considered in the ecosystem N2O budget. Additionally, forest conversion to 

traditional, mature (> 20 years old) CAF systems had no effect on stem and soil N2O emissions, 

because of similarities in soil moisture and soil texture, absence of fertilizer application, and 

comparable abundance of leguminous trees in both land uses, which can compensate for N 

export from harvest or other losses. Further multi-temporal and spatially replicated studies are 

needed to provide additional insights on the effect of forest conversion to other land uses on 

GHG fluxes from the African continent in order to improve GHG budget estimations for the 

region.  
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2.9. Appendix 

Table S2.1. Vegetation and site characteristics of the study sites on highly weathered soils in 

the Congo Basin, Cameroon. 

Site Aloum Biba Yezoum Tomba 

Land use Forest 

Cacao 

agroforestrya Forest 

Cacao 

agroforestrya Forest 

Cacao 

agroforestrya 

Tree density (n ha−1) 594 ± 29 403 ± 60 619 ± 16 267 ± 24 453 ± 34 430 ± 51 

  (140 ± 37)  (96 ± 16)  (292 ± 79) 

Total basal area (m2 

ha−1) 

35 ± 1.4 27 ± 2.5 33 ± 2.9 27 ± 2.0 34 ± 2.3 30 ± 3.2 

  (1.5 ± 0.5)  (0.9 ± 0.2)  (3.8 ± 1.3) 

Legume abundance 

(% of the number of 

trees) 

7.7 ± 1.7 5.9 ± 1.4 9.3 ± 1.9 6.5 ± 2.3 7.4 ± 1.6 4.8 ± 1.4 

Tree height (m) 18.6 ± 0.5 15.1 ± 0.9 20.6 ± 0.5 16.1 ± 0.4 19.5 ± 0.4 11.7 ± 1.7 

  (6.8 ± 0.1)  (6.2 ± 0.3)  (6.1 ± 0.3) 

Diameter at breast 

height (cm) 

23.2 ± 0.6 23.3 ± 1.6 22.6 ± 0.8 27.2 ± 0.2 24.8 ± 1.0 23.5 ± 2.7 

  (11.4 ± 0.2)  (10.8 ± 0.2)  (12.3 ± 0.6) 

Three most abundant 

tree species in the 

forest plots at each 

siteb 

Cleistopholis patens 

Coelocaryon preussi 

Pycnanthus angolensis 

 

Celtis sp. 

Diospyros sp 

Petersianthus 

macrocarpus 

Celtis sp. 

Carapa procera  

Funtumia elastica 

Elevation (m above 

sea level) 

651 674 752 

Precipitation (mm 

yr−1; from 1982 to 

2012)c 

2064 1639 1577 

Note. All vegetation characteristics were determined from trees with ≥ 10 cm diameter at breast 

height in both forest and cacao agroforestry.  

a For cacao agroforestry, the first values are for both cacao and remnant shade trees, and the 

second values in parentheses are for cacao trees only. 

b Determined using Importance Value Index (IVI = relative density + relative frequency + 

relative dominance (Curtis and McIntosh, 1951)). 

c  Climate-Data.org, 2019 
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Table S2.2. Seasonal mean (±SE, n = 4) water-filled pore space (WFPS), extractable mineral 

N (measured in the top 5 cm of soil) and nitrous oxide (N2O) fluxes in forests on highly 

weathered soils in the Congo Basin, Cameroon. Means followed by different lowercase letters 

indicate significant differences between seasons for each site (linear mixed-effect models with 

Tukey’s HSD at p ≤ 0.05). 

Site/ 

season 

Stem N2O flux  

(µg N m−2 

stem h−1) 

Soil N2O flux  

(µg N m−2 h−1) 

WFPS  

(%) 

Soil NH4
+  

(mg N 

kg−1) 

Soil NO3
−  

(mg N 

kg−1) 

Wet seasson           

Aloum 1.56 ± 0.36a 16.7 ± 3.7a 66.2 ± 2.2a 6.0 ± 0.6a 6.0 ± 0.8a 

Biba Yezoum 2.92 ± 0.73a 22.9 ± 4.9a 44.8 ± 2.6a 4.4 ± 0.3a 2.2 ± 0.2b 

Tomba 1.01 ± 0.13a 18.6 ± 2.2a 49.4 ± 1.8a 6.9 ± 0.5b 5.4 ± 0.8a 

Dry season           

Aloum 0.61 ± 0.14b 10.0 ± 1.8b 62.0 ± 3.6a 8.7 ± 1.3a 6.6 ± 1.0a 

Biba Yezoum 1.73 ± 0.57b 10.3 ± 1.4b 36.3 ± 3.2a 5.5 ± 0.4a 3.6 ± 0.5a 

Tomba 0.69 ± 0.15b 8.9 ± 1.9b 46.2 ± 3.1a 8.7 ± 0.8a 6.5 ± 1.1a 

Table S2.3. Seasonal mean (±SE, n = 4) water-filled pore space (WFPS), extractable mineral 

N (measured in the top 5 cm of soil) and nitrous oxide (N2O) fluxes in cacao agroforestry sites 

located on highly weathered soils in the Congo Basin, Cameroon. Means followed by different 

lowercase letters indicate significant differences between seasons for each site (linear mixed-

effect models with Tukey’s HSD at p ≤ 0.05). 

Site/ 

season 

Stem N2O flux  

(µg N m−2 

stem h−1) 

Soil N2O flux  

(µg N m−2 h−1) 

WFPS  

(%) 

Soil NH4
+  

(mg N 

kg−1) 

Soil NO3
− 

(mg N kg−1) 

Wet season      

Aloum 1.21 ± 0.27a 22.6 ± 4.7a 60.3 ± 1.6a 4.3 ± 0.4a 2.1 ± 0.4a 

Biba Yezoum 1.43 ± 0.36a 15.0 ± 3.5a 38.2 ± 1.7a 7.0 ± 0.6a 2.2 ± 0.4a 

Tomba 1.05 ± 0.18a 21.2 ± 2.6a 53.4 ± 2.4a 7.3 ± 0.8a 2.5 ± 0.3a 

Dry season      

Aloum 0.53 ± 0.07b 6.4 ± 0.7b 51.7 ± 1.9b 6.0 ± 1.0a 2.7 ± 0.6a 

Biba Yezoum 0.74 ± 0.12a 5.3 ± 1.3b 25.9 ± 1.8b 7.5 ± 0.6a 3.2 ± 0.7a 

Tomba 0.63 ± 0.06a 6.2 ± 1.2b 50.4 ± 6.2a 6.9 ± 0.9a 3.4 ± 0.7a 
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3.1. Abstract 

Despite increasing evidence from the last decade pointing to significant tree-stem CH4 

emissions, estimates of CH4 budget from terrestrial ecosystems are still restricted to net fluxes 

from the soil surface only. The vast majority of tree greenhouse gas (GHG) emission studies 

have been conducted in tropical wetland forests, but it remains unknown whether trees in 

tropical lowland forests on heavily weathered soils, are substantial contributors to CH4 

emissions. Additionally, despite the availability of data on trace soil GHG fluxes from other 

parts of the world, very little is known about the effect of land-use change on trace GHG fluxes 

in natural African ecosystems. Here, we measured stem and soil CH4 fluxes and soil CO2 fluxes 

with forest conversion to cacao agroforestry in central and southern Cameroon. Stem and soil 

trace gas fluxes were measured monthly from May 2017 to April 2018. All the studied trees 

emitted measureable CH4 at some point during the measurement period. The annual stem CH4 

emissions were 0.33 ± 0.06 kg C ha
−1

 yr
−1

 from the forest and 0.20 ± 0.03 kg C ha
−1

 yr
−1

 from 

cacao agroforestry, whereas the annual soil CH4 uptake was -2.95 ± 0.40 kg C ha
−1

 yr
−1

 for the 

forest and -3.42 ± 0.44 kg C ha
−1

 yr
−1

 for the cacao agroforestry. Thus, the balance between the 

soil and stem CH4 fluxes indicated that there was a net CH4 sink in both land uses. Our upscaling 

suggested that tree emissions offset 5–18% and 3–14% of the soil CH4 sink in the forest and 

cacao agroforestry, respectively. The annual soil CO2 emissions were 10.1 ± 0.27 Mg C ha
−1

 

yr
−1

 for the forest, and 10.3 ± 0.42 Mg C ha
−1

 yr
−1

 for the cacao agroforestry. Forest conversion 

to traditional, mature cacao agroforestry had no effect on stem and soil trace gas fluxes (p = 

0.12 – 0.95). Overall, our results demonstrate that tropical trees on well drained, highly 

weathered soils represent potential CH4 emission pathways that have largely been ignored, with 

stem CH4 emissions constituting a considerable offset of the soil CH4 sink.  

Keywords: Africa, cacao agroforest, carbon dioxide, Congo Basin, land-use change, methane, 

soil respiration, trace greenhouse gases, tree stem emissions, tropical rainforest 
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3.2. Introduction 

Carbon dioxide (CO2) and methane (CH4) constitute two of the most important trace greenhouse 

gases (GHG), with CH4 particularly having 32–45 times the global warming potential of CO2 

by mass over a century (Neubauer & Megonigal, 2015). Forest CO2 dynamics feature 

prominently in global carbon cycle studies, but the role of forests in the CH4 cycle are relatively 

poorly understood. Although a considerable number of research have been undertaken to 

constrain the net balance of CH4, the global CH4 budget is still characterised by high uncertainty 

(Saunois et al., 2016), especially for the tropics (Valentini et al., 2014). The widely differing 

CH4 estimates between bottom-up models and top-down approaches highlights the considerable 

uncertainty regarding the relative contributions of individual sources and sinks of CH4 (IPCC, 

2013). There is increasing evidence from the last decade pointing to significant tree stem CH4 

emissions from wetland and upland (well-drained) forests (Barba et al., 2019a; Covey & 

Megonigal, 2019). Yet, estimates of CH4 budget from terrestrial ecosystems are still restricted 

to net fluxes from soils only (Kirschke et al., 2013; Saunois et al., 2016). 

The variation and magnitude of stem CH4 emissions may depend on the tree species, 

age, site characteristics and environmental conditions (Barba et al., 2019a; Covey & 

Megonigal, 2019). Stem emitted CH4 could be produced within the heartwood of trees by 

methanogenic archaea populations (Covey et al., 2012; Wang et al., 2016, 2017; Pitz & 

Megonigal, 2017; Yip et al., 2019), or could originate from soil-produced CH4 under anoxic 

conditions by methanogens (Pitz & Megonigal, 2017; Barba et al., 2019b; Welch et al., 2019). 

The vast majority of tree GHG emission studies have been conducted in tropical wetland 

forests, where trees have adapted by developing specialist tissues such as lenticels and 

aerenchyma tissue to facilitate the transport of atmospheric oxygen to anoxic soil layers 

(Pangala et al., 2014). These aerenchyma tissue have also been related to the transport of 

dissolved CH4 from the soil through the tree, followed by diffusion through the stem surface to 
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the atmosphere largely through the lenticels (Pangala et al., 2013, 2017). However, recent 

studies have observed tree stem CH4 emissions in well-drained forests where soils 

predominantly acts as CH4 sinks (Warner et al., 2017; Pitz et al., 2018; Barba et al., 2019b; 

Welch et al., 2019). Here, trees typically lack aerenchyma tissue, and hence, stem CH4 

emissions may originate from root uptake of dissolved CH4 produced in deep anoxic soil layers 

or methanogenic microsites (von Fischer & Hedin, 2007; Brewer et al., 2018). 

Plant-mediated CH4 fluxes have been found to be significant at the ecosystem level; tree 

stem fluxes accounted for 62–87% of the total ecosystem CH4 flux in a tropical forested 

peatland in Panama (Pangala et al., 2013), and accounts for half of the CH4 emission in the 

Amazonian floodplain (Pangala et al., 2017). Presently, most tropical forests grow on well-

drained soils that tend to act as significant sinks for atmospheric CH4 (Kiese et al., 2003). 

Dutaur & Verchot (2007) estimated that about 28% of the global CH4 sink occur in tropical 

soils. However, it is possible that even minor CH4 emissions from tree stems could extrapolate 

to large fluxes globally, which may be significant enough to alter the sink strength of tropical 

forests, consequently influencing global CH4 budgets. Indeed, previous studies have shown that 

emissions from tree stems could reduce the CH4 sink of well-drained forests (Pitz & Megonigal, 

2017). This emphasizes the need for further research on the sources, temporal and spatial 

patterns and magnitudes of tree stem CH4 fluxes in tropical forests. To date, only one study has 

been published on tree stem CH4 emissions from tropical forests on well-drained soils, and this 

was conducted in Panama. All tree stem bases in this study emitted significant CH4, in contrast 

to soil CH4 uptake and emissions in the dry and wet season, respectively. However, until now, 

the relative contribution of tree to total (soil + stem) CH4 fluxes from lowland tropical forests 

on well-drained soils remains unknown.  

Tropical soils are the largest natural source of atmospheric CO2, contributing ca. 64% 

of the estimated global mean soil respiration of about 91 Pg C yr−1 (Hashimoto et al., 2015). 
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Soil CO2 efflux at the soil surface results from the combined activity of autotrophic (root) and 

heterotrophic (soil fauna and microbial communities) respiration processes (Luo & Zhou, 

2006). Soil CO2 fluxes are temporarily influenced by soil moisture and temperature (Werner et 

al., 2007; Wanyama et al., 2019). Spatial differences in soil CO2 fluxes are driven by changes 

in soil physical and chemical properties (Raich & Schlesinger, 1998; Luo & Zhou, 2006), 

following land-use change most notably the texture of the soil due its strong effect on gas 

diffusivity within soils (Sotta et al., 2006). Tropical forests also play a significant role in 

atmospheric CH4 production and uptake (Keller & Matson, 1994), with well-drained soils 

constituting the largest biogenic sink of atmospheric CH4 (Dutaur & Verchot, 2007). Soil CH4 

fluxes results from the simultaneous activities of methanogens (CH4 producers) under anaerobic 

conditions and methanotrophs (CH4 consumers) in aerobic soil conditions. For well-drained 

soils such as in our sites, CH4 oxidation by methanotrophic bacteria exceeds CH4 production, 

resulting in net CH4 sink.  Soil CH4 fluxes are primarily controlled by soil moisture and soil 

texture, with the most important distal regulators been soil fertility and microbial activity 

(Veldkamp et al., 2013; Hassler et al., 2015). Presently, Africa remains the continent with the 

lowest numbers of published field studies on soil trace GHG fluxes from the tropical forest 

biome. Consequently, field studies covering sufficiently large spatial and temporal scales 

remains key to improving the sink-source estimates of these GHG for this important region 

(Valentini et al., 2014; Kim et al., 2016b). 

Relatively well preserved, the high level of species endemism makes the Congo Basin 

an important repository of biodiversity and other ecosystem services, supporting the livelihood 

of 60 million people (de Wasseige et al., 2014). However, conversion of natural forests to 

agricultural lands such as traditional cacao agroforestry is widespread in the Congo Basin 

countries, most notably in Cameroon (Sonwa et al., 2007). These cacao farms are typically 

hand-planted under the shade of forests’ remnant trees, and are extensively managed by 
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mechanical weeding and no fertilizer inputs. Nevertheless, changes in land use have been found 

to affect soil CO2 and CH4 fluxes due to changes in soil texture, soil bulk density, soil water 

content and management practices such as N-fertilization of agricultural lands (Veldkamp et 

al., 2008, 2013; Hassler et al., 2015). Despite the availability of data on trace soil GHG fluxes 

from other parts of the world, very little is known about the effect of land-use change on CH4 

and CO2 fluxes in African ecosystems.  

Given these knowledge gaps, our study provides the first spatially replicated 

quantification with a full year of measurements of stem and soil CH4 fluxes and soil CO2 fluxes 

in the Congo Basin, and contributes to the much-needed information on GHG budget from these 

important ecosystems. Our objectives were to (i) assess whether trees in tropical rainforests and 

CAF are important conduits of CH4, (ii) quantify changes in soil-atmosphere fluxes of CH4 and 

CO2 fluxes with land-use change, and (iii) determine the temporal and spatial controls of stem 

and soil CH4 and CO2 fluxes. Stem and soil GHG fluxes were measured in the reference forest 

and the converted CAF at monthly intervals from May 2017 to April 2018. We hypothesized 

that (i) stem and soil CH4 and CO2 fluxes from extensively managed CAF systems (unfertilized 

and manual harvest) will be comparable to the natural forests, and (ii) trees in tropical forests 

and cacao trees in cacao agroforestry will emit CH4 from stems. 

3.3. Materials and methods 

3.3.1. Study area and experimental design 

Stem and soil GHG fluxes were measured at three study sites (Tomba, Biba Yezoum and 

Aloum; Fig. 1.1) located in south and central regions of Cameroon, where conversion of forest 

to smallholder cacao agroforests is widespread (Sonwa et al., 2007). The study sites have a 

mean annual temperature of 23.5 °C (Table S1.1). Rainfall is bimodal, with rainy seasons from 

March to June and from September to November (Fig. 1.2). The geological substrate of the 
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study sites are underlain by Precambrian basement rocks made up of metamorphic schists, 

phyllites, quartzites and gneiss (Gwanfogbe et al., 1983). The soils are heavily weathered and 

classified as Ferralsols (IUSS Working Group WRB, 2015).  

We investigated two land-use types in each site: the reference forest and the converted 

CAF system. The cacao farms typically occurred in continuous clusters surrounded by mosaics 

of secondary forest and cash crop farms, and were hand-planted under the shade of a few 

remnant forest trees that were selectively retained by farmers during forest clearing. On 

average, each cacao agroforest had a size of about 0.95 ha (with a range of 0.3–2.5 ha). 

Interviews with farmers revealed that localised weeding was done using hand tools, and none 

of the studied cacao farms have been fertilised. A more detailed description of the study sites 

and experimental design is reported in Chapter 2.3. 

For each of the two land-use types per site, we selected four replicate plots; each 

replicate plot was 50 m × 50 m with a minimum distance of 100 m between plots (Fig. 1.1). 

Within each plot, we identified and measured the diameter at breast height (DBH) and height 

of all stems including cacao trees with a DBH ≥ 10 cm. Stem and soil trace gas fluxes and all 

associated measurements were then conducted within a 40 m × 40 m core zone in each plot in 

order to minimise edge effects.  

We assessed the effects of land-use change on stem and soil trace GHG fluxes by first 

testing the implicit assumption that the initial conditions between the forest and cacao 

agroforests were similar prior to forest conversion. To do this, we compared the clay contents 

in 30-50 cm depth between the forest and cacao agroforests within each site. There was no 

difference in clay contents between the two land uses in each site (Table 2.1), which suggest 

that both land uses in each site had comparable initial soil conditions prior to conversion. 

Therefore, any measured differences in GHG fluxes can be attributed solely to land-use change. 
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Such as described in Chapter 2.3 above, we measured stem CH4 fluxes by selecting six 

cacao trees per replicate plot in the cacao agroforests, and six trees of the most dominant species 

within each replicate plot in the forest, based on their importance value index (IVI) (Table S1.1). 

For each of the six selected trees per plot, we measured stem CH4 fluxes at 1.3 m height above 

the ground at monthly interval from May 2017 to April 2018. We also sampled stem fluxes at 

different heights along the stems of 16 individual trees per land use type in May 2018, in order 

to assess the influence of tree height on stem CH4 fluxes. Stem chambers were installed at three 

different heights (1.3 m, 2.6 m and 3.9 m above the ground) per tree in the forest, and at two 

different heights (1.3 m and 2.6 m above the ground) per tree in the cacao agroforests due to 

the limited height of the cacao trees. 

Within each plot, we also installed four permanent chamber bases, which were randomly 

distributed within the 40 x 40 m core zone to measure CH4 and CO2 fluxes from the soil surface. 

Additionally, we permanently installed a stainless steel soil gas sampler (1-mm internal 

diameter) located ~1 m from the measured trees in each replicate plot to measure soil-air CH4 

concentrations at 50 cm below the soil surface. Stem and soil CH4 fluxes and soil CO2 fluxes 

were measured monthly from May 2017 to April 2018, together with meteorological and soil 

variables.  

3.3.2. Measurement of stem and soil CH4 fluxes and soil CO2 fluxes  

Stem CH4 fluxes were measured using stem chambers made of polyethylene-terephthalate foil 

(same method as described in Chapter 2.3.2). One month prior to the measurement, we prepared 

trees for stem chamber installation by applying permanent strips of silicone (Otto Seal ® S110, 

Hermann Otto GmbH, Fridolfing, Germany) around the stem of each tree, 20 cm apart, with 

the center of the two strips at a height between 1.2 m and 1.4 m from the ground. The installation 

of these stem chambers is quick, hence, new chambers were installed to the stems on every 
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measurement date rather than installing them permanently. The permanent silicone strips were 

used as a mark to ensure that the same 20-cm length stem section was sampled. A Luer-lock 

sampling port was fixed onto the foil, which was then wrapped around the tree stem on top of 

the silicone strips, and the vertical ends of the foil taped together to form a chamber around the 

stem. The foil was then shrunk to fit closely onto the silicone strips using a heat gun, after which 

we attached polyethylene foam over the foil above and below the silicone strips. The foams 

were tightly adjusted over the foil and silicone with lashing straps using ratchet tensioners to 

ensure an airtight fitting. Using a syringe fitted with a Luer-lock one-way check valve, we 

completely evacuated the headspace inside the stem chamber, and replaced it with a known 

volume of ambient air using a manual bicycle pump, to allow for stem CH4 flux calculations. 

Immediately after stem chamber refilling and closure, a 25-mL gas sample was taken with 

syringe and stored with overpressure in pre-evacuated 12-mL exetainers (Labco Limited, 

Lampeter, UK) with rubber septa, and then gain after 20, 40 and 60 minutes. 

Soil CH4 and CO2 fluxes were measured simultaneously with stem CH4 fluxes using 

vented, static chambers (made of polyvinyl chloride pipe with 0.04 m2-area and ~0.02-m 

insertion into the soil) that were permanently installed in the soil one month prior to the start of 

trace gas measurements. The chamber bases were covered with vented, static polyethylene 

hoods (resulting in 11 L total headspace volume) on each sampling day. From each chamber, 

samples of the enclosed headspace were taken four times over a 32-minute closure period: t0 at 

2 minutes after closure and three samples thereafter at 10-minute interval. The gas samples 

were taken using a 25-mL syringe and immediately stored with overpressure in pre-evacuated 

12-mL exetainers.  

On the same day, soil-air CH4 concentrations were sampled from the permanently 

installed stainless steel sampling probes by fitting the probes with Luer-lock sampling ports. 

Using a syringe, we first removed and discarded the top 5-mL of air to clear the probes of 
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“dead” air volume, after which we took 25 mL gas samples and stored them in 12 mL pre-

evacuated exetainers. The exetainers we used have been confirmed to be leak-proof in our 

previous studies (e.g. Hassler et al., 2015; Matson et al., 2017; van Straaten et al., 2019). All 

the gas samples were brought to the University of Goettingen, Germany for analysis.  

3.3.3. Trace greenhouse gas analysis and flux rate calculation 

Gas samples were analysed for CH4 and CO2 concentrations using a gas chromatograph (SRI 

8610C, SRI Instruments Europe GmbH, Bad Honnef, Germany), equipped with a flame 

ionization detector (FID), an electron capture detector (ECD) and an autosampler (AS-210, SRI 

Instruments). Before analysing the gas samples, the gas chromatograph was calibrated with 

three calibration gases (Deuste Steininger GmbH, Mühlhausen, Germany), taking into the 

consideration the concentration ranges of our field samples. Stem and soil CH4 and soil CO2 

fluxes were calculated from the linear change in headspace concentrations over time of chamber 

closure, and corrected with air temperature and atmospheric pressure measured in each replicate 

plot at the time of sampling. Individual chamber measurements were quality checked using the 

linear increase in CO2 concentration with time. In a small number of cases where CO2 

concentration curved at a particular point, we excluded the data point and calculated the fluxes 

based on the remaining three sampling data points that showed a linearity of increase in CO2 

concentrations with time (R2 > 0.9). Nonetheless, our data analyses included zero and negative 

fluxes in order to avoid overestimation of stem and soil fluxes. 

We calculated annual stem and soil CH4 and CO2 fluxes following the same 

extrapolation method described in Chapter 2.3.3 (pg. 32) above. The annual CH4 fluxes from 

each replicate plot, expressed on a hectare basis, were represented by the sum of the stem and 

soil CH4 fluxes. 
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3.3.4. Soil and climatic variables 

Concurrent with stem and soil trace gas flux measurements, we determined soil and air 

temperature, moisture and mineral N concentrations from the top 0.05 m of soil near the 

chamber bases on each sampling day. Soil and air temperature were measured close to the stem 

and soil chambers using a digital thermometer (GTH 175, Greisinger electronic GmbH, 

Regenstauf, Germany). Soil moisture and mineral N concentrations were determined from a 

composite sample that were pooled from four sampling locations ~1 m away from the chamber 

bases per replicate plot on each sampling day. Some of the soil subsample were oven-dried at 

105 °C for 24 h to determine the gravimetric moisture content, and then converted to soil water-

filled pore space (WFPS) using the mineral soil particle density of 2.65 g cm−3 and the average 

soil bulk densities from each plot (Table 2.1). Soil mineral N concentrations were extracted in-

situ in the field by adding some of the composite soil samples to already prepared bottles filled 

with 150 mL solution of 0.5 M K2SO4 and shaken thoroughly. The mineral N samples were 

shaken for an hour and filtered through K2SO4 pre-washed filter papers upon arrival at the field 

station. The filtered extracts were then stored in 20 mL scintillation vials and immediately 

frozen for transport by air to the University of Goettingen, Germany, where they were analysed 

for NH4
+ and NO3

− concentrations using continuous flow injection colorimetry (SEAL 

Analytical AA3, SEAL Analytical GmbH, Norderstedt, Germany).  

We also recorded the relative humidity, air temperature and solar irradiance of each plot 

over the course of each sampling day using a portable weather station. From this data, we 

calculated vapour pressure deficit (VPD) using measured air temperature and relative humidity 

(Allen et al., 1998). 

In April 2017, we conducted a one-time soil sampling at three depth intervals down to 

50 cm to determine the soil biochemical characteristics. To capture the spatial variability in 
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each replicate plot, soil samples were collected from ten randomly selected sampling points per 

plot from the top 0-0.1 m depth, and five samples each from 0.1–0.3 and 0.3–0.5 m depths. In 

total, 480 soil samples were collected from the 24 plots (three sites × two land uses × four 

replicate plots × 20 soil samples per plot). The soil samples were air-dried, 2-mm sieved, 

transported by air to Germany and dried again at 40 °C prior to analysis in the laboratory. Soil 

pH was analysed from a 1:2.5 soil-to-distilled water ratio. We determined the soil texture of 

each replicate plot using the pipette method after iron oxide and organic matter removal 

(Kroetsch & Wang, 2008). The effective cation exchange capacity (ECEC) was determined 

from the soil samples by percolating with unbuffered 1M NH4Cl and measuring the 

exchangeable element concentrations (Al, Ca, Fe, K, Mg, Mn, and Na) in the percolates using 

an inductively coupled plasma-atomic emission spectrometer (ICP-AES; iCAP 6300 Duo 

VIEW ICP Spectrometer, Thermo Fischer Scientific GmbH, Dreieich, Germany). Base and Al 

saturations were calculated, respectively, as the percent exchangeable bases (Mg, Ca, K and 

Na) and Al of the ECEC. Grounded soil and litter samples were used to analyse for total N, 

total organic C (using a CN analyser; Vario EL Cube; Elementar Analysis Systems GmbH, 

Hanau, Germany) and 15N natural abundance signatures (using isotope ratio mass spectrometry; 

Delta Plus; Finnigan MAT, Bremen, Germany). Soil organic C and total N of the cacao 

agroforestry were calculated using the bulk densities of the forest, to avoid overestimation of 

stocks resulting from increases in bulk densities due to land-use change. 

3.3.5. Statistical analysis 

Statistical tests of stem and soil CH4 and CO2 gas fluxes were based on the average of the six 

trees and of the four chambers that represent each replicate plot on a given sampling day. We 

first checked the data for normality using Shapiro-Wilk’s test, and those exhibiting non-normal 

distributions were log- or square root-transformed. Linear mixed-effect models (LMEs) were 

used to assess the differences in stem and soil CH4 and CO2 fluxes and accompanying soil 
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factors (soil temperature, WFPS and mineral N concentrations) between the two land-use types 

for each site, and among the three sites for each land-use type. When applying LMEs, land-use 

(when comparing land-use types within each site) and site (when comparing sites for each land-

use type) were used as fixed effects in the model, and replicate plots and sampling days as 

random effects. Differences between the land uses per site or among sites per land-use type 

were assessed using analysis of variance (ANOVA) with Fisher’s least significant difference 

(LSD) test.  

Additionally, stem CH4 emissions were tested for differences among tree species across 

the four forest plots at each site as well as across the three sites for the forest land use using 

LME. Here, tree species were used as fixed effect in the model, and the random effects were 

trees belonging to each species and sampling days. 

We used one-way ANOVA with Fisher’s LSD test to test for differences in soil 

biochemical and litter characteristics between the two land uses at each site, and among sites 

for each land-use type, when the parameter exhibits a normal distribution and homogenous 

variance. Kruskal-Wallis ANOVA with multiple comparison extension test was applied when 

assumptions of normality and variance homogeneity were not met. 

Using the means of the four replicate plots for each land-use type per site, we determined 

the temporal controls of stem and soil trace gas fluxes by testing their correlations with the soil 

controlling factors using the Spearman correlation test. The correlations were conducted 

separately for each land-use type across the three sites and sampling days (n = 33 (3 sites × 11 

monthly measurements)). Spatial controls of stem and soil annual trace gas fluxes were 

determined by assessing their relationship with soil biochemical characteristics, conducted 

across land uses and sites (n = 24 (3 sites × 2 land uses × 4 replicate plots)). The statistical 
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significance for all the tests were set at p ≤ 0.05. Data analysis were performed using the R 

(version 3.5.2) open source software (R Core Team, 2018). 

3.4. Results 

3.4.1. Stem CH4 fluxes 

All the studied trees emitted measureable CH4 at some point during the measurement period 

(Fig. 3.1). Stem CH4 fluxes neither differed between the forest and cacao agroforestry at each 

site (p = 0.12–0.71; Table 3.1), nor among the three sites for each land use type (p = 0.24–0.43; 

Table 3.1).  

 

Figure 3.1. Mean (±SE, n = 4) stem CH4 fluxes (top panel), soil CH4 fluxes (middle panel) and 

soil CO2 fluxes in Aloum site (a, d and g), Biba Yezoum site (b, e and h) and Tomba site (c, f 

and i) on highly weathered soils in the Congo Basin, Cameroon, measured monthly from May 

2017 to April 2018. Forest (♦) and cacao agroforestry (□); grey shadings mark the dry season. 
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We did not also detect any differences in stem CH4 fluxes between the wet season and 

the dry season for both land uses (p = 0.55–0.80; Fig. 3.1, Tables S3.1 and S3.2). Additionally, 

stem CH4 emissions did not vary among tree species in forest plots at each site as well as across 

the three sites (p = 0.13–0.83; Fig. 3.2), nor among tree diameter sizes (p = 0.38–0.51). 

Table 3.1. Mean (±SE, n = 4) stem CH4 emission, soil CH4 uptake and soil CO2 emissions from 

forest and cacao agroforestry system within each site in the Congo Basin, Cameroon. Means 

followed by different lowercase letters indicate significant differences between land-use types 

within each site and different capital letters indicate significant differences among the three 

sites within a land-use type (linear mixed-effect models with Tukey’s HSD at p ≤ 0.05). 

Site/Land-use type Stem CH4 fluxes  

(µg C m−2 stem 

h−1) 

Soil CH4 fluxes  

(µg C m−2 h−1) 

Soil CO2 fluxes 

(mg C m−2 h−1) 

Aloum       

Forest 0.41 ± 0.07a,A −36.8 ± 4.2a,A 109.1 ± 4.1a,A 

Cacao 0.83 ± 0.15a,A −22.2 ± 4.1a,B 108.3 ± 5.1a,A 

Biba Yezoum       

Forest 0.98 ± 0.28a,A −45.8 ± 2.7a,A 127.5 ± 4.7a,A 

Cacao 0.60 ± 0.08a,A −54.0 ± 2.1a,A 129.6 ± 6.1a,A 

Tomba       

Forest 0.26 ± 0.08a,A −23.2 ± 4.9a,A 124.0 ± 5.6a,A 

Cacao 0.76 ± 0.15a,A −38.2 ± 3.1a,AB 130.1 ± 6.2a,A 
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Figure 3.2. Stem CH4 fluxes from 22 tree species at three forest sites (Aloum, Biba Yezoum 

and Tomba) across central and south Cameroon in the Congo Basin. Boxes (25th, median and 

75th percentile) and whiskers (1.5 × interquartile range) are based on CH4 fluxes measured 

monthly from May 2017 to April 2018 for each tree species, and the values in parentheses 

represent the number of trees measured per species. There were no differences in CH4 fluxes 

among species (linear mixed-effect models with Tukey’s HSD at p > 0.13). 

Stem CH4 emissions decreased with increasing stem height in both land uses (Fig. 3.3). 

Using the upscaling method described in the Materials and Methods section (see Chapter 2.3.3 

above), the mean annual stem CH4 fluxes were 0.33 ± 0.06 kg C ha
–1

 yr
–1

 for the forest and 0.20 

± 0.03 kg C ha
–1

 yr
–1

 for the cacao agroforestry, when including the shade trees in the cacao 

plots. This was equivalent to ca. 5–18% and 3–14% of the amount of CH4 consumed by the 

soils in the forest and cacao agroforestry, respectively.  
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Figure 3.3. Mean (n = 16) stem CH4 emissions at three different heights along the tree stem on 

highly weathered soils in the Congo Basin, Cameroon. 

 

Table 3.2. Annual trace gas fluxes (mean ± SE, n = 4) from lowland rainforest and cacao 

agroforestry system within each site on highly weathered soils in the Congo Basin, Cameroon. 

Annual fluxes were not statistically tested for differences among sites or between land-use types 

since these annual values are trapezoidal extrapolations. 

Site/ Land-use 

type 

 

Annual stem 

CH4 fluxes  

(Kg C ha−1 yr−1) 

Annual soil CH4 

fluxes  

(Kg C ha−1 yr−1) 

Total (soil + 

stem) CH4 flu 

(Kg C ha−1 yr−1) 

Annual soil CO2 

fluxes  

(Mg C ha−1 yr−1) 

Aloum         

Forest 0.56 ± 0.02 −3.16 ± 0.52 −2.60 ± 0.59 10.24 ± 0.45 

Cacao 0.31 ± 0.05 −2.16 ± 0.72 −1.85 ± 0.80 10.78 ± 0.65 

 (0.04 ± 0.01)    

Biba Yezoum         

Forest 0.35 ± 0.02 −3.98 ± 0.27 −3.62 ± 0.33 10.71 ± 0.16 

Cacao 0.17 ± 0.02 −4.80 ± 0.34 −4.62 ± 0.40 10.87 ± 0.56 

 (0.02 ± 0.00)    

Tomba         

Forest 0.08 ± 0.00 −1.72 ± 0.55 −1.64 ± 0.64 9.30 ± 0.42 

Cacao 0.10 ± 0.01 −3.31 ± 0.33 −3.20 ± 0.39 9.13 ± 0.58 

 (0.06 ± 0.02)    

Note. Annual stem and soil CH4 and CO2 fluxes were not statistically tested for differences 

among sites or between land-use types since these annual values are trapezoidal extrapolations 

(see section 2.3.3). Annual stem CH4 emissions in parentheses are from cacao trees only. 
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Three individual trees from the forest and one tree from the cacao agroforestry 

consistently emitted high CH4 throughout the study period, with stem CH4 fluxes ranging from 

4.9 to 154.8 µg C m−2 h−1 in the forest and 6.1 to 68.6 µg C m−2 h
–1

 in the cacao agroforestry 

(Fig. 3.4). When including these trees in the annual flux calculations, the balance between the 

soil and stem CH4 fluxes indicated that the replicate plots containing these high emitting trees 

could be net CH4 sources. 

 

Figure 3.4. Mean stem CH4 emissions on highly weathered soils in the Congo Basin, 

Cameroon, measured monthly from May 2017 to April 2018. Stem values are average of three 

trees for the forest (♦) and one tree for the cacao agroforestry (□); grey shadings mark the dry 

season. 

Across the study period, average stem CH4 emissions from the forest were positively 

correlated with average WFPS (Spearman ρ = 0.37, p < 0.05, n = 33), while in the cacao 

agroforestry, we found positive correlations of stem CH4 emissions with soil-air CH4 

concentration across sampling dates (ρ = 0.35, p < 0.05, n = 33).  
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3.4.2. Soil CH4 fluxes 

Soil CH4 fluxes were comparable between the forest and cacao agroforestry at each site (p = 

0.20–0.89; Table 3.1). In the cacao agroforestry, soil CH4 uptake was higher at Biba Yezoum 

than at the Aloum site (p < 0.01; Table 3.1), but, in the forest, Soil CH4 fluxes did not differ 

across sites (p = 0.32; Table 3.1). When compared between seasons, soil CH4 uptake was higher 

in the dry season than in the wet season at Aloum for the cacao agroforestry system (p = 0.05; 

Fig. 3.1, Table S2). However, we did not detect any seasonal differences among the study sites 

in the forest (p = 0.14–0.92; Fig. 3.1, Table S3). The mean annual soil CH4 uptake was -2.95 ± 

0.38 kg C ha−1 yr−1 for the forest and -3.42 ± 0.42 kg C ha−1 yr−1 for the cacao agroforestry. 

Thus, the balance between the soil and stem CH4 fluxes indicated that there was a net CH4 sink 

in both land uses (Table 3.2).  

Over the measurement period, moisture was the dominant controlling factor of soil CH4 

fluxes, with average monthly soil CH4 fluxes correlating positively with WFPS in both land 

uses (ρ = 0.45–0.86, p < 0.01, n = 33). Additionally, soil CH4 fluxes from the cacao agroforestry 

were positively correlated with average soil-air CH4 concentrations (ρ = 0.36, p < 0.05, n = 33), 

and negatively correlated with soil NH4
+ content (ρ = 0.42, p < 0.05, n = 33). 

Of the soil physical and biochemical characteristics measured once, annual soil CH4 

fluxes were correlated positively with clay contents (Spearman ρ = 0.50, p < 0.05, n = 24) and 

aluminium saturation (ρ = 0.45, p < 0.05, n = 24). 

3.4.3. Soil CO2 fluxes 

We did not detect any differences in soil CO2 emissions between the forest and cacao 

agroforestry at each site (p = 0.60–0.95; Table 3.1), nor among the three study sites for each 

land use type (p = 0.14–0.19; Table 3.1). In both land uses, average soil CO2 emissions were 

highest at the beginning of our measurement period, which coincided with the end of the rainy 
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season (Fig. 3.1). This was followed by a gradual decline in soil CO2 efflux as the soil moisture 

levels decreased during the dry season. The beginning of the wet season in August stimulated 

soil CO2 emissions again, but further reductions in soil moisture during the second dry season 

resulted in decreasing soil CO2 emissions (Fig. 3.1). Accordingly, average soil CO2 emissions 

showed clear seasonal variability with larger fluxes in the wet season than the dry season for 

both land uses (p < 0.05; Fig. 3.1, Tables S3.1 and S3.2). The mean annual soil CO2 emissions 

were 10.1 ± 0.27 Mg C ha−1 yr−1 for the forest, and 10.3 ± 0.42 Mg C ha−1 yr−1 for the cacao 

agroforestry. 

While soil CO2 fluxes did not correlate with soil WFPS, we did find a parabolic 

relationship between soil CO2 emissions and soil moisture in both land uses. Across sites and 

land uses, the only significant correlation between annual soil CO2 emissions and soil physical 

and biochemical characteristics was with sand content (ρ = 0.45, p < 0.05, n = 24). 

3.5. Discussion 

3.5.1. Stem CH4 emissions and their contribution to total (soil + stem) CH4 emissions 

To our knowledge, this study provides the first year-round simultaneous measurements of stem 

and soil CH4 fluxes from tropical Africa. The mean stem CH4 emissions we measured from our 

sites (Table 3.1) were in the lower range of those reported for temperate and boreal upland 

(well-drained) forests (0.004–22.6 µg C m−2 h−1;
 (Machacova et al., 2016; Wang et al., 2016; 

Warner et al., 2017; Maier et al., 2018; Pitz et al., 2018; Barba et al., 2019b; Welch et al., 

2019). Our stem CH4 emissions were also significantly lower than those reported for wetland 

and floodplain ecosystems (42.6–427.0 µg C m−2 h−1; Gauci et al., 2010; Pangala et al., 2013, 

2015; Terazawa et al., 2015; Pitz et al., 2018). The high stem CH4 emissions in wetlands and 

floodplains may be characteristic of the equally high soil CH4 concentrations resulting from the 

dominance of methanogenic activity in the soils of these ecosystems (Terazawa et al., 2007), 
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which have been found to be predominantly emitted via plants (Terazawa et al., 2007; Pangala 

et al., 2013). Additionally, our mean stem emission values were 11-fold lower than the mean 

stem CH4 emissions reported for Heisteria concinna (75.9 µg C m−2 h−1) and Simarouba amara 

(65.9 µg C m−2 h−1) tree species in a moist tropical forest in Panama (Welch et al., 2019). It is 

more likely that the results of Welch et al. (2019) may have calculation errors, especially 

because they were not able to measure any significant stem CH4 emissions during the dry 

season. Additionally, they consistently measured higher tree-stem than soil fluxes, which has 

not been shown in any upland study elsewhere. Nevertheless, the wide range of stem emissions 

reported in the literature signifies the substantial spatial and temporal variability in stem CH4 

fluxes, and highlights the complexity in accounting for stem emissions in global GHG budgets. 

More recent evidence suggest that differences in tree diameter sizes, age or species 

(Pangala et al., 2015; Wang et al., 2016; Warner et al., 2017; Pitz et al., 2018; Welch et al., 

2019) can significantly influence tree stem emissions, although we could not corroborate these 

findings in our study (Fig. 3.2). This may possibly be due to the small diameter range of our 

measured trees (10–18 cm DBH for cacao trees and 10–30 cm DBH for the forest trees). Indeed, 

Pitz et al. (2018) found a positive correlation between stem CH4 emissions and tree diameter 

(tree DBH range from 16 to 93 cm). Compared to young, small trees, older and bigger trees are 

suggested to emit higher CH4 owing to their large, deep tap root system which can tap deep into 

anoxic soil layers (Pierret et al., 2016; Barba et al., 2019a) or groundwater, which are both 

potential CH4 sources. It is possible that the different tree species in our study sites utilise 

similar CH4 transport mechanisms, which may have accounted for the lack of differences in 

stem emissions among species (Fig. 3.2) and between land uses, supporting our first hypothesis 

(Table 1). Recent literature reviews (Barba et al., 2019a; Covey & Megonigal, 2019) show that 

tree physiology and traits of wood anatomy can influence species-level CH4 emissions; 

however, these have mostly been demonstrated for wetland species. For example, wood specific 
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density and lenticel density have been shown to affect wetland tree stem CH4 fluxes (Pangala 

et al., 2013, 2014). Evapotranspiration rate and wood density were possibly the reason for the 

higher stem CH4 emissions of the fast-growing Simarouba compared to the shade-tolerant 

Heisteria species in an upland tropical forest in Panama (Welch et al., 2019). However, there 

is still limited knowledge about how tree species traits contribute to stem flux differences in 

tropical trees. New studies that measures several trees of different species, diameter classes and 

ages could further our understanding of the spatial variability of stem emissions from ecosystem 

to regional and global levels.  

Our results demonstrate that tropical trees on well drained soils represent potential CH4 

emission pathways that have largely been ignored, with stem CH4 emissions constituting a 

considerable offset of the soil CH4 sink in both forest and cacao agroforestry, supporting our 

second hypothesis (Table 2). This finding is particularly important considering that trees occupy 

less than 10% ground area in the study plots. Tree stem emissions were found to offset 5–18% 

of the soil sink in our forest sites, which brackets the range of estimates reported for two upland 

forests in America (16%; Pitz & Megonigal, 2017; Warner et al., 2017). These estimates are 

lower than those reported for wetland forests, where tree-mediated CH4 emissions were found 

to account for 20–87% of the total (soil + stem) CH4 efflux (Gauci et al., 2010; Pangala et al., 

2013), but higher than the estimates from two upland forests where tree stem emissions equated 

to less than 1% of the soil sink (Machacova et al., 2016; Plain et al., 2019). The degree to which 

tree-mediated emissions may offset soil CH4 sinks, especially in well-drained tropical soils, 

remains highly uncertain, as evidenced by the wide range of stem emission estimates in the 

literature. Nevertheless, the consistent measurement of positive net stem CH4 emissions in our 

study sites suggests that stem CH4 emissions could be widespread in lowland tropical forests, 

and illustrates the need for further investigation. 
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Our study provides evidence that tropical trees on well-drained soils can also emit CH4 

(Fig. 3.2). However, the origin of stem emitted CH4 is a subject of ongoing debate, with studies 

suggesting microbial production of CH4 in the heartwood (Covey et al., 2012; Wang et al., 

2016; Yip et al., 2019), soil-derived CH4 from low depths (Machacova et al., 2016; Pitz & 

Megonigal, 2017; Barba et al., 2019b), and to a lesser extent from cryptogamic covers on stem 

bark (Lenhart et al., 2015). Nonetheless, our findings of decreasing stem CH4 emissions with 

height suggest a potential belowground (soil) origin, which concurs with the findings of other 

studies (Pangala et al., 2013; Pitz & Megonigal, 2017; Barba et al., 2019b). Despite the soils 

acting as net CH4 sinks, it is possible that soil processes occurring in deeper soil depth could 

regulate the source of stem emitted CH4. Indeed, studies have found soils to produce CH4 at 

depth while acting as net sinks at the surface level (Maier et al., 2018). We found positive 

correlations of stem CH4 emissions with soil moisture, and with soil-air CH4 concentrations at 

50 cm depth, which is consistent with root uptake of soil water containing dissolved CH4 

produced in deep anoxic layers or methanogenic microsites (von Fischer & Hedin, 2007; 

Brewer et al., 2018). This active transport of dissolved CH4 is likely driven by sap flow via 

transpiration streams of the trees, and then emitted to the atmosphere through the stem surfaces, 

bypassing the soil methanotrophic layers (Megonigal & Guenther, 2008).  

Our findings of decreasing stem emissions with height (Fig. 3.3) are consistent with 

previous results found in wetland and upland forests (Pangala et al., 2013, 2017; Wang et al., 

2016; Pitz & Megonigal, 2017; Barba et al., 2019b). As many of the studied trees had buttresses 

(e.g. Fig. 2.2), we measured stem emissions at trunk heights of 1.3 m above the ground, leaving 

an open question about lower stem CH4 emission rates. Mean CH4 emission of trees growing 

in a floodplain forest were found to decrease from 132 to 73 µg C m−2 h−1 when measuring at 

trunk heights of 15 and 70 cm, respectively (Terazawa et al., 2007). Similarly, CH4 emission 

of temperate upland trees were 19.9 µg C m−2 h−1 at a trunk height of 75 cm, reducing to 12.1 
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µg C m−2 h−1 at an upper stem height of 150 cm (Barba et al., 2019b). The pattern is similar in 

tropical wetland forests, where stem emissions were found to range from 139 to 13 µg C m−2 

h−1 at stem heights of 20–50, 60–90 and 100–130 cm (Pangala et al., 2013). These findings, 

coupled with our measurements of decreasing stem emissions with height suggest that there 

may be high emissions occurring at lower tree height, and possibly an underestimation of tree 

stem emissions from this important tropical region. Further research efforts are necessary to 

provide additional insights into mechanisms of stem CH4 production and magnitudes, in order 

to improve regional and global CH4 budget estimations. 

3.5.2. Factors controlling temporal and spatial variability of soil fluxes  

Studies have shown that soil moisture is the dominant factor controlling the seasonal variation 

in soil CH4 and CO2 fluxes in tropical systems (Verchot et al., 2000; Veldkamp et al., 2013; 

Matson et al., 2017; Wanyama et al., 2019). Indeed, we found a positive correlation between 

soil CH4 fluxes and WFPS in both land uses, which is consistent with diffusional limitation of 

atmospheric CH4 into the soil at high soil moisture conditions (Keller & Reiners, 1994). Such 

inhibited diffusion of CH4 from the atmosphere into the soil affects methanotrophic CH4 

oxidation, and/or creates conditions for anaerobic decomposition by methanogenic archaea, 

thereby producing CH4. However, the effect of soil moisture changes on soil CH4 uptake was 

less pronounced in our study, as indicated by the similar CH4 uptake rates between the wet and 

dry season in both land uses (Tables S3.1 and S3.2). We also found strong indications of 

potential N limitation on CH4 uptake in the cacao agroforestry, as shown by the negative 

correlation of soil CH4 fluxes with soil NH4
+ content, and the positive correlation of CH4 fluxes 

with aluminium saturation (see Sect. 3.4). CH4 and NH4
+ oxidizers compete for the methane 

monooxygenase enzyme responsible for both the oxidation of CH4 to CO2 and NH4
+
 to NO2

−
 

(Bedard & Knowles, 1989). As such, the activities of methanotrophs can be inhibited by 

increasing NH4
+
 availability in the soil. Additionally, the intermediate and end products of 
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methanotrophic NH4
+
 oxidation have been found to be toxic to soil methanotrophic bacteria 

(Schnell & King, 1994), which may also inhibit CH4 consumption. Indications of the inhibitory 

effect of soil NH4
+
 content on methanotrophic activity have been reported for tropical forests 

in Ecuador (Wolf et al., 2012), Panama (Veldkamp et al., 2013; Matson et al., 2017), Australia 

(Kiese et al., 2003) and Kenya (Wanyama et al., 2019), while both increasing NH4
+
 availability 

and exchangeable Al in the soil have been shown to be toxic for both plants and methanotrophs 

in a tropical forest in Indonesia (Hassler et al., 2015).  

Soil texture has been shown to largely control atmospheric CH4 uptake by soils, due to 

its direct effect on gas diffusivity into the soil (Veldkamp et al., 2013). In their review of studies 

conducted in (sub)tropical forests, Veldkamp et al. (2013) found annual soil CH4 fluxes to 

positively correlate with clay contents, which is consistent with the findings of this study. A 

high clay content reduces the diffusivity of atmospheric CH4 into the soil, thereby limiting 

aerobic CH4 oxidation and consumption, while increasing anaerobic CH4 production (Keller et 

al., 1993; Veldkamp et al., 2008). For such clayey soils such as in our sites, CH4 uptake also 

decreases at high WFPS due to inhibited diffusion of atmospheric CH4 into the soil because of 

the high soil water content. Indeed, for our cacao agroforestry sites, Biba Yezoum had a lower 

clay content (Table 2.1) and a lower WFPS (Table 2.4) compared to the Aloum, and hence had 

correspondingly higher soil CH4 uptake (Tables 3.1).  

Soil CO2 fluxes at our sites showed clear seasonal variability (Tables S3.1 and S3.2), 

controlled by soil water content. We measured the highest soil CO2 fluxes at the beginning of 

our measurement period (Fig. 3.1), which coincided with the end of the rainy season when soil 

mineralization activity was still high. The lower soil CO2 fluxes in the dry season may reflect 

water limitation of plant root and soil microbial activity as well as limited litter decomposition 

due to low soil moisture content (Yavitt et al., 2004). The relationship between soil CO2 fluxes 



Chapter 3                                         Carbon dioxide and methane fluxes from the Congo Basin 

85 

 

and WFPS reflected the parabolic relationship typically found in tropical forest studies, with 

the highest soil CO2 fluxes measured at field capacity (WFPS between 50 and 55%), after which 

increasing soil moisture content inhibited soil CO2 production in the soil, and/or slowed the 

diffusion of soil CO2 from the soil (Schwendenmann et al., 2003; Sotta et al., 2006; Koehler et 

al., 2009a; van Straaten et al., 2011; Hassler et al., 2015). The positive correlation of soil CO2 

emissions with sand content across our sites and land uses was similar to the findings of other 

studies conducted in tropical forests (Silver et al., 2000; Sotta et al., 2006). Sandy soils tend to 

have higher root biomass, and consequently, higher autotrophic root respiration, which has been 

shown to contribute up to 35% of soil respiration (Silver et al., 2000; van Straaten et al., 2011). 

3.5.3. Effects of land-use change on soil CO2 and CH4 fluxes 

Our mean soil CO2 emissions from the forests (Table 3.1) were within the range of values (93–

228 mg C m−2 h−1) reported for tropical rainforests on Ferralsol soils in Central and South 

America (Davidson et al., 2000b, 2004; Schwendenmann et al., 2003; Chambers et al., 2004; 

Keller et al., 2005; Sotta et al., 2006; Matson et al., 2017). Compared to the few studies 

conducted in Africa, mean soil CO2 emissions from our forests were higher than those reported 

for tropical montane forests in Kenya (71.8–95.2 mg C m−2 h−1; Wanyama et al., 2019; Werner 

et al., 2007). For Werner et al. (2007), their short measuring campaign (3 months), which 

included two dry months, may have resulted in lower soil CO2 emissions compared to our study. 

The forest sites in Wanyama et al. (2019) study reportedly had low tree density, which could 

have affected autotrophic root respiration, leading to lower CO2 emissions.  

Soil CO2 emissions did not differ between the forest and cacao agroforestry in this study 

(Table 3.1), in support of our first hypothesis. In tropical regions marked by periods of wet and 

dry conditions such as in our sites, soil CO2 fluxes are primarily controlled by soil moisture 

(Hassler et al., 2015; Matson et al., 2017; van Straaten et al., 2019), especially when there is 
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little fluctuation in temperature (Schwendenmann et al., 2003). The lack of differences in soil 

water content between the two land uses (Table 2.4) may therefore have resulted in the similar 

soil CO2 fluxes. Moreover, forest conversion to cacao agroforestry in our study regions 

generally lacked heavy soil physical disturbance and preparation activities, which may have 

resulted in the similar soil texture and soil bulk density the two land uses (Table 2.1), and 

consequently, comparable CO2 emissions. Indeed, differences in soil characteristics such as soil 

texture (Sotta et al., 2006; da Costa et al., 2018), bulk density (Zhong et al., 2016), SOC and 

total N (Schwendenmann et al., 2003) have been shown to control spatial and temporal variation 

in soil CO2 fluxes. While we measured differences in SOC between the land uses in two of our 

sites (Table S1), it is possible that the microbial communities involved in heterotrophic 

respiration may have adapted to any differences in the quantity of substrate between the forest 

and cacao agroforest, resulting in their similar soil CO2 fluxes. Additionally, the high density 

of shade trees in the cacao agroforestry and their comparable basal area with the forests (Table 

S2.1) may have partly offset any differences in autotrophic root respiration between the two 

land uses. da Costa et al. (2018) also presented similar results where soil CO2 emissions did not 

differ between cacao agroforestry and a reference forest in Brazil. Similarly, Hassler et al. 

(2015) found no differences in soil CO2 emissions between jungle rubber agroforestry and 

forests in Indonesia. Our mean soil CO2 fluxes from the cacao agroforestry (Table 3.1) were 

comparable to those reported for cacao agroforestry systems in Brazil and Indonesia (125–137 

mg C m−2 h−1; da Costa et al., 2018; van Straaten et al., 2010). 

Our forest sites acted as sinks of atmospheric CH4 (Fig. 3.1), similarly to what has been 

found in previous studies conducted on well-drained soils (e.g., Werner et al., 2007; Veldkamp 

et al., 2013; Wanyama et al., 2019). The mean soil CH4 uptake from our forest sites (Table 3.1) 

was within the range of other reported values for (sub)tropical lowland forests (−6.28 to −55.9 

µg C m−2 h−1; summarized by Veldkamp et al., 2013), but higher than those found for three 
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lowland forests on Ferralsol soils in Panama (−10.7 to −22.6 µg C m−2 h−1; Matson et al., 2017). 

The latter study has higher clay contents compared to our study sites, which explains their 

correspondingly lower CH4 uptake rate. Compared to measurements conducted in sub-Saharan 

Africa, our lowland forests had comparable soil CH4 uptake rates as those reported for tropical 

montane forests in Kenya (−35.4 to −66.2 µg C m−2 h−1; Wanyama et al., 2019) and in Tanzania 

(−31.0 to −44.6 µg C m−2 h−1; Gütlein et al., 2018). Conversely, our mean soil CH4 uptake was 

lower than reported for tropical montane forests in Kenya (−56.4 µg C m−2 h−1; Werner et al., 

2007), which had a comparably sandy texture compared to our sites.  

In line with our first hypothesis, soil CH4 fluxes did not differ between the forest and 

cacao agroforestry at each site (Table 3.1). All our cacao sites were unfertilized and the soils 

were minimally disturbed, as reflected in the comparable soil texture (i.e. clay contents; Table 

2.1) and soil moisture content (Table 2.4) between the two land uses. Since atmospheric CH4 

diffusion into the soil has been suggested as the main limitation of soil CH4 oxidation by 

methanotrophic bacteria in the soil (Palm et al., 2002; Veldkamp et al., 2013), the comparable 

soil texture and soil moisture content between the forest and cacao agroforestry may be the 

primary reason for the similar CH4 rates.  

Cacao agroforestry in our study (Table 3.1) had slightly higher soil CH4 uptake than a 

managed homegarden in Tanzania (−32.6 µg C m−2 h−1; Gütlein et al., 2018) and an agroforestry 

system in Peru (−24.2 µg C m−2 h−1; (Palm et al., 2002), and was also higher than a jungle 

rubber agroforestry in Indonesia (−20.8 to −26.9 µg C m−2 h−1; Hassler et al., 2015). Our mean 

soil CH4 uptake in the cacao agroforestry were also higher than the reported average for 

agroforestry systems worldwide (−18.3 µg C m−2 h−1; Kim et al., 2016a). These trends in soil 

CH4 fluxes may be explained by differences in gas diffusivity resulting from compaction and 

soil fertility; the agroforestry systems in Gütlein et al. (2018) study sites had comparably higher 
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soil bulk densities than our cacao sites. Moreover, the higher soil CH4 uptake in our cacao 

agroforestry compared to the jungle rubber agroforestry (Hassler et al., 2015) may be the result 

of our comparably higher soil NO3
–
 content, which have been found to simulate CH4 

consumption and/or reduce its production in the soil (Veldkamp et al., 2013; Matson et al., 

2017). This could also explain the lower CH4 uptake rate reported by Kim et al. (2016a) for the 

reviewed cacao agroforestry sites, in which ammonium-N fertilizers have been applied. As 

discussed above, increasing NH4
+
 concentrations in the soil owing to nitrogenous fertilizer 

applications can inhibit CH4 oxidation rates (Veldkamp et al., 2001; Bodelier & Laanbroek, 

2004). 

3.6. Conclusions 

Our study provides evidence that tropical trees on well-drained, highly weathered soils 

represent potential CH4 emission pathways. Stem contribution to total CH4 fluxes suggests that 

tropical soils may be a weaker sink of atmospheric CH4 than previously estimated. Positive 

correlations of stem CH4 emissions with WFPS and soil-air CH4 concentrations points to a 

belowground origin of stem CH4 emissions. However, the consistently high CH4 emissions 

from a few of our sampled trees suggests there may be other contributing mechanisms. These 

findings highlight the need for additional studies to constrain the magnitude and mechanisms 

of stem CH4 fluxes in tropical well-drained forests, so that this important CH4 source can be 

accounted for in GHG budget estimations. In contrast to other studies, stem CH4 emissions did 

not differ among tree species in our study. Overall, we did not observe any effects of land-use 

change on stem and soil CH4 and CO2 fluxes, due to similarities in soil texture and soil moisture 

content between the forest and cacao agroforestry.  
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3.9. Appendix 

Table S3.1. Seasonal mean (±SE, n = 4) stem CH4 flux, soil CH4 flux and soil CO2 flux in 

forests on highly weathered soils in the Congo Basin, Cameroon. Means followed by different 

lowercase letters indicate significant differences between seasons for each site (linear mixed-

effect models with Tukey’s HSD at P ≤ 0.05). 

Site/season Stem CH4 flux Soil CH4 flux Soil CO2 flux 

  (µg N m−2 stem h−1) (µg N m−2 soil h−1) (mg C m−2 soil h−1) 

Wet seasson       

Aloum 5.70 ± 0.88a −34.9 ± 4.7a 121.1 ± 10.0a 

Biba Yezoum 4.18 ± 0.40a −25.4 ± 12.8a 141.2 ± 13.2a 

Tomba 0.31 ± 0.07a −26.2 ± 7.9a 137.2 ± 14.2a 

Dry season       

Aloum 4.97 ± 0.82a −39.1 ± 4.3a 94.7 ± 6.0b 

Biba Yezoum 4.01 ± 0.16a −44.1 ± 11.1a 111.1 ± 8.4b 

Tomba 0.19 ± 0.05a −19.7 ± 9.2a 108.2 ± 12.6b 
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Table S3.2. Seasonal mean (±SE, n = 4) stem CH4 flux, soil CH4 flux and soil CO2 flux in cacao 

agroforestry sites located on highly weathered soils in the Congo Basin, Cameroon. Means 

followed by different lowercase letters indicate significant differences between seasons for each 

site (linear mixed-effect models with Tukey’s HSD at P ≤ 0.05). 

Site/season Stem CH4 flux Soil CH4 flux Soil CO2 flux 

  (µg N m−2 stem h−1) (µg N m−2 soil h−1) (mg C m−2 soil h−1) 

Wet seasson       

Aloum 0.86 ± 0.13a −12.3 ± 3.8a 122.7 ± 11.8a 

Biba Yezoum 0.60 ± 0.10a −49.5 ± 2.3a 150.6 ± 11.4a 

Tomba 1.97 ± 0.60a −36.8 ± 6.5a 143.3 ± 15.0a 

Dry season       

Aloum 0.81 ± 0.18a −34.1 ± 7.8b 91.1 ± 7.01b 

Biba Yezoum 0.60 ± 0.20a −59.5 ± 4.4a 104.4 ± 10.3b 

Tomba 1.64 ± 0.30a −39.9 ± 8.1a 114.3 ± 12.4b 
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4.1. Key findings of this thesis 

Chapter 2: Stem and soil nitrous oxide fluxes from rainforest and cacao agroforest 

The conversion of forests to extensively managed cacao agroforestry systems had no effect on 

stem and soil nitrous oxide (N2O) emissions, due to similarities in soil water content, soil texture 

and leguminous tree density in both land uses. All the studied trees emitted measureable N2O 

at some point during the measurement period. In contrast to findings from other studies (Wen 

et al., 2017; Welch et al., 2019), stem N2O emissions did not differ among the different tree 

species in our study, which supported our spatial extrapolation based on diameter at breast 

height (DBH) of trees in our sites. The up-scaled N2O fluxes suggest that trees could be 

important to consider in N2O budgets, with the potential to overlook up to 38% of N2O 

emissions in the forests and 15% of N2O emissions in cacao agroforests if tree stems are not 

considered in the ecosystem N2O budget. These estimates of tree contributions to total 

stem+soil fluxes are the highest reported for any upland forests, and the first estimates for 

tropical Africa. 15N-isotope tracing from soil mineral nitrogen (N) to stem-emitted 15N2O 

together with the relationships between stem and soil N2O emissions as well as their controlling 

factors suggest that tree stem N2O emissions originate mainly from produced N2O in the soil. 

Chapter 3: Stem and soil methane and soil carbon dioxide fluxes from rainforest and 

cacao agroforest 

Forest conversion to cacao agroforestry had no effect on stem and soil methane (CH4) fluxes. 

Similarly, soil carbon dioxide (CO2) fluxes did not differ between the two land uses. The lack 

of differences in soil CH4 and CO2 fluxes was due to the comparable soil texture and soil 

moisture content between the two land uses, which influences gas diffusivity into and out of 

the soil. Tree stems were a net source of CH4, and our results points to a possible soil origin 

driven by transpiration. Our upscaling suggests that tree stem emissions offset 3–18% of the 

annual soil CH4 sink in both land uses. Our results demonstrate that tropical trees on well-



Chapter 4  Synthesis 

99 

 

drained soils represent potential CH4 emission pathways that have largely been ignored, thus 

highlighting the urgent need for additional studies to further constrain regional and global CH4 

budgets. 

4.2. Revising the African greenhouse gas budget 

As discussed in previous chapters, trace gas budgets for the African continent is difficult to 

constrain due to limited number of in situ flux measurements, leaving considerable uncertainties 

in recent estimates. The most current estimates of the magnitude of trace gas fluxes from the 

African continent are from Valentini et al. (2014), who estimated the mean annual N2O 

emissions of natural ecosystems  to be 1.13 Tg N2O yr−1, with a standard deviation of 0.9 Tg 

N2O yr−1, signifying the high variability of the limited dataset used in the estimation. The range 

of uncertainty is similar for soil CH4 fluxes, with tropical humid forests estimated to emit 0.27 

± 0.16 Tg CH4 yr−1, which is almost balanced by the net sink of seasonally dry forests (−0.21 ± 

0.42 Tg CH4 yr−1; Valentini et al., 2014). Given that we did not find land-use change effects on 

trace gas fluxes in our study, this sub-chapter aims to recalculate the source strength and sink 

of tropical forests in Africa, taken into consideration emissions from tree stems, which was not 

included in previous estimates. We only provide estimates for N2O and CH4, and not for CO2 

because what we measured from our sites is not the net ecosystem CO2 fluxes. Additionally, 

we do not provide an estimate for agroforestry systems due to lack of studies on trace gas fluxes 

from unfertilized agroforestry systems in Africa.  

Using the “measure and multiply” method commonly employed in bottom-up 

approaches (Schimel & Potter, 1995; Corre et al., 1999), we estimated the N2O and CH4 fluxes 

for tropical forests in African by synthesizing currently available data on trace gas fluxes from 

in situ field measurements (Table 4.1). The total flux was calculated by multiplying the annual 

trace gas flux with the areal coverage of the land use (in this case, the area of tropical forest in 
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Africa) as estimated from land cover maps using geographic information system (GIS) 

technology (Table 4.1). Trace gas fluxes were converted to CO2 equivalent (CO2 eq.) assuming 

global warming potentials (GWP) of 263 kg CO2 eq. for N2O and 32 kg CO2 eq. for CH4, over 

a 100-year time scale (Neubauer & Megonigal, 2015). Tree stem contribution to total trace gas 

fluxes were emphasized by categorising the estimates into fluxes from soils only, and from soils 

+ stems (Table 4.1).  

Table 4.1. Mean (± SE) N2O (n = 16) and CH4 (n = 10) fluxes from tropical rainforest in Africa 

 Area1 N2O emission N2O source 

strength 
GWP2 

  (Mha) (kg N ha−1 yr−1) (Tg N yr−1) (Tg CO2 eq. yr−1) 

Soil fluxes 305.5 1.6 ± 0.2  0.50 ± 0.10 132 ± 26 

Soil + stem fluxes 305.5 1.7 ± 0.2 0.52 ± 0.11 137 ± 29 

  
Area CH4 emission CH4 source 

strength 
GWP 

  (Mha) (kg C ha−1 yr−1) (Tg C yr−1) (Tg CO2 eq. yr−1) 

Soil fluxes 305.5 −3.4 ± 0.4 −1.04 ± 0.11 −33 ± 3 

Soil + stem fluxes 305.5 −2.9 ± 0.5 −0.89 ± 0.14 −29 ± 5 

1 Estimate from GlobCover 2009 (http://due.esrin.esa.int/page_globcover.php) 

2 GWP, global warming potential 

Our estimated total N2O source strength for the African tropical forests (Table 4.1) were 

higher than the 0.34 ± 0.08 Tg N2O-N yr−1 estimated by (Werner et al., 2007). Their estimate 

was based on N2O simulations from a data-calibrated mechanistic model (ForestDNDC-

tropica) coupled with a global GIS. As pointed out by the authors, site measured N2O fluxes do 

not always match with simulated N2O fluxes due to differences in soil properties and vegetation. 

Valentini et al. (2014) modelled the relationship between field-measured N2O emissions and 

annual precipitation, and estimated the N2O source strength of tropical forests in Africa to be 

http://due.esrin.esa.int/page_globcover.php
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0.65 Tg N2O-N yr−1. Similarly, the estimated net CH4 sink strength of tropical forest (−0.21 Tg 

N2O-N yr−1) in Valentini et al. (2014) study was significantly lower than estimated in our study 

(Table 4.1). It is difficult to relate their estimated CH4 flux to our value, since they do not 

provide details on their upscaling method. Nevertheless, it is noteworthy that our estimated N2O 

source strength of 0.52 Tg N2O-N yr−1, together with the uncertainty (0.11 Tg N2O-N yr−1), is 

within the range of previously reported values from bottom-up approaches, and shows that 

tropical forests in Africa are indeed important sources of global N2O.     

We also estimated the N2O source strength for the entire African continent using our 

measured fluxes and synthesized data from the literature (Table 4.2). When including emissions 

from tree stems, our estimated N2O source strength was higher than the other estimates, and is 

equivalent to 23% of global N2O emissions (Thompson et al., 2014). For all the estimation 

approaches considered, our estimated total N2O emission in Africa was in agreement with the 

previous estimates from Valentini et al. (2014) when excluding tree stem emissions (Table 4.2). 

The estimate from Thompson et al. (2014) were based on modelling of atmospheric 

observations and an inversion method, and included fluxes from coastal and ocean surfaces. It 

is therefore likely that their estimated N2O source strength for Africa will be smaller than our 

estimate when excluding oceanic fluxes. Similarly, our estimate was higher than the value 

reported by Huang et al. (2008) from atmospheric measurements and inversion models. The 

limited data from atmospheric inversions for the African continent makes it difficult to 

constrain trace gas emissions using top-down approaches (Tian et al., 2016), which may explain 

their comparably lower estimate. Our estimated N2O source strength was also higher than 

estimated by Tian et al. (2016) using a bottom-up approach; however, their estimate did not 

include emissions from N deposition and leaching, which is large enough to explain the 

discrepancy between the two estimates (Table 4.2).  
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Table 4.2. Estimated annual N2O (± SE) emissions from the African continent 

Approach N2O-emitting pathways 
N2O fluxes  

(Tg N2O-N yr−1) 
Study 

Bottom-up Trees 0.3 ± 0.1 This study 

 Natural soils 1.1 ± 0.2 This study  

 Agriculture 1.4 ± 0.7 Kim et al. 2016 

 Biomass burning 0.3 ± 0.0 Tian et al. 2016 

 

Nitrogen depositions & 

nitrogen leaching 0.68 Valentini et al. 2014 

 

Other natural sources 

(wetlands, termite mounds, 

savannah & grasslands) 

0.2 ± 0.0 Kim et al. 2016 

Total emissions 

(including trees)  3.9 ± 0.7 This study 

Total emissions (no trees)  3.6 ± 0.9 This study 

Bottom-up (no trees)  3.3 ± 1.3 Valentini et al. 2014 

Bottom-up (no trees)  2.9 ± 0.3 Tian et al. 2016 

Top-down   3.5 Thompson et al. 2014 

Top-down    2.9 Huang et al. 2008 

 

We acknowledge, however, that our simple upscaling of trace gas fluxes from small 

scales to regional scales based on a few studies have a high degree of uncertainty, especially 

because we did not account for spatial and temporal differences in soil properties, vegetation 

and climate. Moreover, a central assumption of the “measure and multiply” approach is that the 

trace gas flux data used in the upscaling are representative for the investigated land use 

throughout the study region. Given the relatively few number of studies and the lack of data for 

some countries (Fig. 4.1), it is likely that the degree of uncertainty for the upscaled fluxes is 

higher than indicated in Tables 4.1 and 4.2. These limitations of our estimates for N2O and CH4 
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fluxes highlights the need for further investigations in Africa to provide additional insights on 

the natural sources and sinks of these important trace gases, and to improve estimations from 

this important region.  

 

Figure 4.1. Map showing study sites of soil trace gas studies from moist natural forests in 

Africa. 

4.3. Tree stem emissions and implications for global greenhouse gas budgets 

This study provide the first attempt, albeit uncertain, to estimate the role of tree stem emissions 

in N2O and CH4 budgets in Africa. Tree stems accounted for 8% of the total N2O emissions in 

Africa (Table 4.2), and reduced the net CH4 sink of African rainforests by 15% (Table 4.1). The 

GWP of the forests was also higher when including tree stem emissions (Table 4.1). These 

findings have important implications for global greenhouse gas budgets, considering that well-

drained soils such as found in our study sites constitute the largest terrestrial CH4 sink (Saunois 
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et al., 2016). It is possible that even small stem CH4 emissions might change a forest from a net 

sink to a net source (Shoemaker et al., 2014; Pitz & Megonigal, 2017).  This was partly the case 

in our study; when including the consistently high emitting trees (Fig. 3.4) in our upscaling 

method, the balance between soil and stem CH4 fluxes indicated that those sites could be net 

CH4 sources. At the global scale, plant-based CH4 emissions has been estimated to contribute 

up to 22% of the total global flux (Carmichael et al., 2014), but the role of trees in global N2O 

budgets remains unknown. Currently, tree density at the global scale is estimated at ca. 3.04 

trillion (Crowther et al., 2015), hence, it is plausible to assume that even if we measure low 

stem emissions at the site-scale, these could possibly upscale to a larger flux at the global scale. 

4.4. Outlook 

Our study highlights the increasing importance of including tree-mediated fluxes in trace gas 

budgets, with implications for refining ecosystem-scale estimates, as well as global greenhouse 

gas budgets. The results show for the first time that N2O and CH4 emissions from tree stems on 

well-drained soils are apparently widespread and detectable in many tropical trees in Africa. 

These findings emphasize the need for additional studies on tree stem fluxes in order to better 

quantify stem flux magnitudes and their mechanisms. Efforts should be concentrated on 

measuring fluxes at different stem heights (especially near the base of the tree wherever 

possible), among several diameter sizes, and for long periods (such as employed in this study). 

The primacy of the African continent in global climate dynamics is unquestionable, yet, our 

understanding of the contribution of the continent to global greenhouse gas budgets is still 

characterised by high uncertainty. Concurrent measurements of soil and stem greenhouse gas 

fluxes from different regions, soil types and land uses as well as their controlling factors is 

crucial for a rigorous understanding of Africa’s greenhouse gas balance. Presently, close to half 

of the available studies on trace gas fluxes in Africa are from laboratory incubations, but these 

often do not capture the high spatial and temporal variability that drive in situ fluxes. Most of 
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the few remaining studies that were conducted in the field are also limited by their short 

measuring campaigns and lack of replications with independent plots. Such as employed in this 

study, further approaches should additionally focus on collecting data over longer periods and 

over sufficient spatial replications.  

4.5. References 

Carmichael, M. J., Bernhardt, E. S., Bräuer, S. L., & Smith, W. K. (2014). The role of 

vegetation in methane flux to the atmosphere: should vegetation be included as a distinct 

category in the global methane budget? Biogeochemistry, 119(1), 1–24. 

https://doi.org/10.1007/s10533-014-9974-1 

Corre, M. D., Pennock, D. J., Van Kessel, C., & Elliott, D. K. (1999). Estimation of annual 

nitrous oxide emissions from a transitional grassland-forest region in Saskatchewan, 

Canada. Biogeochemistry, 44(1), 29–49. https://doi.org/10.1023/A:1006025907180 

Crowther, T. W., Glick, H. B., Covey, K. R., Bettigole, C., Maynard, D. S., Thomas, S. M., et 

al. (2015). Mapping tree density at a global scale. Nature, 525(7568), 201–205. 

https://doi.org/10.1038/nature14967 

Huang, J., Golombeck, A., Prinn, R. G., Weiss, R. F., Fraser, P. J., Simmonds, P., et al. 

(2008). Estimation of regional emissions of nitrous oxide from 1997 to 2005 using 

multinetwork measurements, a chemical transport model, and an inverse method. 

Journal of Geophysical Research Atmospheres, 113(17), 1–19. 

https://doi.org/10.1029/2007JD009381 

Kim, D. G., Thomas, A. D., Pelster, D. E., Rosenstock, T. S., & Sanz-Cobena, A. (2016). 

Greenhouse gas emissions from natural ecosystems and agricultural lands in sub-Saharan 

Africa: Synthesis of available data and suggestions for further research. Biogeosciences, 

13(16), 4789–4809. https://doi.org/10.5194/bg-13-4789-2016 

Pitz, S. L., & Megonigal, J. P. (2017). Temperate forest methane sink diminished by tree 

emissions. New Phytologist, 214(4), 1432–1439. https://doi.org/10.1111/nph.14559 

Saunois, M., Bousquet, P., Poulter, B., Peregon, A., Ciais, P., Canadell, J. G., et al. (2016). 

The global methane budget 2000-2012. Earth System Science Data, 8(2), 697–751. 

https://doi.org/10.5194/essd-8-697-2016 



Chapter 4  Synthesis 

106 

 

Schimel, D. S., & Potter, C. S. (1995). Process modelling and spatial extrapolation. In P. A. 

Matson & R. C. Harriss (Eds.), Biogenic Trace Gases: Measuring Emissions from Soil 

and Water (pp. 358–383). Cambridge, Massachusetts: Blackwell Sci Publication. 

Shoemaker, J. K., Keenan, T. F., Hollinger, D. Y., & Richardson, A. D. (2014). Forest 

ecosystem changes from annual methane source to sink depending on late summer water 

balance. Geophysical Research Letters, 41(2), 673–679. https://doi.org/10.1002/ 

2013GL058691 

Thompson, R. L., Chevallier, F., Crotwell, A. M., Dutton, G., Langenfelds, R. L., Prinn, R. 

G., et al. (2014). Nitrous oxide emissions 1999 to 2009 from a global atmospheric 

inversion. Atmospheric Chemistry and Physics, 14(4), 1801–1817. 

https://doi.org/10.5194/acp-14-1801-2014 

Tian, H., Lu, C., Ciais, P., Michalak, A. M., Canadell, J. G., Saikawa, E., et al. (2016). The 

terrestrial biosphere as a net source of greenhouse gases to the atmosphere. Nature, 

531(7593), 225–228. https://doi.org/10.1038/nature16946 

Valentini, R., Arneth, A., Bombelli, A., Castaldi, S., Cazzolla Gatti, R., Chevallier, F., et al. 

(2014). A full greenhouse gases budget of africa: Synthesis, uncertainties, and 

vulnerabilities. Biogeosciences, 11(2), 381–407. https://doi.org/10.5194/bg-11-381-2014 

Welch, B., Gauci, V., & Sayer, E. J. (2019). Tree stem bases are sources of CH4 and N2O in 

a tropical forest on upland soil during the dry to wet season transition. Global Change 

Biology, 25(1), 361–372. https://doi.org/10.1111/gcb.14498 

Wen, Y., Corre, M. D., Rachow, C., Chen, L., & Veldkamp, E. (2017). Nitrous oxide 

emissions from stems of alder, beech and spruce in a temperate forest. Plant Soil. 

https://doi.org/10.1007/s11104-017-3416-5 

Werner, C., Butterbach-Bahl, K., Haas, E., Hickler, T., & Kiese, R. (2007). A global 

inventory of N2O emissions from tropical rainforest soils using a detailed 

biogeochemical model. Global Biogeochemical Cycles, 21(3). 

https://doi.org/10.1029/2006GB002909 

 

 

 



  Acknowledgements 

107 

 

ACKNOWLEDGEMENT 

Alhamdulillah! 

I am very grateful to the German Research Foundation who provided the funding for my PhD 

research.  

We are only as sturdy as the shoulders we stand upon, and I was fortunate enough to stand atop 

two brilliant and supportive ones. I am forever indebted to my PhD supervisor, Professor Dr. 

Edzo Veldkamp for accepting me into his working group, from the masters’ level all through 

my PhD, and for his continuous confidence in me. Ed, your encouraging attitude and emails for 

a job well done made me feel more confident in myself and in my work. Your door was always 

open with a warm smile when I had a problem or question, and you created an intellectually 

stimulating yet informal work culture that made me feel so much at ease to express myself as a 

scientist. Thank you for been supportive and encouraging on my strides and setbacks.  

To Dr. Marife Corre, my co-supervisor: I am grateful to God that you took a chance on me 

during our bioclimatology class seminar, and I value every opportunity to learn from you. Your 

enthusiasm and passion for knowledge sharing and good research is both contagious and 

motivational for me. You have been my primary resource in learning and building scientific 

expertise. It was your critical feedbacks, several hours of engaged discussions and teaching, 

selfless acts of kindness, understanding and encouragement that fuelled my stride to the finish 

line. You remain my role model for a scientist and a mentor, and I hope to emulate your sharp 

intellect. 

I am sincerely grateful to my thesis committee members: Professor Dr. Alexander Knohl for 

making time to come to my presentations, for the numerous discussions and for his insightful 

comments and feedbacks; and to Dr. Guntars Martinson for his constructive feedback during 

my thesis committee meetings. Special thanks to Professor Dr. Klaus Dittert for joining my 

examination committee, especially considering the circumstances we are in, and for engaging 

with my PhD viva and making the process a happy experience. 

My fieldwork would not have been possible without the continuous effort of Dr. Oliver van 

Straaten. Among many other things, he coordinated the safe transport of research equipment 

to Cameroon, assisted with site selections, and was always available to assist me when I had 

questions in the field. His expertise, supervision and friendship during my difficult moments 

contributed immensely to the successful completion of my PhD. 



  Acknowledgements 

108 

 

Sharing an office with Rodine Tchiofo and Raphael Manu has been one of the highlights of my 

PhD studies. We had many laughs, regular and constructive discussions, and I benefitted 

tremendously from their expertise. I am thankful to Rodine, who showed me what an ideal 

doctoral student looks like with her inspiring work ethic. To Raphael and Belinda, for their 

lovely home, hospitality and good food that has been my source of comfort in Germany, during 

good times and difficult ones. 

The Department of Soil Science of Tropical and Subtropical Ecosystems has been a source of 

friendships, support and collaboration. Special thanks to Joost and Greta, for their immense 

help when my mama was ill, for the many discussions we had, and for all the good laughs; to 

Xenia, for translating my abstract and sharing the office with me on weekends; to Marcus, for 

all his R tutorials; to Andrea, for been so kind to me; to Kerstin, Martina, Andrea, Dirk, and 

Lars for their assistance with laboratory analyses; and to Cecille, Jie, Guodong, Guan-tao, Dan, 

Lukas and Leonie, for the friendships. I am sincerely grateful to the department for their support 

during my time of need. Many thanks. 

I gratefully acknowledge our counterparts in Cameroon, the International Institute for Tropical 

Agriculture (IITA) for granting us access and use of their storage facilities, and for other 

logistical support. 

 I am especially grateful to my field assistant and friend Leonel Boris Gadjui Youatou, for 

assisting in the coordination of the project. He was hardworking, trustworthy, and extremely 

dedicated to practicing good science. Many thanks to Narcis Lekeng, Yannick Eyenga Alfred, 

Denis Djiyo and all the other field workers for their tireless effort in the field, often under very 

difficult conditions. I also thank Walther Pohl for helping to transport research equipment to 

Cameroon and for assisting with site selections. 

My heartfelt gratitude goes to my friends: Dr. Issaka Abdulai and his wonderful family for their 

support and kindness; Grace Cudjoe for her constant support; Divine Torkutsah, Abdul Latif 

Moudassirrou, Osei-Wusu Emmanuel and Teddy Freduah Agyemang for simply been there for 

me; Sheikh Bawa Aransa Awuze for all his advice and prayers; and Aastha Tyagi for the good 

laughs and company. Parisa Mazinanian deserves special thanks for her immense support and 

encouragement, I could not have done this without her; Hakuna Matata Parpar  

Lastly, I would like to thank my family for all their unwavering support and love. I am 

especially grateful to my Parents, Iddris Issah and Rabiatu Umar for putting aside their dreams 

so I can achieve my mine, JazākumAllāhu Khayran. You are the best there ever was.



 

109 

 

THESIS DECLARATION 

I, Najeeb Al-Amin Iddris, hereby declare that I have composed the present thesis independently 

using no other sources and resources than those stated. In particular, I have completed all parts 

of the thesis myself; I have neither, nor will I, accept unauthorised outside assistance either free 

of charge or subject to a fee.  

I furthermore declare that this work has not been submitted elsewhere in any form as part of 

another thesis procedure. 

 

 

 

 

 Göttingen, March 2020    ________________________  

     (Najeeb Al-Amin Iddris) 

 

 

 

 

 

 

 

 

 

 

 


